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General Introduction

The technology based on silicon microelectronics is reaching its performance limits, lead-
ing to the development of new electronical, technological and computational paradigms.
After the discovery of tunneling magnetoresistance (TMR) and giant magnetoresistance
(GMR), we are facing a great revolution of magnetic memory and storage capacities of
modern hard drives, in the two novel fields of spintronics [10] and molecular electronics [11].
At the same time, new research is focusing on organic materials as possible candidates to
replace silicon technology, since they are cheap to produce, flexible and diverse in their
applications. The combination of spintronics and organic electronics is believed to lead to
a new generation of spin based devices, which would most likely open a new broad range
of applications and a new generation of products in organic spintronics [12]. For such
applications in the nanoscale, the behavior of these materials is defined by their electronic
structure.

The electronic structure of a system can be investigated experimentally with distinct
experimental setups, for instance, scanning tunneling microscopy and spectroscopy, direct
and inverse photoemission, optical adsorption, etc. In analogy, the theoretical description
and the prediction of an electronic system’s properties can be achieved with different the-
oretical frameworks. The understanding of characteristic properties of materials and the
interpretation of experimentally observable phenomena, from first-principles, has become
an extremely efficient tool for theoretical physicists. The study of materials with ab-initio

methods can be done using different approximations to the many body problem depending
on the properties that need to be addressed. One of them is the widely known density
functional theory (DFT), which in some cases succeeds to describe material properties in
good agreement with experiment. It also predicts the atomic geometries of the structures
with great accuracy. In other situations when DFT is not accurate enough, a many body
perturbation theory, like the GW approximation (where G is a Green function and W the
screened dynamical interaction) is more effective for the evaluation of the electronic cor-
relation effects, and the description of dynamical effects like the screening of the electrons.

The work presented in this manuscript focuses on organic molecules adsorbed on metal-
lic surfaces, and more specifically on the electronic structure changes due to the screening
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General Introduction

of the metallic environment. As one realizes immediately, there is a plethora of different
systems that can be studied in this context. The choice of the diverse systems, contained in
this thesis, was motivated by mainstream experimental and theoretical research on highly
promising subjects.

A challenge in the field of organic spintronics or in general organic electronics is the use
of only one molecule as the main protagonist defining the desirable properties in electronic
devices. In this context, a new field of molecular spintronics is emerging. In particular,
compounds of the single molecule magnet (SMM) class [1, 13] have attracted a lot of at-
tention, since their magnetic relaxation time at low temperatures is of the order of years.
Many applications have being proposed using SMMs like memory elements [14,15], recti-
fiers and transistors [16–18]. In such devices, the external control of electron spins can be
achieved through temperature, pressure, light or electron charging, if the so-called “spin-
transition” complexes are used [19–21]. The behavior of the system in these complexes is
defined by a single spin. Intensive work has been done in such systems, with increasing
complexity ranging from 3d or 4f adatoms on metallic surfaces [22–27], through molecules
with extended π orbitals [28–31], to carbon nanotubes [32, 33]. In addition, different
systems like a hybrid spinterface of an organic magnetic molecule and a ferromagnetic
substrate have brought interesting new aspects to this field [34]. Naturally, for such ap-
plications, the molecules should be deposited on a supportive substrate or in a junction.
Therefore, not only the properties of the gas-phase molecules, but also the properties of
the adsorbed molecules in different types of substrates should be investigated. The inter-
action of the electrons of the molecule with those of the substrate will change considerably
the properties of the molecular system. Thus, its deep understanding is imperative for
further progress in the field of molecular electronics.

When a molecule is in a typical break-junction or a scanning tunneling microscope
(STM) setup, the low-temperature transport at low bias is governed by the Kondo ef-
fect [35], which gives rise to a sharp Kondo resonance in the spectrum of the differential
conductance, hence opening a new way of coherent transport in molecular electronics.
Nowadays, it is possible to tune the system in a controlled way from the Kondo regime to
the uncorrelated one. For instance, this can be achieved by changing the molecular atomic
configuration without altering the chemical composition. Switching the Kondo effect on
and off provides means to exert spin control which is of utmost interest to spintronics. The
sensitivity of the Kondo resonance to spin polarization of the surface electrons offers the
possibility to “tune” the source and drain magnetization, something that would have great
implications to information storage and processing. The Kondo effect, nowadays, has been
revived in the context of molecular adsorbates and molecular junctions. Many cases have
been extensively studied, so far, especially when the adsorbed molecule carries one spin.
However, further investigation is required on this direction, especially when the candidate
molecule carries two spins. The physics in play is intriguing, because Kondo effect occurs
in the presence of two spins that can also be magnetically coupled to each other. Ab initio

methods can shed light on the problem, giving a good prediction of the atomic structures,
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and providing an insight of the appearing Kondo effect mechanism. This subject will be
analyzed in chapter 2 of this thesis.

Except the Kondo effect, other physical phenomena also take place when a molecule
is adsorbed on a substrate, even in the absence of an active spin. The adsorption of a
molecule on a metallic substrate, for example, might lead to a modification in the electron
density of the substrate and the molecule, the electronic coupling of the molecular states
with the extended states of the metal, or the polarization of the metal due to adsorption.
Charge transfer between the molecule and the substrate may alter the properties of the
system. Indeed, an electron or a hole can be added into the molecular orbitals, due to the
Coulomb interaction with the substrate. These phenomena are interpreted as changes in
the electronic structures of both the molecule and the substrate, such as the rearrangement
of the molecular orbitals or widening of the resonances in their density of states. It can
also lead to the change in the energy needed to extract an electron from the system (its
ionization energy) or the energetic gain when an electron is added to the system (its elec-
tron affinity). Figure 0.1 shows some of these basic processes occurring in non-magnetic
molecular electronics [1]. In the weak coupling regime (when the molecule does not in-
teract strongly with the substrate), the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) are well defined. HOMO-LUMO gap
decreases and the resonances become broader and closer to the Fermi level, as the coupling
is increased. For the adsorbed molecule the energy gap is further reduced. Note that in
the case that the molecule carries an unpaired spin a multipeaked structure appears at
the Fermi level for strong coupling (Kondo effect).

Figure 0.1.: Schematic representation of the changes to molecular levels due to interac-
tion with a substrate taken from Ref. [1]. HOMO and LUMO are well defined
within the weak coupling regime (a). The band gap decreases and the reso-
nances become broader when the coupling with the substrate increases (b).

Such changes in the HOMO-LUMO gap is of fundamental interest in the research of
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molecular electronics and photovoltaics. In these cases, it is not the spin, but the energy
band gaps that can be manipulated in order to give desirable properties to specific devices.
Analogous to the molecular electronics, the existence of a supportive substrate is also a
prerequisite for photovoltaics and organic solar cells. Especially in the field of organic
photovoltaics (OPVs) a lot of studies have been conducted on polymers and oligomers
like alkanes and oligoacenes due to their mechanical flexibility and their ability to harvest
light [36–38]. In OPVs a bilayered donor-acceptor heterojunction exists and such molecules
are proposed as acceptors in the photoactive heterojunction. Oligoacenes, in particular,
consist of one repeated benzene ring and form candidates for several applications in or-
ganic electronics [39–41]. In spite of the intensive research in this direction, oligoacene
molecules have not been investigated adequately above pentacene, mainly because their
synthesis has not yet been achieved [42]. Experimentally, the synthesis of larger gas-phase
oligoacenes is under investigation to increase their stability [43, 44]. In addition, the on-
substrate synthesis provides hope to these achievements [45]. Furthermore, great progress
has been achieved in scanning probe microscopy in imaging organic molecules with high
resolution [46,47]. Oligoacenes exhibit pronounced properties, like the oscillation of their
HOMO-LUMO gaps with respect to their molecular length [5,48]. Investigation is required
to define the origin of such a property, its survival under the screening of a supporting
substrate, as long as its possible adjustment in alternative applications, like the tuning of
a semiconductor’s energy band gap. Ab-initio methodologies form a powerful tool to carry
out such a study that will be presented in detail in chapter 3 of the present manuscript.

Finally, focusing on the theoretical research on molecular electronics, a question that
arises is the adequacy of each theoretical framework to describe the properties of matter.
Although DFT methods succeed to describe certain properties, like total energies or atomic
structures, in good agreement with experiment, they fail to give good results for energy
band gaps and band structures [49]. Indeed, DFT has the tendency to underestimate the
experimental values of the band gaps for solids and surfaces [50, 51]. In certain cases,
like Germanium, DFT gives a qualitatively wrong result, predicting the materials to be
metallic while they have a finite gap [52]. These limits of DFT can be overcome with the
many-body GW approximation [53,54]. GW has also been successful in the description of
transition metals [55,56], f -electron systems [57], surfaces [58] and interfaces [7]. In partic-
ular in the case of molecules, extensive research has been done to obtain good agreement
between theory and photoemission experiments [2,59–62]. Figure 0.2 shows the results of
such a study for several organic molecules in the gas-phase [2]. The HOMO-LUMO gaps
are obtained with different functionals within DFT methods, and GW techniques using a
different starting-point calculation (DFT or Hartree-Fock). A more detailed description
of the methods mentioned here will be presented in chapter 1 of this manuscript.

Several studies have also been done for the description of electronic structure of ad-
sorbed molecules on metallic surfaces. These studies indicate that certain phenomena
arising from the interaction between the molecule and the substrate can be captured
within DFT to a certain extent. Such phenomena are the rearrangement of HOMO and
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Figure 0.2.: Experimental and theoretical HOMO-LUMO gaps for a set of different organic
molecules. Different methods were used for the evaluation of the theoretical
band gaps; LDA (light blue triangles up), B3LYP (white triangle down),
G0W0 with LDA as a starting point (green squares), G0W0 with HF as a
starting point and self-consistent GW (black diamonds). The graph was taken
from Ref. [2].
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LUMO, the broadening of their resonances in the density of states or the shift of the
orbital energies [63, 64]. However, the polarization of the substrate cannot be described
within single-particle methodologies. During the adsorption of a molecule the electrons of
the substrate will screen the added electrons or holes in the interface, an effect which is
dynamical and can be described within the GW approximation [7]. It has been proved
that the quasiparticle gap of the adsorbed molecule is reduced with respect to its gas
phase counterpart [7,65–67]. Nonetheless, further examination is necessary, in particular,
in cases where the substrate is magnetic, for example ferromagnetic like cobalt. Such an
examination will be presented in chapter 4.

This manuscript is structured as follows. In the Chapter 1, an overview of the funda-
mental theory is given. In particular, a description of the main principles behind DFT
and GW methods are provided along with several supporting ideas necessary to some cal-
culations, such as the van der Waals dispersion forces and the Hubbard U term. Besides,
the possible basis sets that can be used in the DFT codes are illustrated, focusing on the
projector augmented wave method and the numeric atom-centered orbitals. Chapter 2 is
dedicated to the study of Kondo effect in binuclear metal-organic molecules adsorbed on
a Cu(001) surface. Firstly an introduction to the theory of the Kondo effect and the STM
principles is provided, followed by the observations of STM experiments. Lastly, the theo-
retical results are presented, for the free and the adsorbed molecular complexes. Chapter
3 presents a complete study of oligoacene molecules. It starts by drawing the properties
of the molecular chain in the gas-phase and continues by giving evidence for the survival
of these properties in adsorbed molecules. The end of the chapter suggests a possible
application for oligoacene molecules on a semiconductor substrate. Chapter 4 is dedicated
to the investigation of DFT and GW -evaluated properties of three different molecules
adsorbed on a paramagnetic and a ferromagnetic substrate. Namely, methane (CH4),
ethane (C2H6) and ethylene (C2H4) are adsorbed on a Cu(001) or a Co(001) surface. The
results obtained from each method are compared and discussed. The manuscript ends
by highlighting the main conclusions of this thesis and providing perspectives for further
investigation on the subjects discussed.
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Introduction 1
The understanding and the description of matter has been an issue for thought and wonder
since the age of the ancient Greeks, when Dimokritos developed his theory of atom, the
piece of which the matter consists and can not be divided further. Throughout the cen-
turies, since then, scientists have built a completely different picture of matter, consisting
of atoms which contain a number Z of electrons, each of them carrying the elementary
charge -e and orbiting around a nucleus of charge Ze.

Quantum mechanics, the field describing the laws in the small scale started to be de-
veloped in 1913, by Bohr. Bohr described the electronic orbitals of the hydrogen atom
with great success and laid the foundations for the Schrödinger equation to come in 1926.
Schrödinger equation became the mathematical language of quantum mechanics. In prin-
ciple this, one and only, equation can describe entirely the physical properties of matter,
multi-electronic atoms, molecules and solids.

1.1. The Schrödinger equation

If we imagine a piece of matter as an ensemble of interacting atoms, we can describe the
system as a set of atomic nuclei and electrons interacting via electrostatic Coulomb forces.
The Hamiltonian describing this system should look like:

Ĥ =−

NZ∑

I=1

h̄2

2MI
∇2

I −

Ne∑

i=1

h̄2

2m
∇2

i +
e2

2

NZ∑

I=1

NZ∑

J 6=I

ZIZJ

|RI −RJ |

+
e2

2

Ne∑

i=1

Ne∑

j 6=i

1

|ri − rj |
− e2

NZ∑

I=1

Ne∑

i=1

ZI

|RI − ri|
, (1.1)

where RI for I = 1, . . . , NZ is the set of NZ nuclear coordinates, ri for i = 1, . . . , Ne is
the set of Ne electronic coordinates, ZI is the nuclear charge, MI the nuclear mass and e
the electronic charge. Therefore, the properties of the system can be derived by solving
the time-independent Schrödinger equation:
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Chapter 1. Introduction

ĤΨn(R, r) = ǫnΨn(R, r), (1.2)

where R = (R1, R2, . . . , RNZ
) and r = (r1, r2, . . . , rNe) are the position vectors of the

NZ nuclei and Ne electrons, respectively, ǫn are the energy eigenvalues and Ψn(R, r) the
corresponding eigenstates, or wave functions. Since the electron is a fermion, the wave
function must be antisymmetric with respect to the exchange of electronic coordinates
in r, whereas it can be symmetric or antisymmetric with respect to exchange of nuclear
variables in R, depending on the spin of the nucleus. If the nucleus has a half-integer spin
it is also a fermion (antisymmetric wave function due to Pauli exclusion principle), while
if it has spin integer, it is a boson (symmetric wave function).

In practice, the Schrödinger equation is impossible to be solved analytically due to its
complexity, except from the case of hydrogen or hydrogenoid atoms. In order to overcome
this complexity but still give a reliable description of matter, some approximations had
to be introduced. The first approximation, to lead a pool of other approximations, still
developing nowadays, was the adiabatic or Born-Oppenheimer approximation.

1.2. Born Oppenheimer Approximation

Born and Oppenheimer [68] proposed that the movement of the atomic nuclei can be ne-
glected in the evaluation of the electronic properties of matter. This assumption was very
reasonable since the electrons are much lighter than the nuclei and therefore move much
faster. Thus, one can focus only on the electrons, which interact with the positive atomic
nuclei and with each other via Coulomb forces. The former interaction can be treated,
even if it is not simple, whereas the latter interaction is far complicated to calculate and
more approximations are needed.

Hence, the complexity of the problem after the Born-Oppenheimer approximation re-
sides in the electron-electron interactions. There are two different kinds of such inter-
actions that should be treated. First, the exchange interaction which is the outcome of
Pauli exclusion principle for fermions. Then, there is the correlation interaction, where
each electron is affected by the motion of the rest of the electrons in the system.

An idea that can simplify the problem even more, is the one-electron picture in a mean
field approximation. This way, the system is described by a single electron interacting with
a collection of classical ions via an effective potential, where the exchange and correlation
interactions are taken into account in an average or effective way. The mean-field theory
is the basis for theories like Hartree-Fock and density functional theory, which have been
the main approaches to solve the electronic structure problem in condensed matter physics.

8
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1.3. Hartree-Fock Approximation

Within the Hartree-Fock (HF) approximation [69], [70] the wave function of the many-
body system is an antisymmetric product of single particle wave functions each of which
satisfies an one-particle Schrödinger equation. It is worth noting that the Hartree-Fock
approximation is based on the assumption of Hartree that the electron is moving in an
effective field, interacting with the rest of electrons only via Coulomb forces.

The HF method fully accounts for the electronic exchange interaction of the electrons
and provides its exact value. However, the correlation energy is neglected, a fact that leads
to the breakdown of the theory for metallic and bulk systems. It produces overestimated
band gaps and underestimated binding energies. A more detailed description of the HF
method is given in [71]. Since, the HF method completely neglects the correlation effects,
another methodology was necessary, which would provide an estimation for both exchange
and correlation contributions to the Hamiltonian of the electronic system. This need
triggered the development of the famous density functional theory.

1.4. Density Functional Theory

In parallel with the Hartree theory a different approach was developed by Thomas (1927)
and independently Fermi (1928), for the calculation of an electronic system’s energy in
terms of the electronic density. In their work, Thomas and Fermi gave a prescription
of the total electronic energy taking into account the kinetic, exchange and correlation
contributions from the homogeneous electron gas. The idea was, with this starting point,
to construct the same quantities for the inhomogeneous system, read as

Eα[ρ] =

∫
ρ(r)ǫα[ρ(r)] dr, (1.3)

where ǫα[ρ(r)] is the energy density of contribution α. α can represent the kinetic, exchange
or correlation contribution, calculated locally at every point in space.

This was the first time that the total energy of an electronic system was proposed as
a functional of the electronic density of the system, and set up the basis for the later
development of the density functional theory (DFT) which has been the most extensively
used method in electronic structure calculations in condensed matter physics during the
past five decades.

1.4.1. Hohenberg - Kohn theorems

The hopes to describe the energy exclusively in terms of the electronic density, were
realized by the formulation and proof of Hohenberg-Kohn theorems in 1964, thirty years
after Thomas-Fermi approach.
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• Theorem I The external potential of an electronic system is univocally determined
by its electronic density up to a constant value.

Proof : The proof of this theorem in the original paper [72] is made ad absurdum,
i.e. it can not be otherwise. Indeed, if we suppose the opposite statement to hold,
which means the external potential is not univocally determined by the density, we
can find two potentials, υ and υ′, such that their ground state density ρ is the same.

Let Φ be the ground wave function and E0 = 〈Φ|Ĥ|Φ〉 the corresponding ground
state energy of the Hamiltonian Ĥ = T̂ + V̂ext + Ûee. Likewise, we assume Φ′

and E′0 = 〈Φ′|Ĥ ′|Φ′〉 a second wave function and ground state energy, respectively,
corresponding to the Hamiltonian Ĥ ′ = T̂ + V̂ ′ext + Ûee. According to Rayleigh-
Ritz’s variational principle and using the fact that different Hamiltonians necessarily
correspond to different ground states, Φ 6= Φ′ we have:

E0 < 〈Φ
′|Ĥ|Φ′〉 = 〈Φ′|Ĥ ′|Φ′〉+ 〈Φ′|Ĥ − Ĥ ′|Φ′〉

= E′0 +

∫
ρ(r)[υext(r)− υ

′
ext(r)] dr (1.4)

If we exchange the roles of Φ and Φ′ and consequently also Ĥ and Ĥ ′ we obtain:

E′0 < 〈Φ|Ĥ
′|Φ〉 = 〈Φ|Ĥ|Φ〉+ 〈Φ|Ĥ ′ − Ĥ|Φ〉

= E0 +

∫
ρ(r)[υ′ext(r)− υext(r)] dr (1.5)

Adding the two inequalities, 1.4 and 1.5 we readily obtain:

E0 + E′0 < E′0 + E0 (1.6)

which is of course absurd. Therefore, our initial hypothesis is wrong and there cannot
be υext(r) 6= υ′ext(r) that correspond to the same electronic density for the ground
state, unless they differ only by a constant.

• Theorem II There is a variational principle on the density stating that the ground-
state energy E0 has its global minimum for the true ground-state density ρ.

Proof : Let ρ̃(r) be a non-negative density normalized to N. We can define the
variational energy Ev as a functional of the density due to the previous theorem:

Ev[ρ̃] = F [ρ̃] +

∫
ρ̃(r)υext(r) dr (1.7)
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with

F [ρ̃] = 〈Φ[ρ̃]|T̂ + Ûee|Φ[ρ̃]〉 (1.8)

Here Φ[ρ̃] is the ground state of a potential which has ρ̃ as its ground state density.
If E0 = Ev[ρ] is the ground state energy we have:

〈Φ[ρ̃]|Ĥ|Φ[ρ̃]〉 = F [ρ̃] +

∫
ρ̃(r)υext(r) dr

Ev[ρ̃] ≥ Ev[ρ] = E0 = 〈Φ[ρ]|Ĥ|Φ[ρ]〉. (1.9)

The inequality comes from the Rayleigh-Ritz’s variational principle for the wave
function, applied to the electronic density in this case. The variational principle,
therefore, states that

δ{Ev[ρ]− µ

(∫
ρ(r) dr−N

)
} = 0, (1.10)

which leads to

µ =
δEv[ρ]

δρ
= υext(r) +

δF [ρ]

δρ
, (1.11)

where F [ρ] = 〈Φ|T̂+Ûee|Φ〉 with Φ being the ground state many-body wave function.

Thus, F[ρ] is a universal functional and does not depend explicitly on the external
potential, but only on the electronic density. Its knowledge would imply the exact
knowledge of the solution of the full many-body Schrödinger equation.

Hohenberg-Kohn theorems form the mathematical basis of the density functional the-
ory (DFT). Their power underlies the fact that a simple quantity like the density can give
access to all ground-state properties of a system and especially the kinetic energy.

Since the total energy is a functional of the density, if we extract some known parts out
of it, the remainder will also be a density-functional:

E0[ρ] = 〈Ψ0|H|Ψ0〉

= 〈Ψ0|T + Uee|Ψ0〉+

∫
υext(r)ρ(r) dr. (1.12)

Uee can be further split up into two parts, the classical electronic energy, known also as the
Hartree term and the remainder Exc, referred to as the exchange correlation energy. The
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Chapter 1. Introduction

contribution of the Hartree term is by far the most important from the energetic point of
view, while the exchange-correlation contribution follows with decreasing importance, as
they can be further split into the exchange and the correlation part. Therefore we have
for the total energy:

E0[ρ] = 〈Ψ0|T |Ψ0〉+
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

∫
υext(r)ρ(r) dr + Exc[ρ].

The exchange energy is known and can be calculated exactly as in the Hartree-Fock the-
ory. This calculation though is very expensive computationally and therefore the exchange
part is frequently approximated. The correlation part on the other hand is completely un-
known. In fact all the unknown of the many-body problem is gathered there. And this is
not the only problem one has to face. The kinetic energy is in principle a function of the
electronic density, but its explicit dependence to the density is not known.

1.4.2. Kohn-Sham equations

In 1965, Kohn and Sham in a very interesting paper [73] tried to minimize the unknown
part of the kinetic energy. They introduced the kinetic energy of a fictitious system of
non-interacting electrons that can feel an external potential υxc, such that it has the same
ground state density as the interacting system. They did that by assuming that the non-
interacting system of electrons can be described exactly by an antisymmetric wave function
of the Slater determinant type, which is made of one-electron orbitals.

The real kinetic energy, in this case, can be split to the kinetic energy of the non-
interacting system plus the correlation contribution to the kinetic energy of the interacting
system. The correlation part of the kinetic energy derives from the fact that the real many-
body wave function is not a Slater determinant and can be added in the initial correlation
part that is unknown, Ec. Following the above methodology, the Kohn-Sham energy can
now be read as:

EKS = −
N∑

i=1

∫
φ∗i (r)

∇2
r

2
φi(r) dr +

1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

∫
υext(r)ρ(r) dr + Exc[ρ],

(1.13)

where φi(r) is the wave function of the non-interacting system. Note that now the Exc

term includes the correlated part of the kinetic energy. The Kohn-Sham potential can be
read as:

υKS(r) = υext(r) +

∫
ρ(r′)

|r− r′|
dr′ + υxc[ρ](r), (1.14)

12



1.4. Density Functional Theory

where the second term represents the Hartree term and υxc the new exchange-correlation
potential:

υxc(r) =
δExc

δρ(r)
. (1.15)

The one-electron orbitals have the one and only required property to yield the correct
ground state density and can be defined as:

ρ(r) =

N∑

i=1

|φi(r)|
2. (1.16)

In contrast to the Hartree and Hartree-Fock theories, where the reference potential de-
pends on the solutions of the one-electron Schrödinger equation, the Kohn-Sham orbitals
are defined only by the electronic density. For the closed shell situation, where no spin po-
larisation is taken into account, the Kohn-Sham orbitals are obtained by the self-consistent
solution of the independent particle problem:

(
−
∇2

2
+ υKS(r)

)
φi(r) = ǫiφi(r) (1.17)

The next step is then to find sensible approximations for the exchange-correlation po-
tential, υxc.

1.4.3. Local Density Approximation

The exchange-correlation energy, Exc, is unknown, as mentioned before, and has to be
approximated in such a way that the results obtained from the calculations are reliable.
At the same time the computational expenses have always to be taken into account. The
first approximation, introduced, was proposed by Kohn and Sham [73] in 1965 and is
called the local density approximation (LDA). The exchange-correlation energy in the
LDA formulation can be read as

Exc[n(r)] =

∫
ρ(r)ǫhomxc [ρ](r) dr, (1.18)

where ǫhomxc is the exchange-correlation energy density in a homogeneous gas of electrons.
Exact data of the exchange-correlation energy per particle, in the homogeneous electron
gas regime, ǫxc was obtained, by Ceperley and Adler, using Quantum Monte Carlo calcu-
lations [74].
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LDA can also be generalized to the case of spin-polarized calculations, where spin up and
spin down electrons are treated separately, in an approximation called the local spin density
approximation (LSDA). The exchange-correlation energy in this case can be represented
as:

Eσ,LSDA
xc (r) =

d

dρσ(r)
{[ρ↑(r), ρ↓(r)]ǫxc[ρ↑(r), ρ↓(r)]}. (1.19)

LDA considers a general inhomogeneous electronic system as locally homogeneous. This
assumption has the natural outcome that any inhomogeneities in the density are com-
pletely neglected. As a consequence, LDA tends to overestimate the binding energy of
molecules and the cohesive energy of solids. Dispersion interactions, like the weak van
der Waals forces, and the bond lengths of weakly coupled systems are poorly reproduced.
Non-local exchange and correlation effects are also not included. Therefore, strong local
correlation effects cannot be treated within LDA. Furthermore, LDA and LSDA under-
estimate significantly the energy bandgap of semiconductors or molecules, by more than
50% with respect to the experimental values. Moreover, some semiconductors with small
gaps likes Ge are predicted to be metallic within LDA. This fact reflects also to an over-
estimation of the dielectric constant.

Despite its weaknesses, LDA can predict with high precision the geometries of systems
with strong chemical or ionic bonds. It is computationally relatively cheap and can give
good predictions of the electronic structure of many systems with up to hundreds of atoms
unit cell. This is the reason it has been the first choice for ab initio calculations among
the condensed matter community for the past fifty years.

The problems LDA suffers from are intrinsic and differ for each type of materials. There-
fore, there is no unique recipe to improve upon them. Scientists have been trying to address
the diverse weaknesses of LDA developing different kind of approximations and methods,
some of which will be presented below.

