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Abstract 

Cardiovascular diseases are the leading cause of death worldwide, both in developed and 

developing countries. The incidence of cardiovascular diseases is linked to several risk factors that 

are either non-modifiable (age, gender, genetic background) or modifiable. The modifiable risk 

factors include lifestyle (western diet, tobacco use, alcohol abuse, physical inactivity) and treatable 

diseases such as hypertension, dyslipidemia, obesity, and diabetes. Many preclinical and clinical 

studies have shown that development of cardiovascular diseases and risk factors are associated 

early with an endothelial dysfunction. 

The endothelium, the monocellular layer lining all blood vessels, represents the largest cell 

compartment in contact with blood flow. Endothelial cells contribute to the vascular tone and 

constitute a protective surface with anti-thrombotic properties, mainly through the release of potent 

vasoprotective factors such as nitric oxide (NO). In cardiovascular diseases and also during 

physiological ageing, the endothelial dysfunction is characterized by a decreased formation of 

vasoprotective factors and an increased formation of vasoconstricting factors, resulting in an 

imbalance leading towards the accelerated development of vascular pathologies. Endothelial 

dysfunction is involved in atherosclerotic lesion formation by the promotion of both the early and 

late mechanisms of atherosclerosis including up-regulation of adhesion molecules, increased 

chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density 

lipoprotein oxidation, platelet activation, cytokine elaboration, and vascular smooth muscle cell 

proliferation and migration. 

In addition, several studies have demonstrated that endothelial dysfunction and cardiovascular 

diseases development are also associated with an increased vascular oxidative stress and an up- 

regulation of the local angiotensin system. Angiotensin II (Ang II) contributes to the 

pathophysiology of atherosclerosis and vascular diseases not only via its role in hypertension but 

also via its direct effects on vascular cell growth and migration. Ang II also contributes to the 

development of cardiovascular diseases through the induction of oxidative stress by up-regulating 

NADPH oxidase, the main producer of reactive oxygen species (ROS) in the vascular wall. 
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Diets could play a role in the development of cardiovascular diseases. Indeed, while western diet 

rich in saturated fatty acids has been associated with an increased risk of cardiovascular diseases, 

other diets such as the Mediterranean diet rich in unsaturated fatty acids have been associated with 

a reduced incidence of cardiovascular diseases up to 30 %. Several epidemiological studies and 

clinical trials have shown that dietary intake of fish, fish oil or omega-3 polyunsaturated fatty acids 

(n-3 PUFAs) have beneficial effects against coronary heart disease, stroke, and hypertension. 

Moreover, the dietary consumption of the major n-3 PUFAs, namely eicosapentaenoic acid (EPA) 

and docosahexaenoic acid (DHA), has been related to a reduced risk of cardiovascular disease 

morbidity/mortality. The exact mechanism by which n-3 PUFAs inhibit atherosclerosis is still 

unclear, but it may relate to the modulation of lipid metabolism, decrease in pro-inflammatory 

cytokine production, and inhibition of inflammatory processes. 

It has been demonstrated in endothelial cells that EPA stimulates the endothelial nitric oxide 

synthase (eNOS) activation by inducing its detachment from the inhibitory supportive protein 

caveolin, while DHA stimulates eNOS activity by increasing the interaction between eNOS and 

heat shock protein 90 (HSP-90) which activates PKB/Akt pathway resulting in eNOS 

phosphorylation and activation. In conditions like hypertension or renal failure, n-3 PUFA could 

reduce the increased level of asymmetric circulating dimethylarginine (ADMA, an endogenous 

inhibitor of eNOS) resulting in an increase of eNOS activity. 

Moreover, our research team recently demonstrated that the stimulation of the endothelial function 

by n-3 PUFAs is dependent on both the purity and the ratio of EPA and DHA. Indeed, an optimized 

EPA:DHA 6:1 formulation is a potent stimulator of the endothelial formation of NO, and to a 

lesser extent, of an increased endothelium-dependent hyperpolarisation (EDH) response. The 

induction of the endothelial formation of NO by omega-3 fatty acids is mediated by redox-sensitive 

activation of the Src/PI3-kinase/Akt and MAPKs pathways leading to eNOS activation, which is 

dependent on the ratio and amount of the EPA:DHA in the formulation. 

In humans, a direct vasodilatory effect has been demonstrated following intake of DHA, which 

inhibits the vasoconstrictor response produced by angiotensin and norepinephrine. A large body 

of studies demonstrated that n-3 PUFA are able to reduce systemic blood pressure and a recent 
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meta-analysis confirmed that a consumption of more than 2 g/d of EPA + DHA can reduce systolic 

and diastolic blood pressure in humans. 

The aim of the present study was to determine whether chronic oral intake of the optimized 

EPA:DHA 6:1 formulation is able to prevent the hypertension and endothelial dysfunction induced 

by Ang II in rats. 

Male Wistar rats received by daily gavage 500 mg/kg BW of either corn oil (control) or the 

EPA:DHA 6:1 formulation. After one week, the rats underwent either sham surgery or 

implantation of an osmotic mini-pump infusing 0.4 mg/kg/day of angiotensin II. Systolic blood 

pressure was measured twice weekly using the tail cuff sphingomanometry method. After 4 weeks 

of gavage, the animals were euthanized and the organ was collected. The secondary branch of 

mesenteric artery were used for vascular reactivity studies using a wire myograph, for 

immunofluorescence and fluorescence histochemistry studies on frozen section, and for western 

blot analysis of protein expression. 

The major results of our study show that infusion of Ang II (0.4 mg/kg/day) caused a significant 

increased in systolic blood pressure, which was reaching 194±5.9 mmHg compared to 120±5.6 

mmHg in control rats. Oral intake of EPA:DHA 6:1 (500 mg/kg/day) significantly prevented the 

Ang II-induced hypertension (147±5.9 mmHg), while having no effect on basal systolic blood 

pressure (110±3.9 mmHg). 

The chronic intake of the optimized EPA:DHA 6:1 formulation is associated with significantly 

increased plasmatic presence in omega-3 fatty acids, mainly as EPA, DHA and the intermediate 

elongated metabolite of EPA, the docosapentaenoic acid (DPA), resulting in a decreased omega-

6/omega-3 ratio. The reduction of this ratio have been associated with a shift towards beneficial 

health effects of omega-3, including reduced cardiovascular and cancer risk, whereas increased 

ratios such as the Western diet has been associated with increased prevalence of cardiovascular 

and chronic diseases Vascular reactivity studies in the secondary branch of mesenteric artery 

indicate that Ang II induced an endothelial dysfunction characterized by reduced relaxations in 

response to acetylcholine affecting both the NO- and EDH-mediated component, and increased 

formation of endothelium-derived contractile factors (EDCFs) in response to acetylcholine. The 
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chronic intake of EPA:DHA 6:1 normalized both the NO, EDH and EDCF responses in secondary 

branch of mesenteric artery (Simopoulos 2002). 

To better characterize the molecular mechanisms involved in the protective effects of EPA:DHA 

6:1 intake, we performed quantitative analysis of protein expression in the secondary branch of the 

mesenteric artery by immunofluorescence. 

Firstly, we studied the expression of eNOS, arginase-1, SKCa and Cx37 (EDH component of 

relaxation), and cyclooxygenases (COXs, involved in EDCFs). Compared to the controls, Ang II 

significantly up-regulate the expression of eNOS, arginase 1, COX-1 and COX-2, the inducible 

isoform of COXs, while down-regulating the expression of SKCa and Cx37. The intake of 

EPA:DHA 6:1 also normalized the expression levels of eNOS, arginase 1, SKCa, Cx37, COX-1 

and COX-2. 

As endothelial dysfunction is associated with a vascular oxidative stress, we measured the level of 

oxidative stress in the vascular wall of the secondary branch mesenteric artery using the redox- 

sensitive fluorescent probe dihydroethidium (DHE). Ang II induced a significant increases of DHE 

fluorescence throughout the vascular wall as compared to control rats, which was significantly 

prevented by the EPA:DHA 6:1 intake. As the increased vascular oxidative stress in Ang II-

induced hypertension has been attributed, at least in part, to the up-regulation of NADPH oxidase 

expression through the activation of the Ang II type 1 receptor (AT1R), we then determined that 

expression levels of both AT1R and NADPH oxidase sub-units p22phox and p47phox. Compared to 

control rats, the secondary branch of the mesenteric artery of rats infused with Ang II exhibit a 

significantly increased expression level of AT1R, p22phox and p47phox. The EPA:DHA 6:1 

treatment significantly improves the Ang II-induced vascular oxidative stress, up-regulation of 

AT1R and NADPH oxidase. 

To confirm the results obtained by immunofluorescence in the secondary branch of the mesenteric 

artery, we performed Western blot analysis of the expression levels of eNOS, COX-2, and the 

NADPH oxidase subunit p22phox in the main mesenteric artery. The Ang II group presented a 

significantly increased expression of eNOS, COX-2, and the NADPH oxidase subunit p22phox, that 

was prevented by the chronic oral intake of EPA:DHA 6:1. 
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Altogether, the present findings indicate that chronic intake of the optimized EPA:DHA 6:1 

formulation prevented the development of hypertension and endothelial dysfunction induced by 

the infusion of Ang II in rats. The Ang II-induced endothelial dysfunction is associated to an up-

regulation of the local angiotensin system and an increased vascular oxidative stress. The 

beneficial effect of EPA:DHA 6:1 is mediated by an improvement of both the NO- and the EDH-

mediated relaxations and a reduction of endothelium-dependent contractile response, most likely 

by preventing the oxidative stress induced by the up-regulation of the local angiotensin system. 

 

Résumé 

Les maladies cardiovasculaires représentent la première cause de mortalité dans le monde, que 

cela soit dans les pays développés ou ceux en cours de développement. L’incidence des maladies 

cardiovasculaires est associée à de nombreux facteurs de risques pouvant être non-modifiables 

(âge, sexe, patrimoine génétique …) ou modifiables. Parmi ces derniers, on trouve des facteurs 

liés au style de vie (régime occidental, tabagisme, alcoolisme, sédentarité) ou des pathologies 

pouvant être traitées comme l’hypertension, les dyslipidémies, l’obésité ou les diabètes. De plus, 

de nombreuses études précliniques et cliniques ont montré que les maladies cardiovasculaires sont 

précocement associées à une dysfonction endothéliale. 

L’endothélium, la monocouche cellulaire tapissant l’intérieur des vaisseaux sanguins, est le plus 

grand organe en contact direct avec le flux sanguin. Les cellules endothéliales ont un rôle clé dans 

le maintien du tonus vasculaire et constituent une couche protective exerçant des effets anti-

thrombotiques, principalement grâce à la formation et libération de puissants facteurs 

vasoprotecteurs tels que le monoxyde d’azote (NO). Dans les maladies cardiovasculaires ou au 

cours du vieillissement physiologique, apparait une dysfonction endothéliale caractérisée par une 

diminution de la formation des facteurs protecteurs et une augmentation de la formation des 

facteurs vasoconstricteurs, le tout engendrant un déséquilibre menant au développement accéléré 

des pathologies vasculaires. La dysfonction endothéliale est impliquée dans la formation de lésions 

athéromateuses en favorisant les mécanismes précoces et tardifs du développement de 

l’athérosclérose dont l’augmentation de l’expression des molécules d’adhésion, de la sécrétion de 
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chimiokines, de l’adhésion des leucocytes, de l’oxydation des LDL, de l’activation plaquettaires, 

et de la prolifération et de la migration des cellules musculaires lisses vasculaires. De plus, 

plusieurs études ont montré que la dysfonction endothéliale et le développement des maladies 

cardiovasculaires sont associés à une augmentation du stress oxydant vasculaire et à une 

surexpression du système angiotensine local. L’angiotensine II (Ang II) participe à la 

physiopathologie de l’athérosclérose et des maladies vasculaires non seulement de par son rôle 

dans l’hypertension, mais aussi de par son effet direct sur la prolifération et la migration des 

cellules vasculaires. L’Ang II contribue aussi au développement des maladies cardiovasculaires 

de par l’augmentation du stress oxydant vasculaire induit par la surexpression de la NAPDH 

oxydase, la principale source des espèces réactives de l’oxygène dans la paroi vasculaire. 

L’alimentation peut jouer un rôle dans le développement des maladies cardiovasculaires. Ainsi, 

alors que le régime occidental riche en graisses saturées a été associé à une augmentation du risque 

de maladies cardiovasculaires, d’autres types d’alimentation tels que le régime Méditerranéen 

riche en graisse non-saturées ont montrées une réduction de l’incidence de maladies 

cardiovasculaires allant jusqu’à 30 % de réduction. De nombreuses études épidémiologiques ou 

d’intervention ont montré que la consommation alimentaire de poisson, d’huile de poisson ou 

d’acides gras polyinsaturés omega-3 (n-3 PUFAs) exerçait des effets bénéfiques vis-à-vis de la 

maladie coronarienne, des accidents vasculaires cérébraux et de l’hypertension. De plus, la 

consommation des acides gras n-3 PUFAs majeurs, à savoir l’acide eicosapentaénoïque (EPA) et 

l’acide docosahexaénoïque (DHA), est associée à une réduction de la morbi-mortalité 

cardiovasculaire. Les mécanismes par lesquels les n-3 PUFAs inhibent le développement de 

l’athérosclérose restent à éclaircir, mais pourraient être dû, au moins partiellement, à une 

modulation des métabolites lipidiques, une diminution de la production de cytokines pro-

inflammatoires et une réduction des processus inflammatoires. Il a été montré que dans les cellules 

endothéliales, l’EPA stimule l’activation de la NO synthase endothéliale (eNOS) en induisant sa 

dissociation d’avec la protéine inhibitrice cavèoline, alors que le DHA stimule la formation 

endothéliale de NO en augmentant les interactions entre la eNOS et la protéine chaperonne HSP-

90 qui active la voie PKB/Akt conduisant à la phosphorylation activatrice de la eNOS. Dans les 

situations physiopathologiques comme l’hypertension ou l’insuffisance rénale, les n-3 PUFAs 
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peuvent réduire l’augmentation des niveaux circulants de diméthylarginine (ADMA, un inhibiteur 

endogène de la eNOS), ce qui induit une augmentation de l’activité de la eNOS. 

De plus, notre équipe de recherche a récemment démontré que la stimulation de la fonction 

endothéliale par les n-3 PUFAs dépend à la fois du ratio et du degré de pureté de la formulation en 

EPA et DHA. En effet, la formulation optimisée EPA:DHA 6:1 est un puissant activateur de la 

formation endothéliale de NO, et de façon moindre de l’augmentation de la réponse 

d’hyperpolarisation dépendante de l’endothélium (EDH). L’induction par les n-3 PUFAs de la 

formation endothéliale de NO due à l’activation de la eNOS via les voies de signalisation redox-

sensibles Src/PI3-kinase/Akt et MAPKs, est dépendante du ratio et de la quantité de EPA et DHA 

dans la formulation. Un grand nombre d’études clinique montre que la consommation des n-3 

PUFAs réduit la pression artérielle systolique chez l’homme, et une récente méta-analyses a 

confirmé que la consommation de EPA plus DHA supérieure à 2 g/j pouvait réduire les pressions 

artérielles systolique et diastolique. 

L’objectif de la présente étude est de déterminer si la consommation chronique de la formulation 

optimisée EPA:DHA 6:1 est capable de prévenir l’hypertension et la dysfonction endothéliale 

induites par l’Ang II chez le rat. 

Des rats Wistar males ont reçu quotidiennement par gavage 500 mg/kg soit d’huile de maïs 

(contrôle) soit de la formulation EPA:DHA 6:1. Après une semaine, les rats subissent soit une 

procédure simulée, soit l’implantation d’une mini-pompe osmotique infusant 0,4 mg/kg/j d’Ang 

II. La pression artérielle est mesurée deux fois par semaine pendant l’ensemble de la procédure 

expérimentale à l’aide de la méthode de sphyngomanométrie par brassard caudal. Après 4 

semaines de gavage, les animaux sont euthanasiés et les organes sont prélevés. Les branches 

secondaires de l’artère mésentérique sont utilisées pour l’étude de la réactivité vasculaire à l’aide 

d’un myographe à fil, pour des études en immunofluorescence et histochimie fluorescente sur 

coupes congelées, et pour des analyses en Western blot de l’expression de protéines. 

Les principaux résultats de notre étude indiquent que l’infusion d’Ang II (0,4 mg/kg/j) à des rats 

induit une augmentation significative de la pression artérielle systolique, qui atteint 194±5,9 

mmHg par rapport au 120±5,6 mmHg chez les rats contrôles. La consommation orale de 
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EPA:DHA 6:1 (500 mg/kg/j) prévient significativement l’hypertension induite par l’Ang II 

(147±5,9 mmHg) mais n’a aucun effet sur la tension artérielle normale (110±3,9 mmHg). 

Les études de réactivité vasculaire dans les branches secondaires de l’artère mésentérique montrent 

que l’Ang II induit une dysfonction endothéliale caractérisée à la fois par une diminution des 

relaxations en réponse à l’acétylcholine affectant les composantes NO et EDH de la relaxation, et 

par une augmentation de la formation des facteurs constricteurs dérivés de l’endothélium (EDCFs) 

en réponse à l’acétylcholine. La consommation chronique de EPA:DHA 6:1 normalise les réponses 

NO, EDH et EDCFs dans les branches secondaires de l’artère mésentérique. 

Afin de mieux caractériser les mécanismes moléculaires impliqués dans l’effet protecteur de 

EPA:DHA 6:1, des analyses quantitatives des niveaux d’expression de protéines ont été effectués 

dans les branches secondaires de l’artère mésentérique par immunofluorescence sur coupes 

congelées. 

Dans un premier temps, nous avons étudié l’expression de la eNOS et de l’arginase 1 (composante 

NO de la relaxation), de SKCa et Cx37 (composante EDH de la relaxation), et de cyclooxygénases 

(COXs, impliquées dans les réponse EDCFs). Par rapport aux animaux contrôles, l’Ang II induit 

une augmentation significative de l’expression de la eNOS, d’arginase 1, et de COX-1 et COX-2, 

la forme inductible des COXs, et une diminution significative de l’expression de SKCa et Cx37. La 

prise chronique de EPA:DHA 6:1 prévient significativement les effets de l’Ang II sur l’expression 

des protéines cibles. 

Comme la dysfonction endothéliale est associée à un stress oxydant vasculaire, nous avons évalué 

le niveau de stress oxydant dans les branches secondaire d’artère mésentérique à l’aide de la sonde 

fluorescente redox-sensible dihydroethidium (DHE). L’Ang II induit une augmentation 

significative de la fluorescence dans l’ensemble de la paroi vasculaire en comparaison des rats 

contrôles, qui est significativement prévenue par la prise chronique de EPA:DHA 6:1. Du fait que 

l’augmentation de stress oxydant dans l’hypertension induite par l’Ang II est due, du moins 

partiellement, à une surexpression de la NAPDH oxydase liée à l’activation du récepteur de 

l’angiotensine II de type 1 (AT1R), les niveaux d’expression d’AT1R et des sous-unités p22phox et 

p47phox de la NADPH oxydase ont été déterminés. En comparaison des branches secondaires 
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d’artère mésentérique de rat contrôles, les rats recevant l’Ang II montrent une augmentation 

significative des niveaux d’expression d’AT1R, p22phox et p47phox. Le traitement avec EPA:DHA 

6:1 prévient significativement cette augmentation de stress oxydant vasculaire et de l’expression 

d’AT1R et des deux sous-unités de la NADPH oxydase. 

Afin de confirmer ces résultats obtenus par immunofluorescence et histochimie fluorescente sur 

les branches secondaires d’artère mésentérique, l’analyse par Western blot de l’expression des 

protéines eNOS, COX-2, et la sous-unité p22phox de la NADPH oxydase a été réalisée dans l’artère 

mésentérique principale. L’Ang II induit une augmentation significative de l’expression de eNOS, 

COX-2, et p22phox, et cette surexpression est significativement prévenue par la prise de EPA:DHA 

6:1. 

