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Abstract
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Doctor of Science : Particle Physics

Study of long-term sustained operation of gaseous detectors for the high

rate environment in CMS

by Jeremie A. Merlin

The muon system of CMS aims to provide an efficient and fast identification of the muons

produced in the proton-proton collisions. However, the forward region of the end-caps

is only instrumented with Cathode Strip Chambers (CSC). This lack of redundancy

will be problematic after the high-luminosity upgrade of the LHC (HL-LHC), for which

the increase of the background rate would degrade the Level-1 trigger performance and

thus the selection of interesting physics channels. Moreover, the possible degradation of

the CSC performance due to the sustained operation in a high-rate environment could

drastically affect the entire muon system. The goal of the CMS muon upgrade is to

maintain the L1 trigger rate with maximum selection efficiency in order to fully exploit

the HL-LHC. The CMS GEM Collaboration has proposed to instrument the vacant

high-eta region of the muon end-caps with Gas Electron Multiplier (GEM) detectors,

called GE1/1 chambers. The GEM technology, already used in various high-energy

physics experiments, is capable of operating in high-rate environments with detection

performance compatible with the CMS requirements.

The Ph.D. subject proposed by the CMS GEM Collaboration aims to demonstrate that

the GE1/1 technology is the most suitable choice for the upgrade of the muon end-caps.

Three main research projects were conducted in this context.

The first project included the precise measurement of the fundamental characteristics

of the triple-GEM detectors produced with the single-mask technique. The geometry of

such GEM foils differs from the standard double-mask technique, inducing differences in

the effective gain, the short-term stability and the rate capability. Those characteristics

are essential to ensure that the detectors can operate in the forward region of CMS. In

addition, the detection performance of the GE1/1 detectors were measured with intense

beams of high energy muons and hadrons. The detectors under test were associated
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to a reference detector system in order to extract the detection efficiency, the spatial

resolution and the time resolution. As a result, several working configurations were

proposed for the CMS application.

The second project was focused on the long-term operation of GE1/1 detectors, in

particular the study of the aging phenomenon. The aging is one of the most critical

limitations of the use of gaseous detectors in high-rate environments. It includes all the

processes that lead to a significant and permanent degradation of the performance of

the detectors (e.g. gain drop, non-uniformity, dark current, self-sustained discharges and

resolution loss). Several aging tests were performed at the CERN irradiation facilities

to prove that the GE1/1 chambers can operate during at least 10 years at HL-LHC

without suffering from performance losses. To complement the aging tests, an extensive

outgassing study was conducted with the GE1/1 materials to make sure that none of

them will release pollution in the gas mixture and trigger premature aging.

The excellent properties measured during the R&D phase led to the approval of the

GE1/1 project by the CMS Collaboration. The third project, conducted in the frame-

work of the mass production, consisted of developing of the main steps of the Quality

Control of the GE1/1 chambers. A particular attention was paid to the uniformity of

the effective gain, which relates to the uniformity of the detection performance over

the entire surface of the GE1/1 chambers. A new technique was proposed to measure

simultaneously the gain in all the 3072 readout channels of one chamber. This tech-

nique allows reducing the duration of the test down to two days while maintaining the

maximum granularity.

A majority of the results obtained during the three years of Ph.D. contributed to the

success of the project and its approval by CMS and the LHCC. Moreover, numerous tools

and procedures were established both for R&D activities and the mass production.
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Le spectromètre à muons de CMS doit permettre l’identification rapide et efficace des

muons produits lors des collisions proton-proton au LHC. Cependant, à cause d’un envi-

ronnement de détection extrême, seules les chambres à piste cathodique (CSC) équipent

actuellement les bouchons de CMS. Cette faiblesse dans le système de détection pour-

rait devenir problématique après l’amélioration du LHC. L’augmentation du taux de

particules dans les bouchons va dégrader les performances du système de déclenchement

L1 ainsi que l’efficacité de sélection des phénomènes physiques intéressants. De plus, la

possible dégradation des chambres CSC provoquée par l’utilisation prolongée dans un

environnement à fort taux de particules affecterait directement le spectromètre à muons.

Le but du programme d’amélioration de CMS est de maintenir le taux de déclenchement

L1 tout en gardant une efficacité de sélection maximale. La collaboration CMS GEM

propose d’équiper les régions vacantes des bouchons avec des détecteurs basés sur la tech-

nologie d’amplification des électrons dans un gaz (GEM), appelés GE1/1. La technologie

GEM, déjà utilisée dans différentes expériences de physique des particules, est capable

de fonctionner dans des environnements extrêmes avec des performances adaptées aux

besoins de CMS.

Dans ce contexte, le sujet de thèse proposé par la collaboration CMS GEM a pour but

de démontrer les qualités des détecteurs GE1/1 et de justifier le choix de la technologie

GEM pour l’amélioration de CMS. Ainsi, trois projets ont été suivis pendant la thèse.

L’une des particularités des feuilles de GEM utilisées dans les nouveaux détecteurs

GE1/1 est la méthode de fabrication. En effet, la technique initiale, dite ”double-

masque”, consiste à transférer la géométrie des trous microscopiques à l’aide de deux

masques identiques apposés sur chaque face de la feuille. La gravure électrochimique se

faisant simultanément à travers les deux masques, la géométrie des trous ainsi obtenue



iv

est parfaitement symétrique. Toutefois, bien que cette méthode soit validée et déjà

utilisée dans des expériences de physique à hautes énergies, elle n’est pas adaptée à la

production de grandes feuilles de GEM à cause d’un problème d’alignement des masques.

Une autre technique, dite ”simple-masque”, est alors nécessaire pour produire les GEM

des grands détecteurs GE1/1. Cette méthode consiste à graver les trous microscopiques

à partir d’un masque unique. Cependant la forme finale des trous n’est pas parfaitement

symétrique, ce qui pourrait affecter le fonctionnement des détecteurs en induisant des

différences de comportement selon l’orientation des feuilles de GEM. Ainsi, la première

partie du projet de thèse consistait à mesurer précisément les caractéristiques fondamen-

tales des détecteurs triple-GEM produit par la technique simple-masque. Cette étude

comprend la mesure du gain effectif, de la stabilité à court terme, du taux maximum de

détection et de la probabilité de décharge. Ces éléments sont essentiels pour s’assurer

que les détecteurs pourront fonctionner en toute sécurité dans l’environnement des bou-

chons de CMS. Dans un second temps, les performances de détection ont également été

mesurées, à l’aide de faisceaux intenses de muons, afin de prouver que les détecteurs

GE1/1 pourront améliorer la détection des muons après leur installation dans CMS. Les

détecteurs en test ont été associés à un dispositif de référence pour extraire des infor-

mations telles que l’efficacité de détection, la résolution spatiale, qui définit la précision

avec laquelle les muons seront localisés dans CMS, et la résolution temporelle qui décrit

la qualité des signaux de déclenchement générés par les chambres GE1/1. Les résultats

ainsi obtenus ont permis d’établir plusieurs configurations de fonctionnement adaptées

à CMS.

Le deuxième projet consistait à prouver que les excellentes performances des détecteurs

GE1/1 ne vont pas se dégrader pendant leur utilisation dans CMS. Cette étape com-

prend l’étude du fonctionnement à long terme des détecteurs GE1/1, en particulier

le phénomène de vieillissement. Le vieillissement inclue tous les processus physiques

et chimiques qui provoquent la dégradation graduelle et permanente des performances

de détection (perte de gain, non-uniformité, courant de fuite, décharges et pertes de

résolution). C’est l’une des principales limites pour l’utilisation des détecteurs dans

des environnements à très fort taux de particules. Dans le cas de la technologie triple-

GEM, l’amplification des signaux est partagée sur plusieurs couches de GEM, et pour

chaque GEM sur plusieurs trous. Cette multitude de canaux d’amplification va perme-

ttre de réduire la possibilité de déclencher les processus physiques et chimiques respon-

sables du vieillissement. Toutefois, de part leur dimension microscopique, les trous de

GEM peuvent être affectés très rapidement par certains effets de vieillissement, même

réduit. Plusieurs tests de vieillissement ont été menés dans des zones d’irradiations

spécifiques au CERN pour reproduire un minimum de 10 ans de fonctionnement réel

dans l’environnement de CMS après la montée en puissance du LHC. En complément de



v

ces tests, une série d’études de dégazage a été menée avec les matériaux des chambres

GE1/1 pour exclure toute source de contamination qui pourrait déclencher ou aggraver

le processus de vieillissement.

Enfin, les excellentes propriétés mesurées lors de la phase de R&D ont permis de valider

la technologie triple-GEM, qui fut ensuite approuvée par la collaboration CMS et le

comité du LHC. La production de 144 grands détecteurs GE1/1 sera partagée entre

différents sites de production à travers le monde. Pour assurer une production uniforme

et une même qualité pour tous les détecteurs, une procédure de contrôle qualité a dû être

établie sur la base des résultats obtenus pendant la phase de recherche et d’optimisation

des prototypes GE1/1. Le troisième projet de thèse fut donc le développement des

principales étapes du contrôle qualité des chambres GE1/1, depuis la réception des com-

posants jusqu’à l’installation finale. Une étape particulièrement importante consiste à

mesurer l’uniformité du gain effectif, qui décrit les propriétés géométriques et électriques

des détecteurs et qui reflète aussi l’uniformité des performances de détection. Alors que

la technique initiale de mesure ”secteur-par-secteur” nécessitait plusieurs jours de tests

avec un fort risque de perturber les résultats, une nouvelle technique a été mise au point

pour mesurer simultanément le gain effectif sur chacun des 3072 canaux de lectures d’un

détecteur. Cette technique permet de réduire le temps de mesure à deux jours tout en

conservant une granularité maximale et des mesures complètement indépendantes de

l’environnement de test.

La majorité des résultats obtenus pendant ces trois années de thèse ont participé au

succès du projet et à son approbation pour l’amélioration de CMS. De plus, plusieurs

outils de recherche et procédures ont été développés pour la phase de R&D et la pro-

duction en série.
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Chapter 1

General Introduction

The specificity of the scientific research is to demonstrate the veracity of an hypothesis

by the experiment and the observation of the processes predicted by this hypothesis. It

is particularly true for particle physics, where most of the hypotheses involve infinites-

imal objects and invisible phenomena. During the past century, a large community of

physicists developed the knowledge and numerous tools to go beyond our limitations

and made the invisible world accessible to us. Particle detectors are certainly the most

prominent example of this common effort.

This thesis was conducted in the framework of the detector development for the upgrade

of the Compact Muon Solenoid (CMS) muon system. The work was mainly focused on

the characterization and the long-term operation study of large gaseous detectors based

on the Gas Electron Multiplier (GEM) technology. The goal was to ensure that such

new detectors can sustain the difficult environment of the CMS muon end-caps with

detection performance that significantly improve the overall detection system.

In the next chapter we will give a general introduction on the research in particle physics.

After a brief description of the Standard Model (SM) and its limitations, we will highlight

the need of exploring physics phenomena beyond the SM in order to validate theories

that give a full description of our universe. In this framework we will discuss several

important mechanisms of the Higgs physics and non-standard phenomena, devoting a

particular attention to the importance of the muon detection for physics discovery.

In the third chapter, we will describe the Large Hadron Collider (LHC) at CERN,

in which the proton-proton collisions at high energy and high rate give access to the

fundamental components and mechanisms of the universe. We will then discuss the

upgrade plan of the LHC that is necessary to explore the physics beyond the SM. In the

second part of the chapter we will give a general presentation of the CMS experiment

1
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and its subsystems, with a particular attention to the muon spectrometer. After a

general presentation of the CMS upgrades, we will focus on the forward region of the

CMS muon end-caps and show how it can be improved by introducing a new technology

of detection.

The fourth chapter will introduce the concept of gaseous detector, which is the preferred

option for the CMS muon system. A first part will be dedicated to the interaction

between particles and matter, especially gaseous media. We will essentially discuss

the processes that can be encountered in the CMS environment or during the thesis

work. Then we will give a general overview on the operation of gaseous detectors, their

development since the beginning of the 20th century and their current applications. We

will finish with the GEM-based detectors, the technology chosen for the upgrade of the

CMS muon end-caps.

The next chapter will present the GEM proposal for the upgrade of the first station of the

CMS muon end-caps, namely the GE1/1 project. We will discuss the technical details

of the large GEM-based detectors especially designed for CMS, their particularities and

what needs to be done to ensure that they will sustain the operation in the end-cap

environment and fulfil the CMS requirements.

In the sixth chapter, we will present the results of the characterization of the GE1/1

detectors: first the study of the fundamental characteristics of the GEM technology for

the CMS application, which differs from the ones used in other experiments; then, the

measurements of the detection performance when irradiated with high energy muons

and hadrons. Finally, we will compare the properties of the GE1/1 detectors with the

CMS requirements.

The next chapter will be dedicated to the study of the long-term operation of the GE1/1

chambers. After presenting the different processes that can affect the longevity of the

detectors, we will discuss the various aging tests that were performed at CERN in

different operating conditions. We will also highlight the effects of the pollution of the

gas mixture on the longevity of the chambers and how to extend their lifetime by using

non-outgassing materials.

The last chapter will deal with the mass production and the Quality Control (QC)

of the GE1/1 detectors. After a general presentation of the QC plan, we will focus

on several crucial steps: the electrical test of the GEM foils, the gas leak test and

the measurement of the uniformity of the gain, which relates to the uniformity of the

detection performance. The discussion will be accompanied with the results obtained

with the first prototypes of GE1/1 chambers, and the outlook on the future developments

to improve the QC and the commissioning of the detectors.
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My Ph.D. work aims to demonstrate the capability of the GEM-based technology and

to develop detectors that suit the CMS requirements. The results I obtained during the

last three years participated to the success of the project and its approval by CMS and

the LHC Committee.



Chapter 2

Physics at the LHC

2.1 Introduction

The purpose of the research in particle physics is to determine the fundamental compo-

nents of the matter, their properties and the way they interact with each other. In this

second chapter, we will briefly introduce the Standard Model of particle physics that

describes the elementary particles and their interactions. We will then highlight some

of its main limitations and thus the motivations to explore new physics beyond this

model. With several examples of the Higgs physics and non-standard phenomena, we

will demonstrate the importance of the muon detection for physics discovery and justify

the need of improving the muon systems in the High-Energy Physics (HEP) experiments.

2.2 The Standard Model of particle physics

The theoretical elements of the modern particle physics are grouped into the ”Standard

Model” (SM), a theory based on the gauge invariance principle in the framework of the

quantum field theory. This thesis being focused on experimental works, the detailed

development of the SM will not be discussed here. However, a complete description can

be found at [17].

All predictions given by the SM were verified with a great precision by various experi-

ments, in particular at the LEP (CERN), the Tevatron (Fermilab), HERA (Desy) and

more recently at the LHC (CERN). Nevertheless, several experimental observations,

discussed in Sec. 2.2.4, are not explained by the SM.

4
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2.2.1 Elementary particles of matter

In the SM, the matter is composed by 12 elementary particles called fermions, identified

by their spin equal to 1/2. The fermions are themselves divided into two categories,

the charged leptons (electrons e−, muons µ− and taus τ−) with their associated neu-

trinos (νe, νµ and ντ ), and the quarks of the first (u,d), second (c,s) and third (t,b)

generation that form the hadronic matter. Additionally, all particles are associated to

anti-particles. Elementary particles of the SM and some of their intrinsic properties are

listed in Tab. 2.1.

Lepton Charge Mass [1/c2] Quark Charge Mass[1/c2]

Electron e− -1 0.511 MeV u +2/3 2.3 MeV

Electron neutrino νe 0 ≤ 3 eV d −1/3 4.8 MeV

Muon µ− -1 105.66 MeV c +2/3 1.275 GeV

Muon neutrino νµ 0 ≤ 0.19 MeV s −1/3 95 MeV

Tau τ− -1 1777 MeV t +2/3 173.21 GeV

Tau neutrino ντ 0 ≤ 18.2 MeV b −1/3 4.18 GeV

Table 2.1: The 12 fermions of the Standard Model with their charge and mass
(adapted from [17]). A more detailed description on the mass of the quarks is given at

[18] and [11].

2.2.2 Elementary interactions

The SM also defines the quanta of interaction fields, called gauge bosons with a spin-1,

which carry the electromagnetic force (neutral boson γ), the strong interaction (eight

gluons gi) and the weak interaction (charged bosonsW± and neutral Z). The elementary

forces are associated to coupling constants that refer to their strength.

• The Electromagnetic force (EM) applies on all charged particles. It was the first

elementary interaction observed by scientists. Initially described by the Maxwell

equations in classical physics, it was later expressed by Feynman in the Quantum

ElectroDynamics (QED) theory [20]. The EM interaction is the process that allows

detecting particles with gaseous detectors.

• The strong interaction influences only the quarks and its own gauge bosons. The

force is carried by eight gluons, which can interact with each other. The strong

interaction processes are fully described by the Quantum ChromoDynamic (QCD).

Because of the confinement principle, only color neutral objects (hadrons) exists

free in the nature i.e. the quarks are always grouped together to form baryons

(e.g. protons and neutrons) and in bound states of quark and anti-quark pairs

(mesons) or three anti-quarks (anti-baryons) [17].
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• All elementary particles interact via the weak force that allows heavier fermions

decay into lighter fermions. The EM and the weak interactions are unified in the

electroweak theory, formulated by Glashow, Salam and Weinberg, which predicts

the existence of the gauge bosons W± and Z that were discovered at CERN in

1983.

The elementary interactions and their associated bosons are listed in Tab. 2.2.

Interaction Influenced particles Strength Gauge bosons Mass[1/c2]

Strong quarks, gluons 1 gluons gi 0

Electromagnetic charged particles 1/137 photon γ 0

Weak quarks, leptons 10−5 − 10−7 W± 80.42 GeV
Z 91.19 GeV

Table 2.2: The three interactions described by the Standard Model and the associated
gauge bosons (adapted from [17] and [11]). The strength is relative to the strong

interaction.

The fourth elementary interaction, the gravitation, is not included in the SM and already

constitutes one of its main limitations.

2.2.3 The Brout-Englert-Higgs mechanism

The Brout-Englert-Higgs (BEH) mechanism was introduced to the SM in order to gen-

erate the mass of the heavy bosons and can be extended to generate the mass of the

fermions. This hypothesis predicts the existence of a scalar boson with a spin-0, the

Higgs boson. The observation of this boson would therefore confirm the BEH mecha-

nism and complete the picture given by the SM. The new particle recently discovered

at CERN, discussed in Sec. 2.4.2.3, is most probably the SM Higgs boson.

2.2.4 Limitations

The SM was successfully measured in the last decades with a great precision and over

a very large energy range. However, several elements show that the SM cannot be

considered as the ultimate theory, but a specific case or an approximation of a wider

unified theory. Among others, these elements are:

• Despite of the good matching between predictions and data, there is no theoretical

justification for the choice of the SM gauge groups and, by construction, the three

generations of fermions. Moreover, the SM is not fully defined by theoretical argu-

ments, but depends on 19 free parameters, such as the mass of the fermions and the

interaction coupling constants, which can only be determined by the experiment.
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• The SM predicts the existence of anti-matter that is not present in our visible

universe.

• Cosmological studies reveal that only 4.9 % of the universe consists of baryons

(ordinary matter), the rest being shared between the dark matter and the dark

energy. Therefore, the SM only describes a reduced portion of the actual universe.

• The SM does not explain the large differences between the coupling constant of

the elementary forces and why they do not converge at high energies.

• The SM does not include the fourth elementary interaction: the gravitation.

2.3 Beyond the Standard Model

Regarding the limitations listed previously, it is believed that another theory, including

the SM and covering its missing elements, must be developed and validated by the

experiment. One of the most promising candidates is the Super Symmetry, briefly

described in the next section.

2.3.1 The Minimal Supersymmetric Standard Model

The Super Symmetry (SUSY) introduces a new gauge invariance relating bosons and

fermions in order to overcome the limitations of the SM, unify the coupling constants

and include dark matter candidates. As a result, each particle of the SM has a SUSY

partner with the same quantum numbers except for the spin which differs by 1/2, i.e.

we can associate SUSY bosons (called ”sfermions”) to the SM fermions. For example

the superpartner of the top quark is the ”stop” (t̃). Similarly, SUSY fermions (called

”bosinos”) are the superpartners of the SM bosons. The new particles introduced by

the SUSY model are listed in Tab. 2.3.

SM Particle SUSY Particle Physical state

lepton slepton ẽ, µ̃, τ̃

quarks squarks ũ, d̃, c̃, s̃, t̃, b̃

gluons gluinos g̃

bosons W± winos Mix into charginos
boson h charged Higgsinos χ̃±

1,2

boson Z zino Mix into neutralinos
boson γ photino χ̃0

1,2,3,4

boson h neutral Higgsinos

Table 2.3: SM particles and the corresponding SUSY partners (adapted from [19]).



Chapter 2. Physics at the LHC 8

The simplest SUSY extension of the SM is the Minimal Supersymmetric Standard Model

(MSSM), with the minimum number of five free parameters. In addition to the SUSY

partners, this model predicts the existence of an extended Higgs sectors with five bosons:

the lightest Higgs h0 (which is similar to the SM Higgs), two neutral heavy Higgs H, A,

and two charged bosons H±. Two of the most important parameters introduced by the

MSSM are the mass of the pseudo-scalar A noted mA and the parameter tanβ defined by

the ratio of the vacuum expectation values of the Higgs fields. Therefore, the validation

of the MSSM must involve the discovery of the predicted particles: sfermions, bosinos

and the heavy Higgs and the precise measurement of the free parameters.

SUSY particles could be produced in collider experiments and decay into a cascade of

SM particles and Lightest Supersymmetric Particles (LSP) in the final state. However,

the LSP are weakly interacting with the matter and would escape the detector system

without producing signals. Therefore, the identification of SUSY particles must take

into account the missing energy.

Even though no evidence of SUSY particles was found yet, recent studies on the gluinos

pair production and the search for dark matter candidates at the LHC already bring

limits and constraints on the mass of the SUSY particles [21].

2.4 Search for the Higgs boson at the LHC

2.4.1 Introduction

The Higgs physics plays a major role in particle physics. The discovery of the Higgs

boson and the measurements of its properties, both in the SM or in the extended Higgs

sector, helped to complete the SM and unlock the physics beyond it. In this section we

will present the search for the SM and the MSSM Higgs at the LHC with several examples

of the most interesting decay modes. In particular, we will highlight the importance of

the muons in the final state to obtain a clear signature of the Higgs particles. We will

also discuss the discovery of a new particle in the framework of the search for the SM

Higgs boson.

2.4.2 Search for the SM Higgs boson

The production of the SM Higgs boson is a very rare process at the LHC, largely dom-

inated by the production of quarks and gluons. Fig. 2.1 shows the production cross-

sections of different particles of the SM in the proton-proton collisions. The production
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of pairs bb̄ is clearly the dominant process while the production of gauge or Higgs bosons

are several orders of magnitude smaller.

Figure 2.1: SM production cross-sections as functions of the center-of-mass energy
[1].

2.4.2.1 Production of the SM Higgs at the LHC

At the LHC, the Higgs boson is mostly produced through four modes, of which the

Feynman diagrams are represented on Fig. 2.2:

• The gluon fusion (ggH) gg → h: The Higgs boson production is mediated by a

loop of heavy quarks, mostly the top quark. The gluon fusion is the main Higgs

mechanism at the LHC and represents about 87 % of the total Higgs production

at the center-of-mass energy
√
s = 8 TeV and for the Higgs mass mh = 125 GeV.

• The Vector Boson Fusion (VBH) qq → qqh: in this mode the Higgs particle is

originated from the fusion of two bosons W± or Z, themselves radiated from high

energy quarks. The VBF represents about 7 % of the total Higgs production at

the LHC.



Chapter 2. Physics at the LHC 10

• Associated production with vector bosons (VH) qq̄ → V h: also called Higgsstrahlung,

a virtual boson decays into a real boson W± or Z and a Higgs boson. It represents

about 5 % of the overall Higgs production.

• Associated production with heavy quarks (qqH) gg.qq → qqh: the Higgs boson is

generated from the annihilation of qq̄ of through gluon fusion processes that also

generate quarks. The most probable qqH production gives top quarks in the final

state and is noted ttH. This mode represents nearly 1 % of the Higgs production

at
√
s = 8 TeV.

Figure 2.2: Feynman diagrams of the main production processes of the Higgs boson at
the LHC. Top: production via gluon fusion and Vector Boson Fusion (VBF). Bottom:

production in association with a vector boson or a pair of quarks.

The expected production cross-sections for the SM Higgs are shown on Fig. 2.3 as

functions of the Higgs mass (left) and the center-of-mass energy (right).

Figure 2.3: Left: production cross-section of the SM Higgs boson showing the gluon
fusion gg → h, the VBF qq → qqh, the association VH qq̄ → V h and the association
with quarks gg.qq → tth. Right: total cross-section for the center-of-mass energies√

s = 7, 8 and 14 TeV [2].
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2.4.2.2 Decay modes of the SM Higgs

Since the Higgs boson is an unstable particle with a short lifetime, it is not directly

measured but observed through its various decay modes. The relative importance of

the decay modes depends on the Branching Ratio (BR) and also on the sensitivity to

the final state particles, the resolution and the background contamination. Some of the

most interesting decay modes of the SM Higgs are listed below [22] [19]:

• h → γγ : it is the most sensitive channel for masses up to 150 GeV, giving a very

clean signature with two energetic photons in the final state. The Higgs signal

consists of a narrow peak in the invariant mass distribution of the reconstructed

photons. The background is a continuous distribution mainly caused by the QCD

di-photon production. The h → γγ is a loop-induced decay mode, as represented

on Fig. 2.4. It involves a loop of heavy quarks (mostly top quarks), heavy charged

fermions or gauge bosons W±. Therefore, this channel gives the indirect access to

the Higgs coupling to the top quark and the weak charged boson.

Figure 2.4: Feynman diagram of the loop-induced decay of the Higgs boson with
photons in the final state. ”F” indicates a heavy charged fermion.

• h → ZZ∗ → 4l (l = e, µ): with the branching ratio of the order 0.1 % at 125

GeV, the so-called ”golden channel” has a very high signal-to-background ratio

(∼ 1). The background mainly consists of QCD events and electroweak di-boson

processes (e.g. pp → ZZ∗ → 4l). The lepton reconstruction, in particular the

muons, is essential to obtain a narrow mass resonance corresponding to the Higgs

signal and to keep the reducible background (Z → bb̄, tt̄ and Z + jets) to the

minimum level. By measuring the angular distribution of the decay particles, it is

possible to determine the quantum numbers associated to the Higgs boson.

• h → WW → lνlν : this decay mode has a very interesting branching ratio, almost

20 % at 125 GeV. The leptonic decay of the boson W is preferred because of the

lowest background contamination, mainly due to di-boson, top quarks and Z+jets

productions. However, the mass resolution is strongly degraded by the presence

of undetectable neutrinos in the final state. With this decay mode it is possible

to obtain directly the coupling to the bosons W± and, as for the ZZ decay, to

determine the spin of the Higgs particle.
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• h → µµ: the Higgs decay into the di-muon final state has a low branching ratio

(about 3 × 10−4 at 125 GeV) but the reconstruction of the muons with opposite

signs shows a narrow mass resonance at the Higgs mass. The background is com-

posed of Drell-Yan events (qq̄ → γ, Z → l+l−) and top quark production. The

resolution of the analysis strongly relates on the quality of the muon reconstruc-

tion.

• h → ττ : the branching ratio of the Higgs decay to di-τ is close to 6 % at 125 GeV.

Then, the τ leptons decay into various channels: µτh, eτh, τhτh and eµ. However,

the most interesting final states involve the hadronic decay of one τ , noted τh,

and one lepton (e or µ). It combines the high branching ratio of the τ hadronic

decay and the high efficiency in the reconstruction and the selection of the lepton.

The background is constituted by QCD events, Drell-Yan events with τ in the

final state, W + jets and Z → ll with misreconstruction of one lepton as τh. The

h → ττ channel allows the direct observation of the Higgs coupling to leptons.

• h → bb̄: this is the dominant process for the mass region below 135 GeV but also

very challenging due to the large QCD contamination (pp → bb̄). However, if the

Higgs is produced in association with vector bosons, it is possible to increase the

sensitivity of the bb̄ analysis by looking for missing energy and leptons in the final

state (e.g. Z → νν, W → lν or Z → ll). The quality of the identification of

the leptons (electrons or muons) impacts the sensitivity of the measurement. The

decay into a pair of b-quarks gives the direct access to the coupling to a down-type

quark.

Additionally, in the case the Higgs boson is produced with a pair of top quarks, the

decay pp → tt̄h → tt̄bb̄ allows the direct measurement of the Higgs coupling to top

quarks. Then , the most interesting signature of the top decay are lν + jets and

lνlν. Nevertheless, this channel is highly contaminated with background processes

such as pp → tt̄bb̄+X, where X stands for another decay product.

The branching ratio and the cross-section at
√
s = 8 TeV of the various decay modes of

the SM Higgs boson are shown on Fig. 2.5
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Figure 2.5: Left: branching ratios of the various decay modes of the Higgs boson as
a function of the Higgs mass. Right: branching ratio of the Higgs decay multiplied by

the cross-section at the center-of-mass energy
√
s = 8 TeV [3].

2.4.2.3 Discovery of a new Boson at the LHC

A new boson was discovered by the ATLAS [23] and the CMS [24] collaborations at

CERN into the di-bosons decays h → γγ [25], h → ZZ [26] and h → WW [27]. Fig. 2.6

(CMS) shows the corresponding invariant mass distributions with the excess signal near

125 GeV. The data were taken during the first operation of the LHC at integrated

luminosities up to 5.1 fb−1 at
√
s = 7 TeV and 19.7 fb−1 at

√
s = 8 TeV. The combined

data from both experiments reveal that the mass of this boson is 125.09±0.24 GeV [28].

Additional studies on the properties of this boson were conducted via its decay into ττ

[29], bb [30] and µµ [31] pairs for the same data set.

The combination of these analysis helps to identify the new boson and verify its compat-

ibility with the SM. In particular, the mass dependence of the couplings is an essential

feature, very well defined by the SM.

In order to easily compare the deviation of the coupling constants of the new boson with

respect to SM, one introduces the common scaling factors κf and κV . These factors

refer to the ratio between the best fit of the measurements and the expected values

for the SM Higgs. Therefore, if the boson discovered at the LHC is the Higgs boson,

the corresponding scaling factors must be close to 1. Moreover, the coupling between

the Higgs boson and the fermions is proportional to the mass of the fermions while the

coupling with the vector bosons is proportional to the square of their mass. In order to

compare the coupling constants of both fermions and bosons on the same plot, one also

introduces the reduced coupling constant, noted λf . The complete description of the

parameters κf , κV and λf can be found at [4].
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Figure 2.6: CMS observations of the Higgs boson via the di-boson decay modes
h → γγ (top left), h → ZZ∗ → 4l (top right), h → WW (bottom) .

Fig. 2.7 shows the 68 % confidence regions of the Higgs decays discussed previously for

the scaling factors κf and κV . The combined data, indicated by the grey region, includes

the SM expectations. The figure also shows the reduced coupling constants as a function

of the mass of the particles and compared to the SM.

Additionally to the coupling to fermions and bosons, the measurement of the quantum

numbers like the spin J and the parity P can indicate if the new particle is a pure scalar

boson as predicted by the SM. Recent studies conducted by ATLAS and CMS [5] tend

to confirm this hypothesis with the favored number JP = 0+ (Fig. 2.8).

In the present situation, it seems that the new boson observed by the ATLAS and CMS

experiments is compatible with the SM. However, the situation is not clear enough to

ensure that this new particle is the unique Higgs boson of the SM and thus reject the

possibility of having discovered a boson from an extended Higgs sector that looks like

the SM one. It is therefore essential to refine the current results by measuring the

properties of this boson, to continue the investigations on other Higgs candidates with

higher masses and to explore non-standard decays, reflecting a new physics beyond the

SM.
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Figure 2.7: Left: the 68 % confidence regions of the various decay channels for the
scaling factors κf and κV . The cross indicates the best fit of the combined results.
Right: reduced coupling constants of the boson discovered at the LHC as a function
of the particle mass. The measurements are compared to the SM expectations (dashed

line) [4].

Figure 2.8: Expected distribution of the log-likehood ratio LJP=0+/LJP=0− (and
q = log(LJP=0+/LJP=0−)) and comparison with the ATLAS and CMS data in the

h → ZZ∗ → 4l decay channel [5].

2.4.3 Search for the MSSM Higgs bosons

As discussed in Sec. 2.3.1, the MSSM predicts the existence of five Higgs bosons. In this

section we will focus on the search for the neutral bosons h0, H and A in the mhmax

benchmark scenarios defined by the parameter mA and tanβ, the other free parameters

being fixed [32]. The three neutral bosons will be represented by the variable φ.
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2.4.3.1 Production of the MSSM Higgs at the LHC

At the LHC we can distinguish two main production processes, of which the Feynman

diagrams are represented on Fig. 2.9:

Figure 2.9: Feynman diagrams of the main production processes of the MSSM Higgs
bosons at CERN. Left: production via gluon fusion. Right: production in association

with a pair of bottom quarks.

• The gluon fusion gg → φ: it is the dominant mechanism for low values of tanβ.

The gluon fusion includes a loop of heavy quarks and the corresponding SUSY

partners.

• Associated production with heavy quarks gg, qq → bbφ: the boson is radiated from

heavy quarks, most probably bottom quarks for large values of tanβ.

The expected production cross-sections for the MSSMHiggs bosons are shown on Fig. 2.10

for different scenarios of tanβ at
√
s = 8 TeV [6].

Figure 2.10: Expected cross-sections for the MSSM Higgs production as a function
of the mass for tanβ = 5 (left) and tanβ = 30 (right) [6].

2.4.3.2 Decay modes of the MSSM Higgs

• φ → bb̄: the Higgs decay into a pair of b-quarks is the dominant process at high

values of tanβ because of the strong coupling with bottom quarks. However, this
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channel is contaminated by a huge QCD background, mostly pp → bb̄. The iden-

tification of the Higgs signal thus requires an efficient identification and selection

of the jets initiated by the b-quarks, called b-tagging.

• φ → ττ : the decay mode with the di-τ final state has a lower branching ratio than

the bb̄ decay but the presence of leptons in the final state gives a clean signature of

the Higgs particle. The τ leptons can decay into various modes: µτh, eτh, τhτh and

eµ. Therefore, the analysis requires the efficient reconstruction of the τ objects,

electrons and muons. Additionally, the tagging of b-jets can be used to disentangle

the gluon fusion production of the Higgs and the association with b-quarks.

No evidence of MSSM Higgs particles was observed during the first operation of the LHC

in the bb̄ decay [33] nor the ττ final state [34]. However, the upgrade of the accelerator

will give access to higher mass ranges and luminosity and possibly highlight interesting

MSSM mechanisms.

2.5 Other examples of the search for new physics

The validation of physics theories that address the missing elements of the SM does not

only include the Higgs physics but also the identification of non-standard decay modes

and the observation of new particles.

2.5.1 Search for SUSY

The SUSY-based theories postulate the existence of supersymmetric partners to the SM

particles that could have a mass of the order of the TeV, i.e. accessible at the LHC.

There are many different models based on the supersymmetry and even more possible

scenarios for each model. However, interesting examples of non-standard phenomena

are the production of gluinos, squarks of the third generation and chargino-neutralinos

in the framework of the next-to-leading order of the SUSY QCD model [35]. Fig. 2.11

shows the production cross-section of SUSY particles as a function of their mass [7].

Then one can identify several decay processes that are being investigated at the LHC

[7]:

• g̃ → tt̄χ̃0
1 : the decay of a gluino pair into four top quarks. Then the top quarks de-

cay into bosons W that have a clean lepton signature with a large branching ratio.
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Figure 2.11: Next-to-leading order production cross-section as a function of the mass
of the SUSY pair particles [7].

The lightest SUSY particle χ0
1 escapes the detection system and is therefore identi-

fied through the measurement of the missing energy. The Feynman representation

of this process is shown on Fig. 2.12 [7].

Figure 2.12: Feynman diagrams of the gluino pair production and decay into top
quarks and neutralinos [7].

• t̃ → tχ̃0
1 and t̃ → bχ̃+ : the decay of the stop squarks into top quarks and neutrali-

nos or into bottom quarks and charginos. The chargino χ̃+ is an unstable particle

that decays into neutralinos and bosons W . Because of the presence of bosons W ,

the search for leptons in the final state can enhance the sensitivity to these SUSY

topologies. The Feynman representations of the stop production and its decays

into heavy quarks are shown on Fig. 2.13 [8].

Figure 2.13: Feynman diagrams of the stop squark pair production and decay into
neutralinos, heavy quarks and bosons W [8].
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• b̃ → tW χ̃0
1 : the decay of sbottom squarks into top quarks and charginos. Then

the charginos decay into bosons W and neutralinos and the top quark into W and

bottom quarks. The corresponding Feynman diagram is shown on Fig. 2.14 [7].

Figure 2.14: Feynman diagram of the sbottom squark pair production and decay into
top quarks and charginos.

• χ̃0
2 → Zχ̃0

1 and χ̃±

1 → W χ̃0
1: the decay of chargino-neutralino into bosons Z and

W and lightest neutralinos. The presence of several leptons in the final state gives

a clear signature of the process with large branching fractions. The Feynman

representation is shown on Fig. 2.15 [7].

Figure 2.15: Feynman diagram of the chargino-neutralino pair production and decay
into gauge bosons and lightest neutralinos.

• χ̃0
2 → Hχ̃0

1 and χ̃±

1 → W χ̃0
1: the decay of chargino-neutralino into a W boson,

lightest neutralinos and a Higgs boson, with a clean multi-lepton final state. The

corresponding Feynman process is represented on Fig. 2.16 [7].

Figure 2.16: Feynman diagram of the chargino-neutralino pair production and decay
into a Higgs boson, W boson and lightest neutralinos.
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As a general example, Fig. 2.17 shows a simplified SUSY spectrum with the SUSY

partners possibly accessible at the LHC. In this model, the heavy squarks and the

gluinos typically decay into charginos and neutralinos. The charginos then decay into

gauge bosons that can be identified through the leptonic decays. The most interesting

final states involve muons that can be disentangled from the background contributions

with a precise measurement of their momentum.

Figure 2.17: Example of a simplified SUSY ”natural” spectrum showing the SUSY
partners accessible at the LHC and the typical decay modes. The neutralino χ̃0 is

considered as the lightest SUSY particle [9].

2.5.2 Search for exotic new particles

Several new physics scenarios also predict the existence of heavy ”exotic” particles that

can be explored at the LHC:

• The Z ′ bosons is a heavier version of the SM Z bosons that can decay into a pair

of charged leptons Z ′ → ll in the form of a narrow resonance. The discovery of this

new particle would lead to the better understanding of mass mechanism, quantum

gravitation, extra-dimensions and dark matter [36].

