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INTRODUCTION 
 

1. Biogenesis of miRNAs 

1.1 Canonical biogenesis of mammalian miRNA 

The biogenesis of miRNAs has been extensively studied over the years and we now have 

quite a good understanding of the different mechanisms involved in this process, although 

some aspects of it still require further investigation. In this part, I will focus on the current 

knowledge of the canonical mammalian miRNA biogenesis, but will also mention work 

performed on invertebrates like Drosophila and C. elegans as they have contributed to our 

current knowledge on mammalian miRNA biogenesis.  

 

1.1.1 Generation of miRNA precursor and export into the cytoplasm 

 

miRNAs derive from large primary transcripts (pri-miRNAs) that are generally transcribed by 

RNA polymerase II. These pri-miRNAs resemble regular coding transcripts as they are 

capped and polyadenylated (Cai et al., 2004; Lee et al., 2004). Pri-miRNAs can be found in 

introns and exons from protein coding genes or expressed as their own independent 

transcription unit (Baskerville and Bartel, 2005; Kim and Kim, 2007; Rodriguez et al., 2004). 

In other rare cases they can also be transcribed by RNA polymerase III (Pfeffer et al., 2005) 

(Figure 1). The pri-miRNA transcript contains regions that fold back into imperfect stem-loop 

structures, these stem-loops can be recognized and excised by an Rnase III ribonuclease 

called Drosha in the nucleus (Lee et al., 2003) (Figure 1, 2 and 3)). Several sequence and 

structural determinants exist on pri-miRNAs that make them good substrates for Drosha 

processing. Hence, pri-miRNAs present an imperfect stem-loop structure of three helical turns 

(~33bp), flanked by a terminal loop and single stranded segments (Han et al., 2006). The 

single stranded segments are important, as Drosha will cleave by measuring 11 bp from the 

basal junction (Auyeung et al., 2013). Additionally, other sequence determinants are 

important for efficient Drosha processing, the basal motifs UG at position -13 from the 

cleavage site and CNNC at position +17, and to some extent the apical motif GUG/UGU 

(Auyeung et al., 2013; Fang and Bartel, 2015) (Figure 2-A, 2-B). The importance of these 

sequence motifs varies from one pri-miRNA to the next though, as one fifth of all mammalian 

pri-miRNA do not possess any of them.  
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Figure 1: Biogenesis of miRNAs  
Schematic representation of miRNA biogenesis in mammals. After the primary transcript of a miRNA 
(pri-miRNA) is produced, two sequential processing events occur, first by Drosha to produce the 
miRNA precursor (pre-miRNA) followed by its export to the cytoplasm by EXP5 (exportin-5), then 
by DICER, which will generate the mature miRNA/miRNA* duplex. One of the two strands of the 
duplex is then loaded into an Argonaute protein to form the RNA-induced silencing complex (RISC). 
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Drosha is part of a protein complex called the Microprocessor, the other essential cofactor 

found in this complex is the diGeorge Syndrome Critical Region Gene 8 (DGCR8) protein 

(Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et al., 2004). A recent 

study shows that a dimer of DGCR8 and one monomer of Drosha constitute the 

Microprocessor (Nguyen et al., 2015) (Figure 2-B and 3-B). DGCR8 recognizes the apical 

stem of the pri-miRNA hairpin with the UGU motif and DROSHA positions itself by 

recognizing the basal UG motif, resulting in the cleavage of the pri-miRNA by measuring 11 

bp from the basal junction, a feature that was recently confirmed by the resolution of Drosha 

crystal structure (Kwon et al., 2016; Nguyen et al., 2015) (Figure 2-B and 3-C).  

 

 

Figure 2: Structure of primary miRNA and the organization of the Microprocessor  
A. Schematic representation of a typical pri-miRNA organization, ~33 bp stem-loop and sequence 
determinants present in the apical loop and single strand flanking regions are key features for Drosha 
recognition. B. Model of the organization of the microprocessor on the pri-miRNA composed of a 
dimer of DGCR8 and one DROSHA. DROSHA cleaves by measuring ~11bp from the basal junction. 
Adapted from (Ha and Kim, 2014; Nguyen et al., 2015). 
 

The cleavage by the Microprocessor releases the stem-loop precursor RNA (pre-miRNA) and 

leaves a 2nt overhang and hydroxyl group at its 3’ extremity, typical of Rnase III cuts (Lee et 
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al., 2002). Once the pre-miRNA has been released by Drosha, it is transported to the 

cytoplasm by the Ran-GTP dependent nuclear export factor Exportin-5 (Bohnsack et al., 

2004; Lund et al., 2004; Yi et al., 2003) (Figure 1). The 3’OH and 2nt overhang present on 

the pre-miRNA is the feature that is recognized and required for Exportin-5 binding (Zeng 

and Cullen, 2004). Exportin-5 also contributes to the protection of pre-miRNAs from 

degradation by binding to both its 5’ and 3’ extremities (Okada et al., 2009). 

  

 
Figure 3: Structure of Drosha 
A. Domain organization of human Drosha. The structure of a fragment of Drosha (390-1365) was 
resolved in complex with the C-terminal tail of DGCR8 which have been previously shown to be 
sufficient for pre-miRNA processing (Nguyen et al., 2015) B. The domains are colored as in A. C. 
model for human Microprocessor binding to pre-miRNA, confirming the stoichiometry of the 
microprocessor with one Drosha and two DGCR8 molecules. Taken from (Kwon et al., 2016). 
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1.1.2 Dicing of the pre-miRNA into miRNA/miRNA* duplex 

 

Once in the cytoplasm the pre-miRNA will be recognized and processed by a second Rnase 

III enzyme called Dicer, this maturation step will produce the mature miRNA duplex 

(Hutvágner et al., 2001). The first model of DICER cleavage described the recognition of the 

3’ overhang of the pre-miRNA by the PAZ (Piwi Argonaute Zwille) domain and the cleavage 

near the apical loop after measuring 22 bp, creating a new 3’OH terminal 2nt overhang 

(Macrae et al., 2006; Zhang et al., 2004). More recently though, it was demonstrated that 

Dicer also anchors the 5’ end of the pre-miRNA by recognizing the 5’ terminal phosphate 

group in addition to its 3’OH, and the cleavage site is designated by measuring 22 bp from 

this end for most pre-miRNA (Park et al., 2011) (Figure 4).  

Figure 4: Schematic representation of Dicer pre-mi-RNA processing. 
5’ and 3’ binding pockets in the PAZ domain recognize the 5’ phosphate and the 3’OH of the pre-
miRNA respectively. DICER then measures 22 bp after the 5’P and cleaves to produce the 
miRNA/miRNA* duplex. Taken from (Park et al., 2011). 
 

Dicer is found in complex with a cofactor called TRBP (Transactivation region (Tar) RNA 

binding protein) (Chendrimada et al., 2005; Haase et al., 2005) and also another one called 

PACT (Protein activator of PKR) (Lee et al., 2006). In the absence of TRBP the expression 

level of miRNAs do not change, however Dicer cleavage becomes less accurate, shifting the 

start and end of mature miRNAs by several nucleotides (Kim et al., 2014b). However, in the 
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absence of PACT the miRNA levels or accurate processing of pre-miRNA do not differ from 

wild-type cells, raising the question of its importance in pre-miRNA processing (Kim et al., 

2014b). 

TRBP and PACT have other roles beyond their implication in the biogenesis of miRNA 

pathway, which are reviewed in (Heyam et al., 2015; Svobodova et al., 2016). Notably, they 

have antagonistic roles in the interferon pathway, their binding to Dicer being mutually 

exclusive as they share the same binding residues (Wilson et al., 2015), these cofactors might 

be at the origin of a crosstalk between Dicer and the interferon pathway. 

The duplex of miRNA formed after Dicer cleavage will be loaded in the effector complex 

called RNA induced silencing complex (RISC), which will invariably contain a protein from 

the Piwi/Argonaute family (Carmell et al., 2002). There are four Argonaute proteins (AGO1-

4) in mammals capable of loading miRNAs, but only AGO2 has the slicer activity allowing 

the endonucleolytic cleavage of the target RNA (Liu et al., 2004; Meister et al., 2004). 

 

1.2 Non canonical biogenesis of miRNA 

 

Although the canonical biogenesis pathway accounts for the maturation of the vast majority 

of miRNAs, there are several examples of miRNAs that do not rely on the canonical 

maturation machinery. A recent study by Narry Kim’s laboratory looked at the effects of 

individual knockouts of Drosha, Exportin 5 and Dicer on miRNA expression in human cells 

and divided the non-canonical miRNA maturation in a total of five different groups (Kim et 

al., 2016b) (Figure 5). 

Several examples of miRNAs exist which skip the Drosha-mediated cleavage, as they are 

already expressed into a structure mimicking that of a pre-miRNA or another enzyme 

catalyses the production of the pre-miRNA. One of the earliest discovered group of Drosha-

independent miRNAs are called mirtrons. These pre-miRNA derive from intronic loci and 

their extremities are defined by the splicing event therefore precluding the need of further 

cleavage, they then join the canonical pathway at the level of nuclear export (Berezikov et al., 

2007; Okamura et al., 2007; Ruby et al., 2007) (Figure 5). Compared to the canonical 

miRNAs, the numbers of mirtrons is quite low. A likely explanation for this is the existence 

of a pathway counteracting the emergence of new mirtrons by signaling them for degradation 

by non-templated nucleotide addition, as recently reported in Drosophila (Bortolamiol-Becet 

et al., 2015; Reimão-Pinto et al., 2015). 
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Figure 5: Biogenesis pathways of miRNAs.  
Most miRNAs follow the canonical miRNA biogenesis pathway (group 1) requiring both Drosha and 
Dicer processing. The majority of let-7 family members as well as miR-105 require TUTases activity 
to get the correct 2nt 3’ overhang (group 2) before Dicer processing (Heo et al., 2012). Other groups 
follow their biogenesis independently of Drosha or Dicer processing. Taken from (Kim et al., 2016b).  
 

Another example of Drosha independent miRNAs is called 5’capped pre-miRNA. These pre-

miRNAs are produced by RNA polymerase II, are capped at 5’ extremity and their 3’ end is 

believed to be defined by premature transcription termination. These pre-mRNAs are 

exported by Exportin-1 and processed by Dicer. One particularity of these miRNAs is that 

only the 3p arm of the pre-miRNA can be loaded into AGO, as the cap interferes with 

loading, thereby allowing a new experimental strategy for expressing exogenous si/miRNA 

with only one functional arm (Xie et al., 2013) (Figure 5).  

Non-coding RNA like tRNAs and snoRNAs can also be a source of miRNAs that are 

independent of Drosha (Babiarz et al., 2008; Ender et al., 2008). Some herpesviruses have 

also been shown to express Drosha-independent miRNAs, such as the mouse herpesvirus 

MHV68, which expresses miRNAs from tRNAs that are processed by RNAseZ (Bogerd et 

al., 2010; Pfeffer et al., 2005) (Figure 5 and 6-A). Another example is the herpesvirus saimiri, 

which uses an snRNA-like RNA as a precursor and the integrator complex to release the pre-

miRNA (Cazalla et al., 2011) (Figure 5 and 6-B). 
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Figure 6: Examples of Drosha independent group 6 miRNA biogenesis  
A. structure of pri-miR-M1-7 expressed by MHV68 that contains a tRNA, the pre-miR-M1-7 and 
another stem-loop. RNAseZ cleavage sites are shown by arrows and Dicer cleavage sites by triangles. 
Taken from (Bogerd et al., 2010). B. The structure of several HSURs expressed by Herpervirus 
saimiri. The 3’ box is recognized and cleaved by the Integrator complex, creating a pre-miRNA and a 
pre-snRNA. The pre-miRNA is exported to the nucleus for Dicer processing. Taken from (Cazalla et 
al., 2011). 
 

miR-451 to date is the only known miRNA to present a Dicer-independent maturation. After 

Drosha-mediated cleavage, it is directly loaded into AGO2, which slices its 3’arm (Cheloufi 

et al., 2010; Cifuentes et al., 2010; Yang et al., 2010). The resulting longer 5p miRNA arm is 

trimmed by the exonuclease PARN (Poly(A)-Specific Ribonuclease) resulting in the mature 

miR-451 (Yoda et al., 2013) (Figure 5). Similar to miR-451, pre-miRNAs previously were 

shown load onto AGO (Diederichs and Haber, 2007; Liu et al., 2012). Recently, it was shown 

that 5p miRNAs were less affected than 3p miRNAs in Dicer knockout cells, this is due to the 

loading of pre-miRNAs to AGO and their maturation by slicing and trimming like miR-451 

(Kim et al., 2016b). 

 

1.3 Formation of functional miRISC 

 

Whether their biogenesis depends on Drosha and Dicer or not, all functional miRNAs get 

loaded onto an Argonaute protein to form effector complexes called RISC in order to exert 

their function. The formation of RISC is a multistep process consisting of the loading of the 

duplex, unwinding of the two strands and passenger strand ejection. The loading of the mature 
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miRNA duplex takes place in the so called RISC Loading Complex (RLC), which contains 

Dicer, an Argonaute protein and TRBP (Chendrimada et al., 2005; Gregory et al., 2005; 

Maniataki and Mourelatos, 2005). After loading of the duplex into AGO, one of the strands is 

discarded, it is refered to as the passenger strand or miRNA* sequence, whereas the one that 

is kept is called the guide strand (miRNA).  

Argonaute proteins possess four domains called N, PAZ, MID and PIWI, the 5’ phosphate 

end of the miRNA is bound by the 5’ binding pocket located at the interface of N and MID 

domains (Ma et al., 2004; Parker et al., 2005) while the 3’ hydroxyl end of the miRNA is 

anchored in the PAZ domain (Lingel et al., 2004; Yan et al., 2003) (Figure 7-A and 7-B). The 

PIWI domain folds like an Rnase H endonuclease that is catalytically active for target RNA 

cleavage only in the case of AGO2 in mammals (Meister et al., 2004; Schwarz et al., 2004; 

Song et al., 2004). 

 
Figure 7: Domain organization and structure of AGO2. 
A. Domain organization of human AGO2. B. Structure of human AGO2 and a guide RNA (in red). 
Tryptophan residue binds to hydrophobic pockets in the PIWI domain. C. Zoom on the seed region 
that is exposed and organized in a helix ready to engage with target RNA. Taken from (Schirle and 
MacRae, 2012). 
 

The loading of the mature miRNA duplex is a dynamic process, as it requires ATP hydrolysis. 

The ATP-dependent step is when the mature duplex of miRNA is loaded onto AGO, with the 

help of the chaperones Hsp70/Hsp90 (Iwasaki et al., 2010; Johnston et al., 2010). The 

proposed model of action of Hsp70/Hsp90 on duplex loading is called ‘energy slope’ model, 

where Hsp70/Hsp90 will stabilize AGO in an open, duplex-loading capable conformation, 
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which is thermodynamically less favorable, until the loading of the miRNA duplex, where it 

comes back to a stable conformation (Kobayashi and Tomari, 2016). The following steps of 

loading are ATP-independent. The choice of the guide strand is asymmetric and depends on 

the thermodynamic stability of the 5’ of miRNA duplex, the strand with the least stable 

pairing at its 5’ end will be kept (Khvorova et al., 2003; Schwarz et al., 2003). In mammals, 

although Dicer and TRBP are found associated with the RISC loading complex, they do not 

contribute to the strand selection process (Betancur and Tomari, 2012; Kim et al., 2014b). 

AGO alone is able to sense the thermodynamic stability of a miRNA duplex as it is prying 

away the guide strand by its 5’end from the passenger strand (Suzuki et al., 2015). The 

unwinding then functionally involves the N domain of AGO this time on the 3’ end of the 

guide strand, resulting finally in the ejection of the passenger strand (Kwak and Tomari, 

2012). Some miRNA duplexes, like siRNA duplexes in Drosophila, use passenger strand 

cleavage for facilitating the guide strand loading and passenger strand ejection, although this 

requires the slicer activity of AGO2 (Shin, 2008). However, for most miRNA duplexes, the 

ejection happens by slicer-independent unwinding of the passenger strand, as most miRNA 

duplexes have mismatches in central position that facilitate the unwinding and are 

incompatible with AGO2-mediated cleavage (Kawamata et al., 2009).  

2. Mode of action and Function of miRNAs 

2.1 Target recognition of miRNAs 

Once the mature RISC is formed, the miRNA will guide this complex to target messenger 

RNAs and direct their post-transcriptional repression. In animals, although it is uncommon, 

when there is extensive complementarity between the miRNA and its target mRNA, AGO2-

containing RISC can direct cleavage of the messenger (Yekta et al., 2004). For most miRNA 

and their respective mRNA targets, the complementarity will be non-extensive and RISC will 

direct translational repression by diverse mechanisms (discussed in the next part).  

The fact that animal miRNAs find their targets only by partial complementarity poses a big 

problem when it comes to identify their potential targets. However, not all residues within the 

miRNA sequences are equally important and various evidence pointed out that the most 

prominent sequence determinant of miRNA targeting is at 5’ proximal nucleotides 2 to 8 so-

called the ‘seed’ region (Lewis et al., 2003). The seed region alone is sufficient for 

translational repression as G-U wobbles in the seed hinder targeting and 3’ region binding is 

hardly determinant (Brennecke et al., 2005; Doench and Sharp, 2004). This observation is 

supported by crystal structure analysis of AGO2 loaded with miRNA, showing the positions 
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2-6 of the miRNA exposed and free to engage in base pair formation with target RNAs 

(Elkayam et al., 2012; Schirle and MacRae, 2012) (Figure 7-B and 7-C). Although the pairing 

of the seed is necessary and sufficient for miRNA-mediated regulation, some examples of 

supplementary and compensatory pairing to the seed exist in the literature (reviewed in 

(Bartel, 2009; Pasquinelli, 2012)). Since in animals, most miRNA interact with target mRNAs 

within their 3’UTR region, several miRNA target prediction tools were developed focalizing 

on seed sequences and conserved binding sites on homologous 3’UTRs. These prediction 

algorithms, which can be of great value, produce however varying results with many false 

positives (reviewed in (Min and Yoon, 2010). Recently, several high-throughput experiments 

were designed to biochemically identify large number of targets. These usually rely on 

crosslink and immunoprecipitation of Argonaute proteins followed by deep sequencing of the 

isolated target RNAs. These studies showed, in addition to the classic seed match- 3’UTR 

interactions, other kind of interactions involving the coding sequence and 5’ UTR region, 

thereby potentially broadening our understanding of miRNA target sites (Chi et al., 2009; 

Hafner et al., 2010; Leung et al., 2011a). 

 

2.2 Influence of target site context  

 

miRNAs guide the RISC to target mRNA with limited specificity, usually by the recognition 

of a seed-match sequence. As such, thousands of mRNAs have been found to be under 

pressure to maintain their miRNA binding sites (Brennecke et al., 2005; Krek et al., 2005; 

Lewis et al., 2005). At the same time, some messenger RNAs are also subjected to selective 

avoidance, a mechanism in which 50% of messengers expressed in the same tissue as some 

abundant miRNAs are devoid of seed matches for these miRNA (Farh et al., 2005; Stark et 

al., 2005). However, the avoidance of seed matches is not complete, as these mRNAs still 

contain seed-match sites, meaning that every miRNA binding does not have the same 

regulatory potential as others might. Other determinants probably exist in the surroundings of 

seed matches on the target mRNA influencing miRNA mediated regulation. Indeed, one study 

demonstrated through extensive mutational analysis that most of the 3’UTR of cog-1 mRNA 

in C.elegans is important for miRNA repression, showing that a seed match alone is not a 

sufficient predictor of functional miRNA interaction (Didiano and Hobert, 2008). 

In a study by Grimson et al., the authors demonstrated that the accessibility of miRNA 

binding site is playing a major role in the efficacy of repression exerted by miRISC. They put 

forward several determinants such as the proximity to AU-rich sequences, creating less 
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secondary structures and easy access, avoidance of the region 15nt downstream of the stop 

codon to prevent competition with the ribosome and preference of the extremities of the UTR 

as the middle would have more chances to form occluding structures (also shown by 

(Gaidatzis et al., 2007)) . The number of adjacent miRNA binding sites present in a 3’UTR 

for the same or different miRNAs also affects the efficacy of repression, as miRNAs have 

been shown to have cooperative and combinatorial effects (Broderick et al., 2011; Grimson et 

al., 2007; Saetrom et al., 2007). 

Other characteristics of the 3’UTR context influencing miRISC activity include binding of 

RBPs (RNA binding proteins) on or near a miRNA binding site. The effects of these RBP on 

the activity of miRISC will be discussed in the section 3.2.2. 

 

2.3 Mechanism of action of miRNAs 

 

As seen above, depending on the complementarity level between a miRNA and its target 

mRNA, the messenger will follow one of two different fates: cleavage and subsequent 

degradation by exonucleases when there is perfect complementarity (Hutvagner et al., 2004; 

Liu et al., 2004; Meister et al., 2004); translational repression when there is only partial 

complementarity. In the latter case, the target will be regulated upon recruitment of several 

factors by AGO, mediating a combination of mechanisms resulting in mRNA silencing. The 

key connector protein recruited in this case is GW182, which has been extensively studied as 

a partner of AGO proteins (Jonas and Izaurralde, 2015).  

The silencing mechanism mediated by miRNAs has been extensively studied over the years, it 

occurs as a result of the combinatorial effect of translational repression and accelerated 

mRNA decay comprising deadenylation, decapping and 5’ to 3’ degradation (Figure 8). 

Another aspect of miRNA-mediated silencing is the sequestration of targeted mRNAs in 

cytoplasmic loci called GW182 containing bodies (GW bodies) or mRNA processing bodies 

(P-Bodies) restricting their availability to the translation machinery (Eulalio et al., 2007; Liu 

et al., 2005a; Pillai et al., 2005; Sen and Blau, 2005).  

 



 

 13 

 
Figure 8: miRNA mediated gene silencing in animals. 
Following AGO recognition of a target mRNA, it recruits GW182, which acts as a platform to interact 
with PABPC (cytoplasmic poly(A)-binding protein) and the deadenylase complexes PAN2-PAN3 and 
CCR4-NOT. Once deadenylated the mRNA gets rapidly decapped and degraded by XRN1 (5’ to 3’ 
exoribonuclease 1). In addition, miRNA also induce translational repression, although the exact 
mechanism is less clear. PAM2: PABP-interacting motif, W: Tryptophan repeats recruiting various 
complexes to RISC. Taken from (Jonas and Izaurralde, 2015). 
 

The steps of translational inhibition and of mRNA decay as well as their sequence of events 

and their relative contribution to silencing have long been a source of debate in the field, due 

to the contradictory results obtained from different studies. The subject over the years has 

been covered numerous times in reviews that summarized the progress in the understanding 

of miRNA mediated silencing (Eulalio et al., 2008; Fabian and Sonenberg, 2012; Huntzinger 

and Izaurralde, 2011; Pillai et al., 2007). However, it is now well established that most of the 

silencing (66-90%) is due to mRNA decay as assessed by ribosome profiling studies 

(Eichhorn et al., 2014; Guo et al., 2010). Translation repression accounts for the rest of 

miRNA mediated silencing, however it is only observed at early time points after miRNA 

action, very rapidly mRNA decay becomes the dominant mechanism (Bazzini et al., 2012; 

Eichhorn et al., 2014).  

As mentioned above, the central actor recruited by Argonaute proteins to induce repression is 

GW182. Indeed, the disruption of this recruitment impedes miRNA-induced silencing 

(Jakymiw et al., 2005; Liu et al., 2005b; Meister et al., 2005). Moreover, tethering GW182 
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alone to an mRNA will induce its repression (Lazzaretti et al., 2009; Zipprich et al., 2009). 

Three paralogues of GW182 protein exist in mammals, trinucleotide repeat containing 6 

(TNRC6) A (also known as GW182), TNRC6B and TNRC6C. GW182 proteins take their 

name from GW repeats that they contain, these repeats are unstructured and participate in 

binding to AGO (Pfaff et al., 2013; Lian et al., 2009; Till et al., 2007) and poly-A binding 

protein (PABP) (Jinek et al., 2010; Zekri et al., 2009) (Figure 8). PABP and GW182 

interaction is important for miRNA mediated silencing as mutating GW182 in its binding 

motif to PABP (PAM2) impairs its silencing activity (Huntzinger et al., 2010).  

 
 
Figure 9: Cellular mRNA decay pathway 
The majority of mRNA decay is triggered by deadenylation. The PAN2-PAN3 complex is responsible 
for the first stage of deadenylation which is then taken over by CCR4-NOT complex, although in the 
absence of PAN2-PAN3, CCR4-NOT can function by itself (Wahle and Winkler, 2013). Following 
deadenylation, decapping of the mRNA is induced. Several proteins participate in decapping, DCP1, 
EDC3, EDC4, DDX6 and PATL1 (not shown) (Chen et al., 2014; Jonas and Izaurralde, 2013; Mathys 
et al., 2014). DDX6 and PATL1 are interacting directly with CCR4-NOT1 complex creating a 
physical link between deadenylation and decapping (Jonas and Izaurralde, 2013). EDC4 in turn 
interacts with XRN1, recruiting the nuclease to the now decapped and deadenylated  mRNA (Braun et 
al., 2012). Taken from (Jonas and Izaurralde, 2015). 
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Moreover, GW182 acts as a platform for other proteins and through the various interactions it 

triggers will cause the targeted mRNA to enter into the 5’to 3’ mRNA decay pathway by 

bringing onto the mRNA the deadenylase complexes PAN2-PAN3 and CCR4-NOT (Braun et 

al., 2011; Chekulaeva et al., 2011; Fabian et al., 2011) (Figure 8 and 9). After deadenylation, 

decapping and 5’ to 3’ degradation will ensue.  

Translational repression is another important part of miRNA-mediated silencing. Two models 

of translational repression were proposed, either acting at the initiation of translation or post-

initiation steps. Again ribosomal profiling experiments shed light on this subject and excluded 

the involvement of post initiation steps (Guo et al., 2010). Rather, it seems that the 

predominant mechanism is the inhibition of translation initiation through interference with the 

activity of the eIf4F complex, reviewed in (Jonas and Izaurralde, 2015). 

 

2.4 Function of miRNAs 

 

More than half of protein coding genes have been found under selective pressure to maintain 

miRNA binding sites (Friedman et al., 2009). Consequently, it is not hard to imagine every 

cellular process being subjected to regulation by miRNAs. Unsurprisingly, aberrant 

expression profiles of miRNA are found in a wide variety of diseases. Notably, cancer 

researchers have reported extensively that some miRNAs can be oncogenic or tumor-

suppressive when expressed abnormally (Esquela-Kerscher and Slack, 2006; Hammond, 

2007). In addition, global levels of miRNA expression has also been found to be reduced in 

some cancers (Lu et al., 2005; Thomson et al., 2006). This reduction has been linked to low 

levels of Drosha or Dicer expression and to mutations in TARBP2 or XPO5 (Melo et al., 2009, 

2010; Merritt et al., 2008).  

Knock-out experiments in mice of central proteins in the miRNA pathway result in embryonic 

lethality. Mice with a null mutation in Dicer, the microprocessor components or Ago2 die in 

early stages of development (Bernstein et al., 2003; Fukuda et al., 2007; Liu et al., 2004; 

Wang et al., 2007). These observations indicate the incompatibility of life with the complete 

loss of miRNA pathway. Nonetheless, most individual miRNA knockouts show moderate or 

no evident phenotypes, and only a couple of miRNAs have been linked to disease in humans 

(Mencia et al., 2009; de Pontual et al., 2011). This trend seems to be conserved in mouse 

(Park et al., 2012) and holds true for C.elegans as well, since only 10% of miRNAs are 

required for development and viability of the animal (Miska et al., 2007). 



 

 16 

Typically, the inactivation of a given miRNA will only cause up to a two-fold increase in the 

expression level of its targets (Baek et al., 2008). Expect for a few miRNAs that can act as 

regulatory switches by strongly repressing a limited set of targets that result in a clear 

phenotypic outcome (Olsen and Ambros, 1999; Reinhart et al., 2000), most miRNAs are 

thought to reinforce the robustness of biological processes. They do so by helping to fine-tune 

gene expression in the face of challenges like transcriptional noise and environmental 

perturbations thereby enabling the cell to execute the decisions that it takes by other 

regulatory mechanisms (Bartel and Chen, 2004; Ebert and Sharp, 2012). One observation that 

reinforces this theory comes from the study of individual miRNA knockouts in C.elegans that 

showed a phenotype only in a sensitized background where other regulatory pathways are 

weakened (Brenner et al., 2010). 

 

3. Regulation of miRNA expression 
 

Given that miRNA are implicated in almost all cellular functions, their aberrant expression 

can be at the root of several conditions and diseases. What dictates ultimately the level of 

expression of a given miRNA is a combination of many factors, and it is therefore not 

surprising that at every level of the miRNA biogenesis from its transcription to the stability of 

the mature form, several molecular mechanisms are in action to ensure that the miRNA 

accumulates at the right level. 

 

3.1 Regulation of miRNA biogenesis 

 

3.1.1 Transcriptional regulation 

 

Most of the miRNA genes are transcriptionally regulated in the same way as their mRNA 

counterparts, as they are similarly transcribed by RNA Pol II (Cai et al., 2004; Lee et al., 

2004). This means that any regulatory mechanisms involved in the control of coding 

transcripts (transcription factors, enhancers, repressors, epigenetic modifications), are also 

involved in miRNA gene transcription regulation. Although for intergenic miRNA transcripts, 

this clearly holds true, ChIP-seq (chromatin immunoprecipitation followed by sequencing) 

experiments have shown that intronic miRNAs (but not mirtrons), may also use their own 
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promoter in addition to sharing their host mRNA’s promoter (Monteys et al., 2010; Ozsolak et 

al., 2008), thus adding to the complexity of miRNA transcription regulation.  

Transcription factors (TFs) play an important role in the expression of miRNA transcripts, 

they work to adjust positively or negatively the miRNA expression profile in a tissue or 

developmental time specific manner. Several examples of TFs regulating miRNA expression 

have been discovered in studies of miRNA expression in cancer. The tumor suppressor 

protein P53 has been shown for example to induce the expression of the miR-34 family 

(reviewed in (He et al., 2007)). Another example is the transcription factor c-Myc, a proto-

oncogene, which has been involved in the induction of the miR-17-92 family (O’Donnell et 

al., 2005) and miR-9 (Ma et al., 2010) and also has been shown to down-regulate the 

expression of several tumor suppressor miRNA (Chang et al., 2008).  

 

3.1.2 Regulation of miRNA processing 

 

After production of the primary miRNA transcript, the sequential action of Drosha and Dicer 

will generate the final mature miRNA. Acting on these two steps as well as the export step 

represents a logical way to influence the accumulation level of the active miRNA. Protein 

components of these steps have been shown to be regulated post-translationally, thereby 

representing a way to influence globally on miRNA profile. Additionally, cofactors can also 

modulate the substrate preference of these enzymes, or in a more restricted manner, interact 

directly with the pri- or pre-miRNA sequence, to influence specifically (either negatively or 

positively) their processing efficiency. 

 

3.1.2.1 Regulation of the Microprocessor 

 

The regulation of the maturation by the Microprocessor of pri-miRNA is crucial for several 

reasons, in addition to the fact that the efficiency of this cleavage will affect the abundance of 

a miRNA, this cleavage also defines the extremities of the mature miRNA. The fidelity of this 

cleavage is therefore crucial to ensure the production of accurate mature miRNAs and restrict 

their targeting by constricting their seed sequence. 

Drosha and its cofactor DGCR8 are part of a complex autoregulatory loop, where DGCR8 

stabilizes DROSHA by way of protein-protein interactions on one hand, and where Drosha 

destabilizes DGCR8 mRNA by cleaving it at a hairpin structure on the other (Han et al., 2009; 
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Triboulet et al., 2009; Yeom et al., 2006). This ensures the preservation of homeostatic levels 

of the two proteins in the cell.  

 

Figure 10: Examples of pri-miRNA processing regulation 
A. Some example of the post-translational modifications on DROSHA and DGCR8 affecting in 
different ways the activity of the Microprocessor. B. Regulation of a subset of pri-miRNA processing 
by RNA binding proteins. Taken from (Ha and Kim, 2014).  
 

Other mechanisms have been found to regulate the Microprocessor’s activity. These include 

post-translational modifications of Drosha and DGCR8 and protein factors interacting with 

the Microprocessor or the pri-miRNA itself to modulate its processing efficiency. Post-

translational modifications of the Microprocessor include: phosphorylation of Drosha by 

glycogen synthase kinase 3β (GSK3β), which is required for nuclear localization of DROSHA 

(Tang et al., 2010, 2011) and of DGCR8, which increases its stability (Herbert et al., 2013); 

Drosha can also be acetylated and this increases its stability by competing with its 

ubiquitination (Tang et al., 2013); finally DGCR8 can be deacetylated, which modulates 

positively its affinity towards pri-miRNAs (Wada et al., 2012) (Figure 10-A).  
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Several RNA-binding proteins regulate the Microprocessor activity positively or negatively 

by engaging in protein-protein interactions with Drosha and/or protein-RNA interactions with 

the pri-miRNAs. The helicases p68 and p72 (also known as DDX-5 and DDX-17 

respectively) are part of the Microprocessor and have been shown to upregulate the 

processing of a subset of pri-miRNAs (Fukuda et al., 2007). Moreover, these helicases can act 

as platforms to recruit other proteins that in turn can stimulate the processing of other pri-

miRNAs. The p53 and p68 interaction stimulates the processing of miR-16, miR-143 and 

miR-145 in response to DNA damage (Suzuki et al., 2009). R-SMAD proteins can interact 

with p68 or directly with the pri-miRNA through a consensus sequence in the stem to 

promote the processing of miR-21 and miR-199 (Davis et al., 2008, 2010) (Figure 10-B). 

Terminal loop of pri-miRNA represents another opportunity for proteins to modulate the 

processing of pri-miRNAs. HNRNPA1 can bind to the loop of pri-miR-18 but not to other 

pri-miRNAs found in the same cluster and thereby promoting the processing of pri-miR-18 

(Guil and Caceres, 2007; Michlewski et al., 2008). KSRP binds to the terminal loop of pri-

miRNAs that possess GGG triplets and promotes their processing (Ruggiero et al., 2009; 

Trabucchi et al., 2009) (Figure 10-B). Proteins can also negatively influence pri-miRNA 

processing, for example LIN28 binds to the loop of pri-let-7 and represses its processing (will 

be discussed in the section 4.1.2). 

 

3.1.2.2 Export regulation 

 

Exportin-5 did not receive as much attention as the other factors implicated in miRNA 

biogenesis, however some examples of regulation of its activity have been described. The 

expression of Exportin-5 has been found to be post-transcriptionally upregulated during the 

entry into cell cycle, resulting in a global increase in miRNA levels (Iwasaki et al., 2013). 

Moreover, the activity of Exportin-5 increases after DNA damage carrying more pre-miRNA 

into the cytoplasm, this is due to the increased interaction of XPO5 with a phosphorylated 

NUP153, a component of the nucleopore complex (Wan et al., 2013). Analysis of several 

tumors showed a mutation in the Xpo-5 gene producing a C-terminal truncated protein, which 

results in a global decrease of miRNA levels (Melo et al., 2010). Another example of 

regulation of Exportin-5 activity comes from adenovirus infection, where a highly structured 

viral non-coding RNA VA1 is expressed at very high levels causing the saturation of 

Exportin-5 by outcompeting cellular pre-miRNA for transport to the cytoplasm, effectively 

blocking pre-miRNA processing (Lu and Cullen, 2004). The blocking of Exportin-5 activity 
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by the latter mechanism or by its depletion leads to the downregulation of Dicer expression, 

which revealed Exportin-5 to be responsible for Dicer mRNA export from the nucleus 

(Bennasser et al., 2011), uncovering a crosstalk similarly to Drosha and DGCR8 between 

these two central factors in the miRNA pathway. 

Other than Exportin-5, only Exportin-1 is known to also transport pre-miRNA, although this 

activity is restricted to non-canonical 5’-cap-miRNA precursor (Xie et al., 2013). A recent 

study from Narry Kim’s laboratory showed however that Exportin-5 was not indispensable 

for pre-miRNA transport as knockout cells for Exportin-5 only showed modest reduction in 

the levels of mature miRNA, indicating that other transport mechanisms and factors might 

exist (Kim et al., 2016b). It would be of interest to investigate these alternate mechanisms as 

well as other possible regulatory partners of Exportin-5. 

 

3.1.2.3 Regulation of Dicer processing  

 
As for the Microprocessor, the level of expression of Dicer is crucial for miRNA processing. 

Like the Microprocessor, Dicer and its partner TRBP are also found in an autoregulation loop. 

A decrease in TRBP levels translates in a decrease in Dicer levels and pre-miRNA processing 

(Chendrimada et al., 2005; Melo et al., 2009; Paroo et al., 2009). In addition, Dicer mRNA 

possesses a Let-7 target site in its coding region, creating a feedback loop affecting miRNA 

biogenesis in physiological or cancer conditions (Forman et al., 2008). These regulatory loops 

are contributing to the regulation of homeostatic Dicer activity.  

Phosphorylation of TRBP stabilizes itself as well as Dicer, resulting in the upregulation of 

growth-stimulating miRNAs and in a decrease of Let-7, although the mechanism for the 

specificity to those miRNA is unknown (Paroo et al., 2009).  

Finally, Dicer activity can also be modulated indirectly by RBPs. KSRP is promoting the 

biogenesis of a subset of miRNAs by binding to the loop of their pre-miRNA (Trabucchi et 

al., 2009). LIN28 proteins bind specifically to pre-Let-7 and impede Dicer processing through 

the recruitment of Terminal Uridylyl Transferases (TUTases) (will be discussed in more detail 

in the 4.1.2).  
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3.2 Regulation of RISC action 

 

miRNA exert their function by assembling into effector RISC complexes which invariably 

contain Argonaute proteins. One obvious target for regulation of miRNA activity would thus 

be at the level of the RISC, so it is not surprising that several regulatory processes acting on 

Argonaute proteins’ levels or function exist. These aspects will be introduced in this 

following part. Alternatively, other mechanisms also exist that act on the miRNA itself, 

affecting its stability or specificity that will be discussed in separate chapters.  

 

3.2.1 Regulation at the level of Argonaute proteins 

 

Argonaute proteins and miRNAs again are part of an autoregulation loop whereby Argonaute 

proteins when not loaded with a small RNA are unstable (Martinez and Gregory, 2013; 

Smibert et al., 2013), conversely over-expression of Argonaute proteins cause an increase in 

miRNA abundance (Diederichs and Haber, 2007), indicating that miRNAs are in excess 

compared to Argonaute proteins and thereby that unloaded miRNA are not stable either. This 

regulation loop ensures the homeostatic control of functional RISC complexes in the cell. 

Mechanisms are also in place in the cell to actively control the levels of Argonaute proteins. 

While the chaperone HSP90 stabilizes unloaded AGO2 waiting to be loaded by a miRNA 

duplex (Johnston et al., 2010), in mouse cells LIN41 (TRIM71) has been shown to induce 

ubiquitination and proteasomal degradation of AGO2 (Rybak et al., 2009). 

The degradation of AGO proteins when they are empty of miRNAs have been proposed to 

happen by autophagy as inhibition of lysosomes resulted in the rescue of AGO levels 

(Martinez and Gregory, 2013). Indeed, previously AGO2 and Dicer have been shown to be 

degraded by autophagy (Gibbings et al., 2012). Autophagy also known as macroautophagy is 

a major cellular process that contributes to cell’s homeostasis, by degrading cellular 

components by way of their engulfment as cargo in membrane structures called 

autophagosomes. These autophagosomes then merge with lysosomes to degrade their cargo. 

Knockdown of major components of autophagy resulted in increased levels of miRNA-free 

Dicer and AGO2 and activation of autophagy resulted in a decrease in their levels (Gibbings 

et al., 2012). Long term inhibition of autophagy resulted in diminished levels of miRNA, 

suggesting a role for autophagy in the removal of Dicer and AGO proteins when free of 

miRNA. Similarly, in C.elegans, autophagy selectively degrades GW182 homolog AIN-1, 

regulating miRNA mediated repression (Zhang and Zhang, 2013). 
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Argonautes do not escape from the regulation by post-translational modifications. AGO2 has 

been shown to be prolyl 4-hydroxyled by C-P4H(I) increasing its stability and its localization 

to P-bodies (Qi et al., 2008; Wu et al., 2011). Phosphorylation of AGO2 at Ser387 by MAPK-

activated protein kinase 2 (MAPKAPK2) or RACγ Ser/Thr protein kinase (AKT3) has also 

been shown to contribute to P-body localization (Horman et al., 2013; Zeng et al., 2008). 

Tyr529 of AGO2 is phosphorylated resulting in decreased miRNA loading and target 

repression (Mazumder et al., 2013; Rüdel et al., 2011). Phosphorylation of AGO2 under 

hypoxia at Tyr 393 is shown to result in its dissociation from Dicer and a decrease in pre-

miRNA processing of som miRNAs (Shen et al., 2013). Moreover the activity of RISC can be 

decreased by its poly-ADP-ribosylation induced upon various stresses or viral infections 

(Leung et al., 2011b; Seo et al., 2013) (Figure 11). 

 

 

Figure 11: Examples of Argonaute protein regulation by post-translational 
modifications  
Adapted from (Ha and Kim, 2014). 
 
 

3.2.2 Regulation of the activity of Argonaute proteins by RNA binding proteins 

 

3’UTRs of mRNAs can possess binding sites for RBPs, which can modulate positively or 

negatively the activity of miRISC. mRNAs containing binding sites for HuR or Pumilio 

family proteins were also found to be enriched for miRNA binding sites (Galgano et al., 2008; 

Mukherjee et al., 2011). Under various conditions, RBPs will move on their target mRNAs 
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and will affect the activity of miRISC by facilitating or hindering the binding of miRISC to 

the target mRNA or by acting on miRISC components directly (Figure 12). 

 

Figure 12: Functional interactions between RISC and RNA-binding proteins  
A. An RBP can enhance the activity of RISC on a common mRNA by opening an occluding 
secondary structure. B. RISC transport to its target mRNA can be facilitated by an RBP. C. 
Competition can arise when the binding of an RBP changes the secondary structure of the mRNA and 
impedes the binding of RISC. D. RBPs can also share the same binding site on the target and reduce 
the efficacy of RISC by competing for binding (Loffreda et al., 2015). 
 