L’ensemble des résultats obtenus lors de la présente étude indique que la prise chronique de la 

formulation optimisée EPA:DHA 6:1 prévient le développement de l’hypertension et de la 

dysfonction endothéliale induites par l’infusion d’Ang II chez le rat. La dysfonction endothéliale 

induite par l’Ang II est associée à une régulation positive du système angiotensine local et une 

augmentation du stress oxydant vasculaire. Les effets bénéfique de la consommation chronique de 

EPA:DHA 6:1 impliquent une amélioration des composantes de relaxations NO et EDH, et à une 

diminution des réponses contractiles dépendantes de l’endothélium, probablement via la 

prévention du stress oxydant vasculaire induit par la régulation positive du système angiotensine 

local. 
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1 Chapter 1 

Physiology of the endothelium 
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1.1 Cardiovascular diseases 
    Cardiovascular diseases are a group of several pathologies including coronary heart 

diseases (CHD) such as myocardial infarction, cerebrovascular diseases (stroke), hypertension, 

peripheral artery diseases, rheumatic heart diseases, congenital heart diseases and heart failure 

(Cheng, Austin et al. 2002). Cardiovascular diseases are the leading cause of mortality and 

morbidity worldwide, with an estimated 17 million annual deaths (WHO 2011) (Towfighi and 

Saver 2011). Amongst cardiovascular diseases, CHD accounts for 7.2 million deaths and 5.7 

million are due to stroke (Lloyd-Jones, Adams et al. 2009). It is now well established that 

endothelial dysfunction is an early hallmark of major cardiovascular and other diseases (Figure 1), 

which is thought to contribute to the initiation and the development of these diseases (Austin, Lentz 

et al. 2004).   

Figure 1. Endothelial dysfunction: A hallmark of major cardiovascular and other related diseases. 
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1.2 Vascular endothelium  

All blood vessels including arteries, arterioles, capillaries, veins and venules are the part of 

the circulatory system. The wall of the blood vessels can be divided into three distinguished layers 

which are the intima, the media and the adventitia  (Pugsley and Tabrizchi 2000) (Figure 2). The 

intima (tunica interna/intima) is the innermost monocellular layer called endothelium which is 

supported by connective tissue and the internal elastic lamina (Krstic 2013). The endothelium is 

located at the interface between the blood flow and the vessel wall. The media (tunica media) is 

mainly buildup of smooth muscle cells, collagen fibers and elastic lamina. (Severs and Robenek 

1992). 

The adventitia (tunica externa or tunica adventitia) is the outermost layer comprising of 

collagen, elastin, fibroblasts, macrophages, vasa vasorum, nerve endings and fibers for the 

protection of the blood vessels (Mulvany 1990). The importance of each layer depends on the size 

and location of the arteries. In large conducting arteries, a high number of elastic fibers are present 

in the media. Muscular arteries contain more smooth muscles cells while only few smooth muscle 

cells along the internal elastic lamina are found in arterioles. Capillaries only contain endothelial 

cell and the basement membrane with connective tissues (Pais, Meiselman et al. 2010). 

Endothelial cells line the whole circulatory system starting from large arteries arising from 

the heart to the capillaries and veins. They regulate the flow of nutrient substances and blood cells 

(Mangge, Becker et al. 2014) and act as a selective barrier between the lumen of blood vessel and 

surrounding tissues (Galvão, Araújo et al. 2006). Covering a largest surface area, the endothelium 

plays an important role in the regulation of blood flow and is a chief regulator of body homeostasis 

through the synthesis and secretion of various active molecules, including vasodilatating factors 

and vasoconstricting factors finely controlling vascular tone. Endothelial cells also regulate 

smooth muscle cells (SMC) proliferation, exchanges of molecules between the plasma and the 

interstitial fluid. They also play a vital role in the balance between pro- and anticoagulant 

mechanisms and in immunity (Klein 2013). 
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Figure 2. Structure of the blood vessel (adapted from Boston University School of Public Health). 

1.3  Endothelial regulation of vascular tone 
The vascular endothelium plays a major role in the regulation of vascular tone through a 

variety of mechanisms. Several mediators which can modify vascular tone are derived from the 

endothelium (Schalkwijk and Stehouwer 2005; Klein 2013). In 1980, Furchgott and Zawadzki 

demonstrated the phenomenon of endothelium-dependent arterial relaxation. Acetyle choline 

induces relaxation in arterial rings by releasing endothelium-derived relaxing factor (EDRF) which 

stimulates soluble guanylyl cyclase responsible for the conversion of GTP to cyclic GMP. Later 

on, EDRF was identified as the radical gas nitric oxide (NO) (Arnal, Dinh-Xuan et al. 1999). NO 

diffuses from the endothelium to the underlying smooth muscle where it activates soluble guanylyl 

cyclase to cause a rise in intracellular cyclic GMP and relaxation of the vessel wall (Gryglewski, 

Palmer et al. 1986; Rubanyi and Vanhoutte 1986). 
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The endothelium has the capacity to regulate the local vascular homeostasis by maintaining 

the balance between vasodilation and vasoconstriction, by controlling vascular smooth muscle cell 

(VSMC) proliferation and migration, and by acting on thrombosis and fibrinolysis via the release 

of various factors (Davignon and Ganz 2004). Imbalance of these different mechanisms promotes 

endothelial dysfunction, which may lead to serious cardiovascular diseases such as hypertension, 

a major CVD risk factors. 

In response to physical and chemical stimuli such as changes in pressure, shear stress, and 

pH as well as to substances released by autonomic and sensory nerves and circulating hormones, 

autacoids, and cytokines, the vascular endothelium synthesizes relaxing and contractile factors 

responsible for the modulation of VSMC tone. Relaxation factors include nitric oxide (NO), 

prostacyclin (PGI2), endothelium-derived hyperpolarization (EDH), and contractile factors 

includes thromboxane A2, isoprostanes, superoxide anions (ROS), endothelin-1, and angiotensin-

II factors (Figure 3) (Mombouli and Vanhoutte 1999; Feletou and Vanhoutte 2006). 
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Figure 3. Endothelium-dependent release of vasocontracting and vasorelaxing factors. 
NO, nitric oxide; PGI2, prostacyclin; EDHF, endothelium-derived hyperpolarizing factor; A-II, angiotensin II; ET, 
endothelin; TxA2/PGH2, thromboxaneA2/prostaglandin H2O2, hydrogen peroxide (Abeywardena and Head 2001).
               

1.3.1 The endothelium-derived vasorelaxing factors 

1.3.1.1             Nitric oxide (NO) 

NO is a key cellular signaling molecule involved in a number of physiological and 

pathological processes. In the beginning, it was identified as a factor capable of activating soluble 

guanylyl cyclase responsible for the relaxation of vascular smooth muscle cells (Katsuki, Arnold 

et al. 1977). In 1980, Furchgott and Zawadski  revealed that the endothelium causes vasorelaxation 

by the production of endothelium-derived relaxing factor (EDRF) which was later identified as 

NO (Furchgott and Zawadzki 1980; Palmer, Ferrige et al. 1987; Palmer, Ashton et al. 1988; Palmer 

and Moncada 1989). Besides its role in regulation of vascular tone, NO inhibits leukocytes 

adhesion, platelet aggregation, and has anti-apoptotic and antithrombotic effects. Moreover, NO 

is an important factor of endothelium viability, longevity and cardiovascular health (Morello, 

Perino et al. 2009). 
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 The endothelium-derived NO is produced by the endothelial NO synthase (eNOS) from 

L-arginine and plays a critical role in normal vascular biology and pathophysiology (Cai and 

Harrison 2000) (Figure 4).  

 

 

Figure 4. NO generation from L-Arginine and its functional properties (Ghalayini 2004) 

 
There are three different isoforms of NO synthase; the neuronal NOS (NOS1 or nNOS), the 

inducible NOS (NOS2 or iNOS) and the endothelial NOS (NOS3 or eNOS)(Weiming, Liu et al. 

2002).  iNOS is an inducible isoform whereas  nNOS and eNOS are being consititutively expressed 

(Mombouli and Vanhoutte 1999; Stuehr 1999). Under normal conditions, the majority of eNOS is 

bound to the protein caveolin-1, which inactivates eNOS, and this complex is located in micro 

domains in the cell membrane named caveolae (Michel, Feron et al. 1997; Bucci, Gratton et al. 

2000). eNOS can be activated by Ca2+ dependent and independent pathways. eNOS can be 

activated by substituting caveolin-1 by Ca2+/CaM in response to Ca2+-mobilizing agonists. When 
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intracellular Ca2+ levels increase, calmodulin detaches eNOS from caveolin-1 thus permitting the 

enzyme to become active. Furthermore, eNOS has been shown to be regulated by the interaction 

with positive and negative protein modulators such as heat shock protein 90 (Ju, Zou et al. 1997; 

Garcia-Cardena, Fan et al. 1998; Pritchard, Ackerman et al. 2001) (Figure 5). 

 

 

 

Figure 5. Nitric oxide synthesis pathway in the endothelial cell and its actions in the vascular smooth muscle 
cell. 
ACh, acetylcholine; BK, bradykinin; ADP, adenosine diphosphate; 5-HT, serotonin; VEGF, vascular endothelial 
growth factor; PDGF, platelet-derived growth factor; Src, Sarcoma-family kinases; PI3/kinase, phosphoinositide 3-
kinase; Akt, Protein kinase B; Ca2+ / CaM, calcium calmodulin; L-Arg, L-arginine; eNOS, endothelial Nitric Oxide 
Synthase; NO, nitric oxide; sGC, soluble guanylyl cyclase; GTP, Guanosine 5'-Triphosphate; cGMP, cyclic Guanosine 
3'-5' monophosphate
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NO freely diffuses to the underlying VSMC where it activates the soluble guanylyl cyclase 

converting GTP into cyclic guanosine 3’-5’monophosphate (cGMP), which leads to vascular 

smooth muscle cells relaxation. 

In addition to vasorelaxation, NO exerts several vasoprotective and anti-atherogenic effects 

including inhibition of platelets aggregation, monocyte adhesion, vascular smooth muscle cell 

migration and proliferation, oxidation of LDL, and of the expression of pro-inflammatory and pro-

atherothrombotic mediators such as monocyte chemoattractant protein-1 (MCP-1), adhesion 

molecules and tissue factor (Tsao, Buitrago et al. 1996; Dimmeler, Haendeler et al. 1997; Hermann, 

Zeiher et al. 1997). (Figure 6) 

 

Figure 6. The pleiotropic effects of NO. 
VCAM-1; Vascular cell adhesion molecule-1, MCP-1; Monocyte chemoattractant protein-1, LDL; Low density 
lipoproteins. 
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eNOS can also be regulated in endothelial cells at a post-translational level primarily 

through multisite phosphorylations and protein/protein interactions. Residues Ser1177 and Ser 615 

are the activation sites and the residues Thr495 and Ser114 are the inhibition sites on eNOS 

(Dimmeler, Haendeler et al. 1997; Bohm, Ahlborg et al. 2002; Bauer, Fulton et al. 2003; Fleming 

2010) (Figure 7). In response to several physiological stimuli, phosphorylation of eNOS across key 

regulatory sites plays an important a role in the regulation of the enzymatic activity (Ju, Zou et al. 

1997; Newby, Hess et al. 2012). Phosphorylation of eNOS at Ser1177 is associated with an 

increased enzyme activity (Gallis, Corthals et al. 1999; McCabe, Fulton et al. 2000). Akt, one of 

the major regulatory targets of PI3-kinase, has been shown to directly phosphorylate eNOS at 

Ser117 and activate the enzyme in response to vascular endothelial growth factor (VEGF), 

sphingosine-1-phosphate, and estrogen (Dimmeler, Haendeler et al. 1997; Fulton, Gratton et al. 

1999). Furthermore, eNOS can be also activated by phosphorylation on Ser1177 by AMP-activated 

protein kinase, protein kinase A (PKA), and protein kinase G (PKG) (Busse, Edwards et al. 2002; 

Flemming and Wingender 2010). 
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Figure 7. The activation and inhibition sites of eNOS. 
Green arrows for activation, red arrows for inhibition, black arrow for no direct effect on enzyme activity. The 
numbers refer to the human sequence (Fleming 2010). 
 

 

There are various assumed phosphorylation sites, but the most extensively studied eNOS residues, 

are serine residue in the reductase domain (human eNOS sequence: Ser1177; bovine sequence 

Ser1179), which positively regulates NO production, and a threonine residue within the CaM-

binding domain (human eNOS sequence: Thr495; bovine sequence Thr497) (Boo, Hwang et al. 

2002). Ischemia-reperfusion injury is another eNOS regulator which leads to the eNOS 

phosphorylation at Ser1177 and Ser 633 through the activation of PKA pathway (Li, Yang et al. 

2010). Furthermore, there are numerous kinases reported to be involved in the phosphorylation of 

eNOS following cell activation by different stimuli such as shear stress, vascular endothelial 

growth factor (Butt, Bernhardt et al. 2000), hypoxia (Michell, Griffiths et al. 1999; Chen, Liu et al. 

2008), including extracellular signal-regulated kinase 1/2 which alters eNOS protein expression 
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and activity (Ramasamy, Parthasarathy et al. 1998). eNOS can be phosphorylated on serine, 

tyrosine, and threonine residues leading to eNOS activation or inactivation (Figure 8).  

 

 

Figure 8. Regulation of eNOS activity. 
(1) At rest, the eNOS is coupled to cav-1 (caveolin-1, a structural protein of caveolae) that decreases its activity. (2) 
eNOS is constitutively phosphorylated at Thr 495 preventing its activation by the Ca2+/CaM. (3) eNOS may be 
inhibited in response to oxidative stress by tyrosine phosphorylation by PYK2 (proline-rich tyrosine kinase). (4) eNOS 
can be activated by both Ca2+/CaM (calcium / calmodulin) and phosphorylation of Ser1177. Hsp90 (heat shock protein) 
facilitates the recruitment of Akt responsible for the phosphorylation of eNOS (Fleming 2010). 
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1.3.1.2 Endothelium-derived hyperpolarization (EDH) 
EDH is defined as a hyperpolarization of endothelial origin that is transmitted to the 

vascular smooth muscle leading to its relaxation. The EDH was formerly known as the 

Endothelium-Derived Hyperpolarizing Factor (EDHF). Beside NO and prostacyclin, the EDH 

mediated component of relaxation plays a major role in endothelium-dependent relaxation in most 

of the medium to small calibre resistance arteries, small arteries and arterioles such as second and 

third-branch mesenteric artery as well as in coronary arteries (Feletou and Vanhoutte 1996; 

Shimokawa, Yasutake et al. 1996). The role of the EDH component of relaxation is more important 

in resistance blood vessels as compare to that of NO and prostacyclin, including in humans 

(Nakashima, Mombouli et al. 1993; Shimokawa, Yasutake et al. 1996). 

The EDH component of the relaxation is evaluated in the presence of the combination of inhibitors 

of eNOS like L-NAME and of COXs like indomethacin (Gerber, Anwar et al. 1998). In the EDH 

mediated response, SKCa and IKCa are activated so that potassium ions move from the intracellular 

compartment to the extracellular space of endothelial cells, which leads to their hyperpolarization 

(Figure 9). This higher concentrations of potassium ions in the extracellular space can activate 

inwardly rectifying K+ (KIR) channels and Na+/K+-ATPase to cause potassium ions efflux from 

VSMC leading to hyperpolarization and hence, relaxation (Edwards, Dora et al. 1998; Félétou and 

Vanhoutte 2006). In 1998, Edwards et al reported that hyperpolarization can also be transferred 

from endothelial cells to VSMC via myo-endothelial gap junctions. Myo-endothelial gap junctions 

are intracellular channels which can transfer signals from the endothelial cells to the underling 

vascular smooth muscle cells (Sandoo, van Zanten et al. 2010). Hyperpolarization of VSMC leads 

to the reduction in cytosolic calcium concentration following closure of voltage-activated calcium 

channels leading to relaxation. Endothelial hyperpolarization can also be mediated by hydrogen 

peroxide (H2O2) (Matoba, Shimokawa et al. 2002) or arachidonic acid-derived metabolites 

including epoxyeicosatrienoic acids (Quilley and McGiff 2000). 
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Figure 9. Hypothesis describing the endothelium-derived hyperpolarizing pathway. 
AA, arachidonic acid; ACh, acetylcholine, [Ca2+]i, intracellular calcium concentration; CYP, cytochrome P450 
epoxygenase; EC, endothelial cell; EETs, epoxyeicosatrienoic acids; ER, endoplasmic reticulum; GPCR, G protein-
coupled receptor; BKCa, large conductance Ca2+-activated K+ channel; SKCa, small-conductance Ca2+-activated K+ 
channel subtype 3; IKCa, intermediate-conductance Ca2+ -activated K+ channel; Kir, inwardly rectifying K+ channel; 
meGJ, myo-endothelial gap-junction; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; VDCC, voltage-
dependent Ca2+ channel; VSMC, vascular smooth muscle cell (Grgic, Kaistha et al. 2009). 
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1.3.1.3 Prostacyclin 
Prostacyclin (PGI2) is the major product of cyclooxygenase (COX) catalyzed metabolism 

of arachidonic acid in the endothelium (Cheng, Austin et al. 2002). Prostacyclin is produced from 

prostaglandin under the action of the enzyme prostacyclin synthase (Dogne, de Leval et al. 2004). 

PGI2, PGG2 and PGH2 are major products of vascular cyclooxygenase (COX). There are two 

isoforms of COX encoded by two separate genes. COX-1 is constitutively expressed and is present 

in many tissues, including endothelial cells (Gryglewski, Uracz et al. 2002). COX-2 is not 

constitutively expressed, but can be induced rapidly and transiently in many cells, including 

vascular endothelial cells and smooth muscle cells, under the effect of physical stimuli and pro-

inflammatory agents. PGI2 stimulates smooth muscle relaxation by stimulating adenylyl cyclase 

and formation of cyclic adenosine -3', 5'- monophosphate (cAMP) that activates protein kinase A, 

which reduces intracellular Ca2+ by decreasing Ca2+ release from the endoplasmic reticulum and 

by stimulating its uptake by it. The vasodilator activity of PGI2 is determined by the expression of 

specific receptors which are prostaglandin I2 receptors of the G-protein coupled receptor family in 

vascular smooth muscle cells. PGI2 is a potent vasodilator, and an effective endogenous inhibitor 

of platelet aggregation (Coleman, Smith et al. 1994). In addition, PGI2 facilitates the release of NO 

by endothelial cells (Shimokawa, Flavahan et al. 1988) and in turn, the action of PGI2 in vascular 

smooth muscle cells and platelets is potentiated by NO (Delpy, Coste et al. 1996). PGI2 synthase 

preferentially couples with COX-2 rather than COX-1 in coexpression systems  (Figure 10) (Ueno, 

Takegoshi et al. 2005). 
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Figure 10. Production and action of prostaglandins (Araujo, Soeiro et al. 2005). 
 



 
 

- 36 - 
 

1.3.2       The endothelium-derived vasocontracting factors 

1.3.2.1 Angiotensin II 
The octapeptide Angiotensin II (Ang II) is a potent vasoconstrictor hormone of the renin-

angiotensin system (RAS) that is formed following the conversion of Ang I into Ang II by 

Angiotensin I Converting Enzyme (ACE) (Baker, Chernin et al. 1990). Angiotensin II (Ang II) is 

a multifunctional peptide hormone that regulates blood pressure (BP), plasma volume, as well as 

cardiac, renal and neuronal function, and controls thirst responses. This peptide is of central 

importance in hypertension and myocardial remodeling, and is the main effector of the renin-

angiotensin system (RAS) (Weber and Brilla 1991). Taken as a whole, the RAS is involved in 

different cardiovascular pathologies such as left ventricular hypertrophy, post-infarct remodeling, 

or neointima formation (Li, McTiernan et al. 2000). The classical effects of Ang II on its target 

organs are mostly mediated by two membrane receptors, the Ang II type 1 receptors (AT1R) and 

type 2 receptors (AT2R), which mediate tissue-specific functions (Horiuchi, Akishita et al. 1999). 