• Similarly, several models predicts the existence of heavy charged gauge bosons W ′

that can decay into an isolated lepton with a high transverse momentum pt and a

neutrino (i.e. missing transverse energy) [37].

Additional searches for exotic particles include dark matter candidates and heavy stable

charged particles. In most of the cases, the final topologies with leptons are the most

interesting, combining high sensitivity, branching fraction and signal-to-noise ratio [7].



Chapter 2. Physics at the LHC 21

2.5.3 Other processes

Many other processes beyond the SM will be investigated at the LHC, especially after

the increase of the maximum energy available in the proton-proton collisions. Among

others, these processes are the multi-boson production, the top quark physics or the

search for vector-like quarks [7]. Additionally, specific heavy ions runs at the LHC are

dedicated to the study of the nuclear matter, in particular the quark-gluon plasma state

[7].

As a general comment, the identification of new physics requires powerful detection

systems with a very efficient reconstruction of heavy quarks, missing energy and leptons

(electrons and muons).

2.6 Conclusions

The success of the SM to describe the elementary particles and their interactions has

been clearly demonstrated in the last decades. The recent discovery of a new boson that

seems to be compatible with the SM Higgs boson would complete the test of the SM.

However, several theoretical mechanisms of the Standard Model are not fully justified

and, more problematic, several experimental observations are not addressed by the SM.

Therefore, it is believed that the SM is just an approximation of a deeper theory that

can unify the four elementary forces and describe all the physics phenomena. One of

the most promising candidates is the Super Symmetry, which predicts the existence of

SUSY partners to the SM particles and five Higgs bosons.

The search for the ultimate unified theory must be waged on several fronts:

• the refinement of the measurements of the SM, especially in the Higgs sector

(coupling to the SM particles and precise measurement of the Higgs quantum

numbers).

• the investigation, in higher mass regions, on the existence of heavy Higgs bosons

related to a non-standard Higgs sector.

• the exploration of physics models beyond the SM with the identification of non-

standard decays and the discovery of new exotic particles.

These items justify by themselves the irreducible need of powerful accelerators to provoke

collisions at high rate and high energy in order to reveal the elementary properties of the
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particles. Similarly, it is necessary to design precise and sophisticated detector systems

in order to observe all the products of the collisions.

We also discussed in this chapter some of the most interesting decay modes of the

Higgs boson(s) and SUSY particles. In general, the fully hadronic decays have very

high branching ratios but they are also very challenging because of the background

contamination. However, it was shown that the presence of leptons in the final state

gives a clear signature of interesting decay modes, especially when bosons W±, Z or

Higgs bosons are involved. The usually low branching fraction of the lepton-decay is

compensated by a good signal-to-noise ratio and an excellent resolution. The muons have

the advantage to be less affected than electrons by radiation losses that can degrade the

detection resolution. Therefore, physics discoveries require the development of effective

muon detection systems that combine efficient muon reconstruction and good resolution

of the muon momentum.



Chapter 3

The upgrade of the LHC and the

CMS experiment

3.1 Introduction

In this chapter we will introduce the Large Hadron Collider, where the high-energy

proton-proton collisions can reveal interesting physics phenomena of the SM and of

the extended models discussed in the previous chapter. We will also present the CMS

experiment, paying a particular attention to the muon system. After a brief introduction

on the general upgrade of the LHC and CMS, we will focus on the upgrade of the CMS

muon system and on the detection environment that will be encountered at the high-

luminosity LHC. We will finally highlight the need of introducing a new technology of

detection in the forward region of the muon spectrometer.

3.2 CERN and the LHC

3.2.1 Motivations and principle

CERN, the European laboratory for nuclear research, was created in 1954 by 12 Eu-

ropean countries with the idea of bringing together technical, financial and human re-

sources in order to build the most sophisticated particle accelerator complex, essential

for the research in particle physics. The scientific goals are, among others, the precise

measurement of the SM, the understanding of the mass of the elementary particles and

the look for physics beyond the SM.

23
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Today, CERN is ruled by 21 member states and involves more than 10 000 scientists, en-

gineers, technicians and administrative staff native of more than 100 different countries.

Apart from the numerous discoveries and the various SM hypothesis already confirmed,

the fundamental research at CERN has many applications in industry, medical sciences

and also in everyday life. One of the most famous example is the creation of the World

Wide Web (www) by Tim Berners-Lee in 1989. Initially developed to facilitate the shar-

ing of scientific content between research institutes, the ”web” became the most popular

tool in nowadays communication. Many other applications are developed at CERN,

like the use of particle detectors for medical imaging, hadron therapy and numerous

other computer and electronics tools. CERN is also in charge of the knowledge transfer

and the training of hundreds of students every year, both in fundamental research and

engineering.

The success of this unique international collaboration was highlighted with the recent

discovery of the Higgs boson.

3.2.2 Overview of the particle accelerators

The main asset of CERN is the accelerator complex (Fig. 3.1), which allows to gradually

accelerate protons until they reach the nominal energy of 7 TeV. The acceleration consists

of four main steps: the initial acceleration in the Linear Accelerator (LINAC 2) with

energies up to 50 MeV; the injection into the booster then the Proton Synchrotron, up

to 26 GeV; the intermediate acceleration in the Super Proton Synchrotron (SPS) up to

450 GeV; the final acceleration in the Large Hadron Collider (LHC), with energies up

to 7 TeV.

The circumference of the LHC ring is about 27 km. The beam pipes, placed at 100

m underground, are made of super-conducting magnets that bend the protons and

quadrupoles and octupoles for the focusing of the beam. The full system is kept at

1.9 K to ensure the super-conductivity properties.
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Figure 3.1: Overview of the accelerator system and the main CERN experiments.

3.2.3 Important characteristics of the LHC

In the LHC, the protons are grouped in bunches of 1011 particles with a length of 9 cm.

Two beams are accelerated simultaneously with opposite directions before being merged

in four different places to provoke the proton-proton collisions, which happen every 25

ns. The performance of the LHC is described by two parameters: the center-of-mass

energy and the luminosity:

• The luminosity L is a function of the number of particles per bunch, noted n1 and

n2 for the two beams, the transverse beam profiles σy and σx, and the frequency

of the particle crossings f [11]:

L = f
n1n2

4πσxσy
(3.1)

The luminosity integrated over a time period refers to the number of bunch cross-

ings during this period (and thus the amount of collected data). It is often ex-

pressed in inverse femtobarn fb−1. The integrated luminosity multiplied by the

interaction cross-section gives the total number of events produced during a time

period.
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• The center-of-mass energy
√
s defines the total energy available in the collisions.

It depends on the energies E1 and E2 of the particles of the two beams and of their

momenta .p1 and .p2. Since the LHC is a collider, .p1 = −.p2. The center-of-mass

energy is then given by:

√
s =

√

(E1 + E2)2 − (.p1 + .p2)2 =
√

(E1 + E2)2 (3.2)

Therefore, the center-of-mass energy at the LHC and is equal to the sum of the

energies of the two opposite beams.

The LHC first operated for one year at the center-of-mass energy of 7 TeV for a total

integrated luminosity of 5.1 fb−1. Then the energy was increased to 8 TeV until the

integrated luminosity reached 19.7 fb−1.

The collisions at a high center-of-mass energy allows the production of massive parti-

cles that are interesting for physics discoveries (e.g. heavy MSSM Higgs, top-squarks

, bottom-squarks or gluinos). A high luminosity, and thus a high rate of events, gives

access to rare phenomena (e.g. SM Higgs production).

3.2.4 Overview of the LHC experiments

Four large detector systems, called experiments, are placed at the collision points: AT-

LAS (A Toroidal Lhc ApparatuS) in point 1, CMS (Compact Muon Solenoid) in point

5, LHCb (LHC beauty) in point 8 and ALICE (A Large Ion Collider Experiment) in

point 2.

ATLAS and CMS are multi-purpose experiments that are able to measure new physics

through the precise detection of the elementary particles, the reconstruction of hadron

jets and the identification of the missing energy corresponding to weakly interacting

particles (e.g. neutrinos and the possible neutralinos). They have a similar layout,

which consists of: an inner tracker that measures the charge and the momentum of

charged particles; an electromagnetic calorimeter that measures the energy of electrons

and photons: a hadron calorimeter used to measure the energy of hadrons and jets; a

muon spectrometer that reconstructs muon tracks. The detectors are embedded inside of

a super-conducting magnet that helps to bend the charged particles in order to measure

their momentum. Both experiments are made with different technologies of detectors

and a different assembling.
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LHCb is a specific-purpose experiment that aims to study the asymmetry between the

matter and the anti-matter in the universe. LHCb focuses on the detection of rare

processes involving b-quarks and its anti-particle.

ALICE was designed to study the confinement of the quarks through the quark-gluon

plasma produced in heavy ion collisions. The detection of muons is particularly impor-

tant to identify the particles made of heavy quarks. ALICE essentially collects data

when the LHC operates with heavy ions beams.

3.3 The CMS experiment

The CMS experiment is a worldwide collaboration that includes more than 3500 sci-

entists and engineers from 186 institutes and 42 countries. The scientific goals are the

precise measurement of the SM, the discovery of the origin of the mass of the particles,

the search for new particles and more generally the search for physics processes beyond

the SM.

Figure 3.2: Overview of the CMS experiment showing the detectors subsystems.

The detector system, located at point 5, is a cylinder of 14000 tons, 21 m long and 15 m

in diameter (Fig. 3.1). The position of the objects inside of CMS is usually described in

the polar coordinate system (R =
√

x2 + y2, θ, φ), the origin being the theoretical point

of interaction between the two proton beams. The angle θ defines the polar angle with

respect to the beam line. However, one prefers the pseudo-rapidity η, which describes

the geometrical properties of a particle:
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η = −ln(tan
θ

2
) =

1

2
ln

(

|.p|+ pL
|.p|− pL

)

(3.3)

where .p is the momentum of the particle and pL its projection on the axis defined by

the beam line. The coordinate system is shown on Fig. 3.3.

Figure 3.3: The CMS coordinate system.

3.3.1 Overview of the CMS subsystems

CMS includes five subsystems, organized in layers around the interaction point where

the collisions occur (Fig. 3.4). We distinguish the barrel region, where the detectors

form tube sections around the beam line, and the end-cap stations. Each layer has a

specific task and characteristics:

• The tracker is the central part of CMS. It is constituted by three layers of silicon

pixel detectors in the barrel near the beam line and ten layers of silicon strip sensors

in the outer region and the end-caps. The overall system covers the detection region

η < 2.5, including about 66 millions of pixels and 10 millions of strips. The tracker

allows the measurement the bending angle of charged particles in magnetic field

and the reconstruction of the primary vertices [38].

• The electromagnetic calorimeter (ECAL) is a hermetic calorimeter that consists

of more than 61 000 PbWO4 scintillating crystals in the barrel and 15 000 in

the end-caps. When electrons and photons enter the calorimeter, they initiate

EM showers during which their energy is converted into light. Then, the light is

collected by photo-diodes (barrel) and photo-triodes (end-caps). The ECAL covers

the pseudorapidity region up to η = 3 [39].
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• The hadronic calorimeter (HCAL) alternate brass converters and scintillators to

measure the energy dissipated by objects made of quarks and gluons. Additionally,

it allows the indirect detection of weakly interacting particles by measuring the

missing energy. Therefore, the HCAL must be completely hermetic to capture all

the products of collisions. The HCAL contains about 70 000 scintillator tiles and

photo-detectors that cover the region η < 3 [19].

• The magnet is a superconducting solenoid that generates an uniform magnetic

field of 3.8 T in the tracker system and the calorimeters. The magnetic field is

essential to bend the charged particles and allows the precise measurement of their

momentum.

• The muon system plays a major role in CMS since the muons are clean signatures

of interesting physics processes. The CMS system covers the detection region η <

2.4 and consists of three different technologies of gaseous detectors for the muon

identification, the measurement of their momentum and the general triggering. A

more detailed description of the muon system is given in Sec. 3.3.2.

Figure 3.4: Overview of the CMS experiment showing the interaction of particles in
the different layers of detection.

Tab. 3.1 gives a summary of the CMS subsystems, including the composition and the

main characteristics (adapted from [39], [38],[40], [41]).
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Subsystem Composition Characteristics

Tracker silicon strip and isolated track efficiency ε > 95 %
pixel detectors within jets ε ∽ 90 %

primary vertex resolution: 10− 20 µm
pT resolution: ∆pT /pT = 1 % (0.1 TeV) , 10 % (TeV)
coverage η < 2.5

ECAL PbWO4 crystals energy resolution:
(

σ
E

)2
=

(

2.7%√
E

)2
+

(

210
E

)2
+ 0.55 % (barrel)

(

σ
E

)2
=

(

5.7%√
E

)2
+

(

245
E

)2
+ 0.55 % (end-caps)

coverage η < 3

HCAL Cu-Zn energy resolution

scintillators
(

σ
E

)2
=

(

68%√
E

)2
+ 4.5 %

coverage η < 3

Muon system gaseous efficiency ε ∽ 98 %
detectors ∆pT /pT = 8− 15 % (0.01 TeV) / 20− 40 % (TeV)

coverage η < 2.4

Table 3.1: Main characteristics of the CMS subsystems.

3.3.2 The CMS muon system

Since the reconstruction of muons is a powerful tool to identify interesting decay modes,

the muon spectrometer is one of the major assets of the CMS experiment. It is placed

outside of the calorimeters and the magnet, embedded in the iron yokes. The overall

system covers the pseudo-rapidity range η < 2.4. In order to reach the maximum effi-

ciency and momentum resolution, the CMS design includes three different technologies

of gaseous detectors: the Drift Tubes (DT), the Cathode Strip Chambers (CSC) and

the Resistive Plate Chambers (RPC) for a redundant and complementary trigger ([40]).

Fig. 3.5 shows the longitudinal cross-section of the CMS experiment with the details of

the muon system. The chambers ”MB” represent the Drift tubes, ”RB” and ”RE” the

RPC in the barrel and in the end-caps and ”ME” represents the CSC detectors.

In this section we will give an overview of the different technologies used for the muon

detection in CMS (the detailed discussion about the operation of gaseous detector will be

found in Chapter 4). Then we will discuss the different steps of the muon reconstruction

and how it participates to the CMS trigger system.
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Figure 3.5: A quadrant of the CMS longitudinal cross-section showing the current
muon spectrometer. The Z axis corresponds to the beam line and the origin is the

interaction point.

3.3.2.1 Drift Tube

The Drift Tube (DT) is the main detection technology of the CMS barrel. It consists

of a set of rectangular wire chambers with a specific inner geometry that ensures the

uniformity of the electric field and thus the homogeneity of the drift velocity inside of

the gas volume (see Fig. 3.6). The position of the muon with respect to the wire is

calculated based on the drift time of the charge induced in the gas by the muon. By

combining several layers of DTs, it is possible to reconstruct the track of a muon with

a space resolution of the order of 100 µm. The resulting muon reconstruction efficiency

is higher than 95 % for a time resolution of few nanoseconds, which allows the proper

identification of the proton bunch crossing (BX) related to a particular muon.

The CMS DT system consists of 250 chambers (about 200 000 channels) covering the

pseudo-rapidity η < 1.3. The barrel is organized in five wheels, each one including four

concentric layers. Each layer is composed of twelve 30◦ chambers that cover the full φ

coordinate. The detectors are filled with a gas mixture of Ar/CO2 (85 : 15) and operate

at a gas gain of 105.

Despite of its good performance, the DT technology cannot operate at particle rates

higher than several 10 Hz because the long drift time of the charges inside of the chamber
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Figure 3.6: Schematic view of a CMS Drift Tube detection cell showing the geometry
of the chamber and the electric field lines.

(∼ 400 ns [40]). Moreover, they have to operate in a uniform and low magnetic field in

order to maintain the linearity of the space-time relationship (i.e. the homogeneous drift

velocity). Therefore, the DTs cannot be used in the CMS end-caps, where the particle

flux is between 102−103 Hz/cm2 (mostly background radiations) and the magnetic field

can reach up to 3.1 T.

3.3.2.2 Cathode Strip Chamber

The Cathode Strip Chamber (CSC) serves the same function as the DT in the end-caps

of the muon system. It consists of a multi-wire proportional chamber, in which the

cathode plane is segmented into strips perpendicular to the wire direction (see Fig. 3.7).

A muon crossing the detector will induce signals both on the wires and the cathode

strips. The combination of the two signals gives the position of the muon hit with

a typical space resolution of 75 µm. With a time resolution of 6 ns, each CSC layer

provides the proper BX identification with 92 % probability.

The CSC system includes 540 10◦ and 20◦ detectors (i.e. 273 000 strips and 211 000 wire

groups) organized into four stations in each end-cap. The chambers cover the pseudo-

rapidity range 0.9 < η < 2.4. The CSCs operate in Ar/CO2/CF4 (40 : 50 : 10) at a

gas gain of 7× 104. The CF4 component is used to prevent aging of the wires and thus

extend the lifetime of the detectors.
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Figure 3.7: Schematic view of a CMS Cathode Strip Chamber showing the wire plane
and the segmented cathode. The signals from both electrodes are combined to recover

the exact position of the muon hit.

3.3.2.3 Resistive Plate Chamber

In order to ensure the redundancy of the muon spectrometer, another technology, the

Resistive Plate Chamber (RPC) complements the DT and CSC systems. It consists of

two parallel conductive plates separated by a gas volume of few millimeters and covered

with a thin layer of resistive resin (see Fig. 3.8). The RPCs are very fast detectors

with a time resolution of the order of 1 ns, which makes this technology particularly

suitable for the BX identification and the first level triggering. Moreover, despite of the

coarse spatial resolution (of the order the centimeter), the additional RPC hits can be

combined with the data from the DTs and the CSCs to resolve tracking ambiguities.

Figure 3.8: Schematic view of a Resistive Plate Chamber showing the parallel plate
structure and the spacers. The readout strips are separated from the amplification

region thanks to thin resistive layers.

CMS contains 360 RPC chambers for the six stations of the barrel and 252 chambers

for the four stations of each end-cap, for a total of about 162 000 readout channels. The

CMS RPCs operate in avalanche mode in C2H2F4/i− C4H10 (95 : 5).

The resistive coating is used to decouple the amplification region and the readout plane

in order to protect the detector in case of a discharge. However, the high resistivity
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of the resin also induces charging up effects and excessive current that bring the rate

capability of the RPC down below 1 kHz/cm2. For this reason, the RPC system cannot

operate in the high rate environment of the end-caps and only covers the pseudo-rapidity

η < 1.6. The forward end-cap region 1.6 < η < 2.4 is therefore only equipped with CSC

detectors.

3.3.2.4 The muon reconstruction

The reconstruction of the muons is based on the hits recorded in the muon chambers,

the tracker and also in some cases with events from the calorimeters. We can define four

main types of reconstruction [42]:

• Local muon reconstruction: the hits collected by each muon chamber are combined

to build muon segments (or track stubs).

• Standalone muon reconstruction: the various segments are used to reconstruct

tracks in the muon system with the first estimation of the muon transverse mo-

mentum pt.

• Global muon reconstruction (”outside in”): the standalone muon tracks are matched

with the tracks of the inner tracker (or ”tracker tracks”) that gives a better pt reso-

lution. This method is the most accurate for muons that penetrate through several

muon stations.

• Tracker muon reconstruction (”inside out”): the tracker tracks of the possible

muon candidates are extrapolated to the muon station to match with at least one

muon segment. The inside out method is more efficient for low momentum muons

since it only requires one segment in the muon system.

Several reconstruction algorithms with different selection criteria (number of stubs, po-

sition, isolated objects etc ...) can be used depending on the target physics to give

different levels of reconstruction efficiency and purity [43].

3.3.2.5 Importance of the muon system in the CMS trigger

The role of the CMS trigger system consists of reducing the trigger rate by selecting

only the interesting events. It is organized in two main levels:
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• Level 1 (L1): at the level of the detectors, the L1 trigger combines the preliminary

reconstruction from the muon system and from the calorimeters. The best candi-

dates are compared to pt and Et thresholds before being rejected or accepted and

transferred to the next trigger level Fig. 3.9. The tracker is not included in the L1

trigger since it contains too many channels that would slow down the triggering

process. The L1 trigger system has not more than 3.2 µs to make a decision. After

the L1 selection, the event rate is reduced from 400 MHz to maximum 100 kHz.

Figure 3.9: Representation of the CMS L1 trigger system. The preliminary recon-
struction of muons is associated to the calorimeter signals to apply selection cuts and

reduce the initial rate down to 100 kHz.

• High Level Trigger (HLT): the HLT is a sophisticated software algorithm processed

by a computer farm. The algorithm includes all the CMS subsystems in order to

select interesting candidates of a particular event topology defined by the physics

of interest. The entire process takes few milliseconds and brings the event rate

down to about 100 Hz. At the end, the selected events are stored on magnetic

tape.

As a very last step, all the information is shared with the physics community that will

perform fine analysis of the data sets and extract the relevant signatures of a particular

decay channel or physics phenomenon.

Therefore, the muon system plays a major role in the selection of the interesting events

and the reduction of the L1 trigger rate . The time performance and the possibility of

doing a fast muon reconstruction are thus essential for the good operation of CMS.
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3.4 The Upgrades of the LHC

In order to increase its discovery potential, the LHC needs to be upgraded gradually, both

the accelerator systems and the experiments. We can distinguish two major aspects of

the upgrade: the increase of the center-of-mass energy in order to provide more energy

during the collisions and reveal massive particles; the increase of the instantaneous

luminosity to access very rare physics phenomena.

The first upgrade was successfully performed during Long Shutdown 1 (LS1) between

2013 and 2014. The improvement of the magnet interconnections allowed to increase

the center-of-mass energy from 7 − 8 TeV to 13 and soon 14 TeV. The instantaneous

luminosity, previously about 7.5 × 1033 cm−2s−1, can now approach the nominal value

L = 1034 cm−2s−1. After LS1, the LHC Run 2 started and the operation will continue

until it reaches the integrated luminosity of 150 fb−1. Then, the accelerators will stop

again the operation during LS2, foreseen in 2019, during which the injector chain upgrade

will allow increasing the luminosity up to 2 × 1034 cm−2s−1. The LHC is expected to

start the Run 3 in 2021 and operate continuously until it reaches 300 fb−1. Finally,

during the LS3, planned for 2024, a major upgrade will bring the luminosity up to

5 − 7 × 1034 cm−2s−1. The LHC phase 2, also renamed High-Luminosity LHC (HL-

LHC), will restart the continuous operation before the end of 2026 with the aim of

integrating a total luminosity of 3000 fb−1. Fig. 3.10 shows the present schedule of the

upgrade of the LHC with the various shutdowns and the expected beam performance.

Figure 3.10: The LHC upgrade schedule.

3.5 Upgrade of the CMS experiment

As the LHC operation is being improved, the CMS experiment must follow the LHC

evolution and also perform detector upgrades to fully exploit the collisions at higher

energy and high luminosity.



Chapter 3. The LHC and the CMS experiment 37

3.5.1 Overview of the CMS upgrades

The goal of the CMS upgrade is to maintain the physics performance of the detector

subsystems and optimize the reconstruction of the particles for LHC luminosities up to

5− 7× 1034 cm−2s−1. The major concerns induced by the upgrade of the LHC are: the

high multiplicity of proton-proton collisions per bunch crossing, or pileup (PU), which

will be close to 140 at HL-LHC; the increase of the background rate; the radiation

damages of the detectors and their electronics.

The upgrade is organized in two steps: the phase I upgrade that covers LS1, LS2 and

the various technical stops until 2023; the phase II upgrade that aims to prepare the

detectors for the HL-LHC operation after LS3 in 2024 (see Sec. 3.4).

Most of the phase I upgrade is already completed or will be finalized during LS2 (2019-

2020):

• Tracker: the replacement of the pixel detectors in the tracker system and the

improvement of the front-end electronics in order keep the maximum tracking

efficiency at high luminosity.

• Calorimeters: the HCAL photo-detectors must be replaced by silicon photo-multipliers

that provide a better efficiency, signal-to-noise ratio and a better immunity to mag-

netic fields.

• Muon system: four layers of CSC chambers need to be inserted in the ME4/2

station in order to reduce the fake trigger rate and maintain the transverse mo-

mentum pt threshold for the L1 trigger. The RPC system will also be extended

to η < 1.6. One of the major phase I upgrade is the introduction of the GEM-

based technology in the first station of the forward end-caps of the muon system

at 1.55 < η < 2.18 (GE1/1). The justification for this project will be discussed

in the next sections of this chapter and a detailed description of the detectors

will be presented in Chapter 5 . The rest of the thesis will be dedicated to the

characterization, the longevity test and the quality control of these new chambers

for the CMS upgrade.

In addition to the detectors and their readout electronics, the upgrade also includes the

data acquisition system (to increase the bandwidth for the data collection and transfer)

and the beam monitoring system (to improve the measurement of the beam background

and of the luminosity). The technical details of the CMS upgrade for phase I can be

found at [44].

Similarly, several major upgrades are foreseen for the phase II operation of the LHC:
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• Tracker: it is foreseen to completely replace the current tracking system to over-

come the radiation damages and increase the granularity by a factor ∼ 4. Addi-

tional layers of detection will be installed in the end-caps and the overall system

will be extended to η = 4. During phase II, the tracking data will participate to

the L1 trigger to maximize the rate reduction and the selection efficiency.

• Calorimeters: the so-called High Granularity Calorimeter (HGCal) upgrade will

replace the current end-cap system and include an EM and a hadronic components.

The system will alternate metallic absorbers (tungsten/copper in the EM part and

brass/copper in the hadronic one) and silicon sensors. The overall detector will

ensure the 3D reconstruction of the showers.

• Muon system: the second station of the forward muon system will be equipped

with GEM-based (GE2/1) detectors while the third station will be made of low-

resistivity RPC. Those upgrades aim to preserve the redundancy of the muon end-

caps. Another project under development consists of introducing several layers of

GEM-based detectors in the last stage of the end-cap calorimeters, which would be

free after the HGCal upgrade. This project, called ME0, would extend the muon

coverage to η = 3.

As for the phase I upgrade, a significant effort will be dedicated to the improvement

or the replacement of the readout electronics, data acquisition systems and the beam

monitoring system. The technical details of the CMS upgrade for phase II can be found

at [45].

3.5.2 Needs for the upgrade of the CMS forward muon system

The upgrade of the CMS muon spectrometer is necessary to ensure an acceptable L1

trigger rate while maintaining a high selection efficiency. The first station of the forward

muon system is particularly important for the quality of the muon reconstruction. Since

the magnetic field is higher compared to the other stations, the muon bending angle is

the largest so the pt resolution and the sensitivity to low pt are best. The presence of

reconstructed stubs in the first station also helps to disentangle interesting tracks and

background events.

However, the first station is also subject to the highest background level. One can

distinguish several types of background:

• The muon background that is due to the prompt muons from heavy flavor (mostly

b and c decays), non-prompt muons from the decay of π and K and cosmic muons.
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In this case, the hits induced in the detectors are correlated, defining muon tracks

and segments with low pt.

• The uncorrelated background, which dominates the overall background environ-

ment, is mostly due to neutrons and the products of their interaction with matter.

A more detail study on the neutron background at HL-LHC will be discussed in

the next section.

• Other background contributions are due to the hadron punch-through, beam halo

particles or high-energy particles produced by the de-excitation of the materials

surrounding the detectors.

With the upgrade of the LHC, the increase of the background hit rate will confuse

the segment reconstruction, give birth to fake segments and degrade the momentum

resolution. As a result, the misidentification of interesting muons will increase in the

high-eta region and induce a rise of the L1 muon trigger rate. Fig. 3.11 shows the

simulated L1 trigger rate as a function of the pseudo-rapidity with a pt threshold > 15

GeV. This effect is even more pronounced in the region η > 1.6 that is only instrumented

by CSC chambers.

Figure 3.11: L1 trigger rate as a function of the muon η with more than two recon-
structed stubs (red) and the presence of hits in the first station MS1/1 (green). The
the rate at high-η is dominated by the mismeasurement of the muon momentum due

to the high background contribution.

The introduction of a new detection technology in the first station of the forward end-cap

would therefore bring additional hits that can be used to resolve tracking ambiguities,

improve the momentum resolution and reduce the L1 trigger rate while maintaining the

maximum selection efficiency.

The upgrade proposal of the current muon system was conducted in the framework of the

GE1/1 project, which will be presented in Chapter 5. However, for the comprehension
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of the next sections, it is important to notice that the ”GE1/1” label refers to the GEM-

based detectors that will be installed in the first station of the CMS end-cap during LS2

(see Fig. 5.1).

3.5.2.1 Evaluation of the background rate

The high-eta region is subject to intense background radiations, which will become

even worst after the high-luminosity upgrade of the LHC. The understanding of the

background radiations is particularly important since it can induce misreconstruction of

tracks and mismeasurements of the muon momentum. Moreover, the intense radiations

may accelerate the aging of the muon detectors and provoke the degradation of the per-

formance with time. Finally, the background rate also defines the detection environment

and, as a consequence, the choice of the detection technology that can operate in the

end-caps.

The background in the CMS end-caps is dominated by the neutrons produced from the

interaction of hadrons with the materials near the beam line. The neutrons, from ther-

mal energies to few GeV, also interact with the materials surrounding the detectors to

produce secondary particles, mostly high-energy photons and electrons. The expected

background rate and the different contributions were calculated with the CMS adap-

tation of the FLUKA simulation tool at the instantaneous luminosity L = 5 × 1034

cm−2s−1. The details of the study are discussed in [10]. The results for the first station

of the CMS end-caps are shown in Tab. 3.2 and Fig. 3.12 top).

Particle R Z Flux [Hz/cm2] Flux [Hz/cm2]
type [cm] [cm] (L = 1034 cm−2s−1) (L = 5× 1034 cm−2s−1)

Neutrons 150 560 2.9× 104 1.5× 105

210 560 0.9× 104 0.4× 105

Photon 150 560 1.5× 104 7.6× 105

210 560 0.6× 104 3.0× 105

e+/e− 150 560 2.8× 102 1.4× 103

210 560 1.0× 104 5.2× 102

Table 3.2: Results of the background simulation in the CMS end-cap first station.

Most of the background particles will not interact with the muon detectors. In addition

to the background study, the sensitivity of muon detectors to background particles with

different energies was computed in the GEANT4 framework (See Fig. 3.13 [10]). Then,

the background spectrum is convoluted with the sensitivity to provide the expected hit

rate in the detectors. Fig. 3.13 shows the hit rate in GE1/1 detectors placed in the

first station of the muon system. Since the GE1/1 sensitivity to neutrons, photons and

electrons is comparable to other muon detectors, one can simply extend these results
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Figure 3.12: Background flux as a function of the pseudo-rapidity (left) and expected
energy distribution of the different contributions (right).

to CSC and RPC chambers in order to estimate the environment that will be faced by

other technologies.

Figure 3.13: Left: computed sensitivity of a GE1/1 detector to the CMS endcap
background particles. Right: Expected hit rate in a GE1/1 detector placed in front of

the CMS ME1/1 station at HL-LHC.

Therefore, the maximum hit rate in the first muon station is expected to be as high as

1 kHz/cm2 at HL-LHC (Fig. 3.13). This implies that the forward muon system for the

upgrade must be resistant to radiations (up to ∼ 500 Gy), have a high rate capability

and be capable to disentangle muon tracks and fake events.

3.5.2.2 Impact on the phase I trigger

The six layers of CSC chambers in the first muon station covers a muon path length of

11.7 cm. Because of this, the bending angle cannot be utilized in the pt measurement

and the momentum resolution is not good enough to disentangle interesting muons and

mismeasured tracks from the background. As an example, for L1 pt-cuts below 20 GeV,

the rate of mismeasured muons is more than one order of magnitude higher than the rate

of muons originated from bosons W± and Z. With the increase of the LHC luminosity,
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the contribution of the mismeasurements to the L1 trigger rate will increase, unless the

pt threshold is raised, to the detriment of the efficiency.

The introduction of a second technology of detection would extend the path length and

provide additional hits that will help to refine the stub reconstruction and improve the

momentum resolution. Therefore, the rate of misidentified muons is reduced as well as

the L1 trigger rate. Fig. 3.14 (left) illustrates the segment reconstruction efficiency at

different simulated muons η for the current CSC system and the integrated CSC+GE1/1

upgrade. The right plot shows the L1 rate reduction at the LHC luminosity L = 2×1034

cm−2s−1 and for a constant efficiency of 94 %.

Figure 3.14: L1 trigger rate as a function of the applied pt threshold with and without
the additional detection layer based on the GEM technology (GE1/1). The data have
been simulated with the instantaneous luminosity L = 2×1034 cm−2s−1, for a constant

efficiency of 94 %.

As a result, the reduction of the trigger rate allows maintaining a low pt threshold,

which means increasing the acceptance and the efficiency of reconstruction of soft muons,

particularly interesting for physics discoveries in the SM, extended Higgs sectors, and

also for SUSY candidates. As an example, Fig. 3.15 (left) shows the muon pt distribution

for three interesting physics channels: the SM Higgs decay to τ -leptons, a heavy Higgs

decay into τ -leptons and quarks and the SUSY ”stop” squarks production. The right

plot illustrates the increase of the selection efficiency when lowering the pt threshold.



Chapter 3. The LHC and the CMS experiment 43

Figure 3.15: Left: muon pt distribution for several interesting physics processes: the
SM Higgs coupling to τ leptons h → ττ + X; the heavy Higgs decay into τ leptons
H → hh → ττbb; the production of SUSY ”stop” particles p → t̃t̃ → µχ̃0

1
χ̃0

1
+X. Right:

selection efficiency of the Higgs decay into τ leptons for the µτh final state as a function
of the pt threshold.

3.5.2.3 Impact on the phase II trigger

The new CMS L1 trigger system after LS3 will allow the significant improvement of the

efficiency and the quality of the muon reconstruction by matching the standalone muons

”L1Mu” and the tracker data (”track-trigger tracks”). The resulting combined object

”L1TkMu” will ensure a high-purity and low-rate trigger at low pt thresholds.

However, the maintaining of the high quality of the standalone muon trigger will still

be essential for the HL-LHC. Several physics scenarios predict the existence of heavy

long-lived exotic particles that can decay far away from the interaction point into a pair

of muons. Because of this, only few muon hits will be left in the tracker, resulting in a

drastic inefficiency of the tracking trigger. Therefore, the muon standalone trigger is the

only viable solution to identify these events. Such scenarios arise from the extension of

SUSY like the NMSSM [46], the ”hidden valleys” (Dark SUSY) [47] or heavy resonance

models [48]. As an example, Dark SUSY scenarios predict the production of new bosons

during the decay of a SM-like Higgs boson of 125 GeV H(125) into neutralinos n1. In

this model the neutralinos decay into dark neutralinos nD and low-mass dark photons

γD or dark neutralinos and heavy dark bosons ZD. Then the dark bosons can decay into

a pair of muons. Fig. 3.16 shows the trigger reconstruction efficiency of the two dark

SUSY decays as a function of the transverse distance between the decay vertex and the

beam line. The combined L1TkMu efficiency drops immediately when this distance is

increasing while the standalone L1Mu efficiency is maintained.

Therefore, the upgrade of the first muon station will also help to preserve the L1 stan-

dalone muon trigger at the HL-LHC and improve the identification of displaced muons.
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Figure 3.16: Left: comparison between the combined L1TkMu trigger and the stan-
dalone L1Mu trigger efficiencies for the dark SUSY decaysH(125) → 2n1 → 2nD2γD →
2nD4µ (left) and H(125) → 2n1 → 2nD2ZD → 2nD4µ (right) as a function of the dis-
tance between the decay vertex and the beam line. A more detailed description of the

simulation parameters can be found at [10].

3.5.2.4 Aging of the CSC system

As for all detectors operating in high-radiation environment, the CSC chambers can be

subject to aging, i.e. the degradation of their detection performance with time. Since it

is the only system currently installed in the forward end-caps, a loss of performance or

a loss of detection areas would drastically affect the entire muon spectrometer, both for

the L1 trigger (phase I and phase II) and the off-line muon reconstruction. The aging

concern will be particularly critical at the HL-LHC since the background rate will reach

∼ 1 kHz/cm2 in the first station.

We can distinguish four types of aging: the normal electronics degradation, which causes

about 1 % losses every year; problematic low voltage and signal connections, evaluated at

10−15 % losses; problems with the data transmission and data loss; the classical aging of

gaseous detectors, particularly problematic with wire chambers. This last item however

is very difficult to estimate since it depends on the operation environment. Several

scenarios were investigated by the CMS muon group, for all of them, the expected

fraction of non-working CSC is about 15 % at HL-LHC [49].

The introduction of a second layer of detection will help to compensate the possible

losses in the CSC system and maintain the best reconstruction and selection efficiency.

Fig. 3.17 shows the trigger efficiency at the pt plateau as the function of the fraction of

non-triggering CSCs for the CSC system only and associated with GE1/1 detectors.
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Figure 3.17: Single muon trigger efficiency as a function of the fraction of non-
triggering CSC chambers, both with and without GEM-based detectors in addition to

the CSC system.

3.6 Conclusions

The upgrade of the LHC will allow for the increasing of the center-of-mass energy to

14 TeV and the gradual increasing of the luminosity up to 5 − 7 × 1034 cm−2s−1. As

a result, the HL-LHC will give access to higher energy ranges and to rare decays that

could validate or invalidate theories beyond the SM.

However, the increase of the collision rate will also affect the detection environment

in CMS. In particular, the increase of the background rate in the forward region of the

CMS muon end-caps will provoke a rise of the L1 muon trigger rate and a degradation of

the selection efficiency at given bandwidth limitations. Additionally, the high-radiation

background may accelerate the aging of the current CSC system and possibly cause

performance losses and dead regions.

The solution proposed by the CMS GEMCollaboration consists of introducing additional

gaseous detectors in the forward end-caps to complement the current CSC system. These

new chambers will be based on the GEM technology, which can operate at very high

rates with good performance while offering excellent trigger information to improve the

CMS operation.



Chapter 4

Introduction to gaseous detectors

4.1 Introduction

In this chapter, we will introduce the theoretical concepts of the particle detection, in

particular with gaseous detectors. Since this thesis is devoted to the upgrade of the

CMS muon system, we will focus on the physics processes that can be encountered

in the CMS end-caps or during the R&D activities in laboratory. Similarly, we will

give practical examples of the detection properties with gas molecules commonly used

in CMS muon system: Ar, CO2 and CF4. In the second part of this chapter, we will

describe the basic operation gaseous detectors and give a brief historical overview of their

development. Then we will conclude with the specific case of the triple-GEM detector

and its applications.