1.4.4. Generalized Gradient Approximation

A kind of natural improvement to the LDA to complete homogeneity is to assume a de-
pendence of the exchange-correlation density, ǫxc on the derivatives of the density. The
approximation is called generalized gradient approximation (GGA) [75]. The dependence
of the exchange-correlation energy, Exc, to the density is still local, but improves the re-
sults with respect to LDA, in many cases [76].

The GGA, in general, attempts to make corrections to each part of exchange and cor-
relation energies of the exchange-correlation energy. By definition, Exc can be analyzed,
into the exchange part plus the correlation part as follows:
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1.4. Density Functional Theory

Exc = Ex + Ec (1.20)

For the exchange part separately we have within this formalism:

EGGA
xσ = ELDA

xσ −

∫
dr ρσ(r)

4

3Fx

(
|∇ρσ|

ρσ(r)
4

3

)
, (1.21)

where σ is the spin index. Different approximations have been proposed to get an expres-
sion for the last part of the above equation [77].

For the correlation energy Ec there are also diverse approximations. The equations
describing these methods are extended and difficult, whereas they don’t add much to the
understanding of the underlying physics so they won’t be presented in this manuscript.
It is mentioned though that throughout the work presented here, whenever GGA is men-
tioned, we have used the functional proposed by Perdew, Burke and Ernzerhof (PBE) [78].

It should be mentioned that GGA improves the binding energies, the atomic energies,
the bond lengths and angles with respect to LDA, but has a tendency to overestimate
them. There is also a better prediction of the energy band gap and the dielectric constant,
but it is not significant. Good results in this respect can only be taken if the screening of
the exchange hole is taken into account when an electron is removed from the system. As
we will see later, this happens in the GW approximation.

The GGA is supposed to improve upon the outcomes of LDA, but this is not always the
case. For example, semiconductors are slightly better described within LDA except for the
binding energies. Likewise, the lattice constants of noble metals (Ag, Au, Pt) are overes-
timated in GGA. In this case, LDA values are closer to experiment. It is noted though
that the superiority of LDA in such cases is attributed to fortunate error cancellations,
since as an approximation LDA is inferior to GGA.

1.4.5. DFT + U

One of the biggest failures of LDA and similar functionals comes in the description of
strongly-correlated materials. These contain in addition to the delocalized s- and p-
electrons, the localized partially filled d- or f -shells. The attempt to treat the different
shells with the same single-particle mean-field functional, like LDA, leads to the majority
of cases in unreliable results and even to the wrong ground state. To this problem, an often
practiced way is to add an orbital-dependent singe-particle potential to describe better the
localized, strong-correlated electrons. This potential includes explicitly the information
about the strength of the Coulomb interaction within the set of problematic states. The
method which we will describe is the so-called LDA+U .
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We consider a subspace of d-states (a similar approach is valid for f -electrons) to which
we want to introduce a d-d Coulomb interaction via the Hamiltonian

E[ni] =
1

2
U
∑

i 6=j

ninj , (1.22)

where U is a parameter, known as Hubbard U parameter, and ni is the occupation number
of orbital i of the d-electrons. The total number of electrons will be then in the subspace

N =
∑

i

ni (1.23)

The total Coulomb energy due to d-d interactions can now be read

Edd =
1

2
U(N − 1)N (1.24)

The energy described by (1.24) depends on the total occupation of d orbitals. One has to
be careful to avoid double counting errors, since the Coulomb energy is already described
by the LDA. Thus, to introduce a new total energy functional which will depend on the
set of ni, one has to subtract (1.24) from the LDA total energy, and take the LDA+U
total energy functional as

ELDA+U [n, ni] = ELDA[n] +
1

2
U
∑

i 6=j

ninj −
1

2
U(N − 1)N (1.25)

Within the above functional, equation 1.25, the sphericity and the exchange of the d− d
interactions are not taken into account. The resulting total energy will be correct, but the
single particle energies will be modified as

ǫi =
∂ELDA+U

∂ni
= ǫLDA

i + U

(
1

2
− ni

)
(1.26)

The above equation represents physically a splitting between the occupied and the unoc-
cupied states. This splitting is proportional to U and is analogous to the lower and upper
Hubbard bands in the Hubbard model [79].

The potential of each orbital reads

Vi(r) = V LDA(r) + U

(
1

2
− ni

)
. (1.27)
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1.4. Density Functional Theory

In order to determine the total energy of LDA+U , [80], one needs to define a localized
orthonormal basis |inlmσ〉 inside an atomic sphere, where i denotes the atom, n is the
principal quantum number, l the angular quantum number, m the magnetic quantum
number and σ the spin index. To make the notation simple, we suppose only one correlated
atom i and orbital l and we ignore the n and l indeces. Then, the density matrix is given
as:

nσm,m′ = −
1

π

∫ EF

ImGσ
m,m′(E) dE, (1.28)

where Gσ is the Green function. To simplify the expression of the density matrix let us
assume, without loss of generality, that l = 2. At this point, the exchange between the
localized 3d electrons of the same spin σ, can be taken into account, using the Hamiltonian:

H =
1

2
U
∑

m,m′,σ

nm,σnm′,−σ +
1

2
(U − J)

∑

m 6=m′,σ

nm,σnm′,σ, (1.29)

where J is the exchange parameter and nm,σ denotes the number of electrons as:

nm,σ = c†m,σcm,σ. (1.30)

The Hamiltonian in equation 1.29 consists of two terms. The first describes the Coulomb
interaction between the electrons carrying opposite spins. The second term describes the
interaction between the electrons of the same spin. Therefore, the first term describes
the repulsion of the electrons and can be written as Unm,σnm,−σ. This term can be
approximated within the mean field theory and be rewritten as Unm,σn−σ, where the
mean value of nσ is given as

nσ =
∑

m

nm,σ. (1.31)

The mean value of the Hamiltonian describing the total number of d-electrons, within
LDA is given as:

〈H〉LDA =
1

2
U
∑

σ

nσn−σ +
1

2
(U − J)

∑

σ

nσ(nσ − 1), (1.32)

where nσ is the number of d-electrons of spin σ.
The mean value of the Hamiltonian derived from the mean field formalism reads:

〈H〉MF =
1

2
U
∑

m,m′,σ

nm,σnm′,−σ +
1

2
(U − J)

∑

m 6=m′,σ

nm,σnm′,σ, (1.33)

17



Chapter 1. Introduction

where nm,σ is the occupation number of the d-electron with magnetic quantum number m.

Subtracting equation 1.32 from equation 1.33 and adding the LDA functional, one can
extract the LDA+U functional as:

ELDA+U = ELDA +
1

2
(U − J)

∑

m,σ

(nm,σ − n
2
m,σ), (1.34)

where the terms
∑

m,σ nm,σ and
∑

m,σ n
2
m,σ represent the traces of the electronic density

operators ρσ and (ρσ)2, respectively. Hence, the ELDA+U functional can be written in a
rotationally invariant form with respect to an orbital unitary transformation. The axis-
system independent form is written as:

ELDA+U = ELDA +
1

2
(U − J)

∑

σ

[Trρσ − Tr(ρσρσ)] . (1.35)

At this point, the effects of non-sphericality of the d-orbitals, the Coulomb interaction
and the exchange interaction can be introduced as following:

〈χm1
α;χα

χm3
|Vee|χ

α
m2

;χα
m4
〉 =

∫ ∫
dr1 dr2 χ

α∗
m1

(r1)χ
α∗
m3

(r2)υee(r1, r2)χ
α
m2

(r1)χ
α
m4

(r2).

(1.36)

The above coefficients represent the Coulomb energy in the case where m1 = m2 and
m3 = m4. In the case where m1 = m4 and m3 = m2 the coefficients represent the
exchange energy. Finally, the total LDA+U energy is given as:

ELDA+U = ELDA + Ee−e − ELDA
dc , (1.37)

where

Ee−e =
1

2

∑

σ,σ′

∑

m1,m2
m3,m4

nσm1,m2
(1.38)

×
[
〈χα

m1
;χα

m3
|Vee|χ

α
m2

;χα
m4
〉 − δσ,σ′〈χα

m1
;χα

m3
|Vee|χ

α
m2

;χα
m4
〉
]
nσ

′

m3m4
,

and where the double counting energy ELDA
dc is given by:

ELDA
dc =

1

2
Un(n− 1)−

1

2
J
∑

σ

nσ(nσ − 1). (1.39)
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1.4.6. Hybrid functionals

In the limit of weak interaction the exchange energy is the exact Hartree-Fock exchange
energy. Therefore, it is reasonable, in some cases, to add a certain fraction of the HF
exchange to the LDA or GGA exchange-correlation functionals. This thought lead to the
development of the hybrid exchange-correlation functionals where

EHYB
xc = ELDA

xc + λ(EHF
x − ELDA

x ). (1.40)

If PBE is used as the local functional and λ=0.25 is assumed, the resulting hybrid
functional is called PBE0.

During the past years many other hybrid functionals have been proposed and used for
the description of various systems.

1.4.7. Dispersion Interactions

Dispersion interactions, mostly referred to as van der Waals weak interactions, form a
difficult benchmark within DFT. These interaction describe a dynamical correlation effect
that takes place between two non-chemically bonded fragments. Its origin is the coupling
of the electric field generated by fluctuations in the electronic density of the one fragment
with the density of the other fragment. Naturally, the usual local and semi-local functionals
cannot capture this phenomenon and other approximations have to be taken into account.
At long distances the van der Waals interactions should approach the classical dipole-dipole
interaction, with a decay of

EvdW = −
C6

R6
, (1.41)

where C6 is a constant and R is the distance between the two fragments.
Many approximations have been proposed for the description of the dispersion interac-

tions and they are included in many codes as post-DFT correction to the total energy of the
system, like the Grimme’s DFT-D2 scheme [81] and the Tkatchenko Scheffler scheme [82].

1.5. Time-Dependent Density Functional Theory

DFT can be extended to include time-dependent external potentials, which frequently
occur, when for example the system is exposed to an external laser field. Such an extension
leads to the time-dependent density functional theory (TDDFT) formalism. TDDFT gives
a good estimation of the excitation energies of the system, which can be compared to
experimental photo-adsorption spectra. The accordance of these theoretical estimations
with experimental values depends on the approximations used, just as in static DFT
calculations. TDDFT is based on the Runge-Gross theorem [83], the equivalent of the
Hohenberg-Kohn theorem in static DFT. Its fundamental theory can cover almost any
kind of time-dependent external potential, whereas it can also include spin degrees of
freedom. Further analysis of TDDFT formalism and applications can be found in [84].
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1.6. Electronic Correlation using Green Functions

1.6.1. The Bandgap Problem within DFT

Within HF theory, the eigenvalues of the Hamiltonian, ǫHF
i are given, according to the

Koopman’s theorem [85], as:

ǫHF
i = E(n1, n2, . . . , ni, . . . , nN )− E(n1, n2, . . . , ni − 1, . . . , nN ) (1.42)

where E(n1, n2, . . . , nN ) is the ground state energy of the system and n1, n2, . . . , nN the
occupation number. Koopman’s theorem ensures that in case of reduction of the occupa-
tion, the orbitals remain unchanged and defines the required energy ǫHF

i needed to eject
an electron from orbital i.

Within DFT formalism, an analog of Koopman’s theorem is valid, the Janak theorem
[86]. However, the interpretation of the eigenvalues is different. In fact, the Janak theorem
proves that the variation of the KS total energy with respect to an orbital occupation is
equal to the eigenvalue of that orbital, such that:

∂E

∂ni
= ǫi (1.43)

At zero temperature for a large system, the chemical potential, µ, is given as the variation
of the total energy with respect to the total occupation number, ∂E

∂N = µ. Therefore, one
can conclude that ǫi = µ, a fact that proves the physical meaning of the highest occupied
molecular orbital (HOMO) within KS theory. The rest eigenvalues, however, cannot be
interpreted with a physical analog.

If we assume the ionization energy (IE) and the electron affinity (AE) the bandgap of
the system will be given as:

Egap = IE−AE (1.44)

= [EN−1 − EN ]− [EN − EN+1],

where EM is the total energy of a system with M electrons. In the thermodynamic limit
it is EN − EN−1 = ǫNN and EN+1 − EN = ǫN+1

N+1, with ǫMm being the m-state of the system
with M electrons. Therefore, from equation 1.44 we have:

Egap = ǫN+1
N+1 − ǫ

N
N (1.45)

The bandgap obtained within DFT though will be given as:

EDFT
gap = ǫNN+1 − ǫ

N
N , (1.46)
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which differs from equation 1.45 by a quantity ∆:

∆ = Egap − E
DFT
gap (1.47)

= ǫN+1
N+1 − ǫ

N
N+1

Thus, it is evident that DFT fails to evaluate the band gaps of real systems with good
accuracy, and tends to underestimate them. Even for the IE, in practice, there is only
a qualitative agreement with experiments, mainly because of self-interaction errors in
the single-particle eigenvalues. Hybrids can partially alleviate these errors and give in
general better agreement with experiments. This however is not adequate and another
approximation is needed to evaluate the energy band gaps with better accuracy.

1.6.2. The Green function

In order to attack the many-body problem and estimate its properties with good accuracy,
a very successful idea is to assume that the system consists of weakly interacting fictitious
particles, instead of real strongly interacting particles. The fictitious system of particles
took the name quasiparticles and possess two properties, a lifetime and an effective mass.
The calculation of these properties is done with the use of quantum field theoretical quan-
tities, widely known as Green functions [87].

The time-ordered one-particle equilibrium Green’s function G is defined as:

iG(1, 2) =
〈
Ψ|T

[
ψ̂(1)ψ̂†(2)

]
|Ψ
〉

=





〈
Ψ|
[
ψ̂(1)ψ̂†(2)

]
|Ψ
〉
, t1 > t2

−
〈
Ψ|
[
ψ̂†(2)ψ̂(1)

]
|Ψ
〉
, t2 > t1

(1.48)

The ket |Ψ〉 labels the normalized many-body wave function of the N-electron ground
state. Index 1 is a shortcut for the representation of the position, the time and the spin
variables, i.e (r1, t1, σ1) of the particle 1. The same is valid for the particle 2 and so
forth. T is the Wick’s time-ordering operator, which orders the operators in time, with
the largest time on the left, as it is shown in the equation 1.48. With ψ, ψ† in equation
1.48 we declare the annihilation and the creation field operations, respectively, within the
Heisenberg representation, which obey the fermionic anti-commutation relations:

[
ψ̂a(r), ψ̂

†
b(r

′)
]
+
= δ(r, r′)δab (1.49)

[
ψ̂a(r), ψ̂b(r

′)
]
+
=
[
ψ̂†a(r), ψ̂

†
b(r

′)
]
+
= 0

The physical interpretation of equation 1.48 should be emphasized. If an electron is
added to the system in its ground state, at the position r2 and at time t2 carrying a spin
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σ2, the Green’s function gives the probability for an electron to be found at r1 with spin
σ1 at time t1. This declaration stands when t1>t2. On the other hand, when t2>t1, the
Green’s function gives the probability to find a hole at position r2 at time t2, with spin
σ2, if an electron was previously, at time t1, from the position r1 with spin σ1.

The one-particle Green’s function gives the expectation value of any single-particle op-
erator in the ground state of a system, the total energy of the system in the ground state
and its single-particle excitation spectrum. However powerful the one-particle Green func-
tion is not the answer to every question on the many-body electron system. For instance,
it cannot describe the optical absorption of materials. Optical absorption refers to a low
energy excitation according to which a photon excites an electron into a low-lying empty
state. Then, the motion of the excited electron can not be decoupled from the hole cre-
ated in the occupied states. This motion requires the description of the full motion of the
electron and the hole, which cannot be done with the one-particle Green’s function. Thus,
the two-particle Green’s function is introduced and defined as:

i2G2(1, 2; 1
′, 2′) = 〈Ψ|T

[
ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)

]
|Ψ〉. (1.50)

The Green function can be also generalized to the N particles case as:

iNGN (1, . . . , N ; 1′, . . . , N ′) = 〈Ψ|T̂
[
ψ̂(1) . . . ψ̂(N)ψ̂†(N ′) . . . ψ̂†(1′)

]
|Ψ〉. (1.51)

Starting from the equation of motion for the Heisenberg creation and annihilation field
operations, equations 1.49, and the definition of the one- and two-particle Green functions,
equations 1.48 and 1.50, a group of equations of motion for the Green function can be
derived. The detailed derivation can be found in [88] or [89]. The outcome of these equa-
tions is that the one-particle Green function depends on the two-particle one, according
to:

[
i
∂

∂t1
− h(1)

]
G(1, 2) + i

∫
d3 υ(1, 3)G2(1, 3

+; 2, 3++) = δ(1, 2), (1.52)

where h(1) = h0(r1)δ(t1) is the single-particle term of the electronic Hamiltonian, υ(1, 2) =
υ(r1, r2)δ(t1−t2) = δ(t1−t2)/|r1−r2| the repulsive Coulomb interaction between electrons
and 1+ ≡ {r1, t1 + η, σ1}, η being a positive infinitesimal, with additional indexes of plus
indicating further addition of η.

Similarly, the two-particle Green function depends on the three-particle one and so on.
In such a way any calculation is still very complicated since the estimation of a quantity
depends upon the evaluation of a more complex counterpart. However, at this point the
fundamental idea of many-body perturbation theory is introduced: for the calculation of
e.g the one-particle Green function, the only thing that should be needed is the one-particle
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Green function. Therefore, an approximation of higher-particle Green functions in terms
of the lower ones is needed.

This approximation is achieved with the definition of a quantity called the self-energy
of the system and it is defined, for the two-particle Green function case, as:

∫
d3 [υH(3)δ(3, 1) + Σ(1, 3)]G(3, 2) = −i

∫
d3 υ(1, 3)G2(1, 3

+; 2, 3++), (1.53)

where υH(1) = υH(r1)δ(t1) is the Hartree potential.

The self-energy Σ is in general a complex, non-local and non-Hermitian operator. Its
real part is related to the exchange and correlation contributions to the quasiparticle ener-
gies. Its imaginary part is related with the excitation lifetimes. The self-energy accounts
for every event a particle experiences during its propagation in a many-electron system,
under the Born-Oppenheimer approximation. An example of such interactions can be
the formation of electron-hole pairs, which interact with the propagating particle. The
lowest-order processes are the free propagation of the particle through the system or the
bare Coulomb interaction. Such events affect the propagation of the particle and hence
form the Green function that describes it.

The replacement of the self-energy definition (equation 1.53) in equation 1.52 yields the
famous Dyson equation in form:

[
i
∂

∂t1
− h(1)− υH(1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2). (1.54)

Hence, the purpose of the many-body perturbation theory is to find appropriate approx-
imations for the self-energy operator, Σ, as a function of the one-particle Green function.
In the case of non-interacting fermions, the equation of motion of the Green function G0

becomes:

[
i
∂

∂t1
− h(1)− υH(1)

]
G0(1, 2) = δ(1, 2), (1.55)

such that the Dyson equation can be rewritten in terms of the non-interacting Green
function, G0, and the interacting one, G as:

[G−10 (1, 3)− Σ(1, 3)]G(3, 2) = δ(1, 2). (1.56)

The latter equation is usually represented in a symbolic way:

G0 +G0ΣG = G, (1.57)
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Figure 1.1.: Feynman diagram representation of the Dyson equation, G = G0 +G0ΣG.

which shows that all the effects beyond non-interacting particles are included in the self-
energy. The Dyson equation can also be represented in terms of Feynman diagrams, shown
in Figure 1.1. A simple introduction to Feynman diagrams is given in [90].

1.6.3. Lehmann Representation

A different representation of the Green function can be derived if one introduces the
time-dependent field operations in the Heisenberg picture, ψ̂n(r, t) = eiĤtψ̂(r)e−iĤt , in
equation 1.48:

iG(r, t; r′, t′) = 〈Ψ|eiĤtψ̂(r)e−iĤ(t−t′)ψ̂(r′)e−iĤt′ |Ψ〉θ(t− t′), (1.58)

where it has been assumed that t > t′ (electron propagation). An analogous derivation
can be done for t′ > t, describing the propagation of a hole. The integral representation
of the step-function as was also introduced in equation 1.58 and is defined as:

θ(t− t′) = −

∫ +∞

−∞

dω

2πi

e−iω(t−t
′)

ω + iη
. (1.59)

If the completeness relation
∑

s |Ψ
N+1
s 〉〈ΨN+1

s | = 1 is introduced to equation 1.58, one
gets:

iG(r, t; r′, t′) =
∑

n

ei(E0−E
N+1
n )(t−t′)〈Ψ|ψ̂(r)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†(r′)|Ψ〉θ(t− t′) (1.60)

where ΨN+1
s is the n-th excited state of the N + 1 particle system, and EN+1

s the corre-
sponding energy. We can now introduce certain definitions:

ǫs = EN+1
s − EN

0 (1.61)

fn(r) = 〈Ψ|ψ̂(r)|Ψ
N+1
n 〉 (1.62)

f∗n(r
′) = 〈ΨN+1

n |ψ̂†(r′)|Ψ〉, (1.63)

where fn and f∗n are referred to as Lehmann amplitudes and describe the overlap between
the ground state and an excited state of the system, carrying an extra electron. That
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means that fn give the probability amplitude for an electron to be added to the system,
for t > t′. We introduce the definitions in equation 1.61 in equation 1.60 and we get:

iG(r, t; r′, t′) =
∑

n

e−iǫn(t−t
′)fn(r)f

∗
n(r

′)θ(t− t′), (1.64)

By performing a Fourier transformation to frequency of equation 1.64, one obtains the
Lehmann representation of the Green function [91]:

G(r, r′, ω) =
∑

n

fn(r)f
∗
n(r

′)

ω − ǫn + iη
. (1.65)

The Lehmann representation shows that the Green function has poles at the single-particle
excitation energies, ǫn = EN+1

n − EN
0 . This proves that the Green function is a quantity

that can describe correctly the photoemission events, i.e the experimental processes where
the system is driven to an excited state, through the removal (direct photoemission) or
the addition of an electron (inverse photoemission).

Replacing the Green function in equation 1.64 in the Dyson equation 1.56, the quasi-
particle equation can be derived:

[h0(r) + υH(r)]fn(r) +

∫
dr′Σ(r, r′, ǫn)fn(r

′) = ǫnfn(r). (1.66)

The quasiparticle equation is an alternative expression of the Dyson equation, actually
turning the latter to a single-particle eigenvalue problem. In the case where the self-
energy is exact, it is possible to access all single-particle excitation energies of the system,
ǫn and the corresponding probability amplitute, fn. However, this problem is difficult to
solve, because the self-energy is non-Hermitian and frequency-dependent. Thus, one needs
to make a few approximations to compute the self-energy.

1.6.4. Hedin’s equations

Lars Hedin (1965) proposed a set of self-consistent equations that provide an exact solution
for the Green function and the self-energy of a many-body electron system [92]. Hedin’s
equations, as they are called, express the many-body problem in terms of quantities with a
physical meaning, like the screened Coulomb interaction W and the polarizability, P . The
goal of the derivation presented in the following is to transform the Dyson equation into a
closed set of integro-differential equations. But firstly one should decouple a hierarchy of
equations for obtaining the Green function. This is achieved with the Schwinger derivative
technique [93].

Schwinger introduced a small external potential, U as a perturbation to the system and
derived the following identity for the two-electron Green function:
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G2(1, 4; 2, 3) = G(1, 2)G(4, 3)−
δG(1, 2)

δU(3, 4)
. (1.67)

With this equation it is obvious we can express the two-particle Green function only in
terms of the one-particle Green function.
Let us rewrite at this point the equation of motion of the one-particle Green function 1.52:

[
i
∂

∂t1
− h(1)

]
G(1, 2) + i

∫
d3 υ(1, 3)G2(1, 3

+; 2, 3++) = δ(1, 2), (1.68)

If we use the Schwinger’s formula 1.67 and introduce it to equation 1.68 for a local
U(3)δ(3, 4) we get:

[
i
∂

∂t1
− h(1)

]
G(1, 2) + i

∫
d3 υ(1, 3)G(3, 3+)G(1, 2) (1.69)

− i

∫
d3 υ(1+, 3)

δG(1, 2)

δU(3)
= δ(1, 2).

Multiplying the above equation on the right by
∫
d5G−1(4, 5)G(5, 2) = δ(4, 2) we have:

[
i
∂

∂t1
− h(1) + i

∫
d3 υ(1, 3)G(3, 3+)

]
G(1, 2) (1.70)

−i

[∫
d345 υ(1+, 3)

δG(1, 4)

δU(3)
G−1(4, 5)

]
= δ(1, 2)

Since −iG(3, 3+) is the electronic density, one can realize that −i
∫
d3 υ(1, 3)G(3, 3+)

in equation 1.70 is the Hartree potential. The last term of the equation 1.70 gives the
self-energy operator as:

Σ(1, 2) = i

[∫
d345 υ(1+, 3)

δG(1, 4)

δU(3)
G−1(4, 2)

]
(1.71)

Using the derivative of the inverse identity:

δF (1, 2)

δG(3)
= −

∫
d45F (1, 4)

δF−1(4, 5)

δG(3)
F (5, 2), (1.72)

in equation 1.71, one gets for the self-energy:

Σ(1, 2) = −i

∫
d345 υ(1+, 3)G(1, 4)

δG−1(4, 2)

δU(3)
, (1.73)
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which accounts for all the many-body effects beyond the Hartree potential.

At this point one can introduce the local classical potential V :

V (1) = U(1)− i

∫
d2 υ(1, 2)G(2, 2+), (1.74)

which is the sum of the external perturbation U and the Hartree potential.
Using the chain rule:

δF [G[H]](1)

δH(2)
=

∫
d3

δF [G](1)

δG(3)

δG[H](3)

δH(2)
(1.75)

via V in the equation 1.73, one gets:

Σ(1, 2) = −i

∫
d345 υ(1+, 3)

δG−1(1, 4)

δV (5)

δV (5)

δU(3)
G(4, 2), (1.76)

where the definitions of the dielectric function:

ǫ−1(1, 2) =
δV (1)

δU(2)
(1.77)

and the irreducible vertex function:

Γ(1, 2; 3) = −
δG−1(1, 2)

δV (3)
, (1.78)

and the dynamical screened Coulomb interaction:

W (1, 2) =

∫
d3 υ(1, 3)ǫ−1(3, 2) (1.79)

can be introduced. By the term irreducible the differentiation upon V and not U , is im-
plied.

According to the above definitions, the self-energy (equation 1.73) can be written as:

Σ(1, 2) = i

∫
d34G(1, 4)W (3, 1+)Γ(4, 2; 3). (1.80)

Let us start from the vertex function definition, equation 1.78, introducing the Dyson
equation 1.56. Then we get:
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Γ(1, 2; 3) = −
δ

δV (3)
[G−10 (1, 2)− υH(1, 2)δ(1, 2)− Σ(1, 2)− U(1)δ(1, 2)]

= δ(1, 2)δ(1, 3) +

∫
d45

δΣ(1, 2)

δG(4, 5)

δG(4, 5)

δV (3)
(1.81)

= δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3),

where the chain rule 1.75 was used in the first step and the derivative of the inverse 1.72
as well as the definition of Γ, on the second.

