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Résumé

Dans cette thèse, nous nous sommes consacrés à l’étude des bio-filaments
polymorphes, et à leurs interactions avec des membranes biologiques. En
particulier, nous avons développé, dans un premier temps, un modèle perme-
ttant de décrire des bio-filaments ne se comportant pas comme des filaments
semi-flexibles. Dans un deuxième temps, nous avons étudié les interactions
entre des filaments et des membranes tubulaires ou planes. Enfin, nous nous
sommes intéressés à la façon de se mouvoir de la bactérie nommée Spiro-
plasma.

Figure 1: Un liposome comprenant trois anneaux circulaires de FtsZ représentés en jaune
à l’aide d’une méthode de fluorescence. Les flèches indiquent ces anneaux [67].

Dans notre corps, mais également dans toutes les cellules, qu’elles soient
eucaryotes ou prokaryotes, des protéines polymérisent formant des fila-
ments. Ces filaments sont généralement décrits par des chaines semi-flexible
(comme par exemple l’ADN), et ont pour énergie élastique (sans torsion)
Eel = Bf

2

∫L
0 (κ − κ0)

2ds, où Bf est le coefficient de rigidité du filament, κ
la courbure à la position s le long de la courbe décrivant le filament, et κ0
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la courbure intrinsèque. Cependant, certains filaments importants au bon
fonctionnement de la cellule, tels que l’actine, les microtubules, etc, ont des
comportements différents. En effet, les protéines composant ces filaments
peuvent changer de conformation sous l’action de réactions chimiques, de
telle facon que les filaments eux-mêmes changent également de forme. Par
exemple, la protéine FtsZ présente dans les bactéries est responsable de
la division cellulaire après polymérisation en un filament circulaire (voir
Fig. 1). Une réaction chimique entrâıne un changement de conformation
et une constriction de la bactérie. De même, la protéine de dynamine, qui
forme une hélice autour de la membrane des cellules lors de l’endocytose (et
qui peut être approximée par une série d’anneaux autour de la membrane)
est également un filament dit switchable. De même que précédemment, une
réation chimique permet un changement de conformation et une constric-
tion de la membrane.

Dans le chapitre 2, nous avons étudié le comportement de ces filaments,
dits switchable, que nous avons contraint à former une courbe fermée dans
le plan. Dans un premier temps, nous avons étudié ce phénomène pour
des filaments isolés, puis nous l’avons appliqué à un scénario possible de
déformation de membranes tubulaires. Nous avons développé un modèle
simple, pour lequel les consitutants de ces filaments (les protéines) ont une
énergie différente de celle précédemment décrite. Notre modèle élastique
non-linéaire en courbure permettant une ou plusieurs formes préférées. Pour
ce faire, nous nous sommes arrêté à l’ordre 4 en courbure. De plus, nous
n’avons pas considéré le cas où les filaments peuvent être intrinsèquement
tordus. L’énergie par protéine est alors donnée par :

f(κ) = Aκ− B

2
κ2 +

C

2
κ4,

où A, B > 0 et C > 0 sont des constantes élastiques définies de telle manière
qu’il existe au moins un état stable. Il est également à noter que le terme en
κ représente une asymétrie dans le problème différenciant les deux faces des
protéines (voir Fig. 2 (a)). Il est possible de créer un seul état stable si la con-
stante A est suffisamment grande. Par la suite, nous avons forcé plusieurs
de ces protéines à se lier et à former un cercle. Il est apparu que dans ce cas,
grâce à la contrainte sur l’angle tangent à la courbe, les protéines n’ayant
qu’un seul minimum d’énergie pris séparément en ont deux lorsqu’elles sont
forcées à former un cercle (en intégrant sur toute la courbe, le terme en Aκ
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Figure 2: Energie des monomères en fonction de leur courbure κ. Pour a), les paramètres
sont A = −20kBT , B = 5kBT.µm et C = 1/160kBT.µm3 et κ1 ≈ 21.76µm−1. Pour b), les
paramètres sont A = 0kBT , B = 5kBT.µm et C = 1/160kBT.µm3 et κ1 = 20µm−1. Pour
un monomère de longueur a = 10 nm, la barrière d’énergie entre les deux minima est de
5kBT .

donne une constante). Dans ces conditions, l’énergie de chaque protéine
est donnée par une énergie effective symétrique par rapport à la courbure
nulle. Les deux minima d’énergie sont donnés pour les valeurs suivantes

de la courbure κ = ±κ1 = ±
√

B
2C (voir Fig. 2 (b)). Nous avons ensuite

étudié les fluctuations élastiques de filaments composés de tels monomères
et déterminé näıvement une longueur de persistance. Cette longueur est une
longueur de persistence purement élastique, qui est différente de la longueur
de persistence effective du filament. En effet, une seconde contribution est
à prendre en compte, une contribution totalement entropique due au nom-
bre d’états fondamentaux d’énergie qu’il est possible d’obtenir avec un tel
système.

Puis, nous avons effectué une étude de la dégénérescence du nombre
d’états fondamentaux pour un tel système. Il s’est avéré qu’à cause de la
contrainte de fermeture, il était assez difficile de calculer l’entropie exacte du
système, c’est pourquoi, dans un premier temps nous nous avons unique-
ment considéré un cas symétrique, le cas le plus simple étant pour nous
lorsque l’on peut séparer la courbe en 4 parties identiques, et copier-coller
la forme obtenue pour un quart de la courbe. L’entropie joue un rôle impor-
tant dans ce système. En effet, due à l’entropie, l’énergie libre du système est
différente de l’énergie élastique simple des monomères. Une étude de champs
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moyen a permis de déterminer que la courbure adoptée par les protéines
n’est pas la courbure ±κ1, mais une courbure légèrement différente (pou-
vant être plus grande ou plus petite que la courbure ±κ1). Sans entropie, la
dégénérescence de l’état fondamental n’apparâıt que lorsque la courbure κ1

est supérieure à celle d’un anneau non déformé, tandis que lorsque l’on tient
compte de l’entropie, la transition de forme peut se réaliser même lorsque la
valeur de la courbure κ1 est inférieure à celle de l’anneau non déformé. Plus
le nombre de monomères est grand, et plus le nombre d’états fondamentaux
est élevé.

Figure 3: La longueur de persistance lp d’un filament fermé dépend de sa longueur L. Les
courbes représentent différentes valeurs de κ1.

Par la suite, nous nous sommes placés dans un régime tel que les fluctu-
ations élastiques peuvent être négligées, c’est à dire dans le cas de filaments
rigides. Puis, nous avons développé un modèle ”coarse-grained” de l’anneau,
pour un nombre important de protéines composant l’anneau, ainsi qu’une
courbure préférée κ1 supérieure à la courbure nécessaire pour former un
cercle parfait. Dans le cas de ce modèle, nous n’avons plus besoin d’utiliser
la symétrie pour fermer la courbe. Le modèle ”coarse-grained” s’applique à
la courbure qui se comporte comme dans le cas d’une chaine semi-flexible
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classique. Nous avons donc décrit le filament comme une Worm-Like Chain
avec une énergie effective donnée par cette théorie (énergie quadratique
en courbure donnée dans le deuxième paragraphe). Il est important de
noter que dans le cas étudié, comme les constituants de l’anneau adoptent
une courbure κ = ±κ1, l’énergie du système est constante. Ce modèle
est donc purement entropique. Pour forcer le filament à se fermer, il a été
nécessaire d’effectuer une approximation sur les variations de l’angle tangent
à la courbe. Le résultat de ces calculs, nous a permis d’obtenir la longueur
de persistance totale du filament, dépendent de la longueur de persistance
élastique et de celle entropique, déterminée par ce modèle ”coarse-grained”.
Etonnamment, la longueur de persistance diminue lorsque l’on augmente
la valeur de la courbure préférée des monomères, le filament devient plus
mou (voir Fig. 3). Par ailleurs, à température nulle, pour une chaine semi-
flexible classique, la longueur de persistance diverge. Dans notre modèle,
elle reste finie à cause de la contribution entropique de cette dégénérescence.

Figure 4: a) Un filament fermé sur une membrane fluide, b) peu déformé, c) critique pour
κ1/κ0 = 7/3.

Finalement, nous avons étudié, pour illustrer le modèle, les effets de
tels anneaux sur des membranes tubulaires. Nous avons remarqué qu’il
est impossible de casser une membrane avec un tel anneau. Pour réussir
à casser cette membrane, il faut introduire une nouvelle condition, il faut
que les protéines soient couplés. Il est plus favorable énergétiquement pour
les protéines d’être dans le même état que leur proche voisin. Il est donc
défavorable de faire beaucoup de régions avec peu de protéines ayant la
même courbure (aussi appelées domaines). Dans notre cas, les protéines
auront soit une courbure positive κ1 soit une courbure négative −κ1. Il est
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a)

Figure 5: Représentation schématique d’un filament (a) droit et (b) courbé avec leur partie
hydrophobe en noir, pre-contraint afin qu’ils adhèrent à des membranes planes. (c) Un
filament circulaire, fermé appliquant des couples localement sur une membrane plane (left),
formé par des monomères de courbure κ0 avec leurs parties hydrophobes en noir (right).

plus favorable d’avoir deux régions de courbure positive et deux régions de
courbure négative pour une forte coopérativité, permettant de casser des
membranes (voir Fig. 4).

Dans le chapitre 3, nous avons étudié les déformations induites par des
filaments sur des membranes planes ou tubulaires. Les filaments peuvent
appliquer des forces mais également des couples. Au cours de ce projet,
nous nous sommes particulièrement intéressés au cas moins trâıté dans la
littérature de filaments appliquant des couples voir Fig. 5). Cette étude a été
faite pour des filaments rigides, dans le cadre des petites déformations. Afin
de satisfaire cette dernière contrainte, le couple appliqué doit être faible et
rester constant au cours de la déformation. Pour les membranes tubulaires,
il est possible d’écrire le déplacement radial du tube comme : u(φ, z) =
∑

n,mCn,m exp (i(kmz + nφ)). Dans le cas d’une membrane plane, la même
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méthode a été utilisée. Finalement, il est possible d’écrire l’énergie de la
membrane sous la forme :

Emem =
∑

n,m
Mn,m|Cn,m|2,

où Mn,m dépend des indices des modes de Fourier, et les Cn,m sont les am-
plitudes des modes de Fourier.

Concernant les filaments que nous considérons donc comme rigides, nous
nous sommes intéressés aux cas où ceux-ci appliquent des forces sur les mem-
branes, ainsi qu’au cas où ils peuvent appliquer des couples. Afin d’intégrer
les filaments dans nos calculs, nous avons décidé de ne pas considérer la
structure interne des filaments, mais de les considérer comme des contraintes
externes appliquées sur les membranes. Dans ce cas, la taille des filament
n’est pas fixée, les filaments pouvant donc polymériser ou dépolymériser.
Les résultats que nous allons donner par la suite seront pour le cas où les
filaments ont été traité comme des systèmes de couples.

Dans un premier temps, nous avons traité le cas d’une seule protéine ap-
pliquant des couples sur des membranes planes et tubulaires (voir Fig. 6 (a)).
Dans ce cas, une des différence apparaissant est une brisure de symétrie dans
le cas de membranes tubulaires, tandis que pour des membranes planes, le
système est anti-symétrique par rapport au moment appliqué. Ensuite, nous
avons étudié les interactions médiées par la membrane entre deux protéines
appliquant le même couple sur une membrane tubulaire. Il s’avère que le
profil d’énergie est oscillatoire. En effet, dans un premier temps, pour de
faibles distances entre les deux protéines, les deux protéines s’attirent, puis
elles se repoussent, et ainsi de suite. Cependant, nous avons remarqué que
les barrières d’énergie entre les différents minima (qui diminuent lorque l’on
augmente la distance entre les deux protéines) sont très faibles comparées
à l’énergie thermique, et sont donc quasi inéxistantes.

Ensuite, nous avons étudié les cas d’un filament fermé sur des membranes
planes et tubulaires. Dans le cas d’un filament circulaire fermé sur une mem-
brane plane, on remarque la formation d’une invagination. Concernant les
membranes tubulaires, nous nous sommes intéressés aux plus petits modes
n possibles, c’est-à-dire à une distribution de couples circulaire (n = 0, voir
Fig. 6 (b), (d)) mais aussi ellipsoidale (n = 2). Pour un filament circulaire



viii

Figure 6: Déformations de membranes tubulaires induites par (a) un couple seul, et (b) un
filament circulaire. (c) Energies totales et formes d’équilibre de deux distributions circu-
laires de couples. La courbe bleue dans le diagramme d’énergie correspond au cas où les
deux couples sont identiques, tandis que la courbe rouge correspond au cas où les distribu-
tions de couples sont opposées. Il est important de remarquer que ces figures correspondent
au cas où aucune force longitudinale n’est appliquée au tube (γ = 0). (d) Déformation
d’une membrane tubulaire induites par un filament circulaire pour γ = 2.2. Dans ce
régime, la tension de surface et la différence de pression entre l’interieur et l’exterieur de la
membrane sont positves. (e) Energies totales de deux distributions circulaires de couples
pour γ = 0 en bleu et γ = 2.2 en rouge. Dans l’encadré rouge, la forme d’équilibre du tube
est représentée pour γ = 2.2.

(n = 0), le profil du tube est oscillatoire amorti. Pour une distribution
ellipsoidale (n = 2 uniquement), ce n’est pas le cas, et la membrane relaxe
directement pour reprendre sa forme cylindrique. Par la suite, les inter-
actions entre deux filaments fermés ont été étudiées, et comme pour deux
protéines, un profil oscillatoire a été démontré. Cependant, contrairement
au cas de deux protéines, il est possible de passer la barrière d’énergie pour
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aller dans le minimum principal (pour des membranes et filaments typiques,
la barrière est d’environ 15kBT ), mais il est impossible de sortir du mini-
mum principal, la barrière étant trop grande (≈ 50kBT ) (voir Fig. 6 (c), (e)).

Figure 7: (a) Déformations d’une membrane tubulaire dûes à une distribution hélicöıdale
de couples pour des valeurs faibles (haut) et élevées (bas) de Mφ. (b) Profil de l’énergie du
système en fonction du pas ℓ de l’hélice.

Finalement, nous nous sommes intéressés à un filament hélicoidal sur une
membrane tubulaire, toujours dans le régime linéaire (voir Fig. 7). Il est ap-
paru que lorsque l’on augmente le couple, la membrane devient hélicoidale
elle-même, et s’enroule dans l’espace, faisant diminuer sa longueur. Par
ailleurs, plus le couple augmente, plus la déformation est grande, tel qu’au
delà d’un certain moment, la membrane va commencer à s’auto-pénétrer et
casser. Ce phénomène peut donc donner lieu à la fission de la membrane
tubulaire. Il est à noter que pour des couples trop grands, nous sortons du
régime linéaire. Enfin, nous avons étudié le profil de l’énergie par rapport
au pas de l’hélice ℓ, et avons obtenu un seul minimum pour ℓ = 0.

Enfin, dans le chapitre 4, nous avons commencé à traiter un problème
en rapport avec une bactérie, connue sous le nom de spiroplasma, ayant
une façon spéciale de se déplacer. En effet, cette bactérie possédant un
cytoskelette (comme une grande partie des bactéries) est hélicoidale et se
déplace en changeant d’hélicité (voir Fig. 8). Le changement d’hélicité d’une
partie de la bactérie entraine a formation d’un ”kink” entre les régions
d’hélicités différentes. C’est en propageant ce ”kink” le long de son corps
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Figure 8: a) Schéma représentant le changement d’hélicité et b) la propagation du ”kink”
le long de la bactérie [140].

que la bactérie peut se déplacer dans le sens contraire du kink. A l’aide d’une
théorie développée pour des surfaces pré-contraintes, nous avons étudié
le changement de conformation du cytoskelette en fonction de cette pré-
contrainte. Il est apparu que pour une pré-contrainte de la forme:

ǫ = ǫ0

(

y

w

)2

+ C,

où w est la largeur du cytoskelette, C une constante et ǫ0 l’amplitude de la
déformation, une brisure de symmétrie est possible. Dans un second temps,
nous souhaitons continuer ce projet afin de comprendre plus précisemment
la propagation de ces ”kinks”, et donc la façon de se déplacer de la bactérie
Spiroplasma.
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Chapter 1

The biological cell

It is not the strongest of the species that survives, nor the most intelligent, but the one
most responsive to change - Darwin (1809-1882)

Between 3.8 and 4 billions years ago, abiogenesis, the creation of life arising from non-
living matter, is thought to have occurred on Earth. It is well accepted in the scientific
world [1, 2] that life firstly belonged to the RNA world, and evolved to the DNA, RNA and
protein world we live in. Few years later (between 3.5 and 3.8 billions years ago), the small
living uni-cellular organisms, known as the last universal ancestor (LUA), evolved in first
two, then three main families of living organisms. These families, the so-called kingdoms of
life shown in Fig 1.1 (a) on the simplified phylogenetic tree are the eubacteria, the archaea
and the eukaryota (Fig 1.1 (b)-(d)).

LUA

Eubacteria

Archaea

Eukaryotes

Prokaryotes

Eukaryota

a) b) c)

d)

Figure 1.1: (a) Simplified representation of the phylogenetic tree, representing the three
kingdoms of life. Examples of cells from these kingdoms : (b) eubacteria Escherichia coli
cells [3] of length around 2-3 µm, (c) archaea Halobacteria [4] of length around 5 µm, and
(d) eukaryota red blood cells [5] of about 6 µm in diameter.

Even if the archaea and the eubacteria differ, they are quite similar in shape and both
are prokaryotic cells, whereas eukaryota are eukaryotic cells. The main difference be-
tween prokaryotic and eukaryotic cells lies in their internal structure. Prokaryotic cells
lack internal well-defined structures: the nucleus and the organelles [6]. For instance, the
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a) b)

Figure 1.2: (a) Bovine pulmonary artery endothelial cells seen in fluorescence experiment.
Nuclei, actin filaments and microtubules respectively appear in blue, red and green [7]. (b)
Schematic representation of an animal cell [8].

mitochondria, where the energy needed by the cell is produced are organelles and are only
present in eukaryotic cells (Fig. 1.2). The first living organism was unicellular, and through
time and evolutionary processes, multicellular organisms emerged. On the one hand, the
prokaryotes and some eukaryotes, such as yeast, are unicellular. On the other hand, all
multicellular organisms, such as animals or plants are eukaryotes.

Cells are the functioning and structural unit of all living organisms. They possess at
least a membrane protecting their internal constituents (such as proteins) and their genetic
code (and the organelles for eukaryotic cells) from the external environment by controlling
the exchanges between the inside and the outside of the cell. We will focus on the biological
membranes in a first step. We will then give a brief overview on the internal ”inhabitants”
of biological cells we are interested in, i.e., bio-filaments.

1.1 Biological membranes

Biological membranes do not only delimit cells. In eukaryotic cells, two kinds of mem-
branes are present: the cell membrane, and the organelles membranes. Interestingly, some
organelles, such as the nucleus or the mitochondrion are double membrane-bound organelles
[6]. Biological membranes are mainly composed of phospholipids 1, which are amphiphilic
macromolecules (see Fig. 1.3 (a)). As the inside (cytosol [9]) and the outside (extracellu-
lar fluid) of the cell both are mainly made of water, lipids form a bilayer, where all the
hydrophobic tails of the lipids are in the bilayer, avoiding contact with water molecules
thanks to the hydrophilic heads protecting them (see Fig. 1.3 (b)).

Membranes alone do not entirely control the exchanges between the inner and outer

1The term phospholipid will be replaced simply by lipid in the following.
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b)
Extracellular fluid

Cytosol

a) Hydrophilic head

Hydrophobic tails

Figure 1.3: Simplified representation of (a) a single lipid and (b) a membrane bilayer.

parts of organelles or cells. Indeed, some macromolecules are involved in the functioning
of the membrane. In particular, transport through membranes is of high importance and
is governed by functional proteins [12]. For example, ion channels are involved in this
mechanism by selecting ions penetrating the cell to regulate the electrostatic potential.
Nonetheless, other larger molecules (such as proteins) are also needed in cells, and cannot
go through membranes, but rather need to be ”swallowed” by them. This phenomenon is
called endocytosis [13]. Cells do not only swallow but can also eject molecules from the
inner part of the cell, this is called exocytosis [14].

Moreover, lipids can tune the properties of membranes. Cholesterol is one of them and
plays a role in the fluidity of the membrane [10, 11]. Due to these intra-membranous
macromolecules, but also to a wide diversity in the lipids composing membranes, the
biological membranes present in all living cells are not as simple as shown in Fig. 1.3
(b).

1.1.1 Membranes as two-dimensional elastic sheets: Helfrich model

No theoretical model exists with the level of details just described, however, a simplified
solvable and useful model to describe membranes has been developed by Canham and Hel-
frich [15, 16, 17]. In this model, the first assumption is to consider the membranes as thin
sheets. Indeed, typical membranes found in Nature have a thickness of about 5 nm. For
red blood cells (see Fig. 1.1 (d) and caption), the circumference of the membrane is about
20 µm. Comparing the in and out-of-plane sizes, one clearly sees that membranes can be
seen as two-dimensional objects. In addition to this simplification, a coarse-grained ap-
proach is performed, such that the lipids are not considered themselves. The smallest size
considered is larger than the lipids size. The composition of the bilayers can thus display
several types of lipids. Nonetheless, the cholesterol and other intra-membranous proteins
are not present in this description. Finally, under physiological conditions, bilayers are in
the so-called fluid phase (see next subsection for more detailed discussion), and are elas-
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tic. Membranes are assumed to be bendable but not stretchable elastic sheets. Resulting
membranes correspond to the one shown in Fig. 1.3 (b).

In the continuous limit, the energy associated with this simplified bilayer membrane, is
then not purely geometric, as it is in general when we consider surfaces embedded in the
three-dimensional world. Due to the elastic properties of the bilayer, a more general form
of the energy is given by[18]:

EHel =
∫ (

2Bm (H −H0)
2 + κ̄KG + σ

)

dA, (1.1)

where Bm and κ̄ respectively are the bending and saddle-splay moduli and σ is the surface
tension. H, H0 and KG respectively correspond to the mean, spontaneous and Gaussian
curvatures. The mean and Gaussian curvatures are expressed in term of the principal

curvatures κ1 and κ2 of the surface 2 such that H =
κ1 + κ2

2
and KG = κ1κ2. The

value of H0 corresponds to the preferred curved state of the membrane. Finally, dA is
the infinitesimal area element, and the integral is performed over the whole surface of the
membrane. The first two terms of the energy correspond to its bending energy, and in
particular the term depending on the Gaussian curvature can be rewritten such that it
only depends on the topology of the surface. The Gauss-Bonnet theorem [19] permits the
calculation of the integral for closed surfaces. It shows that the integral can be rewritten
for a single closed surface as:

∫

KGdS = 4π(1 − g), (1.2)

where g corresponds to the number of handles of the surface 3. For instance, g = 0 for
a sphere, and g = 1 for a torus. Note that this term does not change the energy if the
topology of the system remains the same as it will be the case in the remainder of this
manuscript. We will use the energy given by Eq. 1.1 in the following chapters (chapters 2
and 3) for different specific geometries.

1.1.2 Physical properties of membranes

Experimentally, properties of such membranes have been measured. One of the most
interesting being the bending modulus also known as the bending stiffness. For this precise
example, Small Angle X-Ray Scattering (SAXS) [20, 21, 22] and micropipette experiments
[23, 24] are the most reliable techniques. For instance, in X-Ray scattering experiments,
one illuminates the sample made of multilamellar phases, which corresponds to bilayers
on top of each other separated by the distance d̄ (see Fig. 1.4 (a) (right)). The main
problem with this experiment is that there exist many regions of lamellar phases of different
orientations, such that bilayers are not all parallel to each other (see Fig. 1.4 (a) (left)).
The result obtained with such experiment should give Bragg peaks giving as a result the

2The principal curvatures correspond to the maximal and minimal values of the curvature normal to
the surface. They measure the maximal and minimal bending of the surface at each point of the surface.

3For N closed surfaces, the integral is equal to 4π(N − Nh), where Nh is the total number of handles.
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smectic periodicity d = d̄ + δ (where δ is the thickness of the bilayer) thanks to Bragg’s
law :

nλ = 2d sin(2θ), (1.3)

where n is the order of reflection that takes an integer value, λ is the X-Ray wavelength
(between 1 and 100 nm) and θ is the scattered angle (see Fig. 1.4 (b)). However, as the
experiments are done at finite temperature, membranes fluctuate. Such fluctuations widen
the Bragg peaks, which are linked to the bending modulus, and make them asymmetric
(see Appendix A.1). The SAXS experiment can be coupled to other measurements such
as Nuclear Magnetic Resonance (NMR) analysis [29] or Surface Force Apparatus SFA
measurements [30], for higher precision. In particular, the compressibility modulus can be
determined thanks to SFA, such that the bending modulus can be deduced from Eq. A.15
given in appendix A.1:

Bm =
9π2

64

B(kBT )2

d4
, (1.4)

where B is the compressibility modulus.

In the case of a micropipette experiment (see Fig. 1.4 (c)), the pressure inside the
micropipette Pp is tunable, allowing the creation of a difference of pressure with the medium
∆P = Pout − Pp. The aim of the experiment is to attract and suck up a vesicle present
in the medium in the micropipette. This is only possible for ∆P > 0. It is important
to note that for too small ∆P (of the order of 1 Pa = 10−2 pN.µm−2), fluctuations of
the membrane forming the vesicle are large, and the shape of the quasi-vesicle outside the
micropipette is not circular. Increasing ∆P to a value of the order of 10 Pa, the membrane
of the vesicle still fluctuates but is assumed to be circular. Knowing all these parameters
but also the sucked length L, and the surface tension of the vesicle thanks to Laplace law
4 giving

σ =
Rp∆P

2
(

1 − Rp

Rv

) (1.5)

allows to determine the bending modulus of the studied vesicle (see Appendix A.2). Typ-
ically, the bending modulus of bilayer membranes is of the order of 10 − 30 kBT under
physiological conditions, where kB is Boltzmann’s constant and T is the temperature. Also
note that one can attach a magnetic bead to the vesicle, trap it thanks to magnetic tweez-
ers [26] and move it away from the vesicle, thus applying a longitudinal force and creating
a tubular membrane [27, 28].