4.2 Particles and matter interactions

This first section aims to remind the main processes that allow the detection of particles

through their interaction with matter, especially in gaseous media. All the elements

described below, the theoretical concepts, the hypothesis and the pictures are adapted

from [20], [50], [17], [51], [52], [53] and [11]. Other specific references will be indicated

in the text.

4.2.1 Interaction between charged particles and matter

A fast charged particle traversing a medium will interact with it via EM, weak or strong

forces. However, the weak interaction is by definition negligible for most of the particles

46
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(except neutrinos) and the typical range of the strong interaction is at the order of the

nuclear section, i.e. 108 to 1010 orders of magnitude lower than the atomic section. The

EM interaction is thus the predominant process for the detection of charged particles.

The highest probable process within the EM interactions is the Coulomb interaction

between the EM fields of the particle and of the medium. It leads to the excitation

and/or the ionization of the medium itself, resulting in the release of free charges that

can be used to generate electronics signals.

4.2.1.1 Energy loss due to Coulomb interactions

A heavy charged particle (i.e. with a mass much greater than the electron mass) crossing

a layer of matter will interact with the atomic electrons and transfer part of its energy,

resulting in the ionization and/or the excitation of the medium. In the case of ionization,

the atomic electrons acquire a sufficient amount of energy to be ejected from the atom,

forming electron-positive ion pairs in the medium. Sometimes, the atoms are not ionized

but excited by the incoming particle and release electrons through de-exciting processes.

The average energy lost by a particle passing through a material is given by the Bethe-

Bloch formula:

−
〈

dE

dx

〉

=
2πe4z2

mec2β2
NZ

[

ln

(

2mec
2β2γ2Tm

I2

)

− 2β2 − δ(βγ)

]

(4.1)

where ze is the charge of the incoming particle, me the mass of the electron at rest, N and

Z the atomic density and atomic number of the medium. The parameter I represents

the average ionization and excitation potential of the medium. The maximum energy

transfer for a single interaction is represented by the parameter Tm given by:

Tm =
2mec

2β2

1− β2
(4.2)

The validity of the Bethe-Bloch formula in this form is limited to 0.1 " βγ " 1000. For

βγ # 4 we observe a relativistic rise of the stopping power due to the increase of the

transverse electric field of the particle and therefore the increase of distant interaction

contributions. However, the polarization of the medium limits the field extension and

acts as a shielding of the electrical field far from the particle path, cutting the long-range

contributions. The Fermi density effect correction δ(βγ) is introduced in Equ. (4.1) to

cover this phenomenon. At very low energies (βγ " 0.1), the assumption that the

electron is at rest is no longer valid. The particle velocity is comparable to the orbital

velocity of the atomic electrons, which allows electron capture processes. Additional
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corrections such as shell corrections, Bloch correction and Barkas correction are required

to fully describe the low energy range. At higher energies (βγ # 104 for muons), radiative

processes become more important than ionization. The average energy loss
〈

dE
dx

〉

is no

longer a continuous function of the parameter βγ, based on Coulombs interactions, but

a complex combination of various effects such as e+e− pair production, Bremsstrahlung

and photo-nuclear interactions.

In the case of the HEP experiments, and particularly the CMS muon system, most of the

relativistic particles have a mean energy loss close to the minimum, they are identified

as ”Minimum Ionizing Particles” (MIP). An example of the average energy loss of a

positive muon in copper is shown on Fig. 4.1.

Figure 4.1: Stopping power for positive muons in copper as a function of βγ. Solid
curves represents the total stopping power [11].

The CMS muon detectors essentially operate in argon-based mixtures. As indicated

on Fig. 4.2, the average energy loss of MIPs in argon is close to 1.53 MeV g−1 cm2.

Considering the density of argon ρ = 1.78× 10−3 g cm−3, the total energy loss per unit

length in pure argon becomes:

∆Eargon = −
〈

dE

dx

〉

× ρ× d = 1.53× 1.78× 10−3 × 1 = 2.72 keV/cm (4.3)
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Figure 4.2: Energy loss of a MIP as a function of the atomic number of the medium
[11]. The red line refers to the Argon (Z=18).

4.2.1.2 Energy loss fluctuations

The energy loss described in the previous section is an average value. Since it involves

collisions with atoms, which are subject to statistical fluctuations, the energy loss and

the electron-ion pair production for a given path length are also subject to fluctuations.

Similarly, for a given energy loss value, the path length before the particle is stopped,

or range of the particle, fluctuates. This phenomenon is called straggling and leads to

the widening of the energy loss distribution of a particle passing through a medium,

especially on the side of the high energy losses. In the case of a thin layer of absorber,

the energy loss distribution is described by the Landau-Vavilov expression:

fL,V (∆,βγ, x) = φ(λ) =
1

√
2π

e−
1

2
(λ+e−λ) (4.4)

where x is the thickness of the medium. The energy variable λ represents the deviation

between the specific case energy loss ∆/x and the most probable energy loss ∆p/x:

λ =
∆/x−∆p/x

ξ
(4.5)

The most probable energy loss is defined as:

∆p/x = ξ

[

ln
2mec

2β2γ2

I
+ ln

ξ

I
+ 0.2− β2 − δ(βγ)

]

(4.6)
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And ξ is given by :

ξ =
2πe4z2

mec2β2
NZx (4.7)

Apart from the MIPs crossing the muon chambers in the CMS end-caps, the landau

parameterization is also useful during the R&D phase to fit the energy spectra from

muon beams, cosmic rays or high energy electrons. Fig. 4.3 shows an example of a

landau distribution obtained from the interaction of high energy electrons with a gaseous

detector. The electrons are secondary particles produced from the Compton scattering

of 137Cs photons in copper (see Sec. 7.3.2.1).

Figure 4.3: Energy distribution of ∼ 400 keV electrons in a gaseous detector operating
in Ar/CO2 (70 : 30). The electrons are produced from the Compton interaction of 662

keV photons with copper in front of the gas volume.

4.2.1.3 Ionization processes

In the case the energy is lost by ionization, the incoming particle liberates a discrete

number of electron-positive ion pairs in the medium. This process is called primary

ionization. The freed electron may possess sufficient kinetic energy to cause secondary

ionization events in the medium. Such electrons are sometimes called δ-rays and their

number n per unit length dx for a kinetic energy between T and dT can be estimated

by:

d2n

dTdx
=

2πz2e4

mec2β2
NZ

1

T 2

[

1− β2 T

Tm

]

(4.8)
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where ze is the charge of the incoming particle, me the mass of the electron at rest and

N and Z the atomic density and atomic number of the medium. The maximum energy

that can be transferred to the electron by a massive particle is given by [54]:

Tm = 2mec
2β2γ2 (4.9)

The total number of electron-positive ion pairs in a given volume produced by both

primary and secondary ionization can be expressed by:

nT =
∆E

Wi
(4.10)

where ∆E is the total energy loss transferred to the given volume and Wi is the effective

average energy to produce one electron-positive ion pair. The parameter Wi is usually

bigger than the average ionization and excitation potential I (Equ. (4.1)) since a fraction

of the deposited energy is absorbed by excitation processes and doesn’t necessarily release

electrons in the medium.

If the target medium contains several components, the average energy Wi of the medium

is calculated following a simple composition law. For example, we can calculate the

total number of primary electrons produced by MIPs in a muon detector operating in

Ar/CO2 (70 : 30). Following the same procedure as for Equ. (4.3), the total energy

loss transferred to the medium over a distance of 3 mm (typical conversion length for a

GE1/1 detector) is ∆E = 861 eV. Therefore:

nT = ∆E

[

0.7

Wi(Ar)
+

0.3

Wi(CO2)

]

= 861

[

0.7

26
+

0.3

33

]

≈ 31 pairs (4.11)

4.2.2 Interaction between photons and matter

In addition to the muons and the high energy electrons, the CMS muon detectors will

be subject to high energy photons in the end-caps. As indicated in Sec. 3.2, the photon

energies are spread from few hundred keV to several tens of MeV. Moreover, most of

the calibration tests and characterization of gaseous detectors are performed with X-

ray sources of several keV. It is therefore interesting to remind the main processes of

interaction of photons with matter.

The photons also interact via electromagnetic effects. But while a charged particle shows

a continuous energy loss in the medium, the absorption of a photon is a single localized
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event. Considering a beam of photons with the energy E and an intensity I crossing a

medium with a thickness x, the intensity loss is given by:

dI = −Nσ(E,Z)Idx (4.12)

where σ is the total cross-section of the interaction for a given material with an atomic

number Z and an atomic density N . If the initial intensity of the beam is I0, the total

attenuation is:

I

I0
= e−Nσ(E,Z)x = e−(µ/ρ)X (4.13)

where (µ/ρ) = N(σ/ρ) is, by definition, the mass attenuation coefficient, X = ρx is the

reduced thickness of the medium and ρ the density of the medium.

Figure 4.4: The main absorption processes of the photon interaction.

There are several mechanisms of absorption with different relative importances depend-

ing on the energy of the photons, as shown in Fig. 4.4. At energies lower than several 10

keV, the dominant process is the photoelectric absorption; then the Compton scattering

(or incoherent scattering) up to several tens of MeV; at higher energies, the dominant

process is the electron-positron pair production. The total attenuation coefficient is

simply defined as the sum of all the partial coefficients:

(

µ

ρ

)

total

=

(

µ

ρ

)

photoelectric

+

(

µ

ρ

)

Compton

+

(

µ

ρ

)

pair

(4.14)
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Fig. 4.5 shows a practical example of the photon attenuation in the gas mixture Ar/CO2 (70 :

30) as a function of the photon energy.

Figure 4.5: Total and partial mass attenuation coefficients in Ar/CO2 (70 : 30) [12].

Each of these processes is complex and accompanied with secondary effects such as

fluorescent radiations, emission of Auger electrons, recoil electrons or annihilation of

positrons.

4.2.2.1 The photoelectric effect

In the case of photoelectric absorption, the total energy of the incoming photon is spent

to remove one electron from an inner shell of the atom. This process is possible only

if the energy Eγ of the photon is higher than the binding energy Ej of the electron to

be removed. All the levels having Ej ≤ Eγ contributes to the photoelectric absorption.

The effect is maximum at the edge and then decreases with the energy, giving a series

of characteristic jumps in the absorption coefficient as seen in Fig. 4.5. The electron

ejected from the atom has an energy Ee = Eγ −Ej and leaves the medium in an excited

state. The medium then returns to its ground state through two competing mechanisms:

• The first possibility, called Auger process, corresponds to an internal electronic

rearrangement and the emission of an electron. For example, a vacancy in the

K-shell may be filled by an electron from the L-shell which gives its energy to

a M-shell electron that is ejected from the atom. This electron is called Auger

electron and its kinetic energy is given by:
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EAuger = EK − EL − EM (4.15)

• In the second process called fluorescence, the vacancy on a j-shell is filled by an

electron from a outer i-shell by emitting an X-ray photon with an energy EXray =

Ej − Ei where Ej and Ei are respectively the binding energies of the j-shell and

the i-shell. The fraction of de-excitation by fluorescence, called fluorescence yield,

is shown for the shells K and L on Fig. 4.6.

Figure 4.6: Fluorescence yields for K and L shells as a function of the atomic number
Z. The curve for the L-shell is an average of L1,L2 and L3 effective yields.

4.2.2.2 The Compton scattering

The photoelectric absorption cross-section falls very quickly after the K-edge, as shown

in Fig. 4.5. At energies above the highest atomic level, the intensity loss of a photon

beam is dominated by the elastic incoherent scattering on nearly free electrons of the

medium, also called the Compton scattering. When an incident photon is scattered an

angle θ, the electron recoils with an angle φ as shown on Fig. 4.4. The energy Eγ′ of the

scattered photon and the energy Ee of the recoil electron are given by:

Eγ′ =
Eγ

1 + ε(1− cos θ)
(4.16)

Ee =
Eγε(1− cos θ)

1 + ε(1− cos θ)
(4.17)
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with ε = Eγ/me. In the case of back scattering (i.e θ = π), the electron obtains the

maximum energy:

Emax
e =

Eγ

1 + 1
2ε

(4.18)

Fig. 4.7 shows the energy distribution of the recoil electrons for different incident photon

energies. The maximum energy, corresponding to the back scattering event is known as

the Compton edge.

Figure 4.7: Energy distribution of Compton electrons for several incident photon
energies.

The emission angle of the recoil electron is given by:

cot(φ) = (1 + ε) tan θ/2 (4.19)

At low energies (i.e ε << 1), the scattering cross-section for a single electron can be

reduced to:

σe
c = σe

Th(1− ε) with σe
Th =

8

3
πr2e (4.20)

Where σe
Th is the Thomson cross-section and re the electron radius. At high energies

(i.e ε >> 1), the cross-section is:

σe
c =

πr2e
ε

(
1

2
− ln(2ε)) (4.21)
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The total differential cross-section for a solid angle Ω is given by the Klein-Nishina

angular distribution:

dσe
c

dΩ
(θ) = r2e

(

1

1 + ε(1− cos θ)

)2(1 + cos2 θ

2

)(

1 +
ε2(1− cos θ)2

(1 + cos2 θ)(1 + ε(1− cos θ))

)

(4.22)

The atomic cross-section is:

σatom
c = Zσe

c (4.23)

where Z is the atomic number of the medium. The angular distribution as a function of

the incident energy and the polar diagram of the total cross-section are shown in Fig. 4.8

and Fig. 4.9.

Figure 4.8: Angular distribution of scattered photons for several incident energies ε.

Figure 4.9: Polar diagram of the differential Compton cross-section per electron.
Curves labeling corresponds to the incident photon energy ε. dσ/dΩ is expressed in

cm2 sr−1
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4.2.2.3 The electron-positron pair production

During the pair production, or materialization, the photon is absorbed by producing

an electron-positron pair in the medium. This is the dominant process of interaction

at high energies and requires the presence of a nucleus or an electron to balance the

momentum conservation during the transformation.

A particle at rest has a minimum energy E2 = m2
0c

4 with negative and positive solutions.

The region between these solutions corresponds to the forbidden energies, as shown in

Fig. 4.10. The materialization energy is used to bring a particle from a negative energy

state, also called the Dirac sea, to the positive domain. A ”hole” is then left in the

Dirac sea corresponding to an anti-matter particle. In the case of an electron-positron

pair produced by a photon crossing the electric field of a nucleus, the threshold energy

is 2mec
2 = 1.022 MeV. The positron has a high probability to be annihilated in the

medium, producing one or several energetic photons. If the secondary photons have

an energy higher than the threshold energy, they will trigger more materialization and

annihilation processes and create an electromagnetic shower in the medium.

Figure 4.10: Schematic view of the Dirac sea in the case of an electron-positron pair
production.

4.2.3 Interaction between neutrons and matter

Finally, the dominant background in the CMS end-caps will be neutrons with energies

from 10−8 to 103 MeV (see Sec. 3.2). Since neutrons are uncharged particles, they are

not sensitive to Coulomb interactions with the medium but they can provoke collisions

with the atoms or interact directly with the nuclei via nuclear reactions. Therefore it

is very difficult to detect free neutrons, especially with gaseous detectors. However, a

neutron passing through a detector can interact with the material surrounding the gas

volume and produce secondary emission of charged particles or photons that may ionize

or excite the gas. We can identify five main interactions with different probabilities

depending on the neutron incident energy, as shown on Fig. 4.11.
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Figure 4.11: Classification of free neutrons with the most probable type of interaction
with matter.

The neutron-induced fission occurs at relatively low energies. The target nucleus is split

into two or more smaller nuclei and releases a large amount of energy in the form of a

secondary emission of neutrons, photons or other types of radiations. This leads to the

concept of neutron multiplication and chain reactions used in the nuclear reactors.

The elastic neutron-nucleus scattering A(n, n)A is mainly responsible of the slowing

down of the incident neutron, also called the neutron moderation. In this case, the

energy and the direction of the neutron are altered and the target nucleus recoils and

stays in its ground state. The neutron moderation is the dominant energy loss process

from intermediate to high energies.

The neutron capture consists of the absorption of the neutron by the medium, followed

by the emission of gamma rays in case of a radiative capture (n, γ) or the emission of

charged particles such as protons (n, p) or alpha particles (n,α).

At energies higher than several MeV, the neutrons interact via inelastic scattering

A(n, n′)A∗ with the medium. The neutrons lose a large fraction of their energy and

leave the target nuclei in an excited state. Secondary radiations are then emitted from

the nuclei when returning to the ground state.

4.2.4 Drift and diffusion in gases

As seen in the previous sections, most of the particles interacting with a gaseous medium

produces free charges by ionization, called the primary charge. This clear signature of

the crossing of a particle can be extracted from the gas to produce electrical signals that

will be transferred to a data acquisition system. However, the charges moving in the

gas will also interact with the atoms before being collected. The understanding of these

interactions is necessary for the choice of the gas mixture in particle detectors.
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The primary electrons and ions gradually lose their energy in collisions with the gas

molecules and diffuse by multiple scattering following a Maxwell distribution for their

energy ǫ [13]:

dN

dǫ
= F (ǫ) = C

√
ǫ e−ǫ/kT (4.24)

with N the number of charges, T the temperature and k the Boltzmann constant.

These charges assume the thermal energy of the gas with an average value ǫT = 3
2kT .

A Gaussian distribution gives the dislocation of the charges at the distance x from the

origin and after a time t:

dN

N
=

1
√
4πDt

e
−x

2

4Dt dx (4.25)

where D represents the constant of diffusion which depends on the nature of the charges

and the medium. We can define the mean free path λ as the average distance between

two collisions:

λ =
1

Nσcollision
(4.26)

with σ the cross-section of the interaction and N the number of atoms per volume.

In the presence of a uniform electric field E across the medium, the free charges move

along the field direction and accelerate until they reach their drift velocity vd. Then,

the electrical mobility of the charges can be defined as:

µ =
vd
E

(4.27)

The Einstein’s relation shows that the mobility is related to the coefficient of diffusion :

µ =
e

kT
D (4.28)

In the case of electrons moving in a gaseous medium under the influence of an electric

field, the drift velocity and thus the mobility are not constant since the electrons can

acquire energy between two collisions due to their small mass. Townsend gives a simple

expression of the electron velocity:
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ved =
e

2me
Eτ (4.29)

where τ is the mean time between collisions. With the ideal gas approximation, the drift

velocity becomes proportional to the reduced electric field E/P and the temperature T

of the medium, P being the pressure of the gas:

ved ∝
ET

P
(4.30)

Since the wavelength of such electrons is comparable to the size of the gas molecules,

the interaction cross-section σ, and therefore the time τ , strongly varies with the energy

ǫ of the electrons. These variations, described by the Ramsauer-Townsend effect, reach

maxima and minima as shown in Fig. 4.12.

Figure 4.12: Interaction cross-section of electrons in Ar.

This relation is particularly important for the operation of gaseous detectors, where the

charges freed by an incoming particle move inside of the gas volume to reach a readout

electrode. It is interesting to minimize the interaction of the electrons with the medium

in order to minimize the diffusion of the charges, which could degrade the performance

of detection.

4.3 Development of gaseous detectors

The highlighting of interesting physics phenomenon requires the use of powerful detectors

to identify infinitesimal objects and their properties. Many types of particle detectors

were invented and developed in the 20th century. Gaseous detectors are by definition
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very light devices and they give a very high level of flexibility in term of geometry,

composition and thus performance. For this reason, gaseous detectors are used in many

HEP experiments with custom made designs and specific operating conditions. On the

other hand, because of the very low density of the detection medium, the total amount

of primary charges produced by a particle in the detector is relatively small compared to

other technologies. Therefore, gaseous detectors often require an additional amplification

stage before the particle signals are collected. This section aims to describe the basic

operation of gaseous detectors and their evolution from the wire chambers to the modern

micro-pattern detectors. The basic amplification processes and the various modes of

operation discussed below are adapted from [13], [55], [56] and [20].

4.3.1 Amplification process in a gaseous medium

In electric fields higher than few kV/cm, the electrons acquire sufficient energy between

two collisions to provoke the excitation and/or the ionization of the gas and produce

free charges that can ionize further atoms. This chain reaction, also called avalanche,

is responsible for the amplification of the primary charge in gaseous detectors. The

ionization mean free path is the average distance that an electron can travel before

being involved in an ionization process. The inverse of the mean free path is called first

Townsend coefficient α and is given by the Korff’s approximation:

α

P
= Ae−BP/E (4.31)

where P is the pressure of the gas and A and B are parameters depending on the gas

type and on the electric field range. If n is the number of electrons at a given position,

after a path dx along the drift direction, the number of electrons after amplification is:

dn = nαdx (4.32)

One can therefore obtain the amplification factor M by integrating Equ. (4.32):

M =
n

n0
= eαx (4.33)

In the case of a non-uniform electric field, the Townsend coefficient is a function of the

distance x. The amplification factor between x1 and x2 can be expressed as:
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M = exp





x2
∫

x1

α(x)dx



 (4.34)

The amplification factor thus increases exponentially with the electric field strength but

shows a limit around M = 108 due to the influence of the space charge on the electric

field and because of the spread of the avalanches by photon emission. This condition is

known as the Raether limit and corresponds to αx ∼ 20.

4.3.2 Operation regimes of gaseous detectors

The basic principle of operation of gaseous detectors can be simplified with the example

of the parallel plate detector. The signal generated by such detectors is produced when

the free charges released by a particle drift inside of the detection medium under the

influence of the electric field created by the two electrodes. We distinguish four main

operation regimes depending on the magnitude of the electric field in the amplification

region. Fig. 4.13 shows the relation between collected charge and the amplification field

in the different regions of operation.

Figure 4.13: Gain-voltage characteristics for gaseous detectors showing the different
operating modes. The y-axis is refers to the collected charge in logarithmic scale.

4.3.2.1 Ionization mode

As described Sec 4.2, the number of primary charges left in a detector by a particle

depends on the type, the energy of the particle and also on the properties of the detection

medium. In the case of highly ionizing events, a large amount of charge is released in
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the gas and moves along the electric field lines, inducing a large signal on the electrodes

(Fig. 4.14). In this mode, called ionization regime, it is not necessary to amplify the

primary charge before the collection. Therefore, a relatively low electric field is enough

to generate signals above the electronic noise (typically lower than 10 kV/cm). However,

for very low electric fields, a significant portion of the primary charge is lost by electron-

ion recombination or electron attachment to neutral molecules of the medium.

Figure 4.14: Schematic representation of ionization chambers.

The ionization chamber is the ancestor of most of the modern gaseous detectors but such

chambers are still used today, in particular in some industrial smoke detectors where

the smoke can enter the amplification region and attenuate the current induced by a

constant source of α-particles, usually 241Am.

4.3.2.2 Proportional mode

A large part of gaseous chambers is used to detect charged particles and/or high energy

photons. In this condition, the primary charge deposited in the chamber is not large

enough to produce signals above the average noise of the readout systems. It is then

necessary to amplify this charge before collecting of the signal.

At a certain threshold voltage VT (depending on the geometry of the detector), a critical

electric field EC is established between the electrodes and is intense enough so that the

free electrons trigger further ionization of the gas and produce avalanches. As seen in

Sec 4.3.1, the avalanche process depends on the magnitude the electric field and on the

properties of the gas mixture. The number of electrons after amplification is proportional

to the primary charge (see Equ. (4.32)). The signal produced by proportional detectors

is therefore representative to the energy deposited by the crossing particles. Fig. 4.15

shows a schematic view of the amplification process in a proportional chamber. It is
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however important to notice that when increasing the field strength, the amplification

factor increases and more secondary charges are freed, forming large avalanches. At a

certain point, the space charge provokes the distortion of the electric field in the vicinity

of the avalanche and lead to a gradual loss of proportionality.

Figure 4.15: Schematic representation of proportional chambers.

This mode of operation is widely used in gaseous detectors, such as proportional counters,

multi-wire chambers and more recently the micro-pattern gaseous detectors. At CMS,

the DTs, CSCs and RPCs operate in proportional mode. Sec 4.3.4 describes how to

establish a proportional amplification with several examples of famous detectors.

4.3.2.3 Geiger mode

At higher amplification fields, the primary avalanche triggers multiple secondary avalanches,

mostly by the emission of UV photons or by recombination of avalanche ions on the sur-

face of the cathode . A chain reaction occurs and spreads through the entire detection

volume until the process is stopped by a voltage drop on the electrodes or by the space

charge of ions in the case of ”self-quenching” detectors. The total charge produced after

the amplification is thus independent from the initial deposition. This operation regime,

called saturation or Geiger mode, is described in Fig. 4.16.

Geiger detectors are essentially used to counts number of particles since the primary

charge information is lost during the amplification process. A particular choice of mate-

rials and gas composition can increase the interaction probability with certain particles

such as gamma rays, α-particles or neutrons in order to make Geiger detectors useful for

radio-protection applications. The CMS muon detectors do not operate in Geiger mode
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Figure 4.16: Schematic representation of Geiger-Muller chambers.

since it would be impossible to reconstruct the exact position of the muon hits. More-

over, the detectors would need more time to evacuate all the charges produced during

the amplification, which is not compatible with the minimum rate capability required

in the CMS end-caps.

4.3.2.4 Streamer mode

At even higher fields, the space charge density in the avalanche becomes comparable to

the surface charge density of the electrodes causing the focusing of the field lines toward

the avalanche region. Then, the secondary photoelectrons seen in the Geiger mode

can drift along the distorted field toward the avalanche region and induce additional

avalanches that sum up with the original one, producing a thin plasma filament in

the detection medium. This filament, also called streamer, can propagate toward the

electrodes and trigger a discharge in the chamber as seen in Fig. 4.17. For most of the

detectors, this phenomenon appears when the Raether limit is overcome (see Sec 4.3.1).

The advantage of the streamer mode is that a simple and cheap structure can produce

very large signals. However, the streamers can provoke a powerful breakdown which

releases most of the electrostatic charge accumulated in the electrodes. It is customary

to cover the electrodes with highly resistive layers to limit the energy and the propagation

of the discharges and protect the elements forming the detector as well as the readout

electronics. RPCs were initially designed for such operation mode and are today widely

used in HEP experiments.
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Figure 4.17: Schematic representation of a Streamer in parallel plate detectors.

4.3.3 Choice of the gas mixture

The choice of the gas is essential to ensure the good operation of particle detectors. As

seen in the previous sections, the number of primary charges, the amplification factor

and its proportionality strongly depend on the properties of the gas. In addition, specific

applications impose experimental requirements that also rely on the choice of gas, such

as a high rate capability, a maximum longevity, good time and space resolutions or a

low discharge probability. We will focus here on the properties of the mixtures proposed

for the upgrade of the CMS end-caps, namely Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 :

15 : 40).

Since most of the polyatomic molecules can de-excite through non-ionizing processes,

noble gases are prefered to detect MIPs at relatively low electric field. Among the noble

gases, argon gives an acceptable number of electron-ion pairs per unit length for MIP

and is relatively cheap compared to xenon or krypton. However, excited argon atoms

return to ground state only by the emission of photons with energies higher than 11.6 eV

that can induce secondary avalanches (see Sec. 4.16). The addition of ”quenching” gas

is thus necessary to absorb these photons and dissipate the energy through non-ionizing

processes. In particular, weakly-bound polyatomic molecules, such as CO2, have a very

efficient absorption in the energy range corresponding to the argon emission and they

de-excite through vibrational or rotational transitions.

The addition of so-called ”cold” gases also helps to improve the space and time perfor-

mance of the detectors. For example, molecules such as CF4 have a large inelastic cross
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Figure 4.18: Comparison of electron drift velocity for different gas species [13].

section and can ”cool down” the electrons into energy ranges close to the Ramsauer-

Townsend minimum (see Fig. 4.12). The total scattering cross section in Ar then de-

creases while the electrons drift velocity increases, as seen in Fig. 4.18, resulting in a

lower volume diffusion of the electrons (Fig. 4.19).

Figure 4.19: Comparison of electron longitudinal (σL) and transverse (σT ) diffusions
for different gas species.

Moreover, for thin gap detectors, the average distance between the primary ionization

clusters strongly affects the localization accuracy and the time resolution. The addition

of a molecule giving a high number of total ionization per unit length, such as the CF4,

enhances the uniformity of the primary cluster distribution of the mixture and thus

improves the performance of the detectors.

However, some molecules can also affect the amplitude the signal induced by particles.

For example in CF4, the electron capture cross section becomes very large in electric
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fields higher than 8 kV/cm, causing a signal reduction along the drift path.

Tab. 4.1 shows the detection properties of commonly used gases.

Gas Z Density EX EI WI (dE/dx)MIP NP NT

[mg cm−3] [eV] [eV] [eV] [keV cm−1] [cm−1] [cm−1]

He 2 0.179 19.8 24.6 41.3 0.32 3.5 8
Ne 10 0.839 16.7 21.6 37 1.45 13 40
Ar 18 1.66 11.6 15.7 26 2.53 25 97
Xe 54 5.495 8.4 12.1 22 6.87 41 312

CH4 10 0.667 8.8 12.6 30 1.61 28 54
iC4H10 34 2.49 6.5 10.6 26 5.67 90 220
C2H6 18 1.26 8.2 11.5 26 2.91 48 112
CO2 22 1.84 7.0 13.8 34 3.35 35 100
CF4 42 3.78 10.0 16.0 54 6.38 63 120

Table 4.1: Some properties of noble gases and polyatomic molecules at normal condi-
tions (T : 20 ◦ C, P : 1 atm). Z is the atomic number, EX and EI the first excitation
and the ionization energy, WI and (dE/dx)MIP the average electron-ion pair energy
and the differential energy loss, NP and NT the primary and total number of pairs per

unit length in MIP events.

4.3.4 Historical aspects of gaseous detector

The first gaseous detector was introduced in 1906, by H. Geiger and E. Rutherford un-

der the form of a cylindrical single wire chamber. The principle has been developed and

improved in the next period, in particular by W. Muller with the Geiger-Muller detector

in 1928. However, one of the biggest improvement was achieved by G. Charpak and his

collaborators in 1968 [57], with the effective operation of the first modern electronically-

readout detector, the Multi-Wire Proportional Chamber (MWPC). With this technology

was also introduced the concept of pattern, that allows large detection volumes and pre-

cise localization of the particle hits. This crucial achievement was awarded the 1992

Nobel Prize and triggered extensive work and studies that had resulted in the modern

world of gaseous detectors. This section aims to briefly describe the evolution of par-

ticle detectors from the MWPCs to the Micro-Pattern Gaseous Detectors (MPGD) by

showing their typical performance and limitations.

4.3.4.1 MWPCs, principle and limitations

The MWPC consists of a plane of parallel anode wires running through two parallel

cathode plates as shown in Fig. 4.20. The typical wire spacing is 2 mm while the

distance between the wire plane and the cathode plates is three or four times larger. By

applying a positive voltage to the wires, an electric field E develops from the external

plates and focuses on the wires [13].
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When filled with the appropriate gas mixture (see Sec. 4.3.3), a particle crossing the

detector releases primary electrons that drift along the field lines toward the closest

anode wire. In the vicinity of the wire, the electric field becomes intense enough to

accelerate the electrons and trigger the avalanche multiplication.

Figure 4.20: Schematic representation of a MWPC in operation.

Because of the pattern structure of the wire plane, the spatial resolution can be evaluated

by σ = pitch/
√
12, where the pitch is defined by the distance between the wires. For a

typical MWPC with a pitch of 2 mm, the spatial resolution is at the level of ∼ 0.5− 1

mm. However, this resolution can be improved by combining several layers of MWPCs

with different orientations and segmented cathode plates with a fine pitch. The typical

time resolution is of the order of 10 ns in Ar/CO2 (70 : 30). Today, the MWPCs are

essentially used as beam profile analyzers, slow triggering systems or in some applications

as spectrometers for low energy particles. In CMS a variant of the MWPC, the CSCs,

are used for the L1 trigger and the muon reconstruction in the forward end-caps.

Large sizes MWPCs can be produced at a reasonable cost but require a very precise

geometry and a sufficient structural strength to ensure the same tension for all the

wires. Moreover, the electrostatic forces inside of the chamber can induce displace-

ment of the wires that affect the quality of the electric field and thus the uniformity

of the gain. Additionally, the wire technology is very sensitive to the classical aging of

gaseous detectors (described in Sec. 7.2.2) and requires particular operation conditions

and longevity studies to ensure an acceptable lifetime of the detectors. However, the

most critical limitation of MWPCs is the gain reduction when subject to high fluxes of

particles. The large distance between the anode wires and the cathode plates induces a

long transit time necessary for the positive ions to reach the cathode (∼ 100 µs). This
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effect generates a build-up of positive space charge that results in the modification of

the electric field and thus the perturbation of the charge amplification. The effective

gain of MWPCs, shown in Fig. 4.21, drops quickly at particle fluxes above 104 Hz/mm2

[13].

Figure 4.21: Rate capability of the MWPC and MSGC (see next section) technologies.

For these reasons, a novel concept of gaseous detector based on microscopic structures

was introduced in the late 80’s in order to instrument high rate and long duration

experiments.

4.3.4.2 MSGCs, principle and limitations

The various progress in semiconductor industry, in particular the photolithography tech-

niques, allowed producing microscopic electrodes of the order of 100 µm with a very good

position accuracy. Such a short distance between anodes and cathodes brings the pos-

itive ions transit time down to the sub-microsecond scale and thus increases the rate

capability by several orders of magnitude compared to MWPCs (seen in Fig. 4.21).

The Micro-Strip Gas Chamber (MSGC) was the first Micro-Pattern Gaseous Detector

(MPGD), proposed in 1988 by A. Oed as an alternative solution of the expensive solid-

state detectors for high rate applications that require fine spatial resolution for particle

tracking [58]. It is made by a plane of small parallel metal strips, alternately connected

as anodes and cathodes, engraved on a thin resistive layer. By applying a sufficient volt-

age between the anodes and the cathodes, an electric field develops between the strips

and becomes intense enough in the vicinity of the anode strips to trigger the avalanche

multiplication (Fig. 4.22).



Chapter 4. Gaseous detectors 71

Figure 4.22: Schematic representation of a MSGC in operation.

Systematic studies performed in the 90’s showed very promising performance : gas gain

over 104 [59]; space resolution down to 30 µm rms [60]; rate capability above 106 Hz/mm2

[61].

However, the use of high resistivity substrates induced problem of gain stability at high

rates. On a short time scale, the charging up of the substrate and the ion migration

within the material induces gain fluctuations of the order of several tens of percents of

the initial value, depending on the particle rate and energy, causing non uniformity and

detection instability [61]. On a long time scale, the operation of the detectors at high

rate is affected by the polymerization of the gas and the pollutants present in the gas

volume, also called classical aging (see Sec. 7.2.2). Due the small size of the electrodes

and the type of materials used in the assembly of the detectors, the first MSGCs were

prone to classical aging [62]. To overcome the stability problems, the high resistivity

substrate was replaced by a reduced resistivity and electronic conductive materials such

as diamond-like coated glass and Pestov-glass coating [63]. Moreover, an extensive study

on clean gas mixtures, non-outgassing materials, and electric field configurations helped

to increase the long-term stability of MSGCs at high rates. [64].

Nevertheless, despite of the good performance and stability, the operation of MSGCs in

high rate environments is limited by the discharge probability. In the case a large amount

of energy is released in the drift gap, the total number of electrons in the avalanche may

reach the Raether limit and trigger the development of a streamer between the electrodes.

Additionally, the presence of dust on the readout board can create an electrical bridge

between the cathodes and the anodes strips and trigger a streamer. Because of the

small size of the amplification structure, such discharges can seriously and permanently

damage the detector (see Fig. 4.23). Although extensive studies on gas mixture and

operating conditions allowed to reduce the discharge probability [65], the uncertainty

on the long-term integrity of MSGCs in harsh environments triggered the development
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Figure 4.23: Microscopic view of a damage MSGC after a destructive discharge.

of alternative solutions. One of these solutions was elaborated by F. Sauli and consists

of pre-amplifying the signal by a factor ∼ 100 with a Gas Electron Multiplier (GEM)

before it reaches the micro-strip plane in order to reduce the voltage required on the

strips.

The CSC+GEM technology was initially foreseen for the forward tracker CMS [66], but

finally abandoned in favor of the silicon detectors. Nevertheless, MSGCs are still in use

in many HEP experiments, in particular in the inner detector of HERA-B (DESY) [67].

4.3.4.3 Micro-Pattern Gaseous technologies and applications

The Micro-Pattern Gaseous Detectors (MPGD) were developed in the continuity of the

MSGCs. They represent the latest generation of gaseous detectors, already used in

several HEP experiments. The most common MPGDs are the Gas Electron Multiplier

(GEM) and the MICRO MEsh GAseous Structure (Micromegas)

The GEM technology was introduced by F. Sauli in 1996 to pre-amplify signals in MS-

GCs. It consists of a thin layer of insulating polymer, usually a 50 µm thick polyimide,

coated on both sides with 5 µm of copper and chemically perforated with a high den-

sity of microscopic holes. The typical diameter of the holes is 70 µm, with a pitch of

140 µm. When applying a difference of potential between the two copper layers, an

electric field with an intensity as high as several 10 kV/cm is established inside of the

holes. When primary electrons created by the crossing of a particle reach the GEM

holes, they are accelerated in the intense electric field and acquire sufficient energy to

produce an avalanche, as shown in Fig. 4.24. Then, the charge after the amplification

can drift toward a readout board where it induces an electrical signal.

The GEM can be the unique amplification technology in a detector, or in association

with another detection structure in order to share the amplification and reach high
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gas gains. The main benefits and the general performance of this technology are fully

described in Sec. 6.5 and Chapter. 7.

Figure 4.24: Schematic representation of a GEM hole in operation.

The Micromegas structure was proposed by G. Charpak and I. Giomataris in 1992.

The principle is the same than for a parallel plate detector, but the amplification gap

is reduced to the sub-millimeter scale, typically 100 µm. To keep a high conversion

efficiency as well as a large number of primary charges, a conversion gap of several

millimeters is placed on top of the parallel plate structure. By replacing the top plate

by a microscopic mesh, the primary electrons can drift toward the anode and enter

the amplification field to trigger avalanches (see Fig. 4.25). Later versions include a

resistive layer on top of the anode strips in order to reduce the energy released during

a spark formation and protect the readout electronics. Because of an excellent rate

capability, a space resolution better than 100 µm and a time resolution of the order of

the nanosecond, the Micromegas technology was identified as a suitable choice for the

ATLAS small wheel upgrade in 2018.

GEM-based and Micromegas-based detectors are used in many HEP experiments: COM-

PASS (CERN), TOTEM (CERN), STAR and PHENIX (RHIC), ALICE TPC (CERN),

LHCb (CERN), SuperFRS, PANDA and CBM (FAIR) and many others ...

Despite of the complexity of their microscopic structures, cylindrical versions of GEM-

based and Micromegas-based detectors were developed, in particular for KLOE-2 (DAFNE),

BESIII (Beijing), CLAS12 (JLAB), ASACUSA (CERN) and CMD-3 (BINP).