Concerning the inverse dielectric function, ǫ−1, using the definition of V (1.74), we get:

ǫ−1(1, 2) =
δ(U(1)− i

∫
d3 υ(1, 3)G(3, 3+))

δU(2)
(1.82)

= δ(1, 2) +

∫
d3 υ(1, 3)χ(3, 2),

where

χ(1, 2) = −i
δG(1, 1+)

δU(2)
(1.83)

is the so-called reducible polarizability of the system. With the term reducible the de-
pendence on the bare external potential U is implied. One can also define the irreducible
polarizability as:

P (1, 2) = −i
δG(1, 1+)

δV (2)
. (1.84)

The irreducible and the reducible polarizabilities are linked through the following equa-
tion:

χ(1, 2) = −i

∫
d3

G(1, 1+)

V (3)

δV (3)

δU(2)
(1.85)

= P (1, 2) +

∫
d34P (1, 3)υ(3, 4)χ(4, 2),

where the relation 1.82 and the chain rule 1.75 where used.

The reducible polarizability can be further determined in terms of G and Γ, using 1.72,
as:
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P (1, 2) = i

∫
d34G(1, 3)

δG−1(3, 4)

δV (2)
G(4, 1) (1.86)

= −i

∫
d34G(1, 3)G(4, 1)Γ(3, 4; 2).

The dynamical screened Coulomb interaction, defined in 1.79, using equations 1.82, 1.83
and 1.84 is read:

W (1, 2) =

∫
d3 υ(1, 3)

δ

δU(2)

[
U(3)− iG(4, 4+)υ(4, 3)

]
(1.87)

= υ(1, 2) +

∫
d34 υ(1, 3)χ(4, 2)υ(4, 3)

= υ(1, 2) +

∫
d34 υ(1, 3)χ0(3, 4)W (4, 2),

where to obtain the last line the relation χ(1, 2) =
∫
d3χ0(1, 3)ǫ

−1(3, 2) is used, which is
implied by the first part of equation 1.85.

The five Hedin’s equations can be summarized as shown below:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2) (1.88)

P (1, 2) = −i

∫
d34G(2, 3)G(4, 2)Γ(3, 4; 1) (1.89)

W (1, 2) = υ(1, 2) +

∫
d34 υ(1, 3)P (3, 4)W (4, 2) (1.90)

Σ(1, 2) = i

∫
d34G(1, 4)W (3, 1+)Γ(4, 2; 3) (1.91)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3) (1.92)

Each Hedin equation, 1.88-1.92, is dependent of the other four, a fact that transforms
the problem of the calculation of the single-particle Green function to a self-consistent
problem.

The solution of the self-consistent problem can be approached by an iterative scheme:

1. Initialize of a first self-consistent calculation with a non-interacting Green function
G0.

2. Evaluate P , W , Σ and Γ, taking Γ(1, 2; 3) = δ(1, 2)δ(1, 3).
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3. Construct the vertex Γ.

4. Update the Green function G.

5. Iterate the five equations 1.88-1.92 until the convergence criterion is satisfied.

The structure of this self-consistent loop is usually shown as a sketch known as the
Hedin pentagon, see Figure 1.2.

Figure 1.2.: Hedin’s pentagon

It is useful to note that by setting Σ=0, in the Hedin equations, the Hartree approx-
imation can be recovered [69]. Therefore, assuming a zero self-energy is equivalent to
an independent move of the particles, which interact only through the mean electrostatic
field, generated by the rest of the electrons. This gives naturally a poor description to
the nature of the fermions, which is partially reconstructed with the Hartree-Fock ap-
proximation. The Hartree-Fock approximation is reproduced by the Hedin’s equations
by neglecting polarization effects, i.e. setting P = 0 and restricting the vertex Γ to its
zero-th order component, i.e, Γ(1, 2; 3) = δ(1, 2)δ(1, 3). Notice that in absence of polariza-
tion effects, there is no screening to renormalize the Coulomb interaction. It is therefore
W (1, 2) = υ(1, 2).

1.6.5. GW approximation

The use of the screened Coulomb interaction W instead of the bare Coulomb interaction
υ, is the heart of the GW approximation. Such a screening between electrons is motivated
mainly by the expectation that the perturbation theory can converge faster in powers of W
than with respect to υ. Therefore, Hedin proposed a first-order perturbative expansion of
the self-energy Σ in terms of W , which starts from an initialization of the Hedin pentagon
assuming δΣ

δG = 0 in the vertex equation. Thus, we have:

Γ(1, 2; 3) = δ(1, 2)δ(1, 3). (1.93)
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Substituting the above equation 1.93 in Hedin’s equations 1.88-1.91, one obtains the
so-called GW approximation equation’s, read:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2) (1.94)

P (1, 2) = −iG(1, 2)G(2, 1) (1.95)

W (1, 2) = υ(1, 2) +

∫
d34 υ(1, 3)P (3, 4)W (4, 2) (1.96)

Σ(1, 2) = iG(1, 2)W (1, 2) (1.97)

GW approximation has been the state of the art methodology to evaluate energy band
gaps and band structures, in solids and molecules with very good agreement with exper-
iments, see for example [51]. It has to be emphasized, however, that it assumes the sum
of higher-order terms in W to be small compared to the first-order perturbation. Such an
assumption is not always adequate, since many times higher-order terms are indispensable,
for example in the calculation of optical properties. In such cases, one needs to take into
account Bethe-Salpeter equation, which is described in details in [94].

1.6.6. Perturbative G0W0

As we have seen so far, the GW approximation has been a very successful method to
attack the many-body problem, giving reasonable results for observable quantities. Nev-
ertheless, the GW approximation is very demanding in computational resources, even for
relatively small systems of few atoms. Therefore, the necessity to simplify the complexity
of equations 1.93-1.96 is an active field of research, in order to treat systems like solids or
molecules with hundreds of atoms. A simple way is to treat the self-energy and the Green
function in a non-self-consistent manner. The more applicable method, called G0W0, was
first applied to the electron gas by Hedin et al. in 1969 [95], while it was extented to real
semiconductor calculations by Hybertsen and Louie about 20 years later [96,97].

The heart of G0W0 method is the replacement of the the self-consistent cycle, implied
in equations 1.93-1.96, by a perturbation scheme. Within G0W0 the Green function G is
replaced with a Green function obtained from a preliminary density-functional or Hartree-
Fock calculation in order to evaluate equations 1.94-1.96. Therefore, the polarizability,
P , is estimated in terms of the single-particle orbitals and eigenvalues obtained in this
preliminary calculation. Moreover, the screened interaction W0 is evaluated from the
non-interacting response function and the self-energy can be expressed as:

Σ(1, 2) = iG0(1, 2)W0(1, 2). (1.98)

G0W0 method nowadays has been implemented in most mainstream DFT codes and
has become the reference method for the estimation of band gaps and band structures for
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solids [50], [51] and for molecules [2,59–62]. It has also been successful in describing tran-
sition metals [55,56], f -electron systems [57], surfaces [58] and interfaces [7]. Throughout
this thesis, G0W0 calculations have been performed for gas-phase and surface-adsorbed
molecules, using the VASP package [98–100].

Despite its success in diverse systems, G0W0 approximation suffers from some short-
comings, due to the non-self-consistent calculation of the self-energy and the perturbative
evaluation of the quasi-particle energies. The most problematic shortcoming is the de-
pendence of the results upon the preliminary reference calculation. Indeed, the starting
point calculation, i.e. density-functional or Hartree-Fock, gives different G0W0 energy and
band gap results, up to several eV [101]. Furthermore, the screening properties of the
Coulomb interactions can be over- or under-estimated depending on the preliminary cal-
culation, DFT or HF respectively. Finally, it should be emphasized that within G0W0 the
conservation laws of number of particles, momentum and total energy are violated. These
conservation laws can be reformulated in terms of Green functions, as shown by Baym
and Kadanoff [102]. They actually proved that the conservation laws are satisfied in this
representation if and only if there exists a functional of the Green function, Φ[G] [103],
such that:

Σ(1, 2) =
δΦ[G]

δG(1, 2)
. (1.99)

Within G0W0 there is no such a functional; the above condition is not satisfied and
therefore the conservation laws are violated. However, this deficiency of G0W0 is not
affecting the results for the spectral properties, but it can be important for non-equilibrium
systems and transport phenomena.

1.6.7. Self-Consistent GW

In order to improve the shortcomings of G0W0 except the fully self-consistent scheme of
GW some partially self-consistent methods have also been proposed. Here we will present
the most popular of such attempts, highlighting their main principles and the quality of
their outcome.

• Eigenvalue self-consistent GW (ev-scGW ): Within this scheme the self-energy and
the quasi-particle equation are iterated self-consistently. At each iteration the input
eigenvalues are replaced by the real part of the quasi-particle energies. The method
was introduced by Hybertsen and Louie [96] and has been investigated further ever
since, see for example [2, 104]. ev-scGW reduces the starting-point dependence of
G0W0 and improves in some cases the estimation of the first ionization energies.
However, it often deteriorates the lower lying quasi-particle states. In general, there
is no proof of some significant quantitative improvement in the description of the ex-
citation energies of molecules using ev-scGW [105]. Besides, the problems appearing
within G0W0 are not fixed.
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• Quasi-particle self-consistent GW (QP-scGW ): Here, the main idea is to find a
ground state that minimizes the G0W0 quasi-particle correction [106, 107]. QP-
scGW has been applied with success to localized d- and f -electron systems, greatly
improving the starting-point dependence of G0W0 [108, 109]. The computational
cost of the method, though, is high and comparable to the fully self-consistent GW .

• Fully self-consistent GW (scGW ): Naturally, the scGW scheme comes down to the
iteration of the Hedin equations, according to Hedin’s pentagon. Apart from the ex-
pecting computational cost, scGW is expected to eliminate G0W0 problems, i.e the
dependence on the preliminary calculation and of course the validation of the conser-
vation laws. Nonetheless, the results obtained within scGW have lead to conflicting
conclusions on their quality. Indeed, the spectral properties have been shown to be
improved or sometimes deteriorated compared to G0W0 based on LDA [110–112].
The total energies obtained within scGW , though, are found to be improved, com-
pared to G0W0 [113, 114]. In general, there is the impression that self-consistency
does not improve considerably the quality upon the non-self-consistent results of
G0W0. It is true that the studies supporting this idea are not abundant, but the
computational cost as well as the not extremely encouraging results, coming from
self-consistency, can dissuade one from using the scGW methodology.

1.7. Basis Sets

To study the electronic structure of a system the first step is to choose the most appro-
priate method. The next step is related to the choice of the basis set to represent the
orbitals in terms of analytic functions with known properties. A good choice of the basis
set will make the representation of the charge density and the potential of the system more
adequate.

In general, we can distinguish three types of basis sets that are widely used for the
solution of the electronic problem in mainstream ab-initio codes.

1. All-electron methods

Within these methodology, the electrons of the system are separated in different
groups: the core, the semi-core and the valence electrons. The core electrons are
close enough to the nuclei so that they are considered tightly bound to it, while the
valence electrons participate actively to the chemical bonding, so they define also
the properties of the system. The semi-core electrons, do not participate actively in
the chemical bonding, but they are close in energy to the valence states, they can
polarize and cannot be treated as frozen orbitals. Naturally the electrons cannot be
distinguished and this is only a nomenclature. What is, in reality, distinguished is
the characteristics of the orbitals which are occupied by these electrons. Therefore,
the different orbitals are treated in different ways, although the methods deal with
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all the electrons of the system explicitly.

The core states are calculated by solving an atomic problem, usually including rel-
ativistic effects with a Dirac equation form of the KS equations. The valence states
are calculated separately by solving the KS equations in all space. For the semi-core
states one has to be careful to include them either as valence states or as core states.
In the first case, however, the calculation becomes more difficult since the semi-core
states are relatively localized and different from the valence states, while in the latter
case the states should not be confined artificially.

The advantage of all-electron methods is the access to the core states, which does not
exist in other basis sets. The wavefunctions and energies of core states give access to
hyperfine quantities, hyperfine fields, electric field gradient as well as chemical shifts
of core levels. The drawback of such methods is the high computational cost they
require to treat real systems.

2. Plane wave pseudopotentials

As mentioned already, the chemical properties of a material are mostly controlled
by it’s valence electrons, whereas the core electrons are essentially inert. Practically,
this can lead to the exclusion of the innermost electrons out of explicit calculations.
Therefore, they can be presented by a smooth and nodeless effective potential, known
as pseudopotential. The resulting pseudo wavefunction is made as smooth as possi-
ble close to the nuclear core region.

Plane waves of the form eik·r, k being the wave vector, can be used as a complete
and orthonormal set of basis functions to describe the valence electron wave func-
tions. Note that the plane waves do not depend on the positions of the nuclei. The
periodic potential is produced by the periodicity of the underlying lattice. This po-
tential imposes also a periodicity on the electron density through periodic boundary
conditions. The use of Born von Karman boundary conditions and Bloch’s theorem
facilitate the solution of the Kohn-Sham equations for solids and other periodic sys-
tems.

The pseudopotential can be generated from an atomic calculation. Then it is used
to compute properties of the valence electrons only, since the core states are consid-
ered frozen and unchanged [115]. It should be noticed that many different forms of
pseudo-potentials have been suggested and constructed, which are used to calculate
a huge variety of systems. However, one should know that there is no single best
pseudo-potential to treat successfully any kind of calculations. In fact, many refer-
ence calculations are needed to verify the good behavior of a potential, the accuracy
of the results it gives and its transferability to other materials.
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In the following we will focus on a method combining the all-electron and the pseu-
dopotential methods, known as the projector augmented wave (PAW) method.

3. Local basis sets

The local basis sets adopt the idea to mimic the properties of the final solution of the
electronic problem, by expanding the wavefunctions into localized functions, which
are solutions of an approximate local KS equation. The basis functions centered at
different atoms have to overlap but this overlap can vanish with distance and goes
to zero at some point.

Such basis sets are explicitly atom centered, a fact that makes them very successful
to describe open systems with a large vacuum space, such as molecules or surfaces
with vacuum. On the contrary, periodic systems are not treated naturally as in
methods using explicitly only plane waves.

A different set of functions can be chosen to build local basis sets, like Gaussian
functions, Wannier functions or numerical atom-centered orbitals (NAOs). Such
basis functions are usually efficient because accuracy can be achieved with relatively
small basis functions. Especially in the case of NAOs, which we will analyze more in
detail in the following. The basis functions are constructed by numerical integration
of the atomic KS equations. Although local basis sets can be very efficient, they show
an unsystematic convergence behavior. Unlike the plane waves, where the number
of basis functions can be systematically increased to study the convergence, in this
case, the accuracy achieved cannot be estimated in most cases. Therefore, the choice
of the basis functions gets more complicated and requires experience to avoid errors.

1.7.1. Projector Augmented Wave Method

The projector augmented wave method (PAW), introduced by Blochl [116], is a combina-
tion of the all-electron methods and the plane wave pseudopotential approach and offers
great computational efficiency to DFT calculations.

The idea behind this approach is that the wave functions describing the electronic
behavior have different behavior in different regions of space. Indeed, the wave functions
vary smoothly between the atoms, in a region that can be called the interstitial region,
while they oscillate rapidly near the nuclei, due to the strong potential of the nuclei and
to Pauli exclusion principle. Therefore, the space can be divided in two regions, where
the wave function is described by two different expressions. This is the main principle of
augmented wave methods. In all-electron methods a division of the all electron basis set
into core and valence states can be problematic due to the rapid oscillations of the valence
wave function near the ion cores. These oscillations are a result of the requirement for
the valence wave functions to be orthogonal to core states. The problem can be coped
with using many Fourier components or a very fine mesh to describe the wave functions
accurately.
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Figure 1.3.: Graphical representation of the interstitial and the augmentation regions.

The idea of the PAW method is to transform the all-electron wave function into a pseudo
wave function that has no oscillation in the augmentation region. Once this pseudo wave
function, ψ̃, is known the all-electron wave function can be obtained from it by a linear
transformation T̂ as:

|ψn〉 = T̂ |ψ̃n〉, (1.100)

where n is the band index. The operation T̂ is defined as T̂ = 1 +
∑

α T̂
α, where T̂α are

the local atom-centered operators that act only in the augmentation region, Ωα, where
α is a combined index for the atomic site, R, the angular momentum number l,m and
additional index for the energies for which the atomic Schrödinger equation is solved.

In order to define the T̂α, the all-electron wave function |ψn〉 is expanded into all-electron
partial waves, |φα〉 in Ωα. Here we assume only one energy per orbital. There is therefore
one to one correspondence between each partial wave and each smooth pseudo partial
wave |φ̃α〉 as:

|φα〉 = (1 + T̂α)|φ̃α〉. (1.101)

Outside Ωα, |φα〉 = |φ̃α〉. The pseudo partial waves form a complete set in the augmen-
tation region so that:

|ψ̃n〉 =
∑

α

cα,n|φ̃α〉, (1.102)
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where cα,n are expansion coefficients for the band n and combined index α. If we return
now to the all-electron wave function we have:

|ψn〉 = T̂ |ψ̃n〉
1.102
= T̂

(
∑

α

cα,n|φ̃α〉

)
1.101
=
∑

α

cα,n|φα〉. (1.103)

The linearity of the transformation T̂ implies that the coefficients cα,n are linear func-
tionals of the pseudo wave functions |ψ̃n〉:

cα,n = 〈p̃α|ψ̃n〉, (1.104)

where |p̃α〉 are fixed functions called projector functions. In each augmentation region,
the projector functions fulfill the condition:

∑

α

|φ̃α〉〈p̃α| = 1 (1.105)

which also implies

〈p̃α|φ̃β〉 = δα,β . (1.106)

There are no restrictions on the choice of the projector functions outside the augmen-
tation regions but for convenience they can be chosen to be localized in the augmentation
region. Therefore, the linear transformation between the valence wave functions and the
pseudo wave functions reads as:

T̂ = 1 +
∑

α

(|φα − |φ̃α〉)〈p̃α|. (1.107)

Thus, the all-electron KS wave function can be obtained from the pseudo wave function
as:

|ψn〉 = |ψ̃n〉+
∑

α

(|φα〉 − |φ̃α〉)〈p̃α|ψ̃n〉. (1.108)

Equation 1.108 shows that the transformation is determined by the all-electron partial
waves, |φα〉, the pseudo partial waves |φ̃i〉 and a projector function |p̃α〉, localized within
the augmentation region associated with each pseudo partial wave. |φα〉 is determined by
solving the radial Schrödinger equation for the isolated atom and is orthogonalized to the
core states. |φ̃α〉 are expanded into planewaves and |p̃α〉 are calculated as a radial func-
tion multiplied by spherical harmonics and then transformed to plane wave representation.
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The expectation values of any operator, within PAW, is defined as:

〈A〉 =
∑

n

fn〈ψn|A|ψn〉, (1.109)

where fn is the occupation number of state n. Notice that the observables are given
as expectation values of the pseudo wave functions, therefore they can be considered as
pseudo operators. To find an expression for the pseudo operator, let us use the definition
of the linear transformation T̂ such that:

〈A〉 =
∑

n

fn〈ψ̃n|Ã|ψ̃n〉. (1.110)

In the case of local operators, the pseudo operator Ã can be expressed as:

Ã = T̂ †AT̂ = A+
∑

α,β

|p̃α〉(〈φα|A|φβ〉 − 〈φ̃α|A|φ̃β〉)〈p̃β |. (1.111)

Therefore, to take an estimation for the pseudo operator, the second term of the sum-
mation in equation 1.111, has to be added to the value of the observable A.

In the case of nonlocal operators an additional term ∆A has to be added to the above
expression, ∆A as given by:

∆A =
∑

α

|p̃α〉
(
〈φα| − 〈φ̃α|

)
A


1−

∑

β

|φ̃β〉〈p̃β |


+

(
1− |p̃β〉〈φ̃β |

)
A
(
|φα〉 − |φ̃α

)
〈p̃α|.

(1.112)

1.7.2. Numeric Atom-Centered Orbitals

Another approach to the basis set, a local one, is numeric atom-centered orbital (NAO)
basis functions of the form:

φi(r) =
ui(r)

r
Ylm(Ω), (1.113)

where |φi〉, i = 1, . . . , N defines the Hilbert space of the electrons. ui(r) are radial functions
of occupied free-atom orbitals, numerically tabulated and fully flexible. Ylm(Ω) denotes
the spherical harmonics, where l,m are implicit functions of the basis function index i.
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The shape of the basis functions given in equation 1.113 include both analytically
and numerically defined functions of Gaussian or Slater type. Numerical solutions of
Schrödinger-like radial equations can be read as:

[
−
1

2

d2

dr2
+
l(l + 1)

r2
+ vi(r) + vcut(r)

]
ui(r) = ǫiui(r), (1.114)

where vi(r) is the potential that defines the main behavior of ui(r) and vcut(r) is a steeply
increasing confining potential that ensures a smooth decay of each radial function to be
zero outside a confining radius. This radius is defined as rcut.

In practice, in the case of non spin-polarized free atoms, a minimal basis set is assumed,
consisting of the core and the valence functions of spherically symmetric free atoms. This
is done by setting vi(r) to the self-consistent free-atom radial potential vfreeat . The basis
sets are transferable to spin-polarized systems. This minimal basis takes into account the
wave function oscillations near the nucleus.

The introduction of the confining potential vcut prevents the appearance of slow-decaying
analytical of numerical radial function tails. Thus, there is a strict separation of basis
functions in distant spatial regions which is important for the computational efficiency for
large structures. The form of vcut can be chosen according to:

vcut =





0 if r ≤ ronset

s · exp
(

w
r−ronset

)
· 1
(r−rcut)2

if ronset < r < rcut,

∞ if r ≥ rcut

(1.115)

where ronset is the position where the potential vcut begins smoothly and then increases
gradually to infinity at position rcut. The width of the function is w = (rcut − ronset) and
s is a scaling parameter. For more details the reader is referred to [9].

In the implementation framework, different basis set hierarchies of increasing accuracy
are constructed, which are called tiers. For the construction of the basis set, there is a
large amount of NAOs of the form 1.113, defined. For each element of the periodic table,
the simplest closed-shell optimization target can be chosen. The basis functions are added
to the optimization target, one by one and the basis functions that induce the minimum
total energy are kept. The procedure is iterated until the addition of further basis func-
tions does not cause any changes to the total energy.

The basis sets constructed, according to this procedure, are transferable to any system
and can be employed to a wide range of local and non-local DFT exchange-correlation
functionals. Furthermore, NAOs permit the systematic convergence of the calculations
with different accuracy depending on the choice of higher-order tiers. NAO basis sets
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can be also used for many-body perturbation approaches, such as RPA or GW calcula-
tions [117].

The NAO representation of any non-local single-particle operator Â and the correspond-
ing real-space representation A(r, r′) are given as:

Aij =

∫ ∫
drdr′ φi(r)Â(r, r

′)φj(r
′),

A(r, r′) =
∑

ijlm

φi(r)s
−1
ij Ajls

−1
lmφm(r′). (1.116)

The method of NAOs has been implemented in the Fritz Haber Institute ab initio molec-
ular simulations (FHI-aims) package [9]. In this implementation the so-called resolution
of identity (RI) technique is also used, for the treatment of the two-electron Coulomb re-
pulstion integrals [117]. Such implementation makes FHI-aims package faster and capable
of treating systems with hundreds atoms.

1.8. Solving the Electronic Problem

In conclusion, in this chapter we have presented a theoretical introduction of the methods
and techniques to attack the electronic problem in condensed matter. The heart of such
a problem is a Schrödinger equation of the simplified form:

(−
1

2
∇2 + Veff)ψ = ǫψ, (1.117)

where the first term defines the kinetic energy, the second the effective potential, including
all kind of interactions, ψ the wave function and ǫ the eigenvalues of the problem.

Defining the problem according to the above equation, we can represent diagrammat-
ically the tactic of choice of different approximations and numerical schemes applied in
DFT codes, to solve this problem in practice.

As presented in the above scheme, to solve the electronic problem, one has to choose
the most suitable basis set to define the orbitals. It is also essential to find the appropriate
approximation to the effective potential to describe different properties of the system.

The practical of the many-body problem of a real system, even after a series of approxi-
mations, is not an easy task. In addition, the computational cost of the calculations should
be also considered. However, thanks to powerful algorithms, massive parallelization and
supercomputers, the DFT can be performed for systems of hundreds of atoms with great
accuracy. The results presented within this thesis are obtained using three different codes,
FHI-aims [9, 117], VASP [98,99], and less extensively TURBOMOLE [8].
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Figure 1.4.: Simplified representation of the different approximations and numerical
schemes applied in DFT to solve the electronic problem. The combination
of choices determine the physical problems available and the phenomena that
can be studied with the code and and the approximations employed.

1.9. Implementation of GW within Projector Augmented Waves

In the present thesis for the G0W0 calculation, the VASP package was used [98]. VASP
uses the projector augmented wave (PAW) basis set [99]. Therefore, it is important to see
some of the numerical aspects of the GW implementation in VASP code [118], [104].

The quasiparticle energies, Enk can be calculated by solving the nonlinear system of
equations:

(T + Vn−e + VH − Enk)ψnk(r) +

∫
d3r′Σ(r, r′, Enr)ψnk(r

′), (1.118)

where T is the kinetic energy operator, Vn−e the operator accounting for the nuclear-
electron interactions, VH the Hartree potential and Σ the self-energy operator within GW
approximation given as:

Σ(r, r′, ω) =
i

4π

∫ ∞

−∞
eiω

′δG(r, r′, ω + ω′)W (r, r′, ω′) dω′. (1.119)

The screened Coulomb interaction is constructed using the polarizability within the ran-
dom phase approximation (RPA). A detailed review of RPA can be found in [119]. Within
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the non-self-consistent G0W0 approximation the G0 and W0 are given by a starting point
DFT calculation (usually LDA or GGA). Therefore, the eigenstates of equation 1.118 can
be approximated by DFT wave functions. In that case, the eigenvalues of equation 1.118
can be calculated to first order from the diagonal matrix elements of the QP equation as:

Enk = Re[〈ψnk|T + Vn−e + VH +Σ(Enk)|ψnk〉]. (1.120)

Equation 1.120 must be solved iteratively in order to obtain the values of Enk. Using
the Newton-Raphson method for root finding the previous equation can be rewritten as:

Enk ← Enk + ZnkRe[〈ψnk|T + Vn−e + VH +Σ(Enk)|ψnk〉 − Enk], (1.121)

where Z is a normalization factor given as:

Znk =

(
1− Re〈ψnk|

∂

∂ω
Σ(ω)|ψnk〉

)−1
, (1.122)

where the derivative of Σ is calculated at the quasiparticle energies Enk. The iteration in
equation 1.121 starts from the DFT calculated eigenvalues ǫnk.

1.9.1. Dielectric matrix evaluation

If the bare Coulomb kernel is multiplied with the inverse dielectric matrix, it gives the
dynamically screened Coulomb interaction as:

Wq(G,G
′, ω) = 4πe2

1

|q + G|
ǫ−1q (G,G′, ω)

1

|q + G′|
, (1.123)

where q is the Bloch wave vector and G the reciprocal space vector. The symmetric
dielectric matrix appearing in equation 1.123 is calculated within RPA as:

ǫq(G,G
′, ω) = δG,G′ −

4πe2

|q + G||q + G′|
χ0

q(G,G
′, ω), (1.124)

where χ0
q(G,G

′, ω) is the time-ordered independent particle polarizability, which reads as:

χ0
q(G,G

′, ω) =
1

Ω

∑

nn′k

2wk(fn′k−q − fnk) (1.125)

〈ψn′k−q|e
−i(q+G)·r|ψnk〉〈ψnk|e

i(q+G′)·r′ |ψn′k−q〉

ω + ǫn′k−q − ǫnk + iη sgn[ǫn′k−q − ǫnk]
,
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where wk is the k-point weight, fn′k−q and fnk are, respectively, the one electron occu-
pancies of the corresponding states and η an infinitesimal complex shift.