Numerically, coarse-grained experiments have been performed, where the lipids are de-
scribed by few beads. A single bead describing a lipid would not give precise results,
not allowing for instance to consider the possible polarity of the lipids. For example, the

4Note that a generalized Laplace law is necessary for radii smaller than 10 nm for typical membranes
[25].
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Figure 1.4: Schematic representations of X-Ray (panels (a) and (b)) and micropipette
(panel (c)) experiments. (a) Typical X-Ray sample, showing multi-domains lamellar phases
(left) and a zoomed view of a lamellar phase (right). (b) Example of plot of intensity
scattered by the lamellar phases sample as a function of the wavevector q. Three Bragg
peaks are visible, allowing to infer the periodicity of the sample: d = 22, 7 ± 0, 4 nm [29].

Martini force field has been developed for molecular dynamic simulations of lipids [31].
Numerical simulations also have been performed to determine phase stability of ternary
mixtures. Assuming that the competition between the liquid and gel order of the lipids is
the main driving force behind lipid segregation, they calculated a free energy of mixing.
The simulations enabled a fast determination of the phase diagram [32]. Full atomistic
simulations also have been performed, but mostly to study membrane-proteins interac-
tions [33]. Simulations could also give insight on the collective properties of the bilayers.
However, the number of particles needed to highlight such properties is so high that cal-
culations need too much time and memory.

The properties of the simplified bilayer membranes we consider have microscopic ori-
gins. For instance, in a fluid, lipids are large molecules, and thus can freely move (if not
linked to anything) due to collisions with smaller particles of the fluid in their vicinity.
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Figure 1.5: (a) Experimental phase diagram for DMPC (a sort of two-tailed lipid) plotted as
a function of temperature and hydration[34]. (b) Schematic representation of the different
phases, where Lc, Lβ′ , Pβ′ and Lα respectively are the crystalline, gel, ripple and fluid
phases. Tv corresponds to the gel-ripple transition temperature, while Tm is the fluid
transition temperature [44].

The motions of the lipids depend on external parameters. In particular, temperature plays
an important role on their mobility. Moreover, for lipids in water, the water fraction (also
known as hydration) also modifies the properties of bilayers for fixed temperature as shown
on the phase diagram on Fig. 1.5 (a). Another interesting behaviour is linked to the relative
values of the elastic constants Bm and κ̄ defining the membranes. This second diagram
will represent not a real phase diagram, but more a shape diagram.

Let us firstly focus on the water concentration-temperature phase diagram shown on
Fig. 1.5 (a). It presents three of the four phases encountered for different temperatures and
water concentrations. The fourth phase, which is known as the crystalline phase Lc does
not appear on this diagram as it only exists at low temperature. In this phase, the lipids
arrange in a well defined structure and have a mobility assumed to be null 5. Heating the
system increases the thermal fluctuations which affect the lipids. This additional thermal
energy allows the lipids to diffuse faster. The structure is still well defined, but the lateral
organization of the lipids is lost. In this state, the so-called gel phase Lβ′ , the diffusion
coefficient is small, but non zero (D < 10−2µm2.s−1) [35, 36]. Depending on water con-
centration, the lipids might behave slightly differently in the so-called ripple phase Pβ′ . In

5This is the analogue to the solid state in hard matter.
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particular, the lipids do not form a quasi-flat membrane but display a corrugated state
[37, 38]. The period of oscillations depends on the lipids, but are in a range of 100 to
300 Å. Finally, at high temperature, the bilayer membranes are in the fluid phase Lα. In
fluid membranes, the diffusion coefficient increases drastically to reach a value of the order
1 − 10µm2.s−1 [39, 40]. Note that this diffusion coefficient, as the one given for the gel
phase, is only valid for diffusions along a monolayer. Moreover, the bilayer is softer in this
state, and fluctuates more in the out-of-plane direction.

Interestingly, transition temperatures mainly depend on the nature of the tails. In
particular, for short lipid chains, the transition temperatures are lower than for long lipid
chains. Similarly, the more unsaturated lipids are, the faster they change state. Further-
more, long-chained lipids do not display ripple phase [38].
At room temperature, membranes are in their fluid state, but what is their topology ?

Let us consider only the elastic energy of an intrinsically flat membrane (H0 = 0), and
study its stability. For a flat membrane, as the mean and Gaussian curvatures are zero, the
elastic energy also is Eel = 0. Consider now the case of the same membrane, but closed.
Its elastic energy then reads:

Eel =
∫

2BmH
2dA+ 4πκ̄(1 − g). (1.6)

The bending modulus Bm being always positive, let us investigate the stable shapes of
membranes due to the effect of the saddle-splay modulus κ̄. On the first hand, for κ̄ < 0,
the second term of the elastic energy (Eq. 1.6) is minimum for g = 0, meaning that the
membrane does not present handles. Two possible phases without handles correspond
to the flat membrane, and the spherical membrane, i.e., the vesicle. Note that the area
is the smallest possible one in these two particular cases, meaning that the energy term
corresponding to the surface tension also is minimal. The question now is to find out
whether a vesicle is more stable than a flat membrane. For a vesicle, both radii of curvature
correspond to its radius R. The first term in the elastic energy (Eq. 1.6) thus gives

∫

2BmH
2dA = 8πBm. (1.7)

The vesicular state is favorable when its elastic energy is negative, whereas the flat state is
favorable when Eel > 0 in Eq. 1.6. This implies that the membrane is in its spherical state
for κ̄ < −2Bm, and in the flat state for −2Bm < κ̄ < 0. On the other hand, for κ̄ > 0,
the second term of the elastic energy (Eq. 1.6) is minimal for g going to infinity, which
would mean for an infinite number of handles. This is however not the case. Indeed, the
energy proportional to the mean curvature can be minimised for H = 0, i.e., for κ1 = −κ2.
However, the surface tension term in the free energy is not minimised for g → ∞. A com-
petition between these two terms gives the final number of handles. This is the so-called
cubic phase.

In the previous analysis of the shape diagram, we only considered one membrane, but
this result holds in general for N membranes. It is also important to note that this study
is done at a temperature of 0 K. At finite temperature, membranes fluctuate and the cubic
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Figure 1.6: Schematic representation of the stability of a lamellar phase at 0 K (left), and
at temperature T (right). L4, Lα and L3 respectively correspond to the vesicular, lamellar
and sponge phases [41].

phase is called the sponge phase (see Fig. 1.6).

These phase and shape diagrams exist because, depending on the external temperature,
lipids can diffuse along the membrane. Nonetheless, this is not the only motion lipids can
display. We present these motions from the most to the less frequent (see Fig. 1.7)

• The tails of the lipids can move very rapidly, with a change of conformation approx-
imately every 10−12 s.

• Lipids can freely turn round in a characteristic time of approximatively 10−9 s.

• Lipids can leave the layer plane from a distance of the order of the Angström. This
is the so-called protrusion which happens also in a characteristic time of the order of
10−9 s [42].

• As already mentioned, lipids diffuse along the membrane, with the diffusion coefficient
depending on the phase. For the crystalline phase, it is assumed to be null, whereas
for the gel phase, it is smaller than 10−2 µm2.s−1. Under physiological conditions,
i.e., in the fluid phase, it is of the order of 1 to 10 µm2.s−1. For instance, for a red
blood cell of diameter equal to 6 µm, a lipid can turn around the cell in 6 to 20 s.

• Finally, lipids can switch from one layer to the other one of the bilayer. This is the
so-called flip-flop. This is the less energetically favorable movement of the lipids,
such that its characteristic time is close to the hour [43]. There is a difference of 15
orders of magnitudes between the most and the less frequent movements of lipids.
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Figure 1.7: Schematic representation of a bilayer membrane and various lipids motions
[44].

The lipids motions lead to collective motions, and changes in the properties of mem-
branes. In particular, lateral diffusion of lipids are particularly linked to the phase of the
membrane. For instance, in the fluid state, lipids diffuse rapidly, such that the membrane
does not sustain shear in the plane. In other words, no torque can be applied to fluid
membranes in the out-of-plane direction.

1.2 Bio-filaments

For now, we discussed bilayer membranes utility in the functioning of cells, i.e., mainly
protection of the inside of the cell and cell transport. We also examined the physical prop-
erties of simplified membrane bilayers. In particular, their elastic properties are of high
importance to understand the shape of cells. Nonetheless, membranes themselves under
physiological conditions would not exist. Indeed, it is known that membranes tear for sur-
face tensions of the order of 10−3 N.m−1 [45]. Under physiological conditions, the osmotic
pressure is of the order of 105 Pa [46]. Using a simple Laplace law for a spherical membrane
of radius r ≈ 2µm, one finds a surface tension of the order of 10−1, which is larger than
the surface tension of rupture. This means that inside cells, one finds other constituents,
which help membranes maintaining their stability [47]. These are the so-called proteins.

For instance, as already mentioned, some are devoted to maintain the shape of the cell
(spectrin for red blood cells for example). Other proteins are involved in cell transport,
cell division... Proteins might also assemble (polymerise) to form long chains of proteins.
Furthermore, one finds another type of macromolecules in cells, the so-called nucleic acids.
These macromolecules, which are also of high importance for life (see below), are made
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Figure 1.8: Schematic representation of a double-stranded DNA [50].

of nucleotides. These long chains can be termed as bio-polymers or bio-filaments. Both
assembly (polymerisation) and disassembly (depolymerisation) occur as needed by cells. In
the following overview, we will first discuss various examples of bio-filaments. In a second
step, we will discuss one of the theoretical model used to describe bio-polymers, and its
limits.

1.2.1 Examples of bio-filaments

The most prominent bio-filament is DNA [48], which contains the genetic information of
the living organism. It is localized in the nucleus of eukaryotes and directly in the cytosol
(the liquid inside cells) in prokaryotes. Interestingly, DNA is one of the two bio-filaments
that are composed of nucleotides. The second one is RNA [49] which main role is to syn-
thesize proteins. The chemical structures of these two macromolecules are similar. Indeed,
DNA is made of four types of nucleotides: guanine (G), cytosine (C), adenine (A), and
thymine (T), whereas for RNA, Uracil (U) replaces thymine. Moreover, they both are
double-stranded helices, where the two strands are anti-parallel, as shown in Fig. 1.8.

Amino acids polymerization leads to proteins. Proteins assembly forms long filaments,
which are useful for the life of the cell. The list of filaments is long, with the foremost
being actin [51, 52, 53, 54], microtubules [55, 56, 57, 58], intermediate filaments [59, 60, 61],
dynamin [62, 63, 64, 65] in eukaryotic cells, and FtsZ [66, 67, 68, 69, 70] and MreB [71,
72, 73] in prokaryotic cells. In Table 1.1, we present the main roles of these bio-filaments.

In particular, two of these filaments motivated our work. The first one, dynamin is
a member of the GTPase family6, which participates to membrane fission [65]. In mam-
mal cells, it has three forms. Dynamin1 is only present in neurons and is involved in the

6In cells, the energy can be provided by two nucleotides: Adenosine triphosphate (ATP) or Guanosine
triphosphate (GTP). Dynamin uses the energy released by GTP, when transformed into GDP to perform
work.
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Name Actin Microtubule Intermediate filament
Cell migration Cell division Cell solidity

Main roles Cell division Intra-cellular transport Cell shape
Muscle contraction Cell shape

Name MreB FtsZ Dynamin
Main roles Rod-like cell shape Cell division Endocytosis

Table 1.1: Presentation of some bio-filaments and their main roles in the life of the cell.

Figure 1.9: Dynamin coiling around lipid nanorods in presence of different nucleotides seen
under negative stain electron microscopy [78].

formation of synaptic vesicles [74]. Dynamin2 is responsible for clathrin-mediated endocy-
tosis, in all types of cells [75]. Finally, Dynamin3 is the least characterised of these three
isoforms of dynamin, and is thought to have a presynaptic function, similar to Dynamin1
[76]. Dynamin proteins7 polymerise to form helically-shaped bio-filaments around tubular
membranes. In vivo and in vitro, when the function of dynamin has been blocked, i.e.,
without GTP, the filaments were found to be identical. When wrapped around tubular
membranes of diameter of about 20 nm, dynamin helices were found to display external
diameters of approximatively 50 nm, and few tens of nanometers long [77]. It is thus as-
sumed that dynamin proteins have a size of approximatively 15 nm.

Nonetheless, the pitch of the dynamin filaments differ. Indeed, in vitro, the pitch was
found to lie between 10 and 13 nm [79, 80], whereas in vivo, it is close to 20 nm [81].
This difference comes from the association of dynamin with BAR proteins, which are not
present in vitro. When wrapping around tubular membranes, the dynamin filament is a
right-handed helix with ≈ 14.3 proteins per helical turn. In presence of GTP, dynamin
and GTP first bind, then dynamin hydrolyses the GTP. This process releases some energy
that can be utilised by dynamin to change its shape. The use of this energy to change

7In principle, we should term the subunit of the dynamin filament as a dimer. Indeed, the dynamin
monomer is an almost straight protein, and the subunit, which looks like an ”X” is made of two of these
monomers. In the text, when mentioning ”dynamin protein”, we consider in reality the ”X” dimer.
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Figure 1.10: A liposome with three bright Z rings, each centered on a constriction. The
fluorescent FtsZ is shown in yellow, superimposed on the differential interference contrast
image of liposome. Arrows indicate Z rings [67].

conformation has been studied in particular by Stowell et al [78] on tubular nanorods (see
Fig. 1.9) and Sweitzer and Hinshaw [82].

The main difference between these two papers lies in the effect of the GTP hydrolysis
on the shape of the whole system. In the first case, the pitch of the helix increases upon
hydrolysis, whereas in the second paper, the pitch reduces. This difference comes from the
tube, which in the case of Stowell et al is stiff (the tube is rod-like), whereas in Schweitzer
and Hinshaw, dynamin wraps around a tubular membrane. A theoretical model developed
by Lenz et al, which assumes that the dynamin filament constricts the tube, confirms the
effect of the stiffness of the tube on the pitch of the helically-shaped dynamin filament
[63]. According to Sweitzer and Hinshaw, the outer radius of the dynamin helix decreases
from 25 to 20 nm, while the pitch decreases from 13 to 9 nm. Assuming that the height
of the dynamin proteins remain the same upon constriction, one sees that the radius of
the tubular membrane decreases from 10 to 5 nm. The constriction itself is thus not suffi-
cient for membrane fission. Indeed, membranes are assumed to fission during the so-called
hemi-fission phenomenon, where two opposite sides of the membrane inter-penetrate. This
happens for radius smaller than the lipid bilayer which is of the order of 5 nm. As con-
striction is not sufficient for membrane fission, there is another phenomenon which breaks
the tube. At the neck of the tubular membrane, at the border between where dynamin
constricts, and where there is no dynamin, there is a change of curvature of the tube. In
this particular region, the surface tension is the highest. For high enough surface tension,
the tubular membrane might fission.

The second one, FtsZ [66, 67, 68, 69, 70], is a protein also member of the GTPase
family. It is found in bacteria where it plays a crucial role in cell division. It is a tubulin
homologue which has the same function as the actin protein found in eukaryotic cells.
In vitro, FtsZ proteins assemble into one-stranded proto-filaments made in average of 30
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Figure 1.11: Fluorescence images of three bio-filaments discussed in Table 1.1. (a) Micro-
tubule, (b) Actin and (c) Intermediate filament [87].

subunits for a length of 125 nm [83]. In vivo, these proto-filaments assemble into long
filamentous structures attached to the inner bacterial membrane. They do not directly
bind to the membrane but bind to FtsA proteins, which are embedded in the membrane.
Interestingly FtsA forms, by polymerising, helical filaments on the membrane [84]. First, it
was thought that when these proto-filaments are connected, they form rings in the center
of the cell. These rings are the so-called FtsZ Rings (see Fig 1.10). Nonetheless, it is
nowadays thought that the polymerisation of the FtsZ proteins leads to the formation of
close-pitched helices [85, 86].

In vivo, FtsZ proteins, in addition to a dozen other proteins, are involved in cell di-
vision. In particular, FtsZ Rings are the first filaments recruited to divide the cell. As
a first step, it constricts the cell. Indeed, FtsZ proteins display two states. Due to this
characteristic, proto-filaments also display multiple states. The two extreme cases occur
when all proteins are in the same state. The proto-filaments can be straight, highly curved
or display intermediate configuration between these two extreme cases. The mechanism of
force generation comes from the switch from the straight to the curved conformation. Sim-
ilarly to the case of dynamin, it is the hydrolysis of GTP that gives the energy necessary
for the change of conformation.

1.2.2 The Worm-Like Chain model

Similarly to the bending modulus of membranes, the bending stiffness is one of the most
important physical property of bio-filaments, and has been widely studied experimentally
[88, 89, 90, 91]. Fig. 1.11 shows the effect of the bending stiffness on the shape of three
of the main bio-filaments found in eukaryotic cells. One clearly sees differences between
them. Indeed, the microtubule seems to be stiff, and rod-like, while actin is a bit wavy
and the intermediate filament seems completely soft and looks like a ball of wool. The
following subsection will be dedicated to the discussion about one of the most used model
to describe the elasticity of bio-filaments.

Theoretical models describing these filaments often consider that the interactions be-
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tween the subunits are averaged or smoothed away. This approximation allows to treat
the bio-filaments as thin elastic rods. One of the simplest model generally used is the
Worm-Like Chain (WLC) [92]. The general form of the WLC Hamiltonian is written as a
function of the curvatures Ω1/2 and twist Ω3 as:

EW LC =
1

2

∫ L

0

(

B1(Ω1 − ω1)
2 +B2(Ω2 − ω2)

2 + C(Ω3 − ω3)
2
)

ds, (1.8)

where B1, B2 are the two bending stiffness and C is the torsional stiffness. ω1/2 and ω3

respectively are the intrinsic curvatures and twist. Finally ds is the infinitesimal length
unit of the filament of total length L. In polymer science, the quantities of interest are
not the bending and torsional stiffnesses, but quantities directly linked to them and known
as the persistence lengths. These are lengths over which the tangential correlations of the
filament are lost (see Appendix A.3). For distances smaller than the persistence length,
the filament is considered as a rod, while for larger distances, the filament seems floppy. It
is possible to rewrite the stiffness as a function of these lengths as (see Appendix A.3):

B1,2 = lp,1/2 kBT

C = lt kBT, (1.9)

where lp,1/2 are the two persistence lengths for bending and lt is the persistence length for
twisting.

The filaments discussed previously, such as DNA, actin, microtubules and intermediate
filaments were described even more simply. Indeed, one first considers that these filaments
do not spontaneously twist, and are isotropic, such that whatever the direction they curve
in, the energy cost is the same. The two persistence lengths for bending are thus equal
and the twist term is null. In addition, as a last simplification one can study this kind of
filaments confined in a two dimensional plane such that it can bend only in one of the two
discussed directions (with positive or negative curvature). We call this persistence length
for bending lp. The expression of the energy given in Eq. 1.8, thus can be simplified, for a
straight filament (no spontaneous curvature) as:

Efil =
lp kBT

2

∫ L

0
κ(s)2ds. (1.10)

One sees in Fig. 1.11 that the distance between both ends is strongly affected by the
stiffness of the filaments. In the limit of the WLC model, the mean square end-to-end
distance 〈R2〉 reads (see Appendix A.3):

〈R2〉 = 2l2p

(

L

lp
+ e−L/lp − 1

)

, (1.11)

where 〈...〉 denotes a thermal average. In the limit of L/lp ≪ 1, 〈R2〉 ≈ L2, such that
the filament is rod-like, similarly to microtubules. In the opposite limit of L/lp ≫ 1,
〈R2〉 ≈ 2lpL = Nb2, with effective bond length b = 2lp, corresponding to the Kuhn length
[93]. The filament adopts a random-walk conformation, similarly to intermediate filaments.
Under physiological conditions, the persistence length of the latter filaments have been ex-
perimentally measured. For instance, for microtubules, 0.1 mm < lp < 5 mm [88, 90], for
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intermediate filaments, lp ≈ 1µm [89], for actin, lp ≈ 17µm [88, 91] and for double-stranded
DNA, lp ≈ 150 bps (base pairs) ≈ 50 nm [94].

However, biological filaments can display a behavior more complex than that of straight
standard semi-flexible chains described by the WLC model. In many cases, in vivo and in
vitro, bio-filaments manifest heterogeneities of different origin. For instance, in the last two
decades, there has been strong evidence that some bio-polymers have individual subunits
which can fluctuate between different conformations leading to very unusual mechanical
behavior. This kind of switchable multistable filament is abundant in the biological realm.
In particular, FtsZ [66, 67], MreB [71], actin [51, 52, 53, 54] and microtubule which shows a
very exceptional mechanical and dynamical behavior [56, 57, 95], the confotronic dynamics
recently introduced [58], are switchable. Other remarkable examples of such polymorphic
filaments are the bacterial flagella [96, 97] and the spiroplasma [98, 99, 100, 101].

Among many interesting and important questions, one tries to understand how bio-
filaments and biological membranes interact. For instance, one tries to understand how
membranes fission. In eukaryotic cells, actin interacts with the cell membrane, while in
prokaryotic cells, FtsZ plays the same role as actin. Another example is during endo-
cytosis, in order to let molecules cross the membrane, dynamin deforms the membrane
and cuts it. Such phenomena have been widely studied theoretically and experimentally
[62, 63, 68, 102, 103, 104]. However, the previous works did not take into account that
filaments can display a more complex behavior than simple semi-flexible chains.

In Chapter 2, we discuss the collective mechanical behavior of coupled non-linear
monomer units entrapped in a circular filament. The phenomenon, that we term poly-
morphic crunching, is discussed and applied to a possible scenario for membrane tube
deformation by switchable dynamin or FtsZ filaments.

In Chapter 3, we study the deformations of a fluid membrane imposed by adhering stiff
bio-filaments due to the torques they apply. In the limit of small deformations, we derive a
general expression for the energy and the deformation field of the membrane. This expres-
sion is specialized to different important cases including closed and helical bio-filaments.
In particular, we analyse interface-mediated interactions and membrane wrapping when
the filaments apply a local torque distribution on a tubular membrane.

Finally, in Chapter 4, we discuss the motility of eukaryotic and prokaryotic cells. In
particular, we focus on the Spiroplasma bacterium, which is helically-shaped and displays
a bacterial cytoskeleton and lacks a cell wall. We discuss the ingredients of the theory we
want to develop in the future to understand the motility of this bacterium.



Chapter 2

Polymorphic biofilament rings

In this chapter, we pose the following conceptual question: What happens when protein
monomers with an intrinsic curvature form a stiff polymer which is forced to close in a
ring of different curvature radius ? We first give the conditions for the emergence of multi-
stability. Then we describe the model, giving rise to the degeneracy of the ground state
and to a softening of the ring through prestrain. Finally, we apply this model to a possible
mechanism of membrane fission.

2.1 Emergence of multi-stability

The WLC model discussed in the introduction can describe a multitude of filaments, which
are not necessarily simple. For instance, it can describe intrinsically twisted and curved
filaments. Nonetheless, this continuous linear model does not take into account the pos-
sible multi-stability of the constituent subunits. In this model, the subunits only have
one preferred state of curvature. What would happen if the subunit constituents of the
filament were multi-stable and could switch between several states?

Let us consider two simple situations, where multi-stability and switchability of cou-
pled subunits arise. Consider N identical elastic subunits described by their curvature
κi. Each subunit has a corresponding elastic energy f (κi), where the function f has
a global minimum at the curvature κi = κm, corresponding to the intrinsic curvature of
the subunit. Note that in this general setting, subunits can be mono-stable or multi-stable.

As a first example, consider these N monomers mechanically coupled in the plane per-
pendicular to their bending axis (see Fig. 2.1 (a)). On the one hand, for intrinsically
straight monomers κm = 0 (in Fig. 2.1 (a), this corresponds to straight rectangular sub-
units), such a coupling results in the formation of a slice of tube of circular cross-section. In
this particular configuration, all monomers are in their ground state. On the other hand,
for intrinsically curved monomers (κm 6= 0), the cylindrical tube bends in the direction
orthogonal to the cross section and displays an apparent curvature κtube. Similarly to the
case of straight monomers, due to the closure constraint, not all monomers display their
preferred curvature. Indeed, if all subunits bend such that their energy is minimal, i.e.,
with curvature κm, the closure condition is not respected all along the bending axis. The
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Figure 2.1: Two simple types of collective coupling between non-linear units, with curvature
κi and bending energy f(κi), via a global constraint. a) Polymorphic buckling as found in
bacterial flagella and microtubules. Bendable units are coupled in the plane perpendicular
to their bending axis [56, 57, 58]. Note that for a cylindrical tube, i.e., for κtube = 0, all
subunits are frustrated with κi = 0. b) Polymorphic crunching, described in more details
in this chapter. Non-linear bendable units are coupled in-plane of bending by a ring closure
constraint.

subunits curvature can be approximated at first order by:

κi ≈ κtube cos
(

2πi

N

)

, (2.1)

as a result of the projection of the tube’s curvature on each subunit. The elastic energy of
the slice of tube is the sum of the energy of all the subunits such that:

Etube(κtube) =
N∑

i=1

f
(

κtube cos
(

2πi

N

))

. (2.2)

Let us consider for instance the case of two subunits (N = 2). The energy of such a system
then is:

Etube = f(κtube) + f(−κtube). (2.3)

As the sides of the constituents must be in contact, the two subunits lie on each
other and are “welded”. Assuming that the subunits are symmetric, such that bend-
ing with a curvature ±κ costs the same energy, we can rewrite the energy as follows:
Etube(κtube) = 2f(κtube). More generally, the energy, due to the symmetry of the system
only depends on even terms of the function f , if the number of subunits is even itself
(N = 2k, where k ∈ N) . In such a case, the system is expected to present at least three
equilibrium states. The two symmetric curved states 〈〈 and 〉〉, but also the straight state
‖. According to the energy profile given in Fig. 2.1, the two bent states are supposed to be

stable states, while the straight one is unstable. This is only possible if
∂2f

∂κ2

∣
∣
∣
∣
∣
κ=0

< 0. Note

that for a more general energy profile, subunits might display N stable bent states and
N − 1 unstable states. This symmetry breaking permits the emergence of a multi-stability
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(in this precise example a bi-stability), which is the basic motif in switchable tubular sys-
tems. In particular, this is of interest for microtubules [56, 57, 58] and bacterial flagella
[105, 106, 107, 108].