Numerous variations of the GEM and the Micromegas technologies were also developed

in the last decade, with many applications in hadron physics, particle tracking and

heavy ions physics. Among others, the THick GEMs (THGEM), the resistive GEMs,
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Figure 4.25: Schematic representation of a Micromegas in operation.

the Micro-PIxel Chambers (µ-PIC) and the InGrid structures will be used in the next

ATLAS and CMS upgrades and for the new linear colliders.

All details about the recent MPGD applications and future developments can be found

at the 4th international conference on MPGDs (MPGD2015) in October 2015 in Trieste

(Italy), in particular at [68].

Illustrative pictures of the most common MPGD structures are shown on Fig. 4.26.

Figure 4.26: Microscopic pictures of the common MPGD structures.

4.3.4.4 Triple-GEM technology and applications

The maximum amplification of single GEM layer is of the order of 5 × 103. In this

conditions the foil is very close to its electrical breakdown and the discharge probability

is about several percents [69]. However, the specificity of the GEM technology is that,
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after the amplification, a signal induced by a particle is not immediately re-absorbed

by the GEM electrodes and thus it can be transfered to another structure for further

amplification. It is therefore possible to obtain large amplification factors (up to 105) by

combining several layers of GEM, without approaching the electrical breakdown of each

layer. The production of large signals with a low probability of discharges significantly

reduces the complexity and the cost of the readout electronics and ensures the maximum

protection against destructive events.

The most used GEM-based detector consists of a triple-GEM structure embedded be-

tween a drift plane (cathode) and a readout board (anode). One can therefore distinguish

different regions in the detector: the drift region between the drift electrode and the first

GEM foil, where the primary charge is deposited; the transfer gaps between GEM1 and

GEM2 then GEM2 and GEM3; the induction gap between the last GEM and the read-

out board, where the amplified charge induces the final readout signal. The general

layout of the triple-GEM detectors is shown on Fig. 4.27.

Figure 4.27: Schematic view of a triple-GEM detector.

The gaps between the GEMs varies with the application but they are usually of the

order of the millimeter, a good compromise between the mechanical constraints and the

magnitude of the electric fields necessary to transfer the charges from an electrode to

another. However, the drift gap, where the conversion takes place, is usually bigger in

order to maximize the sensitivity to incoming particles and make sure that the number of

primary electrons is large enough to compensate possible losses before the amplification.

As an example, the gap configuration called ”3/2/2/2” and the corresponding electric

fields are shown on Tab. 4.2.
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Region Gap [mm] Electric field [kV/cm]

Drift 3 2.4

Transfer 1 2 3.6

Transfer 2 2 3.6

Induction 2 3.6

Region Voltage [V] Average Electric field [kV/cm]

∆GEM1 400 80

∆GEM2 360 72

∆GEM3 325 65

Table 4.2: The electric field configuration of the triple-GEM detector in the 3/2/2/2
gap configuration at the nominal voltage 4400 V. The parameters ∆GEM1, ∆GEM2,
∆GEM3 correspond to the difference of potential between the copper electrodes of

GEM1, GEM2 and GEM3.

The triple-GEM detectors are used in several HEP experiments, in particular:

• COMPASS (CERN): the first high-luminosity experiment to use the GEM technol-

ogy [70]. twenty two 30×30 cm2 (medium-size) triple-GEM detectors are installed

in the inner tracking stations. With the gap configuration 3/2/2/2, the chambers

operate in the Ar/C02 (70 : 30) at a typical gain of 8×103. The background fluxes

can reach up to 2.5 MHz/cm2.

• TOTEM (CERN): twenty semi-circular shape detectors compose the T2 tele-

scope [71]. The triple-GEM chambers, in the configuration 3/2/2/2, operate in

Ar/C02 (70 : 30) at a gain of 8× 103.

• LHCb (CERN): twenty four medium-size chambers are installed in the M1 muon

station [72]. The LHCb configuration includes the gap configuration 3/1/2/1 and

the gas mixture Ar/CO2/CF4 (45 : 15 : 40). The chambers operate at a gas gain

of 4− 6× 103 in a radiations environment close to 500 kHz/cm2.

• PHENIX (RHIC): twenty medium-size detectors form the Hadron Blind Detector

[73]. The GEM foils are covered with a CsI coating to make the chambers sensitive

to Cerenkov radiations from electrons. The gap configuration is 1.5/1.5/1.5/2 and

the GEMs operate in pure CF4 at a gas gain of few 103.

In this thesis, we will often refer to ”GEM-based detector” with simply ”GEM detector”,

even though it requires a drift plane and a readout electrode to be used as a particle

detector.
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4.4 Conclusions

The gaseous detector technology offer a high level flexibility in term of size, geometry,

configuration, mode of operation and sensitivity to energetic particles. For these rea-

sons they play a major role in many applications in high energy physics. The recent

development of the MPGDs made possible the use of gaseous detectors with excellent

detection performance in high rate environments.

One of the most interesting MPGDs is the GEM structure, which was deeply studied

during the last decade and used in several major HEP experiments. Based on the past

experience with the GEM technology, the CMS GEM Collaboration developed a specific

version of large triple-GEM detectors for the upgrade of the forward CMS muon end-

caps.
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The GE1/1 project for CMS

5.1 Introduction

In this chapter we will present the CMS GEM Collaboration and the GE1/1 project

for the upgrade of the CMS muon end-caps. After a general discussion on the different

phases of the project, we will describe the particularities of the large GEM-based de-

tectors for CMS and the various prototypes that were produced since 2009. Finally, we

will explain what needs to be done in order to validate this technology.

5.2 Overview of the CMS GEM project

5.2.1 The CMS GEM Collaboration

The CMS GEM collaboration is a wide international collaboration that started in 2009,

with almost 192 scientists from 37 institutions in 18 countries. The central R&D lab-

oratory and the production facility is based at CERN, near the GEM foil production

workshop. Other main production sites are: Florida Institute of Technology (FIT) -

USA; INFN Laboratori Nazionali di Frascati (INFN-LNF) - Italy; INFN Sezione di Bari

- Italy; Ghent University (UGent) - Belgium; Bhabha Atomic Research Center (BARC)

- India. Many other research institutes and countries are participating to the CMS GEM

project, namely Belgium, Bulgaria, China, Colombia, Egypt, Finland, France, Germany,

Hungary, India, Italy, Korea, Pakistan, Qatar and USA. The full list of institutions and

the corresponding collaborators can be found at [10].
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5.2.2 Description of the GE1/1 project

The aim of the CMS GEM Collaboration is the development and the installation of

triple-GEM detectors in the forward region of the CMS muon end-caps during the LS2

upgrade foreseen in 2018. The project is named GE1/1, where ”G” stands for GEM,

”E” for End-cap, the first ”1” corresponds to the first muon station and the second ”1”

the first ring of the station. 144 large trapezoidal chambers will be organized by pair

to form super-chambers that will cover the full φ coordinate and the pseudo-rapidity

region 1.55 < η < 2.18. The detectors will be inserted in front of the ME1/1 station in

the slots originally foreseen for RPC detectors (see Fig. 5.1).

Figure 5.1: A quadrant of the CMS longitudinal cross-section showing the current
muon spectrometer and the GE1/1 project.

The goal is to complement the CSC system to ensure the best reconstruction and se-

lection efficiency after the high-luminosity upgrade of the LHC, while keeping the L1

trigger to an acceptable rate. The CMS minimum requirements, based on the desired

trigger and physics performance [10], are shown on Tab. 5.1.

The CMS GEM project is organized in two steps: the R&D phase that consists of

studying the fundamental characteristics of the triple-GEM technology and developing

the GE1/1 detectors that fulfil the CMS requirements; the production of the 144 final

detectors and their quality control before the CMS installation.
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Properties CMS requirements

Rate capability > 10 kHz/cm2

Single chamber > 97 %
efficiency (MIP)

Angular resolution < 300 µrad

Single chamber < 10 ns
time resolution

Gain uniformity < 15 %

Longevity > 60 mC/cm2

Table 5.1: The minimum requirements for the upgrade of the CMS muon endcaps.

5.2.2.1 R&D phase

After the GE1/1 concept was validated by simulation and the results from the past

experiences, several GE1/1 prototypes of various sizes were tested in laboratory (char-

acterization) and in irradiation facilities (performance test). The goals of the R&D

phase is to ensure that the GEM technology in the GE1/1 configuration can operate in

the harsh environment of the CMS end-caps. Moreover, the R&D phase is essential to

define the set of working configurations that best suit the CMS requirements.

Three main parts of the GE1/1 R&D program were conducted in the framework of the

Ph.D. thesis:

• The study of the fundamental characteristics of the triple-GEM technology, such

as the stability and the uniformity of the effective gas gain, the rate capability and

the discharge probability. All these elements were tested in laboratory with X-ray

sources and small prototypes of triple-GEM detectors. It helped to establish the

best configuration for large chambers with different options of gas mixture and

internal geometry.

• The measurement of the performance of the large detectors with minimum ioniz-

ing particles, such as the detection efficiency, the spatial resolution and the time

resolution. Most of these tests were performed in irradiation facilities with intense

muon or hadron beams. In these conditions, it was possible to determine the typ-

ical response to MIPs in different configurations of high voltage, gas mixture and

with different readout electronics.

• The study of the longevity of the detectors when operating continuously in an

intense radiation environment. A set of aging tests was performed at the CERN

Gamma Irradiation Facility (GIF) with several GE1/1 prototypes of different gen-

erations. Additionally, outgassing studies helped to define the best choice of ma-

terials and extend the lifetime of the detectors.
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Moreover, simulations of the GE1/1 operation, studies of the CMS background and sim-

ulations of the impact of the GE1/1 station on the CMS trigger and muon reconstruction

were performed in parallel to the detector development by dedicated institutes, with the

aim of defining the minimum requirements on the chambers and to confirm the choice

of the GEM-based technology for the upgrade of the muon end-cap.

5.2.2.2 Large scale production of the GE1/1 chambers

The results obtained during the R&D phase have demonstrated the excellent perfor-

mance of the GE1/1 detectors. As a result, the CMS collaboration approved the GE1/1

project for the next upgrade during LS2. Additionally, a preliminary installation of 8

detectors, called the slice test, will be conducted at the end of 2016 during a technical

stop of the accelerators.

The project enters now in a large-scale production phase, during which the 144 detector

will be assembled and tested in the various production sites before being collected at

CERN for the final verification. The quality control, based on the 6 years of experience

with the GE1/1 technology, was first established at CERN and shared with other insti-

tutes. It consists of several crucial steps, detailed in the Chapter 8: the electrical test

of the GEM foils; the gas leak test and the HV characterization; the gain uniformity

test; the efficiency and resolution tests in cosmic stand.

In parallel to the production of the chamber, dedicated groups are investigating the

optimum techniques and tools to facilitate the integration of the GE1/1 station to the

current CMS end-cap, both from hardware and software point of view.

5.2.3 Schedule

The challenge of the CMS GEM Collaboration is to produce 144 large triple-GEM

detectors and complete their quality control before the end of 2018.

After the validation of the final design in the beginning of 2016, the different parts

of the detectors will be purchased and shipped to all the production sites. Then, the

assembly and quality control will be conducted together until the end of 2017 before

being sent to CERN for last verifications and controls. All the chambers are expected

to be operational in the first quarter of 2018. The detailed schedule of the GE1/1

production can be found at [10].

In parallel to the LS2 installation, the CMS GEM Collaboration is going to install eight

large detectors at the end of 2016 in order to demonstrate the capability of the GE1/1
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detectors, to validate the production process and the quality control, and to anticipate

the integration of the GE1/1 station to the current CMS end-caps. The production of

these chambers will be completed in the first quarter of 2016.

5.3 GE1/1 chambers for the CMS GEM project

5.3.1 General description

144 large GE1/1 chambers will equip both positive and negative end-caps of the CMS

muon system, covering the detection region 1.55 < η < 2.18. Each GE1/1 chamber

consists of a trapezoidal gas volume containing a large triple-GEM structure embedded

between a drift electrode and a readout board. The gap configuration, shown on Tab. 5.2,

was optimized for the CMS application to ensure the best time resolution. The first

transfer gap was reduced to 1 mm in order to minimize the charge released after the

first GEM and make sure it will not disturb the final signal. Similarly, the induction

gap was set to 1 mm so that the induction field can reach 5 kV/cm without increase

too much the potential on the entire structure.

Region Gap [mm] Electric field [kV/cm]

Drift 3 3

Transfer 1 1 3.5

Transfer 2 2 3.5

Induction 1 5

Region Voltage [V ] Average Electric field [kV/cm]

∆GEM1 450 89

∆GEM2 440 88

∆GEM3 420 84

Table 5.2: Electric field configuration of the CMS GEM detector in the 3/1/2/1 gap
configuration at the nominal voltage 4250 V . The parameters∆GEM1, ∆GEM2, ∆GEM3

correspond to the difference of potential between the copper electrodes of GEM1, GEM2
and GEM3.

The layer structure is shown in Tab. 5.3.

By applying the appropriate voltages on the various elements of the chamber, we can

establish the amplification fields and the transfer fields necessary to bring the primary

electrons from the conversion gap to the readout board, passing by the amplification

stages (see Fig. 5.3). The GEM foils are produced by ”single-mask” photolithography

that allows producing large surfaces with a good uniformity and the proper alignment

of the top and bottom holes (see Sec. 5.3.2). The top electrode of each foil, oriented

toward the drift, is segmented into 40 HV sectors in order to restrict the energy released
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Layer Material Thickness [mm]

Protective cover Al 1.0
Cooling pipe Cu/H2O 2.0/6.0
Cooling pads Cu 1.0
GEB board Cu/FR4 0.140/0.856
Readout board Cu/FR4/Cu 0.035/3.2/0.035
Induction gap Ar/CO2/CF4 1.0
GEM 3 Cu/polyimide/Cu 0.005/0.050/0.005
Transfer gap 2 Ar/CO2/CF4 2.0
GEM 2 Cu/polyimide/Cu 0.005/0.050/0.005
Transfer gap 1 Ar/CO2/CF4 1.0
GEM 1 Cu/polyimide/Cu 0.005/0.050/0.005
Drift gap Ar/CO2/CF4 3.0
Drift board Cu/FR4/Cu 0.035/3.2/0.035

Total 20.585

Table 5.3: Layer structure and materials of a single GE1/1 detector.

during a discharge and thus protect the foils from irreversible damages. As shown in

Fig. 5.2, the readout board is divided into 8 partitions, or η-sectors, consisting of 384

copper strips with a trapezoidal shape. Each sector has three 128 signal-pins connectors

outside of the gas volume. The connection between the strips and the connectors is

ensured by metallic vias running through the board.

Figure 5.2: Left: External face of the readout board of the GE1/1 detectors. Right:
Internal face of the readout board with the readout strips.

Because of mechanical constraints in the GE1/1 station, two versions of detectors are

proposed in order to keep the maximum detection coverage: the long chambers with a
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length of 120.9 cm and the short chambers with a length of 106.1 cm. Tab. 5.4 shows

the technical specifications of the GE1/1 detectors for both short and long versions.

Two identical GE1/1 detectors are combined to form a ”super chamber” in order to

obtain two detection planes and thus maximize the efficiency and the redundancy of the

GE1/1 layer. In CMS, the super chambers alternate in the azimuthal direction between

the long and the short versions to ensure the full coverage of the muon end-caps (see

Fig. 5.3).

Figure 5.3: Top left: exploded view of a GE1/1 chamber showing the electrodes
layout, the electronics and the cooling plane and the protection cover. Bottom left:
Assembled super chamber. Right: Mechanical drawings of the GE1/1 station with

both long and short chambers.
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Specification/parameter GE1/1 detector

Detector technology Gaseous detector / MPGD
Charge Amplification element triple-GEM structure (tensioned at ∽ 5N/m)
Number of chambers in overall system 144 (72 in each end-cap)

Chamber shape (active readout area) Trapezoidal / opening angle 10.15◦

Active area overlap between chambers 2.6 mrad
Short chamber dimensions L: 106.1 cm, W: (23.1− 42.0) cm, D: 0.7 cm
Long chamber dimensions L: 120.9 cm, W: (23.1− 44.6) cm, D: 0.7 cm
Total chamber thickness D: 3.5 cm
Active readout area 0.345 m2 (short ch.) / 0.409 m2 (long ch.)
Active chamber volume 2.6 liters (short ch.) / 3 liters (long ch.)
Radial distance from beam line 130.2 cm (at inner edge of active area)
Geometric acceptance in η 1.61− 2.18 (short ch.) / 1.55− 2.18 (long ch.)

Signal readout structure Truly radial copper strips
Readout strip angular dimensions 230 µrad width / 436 µrad pitch
Number of η-segments in readout 8
Number of readout strips per η-segment 384
Number of readout strips per chamber 3, 072

Counting gas mixture Ar/CO2 70 : 30 or Ar/CO2/CF4 45 : 15 : 40
Nominal operational gas flow 1 chamber volume per hour
Number of gas inlets / outlets 1 / 1

Nominal HV applied to drift electrode 3200 V (Ar/CO2) / 4000 V (Ar/CO2/CF4)
Nominal operational gas gain 1− 2× 104

Demonstrated rate capability 100 MHz/cm2

Table 5.4: Main technical specifications and parameters of the GE1/1 detectors.

5.3.2 Overview of the GEM production techniques

The GEM foils are produced by photolithographic techniques very similar to the ones

established for the production of printed circuit boards. The initial technique, called

double-mask, consists of transferring the hole pattern to the copper-clad polyimide sub-

strate thanks to microscopic masks placed on the top and on the bottom of the substrate.

However, because the masks and the base material are flexible, the proper alignment of

the two masks is impossible for foil dimensions exceeding 40 cm. The production of large

size GEM foils for the GE1/1 detectors is achieved by using a single mask to transfer

the hole pattern to only one side of the substrate and thus remove the alignment step.

The production steps of the double-mask and the single-mask techniques, both developed

by the CERN PCB workshop [74], are shown in Fig. 5.4. The first step consists of

applying a 15 µm-thick photo-resistive layer on both sides of the substrate. Then the

mask is placed on top of the base material and engraved on the photo-resist by UV-light

exposure. The copper layer is then etched with several solvent and acid baths to form

the copper holes. Afterwards, the polyimide is dissolved by chemical etching using the
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copper layer as a mask. The dissolvent is a complex mixture of anisotropic and isotropic

etching solutions that allows to precisely define the speed, the direction of the etching

and thus the shape of the holes. For the single-mask technique, the polyimide layer is

used as a mask to etch the bottom copper layer, including an over-etching to adjust the

diameter of the bottom holes. A second polyimide etching is performed from the bottom

to transform the hole geometry and give the typical bi-conical shape. Finally, the full

structure is masked to remove the unnecessary copper and to define the electrodes. After

several cleaning and drying steps, the GEM foil is ready to be mounted on its frame and

inserted into a detector.

Figure 5.4: Overview of the double-mask (left) and the single-mask (right) production
processes.

The single-mask photolithography has been optimized in order to approach the per-

fect bi-conical shape and obtain the same performance as the double-mask technology.

However, the final result seen on Fig. 5.5 indicates that there is still a significant dif-

ference between the top and the bottom hole geometries. The average diameter of the

bottom holes is 20 % larger than on the top layer. In addition, the bottom holes show

an over-etch of the polyimide of several micrometers. These variations will affect the

configuration of the electric field inside of the holes and induce different behaviors be-

tween the two production techniques. Moreover, the loss of the geometrical symmetry

with respect to the middle of the foil may induce different amplification characteristics

depending on the orientation of the foils in the detectors. These differences must be
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measured and understood in order to validate the single-mask technology for the GE1/1

project.

Figure 5.5: Microscopic view of a single-mask GEM cross-section (top), the top layer
(left) and the bottom layer (right).

5.3.3 A new stretching technique

Initially, for all the large GEM-based detectors, the tension of the GEM foils was based

on a thermo-stretching technique : the foils are attached to a Plexiglas frame which

expands when heated to 39 ◦C. The foils are then glued to the detector frame with

a spacer grid to ensure the uniformity of the various gaps in the chamber. The entire

process take several days and requires a special equipment for a proper stretching and

gluing of the foils. The thermo-stretching technique was validated with the successful

operation of two large chambers, however, the various gluing steps increase the risk of

contamination or damage of the foils during the assembly and prevent the re-opening

of the chambers after drying. With this technique, the use of spacer grids between the

GEMs is also necessary to maintain the uniformity of the detector performance but it

also creates dead regions (several %) where the particles cannot be detected. Moreover,

the glue in contact with the gas volume can possibly outgas contaminants and provokes

premature aging (see Sec. 7.4).

For all these reasons, a new stretching technique was developed in 2013 by the CERN

PCB workshop, in collaboration with the CMS GEM hardware group. The technique

is based on a fully mechanical self-stretching : the GEM foils are attached with screws

to an internal frame that can move inside of the chamber. This frame is then pulled

outward thanks to lateral screws going through brass pull-outs, which are fixed to the

drift and the readout boards (see Fig. 5.6 and Fig. 5.7). The lateral screws are tightened
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to about 0.1 Nm to ensure the stable tensioning of the large foils and the uniformity

of the gaps (without spacers). With this glue-free technique, it is therefore possible to

open the chambers at anytime to replace internal parts or to extract the GEM foils

for additional cleaning. This self-stretching technique was adopted after the second

generation of GE1/1 prototypes and was fully validated with more than ten working

detectors.

Figure 5.6: Cross-section of a single GE1/1 detector showing the main components
and the self-stretching structure.

Figure 5.7: Bottom left corner of a GE1/1 detector during the assembly showing the
self-stretching structure.

Six generations of GE1/1 prototypes were designed and produced by the CMS GEM

collaboration between 2009 and 2015 (Fig. 5.8), each new generation being a significant

improvement of the previous one. The final readout scheme with 24 readout sectors was

introduced at the 2nd generation and the mechanical stretching technique was imple-

mented from the 3rd generation. The next generations included the improvement of the

stretching structure, mechanics and the final positioning of the readout connectors. A

detailed description of the development of the GE1/1 prototypes can be found at [75].
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Figure 5.8: Six generations of GE1/1 prototypes assembled and tested by the CMS
GEM collaboration.

5.3.4 The readout electronics

Each GE1/1 detector contains 3072 readout strips. The strips are organized in groups

of 128 channels connected to 128-pins connectors distributed over the eight η-partitions.

In CMS, the readout strips will be connected to the VFAT3 front-end ASIC. The VFAT3

architecture is an upgrade of the VFAT2 already in use within the TOTEM experiment.

It consists of 128 channels, each one being made of a charge sensitive pre-amplifier, a

shaper and a constant fraction discriminator. The data, synchronized with the 40 MHz

LHC clock, is then splits into a first path with a fixed latency for trigger signals and a

second path, with a variable latency, for tracking data. The power, control and readout

of the VFAT3 is made via E-links through a multi-layer PCB placed on the readout

board and called GEM Electronic Board (GEB). All the links from the 24 readout

sectors concentrate to an Opto-Hybrid board (OH) that ensures the interface between

the front-end and the OFF-detector systems. The OH provides two optical paths, the

first is unidirectional and transfers the fixed latency trigger from the VFAT3 to the CSC

system. The second path, bidirectional, connects the OH and the back-end electronics

and is responsible for carrying the tracking and triggering data from the ASIC as well

as the configuration and the control commands (power supply, threshold and readout

settings).

The back-end electronics is based on the µTCA standard, recently developed for the

Telecom industry and adopted by CMS to replace the VME electronics. This technology

is compact and combines very high data throughput (2 Tbits/s) and high availability.

For the GEM application, the µTCA crate is equipped with eight Advanced Mezzanine

Cards (AMC) based on the Virtex 7 FPGA (MP7). The first Carrier Hub (MCH) slot is

occupied by a commercial MCH that provides a Gigabit Ethernet (GbE) communication
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for the Slow controls and the configuration signals. The second slot is reserved for a

CMS standard MCH module called AMC13 to interface the crate to the CMS DAQ

system and take care of the Trigger, Timing and Control (TTC) signals. Fig. 5.9 gives

an overview the GE1/1 electronics system and the main connections between the various

DAQ elements.

Figure 5.9: Overview of ths CMS GEM electronics system.

5.4 Conclusions

The CMS GEM Collaboration proposed a new design of triple-GEM detectors for the

CMS application. The so-called GE1/1 chambers were the first large detectors assembled

with single-mask GEM foils and a new stretching technique especially developed for this

application. Despite of the past experience with GEM-based detectors, the new concepts

introduced for the GE1/1 chambers must be fully validated and approved by the CMS

collaboration.

The first step consists of measuring the fundamental characteristics of the single-mask

GEM technology, evaluating the differences with the standard double-mask design and

measuring the detection performance of the large detectors. These studies have to

be performed for different configurations of gas mixture and electric fields in order to

propose several suitable options for the CMS application.

The second step is the study of the longevity of the GE1/1 detectors when operating

under high radiations. Aging tests have to be conducted in the CMS conditions and for

the different options of configuration. Additionally, the materials forming the detectors
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must be tested and validated to make sure they will not contaminate the gas mixture

and trigger premature aging.

Finally, it is necessary to establish a complete quality control of all the GE1/1 chambers

that will be installed in the CMS end-caps.
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Characterization of the GEM

technology for the GE1/1

application

6.1 Overview of the R&D phase

Even though the GEM technology was extensively studied in the past decade, the base

materials, the fabrication techniques and more generally the operating configuration have

evolved in the past few years to fulfil the requirements of the new HEP experiments.

One of the main goal of the Ph.D. work was to measure the fundamental characteristics

of the recent GEM detectors to demonstrate that the GE1/1 chambers can operate in

the CMS end-cap and offer the best performance.

The first part of the CMS GEM R&D program, presented in Sec. 6.2, shows the basic

properties of the single-mask GEM technology compared to the standard double-mask

foils. The second part of the R&D program , discussed in Sec. 6.4; aims to summarize the

various irradiation campaigns where several large chambers were irradiated by narrow

beams of high energy muons and mixed hadrons with the idea of extracting the detection

efficiency, time and space resolutions with MIPs.

6.2 Comparison between the single-mask and the double-

mask technologies

We discussed in Sec. 5.3.2 the standard double-mask production technique, its limitations

and the recent development of the single-mask technique that is necessary to produce
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large GEM foils. We’ve seen that the single-mask technique induces differences in the

geometry of the holes. In particular, it creates an asymmetry in the diameter of the

holes between the two GEM copper layers.

The goals of the characterization is to determine the differences between the two differ-

ent production techniques and measure the absolute characteristics of the single-mask

foils, which are used in the large GE1/1 detectors. We will discuss the study of the

effective gas gain, the energy response to an X-ray source, the short-term stability and

the typical behavior when irradiated by an intense flux of particles. Since most of these

parameters are governed by local phenomena, the measurements were performed with

small prototypes of triple-GEM detectors (10 × 10 cm2) for a better convenience but

without affecting the final results.

6.2.1 Description of the detectors under test

Two types of 10× 10 cm2 triple-GEM detectors were produced in order to compare the

characteristics of the single-mask and the standard double-mask GEMs. The detectors

were tested in the same conditions and following the same procedures.

6.2.1.1 Prototype with standard double-mask GEM foils

The chamber described in Fig. 6.1 contains three double-mask GEM foils with an active

area of 100 cm2. The gaps between the foils and the induction gap are 2 mm thick while

the drift gap is larger by 1 mm in order to increase the conversion efficiency with X-ray

photons. Even though this configuration slightly differs from the CMS configuration, it

facilitates the measurements without affecting significantly the results of the comparative

study. The drift electrode is a single piece of copper while the readout board consists of

256 copper strips with a pitch of 0.4 mm. However, for this application, all the strips are

physically connected together and terminate as one single output for the whole detector.

The drift and the three GEM foils are attached to the readout PCB with nylon screws.

The gas volume is closed thanks to the lateral epoxy frame and the cap PCB. Two

VITON O-rings are placed between the lateral frame and the PCBs to ensure the gas

tightness. The cap PCB has a large opening window covered with a thin Kapton layer

to make sure that the low energy photons can penetrate the drift volume.

The various electrodes of the detector are powered with a HV divider that provides

the appropriate voltages for a safe operation. The electric field configuration, at the

nominal voltage 4400 V applied on the divider, is shown in Tab. 4.2. A detailed study

on the electric field configuration for general purpose detectors can be found at [76].
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Figure 6.1: Schematic view of the double-mask chamber showing the GEM configu-
ration and the HV divider.

Additionally, several 1 MΩ protection resistances are placed between the divider and

the top of each GEM foil in order to restrict the current flowing through the foils in case

of a discharge and to stop its propagation.

6.2.1.2 Prototype with single-mask GEM foils

Because of the asymmetry of the single-mask foils, it is necessary to test the character-

istics of the triple-GEM detector for the two orientations of the foils.

A special detector with three single-mask GEM foils was designed with the idea of testing

the two orientations without opening the chamber, the three foils being always oriented

in the same way. In the orientation ”A”, the copper layer with the larger holes is facing

the drift board (i.e. the radioactive source) while in orientation ”B”, the large holes are

facing the readout board (Fig. 6.2).

Figure 6.2: Schematic representation of the GEM foils orientation in the configuration
A and B.
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As shown in Fig. 6.3, for the orientation A, GEM 1 is facing the single drift electrode

whereas GEM 3 is facing the readout electrode, which consists a single piece of copper.

The drift gap was reduced to 2 mm to ensure the gap configuration remains the same

when changing the orientation of the chamber. The divider was also modified so that

the drift field in the 2 mm gap is identical to the standard field in a 3 mm gap.

In the orientation B, the HV circuit is simply inverted to power the previous readout

electrode as the new drift. The voltages applied to the GEM stack are also inverted and

the previous drift in orientation A is used as the readout electrode in B. The previous

readout PCB was replaced by a cap PCB with a thin Kapton window to make possible

the irradiation from the bottom.

Figure 6.3: Schematic view of the symmetric prototype showing the GEM configura-
tion and the HV divider.

6.2.2 Study of the effective gas gain

The effective gas gain is the central parameter of a triple-GEM detector. It describes

the geometrical and the electrical characteristics together with the gas composition. It

is driven by several parameters:

• The amplification factors of the three GEM layers, which depends on the geometry

of the foils and the electric field inside of the holes. The combination of the three

amplification factors defines the absolute gain of the detector.

• The fraction of electrons lost by recombination with ions or by attachment to

neutral molecules, which depend on the gas composition and the electric fields

between the GEMs.
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• The loss of electrons on the GEM electrodes. This last item is the main reason

why the effective gain is lower than the absolute gain. It strongly depends on the

electric fields outside of the GEM holes. When the above electric field is greater

that ∼ 3 kV/cm, some of the electrons cannot reach the GEM holes and terminate

on the top copper layer. This fraction increases when increasing the strength of

the field. The ratio between the number of electrons that enter the holes and

the number of electrons lost on the copper is known as the collection efficiency.

Similarly, when the electric field below the GEM hole is low, some of the electrons

cannot be extracted from the holes and are lost on the bottom copper layer. The

ratio between the electrons exiting the holes and the ones lost on the copper is

the extraction efficiency. The combination of the collection and the extraction

efficiencies defines the electron transparency of the GEM foil. The transparency

is a function of the electric fields above and below the GEM, but also depends on

the internal electric field and the diameters of the holes. A detailed study of these

effects can be found at [76].

Thereby, the effective gain is a unique parameter used to relate the general properties

of a detector and to compare the operation of different chambers.

The effective gain was measured in Ar/CO2 (70 : 30) by comparing the primary current,

deposited in the drift region by a mono-energetic X-ray source, and the amplified current

induced on the readout board. The detectors were irradiated by a 55Fe isotope producing

photons with an average energy of 5.9 keV that fully convert into the drift gap via photo-

electric effect.

Even at interaction rates of the order of the kHz, the primary current doesn’t exceed

several tens of fA. It is therefore very challenging to measure it directly, especially since

it should be collected from the drift plane or from the first GEM, which are set to HV

and thus subject to noise. To overcome this issue, we measure the interaction rate R

by counting the number of pulses induced by particles. To do so, the bottom of the

last GEM foil is connected to an ORTEC pre-amplifier through a 500 pF capacitance in

order to de-couple the line from the HV. The analog pulses are sent to a discriminator

to generate digital signals that are counted by a scaler unit. Then, knowing the average

ionization energy of the gaseous medium, we calculate the number of primary electrons

nT per incoming particles:

nT = ∆E ×
[

0.7

Wi(Ar)
+

0.3

Wi(CO2)

]

= 5900×
[

0.7

26
+

0.3

33

]

≈ 212 (6.1)
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where Wi(Ar) and Wi(CO2) are the effective average energies to produce one electron-

ion pair in Ar and CO2. Finally, we determine the primary current by multiplying the

particle rate, the number of electrons per photon and the elementary charge.

The measurement of the amplified current is easier since it varies from 10−10 to 10−8 A

depending on the voltage applied on the divider. In this condition, the amplified current

Ia is simply readout with a KEITHLEY 6487 pico-ammeter connected to the anode.

Finally, the effective gain G is given by:

G =
Ia

R× nT × e
(6.2)

Fig. 6.4 shows a picture of the typical setup for gain measurement. The detector and

the readout elements are shielded with copper plates to minimize the electronic noise

and its contribution to the measurements.

Figure 6.4: Picture of the gain calibration setup with the detector and the various
readout elements.

The curves shown on Fig. 6.6 are obtained by measuring the effective gain at different

operating points represented by the value of the current flowing through the HV divider.

The plot shows the gain curves in Ar/CO2 (70 : 30) of the double-mask GEM detector

and the single-mask prototype for both orientations. The right axis corresponds to the

ratio between the gains of the two single-mask orientations. Additionally, the pulse

height distribution was measured for every operating points in order to double check

the gain variations and to confirm the good operation of the detector. Fig. 6.5 shows

the typical distribution of 55Fe in Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 : 15 : 40),

calibrated in energy.
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Figure 6.5: Energy distribution of the 55Fe source in Ar/CO2 (70 : 30) (blue) and
Ar/CO2/CF4 (45 : 15 : 40) (red) showing the main photo-peak and the argon escape

peak.

Figure 6.6: Gain calibration of the double-mask detector and the two orientations
of the single-mask chamber in Ar/CO2 (70 : 30). The detectors were irradiated by a
55Fe source with an interaction rate of 1.6 kHz. The ratio between the gains of the two

single-mask orientations is shown on the right axis.

The results clearly indicate that the effective gain of the double-mask GEM detector

is identical to the single-mask orientation A while the single-mask configuration in the

orientation B has an effective gain higher by a factor ∼ 3.6. In the three cases, the

potential applied on the electrodes of the detectors are identical, which means that the

drift, the transfer and the induction fields are identical. However, the amplification and

the transparency of the GEM foils can be different and thus induce the difference of

effective gains. Two main hypothesis can be formulated:
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• The absolute gain is lower in the single-mask configurations because of the larger

holes on one side of the GEM foils. In this region, the electric field lines are de-

focused, resulting in a lower electric field and thus a lower amplification. However,

in the orientation A, the loss of amplification is compensated by the increase of

the collection efficiency due to the larger entrance holes. In this orientation, the

extraction efficiency is identical to the double-mask detector since the exit holes are

identical. As a result, the effective gain is similar to the double-mask configuration.

In the orientation B, the collection efficiency is similar to the double-mask detector

because the entrance holes are identical. But the extraction efficiency is higher

because of the larger exit holes. Looking at the results, it seems that this effect

not only compensates the loss of amplification, but dominates it, resulting in an

increasing of the effective gain.

• Since the potentials applied on the GEMs are identical in all the configurations,

the absolute gains are also identical. In the orientation A, the increase of the holes

diameter on the entrance of the GEM does not affect the collection efficiency that

is already close to the maximum value. The extraction efficiency is not affected

either since the exit holes are identical to the double-mask detector. At the end,

the effective gain is identical to the double-mask configuration. In the orientation

B, the extraction efficiency if higher due to the larger exit holes. As a result, the

effective gain is larger than with the double-mask configuration.

Other hypothesis could explain this behavior, including the variations of the electric field

distribution inside of the single-mask holes and their effects on the amplification and

the transparency of the foils. In any cases, the measurements show that the extraction

efficiency plays a major role in the effective gain and dominates the other effects.

The difference of gain between the two single-mask orientations is particularly interesting

for the GE1/1 application: for a given voltage applied to the chambers, the orientation

B gives the highest gain, i.e. better detection performance. The orientation A would

require higher voltage to reach the same performance, which means an operating point

slightly closer to the electrical breakdown of the detector.

6.2.3 Short-term stability : charging up effect

The gain stability of a triple-GEM detector can be affected by two phenomena: the

polarization and the radiation effects: the polarization, which describes the movement

of the charges inside of the polyimide layer, is independent from the charge deposited by

particles and becomes stable several hours after the detector was powered ON [77]. The
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radiation effects occur during the amplification. They are mostly due to the attachment

free charges to the surface of the polyimide in the holes. Because of the high resistivity

of the polyimide, the charges accumulate on the walls until the equilibrium condition is

reached. This effect strongly depends on the amount of charge crossing the holes per

unit time and the geometry of the GEM. The amplitude and the stabilization time are

thus related to the interaction rate, the primary charge and the gain of the detector [76].

Moreover, the time needed to evacuate the attached charges is directly driven by the

surface conductivity of the polyimide that is affected by the relative humidity of the gas

mixture.

Because of all these dependencies, the measurement of the charging-up effect requires a

very well controlled environment and a clearly defined procedure. As seen on Fig. 6.7,

the detectors are thermally insulated from the laboratory environment in order to reduce

the temperature fluctuations that can affect the gas gain. The chambers are also covered

with copper foils to reduce the electronic noise and minimize the water transfer through

the Kapton windows. The entire gas system is made of stainless steel for the same reason.

Ambient pressure, temperature and relative humidity are continuously monitored during

the test thanks to a Meteo-station. The chambers are flushed with the standard gas

mixture Ar/CO2 (70 : 30) and irradiated by a constant source of 55Fe with an interaction

rate of 1.1 kHz.

Figure 6.7: Picture of the charging-up setup showing the thermal insulation of the
detector and the readout electronics.

The chambers, as well as the readout electronics, are switched ON several days before

the beginning of the test to avoid polarization fluctuations and a possible instability

of the electronics modules. The gas gain is initially set to 2 × 104, close to the CMS

operating conditions. After placing the radioactive source on top the detector window,

the readout current and the pulse-height distribution are recorded every minute for a
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total testing duration of several hours until the detector is stable. Moreover, since the

charging-up is a local phenomenon, a gain scan is performed before and after the test

to disentangle the global and the local gain fluctuations. An example of the comparison

between the initial and final gain scans on the double-mask detector is shown on Fig. 6.9.

