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Abstract

In the last decades, fear conditioning has been established as one of the most
successful paradigms for studying the neural substrates of emotional learning.
Experimental research has revealed a complex circuitry of brain regions—most
prominently the amygdala—underlying the acquisition, extinction and general-
ization of conditioned fear. As the wealth of experimental data grows, theoretical
models that help interpret results and generate new hyoptheses play an increas-
ingly important role. In this thesis, two computational models of the neural
substrates of fear conditioning are presented.

The first model is a biologically realistic spiking neural network model of the
central amygdala, the main output structure of the amygdala. Based on a recent
experimental study that demonstrated the importance of tonic extrasynaptic
inhibition for fear generalization, the effects of changes in neuronal membrane
conductance on input processing are analyzed in the model. Consistent with
experimental results, it is shown that subpopulation-specific changes in tonic
inhibitory conductance increase the responsiveness of the network to phasic
inputs, presumably causing the increase in fear generalization. On the basis of
this result, the model is analyzed from a functional perspective. It is argued that
tonic inhibition in the central amygdala acts as a controller by which network
sensitivity is flexibly adjusted to relevant features of the environment, such as
predictability of threat, and concrete predictions that follow from this proposition
as well as possible adjustment mechanisms are discussed.

In addition, a systems level model is presented that is based on a recent
high-level approach to conditioning and proposes a specific physiological imple-
mentation in the basolateral amygdala, prefrontal cortex and the intercalated
cell clusters of the amygdala. It is a central hypothesis of the model that the
interaction between fear and extinction neurons in the basal amygdala, which
has been described experimentally, is a neural substrate of the switching between
socalled latent states, which allow the animal to organize its experience and infer
structure in the environment. Important behavioral phenomena are reproduced
in the model and the effect of de-activation of model structures is shown to be
in good agreement with results from lesion studies. Finally, predictions and
questions that follow from the main hypothesis are considered.

Taken together, the two models provide a coherent theoretical account of
the neural basis of acquisition and extinction of conditioned fear, as well as the
control of fear generalization. Importantly, this account combines different levels
of analysis. By virtue of this combination, the scope of predictions that can be
derived is expanded and the models become more amenable to experimental
testing.
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Zusammenfassung

Angstkonditionierung hat sich in den letzten Jahrzehnten als eine der erfolgreich-
sten Methoden zur Untersuchung der neuronalen Substrate von Emotionslernen
etabliert. Experimentelle Forschung hat ein komplexes Netzwerk verschiedener
Hirnstrukturen, das dem Erwerb, der Extinktion und der Generalisierung kon-
ditionierter Angst zugrunde liegt und in dem die Amygdala eine Schlüsselrolle
einnimmt, aufgedeckt. Da die Menge an experimentellen Daten immer stärker
zunimmt, kommt theoretischen Modellen, die der Einordnung experimenteller
Ergebnisse und dem Aufstellen neuer Hypothesen dienen, eine immer gewichtigere
Rolle zu. In dieser Dissertation werden zwei theoretische Modelle zu den neu-
ronalen Substraten von Angstlernen vorgestellt.

Bei dem ersten Modell handelt es sich um ein biologisch realistisches Netz-
werkmodell mit spikenden Neuronen, das der zentralen Amygdala nachempfunden
ist. Auf Grundlage einer experimentellen Studie, die einen Zusammenhand
zwischen extrasynaptischer Inhibition und Angstgeneralisierung demonstriert
hat, werden die Folgen von Änderung der neuronalen Membranleitfähigkeit auf
die Informationsverarbeitung im Gesamtnetzwerk analysiert. Dabei wird gezeigt,
dass—im Einklang mit experimentellen Ergebnissen—populationsspezifische
Änderungen die Ansprechempfindlichkeit des Netzwerks maßgeblich erhöhen.
Ausgehend von diesem Ergebnis wird das Modell einer funktionalen Analyse
unterzogen. Es wird vorgeschlagen, dass extrasynaptische Inhibition in der
zentralen Amygdala als Regler fungiert, mit Hilfe dessen Netzwerksensitivität
flexibel den Begebenheiten der Umwelt, wie z.B. Vorhersagbarkeit von Gefahr,
angepasst werden kann, und konkrete Vorhersagen, die aus dieser Hypothese
folgen, sowie mögliche Mechanismen, werden erörtert.

Des weiteren wird ein Modell auf Systemebene präsentiert, das auf einem
kürzlich vorgeschlagenen Konditionierungsmodell aus den Kognitionswissen-
schaften aufbaut und eine physiologische Implementierung in der basolateralen
Amygdala und dem präfrontalen Kortex untersucht. Die Grundannahme des
Modells ist, dass die Wechselwirkung zwischen Angst- und Extinktionsneuronen
in der basalen Amygdala, die experimentell beschrieben wurde, ein neuronales
Substrat des Umschaltens zwischen latenten Zuständen ist, die es dem Tier
ermöglichen seine Wahrnehmungen zu organisieren und Strukturen in der Umwelt
zu erkennen. Das Modell reproduziert wichtige Verhaltensphänomene und die
Folgen von Manipulationen im Modell sind in gutem Einklang mit den Folgen
von Läsionen der entsprechenden Hirnregionen. Darüberhinaus werden die
Vorhersagen und offenen Fragen, die sich aus der Grundhypothese ergeben,
diskutiert.

Zusammen bilden die beiden Modelle eine kohärente Beschreibung von Erwerb
und Extinktion konditionierter Angst und der Regelung von Angstgeneralisierung.
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vi ZUSAMMENFASSUNG

Diese Beschreibung kombiniert verschiedene Analysebenen. Durch diese Kombi-
nation erweitert sich die Möglichkeit Vorhersagen abzuleiten beträchtlich und
die Modelle werden experimenteller Untersuchung zugänglich.



Résumé

Au cours des dernières décennies, le conditionnement à la peur a été établi comme
un des paradigmes les plus réussis pour comprendre les substrats neuronaux
de l’apprentissage et de l’émotion. La recherche expérimentale a révélé les
structures du cerveau, plus importante l’amygdale, qui sous-tendent l’acquisition,
l’extinction et la généralisation de la peur conditionnée. Comme la richesse des
données expérimentales ne cesse de crôıtre, des modèles informatiques peuvent
aider à interpréter les résultats et contribuer à notre compréhension du circuit
neural du conditionnement à la peur. Dans cette thèse, je présente deux modèles
informatiques à cet effet.

Le premier modèle est un modèle biologiquement réaliste de l’amygdale
centrale simulant un réseau de neurones en activité. Sur la base des études
récentes reliant l’inhibition tonique et la généralisation de la peur, le modèle
est utilisé pour enquêter sur l’effet des changements de l’inhibition tonique
sur le traitement des informations reçues. L’analyse confirme que la diminu-
tion de l’inhibition tonique d’une population augmente la réactivité du réseau
aux informations phasiques reçues. Ce résultat est cohérent avec les résultats
expérimentaux et corrobore le lien entre l’inhibition tonique et la généralisation
de la peur précédemment décrite. Ensuite, le modèle est analysé d’une perspec-
tive fonctionelle. On propose que l’inhibition tonique agit comme un régulateur
pour ajuster la réactivité à un certain nombre de facteurs, principalement la
prévisibilité du stimulus inconditionnel. Des prédictions qui découlent de cette
proposition ainsi que des mécanismes d’ajustement possibles sont discutés.

En outre, je présenterai un modèle systématique, centré sur l’amygdale baso-
latérale contenant le cortex préfrontal et les cellules intercalées de l’amygdale.
Ce modèle est basé sur un type de modèle de conditionnement récemment
introduit dans les sciences cognitives utilisant des variables latentes pour re-
connâıtre la structure de l’environnement et prédire le stimulus inconditionnel.
C’est une hypothèse centrale du modèle que l’interaction entre les neurones
de la peur et les neurones d’extinction dans l’amygdale basale, qui ont été
décrits expérimentalement, code pour l’interface entre les variables latentes.
Sur la base de cette hypothèse, il est démontré que le modèle couvre une large
gamme d’effets, commençant par des effets purement comportementaux jusqu’aux
résultats d’études lésionnelles. De plus, l’analyse du modèle produit un certain
nombre de prédictions vérifiables qui seront discutées en détail.

Pris ensemble, les deux modèles offrent une perspective théorique cohérente
de la base neurale de l’acquisition et de l’extinction de la peur conditionnée,
ainsi que le contrôle de la généralisation de la peur. Cette approche combine des
niveaux d’analyse différents. De cette façon, plus de prédictions peuvent être
dérivées et les modèles se prêtent mieux à des tests expérimentaux .
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Abbreviations and Symbols

Conditioning Terminology

FC classical fear conditioning
CS conditioned stimulus
US unconditioned stimulus
CR conditioned response
UR unconditioned response
RPE reward-prediction error
TD temporal-difference
RLSC reinforcement learning and state classification
PREE partial reinforcement extinction effect

Anatomy

LA lateral amygdala
BA basal amygdala
BLA basolateral complex of the amygdala
CEA central amygdala
CEl lateral part of the central amygdala
CElon CEl subpopulation innervated by CS after conditioning (see 2.3.2)
CEloff CEl subpopulation inhibited by CS after conditioning (see 2.3.2)
CEm medial nucleus of the central amygdala
ITC intercalated cell cluster
mITC medial intercalated cell cluster
mPFC medial prefrontal cortex
IL infralimbic cortex
PL prelimbic cortex
HPC hippocampus
BNST bed nucleus of the stria terminalis
PAG periaqueductal grey

Neurochemicals
GABA γ-Aminobutyric acid
NMDA N-Methyl-D-aspartate
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
SOM somatostatin
PV parvalbumin
PKC protein kinase C
CRF corticotropin-releasing factor
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Mathematical Notation and Symbols

x, X italic scalar
x boldface vector
X upright capital letter matrix

E expectation value
V variance
N (µ,C) Gaussian distribution
B(a, b) Beta distribution
G(n, θ) Gamma distribution

FT [x] or x̃ Fourier transform of x
< and = Real and imaginary part of complex numbers





Chapter 1

Introduction

Throughout their lives, all animals, including humans, navigate a delicate trade-

off: On the one hand, predicting potential threat and reacting appropriately is

obviously crucial for survival. On the other hand, excessive fear and anxiety

are clearly detrimental to other behaviors critical for evolutionary fitness, and,

in the case of humans, severely impair quality of life. To keep this balance in

an ever-changing environment, animals rely on learning mechanisms that allow

them to adapt to novel threats.

In recent decades, neurobiological research has begun to reveal the neural

substrates of such behavioral adaptations in rodents. A quickly expanding

catalog of experimental studies maps the neural circuitry of fear learning in

ever greater detail and an intricate arrangement of a number of brain structures

emerges, with the amygdala taking center stage. As the complexity of this

circuitry becomes increasingly apparent, the need for theoretical interpretation

only becomes more urgent.

1.1 Aim of the Thesis

With this work, I endeavour to contribute to this ongoing research effort by

proposing a theoretical account of the neural circuitry of fear learning. In

particular, two computational models are presented in this thesis.

The first model is a biologically realistic spiking neural network model of the

central amygdala, which is closely based on experimental data and examines the

role of tonic inhibition in controlling fear generalization from both a mechanistical

and functional perspective. It corroborates recent experimental findings on the

relation of tonic inhibition and fear generalization and expands on the role of

the central amygdala in fear expression, or, more generally, action selection.

The second model, is based on a recent high-level approach to conditioning
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2 CHAPTER 1. INTRODUCTION

using latent variables, itself grounded in the theory of Bayesian inference. With

this as a starting point, a physiologically constrained implementation is developed

and analyzed. The resulting model yields an explanatory framework for a wide

number of experimental results and makes hypotheses on the roles of many

structures which have been found to be implicated in fear. Both of these models

allow for a number of testable predictions that are discussed in detail.

Furthermore, as a tool to help implement and interprete spiking neural

network simulations, an analytical approximation to the mean firing rates of the

conductance-based integrate-and-fire neuron model has been derived, using the

Fokker-Planck formalism for diffusion problems. This approximation is used for

analyzing the dynamics of inhibitory networks.

In this thesis, I try to bring together different approaches to studying fear

conditioning theoretically. It is my hope, that it contributes towards bridging

the gap between high-level models of conditioning, solely based on behavior, and

biologically realistic neural network models, based on neurophysiological data.

As a consequence, many of the predictions and hypotheses derived from this

work argue for increasingly combining setups used in behavioral studies with

more recently available neurophysiological measurements and manipulations.

1.2 Classical Fear Conditioning

Classical conditioning was first described by Ivan Pavlov (Pavlov, 1927) and

has since become one of the most important experimental paradigms to study

learning in animals. In classical conditioning, an initially neutral stimulus is

paired repeatedly with an appetitive or aversive stimulus. As a result, the neutral

stimulus comes to evoke a response as well.

1.2.1 Experimental Procedure

Before the main phase of the experiment, the animal is allowed time to get

used to the location in which the conditioning will occur, a phase referred to

as habituation. Then, in the actual training phase, an initially neutral stimulus,

usually a tone or light, is paired repeatedly with the unconditioned stimulus

(US). The US is a stimulus with clear motivational valence, i.e., clearly appetitive

or aversive. As a consequence of this pairing, the animal acquires responses to

the initially neutral stimulus. These responses are termed conditioned responses

(CR), since their appearance is conditional on the previous acquisition, and,

correspondingly, the stimulus evoking them is called conditioned stimulus (CS).

In the case of fear conditioning, the US is most often a painful electric shock,

either to the paws or eyelids; and the conditioned response is typically freezing, a
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brief period of immobility but may also comprise changes in heart rate, analgesia,

and release of stress hormones (LeDoux, 2000).

Timing of CS and US

What is meant exactly with pairing in the previous paragraph merits further

clarification. If the CS and US overlap entirely, i.e., they start and end at the

same time, we speak of simultaneous conditioning. More commonly, however,

the US presentation begins after the CS onset. Depending on the relative

timing of CS-ending and US-beginning, two cases can be distinguished. In delay

conditioning, the US begins before or immediately when the CS ends. In trace

conditioning, on the other hand, the US onset is after the ending of the CS, and

the temporal gap between the two stimuli is referred to as trace interval (Bouton,

2007). The different temporal arrangements can lead to different results. The

longer the gap between CS and US, the harder it is to learn the association

and with more than a few seconds of trace interval, no learning is achieved at

all (Smith, 1969). Another important example for the criticality of timing is

the difference between second-order conditioning and conditioned inhibition,

which will be explained later. It is outside the scope of this work to elaborate

on these effects in detail; all the results should be understood as pertaining to

delay conditioning with the US directly following the CS. This is the procedure

most commonly used in the experiments the work is based on.

Discriminative Conditioning

For many purposes, it is useful to introduce an additional control stimulus, e.g.,

a tone of a different frequency, which is also presented during training, but not

paired with the US. To indicate it was not paired, the superscript “-” will be

used, as opposed to the CS+, the conditioned stimulus that was actually paired.

Whenever more than one CS+ or CS− is used, we use subscripts to denote

stimulus idendity. For instance, stimuli CS+
1 and CS+

2 would be two different

stimuli that were both paired with the US.

After the training phase, the persistence of acquired responses is verified in

the next phase. This phase is often performed in a different context, e.g., a

markedly different cage, to confirm the response is CS- and not context-specific.

In the testing phase, the CS is typically not paired with the US. If the study

involves extinction learning, the CS is presented repeatedly without the US in

this phase, leading to a slow decline in conditioned responding. In this case, a

separate testing phase is executed after extinction learning, often back in the

original conditioning context.
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1.2.2 Extinction Learning and Fear Generalization

A pertinent observation about extinction learning is the instability of the extinc-

tion memory, meaning that conditioned responses reappear occasionally. This

can be triggered by a number of manipulations and the effect is termed accord-

ingly: Renewal describes the renewed emergence of conditioned responses when

switching to a novel or the training context (Bouton, 2004). This effect points

towards the high context-specificity of extinction memory. Another way to renew

conditioned responding is to present the US alone, this is termed reinstatement

(Rescorla, 1975). In addition to these two, conditioned responding could also

reappear spontaneously, in which case it is termed spontaneous recovery (see

figure 1.1).

The multitude of extinction effects already points towards an important

advantage of classical conditioning: simple as the paradigm might be, there is a

wealth of experimental variations that are possible within its boundaries and

lead to effects that can shed light on a wide range of learning mechanisms. Many

of the variations used in neurobiological settings focus on the study of fear gen-

eralization and fear extinction, two aspects of learning that are of high relevance

to pathological behavior. More precisely, the exact readout for quantifying fear

extinction is the exhibition of the conditioned response, i.e., freezing rates, in the

testing phase. Fear generalization is typically quantified by the ratio of CS− to

CS+ response rates. A high ratio indicates that the animal does not discriminate

between CS− and CS+. More generally, in studying stimulus generalization in

conditioning, it is found that conditioned responding to the CS− depends on

similarity. When plotted along a sensory continuum, e.g., tone frequency in

the case of auditory conditioning, conditioned responding is maximal at CS+

and decreases as similarity decreases, yielding a bell-shaped generalization curve

(Pavlov, 1927). Remarkably, these generalization curves stretch over perceptual

boundaries, e.g., between colors (Guttman, 1956). This indicates that stimulus

generalization is more than a mere failure at sensory discrimination; it includes

an active cognitive component (Shepard, 1987; Dunsmoor, 2015).

1.2.3 Variations of the Paradigm and Notable Effects

Complementing the standard paradigm is a number of experimental variations

that allow for investigation of a wide range of effects. These have so far mostly

been employed in animal psychology studies—some in appetitive conditioning—

and contributed greatly to the development of behavioral models of conditioning.

While they have so far mostly been restricted to setups without recordings of

neural activity, it is to be expected that, as recording techniques improve, they

can be used in conjunction with recording of neural activity in the near future
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Figure 1.1: Classical fear conditioning. During training, the animal ac-
quires a conditioned response (freezing) due to the repeated pairing of the CS
(tone) and US (footshock). Afterwards, during extinction learning, the freezing
response diminishes as the CS is presented without the US. Here, a discrimina-
tive paradigm in which a second tone (CS−) is presented during training but
not paired with the US is depicted. On the right side, different modes of CR
re-occurence are sketched: renewal, which is caused by change of context; rein-
statement, in which the CR returns after a single unpaired US; and spontaneous
recovery, where the CR re-occurs after some time.

to add to our understanding of the neural circuitry.

Second-Order Conditioning and Sensory Preconditioning

There are two noteworthy variations demonstrating that a CS can elicit a response

even though it has never been paired with the US itself. Firstly, in second-order

conditioning, a CS (CSA) is directly followed by the US in the first phase of

the experiment. In a second phase, this CSA is presented right after a different

CS (CSB). Remarkably, CSB also acquires a response (e.g. Gewirtz, 2000),

demonstrating that a conditioned stimulus can itself act as a reinforcement

signal after learning.

This can be taken even further in sensory preconditioning (Bouton, 2007):

CSA and CSB are paired in the first phase of the experiment. In the second

phase, stimulus CSA is paired with a US. Consequently, CSB also elicits a

conditioned response in the testing phase. Again, CSB has never been paired

with US. Notably, though, in sensory preconditioning—unlike second-order

conditioning—it also never co-occured with the conditioned response before

testing. This strongly implies that associations are formed between stimuli

rather than stimulus and response and that already motivationally irrelevant

stimuli, such as the two CSs before learning, do form these associations.
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Latent and Conditioned Inhibition

More evidence for learning processes in the absence of an US comes from a

phenomenon termed latent inhibition (Lubow, 1965). Here, stimulus CSA is

presented repeatedly without the US in the first phase. When it is then paired

with the US in the second phase, the acquisition of a conditioned response is

significantly delayed. This indicates stimulus-specific learning in the first phase

of the experiment without US presentations.

Similarly, a stimulus can be trained to inhibit conditioned responding to

other stimuli (Rescorla, 1969). If a previously conditioned stimulus CSA is

paired with stimulus CSB in the absence of the US, CSB reduces conditioned

responding when presented together with other previously conditioned stimuli,

an effect referred to as conditioned inhibition. Note the strong similarity of

this paradigm with second-order conditioning. This example highlights how

critical exact timing between the stimuli is: A subtle difference in relative timing

can lead to diametrically opposite effects. Nonetheless, usually both learning

processes—second-order conditioning and acquisition of conditioned inhibition—

develop simultaneously, with a tendency for second-order conditioning to be

acquired a bit faster. This leads to an overall non-monotonic learning curve and

greatly complicates the interpretation of results (see Gewirtz, 2000; Yin, 1994).

Cue Competition Effects

The previous examples already included schedules with more than one CS and

demonstrated that these stimuli mutually interact in forming US associations.

Cue competition effects are a specific class of phenomena with multiple CSs in

which the CSs compete for association with the US. The most prominent of these

is Kamin blocking (Kamin, 1969). In Kamin blocking, a previously conditioned

CS (CSA) is paired with CSB and the US in the second phase of the experiment.

As a consequence of the pairing with CSA, CSB acquires no, or a much weaker,

response than a suitable control. Importantly, Kamin blocking was a key insight

and motivation behind the formulation of the Rescorla-Wagner model described

later.

Other cue competition effects include overshadowing, in which two CSs

are paired with the US, and depending on factors like salience, one of them

acquires a much stronger response than the other, and relative validity (Wagner,

1968). Here, three distinct stimuli, CSA, CSB and CSX , are involved and during

conditioning both CSA and CSB are always paired with CSX , i.e., compounds

CSAX and CSBX are used. In one group of subjects, CSAX is always presented

together with the US, while CSBX is always presented without the US. In the

other group, CSAX and CSBX are both presented with the US half of the time.
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Interestingly, even though CSX is paired equally often with the US in both

groups, it elicits a significantly stronger response in the latter group. This

finding highlights the importance of US prediction (Rescorla, 1988): In the first

group, CSA is a much better predictor of the US than CSX and accordingly

acquires a strong response at the expense of CSX . In the second group, however,

all three stimuli are equally predictive of the US, since all of them were paired

with the US half of the time.

Occasion Setting and Configural Conditioning

So far, only the linear interaction of stimuli was considered, i.e., each CS was

either a conditioned excitor (increasing the response probability) or inhibitor

(decreasing it) and the response to the presentation of both of them together

could be considered the sum of their individual effects. There are, however, many

cases in which the interaction between stimuli is nonlinear. One specific case is

called occasion setting (Holland, 1989; Bouton, 2007), in which a third stimulus

merely modulates the association between a given CS and the US. Consider

the example of feature-positive discrimination: stimulus B always precedes CSA

whenever CSA is paired with the US, but not when it is presented alone. The

animal can learn that CSA is predicting the US only when B was also presented.

Importantly, B does not act as an excitor; when presented with a third stimulus it

has no effect, i.e., it very specifically modulates the association between CSA and

the US. Conversely, in feature-negative discrimination, the occasion setter signals

the absence of the US. These findings point towards hierarchical organization

of learning processes, where learning the role of stimulus B is specific to the

CSA-US association.

Partial Reinforcement

Finally, another often used variation is conditioning with partial reinforcement,

i.e., not every presentation of the CS is accompanied by the US. There is a variety

of schedules, some deterministic (e.g., only every other CS is paired with the US),

and some random (e.g., CS and US are paired with 50% probability). Usually,

either the length of the acquisition phase is adjusted or unpaired US presentations

are added, such that the overall reinforcement during training is the same as in

the fully conditioned control group (Haselgrove, 2004). Irrespective of the exact

schedule, a very salient and robust finding is the partial reinforcement extinction

effect, the observation that extinction learning after partial conditioning is delayed

as compared to the fully conditioned control animals (Haselgrove, 2004; Gallistel,

2000). Importantly, this contradicts the traditional associative account that

conditioned responding reflects the strength of the association between the CS
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and US.

Taken together, this wide range of effects illustrates the wealth and informa-

tive value of this seemingly simple paradigm. Many of the described phenomena

demonstrate that the mere temporal co-occurence of CS and US is neither

sufficient nor necessary for the acquisition of a CR. Evidence has accumulated

that a computational framework that conceptualizes conditioning as the attempt

at predicting US occurence based on previous experience provides a better fit

to empirical data compared to mere associative learning between coinciding

stimuli (Rescorla, 1988). Accordingly, throughout the last decades, theoretical

models and interpretations of conditioning have been developed based on these

observations. These will be discussed in chapter three.

1.3 Fear and Anxiety

The prior discussion focussed on conditioning per se, and was not specific to fear

or anxiety. Here, these terms are introduced in more detail. Importantly, while

the two terms are often used almost interchangeably in colloquial discourse, a

clear distinction is made in technical language. Fear refers to an acute defensive

reaction against a specific perceived threat, whereas anxiety is a sustained and

general mood of vigilance and unease linked to the vague anticipation of future

negative events (see e.g. Davis, 1992). For animal research, the notions of fear

and anxiety are linked to observable behaviors in standard paradigms.

1.3.1 Fear in Animals

The gold standard for studying fear is the previously described paradigm of

classical fear conditioning. As it is not possible to make meaningful claims

about the emotional experiences of animals, fear is simply a theoretical construst

underlying the observed responses (Davis, 1992). In the school of operational

behaviorism, it can be conceived as an intervening variable, a variable that might

not be directly observable variable, and that combines a possibly diverse list of

stimuli and responses into a coherent explanation of behavior (see Figure 1.2

and Bouton (2007); LeDoux (2014)). Note that in this scheme, the intervening

variable is linked to both stimuli and responses, and these links make the system

in principle falsifiable. For all practical purposes, however, the observable

responses themselves, like freezing and startle, are more commonly taken to

define fear in a specific experimental setting. Nevertheless, when viewed as an

intervening variable, fear could be given a definition that goes beyond freezing

and that still lives up to the standards of scientific rigor. This subtle difference

underlies some theoretical considerations that are discussed later. For now, it
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Figure 1.2: Fear and anxiety. a) Fear as an intervening variable creates
a conceptual link between a number of observables. b) Important behavioral
assays for testing anxiety: The open field test (left) in which the relative time
spent in the center (red square) is used as an inverse measure of anxiety, and
the elevated plus maze (right) in which the relative time spent in the open arms
is used to quantify anxiety.

suffices that the notion of fear is inextricably linked to observable behavior.

1.3.2 Animal Models of Anxiety

Similarly, the notion of anxiety also relies on observable behaviors in experimental

tests. The two tests most commonly used are the elevated plus maze (Pellow ,

1985) and the open field test (Hall, 1932; Denenberg, 1969; Carola, 2002). Both

tests exploit the balance between two opposing natural urges rodents display:

exploration and defensive avoidance (Blanchard, 2008; Tovote, 2015). On the

one hand, rodents have a natural tendency to explore their environment, but

on the other hand, they tend to avoid open spaces and possible exposure to

predators. In a big open field, as well as in a plus maze in which only two arms

are sheltered (see figure 1.2), these two tendencies conflict with each other. As

a consequence, behavior is very sensitive to the sustained mood of the animal.

A pertinent observation is that animals that have undergone fear conditioning

or other putatively traumatic experiences are more likely to avoid open spaces.

Hence, they tend to stay close to the walls in the open field test, or within

the sheltered arms in the elevated plus maze. The relative time spent in the

open spaces can be used as an inverse quantifier of anxiety: The more time

spent in the open, the less anxious the animal. Notably, this quantifier has also

been shown to be sensitive to the application of anxiolytic drugs (Pellow, 1986;

Handley, 1984; Menard, 1999).
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1.3.3 Relation between Fear and Anxiety

From early on, theoretical accounts of anxiety have implicated conditioning

in the emergence of anxiety disorders (Watson, 2002; Pavlov, 1927). Some

disorders, like post-traumatic stress disorder, are often conceptualized within the

conditioning framework as deficits in extinction learning and overgeneralization of

fear. Accordingly, anxiety disorders are much more prevalent among combat and

trauma survivors (Dohrenwend, 1981; Lissek, 2005). On the other hand, one of the

main criticisms of this conditioning model of anxiety in humans is that very often

there is no relevant history indicating conditioning-like mechanisms in people

with phobias (Rachman, 1990). Still, as more complex conditioning phenomena

were discovered, it was argued that many observations on the emergence of

anxiety disorders, which seemed to be at odds with the idea of a direct link

between fear learning and anxiety, can be explained in terms of these phenomena

(Mineka, 2006). For instance, latent inhibition can account for between-individual

differences in reactions towards traumatic events, depending on their previous

experience with the stressor; second-order conditioning or vicarious conditioning1

can explain how phobias can form without explicit pairing with an aversive

event. Finally, the conditioning model of anxiety is also validated by the sucess

of exposure therapy for the treatment of pathological anxiety (Barlow, 2002).

This is, of course, not to understate the importance of other individual

factors, like genetic predisposition. Still, there is broad consensus that the study

of conditioning phenomena can inform our understanding of the emergence

of anxiety and anxiety disorders. Here, some theoretical considerations and

empirical evidence on the link between fear and anxiety are presented.

Deficits in Extinction Learning

The conditioning model of anxiety proposes that pathological anxiety rests

on a failure to extinguish previously acquired conditioned responses (Eysenck,

1979; VanElzakker, 2014). Overall, the empirical evidence supports that anxiety

disorders are associated with heightened conditioned responding during extinction

learning (Lissek, 2005; Blechert, 2007; Peri , 1999) and also during extinction

recall (Milad, 2008, 2009). Importantly, this relationship between anxiety and

resistance to extinction learning could be reproduced in rodents by breeding

selectively high- and low-anxiety rats (Muigg, 2008). In addition, concomittant

measurements of neural activity confirmed the involvement of the fear extinction

circuitry for this process (ibid.).