As a second example, which is even simpler than the previous one, consider subunits
coupling to each other in their plane of curvature (see Fig. 2.1 (b)). The following question
arises: what happens when a chain made of such subunits is closed in a planar ring?

Like in the previous studied case, let us start from a general setting which will be
specialised to the particular model we developed. let us consider N0 monomers of size a,
having energies that are function of their intrinsic curvatures κ. Again, the elastic energy
of a single monomer is given by a function of the curvature f(κ). The elastic energy of
the filament also corresponds to the sum of all the energies of each monomer. Nonethe-
less, another term might play an important role on the shape of the filament. This is the
cooperative energy. Indeed, many filaments, including dynamin and FtsZ among others
are known to switch cooperatively. In the following, although cooperativity often plays an
important role, we first neglect this coupling between neighbour monomers, and we will
introduce cooperativity later. Thus, we assume that the formation of domains of same
curvature along the filament ring is not favoured.

In the limit of N0 large, or small size a of the monomers, the summation can be replaced
by an integral over the length, such that the energy reads:

Ering =
∫ L0

0
f [κ(s)] ds, (2.4)

where L0 = N0a and ds is the arc-length element along the filament. Note that for a linear
filament described by the WLC model, f [κ(s)] ∝ (κ − κ1)

2, where κ1 is the intrinsic cur-
vature of the subunit. The ground state of such a closed filament ring is a circular ring of
curvature κ = κ1 = 2π

L0
. Also note that in this case, the curvature of the circle corresponds

to the intrinsic one.

If we now take another number of monomers N and enforce them to close in a ring

with mean curvature < κ >= κ0 =
2π

L
, where L is the length of the filament, the ground

state will not be a circle of curvature κ1 but a deformed circle. Assuming the shape of the
ring close to the circular state, such that the curvature of the ring reads κ(s) = κ1 + δκ(s),
where |δκ| ≪ |κ1|, the elastic energy can be expanded in the following way:

Ering = E0 +
Nmax∑

n=1

1

n!

∂nf

∂κn

∣
∣
∣
∣
∣
κ=κ0

∫ L

0
δκnds, (2.5)

where E0 corresponds to the energy of the circular ring, and Nmax corresponds to the
highest order term in δκ retained.
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2.2 The model

For the sake of concreteness, let us study monomers described by a non-linear elastic energy
density, which is given by:

f(κ) = Aκ− B

2
κ2 +

C

2
κ4, (2.6)

where A, B > 0 and C > 0 are elastic constants, whose signs are taken in such a way that
at least one stable preferred curvature state exists. Moreover, the constant A represents
an asymmetry of the monomer, which has an inner part and an outer one. The term
proportional to κ2 is always negative (meaning that B > 0) to fulfil the condition that the
straight state is unstable. For A large enough, the bi-stable monomer becomes mono-stable

with preferred curvature κ1 ≈ −
(

A
2C

)1/3
(Fig. 2.2 (a)). Note that the term in κ3 has not

been taken into account for simplicity.

For a polymer chain, in the continuous limit, for a large number of monomers (N ≫ 1),
the elastic energy becomes

Eelastic =
∫ L

0
f(κ)ds, (2.7)

where s ∈ [0, L] is the arclength variable. Note that this equation holds even for non-closed
polymer.

If we now choose to force the polymer to close, this imposes two constraints. The first
one is a constraint on the continuity of the tangent angle θ(s), where the curvature and
the tangent angle are linked by the following relation κ(s) = dθ

ds
. To close the ring without

kink, the tangent angle (which is continuous along the filament) must be equal to 2π such
that θ(L)−θ(0) = 2π. The second one, is imposed by the closure condition of the ring. The
x and y-components have to be the same at the beginning and at the end of the polymer:

∫ L

0
cos θ(s)ds =

∫ L

0
sin θ(s)ds = 0. (2.8)

Outstandingly, if we implement the constraint on the tangent angle θ in the elastic
energy (Eq. 2.7), the asymmetric term, i.e., the linear term in κ just gives a constant when
integrated over the whole curve :

∫ L

0
Aκds = A

∫ L

0

dθ

ds
ds

= A (θ(L) − θ(0)) (2.9)

= 2πA.

Interestingly, if we take A = 0, there is no change in the variation of the energy, and
in the ring’s shape as compared to the state where A 6= 0. This means that without any
change of physics for the whole ring we could have chosen A = 0 from the beginning.
Nonetheless there is a subtle but important difference in interpretation of the physics of
the monomer itself. Indeed, if we take A = 0, we don’t have any more mono-stable
monomers, but bi-stable ones (with two equivalent energy minima) (Fig. 2.2(b)). With
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Figure 2.2: Profile of the monomer’s energy with respect to the curvature κ. For a), the
parameters are A = −20kBT , B = 5kBT.µm and C = 1/160kBT.µm3 and κ1 ≈ 21.76µm−1.
For b), the parameters are A = 0kBT , B = 5kBT.µm and C = 1/160kBT.µm3 and
κ1 = 20µm−1. For a monomer of size a = 10 nm, the barrier is equal to 5kBT .

A 6= 0, the monomers might have only one preferred curvature while with A = 0, the
function describing the bending energy being an even function, the monomers have two
symmetric preferred curvatures, one positive and another one negative (±κ1). The closure
condition implies that the initially mono-stable monomers act as if they were bi-stable
ones. The linear term can thus be discarded, and we end up with an effective total energy
of the ring :

Eelastic =
∫ L

0
Eeff (κ)ds, where (2.10)

Eeff = −B

2
κ2 +

C

2
κ4, (2.11)

where the new B and C are different from the one given in the equation of Emono (Eq. 2.6)
in order to have the same value of the preferred curvature κ1. Note that with the corre-

sponding effective energy, there are always two minima κ = ±κ1, where κ1 =

√

B

2C
and

Eeff (κ1) = −1

8

B2

C
. Notedly, it is the chain closure, that generates a bi-stability of the

monomers.

Suppose now that the monomers, due to temperature, display thermal elastic fluctu-
ations δκel(s), where |δκel(s)| ≪ |κ(s)|. The curvature of the monomers is now given by
κ(s) = ±κ1 + δκel(s), and the energy, expanded up to quadratic order is :

Eelastic = −L

8

B2

C
+B

∫ L

0
δκ2

elds, (2.12)

which corresponds to the same formula as the one of the ring given in the previous section
(Eq. 2.5). From this equation, it is possible to define a purely elastic persistence length
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for the system lB = 2B
kBT

, where kB is the Boltzmann constant, and T is the temperature.
However, we will see in the following parts that a purely entropic contribution due to the
degeneracy of the ground state will also have to be taken into account.

2.3 (Infinite) degeneracy of the ground state and crunch-

ing transition

As shown in the previous part, the elastic energy can be written as a function of the ef-
fective energy of the monomers Eeffective (Eq. 2.11). This energy profile being symmetric,
it has two stable states κ(s) = ±κ1, giving rise to a multiple number of ground states,
increasing with the number of monomers. The monomers can have one of these two cur-
vatures, without any difference in energy.

In this part, we work in discrete notation, where each element corresponds to a monomer.
In this case, the curvature of the n-th monomer can be written as κn = σnκ1, where the
“spins” σn = ±1, and n = 1, ..., N . For an open filament described by the elastic energy
given for symmetric monomer energy (Eq. 2.10), the system is formally equivalent to a
one-dimensional Ising chain without interactions between the spins. In analogy to the
latter model, at a finite temperature, we introduce the “average magnetization”

M =
1

N

N∑

n=1

σn, (2.13)

describing the mean value of the distribution of positively and negatively curved monomers
such that < κn >= κ1M . Note that −1 ≤ M ≤ 1. Indeed, if all the monomers are neg-
atively curved, M = −1, while if they all are positively curved, M = 1. Between these
two values, there are n+ monomers positively curved, and n− negatively curved, such that
N = n+ + n−. For a given value of M , the free energy F (M) = Eelastic − TS(M) decom-
poses into the elastic energy (Eq. 2.12) and the entropic contribution S(M) = kB lnW (M),
where W (M) = N !

n+!n−!
is the number of ground states for a given M . Note that the elastic

thermal fluctuation contributions δκel around the ground states average to < δκel >= 0
and only adds a constant term to the free energy, and can thus be disregarded. The phys-
ical value of M is given by the minimum of the free energy F (M), when dF (M)

dM
= 0, which

is when the entropy is maximum, if all monomers are in their preferred state. In other
words, this is the case when the number of ground states W (M) is maximum, which is
obviously when M = 0 for an open filament. This implies that, although degenerate and
locally tortuously bent, the ground states, for an open filament, are statistically straight
on average. The closure constraint induces a competition between the entropic and the
elastic terms.

Similarly to the open filament, the closed ring also has a high number of ground states
(Fig. 2.3). Its degeneracy is less important due to the constraints it has to adapt to. Indeed,
the non-linear closure constraints (Eq. 2.8) introduce a weak non-local effective coupling
between the individual monomers. Besides, as the ring has to close, its mean curvature
< κn > has to satisfy the following condition < κn >= κ0. Solving this problem with the
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Figure 2.3: Crunching of a circularly closed non-linearly elastic filament for κ0/κ1 = 0.5. A
ground state consists of a sequence of positive and negative curvature regions. All depicted
states are ground states and have the same elastic energy

non-linear closure constraints is a rather difficult task, but it is possible to simplify the
problem to illustrate the degeneracy of the ground state. If we consider that the curvature
κ(s) displays a four-fold symmetry with the x and y axes, then the closure is ensured by
symmetry. It is now possible to cut in quarters the ring and treat only one of these quarters

with
N

4
monomers each.

Like in the open filament case, the free energy is given by F (M) = Eelastic − TS(M),
but in this case, even if we still can neglect the elastic fluctuations, the monomers do not
need to exactly have a curvature κ(s) = ±κ1, but can move away from the minimum
of the effective potential. Indeed, in this case, even if it costs energy to go away from
the minimum, the entropy contribution can counterbalance this cost. The addition of a
deviation in the curvature ∆κ to the preferred curvature κ1 leads to a total curvature for
each monomer such that κn = σnκ1 + ∆κ. This addition in the elastic energy helps the
system to reach more configurations than for ∆κ = 0, thus increasing the entropy. With
this expression for the curvature, it is possible to rewrite the “mean magnetization” of the
ring, i.e., the angular closure constraint, as follows

M =
n+ − n−

N
=

4

N

N/4
∑

n=1

σn =
κ0 − ∆κ

κ1

. (2.14)

Note that due to the closure constraint, the “mean magnetization” can not be negative
any more, i.e., 0 ≤ M ≤ 1. Moreover, if κ1 < κ0, ∆κ is necessarily non-zero in order to
have M < 1.

Let us go back to the free energy of the system F = E − TS. As previously, E is the
elastic energy and S(M) = kB lnW (M) is the entropy of the system, where W (M) is the



24

number of states which has now to fulfil the previous condition (Eq. 2.14). Note that when
the energy dominates over the entropy (small T or small N), the parameter ∆κ ≈ 0, while
when the entropy becomes comparable to the energy, there is a compromise between these
two quantities such that ∆κ can become large. The minimisation of the free energy leads
to the following self-consistent equation (for more details on the calculation, see appendix
B.1):

∆κ =
κ0 − κ1 + (κ0 + κ1) exp (−ǫ)

1 + exp (−ǫ) , (2.15)

where

ǫ =
2aB∆κ

kBTκ1

(2κ2
1 + 3κ0∆κ − 3∆2

κ). (2.16)

For a very stiff filament, i.e., when B = lBkBT
2

≫ kBT
aκ2

1
, the energy cost to change curvature

is huge compared to the gain from entropy such that the value of ∆κ jumps sharply from
∆κ = κ0 − κ1 for κ0

κ1
> 1 to ∆κ = 0 for κ0

κ1
< 1 (see Fig. 2.4 (a), blue curve). Interest-

ingly, for very stiff filaments, ∆κ = 0 always corresponds to a minimum of free energy (for
instance, for α = κ0/κ1 = 0 and ǫ1 = 1000, see Fig. 2.4 (b)). Nonetheless, due to the
closure constraint, the magnetization (see Eq. 2.14) must be comprised between 0 and 1,
such that 0 < α− β < 1, where β = ∆κ/κ1. This implies that for an α given, the study of
the free energy must be restricted to the interval α− 1 < β < α. For α < 1, the minimum
of the free energy for ∆κ = 0 can be reached, but this is not possible for α > 1. The free
energy increasing monotonously (before reaching a maximum of free energy, which is never
in the interval for closed filaments), the minimum of free energy is for β = α − 1, i.e., for
∆κ = κ0 − κ1.

Let us implement these values in the expression of the “mean magnetization” to see
what it exactly means. For κ1

κ0
< 1, the “mean magnetization” M = 1, which means that

all the constituent units of the filament are positively curved, i.e., the filament stays a ring
with κ = κ0. For a non-closed filament, all monomers would have a curvature κ = ±κ1,
nonetheless this is not the case any more in the closed state as the closure constraint would
not be fulfilled. In order to still have the system in its minima of energy, monomers are
frustrated and take a value of κ = κ0. For κ1

κ0
> 1, the “mean magnetization” M = κ0

κ1
,

which means that some of the constituent units of the filament are positively curved while
the others are negatively curved with |κ| = κ1. The filament stays a ring below the tran-
sition (κ1

κ0
< 1), and is crunched above it.

For very soft filaments, i.e., B ≪ kBT
aκ2

1
, monomers can change their curvature without

paying much energy, allowing at the same time a higher gain due to entropy. Filaments thus
are always crunched even for κ1

κ0
< 1 (see Fig. 2.4 (a), red curve). Finally, for more mod-

erate stiffnesses B . kBT
aκ2

0
, the system more gradually interpolates between un-crunched

and crunched state, and the transition smoothens increasingly with decreasing bending
stiffness B (see Fig. 2.4 (a), purple curve).

From this mean field analysis, we understand that the local curvature can deviate from
its preferred value (±κ1) by a certain amount ∆κ, in such a way that the free energy of the
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Figure 2.4: (a) Plot of the curvature fluctuations ∆κ rescaled by monomer’s curvature
κ1 as a function of the rescaled ring curvature α = κ0/κ1 for different values of ǫ1 =
(Baκ2

1)/(kBT ). The blue curve corresponds to stiff filaments (ǫ1 = 1000), whereas red
curve corresponds to soft filaments (ǫ1 = 10−3). Finally, a filament with intermediate
stiffness (ǫ1 = 0.5) is represented by the purple curve. (b) Example of a plot of the free
energy of very stiff filaments as a function of β for α = 0 and ǫ1 = 1000.

system is minimal. Due to this change of curvature, the filament which classically crunches
(at T = 0) when κ1 > κ0, can “pre-crunch” even for κ1 < κ0.

2.4 Persistence length : softening through prestrain

In Sec. 2.2, we defined a purely elastic persistence length lB = 2B
kBT

, nonetheless as said in
Sec. 2.3, we are interested in the free energy which depends on the entropy of the system,
corresponding to the presence of exponentially many equivalent ground states. In this
section, we will discuss the impact of the entropic contribution on the persistence length
of closed filaments.

As already mentioned, calculating the number of ground states for a given value of the
preferred curvature of monomers κ1 is a rather difficult task, due to the closure condition
(Eq. 2.8) which results in a weak non-local coupling between the individual monomers.
Nonetheless, we circumvented the closure coupling by studying the four-fold symmetry
case. In this section, this coupling will be treated more elegantly later on by eliminating
certain Fourier modes in a coarse-grained filament description. Moreover, we consider the
ring formed by a large number of bi-stable monomers, N ≫ 1 and a stiff filament, such
that the “phase transition” between crunched and un-crunched states is sharp. The study
is done for rings of smaller curvature than the monomer’s one (κ1 > κ0), such that the
additional curvature ∆κ defined in the previous section is null.

To enforce the closure condition (Eq. 2.8), we consider the Fourier decomposition of
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the tangent angle θ around the circular state, i.e., θ(s) = θ0 + δθ(s) = κ0s+ δθ(s), where

δθ(s) =
Nmax=N/2
∑

n=1

(aθ
n sin (κ0ns) + bθ

n sin (κ0ns)). (2.17)

Note that Nmax 6= N . Indeed, Nmax can’t be larger than N/2 because on the small scale,
it is impossible to have more variations in curvature than the number of monomers itself.
It means that in an oscillation of the latter sine or cosine functions, there is a minimum of
2 monomers. Furthermore, we impose the ring conformation on average, i.e., < κn >= κ0,
such that the “spins” σn can be considered as randomly distributed around an average
value < σn >= M (Eq. 2.14).

For a large number of monomers N , the piecewise function κn = ±κ1 satisfies the
central limit theorem, such that the probability to find a curvature < κn >l on a length l
is a Gaussian variable, where a ≪ l ≪ Na = L. This coarse-grained length must be larger
than the monomer size, but must remain smaller than the total length, i.e., smaller than
the ring. Using this coarse-grained approach, which is valid on the scale defined above,
we treat the curvature as a continuous Gaussian-distributed function κ(s). It is more
convenient to introduce a new random Gaussian variable κ̃(s) = κ(s)− < κ(s) >= κ(s)−κ0

with zero mean value and a standard deviation < κ̃2(s) >= κ2
1 − κ2

0

(2.14)
= κ2

1(1 − M).
Moreover, since the curvature is uncorrelated on larger scales, the correlation function is
< κ̃(s)κ̃(s′) >≈ δ(s − s′) < κ̃2(s) > for |s − s′| ≫ l. Rewritten in this form, the filament
can be seen as a standard semi-flexible chain as the coarse-grained curvature κ̃(s) behaves
on larger scales as the curvature of a semi-flexible chain. The latter can be described by
the Worm-Like Chain (WLC) model with an effective configurational free energy

FW LC =
lekBT

2

∫ L

0
κ̃2(s)ds, (2.18)

where the effective persistence length is given by a study of the standard deviation. First
of all, we need to expand the X-Y constraints (Eq. 2.8) to lowest order in modes aθ

n and bθ
n

∫ L

0
sin (θ0)δθds = 0 for the X component (2.19)

∫ L

0
cos (θ0)δθds = 0 for the Y component, (2.20)

leading to the vanishing of aθ
1 and bθ

1. The higher modes are unaffected and according to
the equipartition theorem (< FW LC >= dkBT

2
where d is the number of degrees of freedom

of the system), they satisfy the following equation

< (aθ
n)2 >=< (bθ

n)2 >=
L

2π2le

1

n2
, (2.21)

which are temperature-independent due to purely entropic effects. Finally, we can imple-
ment these values in Eq. 2.17 and compare it to the expression of the standard deviation
given above< κ̃2(s) >= κ2

1−κ2
0. We end up with this expression for the effective persistence

length

le =
1

a(κ2
1 − κ2

0)
. (2.22)
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Even if this analogy with the WLC is useful, some care has to be taken with this
particular result. First of all, the persistence length is temperature-independent since it
is associated to a conformational entropy of the ground state. Secondly, unlike polymers
described by the WLC, the persistence length le depends on the total length of the fila-
ment L through κ0 = 2π

L
. From Eq. 2.22, one sees that the effective persistence length le

is decreasing for L increasing. The chain softens for increasing length L, until le reaches

its minimal value lmin
e =

1

aκ2
1

. Moreover, for a fixed length L, if the size of the monomers

a is decreased, the number of monomers increases as L = Na. Increasing the number of
monomers increases the number of closed realisations. Nonetheless, the number of states
with shapes close to the circular ring increases more than the ones with large deviations
from the circular state. Therefore, the shape fluctuations are reduced, and for a → 0,
they are null. Similarly, for κ1 = κ0, only one configuration is allowed, such that there
are no fluctuations away from the circular shape, i.e., le → ∞. Finally, for an open chain,
monomers freely chooses curvatures ±κ1, with 〈θ〉 = 0. For a filament of length L, the

fluctuations from the mean θ value along the filament read: 〈θ2(s)〉 =
κ2

1as

2
, such that

〈θ2(L)〉 =
κ2

1aL

2
. In the two dimensional system studied 〈θ2(L)〉 =

L

2lp
, where the persis-

tence length lp =
1

aκ2
1

. Accordingly, in the limit of κ0 → 0, one finds the same result. It is

nonetheless important to note that for an open chain, the linear term in κ should be taken
into account, and would thus modify slightly the latter result.

To get the total persistence length, it is necessary to include the elastic thermal fluc-
tuations around the ground states to the entropic one, to finally get

lp(L) =
lBle(L)

lB + le(L)
(2.23)

which is always smaller than the persistence length lB linked to thermal fluctuations acting
on curvature (See Fig. 2.5).

We observe a decrease of the persistence length for increasing L, from lmax
p = lB for

κ1 = κ0 , to lmin
p =

lB
1 + alBκ2

1

. We also can see that the persistence length decreases when

the prestrain κ1 increases with respect to κ0, which means that the filament softens with
increasing prestrain. Moreover, according to Eq. 2.23, if lB goes to infinity, the value of
the persistence length of the filament still remains finite, with lp = le, unlike for standard
semi-flexible chain, where the persistence length would diverge.

2.5 Crunching of membrane tube

In order to illustrate our model, we study the deformations induced by a polymorphic fila-
ment on a tubular membrane. The main point of this section is to know if such a filament
can crunch a membrane. Indeed, in Nature, we find many examples of filaments interacting
with tubular membranes. For instance, dynamin which wraps around neuronal membrane
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Figure 2.5: The persistence length lp of crunched filament rings depends on their length
(Eq. 2.23). The graph is plotted for a = 10 nm, lB = 10 µm, κ0 = 2π

L
and for several

polymorphic curvatures κ1.

to form a helix whose pitch is small during endocytosis is one of the most prominent.
FtsZ filament rings, i.e., FtsZ filaments in their Z form, which constrict the membrane
of bacteria during cell division are another example of interacting filaments. We do not
pretend to solve these problems, but rather see our contribution as one more step in a
better understanding of these interactions.

Let us consider a tubular fluid membrane of length L (which is assumed to be infinite
below), radius R, and bending stiffness Bm. In the limit of small deformations with respect
to the cylindrical state, the energy of the membrane, which is given in Ref. [103] at second
order in the radial displacement field u and its derivatives reads:

Emem =
∫∫

e(φ, z)dφdz, (2.24)

with

e(φ, z) = Bm

(

(∂2
φu)2 + 3u2 + 2R2(∂2

zu)(∂2
φu) − 2R2(∂zu)2 +R4(∂2

zu)2 + 4u(∂φ2u)
)

/(2R3).

(2.25)

Note that more details on the stability of the tubular membrane will be given in next
chapter. Moreover, like in Ref. [103], we assume that no longitudinal force is applied to
the tube. The radial displacement field u(φ, z) ≪ R (see Fig. 2.6) can be expressed as a
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Figure 2.6: Representation of the deformed tubular membrane and the variables describing
it, where r(φ, z) = R + u(φ, z) is the radius of the tube which depends on the azimuthal
angle φ and the longitudinal coordinate z. Note that in this figure the displacement is
large (of the order of 40%). In the linear regime, the deformation (which is proportional
to the applied forces or torques), should be of the order of few percent.

function of the azimuthal angle φ and the longitudinal coordinate z by:

u(φ, z) =
∑

n,m

An,m exp(i(kmz + nφ)), (2.26)

after Fourier modes expansion, where km =
2π

L
m. The mode n corresponds to the sym-

metry of the system. For example, for n = 0, the ring is circular and applies a local
deformation to the tubular membrane. The mode n = 1 corresponds to a net external
force which is absent in this problem. Indeed, it corresponds to a bending of the tube. The
mode n = 2 corresponds to what we call the “peanut mode”, where the filament looks like
a peanut, and so on. In principle, a crunched filament can display a non-symmetric shape,
when described as the sum of different modes.

The energy of the membrane after including the radial displacement field given by
Eq. 2.26 reads:

Emem =
πBmL

R3

∑

|n|6=1

∑

m

Mn,m|An,m|2, (2.27)

where the elastic response function

Mn,m = (R2k2
m + n2 − 1)2 − 2(n2 − 1). (2.28)
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When a polymorphic closed filament wraps around a tubular membrane, it induces a
deformation at the position where it is located. In particular, for simplicity, in the case
of only one closed filament on an infinite membrane, one can without loss of generality
assume that the filament is at the position z = 0. The displacement field at this position
reads:

u(φ, z = 0) =
∑

|n|6=1

∑

m

An,m exp(inφ) (2.29)

=
∑

|n|6=1

an exp(inφ), (2.30)

where an =
∑

m An,m are the filament modes amplitudes. Using the method of Lagrange
multiplier (for more details, see Appendix B.2), it is possible to rewrite the membrane
modes An,m as a function of the filament modes an. The energy then reads:

Emem =
πBmL

R3

∑

|n|6=1

|an|2
In

(2.31)

and

u(φ, z) =
∑

|n|6=1

anJn(z) cos(nφ)

In

, (2.32)

where I(n) =
∑

m
1

Mn,m
and Jn(z) =

∑

m
exp(ikmz)

Mn,m
=
∑

m
cos(kmz)

Mn,m

1.