AT1R and AT2R are a G-protein coupled receptors involved in the regulation of vascular cell 

proliferation and cell death (Kaschina and Unger 2003). AT1R are expressed in all organs, 

including heart, kidney, liver, adrenal glands, brain, lung and in all cells of the cardiovascular 

system, namely endothelial cells, smooth muscle cells, fibroblasts, monocytes, macrophages and 

cardiac myocytes and, thus, is important in cardiovascular pathobiology. While AT2R is highly 

expressed in fetal heart and fetal aorta, lung and liver (Dasgupta and Zhang 2011), AT2R 

expression declines fast after birth, but can be induced later in adult life under pathological 

conditions (Figure 11).  

The acute vasoconstrictor function of Ang II is primarily mediated through AT1R by 

classical G-protein-dependent signaling mechanisms. Depending on cell types, Ang II activates 

AT1R that can in turn activate at least four different effector, namely voltage-gated Ca2+ channels, 

phospholipase C, phospholipase D and phospholipase A-2 (PLA-2) and can inhibit adenylyl 

cyclase (Greco 2007). In addition, Ang II stimulation of AT1R activates the extracellular-signal-

regulated kinase (ERK) cascade, platelet-derived growth factor, epidermal growth factor receptor 

(EGFR), insulin receptor pathways and non-receptor tyrosine kinases belonging to the c-Src family, 
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proline-rich tyrosine kinase 2, focal adhesion kinase and janus kinases (JAKs) (Berry, Touyz et al. 

2001). 

Unlike AT1R, the AT2R contributes to the maintenance of blood pressure by controlling the 

vascular tone through vasodilatation (Dasgupta and Zhang 2011). AT2R stimulation by Ang II 

leads to an increase in cGMP levels through a mechanism involving bradykinin B2 receptor, 

causing endothelial formation of NO (Abadir, Periasamy et al. 2006). Although AT2R expression 

decreases after birth, it can increase again in some pathophysiological conditions. Stimulation of de 

novo AT2R expression may inhibit neointima formation, cell proliferation, and inflammation in 

vascular injury, myocardial infarction and ischemic diseases, suggesting its protective role (Ichiki, 

Takeda et al. 2001). 

  

Figure 11. Summary of acute and chronic stimulation of angiotensin II receptors (Dasgupta and Zhang 2011). 
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1.3.2.2 Endothelin-1 
Endothelin (ET)-1 is a potent vasoconstrictor peptide originally isolated from endothelial 

cells. There are three structurally different ET isoforms (i.e. ET-1, ET-2, ET-3) as well as a 

vasoactive intestinal constrictor (Böhm and Pernow 2007). Amongst the three ET isopeptides, the 

21-amino acid peptide ET-1 is regarded as the most prominent isoform in the cardiovascular 

system, accounting for the majority of pathological effects exerted by ETs (Barton, Traupe et al. 

2003). 

Under physiological conditions, ET-1 is produced in small amounts mainly in endothelial cells, 

primarily acting as an autocrine/paracrine mediator (Pernow, Shemyakin et al. 2012). Under 

pathophysiological conditions, however, the production is stimulated in a large number of different 

cell types, including endothelial cells, vascular smooth muscle cells, cardiac myocytes, and 

inflammatory cells such as macrophages and leukocytes (Grieve, Byrne et al. 2004). 

The biological effects of ET-1 are transduced by two distinguishable receptor subtypes, 

ETA and ETB receptors, respectively (Hunley and Kon 2001). In the vasculature, the ETA receptor 

is mainly located on vascular smooth muscle cells and mediates potent vasoconstriction. ET-1 may 

also induce indirect vasoconstrictor effects due to the generation of endothelium-derived 

thromboxane A2 (Marasciulo, Montagnani et al. 2006). The ETB receptor is primarily located on 

endothelial cells, but may also be present on vascular smooth muscle cells (Schneider, Boesen et 

al. 2007). Stimulation of the endothelial ETB receptor results in release of NO and prostacyclin 

which cause vasodilatation, whereas stimulation of the vascular smooth muscle cell ETB receptor 

results in vasoconstriction (Seo, Oemar et al. 1994). Thus, the net effect produced by ET-1 is 

determined on the receptor localization and the balance between ETA and ETB receptors (Davie, 

Haleen et al. 2002) (Figure 12). 
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Figure 12. The biological effect of endothelin-1 on arteries in physiological and pathophysiological conditions. 
In healthy arteries the production of ET-1 is small and the bioavailability of NO is preserved. In endothelial dysfunction there is 
increased expression of ET-1 in smooth muscle cells and macrophages (MØ). Both the ETA and the ETB receptor on smooth muscle 
cells may mediate formation of superoxide (O2

−). Collectively the balance of effects is shifted towards more vasoconstriction, 
inflammation and oxidative stress in endothelial dysfunction (Böhm and Pernow 2007). 
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1.3.2.3 Thromboxane A2 & Prostacyclin I2 (TxA2 & PGI2) 
The prostanoids prostacyclin (PGI2) and thromboxane A2 (TXA2) play an essential role in 

the maintenance of vascular homeostasis. PGI2 is a vasodilator and an inhibitor of platelet 

aggregation, whereas TXA2 is a vasoconstrictor and a promoter of platelet aggregation (Gamble, 

James et al. 2001). 

PGI2 and TXA2 are products of arachidonic acid (AA) metabolism by cyclooxygenase (COX), 

followed by metabolism of the COX product, PGH2, by the terminal synthase enzymes, 

prostacyclin or TX synthase, respectively (Ruan, So et al. 2011). Two isoforms of COX have been 

identified: COX-1 is expressed constitutively in most cell types, whereas COX-2 is induced by 

inflammatory stimuli such as bacterial endotoxin and cytokines (Caughey, Cleland et al. 2001). It 

is considered that PGI2 is the main prostanoid synthesized by vascular endothelium and TXA2 is 

the main prostanoid produced by platelets (Smith, Borgeat et al. 1991). However, the endothelium 

has been reported to synthesize TXA2 in addition to PGI2, and both COXs isoforms have been 

observed, with only COX-1 being detectable in unstimulated cells (Morteau 2001). Endothelial 

COX-2 can be up-regulated in vitro by inflammatory stimuli and shear stress (Brown and DuBois 

2005). Because the balance between PGI2 and TXA2 production is central in the maintenance of 

vascular tone and platelet aggregation (Konturek and Pawlik 1986; Sobrino, Oviedo et al. 2010), 

determination of the roles of endothelial COX isozymes, particularly with regard to the contribution 

of COX-2 in the regulation of prostanoids biosynthesis by the endothelium, is important (Figure 

13) (Caughey, Cleland et al. 2001).  
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Figure 13. Prostanoids biosynthesis and response pathways (Zhang, Gong et al. 2010). 
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1.3.2.4 Oxidative stress and reactive oxygen species (ROS) 
Reactive oxygen species (ROS) are recognized as important signaling molecules in the 

cardiovascular system and are released by vascular cells during pathophysiological conditions like 

hypertension, diabetes mellitus, atherosclerosis and in acute and chronic inflammatory diseases 

(Eisenberg and Ghigliotti 1999). NO, (O2
●-) the hydroxyl radical (·OH), H2O2, and peroxynitrite 

(ONOO−·) are produced in the vasculature under both normal and stress conditions such as 

inflammation or injury. Superoxide anions (O2
●-) can be generated by different enzymes (e.g., 

NADPH oxidase, xanthine oxidase, cyclooxygenases, NO synthases, cytochrome P450 

monooxygenases, and enzymes of the mitochondrial respiratory chain) in virtually all cell types, 

including vascular smooth muscle and endothelial cells (Félétou and Vanhoutte 2006). ROS and in 

particular superoxide anions can also act directly or indirectly as potent contracting agents via the 

reduction of the NO bioavailability or by activating COXS in vascular smooth muscle cells (Hibino, 

Okumura et al. 1999), leading to attenuated endothelium-dependent relaxations (Aubin, Carrier et 

al. 2006; Liu, You et al. 2007). Moreover, ROS can also impair EDH-mediated endothelium-

dependent relaxations through the reduction of calcium-activated potassium channels activity 

(Kusama, Kajikuri et al. 2005) or by modifying the transmission of the hyperpolarization from 

endothelial cells to the underlying smooth muscle cells through myoendothelial gap junctions 

(Griffith, Chaytor et al. 2005). Several studies have shown the beneficial effects of antioxidants on 

the deleterious effect of oxidative stress on the endothelial function (Kanani, Sinkey et al. 1999; 

Aubin, Carrier et al. 2006; Liu, You et al. 2007).  
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1.4 Endothelial dysfunction  
Endothelial dysfunction is a broad term which implies dysregulation of endothelial cell 

functions, including impairment of the barrier functions of endothelial cells, vasodilation, 

disturbances in proliferative capacities, migratory as well as tube formation properties, angiogenic 

properties, attenuation of synthetic function, and deterrence of white blood cells from adhesion and 

diapedesis. Several factors contribute to endothelial dysfunction including smoking, high blood 

pressure, diabetes, high cholesterol levels, obesity, hyperglycemia, advance glycation end products 

(AGEs), and genetic factors. Endothelial dysfunction has been associated with an impairment of 

endothelium-dependent relaxations involving a reduced bioavailability of NO in major CV diseases 

such as hypertension, atherosclerosis, chronic renal failure, and diabetes (Griendling and 

FitzGerald 2003; Rush, Denniss et al. 2005). The mechanism underlying endothelial dysfunction 

has been linked to increased oxidative stress which is associated with a reduced NO bioavailability 

and the formation of inflammatory mediators such as vascular cell adhesion molecule-1 (VCAM-

1) expression (Figure 14) (Khan, Harrison et al. 1996; Libby 2002). In addition, different enzymes 

have been involved in the arterial oxidative stress involving NADPH oxidases, xanthine oxidases, 

COX-1 and COX-2, cytochrome P450 monooxygenases, enzymes of the mitochondrial respiratory 

chain, and uncoupled eNOS. Superoxide anion can  react with NO to form the radical peroxynitrite 

(Koppenol, Moreno et al. 1992), leading to the oxidation of the eNOS cofactor tetrahydrobiopterin 

(BH4) and the subsequent uncoupling of eNOS, thereby further promoting oxidative stress (Cai and 

Harrison 2000). 
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Figure 14. The effects of vascular endothelial factors on the function of vascular smooth cells in healthy and pathological 
conditions. 
In the healthy endothelium, the eNOS is responsible for most of the vascular NO production. However, eNOS becomes a potential 
ROS generator when in the pathological uncoupled state, due to oxidative stress. ACE, angiotensin-converting enzyme; Ach, 
acetylcholine; AT-I, angiotensin I; AT-II, angiotensin II; AT1, angiotensin 1 receptor; BH4, tetrahydrobiopterin; BK, bradykinin; 
cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; ECE, endothelin converting enzyme; eNOS, 
endothelial nitric oxide synthase; EDHF, endothelium derived hyperpolarizing factor; ETA and ETB, endothelin A and B receptors; 
ET-1, endothelin-1; L-Arg, L-arginine; L-Cit, L-citruline; M, muscarinic receptor; O2

-, superoxide anion; ONOO-, peroxynitrite; 
NADPH, nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; NOX, nicotinamide adenine dinucleotide phosphate 
oxidase; PGH2, prostaglandin H2; PGI2, prostaglandin I2; ROS, reactive oxygen species; S1B, serotonin receptor; TP, thromboxane 
prostanoid receptor; TXA2, thromboxane; 5-HT, serotonin; Θ, inhibition; , stimulation. (Park and Park 2015). 
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1.5 Endothelial dysfunction and hypertension 
Hypertension is associated with endothelial dysfunction, where the delicate balance between 

vasodilators and vasoconstrictors produced by the endothelium is disrupted, with disturbance in 

the NO pathway leading to predominance of vasoconstrictors like ET-1, which contribute to high 

blood pressure (Sandoo, Veldhuijzen van Zanten et al. 2010). Even though it is still unclear whether 

endothelial dysfunction is the cause or the consequence of elevated blood pressure (Program 2000), 

it appears to be an essential factor in hypertension. Studies in humans have reported a significant 

impairment of the vasodilator response of small resistance vessels to acetylcholine, but not to 

sodium nitroprusside (SNP), in hypertensive patients (Endemann and Schiffrin 2004). Importantly, 

investigations have indicated a larger incidence of cardiovascular events in hypertensive patients 

with more severe endothelial dysfunction compared to hypertensive patients with less severe 

endothelial dysfunction, and therefore it is suggested as a marker for future cardiovascular events 

in hypertensive patients (Calhoun, Jones et al. 2008). Treatment with angiotensin-converting 

enzyme (ACE) inhibitors has been shown to improve endothelial function (Mancini, Henry et al. 

1996). ACE inhibitors reduce oxidative stress and stimulate bradykinin to help increase NO 

bioavailability (Hornig, Landmesser et al. 2001). Products blocking Ang II type 1 receptor (AT1R), 

known as Ang II receptor blockers (ARBs), are successful primarily in the therapy of hypertension, 

but may also be beneficial in patients with intolerance to angiotensin-converting enzyme (ACE) 

inhibitors for the treatment of several cardiovascular diseases, such as stable coronary heart disease 

and heart failure (Dézsi 2014). Moreover, the renin–angiotensin–aldosterone system (RAAS), as 

well as AT1R and AT2R, play an important role in the regulation of cell proliferation and neoplastic 

progression (Ager, Neo et al. 2008). 

In particular, endothelial dysfunction leading to diminished NO bioavailability impairs 

endothelium-dependent vasodilation in patients with essential hypertension and may also lead to 

premature development of atherosclerosis (Figure 15) (Vallance and Chan 2001). Different 

mechanisms of reduced NO bioavailability have been shown both in hypertensive states and several 

cardiovascular diseases, and endothelial dysfunction is likely to occur prior to vascular dysfunction 

(Cai and Harrison 2000). Thus, the strategies currently used to improve endothelial dysfunction 

may result in the improved outcome for  hypertensive patients (Quyyumi 1998).  
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Figure 15. Mechanisms implicated in essential hypertension-associated endothelial dysfunction.  

(a): In healthy artery endothelium produces vasoprotectors (PGI2, NO and EDH) which induces relaxation in vascular 
smooth muscle cells. (b) In pathological artery, the release and activity of vasoprotectors is decreased while the local 
angiotensin system is activated resulting in the increased production of vasoconstrictors (ROS, EDCFs and ET1) 
which induces contraction in the vascular smooth muscle cells leading to endothelial dysfunction and hypertension. 
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1.5.1 Models of Hypertension 
The Spontaneously Hypertensive Rat (SHR) is the most commonly used model of cardiovascular 

disease, with over 4000 Medline references in the last 10 years. The male SHR is usually used as 

a model of established human hypertension, for example to define hypertension-induced changes 

in signaling mechanisms and to test new antihypertensive drugs. One of the major advantages of 

the SHR is lack of inter-individual variation, with the limitation that the SHR can only model one 

of many possible causes of human hypertension. The SHR is a useful model as compounds that are 

able to lower blood pressure in SHR are likely to also be effective in hypertensive humans (Ching 

2008).  

Different experimental protocols have been described to induce DOCA-salt hypertension in the 

literature, including subcutaneous implantation of DOCA pellets (Churchill, Churchill et al. 1997). 

DOCA administration (synthetic mineralocorticoid derivative), in combination with salt loading in 

the diet, to young adult Wistar rats followed by surgical removal of one kidney is associated with 

hypertension with cardiovascular remodeling, hypertrophy, fibrosis, conduction abnormalities and 

endothelial dysfunction. Similar cardiovascular remodeling occurs in patients with hypertension 

and heart failure but these patients are usually not young, nor on a high salt diet, nor taking salt-

retaining compounds nor functioning with a single kidney (Iyer, Chan et al. 2010). The DOCA–

salt model markedly depressed renin–angiotensin system and hence has been extensively used in 

hypertension research as an angiotensin-independent model (Schenk and McNeill 1992). 

NO synthesis can be blocked by inhibitors such as L-NAME (Nω-nitro-L-arginine methyl ester) and 

nitro-L-arginine (Roche, Cook et al. 1996). Chronic administration of L-NAME increased systolic 

blood pressure and heart weight, and decreased renal function. Chronic administration of L-NAME 

to rats during gestation induces the development of a pre-eclamptic syndrome similar to humans 

(Hropot, Grötsch et al. 1994). The role of reduced NO production in human hypertension is still 

unclear; therefore it is too early to decide whether NO synthase inhibition is an appropriate model. 

However, this model deserves more attention as it is technically easy with low mortality rate 

(Richer, Boulanger et al. 1996). 

Ang II induced hypertension is one of the most widely used pharmacological model of hypertension 

in rats. Blockade of the renin-angiotensin system (RAS) with ACE inhibitors or angiotensin II type 
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1 receptor (AT1R) antagonists has become one of the most successful therapeutic approaches in 

medicine. This has led to the concept of combined RAS blockade. RAS is a complex system which 

plays a major role in the maintenance of hemodynamics by regulation of arterial pressure and water 

and electrolyte balance. Ang II increases the risk of cardiovascular event by increasing arterial 

blood pressure and directly acts on cardiac and renal tissues (Schmieder, Hilgers et al. 2007). It 

induces endothelial dysfunction and stimulates inflammatory, proliferative, fibrotic and thrombotic 

processes in the vasculature, and is a key regulator of vascular remodeling and inflammation. Ang 

II increase vascular tone, constricts smooth muscle cells, regulates vascular cell growth, apoptosis, 

fibrosis, matrix metalloproteinase production and degradation of extracellular matrix (Schiffrin, 

Park et al. 2000; Touyz 2005). These effects are observed often in arterial hypertension and 

atherosclerosis (Kane, Etienne-Selloum et al. 2010). Ang II may also affect blood pressure by its 

effects on kidney, brain and sympathetic nervous system (Reid 1992). 

1.5.2 Excessive Reactive Oxygen Species Production in Hypertension 

ROS play a major role as intracellular signaling molecules to regulate normal biological cellular 

responses (Griendling, Sorescu et al. 2000). In pathological conditions, loss of redox homeostasis 

contributes to vascular oxidative damage (Gao and Mann 2009). Multiple sources of oxidative 

stress have been implicated in the pathogenesis of hypertension-related endothelial dysfunction. 

Recently, evidences have indicated that specific enzymes, the NOX family of NADPH oxidases, 

have an important function in generating ROS in a highly regulated fashion in physiological 

conditions, and that in disease states, hyper activation of NOXs contributes to oxidative stress and 

consequent cardiovascular diseases (Figueira, Barros et al. 2013). Investigations have gone further 

to demonstrate the potential mechanisms controlling two important sources of hypertension-

associated oxidative stress, NADPH oxidase and mitochondria (Montezano and Touyz 2012). 

Taken together with recent reports demonstrating the coordinated formation of reactive oxygen 

species (ROS) from NADPH oxidase and mitochondria in hypertensive states, a model of 

hypertension-induced ROS originating from coordinated mitochondrial sources and NADPH 

oxidase appears to be promising (Dikalov and Ungvari 2013). 



 
 

- 49 - 
 

1.5.2.1 Inflammatory Regulation of Hypertension-Associated Endothelial 
Dysfunction 

Inflammatory mechanisms appear to play a significant role in some types of pulmonary 

hypertension (PH), including monocrotaline-induced PH in rats and pulmonary arterial 

hypertension of various origins in humans, such as connective tissue diseases (Sadoughi, Zhang et 

al. 2011). Inflammation in adipose tissue is associated with impaired endothelial function in obese 

patients. Adipose tissue also plays a major role in regulating metabolism and inflammation through 

the production of both pro-inflammatory and anti-inflammatory adipokines (Fantuzzi 2005).  

Though most investigations relating the process of adipose inflammation to vascular endothelial 

function concentrate on insulin resistance and obesity, recent studies have evaluated the effect of 

perivascular adipose tissue on vascular homeostasis in hypertension. Adipose tissue from 

hypertensive rats applied to thoracic aorta segments failed to suppress phenylephrine-induced 

vasoconstriction, in contrast to adipose tissue from normotensive animals (Baranowska-Kuczko, 

Kozłowska et al. 2016).  

Recent data also define novel roles for elements of both innate and adaptive immune responses in 

regulating endothelial function under hypertensive conditions (Pauletto and Rattazzi 2006). 