1Vicarious conditioning names to the phenomenon that individuals can acquire fear responses
to a CS by observing other conspecifics’ fearful reaction to that CS. This can be shown to
occur in, e.g., rhesus monkeys (Cook, 1989).
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Fear Generalization

Generalizing the above ideas on extinction, recent theories link anxiety to a

failure to inhibit fear responses during safety learning (Davis, 2001; Jovanovic,

2012). In line with this, increased CR rates (as compared to healthy controls)

on CS− presentation, i.e., higher fear generalization, have been reported in

anxiety patients in a number of studies (Grillon, 1999; Peri , 1999; Glover, 2011;

Dunsmoor, 2015). In addition, studies in rodents revealed a consistent relation

between inter-individual differences in fear generalization scores and anxiety

(Duvarci, 2009; Botta, 2015): Animals that displayed high fear generalization

also tended to score high on anxiety tests.

US-Predictability

Finally, an important finding on the nature of sustained fear and anxiety is

that unpredictable aversive events are much more likely to lead to sustained

fear (Davis, 2010; Walker, 2009). When comparing two groups of subjects—one

which underwent classical conditioning with CS-US pairing and another in which

both stimuli were presented equally often but not paired with each other—it is

found that the latter displays much higher sustained fear, while the first only

exhibits phasic and CS-specific fear responses (Davis, 2010). This is consistent

with contemporary interpretations of conditioning as US prediction: In case the

CS is a clear predictor, no strong associations are formed with contextual cues;

but in case there are no phasic predictors, contextual cues form US presentations,

resulting in sustained and rather undirected states of fear. More generally, the

idea that uncertainty about future threats results in anxiety and that maladaptive

responses to uncertainty underly many disorders is central to a recently proposed

anxiety model (Grupe, 2013).

In summary, these results demonstrate a link between fear learning and the

emergence of anxiety. More particularly, two specific facets of this link should be

highlighted: Firstly, the emergence of anxiety depends crucially on predictability.

Anxiety is more likely to develop whenever the environment does not allow for

the prediction of aversive events, thus undercutting the ability to avoid them

or extenuate their effect. Secondly, sustained fear, or anxiety, is related to

the expression of phasic fear. Hypersensitivity to phasic cues, as in the above

examples of extinction learning and fear generalization, is usually considered a

hallmark of anxiety (Blanchard, 2008). These two aspects provide the foundation

for relating results of the conditioning models to anxiety in later chapters.
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1.4 Fear as a General Model for Learning

Apart from its high clinical relevance for the study of pathological anxiety, it

deserves emphasis that fear conditioning is a highly attractive model for studying

learning in general. It provides noteworthy practical advantages, stemming from

the very nature of fear learning and common to all variations of the paradigm:

Firstly, there are clear, quantifiable behavioural readouts, like freezing, fear-

induced startle, conditioned flight, etc. In addition, there is remarkable similarity

in fear expression and even the neural substrates across individuals and species.

Indeed, there is broad consensus on the pivotal role of the amygdala in fear

learning in a wide variety of species (see, e.g., LeDoux, 2000) .

Moreover, fear responses are very rapidly acquired, reducing experimental

costs tremendously. While the study of many other learning tasks requires

lengthy training sessions, significant fear responses can already be observed

within few trials. This has contributed to fear conditioning being one of the most

well-studied learning paradigms today and one of the earliest fields in which

clear links between neural mechanisms and behavior could be established.

Finally, due to the immense importance of the fear system for survival

and, hence, high selection pressure, there is good reason to assume it performs

in a near-optimal manner. This widens the scope of theoretical approaches

tremendously, since it allows for a rational analysis (Anderson, 1990) of behavior.

That means, considerations pertaining to how information can be optimally

processed in the fear circuitry and used to learn to avoid threat are a viable

approach to studying fear learning. This will be developed in more detail in

chapter 3.

Taken together, in the case of fear learning, it is possible to investigate the

nature of the learning process theoretically on at least two levels. On the one

hand, a rich literature on the neural substrates is already available and steadily

growing, so it is becoming increasingly possible to constrain neurobiological,

mechanistic models and derive insight from bottom-up models. On the other

hand, it lends itself well to a rational, or normative, analysis, which describes

the process from a functional perspective.

1.5 Outline of the Thesis

This thesis is structured as follows: The second chapter is devoted to providing

an overview of relevant physiological and anatomical data. This overview reflects

the scope of the computational models; it presents the brain structures that have

been found to play key roles in the acquisition or extinction of fear responses,

outlines their internal microcircuitries and mutual connectivities, and summarizes
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physiological results on the neural activity—and modulation thereof—in the

course of fear learning.

The third chapter explains the theoretical background of the high-level

modeling approach in more detail. The basic premise of Bayesian learning

is introduced and an overview of theoretical models of conditioning in the

cognitive sciences is provided. Subsequently, in the fourth chapter, mathematical

treatments of neural dynamics are discussed and an approximation for the firing

rates of conductance-based integrate-and-fire models is presented and applied to

the analysis of dynamics in two-population inhibitory networks.

Chapters five and six constitute the core of this thesis. In them, the two

computational models of the fear circuitry are presented and discussed. Finally,

the last chapter concludes the work with a discussion of the models, including

an analysis of key hypotheses and testable predictions, as well as emerging open

questions.





Chapter 2

The Neural Substrates of

Fear Learning

This work explicitly aims at providing models that are physiologically constrained.

A growing body of experimental literature on fear conditioning and its neural

substrates provides the basis for this approach. This research has established

that the amygdala, a group of nuclei located in the temporal lobe, is indispensible

for the acquisition of conditioned fear responses. For instance, pharmacological

lesions of the amygdala lead to a marked decrease in fear aquisition. In addition,

the socalled extended amygdala, which includes the central amygdala and stria

terminalis, is known to play a key role in mediating anxiety. In particular, the

bed nucleus of the stria terminalis is implicated in controlling anxious behavior.

Crucially, the neural circuitry involved in the acquisition and extinction of

conditioned fear extends much further. The medial prefrontal cortex (mPFC)

and hippocampus (HPC) have been reported to shape behavioral expression

of both fear and anxiety. Typically, the hippocampus is attributed a pivotal

role in contextual modulation of fear responses and the mPFC in high-level

control of fear and anxiety. This chapter gives an overview of the neuroanatomy

and neurophysiology of fear conditioning and presents results relevant to the

theoretical considerations in the main body of this work.

2.1 Basolateral Amygdala

The basolateral complex of the amygdala (BLA) is cosidered the main site of

acquisition and storage of fear memories (Davis, 1992; Fendt, 1999; LeDoux, 2000).

It can be subdivided into lateral (LA), basal (BA) and accessory basal nuclei. In

terms of cytoarchitecture, these nuclei are often described as “cortical”(McDonald,

15
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1992), and accordingly consist of mostly spiny, glutamatergic projection neurons

comprising about 80% of the total number of neurons, with an array of different

GABAergic interneuron subtypes making up the remainder.

2.1.1 Main Connections

The prominent role of the amygdala in fear conditioning is already apparent

in its neuroanatomical structure. Projections from sensory modalities carrying

CS-related information and form structures known to transmit nocioceptive

signals converge in the BLA, which is the main recipient of external inputs in the

amygdala. Specifically, the LA receives sensory inputs from all sensory modal-

ities via the cortex and thalamus. These inputs can be subvidived into direct

projections from the sensory thalamus (LeDoux, 1990) and indirect projections,

via the neocortex (LeDoux , 1991).

Moreover, the BLA—particularly the BA—is supplied with polymodal inputs

from different sources. Most notably, there are inputs from the prefrontal

cortex (McDonald, 1996; Rosenkranz, 2002), rhinal cortices, and hippocampus

(McDonald, 1996). A common line of thought is that the prefrontal inputs play a

role in mediating behavioral flexibility while the rhinal and hippocampal inputs

convey information about context and contextual memory. It is important to

note that these connections are reciprocal, indicating a role of the BA in the

formation and organization of memory in the mPFC and HPC.

Within the amygdala, connections are directed from the LA to the BA and

from both structures to the central amygdala (Ehrlich, 2009). Specifically, the

LA sends projections to the BA and the capsular division of the CEA. The

BA, on the other hand, targets mostly the medial part (CEm) of the CEA. In

addition, there are connections to the intercalated cell clusters of the amygdala.

The main connections of the BLA are illustrated in Figure 2.1.

2.1.2 Role in Fear Conditioning

A huge body of lesion studies—both permanent and reversible—clearly implicates

the BLA as a principal site for the formation and storage of CS-US associations.

For instance, it has been shown that lesions of the BLA before conditioning impair

acquisition of a fear response, while post-conditioning lesions block expression of

the fear response, presumably by preventing the retrieval of the fear memory.

Notably, however, some studies using pre-conditioning lesions indicate that the

basal part, BA, does not directly contribute to the acqusition and expression

of conditioned fear. Fear memory, it was demonstrated, can be acquired and

retrieved even in the case of pre- or post-conditioning lesions (Amorapanth, 2000;

Nader, 2001; Sotres-Bayon, 2004).
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Figure 2.1: Organization of the amygdala circuitry. a) View of an
amygdala slice stained with GAD67. The image illustrates the high concentration
of GABAergic neurons in the CEA and ITC, as compared to the BLA. b)
Simplified scheme of the amygdala circuitry. Sensory inputs reach the LA and
are forwarded to the CEA via the BA and ITCs. (adapted from Ehrlich, 2009)

CS-dependent Activity and Synaptic Plasticity in the LA

Electrophysiological recording techniques also allow for the investigation of

the neuronal activity during fear conditioning. The results corroborated those

mentioned before; it was found that the acquisition of a conditioned fear response

is accompanied by an increase in CS-evoked activity in the LA. Importantly, this

increase is stimulus-specific, i.e., the CS+ evokes stronger increases in activity

compared to the unpaired CS− (Collins, 2000), reflecting the relative rates of

conditioned responding.

While such increases could, of course, also be caused by plasticity in afferent

structures, e.g., the medial geniculate nucleus of the auditory thalamus (Gerren,

1983), there is ample evidence that they are indeed due to local plasticity

within the LA. For example, it could be demonstrated that plasticity in afferent

structures is critically dependent on the BLA (Maren, 2001). Moreover, there is

direct evidence for synaptic plasticity in the LA. Many studies have demonstrated

that NMDA-receptor-dependent changes in neuronal activity are essential for the

acquisition of conditioned fear responses by local pharmacological interventions

(Miserendino, 1990; Quirk, 1995, 1997; Gewirtz, 1997; Collins, 2000; Rodrigues,

2001). This lends strong support to the notion that NMDA receptor-dependent

long-term potentiation in the LA underlies associative learning, establishing a

remarkably clear link between synaptic plasticity and observable behavior.
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With respect to plasticity, a line of research that is notable from a theoretical

perspective tries to unravel how this synaptic plasticity in the LA is modulated

by expectation. Recent results suggest that long-term potentiation in the LA is

driven, at least in part, by a sort of reward-prediction error signal that arises in

the midbrain periaqueductal gray (PAG) region (McNally, 2006, 2011). This

notion is based on findings that US evoked responses in the LA are stronger for

unexpected US than they are for expected US (Belova, 2007; Johansen, 2010)

and that direct stimulation of the PAG can drive fear conditioning (Di Scala,

1987). In line with this, deactivation of the PAG impaired acquisition of a

conditioned fear (Johansen, 2010). Notably, both the Rescorla-Wagner and the

TD learning rules, which will be introduced in section 3.2.1, are based on the

concept of expectation modulated learning.

Finally, a number of studies have begun to shed light on the role of inhibitory

neurons in the control of synaptic plasticity in the BLA. Activity-dependent

potentiation in the LA is facilitated when GABAergic neurons are surpressed

(Watanabe, 1995; Bissière, 2003; Shaban, 2006) and, conversely, activation of

GABA-receptors impairs acquisition of conditioned fear (Wilensky, 1999). More,

recently, it was found that a specific arrangement of two different interneuron

subtypes—parvalbumin (PV)- and somatostatin (SOM)-expressing interneurons—

plays a crucial role in gating synaptic plasticity in the BLA during fear learning

by controlling the activity of the principal neuron bidirectionally (Wolff, 2014).

While PV+ neurons preferentially target the soma of the principal neurons and

generate feedback inhibition, SOM+ neurons mostly project onto the distal

dendrite, and, in addition, the interneurons are differentially recruited by the CS

and US. During the CS, PV+ neurons are innervated and inhibit SOM+ neurons,

thereby releasing the principal neuron dendrite from inhibition. Conversely,

during the presentation of the US, both interneuron subtypes are inhibited,

facilitating principal neuron activity and gating associative plasticity.

Fear and Extinction Neurons in the BA

The discussion so far focused on the acquisition of conditioned fear in the

LA. During extinction learning, on the other hand, CS-evoked activity in the

LA is decreased (Hobin, 2003; Quirk, 1997) in some neurons—presumably by

depotentiation of thalamic inputs (Kim, 2007)—but remains constant in others

(Repa, 2001; An, 2012). More remarkably, in the BA, extinction learning is

associated with a switch in CS-evoked activity between two subpopulations of

principal neurons (Herry, 2008; Amano, 2011). At the beginning of extinction

training, one population displays high CS-evoked phasic activity, correlating with

behavioral expression of fear and hence termed fear neurons, but evoked activity
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gradually decreases in the course of extinction learning. Curiously, another

population, called extinction neurons, behaves in the exact opposite way: there

is little to no CS-evoked activity at the beginning, but the neurons acquire CS-

evoked responses during extinction. This switch in neural activity precedes the

decline in conditioned responding (see figure 2.2). Finally, a third population of

principal neurons is resistant to extinction learning, i.e., they exhibit CS-evoked

phasic activity throughout extinction learning. Notably, this switching between

fear and extinction neurons echoes the idea of fear and extinction memory

traces that was proposed based on behavioral results, most prominently the

phenomenon of fear renewal.

Mechanistically, the activity of fear and extinction neurons indicates mutual

competition. This led to the hypothesis that the switching is mediated by

intra-BA inhibitory neurons. In line with this, an increase in GABA levels

after extinction learning (Heldt, 2007) can be observed, and there is an increase

in IPSC amplitude and frequency in BA principal cells after extinction (Lin,

2009). Adding to this, a recent study reported differential plasticity of inhibitory

synapses depending on whether the cells targeted fear neurons, displaying a

decrease in evoked activity during extinction, or extinction-resistant neurons

(Trouche, 2013).

Importantly, interfering with this microcircuitry blocks behavioral transitions,

but not specifically expression of conditioned fear or fear extinction(Herry, 2008).

Injecting the GABA-agonist muscimol into the BA at different time points in the

paradigm has the effect of blocking transitions between high-fear and low-fear

states, e.g., blocking fear extinction during safety learning or fear renewal when

changing context (see Figure 2.2). This implies a role of the BA in modulation

and control of fear, while the LA appears as the main locus of associative learning.

2.2 Intercalated Cell Clusters

Further, the intercalated cells (ITC) of the amygdala have been implicated in

fear extinction. The ITCs do not form a cohesive nucleus, but rather a number

of small, densely packed clusters of mostly GABAergic (Paré, 1993) cells around

the BLA (see figure 2.3). Based on their position relative to the BLA, they are

usually divided into lateral ITCs (lITC), medial ITCs (mITC), and the baso-

medially located main cluster (ITC) (Ehrlich, 2009). They are well connected

within the amygdala (Geracitano, 2007; Millhouse, 1986; Royer , 1999), with the

lITC exerting inhibitory control of the BLA (Marowsky, 2005), while the mITCs

and ITCs gate information flow from BLA to CEA (Paré, 2003; Royer , 1999).

The ITCs receive sensory input from the thalamus and cortex (Asede, 2015),

and dense connections from the infralimbic cortex (Millhouse, 1986; McDonald,
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Figure 2.2: Fear
and extinction
neurons. a) During
extinction learning,
fear neuron responses
gradually decrease,
while CS-evoked
activity in extinction
neurons increases.
Freezing responses
diminish after the
switch in neural
activity (gray bars).
b) Behavioral tran-
sitions are blocked
by selective and re-
versible inactivation
of the BA. Top row:
inaction after training
prevents acquisition
of extinction. Bottom
row: inactivation
after extinction pre-
vents fear renewal.
(adapted from Herry,
2008)

1996; Vertes, 2004), which can cause strong excitation of the ITCs (Amir, 2011).

Their inter-amygdala connections are organized topographically; the mITCs

receive projections mostly from principal cells in the LA, while the ITCs are

targeted by BA principal neurons, and synapse onto adjacent CEA neurons

(Paré, 2003; Royer , 1999). Moreover, there is substantial intra-cluster recurrent

connectivity (Geracitano, 2007, 2012).

This connectivity already points towards a role in controlling CEA excitabil-

ity and hence fear expression, and indeed ITCs are mostly implicated in fear

extinction learning (Paré, 2003). Extinction training leads to increased activity

in the ITC, as evidenced by heightened c-fos and Zif628 expression (Knapska,

2009; Busti, 2011). Moreover, it can be demonstrated that mITCs are necessary

for the expression of fear extinction memory by selective lesion (Likhtik, 2008),

or conversely, that facilitation of ITC activity enhances fear extinction (Jüngling,

2008). Lastly, extinction training is accompanied by potentiation of BA synapses

onto ITC, presumably inhibiting CEm (Amano, 2010). Notably, this effect is

dependent on activity in the infralimbic cortex (ibid.).

More recently, findings also point towards a role of the medial ITCs in
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fear expression. It was demonstrated that BLA-mITC connections undergo

potentiation already during fear learning and that inputs from sensory areas

exhibit plasticity as well (Asede, 2015). These results indicate that ITCs also

induce fear expression via disinhibition of the CEm (Busti, 2011) and suggests

that, instead of just inhibiting fear expression, ITCs might form a parallel

pathway to LA that is capable of noth promoting and inhibiting fear expression.

2.3 Central Amygdala

The central amygdala (CEA) is a GABAergic nucleus located dorsomedially with

respect to the basolateral complex. Anatomically and physiologically, the CEA

can be subdivided into a lateral (CEl) and a medial (CEm) nucleus. Functionally,

it is generally considered the main output region of the amygdala and plays a

pivotal role in fear expression. While it was long regarded as a mere passive

relay in the fear circuitry, recent research highlights its role in acquisition of fear

responses and particularly fear generalization.

2.3.1 Connections with Other Brain Structures

In the fear pathway, the CEA is the next structure downstream of the basolateral

complex receiving amygdala-internal projections from the BLA (Pitkänen, 1995),

as well as the ITCs. Moreover, it receives direct projections from sensory areas

(Sah , 2003) including the auditory thalamus (Samson, 2005). Complementing

these, the CEA receives nocioceptive input as well via connections from the

parabrachial nucleus and solitary tract (Shimada, 1992; Jhamandas, 1996; Dong,

2010).

Moreover, the CEA has abundant out-bound projections to other brain

regions. The medial part consists of neurons targeting the hypothalamus (LeDoux

, 1988) and various brainstem nuclei (Veening, 1984). Of particular relevance

for the freezing response typically observed in the conditioning paradigm are

the connections to the periaqueductal gray (Behbehani, 1995; Rizvi, 1991), a

structure known to mediate analgesia (Basbaum, 1984) and defensive responses

like freezing (LeDoux , 1988; Davis, 1992). These different output pathways

mediate distinct behavioral fear responses (LeDoux , 1988; LeDoux, 2000).

2.3.2 Internal Structure: CElon and CEloff

As for internal structure, there are intrinsic connections (Jolkkonen, 1998; Lopez

de Armentia, 2004), and the wealth of neuron subtypes in the CEA (Viviani,

2011; Veinante, 1997) points towards the importance of inter-CEA inhibition

(Veinante, 2003; Huber, 2005; Ehrlich, 2009). Recent studies (Ciocchi, 2010;
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Haubensak, 2010) revealed and characterized a specific functional microcircuitry

within the CEl of particular importance to conditioning. During conditioning,

two subpopulations become distinguishable by their responses to the CS: one

exhibits excitatory responses (termed CElon), while the other population gets

inhibited (termend CEloff). The medial nucleus CEm, in turn, increases its

activity on CS presentation. Overall, the picture of an inhibitory microcircuitry

emerges, where the CElon subpopulation gets innervated by CS input from

the BLA and thalamus and inhibits the CEloff population by direct synaptic

connections. As a consequence, the CEm is released from inhibition, leading to

freezing (Figure 2.3). Notably, this functional distinction in CElon and CEloff

coincides with the expression of the protein kinase PKCδ (Haubensak, 2010).

CEloff neurons, i.e., the subpopulation of CEl neurons inhibited by the CS after

conditioning, expresses PKCδ, while CElon neurons do not. This microcircuitry

is illustrated in Figure 2.3 a.

2.3.3 Synaptic Plasticity in the CEA

Already before the discovery of this microcircuitry, studies have increasingly

pointed towards active changes in the CEA during fear conditioning. For instance,

reversible pharmacological interference in the CEA during fear conditioning was

reported to reduce fear responses during testing (Wilensky, 2000; Goosens, 2003)

and it was found that fear responses can be acquired by overtraining after

BLA lesions, a process that is CEA-dependent (Zimmerman, 2007; Rabinak,

2008). More recent results (Li, 2013; Watabe, 2013; Penzo, 2014) provide direct

evidence for synaptic potentiation and depression and, importantly, indicate that

plasticity within the CEl is subpopulation-specifc. The connections from the

BLA to SOM+ CEl Neurons, which roughly overlap with CElon neurons, show

a tendency to increase synaptic efficacy, while connections to SOM- neurons,

overlapping with CEloff, tend to decrease. This switch in relative synaptic

efficacy facilitates acquisition of a CS-evoked network response.

2.3.4 Tonic Inhibition in the CEA

Another important aspect of neural plasticity in the CEA relates to the tonic

activity. A salient finding in Ciocchi (2010) was that not only did phasic,

CS-evoked activity in the CEA change during conditioning, but also tonic

activity, i.e., the baseline firing, changed with experience. In CElon and CEm

neurons, baseline firing rate tends to decrease, while in CEloff, it increases.

Remarkably, the magnitude of these changes in tonic activity relates to the

behavioral expression of fear generalization. Animals that displayed stronger

increases in CEloff rate tended to generalize, i.e., exhibit higher CS− firing.
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Figure 2.3: The CEA microcircuitry. a) Sketch of the disinhibitory CEA
microcircuitry. b) Top row: Phasic responses for the three CEA subpopulations
before and after conditioning. Bottom row: Correlation with fear generalization.
Particularly in CEloff, there is a strong positive correlation between tonic rate
increase and fear generalization score. (adapted from Ciocchi, 2010)

Following up on these results, Paolo Botta (2015) showed that CEA neurons

undergo modulation of tonic inhibition during fear learning. Tonic inhibition

denotes persistent currents mediated by extrasynaptic GABAA receptors and

has been reported in other brain areas previously (Kaneda, 1995; Nusser, 2002;

Semyanov, 2004). These have a different structural composition and different

properties from their synaptic counterparts, most importantly a higher affinity

for GABA and low receptor desensitization (Farrant, 2005). By virtue of these

properties, they are persistently activated by low concentrations of GABA and

mediate a tonic inhibitory current on the cell membrane.

Importantly, in PKCδ+ neurons in the CEA, these tonic currents decrease.

This is fully consistent with the increase in baseline firing of CEloff neurons

reported previously. Furthermore, the effects on fear generalization are also

consistent: the lower the tonic inhibition in PKCδ+ neurons, the higher the

fear generalization scores. Critically, this is not a mere correlation; optogenetic

manipulation of the PKCδ+ population modulates fear generalization in the

same way. This lends strong support to the idea that tonic inhibition in the

CEA controls fear generalization.

Relation to Anxiety

Just like fear, anxiety is mediated by a distributed circuitry in which both

the BLA and the CEA are involved (Tovote, 2015). Early studies implicated

the CEA in the control of anxiety (Jellestad, 1986) and, more recently, it has

been shown that GABAergic signalling in the amygdala affects anxiety (Tasan,
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Figure 2.4: Tonic inhibition in the CEA. a) Extrasynaptic inhibition in
PKCδ+ decreases during fear learning. The right panel shows example current
traces. b) Fear generalization correlates with the post-FC tonic inhibition
(left panel) and stimulation of PKCδ+ cells increases fear generalization. c)
Optogenetic manipulation can modulate anxiety in the elevated plus maze (left
panel) and open field test (right panel) bidirectionally. (adapted from Botta,
2015)

2011). Together with the relation between fear generalization and anxiety, this

points towards a role of tonic inhibition in the central amygdala in the control

of anxiety. Indeed, it could be demonstrated that optogenetic stimulation of

PKCδ+ neurons increases anxiety scores in the open field test and elevated plus

test, while inhibition reduces them (Botta, 2015).
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2.4 Bed Nucleus of the Stria Terminalis

The bed nucleus of the stria terminalis (BNST)—another structure of the

extended amygdala and anatomically, neurochemically and cytoarchitectonically

related to the CEA (Alheid, 2003)—is commonly considered to be at the heart

of the circuitry mediating sustained fear, or anxiety (Walker, 2003). The BNST

has strong reciprocal connections with the amygdala (Krettek, 1978; Price, 1981;

Veinante, 1998, 2003; Dong, 2001) and there is increasing evidence that the

interplay between the amygdala and BNST is pivotal for the emergence of anxiety

(Walker, 2003; Davis, 2010; Duvarci, 2009).

While there is a wealth of results clearly implicating the CEA in the expression

of conditioned fear (see section 2.3), both pre-training (Gewirtz, 1998) and post-

training (Hitchcock, 1991) lesions of the BNST do not affect expression of

conditioned fear (see also LeDoux , 1988; Iwata, 1986). There is, however, data

implicating the BNST in the control of sustained fear. These come mostly

from studies investigating light-enhanced startle, where transition to a brightly

illuminated context causes sustained fear responses (Walker, 1997) and CRF-

enhanced starte, where infusion of the peptide corticotropin releasing hormone

(CRF) increases the amplitude of the acoustic startle response (Lee, 1997; Davis,

2010). These studies demonstrated that lesions of the BNST, but not CEA,

abolish light-enhanced startle (Lee, 1997; Walker, 2002). In addition, there is

evidence for a role of the BNST in the expression of contextual fear (Sullivan,

2004; Resstel, 2008; Haufler, 2013) and for a more general involvement in anxiety

(Sahuque, 2006; Lee, 2008; Duvarci, 2009). More recently, optogenetic studies

revealed specifities in the BNST. Stimulation of glutamatergic projections to the

ventral tegmental area lead to an increase in anxious behavior, while stimulation

of GABAergic projections has anxiolytic effects (Jennings, 2013). Moreover,

different regions of the BNST play distinct roles in the mediation of anxiety via

distinct outbound projections (Kim, 2013b).

Finally, there is evidence that connections from the CEl to the BNST are

involved in the expression of sustained fear (Davis, 2010). This is suggested by

the finding that CEA lesions impair acqusition of contextual fear (Koo, 2004)

and receives further support from crossed lesion studies (Jasnow, 2004; Erb,

2001). Interestingly, the reverse connections appear to play a role in modulation

of phasic conditioned fear. A recent study (Duvarci, 2009) reported that BNST

lesions do not decrease only anxiety scores in the elevated plus maze, but also

freezing to CS− presentations, i.e., reduce fear generalization, again consistent

with the previously described link between fear generalization and anxiety.

In summary, the current state of research implicates the BNST in the control

of anxiety, while the CEA is considered a key site for the expression of phasic fear.
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Nevertheless, the circuitries mediating fear and anxiety strongly overlap, and in

particular the CEA (but also BLA) affects anxious behavior. Additionally, there

is evidence pointing towards strong functional links between the two structures,

presumably reflecting the relation between phasic fear and anxiety.

2.5 Medial Prefrontal Cortex

The acquisition and expression of fear and extinction is not constrained to the

extended amygdala, however. A distributed and interconnected network spanning

additional forebrain structures has been found to be implicated as well. Among

these, the medial prefrontal cortex (mPFC) is particularly noteworthy and seems

to serve the control of emotional behaviors. The notion that the cortical areas

exert control over the older subcortical areas, like the amygdala, is by no means

new (for a review, see Sotres-Bayon, 2006). In the case of fear conditioning, it

is established, that the prelimbic (PL) and infralimbic (IL) cortices act on the

amygdaloid fear pathways and thereby influence fear expression. In particular,

the role of the latter, IL, in extinction learning was the subject of many studies

in recent years (Myers , 2007; Herry, 2010).

A neocortical structure, the neuronal organization of the mpFC mirrors other

sensory cortices with predominantly glutamatergic principal neurons, but also

GABAergic interneurons. Moreover, in rodents, these are organized in layers

(Marek, 2013), such as in the sensory cortex. Based on cytoarchitecture, it can

be subdivided into medial precentral cortex, anterior cingulate cortex, as well

as PL and IL, with the latter two known to play a role in the expression and

control of fear. While comparably little is known about the intrinsic connections

of the mPFC, it has been shown in anterograde (Jones, 2005) and retrograde

tracing (Hoover, 2007) studies that IL and PL are interconnected.

Additionally, IL and PL have strong reciprocal connections with the amygdala.

Both PL and IL project to the BLA (McDonald, 1996), innervating BLA neurons

(Likhtik, 2005), and the IL forms strong connections with the ITCs (Millhouse,

1986; Vertes, 2004). Conversely, the BLA targets both the PL and IL (Hoover,

2007). Recently, it was found (Senn, 2014) that fear and extinction neurons

exhibit specificity in their mPFC connectivity: among the PL-projecting neurons

identified by retrograde tracing, there were no extinction neurons, only fear

neurons, extinction-resistant, and non-responsive cells. Among IL-projecting

cells, on the other hand, no fear neurons were found. This resonates with studies

implicating the PL in fear expression and the IL mostly in extinction.