The source was placed in position 2 for 2.5 hours. After removing the environmental

fluctuations, the gain in the positions that were not irradiated is identical to the initial

value while the gain in the irradiated region has increase by several tens of percent.

Fig. 6.8 shows the results of the charging-up measurement for the double-mask technol-

ogy and the two single-mask orientations.

Figure 6.8: Charging-up curves of the double-mask triple-GEM detector and both
orientations of the single-mask chamber. The detectors are irradiated by an 55Fe

source with an interaction rate of 1.1 kHz.

Figure 6.9: Comparison between the initial and final gain scans for the charging-up
measurement of the double-mask foils. The detector was irradiated in position 2 by an

55Fe source with an interaction rate of 1.1 kHz.

The single-mask orientation A and the double-mask geometries have again similar be-

haviors while the result obtained with the orientation B is highly different, with gain
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variations of the opposite polarity and with a lower amplitude. This observation con-

firms that the charging up strongly depends on the geometry of the holes, as discussed

in [76], in particular on the lower region near the exit holes.

In the same operating conditions, the single-mask orientation B seems to be more appro-

priate for the GE1/1 application since the amplitude of the charging and the stabilization

time are significantly lower compared to the other configurations.

6.2.4 Rate capability

The MPGD technologies were mainly introduced and developed in response to the lim-

ited rate capability of the MWPC: at interaction fluxes higher than several kHz/mm2,

the space-charge density provokes a local perturbation of the electric field that lead to

a drop of gain (see Fig. 4.21). By reducing the size of the amplifying structure to the

microscopic scale, the time necessary to evacuate the avalanche ions is reduced to the

sub-microsecond scale, reducing therefore the space-charge effects. In the particular case

of the triple-GEM technology, we can distinguish three different regions depending on

the incoming flux of particles [78]:

• At fluxes up to 104 Hz/mm2, the space-charge does not affect the electric field in

the holes or in the transfer regions and the effective gain remains constant.

• At particle fluxes between 104 and 105 Hz/mm2, the ion space-charge in the trans-

fer regions tends to decrease the electric field near the top of the GEM foils and

increase it near the bottom holes. As a result, the electron collection and extraction

efficiencies increase, as well as the effective gain.

• At even higher fluxes (105 − 106 Hz/mm2), the ion extraction decreases, inducing

the accumulation of ions in front of the holes. Therefore, the amplification field

decreases while the probability of electron-ion recombination increases, resulting

in a drop of the effective gain.

These phenomena are mostly driven by the transparency of the GEM foils. Therefore,

the rate capability may be affected by the variations of hole geometry induced by the

single-mask production technique.

In order to measure the rate capability of both double-mask and single-mask GEMs, the

detectors were irradiated with a very intense X-ray source, providing 23 keV photons

with adjustable fluxes up to 106 Hz/mm2 (Fig. 6.10). In order to measure the effective

gain as a function of the particle flux, the amplified current was measured at different
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operating point of the X-ray source thanks to a pico-ammeter connected to the anode of

the detector. However, it was impossible to measure the interaction rate and the primary

current since the signal pulses passing through the pre-amplification stage overlap in time

at rates higher than 30 kHz. A solution consisted of measuring the interaction rate with

copper attenuators. Then, knowing the attenuation factor, we can extrapolate the real

interaction rate without attenuation. Fig. 6.11 shows the extrapolated and the measured

interaction rates for different configurations of the X-ray source. Finally, the interaction

rate is divided by the irradiated surface to obtain the interaction flux.

Figure 6.10: Picture of the rate capability setup showing the X-ray source and the
readout electronics.

Figure 6.11: Interaction rate as a function of the X-ray source supply current. While
the measured data show the pile-up effect from 30 kHz, the extrapolated rate, based
on the highest attenuation configuration, gives the real interaction rate in the detector.
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The rate capability with X-ray photons was measured with the double-mask and single-

mask detectors in Ar/CO2 (70 : 30) with an initial gain of 2.2× 104. The data points,

normalized with the initial gain, are presented in Fig. 6.12.

Figure 6.12: Rate capability of a triple-GEM detector in the double-mask and the
two single-mask configurations. For each point, the gain is normalized with the absolute

value 2.2× 104.

The results indicate that even with larger entrance holes, the rise of the gain in the

orientation A is identical to the double-mask configuration. This means that the increase

of the collection efficiency caused by the ion space-charge is negligible and the rising of

the gain is dominated by the increase of the extraction efficiency. It is confirmed in the

orientation B, where the extraction efficiency is already closer to the maximum value

because of larger exit holes. The increase of the effective gain due to the space-charge

is thus reduced compared to the other configurations. Then, the drop of the effective

gain, which mostly relates on the amplification field and the electron-ion recombination,

occurs at fluxes around 3− 5× 105 Hz/mm2 for the three configurations.

This last comparison test highlighted the role of the extraction efficiency for the rate

capability. It confirmed once again the similitude between the single-mask orientation

A and the double-mask configuration and the different characteristics of the single-mask

orientation B.

However, the maximum flux expected in the CMS end-caps will not exceed 10 kHz/cm2,

far below the region where the effective gain starts rising. Therefore, the effective gain

is expected to be constant and the differences between the two single-mask and the

double-mask configurations should not be relevant. In order to confirm this statement,

the rate capability was measured with a full-size GE1/1 detector in the CMS GEM

configuration (given in Tab. 5.2) with the GEM foils in the orientation B. The test was
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restricted to the low fluxes region in order to match the real CMS conditions. Fig. 6.13

shows that the effective gain remains stable up to 500 kHz/cm2. Since the space-charge

effect also depends on the primary charge, a dashed line is added to indicate the photon

flux equivalent to the MIP flux of 10 kHz/cm2 expected in CMS after the LS3 upgrade.

Figure 6.13: Rate capability of a GE1/1 detector in Ar/CO2/CF4 (45 : 15 : 40)
irradiated with 23 keV photons. The dashed line indicates the MIP equivalent flux

expected in the CMS end-caps during phase 2.

6.2.5 Conclusions

The geometrical differences induced by the single-mask production technique affect the

operation of the triple-GEM detector. However, in the orientation A, the increase of

the collection efficiency seems to have a negligible impact on the characteristics of the

detectors, either because it is already close to the maximum with the standard hole

diameter, or because the differences are compensated by other effects like the reduction

of the amplification in the holes. On the contrary, in the orientation B, the increase

of the extraction efficiency clearly improves the operation of the chamber. Generally

speaking, for the same operating conditions, the orientation B has a higher effective

gain that is more stable in time and less affected by high fluxes of particles.

Several hypothesis were formulated to explain the results of this study but the full

understanding of the situation would require additional measurements supported by the

simulation. One interesting option would consist of measuring the characteristics of the

two single-mask orientations while changing the various transfer and amplification fields

independently and measuring simultaneously the charge collected on all the electrodes

of the detectors. In this way it would be possible to better define the transparency of

the foils and how it is affected by the variations of the electric fields.
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Nevertheless, this study demonstrated the capability of the single-mask triple-GEM de-

tectors to operate in the CMS environment. It also demonstrated that the orientation B

offers a higher gain, a better stability and is therefore the most appropriate configuration

for the GE1/1 application.

6.3 Evaluation of the discharge probability at high flux

As for all the MPGD technologies, the triple-GEM detectors have to operate at a suf-

ficiently high gain to ensure the maximum detection efficiency and, for the CMS ap-

plication, good time performance. However, in the case of very intense particle fluxes

or heavily ionizing trails, operating at high gain increases the probability of producing

discharges that can seriously damage the detectors. Discharges initiate when the am-

plification factor exceed the Raether limit (Sec. 4.3.1). The resulting local perturbation

of the electric field can transform the avalanche into a streamer (Sec. 4.17) that can

propagate in both directions toward the GEM electrodes and provokes the electrical

breakdown of the gas.

Triple-GEM detectors have two main benefits compared to other MPGDs. First, the

discharge probability is significantly reduced because of the sharing the gain on several

amplification layers. The overall gain can reach values up to 105 while each single layer

is kept far from the electrical breakdown. Secondly, since the various amplification

structures are independent from the readout plane, it is possible to stop the propagation

of a streamer before further amplification and before it reaches the readout electronics.

Therefore, a discharge may induce a large signal on the readout board but it won’t

damage the detector.

The CMS GEM detectors follow the recommendations given from the past studies [69]

to prevent the production of discharges and their propagation. The three amplification

layers are set to a different gain by offsetting the voltage across the GEM foils. Therefore,

the voltage across GEM 1 is 3 % higher than on GEM 2, itself 5 % higher than GEM 3.

This configuration ensures the lowest discharge probability even for a total gain of several

105. Moreover, the GEM electrodes facing the drift plane are divided in several sectors,

each sector being restricted to 100 cm2 in order to limit the available electrostatic charge

and thus the maximum energy of the discharges. The sectors are connected to the HV

divider via 10 MΩ protection resistances. In the case of a discharge, the current flowing

through the resistance will induce a voltage drop on the top electrode and prevent the

propagation of the discharge.
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6.3.1 Description of the setup

In order to validate CMS GEM configuration, the discharge probability was tested with a

small triple-GEM detector in the CMS operating conditions. The gap configuration and

the corresponding electric fields at the nominal voltage 4250 V are described in Tab. 5.2.

Since the discharge probability of a triple-GEM detector is very low at the normal CMS

operation (< 10−10), the gain was set to the extreme values 3− 6×105 and the detector

was irradiated by heavily ionizing α-particles. These extreme operating conditions are

not realistic but help to measure the discharge probability in a reasonable time. Then,

the real probability in normal conditions is extrapolated by following its exponential

behavior with the effective gain. The detector under test, shown on Fig. 6.14, has a

special 3.14 mm2 opening in the Kapton window and the drift plane to make sure the

5.6 MeV α from an 241Am source can penetrate the drift volume. The gas volume is

closed thanks to a 2 µm-thick Mylar window.

The signals induced by discharges were identified through three different readout sys-

tems: over-current from the HV power supply; fast fluctuations of the anode current;

large signals induced on the last GEM foil. However, the integration time of the I/V

monitoring unit and the pico-ammeter did not allow identifying some of the fast and

low-energetic discharges. The most reliable method consisted of counting the number

of events inducing pulses simultaneously on the bottom of the last GEM and on the

readout. Normal events induce pulses with opposite polarities while discharge pulses

temporarily affect the stability of the electrodes and induce large signals with the same

polarity.

Figure 6.14: Schematic view of the triple-GEM prototype for the discharge probability
test. The gap configuration and the electric fields are set to the CMS configuration.
The 3.14 mm2 opening in the drift board and the Kapton window allows the α-particles

to penetrate the drift volume with a direction perpendicular to the GEM foils.
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6.3.2 Results and conclusions

The results of the discharge probability test in Ar/CO2 (70 : 30) are shown on Fig. 6.15

for different values of effective gain. The exponential fit is extended to the lower gain

values to estimate the probability in realistic conditions. At a gas gain of 4 × 105, one

discharge occurs every 105 heavily ionizing events. The probability increases exponen-

tially to 10−3 at a gain of 6 × 105. By extrapolating this trend to an effective gain of

1−2×104, the discharge probability is estimated to 10−10. However, one should consider

that with 5.6 MeV alphas arriving perpendicular to the detector, a very large primary

charge is deposited in the chamber and drift toward few holes. In the case of a MIP,

since the primary charge is almost two orders of magnitude lower than for an α-particle,

the probability of triggering a streamer is expected to be lower than 10−12.

Figure 6.15: Discharge probability of a triple-GEM detector in the CMS configura-
tion. The realistic operating conditions for the CMS application are indicated by the

green region.

Despite of the very low discharge probability, the detector accumulated a total of 450

discharges over 1 cm2 during the entire study. Gain calibrations were performed before

and after the test in order to identify a possible degradation of the GEM foils in the irra-

diated areas. As seen in Fig. 6.16, the effective gain was not affected by the discharges,

nor the energy response of the detector. Nevertheless, the detector was opened so that

the GEM foils could be observed with a microscope (Fig. 6.17). In the region irradiated

by the α-particle, the bottom electrode of each GEM is covered with a thin layer of

copper oxide, except near the edge of the holes where we see shiny copper rims. The

effect seems to be due to superficial copper etching in the region where the streamers are

terminated and where most of the charges are collected. Similar effects were observed

with the large GE1/1 chamber that experienced accidental discharges after an aging test
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(see Sec. 7.3.3.2). However, in both cases the experiment shows that this phenomenon

doesn’t affect the general operation and the performance of the triple-GEM detectors.

Figure 6.16: Comparison of the effective gain before and after the discharge proba-
bility study, in the position where the GEMs were irradiated by the 241Am source (left)
and the typical 55Fe energy spectrum collected after the 450 discharges at a gas gain

of 104.

Figure 6.17: Microscopic views of the bottom layers of the three GEM foils after a
total of 450 discharges accumulated.

At CMS, the GE1/1 detectors will be operating during 10 years with a maximum particle

flux of the order of 1 kHz/cm2, which means a total rate of 4.1× 106 Hz over the entire

surface of the detectors. Considering that the LHC will operate continuously during

6× 107 s (10 years), the total number of particles seen by one detector during its entire

lifetime will approach 2.5 × 1014. Therefore, the total number of discharges expected

after 10 years of operation is expected to be of the order of 250 over the entire surface of

the detector. As discussed in this section, the discharges will not damage the detector
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but simply induce a dead time of several milliseconds before the detector resumes the

normal operation.

6.4 Detection performance of the GE1/1 detectors

The second phase of the CMS GEM R&D program consists of measuring the typical

response of the GE1/1 chambers with MIPs in different configurations of gas mixture,

power supply and with different electronics systems. The measurements were conducted

during several irradiation campaigns at CERN or at Fermilab, often called ”test beam”.

The goal was to demonstrate that the GE1/1 detectors fulfill the CMS requirements,

especially in term of efficiency, spatial and time resolutions. It was also the opportunity

to test the first prototypes of the final readout electronics foreseen for CMS.

Six generations of GE1/1 prototypes were produced, calibrated in laboratory and tested

in test beam. After the generation II, the modifications between the generations didn’t

aim to improve the performance of the detector but to optimize the scheme of the readout

board, the stretching technique and more generally to adapt the GE1/1 structure to the

CMS environment. Therefore, the irradiation campaigns were also necessary to confirm

that the modifications between the generations didn’t affect the detection performance.

The study of the GE1/1 operation in magnetic fields was conducted during the early

stages of the project. The experimental setup and the results were published in [79] and

discussed in details in [75].

6.4.1 Gain calibration with different gas mixtures

The first step consists of calibrating the effective gain of the detectors before any irra-

diation test with the two CMS gas mixtures Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 :

15 : 40). Because of the possible non-uniformity of the gain, all the sectors that are

going to be tested are calibrated. This operation is crucial to understand the general

behavior of the chambers and to determine the appropriate operating points for the test

beam period. The testing procedure is identical to the gain measurement discussed in

Sec. 6.2.2. Since the GE1/1 detectors are closed with a thick layer of PCB, the low

energy photons cannot penetrate the gas volume so the 55Fe source was replaced by an

X-ray tube with a silver target emitting 23 keV photons. Most of these photons converts

in the drift electrode, which de-excites by fluorescence, emitting the characteristic 8.9

keV copper X-rays. Then the photons fully convert in the gas volume via photoelectric

effect. Additional background is also observed, decreasing from lowest energies to the
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energy corresponding to the voltage applied on the X-ray tube, as shown on Fig. 6.18 .

This effect is mainly due the Bremsstrahlung of electrons penetrating the silver target,

resulting in the emission of radiations with a large energy distribution.

Figure 6.18: Typical energy distribution of the silver X-ray source in Ar/CO2 (70 :
30) (blue) and Ar/CO2/CF4 (45 : 15 : 40) (red).

Fig. 6.19 shows the gain curves of all the GE1/1 generations for both CMS gas mixtures.

The HV configuration, given in Tab. 5.2, was implemented after the second generation in

order to optimize the electric fields distribution and to ensure the best time resolution.

As a result, the gain of the two first generations differs from the other chambers. The

effective gains of the generations III, V and V I are identical while the gain of the

generation IV , represented by the blue curves, is lower by a factor 3 − 4. Because of

technical constraints, the GEM foils in the generation IV are inverted. Since the foils are

produced by single-mask technique, the gain difference can therefore be explained by the

geometrical asymmetry of the GEM holes. Using the definition discussed in Sec. 6.2.2,

the detectors of the generation ”IV” are in the single-mask configuration A while the

other generations are in the configuration B.

6.4.2 Description of the irradiation campaigns

After being calibrated in laboratory, all the generations were tested in beam facilities

such as the H2, H8 and H4 lines at the CERN SPS North Area and at the Fermilab

Test Beam Facility (FTBF) in USA. At CERN, the beam is initially extracted from the

SPS accelerator and can be converted to a muon, electron or mixed hadron beam after

the secondary target, with momenta up to 400 GeV/c.

The test setups were similar for all the test beam periods. The beam particles were

selected by means of three scintillators placed in coincidence. The beam trajectories were

reconstructed thanks to a tracking telescope made of three small triple-GEM detectors

with a two-directions strips readout plane. An aluminum structure holding one or several
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Figure 6.19: Gain curves of GE1/1 detectors in Ar/CO2 (70 : 30) (diamonds) and
Ar/CO2/CF4 (45 : 15 : 40) (circles) as functions of the current flowing through the HV

divider.

GE1/1 chambers was placed in front the tracking telescope. The whole structure was

mounted on a movable platform enabling the translations in φ and η directions in order

to align the beam with different GE1/1 readout sector. Fig. 6.20 shows the typical setup

used in the various beam test campaigns in 2010 [80], 2011 [79], 2012 [81], 2014 and 2015.

In 2013, the first GE1/1chamber assembled outside CERN, at the FIT institute, was

tested at Fermilab with a 32 GeV mixed hadron beam, using a similar setup [82].

The analog pulses from the three plastic organic scintillators, named S1, S2 and S3, are

converted into digital gates after discriminator units and put in coincidence before being

sent to the other DAQ systems (Fig. 6.21). The delays between the signals are adjusted

to ensure that the time resolution of the trigger system is below 400 ps. At the CERN

irradiation facility, the tracking telescope, initially designed by the RD51 collaboration,

was equipped with the digital chips VFAT2 [83] [84], which provides a binary output

with a variable latency for the position information and a fixed latency output, called

SBIT , for the timing information. The GE1/1 chambers were mainly readout with

the same system, however, the first and second versions of the CMS GEM electronics,

described in Sec. 5.3.4, were also used to readout the detectors during the 2014 and 2015

irradiation campaigns. At Fermilab, the detectors were instrumented with analog APV

chips and the RD51 Scalable Readout System (SRS) [85] [86]. With the APV+SRS

system, the analog shape of the particle signals are sampled at a frequency of 40 MHz

over a time period of 200−400 ns after the reception of the external trigger. A threshold

was applied to the analog pulses to emulate the VFAT response (OFF-line) so that the

results of this particular test can be compared to the other test beam periods.
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Figure 6.20: Perspective view of the typical experimental setup for performance mea-
surement in test beam. The tracking telescope is made of three triple-GEM detectors
with two orthogonal directions readout. The trigger system is ensured thanks to three
scintillators connected in coincidence. The GE1/1 detectors under test are mounted

onto a movable support to align various readout sectors with the beam line.

Figure 6.21: Schematic view of the trigger generation and timing DAQ systems.

6.4.3 Detection efficiency

The detection efficiency ε represents the probability to record an electrical signal when

a particle is crossing the detector. It is evaluated by comparing the number of triggers

N generated by the coincidence of the three scintillators and the number of hits N1

recorded in the region under test. The number of hits of the neighboring regions N2 is

removed from the total number of triggers to compensate the scattering of particles and

a possible misalignment of the region under test with the scintillator planes:
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ε =
N1

N −N2
(6.3)

Another method, more accurate, consists of comparing the number of reconstructed

tracks with the number of hits measured in the detector in the close neighborhood of

the expected hit position.

Figure 6.22: Left: detection efficiency of a GE1/1 detector in Ar/CO2 (70 : 30)
measured at Fermilab with the analog SRS APV readout system. The VFAT-like binary
hit data are obtained by applying thresholds of 0.8 fC, 0.98 fC and 1.2 fC equivalent to
10, 12 and 15 VFAT units. Right: detection efficiency in Ar/CO2/CF4 (45 : 15 : 40)

measured at CERN with the binary TURBO VFAT readout system.

As shown on Fig. 6.22, the efficiency of the GE1/1 detectors was measured for the

two CMS gas mixtures Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 : 15 : 40) at different

operating points. A large plateau is reached at effective gains of 6 − 7 × 103 with an

average efficiency over 97 %. During the CERN campaign in 2012 (right plot), the

measurements did not include the neighbor regions. Therefore, the maximum efficiency

was slightly underestimated (> 95 %). Finally, by using a simple combination method,

we can expect the detection efficiency of a super-chamber to be 99.9 % (i.e. one detection

layer records the hit out of the two layers).

6.4.4 Spatial and angular resolutions

The space resolution relates to the accuracy in measuring the position of the particle

hits on the readout board. It is therefore a crucial property that refer to the muon

track reconstruction in the CMS muon system. The space resolution is measured by

evaluating the difference between the expected hit positions (i.e. where the tracks impact

the detector) and the measured positions, called residuals.

The first step is the software alignment of the detectors, done by translating and rotat-

ing all the detection layers with respect to a reference chamber until the offset between
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the mean of the hit distribution and the origin is minimized. The tracks are then re-

constructed using the tracking telescope only (exclusive) or the tracking telescope and

the detector under test (inclusive). In the exclusive method, the tracks are extrapo-

lated to the detector region to give the expected position and therefore the residuals.

However with this method, the resolution of the measurement is degraded because of

the convolution between the intrinsic resolution of the detector and the uncertainty in

the tracks extrapolation. With the inclusive method, this uncertainty is removed but

the intrinsic resolution is underestimated since the hits in the detector under test also

affect the track reconstruction. A good approximation of the intrinsic resolution can

be obtained by taking the geometrical mean of both exclusive and inclusive solutions

[87],[88]:

σresolution =
√
σinclusive × σexclusive (6.4)

The exclusive residual distribution measured in the central sector of GE1/1 detectors

operating in Ar/CO2/CF4 (45 : 15 : 40) is shown on Fig. 6.23 (top). The width of this

distribution in Cartesian coordinates is σ = 268.8± 2 µm in the azimuthal φ̂ direction.

In the polar coordinate system, more appropriate for trapezoidal chambers, the residuals

deviation becomes σ = 137 ± 1 µrad. This value was measured with a strip pitch of

455 µrad (0.88 mm in the φ̂ direction) and is very close to the expected resolution:

σresolution =
strip pitch

√
12

=
455
√
12

= 131 µrad (6.5)

At Fermilab, both exclusive and inclusive residuals were measured with a GE1/1 detector

operating in Ar/CO2 (70 : 30) (Fig. 6.23 - bottom). The angular resolution, calculated

from Equ. (6.4) was estimated to 132 µrad and is fully compatible with the previous

measurements at CERN and well below the minimal precision of 300 µrad required to

significantly improve the angular muon position measurement in CMS.
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Figure 6.23: Top: exclusive residuals distribution in Cartesian coordinates (x, y) for a
central sector of a GE1/1 detector operating with Ar/CO2/CF4 (45 : 15 : 40). Bottom
: exclusive (left) and inclusive (right) residuals distribution in polar coordinates (r,φ)

for a GE1/1 detector operating in Ar/CO2 (70 : 30).

6.4.5 Time resolution

The good time resolution of the GE1/1 detectors is essential to ensure a fast triggering

system in CMS with the correct bunch crossing (BX) identification. It is defined as the

standard deviation of the time distribution of the recorded events, the time reference

being the moment when the particles cross the drift volume. The time period between

the reference time and the detection of the amplified signal, defined as the arrival time,

can fluctuate mostly because the distance between the last primary cluster (i.e. the rising

edge of the signal) and the first GEM varies from one event to another. The charges

then follow the same path after crossing the first GEM. However, the diffusion of the

signals between the amplification layers can also induce time variations and participate

to the degradation of the time resolution. Therefore, the addition of a fast gas molecule

with a low diffusion coefficient and high number of primary clusters per unit length,

such as CF4, can significantly reduce the time fluctuations and thus improve the time

resolution (see Tab. 4.1).
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The time resolution was initially estimated by measuring the time distance between the

trigger signals and the detection of the hits in the chambers. Do to so, the coincidence of

the three scintillators is sent to the common stop input of a CAEN V775 Time to Digital

Converter unit (TDC). The fixed latency output of each detector under test, also called

the SBIT signal, is sent to one of the inputs of the same TDC module (see Fig. 6.21).

For each event, the time distance between these two digital signals is determined by the

TDC and collected via optical fiber. The time resolution of the detector corresponds

to the width of the resulting time distribution. However, since the DAQ electronics

only reacts on the leading edge of a 40 MHz common clock, the random position of the

trigger with respect to the clock also induces time fluctuations that sum up with the

fluctuations due to the detector. Fig. 6.24 shows a schematic view of the DAQ system

for timing measurements and the different contributions to the time distribution.

Figure 6.24: Schematic representation of the timing DAQ showing the different con-
tributions to the delay between the trigger signal and the SBIT from the GE1/1

chamber.

The fluctuations induced by the clock are equivalent to the convolution of the intrinsic

time distribution with a 25 ns square function. The effects of this convolution is rep-

resented on Fig. 6.25 (simulation). Several Gaussians were generated with initial RMS

from 2 to 20 ns and convoluted with a 25 ns gate. After adding random noise fluctu-

ations, the resulting distribution was deconvoluted. The RMS of both convoluted and

deconvoluted signals were compared to the initial RMS. This quantitative study clearly

demonstrates that the clock effects significantly affect the time resolution measurements.

In particular, for intrinsic resolutions between 4 and 5 ns (i.e. the expected values for

GE1/1 detectors), the measured RMS is almost two times bigger than the real expected
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value. Therefore, it is necessary to perform the deconvolution of the measured time

distribution in order to obtain a good approximation of the intrinsic time resolution.

Figure 6.25: Comparison of the RMS of a Gaussian convoluted with a 25 ns square
function and the RMS of the corresponding deconvoluted signal after the addition of

random noise. The RMS are normalized with the original RMS.

Fig. 6.26 shows the deconvoluted time resolution as a function of the drift electric field

for a triple-GEM detector in the GE1/1 configuration. The chamber was irradiated by

150 GeV muons at the CERN irradiation facility. The Ar/CO2/CF4 (45 : 15 : 40)

mixture gives a resolution as good as 4 ns [75].

Figure 6.26: Time resolution of GE1/1 detectors operating in Ar/CO2 (70 : 30) and
Ar/CO2/CF4 (45 : 15 : 40) as a function of the electric field in the drift region.

Since the bunch crossings in the LHC are synchronized with a 40 MHz clock common

to all the DAQ electronics devices, the time fluctuations induced by the DAQ clock

during the irradiation campaigns are not foreseen in CMS. Therefore the time resolution

measurements discussed previously are not fully representative of the real operation and

the deconvolution step is necessary to remove the additional fluctuations. A different

approach was proposed in order to directly measure the efficiency of assigning the correct
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BX to the recorded events, without suffering from the effects induced by the clock. The

method, called synchronous mode, consists of selecting only the triggers occurring in

very thin window (typically 3− 4 ns) synchronized with the clock of the electronics. In

this way, the clock effects are reduced to a convolution with a 3− 4 ns square function,

which has a negligible impact on Gaussians with initial RMS bigger than 4 ns. Moreover,

this configuration is very close to the real operation in CMS since the trigger selecting

window represents the distribution of the proton collisions at the LHC, for a given BX.

Fig. 6.27 shows the schematic principle of the synchronous mode.

The synchronization of the trigger with the clock gives a discrete time distribution in

which each bin corresponds to the leading edge of a particular clock cycle and contains

the number of events detected in the previous 25 ns time period. With an intrinsic time

resolution of ∼ 4 ns, the events recorded in a GE1/1 chamber are usually shared between

three clock cycles.

Figure 6.27: Schematic representation of the synchronous mode for the time resolu-
tion measurements. The clock of the electronics is used to generate a trigger window

that represents the BX at the LHC.

In the synchronous mode, the time position of the clock edges is fixed with respect to

the edge immediately following the trigger window, called the reference edge. As shown

in Fig. 6.28, it is possible to ”move” the intrinsic time distribution over the three clock

cycles by adjusting the delay between the trigger window and the reference edge. The

optimum delay is found when the majority of the events are detected in the central clock

cycle, called the main clock. Fig. 6.29 shows the fraction of events in the main clock

cycle as a function of the delay applied on the trigger window.
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Figure 6.28: Schematic view of the position of intrinsic time distribution with respect
to the clock of the electronics. The optimum delay on the trigger window gives the

maximum number of events in the main clock cycle.

Figure 6.29: Results of the delay scan during for the synchronous measurements.

Therefore, by comparing the number of hits in the main clock to the total number of en-

tries, we can determine the time efficiency in a 25 ns time window, which represents the

BX identification efficiency. An example of the synchronous time resolution measure-

ments is shown on Fig. 6.30 for a GE1/1 detector operating in Ar/CO2/CF4 (45 : 15 : 40)

at a gain of 2× 104. The resulting BX identification efficiency is greater than 97 %.
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Figure 6.30: BX identification efficiency of a GE1/1 detector operating in
Ar/CO2/CF4 (45 : 15 : 40) at a gas gain of 2× 104.

6.5 Conclusions

The results obtained during the extensive R&D phases confirmed the fundamental char-

acteristics of the latter-day GEM technology and helped to define a set of working con-

figurations that suit the CMS requirements.

The triple-GEM detectors for the CMS application are designed to operate with two

possible gas mixtures : Ar/CO2 (70 : 30 %) and Ar/CO2/CF4 (45 : 15 : 40 %). In

both cases, the chambers can reach gas gains up to 105 in safe conditions. At the

CMS operation gain (i.e 1 − 2 × 104), the detection efficiency with charged particles is

greater than 97% for a single chamber. In the same conditions, the angular resolution

has been measured at 132 µrad for an angular strip pitch of 455 µrad, well below the

300 µrad required by CMS. In addition, it has been shown that 97 % of the hits measured

in a single detector are assigned to the correct 25 ns clock cycle, allowing the proper

bunch crossing identification. Thanks to the sharing of the total gas gain on several

amplification layers and among several holes, the triple-GEM technology can detect

charged particles at fluxes up to 100 MHz/cm2 without suffering of gain and efficiency

losses. For the same reasons, the discharge probability doesn’t exceed 10−12 − 10−11

in normal conditions of operation. A summary of the GE1/1 characteristics and the

comparison with the CMS requirements is shown in Tab. 6.1.
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Properties CMS requirements GE1/1 performance

Rate capability > 10 KHz/cm2 100 MHz/cm2

Single chamber > 97 % 97− 98 %
efficiency (MIP)

Angular resolution < 300 µrad ∼ 135 µrad

Single chamber < 10 ns 4− 5 ns with Ar/CO2/CF4 (45 : 15 : 40)
time resolution 7− 8 ns with Ar/CO2 (70 : 30)

Gain uniformity < 15 % < 15 % with the last GE1/1 generation
(see Sec. 8.5.5.3)

Table 6.1: Comparison of the CMS minimum requirements and the GE1/1 perfor-
mance.

The good performance at reasonable gas gains, the very high rate capability and the low

discharge probability make the GE1/1 technology the most suitable choice for the CMS

end-cap muon system.



Chapter 7

Long-term operation study

7.1 Introduction

7.1.1 General description of the aging

The previous study, showing the characteristics of the triple-GEM technology, helped

to define the best configurations to ensure the good performance and a safe operation

in the CMS high rate environment. The next step consists of measuring the long-term

stability to make sure that the good performance will be stable during the entire life of

the detectors.

Several mechanisms can affect the long-term operation of particle detectors and lead to

a gradual and permanent degradation of the detection performance. The mechanical

deformations of the structure of the detector can induce gain fluctuations of the order of

several per cents over the surface of the detector, resulting in drastic non-uniformity of

the performance. Moreover, the physical and electrical properties of some materials may

change after several years causing bad electrical contacts, gas leaks, oxidation ... These

effects are multiple and can be avoided most of the time with an appropriate choice of

materials, operating conditions and the validation of the detectors with a strict quality

control.

However, the main contribution of the aging of gaseous detectors is due to chemical

processes occurring during the amplification of the electrons. This phenomenon, called

”classical aging”, lead to the formation of polymer layers inside of the detectors, causing

gain loss, degradation of energy, space and time resolutions but also dark current, self-

sustained discharges and irreversible damages of the amplification structure. The goals

of the long-term study is to evaluate the effects of the classical aging on GE1/1 detectors

123
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after 10 years of sustained operation and establish a set of recommendations in order to

maximize the useful lifetime of the chambers in the CMS configuration.

7.1.2 Evaluation of the accumulated charge

For the GE1/1 project, the triple-GEM chambers will operate continuously during 10

years with a background rate of MIPs of the order of 1 kHz/cm2 in the hottest regions at

the HL-LHC instantaneous luminosity L = 5×1034 cm−2s−1(see Sec. 3.2 and [10]). The

total accumulated dose after 10 years is estimated to 500 Gy (50 krad). However, in the

case of gaseous detectors, one prefers another expression, the total accumulated charge

Qtot, which includes the maximum interaction rate Rmax, the primary charge induced

by particles npairs
tot , the gain of the detector G and the exposure time at the LHC tLHC :

Qtot = Rmax × ntot
pairs × qe ×G× tLHC (7.1)

Since the particles crossing the detector arrive with a maximum angle of 23◦ (at η = 1.5),

the maximum path length in the drift gap is 3.3 mm. Using the numbers of primary

electron-ion pairs given in Tab. 7.1, the maximum number of primary charges deposited

by MIPs in Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 : 15 : 40) are respectively 31 and

32 pairs.

Gas npairs [pair/cm] ntot
pairs [pair/3.3mm]

Ar 94 31

CO2 91 30

CF4 100 33

Table 7.1: Electric field configuration of the CMS GEM detector in the 3/1/2/1 gap
configuration at the nominal voltage 4250 V.

Based on the previous operation of the LHC, the effective exposure time after 10 years

is estimated to 6× 107 s/y. Therefore, at a nominal gain of 2 × 104, the total accumu-

lated charges after 10 years in Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 : 15 : 40) are

respectively 5.89 and 6.08 mC/cm2. The goal of the long-term study is to reproduce this

lifetime with a safety factor 10 by accumulating a charge of ∼ 60 mC/cm2 in laboratory

before the final installation.
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7.2 Aging of gaseous detectors

7.2.1 Aging: a historical matter

The aging of gaseous detectors was initially identified with Geiger counters in the 1940’s

[89] [90] with a reduction of the operation plateau after a sustained irradiation (Fig. 7.1).

Because most of the early detectors were sealed, it was often impossible to determine if

the aging was due to a modification of the amplification structure (deterioration of the

electrodes, deposits, cracks ...) or a change in the gas composition (molecular dissocia-

tion, pollutants ...).

Figure 7.1: Count rate plateau of a Geiger tube filled with methane [14]. The curves
were taken at different ages (curve 1 after 107 counts, curve 4 after 108 counts).

Later, aging effects were observed in wire proportional chambers in the form of a grad-

ual and permanent gain loss, energy degradation and self-sustained discharges [91]. The

aging issue received a more serious attention when particle detectors, such as MW-

PCs, started to become widely used in HEP experiments [92] [93]. After many years of

trial-and-error approach with the idea of extending the lifetime of detectors, a chemical

explanation of the aging mechanism was proposed, describing its main causes and the

origin of the deposits previously observed in aged chambers ([92], [94]). The analogy

between the detector’s operation and the plasma chemistry didn’t lead to the full un-

derstanding of the phenomenon but helped to define clean gas mixtures and the most

appropriate operating conditions to prevent aging effects ([94], [62]). This work was cru-

cial for the development of MPGD technologies foreseen for very high-rate applications

[15] and, more recently, for the upgrade of the LHC experiments.

Since the first observation of the aging phenomenon, the systematic study on the long-

term operation of gaseous detectors helped to better understand the aging processes and
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to define a set of ”rules” and recommendations on the assembly and the operation of

detectors in order to minimize the aging consequences ([95],[96]).

7.2.2 Classical aging of gaseous detectors

The classical aging of gaseous detectors relates to the chemical reactions that take place

in the avalanche plasma surrounding the amplification region. Because the dissociation

energy of a gas molecule is 2 − 5 times lower than its minimum ionization energy, the

electron avalanche is accompanied with the production of a large variety and a high

concentration of free radicals. The majority of these radicals is chemically very active

(i.e. with unsatisfied covalent bonds) and can therefore recombine to form the original

molecule or react with other active species to form monomers. The monomers released

in the gas, or attached to the surfaces of the detector, associate in chain reaction and

continue growing up until the bonds of the chain radicals are satisfied by a comple-

mentary fragment [92]. The large molecules thus created, called polymers, can migrate

through the detector and condense on electrodes and walls, changing the geometry of

the amplification structure and its electrical properties. Fig. 7.2 shows an example of

a clean gold plated tungsten wire (A) and microscopic pictures of aged wires (B,C,D)

used in proportional counters and affected by different type of polymer deposits.

Figure 7.2: Microscopic pictures of a clean gold plated tungsten wire (A) and aged
wires (B,C,D) extracted after 15 days of operation in a proportional counter in con-

taminated gas mixtures.
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The effects of the polymer deposition are various and strongly depend on the physical

and the electrical properties of the polymer and on the shape, the thickness and the

location of the deposits:

• The deposition of insulating or conductive layers on the anode may disturb the

electric field by changing the geometry of the amplification structure. As a result,

the amplification process is modified, provoking in most of the cases a permanent

gain loss, the decrease of the energy resolution and more generally the degradation

of the performance of the detectors (see Fig. 7.3).

Figure 7.3: Aging of a wire chamber operating in Ar/CH4 (90 : 10) at a gain of 2×104

[15]. The curve represents the evolution of the gas gain normalized with the initial value
as a function of the accumulated dose, expressed as the total charge accumulated per
centimeter of wire. The energy response to an X-ray source was also measured at

different times to illustrate the degradation of the energy resolution.

• The deposition of polymers on the cathode can have even more dramatic effects on

the detector. In normal conditions, the ions produced during the amplification drift

toward the cathode before being evacuated through the metal layers. However,

in case of insulating polymer deposits, the ions are trapped in the polymer and

start accumulating, creating a large electric dipole. Because the polymer films

are usually very thin, an electric field can develop between the positive-charged

layer and the charge induced on the cathode, exceeding the threshold for field

emission (∼ 107 V/cm). Electrons are therefore extracted from cathode and some

of them will penetrate the gas volume and trigger further avalanche processes,

creating more ions that can be attached to the polymer layer (see Fig. 7.4). This

phenomenon, known as the Malter effect, is responsible for an increase of the dark

current in the detector, self-sustained discharges and the electrical breakdown of

the gas [97].