The exchange charge density, 〈ψnk|e
−i(q+G)·r|ψnk〉 within VASP is approximated as

[118]:

〈ψnk|e
−i(q+G)·r|ψnk〉 ≈〈ũn′(k−q)|e

−iG·r|ũnk〉+ (1.126)
∑

i,j,R,L,M

〈ũn′(k−q)|pi(k−q)〉〈pik|ũnk〉

×

∫
d3r (e−iq·(r−Ri)Q̂LM

ij (r−Ri)e
−iG·r),

where ũnk is the cell periodic part of the one-electron pseudo wave function, |ψ̃nk〉 =
eik·r|ũnk〉, pik is the k-dependent projector function, related to the PAW projector function
pi, centered on the atom with coordinated Ri, and Q̂LM

ij (r−Ri) the multipole expansions
of the compensation charges ( see Ref. [118] and the references therein).

The calculation of the polarizability matrix given in equation 1.125 is very time consum-
ing, because the summation has to be carried out over all the occupied and unoccupied
states. Furthermore, the summations are performed for all the frequencies in the frequency
grid. Therefore, instead of equation 1.125 the spectral representation of the polarizability
can be calculated as:

χS
q(G,G

′, ω′) =
1

Ω

∑

nn′k

2wk sgn(ω
′)δ(ω′ + ǫnk − ǫn′k−q) (1.127)

(fnk − fn′k−q)〈ψn′k−q|e
−i(q+G)·r|ψnk〉

〈ψnk|e
i(q+G′)·r′ |ψn′k−q〉,

where the spectral function is related to the imaginary part of the polarizability:

χS
q(G,G

′, ω′) =
1

π
Imχ0

q(G,G
′, ω). (1.128)

The only pairs of states nk, n′k − q that contribute to χ are those at frequency ω′ =
ǫn′k−q− ǫnk. This procedure makes the evaluation of the spectral function rather efficient.

1.9.2. Self-energy evaluation

The diagonal matrix elements of the self-energy Σ(ω)nk,nk are calculated within VASP as:
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Σ̃(ω)nk,nk =
1

Ω

∑

qGG

∑

n′

i

2π

∫ ∞

0
dω′Wq(G,G

′, ω′) (1.129)

× 〈ψnk|e
i(q+G)·r|ψn′k−q〉〈ψn′k−q|e

−i(q+G′)·r′ |ψnk〉

× [(
1

ω + ω′ − ǫn′k−q + iη sgn(ǫn′k−q − µ)

+
1

ω − ω′ − ǫn′k−q + iη sgn(ǫn′k−q − µ)
],

where µ is the Fermi energy.

The bare Coulomb kernel vbareq has to be subtracted from the dynamically screened
Coulomb interaction such as:

W̃q(G,G′, ω′) =Wq(G,G
′, ω′)− vbareq (G,G′) (1.130)

which makes the self-energy integral behave well, when W (ω) approaches vbare at large
frequencies. In order to obtain the final self-energy the exact Fock exchange term has to
be added as:

Σ(ω)nk,nk = Σ̃(ω)nk,nk + 〈ψnk|vx|ψnk〉. (1.131)

The evaluation of the self-energy is very time consuming. Different methods can be used
to limit such a computational cost using Hilbert transforms which are presented in detail
in Ref. [118].
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Kondo Effect In Binuclear

Metal-Organic Complexes 2
2.1. Introduction

The motivation for the work presented in this chapter is to address the physics of molecules
adsorbed on surfaces which carry more than one active spins. If we consider two exchange
coupled spins, we anticipate the case of single molecule magnets (SMMs) [1], [120]. Even in
the case of binuclear magnets [121,122], interesting aspects can arise like Kondo screening
and intermolecular exchange coupling.

Before we pass into the analysis of the results, it is useful to describe the Kondo effect
and how the experiments can detect its features and analyze them. Hence, we begin
with presenting the basic theory of Kondo effect and the principles of scanning tunneling
microscopy (STM). Then, we pass to the STM results for the system under study and
finally we present our theoretical analysis.

2.2. Kondo’s Approach

Generally speaking, the electrical resistance of pure metals is expected to decrease as tem-
perature decreases. This happens due to the gradual freeze out of the lattice vibrations
when the temperature is reduced. However, it was discovered experimentally, already in
the 1930’s, in certain metals carrying magnetic impurities, that the electrical resistance
increases again below a certain temperature [123,124]. This observation remained a mys-
tery up to the theoretical explanation given by Kondo in 1964 [35,125].

Kondo attributed the experimental observations to scattering events on the magnetic
impurities. Within his model the interaction of the spins of the conduction electrons of the
host metal with the localized spin of the magnetic impurities is taken into account, through
perturbation theory. For a single impurity, the Hamiltonian describing this interaction is
read:
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H =
∑

k,s

ǫkα
∗
ksαks − J

∑

k,k′

(
α∗k′↑αk↑ − α

∗
k′↓αk↓

)
− J

∑

k,k′

(
α∗k′↑αk↓S

− − α∗k′↓αk↑S
+
)
, (2.1)

where ǫk is the one-electron energy of the conduction electron, k its wave number and s
its spin component along the z-direction, αks the annihilation and α∗ks the creation oper-
ator, S is the spin operator of the impurity, Sz its projection along the z-axis and S± =
Sx ± iSy, with Sx and Sy the projections of S in the x- and y-direction respectively. The
Hamiltonian is separated in three terms: the first represents the conduction electrons that
do not interact with the impurity. The second and third terms describe the scattering of
the conduction electrons with the magnetic impurity. The second without taking account
the spin-flip process, which are given in the third term.

Using the Hamiltonian expressed in equation 2.1, Kondo derived the resistivity of a
system with a certain concentration of impurities as:

ρ(T ) = ρ0 + αT 5 + bJLn

(
T

c

)
, (2.2)

where α, b and c are constant numbers. At high temperatures the phonon scattering
dominates following a T 5 dependence, whereas at low temperatures impurity scattering
prevails with logarithmic dependence of T . Note that Kondo effect arises only if the im-
purities hosted on the metal are magnetic. This means that the total spin of all electrons
surrounding the impurity atom has to be unequal to zero. For J>0, the ferromagnetic
coupling creates a screening cloud of spins aligned parallel to the spin of the impurity.
This spin becomes asymptotically free at low temperatures. For ferromagnetic coupling
or at temperatures T ≫ TK , the system is in the weak coupling regime and can be treated
using the perturbation theory proposed by Kondo. On the contrary, for antiferromagnetic
spin alignment of the conduction electrons and the localized electrons, i.e. exchange inter-
action J<0, an entangled many-body state emerges. In this strong coupling regime, the
antiparallel alignment of the spins of the conduction electrons effectively screen the spin
of the impurity.

2.2.1. Anderson Model

In 1961, Anderson described the conditions under which a single magnetic impurity em-
bedded in a metal can retain its magnetic moment [126]. Although this is a prerequisite
for a Kondo state, the link between Anderson’s model and the Kondo effect was discovered
some years later, by Shrieffer and Wolff [127].

The so-called Anderson single-impurity model [126] takes into account only a single d
or f orbital state that can be filled with 0, 1 or 2 electrons. Let us assume a d-localized
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orbital and describe its interaction with the conduction electrons of the host metal. Since
the orbital has to be magnetic, we consider a singly occupied d orbital which will lie below
the Fermi energy with a binding energy ǫ. If we add a second electron to the orbital,
the energy will be increased by the Coulomb repulsion U . Now the fully occupied orbital
d2 will lie above the Fermi energy to ensure again the existence of an unpaired spin. A
broadening of the d states is expected because of their hybridization with the continuum
of the metal’s electronic states. This broadening is equal to ∆ = σ|V |2, where σ is the
density of states of the metal at the Fermi level and V the matrix element describing the
interaction of the d state with the bath of the conduction electrons of the metal.

Schrieffer and Wolff [127] proved the equivalence of the Anderson model with the
Kondo’s scattering process in the limit of a small s-d hybridization, ∆. In this case, the
interaction J appearing in the Kondo Hamiltonian can be given as a function of Anderson
variables:

J = 2|V |2
U

ǫ(ǫ+ U)
. (2.3)

According to the Anderson model, there are two possible ways to flip the spin of the
singly occupied d state, through its interaction with a bulk electron of the opposite spin,
Figure 2.1. On the one hand, the d orbital can be first emptied and afterwards be re-filled
with a conduction electron carrying opposite spin, Figure 2.1,(b)→(d). On the other hand,
the d1 orbital can be fully occupied with 2 electrons, and then the initial electron can be
transferred to the metal, leaving the electron with opposite spin on its position, Figure
2.1,(c)→(e). Note that in order to bring the electron from the d-orbital to an empty state
in the bulk, above the Fermi energy (Figure 2.1(b)), an energy equal or greater than ǫ is
needed. Likewise, to refill the d-orbital with an electron of opposite spin, below the Fermi
energy, Figure 2.1(c)), at most the energy ǫ can be gained. The same is valid for the case
of temporarily doubly occupied orbital, where an initial energy of at least 2U -ǫ is required
(Figure 2.1(d)). Of course in the continuous spin-flip process of the Kondo effect there is
no external energy available. That means that the bulk electrons involved in the process
must be located exactly at the Fermi energy. The Kondo problem of heavy fermions is well
explained in [128]. In the following we will take into account that the Kondo temperature
can be estimated according to the Anderson model, reading specific parameters from the
density of states localized on the ion contributing to the Kondo effect. The Andrerson
model formula for the estimation of the Kondo temperature, in this case, is given as:

kBTK ≃ 0.41U

√
Γ

4U
e−π(U−ǫd)ǫd/UΓ, (2.4)

where −ǫd <0 is the position of the occupied resonance level measured versus the Fermi
energy, Γ the width of the Kondo resonance, and U the Coulomb on-site interaction.
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Figure 2.1.: Diagrammatic representation of spin-flip process in the Anderson model. In
order for an impurity spin to flip from a down state, as shown in (a), to
an up state, shown in (f), there is a virtual process that can occur in two
different ways. The first one with the help of an empty orbital, (b)→(d), and
the second with a doubly filled orbital, (c)→(e). The plot has been taken
from [3].

2.3. Scanning Tunneling Microscopy and Spectroscopy

2.3.1. STM and STS

Scanning Tunneling Microscopy (STM), is a tool that shaped nanoscience and nanotech-
nology during the last three decades. It representes a powerful tool, giving access to
atomic scale structures, with high resolution. It was invented in 1982 by Binnig and
Rohrer [129], [130], [131] for which they were awarded the Nobel prize in Physics in 1986.
At the early days of its invention, STM was used as a visualization tool for surface topog-
raphy [132]. However, it was developed quickly into a tool that allows access to occupied
and unoccupied states, a procedure known as scanning tunneling spectroscopy (STS) [133].
Nowadays, even atomic manipulation has been achieved and magnetic contrasts were re-
alized with the spin-polarized STM [134].

According to the STS concept, the electronic states of a sample can be investigated
experimentally at the atomic scale. STS can measure the local density of states (LDOS)
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of a sample as any inelastic process deriving by the tunneling electrons. STS has been
used with great success in the observation of spin-flip of an atomic spin [135], the lifetime
of an excited electron state [136] and the Kondo-resonance of a single atom [23].

The further description of STM and STS goes beyond the purposes of the present the-
sis. The principles and its concepts are described in great detail in many reviews and
books, see for example [137–139]. Herein, we present the two basic methods to model the
tunneling currents between the surface and the tip of an STM.

2.3.2. Bardeen Model

The tunneling junction problem treated by Bardeen, also mentioned as the transfer Hamil-
tonian problem [140], gives a fundamental understanding of the ability of STM to reach
high space and energy resolution. However, it adopts several assumptions which lead to
some limitations of the model. The electron tunneling is treated as a one-particle process,
which means that the mutual interaction between electrons during tunneling is neglected.
Furthermore, a direct interaction of the tip and the sample is neglected, which avoids
the formation of coupled electronic states. The latter assumption is valid if the distance
between the tip and the sample is large enough, i.e. above ∼4 Å. In the case of elastic
tunneling, i.e. when no energy loss of the electrons with quasi-particles of the electrons is
assumed, and at low temperatures, it comes out that the current is given as:

I =
4πe

h̄

∫ eV

0
nT (ET

F − eV + ǫ)nS(ES
F + ǫ)|M |2, (2.5)

where T and S refer to the unperturbed substrate and the unperturbed electrode respec-
tively, n is the density of states, and EF the Fermi energy. M is the tunneling matrix
element defined by 〈ψT |UT |ψ

S〉, with ψS the wave function of the electrode S (substrate),
ψT the wave function of the electrode T (tip) and UT the potential function of the tip.

Therefore, Bardeen’s model states that the tunneling current depends explicitly on the
electronic states of both the tip and the substrate. The differential conductivity, which is
also measured experimentally, is given as:

dI

dV
=

4πe

h̄
nT (ET

F )n
S(ES

F + eV )|M(ES
F + eV,ET

F )|
2, (2.6)

where V is the applied bias voltage. The equation 2.6 explains the unique power of STM to
access the occupied and unoccupied electronic states of the substrate, simply by changing
the sign of the bias voltage V .
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In Bardeen’s model the electronic states of both electrodes contribute equally. However,
the STM measurements’ aim is to resolve the topography of the sample, taking for granted
that the exact atomic configuration of the tip is unknown as well. Therefore, the use of a
more simplified model is necessary, where the tip configuration can be neglected, but still
giving acceptable results for the tunnel current.

2.3.3. Tersoff-Hamman Model

Tersoff and Hamann (TH) [141], [142] gave a solution to the above problem, by focusing
on the difficulty to access the tip states. Indeed, in the TH model, the tip states are
represented with arbitrarily localized wave functions and potential. In practice this means,
that the tip is modeled as one geometrical point. As a consequence, the STM image is
related only to the properties of the surface. Hence, they assumed a spherical s-type wave
function for the tip and a plane wave approximation for the sample. In the limit of low
temperature and a small bias voltage V, they obtained the tunneling current as:

I(RT , V ) =
16π3C2h̄3e2

κ2m2
V nTnS(RT , E

S
F ), (2.7)

where RT is the curvature of the tip, C is a normalization constant, nT and nS the density
of states of the tip and the sample respectively and ES

F the Fermi energy for the sample,
κ the decay constant that describes an electron penetrating through a barrier into the +z
direction. The decay constant κ is derived from the one dimensional tunneling model and
is given as

√
2m(|U | − E)/h̄, where U is the potential that the electron feels, m its mass

and E its energy.

The differential conductivity given by the TH model is:

dI(RT , V )

dV
=

16π3C2h̄3e

κ2m2
nTnS(RT , E

S
F + eV ). (2.8)

It is clear from the above equations that the current and the differential conductivity
are proportional to the density of states of the sample in the vacuum, nS(RT , E

S
F + eV ).

Despite its drastic simplification of neglecting the tip’s states, apart from an s wave
function, the TH model has proved to be very successful in the simulation and prediction
of STM images in realistic problems. Furthermore, it is extremely valuable in interpreting
STM images with characteristic feature sizes of ≥ 10 Å, like the profiles of superstructures
of surface reconstruction, the scattered waves of surface states, as well as defects, adsor-
bates and substitution atoms on the surface. However, it can also fail to explain some
experimental observations, because of neglecting the tip electronic states.
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2.3.4. Analyzing the Kondo Effect

We have to mention at this point that the Kondo effect is detectable within STS measure-
ments. In case of appearance of the Kondo effect, characteristic peaks are resolved in the
dI/dV curves near the Fermi level. The shape of the zero-bias anomaly in STS caused by
the Kondo effect can be described by a Fano resonance [143–145] as:

dI

dV
(V ) ∝

(ǫ+ q)2

1 + ǫ2
, (2.9)

where

ǫ =
eV − ǫ0

Γ
, (2.10)

with ǫ0 the energy shift of the resonance from the Fermi level and Γ the width of the
resonance. The Fano parameter q characterizes the interference of the tunneling between
the tip and the sample [146]. The Kondo resonance can be approximated by a Lorentzian
resonance, taking into account the temperature dependence [147]. Hence, the full width
at half maximum of a Kondo resonance, 2Γ(T ) reads as:

2Γ(T ) = 2
√

(πkBT )2 + 2(kBTK)2, (2.11)

with kB the Boltzmann constant, T the environment temperature and TK the Kondo
temperature. By fitting the experimental STS with the equations 2.9-2.11, the Kondo
temperature TK can be extracted.

It is true that, the information offered by STM and STS about the properties and
functionality of atoms or molecules are essential for perspective applications like molecular
electronics. That is the reason why STM and STS are the mainstream experimental
methods to study systems anticipated for single molecule magnets (SMM’s) [1], like the
one we study in the following.

2.4. Experimental Study of Metal-Organic Complexes

A series of binuclear metal-organic complexes of the form [(Me(hfacac)2)2(bpym)]0 were
synthesized, by Ruben’s group, Figure 2.2 [4]. “Me” can be Mn, Zn or Ni atoms.

These complexes were deposited, by Wulfhekel’s group, on a clean Cu(001) surface and
studied with low-temperature STM and analyzed with STS [4]. The STM images and
STS were measured at 4.2 K and their outcome is presented in Figure 2.3. The spectra
are normalized and a linear background was considered to obtain reasonable fitting results.

As can be noticed in Figure 2.3, in the case of Zn2, no feature of Kondo effect was
detected in the STS analysis. Such a fact can be explained due to the closed-shell 3d
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Figure 2.2.: Structure of the (Me(hfacac)2)2(bpym) complex. Each Me2+ metal ion is
linked to two hexafluoroacetyleacetonate (hfacac) ligands by Me-O bonds.
By forming N-Me bonds the aromatic 2,2’-bipyrimidine (bpym) ligand coor-
dinates as bidentate chelate with two of the Me(hfacac)2 components.

Zn2+ ions in the molecule. Since, no spin is unpaired there is no possibility for a spin to
be coupled with the conduction electrons of the metal. Kondo effect in this case, would
appear only if the interaction of the adsorbed molecule with the substrate leads to an
electron transfer and the acquisition of a magnetic moment on the molecule. Since, the
measurements do not indicate any Kondo resonance, we can conclude that the interaction
between the Zn2 complex and the Cu(001) substrate is weak for such an electron transfer
to take place.

On the contrary, in the case of Mn2 and Ni2 complexes, the characteristic Kondo reso-
nance is clearly resolved in the STS data, at zero bias. Both Mn2+ and Ni2+ ions exhibit
a partially filled 3d shell and therefore carry a finite magnetic moment. Hence, the cou-
pling of their uncoupled spins with the conduction electrons of the substrate is expected.
For Mn2 a Kondo temperature of 15 K is determined by fitting to a Fano resonance, see
equations 2.9-2.11.

Additionally, the Ni2 complex showed an intriguing unexpected feature. Unlike Mn2,
Ni2 appears in two variants with different STM images and STS characteristics. The two
adsorption geometries are referred to as Ni2−α and Ni2−β. The Kondo temperatures de-
termined for Ni2−α and Ni2−β are TK = 5.8 K and 16 K, respectively. Another difference
between the two adsorption geometries comes out by a site-dependent STS measurement,
performed on Ni2 − α and Ni2 − β (Figure 2.4). For the Ni2 − α complex, the STS mea-
surement shows that the Kondo resonance has a single maximal amplitude at the center
of the molecule (Figure 2.4(a) and 2.4(c)). In the case of Ni2−β, however, two spots with
maximal amplitude of dI/dU signal appear, separated by a distance of 4 Å (Figure 2.4(b)
and 2.4(d)). These maxima match the two Ni2+ ions and their expected distance in the
molecule.
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Figure 2.3.: Topography of (a) Mn2-γ, (b) Ni2-α, (c) Ni2-β, (d) Zn2-α, and (e) Zn2-γ
obtained by low-temperature STM. In (f) the differential conductance dI/dU
near the Fermi-level is shown. The black dots are experimental data which
were fitted with Fano-functions, presented in red lines. The figure is taken
from [4].

Since for the complexes of Zn2 and Mn2 the experimental results were expected, we
focus only on the intriguing behavior of Ni2 complex embedded on Cu(001). Our target
in the following is to rationalize the experimental observations for the Ni2 complex, by
performing DFT calculations.
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Figure 2.4.: (a) STM topography of Ni2−α and (b) STM topography of Ni2−β. (c) STS
data on different position of the Ni2 − α. (d) dI/dV map of Ni2 − β. White
and black areas indicate large and low differential conduction, respectively.

2.5. Computational Study

2.5.1. Molecular Atomic Structure

The Ni2 complex, (Ni(hexafluoroacetylacetonate)2)2bipyrimidine, was synthesized at Karl-
sruhe Institure of Technology at Institure of Nanotechnology (INT), [4]. We present in
Table 2.1 some characteristic values of the bond lengths and bond angles, between the Ni
atoms and the atoms around it, obtained by single-crystal X-ray diffraction (for further de-
tails see [4]). In Figure 2.5 the Ortep representation of the gas phase molecules is displayed.

2.5.2. Computational Details

For the analysis of the electronic structure and the magnetic properties of free-standing and
adsorbed metal-organic complexes, we have employed quantum chemistry packages FHI-
aims [9] and TURBOMOLE [8]. The atomic structure of Ni2 complex has been relaxed

54



2.5. Computational Study

Table 2.1.: Selected bond lengths and bond angles of [(Ni(hfacac)2)2(bpym)]0 obtained
from single crystal X-ray diffraction data, [4].

Bond Distance (Å) Bond Angle Degrees
Ni(1)-O(4) 2.000 O(4)-Ni(1)-O(2) 91.84
Ni(1)-O(2) 2.025 O(4)-Ni(1)-O(1) 86.12
Ni(1)-O(1) 2.034 O(2)-Ni(1)-O(1) 90.57
Ni(1)-O(3) 2.038 O(4)-Ni(1)-O(3) 90.00
Ni(1)-N(1) 2.086 O(2)-Ni(1)-O(3) 86.65
Ni(1)-N(3) 2.112 O(1)-Ni(1)-O(3) 176.12
Ni(2)-O(5) 2.028 O(4)-Ni(1)-N(1) 172.41
Ni(2)-O(6) 2.029 O(2)-Ni(1)-N(1) 94.98
Ni(2)-O(7) 2.031 O(1)-Ni(1)-N(1) 90.49
Ni(2)-O(8) 2.031 O(3)-Ni(1)-N(1) 93.35
Ni(2)-N(4) 2.112 O(4)-Ni(1)-N(3) 93.82
Ni(2)-N(2) 2.113 O(2)-Ni(1)-N(3) 174.26

O(1)-Ni(1)-N(3) 88.94
O(3)-Ni(1)-N(3) 91.23
N(1)-Ni(1)-N(3) 79.31
O(4)-Ni(1)-O(2) 91.84

Figure 2.5.: Ortep plot of the molecular structure of the [(Ni(hfacac)2)2(bpym)]0 complex,
obtained by single crystal X-ray diffraction. C atoms are represented in black,
O in red, N in blue, F in light green, Ni in dark green and H in black circles.
The figure was taken from [4].
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Table 2.2.: DFT calculated relative energies of the low-energy spin configurations in the
gas-phase of Ni2 complex. The estimations are obtained using PBE exchange-
correlation functional on TURBOMOLE [8] and FHI-aims [9].

AF: ↑↑ ↓↓ F: ↑↑ ↑↑ ↑↑ ↑↓

relaxed Ni2 fhi-aims 0.000 eV 15.8 meV 0.500 eV
complex turbomole 0.000 eV 14.9 meV 0.522 eV

following the data obtained by the single-crystal X-ray diffraction, presented previously.
All calculations were performed using the PBE exchange-correlation functionals [78]. In
the case of FHI-aims package, a tier1 basis set composed of numerical atom-centered
orbitals has been used. In the case of TURBOMOLE [8], we employed a basis set of
contracted Gaussian-type basis of split-valence quality with polarization functions (def-
SVP) [148]. The corresponding Coulomb-fitting basis sets have been used within the
resolution of identity approximation [149].

2.5.3. Gas Phase Molecule

The electron configuration of Ni atom is [Ar]4s23d8 so the local magnetic moments of 2µB
is due to two unpaired d-electrons. These magnetic moments can be coupled ferro- (FM)
or antiferro-magnetically (AFM) for the Ni2 complex.

In order to find which magnetic configuration is the most favorable, we have performed
“constrained” DFT calculations. We first prepare an initial guess for the electron density,
reflecting the presence of two unpaired electrons in the d-shell of each Ni2+ ion. Kohn-
Sham (KS) equations are then solved iteratively assuming that the number of unpaired
electrons in the system is constrained to four in the case of FM coupled spins, or to zero for
the AFM coupled spins. Similarly, we assume another case of magnetic coupling, where
the initial state corresponds to zero magnetic moment at each Ni2+ ion. In this case,
though, the KS equations are converged to an excited state of the closed d-shell of Ni2+

ion, breaking the first Hund’s rule for spin coupling. The results of the constrained DFT
calculations are presented in Table 2.2, for the three different mentioned configurations.
It shows that the DFT ground state corresponds to two unpaired spins located in each
Ni2+ ion, while the two pairs of electrons between the Ni2+ ions are AF coupled. The
FM configuration is higher in energy by ∼15.4 meV, while the closed shell conformation
is higher by ∼ 0.5 eV.
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2.6. Ni2 Complex on Cu(001)

For the Ni2 complex on a clean Cu(001) surface, STM shows two different adsorption-type
dependent STM images. Therefore, one expects there are two possible adsorption config-
urations, as presented in Figure 2.6. The first configuration, the Ni2 − α “standing” on
Cu(001), possesses two symmetric upper parts (the hfacac ligand) which could be seen in
the STM image 2.4(a), due to electrons passing from the substrate to the upper part of the
complex. Likewise, in the second configuration Ni2 − β, electrons pass from the substrate
to the upper part of the molecule, which “lies” on the surface with both its hfacac ligands.
In this case, however, the central bipyrimidine part of the molecule can be pictured on the
STM image, giving the central globe seen in Figure 2.4(b).

Figure 2.6.: On the left the “standing” Ni2−α complex bound to Cu(001) surface. On the
right the Ni2 − β complex “lies” on the Cu(001) surface.

Following the intuitive picture of the problem, we analyze the adsorption geometries
schematically illustrated in Figure 2.6. First the gas-phase “standing” Ni2 − α complex
adsorbed on Cu(001) surface, and then the embedded “lying” Ni2 − β complex.