Such a role of the IL in the retrieval of extinction learning was first suggested

by lesion studies (Quirk, 2000) and corroborated with pharmacological inacti-

vations (Sierra-Mercado, 2006; Laurent, 2009). Remarkably, in these studies,
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acquisition was unaffected, only retrieval of extinction was impaired. Moreover,

it could be demonstrated that infusion of an NMDA-receptor antagonist (Burgos-

Robles, 2007) or MAPk inhibitor (Hugues, 2004) shortly after learning also

impaired the retrieval of extinction, pointing towards a role of the IL in memory

consolidation. Complementing these findings, there is CS evoked activity in the

IL during extinction retrieval, but notably not extinction learning (Milad, 2002)

and stimulation of IL reduces conditioned freezing (Milad, 2002, 2004). In light

of these findings, the IL is viewed as a main site for consolidation of extinction

memory.

The PL, on the other hand, appears to exert an opposite influence on fear

expression. Activity in the prelimbic cortex is necessary for the expression but

not acquisition of conditioned fear (Corcoran, Quirk, 2007). Further, studies

using pharmacological inactivation (Sierra-Mercado, 2011) and microstimulation

(Vidal-Gonzalez, 2006) in these two regions corroborate that the PL is involved

in fear, counterbalancing the IL’s role in extinction.

More recently, studies are beginng to shed light on the mechanistic details of

mPFC-BLA interaction that underly this control of fear and extinction. There

is evidence that the reciprocal connections between the BLA and mPFC may

underlie synchronization in the theta frequency range, and that this synchrony

is associated with safety learning (Likhtik, 2014). Moreover, it was shown that a

local inhibitory microcircuit in the prefrontal cortex controls fear expression by

disinhibition of principal neurons (Courtin, 2014). Importantly, this microcir-

cuitry was also demonstrated to play a key role in the entrainment and phase

control of theta oscillations.

2.6 Hippocampus

Finally, the hippocampus (HPC) is also known to play a role in fear conditioning.

Lesion studies have suggested different roles for the amygdala and HPC, such

that the HPC appears to be mostly involved in contextual conditioning (Kim

, 1992; Phillips, 1992), while the amygdala mediates cued fear conditioning.

Based on these, the notion emerged that the HPC encodes a presentation of

context, i.e., of the many stimuli that form the environment to the conditioning

process (Fanselow, 2000), a view that was mostly confirmed by subsequent

pharmacological lesion studies. This role of the HPC in contextual modulation

of fear is particularly relevant to fear extinction, a strongly context-dependent

learning process (Bouton, 2004). In line with this, it was found that pre-

extinction inactivation of the dorsal HPC blocks retrieval of extinction (Corcoran,

2005). This suggests that the HPC is involved in retrieval of context-dependent

extinction memory. Moreover, fear renewal in a new context can be prevented by
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pre-testing inactivation of the dorsal HPC (Corcoran, 2001; Hobin, 2006). These

contributions to extinction and renewal are likely mediated by hippocampal

projections to the mPFC (Hoover, 2007) and to the BA. For the purpose of

this work, it suffices to remark that the HPC transmits contextual information

relevant to cued fear conditioning to the amygdala network.



Chapter 3

Theoretical Approaches to

Fear Learning

“So, then, our fear of some harm ought to be proportional not only to

the magnitude of the harm, but also the probability of the event.”

– Antoine Arnauld & Pierre Nicole, Logic or the Art of Thinking, 1662

It is more than a mere curious sidenote that some of the earliest researchers

in the field of probability theory—long before the term probability was coined

as a technical term—thought of fear as guided by probability estimates. As

a matter of fact, probability theory was initially conceived as a mathematical

model of rational decision making. This is exemplified by Laplace famously

speaking of probability theory as “common sense reduced to calculation” (Laplace,

1814), as well as discussions of gambling problems in the early literature. The

mathematical axiomatization of probability theory in the first half of the 20th

century obscured this practical side, but the last decades saw a resurgence of

probabilistic theories in artificial intelligence research (see, e.g., Pearl, 1988;

Russell, 2009) and cognitive neuroscience(see, e.g., Knill, 2004; Ma, 2006; Doya,

2006). Many contemporary theories on brain function rephrase problems of

perception and learning as problems of statistical inference and make use of the

rich mathematical framework of probability theory. This school of thought is

often referred to as the Bayesian brain hypothesis. From this perspective, the

problem of perception is interpreted as Bayesian inference on the state of nature

from sensory input, and learning is thought of as inference on the underlying

structure (e.g., CS-US contingencies) of the environment (see, e.g., Friston, 2010).

Formalizing a specific experimental task in these terms can help elucidate which

computations need to be performed in order to solve the task optimally. In

combination with behavioral studies, this allows for hypotheses on the solution

29
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strategy the animal employs.

On the other hand, Bayesian inference as a model of brain function alone

cannot explain how computations are actually performed in the brain. Informa-

tion processing and learning in the brain have physiological substrates in the

activity of neurons and plasticity of synapses connecting them. Therefore, un-

derstanding the dynamics of neural networks (including both the short-timescale

changes in neural activity and the long-timescale changes in synaptic efficacy)

and the underlying physiological and molecular processes is indispensible for a

mechanistic understanding of learning processes. Although this understanding

relies on mostly empirical research, theoretical models of neural dynamics are

important tools for the interpretation of results and hypothesis generation.

This chapter provides a brief discussion of modeling approaches and an

overview of recent high-level models of conditioning. This is aimed at introducing

the main concepts relevant to the computational models presented in the following

chapters.

3.1 Normative and Descriptive Models

Models of Bayesian inference and those of neural dynamics have very different

goals and pose different approaches to modeling. The former aims at giving an

account of optimal behaviour as a starting point of analysis, while the latter

aims to simulate and understand experimentally observed neural activity. Both

fall into broader classes of models, respectively referred to as normative and

descriptive (Dayan, 2005).

Normative Models

Approaches based on statistical inference are usually normative: They take as

a starting point the task or problem facing the animal, and, from a sufficient

mathematical formulation, derive the optimal (as characterized by some perfor-

mance measure contained in the formulation of the problem) solution. Alluding

to the opening quote, the normative model specifies what the agent “ought to”

do. The fundamental assumption that the animal behaves rationally, rests on

the idea that animal behavior is optimized in the course of evolution (Anderson,

1990; Chater , 1999). Therefore, normative analysis derives top-down constraints

on models by recognizing that an animal’s behavior cannot be entirely arbitrary

if it is to continue to survive.

It needs to be highlighted that the results of such an analysis crucially depend

on the formulation of the problem, so great care needs to be taken in defining

the behavioural goals of the agent. In addition, such a top-down approach
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alone does not allow for any statements on how the brain implements these

computations and therefore often falls short of providing testable predictions in

a neurobiological experimental setting.

Descriptive Models

The alternative is a bottom-up approach, which constrains models by experi-

mental observations pertaining to behavior and/or physiology. This approach is

descriptive; the model aims to reproduce experimental results, e.g., patterns of

brain activity or behavioral phenomena. The purpose of this can be multifaceted;

it may a) provide support for the plausibility of a hypothesis; b) contribute

to our understanding of the neural dynamics beyond what has been unraveled

experimentally; c) reproduce an effect in a simplified model to understand the

causes; d) generate new hypotheses from explorative investigation, etc. While

this approach results in more biologically plausible models, it is fraught with

different problems. Importantly, the data are usually insufficient to constrain

more complex models fully.

Marr’s Three Levels of Computation

The shortcomings of a pure bottom-up approach have been discussed eloquently

by David Marr 1982, working in the field of visual perception. He famously

likened attempts to understand perception by studying only neurons to trying to

understand bird flight by studying only feathers. In order to provide some guid-

ance in combining top-down and bottom-up appraoches, Marr formulated three

distinct levels of computations, which became influential throughout theoretical

neuroscience:

• The computational/semantic level specifies what is computed, i.e., what

are the inputs and outputs and what is the goal of the computation.

• The algorithmic/syntactic level is concerned with which computation

is performed, i.e., how are inputs and outputs represented and which

algorithm is used to transform input to outputs.

• The implementational/physiological level deals with how the computation

is implemented in the brain.

At the computational level, conditioning can be formalized as US prediction,

or more generally, statistical inference, and decision-making tasks can be consid-

ered as maximization of reward or, equivalently, minimization of punishment.

The algorithmic level would then specify how the brain performs the computation,

i.e. which algorithm is used for statistical inference or which learning scheme is
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used to maximize reward. Finally, on the implementational level, we ask how

the neural networks of the brain can execute the computation and how elements

of the algorithm are represented in neural activity.

This separation of levels is conceptually useful, and in particular for high-level

models, restriction to a normative perspective has been proven to be highly valu-

able for understanding animal behavior. On the other hand, for understanding

implementation, the levels cannot be regarded in complete isolation from each

other (Poggio, 2010). The neural hardware, or wetware, constrains which and

how computations can be performed. On the other hand, the structure of the

brain developed in order to serve certain functions in the course of evolution, so

higher level demands presumably shaped implementation. Accordingly, models

in the implementational level can be embedded into higher-level concepts. This

simplifies interpretation and can lead to the emergence of new predictions.

3.2 High-Level Models of Conditioning

Specifically for conditioning, there is a long and fruitful line of research into the

high-level, computational principles guiding the acquisition of the conditioned

response. Since the contemporary Bayesian models used later in this work are

the progeny of a long line of modeling approaches, we start this section by

reviewing classical models of conditioning (for a review, see Pearce, 2001).

3.2.1 A Brief Genealogy of Theories of Conditioning

The first systematic investigations into conditioning were performed more than

a century ago by Ivan Pavlov (1927), who became the namesake of the classical

paradigm, and Edward Thorndike (1898) whose work is mostly associated with

operant conditioning. A number of important refinements have been made to

the theory of conditioning since then.

Early Models of Associative Learning

Both Pavlov and Thorndike have formulated the idea of associative learning,

proposing a strengthening of association between US and CS, or US and CR,

respectively. Although not formulated in mathematical terms, the notion of

associative learning is clear both in Thorndike’s Law of Effect (1898) as well as in

Pavlov’s interpretation of conditioning in the framework of reflex theory (1927).

Mathematical formulations were introduced in the following decades and the

empirically observed exponential learning curves were derived from learning rules

(see Thurstone, 1919; Hull, 1943; Bush, 1951). To obtain the experimentally

observed exponential learning curves, these models introduced the concept of
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a physiological upper bound on responsiveness that limits the acquisition of

the conditioned response, or, alternatively, the concept of response probability,

naturally bounded to [0, 1].

Prediction Error: The Rescorla-Wagner Model

An essential insight is that learning should be driven by the discrepancy between

the expectation of the agent and what actually happens, the so-called reward

prediction error (RPE). While the aforementioned models, especially Bush (1951),

contain precursors to this idea, it is first stated explicitly in the learning model by

Rescorla and Wagner, 1972. The Rescorla-Wagner model quickly grew influential

in learning theory and RPEs have since become one of the most successful

concepts in cognitive science and neuroscience.

In the Rescorla-Wagner model, for each stimulus i, its association strength

wi with the US is increased or decreased by

∆wi = αiβ(λ−
∑

wixi)xi = αiβ (λ− y)︸ ︷︷ ︸
RPE

xi (3.1)

where αi and β denote learning parameters for each CS (αi) and the US (β),

respectively. λ ∈ {0, 1} is a binary variable, indicating the presence or absence

of reinforcement, while the xi ∈ {0, 1} are binary variables indicating presence

of stimulus i. Consequently, updates on wi are performed only when stimulus

i is presented1. The animal’s US-prediction y, which is typically assumed to

have an observable correlate in the strength of conditioned responding, is given

by the sum of association strengths of all stimuli presented in that moment:

y =
∑
wixi = wᵀx.

Importantly, this model implies that, when considering more than one condi-

tioned stimulus, the changes in association strength of one stimulus also depend

on the association strength of all the others via the overall prediction term∑
wixi = wᵀx. This leads the model to capture a number of behavioural

effects that have eluded previous ones. Most notably, it can account for the

phenomenon of blocking described by Kamin a couple of years earlier (Kamin,

1969). As described in section 1.2.3, this indicates that mere US occurence is

not sufficient for associative learning to happen, but that the driving force of

learning is rather unexpected US occurence, an insight formally expressed in

equation (3.1). Other effects captured in the model (some of which unknown by

the time of its formulation) include conditioned inhibition, overexpectation and

1In the original formulation, the binary variables xi are not explicitly included, but the
reader is instructed to only perform the update for present stimuli. Using the binary variables
xi here is just a difference in notation aimed at making the exposition of the model more
consistent with the remainder of the work.
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protection from extinction by a conditioned inhibitor (see Pearce, 2001).

From a mathematical perspective, the Rescorla-Wagner rule implements

a stochastic gradient descent. The reward prediction error is, up to a factor,

equivalent to the gradient of the mean square prediction error E(λ− y)2. Not

surprisingly, similar rules are used elsewhere, e.g., in the Widrow-Hoff-algorithm

1960 for the least mean squares filter and many other algorithms. Notably, these

parallels between algorithms used in computer science and high-level models of

conditioning are a recurring theme.

Associability: Mackintosh and Pearce-Hall Model

One important phenomenon not captured by the Rescorla-Wagner model is latent

inhibition, the observation that repeated exposure to a CS before conditioning

significantly retards acquisition of a response (Lubow, 1965, and section 1.2.3).

How quickly the association wi between a stimulus i and US is strengthened

in the Rescorla-Wagner-model depends directly on the learning parameter αi,

accordingly termed associability of stimulus i. It is easy to see that permitting

a decrease of the associability αi during preexposure could account for latent

inhibition.

Mackintosh provided a rule for how αi should be updated during learning

(Mackintosh, 1975). In this model, associability of a stimulus depends on how

accurately it predicts reinforcement. A stimulus i is regarded as a good predictor,

if the discrepancy between its own associative strength and outcome λ− wixi
is small compared to the contribution of all other stimuli λ −

∑
j 6=i wjxj , or,

conversely, as a poor predictor if it is bigger or equal. As a consequence, during

preexposure, the associability of a stimulus decreases, because other stimuli,

including context, predict the non-occurrence of the US just as well or better.

Contrary to the predictions of the Mackintosh model, however, it was found

that latent inhibition can also be observed if the CS is paired with a weak

US before a subsequent conditioning phase with a strong US (Hall, 1979). In

Mackintosh’s theory, the prediction would be that initially pairing with a weak

US increases associability (because the CS is a good predictor of that weak US);

instead retarded acquisition of a response to the strong US has been observed.

An elegant solution to this problem was proposed by Pearce and Hall (1980).

Associability should be high during learning for good predictors, but once learning

is complete and the US is predicted correctly, associability should decrease. These

demands can be realized by making associability dependent on the absolute

reward-prediction-error

∆αi = η(|λ−wᵀx| − αi)xi = η(|λ− y| − αi)xi. (3.2)
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The update of association weights wi is the same as in (3.1). Whenever the

RPE is high while stimulus i is presented, αi is increased, and for low RPE, i.e.,

good prediction, it is decreased. αi converges towards E|λ− y| and η ∈ [0, 1] is

a parameter controlling how quickly it converges. For η = 1, the associability

would always depend on only the last presentation of stimulus i. Effectively, the

rule in equation (3.2) computes a running average of |λ− y|, so we can think of

the associability as an indicator of uncertainty, which takes a low value in a very

well predictable environment and a high value in a less predictable environment.

In this model, latent inhibition from preconditioning with weak US can easily

be explained. During pairing with the weak US, the associability is initially

increased, because the US comes unexpectedly, leading to high RPE. Later

in learning, however, the US is well predicted and therefore the associability

decreases, which explains the observed retardation of learning in the second

phase of the experiment.

Temporal-Difference-Learning

The models described so far are trial-level models. The underlying assumption

was that the update step is performed at the end of a trial after the presentation

of the US and various CSs. The models did not include the precise temporal

characteristics of CS and US presentation in their learning rules. These are,

however, known to have notable effects on learning. Also, none of the aforemen-

tioned models addresses second-order conditioning, the observation that after

conditioning a stimulus i to the US, this stimulus can act as a reinforcement

signal to condition another stimulus j (see section 1.2.3).

Real-time models, on the other hand, can be designed to incorporate these

phenomena. They are updated moment by moment2. This makes them more

attractive as scientific explanations, since they do away with the artificial and

somewhat arbitrary division of the animal’s experience into trials. Also, they

are more amenable to engineering applications, which ultimately played a big

role in their broad success.

Real-time models are by no means a recent approach; the first notable example

dates back to 1939 (Hull, 1939). It was only in the 80es, though, that a crucial

insight emerged: the learning update should depend on the time derivative of

some form of composite of real US and US prediction (Sutton, 1990). That is to

say, whenever US prediction or actual US increases unexpectedly, the association

weights of currently present stimuli should be reinforced. Note that this expands

on the notion of reward prediction error in the Rescorla-Wagner model in a

2Often, the models are formulated in continuous time, but also discrete time steps are
possible.
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subtle, yet important way. Models based on this idea are summarily called

time-derivative models.

The most important of these is temporal-difference-learning (TD-learning,

Sutton, 1990, 1998), the relevance of which extends far beyond animal learn-

ing theory. In TD-learning, the agent seeks to predict how much reward (or

punishment) he will receive in the near future. The future reward is given by

vt = λt+1 + γλt+2 + γ2λt+3 + γ3λt+4 + ... =

∞∑
i=0

γiλt+1+i. (3.3)

λt is the US at time step t and γ ∈ [0, 1] is a discounting factor, which makes the

agent rate rewards (or punishments) in the immediate future higher than later

ones. The goal of learning is to estimate the value vt and how different stimuli xi

contribute to it. For this, we use the same basic form that the Rescorla-Wagner

model used: The agent’s internal estimate v̄t depends linearly on the stimuli

present at time t, v̄t =
∑
wixi,t = wᵀxt.

The key to deriving the weight update lies in the recursive form of vt. We

can reformulate equation (3.3) as

vt = λt+1 +

∞∑
i=1

γiλt+1+i = λt+1 +

∞∑
i=0

γi+1λt+2+i = λt+1 + γvt+1 (3.4)

So, the value at time t equals the sum of immediate reward λt+1 and the value at

the next time step discounted by γ. Equation (3.4) establishes a relation between

the value at two subsequent time steps. It also demonstrates how the value of

the following state is treated equivalently to actual reward in TD-learning.

Equation (3.4) holds for the true value vt, which is unknown to the agent.

Thus, for the predictions v̄t to be correct, equation (3.4) needs to hold also for v̄t

and v̄t+1. We can move the subsequent estimates towards fulfilling this criterion

by using the discrepancy between the left and right hand side, the socalled

TD-error, as a reinforcement term. This yields the update for the weights:

∆wi = αiβ (λt+1 + γv̄t+1 − v̄t)︸ ︷︷ ︸
TD-error

xi,t. (3.5)

αi and β are again learning parameters; the same as in equation (3.1). Notice

that the estimate v̄t+1 is used for the update (3.5) instead of the true value

vt+1. Generally, this method of using estimates to update estimates is termed

bootstrapping. It hails from dynamic programming and, in this case, can be

shown to converge to the true values vt. Intuitively, this works out because later

estimates (closer to the actual rewards) tend to more accurate than earlier ones.

In this equation, the discrepancy between the current estimate v̄t and the
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value it should take according to equation (3.4) (λt+1 + γv̄t+1) drives learning,

paralleling the reward-prediction-error in the Rescorla-Wagner formula. It is not

exactly the same, however. The TD-error used here also includes the prediction at

the subsequent time step. Therefore, it not only evaluates whether a discrepancy

between actual reward and reward prediction happened at this time step, but

rather whether the overall expectation of future reward has been changed by the

outcome of this time step. TD-error is high, if either the immediate reward turns

out higher than expected (analogous to RPE), or if the subsequent state predicts

much higher future rewards than were expected in the current state (not included

in RPE). The latter is the mechanism by which second-order conditioning works

in the model. Since US prediction is included in the TD-error, conditioned

stimuli that predict the US can act as reinforcers in very much the same way as

the US.

Strong experimental support for the relevanceof TD-learning for neural coding

comes from studies on midbrain dopamine neurons (Schultz, 1997). A series of

studies has demonstrated that the firing activity of dopaminergic neurons in

the substantia nigra and the ventral tegmental area closely mimicks the TD-

error in equation (3.5). Subsequently, the application of TD-inspired modeling

approaches has led to a long and fruitful line of research (reviewed in, e.g., Schultz,

2004; Glimcher, 2011). In addition, TD-learning has become a common staple

in AI applications (Russell, 2009). In the preceding exposition, the simplest

version of the algorithm was presented, but extendeding it to include actions

by the agent, like in an operant conditioning task, is straightforward. In this

formulation, it is suitable for solving tasks that require optimization of long

action sequences before obtaining feedback in the form of reward or punishment.

Context-dependent Memory Traces

In all of the models presented so far, context is treated like any other stimulus,

that means it can form an association with the US just like transient stimuli. If

US probability is higher in context A than in another, then context A acquires a

higher association weight wcontextA.

Nonetheless, findings on extinction and fear renewal are at odds with this

simple vista (Pearce, 2001). Firstly, in the Rescorla-Wagner-model, extinction

learning should lead to negative associations between the US and the extinction

context. However, no evidence for such a negative strength of associations could

be found experimentally (Bouton, 1983). Thus, although the context might form

associations with the US as predicted by Recorla-Wagner, many experimental

results suggest that it also independently affects conditioned responding as an

occasion setter (see 1.2.3).
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A different way to put this is that contextual cues hierarchically control

CS-US associations. This implies, among other things, that during extinction

learning, a new, context-dependent, CS-US association, or memory trace, is

formed that inhibits expression of conditioned responses, rather than destroying

the original association. Since this new memory trace is highly context-dependent,

after return to the conditioning or a third context, conditioned responses are

restored. Finally, generalizing the notion of context to include temporal aspects,

the phenomenon of spontaneous recovery can also be explained.

3.2.2 Kalman Filter as a Model of Associative Learning

In all the models discussed so far, knowledge about the environment is represented

in the form of scalar weights. Crucially, all these models do not explicitly include

how certain the agent is about his knowledge. The Bayesian framework allows

the inclusion of uncertainty by representing knowledge in the form of probability

distriutions over weights. Then, the width of these distributions, i.e., the variance,

is a measure for how certain the agent if its estimate. In the course of learning,

the probability distributions are updated using Bayes’ theorem (for a more

detailled introduction to Bayesian learning see appendix D). In general, this is

a very computationally costly operation and reduced models are needed. The

Kalman filter model of conditioning (Sutton, 1992; Dayan, 2000; Kruschke, 2008)

is one of the simplest and most popular of these.

The central feature of the Kalman filter is the assumption that all these

probability distributions involved are well approximated by a normal distribution

(Kalman, 1960) and hence fully characterized by their means and covariances.

This greatly simplifies the update step: Instead of having to update the entire

distribution, it is sufficient to update mean and variance.

We start by assuming the same model for US-prediction as in the Rescorla-

Wagner model, i.e., the anticipated US-strength is given by y =
∑
wixi = wᵀx,

where again, x denotes the current sensory input and w the association weights.

In contrast to the classical models, however, in the Bayesian framework in

general, the anticipated outcome is expressed not just by a scalar value, but by a

probability distribution, reflecting the degreee of belief in all possible outcomes.

For the Kalman filter in particular, a normal distribution is used:

P (y|w) = N (y|wᵀx, ν) =
1√
2πν

exp

[
− (y −wᵀx)2

2ν

]
(3.6)

The distribution is centered around the weighted sum wᵀx, with variance ν,

which is a free parameter and influences the speed of learning. Put simply, the

agent holds y = wᵀx to be most likely, but also considers higher and lower y
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possible.

Notice, that equation (3.6) is also the likelihood for the Bayesian update.

This equation fully determines the agent’s internal model, i.e., it formalizes the

agent’s prior assumptions on how the expected US strength y can be estimated

from sensory input using the concept of association weights w. Essentially, from

now on, we just treat the association weights w as inference variables. Central

to the Kalman filter is the assumption that the prior distribution over w is a

multivariate normal distribution:

P (w) = N (w|µ,C) =
1√

(2π)ndet(C)
exp

[
−1

2
(w− µ)ᵀC−1(w− µ)

]
. (3.7)

Here µ denotes the mean of the distribution, and C is the covariance matrix. In

each trial t, after having observed the true US strength yt, we now perform the

Bayesian update (D.1) with the likelihood (3.6):

P (w|yt) = αP (yt|w)︸ ︷︷ ︸
eq. (3.6)

P (w)︸ ︷︷ ︸
eq. (3.7)

. (3.8)

The product of two normal distributions is always also a normal distribution,

this is what the practicality of the Kalman filter rests on. As a consequence,

we can derive an update for the mean µ and covariance C from equation (3.8),

which fully captures the Bayesian update:

∆µ = [ν + xᵀCx]
−1

(y − µᵀx)︸ ︷︷ ︸
RPE

Cx

∆C = − [ν + xᵀCx]
−1

CxxᵀC

(3.9)

Mirroring Rescorla-Wagner, the mean weight update ∆µ contains a reward-

prediction-error. Further, the magnitude of the update step depends on µ and

the covariance C.

The term in the square brackets in both expressions in equation (3.9) is the

variance of the marginalized prediction P (y) =
∫
P (y|w)P (w) dnw, i.e., it is a

measure for how certain the agent is in its prediction of y; therefore, it contains

the prior uncertainty ν and the uncertainty about the weights that contributed

to the prediction xᵀCx. This prediction uncertainty contributes inversely to

the update speed, i.e., if the agent was very certain, but his prediction was

violated leading to high RPE, there will be a big update step. This resonates

with the notion of surprise driving weight updates, which is at the heart of the

Rescorla-Wagner model.

In addition, the term Cx controls learning speed. Let’s first consider only

the diagonal elements of C, diag(C) = {c11, ..., cnn}, which are the variances of
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the weights cii = Vwii. The higher cii is, the faster the weight update. This

means that weights that the agent is very uncertain about are updated more

readily, while, conversely, weights that the agent is very confident about are not

as easily changed. This captures the underlying idea of the Pearce-Hall model,

that once learning is complete and the US is well-predicted, the associability of

the predictive stimuli decreases.

A second consequence of the term Cx in the µ-update is more subtle. Note

that the covariance update ∆C is negative3 and does not depend on the outcome

y. Therefore, cii can only decrease, and how strongly it decreases depends on its

current value (the higher the cii, the stronger the decrease) and xi, i.e., whether

the stimulus i is active or not. More clearly, whenever a stimulus i is presented,

the variance of its association weight decreases, regardless of outcome. From this,

it follows that a stimulus i that is only presented before the US and not at other

times will have a higher weight variance cii than a stimulus j that is paired with

the US, but also presented at random times (e.g., pre-exposure in a previous

trial). The associability of stimulus i, which is a better predictor of the US than

stimulus j, is therefore higher. Hence, the Kalman update in equation (3.9) also

takes into account how accurately a stimulus predicts reinforcement, favoring

better predictors, thereby meeting the key design goal of the Mackintosh model.

Thirdly, because of the covariance term Cx the Kalman filter captures a

phenomenon not explained by the previously discussed models: the case of

backwards blocking. In backwards blocking, two stimuli are paired together

with the US in the first phase of the experiment. In the subsequent phase, only

one of the two is paired with the US. Intriguingly, this weakens the conditioned

response to the other stimulus, demonstrating that a stimulus’ association weight

can be modulated in its absence. In the Kalman filter model, this results from

off-diagonal elements in the covariance matrix. An important consequence of

the outer product xxᵀ in the C-update in (3.9) is that C acquires non-zero

off-diagonal elements, if stimuli are correlated with each other. Assume two

stimuli, i and j, are repeatedly presented together, this leads to a negative

covariance term cij = cji < 0 (Note that C can only decrease according to

equation (3.9)). The weight update of µj , when only stimulus i is presented, is

then given by

∆µj = [ν + xᵀCx]
−1

(y − µᵀx)︸ ︷︷ ︸
RPE

cijxi (3.10)

This leads to a weight update for j in the direction opposite to the RPE. Imagine

stimuli i and j were paired together with the US before and now i alone is

3It should be mentioned that it this not a necessary propoerty of the Kalman filter model.
By assuming the real weights w can be subject to change, e.g., by a diffusion process, the
variance update can also have positive terms (see Daw, 2012).
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paired with the US, there would initially be a positive RPE because stimulus

i only accounts for half of the US-prediction. This positive RPE leads to a

decrease in the associative weight of stimulus i, was well as a decrease of the

weight of j via equation (3.10). Notably, however, it predicts the opposite of

sensory pre-conditioning. The repeated pairing of two stimuli and subsequent

conditioning of one of them should—in the Kalman model—lead to the other

stimulus decreasing association weights. However, the opposite is observed

experimentally (see 1.2.3).

In summary, the Kalman filter reproduces the effects captured by earlier

models, and, in addition, observations about changes of CS-US associations in

the absence of the CS, most prominently backwards blocking. Crucially, while

the Mackintosh and Pearce-Hall models introduced changes of associability ad

hoc to reproduce observations, the Kalman filter model derives these changes

from first principles, demonstrating the potential of Bayesian approaches for

learning models.

3.2.3 Latent Variable Models of Conditioning

More recent proposals (Courville, 2006; Gershman, 2012) rooted in the Bayesian

paradigm emphasize the importance of inferences about the structure of the

environment. This idea, that animals seek to discover the causal structure of

their world is not new (Tolman, 1935). However, in the Bayesian framework,

it can be expressed in mathematical terms and becomes amenable to deeper

analysis.

All of the models discussed so far presupposed a direct link from CS to US,

formally expressed in association weights w. The Kalman filter model went one

step further and replaced simple scalar weights with probability distributions

over weights. Latent variable models introduce intermediate variables, which act

as a cause for both CS and US. The causal variable, which is closely related to

the notion of state, remains unobserved itself, hence latent; it is only inferable

by its consequences, CS and US. Importantly, the inclusion of a latent variable

implies a certain causal structure in the environment. The latent variable allows

organizing experience into a number of states.