Activation of innate immunity’s complement pathway may negatively impact vascular endothelial 

function in hypertension, whereas increased anti-inflammatory interleukin-10 expression from the 

adaptive immune response blunts the adverse effects of angiotensin II–associated hypertension on 

endothelial function (Ferri, Croce et al. 2007). Circulating endothelial progenitor cells (EPCs), 

derived from myeloid pluripotent stem cells that also give rise to mature mononuclear cells, also 

play significant roles in maintaining endothelial homeostasis through their regenerative and repair 

mechanisms (Urbich and Dimmeler 2004). Overall, these newer data suggest that hypertension-

associated vascular endothelial dysfunction relates to local vascular inflammation as well as to 

systemic inflammation (Cottone and Cerasola 2008).  

Animal studies have shown that oxidative stress and renal tubulointerstitial inflammation are 

associated with, and have major roles in, the pathogenesis of hypertension (Vaziri 2008). This 

relation is supported by the observations that increase level of oxidative stress and renal 

tubulointerstitial inflammation increase arterial pressure in animal models (Vaziri and Rodriguez-
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Iturbe 2006). Conversely, hypertension has been shown to cause oxidative stress and inflammation 

in renal and cardiovascular tissues in experimental animals. All together, these observations 

indicate that oxidative stress, inflammation and arterial hypertension participate in a self-

perpetuating cycle which can lead to progressive cardiovascular disease (Brasier, Recinos et al. 

2002)  

1.5.3 Antihypertensive treatments 

In clinical settings today, a variety of antihypertensive medicines are being used alone and in 

combination with other drugs to reach target goal of blood pressure.  

Calcium channel blockers 

Calcium channel blockers inhibits the entrance of calcium ions via voltage-operated calcium 

channel in cells of the heart and blood vessel walls, resulting in lower blood pressure (Epstein and 

Braunwald 1982) and hence are also called calcium antagonists. They relax and dilate blood vessels 

by affecting the smooth muscle cells in the arterial walls.  

Beta-blockers 

The exact mechanisms of action of beta-blockers as anti-hypertensive drugs is still largely 

unknown. The proposed mechanism is that beta-blockers inhibit the effects of the 

sympathetic nervous system on beta-adrenergic receptor of the heart (Parati and Esler 2012). They 

reduce the work of the heart and requirement blood and oxygen. As a result, the heart doesn't have 

to work as hard, which decreases blood pressure. Also, they help to control heart rate and are used 

in the treatment of abnormal heart rhythms that may be too fast or irregular. Beta-blockers are also 

widely used to treat hypertension, although they are no longer a first choice for initial treatment of 

most patients according to current guidelines (Hunt, Abraham et al. 2005).  
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Diuretics  

Diuretics acts on kidneys to remove more sodium and water from the body, which helps to relax 

the blood vessel walls, thereby lowering blood pressure. Moreover, they are combined with other 

blood pressure medicines as they can enhance the effect of the other antihypertensive drugs and 

prevent the fluid retention (Weber, Schiffrin et al. 2014). Thiazide diuretics are recommended as 

the first line of treatment for hypertension and are usually prescribed as one of at least two 

medicines to control hypertension.  

Vasodilators 

Vasodilators are medications that cause dilatation of blood vessels predominantly by the release of 

NO. They act directly on the VSMC in the walls of arteries resulting in vasorelaxation and 

preventing vasoconstriction. As a result, blood flows more easily through arteries.  

ACE inhibitors 

ACE inhibitors block the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor and 

mitogenic. Therefore, they lower arteriolar resistance and increase venous capacity; 

decrease cardiac output, cardiac index, stroke work, and decrease resistance in blood vessels in the 

kidneys; and lead to increased natriuresis.  

Angiotensin II receptor antagonists (AT1R blockers) 

The angiotensin II receptor antagonists (AT1R blockers, ARBs, sartans) are a group 

of antihypertensive drugs that act by blocking the effects of Ang II-mediated via AT1R activation 

in the body, thereby lowering blood pressure. Their structure is similar to Ang II and they bind to 

Ang II receptors as inhibitors. AT1 blockers are widely used drugs for mild to moderate 

hypertension, chronic heart failure, secondary stroke prevention and diabetic nephropathy.  

 

AT1 blockers and ACE inhibitors directly inhibit RAS and are the most effective for the treatment 

of hypertension (Taal and Brenner 2000).   
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1.6 Endothelial Dysfunction and Diabetes  

Diabetes Mellitus (DM) is a major health problem worldwide, associated with morbidity and 

mortality. DM is characterized by persistent elevation of the blood glucose level (Monesi, Baviera 

et al. 2012). There are two types of diabetes: the type 1 diabetes (T1DM), which occurs due to the  

absence of  the formation of insulin, and type 2 diabetes (T2DM), which is characterized by insulin 

insensitivity as a result of insulin resistance usually associated with metabolic syndrome and 

obesity (Figure 16) (Sharma, Bernatchez et al. 2012). Several clinical studies with both types 1 and 

type 2 diabetic patients have shown the presence of an endothelial dysfunction (McVeigh, Brennan 

et al. 1992; Nathan, Lachin et al. 2003). In addition, studies report that endothelial dysfunction 

appears early in the development of DM, which may suggest a role of impaired endothelium-

dependent vasodilatation in the initiation and development of both macro-vascular and micro-

vascular complications of diabetes. Individuals with type I and type II diabetes have evidence of 

both microvascular and macrovascular endothelial dysfunction (Caballero, Arora et al. 1999). 

Endothelial dysfunction can even be evident in healthy individuals with a family history of 

diabetes, suggesting a genetic link (Alvarado Vásquez, Zapata et al. 2007). Patients with diabetes 

often have reduced NO bioavailability which results from increased oxidative stress, and oxidation 

of LDL due to hyperglycaemia (Endemann and Schiffrin 2004). Patients with type 1 diabetes have 

shown improved endothelial function when taking ACE inhibitors, through a reduction in oxidative 

stress, and an increase in NO bioavailability (Heitzer, Schlinzig et al. 2001). 
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Figure 16. Progression of endothelial dysfunction in relation to the progression of insulin resistance (Cosentino and Lüscher 1997). 
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2. Lipids 

 Lipids are defined as small hydrophobic or amphipathic (or amphiphilic) molecules that may 

originate entirely or, in part, through condensations of thioesters and/or isoprene units (Fahy, 

Subramaniam et al. 2005)  

Lipids are a chemically diverse group of substances that are poorly soluble or insoluble in water, 

but soluble in a polar organic solvents such as chloroform, hydrocarbons, alcohols or ethers (Rane 

and Anderson 2008). They are mostly composed of carbon, hydrogen, oxygen and also sometimes 

nitrogen and phosphorous. Triglyceride, phospholipids sterols and waxes are the main types of 

lipids (McDonald 2002). The triglycerides exists in both foods and in the body, and usually serve 

as energy sources and can be stored in the adipose tissue for later use within the body (Turchini, 

Francis et al. 2011) 

The lipid classification system enables categorization of lipids and their properties in a way 

that is compatible with other macromolecular databases. Using this approach, lipids from biological 

tissues are divided into eight categories: fatty acids (Table 1), glycerolipids, glycerophospholipids, 

sphingolipids, saccharolipids, polyketides (derived from condensation of ketoacyl subunits); sterol 

lipids and prenol lipids (derived from condensation of isoprene subunits). Each category contains 

distinct classes and subclasses of molecules (Fahy, Subramaniam et al. 2005).  

Table 1. Structure and taxonomy of fatty acids (Simopoulos 1998) 
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2.1  Saturated fatty acids (SFA) 
SFA only have carbon-carbon single bonds in their chain and these carbons are fully occupied with 

hydrogen atoms, thus forming straight chains giving strength to the structure (Brownstein 1959). 

They are a useful source of energy and also have some important physical properties including 

poorly soluble in water in their undissociated (acidic) form, whereas they are relatively hydrophilic 

as potassium or sodium salts. (Fuhrhop and Endisch 2000). The most prevailing SFA are palmitic 

acid (C16), and stearic acid (C-18), found most commonly in animal products (Table 2). Vegetable 

derivatives of SFA such as palm oil, palm kernel oil, and coconut oil are produced from vegetables 

(Healy, Pfeifer et al. 1994). High consumption of SFA is associated with high LDL levels which 

is an independent risk factors of cardiovascular diseases (CVD) (Siri-Tarino, Sun et al. 2010; 

Colquhoun, Ferreira-Jardim et al. 2011). 

Table 2. Structure of different unbranched fatty acids with a methyl end and a carboxyl (acidic) end (Hagan 
2015). 
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2.2 Monounsaturated fatty acids (MUFA) 
Upon losing one or more pairs of hydrogen atoms from the carbon chain, the fatty acids are called 

unsaturated fatty acids. The fatty acids containing one double bond are MUFA (Figure 17). Some 

common MUFA are palmitoleic acid (16:1 n−7), cis-vaccenic acid (18:1 n−7) and oleic acid 19 

(18:1 n−9). Palmitoleic acid has 16 carbon atoms with the first double bond occurring 7 carbon 

atoms away from the methyl group and 9 carbons from the carboxyl end, which can be lengthened 

to the 18-carbon cis-vaccenic acid. Oleic acid has 18 carbon atoms with the first double bond 

occurring after the ninth carbon atom from the methyl end of fatty acid chain. Vegetable oils such 

as olive oil and canola oil are good sources of MUFA. MUFA consumption is strongly associated 

with a decrease in LDL cholesterol (Corrao, Bagnardi et al. 1999). 

 
 

 
 

 

 

 
 

 
 

 
 

 

 
 

Figure 17. Monounsaturated fatty acids MUFAs 
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2.3 Polyunsaturated fatty acids (PUFA) 
PUFA contain more than one double bonds in there chains (Figure 18). According to the 

international nomenclature, the positioning of the first double bond is given by (n-x) notation, 

counting the number of carbon atoms from the methyl end (Keller, Dreyer et al. 1993). For 

example, in omega-3 (n-3) and omega-6 (n-6) fatty acids, the first double bond starts at 3 and 6 

carbons from the methyl end, respectively. Thus α-Linoleic acid symbol 18:3 n-3 identifies a fatty 

acid having 18 carbon atoms and 3 double bonds, the first double bond occurring after the third  

carbon atom from the methyl end of the fatty acid chain, known as the n end (Mateos 2012). 

  
Figure 18. Major Polyunsaturated fatty acids (PUFA). (Nair, Leitch et al. 1997). 
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2.3.1 Trans fatty acids (TFA) 
Trans fatty acids are unsaturated fatty acids of plant origin that have a trans arrangement of the 

carbon atoms adjacent to its double bonds resulting from the hydrogenation process, which gives 

a more rigid molecule close to a saturated fatty acids. The two hydrogen atoms of the carbons 

adjacent to the double bond point to opposite directions, which is different from the double bond 

of cis-configuration in the fatty acids of mammals. Furthermore, the location of the double bond is 

not fix and it may appear anywhere along the molecule, so that many positional isomers may exist. 

In trans fatty acids, angle of the double bond is smaller than the cis-isomeric configuration and 

hence acyl chain is more linear, resulting in a more rigid molecule with different physical properties 

such as greater thermodynamic stability and a higher melting point.  The trans configuration is 

designated by a t-; the number preceding the t- indicates the position of the trans bond acids counted 

from the carboxyl end of the molecule, and c- designates the cis isomers. Consumption of such 

acids is thought to increase the risk of atherosclerosis. 

2.3.2 n-3 polyunsaturated fatty acids (n-3 PUFAs) 
Long-chain polyunsaturated fatty acids with the first double bond at the third position from the 

methyl terminal that are found in plants and some types of fish. n-3 PUFAs are found in short and 

long-chain varieties. The short chain form is alpha-linolenic acid, 18:3 n-3 (ALA) which contains 

18 carbons having 3 double bonds and is considered as essential fatty acids because it can’t be 

synthesized within the body (Sen 2013). The long chain n-3 PUFA includes EPA, DPA 

(docosapentaenoic acid) and DHA, and as compared to ALA, these fatty acids are elongated and 

highly unsaturated; EPA has 20 carbons with 5 double bonds while DPA and DHA has 22 carbons 

with 5 and 6 double bonds, respectively (Figure 19). 

Main vegetal sources of n-3 PUFA include flax seed, camelina seed, perilla and chiaseed oils which 

contain the 18-carbon ALA as the major n-3 PUFA (Turchini, Francis et al. 2011). The carbon-20 

and carbon-22 n-3 PUFA such as EPA and DHA are abundantly found in seafood such as fish and 

shellfish. These fatty acids are also considered as essential fatty acids. Fish such as tuna, sardines, 

salmon, mackerel and herring contains higher concentration of these fatty acids. Shellfish like 

abalone, oyster, mussel and scallop are also good sources of these long chain n-3 PUFA (Su, 

Wiltshire et al. 2004).The National Heart Foundation of Australia recommends the consumption 
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of 500 mg per day of combined DHA and EPA, which is associated with a reduction in the risk of 

coronary heart disease (Colquhoun, Ferreira-Jardim et al. 2011) .  
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Figure 19. Structures of dietary ω 3 and ω 6 polyunsaturated fatty acids. A: C18 ω 3 and ω 6 
PUFA. B: C20–22 ω 3 and ω 6 PUFA (Jump, Depner et al. 2012). 
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2.3.3 n-6 polyunsaturated fatty acids 
Long-chain polyunsaturated fatty acids with the first double bond at the sixth position from the 

methyl terminal that are found in plants and in animal muscles and organ meat. n-6 PUFA has its 

short-chain representative, linoleic acid, which is an essential fatty acid and the most prevalent one 

in western diets. Linoleic acid, is most abundantly found in nature, having high proportion in most 

of the vegetable oils such as sunflower, safflower, corn, soybean and canola oils (Mateos 2012). 

Evening primrose and borage oil are also enriched in linoleic acid. Animal products also serve as 

a major source of n-6 PUFA in the form of arachidonic acid predominantly found in both muscle 

and organ meats (Sinclair 1991).  

2.4 The importance of the ratio of omega-6/omega-3 essential fatty acids 
Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty 

acids. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-

6/omega-3 ratio promote the pathogenesis of many diseases, including cardiovascular disease, 

cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA 

(a low omega-6/omega-3 ratio) exert suppressive effects (Simopoulos 2008) (Figure 20). 

Mammalian cells cannot convert omega-6 to omega-3 fatty acids because they lack the converting 

enzyme, Δ3 desaturase. Linoleic acid,  α-Linoleic acid and their long-chain derivatives are 

important components of animal and plant cell membranes (Barceló-Coblijn and Murphy 2009). 

These two classes of essential fatty acids, are metabolically and functionally distinct, and often 

have important opposing physiological functions. An optimal balance of EFA is important for good 

health and normal development (Simopoulos 2006). When humans ingest fish or fish oil, the EPA 

and DHA from the diet partially substitute the omega-6 fatty acids, especially AA, in the 

membranes of probably all cells, but especially in the membranes of platelets, erythrocytes, 

neutrophils, monocytes, and liver cells (Simopoulos 2009). 

AA and EPA are the parent compounds for eicosanoid production. Due to the increased amounts 

of omega-6 fatty acids in the Western diet, the eicosanoid metabolic products from AA, specifically 

prostaglandins, thromboxanes, leukotrienes, hydroxy fatty acids, and lipoxins, are formed in larger 

quantities than those formed from omega-3 fatty acids, specifically EPA (Simopoulos 2008). The 

eicosanoids from AA are biologically active in very small quantities, and, they promote to the 
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formation of thrombus and atheromas, allergic and inflammatory disorder, particularly in 

susceptible people (Simopoulos 2011). Thus, a diet rich in omega-6 fatty acids shifts the 

physiological state to one that is prothrombotic and proaggregatory, with increases in blood 

viscosity, vasospasm, and vasocontriction and decreases in bleeding time (Hussein 2013). 

Omega-3 fatty acids inhibit the production of platelet-derived growth factor (PDGF) in bovine 

endothelial cells (De Caterina, Cybulsky et al. 1994). Thus, the reduction in its production by 

endothelial cells, monocytes/macrophages, and platelets could inhibit both the migration and 

proliferation of smooth muscle cells, monocytes/macrophages, and fibroblasts in the arterial wall. 

Omega-3 fatty acids also increase endothelium-derived relaxing factor (EDRF) which facilitates 

relaxation in large arteries and vessels (Nicolosi and Stucchi 1990). Supplementing the diet with 

omega-3 fatty acids (3.2 g EPA and 2.2 g DHA) in normal subjects increased the EPA content in 

neutrophils and monocytes more than sevenfold without changing the quantities of AA and DHA 

(Nicolosi and Stucchi 1990). The antiinflammatory effects of fish oils are partly mediated by the 

inhibition of  the 5-lipoxygenase pathway in neutrophils and monocytes (Lee, Hoover et al. 1985). 

Moreover, several studies show that omega-3 fatty acids influence interleukin metabolism by 

decreasing IL-1 and IL-6, suggesting an important role in the prevention of atherosclerosis (Jung, 

Torrejon et al. 2008) 
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2.5 Metabolim of PUFA 

Free arachidonic acid (AA) is oxidized through three major metabolic routes: (i) the 

cyclooxygenase (COX) pathway producing prostaglandins and thromboxanes, (ii) the 

lipoxygenase (LOX) pathway leading to leukotrienes, hydroxyeicosatetraeneoic acids (HETEs) 

Figure 20. Importance of omega-6/omega-3 ratio.  
A very high omega-6/omega-3 ratio promotes the pathogenesis of many diseases, including cardiovascular disease, 
cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a low omega-
6/omega-3 ratio) exert suppressive effects. 
PGH2, Prostaglandin H2; TXA2, Thromboxane A2; LT E4, Leukotriene E4; LT B4, Leukotriene B4; PDGF, Platelet 
derived growth factor; IL-1, Interleukin-1; IL-2, Interleukin-2. 



 
 

- 65 - 
 

and lipoxins, whereas (iii) the cytochrome P450 (CYP) pathway implies oxidation by 

monooxygenases to produce hydroxylated and epoxidised fatty acids (Hong, Bose et al. 2004).  α-

linolenic acid (ALA) can be metabolized to some extent by mechanisms including desaturation and 

elongation to yield EPA, DHA, while linoleic acid (LA) is the metabolic precursor of arachidonic 

acid (AA) (Holub 2002). In the omega-6 fatty acids pathway, linoleic acid can be first converted 

into gamma-linolenic acid (GLA, 18:3, omega-6 fatty acid) by the enzyme Δ6-desaturase before 

elongation leading to (DGLA) dihomo-GLA (DHGLA, 20:3, omega-6 fatty acids) (Das 2008). The 

dihomo-GLA can be further converted into arachidonic acid (AA, 20:4, omega-6 fatty acids) by 

the Δ5-desaturase. The omega-3 fatty acids pathway uses the same series of enzymes for converting 

α-linolenic acid (ALA) into EPA and then into docosapentaenoic acid (DPA) by elongase (Figure 

21). The conversion of ALA to EPA and DPA occurs primarily in the liver in the endoplasmic 

reticulum, whereas the final conversion of DPA to DHA requires a translocation to the peroxisome 

for a β-oxidation reaction (Arterburn, Hall et al. 2006). 
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Figure 21.  Synthesis pathway of omega-6 and omega-3 fatty acids in mammals. 
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2.6 Health benefits of n-3 polyunsaturated fatty acids 

2.6.1 n-3 polyunsaturated fatty acids and diabetes 

Intake of n-3 fatty acids, either as fish oil or ethyl ester formulations is related with a variety of 

biochemical changes that might be beneficial in diabetes: reduced triglyceridemia, mainly through 

enhanced triglyceride lipolysis and enhanced fatty acid oxidation (Sirtori and Galli 2002). 

