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Chapter 1 Introduction 

1.1 Background 

Imaging is a vital component for medical research and clinical application. It includes the di-

agnostic setting, surgical planning and post-operative evaluation. Given the significant ad-

vancement of computer techniques and devices, the development of the medical imaging field 

has been promoted rapidly and thus changed the information acquisition mode. The traditional 

x-ray imaging technique provided 2D visual information of the interior of patients by printing 

the images onto radiographic films which were analysed in a light box. The information of 3D 

shape of the organ of interest and its spatial relationship with surrounding tissues could only 

be obtained based on the imagination and experience of the clinical surgeons and radiologists.  

The emergence of new imaging techniques, such as computed tomography (CT), magnetic 

resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), functional 

MRI (fMRI), enabled the generation of a 3D volume image consisting in continuous slices, 

which can be viewed conveniently in the axial, coronal or sagittal plane with the use of multi-

planar reformatted imaging. However, these techniques have different inherent imaging 

mechanisms and provide different visual information, thus bringing the requirement of inte-

gration between these images. A special terminology of this process is image registration 

which aims at matching different image data of interest into the same spatial coordinate space, 

thus providing a comprehensive context for the clinical application.  

Image registration is a crucial step in many medical fields with different purposes. For in-

stance, one can: 

(I) Monitor the brain disease progress of the same patient over time (cf. FIGURE 1.1) 

with the use of fluid registration of serial 3D MR images (Freeborough & Fox, 

1998;Fox & Freeborough, 1997). Such registration is called intro-patient mono-

modal registration. 
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FIGURE 1.1: The registration of the brain. (a) The baseline MR scan of an Alzheimer disease 

patient. (b) The difference after the fluidly registration between the new scan after 22 months 

and the baseline scan (a). These images are from the paper of Freeborough & Fox, 1998. 

(II) Build a computerized human lung atlas from CT image with use of consistent 

landmark- and intensity-based thin-plate spline registration algorithms (B. Li et al., 

2003;B. Li et al., 2012). The lung, airway tree and skeleton are segmented auto-

matically (cf. FIGURE 1.2) using the segmentation from (S. Hu et al., 2001; 

Kiraly et al., 2002), then the airway branch points are extracted as the internal 

landmarks for establishment of the correspondence during the registration (cf. 

FIGURE 1.3). In this context, the registration is still mono-modal but inter-patient. 

A similar work is the construction of a statistical shape model of anatomical varia-

bility of brain, in which a deformable registration is adopted to establish the point 

correspondences between shapes from different patients (Rueckert et al., 2003; 

Subsol et al., 1998; Wang & Staib, 1998). 
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FIGURE 1.2: From left to right: Airway tree, center lines, and branch points which are ex-

tracted from the pulmonary CT image (B. Li et al., 2003). 

 

FIGURE 1.3: The matching example of branch points from airway trees of different subjects 

(B. Li et al., 2003). 

(III) The quantification of the perfusion for the heart would be impossible without the 

use of registration to correct the motion due to the fact that the heart beating can-

not be controlled  consciously (Bidaut & Vallée, 2001). The registration is per-

formed on the dynamic cardiac MRI after contrast media injection and each image 

from the dynamic sequence was spatially registered to the reference image.  

One can note that most registration work focuses on one organ only. Although mono organ 

registration is medically relevant, there are many clinical contexts where the environment of 

organs is important. Particularly for abdominal regions in which there are many potential can-

cers, almost all registrations focus on one organ only, e.g. liver (Carrillo et al., 2000; Torsten 

Rohlfing et al., 2004; KM Brock et al., 2003; W.-C. C. Lee et al., 2005; Lange et al., 2005; 

Cash et al., 2007; Lange et al., 2009; Wein et al., 2008; Peterhans et al., 2011; Vijayan et al., 

2014; Sundarakumar et al., 2015; Mauri et al., 2014), kidney (Zöllner et al., 2009; Yang et al., 

2014; Nishiyama et al., 2014; Spiegel et al., 2009; Leroy et al., 2004; Kaus et al., 2007), pan-

creas (M. J. Murphy et al., 2000; Kandel et al., 2009; Donati et al., 2010) , whereas we know 
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that an accurate registration between the organs and its surrounding vessels is important for 

the surgical planning , for instance, hepatic and adrenal gland surgery. In the procedure of du-

odenopancreatectomy, the surgeon needs to assess accurately their relative positions to sur-

rounding organs (spleen, pancreas and transverse colon) to choose the right instrument access. 

Another common example is the gallbladder surgery, which involves vessels around the liver, 

the stomach and the pancreas, which are not inside one organ only.  

However, the image registration of abdominal viscera is complicated. The abdominal organs 

are soft tissues and can be deformed due to the gravity and other muscle contractions. The pa-

tient position is difficult to keep the same between several image acquisitions which can also 

lead to the position variation of organs. The position of abdominal organs is also dependent 

on the point or phase of the breathing motion, particularly the liver and spleen, because they 

are attached to the diaphragm. In addition, there are no fiducial markers can be used in this 

region, while such markers are usually employed for the registration of brain. There is also the 

discontinuous motion between the abdominal viscera region and abdo-thoracic wall which is 

mainly caused by the breathing motion. FIGURE 1.4 illustrates this phenomenon from multi-

phase CT image, the venous phase data being superimposed onto the artery phase in axial, 

frontal and sagittal view respectively. Venous and artery phase CT images are two CT scans 

acquired on the same patient while a time gap round one minute. The patient is asked to take 

an inspired breath motion held to obtain a same magnitude of the organs, which particularly 

seldomly happened. One can see the big difference of the ribs positions in FIGURE 1.4 (b) 

due to the sliding motion, and the big deformation of abdominal organs. The sliding motion 

makes the registration problem more complicated, namely the discontinuous deformation field 

between the abdominal organs and abdominal-thoracic wall. The feature of deformation field 

with high discontinuities contradicts the general assumption of usual registration algorithms 

in which the entire motion field should be smooth.  
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FIGURE 1.4: Illustration of sliding and deformation by superimposing the venous phase im-

age onto the artery phase in axial (a), frontal (b) and sagittal view (c) respectively. 

1.2 Objective 

The purpose of this thesis is to propose an approach for registering the abdominal viscera de-

spite the problem we described previously. Our approach should overcome the following con-

straints: 

1) We aim at finding a technique which is able to register the entire abdominal viscera organs 

and their surrounding vessels. 

2) We want to propose a registration approach, which deals with the breathing and its influ-

ence on abdominal viscera motion. 

3) We currently investigate the multi-phase CT image registration, and will expand our ap-

proach to CT-MR in the future. 

1.3 Outline of the thesis 

This thesis is organized in 7 chapters, including the general introduction in Chapter 1 and 

general discussion and conclusion in Chapter 7. The content of other chapters is organized as 

follows: 

Chapter 2 provides the clinical background. We firstly introduce the cancer in the abdominal 

viscera region especially related to the liver. Then the diagnosis and treatment approaches of 

Hepatocellular Carcinoma (HCC) are reviewed, which highlight the significance of the surgi-

cal planning and its role for the theraphetic decision. Practically, understanding the tumor po-
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sition and its spatial relationship with surrounding vessels explains why the registration is 

critical during the surgical planning step to increase the surgical success chance.  

Chapter 3 gives an overview of image registration, which is helpful for readers to understand 

our approach. We realize that the traditional registration method is not sufficient and robust 

for abdominal viscera region, since the effect of the breathing motion should be processed 

specifically. We thus analyse the mechanism of the breathing motion, and review the work 

which aims at handling the sliding motion for the registration. This review shows that no ex-

periment has been focused on abdominal viscera but existing results related to lung registra-

tion, thus confirms our feeling: sliding motion as a priori knowledge should be provided to the 

registration approach.  We finally propose to perform a segmentation of the abdo-thoracic 

wall and further exploit this information to remove the sliding motion effect on the registra-

tion of the abdominal viscera.  

Chapter 4 describes the contribution of two interactive segmentation tools we developed to 

quickly delineate abdo-thoracic wall and thoracic viscera. There is a large number of slices in 

a 3D CT volume image, in general more than 200: an expert needs to spend more than 5 hours 

to finish the segmentation of abdo-thoracic wall slice by slice. We propose to perform a fast 

segmentation by delineating several selected slices in axial view (resp. sagittal view for tho-

racic viscera), the remaining slices being automatically segmented with the used of B-spline 

based interpolation technique. The segmentation accuracy and the number of selected slices 

(NSS) that must be interactively delineated are also evaluated and discussed. The segmenta-

tion results will be used in the following registration work. The work in this chapter has been 

published in the MICCAI 2012 workshop on Computational and Clinical Applications in Ab-

dominal Imaging (Zhu et al., 2012) and is currently under review in the Journal of Computer 

Surgery. 

Chapter 5 describes our approach to tackle the multiphase CT abdominal viscera registration. 

Since the main error is caused by the discontinuity of the deformation field close to boundary 

between abdo-thoracic wall (AW) and abdo-thoracic viscera, we choose to replace the abdo-

thoracic wall from images by an homogenous value using the previous segmentation. To veri-

fy the influence of lung in abdominal viscera registration, we also use images without abdo-

thoracic wall and thoracic viscera (AW&TV). A state-of-the-art non-rigid registration algo-

rithm was designed and implemented to register the abdominal viscera generated by previous 

segmentation. Super Baloo (SB) algorithm was also employed to show that our approach is 
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not fully dependent on a specific registration algorithm. Finally, a complete evaluation of the 

registration accuracy, not limited to one organ only, is performed qualitatively and quantita-

tively, which includes the visual analysis of deformation field, the measurement of organ sur-

face distance, and the error calculation of the vessel bifurcations.  

Chapter 6 presents our first attempt to provide automatic segmentation of the AW, which was 

motivated by the excellent registration we obtained in the previous chapter. We firstly analyse 

the AW shape in axial, sagittal and frontal slices and explain why we believe the AW seems 

easier to delineate in frontal slices. Then, we propose a segmentation method based on a first 

step of prior segmentation (lungs, ribs and abdominal muscles), followed by a refinement per-

formed using image gradient along a specific direction. Finally, experiments on patient data 

are performed and encouraging results are obtained. However, they also indicate that a better 

prior analysis and understandings of the patient anatomy is necessary to reach the accuracy 

expected by practitioners. 
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Chapter 2 Clinical Background 

Nowadays, it is well known that brain registration is mandatory for clinical analysis of the 

brain function (Pietrzyk et al., 1996;Jenkinson et al., 2002;Jay West et al., 1997;Holden et al., 

2000;Avants et al., 2011;Chen & Varshney, 2003;Klein et al., 2010), and also suited for im-

age guided neurosurgery (Dogra & Patterh, 2014; Warfield et al., 2002; Gering et al., 2001; 

Grimson et al., 1996; Ferrant et al., 2002). 

In the abdominal area, similar work has been performed essentially for the liver (Torsten 

Rohlfing et al., 2004; KM Brock et al., 2003; W.-C. C. Lee et al., 2005; Lange et al., 2005; 

Cash et al., 2007; Lange et al., 2009; Wein et al., 2008; Peterhans et al., 2011; Vijayan et al., 

2014; Sundarakumar et al., 2015; Mauri et al., 2014), which manages to provide fusion of 

several modalities, each giving their specific information related to the liver context, such as 

tumor, artery position, hepatic vein, biliary tree and portal tree. Obviously, this work is im-

portant, but the abdominal area is not limited to the liver. There are many pathologies involv-

ing not only one organ, yet its environment as well. In literature, as far as we know, there is 

no registration method for abdominal viscera.  

In this chapter, we propose to explain why information fusion of the entire abdominal viscera 

is crucial for a better diagnosis and surgical planning. Section 2.1 first presents general can-

cers in abdominal viscera region. Then, Section 2.2 describes diagnosis and treatment ap-

proaches which related to the described cancers in previous section. We also introduce the 

surgical planning role to choose an optimized therapy, and emphasize why registration of en-

tire abdominal area can directly affect the success of the surgical planning and consequently 

that of the surgical outcome. 
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2.1 The cancer in abdominal viscera 

There are many critical cancers in the abdominal viscera region which includes the liver can-

cer, renal tumors and pancreas tumors. We briefly describe these diseases and their corre-

sponding treatment approach. 

2.1.1 Hepatocellular Carcinoma 

The liver is the largest organ in the abdominal viscera and the most complex one. It is located 

in the upper right-hand position of abdominal cavity, under the diaphragm and above the 

stomach and the right kidney (cf. FIGURE 2.1). The liver is made of soft pinkish-brown tis-

sue and linked to the peritoneum of the abdominal cavity. The hepatic portal vein and hepatic 

artery supply blood to the liver where it is processed, added nutrients and sent back to the 

whole body by the hepatic vein. The liver also contains many other functions which are vital 

for almost all organs (Heimann et al., 2009) 

 

FIGURE 2.1: Illustration of liver anatomy and surrounding vessels, the figure is cited from 

the website of (Cummings, 2001). 

HCC is a tumor of the liver and is also one of the most common malignancies all over the 

world (J. M. Llovet et al., 2003;M. Sherman, 2005;Bruix et al., 2004). Each year, over a mil-

lion people’s deaths are related to HCC. The incidence rate varies largely with the region of 

the world, the number is approximately 2-5 cases per 100, 000 people in developed western 
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countries, but more than 100 per 100, 000 people in the south-east Asia and sub-Saharan Af-

rica regions (El-Serag & Mason, 1999;Park, 2005). A report shows that the mean survival pe-

riod of the patients with HCC is 6-20 months (Di Bisceglie et al., 1988), and this situation has 

not improved visibly though the technique of the diagnosis and treatment therapy has ob-

tained significant progress (Bruix et al., 2001). 

2.1.2 Kidney cancer 

There are two kidneys in the human body (cf. FIGURE 2.2), the left kidney is under the 

spleen and the right kidney is under the liver, being slightly inferior to the left one due to the 

big volume of the liver. Kidneys are located deep behind the peritoneum and are well protect-

ed by the ribs and muscles of the back to avoid external damages. The function of kidney is to 

filter water and impurities in the blood. One third of all blood pushed from the heart enters the 

kidneys and flows to the other organs and tissues via the renal veins system after the filtering 

process (Marieb & Hoehn, 2007).  

 

FIGURE 2.2: Illustration of the kidney anatomy cited from  ("Picture of the Kidneys," 2014). 

2.1.3 Pancreas cancer 

The pancreas sits across the back of the abdomen, behind the stomach, and is surrounded by 

other tissues including the liver, intestine, duodenum, bile duct and spleen (cf. FIGURE 2.3). 

The two main functions of the pancreas is the exocrine which helps the digestion and the en-

docrine which regulates blood sugar. There are several blood vessels surrounding the pancre-

as: the superior mesenteric artery, the superior mesenteric vein and the portal vein. These ves-
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sels supply blood to the pancreas and other abdominal organs. The pancreas cancer is not very 

common and occurs about 1 in 10,000 people in the UK ("REAL HUMAN PANCREAS," ).  

 

FIGURE 2.3: Illustration of the pancreas position in the abdomen ("REAL HUMAN 

PANCREAS," )  

2.2 Diagnosis and treatment approaches 

2.2.1 The diagnosis of HCC  

The identification of early HCC is critical for the survival of patients (Tangkijvanich et al., 

2000). The alfa-fetoprotein (AFP) and ultrasound (US) imaging are the most commonly used 

tools to screen HCC (Wong et al., 2000). The AFP was first used as a marker to identify HCC 

40 years ago (K.-Q. Hu et al., 2004). The level of AFP for a normal adult is smaller than 10 

ng/dL, and the value will be elevated to more than 400-500 ng/mL for the patient with HCC. 

However, research also indicates that the positive predictive value (PPV) of AFP is low, 

which varies from 9% to 32% (Befeler & Di Bisceglie, 2002), due to the difference of popula-

tions and regions. The accuracy of AFP for predicting  HCC still needs to be improved by in-

vestigating it at a cell component level (Bialecki & Di Bisceglie, 2005). In addition, US imag-

ing is simultaneously used to detect the small hepatic tumors smaller than 3 cm due to its low 
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cost and non-invasive nature. With the combination of AFP and US imaging, PPV has im-

proved effectively and its value is up to 94% (Morris Sherman et al., 1995). Some studies also 

indicate that CT scans have a higher PPV than either AFP or US when either of them is used 

independently (Chalasani et al., 1999a). A review reports that a CT scan is used by nearly 

25% of hepatologists to detect the tumor in the United States on high-risk patients (Chalasani 

et al., 1999b). 

If an abnormal region or lesion is detected during the previous screen stage, it is required to 

adopt an advanced technique for the diagnosis. Triple phase CT and triple phase dynamic con-

trast-enhanced MRI are two of the most effective imaging techniques for achieving the diag-

nosis of suspected HCC lesions (D. Choi et al., 2001). The mechanism of these two tech-

niques is similar, so here we focus on the triple phase CT. One can obtain more information 

on a comparison between them in the following papers (B. I. Choi, 2004;Sadek et al., 1995). 

The mechanism is that a specific contrast agent is injected intravenously and the CT scan is 

performed at various time intervals. Triple phase means the CT image is acquired with respect 

to the different states of the contrast agent as it flows in the blood, which is usually defined as 

before contrast, during arterial and venous phases. A contrast agent is used due to the fact that 

the target HCC derives the blood predominantly from the hepatic arteries, and this results in 

much more enhancement of the suspected HCC in the arterial phase 2-40 seconds after the 

contrast agent infusion. The surrounding normal hepatic tissues absorb 75%-80% of the blood 

from portal vein (Bialecki & Di Bisceglie, 2005), and thus are more visible and highlighted in 

the following venous phase which is 50-90 seconds after the injection of contrast agent.  

James H. Oliver and his colleagues investigated the value of arterial phase CT imaging for the 

detection of HCC tumors by comparing results with those from unenhanced imaging and the 

venous phase CT (Oliver 3rd et al., 1996). After the acquisition of triple phase CT images on 

81 patients with proven HCC, three blinded persons were invited to evaluate and record the 

number of unique or common lesions seen at each phase. The statistic result shows that 27% 

(89-111) of tumors can be seen on the arterial phase image and were not seen at the portal 

phase. And 17% tumors (45-55) are seen on the unenhanced images and cannot be inspected 

in the portal phase. Thus, the combination of these three phases imaging can detect much 

more HCC lesions than any of each imaging used independently, and finally improve the sur-

vival rates of patients. 



  

13 

 

Both CT and MRI are able to detect and identify the HCC tumor whose size is over 2 cm. The 

detection accuracy of both techniques is around 70% due to the anatomy similarity between 

HCC tumor and dysplastic nodules, focal fat and peliosis (Brancatelli et al., 2003). For sus-

pected tumors whose size is below 2 cm or if the lesion is uncertain, another diagnosed ap-

proach (biopsy) is recommended as it is safe and effective (Borzio et al., 1994). Biopsy has 

been used for lesion evaluation for more than half a century and is investigated in following 

papers (Caturelli et al., 2004;Bravo et al., 2001;G.-T. Huang et al., 1996). 

2.2.2 Treatment of HCC 

Treating the HCC tumor and optimizing the patient survival is a complicated task. The con-

sidered factors include bulk, number, severity and associated comorbidities as well as the cur-

rent medical condition of the patient, from which the therapy type is decided. The clinical 

terminology is the staging of the tumor which is critical during treatment procedure. Taking 

different criteria and aspects into account, there are several staging systems: Barcelona-Clinic 

liver Cancer (BCLC), Cancer of the Liver Italian Program, the Chinese University Prognostic 

Index and Japanese Integrated staging (El-Serag et al., 2008). However, to date, there is no 

gold standard for evaluating the stage of HCC tumor. BCLC (Josep M Llovet et al., 1998) is 

mainly adopted by radiologist (cf. FIGURE 2.4). It defines each stage by combining the tu-

mor feature and the corresponding liver function feature. The status of liver function is de-

clared using a classification system called Child-Pugh classification of liver disease severity, 

which calculates and grades the amount of the bilirubin, albumin, prothrombon time and en-

cephalopathy. The BCLC system also provides the treatment strategy for each stage of HCC, 

e.g. the stage A2 of the patient is suitable to be applied radiofrequency ablation or transplant 

therapy. With the guidance of the precise staging of the HCC tumor, the therapy of treatment 

can be chosen much more efficiently and the survival of patient can be extended. Due to the 

complicated clinical context, to date there is no gold standard strategy to process all different 

type of tumors. We give hereafter an overview of the main treatment approaches for the early 

stage of HCC. 

 



  

14 

 

 

FIGURE 2.4: The illustration of the BCLC staging system, the figure originated from 

(NEXAVAR, 2008) 

 Surgical resection 

Surgical resection means the removal of the liver part which contains the tumor. The goal of 

this operation is to directly remove whole tumors and this strategy usually increases the resec-

tion margin to ensure no tumor portion remains. This treatment therapy is mainly chosen for 

patients without cirrhosis, because the resection operation is based on the physiology feature 

of liver, namely, the preserved liver is capable of growing again and compensate for the re-

moved portion. Cirrhosis makes HCC patients face two risk factors – a hepatic decompensa-

tion and a decreased ability of hepatocyte regeneration. The portion of patients without cir-

rhosis in western countries is roughly less than 5% in all HCC patients, and nearly 40% in 

Asian countries (Bolondi et al., 2001). The choice of hepatic resection also considers the tu-

mor size, number and invasion to blood vessels. The detailed effect of these factors has been 

investigated by one research on the survival of 557 patients group (Vauthey et al., 2002). The 

statistical results show the different effect of these factors on the 5-year survival rate as fol-

lows: for tumor size <5 cm it is 43%±3%, for tumor size >5 cm it is 32%±3%; for single tu-

mor it is 45%±3%, for the multiple tumors it is 45%±3%; without major vascular invasion it 

is 41%±2%, with vascular invasion it is 15%±5%. Generally, 5-year survival rate with surgi-

cal resection is around 30%-50% (Josep M Llovet et al., 2005).  

Surgical resection planning requires the surgeons to estimate the liver segment boundaries 

according to the portal veins tree (Reitinger et al., 2006) and also consider the volume and 

function of remaining liver after the operation. Anatomical variations can lead surgeons to 



  

15 

 

make wrong decisions. For instance, the tumor located at segment boundary can result in too 

much tissue being removed (Glombitza et al., 1999). 

This step is extremely difficult when the tumor is visible only on the arterial phase and its 

margin is totally invisible in the venous phase. Indeed, the liver segments can be delineated 

from the vein network only. Consequently, if the tumor position is not accurately understood 

in the venous image, which is the case when arterial and venous phase images are not regis-

tered, there is a risk of diagnosing its position in a wrong segment, or of missing that the tu-

mor belongs to several segments instead of one, or of believing it belongs to several segments 

whereas it is located in one segment only. Such mistakes clearly influence the patient survival 

outcome. 