One such RBP is HuR (also known as ELAV1), normally involved in the protection of 

mRNAs that contain AU rich sequences causing their rapid turnover (Meisner and Filipowicz, 

2011). The binding of HuR on the 3’UTR of CAT1 mRNA in human hepatoma cells during 

stress conditions, abolishes the miRNA mediated silencing already in place on the mRNA 

(Bhattacharyya et al., 2006). HuR achieves this by promoting the dissociation of RISC from 

the mRNA (Kundu et al., 2012). An opposite example also exist, where HuR is required for 

the repression by Let-7 of the MYC transcript, HuR binding is thought to facilitate the access 

of RISC to the adjacent miRNA binding site (Kim et al., 2009).  

The DND1 protein (Dead End 1), expressed in the germline, antagonizes the activity of miR-

372 family loaded RISC by binding to several target mRNAs, the binding site for DND1 

overlaps with the miRNA binding site thereby preventing RISC binding (Kedde et al., 2007). 
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The tumor suppressor p27 is an inhibitor of cell-cycle progression, its repression induces cell 

cycle entry. Its mRNA possesses in its 3’UTR a binding site for miR-221 and miR-222 as 

well as one for PUM1. These two binding sites form a hairpin making the miR-221/222 

binding site unavailable for RISC. Upon growth stimulation, PUM1 gets upregulated and 

phosphorylated and binds to the hairpin to expose miR-221/222 binding site. The resulting 

downregulation of p27 by miR-221/222 induces cell cycle re-entry (Kedde et al., 2010).  

In serum starved cells or non-growing conditions, AGO2 bound to the AU rich sequences of 

TNFα mRNA 3’UTR, recruits Fragile-X-Related protein (FXR1). This recruitment induces 

the translational activation of TNFα mRNA instead of miRNA mediated repression 

(Vasudevan and Steitz, 2007; Vasudevan et al., 2007).  

The number of RBPs expressed in the cell warrants the discovery of more of these kinds of 

antagonistic or synergistic effects of RBPs on miRISC during different conditions of stress or 

cell program. Other examples of RBP-miRISC interactions are reviewed in (Jiang and Coller, 

2012; van Kouwenhove et al., 2011).  

4. RNA intrinsic regulation affecting miRNA expression and targeting 
 

Although so far, I have mostly introduced regulatory mechanisms acting through proteins 

involved in the miRNA pathway, there are also other mechanisms that act by modifying the 

miRNA transcript sequence, which in turn results in the modulation of the expression or the 

targeting capacity of miRNAs. Sequence modifications can occur at the pri-miRNA, pre-

miRNA or mature miRNA level either in the core or at the extremities of these transcripts. 

The advent of deep-sequencing allowed us to discover new miRNAs but also led to the 

appreciation of heterogeneity in the mature miRNA sequence and length. These miRNA 

variants are called isomiRs (Morin et al., 2008) and they differ from their reference sequence 

in miRBase (Figure 13). The sequence variations in isomiRs can be due to imprecise Drosha 

or Dicer processing in which case it will be a templated modification, whereas RNA editing 

will produce an RNA that differs from the DNA sequence from which it is transcribed, which 

is therefore a non-templated modification (Figure 13). RNA editing is a cellular process that 

acts at the level of mRNA, tRNA and rRNA and involves nucleobase substitutions like 

cytidine to uracil (C to U) or adenine to inosine (A to I) deamination and non-templated 

nucleotide additions (NTA). In this part, the effects of these miRNA sequence modifications 

will be introduced. 
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Figure 13: Example of miRNA heterogeneity. 
The isoforms of human miR-222 are represented here to show isomiR heterogeneity. The canonical 
miR-222 sequence is represented in blue. The 5’ and 3’ isomiRs possess sequence heterogeneity at 
their 5’ and 3’ ends respectively, these sequence alterations can either be templated (yellow) or non-
templated (red). Moreover, polymorphic isomiRs possess nucleotides that were acquired by 
nucleobase substitutions. Taken from (Neilsen et al., 2012).  
 
4.1 Modifications on miRNA precursor sequences affecting their biogenesis and/or the 

targeting of miRNAs 

 

4.1.1 Nucleobase substitutions on miRNA precursors  

 

The most prevalent form of nucleobase substitution in eukaryotes is the A to I substitution by 

the deamination of adenine to inosine catalyzed by adenosine deaminase acting on RNA 

(ADAR) enzymes (Nishikura, 2010). The ADAR enzymes have been shown to edit specific 

pri-miRNA sequences in certain tissues (Luciano et al., 2004; Blow et al., 2006). The editing 

of a pri-miRNA sequence can affect the following processing steps or if the editing happens 

in the seed region, it can affect the target specificity of the resulting guide strand. Notably, 

upon editing of pri-miR-142, its processing by Drosha is suppressed (Yang et al., 2006). One 

similar example is the edition of pri-miR-151, although in this case Drosha processing is not 

affected, but the efficiency of Dicer cleavage of the pre-miRNA is diminished (Kawahara et 

al., 2007a). Regarding editing events that change the targeting specificity of a miRNA, one 

example is miR-376, in which editing of nucleotides in the seed region creates a set of targets 

different from the unedited miR-376 (Kawahara et al., 2007b). A comprehensive 

transcriptome analysis of RNA editing events identified 44 new miRNA editing sites of which 
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11 would fall in the seed region (Peng et al., 2012), making this mode of regulation by 

nucleotide substitution relatively rare. More information on ADAR mediated A to I 

substitutions in miRNA pathway can be found in the review by (Nishikura, 2016). 

Similar to ADAR-mediated nucleobase substitution, single nucleotide polymorphisms (SNP) 

in miRNA genes can also alter miRNA sequence thereby affecting their biogenesis or 

resulting in changes in targeting specificity. In addition, some of these SNPs have been 

associated with cancer development (Calin et al., 2005; Jazdzewski et al., 2008, 2009; Ryan et 

al., 2010).While SNPs do not present an active regulatory process,  they help demonstrating 

how changes in miRNA sequences can affect the expression and activity of a miRNA, making 

nucleobase substitutions an important regulatory process.  

 

4.1.2 Regulation of let-7 biogenesis by non-templated nucleotide additions  

 

The biogenesis of group II pre-miRNAs (Figure 5) is a good example of regulation by non-

templated nucleotide additions. They possess a 3’ overhang of only 1 nt after Drosha 

processing, and therefore require the addition of a single U nucleotide to form a 2nt 3’ 

overhang than can be recognized by Dicer. This group contains most members of Let-7 

family as well as miR-105 (Heo et al., 2012). The enzymes responsible for the mono-

uridylation have been found to be TUTase2, TUTase4 and TUTase7 from the terminal 

uridylyl transferase (TUTase) family (these enzymes will be introduced in the next part) (Heo 

et al., 2012) (Figure 14). In addition to this mono-uridylation necessary for pre-let-7 

processing, other post-transcriptional mechanisms exist for the regulation of Let-7 expression 

as its biogenesis is repressed during specific embryonic stages (Suh et al., 2004; Thomson et 

al., 2006). As mentioned earlier in the sections 3.1.2.1 and 3.1.2.3), the binding of LIN28 to 

the loop of pri-let-7 hinders its processing by Drosha (Newman et al., 2008; Viswanathan et 

al., 2008). Moreover, LIN28 has also been shown to be bound to the pre-let-7 and to impede 

its processing by Dicer (Heo et al., 2008; Rybak et al., 2008). It was later shown that LIN28 

recruits the terminal uridylyl transferases TUTase4 and TUTase7 in order to trigger the 

oligouridylation of pre-Let-7 (Hagan et al., 2009; Heo et al., 2008, 2009). The oligo U tail 

added to the pre-Let-7 not only inhibits Dicer processing but also induces its decay by the 3’-

5’ exonuclease DIS3L2 (DIS-3 like 2) that recognizes the added U tail (Chang et al., 2013; 

Ustianenko et al., 2013) (Figure 14). LIN28 works as a molecular switch to turn the same 

TUTases that ensure the good processing of a pre-miRNA to negative modulators of 

biogenesis by changing their activity.  
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Figure 14: Regulation of pre-let-7 family biogenesis by TUTases 
Group 2 pre-miRNAs acquire a single U residue on their 3’ end, to form the canonical 3’ 2 nt 
overhang recognized by Dicer, this mono-uridylation is due to the redundant action of TUTases 2/4/7. 
However, in undifferentiated cells, LIN28 binds to the loop of pre-Let-7 and through the action of 
TUTases 4/7, an oligo-U tail is added to the pre-miRNA. The oligo-uridylation prevents Dicer 
processing but is also recognized by the exonuclease Dis3l2 and quickly degraded. Adapted from 
(Kim et al., 2015).  
 

An extensive analysis of pre-miRNAs demonstrated that LIN28-independent non-templated 

nucleotide additions, the most common being mono-U addition, are a frequent feature of 

many miRNA other than the Let-7 family (Newman et al., 2011). This suggests that 

regulation of pre-miRNAs by non-templated nucleotide additions can be a general feature of 

miRNA biogenesis. Of note, another function of oligo-uridylation by TUT4 and TUT7 has 
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been discovered more recently, where truncated or defective pre-miRNAs are uridylated. 

Truncated pre-miRNAs can be generated after their loading in AGO2 followed by slicing 

similar to miR-451 (Cheloufi et al., 2010; Cifuentes et al., 2010; Diederichs and Haber, 2007; 

Yang et al., 2010). These truncated pre-miRNAs are oligo-uridylated by TUT4 and TUT7 

inducing their subsequent degradation (Kim et al., 2015; Liu et al., 2014). Degradation of 

these uridylated pre-miRNAs is performed by the exosome creating a quality control process 

for miRNA synthesis, keeping the pool of AGO and Dicer proteins free of defective pre-

miRNAs. 
 
4.2 Sequence modifications on mature miRNA (isomiRs) 

 

The term isomiR was first coined in a paper by (Morin et al., 2008). Small RNA sequencing 

had already identified miRNAs exhibiting sequence variations compared to their reference 

sequence (Landgraf et al., 2007) but most of these were generally considered as artifacts of 

cloning or alignment (Hoon et al., 2010; Reese et al., 2010). However, the fact that isomiRs 

are loaded in AGO to form functional RISC implies that they are functionally relevant 

(Baran-Gale et al., 2013; Burroughs et al., 2010; Chan et al., 2013). Moreover, it was also 

suggested that isomiRs would work together with canonical miRNAs to even out off-target 

regulation (Cloonan et al., 2011). IsomiRs are created by several mechanisms; a shift in 

Drosha or Dicer processing would alter the mature miRNA sequence and change the seed 

sequence, nucleobase substitutions catalyzed by ADARs can create polymorphic isomiRs and 

potentially change the targeting of a miRNA (discussed previously) or enzymes like 

exoribonucleases or nucleotidyl transferases can create non-templated sequence modifications 

(Figure 13). Although the majority of isomiRs presents variation in its 3’ extremity and 

therefore maintains the same seed sequence, there is also an unneglectable fraction of 5’ 

isomiRs with a shifted seed (Guo and Chen, 2014). 

 

4.2.1 5’ isomiRs: shift in Drosha and/or Dicer cleavage 

 

5’ isomiRs are mostly due to an imprecise cleavage by Drosha or Dicer (Neilsen et al., 2012) 

(Figure 13). The shift will not only cause a change in the repertoire of mRNA targets because 

of the seed sequence change, but can also potentially result in a change in the selection of the 

guide strand that depends on the thermodynamic stability of the extremities of the duplex. 
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Notably, one study showed a change in the guide strand selection process for more than 10% 

of pre-miRNAs in at least one tissue (Cloonan et al., 2011). Although some 5’ isomiRs can 

have a new set of targets, they will also to some degree regulate the same targets as their 

canonical counterparts (Guo and Chen, 2014), however their targeting efficiency might differ 

from  their canonical counterparts (Chiang et al., 2010; Humphreys et al., 2012). Some 

accounts state that most of these isomiRs are products of imprecise cleavage by Dicer rather 

than Drosha suggesting a higher fidelity for the latter (Wu et al., 2009; Zhou et al., 2012).  

 

4.2.2 3’ IsomiRs: 3’ heterogeneity 

 

By far the most common type of isomiR is 3’ modified isomiRs, with regard to the number 

and abundance of different miRNAs displaying this type of modification (Burroughs et al., 

2010; Newman et al., 2011; Wyman et al., 2011). The structural analysis of AGO proteins 

shows that the 5’ end of the miRNA is embedded in the MID domain whereas its 3’ extremity 

is more accessible as it can go past the PAZ domain (Elkayam et al., 2012; Schirle and 

MacRae, 2012) (Figure 7-B). This accessibility therefore renders the action of modifying 

enzymes on the miRNA possible, exonucleases can shorten the miRNA and nucleotidyl-

transferases can add non-templated nucleotides. The origins and effects of these miRNA 

isoforms will be discussed in the following part. 

 

4.2.2.1 Exoribonucleases creating 3’ isomiRs 

 

In Drosophila an exoribonuclease called Nibbler (Nbr) has been found to act on miR-34 to 

create several templated isoforms. The 3’-5’ exoribonuclease degrades the miRNA already 

loaded into AGO1 by trimming it from 24 to 21 nt. Nbr depletion showed that it acts on a 

larger set of miRNAs and it causes developmental defects in Drosophila, thereby 

demonstrating the importance of the production of these miRNA isoforms (Han et al., 2011; 

Liu et al., 2011). A similar process has also been discovered in Neurospora crassa, where the 

RNA exosome and an exonuclease called QIP trim the 3’ end of miRNAs (Xue et al., 2012). 

The counterparts of these ribonucleases remain to be discovered in mammals. However, as 

introduced earlier, the exonuclease PARN, the human orthologue of Nibbler, is involved in 

the maturation of miR-451, acting by trimming down the pre-miR-451 to its final size after its 
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slicing by AGO2 (Yoda et al., 2013). Moreover, this same exoribonuclease is also involved in 

trimming and further degradation of miR-21 (Boele et al., 2014). 

 

4.2.2.2 Non-templated nucleotide additions on mature miRNA by mammalian terminal 

uridylyl transferases (TUTases) 

 

Non-templated nucleotide additions are catalyzed by nucleotidyl-transferases which are 

template independent polymerases acting on RNA (Martin and Keller, 2007; Stevenson and 

Norbury, 2006; Wilusz and Wilusz, 2008). The most classical example is the polyA 

polymerase (PAP) that catalyzes the polyadenylation of pre-mRNA. There are other similar 

enzymes called non-canonical PAPs that add shorter stretches of nucleotides than their 

canonical counterparts. The first reported example of such an enzyme is Cid1 in yeast (Wang 

et al., 2000). Seven non-canonical PAPs have been identified in mammals (called hereafter 

terminal uridylyl-transferase (TUTase)) (Martin and Keller, 2007; Stevenson and Norbury, 

2006; Wilusz and Wilusz, 2008). Six of them have been implicated in miRNA 3’ 

heterogeneity (Wyman et al., 2011). They possess uridylyl and/or adenylyltransferase 

activities (Kwak and Wickens, 2007; Rissland et al., 2007; Wickens and Kwak, 2008), which 

is concordant with the most frequent modifications on 3’ isomiR being additions of adenines 

and uridines (Burroughs et al., 2010; Chiang et al., 2010). 3’ isomiRs maintain the same 5’ 

sequence, thus keeping the same subset of target mRNAs as their canonical counterparts, 

however non-templated nucleotide additions on mature miRNA can affect their stability and 

targeting efficiency. As we will see in the next part, TUTases have a range of different targets 

and functions. 

 

4.2.2.3 Mammalian TUTase family and their function  

 

TUTases belong to the superfamily of β-like nucleotidyl transferases. They all possess a 

functional catalytic motif composed of a nucleotidyl transferase and a PAP-associated domain 

(Figure 15) (Martin and Keller, 2007) and can function as uridyl and/or adenyltransferases on 

different types of RNA (Kwak and Wickens, 2007; Rissland et al., 2007; Wickens and Kwak, 

2008). For historical reasons, these enzymes have acquired several aliases, and I will 

designate them here with their most recognized names (Figure 15). 
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Figure 15: Schematic representation of domain organization of TUTases   
Human TUTases 1-7 with their alternative aliases are represented. The nucleotidyl transferase domain 
(red box) and PAP-associated domain (orange box) constitute the catalytic motif. Hatched box 
designates a conserved nucleotidyl transferase domain that is inactive due to sequence variations. Blue 
boxes represent a C2H2-type zinc finger domain. Green boxes represent CCHC-type zinc finger 
domain. Yellow box corresponds to the RRM (RNA recognition motif). Adapted from (Heo et al., 
2009). 
 

A study by Wyman et al. reported on the contributions of six TUTases (all but PAPD7) to the 

3’ heterogeneity of miRNAs in different tissues of several organisms. They used a technique 

that is more amenable to the quantification of miRNA variants than classical sequencing 

called nCounter assay. It involves hybridization of fluorescent, bar-coded probes to miRNAs 

of interest, the quantification of the miRNA variant is performed by scanning and counting of 

the probes (Geiss et al., 2008; Wyman et al., 2011). This study first of all showed that 

nucleotide additions on miRNA are common but not universal and that some miRNAs have a 

higher propensity to acquire additions (Wyman et al., 2011). Adenosine addition is the most 

abundant modification with 50% of additions being mono-adenylation, while mono-

uridylation accounts for 25 % of additions, confirming the findings of a previous study 

(Chiang et al., 2010; Wyman et al., 2011). Secondly, through individual knockdown of 

TUTases and quantification of miRNA variants, the study implicates 6 out of 7 TUTases in 

the formation of 3’ heterogeneity of at least one miRNA variant. mtPAP, TUT2, PAPD5 and 

TUT4 are found to mostly add 3’ A, TUT1 3’ U or A and TUT7 3’ U residues (Wyman et al., 

2011), confirming a previous study that implicated TUT2, PAPD5 and TUT4 with 3’ A 

additions (Burroughs et al., 2010). Lastly, the authors mention that the knockdown of a given 

TUTase can induce an increase in the expression of other TUTases, notably TUT2 

knockdown induces PAPD5 expression. This warrants possible compensation of function of 

one TUTase by another, suggesting that this study might have underestimated the effects of 
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some TUTases on non-templated nucleotide additions. The fact that TUT4 and TUT7 

redundantly oligouridylate pre-let7 following LIN-28 binding and together with TUT2 mono-

uridylate group 2 pre-miRNAs supports this notion (see section 4.1.2).  

TUT2 (also known as GLD-2 or PAPD4) is involved in the polyadenylation of dormant 

mRNAs in mouse oogenesis (Nakanishi et al., 2006). More recently however, TUT2 was also 

shown to add a single non-templated adenine at the 3’ end of miR-122 in liver cells. This 

mono-adenylation stabilizes miR-122 and occurs after dicing. In its absence, miR-122 is 

destabilized (Katoh et al., 2009). Another study showed that additional miRNAs are also 

mono-adenylated and stabilized by TUT2 but the extent of stabilization depends on the 

sequence at the 3’ end of the miRNA, notable examples being some of Let-7 family members 

(D’Ambrogio et al., 2012). Of note, the fly homolog of TUTase2 called WISPY, has been 

reported to adenylate maternally inherited miRNAs with one or two residues of adenine in 

early embryos and to help the clearance of maternal miRNAs (Lee et al., 2014). A similar 

clearance of host miRNAs has been observed during vaccinia virus infection, where the viral 

poly-A polymerase VP55, oligo-adenylates host miRNAs thereby inducing their degradation 

by the cellular machinery (Backes et al., 2012). 

Apart from the redundant function of TUT4 and TUT7 on pre-let-7 mono and poly-

uridylation (Heo et al., 2009, 2012; Thornton et al., 2012) (Figure 14), their other function is 

to mark mRNAs with short polyA tails by addition of a stretch of U residues to facilitate their 

decay (Lim et al., 2014). Moreover, TUT4 has also been demonstrated to mark the 3’ end of 

histone mRNAs with uridines for degradation (Schmidt et al., 2011; Su et al., 2013). At the 

level of mature miRNAs, TUT4 was shown to uridylate the 3’ end of mature miR-26a, which 

impairs its ability to regulate targets in the inflammatory response (Jones et al., 2009). Further 

studies showed another set of miRNAs to be substrates of TUT4 uridylation, again alleviating 

their repressive efficacy in growth hormone expression in mice (Jones et al., 2012). However, 

the uridylation of these miRNA does not seem to change their expression levels, rather it 

blocks their repressive activity by a yet to be described mechanism (Jones et al., 2012).  

PAPD5 is implicated in the generation of some snoRNAs, by oligo-adenylating their 3’ ends, 

which allows the recruitment of the exonuclease PARN for trimming to their mature size 

(Berndt et al., 2012). A similar synergy between PAPD5 and PARN has been reported for the 

oncogenic miR-21 in several tumors. PAPD5 adds a single A residue on the 3’ end of miR-21, 

inducing its degradation by the nuclease PARN. The disruption of miR-21 regulation by 

adenylation and degradation has been found to be an attribute of several tumors (Boele et al., 

2014).  
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TUT1, also known as Star-PAP or U6 TUTase was first reported to catalyze the addition of 

three uridines to the 3’ end of U6 snRNA, which is involved in splicing, and to be involved in 

the recycling of U6 (Trippe et al., 2003, 2006). Moreover, it is also involved in the poly-

adenylation of a set of mRNAs that are involved in cell survival (Li et al., 2012; Mellman et 

al., 2008) and oxidative stress response (Gonzales et al., 2008; Laishram and Anderson, 2010; 

Mellman et al., 2008). In the miRNA pathway, TUT1 globally regulates the abundance of 

miRNAs by an indirect mechanism that is independent of its nucleotidyl transferase activity 

(Knouf et al., 2013), pointing to a general stabilizing effect on miRNAs. However, the 

depletion of TUT1 was also associated with the loss of A and U residues from a subset of 

miRNA 3’ ends that coincided with the acquisition of other nucleotides, possibly by the 

action of other TUTases (Knouf et al., 2013). 

5. Mature miRNA turnover 
 

Turnover at the level of mature miRNA received less attention compared to other aspects of 

miRNA pathway i.e. regulation of biogenesis or miRNA action. This might in part be due to 

the fact that for a long time mature miRNAs were perceived as quite stable molecules with 

their expression being detectable over periods as long as several days after their biogenesis is 

blocked (Baccarini et al., 2011; Bail et al., 2010; Gantier et al., 2011; Rooij et al., 2007). 

More recently however, some miRNAs were reported to show a rapid turnover under specific 

conditions. Thus, miR-29b decays faster in cycling mammalian cells than in mitosis arrested 

cells (Hwang et al., 2007; Zhang et al., 2011). Similarly, rapid decay of miR-16 family 

members has been observed in NIH-3T3 cells transitioning from G0 to G1 phase (Rissland et 

al., 2011). In neurons, miRNAs generally have a faster turnover rate than in other cell types. 

In primary human neuron cultures and post mortem brain tissue, some brain enriched 

miRNAs have short half-lives (Sethi and Lukiw, 2009). Similarly, another study showed the 

rapid degradation of members of the miR-183-96-182 cluster along with miR-204 and miR-

211 during light to dark adaptation in mouse retina. The levels of these miRNAs decrease 

approximately by 50% of their levels before transition (Krol et al., 2010). In the neurons of 

the sea slug Aplysia californica, miR-124 and miR-184 are rapidly down-regulated following 

serotonin exposure (Rajasethupathy et al., 2009).  

Some of these rapidly degraded miRNAs contain cis-acting sequence elements that have been 

mapped to the entire length of the miRNA, i.e. the seed, the central region or the 3’ end. For 

the destabilisation of miR-29b, the uracil residues in the centre of the miRNA are necessary 
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but not sufficient (Hwang et al., 2007; Zhang et al., 2011). In the case of miR-503 from the 

extended family of miR-16, the residues important for destabilisation have been mapped to its 

seed and 3’ end extremities (Rissland et al., 2011). In the case of rapidly destabilised miRNAs 

given so far, some are found to be inherently unstable and their level are susceptible to be 

regulated by the modulation of their expression and biogenesis (Krol et al., 2010; Rissland et 

al., 2011). However, for miR-29b, the destabilisation is independent from a modulation in its 

expression or maturation (Hwang et al., 2007). 3’ modifications on a mature miRNA as 

mentioned in the previous chapter can also affect its stability positively or negatively (see 

section 4.2.2). Other trans-acting factors have been found to induce active mature miRNA 

degradation in different organisms; these factors are usually 5’ to 3’ or 3’ to 5’ 

exoribonucleases. Known factors in different organisms will be introduced in the following 

part.  

 

5.1 Trans acting factor in miRNA turnover 

 

5.1.1 miRNA turnover in plants 

 

Active degradation of mature miRNAs was first reported in Arabidopsis thaliana. Small RNA 

degrading nucleases (SDNs) are responsible for the degradation of mature miRNAs (Figure 

16-A). The depletion of SDN family members in A. thaliana causes developmental defects 

along with elevated levels of several miRNAs. Experiments showed that SDN1 can degrade a 

synthetic miRNA in the 3’ to 5’ direction, defining it a 3’ to 5’ exoribonuclease 

(Ramachandran and Chen, 2008). In plants, small RNAs are 2’-O-methylated at their 3’ 

extremity by Hua enhancer 1 (HEN1) protecting them from exonucleolytic attack as well as 

3’ uridylation (Li et al., 2005; Yu et al., 2005). Although the methyl group slows degradation 

by SDN1 it does not completely prevent it (Ramachandran and Chen, 2008) (Figure 16-A). Of 

note, 3’ oligo-uridylation of plant miRNAs is catalysed by HEN1 Suppressor1 (HESO1) 

when miRNAs are not protected by 2’-O-methylation, these oligo-uridylated miRNAs are 

then destabilised by an unknown mechanism (Ren et al., 2012; Zhao et al., 2012) that is 

distinct from SDN1 action as uridylation has been shown to slow down SDN1 action at least 

in vitro (Ramachandran and Chen, 2008).  
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5.1.2 miRNA turnover in Chlamydomonas reinhardtii 

 

In the green algae Chlamydomonas reinhardtii, uridylation of miRNAs induces their 

degradation. A terminal nucleotidyl tranferase called MUT68 was shown to uridylate the 3’ 

end of both miRNA and siRNA in vivo. In turn, this uridylation induces their degradation by 
ribosomal RNA-processing protein 6 (RRP6), a component of the exosome (Ibrahim et al., 

2010). The depletion of RRP6 in vivo also results in an increase in the levels of mature 

miRNAs, suggesting a cooperative effect between MUT68 and RRP6 (Ibrahim et al., 2010) 

(Figure 16-B).  

 

5.1.3 miRNA turnover in Caenorhabditis elegans 

 

In C. elegans, two exoribonucleases have been implicated in miRNA degradation. These are 

the 5’ to 3’ exonucleases XRN1 and XRN2 (Chatterjee and Grosshans, 2009; Chatterjee et al., 

2011) (Figure 16-C). The depletion of XRN2 by RNAi raised the expression level of several 

miRNAs at the mature but not pre-miRNA or pri-miRNA level (Chatterjee and Grosshans, 

2009; Chatterjee et al., 2011). Interestingly, the action of XRN2 on mature miRNA creates a 

mechanism ensuring the loading of AGO with miRNAs that have regulatory potential, 

discussed further in section 5.2.1. 

 

5.1.4 miRNA turnover in mammals 

 

A study by Bail and colleagues reported the involvement of XRN1 and the exosome in 

miRNA degradation. They first of all looked globally at the half-lives of miRNAs and showed 

that 95%  

of miRNAs stay stable over 8 hours. One of the unstable miRNAs, miR-382, is stabilised 1.5 

fold after depletion of ribosomal RNA-processing protein 41 (RRP41), a component of the 

exosome and 1.3 fold after XRN1 depletion (Bail et al., 2010) (Figure 16-D). The degradation 

of miR-382 is dependent, at least in vitro in HEK293 lysates, on it being processed by Dicer, 

as a synthetic miR-382 decays at the same rate as another more stable miRNA. However, with 

this in vitro system, it was shown that the degradation of miR-382 is dependent on its 3’ 

terminus sequence, more precisely nucleotides 16-22 (Bail et al., 2010). 
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Figure 16: Exoribonucleases acting on mature miRNA in different organisms 
A. SDNs act on mature miRNA when they are non-protected by 2’O-methylation in A.thaliana and 
oligo-uridylation impedes their activity (Ramachandran and Chen, 2008). B. Ch.reinhardtii RRP6 
degrades AGO loaded miRNA after their oligo-uridylation but are impeded by OH or 2’O-Me on the 
3’ of the miRNA (Ibrahim et al., 2010). C. XRN1 and XRN2 degrade miRNA in C.elegans from the 
5’ en of the miRNA when the miRNA has a 5’P and not a 5’OH (Chatterjee and Grosshans, 2009; 
Chatterjee et al., 2011). D. In human cells, RRP41 and PNPase degrademiRNA in the 3’ to 5’ 
direction and XRN1 in the 5’ to 3’direction (Bail et al., 2010; Das et al., 2010). Taken form (Ruegger 
et al., 2015). 
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Another study implicated a 3’ to 5’ exonuclease called the human polynucleotide 

phosphorylase (PNPase) or PNPT1 (polyribonucleotide nucleotidyltransferase 1) in the 

degradation of several mature miRNAs, including miR-221, miR-222 and miR-106b, without 

altering their pri- or pre-miRNA levels in melanoma cells (Figure 16-D). When added to total 

RNA from melanoma cells, in vitro translated PNPT1 is capable of degrading these miRNAs 

but does not affect other miRNAs demonstrating its sequence specificity (Das et al., 2010). 

However, PNPT1 is known to localize to mitochondria intermembrane space, leading to the 

question of where miRNA degradation would take place (Rüegger and Großhans, 2012).  

The 3’-5’ exoribonuclease Eri1has been shown to affect the stability of some miRNAs in 

mouse lymphocytes, inferred from the increase of miRNA levels in lymphocytes deriving 

from Eri1 knockout mice, however it is unknown if this enzyme acts directly on mature or 

precursor miRNAs or whether the observed effect results from an indirect consequence of the 

Eri1 deficiency (Thomas et al., 2012). 

 

5.2 RNA-mediated miRNA turnover 

 

Several 5’ to 3’ or 3’ to 5’ exoribonucleases have been implicated in miRNA degradation in 

different organisms. Although these enzymes are evolutionarily conserved, their functional 

conservation in miRNA degradation is not evident. Discovering nucleases that degrade 

miRNAs can be difficult due to the redundant action of several factors as is the case for SDNs 

in A.thaliana where depletion of several SDNs is needed to observe a phenotype 

(Ramachandran and Chen, 2008). Moreover, most of the studies that discovered these 

pathways are performed in specific tissues or conditions, which together with redundancy of 

pathways might have underestimated the extent to which these enzymes affect miRNA 

degradation. In addition, these nucleases have different kinds of RNA substrates, and the 

identity of co-factors that would give them specificity for miRNAs is currently unknown. 

miRNA-mediated mRNA regulation can be achieved with different modes of action 

depending on the extent of complementarity between the miRNA and its target. Extensive 

complementarity results in endonucleolytic cleavage by slicing competent AGO proteins, 

which is the major mode of action for plant miRNAs (Jones-Rhoades et al., 2006). However, 

in metazoans, miRNAs mostly have a partial complementarity with their targets and induce 

translational repression (Bartel, 2009). Interestingly, in the recent years, the interaction 

between miRNAs and mRNAs has emerged as reciprocal, where targets can also have an 

influence on the stability of miRNA; which sometimes depends on the extent of interaction. 
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Not only mRNA target but also other types of RNA transcripts have been shown to affect 

miRNA turnover by stabilization or degradation and by relying on sequence specific 

interactions. Different examples will be discussed in the following part.  

 

5.2.1 Target-mediated miRNA protection (TMMP) 

 

As introduced previously, AGO proteins stabilize their associated miRNAs as over-

expression of AGO proteins increase the levels of miRNA, showing that AGO protein level is 

a limiting factor for miRNA expression (Diederichs and Haber, 2007). In C. elegans, another 

regulation level exists that ensure functional miRNA levels by stabilizing miRNAs that 

possess an mRNA target and destabilizing those that do not. Experiments show that a 

reduction in the availability of target mRNAs decreases the levels of the miRNA that targets it 

and an increase in artificial target mRNA levels can stabilize that miRNA. This process 

termed target-mediated miRNA protection (TMMP), prevents miRNA decay by XRN1 and 

XRN2 by keeping them loaded into AGO (Chatterjee et al., 2011). On top of providing a way 

to keep the pool of AGO proteins loaded with functional miRNA, this mechanism can also, 

although to a lesser extent, provide a way for the evolution of new miRNAs that would derive 

from passenger strands of existing miRNA by acquiring target mRNAs.  

 

5.2.2 Target RNA-mediated miRNA degradation 

 

In contrast to TMMP, miRNA degradation can be induced by highly complementary 

interaction with target mRNAs on several instances. In Drosophila, Ameres and colleagues 

observed that after expression of a miRNA sensor bearing in its 3’UTR a perfect matching 

target site for a miRNA, the levels of that miRNA was reduced. This destabilization is 

accompanied by the appearance of longer (tailed with mostly A residues) and shorter 

(trimmed) isoforms of the miRNA. Moreover, the destabilization of the miRNA is dependent 

on high complementarity of its 3’ half with the target mRNA whereas more classical seed 

only interaction did not cause any destabilization (Ameres et al., 2010). In Drosophila, 

siRNAs are loaded into AGO2 whereas miRNAs are loaded in AGO1 (Okamura et al., 2004) 

and siRNAs but not miRNAs are 2’O-methylated by HEN1 (Horwich et al., 2007). In mutant 

hen1 flies, AGO2 bound siRNAs become vulnerable to tailing and trimming, suggesting that 

2’O-methylation is protecting siRNAs from RNA modifying enzymes (Ameres et al., 2010). 
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This is similar to plant miRNAs that are protected by the same modification, the loss of which 

results in tailing and trimming of plant miRNAs (Li et al., 2005; Yu et al., 2005). The tails 

that marks unmethylated miRNAs are mostly uridines and tailing also has been observed to 

occur on already trimmed miRNA (Li et al., 2005). These findings suggest that 2’O-

methylation of the 3’ end of miRNAs in plants and siRNAs in flies works to protect the small 

RNA from target-mediated degradation, as siRNAs and plant miRNAs are known to engage 

in extensive complementary interaction with their targets.  

Ameres and colleagues also showed that the induction of tailing and trimming of miRNA can 

be achieved in human cell-lines by transfection of antagomiRs (Ameres et al., 2010). 

AntagomiRs are chemically modified RNA analogues that are antisense to the miRNA that 

they target, they have been instrumental to block miRNA function in vitro and in vivo 

(Hutvagner et al., 2004). These antagomiRs act at the level of RISC by blocking the cognate 

miRNA from recognizing its targets and also by decreasing the levels of the targeted miRNA 

(Hutvagner et al., 2004; Krutzfeldt et al., 2005). The decrease in cognate miRNA level after 

antagomiR transfection was shown to be accompanied by tailing, with adenines and uracils, 

and trimming of the miRNA (Ameres et al., 2010). This destabilisation of endogenous 

miRNA was also recapitulated in vitro by addition of an artificial mRNA with several highly 

complementary binding sites (Ameres et al., 2010). This was further demonstrated in vivo, by 

expressing a mRNA bearing several highly complementary sites, the destabilisation of the 

miRNA was again accompanied by addition of A and U residues, but the most abundant 

modified miRNA contained a single U residue on its 3’ end (Baccarini et al., 2011). Target-

mediated miRNA destabilisation is dependent on the extensive interaction of the mRNA with 

the miRNA as well as their relative abundance. The interaction at the 3’ of the miRNA seems 

to be the most crucial for the induction of destabilisation as only a small number of 

mismatches can be tolerated for destabilisation to occur (Ameres et al., 2010; Baccarini et al., 

2011; Xie et al., 2012). The importance of the interaction at the 3’ end of the miRNA could be 

due to the fact that it might help to dislodge the end of the miRNA from the PAZ domain of 

AGO, making it accessible to exonucleases or nucleotidyl transferases (Wang et al., 2009). 

One can also imagine that after coming across a highly complementary target, the miRNA is 

unloaded from AGO and this makes the miRNA available for modification. In vitro 

experiments showed the unloading of miRNA from AGO after interacting with a highly 

complementary target and this was dependent on the interaction of the 3’ end of the miRNA 

(De et al., 2013). Further experiments are needed to answer the question whether the 

modification of miRNA occurs before or after the unloading of the miRNA. 
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5.2.3 miRNA degradation and viral infections 

Several natural examples of target-induced miRNA degradation exist in the literature; at 

present these examples only include viruses that make use of this mechanism to destabilize 

host miRNAs.  

 

 

Figure 17: miR-27 interaction HSUR1 and m169 during HVS and MCMV infection 
miR-27a sequence is represented in blue, it binds to the 3’ UTR of MCMV m169 and to a stem-loop 
structure on HVS HSUR1. The extent of the interaction between miR-27 (blue) and these viral RNAs 
(black) is shown where the seed region (green) and the 3’ end of the miRNA engage in interaction 
creating a bulge in the middle of the miRNA. G:U wobbles are indicated with a “ · ” and Watson-
Crick interactions with “ | ”. 
 

The first published example of a virus-induced miRNA degradation came from the infection 

of primate T-cells with Herpesvirus saimiri (HVS), during which virally expressed small non-

coding HSUR RNAs (Herpesvirus saimiri U-rich RNAs) binds with partial complementarity 

to miR-142, miR-27 (miR-27a and miR-27b) and miR-16. However, only miR-27 is 

destabilized by its interaction with HSUR1, which is most probably due to the more extensive 
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interaction between these RNAs (Cazalla et al., 2010) (Figure 17). This binding site is found 

in a flexible region that makes it available for miR-27 binding and induction of degradation 

(Pawlica et al., 2016). The transfection of constructs expressing HSUR-1 can recapitulate 

destabilization of miR-27 and shows that it is sequence and binding dependent, moreover 

another cellular miRNA can be targeted by mutating the binding site on HSUR1 (Cazalla et 

al., 2010). However, experiments did not address whether the destabilization of miR-27 is 

accompanied by its tailing and trimming or that it affects the viral replication in any way.  

The second reported example comes from the infection by mouse cytomegalovirus (MCMV), 

which induces the rapid destabilization of the same cellular miRNA, miR-27. During MCMV 

infection, the cellular miRNA miR-27 (a and b) is destabilized while miR-23a and b and miR-

24, which derive from the same primary transcripts, are not affected. The pre-miRNAs are not 

affected either, showing that the destabilization happens at the mature miR-27 level. 

Transcription arrest by Actinomycin D treatment demonstrated that the destabilization of 

miR-27 is dependent of a RNA that is transcribed during infection (Buck et al., 2010). A 

couple years later, a viral messenger RNA called m169 was found to induce the degradation 

of miR-27; it possesses a single binding site for this miRNA in its 3’UTR (Libri et al., 2012; 

Marcinowski et al., 2012). m169 is the sole RNA responsible for the induction of miR-27 

destabilization as transient expression of this transcript in uninfected NIH-3T3 cells is 

sufficient to destabilize miR-27 showing that no other viral factors are necessary 

(Marcinowski et al., 2012). This viral transcript is the most abundant transcript expressed in 

MCMV-infected cell (Juranic Lisnic et al., 2013) and its interaction with miR-27 comprises a 

full match of the seed region and of the 3’ end, leaving only a bulge in the middle of the 

miRNA (Libri et al., 2012; Marcinowski et al., 2012) (Figure 17). The destabilization of miR-

27 during MCMV infection is accompanied by its tailing and trimming similar to what has 

been shown in Drosophila and human cells (Ameres et al., 2010), with the tails composed of 

As and Us and trimming happening in 3’ to 5’ direction (Marcinowski et al., 2012). 

Furthermore, m169 can be mutated to target other viral or host encoded miRNAs and induce 

their degradation. An infection by a mutant MCMV that cannot destabilize miR-27 shows a 

decrease in viral replication in mice, indicating that the regulation of this miRNA is important 

during the virus infection cycle (Buck et al., 2010; Marcinowski et al., 2012). 
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Figure 18: miR-17 and miR-20a interaction with UL144-145 during HCMV infection 
miR-17 and miR-20a sequences are represented in blue, they bind to the intergenic region between 
UL144 and UL145. The extent of the interaction of miR-17 and miR-20a (blue) with the viral UL144-
145 (black) is shown where the seed region (green) and the 3’ end of the miRNA engage in interaction 
creating a bulge in the middle of the miRNA. 
 

Another example of cellular miRNA degradation by a virus occurs during human 

cytomegalovirus (HCMV) infection. Several laboratory strains of this virus up-regulate the 

miRNA cluster miR-17~92, but only virulent strains down-regulate specifically specifically 

miR-17 and miR-20a from this cluster, whereas attenuated strains do not. The difference 

between these strains turns out to be a 15kb segment that is missing in the attenuated strains. 

This genomic sequence codes for a viral transcript called UL144-145 RNA containing two 

open reading frames separated by an intergenic region. This transcript carries a region called 

miRNA decay element (miRDE) by the authors. It specifically induces the destabilization of 

miR-17 and miR-20a. Similar to previous examples, the miRNAs and miRDE are engaging in 

extensive but incomplete interaction with a bulge in the middle of the miRNA (Figure 18) and 

again miRDE can be mutated to target other cellular miRNAs. Counteracting the 

destabilization of miR-17 results in the down-regulation of HCMV replication, making miR-

17 an anti-viral miRNA (Lee et al., 2013).  