To answer the question of membrane fission by a polymorphic filament, consider first
the case where the filament behaves like a WLC on large scales. Moreover, consider the
case of large lB ≫ le, such that the persistence length lp ≈ le and we can neglect the elastic
fluctuations. The total free energy is the sum of the free energy of the filament (Eq. 2.18)
and the one of the membrane (which is equal to its energy given by Eq. 2.31), and reads
after few lines of calculations (for more details see Appendix B.4):

F = FW LC + Emem =
lekBT

2

∫ lf

0
κ̃2(s)ds+

πBmL

R3

∑

|n|6=1

|an|2
In

(2.33)

=
lekBTκ

2
0lf

4R2

∑

n

n4|an|2 +
πBmL

R3

∑

|n|6=1

|an|2
In

, (2.34)

where lf is the length of the filament.
Applying the equipartition theorem to each mode, we obtain:

< |an|2 >=
R2

2

(

lelfn
4

4R2
+

πBmL

kBTRIn

) for |n| 6= 1. (2.35)

1These sums have been calculated in the continuous limit (for L ≫ R) and are given in Appendix B.3.
In these expressions γ corresponds to a longitudinal force applied to the membrane, which is not present
in this study. To correspond to this particular case, the expressions of In and Jn must be taken for γ = 0.
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Figure 2.7: a) A crunching polymer ring on a fluid membrane, b) weakly deformed, c)
critical deformation with self contact for κ1/κ0 = 7/3.

We note that the free fluctuations of the membrane are always reduced by adding the poly-
morphic crunching ring, even for highly soft filaments (le/R → 0). This phenomenon is
similar to a reduction of the amplitude of deformation of the polymorphic ring. Assuming
that a filament can only break a tubular membrane when two opposite sides of the mem-
brane touch each other, we find that a polymorphic ring lacking cooperativity between its
subunit constituents is unable to break tubular membranes.

2.6 Cooperativity

As already mentioned earlier, many bio-filaments, such as dynamin, FtsZ, tubulin and
others, display cooperative switching. In Fig. 2.7, one sees the effect of a ring with high
cooperativity between the monomers. We assume that the tube breaks when two opposite
sides of the membrane touch each other (see Fig. 2.7 (c)). This is the so-called hemi-fission.
The condition to reach self contact has been calculated and is for κ1/κ0 = 7/3. Nonethe-
less, as we are in the small deformation regime, it is not possible to deform that much the
filament and the tube. Thus, this self contact condition is highly speculative, but gives
insight on the possible tube breakage.

The effect of cooperativity can be added to the elastic energy by assuming a cooperative
inter-monomer coupling term favouring uniform curvature:

Ecoop =
K

2

∫ L

0

(

dκ

ds

)2

ds, (2.36)

where K is the inter-monomer coupling constant. For the kind of bio-filament we are
interested in, using Euler-Lagrange method is the usual way to solve the problem. However,
due to the non-linearity of the bending energy and the closure constraint, it is non-feasible
to solve systematically the Euler-Lagrange equation. In the small perturbation regime, this
is nonetheless possible (see Appendix B.5). We can see from this perturbative approach
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that the shape of the filament, depends on the mode number n as follows:

n =

√
√
√
√

√

(6Cκ2
0 −B)

2
+ 4µK − (6Cκ2

0 −B)

2Kκ2
0

, (2.37)

where µ corresponds to the tangential projection of the internal ring tension, and n =
2, 3, 4, ... Values of n being discrete, the parameters should also be quantized. Nonethe-
less, in the calculations done in appendix B.5, we didn’t take into account thermal fluctu-
ations, which allow a wider range of non-discrete values for the parameters. The mode n
describes the shape of the filament, where for instance, the mode n = 2 corresponds to the
“peanut-shaped” filament shown in Fig. 2.7 (c). This shape is obtained for high values of
the inter-monomer coupling constant K (as shown by Eq. 2.37). The higher K is, the less
regions of different curvatures are displayed by the filament. This is intuitive, as a change
in curvature costs a lot of energy for high K values. It is nonetheless important to note
that in this approach, the curvature along the filament is continuous.

In the following of this cooperativity study, we assume that the filament is made of
discrete units. Monomers have now curvature κ = ±κ1, except for a certain number of
monomers which link these different regions. Domains switch from regions ±κ1 on a scale

λ = 2
√

2
√

K/B and have a transition energy penalty J =
2
√

2

3

√
KBκ2

1
2. Indeed, when K

increases, with all other parameters fixed, the derivative of the curvature must be smaller,
i.e, the length along which the curvature differs from ±κ1 must increase. On the other
hand, when B increases, it is less costly to change curvature on a small distance, such that
the length λ decreases. Similarly, the same scaling analysis can be done for the transition
energy penalty J leading to the latter formula. Knowing the expressions of the λ and J ,
which are measurable quantities, unlike K and B, we can rewrite the energy as a function
of measurable quantities as follows:

Eel =
3J

2λκ2
1





∫ L

0
κ2

(

κ2

2κ2
1

− 1

)

ds+
λ2

8

∫ L

0

(

dκ

ds

)2

ds



 . (2.38)

One can also define the effective block size, which depends exponentially on the tran-
sition energy penalty, as ξ ∼ a exp

(
J

kBT

)

. The block size ξ of ±κ1 blocks can now be
considered as the effective monomer size. The total length of the bio-filament now reads:
L = Na = Nbξ = Nbaeff , whereNb corresponds to the number of ±κ1 curvature blocks. For
short transition length, i.e., for λ ≪ aeff , and intermediate cooperativity (a < aeff ≪ L),
all results of previous sections stay applicable, with a renormalized monomer size aeff . In
particular, the coarse-grained approach is still valid, and the system still behaves like a
WLC on larger scales. The main difference being in the effective persistence length which
is smaller than the one found previously. Indeed, the effective persistence length (Eq. 2.22)
is proportional to 1/a, such that for aeff > a, the persistence length decreases.

For very large effective block sizes (ξ ≫ L), the domain walls become highly costly,
such that the number of regions of ±κ1 is minimized. In practice, this highly cooperative

2The pre-factors of these two quantities are determined in appendix B.6.
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regime is reached for J & 5kBT and cannot be described by a fluctuating WLC, but has
a single well-defined ground state. It corresponds to the “peanut-shaped” filament, which
displays a two-fold symmetry (see Fig. 2.3, left panel). This shape will be preferred over
the simple circle if the energy of the four transition regions becomes less than the penalty
for having a uniform curvature, such that:

4J <
Blfκ

2
1

4

(

1 − 2κ2
0

κ2
1

+
κ4

0

κ4
1

)

. (2.39)

A high cooperativity between monomers widens the circular filament regime. Moreover,
as the effective persistence length le is larger, the filament is stiffer. It makes the filament
able to crunch membrane tubes. It is important to notice that this is the only situation
where a filament could possibly break a tube. The calculation is only valid in the linear
regime, but would at least qualitatively hold in the non-linear regime.

2.7 Conclusion

We have shown in this chapter that the conceptually simple procedure of closure transforms
a simple an-harmonic bio-filament with a unique ground state in a complex multi-stable
filament. Moreover, this unexpected filament displays an exponentially large number of
ground states, depending on its total length. We have shown that in the limit of low
cooperativity, the filament can explore, thanks to thermal fluctuations, this multi-stable
energy landscape, thus exhibiting anomalous fluctuations. Moreover, it can be modelled as
a Worm-Like Chain but with an effective persistence length, which varies in accord with
the length of the filament. This effective persistence length is dominated by the configu-
rational fluctuations between the many ground states.

Motivated by FtsZ and dynamin bio-filaments we have started to explore the interaction
of such a multi-stable crunching filament with a tubular fluid membrane. We have seen
that a crunching ring can deform a membrane tube only in the presence of strong inter-
monomer cooperativity. In this cooperative limit the membrane could undergo fission in a
novel geometric scenario: the membrane is forced through itself and possibly ruptured by
the crunching filament slicing through it.
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Chapter 3

How bio-filaments twist membranes

As mentioned in the previous chapters, the interactions between bio-filaments and bio-
membranes is of high importance in the biological world. More specifically, we have seen
in the last chapter that filaments can display a more complex shape than the one of a
standard semi-flexible chain. Moreover, in addition to the shape of the filament, its inter-
action with the membrane can as well be more complex than the action of a simple normal
force. In this chapter we will focus in particular on the case when a filament applies local
torques. This can, for instance, happen when the filament is ribbon-like and preferentially
interacts with one of its faces (e.g. via an amphiphilic region which intercalates into the
membrane), while preferentially curving in an incompatible direction. The frustrated fila-
ment then exerts a so-called Darboux torque on the membrane as we will explain in more
detail in Sec. 3.1. Other examples of frustration are a twisted filament, the “twister”, that
preferentially adsorbs in an untwisted state and a curved filament, the “bender”, that pref-
erentially adsorbs in a unbent state. We will explore how such filaments deform typical
membrane structures in the linear regime. In our formulation the membrane surface adapts
to the filament unlike in [109, 110, 111, 112].

Apart from flat membranes (see Sec. 3.2), one often finds tubular geometries in the
biological cell. For instance, dynamin filaments wrap around the membranes of eukaryotic
cells during endocytosis [62, 63, 114] forming a helix whose pitch is small. FtsZ filament
rings constrict the membranes of tubular bacteria during cell division [66, 67]. It is therefore
interesting to study how such bio-filaments interact with a tubular membrane in a general
setting (see Sec. 3.3). In this context we will address the question of how several of such
bio-filaments interact with each other via the deformations they impose on the membrane
on which they adhere. This is a particular realisation of the important theme of surface-
mediated interactions between membrane inclusions, intensely studied since the seminal
paper by Goulian et al. in the 1990s [115].

3.1 Elementary realisations of torque-applying fila-

ments

Filaments can deform membranes not only by applying normal forces but also by the action
of torques. One way how a filament can generate torques locally results from a mismatch
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a)

Figure 3.1: Schematic representation of (a) a straight and (b) a curved filament with their
hydrophobic parts in black, prestressed to bind to flat membranes, (c) a closed circular
filament applying local torques on a membrane (left), consisting of monomers of curvature
κ0 with their hydrophobic parts in black (right).

between its anchoring hydrophobic face and either (i) internal twist or (ii) spontaneous
curvature.

As an example of case (i) consider a straight unbound amphiphilic filament and assume
that its subunits are connected in such a way that their hydrophobic faces do not form a
line but rather lie on a helical curve (see Fig. 3.1 (a)). To perfectly bind to a flat mem-
brane the filament would need to be twisted such that the hydrophobic faces are aligned.
After binding, the filament would then try to untwist inducing a torque density on the
membrane which adds up to zero. An elementary realisation of such a system, that we call
the twister, consists of a torque doublet, i.e., two anti-parallel point torques applied along
the filament, in the limit of vanishing distance between the two torques.

For case (ii) we assume that the subunit of an unbound amphiphilic filament is curved
intrinsically with curvature κ0 in a plane defined by the normal vector ~ncur (see Fig. 3.1
(c)). By applying a prestress to the filament it can be forced to bind to the membrane. Its
hydrophobic part penetrates and orients itself normal to the membrane. In other words
the hydrophobic vector ~nhyd aligns with the normal vector of the membrane. However, to



37

release the prestress, the filament rotates around its tangent, thus inducing a spinning of
its internal frame. As the filament binds to the membrane, the Darboux frame associated
to the membrane spins too [116]. We call this torque applied by the filament the Darboux
torque. It corresponds to two opposite forces placed at two close points on the surface.1

Nonetheless, the whole system must be at mechanical equilibrium, such that all forces and
torques applied add up to zero. Considering the latter point, it is then clear that the
circular filament of Fig. 3.1 (c) is in equilibrium as soon as it has rotated and deformed the
membrane, whereas randomly distributed force- or torque-exerting proteins will in general
lead to a non-equilibrated system. The bender introduced in the introduction of this chap-
ter is a particular realisation of prestressed curved filaments. It corresponds to a torque
doublet, similarly to the twister. Nonetheless, the two torques are applied perpendicularly
to the filament (see Fig. 3.1 (b)).

There are several cases where no prestress is needed to align the hydrophobic parts of
the closed circular filament with the normal vector of a flat or tubular membrane. When
the two normals ~ncur and ~nhyd are orthogonal, i.e., when α = 90◦, the filament can bind
to a flat membrane without applying local torques. Filaments, for which α is equal to 0◦

or 180◦, respectively, preferentially bind to the inner part of a tubular membrane in the
former case, while binding to the outer part of the tubular membrane in the latter. For all
intermediate values of α, one needs to prestress the circular filament to bind it to a flat or
a tubular membrane, thereby inducing Darboux torques.

We represent the filament by the system of local torques it exerts without discussing the
structure of the filament explicitly. In the limit of small deformations, which is assumed,
the torques are usually constants (independent of the deformation). The latter assumption
can be finally relaxed if the torque-filament structure relation is known (see discussion
below Eq. (3.19)).

3.2 Twister, bender and Darboux torques on flat mem-

branes

The elastic energy of a deformed fluid membrane, which is flat in its reference state, is
given by [15, 16, 17]

Emem =
∫

dA
(

2BmH
2 + σ

)

, (3.1)

where dA is the surface area, Bm the bending rigidity, H the mean curvature and σ the
surface tension. In the small deformation regime, the displacement field u is normal to the
reference plane and the elastic energy Emem up to second order in u and its derivatives
reads

Emem =
Bm

2

∫ ((

∇
2u
)2

+
1

λ2
(∇u)2

)

dS, (3.2)

1Note that the hydrophobic part of the monomer and the backbone of the filament are not necessarily
aligned. This implies that the filament can apply local torques that are not parallel to its backbone.
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where λ =
√

Bm/σ, ∇ and dS are the two-dimensional nabla operator and area element
of the flat reference plane, respectively.

In Cartesian coordinates, the displacement field can be expanded in modes in the
reference plane (x, y) as:

u(x, y) =
∞∑

n,m=−∞
Cn,m exp (i(kmx+ kny))

L≫λ−→ L2

4π2

∫ ∞

−∞
dk
∫ ∞

−∞
dk′C(k, k′) exp (i(kx+ k′y)), (3.3)

where km = 2π
L
m, kn = 2π

L
n, and L is the length of the membrane in the x and y-directions.

The energy of the deformed flat membrane can be rewritten in the following manner

Emem = Bm

∞∑

n,m=−∞
Mn,m|Cn,m|2, (3.4)

where Mn,m = L2

2

(

(k2
m + k2

n)2 + 1
λ2 (k2

m + k2
n)
)

is the (unscaled) elastic response function

which has units of length−2.

In this chapter we focus on the fixed forces and torques ensemble 2, where the filaments
can freely polymerise or depolymerise unlike the crunching ring on a tubular membrane
studied in the previous chapter. This implies that their length is not fixed. For the system
to be in mechanical equilibrium, the sums of all forces and torques must be zero. As we
focus on filaments that only apply torques, the sum of forces is zero trivially. The energy
of the system is given by Etot = Emem +

∑N
j=1 E

(j)
Mext

, where N is the number of filaments

on the membrane. The potential energy due to the torques M
(j)
ext along each filament j on

a flat membrane is given by

E
(j)
Mext

= −
∫ ∞

−∞
dx
∫ ∞

−∞
dy

(

M (j)
x (x, y)

du(x, y)

dy
−M (j)

y (x, y)
du(x, y)

dx

)

, (3.5)

where M (j)
x and M (j)

y are the torque densities applied in the x- and y-direction, respectively
(see appendix C.1). Note that torques cannot be applied in the direction of the normal of
a membrane due to its fluidity. Thus, for a flat membrane one only considers torques in
the reference plane. A similar study for general inclusions (applying a random distribution
of forces) has been performed by Sens and co-workers [117].

To reach mechanical equilibrium, it is necessary to have at least two anti-parallel point
torques. We call this doublet of torques a twister, when they are applied along the filament
and the distance between both is sent to zero (see case (i) in Sec. 3.1). Similarly, a doublet

2Two types of “boundary condition” can be chosen corresponding to two different ensembles. On the
one hand, it is possible to consider the filaments as boundary conditions fixed in space, which implies that
the number of monomers of each filament is fixed (fixed length ensemble). On the other hand, they can be
treated as objects which induce external forces and torques locally (fixed forces and torques ensemble).



39

of torques applied perpendicularly to the filament is called a bender, when the distance
between both is sent to zero (see special realisation of case (ii) in Sec. 3.1). For the sake
of generality we will first give the expression of the displacement field and the energy for
many point torques and then describe the twister and bender themselves.3

The energy contribution of the j-th point torque can be found by inserting the displace-
ment field, Eq. (3.3), into Eq. (3.5) with M

(j)
x/y(x, y) = M

(j)
x/yδ(x− xj)δ(y − yj):

E
(j)
Mext

= −i
∞∑

n,m=−∞
Cn,m

(

knM
(j)
x − kmM

(j)
y

)

exp (i(kmxj + knyj)). (3.6)

By minimizing the total energy Etot = Emem +
∑N

j=1 E
(j)
Mext

with respect to the Cn,m, the
shape equations read

Cn,m =
N∑

j=1

−i
(

knM
(j)
x − kmM

(j)
y

)

exp (−i(kmxj + knyj))

2BmMn,m

. (3.7)

Inserting this result into Eqs.(3.4) and (3.6) one finds that the two terms of the total energy

of the system are related by
∑N

j=1 E
(j)
Mext

= −2Emem. This result holds in general for any
distribution of torques. The energy is thus always negative and reads in the case of N
point torques:

Etot = −
∞∑

n,m=−∞

N∑

j=1

(knM
(j)
x − kmM

(j)
y )2

4BmMn,m

(3.8)

−
∞∑

n,m=−∞

∑

j<j′

(knM
(j)
x − kmM

(j)
y )(knM

(j′)
x − kmM

(j′)
y ) cos(km(xj − xj′) + kn(yj − yj′))

2BmMn,m

.

With the help of the shape equations, we finally get the displacement field of the membrane
as a function of the applied torques. For one point torque at the origin it reads

u(j)(x, y) =
(M (j)

x y −M (j)
y x)λ2

4πBm




1

x2 + y2
−

K1(
√

(x2 + y2)/λ2)

λ
√
x2 + y2



 , (3.9)

where Kn(x) is the n-th modified Bessel function of the second kind [118], and where the
summations over the modes are calculated. In general, the total displacement field for N
point torques located at x = xj, y = yj reads: u(x, y) =

∑N
j=1 u

(j)(x− xj, y − yj).

In particular, we focus on the twister, which corresponds to two point torques localised
at x = x1, y = y1 and x = −x1, y = y1. Without loss of generality, let us assume that
the torque is only applied along the filament, oriented along the x-axis. The displacement
field for this doublet reads : u(x, y) = uMx(x−d/2, y)+u−Mx(x+d/2, y), where we impose
Mx at x = d/2 and −Mx at x = −d/2. For d → 0 the doublet becomes a twister which

3Note that mechanical equilibrium is not necessarily reached in the general case.
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Figure 3.2: Deformations of a flat membrane due to (a) a twister and (b) a bender (torque
doublets) applying Darboux torques.

deforms the membrane as shown in Fig. 3.2 (a). For ρ =
√
x2 + y2 ≪ λ, d ≪ λ and ρ ≫ d,

the displacement field in cylindrical coordinates reads

u(ρ, φ) =
Mx sin(2φ)d

16πBm

(3.10)

to lowest order in d/ρ. A single point torque reshapes the membrane in an antisymmetric
manner, with the axis of symmetry given by the direction of the torque. As the two torques
of the twister are opposite to each other, they induce an additional two-fold symmetry
encoded in the sine function. For ρ ≫ λ and d ≪ ρ (far field), the displacement field reads

u(ρ, φ) =
Mx sin(2φ)

4πσ

d

ρ2
(3.11)

to lowest order in d/ρ. The two-fold symmetry is still present even at infinity. Interestingly,
the displacement field does not decrease exponentially, but as a power law u(ρ, φ) ∝ ρ−2.
The deformation is thus not short-range, but rather long-range, as was found in similar
cases as well, such as in Ref. [119] for interacting inclusions. In this regime it is the surface
tension which controls the shape, whereas bending dominates for distances ρ ≪ λ.

Similarly, let us study the bender. Without loss of generality, assume that the two
point torques are localised at x1 = d/2, y1 = 0 and x2 = −d/2, y2 = 0, such that the
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Figure 3.3: Scheme of two twisters (in red) of size d separated by a distance D ≫ d. The
angle φ corresponds to the azimuthal angle, whereas ψ holds for the orientation of the
second twister with respect to the first one (the one at the origin of the frame).

bender is oriented along the x-axis. The displacement field for this torque doublet reads:
u(x, y) = uMy(x− d/2, y) + u−My(x+ d/2, y), where we impose My at x1 = d/2 and −My

at x2 = −d/2. For d ≪ ρ ≪ λ, the displacement field can be approximated by

u(ρ, φ) =
Myd

8πBm

(

cos2(φ) − ln (ρ/λ)
)

. (3.12)

Interestingly, the two-fold symmetry still exists for the bender, and is hidden only in
the cos2(φ). The logarithmic term, which corresponds to the decay of the out-of-plane
displacement field, does not display any angular dependence. For ρ ≫ λ and d ≪ ρ, the
displacement field reads

u(ρ, φ) = −My cos(2φ)

4πσ

d

ρ2
(3.13)

to lowest order in d/ρ. This result is similar to the one of the twister, with the axis of
symmetry still given by the direction of the torques. It is interesting to note that all de-
formations due to straight filaments can be approximate by a twister and a bender.

Let us now focus on two identical twisters on a flat membrane4. For simplicity, we will
only consider the limiting case of large distances between twisters and we will assume one
twister is located at the origin of the frame (see Fig. 3.3). For a twister at the origin the
deformation is given by uT (x, y) = u(1)(x−d/2, y) +u(2)(x+d/2, y). Its interaction energy

4We will not consider the case of two benders as the results are the same.
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with a second twister is equal to

Eint = −
∫

dxδ(x− x1)
∫

dyδ(y − y1)

(

M cos(ψ)
duT (x, y)

dy
−M sin(ψ)

duT (x, y)

dx

)

+
∫

dxδ(x− x2)
∫

dyδ(y − y2)

(

M cos(ψ)
duT (x, y)

dy
−M sin(ψ)

duT (x, y)

dx

)

,

(3.14)

where x1 and y1 are the coordinates of the positive point torque of the second twister, and
x2 and y2 are the coordinates of the negative point torque of the second twister and all
torques have an absolute value of M .

In the limit of ρ ≫ d the displacement field of a single twister is given by Eq. 3.11, i.e.,
u(ρ, φ) = M

4πσ
d
ρ2 sin(2φ). In Cartesian coordinates:

uT (x, y) =
M

2πσ

d x y

(x2 + y2)2
.

As
duT (x, y)

dy
=
Md

2πσ

x(x2 − 3y2)

(x2 + y2)3
and

duT (x, y)

dx
=
Md

2πσ

y(y2 − 3x2)

(x2 + y2)3
, and with:

x1 = D cos(φ) + d/2 cos(ψ) x2 = D cos(φ) − d/2 cos(ψ)

y1 = D sin(φ) + d/2 sin(ψ) y2 = D sin(φ) − d/2 sin(ψ),

one gets at first order with D ≫ λ and D ≫ d:

Eint ≈ 3M2

2πσ

d2

D4
cos(4φ− 2ψ) ,

where ψ is the angle between the orientation of the first and the second twister (see
Fig. 3.4). D is the distance between the two middles of the twisters5. The interaction energy
decays thus with D−4 and depends on the respective orientations of the two twisters. For
the case where λ ≫ ρ ≫ d, the expression of the out-of-plane displacement field as it is
given in the text is not sufficient to get a correct answer. One has to consider higher order
terms and finally gets a similar expression for the interaction energy of two twisters:

Eint ≈ M2

8πBm

d2

D2
cos(4φ− 2ψ). (3.15)

The only difference resides in the fact that the energy decays with D−2. Interestingly,
two identical twisters do not attract each other to form long chains, they repulse each
other. The creation of long filaments thus is not possible if all the twisters present on the
membrane are identical 6. Nonetheless, if proteins (assimilated to twister) have two pre-
ferred states, one where the hydrophobic part lies on a left-handed helix and the other one

5It follows that D is different from ρ: ρ =
√

x2
1 + y2

1 or ρ =
√

x2
2 + y2

2 .
6Twisters attract each other depending on their relative orientations, but will not lead to the creation

of filaments. They would more create clusters of twisters
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Figure 3.4: Forces landscapes between two twisters, where the central one, oriented along
the x-axis is represented in red, for d/λ = 0.1, M/Bm = 1 and 4 < D/λ < 8. The vector
fields represent the orientation of these forces, while the colormap describes the intensity
of these forces. The second twister is (a) parallel (ψ = 0) and (b) perpendicular (ψ = π/2)
to the central twister.

where the hydrophobic part lies on a right-handed helix, the formation of long filaments
is conceivable. The filament will correspond to the alternation of left and right-handed
twisted proteins.

Another elementary realisation of a torque-applying filament consists of the circular
ring as introduced in Sec. 3.1 (see Fig. 3.1 (b)). To determine the deformations of a
flat membrane due to the applied Darboux torques we choose polar coordinates. The
displacement field is then given by a Fourier-Bessel series [118]

u(ρ, φ) =
∞∑

m=1

C0,m√
2π

J0(kmρ), (3.16)

where ρ0 corresponds to the radius of curvature in the surface plane of the circular ring
and J0(x) is the zeroth Bessel function of the first kind. The km follow from the boundary
conditions at ρ = L [120].

Using the same method as previously, and summing over all the modes, we can rewrite
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Figure 3.5: Deformations of a flat membrane due to a closed circular filament applying
Darboux torques.

the displacement field u(ρ, φ) and the energy of the system as follows

u(ρ, φ) =
−ρ0(Mφλ)K1(ρ0/λ)

Bm

(

I0

(
ρ

λ

)

− I0

(
ρ0

λ

))

for ρ < ρ0 (3.17)

u(ρ, φ) =
ρ0(Mφλ)I1(ρ0/λ)

Bm

(

K0

(
ρ

λ

)

− K0

(
ρ0

λ

))

for ρ > ρ0, (3.18)

and

Etot = −π(Mφλ)2ρ2
0

Bmλ2
K1(ρ0/λ)I1(ρ0/λ) , (3.19)

where Mφ is the torque per unit length applied by the filament (see appendix C.1) and
In(x) is the n-th modified Bessel function of the first kind. A more direct method to obtain
the same results using Euler-Lagrange formalism is described in appendix C.3.