Another main difficulty, when a surgeon has to plan a segmentectomy due to a tumor, is to 

check that the artery passing by the considered segment does not supply blood to another 

segment. If this is the case, removing the cancerous segment will lead to an ischemy of the 

neighbour segment cells, which will thus destroy the neighbour segment function. A good un-

derstanding of the 3D position of hepatic arteries (visible in arterial phase) with respect to 

each hepatic segment (visible in venous phase) is thus crucial to choose the appropriate sur-

gery. In case of bad spatial interpretation, the patient’s survival may be highly reduced. Both 

previous examples clearly demonstrate why an accurate registration of arterial and venous 

phase is important. 

- Liver transplantation 

Liver transplantation is, theoretically, the best approach for treating the HCC. It can remove 

the HCC and potential related tumors fully and diminish the recurrence rate dramatically. 

Currently, the 5-year survival rate is 70% and very low recurrence rates smaller than 15% 

(Josep M Llovet et al., 2005). This excellent outcome is accomplished due to the optimal can-

didate selection by referring to the Milan criteria (a single lesion smaller than 5 cm or up to 

three nodules smaller than 3 cm) (El-Serag et al., 2008). As the number of candidates for liver 

transplantation grows, the big issue is the shortage of donors and the long time waiting further 

decrease the survival rate. 

- Radiofrequency ablation 
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Percutaneous radiofrequency ablation (RFA) is the most adopted therapy for the early HCC 

patients due to the fact that there are few patient candidates who are eligible for hepatic resec-

tion and liver transplantation (El-Serag & Mason, 1999). RFA is further extended to play a 

bridge role for patients who are waiting for a liver transplantation and also used to remove the 

tumors in the lung and kidney (Pavlovich et al., 2002;Gervais et al., 2005;Gillams, 2005). 

The mechanism of RFA is that an electrode is placed into the center of the target tumor and a 

high frequency alternative current moves from the tip of the electrode to the surrounding tis-

sue (cf. FIGURE 2.5). Usually, the needle placement is carried out under CT or US image 

guidance. The ions of the tissue move along the direction of the alternative current and this 

results in the generation of frictional heat (cf. FIGURE 2.6). The tissue cells begin to die 

when the temperature approaches 60°C and generate the necrosis surrounding the electrode. 

The clinical temperature produced by the RFA often exceeds 100°C and causes the death of 

the tumor and parenchymal cells. Ultimately, the tissue microvasculature is destroyed due to 

the thrombosis occurring in the hepatic arterial and portal venous branches. The extent of the 

tissue destroyed by the RFA depends on the impedance of the tissue and is also in proportion 

to the square of distance from the electrode. Thus, the generated high temperature rapidly de-

creases as the distance from the needle probe gradually increases. Clinically, the HCC tumor 

with a maximum diameter smaller than 2.5 cm can be ablated by the RFA (Curley, 2003). The 

multiple electrode arrays are designed and placed for tumors with a size larger than 2.5cm 

(Lencioni & Crocetti, 2008). 

 

FIGURE 2.5: Illustration of the RFA originated from ("Radiofrequency Ablation (RFA)," 

2010) 
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FIGURE 2.6: Illustration of the heat generation of the needle originated from ("Interventional 

Radiology Services," ) 

One of the main difficulties in RFA is the planning of the needle trajectory, which must avoid 

critical vessels. The poor visibility of the needle and tumor in US and CT images can lead to 

improper needle placement, resulting in the inadequate ablation beyond the tumor margins or 

thermal injury to adjacent structures (Livraghi et al., 2003). In addition, if the tumor is visible 

in the arterial phase only and hardly visible in the venous phase, the selection of a trajectory 

from arterial image using a mental registration with the venous phase image is hazardous, 

since it may result in a trajectory crossing a vein.  

2.2.3 Treatment for other cancers 

Renal cell cancer is the most common type of kidney cancer and can be treated by biological 

therapy, radiotherapy, cryotherapy, radio-frequency ablation and arterial embolization.The 

treatment options for the pancreas cancer contain surgery, chemotherapy and radiotherapy. 

The selection of the specific treatment option depends on many factors such as the stage of 

the cancer, the tumor position and the patient’s health condition.  

2.3 Conclusion 

As we described in the previous section, there are many treatment options for different can-

cers in the abdomen. The key factors influencing the decision are tumor location, size, spatial 

relation with adjacent vessels as well as the post-operative liver function. Successful opera-

tions depend on accurate preoperative planning that gives the physicians and surgeons a de-
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tailed understanding of the complex structure of abdominal organs, allowing to choose the 

best therapeutic option. 

Multiphase CT imaging technique is used to obtain the necessary anatomy information and 

help diagnosis. However, the surgical planning can still be challenging because the abdominal 

organ shape, position and relation to adjacent structures and vessels may differ significantly 

between several image acquisitions. Therefore, surgeons must currently perform a mental reg-

istration between the multiphase CT data, which can be hazardous and lead to inappropriate 

treatment. Providing a software allowing to accurately register such data is thus critical to im-

prove the surgical planning step and increase the patient survival rate. 
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Chapter 3 Image registration problem of the ab-

dominal viscera 

In the previous chapter, we have seen how registration can play an important role during sur-

gical planning of abdominal viscera. However, the literature reports little work about viscera 

registration. The purpose of this chapter is to understand why this registration is a complex 

task, give an insight analysis of the existing problems and propose an approach to overcome 

such issues.  

In this chapter, we firstly give an overview of the registration theory. We describe the feature 

and classification of each component and the corresponding application context. Then the sec-

tion 3.2 summarizes the image registration work related to the abdominal region and highlight 

why breathing motion cannot be ignored to get an accurate registration on the entire viscera 

area. The section 3.3 deeply analyzes the causes of the inaccurate registration and concludes 

that the pre-segmentation of AW is a good approach to remove the sliding motion influence 

on the registration result. The section 3.4 gives an overview of related registration work han-

dling the sliding motion issue. 
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3.1 Medical image registration framework 

Image registration is a process to find a spatial coordinate mapping of the pixels (voxels in a 

3D volume) from a source image to a target image (cf. FIGURE 3.1), so that the information 

in the source image can be aligned and fused into the target image for analysis. This matching 

process is usually required due to the fact that medical images are acquired at different times, 

views, positions and statuses on the same or different subjects. Because the registration in our 

research is in 3D space, we use the voxel to represent a point in the 3D CT volume image in 

the following chapter. Our research focuses on the CT image acquisitions at different time 

from the same patient. 

 
FIGURE 3.1: The image registration definition is to match the corresponding points between 

source and target image by using a transformation T. 

The image registration framework is usually as follows and depicted in FIGURE 3.2, target 

and source images are input as data source, the source image will be modified and aligned to 

the target image (template) at the level of the voxel. The spatial relationship between the 

voxel in the source image and corresponding point of the target image is described as a trans-

formation model. A similarity value of these two images is calculated, the optimization mod-

ule continues to look for better parameters of the transformation model if the similarity value 

has not reached the expected accuracy, this procedure is iterated until the similarity value is 

satisfied or the maximum number of the iterations is reached. Since it is difficult to obtain the 

“best” transformation model immediately and complete the registration procedure, the real 
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implementation approach is usually an optimization process by maximizing a similarity met-

ric. Sometimes, it can be reformatted as minimizing a cost function by adding a minus symbol 

before some similarity metric function which is positive, so that the best transformation ma-

trix searching process is converted to optimize a global minimum value in the mathematical 

format, which is convenient for the algorithm implementation. 

Briefly, the registration framework can be decomposed into mainly three components (Crum 

et al., 2014): 

-Similarity measure: it defines the degree of the similarity between the target and trans-

formed source image based on the specific image information used in the registration; 

-Transformation model: it specifies the mapping path of how to displace the voxel in the 

source image to its corresponding point in the target image; 

 
FIGURE 3.2: The framework of image registration.  

-Optimization process: it searches the transformation parameters corresponding to the global 

maximum value of the similarity metric according to a specified search scheme. 

We give hereafter a basic introduction of these three components, one can refer to correspond-

ing references for deeper and broader details.  

3.1.1 Similarity measure 

The similarity measure is the most important factor for the success of registration, because it 

defines the criterion during the iterative optimization process. Its choice usually depends on 



  

22 

 

the image information used in the registration. The latter can be divided into two main catego-

ries, geometric-based and intensity-based. A geometric-based registration builds the corre-

spondence model between target and source image with the use of geometric feature ele-

ments, the most widely used ones being landmarks and surfaces.  

Geometric-based registration 

The landmarks can be clustered into two categories: internal and external landmarks, which 

can be defined and marked based on image information of the anatomy structure of interest 

(Maurer Jr et al., 1997; Schad et al., 1987; Strother et al., 1994). Internal landmarks are usual-

ly identified interactively by medical experts with the use of image processing software (Yu, 

2005). They are chosen and marked in both target and source images, the spatial correspond-

ence between them being established from the consideration of surrounding anatomy features. 

If the image lacks sufficient information for identifying feature points, external landmarks are 

used. They are usually close to the patient skin and should be visible by all image modalities 

(Hutton & Braun, 2003; Nicolau et al., 2005; Nicolau et al., 2009; Yu, 2005). After the estab-

lishment of the landmark correspondences, the registration process is converted into searching 

a transformation T in order to obtain a minimal distance between landmark pairs, which can 

be mathematically defined as following: 

SumOfDistance =  (∑ (𝑇(𝑝𝑖) − 𝑞𝑖)
2𝑁

𝑖=1 )
1

2    (3.1) 

where (𝑝𝑖, 𝑞𝑖) is one pair of landmark from source and target images respectively. The trans-

formation T is a rigid or affine model due to the limitation of landmark number. 

Surface-based registration is usually divided into three classical steps: the extraction of sur-

faces or boundaries of structures of the interest, the registration of the target and source sur-

faces, the extension of the surface deformation field to the whole volume (Declerck et al., 

1996; Grimson et al., 1996; Herring et al., 1998; Maurer Jr et al., 1998;Crum et al., 2014). In 

medical images, boundaries and surfaces are usually more distinctive than landmarks and can 

be extracted with the use of segmentation algorithms due to the high contrast of surface, e.g. 

the skin. A famous surface-based registration method is called the head-and-hat algorithm 

proposed by Pelizzari et al. (1989). In this method, two surfaces are identified and the source 

surface is represented by point sets and refers to as the hat. The target mesh is represented as a 

list of dics and referred to as the head. The rigid transformation is searched and iterated by 
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minimizing the distance between points from the hat surface and the corresponding closest 

vertex points in the head surface. However, the distance measurement is prone to generate 

error due to the fact that the closest point in the target surface is not always in the direction of 

the head centroid. 

Recently, the most popular and widely used approach proposed to perform the registration 

between two surfaces is called the Iterative Closest Points (ICP) algorithm and other derived 

methods (Arun et al., 1987; Besl & McKay, 1992). Given two point sets extracted from the 

target and source surfaces, the purpose of ICP is to find a rotation and translation transfor-

mation which generates the least-squared distance between the two point sets until it meets 

the desirable accuracy or value.  

Firstly, given the initial estimation of the rigid transformation parameters, the source point 

sets are transformed and the closest point in the target points sets is searched by calculating 

the least-squared distance. Then, a new translation and rotation matrices are calculated based 

on the previous matched points. The new source point sets will be calculated using this new 

transformation and the least-squared distance is recalculated. This iterative process will con-

tinue until the local minimum value meets the convergence conditions. The limitation of this 

method is the large computation time and number of iteration as well as the risk of converging 

into a local minimum. Several improved version of this algorithm can be found in these pa-

pers (Rusinkiewicz & Levoy, 2001; Z. Zhang, 1994;Pomerleau et al., 2013; Low, 2004).    

Intensity-based similarity measurement 

 

Another branch of the similarity measurement is based on the intensity information (the voxel 

grey value) of the target and source images and request statistical computations. The intensi-

ty-based similarity measurements mainly include the Sum of Squared differences (SSD), Cor-

relation Coefficient (CC) and Mutual Information (MI). 

The simplest voxel similarity measurement is SSD, which assumes that the intensity value of 

each point should be the same after registration up to a Gaussian noise (Hajnal et al., 

1995;Zhao et al., 1993;Viola & Wells III, 1997). Given the number of voxels N in the overlap 

domain ΩA,B, the SSD can be described using the following mathematical equation: 

𝑆𝑆𝐷 =
1

𝑁
∑ |𝐴(𝑥) − 𝐵(𝑇(𝑥))|2𝑥𝜖Ω𝐴,𝐵

   (3.2 ) 
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where A(x) and B(T(x)) are the intensity value of voxel x in the images A and B respectively, 

and T is the transformation. 

The registration process aims at reducing the SSD value iteratively by optimizing the trans-

formation parameters. The SSD has been widely used in the MR image registration of brain, 

since the brain registration is usually rigid or affine, and the MR images have similar intensi-

ties which allows comparing grey level intensity scale from one MR-scanner brand to another 

one (Hajnal et al., 1995; Ashburner, 2007; Holden et al., 2000). It is obvious that the SSD 

cannot be used for measuring the intensity value difference of inter-modality registration. We 

can also highlight the SSD is sensitive to a small number of voxels which have a big value 

difference between target and source image. For instance, if images A and B of a same patient 

are acquired using contrast material injected into the patient at a different time window (Hill 

et al., 2001).  

As already mentioned, the SSD measurement has a strict assumption about the intensity in-

formation between the two input images. Another less strict metric is the Correlation Coeffi-

cient (CC) which assumes the intensity value between target and source images following lin-

ear relationship. It can be described as following: 

𝐶𝐶 =
∑ ((𝐴(𝑥)−𝐴 ̅)(𝐵(𝑇(𝑥))−�̅�))𝑥𝜖Ω𝐴,𝐵

{∑ (𝐴(𝑥)−𝐴 ̅)2  ∑ (𝐵(𝑇(𝑥))−�̅�)2𝑥𝜖Ω𝐴,𝐵𝑥𝜖Ω𝐴,𝐵
}
1

2⁄
   (3.3) 

where A ̅and B̅ are the mean intensity value in image A|ΩA,B
and B(T(x))|ΩA,B

, respectively. 

CC has been used in the registration of MR and functional MR images (Lemieux & Barker, 

1998; J. Kim & Fessler, 2004; Andronache et al., 2008). 

Mutual information 

 

Both of SSD and CC similarity measurements are used for the same or similar modality im-

ages which have similar grey value, but they are not suitable for multi-modality image regis-

tration, such as CT and MRI, PET&MRI, arterial and venous phases CT. In this context, the 

intensity characteristic of both input images is totally different and there is no obvious rela-

tionship between them. Thus, new similarity measurements have been developed, which can 

reflect this fact and measure the similarity in the registration. The most widely used and ro-



  

25 

 

bust approach is MI and its derived algorithms (Mattes et al., 2001; Maes et al., 1997; Mattes 

et al., 2003; Holden et al., 2000). 

MI is a concept from the information theory, it means how much information one variable 

contains about another random variable. It has been introduced into the medical image regis-

tration field by Collignon et al. (1995) and Viola and Wells III (1997) independently. Thus 

MI can be seen as an approach to measure how well two input images are registered and max-

imized when images are aligned correctly. Given the image A and B, the MI can be calculated 

as following: 

𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵)  (3.4) 

where H(A), H(B) represent the marginal entropy of the grey value in image A and B respec-

tively, and H(A,B) denotes the joint entropy of  A and B. The equation shows that the mutual 

information is not contributed by the entropy information of individual images only, but also 

by the joint information between them. The classical calculation method of general marginal 

entropy H is proposed by Shannon (2001) as:  

𝐻 = −∑ 𝑝𝑖𝑙𝑜𝑔(𝑝𝑖𝑖 )  (3.5) 

where pi is the marginal probability distribution of the symbol i.  

Entropy H will have a minimal value 0 if the occurring probability of one symbol is 1 and the 

probability of all other symbols is zero, and have a maximum value if all have an equal occur-

ring probability.  

In the field of image, the entropy can be calculated from the intensity value histogram in 

which the probabilities are the histogram entries. If an image has only one single intensity 

value 200, then its histogram has only one peak value at 200 and thus the probability of the 

voxel value 200 is 1. For all other intensity value it is 0 and the entropy of this image is 

−∑ 1log1200 = 0. If there is some noise in this image, it means the occurring probability of 

other intensity values is increased, which spreads the histogram and finally increases the en-

tropy value. In other words, the probability distribution of intensity value with a single value 

is related to a low entropy, whereas a broad distribution corresponds to a high entropy value.  
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The joint entropy H (A, B) measures the amount of information combined from two images, 

and can be calculated by the joint probability distribution of the two images. The mathemati-

cal description is as following: 

𝐻(𝐴, 𝐵) =  −∑ 𝑝𝑖,𝑗𝑙𝑜𝑔 𝑝𝑖,𝑗       𝑖,𝑗   (3.6) 

The joint probability distribution of intensity values can be calculated from the joint histo-

gram by dividing each entry by the total number of entries (Pluim et al., 2003). If the images 

A and B are acquired from different subjects with different imaging modality, thus three is no 

relationship between them and the joint entropy H(A, B) is approximately the sum of the en-

tropy of images A and B. Therefore, the better the registration between the images, the small-

er the joint entropy value and it is smaller than the sum of the independent marginal entropy: 

𝐻(𝐴, 𝐵) ≤ 𝐻(𝐴) + 𝐻(𝐵)   (3.7) 

In the equation of MI definition (1), we can find that MI is maximized when the joint entropy 

is minimized. Actually, the joint entropy is also an approach to measure the common infor-

mation between two images. The problem of using joint entropy only as a similarity meas-

urement is that when the entropy value is very low (theoretically corresponding to a good 

alignment of the input images), the result can be totally misregistered. For example, if an op-

timized transformation matches the background region of the source and target images only, 

thus the joint histogram of this overlapped image is sharp (the intensity value of background) 

and  results in a low entropy value. 

MI can better avoid this issue by incorporating the marginal entropy. If the registration result 

is only matched to the background region, the mutual information is low and when the re-

maining anatomy structures are also aligned it is high. This is due to the marginal entropy, 

which can penalize the transformation when it decreases the amount of information in the 

source image. 

It has to be noticed that the entropy of the source image H(B) is changing during the image 

registration. The transformation matrix is changed at each iterative step and a new image is 

generated with new transformation parameters and the use of interpolation technique. H(B) 

and H(A,B) will then be recalculated based on this new image and result in a new value of MI 

at each iterative step. The registration process will be stopped while the MI value reaches the 

expected threshold or accuracy.  
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3.1.2 Transformation 

The choice of transformation model is critical for the success of the image registration. Thus 

we give here a fundamental overview of the classical transformation categories for under-

standing the current progress in this field. One can learn much more in deeper details from the 

survey on image registration in (Hill et al., 2001;Crum et al., 2014;Holden, 2008). The trans-

formation model mainly can be divided into rigid, affine and deformable types.  

The coordinate transformation from one image to another is called rigid when only the trans-

lation and rotation are applied. The shape and dimension of the object is kept the same and 

only the 3D position is changing. The rigid transformation can be described by a homogene-

ous constant matrix equation for the 3D to 3D mapping: 

(

𝑥′

𝑦′

𝑧′

1

) = (

𝑟11 𝑟12 𝑟13 𝑡

𝑟21 𝑟22 𝑟23 𝑡

𝑟31 𝑟32 𝑟33 𝑡

0   0    0     1

)(

𝑥
𝑦
𝑧
1

)  (3.8) 

where the point 𝑝(𝑥, 𝑦, 𝑧) and 𝑝′(𝑥′, 𝑦′, 𝑧′) are the old and new coordinates of voxels of the 

image respectively, t represents translation vector and r represents a 3 × 3 rotation matrix 

which can be defined and decomposed in three Euler sub matrices: 

𝑟𝑖𝑚 = 𝑟𝑖𝑗
(1)

𝑟𝑗𝑘
(2)

𝑟𝑘𝑚
(3)

 , 

𝑟
(1)

 = (
1 0 0
0 cos 𝛼1 −sin𝛼1

0 sin 𝛼1 cos 𝛼1

), 

𝑟
(2)

= (
cos 𝛼2 0 sin 𝛼2

0 1 0
−sin 𝛼2 0 cos 𝛼2

), 

𝑟
(3)

= (
cos 𝛼3 −sin 𝛼3 0
sin 𝛼3 cos 𝛼3 0

0 0 1
), 

where  𝑟
(𝑖)

 denotes the point rotated around the axis i by the angle 𝛼𝑖.  

If scaling and shearing operations are linearly combined with the rotation and translation, it is 

called affine transformation, in which the parallelism of lines in the source image will be pre-

served after mapping to the new generated image, but their angle and length will not be pre-

served. 
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In contrast, a deformable transformation maps straight lines to curves and is a continuous and 

differentiable function which is represented as a displacement vector instead of a constant ma-

trix: 

𝑃′ = 𝑝 + 𝑇(𝑥, 𝑦, 𝑧)  (3.9) 

where T is a deformable transformation which can be calculated at each specific voxel coor-

dinate. 

Many deformable transformation models have been proposed. Holden (2008) divided it into 

two main categories: physical-based models and function representation-based models. One 

can learn much more from the review paper (Sotiras et al., 2013) which extends this classifi-

cation and gives more emphasis on the derived algorithms which are not mentioned in this 

chapter. 

The physical-based model is coming from the theory of continuum mechanics and generally 

divided into two main categories: elastic models and fluid flow models. The function repre-

sentation-based model is derived from the interpolation (Meijering, 2002) and the approxima-

tion theories (Schumaker, 1981; Powell, 1981) and represents the transformation with a set of 

functions.  

Elastic model 

The theory of the elastic model is based on motions of stress strain (Holden, 2008). In the reg-

istration procedure, the model is optimized by balancing the external force (the image similar-

ity) and the internal force (the smoothness constrain) and can be represented by the Navier-

Caudy partial difference equation (PDE) (Lester & Arridge, 1999): 

𝜇∇2𝑢(𝑥) + (𝜇 + 𝛾)∇(∇ ∙ 𝑢(𝑥)) + 𝑓(𝑥) = 0   (3.10) 

where 𝑢(𝑥) is the displacement vector at point x, 𝜇 and 𝛾 are Lamé constants, and f(x) de-

notes the external force per unit volume and drives the registration. 

Broit (1981) firstly introduced the linear elastic model into the image registration area, with 

an external force f deforming the image and an internal stress μ imposing the elastic property, 

the registration is completed when an equilibrium is reached between two opposite forces. 

This PDE is solved iteratively with the use of a finite difference approach. 



  

29 

 

Bajcsy et al. (1983) improved this approach by using a priori affine transformation to correct 

the global difference. Then a multi-resolution scheme was adopted on the Broit (1981) model. 

The big limitation of the linear elastic model transformation described by the Navier-Caudy 

PDE (2) is the inability to deal with large deformation (Holden, 2008). A viscous fluid model 

was thus proposed  by (Christensen et al., 1994;Christensen et al., 1996;Christensen et al., 

1997) to tackle this issue.  