Chapter 7. Long-term operation 128

Figure 7.4: Schematic representation of the Malter effect. The accumulation of pos-
itive charges on a film insulating layer creates a local electric field strong enough to
”pull” electrons from the cathode. Some of the electrons can reach the amplification
volume, trigger avalanches and produce dark current and self-sustained discharges.

• Another aging effect is the production and the release of electronegative species in

the gas that can absorb the electrons induced by a particle and lower the effective

gain of the chambers [92].

Past studies show that the gas mixtures containing hydrocarbon quenchers (e.g. CH4,

C2H2F4 ...) will mostly produce hydrogen-deficient radicals that can easily make bonds

with other fragments and form large polymers ([92], [98], [99]). Even if the aging rate

of hydrocarbon mixtures can be reduced by adding a small concentration of oxygen-

based molecules ([100],[101],[102]), such mixtures are usually excluded for the long-term

operation in high-rate experiments and replaced by hydrogen-free mixtures like Ar/CO2.

In this case, the resulting oxygen-based radicals, which are relatively inactive, can block

the polymerization process and absorb other radicals to form volatile products that can

be evacuated from the gas volume. Such mixtures, considered as clean from aging point

of view, were adopted in most of the HEP experiments, and also for the GE1/1 project

in CMS.

However, even if gas mixtures like Ar/CO2 does not lead to the production of poly-

mers in a clean environment, the presence of pollution in the gas can bring additional

molecules and very active radicals that can trigger the polymerization process. In prac-

tical cases, a small concentration of unknown molecules is always present in large gas

systems. The pollution has various origins: residuals in the gas cylinders, contamina-

tion of the tubing, gas leaks or most probably from the spontaneous release of molecules

trapped in the materials forming the detectors, also called outgassing. Extensive studies

were performed in the last decades to understand the effects of material outgassing and

to identify the sources of pollution ([15] [103]). A list of banned materials was then
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established to ensure the cleanliness of gas systems for the future experiments. In par-

ticular, the components containing silicon-based molecules can easily be consumed in

avalanche plasma and produce very active radicals that can propagate in the detector

([91],[92]). Silicon is present in many materials: glues, adhesives and greases but more

problematic, it is usually found as a residual of a production process that is rarely men-

tioned by the manufacturers. Similarly, electronegative compounds such as halogens

must be banned from the gas volume. Because of their low dissociation energy, such

materials will produce large quantities of free radicals in the avalanche plasma and feed

the polymerization. Traces of halogens can be introduced into the detectors after certain

cleaning procedures or by the outgassing of rubber and some plastic materials.

Therefore, the identification and the elimination of polluting materials is a crucial step

of any long-term study and must be seriously studied alongside the classical aging tests.

7.2.3 Etching issues

In addition to the standard mixture Ar/CO2 (70 : 30) adopted for the GE1/1 project,

another candidate mixture containing CF4 molecules was proposed in order to achieve

a time resolution below 5 ns. As described in Sec. 4.3.3 , CF4 is very interesting for

fast timing applications due to its low electron diffusion, high drift velocity and primary

ionization. Moreover, since CF4 is an excellent etching gas for most of the Si-based

compounds, it can be used to clean the detectors contaminated with Si and to prevent

further polymerization ([104],[105]-CMS CSC).

However, the use of CF4 can also lead to irreversible damages of the detectors because

of its etching power. The dissociation of the CF4 molecules in the avalanche plasma

gives birth to fluorine radicals that can react with metal layers, inducing metal fluorides

and etching [106]. Moreover, the presence of water in the gas volume, in association

with fragment of CF4 can lead to the production of HF acid which can strongly etch

the materials in contact with the gas volume [107]. In the particular case of triple-GEM

detectors, it has been shown that the use of CF4-based mixture can seriously damage

the GEM holes and provoke the fast aging of the detectors, as seen on Fig. 7.5 [16]. The

solution to this problem consists of increasing the gas flow rate in order to remove from

the gas volume the fluorine radicals and the HF molecules before it damages the foils.
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Figure 7.5: Microscopic view of GEM holes of a triple-GEM detector showing the
etching induced by HF acid [16].

7.2.4 Aging of GEM-based detectors

7.2.4.1 The GEM structure from the aging point of view

The GEM technology can be particularly resistant to classical aging, mainly because of

two geometrical particularities:

• The first advantage is the clear separation between the amplification stages and the

readout plane. The absence of a strong amplification field near the readout board

significantly reduces the possibility of direct polymer deposition on the strips.

Thus, the collection of the charge is not affected by the long-term operation, even

if the polymerization occurs in the GEM foils. In the same way, the possibility of

deposits on the cathode drift plane is eliminated, as well as the possible Malter

effect.

• The second benefit is the sharing of the gain over three foils and, for each foils,

over several holes, resulting in multiple amplification channels for a single event.

Therefore, each channel gives birth to smaller avalanches with a lower energy

available for the dissociation of the gas. At the end, there are less radicals and

monomers available for the polymerization compared to a single stage detector.

However, despite of a very low polymerization rate, the GEMs are not completely pro-

tected from classical aging. Indeed, most of the electric field lines going through the

GEM holes terminate on the hole rims. Even at a very low polymerization rate, the

accumulation of polymers in this critical and tiny region could lead to the formation of

large structures that could disturb the amplification. Additionally, insulating deposits

on the top rims could capture some of the ions from the avalanches and provokes Malter

discharges.
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7.2.4.2 Past experience on the aging of GEMs

In spite of the choice of non polymerizing gas mixtures and the geometrical benefits of

the triple-GEM technology, the presence of a small concentration of pollutants in the

detection volume can lead to the formation of polymer structures in the critical regions

of the GEM holes, which can disturb the amplification fields and the evacuation of the

positive charges after a long exposure. Therefore, it is essential to confirm the longevity

of the detectors before the installation in the experiments and to validate the use of

non-outgassing materials. The aging of GEM-based detectors was extensively studied

in the last decade with different sizes and configurations related to the various GEM

applications:

• The double-GEM technology was tested in 2000 with Ar/CO2 (70 : 30) at a gas

gain of 2.2 × 103 (∆Vgem = 410 V). The chamber was exposed to a X-ray source

during 900 hours with an average rate of 4.75 MHz/cm2. No significant aging or

performance loss was observed after an accumulated charge of 1.2 C/cm2 [108].

• An aging study was performed in 2001 with a triple-GEM structure operating in

Ar/CO2 (70 : 30) at a gain of 8.5 × 103 (∆Vg1 = 425 V,∆Vg2 = 380 V,∆Vg3 =

340 V) and a gap configuration 3/2/2/2 mm, corresponding to the COMPASS

configuration. After 240 hours of X-ray irradiation at 630 kHz/cm2 and 240 hours

at 2.5 MHz/cm2, the chamber accumulated a total charge of 700 mC/cm2 without

showing any signs of aging or resolution loss [109]. A similar test was performed

with the triple-GEM detector in Ar/CO2 (70 : 30) at a gain of 6×103 (∆Vg1 = 400

V,∆Vg2 = 390 V,∆Vg3 = 380 V) and a gap configuration 5.5/1.5/3/3.5 mm.

The chamber was exposed during 750 hours to an X-ray source at a rate of 6

MHz/cm2, accumulating a total charge of 2.7 C/cm2. Neither aging effects nor

polymer deposition were observed in this configuration, confirming the previous

studies [110].

• Another set of aging tests for the LHCb application started in 2004 with triple-

GEM detectors operating in Ar/CO2/CF4 (45 : 15 : 40) at a gas gain of 6×103 and

a gap configuration 3/1/2/1 mm, identical to the GE1/1 configuration. Several

chambers were exposed to a 1.25 MeV gamma source at 1− 20 MHz/cm2 and to

an X-ray source at 50 MHz/cm2. In this case, a strong and gradual gain loss (up

to 80 % loss at 2 C/cm2) was observed immediately after the beginning of the

test. After chemical analysis of the GEM foils, this aging effect was attributed to

the etching of the holes by HF -acid produced in the avalanche plasma after the

fragmentation of CF4 molecules. This observation was confirmed in laboratory
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and solved by increasing the gas flow rate to remove the F -based radicals before

they react with the foils ([16],[111]).

• Additional aging test of triple-GEM+CsI chambers in pure CF4 was proposed in

2004 for the PHENIX experiment. The gas gain was set to 104 (∆Vgem = 510

V) with a gap configuration 1.5/1.5/1.5/2 mm. The chamber was exposed to

UV photons at rates up to 1 GHz/cm2. After a total accumulated charge of 10

mC/cm2, no degradation of performance or etching of the holes were observed

[112].

These aging studies all confirmed the insensitivity of GEM detectors to classical aging.

However, most of the tests were done on small prototypes (< 30× 30 cm2) with various

electric fields and gap configurations. Moreover, the aging tests were mainly performed

on small areas with interaction rates of the order of MHz/cm2. Such testing conditions

and detectors configurations are very different from the GE1/1 application and may lead

to a different aging behavior.

7.2.4.3 Motivations for additional aging studies

The classical aging of gaseous detectors is a complex phenomenon, depending on multiple

parameters related to the detector physics and chemistry. The analogy with the plasma

and polymer chemistry provides a good basis knowledge ans explains some of the aging

processes, but it doesn’t describe quantitatively the full mechanism that occurs during

an avalanche. Therefore, the causes of classical aging as well as the chemical reactions

involved during the polymerization are not completely understood, and some experi-

ments that were performed in similar conditions even produced contradictory results

(e.g. the effect of the CF4 molecule on the longevity of wire chambers). The detection

technology, the dimensions of the chamber and the electric field configuration obviously

play a major role in the aging process. Similarly, the properties of the gas, such as the

composition, the flow rate, the temperature and the pressure are fundamental parame-

ters of the amplification and thus the polymerization processes. Moreover, the quantity

and the nature of the pollutants present in the gas mixture, usually unknown during the

operation, can trigger the polymerization and significantly increase the deposition rate.

Finally, the characteristics of the avalanche plasma also define the polymerization rate.

One of the most important parameter is the temperature of the plasma, which includes

the power density, the electron energy and density and the average path between col-

lisions. The temperature of the plasma is particularly important for aging studies: as

explain in the literature ([113],[114]), the rate of formation of certain polymers, and thus

the aging rate, is significantly reduced when the temperature of the plasma increases.
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In other terms, the operating conditions and the irradiation environment during aging

tests must be as close as possible from the conditions expected in the real application,

under the penalty of biasing the polymerization conditions and therefore the aging rate.

The GE1/1 chambers proposed for the CMS application are based on the new single-

mask technique not yet tested from the aging point of view. Moreover, the mechanical

structure used to stretch the GEM foils involves new materials and components that

were not validated in aging tests. In a more general way, the composition and the

operating conditions of the GE1/1 detectors are different from the configurations used

in other experiments. Therefore, the results obtained in the previous aging studies are

not sufficient to predict the longevity of the GE1/1 chambers.

7.3 Classical aging of the GE1/1 detectors

Since the aging depends on a large number of input parameters and relies on several

possible chemical mechanisms, it is not possible to build reliable models or simulation

tools that can predict the long-term behavior of gaseous detectors. Therefore, the only

reliable way to predict the longevity of a detector consists of accelerating the aging in

controlled conditions while monitoring its characteristics and performance. In order to

reproduce 10 years of real operation in a reasonable time, the GE1/1 detectors were

irradiated by a very intense source of photons at the Gamma Irradiation Facilities (GIF

and GIF++) at CERN. The acceleration factor, which depends on the interaction flux,

the primary charge and the gas gain, was kept below 30 in order to ensure realistic aging

conditions and to avoid biasing the polymerization process (see Sec. 7.2.4.3). The gas

gain and the energy resolution of the detectors were continuously monitored during the

tests, as well as the environmental parameters.

Three sets of aging tests were performed in the framework of the GE1/1 project. During

the initial test, the GE1/1 concept was irradiated for the first time by an intense and wide

gamma beam. This first step was crucial to validate the design of the aging test setup and

to define the operating conditions (gain, interaction flux and gas flow rate) corresponding

to realistic acceleration factors. The first analysis tools were also created based on the

data collected during the initial test. Then, a first classical aging test was performed

during 12 months at GIF with the latest prototype of GE1/1 chambers operating in

Ar/CO2/CF4 (45 : 15 : 40). A second aging test setup was then built at GIF++ in

order to test the long-term operation in Ar/CO2 (70 : 30). The charges accumulated

during the two aging tests were equivalent to almost 10 years of real operation in CMS

with a safety factor 10.
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7.3.1 Description of the aging experiments

7.3.1.1 The GE1/1 detectors under test

Two different types of GE1/1 detectors were used for the aging studies:

• The initial test was performed with a full-size GE1/1 detector of the 3rd generation

(also named ”GE1/1-III”), including the final geometry but not the final set of

materials. In particular, it contains a significant amount of epoxy glue Araldite

2011 (AW 106/HV 935U) that was used to fix the external frame to the drift PCB

(see Fig. 7.6). The presence of the glue in contact with the gas volume increases

the risk of contamination [15]. However this chamber was not used to demonstrate

the longevity of the GE1/1 technology but to validate the aging setup and define

the operating conditions and the acceleration of the aging.

Figure 7.6: A: overview of a 3rd generation prototype. B: close lateral view of the
external frame showing the epoxy glue used to fix the frame and the drift PCB. C: close

view of the gas input.

• For the classical aging tests in Ar/CO2/CF4 (45 : 15 : 40) and Ar/CO2 (70 : 30),

two full-size GE1/1 prototypes of the 4th generation (”GE1/1-IV”) with the final

geometry and materials were irradiated for several months at GIF and GIF++.

For this generation, the glue was abandoned and the external frames were fixed

to the drift board thanks to metallic screws, as seen in Fig. 7.7. Two rubber O-

rings embedded in the lateral frame ensure the gas tightness. These prototypes

are representative of the detectors that will be installed in the CMS end-caps.
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Figure 7.7: A: overview of a 4th generation prototype. B: close lateral view of the
external frame. The frame is fixed to the PCB with vertical screws. C: close view of

the gas input.

The three detectors were powered through an HV divider corresponding to the CMS

configuration described in Tab. 5.2. The gas gain was kept constant during the entire

test at an effective value of 2× 104 for both gas mixtures.

7.3.1.2 The monitoring wire chambers

Additionally, several Single Wire Proportional Counters (SWPC) were connected to the

GE1/1 gas circuit in order to monitor the purity of the gas mixture before the tests and

to identify possible contamination during the tests. Later, the same chambers will be

used to study the outgassing of the GE1/1 materials.

The use of wire chambers to detect the pollution in the the gas mixture could be justified

by three points:

• The amplification field and the readout of the signals are done by a unique and

central microscopic wire. Therefore, even a small deposition of polymer will signifi-

cantly affect the amplification and the collection of the signals induced by particles.

• The SWPC helps to detect not only the presence of pollution in the gas, but also

the reaction of the pollutants with the gas molecules and the possibility to form

polymers in the avalanche plasma.

• The SWPC is a simple object that can easily be dismounted and cleaned after a

possible contamination.
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The SWPCs available for this aging study were initially designed for aging tests within

the RD10 collaboration. They consist of a stainless steel cathode box containing a gold-

plated tungsten wire with a diameter of 30 µm. The cathode box is opened on one side

and covered with a thin metallic window that allows the low energy X-rays penetrating

the gas volume. The SWPCs operate at a gas gain of 104 and are irradiated by 55Fe

or 109Cd sources, emitting X-rays of 5.9 and 23 keV respectively. The full energy is

converted into primary charges via photoelectric effect. The readout signals are picked

up from the wire after a decoupling capacitance.

7.3.1.3 The GIF installation

The GIF installation is an irradiation bunker located at CERN and containing a 137Cs

source of 566 GBq. The source beams 662 keV photons through two windows with a

large opening angle as shown in Fig. 7.8. Both the initial test and the first classical

aging test in Ar/CO2/CF4 (45 : 15 : 40) took place at GIF.

Figure 7.8: Schematic view of the GIF bunker showing the irradiator, the position of
the GE1/1 detector and the DAQ area.

The GE1/1 chamber under test was placed at 30 cm from the main irradiator and

received a particle flux of the order of 107 Hz/cm2. Half of the chamber was protected

with a 5 cm thick lead shielding in order to attenuate the source and measure the aging

at different dose rates.

The probability of direct interaction of the 662 keV gammas in the 3 mm drift gap

of the detector is of the order of 10−5 (derived from the mass attenuation coefficient).

Nevertheless, the probability of Compton interaction with the 35 µm thick copper layer

that forms the drift electrode is of the order of 10−3. Most of the Compton electrons

will be emitted in the forward direction in the drift gap with a peak energy between

400− 500 keV, i.e. close the minimum ionization energy (see Fig. 7.9).
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Figure 7.9: Stopping power of electrons in pure argon.

Therefore, the 662 keV photons crossing the chambers at a flux of 107 Hz/cm2 are seen as

MIPs at an interaction flux of the order of 104 Hz/cm2. Considering that the maximum

flux in CMS will be 1 kHz/cm2, the resulting aging acceleration factor is about 10.

Since the purity of the gas mixture plays a major role in the aging processes, the design

and the quality of the gas system must be carefully studied. Two different setups were

installed at GIF for the initial test and the classical aging test:

• The initial test setup, shown in Fig. 7.10, was designed so that all the relevant

parameters of the gas were continuously monitored during the experiment. The

gas flow rate and its composition were ensured by a set of Mass Flow Controllers

(MFC) and a mixing unit. Then the gas was sent to the GE1/1 chamber through

copper tubing. In addition to the Meteo-station that monitored the environment

of the detector, several temperature and pressure sensors were connected directly

to the gas line. Finally, two SWPCs were placed at the input and the output

of the GE1/1 chamber in complement to a gas chromatography unit in order to

identify possible outgassing and contamination of the mixture. This system op-

erated successfully during six months. However, a significant amount of pollution

was identified with the SWPCs after the installation of the GE1/1 detector (see

Sec. 7.3.3.1). The origin of the contaminants being unknown, the gas system was

reviewed and modified for the classical aging test in order to minimize the amount

of external devices connected to the gas line.

• The gas system for the classical aging test, presented in Fig. 7.11, was essentially

made of stainless steel tubing. All the parts, glass tube flow-meters and connec-

tors were previously cleaned with alkaline soap, DI water and BlueGold agent

[115]. The MFCs and the mixer unit were replaced by a simple pre-mixed cylinder

connected to a high-purity pressure regulator. The initial test revealed that the
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Figure 7.10: Overview of the gas system for the initial test at GIF.

temperature and the pressure in the gas line were identical to the external environ-

ment, even during the sustained operation. The sensors were therefore removed

from the gas line. Finally, the use of SWPCs during the initial test helped to iden-

tify the contamination but not its origins. The wire chamber were then removed

from the classical aging setup and were installed into an independent setup dedi-

cated to the outgassing study of the GE1/1 materials (see Sec. 7.4). Nevertheless,

the purity of the gas circuit is still verified with a SWPC before the installation of

the GE1/1 chamber.
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Figure 7.11: Overview of the gas system for the classical aging test at GIF. The new
design was proposed based on the experience from the initial test.

Finally, the Data Acquisition systems (DAQ) and the control area were set outside the

GIF bunker. It included the gas supply, the HV modules as well as the DAQ stations.

The picture of the initial test and the DAQ area can be seen on Fig. 7.12 and Fig. 7.13.

Figure 7.12: Picture of the initial test setup showing the GE1/1 chamber in front
of the GIF irradiator. The SWPCs are protected from the 137Cs source by a lead

shielding, and irradiated by 55Fe sources.
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Figure 7.13: Picture of the DAQ area outside the GIF bunker showing the gas supply,
the HV power system, the DAQ stations and the outgassing stand.

7.3.1.4 The GIF++ installation

After the closing and the dismantling of the GIF facility in September 2014, a new irra-

diation bunker, called GIF++, was built at CERN and started the continuous operation

in April 2015. The GIF++ design, shown on Fig. 7.14, is very similar to the previous

facility. It contains a 137Cs source of 14 TBq embedded into an irradiator structure with

two wide openings. The second classical aging test in Ar/CO2 (70 : 30) is taking place

at GIF++.

The GE1/1 detector under test is placed at 50 cm from the source point. Half of the

chamber is directly in front of the irradiator and is operating under a particle flux

just below 108 Hz/cm2 while the other half, protected by the shielding of the irradiator,

receive a fluxes lower by four orders of magnitude. The energy distribution of the photon

background and the GE1/1 sensitivity to the source are similar to the GIF experiment.

With the interaction flux in the detector of the order of 3 × 104 Hz/cm2, the resulting

aging acceleration factor is estimated at 30 at the CMS gas gain equal to 2× 104.

The gas system for the GIF++ installation is substantially identical to the classical aging

setup at GIF (see Fig. 7.15). However, the outgassing setup is not connected anymore

to the GE1/1 gas system. The GC, which is not essential for the classical aging test,

was removed from the gas line. A second gas line was added to the system to possibly

supply a second chamber with a different gas mixture. Once again, the purity of the

entire tubing was validated with a wire chamber before the installation of the GE1/1

detector.
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Figure 7.14: Schematic view of the GIF++ irradiation facility. The GE1/1 chamber
is placed in front of the source, in the downstream area.

Figure 7.15: Overview of the gas system for the classical aging test at GIF++.

The operating point and the parameters of the DAQ electronics are remotely controlled

from outside of the GIF++ bunker via optical fibers and serial cables. Therefore, the

control of the full experiment and the collection of the data can be done from the CERN

network, minimizing the need of stopping the irradiation to access the detector. The

picture of test setup at GIF++ can be seen on Fig. 7.16.
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Figure 7.16: Picture of the classical aging test at GIF++. The GE1/1 chamber is
placed directly in front of the 137Cs source. The DAQ electronics is placed below the
detector structure and is protected by several centimeters of Pb shielding. The entire

system is connected to the DAQ station via optical and USB links.

7.3.1.5 The readout system

The readout system for the classical aging at GIF, GIF++ and the initial test consists

of three main readout channels, summarized on Fig. 7.17:

Figure 7.17: Schematic view of the DAQ system at GIF and GIF++. The pico-
ammeters and the NIM electronics are responsible for the gain variations measurement
while the Meteo-station records the fluctuations of the ambient temperature, pressure

and humidity.

• The gain fluctuations of the wire chambers are measured thanks to a NIM elec-

tronics chain. After the pre-amplification and the shaping stages, the signal is split
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into two lines. The first is converted into a digital gate by a discriminator unit

and sent as a trigger signal to the Charge to Digital Converter (QDC). The sec-

ond signal, representative of the gain of the chamber, is directly sent to the QDC

input. The data is then transferred to an optical bridge via VME communication

before being sent to the DAQ station through an optical link. After 10 minutes of

continuous acquisition, the resulting charge spectrum is saved and reset before a

new measurement.

• In order to measure the gain variations in the GE1/1 detectors, four KEITHLEY

6487 pico-ammeters are connected to several sectors of the readout board, two

in the irradiated area and two in the protected part. The devices are connected

in series with a GPIB protocol and controlled with a LabView interface. The

anode current is recorded every 5 minutes for each sector. At GIF++, the GE1/1

chamber was also connected to a QDC in order to measure the energy resolution

at different values of the accumulated charge.

• The environmental fluctuations, responsible for the temperature and pressure vari-

ations of the gas mixture, are measured every minutes by thermo-couples and an

absolute pressure sensor connected to a SIEMENS S7 Programmable Logic Con-

troller (PLC). The relative humidity in the vicinity of the detector is also recorded.

All the data files are then transferred to several computer stations outside the GIF

facilities for backup saves and analysis.

7.3.2 The analysis procedure

The purpose of the analysis step is to extract from the data the gain variations as a

function of the accumulated charge or as a function of time. However, for long-duration

tests, the response of the detectors can fluctuate not because of aging effects but because

of variations of the density of the gas, themselves induced by variations of the ambient

temperature and pressure. Additionally, the temperature variations can slightly affect

the operation of the readout electronics and induce baseline fluctuations to the data. It

is thus essential to remove the environmental effects to isolate the possible aging effects.

The overview of analysis procedure is shown on Fig. 7.18. It consists of five main steps:

the conversion of the raw files; the synchronization of the data; the zero-suppression;

the correlation with the environment; the correction and the normalization of the gain.
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Figure 7.18: Schematic representation of the analysis steps. After all the data are
converted into the same format, the events are built and selected depending on the
status of the source. After defining the parameters of the correlation between the gain
of the detector and the ambient conditions, the fluctuations related to the environment

are removed.

7.3.2.1 Data conversion and zero-suppression

As a first step, the data files from the various DAQ systems are converted into the

same format, including the relative time of each measurement, the average value of the

anode current and the environmental parameters. The charge spectra from the QDC are

processed with a separate fitting algorithm in order to keep only the useful information:

the ADC mean and the width of the noise peak and the 55Fe peak (for the SWPC

data) or the most probable value of the 137Cs landau distribution (for the GE1/1 data).

Fig. 7.19 shows the typical ADC spectra for both SWPC and GE1/1.

Then, the relative time of each data point is compared to a reference time common to all

the DAQ systems in order to do the synchronization of the data and to assign the correct

environmental parameters to each gain measurement. After the synchronization, all the

relevant information is stored into events, including the gain indicator (i.e. the anode

current or the peak position), the environmental parameters and the absolute time.

Finally, all the events corresponding to the source OFF or the detectors not powered

are removed from the data set.
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Figure 7.19: Left: typical ADC spectrum of 55Fe in Ar/CO2/CF4 (45 : 15 : 40)
collected by the wire chambers. Right: typical ADC spectrum of the GIF++ of 137Cs

in Ar/CO2 (70 : 30) collected by the GE1/1 detector.

7.3.2.2 Correlation with the environmental parameters and normalization

The purpose of the correlation step is to parameterize the influence of the environmental

variations on the response of the detector. As mentioned earlier, this influence may in-

duce large fluctuations on the gas gain that can hide the possible aging effects. Fig. 7.20

shows a sample of data collected at GIF with a GE1/1 detector during two weeks of op-

eration. The gain fluctuations, of the order of 30 %, clearly follow the ratio temperature

over pressure (T/P ).

Figure 7.20: Typical data points taken at GIF showing the normalized anode current
and the ratio temperature over pressure of the gas. The large fluctuations of the anode
current are essentially correlated to the variations of the environmental conditions.
The ratio ”T/P” is used to better visualize the phenomenon but the environmental

fluctuations must be treated separately.

A theoretical approach indicates that the amplification factor is an exponential function

of the first Townsend coefficient (see Sec. 4.3.1), itself inversely proportional to the

density of the gas. Therefore, the amplification can be expressed as an exponential
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function of the ratio T/P . The relation between the measured gain Gmeas. and the real

gain Greal. is given by :

Gmeas. =
Greal.

A · exp(B · T/P )
(7.2)

where A and B are experimental constants depending on the gas and on the temperature

range. They are determined by fitting the exponential functions of T and P plotted on

Fig. 7.21.

Figure 7.21: Correlation plots showing the dependency of the detector’s gain with
the atmospheric pressure (left) and the ambient temperature (right).

Past experiences [15] show that in some cases the correlation with the environment is

better described by power functions of T and P . The relation (7.2) becomes :

Gmeas. = Greal. · exp(A · ln(T ) +B · ln(1/P )) = Greal. · (A · T )a × (B/P )b (7.3)

with A, B and C constants and a and b correlation factors defined by the experiment.

These factors represent the strength of the gain dependency with T and P , including not

only the gas density effects but also other effects such as the influence of the environment

on the DAQ electronics.

Fig. 7.22 represents the typical distributions of the measured gain (red) and the gains

corrected with the exponential (blue) and the power (purple) functions. All the data

points were normalized with the initial value of the gain. The width of the corrected

distributions show the quality of the correlation and the effect on the raw data. Consid-

ering the small ranges of temperature and pressure covered during the aging tests, the

difference between the exponential and the power methods is smaller than 1 %.
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Figure 7.22: Correlation quality plot showing the effect of the exponential and the
power corrections compared to the raw data.

After the corrections based on T and P , the resulting normalized gain is totally inde-

pendent from the external perturbations and represents the intrinsic behavior of the

chamber when operating under sustained radiations.

7.3.3 Classical aging test results

7.3.3.1 Initial aging test

After 7 months of continuous operation in Ar/CO2/CF4 (45 : 15 : 40) at the GIF facility,

the GE1/1-III detector accumulated a total charge of 12 mC/cm2, corresponding to 10

years of real operation in CMS at HL-LHC with a safety factor 2. The results of the

aging test are shown in Fig. 7.23. The normalized gain is stable over the entire test,

with small fluctuations within 3 % of its initial value. Fig. 7.24 shows the the amplitude

of the gain fluctuations and the effect of the environmental correction on the raw data.

The initial test demonstrated the successful long-term operation of the classical aging

setup and the absence of chemical processes that could affect the amplification of the

detector.

However, after the installation of the GE1/1 chamber and the T/P sensors in the gas

line, a fast and permanent gain drop was observed in the wire chamber placed down-

stream the detector. Similarly, the gain of the upstream SWPC became unstable, with

fluctuations greater than 10 %. Fig. 7.25 shows the gain variations of both input and

output SWPCs in comparison to the measurement performed before the installation of

the GE1/1 detector and the sensors. The monitoring SWPCs were dismounted and the
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Figure 7.23: Normalized corrected gain of the GE1/1 detector as a function of the
accumulated charge. The entire test represent 10 years of real operation in CMS with

a safety factor 2.

Figure 7.24: Quality plot of the initial aging test comparing the raw data and the
normalized and corrected gain.

wires sent to a chemistry laboratory to be analyzed with a Scanning Electron Micro-

scope (SEM). The SEM observations, presented in Fig. 7.26, confirmed the presence of

polymer deposits on the wires. The deposits mostly contain carbon and oxygen-based

structures, in particular in the irradiated region. The polymers seem to grow up around

smaller white deposits containing traces of sulfide and silicon. This effect, more pro-

nounced on the downstream wire, is the typical expression of the classical aging induced

by the presence of pollutants in the gas mixture. Since the initial test did not allow

to determine if the pollution came from the GE1/1 chamber, from the sensors or other

elements in contact with the gas, a new system was designed for the classical aging tests

and all the unnecessary materials were removed from the gas volume.
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Figure 7.25: Gain fluctuations of the SWPCs operating in the initial aging setup.
The first chamber (top) was used to validate the purity of the gas system before the
installation of the GE1/1 chamber and several temperature and pressure sensors. After
the insertion of the GEM detector, the operation SWPCs placed upstream (middle) and
downstream (bottom) was degraded by the polymerization induced by the presence of

pollutants in the gas mixture.

As a preliminary conclusion, the initial aging test was essential to optimize the gas

system and prepare the setup for the classical aging test with the next generation of

detectors. It demonstrated that even in the presence of pollution, the triple-GEM tech-

nology is resistant to classical aging and could survive several years in CMS without

the degradation of its performance. This experience also highlighted the necessity of
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studying independently the outgassing properties of the materials present in the GE1/1

detectors to prevent the release of contaminants in the gas mixture. The details of the

outgassing study will be presented in Sec. 7.4.

Figure 7.26: SEM pictures of the 30 µm gold-plated tungsten wires used in the
upstream (middle) and the downstream (bottom) SWPCs in comparison to a new wire

(top).

7.3.3.2 Aging in Ar/CO2/CF4 (45 : 15 : 40)

The first classical aging test was performed with a GE1/1 detector of the 4th generation

operating in Ar/CO2/CF4 (45 : 15 : 40) at the GIF facility. After 12 month of sustained

operation in front of the 137Cs source, the detector accumulated a total charge of 53

mC/cm2, corresponding to 10 years of real operation in CMS with a safety factor 8.8.

The results, shown on Fig. 7.27 indicate that the operation of the detector is not affected

by any classical aging process nor etching of the GEM holes. The gas gain is stable during

the entire test and only fluctuates within 2 − 3 % of its initial value. The distribution

of the raw data and the corrected gain are presented in Fig. 7.28. The test ended few

days before the GIF facility was closed and the chamber was prepared to continue the

irradiation at the new GIF++ facility.

Unfortunately, the chamber was filled by mistake with the wrong gas mixture during the

installation at GIF++. Because the mixture contained 93 % of argon instead of 70 %,

several destructive discharges occurred immediately after the 137Cs source was turned

ON, resulting in the permanent degradation of the performance of the detector. Even if



Chapter 7. Long-term operation 151

Figure 7.27: Normalized corrected gain of the GE1/1 detector operating in
Ar/CO2/CF4 (45 : 15 : 40) as a function of the accumulated charge. The entire

test represent 10 years of real operation in CMS with a safety factor 8.8.

Figure 7.28: Quality plot of the classical aging test in Ar/CO2/CF4 (45 : 15 : 40)
comparing the raw data and the normalized and corrected gain.

the GEM foils could have been cleaned in solvent baths with a great chance to recover

the initial performance, the CMS GEM Collaboration decided to open the chamber and

perform SEM analysis to understand the effects of the long-term operation at GIF and

the consequences of the accidental discharges.

Three effects were observed:

• The first observation, shown on Fig. 7.29, is the coloration of the copper layers sub-

ject to radiations for a long period. This phenomenon was already observed in other

detectors containing copper electrodes but it is still not fully understood. One pos-

sible hypothesis involves the electrochemical corrosion of the copper, triggered by

the current collected by the GEM electrodes and the presence of oxygen-based
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radicals produced in avalanche plasma. The corrosion can lead to the formation

of a very thin layer of oxide on the electrodes [116], in particular in the regions

subject to heavy radiations, i.e. where the current collected on the electrodes is

the highest. However, the oxide layer is invisible to the SEM, which indicates that

the layer is as conductive as pure copper. It does not affect the surface structure

of the electrodes and thus the operation of the detector. This is confirmed by the

fact that no change in the detector’s behavior was observed during the test. The

energy resolution and the general performance of the chamber were also measured

in laboratory after the aging test, showing no particular degradation.

Figure 7.29: Left: overview of the inside of the GE1/1 detector used for the classical
aging test at GIF. Magnifying view (50×) of the bottom of the last GEM and the

readout strips are shown in A and B.

• The second effect that can be seen only with the SEM is the local deposition of

polymers near the GEM hole rims. These deposits are very rare and concentrated

near groups of few holes (5−10 per 100 cm2 of GEM foil), which indicates that they

are not caused by a global aging effect but by a local phenomenon, probably non-

destructive discharges. Fig. 7.30 shows examples of discharge deposits observed on

the bottom of the third GEM foil. In CMS, the detectors will accumulated about

250 discharges after 10 years of operation, as indicated in Sec. 6.3. Regarding the

SEM observations, each discharge involves a group of 2 − 3 holes. Therefore, the

possible discharge-induced polymerization would affect a total of ∼ 750 holes after

10 years of operation, a negligible fraction of the total number of holes estimated at

6×107 for the three GEM foils. Moreover, the deposits contains traces of silicon and

sulfide as it was observed in the SWPCs during the initial again test (Sec. 7.3.3.1).

This observation indicates that the polymerization is triggered by the presence

of pollutants in the gas mixture, certainly released by outgassing materials in

the GE1/1 detectors. The outgassing study, detailed in the next sections, will

help to identify the source of contamination and minimize the discharge-induced

polymerization during the operation in CMS.
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Figure 7.30: SEM view of holes affected by polymerization provoked by non-
destructive discharges. The polymers contain traces of sulfide and silicon, already
identified by wire chambers and caused by the outgassing of some GE1/1 materials.

• Finally, the third effect identified with the SEM is the deterioration of several tens

of holes, mainly on the bottom side of the GEM foils (Fig. 7.31). Large carbon-

based deposits, cracks of the polyimide and signs of burns are most probably

related to the accidental discharges provoked by the GIF source when the detector

was operating with the wrong gas mixture. This phenomenon is not associated

to the normal long-term operation but results from the unusual operation well

beyond the limits of the triple-GEM technology.

Figure 7.31: SEM picture of holes damaged by the accidental destructive discharges
when the detector was operating with 93 % of argon instead of 70 %. The deposits

near the holes moslty contain carbon-based molecules.

In spite of the several tens of holes affected by non-destructive or accidental discharges,

the rest of the detector is perfectly clean both from electrical and geometrical points

of view, as seen in Fig. 7.32. In particular, the diameters of the GEM holes in the

irradiated regions are identical to the ones in the protected region of the first GEM

foil, proving that the use of CF4 in the gas mixture did not provoke the etching of
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the holes. Moreover, optical inspections indicate the the stretching of the foils is still

optimum even after 12 months of operation in an environment with large temperature

fluctuations. The HV contact pins between the drift PCB and the GEM foils are also in

perfect state, as well as the VITON O-rings and the protection resistances (Fig. 7.33.).

Once again, all these observations are confirmed by the good operation of the detector

before, during and after the aging test.

Figure 7.32: SEM view the 3rd GEM foil in the region facing the gamma source (A
and B) showing the normal geometry and the cleanliness of the GEM. Picture C and
D show respectively a typical GEM hole of the 3rd GEM facing the source and a hole
of the first GEM in the protected area (considered as the reference). The comparison
of the diameters and the shape of the holes indicate that the foils is not affected by HF

etching.

Figure 7.33: A: side view of the GE1/1 detector showing the stretching of the foils,
which act as perfect mirrors. B and C: HV pins and HV contact point on the GEM

foils. D: protection resistance placed on the top electrode of the GEM foils

As a conclusion, despite of the unusual polymer deposits that were triggered by the non-

destructive discharges and the burns provoked by accidental discharges, no widespread

classical aging was observed in the GE1/1 chamber after the long exposure to gamma

rays. The chamber behaves normally, with detection performance identical to the initial

ones. Similarly, the gain measurements and the SEM analysis show that the GEM

holes are not etched by F-based compounds. Therefore, it is confirmed that the GE1/1
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detectors can continuously operate in safe and stable conditions during 10 years with a

safety factor 8.8 with the gas mixture Ar/CO2/CF4 (45 : 15 : 40) in the CMS end-cap

muon system.

7.3.3.3 Aging in Ar/CO2 (70 : 30)

Another aging study was performed at GIF++ with a GE1/1 detector of the 4th gen-

eration operating in Ar/CO2 (70 : 30). The chamber accumulated a total charge of 55

mC/cm2 after 6 months of continuous irradiation, i.e. 10 years of real operation with a

safety factor 9.1. The normalized and corrected gain as a function of the accumulated

charge is shown on Fig. 7.34. The energy spectrum of the 137Cs source was measured

every two weeks and the corresponding energy resolution stays stable during the entire

test.

Figure 7.34: Normalized corrected gain and energy resolution of the GE1/1 detector
operating in Ar/CO2 (70 : 30) as a function of the accumulated charge. The entire test

represents 10 years of real operation in CMS with a safety factor 9.1.