2.6.1. Computational Details

In order to optimize the atomic structures of the adsorbed molecules we have used FHI-
aims package [9]. The copper surface has been modeled by finite-size fcc(001) atomic clus-
ters with three atomic layers for the Ni2−α complex and two atomic layers for the Ni2−β
complex. The calculations have been performed using the PBE exchange-correlation func-
tional [78]. The basis set of numerical atom-centered orbitals used is the tier1. The van der
Waals (vdW) dispersive forces have been taken within Tkatchenko-Scheffler model [82],
which relies on the inter-atomic dispersion coefficients derived from electron density. The
degrees of freedom for the atoms of the molecule and a few copper atoms of the surface
layer, in the nearest vicinity of the molecules, have been fully relaxed. The coordinates
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of the rest of the copper atoms are fixed to the bulk values. Relaxation steps have been
carried out until the residual forces acting on atoms have reached values below 0.01 eV/Å.

The spectral functions of molecular complexes adsorbed on Cu(001) were calculated
within the non-equilibrium Green’s function (NEGF) formalism merged with DFT, as
implemented in the simulation code AITRANSS [150–152]. Within AITRANSS, a metal-
organic complex bound to an atomic Cu cluster is considered as an “extended molecule”.
This extended molecule is coupled to an infinite “reservoir” of electrons. The Cu(001)
clusters used in these simulations are smaller compared to the ones used for the relaxation
of the structures. The copper clusters are limited in this case to two atomic layers.

A self-consistent set of KS orbitals is found for the “extended molecule” and then its
interaction with the infinite reservoir of electrons is accounted for within the Green’s func-
tion formalism. The KS Hamiltonian is supplemented by the parameter-dependent local
self-energy, Σsurface(x,x′) = [λ − iη]δ(x − x′), where η is the level broadening and λ the
contribution to the real part of the self-energy. Σsurface is ascribed to the “surface-1” atomic
layer of the simulation clusters. For the chosen value of the parameter η, the contribution
λ is obtained by imposing the charge neutrality condition within the “extended molecule”.
For the present calculations we have η = 2.7 eV. The Green function describing the system
can be further projected on the basis functions associated with a selected atom, i.e Ni2+

ions in our case, thus allowing to compute the local density of states.

2.6.2. Spectral Function and Kondo Temperature

Our simulation results indicate that the final distance between fluorine and copper is above
3 Å. This distance suggests a binding between the molecule and the surface through weak
van der Waals forces. This means, there is only a weak hybridization between molecular
and substrate states, which translates into narrow molecular resonances in the density of
states projected on the Ni2+ ion, shown in Figure 2.7.

Reading the Anderson model parameters from the spectral function A(E), namely, the
single occupied resonance level width Γ ≈ 10−2 eV, the on-site Coulomb repulsion energy
U ≈ 2 eV and the position of the resonance level ǫd ≈ U/2 ≈ 1 eV relative to the Fermi
energy, and replacing in equation 2.4, we get an estimation of the Kondo temperature:

kBTK ≈ U

√
Γ

4U
e−πU/4Γ ≈ 0.1e−10

2π/2 ≈ 0. (2.12)

It is clear that this result contradicts the experimental value of kBTK ∼10 meV. Hence,
we have to exclude the primarily assumed adsorption geometries (Figure 2.6) and define
alternative geometries. The prerequisite for possible adsorption geometries is the stronger
binding between the molecular complex and the substrate, with strong hybridization that
can give a measurable Kondo temperature.
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Figure 2.7.: The spectral function projected at the Ni atom which is closest to the surface,
for the “standing” Ni2 complex. The local DOS is shown in a logarithmic scale,
while a ferromagnetic coupling of S=1 located in Ni2+ ions is assumed.

2.7. Fragments of Ni2 Complex on Cu(001)

In our first assumption of a strong bonded configuration, we consider the extreme case of
molecular fragmentation 2.9a. Here we assume that bonds between Ni2+ ion and nitrogen
are broken and a Ni(hfacac)2 moiety is created. Thus, we enforce a much larger coupling
of the molecular complex to the substrate through the Ni2+ ion. In that situation the
coupling of the spin to the Cu surface is comparable to the case of single Ni adatom (no
ligands attached). Kondo temperatures, in such cases, are expected to be in the order of a
tenth of meV, according to earlier experiments, [25,26], in good agreement with the recent
measurements [4].

2.7.1. Computational Details

For the relaxation of the molecular structure embedded on Cu(001), we have used FHI-
aims package [9]. The copper surface has been modeled by finite-size fcc(001) atomic
clusters with three atomic layers. The degrees of freedom for the atoms of the molecule
and a few copper atoms of the surface layer, in the nearest vicinity of the molecules, were
fully relaxed. Relaxation steps were carried out until the residual forces acting on atoms
reached values below 0.01 eV/Å. The basis set of numerical atom-centered orbitals used is
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Figure 2.8.: Ni(hfacac)2 moiety bound to Cu(001) via a Ni atom placed at the hollow site.

the tier1. The van der Waals (vdW) dispersive forces have been taken within Tkatchenko-
Scheffler model [82]. The spectral functions were calculated using the NEGF method
as implemented in AITRANSS [150] interfaced with FHI-aims package [9]. Calculated
STM images were approximated by the space-resolved local density of states, according
to Tersoff and Hamann [141]. In our simulations, we have used two different methods,
following the Tersoff and Hamann approach, as implemented in the AITRANSS package
interfaced with TURBOMOLE [8] and in VASP.
In the first method, we employ the Green’s function formalism linked to the quantum-
chemical cluster calculations [151]. We can further plot a space-resolved spectral function,
in the vicinity of the molecular complex, which has been integrated over an energy window
of 0.1 eV around the Fermi level. In the second method, we employ the PAW method [99]
as implemented in VASP code [98]. In these calculations, we used plane waves with an
energy cutoff of 500 eV. A repeated slab model is used to represent the metal surface,
where a slab consists of three atomic layers. A vacuum region of 20 Å was inserted
between the slabs. To sample the surface Brillouin-zone, a mesh of 4×4×1 k points was
used. To represent the van der Waals weak interactions, in this case, we employed the
semi-empirical DFT- D2 method, proposed by Grimme [81].

2.7.2. Calculated STM images

In order to show that the fragmentation scenario is consistent with the experimental find-
ings, we start by presenting the calculated STM images of the fragmented molecules. The
result is shown in Figure 2.9.

The calculated STM images (Figure 2.9) reproduce the most important characteristics
of the experimental ones for Ni2 − α (Figure 2.4a). More specifically, the outermost con-
tours have a butterfly shape, two mirror planes exist and the size of the experimental and
computational images are consistent.

Furthermore, we estimated the optimal position of the Ni(hfacac)2 fragment on Cu(001),
with respect to the angle that fixes the orientation of the fragment’s mirror planes with
respect to the [001] direction of the fcc (001) surface. The results predict a non-zero op-
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Figure 2.9.: (a) Experimental STM image of Ni2 − α configuration (same as in Figure
2.4(a). The color coding is identical to Figure 2.9(c). (b): Simulated STM
image of Ni(hfacac)2, computed employing VASP package. (c) Simulated
STM image of Ni(hfacac)2, computed employing AITRANSS package.

timal angle of 45◦ for the above orientation (Figure 2.10). A non-zero angle ≈25◦, is also
observed in the representative experimental images of Ni2 − α.

Figure 2.10.: On the left: the optimal position of the Ni(hfacac)2 fragment on Cu(001).
On the right: the estimated dependence of the binding energy of Ni(hfacac)2
to Cu(001) surface, on the angle that fixes the orientation of the fragment’s
mirror planes vs the [001] direction of the fcc (001) surface.

Another detail also reproduced in this configuration is the spatial dependency of the
Kondo amplitude. The fragment’s geometry is such that the associated Kondo resonance
would have its maximum amplitude with the STM tip located in the center of the image,
at the Ni atom. That is consistent with the structure of the spatially resolved Kondo
resonance of Ni2 − α observed experimentally (Figure 2.4c).

One can still be skeptical about the extreme assumption of the fragmentation of the
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Ni2−α complex. However, we should not underestimate the effect of temperature during
the adsorption. Experimental STM images characterizing adsorption of Ni2 complexes on
Cu(001) surface suggest that molecular fragmentation at surface is likely triggered by the
temperature. Namely, experimental data reveal that when Ni2 complexes are evaporated
on the substrates at room temperature, two species, Ni2−α and Ni2− β are found, while
Ni2 − α which we attribute to molecular fragments, is not found after deposition onto
pre-cooled substrates (77 K).

Therefore the fragmentation scenario is consistent with the experimental phenomenol-
ogy. We can now proceed with the goal to understand the molecular magnetism and
eventually estimate the Kondo temperature for the Ni(hfacac)2 on Cu(001).

2.7.3. Kondo Temperature Estimation

We consider the atomic configuration of Ni atom as [Ar]4s23d8. In the simplified picture
of a free Ni(hfacac)2 fragment, the 4s-states hybridize so strongly with the ligands, that
the s-electrons are effectively transferred to ligand orbitals. Therefore, the metal ion takes
the Ni2+ configuration and exhibits two unpaired spins. Our DFT results confirm the
above picture. We find a spin-polarized ground state with a magnetic moment of 2µB.
The magnetization is largely due to two orbitals (a and b shown in Figure 2.11), that are
populated with up-spin electrons only, and that contribute substantial weight to both Ni
dz2 and dxy atomic states.

Figure 2.11.: Kohn-Sham wave functions corresponding to Ni dz2 and dxy orbitals of the
free standing Ni(hfacac)2 fragment.

The question to address, is whether the fragment keeps its magnetic moment when
adsorbed on the substrate or not. To answer this question, we performed another spin-
polarized DFT study. In essence, the substrate further breaks the residual degeneracy
of the d-orbitals splitting dz2 and dxy by 1.4 eV. As a result, dz2 is nearly full (0.4 eV
below EF ), while dxy is nearly empty (1 eV above EF with resonance Γb ≈ 10−2 eV). The
magnetization drops after adsorption by about a factor of two, down to 1.2 µB. The net
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Figure 2.12.: GGA+U calculated spin dependent local density of states projected on Ni
atom of the Ni(hfacac)2 on Cu(001). Red and blue lines highlight contribu-
tions to the LDOS of Ni dz2 and dxy orbitals.

electron transfer to the molecule in the adsorption process is 0.4 e.

The GGA-type calculation leaves us with a situation where a localized 3dz2 orbital is only
partially occupied. In DFT with conventional local exchange-correlation functionals (LDA,
GGA) this is typically an indication of correlation physics, such as the Coulomb block-
ade [16, 153]. The Coulomb-blockade is not described by conventional DFT-functionals,
but it can be captured on the level of GGA+U [80].

Therefore, we performed a GGA+U calculation placing a repulsive on-site term with
relatively large strength U=6 eV on the metal site. The interaction shifts the spin-down
resonance α from 0.4 eV below to 0.5 eV above EF . Hence, the magnetic moment increases
up to 1.62 µB thus suggesting the picture of the S=1 Kondo effect.

So far we have ignored the spatial structure of the two molecular orbitals involved, orbital

63



Chapter 2. Kondo Effect In Binuclear Metal-Organic Complexes

a with substantial contribution from Ni dz2 atomic state, and orbital b with substantial
contribution from Ni dxy atomic state. As can be seen in Figure 2.11, the a orbital
(first quantum dot, Γa) is directed towards the surface. Hence, it hybridizes with the
substrate much stronger than the b orbital (second dot Γb). This means that Γb ≪ Γa

which is interpreted in the LDOS of Ni as a wider resonance for the a orbital (Figure
2.12). Each level has a single occupancy and the electrons populating them are coupled
ferromagnetically. Note that the exchange interaction is around 0.5 eV (see Table 2.2),
which is much larger compared to the expected Kondo energy scale around 10 K. In this
case, both spins form a triplet, S=1. Reading parameters from the spectral function

Γa ≃ 0.8eV ≫ Γb; ǫd ≃ 0.5eV ;U ≃ 5.5eV ≫ ǫd, (2.13)

and modifying slightly the formula for the Kondo temperature in equation 2.4 for the case
of double-dot system, we have:

kBTK ≃ 0.41U

√
Γ∗

4U
e−πǫd/Γ, (2.14)

where U ≫ ǫd and Γ∗=Γa/2.

Hence, we obtain kBTK ≃ 5.84 × 10−3 eV. This gives us a Kondo temperature TK ≃
70 K. Such a result is in qualitative agreement with the experiment.

We emphasize that a more precise estimation of the Kondo-temperature is extremely
difficult due to the exponential dependence of TK on the model parameters. If, for example,
we take into account that DFT has a tendency to overestimate resonance line-widths, we
may assume a slightly smaller Γα ≃ 0.6 eV. This reduces TK down to approximately 16
K, which is in good agreement with the experimentally observed value.

2.8. Distorted Ni2 Complex on Cu(001)

The existence of the Ni2−β images in experiments suggests that also a molecular complex
with two Ni ions are expected to be found on the Cu surface. To rationalize this observa-
tion, we tried to find an intact but strongly distorted molecular configuration by means of
DFT methodology. The distortion has to be such that the molecule establishes a chemical
bond to the Cu(001) surface. Such a strong hybridization is an important prerequisite for
observable Kondo temperatures. We assume this bond to be realized via the delocalized
π orbitals of the central bpym unit overlapping with the electron density extending from
the surface.

2.8.1. Computational Details

As before, we used FHI-aims package [9] for the relaxation of the molecular structure em-
bedded on Cu(001). The copper surface has been modeled by finite-size fcc(001) atomic
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clusters with two atomic layers. Similarly to the previous study, the molecular atomic
coordinates and a few copper atoms of the surface layer were fully relaxed. Relaxation
was stopped with the residual forces acting on atoms reached values being below 0.01 eV/Å.

We mention that even for the modern ab initio methods, finding the relaxed ground-
state structure of a large organic molecule, such as the Ni2 complex, on a surface, is a
nontrivial procedure. Due to the many atomic degrees of freedom involved, relaxation
can end up in different molecular configurations with energies differing by only 100 meV,
as was shown by simulations. To be specific in the following discussion, we focus on two
representative but slightly different configurations of “distorted” Ni2 complex, shown in
Figure 2.13.

Figure 2.13.: Graphical representations of the two “distorted” molecular configurations of
Ni2 complex adsorbed on Cu(001). The binding between the molecule and
the substrate takes place via the central bpym unit. (a) shows the almost
symmetric C2ν-type structure with two mirror planes of the complex rotated
by 45o relative to fcc [001] and [010] directions, (b) shows the corresponding
structure with broken local symmetry which is energetically more stable.

The first atomic structure of the complex has an approximate C2υ symmetry, in registry
with the underlying Cu(001) surface. Further relaxation steps result in an energy gain of
about 0.25 eV. Then, the local symmetry of the molecular complex is broken resulting in
the second configuration. Both configurations are shown in Figure 2.13.

The spectral functions were calculated using the NEGF method as implemented in
AITRANSS [150] interfaced with FHI-aims package [9]. Calculated STM images were
approximated according to Tersoff and Hamann method [141], as implemented in the
AITRANSS package [150] interfaced with TURBOMOLE [8] and in VASP [98]. Within
FHI-aims, the van der Waals (vdW) dispersion forces have been taken into account within
Tkatchenko-Scheffler model [82]. Within VASP calculations, vdW corrections were added
according to Grimme’s semi-empirical DFT- D2 method [81].
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2.8.2. Calculated STM images

For the first configuration, shown in Figure 2.13, the simulated STM image of the complex
reveals a “crosslike” structure (Figures 2.14(c) and 2.14(e)), resembling Ni2−β experimen-
tal images, shown in Figure 2.14(a). For the second “distorted” Ni2 complex adsorption
structure, the former STM images are transformed to the ones with broken symmetry
(Figures 2.14(d) and 2.14(f)), which were also experimentally observed 2.14(b).

Figure 2.14.: (a) Experimental STM image for the first configuration of Ni2 − β. (b)The
corresponding siimulated STM image for the first configuration of Ni2 − β,
computed employing VASP package. (c) Simulated STM image of the first
configuration of Ni2−β, computed employing AITRANSS package. (d), (e),
(f) calculated STM images of the “distorted” Ni2−β compared to experiment.

Once more, the phenomenology of our simulations agrees with the experimental data
and we can proceed to a more detailed spin-dependent DFT analysis to get an estimation
for the Kondo temperature.

2.8.3. Kondo Temperature Estimation

Our calculations indicate that a fractional charge of approximately 0.5 e leaks out from
the surface to the molecule, populating partially the LUMO of the Ni2 complex and the
LUMO∗ of the bpym moiety. Also, a magnetic moment carried by the complex is slightly
reduced, compared to the gas-phase molecule, from 4.0 µB to 3.3 µB.
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2.8. Distorted Ni2 Complex on Cu(001)

Table 2.3.: DFT calculated relative energies of the low-energy spin configurations real-
ized in Ni2 complexes. Considered molecules are: (i) gas-phase relaxed Ni2
complex, with Ni2+ ions found in distorted octahedral environment, (ii) free
but distorted Ni2 complex, where local C2υ symmetry is kept, (iii) free but
distorted Ni2 complex, where symmetry constraint is released. The two latter
molecules were first relaxed on top of Cu(001). Last column refers to magnet-
ically excited zero-spin state at one of the Ni2+ ions.

AF: ↑↑ ↓↓ F: ↑↑ ↑↑ ↑↑ ↑↓

(i) relaxed Ni2 fhi-aims 0.000 eV 15.8 meV 0.500 eV
complex turbomole 0.000 eV 14.9 meV 0.522 eV

(ii) distorted Ni2 complex fhi-aims 0.000 eV 6.9 meV 0.396 eV
with two symmetry planes turbomole 0.000 eV 6.1 meV 0.390 eV

(iii) distorted fhi-aims 0.000 eV 2.5 meV 0.456 eV
Ni2 complex turbomole 0.000 eV 1.9 meV 0.361 eV

The structure of the binuclear complex suggests that the molecular spins should reside
on the Ni(hfacac)2 units, where each unit could accept two unpaired electrons owing to
[Ar]3d8 electronic configuration of the Ni2+ ion. Each unpaired electron subsystem is re-
ferred to as S=1. The two S=1 subsystems are magnetically nearly decoupled, due to their
weak indirect interaction via the π orbitals of the bpym unit. Thus, we anticipate that
each subsystem will develop a Kondo effect, independently of the other, as the molecular
complex provides two parallel conduction paths for the tunneling electron, one for each
spin.

We confirmed these expectations by performing constrained DFT calculations. The
results are shown in Table 2.3 where the relative energies of the low-energy spin configura-
tions are presented for three different gas-phase Ni2 complexes. These results are for the
Ni2+ complexes in the gas-phase, with Ni2+ ions found in distorted octahedral environ-
ment. For the first configuration of the “distorted” Ni2 complex, the local C2υ symmetry
has been kept, but the Cu(001) substrate has been removed, and for the second “distorted”
Ni2 complex, the symmetry constraint has been released. This calculation predicts a “sin-
glet” ground state with antiferromagnetically (AFM) coupled S=1 spins. For the distorted
Ni2 complex, the state with ferromagnetically (FM) coupled S=1 spins is approximately
2 meV above the AFM state.

If we consider FM coupling between S=1 subsystems, the frontier molecular orbitals
(see Figure 2.15) carry unpaired spins confirming the above picture. Two out of four
orbitals, a and b, are primarily localized on the left-hand side of the Ni2 complex, while
their counterparts, a′ and b′, are localized on the right-hand side. When the Ni2 complex
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is brought in contact with the Cu surface, these molecular orbitals are transformed to
resonances (a, b, a′, b′) in the spectral function centered around -1.5 eV below the Fermi
level EF , while the upper Hubbard band (ǫd) is placed just above EF . Furthermore, since
the wave functions a and a′ involve larger contributions from π orbitals of the central
bpym unit, the corresponding resonances α and α′ are much broader than the b and b′

ones, Figure 2.16.

Figure 2.15.: Wave functions of a, b, a′, b′ orbitals, which contribute to the LDOS projected
on the Ni atom of the distorted Ni2 complex, as presented in Figure 2.16.
a and b orbitals are localized on the “left-hand” side, while a′ and b′ are
localized on the “right-hand” side of the molecular complex.

The AFM singlet ground state of the system, would be incompatible with the Kondo
effect, unless we assume that the weak AFM coupling between the two subsystems is below
the Kondo temperature, JAF=(EAF-EF )/2 ≃ 12 K ≤ TK . Under this assumption, each
subsystem will undergo Kondo screening by the conduction electron of Cu(001) indepen-
dently of the other, below the Kondo temperature.

We now use the modified Anderson equation 2.14, where U ≫ ǫd and read the parame-
ters from the computed spectral function (Figure 2.16). Hence, we get

2Γ∗ = Γα,α′ ≃ 0.1eV ≫ Γb,b′

ǫd ∼ 0.06− 0.125eV, U ≃ 1.5eV ≫ ǫd, (2.15)

and we can estimate the Kondo temperature as TK ∼ 0.4−20 K. The upper limit is taken
above JAF and is in the range of experimental values.
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2.9. Conclusions

In conclusion, in this chapter, we presented a thorough DFT study of binuclear metal-
organic complexes deposited on a Cu(001) surface. Our target was to explain the low-
temperature STS measurements which revealed that the systems undergo the Kondo effect
with the Kondo resonances located in the transition-metal atoms. The STM and STS data
were found to be adsorption-type dependent and the Kondo temperatures in the order of
10 K.

We managed to rationalize the experimental observations by assuming appropriate ad-
sorption geometries, where the molecules could be strongly hybridized with the substrate.
Namely, we attributed the first set of STM images and STS data to molecular fragments
and the second to a distorted complex with partially weakened internal chemical bonds.

In both cases, our calculations showed that an S=1 Kondo effect is emerging from the
open 3d shells of the individual Ni2+ ions. Using the appropriate Anderson model formula
for the S=1 Kondo effect and reading parameters from the local density of states pro-
jected on the Ni atoms, we managed to estimate Kondo temperatures in the same order
of magnitude as the experimentally measured ones.

In general, binuclear complexes form a great candidate for studying fundamental aspects
of magnetic double impurity or double quantum dot systems. Furthermore, understanding
the interaction between the spins located in different functional units is very important
in the field of spintronics for quantum information storage and processing with molecules
adsorbed on surfaces.
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Figure 2.16.: Calculated DFT spin-dependent local density of states projected on one of
Ni atoms of the distorted Ni2 complexes adsorbed on Cu(001). The zoomed
in plot shows the majority up-spin spectral function below the Fermi level,
where contributions are highlighted arising from four orbitals (α, b, α′, b′).
Each orbital is carrying one unpaired spin. The corresponding wave functions
are presented in Figure 2.15.
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Study Of Linear

Oligoacenes 3
3.1. Introduction

In this chapter we will study the behavior of the HOMO-LUMO gaps of various oligoacene
molecules. Oligoacenes are linear polycyclic hydrocarbons consisting of a repeated benzene
ring unit (Figure 3.1). They exhibit profound mechanical flexibily and ability to harvest
light [36–38]. They also form ideal examples of quantum wires and the simplest realisation
of the so-called nanographene. For details about the actual research and applications on
graphene and nanographene, there are numerous reviews and publications, see for exam-
ple [154–156].
Oligoacenes form ideal candidates for several applications in organic electronics [39–41].
From the theoretical point of view, the physical properties of oligoacenes have attracted
much attention for many years [157–160]. However, up to now most theoretical studies
about their energy gaps were limited to relatively small chains, usually up to pentacene,
with five repeated benzene-type rings.

In the following we present a complete inspection of the HOMO-LUMO gaps of oligoacene
chains in the gas phase but also when they are adsorbed on a metallic surface of Au(111)
and on an insulator such as SiO2. The latter study is important because the interaction
of the molecule with a substrate is a prerequisite for any technological application.

Figure 3.1.: Oligoacene molecule, consisting of a repeating benzene unit. As an example
the molecule of pentacene is shown (N=5 benzene rings). The hydrogen atoms
are blue and the carbon red.
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3.2. Gas Phase Oligoacenes

Using common sense, one expects that the band gap of a molecular wire approaches a
constant if the infinite chain is a band insulator, or vanishes if it is a metal. In the latter
case, the metallic behavior is demonstrated by a single, partially filled band that crosses
the Fermi energy. Then, the gaps of finite-length chains tend to zero as 1/N, where N
is the number of fused units. The 1/N behavior reminds us of the level spacing of the
particle-in-a-box model, where the energy levels are given by:

En =
n2h̄2π2

2mL
, (3.1)

where m is the mass and L the molecular length.

Therefore, the expecting behavior of the energy gap as a function of the molecular
length is a monotonous decay. In this chapter we present the study of the band gaps of
oligoacenes versus their length using Kohn-Sham (KS) density functional methods (DFT)
and the post-DFT, G0W0 method, to show that this simple expectation is untrue. In fact,
we will show that the band gap will oscillate as a function of the molecular size.

3.2.1. Computational Details

For the DFT results presented in this work, the Fhi-aims package [9] and the PBE func-
tional [78] were implemented. The spin-restricted (closed shell) Kohn-Sham equations are
solved in the non-relativistic form. Relativity is included a posteriori by rescaling the
Hamiltonian eigenlevels, according to the zeroth order regular approximation [161]. The
basis set used is the tier2 [9]. For non-periodic calculations, the ground state was reached
with strict convergence criteria for the difference in electron density change, 10−6, for the
total energy 10−6 eV/Å 3 and for forces, 10−5 eV Å−1. Geometries were considered opti-
mized only after the maximum residual force dropped below 10−3 eV Å −1.

For the DFT band structure, quasiparticle (QP) band structure and QP spectra of fi-
nite chains, we used Vienna Ab initio Simulation Package (VASP) [98]. The one-electron
orbitals are expressed using the projector augmented wave basis set (PAW) [99]. In these
calculations, we used plane waves with 400 eV energy cutoff for the DFT starting calcula-
tion, and a cutoff of 300 eV for the response functions. First, standard Kohn-Sham DFT
calculations were performed, using the PBE exchange-correlation functional [78], with a
mesh of 100×1×1 k points in the Brillouin zone. Then, QP corrections were included
on top of the Kohn-Sham states at the non-self-consistent, single-shot, G0W0 level. After
convergence checks, a frequency grid of 80 points and 600 bands in total were used. The
QP energies were represented on a mesh of 11 k points in the Brillouin zone.
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3.2.2. Density Functional Theory Calculations

The DFT calculations for the HOMO-LUMO gaps (Figures 3.2 and ) were performed by
Richard Korytár and are presented in this manuscript for purposes of completeness. The
energy band gap calculated within DFT, using a PBE functional, is shown in Figure 3.2a
for oligoacenes. Contrary to held beliefs, what we observe, is the oscillation of the energy
band gap as a function of the number of benzene-type rings.

Figure 3.2.: From left to right the HOMO-LUMO gap, ∆g, of oligoacenes with respect
to the number of rings N, calculated within DFT and the orbital energies
as a function of 1/N. The occupied orbitals are presented in blue, while the
unoccupied are in red. Notice the repeating interchange of orbitals as the
number of rings increases. The Figure was done by Richard Korytár, Ref. [5].

The gap ∆g drops quickly to zero for the first 10 oligoacenes, but then rises again, and
drops repeatedly, with a period of 11. Figure 3.2b presents the orbital energies as a func-
tion of 1/N. As the number of rings increases, a repeating interchange of orbitals occurs.
This observation gives the possibility to tailor the gaps of these molecules by changing
their length. Notice also that molecules with similar excitation gaps can have very differ-
ent lengths. To understand the origin of these oscillations further analysis is required. To
understand the gap oscillations, we first invoke the DFT calculated band structure of the
infinite molecular chain, called polyacene, Figure 3.3.