Increasing the consumption of n-3 long chain PUFAs improves several cardiovascular risk factors 

in persons with diabetes and may reduce the risk of conversion from impaired glucose tolerance to 

type 2 diabetes (Carpentier, Portois et al. 2006). Many epidemiologic studies reported that type 2 

diabetes was less prelevant among Japanese as compared to their mainland counterparts. Lower 

prevalence was attributed mainly to diets rich in n-3 long chain PUFAs (Montmayeur, le Coutre et 

al. 2010). 

n-3 long chain PUFAs have beneficial effects in lowering triglyceride levels and reducing remnant 

lipoprotein (RLP) levels in subjects with type 2 diabetes or hypertriglyceridemia and may increase 

high-density lipoprotein (HDL) cholesterol levels (Okumura, Fujioka et al. 2002). RLPs are higly 

atherogenic lipoproteins produced in the hydrolysis of chylomicrons and very low density 

lipoprotein (VLDL) (Shin, Kim et al. 2004). Modest amounts of purified EPA 0.9 to 1.8 g/day 

reduced the RLP levels significantly by 77% in patients with type 2 diabetes treated for 3 months 

(Nettleton and Katz 2005). 

It is of interest that in in vitro studies EPA has been shown to increase glucose-induced insulin 

secretion from beta-TC3 insulinoma cells (Dubnov and Berry 2004). Other potentially beneficial 

aspects of n-3 treatment in diabetes may be related to the role of these dietary components in 

providing a source of vasoactive compounds, potentially leading to reduced blood pressure and 

improved peripheral perfusion (Hornstra 2012). 

 

2.6.2 n-3 polyunsaturated fatty acids and cardiovascular diseases 

Long chain PUFAs including EPA and DHA are the key nutrients in fish responsible for the 

potential cardioprotective effects of fish consumption (Kris-Etherton, Harris et al. 2002). A 

beneficial effect of fish consumption on CVDs has been suggested to be related to overall favorable 
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effects on lipid profile, threshold for arrhythmias, platelets activity, inflammation, endothelial 

function, atherosclerosis and hypertension (Figure 22). 

Figure 22. Physiological effects of n-3 PUFA that might influence CVD Risk (Mozaffarian and Wu 2011). 
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2.6.2.1 Lipid Profile 
Hypertriglyceridemia is one of the components of metabolic syndrome. Several studies reported 

that long chain n3 PUFAs reduce the blood triglyceride levels (Kris-Etherton, Harris et al. 2002). 

Recently, 47 trials showed that fish oil supplementation with 1 g/day was effective in reducing 

triglyceride levels by 0.34 mmol/L over an average treatment period of 24 weeks in participants 

with hypertriglyceridemia (He 2009).  

PUFA have multiple CVD-related physiological effects such as  lowering of plasma triglycerides 

including reduced fatty acid availability for triglyceride synthesis (Reddy and Katan 2004). 

Moreover, they reduced delivery of nonesterified fatty acids to the liver reduced, hepatic enzyme 

activity for triglyceride synthesis; and increased hepatic synthesis of phospholipids rather than 

triglycerides (Nakamura and Nara 2003). 

2.6.2.2 Inflammation and endothelial function 

Several epidemiological studies reported that n-3 PUFA fatty acids have beneficial effects on 

inflammation and endothelial function (Mori and Beilin 2004). Omega-3 fatty acids are anti-

inflammatory. Indeed inverse association  has been found between Omega-3 or fish consumption 

and circulating levels of C-reactive protein, interlukin-6, endothelial-leukocytes adhesion 

molecule-1, soluble intercellular adhesion molecule-1, tumor necrosis factor, INF-α soluble 

receptor 1, and matrix metalloproteinases-3 (He 2009).  

Omega 3 fatty acids have recognized anti-inflammatory actions that may contribute to their 

beneficial cardiac effects (Russo 2009). Omega 6 fatty acids can be converted into arachidonic acid 

and then metabolised into the omega 6 eicosanoids. Consumption of omega 3 fatty acids increases 

eicosapentanoic acid in the cell membrane. This competes with arachidonic acid for enzymatic 

conversion into its own metabolites, the omega-3-derived eicosanoids (Wall, Ross et al. 2010). 

Independent of the effects on the metabolism of eicosanoids, fish oils suppress pro-inflammatory 

cytokines and reduce expression of cell adhesion molecules (Calder 2006) which are critical in 

recruiting circulating leucocytes to the vascular endothelium, an important event in the 



 
 

- 70 - 
 

pathogenesis of atherosclerosis and inflammation. Omega-3 fatty acids also have direct effects on 

endothelial vasomotor function. Higher plasma concentrations are associated with improved 

dilatation of the brachial artery in young adults with cardiovascular risk factors, which implies a 

protective effect on endothelial function (Din, Newby et al. 2004). In hyperlipidaemic men, omega-

3 fatty acid supplementation improved systemic arterial compliance, and supplementation with 

docosahexanoic acid increased vasodilator responses in the human forearm arteries. These effects 

may be mediated through actions on intracellular signalling pathways, leading to reduced activation 

of transcription factors such as NF-ĸB (Egert and Stehle 2011). However, the precise effects of 

omega 3 fatty acids on these fundamental cellular processes and their potential impact on coronary 

heart disease are yet to be delineated completely. 

2.6.2.3 Atherosclerosis 

Although high dose supplementation of omega-3 fatty acids exerts a hypotriglyceridemic effects, 

these fatty acids also increase and enhance oxidation of LDL cholesterol (Larsson, Kumlin et al. 

2004). However, data from both animal models and humans are inconsistent. It is unclear whether 

omega-3 fatty acids have a direct effect on the pathogenesis of atherosclerosis. Consumption of 

6g/d EPA and DHA for 2 years had no major favorable effects on the thickness of atherosclerotic 

coronary arteries (Woodman 2003). Several other studies showed that dietary intake of omega-3 

fatty acids or nonfried fish is associated with a lower prevalence of subclinical atherosclerosis 

classified by significant changes in common carotid intima-media thickness, in percent stenosis, 

while no modification in coronary artery calcium score, and ankle-brachial index were observed 

(Von Schacky, Angerer et al. 1999).  

2.6.2.4 Platelets aggregation 

Omega-3 FAs compete with omega-6 FAs for prostaglandin and leukotrines synthesis at the 

cyclooxygenase and lipoxygenase level. omega-3 fatty acids modulate prostaglandin metabolism 

by increasing prostaglandin E3, an active vasodilator and inhibitor of platelets aggregation, 

thromboxane A3, leukotrines B5, and by decreasing production of thromboxane A2, a potent 

platelet aggregation and vasoconstrictor, and leukotrines B4 formation (an inducer of inflammation 

and a powerful inducer of leukocyte chemotaxis and adherence) (Jha 2004). In addition, omega-3 

fatty acids may react with reactive oxygen species because of their double bonds and lead to 
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decreased production of hydrogen peroxide, which is a critical activator of the nuclear NF-ĸB. 

Other studies also indicate that high intake of omega-3 fatty acids would produce a lower platelet 

count, less platelet aggregation, a longer bleeding time and lower concentrations of thromboxane 

metabolites. 

2.7 Clinical implications of omega-3 fatty acids  

Omega 3 fatty acids from fish or fish oil supplements should be considered in the secondary 

prevention regimen of patients after myocardial infarction (Holub and Holub 2004). Patients should 

consume about 1 g/day of eicosapentanoic acid and docosahexanoic acid, preferably by increasing 

their intake of oily fish to at least two servings per week (Harris and Von Schacky 2004). Fish oil 

capsules may be considered for those unable to tolerate fish or change their diet effectively. 

Approved pharmaceutical grade capsules should be prescribed rather than encouraging over the 

counter supplements (Din, Newby et al. 2004). Recent guidelines from the American Heart 

Association have gone further, supporting the use of fish oil supplements for patients with 

“documented” coronary heart disease. However, they believe that more evidence is required before 

considering fish oil supplements for patients with coronary heart disease outside the specific 

indication of myocardial infarction. Others have argued that fish oil supplements should not be 

recommended routinely for patients after myocardial infarction until more definitive evidence is 

available (Rahman, Haque et al. 2005). No trial has assessed the effects of fish oils on risk of 

coronary heart disease in primary prevention, and therefore explicit recommendations for this 

group cannot be made currently. Such a trial may prove impractical in terms of the numbers 

required. However, on the basis of evidence from epidemiological and observational studies the 

consumption of (preferably oily) fish at least twice weekly should be encouraged as part of a 

balanced diet (Din, Newby et al. 2004). Any recommendations regarding fish and fish oils should 

be balanced against safety issues. Side effects such as fishy aftertaste are uncommon, and 

gastrointestinal upset is infrequent at moderate intakes. Some reports show that fish oil may worsen 

glycemic control in diabetes, but two meta-analyses found no adverse effect. Furthermore, a recent 

prospective cohort study found that a higher consumption of omega 3 fatty acids was associated 

with a lower incidence of coronary heart disease and mortality in diabetic women (Din, Newby et 

al. 2004; Borghi and Cicero 2005). Concerns have been raised regarding adverse effects on low 

density lipoprotein (LDL) cholesterol and oxidative stress, but increases in LDL cholesterol are 
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modest and studies into oxidative stress have been contradictory. Overall these effects are unlikely 

to be dominant given the apparent cardiac benefits of omega 3 fatty acids. More specific concerns 

regarding dietary fish relate to environmental contaminants, and a recent study showed that 

mercury in fish may attenuate their cardioprotective effects (Cicero, Ertek et al. 2009). 
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AIM OF THE STUDY 

The endothelial cells are the major regulator of vascular homeostasis and play a key role by 

synthesis and secretion of various potent vasodilatating and vasoconstricting factors. In addition, 

they also inhibit platelet aggregation, decrease the endothelial expression of adhesion molecules 

and smooth muscle cell proliferation, thus reducing the risk of cardiovascular diseases.  Endothelial 

dysfunction is an early hallmark for the development and progression of most of the cardiovascular 

diseases, like hypertension, atherosclerosis, myocardial infarction, cerebrovascular diseases 

(stroke), peripheral artery diseases, rheumatic heart diseases, congenital heart diseases and heart 

failure, which are the leading cause of mortality and morbidity worldwide. Endothelial dysfunction 

is associated with an impairment of endothelium-dependent relaxations involving a reduced NO 

bioavailability, EDH component of relaxation and an increased production of endothelium derived 

contractile factors (EDCF). Endothelial dysfunction could lead to hypertension. 

Several naturally occurring constituents like red wine polyphenols, caffeine, omega-3 fatty acids, 

carotenoids, vitamins E and C have received significant consideration because of their potential 

antioxidant activity. Consuming a diet rich in these natural antioxidants has been associated with 

prevention and treatment of endothelial dysfunction and associated cardiovascular diseases 

(Potashkin 2014).  

Antihypertensive treatments affecting RAS (AT1R and ACE inhibitors) contributes to 60 % to 

65 % of overall hypertensive therapy and, therefore, Ang II-induced hypertension is one of the 

most widely used pharmacological model of hypertension in rats. In several experimental models 

of endothelial dysfunction, an overexpression of the local angiotensin system associated to a 

vascular oxidative stress has been described. Red wine polyphenols (RWPs) are able to prevent 

the Ang II-induced endothelial dysfunction mostly due to their antioxidant properties (Kane, 

Etienne-Selloum et al. 2010). RWPs intake caused a persistent improvement of the endothelial 

function, particularly the EDH component of relaxation, in middle-aged rats and this effect seems 

to involve the normalization of the expression of IKCa,  SKCa and the angiotensin system (Khodja, 

Chataigneau et al. 2012).Various studies demonstrates that regular intake of fish products and 

dietary consumption of fish or fish oil rich in omega-3 PUFAs, particularly EPA (eicosapentaenoic 

acid) and DHA (docosahexaenoic acid) has been related to a reduced risk of cardiovascular disease 

morbidity/mortality. 
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In a previous study of our group different ratio of EPA and DHA (EPA:DHA 1:1, EPA:DHA 3:1, 

EPA:DHA 6:1, EPA:DHA 1:3, EPA:DHA 1:6) and alone EPA and DHA were studied and they 

found that omega-3 EPA:DHA 6:1 is the most potent formulation for the induction of both NO-

mediated and EDH-mediated response in porcine arteries by the activation of eNOS through Src 

PI3K Akt Pathway (Zgheel, Alhosin et al. 2014). Being the most superior formulation of omega-3 

EPA:DHA 6:1 was selected to treat angiotensin II induced endothelial dysfunction and 

hypertension in rats. The major goal of this thesis was to determine whether chronic intake of EPA: 

DHA 6:1 affects hypertension and endothelial dysfunction induced by angiotensin II infusion in 

rats. 

More specifically the aims were 

1. To study the effect of EPA:DHA 6:1 in angiotensin induced hypertension. 

2. To study the impregnation of EPA:DHA 6:1 in plasma and its effects on omega6/omega3 

ratio. 

3. To study the effect of EPA:DHA 6:1 in the endothelium -dependent relaxation in second 

branch mesenteric arterial rings. 

4. To characterize the mechanisms underlying EPA:DHA 6:1 induced endothelium-dependent 

relaxation mediated by NO and EDH, in second branch mesenteric  arteries. 

5. Evaluate the ability of EPA:DHA to reduce contractile responses in second branch 

mesenteric  arterial rings. 

6. To study Ang II induced oxidative stress responses (ROS) in second branch mesenteric 

arteries. 

7. To find the source of ROS. 
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EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: 

role of NADPH oxidase and COX-derived oxidative stress  
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Kassem, Abdur Mirajkar, Azhar Alvi, Malak Abbas, Faraj Zgheel, Valérie B. Schini-Kerth, Cyril 

Auger 

 Submitted to the British Journal of Pharmacology 

Cardiovascular diseases are the major of death worldwide and should remain the leading cause of 

mortality and morbidity over the next few decades. Hypertension and other risk factors of 

cardiovascular diseases are associated early with the development of an endothelial dysfunction. 

The endothelial dysfunction is generally characterized by a reduced formation of vasoprotective 

factors including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and an 

increased production of vasocontracting factors such as cyclooxygenase (COX)-derived 

metabolites of arachidonic acid involved in the endothelium-dependent contractile factors. 

While current antihypertensive treatment are able to potently reduce the blood pressure, they seems 

to have a limited ability to protect and/or improve the endothelial dysfunction, a pivotal event in 

the protection of the cardiovascular system. Several epidemiological and both primary and 

secondary prevention studies have indicated that dietary intake of omega-3 polyunsaturated fatty 

acids (PUFAs), including the two major compounds eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), reduces the risk of cardiovascular diseases. Moreover, studies have 

reported that purified formulations of EPA and DHA are able to induce potent and sustained 

endothelium-dependent relaxations of isolated artery rings via an increased formation of NO and 

EDH. A previous study of the research team has shown that the endothelium-dependent 

vasorelaxant effect of omega-3 PUFAs is dependent on both the purity and ratio of EPA:DHA, 

with EPA:DHA ratio of 6:1 and 9:1 being superior formulations (Zgheel et al., 2014).  

The aim of the present study was to determine whether chronic oral intake of the optimized 

EPA:DHA 6:1 formulation is able to prevent the hypertension and endothelial dysfunction induced 

by Ang II infusion in rats. 
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Results  

The major results of our study show that infusion of Ang II caused a significant increase in systolic 

blood pressure, as compare to control rats. EPA:DHA 6:1 treatment significantly prevented the 

increase in systolic blood pressure by about 57%, while having no effect on the systolic blood 

pressure of normotensive rats. The chronic intake of the optimized EPA:DHA 6:1 formulation is 

associated with significantly increased plasma levels of omega-3 fatty acids, mainly as EPA, DHA 

and the intermediate elongated metabolite of EPA, the docosapentaenoic acid (DPA), resulting in 

a decreased omega-6/omega-3 ratio. The reduction of this ratio have been associated with a shift 

towards beneficial health effects of omega-3, including reduced cardiovascular and cancer risk. 

Vascular reactivity studies in the secondary branch of the mesenteric artery indicate that Ang II 

induced an endothelial dysfunction characterized by reduced relaxations in response to 

acetylcholine affecting both the NO- and EDH-mediated components, and increased formation of 

endothelium-derived contractile factors (EDCFs) in response to acetylcholine. The chronic intake 

of EPA:DHA 6:1 normalized both the NO, EDH and EDCF responses in the secondary branch of 

the mesenteric artery. To better characterize the molecular mechanisms involved in the protective 

effects of EPA:DHA 6:1 intake, we performed quantitative analysis of protein expression in the 

secondary branch of the mesenteric artery by immunofluorescence. The Ang II treatment increased 

the level of vascular oxidative stress and the expression of NADPH oxidase subunits p22phox and 

p47phox, AT1R, AT2R, eNOS, arginase-1, COX-1 and COX-2, and decreased the expression of 

SKCa and connexin 37, which were improved by the omega-3 treatment. To confirm the results 

obtained by immunofluorescence in the secondary branch of the mesenteric artery, we performed 

Western blot analysis of the expression levels of eNOS, COX-2, and the NADPH oxidase subunit 

p22phox in the secondary branch mesenteric artery. The Ang II group presented a significantly 

increased expression of eNOS, COX-2, and the NADPH oxidase subunit p22phox, that was 

prevented by the chronic oral intake of EPA:DHA 6:1. 

Altogether, the present findings indicate that chronic intake of the optimized EPA:DHA 6:1 

formulation prevented the development of hypertension and endothelial dysfunction induced by 

the infusion of Ang II in rats. The Ang II-induced endothelial dysfunction is associated to an up-

regulation of the local angiotensin system and an increased vascular oxidative stress. The beneficial 

effect of EPA:DHA 6:1 is mediated by an improvement of both the NO- and the EDH-mediated 



 
 

- 115 - 
  

relaxations and a reduction of endothelium-dependent contractile response, most likely by 

preventing the oxidative stress induced by the up-regulation of the local angiotensin system. 

Conclusions and perspective 

In conclusion, the present work has assessed the potency of an optimized EPA:DHA 6:1 

formulation to protect the endothelial function in vivo. The present findings shows that Ang II 

infusion is associated with the development of endothelial dysfunction in the secondary branch of 

the mesenteric arteries, which affects markedly the EDH-mediated component of relaxation and 

also, to some extent, the NO-mediated component of relaxation. The Ang II-induced endothelial 

dysfunction involves a redox-sensitive mechanism implicating NADPH oxidase, COX-1 and 

COX-2. The chronic oral intake of the optimized EPA:DHA 6:1 formulation prevents Ang II-

induced endothelial dysfunction and hypertension most likely by decreasing oxidative stress-

mediated impairment of  both NO and EDH components as well as a reduction of endothelium-

dependent contractile response. 

There are numerous reports that support an important role of omega-3 fatty acids in preventing 

endothelial dysfunction, hypertension and cardiovascular diseases. The impregnation of omega-3 

fatty acids in vascular tissues is also important, and needs to be clarified. However, the active 

molecules involved in the protective effects of omega-3 intake on endothelial function remains to 

be identified. Recent studies have reported that metabolites of omega-3 fatty acids, such as the 

resolvins, are key elements in the anti-inflammatory effect of omega-3. They also have been 

reported to exert beneficial vascular effect such as reducing the hyperreactivity induced by 

endothelin-1 and pro-inflammatory cytokines in pulmonary arteries. Since Ang II-induced T cell 

activation and the subsequent vascular inflammatory response have been identified as key 

mechanisms in Ang II-induced hypertension and endothelial dysfunction, a reduced pro-

inflammatory responses due to production of anti-inflammatory omega-3 metabolites is likely to 

contribute to the EPA:DHA 6:1 antihypertensive and vasoprotective effect. Thus, further work is 

needed for the identification of active metabolites of omega-3 fatty acids in the vascular wall 

including resolvins, protectins, thromboxane A3, leukotriene 5 and lipoxins.  

The present study has assessed the potency of the EPA:DHA 6:1 formulation to prevent the Ang 

II-induced hypertension and endothelial dysfunction. However, the curative potential of the 
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optimized EPA:DHA 6:1 formulation on an established hypertension and associated endothelial 

dysfunction needs to be determined. Indeed, while the current antihypertensive treatments 

effectively reduce blood pressure, they seems to have limited ancillary effect on the endothelial 

dysfunction and hence to protect the cardiovascular system. Thus, the potency of the EPA:DHA 

6:1 formulation to improve the endothelial dysfunction associated with an established hypertension 

could be an interesting novel therapeutic approach to reduce the cardiovascular mortality risk of 

hypertension. 