In these examples of viral infections inducing host miRNA destabilization several common 

aspects appear. The miRNA decay is sequence specific and induced by binding of the miRNA 

to a coding or non-coding viral RNA. The interaction between the two RNAs is extensive but 

incomplete usually creating a bulge in the middle of the miRNA and only minimal 

mismatches at its 3’ end. The only viral factor necessary for the induction of the 
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destabilization is the transcript, as its heterologous expression without infection is sufficient 

to induce decay of the miRNA. This suggests that miRNA degradation machineries exist in 

the host cell and viruses take advantage of this to destabilize anti-viral host miRNA at least in 

the case of HCMV and MCMV. By mutating the sequence of the target RNA binding sites, 

other miRNA can be targeted, demonstrating the sequence specificity and versatility of this 

mechanism. Only in the case of MCMV infection, was it reported that miR-27 destabilization 

was accompanied by tailing and trimming of the miRNA, whereas it was not verified in HVS 

and HCMV infection. Further investigation is necessary to verify if tailing and trimming is a 

necessary step during the degradation of a mature miRNA and its implications concerning the 

unloading of the miRNA from AGO.  
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RESULTS 
 

1. Discovery of factors involved in Target RNA mediated miRNA 

degradation (TDMD)  
 

Regulation of gene expression is crucial for survival. miRNA pathway discovered in the last 

decade, have been shown to handle one of the levels of gene expression regulation. miRNAs 

are ubiquitous in higher eukaryotes and a functioning miRNA pathway is indispensable for 

life. The miRNA pathway has been subject of extensive research and how their biogenesis, 

function and their regulation work has been addressed in several organisms. Our knowledge is 

quite broad on their biogenesis, their mechanism of action and our understanding of miRNA 

function is expanded more and more every day. Although some miRNAs can work as 

molecular switches for example during development, most miRNA function to ensure the 

robustness of biological processes. Depending on the needs of the cell however, gene 

expression has to be adjusted accordingly and this can be achieved by means modulation of 

miRNA activity. The activity of a miRNA is dependent on its expression level, though the 

regulation of miRNA expression has received attention more recently. Research uncovered 

examples of regulatory layers at every step of the miRNA pathway whether they are at steps 

of biogenesis, at the target recognition and repression steps or at the level of their stability. 

Even though miRNAs have been considered as stable molecules, in some specific contexts 

some miRNAs show shorter half-lives. Some of these examples of miRNAs have been shown 

to be inherently unstable and their level can be adjusted with transcriptional control but other 

examples display targeted destabilization of miRNAs. Such an example has been discovered 

in our laboratory during MCMV infection where a cellular mature miRNA is specifically 

destabilized through an interaction with a viral mRNA called m169.  

 

MCMV belongs to the family of Herpesviridae which are large enveloped viruses with linear 

double-stranded DNA (dsDNA) genomes ranging between 145-241 kbp. All Herpesviridae 

package their genomes in an icosahedral capsid which sits in a proteinaceous matrix called 

tegument that is in turn contained in the envelope enriched in viral glycoproteins  (Davison 

and Bhella, 2007). Herpesviridae family is separated into three sub-families 

Alphaherpesviridae, Betaherpesviridae and Gammaherpesviridae on the basis of their 

genomic organization and they infect mostly mammalians and birds however some species of 
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Herpesviridae can infect lower vertebrates like reptiles, amphibian or invertebrates. In natural 

context, herpesviruses can probably only infect only one species, however in experimental 

settings transfer to other species can occur. Herpesviruses are highly adapted to their host and 

the co-evolution of the virus and the host results in the restriction of severe symptoms of 

infection to the immunocompromised individuals or the very young (Davison, 2007). The 

expression of viral genes in herpesviruses follows a pattern that divides genes into three 

categories, immediate early (IE genes), early (E genes) and late genes. IE gene expression 

does not necessitate any viral protein synthesis by contrast early gene transcription needs IE 

proteins and thus can be blocked by protein synthesis inhibitors and late gene expression 

happens only after DNA replication has occured (White and Spector, 2007).  

 

The most studied virus among Betaherpesviridae is HCMV, its seroprevalence in human 

populations range between 45 to 100% and congenital HCMV infection can cause permanent 

hearing loss and neurological impairment (Cannon et al., 2010) and CMV retinitis in 

individuals with acquired immunodeficiency syndrome (Pass et al., 2006). One close relative 

of HCMV is MCMV and it is used as an in vivo model for studying cytomegalovirus 

infections as both share the same characteristics with respect to their genome organization 

(although not sequence), gene expression pattern, tissue tropism and infection dynamics 

(Krmpotic et al., 2003). Moreover, most of miRNA of viral origin identified are expressed by 

Herpesviruses, HCMV and MCMV both encode miRNAs that are distributed similarly 

through the genome from single loci or small clusters and show early kinetics. 

Cytomegalovirus miRNAs offer not only a way to regulate viral gene expression but also the 

host’s, creating another level of complexity between the host and virus interaction. For 

broader information about the roles of miRNAs of herpesviruses or cytomegaloviruses please 

refer to (Piedade and Azevedo-Pereira, 2016; Tuddenham and Pfeffer, 2011).  

 

MCMV has been shown to alter the cellular miRNA pathway in different ways, after only 24 

hours post-infection, more than the third of miRNA sequencing reads from infected cells are 

of viral origin and this ratio increases as the infection progresses to further time points 

(Dölken et al., 2007). The functional relevance of two of these viral miRNAs, miR-m23-2 and 

miR-m21-1, has been demonstrated in vivo; infection of mice with the deletion mutant 

MCMV for these miRNAs compared to wildtype MCMV showed 100 fold reduced viral titers 

at 14 days post-infection in salivary glands but showed no difference in lungs (Dölken et al., 

2010a). This indicates that MCMV can use its miRNAs for tissue specific persistence.  



 

 46 

Moreover, MCMV infection has been shown to affect cellular miRNA levels, one study 

showed the decrease of cellular miR-199 and miR-214 levels during infection (Santhakumar 

et al., 2010). The same study also demonstrated that these miRNAs had anti-viral functions 

during MCMV and HCMV infection (Santhakumar et al., 2010), illustrating that viruses have 

developed ways to counteract effects of some cellular miRNAs through the modulation of 

their accumulation. However, in this study one of the most potent anti-viral cellular miRNA 

against MCMV infection was found to be miR-27 (Santhakumar et al., 2010) and it was 

shown that during infection miR-27 was quickly destabilized (Buck et al., 2010). Further 

studies demonstrated the sequence specific destabilization of miR-27 that was dependent on 

binding to a viral mRNA called m169 bearing a single binding site for miR-27. m169 

accumulation correlates with the destabilization of miR-27, the two RNAs interact extensively 

only with a bulge in the middle region of the miRNA (Libri et al., 2012; Marcinowski et al., 

2012). Interestingly, the same cellular miRNA is targeted for destabilization during HVS 

infection by another type of viral RNA called HSUR1 (Cazalla et al., 2010). Moreover, small 

RNA sequencing in infected cells revealed that miR-27 destabilization coincides with miR-27 

acquiring a tail by non-templated nucleotide additions and its shortening by trimming 

(Marcinowski et al., 2012). This is similar to what has been observed in Drosophila after a 

miRNA encounters a mRNA bearing perfectly matching target site (Ameres et al., 2010). The 

tails of miR-27 species are composed of As and Us and these modified species have been 

shown associate less with AGO2, suggesting that the modified miRNAs are unloaded from 

AGO (Marcinowski et al., 2012).  

 

In this chapter, we have used MCMV infection and the interaction between m169 and miR-27 

as models to get insights to how target mediated degradation of miRNA (TDMD) works. We 

set out to discover which are the molecular requirements of the interaction between miR-27 

and m169 for the miRNA degradation to occur, to that end we made use of antagomiR 

transfections that have been shown to induce  TDMD in mammalian cells (Ameres et al., 

2010; Krutzfeldt et al., 2005). AntagomiRs allowed us to simulate different extents of 

interaction between the two RNA and follow the degree of destabilization of miR-27. 

Moreover, by inducing the tailing and trimming of miR-27 with the help of luciferase 

reporters bearing the 3’ UTR of m169, we followed how miR-27 degradation and 

translational inhibition of the reporter behaved by multiplying the number target sites for 

miR-27. Finally, by using antagomiRs that carry a biotin molecule, we set up a proteomic 

approach in which the antagomiR would induce tailing and trimming and its biotin would 
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enable the pulldown of the complexes that take part in talling and trimming of the miRNA. 

This approach allowed us to obtain several candidate factors, for two most promising of 

which we have proceeded to validate them for their function in TDMD. The results that we 

obtained were published in Nucleic acids research in an article that is attached here.  
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15 rue René Descartes, 67084 Strasbourg, France

Received March 09, 2015; Revised January 12, 2016; Accepted January 13, 2016

ABSTRACT

The mechanism by which micro (mi)RNAs control
their target gene expression is now well understood.
It is however less clear how the level of miRNAs them-
selves is regulated. Under specific conditions, abun-
dant and highly complementary target RNA can trig-
ger miRNA degradation by a mechanism involving
nucleotide addition and exonucleolytic degradation.
One such mechanism has been previously observed
to occur naturally during viral infection. To date, the
molecular details of this phenomenon are not known.
We report here that both the degree of complemen-
tarity and the ratio of miRNA/target abundance are
crucial for the efficient decay of the small RNA. Us-
ing a proteomic approach based on the transfection
of biotinylated antimiRNA oligonucleotides, we set
to identify the factors involved in target-mediated
miRNA degradation. Among the retrieved proteins,
we identified members of the RNA-induced silencing
complex, but also RNA modifying and degradation
enzymes. We further validate and characterize the
importance of one of these, the Perlman Syndrome
3′-5′ exonuclease DIS3L2. We show that this protein
interacts with Argonaute 2 and functionally validate
its role in target-directed miRNA degradation both
by artificial targets and in the context of mouse cy-
tomegalovirus infection.

INTRODUCTION

Among the various classes of small regulatory RNAs, miR-
NAs represent one of the most studied in mammals. They
act as guides to recruit Argonaute proteins (Ago) to target
mRNAs, resulting in translation inhibition and reduced sta-
bility (1). These tiny regulators are involved in a wide variety
of biological processes (2,3), and their aberrant expression
can be the cause of genetic diseases and/or cancers (4,5).

Consequently, their synthesis and turnover must be tightly
controlled. Briefly, miRNAs are transcribed in the nucleus
as a primary transcript (pri-miRNA) containing a hairpin
structure, which is recognized and cleaved by the RNase III
Drosha. This cleavage generates a precursor miRNA (pre-
miRNA) which will be exported to the cytoplasm, where a
second cleavage by the RNase III Dicer gives rise to a ≈22
nucleotides (nt) miRNA duplex (1). One strand of the du-
plex (guide strand) is loaded in the RISC (RNA-Induced
Silencing Complex) and becomes the active miRNA, while
the second strand (passenger strand) is often degraded.

miRNA biogenesis is regulated both transcriptionally
and post-transcriptionally by different mechanisms control-
ling the level of pri-miRNA transcription, the activity or
the accessibility of Drosha and/or Dicer or the stability of
the pre-miRNA (1). One of the best described example of
miRNA biogenesis regulation involves the LIN28 protein,
which negatively impacts the synthesis of Let-7 miRNA (6–
11). LIN28 reduces the cleavage activity of both Drosha
and Dicer, at respectively the pri-Let-7 and the pre-Let-
7 levels (6–8). LIN28 also recruits the Terminal-Uridylyl-
Transferases TUT4/TUT7 (9,10), which uridylate pre-Let-
7 leading to its subsequent degradation by the exonuclease
DIS3L2 (11). More recently, TUT4 and TUT7 were also de-
scribed to have a more widespread role in the control of pre-
miRNA degradation via a mechanism involving the RNA
exosome (12).

Mature miRNAs, which represent the active end prod-
ucts of this biogenesis were long thought to be very sta-
ble molecules with half-lives ranging from hours to days
(13,14). But recently, several examples showed that they
are also subjected to active regulation. In this case, mod-
ifications of the small RNA play essential roles to influ-
ence its stability or function. For example, miR-122 mono-
adenylation by GLD-2 (TUT2) stabilizes this miRNA in
mammals (15). At the opposite, miR-26a is no longer func-
tional as a consequence of its uridylation by ZCCHC11
(TUT4) (16). In addition, accelerated miRNA turnover has
been reported. This is especially true for biological situ-
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ations that require rapid changes in gene expression (i.e.
cell cycle, light-dark transitions) (17–19), or during viral in-
fections (20–22). Moreover, the presence of a highly com-
plementary target can induce miRNA degradation via a
mechanism involving tailing (3′ addition of non-templated
nucleotides) followed by trimming of the miRNA (13,23).
From now on, we will refer to this phenomenon as target
RNA-directed miRNA degradation (TDMD) according to
a recent report from the Grosshans laboratory (24).

In several organisms, small RNA species are usu-
ally protected from degradation by addition of a 2’O-
methyl group at their 3′ extremity by the methyltrans-
ferase HEN1 (23,25). In hen-1 mutant plants and flies,
the lack of a 2’O-methylated 3′ terminal residue results in
3′ uridylation/adenylation and subsequent 3′ to 5′ degra-
dation of small interfering (si)RNAs (and plant miR-
NAs) (23,26). As opposed to siRNAs or plant miR-
NAs, Drosophila and mammals miRNAs are not 3′ pro-
tected and usually present only a partial complementarity
with their target RNAs. This explains why a near-perfect
miRNA/target complementarity (involving an extensive
pairing of the 3′ region of the miRNA) coupled to a high
abundance of the target seems to trigger miRNA degrada-
tion rather than mRNA regulation (23). Therefore, TDMD
could represent a potential and powerful spatiotemporal
way to regulate mature miRNA accumulation. Accordingly,
TDMD has been observed in vivo in the context of mouse
cytomegalovirus (MCMV) infection. Indeed, MCMV ex-
presses an abundant viral transcript (m169), which local-
izes to the cytoplasm and induces degradation of the cellu-
lar miR-27a and b (20,21). To date, the molecular details of
the process and the cellular enzymes involved in this mech-
anism are unknown.

In this study, we developed a biochemical approach
that allowed us to induce TDMD in cell lines and to un-
cover the identity of the cellular factors responsible for
the target-induced degradation of mature miRNAs. We re-
trieved known components of the RISC as well as several
putative candidates for the miRNA modification and degra-
dation. Among those, we identified the Terminal-Uridylyl-
Transferase TUT1 and the 3′-5′ exoribonuclease DIS3L2.
We confirmed that these two proteins interact with Arg-
onaute 2 and together in an RNA-dependent manner. Al-
though we could not assign a direct role to TUT1 in the
TDMD process, most likely because of the redundancy with
other TUTases, we could observe that impairing DIS3L2
activity leads to a reduced degradation of miRNAs in hu-
man cells, but also in mouse cells infected with MCMV, a
natural inductor of TDMD.

MATERIALS AND METHODS

Plasmids, cloning and mutagenesis

DIS3L2 was amplified from HeLa total cDNA whereas
cDNA clones (Thermo Scientific) were used as template for
TUT1 (Accession BC128263), mouse mTUT1 (Accession
BC025499), mouse mDIS3L2 (Accession BC036177) and
mouse mAGO2 (Accession BC129922). TUT2, TUT4 and
TUT7 were amplified from the plasmids Flag-TEVAP-
TUT2, -TUT4 and -TUT7 provided by Narry Kim. Human

AGO2 was re-amplified from the pIRESneo-FLAG/HA-
AGO2 vector (Addgene). The vector expressing GFP-MBP
was a gift from E. Izaurralde. To generate GFP fusion pro-
teins, TUT1 (BglII/EcoRI), DIS3L2 (BglII/BamHI),
mTUT1 (BglII/EcoRI), mDIS3L2 (EcoRI/KpnI),
TUT2 (EcoRI/BamHI), TUT4 (XhoI/SmaI) and TUT7
(XhoI/BamHI) were each cloned in the pEGFP-C2 expres-
sion vector (Clontech) using the restriction sites indicated
in parentheses. For HA-tagged proteins, the pcDNA3.1(+)
vector (Invitrogen) was first modified by mutagenesis to
insert the coding sequence of the HA-tag 5′ of the MCS cas-
sette. Then, AGO2 (EcoRI/NotI), mAGO2 (EcoRI/NotI),
TUT1 (EcoRI/NotI), mTUT1 (EcoRI/NotI), DIS3L2
(BamHI/NotI) and mDIS3L2 (EcoRI/NotI) were in-
serted between the indicated restriction sites. The catalytic
mutants of DIS3L2 (D391N, D392N) and mDIS3L2
(D389N) were generated by mutagenesis. For the luciferase
reporters, m169–3′ UTR or SH fragment was cloned in the
pcDNA3.1 vector using EcoRV restriction site. Mutation
in the seed region was then done by mutagenesis. To
concatamerize the SH region, SH fragments were amplified
with the insertion of different cloning sites, then treated for
multiple ligation before being re-amplified and cloned as
described above. Finally, the F-Luc coding sequence was
inserted in pcDNA-m169 versions using NheI/KpnI. All
the sequences of the cloning and mutagenesis primers are
available in Supplementary Table S2.

Cell culture and transfection

HeLa cells, Hepa 1.6 cells and HEK293 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% (v/v) fetal calf serum at 37◦C in a hu-
midified 5% CO2 atmosphere. For co-immunoprecipitation,
HeLa and Hepa cells were transfected with a mixture con-
taining plasmids expressing HA-tagged and GFP-tagged
protein using the Turbofect reagent (Thermo Scientific).
For RNA-immunoprecipitation, HeLa cells (15 × 106 cells
in 15-cm plates) were transfected with 60 !g of plasmid
expressing GFP-tagged protein. The day after, cells were
divided and re-seeded in two 15-cm plates. After 10 h,
cells were retransfected with either control antimiRNA di-
rected against the Caenorhabditis elegans specific miR-67
(antimiR-67) or antimiR-27 (or -16) at a final concen-
tration of 10 nM using lipofectamine 2000 (Invitrogen).
The immunoprecipitation was performed 16 h after the
last transfection. For RNAi (DIS3L2 and TUT1), HeLa
cells were transfected twice (at day 1 and day 2) with 100
nM siRNA using Dharmafect-3 (Dharmacon) (siRNA se-
quences are listed in Supplementary Table S2) or 50 nM
each when co-knocked-down. On day 3, cells were re-seeded
to be at 50% confluence and allowed to adhere. Then,
HeLa cells were transfected with 5 nM antimiRNAs us-
ing lipofectamine 2000. Samples were collected 16 h af-
ter the antimiRNA transfection. For overexpression exper-
iment, HEK293 cells were first transfected with 5 !g of the
indicated plasmid using Lipofectamine 2000. The day af-
ter, cells are re-seeded, retransfected with the antimiRNA
oligoribonucleotides and collected as described above. For
luciferase assay, HeLa cells were seeded in 48-well plates
and transfected with a mixture containing 25 ng of both
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R-Luc and F-Luc reporters using Lipofectamine 2000. To
overexpress the luciferase reporters, cells were seeded in 12-
well plates, and transfected with mixtures containing 100
ng of the R-Luc transfection control, 0.375, 0.750 or 1.5
!g of the F-Luc reporters and empty plasmid to have equal
amounts of DNA. Samples were analyzed 24 hours post-
transfection.

Streptavidin affinity chromatography

For the mass spectrometry analysis, HeLa cells were grown
in 500 cm2 plates to reach 50–60% confluence and then
biotinylated antisense 2’O methylated oligoribonucleotides
were transfected using the calcium-phosphate method at
the indicated concentrations. Up to five independent exper-
iments were performed using 4 plates per samples. 48 hpi,
cells were collected and resuspended in lysis buffer (50 mM
Tris HCl [pH 7.4], 150 mM NaCl, 0.02% sodium azide, 100
!g/ml PMSF, 1% NP40), supplemented with Complete-
EDTA-free Protease Inhibitor Cocktail (Roche). After ly-
sis, the samples were cleared by 15 min centrifugation at
4000 g and 4◦C. Then, 200 !l of streptavidin-beads (Dyn-
abeads MyOne Streptavidin C1, Invitrogen) were prepared
in RNase-free conditions according to the manufacturer’s
protocol and added to each sample. Samples were incu-
bated for 30 min at 4◦C under rotation and then, beads were
washed 5 times in 0.1× SSC. Finally, 1/5 of the sample was
treated with phenol-chloroform to extract total RNA, 1/5
was used for western blot and 3/5 served for mass spectrom-
etry analysis by nanoLC-MS/MS.

For smaller scale experiments, the protocol remained the
same except that HeLa cells were seeded in two 15-cm
plates, lysed in 1 ml lysis buffer and incubated with 40 !l
of streptavidin beads. 50% of the sample were dedicated to
RNA analysis whereas the second half served for western
blotting.

Immunoprecipitation

HeLa cells were harvested, washed twice with ice-cold
phosphate-buffered saline (1× PBS), and resuspended in 1
ml of NET buffer (50 mM Tris HCl [pH 7.4], 150 mM NaCl,
1 mM EDTA, 0.1% Triton), supplemented with Complete-
EDTA-free Protease Inhibitor Cocktail (Roche). Cells are
lysed by three 15 s sonication followed by 30 min incubation
on ice and debris are removed by 15 min centrifugation at
16 000 g and 4◦C. If required, lysates are treated 30 min with
100 !g/ml of RNase A and then re-cleared by centrifuga-
tion. An aliquot of the cleared lysates (50 !l) is kept aside
as protein Input and 50 !l additional aliquot for RNA In-
put when needed. Polyclonal anti-GFP antibodies (a kind
gift from E. Izaurralde) or AGO2 monoclonal antibodies
(kindly provided by G. Meister) are added and samples are
incubated for 1 h at 4◦C under rotation (18 rpm). Then, 50
!l of Protein-G-Agarose beads (Roche) were added and the
samples were rotated similarly for 1 h. After three washes in
NET buffer and a fourth wash in NET buffer without Tri-
ton, bound proteins are eluted with 100 !l of protein sample
buffer (100 mM Tris HCl [pH 6.8], 4% SDS, 20% glycerol,
0.2 M DTT, 0.5% bromophenol blue), and/or bound RNA
by phenol/chloroform extraction.

Nucleocytoplasmic fractionation and subsequent immunopre-
cipitation

The cytoplasmic and nuclear fractions were separated fol-
lowing the protocol established by Lim and collaborators
(27). Briefly, 10 × 106 HeLa cells were harvested, washed
twice with ice-cold 1× PBS, resuspended in 500 !l of lysis
buffer (50 mM Tris HCl [pH 7.4], 140 mM NaCl, 1.5 mM
MgCl2, 0.1% Igepal CA-630) and incubated for 5 min on
ice. After 10 min of centrifugation at 2000 g and 4◦C, the
supernatant (cytoplasmic fraction) was collected and put
aside. The pellet was then washed twice with wash buffer
(50 mM Tris HCl [pH 7.4], 140 mM NaCl, 1.5 mM MgCl2)
at 2200 g for 5 min at 4◦C. After resuspension in 300 !l of
lysis buffer followed by sonication, the samples were spun at
16 000 g for 15 min at 4◦C. The supernatant (nuclear frac-
tion) was then collected. The concentration of each sample
was measured using the DC protein assay kit (Bio-rad).

When the cytoplasmic fraction was followed by immuno-
precipitation, an aliquot was kept aside as input and the
volume of the fraction was increased to 1 ml. Then the sam-
ples were rotated with 25 !l of GFP-Trap-A beads (Chro-
motek) during 45 min at 4◦C. After three washes with the
lysis buffer and one additional with the wash buffer, bound
proteins were eluted with 100 !l of protein sample buffer.

Luciferase assay

HeLa cells, tranfected with Luciferase reporters 24 h be-
fore, were washed in PBS, lysed with passive lysis buffer
(Promega) and assayed for firefly and Renilla luciferase
activities, using the dual-luciferase reporter assay system
(Promega) and a luminescence module (Glomax, Promega)
according to the manufacturer’s instructions. The relative
F-Luc reporter activity was obtained by first normalizing
to the transfection control (Renilla activity), and then, to
the firefly activity obtained for the reporter without m169-
UTR, which was arbitrarily set to 100.

RNA extraction and northern blot

Total RNA was extracted using Tri-Reagent Solution
(MRC, Inc) according to the manufacturer’s instructions
except the precipitation step, which was done in presence
of 3 volumes absolute ethanol and 0.05 volumes 3 M NaAc
[pH 5].

Northern blotting was performed on 10 to 15 !g of to-
tal RNA. RNA was resolved on a 17.5% urea-acrylamide
gel of 20 cm in length, transferred onto Hybond-NX
membrane (GE Healthcare). RNAs were then chemically
cross-linked to the membrane during 90 min at 65◦C
using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hy-
drochloride (EDC) (Sigma). Membranes were prehy-
bridized for 1 h in PerfectHybTM plus (Sigma) at 50◦C.
Probes consisting of oligodeoxyribonucleotides (containing
Locked Nucleic Acids for the detection of miR-27 and miR-
16 tailed/trimmed isoforms) (see Supplementary Table S2)
were 5′-end labeled using T4 polynucleotide kinase (Fer-
mentas) with 25 !Ci of [" -32P]dATP. The labeled probe was
hybridized to the blot overnight at 50◦C. The blot was then
washed twice at 50◦C for 20 min (5× SSC/0.1% SDS), fol-
lowed by an additional wash (1× SSC/0.1% SDS) for 5 min.
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Northern blots were exposed to phosphorimager plates and
scanned using a Bioimager FLA-5100 (Fuji).

Antibodies for western blot analysis

Antibodies were used at the following dilutions: mouse anti-
GFP antibodies (1:2000) and anti-HA-Peroxidase (1:5000)
were purchased from Roche. Rat anti-AGO2 monoclonal
antibody (1:200), rat anti-AGO1 monoclonal antibody
(1:10) and rat anti-TNRC6B antibody (1:20) were kindly
provided by G. Meister. Rabbit anti-DIS3L2 (1:1000) is
a gift from A. Dziembowski and rabbit anti-STARPAP
(TUT1) was kindly provided by R.A. Anderson and used
at 1:3300. Rabbit anti-DIS3 (1:1000), rabbit anti-TUT7
(1:500), mouse anti-tubulin (1:5000), anti-mouse, anti-rat
and anti-rabbit secondary antibodies (1:10000) were pur-
chased from Sigma-Aldrich. Rabbit anti-XRN2 (1:500),
anti-EXOSC3 (1:500), anti-RRP6 (1:3000) and mouse anti-
Histone H3 (1:5000) were purchased from Abcam. Rabbit
anti-XRN1 (1:2000) is from Bethyl laboratories.

MCMV infection of Hepa 1.6 cells

Hepa 1.6 cells were seeded in 6-well plates (5 × 105

cells/well) at day 0, and then transfected at day 1 with 4
!g of indicated plasmids using lipofectamine 2000. On day
2, cells were counted and infected accordingly with MCMV
at MOI 1 after centrifugal enhancement at 18◦C and 800 g
for 30 min. Media was replaced after 1 h of infection. RNA
samples were then collected at the indicated time points.

Real time RT-PCR analysis

The quantitative real-time PCR analysis was performed us-
ing Roche LightCycler 480 II. Prior to reverse transcrip-
tion reaction, 1 !g of total RNA was treated with DNase
I (Fermentas) according to the provider’s instructions. Re-
verse transcription reaction was performed using miScript
reverse transcription II kit (Qiagen) according to the man-
ufacturer’s instructions. The resulting cDNA was PCR am-
plified with Maxima SYBR green kit (Fermentas) in 10 !l
reaction volume. For the analysis of miRNA expression, the
mature sequence of each miRNA was used to design the
forward primer and the miScript universal primer (Qiagen)
was used as reverse primer. Forward and reverse primers
were used respectively at 0.5 !M and 0.7×. For mRNA
analysis 0.25 !M of each forward and reverse primers were
used. The PCR program was composed of an initial denatu-
ration step at 95◦C for 10 min followed by 44 cycles at 95◦C
for 15 s, 55◦C for 30 s and 72◦C for 30 s including melting
curve analysis. Data were analyzed as described previously
(28).

RESULTS

Target RNA induces miRNA decay in a non-cooperative man-
ner

The ectopic expression of the m169 transcript using an ade-
noviral vector is sufficient to induce degradation of both
miR-27a and miR-27b (20), thus indicating that no other
MCMV-encoded factor is needed to tail and trim these

miRNAs. Because it appears that both miRNAs are tar-
geted indifferently, and since we will extensively refer to
these miRNAs in the manuscript, we will refer to both miR-
27a and b using the generic term miR-27.

It was clearly shown that the two main features required
to induce TDMD of a miRNA are an extensive pairing and
an abundant target (23). To gain understanding in the sen-
sitivity of the balance between a classical miRNA response
and the triggering of TDMD, we built luciferase reporters
carrying the m169 transcript full 3′ UTR, a shorter ver-
sion of it (termed SH and comprising ≈200 nucleotides sur-
rounding miR-27 binding site), or repetitions of the SH se-
quence to increase the number of target sites (Figure 1A).
All versions of the luciferase reporter displayed translation
inhibition (Figure 1B, Supplementary Figure S1A). Fur-
thermore, the level of repression increased with the number
of repetitions of the SH sequence and thus with the num-
ber of miR-27 binding sites, due to a cooperative effect of
miRNAs as previously reported (29–31). This effect could
be slightly but significantly reverted by inserting mutations
in the miR-27 seed-match as shown previously (20) and re-
flects the contribution of miR-27 in the repression of the
reporters. Indeed, the m169 transcript possesses several pu-
tative binding sites for other miRNAs, which could explain
that the reporters bearing mutation in the miR-27 bind-
ing site are never completely derepressed. Transfecting in-
creasing amounts of reporters did not alter the efficiency of
miRNA-mediated repression (Supplementary Figure S1B),
while overexpression of the reporter constructs allows the
induction of miR-27 tailing as assessed by the detection
of bands migrating slower than the four majors isoforms
of miR-27 (Figure 1C, Supplementary Figure S1C). Never-
theless, increasing the number of miRNA binding sites did
not cause a greater impact on miR-27 tailing than the sin-
gle binding site contained in m169 (Figure 1C). Thus, as
opposed to miRNA-mediated repression, which exhibits a
cooperative effect, TDMD appears to be a non-cumulative
phenomenon.

A high complementarity between the miRNA and its
target is a prerequisite to induce TDMD and it was pre-
viously shown in Drosophila that only little bulges (≈3
nt) can be tolerated (23). To understand how a m169-
like binding site can trigger tailing-trimming with a 6-nt
bulge, we transfected HeLa cells with increasing amounts
of 2’O-methylated antisense oligoribonucleotides (antimiR-
NAs) presenting either a perfect complementarity with
miR-27 (antimiR-27) or mimicking the interaction with
m169 (m169-like, Figure 1D) since it was described that an-
timiRNAs are sufficient to recapitulate TDMD in cells (23).
Northern blot analysis of miR-27 expression showed that
a 100-fold more of the m169-like compared to antimiR-27
oligoribonucleotide was needed to induce TDMD (Figure
1E).

In addition, we confirmed the importance of a strong
pairing in the 3′ of the miRNA by inserting mismatches in
the antimiRNA oligoribonucleotide (Figure 1D). A single
mismatch in the position exactly opposite the 3′ proximal
nucleotide in the miRNA was sufficient to abrogate TDMD
(Figure 1F). In addition, increasing the pairing strength 3′

of the bulge (position 15) by replacing a G-U by a G-C pair
is enough to increase TDMD efficiency (Figure 1G). Thus,
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TDMD in mammals requires an extensive 3′ pairing be-
tween the miRNA and its target. However, the ratio between
the miRNA and its target is important and this probably re-
strains the number of naturally occurring targets triggering
miRNA tailing-trimming. Indeed, even if an m169-like in-
teraction can trigger TDMD, the size of the central bulge
limits its efficacy and only its expression at high levels such
as during viral infection probably renders such interactions
functional.

Isolation of protein complexes involved in TDMD induction

Since it is possible to purify RISC complexes from crude
extract using biotinylated 2’O-methylated oligoribonu-
cleotides (32), we used a similar approach to capture the
TDMD nucleoprotein complexes by transfecting antimiR-
NAs in HeLa cells (Figure 2A). To this end, we used
antimiR-27, m169-like and antimiR-16 2’O-methylated
oligoribonucleotides carrying a triethylene glycol spacer
with a biotin group on the 3′ terminal residue. We first
determined the optimal concentration required to induce
tailing-trimming without extensive degradation of the tar-
geted miRNA, and found that 7.5, 250 and 3 nM were opti-
mal for biotinylated antimiR-27, m169-like and antimiR-16
respectively. After collection of total cell lysates from trans-
fected cells and incubation with paramagnetic-streptavidin
beads, the analysis of retrieved RNAs revealed specific bind-
ing of miR-27 with both antimiR-27 and m169-like (Fig-
ure 2B,C) as well as miR-16 with its corresponding an-
timiRNA (Figure 2D). No signal was detected in non-
transfected cells (beads) or cells transfected with a control
oligoribonucleotide (control = antimiR-67). More impor-
tantly, we could also detect tailed and trimmed miRNA iso-
forms with this method.

We then increased the scale of the experiment and an-
alyzed the bound proteins by nanoLC-MS/MS. The data
were filtered to consider only proteins specifically bound to
the antimiRNAs and not to the control oligoribonucleotide
or to the beads (Supplementary Figure S2A–C). Among
the factors identified, we could retrieve known components
of RISC complexes such as AGO1, 2 and 3, TNRC6B,
and RBM4 (Figure 2E). We also identified exoribonucle-
ases such as XRN2 or the 3′-5′ exonuclease DIS3L2, re-
cently shown to be involved in mRNA and let-7 precursor
decay (11,33) with the three capture-oligoribonucleotides.
Finally, the Terminal-Uridylyl-Transferase (TUT)-1 (Star-
PAP/RBM21) was pulled-down specifically with antimiR-
27 in our two replicates, albeit at relatively low levels.

To increase the confidence in our mass spectrometry anal-
ysis, we performed additional replicate experiments (up to
five with the antimiR-27) and decided to focus on proteins
that were present in at least three of the replicates, while
being absent in their respective negative control experi-
ments (control oligoribonucleotide or beads alone) (Supple-
mentary Table S1). This allowed us to significantly reduce
the number of false positives and to narrow down the list
of putative candidates. With this approach, we found that
DIS3L2 was reproducibly pulled-down both with antimiR-
27 and antimiR-16. This enzyme belongs to the Dis3 fam-
ily together with two other homologs, DIS3 and DIS3L but
with the difference that it is not associated with the RNA ex-

osome. It is a highly processive enzyme, also capable of de-
grading dsRNA with little (2 nt) or no 3′ overhangs (33,34).
More interestingly, DIS3L2 was also detectable with m169-
like oligoribonucleotide only when it was transfected at 250
nM (Figure 2E, R1), a concentration that triggers TDMD.
This re-enforces the idea that DIS3L2 is specifically re-
cruited for miRNA trimming.

The replicate experiments also confirmed that TUT1 was
only retrieved with the antimiR-27 oligonucleotide. How-
ever, it was the only of the seven human TUTases to be
identified in our mass spectrometry analysis. This enzyme
belongs to the family of ribonucleotidyl transferases known
among others to contribute to miRNA 3′ heterogeneity (35)
and it possesses both a non canonical poly(A) polymerase
and a terminal uridylyl transferase activities (36–38).

We then confirmed that DIS3L2 and TUT1 could indeed
be detected in our pull-down experiments. Western blot
analysis of proteins bound to antimiR-27 revealed a spe-
cific binding of both proteins, as well as of AGO2 (Figure
3A). Similarly, both DIS3L2 and AGO2 could also be de-
tected by western blot associated to m169-like or antimiR-
16 oligoribonucleotides (Figure 3B,C). The comparative
analysis of proteins and RNA bound to antimiR-27 and
m169-like oligoribonucleotides, when the two biotinylated-
oligoribonucleotides are transfected at similar amounts,
shows they both associate with similar amounts of miR-27
and are equally bound by RISC as assessed by the pres-
ence of AGO2 (Figure 3D). On the contrary, TUT1 and
DIS3L2 are only associated with antimiR-27, the sole target
capable to trigger TDMD at this concentration. Similarly,
even though TUT1 was not found associated to antimiR-
16 in the mass spectrometry data, we managed to detect
it by western blot analysis when we increased the concen-
tration of the oligoribonucleotide (Figure 3E). Under these
conditions, we could also pull-down with both antimiR-
27 and antimiR-16 oligonucleotides the AGO1 protein and
TNRC6B, a GW182 family member essential for miRNA-
mediated gene silencing (39) (Figure 3F).

We also tested the possibility of retrieving other related
enzymes with antimiR-27 or antimiR-16 oligonucleotides
even if we never or rarely detected them in our MS anal-
ysis. For this purpose, we tested the 5′-3′ exoribonucleases
XRN1 and XRN2 (40), the exosome components EXOSC3
(RRP40), RRP6 and DIS3 (41), and finally TUT7 (ZC-
CHC6), which was recently shown to participate to ma-
ture miRNA mono-uridylation (42). None of these pro-
teins were found specifically associated with antimiR-27
and antimiR-16 after TDMD induction (Supplementary
Figure S3). Only XRN2 and DIS3 were detectable but with-
out any specificity for TDMD since they both co-purified
equally well with our control oligoribonucleotide.

Altogether, these results indicate that DIS3L2 and TUT1
are good candidates for TDMD. We thus decided to pro-
ceed with their functional characterization.

TDMD is induced in the RISC complex and occurs in the
cytoplasm

We first sought to answer the question of how the mech-
anism is initiated. TDMD depends on a high degree of
complementarity between the miRNA and its target, rais-
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Figure 2. Identification of the cellular factors involved in TDMD. (A) Schematic representation of the biochemical approach to induce and capture the
factors involved in TDMD. (B–D) HeLa cells were transfected with antimiRNA at a concentration inducing miR-27 or miR-16 TDMD. The complexes
bound to antimiRNA were pulled-down using streptavidin-beads. The specific pull-down of miR-27 and miR-16 using antimiR-27 (replicate R1) (B),
m169-like (C) and antimiR-16 (D) was verified by northern blot. A dashed line indicates discontinuous lanes but Input and IP fractions were systemati-
cally analyzed on a same gel. (E) Table showing the number of spectral counts detected by nanoLC-MS/MS for the indicated proteins found specifically
associated with each antimiRNA. The concentration of antimiRNA used in each replicate is indicated in parentheses. Control: antimiR-67.

ing the possibility that the miRNA tailing and trimming is
induced within the RISC. Alternatively, the miRNA could
also be marked for degradation after its release from the
AGO protein. We therefore analyzed small RNAs by north-
ern blot after AGO2 immunoprecipitation, which allowed
us to show that the RISC effector interacted not only with
the major isoforms, but also with tailed and trimmed iso-
forms of miR-27 when TDMD is induced (Figure 4A). The
tailed and trimmed isoforms detectable by northern blot
were comprised between 16 and 26 nucleotides in length
(Supplementary Figure S4A). Similar results were obtained
with miR-16 (Supplementary Figure S4B) or when miR-
27 TDMD was induced by transient expression of a piece
of the m169 transcript (Supplementary Figure S4C). Thus,
although it is unclear whether the miRNA undergoing
TDMD is eventually ejected from RISC, both tailing and

trimming of miRNA seem to occur, at least partially, within
AGO2.

More importantly, these observations suggest that both
TUT1 and DIS3L2 might be recruited to the RISC. To
test this hypothesis, we performed co-immunoprecipitation
of DIS3L2, TUT1 and AGO2 after transfection of HeLa
cells with plasmids expressing tagged-versions of the pro-
teins. We observed that both TUT1 and DIS3L2 interact
with AGO2 (Figure 4B,C) but also together (Figure 4D).
These interactions are RNA-mediated (putatively miRNA-
mediated), since they were sensitive to RNaseA treatment
(Figure 4B–D). So, TUT1, DIS3L2 and AGO2 seem to be
part of the same complex even if it is probably transient
since target-induced miRNA decay is not a predominant
mechanism.

The previous results raise the question of the formation
of a complex comprising AGO2, DIS3L2 and TUT1, since
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Figure 3. AntimiRNAs associate with DIS3L2, TUT1 and RISC components. (A–C) The presence of AGO2, DIS3L2 and TUT1 with antimiR-27 (A),
m169-like (B) or antimiR-16 (C) was confirmed by western blot. (D) Comparative analysis of DIS3L2, TUT1, AGO2 and miR-27 pulled-down with
antimiR-27 or m169-like oligonucleotides at 10 nM. (E) TUT1 and DIS3L2 detection after pull-down of antimiR-27 and antimiR-16 both transfected at
10 nM to induce TDMD. (F) AGO1 and TNRC6B are also associated with antimiR-27 and antimiR-16 both transfected at 10 nM. A dashed line indicates
discontinuous lanes but Input and IP fractions were systematically analyzed on a same gel (A-F). Control: antimiR-67.

TDMD is most likely to occur in the cytoplasm and ear-
lier reports showed that TUT1 was a nuclear protein (37).
However, recent work indicates that this might not be its
sole localization, as it could be observed both in the nu-
cleus and the cytoplasm (43). We thus wanted to verify the
relative amount of TUT1 in the cytoplasm and in the nu-
cleus in our experimental setup, and to confirm that the
cytoplasmic TUT1 interacts with DIS3L2 and AGO2. We
therefore performed a subcellular fractionation and ana-
lyzed the distribution of the different proteins (Figure 4E).
Using tubulin as a cytoplasmic marker and histone H3 as
a nuclear marker, we found that DIS3L2 was only present
in the cytoplasm as expected (33,34), similar to TUT7 (27),
AGO2 could be observed in both compartments, as previ-
ously reported (44), and we also found TUT1 both in the
cytoplasm and the nucleus (Figure 4E) confirming that this
TUTase is indeed a nucleo-cytoplasmic protein. We then
immunoprecipitated TUT1 from a cytoplasmic extract and
could observe that it interacted with endogenous DIS3L2
and AGO2, thereby confirming that these interactions nat-
urally occur in the cytoplasm (Figure 4F).

We showed earlier that DIS3L2 and TUT1 could be
pulled-down with the antimiRNA oligoribonucleotide only
under conditions where TDMD was induced (Figure 3D).
We therefore looked whether we could confirm the inter-
action by immunoprecipitating the proteins and detecting
the miRNA. For DIS3L2, we used the catalytic mutant be-
cause the wild type protein association with the targeted
RNA would be too transient. The immunoprecipitation of
DIS3L2mut shows that the exonuclease seems to interact

weakly with miR-27 but independently of TDMD (Fig-
ure 4G). DIS3L2 might therefore have additional roles in
miRNA decay that are independent of TDMD. Nonethe-
less, the mutant protein interacted more strongly than
the wild-type exonuclease with tailed/trimmed isoforms of
miR-27 (Supplementary Figure S4D) confirming its role in
miRNA trimming.

Finally, we analyzed small RNAs after immunoprecipi-
tation of TUT1. We confirmed that the pull-down was effi-
cient, since we could retrieve its known substrate U6 (38).
The northern blot analysis also revealed that it exclusively
interacted with miR-27 isoforms when TDMD was induced
with antimiR-27 oligonucleotide (Figure 4H). In addition,
we also performed northern blot analysis of miR-27 after
immunoprecipitation of other TUTases (TUT4, TUT7 and
TUT2), but could not detect the miRNA coming down with
any of these, be it in the presence or not of the antimiRNA
oligonucleotide (Supplementary Figure S4E).