The “demons” registration algorithm was proposed by Thirion (1998) based on the optical 

flow model (Horn & Schunck, 1981). The limitation of this model is that it lacks displace-

ment constraints and does not preserve the topology. Some improved algorithms have been 

proposed to solve this issue (Pennec et al., 1999). The drawback of this family of algorithms 

is that they are usually combined with SSD as similarity measure which is only suitable for 

the mono-modal image registration.  

Function representation-based transformation model 

Function representation-based model derives from either the interpolation theory or the ap-

proximation theory. The principle of interpolation theory is that the remaining displacement 

space can be interpolated from the known values of feature points. The approximation theory 

considers there is an error in the sample deformation field, thus the transformation should ap-

proximate the displacement and result in a smoother deformation than its interpolation coun-

terpart.  

The most important transformation model in this category is the family of thin plate spline 

(TPS) which has been used for more than 15 years (Crum et al., 2014). TPS is a type of radial 

basis functions which have the property of interpolating a deformation field from irregular 

known values. The fundamental principle of TPS model is to use a control point grid to de-

form the shape of an object. The resulting deformation controls the shape of the whole region 

of interest and produces a smooth and continuous transformation. Each control point of the 

TPS has a global influence on the final transformation, which means that if the position of one 

point varies, it will result in all other points to change. Thus, it is difficult for the TPS to mod-

el a localized deformation.  

B-spline-based transformation model inherits the advantage of TPS and avoids its limitation 

so that each control point only affects the neighbourhood points. This local support ability 
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makes it widely adopted for many registrations, notably for the brain (Holden et al., 2002), the 

heart (Frangi et al., 2002), the chest (Mattes et al., 2003;McLeish et al., 2002), the lung (Z. 

Wu et al., 2008;Delmon et al., 2013), the liver (Torsten Rohlfing et al., 2004), the breast 

(Schnabel et al., 2001;Tanner et al., 2002) etc. The property of the B-spline can be described 

as following. 

Let Ω denote the volume size of image data in 3D: 

Ω = {(x, y, z)|0 ⩽ x < X, 0 ⩽ y < Y, 0 ⩽ z < Z}  (3.11) 

where (x, y, z) represents the 3D coordinates of any point of the image data. 

Then let Φ  denote a nx × ny × nz  mesh of control points ϕi,j,k  with uniform spacing 

(δx, δy, δz) in each direction. Finally, for any voxel (x, y, z) of volume data, its deformation 

can be defined as the 3-D tensor product of 1-D cubic B-splines: 

𝛵𝑙𝑜𝑐𝑎𝑙(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝐵𝑙
3
𝑛=0

3
𝑚=0

3
𝑙=0 (𝑢)𝐵𝑚(𝑣)𝐵𝑛(𝑤)𝜙𝑖+𝑙,𝑗+𝑚,𝑘+𝑛              (3.12) 

where i = |
x

δx
| − 1 , j = |

y

δy
| − 1 , k = |

z

δz
| − 1  and denote the cell containing the (x,y,z), 

u =
x

δx
− (i + 1),v =

y

δy
− (j + 1),w =

z

δz
− (k + 1). Bl represents the l-th basic function of 

the B-spline (S. Lee et al., 1996): 

B0(t) = (−t3 + 3t2 − 3t + 1) 6,⁄

B1(t) = (3t3 − 6t2 + 4) 6,⁄

B2(t) = (−3t3 + 3t2 + 3t + 1) 6,⁄

B3(t) = t3 6⁄

  (3.13) 

From the above formula, we can conclude that B-splines are locally controlled, which makes 

them computationally efficient even for a large number of control points. In other words, 

changing coefficients of any control pointϕi,j,k, will affect only the neighbourhood controls 

points 4 × 4 × 4  

3.1.3 Optimization  

The optimization, in general, is an iterative progress of finding the “best parameters” of the 

transformation model, in order to maximize the similarity measurement. At each iterative 

step, the new similarity measurement is calculated based on the new estimated transformation 

(with updated parameters), then the optimization algorithm searches for a transformation in 
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the parameter space determined by the specific search strategy and generate a new corre-

sponding similarity measurement. The algorithm continues until the similarity measurement 

reaches a threshold or the maximum number of iterations manually defined before the regis-

tration.  

One issue of the optimization algorithms is that they can converge to an incorrect point like a 

local optimum. This is caused by the fact that there are multiple optima in the parameter space 

and the registration will fail if the optimization converges to the wrong optimum. Some local 

optima are very small, caused by a local good alignment between input images or by interpo-

lation artifacts (Hill et al., 2001). These small optima can be removed by an image blurring 

operation as a pre-processing step. In addition, a multi-resolution scheme can also be adopted, 

in which the image registration is firstly performed at a coarse low resolution level obtained 

by a sampling operation, then the obtained transformation parameters will be used to initialize 

at a finer registration level, and so on. This can facilitate the optimization algorithm, effective-

ly avoid dropping into local optima and improve the speed of the algorithm convergence at 

each resolution level.  

3.2 Image registration on the abdominal viscera region 

The image registration of abdominal viscera is a challenging task, due to the deformation of 

organs, inherent motion of the abdominal organs, as well as the sliding motion between ab-

dominal viscera and abdominal wall. There has been much registration work presented to reg-

ister organs or vessels in the abdominal viscera.  

Surface-based rigid registration approaches have been proposed for the registration of livers. 

For instance, Herline et al., 2000 performed a surface-based registration using the iterative 

closest point (ICP) algorithm of  Besl and McKay (1992) on liver phantoms with embedded 

tumors. An initial point-based marker registration is carried out and used as a “gold standard”. 

This experiment investigated the spatial relationship between liver and tumor in phantom im-

ages, which cannot mimic the actual deformation and motion. 

Surface-based non-rigid registration has also been studied. Kaus et al., 2007 proposed a mod-

el-based deformable registration with surface meshes extracted from abdo-thorax MR images 

(such as the lung, liver, kidney and pelvic). A point-based deformable registration is then per-

formed on the vertices of target and source images. The obtained deformation field between 

mesh surfaces is then extended to the volume using an interpolation method (thin plate spline, 
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Wendland function deformation model). Similar work has been reported by KK Brock et al., 

2005; K. K. Brock et al., 2006 who also extract surface meshes of tissue of interest and non-

rigidly register them using a guided surface projection method (KK Brock et al., 2005). The 

volume deformation is then interpolated from the surface deformation using finite element 

modelling (FEM) which assigns biomechanical property to the corresponding ROIs. Such 

FEM technique to register the liver can also be found in (Bano et al., 2013). 

Although the previous surface-based non-rigid registration approach can obtain accurate re-

sults (0.5-3 mm for different organs), they did not take the intensity value information into 

account, particularly they neglected the spatial relationship between the abdominal organs and 

the surrounding vessels, which is critical for the diagnosis and the success of some surgical 

interventions involving several organs. Moreover, the volumetric deformation quality depends 

on the mechanical property chosen for each structure, which is taken from literature and thus 

is not necessarily realistic. Finally, their approaches are not robust to segmentation failure or 

misinterpretation. 

Another kind of approach to register liver images is based on intensity. Torsten Rohlfing et al., 

2004 modeled the liver motion during the breathing motion using intensity-based non-rigid 

registration of gated MR images. The consecutive frames were registered to a common refer-

ence slice with MI similarity metric. The registration result was evaluated by visual inspection 

with iso-intensity contour. This method was also evaluated by Lange et al., 2005 who applied 

this method to register the arteries and veins of CT/MR images. However, such approaches 

did not take the sliding motion of abdominal viscera into account.  

Carrillo et al., 2000 performed a rigid registration on interventional MR images for the treat-

ment of liver cancer. They proposed to use a mask which contains the liver only to remove the 

motion effect on the registration. There are four similarity metrics tested by the authors: vari-

ance of gray scale intensity ratios, entropy, CC and MI. At least eight slices were selected 

from each patient for the registration result evaluation. The accuracy was measured by calcu-

lating the Euclidean distance between segmented iso-contours of the ROI. They showed that 

the registration with MI as similarity metric was the best and reached 3 mm, however, we be-

lieve the rigid transformation cannot accurately recover the shape deformation between dif-

ferent MR image acquisitions, and the evaluation approach on eight slices is limited. 
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W.-C. C. Lee et al., 2005 compared the registration performance of intensity-based and sur-

face-based methods on CT and MR images of the liver. Both CT and T1 MR images were 

pre- and post-contrast acquisitions during a routine surveillance with a 5 mm and 10 mm slice 

thickness respectively. The registration accuracy was evaluated using the mean displacement 

of automatically selected landmarks. Their result showed that the intensity-based registration 

reached a 12 mm accuracy in average, which is better than surface-based registration, but still 

insufficient according to practitioners. The same conclusion has been obtained by Oguro et 

al., 2011 who compared the registration on CT/MR images between an intensity-based ap-

proach combined with a b-spline technique and a rigid registration algorithm. 

The common point of above intensity-based approaches is that they rely on the assumption 

that the global registration transformation is smooth. However, the breathing motion not only 

causes the deformation of organs, but also results in the sliding motion of the lung, liver, dia-

phragm, kidney and spleen against the abdo-thoracic wall. This sliding motion leads to the 

deformation field discontinuity at the sliding interface. Thus, the mechanism and characteris-

tic of the breathing motion in CT images are analysed in the following section, as well as its 

influence on the registration of thoracic and abdominal viscera.  

3.3 Breathing motion 

3.3.1 Introduction 

Breathing is a physical movement process which refers to the gaseous exchange that occurs 

when the oxygen is taken in (inspiration) and carbon dioxide expelled (expiration) repeatedly. 

The actual gas exchange occurrs unconsciously in the lung between the alveoli and capillar-

ies, but the rate and extent of the breathing can be controlled consciously, though it cannot be 

so during a long period of time.  

The inspiration and expiration are accomplished by the expansion and contraction of related 

muscles (cf. FIGURE 3.3) and also change the volume of the lung due to its elastic property. 

One of the important muscles is the diaphragm, which separates the abdominal and thoracic 

cavities from each other. At a relaxed state, the diaphragm remained in a domed shape and 

intercostal muscles are also relaxed. In FIGURE 3.3, we can see during the inspiration that the 

diaphragm and external intercostal muscle contract and the lung expand. The contraction of 

diaphragm make itself flat, moves it downward, thus expanding the thoracic cavity and push-
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ing the abdomen in the inferior direction. The abdominal organs (liver, spleen and kidney) are 

deformed and moved passively. The contraction of the external intercostal muscles also push-

es the rib cage up and outwards and increase the thoracic cavity in the antero-posterior direc-

tion. After, when comes to the expiration, the diaphragm and intercostal muscles return to a 

released state passively due to the gravity and elasticity, and the abdominal organs also move 

back along the superior direction. 

 

FIGURE 3.3: 1 Illustration of breathing motion. Left: the inhalation motion; Right: the exha-

lation (Joseph, 2010). 

3.3.2 The effect of breathing motion on the abdominal viscera 

The quantification of the breathing motion effect on the thorax and abdomen have been inves-

tigated by much research (Davies et al. (1994); Hugo et al., 2006; Keall et al., 2006). Since 

the diaphragm is the main driving factor of the breathing, the motion of the thorax and abdo-

men is primarily in the superior-inferior direction, particularly the organs closing the dia-

phragm which have a larger extent. The average moving amplitude of the diaphragm is 15 

mm with maximum of 30 mm for general quiet breathing (Keall et al., 2006), though it varies 

largely from one subject to another. The adjacent organs and tissues show similar motion ex-

tent (cf. FIGURE 3.4), the motion of lower liver lobes moves with an average of 12 mm 

(Seppenwoolde et al., 2002), the spleen is 13 mm along the superior-inferior direction 

(Brandner et al., 2006). The motion amplitude of the kidney is in 1-25 mm, its variation usual-

ly depends on the breathing type as they move and deform more during the abdominal breath-

ing and less during the thoracic breathing. In general, breathing is a mix of both types. 
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The motion of the liver attracts much research due to its physiology importance (Davies et al., 

1994; Clifford et al., 2002; T. Rohlfing et al., 2004). The liver is considered as the “most 

moving organ” in the abdomen during the breathing cycle (Suramo et al., 1984). The predom-

inant direction of the liver motion is the translation in the superior-inferior direction with 10-

26 mm during quiet breathing (Clifford et al., 2002). Some studies indicate that the liver mo-

tion can be effectively represented by only superior-inferior movements and that its motion in 

other directions could be neglected (Davies et al., 1994; Korin et al., 1992). Though this ap-

proximation can simplify the registration or modelling problems for the liver, much more re-

cent studies suggest that the motion along other axes cannot be neglected (T. Rohlfing et al., 

2004; S. Shimizu et al., 1999). Rohlfing et al. tracked the variation of points within the liver 

and reported that the liver moves 1-12 mm in the anterio-posterior direction and 1-3 mm in 

the left-right direction. Relatively, the sliding motion between abdominal organs is small 

because all of them are attached closely with elastic property.  

 

FIGURE 3.4: Illustration of abdominal organs from CT image in the frontal view 

The breathing motion is complex and involves many tissues and organs whose shape and mo-

tion extent in each direction is patient-specific and irregular from one cycle to another. On the 

contrary, we can see that the abdo-thoracic wall is relatively static in the superior-inferior di-

rection compared with the movement of the abdo-thoracic organs, thus resulting in a sliding 
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motion between them (cf. FIGURE 3.5). These structures move and slide almost independent-

ly from each other at the pleural interface. Thus, on one hand, these organs are moving during 

the breathing motion with different extents and directions; on other hand, the motion is dis-

continuous at the abdo-thoracic wall due to the existence of the sliding motion.  

As we already mentioned (cf. Chapter 3.2), standard registration approaches consider the de-

formation field to be smooth and that processing the images as so will generate local errors 

close to the sliding regions, as it neglects the discontinuous motion (Vandemeulebroucke et 

al., 2012;Z. Wu et al., 2008). Such issues need to be taken into account to provide accurate 

and realistic registration results.  

 

FIGURE 3.5: Illustration of the sliding motion between the abdo-thoracic wall and viscera 

region as well as the deformation 

3.4 Existing registration methods to handle the sliding motion issue 

There are many methods attempting to alleviate the sliding motion issue in the registration of 

thoracic CT images. They can be mainly divided into two categories. One is based on a spe-

cially designed regularization scheme, the other one relies on segmenting the images into 

moving and less moving regions.  

CATEGORY 1 

An adaptive filter has been proposed to regularize the sliding effect on the deformation field 

of 4D CT image registration (Wolthaus et al., 2008). This filter processes the regions sepa-

rately based on the intensity information and works well for the lung and the region above the 
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diaphragm, although there occurs a blurring on the registration result in the region close the 

diaphragm and upper-abdomen. This phenomenon can be attributed to the similarity of the 

intensity value between the upper-abdomen and the abdo-thoracic wall. 

Ruan et al. proposed a class of discontinuity preserving regularization and integrated it into 

the optimization step of the registration (Ruan et al., 2008). This regularization can generate a 

smooth deformation field in the inside of the organs (lung, heart, and exterior of rib-cage) and 

preserves the discontinuity on the organ boundaries based on a priori knowledge. But it also 

preserves some undesirable flow singularities which contradict the natural motion of the or-

gans. Improved flow-driven regularization has been proposed later to preserve the large local 

shear discontinuous and to penalize other types of discontinuities (Ruan et al., 2009). Their 

approach is motivated by the Helmholtz-Hodge decomposition theory (Abraham et al., 1988) 

which decomposes the motion field into a solenoidal component, an irrotational component 

and a harmonic part. Thus, the proposed scheme applies homogenous regularization on the 

divergence component, penalizes the local volume change caused by the irrotational compo-

nent to avoid local vacuum or mass collisions and uses a robust regularization energy function 

on the curl field to remove the small solenoidal component value while preserving the large 

shear motion on the singular set (Ruan et al., 2009). Though this approach is promising, the 

authors only evaluate the approach on two coronal CT slices, a more thorough evaluation on 

the clinical image data is required.  

A. Schmidt-Richberg et. al. present a direction-dependent regularization, which allows to in-

corporate a priori anatomical knowledge about the location of the sliding motion (A. Schmidt-

Richberg et al., 2009; Alexander Schmidt-Richberg et al., 2012a; Alexander Schmidt-

Richberg et al., 2012b). The approach decomposes the motion field into normal and tangential 

directions independently based on the boundary of the sliding organ (cf. FIGURE 3.6). The 

normal-directed regularization can smooth the motion field across the organ boundary and 

thus prevents the gaps and foldings. The tangential-directed regularization allows the discon-

tinuity between the movement of the organs and background in the tangential direction.  

Thus, the prerequisite accurate segmentation of the sliding organ on the reference image is 

performed, the segmented edge could be used as a priori knowledge about the sliding loca-

tion. Furthermore, they propose an automatic method to detect the boundary of the sliding 

motion with the use of an edge detector. Their evaluation results on 23 thoracic CT images 

show the accuracy is improved on the lung registration. However, their approach is also based 
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on the edge detector and is not suitable for detecting the sliding motion between the liver and 

the abdominal wall due to their vague border (Alexander Schmidt-Richberg et al., 2012b).  

A similar locally adaptive regularization based on anisotropic diffusion smoothing is pro-

posed by D.  Pace for the deformable registration of sliding organs (D. Pace et al., 2013; D. F. 

Pace et al., 2011; D. F. Pace et al., 2012). Two diffusion tensors are adopted to enforce the 

smoothness of the motion field within the organ and to allow the discontinuity at the expected 

surface. It also performs a segmentation of the organs of interest (e.g. the lung and the liver) 

on the target image in order to define the sliding boundary surface. 

 

FIGURE 3.6: Illustration of the decomposition of motion field. (1) On the left, the motion of 

lung/liver and the surrounding tissue is depicted in the frontal and sagittal views. At the organ 

borders, this motion is not smooth with respect to the diffusion regularization. (2)The motion 

field is divided into 𝑢⊥ and 𝑢||, only the field in the normal direction is smoothed (right). 

(Alexander Schmidt-Richberg et al., 2012b) 

Their registration was performed on mono-modal CT images and the evaluation using target 

registration error (TRE) indicates the significant improvement on the lung registration, but 

only a slight improvement on the liver. Since the registration focuses on the lung and liver, 

the performance of the approach on the entire abdominal viscera cannot be seen. 

 CATEGORY 2 

An alternative strategy is to segment the original images into two regions based on the spatial 

a priori knowledge about the sliding surface. Z. Wu et al. (2008) evaluated the B-spline and 
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Demons registration algorithm on  the lung of 4D CT by segmenting the thorax into moving 

(lungs, mediastinum) and less moving (the rest) regions which derived from the approach of 

(Rietzel & Chen, 2006). The two subregions are registered separately and then each single 

deformation field is integrated into one scene. A boundary-matching criterion is introduced to 

eliminate gaps and overlaps between the composed deformation fields. It is visible that the 

accuracy of the subregion segmentation plays an important role for the registration result. The 

inconsistency of the boundary between the source and target images may result in the error-

ness and artifacts (Z. Wu et al., 2008).  

Similarly, Y. Xie et al. (2011) also adopted a manual segmentation of the thoracic and ab-

dominal cavities in order to register only the liver. Tissue feature points were automatically 

extracted inside the lung and liver for the registration (Yaoqin Xie et al., 2009). Then, they 

performed a TPS registration with combination of feature points on the lung and liver respec-

tively. In their approach, the effect of the left-right (LR) and anterio-posterior (AP) motions of 

abdominal organs were not taken into account. The registration accuracy on the liver organ 

was between 2.1 and 2.8 mm by computing the contour errors. We think this accuracy is not 

sufficient and may be due to the choice of neglecting LR and AP motions which can be above 

5 mm according to our own medical data.  

Vandemeulebroucke et al. (2012) focused on the extraction of a motion mask for the registra-

tion of thoracic CT images. This motion mask not only contains the lung, but also encom-

passes the diaphragm and the mediastinum, instead of the segmentation of one organ only 

(Kabus et al., 2009; McClelland et al., 2011;Von Siebenthal et al., 2007). The registration is 

performed by using the free form B-Spline transformation, their results indicate that the accu-

racy of the registration using the motion mask is improved compared to the registration using 

the lung mask. The approach of motion mask extraction is also used by (Delmon et al., 2013) 

on the registration of thorax CT image (cf.  

FIGURE 3.7). They proposed a mapping function which consists of three B-spline transfor-

mations to handle the sliding motion. The first B-spline represents the normal component of 

whole deformation field and enforces the continuity across the sliding interface. The other 

two B-spline transformations are constrained on the separated regions independently and rep-

resent the motion in a plane orthogonal to the normal N. The limitation of this approach is its 

ability of handling the curved interface at which the calculation of the normal direction is dif-

ficult. 
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Most of the previous approaches have been designed for dealing with the sliding motion on 

the registration of thoracic CT images. However, little research has been found for handling 

the sliding motion effect on the registration of abdominal viscera.  

 

FIGURE 3.7: The motion mask (green) is superimposed on the CT image 

3.5 Conclusion 

In this chapter, we have given a review of the image registration framework which includes 

several critical components. The registration problem in the abdominal viscera region caused 

by the breathing motion has also been introduced. There are two kinds of approaches to han-

dle the sliding motion effect on the registration of thoracic CT images. One is to add con-

straint in the regularization item by integrating the specific organ boundary information de-

rived from organ segmentation. The other one is to divide the image into moving and less 

moving regions at the sliding interface (thoracic wall) and perform the registration on each 

image independently. However, there are also big sliding motions in the abdominal viscera 

region, particularly between the abdominal wall and abdominal viscera (cf. Section 3.3), 

which is not processed specifically by traditional registration approaches. Furthermore, the 

sliding motion between abdominal organs is relatively small due to their elastic properties.  

Therefore, we believe an a priori knowledge of abdominal wall position is the most relevant 

approach to obtain an accurate and realistic registration. Two fast interactive segmentation 

tools based on this a priori knowledge have been designed and implemented are presented in 
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the Chapter 4. With the use of this segmentation result, the registration will be performed on 

the new images without the abdo-thoracic wall. 

. 
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Chapter 4 Fast segmentation of the abdo-thoracic 

wall and diaphragm 

We have seen in the previous chapter that a standard registration which neglects the sliding 

motion is not accurate enough. Spatial priori knowledge has thus been adopted to deal with 

the sliding motion phenomenon, with some success in thoracic regions where the sliding in-

terface is easier to recognize due to the gas into lungs. We believe the equivalent spatial priori 

is necessary to ensure an accurate registration of the entire abdominal viscera in CT images. 

In particular, since the liver and spleen are located directly beneath the diaphragm which also 

slides during the breathing motion, it is meaningful to induce the spatial knowledge of dia-

phragm with the abdominal wall in the registration of abdominal viscera. 

However, the segmentation of the abdominal wall in a CT image is a challenge because of its 

complex shape and its connection to internal abdominal organs with similar intensity value, 

thus hindering the use of the deformable segmentation methods. The diaphragm is also diffi-

cult to delineate close to the heart since its grey level value can be close to the liver one. 