Finally, on the basis of the beneficial vasoprotective effect of the EPA:DHA 6:1 formulation 

demonstrated in the present study and the reported beneficial effect of omega-3 intake in humans,  

a clinical study can be designed to determine the potential of EPA:DHA 6:1 to reduce 

cardiovascular risk factors in hypertensive patients. 
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Arterial hypertension 

Arterial hypertension is a major problem of public health, being associated with end organ damage 

and cardiovascular morbidity and mortality. Arterial hypertension is the most important risk factor 

for a number of cardiovascular diseases including CAD, CHF, peripheral vascular disease, stroke 

and chronic kidney disease (Sarnak, Levey et al. 2003). Prevalence of arterial hypertension in 

United States is very high and continues to increase with a control rate of just 30 % in treated 

patients (Ong, Cheung et al. 2007). At the age of 75 years or older, about 70 % of men and women 

develop arterial hypertension (Chobanian, Bakris et al. 2003). Although effective antihypertensive 

drugs such as AT1R antagonists (ARAs), angiotensin-converting enzyme inhibitors (ACEI), beta-

blockers, and calcium channel blockers, diuretics, and vasodilators exist, the control rate of 

hypertension remains low possibly due to poor observance and side effects. Treatments blocking 

pathological effects of the RAS at different levels have been shown to limit target-organ damage 

in hypertension and to decrease cardiovascular morbidity and mortality. AT1R and ACE inhibitors 

based treatments contributed to 60 % and 65 % of overall hypertensive therapy. 

Omega-3 polyunsaturated fatty acids 

Interest in natural products research is strong and can be attributed to several factors, including 

unmet therapeutic needs, the remarkable diversity of both chemical structures and biological 

activities of naturally occurring secondary metabolites. In this context, the adverse effects 

associated with synthetic molecules, decreased patients acceptability, contributed to shift the 

interest into natural products.  

Numerous experimental and clinical studies have documented that omega-3 fatty acids can benefit 

the cardiovascular system, and particularly in patients diagnosed with CAD (Harris, Mozaffarian 

et al. 2009). The American Heart Association recommends the intake of 1 g/day of the two omega-

3 fatty acids EPA and DHA for cardiovascular disease prevention, treatment after a myocardial 

infarction, prevention of sudden death, and secondary prevention of cardiovascular disease (Von 

Schacky and Harris 2007).  

Omega-3 fatty acid lower plasma triglycerides mainly through reduced fatty acid availability for 

triglyceride synthesis due to decreased de novo lipogenesis, increased fatty acid beta-oxidation 

(Kusunoki, Kanatani et al. 2006), reduced delivery of nonesterified fatty acids to the liver, reduced 
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hepatic enzyme activity for triglyceride synthesis, and increased hepatic synthesis of phospholipids 

rather than triglycerides (Nakamura and Nara 2003). Omega-3 fatty acids have anti-inflammatory 

properties and an inverse association has been found between regular intake of  fish oil or fish and 

C-reactive protein, interleukin-6, E-selectin, soluble intercellular adhesion molecule-1, tumor 

necrosis factor, IFN-α soluble receptor 1, and matrix metalloproteinase-3 (He 2009). Fish oils 

inhibit pro-inflammatory cytokines production and reduce expression of cell adhesion molecules 

(Calder 2006). These factors are critical in recruiting circulating leucocytes to the vascular 

endothelium, an important early event in the pathogenesis of atherosclerosis and inflammation.  

Omega-3 fatty acids compete with omega-6 fatty acids for prostaglandin and leukotrienes synthesis 

at the cyclooxygenase and lipoxygenase level. Omega-3 fatty acids modulate prostaglandin 

metabolism by increasing synthesis of prostaglandin E3, an active vasodilator and inhibitor of 

platelets aggregation, thromboxane A3, leukotrienes B5, and by decreasing production of 

thromboxane A2, a potent inducer of platelet aggregation and vasoconstrictor, and leukotriene B4 

formation (an inducer of inflammation and a powerful inducer of leukocyte chemotaxis and 

adherence). Other studies also indicate that high intake of fish oil would produce a lower platelet 

count, less platelet aggregation, a longer bleeding time and lower concentrations of thromboxane 

metabolites. The omega-3 fatty acids-induced hypotriglyceridemia effect requires doses of DHA 

and EPA of 3 to 4 g/day. In American population such doses reduce triglyceride levels by 30 % to 

40 % (Harris, Ginsberg et al. 1997; Lavie, Milani et al. 2009). However, data from both animal 

models and humans on cardiovascular protection are inconsistent. Consumption of 6 g/d EPA and 

DHA for 2 years by 59 patients had no major favorable effects on the diameter of atherosclerotic 

coronary arteries (Woodman 2003). Several studies showed that dietary intake of fish oil or non-

fried fish is associated with a lower prevalence of subclinical atherosclerosis classified by 

significant changes in common carotid intima-media thickness and in percent stenosis while no 

modification in coronary artery calcium score, and ankle-brachial index were observed (Von 

Schacky, Angerer et al. 1999). DHA is the precursor to a newly described metabolite called 10,17S

docosatriene, which is part of a family of compounds called resolvins. These have firstly been 

described as being released in the brain in response to an ischemia and respond to the 

proinflammatory actions of infiltrating leukocytes by blocking interleukin-1-beta-induced NF-ĸB 

activation and cyclooxygenase-2 expression (Layé 2010). 
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 The previous studies of our research team have shown that EPA and DHA, the major omega-3 

fatty acids, induced concentration-dependent relaxations in coronary artery rings (Zgheel, Alhosin 

et al. 2014). The relaxation in response to EPA was slightly but significantly greater than those to 

DHA at 0.4 % (v/v) (77.8±10.3 and 64.7±12.8 %, respectively). Then, the ability of optimized 

omega-3 ratios to induce endothelium-dependent relaxation was determined and the results showed 

that EPA:DHA at ratio of either 6:1 or 9:1 induced relaxations significantly more potent than ratio 

of 3:1, 1:1, 1:3, 1:6, and 1:9. Similarly, the role of the purity of the EPA:DHA ratio was determined. 

The endothelium-dependent relaxation in porcine coronary artery rings in response to a product 

with a high purity of omega-3 EPA:DHA (694:121 mg/g) was significantly greater than those in 

response to a product with a lower purity of omega-3 EPA:DHA (352:65 mg/g). Thus, the 

biological activity of omega-3 products is critically dependent on the consumption, ratio and purity. 

Beneficial effects of omega-3 fatty acid on endothelial function 

Dietary omega-3 fatty acids have a variety of anti-inflammatory and immune-modulating effects 

that may be of relevance to atherosclerosis and its clinical manifestations of myocardial infarction, 

sudden death, and stroke (Mori and Beilin 2004). The omega-3 fatty acids that appear to be most 

potent in this respect are the long-chain polyunsaturated derived from marine oils, namely 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Riediger, Othman et al. 2009). 

Several studies have indicated an inverse correlation between the risk of cardiovascular diseases 

and the increased consumption of omega-3 fatty acids, such as eicosapentaenoic acid (EPA, C20:5 

n-3) and docosahexaenoic acid (DHA, C22:6 n-3), that are found mainly in fatty fish (e.g., salmon, 

trout, herring, sardines, and mackerel) (Lavie, Milani et al. 2009). The beneficial cardiovascular 

effects of dietary supplementation with omega-3 fatty acids include decreased arrhythmias, 

decreased triglycerides plasma concentrations, decreased blood pressure, and decreased platelet 

aggregation, all leading to reduced risk of cardiovascular mortality in patients with cardiovascular 

diseases (Harris, Miller et al. 2008). In addition, the protective effect of omega-3 fatty acids could 

also be explained by their ability to improve endothelium-dependent relaxation of the arteries by 

stimulating the formation of the endothelium vasoprotective factors NO and EDH, as well as 

reduction in endothelium-dependent contractile responses (Ribeiro, Oliveira et al. 2016). 

Since EPA:DHA 6:1 and 9:1 are more efficient than 1:1 (which is the only available prescribed 

drug) for endothelium-dependent relaxations in porcine coronary artery rings (Zgheel, Alhosin et 
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al. 2014), the EPA:DHA 6:1 formulation was selected for the present study and given at the dose 

of 500 mg/kg/d to rats, which is equivalent to 5.67 g/d for a 70 kg Human (Reagan-Shaw, Nihal et 

al. 2008). This dose is in line with reported clinical trials and meta-analysis, where doses range 

from 0.18 up to 10 g/d of various omega-3 products (Delgado-Lista, Perez-Martinez et al. 2012; 

Enns, Yeganeh et al. 2014).  

 

Ang II can be infused to mice or rats subcutaneously by Alzet osmotic mini pumps over a period 

of 4 weeks (Zimmerman, Lazartigues et al. 2004). Ang II doses of 0.7-1 mg/kg/day in mice and of 

0.3-10 mg/kg/day for rats can induce hypertension rapidly in 7-10 days or slowly in 4-8 weeks 

(Edgley, Kett et al. 2001). Rats develop cardiac and renal fibrosis as well as aortic and cardiac 

hypertrophy after two weeks of infusion (Huentelman, Grobe et al. 2005)..  

Ang II was infused at 0.4 mg/kg/day to male Wistar rats subcutaneously by Alzet osmotic mini 

pumps over a period of 4 weeks. Ang II is a multifunctional peptide hormone that regulates blood 

pressure, plasma volume, cardiac, renal and neuronal functions, and also controls thirst responses. 

This peptide is of central importance in hypertension and myocardial remodeling and is the 

principle effector molecule of the renin-angiotensin system (RAS) playing an important role in the 

regulation of arterial blood pressure (Zhuo and Li 2011). In the present study Ang II infusion 

induced a rapid increase in systolic blood pressure of rats within a couple of days that remained 

elevated throughout the study. The chronic intake of the EPA:DHA 6:1 formulation was able to 

partially but significantly prevent  the Ang II-induced increased systolic blood pressure. This result 

is in line with previously published studies reporting that omega-3 intake 3.3 to 7 g/d is associated 

with decreased blood pressure by 2.9 and 1.6 mm Hg among hypertensive patients (He 2009). 

Indeed, the recent meta-analysis by Miller et al. indicates that EPA+DHA provision is associated 

with reduced systolic blood pressure, whereas diastolic blood pressure is reduced for EPA+DHA 

provision exceeding 2 g/d (Miller, Van Elswyk et al. 2014).  

In our experimental model, we observed that the continuous infusion of 0.4 mg/kg/d of Ang II in 

rats induced endothelial dysfunction in secondary branch of the mesenteric artery that is 

characterized by reduced endothelium-dependent relaxing responses, involving mainly blunted 

EDH-mediated responses and to a lesser extent NO-mediated relaxations, and an increased 

formation of EDCFs. As a result, omega-3 prevented Ang II induced endothelial dysfunction as 
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indicated by a significant improvement of both components of the relaxation and a decreased in 

endothelium-dependent contractile response. The chronic oral intake of the optimized EPA:DHA 

6:1 significantly reduced Ang II induced over expression of eNOS, arginase-1, COX-1 and COX-

2 as well as prevented the down-regulation of SKCa  and Cx37. Supplementation with omega-3 fatty 

acids also significantly improved the endothelial function in Humans without affecting 

endothelium-independent dilation (Wang, Liang et al. 2012). Endothelial dysfunction has been 

associated with an impairment of endothelium-dependent relaxations involving a reduced 

bioavailability of NO in major CV diseases such as hypertension, atherosclerosis, chronic renal 

failure, and diabetes (Griendling and FitzGerald 2003; Rush, Denniss et al. 2005; Félétou and 

Vanhoutte 2006). The mechanism underlying endothelial dysfunction has been linked to increased 

oxidative stress which is associated with a reduced bioavailability of (NO), an alteration of the 

production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an 

impairment of endothelium-dependent hyperpolarization, these phenomena being able to 

contribute to endothelial dysfunction individually or in association. 

In the present study, infusion of Ang II in rats induced an increase in vascular oxidative stress, 

mainly through the AT1R-mediated overexpression and activation of NADPH oxidase, in the 

vascular wall, which, in turn, affects the endothelial function by reducing both NO and EDH 

mediated relaxations and an increased in the formation of EDCFs (Figure 23). Indeed, the increased 

formation of NADPH oxidase-derived superoxide anions most likely reduces the bioavailability of 

NO by chemical reaction leading to peroxynitrite formation, which, in turn, promotes the 

uncoupling of eNOS that increases further the oxidative stress (Förstermann 2010; Rochette, Zeller 

et al. 2014). Increased oxidative stress also impairs functioning of the Ca2+-activated K+ channels, 

SKCa and IKCa, resulting in an impaired electrical conduction and electrical signaling, leading to 

reduced EDH-mediated relaxation (Behringer, Shaw et al. 2013; Ellinsworth, Sandow et al. 2016).  

This result highlights the key role of the oxidative stress in the Ang II-induced endothelial 

dysfunction by reducing both EDH- and NO-mediated relaxations subsequent to the upregulation 

of NADPH oxidase subunits (p47phox and p22phox). The chronic oral intake of the optimized 

EPA:DHA 6:1 formulation significantly decreased the level of vascular oxidative stress, at least in 

part, by decreasing the expression of both the NADPH oxidase subunits p22phox and and p47phox 

and AT1R. Our results are well in line with clinical studies showing a decreased level of oxidative 
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vascular stress following omega-3 treatment in atherosclerotic patients (Eftekhari, Aliasghari et al. 

2013). 

 
 

 

Figure 23. Omega-3 EPA:DHA 6:1 prevents Ang II-induced endothelial dysfunction and hypertension in rats. 
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In the cardiovascular system, Ang II activates NADPH oxidase through AT1R activation which 

increases vascular oxidative stress that is strongly associated with the progression of cardiovascular 

disease (Manrique, Lastra et al. 2009). Several signaling pathways in response to Ang II are 

mediated by ROS (Mehta and Griendling 2007). Different enzymes have been involved in the 

increased arterial oxidative stress involving AT1R, NADPH oxidases, xanthine oxidases, COX-1 

and COX-2, cytochrome P450 monooxygenases, enzymes of the mitochondrial respiratory chain, 

and eNOS uncoupling. ROS (O2
●-) can  react with NO to form peroxynitrite (Koppenol, Moreno et 

al. 1992), leading to the oxidation of the eNOS cofactor tetrahydrobiopterin (BH4) and the 

subsequent uncoupling of eNOS thereby further promoting oxidative stress (Cai and Harrison 

2000). 

The chronic intake of the optimized EPA:DHA 6:1 formulation is associated with significantly 

increased plasma level of omega-3 fatty acids, mainly as EPA, DHA and the intermediate elongated 

metabolite of EPA, the docosapentaenoic acid (DPA), resulting in a decreased omega-6/omega-3 

ratio. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-

6/omega-3 ratio promote the pathogenesis of many diseases, including cardiovascular disease, 

cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 fatty 

acids (a low omega-6/omega-3 ratio) exert protective effects. 

The reduction of this ratio has been associated with a shift towards beneficial health effects of 

omega-3, including reduced cardiovascular and cancer risk (Simopoulos 2008). Human beings 

have  evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids of approximately 

1, whereas in Western diets this ratio is 10/1-22.5/1 (Simopoulos 2011). Western diets are 

excessive in omega-6 fatty acids and deficient in omega-3 fatty acids as compared with the diet on 

which human beings evolved (Simopoulos 2008). 

 

In the present study, chronic oral intake of the optimized EPA:DHA 6:1 formulation significantly 

decreases Ang II-induced over-expression of AT1R, COX-1 and COX-2. Omega-3 fatty acids have 

recognized anti-inflammatory actions in humans that may contribute to their beneficial cardiac 

effects (Wall, Ross et al. 2010). Omega-6 fatty acids can be converted into arachidonic acid and 
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then metabolized into the omega-6 eicosanoids. Consumption of omega-3 fatty acids increases 

EPA in the cell membrane. This PUFA competes with arachidonic acid for enzymatic conversion 

into its own metabolites, the omega-3 derived eicosanoids (Wall, Ross et al. 2010). 

Increased concentration and activity of Ang II is strongly associated with inflammation. Ang II has 

a key proinflammatory effect on the cardiovascular system by stimulating vascular damage, 

inducing adhesion molecule-1 expression, recruiting inflammatory cells, increasing cytokine 

expression and tissue repairing (Brasier, Recinos et al. 2002). The physiological effects of Ang II 

are mediated by Ang II receptor subtype 1 (AT1R), which is widely distributed in many organs. In 

a rat experimental model Ang II infusion caused hypertension accompanied by marked monocyte 

infiltration as well as VCAM-1 and MCP-1 expression in the microvessels wall or perivascular  

tissue (Cheng, Vapaatalo et al. 2005). In endothelial, VSMC and mononuclear cells, Ang II is 

associated with an increased expression of MCP-1, the main chemokine for 

monocyte/macrophages and of interleukin-8 (IL-8), which are potent chemoattractants and 

activators of neutrophils (Yadav, Saini et al. 2010). Ang II also increased IL-6 production in 

macrophages and vascular cells, and upregulated TNF-α and IL-6 gene expression (Libby, Ridker 

et al. 2002). ACE inhibitors and AT1 antagonists reduced the expression of inflammatory markers, 

adhesion molecules, and also cytokines (Mezzano, Ruiz-Ortega et al. 2001). Ang II activates 

vascular and inflammatory cells to secrete proinflammatory mediators that assist to recruit new 

mononuclear cells, and, hence, results in additional inflammatory response contributing to the 

progression of vascular damage. 

Independent of their effects on the metabolism of eicosanoids fish oils suppress pro-inflammatory 

cytokines and reduce expression of cell adhesion molecules in humans (Calder 2006). 
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Conclusions and perspective 

In conclusion, the present work has assessed the potency of optimized EPA:DHA 6:1 formulation 

to protect the endothelial function in vivo. The present findings shows that Ang II infusion is 

associated with the development of endothelial dysfunction in second branch mesenteric arteries, 

which affects markedly EDH-mediated component and also, to some extent, the NO-mediated 

component of relaxation. The Ang II-induced endothelial dysfunction involves a redox-sensitive 

mechanism implicating NADPH oxidase, COX-1 and COX-2. The chronic oral intake of the 

optimized EPA:DHA 6:1 formulation prevents Ang II-induced endothelial dysfunction and 

hypertension most likely by decreasing oxidative stress-mediated impairment of  both NO and 

EDH components as well as a reduction of endothelium-dependent contractile response. 

There are numerous reports that support an important role of omega-3 fatty acids in preventing 

endothelial dysfunction, hypertension and cardiovascular diseases. Further work is needed for the 

determination of active metabolites of omega-3 fatty acids other than resolvins, protectins, 

thromboxane A3, leukotriene 5 and lipoxins.  

Further studies are needed to determine the curative potential of the optimized EPA:DHA 6:1 

formulation in treatment of endothelial dysfunction and hypertension in Ang II-induced 

hypertensive models of rats (Figure 24). The impregnation of omega-3 fatty acids in vascular 

tissues is also important, which needs to be clarified. Furthermore, additional investigations are 

required to determine the role of the omega-3 purity and ratio to improve hypertension-related 

dysfunction of the vascular system including endothelial dysfunction and vascular remodeling.  

On the basis of vasoprotective results established by the current study a clinical study can be 

designed to determine the potential of EPA:DHA 6:1 to reduce cardiovascular risk factors in 

hypertensive patients (Figure 25). 
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Figure 24. Perspectives in animal models. 
Determination of active metabolites of omega-3 fatty acids, curative potential of the optimized EPA:DHA 6:1 
formulation, importance of the omega-3 purity and ratio and impregnation of omega-3 fatty acids in vascular tissues.  
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Figure 25. Clinical perspective. 
Determination of EPA:DHA 6:1 potential to reduce cardiovascular risk factors in hypertensive patients. 
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Hypertension artérielle 

L’hypertension artérielle est un problème de santé publique majeur car associé à des lésions 

hypertensives d’organes cibles et à une morbi-mortalité cardiovasculaire. L’hypertension artérielle 

est ainsi le facteur de risque principal pour un nombre de maladies cardiovasculaires dont la 

maladie coronarienne, l’insuffisance cardiaque, les maladies vasculaires périphériques, les accident 

vasculaires cérébraux et la néphropathie chronique (Sarnak, Levey et al. 2003). La prévalence de 

l’hypertension artérielle aux Etats-Unis est très élevée et continue d’augmenter, avec de plus un 

taux de stabilisation d’à peine 30 % chez les patients traités (Ong, Cheung et al. 2007). Après l’âge 

de 75 ans, environ 70 % des hommes et des femmes vont développer une hypertension artérielle 

(Chobanian, Bakris et al. 2003). Il a été montré que les traitements visant à bloquer le système 

rénine-angiotensine à divers niveaux peuvent limiter les lésions hypertensives aux organes cibles 

et diminuent la morbidité et la mortalité cardiovasculaires. Parmi ces traitements, les antagonistes 

des AT1R (ARA II ou sartans) et les inhibiteurs de l’enzyme de conversion de l’angiotensine (IEC) 

représentent entre 60 et 65 % de l’ensemble des traitements antihypertenseurs. 