Figure 3.1 sketches the supposed causal structure and the direction of inference

during US prediction. Having observed the conditioned stimuli x, the animal

infers the probability distribution of the causal variable s, using a set of weights

that encode the conditional probabilies P (s|x). From its internal estimate of the

probability of the causal variable s, the animal can now infer the US-prediction

y, using a different set of weights. Mathematically, this way of inference relies

on the assumption of conditional independence P (x|s) of all the stimuli given
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the causal variable s.

Discriminative vs. Generative Models

Learning in this model, again, amounts to inferring the weights, like in the

Kalman filter model. Yet, there is an important differnce: The Kalman filter

model (and also the earlier models discussed) is a discriminative model, i.e.,

it aims to predict US-probability given a conditioned stimulus was presented.

Put in mathematical terms, it inferes only the conditional probability P (y|x).

Critically, it does not allow for predictions of CS-probability P (x). Nonetheless,

there is evidence animals learn about CS-probabilities, as well.

The latent variable model allows the inference of the full joint probability

distribution P (y,x), i.e., the probabilities of CS and US and how they depend

on each other. This approach is termed generative (Bishop, 2006; Courville,

2006), since the complete distribution is generated4. For this purpose, the

internal model is built on the previously mentioned assumption of conditional

independence given the state s:

P (y,x) = P (y, x1, ..., xn) =

∫
P (y|s)P (x1|s)...P (xn|s)P (s) ds (3.11)

For the sake of simplicity—and consistency with the Kalman filter model—let

us assume s = {s1, s2, ..., sm} is a finite number of states and the distribution

P (y|s) is a normal distribution:

P (y|s) = N (y|µ, ν) =
1√
2πν

exp

[
− (yt − µ)2

2ν

]
(3.12)

Analoguously, we can define the conditional probabilities P (xi|s). The choice

of distributions fully determines the internal model and hence the likelihood

function.

Overall, the number of weights and variances involved is 2(n+ 1)×m, where

n is the number of stimuli x and m is the number of hidden states s. Compare

this with the total number of inference variables 1/2n(n + 1) in the Kalman

filter; for a low number of possible states m the memory requirements are much

lower than for the Kalman filter. This is due to the assumption of conditional

independence and if it was not for different states, this would lead to erroneous

behavior whenever the assumption is not justified. Crucially, however, allowing

different states enables the animal to infer these higher order statistical features

of the environment while at the same time being much more memory-efficient

than a Kalman filter model with full covariance matrix. In keeping with this,

4as opposed to the discriminative model, which only aims at predicting y, but does not
model the x-probabilities.
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Figure 3.1: Latent variable models of conditioning. a) Bayesian network
scheme for latent variable models. Solid arrows indicate causal structure, while
dotted arrows indicate direction of inference during US prediction. b) Schematic
of the partial reinforcement extinction effect.

many present formulations allow the number of latent causes to grow dynamically,

as learning progresses (see, e.g., Gershman, 2010).

Partial Reinforcement Extinction Effect

The central innovation of latent-variable models is the notion of detecting distinct

states to structure the environment and to handle changes. Extinction learning

is an important example of such a change and one very striking experimental ob-

servation pertaining to extinction is the so-called partial reinforcement extinction

effect (PREE, see section 1.2.3 and figure 3.1). For a purely associative theory,

this effect is puzzling, since we would expect the partially conditioned animal to

have formed weaker associations, which, as a result, should be unlearned more

readily. From a statistical learning perspective—and particularly within the

latent-variable-model—it can be explained easily. The animal detects changes in

its environment and accordingly recognizes it is in a new phase of the experiment.

Note that for partial conditioning, the transition from occasional pairing to

no pairing is much more subtle than in the case of full conditioning, in which

the 100% contigency of CS and US abruptly terminates at the beginning of

the extinction phase. The latter change is much more easily detected, and as

a consequence the animal can unlearn much quicker. Importantly, out of the

discussed models, the latent-variable model is the first to account for PREE.

The Kalman-filter model, albeit also a statistical model, does not capture this

effect, because it does not include the notion of state to reflect the environmental

change.

It deserves emphasis that the latent-variable model splits learning and US

inference in two distinct sub-processes. Firstly, it involves inference on the

state of the environment, and, secondly, inference of the US probability within

this state. This is reminiscent of the notion of hierarchical contextual control
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discussed earlier. We can make the idea of hierarchical control more explicit by

conceiving state changes as a problem of model selection (Courville, 2003). It

was mentioned earlier that the exact formulation of the internal model is left

to the designer of the model. This becomes an even more important issue as

we increase the complexity of the internal models, e.g., for the latent-variable

models. Obviously, different internal models will perform differently in predicting

the future. By model selection, in this regard, we mean endowing the agent with

the ability to choose between a number of internal models depending on their

respective performances.

Note that the internal model incorporates the agent’s belief about the struc-

ture of the environment. If something changes in the structure of the environment,

it might therefore be appropriate to change the internal model. So we can think

of the internal model in terms similar to state; switching between models is

analogous to switching between states in the latent-variable model. How does

the agent make the choice? There are many methods to evaluate relative model

performance and select the model accordingly. They all revolve around estimat-

ing how likely the observed combination of inputs and outcomes are under each

model—or, if we allow for state changes, under a sequence of models.

RLSC Models of Conditioning

A closely related family of models are reinforcement learning state classification

(RLCS) models (Redish, 2007; Tronson, 2012). These models do not invoke the

Bayesian framework; particularly, they do not present knowledge in the form of

probability distributions and their updates are not derived from Bayes’ theorem.

However, they explicitly include the notion of state classification and explain

phenomena like the PREE in basically the same way.

Again, there are two learning processes at work in parallel. The first is

about finding predictive cues and learning association weights via reinforcement

learning algorithms like TD-learning. The second is about learning how to group

different clusters of sensory cues, including context, into distinct states in order

to be able to detect changes in the environment and react accordingly. These

models merit mention as they emphasize that the idea of state learning in latent

variable models is not reliant on the use of Bayesian methods.

We conclude this discussion of higher-level conditioning models by highlighting

the theme of state learning, which underlies many modern approaches. Basically,

these models can be thought of as picking up the notion of different memory

traces formulated much earlier, but address the question of how the animal

decides when to start a new memory trace instead of modifying the present one

during learning, and when to switch between different stored memory traces in
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recall.

3.3 Inference and Decision Making

In relating these models to behavioral experiments, usually conditioned respond-

ing is taken as a proxy for the US prediction of the model. This a simplified

view. Recognition of a certain state of the environment or estimation of a

certain US probability does, in general, not necessitate one specific response.

It is a fundamental question to which extent inference and action selection are

decoupled from each other in conditioning.

3.3.1 Model-Based and Model-Free Learning

At least to modes of learning are conceivable and supported by evidence: Firstly,

direct associations could be formed between CS-related sensory input and ap-

propriate actions, i.e., actions that lead to desirable (or less aversive) outcomes

are reinforced. This is commonly referred to as model-free learning. Conversely,

model-based learning denotes a mode of operation in which the animal forms

a representation of the environment and expectations about future events and

values, and, based on these, chooses the appropriate action. While model-based

learning is more commonly discussed with relation to instrumental condition-

ing, recently the opinion that also classical conditioning can have a strong

model-based component gains ground.

For the case of classical conditioning, the distinction echoes another impor-

tant dichotomy: Model-free learning is learning of stimulus-response associations,

whereas model-based learning more closely corresponds to learning CS-US as-

sociations and selecting responses separately. Mostly, the evidence in favor of

CS-US associations and hence model-based learning comes from experiments in

which the value of the US is modified after training. In the appetitive domain,

there is a number of variations to achieve this (see Dayan (2014) for a review).

In the aversive domain, it is naturally more tricky, but some studies also support

revaluation with aversive stimuli. For example, after aversive conditioning using

a loud noise as US (Rescorla, 1973), this loud noise can be presented often

enough for the animal to get habituated and not show a response anymore in

a second phase. Notably, even though the CS was not presented in the second

phase during which US responding diminished, the CS also does not evoke a

response anymore (as compared to a suitable control).

Further evidence in favor of model-based learning during Pavlovian condition-

ing comes from studies on pavlovian-instrumental transfer (PIT, see, e.g. Corbit

(2005); Balleine (2006); Holmes (2010), or Campese (2013) for the aversive do-
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main). PIT denotes the effect that a previously classically conditioned stimulus

facilitates instrumental responding under new circumstances. This effect further

demonstrates that learning during Pavlovian conditioning is not restricted to

forming an association between conditioned stimulus and the specific response

(e.g., freezing).

Hence, decision-making becomes a multi-stage procedure in the model-based

framework. Firstly, the relevant probabilities are inferred and the state of

the environment classified, and in another step, the action that minimizes

expected utility under this state is chosen. So what is the benefit of modular,

two-stage decision making? Most importantly, splitting the decision process

in state inference and action selection allows for more flexible modulation of

behavior. The same event, e.g., exposure to US, might call for different actions

depending on context, or the subjective value might change depending on other

parameters. If inference and decision are combined, the chosen action will be

the same whenever the event is expected, leading to highly monotone modes

of behavior, sometimes called sphexish. The two-stage decision process allows

for selecting different actions, while predicting basically the same event, if

the accompanying circumstances have changed. Put more generally, learning

inference and action selection separately allows for quicker adaptation to changes

in only one subdomain.

3.3.2 The Role of Uncertainty

In a situation of perfect knowledge this decision problem becomes trivial; the

agent just chooses the action which maximizes reward or minimizes punishment.

The discipline of decision theory is therefore mostly concerned with decision

making under uncertainty5. Normative approaches postulate that the agent take

into account uncertainty when making a decision (Glimcher, 2003; Körding, 2007).

With respect to coding, this suggests that the agents holds uncertainty estimates

of the revelant variables (Knill, 2004; Daw, 2005). In principle, presenting the

subjective knowledge about a variable y in the form of a complete probability

distribution P (y) already contains all information about uncertainty. However,

utilizing specific measures of uncertainty, such as the entropy for discrete variables

or variance of coefficient of variation for continuous ones, greatly simplifies many

computations and arguably lends itself better to a neural implementation. This

is a premise similar to the Kalman filter, where it is assumed the distributions

5In keeping with the literature (e.g., Dayan, 2000), we denote by uncertainty a feature of
the subjective state of knowledge of the animal. To refer to features of the environment, we
use predictability when speaking of US as a measure for how well it can be predicted from
sensory cues, and reliability as a property of CSs, quantifying how reliably they predict a US.
Hence, uncertainty can be a consequence of unreliability and unpredictability, but might also
merely be due to incomplete knowledge.
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involved are reasonably close to normal distributions, and hence keeping track of

mean and covariance suffices. How such measures of uncertainty are represented

in the brain is still an open question. While some argue for a distinguished role

of specific brain areas in encoding global uncertainty signals (e.g. Singer, 2009),

most theoretical accounts hold that encoding of uncertainty about a variable is

bound to the presentation of that variable.

For understanding the neural coding of uncertainty and its effect on decision

making better, it has turned out to be useful to classify uncertainty depending

on which stage of the decision process it relates to (Bach, 2012). Sensory

uncertainty denotes uncertainty associated directly with sensory information

relevant to the decision. In the conditioning example, this would be, for instance,

uncertainty about the sensory discrimination between CS+ and CS− and this

form of uncertainty should be higher, the more similar the two stimuli. The

next stage in the processing, at which uncertainty might arise is state estimation.

This state uncertainty we would expect to be particularly high early in extinction

learning, for example, when uncertainty whether the environment is dangerous

or not is high. In the course of extinction learning, this uncertainty presumably

diminishes as the animal learns to classify the extinction context as a new, safe

state.

The next stage refers to the transition rules. Rule uncertainty describes

subjective lack of knowledge on how actions affect the probabilities of transi-

tioning in new states. This aspect is less applicable to Pavlovian conditioning,

but could in principle be studied using an operant conditioning paradigm. More

importantly, outcome uncertainty reflects the degree of uncertainty about the

immediate future. In the case of conditioning, it could be quantified as the

estimated variance in US strength y. Two aspects of outcome uncertainty deserve

to be highlighted here: First, to describe the effect outcome uncertainty has

on learning, one should make a distinction between expected and unexpected

outcome uncertainty. Expected uncertainty arises from a known unreliability

and unpredictability in the environment (Yu, 2005). Notably, this expected

divergence between the reward estimate and outcome should not lead to a learn-

ing update, contrary to an unexpected reward prediction error. Accordingly,

some learning rules suggest keeping an estimate of the expected variance of

the reward prediction error during learning (Preuschoff, 2007). Furthermore,

and independent of the learning update, outcome uncertainty can be shown to

have a significant effect on decision making, most evident in the phenomenon of

risk aversion. While expected utility theory and related accounts can explain

these findings by a non-linear utility function without invoking explicit coding of

uncertainty, there is evidence that measures of outcome uncertainty are encoded

and affect the decision (D’Acremont, 2008; Bach, 2012).
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Hence, uncertainty does play an important role in decision making. The

decisions of a rational agent should not only depend on his estimates of the mean

Ey, but also take into account how certain he is of this estimate. Accordingly,

research into the neural mechanisms behind decision making focuses in no small

part on finding neural substrates of uncertainty coding (Yu, 2003; Daw, 2005).

It follows that, if we view the fear response in classical conditioning as a simple

binary decision between “freezing” and “no reaction”, this decision should, among

other things, depend on how certain the animal is in its US-prediction. This

point will be discussed in more detail in the computational model of the central

amygdala in chapter 5.



Chapter 4

Neural Dynamics

Sofar, the exposition followed a normative approach. High-level models of

conditioning were introduced, and computational and algorithmic aspects of

conditioning were discussed. Any such computations in the brain are performed

by interacting populations of neurons. Therefore, a complete understanding of

the neural circuitry of conditioning necessarily has to include an understanding

of neural dynamics (Gerstner, 2002; Izhikevich, 2007). In this chapter, important

concepts for the study of neural dynamics are introduced and specifically in-

hibitory networks, like the central amygdala, but also the striatum, are considered

in more detail.

In section 4.2, a novel approximation for the solution of the Fokker-Planck

equation for conductance-based neurons is introduced. Subsequently, in section

4.3, this analytic approximation is used to analyze the dynamics of a network of

two mutually inhibiting populations. Many important features of the network

dynamics and their dependence on parameters, like connectivity, background

input strength and others, are well captured by this approximation, as numerical

simulations confirm.

4.1 Mean Rate Approaches

The simplest approach is to assume the populations to be perfectly homogeneous

and only consider the mean rates for each population. Consider, for instance,

the CEl microcircuitry: Let von and voff denote the mean membrane potentials

of the CElon and CEloff subpopulation, respectively. Further, assume a mapping

r = f(v) from mean membrane potential to mean firing rate r. We can then

49
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approximate the membrane potential dynamics in this microcircuitry by

τ
d

dt

(
von

voff

)
= −

(
von

voff

)
+

(
won,on woff,on

won,off woff,off

)(
f(von)

f(voff )

)
+

(
bon

boff

)
, (4.1)

or, in vector notation

τ
d

dt
v = −v + Wᵀf(v) + b. (4.2)

Here, τ is the neural time constant. wi,j is the functional connectivity from i to

j and bi denotes the background input to population i. The first term −v takes

into account the decay of the membrane potential towards rest due to leakiness.

Without it, the model neurons would be perfect integrators of input. When we

allow for time-dependent external inputs on the right hand side, or,

τ
d

dt
v = −v + Wᵀf(v) + b + νext(t), (4.3)

this simple model can already reproduce the phasic responses observed in the

CEA microcircuitry qualitatively.

4.1.1 Stationary Points and Stability

Using this formalism, other important properties of the network dynamics can be

exemplified. For instance, it is straightforward to compute the resting membrane

potentials, i.e., the values v takes in the absence of external input νext(t), by

setting the left hand side in equation (4.2) with the time-derivative to zero:

0 = −v + Wᵀf(v) + b

v = Wᵀf(v) + b.
(4.4)

Whenever condition (4.4) is fulfilled, there is no change in time, since the time

derivative is also zero. A point v0 which fulfills this condition is called a stationary

point. Depending on the exact shape of the transfer function f(v), there can be

multiple stationary points, i.e., equation (4.4) can have more than one solution.

In the special case of two inhibitory populations with no within-population

connections, the stationary mean rates von and voff of the two populations can

be computed numerically by solving the self consistent equation for von

von = bon + woff,onf(voff ) =

= bon + woff,onf (boff + won,offf(von)) .
(4.5)
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and subsequently substituting the solution v∗on into

v∗off = boff + woff,onf(v∗on). (4.6)

The graphical rendering of equations (4.5) and (4.6) in figure 4.1 illustrates

how there can be multiple solutions. When the two sides of the equations are

plotted together, the solutions are given by the intersection points.

This raises the issue of stability. Is each of these stationary points a point

the membrane potential converges to, or, asked differently, if the membrane

potential is perturbed slightly from the fix point, will it return to the stationary

point? Consider the middle stationary point in panel b) of figure 4.1; if it

is perturbed to the left, i.e., the membrane potential v is decreased slightly,

the term Wf(v) + b becomes smaller than v and therefore the right hand side

in equation (4.2) becomes negative and v decreases even further. Conversely,

a small perturbation to the right leads to further increase in the membrane

potential. Hence, this stationary point is unstable; small perturbations lead to

the membrane potential moving away from it. By the same reasoning, we can

see that the outer stationary points in panel b) as well as the sole fixpoint in

panel a) are stable points. If they are perturbed, the membrane potential moves

back to the stationary point.

More generally, the condition for stability is that the derivative of the right

hand side of the membrane potential dynamics equation (4.2) is smaller than

zero. In the multi-dimensional case, this means the derivative over all element

(membrane potentials):

d

dv

(
− v + Wᵀf(v) + b

)∣∣
v=v0

= J−v+Wᵀf(v)+b(v0) (4.7)

where J denotes the Jacobi matrix, defined as:

Jg(x)(x0) =


dg1
dx1

∣∣
x=x0

· · · dg1
dxn

∣∣
x=x0

...
. . .

...
dgn
dx1

∣∣
x=x0

· · · dgn
dxn

∣∣
x=x0

 . (4.8)

The condition for stability in the multidimensional case is that the real parts of

all of the eigenvalues are smaller than zero.

Equations (4.4) to (4.7) allow us to compute the stationary points and

whether they are stable. The equations show that stability depends, among

other things, on the functional connectivity W. Figure 4.1 c) shows how the

network stability changes when w̄, the absolute connection strength, is increased.

For low w̄ there is only one stationary point which is stable. When increasing
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Figure 4.1: Stability of the simple II-network. a) Graphical rendering of
equations (4.5) and (4.6) b) Pitchfork bifurcation where two additional solutions
emerge and the stable solution becomes unstable.

the absolute connection strength two additional stationary points form, and the

previously stable stationary point becomes unstable. Due to the characteristic

shape of the bifurcation diagram, this sort of bifurcation is called a pitchfork

bifurcation. To the right of the bifurcatio point, two stable stationary points

emerge, and the unstable intermediate point acts as a saddle point. This means,

if the membrane potential is above this saddle point, it will converge towards

the upper stable point, otherwise to the lower one. Hence, the unstable point

separates the domains of attraction of the two stable points. Practically, this

means transient external input can lead to switching between these two stable

points, one with high CElon- and low CEloff- firing and the other vice versa.

4.1.2 Mean Field Approximation

The approach can be extended to networks with a spatial connectivity structure

(Amari, 1977). Mathematically speaking, the underlying idea is a socalled

continuum limit, i.e. the assumption that the number of neurons is so high, that

individual neurons can safely be replaced by a neuron density and the interaction

is mediated by a field. So instead of speaking of the membrane potential vi of the

neuron i at position xi, we think of the membrane potential as a function of space

v(x). This makes it possible to capture distance-dependent connection densities

betweeen neurons in a kernel w(‖x − y‖), where x and y are the positions of

neurons. Applying the same principles as in the previous subsection, we can

formulate the neural field equation:

τ
d

dt
v(x) = −v(x) +

∫ ∞
−∞

w(|x− y|)f
(
v(y)

)
dy + b (4.9)

Note that this equation can also be formulated for multiple populations as we

have done in equation (4.2). For the sake of simplicity, however, we constrain

ourselves to the single population case here.
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Spatial Patterns of Activity in Inhibitory Networks

Analogously to the previous section, we can compute the stationary solution by

setting the left hand side of equation (4.9) to zero. This yields the equation

v(x) =

∫ ∞
−∞

w(|x− y|)f
(
v(y)

)
dy + b. (4.10)

This integral equation has one trivial solution v(x) = const. = v0. The equation

then simplifies massively and the value v0 can be computed in a similar way as

before:

v0 =

∫ ∞
−∞

w(|x− y|)f(v0) dy + b = f(v0)w̄ + b (4.11)

Here, w̄ is used as a shorthand for
∫
w(|x− y|) dy. As in the previous section, w̄

is a measure for the absolute connection strength, justifying the repetition in

notation.

Notably, the form of this solution is independent of the shape of the connection

kernel. Its stability, however, crucially depends on the shape of the connection

kernel w(|x− y|). Consider two different shapes: Firstly, a gaussian bell curve

around the center

wGauss(∆x) =
w̄√

2πσ2
exp

(
−∆x2

2σ2

)
. (4.12)

Here, the connection density decays as the distance ∆x from the neuron increases

and the parameter σ is a measure for how wide the neuron’s connections reach

in space (see figure 4.2). Also note that in keeping with the previous definition

of w̄, the connection kernel is normalized such that its integral equals w̄.

Secondly, consider a symmetric gamma-distribution shaped connection kernel

wGamma(∆x) =
w̄|∆x|n−1 exp

(
− |∆x|θ

)
2θnΓ(n)

, n > 1. (4.13)

With this connection profile, the connection density starts at 0 then increases

to a maximum at a distance of ∆x = (n − 1)θ, after which it decays to zeros

(see figure 4.2)). While the gaussian connection kernel has maximal connectivity

close to the center, the gamma kernel has maximal connectivity at a distance

determined by n and θ. Accordingly, the gaussian is an example of socalled

on-center-inhibition, while the gamma-kernel is off-center inhibition (see Rinzel,

1998).

For investigating stability with these different kernels, consider a small
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Figure 4.2: Spatial patterns of activity. a) Connection kernels: Gaussian
(red) and Gamma-kernel (blue) b) Fourier transforms of the connection kernels.
c Numerical solution for equation (4.15) for Gaussian (red) and Gamma-kernel
(blue).

perturbation around v(x) = v0 = cont.:

v(x) = v0 + εν(x, t). (4.14)

In this equation ε is a very small (compared to v0) perturbation parameter and

ν(x) is an arbitrary, but bounded function of position x and time t.

The dynamics can then be computed by inserting equation (4.14) into equa-

tion (4.9). This yields

τ
d

dt

(
v0 + εν(x)

)
= −

(
v0 + εν(x)

)
+

∫ ∞
−∞

w(|x− y|)f
(
v0 + εν(y)

)
dy + b

τ
d

dt

(
v0 + εν(x)

)
= −v0 − εν(x) +

∫
w(|x− y|)

(
f(v0) +

df

dv

∣∣∣
v=v0

εν(y)
)

dy + b

τ
d

dt
ν(x) = −ν(x) +

∫
w(|x− y|)df

dv

∣∣∣
v=v0

ν(y) dy.

(4.15)

In the first step, it was exploited that the perturbation is assumed small and the

transfer function f(·) can be linearized around v0. Subsequently, in the second

step, the stationarity condition for v0, τ d
dtv0 = −v0 + w̄f(v0) + b, was subtracted

and afterwards ε was divided out.

The resultant integral equation in (4.15) can be treated much better in the

Fourier domain. For this purpose, a Fourier transform with respect to space x is

applied to both sides of the equation, yielding

τ
d

dt
FT [ν](k) = −FT [ν](k) + FT [w](k)

df

dv

∣∣∣
v=v0
FT [ν](k)

τ
d

dt
ν̃(k) = −ν̃(k) + w̃(k)

df

dv

∣∣∣
v=v0

ν̃(k).

(4.16)

The second equation in (4.16) introduces the shorthand notation ν̃ for FT [ν]. k

is the spatial frequency. Importantly, in the Fourier domain, the integral term, a

convolution of w(x) and ν, becomes a product, which allows for an analytical
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solution.

We can now investigate the stability for each frequency component k sepa-

rately. Based on the same reasoning as before, the condition for stability of ν̃

for any frequency component k is

d

dν̃

(
− ν̃(k) + w̃(k)

df

dv

∣∣∣
v=v0

ν̃(k)
)
< 0

−1 + w̃(k)
df

dv

∣∣∣
v=v0

< 0.

(4.17)

Note the similarity of this equation with (4.7). In the case of an inhibitory

network, w(|x − y|) is negative. Moreover, assume the transfer function is

monotonically increasing and therefore df
dv

∣∣
v=v0

is positive, irrespective of v.

Hence, if w̃(k) is negative for all k, the condition in equation (4.17) is always

fulfilled. It follows, that, in the case of an inhibitory network, a necessary

condition for constant-rate solution to be unstable is that w̃(k) has positive parts.

More generally, stability in a network with distance specific connection density

depends crucially on the shape of the Fourier transform of the connection profile

w(|x− y|).

The Fourier transforms w̃ for both the gaussian wgauss(|x−y|) and the gamma

wgamma(|x− y|) connection kernel can be computed analytically. They are given

by

w̃gauss(k) = w̄ exp

(
−1

2
(σk)

2

)
w̃gamma(k) = w̄<

(
1

(1 + ikθ)
n

) (4.18)

Figure reffig:meanfield shows these fourier transform (without w̄)s. The gaussian

transforms into another gaussian, the width of which is inversely related to the

width of the original gaussian. So the transform of a gaussian kernel is positive

for all values of k. The Fourier transform of the gamma kernel, on the other

hand, has negative parts at a non-zero frequqency. This means for an inhibitory

connection kernel (w̄ < 0), w̃gamma(k) takes positive values for some frequency

components k. If, in addition, the slope of the transfer function df
dv

∣∣∣
v=v0

is high

enough for condition (4.17) to not hold anymore, the spatially homogeneous

solution v(x) = v0 = const. becomes unstable. The minima of w̃gamma(k) are the

frequency components which increase the strongest after the perturbation and

hence determine the spatial periodicity of the emerging pattern. This minima

can be computed as

kc = arg min
k
w̃gamma(k) =

tan π
n+1

θ
. (4.19)
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To summarize, the analysis shows that stability crucially depends on three

factors: Firstly, the slope of the transfer function at the stationary point df
dv

∣∣∣
v=v0

needs to be sufficiently high for instabilities to emerge. Secondly, the absolute

strength w̄ of the connections contributes in the same way, i.e., high enough w̄

is a condition for instability. These two factors are the same as in the mean

rate approach. In addition, for the mean field approach with distance dependent

connectivity, the shape of the connection kernel is pivotal.

In a purely inhibitory network, this means specifically that only a connection

kernel w(|x− y|), of which the Fourier transform w̃(k) has negative parts at non-

zero frequencies, like the gamma kernel, can lead to the spatially homogeneous

solution v(x) = v0 = const. becoming unstable. The network then converges

towards a solution with spatial periodicity with frequency kc in (4.19). In other

words, this means that stable bumps of high activity form at equal distances

given by 2π
kc

. In two or three dimensions, these bumps are arranged in hexagonal

(2D) or tetrahedral (3D) pattern. Spreizer (2016) analyzed the emergence of

these bumps in numerical simulations and corroborated the outlined analysis.

4.2 Stochastic Network Dynamics

The transfer function f(·), which maps mean membrane potential to mean firing

activity, was so far not constrained in a biologically meaningful way. Usually, for

mean rate approaches, a sigmoidal function is chosen. For more realistic models,

it is indispensible to understand how fluctuations and input statistics affect the

output firing rate of a single neuron.

4.2.1 The Conductance-based Integrate-and-Fire Neuron

The conductance based integrate-and-fire (IAF) neuron model reduces the mem-

brane potential dynamics to a simple RC-circuit (Tuckwell, 1979; Burkitt, 2006).

The membrane itself acts as a capacitor and there is a leak conductance gL to

simulate the flow of potassium ions. In addition, there is an excitatory and

an inhibitory conductance which are activated by incoming spikes, simulating

the transient activation of synaptic receptors. The dynamics of the membrane

potential Vm can be rendered as

C
d

dt
vm = −(vm − εr)gL︸ ︷︷ ︸

leak current

−(vm − εexc)gexc(t)︸ ︷︷ ︸
exc. currents

−(vm − εinh)ginh(t)︸ ︷︷ ︸
inh. currents

. (4.20)

The ε denote the reversal potentials. εr is the resting membrane potential; in the

absence of external input, the membrane potential converges towards εr. The

first term on the right hand side can be thought of as modeling K+ currents, so
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the reversal potential εr is usually chosen to be around −70mV. The latter two

terms model synaptic activation. All the excitatory currents are lumped together

in the term (vm − εe)ge(t), where εe is the effective reversal potential (usually

εr ' 0mV). Since the reversal potential εe is higher than vm, the middle term

causes an increase in membrane potential whenever the excitatory conductance

ge(t) is bigger than zero. Conversely, the reversal potential εi for inhibitory Cl−

currents is mostly (but not necessarily) lower than vm (εi ≈ −70mV), so that

activation of the inhibitory conductance gi(t) leads to a decrease of vm.