Once again, the aging study demonstrated that the operation of the GE1/1 the triple-

GEM detectors in the CMS configuration is not affected by the classical aging. The

GE1/1 chambers are then expected to survive a minimum of 10 years of real operation

(safety factor 9.1) with Ar/CO2 (70 : 30) in the CMS end-cap environment at HL-LHC.

The GE1/1 chamber will continue the accelerated operation until it reaches a safety

factor 10 compared to the real operation.
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7.4 Outgassing study of the GE1/1 materials

7.4.1 Introduction

7.4.1.1 Effects on gaseous detectors

Past studies, discussed in the introduction of this chapter, revealed that a small con-

centration of contaminants could trigger and enhance the classical aging, even in gas

mixtures that were initially validated in aging tests (e.g. Ar/CO2 (70 : 30) and

Ar/CO2/CF4 (45 : 15 : 40)). Extensive investigations helped to define sets of rec-

ommendations in order to ensure ultra-clean gas systems with, among others, the use of

stainless steel tubing, the pre-cleaning and the de-greasing of the gas parts, valves and

flow-meters, and the prohibition of polluting elements such as oil bubbler and greased O-

rings ([117], [118]). However, the polluting species can come directly from the outgassing

of the materials present in the detectors. The outgassing is defined as the spontaneous

release of gas molecules initially trapped or absorbed in materials, mostly hydrocarbons,

silicon-based molecules and halogen compounds. Then, these molecules can dissociate in

the avalanche plasma and react to form polymers. The origin and the type of pollution

is usually unknown. It strongly depends on the composition of the materials, the type

of lubricants, oils and solvents possibly used during the fabrication process and also the

conditions of transport and storage of the materials.

In addition to the studies performed by material scientists in order to measure the

outgassing properties of materials [119], the detector physicists investigated the com-

patibility of some materials frequently used in detectors with various gas mixtures and

detection technologies ([92], [15]).

7.4.1.2 Motivations for additional studies

The first indications of outgassing from the GE1/1 detectors were observed during the

initial test at GIF with the presence of polymer deposits on the wires of the SWPCs.

This observation triggered the need of performing independent outgassing tests with all

the materials present in the GE1/1 chambers.

Even if the GE1/1 materials are chosen following the recommendations discussed earlier,

a set of new critical materials were introduced in the gas volume of the detectors:

• The internal surface of the frames and the PCBs are covered with Polyurethane

(PU) CellPack URETHAN Art. n◦124017 in order to prevent the production of
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dust by friction with the metallic screws. It also helps to impede the possible

leakage current flowing between the GEMs through the surface of the internal

frames.

• The coverlay film Krempel KDF 0/25/25 HT was also introduced with the 5th gen-

eration of detectors to close the vias connecting the readout strips to the external

readout connectors.

• Another critical material present in the GE1/1 detectors is the soldering mask

Elpemer 2467 that covers part of the readout and drift PCBs.

In addition to the new materials, the composition and the production techniques of

the known materials could have been modified without the explicit notification from

the manufacturers. Because such unfortunate surprises were experienced by several

experiments in the past, the CMS GEM Collaboration also proposed to cross-check the

outgassing properties of: the VITON O-rings; the silver glue MSDS-Polytec-EC that

make the contact between the HV circuit and the GEM foils; the polyamide washers

used to seal the gas volume near the closing screws.

Fig. 7.35 show the various elements and the corresponding materials present in the last

generation of GE1/1 prototypes.

Figure 7.35: Schematic cross-section of the 5th generation of GE1/1 prototype show-
ing the different elements composing the detector and the corresponding materials.

The outgassing study aims to understand the compatibility of these materials with the

GEM technology operating with CMS gas mixtures and reject the materials that could

contaminate the detectors. Moreover, it will help to validate the preparation and the

cleaning procedures of each material.
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7.4.2 Description of the outgassing experiments

7.4.2.1 Overview of the setup

The GE1/1 materials are tested separately in the CMS gas mixture Ar/CO2/CF4 (45 :

15 : 40). The first outgassing setup was assembled at GIF, as a preliminary study in

addition to the classical aging test. After several successful tests, a second setup was

build at the CMS GEM R&D laboratory with four parallel and independent testing

channels. Each channel consists of a stainless steel cylinder, called Outgassing Box

(OB), containing the material under test. The OB is wrapped with resistive tape that

can reach temperatures up to 150 ◦C, both for heating the sample and for the cleaning

the OB after a possible contamination. The clean gas mixture from a pre-mixed cylinder

flows through the OB at 2 L/h. Then, the gas with the possible pollutants from the

material is sent to a SWPC that can measure the effects of the polymerization. Fig. 7.36

shows an overview of the gas system.

Figure 7.36: Overview of the gas system for the outgassing study. Additional testing
channels were added after the successful preliminary tests.

The DAQ system is similar to the one used during the classical aging tests (presented in

Sec. 7.3.1.5). The signals collected on the microscopic wire are sent to NIM logic modules

to generate the trigger signals. The triggers are sent to a VME-controlled QDC in order

to record the charge induced by the X-ray source. A SIEMENS S7 PLC connected

to temperature and pressure sensors takes care of the monitoring of the environmental

fluctuations. Pictures of the preliminary outgassing setup and the complete setup at the

CMS GEM R&D laboratory are shown on Fig. 7.37.
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Figure 7.37: Left: preliminary outgassing setup at the GIF facility. Right: complete
setup with the four parallel outgassing boxes and SWPCs.

7.4.2.2 Testing procedure

The outgassing test procedure and the operating conditions were chosen to be iden-

tical to the initial aging test at GIF, for which the monitoring SWPCs revealed the

contamination.

The cleanliness of the gas system is systematically checked before inserting a new set of

materials thanks to a wire chamber operating during one month under sustained X-ray

radiations. After the samples are placed in the outgassing boxes, the SWPCs operate

continuously during two weeks at room temperature. Then, the samples are heated to

50 ◦C during two more weeks in order to enhance the possible outgassing. During the

entire test, the charge spectra induced by the radioactive sources in the wire chambers

are recorded every 10 minutes.

The complete test, including the purity check, lasts two months for each set of materials.

In case classical aging is observed in the wire chambers, the gas tubing is cleaned during

several days by being heated up to 150 ◦C and flushed with high flow of pure argon

(typically 50 L/h). The contaminated chambers and the outgassing boxes are removed

from the setup and sent to a specialized laboratory for a surface treatment and advanced

cleaning procedures. The aged wires are sent to a chemistry laboratory for further SEM

analysis.
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7.4.2.3 Data analysis

The data analysis is similar to the one described in Sec. 7.3.2.1. It consists of following

the evolution of the photo-peaks of the energy distributions collected by the SWPC.

Fig. 7.38 shows the typical energy spectra of 55Fe and 109Cd in Ar/CO2/CF4 (45 : 15 :

40) obtained during the outgassing tests.

Figure 7.38: Typical energy spectra of 55Fe and 109Cd collected in Ar/CO2/CF4 (45 :
15 : 40) with by a SWPC.

Each spectrum is processed by a fitting algorithm to determine the mean and the width

of the photo-peaks that represent to the gain and the energy resolution of the chambers.

Finally, the data are correlated with the environment to remove the fluctuations due to

the temperature and the pressure variations.

In case of material outgassing, the presence of pollution in the gas mixture will trigger

polymerization on the wires that will degrade the energy resolution and/or provoke gain

losses.

7.4.3 Tests and results

Seven GE1/1 materials were prepared and tested in the outgassing setup: VITON O-

rings; Polyamide washers; PU CellPack URETHAN Art. n◦124017; PU NUVOVERN

LW; film Krempel KDF 0/25/25 HT; soldering mask Elpemer 2467; silver glue MSDS-

Polytec-EC. Additionally, Kapton and Teflon tapes, often used in R&D prototypes, were

tested in identical conditions.

The surface of the samples in contact with the gas is approximately 10 times bigger than

the real surface in the GE1/1 chambers. All the materials are cleaned beforehand in

ultrasonic baths with DI water, following the procedure foreseen for the final detectors. A
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particular attention is given to the VITON O-rings that can easily absorb contaminants

during the fabrication process and release it later in the detectors. The VITON materials

are baked during two hours at 200 ◦C in vacuum (10−2 mbar) before being used in the

GE1/1 detectors.

The polyurethane (PU) CellPack Art. n◦124017 was the only material that induced a

gain drop of 20 % in the wire chamber when heated to 50 ◦C. This effect was accompanied

with a clear degradation of the energy resolution from 18 % to 24 % (Fig. 7.39 - middle).

These results were compared to the purity check performed with the same wire chamber

before the insertion of the PU (Fig. 7.39 - top).

The SEM analysis of the aged wire revealed the presence of large polymer structures

along the portion of wire irradiated by the source. The deposits mainly consists of

carbon, oxygen and silicon. SEM pictures of the aged wire can be seen in Fig. 7.40.

Similar deposits were observed in the GE1/1 detectors used for the classical aging test

in Ar/CO2/CF4 (45 : 15 : 40) at GIF (Sec. 7.3.3.2). Therefore the PU CellPack, widely

present in this particular detector, could have released pollution in the mixture that

triggered polymerization during non-destructive discharges.

As a conclusion, the PU CellPack was considered as polluting material and was therefore

excluded from the final GE1/1 detectors.

The PU NUVOVERN LW, already used in other applications, was proposed to re-

place the PU CellPack. The corresponding outgassing test, done in identical conditions,

did not indicate any aging effects or degradation of the SWPC performance, even at

50 ◦C. The gain evolution and the energy resolution of both polyurethanes are shown in

Fig. 7.39-bottom.

Except for the PU CellPack, the other materials did not affect the operation of the wire

chambers. They were therefore validated for the GE1/1 production. The evolution of

the normalized gain and the energy resolution of all the tested materials can be seen

in Appendix A. The final results of the outgassing test campaign are summarized in

Tab. 7.2.
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Figure 7.39: Gain stability of the wire chambers operating in Ar/CO2/CF4 (45 : 15 :
40) at 2 L/h. The gas mixture was in contact with the PU CellPack Art. n◦124017
(middle) and the PU NUVOVERN LW (bottom). The outgassing results are compared
to the preliminary purity check performed before the materials were inserted in the

outgassing boxes (top).
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Figure 7.40: SEM pictures of the aged wire from the SWPC operating with PU
CellPack. The polymer deposits mainly contain atoms of carbon, oxygen and silicon.

GE1/1 element Material Aging Comments

O-rings VITON No Baked 2 hours in vacuum
PU layer CellPack n◦124017 Yes 20 % gain drop - silicon deposits
PU layer NUVOVERN LW No -
Soldering mask Elpemer 2467 No -
Sealing film Krempel KDF HT No -
Silver glue MSDS-Polytec-EC No -
Washer Polyamide No -
Tape Kapton No Energy resolution increased by 4 %
Gas tape Teflon No -

Table 7.2: Summary of the outgassing test results.

7.4.4 A new design of SWPC

7.4.4.1 Motivations

After the first identification of the contamination in the GIF gas system and the suc-

cessful outgassing campaign with GE1/1 materials, it was clear that SWPCs are very

convenient and suitable tools for gas purity measurements, identification of pollution or

monitoring of the gas composition. The RD10 prototypes demonstrated their a great

flexibility in term of operating conditions and easy maintenance. Nevertheless, the du-

plication of such chambers is a source of concerns for several reasons:

• The price of a new chamber is estimated to 2000 EUR, mostly because of the

use of elements like the glass holding support of the wire and the special pins
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to maintain the wire tension. Moreover, the machining of the stainless steel box

requires a specific equipment and expertise.

• The fragility of the thin stainless steel window and the glass support make the

handling of the detector very challenging. It is all the more problematic since the

replacement of the wire requires the dismounting of the entire structure.

• These prototypes contain suspicious materials like the epoxy glue that fixes the

stainless steel window to the box and also used on the wire pin to ensure the gas

tightness. Moreover, the wire needs to be soldered to the pins with no possibilities

of cleaning afterwards.

For these reasons, the CMS GEM collaboration proposed a new design of a clean wire

chamber that can be produced at low price in order to equip many gas systems in the

production laboratories, in CMS, and also for additional outgassing test stands.

7.4.4.2 Description of the detector

The wire chamber design is based on a simple cylindrical structure made of stainless

steel. Most of the parts come from gas systems and vacuum applications, which are

easily procurable at CERN and relatively cheap. The total price for one chamber does

not exceed 250 EUR. The novel concept is the wire holding structure that can be easily

extracted from the cylinder for maintenance and cleaning: the input cap of the cylinder,

including the HV connector and the gas inlet, is attached to an L-shape stainless steel

bar on which the wire is fixed; the first wire holding piece, made of brass, is welded to the

HV input, while the second element is inserted in the opposite side of the L-shape bar

and insulated from the ground thanks to a ceramic cylinder (see Fig. 7.41); the wire is

then embedded between the brass elements and a small plate of pure copper maintained

with metallic screws.

After the wire is in place with the appropriate tension, the entire structure is inserted

into the stainless steel cylinder and sealed with a metallic O-ring, as shown in Fig. 7.42.

To make sure the low energy X-rays can penetrate the gas volume, a narrow rectangular

slit was drilled in the cylinder. The radioactive source can be moved along the slit to

scan the wire and identify possible local depositions. The gas tightness is ensured by a

50 µm thick copper-beryllium window sandwiched between two stainless steel plate, one

being welded to the cylinder.

All the elements present in the chamber are fully metallic and arranged thanks to me-

chanical fixation or welding. The wire chamber is therefore free of any kind of polluting
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Figure 7.41: Technical design of the wire holding structure. The wire is mechanically
fixed between brass pieces and copper plates. The two brass elements are insulated

from the stainless steel structure thanks to ceramic cylinders.

Figure 7.42: Technical design of the CMS GEM wire chamber showing the outer
cylinder and the independent wire holding structure.

material such as glue, soldering material, rubber or polyamide O-rings. The detectors

are easily cleaned with ethanol in ultra-sonic bath and can be heated to high tempera-

tures in vacuum to remove all possible contaminants. After the wire holding structure is

moved outside the cylinder, the replacement of the wire takes not more than 1 minute.
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7.4.4.3 Calibration tests and further developments

The first prototype of wire chamber was assembled at CERN with the help of technicians

from the Italian National Institute for Nuclear Physics (INFN). The very first calibration

test consists of measuring the effective gain as a function of supply voltage. As for the

GEM detectors, the gain is calculated from the interaction rate and the current induced

by the particles and amplified. However, since the wire is set to high voltage, the

reading of the current requires a specific floating pico-ammeter inserted in the HV line.

The interaction rate is measured by counting the number of pulses induced on the wire

and sent to a pre-amplifier and shaper unit through a de-coupling capacitance. The

readout schemes and a picture of the experimental setup are shown in Fig. 7.43 and

Fig. 7.44.

Figure 7.43: Readout scheme of the gain calibration of the CMS GEM wire chamber.

Figure 7.44: Typical setup for the gain calibration of the CMS GEM wire chamber.

The detector was flushed with a mixture of Ar/CO2 (70 : 30) and irradiated with a

55Fe source of 30 MBq. As shown on Fig. 7.45, the chamber reached a maximum gain

of 4× 104 at 2200 V before the apparition of a leakage current between the wire holding

structure and the outer cylinder.

After a successful first operation, the chamber will be calibrated with Ar/CO2/CF4 (45 :

15 : 40) and different radioactive sources. The irradiation window will be also replaced
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Figure 7.45: Operation plateau (blue) and gain curve (red) of the first prototype of
CMS GEM wire chamber irradiated with 55Fe in Ar/CO2 (70 : 30).

by a 20 µm thick stainless steel window in order to minimize the photon attenuation.

Finally, the detector will be placed in the outgassing stand to operate continuously

during several months. After the final validation, several detectors will be assembled

and installed in the gas systems of the production sites to monitor the purity and the

composition of the gas mixtures.

7.5 Conclusions

The aging studies conducted at GIF and GIF++ revealed that the GE1/1 detectors can

operate at least 10 years in CMS, with a safety factor 8.8 in Ar/CO2/CF4 (45 : 15 : 40)

and 9.1 in Ar/CO2 (70 : 30). The performance of the detectors under test did not

change during the entire test period.

Nevertheless, polymerization effects were observed in the detector after 12 months of

continuous operation in an intense gamma flux. The polymers only affected few holes

over the entire chamber, most probably due to non-destructive discharges and triggered

by the presence of pollution in the gas mixture.

The extensive outgassing study indicated that the PU CellPack URETHANArt. n◦124017

present in this generation of GE1/1 detectors could be responsible for this pollution. It

was finally replaced by the PU NUVOVERN, validated during the outgassing test cam-

paign.

Tab. 6.1 gives a summary of the long-term requirements of CMS and the performance

of the GE1/1 detectors.

At the end of the long-term study, a specific design of single wire proportional chambers

was proposed by the CMS GEM collaboration in order to monitor continuously the
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Property CMS requirements GE1/1 performance

Longevity 60 mC/cm2 53 mC/cm2 in Ar/CO2/CF4 (45 : 15 : 40)
55 mC/cm2 in Ar/CO2 (70 : 30) (ongoing)

Table 7.3: Comparison of the CMS minimum requirements and the GE1/1 long-term
performance.

purity and the composition of the gas mixtures at the GE1/1 production sites and

possibly for the CMS gas system. The first prototype was assembled and calibrated at

the end of 2015.
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Assembly, Quality Control and

Commissioning of the GE1/1

detectors

8.1 Introduction

Regarding the excellent performance and the longevity of the triple-GEM technology,

the GE1/1 project was approved in 2015 for the CMS muon upgrade during the Long

Shutdown 2 (LS2) in 2018. The CMS collaboration approved at the same time the

preliminary installation of eight GE1/1 detectors in the YE1/1 region of the negative

end-cap, called ”slice test”, in order to demonstrate the integration of the GE1/1 tech-

nology into the current muon system. For the GE1/1 project, 144 single chambers will

be assembled and tested at several production sites before being shipped to CERN for a

last verification. To ensure the best quality and the good performance of each detector,

a precise Quality Control (QC) was established for the production sites and the CMS

GEM facility at CERN.

In this chapter we will describe the main production and QC steps: the qualification of

the GEM foils; the assembly of the large detectors; the gas leak test. Then we will focus

on the gain uniformity test that was developed especially for the GE1/1 application.

8.1.1 Schedule

As shown in Tab. 8.1, the production of the 144 chambers will start in May 2016 at the

production sites. The installation is planned to be ready in March 2018 after all the

169
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super-chambers are validated at CERN.

Production step Date

Technical Design Report 01/2015

Components reception at production sites 06/2016

DAQ production complete 12/2016

Chamber reception at CERN 05/2017

Electronics complete 12/2017

One end-cap complete 01/2018

Second end-cap complete 03/2018

One end-cap installation 04/2018

Second end-cap installation 05/2018

Table 8.1: Milestones of the GE1/1 production and schedule.

Therefore, all the large detectors must be produced and tested within two years. The

production plan should be designed in such a way that the production, the assembly

and the QC can be conducted in parallel in the various production sites. Moreover, the

QC tests must be optimized to ensure the fast and the efficient characterization of the

chambers.

8.1.2 Overview of the quality control

Fig. 8.1 shows the details of the QC procedure for the GE1/1 project. All the components

are first prepared for the assembly of the single detectors. Then, after the validation

of the detection characteristics, two single chambers are assembled together to form a

super chamber. The super-chambers are finally equipped with the final electronics and

tested with MIPs before being stored and installed in CMS.

Figure 8.1: Process of Quality Control of GE1/1 chamber and super modules.

All the operations and the manipulations of the detectors are done in a well defined

environment, following precise procedures to prevent any type of contamination and
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mismeasurements of the detector’s performance. In other words, the assembly room,

the gas system layout and the equipment of all the production sites must be identical.

The QC procedures, initially established at CERN during the R&D phase, was shared

with all the production sites in order to make sure that the QC results are obtained in

the same conditions, regardless the origin of the chambers.

8.2 Leakage current test

All the elements forming the GE1/1 chambers are immediately verified after the re-

ception at the production sites. An optical inspection is first performed to ensure the

integrity and the quality of the frames, O-rings, connectors and the flatness of the drift

and readout PCBs. All the parts are then cleaned with DI water in ultrasonic baths.

Specific cleaning procedures, like the baking of the VITON O-rings in vacuum are based

on the recommendations from the outgassing study.

However, it is not possible to verify the quality of the GEM foils with a simple optical in-

spection because of the microscopic scale of the GEM structure and the large dimensions

of the foils. A specific electrical test was designed for this purpose.

8.2.1 Principle

When applying a voltage across the GEM electrodes, we can observe a leakage current

that is mostly driven by the surface conductivity of the polyimide. This conductivity

strongly depends on the quality of the foil but also on its cleanliness. The presence of

dust, contamination or defects will act as an electrical bridge between the electrodes and

provoke an increase the current flowing through the foil (see Fig. 8.2). By measuring

this current we can therefore determine the quality of the GEMs.

Figure 8.2: Schematic cross section of a GEM foil and its equivalent resistive circuit.
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The value of the voltage applied on the GEM should be higher than the real operation

voltage with a large safety factor. However, it should not exceed the breakdown voltage

Vb of the medium under the penalty of triggering strong discharges in the gas. The

breakdown voltage is the empirical value necessary to start a discharge in a gas between

two electrodes. It depends on the gas composition, the gas pressure and the distance

between the electrodes. It is given by Paschen’s law:

Vb =
B.pd

C + ln(pd)
, C = ln

(

A

1 + 1/γ

)

(8.1)

where A and B are experimental constants related to the gas, γ the second Townsend

coefficient, ”p” the gas pressure and ”d” the distance between the electrodes. Then, we

can calculate the product ”pd” corresponding to the GEM setup:

7, 5.102(1 atmosphere [Torr])× 5.10−3(Polyimide thickness [cm]) = 3, 8 [pd] (8.2)

Finally we can obtain the breakdown voltage in Nitrogen given by Paschen’s curves

(Fig. 8.3 [120]). The acceptable limit for the leakage current, determined by the ex-

periment, corresponds to 1 nA per 100 cm2 of GEM foil when applying 600 V in pure

nitrogen.

Figure 8.3: The Paschen’s curves for different media.

In order to control the environment (i.e. the polyimide surface conductivity and the

breakdown voltage), the GEM foils are placed in a sealed box filled with pure nitrogen.

Additionally, a Meteo-station is placed near the foils to monitor the temperature and the

relative humidity of the medium. This information is crucial to properly understand the
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leakage current fluctuations and compare the results from GEM foils tested at different

periods and different locations. A specific epoxy support is necessary to prevent the

GEM electrodes from touching the box and to ensure a safe handling. The GEMs are

then connected to the power supply, remotely controlled by a LabView interface. A

schematic view of the typical leakage current test setup is shown on Fig. 8.4. At this

point it is also possible to measure the capacitance of the foils to check the connectivity.

Moreover, the capacitance is a good indicator of the quality of GEM and should be close

to 5.6 nF for a good 100 cm2 GEM foil.

Figure 8.4: Typical test setup for the leakage current measurement.

8.2.2 Tests and results

The leakage current test consists of two main steps, the fast test and stability test:

• The fast test consists of directly applying 600 V to the foils with a total ramping

time of couple of seconds. Doing so, the possible dust trapped in the holes is

burnt and blown away by non-destructive discharges. On the contrary, applying

the same voltage with a long ramping time or applying a lower voltage could fix

the particles of dust to the holes and lead to a permanent contamination. This

technique is also performed during the assembly of the GE1/1 detector in order

to quickly eliminate the dust resulting from the manipulation of the GEMs.

• After the fast test comes the stability test: the voltage across the foils is slowly

set to 600 V, by steps of 100 V. After a long stabilization time at the maximum

voltage (typically 1−2 hours), the voltage is set to 100 V for several minutes, then

back to 600 V and so on. The difference of current delivered by the power supply

between these voltage cycles corresponds to the real leakage current of the foil.
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Fig. 8.5 shows the typical leakage current test results of an accepted and a rejected GEM

foil. In addition to the discharges observed with the rejected foil, the leakage current

after stabilization is higher than 5 nA, farabovetheacceptablelimitof1nA.

Figure 8.5: Typical leakage current of a approved (top) and rejected (bottom) GEM
foil.

8.3 Assembly of the GE1/1 detectors

After all the components are accepted and cleaned, the chambers can be assembled

in a clean room. Thanks to the new mechanical stretching developed for the CMS

GEM application (see Sec. 5.3.3), the assembly of a GE1/1 chamber requires not more

than 2 − 3 hours of work by two trained operators. The major steps of the assembly

of a GE1/1 detector of the last generation (i.e. the final design for CMS) are shown

in Appendix B. The details of each step are mentioned in the caption of the pictures

Fig. B.1 to Fig. B.17. Additional details and technical aspects on the production of the

GE1/1 detectors can be found at [10].



Chapter 8. Quality Control and commissioning 175

8.4 Gas leak test

The first quality control after the closure of the detector consists of verifying the gas

tightness. The drift and readout PCBs are closed with several hundred of screws, which

can be possible openings to the external environment. Gas leaks are not only a waste

of gas but also a source of pollution, bringing water and unknown species from the

environment that can strongly affect the properties of the gas mixture and react in the

avalanche plasma. Several techniques for measuring the gas leaks were investigated for

the GE1/1 project:

• The first solution consists of comparing the input and output gas flow rates. It can

be measured with mechanical devices such as glass tube flow-meters, or with digital

flow meters and mass flow controllers, which have a better resolution and automatic

backup (see Fig. 8.6). Any gas mixture can be used for this test as long as it is

clean and compatible with the measurement devices. The time of flushing depends

on the input flow rate and should correspond to at least 10 volume exchanges in

the detector. A calibration line excluding the detector is essential to identify leaks

in the gas system.

Figure 8.6: Schematic view of the gas circuit for the gas flow rate measurement.

• A more accurate technique consists of monitoring the pressure drop in the chamber

as a function of the time (Fig. 8.7 ). The idea is to first pressurize the detector

under the safe limit of 50 mbar and then close the gas volume with input and

output valves. In case of gas leaks, the overpressure in this volume drops down to

zero with a time scale that depends on the leak rate and on the initial overpressure.

Knowing the initial pressure P0, the initial volume V0 and the pressure drop∆P (t),

we can calculate the gas leak rate ∆V (t) with the Boyle-Mariotte law:

∆P (t)

P0
=

∆V (t)

V0
(8.3)
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Figure 8.7: Typical setup for the pressure drop measurement with pressure indicator.

• A ”low cost” version of the pressure drop setup involves a simple U-shape tube.

As shown in Fig. 8.8, the U-tube is filled with water and connected to the detector

through a safety container to prevent water overflow. When the output valve is

open, both water levels are equal to h0. When the valve is closed, raising the

left tip of the U-tube creates a difference of water levels that corresponds to an

overpressure in the detector. In case of a gas leak, the water levels will go back to

the equilibrium level h0. The linear dependency between the difference of levels

∆h and the overpressure P is given by:

∆h = 10 m ⇐⇒ P = 1 bar (8.4)

Figure 8.8: Typical setup for the pressure drop measurement using the U-tube.

Finally, the option chosen for the GE1/1 production is a combination of the two first

techniques. The internal overpressure, the atmospheric pressure and the temperature

are measured thanks to a set of sensors controlled by an ARDUINO board. Additional

flow meters are used to quickly identify large leaks.

After the chambers are validated, the HV components that form the HV divider and the

filters are mounted on the drift PCB and tested. At this point the chambers are ready

to start their first operation.
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8.5 Gain uniformity test

The gas gain is the central parameter of a triple-GEM detector, referring to the gas

composition, the hole geometry, the electric fields inside and between the amplification

layers and the quality of the readout board. The uniformity of the gain can be affected

by various elements: non-uniformity of the GEM geometry, local contamination, poor

stretching or defects on the readout plane. All the characteristics (e.g. discharge prob-

ability, charging up) and the detection performance (e.g. efficiency, time and spatial

resolutions) are functions of the gain. Therefore, gain variations over the surface of a

large chamber is a serious concern and the measurement of the gain uniformity of every

GE1/1 detectors is a crucial step of the QC.

However, it is important to mention that the goal of this QC step is not to identify

the causes of the gain variations, but only to provide sufficient information to accept

or reject the chambers before the next QC step. The full understanding of possible

gain variations is only possible with more specific tests (e.g. precise measurement of the

detector parallelism, uniformity of the GEM holes, leakage current between the GEMs

etc...).

8.5.1 Motivations and principle

8.5.1.1 The sector-by-sector technique and its limitations

Initially, the gain was measured sector-by-sector, one after the other, while the X-ray

source was moved along the chamber. For each sector, all the 128 readout strips were con-

nected together to a single output and to the readout chain. As described in Sec. 6.2.2,

the measurement consists of comparing the input particle rate to the output amplified

current. However, three main limitations were then identified with this method:

• The measurement requires several hours for one readout sector and up to several

days to scan the 24 sectors of a full chamber. In ideal conditions, only 4 − 5

detectors can be tested per month, which is not compatible with the production

schedule.

• Because of the long duration of each test, the environmental temperature and

pressure can fluctuate and induce gain variations between the readout sectors.

Moreover, the readout chain and the grounding must be moved manually between

the sectors, resulting in possible changes of the experimental conditions during

the test. At the end, the sector-by-sector technique can induce additional non-

uniformity that is not representative of the quality of the detectors.



Chapter 8. Quality Control and commissioning 178

• Since all the 128 strips of each sectors are connected together, there are only 24

measurement points for a full chamber, while the total number of strips in the

detector is equal to 3072. This drastic loss of granularity could be improved by

reading out smaller groups of strips but it would increase significantly the duration

of the test.

Fig. 8.9 shows typical results obtained with the sector-by-sector method for the two first

prototypes of the 4th generation. The effective gain of the second detector (bottom)

increases gradually toward the lowest η-sectors (i.e. the largest base of the trapezoid)

with maximum values up to 25 % higher than the average gain. This phenomenon

was easily explained by geometrical deformation of the drift and the readout planes

caused by the over stretching of the foils. On the other hand, the first prototype (top)

shows random-like variations that can’t be explicitly referred to a geometrical effect or

to fluctuations of the experimental conditions.

Figure 8.9: Typical results of the gain uniformity test with the first (top) and the
second (bottom) prototypes of the 4th generation of GE1/1 chambers.
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8.5.1.2 A new technique for the gain uniformity test

A new solution was developed to overcome the limitations of the sector-by-sector tech-

nique. The method consists of measuring simultaneously the 3072 readout strips of a

detector fully irradiated by a large X-ray beam. Therefore, all the readout channels

are affected in the same way by the environmental fluctuations without disturbing the

measurement of the gain uniformity. Moreover, there is no need to manipulate the setup

during the test since all the connections are prepared before the data acquisition. Fi-

nally, measuring the gain with the full granularity allows selecting interesting regions of

the detector and adjust the fineness of the analysis.

The first attempt was successfully conducted in 2012 with a GE1/1 detector of the 3rd

generation. After the optimization of the procedure and the installation of a new X-ray

station dedicated to this QC step, several detectors of the 4th and the 6th generations

were tested. The next sections will describe the final setup, the analysis procedure and

the results.

8.5.2 Description of the experiment

The detector under test is placed in front of a AMPTEK miniX X-ray source with a silver

target emitting 23 keV photons. Since the aperture of the X-ray gun is of the order of

120◦, the detector is fully irradiated at a distance of 1.2 m from the source. The structure

is fixed inside of a large copper box that acts as a radiations shielding and a Faraday

cage. The chamber is flushed with the CMS gas mixtures Ar/CO2/CF4 (45 : 15 : 40)

or Ar/CO2 (70 : 30).

The readout electronics is based on the Scalable Readout System (SRS) designed by the

RD51 collaboration. It consists of APV25 Front-End ASICs with 128 readout channels

connected to the readout board of the detector. Each channel contains a pre-amplifier

and a shaper working at a frequency of 40 MHz. The analog information of the pulses

is sent to an ADC card via HDMI cables, itself connected to the Front End Card (FEC)

responsible for the communication with the external devices and the control of the chips.

Then, a Scalable Readout Unit (SRU) acts as a common readout concentrator to ensure

the DTC link (Data, Trigger and Control) between all the FECs and the DAQ station.

It also performs the synchronization of the clocks of all the electronics cards and chips.

The SRS system requires an external trigger to send out the data packets. The detector

being irradiated by X-rays, it is not possible to generate trigger signals with a scintillator.

However, the signal amplified in the triple-GEM structure and moving between the last

GEM foil and the readout plane also induces a pulse on the bottom electrode of the
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last GEM, almost identical to the one induced on the readout strips. This signal can

be collected directly on the HV divider through a de-coupling capacitance before being

sent to a pre-amplifier, a shaper and a discriminator unit to generate a digital gate. The

trigger signal is then sent to the SRU to start the acquisition. When the SRU receives

a trigger, all the APV25 chips open an acquisition window of 375 ns during which the

signals on all the channels are sampled every 25 ns.

Fig. 8.10 shows the typical raw data from an APV25 (left), containing the ADC charge

of all the channels inside of the acquisition window (top right) and the typical cluster

size at a gain of 1× 103 with X-rays (bottom right).

Figure 8.10: Raw data of an APV25 triggered by an X-ray photon. The acquisition
window contains 12 samples delayed by 25 ns. Each sample includes the ADC values
of all the 128 strips, fired or not by the particle. The average number of strips fired by

a 8 keV X-ray is 3.3 at a gas gain of 1× 103.

Finally, the data collected inside of the APV25 acquisition windows are recorded with

the DATE software (Data Acquisition and Test Environment) designed by the ALICE

community and fully compatible with the SRU+SRS+APV25 system. Fig. 8.11 gives an

overview of the test setup (left) and the layout of the DAQ elements (right). Fig. 8.12

shows the complete setup with a GE1/1 prototype in place and ready for the data

acquisition.
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Figure 8.11: Schematic view of the gain uniformity test setup showing the detector
under test irradiated by the silver X-ray source, the DAQ electronics and the trigger

line .

Figure 8.12: Picture of the gain uniformity stand showing the X-ray source, the DAQ
stations ((left) ) and the inside of the copper box (right) with the electronics in place

on the detector.

8.5.3 The DAQ procedure

The GE1/1 detector under test is operating at an effective gain of 1×103, which ensures

that the maximum amplitude of the readout signals is just below the saturation level of

the APV25.

The first step consists of measuring the average noise and the offset of every readout

channels. To do so, the X-ray source is kept OFF and the acquisition is performed with
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a random trigger signal. The so-called ”pedestal run” takes no more than few minutes

for one chamber.

Then the X-ray source is powered ON to perform the ”physics run”. The recording of the

data only starts 30 minutes after the ray source was turned ON to avoid the short-term

variations of the gain induced by the charging up of the GEM foils. The duration of the

run depends on the number of events that has to be collected. Since the SRS system

is working with a common trigger, only the few channels fired by the particle signals

records interesting information, while all the other channels record zeros (the typical

cluster size is equal to 3 strips). Therefore, to acquire a sufficient number of good events

per measurement point, the total number of events that must be collected by the entire

system should be multiplied by the total number of points. For example, in order to

acquire 10 000 good events for every single strips, the total number of events collected

by the system is 3072 times bigger, so about 30 millions. In practice, it is sufficient

to collect 10 000 events per cluster size (i.e. 3 strips) to build a representative charge

spectrum. In this case, called the 1-cluster granularity, a total of 10 millions of events

is required to allow the proper gain characterization over 1000 points on the detector.

8.5.4 The analysis procedure

The first phase of the analysis is based on the AMORE framework designed by the

ALICE community and adapted to the SRS+APV25 system [121]. It consists of three

main steps:

• The first step consists of defining the appropriate threshold to perform the zero-

suppression on all the recorded events. Using the data collected during the pedestal

run, AMORE builds the noise distribution and extract the corresponding RMS

for all the channels. Then, a cut is applied on all the data with the source ON,

typically at 5 σ of the average noise level. For each event, all the channels with a

charge below the threshold are suppressed.

• The next step is the clusterization: for a same event, the hits in neighbor strips

are organized in a single object, a cluster, which contains the total charge induced

by the particle. Additional cuts are possible at this level, such as the maximum

and the minimum cluster sizes and the cluster multiplicity that are useful to reject

possible noise, cross-talk or fake events.

• Finally, the results are stored in a ROOT tree. For every event the tree contains

the number of clusters, the total charge, the size, the position and the timing

information of the clusters.
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Then, the second phase of the analysis is the extraction of the gain uniformity from the

ROOT file thanks to a dedicated algorithm. It is organized in three main steps:

• First, the geometry of the detector is built in the software, including the position

of all the strips in the φ and the η directions. The readout plane is divided in

several regions of interest defined by the user. With the example of the 1-cluster

granularity, each η-partition is divided into 128 slices, each slice corresponding to

1 cluster size (3 strips).

• Then, in a given slice, the maximum cluster charge for all the events occurring

in this slice is added to a charge histogram. A second selection is performed at

this stage to clean the data set: the events with a very low energy and a cluster

size lower than 2 strips are considered as noise and thus they are simply rejected.

Additionally, the events with the maximum charge in the first or the last sample

of the acquisition window are also removed since the useful part of the signal could

be outside of the DAQ window.

Figure 8.13: Schematic view of the detector built in the analysis code. The η-
partitions are divided in several slices defined by the user. For each slice, the accu-
mulation of the maximum charge of all the clusters gives a distribution related to the

energy deposited by the particles and the effective gain.

Fig. 8.13 shows a schematic representation of the second analysis phase. The

resulting charge distribution, shown in Fig. 8.14, is similar to the one described

in Sec. 6.4.1. The fluorescence of the drift electrode induces the typical copper
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photo-peak around 8 keV in addition to the X-ray background mostly due to the

Bremsstrahlung of electrons in the silver target.

• A Gaussian fit is then applied to charge histograms of all the slices to determine

the ADC mean of the photo-peaks and the corresponding energy resolution. The

charge collected on the readout plane being proportional to the effective gas gain,

variations of the ADC position of the photo-peak indicates the variations of the

effective gain, possibly induced by geometrical non-uniformity or defects on the

readout board. Finally the mean and the RMS of all the slices are plotted as a

function of the slice position in order to provide a 3D map of the effective gain of

the GE1/1 chamber.

Figure 8.14: Typical charge spectrum induced by the silver X-ray source in the GE1/1
detectors filled with Ar/CO2 (70 : 30) (left) and stability of the mean ADC as a function

of the position of the slice in the corresponding η-partition (right).

8.5.5 Tests and results

Five large detectors were tested in the same conditions with the gain uniformity test

setup. The detectors were operating in Ar/CO2 (70 : 30) at an effective gain of 1× 103.

After five hours of continuous irradiation, each chamber accumulated about 7 × 105

events. For convenience reasons, the results discussed in this section are presented with

the 8-cluster granularity i.e. each of the 128 measurement points is 2− 3 cm wide in the

φ direction and corresponds to about 0.8 % of the total area.