As we pass from the Γ point to the edge of the first Brillouin zone we encounter a
crossing of the conduction and the valence bands, at k point, kD=0.9102 π/a. This band
crossing is reminiscent of the Dirac cones in graphene. Such peculiar band structure of
polyacene wires was first discussed by Kivelson and Chapman [48] based on an analysis
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Figure 3.3.: DFT calculated band structure of polyacene (infinite molecular chain). The
valence and the conduction bands cross at kD = 0.9102 π/a, close to the
Brillouin zone border, where a = 2.462 Å is the unit cell length.

of a tight-binding Hamiltonian with up to third nearest neighbor hopping and predicted
a possible non-avoided band crossing.

3.2.3. Zone Folding

To understand the appearance of such oscillations, let us focus on sufficiently long oligoacenes.
In this case, we should be able to derive their spectrum from the polyacene band structure
by imposing selection rules for wave numbers due to hard-wall boundary conditions, a
method known as zone folding.

For a given number of rings, N , only selected wave numbers are allowed. We can choose
the set of selection rules that applies to a guitar string with length a(N+1). The rule
reads

kNm =
m

N + 1

π

a
, m = 1, . . . , N, (3.2)

where a is the length of one ring. We show examples of this approach in Figure 3.4, Figure
3.5 and Figure 3.6 for 9, 10 and 11 rings, respectively.
We denote the energy band gap as Eg(k) = ǫc(k)− ǫv(k), where ǫc and ǫv are respectively
the conduction and the valence band energies. The gap ∆N

g is given approximately by the
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energy Eg(k̄
(N)), with k̄(N) the wave number from the allowed set, that is closest to the

Dirac point, kD. Therefore, k̄(N) labels the HOMO/LUMO pair.

Figure 3.4.: Zone folding for oligoacene with 9 rings. According to the rule, allowed wave
numbers are given according to Eq. 3.2. Hence, the Brillouin zone is divided
with 9 lines. The energy band gap is given as the difference between the
energy of conduction band minus the corresponding energy of the valence
band, closest to the crossing point. The value of this difference is shown as a
green dot in the right graph.

Figure 3.5.: The same as 3.4 but for 10 rings. At this point, the conduction and the valence
bands interchange and the energy band gap reaches its minimum (green dot
to the right).

As one increases the number of rings, k̄(N) will move and eventually cross the Dirac
point, where the HOMO and LUMO interchange. This fact gives an explanation for the
periodicity of the gap oscillations of oligoacenes.

This band gap is controlled by the position of the Dirac cone in the Brillouin zone.
The period should be then inversely proportional to the distance from the zone boundary,
π/a− kD. The maxima of the gap occurs when the Dirac point lies in the middle between
two consecutive wave numbers from the allowed set. If a local maximum occurs at N0 with
value ∆N0

g , its upper bound must be h̄υFπ/a/(N0 + 1), where υF is the Fermi velocity.
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Figure 3.6.: The same as 3.4 but for 11 rings. In this case the conduction and the valence
bands have already interchanged and the energy band gap starts to increase
(green dot to the right).

Numerically we have within DFT υFπ/a = 6.485 eV.

Figure 3.7.: DFT calculated band gaps of oligoacenes in natural units compared to the
zone folding results. The gap energies are divided by the factor πh̄υF /(N +
1)/a The horizontal axis is rescaled by the reciprocal space distance of the
Dirac point to the zone border. Blue squares are calculated for a set of
geometry-optimized molecules from DFT, whereas the red circles are given
from the Bloch bands of the infinite chain by Brillouin zone folding. The
Figure is taken from Ref. [5].
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In Figure 3.7, in blue, we show the gap ∆
(N)
g obtained from DFT, expressed in natural

units. In the same plot we show the gaps reconstructed from zone folding, Eg(k̄
(N)), in

red. The agreement of the zone folding with the DFT results is excellent. Naively, cor-
rections of the order of 1/N to the zone-folding procedure should be expected. However,
for benzene the deviation is only 11%. Similarly, we get a correction of 1% for tetracene
and 8% for hexacene. We should emphasize that the DFT molecular gaps ∆

(N)
g , shown

in Figure 3.7, already involve relaxation effects. Notice that ∆
(N)
g is always higher than

Eg(k̄
(N)) for N > 4. This is due to the relaxation effects that compress the length of the

rings at molecule’s edges. When the total length shrinks, the gap increases, because the
level spacing increases.

Hence, we have seen that at the DFT-level the band structure effects control the exci-
tation gaps of oligoacenes. We continue with a comparison of the DFT predictions with
post-DFT or hybrid methods to show the robustness of the results.

3.2.4. G0W0 Calculations

In DFT, there is not an analog of the Koopmans’ theorem [85], stating that the first
ionization energy of a molecular system is equal to the negative of the HOMO energy.
However, experiment shows that the differences between the KS single particle energies
can be interpreted as physical excitation energies, and often the results can be compared
to experimental results, although underestimated in most cases. Within DFT, the ioniza-
tion potential I agrees with the highest occupied molecular orbital (HOMO) energy of the
charge-neutral molecule with Nel electrons as I=-ǫHOMO(Nel). However, the correspond-
ing electron affinity of the system, A, is obtained from a reference calculation by adding
one electron to the system, A = -ǫHOMO(Nel + 1).

A method that is widely used to improve upon DFT’s outcome for the ionization po-
tential and the electron affinity, is the GW method [51], [92]. In the following we use the
less computationally demanding, G0W0 method, where only one iteration over the Green
function and the screened Coulomb interaction is taken into account.

In contrast to DFT, in G0W0, the energies of charged excitations are already incor-
porated in the QP energies. The question we want to answer is whether the ionization
energies and electron affinities also inherit the oscillatory behavior of the Dirac cone. The
answer is not trivial since post-DFT methods can deviate significantly from the DFT re-
sults and correct any artifacts of approximate exchange-correlation functionals [2], [59].

We employ the G0W0 method for the infinite chain of polyacene and we extract the
corresponding band structure, which is presented in Figure 3.8 compared with its PBE
counterpart. The band pattern shown within G0W0 is very similar to the PBE result. To
find the crossing point we can inspect the symmetry of the four Bloch states around the
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crossing point, as shown in Figure 3.9.

-4

-2

0

2

4

E
 -

 E
F
 (

e
V

)

PBE
G

0
W

0

0 π/ak

Figure 3.8.: G0W0 band structure of polyacene infinite chain compared to that obtained
using PBE. Going from the Γ-point through the corner of the first Brillouin
zone, a crossing of the valence and the conduction bands occurs, at k-point,
kD=0.89π/a.

Figure 3.9.: Charge density at k points located around the crossing point of the bands,
kD. The valence band that is increasing in energy, has an odd symmetry,
whereas the conduction, decreasing band, has an even symmetry along the
molecular axis.
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In Figure 3.9, the charge density at the four k points around the crossing point, kD
is shown. We observe that the QP band whose energy grows with k has a nodal plane
along the long molecular axis and we indicate it with the minus sign, denoting odd sym-
metry. The other two states of the band decreasing with energy, lack this nodal plane,
so they have an even symmetry, noted with the plus sign. Such a distinct symmetry of
the QP bands around the Fermi energy provides evidence of band crossing within G0W0.
Therefore, we expect the charged excitations to support oscillations analogous to the ones
already observed within PBE.

Table 3.1.: Comparison of the band crossing wave number, kD, the Fermi velocity, υF and
the oscillation period, as computed within DFT and G0W0.

PBE G0W0 Units
Wave number 0.9102 0.9356 π/a
Fermi velocity 6.485 8.3883 (a/πh̄) eV
Oscillation period 11.14 15.533 rings

The parameters of the Dirac cone, estimated from G0W0, are compared to the results
derived from DFT, in Table 3.1. We observe the increase in the wave number within
G0W0 compared with the one within DFT, by approximately 2.8%. This change leads to
an increase in the Fermi velocity and the oscillation period expected, within G0W0, from
11 to 15 rings.

3.2.5. PBE0 Functional Calculations

If we ignore the effects of the derivative discontinuity in DFT [162], we can introduce the
LUMO energy within DFT not by ǫHOMO (Nel+1), but by ǫLUMO(Nel). Figure 3.10 shows
the behavior of the HOMO (red filled) and LUMO (open circle) energies within PBE with
respect to the oligoacene length and is compared with PBE0 (triangles), G0W0 (diamonds)
and the Brillouin zone folding counterparts (solid lines). Note that the quantities presented
in Figure 3.10 are dimensionless. We achieve this by replacing the number of rings N by
a dimensionless number ξ = (N + 1)(1 − akD/π). Hence, the zone folding will predict
gap minima at integer ξ. The orbital energies EHOMO/LUMO are then represented by the
dimensionless quantity:

ǫHOMO/LUMO =
a(N + 1)

πh̄υF

[
EHOMO/LUMO − EF

]
, (3.3)

where EF , υF , a, kD are, respectively, the Fermi level, the Fermi velocity, the length of
one ring and the crossing point. Note that the frontier orbitals cross near ξ = 1 with
increasing number of rings, linearly.
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The calculated PBE0 HOMO and LUMO energies are shown in Figure 3.10 with filled
and open green symbols respectively. As presented in the first chapter, PBE0 is a hybrid
density functional where a certain fraction λ of the PBE exhange is replaced by an exact
Hartree-Fock (HF) exact exchange. In this study we consider the conventional version of
PBE0 with λ = 25%. Therefore, the PBE derivative discontinuity is partially restored.
The PBE0 results deviate significantly from the PBE calculated energies. This difference
is due to the finite value of the parameter λ. If λ →0 the difference vanishes. As one
notices, at ξ = 1, which corresponds to N = 11 rings, there is a sudden “jump” of the
PBE0 energy values.

Figure 3.10.: HOMO and LUMO energies (dimensionless according to equation 3.3) with
respect to the length of the oligoacene molecule. PBE results are shown
in red symbols, while red lines represent the estimates from the Brillouin
zone folding. PBE0 values are shown in green and G0W0 QP energies in
magenta. In all cases, filled symbols show HOMO energies and empty ones
their LUMO counterparts.

In order to explain this “jump” we have to consider about the symmetries of the fron-
tier orbitals. Within PBE, the frontier orbitals can be symmetric or antisymmetric with
respect to a mirror plane, normal to the molecular plane that cuts the molecular long
axis into two identical pieces. The energy of symmetric orbitals decreases as a function
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of ξ, whereas the energy of antisymmetric orbitals increases with ξ. This means that at
ξ=1 the symmetry of the frontier orbitals changes. PBE0 results from a PBE reference
result plus a corrective perturbative term, which depends on λ. These correction terms
contain Coulomb-matrix elements of the PBE calculation. Since at N=11 the symmetry of
the frontier orbitals changes, the Coulomb-matrix elements react and the PBE0 energies
exhibit such a jump.

Another feature observed in Figure 3.10, is the slowly increasing deviation between the
HOMO-LUMO energies within PBE and PBE0, for the first 10 molecules. In PBE0 the
charging energy of HOMO and LUMO energies is given by the HF exchange. HF does
not take into account the screening of the interaction. This means, that for long linear
molecular chains, the charging energy is dominated by logarithmic length dependence.
This dependence results in the deviation with respect to PBE energies.

In Figure 3.10 the G0W0 QP energies for the first four oligoacene chains are also pre-
sented. Due to computational cost we did not study longer molecules. The obvious differ-
ences are explained by considering that within G0W0 the charging energies are included
entirely. Notice that within PBE0 the charging energies are included fractionally, as 25%.
Therefore for benzene the difference EG0W0

HOMO−E
PBE
HOMO is approximately four times the dif-

ference EPBE0
HOMO − EPBE

HOMO. The same is valid for LUMO energies. The relative difference
drops for longer molecules, because G0W0 includes also screening effects contrary to PBE0.

In conclusion, we predicted the behavior of large oligoacenes by means of density func-
tional theory (DFT) and post-DFT methods. In particular, we showed that the energy
band gap of oligoacenes exhibits oscillations with increasing molecular length and this
effect emanates from a “Dirac-type” band crossing at the Fermi level [5]. However, with
an eye in prospective technological applications, the survival of these properties under the
screening of a metallic surface is indispensable. Hence, we continue by studying oligoacenes
adsorbed on a metallic substrate, within the framework of ab initio electronic structure
methodology.

3.3. Oligoacenes On Au(111)

In the following we focus on how the physical properties will be altered with respect to
those of the gas-phase, when oligoacenes are adsorbed on a clean Au(111) surface. To this
end, one has to show that the band crossing remains in the case of the infinite chain of
polyacene adsorbed on Au(111).

The lattice parameter of Au(111) and the molecule is, respectively, 2.88 Å and 2.44 Å.
Because of such a mismatch in the lattice constant along the long molecular axis, a mod-
ification of 9% (decrease) and 7% (increase), respectively, in the lattice constants of Au
and the molecule, has been made. Notice that such a modification in the lattice constant
is not physical. Therefore, an agreement with experiment is not expected. In order to
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have a smallest modification of the lattice parameters more unit cells should be used. The
purpose here is to find out whether the band crossing remains for the adsorbed molecular
chain.

Figure 3.11 shows the band structure calculated from the Γ point toward the corner
of the Brillouin zone, π/a, along the long molecular axis. The polyacene is adsorbed at
a distance of 2.8 Å away from the metallic surface. The different orbital symmetries of
molecular contribution to the bands are shown with different colors. It is clear that for an
orbital contribution above 20%, the crossing of the molecule’s bands is still occurring, at
about kD=0.89 π/a.
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Figure 3.11.: Band structure of polyacene infinite chain adsorbed on Au(111). The orbital
of the molecule’s contribution to the symmetry of the bands is highlighted
with different colors. The band crossing occurs at kD=0.89 π/a as it can be
seen for the bands which have a molecular orbital weight above 20%.

To show better the band crossing, we compare, in Figure 3.12, the band structure of
the adsorbed chain with the band structure of the gas phase polyacene. The weight of
the adsorbed molecule’s contribution to the band structure is set above 20%. The figure
shows that the two band structures are very similar.

Since the band structure calculation for polyacene adsorbed on Au(111) showed the
band crossing we can proceed to the physical systems of some finite-length molecules
adsorbed on Au(111). Because of the limited computational resources, we investigated only
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Figure 3.12.: Band structure of polyacene infinite chain on Au(111) compared with the
band structure of the molecular chain in the gas phase. The orbital weight
of the adsorbed molecule is set above 20%.

naphthalene (C10H8), pentacene (C22H14), hexacene (C26H16) and heptacene (C30H18),
adsorbed on Au(111). We fully relaxed the molecules deposited on a metallic Au(111)
surface and analyzed the behavior of their electronic structure.

3.3.1. Computational Details

For all the calculations, presented in this section, we used the VASP package [98], [99].
Standard DFT calculations were performed, using the PBE exchange-correlation func-
tional [78]. In all the calculations, the plane wave basis set energy cutoff is 500 eV and is
sufficient for describing the electronic structure of oligoacenes on surfaces. To represent
the van der Waals weak interactions, we employed the semi-empirical DFT-D2 method,
proposed by Grimme [81]. The necessary coefficients of the Grimme’s scheme, C6 and R0

for Au, are taken equal to 47.81 J nm6/mol and 1.497 Å, respectively [163], while these of
other elements are taken from Grimme paper [81].

A repeated slab model is used to represent the metal surface, where a slab consists of
four atomic layers. A vacuum region of 20 Å was inserted between the slabs. To sample the
surface Brillouin-zone a mesh of 4×4×1 k points was used. The surface slab dimensions
used for naphthalene and pentacene is (7×3) and (9×3) Au atoms, respectively, while for
hexacene and heptacene is (11×3).
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Figure 3.13.: A (x, y) unit cell of oligoacene adsorbed on Au(111). As an example, we
present the xy plane of pentacene molecule adsorbed on Au(111).

The center of the molecules is located at an hcp-hollow site of Au(111) with the long
molecular axis aligned with the close-packed metal atom rows. It has been proved theoret-
ically and experimentally that this adsorption geometry is preferable for pentacene when
relaxed on a (111) metallic surface [163,164]. The same has been shown for benzene [165].
Thus, we choose the same geometry as an initial state of all our calculations, as showed,
for instance, for pentacene in Figure 3.13.

For a first geometry optimization, we calculate the adsorption energies of naphthalene
and pentacene on Au(111) for different distances from the substrate. We first fix the
substrate slabs at their bulk positions and the molecule at a certain height above them.
The only degrees of freedom fully optimized in this first procedure are the carbon positions
parallel to the surface. The stopping criterion used for this geometry optimization is a
difference of 10−4 eV in the energy between two ionic relaxation steps. The adsorption
energies are defined as

Ead = E(CxHy/metal)− E(CxHy)− E(metal), (3.4)

where E(CxHy/metal) is the total energy of the adsorbed system, E(CxHy) the total energy
of the isolated molecule and E(metal) the total energy of the clean Au(111) surface. The
results are presented in Figure 3.14, for PBE calculations with and without van der Waals
corrections.

Figure 3.14 shows that the adsorption of the two molecules is stable at a distance of
2.70 Å for naphthalene and of 2.87 Å for pentacene, when van der Waals weak interactions
are included. Note that, in the case where van der Waals corrections are not included, the
adsorption of both molecules is not stable. Because of this fact we included van der Waals
weak interactions throughout our calculations.

To fully optimize the structures on top of Au(111), we then relaxed all the degrees of
freedom of the molecules, as well as the first layer of the substrate, while the other three
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Figure 3.14.: From top to down, adsorption energy for naphthalene and pentacene, when
adsorbed on Au(111) for different heights, Z(C−Au). With red we present the
results for GGA calculations. Van der Waals weak interactions are also taken
into consideration and the corresponding adsorption energies are presented
in blue. We highlight the final position of geometry optimization for both
cases.

layers are set to their bulk positions. We followed the same procedure for hexacene and
heptacene, starting from the initial position of 3 Å. The relaxation processes until the
difference of total energy between two consecutive relaxation steps is smaller than 10−4

eV. For the relaxed structure, the absolute values of the total forces acting on the molecule
are less than 0.02 eV/Å.

3.3.2. Workfunction and charge dipole

In photoemission experiments of an interface, where the band gap of a molecule can be
measured, there is no way to distinguish the energy states of the substrate and the adsorbed
molecule. A signature of the substrate, though, is given by its workfunction. Identifying
the substrate, the molecular energy levels can be extracted.
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The work function of the clean metal is defined as the difference between the electro-
static potential energy in the vacuum minus the Fermi energy, Φ0 = V (∞) − EF and
is characteristic of a metal. The work function defines the minimum energy needed to
remove an electron from the metal to the vacuum level. This will help us understand the
electron transfer from the substrate to the molecule. It is also intriguing to investigate
the changes in the workfunction for different oligoacene molecules, with oscillated band
gaps. For simplicity, however, for this study we focus only on the molecule of naphthalene,
adsorbed on Au(111) surface composed of three layers.

For Au(111), we find Φ0 equal to 5.0±0.2 eV in a very good agreement with the ex-
perimental value [166]. The electrostatic potential V (x, y, z) integrated along the (x, y)
directions of the unit cell is given as

V (z) =
1

A

∫ a

0

∫ b

0
V (x, y, z) dxdy, (3.5)

where A is the area of the unit cell in the x-y. The variation of V (z) along z direction
is shown in Figure 3.15, with respect to the coverage, for naphthalene. As coverage we
define, the surface covered by the molecule in the unit cell divided by the surface of the
Au substrate.

We notice a reduction of the work function, induced by the adsorption of the molecule.
The difference in Φ versus the coverage, is presented in Figure 3.16, for naphthalene. This
behavior is reminiscent of a conductor shown in Figure 3.17. In this representation the
initial work function of Au is reduced to a new value due to the adsorption of the molecule.

The adsorption-induced reduction in the work function is intriguing and requires further
analysis. It is known that the change in the surface work function, after adsorption, ∆Φ
is related to the dipole moment through the Helmholtz equation [167]. In atomic units
this relationship reads

∆Φ = −4πθ∆µ, (3.6)

where ∆Φ denotes the difference Φ − Φ0 between the work function after the molecule’s
adsorption and the work function of the clean metal, Φ0, in Hartree. ∆µ is the induced
electric dipole due to the adsorption of the molecule and is in electron Bohr, and θ is the
fractional coverage over the area of the surface.

To study the electric dipole we start from another quantity that can provide an insight
of the charge transfer mechanism. This is the difference of the charge density ∆n(x, y, z)
given as:

∆n(x, y, z) = nmol+sub(x, y, z)− nmol(x, y, z)− nsub(x, y, z), (3.7)
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Figure 3.15.: Electrostatic potential, integrated along (x, y) directions of the unit cell and
for different molecular coverages. Φ0 is the work function of Au(111) before
the adsorption of the molecule, and Φ after adsorption. The vertical lines at
positions ∼11 Å, ∼13 Å and ∼16 Å represent the positions of the layers of
the substrate, while the line at ∼19 Å shows the position of the molecule.
The inset shows the behavior of the potential as a function of coverage far
from the molecule.

where nmol+sub(x, y, z) is the charge density of the whole system (molecule + substrate),
nmol(x, y, z) and nsub(x, y, z) are, respectively, the charge density of the molecule in the
gas phase and the substrate alone.

∆n(x, y, z) takes negative and positive values, at different positions, given in units of
e/Å3. This means that, negative values show a loss of electrons and positive values a gain
of electrons. Figures 3.18 shows ∆n(x, y, z) on different planes of the unit cell.

Furthermore, we can integrate the difference of charge density along x and y, in order
to determine its behavior along the z axis. This charge density can now be read as

n′(z) =

∫ a

0

∫ b

0
∆n(x, y, z)dxdy, (3.8)

where a and b are the unit cell lattice parameters along x and y axis.
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Figure 3.16.: Change of the Au(111) work function as a function of naphthalene surface
coverage. The solid line is a polynomial fit to the data.

Figure 3.19 shows n′(z) for different values of surface coverage. Note that, the vertical
lines at positions ∼11 Å, ∼13 Å and ∼16 Å represent the positions of the layers of the
substrate, while the line at ∼19 Å shows the position of the molecule.

Taking into account the units of the charge density, as mentioned before, it is clear that
the space above the molecule is hosting holes, while electrons seem to be transferred to
the region of the metal just below the molecule.

If we now integrate the above charge density, n′z along the z direction according to the
equation

N(z) =

∫ z

0
n′(z′)dz′, (3.9)

we find the curves shown in Figure 3.20 as a function of the surface coverage.

It is clear, in this case, that positive charge density is gathered in the region of the sub-
strate just below the molecule, which is then canceled out by negative charge density in
the region of the molecule. At the edge of the unit cell along the z direction, the difference
of the charge density goes to zero, as expected. Such a result, implies that the charge is
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Figure 3.17.: Graphical representation of a electron energy levels with respect to the posi-
tion, in the system of Au, vacuum and Au’, where Au’ denotes Au after ad-
sorption of a molecule. The new system demonstrates an adsorption-induced
reduction in the work function.

conserved within the unit cell.

The adsorption-induced electric dipole of the system, ∆µ(z), can be now estimated as:

∆µ(z) = −

∫ z

z0

(z′ − z0)n
′(z′)dz′, (3.10)

The result for the adsorption-induced dipole is shown in Figure 3.21. It is noted that
the dipole demonstrates the movement of electronic charge. The positive values in the
edge of the unit cell shows the direction of the electron transfer from the molecule to the
substrate. This adsorption-induced electric dipole explains the reduction of the workfunc-
tion noticed previously.

To verify the outcome of the dipole moment study, we determine the charge transfer
between the molecule and the substrate by means of Bader analysis [168–170]. We deter-
mine the Bader charge transfer for naphthalene, pentacene, hexacene and heptacene. All
the results are converged with respect to a fine fast Fourier transform (FFT) grid with
dimensions 400×200×400. The results of the Bader analysis are presented in Table 3.2.
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Figure 3.18.: Variation of the charge density for naphthalene adsorbed on Au(111), (a)
the first plane of the metal, (b) the plane of the molecule, (c) a plane at
height z ≃ 2Å above the molecule, (d) a plane at height z ≃ 3Å above the
molecule, (e) (x, z) plane, (f) (y, z) plane.

The maximum charge transfer error is of the order of ±10−4 e.

Table 3.2.: Number of electrons of oligoacene molecules, given by Bader analysis, for the
gas phase and when adsorbed on Au(111).

structure Free molecule @Au(111)

C10H8 48 47.75
C22H14 102 101.64
C26H16 120 119.59
C30H18 138 137.54

Bader analysis shows that for every structure a fraction of electron is transferred from
the molecule to the substrate. This fraction varies from 0.25 e in the case of naphthalene
to almost 0.5 e for heptacene. The direction of the charge transfer is consistent with the
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Figure 3.19.: Difference of charge density integrated along the x and y directions and
represented along z direction (see Eq.3.8). We present also the dependence
of this quantity for different surface coverages. The unit of n′(z) is -|e|, with
e being the charge of electron.

adsorption-induced dipole moment result, as presented previously.

3.3.3. Density of states

The results we have presented already suggest that the electronic structure of the molecules
relaxed on Au(111) should not deviate from their already reported behavior in the gas
phase [5]. To justify further this statement, we show the projected density of states
(PDOS) on the carbon atoms for each adsorbed molecule (Figure 3.23). The values of the
band gaps obtained from these DOS are presented in detail in Table 3.3.

A point we would like to stress here is the HOMO and LUMO positions in the case of
molecules in the gas phase. We need to have a relative position of the HOMO and LUMO
for the free molecule with respect to the Fermi level of the substrate, so that one can have
a clear picture of the shift of the molecule energy levels due to adsorption. To this end,
we compared the density of states of the relaxed molecules on the surface with that of the
molecule when its away from the surface by 8 Å. The molecule at 8 Å away of the metal
is not expected to have any interaction with the substrate, so the density of states is the
same as that of the free molecule. Thus, the DOSs show a shift towards lower energies
of the molecular energy levels when the molecule is adsorbed on Au(111) surface, which
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Figure 3.20.: Difference of charge density for different coverages integrated along the z
direction using equation 3.9. The maximum error of this calculation is of
the order of 5×10−3 e.

stabilizes the molecule.

Table 3.3.: HOMO - LUMO gaps for the molecules in the gas phase, 8 Å above the sub-
strate and that of the molecule adsorbed on Au(111) surface.

structure C10H8 C22H14 C26H16 C30H18

Free molecule 3.30 0.98 0.64 0.40
@Au(111)/Z(C−Au)=8 Å 3.30 0.98 0.64 0.40
@Au(111)/ relaxed 2.38 0.84 0.65 0.45

As one can notice directly, in Table 3.3, the band gaps of naphthalene and pentacene
diminish when they interact with the surface (0.92 eV for naphthalene, 0.14 eV for pen-
tacene). For hexacene and heptacene, however, the interaction increases the band gaps
slightly (0.01 eV for hexacene, 0.05 eV for heptacene). In any case the difference is small
and could not change the picture of the band gap oscillation reported for free oligoacene
molecules.
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Figure 3.21.: Charge dipole moment for naphthalene adsorbed on Au(111) for different
surface coverages. The units of ∆µ given here are |e|·Å. The electronic
charge transfer from the molecule to the substrate is implied.