Due to the Darboux torques the circular filament creates an invagination in the mem-
brane, a precursor of vesicle formation (see Fig. 3.5). The depth of the invagination is
given by

D = |u(ρ → ∞) − u(ρ = 0)| =

∣
∣
∣
∣
∣

(Mφλ)λ

Bm

(

ρ0K1(ρ0/λ)

λ
− 1

)∣
∣
∣
∣
∣
. (3.20)

Let us again take a look at the limiting cases, i.e, when ρ0/λ is either small or large.
When the size of the ring is small compared to the characteristic length λ the depth reads

D =
∣
∣
∣

(Mφλ)

2Bm
ln(ρ0/λ)

ρ2
0

λ

∣
∣
∣. For ρ0 → ∞, the depth is equal to D = |Mφ

σ
|. Increasing the size

of the filament increases the depth, until it reaches its maximal value, the actual value of
the applied torque per unit length divided by the surface tension.

It is possible to find a relation between Mφ and ρ0 by assuming that the intrinsi-
cally curved filament behaves like a Worm-Like Chain. From [121] one can show that
(Mφλ) ρ0 = 2πBf cos (α) on a flat membrane, where Bf is the bending stiffness of the
filament. This result is consistent with the results of Sec. 3.1: when the two normals ~ncur

and ~nhyd are orthogonal, α = 90◦, and the Darboux torque vanishes at equilibrium.
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The formalism described in this chapter is valid when the variation of the angle α is
small. In this case and for ρ0/λ ≪ 1, we obtain Bf/Bm ≪ λ. Since the persistence
length of the filament lp is defined such that Bf = lpkBT , and for a membrane bending
stiffness Bm ≈ 10kBT , we finally get lp . 10λ. Depending on the surface tension σ,
50nm < λ < 5µm, such that the persistence length lp . 50µm at best. Similarly, for
ρ0 ≫ λ, one finds that lp . 10ρ0. For ρ0 of the order of 1µm, intermediate filaments
(≈ 1µm) thus can fit into our theory. This model is also applicable for actin filaments
(≈ 17µm) for a surface tension close to the one of rupture of membranes.

3.3 Closed bio-filament rings on tubular membranes

Membranes in biological systems are not necessarily flat. To analyse exemplarily how
torque-applying filaments interact with curved geometries, we focus on tubular membranes
from now on. The elastic energy of such a membrane is given by

Emem =
∫

dA
(

2BmH
2 + σ

)

− P
∫

dV − FL , (3.21)

where the surface integral corresponds to the energy of the flat case, Eq. (3.1). Addi-
tionally, one has to account for a pressure difference P between the inside and outside
of the tube (P = Pin − Pout with dV the infinitesimal volume element) and an external
longitudinal force F which controls the length L of the membrane. Before including the
filament(s) in our calculations, we will recapitulate Ref. [103], in which the stability of
tubular membranes was studied in detail.

In the case of a cylinder, the mean curvature is equal to H = − 1
2R

where R is the radius
of the cylinder. To obtain the radius of the tube at equilibrium, we set the first variation
of the energy with respect to L and R to zero. This yields two relations between the five
variables R, P , F , Bm, and σ:

F = 2πRσ − πR2P +
Bmπ

R
, (3.22)

σ = RP +
Bm

2R3
. (3.23)

When the membrane is constrained by one or more bio-filaments it will react to the imposed
constraints and will reshape. The radius r of the membrane will not be constant any more,
but will depend on the local position such that r(φ, z) = R + u(φ, z), where u(φ, z) is the
radial displacement field, z the longitudinal axis coordinate and φ the azimuthal angle.
The energy up to second order in u and its derivatives is given by [103]:

Emem =
∫ L/2

−L/2

∫ 2π

0
emem(φ, z)dφdz, (3.24)

with

emem(φ, z) =Bm[(∂2
φu)2 + 3u2 + 2r2(∂2

zu)(∂2
φu) − 2r2(∂zu)2

+ r4(∂2
zu)2 + 4u(∂2

φu)]/(2R3)

+ F [u2 − (∂φu)2 − r2(∂zu)2]/(2πR2). (3.25)
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The radial deformation of the membrane can be decomposed into Fourier modes analogous
to the flat membrane case (see Eq. (3.3)):

u(φ, z) =
∞∑

m,n=−∞
Cn,m exp (i(nφ+ kmz)) , (3.26)

where km = 2π
L
m is the wave vector. The energy then reads

Emem = E0

∞∑

m,n=−∞
Mn,m |Cn,m|2 , (3.27)

where the (scaled) elastic response function is given by

Mn,m =
(

R2k2
m + n2 − 1

)2 − 2(n2 − 1) + γ(R2k2
m + n2 − 1), (3.28)

with E0 = πBmL/R
3 and γ = FR/πBm.7

For the modes n = ±1 and km = 0, the energy cost to deform the membrane is zero.
Since these modes correspond to trivial translational modes, we are allowed to neglect them
in the following. As mentioned in [103], mean-square amplitudes of thermal fluctuations
are easily obtained using the equipartition theorem:

< |u|2 >= u2
0

∞∑

n,m=−∞

1

Mn,m

, where u0 =

√

kBTR

2BmπL
. (3.29)

All modes n ≥ 2 are stable, while the modes n = 0, 1 are not always stable, depending on
the parameter γ. The first critical modes, which can potentially lead to instabilities, are
the modes n = 1, m = 1 and n = 0, m = 0. However, it turns out [103] that the tube is
stable for all modes within the range 8

−
(

2πR

L

)2

< γ < 3. (3.30)

This implies that even a vanishing force F , i.e., γ = 0, can lead to a stable tube as long
as the tube is finite. Rewriting Eqs. (3.22) and (3.23), we get the pressure and the surface
tension as a function of γ, Bm and R:

P =
(γ − 2)Bm

R3
(3.31)

σ =
(2γ − 3)Bm

2R2
. (3.32)

7In the large L limit, the sum over m can be replaced by an integral and Eqs. (3.26) and (3.27) read

u(φ, z) =

∞∑

n=−∞

∫
∞

−∞

Ldk

2π
Cn(k) exp (i(nφ + kz)) and Emem = L

∞∑

n=−∞

∫
∞

−∞

dk

2π
Mn(k) |Cn(k)|2 ,

where Mn(k) can be obtained from Mn,m by replacing km with k.
8Note that this study is only valid for tubes without ends. In real biological systems, as for instance

during endocytosis, the tube is linked at both ends. These ends play a role on the stability of the tubular
membranes. Due to these boundaries at both ends, the forces needed to stabilise tubular membranes would
take different values. In particular, negative forces might not be valid for tube stabilisation any more.
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The radius of the tube follows as R =
√

2γ−3
2

Bm

σ
. Since the radius is always positive, the

surface tension, but also the pressure difference are found to be negative for certain values
of γ. In particular, without an external longitudinal force, both σ and P are negative. To
impose a positive P and σ, the longitudinal force has to be in the range 2πBm

R
< F < 3πBm

R
.

In the following, we will specialise the formalism to important cases and analyse how
the tubular membrane reshapes under given torque distributions in the fixed forces and
torques ensemble. To reach mechanical equilibrium, a single monomer or protein cannot
apply an external torque without being coupled to something else such as other proteins or
the cytoskeleton 9. In a first step we will implicitly assume that such a coupling exists in
order to analyse the linear response of the membrane to the application of point torques 10.

In the case of several proteins which exert a local point torque on a tubular membrane,
the energy of protein j is given by an expression similar to Eq. (3.5) (see appendix C.1),

with M
(j)
z/φ(φ, z) = M

(j)
z/φδ(φ − φj)δ(z − zj) (see appendix C.4). The total energy and the

displacement field for one protein read:

Etot = −
∞∑

n,m=−∞

(kmRMφ − nMz)2

4πBmMn,mL/R
(3.33)

and

u(φ, z) =
∞∑

n,m=−∞

(kmRMφ − nMz)R

2πBmMn,mL/R
sin (km(z − z1) + n(φ− φ1)), (3.34)

where the protein is located at z = z1 and φ = φ1.

Interestingly, the main deformations of the tubular membrane are due to Goldstone
modes [122], i.e., the modes n = ±1 with km 6= 0. These modes of deformation are soft
modes, such that the energy cost vanishes for L → ∞. To a first approximation each cross-
section of constant z does not change its circular shape and is only shifted perpendicular
to the longitudinal axis (see Fig. 3.6 (a)).

By polymerising individual proteins into a closed filament one can multiply the result-
ing deformations, which can ultimately lead to membrane fission such as in the case of
FtsZ rings [66, 67].11 The general expressions for N closed parallel filaments can be found
in appendix C.4. In order to illustrate these expressions, let us consider the case of one
torque-exerting closed filament ring first. A purely circular filament (n = 0), which does
not exert any force on the membrane, does not displace the membrane at the position

9The cytoskeleton or the other proteins must themselves be coupled to the membrane to reach mechan-
ical equilibrium.

10Interestingly, for a single point torque, the system is not at mechanical equilibrium, however, in the
Monge approximation, rotation of the whole system is highly energetic. This implies that the system does
not rotate, and seems at equilibrium. Therefore, for a system of point torques, the superposition principle
can safely be applied.

11Note that one can show that a twister on a tubular membrane preferentially orients along the longi-
tudinal axis of the tube.
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Figure 3.6: Deformations of a tubular membrane due to (a) a single point torque, and (b)
a circular filament. (c) Total energies and equilibrium shapes of two interacting circular
torque distributions. The blue curve in the energy diagrams correspond to the case of
parallel torques, the red curve to the case of opposite torques. Note that all these figures
correspond to the case of vanishing longitudinal force (γ = 0). (d) Deformations of a
tubular membrane due to a circular filament for γ = 2.2. In this regime, the surface
tension and difference of pressure both are positive. (e) Total energies of two interacting
circular torque distribution for γ = 0 in blue and γ = 2.2 in red. In the red box, the
equilibrium shape for γ = 2.2 is represented.

where it is situated, i.e., u(φ, z1) = 0. A local torque density Mz,0 in the z-direction will
not deform the membrane, as the corresponding force doublets cancel each other when
adjacent local forces are summed up individually along the filament. The corresponding
contribution to the energy of the system is zero (see Eq. (C.28)). However, the total torque
of such a torque distribution is oriented along the z axis and cannot be equilibrated by the
membrane due to its fluidity. We will thus set Mz,0 = 0 in the following. Local torques in
the φ-direction can be equilibrated.

The displacement field and the energy of a tubular membrane with a circular filament
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at z = z1 thus read (see appendix C.4)

E = −π(Mφ,0)
2

BmL/R
K0 (3.35)

and

u(φ, z) =
Mφ,0

Bm

∞∑

m=−∞

kmR
2

M0,mL/R
sin(km(z − z1)) , (3.36)

where K0 =
∑∞

m=−∞
(kmR)2

M0,m
(see appendix B.3 for these expressions in the large L limit).

One observes an infinite number of oscillations of sharply decreasing amplitude (see Fig. 3.6
(b)). These oscillations in the radius of the tube can be explained by the competition be-
tween the pressure P , the surface tension σ and the rigidity of the membrane Bm [68].

How do several of these filaments interact with each other? To get a hold on this
question, we will focus on two closed torque-exerting bio-filaments (see appendix C.4 for
a discussion of the general case). The length of the filaments is not fixed but depends on
the distance between them since we are working in the fixed forces and torques ensemble.
General expressions for the interaction between the filaments can be determined by using
the stress tensor approach [123, 124, 125]. In this article we take the standard approach
by studying the energy of the system.

In order to illustrate the interactions between two such filaments, let us consider two
equivalent closed circular torque distribution. The energy of the system and the radial
displacement field read

Etot = − π

BmL/R

(((

M
(1)
φ,0

)2
+
(

M
(2)
φ,0

)2
)

K0 + 2M
(1)
φ,0M

(2)
φ,0N0

)

(3.37)

and

u(φ, z) =
R

BmL/R

∞∑

m=−∞

∑

j=1,2

kmR

M0,m

M
(j)
φ,0 sin(km(z − zj)). (3.38)

Equivalent expressions for more complicated cases can directly be obtained from Eqs. (C.30)
and (C.31). In particular, the ellipsoidal distribution of torques, the “crunching ring” de-
scribed in the previous chapter, is discussed in details in appendix C.5.

The energy of two circular torque distributions, Eq. (3.37), exhibits a damped oscilla-
tory behaviour (see Fig. 3.6 (c)). One finds that the local extrema are at the distances

dN ≈
√

2√√
3+1

(

tan−1(−
√

2) +Nπ
)

R with N ∈ N. Whereas d = 0 and d2 ≈ 4.558R are the

lowest minima for the case of parallel torques (blue curve), one finds the global minimum
for the case of opposite torques at d1 ≈ 1.871R. It is interesting to note that increasing the
value of the longitudinal force F smoothens the oscillatory behaviour as shown on Fig. 3.6
(d). Moreover, one finds that the energy barriers to cross from principal to secondary
minima, and vice versa, are reduced (see Fig. 3.6 (e)). Finally, the principal minimum is
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wider for F > 0.

Can two circular torque distributions with parallel torques overcome the energy barrier
and get from the first local into the global minimum? To answer this question in a realistic
setting, consider a membrane of bending rigidity Bm = 15kBT , radius R = 50 nm, and
length L/R = 100. One finds that rings of 30 proteins, applying a torque of the order of
0.5kBT each, can cross the energy barrier which is around 15kBT . On the contrary, the
rings will most likely stay in the global minimum once they are in this configuration since
the energy barrier to cross to get to the next minimum is approximatively 50kBT . Note
that these energies are large, and imply deformations slightly larger than the one we should
consider in the linear regime.

3.4 Torque-induced membrane wrapping

Motivated by biological filaments such as dynamin [114, 126] and filopodia [128], we finally
consider how a helical filament can deform a tubular membrane when wrapping around
it. In contrast to previous work [62, 63] we focus on the question what happens when the
filament applies a constant local torque distribution instead of a force. Similar shapes can,
for example, be found in several other biological entities such as bacteria [127] or plant
cells [129]. One note of caution is, however, due here. Our theoretical results are in the
linear regime albeit non-linear effects will surely play an important role in a biophysical
setting at high deformation.

For such a filament Eq. (C.8) of appendix C.1 can be written as:

Efil = −
∫ φmax

φmin

dφ
∫ L/2

−L/2
dzδ

(

z − ℓφ

2π

)(

Mφ
du(z, φ)

dz
− Mz

R

du(z, φ)

dφ

)

, (3.39)

where the displacement field u(φ, z) is given by Eq. (3.26) and ℓ is the pitch of the helix. As
previously, the system must be at mechanical equilibrium, which implies that the filament
cannot apply a constant local torque along the z direction, i.e., Mz = 0. We will focus on
the case of an infinite filament of length L ≫ R wrapping around an infinite membrane.
To simplify the mathematical treatment we assume that the azimuthal angle φ lies in an
interval which is proportional to 2π, such that φmax −φmin = 2πN . The helix turns N ∈ N

times and its length is L = Nℓ. The energy and the displacement field of such a system
summed over all the modes read:

Etot = −
π2L/R

(
2π

(ℓ/R)2Mφ

)2

Bm

√
∆

(A cot (Aπ) −B cot (Bπ)) (3.40)

and

u(φ, z) = −
(

2π

ℓ/R

)2
MφR

2Bm

√
∆




sin

(

(π − φ+ 2π
ℓ
z)A

)

sin (Aπ)
−

sin
(

(π − φ+ 2π
ℓ
z)B

)

sin (Bπ)



 , (3.41)
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Figure 3.7: (a) Deformations of a tubular membrane due to a helical torque distribution
with low (up) and high (down) Mφ. (b) Energy profile as a function of the reduced pitch
of the filament ℓ/r.

where
√

∆ = 2

√

1 − 2
(

2π
ℓ/R

)2 − 2
(

2π
ℓ/R

)4
, A =

√

( 2π
ℓ/R)

2
+2−

√
∆

2

( 2π
ℓ/R)

2
+1

,

B =

√

( 2π
ℓ/R)

2
+2+

√
∆

2

( 2π
ℓ/R)

2
+1

, and 0 < φ− 2π
l
z < 2π.12

Interestingly, the membrane reshapes in such a way that the whole tube coils. Since the
filament is supposed to be much stiffer than the membrane, the pitches of the membrane
and the filament are the same (Fig. 3.7 (a)). In the intermediate regime, i.e., when the
filament and the membrane have a stiffness of the same order of magnitude, the pitch of
the filament and the one of the helix will be different.

Can the deformations lead to a breakage of the tubular membrane? To answer this
question, let us discuss the energy and its associated shape. The energy (3.40) decreases
quadratically for increasing local torque Mφ and fixed pitch. This leads to a supercoiling of
the membrane (Fig. 3.7 (a)). When the torque is high enough, two pieces of the membrane
start to touch each other, and the membrane penetrates itself.

When this phenomenon of auto-penetration starts, the membrane can, in principle,
break, leading to a collapse of the tube. Subunits, which are susceptible to apply a Darboux
torque (see Sec. 3.1) can thus induce a fission of the membrane by polymerising into a
helical filament. One word of caution is, however, due here: our calculations are in the
linear regime and are thus only valid when the amplitude of deformation D = ∂u

∂z
is much

smaller than 1, i.e., D ≪ 1. For simplicity, let us study the amplitude at z = φ = 0. One

12Note that the total torque applied to the tubular membrane is directly related to the torque per protein

via the expression mφ =
b/RMφ

2πN

√

1+

(
ℓ/R
2π

)
2

, where b is the size of the protein.
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finds:

D = −
(

2π

ℓ/R

)3
Mφ

2Bm

√
∆

(A cot (Aπ) −B cot (Bπ)) . (3.42)

At first order, for ℓ/R → 0, D ≈ − Mφ

12Bm
ℓ/R, and for ℓ/R → ∞, D ≈ − Mφ

2π2Bm
ℓ/R. For a

fixed local torque Mφ, the energy (3.40) increases non-linearly for increasing pitch ℓ (see
Fig. 3.7 (b)). In the limit of ℓ/R → 0, the torque applied by the filament can be slightly
larger than the membrane stiffness, without going into the non-linear regime.

3.5 Conclusions

We have discussed the reshaping of flat and tubular fluid membranes under the constraints
of adhering stiff filaments. To force an amphiphilic filament to adhere to a membrane,
one in general has to apply a prestress to the filament, such that its hydrophobic part
penetrates and orients itself normal to the membrane. Depending on the applied prestress,
this can induce a local torque distribution and thus a deformation of the membrane. This
phenomenon leads to mechanical equilibrium as long as all local torques compensate each
other.

In our study we have considered different kinds of bio-filaments. With the help of linear
response theory we were able to derive general expressions for the membrane shape in terms
of the torques applied by the filament. Specializing these expressions allowed us to analyse
the reaction of the membrane to the twister and the bender, i.e., two adjacent opposite
point torques along, and perpendicular to the backbone of the filament, respectively. The
twister, for instance, corresponds to a straight filament with a helical hydrophobic region.
The bender corresponds to a bent filament, with its hydrophobic part in the inner or outer
sides of the curved filament. The long-range interactions of two twisters have been dis-
cussed for distances larger and smaller than the characteristic length λ.

Allowing the monomers to polymerise to form closed filaments, we have studied the low-
est mode of deformation of one single filament applying a local torque distribution. The
interaction between two equal filaments can be repulsive or attractive depending on the
respective orientations of the torques. When the filaments apply the same torque distribu-
tion, the global minimum corresponds to the configuration where both filaments are on top
of each other. One finds local minima which are more stable than in the case of the point
torque. An estimate using physical values for two circular filaments yields a separation of
225 nm with a barrier of about 15 kBT when each monomer applies a torque of about 1 kBT .

Finally, we specialised our formalism to the case of a helical filament applying a constant
torque locally. Increasing this torque leads to a supercoiling of the membrane which could
subsequently induce membrane fission in the non-linear regime similar to what is observed
in biological systems containing, for example, dynamin filaments.



Chapter 4

The Spiroplasma

Biological cells and bio-filaments interactions are also involved in the cell motility. For
instance, unicellular organisms move by following gradients of chemicals. This is the so-
called chemotaxis. Most of the bacteria follow sugar gradients1, which will be utilised to
transform Adenosine diphosphate (ADP) into Adenosine triphosphate (ATP), which is one
of the main nucleotides used by bio-filaments to perform work 2. This chemical reaction
is the so-called fermentation 3. The inverse reaction to the latter one is activated by the
hydrolysis of ATP. The ATP nucleotide is transformed into ADP and a phosphate molecule.

4.1 Cell motility

To follow the gradients of sugar, most of the bacteria display one or several flagella. For
example, the bacteria Salmonella, which cause typhoid fever or E. Coli, which are present
in mammal gastrointestinal tract, use a flagellum to move. Interestingly some eukaryotic
cells also display a flagellum. This is for instance the case of sperm cells. Nonetheless, the
flagella differ in their way of functioning. Indeed, in prokaryotic cells, flagella work on the
basis of a motor which induces the movement of a rotor (see Fig.4.1 (a)). The bacterial
flagella are composed of a lot of proteins. In particular, flagellin is the protein which as-
sembles to form the filament outside of the bacteria, i.e., the rotor. This outer filament is
linked to the cell wall via a hook. Due to the rotation of the rotor, the bacterium moves.

On the other hand, in eukaryotic cells, flagella, which are organelles, are activated by
the action of dynein motors on microtubules (see Fig. 4.1 (b)). Eukaryotic flagella are
long entities which are organised in an ordered assembly of microtubules known as the

1Interestingly, some bacteria -like cyanobacteria- are photosynthetic, meaning that they produce sugar
via a chemical reaction:

6H2O + 6CO2 → C6H12O6 + 6O2. (4.1)

The reaction between the water and carbon dioxide molecules is activated by light, which are transformed
into sugar and dioxygen. This sugar is then used for fermentation. These kind of bacteria do not need to
move to get sugar. However, the need of water might force them to do so.

2The other nucleotide furnishing energy is GTP as already mentioned in the previous chapters. It arises
from the chemical reaction between sugar and GDP.

3The reaction is complex as other molecules also are involved in it.



54

Figure 4.1: Scheme of flagella in (a) prokaryotic [130] and (b) eukaryotic [131] cells.

axoneme. The axoneme is in general composed of a cylindrical tube made of 9 doublets of
microtubules. Along all microtubules, one finds dynein motors, which can move upon ATP
hydrolysis along the microtubules. These doublets are linked thanks to a protein called
Nexin. In the center of this tube, one finds two microtubules which are also linked to each
other thanks to Nexin proteins. Moreover, the so-called Protein Spoke, also known as the
Radial Spoke is a protein linked to the microtubule doublets and pointing towards the
two central microtubules. The role of these proteins on the motility of the cell is poorly
understood yet. Nonetheless, it is known that dynein motors exert forces inducing the
gliding of the microtubules. The Nexin proteins play an important role in converting the
gliding of the microtubules into curvature.

Eukaryotic cells can also display an other way of locomotion: the cilia. The cilia are
structurally close to the flagella. The axoneme is for instance also present in cilia. There
are three important differences between these two organelles. As mentioned above, flag-
ella are long filaments, which is not the case of cilia. Indeed, cilia are short appendages.
Secondly, there are usually less than 10 flagella for a single eukaryotic cell, where one can
find hundreds of cilia for a single cell. Finally, the motion of the cilia and the flagella are
also different. Where flagella show a two-dimensional wave-like behaviour, cilia present a
more complicated three-dimensional movement (see Fig. 4.2).

Interestingly, cells can move by means of several other mechanisms. For instance, cells
can adhere to surfaces, and thanks to the action of actin filaments, polymerisation, adhe-
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Figure 4.2: Scheme of the differences between the motions and shapes of the flagella and
the cilia [132].

sion and de-adhesion process, can move [133]. Indeed, one side of the cell adheres to the
surface. On the other side, the cell detaches from the surface, and after contraction of
the actin filaments at this location, the cell moves to the newly attached point. Moreover,
cells can also have passive motions, meaning that they do not present any intrinsic way of
locomotion, but rather let the environment move it. This is for instance the case of red
blood cells, which are just pumped through the blood vessels. An other interesting motility
apparatus is the one of multicellular organisms. In particular, we, like animals, use our
muscles to move. The contraction of the muscles is principally driven by myosin motors
and actin filaments in sarcomeres. Sarcomeres are the basic unit of the muscle tissues.
All these mechanisms, except for the passive motility are governed by the filaments of the
cytoskeleton of the eukaryotic cells.

A lot of the prokaryotic cells possess a cytoskeleton involved in cell division, for in-
stance, and move thanks to flagellum, which can be seen as a part of the cytoskeleton too.
Nonetheless, not all prokaryotic cells possess a flagellum, but still can move. In particu-
lar, this is the case of the bacteria Spiroplasma melliferum which can be responsible for a
cataract.
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Figure 4.3: A Spiroplasma cell, its geometry and cytoskeletal organisation. a) High-
intensity, dark-field video image (with reversed contrast) of Spiroplasma melliferum BC3
cells [134, 135]. The cell is approximatively in the focal plane and normal to the optical
axis of the microscope. P ≈ 0.9 µm, d ≈ 0.2 µm and d + D ≈ 0.6 µm correspond to
the pitch, the cell diameter and the coil diameter, respectively. b) Electron micrograph
image which shows the interior of a longitudinal, median thin section of the cell [134, 135].
The cytoskeletal ribbon follows the shortest helical path and is localised by the arrows. c)
Scheme of an average Spiroplasma cell. The bacterial cytoskeleton is represented by the
colored surface.

4.2 Description of the Spiroplasma

Spiroplasmas are members of the so-called Mollicutes class of organisms. The Mollicutes
are the smallest and simplest living and self-replicating cells [136]. On the one hand, the
smallest genome of this kind of organisms (the one of Mycoplasma genitalium which is
responsible of urethritis for instance) is only two times larger than the one of a virus. On
the other hand, the largest genome (the one of Spiroplasma LB 12) is two times smaller
than the one of E. Coli [137]. In addition to their lack of flagellum, Mollicutes are special
in the sense that they lack a cell wall. Instead of this wall, they possess what can be defined
as a bacterial cytoskeleton.