DIS3L2 is implicated in miRNA trimming

We then aimed at validating the involvement of TUT1 and
DIS3L2 in TDMD by performing knockdown experiments
of either each factor separately or both of them together and
we monitored the level of TDMD induced by antimiRNA
transfection. We observed an efficient depletion of these
two factors at the protein level in HeLa cells (Figure 5A).
Nonetheless, the efficiency of TDMD was not altered as as-
sessed by northern blot analysis of miR-27 (Supplementary
Figure S5A) and miR-16 (Supplementary Figure S5B) com-
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Figure 4. TDMD is induced in the RISC complex by recruitment of TUT1 and DIS3L2. (A) AGO2-associated tailed and trimmed isoforms of miR-27 were
analyzed by northern blot. A space indicates discontinuous lanes from the same gel (also applicable to panels E and F). (B–D) Co-immunoprecipitation
(anti-GFP) experiments show interaction between GFP-TUT1 and HA-AGO2 (B), GFP-DIS3L2 and HA-AGO2 (C) and GFP-DIS3L2 and HA-TUT1
(D). GFP-MBP serves as negative control. (E) Subcellular location of TUT1, DIS3L2 and AGO2 in cells. The relative amount of TUT1, DIS3L2 and AGO2
proteins in the nucleus (nuc) and the cytoplasm (cyto) were analyzed by western blot. TUT7 and Tubulin serve as cytoplasmic markers while Histone H3 is
used as nuclear marker. (F) GFP-TUT1 interaction with endogenous DIS3L2 and AGO2 was assayed by co-immunoprecipitation (anti-GFP) performed
on the cytoplasmic fraction. Non-transfected cells (NT) serve as negative control. (G) miR-27 isoforms co-precipitate together with GFP-DIS3L2 mutant.
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pared to the cells transfected with the control siRNA (siC-
trl).

This result could be explained by the tendency of TU-
Tases to complement each other in vivo (45) and/or the high
processivity of DIS3L2 (34). To evaluate the contribution of
the other TUTases, we performed multiple knockdowns in
HeLa cells and again tested the efficiency of the TDMD.
To this end, we separated the TUTases in two groups. In
addition to TUT1, the first group (TUT1+2+4+7) com-
prises TUT2 (also called GLD2 and PAPD4), TUT4 (ZC-
CHC11) and TUT7 (ZCCHC6) as they are known to act re-
dundantly in the pre-let-7 mono-uridylation (45). The sec-
ond group (TUT1+3+5+6) is composed of TUT1, TUT3
(PAPD5), TUT5 (PAPD7) and TUT6 (MTPAP). However,

we did not manage to rescue miRNA stability with any of
the two siRNA mixes (data not shown). So, we cannot ex-
clude that other combinations of TUTases, or more than
four of them might act redundantly in this process. Simi-
larly, we also tried to knockdown other exoribonucleases
such as XRN1 and XRN2 alone or in combination with
DIS3L2, but again could not observe an effect on miR-27
degradation induced by antimiRNA oligonucleotides (data
not shown).

It could also be that the northern blot analysis approach
we used to measure the effect of TUT1 and DIS3L2 knock-
downs on miRNA levels presents limitations when it comes
to assess subtle differences. We thus decided to perform
small RNA cloning and sequencing in order to verify if
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some changes that could not be observed by other means
occur after TUT1 and/or DIS3L2 depletion. We first mon-
itored the impact of antimiR-27 transfection on miR-27 iso-
forms, which allowed us to see that the most abundant tailed
isoforms of miR-27a present an addition of one or two U
residues at their 3′ end (Figure 5B). We could also detect a
low number of miR-27 sequences presenting additional A
residues, or a mix of A and U residues (data not shown).
We calculated the respective abundance of the most abun-
dant isoforms of miR-27a (in percentage relative to the total
number of miR-27a in each sample) in presence or absence
of TDMD induction by antimiR-27 and we observed an in-
crease in the abundance of tailed and trimmed isoforms and
a decrease of the major isoforms of miR-27a or b in pres-
ence of the antimiR-27 (respectively in green and in red in
Figure 5B).

We then determined more precisely the distribution of
miR-27a isoforms in libraries generated from cells treated
with a control siRNA or siRNAs directed against TUT1,
DIS3L2 or both and transfected with an antimiR-27 or con-
trol (antimiR-67) oligonucleotide. For each library, we cal-
culated the number of wild-type (after miRBase) sequences
of miR-27a that we set as the ‘0’ modification, as well
as the number of sequences tailed or trimmed by 1, 2 or
more nucleotides (respectively +1, +2. . . and −1, −2. . . ).
The deep-sequencing analysis confirmed that miR-27a ex-
ists mainly as three isoforms of 21 (0), 20 (−1) and 22 (+1)
nucleotides. We therefore considered as trimmed and tailed
sequences, all isoforms presenting with an addition or dele-
tion of more than 2 nucleotides. As shown in Figure 5C for
miR-27a, in cells treated with the control siRNA the per-
centage of trimmed sequences indeed increased in the pres-
ence of antimiR-27 (bottom graph) compared to antimiR-
67 (top graph). We also observed a modest increase in
tailing upon transfection of the specific antimiRNA. This
increase in trimming seems to be less pronounced when
DIS3L2, TUT1 or both DIS3L2 and TUT1 were knocked-
down (Figure 5C and Supplementary Figure S5C). We did
the same calculation for miR-27b and roughly observed the
same effects, although less pronounced, which might be due
to the fact that the antimiRNA oligonucleotide we trans-
fected was directed against miR-27a (Supplementary Fig-
ure S6).

To quantify these differences, we then calculated the effi-
ciency of trimming (Figure 5D) and tailing (Figure 5E) in
each knockdown condition and for both miR-27a and miR-
27b. To this end, we first determined the ratio of trimmed
(or tailed) to wild-type (mature) sequences in antimiR-27
versus antimiR-67 in each condition, and then normalized
it to the ratio found in the control cells, which was arbi-
trarily set to 1. TUT1 depletion did not seem to affect the
efficiency of trimming of both miR-27a and b (Figure 5D
and Supplementary Figure S5C). However, we observed a
40–50% reduction in trimming of miR-27a and b in cells
where DIS3L2 or DIS3L2 and TUT1 were knocked-down
(Figure 5D). The effect on tailing was more difficult to as-
sess given the weaker induction of tailing measured by deep-
sequencing. The extent of tailing appeared to be quite lim-
ited and did not expend much further than 2 nt at most.
This might be due to the timing at which the RNA was iso-
lated after TDMD induction, and that was a bit too late to

fully capture tailed miRNAs. Alternatively, it might also be
explained by the experimental procedure used for the small
RNA library preparation and by a sub-optimal size selec-
tion of the PCR products prior to their sequencing. Never-
theless, it seems that TUT1 knock-down had no effect on
tailing, while DIS3L2 or DIS3L2 and TUT1 knock-down
had a mild negative impact (Figure 5E).

Overexpression of a catalytic mutant of DIS3L2 impairs
TDMD

To further prove the involvement of DIS3L2 in the mech-
anism, we also used another strategy consisting in the ex-
pression of a catalytically inactive mutant protein. Indeed,
knockdown by siRNA will never achieve a complete re-
moval of the targeted protein, and the remaining DIS3L2
might still be capable of degrading its substrate RNA.
The mutant DIS3L2 (DIS3L2mut) was therefore generated
by replacing two residues from the catalytic site (D391N,
D392N), a mutation known to affect DIS3L2 activity with-
out impairing its ability to bind RNA (34,46). We then over-
expressed HA-DIS3L2, HA-DIS3L3mut or an empty plas-
mid (pcDNA) in HEK293 cells and induced TDMD by
transfection of antimiRNA oligonucleotides.

We first verified that the mutation in DIS3L2 did not af-
fect its expression (Figure 6A). The RNA samples were then
analyzed by northern blot and we measured the fold change
accumulation of the targeted miRNAs. If we were expect-
ing that the over-accumulation of HA-DIS3L2 would either
stimulate TDMD or induces a dominant negative effect, its
overexpression did not alter the efficiency of the TDMD of
miR-27 compared to the control (Figure 6B). This might be
due to the fact that the activity of the endogenous DIS3L2
was already at saturating level. On the contrary, the over-
expression of DIS3L2mut led to a stabilization of miR-27
isoforms most likely due to a dominant negative effect (Fig-
ure 6B). This effect was reproducibly observed and resulted
on average in a mild but significant 1.5-fold increase in miR-
27 level (Figure 6B). A similar stabilization was observed for
miR-16, as transfection of DIS3L2mut impaired TDMD on
this miRNA as well (Figure 6C). Thus, this result confirms
the involvement of DIS3L2 in TDMD.

We have shown previously that MCMV degrades endoge-
nous miR-27 via the viral transcript m169 (20). We there-
fore wanted to test whether DIS3L2 could also be involved
in TDMD naturally induced by this virus. We infected
cells transiently overexpressing the mouse (m)DIS3L2 or
its catalytic mutant with MCMV and investigated the im-
pact on miR-27 accumulation. Both HA-mDIS3L2 and
HA-mDIS3L2mut were expressed at similar levels (Fig-
ure 6D). The levels of miR-27 (Figure 6E) and of the vi-
ral transcript m169 (Figure 6F) were monitored by qRT-
PCR at different time points of infection and in three in-
dependent experiments. We first observed that the over-
expression of mDIS3L2 does not globally impact miR-27
degradation compared to the control cells expressing the
empty vector (Figure 6E, HA-mDIS3L2 versus pcDNA)
as observed in human cells. We have only a slight en-
hancement of miR-27 degradation at 8 hpi, but this effect
seems to disappear over time. On the contrary, we could
observe a mild but significant stabilization of miR-27 in
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Figure 6. Overexpression of a catalytic mutant DIS3L2 inhibits TDMD. (A) Expression levels of HA-DIS3L2 and HA-DIS3L2mut in HEK293 cells by
western blot. Tubulin serves as loading control. (B) miR-27 degradation is inhibited in HEK293 cells overexpressing the catalytically inactive version of
DIS3L2 (DIS3L2mut) as shown by northern blot and after quantification. A dashed line indicates discontinuous lanes from the same gel. The bar graph
shows the quantification of miR-27 fold change normalized to the empty vector (pcDNA), which was arbitrarily set to 1. Error bars indicate SDs (Student
t-test: *P < 0.05, n = 4 biological replicates). (C) Same analysis as in (B), but for miR-16 degradation. (D) Expression levels of HA-mDIS3L2 and HA-
mDIS3L2mut by western blot at 48 hpi. Ponceau S staining serves as loading control. (E) MiR-27 accumulation was monitored in mouse Hepa 1.6 cells
during a time course of infection by the MCMV. Prior to infection, Hepa 1.6 cells were transfected with an empty plasmid (black), a plasmid coding for
HA-mDIS3L2 (light blue) or HA-mDIS3L2mut (dark blue). The graph represents the relative miR-27 levels measured by qRT-PCR at 0, 8, 24 and 48 hpi.
MiR-27 levels were normalized to those of miR-24 which serves as reference and arbitrarily set at 1 at 0 hpi for each condition. Error bars indicate SDs
performed on three independent experiments. (Student t-test *P < 0.05, **P < 0.01, ***P < 0.001; n = 3 biological replicates). (F) The level of the viral
m169 transcript was measured by qRT-PCR in the samples used in (E) at 8, 24 and 48 hpi. The transcript coding for PPIA (Peptidylprolyl isomerase A)
was used as reference. For each time point, the expression of m169 transcript in HA-mDIS3L2 and HA-mDIS3L2mut expressing cells was normalized to
the samples containing the empty vector (pcDNA) which was set at 1.

cells expressing mDIS3L2mut compared to cells transfected
with mDIS3L2 or empty pcDNA at 8 and 48 hpi (Fig-
ure 6E; HA-mDIS3L2mut versus HA-mDIS3L2 and HA-
mDIS3L2mut versus pcDNA).

This stabilization was confirmed by northern blot (Sup-
plementary Figure S7), which allowed us to visualize the
different isomiRs, when the qRT-PCR only measures the
abundance of the whole population of a given miRNA. In-
deed, we could observe a stronger accumulation of the ma-
jor isoforms of miR-27 in the presence of mDIS3L2mut
at 48 hpi. To verify that this difference was not solely due
to a defect in the infection efficiency, or in the production
of the m169 transcript, we measured its accumulation by
qRT-PCR in the experiments described above. This tran-
script starts to be expressed 2–3 h after infection (20), we
thus arbitrarily decided to normalize its relative expression
to the 8 hpi time point (and not 0 hpi) as we are sure that

the signal detected is due to de novo synthesis of the m169
transcript. As shown in Figure 6F, we could appreciate that
m169 transcript accumulates at similar level in cells express-
ing mDIS3L2 and mDIS3L2mut, no significant differences
were observed. Thus, the differential accumulation of miR-
27 in those cells are only due to the overexpression or not,
of the inactive form of mDIS3L2. Taken together, these re-
sults indicate that DIS3L2 is also involved in TDMD when
this mechanism is naturally induced by MCMV.

DISCUSSION

The stability and function of a miRNA is tightly linked to
its interaction with other RNA molecules. Thus, it has been
demonstrated that it was possible to prevent miRNA load-
ing into the RISC by the use of artificial decoy or sponge
RNAs (47). This observation was later confirmed to natu-
rally exist with the discovery of circular RNAs that can titer
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miRNAs such as miR-7 (48). Pairing with its RNA target
will usually result in the stabilization of the miRNA (49),
a mechanism that has been referred to as target-mediated
miRNA protection. However, in other cases, the miRNA-
target pairing can have the opposite effect and lead to the
miRNA decay via the TDMD mechanism we studied here.
In addition to the MCMV m169 transcript, the herpesvirus
saimiri HSUR RNA can also target miR-27 for degrada-
tion (22). Similarly, the human cytomegalovirus encodes a
bicistronic mRNA that triggers degradation of the cellu-
lar miRNA family miR-17/miR-20a (50). The molecular
mechanisms at play in this particular mode of regulation
have not been elucidated to date.

We confirmed here previous observations (23,24) that
showed that TDMD is governed by the miRNA/target ratio
as well as the degree of complementarity. Nevertheless, we
also observed that TDMD operates in a non-cooperative
manner in contrast to the classical miRNA-mediated tar-
get regulation. The cellular factors implicated in this par-
ticular miRNA decay mechanism were not known. Using
a powerful proteomic approach, we characterized the pro-
tein complexes involved in miRNA tailing and trimming.
Among the proteins we identified, we focused our analy-
sis on two promising candidates: TUT1 and DIS3L2. As
opposed to other TUTases, TUT1 had never been impli-
cated in miRNA biogenesis. In addition, the most studied
nucleotidyl transferases TUT4 and TUT7 act at the pri- or
pre-miRNA level and never on the mature miRNA (51). In
plants, the HESO1 protein has been implicated in uridyla-
tion of unmethylated miRNAs (52), but multiple terminal
nucleotidyl transferases are required for this process to be
fully active, including uncharacterized ones (53).

We did not manage to functionally implicate TUT1 in
TDMD in our conditions, which might also indicate that
this is a complicated synergistic process. Nonetheless, we
could confirm the interaction between TUT1 and AGO2.
We also show here that TUT1 interacts with tailed and
trimmed isoforms of miR-27 only when TDMD is induced.
In addition we also retrieved peptides for the SART3 pro-
tein in our mass spectrometry analysis (Supplementary Ta-
ble S1). SART3, also known as Tip110, associates with U6
snRNP (54) and has been recently confirmed to interact
directly with the C. elegans homolog of TUT1, USIP1, to
participate in U6 snRNA recycling (55). Most importantly,
it has been identified as a direct interactor of both AGO1
and AGO2 in HEK293 cells (56). Therefore, we have a link
explaining how TUT1 could be recruited to AGO2 when
TDMD is induced. This also confirms that both TUT1 and
SART3 must interact with AGO proteins in the cytoplasm,
as we could show for TUT1 and AGO2. Our results also in-
dicate that TUT1 might not bind with the same efficiency
to all miRNAs, since we could only retrieve it by mass spec-
trometry with antimiR-27 oligonucleotides, and its associ-
ation with miR-16 seemed to be much weaker. Recently, it
was demonstrated that TUT4 (ZCCHC11) and TUT7 (ZC-
CHC6) selectively mono-uridylate a subset of miRNAs har-
boring a specific motif (42). This observation strongly sug-
gests that similar specificity for given miRNAs will govern
the choice of TUTases recruited for the TDMD of other
miRNAs. More work will be needed to definitely know
which of the seven TUTases are involved in TDMD.

Our results are more conclusive when it comes to the
other factor involved in TDMD. Indeed, we could func-
tionally implicate DIS3L2 in this process both using knock-
down followed by small RNA sequencing analysis and over-
expression of a catalytic mutant showing a dominant nega-
tive effect. We did not manage to fully restore miRNA sta-
bility, which might either indicate that other enzymes could
be implicated or that the high processivity of DIS3L2 makes
it difficult to fully inactivate it be it by RNAi or overexpres-
sion of a dominant negative mutant.

It could also be that DIS3L2 would only be involved in
the degradation of miR-27 presenting with additional U
residues, as it was shown to preferentially target U-tailed
substrates (46). The recently obtained crystal structure of
DIS3L2 revealed that it could accommodate an artificial 12-
mer oligonucleotides solely composed of Us (57), but our
sequencing analysis revealed that the vast majority of miR-
27 sequences appear to present with only few additional U
residues at their 3′ extremity. In addition, a few sequences
also had A residues. So, DIS3L2 might also be active on
short RNAs presenting as little as two Us and/or As. This
is in agreement with characterization of its in vitro activity,
which indicates that the enzyme can target sequences with
overhanging As (34).

Alternatively, miRNAs presenting A additions might be
degraded by another enzyme. In that respect, miR-27a was
shown to be adenylated by PAPD4 (TUT2), but this did not
seem to affect its stability (58). Similarly, PAPD5 (TUT3)
was also implicated in the adenylation of other miRNAs,
such as miR-21, and in this case this resulted in its degra-
dation by PARN (59). To verify that the enzymes that
were studied in these two reports had no impact on miR-
27a and b, we reanalyzed the small RNA libraries that
were generated in these manuscripts, but did not find ev-
idence of differential accumulation, or of an impact on
the tailed and trimmed forms of these miRNAs (data not
shown). Altogether our results therefore allowed us to iden-
tify DIS3L2 as the exoribonuclease involved in one specific
mature miRNA degradation pathway.
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SUPPLEMENTARY FIGURE LEGENDS 

 
Figure S1. Characterization of m169-miR-27 features triggering TDMD, related to 

Figure 1.  

(A) Representation of m169 pairing with miR-27. Three mismatches were introduced in the 

seed region and are represented in red. (B) HeLa cells were transfected with increasing 

amounts of F-Luc, F-Luc-m169 or F-Luc-6xSH reporters and together with a plasmid coding 

for the Renilla luciferase (R-Luc) as transfection control, and subjected to luciferase assay. 

The F-Luc values were normalized to those of Renilla and arbitrarily set at 100 in cells 

expressing the F-Luc reporter. The graph represents mean values +/- standard deviations from 

three independent experiments. (C) Description of the miRNA isoforms. miR-27 and miR-16 

serve as examples. The major isoforms (red) correspond to the isomiRs always detectable in 

absence of specific antimiRNAs. When TDMD is induced by transfection of antimiRNAs, 

tailed isoforms correspond to the bands of higher sizes than the major isoforms (purple) and 

the trimmed isomiRs to the shorter bands (blue). 

 

Figure S2. Identification of the cellular factors involved in TDMD, related to Figure 2. 

 (A-C) Proteins identified by mass spectrometry using antimiR-27 (A), m169-like (B) and 

antimiR-16 (C) are represented in Venn diagrams including proteins found with the control-

oligoribonucleotide or bound to the beads alone. For each section, the corresponding number 

of proteins validated with FDR<1% and the percentage (in parentheses) are mentioned.  

 

Figure S3. Identification of the cellular factors involved in TDMD, related to Figure 3F. 

AntimiR-27 and antimiR-16 were tested for their ability to pull-down several known 

exonucleases or the Terminal-Uridylyl-transferase (TUT)-7 by western blot. AntimiRNAs 

were transfected at 10 nM. A dashed line indicates discontinuous lanes but Input and IP 

fractions were systematically analyzed on a same gel. 

 

Figure S4. TDMD is induced in the RISC complex by recruitment of TUT1 and DIS3L2, 

related to Figure 4. 

(A) AGO2-associated tailed and trimmed isoforms of miR-27 were analyzed by northern blot. 

The Ctrl IP (with IgG) serves as negative control. A ladder made of 4 RNA oligos with sizes 
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of 16, 18, 21 and 24 nucleotides in length was loaded to evaluate the sizes of miR-27 

isoforms. 

(B) AGO2-associated tailed and trimmed isoforms of miR-16 by RNA-immunoprecipitation. 

(C) AGO2-associated tailed and trimmed isoforms of miR-27 after induction of TDMD by the 

F-Luc-3xSH reporter. The 3xSH m169mut version serves as negative control for tailing-

trimming. Asterisks highlight tailed isoforms. (D) Comparative immunoprecipitation of miR-

27 isoforms bound to DIS3L2mut and DIS3L2. MBP serves as negative control. A dashed 

line indicates discontinuous lanes but Input and IP fractions were systematically analyzed on 

a same gel (B, C). (E) Immunoprecipitation (anti-GFP) of miR-27 from cells expressing GFP-

TUT2, GFP-TUT4 or GFP-TUT7 in presence or absence of antimiR-27. tRNA is used as 

loading control. 

 

Figure S5. Effect of TUT1 and DIS3L2 knockdowns on TDMD, related to Figure 5. 

(A) The efficiency of miR-27 TDMD in cells depleted from TUT1 (siTUT1), DIS3L2 

(siDIS3L2) or both was quantified by northern blot analysis. A representative experiment is 

depicted on the left, while the right panel depicts the quantification of miR-27 accumulation 

after normalization to tRNA. It was arbitrarily set at 100 in absence of antimiR-27 for each 

condition. Error bars indicate SDs (n = 3 independent experiments). (B) Left: Analysis of 

miR-16 TDMD by northern blot as described in (A). Right: the graph represents miR-16 

levels from three independent experiments. miR-16 accumulation is represented normalized 

to tRNA and set at 100 in absence of antimiR-16 for each condition. Error bars indicate SDs. 

(C) Distribution in percentage of miR-27a tailed and trimmed isoforms as assessed by small 

RNA deep-sequencing of cells treated with the indicated siRNA and antimiRNA 

oligonucleotides. The “0” indicates the wild-type (WT) isoform of 21 nt. The sum of all 

trimmed (≤-2) or tailed (≥+2) sequences is indicated.  

 

Figure S6. Functional implication of DIS3L2 in miRNA degradation, related to Figure 5. 

(A) Representative examples of the most abundant miR-27b isoforms detected in one of the 

libraries treated with the control siRNA and antimiR-67 or antimiR-27. Tailed nucleotides are 

highlighted in purple. The relative abundance of each isoform (%) is given before (antimiR-

67) or after (antimiR-27) TDMD induction by the transfection of the corresponding 

antimiRNAs. The red color indicates a decrease and the green an increase in abundance of the 

respective sequence. (B) and (C) Distribution in percentage of miR-27b tailed and trimmed 
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isoforms as assessed by small RNAs deep-sequencing of cells treated with the indicated 

siRNA and antimiRNA oligonucleotides. The “0” indicates the wild-type (WT) isoform of 21 

nt. The sum of all trimmed (≤-2) or tailed (≥+2) sequences is indicated. 

 

Figure S7. DIS3L2 is involved in TDMD induced during MCMV infection, related to 

Figure 6. 

(A) Representative northern blot of miR-27 levels in Hepa 1.6 cells overexpressing HA-

mDIS3L2, HA-mDIS3L2mut or an empty plasmid (pcDNA) during a time course of MCVM 

infection. Samples are the same as in Figure 6D and 6E. tRNA serves as loading control. 

Time points are indicated in hours post-infection (hpi). 
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Table S1. Short list of the most frequent proteins associated with antimiRNAs and 

identified by nanoLC-MS/MS, related to Figure 2. 

This table summarizes the proteins found in at least 3 independent experiments for antimiR-

27 (5 experiments in total), antimiR-16 (4 experiments) and the m169-like 

oligoribonucleotides (4 experiments) and absent in all their respective negative controls 

(beads alone and antimiR-67). For each protein, both their gene name and accession number 

are mentioned.  

* An exception is made for DIS3L2 in the m169 samples as only 3 of the 4 experiments 

allowed to trigger TDMD and the protein was found twice in these 3 samples. 

  

Gene names Accession 
number antimiR-27 antimiR-16 m169-like 

AGO1 Q9UL18 yes no yes 

AGO2 Q9UKV8 yes yes yes 

AGO3 Q9H9G7 no no yes 

DIS3L2 Q8IYB7 yes yes yes* 

FUBP3 Q96I24 yes yes yes 

SSB P05455 yes no no 

MEPCE Q7L2J0 yes no no 

MYH10 P35580 yes no no 

NONO Q15233 yes no no 

RBM4 Q9BWF3 yes no yes 

SART3 Q15020 yes no no 

SND1 Q7KZF4 no no yes 

TUT1 Q9H6E5 yes no no 

ZFP36L2 P47974 no no yes 

TNRC6B Q9UPQ9 no no yes 

XRN2 Q9H0D6 no no yes 

U2AF1 Q01081 yes no no 

U2AF2 P26368 yes no no 
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Table S2. List of the oligonucleotides used in this study. 

Nucleotides generating a mutation or modifying a pairing are in bold; Locked Nucleic Acids 

are underlined; 2’O-methyl nucleotides are preceded by a “m”. F, forward; R, reverse. 

 
Cloning primers (provided by Sigma-Aldrich) 
Name Type Sequence (5’ to 3’) 
HA-TUT1-F 
 

DNA GGAATTCAATGGCGGCGGTGGATTCGGATG 
 

 

HA-TUT1-R 
 

DNA GAAAAAAGCGGCCGCTCACTTGAGATGTCGAATTGCTTG 
 

HA-DIS3L2-F 
 

DNA CGGGATCCATGAGCCATCCTGACTACAGAATG 

 
 

HA-DIS3L2-R 
 

DNA GAAAAAAGCGGCCGCTCAGCTGGTGCTTGAGTCCTCG 
 

HA-AGO2-F 
 

DNA GGAATTCAATGTACTCGGGAGCCGGCC 
 

HA-AGO2-R 
 

DNA GAAAAAAGCGGCCGCTCAAGCAAAGTACATGGTGCG 
 

GFP-TUT1-F 
 

DNA GAAGATCTTAATGGCGGCGGTGGATTCGGATG 
 

GFP-TUT1-R 
 

DNA GGAATTCTCACTTGAGATGTCGAATTGCTTG 
 

GFP-DIS3L2-F 
 

DNA GAAGATCTTAATGAGCCATCCTGACTACAGAATG 
 

GFP-DIS3L2-R 
 

DNA CGGGATCCTCAGCTGGTGCTTGAGTCCTCG 
 

HA-mTUT1-F 
 

DNA GGAATTCAATGGCGGCGGTGGATTCGG 
 

HA-mTUT1-R 
 

DNA GAAAAAAGCGGCCGCTCACTTGAGGAGATTTTTAAGTG 

HA-mDIS3L2-F 
 

DNA GGAATTCAATGAACCATCCTGACTACAAGC 

HA-mDIS3L2-R 
 

DNA GAAAAAAGCGGCCGCTCAGTCCTCAGGCTCCTCATC 

GFP-mTUT1-F 
 

DNA GAAGATCTTAATGGCGGCGGTGGATTCGG 
 

GFP-mTUT1-R 
 

DNA GGAATTCTCACTTGAGGAGATTTTTAAGTG 

GFP-mDIS3L2-F 
 

DNA GGAATTCATGAACCATCCTGACTACAAGC 

GFP-mDIS3L2-R 
 

DNA CGGGGTACCTCAGTCCTCAGGCTCCTCATC 

HA-mAGO2-F 
 

DNA GGAATTCAATGTACTCGGGAGCCGGCCC 

HA-mAGO2-R 
 

DNA GAAAAAAGCGGCCGCTCAAGCAAAGTACATGGTGC 
 

GFP-TUT2-F 
 

DNA GGAATTCATGTTCCCAAACTCAATTTTGG 
 

GFP-TUT2-R 
 

DNA CGGGATCCTTATCTTTTCAGGACAGCAGC 
 

GFP-TUT4-F 
 

DNA GCGTCGACCATGGAAGAGTCTAAAACCTTAAAAAG 
 

GFP-TUT4-R 
 

DNA CCATTTAAATTTACTCCGACACGTTTCCTCTTG 
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GFP-TUT7-F 
 

DNA GCTCGAGAATGGGAGATACAGCAAAACC 
 

GFP-TUT7-R 
 

DNA CGGGATCCTCATGATTCCTGCTGGGTCC 
 

 
 
Mutagenesis primers (provided by Sigma-Aldrich) 

 
 
Northern probes (provided by Eurogentec) 
Name Type Sequence (5’ to 3’)  
miR-27 DNA 

(LNA) 
GCGGAACTTAGCCACTGTGAA 
 

miR-16 DNA 
(LNA) 

CGCCAATATTTACGTGCTGCTA 
 

tRNA Asp DNA CCGGTCTCCCGCGTGACAGGCGGGGATACTA 
U6 DNA GCAGGGGCCATGCTAATCTTCTCTGTATCG 
 
 
Biotinylated oligoribonucleotides (provided by IDT) 
Name Type Sequence (5’ to 3’)  
ASmir27-space3Bio RNA mGmCmGmGmAmAmCmUmUmAmGmCmCmAmCmUmGmUmGmA

mA/iSp9/3Bio 
ASmir67Ce-
space3Bio 

RNA mUmCmAmCmAmAmCmCmUmCmCmUmAmGmAmAmAmGmAmG
mUmAmGmA/iSp9/3Bio/ 

m169-space3Bio RNA mGmCmGmGmAmAmUmAmAmUmAmAmGmCmUmGmUmGmAmA
/iSp9/3Bio/ 

ASmir16-space3Bio RNA mCmGmCmCmAmAmUmAmUmUmUmAmCmGmUmGmCmUmGmC
mUmA/iSp9/3Bio/ 

 
 
AntimiRNAs (provided by IDT) 
Name Type Sequence (5’ to 3’)  
antimiR-27  RNA mGmCmGmGmAmAmCmUmUmAmGmCmCmAmCmUmGmUmGmA

mA 
antimiR-16 RNA mCmGmCmCmAmAmUmAmUmUmUmAmCmGmUmGmCmUmGmC

mUmA 
antimiR-67Ce  RNA mUmCmAmCmAmAmCmCmUmCmCmUmAmGmAmAmAmGmAmG

mUmAmGmA 
m169-like  RNA mGmCmGmGmAmAmUmAmAmUmAmAmGmCmUmGmUmGmAmA 
Mutant 1  RNA mUmCmGmGmAmAmUmAmAmUmAmAmGmCmUmGmUmGmAm

A 

Name Type Sequence (5’ to 3’) 
DIS3L2mut-F DNA ACCCATCAACCGCCCGAGACCTCAATAATGCCCTCTCCTGCAAG

CCAC 
DIS3L2mut-R 
 

DNA GTGGCTTGCAGGAGAGGGCATTATTGAGGTCTCGGGCGGTTGA
TGGGT 

mDIS3L2mut-F 
 

DNA GTAAATAGCTTTGATGTTCATGGCTGTGCCCTCGCCCTCTTCTT
GGACATGGGTGATATGG 

mDIS3L2mut-R 
 

DNA CCATATCACCCATGTCCAAGAAGAGGGCGAGGGCACAGCCAT
GAACATCAAAGCTATTTAC 

pcDNA3.1-HA-F 
 

DNA GTTTAAACTTAAGCTTGGTACCGAGGCCACCATGTACCCATAC
GATGTTCCAGATTACGCTCTCGGATCCACTAGTCCAGTGTG 

pcDNA3.1-HA-R 
 

DNA CACACTGGACTAGTGGATCCGAGAGCGTAATCTGGAACATCGT
ATGGGTACATGGTGGCCTCGGTACCAAGCTTAAGTTTAAAC 
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Mutant 2  RNA mUmAmGmGmAmAmUmAmAmUmAmAmGmCmUmGmUmGmAm
A 

Mutant 3  RNA mUmAmUmGmAmAmUmAmAmUmAmAmGmCmUmGmUmGmAm
A 

Mutant 4  RNA mUmAmUmUmAmAmUmAmAmUmAmAmGmCmUmGmUmGmAm
A 

Bulge +  RNA mGmCmGmGmAmAmUmUmAmUmAmAmGmCmUmGmUmGmAm
A 

 
 
siRNA sequences (provided by Sigma-Aldrich) 
Name Type Sequence (5’ to 3’) sense strand 
siRLuc (siCtrl) siRNA CACAUCGAGCCCGUGGCUA 
siTUT1-1 siRNA GUGUGUUUGUCAGUGGCUU 
siDIS3L2-1 siRNA GGGGAUCUGGUGGUCGUGAA 
 
qRT-PCR primers (provided by Sigma-Aldrich) 
Name Type Sequence (5’ to 3’)  
miR-27  DNA TTCACAGTGGCTAAGTTCCGC 
miR-24  DNA TGGCTCAGTTCAGCAGGAACAG 
PPIA-F  DNA GCGGCAGGTCCATCTACG 
PPIA-R  DNA GCCATCCAGCCATTCAGTC 
m169-F  DNA ATCTTCTTCGGCGTTAGCGA 
m169-R  DNA TGAGGTCCAGGTCGTGTGA 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Mass spectrometry procedure and analysis 
In-solution digestion was carried out directly on the magnetic beads. Straight before 

digestion, the beads were washed twice in 25 mM ammonium bicarbonate using a magnetic 

stand to retain the beads. Out of the stand, proteins were reduced with 5 mM DTT for 6 min at 

95°C, alkylated with 10 mM iodoacetamide for 30 min in the dark and digested overnight 

with 100 ng of modified sequencing-grade trypsin in 25 mM ammonium bicarbonate. 

Dried tryptic peptides were re-suspended in 15 µL of water containing 0.1% FA 

(solvent A) before analysis on a NanoLC-2DPlus system (with nanoFlex ChiP module; 

Eksigent, ABSciex, Concord, Ontario, Canada) coupled to a TripleTOF 5600 mass 

spectrometer (ABSciex) operating in high-sensitivity positive mode. Sample acquisitions 

were performed using a "trap and elute" configuration on the nanoFlex System using C-18 

precolumn (300 µm ID x 5 mm ChromXP; Eksigent) and column (75 µm ID x 15 cm 

ChromXP; Eksigent) Peptides were eluted with a 60 min 5%-40% gradient of solvent B 

(0.1% formic acid in ACN). The TripleTOF 5600 was operated with Analyst software 

(version 1.5, ABSciex) in data-dependent acquisition mode with survey MS scans acquired in 

the 400-1250 m/z range and up to 20 of the most intense multiply charged ions (2+ to 5+) 

selected for CID fragmentation. To prevent carry-over due to stationary phase memory, 2 

consecutive washing runs were performed after each sample injection. Data were searched 

against the complete Human proteome set from the UniProt database (released 2013/01/09; 

141168 sequences) with an added decoy database. Mascot algorithm (version 2.2, Matrix 

Science, London, UK) was used through the ProteinScape package (Bruker, v3.1) which 

validated protein identifications with a FDR < 1%. 

 

Small RNA libraries and sequencing 
RNA quality was assessed by Agilent 2100 Bioanalyzer (Agilent), and samples with an RNA 

integrity number (a measure of RNA quality) higher than 8 were used for the study. We 

followed Illumina’s protocol (Truseq small RNA, # 15004197 Rev. C) to generate small RNA 

libraries directly from total RNAs, suitable for subsequent high throughput sequencing. The 

protocol takes advantage of the natural structure common to most microRNA molecules that 

have a 3ʹ hydroxyl group resulting from enzymatic cleavage by Dicer or other RNA 

processing enzymes. Briefly, in the first step, RNA adapters were sequentially ligated to each 



 

   ! 10 

end of the RNA, first the 3ʹ RNA adapter that is specifically modified to target microRNAs 

and other small RNAs, then the 5ʹ RNA adapter. Small RNA ligated with 3ʹ and 5ʹ adapters 

were reverse transcribed and PCR amplified (30 sec at 98°C; [10 sec at 98°C, 30 sec at 60°C, 

15 sec at 72°C] x 13 cycles; 10 min at 72°C) to create cDNA constructs. This process 

selectively enriched those fragments that have adapter molecules on both ends. The last step 

was an acrylamide gel purification of the 140-150 nt amplified cDNA constructs 

(corresponding to cDNA inserts from small RNA + 120 nt from the adapters). Small RNA 

libraries were checked for quality and quantified using 2100 Bioanalyzer (Agilent). The 

libraries were loaded in the flowcell at 8 pM concentration and clusters were generated using 

the Cbot and sequenced on Hiseq 2500 as single-end 50 bases reads following Illumina’s 

instructions. 

 

Bioinformatics analysis of deep sequencing data 

Short sequences generated by the Illumina instrument were first preprocessed using the 

Dustmasker program (1) and FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit) to 

filter out low complexity reads and remove instances of the 3’ adapter, respectively. Before 

further analysis, reads corresponding to the exogenous siRNA and antimiR sequences were 

also excluded. Remaining reads of at least 15 nt in length were then mapped to the human 

genome (assembly version hg19 – UCSC repository), using Bowtie 1.0.0 (2), by permitting 

up to 1 mismatch in the first 15 nucleotides of each read. Only alignments from the lowest 

mismatch-stratum were recorded provided they didn’t exceed a total number of 9 mismatches 

and reads that could map to more than 50 loci were discarded. From there, all known human 

miRNAs (miRBase v.20 (3)) were annotated using BEDTools 2.16.2 (4) by comparing their 

genomic coordinates to those of the aligned reads, and by keeping reads with at least 80 % of 

their length inside the genomic feature. By doing so, we were able to inventory and quantify 

all miRNA isoforms. During the quantification process, multiple mapped reads were weighted 

by the number of mapping sites in miRNAs and the annotations of miR-27a-3p and miR-27b-

3p were manually curated to redistribute the few sequences that were initially mis-attributed 

between the two (most probably due to the loose constraints applied on the 3’ read ends 

during the mapping step). 

To further characterize the TDMD mechanism of miR-27a and b, only isoforms 

corresponding to the wild-type (WT) mature sequence (as defined in miRBase) of these 

miRNAs, as well as the ones presenting with shifted 3' extremities were taken into account, 
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providing that they showed a 5' genome matched component and an optional 3' tail (addition 

of non-templated nucleotides). These sequences were classified as: WT, trimming, tailing, 

trimming+tailing, cleavageshift, and cleavageshift+tailing. For the representation of 

histograms shown in Figure 5C and S5C, we determined the number of sequences presenting 

with a tail of +1, …, +4 nucleotides as well as the sequences presenting with a trimming of -1, 

-2, …, -6 nucleotides. We then calculated the percentage of each category. This allowed us to 

see that the predominant isoforms in all libraries were the WT (i.e. 0), and the -1, and +1 

sequences. We therefore took into account for our further calculation only sequences that 

were tailed or trimmed by more than 2 nucleotides. We then computed a tailing ratio by 

dividing all tailed sequences (tailing, trimming+tailing, cleavageshift+tailing) by the number 

of WT sequences, and a trimming ratio by dividing all trimmed sequences (trimming and 

trimming+tailing) by the number of WT sequences for each isoform. We then calculated the 

fold change of the tailing ratio of cells transfected with the antimiR-27 to the one of cells 

transfected with the control antimiR-67. This fold change was then normalized to the control 

siRNA (against R-Luc) condition, which was set to 1. The same was done for the trimming 

ratio. 
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2. Identification of Argonaute 2 partners by proximity dependent labeling 
 

2.1 Aim 

 

In this chapter, the main goal is to find whether the interactome of the AGO2 protein changes 

during viral infection, more specifically, we looked at the impact of MCMV infection in 

fibroblasts. Understanding the networks of molecular interactions of a given molecule, in our 

case AGO2, can broaden our view of host-pathogen interactions at the level of miRNA 

function. In order to do so, I have used proximity labelling by a promiscuous biotin ligase 

called BirA, which allows direct labelling of interacting proteins with biotin followed by 

affinity capture of labelled proteins and mass spectrometry analysis. Three major interaction 

networks implicating proteins exist; protein-protein, protein-DNA and protein-RNA. As here, 

we are interested by protein partners of AGO2, I will briefly present other methods of 

identification of protein-protein interactions that can be used for this kind of study and discuss 

their respective advantages and disadvantages. 

  

2.2 Large scale protein interaction mapping techniques 

 

 

Figure 19: Examples of approaches to map protein-protein interactions 
A. Affinity purification followed by mass spectrometry used to identify proteins in association with 
the bait. B. Yeast two-hybrid, strategy behind the first described method used for screening direct 
protein interactions. Taken from (Mehta and Trinkle-Mulcahy, 2016). 
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2.2.1 Affinity purification coupled to mass spectrometry 

 

Currently the most popular technique for high-throughput interactome mapping is affinity 

purification followed by mass spectrometry identification (AP-MS). Usually the protein of 

interest is expressed ectopically with a tag (Flag, HA, GFP, Myc) as a bait, the complexes in 

which this protein is involved are recovered by affinity reagents such as antibodies 

recognizing the bait’s tag coupled to beads (Figure 19-A). This approach has been used on a 

large scale in two recent studies, in which the interactome of over a thousand proteins in 

human cell lines has been identified (Hein et al., 2015; Huttlin et al., 2015). Although this 

strategy of overexpressing the protein of interest allows for the enrichment of complexes that 

might otherwise be lowly abundant, this also opens the possibility for false positives due to 

potential artefacts from overexpression, as well as non-specific binding to tag or affinity 

matrix (Mellacheruvu et al., 2013). To control for non-specific protein-protein interactions, 

optimization of the stringency conditions of purification is necessary, while at the same time 

preserving protein complexes.  