In the density of states it is clear that the HOMO resonances are moving towards low
energies with respect to the Fermi level, when the molecules are adsorbed. On the other
hand, LUMO resonances are getting closer to the Fermi level, something that brings the
Fermi level in the middle of the band gap. We further studied the change in the DOS
in three different cases, when the molecule is at 8 Å away of the substrate, at 4 Å and
when adsorbed. The results for heptacene are presented in Figure 3.24. Notice that the
molecule moves towards a stable configuration when adsorbed.

However, the problems of DFT band gap estimations compared to experiment are al-
ready reported (for example [2, 171]). For the calculations we perform, to our knowledge
there are no experimental values available. Calculations with hybrid functionals can be
computationally pretty demanding. To better describe the exchange energy we used the
modified Becke-Johnson (MBJ) functional [172, 173]. Choosing the necessary parameter
cmbj = 0.9, the HOMO-LUMO gap of Naphthalene in the gas phase is opened slightly,
∼ 1.1%. For consistency of our results, we used the same parameter for all calculations.
The outcome is presented on Table 3.4, for the free and the adsorbed molecules.

The MBJ functional changes the PBE results, showing an increase of the band gaps for
the relaxed molecules of .34 eV for naphthalene, .24 eV for pentacene, .07 eV for hexacene
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Figure 3.22.: Density of states (DOS) of oligoacene molecules. Top to bottom, projected
DOS on the C atoms of naphthalene, pentacene, hexacene and heptacene.
Blue represents the structures where the molecules stands 8 Å away of
Au(111), while red corresponds to the adsorbed molecules. The gray shaded
areas represent the DOS of the first layer of the Au(111) substrate. The
Fermi level of the relaxed structures has been shifted to 0 (red solid line),
while the HOMO level of the structures with Z(C−Au)=8 Å is represented
with dashed blue lines.

Table 3.4.: MBJ functional calculated HOMO - LUMO gaps of the free and adsorbed
molecules on Au(111).

structure C10H8 C22H14 C26H16 C30H18

Free molecule 3.33 1.11 0.76 0.51
@Au(111)/ relaxed 2.72 1.08 0.72 0.48

and .03 eV for heptacene.
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Figure 3.23.: The decay of the energy band gap for the C4N+2H2N+4 molecules at 8 Å away
from the surface (circles) and for their adsorbed counterparts (squares) (see
also Table 3.3).

3.3.4. Calculated Scanning Tunneling Microscopy (STM) images

The calculated STM images are done using the Tersoff Hamann approximation [141]. Fig-
ure 3.25 shows these images, for each relaxed molecule adsorbed on Au(111). They are
generated at a constant height of ∼1.5 Å away from the molecule. Keeping an eye for
possible comparison with future experiments, we export the HOMO and LUMO STM
images by setting the sample voltage appropriately. Note that there is an agreement with
experimental STM images of pentacene on two monolayer NaCl on Cu(111) [46].

Our study so far showed that a metallic substrate such as Au(111) is a good candidate for
possible applications using oligoacenes. The possibility to control the HOMO/LUMO band
gap of these molecular chains as a function of their length would not change significantly,
even under the screening environment of such a substrate. A natural continuation of this
study is to change the substrate from a metal to a semiconductor or an insulator. In
such a case, our target is to prove the possibility to monitor the energy band gap of the
substrate by changing the adsorbed molecule.

3.4. Oligoacenes on SiO2

A very popular insulator among many used in device technology is silicon dioxide, SiO2.
It is also used in oxide multilayers in optics, as a substrate in microelectronics, for metalic
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Figure 3.24.: Density of states (DOS) of heptacene at 8 Å (top), 4 Å (middle) and com-
pletely adsorbed (bottom) on Au(111) surface. The DOS of the first mono-
layer of Au below the molecule is represented in grey. With solid red line the
Fermi level for the relaxed molecule is denoted. With dashed lines the Fermi
level for the molecule at 8 Å (top), 4 Å (middle) are shown with respect to
the Fermi level of the relaxed molecule.

multilayers in magnetics (see [174] for more details). SiO2 exists in many crystalline forms.
The a-quartz surface (α-SiO2) has been studied extensively and it has been proved to be
the most stable, with the lowest energy [175–177].

When such a substrate is to be used as a surface, inevitably there will be the appearance
of dangling bonds. A dangling bond is the appearance of an unpaired valence electron,
due to fewer bonding partners. This of course, leads to problems, of fundamental interest
in modern semiconductor devices [178–180]. These problems are often treated with the
introduction of oxygen or hydrogen in the structures to saturate the dangling bonds.

The reconstruction of the cleaved α-SiO2 has been a subject of studies using ab initio
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Figure 3.25.: Calculated STM images for the relaxed C4N+2H2N+4, for N = 2, 5, 6, 7
molecules adsorbed on Au(111) surface. Top to bottom naphthalene, pen-
tacene, hexacene and heptacene. On the left column we present the HOMO
of each molecule and on the right the LUMO.

methods. Hence, it has been suggested that a “dense”, as it is called, surface is a favorable
reconstruction [175, 176], i.e. the cleaved surface tends to minimize the high energy dan-
gling bonds by surface reconstructions, [175, 176]. The “dense” α-SiO2 was also proposed
for molecular adsorption on SiO2 surfaces [181, 182] and to be considered in the interface
with other materials [183–186].

More recent studies, though, using a combination of molecular dynamics and first prin-
ciples calculations showed that the “dense” α-SiO2 surface is further reconstructed [6,186].
In particular, in [6], it was shown using DFT calculations, that the “dense” α-SiO2 surface
is reconstructed due to the optimization of Si-O bond length distribution and Si-Si inter-
actions at the surface layer. The resulting reoptimized “dense” surface was proved to have
a surface energy about 10% lower that the initial “dense” surface. The density of states of
this surface shows no dangling bonds and has a band gap of 5.62 eV.

97



Chapter 3. Study Of Linear Oligoacenes

Therefore, in our study we used the reconstructed “dense” α-SiO2, using the atomic
coordinates, given in [6]. In Figure 3.26 the atomic structure of the surface is shown
together with the adsorbed pentacene molecule.

Figure 3.26.: Schematic representation of pentacene molecule adsorbed on SiO2 α-quartz.
The carbon atoms are shown in red, the hydrogen in blue, oxygen in brown
and silicon in grey. The coordinates of the substrate have been taken from [6]
and are the result of molecular dynamics in the initial O-terminated structure
of SiO2 α-quartz.

3.4.1. Computational Details

For this study we have also used the VASP package [98], [99], setting the energy cutoff to
500 eV for the plane waves expansion of the basis set. We have used the PBE exchange-
correlation functional [78] and for the van der Waals weak interactions, we employed the
semi-empirical DFT-D2 method [81]. To sample the surface Brillouin-zone we used a mesh
of 4×4×1 k points.

To optimize the structures, we relaxed all the degrees of freedom of the molecule, while
the atoms of the substrate are set to their given positions taken from [6]. The relaxation
process continues until the difference of total energy between two consecutive relaxation
steps is smaller than 10−4 eV. For the relaxed structure, the absolute values of the total
forces acting on the molecule are less than 0.03 eV/Å, while its distance from the substrate
is approximately 3 Å.

We performed two different calculations, one with the molecule of pentacene relaxed on
the “dense” α-SiO2 and the other for the infinite polyacene chain. In the case of pentacene
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the unit cell given in [6] was repeated in a slab, 2×2×1. For the band structure calculation
the lattice parameter along the molecular axis for the substrate is 10.03 Å and for the unit
cell of polyacene is 2.44 Å. In order to match the lattice parameters, the molecular unit
cell was repeated 4 times and a slab 2×2×1 was used for α-SiO2. The lattice parameters
change, respectively, for the molecule and for the substrate up to 1.3% (increase) and 3%
(decrease).

Within this context we have to be careful to overcome the problem of the band folding
of the bands into the smaller super cell Brillouin zone. The inconvenience of the band
folding in the resulting band structure of the structure comes out when instead of the
primitive unit cell in a periodic calculation, a super cell has to be used. Such a result is
derived even for relatively small super cells and it should be avoided in order to have a
clear picture of the band structure in the first Brillouin zone.

Such unfolding problems have already been encountered and confronted in several stud-
ies, for example [187–191]. For the unfolding of the band structure, in our study, we
used the implementation introduced by Medeiros et al. [192]. The authors introduced a
method of band unfolding to recover an “effective” primitive cell picture using an initial
super cell calculation. Their unfolding implementation is based on the method introduced
by Popescu and Zunger [191] and we consider it useful to present its basic principles.

Initially, Medeiros et al. define two different volumes, ΩPCBZ and ΩSCBZ, for the primi-
tive cell Brillouin zone (PCBZ) and for the super cell Brillouin zone (SCBZ), respectively.
Then, for each wave vector K belonging to the SCBZ, there will be Nunfold=ΩPCBZ/ΩSCBZ

wave vectors ki of the PCBZ such that:

ki = K + Gki←K, (3.11)

where i = 1, 2, 3, . . . , Nunfold the number of the wave vectors ki and Gki←K are vectors
belonging to the super cell reciprocal lattice.

If |ψSC
mK〉 is an eigenstate of the Hamiltonian in the SC space and |ψPC

nki
〉 the eigenstates

in the PC, we have:

|ψSC
mK〉 =

∑

n
ki∈{k̃i}

α(ki, n,K,m)|ψPC
nki
〉, (3.12)

where {k̃i} is the set of wave vectors ki in the PCBZ which satisfy the equation 3.11 and
correspond to the PC eigenstates with the same eigenvalue with the SC eigenstates.

The probability for the |ψSC
mK〉 to have the same character as a PC Bloch state of wave

vector k is defined as the spectral weight PmK(k) and is read:
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PmK(k) =
∑

n

|〈ψSC
mK|ψ

PC
nk 〉|

2 =
∑

g∈PCRL

|CSC
mK(g + k−K)|2, (3.13)

where PCRL stands for the primitive cell reciprocal lattice, g the wave vectors belonging
to it and CSC

mK the coefficients of the plane waves that span the eigenstates of the SC. The
values for PmK(k) can be obtained, therefore, entirely from the coefficients CSC

mK, which
means that the knowledge of the PC eigenstates is not required.

The spectral function is defined as:

A(k; ǫ) =
∑

m

PmKδ(ǫ− ǫm(K)), (3.14)

where the only pairs (k, K) included in the sum are those in which K unfolds into k,
according to equation 3.11.

In order to accomplish finding the effective super cell (ESC) in the implementation,
Medeiros et al. introduced the infinitesimal version dSk(ǫ) = A(k; ǫ)dǫ of the cumulative
probability function Sk(ǫ). Then, dSk(ǫ) represents the number of PC bands, at the PC
wave vector k, that cross the energy interval (ǫ, ǫ+ dǫ). Thus, a mapping of the region of
interest in the (k; ǫ) space onto a (ki; ǫj) grid can be done, with energy intervals of size
δǫ. Therefore, a weight δN(ki; ǫj) can be assigned to each point, given by:

δN(ki; ǫj) =

∫ ǫj+δǫ/2

ǫj−δǫ/2
dSki

(ǫ) =
∑

m

PmK(ki)

∫ ǫj+δǫ/2

ǫj−δǫ/2
δ(ǫ− ǫm(K))dǫ (3.15)

Equation 3.15 gives the number of PC bands crossing (ki; ǫj). As a final step of the
implementation, δN is averaged over wave vectors, ki related by symmetry operations of
the PCBZ.

3.4.2. Electronic Structure

After performing the PBE calculation on the infinite chain of polyacene relaxed on the
“dense” α-SiO2 surface, we obtain the folded band structure of the whole structure, as
well as the total density of states (DOS). Then, as a post-processing method we employ
the unfolding of the band structure as described above. The results for the unfolded band
structure and the total DOS are presented in Figure 3.27. The different colors in the
unfolded band structure graph, denote the values of δN(ki; ǫi) as given in equation 3.15.
Note the similarity of the bands, for energies around the Fermi level, with the band struc-
ture of polyacene in the gas phase, shown in Figure 3.3. The crossing of the bands is still
occurring, close to the corner of the first Brillouin zone. This result is interpreted to a
closed band gap in the total DOS. Note that the energy band gap of the reconstructed
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3.4. Oligoacenes on SiO2

Figure 3.27.: The unfolded band structure of polyacene relaxed on the reconstructed
“dense” α-SiO2 surface, is shown on the left. The color bar on the bot-
tom denotes the values of δN(ki; ǫi), given in equation 3.15. On the right,
the total DOS of the structure is presented.

“dense” α-SiO2 is expected to be 5.62 eV.

Since the substrate is an insulator, the type of adsorbed oligoacene molecule defines
the energy band gap of the system. Considering also the fact that the band crossing
is surviving even after the molecular chain’s relaxation, we expect that the band gaps
oscillations will also occur for oligoacene chains when adsorbed on α-SiO2. We can verify
the closing of the substrate’s band gap using one of the candidate molecules, pentacene.
The total DOS of the structure is shown in Figure 3.28.

Figure 3.28 presents the total DOS of pentacene adsorbed on α-SiO2 and shows that
the energy band gap is opening with respect to the infinite molecular chain (Figure 3.27).
The value of the band gap is 1.15 eV, comparable to the band gap value of 0.96 eV for the
gas-phase pentacene molecule.
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Figure 3.28.: Total density of states of pentacene relaxed on the reconstructed α-SiO2

surface. The HOMO-LUMO gap originated from the molecule states is about
1.15 eV.

Hence, we have proved that the band gap of the insulator SiO2 can be monitored using
oligoacene molecular chains. Furthermore, such a substrate forms an excellent candidate
for prospective applications where the band gap oscillation property of oligoacenes can be
employed.

3.5. Conclusions

In this chapter, we presented an investigation of oligoacene molecules properties focusing
on behavior of their energy band gap with respect to their molecular length. Interestingly,
we found that this band gap oscillates with a period of 11 benzene-type rings.

Employing a thorough DFT study we attributed this property to a band crossing in
the band structure of the infinite molecular chain, close to the corner of the first Brillouin
zone, similar to that of graphene. Moreover, we managed to verify these results with post-
DFT methods, such as G0W0 method and and hybrid PBE0 functional. Furthermore, we
showed that our results could be explained by Brillouin zone folding rules.
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3.5. Conclusions

Furthermore, we used a GGA+vdW to investigate the behavior of oligoacene molecules
adsorbed on a Au(111) surface. We focused on the electronic structure properties of four
oligoacene molecules relaxed on a clean Au(111) surface. We attributed the adsorption-
induced reduction of the workfunction to the formation of a charge dipole between the
molecule and the substrate and confirmed a small charge transfer from the molecule to
the substrate using Bader analysis. More importantly, studying the electronic structure of
the relaxed molecules we showed that the band gap values are not modified significantly
compared to the band gaps calculated for gas phase oligoacenes. Additionally, the band
structure of the polyacene chain on Au(111) shows that the band crossing occurs for the
bands in which the molecule contributes, with weight above 20%.

Finally, we substituted the metallic surface with an insulator, the reconstructed “dense”
α-SiO2 surface. In such a case, we expected and we proved, that the energy band gap
of the surface can be controlled and monitored by changing the adsorbed oligoacene chain.

These results demonstrate that a band gap oscillation, with increasing molecular length,
remains unchanged when oligoacene chains are adsorbed on metallic surfaces and also on
insulators. With these additional studies, the robustness of the property is strengthened,
indicating the possibility for prospective technological applications.

103





HOMO-LUMO Gaps of

Molecules on Metallic

Surfaces 4
4.1. Introduction

In the previous chapter the oligoacene molecular chains were studied in detail, in their gas
phase and when adsorbed on substrates. At this point some important points about DFT
and its performance upon the calculation of energy band gaps should be investigated.
Although DFT methods succeed to describe the total energies or atomic structures, in
good agreement with experiment, they tend to underestimate the experimental energy
band gaps and to describe only semiqualitatively the band structures of solids and sur-
faces [49–51]. For the study of molecular band gaps, extensive research has been done to
obtain good agreement between theory and photoemission experiments [2,59–62]. Within
such studies the adequacy of DFT using GGA and hybrid functionals is questioned. A
solution to overcome the problems of DFT is to use the GW method, which takes into
account a better screening electron-electron interaction and therefore gives results in good
agreement with photoemission experiments. Different techniques of GW are used to study
molecular band gaps ranging from to the non-self-consistent G0W0 method to the eigen-
value self-consistent GW [105] and the fully self-consistent GW [193]. In particular in the
case of the perturbative G0W0 method, the starting-point (DFT or HF) affects the calcu-
lated results for the band gaps [2, 101]. Such shortcomings of G0W0 methodology can be
overcome using the eigenvalue self-consistent GW method [96] or the fully self-consistent
GW by solving the Hedin’s equations [92]. However, these methods are computationally
very expensive and are therefore prohibitive for big unit cells within periodic boundary
conditions.

The shifts of the HOMO-LUMO levels because of adsorption or bond formation have
been already studied experimentally and theoretically. More specifically Repp et al. [194]
showed that upon the formation of a covalent bond between a pentacene molecule and a
gold atom the hybridization of the orbitals leads to energetic shifts and changes in the oc-
cupation of the molecular resonances. A shift towards the Fermi energy was also observed

105
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on gold atoms and pentacene molecules adsorbed on a NaCl film supported by a Cu surface
because of the polarization of the NaCl film and the underlying metal [195, 196]. From
the theoretical side, research has been done to evaluate the shifts of HOMO and LUMO
within DFT and GW for adsorbed molecules [7, 65–67]. Neaton et al. showed that the
energy gap of benzene adsorbed on graphite (0001) reduces significantly with respect to
its gas-phase counterpart. The same result was found also by Garcia-Lastra and Thygesen
for benzene and benzene-TCNE molecules adsorbed on Al(111) [67]. The authors of the
above papers claimed that the adsorption-induced polarization and the HOMO-LUMO
shifts are described adequately within GW and not DFT methods.

During adsorption certain physical phenomena are expected, that will influence the
HOMO and LUMO levels of the molecules. The capture of such phenomena within DFT
methods is possible to some extent. For instance, a modification in the electron density
and consequently a rearrangement of the HOMO and LUMO, due to the self-consistent
interaction between molecule and surface can be described sufficiently within DFT [63].
Furthermore, when a molecule is adsorbed on a surface, its discrete molecular levels are
expected to be broadened to resonances and the orbital energies are shifted, a fact that
was evident in oligoacene molecules adsorbed on Au(111). Such a modification takes place
due to electronic coupling to the extended states in the metal. The adequacy of DFT to
describe such modifications is not widely accepted [64]. A phenomenon that DFT fails
at some extend to describe is the polarization of the metal substrate due to the adsorp-
tion. Indeed, during the adsorption of a molecule, an electron or a hole can be added into
its orbital, due to the Coulomb interaction with the substrate. Therefore, the substrate
electrons will rearrange in order to screen the added charge. This additional correlation
energy further stabilizes the added hole or electron and therefore consistently reduces the
molecular gap, as shown in Figure 4.1, see also [7].

Figure 4.1.: Schematic representation of energy levels indicating the shifts of HOMO and
LUMO of a gas phase molecule upon it’s adsorption on a metallic surface.
The figure has been taken from [7].
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4.2. Computational Details

Since, DFT does not take into account dynamical effects, like dynamical screening, a
GW calculation is needed, which even in the level of the one-shot G0W0, can capture such
electronic correlations. In this context it has been already proved, within GW methods,
that the quasiparticle gap is reduced with respect to its gas phase counterpart, as shown
in Figure 4.1.

Within the study presented in the following, we will also investigate the adequacy of
DFT to describe the HOMO-LUMO gaps of adsorbed molecules. The difference between
our study and previously mentioned work is that the molecules are chemically adsorbed
on the paramagnetic surface of Cu(001). We have also investigated what happens to the
QP band gap when the molecule is adsorbed on a ferromagnetic substrate. One has to
study the changes in the energy band gaps due to polarization and compare the results
obtained using a paramagnetic substrate. Therefore, we focused on three different organic
molecules, methane (CH4), ethane (C2H6) and ethylene (C2H4) adsorbed on a Cu(001)
or Co(001) substrate and calculated their spectral functions, using both DFT and G0W0

methods.

4.2. Computational Details

For the calculations presented in this chapter VASP package was implemented [98], using
the PAW method [99]. For the preliminary DFT calculations, the PBE functional was
used, with a cutoff energy of 500 eV for the plane waves. A repeated slab model was
introduced to represent the 2×2 metal surface, Figure 4.2. The slab consists of three
atomic layers and a vacuum region of approximately 20 Å is inserted between them. For
the sampling of the Brillouin zone a mesh of 2×2×1 k-points was used. In the case of
gas-phase molecules, only the Γ point was used. The van der Waals dispersion interactions
were taken into account using the Grimme’s semi-empirical DFT-D2 method [81]. For the
relaxation of the structures, the degrees of freedom for the atoms of the molecules and
the substrate were fully relaxed. The relaxation steps were stopped with the criterion of
the energy difference between two ionic steps to be less than 10−4 eV. The forces in these
cases were found to be less than 0.03 eV/Å. The final distances of the molecules from the
surfaces are shown in Table 4.1.

Figure 4.2.: Graphical representation of the molecules of methane, ethylene and ethane
adsorbed on a Cu(001) or Co(001) substrates.
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Table 4.1.: DFT-calculated distances of adsorbed molecules on Cu(001) or Co(001) sub-
strates.

Methane Ethylene Ethane
d(C−Cu) (Å) 2.5 2.1 3.1
d(C−Co) (Å) 2.5 2.0 3.0

For the G0W0 calculations extra parameters have to be defined. Namely, the number
of electronic bands, the energy cutoff for the response functions and the number of fre-
quency points. It has to be pointed out that the increase of these parameters increases the
accuracy of the calculations in most cases, but also increases the computational cost of
the G0W0 calculations. Within this study, an attempt to find the optimal values within a
compromise, for the computational cost, was made. The tactics followed was the following:
G0W0 calculations were made for the gas-phase molecules, changing the above mentioned
parameters and finding the best possible agreement with experimental values, when avail-
able, for the HOMO and LUMO energies. The parameters giving the optimal agreement
with experiment were also used for the G0W0 calculations of the adsorbed molecules.
Hence, the values of the number of electronic bands, the energy cutoff for the response
functions and the number of frequency points were, respectively, for ethane 512 bands, 60
eV and 20 points, for methane 320 bands, 60 eV and 20 points, and for ethylene 768 bands,
60 eV and 20 points. Table 4.2 shows the calculated values for HOMO and LUMO ener-
gies within PBE and G0W0. The HOMO energy is in good agreement with experimental
values for methane and ethane. However, for ethylene the agreement with experiment
is less good. A better agreement might be possible if one could increase the number of
empty bands. For the study of the energy band gaps under adsorption, each molecule
is positioned first at a distance of 8 Å away from the substrate. Then it approaches the
substrate with a step of 2 Å until it is completely adsorbed and relaxed. This strategy will
help us understand the effect of the gradual interaction of the molecule with the substrate.

Table 4.2.: DFT and G0W0 calculated HOMO and LUMO energies for methane, ethylene
and ethane molecules in the gas phase. The experimental value of the ionization
potential (IE) is also given. All the energies are given in units of eV.

HOMO (PBE) LUMO(PBE) HOMO(G0W0) LUMO (G0W0) IE (Exp.)
Methane -9.41 -0.41 -12.69 0.77 12.61 (Ref. [197])
Ethylene -6.75 -0.98 -9.22 2.98 10.51 (Ref. [198])
Ethane -8.05 -0.43 -11.14 0.85 11.0 (Ref. [199])
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4.3. Results

The results of the preliminary calculations are presented below. The density of states
projected on the ethane molecule is presented, when the molecule is adsorbed on Cu(001)
or Co(001) within DFT and G0W0 methods. The results for methane and ethylene are
shown in the appendix. In order for all the resonances to be clear, we chose the color-bar
representation. Therefore, resonances with different height are shown as lines with dif-
ferent color ranging from zero (blue) to 0.5 (deep red). The units of DOS are given in
states/eV/cell. The y-axis shows the absolute values of energy in eV. The Fermi level of
the adsorbed molecules on each substrate is also indicated. In this context, the shift of
the LUMO and the HOMO levels, as the molecule approaches the substrate, is indicated
with red arrows (in analogy to Figure 4.1).

Upon adsorption more resonances are expected to appear in the projected DOS of each
molecule due to the hybridization of the molecular orbitals with the orbitals of the sub-
strate. Therefore, what one expects are more peaks in the projected DOS, which have
a small weight on the molecular orbitals. These peaks could be interpreted as electrons
being shared between the substrate and the molecule. Within our study we consider the
resonances with a DOS above 0.1 states/eV/cell as important energy levels.

Focusing on ethane adsorbed on Cu(001), we find a decent agreement with previous
studies when the molecule is physisorbed [7, 67]. G0W0 approximation gives a bigger
HOMO-LUMO gap with respect to DFT and also captures the shifts of the correspond-
ing resonances as the molecule is adsorbed. However, when the molecule is closer to the
substrate, at a distance of 3.1 Å, DFT also captures the shifts of the HOMO and LUMO
levels. Similar results are observed when the molecule is adsorbed on Co(001). The shifts
of the HOMO and LUMO levels are clear within G0W0. However, DFT captures a re-
duction of the LUMO level upon adsorption at 3 Å. The spin splitting upon adsorption
is observed within G0W0 already from a distance of 4 Å far away of the substrate. DFT
does not show any exchange interaction until a distance of 4 Å, however, it describes the
phenomenon accurately enough upon relaxation at a distance of 3 Å.

4.4. Conclusions

To conclude, our results showed that the G0W0 calculations provide a better description
of the molecular adsorption effects. Shifts of the HOMO-LUMO levels are observed in the
physisorption limits. We observe that upon chemisorption DFT seems to provide similar
results as G0W0. This is true for both types of substrates, Cu(001) and Co(001). Further
investigation is required, to study the performance of the two theoretical frameworks for
the description of molecular adsorption. Such studies could be performed in the G0W0,
but also using the self-consistent GW approximation and it would be interesting to see if
the GW self-consistency can improve the DFT results. However, GW calculations for big
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d = 6 Å
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Figure 4.3.: DFT (up) and G0W0 (down) calculated DOS for ethane adsorbed on Cu(001).
The colorbar indicates the projected DOS on the molecule in states/eV/cell.
The red arrows indicate the changes in HOMO and LUMO levels while the
molecule approaches the substrate, from distance d=8 Å to the final adsorbed
configuration at d=3.1 Å. The Fermi level of the adsorbed molecule within
DFT is shown in a black line.

slabs is computationally prohibitive for most mainstream codes. Highly optimized codes,
such as FIESTA [2] or WEST [200], use localized basis sets and may be capable of treating
larger systems within the GW approximation. If the computational cost is overcome, more
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Figure 4.4.: Up downwards DFT and G0W0 calculated DOS for ethane molecule adsorbed
on Co(001), same as in Figure 4.3. The arrows ↑ and ↓ indicate, respectively,
the up and down spins.

realistic systems could be studied and a better description of experimentally observed
phenomena might be within reach.

111
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The interaction of organic molecules with a supportive substrate has been an issue of ex-
tensive research in several fields in science and technology, especially in organic electronics
and photovoltaics. Possible changes in the electronic structure of a molecule due to its
adsorption is of high importance for possible applications where use of the molecular prop-
erties is required. In this context, we investigated different systems of organic molecules
adsorbed on metallic surfaces. The electronic correlation of these systems was thoroughly
studied, within DFT and GW methods.