In this chapter, we present two semi-automatic tools to perform a fast segmentation of a pa-

tient abdominal wall and diaphragm based on the low curvature along the cranio-caudal direc-

tion (resp. left-right), which can provide a priori knowledge for the registration. We firstly 

present the existing work in the field of segmentation of the AW, whose accuracy is not good 

enough or is usually dedicated to only a specific organ instead of a plurality of organs con-

tained in an anatomical envelop. Secondly, we analyse the challenge of AW segmentation, 

showing that gradient based approaches can hardly solve this issue, even if mechanical con-

straints are added. We then highlight that AW and diaphragm are smooth surfaces, which lead 

us to propose an interactive segmentation method using interpolation between a selection of 

several segmented slices only. Finally, we provide experiments with patient data showing that 

an accurate delineation and surface model of the AW and diaphragm can be provided in less 

than 15 minutes.   
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4.1 Related work on abdominal wall segmentation 

As segmentation of thoracic wall is easy, we mainly review the work related to the abdominal 

wall segmentation. As far as we know, there has been a few works on the abdominal viscera 

envelop segmentation. We firstly introduce automatic methods and then semi-automatic ones.  

4.1.1 Automatic approaches 

A. Shimizu et al. (2007) intended to simultaneously delineate multiple abdominal organs on 

non-contrasted CT images. The abdominal cavity was roughly extracted using an active cyl-

inder model (Okumura et al., 1998), but the extraction result was not reported and focused on 

organs only. 

Ding et al. (2009) proposed to use a Gaussian mixture model (GMM) to build the intensity 

value distribution of the abdominal wall. The voxels between skin and bone are identified and 

used as a sample to estimate the intensity value distribution of the entire abdominal wall (cf. 

FIGURE 4.1). Then a 3D flipping-free deformable model is adopted to expand and register 

iteratively to the inner boundary of the abdominal wall (cf. FIGURE 4.2). However, there are 

many cases where the intensity value of the inner abdominal organs is similar to that of the 

wall muscles, and the region between rib and skin is relatively small compared with the entire 

abdominal wall, the estimation is thus not sufficiently accurate. We can also note that the 

segmentation result includes the spine which contradicts the purpose of the segmentation. 

 

FIGURE 4.1: The extraction of the feature points (red) in the abdominal wall for building the 

GMM (Ding et al. (2009). 
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FIGURE 4.2: The process of the quadrilateral mesh expansion. The initial mesh (a) and its 2D 

view (b) in one axial slice. The expanded 3D surface mesh (c) and its corresponding 2D axial 

view (d), (Ding et al. (2009). 

Deformable segmentation methods, like snake (Kass et al., 1988) or level set (Sethian, 

1999;Fedkiw, 2003), are widely used in medical image segmentation (Vese & Chan, 2002;Lie 

et al., 2006;Paragios & Deriche, 2000;C. Li et al., 2011;Brox & Weickert, 2004), but seem 

not adapted for the segmentation of abdominal wall. Indeed, the snake algorithm iteratively 

updates the contours based on the edge information and usually converges to the skin in this 

context. Vandemeulebroucke et al. (2012) proposed to obtain the lung mask with use of the 

level set algorithm. An initial ellipsoid is used to initialize the level set function, then the 

propagation is conducted to the edge of the lung (cf. FIGURE 4.3). The authors also intend to 

obtain the edge of the upper abdominal wall. However, although their results show that the 

lung can be obtained due to its distinctive intensity value with surrounding tissue, they did not 

accurately obtain the abdominal wall (the level set algorithm converged at the skin,marked by 

red circle in FIGURE 4.3).  
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FIGURE 4.3: Illustration of the propagation steps of the level set algorithm to obtain the lung 

mask in the sagittal plane. The current mask is white and the edges of the extracted features 

are black. We show (a) the initial ellipsoid, (b) the contour reaching the detection point at the 

skin, (c) the propagating contour, (d) the final obtained motion mask. (Vandemeulebroucke et 

al., 2012). 

Xu et al. (2013) proposed a texture analysis-based on Gabor filters combined with the level 

set to extract the anterior abdominal wall (cf. FIGURE 4.4). Obviously, such segmentation is 

relatively easier since the anterior abdominal wall is connected to the skin, which has distinc-

tive intensity value. The segmentation of the posterior abdominal wall is more difficult since 

it is attached to many tissues with variable intensity value. W. Huang et al. (2014) proposed to 

adopt a priori shape model and context of the bone localization for the segmentation of ab-

dominal wall. Although they show some interesting qualitative results, they do not quantita-

tively evaluate the segmentation result on the entire abdominal wall and it clearly appears that 

their algorithm does not deal efficiently with the region close to the spine and the psoas mus-

cles. 

For the diaphragm segmentation, which corresponds to the delimitation between the thoracic 

viscera (lungs & heart) and the abdominal viscera, no work has been found mostly because 

the lung segmentation is considered as a trivial step. Practically, this is often true but the tho-

racic viscera also contain the heart and the frontier between the heart and the abdominal vis-

cera is much more difficult to extract automatically. Moreover, in case of atelectasis the lungs 

cannot be extracted using a simple threshold.  

 



  

47 

 

 

FIGURE 4.4. Illustration of the anterior abdominal wall. The manually drawn red curve rep-

resents the border of anterior abdominal wall.  

4.1.2 Semi-automatic approaches 

Semi-automatic algorithms or tools for specific organ segmentation usually are based on a 

light a priori information. For instance, they can consists of manually clicking seeds inside 

and outside the organ of interest to initialize watershed, active snakes (Williams and Shah 

(1992);Yushkevich et al. (2006)) or region growing algorithms (Adams and Bischof (1994)). 

The final boundaries usually converge close to high gradient areas and are computed through 

an optimization of a contour that minimizes several criteria (elastic and intensity-based). 

Since the boundaries of the abdominal wall are in contact with almost all abdominal organs 

(liver, spleen, stomach, bowel, colon) and since it contains highly different structures (bones, 

muscles, fat, cartilage), this kind of approach are not adapted. The gradient value which sepa-

rates the abdominal to the inside viscera is varying from zero (typically the liver or the stom-

ach, which can have identical grey values in a CT image) to several hundreds. 

4.1.3 Anatomy of the thoracic and abdominal wall 

In anatomy, the abdo-thoracic wall represents the tissues wrapping the abdominal and thoracic 

cavity (cf. FIGURE 4.5 (a)). 
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.  

FIGURE 4.5: Illustration anatomy structures. (a)The body cavity; (b) Anatomy shape and po-

sition of the thoracic wall and diaphragm. Two figures originated from WIKI, and 

"Respiratory System," respectively. 

The thoracic wall is the boundary of thoracic cavity (Axila, 2006) and consists of skin, mus-

cle, and fascia (cf. cf. FIGURE 4.5(b)), the diaphragm is beneath the lung, their contours of 

them in frontal view of CT image are shown in FIGURE 4.6 (marked by yellow and blue 

curves respectively). 

 
FIGURE 4.6: Illustration of the contour of the thoracic wall and diaphragm in the frontal view 

of a CT image (yellow and blue curves respectively). 

The abdominal wall represents the boundary of the abdominal cavity and consists of the skin, 

subcutaneous tissue, fascia, muscles and peritoneum (Marieb & Hoehn, 2007). The subcuta-

neous tissue mainly refers to the fat tissue. The muscles include the external oblique muscle, 

the internal oblique muscle, the rectus abdominis and so on. Much more details of the ana-
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tomic knowledge can be found in Wingerd, 2013. The FIGURE 4.7 (a) illustrates its anatomy 

structure in the cross section of a human being. The contour of the abdominal wall in a CT 

image is also shown in the FIGURE 4.7 (b). We can also see the abdominal wall connects to 

many abdominal organs, especially the liver, spleen, bowel, colon and ribs, also located inside 

the abdominal wall (cf. FIGURE 4.8).  

 
FIGURE 4.7: Illustration of the abdominal wall. (a) Anatomy structure of abdominal wall in 

the cross section of a human being ("Cross-section-abdominal-wall-image," ); (b) The contour 

of the abdominal wall in the axial view of a CT image, which is represented by the green 

curve. 

 

FIGURE 4.8: Illustration of the spatial relation between the abdominal wall and the ab-

dominal organs. (a) The axial view shows the connection between the abdominal wall and the 

liver, spleen and stomach; (b) The frontal view shows the connection between the abdominal 

wall and the colon. 
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4.1.4 Description of the problem  

The segmentation of the abdo-thoracic wall is challenging since the abdominal wall is con-

nected to organs or tissues which have similar intensity values (marked by red rectangle in 

FIGURE 4.9). Also the anterior layer edge is very thin between the muscle and the fatty layer 

(marked by yellow rectangular in FIGURE 4.9). Here, we highlight that the segmentation of 

the thoracic wall is easy due to the distinctive boundary between the lung and the thoracic 

wall (cf. FIGURE 4.6). Thus, the difficult point is that there is no continuous strong boundary 

between the abdominal wall and the abdominal viscera.  

 
FIGURE 4.9: Ilustration of the abdominal wall in the axial view of a CT image. The region 

marked by the red rectangle shows that the intensity value of the liver is similar to that of the 

muscle of the abdo-thoracic wall. The yellow rectangle highlights the thin muscle layer in the 

anterior area of abdominal wall. 

As described in the previous subsection, existing approaches have a limited capability to han-

dle the edge between the abdominal wall and the viscera region due to the varying shape and 

vague boundary. However, one can also notice that the abdo-thoracic wall and diaphragm 

have a somewhat smooth curvature, even in the anterior area close to the spine. This suggests 

that an interactive segmentation sampled on several slices only, followed by an interpolation 

technique, should provide accurate segmentation results. 

4.2 Fast segmentation tool of the abdo-thoracic wall 

There are already several interactive tools which allow interpolating a shape from points, 

lines or curves manually drawn on a 3D medical image. In such software, the user usually 

draws several curves in several slices (successive or not), and an algorithm computes the best 

surface that passes through all curves (IQQA®-Liver, 2009; Myrian®, 2006;Wimmer et al., 
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2007). The surface is usually parameterized by a NURBS (Rogers (2000)) or 3D B-splines 

(Rueckert et al. (1999)) and can be closed or not, enabling typical organ surface drawing or 

open surface. The created surface can be further locally updated or refined using intensity-

based methods or a statistical model. If no further improvement is planned, this means that the 

control points/lines/curves only define the shape of the final segmentation. Although organ 

surface usually corresponds to an individual organ, manual delineation of open surface can be 

used to separate two organs that were segmented together with an automatic tool.  

In this section, we describe our method which adopts some good aspects from the work of 

(Schenk et al., 2000;Wimmer et al., 2007). Schenk et al. (2000) manually segmented the liver 

in some slices based on the user-steered live wire algorithm (Mortensen et al., 1992;Udupa et 

al., 1992) and the contours in the remaining slices are interpolated with the shape-based inter-

polation (Raya & Udupa, 1990). The main difference between our work and theirs is not 

linked to the interpolation techniques but to the human machine interface and the update strat-

egy of the segmentation result, which can be checked in real-time in our case. 

4.2.1 Description 

Given an abdominal 3D image, the strategy of our segmentation tool is as follows (cf. FIG-

URE 4.10).  

 
FIGURE 4.10: Illustration of the mechanism for the fast segmentation of abdo-thoracic wall. 

The user selects some axial slices in which he interactively delineates the peritoneum using 

control points. A 2D cubic interpolation spline is adopted to fit the curve of the contour of the 

abdominal viscera through linking the control points. Then, the remaining slices are automati-
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cally segmented in real-time using a 3D B-spline based interpolation technique. Finally, the 

user refines the segmentation result by checking these interpolated delineations and adding 

one or more control slice where he reckons that the interpolation is not sufficiently accurate. 

The detailed process is described hereafter. 

Step 1: the user selects the first axial slice. Usually, this slice is approximately in the middle 

of the image. The choice of this first slice can be quite important and is discussed later in the 

next section. Then, the user adds control points sequentially along the boundary of the consid-

ered region (cf. Fig.4.16), here the abdominal viscera. Users can insert, move or delete control 

points. The generated B-spline curve parameterized by control points is updated in real-time, 

which provides immediate feedback of the curve location. Thus the place of control points can 

be adjusted in order to improve the created curve accuracy.  

 

FIGURE 4.11: Illustration of the interactive segmentation on one axial slice.  
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The distance between adjacent control points is dependent on the curvature of the specific 

border. It is suggested that the control points should be more dense on the region with high 

curvature. For instance, if only two control points are put at the border of the spine, then the 

fitted spline curve cannot remove it completely in the final generated image. Once all control 

points are added at the boundary, the generated 2D spline curve should correspond to the bor-

der of the abdominal viscera (cf. FIGURE 4.11), and we can still modify slightly the place of 

control points to improve the segmentation accuracy. The choice of the number of control 

points is discussed in the next section. 

Step 2: Once this first delineation is finished, the user selects the next slice image. The first 

created curve and its control points are automatically copied on the current. If the user did not 

select a new slice too far from the first one, only a few modifications are sufficient to update 

the curve which delineates the abdominal viscera. Although allowing the user to modify each 

control point independently seems to be the standard option, we choose another option in two 

stages that practically makes the delineation faster.  

The first stage consists in allowing a linear expansion or shrink along the X or Y axis of the 

control point set. The software displays a rectangular bounding box around the control points 

and the user can independently modify each side of the box, the remaining ones being static 

(cf. FIGURE 4.12). For instance, the user move the side AB along the green row direction, 

the control points close to this side AB will linearly move in the same direction simultaneous-

ly, and the control points close to the opposite side CD will remain almost static. Usually, this 

kind of position refinement of control points is sufficiently accurate and in case some a few 

modifications are still necessary, the user passes to the second stage. 

z  

FIGURE 4.12: Illustration of the first stage of the position refinement with the use of a rec-

tangular box ABCD. 
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During this second stage, the user can modify at the same time the position of a set of consec-

utive control points locally: the user selects 2 control points to define the zone which has to be 

refined, they will remain static (cf. FIGURE 4.13(a), where the two fixed control points are 

set in red, the red segment indicating the part of the whole curve, which will be moved). Then, 

he clicks on the frontier that he considers proper, and all the control points between the 2 

fixed control points will move so that the curve reaches the clicked point (cf. FIGURE 4.13 

(b)). The motion of each control point between the fixed points is linearly dependent on its 

distance to the mouse click. If the control point is the closest point on the curve to the mouse 

click, it will move exactly on the mouse click. If the control point is close to one of the fixed 

points, it will almost not move. The motions of the other control points are linearly computed 

from their weighted distance between the closest fixed point and the closest point on the curve 

to the mouse click. Depending on the necessary refinement, the user moves simultaneously 3 

to 4 points only or sometimes 6 to 8 when a consistent motion occurs on a specific zone. 

 

FIGURE 4.13: The second stage for the position modification of control points. (a)The two 

red control points are selected to define the curve segment for modification (b) The new posi-

tion of control points after modification. 

Step 3: the user selects a new axial slice, on which a copy of the control points from the clos-

est segmented axial slice is performed. Then, the user can refine the control point positions 

using the 2 tools described earlier. After delineation of at least 4 slices with above tools, the 

boundary of abdominal viscera in all axial slices comprised between the first one and the last 

one (along the cranio-caudal axis) can be automatically generated with the use of a 3D B-

spline-based interpolation technique. 
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This process is illustrated in the FIGURE 4.14: since the number N of control points is the 

same in each selected slice with manual interactive segmentation, it is easy to match the n
th

 

point in slice i to its corresponding n
th

 point in slice j, and a 3D B-spline can be generated tak-

ing the position of these points as parameters. The intersection of this generated spline with 

unsegmented slice t generates the corresponding control point in the t
th

 slice (cf. FIGURE 

4.14, where the point is coloured in green). From the control points in each slice, a 2D curve 

is then generated in all axial slices comprised between the first one and the last one.  

Finally, a 3D mesh can be created that corresponds to the abdo-thoracic wall. Since all curves 

are continuous B-splines, the user can independently select the density of grid points along 

the axial 2D curves and the cranio-caudal 3D curves. The resulting mesh can thus be as dense 

as needed by the further application. Practically, the number of points on the axial 2D curves 

is set to 100 to ensure a smooth surface visualization. 

 

FIGURE 4.14 : The illustration of 3D B-spline interpolation along the cranio-caudal axis 

Step 4: A final optimization step is required since the generation of most of the 2D axial 

curves is based on the 3D interpolation technique only. The optimization includes two as-

pects. The first one is the accuracy of the segmentation. The second one is the smoothness of 

the abdo-thoracic wall. In the lateral window which shows the image and the surface mesh, 

we can conveniently and quickly check the accuracy and smoothness by moving the slices 

and detect any mistake. For instance, if the ribs are not totally removed in some slices, we can 

directly locate the 2 slices surrounding this area on which control points had been defined, 

and modify the control point positions. In case this modification is not sufficient, it may mean 

that the abdo-thoracic wall is not sufficiently smooth in this area and a supplementary slice 
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should be manually adapted and validated between these 2 slices using the 2 tools previously 

presented. After having defined the new slice, all 3D B-splines are recomputed since the 

number of control points has increased by 1 in the crania-caudal direction. Obviously, if the 

user has only segmented 4 axial slices, he will certainly have to add several supplementary 

axial slices.  

We illustrate in FIGURE 4.15 the segmentation results from the venous and arterial phases 

CT image with NSS equals to 20 and 10 respectively. The mesh model can be generated after 

the proposed 4-step segmentation and the 3D MPR displaying is used to better inspect the po-

sition of the mesh and its spatial relation with surrounding tissues, such as ribs and bones.  

 

FIGURE 4.15: The generated meshes from the venous (left) and arterial (fight) phases CT im-

age. 

4.2.2 Discussion 

In our approach, the generated curve in the first slice is copied to the two adjacent slices (be-

low and upper in the cranio-caudal direction). These 2 slices are then copied to the next adja-

cent slice and so on. Thus, the choice of the first slice for manual segmentation is really im-

portant. Based on our experience, if we choose an axial slice below the liver where the perito-

neum is quite smooth, then the user may put only 15 control points, which seems sufficient 

for the current slice. However when we slide to an axial slice close to the lungs, the curve 

may not perfectly fit the border of peritoneum even if we modify the position of the 15 control 
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points, since borders with high curvatures are located close to the ribs. It thus requires the 

curve to have a stronger local fitting capability, namely to increase the number of control 

points, which contradicts our design principle. On the other hand, if we put too many control 

points, for instance 50, the distance between control points of B-spline is very small (< 20 

pixels) and it is difficult to generate a smooth curve which fit the border very well. Thus, we 

need to compromise the number of control point and the smoothness of the segmentation re-

sult. 

We suggest the following principle for the first slice selection: 

 The first slice should contain the lower part of the liver and the upper part of the psoas 

muscles. 

 The number of control points for the first slice (and thus of all slices) should be be-

tween 20 and 25. 

 The frequency of control points should be higher close to the spine (area with relative-

ly higher curvature), typically 5 points. 

The two tools we have designed move several control points at the same time. We have 

adopted this strategy because the border of abdo-thoracic wall in the axial view and in the 

cranio-caudal direction is very smooth. Thus, the variation of corresponding 2D and 3D inter-

polated curves should also be smooth. If we refine each control point independently, it will 

probably reduce the smoothness along the cranio-caudal axis since the user will not take care 

of their proper alignment in this direction. In addition, the manipulation of control points in 

group is more efficient and quicker compared to one-by-one operation. Thus, we expand or 

shrink the curve in group instead of point by point.  

4.3 Diaphragm Segmentation Interactive tool 

4.3.1 Description 

In this section, we describe the interactive tool we have developed to quickly delineate the 

diaphragm. The principle is based on the same idea, the curvature of the diaphragm is rather 

smooth and thus the number of samples on its frontier can be limited even if millimetres accu-

racy is necessary. Although it is possible to use our tool without any prior peritoneum seg-
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mentation, it is preferable to have one and this will be assumed in the remained of this thesis 

later. 

Step 1: the user firstly selects a specific axial slice, the axial plane of reference (APR), which 

is the highest axial slice in the cranial direction that does not contain lung tissue. The software 

then automatically extracts from the previous abdo-thoracic wall segmentation the 2D curve 

already delineated in this specific slice, and selects 15 sagittal slices uniformly located be-

tween the right and left extremities of the 2D curves (cf. FIGURE 4.16 (a)). The user will 

have to perform the diaphragm segmentation in these sagittal slices (one example sagittal slice 

is provided in FIGURE 4.16(b)). The intersection of these sagittal slices and the 2D curve 

from the APR provide the beginning and end point of the diaphragm segmentation (cf. the 2 

red circles in FIGURE 4.16 (b)). 

Step 2: The software shows each sagittal slice one by one so that the user delineates the dia-

phragm boundary on each of them. The standard process is to click at one extremity and to 

draw the boundary as long as the mouse click is activated until the user reach the second ex-

tremity and then release the click action. We design a semi-automatic approach: we firstly 

draw 12 rays automatically based on the gradient information of the diaphragm in the sagittal 

view (cf. FIGURE 4.16(b)), which intersect in the middle of the segment, defined by the in-

tersection of the sagittal slice and the 2D abdo-thoracic wall delineation in the APR (cf. the 

blue circle in FIGURE 4.16 (b)).  

In fact, most of the time, the automatic computation of the ray length is sufficient due to the 

high gradient between the diaphragm and lung, which can accelerate the segmentation process 

(cf. FIGURE 4.16 (b)). However, it happens the end points of some rays are not on the dia-

phragm, but on another region which has higher gradient than the diaphragm boundary (cf. 

the marked rays by yellow circle in FIGURE 4.16 (b)). In this case, such rays can be modified 

interactively with our software. The user presses the “ctrl” keyboard and moves the mouse 

along the boundary until the mouse crosses the rays, which length is automatically reduced to 

fit the current mouse position. The choice of this technique over the standard one is discussed 

after the steps description. 
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FIGURE 4.16: Illustration of the mechanisms of the interactive diaphragm segmentation.  

Step 3: Once all the sagittal slices have been processed by the user, the software automatically 

computes in each sagittal slice the 2D spline passing through all ray end points, and over-

samples the curve from 12 points to 100 ordered points (which corresponds to the number of 

sampled points on the abdo-thoracic wall delineated in the APR between the 2 extremities). 

Then, considering the k
th

 point of the 2D spline in the 15 sagittal slices, a 3D spline can be 

generated with the position of these 15 points, and oversampled it from 16 points to 100 

points (this process is illustrated in the FIGURE 4.17). An accurate quad mesh, describing the 

diaphragm position can finally be computed using all the generated points from the 2 over-

sampling processes (cf. FIGURE 4.18).  

 

FIGURE 4.17: Illustration of the 3D Bspline interpolation along left-right axis 
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FIGURE 4.18: The created mesh (pink) represents the diaphragm. The number of selected 

slices in APR for manual segmentation in the sagittal view is 15, and 12 ray casts are created 

in each slice. 