The conductances gexc(t) and ginh(t) mimick synaptic activation. Accord-

ingly, they are increased whenever excitatory or inhibitory spikes are transmitted

to the neuron. The transient changes of conductance caused by incoming spikes

depent on the specific formulation of the model. Generally, one chooses a kernel

function g(t) to mimick the conductance transient caused by one incoming spike

and the total conductances gexc and ginh are given by

gexc,inh(t) =
∑
tj,k<t

wjg (t− tj,k) . (4.21)

Index j specifies the presynaptic neuron and wj is the synaptic weight from

neuron j. The other index, k, is the spike count, i.e. tj,k denotes the kth

spike from neuron j. For gexc(t) the sum in equation (4.21) goes over all past

excitatory spikes, while for ginh(t) all the inhibitory spikes are summed.

The kernel g(t) chosen for simulations in this work is the socalled alpha-

function. The shape of the conductance transient for each spike is then given

by

α(t) = t/τ2 exp (−t/τ) . (4.22)

τ is a time constant for the transient and excitatory and inhibitory conductance

can have different time constants. Typically, the time constant τ for excitation

is chosen to be smaller than the inhibitory one, reflecting the faster synaptic

dynamics of AMPA and NMDA receptors as compared to GABA receptors. The

function in equation (4.22) has some properties which make it an appealing

candidate for modeling the time course of synaptic activation. Initially, it

increases quickly until reaching maximal activation at t = τ and then it decays

back to zero.

Equations (4.20) to (4.22) describe the subthreshold membrane potential

completely. The relation to ouput firing is introduced artificially in IAF neurons.

Unlike the Hodgkin-Huxley model, the IAF model does not model the occurence

of action potentials as such. Rather, it assigns an output spike, whenever a

certain threshold potential vthr is crossed. At any time the membrane potential

reaches vthr an output spike is transmitted to all the postsynaptic neurons and
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the membrane potential is reset to the resting potential εr.

4.2.2 The Fokker Planck Formalism

Probably the most pertinent insight gained from spiking neuron models, as

opposed to a mean rate approach, is that output firing depends not only on the

average input to the neuron, but also on the variance and other higher order

statistics (see, e.g., Destexhe, 2001; Kuhn, 2003). Therefore, any attempt at

analyzing the neural transfer function,i.e., the mapping from input to output

firing, of the conductance based integrate-and-fire neuron, necessarily has to

take into account stochastic input.

The Fokker-Planck equation (Risken, 1996; Gardiner, 1997) provides an often

used analytical tool to approximate the firing of IAF neurons under stochastic

inputs (Johannesma, 1967; Amit, 1997; Brunel, 1999; Richardson, 2004). Consider

a network of conductance-based LIF neurons. The dynamics of the membrane

potential vi of a single neuron i are given by equations (4.20) and (4.21). Strictly

speaking, the following approximations are based on the assumption of infinitely

fast synapses, i.e., a delta-function kernel, but comparison with numerical results

shows that they hold also for more realistic synaptic rise and decay times when

using the alpha-function kernel in (4.22). Further, we assume throughtout the

remainder that εinh ≤ εr so that the membrane potential is bound to be in the

interval [εinh, vthr].

Application of the Fokker-Planck equation is based on the diffusion approxi-

mation, an approximation justified in the case of small wij and high input rates.

For a high number of afferent neurons and low individual event amplitudes, the

resulting shot noise determining the conductance can be well approximated by a

Brownian motion. This is a valid assumption for neural networks, e.g., in cortex,

individual neurons typically receive large numbers of small amplitude synaptic

inputs (Abeles, 1991). Hence, the input conductances (4.21) can be replaced by

a diffusion process

gexc,inhi (t) ≈ µex,in + σex,inW (t). (4.23)

Here, Wt is a standard Wiener process. The mean µex,in and variance σ2
ex,in

of the conductance terms can be calculated from the synaptic kernel g(t) and

the rate of synaptic events using Campbell’s theorem (Papoulis, 1991). The

membrane potential dynamics (4.20) can then be rendered as

C dvm(t) = [−(vm(t)− εr)gL − (vm(t)− εex)µex − (vm(t)− εin)µin] dt−

−(vm(t)− εex)σex dW (1)(t)− (vm(t)− εin)σin dW (2)(t).

(4.24)
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Note that two separate Wiener processes (as indicated by the superscripts)

are used to reflect the assumption that excitatory and inhibitory inputs are

independent. The moments of the first-hitting time to the threshold potential,

i.e., the time it takes the membrane potential to reach vthr, can be computed

for such a process using the Fokker-Planck formalism (Siegert, 1951).

The Fokker-Planck formalism provides a framework to cast the stochastic

membrane potential dynamics in equation (4.24) in the form of a parabolic

partial differential equation describing the time evolution of the probability

density ρ(vm, t) of the membrane potential (Risken, 1996; Gardiner, 1997). In

this specific case, the Fokker-Planck equation is given by

∂

∂t
ρ(vm, t) =

1

C

∂

∂vm
([(vm − εr)gL + (vm − εe)µe + (vm − εi)µi] ρ(vm, t)) +

+
1

2C2

∂2

∂2vm

([
(vm − εe)2

σe
2 + (vm − εi)2

σ2
i

]
ρ(vm, t)

)
.

(4.25)

For notational convenience and conceptual clarity, this can be rearranged using

the notion of probability flux terms:

∂

∂t
ρ(vm, t) = − ∂

∂vm
[Jr(vm, t) + Jinp(vm, t)] (4.26)

The first term, Jr(vm, t), is an input-independent relaxation flux describing of

the membrane potential caused by the leak conductance gL and is given by

Jr(vm, t) = − 1

C
(vm − εr)gLρ(vm, t). (4.27)

The relaxation flux is directed towards the resting potential εr and the magnitude

for each vm depends on the distance from the resting potential and the local

probability density ρ(vm, t). The latter flux term in equation (4.26), Jinp(vm, t),

denotes the input flux and captures the drift and diffusion due to excitatory and

inhibitory synaptic inputs

Jinp(vm, t) = − 1

C

[
(µex + σ̃2

ex)(vm − εex) + (µin + σ̃2
in)(vm − εin)

]
ρ(vm, t)

− 1

C

[
(vm − εe)2

σ̃2
ex + (vm − εi)2

σ̃2
in

] ∂

∂vm
ρ(vm, t)

(4.28)

Here, we intruduced the substitution σ̃2
ex,in =

σ2
ex,in

2C for notational convenience.

The µex- and µin-dependent parts on the right hand side of equation (4.28)

present the drift of the membrane potential caused by excitation and inhibition
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Figure 4.3: Transfer function and membrane potential distribution.
a) Transfer function computed by simulation (red) and Laplace approximation
(blue) for medium k (top row; ge = 0.5nS, gi = 0.1nS and λi = 5.0kHz) and high
k (bottom row; ge = 0.05nS, gi = 0.01nS and vi = 50.0kHz). b) Corresponding
membrane potential distributions for 1) Top row: λe = 12.kHz (left) and
λe = 14.kHz (right); 2) Bottom row: λe = 120.kHz (left) and λe = 140.kHz
(right)

towards their respective reversal potentials, analogously to the relaxation flux

in (4.27). The parts containing σ̃2
ex and σ̃2

in present the diffusion caused by

the random inputs. Therefore, these terms also depend on the gradient of

the probability density ρ(vm, t), mediating the flux from high-probability to

low-probability regions.

For estimating the firing rate, we are interested in the stationary solution,

i.e., the solution with constant probability flux. Since the membrane potential is

reset to εr every time the threshold potential vthr is reached, there is a finite,

rate-dependent flux from vthr to εr compensating for the flux in equation (4.26)

in the range [εr, vthr[:

Js(vm, t) + Jinp(vm, t) =

r if εr ≤ vm < vthr

0 else.
(4.29)

Importantly, r, the value of the constant flux, is the rate at which the
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threshold potential is reached and thus equivalent to the mean output firing

rate of the network. From equation (4.29), the stationary probability density

ρ(vm) can be computed up to the factor r. Finally, imposing the normalization

condition
∫
ρ(vm) dvm = 1 eventually yields the rate r. This procedure is easily

demonstrated in the no-fluctuation limit. The necessary steps for both the no-

fluctuation limit and the fluctuation case are outlined in detail in the appendix.

In figure 4.3, the results of this approximation for the transfer function and the

membrane potential distribution are compared with numerical simulations. The

analytical approximation to the Fokker-Planck equation provides a good fit to

the mean firing rate.

4.3 II-Network Dynamics

The Fokker-Planck approximation can be used for refining the treatment of

stability of a network of two mutually inhibiting populations (see 4.1.1), like

the CEl. Using the previous results, the mean firing rate of each populations

can be approximated and we denote the neural transfer function following from

equation A.14 by f(ve, vi, ge, gi; θ), where ve,i are the excitatory and inhibitory

input rates, ge,i the respective conductance amplitudes, and θ contains neuron

specific parameters, like reversal potentials etc. Assume that the excitatory

background input to population 1 is given by ve,1 and that each neuron receives

an average inhibitory input of n2p21r2, where n2 is the number of neurons in

population 2, p21 is the connection probability from population 2 to 1 and r2

is the mean output rate of population 2, and vice versa. The dynamics of the

system can be approximated by

τ
dr1

dt
= −r1 + f (ve,1, n2p21r2, ge, gi; θ1) =

τ
dr2

dt
= −r2 + f (ve,2, n1p12r1, ge, gi; θ2) =

(4.30)

and the stationary mean rates r1∗ and r2∗ can be computed numerically by

solving the self consistent equation

r1 = f (ve,1, n2p21r2, ge, gi; θ1) =

= f (ve,1, n2p21f(ve,2, n1p12r1, ge, gi; θ2), ge, gi; θ1)
(4.31)

and by subsequently substituting the solution r∗1 into

r2 = f (ve,2, n2p12r
∗
1 , ge, gi; θ1) (4.32)

we obtain the stationary rate of population 2 in equlibrium. In the upper
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[bt]

Figure 4.4: Stability of the II-network. a) Bifurcation diagram for increas-
ing gi and ge (top panel) and within population connectivity pinternal (bottom
panel). White area is balanced state, red is bistable and oscillatory regime.
Dashed line indicates bifurcation points calculated using the FP approximation.
b) Raster plots. Top: Balanced; Middle: Oscillatory; Bottom: Bistable.

panel of figure 4.4a, these equations are rendered graphically. The grey line

corresponds to the left hand of equation (4.31), and the red line to the right hand

side. Additionally, the blue line indicates the corresponding rate r2 according to

(4.32). Importantly, depending on the strength of recurrent inhibition gi, there

can exist only one or three solutions. The stability of solutions is determined by

the derivative of the right hand side at the intersection point. If it is lower than

1, as in the top panel, the solution is stable. To see why this is the case, consider

a rate r1 slightly lower than its equilibrium point, that is, left of the intersection

in figure 4.4a. If the right hand side in equation (4.31) is higher than the left

hand side, then the time derivative in equation (4.30) is positive and r1 increases;

equilibrium point is stable. In summary, as the strength of inhibition between

the populations is increased while adjusting background input to keep the firing

rate constant, the system undergoes a pitchfork bifurcation and the balanced

state becomes unstable. Two stable fixed points emerge, with one population

overpowering the other.

As comparison with simulation results in figure 4.4 shows, this critical point

can be predicted well using the Fokker-Planck approximation. It depends

crucially on the product of the slopes of the two population transfer functions

at the operating point. Hence, factors like input variability, which decrease the

slope, shift the critical point (figure 4.4b, top panel). Similarly, inhibition within
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Figure 4.5: Effect of output rate. a) For increasing output firing rates the
synchronous state (blue) becomes more predominant. b) Raster plot (top) and
instantaneous firing rate (bottom) of synchronized firing at 15Hz mean rate. c)
Top: Frequency on mean firing rate. Bottom: The power in the fourier domain
as a function of gi for a mean rate of 10Hz.

a population decreases the population gain and increases the domain of stability

of the balanced state (figure 4.4b, bottom panel).

Notably, in the intermediate regime, anti-phasic oscillations arise. These are

due to synchronization of neural firing in each population underthe effect of

inhibition, a well known phenomenon (Van Vreeswijk, 1994). Accordingly, the

frequency of the oscillations equals the mean firing rate (figure 4.5c). Especially

for high output firing rates, neural firing is tightly synchronized already for

comparably small gi (see figure 4.5). Notably, the transition from balanced firing

to synchrony is a continuous transition, as is evident by the smooth increase of

amplitude power before saturation is reached. That means there is no clearly

defined transition. Conversely, it falls of sharply at the transition to the bistable

regime.

Finally, we investigated how asymmetry affects network stability. Firstly, the

relative connection density λ = p12/p21 was altered while keeping the recurrent

inhibition, i.e. the product p12p21, constant. Remarkably, this alteration does not

affect stability significantly. In the synchronous regime, however, the oscillation

amplitudes of the population receiving stronger direct inhibition are increased

significantly compared to the other population; in other words, firing in this

population is more tightly synchronized. Comparing the amplitudes at the

main oscillation frequency in the fourier domain reveals that the difference in

amplitude is roughly equal to the factor λ. Secondly, we varied the output firing

rates such that the two populations operate at different output firing rates, while

the sum of output firing is kept constant at 20Hz. For increasing difference

between the populations, the frequency of oscillations follows the higher rate, but

the synchronous regime becomes smaller. This is indicated by the bifurcation

diagram in figure 4.6c.
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Figure 4.6: Effect of asymmetry. a) Asymmetric connection densities
p12 = λ2p21, where the product remains constant. b) Example rate histogram
(top) and relative amplitudes of oscillations on λ. c) Effect of different output
firing rates.

4.4 Discussion

In section 4.2 and appendix A, an analytic approximation to the solution of

the Fokker-Planck equation for conductance-based neurons was presented. This

derivation builds on previous formulations in which numerical integration was

used (Richardson, 2004) or the approximation only covered one reversal potential

term, i.e., either excitation or inhibition (Kovačič, 2009). The approximation

presented here is valid for two reversal potential terms thereby allowing for

simultaneous excitatory and inhibitory inputs.

Based on this approximation, the dynamics of a two population network with

reciprocal inhibition were discussed in the subsequent section. The numerical

analysis confirmed the validity of the Fokker-Planck approach for estimating fir-

ing rates and predicting the pitchfork bifurcation for strong recurrent inhibition.

Moreover, it deserves emphasis that the usefulness of the Fokker-Planck approx-

imation for this sort of analysis extends beyond estimation of the bifurcation.

By estimating the gradient of output firing rates r1 and r2 with respect to the

excitatory inputs ve,1/2 it is possible to adjust the external background inputs

much more efficiently. When using a Newton-Raphson type algorithm for tuning

the network to the desired output firing rates, the estimated gradients can be

used to quickly adjust the network to desired baseline firing rates. In the next

chapter, this type of analysis is demonstrated for the specific example of the

central amygdala.



Chapter 5

Tonic inhibition Controls

Fear Generalization in the

Central Amygdala

In this section, a more specific central amygdala model is presented which

is used to investigate how fear expression is modulated in the downstream

central amygdala. In particular, the effects of tonic inhibition reported in Botta

(2015) and depicted previously in subsection 2.3.4 on fear generalization are

investigated. For this purpose, a large-scale spiking neural network model of the

central amygdala was devised.

To study the relationship between extracellular inhibition and response

behavior we developed a descriptive bottom-up model of the central amygdala.

The network model consisted of three populations os spiking neurons that

represent CElon, CEloff and CEm. Consistent with experimental data (Ciocchi,

2010) there was higher connection density from CElon to CELoff than vice versa,

and CEloff projected more strongly onto the CEm (Fig. 5.1a; see appendix B for

details). First, we tuned the background input to obtain 5Hz baseline firing rates

in the three populations, mimicking their firing rates in vivo in pre-conditioning

state. As Fig. 5.1d illustrates, the network model reproduced the CS responses

observed experimentally. Consistent with experimental observations (Li, 2013),

it was assumed that before conditioning the synaptic weights won from the input

population to CElon are weaker than those to CEloff (woff ) and the relative

strength reverses during fear conditioning (see Fig. 5.1c). Therefore, in the

pre-conditioning state, due to mutual inhibition between the CElon and CEloff

population, external input was blocked and there was no phasic response in

any of the three populations. However, after mimicking the synaptic changes

65
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Figure 5.1: CEA
network model.
a) Schematic of the
network simulation.
Numbers indicate
connection densities.
b) Fit of neural
transfer function of
the conductance-based
integrate-and-fire
neuron model to
patch-clamp record-
ings in the top panel;
bottom panel shows
fit of sub-threshold
membrane potential
dynamics. c) Synaptic
weights before and
after fear condition-
ing. d) Simulated
responses to transient
(gaussian, see inset in
panel a) stimulation
for each population
before and after fear
learning.

induced by fear conditioning (i.e., increasing won) the three populations showed

the expected phasic responses.

5.1 Recurrent inhibition determines the stimu-

lus sensitivity of the central amygdala

The balance of activity in the CElon and CEloff neurons that determines the out-

put of the CEm depends further on two key parameters: the mutual connectivity

between the Celoff and Celon populations (wrec) and the variance of background

input which is determined by the amplitude of the afferent synapses on the two

populations. To further investigate this dependence, we systematically varied

the synaptic weight between CElon and CEloff, wrec, and the variance of the

input (Fig. 5.2). For weak wrec the positive feedback by disinhibition is still

outweighed by factors constraining the firing rates and both populations could be

balanced at 5Hz by external input. But for higher wrec, the network underwent

a bifurcation at which the balanced state became unstable and only one popula-

tion remained active. This led to a bistable regime, in which transient external
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input could switch the activity between the two populations (see inset in Fig.

5.2a). Notably, in the intermediate range of wrec, the two populations exhibited

anti-phasic oscillations. In this regime, recurrent inhibition synchronizes the

neurons within each population. Increasing the variance of background input

stabilized the network dynamics, i.e., the bifurcation point only occurred for

higher wrec.

Figure 5.2: Network dynamics. a) Bifurcation diagram: in the white area
CElon and CEloff activity are balanced, in the grey area the balanced state
is unstable, and in the intermediate area (blue), the two populations oscillate
anti-phasically. b) Response amplitude and duration for different strength of
recurrent inhibition (EPSP = 0.5 mV, dotted horizontal line in panel a). c)
Response shape for 1) wrec = 0.0035 and 2) wrec = 0.022 (indicated by vertical
lines in b). d) Response amplitude on synaptic strength between input and
CElon population for each population. Brightness indicates strength of recurrent
inhibition wrec. e) area under the curve on recurrent inhibition strength wrec
for CEm population.

Interestingly, during phasic stimulation, the effects of increasing wrec became

already apparent in the balanced state. Stronger recurrent inhibition led to a

continuous increase in response duration and response amplitude (Fig. 5.2b).
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Also, synchronization after phasic stimulation caused reverberations that out-

lasted the stimulus by hundreds of milliseconds (Fig. 5.2c), reminiscent of the

experimentally observed phasic responses (Ciocchi, 2010). This close match

between simulation and experimental measurement led us to hypothesize that

the strength of the mutual inhibition between CElon and CEloff is tuned close

to this bifurcation point.

For a network operating point close to the bifurcation, the strong mutual

inhibition makes the network highly sensitive to changes in stimulus-specific

synaptic weight won (Fig. 5.2d). Assuming that acquisition of a phasic response

is dependent on synaptic plasticity of won, the slope of the response amplitude

plotted on won is an important measure for how quickly responses can be acquired

as synaptic strength won is upregulated (Fig. 5.2d). This functional perspective

further supports our hypothesis that a network operating point close to the

bifurcation is useful as it increases sensitivity and may speed up acquisition of

stimulus-response associations.

Furthermore, at an operating point close to the bifurcation (wrec ≈ 0.02 nS),

the network detects phasic inputs most reliably (Fig. 5.2e). While for weak

recurrent inhibition the area under the receiver-operating-characteristic curve

steadily increased as response amplitude increased, the emergence of oscillations

for stronger recurrent inhibition had a detrimental effect on input processing.

Based on these considerations, the value wrec = 0.02 nS is assumed for fur-

ther analysis and simulations, because it reproduced experimentally observed

responses well and optimized this performance measure of input processing.

5.2 Tonic inhibition controls network gain

Next, we investigated the effect of tonic conductance changes on the network.

To this end, we varied the tonic conductance values in both the CElon and

CEloff population. As expected from previous experimental findings (Botta,

2015), tonic inhibition controlled both the baseline firing rates as well as the

amplitude of phasic responses. In general, decreasing tonic inhibition in the

CEloff population (top axes in Fig. 5.3a) amplified phasic responses in all three

populations. In addition, increasing tonic inhibition in the CElon population

had the same effect qualitatively as that of decreasing goff , both on baseline

firing and phasic responses (Fig. 5.3b). Also note, that this effect on response

amplitude is non-monotonic; for strong modulation of tonic inhibition (strong

enough to reduce the baseline firing rates of CElon and CEm to near 0) response

amplitude tends to decrease (Fig. 5.3b).

How tonic inhibition affects the phasic response can be understood in terms of

a change in the operating point of the CEA network. To illustrate this, Fig. 5.4a
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Figure 5.3: Tonic inhibition and network gain. a) Amplitude of phasic
response on baseline firing rate for each population. Upper axis shows corre-
sponding change in goff (note that for CEloff, this axis in the opposite direction).
Solid lines indicate analytic approximation. b) Contour plots of the phasic
response amplitude for changes of both goff and gon (Dashed line indicates data
in a).

shows the CEm firing rate as a function of total input to CElon. The operating

point of the network is determined by intrinsic excitability and background input.

Prior to learning (Fig. 5.4a, left panel), the background input was adjusted

to produce CElon and CEloff baseline rates of 5Hz. The sigmoidal lines for

each population show how the output rate depends on input to CElon: for

very low input and CElon activity, CEloff-firing is close to its maximum rate,

and strong inhibition confines CEm firing to near zero rates, whereas at the

other extreme high CElon firing rates silence CEloff thereby impeding inhibition,

and CEm firing saturates. The responsiveness of the network is minimal on

the extreme ends, because in either case CEm firing becomes almost constant,

irrespective of input to CElon. In between, responsiveness takes a maximum

when CEloff baseline firing is slightly higher than CElon. The bottom panel

illustrates responsiveness as the difference in rate given additional phasic input.

Tonic inhibition changes the operating point of the network by modulating

intrinsic excitability, in such a way as to increase responsiveness (compare the

left and right panels in Fig. 5.4a). As can be seen in the Fig. 5.4, this effect is a

direct consequence of change in the activation threshold of the central amygdala

neurons (notice the shift the transfer function in Fig. 5.4a and Fig. 5.4b) and
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no change in single neuron gain is required.

Fully consistent with this, bringing about a change in baseline firing rates

by modulating the background input to the network has the same effect on

phasic responses as the change in tonic inhibition (Fig. 5.4d). Adjusting the

background to yield the same baseline firing rates as the decrease in CEloff tonic

inhibition does yields CS-responses of comparable magnitude. In other words,

the increase in network responsiveness is due mostly to the additive effect of

the decrease of tonic inhibition on single neurons. Multiplicative effects such

as increases in the gain (i.e. slope of the transfer-function) of single neurons

which can also be caused by tonic inhibition (Mitchell, 2003; Chance , 2002),

contribute only marginally to the increase of network gain in this particular case.

Hence, the model shows that the effect of tonic inhibition on phasic responses is

mediated by the change in baseline firing rates (see schematic in Fig. 5.4c).

Finally, assuming a monotonically increasing mapping (e.g. sigmoidal) from

CEm phasic responses to freezing probability, the increase in CEm responses

can explain the relative increase in CS− freezing rate and the higher fear gener-

alization scores observed experimentally by a ceiling effect (Fig. 5.4b): because

CS+ responses are already close to saturation, further increases in network

responsiveness lead to higher fear generalization scores. Thus, we argue that

this increase in network responsiveness is a causal link between change in the

tonic conductance and a tendency towards fear generalization, i.e. higher CS−

freezing.

5.3 A functional role for tonic inhibition

It deserves highlighting that fear generalization is not necessarily a mere failure

at discriminating the two stimuli (Shepard, 1987). We therefore investigated

the question whether the experimentally observed changes in tonic conductance

and their effect on fear generalization could be functionally relevant? By scaling

response amplitude, tonic inhibition controls a trade-off between sensitivity

and precision. As the preceding section showed, high tonic inhibition in CEloff

leads to weaker responses to phasic stimuli and, presumably, lower freezing

rates for CS−, but also possibly fewer CS+ responses, i.e., high precision but

low sensitivity. By contrast, low CEloff tonic inhibition, and accordingly high

responsiveness, leads to reliable detection of CS+, but also increases the number

of false alarms, i.e., CS− freezing, resulting in lower precision (see Fig. 5.5a)

and—as an observable result—fear generalization. Importantly, controlling this

tradeoff can help improve overall fitness. We can simplify and formalize this

notion by assigning a cost CFN to failing to predict US, i.e. not freezing on CS+

presentation, and a cost CFP to unnecessary fear responses. Given these, the
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Figure 5.4: Schematic of network gain modulation. a) Baseline firing
rates (top panel) and response to phasic stimulation (bottom panel) for all three
populations as a function of CElon background input. The vertical line indicates
the operating point of the network. b) Putative fear generalization ratio for
different ∆goff . c) Causal chain in the model: Tonic inhibition changes baseline
firing rates, which causes a change in network gain. This in turn underlies
the effect on fear generalization. d) Changes in baseline firing rate determine
network gain, irrespective of whether they are caused by tonic inhibition (full
blue squares) or changes in background input to CEloff (open gray circles).

tonic conductance value g∗off which minimizes the mean cost can be estimated

(see Fig. 5.5b).

To explore the consequences of functional modulation of tonic inhibition,

we considered two factors: US strength and predictability of the environment.

For the latter, we mimicked partial conditioning, a variation of the paradigm in

which CS and US are paired with a given probability. In this scenario, the US

becomes less predictable for the animal. In both cases, high US-intensity and

unpredictability, the network sensitivity should be increased to minimize mean

cost. For stronger US, this is a direct consequence of the higher CFN . In the

case of unpredictable US, post-learning synaptic weights are lower due to the

irregular pairing of CS and US and, in order to evoke a network response, an

increase in network sensitivity is expedient. Hence, in both cases, the optimal

δg∗off is lower than under normal conditions, i.e., tonic inhibition ought to be

modulated more strongly. Notably, both high US intensity and unpredictability

have been reported to be associated with increased fear generalization (Ghosh,

2014; Laxmi, 2003).

Finally, it is intriguing to speculate by which mechanisms tonic inhibition
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Figure 5.5: Functional modulation of tonic inhibition. a) Left: Sensitiv-
ity and precision of CS detection on tonic conductance. Middle: Mean cost (based
on cost for false positives and false negatives) for different tonic conductances;
optimal ∆goff is indicated by red arrow. Right: Optimal tonic conductance
changes for different US strength (top) and for lower predictability (bottom). b)
Changes in tonic conductance of CElon (green) and CEloff (blue) for 1) normal
conditioning, 2) conditioning with stronger US, 3) partial conditioning. Right
panel shows tonic conductances after learning.

could be adjusted to suit US strength and predictability. The central amygdala

receives projections from the parabrachial nucleus (Shimada, 1992) which is

involved in the processing of nocioceptive stimuli and can, therefore, be a

plausible candidate for providing US information. In addition, there is evidence

for modulation of tonic inhibition by GABA-spillover in other brain areas

(Semyanov, 2004; Farrant, 2005). Interestingly, a heuristic GABA-spillover rule

(see methods), together with US input, can lead to modulation of tonic inhibition

in a way consistent with functional demands. This suggests the hypothesis

that tonic inhibition might implement an approximate temporal integrating of

absolute reward prediction errors in the CEA, thereby providing an uncertainty

estimate.

5.4 Discussion

In the present study we combined two approaches. First, we employed a de-

scriptive, bottom-up approach and devised a spiking neural network model of
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the central amygdala microcircuitry based on physiological data. The model

allowed for investigation of the role of extrasynaptic inhibition in shaping baseline

firing rates and phasic responses in the CEA subpopulations. Specifically, we

demonstrated that tonic inhibition controls network responsiveness, providing a

mechanistic explanation for the observed increase in fear generalization. Thus,

corroborating and complementing previous experimental results (Ciocchi, 2010;

Botta, 2015), the model explains the crucial role of extrasynaptic inhibition in

the CEA for the flexible modulation of fear expression.

Based on this notion, we took a normative approach, hypothesizing about

functional roles of response modulation by tonic inhibition. The main result

of the network model—that tonic inhibition increases network responsiveness,

thereby putatively boosting freezing probability— implies that under stronger

US strength and for lower predictability, CEloff tonic inhibition should be further

decreased to minimize expected cost (Fig. 5.5). Note that the concomitant high

CEloff activity was reported to correlate with anxiety (Botta, 2015), and that

both strong US and low predictability during fear conditioning can be shown

to induce sustained fear and anxiety in rodents (Davis, 2010; Seidenbecher,

2016). Hence, this result is in good accord with empirical data and suggests that

intrinsic excitability (e.g. extrasynaptic inhibition) and network activity are the

key variables that define the important role of the central amygdala in processing

CS-US features and controlling anxiety via projections to the bed nucleus of

the stria terminalis (Krettek, 1978; Price, 1981; Veinante, 1998). Specifically,

these two variables can process CS-US features (intensity and predictability) in a

manner consistent with the presumed role of the CEA in shaping anxiety. Thus

our model gives a mechanistic account of psychological theories that associate

anxiety disorders with oversensitivity in the face of unpredictable threat (see,

e.g., Grupe, 2013).

Central amygdala has been implicated in the encoding of expectation and

surprises e.g. surprise-induced boosting of attention during learning (Holland,

1999, 2006). In our neural network model, this encoding is achieved in the

form of temporal integration of the reward prediction error by GABA spillover

dynamics. It is conceivable that the mechanisms for evaluating surprise serve

a double function: mediating surprise-induced enhancement of learning and

fine-tuning the expression of conditioned responses as described here.