Spiroplasmas are even more unique bacteria as they display a well-defined helical struc-
ture, where most of the bacteria are rod-like shaped. This particular shape principally
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Figure 4.4: a) Scheme representing the change of handedness and b) the propagation of
the kink along the Spiroplasma [140].

comes from the shape of its cytoskeleton, which is composed of several proteins, such as
FtsZ or MreB, but also a protein specific to the Spiroplasma: the fib protein [138, 139].
The subunit (when the Spiroplasma is at rest) can be seen as a circular tetramer of diam-
eter ≈ 10 nm [100]. These tetramers assemble in order to form long fibrils. Moreover, 7
of these fibrils assemble in the orthogonal direction, forming a thin elastic sheet parallel
to the membrane. The fib fibers can not attach directly to the membrane, thus involving
MreB proteins. The MreB proteins lie between the fib fibers and the cell membrane. In-
terestingly, this cytoskeleton lies on the shortest helical path along the body. It is assumed
that the MreB filaments give the cell a rod-like shape (similarly to other bacteria), but
the fib proteins are responsible of the helicity of the cell [98]. On the average, Spiroplasma
cells are made of approximatively 5 helical turns (Fig. 4.3 (c)). The unit helical repeat of
the cell is P ≈ 900 nm long, the whole cell being ≈ 4.5 µm long. The diameter of the cell
tube is d ≈ 190 nm, and the coil diameter is d+D ≈ 570nm, such that D ≈ 2d.

Similarly to eukaryotic cells, Spiroplasmas move thanks to their cytoskeleton. Indeed,
the fib tetramers can switch from a circular to an ellipsoidal state upon ATP hydrolysis.
The contraction of the fibers leads to a change of the length and a change of helicity of
the thin elastic cytoskeleton. This change in the helicity of the cytoskeleton induces the
same behaviour of the membrane of the cell locally. Interestingly, the contraction of the
cytoskeleton begins at one end of the cell. To join the different handedness, the membrane
bends, and in order to release the stress, the cell kinks. It is the propagation of this kink
at a given speed vk that moves the Spiroplasma. Indeed, when the kink propagates along
the body of the cell, it creates a hydrodynamic flow which gives rise to the movement of
the cell at the speed vc in the direction opposite to the kink (see Fig.4.4).

The propagation of this kink has been studied both experimentally and theoretically [99,
141]. Shaevitz et al. studied experimentally the propagation of kinks in long Spiroplasma
cells. The number of helical repeats was close to 10. In this particular case of long bacteria,
the cell does not kink once, but twice. The first kink propagates along the bacteria, and
after a certain distance, a second kink propagates at the same speed and in the same
direction. The angle between the two opposite helicities θbend has been found to be close
to 35◦. In standard medium, kinks moved along the cell at a speed of vk ≈ 10.5 µm.s−1.
Cells themselves moved at a speed of vc ≈ 3.3 µm.s−1 in the direction opposite to the one
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of the kink. In the theoretical model developed by Wada and Netz, they considered the
cytoskeleton as a thin helical elastic rod. They found, according to simulations, an angle
θbend ≈ 31◦ for an optimal propulsion efficiency, which is close to the one obtained in the
latter experiment (θbend ≈ 35◦). However, with their simulation parameters, they found
that the ratio of the cell and kink speed are close to 7%. The cell according to their model
is slower than the one found in experiments.

4.3 The cytoskeleton as a thin elastic sheet

In our model, we propose, unlike Wada and Netz, to treat the cytoskeleton as a thin elastic
sheet. According to the experiments done by Trachtenberg [134, 142], the width of the
cytoskeleton w is approximatively 7 times larger than its thickness t. The length of the
cytoskeleton L is equal to the length of the Spiroplasma itself (few microns), such that we
can assume that L ≫ w ≫ t. The cytoskeleton is seen as a thin elastic sheet. Typically, one
solves the Föppl-Von Kármán equations, in order to get a solution for thin elastic sheets.
For instance, this theory has been used to describe the shape of leafs by taking into account
edge stresses due to their growth [143]. In the latter theory, it is assumed that the sheet can
bend (similarly to membranes), but also stretch. Similarly to the membrane theory, the
displacement and the strains must be small. It is also assumed that after deformation, the
normal of the surface still corresponds to the initial normal of the surface (Monge frame).
An other assumption, is that the studied surface is flat initially, and deforms due to the
constraints applied to it. The energy of the surface can be divided in two quantities, the
bending and the stretching energy, which read:

Eb =
Y t3

24(1 − ν2)

∫∫

dx dy
(

(∆ω)2 − (1 − ν)[ω, ω]
)

(4.2)

and

Es =
Y t

2(1 − ν2)
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dx dy
(
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(

ǫxxǫyy − ǫ2
xy

))

, (4.3)

where Y and ν correspond to the Young modulus and the Poisson ratio, respectively.
Furthermore, t and ω correspond to the thickness of the surface and the out-of-plane

displacement field, respectively. [ω,ω]
2
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curvature, and the ǫαβ are the components of the strain tensor. Minimising the elastic
energy Eel = Es +Eb with respect to the displacements ux, uy

4 and ω leads to 3 equations,
which correspond to the in and out-of-plane mechanical equilibrium equations, and read:
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where the σαβ are the components of the stress tensor.

Interestingly, in our system, the sheet is a highly curved and twisted surface. We thus
can not just solve the Föppl-Von Kármán equations and get the solution to our problem
as we are not any more in the Monge approximation. In the paper of Efrati et al. [144],
they describe a theory for what they call non-Euclidean plates. Non-Euclidean plates are
a class of elastic bodies which do not display any stress-free configuration. This theory
is also applicable to surfaces with a stress-free configuration, and is not restricted to the
Monge frame. This theory is thus useful to treat the problem of the Spiroplasma.

Thanks to a few assumptions similar to the one of the Föppl-Von Kármán theory, one
finds that the elastic energy reads Eel = Es + Eb, where

Es = t
∫

ωs

√

|ḡ|dx1dx2 (4.5)

and

Eb = t3
∫

ωb

√

|ḡ|dx1dx2, (4.6)

where the ḡαβ are the components of the reference metric, and |..| denotes the determinant
of the matrix. Moreover, x1 and x2 correspond to the two variables describing the surface
and the integral is performed over the whole surface. Finally, the energy densities are given
by:

ωs =
Y

8(1 + ν)

(
ν

1 − ν
ḡαβ ḡγδ + ḡαγ ḡβδ

)

(aαβ − ḡαβ) (aγδ − ḡγδ) (4.7)

and

ωb =
Y

24(1 + ν)

(
ν

1 − ν
ḡαβ ḡγδ + ḡαγ ḡβδ

)

bαβbγδ, (4.8)

where aαβ and bαβ correspond to the first and second fundamental forms of the mid-surface
of the constrained sheet5 and ḡαβ are the components of the inverse reference metric.
Similarly to the Föppl-Von Kármán theory, one can minimise the energy and find a set of
equations that need to be solved by taking into account boundary conditions (see appendix
D.1).

4.4 Preliminary results and perspectives

In our model, let us first assume that the cytoskeleton is flat at rest, and that it is its
interaction with a sheet of MreB proteins that leads to a prestrain. We think that the
prestrain leads to a symmetry breaking and the formation of left or right-handed helices as
shown in Fig. 4.5. Moreover, the cytoskeleton follows the shortest helical path along the

5The first fundamental from corresponds to the metric of the surface, while the second fundamental
form is directly linked to the principal curvatures of the surface.
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body of the bacterium. It is interesting to notice that the Gaussian curvature of the sheet
then is negative. We assume that the negative Gaussian curvature plays an important role
in the mechanism of sheet positioning and kink propagation.

In the following, we only consider the cytoskeleton, as we assume it to be stiffer than the
biological membrane. Indeed, it is the cytoskeleton that gives the shape of the bacterium,
and not the cell membrane. Following the theory developed by Efrati et al., we first need
to define the parameters of the sheet in its reference state, but also in its final state. All
the geometric parameters of the sheet (first and second fundamentals, Christoffel symbols
and mean and Gaussian curvatures) are given in appendices D.2. The useful one for this
calculation are the first and second fundamental forms of the surface, which read:

a11 = (1 −Rκ cos (φ))2 +R2τ 2 and b11 = κ cos (φ) (1 −Rκ cos (φ)) −Rτ 2

a12 = Rτ and b12 = −τ (4.9)

a22 = 1 and b22 = − 1

R
,

where R is the radius of curvature of the sheet, and τ = h
h2+r2 and κ = r

h2+r2 are the torsion
and curvature of the centerline defining the center of the circle of radius R.

Implementing all these parameters in the energy densities (Eq. 4.7 and 4.8), we found
that the energy densities read:
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As a first conclusion, one sees that the energy of the right or left-handed helix, for the
same curvature and pitch are the same. Nonetheless, the strains differ, depending on the

helicity of the sheet. Indeed, the 2D strain tensor ǫ2D
αβ =
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Note that one can find the stresses thanks to the Kirchhoff-Love assumptions which
lead the following strain-stress relation:
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Figure 4.5: Schematic representation of the Spiroplasma. Up: The cytoskeleton in its
ground state. Down: The cytoskeleton in a Spiroplasma bacterium in its rest configuration.

It is clear from these expressions that for right and left-handed helical sheets, the strains
ǫ2D

11 and ǫ2D
22 are equal. However, the strains ǫ2D

12 are opposite for the two different torsions
±τ . Symmetry breaking will be absent as the energies of the left and right-handed helices
are larger than the energy of the flat sheet. The following step is thus to prestrain the flat
cytoskeleton and see how it will minimise its energy. As an ansatz, we impose a prestrain
of the form:

ǫ2D
xx =

ǫ0

2

((
y

w

)2

− 1

3

)

, (4.14)

which corresponds to a longitudinal elongation of the sheet with a parabolic-like stretch
distribution. In addition, the sum of all prestrains is assumed to be equal to zero.

The new surface can be described by the following first fundamental form:
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the inverse metric

ḡαβ =

(
1
ḡ

0

0 1

)

. (4.16)

The sheet being prestrained to adopt this conformation according to our ansatz, this
corresponds to the non-stress free reference state and metric introduced in the paper by
Efrati et al. [144]. It will change conformation, in order to minimise its elastic energy.
As a first step, we will study the favoured configuration of the sheet between the flat and
left or right-handed states. From the formulation derived by Efrati et al., we calculate the
energy of both states, starting with the flat one. The sheet does not bend in the flat state,
such that the bending energy is null. The stretching energy density of the flat sheet reads:

ωs =
Y

8 (1 − ν2)

(1 − ḡ)2

ḡ2
, (4.17)
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Figure 4.6: Reduced difference of energy between the helical and flat sheet for different
amplitudes as a function of the location of the center of the sheet along the y-axis.

and the total elastic energy is Eel,1 = Lt
∫ w

−w

√
ḡωsdy, where L is the length of the sheet,

t its thickness and 2w its width. On the other hand, the energy densities of the helical
surface read:
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and
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Rḡ
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and the elastic energy of this configuration Eel,2 can be calculated thanks to the sum of
stretching and bending energies given by Eqs. 4.7 and 4.8. To know which of these two
states is the energetically favoured one, we study the difference of elastic energies between
these two states Eel = Eel,2 − Eel,1. In Fig. 4.6, the reduced difference of elastic energies

Ẽel =
Eel (1 − ν2)

Y Lt
is plotted as a function of the position of the center of the sheet on the

tubular helix φ0, where φ0 = 0 when the the center of the sheet follows the shortest helical
path 6. For Ẽel < 0, the symmetry is broken and leads to two different states, the left or

6As mentioned in appendix D.2, φ = y/R + φ0.
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right-handed helices. It appears from the chosen ansatz that the symmetry breaking occurs
for high values of the prestrain only. For ǫ0 & 1.5, which corresponds to a prestrain at both
edges of the order of 50%, the sheet adopts the left or right-handed helix. Nonetheless, for
such values of the prestrain, we are not any more in the small strain limit. It is interesting
to notice that for ǫ values slightly larger than 1.5, the sheet displays four identical states,
two for each handedness. Indeed, in Fig.4.6, the energy is minimal for two values of φ0,
which leads to a second symmetry breaking with the center of the sheet located closer and
closer to the shortest path.

It is important to note that the right or left-handed states might not minimise the elastic
of the sheet, and that the latter ansatz might not be the right one to describe the prestrain
applied to the cytoskeleton of the Spiroplasma. Indeed, to find the solution minimising
the elastic energy, we should solve the equations of the metric of the sheet described in
appendix D.1, which might lead to a different state. Moreover, the formulation of the
ansatz might also be wrong as we do not clearly understand yet where the prestrain comes
from, even if we suppose that it comes from the interaction between the MreB and fib fiber
sheets. When all these uncertainties will have been fixed, a next step would be to introduce
the change of helicity on the shape of the sheet. The method is to solve the boundary value
problem defined in appendix D.1. We would have to consider that the sheet is left-handed
at one side, and right-handed at the other side. As a first step, to simplify the calculation,
we propose the study of the case where the kink is in the middle of the sheet, due to the
simplifications implied by the symmetry of the system.

4.5 Conclusion

We have discussed in this chapter the motility of cells, and more particularly the flagella
and the helical change of Spiroplasma. We first described the flagella existing in both eu-
karyotic and prokaryotic cells, which differ in their functioning. More precisely, prokaryotic
flagella work on the principle of a rotor and stator, when the eukaryotic flagella induce
movements due to the bending of the cytoskeleton. As a second step, we discussed the
motion of the helically-shaped Spiroplasma, a bacteria, which displays a bacterial cys-
toskeleton. Spiroplasma cells are known to move thanks to the contraction and elongation
of this cytoskeleton, which induces the propagation of a kink along its body. The kink
present in the bacteria is created in order to minimise the energy of the bacteria when
it displays both helicity along its body. Its propagation leads to the displacement of the
Spiroplasma in the direction opposite to the kink.

We proposed a model to describe the propagation of the kink along the cell. We
discussed, as a first step, the change of conformation of the cytoskeleton (which we describe
as a thin elastic sheet) from a flat state to a helical shape. The two helical states are not
equal as the strains are different. Nonetheless, we want to develop a theory where the left
and right-handedness of the cytoskeleton arises thanks to a symmetry breaking. The idea
is that the sheet is prestrained, and wants to minimise its energy under such a condition.
From the ansatz we formulated, the left and right-handed helices are similar in energy,
and do minimise the elastic energy for large prestrains. Moreover, the cytoskeleton follows
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the shortest helical path, which is for a sheet of negative Gaussian curvature. According
to the ansatz discussed above, the sheet can adopt a conformation of negative Gaussian
curvature depending on the amplitude of the prestrain, but not in the small strain limit.
Moreover, we are not sure for the moment that the form of the prestrain corresponds to
the one which constrains the cytoskeleton of the Spiroplasma. A deeper analysis must be
done to understand this fascinating motility apparatus.



Chapter 5

Conclusion and perspectives

In this thesis, the elasticity of bio-filaments, such as FtsZ or dynamin, and their interac-
tions with biological membranes has been studied. Traditionally, such bio-filaments are
considered as thin elastic rods with a single elastic modulus, the bending stiffness. The
Worm-Like Chain model (WLC) is one of the most used model as it successfully describes
the dynamics of some bio-filaments, like DNA. Nonetheless, recent experiments showed
that a large variety of bio-filaments, such as microtubules, actin filaments, FtsZ rings, dy-
namin helices among others can not fully be described by this theory. One of the reasons
for this incompatibility can come from the polymorphism of the subunit constituents (the
proteins) of such filaments. It has been shown, for example, that FtsZ proteins, that are
involved in prokaryotic cell division, display two stable states, the straight and the curved
state. The FtsZ proteins are in the straight state at rest, and after an activation, thanks
to the release of chemical energy, become curved. As the WLC model assumes that the
subunit constituents are isotropic, that they can bend in all directions, without any differ-
ence, and that they display one rest configuration, this theory does not apply.

Chapter 2 was dedicated to the development of a simplified theoretical model allowing
the presence of more than one stable state of the subunit constituents. In addition, these
states can have different energies, such that one state is preferentially displayed by the
subunits. Inspired by the FtsZ rings and the helical dynamin filaments, which can in a
first approximation be treated as a stack of closed rings, we enforced the closure of fila-
ments constituted by such subunits. As a first step, we studied the effects of the change
of the mean curvature κ0 of the filament ring. The degeneracy of the ground state of such
filaments coupled to the elastic fluctuations of the subunits leads to a persistence length
dependence on the length of the filament, but also on the prestrain applied to the filament
to enforce the closure condition. The filament paradoxically softens through prestrain.
Finally, we applied this theory to a possible mechanism of tubular membrane breakage.
As a result, we found that a high cooperativity between the subunits is necessary to lead
to the hemi-fission of the membrane, and tube breakage.

In addition to the polymorphism of proteins, we treated the question of how bio-
filaments can apply torques locally to membranes. Indeed, some proteins, like dynamin
and FtsZ, are thought not only to constrict the membrane they are linked to (via other
proteins which are embedded in the membrane), but also to twist it. In this model, the
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torques are only present for amphiphilic molecules, as it is the mismatch between the in-
trinsic curvature of the proteins and their anchoring hydrophobic part that leads to the
torques. In our work, we assume that the proteins, or assembly of proteins must be pre-
stressed in order to be anchored to the membranes. It appears that when bound to the
membrane, the proteins (filaments) will want to release this prestress to minimise their
energy. This leads to a competition between the membrane elasticity and the proteins’
(filaments’) deformations. In the small deformation regime, we studied several geometries
of filaments deforming flat or tubular membranes. In a second step, we focused on the
membrane mediated-interactions between two filaments, and finally considered a helical
distribution of torques around a tubular membrane, assumed to represent the dynamin
filaments at the neck of clathrin-coated vesicles. We are aware that being in the linear
regime, we can not solve the problem of membrane fission. Nonetheless, numerical simu-
lations could give a better understanding of our model. Moreover, in the future, a deeper
study of the interactions of two proteins, that we called twister (or similarly bender), would
also be interesting and give insights on the formation of “twister filaments”.

Finally, in the last chapter, we were interested in the motility of prokaryotic and eu-
karyotic cells. In particular, we briefly discussed the flagella and cilia modes of propulsion.
In the rest of the chapter, we introduced the Spiroplasma bacterium, which is a helically-
shaped wall-less bacterium, possessing a cytoskeleton. Thanks to a change of conformation
of the cytoskeleton, that we see as a thin elastic sheet, the bacterium can change its helicity
and propagate a kink along its body, which leads to the motility of the cell. In the overview
of our plan for the future, we presented the main ingredients we think are responsible of
this kink propagation: symmetry breaking and negative Gaussian curvature. In a first
step, we would like to study statically the change of helicity.
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A.1 Small Angle X-Ray Scattering (SAXS)

From the scattered intensity (see 1.4 (b) in the main text), one sees Bragg peaks, which are
widen due to the effect of thermal fluctuations on the shape of membranes. The scattered
intensity graph gives as a result the smectic period d = d̄+ δ of the lamellar phase and the
thickness of the water layers d̄ and membranes δ. The smectic period of stacks is inversely
proportional to the volume fraction of membranes Φm. To obtain the bending modulus
of the membranes, the profile of the Bragg peaks is analysed through the structure factor
of the system. Firstly, the scattered intensity is linked to the density of particles in the
system ρ(~r) by:

I(~q) =

〈∣
∣
∣
∣

∫

V
ρ(~r)ei~q.~rd3~r

∣
∣
∣
∣

2
〉

, (A.1)

where ~q is the wave vector of the scattered beam and 〈...〉 corresponds to a time average.
This intensity usually is decomposed in two terms as follows:

I(~q) ∝ P (~q)S(~q)

q2
, (A.2)

where P (~q) is the form factor which is linked to the structure of the particles and S(~q) is
the structure factors which describes the positions of the particles in the sample. Note that
in the case of SAXS, the wave vectors being in the range of 1 − 100 nm, the structure and
form factors only give insights on the membranes themselves and not on each particles.
For a system of N membranes, the structure factor is defined in the reciprocal space by:

S(~q) =
1

N

〈
∑

j,k

e−i~q(~Rj− ~Rk)
〉

, (A.3)

where Rj/k are the positions of the different membranes.

It is then possible to show that in the case of oriented samples, the asymptotic behaviors
of the structure factors in the directions perpendicular and parallel to the layer plane are
given by power laws [145]:

S(0, 0, q⊥) ∝ |q⊥ − qm|ηm−2 (A.4)

S(q‖, 0, qm) ∝ q2ηm−4
‖ . (A.5)
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Note that for non ordered lamellar phases, the asymptotic behavior of the structure factor
reads:

S(q) ∝ |q − qm|1−ηm , (A.6)

where qm = mq0 = 2π
d
m is the position of the n-th harmonic of the structure factor, and

ηm is the Caillé exponent equal to [146]:

ηm =
kBTm

2q2
0

8π
√
BBm

, (A.7)

where Bm is the bending stiffness of membranes, B the compression modulus of the stack,
kB is the Boltzmann constant and T the temperature. According to this formula, it is not
possible to extract the bending modulus of the membranes. However, a theoretical model
developed by Helfrich in Ref. [147], gives a relation between the bending modulus Bm and
the strength of the inter-membranes interactions.

The elastic energy of such a system is given by a bending term and a quadratic inter-
action term between membranes:

Eel =
Bm

2

N∑

n=1

∫

d2r‖ (∆un)2 +
B

2

N∑

n=1

∫

d2r‖
(

un+1(r‖) − un(r‖)
)2
, (A.8)

where ∆ corresponds to the in-plane Laplacian and un(~r) to the out-of-plane displacement
of the n-th membrane. In the continuous limit, the energy can be rewritten, with n the
number of layers per unit length, as:

Eel =
∫

dz
∫

d2~r‖




nBm

2
(∆u)2 +

B

2n

(

∂u

∂z

)2


 . (A.9)

The energy being quadratic, the Fourier modes, defined such that u(~r) =
∑

~q u~q exp (i~q.~r),
are decoupled. Thanks to the equipartition theorem, one gets:

〈

|u~q|2
〉

=
kBT

V
(

(B/n)q2
⊥ + nBmq

4
‖
) , (A.10)

where the modes are decomposed into in- (q‖) and out-of-plane (qz) components, and V is
the volume of the sample. Note that for all T , the amplitudes of all the modes can diverge
for ~q → ~0, i.e., for large wavelength of deformations.

The next step of this calculation consists of calculating the difference of free energy ∆F
between unstacked and stacked states, corresponding respectively to B = 0 and B 6= 0.
The free energy of the system can be decomposed into an internal energy, corresponding
to the elastic energy of membranes and an entropy term, such that the difference of free
energy ∆F reads:

∆F = ∆U − T∆S. (A.11)

Assuming the distribution of amplitudes to be Gaussian, and neglecting the mode-mode
correlations, we can decompose the contributions to the free energy as decoupled, such that:
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∆U =
∑

~q ∆U~q and ∆S =
∑

~q ∆S~q. Firstly, from the equipartition theorem (Eq. A.10), one
gets the difference of elastic energy per mode:

∆U~q = −kBT

2

(B/n)q2
⊥

(B/n)q2
⊥ + nBmq

4
‖
. (A.12)

Secondly, starting from a Gaussian distribution, and counting the possible number of states
for different distances between the membranes d, one gets the difference of entropy per mode
as:

∆S~q = −kB

2




(B/n)q2

⊥
(B/n)q2

⊥ + nBmq4
‖

− ln




nBmq

4
‖

(B/n)q2
⊥ + nBmq4

‖







 . (A.13)

Replacing the sum over the modes by an integral such that
∑

~q

→ V

(2π)3

∫ q⊥c

−q⊥c

∫ q‖c

0
πdq2

‖dq⊥,

where q⊥c = π/d and q‖c are cutoff values, and assuming that
nq⊥c

√
Bm

q2
‖c

√
B

≪ 1, leads at first

order to:

∆F =
3π2nV (kBT )2

128Bmd2
. (A.14)

It is possible to determine B from the reduced free energy ∆F
V

thanks to:

B =
1

n

∂2

∂d2

∆F

V
.

Finally, the following result holds:

BBm =
9π2

64

(kBT )2

d4
, (A.15)

such that the Caillé coefficients (Eq. A.7) read

ηm =
4

3
m2. (A.16)

Note that if the thickness of the membrane δ is taken into account, the Caillé coefficients
read :

ηm =
4

3

(

1 − δ

d

)2

m2. (A.17)

This relation still only gives the Caillé coefficients without giving the bending modulus Bm

itself. Nonetheless, the Bragg peaks are not symmetrical, and this asymmetry comes from
the fluctuations too. For a finite-sized system, the structure factor is then modified, and
after averaging on all the orientations of the sample, is given in Ref. [20] by Safinya et al..

It depends on the parameter λ =

√

Bm

d2B
in particular which is linked to the Bragg peaks
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asymmetry. Knowing λ and the Caillé exponents ηm, one can extract the bending modulus
Bm of the lamellar membranes and the inter-membranes interaction strength B. In this
paper by Safinya et al. [20], they did a precise study of SAXS on lamellar phases, and
got bending modulus of the order of kBT for a mixture of SDS (Sodium Dodecyl Sulfate),
pentanol, water, and dodecane.

An other way to decouple the two variables is to determine the compressibility modulus
thanks to the compression of a stack of bilayers via a Surface Force Apparatus [30], as
mentioned in the main text.