Practically, the creation of the 2D and 3D splines is not possible close to the points on the 

APR, since a further point is missing in the caudal direction. To overcome this problem, we 

artificially add a supplementary differential constraint on these points, i.e. the tangent extract-

ed from the abdo-thoracic wall segmentation along the sagittal plane for 2D splines and along 

the middle frontal plane for 3D splines.  

Finally, combining two fast segmentation tools, a mesh model containing only the thoracic 

viscera can be obtained (cf. FIGURE 4.19).  

 

FIGURE 4.19: The generated mesh (red) containing only the abdominal viscera  

4.3.2 Discussion 

The choice of the APR is more motivated by the liver and spleen frontiers than by the real di-

aphragm position. Regarding the number of sagittal slices (15) and samples (12) in each sagit-

tal slice, they were chosen empirically by experts who think that this can ensure a very accu-

rate interpolation of the upper viscera boundary in the sagittal view. 
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The choice of the method allowing to select the ray cast length is certainly one of the most 

important in our context, where duration should be reduced as much as possible. We original-

ly decided to let the user click and draw the frontier, as it is the case in most standard soft-

ware. However, we quickly notice that the user often has to redo his drawing when he loses 

his mental focus, even if almost all the drawing is perfect. Obviously, an eraser tool could al-

low users to correct the mistaken area, but this action also takes time.  

The big advantage is that it allows an extremely efficient of correction of the area where a 

mistake occurs. The closest ray cast can be automatically activated when the mouse moves 

toward it, and its length will be adapted to the current position of the mouse in its original di-

rection. The updated length can be conveniently validated using a keyboard control instead of 

using the mouse left button. Indeed, it avoids the hand tremor when the user clicks on the 

mouse and maintains pressed the left button. We observed that all users needed two to three 

times less time to validate the diaphragm frontier with our interface. 

4.4 Evaluation of the number of selected slices and tool efficiency 

We argued that delineating all slices was not necessary for abdo-thoracic wall, particularly 

because nowadays resolution of medical imaging device is close to a millimetre. However, 

how to choose the number of selected slices (NSS) for manual segmentation so that it can 

provide an accurate 3D surface model, which has a comparable accuracy with a delineation of 

all slices? 

The purpose of this section is to quantitatively answer this question. In particular, we want to 

find the best trade off so that one has to delineate as few slices as possible, keeping in mind 

that if too few slices are chosen, the segmentation result might not be satisfying. We will also 

obviously report the time needed by our method to perform both delineations and evaluate the 

learning curve of our two segmentation tools. 

4.4.1 Experimental set up for the NSS 

Using 20 patient CT data (resolution of 512 × 512× 292 with voxel size of 0.961 × 0.961×1.8 

mm), our medical staff performed a segmentation with our peritoneum segmentation tool for 

each of them using 50 slices. The length of acquired abdominal-thorax volume data along the 

z axis is on average 45 cm. The patient selection was performed randomly among an im-

portant database of patients and has an important variability. An expert had previously de-

fined that the segmentation with 50 slices (roughly 1 slice/cm) could be considered as ground 
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truth due to the low curvature of the abdominal wall. This was mathematically confirmed us-

ing the Shannon theory. Then, a selection of 20, 10 and 5 slices uniformly sampled among the 

50 delineated slices was carried out and a dense 3D mesh G50, S20, S10, S5 was created for 

each patient from the segmentation with 50, 20, 10 and 5 slices, using the 3D spline based in-

terpolation described in the previous section.  Finally, the surface models S20, S10 and S5 can 

be compared to the ground truth G50 and the difference between them can be measured by 

computing the distance from a vertex of the surface models to the closest point belonging to 

G50. 

4.4.2 Results for the choice of NSS 

FIGURE 4.20 shows the distance histogram between meshes S20, S10 and S5 with M50 on 2 

patient data. We can see that the distance distribution of points is almost the same for S20 and 

S10 (peak at around 0.6 mm). But for NSS equals to 5, there are many points which distance 

are larger than 0.8 mm. We also calculate the total average distance and standard deviation 

between surfaces S20, S10, and S5 with G50 on 20 patient data (cf. Tab. 1). It clearly shows 

that the mean error is reduced from 1.27 mm (NSS = 5) to 0.84 mm (NSS = 10) which corre-

spond to the voxel size and thus to the ground truth accuracy. However, there is only a slight 

improvement in accuracy for the NSS increased from 10 to 20. 

 

FIGURE 4.20: Distance histogram between S20, S10, S5 and G50. The x axis represents the 

distance (mm) and the y axis represents the number of points (vertex) at the corresponding 

distance. 

Table 4.1: Average distance and standard deviation between surfaces S20, S10, S5  and the 

ground truth G50. 
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 5 slices 10 slices 20 slices 

Average distance (mm) 1.27 0.84 0.71 

SD (mm) 0.99 0.52 0.36 

 

From these statistical charts and tables, we can conclude that the NSS for interactive segmen-

tation should be chosen below 20, but above 10. 

4.4.3 Evaluation of the segmentation duration 

We have evaluated the time needed by 6 users to perform the segmentation of the abdo-

thoracic wall and diaphragm of the 20 medical images of patient abdomen from the previous 

section. We removed from the average value the 2 first segmentations since they were much 

longer due to the learning curve. Users were 2 engineers, 2 surgeons and 2 radiology techni-

cians. 

The time cost on the segmentation of abdo-thoracic wall and diaphragm for each user has 

been summarized in the TABLE 4.2. Results show that the abdo-thoracic wall segmentation is 

performed on average in 363 s. (5 min.) and that the diaphragm segmentation is performed in 

215 s. No significant difference was reported between the 3 classes of users. This experiment 

also shows that the abdo-thoracic wall can finally be fully segmented with an excellent accu-

racy and in a very reasonable time compared to clinical workflow constraints. 

TABLE 4.2: The time cost for the segmentation of AW and diaphragm 

 User 1 User 2 User 3 User 4 User 5 User 6 Total 

AW (sec.) 375±24 295±37 384±41 347±35 361±34 420±44 363.6±4

1 

Diaphragm 

(sec.) 

211±32 215±31 189±24 260±34 175±23 243±37 215.0±3

1 

Total 586 510 573 607 536 663 579.1 

AW: Abdo-thoracic wall 
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4.5 Application: Visualization of the image without abdo-thoracic 

wall and diaphragm 

Although a priori knowledge of sliding area is employed in this thesis for registration purpos-

es, we show here that it can be also used for a different application, more specifically the pa-

tient organ visualization. Its critical application in the registration of abdominal image can be 

seen in the Chapter 5. 

The volume rendering display of medical data is now available on each radiological console 

and allows a 3D visualization of the patient data, which can be extremely useful to plan resec-

tion planes in case of liver tumor dissection or to assess relative positions of vessels (A. 

Shimizu et al., 2007; Bano et al., 2012a). Since the abdo-thoracic wall (which contains fat, 

muscles and bones) cannot be automatically removed from the medical data, a practical solu-

tion is to modify its opacity to view the inside organs using the transfer function. Although 

the transparency setting enables to view the abdominal organs much more clearly, it simulta-

neously makes some part of the organ transparent since the intensity value between abdo-

thoracic wall and abdominal organs are very similar. Thus, a preliminary segmentation of 

abdo-thoracic wall can effectively remove or eliminate this issue to help surgeons obtain a 

better understanding of the patient’s anatomy. 

We show below on 2 patient data the benefit of abdominal wall removal. We compare the 

volume rendering visualization of the original image with the same image after removal of the 

abdo-thoracic wall and diaphragm. This is performed by setting voxels outside of the the vis-

cera segmentation to -1024 (cf. FIGURE 4.21: The new images containing only the ab-

dominal viscera are created by two segmentation tools. The first and second rows are from 

two patients respectively. The three columns represent the displaying in axial, frontal and sag-

ittal views, respectively.). 

The first patient has several tumors in his liver and a proper visualization of the liver shape is 

important to assess the position of the resection planes. We show on the left of FIGURE 4.22, 

the original image where one can see that the ribs and cartilage does not allow to clearly see 

the liver shape. We highlight that no standard transfer function available in the software al-

lows to completely remove the bones without degrading the image. We have also tried to 

manually modify the transfer function, but results are still not acceptable for a clinician. On 
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the contrary, the image without abdo-thoracic wall (cf. right in FIGURE 4.22) clearly allows a 

good visualization and understanding of the liver shape. 

 

FIGURE 4.21: The new images containing only the abdominal viscera are created by two 

segmentation tools. The first and second rows are from two patients respectively. The three 

columns represent the displaying in axial, frontal and sagittal views, respectively. 

The second patient has a tumor in the left kidney and an assessment of the positions of the 

renal artery and vein is important. This is usually done from a back point of view. The left of 

FIGURE 4.23 shows that the spine prevents the user from seeing clearly structures surround-

ing the kidneys. Again no transfer function allows to remove the spine from image. We have 

thus tried to crop the volume in order to remove the spine (using the standard bounding box 

cropping tool: it removes here from the volume rendering a stack of frontal slices in the pa-

tient back that contains the spine). However, such process also degrades the structures we are 

interested in since they are also contained in the frontal slices embedding the spine (cf. middle 
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in FIGURE 4.23). Obviously, this problem is overcome if the abdominal wall is removed with 

our method, as can be checked in the right of FIGURE 4.23. 

 

FIGURE 4.22: Illustration of the benefit of abdominal wall and thoracic viscera for patient 

data visualization. Left: original CT image. Right: new image where voxel value correspond-

ing to abdominal wall and thoracic viscera has been set to -1024. 

 

FIGURE 4.23: Illustration of the benefit of abdominal wall and thoracic viscera for patient 

data visualization. Left: original CT image. Middle: original image after cropping using 

bounding box tool. Right: new image where voxel value corresponding to abdominal wall and 

thoracic viscera has been set to -1024. 

4.6 Conclusion 

In this chapter, we have presented two interactive but fast tools for the segmentation of the 

abdo-thoracic wall and diaphragm. Our choice has been motivated by the unsatisfactory result 

obtained by previous approaches which mostly fail due to important variation of grey level 

along the viscera interface. Since the abdo-thoracic wall and diaphragm have a somewhat 

smooth curvature, we believe that an interactive tool which automatically generates a surface 

from relevant points or lines drawn by the user in some slices only, can be sufficient to 

properly interpolate the whole abdo-thoracic wall and diaphragm.  

In particular, we have carefully described our methodology and explained why it allows the 

user to perform both segmentations efficiently. We have provided experimental results on 20 
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patients, which showed that a NSS of 15 is enough to reach an excellent accuracy and can be 

completed within 5 minutes. We have also observed that practicing on one or two patient data 

was enough for the new users to be experienced. On average, we evaluated with 6 users that 

both segmentation could be finished within 600 seconds (10 minutes). We finally provided 

visualization result using our segmentation methods, which exemplify how useful our tools 

can be in such medical image analysis area.  

We would like to emphasize that the abdo-thoracic wall segmentation can also be important 

for breathing and surgical simulation. For instance, Hostettler et al., 2010 proposed a breath-

ing model that can be used in radiotherapy and interventional radiology, but which relies on a 

segmentation of the abdo-thoracic viscera (cf. FIGURE 4.24) and the creation of independent 

structured grids of abdominal and thoracic viscera (Hostettler et al., 2010).  

 

 

FIGURE 4.24: The segmentation of the abdo-thoracic viscera on a CT image by using the 

VRMed software. The figure originated from the paper of  Hostettler et al. (2010). 

Bano et al., 2012b developed a patient specific pneumoperitoneum simulator to predict the 

abdominal organ motion after the gas injection. His work relies on the modelling of the tho-

racic and abdominal viscera (cf. FIGURE 4.25), which are easily available if a proper ab-

dominal wall segmentation can be realized. Obviously, in case such work had to be used in a 

hybrid OP room containing a CT acquisition device, the segmentation should be performed in 

a few minutes. All these works clearly show the benefit of the abdo-thoracic wall segmenta-

tion as a prior knowledge for registration or simulation applications. It is interesting to note 

that the diaphragm delineation is also necessary in the previously mentioned applications, and 

is not as easy as one could imagine. 
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FIGURE 4.25: The simulation of the abdominal wall lift with an applying force (a)Before 

simulation (b) After simulation. Black wireframe: skin; Green: abdominal cavity; White: tho-

racic viscera; Blue: abdominal viscera; Red: abdominal wall arteries. The figures are from the 

paper of Bano et al. (2012a) . 
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Chapter 5 Abdominal wall & diaphragm removal for 

accurate non-rigid registration of multiphase clinical 

image 

We have explained that the registration of multiphase CT image on abdominal viscera is ex-

tremely important for surgical planning. This registration is still a challenge due to the sliding 

interface between the abdominal wall and the abdominal viscera, which led us to develop two 

interactive software allowing a quick delineation of this interface, so that this interface can 

used as a priori information for the following registration step. 

In this chapter, we propose a simple approach to use the preliminary delineation of the AW 

and diaphragm for the registration of abdominal multiphase CT. In the first section, we ex-

plain our registration strategy based on the removal of AW and diaphragm in the original im-

ages, then the details of each step is described. In section 5.2, the experimental setting is de-

scribed, including image data pre-processing and evaluation metrics. In section 5.3, we pre-

sent the experimental results, which demonstrate the registration accuracy improvement with 

our proposed approach compared to standard ones.  
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5.1 Methodology 

5.1.1 Overview of our approach 

Our strategy is to use the delineation of the AW and diaphragm in the source and target imag-

es to create new images containing abdominal viscera only. In order to evaluate the supple-

mentary benefit of diaphragm removal, we create a set of images without the AW and a sup-

plementary set without AW and Thoracic Viscera (AW&TV). Then, two state-of-the-art non-

rigid registration algorithms are applied to each of the original image, the new generated im-

age without AW and without AW&TV. The flowchart is illustrated in FIGURE 5.1.  

The first step is the acquisition of multiphase CT image data. Subsequently, since performing 

the non-rigid registration on the CT image with original size is a huge load for computation 

time and memory requirement, a cropping and sub-sampling operation is conducted. The in-

teractive segmentation of AW and diaphragm can be completed within 10 minutes as we de-

scribed in the Sec.4.4.  

 

FIGURE 5.1: Flowchart of our approach on abdominal image registration. 

Then, we propose two non-rigid registration algorithms for the non-rigid registration, one 

consists of using a B-spline based transform function and Mattes mutual information (MMI) 

as a similarity metric (cf. Sec.5.1.2), its implementation is described, including the main code 

function to ensure the reproducibility of our work by others. The other one is called Super Ba-

loo (cf. Sec.5.1.3) which is based on a pyramidal block-matching algorithm using squared 

correlation coefficient (SCC) as a metric and has been proved robust and efficient in thorax 

image registration (Garcia et al., 2010; K. Murphy et al., 2011).   
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5.1.2 B-spline-based non-rigid registration 

The goal in multi-modal CT abdominal image registration is to find a spatial transformation 

T(x, y, z) → T(x′, y′, z′) that correctly maps any point in the source image I(x, y, z, t) at a time 

t into the corresponding point in the target image I(x′, y′, z′, t0), taken at the time t0. Though 

research has shown that the abdominal-thoracic motion is mainly along superior-inferior (SI) 

direction during breathing, the antero-posterio and left-right motions can still not be neglected 

for the sake of a realism requirement registration. Obviously, taking all of these factors into 

account, using a rigid or affine transformation only is not sufficient to accurately describe this 

spatial transformation. Therefore, we choose a combined transformation T which contains 

global transformation (rigid and affine) and local deformable transformation based on free 

form deformation (FFD): 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇𝑙𝑜𝑐𝑎𝑙𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑏𝑙𝑒 (𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑓𝑓𝑖𝑛𝑒 (𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑖𝑔𝑖𝑑(𝑥, 𝑦, 𝑧)))    (5.1) 

Firstly, the rigid transformation is employed to align the source image with the target image. 

The output transformation parameters are used to initialize the corresponding member varia-

bles in the following affine transformation. After applying global rigid and affine transfor-

mation on the abdominal viscera, an additional deformable registration is required to imple-

ment the local deformation, since the shape of abdominal organs is also deformed by elastic 

forces generated by the breathing motion. Therefore, we choose a B-spline-based FFD model 

whose ability in modeling the local 3D deformation field has been applied and proved 

(Rueckert et al., 1999; S. Lee et al., 1997; Rueckert et al., 2006; Glocker et al., 2008;K. 

Murphy et al., 2011).  

5.1.2.1 Choice of similarity metric 

For the registration of arterial and venous phase CT image data, it is necessary to define a reg-

istration metric. The intensity value difference between these two data types for same organs 

prevents from using standard criteria used for mono-modal registration, e.g. sum of squared 

differences. An alternative approach is MI which is a concept from the information theory. MI 

means how much information of one random variable contains about another random variable 

and should be maximized if the corresponding regions of two images overlapped. This was 

introduced into medical image registration area by Collignon and Viola independently 

(Collignon et al., 1995; Viola & Wells III, 1997) and has also been reporeted as an accurate 

and robust similarity measurement in the literature (Pluim et al., 2003; Sakai et al., 2015). 
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Regarding the registration of two images, we assume that the MI would be maximized if the 

corresponding regions of two images overlapped. The computation of MI about one image A 

with another image B is as following: 

I(A, B) = H(A) + H(B) − H(A, B)  (5.2) 

where H(A) and H(B) denote the marginal entropy of image A and B respectively, H(A, B) 

denotes the joint entropy of  A and B, which can be calculated from the joint histogram of A 

and B. In this method, we adopt the class itk::MattesMutualInformationImageToImageMetric 

to implement the similarity measurement.  More details can be obtained via accessing the user 

guide (Schroeder et al., 2003). 

5.1.2.2 Implementation of the algorithm 

The ITK is an open-source and cross-platform library that has been widely used in theimage 

segmentation and registration field. The details of how to configure, compile and integrate it 

into our application can be found on the official ITK website ("ITK," 2003). In our registra-

tion approach, the main steps are written as following: 

1. Read multi-phase source and target images and initialize the registration framework in ITK. 

 registration->SetMetric(MattesMutualInformationMetric) 

 registration->SetTransform(rigidTransform); 

 registration->SetOptimizer(optimizer); 

 

2. Set the parameters for the rigid registration, and start it: 

 metric->SetNumberOfHistogramBins( 50 ); 

 optimizer->SetMaximumStepLength( 0.2000  );  

 optimizer->SetMinimumStepLength( 0.0001 ); 

 optimizer->SetNumberOfIterations( 250 ); 

 MattesMutualInformaitonMetric->SetNumberOfSpatialSamples(10000); 

 registration->StartRegistration();  

 

3. After completing the rigid registration, we set the parameters of the affine registration, the 

final rigid transform parameters being assigned as input for the affine transform: 

 affineTransform->SetMatrix(rigidTransform->GetMatrix()); 

 affineTransform->SetTranslation(rigidTransform->GetTranslation() ); 

 MattesMutualInformaitonMetric->SetNumberOfSpatialSamples(10000); 
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4. B-spline-based multi-resolution registration for obtaining the local deformation field with 

the use of multi-resolution. We firstly perform the lower level: 

1) Lower resolution level: 

 bsplineTransformCoarse->SetNumberOfGridNodesInOneDimensionCoarse(); 

 bsplineTransformCoarse->SetGridSpacing( spacing ); 

 bsplineTransformCoarse->SetGridOrigin( gridOrigin ); 

 bsplineTransformCoarse->SetGridRegion( bsplineRegion ); 

 bsplineTransformCoarse->SetGridDirection( gridDirection ); 

 bsplineTransformCoarse->SetBulkTransform( affineTransform ); 

 optimizer->SetMaximumStepLength( 10.0 ); 

 optimizer->SetMinimumStepLength(  0.01 ); 

 optimizer->SetRelaxationFactor( 0.7 ); 

 optimizer->SetNumberOfIterations( 50 ); 

 

2) Higher resolution level. After performing the coarse level registration, the coefficients of 

the B-spline grid at this low level are used to initialize the corresponding coefficients for the 

higher resolution image.  

 bsplineTransformFine->InitializeCoefficients(); //compute it based on 

the  coefficient from lower resolution bspline 

 bsplineTransformFine->SetGridSpacing( spacingHigh ); 

 bsplineTransformFine->SetGridOrigin( gridOriginHigh ); 

 bsplineTransformFine->SetGridRegion( bsplineRegion ); 

 bsplineTransformFine->SetGridDirection( gridDirection ); 

 bsplineTransformFine->SetBulkTransform( affineTransform ); 

 

B-spline transform is not capable of accounting for big rotations or shearing differences. In 

order to compensate for this limitation, we perform first the global rigid and affine registra-

tion. With the use of a multi-resolution registration scheme, we can effectively improve the 

accuracy, speed and robustness of the algorithm.  

5.1.3 Super Baloo non-rigid registration 

To make the evaluation more convincing, another robust and automatic non rigid registration 

algorithm was selected. It is based on block-matching scheme and demonstrated good results 

in recovering large displacements in thoracic image registration. 



  

74 

 

Given a source image F and a target image R, the registration process estimates a dense trans-

formation 𝑇 (one displacement vector per voxel) to superimpose F on image 𝑅: 𝑅 ≈ 𝐹 ∘ 𝑇. To 

achieve this purpose, an iteractive framework with a multi-resolution scheme is used.  

At each iteration 𝑙, blocks are regularly placed on the target image 𝑅, and for any block 

𝐵(𝑥𝑣) ⊂ 𝑅 (𝑥𝑣 being the center), the best match block 𝐵(𝑦𝑣) in the local neighborhood posi-

tion 𝑉(𝑥𝑣) of corresponding source image 𝐹 ∘ 𝑇𝑙−1 will be searched. The criteria of this best 

match is defined according to the similarity measurement 𝑆, 

𝑦𝑣 =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑦∈𝑉(𝑥𝑣)⊂𝐹∘𝑇𝑙−1

𝑆(𝐵(𝑥𝑣), 𝐵(𝑦𝑣)).    5.3 

𝑆(𝐵(𝑥𝑣), 𝐵(𝑦𝑣)) represents the similarity measurement between the two blocks 𝐵(𝑥𝑣) and 

𝐵(𝑦𝑣). According to experiments described in (Garcia et al., 2010), the chosen size of match-

ing block is 5×5×5 voxels. It means that a small number of tissue classes are presented in each 

block, which fits well the use of squared correlation coefficient (SCC) as similarity metric. At 

the end of this iteration step, a set of pair points (𝑥𝑣, 𝑦𝑣) is obtained, and a sparse deformation 

field 𝐶(𝑥𝑣) can be calculated: 

𝐶(𝑥𝑣)  =  𝑦𝑣  −  𝑥𝑣  5.4 

If we define the 𝑆𝑣 as optimized similarity value for the block 𝐵(𝑥𝑣), then the dense transfor-

mation 𝛿𝑇𝑙 can be interpolated by convolving C with a 3D Gaussian: 

𝛿𝑇𝑙 =
𝐺𝜎∗(𝑆𝑣𝐶)

𝐺𝜎∗𝑆𝑣
   5.5 

where σ represents the standard deviation of the Gaussian, allowing to compute a smoother 

or sharper displacement field. This interpolation can also be seen as a fluid regularization of 

the transformation proposed in (Christensen et al., 1996) with the aim of reducing the influ-

ence of outliers. Finally, the obtained dense deformation from the full resolution source image 

will be used to resample the floating image to get the registration result. In this paper, we use 

the software platform MedINRIA (Ourselin et al., 2000) which has integrated this algorithm. 
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5.2 Experimental setup 

5.2.1 Image data 

We performed our evaluation on 10 patient multiphase CT scans arterial and venous phase). 