8.5.5.1 GE1/1-III

The first detector tested with the SRS+APV25 system was a GE1/1 prototype of the

3rd generation. Fig. 8.15 shows the 2D map of the effective gain normalized with the
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average value (left) and the map of the energy resolution over the entire surface (right).

Figure 8.15: Effective gain (left) and energy resolution (right) of a 3rd generation
GE1/1 prototype as a function of the η-partition and the analysis slice.

The gain is mostly contained within 20 % of the average value, except near the slice

number 12 of the first η-partition where it is higher by 40 %. The map shows that the gain

decreases gradually from the narrow side of the trapezoid (η-partition 8) to the largest

side (η-partition 1) with lower values close the lateral sides. This effect can be explained

by the slight bending of the drift and the readout PCBs causing variations of electric

fields between the various elements of detectors. As a result, the transparency of the

GEM foils is not uniform, as well as the effective gain. The energy resolution is uniform

over the chamber, with an average value just below 20 %. However, larger resolutions

are measured in the η-partition 5, probably resulting from the low quality of one or

several HV sectors on the GEM foils (which are parallel to the η-partitions). Finally, a

3D view of the gain map is shown on Fig. 8.16. The coordinates of each measurement

point are expressed in millimeters, the origin being the center of the narrow side of the

trapezoid.

This particular test helped to identify for the first time the bending issue with large

chambers. The bending, already present when the boards are delivered, can get worse

because of the over stretching of the GEM stack.
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Figure 8.16: 3D map of the effective gain of the 3rd generation GE1/1 prototype,
normalized with the average value. The origin of the axis is the central point of the

narrow side of the chamber.

8.5.5.2 GE1/1-IV

The bending effect was confirmed with two chambers of the next generation of GE1/1,

as seen in Fig. 8.17 and Fig. 8.18.

Figure 8.17: Effective gain (left) and energy resolution (right) of the first GE1/1
prototype of the 4th generation as a function of the η-partition and the analysis slice.

The corresponding 3D gain maps, on Fig. 8.19, show that the variations over the surface

of the GE1/1-IV detectors are similar to the ones observed with the 3rd generation. In

this case, the effect is even more pronounced with variations above 40 % of the average

gain. It is also interesting to notice that these two detectors were also tested with the

sector-by-sector technique discussed in Sec. 8.5.1. The results, previously shown Fig. 8.9,

are compatible with the ones obtained with the SRS system.
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Figure 8.18: Effective gain (left) and energy resolution (right) of the second GE1/1
prototype of the 4th generation as a function of the η-partition and the analysis slice.

Figure 8.19: Comparison of the 3D maps of the effective gain of the first and second
GE1/1 prototypes of the 4th generation, normalized with the average value.
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8.5.5.3 GE1/1-VI

The bending issue was then solved by pre-bending the boards in the opposite direction

of the initial bending and by releasing the tension on the foils. After several trials, two

GE1/1 chambers of the 6th generation were tested. The effective gain and the energy

resolution maps are presented in Fig. 8.20 and Fig. 8.21. The gain variations are below

15 %, with few points just above 20 % for the first prototype.

Figure 8.20: Effective gain (left) and energy resolution (right) of the first GE1/1
prototype of the 6th generation as a function of the η-partition and the analysis slice.

Figure 8.21: Effective gain (left) and energy resolution (right) of the second GE1/1
prototype of the 6th generation as a function of the η-partition and the analysis slice.

The corresponding 3D gain maps on Fig. 8.22 are plotted with the same scale than for

the other generations. These results therefore confirm the significant improvement of

the planarity of the chambers and the uniformity of the gain.
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Figure 8.22: Comparison of the 3D maps of the effective gain of the first and second
prototypes of 6th generation GE1/1, normalized with the average value.

8.5.6 Limitations and plans

The gain uniformity test is a major step of the QC of the GE1/1 detectors and a great

tool to accept or reject faulty chambers at the early stage of the production. The use of

the SRS+APV25 system substantially improved the gain uniformity measurement: the

duration of the entire test was reduced from one week to two days per detector and the

charge can be collected on every single strip to keep the best granularity and thus more

information for in-depth investigations. However, we can identify two limitations with

this system:

• First, the trigger is not generated by scintillators but extracted from the bottom

of the last GEM. This electrode, covering the entire surface of the detector, is

very large and induces a lot of noise in the trigger readout channel. The high

frequency noise can be easily removed with an appropriate filter but there are also

contributions at frequencies close the typical signal frequencies and slower baseline

fluctuations that cannot be filtered. Therefore, the poor quality of the trigger signal

induces time jittering on the digital gate sent to the SRU, and then time fluctuation

of the acquisition window with respect to the readout signals. In addition, since the
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detectors have to operate at a low gain in order to not saturate the APVs (typically

1×103) , the time resolution is not optimum and also participates to the jittering of

the trigger signal. A solution consists of increasing the size of acquisition window

to make sure that all the readout pulses are correctly sampled, but doing so, the

amount of data transferred to the DAQ also increases and limits the maximum

acquisition rate. In the current configuration, the acquisition window consists of

15 time bin (i.e. 375 ns) for an acquisition rate limited to 50 Hz, very low regarding

the particle rate provided by the X-ray source (100 kHz).

• The second limitation is the absence of Zero Suppression (ZS) at the level the

electronics. For each trigger received by the SRU, all the APVs have to transfer

the full content of the acquisition window for all the 128 readout channels. Conse-

quently, 3072 channels are recorded while, in reality, only 3 strips (one cluster) are

fired by a particle and contain useful information. The absence of ZS is responsible

for very large data files, about 100 Gb per million of events. The handling of the

data is therefore problematic and the analysis step in charge of the ZS takes more

than 12 hours for a single chamber.

A major upgrade of the SRS system is being investigating by the RD51 research group

at CERN and the Florida Institute of Technology (CMS GEM Collaboration) in order

to implement the ZS in the firmware of the acquisition boards and propagate the modi-

fications to the DAQ and the analysis softwares. With this new configuration, only the

few readout channels fired by the particle would transfer the data to the DAQ station.

Therefore, the acquisition rate would increase by almost a factor 1000 and reach several

tens of kHz. The size of the data files would be significantly reduced, as well as the time

required to analyze all the events. With the upgraded system, it is expected to perform

the entire gain uniformity test in few hours, for a total number of events more than one

order of magnitude larger than with the current system.

After successful preliminary tests with small prototypes, the new configuration is being

tested on large GE1/1 detectors with the entire set of APV25s.

8.6 Conclusions

The production, the assembly and the testing of the 144 large detectors for the GE1/1

station will be shared between several production sites over the world. The entire pro-

cess will start in 2016 and must be completed in 2018 before LS2. The CMS GEM

Collaboration aims to provide the detailed testing procedure to make sure that all the

chambers will have the best performance in CMS.
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The experience gained during the R&D phase helped to identify the critical character-

istics of the large detectors and to precisely define the structure of the quality control.

Several major QC steps were established at CERN during the Ph.D thesis.

The characterization of a large GEM foil is a challenge because of its microscopic struc-

ture. Nevertheless, the measurement of the leakage current between the GEM electrodes

helps to identify the presence of defects or contamination. The testing configuration and

the procedure were optimized after a set of trials with several GEMs of various quality.

A new large setup is being designed to allow the characterization of several full-size

GEM foils and therefore minimize the duration of the test.

After the assembly of the single detectors, a gas leak test is necessary to ensure that

no pollution or air molecules can penetrate the amplification region, degrade the perfor-

mance of the detector and trigger premature aging. Several options were considered and

the final test will include the measurement of the gas flow rate and the pressure drop

inside of the chambers. A dedicated test stand, recently designed, includes several high

purity pressure and temperature sensors that are automated thanks to micro-controllers.

One of the most important step is the gain uniformity test, which is necessary to ensure

that the detection performance will be uniform along the detectors. A new technique was

developed in order to measure simultaneously the effective gain at every readout strips.

A new procedure helped to reduce the duration of the test to 2 days with the maximum

granularity. After several successful tests with several generations of detectors, the setup

and the procedure will be duplicated in the all production sites.

The next major step of the quality control is the performance test of all the detectors

with cosmic rays. The dedicated cosmic stand that will contain up to 30 detectors will

operate with the final CMS electronics and DAQ system, which will be available during

2016.
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General conclusions

When I first joined the CMS GEM Collaboration, the GE1/1 project was still only an

R&D interest of CMS. The first prototype of the second generation had just been assem-

bled and prepared for its very first operation. The project was still mainly conducted

within the RD51 laboratory, where it was initially born.

Most of the major aspects of the project were not yet established and it was essential to

demonstrate that the GE1/1 technology was the most suitable choice for the upgrade

of the CMS end-caps. In particular, it was necessary to measure the fundamental char-

acteristics of the world largest triple-GEM detectors and show that they were perfectly

adapted to the CMS forward environment. The CMS GEM Collaboration also had to

demonstrate that the detection performances of the GE1/1 prototypes were good enough

to fulfil the requirements of CMS, both for the L1 trigger system and the OFF-line re-

construction. Finally, it was crucial to study the long-term operation of the GE1/1s and

make sure that the detectors can survive for several decades in a harsh environment.

Apart from the detector’s aspects, it was also necessary to show that the CMS GEM

Collaboration had the resources, the experience and the manpower to support such a

big project. Numerous tools and techniques had to be developed by the collaboration

to facilitate the integration of the GE1/1 project to the CMS system. Moreover, the

production plan and the quality control of the chambers had to be established and

validated.

My PhD subject was proposed in this context. It can be divided into three main projects.

The first one was the study of the operating characteristics of the modern triple-GEM

detectors. The recent development of the single-mask production technique gives the

possibility of producing large GEM foils with a very good uniformity. However, it also

induces non-negligible differences in the geometry of the GEM holes that could affect the
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general performances of the technology. A series of test setups and procedures were then

designed in order to understand the variations between the single-mask and the stan-

dard double-mask foils. Therefore, the effective gas gain, the short-term stability, the

rate capability and the discharge probability were precisely measured in controlled en-

vironments with small prototypes especially designed for this purpose. The unexpected

differences of operation between the two orientations of the single-mask foils were high-

lighted by this study and helped to define the best configuration for the large GE1/1

chambers. Additionally, a lot of effort was dedicated to the test of the full-size prototypes

in test beam facilities in order to determine the detection efficiency, the spatial and the

time resolutions. Besides that, a new technique was established to measure the bunch

crossing identification efficiency by synchronizing the beam trigger with the clock of the

readout electronics. All the tests were performed at different operating points and for

different gas mixtures, with the idea of proposing several working configurations for the

CMS application. The excellent performances of the GE1/1 detectors were presented at

international conferences and published in several scientific journals (full list available

at [122]).

The second project was the extensive study of the long-term operation of the GE1/1

chambers. When operating in high-rate environments, gaseous detectors can be subject

to ”classical aging”, i.e. the degradation of their performances induced by polymerization

processes in the avalanche plasma. Three accelerated aging tests were conducted in

the Gamma Irradiation Facility at CERN. In order to maintain the realistic operating

conditions, the acceleration factors were set to low values (< 30). After several months of

sustained irradiation, the detectors accumulated a total charge higher than 50 mC/cm2

that corresponds to 10 years of real operation at HL-LHC with a safety factor ∼ 9. Since

no aging effects were observed during this period, the detectors are expected to survive

in CMS with the two possible gas mixtures Ar/CO2 (70 : 30) and Ar/CO2/CF4 (45 :

15 : 40). The tests will continue until the chambers accumulate a safety factor 10. It

was also demonstrated that the presence of pollutants in the gas mixture could trigger

and enhance the classical aging. Therefore, in addition to the classical aging tests, a set

of outgassing tests was performed with the materials composing the GE1/1 detectors.

About two years of consecutive measurements helped to identify a polluting material,

the CellPack URETHAN, and confirm that the other components will not affect the

operation of the detectors. Finally, based on the experience from the long-term study,

I proposed a new design of ultra-clean single wire chamber in order to monitor the

purity and the composition of the gas mixtures. Such devices could be implemented

in the gas systems at the GE1/1 production sites and at CMS to prevent the possible

contamination of the GE1/1 detectors. A first prototype was build and successfully

tested at CERN.
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The last subproject was the assembly and the quality control of the triple-GEM detec-

tors. In order to ensure the proper operation of all the GE1/1 chambers, a set of control

tests was established before, during and after the assembly. One of the major QC step

is the characterization of the GEM foils, done by measuring the leakage current between

the two copper electrodes. The presence of defects or contamination would induce an

over current. This step is also very important during the assembly process to identify

and eliminate possible dust particles on the foils. Another crucial step of the QC is the

effective gain calibration and the measurement of its uniformity across the chambers.

Since the effective gain impacts all the detection performances, large variations over

the detector’s surface would degrade the operation in CMS. A specific test station was

design in order to measure simultaneously the effective gain and the energy resolution

at every readout channel. The DAQ system is based on the SRS+APV25 electronics,

initially developed for the CMS tracker. The entire test takes no more than two days

for a single detector and allows extracting the gain information with the full granularity.

The technical specifications, the procedure and the analysis tools were shared with all

the production sites, which are going to duplicate the system.

My PhD work contributed to the success of the R&D phase and lead to the approval

of the GE1/1 project by the CMS collaboration. The results I obtained and the cor-

responding conclusions helped to design the most suitable detectors for the upgrade of

the CMS end-caps and also to better understand the modern triple-GEM technology.

In particular, the realistic aging study I performed could be useful for other high-rate

applications involving GEMs, for the upgrade of the current HEP experiments and for

the future colliders.

As a personal conclusion, I must say that I consider myself as very lucky. Firstly because

I had the opportunity to work at CERN, one of the most incredible scientific complex

in the world. I have seen and used many types of detection technologies, research tools

and other extraordinary objects like a 3 T superconducting magnet, large irradiation

bunkers and the first MWPC ever built. I also had the chance to work with a great team,

within the CMS GEM Collaboration and the RD51 research group. I could see how the

mutual assistance and the close collaboration helped resolving any kind of scientific

issues. Finally, I was involved in an extraordinary project: the installation of a new

detection technology in CMS. I participated in many activities including fundamental

research, analysis, hardware and software developments, both in particle physics and

general engineering. After three years of intense work, I feel myself more confident and

more than ever ready to continue my career in scientific research.
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Conclusion générale

Quand j’ai rejoint pour la première fois la collaboration CMS GEM, le projet GE1/1

n’était alors qu’un simple programme de R&D CMS parmi d’autres. A ce moment là, le

premier prototype de la seconde génération venait d’être assemblé et préparé en vue de

sa première mise en fonctionnement. L’essentiel des travaux de recherches était encore

mené dans les laboratoires du groupe de recherche RD51, où le projet était né quelques

mois plus tôt.

La plupart des aspects les plus importants du projet GE1/1 n’étaient pas encore établis

et il fallait démontrer que la technologie des GEM était la plus adaptée pour le projet

de consolidation du détecteur à muons de CMS. En particulier, il était nécessaire de

mesurer les propriétés fondamentales de fonctionnement des premiers grands détecteurs

triple-GEM produits par la technologie simple-maque, et de s’assurer qu’ils pourraient

fonctionner en toute sécurité dans l’environnement des bouchons de CMS. La collab-

oration CMS GEM devait aussi démontrer que les performances de détection seront

suffisamment bonnes pour améliorer à la fois le système de déclenchement sur les muons

et la reconstruction ”OFF-line” nécessaire pour l’observation d’une nouvelle physique

après la montée en puissance du LHC. Enfin, il était crucial d’étudier le fonctionnement

à long terme des chambres GE1/1 et de s’assurer qu’elles pourront fonctionner pendant

des décennies dans les bouchons de CMS haute luminosité.

Au delà de l’aspect détecteur, il était également important de montrer que la collabo-

ration CMS GEM avait les ressources, l’expérience et la main d’oeuvre nécessaire pour

mener à bien ce projet ambitieux. Plusieurs outils et techniques ont été développés par

la collaboration pour faciliter l’intégration de ces nouveaux détecteurs dans l’expérience

CMS. De plus, la production et le contrôle qualité des chambres devaient être définis et

validés avant d’être partagés avec les différents sites de production à travers le monde.
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Dans ce contexte, mon projet de thèse s’est organisé en trois parties.

La première partie consistait à étudier les caractéristiques de fonctionnement des détecteurs

triple-GEM. La technique de fabrication simple-masque, récemment développée au CERN,

permet de produire les feuilles de GEM de grande dimension nécessaires aux détecteurs

GE1/1. Cependant la géométrie des trous ainsi obtenue diffère de la technique usuelle

double-maque déjà utilisée dans d’autres expériences de physique à hautes énergies, ce

qui pourrait affecter le comportement des détecteurs. Plusieurs études ont donc été

menées affin de comprendre ces différences. Ainsi, le gain effectif, la stabilité à court

terme, le taux maximum de détection et la probabilité de décharge ont été mesurés avec

précision dans un environnement contrôlé à l’aide de détecteurs spécifiques représentatif

des chambres GE1/1. Des différences de fonctionnement entre les deux orientations

possibles de la technologie simple-masque et la technologie double-masque ont été mises

en évidences et ont permis de définir la configuration la plus adaptée à l’application

CMS. Par ailleurs, ces résultats pourront aussi profiter à d’autres groupes de recherche

souhaitant inclure la technologie GEM dans leurs détecteurs, soit pour un programme

d’amélioration au LHC, soit pour équiper certains des futurs accélérateurs. Dans un

second temps, un effort significatif a été dédié au test des grands détecteurs GE1/1

lors de campagnes d’irradiations sur faisceau. Ces tests ont permis de mesurer les per-

formances fondamentales des détecteurs comme l’efficacité de détection, la résolution

spatiale, qui définit la précision avec laquelle les muons seront localisés dans CMS, et

la résolution temporelle qui décrit la qualité des signaux de déclenchement générés par

les chambres GE1/1. De nouvelles techniques ont également été proposées, notamment

pour reproduire la collision des paquets de protons au LHC et ainsi mesurer directement

l’efficacité d’identification de ces paquets. Tout les tests ont été effectués à différents

points de fonctionnement et pour différentes configurations d’alimentation et de mixture

de gaz. Les excellentes performances des chambres GE1/1 ont ensuite été présentées

lors de conférences internationales et publiées dans plusieurs revues spécialisées (la liste

complète est disponible à [122]). Le tableau 10.1 résume cette première partie de la

thèse en présentant les propriétés les plus importantes des détecteurs, en comparaison

aux valeurs minimales imposées par CMS.

Le second projet a été l’étude du fonctionnement à long terme des chambres GE1/1.

Lors du fonctionnement continu dans un environnement à fort taux de particules, les

détecteurs gazeux peuvent être sujets au vieillissement classique, c’est à dire la dégradation

de leurs performances induite par la production de polymères dans les avalanches électroniques

lors de l’amplification des signaux. Trois tests de vieillissement accélérés ont donc été

effectués au ”Gamma Irradiation Facility” au CERN, avec des facteurs d’accélérations

réalistes maintenus en dessous de 30 fois l’environnement de CMS haute luminosité.

Après plusieurs mois de fonctionnement sous constante irradiation, les détecteurs ont
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Properties CMS requirements GE1/1 performance

Rate capability > 10 KHz/cm2 100 MHz/cm2

Single chamber > 97 % 97− 98 %
efficiency (MIP)

Angular resolution < 300 µrad ∼ 135 µrad

Single chamber < 10 ns 4− 5 ns with Ar/CO2/CF4 (45 : 15 : 40)
time resolution 7− 8 ns with Ar/CO2 (70 : 30)

Gain uniformity < 15 % < 15 % with the last GE1/1 generation

Table 10.1: Comparison of the CMS minimum requirements and the GE1/1 perfor-
mance.

accumulés une charge totale supérieure à 50 mC/cm2, ce qui représente 10 ans de fonc-

tionnement réel au HL-LHC avec un facteur de sécurité ∼ 9. L’absence de signes de

vieillissement a ainsi permis de prouver que les détecteurs GE1/1 pourront survivre pen-

dant plusieurs décennies avec les mixtures de gaz Ar/CO2 (70 : 30) et Ar/CO2/CF4 (45 :

15 : 40) proposées pour CMS. Les tests vont se poursuivre jusqu’à ce que la charge totale

accumulée représente un facteur de sécurité de 10. Le tableau 10.2 présente un résumé

des tests de vieillissement comparé au cahier des charges de CMS.

Property CMS requirements GE1/1 performance

Longevity 60 mC/cm2 53 mC/cm2 in Ar/CO2/CF4 (45 : 15 : 40)
55 mC/cm2 in Ar/CO2 (70 : 30) (ongoing)

Table 10.2: Comparison of the CMS minimum requirements and the GE1/1 long-term
performance.

Cette étude a également démontré que la présence de polluants dans la mixture de

gaz pouvait déclencher un vieillissement prématuré des chambres. En plus des tests

de vieillissement classique, une étude de dégazage a été mené sur tout les matériaux

qui composent les détecteurs GE1/1. Près de deux ans de tests consécutifs ont permis

d’identifier un élément polluant, le CellPack URETHAN, et de confirmer que les autres

composants n’affecteront pas le fonctionnement des chambres. Enfin, sur la base de ces

expériences, j’ai proposé un nouveau concept de chambre à fil qui permettra de contrôler

de manière très précise la pureté et la composition des mixtures de gaz. Ces détecteurs

pourront être produits en grande quantité pour équiper tout les sites de production des

chambres GE1/1 et le système de gaz de CMS. Un premier prototype a été assemblé et

testé au CERN.

Le troisième et dernier projet concerne la production des 144 grands détecteurs qui

seront installés à CMS pendant l’arrêt technique LS2 en 2019. La production étant

partagée entre plusieurs sites de production à travers le monde, il a fallut établir une

liste de tests de contrôle qualité pour assurer des performances uniformes pour tout les
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détecteurs. Le contrôle qualité s’effectue dès la réception des composants et se pro-

longe jusqu’à l’installation des super-modules dans les bouchons de CMS, en passant

par l’assemblage et la caractérisation des chambres triple-GEM. L’une des étapes les

plus importantes est la caractérisation électrique des feuilles de GEM, qui consiste à

mesurer le courant de fuite entre les deux électrode de la GEM lorsqu’elle est mise sous

tension. La présence de contamination ou de défauts de fabrication provoquerait un

excès de courant facilement identifiable avant l’assemblage des détecteurs. Cette étape

permet également d’identifier et d’éliminer les particules de poussière qui pourraient

s’être fixées dans les trous microscopiques des GEM. Une autre étape essentielles au

bon fonctionnement des chambres est le test d’uniformité du gain effectif. Le gain, qui

représente les propriétés géométriques et électriques des détecteurs, décrit également

les performances de détection. Ainsi, de grandes variations de gain entrâıneraient des

variations de performances qui ne sont pas acceptables pour CMS. Une station de test

particulière a été conçue pour mesurer de manière simultanée le gain effectif pour tout

les canaux de lectures d’une chambre. Le système d’acquisition fonctionne à partir des

cartes électroniques SRS+APV25, développées initialement pour le trajectographe de

CMS. Après seulement quelques heures de test il est possible de mesurer avec précision

le gain et la résolution en énergie sur toute la surface du détecteur. Les détails tech-

niques de l’installation, les méthodes de mesure et d’analyse ont ensuite été partagés

avec les sites de production qui vont dupliquer le système et intégrer cet étape à leur

contrôle qualité.

Mon travail de thèse a participé au succès de la phase R&D et la plupart de mes

travaux ont permis de faire approuver le projet GE1/1 par la collaboration CMS et

le comité du LHC. Les résultats que j’ai obtenus ainsi que mes conclusions ont aidé à

concevoir les détecteurs les plus adaptés à l’amélioration du détecteur a muons de CMS.

Ils seront également utiles à tous les projets basés sur la technologie GEM. L’étude des

caractéristiques de fonctionnement et les études de vieillissement notamment pourront

servir de point de départ pour un projet de détecteurs gazeux devant fonctionner dans

un environnement à fort taux de particules.

D’un point de vue plus personnel, je me considère comme très chanceux. D’abord parce

que j’ai eu l’opportunité de travailler au CERN, l’un des complexes scientifiques les

plus incroyables et certainement le plus impressionnant. J’ai eu l’occasion de voir ou

d’utiliser une grande variété de technologies de détection, des outils de recherche les

plus avancés et d’autres objets extraordinaires comme une aimant supra-conducteur de

3 T, des bunkers d’irradiations et même l’une des toutes premières chambres à fils de

Georges Charpak. J’ai également eu la chance de travailler avec une équipe fantastique,

au sein de la collaboration CMS GEM et du groupe de recherche RD51. J’ai pu me

rendre compte comment le travail d’équipe et l’entraide permanent permet de résoudre
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la plupart des problèmes scientifiques. Enfin, j’ai eu l’occasion de participer à un projet

ambitieux : l’installation d’une nouvelle technologie de détection dans une expérience

aussi célèbre que CMS. J’ai pu participer à beaucoup d’activités scientifiques incluant

la recherche fondamentale, l’analyse de données et le développement matériel et logiciel

(physique des particule mais également ingénierie). Après trois années de travail intense,

j’ai pris confiance en moi et je me sens plus que jamais prêt à continuer ma carrière dans

la recherche scientifique.



Appendix A

Results of the outgassing test

campaign

Figure A.1: Outgassing test result for the VITON O-rings in Ar/CO2/CF4 (45 : 15 :
40) at 2 L/h.

Figure A.2: Outgassing test result for the soldering mask Elpemer 2467 in
Ar/CO2/CF4 (45 : 15 : 40) at 2 L/h.
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Figure A.3: Outgassing test result for the sealing film Krempel KDF 0/25/25 HT in
Ar/CO2/CF4 (45 : 15 : 40) at 2 L/h.

Figure A.4: Outgassing test result for the silver glue MSDS-Polytec-EC in
Ar/CO2/CF4 (45 : 15 : 40) at 2 L/h.

Figure A.5: Outgassing test result for the polyamide washers in Ar/CO2/CF4 (45 :
15 : 40) at 2 L/h.



Appendix A. Results of the outgassing campaign 202

Figure A.6: Outgassing test result for the Kapton tape in Ar/CO2/CF4 (45 : 15 : 40)
at 2 L/h.

Figure A.7: Outgassing test result for the Teflon tape in Ar/CO2/CF4 (45 : 15 : 40)
at 2 L/h.



Appendix B

Assembly of the GE1/1 detectors

Figure B.1: Step 1: all the tools and components are prepared and carefully orga-
nized for the assembly (left). The working table, made of PolyMethyl MethAcrylate

(PMMA), is cleaned with an adhesive roll (right).

Figure B.2: Step 2: the internal frames, responsible of holding the GEM stack, are
cleaned with an adhesive paper (left) and placed on working table thanks to guiding

pins (right).

203



Appendix B. Assembly of the GE1/1 detectors 204

Figure B.3: Step 3: the first GEM foil is tested at 600 V and cleaned again with the
adhesive roll.

Figure B.4: Step 4: the first GEM is placed on the first layer of internal frames (left).
The foils is stretched by hand and attached to the working table to ensure the flatness

and stability of the structure (right).

Figure B.5: Step 5: the second layer of internal frames is placed on top of the first
GEM (left). After testing and cleaning, the second GEM is added to the stack (right).
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Figure B.6: Step 6: same operation as before, the second GEM is stretched manually
(left) and tested at 600 V (right).

Figure B.7: Step 7: after the third layer of internal frames is in position, metallic
nuts are inserted in the dedicated housing of the frames. Then, the last GEM foils is
added to the structure as well as the last layer of internal frames to close the stack.

Figure B.8: Step 8: after another cleaning step (left), the GEM stack is protected by
a PMMA cover placed fixed to the top of the internal frames.
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Figure B.9: Step 9: vertical screws are inserted into the frames in order to attach all
the frame layers and GEM together.

Figure B.10: Step 10: the excess of polyimide foil is cut and detached from the GEM
stack.

Figure B.11: Step 11: after being cleaned with the adhesive roll (left), the drift plane
is positioned below the GEM stack (right).
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Figure B.12: Step 12: lateral screws are inserted in the brass pull-outs attached to
the drift board until it reaches the embedded nuts (left). Then, torque control tools

are used to stretch the foils, for a tension about 5 N/cm.

Figure B.13: Step 13: the possible dust produced during the stretching step is re-
moved with an adhesive paper (left) and the three GEM foils are tested once again at

600 V .

Figure B.14: Step 14: the PMMA protection cover is removed from the stack (left).
Then, external frames equipped with the O-rings is placed around the GEM stack

(right).
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Figure B.15: Step 15: after being cleaned (left), the readout board is placed on top
of the external frame to close the chamber.

Figure B.16: Step 16: finally, O-rings and washers are inserted in the dedicated
housings of the readout board before the last screws are used to attach all the elements

together and close the gas volume.
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Figure B.17: Picture of a last generation GE1/1 detector just after the assembly
(left). When the chamber is closed, the gas input and output are fixed to the readout

PCB (right).



Bibliography

[1] LHC/LC Study Group Collaboration. Physics Interplay of the LHC and the ILC.

Phys. Rep., 426(hep-ph/0410364. ANL-HEP-PR-2004-108. CERN-PH-TH-2004-

214. DCPT-2004-134. DESY-04-206. DESY-2004-206. IFIC-2004-59. IISc-CHEP-

2004-13. IPPP-2004-67. SLAC-PUB-10764. UB-ECM-PF-2004-31. UCD-2004-28.

UCI-TR-2004-37. 2-6):47–358. 472 p, Oct 2004. URL https://cds.cern.ch/

record/800650.

[2] S. Dittmaier et al. Handbook of LHC Higgs Cross Sections: 1. Inclusive Observ-

ables. CERN, Geneva, 2011. URL https://cds.cern.ch/record/1318996. Com-

ments: 153 pages, 43 figures, to be submitted to CERN Report. Working Group

web page: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

[3] Abdelhak Djouadi. Higgs Physics: Theory. Technical Report arXiv:1203.4199.

LPT-ORSAY 12-29, Mar 2012. URL https://cds.cern.ch/record/1433331.

Comments: 21 pages, 15 figures. Talk given at the XXV International Symposium

on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August

2011, Mumbai, India.

[4] CMS Collaboration. Precise determination of the mass of the Higgs boson and

tests of compatibility of its couplings with the standard model predictions using

proton collisions at 7 and 8 TeV. Eur. Phys. J. C, 75(arXiv:1412.8662. CERN-PH-

EP-2014-288. CMS-HIG-14-009):212. 75 p, Dec 2014. URL https://cds.cern.

ch/record/1979247. Comments: Submitted to Eur. Phys. J. C.

[5] CMS Collaboration. Study of the Mass and Spin-Parity of the Higgs Boson Can-

didate via Its Decays to Z Boson Pairs. On the mass and spin-parity of the

Higgs boson candidate via its decays to Z boson pairs. Phys. Rev. Lett., 110

(arXiv:1212.6639. CMS-HIG-12-041. CERN-PH-EP-2012-372):081803. 25 p, Dec

2012. URL https://cds.cern.ch/record/1502670. Comments: Submitted to

Phys. Rev. Lett. Final version.

[6] A Djouadi and R M Godbole. Ewsb at LHC. Technical Report arXiv:0901.2030,

Jan 2009. URL https://cds.cern.ch/record/1155823. Comments: 27 pages,

210



Bibliography 211

45 figures, uses LaTeX (insa.sty). Invited review for volume on LHC physics to

celebrate the Platinum Jubilee of the Indian National Science Academy, edited by

Amitava Datta, Biswarup Mukhopadhyaya and Amitava Raychaudhuri.

[7] Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC:

Contribution to the Snowmass Process. Technical Report CMS-NOTE-2013-002.

CERN-CMS-NOTE-2013-002, CERN, Geneva, Jun 2013. URL https://cds.

cern.ch/record/1565454. Comments: to be included in the Snowmass 2013

report.

[8] CMS Collaboration. Search for top-squark pair production in the single-lepton

final state in pp collisions at
√
s = 8 TeV. Eur. Phys. J. C, 73(arXiv:1308.1586.

CMS-SUS-13-011. CERN-PH-EP-2013-148):2677. 61 p, Aug 2013. URL https:

//cds.cern.ch/record/1567175. Comments: Replaced with published version.

Added journal reference and DOI.

[9] Exclusion limits on gluino and top-squark pair production in natural SUSY sce-

narios with inclusive razor and exclusive single-lepton searches at 8 TeV. Technical

Report CMS-PAS-SUS-14-011, CERN, Geneva, 2014. URL https://cds.cern.

ch/record/1745586.

[10] A Colaleo, A Safonov, A Sharma, and M Tytgat. CMS TECHNICAL DE-

SIGN REPORT FOR THE MUON ENDCAP GEM UPGRADE. Technical Re-

port CERN-LHCC-2015-012. CMS-TDR-013, CERN, Geneva, Jun 2015. URL

https://cds.cern.ch/record/2021453.

[11] . URL http://pdg.lbl.gov.

[12] M J Berger et al. Photon cross sections database.

[13] Fabio Sauli. Principles of operation of multiwire proportional and drift chambers.

page 92 p, Geneva, 1977. CERN, CERN. URL https://cds.cern.ch/record/

117989. CERN, Geneva, 1975 - 1976.

[14] E C Farmer and S C Brown. Physics Review, 74:902, 1948.
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[65] B Boimska, Roger Bouclier, M Capéans-Garrido, Wojciech Dominik, Michael

Hoch, Gilbert Million, Leszek Ropelewski, Fabio Sauli, and Abhishek Sharma.

Investigation of discharge limits in diamond coated microstrip gas chambers. Tech-

nical Report CMS-NOTE-1996-016, CERN, Geneva, Dec 1996. URL https:

//cds.cern.ch/record/687363.

[66] Dirk Macke. Micro strip gas chambers with gas electron multipliers and their

application in the CMS experiment. PhD thesis, Aachen U., Aachen, 2000. URL

https://cds.cern.ch/record/1287874. Presented on 16 Oct 2000.

[67] C Krauss. Charged particle tracking with the HERA-B detector. 2002. URL

https://cds.cern.ch/record/643265.

[68] M L Titov. Mpgd concepts for physics projects at energy / intensity / cosmic

frontiers. In MPGD2015 Trieste, 2015.
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Résumé 

Le spectromètre à muons de CMS doit permettre l'identification rapide et efficace des muons 

produits lors des collisions proton-proton au LHC. Cependant, à cause d'un environnement de 

détection extrême, seules les chambres à pistes cathodiques équipent actuellement les bouchons de 

CMS. Cette faiblesse dans le système de détection pourrait devenir problématique après 

l'amélioration du LHC. L'augmentation du taux de particules dans les bouchons va dégrader les 

performances du système de déclenchement L1 ainsi que l'efficacité de sélection des phénomènes 

physiques intéressants. Le but du programme d'amélioration de CMS est de maintenir le taux de 

déclenchement L1 tout en gardant une efficacité de sélection maximale. La collaboration CMS GEM 

propose d'équiper les régions vacantes des bouchons avec des détecteurs basés sur la technologie 

d'amplification des électrons dans un gaz (GEM), appelés GE1/1.  

Le sujet de thèse proposé par la collaboration CMS GEM a pour but de justifier le choix de la 

technologie GEM pour l'amélioration de CMS. Trois projets ont été suivis pendant la thèse. 

La première partie du projet de thèse consistait à mesurer précisément les caractéristiques 

fondamentales et les performances de détection des détecteurs triple-GEM produit par la technique 

simple-masque. Ces éléments sont essentiels pour s'assurer que les détecteurs GE1/1 pourront 

fonctionner en toute sécurité dans l'environnement des bouchons de CMS. 

Le deuxième projet consistait à prouver que les excellentes performances des détecteurs GE1/1 ne 

vont pas se dégrader pendant leur utilisation dans CMS. Cette étape comprend l'étude du 

fonctionnement à long terme des détecteurs GE1/1, en particulier le phénomène de vieillissement, 

qui inclue tous les processus physiques et chimiques qui provoquent la dégradation graduelle et 

permanente des performances de détection. Plusieurs tests de vieillissement ont été menés dans 

des zones d'irradiations spécifiques au CERN pour reproduire un minimum de 10 ans de 

fonctionnement réel dans l'environnement de CMS après la montée en puissance du LHC. 

Enfin, les excellentes propriétés mesurées lors de la phase de R&D ont permis de valider la 

technologie triple-GEM, qui fut ensuite approuvée par la collaboration CMS et le comité du LHC. La 

production de 144 grands détecteurs GE1/1 sera partagée entre différents sites de production à 

gogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogogo 

enenenenenenenenenenenenenenenenenaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiairererererererererererererererererererererererererererererererererererererererererererererererererererererererererererere



travers le monde. Le troisième projet de thèse fut donc le développement des principales étapes du 

contrôle qualité nécessaire pour assurer une production uniforme et une même qualité pour tous les 

détecteurs GE1/1. 

Mots clés : CMS, amélioration, détecteurs gazeux, GEM, caractérisation, performances, 

vieillissement, gain effectif. 

 

Résumé en anglais 

The muon system of CMS aims to provide an efficient and fast identification of the muons produced 

in the proton-proton collisions. However, the forward region of the end-caps is only instrumented with 

Cathode Strip Chambers. This lack of redundancy will be problematic after the high-luminosity 

upgrade of the LHC (HL-LHC), for which the increase of the background rate would degrade the 

Level-1 trigger performance and thus the selection of interesting physics channels. The goal of the 

CMS muon upgrade is to maintain the L1 trigger rate with maximum selection efficiency in order to 

fully exploit the HL-LHC. The CMS GEM Collaboration has proposed to instrument the vacant high-

eta region of the muon end-caps with Gas Electron Multiplier (GEM) detectors, called GE1/1 

chambers. 

The Ph.D. subject proposed by the CMS GEM Collaboration aims to demonstrate that the GE1/1 

technology is the most suitable choice for the upgrade of the muon end-caps. Three main research 

projects were conducted in this context. 

The first project included the precise measurement of the fundamental characteristics and the 

detection performance of the triple-GEM detectors produced with the single-mask technique. Those 

characteristics are essential to ensure that the detectors can operate in the forward region of CMS. 

The second project was focused on the long-term operation of GE1/1 detectors, in particular the 

study of the aging phenomenon, which includes all the processes that lead to a significant and 

permanent degradation of the performance of the detectors. Several aging tests were performed at 

the CERN irradiation facilities to prove that the GE1/1 chambers can operate during at least 10 years 

at HL-LHC without suffering from performance losses.  

The excellent properties measured during the R&D phase led to the approval of the GE1/1 project by 

the CMS Collaboration. The third project, conducted in the framework of the mass production, 

consisted of developing of the main steps of the Quality Control of the GE1/1 chambers.  

Key words: CMS, upgrade, gaseous detectors, GEM, characterization, performance, aging, effective 

gain 