A.2 Micropipette Aspiration

Starting from the Helfrich Hamiltonian given in the main text in Eq. 1.1 and assuming
that the membrane does not change its topology (meaning that the Gaussian curvature
term can be neglected) and in the small deformation regime, one gets:

EHel =
∫



Bm

2

(

∂2u

∂x2
+
∂2u

∂y2

)2

+
σ

2





(

∂u

∂x

)2

+

(

∂u

∂y

)2






 dxdy. (A.18)

Decomposing the out-of-plane deformation as a Fourier series

u(x, y) =
∑

~q

u~q exp (i~q.~r) , (A.19)

where ~q = qx
~i + qy

~j in Cartesian coordinate, and qx/y = 2π
Lx/y

, where Lx/y are the lengths

of the membrane in the x and y-directions. The Helfrich energy after implementing the
Fourier series of the out-of-plane deformation in the Hamiltonian, and using the fact that
∫∫

dx dy exp
(

i
(

~q − ~q′
)

.~r
)

= A0δ~q,~q′ becomes:

EHel =
A0

2

∑

~q

(

Bmq
4 + σq2

)

u~qu−~q, (A.20)

where A0 is the projected area, corresponding to
∫∫

dxdy = LxLy. From the equipartition
theorem, one gets that:

〈|u2
~q|〉 =

kBT

A0 (Bmq4 + σq2)
. (A.21)

From differential geometry, one gets that the area of the membrane is given by:

A =
∫

dS =
∫ √

gdxdy, (A.22)

where g = det(gij), correspond to the determinant of the metric tensor. In the Monge
frame, it is given by:

√
g =

√
√
√
√1 +

(

∂u

∂x

)2

+

(

∂u

∂y

)2

≈ 1 +
1

2





(

∂u

∂x

)2

+

(

∂u

∂y

)2


 , (A.23)
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which gives the following expression:

A = A0 +
1

2

∑

~q

A0q
2|u~q|2. (A.24)

Averaging over time the area, and using the expression found thanks to the equipartition
theorem (Eq. A.21), one gets the difference between the area of the membrane and the
projection of its area ∆A as:

∆A = 〈A− A0〉 =
1

2

∑

~q

kBT

Bmq2 + σ
. (A.25)

Going to the continuous limit, i.e., Lx,y → ∞, one gets:

∆A =
A0

2

∫∫ dqxdqy

(2π)2

kBT

Bmq2 + σ
(A.26)

⇒∆µ =
∆A

A0

=
1

2

∫ qmax

qmin

dq

2π

kBT

Bmq2 + σ
, (A.27)

where qmin and qmax correspond to cutoff wave-vectors respectively corresponding to the
largest and smallest possible deformations of the membrane. The largest deformation is of

the order of the system such that q2
min = (2π)2

A0
, whereas the smallest one is of the order of

the thickness t of the membrane, such that q2
max = (2π)2

t2 . The latter integral then gives:

∆µ =
kBT

8πBm

ln

(

Bmq
2
max + σ

Bmq2
min + σ

)

, (A.28)

where one usually defines σmax = Bmq
2
max and σmin = Bmq

2
min. In a micropipette ex-

periment, the following relation typically holds σmax ≫ σ ≫ σmin, such that the relative
difference of area ∆µ reads:

∆µ ≈ kBT

8πBm

ln
(
σmax

σ

)

. (A.29)

This calculation has been done for the case of an initially flat membrane fluctuating. In the
case of a micropipette experiment, the membrane forms a vesicle, which is approximatively
spherical. The same method can be used, the main difference being that the radius of the
sphere has to be decomposed in spherical harmonics. However, the relative difference of
area is the same for vesicles that do not fluctuate a lot.

To determine the bending modulus of the vesicular membrane, one typically studies
the relative difference of area ∆µ for several differences of pressure between the pipette
and the medium. One quantity of particular interest is the relative apparent surface ∆α
for two differences of pressure ∆P1 and ∆P2 with ∆P1 < ∆P2:

∆α =
Aa

2 − Aa
1

Aa
1

, (A.30)
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where the exponent a denotes the fact that it is the apparent area of surface and not the
real area A. Introducing it in the latter expression, one gets:

∆α =

A− Aa
1

Aa
1

− A− Aa
2

Aa
2

1 +
A− Aa

2

Aa
2

(A.31)

=
∆µ1 − ∆µ2

1 + ∆µ2

(A.32)

=

kBT

8πBm

ln
(
σ2

σ1

)

1 +
kBT

8πBm

ln
(
σmax

σ2

) . (A.33)

For classical experiments, the bending modulus is of the order of tens of kBT , the thickness
of the bilayer t ≈ 5 nm and the surface tension of the order of 10−7 to 10−5 N.m−1. Thus,
the ratio σmax/σ is of the order of 105, which allows to approximate the denominator as
being close to 1 up to 5% maximum. The measurement of the surface tension itself is
not direct, but is done via two Laplace laws applied at the interfaces vesicle-medium and
vesicle-micropipette. The pressure inside the vesicle Pin is higher than the outer pressures,
such that the Laplace laws give:

Pin − Pout =
2σ

Rv

Interface vesicle-medium, (A.34)

Pin − Pp =
2σ

Rp

Interface vesicle-micropipette. (A.35)

Thus, the surface tension can be rewritten as a function of the difference of pressure ∆P
between the inside of the micropipette and the medium reads:

σ =
Rp

2
(

1 − Rp

Rv

)∆P. (A.36)

Finally, the relative apparent surface ∆α as a function of the measurable quantities reads:

∆α =
kBT

8πBm

ln

(

Rv1∆P1 (Rv2 −Rp)

Rv2∆P2 (Rv1 −Rp)

)

. (A.37)

An other way to express ∆α is to determine the apparent areas of the studied system.
For instance, for a free spherical vesicle, the apparent area is given by: Aa

0 = 4πRa2
0 .

However, when the vesicle is sucked in the micropipette, it has a quasi-spherical shape out
of the pipette and a cylindrical one inside it, with half a sphere at the end of the tube
closing it. The total apparent area is then equal to:

Aa = 2πR2
v




1 +

√
√
√
√1 −

(
Rp

Rv

)2




+ 2πRp (L−Rp) + 2πR2

p (A.38)

= 2πR2
v




1 +

√
√
√
√1 −

(
Rp

Rv

)2




+ 2πRpL, (A.39)
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where the first and second terms respectively correspond to the area outside and inside the
micropipette. In typical experiments, the radius of the micropipette is around one quarter
of the radius of the vesicle, such that in a first approximation, the apparent area can be
rewritten as:

Aa = 4πR2
v + 2πRpL− πR2

p. (A.40)

The volume of the vesicle similarly can be written as:

V =
4

3
πR3

v + πR2
p (L−Rp) +

2

3
πR3

p. (A.41)

Finally, the interesting quantity to determine ∆α is the difference of apparent area, which
is given at first order by:

Aa
2 − Aa

1 = 8πRv1∆Rv + 2πRp∆L, (A.42)

where the ∆P2 > ∆P1, such that the vesicle is more aspired in the pipette, meaning that
∆L = L2 − L1 is positive and ∆Rv = Rv2 −Rv1 is negative. A last approximation is done
on the volume of the vesicle which is assumed to be constant, such that at first order one
gets:

∆Rv = − R2
p

4R2
v1

∆L. (A.43)

Implementing the latter result in Eq. A.40, and dividing it by Aa
1, one gets ∆α as a function

of the measurable variables:

∆α =
2Rp∆L (Rv1 −Rp)

Rv1

(

4R2
v1 + 2RpL1 −R2

p

) , (A.44)

such that from Eq. A.37, one gets the bending modulus of the vesicular membrane as:

Bm =
kBT

8π

Rv1

(

4R2
v1 + 2RpL1 −R2

p

)

2Rp∆L (Rv1 −Rp)
ln

(

Rv1∆P1 (Rv2 −Rp)

Rv2∆P2 (Rv1 −Rp)

)

. (A.45)

Note that in principle, the surface tension is given by: σ = ∂E
∂A

, and in the elastic limit, the
difference of surface tension between two states is given by:

∆σ = σ2 − σ1 = KA
∆A

A0

, (A.46)

where KA is the membrane compressibility. This corresponds to an elongation of the
membrane, which is highly energetic for membranes, and in first approximation can be ne-
glected. However, a more general expression for the relative apparent surface ∆α (Eq A.33)
reads:

∆α =
kBT

8πBm

ln
(
σ2

σ1

)

+
σ2 − σ1

KA

. (A.47)
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A.3 Details on the Worm-Like Chain model

For simplicity, let us consider an isotropic polymer rod which does not twist and does not
preferentially curve. It is described by its following energy:

EW LC =
Bf

2

∫ L

0
κ(s)2ds, (A.48)

where Bf is the filament flexural modulus, L = Nℓ is the contour length of the filament and
N the number of subunits of length ℓ. In this continuous model, the number of subunits
is assumed to be large and ℓ going to zero.

Consider firstly that this elastic filament of length s has a constant curvature κ(s) =
κ = φ/s, where φ corresponds to the tangent angle to the curve. The elastic energy of this
filament then is equal to:

EW LC =
Bf

2
κ2s =

Bf

2

(

φ

s

)2

s. (A.49)

Due to the thermal fluctuations and to its rigidity, to filaments will bend differently. A
way to get more details on how the filaments will bend is to determine the mean square
bending angle by taking a thermal average. In the following, the pre-factor 2 appears as
the filaments can bend in two directions independently:

〈φ2〉 = 2

∫

exp (−EW LC/(kBT ))φ2dφ
∫

exp (−EW LC/(kBT )) dφ
= 2

kBT

Bf

s. (A.50)

To describe the filament, one usually defines a frame (called the Frenet frame) linked to
the position ~r of the filament in space. The three orthogonal vectors of the Frenet frame
are:

• the unit tangent vector ~t = d~r
ds

, tangent to the filament

• the normal vector such that: d~t
ds

= κ(s)~n

• the bi-normal vector such that: ~b = ~t ∧ ~n.

One calculates the correlations between the tangent vectors at two different positions
s and s′ as follows:

〈~t(s1).~t(s2)〉 = 〈cos(φ(s))〉 = exp(−|s1 − s2|/lp), (A.51)

where |s1 − s2| corresponds to the distance between the two points studied along the fil-
ament. It is assumed that the correlation is exponentially lost, with characteristic length
-called the persistence length- lp. For small distances s ≪ lp, the deviation from the linear
rod is small, such that it is possible to expand the cosine as: cos(φ(s)) ≈ 1 −φ2/2. At first
order, the exponential can also be expanded as: exp(−s/lp) ≈ 1−s/lp, where s = |s1 −s2|.
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Finally the correlation between the tangent vectors becomes: 〈φ2(s)〉 = 2s
lp

.

From Eq. A.50, one gets the persistence length as a function of the bending rigidity of
the filament:

lp =
Bf

kBT
. (A.52)

As mentioned in the main text, different shapes can exist depending on the persistence
length of the filament. It can be rod-like, semi-flexible or flexible. In these three conforma-
tions, the end-to-end distance ~R =

∫ L
0
~t(s)ds differs. The mean square end-to-end distance

is obtained from:

〈R2〉 =
∫ L

0
ds
∫ L

0
ds′〈~t(s).~t(s′)〉 (A.53)

=
∫ L

0
ds
∫ L

0
ds′ exp(−|s− s′|/lp) (A.54)

= 2l2p

(

L

lp
− 1 + exp

(

−L

lp

))

. (A.55)

The limiting cases are discussed in the main text. Let us now focus on the so-called gyration
radius of the filament. It corresponds to the mean distance between the center of mass and
the subunits of the filament and is defined by:

〈R2
g〉 =

1

L2

∫ L

0
ds
∫ L

s
ds′〈R2(s− s′)〉, (A.56)

where the second integral is performed from s to L to avoid double counting. The end-to-
end distance is valid for any subsection of the filament, such that by inserting the result
from Eq. A.55 in Eq. A.56 and integrating, we get:

〈R2
g〉 =

lp
3L

(

L3 − 3L2lp + 6Llp − 6l3p

(

1 − exp

(

−L

lp

)))

. (A.57)

As for the end-to-end distance, two limiting cases are interesting. On the one hand, for
L/lp ≪ 1, 〈R2

g〉 ≈ 1
12
L2. On the other hand, for L/lp ≫ 1, 〈R2

g〉 ≈ 1
3
Llp. The results are

similar to the one obtained for the end-to-end distance, up to numerical pre-factors.
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Appendix B

B.1 Free energy of a closed filament

Let us develop the expression of the free energy for a large number N of monomers of size
a, such that L = Na. The energy, which is in the discrete case:

E = 2a
N/4
∑

n=1

(

−Bκ2
n + Cκ4

n

)

, (B.1)

becomes

E = 2aB
N/4
∑

n=1

(

− (σnκ1 + ∆κ)2 +
1

2κ2
1

(σnκ1 + ∆κ)4

)

, (B.2)

which becomes, using the relation given in Eq. 2.14:

E = NaB

(

−κ2
1

4
+

∆2
κ

κ2
1

(

κ2
1 + κ0∆κ − 3

4
∆2

κ

))

. (B.3)

The entropic term reads:

S = kB lnW = kB ln
N !

n+!n−!
, (B.4)

which becomes

S = NkB

(

ln 2 − 1

2

(

1 +
κ0 − ∆κ

κ1

)

ln

(

1 +
κ0 − ∆κ

κ1

)

− 1

2

(

1 − κ0 − ∆κ

κ1

)

ln

(

1 − κ0 − ∆κ

κ1

))

(B.5)
for a large number of monomers N , thanks to the Stirling formula:

ln(n!) ≈ n ln(n) − n. (B.6)

The minimization of the free energy F with respect to ∆κ

dF

d∆κ

= 0, (B.7)

leads to the self-consistent equation

∆κ =
κ0 − κ1 + (κ0 + κ1) exp (−ǫ)

1 + exp (−ǫ) , (B.8)

where

ǫ =
2aB∆κ

kBTκ1

(2κ2
1 + 3κ0∆κ − 3∆2

κ). (B.9)
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B.2 Method of Lagrange multipliers

The energy of the membrane is given as a function of the amplitudes of the modes of the
membrane An,m. Nonetheless, we would like to express it as a function of the amplitudes
of the modes of the crunching filament. To do so, let us start from the energy of the
membrane, which reads:

Emem =
πBmL

R3

∑

|n|6=1

∑

m

Mn,m|An,m|2, (B.10)

where Mn,m = (R2k2
m + n2 − 1)2 − 2(n2 − 1). The radial displacement field reads:

u(φ, z) =
∑

|n|6=1

∑

m

An,m exp(i(kmz + nφ)), (B.11)

and in particular, at z = 0, where the crunching ring is located:

u(φ, z = 0) =
∑

|n|6=1

an exp(inφ), (B.12)

where an =
∑

m An,m corresponds to the amplitudes of the modes of the filament.

Using the method of Lagrange multipliers, the energy then reads:

Emem =
πBmL

R3

∑

|n|6=1

∑

m

Mn,m|An,m|2

−
∑

|n|6=1

λn

(
∑

m

An,m − an

)

−
∑

|n|6=1

λ∗
n

(
∑

m

A∗
n,m − a∗

n

)

, (B.13)

where λn and λ∗
n are the Lagrange multipliers associated to the constraint on the ampli-

tudes of modes, and where the exponent ∗ corresponds to the conjugate of the variable.
Minimizing the energy of the membrane with respect to the amplitudes of the modes gives
the following shape equations:

An,m =
λ∗

nR
3

πBmLMn,m

. (B.14)

From the latter expression, we can easily rewrite the amplitudes of the modes of the filament
as:

an =
∑

m

An,m =
λ∗

nR
3

πBmL

∑

m

1

Mn,m

=
λ∗

nR
3

πBmL
In, (B.15)

where In =
∑

m
1

Mn,m
. This permits us to rewrite the Lagrange multipliers and the ampli-

tudes of the modes of the membrane as functions of the amplitudes of the modes of the
filament:

λ∗
n =

πBmL

R3

an

In

(B.16)
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and

An,m =
an

InMn,m

. (B.17)

Finally, the energy of the membrane and the radial displacement field read:

Emem =
πBmL

R3

∑

|n|6=1

|an|2
In

(B.18)

and

u(φ, z) =
∑

|n|6=1

anJn(z) cos(nφ)

In

, (B.19)

where Jn(z) =
∑

m
exp(ikmz)

Mn,m
=
∑

m
cos(kmz)

Mn,m
.

B.3 Integrals

In the large L limit, it is possible to rewrite all the summations over the modes in the
z-direction.

For |n| 6= 1, we pose a2 = n2 − 1 and

ν =

√

2a2 + γ −
√
γ2 + 8a2

2
and β =

√

2a2 + γ +
√
γ2 + 8a2

2
.

One obtains:

In =
∞∑

m=−∞

1

Mn,m

≈ L/R

2
√
γ2 + 8a2

(

1

ν
− 1

β

)

. (B.20)

Jn =
∞∑

m=−∞

cos(kmd)

Mn,m

≈ L/R

2
√
γ2 + 8a2

(

e−ν|d|/R

ν
− e−β|d|/R

β

)

. (B.21)

Kn =
∞∑

m=−∞

(kmR)2

Mn,m

≈ L/R

2
√
γ2 + 8a2

(β − ν) . (B.22)

Ln = −∂Jn

∂d
R =

∞∑

m=−∞

(kmR) sin(kmd)

Mn,m

≈ L/R

2
√
γ2 + 8a2

(

e−ν|d|/R − e−β|d|/R
)

. (B.23)

Nn = −∂2Jn

∂d2
R2 =

∞∑

m=−∞

(kmR)2 cos(kmd)

Mn,m

≈ L/R

2
√
γ2 + 8a2

(

βe−β|d|/R − νe−ν|d|/R
)

. (B.24)
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For |n| = 1, one has a2 = 0. We pose k = 2π
L

and obtain:

I|1| =
∑

m 6=0

1

M|1|,m
≈ (L/R)2

12γ
+

1

γ2
−

coth
(√

γ

kR
(π − k|d|)

)

2(γ)3/2
L/R. (B.25)

J|1| =
∑

m 6=0

cos(kmd)

M|1|,m
≈ (L/R)2

2π2γ




π2

6
− πkd

2
+
k2d2

4
− πkR

2
√
γ

cosh
(√

γ

kR
(π − kd)

)

sinh
(√

γ

kR
π
) +

(kR)2

2γ



 .

(B.26)

K|1| =
∑

m 6=0

(kmR)2

M|1|,m
≈ L/R

2
√
γ

coth

(√
γ

kR
(π − k|d|)

)

− 1

γ
. (B.27)

L|1| =
∑

m 6=0

(kmR) sin(kmd)

M|1|,m
≈ L/R

πγ




π − kd

2
− π

2

sinh
(√

γ

kR
(π − kd)

)

sinh
(√

γ

kR
π
)



 . (B.28)

N|1| =
∑

m 6=0

(kmR)2 cos(kmd)

M|1|,m
≈ L/R

2
√
γ

cosh
(√

γ

kR
(π − kd)

)

sinh
(√

γ

kR
π
) − 1

γ
. (B.29)

B.4 Modes expansion

On the one hand, in the internal frame of the filament, the tangent vector can be expressed
as a function of the tangent angle θ (see Fig. B.1) in Cartesian coordinates by:

~t = cos(θ)~ex + sin(θ)~ey, (B.30)

where

θ = κ0s+ δθ(s) = θ0 +
∑

|n|6=1

(

aθ
n cos(nθ0) + bθ

n sin(nθ0)
)

. (B.31)

On the other hand, the tangent vector can be expressed in Cartesian coordinates with
respect to the azimuthal component φ by (see Fig. B.1):

~t =
1

N

(

∂x

∂φ
~ex +

∂y

∂φ
~ey

)

, (B.32)

where N = R+u(φ) = R+
∑

|n|6=1(an cos(nφ)+bn sin(nφ)) corresponds to the normalization

of the vector ~t.
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Figure B.1: A crunching polymer ring on a fluid membrane weakly deformed.

Including the components of the position of the filament (x = (R + u(φ)) cos(φ) and
y = (R + u(φ)) sin(φ)) in the tangent vector gives to lowest order:

~t = cos(φ)~ey − sin(φ)~ex +
1

R

∂u

∂φ
(cos(φ)~ex + sin(φ)~ey) . (B.33)

Similarly, implementing Eq. B.31 in Eq. B.30 and doing the expansion to lowest order
gives:

~t = cos(θ0)~ex + sin(θ0)~ey + δθ (cos(θ0)~ey − sin(θ0)~ex) . (B.34)

At lowest order, for small deformations of the circular ring, the tangent and azimuthal
angles are linked by the following relation: θ0 = φ− π/2, such that:

δθ =
1

R

∂u

∂φ

=
∑

|n|6=1

n

R

(

aI
n cos(nφ) − aR

n sin(nφ)
)

, (B.35)

where an = aR
n + iaI

n.
The free energy of the filament can then be rewritten as follows:

FW LC =
lekBTκ

2
0

2R2

∫ L

0

∑

n,n′ 6=1

n2n′2
(

aR
n cos(nφ) + aI

n sin(nφ)
) (

aR
n′ cos(n′φ) + aI

n′ sin(n′φ)
)

ds

=
lekBTκ

2
0L

4R2

∑

n

n4|an|2. (B.36)

B.5 Closed cooperative non-linear chain

Consider the non-linear chain described by the effective energy given by Eq. 2.10:

Eelastic =
∫ lf

0

(

−B

2
θ′2 +

C

2
θ′4
)

ds, (B.37)
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where κ = dθ
ds

= θ′. If we take into account a coupling between the subunits, and the
closure constraint, the total energy of the filament reads:

Etot =
∫ lf

0

(

−B

2
θ′2 +

C

2
θ′4
)

ds+
K

2

∫ lf

0
θ′′2ds+ λ1

∫ lf

0
cos(θ)ds+ λ2

∫ lf

0
sin(θ)ds, (B.38)

where λ1 and λ2 are Lagrange multipliers. Minimizing the total energy of the filament
corresponds to solving the Euler-Lagrange equation:

∂Etot

∂θ
− d

ds

(

∂Etot

∂θ′

)

+
d2

ds2

(

∂Etot

∂θ′′

)

= 0, (B.39)

which leads to the following differential equation:

Kθ′′′′ +Bθ′′ − 2C
(

θ′3
)′

+ λ2 cos(θ) − λ1 sin(θ) = 0. (B.40)

To solve this non-linear differential equation, we apply a small perturbation to the circular
state and expand the Euler-Lagrange equation. For a circular ring, the polar angle θ is
expanded as follows: θ = θ0 + δθ, where θ0 = 2π

lf
s = κ0s. Inserting this ansatz in the latter

differential equation, and performing a Taylor expansion to first order in δθ, we obtain:

Kδθ′′′′ + (B − 6Cκ2
0)δθ

′′ − (λ1 cos(θ0) + λ2 sin(θ0))δθ + λ2 cos(θ0) − λ1 sin(θ0) = 0.
(B.41)

We immediately see that this expression can be simplified by introducing the tangential
projection of the internal ring tension µ, such that:

{

λ1 = µ cos(θ0)

λ2 = µ sin(θ0).
(B.42)

Inserting these expressions in Eq. B.41, we obtain a further simplification:

δθ′′′′ − αδθ′′ − βδθ = 0, (B.43)

where

α =
6Cκ2

0 −B

K
and β =

µ

K
. (B.44)

The solution of this equation is a sum of four exponential, where two of them have a real
exponent and the two others an imaginary exponent. However, the angular (θ(lf ) − θ(0) =
2π) and closure constraints (Eq. 2.8) also need to be expanded to first order and give:







δθ(lf ) − δθ(0) = 0
∫ lf

0
sin(θ0)δθds =

∫ lf

0
cos(θ0)δθds = 0.

(B.45)

To fulfil the first condition on the tangent angle, the two terms with real exponential must
vanish, such that the small tangent angle deformation from the circular ring reads:

δθ = A exp (iγs) +B exp (−iγs) , (B.46)
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where

γ =

√
√
√
√

√

(6Cκ2
0 −B)

2
+ 4µK − (6Cκ2

0 −B)

2K
. (B.47)

Furthermore, we obtain a “quantization condition” on γ: γ = κ0n, with n = 1, 2, 3, ....
From the closure constraint, we get that it is impossible to have the mode n = 1. Finally,
the solution is:

δθ = A exp(inκ0s) +B exp(−inκ0s), (B.48)

and

n =

√
√
√
√

√

(6Cκ2
0 −B)

2
+ 4µK − (6Cκ2

0 −B)

2Kκ2
0

. (B.49)

B.6 Determination of the domains wall characteris-

tics

Consider the non-linear chain described by the effective energy given by Eq. 2.10:

Eelastic =
∫ lf

0

(

−B

2
κ2 +

C

2
κ4
)

ds, (B.50)

where κ = dθ
ds

= θ′ is the curvature along the curve and lf the length of the filament.
Moreover, let us take into account a coupling between the subunits given by Eq. 2.36:

Ecoop =
K

2

∫ lf

0

(

dκ

ds

)2

ds, (B.51)

where K is the inter-monomer coupling constant. Assuming that we study a region of
length ls, where a ≪ ls ≪ lf and a is the size of the monomers, one can neglect the closure
condition, such that the total energy of this small region of the closed filament reads:

Es =
∫ ls

0

(

−B

2
κ2 +

C

2
κ4
)

ds+
K

2

∫ ls

0
κ′2ds. (B.52)

Minimizing the total energy of the filament corresponds to solving the Euler-Lagrange
equation:

∂Es

∂κ
− d

ds

(

∂Es

∂κ′

)

= 0, (B.53)

which leads to the following differential equation:

Kκ′′ +Bκ− 2Cκ3 = 0. (B.54)

Multiplying this equation by κ′ allows us to rewrite the latter equation as follows:

Kκ′2 − Cκ4 +Bκ2 = D. (B.55)
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Using the facts that κ1 =
√

B
2C

, and that κ′ is equal to zero only in regions where the

curvature of the monomers is κ = ±κ1, we determined the constant D =
Bκ2

1

2
. We rewrite

the latter equation as

K

2
κ′2 =

Bκ2
1

4

(

1 − κ2

κ2
1

)2

, (B.56)

or

ds =

√

2K

B

dκ

κ1

(

1 − κ2

κ2
1

) . (B.57)

Inserting these two expressions in the energy, and considering that there is only one wall
domain in the region of length ls, we find that:

Es =
−Bκ2

1ls
4

︸ ︷︷ ︸

E(±κ1)

+
2
√

2

3

√
KBκ2

1
︸ ︷︷ ︸

J

, (B.58)

where J corresponds to the transition energy penalty. To switch from regions of curvature
κ1 to regions of curvature −κ1 is not abrupt. It is done over a certain characteristic length,
which is found by integrating Eq. B.57 and reads:

s = 2

√

2K

B
︸ ︷︷ ︸

λ

arctanh
(
κ

κ1

)

+ E, (B.59)

where E is the position along the filament where κ = 0, and λ is the characteristic length
of the filament.