On a higher level, our model blends into a model-based view of Pavlovian

conditioning (see,e.g., Dayan, 2014), in which the central amygdala is assigned

the task of action-selection. In our model we implicitly assumed input to the

CEA to be indicative of US probability, and the central amygdala network

itself was implicated in making the decision whether to freeze or not. For this

computation, we exploited the structure of the CeL network which consists of
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two mutually inhibiting neuron populations. Note that CeL network architecture

is very similar to striatum, which is also implicated in decision making and

action-selection (Balleine, 2007; Wickens, 2007). Importantly, normative analysis

suggests the CEA considers uncertainty in this decision making (Fig. 5.5a).

We demonstrated that GABA spillover dynamics can, in principle, lead to an

estimate of uncertainty by temporal integration of reward prediction error (Fig.

5.5b). However, it is also conceivable that uncertainty is signaled to the CEA

from other brain structures, e.g., by dopaminergic midbrain neurons. Indeed,

recent research has implicated communication from the substantia nigra pars

compacta to the CEA in the coding of surprise and associated effects on learning

(Lee, 2008). To further expand on this role of action selection, note that the

CEA can mediate other action programs as well (LeDoux , 1988). For instance,

CEA has been reported to be involved in the switch to active fear responses

(Gozzi, 2010). Mechanistically, our computational model of the central amygdala

can be expanded to include another population and describe switching between

more than two options.

A number of testable predictions follow from our model. On a computational

level, we predict that the central amygdala adjusts network responsiveness by

modulating tonic inhibition depending on US strength and predictability. Ac-

cordingly, we expect CEloff tonic conductances after fear learning to be lower

in animals that have undergone conditioning with a stronger US or with less

predictable US, for example in partial conditioning or uncued US presentations.

Further, on an implementational level, the model suggests that GABA-spillover

plays a role in encoding uncertainty. As a consequence, preventing spillover

should prevent fear generalization and anxiety in situations of unpredictable

threat. However, this may be currently difficult to investigate, because blocking

extrasynaptic inhibition altogether has the effect of increasing CEloff firing, lead-

ing to high baseline anxiety. An essential assumption underlying the dynamics

and function of the network is that reciprocal inhibition is just sufficient to bring

the network close to the bifurcation (see Results, Fig. 5.2). As a consequence of

this, we expect that only slightly increasing the efficacy of GABAergic inhibition

in the central amygdala has the effect of precluding firing in one population

altogether, and conversely, decreasing the efficacy of inhibition should slow down

acquisition of a phasic response and hence freezing.

Since the fear circuity is already relatively well understood, it is an attractive

model system for studying the neural substrates of learning and emotion. Future

research will shed further light on the mechanisms of acute fear and anxiety, and

how these phenomena are linked in the brain. In this, computational models like

the one presented can be an important ressource to corroborate experimental

results and contribute to hypothesis generation.



Chapter 6

A Computational Model of

State-Switching in the BA

during Fear Learning

The CEA model presented in the preceding section—in particular the normative

analysis of tonic conductance changes—have presupposed that the input to the

CEA is indicative of US probability or expected US strength. In this section a

model which aims at describing how such an estimate can be computed in the

afferent circuitry is presented.

Note that predicting danger is in general a much more complex task than mere

association learning between CS and US. Contemporary theories of conditioning,

like the ones outlined in sections 3.2, accomodate this by introducing more

complex models featuring hierarchically organized learning processes, which

allow the animal to organize its sensory experience and infer structure in the

environment. This complexity, we hypothesize, is reflected in the intricate

organization of the fear circuitry. To develop this notion in further detail, a

specific model of the circuitry is presented and analyzed in this section. It is

demonstrated that the model can reproduce a number of experimental findings,

and predictions following from its main assumptions are discussed in more

detail. Furthermore, since the model itself is not formulated on a neural network

level, possible biological implementations of the most relevant computations are

considered.
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6.1 Formulation of the Model

The key aspect of latent variable and related models presented previously is

the notion of a hidden state and inference thereof. That means the learning

process is split in two separate parts: inference of the state of the environment,

which is not directly observable itself, and learning of the contingencies between

aversive events and sensory cues in each state. In the present model, the state

inference is assumed to be encoded in the BLA-mPFC circuitry, while synaptic

plasticity in LA and the ITCs mediates learning of the CS-US contingencies.

Contrary to previous formulations in which the number of states is allowed to

grow dynamically and in principle unboundedly (Courville, 2006; Gershman,

2012), in this model, only two states are assumed, even though it is easily

generalized to allow for a higher number of states.

There is another subtle difference in how the assignment of state leads to US

prediction. While in the previous formulations, the US probability is computed

directly from the inferred state by its conditional probability P (US|state), in

this model, the state estimation controls which associative pathway is selected

for US prediction. In this respect, the model is closer to theories of conditioning

invoking model selection (e.g., Courville, 2003) or state classification (Redish,

2007; Tronson, 2012), i.e., the switching between different internal models for

US-prediction depending on prediction performance. This implies the existence

of multiple associative pathways and an agency which switches between these

pathways.

With regard to biological implementation, these associative pathways in the

model are constituted by the lateral amygdala and intercalated cell clusters,

which converge onto the central amygdala yielding the final US prediction. In

this framework, the lateral amygdala forms the main pathway and learns the

association between CS and US like a Kalman filter (cf. section 3.2.2). The

alternative pathway via the ITCs modifies this US prediction, if this pathway is

activated by the state estimation structures BLA and mPFC.

While the changes might compromise the conceptual clarity of the original

formulation (Courville, 2006), they allow for a better fit to anatomical and

electrophysiological results on the neural circuitry. The basic circuitry of the

model is outlined in figure 6.1.

To develop these notions more formally, we introduce the variables xi,t for

phasic sensory cues, yt for the unconditional stimulus and zi,t for contextual

information. Further, let si,t (i ∈ 1, 2) denote the two states. The first index i

denotes stimulus identity, while t is a time index. The lateral amygdala forms the

main pathway for estimating the US probability P (yt|s1,t) assuming the animal

is in state 1. To this end, the Kalman filter model is implemented to mimick
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Figure 6.1: BLA model. a) Schematic of the model (see main text for
explanations). b) US prediction in the course of acquisition in context A (trials
1-20) and extinction in context B (trials 21-60) c) Renewal in context A (left),
context B (middle) and a new context C (right). Blue bars show renewal with
inactive BA.

learning in the lateral amygdala. As in subsection 3.2.2, the LA-dependent US

estimate is given by a normal distribution with mean wᵀxt and variance ν, i.e.,

P (yt|s1,t) = N (yt|wᵀxt, ν). (6.1)

Subjective knowledge about the weights w is again represented by a normal

distribution and the mean and variance estimates undergo the learning updates

given by equation (3.9) in subsection 3.2.2 (see also B). By virtue of this

arrangement, many conditioning effects that are captured by the Kalman filter

model, in particular latent inhibition and backwards blocking, are mediated by

the LA in the model.

Downstream of the LA, the BA estimates the probability P (s1,t), based

on contextual input and (after US presentation) the reward prediction error

emerging in the LA pathway. For this purpose, it keeps the estimates P (zi|s1)

and P (zi|s2) for different contexts and P (r|s1) and P (r|s2), i.e., estimates of

the expected reward prediction r error of the LA pathway for each state. The

pre-US state estimate at time t in the BA is depending on its previous state

estimate (i.e., at t− 1) and the context and it is given by

P (si,t|zt) ∝ P (zt|si,t)
∑
j

P (si,t|sj,t−1)P (sj,t−1). (6.2)

It is this pre-US state estimate which affects conditioned responding by controlling
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the activity in the ITC pathway. Here, the transition matrix Tij = P (si,t|sj,t−1)

incorporates prior beliefs about how likely the environment is to change. In

the model, it is kept fixed, but it could be made a subject of learning, too.

After US presentation, the state estimate is further refined, taking into account

the expected reward prediction error for each state. Hence, the post-US state

estimate can be computed as

P (si,t|zt, rt) ∝ P (rt|si,t)P (si,t|zt). (6.3)

The validity of these sequential update steps is justified by the assumption of

conditional independence between zt and rt given st. That means, the joint

probability density P (zt, rt, st) factorizes into P (zt|st)P (rt|st)P (st). Impor-

tantly, the conditional probabilities P (zi,t|sj,t) and P (r|sj,t) (i ∈ A,B... and

j ∈ 1, 2) are subject to learning processes which are assumed to have neural sub-

strates in synaptic plasticity of HPC-BA connections (for P (zi|s1) and P (zi|s2))

and LA-BA connections (for P (r|s1) and P (r|s2)). Since the context variable

zi = {1, 0} is a binary variable indicating whether context i is active or not, the

learning of P (zi|s1) and P (zi|s2) simply involves counting the occurences and

non-occurences of context i, when in state s1, or s2 respectively. Mathematically,

the subjective degree of belief in P (zi|sj) can be formalized as a beta-distribution

B(cij , c̄ij), where cij is the count of occurrences of zi when in state sj and c̄ij is

the count of non-occurences (see C). By this mechanism, the BA, but not the

LA, learns about context during cued conditioning. Consequently, inactivating

the BA during renewal has the effect that all context-specificity of recall is lost

(see figure 6.1). For the state inference based on reward prediction error, the

internal expectations are held in the distributions P (r|s1) and P (r|s2), which

are assumed to be normal distributions. The means and variances are updated in

a way analoguous to the Kalman filter, weighted by the post-US state estimate.

Notably, the learning updates for the conditional probability estimates require

the post-US state estimate. That means, the BA, in the model, uses its own state

estimates to updates the parameters of the conditional probabilities. This is very

similar to expectation-maximization, an algorithm for fitting mixture models

(see, e.g., Bishop, 2006). In other words, the model BA learns context-state

associations and keeps track of the expected reward prediction error for each state.

If the reward prediction error is higher than expected, or the context changed,

a state switch becomes more likely. Further, the priors for the conditional

distributions are chosen such as to favor s1 (see appendix C), i.e., s1 is the

standard state, and s2 is activated whenever expectations are violated.

The BA state estimate does not affect the US prediction directly, but it con-

trols activation of the alternative associative pathway via the ITCs. Depending
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on the estimated probability of state s2, ITCs are upregulated, yielding the total

US prediction

Eyt = wᵀxt − P (s2,t)w
ᵀ
ITCxt (6.4)

In the standard state, when P (s2,t) = 0, this is just the LA dependent prediction.

In case the BA assigns a higher probability to the state s2, however, the ITC

estimate modifies the overall prediction by subtraction. Note that, in principle,

ITCs could mediate also an increase in expected US strength via disinhibition.

Finally, as the last model component, the mPFC refines the BA state es-

timation with computations that factor in the history of the process. These

computations are dependent on working memory and initial state estimates

trasmiited from the BA. Notably, these computations do not necessarily have

to happen in real time, which allows for a role of the mPFC in post-learning

consolidation of memory in the model. More precisely, in the model, the mpFC

estimates the probability for the entire history

P (s1:t, x1:t, y1:t, z1:t) = P (s0)

t∏
t=1

P (xt, yt|st)P (zt|st)P (st|st−1) (6.5)

To this end, Gibbs sampling is performed (see appendix C) on the past history of

the process (including phasic cues xi,1:t and contextual inputs zk,1:t, but also USs

y1:t) using the state estimates transmitted by BA as a starting point. In between

different phases of the experiment, the results of this sampling, which yield a

refined estimate of the entire state history sj,1:t and of the relevant conditional

probabilies, P (xi,tyt|sj,t and P (zk,t|sj,t), are used to create random samples and

replay them to the BA, a process which improves and consolidates the BA-held

weight estimates.

6.2 Results

6.2.1 State-switching in the BA

The hypothesis that the BA estimates current state while the LA learns the

association between sensory cues and the US is central to the model. For this

state estimation, the BA uses contextual information (zi,t) from HPC and LA-

dependent information about how surprising observed outcomes were (quantified

by a reward prediction error rt). With respect to neural implementation, it

is worth noting that US-evoked neural activity in some LA neurons is indeed

modulated by outcome expectations (Johansen, 2010). The presented model

would suggest that these expectation-modulated US responses in the LA subserve

state estimation in afferent the basal part of the amygddala.
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Figure 6.2: BA state
switching. a) The state esti-
mates of the two states (s1 in
red, s2 in blue) over trials dur-
ing early extinction learning.
In the background (gray bars)
the overall US prediction is
shown. b) Overall US predic-
tion during learning (trials 1-
20) and extinction (trials 21-
60) in the intact model (red)
and with BA inactivation dur-
ing extinction (blue). c) Post
extinction US prediction (trial
60, gray bars) and renewal
(US prediction on trial 61) for
ABA context in intact model
(left), BA inactive during ex-
tinction (trial 20-60) and BA
inactive during renewal (trial
61).

There is a noteworthy difference to previous accounts. While most other

models treat contextual input and phasic sensory cues equivalently, this model

imposes a clear separation in that contextual inputs exclusively serve state esti-

mation and do not form explicit US associations. Direct context-US associations

are presumed to be formed in the HPC and are not included here. This is inspired

by behavioral results indicating differential roles of context and phasic cues (see

subsection 3.2.1). Hence, while the HPC itself is assumed to mediate context as

a conditioned excitor or inhibitor, the HPC-BA connections mediate the role

of context as an occasion setter by influencing state estimation. Anatomically,

this is possibly reflected in the organization of inputs to the amygdala, in that

hippocampal projections predominantly target the basal part.

As is illustrated in figure 6.2a, model state estimates in the BA mimic the

experimentally observed activity of BA fear and extinction neurons (cf. 2.2 and

Herry (2008)). This is in line with the interpretation of these BA subpopulations

as encoding a switch between high- and low-fear states in Herry (2008). Moreover,

deactivating state estimation replicates the effect of pharmacological inactivation

of the BA reported there; i.e., with the BA inactivated, context-dependent

state-switching during extinction is prevented. Importantly, in the model, this

does not only impair extinction learning. Since all the reduction in freezing

which happens without state-switching is indeed due to unlearning in the LA

pathway, this form of extinction is immune to renewal. As a result, lower freezing

scores during renewal might be observed for BA inactivation during extinction
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learning (see figure 6.2c).

6.2.2 Behavioral Phenomena

Similarly, state-switching can be prevented or delayed if the change in environ-

mental state is not a clearly observable change. An important example for this is

the socalled partial reinforcement extinction effect (PREE, see subsection 1.2.3).

If CS and US were only paired with a probability of 50% during training phase,

extinction learning is significantly delayed compared to control. In the statistical

learning framework, this is explained by a failure in detecting the transition

from training to extinction phase. More precisely, in the model, state switching

is prevented after partial conditioning because the negative reward prediction

error during extinction is already expected from the training phase. Formally,

this is reflected in a higher variance of the distribution P (r|s1) after training

(figure 6.3b). In the control condition, this distribution narrows around 0 at

the late stage of fear learning, since US is well predicted and reward prediction

error reliably around 0. The negative reward prediction error then results in a

low likelihood P (r|s1) for state s1 and the switching to state s2. Figure 6.3c

shows the likelihood ratio P (r|s1)/P (r|s2) (in logarithmic scale). In the partial

conditioning case, it is always around 1 indicating that the RPE does not favor

one state decisively, while in the full conditioning case, the transition is clearly

apparent by a rapid decline of P (r|s1)/P (r|s2).

While the PREE is a consequence of state-switching in the BA in the model,

latent inhibition and blocking—both forward and backward (see subsection

1.2.3 and figure 6.4)—are purely LA-dependent in the model. This is a direct

consequence of the choice of Kalman filter for mimicking the LA. If the CS

was presented already prior to conditioning (blue trace in Figure 6.4a), then

learning is delayed. This is due to a decrease in the variance of the weight for

Figure 6.3: PREE. a) US prediction during acquisition and extinction for full
(red) and partial (blue) conditioning b) Internal US likelihood estimate after
the acquistion phase (i.e., at trial 20) c) Likelihood ration for reward prediction
error r during acquisition and extinction.
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Figure 6.4: Latent inhibition and backward blocking. a) Top: US
prediction for control stimulus (red) and a stimulus that was presented without
CS in trials 1-20. Bottom: Variance of weight for both stimuli. b) Top left:
Total US prediction during backward blocking. Top right: US prediction for
each stimulus at trials 21 (left) and 61 (right). Bottom left: Weights for each
stimulus during backward blocking. Bottom right: Covariance matrix at trial 21.

that specific stimulus, which results in a smaller learning update (see subsection

3.2.2). Similarly, backward blocking is also mediated by the covariance matrix,

but by its off-diagonal entries. As the two stimuli, CSA and CSB , are presented

together, the covariance matrix acquires negative values for its off-diagonal

elements (dark blue spots in the covariance matrix plot in Figure 6.4b). These

off-diagonal elements lead to a learning update on the weight associated with

CSB , even though only CSA is presented in the second phase. It is intriguing to

speculate that the interplay of interneuron subtypes which are known to form

microcircuits controlling the plasticity in principal neurons (Wolff, 2014) could

underlie the implementation of these computations. Plasticity of the connections

between these interneurons could be a neural substrate of the learning updates

on the covariance matrix.

6.2.3 The Role of the mPFC

The mPFC’s proposed role in the model is twofold. First, it refines the online

state estimate computed in the BA using access to the history of the process via

working memory. This is illustrated in Figure 6.5a: The state transition in trial

20 is only detected with delay in the BA as evidence accumulates. Exploiting

memory of the history of the process, i.e., x1:t, y1:t and z1:t, the model mPFC

can produce a refined post hoc estimate of the history of states s1:t active during
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learning and detect the transition more sharply in hindsight. Notably, these

processes can be performed offline, in between different phases of the experiment.

Secondly, having acquired refined estimates of the relevant statistics of the

generative process, P (s), P (x, y|s), and P (z|s), the mPFC plays back episodes to

the BA which improve and consolidate the BA-held estimates of the conditional

probabilities. As a consequence of this, the BA-held estimates are moved closer to

the real values and the variance decreases (see 6.5b for the BA estimates of P (z|s)).
Preventing this process by post-extinction deactivation of the mPFC has the effect

of impairing extinction recall (Figure 6.5c). This is in line with experimental

results showing that post-extinction lesion or inactivation of the mpFC impairs

extinction memory (Burgos-Robles, 2007; Hugues, 2004). Another notable

consequence of this assumption on the role of the mPFC is that deactivation

of the mPFC throughout the entire learning phase has the effect of delaying

extinction learning (Figure 6.5d). This is because the state transition is detected

quicker and more reliably when mPFC-dependent consolidation of fear memory

occurred. This implies there could be two mechanisms at play with opposite

effects when the mPFC is deactivated already during learning: On the one hand,

memory consolidation makes the fear memory more resistant to unlearning, but

on the other hand, a mPFC-mediated refinement of state estimation allows for

quicker detection when expectations are violated early in extinction learning

and, hence, speed up extinction learning by earlier state-switching.

Finally, the sampling operation that the model mPFC performs requires as a

starting point the BA-generated online state estimate. Hence, the flow of informa-

tion in the model is bidirectional. While the mPFC controls consolidation of fear

and extinction memories in the BA, the reverse connections provide the mPFC

with a prior estimate for inferring the generative model. Manipulating the prior

estimate transmitted to the mPFC produces effects consistent with experimental

results on optogenetic manipulation of PL- and IL-projecting BA neurons (Senn,

2014). Transmitting an estimate of high fear state (s1) probabilities (presumably

corresponding to stimulation of PL-projecting fear neurons) leads to deficits in

extinction recall (Figure 6.5e). The effect of transmitting a low fear state (s2)

estimate is not significant, since the actual estimate switches early to s2 even

without manipulation, but iotherwise it would improve extinction recall.

6.3 Discussion

The model is used to explore the proposition that switching between fear and

extinction neurons in the BA is a neural substrate of statistical state learning.

Multiple fear learning pathways, namely LA and ITCs, are controlled dynamically

by this BLA-mPFC state-switching microcircuitry. Generally, we propose that
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Figure 6.5: The role of the mPFC. a) State estimation of the BA (red) and
the mPFC after one itheration (blue) and two iterations (gray). b) Pre- and post-
consolidation subjective probability distributions of the conditional probabilities
P (zA|s1) and P (zB |s2). c Extinction recall under control conditions (red) and
post-extinction mPFC-deactivation (blue). d Extinction learning under control
conditions (red) and pre-conditioning mPFC-deactivation (blue). e Extinction
recall for control (left), transmitting the estimate P (s1) = 1 (middle) and
transmitting P (s2) = 1 to the mPFC.

the LA and ITCs form a dynamically regulated network, at the core of which

are excitatory neurons in the LA, but which can be expanded by inhibitory and

disinhibitory pathways via the ITCs. This increase in network complexity allows

for flexible control of behavior and it is regulated by the BA-mPFC controlling

activity in the ITCs.

Mechanistically, the Kalman filter suggested for the LA could be implemented

in the principal neurons of the LA, with the inhibitory microcircuits gating

plasticity (see, e.g., Bissière, 2003; Wolff, 2014). Particularly, connections between

inhibitory neurons could mediate the effect of the covariance matrix in the Kalman

filter. Activity-dependent plasticity within the inhibitory microcircuit could

learn correlations between co-occuring stimuli in a way similar to the covariance

matrix update prescribed in equation (3.9) in subsection 3.2.2.

Similarly, inhibitory connections might play a role in encoding the switching

between two or more states as well. Assuming that the statistical notion of

states embraced here has a neural substrate in the activity of groups of principal

neurons (see Herry, 2008), state-switching is likely mediated by inhibitory in-

terneurons (Lin, 2009; Trouche, 2013). A recent modeling study (Vlachos, 2011)
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simulated and analyzed the dynamics of a biologically realistic BA network and

reconstructed switching dynamics between populations driven by contextual

inputs. The dynamics of this spiking neural network model are fully consistent

with the function assigned to the network here.

An important point of the presented model is interpreting these switching

dynamics in terms of switching between states that are not defined solely based

on valence, i.e., high-fear and low-fear, but in statistical terms. This raises

questions about the connectivity of BA neurons encoding states. It was recently

found that high-fear neurons preferentially target the PL, while fear extinction

neurons target the IL (Senn, 2014). Which BA subpopulations would become

active during fear reversal, a paradigm in which the former CS+ becomes the

CS− in the second phase and the former CS− is now paired with the US? The

overall valence would not change, yet, in terms of statistical contingencies, the

second phase is clearly different. Further characterizing the activity of BA

neurons during CS− and CS−-presentation and the connectivity of subgroups

could enhance our understanding of which environmental features underlie state

coding in the BA.

The notion of state-switching adapted here also leads to predictions that were

already mentioned in the main text. For instance, after preventing state-switching

in the BA and a long extinction learning phase, the resultant decrease in fear

responses should be immune to renewal, since the extinction learning is actual

unlearning of LA synaptic weights (see Figure 6.2c). Also, impairing consolidation

of fear memory by inactivating mPFC during and after fear conditioning has

the perhaps paradoxical effect of delaying extinction learning in the model (see

Figure 6.5d). This is because the state transition is more readily detected when

fear memory has been consolidated, and, hence, the switching occurs more

swiftly.

Finally, in the presented model, the amygdala actually performs discriminative

learning, that means neither the LA, nor the ITCs, nor the BA learn about

the probabilities of sensory cues x. In the model, only the mPFC learns the

full distribution. One consequence of this is that sensory preconditioning (see

subsection 1.2.3) is mPFC dependent and should not occur when the mPFC

is deactivated. More generally, models like this one, which include hypotheses

on where in the circuitry specific computations are implemented allow for

high specificity in experimentally testable predictions and, in conjunction with

neural network level models, have the potential to fill in gaps in our theoretical

understanding of the fear circuitry.

The presented model moves towards implementing statistical learning of

latent variables or states in the neural circuitry of fear conditioning. It was

demonstrated that such a model can capture a number of effects and possible
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implementations in neural networks were discussed. The model gives an account

of how, in principle, the amygdala circuitry can learn to predict danger in a

changing environment and communicate estimates of US probability to the

CEA and some predictions and open questions were discussed. Further studies,

both experimental and computational, will reveal important new insights on the

nature of this learning process and complete our understanding of the role of

the amygdala in fear learning.

6.4 Synopsis

In this chapter, a model of state inference and US prediction in the BLA-

mPFC circuitry was presented to complement the CEA model on control of

fear expression by tonic inhibition. While the two models are different in scope

and methods, they constitute a coherent account of the neural circuitry of fear

conditioning when combined. In this framework, the basolateral amygdala—

in accord with the ITCs, prefrontal cortex and hippocampus—estimates the

probability of impending US presentation. Note that this task is in general much

more complex than mere associative learning, and it is presumably for this reason

that a fairly complex network of structures is involved in the process. To develop

this notion in further detail, I built on latent-variable models of conditioning

which give a formalized account of structure learning. Learning structure, in

these models, amounts to classifying experience into latent variables or states

during learning, as well as learning CS-US contingencies for each state. Apart

from explaining a number of behavioral effects, this framework echoes the notion

of fear and extinction memory traces. The switching between states, or memory

traces, has a neural substrate in the activity of neurons in the BA. Starting from

this premise, the model ascribed subcomputations to the structures involved and

the consistency with experimental results was demonstrated.

Subsequently, the CEA mediates fear expression based on the US-probability

estimate it receives from its afferents. The CEA model in section 5 simulates

this on a spiking neural network level and describes how modulation of tonic

inhibition controls the responsiveness of the network to phasic stimulation. On a

computational level, a key aspect of this model is that the control of responsive-

ness should be governed by a number of factors, foremost US predictability, if

the network is to serve its presumed function optimally. While GABA spillover

is suggested in the model as a specific mechanism for estimating predictability

by temporal integration of reward prediction errors, it is also conveivable that

structures external to the CEA estimate US predictability and influence tonic

inhibition, the more so, since uncertainty estimates are also needed in the model

for other operations like state estimation in the BA.
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Conclusions and Outlook

Taken together, the two models presented in this work give a coherent account

of how acquisition and extinction of fear responses, as well as the control of

fear generalization, can be implemented in the neural circuitry. Particularly,

extinction and fear generalization have important implications for the emergence

of pathological anxiety. In this work, a model of probabilistic state-switching

in the BA underlying extinction learning and mechanisms for controlling fear

generalization in the CEA were analyzed and discussed using computational

methods. These models reproduce known experimental findings and offer new

insights into the mechanistic details and functional organization of the circuitry.

Further, on a conceptual level, it was a principal goal of this work to make

steps towards bridging the gap between high-level, computational models of fear

conditioning and the implementational, neural network level. This combination

is fruitful for constraining the models further—by both physiological constraints

and functional considerations—and increases the potential for experimentally

testable predictions. Correspondingly, this concluding chapter is devoted to

outlining predictions and key hypotheses in more detail, addressing important

open questions and possible expansions to the models, and finally providing an

outlook on possible general directions for theoretical research on the neural basis

of fear conditioning.

7.1 Predictions and Hypotheses

It is worth explicating the predictions that follow from the main hypotheses of

the models in more detail at this point. The central hypothesis of the BLA model

is that switching between different latent states is implemented in the basal part

of the amygdala. This is inspired by and fully consistent with the experimental

data and interpretation in Herry (2008). However, the interpretation in terms

87
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of latent variables and the details of the model presented previously allow for a

number of arguably not too obvious predictions that follow from this hypothesis.

Firstly, the model assumes two parallel pathways, LA and ITC, the involve-

ment of which is controlled by the BA and mPFC. Under normal conditions,

extinction learning is preceded by the activation of the alternative ITC pathway,

in which a neural substrate of extinction memory is formed by synaptic plasticity.

If state-switching is prevented by, e.g., pharmacological inactivation of the BA,

however, some amount of extinction learning in the LA-pathway should still

remain. This notion suggests that extinction that was acquired in this case is safe

from renewal, because it posits actual unlearning of the original, LA-dependent

fear memory trace. Hence, lower fear scores during the renewal test are expected

when the BA is inactive during extinction learning and the extinction phase is

long enough to still produce extinction learning.

Notably, state-switching also can have more subtle implications. Second-

order conditioning and conditioned inhibition are two learning phenomena that

happen in the same experimental procedure. In the first phase, one stimulus is

conditioned by pairing with the US, while in the main phase of the experiment

another stimulus is presented together with the previously conditioned stimulus.

Initially, second-order conditioning takes place, i.e., the new stimulus also acquires

a response, merely by pairing with the US. Subsequently, however, this new

stimulus becomes a conditioned inhibitor. That means that when presented

with a third stimulus that has been conditioned and elicits a response, the

stimulus blocks the conditioned response (Yin, 1994). Recently, it was proposed

that this change from second-order conditioning to conditioned inhibition is

associated with a transition to a more complex state in the animal’s model of the

environment (Courville, 2003). In the presented model, this would imply that the

BA is involved in controlling the switch from second-order conditioning, which

has been reported to be LA-dependent (Gewirtz, 1997), to conditioned inhibition,

which the model suggests would be mediated in the alternative ITC-pathway.

Accordingly, BA-inactivation should enhance second-order conditioning at the

expense of conditioned inhibition.

Another fairly subtle point relates to the processing of conditioned stimuli.

The latent-variable models on which the BLA model is based infer a generative

model of the environment, which means that they learn to infer the full probability

distribution including the probability of conditioned stimuli. In our model, the

LA performs discriminative learning, i.e., it does not learn about CS probabilities.

Inference of CS statistics is mPFC-dependent in the model, and, correspondingly,

effects that rely on the learning of CS statistics, like sensory preconditioning

(see subsection 1.2.3), should be affected by lesions of the mPFC but not by

temporary inactivation of the LA in the preconditioning phase.
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Within the framework presented in this thesis, US prediction in the BLA is

followed by a separate processing step in the CEA as a result of which freezing

responses are initiated or not. Thus, the present account adheres to a model-

based perspective of conditioning (Dayan, 2014) in that the decision to freeze

is dissociated from estimating US prediction. This functional placement of the

CEA together with the previously presented analysis of network dynamics allows

for further testable predictions. For instance, it is assumed that the strength of

mutual inhibition between the two CEA subpopulations is tuned such that the

network is close to the bifurcation described in section 4.3. As a consequence,

manipulations that increase synaptic efficacy only slightly in the entire network

should have the effect of shutting down one population entirely. Conversely,

decreasing the efficacy of GABAergic inhibition in the network should delay the

acquisition of a response.