The first system presented was a binuclear metal-organic complex, Ni2, adsorbed on
Cu(001) substrate. The aim was to study the arising Kondo effect when two exchange
coupled spins anticipating the case of single molecule magnets (SMMs). Experiments car-
ried out at Karlsruhe Institute of Technology (KIT) showed an adsorption-site dependent
behavior of the complex in the STM and STS data [4]. The measured Kondo temperature
was in the order of ∼10 K, which is intriguing due to the absence of chemical bonding of
the complex to the Cu surface. To explain the experimental observations we performed
extensive DFT calculations. Our simulations showed that some STM images (Ni2 − α)
result from molecular fragments of the initial complex. Other STM images (Ni2 − β) can
be attributed to a distorted Ni2 complex with partially weakened internal chemical bonds.
In both cases, our DFT calculations showed a picture of (S = 1)-type Kondo effect arising
from the open 3d shells of the individual Ni2+ ions. Furthermore, using both the DFT-
calculated spectral functions projected at the Ni atoms and the Anderson model formula
for the S = 1 Kondo effect, we computed the Kondo temperatures for the two configura-
tions in good agreement with experimental values [4]. In many cases, more sophisticated
methods are required to study the Kondo effect like Monte Carlo calculations [201, 202]
or the dynamical mean field theory (DMFT) [203]. However, in this particular case, even
the single-particle DFT could give a good prediction for the atomic configurations and
good agreement with experiment for the Kondo temperatures. In general terms, binuclear
complexes form an excellent candidate for studying fundamental aspects of magnetic two-
impurity or double quantum dot systems. By functionalizing the bridging unit between
the two dots, the super-exchange interaction between them could be enhanced and differ-
ent regions of the phase diagram of the double impurity model could be accessed [204,205].
Understanding the interaction between the spins residing on different functional regions
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of the system is also vital for applications, such as quantum information storage and pro-
cessing with molecules adsorbed on surfaces. Further challenges can be also identified like
the possible substitution of Ising-like spins (like Tb) to study a “double molecular magnet”.

In the third chapter, motivated by several studies focused on polymers and oligomers
for applications in organic electronics [39–41] and photovoltaics [36–38] we presented a
thorough study of oligoacene molecules [42,206]. We observed an oscillation of the energy
band gaps as a function of the molecular length [5]. To understand the appearance of
such oscillations, the band structure of the infinite chain, polyacene was invoked within
DFT and G0W0. It was proved that the band gap oscillation originates from a band
crossing at the Fermi level close to the corner of the Brillouin zone. Using a zone folding
method, it can be proved that the position of the Dirac cone controls the oscillation of
the HOMO-LUMO gap. The oscillating behavior of the energy band gaps was shown also
to occur within the PBE0 functional. Note that in the presence of strong correlations,
where ab initio methods tend to fail, a DMRG study by Peter Schmitteckert confirmed
the oscillation phenomenon [5]. Since the extraordinary phenomenon of band gap oscilla-
tions was understood for the gas-phase molecules, our aim was to show their occurrence in
the presence of the screening environment of a supportive substrate. Our extended DFT
calculations showed the robustness of the property when the molecules are adsorbed on a
Au(111) substrate. With an eye in prospective applications we also showed the possibility
to tune the band gap of a semiconductor using oligoacene molecules of different lengths.
We hope that our results will be soon confirmed by experiment since the synthesis of
larger gas-phase oligoacenes is under investigation to increase their stability [43, 44]. The
on-substrate synthesis provides also some hope to these achievements [45]. When their
synthesis is achieved, the great progress accomplished in scanning probe microscopy [46,47]
will lead to the imaging of such organic molecules with high resolution.

In the last chapter, we focused on the performance of DFT and G0W0 methodologies
to describe the changes in the HOMO-LUMO gaps upon adsorption of molecules on sub-
strates. Focusing on three similar-sized organic molecules, namely methane, ethane and
ethylene, we demonstrated that G0W0 can in general describe better the shifts of the
HOMO and LUMO as the molecule interacts with the paramagnetic Cu(001) or the fer-
romagnetic Co(001) substrates. Moreover, within G0W0 the interaction of the molecular
orbitals with those of the surface can be seen more clearly by the appearance of new
resonances due to hybridization. For such a study, many perspectives emerge. First of
all, the performance of G0W0 in magnetic system and especially in ferromagnetic sub-
strates should be investigated. The possible improvement upon the shortcomings of DFT
and G0W0 using the self-consistent GW approximation should also be further studied.
Furthermore, for comparison with experiment the computational cost of GW calculations
should be moderated, either by the use of more powerful computers or with the use of
more optimized codes. To latter direction efforts are being done, using localized basis func-
tions for highly parallelized codes, e.g FIESTA [2] or WEST [200] codes. In this context,
calculations might be feasible for realistic systems, like metal-organic interfaces. An exam-
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ple that we currently investigate is the adsorption-induced polarization in big molecules
adsorbed on a Co(001) substrate. Photoemission experiments by the group of Wolfgang
Weber at IPCMS have shown the appearance of interface states (IS) at the Fermi energy
of ferromagnetic metal-organic interfaces. Such highly spin-polarized IS were already ob-
served on phthalocyanine (Pc) films on ferromagnetic Co(001) and were also explained
within DFT [207]. The agreement between theory and photoemission experiment should
also be confirmed within more realistic methods such as the GW approximation.

There are still a lot of additional calculations and developments that could be made
for studying the electronic correlation of organic molecules adsorbed on metallic surfaces.
Such work would have a great impact in the fields of organic electronics, organic spin-
tronics and organic photovoltaics. First-principles calculations are expected to play an
important role in such efforts. We hope the research presented in this manuscript to con-
tribute in future theoretical and experimental efforts targeted on prospective technological
applications.
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CH4 and C2H4 adsorbed on

metallic surfaces A
We present here the density of states of CH4 and C2H4 adsorbed on a Cu(001) or Co(001)
surfaces. The calculated DOS projected on the molecules, obtained within DFT and
G0W0 approximation, is presented. The results are similar to those obtained for the C2H6

molecule and are discussed in chapter 4.
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Appendix A. CH4 and C2H4 adsorbed on metallic surfaces
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E
 (

e
V

)

 

 

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

d = 4 Å
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Figure A.1.: DFT and G0W0 calculated DOS for methane adsorbed on Cu(001), respec-
tively, first and second subfigure. The colorbar indicates the projected DOS
on the molecule in states/eV/cell. The red arrows indicate the shifts in
HOMO and LUMO levels while the molecule approaches the substrate, from
distance d=8 Å to the final adsorbed configuration at d=2.5 Å. The Fermi
level of the adsorbed molecule calculated within PBE is also shown (black
line).
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↓

 

 

↑

 

 

d = 4 Å
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Figure A.2.: DFT andG0W0 calculated DOS for methane adsorbed on Co(001), in analogy
to Figure A.1. The arrows ↑ and ↓ indicate, respectively, the up and down
spins.
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Appendix A. CH4 and C2H4 adsorbed on metallic surfaces
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
F

d = 2.1 Å
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Figure A.3.: From top to bottom DFT and G0W0 calculated PDOS for ethylene adsorbed
on Cu(001). The height of the resonances is shown in different colors accord-
ing to the colorbar on the right. The shifts of the HOMO and LUMO energies
are indicated with red arrows and the Fermi level of the final structure with
a black line (within DFT).
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↓

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
F

E
 (

e
V

)

↑

 

 

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

d = 2 Å
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↓

 

 

↑

 

 

d = 8 Å

↓

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure A.4.: Similar to Figure A.3 for ethylene adsorbed on Co(001). The up and down
spins are indicated, respectively, with ↑ and ↓.
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Dimitra XENIOTI

Effect of electronic correlation on

molecules adsorbed on metallic surfaces

Résumé en français

La combinaison de la spintronique et de l’ électronique organique est censée conduire
à une nouvelle gamme d’applications en la domaine de spintronique organique. Ce
travail se concentre sur la physique des molécules organiques adsorbées sur des
surfaces métalliques et les changements de leurs structures électroniques en raison de
l’effet important du substrat métallique. Nous avons étudié le complexe Ni2 adsorbé
sur le Cu(001) qui montre un effet Kondo à basses températures. Nous avons ensuite
étudié des chaînes d’ oligoacènes (anneaux de benzène fusionné) qui présentent une
propriété prédite: une oscillation de la bande interdite d’ énergies en fonction de la
longueur de la molécule. Cette proprieté peut survivre même lorsque la molécule
est adsorbée sur une surface, comme l’ Au(111) ou le SiO2. Pour terminer, nous
avons étudié des petites molécules, telles que l’ éthane ou l’ éthylène, adsorbées sur
un subtrat de Cu(001) et de Co(001). La différence d’ énergie entre l’ orbitale vide
la plus basse (LUMO) et l’ orbitale moléculaire occupée la plus élevée (HOMO) est
etudiée dans les approximations de la théorie de la fonctionnelle de la densité (DFT)
et la méthode GW .

Mots-Clés: ab initio, DFT, GW , électronique organique, spintronique, Kondo,
oligoacènes

Résumé en anglais

The combination of spintronics and organic electronics, is believed to lead to a new
generation of spin based devices, which would likely open a new broad range of
applications in the field of organic spintronics. In this context, this work focuses
on organic molecules adsorbed on metallic surfaces and their electronic structure
changes due to the important screening of the metallic environment. We have studied
different systems, starting with a Ni2 complex adsorbed on Cu(001), where Kondo
effect sets in. This study is followed by oligoacene chains (fused benzene rings) where
an extraordinary property is seen: an oscillation of the energy band gap with respect
to the molecular length. This property is proved to survive under the screening of
surfaces such as Au(111) and SiO2. We finally focused on small molecules, like ethane
and ethylene, adsorbed on Cu and Co. The difference of energy between the lowest
unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital
(HOMO) is studied using density functional theory (DFT) and GW methodologies.

Mots-Clés: ab initio, DFT, GW , organic electronics, spintronics, Kondo, oligoacenes
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Effet de corrélation électronique sur les molecules

adsorbées sur des surfaces métalliques



Aujourd’hui, il est tout à fait clair que la technologie basée sur la microélectro-
nique du silicium a atteint ses limites de performance, conduisant les chercheurs à l’
élaboration de nouveaux paradigmes électroniques, technologiques et informatiques.
Après la découverte de la magnétorésistance tunnel (TMR) et de la magnétorésis-
tance géante (GMR), nous sommes confrontés à une grande révolution de la mémoire
informatique et des capacités de stockage magnétiques des disques durs modernes,
à un rythme sans cesse croissant. En même temps, l’attention des chercheurs est
aujourd’hui focalisée sur des matériaux organiques pour substituer la microélectro-
nique du silicium, car ces matériaux ne coûtent pas cher à produire, et sont de plus
flexibles et diversifiés dans leurs applications. La combinaison de la spintronique et
de l’électronique organique est censée conduire à une nouvelle génération de dispo-
sitifs à base de spin, susceptible d’ouvrir une nouvelle gamme d’applications et une
nouvelle génération de produits en spintronique organique.

Un autre grand défi pour les chercheurs serait de remplacer dans un futur proche,
les transistors à base de silicium par des transitors moléculaires. Pour ce faire, beau-
coup d’ efforts expérimentaux et théoriques ont déjà été accomplis. Les simples
magnets moléculaires (SMM) ont attiré beaucoup d’ attention, car le temps de re-
laxation magnétique à basses tempèratures peut être de l’ordre de plusieurs années.
Cependant, pour des applications comme le stockage de données magnètiques, les
SMM doivent être déposés sur un substrat de soutien. De plus, une bonne compré-
hension de l’interaction entre les molécules et les fils métalliques est indispensable
pour accéder à de nouveaux progrès dans ce domaine.

Dans ce contexte, ce travail se concentre sur la physique des molécules organiques
adsorbées sur des surfaces métalliques, en mettant l’accent plus particulièrement
sur les changements de leurs structures électroniques en raison de l’effet important
du substrat métallique. Nous avons d’abord étudié le complexe Ni2 adsorbé sur le
Cu(001) qui montre un effet Kondo à basses températures. Nous avons ensuite étu-
dié des chaînes d’oligoacènes (anneaux de benzène fusionnés) qui présentent une
propriété prédite, pour la première fois, par nos calculs, à savoir une oscillation de
la bande interdite d’énergies en fonction de la longueur de la macro-molécule. Nous
avons ensuite montré que cette propriété peut survivre même lorsque la molécule est
adsorbée sur une surface métallique, telle que celle de l’Au(111) ou de SiO2(001).
Pour terminer cette thèse, nous avons montré que le calcul des quasiparticules dans
l’approximation GW permet de corriger la différence d’énergie entre l’orbitale vide
la plus basse (LUMO) et l’orbitale moléculaire occupée la plus élevée (HOMO), et
que les résultats sont en très bon accord avec l’expérience. Comme la méthode GW
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est très coûteuse en temps de calcul, nous avons uniquement étudié les petites molé-
cules, telles que l’éthane ou l’éthylène. Nos calculs montrent également que lorsque
les molécules sont adsorbées sur un subtrat de Co(001), ces molécules sont polari-
sées en spin et la difference d’énergie entre la LUMO et la HOMO est réduite d’une
manière significative.

Il est bien connu que, selon les lois de la physique quantique, les molécules confinent
les électrons dans les niveaux discrets d’énergies, tandis que les métaux offrent un
continuum d’états possibles pour le nuage électronique. La forte hybridation des
états moléculaires avec les électrons d’un substrat métallique peut, sous certaines
conditions, conduire à l’effet Kondo. Cette physique de premier plan de la phy-
sique des électrons corrélés a été observée tout d’abord dans les métaux avec une
petite quantité d’impuretés magnétiques, où l’effet Kondo conduit à une résistivité
anormale à basses températures. En même temps, les moments magnétiques des im-
puretés sont écrantés par des électrons itinérants du métal dans lequel les impuretés
sont implantées. L’effet Kondo, de nos jours, a été relancé dans le cadre de systèmes
mésoscopiques et dans les nanosciences, en particulier, dans les adsorbats molé-
culaires et jonctions moléculaires. Lorsque la molécule est dans une configuration
"break-jonction" ou dans un "setup" STM (microscopie à effet tunnel), le trans-
port à basse température à faible polarisation est régi par l’effet Kondo, qui donne
lieu à une résonance Kondo forte dans le spectre de la conductance différentielle, ou-
vrant ainsi une nouvelle façon de transport cohérent dans l’électronique moléculaire.

De nos jours, il est possible de régler le système de façon contrôlée, à partir du
régime Kondo, à un régime où les électrons sont décorrélés. Par exemple, ce réglage
peut être réalisé en modifiant la conformation moléculaire sans altérer la compo-
sition chimique. Faire apparaître ou disparaître l’ effet Kondo fournit des moyens
d’exercer un contrôle de spin qui est de plus grand intérêt pour la spintronique.

Notre travail est motivé par des mesures STM à basses températures effectuées sur
une molécule organique de métal-binucléaire, dite Ni(hexafluoro- acétylacétonate)2)-
bipyrimidine2(Ni2), déposée sur une surface de Cu(001) Fig. 0.1.

L’expérience révèle que ce système présente un effet Kondo, avec un spin localisé
à proximité des atomes de Ni, et une température Kondo TK de l’ordre de ∼10K ; et
cette température varie en fonction du type d’adsorption. La physique mise en jeu
est intrigante, parce que l’ effet Kondo a lieu en présence de deux spins portés par
l’ion Ni2+, qui sont en concurrence pour l’écrantage par les électrons de conduction.
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Figure 0.1 – Complexe de Ni2 adsorbé sur la surface de Cu(001).

En outre, la molécule synthétisée ne possède pas de groupe d’ancrage, qui pourrait
être responsable de la formation d’une liaison chimique avec la surface de cuivre.
Sans cette liaison chimique avec le substrat, il est très difficile de justifier cette
température de Kondo relativement élevée. Motivé par cette énigme, nous avons
présenté une analyse fondée sur la théorie de la fonctionnelle de la densité (DFT)
pour comprendre la structure électronique des complexes organo-métalliques à base
de nickel déposés sur la surface Cu(001). Nos résultats montrent que pour l’une des
géométries, une température Kondo relativement grande (TK ∼ 10 K) peut être
obtenue et attribuée aux complexes Ni2 déformés, et par conséquent chimiquement
liés à la surface par le groupe bipyrimidine de la molécule (Fig. 0.2).

La seconde géométrie, observée par les expériences STM, est attribuée à la frag-
mentation de la molécule (Fig. 0.3).

Nous avons admis que la molécule originale binucléaire se décompose en deux
parties. la moitié formée par le Ni(hexafluoroacétylacétonate)2 se lie au substrat de
cuivre. Pour les deux géométries, nos calculs montrent un effet Kondo de spin (S
= 1) qui émerge en raison de la couche 3d ouverte des ions Ni 2+. L’utilisation du
modèle d’Anderson et la densité des états projetés sur ls atomes Ni de la structure,
permettent d’estimer des températures Kondo, en bon accord avec les valeurs expé-
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Figure 0.2 – Les représentations graphiques des deux configurations moléculaires
"déformées" de Ni2 adsorbé sur Cu(001). La liaison entre la molécule
et le substrat a lieu par l’ intermédiaire de l’ unité bpym central. (a)
montre la structure presque symétrique, C2ν - type de structure avec
deux plans de symétrie du complexe tournée de 45 o par rapport à la
direction fcc [001] et [010], (b) montre la structure correspondant à la
symétrie cassée locale qui est énergétiquement plus favorable.

Figure 0.3 – Structure de fragmentation Ni(hfacac)2 lié à Cu (001) par l’ atome de
Ni.

rimentales.

Aujourd’hui il est bien connu qu’une grande variété de molécules organiques sont
disponibles pour la conception des matériaux, qui peuvent être utilisés pour des ap-
plications de l’électronique organique. Par exemple, les polymères et les oligomères
semblent être très prometteurs, car ils montrent une souplesse mécanique et leurs
gaps optiques peuvent être manipulés par la variation du nombre N d’unités fusion-
nées. Dans cette deuxième étude, nous considérons un groupe de ces polymères, la
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famille de chaînes d’oligoacène, qui a fait l’objet d’intenses discussions en raison des
effets de corrélations électroniques très prononcés. Les oligoacènes sont des chaînes
linéaires constituées d’un noyau benzénique répété, et jouent un rôle dominant pour
des applications dans le photovoltaïque organique (OPV), mais aussi pour des ap-
plications dans l’électronique et la médecine.

Dans nos calculs, nous avons considéré des chaînes linéaires d’oligoacènes, consi-
tituées d’un anneau répété de benzène. Comme la longueur augmente, nous nous
attendons à ce que le gap optique s’approcher d’une constante (si la chaîne infinie
est un isolant de bande) ou à disparaît complètement (si la chaîne est un métal).
Le comportement métallique se manifeste généralement par au moins une bande qui
coupe le niveau de Fermi. Cette bande serait ensuite partiellement remplie et les
gaps de chaînes de longueurs finies devraient tendre vers zéro quant la longueur de
ces chaînes augmente, comme 1/N, N étant le nombre d’unités répétées. Le com-
portement en 1/ N reflète l’espacement des niveaux d’énergies d’une particule dans
une boîte. Par conséquent, nous nous attendons d’une décroissance monotone. Or,
l’étude nous montre que la bande interdite d’énergie des oligoacènes décroit d’une
façon non-monotone, avec de fortes oscillations incommensurables Fig. 0.4.

Nos calculs fondés sur la DFT montrent que la bande interdite ∆
N
g des 10 pre-

mières oligoacènes chute rapidement à zéro, puis augmente et chute de nouveau
à plusieurs reprises, avec une périodicité de 11 unités (anneaux de benzène). Ce
comportement n’a pas été signalé avant, en dépit de la recherche intensive sur ces
molécules. La forme de la bande interdite des oligoacènes indique qu’un franchis-
sement orbitalaire se produit au niveau des points extrêmes de la fonction écart
énergétique au niveau de Fermi. Nous confirmons cela en inspectant les spectres
de valeurs propres de Kohn-Sham. Pour comprendre l’origine des oscillations et des
passages à niveau, nous invoquons la structure de bande de la chaîne infinie, appelée
polyacène. Comme on passe du point Γ de haute symmétrie vers le coin de la zone
de Brillouin, nous rencontrons un croisement des bandes de valence et de conduction
au point kD = 0.9192 π/a , qui est similaire à des cônes de Dirac observés dans le
graphène (Fig. 0.5). Nous avons réussi à vérifier ces résultats avec des calculs au delà
de la DFT, tels que le calcul G0W0, dans lequel les bandes interdites d’énergies sont
en meilleur accord avec les expériences, car cette méthode décrit mieux l’échange
électronique.

Cette étude est étendue, aux molécules d’oligocènes adsorbées sur des surfaces mé-
talliques ou isolantes, telles que les surfaces de Au(111) ou du SiO2(001). Nos calculs
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Figure 0.4 – Oscillation de la bande interdite des oligoacènes en fonction du nombre
d’anneaux de benzènes répétés.

montrent une physisorption des oligoacènes sur ces substrats et un faible transfert
de charge de la molécule vers le substrat. L’étude de la structure électronique des
molécules adsorbées montre que les valeurs des bandes interdites ne changent pas
de manière significative par rapport à celles de la phase gazeuse des molécules. En
outre, la structure de bande de la chaîne de polyacène montre que le croisement des
bandes au niveau de Fermi n’est pas altéré.

Ces résultats démontrent que les oscillations de la bande interdite en fonction de
la longueur de la molécule restent inchangées lorsque les chaînes d’oligoacènes sont
adsorbées sur certaines surfaces métalliques ou isolantes, comparées à celle de la
phase gazeuse. Cette nouvelle étude permet de confirmer la robustesse de cette pro-
priété, et indique des possibilités pour les applications technologiques potentielles.
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Figure 0.5 – La structure de bande de la chaîne infinie, calculée par un fonctionelle
PBE et par la méthode des quasiparticules G0W0. Comme on passe du
point Γ de haute symmétrie vers le coin de la zone de Brillouin, nous
rencontrons un croisement des bandes de valence et de conduction au
point kD = 0.9192 π/a.

Table 0.1 – Les énergies HOMO-LUMO pour les molécules de la phase gazeuse, 8
Å au-dessus du substrat et celles de la molécule adsorbée sur Au(111)

structure C10H8 C22H14 C26H16 C30H18

Molécule libre 3.30 0.98 0.64 0.40
@Au(111)/Z(C−Au)=8 Å 3.30 0.98 0.64 0.40
@Au(111)/ adsorbée 2.38 0.84 0.65 0.45

Enfin, nous avons étendu nos recherches à un substrat ferromagnétique, Co(001),
et nous avons étudié plusieurs molécules différentes, en se concentrant sur le ma-
gnétisme induit à l’interface entre molécule et substrat et la variation de la bande
d’énergie interdite. Des molécules telles que l’octane, l’éthane, l’éthylène mais égale-
ment H2O et NH3 ont été analysées avec les méthodes DFT et G0W0. Nos résultats
indiquent une réduction de la différence entre la LUMO et la HOMO et lorsque les
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Figure 0.6 – La densité de charge aux points k situés autour des point où les bandes
se croisent, kD. La bande de valence qui augmente l’ énergie, a une
symétrie impaire, alors que la conduction, ce qui diminue l’ énergie,
présente une symétrie paire le long de l’ axe moléculaire.

Figure 0.7 – Cellule unitaire de pentacène adsorbé sur Au(111).

molécules se rapprochent du substrat, un magnétisme induit pour certains d’entre
eux, en fonction de la nature de la molécule (organique/inorganique) et en fonction
de sa longueur.

Pour résumer, cette thèse a porté sur l’étude de la corrélation électronique dans les
molécules organiques adsorbées sur des surfaces métalliques. Nous espérons que cette
recherche inspirera d’autres travaux théoriques et expérimentaux surtout concernant
les applications technologiques potentielles dans le domaine de la spintronique ou
du photovoltaïque organique.
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Figure 0.8 – Densité d’ états (DOS) de molécules d’ oligoaène. De haut en bas,
projetée DOS sur les atomes de carbone du naphtal‘ene, pentacène,
hexacène et heptacène. Le bleu représente les structures où les molé-
cules se trouvent à une distance de 8Å au-dessus de Au(111). Le rouge
correspond aux molécules adsorbées sur Au(111). Les zones grisées re-
présentent la DOS de la première couche du substrat. Le niveau de
Fermi des structures détendue a été décalé à 0 (ligne rouge solide). Le
niveau de HOMO des structures avec Z(C−Au) = 8 Å est représenté
par des lignes pointillés bleus.
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Figure 0.9 – La décroissance de la bande d’énergie pour les molécules C4N+2H2N+4

à 8 Å au-dessus de la surface (cercles) comparée avec leurs homologues
adsorbées (carrés) (voir également le tableau 0.1).

Figure 0.10 – Représentation schématique de la molécule de pentacène adsorbé sur
SiO2 α-quartz. Les atomes de carbone sont indiquées en rouge, l’hy-
drogène en bleu, l’oxygène et le silicium en brun et en gris. Les co-
ordonnées du substrat sont le résultat de la dynamique moléculaire
dans la structure de SiO2 α-quartz O-terminé initiale.
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Figure 0.11 – La structure de bande dépliée de polyacène détendu sur le recons-
truite "dense" α-SiO2 surface, est indiqué sur la gauche. Sur la droite,
la DOS totale de la structure est présentée.

Figure 0.12 – Représentation graphique des molécules de méthane, d’éthane et
d’éthylène adsorbées sur les substrats de Cu(001) ou de Co(001).
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Table 0.2 – DFT-calculées distances des molécules adsorbées sur Cu(001) ou
Co(001).

Méthane Éthylène Éthane
d(C−Cu) (Å) 2.5 2.1 3.1
d(C−Co) (Å) 2.5 2.0 3.0

Table 0.3 – HOMO et LUMO calculées par DFT et G0W0 pour les énergies de
méthane, éthane et éthylène dans la phase gazeuse. La valeur expéri-
mentale du potentiel d’ionisation (IE) est également donnée. Toutes les
énergies sont exprimées en unités d’eV.

HOMO (PBE) LUMO(PBE) HOMO(G0W0) LUMO (G0W0) IE (Exp.)
CH4 -9.41 -0.41 -12.69 0.77 12.61
C2H4 -6.75 -0.98 -9.22 2.98 10.51
C2H6 -8.05 -0.43 -11.14 0.85 11.01
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Figure 0.13 – DFT (en haut) et G0W0 (en bas) DOS pour l’éthane adsorbée sur
Cu(001). Les couleurs différentes indiquent le DOS projetée sur la
molécule en unités de états/eV/cellule. Les flèches rouges indiquent
les changements dans les niveaux HOMO et LUMO de la molécule
quand elle rapproche le substrat, à partir de la distance d = 8 Å à
la configuration finale adsorbée à d=3.1 Å. Le niveau de Fermi de la
molécule adsorbé sur DFT est représenté en ligne noire.
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↓

 

 

↑

 

 

d = 6 Å
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Figure 0.14 – DFT (en haut) et G0W0 (en bas) DOS pour l’éthane adsorbée sur
Co(001), comme dans la figure 0.13. Les flèches ↑ et ↓ indiquent,
respectivement, le spin-up et spin-down.
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