The original size of the venous phase image is roughly 512×512×500 (resp. arterial 

512×512×400) with an average spacing of 0.961×0.961×0.961 mm. Following the recom-

mendations on the ITK website, we cropped and sub-sampled by a factor 2 along the cranio-

caudal axis and brought the venous phase image size to 512 × 512× 250 (resp. arterial 

512×512×200) with average spacing of 0.961×0.961×1.8 mm. Since we want to evaluate the 

benefit of the removal of AW&TV, we use three sets of images: one is the original image 

with AW&TV, the second one is the new image without AW (FIGURE 5.2) and the third im-

age is without AW&TV. The venous phase image is used as the target image, and the arterial 

phase image as the source image.  

 

FIGURE 5.2: The generated result of the AW segmentation from venous (first row) and artery 

(second row) phase. The example of mask image (a, e) and new images in axial (b, f), frontal 

(c, g) and sagittal (d, h) view. The new volume image containing the abdo-thoracic viscera 

only is created by replacing the voxel values outside the mask by 0 in order to visualize better 

of the lung boundary 
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5.2.2 Evaluation metric 

Performance evaluation of an image registration algorithm applied to real images is not 

straightforward (Mattes et al., 2003;Salvi et al., 2007). The lack of ground truth prevents from 

the possibility of automatic assessment of the registration accuracy (Maes et al., 1999). In the 

case of registration with linear transformation models, the retrospective evaluation can be per-

formed if fiducial markers are set before the image acquisition is conducted (J. West et al., 

1997). However, this metric is not suitable in our context since it is difficult to place fiducial 

markers for the registration in the abdominal region. For registration where placing the fiduci-

al markers is not available or possible, some researchers have turned to evaluate or validate 

the registration result with the use of physical/simulated phantom or other simulated data (W. 

P. Segars et al., 2010;W. Paul Segars et al., 2001). Though this method can provide some in-

sight on the performance of the algorithm, the evaluation result is still not very meaningful on 

real images.  

Since there is no gold standard for the image registration evaluation, we propose three com-

mon metrics to evaluate the final registration accuracy. The first evaluation metric is to quali-

tatively inspect the result images by overlapping them in 2D which can directly indicate the 

registration performance. Though the direct superimposition is not accurate and prone to er-

ror, an experienced physician can roughly assess the quality of the registration in a very short 

time if the displaying manner is friendly. In addition, these experts have a priori knowledge 

of where the region should be accurately registered and where relaxed accuracy is acceptable.  

From the result point of view, the registration is a smooth and continuous mapping between 

corresponding points in the source image and those in the target image (Ashburner, 2007;M. 

Miller et al., 1997; M. I. Miller et al., 2005;). This mapping can be represented as a defor-

mation field which can explicitly display the transformation position of each point (Llibre et 

al., 2007; Tittgemeyer et al., 2002; J. Helman & Hesselink, 1989; J. L. Helman & Hesselink, 

1991; Tittgemeyer et al., 2002). Thus, we also qualitatively analyze the displacement vector 

of the deformation field and check the realism of the registration.  

The second metric is the quantitative measurement of distance of critical organ surfaces after 

the registration. Four organs (liver, left/right kidney, spleen) were segmented semi-

automatically on both the source and target images, the surface mesh model of each organ be-

ing generated with the use of the Marching Cubes algorithm. The proposed registration will 
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output the transformed source image and the deformation field. Let D⃗⃗  represents one dis-

placement vector of deformation field and 𝐴 the corresponding coordinates of a mesh vertex 

from source image, then the new transformed vertex coordinates 𝐴′ can be obtained with the 

following formula: 

A′(x′, y′, z′) = A(x, y, z) + D⃗⃗ (x, y, z)  (5.6 ) 

The spatial position and shape difference between these new transformed meshes and those 

from the target images are visualized in 3D and quantitatively compared. The distance is de-

fined as the length of the orthogonal projection of the gravity center G of the source mesh tri-

angles on the closest triangle of the target mesh. The contribution of each triangle is weighted 

according to its area size. Statistical measurements such as the average distance, standard de-

viation (SD) and maximum distance are calculated to assess the result quantitatively.  

The third metric consists in measuring the vessel bifurcation registration error in the ab-

dominal viscera region. For each patient data, five or six specific vessel bifurcations were se-

lected in the abdominal region of target image and identified in the corresponding source im-

age by an anatomy expert. The average distance between these bifurcation pairs are provided.    

5.3 Results 

All the image processing and the registration algorithms are performed on a computer with an 

Intel ® Core (TM) i7-2600(3.40GHz) processor coupled to 16GB of RAM. The algorithms 

are compiled with Visual Studio 2012 in 64 bits. The four organs (liver, left/right kidney, 

spleen) were segmented interactively with use of the VRMed software("VRMED," 2005).  

5.3.1 Image comparison  

FIGURE 5.3 and FIGURE 5.4 show a qualitative comparison of the B-spline+MMI and Super 

Baloo algorithm with two different patient cases respectively. The results are displayed by 

superimposing the registered image (colored in green) on the original fixed image (colored in 

red) and the opacity is modified for better inspection. The three rows represent the fused im-

age before registration, registration with AW&TV and registration without AW&TV. The 

three columns represent axial, frontal and sagittal view respectively. We can see that the big 

displacement of ribs in the original image especially shown in the sagittal view of the first 

row (FIGURE 5.3 (c) and FIGURE 5.4 (b) & (c)) is effectively improved in the registration 

result with AW as shown in second row (FIGURE 5.3 (f) and FIGURE 5.4 (e) & (f)). Howev-
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er the big sliding motion and the deformation of abdominal organs have not sufficiently im-

proved. This observation holds for all other patients, where ribs and spines lead the registra-

tion due to the high contrast of the bone. The registration results without AW&TV are illus-

trated in the third row of FIGURE 5.3 and FIGURE 5.4, respectively. To better inspect the 

registration improvement, we selected some parts of the organ boundary as the region of in-

terest (ROI) and modified the opacity of the top layer image. It revealed that the previous big 

displacements are compensated for and the boundaries of the abdominal organs from the 

source and target images are correctly aligned. In the axial view of FIGURE 5.4(g) and FIG-

URE 5.4(g), we can see that the boundary sections of the liver and kidney with high curvature 

are well aligned.  

 

FIGURE 5.3: Registration result comparison with B-spline+MMI algorithm on one patient. 

The three rows represent the fused image before registration, registration with AW&TV and 
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registration without AW&TV. The three columns represent the axial, frontal and sagittal view 

of volume images.  

 

FIGURE 5.4: Registration result comparison with Super Baloo algorithm on one patient. The 

three rows represent the fused image before registration, registration with AW&TV and regis-

tration without AW&TV. The three columns represent the axial, frontal and sagittal view of 

volume images. 

5.3.2 Deformation field analysis 

The deformation field of the B-spline+MMI registration with (resp. without) AW&TV is il-

lustrated on one patient data by yellow arrows in FIGURE 5.5(a) (resp. (b)). Each arrow cor-

responds to its projection in the visualized plane. The target (colored in pink) and source (col-

ored in green) images are superimposed for better understanding of the spatial mapping of 

corresponding points. The scale factor for both deformation vectors is set to 1 in order to 
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show the real displacement magnitude of the registration result. Note that we properly select-

ed a sagittal slice index in which the left-right motion was negligible, so that the 3D motion of 

each voxel can be almost entirely represented by an arrow in the sagittal plane. On this patient 

case, the registration result with AW&TV is not good, the deformation vector direction and 

magnitude do not reflect the expected motion of tissues. Only vectors around ribs have con-

sistent direction and magnitude, mainly because they are close to the spine (cf. FIGURE 5.5 

(a)). On the contrary, the deformation vector with our proposed approach represents realistic 

transformation of abdominal viscera regions (cf. FIGURE 5.5(b)). The arrows show the map-

ping direction and magnitude of each point, the arrow PP’ in Fig.5(c) means the point on the 

liver border of the source image is correctly transformed to the corresponding point on the 

target image which is also located at the border of liver. It also indicates that the main move-

ment direction of this point is along this vector. We can also see a similar situation such as 

displacement vector SS’ at the border of abdominal viscera (cf. FIGURE 5.5 (d)) and dis-

placement vector KK’ at the border of right kidney (cf. FIGURE 5.5 (e)).  
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FIGURE 5.5: Illustration of deformation field obtained with B-spline+MMI algorithm applied 

on the images with AW&TV (a); without AW&TV (b). To better assess the validity of the 

deformation field with our approach, the three regions in boxes are zoomed in (c), (d), (e).  

The same type of results has also been observed on the other nine patients. In the sagittal 

view, we can also see that there is a big movement of the abdominal viscera along the anteri-

or-posterior direction.  

In addition, we projected the 3D deformation field in the frontal view and FIGURE 5.6 shows 

selected slices from three patient data respectively. The direction of arrows indicates that the 

abdominal viscera moves not only along the superior-inferior direction, but also along the 

left-right direction. Thus, based on the analysis of deformation field projected on the sagittal 

and frontal view, we can see the motion of the abdominal viscera in the left-right and anterior-

posterior directions cannot be neglected during the non-rigid registration contrary to the as-

sumption in (Y. Xie et al., 2011).
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FIGURE 5.6: The visualization of deformation vector is projected in the frontal view 

(a),(b),(c) from three different patient data, respectively.  

5.3.3 Quantitative analysis of registration on four abdominal organs 

This section analyzes the quantitative registration error on the surface of the liver, the 

left/right kidney and the spleen. The two registration algorithms were applied on all images 

with the same parameters, respectively. The average registration time of the B-spline+MMI 

algorithm is 300±20 seconds, and 500±25 seconds for the Super Baloo algorithm. A summary 

of the registration results on ten patients is shown in TABLE 5.1 and contains the average sur-

face distance for each organ with its SD and Max, after standard registration with AW&TV, 

and after registration without AW&TV.  

 

TABLE 5.1: Accuracy results for the B-spline+MMI and Super Baloo registration algorithms 

of the liver, left/right kidney and spleen. 

Liver  BR BSM 
with 

AW&TV 

BSM 
without 

AW&TV 

SB 

with 

AW&TV 

SB 
without 

AW&TV 

 Average Distance(mm) 6.7 3.6 1.1 3.3 2.2 

 SD(mm) 4.8 3.6 0.3 2.8 2.7 

 Max(mm) 15.4 11 1.4 8.6 8.4 

Left 

kidney 

 BR BSM 
AW&TV 

BSM 
without 

AW&TV 

SB with 

AW&TV 

SB  
without 

AW&TV 

 Average Distance(mm) 3.1 1.5 0.3 1.4 0.7 

 SD(mm) 1.8 1.1 0.1 1.0 0.8 
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 Max(mm) 7 3.4 0.5 3 2.5 

Right kid-

ney 

 BR BSM 
AW&TV 

BSM 
without 

AW&TV 

SB 

with 

AW&TV 

SB 

 without 

AW&TV 

 Average Distance(mm) 2.9 1.2 0.3 1.4 0.8 

 SD(mm) 1.8 0.9 0.1 1.3 0.9 

 Max(mm) 6.7 2.9 0.5 3.7 2.7 

Spleen  BR BSM 
AW&TV 

BSM 
without 

AW&TV 

SB AW&TV SB 

without 

AW&TV 

 Average Distance(mm) 4.8 3.5 0.5 2.9 1.0 

 SD(mm) 3.8 4.4 0.3 2.5 1.1 

 Max(mm) 11.5 12.3 1.1 7.4 3 

 Note: BSM: B-spline+MMI; SB: Super Baloo. 

One can see the registration result of B-spline+MMI with AW&TV is sufficient for the left 

and right kidney with an accuracy below 1.5 (± 1.1) mm, but is not good for the liver and 

spleen which are above 3.5 (± 3.6) mm. However, we can see that there is a bigger improve-

ment of the registration result without AW&TV for all four organs, the average distance and 

SD is below 0.5 (± 0.3) mm, only the average distance of the liver is 1.1 mm. The improved 

SD value also indicates the result between different patients is relatively stable. In addition, 

the surface mesh distance is also largely reduced with the use of the Super Baloo algorithm 

(TABLE 5.1). As expected, our approach allows the other algorithm Super Baloo to obtain a 

better surface distance error.  

From FIGURE 5.7, the improvement of the average distance for four organs with different 

registration algorithms can be inspected in a different way. It then appears that the distance 

error is reduced by a factor 4 in the case of B-spline+MMI and by a factor 2 in the case of the 

Super Baloo algorithm.  
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FIGURE 5.7: The comparison of registration accuracy for four organs with B-spline+MMI(a) 

and Super Baloo(b) algorithms. The blue bar means the average distance before registration; 

the orange bar represents the algorithm applied on the images with AW&TV, the yellow bar 

represents the result without AW&TV.                                                

Finally, the important improvement of our registration approach can be inspected visually on 

3D models. FIGURE 5.8 shows the visualization result from one patient case with 

Bspline+MMI and Super Baloo algorithm, respectively. We can see from the FIGURE 5.8 (a) 

that there is a large distance between the surface of the transformed mesh from the result with 

AW&TV and the target mesh (the second column in the FIGURE 5.8(a)). However, this dis-

tance has been largely reduced on data without AW&TV (right column in the FIGURE 5.8 

(a)). A similar result is obtained with a registration using the Super Baloo algorithm (cf. FIG-

URE 5.8 (b)). 
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FIGURE 5.8: Visualization of target mesh model and transformed mesh models with different 

algorithms. At each row of the picture, the mesh model from target image is displayed in sur-

face style with pink color. It is compared with the mesh model from the source image, after 

standard registration with AW&TV (middle column), and with the mesh model after registra-

tion without AW&TV (right column), colored in pink, orange and yellow from left to right. 

From the first row to the last one the considered organ is liver, left kidney, right kidney, 

spleen respectively.  

5.3.4 Accuracy analysis of abdominal vessels 

In addition, another quantitative analysis is performed by calculation of the distance between 

manually selected vessel bifurcations inside the viscera and outside organs. The average dis-

tance before registration for all patients is 11 mm, this value is reduced to 8 mm on the regis-

tration results with AW&TV, and finally reduced to around 1 mm on the registration without 

AW&TV. FIGURE 5.9 shows an example of the comparison of vessel matching with B-

spline+MMI algorithm from two patients. The three rows represent the image comparison be-

fore registration, after registration with AW&TV, and after registration without AW&TV. 

The three columns represent the target image, the source image and the superimposition of the 

result image on the target image. In the first row, one can see that the vessels marked by a red 

circle in the target image do not appear in the corresponding region in the source image (cf. 

FIGURE 5.9(a)). Whereas there is no significant improvement after the registration with 

AW&TV (cf. FIGURE 5.9(a)), one can see that the corresponding vessels are matched very 
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well after the registration without AW&TV (yellow circle). To better assess the comparison 

between both registration results we superimposed the registered image on the target image, 

allowing to see that the motion has been well compensated with our approach. Similar con-

clusion can be obtained from inspection of the second patient data (cf. FIGURE 5.9 (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.9: Comparison of abdominal vessels with Bspline+MMI registration algorithm on 

two patients. The vessel region of interest is highlighted in red (resp. yellow) in target (resp. 

source) image. The first row is before registration, the second row is the result after registra-

tion with AW&TV and the third row is the result after registration without AW&TV. The 
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three columns represent the target image, source image and the superimposition of the regis-

tered image on target image. 

5.4 Discussion and conclusion 

In this chapter we have proposed a simple yet efficient approach to accurately register ab-

dominal viscera in multi-phase CT images from a priori knowledge of the AW and the dia-

phragm. Indeed, we have basically chosen to remove from both source and target images the 

anatomical structures outside prior segmented envelops and to replace it by a constant value. 

In order to show that this solution does not depend on the registration method, we have tested 

it using two state of the art algorithms: MMI + B-splines and Super Baloo. Experiments on 10 

patients have demonstrated that both registration algorithms obtain a much better accuracy 

using our approach, since it reduces the registration error on average from 2-3 mm to 1 mm or 

less. Our experiments also indicated that removing the thoracic viscera from the source and 

target images is not always necessary, particularly when the breathing motion is not signifi-

cant. However, further tests are still necessary to clearly quantify when thoracic viscera 

should be removed to ensure the registration accuracy. Since this error mainly comes from the 

inconsistent motion between the lungs (which expand) and the liver (which slides on the dia-

phragm), a basic analysis of the lung deformation may be sufficient to decide when the tho-

racic viscera should be delineated.  

We would like to highlight that our registration can be helpful for a vessel segmentation task. 

Indeed, arteries are usually easy to recognize in arterial phase CT scans due to their very high 

intensity whereas veins are almost invisible. On the contrary, veins are visible in the venous 

phase but since arteries are also visible with a similar intensity value (due to the remaining 

contrast agent in the arteries), it is not possible to separate them. Using the registration of the 

arterial phase image on the venous phase one, it should be much easier to automatically ex-

tract the veins positions during the venous phase.  

To conclude, since it clearly appears that the knowledge of the AW position provides crucial 

information for many applications (registration, visualization, segmentation), we believe it is 

worth trying to find an algorithm that automatically (or nearly automatically) delineates it in 

CT images. In the next chapter, we will propose an alternative analysis of this problem and 

provide some prospective results 

. 
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Chapter 6 Automatic segmentation of AW: prelimi-

nary results 

We have shown in the previous chapter that the removal of the AW in the multiphase CT im-

ages had a great influence on the registration accuracy. Although we already provided in 

Chapter 3 two efficient tools for fast delineation of the AW and TV, it is clear that it would be 

better to avoid such step and provide it automatically. We have already analyzed in Chapter 3 

the literature regarding the automatic segmentation of the AW and results were not sufficient-

ly convincing, which is not surprising due to the challenging properties of abdomen CT im-

age. Most of work relied essentially on local gradient based approach in addition (or not) to 

some elastic constraint on the general segmentation shape.   

In this chapter, we propose a first step toward automatic segmentation of abdominal wall 

based on the spatial a priori knowledge of muscle border and ribs. We firstly analyze the fea-

tures of CT image and propose our strategy to perform the segmentation in a selected stack of 

consecutive 2D frontal views, and treat the abdominal wall separately in left and right part. 

Secondly, we explain how we automatically extract spatial a priori knowledge which includes 

lung mask, muscle border and rib mask using morphological operators. 

Then, we explain how we provide an initialization of the abdominal wall segmentation from 

muscle in the AW and how we refine it using gradient information. Finally, an initial result of 

this automatic segmentation approach on 3 patient data is presented and shows that our ap-

proach is promising even if many improvements are necessary to reach a sufficient accuracy. 

  



  

90 

 

6.1 Image analysis 

Since the thoracic wall is distinctive in CT image and easy to segment (cf. FIGURE 6.2), we 

focus on the segmentation of abdominal wall in this chapter.  

We have reviewed in section 4.1 that there has been several work related to segmentation on 

abdominal wall in the axial or sagittal view, but the result is not accurate enough. The com-

plex shape of abdominal wall in axial view makes it difficult to be segmented automatically. 

The automatic segmentation work on sagittal view has also been investigated by 

Vandemeulebroucke et al., 2012, they obtain the thoracic wall edge based on level set algo-

rithm, whilst it converges to the skin edge in the upper abdomen area. 

We here show three views of CT images from three patient and five slices are extracted in 

each view (FIGURE 6.1). We can see the AW has circular shape in the axial view and multi-

ple contacts with liver, spleen and colon. In such cases, it is very difficult to distinguish the 

border of AW, except in the region below the liver. In sagittal view, the anterior shape of the 

lung can help extrapolate the AW anterior border, however this strategy holds only in the sag-

ittal slices which do not contain the heart and psoas muscle  

In the frontal views, the left and right frontiers of AW seem easy to identify, though there are 

vague regions where AW is connected to abdominal organs. Typically, the shape of ribs can 

be extracted to extrapolate the AW segmentation. The psoas close to the spine and can be 

identified based on their position with respect to the spine. 
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(a) 

 

(b) 
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 (c) 

FIGURE 6.1. Image analysis of three views from three patients. (a) axial view (b) sagittal 

view (c) frontal view. In each view, each row represents the image from one patient and five 

slices are extracted to show the features of AW. We highlight in red typical region are diffi-

cult to extract. 

Furthermore, in Chapter 4, we have seen that the curvature of abdominal wall is low and its 

shape varies smoothly along the cranio-caudal direction. The AW muscle (marked in blue in 

FIGURE 6.2) also has similar curvature and a distinctive intensity value with respect to the 

surrounding fat tissue. Therefore, we propose a new strategy with use of this spatial 

knowledge to automatically delineate the AW in the frontal views.  

The AW segmentation is processed in left and right separately. Using the right AW segmenta-

tion as example, the details of our strategy is as follows. The bottom point of right lung clos-

ing the AW is used as a first control point (orange point in FIGURE 6.2). The distance along 

x axis between this point and the muscle border can be calculated. Then a second control 

point is obtained below the ribs closing the AW from the shape of the muscle border. Based 

on the similar shape between the AW and AW muscle border, an initial estimation of AW can 
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be obtained (cf. FIGURE 6.2). Finally, it will be refined based on gradient information along 

the X axial direction.  

 

FIGURE 6.2: Illustration of the segmentation strategy of the abdominal wall in 2D frontal 

view. The place of muscle border is marked by a blue curve.  

6.2 Method overview and a priori data extraction 

6.2.1 Overview of strategy 

The flow chart of our strategy is summarized in the FIGURE 6.3. Firstly, the following imag-

es are generated: lung mask image, the muscle border mask image by removing the fat tissue 

and skin and rib mask image without spine and pelvis. Then, the first and second control 

points are extracted based on previous generated images. The rib information is also used to 

select the region of segmentation in the frontal view. The initial border of abdominal wall is 

generated based on the distance between both control points and the muscle border. Finally, 

the refinement of the initial border of the abdominal wall is carried out using the gradient in-

formation between the abdominal wall and the abdominal viscera.  
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FIGURE 6.3: Flow chart of our strategy.  

6.2.2 Generation of lung mask  

There are already many efficient and automatic approaches for the segmentation of lung, 

which are based on pixel information (Kalender et al., 1991;S. Hu et al., 2001). Here, we pro-

pose an automatic segmentation method for the lung using a standard sequence of morpholog-

ical operations. The detail of our approach for extracting lung mask is as follows. In the CT 

image, the intensity value of air is approximately -1000 Hounsfield units (HU), the lung is in 

the range of -900 HU to -400 HU, and  the chest wall, ribs, fat tissues, muscles are bigger than 

-400 HU (Brown et al., 1997 ; M.-T. Wu et al., 1994).  