Appendix C

C.1 Definition of the point torque

The expression for the total energy of a torque distribution on the membrane will be derived
for a flat membrane in Cartesian coordinates. For the flat membrane in polar cylindrical
coordinates and the tubular membrane the expressions are similar and we will only present
the final result.

We start with the energy of two opposite forces placed at two neighbouring points,
separated by a distance ∆x ≪ 1 in the x-direction and ∆y ≪ 1 in the y-direction. The
total energy reads:

Etot = Emem − F
∫

dxδ(x− x1)
∫

dy δ(y − y1)u(x, y)

+ F
∫

dx δ(x− (x1 + ∆x))
∫

dy δ(y − (y1 + ∆y))u(x, y). (C.1)

The Taylor expansion up to first order of the delta functions gives:

δ(x− (x1 + ∆x)) δ(y − (y1 + ∆y)) = (δ(x− x1) − δ′(x− x1) ∆x)

× (δ(y − y1) − δ′(y − y1) ∆y)

= δ(x− x1) δ(y − y1) − δ′(x− x1) δ(y − y1) ∆x

− δ(x− x1) δ
′(y − y1) ∆y. (C.2)

Therefore, the last term in Eq. (C.1) can be rewritten as follows
∫

dx δ(x− (x1 + ∆x))
∫

dy δ(y − (y1 + ∆y))u(x, y)

=
∫

dx δ(x− x1)
∫

dy δ(y − y1)u(x, y) − ∆x
∫

dy δ(y − y1)
∫

dx δ′(x− x1)u(x, y)

− ∆y
∫

dx δ(x− x1)
∫

dy δ′(y − y1)u(x, y) . (C.3)

Integration by parts
∫

dx δ(x− (x1 + ∆x))
∫

dy δ(y − (y1 + ∆y))u(x, y)

=
∫

dx δ(x− x1)
∫

dy δ(y − y1)u(x, y) + ∆x
∫

dy δ(y − y1)
∫

dx δ(x− x1)
du(x, y)

dx

+ ∆y
∫

dx δ(x− x1)
∫

dy δ(y − y1)
du(x, y)

dy
. (C.4)
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yields the total energy:

Etot = Emem + F∆x
∫

dy δ(y − y1)
∫

dx δ(x− x1)
du(x, y)

dx

+ F∆y
∫

dx δ(x− x1)
∫

dy δ(y − y1)
du(x, y)

dy
. (C.5)

Considering the limit of infinitesimal torque F∆x → My and F∆y → −Mx, it is possible
to finally rewrite the total energy as follows :

Etot = Emem −
∫

dy
∫

dx

(

Mx(x, y)
du(x, y)

dy
−My(x, y)

du(x, y)

dx

)

, (C.6)

where Mx/y(x, y) = Mx/yδ(x− x1)δ(y − y1) are the point torque densities along the x and
y-axis, respectively.

For a flat membrane in polar coordinates the total energy reads:

Etot = Emem −
∫

dφ
∫ ρ

λ
dρ

(

Mρ(ρ, φ)
du(ρ, φ)

λdφ
−Mφ(ρ, φ)

du(ρ, φ)

dρ

)

, (C.7)

where Mρ/φ(ρ, φ) = Mρ/φδ(ρ− ρ1)δ(φ− φ1) are the point torque densities along the ρ and
φ-axis, respectively, and F∆ρ → Mφ, Fλ∆φ → −Mρ.

And, for a tubular membrane:

Etot = Emem −
∫

dz
∫

dφ

(

Mφ(φ, z)
du(φ, z)

dz
− Mz(φ, z)

R

du(φ, z)

dφ

)

, (C.8)

where Mφ/z(φ, z) = Mφ,zδ(φ− φ1)δ(z − z1) are the point torque densities along the φ and
z-axis, respectively, and F∆z → −Mφ and FR∆φ → Mz.

C.2 Continuous twister

In the text, the twister is defined by two opposite point torques exerted at both ends of the
filament. In this Appendix, we propose to study the twister, but defined now as a filament
applying a non homogeneous torque. We assume that the torque of the twister is given by:

Mx(x, y) =
2Mxx

d
δ(y) for − d/2 < x < d/2

= 0 otherwise, (C.9)

where d is the size of the filament and Mx is the torque density.

The energy of the twister (Eq. 3.5) reads:

EMext = −
∫ d/2

−d/2
dx
∫ ∞

−∞
dyM(x, y)

du(x, y)

dy

= −2Mx

d

∑

n,m

Cn,mkn

∫ d/2

−d/2
dx x exp (ikmx) . (C.10)
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This energy can be rewritten as:

EMext = −4Mx

d

∑

n,m

Cn,mkn

km

(

d

2
cos (kmd/2) − sin (kmd/2)

km

)

. (C.11)

Figure C.1: Representation of the continuous twister and the deformation it induces.

Minimising the total energy of the system, i.e., Etot = Emem + EMext , where Emem is
given in the main text by Eq. 3.4 leads to the following shape equations:

Cn,m =
2Mx

dBm

kn

kmMn,m

(

d

2
cos (kmd/2) − sin (kmd/2)

km

)

. (C.12)

The out-of-plane displacement field and the total energy read:

u(x, y) =
∑

n,m

2Mx

dBm

kn

kmMn,m

(

d

2
cos (kmd/2) − sin (kmd/2)

km

)

sin (kmx) sin (kny) (C.13)

and

Etot = − 4M2
x

d2Bm

∑

n,m

k2
n

k2
mMn,m

(

d

2
cos (kmd/2) − sin (kmd/2)

km

)2

. (C.14)

C.3 Circular ring on a flat membrane

For a flat membrane, the energy is given by Eq 3.2 in the main text:

Emem =
Bm

2

∫ ((

∇
2u
)2

+
1

λ2
(∇u)2

)

dS, (C.15)
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where λ =
√

Bm

σ
. According to Euler-Lagrange, we get that:

∆
(

∆u− 1

λ2
u
)

= 0. (C.16)

We can rewrite this equation as:

∆u− 1

λ2
u = h, (C.17)

where h is the harmonic function satisfying ∆h = 0.

As the studied system is a circular ring, we choose cylindrical coordinates to solve the
problem. The Laplacian in this framework can be simplified as u and h do not depend on
the azimuthal angle φ. The Laplacian of h thus becomes:

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ
h

)

= 0. (C.18)

Moreover, we decompose the space in two parts. The first one corresponds to the part
inside the circular filament (from ρ = 0 to ρ = ρ0), while the second one corresponds to
the part outside the circular filament (from ρ = ρ0 to ρ → ∞). Solving the latter equation
in each region leads to:

h = A ln(ρ/λ) −B, (C.19)

which is valid for 0 < ρ < ∞. One can show that the Laplacian is not null on all the
space. Indeed, according to Gauss theorem, the integral of the Laplacian of ln(ρ) on a
circle center at the origin is equal to 2π, for all radii. The Laplacian of the logarithm is
null everywhere, except at the origin. The function ln(ρ) thus is not a harmonic function
but a Green function up to a prefactor. The logarithm must thus be disregarded on the first
region (for 0 ≤ ρ ≤ ρ0). Moreover, in the second region, one can suppress the logarithm
by stating that the function u must not diverge. Integrating the function h leads to a
divergence at infinity due to the logarithm. This divergence would lead to a divergence of
u as well. In order to resolve this problem, the amplitude of the logarithm in the second
region also has to be null. The solution thus is:

h = −B1 in region 1

h = −B2 in region 2. (C.20)

Now that we have defined the function h, we can solve the Eq. C.17, which solution is
obtained thanks to the method of the constant variation, and is a sum of modified Bessel
function of first and second kind:

u(ρ) = C1 + α1I0

(
ρ

λ

)

+ β1K0

(
ρ

λ

)

in region 1

u(ρ) = C2 + α2I0

(
ρ

λ

)

+ β2K0

(
ρ

λ

)

+ A2 ln
(
ρ

λ

)

in region 2. (C.21)
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In the first region, the modified Bessel function of second kind K0(ρ/λ) diverges, such that
we take β1 = 0. In the second region, the modified Bessel function of first kind I0(ρ/λ)
diverges, similarly to the logarithm. These two terms cannot compensate as the Bessel
function diverges as an exponential. We thus have to take A2 = α2 = 0. The out-of-plane
displacement field then reads

u(ρ) = C1 + α1I0

(
ρ

λ

)

in region 1

u(ρ) = C2 + β2K0

(
ρ

λ

)

in region 2. (C.22)

The constants are determined thanks to the boundary conditions. Firstly, assuming that
at ρ = ρ0, u = 0, we can rewrite the two constants C1 and C2 as functions of α1 and β2.
Secondly, thanks to the continuity of the first derivative of u at ρ = ρ0, we can express α1

as a function of β2. Finally, the last constant is resolved via the discontinuity of the second
derivative of u at ρ = ρ0, which corresponds to the reduced applied torque per unit length,
such that:

∂2u

∂ρ2

∣
∣
∣
∣
∣
ρ=ρ0+

− ∂2u

∂ρ2

∣
∣
∣
∣
∣
ρ=ρ0−

=
(Mφλ)

Bmλ
. (C.23)

The out-of-plane displacement u(ρ) reads after a few lines of calculation:

u(ρ, φ) =
−ρ0(Mφλ)K1(ρ0/λ)

Bm

(

I0

(
ρ

λ

)

− I0

(
ρ0

λ

))

for ρ < ρ0 (C.24)

u(ρ, φ) =
ρ0(Mφλ)I1(ρ0/λ)

Bm

(

K0

(
ρ

λ

)

− K0

(
ρ0

λ

))

for ρ > ρ0, (C.25)

which corresponds to Eq. 3.17 in the main text.

C.4 General expressions

In this Appendix we derive the general expressions for the cases discussed in Sec. 3.3. In
a first step, we consider N point torques on a tubular membrane. Secondly, we will gen-
eralize these expressions to N closed torque-applying filaments. Finally, the energy and
displacement field will be specialized for two interacting closed rings.

The torques densities of a point torque are given byM
(j)
φ =

∑

p M
(j)
φ,pδ(z−zj)δ(φ−φj) and

M (j)
z =

∑

p M
(j)
z,pδ(z−zj)δ(φ−φj), respectively. Inserting these expressions in Eq. (C.8) and

following the same method as in the main text, one gets the energy and the displacement
field:

Etot = −
∞∑

n,m=−∞

N∑

j=1

(kmRM
(j)
φ − nM (j)

z )2

4πBmMn,mL/R

−
∞∑

n,m=−∞

∑

j<j′

(kmRM
(j)
φ − nM (j)

z )(kmRM
(j′)
φ − nM (j′)

z ) cos(km(zj − zj′) + n(φj − φj′))

2πBmMn,mL/R
.

(C.26)
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and

u(φ, z) =
N∑

j=1

∞∑

n,m=−∞

(

kmRM
(j)
φ − nM (j)

z

)

R

2πBmMn,mL/R
sin (km(z − zj) + n(φ− φj)). (C.27)

For closed filaments, the torques densities can be written asM
(j)
φ (φ, z) =

∑

p M
(j)
φ,p exp (ipφ)δ(z−

zj) and M (j)
z (φ, z) =

∑

p M
(j)
z,p exp (ipφ)δ(z − zj). Note that M

(j)
φ,p, and M (j)

z,p are complex
constants now. The total energy and the displacement field read:

Etot = −π
∑

j,j′

∑

n,m

exp (−ikm(zj − zj′))
(

kmRM
(j)
φ,n − nM (j)

z,n

) (

kmRM
(j′)
φ,−n − nM

(j′)
z,−n

)

BmL/RMn,m

(C.28)

and

u(φ, z) = −i
∑

j

∑

n,m

(

kmRM
(j)
φ,n − nM (j)

z,n

)

R

BmL/RMn,m

exp (i(nφ+ km(z − zj))). (C.29)

In particular, we decompose Mφ,p and Mz,p into their real and imaginary parts in the fol-

lowing: M
(j)
φ/z,p = 1

2

(

R
(j)
φ/z,p − iT

(j)
φ/z,p

)

.

The energy and the displacement field of two interacting rings are then given by
Eqs. (C.28) and (C.29) with j = 1, 2:

Etot = − π

4BmL/R

∞∑

n

((

R
(1)2
φ,n + T

(1)2
φ,n +R

(2)2
φ,n + T

(2)2
φ,n

)

Kn + 2
(

R
(1)
φ,nR

(2)
φ,n + T

(1)
φ,nT

(2)
φ,n

)

Nn

)

− π

4BmL/R

∞∑

n

n2
((

R(1)2
z,n + T (1)2

z,n +R(2)2
z,n + T (2)2

z,n

)

In + 2
(

R(1)
z,nR

(2)
z,n + T (1)

z,nT
(2)
z,n

)

Jn

)

,

(C.30)

and

u(φ, z) =
R

2BmL/R

2∑

j=1

∑

n,m

[

kmR

Mn,m

(

R
(j)
φ,n cos(nφ) + T

(j)
φ,n sin (nφ)

)

sin (km (z − z1))

− n

Mn,m

(

R(j)
z,n sin (nφ) − T (j)

z,n cos(nφ)
)

cos(km (z − z1))

]

, (C.31)

where In =
∑

m
1

Mn,m
, Jn =

∑

m
cos(kmd)

Mn,m
, Kn =

∑

m
k2

mR2

Mn,m
and Nn =

∑

m
k2

mR2 cos (kmd)
Mn,m

(see

Appendix B.3 for these expressions in the large L limit).

Let us compare the total energies of two superimposed and two infinitely separated
rings, when the rings apply the same or opposite torques, i.e., R

(1)
z/φ,n = ±R(2)

z/φ,n = ±Rz/φ,n

and T
(1)
z/φ,n = ±T (2)

z/φ,n = ±Tz/φ,n. For d = 0, one sees that Jn = In and Kn = Nn, such that

E+
tot(d/R = 0) = − π

BmL/R

∑

n

((

R2
φ,n + T 2

φ,n

)

Kn + n2
(

R2
z,n + T 2

z,n

)

In

)

for torques of same
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amplitude and E−
tot(d/R = 0) = 0 for opposite amplitudes. In the latter case all torques

compensate and the membrane stays cylindrical. This corresponds to the global maximum
of the total energy since it is always ≤ 0 in our system (see Sec. 3.2). For d/R → ∞,
Jn = Nn = 0, such that the total energy is equal to E+

tot(d → ∞) = E−
tot(d/R → ∞) =

− π
2BmL/R

∑

n

((

R2
φ,n + T 2

φ,n

)

Kn + n2
(

R2
z,n + T 2

z,n

)

In

)

= 1
2
E+

tot(d/R = 0). When the two

rings are far enough apart, the interaction between them can be neglected. The total
energy corresponds to that of two isolated rings and does not depend on the respective
orientation of the torques. It is equal to half of the total energy of two superimposed
rings applying the same torque due to the proportionality of Etot to the square of the local
torque. Furthermore, as the functions Jn and Nn, are oscillatory decaying for increasing
d/R, they are maximal when the distance between the two rings is minimal, i.e., when
d/R = 0. This is why the energy is minimal when two filaments superimpose and apply
the same torque distribution, no matter the exact form of the torque distribution.

C.5 Ellipsoidal distribution of torques

For an ellipsoidal filament, the so-called “crunching ring” [148], Eqs.C.30 and C.31 can be
specialised and read

u(φ, z) =
πR

BmL/R

∑

m

kmR

M2,m

(Rφ,2 cos(2φ) + Tφ,2 sin (2φ)) sin (km (z − z1)) (C.32)

+
πR

BmL/R

∑

m

1

M2,m

(Rz,2 sin (2φ) − Tz,2 cos(2φ)) cos(km (z − z1)), (C.33)

and

Etot = − π2

4BmL/R

(

R2
φ,2 + T 2

φ,2

)

K2 − π2

BmL/R

(

R2
z,2 + T 2

z,2

)

I2, (C.34)

where I2 =
∑

m
1

M2,m
and K2 =

∑

m
k2

mR2

M2,m
(see Appendix B.3).

It is important to note that if we impose Mz,2 = 0, then the ellipsoidal torque dis-
tribution leads to a circular filament. In order to have an ellipsoidal filament, Mz,2 must
be different from zero. Moreover, the torque in the z-direction corresponds to the force
imposed by the filament such that for all n 6= 0, Rz,n = n

2
gn and Tz,n = −n

2
fn. Moreover, if

we set Mφ,n = 0, we retrieve the energy and the displacement field for n-rings only applying
forces on a tubular membrane.

Let us now focus on two ellipsoidal filaments. Firstly, for ellipsoidal filaments only
applying torques in the z-direction as shown in Fig. C.2 (c), one sees that for this special
distribution of torques, no local extrema is present. Secondly, if the filaments also apply
torques in the φ-direction, two different profiles of the energy are possible, depending on

the following parameter α =
R

(1)
z,2R

(2)
z,2+T

(1)
z,2 T

(2)
z,2

R
(1)
φ,2

R
(2)
φ,2

+T
(1)
φ,2

T
(2)
φ,2

. Indeed, for α < 3−
√

6
4

, the energy profile is

given by Fig. C.2(d), while for α ≥ 3−
√

6
4

, the energy profile is given by Fig. C.2(e). The
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Figure C.2: Closed polymorphic filament(s) applying a uniform torque. (a) Ellipsoidal
torque distribution on a tubular membrane.(b)-(e) Two interacting ellipsoidal torque dis-
tributions.

value of α depends on the ratio of the torques applied in the z and in the φ direction. In
order to explain the difference between these two regimes, we will focus on the case of two
torques applying the same torques. On the one hand, or filaments only applying torques
in the z-direction (Fig. C.2 (c)), the force between the two rings is attractive for distance
smaller than d3 and repulsive for distance larger than d3. On the other hand, for filaments
applying torques in the φ-direction (Fig. C.2 (b)), the force between the two rings only
is attractive. Finally, if the torques are applied in both directions, the force is equal to
the sum of these two forces. If the torques in the z-direction are small compared to the
one in the φ-direction, the attractive part wins, and the force between the two filaments is
only attractive. Whereas for torques in the z-direction larger than the one applied in the
φ-direction, the repulsive part wins, leading to this bump in the energy profile. Note that

the extrema in Fig. C.2 (d) is for a distance d4 ≈
ln

(
4α−3−

√
6

4α−3+
√

6

)

√
3+

√
6−

√
3−

√
6
R.



Appendix D

D.1 Formulation of the boundary value problem

From the expression of the elastic energy Eel = Eb + Es, where the energy densities are
given in the main text by Eqs. 4.7 and 4.8, one can derive the Euler-Lagrange equilibrium
equations. Firstly, one can define the reduced 2D stress and moment tensors by:

sαβ =
∂ω2D

∂ǫ2D
αβ

= tAαβγδǫ2D
γδ (D.1)

and

mαβ =
∂ω2D

∂bαβ

=
t3

12
Aαβγδbγδ, (D.2)

where

Aαβγδ =
Y

1 + ν

(
ν

1 − ν
ḡαβ ḡγδ + ḡαγ ḡβδ

)

, (D.3)

and ǫ2D
αβ = 1

2
(aαβ − ḡαβ) and ω2D are the components of the strain tensor and the out-of-

plane displacement field of the mid-surface, respectively.

Minimising the energy leads to the following equations:

∇̄α

(

∇̄βm
αβ +

(

Γα
δβ − Γ̄α

δβ

)

mδβ
)

− sαβbαβ −mαβcαβ = 0

∇̄β

(

sαβ +mµβ
(

a−1
)γα

bµγ

)

+
(

Γα
δβ − Γ̄α

δβ

) (

sδβ +mµβ
(

a−1
)γδ

bµγ

)

(D.4)

+
(

∇̄βm
µβ +

(

Γµ
δβ − Γ̄µ

δβ

)

mδβ
) (

a−1
)γα

bγµ = 0

and the four following boundary conditions:

nαnβm
αβ = 0

nβ

(

sαβ +
(

a−1
)µα

bµγm
γβ
)

= 0 (D.5)

nβ

(

∇̄αm
αβ +

(

Γβ
αδ − Γ̄β

αδ

)

mαδ
)

= 0,
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where

∇̄βV
β =

1
√

|ḡ|
∂β

(√

|ḡ|V β
)

∇̄βM
αβ =

1
√

|ḡ|
∂β

(√

|ḡ|Mαβ
)

+ Γ̄α
βδM

βδ. (D.6)

Here, the cαβ form the third fundamental form of the surface, which is directly linked to the
first an second fundamental forms by: cαβ = 2Hbαβ −KGaαβ, where H and KG correspond
to the mean and Gaussian curvatures, respectively. Moreover:

Γ̄α
βγ =

1

2
ḡαδ (∂β ḡγδ + ∂γ ḡβδ − ∂δḡβγ) (D.7)

are the Christoffel symbols associated with the reference metric, and nα is the unit normal
to the surface.

Finally, in order to satisfy the Gauss-Codazzi equations, which correspond to compat-
ibility equations between the fundamental forms and the mean and Gaussian curvatures,
one has to satisfy the following equations:

KG =
1

2

(

a−1
)αβ (

∂γΓγ
αβ − ∂βΓγ

αγ + Γγ
γδΓ

δ
αβ − Γγ

βδΓ
δ
αγ

)

∂2bα1 + Γβ
α1bβ2 = ∂1bα2 + Γβ

α2bβ1. (D.8)

Solving the three Eqs. D.4 and the Gauss-Codazzi equations (Eqs. D.8), gives the three
components of the first and second fundamentals of the final surface.

D.2 Cytoskeleton under constraints

The cytoskeleton of the Spiroplasma corresponds to a helical sheet. To define the sheet,
we first need to introduce the centerline of the helix formed by the cytoskeleton. For a
helix, the position of the centerline is given by

~r =






r cos(t)
r sin(t)
ht




 ,

where r is the radius of the helix and l = 2πh is the pitch of the helix.

The unit tangent vector to the curve is given by the derivative of the position vector
with respect to the arclength s of the curve. Moreover, the relation between the arclength
s and the angular variable t is given by

s =
∫ t

0

√
√
√
√

(

dx

dt′

)2

+

(

dy

dt′

)2

+

(

dz

dt′

)2

dt′,
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leading in our case to : t = s√
h2+r2 , such that finally, the (unit) tangent vector reads

~t =
1√

h2 + r2







−r sin
(

s√
h2+r2

)

r cos
(

s√
h2+r2

)

h






.

Moreover, according to the Frenet-Serret formulas

d~t

ds
= κ~n,

d~n

ds
= −κ~t+ τ~b, (D.9)

d~b

ds
= −τ~n,

where κ = r
h2+r2 and τ = h

h2+r2 respectively represent the curvature and the torsion of
the curve. For the Spiroplasma, the radius r ≈ 190 nm, while the pitch l ≈ 900 nm
(giving h ≈ 145 nm). It follows that the curvature and the torsion approximatively are
κ = 3.3 × 10−3 nm−1 and τ = 2.5 × 10−3 nm−1.

After a few lines of calculations, the normal vector ~n and the binormal one ~b are given
by

~n = −1







cos
(

s√
h2+r2

)

sin
(

s√
h2+r2

)

0







and ~b =
1√

h2 + r2







h sin
(

s√
h2+r2

)

−h cos
(

s√
h2+r2

)

r






.

To represent the spiroplasma itself, it is necessary to have the diameter of the Spiro-
plasma which is approximatively of d = 2R = 190 nm (interestingly it is the same value as
the radius of the centerline). The surface is parametrized by the following

~X = ~r +R
(

cos(φ)~n+ sin(φ)~b
)

,

where the angle φ is comprised between ≈ −π/6 and ≈ π/6. Moreover, it can be
defined differently, in order to be the same variable as the one of the flat sheet as:
φ = y

R
+ φmax+φmin

2
= y

R
+ φ0, where φmax and φmin are the maximal and minimal val-

ues φ can take to define the sheet1. Moreover, the width of the sheet is equal to 2w, such
that R (φmax − φmin) = 2w. Moreover, one can determine the normal vector (which is al-

ways a unit vector) to the sheet described by the cytoskeleton as: ~N =
(

cos(φ)~n+ sin(φ)~b
)

.

From the location of the sheet in space, one can find the first and second fundamental
forms of the surface as follows:

a11 = (1 −Rκ cos (φ))2 +R2τ 2

a12 = Rτ (D.10)

a22 = 1

1To make the formulas easier to read, we will only write φ instead of y
R + φmax+φmin

2
= y

R + φ0 in the
equations.



96

and

b11 = κ cos (φ) (1 −Rκ cos (φ)) −Rτ 2

b12 = −τ (D.11)

b22 = − 1

R
.

Moreover, the metric determinant and inverse metric of this sheet are equal to:

a = a11a22 − a2
12 = (1 −Rκ cos (φ))2 , (D.12)

and

a11 =
1

(1 −Rκ cos (φ))2

a12 =
−Rτ

(1 −Rκ cos (φ))2 (D.13)

a22 =
(1 −Rκ cos (φ))2 +R2τ 2

(1 −Rκ cos (φ))2 .

From the metric, we can also determine the mean and Gaussian curvatures of the sheet2:

H =
−1

2R
+

κ cos (φ)

2 (1 −Rκ cos (φ))
(D.14)

KG =
−κ cos (φ))

R (1 −Rκ cos (φ))
. (D.15)

Finally, the Christoffel symbols read:

Γ1
11 = −Γ2

12 =
Rτκ sin(φ)

1 −Rκ cos(φ)

Γ2
11 = −

κ sin(φ)
(

(1 −Rκ cos(φ))2 +R2τ 2
)

1 −Rκ cos(φ)
(D.16)

Γ1
12 =

κ sin(φ)

1 −Rκ cos(φ)

Γ1
22 = Γ2

22 = 0.

Note that the formulas are given for a right-handed helix. To obtain a left-handed
helix, one need to replace h by −h, such that the torsion τ becomes −τ .

2The mean and Gaussian curvatures are entirely define by the first and second fundamental forms via

the following relations: H =
b11a22 − 2b12a12 + b22a11

2a
and KG =

b11b22 − b2
12

a
.
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courbure κ0 avec leurs parties hydrophobes en noir (right). . . . . . . . . . vi
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