Moreover, it is conceivable that modulation of tonic inhibition and synaptic

plasticity of BLA-CEA connections are mutually dependent. From a functional

perspective, the combination of local—that is, neuron-specific—synaptic plastic-

ity and the global—network-wide—modulation of tonic inhibition can have the

effect of producing more reliable responses at the expense of discriminability of

inputs. While tonic inhibition enhances network sensitivity for all inputs, synap-

tic plasticity is input-specific but therefore also more susceptible to stochasticity

in the input. Hence, noise-contaminated inputs can lead to variability in the

synaptic weights, which can be detrimental to output reliability. However, if

these two modes of plasticity are employed in combination, a good compromise

between reliability and discrimination can be achieved, very similar to regulariza-

tion for navigating the bias-variance-tradeoff in classification problems (Bishop,

2006). Assuming that function is optimized in such a way in the CEA network,

one would expect that there exists a negative correlation between the magnitude

of changes in synaptic strength and tonic inhibition during fear conditioning.

That means, if there is stronger decreases in tonic inhibition in CEloff, there

should be less synaptic plasticity. This follows also from assuming a reward

prediction error as a driving force for changes in synaptic efficacy. If tonic

inhibition is downregulated, network responses increase, leading to a smaller

reward prediction error.

Finally, it is a central aspect of the high-level interpretation of CEA function

that tonic inhibition is adjusted to uncertainty and US predictability. Normative

analysis suggests that in situations of unpredictable threats, the animal is com-

pelled to lower its freezing threshold by decreasing CEloff tonic ihibition. From

this, it follows that higher decreases in CEloff tonic inhibition should be expected

for animals that undergo partial conditioning or unsignaled US presentations.

More broadly, taking into account that CEloff stimulation enhances anxiety
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(Botta, 2015), we hypothesize that this adjustment of tonic inhibition in the CEA

to uncertainty is the linking mechanism by which US unpredictability heightens

anxiety.

7.2 Open Questions

In addition to these more concrete predictions, there are a number of questions

that arise in this perspective on the fear circuitry. While the presented models,

in their current formulation, make no specific predictions on these questions, the

main ideas underlying the models bring them to the fore. At the heart of the

BLA model is the notion of state coding in the BA-mPFC circuitry. The key

hypothesis is that fear states are encoded in the reciprocal connections of the

BA with the mPFC and hippocampus. But what really makes a fear state? Or

put differently, on what basis is experience organized into different states in this

circuitry? Here, the anatomical organization within the circuitry might help

shed light on these questions.

An obvious feature, which is already implied in the terminology of fear and

extinction states, is the valence. This would suggest the BA-IL circuitry is

specific for positive valence, i.e., the removal of fear, while the BA-PL circuitry is

specific to negative valence, the anticipation of an aversive event. Alternatively,

it is equally possible, and indeed suggested in the current formulation of the

model, that the BA-IL circuitry is activated by violation of expectations. This is

well in line with accounts in the cognitive sciences that implicate the infralimbic

cortex in the flexible modulation of behavior and recent proposals on the role of

the IL in fear (e.g. Barker, 2014). More concretely, the question then is which

drives the activation of neurons with preferentially IL-connections in the BA:

the change in valence in the transition from fear learning to extinction or the

change in CS-US contingencies. Consider for instance the phenomena of latent

inhibition described earlier. In the pretraining phase, the CS is presented very

often without the US and fear learning is delayed in the training phase when CS

and US are paired. Do the BA neurons that are activated during acquisition—the

negative valence neurons—exhibit predominantly projections to PL like the fear

neurons in the classical paradigm, or are they mostly IL-projecting neurons

encoding for violation of expectations as the CS that was previously considered

safe before turning into a precursor of the US? The former would suggest that the

specificity in connections reflects valence coding, while the latter would suggest

that it is statistical contingencies that matter.

Similarly, fear reversal can also be used to investigate this distinction. In

fear reversal, there is one training phase of discriminative conditioning with

CS+ and CS−, followed by a rule change, such that in the second phase of the
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experiment the previous CS− is now paired with the US while the intial CS+ is

not paired any longer. This means that only the statistical CS-US contigency

changes, but the overall valence of the phase remains the same. Again, this

raises the issue of connectivity of the BA neurons that become activated during

extinction of the first CS+ and fear acquisition on the previous CS−. Since

the IL-projecting BA neurons in the model encode not merely for extinction,

but rather more generally for violation of expectations, the model predicts that

IL-projecting neurons are increasingly activated during both the acquisition of

the new CS+ and the extinction of the new CS−. Note in this respect, that fMRI

recordings of neural activity during fear reversal in humans also heavily implicate

the ventromedial PFC during reversal learning (Schiller, 2010). Paradigms like

these, which investigate the difference in neural substrates of changes of valence

vs. changes in CS-US contingency, can help elucidate the coding of information

and, as the case may be, the nature of state classification in the BA.

Further downstream, in the central amygdala, the mechanisms by which tonic

inhibition are modulated remain mostly elusive so far. The CEA model suggests

that tonic inhibition is adjusted according to US strength and uncertainty,

and it is demonstrated that GABA spillover in conjunction with US-dependent

innervation from the parabrachial nucleus is a viable candidate for this purpose.

Still, of course, different mechanisms, such as neuromodulators, might mediate

the changes of tonic inhibition. Note that a number of neuromdulators have

been implicated in the coding of uncertainty previously (Yu, 2005). Moreover,

surprise encoding from other brain structures, e.g., the substantia nigra pars

compacta (Lee, 2008), can be transmitted to the CEA and mediate changes of

tonic inhibition.

Moreover, irrespective of the mechanism, it is intriguing to ask whether the

changes in tonic inhibition return to pre-conditioning levels during extinction

learning. There is evidence that, concomitantly with the decline of fear, the

phasic responses revert (Duvarci, 2011), but whether the same happens for

changes in tonic rates is unclear. From the model, in particular the heuristic

GABA spillover rule, we would expect that the changes remain. Given the more

general interpretation of tonic inhibition increasing network sensitivity, this would

imply that animals displaying stronger changes in baseline firing rate should also

be more prone to fear renewal. Future research will shed further light on many

of these questions and thereby potentially elucidate a functional link between

the processing of CS-US statistics—most prominently US predictability—in fear

learning and the emergence of anxiety.
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7.3 Outlook

Finally, this concluding section is devoted to outlining possible future directions.

First, possible extensions to the specific models are briefly discussed and eventu-

ally more general aspects of future theoretical work on the neural circuitry of

fear conditioning are sketched.

7.3.1 Further Development of the Computational Models

Importantly, the model of the BLA stopped short of providing a truly imple-

mentational model. I undertook it to hypothesize about where computations are

located, and demonstrated the consistency of this hypothesis with experimental

results and derived predictions, but how the computations are implemented in

neural networks was not within the scope of the presented model. While there

is a spiking neural network model describing the switching between fear and

extinction neurons (Vlachos, 2011), it remains a challenging problem to include

the PFC and possibly hippocampus in such a neural network level account. In

particular, the mPFC performs computations that are not straightforward to

implement in neural networks. More recently, however, specific implementations

of sampling algorithms of the sort used in the model have been proposed for

spiking neural networks (Buesing, 2011).

Moreover, developing the notion of associative learning in the BLA further

poses theoretically interesting questions. The present model assumes a Kalman

filter in the LA, a form of Bayesian learning, motivated by a range of behavioral

results that are discussed earlier in this thesis. In addition to the behavioral

data, there is an active line of research on how Bayesian-like learning can have

physiological substrates in synaptic plasticity (see, e.g., Deneve, 2008b,a; Kappel,

2015). It is intriguing to speculate that this might also be the case in the LA,

especially given the Bayesian signature in behavioral conditioning phenomena.

And if so, what is the role of interneurons in this mechanism? The importance

of inhibitory gating of plasticity in the BLA is becoming more apparent (see,

e.g., Bissière, 2003), and a specific microcircuitry controlling synaptic plasticity

in the BLA was characterized recently (Wolff, 2014). Can such microcircuitries,

and plasticity within them, mimic the properties of the Kalman filter model? In

particular, can interconnections approximate the effects of the covariance matrix

discussed in section 3.2.2? The Kalman filter description posits that synaptic

plasticity at different synapses and possibly neurons are not independent from

each other. Could such dependencies be mediated by a network of interneurons?

Remarkably, a network model approximation of the Kalman filter suggested by

Dayan (2001) includes inhibitory connections undergoing plasticity mediating

the covariance matrix. Further theoretical models can elucidate if, and under
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which conditions, the Kalman filter computations could be implemented in a

LA-like network structure and which predictions follow. In combination with

experimental work, this could provide implementational detail on a well-described

high-level learning algorithm and create a link between an abstract functional

model and concrete physiological mechanisms.

Another implementational issue pertains to action selection in the CEA. In a

general view of the model, CEA dynamics implement a switch between different

action programs. Only freezing and flight were discussed so far, but in principle

the notion can be expanded further. So far, the focus lay on the two population

case (CElon and CEloff) and the three population case (adding CRF) was

introduced only briefly. Importantly, dynamics become much more complicated

for multiple populations, and generalizing to three or more populations is a non-

trivial problem. It is worth noting that studying CEA dynamics further could

provide ways of establishing links between network structure and constraints

on behavior. For instance, the three population model (see section B) suggests

transitions into flight behavior are not possible without a brief freezing phase,

and observations indicate this might actually be the case (Fadok, personal

communication). Indeed, an important argument for developing network-level

models of conditioning further is the prospect of deriving constraints on behavior

that stem from the hardware and do not follow from a high-level rational model.

7.3.2 Fear as a General Model of Learning Revisited

These points are readily extended to a more general perspective. In line with

contemporary theories of conditioning, I treated processing in the BLA as

implementing statistical inference. This follows a long line of reasoning that

started with the insight that conditioning is best thought of as learning relations

between stimuli in order to predict aversive events (Rescorla, 1988). Furthermore,

the example of the Kalman filter has shown that the Bayesian framework provides

an elegant description of conditioning phenomena. A broad line of research

in theoretical research is currently based on the Bayesian paradigm, and it

has been shown to generate important insights, e.g., in the study of vision

and motor control (Knill, 2004). Considering that the fear system is already

relatively well understood, it has the potential to further contribute to our

general understanding of the implementation of statistical learning and gauge

the merit of the Bayesian paradigm as a general principle.

Moreover, the conceptualization of inference in the BLA and decision making

in the CEA bears relevance to a question of general importance arising recently;

the distinction of model-based and model-free learning (Dayan, 2014). Are

inference and decision making separate computations as Bayesian decision theory
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would suggest, or are they inextricably linked in the brain? The evidence so far

indicates that both happen in the brain and it is important to appreciate that

behavioral results alone will not allow for a thorough investigation of the issue.

The study of neural substrates of fear conditioning, and the separate learning

processes in the BLA and CEA, can certainly contribute greatly to resolving how

inference and decision making are split into different stages and how different

serial and parallels pathways work together to accomodate both model-based

and model-free learning. Are associations formed directly between fear-inducing

stimuli and the conditioned responses, or is there an intermediate processing

step that involves inference on the state of the environment including potential

imminent danger? Studies of the anatomic organization already point towards

some answers. There are direct projections from sensory areas to the CEA (Sah ,

2003) and it has been shown that CEA-dependent conditioning can take place in

the case of pre-training BLA lesions, albeit delayed (Balleine, 2006). This is also

consistent with ideas from animal learning theory (Konorski, 1967). Presumably,

the superposition of two separate learning systems—direct stimulus-response

learning in the sensory thalamus-CEA pathway and two-step inference-decision

learning—holds advantages from both paradigms, i.e., the speed of acquisition

of simple stimulus-response learning and the flexible modulation of behavior an

inference-based decision allows. The problem of how these systems are regulated

or interact in order to function smoothly in accord with each other becomes

pressing then. It will be an interesting issue of theoretical inquiry and the

rapid progress of experimental research on the fear circuitry promises to offer

important new insights that can guide this inquiry.

The presented models, as well as previous accounts, include a hierarchy of

learning processes. At the lower level, there is associative learning between

CS and US, and at the upper level experience is organized in different states,

e.g., high-fear and low-fear states. Anatomically, this could, at least partly, be

mirrored by the organization of the amygdala and PFC. Given the importance

of hierarchical processes for our understanding of cognition, the circuitry of fear

conditioning, which is already relatively well described, lends itself well to studies

on the neural substrates of learning processes that are organized on multiple

levels and on how these learning processes are coordinated.

In summary, this work promotes the statistical learning perspective on fear

learning. Behavioral research has shown that statistical models provide a good

description of the higher-level features of fear conditioning and a wide range

of behavioral phenomena. However, up until recently, the implementational

intricacies emanating from this perspective were not amenable to experimental

research. With the advent of new imaging and stimulation techniques, many of

these answers now come into reach. For instance, it is becoming realistic to find
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answers relating to the coding of US probability, e.g., whether or how an impend-

ing US with 50% probability (for instance, in a partial reinforcement schedule)

is encoded differently from a US of half the intensity but with 100% probability

of occurence (and therefore the same expectation value). Experimental research

(Reijmers, 2007; Han, 2007) , as well as a recent modelling study (Kim, 2013a),

showed that the fraction of neurons recruited to the fear memory trace in the

LA is comparably small ( 25%) even though all of these neurons received the

necessary input and the number of active neurons remains fairly constant, pre-

sumably due to competitive mechanisms within the LA (Zhou, 2009). Does a

lower US probability P (US|CS) in partial conditioning lead to fewer neurons

recruited to the memory trace, is the activation per neuron weaker, or is the

coding indistinguishable? As the resolution of recording techniques improves,

questions like this can be tackled experimentally. Similarly, it is intriguing to

speculate about neural substrates for many of the behavioral effects outlined in

section 1.2.3. Is, for example, backwards blocking affected by interfering with

GABAergic signalling in the LA during the blocking phase? Investigating the

neural substrates of these effects is more than a mere exotic sideline to the study

of conditioning; it holds the potential to resolve important issues and shed new

light on the nature of learning.

In order to understand the complex organization of the neural circuitry

involved in fear conditioning, it is indispensible to explore the complexity of

the learning problem. However, for this purpose, one need not depart from the

paradigm of classical fear conditioning. Fear conditioning combines robustness,

which is the main basis for its past success, with flexibility. The broad range of

experimental variations found in the animal psychology literature is testimony

to this. In the future, technical advances will make it possible to exploit this

flexibility increasingly also in a neurobiological setting. It is my hope that

computational models like the ones presented in this thesis can serve as a useful

ressource in this endeavour.
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Appendix A

Derivation of the Analytic

Approximation

No-Fluctuation Case

To compute the rate in the no-fluctuation case, we set the fluctuation terms

σ̃2
ex,in = 0 and, by inserting equations (4.27) and (4.28), (4.29) can be rendered

as

[(vm − εr)gL + (vm − εex)µex + (vm − εin)µin] ρ(vm) = −rC. (A.1)

From this, the probability density ρ(vm) is easily derived as

ρ(vm) =

 rC
(gL+µex+µin)(vs−vm) for εr ≤ vm < vthr

0 else.
(A.2)

using the effective reversal potential

vs =
εrgL + εexµex + εinµin

gL + µex + µin
(A.3)

for notational convenience. Note that vs > vthr is a necessary condition for the

integral of ρ(vm) to converge on the range [εr, vthr[. This condition is equivalent

to there being a net drift towards the threshold vthr, which—in the absence

of fluctuations—is a prerequisite for output firing. Applying the normalization

condition on ρ(vm) finally yields the mean rate

r =


gL+µex+µin

Clog
(

vs−εr
vs−vthr

) for vs > vthr

0 else.

(A.4)
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Fluctuation Case

In the case of non-negligible fluctuations in the input, the solution is becoming

more complex. For finite σ̃2
ex,in, the derivative of the membrane potential

distribution ρ(vm) on the right hand side of equation (4.28) cannot be omitted

any more. Hence, solving the full differential equation is required. For this

purpose, we first introduce a dimensionless re-scaling of vm

x(vm) = arctan

(
σ̃2
ex(vm − εex) + σ̃2

in(vm − εin)

σ̃exσ̃in(εex − εin)

)
. (A.5)

Note that the bounds on vm ∈ [εin, εex] translate into new bounds for x: xin =

x(εin) = arctan (−σ̃ex/σ̃in) and xex = x(εex) = arctan (σ̃in/σ̃ex). Further, we

introduced the rescaled probability density %(x). In order to be compatible with

the differential equation (4.28), we demand it fulfills the condition %(x) dx =

ρ(vm) dvm. As a consequence, it is given by

%(x) =
1

C
σ̃exσ̃in(εex − εin)ρ(vm). (A.6)

Importantly, the normalization condition
∫
ρ(vm) dvm = 1 which underlies com-

putation of the mean output firing rate r also needs to be adapted. Considering

the above equations, we get

C

∫ xthr

xin

%(x)

cos2(x)
dx = σ̃2

ex + σ̃2
in. (A.7)

In addition, we found it helpful to further introduce the shorthands xs and k in

order to simplify notation. Let xs denote

xs =
µexσ̃

2
in(εex − εin)− µinσ̃2

ex(εex − εin)− gL
[
σ̃2
ex(εex − εr) + σ̃2

in(εin − εr)
]

(gL + µex + µin)σ̃exσ̃in(εex − εin)

=
gLtan(xr) + µextan(xex) + µintan(xin)

gL+ µex + µin
(A.8)

Comparing the second line with equation (A.3), this variable can be interpreted

as a fluctuation-case analog of the effective reversal potential vs (not in the strict

sense, though; xs 6= x(vs)), which motivates the naming. The variable k, on the

other hand, is given by

k =
gL + µex + µin
σ̃2
ex + σ̃2

in

. (A.9)

This variable, with the total mean conductances in the numerator and the

fluctuation terms σ̃2
ex,in in the denominator, can be understood as an inverse

measure for the amount of conductance fluctuations, i.e., the lower k the more

variable are conductances relative to its their magnitude. Notably, the limit
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k →∞ corresponds to the no-fluctuation case.

Taking into account all these newly defined variables, equation (4.29) can be

transformed into

[kxs − (k + 1)tan(x)] %(x)− %′(x) =

r if xr < x < xthr

0 else.
(A.10)

with the shorthand expressions xr = x(εr) and xthr = x(vthr). The homogeneous

solution to this differential equation is easily found to be

%hom(x) ∝ expkxsxcosk+1(x). (A.11)

Obtaining the particular solution, requires us to incoorporate the boundary

conditions that the density %(x) vanishes at the firing threshold xthr, and that

it is continuous at the reset point xr. The first boundary condition is due to

the reset when hitting the firing threshold, the second one reflects that there is

nothing preventing diffusion in negative direction at x = xr, so discontinuities in

%(x) vanish. Note that the condition %(x) = 0 at x = xin is not included explicitly

since it is of no help in formulating the particular solution and it is fulfilled

approximately anyway in the parameter ranges in which the Fokker Planck

approximation is valid and yields non-zero output firing rates. It is relatively

straightforward to include these conditions and, accordingly, the particular

solution can be rendered as

%(x) =

%hom(x)
∫ xthr
x

r
%hom(y) dy for xr < x < xthr

%hom(x)
∫ xthr
xr

r
%hom(y) dy for xin < x < xr.

(A.12)

As before, eventually the normalization condition (A.7) is exploited to obtain

the rate r. This requires computation of the double integral

Φ =

∫ xthr

xin

%(x)
dx

cos2(x)
=

=

∫ xr

xin

∫ xthr

xr

%hom(x)

%hom(y)

dy dx

cos2(x)
+

∫ xthr

xr

∫ xthr

x

%hom(x)

%hom(y)

dy dx

cos2(x)
.

(A.13)

An approximation for this integral Φ is presented in the next chapter. Once it is

computed, the rate r follows as

r =
σ̃2
ex + σ̃2

in

CΦ
=
gl + µex + µin

CkΦ
. (A.14)
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Treatment of the Double Integral Term

The double integral term Φ can, of course, be computed numerically. Here,

however, we propose an analytic approximation. Asymptotic expansion for this

double integral are discussed in Hanson (1983), in our case, approximating the

double integral is significantly simplified by changing the order of integration

first.

To this end, the integral will be rearranged. First, inserting equation (A.11)

into equation (A.13) can be rewritten as

Φ =

∫ xr

xin

∫ xthr

xr

e−kxs(y−x)

(
cos(x)

cos(y)

)k+1
dy dx

cos2(x)
+

+

∫ xthr

xr

∫ xthr

x

e−kxs(y−x)

(
cos(x)

cos(y)

)k+1
dy dx

cos2(x)
.

(A.15)

Then, we can apply the substitution u = y − x to obtain

Φ =

∫ xr

xin

∫ xthr−x

xr−x

e−kxsu

[cos(u)− sin(u)tan(x)]
k+1

dudx

cos2(x)
+

+

∫ xthr

xr

∫ xthr−x

0

e−kxsu

[cos(u)− sin(u)tan(x)]
k+1

dudx

cos2(x)
.

(A.16)

Since y is always greater than x (see equation (A.15)), the new variable u = y−x
ranges from 0 to xthr − xin. The integration interval of the inner integral with

respect to u depends on the integration variabel of the outer integral, x. Note

that the domain of integration can be recast in such a form that it depends on

u and the order of integration can be interchanged. This is possible since the

integrands do not diverge in the domain of integration. The change of integration

is best illustrated by visualizing the above equation as a 2D integral (see figure

1b). Recasting the boundaries and changing the order of integration yields

Φ =

∫ xthr−xin

0

∫ xthr−u

xin

e−kxsu

[cos(u)− sin(u)tan(x)]
k+1

dxdu

cos2(x)
+

+

∫ xr−xin

0

∫ xr−u

xin

e−kxsu

[cos(u)− sin(u)tan(x)]
k+1

dxdu

cos2(x)
.

(A.17)

After this change, the inner integral with respect to x can be solved analytically.
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As a result, we obtain:

Φ =
1

k

∫ xr−xin

0

e−kxsu

[(
cos(u− xthr)

cos(xthr)

)k
−
(

cos(u− xr)
cos(xr)

)k]
du

sin(u)
+

+
1

k

∫ xthr−xin

xr−xin
e−kxsu

[(
cos(u− xthr)

cos(xthr)

)k
−
(

cos(u− xin)

cos(xin)

)k]
du

sin(u)
.

(A.18)

Rendering this in the form of two Laplace integrals finally yields

kΦ =

∫ xthr−xin

0

e−kf1(u) du

sin(u)
−
∫ xthr−xin

0

e−kf2(u) du

sin(u)
(A.19)

with the arguments of the exponential given by

f1(u) = xsu− log [cos(u− xthr)] + log [cos(xthr)] (A.20)

and

f2(u) =

xsu− log [cos(u− xr)] + log [cos(xr)] for u ≤ xr − xin
xsu− log [cos(xin)] + log [cos(u+ xin)] for u > xr − xin.

(A.21)

It is easily verified that f1(0) = f2(0) = 0 and that f1(xthr − xin) = f2(xthr −
xin). Further, it can be shown that f1(u) < f2(u) on the integration interval

[0, xthr − xin]. Hence, the lowest values of f1(u) dominate the integral (A.19)

when k → ∞. The first derivative of f1(u) is given by tan(u − xthr) + xs.

Therefore, a necessary condition for the existence of a minimum of f1(u) within

the integration interval is that xs < tan(xxthr). Note that this reflects the

boundary vs > vthr encountered in the no-fluctuation limit (in opposite direction,

however). If xs < tan(xxthr), f1(u) takes values smaller than 0, and the integral

in (A.19) takes very large values for k →∞. This leads to very low rates (see

eq. (A.14)), and corresponds directly to the case vs < vthr, in which no output

firing occurs in the no-fluctuation limit.

Laplace approximation

Finally, in order to get an approximation for kΦ, we develop the asymptotic

expansion of the Laplace integrals in equation (A.19) by developing the argument

functions f1(u) and f2(u) to second order around their respective minima within

the integration interval (see Orszag and Bender 6.4, p266). If k is high, which is a

condition for the underlying diffusion approximation anyway, the areas where the

arguments take higher values can safely be neglected. Thus, for xs > tan(xthr)

(when the maximum is at u = 0 and f1,2(0) = 0), the integral (A.19) can be
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Figure A.1: Comparison of Laplace approximation, numerical inte-
gration and simulation. a) Transfer functions computed by simulation (red),
Laplace approximation (blue) and numerical integration of equation (A.15) (grey,
dashed) for high k (left panel; ge = 0.05nS, gi = 0.01nS and λi = 0.0kHz),
medium k (middle panel; ge = 0.5nS, gi = 0.1nS and λi = 0.0kHz) and low k
(right panel; ge = 5.0nS, gi = 1.0nS and λi = 0.0kHz). Note that the approxi-
mation is almost indistinguishable from the numerical integral, even for low k.
b) Scheme of the 2D integral in equation (A.16) and its boundaries. The red
area indicates the first term, and the blue area the second term in (A.16). The
formulation in (A.17) corresponds to integrating the area spanned by (xin, 0),
(xthr, 0) and (xin, xthr − xin) and subtracting the small triangle in the lower left
corner. The integrand is indicated by contour lines.

approximated by

kΦ ≈
∫ ∞

0

[
e
−k

(
a21u

2

4 +b1u

)
− e
−k

(
a22u

2

4 +b2u

)]
du

u
, k →∞ (A.22)

with a2
1,2 = 2f ′′1,2|u=0 and b1,2 = f ′1,2|u=0, the coefficients of the second-order

expansion of f1,2(u) around u = 0. Note that 1
sin(u) was also replaced by its

expansion 1
u . It should be pointed out that the two terms need to be treated

together, since each integrand in equation (A.19) by itself diverges at u = 0. For

the difference in equation (A.22), however, there exists a solution to the integral.

For ease of notation, we further define z1,2 =
√
k
b1,2
a1,2

=
√

k
2 cos(xthr,r)(xs −

tan(xthr,r)) and the function

D(z) = z2
2F2

(
1, 1;

3

2
, 2; z2

)
− 1

2
πerfi(z), (A.23)

where, 2F2

(
1, 1; 3

2 , 2; z2
)

denotes the hypergeometric function, and erfi(z) the

imaginary error function. In the computation of D(z), numerical problems can

arise since both minuend and subtrahend quickly grow to very large values as

z is increased. To circumvent these, it is convenient to exploit that d
dzD =

ez
2√
π [erf(z)− 1]. Further, since D(z) is a univariate function, it can easily be

tabularized to speed up computations. With the new function D(z) and the
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variable z, the approximate solution of the integral can be written as

kΦ = D(z1)−D(z2)− Log

(
a1

a2

)
. (A.24)

While the derivation is for the case xs > tan(xthr), the approximation works

well for the case xs . tan(xthr) and for the case xs � tan(xthr) the output rates

are very close to zero. Therefore, for all practical purposes, it is sufficient to

derive the approximation for that case. In figure 1, the Laplace approximation

is compared to the numerical solution of the integral and the transfer function

of a simulated IAF neuron, for a low-, medium and high-fluctuation case. As

expected, the approximation gets worse the higher the fluctuation in the input

are, i.e., the lower k. But note that equation (A.24) approximates the integral

very well even for comparably low k. Overall, the loss in accuracy incurred

by the approximation of the integral is minimal compared to the overall error

inherent to the Fokker Planck approximation.

No-Fluctuation Limit

We can check for consistency with the results derived for the no-flucutation case.

The no-fluctuation limit is the limit k →∞ which, by the way z is defined in

equation (A.23), corresponds to z → ±∞. As mentioned before, xs = tan(xthr)

(and hence z = 0), corresponds to vs = vthr, the threshold between firing and

no-firing in the no-fluctuation limit. We can obtain the behavior around this

point by generating the power series expansion at − and +∞. For negative

z, i.e., in the limit z− > −∞, the function D(z) grows rapidly with leading

term −
√
πexp

(
z2
)
/z and kΦ→∞. Expanding about +∞, however, yields the

leading terms for D(z):

limz→∞D(z) = −γ
2
− log(2z) (A.25)

where γ = 0.5772... denotes the Euler-Mascheroni constant. The limit of kΦ for

large k and positive zis therefore given by

limk→∞,z>0kΦ = log(2z2)− log(2z1)− log

(
a1

a2

)
= log

(
2z2a2

2z1a1

)
= log

(
b2
b1

)
= log

(
n− tan(xr)

n− tan(xthr)

)
= log(

vs − εr
vs − vthr

).

(A.26)

For the last step, we have used the definitions of x (A.5) and n (A.8), as well

as vs from the no-fluctuation limit. Comparing the equations for the rate in

the no-fluctuation case (A.4), and equation (A.14), this result confirms that the

no-fluctuation case treated in the beginning is contained as the k →∞ limit of
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the approximate solution for the fluctuation case.
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Table A.1: Neuron parameters for simulations in sections 4.2.2 and 4.3.

gL [nS] C [pF] εr [mV] εi [mV] εe [mV] vthr [mV]
Population 1 3.0 90.0 -65.0 -70.0 0. -40.0
Population 2 3.0 90.0 -65.0 -70.0 0. -40.0

Simulation Parameters

For the simulations on the dynamics of the II-network in sections 4.2.2 and 4.3

the neuron parameters in table A.1 were used. Furthermore, the synaptic time

constants (see equation 4.22) were set to τi = 2.ms and τe = 0.2ms and the

connection density between populations is 20%. Unless specified otherwise, the

excitatory conductance ge = 0.1nS and the internal connection density is zero.