Therefore, a 3D binary threshold operation with the range parameter [-950, -450] is firstly 

performed to roughly obtain the lung region (cf. FIGURE 6.4(b)). After this operation, there 

are still some voxels, such as noise or the outer skin layer remaining in the image. Therefore, 

we extract the largest region using a 3D labeling technique, which removes unconnected 

voxels (cf. FIGURE 6.4 (c)). Then, a 2D labeling technique is carried out to obtain two largest 

regions in each frontal view slice (cf. FIGURE 6.4 (d)). The opening and closing operators 

with 3*3 element size are performed to remove some remaining tissues such as trachea and 

bronchi in the image. Since the first threshold step will also lead to some holes in the mask 

due to some tissue within the lung, a median operation with 3*3 element size and hole filling 

filter are subsequently applied. The final lung mask is generated (cf. FIGURE 6.4(e)).  
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 (a)         (b)   (c)         (d)   (e)  

FIGURE 6.4: The generation process of lung mask. (a) Original CT image (b) Threshold op-

eration (c) 3D labeling (d) 2D labeling on frontal view (e) Final lung mask after hole filing 

filter 

6.2.3 The segmentation of muscle border 

The outer layers of abdominal muscle are the fat tissue and the skin with varying thickness in 

different slices (marked by pink ellipse in FIGURE 6.5(a)). Since the intensity value distribu-

tion of fat tissue is between [-200, -50], a threshold operation with range parameter [-1024, -

50] is applied. To remove the remaining skin (cf. FIGURE 6.5(b)), a morphological OPEN-

ING operation with element size 3*3*3 is performed, followed by a CLOSING operation with 

same element size to close the possible holes caused by the previous OPENING step. The 

mask image without the fat tissue is obtained after using the MEDIAN operator for removing 

some noise in the entire volume image (cf. FIGURE 6.5(c)). Finally, the magnitude of the 

gradient of this mask image in x direction (MGX) is calculated by a 3*3 convolution with the 

first derivative of a Gaussian (cf. FIGURE 6.5(d)). The image of signed edge will be used in 

Sec. 6.3.2 for control points extraction.   

 

   (a)           (b)                 (c)                     (d) 
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FIGURE 6.5: The segmentation of muscle border. (a) Original CT image in frontal view; (b) 

new image after the fat tissue removing;(c)New mask image without fat tissue and skin; (d) 

Magnitude image of the gradient in x direction. 

6.2.4 The segmentation of ribs 

There are 12 pairs of ribs in the human body, and 8-10 pairs are usually visible in the CT im-

age depending on the acquisition protocol (Shen et al., 2004). One end of them connects with 

the spine, while upper ribs also connect with the sternum at the anterior end. The CT value of 

the bone ranges from 250 HU to 1000 HU which is bigger than the value of most surrounding 

organs or tissues. They enclose the whole thoracic viscera and part of upper abdomen viscera. 

They are located symmetrically with a stable ellipse shape in the 2D frontal views. These ana-

tomical features can facilitate their labeling in CT image. There are much work on the seg-

mentation of bones, which includes ribs, spine and sternum (D. Kim et al., 2002;Banik et al., 

2010;Yao et al., 2006;Klinder et al., 2007;Kang et al., 2003), however, there are few about rib 

segmentation only with the purpose of using them as feature points (Staal et al., 2007; L. 

Zhang et al., 2012;Shen et al., 2004).  

Our approach contains main ideas from the work of (L. Zhang et al., 2012; Shen et al., 2004). 

The segmentation algorithm mainly includes three steps. Firstly, bones are extracted from an 

original grey level CT image, the result contains all ribs, spine and pelvis. Secondly, a special 

template slice in a frontal view is selected, which intersects almost all ribs, but does not con-

tain the spine and sternum regions, and the centroid of each rib can be obtained. Finally, a re-

cursive extraction based on the template slice along Y direction is used to extract all ribs in-

dependently. The details are described below: 

-Step1: extraction of bones 

The bones are roughly extracted using a threshold operation with the range of [200 HU, 

1000HU] (cf. FIGURE 6.6(a)). In the CT image, an elliptic rib may be split into several re-

gions due to the noise and partial volume effect. Taking the rib size, shape and position into 

account, we designed four rules to solve above issues. 

Rules 1: A morphological closing operation with a structure element (SE) of 2 pixels radius is 

performed to merge small closing regions and fill holes, which should be originally belonged 

to one rib.  
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Rule 2: The largest 3D region is selected by using the LABELING operation. 

Rule 3: Size constraint is employed to exclude most of the non-rib regions. The size range of 

the rib is set between 10 and 450 pixels in 2D frontal view.  

Rules 4: Ribs should be close to the leftmost or rightmost boundary of the lung, the x axial 

distance should be smaller than 25 pixels. 

Using the Rule 1, one connected component per rib is obtained (cf. FIGURE 6.6(a)) and the 

bone mask which contains ribs, spine and pelvis are finally extracted with use of Rule 2 (cf. 

FIGURE 6.6(b)). 

-Step2: extraction of seed points of ribs in a template slice 

After the generation of the bone mask image, the next step is to remove the spine, sternum 

and pelvis. We firstly select a frontal slice which intersects almost all ribs but does not contain 

the spine and sternum. We call this slice a template slice, which requires a priori information 

of the anatomy. The choice of this slice index is patient specific and is usually around the 

middle slice in frontal view. However, there are still pelvis and other objects which are not 

region of interest in the template slice (cf. FIGURE 6.6(c)). The extraction of ribs in this tem-

plate slice is illustrated in FIGURE 6.7. 

 

      (a)                                      (b)         (c)                     
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FIGURE 6.6: Illustration of the bone extraction using morphological filter. 

 

FIGURE 6.7: The diagram of rib extraction in the template slice 

Firstly, a 2D labelling operator is applied to separate all individual objects in the template 

slice. The geometric information of all labeled objects, including size, label ID, centroid and 

bounding box is obtained. Since the pelvis is located at the bottom of the image, a good solu-

tion for removing it is to use the Rules 4 we have defined before.  

In addition, the Rule 3 is applied to remove outlier objects which size is smaller than 10 pixels 

or bigger than 450 pixels. Finally, all ribs in this template slice (9-11 pairs) are extracted, and 

the coordinate of centroid of each rib is stored in a vector.  
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FIGURE 6.8: Example of rib extraction in several frontal slices of a same patient. 

Step 3: recursive propagation  

Once all ribs have been obtained in the template slice, a recursive propagation of the ribs from 

the template slice along anterior (to 1st slice) and posterior direction (to Ymax slice) will be 

performed. Ymax represents the index of maximum number slice in frontal view. This propa-

gation scheme is illustrated in the FIGURE 6.9. 

More precisely, the centroid of each rib from template slice is employed as an initialization to 

search the closest connected component in both next anterior and posterior frontal slice. The 

search region is a rectangle of 20*20 pixels. The centroid information of the found compo-

nents is stored and used to initialize the search in the next slice. This process is iteratively car-

ried out until all slices in anterior and posterior directions are processed. 
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FIGURE 6.9: Illustration of the mechanism of rib extraction. The recursive propagation starts 

from the template slice and goes toward anterior and posterior directions. 

6.3 Segmentation of the AW 

The generation of the initial border is based on the anatomy shape of AW muscle border. The 

left and right regions of a frontal slice are processed separately. In each region, we propose to 

generate two control points close to the AW. The first control point, is the bottom point of 

right (resp. left) lung, attached to the right (resp. left) abdominal wall, and is represented by 

CPRF (resp. CPLF). The second one (CPRS) is attached to the AW but located below the liver. 

The second point in the left region (CPLS) will be computed from the position of CPRS. Final-

ly, the initial right (resp. left) border of AW is generated from the AW muscle shape between 

the height of both control points CPRF and CPRS (resp. CPLF and CPLS), and is refined using 

gradient magnitude.  

6.3.1 Search of the first control points CRF and CLF 

The left bottom point of the right lung (resp. right bottom point of the left lung) is chosen as 

the CPRF (green circle in the FIGURE 6.10(a)). The algorithm to compute the CPRF coordinate 

is as follows (this flow chart can be seen in FIGURE 6.10(b)). In the lung mask image, we 

start at the top-left corner of the image and scan each vertical line from top to bottom and 

from left to right. The scanning stops once it reaches a pixel which value is 255 (point P in the 

FIGURE 6.10(a)). Then, we begin to search along the border of the right lung until it reaches 

its bottom (marked by a green circle on the right lung in the FIGURE 6.10(a)). The searching 

approach for CPLF is similar and symmetrical. 
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                     (a)                                                      (b) 

FIGURE 6.10: (a) Illustration of the searching of CRF and CLF (b) Flow chart of the algorithm 

to find  of CRF and CLF. 

6.3.2 Search of second control points CPRS and CPLS 

The second control point (CPRS and CPLS) is searched in the MGX image (cf. FIGURE 

6.11(a)) generated at the previous step (cf. Section 6.2.3). The search process of CPRS in the 

right AW is illustrated in FIGURE 6.11(b). Firstly, we choose the lowest point of rib as a 

starting point (point PR in FIGURE 6.11(b)). Then we search toward the left in the MGX im-

age to find the border of AW muscle. The threshold value of the border should be smaller 

than -5. Once we reach the border, then we change the search direction toward down along 

the border of AW muscle (red arrow in FIGURE 6.11(b)). For each point of the border, we 

check toward right if there is a pixel with a high gradient value (bigger than 5). The search 

extent of 30 mm is based on our prior knowledge about the width of the AW muscle. We con-

tinue along the border until this point is found. This point is the second control point CPRS (cf. 

FIGURE 6.11(b)).The flow chart of this search process is illustrated in FIGURE 6.12. CPLS is 

the symmetrical point to CPRS on the AW and has the same Z coordinate (cf. FIGURE 

6.11(b)).   
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                              (a)                                                                    (b) 

FIGURE 6.11: (a) The MGX image generated from mask image without fat tissue; (b) Illus-

tration of the process to define CPRS and CPLS. The point PR is the lowest centroid of ribs. 

CPRS and CPRF are illustrated in FIGURE 6.13). 

 

FIGURE 6.12: The flow chart of CPRS and CPLS localization in the MGX image 
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FIGURE 6.13: Illustration of two control points in the AW region. To better show the points, 

the region in the blue rectangle is enlarged. CPRS and CPRF are highlighted in the red circles. 

6.3.3 Generation of the initial border of the AW  

The generation mechanism of the initial border of the right AW can be illustrated in the FIG-

URE 6.14. 

 

FIGURE 6.14: The mechanism of the initial AW border generation. Q1Q2 represents the mus-

cle border. CPRS and CPLS are the control points.  

We firstly compute vertical distance dvertical  between CPRS and CPRF 

(𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝐶𝑃𝑅𝑆(𝑧) − 𝐶𝑃𝑅𝐹(𝑧)). Let Q be one point of Q1Q2, its corresponding point P on 

the AW is located on the right of Q at the distance: 
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𝑑(𝑃, 𝑄) = 𝛼 ∗ 𝑑2 + (1 − 𝛼) ∗ 𝑑1     (6.1) 

where α =
p(z)−p2(z)

dvertical
, d1, d2 represents the distance of point CPRS and CPRF  to the AW muscle 

border, respectively. 

The AW muscle border and the generated initial border of the right abdominal wall can be 

seen in the FIGURE 6.15.The initial border of the left abdominal wall is obtained with a simi-

lar approach using CPLF and CPLS.  

 

FIGURE 6.15:The generated initial border of right abdominal wall is completed from the AW 

muscle border. 

6.3.4 Refinement of the segmentation 

The generation of the initial border is based on the assumption that the AW and the AW mus-

cle border are parallel. However, the width of the abdominal wall is usually bigger than the 

parameter 𝑑1or 𝑑2. The initial generated border is thus usually located inside the true AWl 

(cf. FIGURE 6.15). A further step is required to refine the border to the actual position of 

AW.  

Our refinement strategy is to search the edge of the AW at the right side of the initial border 

(cf. FIGURE 6.16(a)). The refinement is performed using the gradient magnitude in the x axi-

al direction of original CT image (cf. FIGURE 6.16 (b)). Given each point of the initial bor-
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der, we search toward right to find the pixel with the highest gradient in a limited distance 

range. There are three types of pixel that can be found: (1) edge of a rib (2) edge of the AW 

(3) not the expected pixel. For the first and second type pixels, we can directly employ them 

as border of abdominal wall. For the third type pixel, we abandon it. The points at such posi-

tion can be obtained using interpolation technique from neighbor frontal slices. Finally, the 

result of our approach has been applied on three patient CT images (cf. FIGURE 6.17).  

 

                                         (a)                                                           (b) 

FIGURE 6.16: Illustration of the refinement step. (a) Illustration of the position of the initial 

border; (b) The magnitude of gradient in x direction of the original CT image 

6.4 Discussion and conclusion 

In this chapter, we have developed an automatic algorithm for the AW segmentation in a spe-

cific stack of frontal slices, using a priori knowledge of lung, ribs and muscle of abdominal 

wall. We believe this work is a first step toward a complete methodology to fully extract the 

AW in CT images.  

Indeed, the left and right frontiers of the AW in the frontal view are almost symmetrical and 

easy to identify. Though there are vague regions between AW and abdominal organs or tis-

sues, its shape is approximately parallel to the AW muscle border which is easy to obtain. To 

compute the AW initialization, we thus define and automatically extract two control points to 

construct a spatial relationship between the AW muscle border and the AW. Initial qualitative 

experiments on three patient data indicate that our approach can obtain reasonable results 
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close to the liver despite the weak gradient between it and the AW, which is usually a critical 

issue in the segmentation.  

 
FIGURE 6.17: Automatic segmentation of AW in frontal slices. Three rows represent the im-

age from different patients and several slices are extracted for each patient, the slice index has 

been marked. 

Since our approach generate control points in each frontal view based on rib and the bottom 

points of lung, it does not work in the slices where rib information is missing. We think that 

an analysis in sagittal or axial slice may allow to perform the segmentation of AW in the ante-

rior region that our approach currently does not consider. We believe it may be an advantage 

to perform a piecewise segmentation using different slice angle in the data volume, so that we 

can combine all good features or a priori information of each view and avoid its limitation. 

To conclude, we believe our approach may lead to a fully automatic approach since the meth-

ods use a good prior to find the real position of the AW and also inspire the segmentation of 

other tissues in similar context. To reduce the sensitivity to fast density changes, we should 

include some mechanical constraint on the extracted contours so that they remain smooth. A 
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quantitative comparison of our segmentation result with ground truth data, which has been 

obtained in the Chapter 4 is also required in the future. 
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Chapter 7 Conclusion and perspective 

The purpose of this thesis was to implement an accurate registration of multi-phase CT image 

on abdominal viscera to help the diagnosis and treatment of abdominal cancers. We have de-

signed two segmentation tools to remove the AW and thoracic wall quickly after analyzing 

the registration issue caused by the breathing motion. We applied two non-rigid registration 

algorithms on the new images without AW and TV generated from previous segmentation, 

the evaluation on patient data demonstrates that our solution can remove the sliding motion 

effectively and obtain realistic accuracy. Since the position of AW can be used as a prior for 

many applications, its automatic segmentation has also been explored. The contributions of 

our research can be categorized as following. 

7.1 Contributions 

7.1.1 Analysis of the motion mechanism in the abdominal viscera 

We have analyzed that the diaphragm and the inter-costal muscle are the main driving factor 

of the breathing motion which results in different kind of motion in the thoracic and ab-

dominal viscera. During the breathing motion, the lung moves along cranial-caudal direction 

with a big magnitude while the AW moves mainly in the antero-posterior direction: thus a big 

sliding motion happens at the AW interface. There is also a sliding motion between ab-

dominal organs (in particular the liver and spleen which are located beneath the diaphragm) 

and lung since these organs rotate and slide along antero-posterior direction  

These two sliding motions cause the motion field discontinuity at sliding interface and con-

tradict standard registration approaches which assume the spatial deformation is homogene-

ous across the whole image region. We conclude that the position of these sliding motions 

should be taken into account as a prior information to obtain an accurate registration result on 

abdominal viscera, whereas the small sliding motion between abdominal organs should be 

properly recovered with a standard local deformable transformation model. 
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7.1.2 Fast segmentation of abdominal and thoracic wall  

We have proposed to adopt the sliding motion interface as a spatial a priori for the registration 

of abdominal image. However, the segmentation of abdominal wall is a challenge because of 

its multiple connections with abdominal organs with similar intensity values. Diaphragm is 

also difficult to delineate close to the heart since grey level values can be close to liver ones.  

To tackle these segmentation issues, we used smooth curvature property of the AW and im-

plement two semi-automatic softwares which automatically generate interpolated surfaces 

from control points drawn by the user in some slices only. Our quantitative experiment on 20 

patient images has demonstrated that 15 slices on average are enough to reach an accurate 

segmentation. We have also shown that these segmentation steps could be performed in a very 

reasonable time slot thanks to a tricky user interface, especially adapted to the task.  

7.1.3 Accurate registration of abdomen multiphase CT 

We have proposed a simple yet effective approach to provide an accurate registration of ab-

dominal viscera in multiphase CT images based on sliding motion interface position. Indeed, 

replacing the tissues outside the AW and the diaphragm interface by a constant intensity value 

is sufficient to remove the discontinuous deformation area in the images to be registered. 

Evaluation on 10 patient CT images has demonstrated the efficiency of our strategy using 

three evaluation metrics. In addition, two state of the art algorithms (MMI + B-splines and 

Super Baloo) have been tested and similar outcome has been obtained which show the pro-

posed strategy is not algorithm dependant. These experiments also indicated that there is 

sometimes a big registration error close to the diaphragm when the TV has not been removed 

from the images to be registered. This is consistent with our previous analysis of the motion 

mechanism in abdominal viscera, where we highlighted that the sliding motion between the 

lungs and the abdominal viscera can be important, and thus highly discontinuous. Further 

tests are still necessary to clearly quantify when thoracic viscera should be removed to ensure 

the registration accuracy. Since this error mainly comes from the inconsistent motion between 

the lungs (which expand) and the liver (which slides on the diaphragm), a basic analysis of the 

lung deformation may be sufficient.  

It is interesting to note that if an accurate registration of entire abdomen is obtained, the seg-

mentation of abdominal organs can be propagated from one segmented image only to the oth-
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er images. Such method is thus extremely useful for surface mesh based research, since it 

helps to avoid an important segmentation task on the other images of the same patient.  

7.1.4 Automatic segmentation of AW  

Since the registration result based on interactive segmentation is very satisfying, we have fur-

ther investigated an automatic segmentation approach of the AW. After analysis CT images in 

axial, frontal and sagittal views, we found that there are some advantages to perform the seg-

mentation in the frontal view. In particular, the AW muscle border is approximately parallel 

to the AW border. Therefore, we have designed an automatic segmentation algorithm for a 

selected stack of frontal view by employing a priori spatial information of ribs, lung and mus-

cle border. Though the experiments on three patient images are not sufficient, results have 

shown that our approach can successfully solve the critical issue of vague regions between the 

liver and the abdominal wall.  

7.2 Perspective 

7.2.1 Extension to other image modalities 

On the one hand, we need to apply our approach on much more arterial and venous image da-

ta in order to confirm its robustness. On the other hand, we know that the sliding motion is a 

common problem for all 3D intensity-based registrations on the abdominal region. Thus, it is 

necessary to extend our approach to much more modalities which are also used in surgical 

planning or post-operative surgical evaluations. For instance, preoperative CT and MR images 

are used for surgical planning, pre-operative CT/MR and intra-operative MR images are inte-

grated for image-guided surgery, pre-operative CT/MR and post-operative CT/MR are used 

for outcome evaluation of a surgical treatment. However, in such case, the image information 

matching is probably more complex due to the long interval between the acquisitions. There-

fore, the feasibility and accuracy of our registration approach needs to be evaluated. 

7.2.2 Improvement of the fast segmentation of AW 

For the fast segmentation of AW, we empirically evaluated the number of necessary slices to 

obtain an accurate segmentation. However, we have to admit that this selection is user-

dependent, which also leads users to spend much time on this choice. We believe an automat-

ic selection can be achieved by taking two factors into account: the length of the volume im-

age and the curvature of the AW along the cranio-caudal direction. The first factor can be 
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used to automatically calculate the NSS based on the knowledge resulting from the previous 

experiment. Although the second factor cannot be computed directly, a good approximation 

of the AW curvature can be computed from the AW muscle shape which is easy to extract. 

Once the curvature along cranio-caudal direction is known in each point, we can use Shannon 

theory to automatically adapt the density of slices with respect to the shape (considering the 

shape as a signal with a varying frequency). This approach would have two advantages, 

speeding up the segmentation process and making the surface interpolation more accurate.  

7.2.3 Improvement of the automatic segmentation of abdominal wall 

Automatic extraction of ribs is mainly based on threshold operation, however, this value is 

patient specific, and also depends on the amount of contrast agent in images. There are also 

some overlaps between the lowest intensity value of bones and highest values of surrounding 

tissues, particularly in the contrast enhanced image, the intensity value of vessels or the liver 

is around 400 HU. Other approaches about ribs segmentation have been proposed using rib 

center line progressive tracing (Yao et al., 2012), region growing (Ramakrishnan et al., 2011) 

and shape descriptor (Gargouri et al., 2013), we plan to implement and combine them with 

our current method in order to decrease the influence of contrast agent. 

In the initial border generation, we use the shape information of muscle border and the posi-

tion of two control points. Then, this initial border is used to refine the edge of abdominal 

wall. The refinement strategy finds the pixel with a highest gradient magnitude which is seen 

as edge of abdominal wall. However, there is tissue or region with relative low intensity at 

right of the initial border but within the abdominal wall. In such context, this edge will be 

recognized as an edge of abdominal wall by our algorithm. We believe that if an intensity val-

ue distribution model of the AW can be built, it will be easier to recognize the outliers. 

One limitation for segmentation in the frontal views is that there is no rib information that can 

be employed, particularly at the end of slices in anterior and posterior direction. Therefore, a 

solution should be investigated to decide the range of segmentation along anterio-posterior 

direction. We think the number of ribs in frontal slice can be used as a reference for the range 

selection. For the remaining slices, we propose to switch the segmentation process in sagittal 

or axial views. 

The posterior part should be tackled in axial view, since it follows the spine boundary. How-

ever, a dedicated process should be included to take the psoas muscle into account. This 
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seems feasible using anatomical knowledge: psoas are located on the right and left regions of 

the spine, have a specific elliptic shape in axial slices and its grey value is rather constant. 