 

2.2.2 Tandem Affinity Purification 

 

Another technique that can be used to resolve issues of stringency is tandem affinity 

purification (TAP) (Rigaut et al., 1999). This method relies on the expression of a TAP-

tagged bait protein. The TAP tag consists of two different tags separated by a protease 

cleavage site. This allows for sequential affinity purification of the bait protein with the 

complexes that it might engage in. After purification with the first tag and washes, the bound 

bait is eluted by protease cleavage, the eluate is then purified with the use of the second tag 

(Puig et al., 2001). This method allows for a higher specificity and stringency, resulting in a 

low level of background interactions, although like AP-MS approach, artefacts induced by 

overexpression of the bait can still be an issue.  

To circumvent artefacts arising from the overexpression of the bait for the affinity purification 

approaches, BAC (bacterial artificial chromosome) have been used to express baits in more 

physiological conditions, as BACs are large enough to contain the genomic context of the bait 

(Hubner et al., 2010; Poser et al., 2008). More recently, with the use of CRISPR/Cas9 

(Clustered regulatory interspaced short palindromic repeat/Cas9) gene editing, affinity tag 

insertion on endogenous proteins is possible, allowing to preserve physiological expression 

level of the bait (Cong et al., 2013; Lackner et al., 2015; Mali et al., 2013). 
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2.2.3 Yeast two-hybrid system 

 

Another approach used for identification of protein interactions or proximity is the yeast two-

hybrid system (Y2H) (Fields and Song, 1989) (Figure 19-B). In the original approach, one 

needs to express two fusion proteins in yeast, a bait in fusion with a DNA binding domain and 

a prey fused to a transcription activation domain. If these two recombinant proteins are 

directly interacting with each other, the transcription activation domain will be functional, 

inducing the expression of a reporter gene. This method, although quite robust, has several 

drawbacks as there is a bias for strong interactions happening in the nucleus, and it is limited 

by interactions on cellular membrane or involving more than two partners. These drawbacks 

have been addressed over the years by creating variations on the original Y2H approach, 

opening it to proteins in the cytosol, membrane or extracellular and transmembrane proteins 

(reviewed in (Brückner et al., 2009)). 

 

2.2.4 Proximity labelling strategies 

 

Recently, new methods have been described that overcome some of the disadvantages of AP-

MS approach. Notably, in affinity purification strategies, optimized stringency conditions for 

purification are necessary to limit nonspecific protein interactions, while at the same time 

preserving formed protein complexes, resulting in the potential loss of weak and/or transient 

protein interactions. In these methods, protein proximity is analysed based on covalent 

labelling of proteins dependent on their proximity to each other in vivo. This eliminates the 

need for low-stringency purification conditions to keep proteins in the complexes together. 

Most commonly, biotinylation is used as a labelling reaction, giving the possibility to perform 

stringent purification conditions by taking advantage of the high affinity of streptavidin for 

biotin. Moreover, biotinylation is a relatively rare modification as only a handful of proteins 

are biotinylated endogenously in mammalian cells; PC (Pyruvate carboxylase), ACACA 

(Acetyl-CoA carboxylase 1), MCCA (Methylcrotonoyl-CoA carboxylase subunit alpha), 

PCCA (Propionyl-CoA carboxylase alpha chain) (Roux et al., 2013). Two particular 

proximity labeling techniques have been recently described: APEX (ascorbate peroxidase) 

and BioID (biotin identification). These two techniques will be introduced in the following 

part. 
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Figure 20: Proximity based labelling techniques 
Two spatially restricted enzymatic-labelling approaches. Proximal proteins to a bait protein are tagged 
with biotin and enriched with streptavidin beads for subsequent identification. Taken from (Mehta and 
Trinkle-Mulcahy, 2016). 
 

2.2.4.1 APEX approach 

 

APEX has been developed by Rhee and colleagues to identify protein in the mitochondrial 

matrix (Rhee et al., 2013). In this method, ascorbate peroxidase (28 kDa) has been expressed 

with a mitochondrial targeting sequence, and the addition of phenol-biotin and H2O2 for one 

minute allowed biotin labelling of proximal proteins in the mitochondria matrix. Ascorbate 

peroxidase oxidizes phenol-biotin to phenoxyl-biotin radical able to react with the electron 

rich aminoacids Tyr, Trp, His, and Cys. The radical has a small labelling radius (<20nm) and 

is short lived (<1ms). Subsequent purification of biotinylated proteins and mass spectrometry 

analysis identified several hundred proteins most of which are annotated as mitochondrial 

(Rhee et al., 2013). This same approach has also been used for the identification of proteins in 

cilia in mammalian cells (Mick et al., 2015), in mitochondria of Drosophila muscle (Chen et 

al., 2015), in mitochondrial intermembrane space in human cells (Hung et al., 2014). APEX 

has so far only been targeted to closed cellular compartments to analyse the proteome of said 

compartments, which was previously unfeasible with other techniques. APEX is also quite 

amenable to quantitative mass spectrometry approaches like SILAC (stable isotope labelling 
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with aminoacids in cell culture) (Hung et al., 2014).  It has yet to be tested for proximity 

labelling in fusion to a bait protein of interest, although for another application of APEX, it 

has already been expressed in fusion to a protein of interest where it catalyzed the 

polymerization of diaminobenzidine to improve contrast for imaging in electron microscopy 

experiments (Lam et al., 2015; Martell et al., 2012). It would be interesting to see whether it is 

feasible to determine the interactome of an APEX fused bait by proximity labelling, as short 

times of labelling would provide snapshots of a bait’s proximity, which can give insights to 

how the dynamics of the bait’s interactome can evolve in response to different stimuli.  

  

2.2.4.2 BioID approach 

 

Another iteration of proximity labelling approach is BioID, which relies on the biotin ligation 

activity of a prokaryotic biotin ligase. A bait fused to the biotin ligase is expressed in cells, 

with the addition of excess biotin to the culture medium, proximal proteins to the bait are 

biotinylated. This approach exploits the ability of a mutant 35 kDa Escherichia coli biotin 

ligase (R118G) to promiscuously biotinylate any protein found in a ~10nm diameter range 

(Roux et al., 2012). The biotin ligase called BirA, in its wild type form is only capable of 

biotinylating a specific set of proteins that have a particular sequence in bacteria, the minimal 

sequence requirements for biotinylation has been defined as a 14-mer peptide (Beckett et al., 

1999). This minimal sequence called BAT (biotin acceptor tag) has been used for several 

applications from high affinity purification of tagged proteins to hypothesis based proximity 

labeling where one can test the proximity of a bait to a potential prey (reviewed in (Roux, 

2013)).  

For screening purposes, where one wants to identify unknown prey proteins for a specific 

bait, a mutant BirA enzyme is used, it is the mutant R118G, hereafter called BirA*. 

Biotinylation happens in two steps where in the first step biotin and ATP are combined to 

form highly reactive Biotin-AMP, BirA then holds on to biotin-AMP until it reacts with a 

lysine residue in the BAT sequence. BirA* however, has much lower affinity for biotin-AMP 

and it results in promiscuous biotinylation in the presence of excess biotin in mammalian cells 

(Kwon and Beckett, 2000; Roux et al., 2012). Labelling times are quite longer compared to 

APEX approach, although biotinylation is noticeable after an hour, its saturation happens 

before 24H of labelling (Roux et al., 2012). However this might be an advantage, as a long 

period of labelling will result in the accumulation of weak or transient partners of the bait. 

Another difference over APEX is that the half-life of activated biotin, biotin-AMP has a 
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longer half-life (minutes) meaning that labelling radius is probably larger (Hung et al., 2014). 

Although less than 20nm labeling has been proposed for BirA*, it might change depending on 

the bait and cellular environment (Roux, 2013). BirA* labels predominantly lysine residues 

on proximal proteins, meaning there is bias for the identification of lysine containing proteins. 

Moreover, the presence of biotin on lysine residues can interfere with other modifications that 

could be present on the same residues, potentially affecting the activity and behaviour of a 

particular partner and/or of a complex. BioID first was applied in 2012 to identify Lamin A 

partner proteins (Roux et al., 2012), and was then utilized by several groups to identify 

partners of various baits. Some of which include c-MYC (Dingar et al., 2015), HIV-Gag (Le 

Sage et al., 2015), SCF E3 ligases (Coyaud et al., 2015), NMD factors (Schweingruber et al., 

2016) and proteins localized in specific cellular complexes or organelles like nuclear pore 

complex (Kim et al., 2014a) and centrosome components (Firat-Karalar et al., 2014). 

Recently a new and improved version of BioID was described; the new biotin ligase is from 

Aquifex aeolicus and is substantially smaller than BirA (28kDa versus 35kDa). The smaller 

size improves localization of fusion proteins, all the while requiring less biotin (Kim et al., 

2016a). Unfortunately, BioID approach has yet to be performed in a quantitative setting for 

example using SILAC, this would allow for precise quantification of detected partner 

proteins. Recently, the affinity purification was compared to the BioID approach for 

chromatin associated proteins complexes. As expected BioID produced a larger dataset, 

containing lower abundance partners with only a partial overlap in identified proteins between 

the two approaches (Lambert et al., 2015). 

 

2.3 Objective of the experiment  

 

The objective in this chapter is to find cellular or viral protein partners of AGO2 during 

MCMV infection. Identification of proteins after proximity labelling of AGO2 in infected 

samples versus mock-infected samples would allow us to determine how the interactome of 

AGO2 changes during infection. MCMV infection induces several changes concerning 

miRNAs, firstly it induces quite a big change in the cellular miRNA profile, as 35 % of 

miRNA reads are of viral origin after only 24 hours of infection (Dölken et al., 2007) and 

secondly it induces the rapid degradation of the cellular miR-27 (Buck et al., 2010). So, with 

this approach, we hope to identify protein factors that would be implicated in the miRNA 

and/or RISC turnover. To that end, we will use the comparison between mock and MCMV 

infected cells, moreover we have at our disposition in the laboratory a mutant version of 
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MCMV which does not induce the degradation of miR-27 (Marcinowski et al., 2012). This 

would therefore help us with the identification of proteins implicated in mature miRNA 

degradation. Here, I will present the creation of the material and optimization of conditions 

necessary for setting up this approach along with some preliminary results that I obtained.  

 

2.4 BioID of Argonaute 2  

 

2.4.1 Cloning, expression and biotin labelling 

 

For the setting up of BioID approach, I took as a guide the protocol of Roux and colleagues 

(Roux et al., 2013). The first step is the cloning of the expression vector coding for the fusion 

BirA*-AGO2. To this end, I inserted myc-tagged BirA* cDNA on the N-terminus of mouse 

AGO2 (hereafter called BirA*-mAGO2). This clone was tested for its expression in Hepa 1.6 

cells along with BirA* alone without mAGO2 and biotinylation levels was measured upon 

addition of biotin to the culture media (Figure 21).  

 

Figure 21: Expression and biotin labelling of BirA* constructs in Hepa1.6 cells 
BirA* and BirA*- mAGO2 constructs were transfected into Hepa1.6 cells, biotin was added at the 
moment of the transfection to the culture media. 24 hours post transfection, cells were lysed and total 
protein extracts were separated on a SDS-PAGE gel. A. Western blot revealed with an anti-myc 
antibody. B. Western blot analysis of biotin labeled proteins revealed by hybridization of streptavidin 
coupled to HRP. (*) designates BirA* (35kDa) protein and (**) designates BirA*-mAGO2 (135 kDa). 
 

Transient transfection of BirA* constructs worked as expected as the expression of BirA* 

proteins are easily detectable with anti-myc antibody 24 hours after transfection, although 

BirA* seems to be expressed at a much higher level than BirA*-mAGO2 probably due to its 

smaller size (Figure 21-A). When it comes to biotinylation levels of these two proteins, they 

are both capable of biotinylating proteins when biotin is added in the culture media. 50µM of 
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biotin is enough to get saturated levels of biotinylation after 24 hours as doubling the amount 

of biotin does not change the levels of biotinylated proteins (Figure 21-B). In addition, too 

much biotin would be detrimental for the affinity capture step, as free biotin will decrease the 

binding capacity of beads. In the samples without any addition of biotin as well as non-

transfected samples, three bands corresponding to four different naturally biotinylated 

endogenous proteins should have been detected (Roux et al., 2012), meaning that in this 

experiment probably other biotinylated proteins especially in the BirA*-mAGO2 sample 

escape visualization on the western blot. 

 

2.4.2 Pull-down of labelled proteins and mass spectrometry analysis 

 

As BirA*-mAGO2 is expressed and functional for biotinylation, the next step is to set up the 

conditions for streptavidin enrichment of biotinylated proteins. There are two things to control 

for, first the non-specific binding of proteins to the streptavidin beads and second the non-

specific biotinylation of BirA*-mAGO2 fusion. The latter would be a control to do if we 

wanted to identify steady-state partners of AGO2, but as we want to see specific partners of 

AGO2 during infection, the non-infected sample can be used as our negative control. So, we 

wanted to test if the streptavidin beads are binding non-specific proteins, for that we have two 

choices, either we can use BirA*-mAGO2 protein but without the addition of any biotin or 

mAGO2 fused to another protein which does not have any biotinylation activity. The former 

would not be very clean as the serum in culture media brings some biotin into the cell, 

potentially causing low level labeling of AGO2 proximal proteins, so we decided to use GFP-

mAGO2 as control, as GFP is a tag about the same size as BirA* (25 kDa versus 35 kDa). 

To test the protocol of affinity capture of biotinylated proteins, we transfected Hepa1.6 cells 

with either GFP-mAGO2 or BirA*-mAGO2, and biotin was added at the moment of 

transfection. 24 hours later cells were lysed and streptavidin pull-down was performed. 

Overexpression of mAGO2 fusion proteins showed that compared to endogenous mAGO2, 

the levels at which they are expressed are quite high (Figure 22-A). The overexpression of 

mAGO2 might affect its localization or turnover, changing in turn the identity of its proximal 

partners. Nonetheless, we continued with the pull-down. The silver nitrate staining (Figure 

22-B) showed that for the GFP-mAGO2 sample, three high molecular weight bands are 

detected, these probably are the four endogenously biotinylated proteins; ACACA at 265 kDa, 

PC at 130 kDa, MCCA and PCCA at 79 kDa. For BirA*-mAGO2, several proteins in addition 

to the four endogenous proteins are detectable. Most of these pulled-down proteins seem to be 
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revealed by streptavidin-HRP meaning that they were indeed biotin labelled and are not non-

specific proteins bound to the beads (Figure 22-B and 22-C).  

 

 
Figure 22: Pull-down of biotin labeled proteins in Hepa cells. 
A. Expression level of endogenous mAGO2 and overexpressed mAGO2 in fusion with GFP or BirA*. 
B. Silver nitrate staining after pull-down of biotin labeled proteins. C. Streptavidin-HRP revelation of 
proteins after pull-down.  
 

In order to reveal the identities of these pulled-down proteins, we analyzed these two samples 

by mass spectrometry. There were only 20 proteins identified in the control sample, whereas 

200 proteins were identified in the BirA*-mAGO2 sample (Annex-1 and 2).  

Common proteins identified with high spectral counts in the GFP-mAGO2 and BirA*-

mAGO2 sample are listed in Table 1. The identification of these proteins is expected, as they 

are indeed the endogenously biotinylated proteins detected in BioID experiments (Roux et al., 

2013). There are also other proteins commonly identified in this sample with very limited 

spectral counts listed in Annex-1.  

The spectral counts obtained for the endogenously biotinylated proteins between the two 

samples, are quite different. This probably occurred because of the difference between the 

total number of proteins biotinylated in each sample, meaning that the quantity of streptavidin 

beads used is not saturating over biotinylated proteins at least in the BirA*-mAGO2 sample. 

This also might be due to the low complexity of the GFP-mAGO2 sample, where the number 

of different proteins is low, allocating more identification time during mass spectrometry 

analysis.  
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Table 1: Common proteins identified in both GFP-mAGO2 and BirA*-mAGO2 samples 

 

For the BirA*-mAGO2 sample, 200 different proteins were identified (Annex-2). As in this 

experiment, we did not control for non-specific labeling of BirA*, this list most certainly 

contains non-specifically labelled proteins. Nonetheless, we made an enrichment analysis on 

gene ontology (GO) consortium’s website (www.geneontology.com), which compares the 

number of proteins identified in the sample for a given biological process or molecular 

function to the expected number of proteins that would fall in this same process or function by 

chance. For the 179 proteins differentially identified in BirA*-mAGO2, the resulting 

significant biological processes and molecular functions have been sorted from the most 

significant to less significant in Table 2 and 3 and the cellular component for the most fold 

enrichment in the Table 4. We find enrichment for posttranscriptional regulation of gene 

expression and regulation of translation as well as enrichment for stress granules and P-

bodies.  

 

Table 2: Top 4 GO biological processes enriched for proteins identified in BirA*-mAGO2. 

GO Biological process 
Reference mus 

musculus # 
Obtained 

# 
Expected  

# 
Fold 

enrichment 
P-value ▼ 

Regulation of cellular amide 
metabolic process 

309 22 2.41 9.13 5.84E-11 

Posttranscriptional regulation of 
gene expression 

337 22 2.63 8.37 3.27E-10 

Macromolecular complex 
assembly 

1143 37 8.91 4.15 1.20E-09 

Regulation of translation 285 20 2.22 9 1.37E-09 

 

  

Protein 
identity 

Protein description Molecular 
weight (kDa) 

Spectral count 
(GFP/BirA*) 

Sequence 
coverage (%) 

ACACA Acetyl-CoA carboxylase 1 265.1 1636/714 75.7 

PYC Pyruvate carboxylase, mitochondrial 1 129.6 1202/1037 77.2 

MCCA 
Methylcrotonoyl-CoA carboxylase 

subunit alpha, mitochondrial 
79.3 578/241 73.8 

PCCA 
Propionyl-CoA carboxylase alpha chain, 

mitochondrial 
79.9 313/217 66.9 
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Table 3: Top 4 GO molecular functions enriched for proteins identified in BirA*-mAGO2. 

GO Molecular function Reference mus 
musculus # 

Obtained 
# 

Expected 
# 

Fold 
enrichment 

P-value ▼ 

Poly(A) RNA binding 1841 63 8.71 7.23 2.39E-33 
RNA binding 1117 69 11.92 5.79 3.22E-31 
Protein binding 1529 121 60.86 1.99 5.79E-17 
Nucleic acid binding 7807 73 26.47 2.76 7.11E-14 

 

Table 4: Top 4 GO cellular component enriched for proteins identified in BirA*-mAGO2. 

GO Cellular component Reference mus 
musculus # 

Obtained 
# 

Expected 
# 

Fold 
enrichment ▼ 

P-value 

Cytoplasmic stress granule 33 8 1.09 31.10 5.84E-11 
Ribonucleoprotein granule 140 15 1.03 13.74 3.27E-10 

Cytoplasmic ribonucleoprotein 
granule 

132 14 0.48 13.61 1.20E-09 

Cytoplasmic mRNA processing 
body 

62 6 1.01 12.41 1.37E-09 

 

Looking at the list of identified proteins, we find known cofactors of AGO2 among others 

HSP90/HSC70 (Iwasaki et al., 2010; Johnston et al., 2010), TNRC6B (Lian et al., 2009; Pfaff 

et al., 2013), EDC4 and PATL1 (Jonas and Izaurralde, 2013), PABP (Jinek et al., 2010; Zekri 

et al., 2009) as well as several mRNA binding proteins like PUM2 (Galgano et al., 2008), 

FXR1 (Vasudevan and Steitz, 2007; Vasudevan et al., 2007), IGF2BP1(Elcheva et al., 2009), 

UPF1 (Jin et al., 2009) and ribosomal proteins. Some of these proteins were found by other 

affinity purification and mass spectrometry analysis performed by others (Frohn et al., 2012; 

Höck et al., 2007; Landthaler et al., 2008; Meister et al., 2005). Some of the identified 

proteins are represented in the Figure 23 where they are regrouped depending on their 

function. Although we cannot guarantee that none of these identified proteins are originating 

from non-specific tagging of BirA* enzyme, the enrichment analysis gives encouraging 

results, as they are related to AGO2 function. 
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Figure 23: Schematic representation of identified proteins proximal to mAGO2.  
A subset of proteins identified in the mass spectrometry analysis were included in this representation 
depending on their known interaction with AGO2 or according to their biological function in RNA 
metabolism or translation.  
 

2.5 BioID of Argonaute 2 during MCMV infection 

 

2.5.1 Generation of a stable cell line expressing BirA*-mAGO2 

 

A major criticism that can be made for the previous experiment is that the level of expression 

of BirA*-mAGO2 is several times higher than the endogenous expression level of AGO2 

(Figure 22-A). Moreover, it would be preferable to have a stable cell-line expressing BirA*-
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mAGO2 in an AGO2 knockout context, as the stable expression would prevent the inertia of 

de novo miRNA loading, and the absence of endogenous AGO2 expression would mean that 

every AGO2 molecule would be biotinylation proficient. For this reason we decided to use 

MEF AGO2 -/- (mouse embryonic fibroblasts) cells, obtained from AGO2 knockout mice 

(Liu et al., 2004), and created a stable cell-line expressing BirA*-mAGO2.  

 

 

Figure 24: Verification of BirA*-mAGO2 expression in MEF AGO2 -/- clones. 
Western blot analysis of clones selected for BirA*-mAGO2 expression, MEF wild type sample serves 
as a control for the endogenous expression level of mAGO2. MEF knockout sample comes from 
parental cells that served for the generation of the clones. Ponceau staining serves as loading control.  
 
For the generation of the stable cell line, we chose to clone BirA*-mAGO2 under the control 

of the EF-1α promoter as the CMV promoter is known to be prone to silencing (Gill et al., 

2001). After successful cloning of the expression vector and verification of its expression (not 

shown), it was linearized and transfected into MEF AGO2 -/- cells after blasticidin selection 

and amplification of selected clones, the expression of BirA*-mAGO2 was verified. Out of 

the 8 clones tested, subjected to different concentrations of blasticidin, only one clone was 

positive, which was named 14-1 (Figure 24). This clone still expresses higher levels of 

mAGO2 compared to wild type MEF cells, but it is closer to the endogenous level of AGO2 

when compared to the previous transient overexpression (Figure 24, Figure 22-A).  

 

2.5.2 Verification of the 14-1 clone for miRNA loading and biotinylation 

 

We then wanted to verify if BirA*-mAGO2 expressed in this clone was capable of loading 

miRNAs. To this end we performed an immunoprecipitation of mAGO2 in MEF wt cells and 

14-1 clone. We first analysed the immunoprecipitated RNA by Northern blot (Figure 25-A) 
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and by RT-qPCR (Figure 25-B). The Northern blot is not very clear, miR-27 signal in the 

immunoprecipitated fraction is not very high, although it shows that the immunoprecipitation 

has worked as in anti-BrdU samples no signal is detected (Figure 25-A). We also analysed the 

same samples by RT-qPCR, we are able to enrich miR-27 in AGO2 IP sample compared to 

the negative control BrdU IP 16 and 27 times (Figure 25-B). The same enrichment is also true 

for another cellular miRNA miR-24 (not shown). These fold change figures obtained are quite 

low, as in the literature for AGO2 immunoprecipitation in human cell-lines although it is a 

different antibody for hAGO2, enrichments of 1000 fold are standardly obtained (Dölken et 

al., 2010b). 

 

 
Figure 25: Immunoprecipitation of mAGO2 in MEF wild type and 14-1 cells. 
Anti-BrdU antibody was used as negative control. A. Northern blot analysis using a probe for 
endogenous miR-27. B. RT-qPCR analysis of endogenous miR-27 levels, fold enrichment was 
calculated by comparing the level of miR-27 in AGO2 IP versus BrdU IP. Error bars represent 
standard deviation from technical triplicates. 
 
We also wanted to be sure of the biotinylation capability of the 14-1 clone, so we performed 

biotin labelling for 24 hours with or without the addition of excess biotin to the culture media. 

We then performed pull-down of biotinylated proteins. Although normal culture media 

contains low levels of biotin and should permit biotinylation to some extent, we want to 

observe a difference in the quantity of biotinylated proteins. In the sample without any 

addition of biotin, we see several bands including the ones corresponding to endogenously 

biotinylated proteins, as expected with the addition of biotin to the culture media we can 

detect additional biotinylated bands (Figure 26-A). This is also visible on the silver nitrate 

staining that was performed on these same samples (Figure 26-B, left two lanes).  
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One of the critical steps of streptavidin pull-down, is the elution of biotinylated proteins 

before sending the sample for mass spectrometry analysis. We previously opted for the 

elution by boiling the beads in 0.1% SDS solution, as per the streptavidin beads 

manufacturer’s instructions. In the literature however, two other ways of proceeding to the 

mass spectrometry analysis after pull-down exist; one where tryptic digestion is performed 

directly on the beads and the other where biotinylated proteins are eluted by denaturation in 

SDS sample buffer followed by electrophoretic separation and mass spectrometry on protein 

bands (Roux et al., 2012). We suspected that these two other treatments might cause the 

contamination of the sample to be analyzed by a lot of streptavidin. In these control 

experiment, we performed a second elution step with SDS-sample buffer following the first 

elution to verify the efficiency of elution as well as the contamination levels of streptavidin 

(Figure 26-B). 

 

 

Figure 26: Biotinylation property of the clone 14-1.  
14-1 cells were incubated with or without excess biotin for 24 hours, followed by streptavidin pull-
down. The first elution was performed by boiling the beads in 0.1% SDS, after which the beads were 
resuspended in SDS sample buffer for the second elution. A. Western blot analysis of pulled-down 
proteins with streptavidin-HRP hybridization after the first elution. B. Silver nitrate staining of 
samples after each step of elution. *: show the bands corresponding to streptavidin monomer and 
polymers. 
 

First of all, quite a big percentage of the total biotinylated proteins bound by streptavidin 

beads stay attached after the first elution step as evidenced by the proteins coming off with the 

second elution step. Also, this second elution step causes a lot more streptavidin molecules 

(red asterisks) and possibly polymers to be detached and to mix with the sample (Figure 26-

B).   
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2.5.3 Identification of AGO2 partners during MCMV infection 

 

After verifying that 14-1 is functional for loading miRNAs and biotinylation, we finally went 

on to perform our proximity labelling in infection and non-infection conditions. For the 

elution step of bound proteins, we decided to go with the elution by boiling with 0.1% SDS, 

but after this first elution, we kept the beads and also performed trypsic digestion on them. As 

introduced earlier, we used two different MCMV strains in this experiment, the wild type and 

a mutant strain that carries three point mutations in its m169 transcript 3’UTR called 

(hereafter called MCMV mut168). This mutant is not capable of inducing the degradation of 

miR-27 as previously described by our laboratory (Marcinowski et al., 2012). The objective 

of this experiment is firstly, to identify AGO2 partner proteins by proximity labelling during 

MCMV infection compared to mock infection, secondly to compare MCMV wild-type and 

mut168 infection conditions to identify partners of AGO2 which would be involved in target-

directed miRNA decay. As biotin labelling is saturated around 24 hours of labelling and 

BirA*-mAGO2 is constitutively expressed, habitual partners of AGO2 would cause high 

background. So, to augment our chances of identifying proteins partnering with AGO2 during 

infection, we used a high multiplicity of infection (MOI) as it correlates with the rapidity of 

miR-27 degradation (Buck et al., 2010).  

 

Figure 27: Analysis of pulled-down biotinylated proteins after MCMV infection 
Cells were mock, MCMV wild type and MCMV mut168 infected for 24 hours and biotinylation was 
carried on for a total of 20 hours. After lysis each of the three samples were separated into three, to 
perform streptavidin pull-down and mass spectrometry analysis in technical triplicates. A. Silver 
nitrate staining of pulled-down proteins. B. Western Blot analysis of input and pull-down samples 
with streptavidin-hrp hybridization. M: Protein size marker. R: replicate number. *: Streptavidin 
monomer 
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The three conditions were therefore mock-infected cells, MCMV wt and MCMV mut168 

infected cells at MOI 10 for 24 hours, and biotin was added after 4 hours of infection (20 

hours of biotinylation). After lysis, each sample was separated into three technical replicates 

to test eventual differences in streptavidin pulldown and mass spectrometry analysis. Before 

sending samples to mass spectrometry analysis, samples were verified with silver nitrate 

staining, as well as western blotting revealed with streptavidin HRP (Figure 27). 

One thing that can be observed in the silver staining, is that the quantity of total proteins in 

every condition relative to the free streptavidin quantity is not very high, at least not as high 

as in previous experiments (Figure 27-A, 26-B, bands marked with asterisk). We are also not 

able to visualize any differential bands between samples (Figure 27-A and 27-B), however 

this does not necessarily mean that we would not be able to identify differences with the mass 

spectrometry analysis. The low level of biotinylated proteins is probably due to the more 

physiological expression level of BirA*-mAGO2, which is an issue as the quantity of 

endogenously biotinylated proteins can prevent the detection of the biotin tagged proteins that 

we want to identify.  

We first began by analysing proteins detached by the first elution step. As suspected, the 

analysis produced a low number of identified proteins, i.e. in between all the samples a total 

of 80 different proteins. Most of the identified proteins have very low spectral counts 

(complete list in Annex-3). The number of identified spectra for the four endogenously 

biotinylated proteins and streptavidin are presented in the Table 5.  

 

Table 5: Spectra identified for endogenously biotin tagged proteins and streptavidin. 

  Mock MCMV WT MCMV mut168 
Protein 
identity Protein description R1 R2 R3 R1 R2 R3 R1 R2 R3 

SAV Streptavidin 1307 1262 1339 1343 1316 1359 1371 1361 1356 

PYC 
Pyruvate carboxylase, 
mitochondrial 1 

1009 1055 1057 1030 1018 1085 1062 1063 1084 

PCCA 
Propionyl-CoA 
carboxylase alpha 
chain, mitochondrial 

378 377 392 333 315 342 341 363 353 

MCCA 
Methylcrotonoyl-CoA 
carboxylase subunit 
alpha, mitochondrial 

141 143 130 127 87 88 96 116 100 

ACACA 
Acetyl-CoA 
carboxylase 1 

48 43 44 38 34 41 36 32 39 
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The number of spectra identified for these proteins are quite similar in each sample and 

replicate, meaning that the total quantity of biotinylated proteins was roughly the same. This 

is also true for spectra coming from streptavidin showing that the same amount of streptavidin 

beads has been utilized. All in all, this demonstrates the good reproducibility of the 

streptavidin enrichment and mass spectrometry analysis steps.   

Table 6: Spectra identified for AGO2 and its known direct and indirect partners 

  Mock MCMV WT 
MCMV 
mut168 

Protein 
identity 

Protein description R1 R2 R3 R1 R2 R3 R1 R2 R3 

Ago2 Protein argonaute-2 (BirA* fusion) 112 121 121 101 89 103 103 106 107 

Hsp90ab1 Heat shock protein HSP 90-beta 19 20 22 17 20 24 24 21 23 

Hsp90aa1 Heat shock protein HSP 90-alpha 5 4 5 5 5 8 8 7 6 

Hspa8 Heat shock cognate 71 kDa protein 4 5 6 5 6 10 6 7 8 

Tnrc6b Trinucleotide repeat-containing gene 6B  9 8 13 6 7 8 5 7 6 

Tnrc6c Trinucleotide repeat-containing gene 6C  17 19 17 14 9 11 13 13 13 

Edc4 Enhancer of mRNA-decapping protein 4 18 20 24 27 28 20 32 27 28 

Cnot1 CCR4-NOT transcription complex subunit 1 4 2 4 1     1 

 

Concerning the other identified proteins, as expected, mAGO2 itself is a top hit, with around a 

hundred spectral counts identified. We also can detect HSP90 and HSC70 (also known as 

Hspa8) involved in the loading of miRNA into AGO2, TNRC6 proteins recruited by RISC to 

silence target mRNAs along with EDC4 and CNOT1 involved respectively in decapping and 

deadenylation of targets (Table 6). As this experiment was only performed once and we do 

not have high spectral counts for these AGO2 partners, we cannot consider this analysis as 

quantitative. As such, we can speculate only speculate at this point about the tendencies of 

these proteins in different conditions. To do that, we generated another table where we 

calculated the ratio of spectral counts of these proteins comparing wt or mut168 MCMV 

infection to mock by averaging the spectral counts in all three technical replicates (Table 7). 

We see a tendency for TNRC6B and C to go down with the infection. However, we cannot 

rule out at this stage that this might be due to the slight decrease in AGO2 counts. 

Nonetheless, this tendency is followed by CNOT1, although, this should be taken with 

caution as it is not identified in all the replicates. For EDC4, spectral counts go up with the 

infection. Different peptides of HSP90/HSC70 also increase in spectral counts with the 

infection, this might be explained by the need to load the viral encoded miRNAs into AGO2 

(Table 6 and 7).  
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Table 7: Ratios of the spectral of counts of AGO2 partners between WT and mut168 

compared to mock infection 

  Ratio 

Protein identity Protein description WT/Mock Mut168/mock 

Ago2 Protein argonaute-2 (BirA* fusion) 0.83 0.89 

Hsp90ab1 Heat shock protein HSP 90-beta 1.00 1.11 

Hsp90aa1 Heat shock protein HSP 90-alpha 1.29 1.50 

Hspa8 Heat shock cognate 71 kDa protein 1.40 1.40 

Tnrc6b Trinucleotide repeat-containing gene 6B 0.70 0.60 

Tnrc6c Trinucleotide repeat-containing gene 6C 0.64 0.74 

Edc4 Enhancer of mRNA-decapping protein 4 1.21 1.40 

Cnot1 CCR4-NOT transcription complex subunit 1 0.3 0.3 

 
Concerning viral encoded proteins, we have only two proteins identified and only in MCMV 

wt infection condition. These are m142 and m86 proteins from MCMV (Annex 3). As they 

are only identified in 2 out three technical replicates with very few spectral counts, we cannot 

rely upon these results to make any conclusions. The fact that we did not identify viral 

proteins might be due a low level of infection or that viral proteins do not interact with 

AGO2. MCMV might choose to use its RNAs instead of its proteins to interact with the 

miRNA pathway, like in the case of miR-27 and m169 as it might be a quicker and more 

efficient means compared to using proteins.  

 

Figure 28: Analysis of miR-27 expression and MCMV transcripts by RT-qPCR 
A. miR-27 expression levels, mock infection is normalized to 1. B and C. Relative expression of IE1 
and m169, MCMV wt is normalized to 1.  
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We measured the level of infection and the level of miR-27 degradation by qPCR (Figure 28). 

The levels of m169 in MCMV wt and mut168 is very similar (Figure 28-C), this is also true 

for another viral transcript IE1 (immediate early 1) (Figure 28-B). Concerning miR-27 level, 

we see that after 24h of infection, its levels drop to 70% compared to it levels in mock or 

mut168 infected conditions (Figure 28-A). This is not a very high level of degradation 

compared to Hepa 1.6 cells that we were infecting with an equivalent MOI with centrifugal 

enhancement, which had %50 of miR-27 degradation after (Haas et al., 2016). This can be 

due to our infection protocol that does not include centrifugal enhancement for cell culture 

format reasons. On the other hand, different cell-lines can demonstrate different efficacies of 

TDMD for example in neuronal cells TDMD is more efficient than in fibroblasts (de la Mata 

et al., 2015). It might be interesting to measure TDMD efficiencies in different cell lines, in 

order to choose one that has high efficiency if we want to identify factors implicated in 

TDMD.   

This mass spectrometry analysis was performed with the first elution off the streptavidin 

beads, since previously we saw that a lot of material stays on the beads (Figure 26-B), we 

decided to carry out on bead tryptic digestion to perform another mass spectrometry run with 

the same samples. We wanted to compare the two elutions, to see if there would be a 

difference in the identification of peptides, especially concerning streptavidin contamination. 

Unfortunately, the second elution produced very low quality results, due to a strong polymer 

contamination coming from the beads. Future optimisation efforts should be focused on 

finding the appropriate solution for elution of peptides from streptavidin beads.  
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2.6 Materials and methods 

 

2.6.1 Plasmids and cloning 

 

Mouse mAGO2 (Accession BC129922) was cloned in the pEGFP-C2 expression vector 

(ClonTech) using the restriction sites EcoRI/BamHI. Mouse mAGO2 (Accession BC129922) 

was cloned in the pcDNA3.1(+) vector (Invitrogen) with sites EcoRI/NotI, this plasmid was 

modified with the addition of myc-BirA* (addgene #35700) coding sequence by the use of 

NheI/HindIII sites. For the creation of stable cell line, first the pcDNA3.1(+) vector 

(Invitrogen) was modified, SV40 promoter and neomycin resistance was taken out by NaeI 

digestion and this fragment was replaced with a fragment containing SV40 promoter, an EM7 

promoter and blasticidin resistance obtained from plenti6-DEST plasmid (Invitrogen) with a 

digestion by XmnI/DraI. On the other hand, CMV promoter on pcDNA3.1(+) expressing 

myc-BirA*-mAgo2 vector was taken out by MluI/NheI and replaced by EF1-α promoter 

taken with digestion by MluI/XbaI from pEF5/FRT/V5/gw-cat (Invitrogen) plasmid after 

excision of gateway cassette with EcoRV sites. The final plasmid used eventually for stable 

cell line called pEF5-mycbirA*-mAGO2 from the ligation of; the backbone of modified 

pcdna3.1(+) blasticidin resistance plasmid produce by MluI and XbaI digestion and the insert 

fragment coming from last plasmid taken out with MluI and XbaI.  

 

2.6.2 Oligonucleotide sequences  

 

Cloning 

pcDNA3.1-mAGO2-F DNA GGAATTCAATGTACTCGGGAGCCGGCCC 

pcDNA3.1-mAGO2-R DNA GAAAAAAGCGGCCGCTCAAGCAAAGTACATGGTGC 

pEGFP-mAGO2-F DNA GGAATTCATGTACTCGGGAGCCGGCCC 

pEGFP-mAGO2-R DNA CGGGATCCTCAAGCAAAGTACATGGTGC 

pcDNA3.1-mycBirA*-

F 
DNA CTAGCTAGCATGGAACAAAAACTCATCTCAG 

pcDNA3.1-mycBirA*-

R 
DNA CCCAAGCTTATGGAACAAAAACTCATCTCAG 

Northern blot 

Anti-miR-27  LNA GCGGAACTTAGCCACTGTGAA 
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RT-qPCR 

miR-27 (qPCR) DNA TTCACAGTGGCTAAGTTCCGC 

miR-24 (qPCR) DNA TGGCTCAGTTCAGCAGGAACAG  

PPIA-F (qPCR) DNA GCGGCAGGTCCATCTACG  

PPIA-R (qPCR) DNA GCCATCCAGCCATTCAGTC 

IE1-F (qPCR) DNA GTTACACCAAGCCTTTCCTGGAT 

IE1-R (qPCR) DNA TGTGTGGATACGCTCTCACCTCTAT 

m169-F (qPCR) DNA ATCTTCTTCGGCGTTAGCGA  

m169-R (qPCR) DNA TGAGGTCCAGGTCGTGTGA  

 

2.6.3 Cell culture and transfection 

Hepa 1.6 cells, MEF and MEF Ago2 -/- (Liu et al., 2004) cells were cultured in Dulbecco's 

modified Eagle’s medium (DMEM) supplemented with 10% (v/v) fetal calf serum at 37°C in 

a humidified 5% CO2 atmosphere. Hepa 1.6 cells were transfected with Turbofect reagent 

(Thermo Scientific), and MEF cells with lipofectamine 2000 (Invitrogen) according to 

manufacturer’s instructions, at the moment of transfection, biotin (sigma Aldrich) (dilution 

from 25mM Biotin stock in 100mM sodium phosphate buffer or directly dissolved in DMEM) 

was added to the desired concentration.  

 

2.6.4 Stable cell line generation 

 

The plasmid pEF5-mycbirA*-mAGO2 was first linearized by AatII digestion, followed by 

phenol/chloroform purification, ethanol precipitation. MEF Ago2 -/- cells were transfected in 

6 well plates with lipofectamine 2000. 48 hours after transfection, cells were detached and 

5x105 cells were reseeded to 10 cm plates with blasticidin selection at 10, 12, 14 and 16 

µg/ml. Blasticidin was refreshed every 3 days, after a week colonies appeared and they were 

picked into 24 well plates. After colonies were amplified into 25 cm2 flasks, they were 

analysed by Western blot for BirA*-mAGO2.  

 

2.6.5 Immunoprecipitation 

 

Approximately 107 MEF WT and MEF Ago2 -/- 14-1 cells were harvested, washed twice 

with ice-cold phosphate-buffered saline (1× PBS), and resuspended in 2 mL of NET buffer 

(50 mM Tris HCl [pH 7.4], 150 mM NaCl, 1 mM EDTA, 0.1% triton), supplemented with 
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Complete-EDTA-free Protease Inhibitor Cocktail (Roche). Cells were lysed for a totalof 30 

min by incubation on ice including three 30 seconds sonications. Debris were removed by 15 

min centrifugation at 16,000 g at 4°C. An aliquot of the cleared lysates (100 µL) is kept aside 

as RNA Input. The rest of the lysate was divided into two and mono clonal anti-BrdU 

antibody (Abcam) or anti-mAGO2 6F4 monoclonal antibody (kindly provided by G. Meister) 

are added and samples are incubated for 1 hour at 4°C under tumble-over rotation (18 rpm). 

Then, 50 µL of Protein-G-Agarose beads (Roche) was added and the samples were rotated 

similarly for another hour. After three washes in NET buffer and a fourth wash in NET buffer 

without Triton. The 100µl of input aliquot and the beads are taken into 1ml of Tri-Reagent 

Solution (MRC, Inc) for further RNA extraction.  

 

2.6.6 RNA extraction and northern blot 

 

RNA was extracted using Tri-Reagent Solution (MRC, Inc) according to the manufacturer’s 

instructions, with IP fraction having an addition of 1µl of glycogen at the precipitation step.  

Northern blotting was performed with 80% of input fraction and 80% of IP fraction RNA. 

RNA samples were resolved on a 17.5% urea-acrylamide gel of 20 cm in length, transferred 

onto Hybond-NX membrane (GE Healthcare). RNAs were then chemically cross-linked to the 

membrane during 90 min at 65°C using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride (EDC) (Sigma). Membranes were pre-hybridized for 1 h in PerfectHyb™ Plus 

(Sigma) at 50°C. Probes consisted of oligodeoxyribonucleotides (Locked Nucleic Acids) 

which were 5′ end labelled using T4 polynucleotide kinase (Fermentas) with 25 µCi of [γ-

32P] ATP. The labelled probe was hybridized to the blot overnight at 50°C. The blot was then 

washed twice at 50°C for 20 min (5× SSC/0.1% SDS), followed by an additional wash (1× 

SSC/0.1% SDS) for 5 min. Northern blots were exposed to phosphorimager plates and 

scanned using a Bioimager FLA-5100 (Fuji). 