Les acides gras polyinsaturés omega-3  

La recherche sur les produits naturels présente un fort intérêt du fait de plusieurs critères dont la 

non-couverture des besoins thérapeutiques, et la diversité remarquable des métabolites secondaires 

naturels au niveau à la fois des structures chimiques et des activités biologiques. Dans ce contexte, 

les effets indésirables associés aux molécules de synthèse et la diminution de l’acceptabilité des 

patients contribuent à augmenter l’intérêt pour les produits naturels. 

De nombreuses études expérimentales et cliniques ont montré que les acides gras omega-3 peuvent 

avoir une répercussion bénéfique sur le système cardiovasculaire, et plus particulièrement chez les 

patients souffrant de maladie coronarienne (Harris, Mozaffarian et al. 2009). Ainsi, l’American 

Heart Association recommande la prise quotidienne de 1 g des deux acides gras omega-3 EPA et 

DHA dans le cadre de la prévention primaire et secondaire des maladies cardiovasculaires, après 

un infarctus du myocarde, et pour la prévention des morts subites cardiovasculaires (Von Schacky 

and Harris 2007).  

Les acides gras omega-3 réduisent le taux plasmatique en triglycérides principalement en réduisant 

la disponibilité des acides gras pour la synthèse de triglycérides par diminution de la lipogenèse de 
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novo, augmentation de la bêta-oxydation des acides gras (Kusunoki, Kanatani et al. 2006), 

réduction de l’influx hépatique d’acides gars non-estérifiés, diminution des activités enzymatiques 

hépatiques de synthèse des triglycérides, et augmentation de la synthèse hépatique des 

phospholipides au dépend des triglycérides (Nakamura and Nara 2003). De plus, les acides gras 

omega-3 ont des propriétés anti-inflammatoires, et une corrélation négative a été montrée entre la 

consommation régulière de poisson ou d’huile de poisson et les taux circulants de protéine C-

réactive, d’interleukine 6, d’E-selectin, de sICAM-1, de TNF, de la forme soluble du récepteur à 

l’interferon alpha, et de la métalloprotéase matricielle 3 (He 2009). Les huiles de poisson inhibent 

la production des cytokines pro-inflammatoires et réduisent l’expression de molécules d’adhésion 

cellulaire (Calder 2006). Ces facteurs sont critiques dans le recrutement des leucocytes circulants 

sur l’endothélium vasculaire, un événement précoce clé dans la pathogenèse de l’athérosclérose.  

Les acides gras omega-3 entrent en compétition avec les acides gras omega-6 au niveau des 

cyclooxygénases et des lipoxygénases pour la synthèse des prostaglandines et des leucotriènes. 

Ainsi, les acides gras omega-3 modulent le métabolisme des prostaglandines en augmentant la 

synthèse de prostaglandine E3, un vasodilatateur et inhibiteur de l’agrégation plaquettaire, du 

thromboxane A3, de leucotriène B5 et en diminuant la synthèse de thromboxane A2, un puissant 

vasoconstricteur et inducteur de l’agrégation plaquettaire, et de leucotriène B4 (un inducteur de 

l’inflammation et la chimiotaxie et de l’adhérence des leucocytes). D’autres études ont aussi montré 

que la consommation élevée d’huile de poisson conduisait à une diminution du taux de plaquettes, 

de l’agrégation plaquettaire, de la concentration des métabolites du thromboxane, ainsi qu’à une 

augmentation du temps de saignement. Les effets hypotriglycéridémiants des acides gras omeag-3 

requièrent des doses d’EPA et DHA de 3 ou 4 g par jour. Dans les populations américaines, ces 

doses peuvent réduire le taux de triglycérides de l’ordre de 30 à 40 % (Harris, Ginsberg et al. 1997; 

Lavie, Milani et al. 2009). Cependant, la consommation quotidienne de 6 g d’EPA et DHA pendant 

2 ans par 59 patients n’a pas montré d’effet favorable sur l’évolution du diamètre d’artères 

coronaires athéromateuses (Woodman 2003). A l’inverse, plusieurs études ont montré que la 

consommation d’huile de poisson ou de poissons non frits était associée à une diminution de la 

prévalence de l’athérosclérose subclinique caractérisée par un changement significatif de 

l’épaisseur intima-media de l’artère carotide commune et du pourcentage de sténose, alors 

qu’aucun changement n’ont été observé pour la quantification du calcium dans l’artère coronaire 



 
 

- 132 - 
  

ou pour l’index de pression systolique (Von Schacky, Angerer et al. 1999). Le DHA est le 

précurseur d’un métabolite récemment décrit sous le nom de 10,17S docosatriène, qui est un 

membre de la famille des résolvines. Ces molécules ont d’abord été décrites comme relâchées par 

le cerveau en réponse à l’ischémie, et elles s’opposent à l’effet pro inflammatoire des infiltrats 

leucocytaires en bloquant l’activation de NF-κB et l’expression de la cyclooxygénase-2 induites 

par l’interleukine 1-bêta (Layé 2010). Les études précédentes de notre équipe de recherche ont 

montré que l’EPA et le DHA, les acides gars omega-3 majeurs, induisent des relaxations 

dépendantes de la concentration dans les anneaux d’artères coronaires de porc (Zgheel, Alhosin 

et al. 2014). La relaxation en réponse à l’EPA est légèrement mais significativement plus 

importante que celle en réponse au DHA (77.8±10.3 et 64.7±12.8 % à 0.4 % v/v, respectivement). 

Ensuite, la capacité de ratios optimisés d’omega-3 à induire la relaxation dépendante de 

l’endothélium a été déterminée, et les résultats indiquent que les ratios EPA:DHA de 6:1 et 9:1 

induisent des relaxations significativement plus importantes que celles en réponse aux ratios 3:1, 

1:1, 1:3, 1:6, et 1:9. De plus, la relaxation dépendante de l’endothélium obtenu en réponse à un 

produit ayant un degré de pureté en EPA:DHA élevé (694:121 mg/g) était significativement plus 

importante celle obtenu en réponse à un produit ayant un degré de pureté plus faible (352:65 mg/g). 

Ainsi, les effets bénéfiques des omega-3 dépendent fortement de la dose consommée, de la 

composition et de la pureté des omega-3.   

Effets bénéfiques des acides gras omega-3 sur la fonction endothéliale 

Les acides gras omega-3 de l’alimentation présentent divers effets anti-inflammatoire et de 

modulation du système immunitaire qui pourrait jouer un rôle dans le ralentissement du  

développement de l’athérosclérose et de l’apparition de ses signes cliniques comme l’infarctus du 

myocarde, la mort subite et l’accident vasculaire cérébral (Mori and Beilin 2004). Les acides gras 

omega-3 qui semblent les plus efficaces dans ce cadre sont les polyinsaturés à longues chaines des 

huiles d’origine marine, c’est-à-dire l’acide ecosapentaénoïque (EPA) et l’acide 

docosahexaénoïque (DHA) (Riediger, Othman et al. 2009). Plusieurs études ont montré une 

corrélation inverse entre le risque de maladies cardiovasculaires et une augmentation de la 

consommation d’acides gras omega-3, comme l’EPA et le DHA, qui sont principalement retrouvés 

dans les poissons gras (saumon, truite, hareng, sardines, maquereau, etc.) (Lavie, Milani et al. 

2009). Les effets bénéfiques d’une augmentation de la consommation alimentaire en acides gras 
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omega-3 sur le système cardiovasculaire incluent une baisse des arythmies, de la triglycéridémie, 

de la pression artérielle et de l’agrégation plaquettaire, l’ensemble de ces effets résulte en une baisse 

de risque de mortalité cardiovasculaire chez les patients atteints de maladies cardiovasculaires 

(Harris, Miller et al. 2008). De plus, les effets protecteurs des omega-3 peuvent être attribués à leur 

capacité à améliorer les relaxation dépendante de l’endothélium dans les artères en stimulant la 

formation endothéliale des facteurs vasoprotecteurs NO et EDH, ainsi qu’en réduisant les réponses 

contractiles dépendantes de l’endothélium (Ribeiro, Oliveira et al. 2016). 

Du fait que les formulations EPA:DHA 6:1 et 9:1 sont plus efficaces que le ratio 1:1 (qui 

correspond à la seule spécialité avec AMM sur le marché) pour l’induction des relaxations 

dépendantes de l’endothélium dans des anneaux d’artère coronaire de porc (Zgheel, Alhosin et al. 

2014), la formulation EPA:DHA 6:1 a été retenue pour l’étude présente et donnée à des rats à la 

dose de 500 mg/kg/j, ce qui équivaut à 5,67 g/j for pour un homme de 70 kg (Reagan-Shaw, Nihal 

et al. 2008). Cette dose est cohérente avec les études cliniques et les méta-analyses, où les doses 

rapportées vont de 0,18 à 10 g/j sous forme de divers produits à base omega-3 (Delgado-Lista, 

Perez-Martinez et al. 2012; Enns, Yeganeh et al. 2014).  

 

L’angiotensine II (Ang II) peut être infusé à des rats ou des souris grâce à des mini pompes 

osmotiques sur une durée allant jusqu’à 4 semaines (Zimmerman, Lazartigues et al. 2004). 

L’infusion d’Ang II  à la dose de 0,7-1 mg/kg/j chez la souris ou de 0,3-10 mg/kg/j chez le rat va 

induire une hypertension de facon rapide en 7 à 10 jours ou de façon lente en 4 à 8 semaines 

(Edgley, Kett et al. 2001). Les rats recevant l’Ang II en infusion vont développer en 2 semaines  

des fibroses rénales et cardiaques ainsi qu’une hypertrophie aortique et cardiaque (Huentelman, 

Grobe et al. 2005).  

 

Dans notre étude, l’Ang II a été infusée pendant 4 semaines à la dose de 0,4 mg/kg/j à des rats 

Wistar males à l’aide de mini-pompes osmotiques Azlet. L’ang II est une hormone peptidique 

multifonctionnelle qui régule la pression sanguine, le volume plasmatique, les fonctions 

cardiaques, rénales et neuronales, et qui contrôle aussi la soif. Ce peptide joue un rôle central dans 

le développement de l’hypertension artérielle et dans le remodelage cardiaque, et il est l’effecteur 
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principal du système rénine-angiotensine qui joue un rôle majeur dans la régulation de la tension 

artérielle (Zhuo and Li 2011). Dans la présente étude, l’infusion d’Ang II a induit une augmentation 

rapide de la pression artérielle chez les rats en quelques jours et qui resté élevée tout au long de 

l’étude. La prise quotidienne de la formulation EPA:DHA 6:1 a permis de prévenir partiellement 

mais significativement l’augmentation de tension artérielle induite par l’Ang II. Ce résultats est en 

accord avec les études publiées préalablement qui montraient que la consommation d’acides gras 

omega-3 à des doses de 3,3 à 7 g/j était associée à une diminution de la tension artérielle de 2,9 et 

1,6 mmHg chez les patients hypertendus (He 2009). Ainsi, la méta-analyse de Miller et al. rapporte 

que la consommation de EPA+DHA est toujours associée à une diminution de la pression sanguine 

systolique, alors que la pression sanguine diastolique est diminuée significativement pour des 

consommations d’EPA+DHA supérieures à 2 g/j (Miller, Van Elswyk et al. 2014).  

Dans notre modèle expérimental, nous avons observé que l’infusion d’Ang II à la dose de 0,4 

mg/kg/j induisait l’apparition dans les branches secondaires de l’artère mésentérique d’une 

dysfonction endothéliale caractérisée par une diminution des réponses vasorelaxantes dépendantes 

de l’endothélium, impliquant principalement une réduction de la composante EDH et dans une 

moindre mesure de la composante NO, et d’une augmentation de la formation des EDCFs. La 

consommation chronique de la formulation EPA:DHA 6:1 a eu pour effet de prévenir la 

dysfonction endothéliale induite par l’Ang II comme l’indique l’amélioration significative des deux 

composantes de la relaxation et la réduction des réponses contractiles dépendantes de 

l’endothélium. La consommation chronique de la formulation EPA:DHA 6:1 a significativement 

diminué la surexpression induite par l’Ang II de la eNOS, de l’arginase-1, des COX-1 et COX-2, 

et a prévenu la sous-expression de SKCa  et Cx37. La supplémentation alimentaire en acides gras 

omega-3 améliore aussi la fonction endothéliale chez l’homme, sans pour autant affecter les 

vasodilatations indépendantes de l’endothélium (Wang, Liang et al. 2012). La dysfonction 

endothéliale a été associée à une atteinte des relaxations dépendantes de l’endothélium impliquant 

une réduction de la biodisponibilité du NO dans la plupart des maladies cardiovasculaires dont 

l’hypertension, l’athérosclérose, la néphropathie chronique ou le diabète (Griendling and 

FitzGerald 2003; Rush, Denniss et al. 2005; Félétou and Vanhoutte 2006). Le mécanisme sous-

jacent à la dysfonction endothéliale a été lié à une augmentation du stress oxydant vasculaire lui-

même associé à une diminution de la biodisponibilité du NO, une altération de la production des 
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prostanoïdes tels que la prostacycline, le thrombaxane A2 ou les isoprostanes, une diminution de 

la composante EDH de relaxation ainsi qu’à une augmentation de formation d’endotheline-1, 

l’ensemble de ces phénomènes pouvant contribuer à la dysfonction endothéliale de manière isolée 

ou ensemble.  

Dans la présente étude, l’infusion d’Ang II est associée à une augmentation du stress oxydant 

vasculaire chez les rats, principalement par la surexpression et l’activation de la NADPH oxydase 

induite par AT1R dans la paroi vasculaire, ce qui va à son tour affecter la fonction endothéliale en 

réduisant les deux composantes de la relaxation NO et EDH, et en augmentant la formation 

d’EDCFs (Figure 23). En effet, l’augmentation de la formation par la NADPH oxydase d’anions 

superoxyde diminue probablement la biodisponibilité du NO par la réaction chimique  produisant 

des peroxynitrites, qui peuvent à leur tour favoriser le découplage de la eNOS ce qui augmente 

encore le stress oxydant vasculaire (Förstermann 2010; Rochette, Zeller et al. 2014). 

L’augmentation du stress oxydant vasculaire va aussi altérer le fonctionnement des canaux 

potassiques dépendants du calcium SKCa and IKCa, résultant dans une altération de la conductivité 

électrique et des voies de signalisation électriques, conduisant à la réduction de la composante EDH 

de la relaxation (Behringer, Shaw et al. 2013; Ellinsworth, Sandow et al. 2016).  

Ces résultats soulignent le rôle majeur du stress oxydant dans la dysfonction endothéliale induite 

par l’Ang II via la diminution des composantes NO et EDH de la relaxation qui suivent la 

surexpression des sous-unités de la NADPH oxydase (p47phox and p22phox). La consommation 

chronique de la formulation EPA:DHA 6:1 a significativement diminué le niveau du stress oxydant 

vasculaire, du moins en partie, en prévenant  la surexpression de la NADPH oxydase et de AT1R. 

Ces résultats sont en accord avec ceux d’étude cliniques qui montrent une diminution du stress 

oxydant vasculaire chez des patients athérosclérotiques recevant des omega-3 (Eftekhari, 

Aliasghari et al. 2013).  

Dans le système cardiovasculaire, l’Ang II active la NADPH oxydase via l’activation de AT1R, ce 

qui augmente le stress oxydant vasculaire qui est fortement associé au développement des maladies 

cardiovasculaires (Manrique, Lastra et al. 2009). Plusieurs voies de signalisation en réponse à 

l’Ang II impliquent ainsi des espèces réactives de l’oxygène (ROS) (Mehta and Griendling 2007). 

Diverses enzymes ont été impliquées dans l’augmentation du stress oxydant vasculaire tels que 
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AT1R, la NADPH oxydase, la xanthine oxydase, les COX-1 et COX-2, le cytochrome P450, les 

enzymes de la chaine respiratoire mitochondriale, et la eNOS découplée. Les ROS (O2
●-) peuvent 

réagir chimiquement avec le NO pour former des peroxynitrites (Koppenol, Moreno et al. 1992), 

ce qui conduit à l’oxydation du cofacteur de la eNOS, la tétrahydrobioptérine (BH4), et 

subséquemment au découplage de la eNOS augmentant à son tour le stress oxydant (Cai and 

Harrison 2000). 

La consommation chronique de la formulation EPA:DHA 6:1 est associée à une augmentation 

significative des proportions plasmatiques en acides gras omega-3, principalement sous forme 

d’EPA, de DHA et de l’intermédiaire métabolique allongé de l’EPA, l’acide docosapenténoïque 

(DPA), conduisant à la diminution significative du ratio omega-6/omega-3. Des quantités 

excessives d’acides gras polyinsaturés omega-6 ainsi qu’un ratio omega-6/omega-3 élevé 

promeuvent la genèse de nombreuses pathologies, dont les maladies cardiovasculaires, les cancers, 

les maladies inflammatoires et auto-immunes, alors qu’à l’inverse des niveaux importants en 

omega-3 (et un faible ratio omega-6/omega-3) ont des effets protecteurs. La réduction de ce rapport 

omega-6/omega-3 a été associée à un basculement vers les effets bénéfiques pour la santé des 

omega-3 (Simopoulos 2008). Les êtres humains ont évolués avec un régime alimentaire ayant un 

rapport entre acides gras omega-6 etomega-3 approchant de 1/1, alors que l’alimentation 

occidentale a un rapport de l’ordre de 10/1-22.5/1 (Simopoulos 2011). De ce fait, l’alimentation 

occidentale est trop riche en omega-6 et présente un déficit en omega-3 (Simopoulos 2008). 

Dans la présente étude, la consommation chronique de la formulation EPA:DHA 6:1 a 

significativement diminué la surexpression induite par l’Ang II de AT1R, de COX-1 et de COX-2. 

Les acides gras omega-3 ont des effets antiinflammatoires reconnus chez l’homme qui pourrait 

contribuer à leur effets bénéfiques vis-à-vis du système cardiovasculaire (Wall, Ross et al. 2010). 

Les acides gras omega-6 sont convertis en acide arachidonique qui est lui-même métabolisé en 

eicosanoïdes de la série omega-6. La consommation des omega-3 augmente le taux d’EPA dans 

les membranes cellulaires, où il va entrer en compétition avec l’acide arachidonique pour la 

conversion en ses propres métabolites, les eicosanoïdes de la série omega-3 (Wall, Ross et al. 

2010). 

L’augmentation de la concentration et de l’activité de l’Ang II est fortement associée à 

l’inflammation. L’Ang II exerce un effet pro-inflammatoire sur le système cardiovasculaire qui va 
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stimuler les dommages vasculaires, induire l’expression de molécules d’adhésion, recruter des 

cellules inflammatoires, et augmenter l’expression de cytokines (Brasier, Recinos et al. 2002). 

Dans un modèle expérimental de rat, l’infusion d’Ang II induit une hypertension associée à une 

forte infiltration monocytaire et une expression de VCAM-1 et MCP-1 pro-inflammatoire dans la 

paroi des microvaisseaux ou dans l’espace périvasculaire (Cheng, Vapaatalo et al. 2005). Dans les 

cellules endothéliales, les cellules musculaires lisses vasculaires et les mononucléaires, l’Ang II 

induit une augmentation de l’expression de MCP-1, la principal chimiokine recrutant les 

monocytes/macrophages, et d’interleukine-8, un puissant chimioattractant et activateur des 

neutrophiles (Yadav, Saini et al. 2010). L’Ang II augmente aussi la production d’interleukine-6 

dans les macrophages et les cellules vasculaires, et régule positivement l’expression des gènes du 

TNF-α et de l’interleukine-6 (Libby, Ridker et al. 2002). Les inhibiteurs de l’enzyme de conversion 

(IEC) et les antagonistes du receptuer AT1R (ARAs) réduisent l’expression des marqueurs 

inflammatoires, des molécules d’adhésion et des cytokines (Mezzano, Ruiz-Ortega et al. 2001). 