Appendix B

Methods and

Supplementary Material

CEA Model

Network Model

Each of the three populations, CElon, CEloff and CEm, is modeled by 2000

conductance-based-integrate and fire neurons. This neuron model simulates the

dynamics of the membrane potential vm of a single neuron by the equation

C
d

dt
vm = −(vm − εr)gL − (vm − εe)ge(t)(vm − εi)gi(t)− (vm − εi)gtonici . (B.1)

Here, gi(t) and ge(t) are transient conductances caused by synaptic inputs and

gtonici is a tonic conductance term that is used to model extrasynaptic inhibition;

gL denotes the leak conductance, driving the membrane towards the resting

potential EL. The reversal potentials,EI and EE , control whether increases

in conductance have a hyperpolarizing or depolarizing effect on the membrane

potential. A spike is generated whenever the membrane potential Vm hits a

firing threshold Vthr, upon which Vm is reset to the resting potential EL. The

model parameters have been obtained by fitting the model to both subthreshold

dynamics and input-output-curves (Fig. 5.1b) from patch-clamp recordings. A

spike causes an alpha-function shaped increase in inhibitory conductance gI(t)

in all the neurons receiving synaptic connections:

α(t) = t/τ2 exp (−t/τ) . (B.2)
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Table B.1: Neuron parameters of the CEA network model

gL [nS] C [pF] εr [mV] εi [mV] εe [mV] vthr [mV]
CElon 2.4 86.3 -59.0 -59.0 0. -44.4
CEloff 3.1 119.6 -63.7 -63.7 0. -41.1
CEm 2.3 87.9 -61.8 -61.8 0. -43.0

The amplitude of the increase is controlled by a synaptic weight wij , the weight

of the synapse connecting presynaptic neuron i and postsynaptic neuron j. So

the overall excitatory (inhibitory) conductance of neuron j is given by

g(t) =
∑
ti,k<t

wijα (t− ti,k) , (B.3)

where ti,k denotes the kth spike from neuron i. Neurons in different populations

are connected randomly, in which the connection probabilities are based on

cross-correlation analysis in Ciocchi (2010) and indicated in Fig. 5.1a and the

synaptic weight is denoted by wrec. In this model, there are no connections

within populations. In addition to the network-generated inhibitory input, all

three populations receive excitatory, poissonian background input, adjusted to

match baseline firing rates to experimentally observed rates during habituation

(CElon and CEloff: 5s−1, CEm: ≈ 8s−1, see (Ciocchi, 2010)). Moreover, the

CS−evoked phasic inputs to the CEA from the basolateral amygdala and sensory

thalamus are mimicked by additional excitatory spikes, the arrival times of which

are normally distributed (see inset in Fig.5.1a). Here, CS+ and CS− evoked

firing is modeled by 100 neurons each. These neurons are connected randomly

with the CElon and CEloff populations, with synaptic weights won, and woff

respectively.

The neuron parameters for each population are summarized in table B.1. gL,

C and εr were obtained from fitting to recorded subthreshold dynamics, while

the firing threshold vthr was obtained from fitting mean output firing rates. For

the sake of simplicity, εi was assumed equal to the resting potential and εe set

to zero. Unless specified otherwise, the excitatory conductance amplitude ge is

set to 0.5 nS and the inhibitory gi to 0.02 nS. The synaptic time constants (see

equation B.2) are given by τi = 2.ms and τe = 0.2ms. All spiking neural network

simulations were performed in NEST version 2.8.0 (Gewaltig, 2007).

To adjust the background input for the three populations, a form of gradient

descent was implemented. The network was simulated for 5000ms, then the

background input was adjusted using the difference between mean firing rates

and target firing rates (5Hz) and the gradient, which can be computed semi-

analytically using a Fokker-Planck approximation. This is repeated until the
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mean firing rates are within 0.1Hz of the target rates. In Fig. 5.2a, the state of

the network is classified as bistable (gray area), if the resultant states are either

not balanced (CElon and CEloff rates are more than three standard deviations

apart), switching between two novel stable states occurs or the algorithm did

not converge after 100 iterations. It is classified as antiphasic (light blue area),

if, despite equal mean rates, the mean of the absolute value of the difference is

higher than 1Hz.

Plasticity

For Figs. 5.4 and 5.5, a mean rate approximation of the network responses was

used. This based on a Fokker-Planck approximation of the conductance-based

IAF neuron (as indicated by solid lines in Fig. 5.3a). For modeling synaptic

plasticity in the CEA, we followed theories on reward signaling in the fear

conditioning circuitry, and used a reward prediction error as the learning-signal

(McNally, 2011; Johansen, 2010). More precisely, the weight update was given

by:

∆wi = α(US − rCEm)xi (B.4)

where α is the learning rate, US is the US strength and xi is the activity of the

presynaptic input neuron. For the results presented here, only the synapses from

input to CElon underwent plasticity. Qualitatively, results did not change when

also subjecting input-CEloff synapses to plasticity.

From a functional perspective, this combination of local—that is, neuron-

specific—synaptic plasticity and the global, network-wide, modulation of tonic

inhibition can have the effect of producing more reliable responses at the expense

of discriminability of inputs. While tonic inhibition enhances network sensitivity

for all inputs, synaptic plasticity is input specific but therefore also more suscep-

tible to stochasticity in the input. Hence, noise-contaminated inputs can lead to

variability in the synaptic weights which can be detrimental to output reliability.

However, if these two modes of plasticity are employed in combination, a good

compromise between reliability and discrimination can be achieved, very similar

to the bias-variance-tradeoff in classification problems (see Fig.B.4)

Spillover

We assume tonic inhibitory conductance increases whenever there is high phasic

activity. This is reflected in the spillover term

soff = aon,offf(von − v̄on) and son = aoff,onf(voff − v̄off ) (B.5)
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where f(v) is a soft threshold function with f(0) = 0 and v̄i is a slow moving

average. This has the effect that spillover happens in the model whenever there

is higher than usual phasic input. The factors ai,j take into account different

susceptibility to spillover of the two populations. In the simulations, CElon is

more susceptible to spillover, i.e., aoff,on > aon,off .

In addition, there is a term mimicking GABA-reuptake which leads to a

decrease in tonic inhibition. It is simply assumed to be proportional to the sum

of tonic conductances r = α(gon + goff ). Taken together, modulation of tonic

conductance is governed by the equation

τg
dgon
dt

= −α(gon + goff ) + aoff,onf(voff − v̄off ). (B.6)

Finally, US input to the CEA innervates CEloff (see Fig.B.1). In this setup, US

input alone strongly excites CEloff, and CS input alone excites CElon, while

both excited together lead to small activation. As Fig.5.5 illustrates, such a rule

can lead to approximate temporal integration of reward-prediction error.

Multiple Populations

Finally, there is evidence emerging that the CEl comprises more than the two

discussed functional subpopulations. A third population of neurons, expressing

corticotropin-releasing factor (CRF), forms inhibitory connections on other CEl

neurons. Behaviorally, their activation is associated with increased flight behavior.

This is consistent with previous findings demonstrating a switch from passive to

active fear behavior mediated in the central amygdala (Gozzi, 2010).

The dynamics of the three population network—CElon, CEloff and CRF—

can be investigated in the network model. Asssuming that CRF exerts strong

inhibition on the CElon population, and, in turn, is inhibited by CElon, external

input of intermediate strength leads to strong activation of CElon, while strong

input leads to activation of the CRF population (see figure B.2). Notably,

the activation threshold for the two poulations is strongly influenced by tonic

background input.
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Figure B.1: Layout of the GABA spillover model: Additional nocioceptive
input to the CEloff populations can lead to spillover dynamics approximating
temporal integration of reward prediction error.

[tb]

Figure B.2: Multiple populations. a) Network layout including a third CEl
population. b) Network transfer function for strong background input (top) and
weak background input (bottom) to CRF.
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Figure B.3: Raster Plots: Raster plots and histograms for the three populations
before (top row) and after (bottom row) conditioning.

Figure B.4: Top row: cluster plots illustrating three different types, classified
by firing onset, delay and coefficient of variation, among the PKCδ+ and PKCδ−

neurons. Bottom row: example voltage traces during current injection.
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Figure B.5: Tonic inhibition and synaptic plasticity. a) Acquisition of
phasic responses to the CS+. b) Phasic response amplitude for different ∆goff .
The upper branch shows CS+ responses, the lower CS− responses. c) Post-
learning synaptic weights between input and CElon population. The lower goff ,
the less the synapses are modulated during fear learning. d) Response variability
for different ∆goff , quantified by response variance across testing trials over
mean response.





Appendix C

Methods BLA-mPFC

Model

The LA and ITCs: Kalman Filter

The LA in the model implements the Kalman filter model of conditioning

introduced in subsection 3.2.2. The total US prediction is given by (cf. equation

(6.4))

P (yt) = N (yt|wᵀxt − rITC , ν). (C.1)

with the association weights w = {w1, w2...} corresponding to the phasic stimuli

x = {x1, x2...} and a scalar variance ν. rITC = P (s2,t)f(wᵀ
ITCxt) is a state-

dependent correction term mimicking ITC rates. The CS is represented by

an activation pattern xi = exp(−(i − m)2/s2), i ∈ 1, 2, ...12 with m = 6 for

CS+, m = 8 for CS−, and s = 2.5 for both, i.e., the representations slightly

overlap. The CS+ and CS− are presented alternatingly at every 10th timestep.

Furthermore, the xi inputs are polluted by an additive random noise term

sampled from an exponential distribution with mean 0.05.

The prior belief in the values of the association weights is formalized in a

multivariate normal distribution

P (w) = N (w|µ,C)) (C.2)

which is fully determined by the mean weights µ and the covariance matrix C.

The diagonal elements of C specify the amount of uncertainty associated with

the estimate of the corresponding weight, while the non-diagonal elements give

a measure for how strongly related the estimates of two different weights are.

After observing the true US value yt, the weight estimates can be updated

by applying Bayes’ theorem (for more details see subsection 3.2.2). This yields

117
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Table C.1: Priors and Parameters for LA and ITC.

µ cii (diag. elements of C) cij,i 6=j (non-diag. elem. of C) ν
LA 0.0 0.05 0.0 0.1

wi θ η α
ITC 0.0 0.5 0.1 0.005

the update equations for the mean and covariance

∆µ = [ν + xᵀCx]
−1

(y − µᵀx + rITC)Cx

∆C = − [ν + xᵀCx]
−1

CxxᵀC.
(C.3)

The ITC correction term is computed as rITC = P (s2,t)f(wᵀ
ITCxt), where f

is a logistic function f(x) = 1/(1 + exp ((x− θ)/η)). The update for the ITC

weights is given as delta rule (derived from minimizing the squared prediction

error):

∆wITC = w − αITC ∗ P (s2,t) ∗ (y − µᵀx + rITC) ∗ x. (C.4)

The BA: Expectation-Maximization

The BA performs state estimation. Its estimates are based on the contextual

information zi (zA ∈ {0, 1}, zB ∈ {0, 1}, etc.) and the reward prediction error

rt = yt −wᵀxt, which is transmitted from the LA after the US. Note that this

is based only on the LA prediction, and not the total prediction.

For the purpose of US-prediction, the pre-US estimate is highly relevant. It

depends solely on the context and the previous state and is given by:

P (sj,t|zt) ∝ P (zt|sj,t)
∑
i

P (sj,t|si,t−1)P (si,t−1). (C.5)

While the conditional probabilities P (zt|sj,t) are subject to learning, which is

explicated below, the state transition probabilities P (sj,t|si,t−1) have fixed values

(a 2× 2 table) in the model. It is this pre-US estimate P (s2,t) = 1−P (s1,t) that

controls the contribution of the ITCs to the total US-prediction in equation (C.1).

After presentation of the US the reward prediction error rt can be computed

and the post-US estimate is given by

P (sj,t|zt, rt) ∝ P (rt|sj,t)P (sj,t|zt). (C.6)

The likelihoods P (rt|sj,t), j = 1, 2, which this update is based on are, again for



119

the sake of convenience, in the form of a normal distribution

P (rt|sj,t) = N (rt|ρj , λ−1
j )) (C.7)

where ρj is the epected reward prediction error in state i and λj is the precision

(inverse of the variance), a measure for how much the reward prediction is

expected to fluctuate. For example, in partial conditioning with 50% pairing

probability, the reward prediction error would be expected to fluctuate between

plus and minus half the US strength, even after learning has converged. This

would be reflected in a low precision λj .

With the post-US state expectation computed according to equation C.6,

the updates of the conditional probabilities P (rt|sj,t) and P (zi,t|sj,t), i.e., the

maximization step, can be performed. Since both the context variables zj and the

state variables si are binary variables, the conditional probability pij = P (zi,t|sj,t)
is a 2 × ncont table of scalar values. The internal estimate for each of these

values is given by a beta-distribution B(pij |cij , c̄ij), where cij is the count of

occurrences of zi when in state sj and c̄ij is the count of non-occurences, i.e.,

c̄ij = nj−cij , where nj is the count of state j occurences. Hence, it is convenient

to keep the statistics cij and nj , which are updated as follows:

∆cij = zi,tP (sj,t),

∆nj = P (sj,t).
(C.8)

The conditional probabilities for the pre-US estimate are then given dividing the

count of co-occurences by the count of state occurrences, i.e., P (zi,t|P (sj,t) =

cij/nj .

For the dependence on reward prediction error, we need to update the mean

ρj and precision λj for each state j. The prior belief in these is captured in a

normal-gamma distribution

P (ρj , λj) = P (ρj |λj)P (λj) = N (ρj |ρ̄j(βjλj)−1)G(λj |
1

2
λ̄j ,

1

2
νj). (C.9)

Given an estimate of state probabilities P (sj,t) the updates for the hyperparam-

eters ρ̄j , βj and λ̄j νj at timestep t are given by

∆ρ̄j =
P (sj,t)

βj + P (sj,t)
(rt − ρ̄j),

∆βj = P (sj,t),

∆λ̄j =
P (sj,t)βj
βj + P (sj,t)

(rt − ρ̄j)2.

∆νj = P (sj,t).

(C.10)
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Table C.2: Priors and Parameters for P (z|s) and P (r|s).

nj cAj cBj cCj ρ̄ β λ̄ ν
s1 100 50 50 50 0.0 1 2.5 20
s2 25 12.5 12.5 12.5 0.0 1 5.0 5

Both the context and RPE updates are performed only whenever either a US

is observed, or the LA-dependent US prediction for state 1 is higher than 1.

The conditional probabilities P (rt|sj,t) needed for the post-US state update are

finally obtained by marginalizing ρj and λj from the distribution (C.7) using

the distribution (C.9) with the updated hyperparameters. Integrating out the

precision yields a Student’s t-distribution as a marginal distribution

P (rt|sj) = St(rt|ρ̄j ,
νj
λ̄j
, νj). (C.11)

This procedure of alternating between computing state estimates based on pa-

rameter estimates and computing parameter updates based on state estimates is

very similar to the maximum-likelihood-based expectation-maximization algo-

rithm. It can also be interpreted as a variational Bayes approximation, where

the variational distribution factorizes between the parameters and the latent

state variables (see Bishop, 2006, Chapter 10).

The mPFC: Gibbs Sampling

The BA provides local state estimates P (sj,t). In the model, it is assumed that

the mPFC estimates the probability for the entire history of the process. That

means the goal is to infer the distribution

P (s1:t, x1:t, y1:t, z1:t) = P (s0)

t∏
t=1

P (xt, yt|st)P (zt|st)P (st|st−1). (C.12)

The struture of the distribution is summarized in graphical form in figure

C.1. The full probability distribution C.12 is determined by the conditional

probabilities P (xt, yt|st), P (zt|st) and the transition probabilities P (st|st−1),

which are assumed known. Further, we assume that the mPFC holds a record

of the past sensory inputs x1:t, y1:t and z1:t, which are presented in a binary

form. The likelihood function P (zi|sj) is again in the form of a ncontext × 2

matrix, while we additionally discretize x and y in nx and ny segments, such

that P (xi, yj |sk) can be presented by a nx × ny × 2 array.

The sampling procedure for estimation of the distribution (C.12) is as follows:

From an initial estimate P (s1:t), which is given by the BA state estimate, a state
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Figure C.1: Bayesian network diagram of the probability distribution
in equation (C.12). Each state st is depending on the previous state, and it
affects the next state as well as the observable variables xt, yt and zt. While zt
is conditionally independent from the other two given st, xt and yt are not.

history s1:t is sampled. Then, for each state estimate st′ , the probability

P (sj,t′ |s1:t′−1, st′+1:t) ∝ P (xt, yt|st)P (zt|st)
∑
i

P (si,t|sj,t−1)P (sj,t′−1) (C.13)

where the unnormalized likelihood functions P (xt, yt|st) and P (zt|st) can be

calculated simply by summing the co-occurences of states and sensory inputs in

the sample, i.e.,

P (xi, yj |sk) =

t∑
t′=1

xi,tyj,tsk,t/

t∑
t′=1

sk,t

P (zi|sj) =

t∑
t′=1

zi,tsj,t/

t∑
t′=1

sk,t.

(C.14)

Based on the new probability, st′ is resampled and the update step is repeated

for the next time step. As Figure 6.5 shows, one or two iterations (through all

timesteps) are enough for this sampling to converge and detect the time point of

transition from fear learning to extinction. For consolidation, 100 virtual trials

are sampled from the inferred distributions and replayed to the LA, BA and

ITC. Because this leads to a decrease in variance of the weights, the effects of

synaptic consolidation are mimicked.





Appendix D

Introduction to Bayesian

Learning

Many contemporary high-level models in cognitive neuroscience are expressed

in the framework of probability theory (Doya, 2006; Knill, 2004; Friston, 2010).

The distinct appeal of Bayesian inference in the cognitive sciences is due to a

number of reasons. Firstly, probability distributions can be thought of as repre-

senting subjective knowledge, in which the variance of the distribution captures

uncertainty. In addition, these distributions can be updated to incorporate new

information in a sequential and online manner. Bayes’ theorem provides the

uniquely optimal way to perform this update. Moreover, it has been shown

that many aspects of human reasoning and animal behaviour can be explained

elegantly and from first principles in this framework.

Frequentist vs. Subjectivist Interpretation of Probabilities

The common interpretation of probabilities alludes to expected relative frequen-

cies. For example, attributing a probability pHeads to a coin landing on the head

side is commonly interpreted as meaning that if the coin is tossed a very large

number (N) of times, we expect to observe heads roughly pHeads/N times, where

the match improves with higher values of N . This is a frequentist interpretation

of probability, and it is objectivist in the sense that we think of probability as

a property of a proposition about a factual event (in this case the proposition

“The coin lands heads up”).

An essential insight underlying the use of probability theory in the cognitive

sciences is that probability distributions can also represent subjective states of

knowledge. What we perceive as randomness in the environment is not necessarily

a consequence of certain events being intrinsically stochastic, but more often
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it is the result of our state of incomplete knowledge (see, e.g., Jaynes, 2003)

. From this perspective, the assignment of probabilities is a way to represent

subjective knowledge. Note that this subjectivist interpretation of probability

also underlies most of statistics. For example, confidence intervals usually do not

imply that the quantity in question fluctuates; rather, they indicate how precisely

the quantity can be inferred from the data. Analogously, Bayesian approaches in

cognitive science posit that subjective knowledge, often referred to as belief (e.g.,

Pearl, 1988), about properties of the environment is represented by a probability

distribution, quantifying the degree of belief in different propositions.

Example: Consider two coins A and B. Coin A has undergone lengthy

tests, all indicating it is a fair coin, i.e., the number of times it landed heads

up NHeads is roughly half of N , the total number of trials. As a result, we

assign pHeads as 1/2. Coin B, on the other hand, has not been tested at

all, and we have a strong suspicion it is not a fair coin, but we have no

indications as to which side is favored over the other. So we again assign

equal chances to both outcomes pHeads = pTails = 1/2. While for coin A

the assignment pHeads = 1/2 represents positive knowledge, in the case of

coin B it rather reflects lack of knowledge.

Obviously the subjective state of knowledge is very different for the two coins

above and our willingness to gamble on the outcome of a series of coin tosses

should depend on that. How can this difference be accounted for? The key to

understanding Bayesian learning lies in the insight that probabilities themselves

can be subject to uncertainty. In keeping with the notion of subjective probability,

we can thus assign a probability distribution over a probability (sometimes called

higher-order probability or metaprobability). This concept is of paramount

importance to the application of Bayesian methods in cognitive science, since,

probabilities corresponding to causal relations in the environment are themselves

often the subject of statistical inference. In real life, simple lottery-like situations

in which the probabilities of relevant outcomes are known in advance are rare

exceptions. In general, one needs to estimate probabilities based on prior

experience, necessarily involving a certain degree of uncertainty.

Example (continued): To represent our knowledge of coins A and

B we use probability distributions. PA,B(pHeads) denote the probability

distributions for coin A and coin B, respectively. Since we are very certain of

pHeads = 1/2 for coin A, the distribution PA(pHeads) is very narrow around

this value, while the distribution PB(pHeads) is much wider, reflecting our

belief that coin B could be biased to one side (see Figure D.1). PB(pHeads)
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is symmetric, because we do not deem bias towards any one side more likely

than the other.

Bayes’ Theorem

Having established probability distributions as representations of subjective

knowledge, the key question now is: How should these distributions be updated

in light of new data? Or, in other words, how does learning happen in the

probabilistic framework? The answer lies in Bayes’ theorem, which was first

formulated by Thomas Bayes 1763 and became the namesake of this type of

learning models. It can be rendered as:

P (x|D)︸ ︷︷ ︸
Posterior

=
P (D|x)P (x)

P (D)
= α P (D|x)︸ ︷︷ ︸

Likelihood

P (x)︸ ︷︷ ︸
Prior

(D.1)

Here P (x|D) is the conditional probability of x given D. From an objectivist

interpretation of probability, this equation is a mere definition of conditional

probability, but, adopting the subjectivist interpretation, it provides an update

rule for subjective probability distributions. This means, we can interpret x as

the variable we wish to infer and in which we hold an initial belief represented

by P (x), and D as the data at our disposal. Then equation (D.1) constitutes a

recipe for updating the belief in x after having observed data D. The terminology

of Bayesian inference reflects this point: We obtain the posterior distribution

P (x|D) by multiplying the prior belief P (x) with the likelihood P (D|x), where

likelihood denotes the probability of observing data D assuming x was the

case. Note also, that the distribution P (D) in the denominator need not be

known explicitly. We can make use of the fact that as P (x|D) is a probability

distribution, the integral over x is always 1, i.e.,
∫
P (x|D) dx = 1. Since P (D)

does not depend on x, it can be treated like a normalizing factor α.

Bayes’ theorem is the only mathematically correct way to update probability

distributions given new data. Any update rule that violates formula (D.1) leads

to inconsistencies. For our purposes, this means learning according to Bayes’

theorem is optimal in the sense that it makes the best possible use of new

information. This makes it a natural starting point for normative models of

learning.

Example (continued): We toss coin B repeatedly and update PB(pHeads)

after each outcome di. Bayes’ theorem yields the sequential update rule

PB(pHeads|di) = αP (di|pHeads)PB(pHeads|di−1). For a coin toss, the like-

lihood of possible outcomes is straightforward: P (di = Heads|pHeads) =
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Figure D.1: Bayesian Inference on pHeads. a) Example distributions for
PA(pHeads) (grey) and PB(pHeads) (blue). The grey distribution is very narrow,
reflecting a strong and certain belief in pHeads = 0 b) Update of estimated
mean pHeads for both distributions if the underlying real probability is 0.6. Note
that PB changes much faster in light of new data, while PA remains almost
unchanged. c The variance of PB decreases as new data is incorporated. d The
subjective distributions after learning.

pHeads and P (di = Tails|pHeads) = 1− pHeads. So after the coin flip, we

multiply PB(pHeads) with either pHeads if the coin landed heads up, or with

1− pHeads otherwise and renormalize with α. Figure D.1 shows an example

prior and posterior distribution. The estimate of pHeads after the ith trial is

given by the expectation value µi = EipHeads =
∫ 1

0
pHeadsPB(pHeads|di) dx.

Bayesian Updates

The example illustrates some aspects that are of general importance to Bayesian

learning. The update of the estimates µi+1 − µi per step depends on not only

di+1, but also the current belief PB(pHeads|di). Generally, the update step will

be smaller the better the new data fit prior expectations. Furthermore, the size

of the update step depends on the variance of PB(pHeads|di): The smaller the

variance, the smaller the update step. Applied to cognition, this implies that an

agent who is very certain of his own estimate will be very reluctant to change

it, even in the face of adverse evidence, while an uncertain agent weighs new

information more strongly.

Online Learning

In the example, the update is performed after each coin toss, so called online

learning. Equivalently, one could perform the update once after all trials are

completed. In this case, the data would be a sequence of outcomes, e.g., D =

{Heads,Heads, Tails,Heads, ..., Tails} and the likelihood would be given by a

binomial distribution. This procedure (called batch learning) yields the same

results as online learning in this example. More generally, whether online learning
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and batch learning are equivalent depends on the statistical properties of the

data D. Using the nomenclature D = {d0, ..dt} in which di denotes the new data

arriving at timepoint i, the datapoints di need to be conditionally independent

from each other given x, i.e., P (D|x) = P ({d1, ...dt}|x) = P (d1|x)...P (dt|x). In

normal language, this means that the datapoints we observe depend on each

other only via the quantity x we wish to infer. If x is fixed, the different outcomes

di are entirely independent. If this condition is not fulfilled, online learning

can lead to inconsistent results. It is, however, usually possible to formalize a

problem such that this condition is at least approximately fulfilled.

For a model of human or animal learning, the ability to incorporate new data

immediately upon observation is a vital condition. Animals, as well as humans,

obviously do not only update their knowledge at fixed times, but whenever

they perceive relevant sensory input. The Bayesian framework allows for online

learning under fairly weak conditions, which makes it a viable model of human

and animal learning.

Elements of Bayesian Learning

While Bayes’ Theorem uniquely defines the learning step, it should not be

overlooked that other elements of Bayesian learning remain unconstrained. Im-

portantly, the prior distribution and the likelihood in equation (D.1) are generally

unconstrained and depend on assumptions the designer of the model makes. This

can have big effects on the results of the model. The choice of prior distribution

affects the Bayesian update. If a lot of data are presented during learning,

this dependence on the prior will become negligible, but if only very few pieces

of data are presented, the effect can be relevant. This subjective component

has troubled some statisticians and led to attacks on the use of the Bayesian

paradigm in mathematical statistics. An important response to this criticism

was the development of more principled approaches for finding priors, e.g., the

maximum-entropy-principle. For this work it suffices to say that the subjective

component of Bayesian inference as brought in by choice of priors is much less

troubling to cognitive scientists than to mathematicians. For instance, different

priors have been suggested to account for individual differences in response to

certain tasks.

In addition, the likelihood P (D|x) is generally not as straightforward and

unambiguous as it is in the example. It incorporates the agent’s belief on how

the observable data D depends on the variable x. In more formal terms, the

likelihood is computed based on a statistical model of the relation between x and

D, and this statistical model is inherent to the agent. As a consequence, when

formulating a Bayesian model, the designer could often choose which internal
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model1 to endow the agent with.

In summary, it deserves emphasis that priors, as well as the internal model,

introduce free parameters to the model. To claim that Bayesian models are

always more constrained than classical associative learning models would be

overstating the merits of the Bayesian approach. However, both priors and

the internal model have concrete mental counterparts. Priors correspond to

the agent’s initial or naive beliefs, including his level of uncertainty, while the

internal model specifies the agent’s beliefs on the structure of the world.

1To avoid confusion, the term “internal model” is used when referring to the statistical
model the agent holds to compute the likelihood, as opposed to the overall model designed by
the researcher or engineer.
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Résumé

Conditionnement à la peur est un paradigme réussie pour comprendre les substrats neuronaux de
l’apprentissage et de l’émotion. Dans cette thèse, je présente deux modèles informatiques des
structures du cerveau qui sous-tendent l'acquisition de la peur conditionnée.

Le première modèle est utilisé pour enquêter sur l’effet des changements de l’inhibition tonique sur
le traitement des informations reçues. On confirme que la diminution de l’inhibition tonique d’une
population augmente la réactivité du réseau. Ensuite,  le modèle est analysé d’une perspective
fonctionelle et des prédictions qui découlent de cette proposition sont discutés. 

En outre, je présenterai un modèle systématique, basé sur un type de modèle de conditionnement
récemment introduit utilisant des variables latentes. Je propose que l’interaction entre les neurones
dans l’amygdale basale code pour l’interface entre ces variables latentes. Le modèle couvre une
large gamme d’effets et l’analyse produit un certain nombre de prédictions vérifiables.

Mots clés:

modèle informatique, amygdale, conditionnement à la peur, inhibition tonique

Résumé en anglais

Fear conditioning is a successful paradigm for studying neural substrates of emotional learning. In
this thesis, two computational models of the underlying neural circuitry are presented.

First, the effects of changes in neuronal membrane conductance on input processing are analyzed
in a biologically realistic model. We show that changes in tonic inhibitory conductance increase the
responsiveness of the network to inputs. Then, the model is analyzed from a functional perspective
and predictions that follow from this proposition are discussed.

Next, a systems level model is presented based on a recent high-level approach to conditioning. It
is proposed that the interaction between fear and extinction neurons in the basal amygdala is a
neural  substrate  of  the  switching  between  latent  states,  allowing  the animal  to  infer  causal
structure.  Important  behavioral  and  physiological  results  are reproduced  and  predictions  and
questions that follow from the main hypothesis are considered.

Keywords:

computational model, amygdala, fear conditioning, tonic inhibition