 

2.6.7 Western blot and antibodies 

 

Western blot analysis in this chapter were performed under the following conditions: anti-

mouse and anti-rabbit HRP secondary antibodies purchased from Sigma-Aldrich hybridized at 

1/10000 dilution. The secondary anti-rabbit-Cy5 antibody was used at 1/2500 dilution 

(Amersham) Streptavidin-Hrp was used at 1/10000 dilution (Pierce, Sulfo-Bed kit). Anti-myc 
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antibody used at 1/2000 dilution (Abcam). Anti-mAGO2 was used at 1/1000 dilution (Cell-

signaling). All the primary and secondary antibody incubation were performed in 5% non-fat 

milk in 1X PBS-0,3 % Tween buffer. Washes were performed in 1X PBS-0,3 % Tween 

buffer.   

 

2.6.8 Real time RT-PCR analysis  

 

The quantitative real-time PCR analysis was performed using Biorad CFX96. Prior to reverse 

transcription reaction, 1 µg of total RNA was treated with DNase I (Fermentas) according to 

the provider’s instructions for controlling MCMV infection level. After the Dnase treatment, 

samples were divided into two for RT and noRT control. Dnase treatment was not performed 

for immunoprecipitation of AGO2. Reverse transcription reaction was performed using 

miScript reverse transcription II kit (Qiagen) according to the manufacturer’s instructions. 

The resulting cDNA was PCR amplified with Maxima SYBR green kit (Fermentas) in 10 µL 

reaction volume. For the analysis of miRNA expression, the mature sequence of each miRNA 

was used to design the forward primer and (Qiagen) was used as reverse primer. Forward 

primers were used at 0.5 µM and reverse primers were used at and the miScript universal 

primer at 0.7x. For mRNA analysis forward and reverse primers were used at 0.25 µM each. 

The PCR program was composed of an initial denaturation step at 95°C for 10 min followed 

by 44 cycles at 95°C for 15 sec, 55°C for 30 sec and 72°C for 30 sec including melting curve 

analysis. Data were analyzed as described previously (Buck et al., 2010). 

 

2.6.9 Enrichment of biotinylated proteins by streptavidin pull down 

 

After biotin labeling cells (4x107 cells per condition) were washed with PBS and were lysed 

at 25°C in 2 ml lysis buffer (50 mM Tris, pH 7.5, 500 mM NaCl, 0.2% SDS, 1 mM DTT, and 

1x Complete protease inhibitor (Roche)) and 200µl of 20% Triton X-100 was added. Lysates 

were sonicated 5 times 30sec on/30sec off. 1.8ml of 4°C 50 mM Tris (pH 7.5) was added 

before additional sonication (3 times 30sec on/30 sec off), followed by centrifugation at 

16,000 relative centrifugal force for 15 minutes. Supernatants were separated into three 

replicates and incubated with 200µl of magnetic streptavidin beads (MyOne Steptavadin C1; 

Invitrogen) overnight at 4°C on a rotator. Beads were collected and washed twice for 8 min 

on the rotator at 25°C (all subsequent steps at 25°C) in 1 ml wash buffer 1 (2% SDS in 
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dH2O). Subsequent washes are with wash buffer 2 (0.1% deoxycholic acid, 1% Triton X-100, 

500 mM NaCl, 1 mM EDTA, and 50 mM Hepes, pH 7.5), once with wash buffer 3 (250 mM 

LiCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM EDTA, and 10 mM Tris, pH 7.5) for 8 min 

each. Lastly, beads were washed once more with 50mM Tris pH 7.5 to remove any remaining 

detergents. Finally to elute bound proteins, the wash solution is discarded and beads are 

resuspended in 150µl of 0.1% SDS and heated at 95°C for 5 min. After the elution beads were 

magnetized and the elution is transferred to a clean tube, ready to be sent to mass 

spectrometry analysis. For small scale experiments, the protocol stays the same except that a 

quarter of the amount of cells is used per condition to obtain on fourth of lysate volume along 

with 150µl of magnetic streptavidin beads is used.  

 

2.6.10 Mass spectrometry analysis 

2.6.10.1 Liquid Samples & In-Solution Approach 

2.6.10.1.1 Sample Preparation: in-solution trypsine digestion 

 

Samples were prepared as described in Romilly et al and Chicher et al (Chicher et al., 2015; 

Romilly et al., 2014). Each sample was precipitated with 0.1M ammonium acetate in 100% 

methanol, and proteins were resuspended in 50 mM ammonium bicarbonate. After a 

reduction-alkylation step (Dithiothreitol 5 mM - Iodoacetamide 10 mM), proteins were 

digested overnight with 1/25 (W/W) of sequencing-grade porcin trypsin.  

 

2.6.10.1.2 Mass Spectrometry: nanoLC-MS/MS analysis 

 

After digestion, the resulting vacuum-dried peptides were resuspended in 25µL of water 

containing 0.1% FA (solvent A). The peptide mixtures were analyzed on a nano HPLC Easy 

nLC 1000 system (Thermo Scientific) coupled to a Q exactive Plus mass spectrometer 

(Thermo Scientific) operating in positive mode. 5µL of each sample was loaded on a C-18 

precolumn (75 µm ID x 2 cm Acclaim Pepmap100; Thermo Scientific) at 2 µL/min in solvent 

A. After 10 min of desalting and concentration, the pre-column was switched online with the 

analytical C-18 analytical column (75 µm ID x 15 cm Pepmap100; Thermo Scientific) 

equilibrated in 95% solvent A and 5% solvent B (0.1% formic acid in acetonitrile). Peptides 

were eluted by using a 5%-40% gradient of solvent B at a flow rate of 300 nL/min. The 

duration of the analysis was 120min. The Q exactive Plus was operated in data-dependant 
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acquisition mode (DDA) with Excalibur. Survey MS scans were acquired in the 350-1500 m/z 

range. Up to 10 of the most intense multiply charged ions (2+ to 5+) were selected for CID 

fragmentation. After the conversion of the raw .psd files into a mascot generic file format 

(.mgf), experimental data were further processed to identify the peptides and proteins related 

to these spectra. 

 

2.6.10.2 Protein Identification & Relative Quantification 

 

2.6.10.2.1 Database search 

Data were searched against the UniProt database (release from 2013-01-09), Mus musculus 

taxonomy, using a fasta file consisting of a forward database (proteins from N- to C-terminal 

part) and a decoy database (reversed sequences from C- to N-terminal part, obtained by a Perl 

script, makeDecoyDB.pl from Bruker). We used Mascot as the database search algorithm 

(version 2.2, Matrix Science, London, UK) through the ProteinScape 3.1 package (Bruker). 

Peptide modifications allowed during the search were: N-acetyl (protein), 

carbamidomethylation (C), oxidation (M), biotine (K) and phophorylation (S) (T). Mass 

tolerances in MS and MS/MS were set to 10 ppm and 0.02 Da, respectively. Three trypsin 

missed cleavages sites were allowed. Peptide identifications obtained from Mascot were 

validated with p-value<0.05 and proteins were validated respecting FDR<1% (False-

Discovery Rate) 

 

2.6.10.2.2 Mass Spectrometry - based Quantification: Spectral Count approach 

 

A Spectral Counting (SpC) quantitative strategy was carried on using the Mascot 

identification results and Proteinscape 3.1 package (Thiele et al., 2010): a spectral count value 

was first attributed to each protein by counting the number of spectra matching to a given 

protein (all peptides, all charge states). As Spectral Counting is affected by the size of the 

protein, a normalization step was performed by dividing the SpC value by the molecular 

weight (MW) of the protein. Proteins identified in the same sample were then sorted 

according to their SpC/MW ratio, reflecting their relative abundance.
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DISCUSSION 
 

A miRNA, once loaded into RISC, will negatively regulate target mRNAs through sequence 

specific interactions by the recruitment of several factors through protein-protein interactions. 

For a longtime, miRNAs have been considered stable molecules, suggesting that the control 

of miRNA abundance would only act at the level of their biogenesis. Indeed, several 

examples of miRNA expression regulation at different levels of miRNA biogenesis have been 

uncovered. However, as other molecules in the cell, the abundance of a miRNA will depend 

on the balance between its biogenesis and stability. During certain conditions like 

environmental changes/stresses, development or the cell cycle, the expression level of certain 

miRNAs have been observed to rapidly change. This is not surprising as the cell has to adapt 

its genetic program to the ever-changing conditions and the miRNA pathway represents one 

of the ways to undertake this adaptation. In recent years, RNA sequence modification by non-

templated nucleotide additions has emerged as a new way to modulate miRNA action or 

stability. These modifications can affect miRNA by two different mechanisms either by 

modulating their activity towards target mRNAs or by modulating their stability.  

 

Target RNA-mediated miRNA degradation (TDMD) happens when a miRNA encounters a 

perfect or extensively matching target RNA which induces its modification by non-templated 

nucleotide additions (tailing) and subsequent degradation by trimming (Ameres et al., 2010; 

Baccarini et al., 2011). This is reminiscent of what happens to unprotected plant miRNAs and 

fly siRNAs since they function similarly by recognizing their targets with perfect match 

interactions. As mammalian and fly miRNAs do not have this protective modification, they 

are sensitive to TDMD in case of extensive pairing. One might speculate that animal miRNAs 

have evolved to engage in partially complementary interactions with their targets (Bartel, 

2009) to avoid degradation through TDMD, making extensive or perfect pairing of an animal 

miRNA to its target is a very rare occurrence (Yekta et al., 2004). 

 

So far, natural examples of TDMD have only been discovered during herpesvirus infections, 

where host miRNAs are targeted for degradation after pairing with viral RNAs (Cazalla et al., 

2010; Lee et al., 2013; Libri et al., 2012; Marcinowski et al., 2012). This demonstrates that 

viruses evolved to take advantage of TDMD, in order to modulate the cellular environment 

for their own benefit. This hypothesis is supported by the fact that the cellular miRNAs 
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targeted during HCMV and MCMV infection have anti-viral roles (Lee et al., 2013; 

Marcinowski et al., 2012).  

 

During my thesis, we have used MCMV infection and the interaction between m169 and 

miR-27 as a model to study several aspects of TDMD mechanism. Moreover, I set up 

conditions to perform proximity labeling of AGO2 during MCMV infection, in order to 

discover viral or host protein partners that might be differentially engaging in interactions 

with AGO2 during infection to modulate its activity. 

 

TDMD is a process that is triggered following extensive pairing of the miRNA to its target 

and relative abundance between the miRNA and the target is an essential component of this 

mechanism. In the case of miR-27/m169, the viral transcript is the most abundant one in 

infected cell (Juranic Lisnic et al., 2013). The bulge formed in the middle of miR-27 

interacting with m169 seems to be a common feature of other natural examples of TDMD, 

such as the ones occurring during HVS and HCMV infections (Cazalla et al., 2010; Lee et al., 

2013). The fact that viruses have evolved to maintain a bulge in the middle of the paired 

RNAs makes sense as otherwise the target would be subjected to slicing by AGO2. This is 

consistent with bulge targets being less efficiently suppressed by a miRNA than perfectly 

matching targets (Doench et al., 2003). Moreover, expression of a bulge target as a miRNA 

sponge can saturate a miRNA at a lower concentration than a perfectly matching target (Ebert 

et al., 2007). However, the bulge formed in the interaction between miR-27 and m169 is 

particularly large with 5 mismatches and 2 G:U wobbles, whereas a previous account in 

Drosophila only showed tolerance of a 3 nucleotide bulges for TDMD to occur (Ameres et 

al., 2010). The fact that in our experimental settings TDMD of miR-27 is abrogated when 

only the matching of the most 3’ proximal nucleotide of miR-27 is abolished, shows that the 

bulge is too large to accommodate any additional mismatch. In fact, we showed that the 

bulged interaction of miR-27/m169 is approximately 100-fold less efficient than perfectly 

matching anti-miR-27 for the induction of miR-27 tailing and trimming. The fact that TDMD 

can still be induced during infection is probably due to the fact that m169 is replacing what it 

lacks in efficacy with its high abundance, assuming that this bulged interaction is preferable 

to having a perfectly matching target site. The importance of the relative abundance between 

miRNA and the target in TDMD is backed up by findings of a recent TDMD study in 

neuronal cells, where TDMD was found to be more efficient for low compared to high 
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abundance miRNAs, and where the authors also showed that increasing the levels of a 

miRNA exogenously resulted in less efficient TDMD (de la Mata et al., 2015).  

 

TDMD of miR-27 is accompanied by its tailing and trimming during MCMV infection. 

Although it was not verified for HVS and HCMV infection, in other reports where TDMD is 

induced through expression of artificial highly complementary targets, the modification of the 

miRNA by nucleotide additions was shown to occur (Ameres et al., 2010; Baccarini et al., 

2011; de la Mata et al., 2015; Xie et al., 2012). Whether tailing and trimming occurs while the 

miRNA is still in AGO or if is first unloaded and then modified is an important question. In 

vitro, extensive binding of a miRNA to its target results in the unloading of the miRNA from 

AGO2 (De et al., 2013). This suggests that AGO is capable of ejecting the miRNA without 

the need for miRNA tailing. Initially, our laboratory had shown that extensively tailed miR-27 

species were less represented in AGO2-IP fractions compared to total RNA (Marcinowski et 

al., 2012). We later showed that the modification of the miR-27 by tailing was at least 

initiated while it is in AGO2 with some of the modified species still present inside AGO2. It 

therefore seems like the tailing of miR-27 would ultimately induce its unloading from AGO, 

which is similar to what others have observed where AGO2 immuno-precipitated fraction 

compared to total RNA is quite similar for the tailed miRNA (de la Mata et al., 2015). AGO 

proteins can carry a miRNA that is longer than a classical length miRNA, the most striking 

example is miR-451 which is accommodated in AGO2 in its a pre-miRNA form and can stay 

in AGO2 after its slicing with quite a long tail awaiting trimming (Cifuentes et al., 2010). 

 

We and others have shown that compared to miRNA-mediated mRNA repression that have 

been shown to work cooperatively when several binding sites are present on the target mRNA 

(Broderick et al., 2011; Grimson et al., 2007; Saetrom et al., 2007), TDMD works in a non-

cooperative manner, where multiple extensive binding sites do not appear to increase TDMD 

efficacy (de la Mata et al., 2015). This is probably why in none of the reported cases of 

TDMD during herpesvirus infections, target RNAs possess multiple binding sites for the 

miRNA (Cazalla et al., 2010; Lee et al., 2013; Libri et al., 2012; Marcinowski et al., 2012). 

This also makes sense, since multiple binding sites would increase the efficiency of miRNA-

mediated repression of the target RNA, reducing in turn the efficacy of TDMD. This finding 

adds to the current understanding of miRNA sponges, showing that different constraints act 

on TDMD-inducing sponges and sponges that titrate miRNAs. Recently discovered circular 

RNAs (circRNAs) that titrate miR-7, possess several dozens of miR-7 binding sites (Hansen 
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et al., 2013; Memczak et al., 2013). These binding sites are seed match only sites that do not 

induce TDMD of miR-7, and since the circular nature of this RNA makes it refractory to any 

miRNA mediated degradation, it can get away with having that many sites. This is true as 

long as the binding sites are canonical sites that do not induce miRNA induced slicing. 

Interestingly, a perfectly matching binding site for miR-671 is found on this circRNA 

controlling the levels of this circular sponge (Hansen et al., 2013).   

 

Our proteomic approach is based upon a previously described method that allows purification 

of AGO complexes programmed with a specific miRNA from cell lysates, through the use of 

biotinylated 2’O-methylated oligoribonucleotides that are partially complementary to the 

specific miRNA (Flores-Jasso et al., 2013). In our case, the biotinylated 2’O-methylated 

oligoribonucleotide has two functions: as an anti-miRNA it induces tailing and trimming of 

the miRNA, and the attached biotin allows the capture of TDMD nucleoprotein complexes 

whether the miRNA is loaded in AGO or not. This approach gave us among other factors, two 

really interesting candidates; one is TUT1 and the other is Dis3l2. TUT1 belongs to the family 

of TUTases which counts seven family members six of which has been shown to act on 

miRNA (Wyman et al., 2011). Since the tails of miR-27 during its destabilization are 

composed of A and U residues, TUT1 would make sense since it has been shown to have 

adenylyl and uridylyl-tranferase activities (Mellman et al., 2008; Trippe et al., 2003, 2006). 

Indeed, TUT1 action on miRNA has been tested by knockdown experiments which 

discovered that it adds 3’ A and U residues on miRNAs (Wyman et al., 2011) and it was 

shown to affect some miRNAs directly by 3’ nucleotide additions and broadly affect miRNA 

abundance independently of its nucleotidyl-transferase activity (Knouf et al., 2013). 

 

Dis3l2 is a 3’ to 5’ exoribonuclease that is involved in the degradation of polyuridylated RNA 

substrates, such as pre-let-7 (Chang et al., 2013; Ustianenko et al., 2013). This suggests that 

Dis3l2 recognizes its substrates by their 3’ uridine residues. To support this idea, in S. pombe, 

Dis3l2 has been shown to target mRNAs, and its depletion results in the accumulation of 

uridylated mRNAs, suggesting that it preferentially degrades uridylated RNA substrates 

(Malecki et al., 2013). Structural analysis of mouse Dis3l2 revealed its specificity toward U 

residues on which it acts the most effectively, with several U specific interactions made by the 

nuclease (Faehnle et al., 2014). Similarly to S. pombe, human Dis3l2 has been shown to be 

implicated in the degradation of a subset of mRNAs (Lubas et al., 2013), however in vitro 

experiments showed that Dis3l2 was capable of recognizing and degrading RNAs that have at 
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least a double adenine residues at their 3’ ends (Lubas et al., 2013). Other than on pre-let-7, 

TUTases and Dis3l2 have been shown to act synergistically in different contexts not only on 

mRNA but also on several types of noncoding RNA (Pirouz et al., 2016; Łabno et al., 2016; 

Thomas et al., 2015; Lim et al., 2014). In light of these accounts, we continued with the 

validation of the role of Dis3l2 and TUT1 in TDMD.  

 

Both m169 and miR-27 are localized in the cytoplasm therefore TDMD most likely occurs in 

the cytoplasm (Libri et al., 2012). Our two candidates should therefore be localized in the 

same cellular compartment as them. TUT1 was shown to be a nuclear protein in earlier 

reports (Mellman et al., 2008), but it was recently shown to be also cytoplasmic under specific 

conditions (Mohan et al., 2015). Our experiments confirm the cytoplasmic localization of 

TUT1 and Dis3l2 as well as the nuclear and cytoplasmic localization of AGO2 in agreement 

with previous reports (Ameyar-Zazoua et al., 2012; Lubas et al., 2013; Malecki et al., 2013). 

Although, TDMD most likely occurs in the cytoplasm, one might speculate that at least some 

steps could take place in the nucleus. A particularly interesting example is miR-29b that 

harbors a U rich motif in its middle region required for its fast turnover (Zhang et al., 2011) 

and also happens to be a miRNA mostly localized in the nucleus (Hwang et al., 2007). 

Similarly, HSUR1-induced miR-27 degradation might also in part happen in the nucleus as 

HSUR1 and miR-27 containing RISC might shuttle between the cytoplasm and the nucleus 

(Cazalla et al., 2010). 

 

Our efforts in validating TUT1 function in TDMD failed, this might either mean that TUT1 is 

indeed not implicated in TDMD or that its implication might have been difficult to 

demonstrate due to several reasons. One reason might be due to the fact that TUTases are 

known to complement each other, as was already shown by the redundant action of TUT2, 

TUT4 and TUT7 on different RNA substrates (Heo et al., 2012; Kim et al., 2015; Lim et al., 

2014). Moreover, knockdown of some TUTases has been reported to cause an elevation of the 

expression levels of other TUTases (Wyman et al., 2011). Indeed, following the knockdown 

of TUT1, several miRNAs have been shown to acquire new tails possibly due to the action of 

other enzymes (Knouf et al., 2013). Similarly in plants, hen1 null mutants show miRNA 

polyuridylation by the action of HESO1 due to the loss of miRNA 2’O-methylation (Zhao et 

al., 2012), however in double hen1 heso1 null mutants, some miRNAs still show 

polyuridylation and this has been shown to be catalyzed by the action of URT1 (Wang et al., 

2015b). These results confirm that TDMD is a complicated process that might involve several 
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redundant actors not only in the tailing but also trimming process. Since with the advent of 

CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 

protein) technology, creating a knock-out cell line is becoming more and more routine, it can 

be used to create knock-out cell-lines for single or multiple TUTases. However, failure to 

generate a double knockout of TUT4 and TUT7 has already been reported, suggesting their 

combined activity to be essential (Lim et al., 2014). Other TUTases might also be essential 

however either alone or in combination, and two recent studies reported a list of essential 

genes in human cell lines (Blomen et al., 2015; Wang et al., 2015a) which will be helpful to 

determine an experimental strategy for gene function studies. TUT1 was among these 

essential genes, indicating that it will prove difficult to study its involvement in TDMD by 

generating knock-out cell lines. 

 

Dis3l2 knockdown did allow us to detect by small RNA sequencing a small reduction in the 

trimming of miR-27 after TDMD induction by anti-miR-27. However, we could more clearly 

observe a significant stabilization of miR-27 when we overexpressed a catalytic mutant of 

Dis3l2 and when TDMD was induced through transfection of anti-miR-27 or by MCMV 

infection. The catalytic mutant of Dis3l2 was previously defined to be unable to degrade its 

substrate but nonetheless keep its ability to bind its RNA substrates (Faehnle et al., 2014; 

Lubas et al., 2013; Ustianenko et al., 2013). This might be expected as Dis3l2 is a highly 

processive enzyme and its knockdown by siRNA will never result in its complete clearance at 

the protein level. However, in either condition the miRNA stabilization was not complete. As 

miR-27 tails are composed of a mix of A and U residues during infection and Dis3l2 has an 

affinity toward U stretches, we might only have been able to stabilize those that possess U 

tails but not A tails. To verify this, we should perform small RNA sequencing in the 

overexpressed Dis3l2 catalytic mutant condition and look at the identities of the tails of 

stabilized miR-27 species, a similar approach to (Pirouz et al., 2016). Ultimately, we should 

knock-out Dis3l2 with CRISPR/CAS9 and challenge these cells with MCMV infection to 

observe miR-27 tails. Although we observed the stabilization of miR-27 with the 

overexpression of the catalytic mutant, it may very well be due in part to this mutant binding 

to and remaining bound on an RNA in proximity of AGO, thereby preventing the action of 

other exoribonucleases on miR-27. Cross-linking immunoprecipitation of Dis3l2 catalytic 

mutant followed by RNA sequencing can give us the answer regarding the availability of 

miR-27 as a direct substrate. Furthermore, redundancy between exoribonucleases might again 

be at play here, as redundancy in miRNA degradation has been shown in other organisms: in 
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plants several SDNs have to be depleted together to give rise to an observable phenotype 

(Ramachandran and Chen, 2008); and XRN1 and XRN2 act redundantly on miRNAs in C. 

elegans during TMMP (Chatterjee et al., 2011).  

 

Tailing of the miRNA by non-templated nucleotide additions during TDMD is thought to 

signal the miRNA for degradation by trimming, this same signal also occurs on unprotected 

plant miRNA and fly siRNAs. These tails mostly are composed of A and U residues and 

uridylation of RNAs have been associated with degradation in several organisms (Lim et al., 

2014; Shen and Goodman, 2004; Wang et al., 2015b; Zhao et al., 2012). However, one could 

also imagine that other kinds of modifications could also work as signals to regulate miRNAs, 

like chemical changes on the RNA molecule that would be undetectable by most popular 

miRNA detection methods or be refractory to cloning applications for sequencing. One 

example of chemical modification involved in miRNA biogenesis is methylation. 5’ 

monophosphate of pre-miR-145 and pre-miR-23b are O-methylated by a human RNA 

methyltransferase called BCDIN3D, that interferes negatively with the recognition of these 

pre-miRNA by Dicer, thereby regulating their biogenesis (Xhemalce et al., 2012). Global N6-

Methyladenosine (m6A) methylation of pri-miRNA by methyltransferase like 3 (METTL3) 

have recently been discovered, this modification helps DGCR8 recognition of pri-miRNAs 

(Alarcón et al., 2015). This modification is suggested to mark pri-miRNAs for recognition by 

the Microprocessor, helping it discriminate against other hairpin structures. Research on these 

kinds of modifications could reveal a new layer of complexity in miRNA regulation that 

remains for now obscure.  

 

The study of host-virus interaction has helped to advance our understanding of many cellular 

processes. miRNA pathway is one of the levels of interaction that viruses and their hosts use 

to engage in with each other. Several viruses have evolved to use the host machinery to 

express their own set of miRNAs, as they represent a non-immunogenic tool to modulate the 

host gene expression program. Moreover, viruses have been shown to interact with the 

cellular miRNA pathway at different levels: acting at the level of miRNA turnover like in 

HVS, HCMV and MCMV infections that induce specific degradation of cellular miRNA; 

acting more globally on host miRNA, HIV-1 has been shown to downregulate Dicer (Coley et 

al., 2010), Exportin-5 blockade by noncoding RNA VA1 in adenovirus infected cells (Lu and 

Cullen, 2004) or VP55 expressed by vaccinia virus that induces the clearance of host miRNAs 

(Backes et al., 2012). Lastly, post translational modifications like poly-ADP-ribosylation of 
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Argonaute has been shown to occur during stress conditions (Leung et al., 2011), including 

infections by RNA viruses  (Seo et al., 2013). It has been suggested that the reduction in the 

activity of RISC mediated silencing is advantageous to the host. This shows that viruses 

interact with the host miRNA pathway by employing several strategies either by acting on 

RNA or on protein level. 

 

By using MCMV infection as a model we started to set up a protocol to identify AGO2 

partners during infection to discover factors that would interact with AGO2 and modulate its 

activity. To this end, we have chosen a proximity labelling approach called BioID which 

presents several advantages over classical methods of purifying complexes of interest, as 

discussed previously. Although we were able to identify known partners of AGO2, we 

encountered several problems in the realization of this approach that has limited our analysis 

to the identification of a small number of proteins with few spectral counts. Some of these 

problems are due to drawbacks inherent to this technique.  

  

BioID technique allows to pulldown and identify naturally biotinylated proteins found in the 

cell, when the labelling efficiency is low, the proportion of tagged proteins of interest will be 

smaller compared to those naturally biotinylated. Indeed, in our experiment we found that our 

samples contained a lot of naturally biotinylated proteins. Low levels of labelling can either 

result from low expression of BirA* tagged protein of interest or shorter than necessary times 

of labelling. In our case, we want to stay as close as possible to the expression level of 

endogenous AGO2 with the expression of our tagged BirA*-mAGO2. Overexpression of bait 

proteins can result in an interaction network or subcellular localization that might not be 

physiological. This can be observed for AGO2 in a recent study, where its partners identified 

following the immunoprecipitation of overexpressed tagged AGO2 or of endogenous AGO2 

were quite different (Kalantari et al., 2016); or for GFP-tagged Dicer’s localization that is 

strictly cytoplasmic when its expression is controlled by its endogenous promoter (Much et 

al., 2016) compared to previous studies that demonstrated that it can also be nuclear when 

overexpressed (White et al., 2014). For these reasons, we do not want to increase the 

expression level of our BirA*-mAGO2. Lengthening the time of labelling past 24h of 

infection would ameliorate this ratio, however the choice of time of labelling will also depend 

on the time window of infection we want to visualize. We chose 24h of infection to increase 

our chances to identify proteins involved in TDMD as well as proteins that might be involved 
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in RISC turnover as a strong expression of viral miRNAs happens during this time window 

(Dölken et al., 2007).  

 

Streptavidin contamination is another source of problem when it comes to the identification of 

our biotinylated proteins. As we elute pulled-down proteins by heating, this treatment 

contaminates the sample to some degree with streptavidin molecules released from the beads. 

The contaminating streptavidin molecules will hamper the mass spectrometry analysis, by 

masking the identification of other peptides if they are over-represented by allocating 

unnecessary time during mass spectrometry. To minimize this problem, one should not use 

more streptavidin beads than necessary. A bead titration step must be performed to determine 

the minimal quantity of beads required for the experiment (Hung et al., 2016). Following the 

pull-down, we performed our analysis by eluting our pulled-down proteins by heating the 

beads at the end of the protocol, however other methods of elution exist in the literature. On-

bead trypsic digestion can be used or alternatively proteins can be eluted by boiling in sample 

buffer followed by gel separation and band cutting. The latter might be a good solution to our 

problem as it can help getting rid of some of the low-molecular weight contaminants like 

streptavidin. This also gives the advantage to target specific parts of the gel to prioritize 

analysis of the areas of interest. However, gel separation and cutting bands during the sample 

preparation can increase the vulnerability of the sample to typical sources of contamination 

like keratins, and as such it might be better to try and avoid them. One method that has been 

proposed to minimize the detrimental effects of contaminant proteins for mass spectrometry 

analysis is to modify the run with an exclusion list. This list that contains the masses of 

typical contaminants is provided to the mass spectrometer and commands it to ignore those 

masses in order to allocate more time to identify peptides of interest. This list has been 

developed for the most classical contaminants like keratins and trypsin in mass spectrometry 

runs (Hodge et al., 2013). In our case, we can imagine to include in the exclusion list, the 

masses of peptides deriving from streptavidin and the naturally biotinylated proteins, this 

could potentially increase the efficiency of our analyses. As such, several steps of our 

labelling, pull-down and analysis are to be improved in order to be able to get the optimal 

conditions to identify proteins of interest. 

 

With our approach we could identify known partners of Argonaute or proteins implicated in 

the miRNA pathway like TNRC6 (Lian et al., 2009; Pfaff et al., 2013), CNOTI (Chekulaeva 

et al., 2011), EDC4 (Jonas and Izaurralde, 2013)  and HSP90 (Iwasaki et al., 2010; Johnston 
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et al., 2010). The spectral counts of these factors seem to have a tendency to go up or down 

slightly in infection conditions compared to the mock, although at this stage we can only 

speculate about these tendencies. We observed TNRC6 and CNOT1 to have lower spectral 

counts in infection conditions, which might indicate less miRNA mediated repression 

happening during infection. Alternatively, this decrease might be due to the fact that BirA*-

mAGO2 counts also go down with infection. Decreasing mAGO2 spectral counts in infection 

might be due to cell death occuring in infection conditions, however this seems improbable 

since we virtually have the same spectral counts for naturally biotinylated proteins, meaning 

that we probably had the same number of cells for each conditions at the beginning of the 

pull-down. This hypothesis might be supported by the increase observed in HSP90/HSC70 

spectra which would make sense as viral miRNAs are being synthesized, putting more AGO2 

in the process of loading miRNAs. However, we did not identify Dicer or TRBP in any of our 

conditions, the levels of which would also need to go up if the latter were true, as they are the 

other members of the RISC loading complex (Chendrimada et al., 2005; Gregory et al., 2005; 

Maniataki and Mourelatos, 2005).  

 

In order for our experiment to be quantitative, we first of all have to repeat it several times, to 

account for biological and technical variations. Analysis of the mass spectrometry data can be 

implemented by normalization methods that will allow for relative quantification between 

conditions. For a semi-quantitative proteomic analysis, we can use normalized spectral index 

(SINQ) method (Griffin et al., 2010). This label free quantitation method calculates a 

normalized spectral count that will depend on several parameters of all the peptides for the 

identified protein and first normalized to correct for protein loading differences in different 

datasets and normalized again with protein length as they can produce many more peptides 

than small proteins. This method was applied recently in a study that identified AGO2 

partners in the cytoplasm as well as in the nucleus (Kalantari et al., 2016). We can also go 

with stable isotope labeling with amino acids in cell culture (SILAC) to label our different 

conditions with light and heavy amino acids that would allow us to relatively quantify the 

abundance of each protein in each condition. This method has been used to identify AGO2 

partner proteins in the presence or absence of miRNAs (Frohn et al., 2012). 

Finally, the proximity labelling approach offers us the possibility to identify not only the 

direct partners of AGO2 but also the proteins that are in its proximity like RBPs. They are 

involved in the modulation of the activity of RISC like it was demonstrated for HUR or PUM 



 

 84 

(Kedde et al., 2010; Meisner and Filipowicz, 2011). As the miRNA modifying enzymes like 

TUTases or exoribonucleases act on a broad spectrum of RNA substrates, their specificity 

towards miRNA can be oriented by accessory proteins, for which RBPs would be candidates. 

However, these interactions could be detectable only under certain conditions or be too 

transient to be detected by classical immunoprecipitation approaches. BioID approach is a 

valuable technique that can overcome those limitations (Lambert et al., 2015). This method 

coupled to an infection model can allow us to broaden our understanding of the regulation of 

the miRNA pathway not only through the action of its protein partners but also by post 

translational modifications on its components.  

Finally, this work allowed us to get some insights into how TDMD works. The fact that 

TDMD is a conserved cellular process that viruses take advantage of shows the importance of 

this mechanism. The importance of the homeostasis of the miRNA pathway is increasingly 

evident as at every level of the miRNA pathway there are examples of regulatory processes. 

TDMD is a rapid and efficient means of active regulation of miRNA activity through its 

stability. Highly abundant extensively complementary target RNAs whether they are coding 

or non-coding can potentially induce TDMD of a cognate miRNA. Neuronal cells have been 

shown to have highly effective TDMD, probably due to their needs that require highly 

dynamic and local regulation of gene expression. We showed the implication of Dis3l2 in the 

trimming step of TDMD. This enzyme has emerged as a regulator of mRNA but also non-

coding RNAs like pre-miRNAs and snRNAs. As substrates of Dis3l2 are 3’end uridylated 

RNAs, it has a tight relationship with TUTases as their prior action is required. TDMD is an 

additional model to study how Dis3l2 and TUTases can synergistically act on RNAs. 

Redundancy of certain TUTases also hints to the robustness of RNA metabolism, which can 

be a barrier to assess the implication of one particular TUTase. It would anyway be surprising 

to think that only one enzyme would be responsible for the tailing or trimming of all 

miRNAs, considering the diversity of processes that miRNAs are engaged in, several 

enzymes and accessory proteins are likely involved. As such, our proteomic approach can be 

fruitful by allowing us to discover not only RNA modifying enzymes but also other factors 

that can modulate the activity of the RISC either by post-translational modifications or by 

association with RNA binding proteins.  
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Annex 1: Complete list of identified proteins in the GFP-mAGO2 sample 
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Protein 

identity 
Protein description 

Spectra 

# ▼ 

SC 

[%] 

MW 

[kDa] 
pI 

Mascot 

Score 

RMS 

[ppm] 

ACACA Acetyl-CoA carboxylase 1 GN=Acaca 1636 75.7 265.1 5.9 1,5483.6 4.61 

PYC 
Pyruvate carboxylase, mitochondrial   

GN=Pc 
1202 77.2 129.6 6.3 8329.4 4.63 

MCCA 
Methylcrotonoyl-CoA carboxylase subunit 

alpha, mitochondrial GN=Mccc1 
578 73.8 79.3 8.5 4665.0 4.10 

PCCA 
Propionyl-CoA carboxylase alpha chain, 

mitochondrial  GN=Pcca 
313 66.9 79.9 6.9 3664.4 4.02 

K1C10 Keratin, type I cytoskeletal 10 GN=Krt10 23 9.6 57.7 4.9 300.2 5.30 

K2C1 Keratin, type II cytoskeletal 1 GN=Krt1 16 5.2 65.6 9.2 268.4 3.08 

K2C6A Keratin, type II cytoskeletal 6A GN=Krt6a 14 5.8 59.3 8.9 215.0 2.73 

K2C73 Keratin, type II cytoskeletal 73 GN=Krt73 12 5.9 58.9 9.3 199.0 3.55 

HSP72 
Heat shock-related 70 kDa protein 2 

GN=Hspa2 
9 6.6 69.6 5.4 174.2 2.25 

K2C8 Keratin, type II cytoskeletal 8 GN=Krt8 8 2.9 54.5 5.6 159.3 17.24 

TBA1C Tubulin alpha-1C chain GN=Tuba1c 8 8.0 49.9 4.8 170.3 6.62 

ACTB Actin, cytoplasmic 1 GN=Actb 8 13.3 41.7 5.2 178.4 5.91 

CL023 
UPF0444 transmembrane protein C12orf23 

homolog 
7 67.0 11.5 9.8 159.4 4.28 

SRRM2 
Serine/arginine repetitive matrix protein 2 

GN=Srrm2 
7 2.7 294.7 12.6 299.6 7.78 

K1C15 Keratin, type I cytoskeletal 15 GN=Krt15 6 6.0 49.1 4.6 147.8 2.89 

K2C79 Keratin, type II cytoskeletal 79 GN=Krt79 6 4.0 57.5 8.6 134.4 2.79 

K22E 
Keratin, type II cytoskeletal 2 epidermal 

GN=Krt2 
5 5.0 70.9 9.1 203.2 11.98 

SON Protein SON GN=Son 4 1.4 265.5 5.4 158.2 2.75 

HS90B 
Heat shock protein HSP 90-beta 

GN=Hsp90ab1 
4 3.2 83.2 4.8 150.6 3.38 

G3P 
Glyceraldehyde-3-phosphate dehydrogenase 

GN=Gapdh 
2 7.2 35.8 9.2 75.1 2.91 

 

Spectra #: Number of fragmentation MS/MS spectra observed for a given protein. SC%: 
Sequence coverage expressed in percentage. MW: molecular weight of the identified protein 
in kDa. pI: isoelectric pH. RMS: Mass error expressed in ppm. 
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SC 
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PYC 
Pyruvate carboxylase, mitochondrial  

GN=Pc 
1037 75,6 129,6 6,3 7291,5 4,68 

ACACA Acetyl-CoA carboxylase 1  GN=Acaca 714 66,2 265,1 5,9 9385,4 4,15 

AGO2 Protein argonaute-2  GN=Eif2c2 600 78,1 97,2 10,1 5451,8 4,54 

MCCA 
Methylcrotonoyl-CoA carboxylase subunit 

alpha, mitochondrial  GN=Mccc1 
241 67,2 79,3 8,5 2959,2 5,28 

PCCA 
Propionyl-CoA carboxylase alpha chain, 

mitochondrial  GN=Pcca 
217 60,9 79,9 6,9 2879,2 4,18 

HS90B 
Heat shock protein HSP 90-beta  

GN=Hsp90ab1 
185 57,2 83,2 4,8 2652 5,76 

VIGLN Vigilin  GN=Hdlbp 182 39,5 141,7 6,4 2884,4 5,19 

ES8L2 
Epidermal growth factor receptor kinase 

substrate 8-like protein 2  GN=Eps8l2 
126 45 82,2 6,8 1729,9 5,18 

HNRPK 
Heterogeneous nuclear ribonucleoprotein K  

GN=Hnrnpk 
112 52,9 50,9 5,3 1319,2 4,68 

HSP7C 
Heat shock cognate 71 kDa protein  

GN=Hspa8 
103 41,3 70,8 5,2 1738,5 6,03 

NUCL Nucleolin  GN=Ncl 98 28,3 76,7 4,5 1461,4 5,36 

TLN1 Talin-1  GN=Tln1 95 24,2 269,7 5,8 2163,2 5,07 

CSDE1 
Cold shock domain-containing protein E1  

GN=Csde1 
93 32,1 88,7 5,9 1495,1 6,83 

IF4G1 
Eukaryotic translation initiation factor 4 

gamma 1  GN=Eif4g1 
83 20 176 5,2 1561,4 4,37 

IF5 
Eukaryotic translation initiation factor 5  

GN=Eif5 
76 31 48,9 5,2 895,5 4,01 

PRUNE Protein prune homolog  GN=Prune 75 51,5 50,2 4,8 1275,1 6,33 

PCBP1 Poly(rC)-binding protein 1  GN=Pcbp1 73 70,8 37,5 6,8 1005 4,04 

TCPQ T-complex protein 1 subunit theta  GN=Cct8 64 52 59,5 5,3 1277,7 4,06 

NUDC Nuclear migration protein nudC  GN=Nudc 61 63 38,3 5 1040,5 3,61 

HS90A 
Heat shock protein HSP 90-alpha  

GN=Hsp90aa1 
60 21,4 84,7 4,8 937,2 5,46 

TAGL2 Transgelin-2  GN=Tagln2 59 77,9 22,4 9,3 915,7 4,77 

TXNL1 Thioredoxin-like protein 1  GN=Txnl1 56 56,4 32,2 4,7 1008,3 5,35 

COPG2 Coatomer subunit gamma-2  GN=Copg2 55 29,5 97,6 5,5 1026,3 5,86 

UBP2L 
Ubiquitin-associated protein 2-like  

GN=Ubap2l 
51 22,7 116,7 6,6 1056,1 7,06 

CRK Adapter molecule crk  GN=Crk 50 45,4 33,8 5,3 894 5,68 
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RFIP5 
Rab11 family-interacting protein 5  