The anterior part may be tackled either in axial or sagittal slices. Indeed, it seems easy to fol-

low the lung curvature to extract the AW in sagittal slice, yet this basic strategy will not work 

on sagittal slice containing the heart. We may then resort to axial slice analysis using the ster-

num or anterior muscle border. More generally, it seems relevant to try to find the advantages 

of each orthogonal view to perform a piecewise extraction of the AW. 

7.2.4 Integrating our registration algorithm into a surgical planning software 

Since our registration accuracy has reached one pixel level, it is meaningful to integrate it into 

a surgical planning software to facilitate the surgeons understanding of tumor and vessel posi-

tion with respect to surrounding tissue. However, there is always gap between research and 

clinical application. For instance, we know that the abdomen registration works well if the 

segmentation of the AW and the TV have been properly performed, yet it is hard to predict to 

what extent the registration will fail if the prior segmentation contains some mistakes (like 

piece of rib or muscle included in the segmented images), which will certainly happen from 

time to time. Since the surgical planning cannot afford such mistake, we should be able to 

provide a supplementary tool allowing the user to quickly understand whether the registration 

is accurate or not, and if possible to give instructions to correct the mistake. 

The path to reach a certified registration software of the abdomen is still long. 
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A. French summary 

A.1 Introduction 

A. 1.1 Contexte Clinique 

Le nombre de cancer de l’appareil digestif, incluant le foie, les reins et le pancréas est en 

augmentation constante et représente un facteur de mortalité non négligeable dans le monde. 

Les traitements actuels, comme la transplantation, la résection et la thermo-ablation par radio-

fréquence, sont efficaces et réduisent l’atteinte aux tissus sains avoisinant la/les tumeurs. 

Le choix du traitement se fait habituellement à l’aide d’images préopératoires (typiquement 

TDM) pendant la planification chirurgicale. Comme les images TDM standard ne permettent 

pas souvent de bien différencier les tissus cancéreux des tissus sains, il est classique de 

procéder à une injection de produit de contraste dans le sang du patient. Cela permet d’obtenir 

deux images différenciées, appelées temps artériel et temps veineux, selon la position de 

l’agent de contraste dans le réseau sanguin du patient. Néanmoins, certaines informations 

visibles dans une des modalités ne le sont pas forcément dans l’autre (tumeur visible dans le 

temps artériel uniquement et veines dans le temps veineux). Il est donc nécessaire de procéder 

à une fusion d’images TDM artérielle et veineuse, communément appelée multi-phases, afin 

de pouvoir bénéficier de toutes les informations importantes simultanément. Cette fusion est 

communément appelée recalage multi-phase. 

Afin de réaliser cette tâche, il est habituel de recourir à un algorithme de recalage. Cependant, 

le recalage d’images abdominales est complexe car les tissus sont déformés en permanence 

par les muscles et par la gravité. En particulier, les organes abdominaux glissent le long de la 

paroi abdominale pendant la respiration, ce qui rend une fusion d’image souvent inutile étant 

donné que le patient n’arrive que très rarement à reproduire la même respiration pendant les 2 

acquisitions TDM artérielle et veineuse. La FIGURE.A. 1, montrant 2 coupes frontales issues 

d’images multi-phases, illustre bien ce phénomène : on peut voir que le foie est descendu de 

plusieurs centimètres et que les reins ont été déformés en plus d’avoir bougé aussi dans la 

direction antéro-postérieure. Ce phénomène génère un champ de déformation discontinu au 

niveau de l’interface de glissement. A noter qu’il y aussi un glissement entre les poumons et 

les viscères abdominaux qui ne peut pas non plus être négligé. 
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(a)     (b)     (c) 

FIGURE.A. 1: Illustration du glissement et des déformations des viscères le long de la paroi 

abdominale après superposition de l’image de phase artérielle (a) sur l’image de phase 

veineuse (b) dans une vue frontale. Le résultat de la superposition des deux images est visible 

dans (c), la courbe jaune en pointillé soulignant l’interface de glissement. 

A.1.2 Objectifs 

L’objectif de cette thèse est de fournir une méthode permettant de recaler les images multi-

phases TDM des viscères abdominaux, malgré le phénomène de glissement évoqué dans la 

section précédente. Notre approche devra surmonter les problèmes suivants : 

1) La technique devra permettre de recaler les organes de l’abdomen et leurs vaisseaux 

environnants. 

2) Nous souhaitons que notre approche prenne en compte la respiration et son influence sur 

les viscères abdominaux. 

3) Nous nous limitons dans l’immédiat au recalage d’images TDM multi-phases, et étendrons 

si possible au recalage TDM-IRM. 

A.1.3 Notre stratégie 

Notre état de l’art n’a pas mis en évidence de travail de recalage sur la région abdominale 

prenant en compte le phénomène de respiration. En revanche, des travaux gérant les 

problèmes liés à la respiration ont été réalisés sur des images du thorax (Ruan et al., 2008; A. 

Schmidt-Richberg et al., 2009; Alexander Schmidt-Richberg et al., 2012a; Alexander 

Schmidt-Richberg et al., 2012b; D. Pace et al., 2013; Y. Xie et al., 2011; Vandemeulebroucke 

et al., 2012 ). 

En accord avec les conclusions de ces travaux, nous pensons que l’information a priori de la 

zone de glissement est nécessaire pour permettre un recalage réaliste et précis dans la zone 

abdominale. Notre stratégie est illustrée sur la FIGURE.A. 2. La première étape consiste à 

réaliser une segmentation rapide de la paroi abdominale et du diaphragme, et de générer de 

nouvelles images exemptes de la paroi abdominale et des viscères thoraciques. En second 

lieu, un algorithme de recalage non-rigide approprié est appliqué sur les nouvelles images 
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FIGURE.A. 2: Illustration de notre stratégie. 

A.2 Segmentation rapide de la paroi abdominale et du diaphragme 

A.2.1 Outil de segmentation rapide de la paroi abdominale 

La segmentation rapide de la paroi abdominale est basée sur la faible courbure de la paroi 

dans la direction cranio-caudale. Etant donné une image 3D de l’abdomen, la stratégie de 

notre outil de segmentation rapide est décrite ci-après. 

L’utilisateur sélectionne plusieurs coupes axiales, espacées d’un ou plusieurs centimètres, 

dans laquelle il va segmenter la paroi abdominale à l’aide de points de contrôle. Une 

interpolation cubique 2D de type spline à partir des points de contrôle est choisie pour estimer 

le contour des viscères abdominaux dans les coupes axiales sélectionnées. Les coupes 

restantes sont alors automatiquement segmentées en temps réel à partir d’un calcul de spline 

3D reliant les points de contrôle adjacents dans le sens cranio-caudal (cf. FIGURE.A. 3 (a)). 

Finalement, un maillage 3D peut être généré et une vue MPR 3D classique est utilisée afin de 

vérifier la qualité de la segmentation par inspection de la position du maillage vis-à-vis de 

tissus avoisinants, comme les os et les côtes. La FIGURE.A. 3 (b)FIGURE 4.15 illustre le 

résultat d’une segmentation réalisée sur deux images TDM multi-phases avec un nombre de 

coupes axiales respectifs de 20 (phase veineuse) et 10 (phase artérielle). 

 
 (a)       (b) 
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FIGURE.A. 3: (a) Illustration de l’interpolation par B-spline 3D dans le sens cranio-caudal. 

(b) Le maillage généré à partir de l’image TDM en phase veineuse (à gauche) et en phase 

artérielle (à droite). 

 

A.2.2 Outil de segmentation rapide du diaphragme 

Le principe de la segmentation est basé sur la même idée, la courbure du diaphragme étant 

plutôt faible dans les coupes sagittales. Quelques segmentations dans plusieurs coupes 

sagittales devraient donc suffire à interpoler précisément l’intégralité du diaphragme.  

L’utilisateur sélectionne d’abord une coupe axiale au milieu du patient qui ne contienne aucun 

tissu correspondant au poumon. Le logiciel sélectionne alors 15 coupes sagittales 

uniformément réparties entre les extrémités droite et gauche de la frontière 2D de la coupe 

axiale (cf. FIGURE.A. 4(a)). L’utilisateur réalise la segmentation du diaphragme dans ces 

coupes sagittales (un exemple de coupe choisie est présenté dans la FIGURE.A. 4FIGURE 

4.16(b)). Une fois que toutes les coupes ont été segmentées, chaque extrémité des rayons est 

reliée avec son voisin de droite et gauche en utilisant une spline 3D dans la direction latérale 

(cf. FIGURE.A. 5(a)). Finalement, un maillage de type quad décrivant la position du 

diaphragme est produit (cf. FIGURE.A. 5 (b) FIGURE 4.18).  

 

FIGURE.A. 4:Illustration du mécanisme pour la segmentation interactive du diaphragme. 

 

 (a)        (b) 
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FIGURE.A. 5: (a) Illustration de l’interpolation latérale dans les coupes sagittales par des 

Bspline 3D. (b) Le maillage généré (en rose) représente le diaphragme.  

Afin d’évaluer le nombre de coupes nécessaires pour réaliser une segmentation rapide précise, 

nous avons procédé à l’expérimentation suivante. Nous avons segmenté sur 20 images TDM 

la paroi-abdominale avec les nombres de coupes suivants: 5, 10, 20, 50 considérant que la 

segmentation à 50 coupes (environ tous les centimètres) correspond à la vérité terrain. 

Concrètement l’erreur de segmentation avec 10 coupes et 20 coupes est de l’ordre de grandeur 

du voxel de l’image (1 mm). La durée de segmentation a aussi été évaluée avec 6 utilisateurs 

et nous montrons que la segmentation conjointe de la paroi abdominale et du diaphragme peut 

être réalisée en 10 minutes, ce qui est compatible avec les contraintes de routine clinique. 

 

A.3 Recalage non-rigide précis d’images TDM multi-phases par 

effacement de la paroi abdominale et des viscères thoraciques 

Deux algorithmes reconnus ont été utilisés pour évaluer le recalage non-rigide après 

application de notre stratégie. 

A.3.1 Données expérimentales 

L’évaluation est réalisée sur 10 images TDM multi-phases (10 phases artérielles et 10 phases 

veineuses). La taille originale des images de phase veineuse (resp. artérielle) est 

512×512×500 (resp. 512×512×400) avec une résolution de 0.961×0.961×0.961 mm. Nous 

avons effectué les recalages sur trois ensembles d’images : les images originales avec paroi 

abdominale et viscère thoracique, les nouvelles images sans paroi abdominale  (cf. 

FIGURE.A. 6 错误!未找到引用源。(a)), et les nouvelles images sans paroi abdominale ni 

viscère thoracique (cf. FIGURE.A. 6 错误!未找到引用源。(b)).  

 
 (a)       (b) 

FIGURE.A. 6: (a) Nouvelles images sans paroi abdominale (b) Nouvelles images sans paroi 

abdominale ni viscère thoracique. 
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A.3.2 Méthodologie 

A.3.2.1 Description des deux algorithmes de recalage non-rigide 

La première méthode de recalage combine un modèle de déformation de type Bspline avec 

une transformation composée d’une transformation rigide, puis affine puis déformable 

localement (free form deformation (FFD)): 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇𝑙𝑜𝑐𝑎𝑙𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑏𝑙𝑒 (𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑓𝑓𝑖𝑛𝑒 (𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑖𝑔𝑖𝑑(𝑥, 𝑦, 𝑧))) 

A cause de la variation d’intensité possible entre la phase artérielle et veineuse, nous 

choisissons d’utiliser une métrique de type information mutuelle (Mattes MI) (Schroeder et 

al., 2003).  

L’algorithme Super Baloo est basé sur de l’appariement de bloc pyramidal. La dimension des 

blocs dans nos expériences est de 5×5×5 voxels. La mesure de similarité choisie est le 

coefficient de corrélation au carré (SCC). Nous avons utilisé l’implémentation disponible sur 

la plateforme MedINRIA (Ourselin et al., 2000). 

A.3.2.2 Métriques d’évaluation 

Nous proposons trois métriques usuelles pour évaluer la précision de notre approche. La 

première est une inspection qualitative après superposition  2D des coupes des images 

recalées. La seconde métrique est la mesure quantitative de la distance entre les maillages de 

surface de différents organes après recalage (ici le foie, les reins et la rate). La troisième 

métrique consiste à mesure l’erreur de recalage au niveau des bifurcations de certains 

vaisseaux des viscères situés à l’extérieur des organes. 

A.3.3 Résultats 

A.3.3.1 Comparaison qualitative des images 

La FIGURE.A. 7 montre sur un patient la fusion des images source (en rouge) et cible (en 

vert) après recalage avec la méthode B-spline+MMI. L’opacité n’est pas complète pour 

permettre une évaluation visuelle. Les 3 lignes représentent les résultats fusionnés avant 

recalage, après recalage avec les images originales et après recalage avec les images  

desquelles la paroi abdominale et les viscères thoraciques ont été enlevés. On voit bien que le 

recalage avec les images d’origine n’est pas performant (seconde ligne) alors qu’avec notre 

approche (troisième ligne), les frontières des organes sont très bien recalées. 
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FIGURE.A. 7: Résultat de recalage sur un patient avec la méthode B-spline+MMI. Les 3 

lignes représentent les images fusionnées avant recalage, après recalage avec les images 

originales et après recalage avec les images desquelles la paroi abdominale et les viscères 

thoraciques ont été enlevés 

A.3.3.2 Analyse quantitative du recalage sur quatre organes 

Le temps de recalage moyen avec la méthode B-spline+MMI est de 300±20 secondes, et 

500±25 secondes avec Super Baloo. Les erreurs de recalage avec la méthode Bspline+MMI 

sont respectivement avant recalage pour le foie, le rein gauche, le rein droit et la rate de 6.7 

(± 4.8), 3.1 (± 1.8), 2.9 (± 1.8) and 4.8 (± 3.8) mm. Ces erreurs sont réduites à 3.6 (± 3.6), 1.5 

(± 1.1), 1.2 (± 0.9) and 3.5 (± 4.4) mm respectivement après recalage avec les images 

originales, et finalement réduite à 1.1 (± 0.3),  0.3 (± 0.1) ,0.3 (± 0.1) and  0.5 (0.3) mm avec 

notre approche. L’erreur moyenne de recalage de bifurcations sélectionnées par l’utilisateur 

avant recalage est de 11 mm, réduit à 8 mm après recalage avec les images originales, et 

finalement encore réduite à environ 1 mm avec notre approche. Des résultats similaires ont été 

obtenus en utilisant l’algorithme Super Baloo (cf. FIGURE.A. 8).  
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FIGURE.A. 8: Comparaison de la précision du recalage sur 4 organes avec la méthode B-

spline+MMI (a) et Super Baloo(b). La barre bleue indique l’erreur de recalage moyenne avant 

recalage; la barre orange correspond à l’erreur de recalage avec les images originales, et la 

barre jaune avec les images desquelles la paroi abdominale et les viscères thoraciques ont été 

enlevés. 

A.4. Segmentation automatique de la paroi abdominale 

Nous proposons une approche partielle basée sur la connaissance a priori des muscles 

abdominaux et des côtes pour segmenter automatiquement la paroi abdominale dans les 

coupes frontales. La segmentation est effectuée indépendamment sur le côté droit et gauche. 

Notre stratégie est résumée dans la FIGURE.A. 9 & FIGURE 6.3. En premier lieu, nous 

générons les masques des structures suivantes: poumons (cf. FIGURE.A. 10 (a)), frontière des 

muscles de la paroi abdominale sans les tissus adipeux et la peau dans une image de gradient 

(cf. FIGURE.A. 10 (b)) et les côtes sans la colonne vertébrale et le pelvis (cf. FIGURE.A. 10

错误!未找到引用源。(c)). 

 

FIGURE.A. 9: Schéma de notre stratégie pour extraire la paroi abdominale dans les coupes 

frontales.  
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 (a)          (b)   (c)   

FIGURE.A. 10: (a) Masque des poumons (b) Image de gradient mettant en évidence la 

frontière des muscles de la paroi abdominale dans la direction des x (MGX) (c) Masque des 

côtes. 

Ensuite, deux points de contrôle sont extraits de chaque côté du patient à partir des images 

générées précédemment. La frontière initiale de la paroi abdominale avant raffinement est 

calculée à partir de la distance entre les 2 points de contrôle et la frontière des muscles (cf. 

FIGURE.A. 11 错误!未找到引用源。). 

 

FIGURE.A. 11: Generated initial border of right AW. 

Finalement, le raffinement est réalisé grâce à l’image de gradient MGX en cherchant dans la 

direction des x vers le centre de l’image le plus fort gradient autour du contour initial. La zone 

de recherché est bien évidemment limité (pratiquement 5 mm). Finalement, cette approche a 

été appliquée sur 3 images TDM parmi les données patient disponibles (illustré dans la 错误!

未找到引用源。) FIGURE 6.17.  
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FIGURE.A. 12: Segmentation automatique de la paroi abdominale dans les coupes frontales. 

Les deux lignes représentent les images frontales de deux patients à des hauteurs différentes : 

les index des coupes ont été relevés. 

A.5 Conclusion et perspectives 

A.5.1 Conclusion 

Nous avons identifié les principales zones de glissement pendant la respiration : tout  d’abord 

entre les poumons et la paroi abdominale, puis entre les organes viscéraux et les poumons, en 

particulier le foie et la rate qui glissent et effectuent une rotation antéro-postérieure tandis que 

les poumons s’étirent dans la direction caudale. Ces deux glissements créent un champ de 

déplacement discontinu au niveau des interfaces et contredisent l’hypothèse standard des 

algorithmes de recalage classiques, à savoir que le champ de déformation doit être 

globalement homogène. 

Nous avons proposé une approche simple mais efficace pour fournir un recalage précis et 

réaliste des viscères dans des images TDM multi-phases, en prenant en compte les 

glissements principaux présents pendant la respiration. Notre stratégie est de retirer des 

images source et cible la paroi abdominale et les viscères thoraciques, et de les remplacer par 

une valeur de gris constante. Afin de montrer que cette approche ne dépend pas de 

l’algorithme de recalage, nous avons testé deux algorithmes de l’état de l’art : MMI + B-

splines et Super Baloo. Des expérimentations sur 10 patients ont montré que les résultats de 

recalage sont bien meilleurs avec les deux algorithmes, puisque l’erreur est réduite de 2-4 mm 

à 1 mm en moyenne, que ce soit au niveau des organes ou des vaisseaux situés entre les 

organes. 

Pour que cette approche soit réaliste et utilisée en routine clinique, il est indispensable de 

pouvoir segmenter suffisamment rapidement la paroi abdominale et le diaphragme. Pour cela, 

deux logiciels de segmentation interactive rapide ont été mis au point, reposant sur la faible 

courbure des interfaces de glissement, et donc la possibilité de recourir à des techniques 

interpolations. Nos expériences sur 20 images de patient ont montré qu’en moyenne une 
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segmentation des interfaces sur une quinzaine de coupes était suffisante pour obtenir une très 

bonne précision en moins de 10 minutes. 

Finalement, nous avons exploré la possibilité de fournir un algorithme de segmentation 

automatique de la paroi abdominale. Notre analyse est réalisée sur les coupes frontales en se 

servant des informations anatomiques suivantes extraites préalablement: poumons, côtes et 

muscles abdominaux. Bien que la validation ne soit pas suffisante, les premiers résultats sont 

encourageants et montrent qu’il est possible de résoudre le problème du contour vague entre 

le foie et la paroi abdominale.  

A.5.2 Perspective 

A l’avenir, nous prévoyons tout d’abord d’étendre notre approche à plus de modalités qui sont 

aussi utilisées pour le planning chirurgical ou les évaluations post-opératives. En second lieu, 

nous pensons qu’une sélection automatique des coupes à segmenter manuellement est 

possible en prenant en compte la courbure des muscles abdominaux dans le sens cranio-

caudal. En troisième lieu, nous souhaitons améliorer le raffinement effectué pour trouver la 

position de la paroi abdominale à partir des muscles abdominaux. Nous pensons que si un 

modèle de distribution des niveaux de gris de l’abdomen pouvait être construit, il serait plus 

facile de reconnaître les faux positifs.  

Une limitation de notre approche automatique est liée au fait que les côtes ne sont pas 

toujours présentes en particulier en limite de volume dans les coupes frontales. Nous 

prévoyons d’intégrer les informations utiles provenant des coupes axiales et sagittales afin de 

surmonter cette limitation. De manière générale, il nous semble important d’essayer de 

trouver les avantages de chaque vue orthogonale et de fournir une extraction par morceau de 

la paroi abdominale. 

Finalement, au vu de la précision de recalage atteinte, qui atteint les objectifs cliniques, il 

faudra intégrer notre approche dans une solution de recalage utilisée en routine afin d’évaluer 

le bénéfice médical. 
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Wenwu ZHU 

Segmentation et recalage d'images 
TDM multi-phases de l'abdomen 
pour la planification chirurgicale 

 

 

Résumé 

La fusion d’images TDM de phase artérielles et veineuses est cruciale afin d’assurer une meilleure 
planification chirurgicale. Cependant, le recalage non-rigide d’images abdominales est encore un 
challenge à cause de la respiration qui fait glisser les viscères abdominaux le long de la paroi 
abdominale, créant ainsi un champ de déformation discontinu. L’objectif de cette thèse est de fournir 
un outil de recalage précis pour les images TDM multi-phases de l’abdomen. 

Comme la zone de glissement dans l’abdomen est difficile à segmenter, nous avons d’abord 
implémenté deux outils de segmentation interactifs permettant une délinéation en 10 minutes de la 
paroi abdominale et du diaphragme. Pour intégrer ces zones de glissement comme a priori, nous 
réalisons le recalage sur de nouvelles images dans lesquelles la paroi abdominale et les viscères 
thoraciques ont été enlevés. Les évaluations sur des données de patient ont montré que notre 
approche fournit une précision d’environ 1 mm. 

Mots-clés: recalage non-rigide, organes abdominaux, paroi abdominale, respiration, segmentation rapide, 

glissement inter-organe. 

 

 

Résumé en anglais 

The fusion of arterial and venous phase CT images of the entire abdominal viscera is critical for a better diagnosis, surgi-
cal planning and treatment, since these two phase images contain complementary information. However, non-rigid regis-
tration of abdominal images is still a big challenge due to the breathing motion, which causes sliding motion between the 
abdominal viscera and the abdo-thoracic wall. The purpose of this thesis is to provide an accurate registration method for 
abdominal viscera between venous and arterial phase CT images.  

In order to remove the sliding motion effect, we decide to separate the image into big motion and less motion regions, and 
perform the registration on new images where abdo-thoracic wall and thoracic viscera are removed. The segmentation of 
these sliding interfaces is completed with our fast interactive tools within 10 minitues. Two state-of-the-art non-rigid regis-
tration algorithms are then applied on these new images and compared to registration obtained with original images. The 
evaluation using four abdominal organs (liver, kidney, spleen) and several vessel bifurcations shows that our approach 
provides a much higher accuracy within 1 mm. 

Keywords: sliding motion, abdominal organs, abdominal thoracic wall, non-rigid image registration, fast segmentation. 
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