GN=Rab11fip5 
48 34,9 69,5 9,8 899 3,87 

FKBP4 
Peptidyl-prolyl cis-trans isomerase FKBP4  

GN=Fkbp4 
44 36,2 51,5 5,4 879 5,2 

ANXA2 Annexin A2  GN=Anxa2 43 46 38,7 8,5 773,7 7,07 

TBA1B Tubulin alpha-1B chain  GN=Tuba1b 42 34,4 50,1 4,8 734 3,83 

HS105 Heat shock protein 105 kDa  GN=Hsph1 41 32,2 96,3 5,3 1125,6 7,31 

COR1B Coronin-1B  GN=Coro1b 41 35,3 53,9 5,5 720,7 6,12 

PCBP2 Poly(rC)-binding protein 2  GN=Pcbp2 38 34,8 38,2 6,4 531,7 3,76 

RL40 
Ubiquitin-60S ribosomal protein L40  

GN=Uba52 
34 41,4 14,7 10,7 341,9 2,9 

K2C8 Keratin, type II cytoskeletal 8  GN=Krt8 33 21,4 54,5 5,6 816,6 13,41 

SHQ1 Protein SHQ1 homolog  GN=Shq1 33 29,9 63,4 4,6 639,4 9,25 

CO038 UPF0552 protein C15orf38 homolog 31 42 25,2 4,9 512,1 5,97 

TBA4A Tubulin alpha-4A chain  GN=Tuba4a 29 30,4 49,9 4,8 625,9 4,07 

IF4B 
Eukaryotic translation initiation factor 4B  

GN=Eif4b 
28 14,4 68,8 5,3 467,2 6,96 

DDX3X 
ATP-dependent RNA helicase DDX3X  

GN=Ddx3x 
27 14 73,1 6,8 564 5,44 

SUGT1 
Suppressor of G2 allele of SKP1 homolog  

GN=Sugt1 
27 31,5 38,1 5,2 504,9 4,85 

PSMD4 
26S proteasome non-ATPase regulatory 

subunit 4  GN=Psmd4 
26 28,7 40,7 4,5 483,7 7,18 

F120A 
Constitutive coactivator of PPAR-gamma-

like protein 1  GN=FAM120A 
26 13,8 121,6 9,8 850,8 3,7 

TADBP TAR DNA-binding protein 43  GN=Tardbp 26 28,3 44,5 6,3 454,3 7,56 

CNN3 Calponin-3  GN=Cnn3 25 38,5 36,4 5,4 567,6 5,31 

VCIP1 
Deubiquitinating protein VCIP135  

GN=Vcpip1 
25 10,4 134,4 6,8 621,5 4,53 

K2C5 Keratin, type II cytoskeletal 5  GN=Krt5 23 9 61,7 8,6 375,8 4,64 

K1C10 Keratin, type I cytoskeletal 10  GN=Krt10 22 9,6 57,7 4,9 330,8 3,78 

IF2B1 
Insulin-like growth factor 2 mRNA-binding 

protein 1  GN=Igf2bp1 
22 18,2 63,4 9,9 494,9 4,11 

K2C1 Keratin, type II cytoskeletal 1  GN=Krt1 21 5,2 65,6 9,2 307,9 4 

NP1L4 
Nucleosome assembly protein 1-like 4  

GN=Nap1l4 
21 28,3 42,7 4,4 517,3 4,74 

TIPRL TIP41-like protein  GN=Tiprl 19 37,6 31,2 5,3 438,9 6,2 
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STAM2 
Signal transducing adapter molecule 2  

GN=Stam2 
18 24,1 57,4 4,8 484 5,24 

K2C73 Keratin, type II cytoskeletal 73  GN=Krt73 18 5,9 58,9 9,3 245,8 3,8 

CTND1 Catenin delta-1  GN=Ctnnd1 17 13,3 104,9 6,4 464,3 5,8 

UBAP2 Ubiquitin-associated protein 2  GN=Ubap2 16 7,6 117,9 7,9 326,3 12,31 

EF2 Elongation factor 2  GN=Eef2 15 10,7 95,3 6,4 499,8 3,15 

NASP 
Nuclear autoantigenic sperm protein  

GN=Nasp 
15 11,3 83,9 4,2 341,8 5,15 

CPIN1 Anamorsin  GN=Ciapin1 15 33,7 33,4 5 343,1 5,32 

ARFG1 
ADP-ribosylation factor GTPase-activating 

protein 1  GN=Arfgap1 
14 16,7 45,3 5,3 329 11,18 

EPN4 Clathrin interactor 1  GN=Clint1 13 7 68,5 5,8 202 5,71 

LYPA2 Acyl-protein thioesterase 2  GN=Lypla2 13 19 24,8 6,9 152,1 6,93 

CL023 
UPF0444 transmembrane protein C12orf23 

homolog 
13 80,9 11,5 9,8 262,4 6,87 

VILI Villin-1  GN=Vil1 13 15,2 92,7 5,7 429,1 8,77 

IF4G2 
Eukaryotic translation initiation factor 4 

gamma 2  GN=Eif4g2 
13 8,9 102 6,8 445,4 4,11 

K22E 
Keratin, type II cytoskeletal 2 epidermal  

GN=Krt2 
13 7,6 70,9 9,1 330,3 11,34 

FUBP1 
Far upstream element-binding protein 1  

GN=Fubp1 
12 9,4 68,5 8,5 276,2 6,46 

ANR17 
Ankyrin repeat domain-containing protein 17  

GN=Ankrd17 
12 2,1 274 6,1 262,8 3,45 

IF4G3 
Eukaryotic translation initiation factor 4 

gamma 3  GN=Eif4g3 
12 2,8 174,8 5,3 296,6 5,16 

DBNL Drebrin-like protein  GN=Dbnl 12 14,9 48,7 4,7 313,5 2,64 

UBP15 
Ubiquitin carboxyl-terminal hydrolase 15  

GN=Usp15 
12 8,5 112,3 4,9 443,9 2,73 

AVEN Cell death regulator Aven  GN=Aven 12 17,8 37,2 4,8 246,9 5,08 

K2C79 Keratin, type II cytoskeletal 79  GN=Krt79 11 5,8 57,5 8,6 198,5 3,7 

ACTB Actin, cytoplasmic 1  GN=Actb 11 15,5 41,7 5,2 233,2 6 

RTN4 Reticulon-4  GN=Rtn4 11 12,1 126,5 4,3 360,2 6,46 

CYBP Calcyclin-binding protein  GN=Cacybp 11 31 26,5 8,7 271,2 2,3 

FUBP2 
Far upstream element-binding protein 2  

GN=Khsrp 
11 11,8 76,7 7,1 392,2 5,87 

CDC37 Hsp90 co-chaperone Cdc37  GN=Cdc37 11 19,8 44,6 5,1 357,8 3,79 
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GRP78 
78 kDa glucose-regulated protein  

GN=Hspa5 
10 9 72,4 4,9 405,4 9,68 

ANXA1 Annexin A1  GN=Anxa1 10 15,3 38,7 7,7 212,1 5,74 

NSF1C NSFL1 cofactor p47  GN=Nsfl1c 10 19,2 40,7 4,9 263,9 3,99 

PABP1 
Polyadenylate-binding protein 1  

GN=Pabpc1 
9 12,3 70,6 10 366,2 11,74 

BAG3 
BAG family molecular chaperone regulator 3  

GN=Bag3 
9 8,3 61,8 6,9 206,3 7,35 

NPM Nucleophosmin  GN=Npm1 9 12 32,5 4,5 168,8 5,7 

HNRPF 
Heterogeneous nuclear ribonucleoprotein F  

GN=Hnrnpf 
9 9,4 45,7 5,2 155,5 3,83 

NP1L1 
Nucleosome assembly protein 1-like 1  

GN=Nap1l1 
9 10,2 45,3 4,2 168,7 5,12 

STIP1 Stress-induced-phosphoprotein 1  GN=Stip1 9 15,1 62,5 6,4 392,6 8,78 

KPYM Pyruvate kinase isozymes M1/M2  GN=Pkm 8 16 57,8 7,9 311,5 6,46 

NUDC3 
NudC domain-containing protein 3  

GN=Nudcd3 
8 10,7 40,9 5 149,9 6,1 

SH3G1 Endophilin-A2  GN=Sh3gl1 8 6 41,5 5,4 141,9 4,96 

ZO1 Tight junction protein ZO-1  GN=Tjp1 8 4,1 194,6 6,2 228,1 5,36 

AL1A1 Retinal dehydrogenase 1  GN=Aldh1a1 8 18 54,4 8,9 289,4 10,51 

K22O 
Keratin, type II cytoskeletal 2 oral  

GN=Krt76 
8 5,1 62,8 9,5 244,2 5,59 

SRRM2 
Serine/arginine repetitive matrix protein 2  

GN=Srrm2 
7 2,7 294,7 12,6 322,2 3,71 

E41L2 Band 4.1-like protein 2  GN=Epb41l2 7 4,4 109,9 5,3 186 10,93 

PLIN3 Perilipin-3  GN=Plin3 7 16,2 47,2 5,3 204,5 1,19 

K1C15 Keratin, type I cytoskeletal 15  GN=Krt15 7 6 49,1 4,6 211,8 1,42 

TB182 
182 kDa tankyrase-1-binding protein  

GN=Tnks1bp1 
7 3,4 181,7 4,7 228,6 5,66 

EF1A1 Elongation factor 1-alpha 1  GN=Eef1a1 7 13,6 50,1 9,7 139,5 4,77 

FLNA Filamin-A  GN=Flna 7 1,7 281 5,6 151,8 6,09 

RAI14 Ankycorbin  GN=Rai14 7 4,1 108,8 5,8 160,3 4,79 

SNX2 Sorting nexin-2  GN=Snx2 7 7,7 58,4 4,9 214,7 5,23 

EDC4 
Enhancer of mRNA-decapping protein 4  

GN=Edc4 
7 4,5 152,4 5,4 201,3 5,37 

IPO7 Importin-7  GN=Ipo7 7 5,5 119,4 4,6 291,5 2,47 

NACA Nascent polypeptide-associated complex 7 19,5 23,4 4,4 175,8 3,42 
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subunit alpha  GN=Naca 

MRE11 
Double-strand break repair protein MRE11A  

GN=Mre11a 
7 9,6 80,2 5,6 146,1 5,46 

CAPR1 Caprin-1  GN=Caprin1 6 9,3 78,1 5 225,1 3,83 

G3P 
Glyceraldehyde-3-phosphate dehydrogenase  

GN=Gapdh 
6 7,2 35,8 9,2 81,1 3,5 

PRDX1 Peroxiredoxin-1  GN=Prdx1 6 28,6 22,2 9,2 193,1 6,9 

K1C17 Keratin, type I cytoskeletal 17  GN=Krt17 6 7,2 48,1 4,9 182 1,68 

SGT1 Protein SGT1 homolog  GN=Ecd 6 8,9 71,7 4,7 185,6 6,84 

LIMD1 
LIM domain-containing protein 1  

GN=Limd1 
6 14,5 71,4 5,9 204,8 8,82 

AFAD Afadin  GN=Mllt4 6 3,1 206,4 5,9 272,4 4,54 

KANK2 
KN motif and ankyrin repeat domain-

containing protein 2  GN=Kank2 
6 4,7 90,2 5,3 210,2 2,51 

K1C18 Keratin, type I cytoskeletal 18  GN=Krt18 6 16,8 47,5 5,1 236,2 7,27 

PRC2C Protein PRRC2C  GN=Prrc2c 6 1,1 310,7 9,1 181,7 2,85 

RBM10 RNA-binding protein 10  GN=Rbm10 6 4,9 103,4 5,6 116,2 5,17 

ATX2L Ataxin-2-like protein  GN=Atxn2l 5 3,9 110,6 9,4 194,9 3,99 

PPID 
Peptidyl-prolyl cis-trans isomerase D  

GN=Ppid 
5 7,6 40,7 7,8 165,2 4,25 

PATL1 Protein PAT1 homolog 1  GN=Patl1 5 8,7 86,7 5,9 222 8,82 

PTBP1 
Polypyrimidine tract-binding protein 1  

GN=Ptbp1 
5 4,4 56,4 9,2 120,7 4,97 

DESP Desmoplakin  GN=Dsp PE=3 5 1,8 332,7 6,4 135,9 3,13 

ANR49 
Ankyrin repeat domain-containing protein 49  

GN=Ankrd49 
5 18,5 27,1 4,9 159,8 6,75 

CNN2 Calponin-2  GN=Cnn2 5 8,9 33,1 8,7 80,5 13,17 

S10AB Protein S100-A11  GN=S100a11 5 16,3 11,1 5,1 79,6 3,96 

AKAP1 
A-kinase anchor protein 1, mitochondrial  

GN=Akap1 
5 4,4 92,1 4,8 126,3 3,24 

F10A1 Hsc70-interacting protein  GN=St13 4 3,2 41,6 5 66,6 4,66 

RPAP3 
RNA polymerase II-associated protein 3  

GN=Rpap3 
4 4,4 74,1 8,7 56,3 1,97 

SIPA1 
Signal-induced proliferation-associated 

protein 1  GN=Sipa1 
4 3,7 112 5,9 120,9 3,51 

CD2AP CD2-associated protein  GN=Cd2ap 4 6,8 70,4 6 139,1 4,19 

RAGP1 Ran GTPase-activating protein 1  4 3,7 63,5 4,4 108,2 2,98 
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GN=Rangap1 

RANB3 Ran-binding protein 3  GN=Ranbp3 4 2,4 52,5 4,9 114,4 2,57 

LARP4 La-related protein 4  GN=Larp4 4 3,6 79,7 6 138 4,47 

PYRG1 CTP synthase 1  GN=Ctps1 4 5,8 66,6 6,1 136,9 15,64 

UBP10 
Ubiquitin carboxyl-terminal hydrolase 10  

GN=Usp10 
3 3,2 87 4,9 80,9 7,1 

TCPA 
T-complex protein 1 subunit alpha  

GN=Tcp1 
3 4,1 60,4 5,8 38,4 1,33 

TTC4 Tetratricopeptide repeat protein 4  GN=Ttc4 3 7,3 44,3 5 106 4,44 

SMAP Small acidic protein  GN=Smap 3 12,7 20 4,5 46,9 9,65 

CIP2A Protein CIP2A  GN=Kiaa1524 3 1,1 102 5,9 39,3 3,87 

PHAX 
Phosphorylated adapter RNA export protein  

GN=Phax 
3 7 43,2 5,1 80,1 4,54 

TTC1 Tetratricopeptide repeat protein 1  GN=Ttc1 3 3,4 33,2 4,8 51,4 2,26 

COBL1 Cordon-bleu protein-like 1  GN=Cobll1 3 1,5 137,3 9,1 63,4 0,53 

PP6R1 
Serine/threonine-protein phosphatase 6 

regulatory subunit 1  GN=Ppp6r1 
3 5 94,5 4,4 90,2 3,12 

FXR1 
Fragile X mental retardation syndrome-

related protein 1  GN=Fxr1 
3 4,7 76,2 6,6 105,5 7,27 

SRC8 Src substrate cortactin  GN=Cttn 3 7,9 61,2 5,1 186,6 12,49 

TPD52 Tumor protein D52  GN=Tpd52 3 8,5 24,3 4,5 35,9 3,03 

IDHC 
Isocitrate dehydrogenase [NADP] 

cytoplasmic  GN=Idh1 
3 4,8 46,6 6,9 72,7 9,01 

SODC Superoxide dismutase [Cu-Zn]  GN=Sod1 3 21,4 15,9 6 126,4 11,1 

RBP2 
E3 SUMO-protein ligase RanBP2  

GN=Ranbp2 
3 1,2 340,9 5,8 217,6 5,16 

DLG1 Disks large homolog 1  GN=Dlg1 3 2,8 100,1 5,5 107,4 2,99 

TBB4A Tubulin beta-4A chain  GN=Tubb4a 2 5,6 49,6 4,6 52,9 5,1 

PICA 
Phosphatidylinositol-binding clathrin 

assembly protein  GN=Picalm 
2 3 71,5 8,6 41,8 2,86 

NUFP2 
Nuclear fragile X mental retardation-

interacting protein 2  GN=Nufip2 
2 3,5 75,6 9,2 120,5 2,02 

PRC2B Protein PRRC2B  GN=Prrc2b 2 2,2 160,8 8,9 110,6 13,69 

Sep-09 Septin-9  GN=Sept9 2 2,6 65,5 9,7 65,3 10,35 

PEX5 
Peroxisomal targeting signal 1 receptor  

GN=Pex5 
2 4,2 70,7 4,3 93,8 1,64 

PUM2 Pumilio homolog 2  GN=Pum2 2 2,4 114,2 6,7 117,7 6,74 
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SYRC 
Arginine--tRNA ligase, cytoplasmic  

GN=Rars 
2 3,6 75,6 8,4 76,9 2,56 

UBP14 
Ubiquitin carboxyl-terminal hydrolase 14  

GN=Usp14 
2 5,1 56 5 208,9 18,19 

4ET 
Eukaryotic translation initiation factor 4E 

transporter  GN=Eif4enif1 
2 1,9 107,9 8 37,4 8,27 

SWP70 Switch-associated protein 70  GN=Swap70 2 5 69 5,7 97,8 18,29 

ZFY16 
Zinc finger FYVE domain-containing 

protein 16  GN=Zfyve16 
2 1 166,6 4,5 65,3 8,52 

AHSA1 
Activator of 90 kDa heat shock protein 

ATPase homolog 1  GN=Ahsa1 
2 9,5 38,1 5,3 94 12,78 

RENT1 
Regulator of nonsense transcripts 1  

GN=Upf1 
2 2,2 123,9 6,2 112 4,77 

SPDLY Protein Spindly  GN=Spdl1 2 3,8 70,2 5,7 34,9 6,16 

NDKB 
Nucleoside diphosphate kinase B  

GN=Nme2 
2 13,8 17,4 7,8 90,9 8,82 

PIHD1 
PIH1 domain-containing protein 1  

GN=Pih1d1 
2 4,1 32,2 5 37,7 7,04 

PUF60 
Poly(U)-binding-splicing factor PUF60  

GN=Puf60 
2 1,8 60,2 5,1 57,5 7,62 

PGAM1 Phosphoglycerate mutase 1  GN=Pgam1 1 5,5 28,8 6,8 59,1 2,19 

ISY1 
Pre-mRNA-splicing factor ISY1 homolog  

GN=Isy1 
1 5,3 33 5 64,8 0,71 

NUDC1 
NudC domain-containing protein 1  

GN=Nudcd1 
1 2,7 66,7 5 43,4 2,05 

RS30 40S ribosomal protein S30  GN=Fau PE=3 1 16,9 6,6 12,6 35,6 5,25 

MARE1 
Microtubule-associated protein RP/EB 

family member 1  GN=Mapre1 
1 6,7 30 5 38,7 4,21 

NELL1 
Protein kinase C-binding protein NELL1  

GN=Nell1 
1 1,1 89,4 5,7 34,8 18,9 

EF1B Elongation factor 1-beta  GN=Eef1b 1 10,7 24,7 4,4 48,7 6,88 

PLAK Junction plakoglobin  GN=Jup 1 2,4 81,7 5,7 36,9 25,88 

SND1 
Staphylococcal nuclease domain-containing 

protein 1  GN=Snd1 
1 1,8 102 7,3 194,9 1,53 

PP6R3 
Serine/threonine-protein phosphatase 6 

regulatory subunit 3  GN=Ppp6r3 
1 1,8 94,6 4,3 120,9 20,17 

GBLP Guanine nucleotide-binding protein subunit 1 6,3 35,1 8,9 46,5 3,55 
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beta-2-like 1  GN=Gnb2l1 

TYB10 Thymosin beta-10  GN=Tmsb10 1 31,8 5 5,2 38,5 0,45 

CPEB4 
Cytoplasmic polyadenylation element-

binding protein 4  GN=Cpeb4 
1 2,2 80,1 6,7 38 12,19 

MBB1A Myb-binding protein 1A  GN=Mybbp1a 1 0,8 151,9 9,8 73,7 7,19 

CRKL Crk-like protein  GN=Crkl 1 4 33,8 6,3 61,8 0,87 

RLA2 60S acidic ribosomal protein P2  GN=Rplp2 1 16,5 11,6 4,2 35,5 4,44 

TWF1 Twinfilin-1  GN=Twf1 1 2,6 40,1 6,2 33,7 0,79 

ZN574 Zinc finger protein 574  GN=Znf574 1 1,2 99,4 9,7 32,9 22,27 

MARE2 
Microtubule-associated protein RP/EB 

family member 2  GN=Mapre2 
1 3,1 36,9 5,1 45,5 10,94 

DNJA2 
DnaJ homolog subfamily A member 2  

GN=Dnaja2 
1 7,8 45,7 6,1 41,7 1,32 

RMP 
Unconventional prefoldin RPB5 interactor  

GN=Uri1 
1 2,4 59 4,8 40,1 2,63 

VIME Vimentin  GN=Vim 1 4,5 53,7 4,9 54,3 3,42 

RB6I2 
ELKS/Rab6-interacting/CAST family 

member 1  GN=Erc1 
1 2,2 128,3 5,6 47,8 4,53 

PDLI1 PDZ and LIM domain protein 1  GN=Pdlim1 1 4,6 35,8 6,4 38,8 25,69 

G3BP1 
Ras GTPase-activating protein-binding 

protein 1  GN=G3bp1 
1 3,2 51,8 5,3 133,3 3,89 

SPR1A Cornifin-A  GN=Sprr1a 1 10,4 15,8 9,7 33,2 6,98 

SON Protein SON  GN=Son 1 0,4 265,5 5,4 62,2 0,3 

F91A1 Protein FAM91A1  GN=Fam91a1 1 1,1 93,4 5,9 130,4 13,37 

TNR6B 
Trinucleotide repeat-containing gene 6B 

protein  GN=Tnrc6b 
1 0,9 191,8 5,9 59,7 0,26 

KTN1 Kinectin  GN=Ktn1 1 1,2 152,5 5,6 54,5 3,04 

ELP4 Elongator complex protein 4  GN=Elp4 1 4 46,3 9,8 35,4 2,41 

SNX1 Sorting nexin-1  GN=Snx1 1 2,1 58,9 5 61 1,83 

PLSI Plastin-1  GN=Pls1 1 1,9 70,4 5,1 36,4 25,89 

 

Spectra #: Number of fragmentation MS/MS spectra observed for a given protein. SC%: 
Sequence coverage expressed in percentage. MW: molecular weight of the identified protein 
in kDa. pI: isoelectric pH. RMS: Mass error expressed in ppm. 
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identity 

Protein description R1 R2 R3 R1 R2 R3 R1 R2 R3 

SAV Streptavidin  1307 1262 1339 1343 1316 1359 1371 1361 1356 

PYC 
Pyruvate carboxylase, 
mitochondrial 

1009 1055 1057 1030 1018 1085 1062 1063 1084 

PCCA 
Propionyl-CoA carboxylase 
alpha chain, mitochondrial 

378 377 392 333 315 342 341 363 353 

MCCA 
Methylcrotonoyl-CoA 
carboxylase subunit alpha, 
mitochondrial 

141 143 130 127 87 88 96 116 100 

AGO2_BIRA Protein argonaute-2 112 121 121 101 89 103 103 106 107 

ACACA Biotin carboxylase 48 43 44 38 34 41 36 32 39 

ACTG Actin, cytoplasmic 2 25 35 35 20 27 31 28 25 25 

TBA1B Tubulin alpha-1B chain 25 24 25 18 17 19 19 19 20 

HS90B 
Heat shock protein HSP 90-
beta 

19 20 22 17 20 24 24 21 23 

EDC4 Junction plakoglobin 18 20 24 27 28 20 32 27 28 

TNR6C 
Trinucleotide repeat-
containing gene 6C protein 

17 19 17 14 9 11 13 13 13 

MYH9 Myosin-9 16 16 18 9 8 5 8 11 10 

RTN4 Reticulon-4 16 16 13 11 16 15 18 19 17 

TNR6B 
Trinucleotide repeat-
containing gene 6B protein 

9 8 13 6 7 8 5 7 6 

PCBP1 Poly(rC)-binding protein 1 8 6 8 6 6 8 8 9 8 

IF4G1 
Eukaryotic translation 
initiation factor 4 gamma 1 

6 4 3 3 1 
 

2 
 

1 

PCBP2 Poly(rC)-binding protein 2 6 4 4 3 4 3 6 4 4 

TBB2A Tubulin beta-2A chain 5 7 5 6 6 6 6 5 7 

HS90A 
Heat shock protein HSP 90-
alpha 

5 4 5 5 5 8 8 7 6 

FLNC Filamin-C 4 
 

1 
      

RBP2 
E3 SUMO-protein ligase 
RanBP2 

4 2 3 1 
 

2 
   

CNOT1 
CCR4-NOT transcription 
complex subunit 1 

4 2 4 1 
    

1 

HSP7C 
Heat shock cognate 71 kDa 
protein 

4 5 6 5 6 10 6 7 8 

CSDE1 
Cold shock domain-
containing protein E1 

4 6 5 4 3 3 4 4 6 

KPYM Pyruvate kinase PKM 4 4 3 2 
 

2 2 2 
 

RL40 
Ubiquitin-60S ribosomal 
protein L40 

4 8 7 
  

6 5 2 4 

EF2 Elongation factor 2 4 
 

3 1 3 6 3 2 5 

STAM2 
Signal transducing adapter 
molecule 2 

4 
 

1 3 2 2 1 2 
 



Annex 3: Complete list of identified proteins in mock, MCMV wt and MCMV mut168 

infection 

 

 125 
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identity 

Protein description R1 R2 R3 R1 R2 R3 R1 R2 R3 

FLNA Filamin-A 3 
 

1 
      

TCPQ 
T-complex protein 1 subunit 
theta 

3 2 3 5 2 3 2 3 3 

RENT1 
Regulator of nonsense 
transcripts 1 

3 2 1 
 

4 2 
 

2 
 

SON Protein SON 2 1 1 
      

TNR6A 
Trinucleotide repeat-
containing gene 6A protein 

2 
 

1 
      

PEX1 
Peroxisome biogenesis factor 
1 

2 
        

COR1B Coronin-1B 2 1 2 
     

1 

IF5 
Eukaryotic translation 
initiation factor 5 

2 
     

2 
  

PLEC Plectin 2 4 3 1 
 

1 2 
 

1 

CRK Adapter molecule crk 2 4 2 1 1 1 1 
 

2 

ENOA Alpha-enolase 2 1 
 

1 5 3 2 2 
 

TRAP1 
Heat shock protein 75 kDa, 
mitochondrial 

2 3 3 3 3 3 3 3 3 

VIGLN Vigilin 2 7 4 2 3 3 4 4 4 

YAP1 
Transcriptional coactivator 
YAP1 

2 2 5 6 1 2 2 2 1 

TLN1 Talin-1 2 2 1 1 
 

2 3 3 2 

ZSWM8 
Zinc finger SWIM domain-
containing protein 8 

2 4 3 3 
 

3 
 

3 2 

WIPI2 
WD repeat domain 
phosphoinositide-interacting 
protein 2 

2 2 
 

1 3 1 1 2 2 

DVL2 
Segment polarity protein 
dishevelled homolog DVL-2 

1 1 
       

CELF1 
CUGBP Elav-like family 
member 1 

1 
        

VCIP1 
Deubiquitinating protein 
VCIP135 

1 
        

MBB1A Myb-binding protein 1A 1 
        

TCOF Treacle protein 1 
        

CHD4 
Chromodomain-helicase-
DNA-binding protein 4 

1 2 1 
     

1 

PERQ1 
PERQ amino acid-rich with 
GYF domain-containing 
protein 1 

1 1 
     

1 
 

CNN2 Calponin-2 1 1 1 1 
     

UBP2L 
Ubiquitin-associated protein 
2-like 

1 
 

4 6 2 6 
 

7 
 

GRP78 78 kDa glucose-regulated 1 1 
  

1 
 

2 
 

1 
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 Mock MCMV wt MCMV mut168 
Protein 
identity 

Protein description R1 R2 R3 R1 R2 R3 R1 R2 R3 

protein 

PATL1 Protein PAT1 homolog 1 1 
   

1 
 

1 1 
 

D3XDW4 
M142 protein OS=Murid 
herpesvirus    

1 2 
    

H2A2B7 
M86 protein OS=Murid 
herpesvirus 1    

1 1 
    

PLAK Junction plakoglobin 
 

25 
       

CTNB1 Catenin beta-1 
 

5 
       

DSG1A Desmoglein-1-alpha 
 

5 
       

THIO Thioredoxin 
 

3 
       

TPIS Triosephosphate isomerase 
 

2 
       

EF1A1 Elongation factor 1-alpha 1 
 

1 
       

IF4A1 
Eukaryotic initiation factor 
4A-I  

1 
       

NEST Nestin 
 

1 
       

NUP85 
Nuclear pore complex protein 
Nup85  

1 
       

PSB4 
Proteasome subunit beta type-
4  

1 
       

ARFG1 
ADP-ribosylation factor 
GTPase-activating protein 1   

2 
      

SPR2B Small proline-rich protein 2B 
  

1 
      

TM263 Transmembrane protein 263 
   

3 3 5 4 3 3 

EF1D Elongation factor 1-delta 
   

3 2 2 2 3 3 

S10AB Protein S100-A11 
    

1 1 1 1 1 

PP6R3 
Serine/threonine-protein 
phosphatase 6 regulatory 
subunit 3 

    
1 3 

  
2 

TCPE 
T-complex protein 1 subunit 
epsilon      

1 1 
  

SPT6H 
Transcription elongation 
factor SPT6    

1 
     

INSRR 
Insulin receptor-related 
protein     

2 
    

RUVB1 RuvB-like 1 
    

1 
    

GBB1 
Guanine nucleotide-binding 
protein G(I)/G(S)/G(T) 
subunit beta-1 

      
1 

  

RL35 60S ribosomal protein L35 
       

4 2 

RS30 40S ribosomal protein S30 
       

1 
 

RL19 60S ribosomal protein L19 
       

1 
 

RL29 60S ribosomal protein L29 
       

2 
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 Mock MCMV wt MCMV mut168 
Protein 
identity 

Protein description R1 R2 R3 R1 R2 R3 R1 R2 R3 

H12 Histone H1.2 
       

2 
 

H14 Histone H1.4 
       

1 
 

H2A1F Histone H2A type 1-F 
       

2 
 

PERQ2 
PERQ amino acid-rich with 
GYF domain-containing 
protein 2 

        
1 

ANXA2 Annexin A2 
 

6 
      

2 

VIME Vimentin 
 

2 
 

1 1 
    

4ET 
Eukaryotic translation 
initiation factor 4E transporter  

1 3 3 1 3 2 3 
 

 

Number of spectra for each identified protein is represented for each condition and replicates 

(R1 to R3).
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MiR-30a-3p Negatively Regulates BAFF Synthesis in
Systemic Sclerosis and Rheumatoid Arthritis Fibroblasts
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Abstract

We evaluated micro (mi) RNA-mediated regulation of BAFF expression in fibroblasts using two concomitant models: (i)
synovial fibroblasts (FLS) isolated from healthy controls (N) or Rheumatoid Arthritis (RA) patients; (ii) human dermal
fibroblasts (HDF) isolated from healthy controls (N) or Systemic Sclerosis (SSc) patients. Using RT-qPCR and ELISA, we first
showed that SScHDF synthesized and released BAFF in response to Poly(I:C) or IFN-c treatment, as previously observed in
RAFLS, whereas NHDF released BAFF preferentially in response to IFN-c. Next, we demonstrated that miR-30a-3p expression
was down regulated in RAFLS and SScHDF stimulated with Poly(I:C) or IFN-c. Moreover, we demonstrated that transfecting
miR-30a-3p mimic in Poly(I:C)- and IFN-c-activated RAFLS and SScHDF showed a strong decrease on BAFF synthesis and
release and thus B cells survival in our model. Interestingly, FLS and HDF isolated from healthy subjects express higher levels
of miR-30a-3p and lower levels of BAFF than RAFLS and SScHDF. Transfection of miR-30a-3p antisense in Poly(I:C)- and IFN-
c-activated NFLS and NHDF upregulated BAFF secretion, confirming that this microRNA is a basal repressors of BAFF
expression in cells from healthy donors. Our data suggest a critical role of miR-30a-3p in the regulation of BAFF expression,
which could have a major impact in the regulation of the autoimmune responses occurring in RA and SSc.
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Introduction

TNFSF13B (also known as B cell-activating factor -BAFF,
which will be the only nomenclature used thereafter in the
manuscript) is a member of the TNF superfamily which plays a
central role in the survival and homeostasis of transitional and
naive B cells, plasmablasts and plasma cells [1]. BAFF is produced
as a membrane-bound form or secreted by cells of hematopoietic
origin, essentially monocytes, dendritic cells, macrophages and
stimulated neutrophils [2,3]. However non-immune cells, such as
astrocytes, can also constitutively produce BAFF [4].

The finding that BAFF transgenic mice develop autoimmune
manifestations exhibiting similarities with systemic lupus erythe-
matosus (SLE) and Sjögren’s syndrom (SS) suggested a critical role
for this cytokine in autoimmune diseases [5–7]. Consistent with
this observation, auto-reactive B cells have a greater dependency
for BAFF compared to naive mature B cells and elevated levels of
BAFF were detected in the serum of patients with SLE,
rheumatoid arthritis (RA) and SS [8]. In addition, these increased
BAFF levels correlated with high auto-antibody titers and disease
activity [9]. In patients with systemic sclerosis (SSc), increased

levels of BAFF were associated with worsening of the skin sclerosis
[10,11]. Similar results were obtained in experimental arthritis
where overproduction of BAFF by dendritic cells and macro-
phages was demonstrated to play a crucial role in the disease [12].
Fibroblast-like synoviocytes isolated from RA patients (RAFLS)
are characterized by their aggressive phenotype in response to
various stimuli. In these inflammatory conditions, these cells also
produce large amounts of cytokines including BAFF, thus enabling
them to collaborate with autoimmune B cells [13]. Altogether,
these data illustrate the central role played by BAFF in the
pathogenesis of autoimmune diseases, which prompted the
development of biological agents targeting BAFF. Belimumab, a
humanized IgG1 monoclonal antibody which inhibits both soluble
and membrane BAFF binding to BAFFR and TACI, was
approved for the treatment of SLE [14–16].

However, modulation of BAFF activity for therapeutic purposes
by targeting its synthesis has not yet been considered. The control
of cytokine expression can occur at various levels including post-
transcriptional regulation, which is now the focus of intense
attention. The modulation of gene expression can take place at
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several levels, among which regulation by microRNAs (miRNAs)
has gained increased interest in the recent years. MiRNAs are an
evolutionarily conserved class of endogenous small non-coding
RNAs. They are produced from long precursor molecules by the
consecutive action of the RNase III enzymes DROSHA and
DICER, before being loaded on an ARGONAUTE protein
within the RNA-induced-silencing complex (RISC). The mature
miRNA acts a guide for RISC to mediate destabilization and/or
translational repression of target mRNAs. The regulation of
miRNA expression is itself controlled at various levels such as
transcription, processing or stability and can be influenced by
various stress factors including inflammation. In addition, emerg-
ing data have identified an important contribution of miRNA to
the development and control of the inflammatory response which
position these small non-coding RNAs at the heart of feedback and
feed-forward loops controlling the inflammation process in both
immune and non immune cells. Recently, microRNAs (miRNAs)
have emerged as a new class of cytokines regulators, although
computational analysis indicates that the 39UTR (Three prime
untranslated region) of many cytokines lacks miRNA target sites.
Indeed, miRNAs could also regulate cytokine expression by
targeting ARE-binding proteins (ARE machinery components)
such as TTP, AUF1 and members of the HuR family [17,18].

In this study, we found that miR-30a-3p (and miR30d-3p and e-
3p, which exhibit high sequence homology) is predicted to bind
the 39UTR region of BAFF transcripts. In SSc patients, we
observed concomitant up-regulation of BAFF transcripts and
decreased expression of miR-30a-3p in skin fibroblasts (HDF)
isolated from SSc patients after cell stimulation with Poly (I:C) or
IFN-c. Analysis of synovial fibroblasts from RA patients yielded
similar results. The prediction provided by bioinformatic tools and
this inverse correlation between miR-30 family members and
BAFF expression prompted us to analyze their likely direct
interaction. To this end, we used reporter constructs containing a
luciferase gene fused to the wild type or mutated full length human
BAFF 39UTR. Co-transfection of these reporter plasmids with
miRNA mimic in cultured cells confirmed direct interaction.
Furthermore, transfection of miR-30a-3p mimic or inhibitor in
fibroblasts isolated from the skin or the synovium of healthy
donors or from patients confirmed that this miRNA modulate
IFN-c- and Poly (I:C)-dependent BAFF expression. Finally, we
report that miRNA-modulated BAFF secretion by activated skin
or synovial fibrocytes significantly reduces the capacity of these
cells to promote B cells survival, which provides physiological
significance to our findings. Altogether, our data describe a novel
mechanism involved in the regulation of BAFF expression and
potentially provide an additional level of intervention for future
therapeutic purposes.

Materials and Methods

Reagents
Cell culture media (RPMI 1640, M199 and DMEM), fetal calf

serum (FCS), L-glutamine, penicillin, streptomycin, amphotericin
B, TRIzol reagent and DiOC6 (3,39-Dihexyloxacarbocyanine
Iodide) were from Invitrogen (Cergy-Pontoise, France). LPS from
Salmonella abortus equi and Propidium Iodide (PI) solution was
obtained from Sigma Aldrich (Saint-Quentin-Fallavier, France).
Synthetic bacterial lipopeptide Pam3CSK4 (BLP) was obtained
from EMC Microcollections GmbH (Tuebingen, Germany).
Polyinosine-Polycytidylic acid (Poly(I:C)) was obtained from
InvivoGen (Toulouse, France). iScript cDNA Synthesis Kit and
SsoAdvanced SYBR Green Supermix from Bio-Rad (Marnes-la-
Coquette, France). The miScript System, miRNA mimc and

Allstars negative control siRNA were obtained from Qiagen
(Courtabeuf, France). miR-30a-3p antagonists were from Fisher
scientific (Illkirch Cedex, France). Human Dermal Fibroblast
Nucleofector kit was from Lonza (Cologne, Germany). The
enzyme immunoassay kits for human BAFF, APRIL and IL-6
detection and recombinant IFN-c were from R&D systems (Lille,
France).

Cell culture
Human FLS were isolated from synovial tissues from five

different RA patients and from five healthy subjects at the time of
knee joint arthroscopic synovectomy. RA patients were 3 female
and two male, the average age is 49 years, and had all FR positive
but only three were antiCCP positive. Human dermal fibroblasts
(HDF) were obtained by biopsy of 4 mm diameter from the
affected areas (dorsal forearm) of four patients with SSc
(SScHDF)and from the corresponding area of three healthy
subjects (NHDF). All SSc patients were female (average age52
years) and had diffuse cutaneous systemic sclerosis and anti-Scl70-
positive antibodies. The total modified Rodnan skin scores were
29, 8, 25 and 14, and that for the biopsy area were 2, 1, 2, 2.Blood
B cells were isolated from 6 healthy donors. Institutional ethics
committee of the Hopitaux Universitaires de Strasbourg specifi-
cally approved this study.Written informed consent was obtained
by all the participants of this study (patients and healthy donors).
The diagnosis of RA and SSc was conformed to the revised criteria
of the American College of Rheumatology (ACR). FLS, HDF and
HEK293 cultures were done as previously described [19].
Experiments were performed between the 3rd and the 9th passage.
During that time, cultures were constituted of a homogeneous
population of fibroblastic cells, negative for CD16 as determined
by FACS analysis. HEK293 cells were purchased from the
American type culture collection (ATCC) and maintained in
DMEM supplemented with 10% heat-inactivated FBS, 2 mM of
L-glutamine, 40 U/ml penicillin and 50 mg/ml streptomycin.
Cell number and cell viability were checked by the MTT (3-(4,5
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
Blood mononuclear cells were isolated from healthy blood donors
by Ficoll-Paque centrifugation as described in standard protocols.
B cells were then selected by negative sorting using EasySep
Human B Cell Enrichment Kit (Stemcell Technologies). The
efficacy of B cell isolation was determined by FACS analysis using
anti-CD19 antibodies. The yield of isolated B cells was composed
of 99% CD19+/CD32 B cells and 0.01% of CD192/CD3+ T
cells.

Stimulation of cells for total RNA extraction
FLS (2.105 cells) and HDF (2.105 cells) were seeded in 24-well

plates and stimulated with medium alone or medium containing
LPS (1 mg/mL), BLP (1 mg/mL), Poly(I:C) (10 mg/mL) and IFN-c
(0.1, 1 or 5 ng/mL). After a 6 h, 48 h and 72 h incubation period,
total RNA was extracted using TRIzol according to the
manufacturer’s instruction.

Real-time quantitative PCR (RT-qPCR)
Total RNA was reverse transcribed using the iScript cDNA

Synthesis Kit according to the manufacturer’s instructions
(BioRad). Real-time quantitative RT-qPCR was performed in a
total volume of 20 mL using SsoAdvanced SYBR Green Supermix
(BioRad) and gene-specific primers: BAFF: 59-TGAAACAC-
CAACTATACAAAAAG-39 and 59-TCAATTCATCCCCAAA-
GACAT-39;

April: 59- CTCTGCTGACCCAACAAACA-39 and 59-
CTCCTTTTCCGGGATCTCTC-39;
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Gapdh: 59-GGTGAAGGTCGGAGTCAACGGA-39 and 59-
GAGGGATCTCGCTCCTGGAAGA-39

After an initial denaturing at 96uC for 10 min, the temperatures
used were 95uC for 10 s, 60uC for 15 s, 72uC for 25 s using a
Rotor-Gene 6000 real-time PCR machine (Corbett Life Science).
Amplification products were detected as an increased fluorescent
signal of SYBR Green during the amplification cycles. Results
were obtained using Rotor-Gene 6000 Series Software and
evaluated using Excel (Microsoft). Melting-curve analysis was
performed to assess the specificity of PCR products.

Real-time quantitative PCR analyses for miRNAs were
performed using the miScript System and the primers (Qiagen).
RNA concentrations were determined with a NanoDrop instru-
ment (NanoDrop Technologies). 500 ng of RNA per sample was
used for the assays. Reverse transcriptase reactions and RT-qPCR
were performed according to the manufacturer’s protocols.
Expression of endogenous U6snRNA was used for normalization.
Relative expression was calculated using the comparative thresh-
old cycle (Ct) method and fold induction in cells activated by
Poly(I:C) or IFN-c was obtained by calculating 22DDCt.

Transfections and luciferase assay
Transient transfection of FLS or HDF with miR-30a-3p mimic

(20 pM/sample), miR-30a-3p antagonists or with the negative
controls was performed using the Human Dermal Fibroblast
Nucleofector kit from Lonza as previously described [20].

Transfection of HEK293 cells was performed using Lipofectamine
2000 (Invitrogen) as previously described [19].

B cells viability assay
FLS or HDF were transfected with miR-30a-3p mimic, miR-

30a-3p antagonists or with the negative controls as described
above and stimulated with medium alone or medium with
Poly(I:C) (10 mg/mL) or IFN-c (5 ng/mL) for 72 h. Supernatants
(800 mL) were harvested and used to culture B cells (56105) for
72 h. In some experiments, anti-human BAFF antibodies or
control IgG (R&D Systems) were added (10 ng/mL) to the
supernatant. Then, B cells were stained with 3,3-dihexyloxacar-
bocyanine iodide (DiOC6) to assess the mitochondrial transmem-
brane potential, and with Propidium Iodide (PI) to assess
membrane permeability, as described [21]. Briefly, cell suspen-
sions were incubated with 40 nmol/L DiOC6 and 1 mg/ml PI for
15 min at 37uC, washed with FACS buffer and then analyzed on
FACSCalibur (BD Biosciences). A lymphocyte gate was set using
forward-angle and side-angle light scatter characteristics of
lymphocytes. The vital B cells were brightly positive when stained
with DiOC6 and excluded PI.

Statistical analysis
Student’s t test (two-tailed unpaired) was used to compare two

independent groups using GraphPad 5 software. A probability (p)
value of ,0.05 was considered significant. *p,0.05; **p,0.01;
***p,0.001.

Figure 1. BAFF expression and secretion are up-regulated in Poly (I:C)- and IFN-c-stimulated rheumatoid arthritis (RA) fibroblast-
like synoviocytes (FLS) and systemic sclerosis (SSc) human dermal fibroblast (HDF). A, C. BAFF mRNA expression was determined by RT-
qPCR in NFLS(n = 4) and RAFLS(n = 4) (A) or NHDF(n = 3) and SScHDF (n = 4) (C) stimulated (depending of the cell types) with BLP (1 mg/ml), LPS (1 mg/
ml), Poly (I:C) (10 mg/mL) or IFN-c (0.1, 1 or 5 ng/mL) for 72 h. Results were normalized to Gapdh and expressed as fold change compared with
samples from cells incubated in medium. B, D. BAFF release was quantified by ELISA in culture supernatants of NFLS (n = 4) and RAFLS(n = 4) (B) or
NHDF(n = 3) and SScHDF (n = 4) (D) in the same conditions as panels A and C. Data are expressed as the mean of triplicate samples 6 SEM. *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0111266.g001
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Results

Increased BAFF secretion by SScHDF after stimulation
with Poly(I:C) or IFN-c

Upregulation of BAFF expression by Poly (I:C)- and IFN-c-
activated RAFLS, but not upon TLR2 or TLR4 activation, has
been previously reported [13,22]. To gain more insights into the
physiopathological consequences of this observation, we first
compared BAFF expression in FLS isolated from healthy donors
or RA patients. As shown in figure 1A and B, we observed that
IFN-c-dependent BAFF expression reaches maximum levels in
RAFLS, whereas FLS isolated from healthy donors (NFLS) exhibit
reduced cytokine expression at both mRNA and protein levels. Of
note, Poly (I:C) stimulation induced very limited BAFF expression
and secretion by NFLS, while RAFLS appeared extremely
responsive to this stimulus. Next, we tested whether this difference
between a healthy and a pathological (inflammatory) state could
also be observed in another fibroblastic cell type and for this, we
chose Human Dermal Fibroblasts (HDF) isolated from skin
biopsies harvested from healthy donors (NHDF) or from patients
suffering from systemic sclerosis (SScHDF). IFN-c stimulation (1
and 5 ng/mL) resulted in a comparable increased expression of
BAFF transcripts (figure 1C) and cytokine secretion (figure 1D) by
NHDF or SScHDF. Interestingly, up-regulation of BAFF tran-
scripts and protein release in response to TLR3 triggering by Poly
(I:C) was only detectable in SScHDF and not from healthy
individuals. We also investigated here the ability of Bacterial
LipoProteins (BLP, Pam3CSK4) or LipoPolysaccharide (LPS),
which are respectively ligands for TLR2 and 4, to stimulate BAFF
synthesis by NHDF and SScHDF. As seen in figure 1C and D,

these PAMPs (Pathogen Associated Molecular Pattern) are not
activators of BAFF transcription.

Thus, these results show that FLS and HDF from both healthy
donors and RA or SSc patients can produce BAFF in response to
IFN-c stimulation, whereas BAFF transcription and protein
secretion upon Poly (I:C) triggering occurred only in fibroblasts
isolated from RA or SSc patients.

miR-30a-3p is down-regulated in Poly(I:C)- and IFN-c-
activated RAFLS and SScHDF

To understand the mechanisms underlying Poly (I:C)- and IFN-
c-dependent BAFF induction, we then focused our work on
miRNA-driven post-transcriptional regulation. A computer-assist-
ed search for miRNAs predicted to target BAFF mRNA
performed using microCosm (http://www.ebi.ac.uk/enright-srv/
microcosm/htdocs/targets/v5) identified several miRNAs candi-
dates: miR-144*, miR-452, miR-340, miR-202, miR-500, miR-
626, miR-330-3p, miR-302c* and miR-30 family members (miR-
30a, d and e which share the same seed sequence). To evaluate the
possible involvement of these miRNAs in BAFF regulation, we first
performed RT-qPCR analysis to quantify their expression in
RAFLS and SScHDF treated with Poly(I:C) or IFN-c for 6 h, 48 h
and 72 h. This analysis revealed that miR-144*, miR-30d-3p,
miR-340, miR-626, miR-330-3p and miR-302c* could not be
detected in RAFLS and SScHDF (figure 1S). miR-202 and miR-
500 were expressed constitutively but their expression did not
change after activation by Poly(I:C) or IFN-c in both cell type.
Finally, miR-452 was upregulated in Poly (I:C) treated RAFLS.

Figure 2. miR-30a-3p expression is down-regulated in Poly (I:C)- and IFN-c-stimulated RAFLS and SScHDF. A. miR-30a-3p is predicted
to target BAFF 39 UTR mRNA. B, C. miR-30a-3p expression was determined by RT-qPCR in RAFLS (n = 4) (B) and SScHDF (n = 4) (C) stimulated with Poly
(I:C) (10 mg/mL) or IFN-c (0.1 or 5 ng/mL) for 6 h, 48 h and 72 h. Results were normalized to U6snRNA and expressed as fold change compared with
samples from cells incubated in medium. Data are expressed as the mean of triplicate samples 6 SEM. *p,0.05, ***p,0.001.
doi:10.1371/journal.pone.0111266.g002
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Interestingly, we noted that both miR-30a-3p and miR-30e-3p
(data not shown), were significantly down-regulated in Poly (I:C)-
and IFN-c-activated, RAFLS (Figure 2B) and SScHDF (fig-
ure 2C) 48 h and 72 h after stimulation. These data, together
with those illustrated in figure 1, indicate that BAFF transcripts
and miR-30a-3p exhibit opposite expression patterns, therefore
suggesting potential interactions. Given the strong similarities
between miR-30a-3p and miR-30e-3p, we decided to focus on
miR-30a-3p.

miR-30a-3p directly interacts with the 39UTR of BAFF
mRNA

To validate the involvement of miR-30a-3p in the regulation of
BAFF expression, we generated luciferase reporter constructs
(derived from the pSI-CHECK2 vector) containing the firefly
luciferase gene fused to the entire human BAFF 39UTR sequence
and the renilla luciferase for normalization. We also generated a
reporter construct in which a mutated version, designed to disrupt
the predicted seed-match for miR-30a-3p of the human BAFF
39UTR, was inserted (figure 3A). These plasmids were co-
transfected in HEK293 cells with miR-30a-3p mimic or AllStars
negative control siRNA (CT). In the presence of miR-30a-3p
mimic, we observed a significant down regulation of the BAFF
39UTR-controlled luciferase sensor, whereas luciferase expression
upon transfection of the mutated form of the reporter vector
remained unchanged (figure 3B). Altogether, these data suggest

that BAFF transcripts can be directly targeted by miR-30a-3p for
post-transcriptional regulation.

miR-30a-3p modulates BAFF expression in RAFLS and
SScHDF

To assess the effect of miR-30a-3p on BAFF expression, we
measured the production of BAFF mRNA by RT-qPCR in
RAFLS and SScHDF transfected with miR-30a-3p mimic or with
the AllStars negative siRNA control (CT). 24 h after transfection,
cells were stimulated with Poly (I:C) or IFN-c for 72 h. As seen in
Figure 4, we found that overexpression of miR-30a-3p led to a
global decrease in BAFF mRNA production and protein secretion
by Poly (I:C)- and IFN-c-activated RAFLS and SScHDF (panels
A–D). Of note, transfection of miR-30a-3p mimic did not
modulate IL-6 secretion by RAFLS and SScHDF activated with
Poly (I:C) or IFN-c (figure 4E–F), which is another major cytokine
involved in B cells proliferation [23]. This indicates that miR-30a-
3p does not interact with transcripts encoding factors involved in
cytokine expression or inflammatory responses, but rather
specifically interferes with BAFF mRNA in these cells, hence
strengthening a potential role for BAFF in this process. Similar
results were obtained upon transfection of miR-30e-3p and miR-
30d-3p (data not shown).

These data demonstrate that miR-30a-3p is implicated in the
negative regulation of BAFF synthesis in Poly (I:C)- and IFN-c-
activated FLS and HDF.

Figure 3. miR-30a-3p directly targets the 39UTR of BAFF mRNA. A. Luciferase reporter constructs with wild-type or mutated (for miR-30-3p
binding sites) BAFF 39UTR were generated. B. HEK293 cells were transiently co-transfected with reporter constructs and with miR-30a-3p mimic
(20 pM). Firefly Luciferase activities were measured 48 h after transfection and normalized to Renilla Luciferase expressed by the control psi-CHECK-2
vector devoid of 39UTR sequences. Data are expressed as the mean of triplicate samples 6 SEM and are representative of three independent
experiments. **p,0.01.
doi:10.1371/journal.pone.0111266.g003
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miR-30a-3p specifically represses BAFF-dependent B cells
survival

Next, we checked the physiological relevance of BAFF
regulation by miR-30a-3p. To this end, we measured the faculty
of stimulated RAFLS and SScHDF to promote B cells survival
following transfection of miR-30a-3p mimic. RAFLS and
SScHDF were transfected with miR-30a-3p mimic or with the
AllStars negative control siRNA (CT) for 24 h and then activated
with IFN-c for 72 h. The supernatants (conditioned medium) were
harvested and added in the culture medium of B cells. After 3
days, survival of CD19-gated B cells was assessed by FACS

analysis. As shown in figure 5, addition of supernatant from IFN-
c-stimulated fibroblasts significantly (p,0.05) increases the pro-
portion of viable B cells, which shifts from 10 to 26% in the case of
RAFLS supernatant and from 35 to 56% in the case of SScHDF.
Importantly, increasing miRNA activity upon transfection of miR-
30a-3p mimic in activated fibroblasts lowers B cells viability (15%
and 35%, respectively. p,0.05). Additionally, we analyzed the
supernatant of Poly (I:C)-activated RAFLS and SScHDF but we
could not detect any difference in B cells survival (data not shown).
Indeed, Poly (I:C), unlike IFN-c, is also a potent inducer of IL-6
release by RAFLS and SScHDF (figure 4 E–F) which could

Figure 4. miR-30a-3p transfection affects BAFF mRNA expression and BAFF secretion in RAFLS and SScHDF. A, C. RAFLS (n = 5) (A) and
SScHDF (n = 4) (C) were transfected with miR-30a-3p mimic (20 pM/sample) or with an AllStars negative control (CT). After 24 h, cells were activated
with Poly (I:C) (10 mg/mL), IFN-c (0.1 or 5 ng/mL, depending on cell types) or medium for 72 h. BAFF mRNA expression was determined by RT-qPCR.
Results were normalized to Gapdh and expressed as fold change compared with samples from cells incubated with medium. B, D. BAFF release was
determined by ELISA in culture supernatants in the same conditions as panel A and C. E, F. IL-6 release was determined by ELISA in culture
supernatants in the same conditions as panel A and C. Data are expressed as the mean of triplicate samples 6 SEM. *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0111266.g004
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regulate B cells survival. Similar results were obtained upon
transfection of miR-30e-3p and miR-30d-3p (data not shown).

This experiment reveals that the modulation of miR-30a-3p
activity induces important physiological changes with potentially
relevant immune repercussions within the frame of autoimmune
diseases.

miR-30a-3p is a basal repressors of BAFF expression in
non-inflammatory fibroblasts (NFLS and NHDF)

Finally, we considered the possibility that miR-30a-3p family
members could represent an essential mechanism to maintain
BAFF expression at a very low level necessary in healthy
conditions. Indeed, excessive BAFF secretion leading to increased
B cells activation constitutes a major trigger promoting auto-
immunity. A first insight into this model is provided by our initial
observation of augmented BAFF secretion in the supernatant of
RAFLS compared to NFLS in response to Poly(I:C) and IFN-c
(figure 1B). Therefore, we compared the expression of miR-30a-
3p between healthy donor and patients cells in response to
Poly(I:C) and IFN-c for 48 h and 72 h. Interestingly, we showed
that control NFLS as well as Poly(I:C)- and IFN-c-stimulated cells
expressed higher levels of miR-30a-3p compared to RAFLS under
the same conditions (figure 6A). Moreover, NHDF which did not
release BAFF in response to Poly(I:C) (figure 1D), also expressed
higher levels of miR-30a-3p in the same conditions (figure 6B).
These observations strongly suggest that miR-30a-3p could be a
basal repressor of BAFF expression in these cells. Similar results
were obtained upon transfection of miR-30e-3p (data not shown).

To test this hypothesis, we next lowered the activity of miR-30a-
3p by transfecting specific antagonists (antisense 29O methylated
oligoribonucleotides) or negative controls (CT) in NFLS and
NHDF. 24 h after transfection, cells were stimulated with
Poly(I:C) or IFN-c for 72 h. As illustrated in figure 6C, treatment
with Poly(I:C) significantly induced higher levels of BAFF release
by activated NHDF transfected with antisense oligonucleotides
targeting miR-30a-3p compared to activated NHDF transfected

with control (CT) (113,15623,75 vs 30,7563,25 pg/ml). A similar
increase in BAFF secretion was obtained in NFLS transfected with
antisense oligonucleotides targeting miR-30a-3p stimulated with
Poly(I:C) (122622 vs 38,265,5 pg/ml) and IFN-c (109,45620,85
vs 29,6564,85 pg/ml). This experiment suggests that miR-30a-3p
could represent an essential mechanism to maintain BAFF
expression at a very low level necessary in healthy conditions.
Moreover, we checked whether BAFF transcripts modulation
upon miR-30a-3p inhibition also positively impacts on B cells
survival. For this, we added anti-BAFF antibodies to poly (I:C)-
stimulated NHDF treated with miR-30-3p antagomiRs. As seen in
figure 6D, addition of anti-BAFF antibodies significantly (p,0.01
**) eradicates miR-30a-dependant-B cells survival improvement,
thereby demonstrating that miR-30a-3p specifically modulates
BAFF expression.

Discussion

The role of B cells in autoimmunity has undergone a major
renaissance after the demonstration of the efficacy of B cells
depletion in RA [24]. BAFF plays a pivotal role in B cells
activation in autoimmune diseases and is secreted by resident cells
of target organs such as fibroblast-like synoviocytes [22,25,26]. On
the other hand, the pivotal role of innate immunity in the initiation
of autoimmune diseases is now well established, which prompted
our present investigation on the role of innate immune receptors
ligands and interferon-c on BAFF secretion. We performed our
analysis in fibroblasts isolated either from the skin (HDF) of
healthy donors or from patients suffering from SSc or from the
synovium (FLS) of RA patients or controls. Our results clearly
show that, while Poly (I:C) stimulation induces high levels of BAFF
transcription, LPS or BLP (respectively ligands of TLR4 and
TLR2) remain poor activators of BAFF expression and secretion.
Likewise, Poly (I:C) as well as LPS or BLP did not induce the
synthesis of APRIL (a proliferation inducing ligand), which
regulates also lymphocyte survival and activation (data not shown).

Figure 5. miR-30a-3p expression in RAFLS and SScHDF regulates BAFF-dependent B cells survival in vitro. RAFLS (n = 4) (left) and
SScHDF (n = 4) (right) were transfected with miR-30a-3p mimic (20 pM/sample) or with an AllStars negative control (CT). After 24 h, cells were
activated with IFN-c (0.1 or 5 ng/mL depending on the cell type) or medium for 72 h. Then, supernatants were harvested and cultured with purified
blood B cells isolated from healthy subjects. B cells viability was determined by FACS analysis; vital B cells were brightly positive when stained with
DiOC6 and excluded PI. Data are expressed as the mean of triplicate samples 6 SEM. *p,0.05.
doi:10.1371/journal.pone.0111266.g005
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This finding is consistent with results from our group which
proposed that TLR2, 4 and 9 ligands failed to induce BAFF
mRNA and protein in rheumatoid FLS [22]. Likewise, stimulation
of salivary gland epithelial cells (SGEC) obtained from patients
with primary Sjögren’s syndrome (pSS) or bronchial epithelial cells
with TLR2, 7 and 9 ligands does not induce BAFF transcription
and secretion [27,28]. Therefore, a first important result of this
study is our description of specific Poly (I:C)-dependent BAFF
transcriptional induction and subsequent secretion by SScHDF.
This observation provides a conceptual framework whereby
pathogens, such as herpesviruses which are capable of triggering
a TLR3-dependent response [29] and have been associated to
many autoimmune diseases [30], can initiate BAFF secretion and
ignite a vicious circle leading to pathogenic auto-antibodies
production. In line with this hypothesis, Ittah et al. suggested that
PKR is the major mediator of BAFF expression and secretion after
dsRNA virus infection or Poly (I:C) stimulation by salivary
epithelial cells of pSS [31].

Next, we investigated the mechanisms involved in the regulation
of BAFF production by FLS and HDF. miRNAs, which are
considered as efficient fine tuners of immune responses because
they usually modulate gene expression by a factor 1.2 to 4 [32],
exhibit abnormal expression associated with inflammatory disor-

ders such as RA [33,34], SLE [35,36] and SSc [37,38]. In an
initial attempt to identify miRNAs involved in the control of BAFF
expression, we performed RT-qPCR analysis of Poly (I:C)- and
IFN-c-activated RAFLS and SScHDF to quantify the expression
of 9 miRNAs that were predicted to target BAFF transcripts.
Among these candidates, miR-30a-3p was selected for further
analysis because its expression was down regulated in Poly (I:C)-
and IFN-c-activated RAFLS and SScHDF; such inverse correla-
tion with the expression of BAFF transcripts in the same cells and
the same conditions indicated that miR-30-3p family members
might have a role in the regulation of BAFF expression. We next
demonstrated by several complementary approaches that miR-
30a-3p actually bind specifically to the 39UTR of BAFF transcripts
and modulate cytokine expression. Importantly, additional results
(data not shown) indicate that additional members (and closely
related) of the miR-30a-3p family (miR30-d-3p and -e-3p) also
regulate BAFF expression in RAFLS and SScHDF stimulated with
Poly (I:C) or IFN-c. Therefore, our study additionally suggests a
novel mechanism for the regulation of BAFF expression at the
posttranslational level in response to inflammatory stimuli but the
transcriptional regulation of BAFF expression must also be
considered. Usually, miRNAs can function together with RNA-
binding proteins to regulate mRNA expression through the AU-

Figure 6. MiR-30a-3p represses BAFF secretion by healthy FLS and HDF. A, B. miR-30a-3p expression was determined by RT-qPCR in NFLS
(n = 4)/RAFLS (n = 4) (A) and NHDF (n = 3)/SScHDF (n = 4) (B) stimulated with Poly(I:C) (10 mg/mL), IFN-c (0.1 or 5 ng/mL) or medium for 48 h and 72 h.
Results were normalized to U6snRNA and expressed as fold change compared with samples from RAFLS (A) or SScHDF (B) incubated with medium. C.
NFLS (n = 3) and NHDF (n = 3) were transfected with miR-30-3p antisense oligonucleotides (20 pM/sample) or with an AllStars negative control (CT).
After 24 h, cells were activated with Poly(I:C) (10 mg/mL), IFN-c (0.1 or 5 ng/mL) or medium for 72 h. BAFF release was determined by ELISA in culture
supernatants. D. NHDF (n = 3) transfected with miR-30-3p antisense, were stimulated with poly (I:C). The supernatant was then treated with control
IgG or with anti-BAFF antibodies and added to purified B cells. B cells survival was next evaluated as in panel Figure 5. *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0111266.g006
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rich elements (AREs) that are found in numerous cytokine-
encoding mRNAs. For example, TNF-a and IL-10 mRNAs both
contain long AREs that are targeted by the RNA-binding protein
tristetraprolin (TTP) [39]. Our group previously showed that
blocking miR-346 decreases TTP expression and re-established
mature TNF-a intracellular expression in LPS-activated RAFLS
[40,41]. Although evidence for the direct targeting of cytokine
mRNAs by miRNAs is limited [39], we demonstrated in this study
that miR 30a-3p directly regulates BAFF mRNA.

Importantly, we also analyzed in our study the functional
outcome of miRNA-dependent BAFF regulation. We demonstrat-
ed that IFN-c stimulation of fibroblasts favors an extracellular
milieu that promotes B cells survival. Importantly, our experi-
ments (illustrated in Figure 5) demonstrated that specifically
altering BAFF secretion (with miR-30a mimic or upon anti-BAFF
antibodies addition following antagomiRs transfection) reduces the
B cells survival capacity of supernatant from IFN-c stimulated
RAFLS or SScHDF back to normal (as observed in control cells).
This indicates that BAFF (and not IL-6) is the major B cells
survival factor expressed by these fibrocytes upon IFN-c stimula-
tion. Similar to our findings, Ohata et al reported that FLS treated
with IFN-c and/or TNF-a had a greater capacity to support B
cells survival than did untreated FLS [26]. B cells survival could be
inhibited by BAFF-R:Fc, indicating that BAFF/BAFF-R interac-
tions were involved in B cells survival [26]. Altogether, this work
provides a mechanistic explanation to the control of BAFF
transcripts expression and demonstrates that cytokine secretion by
resident cells of target organs of autoimmune diseases can be
negatively regulated at the post-transcriptional level by miRNAs.
A tentative model describing these interactions is depicted in
Figure 2S. The understanding of these complex pathways has
important implications for the development of future therapeutic
applications. Indeed, the success of Belimumab in the treatment of
patients with RA and ongoing clinical trials in SSc
(NCT01670565) suggest that therapeutic targeting of BAFF could
be of interest [42]. Our present study suggests that miR-30a-3p
(and others family members) mimic could be used to target BAFF

mRNA in autoimmune diseases. Recently, patients chronically
infected with hepatitis C virus (HCV) treated with locked nucleic
acid (modified antisense oligonucleotides) against miR-122 showed
a prolonged dose-dependent reductions in HCV RNA levels
without evidence of viral resistance [43], which suggests that
miRNA modulation in patients could become a new therapeutic
option in the future.

Supporting Information

Figure S1 miRNAs expression in RAFLS and SScHDF.
MiR-144*, miR-30d-3p, miR-452, miR-340, miR-202,
miR-500, miR-626, miR-330-3p and miR-302c* expres-
sion was determined by RT-qPCR in RAFLS (n = 3) and
SScHDF (n = 3) stimulated with Poly (I:C) (10 mg/mL) or
IFN-c (0.1 or 5 ng/mL) for 72 h. Results were normalized to
U6snRNA and expressed as fold change compared with samples
from RAFLS or SScHDF incubated with medium.
(TIFF)

Figure S2 Model describing the role of miR-30a-3p in
BAFF secretion by FLS (A) and HDF (B) from RA or SSc
patients and healthy subjects.
(TIFF)
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Introduction 

Les microARN (miARN) sont des petits ARN non codants d’environ 22 nucléotides 

qui jouent un rôle de régulateurs de l’expression génique chez les eucaryotes. À ce jour, plus 

de 1500 miARN impliqués dans de nombreux processus cellulaires ont été identifiés chez 

l’homme. La biogenèse des miARN s’effectue par un clivage séquentiel d’un transcrit 

primaire par les ribonucléases de type III Drosha (Lee et al., 2003) et Dicer (Hutvágner et al., 

2001) pour former un duplexe miARN (Figure 1). Un des brins de ce duplexe va être 

incorporé dans une protéine Argonaute (AGO) (Chendrimada et al., 2005; Gregory et al., 

2005; Maniataki and Mourelatos, 2005) qui va guider le complexe effecteur RISC (RNA 

induced silencing complex) vers des messagers cellulaires cibles pour réguler négativement 

leur expression en réprimant leur traduction et/ou en les déstabilisant (Jonas and Izaurralde, 

2015) (Figure 1 et 2). La biogenèse et le mode d’action des miARN ont été intensivement 

étudiés, ce qui a permis de comprendre la complexité de cette voie de régulation d’expression 

génique. Par ailleurs, la compréhension des mécanismes permettant de réguler les miARN 

eux-mêmes a récemment reçu beaucoup d’attention. Les données publiées indiquent que cette 

régulation a lieu à plusieurs niveaux de la biogenèse et de l’activité des miARN (Ha and Kim, 

2014). Cependant, il y a encore très peu d’information concernant la régulation de la stabilité 

des miARN. Ces derniers ont en effet longtemps été considérés comme des molécules très 

stables (Baccarini et al., 2011; Bail et al., 2010; Gantier et al., 2011; Rooij et al., 2007). 

Toutefois, plusieurs exemples illustrant la nécessité de contrôler la stabilité des miARN, 

notamment en cas d’adaptation aux stress biotiques et abiotiques, commencent à apparaître 

dans la littérature. Ainsi, il a été observé au laboratoire qu’au cours d’une infection par le 

cytomégalovirus murin (MCMV), un transcrit viral (m169) induit la dégradation spécifique 

d’un miARN cellulaire (miR-27) suite à la formation d’espèces plus courtes (‘trimming’) et 

plus longues (‘tailing’) de miR-27 (Marcinowski et al., 2012).  
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Figure 1 : Biogenèse des microARN  
Schéma de la biogenèse des miARN. Après la production du transcrit primaire d’un miARN 
(pri-miARN), deux clivages séquentiels se produisent, d’abord par DROSHA qui forme le 
précurseur (pré-miARN), suivi de son export dans le cytoplasme par EXP5 (exportin-5), 
ensuite par DICER qui génère le duplexe de miARN mature (miARN/miARN*). Un des brins 
de ce duplexe sera incorporé dans une protéine Argonaute qui formera le ‘RNA-induced 
silencing complex’ (RISC). 
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Un phénomène similaire de tailing-trimming des miARN a été décrit récemment chez la 

drosophile et l’importance du degré de complémentarité de séquence entre l’ARN messager 

cible et le miARN modifié a été démontrée (Ameres et al., 2010). Ce mécanisme est appelé 

TDMD pour ‘target-RNA directed miRNA degradation’. Le projet de thèse a consisté à 

élucider le mécanisme moléculaire du TDMD en suivant deux grands axes de recherche. Tout 

d’abord, j’ai étudié et caractérisé les déterminants moléculaires et les facteurs cellulaires 

impliqués dans ce mécanisme de tailing-trimming de miR-27 au cours de l’infection par le 

MCMV (Chapitre I). Dans un second temps, j’ai entrepris une approche différente afin 

d’identifier directement les partenaires de la protéine AGO2 dans des cellules infectées ou 

non par le MCMV (Chapitre II). 

 

Figure 2 : Mécanismes de régulation d’un ARN messager par les miARN  
Après la reconnaissance d’un ARN messager cible par AGO, elle recrute la protéine GW182, qui agit 
comme une plateforme interagissant avec PABPC (cytoplasmic poly(A)-binding protein) et les 
complexes de déadenylation PAN2-PAN3 et CCR4-NOT. Quand la déadenylation est complète, le 
messager est rapidement décoiffé et dégradé par XRN1 (5’ to 3’ exoribonuclease 1). De plus, les 
miARN peuvent aussi induire la répression traductionnelle de leur messagers cibles, bien que le 
mécanisme sous-jacent soit peu clair. PAM2 : PABP-interacting motif, W : Domaine riche en résidus 
de tryptophane recrutant divers complexes au RISC. D’après (Jonas and Izaurralde, 2015).  
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Chapitre I 

Dans un premier temps, nous avons voulu étudier l’effet de l’appariement entre le 

miARN et le transcrit viral afin de déterminer les prérequis pour l’induction de ce mécanisme. 

Les expériences ont montré que le tailing-trimming d’un miARN existe aussi dans les cellules 

humaines, mais également qu’il peut être induit simplement par un oligonucléotide qui mime 

une interaction parfaite. L’appariement entre miR-27 et m169 n’est pas parfait, l’interaction 

entre ces deux ARN implique la région 5’ (seed) et un appariement fort en 3’ du miARN. 

Après transfection d’oligoribonucléotides anti-sens mimant l’interaction miR-27/m169 

sauvage et mutants, nous avons observé que l’interaction miR-27/m169 présente déjà 

l’appariement minimum en 3’ puisque la mutation du nucléotide 3’ proximal entraîne la perte 

de l’effet. Par ailleurs, nous avons observé que l’appariement de trois nucléotides en 3’ du 

miARN en plus de l’appariement de la région ‘seed’ permet toujours d’induire le tailing-

trimming de miR-27.  

Le site de liaison à miR-27 sur m169 est capable d’induire la dégradation de miR-27 

mais permet cependant également la répression traductionnelle de m169 par miR-27. Nous 

avons voulu étudier plus en détail la double fonction de ce site de liaison. A l’aide de 

rapporteurs luciférase contenant la région 3’UTR du transcrit viral m169, nous avons tout 

d’abord confirmé que le site de liaison de miR-27 était fonctionnel pour induire la régulation 

de la cible en parallèle de la dégradation du miARN. En multipliant le nombre de sites de 

fixation de miR-27 dans la 3’ UTR des rapporteurs nous avons observé comme attendu une 

répression accrue due à la coopérativité entre ces sites successifs. En revanche, la 

multiplication des sites n’affecte pas le TDMD de miR-27, démontrant que ce dernier est un 

phénomène non cumulatif.  

Au laboratoire, nous avons utilisé une approche protéomique pour identifier les 

facteurs cellulaires impliqués dans le mécanisme de TDMD. La transfection de cellules HeLa 
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par un oligoribonucléotide antisens couplé à la biotine nous a permis d’une part d’induire 

spécifiquement la dégradation de miR-27 in vivo et d’autre part de précipiter les facteurs 

cellulaires attachés au complexe dans le lysat cellulaire. En effectuant une spectrométrie de 

masse, ces facteurs protéiques ont été identifiés. Cette analyse a permis, en plus de plusieurs 

protéines connues de la voie des miARN, d’identifier deux candidats particulièrement 

prometteurs pour être impliqué dans le mécanisme de TDMD, une Terminal-Uridylyl-

Transferase (TUT1), et une 3’-5’ exoribonucléase DIS3 like 2 (DIS3L2). TUT1 est un des 

sept membres de la famille des TUTases chez les mammifères et DIS3L2 est une 3’-5’ 

exonucléase agissant indépendamment de l’exosome.  

Ces facteurs découverts dans les cellules HeLa par la spectrométrie de masse sont 

conservés chez la souris. Les expériences de co-immunoprécipitation ont montré que ces deux 

candidats interagissaient entre eux et avec la protéine AGO2 dans les lignées cellulaires 

humaines mais également murines. Nous avons par la suite effectué des expériences visant à 

valider l’implication de ces facteurs dans le TDMD de miR-27 en contexte d’infection par 

MCMV. Dans un premier temps, nous avons réalisé des expériences d’extinction de 

l’expression de ces facteurs par transfection de siARN dans les cellules murines suivi de 

l’infection par MCMV. Ces expériences n’ont pas produit de résultats significatifs concernant 

la stabilisation de miR-27, probablement due à une extinction incomplète de ces facteurs 

protéiques et/ou à la haute processivité de DIS3L2 et à la redondance des TUTases.  

Un mutant catalytique de DIS3L2 a été auparavant décrit dans la littérature (Faehnle et 

al., 2014), ce mutant incapable de dégrader l’ARN, est toujours capable de se lier à celui-ci. 

Nous avons donc surexprimé ce mutant catalytique pour obtenir un effet dominant négatif. 

Par cette approche, nous avons pu observer une stabilisation partielle mais significative des 

isoformes de miR-27 durant l’infection par MCMV. Ces résultats ont été inclus dans un 
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manuscrit sur lequel je suis co-premier auteur et qui a été publié dans la revue Nucleic Acids 

Research début 2016 (Haas et al., 2016). 

Chapitre II 

Nous avons voulu mettre en place une approche protéomique afin de déterminer les 

protéines partenaires d’AGO2 durant l’infection par MCMV. Cette approche nous a permis 

dans un premier temps d’identifier des protéines candidates qui fonctionneraient avec AGO2 

durant l’infection. Par ailleurs, nous avons également comparé l’infection par un virus 

MCMV sauvage (MCMVwt) ou mutant n’induisant pas la dégradation de miR-27 (appelé par 

la suite MCMVmut), ce dans le but d’identifier des facteurs impliqués dans le TDMD. Pour 

réaliser cette étude, nous avons opté pour une approche dite ‘étiquetage par proximité’ 

permettant le marquage par la biotinylation in vivo des protéines proximales à la protéine 

d’intérêt (Roux et al., 2012) (Figure 3). Pour cela nous avons exprimé la protéine AGO2 

murine (mAGO2) fusionnée à une version mutante de la protéine d’origine bactérienne BirA 

(biotin ligase) (appelé par la suite BirA*) permettant le marquage par la biotine des protéines 

dans un rayon de 10 nm de la protéine de fusion. Une étape d’enrichissement des protéines 

biotinylées par des billes couplées à la streptavidine est nécessaire avant de passer à 

l’identification par spectrométrie de masse.  
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Figure 3 : Technique d’étiquetage par proximité (BioID) 
Approche d’étiquetage enzymatique d’un rayon d’activité restreint. Grâce à la protéine 
d’origine bactérienne BirA* fusionnée à la protéine d’intérêt, les protéines proximales sont 
marquées par la biotine et enrichies par une chromatographie d’affinité à la streptavidine 
permettant leur identification. POI : Protéine d’intérêt. Adapté depuis (Mehta and Trinkle-
Mulcahy, 2016). 

 

Dans un premier temps nous avons mis au point l’étape de l’expression transitoire de 

la fusion BirA*-mAGO2 dans une lignée cellulaire de souris en absence d’infection (Figure 

4-A), suivi de la mise au point du marquage par la biotine et les conditions d’enrichissement 

par streptavidine des protéines proximales (Figure 4-B et C). Une fois les étapes de mise au 

point effectuées, l’analyse par spectrométrie de masse nous a permis d’identifier les 

partenaires connus de AGO2 impliqués entre autres dans l’incorporation de miARN dans le 

complexe RISC comme HSP90/HSC70 (Iwasaki et al., 2010; Johnston et al., 2010) et dans la 
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régulation des messagers cibles comme TNRC6B (Lian et al., 2009; Pfaff et al., 2013), EDC4 

(Jonas and Izaurralde, 2013), PABP (Jinek et al., 2010; Zekri et al., 2009). 

 

 

Figure 4 : Enrichissement des protéines proximales marquées par la biotine dans les 
cellules Hepa 1.6. 
A. Niveau d’expression de la protéine mAGO2 endogène (100kDa) et des protéines mAGO2 
fusionnées à la GFP (125 kDa) et BirA* (135 kDa) révélé par Western blot. B. Coloration 
nitrate d’argent après l’enrichissement et élution des protéines marquées à la biotine. C. 
Révélation par la Streptavidin-HRP des protéines biotinylées par Western blot.   
 

Par la suite, nous avons voulu créer une lignée stable exprimant la protéine de fusion 

BirA*-mAGO2. Pour créer cette lignée, nous sommes partis d’une lignée cellulaire appelée 

MEF-AGO2-/-, une lignée de fibroblastes embryonnaires de souris (MEF) issue de souris 

‘knock-out’ pour AGO2 (Liu et al., 2004). Cette lignée stable nous permettrait d’avoir 

l’expression de la fusion BirA*-mAGO2 sans bruit de fond provenant de l’expression de la 

protéine AGO2 endogène et comparée à l’expression transitoire, il n’y aurait pas d’inertie 

d’incorporation de novo de miARN dans les protéines AGO2. Après la vérification de 

plusieurs colonies sélectionnées durant la générations de lignées stables, nous avons pu 

obtenir une seule colonie de cellules positive, exprimant la fusion BirA*-mAGO2 (Figure 5).  
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Figure 5 : Vérification de l’expression de la protéine de fusion BirA*-mAGO2 dans les 
clones MEF AGO2 -/-. 
Analyse par Western blot des colonies sélectionnées pour l’expression de la protéine de 
fusion BirA*-mAGO2. L’échantillon MEF WT est issu des cellules MEF de souris sauvage et 
sert de control pour le niveau d’expression de la protéine AGO2 endogène. L’échantillon 
MEF KO est issu des cellules MEF AGO2-/- qui ont servi comme les cellules parentales pour 
la génération des colonies et sert comme contrôle négative. La coloration Ponceau est 
présentée comme contrôle de charge.  
 

Suivant l’obtention de cette lignée stable, nous avons effectué l’expérience dans trois 

conditions, une condition sans infection servant de contrôle négatif (mock), une avec 

l’infection par MCMVwt et une par MCMVmut, trois réplicas techniques pour chacune des 

conditions (R1-3). A l’issue de l’analyse par spectrométrie de masse, nous avons constaté 

malheureusement que les échantillons contenaient beaucoup de résidus de streptavidine. Cela 

présente un problème pour l’identification des peptides car le signal est noyé par les peptides 

provenant de la streptavidine. Néanmoins, l’analyse par la spectrométrie de masse a permis 

l’identification de plusieurs partenaires connus d’AGO2 (Tableau 1), et également que 

certains de ces partenaires montraient un taux d’identification différentiel dépendant des 

conditions d’infection. Ce résultat en soi est encourageant car il montre que notre approche 

est fonctionnelle et elle permet l’identification quantitative de partenaires d’AGO2. Nous 

avons également recherché des protéines d’origine virale dans nos données, mais n’avons pu 

n’en identifier que deux. Cela peut être dû au fait que le virus n’exprime pas de protéines 
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interagissant avec AGO2 ou à la contamination par la streptavidine qui a empêché 

l’identification d’un plus grand nombre de protéines.  

 

Tableau 1 : Les spectres de masse identifiés pour AGO2 et certains de ses partenaires 

directes et indirectes connus.  

  
Mock MCMV wt MCMV mut 

L’identité de 
la protéine 

Description de la protéine R1 R2 R3 R1 R2 R3 R1 R2 R3 

Ago2 
Protein argonaute-2 (BirA* 
fusion) 

112 121 121 101 89 103 103 106 107 

Hsp90ab1 
Heat shock protein HSP 90-
beta 

19 20 22 17 20 24 24 21 23 

Hsp90aa1 
Heat shock protein HSP 90-
alpha 

5 4 5 5 5 8 8 7 6 

Hspa8 
Heat shock cognate 71 kDa 
protein 

4 5 6 5 6 10 6 7 8 

Tnrc6b 
Trinucleotide repeat-
containing gene 6B  

9 8 13 6 7 8 5 7 6 

Tnrc6c 
Trinucleotide repeat-
containing gene 6C  

17 19 17 14 9 11 13 13 13 

Edc4 
Enhancer of mRNA-
decapping protein 4 

18 20 24 27 28 20 32 27 28 

Cnot1 
CCR4-NOT transcription 
complex subunit 1 

4 2 4 1     1 
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Conclusion et perspectives 

Les résultats obtenus au cours de cette thèse nous ont permis d’élargir notre 

compréhension du mécanisme de TDMD. Ce mécanisme dépend du degré d’appariement 

entre le miARN et sa cible ainsi que de leur abondance relative. De plus, à l’inverse de la 

répression d’une cible par miARN, il s’agit d’un processus non cumulatif. Nous avons 

identifié et démontré l’implication dans le TDMD de la protéine DIS3L2, la surexpression du 

mutant catalytique de cette enzyme permettant une stabilisation de miR-27 durant l’infection 

par MCMV. DIS3L2 est déjà impliquée dans la dégradation d’autres types de transcrit comme 

les mARN (Lubas et al., 2013; Malecki et al., 2013), des précurseurs de certains miARN 

(Chang et al., 2013; Ustianenko et al., 2013) et encore d’autres ARN non codants (Pirouz et 

al., 2016; Łabno et al., 2016) nos résultats élargissent la gamme de transcrit que cette enzyme 

peut réguler. 

 L’approche protéomique que nous avons mise en place semble être prometteuse pour 

l’identification des partenaires de AGO2 durant l’infection par MCMV. Elle nous a permis 

d’identifier certains des partenaires de AGO2, même si nous pouvons encore optimiser les 

conditions pour l’analyse par spectrométrie de masse. Enfin, la lignée cellulaire stable 

exprimant la fusion BirA*-mAGO2 pourrait être infectée dans l’avenir par différents virus 

pour identifier des partenaires généraux de AGO2 associé à l’infection ou des partenaires 

spécifiques associé un virus ou une famille de virus spécifique. De plus, cette lignée pourrait 

aussi servir à étudier la dynamique des partenaires de AGO2 dans des conditions de stress 

autre que l’infection virale.  
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Semih CETIN  
 Caractérisation moléculaire du mécanisme 

de dégradation des microARN par un transcrit 
cible 

 
 

Résumé 
La littérature indique que les miARN sont régulés à plusieurs niveaux de leur biogenèse et de leur 

activité. Cependant, il existe très peu d’information concernant la régulation de la stabilité des miARN. 

Le projet de thèse a consisté à étudier la dégradation spécifique d’un miRNA cellulaire (miR-27) induite 

par un transcrit viral (m169) au cours de l’infection par le cytomégalovirus murin (MCMV). Ce miARN 

est déstabilisé par un mécanisme moléculaire appelé ‘target-RNA directed miRNA degradation’ (TDMD). 

En suivant deux grands axes de recherche j’ai entrepris : premièrement l’étude et la caractérisation des 

déterminants moléculaires et des facteurs cellulaires impliqués dans le mécanisme de TDMD ; puis dans 

un second temps, la mise en place d’une approche protéomique permettant l’identification des partenaires 

de la protéine AGO2 potentiellement impliqué dans le TDMD dans des cellules infectées ou non par le 

MCMV. 

Mots-clés : microARN – TDMD – MCMV - BioID  

 

 

Résumé en anglais 
Several regulatory mechanisms have been uncovered at every level of the biogenesis and the activity of 

miRNAs. However, there is less information about the regulation of the stability of miRNAs. The PhD 

project entailed the study of a process, which specifically enables the degradation of a cellular miRNA 

(miR-27) induced by a viral transcript (m169) during an infection by the mouse cytomegalovirus 

(MCMV). This miRNA is destabilized by a process called ‘target-RNA directed miRNA degradation’ 

(TDMD). I first undertook the study and the characterization of the molecular determinants and the 

cellular factors implicated in TDMD. Moreover, I started to set up a protocol in order to identify AGO2 

partners of viral or host origin during MCMV infection, which would potentially be implicated in TDMD. 

Keywords: microRNA – microRNA – MCMV – BioID  

 

 