L’Ang II active les cellules vasculaires et inflammatoires pour induire la sécrétion des médiateurs 

pro-inflammatoires qui vont recruter de nouveau mononucléaire, ce qui va encore augmenter la 

réponse inflammatoire contribuant à la progression de la lésion vasculaire. Les huiles de poisson 

peuvent limiter les cytokines pro-inflammatoires et réduire l’expression des molécules d’adhésion 

cellulaires chez l’homme de façon indépendante de leurs effets sur le métabolisme des eicosanoïdes 

(Calder 2006). 

 

Conclusions et perspective 

En conclusion, la présente étude a évalué le potentiel d’une formulation optimisée EPA:DHA 6:1 

à protéger la fonction endothéliale in vivo. Les résultats obtenus montrent que l’infusion d’Ang II 

est associée avec le développement dans les branches secondaires de l’artère mésentérique d’une 

dysfonction endothéliale affectant fortement la composante EDH de la relaxation ainsi que plus 

légèrement la composante NO. La dysfonction endothéliale induite par l’Ang II passe par un 

mécanisme redox-sensible impliquant la  NADPH oxydase, COX-1 et COX-2. La consommation 

chronique de la formulation EPA:DHA 6:1 a prévenu la dysfonction endothéliale et l’hypertension 

induite par l’Ang II fort probablement en diminuant le stress oxydant conduisant à l’atteinte des 
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composantes NO et EDH de la relaxation et à l’augmentation des réponses contractile dépendantes 

de l’endothélium. 

De nombreuses études supportent le rôle clé des acides gras omega-3 dans la prévention de la 

dysfonction endothéliale, de l’hypertension et des maladies cardiovasculaires. De plus amples 

études sont nécessaires pour déterminer les métabolites actifs des acides gras omega-3 en sus des 

resolvines, protectines, thromboxane A3, leucotriène 5 and lipoxines. Il serait aussi nécessaire de 

déterminer le degré d’imprégnation des tissus vasculaires en omega-3.  

De même, des études seront nécessaires pour déterminer le potentiel curative de la formulation 

EPA:DHA 6:1 vis-à-vis de la dysfonction endothéliale et de l’hypertension dans des modèles  

d’hypertension induite par l’Ang II chez le rat (Figure 24).  

Enfin, sur la base des effets vasoprotecteurs mis en évidence par la présente étude, il serait 

intéressant de proposer une étude clinique visant à démontrer le potentiel de la formulation 

EPA:DHA 6:1 à réduire la dysfonction endothéliale et les facteurs de risques cardiovasculaires 

chez les patients hypertendus (Figure 25). 
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ABSTRACT  

Background: Pulmonary arterial hypertension (PAH) is characterized elevated pulmonary arterial 

resistance leading to right heart failure. Proliferation of pulmonary arterial smooth muscle cells, 

endothelial dysfunction, oxidative stress and inflammation promote the development of pulmonary 

hypertension. Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and 

docosahexaenoic acids (DHA) have been shown to protect the cardiovascular system and reduce 

inflammation and oxidative stress. The possibility that EPA:DHA 6:1 a superior omega-3 formulation 

prevents pulmonary arterial and right ventricular remodeling and dysfunction was evaluated an 

experimental model PAH.  

Methods: Male Wistar rats received 500 mg/kg/day of either EPA:DHA 6:1 or corn oil by daily 

gavage. After one week, PAH was induced by a single subcutaneous injection of monocrotaline 

(MCT, 60 mg/kg). After three weeks, cardiac function and morphology were assessed by 

echocardiography, pulmonary artery reactivity using organ chambers, vascular morphometry by 

histology, proteins level by immunofluorescence and western blot, and oxidative stress using 

dihydroethidium. 

Results: MCT treatment was associated in the pulmonary artery with a significant increased mean 

pulmonary arterial pressure (mPAP), vascular resistance, and blunted endothelium-dependent 

relaxations to acetylcholine, in pulmonary arterioles with increased wall thickness and oxidative stress, 

and in the heart with increased RV systolic pressure (RVSP), RV hypertrophy and a reduced cardiac 

output (CO). Compared to the MCT group, the EPA:DHA 6:1 treatment prevented the MCT-induced 

changes in the morphology and pressure in the pulmonary artery and the RV, and also prevented the 

decreased CO. EPA:DHA 6:1 treatment also reduced the MCT-induced pulmonary artery endothelial 

dysfunction, and the level of oxidative stress in pulmonary arterioles. The MCT-induced vascular 

oxidative stress was significantly reduced by N-acetylcysteine, VAS-2870, NG-nitro-L-arginine and 

indomethacin. The protective effect of EPA:DHA 6:1 was associated with the prevention of the MCT-

induced upregulation of eNOS, angiotensin type 1 receptors, endothelin A and B receptors, COX-1 

and COX-2, and the NADPH oxidase subunits (p22phox and p47phox) in pulmonary arterioles, and a 

reduced pulmonary infiltration of macrophages and lymphocytes. 

Conclusion: The present findings indicate that the EPA:DHA 6:1 formulation has a vascular effect in 

PAH by preventing RV failure, pulmonary arterioles remodeling and dysfunction, and inflammation in 

lungs, most likely by preventing the NADPH oxidase-, COX- and uncoupled eNOS-mediated vascular 

oxidative stress. 

KEY WORDS: Omega-3 . pulmonary vascular remodeling . right ventricular hypertrophy . 

inflammation  .  oxidative stress  



3 

 

Introduction 

Pulmonary arterial hypertension (PAH) is defined by a mean pulmonary arterial pressure 

(mPAP) ≥ 25 mmHg at rest (1). It is a chronic and progressive lung disease characterized by 

pronounced small pulmonary artery remodeling leading to chronic elevation of pulmonary 

vascular resistance and subsequence right ventricular failure (1-3). It is also characterized by 

an endothelial dysfunction involving decreased NO and thrombosis (4). Moreover, oxidative 

stress and inflammatory responses have been shown to play a critical role in both human and 

experimental PAH (5-7). Indeed, pro-inflammatory cytokines including interleukin (IL)-1β 

and IL-6 and intense lung perivascular infiltrates of macrophages and lymphocytes are 

observed in human idiopathic PAH (8, 9) and monocrotaline (MCT)-induced PAH (5, 10). 

High levels of oxidative stress are observed  in pulmonary vascular lesions of patients with 

severe PAH as a consequence of tissue hypoxia (11), ischemia (12) and possible also 

involving of inflammatory response (13, 14).  

Several studies have reported that long chain polyunsaturated omega-3 fatty acids including 

eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acids (DHA, 22:6n-3) have a 

beneficial effect on the cardiovascular system (15-17). Their potential protective effects 

include the antioxidant, anti-inflammatory, anti-proliferative and the endothelial formation of 

NO, a vasoprotective factor (18-22). Indeed EPA:DHA 6:1 a superior oméga-3 formulation 

caused pronounced endothelium-dependent relaxations of porcine coronary artery rings, and 

increased the endothelial formation of NO subsequent to the redox-sensitive activation of the 

PI3-kinase/Akt pathway leading to the phosphorylation of eNOS at Ser 1177 (15, 22).  

Therefore, the aim of the present study was to determine the ability of EPA:DHA 6:1 to 

prevent the development of PAH using MCT-induced PAH in rats. To test this hypothesis, we 

investigated the chronic efficacy of oral EPA:DHA 6:1 treatment in MCT-treated rats, and, if 

so to characterized the underling mechanism. The MCT-induced PAH is a well-established 

experimental model of PAH causing similar morphologic damage as that observed in humans 

with idiopathic PAH (23, 24). The MCT-induced PAH is associated with endothelial cell 

injury followed by an inflammatory response and vascular oxidative stress (25, 26).  
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Materials and methods 

Animals 

Experiments were conducted according to the European Union regulations (Directive 86/609 

EEC) for animal experiments, and complied with our institution's guidelines for animal care 

and handling. This study was approved by the Strasbourg Regional Committee of Ethics in 

Animal Experimentation and with the French law for the protection of animals.  

The monocrotaline (MCT) of pulmonary arterial hypertension  

Adult male Wistar rats (200 to 220 g) were purchased from Janvier Labs (Le Genest-Saint-

Isle, France) and maintained in a temperature-controlled room with a 12:12 light-dark cycle. 

Rats were randomly divided into 4 groups: control group (n = 7), EPA:DHA 6:1 group (n = 

7), MCT group (n = 13) and MCT + EPA:DHA 6:1 group (n = 13). Rats received daily by 

oral intake gavage 500 mg/kg/day of either EPA:DHA 6:1 (Pivotal Therapeutics, Inc Wood-

bridge, ON, Canada) or corn oil as control. One week after the beginning of gavage, rats 

received a single subcutaneous injection of either an isotonic saline solution (control groups) 

or MCT (60 mg.kg-1). The pyrrolizidine toxic alkaloid MCT (Sigma Aldrich, Saint-Quentin 

Fallavier, France) was dissolved in 1 N HCl and neutralized to pH 7.4 with 1 N NaOH. 

Thereafter, the oral intake of either corn-oil or EPA:DHA 6:1 was continued for 3 weeks. 

Body weight was measured weekly to adjust the dose accordingly.  

Echocardiographic and hemodynamic studies 

Three weeks after MCT-injection, transthoracic two-dimensional, M-mode, and Doppler 

pulse wave images were obtained in rats anesthetized with sodium pentobarbital (50 mg/kg 

ip) to evaluate the progression of PAH. Both long- and short-axis views at the papillary 

muscle level and apical-4 chamber views were done with a Sonos 5500 (Philips, USA) 

equipped with 12-MHz sectorial transducer.  

M-mode measurements 

Pulmonary artery diameter is obtained in the parasternal long-axis. The left ventricular (LV) 

and right ventricular (RV) end-diastolic and end-systolic diameters were measured in the 

parasternal short axis view. The fractional area change (FAC) for the RV was measured at the 

apical 4-chamber view and calculated as [(end-diastolic - end-systolic area)/end-diastolic 
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area] (27). Cardiac output and stroke volume were obtained from the B-mode long axis 

according to Simpson’s method (28). 

Doppler imaging  

Pulse-wave Doppler of pulmonary outflow was recorded in the parasternal long-axis view at 

pulmonary valve leaflets. In addition, to characterize the pulmonary outflow Doppler 

envelope, the pulmonary artery acceleration time (PAAT) and the velocity time integral (VTI) 

were measured. The VTI was obtained by tracing the outer edge of the pulmonary outflow 

Doppler profile. PAAT was measured from the time of onset of systolic flow to peak 

pulmonary outflow velocity. The tricuspid valve was used to determine the tricuspid 

regurgitation velocity (TR) with color flow and pulsed-wave Doppler in the apical 4-chamber 

view so that the tricuspid and mitral valves could be clearly visualized. If TR was observed, 

the transducer was aligned to achieve the maximal peak velocity. The RV systolic pressure 

was calculated using the peak TR velocity (Vmax) in the modified Bernoulli (RVSP = 4 × 

Vmax2) (29, 30). The pulmonary vascular resistance was calculated as [PVR = Vmax 

(m/s)/VTI (cm)] of flow wave of pulmonary artery. Right atrial area from the 4-chamber 

apical view and the inferior vena cava diameter and collapsibility were measured. All 

measurements and calculated indexes are presented as the average of three cardiac cycles.  

Hemodynamic Measurements and Tissue Preparation  

Following echocardiography, the mean pulmonary arterial pressure (mPAP) was monitored 

with a heparinized saline catheter inserted into the RV through the jugular vein and placed in 

the lumen of the pulmonary artery. The systemic arterial blood pressure was monitored with a 

pressure catheter inserted into the femoral artery, and steady-state hemodynamic was recorded 

using a blood pressure transducer (EMKA Technologie, Paris, France).  

Subsequent to hemodynamic measurements, rats were euthanized and the hearts and lungs 

were isolated, the left lungs lobe and some group of hearts were in fixated in 4% 

paraformaldehyde for 48 h for morphology study. The RV and right lungs were embedded in 

Tissue-Tek® O.C.T. and snap-frozen on liquid nitrogen and quantitative as 

immunofluorescence and Western blot analysis. 
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Assessment of right ventricular hypertrophy and remodeling  

Subsequent to hemodynamic measurements, rats were euthanized and the hearts were isolated 

to separate the right ventricle (RV) wall from the left ventricle wall and the septum (LV + S) 

and then weighed. The RV hypertrophy was assessed by the weight ratio of RV to LV plus 

the septum [RV/LV + S] as a Fulton’s index (Mam et al. 2010). Cardiomyocytes cross-

sectional area and interstitial collagen content were determined in the RV and LV to 

determine cardiac ventricle tissue remodeling. Four μm sections of heart were stained with 

hematoxylin and eosin (H-E) or Gomori’s trichrome to assess fibrosis. 50 cardiomyocytes in 

each ventricle per rat were determined on transversely cut myocardial.  

Assessment of pulmonary arteriolar wall thickness  

The left lung lobe from each rat was isolated, harvested and perfused via the trachea with a 

4% paraformaldehyde solution, and then immersed in the fixative solution for 48 h. Following 

dehydration, lungs were embedded in paraffin blocks and cut into 4 μm thick sections. Lungs 

sections were stained with H-E for morphology analysis (Olympus camera and microscope). 

The images of terminal arterioles were captured with magnification 20X and measured using 

ImageJ Software. Pulmonary vascular remodeling was evaluated by determining the 

percentage wall thickness (%WT) in H-E stained sections and wall areas were measured in 

smooth muscle α-actin-stained sections (% WA). A minimum of 16 arterioles of comparable 

size (< 50 μm) per lung sections were examined for each group. The percent WT of 

pulmonary arterioles was calculated as follows: % WT = [(2 x medial thickness/external 

diameter) x 100] and the percent wall area, %WA = [(vessel wall area /vessel lumen ratio) x 

100].  

Immunohistochemistry  

The antibodies against smooth muscle α-actin (mouse monoclonal, 1:20000; Santa Cruz) to 

assess the degree of muscularization of small peripheral pulmonary arterioles, CD68 (mouse 

monoclonal [ED1], 1:1000; Abcam) for macrophages and CD3 (rabbit monoclonal [SP7], 

1:100; Abcam) for lymphocytes staining were used for this study. Microwave antigen 

retrieval (10 mM citrate buffer, pH 6.0) of 4 μm paraffin sections was followed by incubation 

in blocking buffer. Endogeneous peroxidases were blocked (3% H2O2 for 10 min) before 

incubation with a primary antibody overnight at 4°C. Thereafter, sections were incubated with 



7 

 

a secondary biotinylated antibody for 2h, and then streptavidin-biotin-peroxidase complex 

linked to HRP (Vectastain Elite ABC kit, Vector Laboratories, AbCys, Paris, France) for 30 

min. VIP peroxidase substrate kit (Vector Laboratories) was used as chromogen. Sections 

were counterstained with methyl green, air-dried and cover slipped with Eukitt (Labonord, 

Templemars, France). Ten photographs were taken from each lung sample, and the fraction 

area occupied by the macrophages and the number of lymphocytes was evaluated from each 

photograph using the ImageJ software (National Institutes of Health, http://rsweb.nih.gov/ij/).  

Immunofluorescence studies 

Right lung lobes were embedded in Tissue-Tek® O.C.T. Compound (Sakura Finetek, 

Villeneuve d’Ascq, France), frozen in liquid nitrogen bath and cryosectioned at 14 μm.  Lung 

sections were first fixed with 4% paraformaldehyde, washed and treated with 5% bovine 

serum albumin in PBS containing 0.1% Triton X-100 for 1 h at room temperature to block 

non-specific binding. Lung sections were then incubated overnight at 4°C with an antibody 

directed against either eNOS (mousse monoclonal, 1/1000, Santa Cruz), angiotensin II type 1 

receptor (rabbit polyclonal AT-1, 1/500; Santa Cruz), endothelin-1 type A and B receptors 

(rabbit polyclonal ETA, ETB, 1/1000; Abcam), cyclooxygenase (rabbit monoclonal COX-1 

and COX-2, 1/1000, Abcam) or the NADPH oxidase subunits (p22phox and p47phox, 1/500, 

Santa Cruz). Sections were then washed with PBS, incubated with the secondary antibody 

(1/400, immunoglobulin G coupled to Alexa 488- or 633) for 2h at room temperature in the 

dark before being washed with PBS and mounted in Dako fluorescence mounting medium 

(Dako France SAS, Les Ulis, France) and cover-slipped. All samples for immunofluorescence 

studies were observed using a confocal laser-scanning microscope (Leica SP2 UV DM IRBE; 

Leica, Heidelberg, Germany) with a 20X magnification lens. Quantification of fluorescence 

levels was performed using the ImageJ software. 

Determination of vascular oxidative stress  

The redox-sensitive fluorescent dye dihydroethidium (DHE, 2.5 μM) was applied onto 25 μm 

unfixed lung cryosections for 30 min at 37°C in a light protected humidified chamber to 

determine the in situ formation of ROS. To characterize the source of ROS, sections were 

incubated with either N-acetylcysteine (NAC, antioxidant 1 mM,), VAS-2870 (VAS, NADPH 

oxidase inhibitor, 10 μM), N-nitro-L-arginine (L-NA, NO synthase inhibitor, 300 μM), 

indomethacin (Indo, cyclooxygenase inhibitor, 10 μM), or MRK (inhibitors of the 
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mitochondrial respiration chain ( myxothiazol, 0.5 μM + rotenone, 1 μM + potassium cyanide 

(KCN), 1 μM) for 30 min at 37°C before DHE staining. Sections were then washed three 

times, mounted in DAKO and cover-slipped. The level of fluorescence in each section was 

examined under a confocal laser-scanning microscope (Leica SP2 UV DM IRBE; Leica, 

Heidelberg, Germany) with a 20X magnification lens. Quantification of fluorescence levels 

was performed using the ImageJ software.  

Evaluation of O2- and NO levels  

The levels of NO and O2
- in lungs was determined by electron paramagnetic resonance (EPR) 

in frozen tissues at liquid nitrogen temperature. 

Nitric oxide (NO) determination 

Lung samples were incubated for 30 min in Krebs-Hepes buffer containing bovine serum 

albumin (20.5 g/L), CaCl2 (3 mM), and L-arginine (0.8 mM). NaDETC (3.6 mg) (DETC: 

diethyldithiocarbamate) and FeSO4, 7H2O (2.55 mg) were separately dissolved under nitrogen 

gas bubbling in 10-mL volumes of ice-cold Krebs-Hepes buffer. These compounds were 

rapidly mixed to obtain a pale yellow-brown opalescent colloid Fe(DETC)2 solution (0.4 

mM), which was used immediately. The colloid Fe(DETC)2 solution was added to the 

incubation solution of lungs for 45 min at 37°C. The level of NO was determined using a 

table-top x-band spectrometer Miniscope (Magnettech, MS200, Berlin, Germany). The 

quantification of the signal is based on the mean of the height (amplitude) of the three signals. 

Values are expressed in signal amplitude (amplitude, arbitrary units).  

Superoxide anion (O2-) 

Lung samples were allowed to equilibrate in deferoxamine-chelated Krebs-Hepes solution 

containing 1 hydroxy-3 methoxycarbonyl 2,2,5,5-tetramethylpyrrolidin (CMH, Noxygen, 

Germany,500 μM), deferoxamine (25 μM), and DETC (5 μM) under constant temperature 

(37°C) for 1 h. The reaction was stopped by freezing the samples in liquid nitrogen before 

EPR spectroscopy analysis. Values were expressed as arbitrary units per milligram weight of 

dried tissue (A/Wd). 



9 

 

Vascular reactivity studies 

Vascular reactivity studies are performed in main pulmonary artery and secondary mesenteric 

artery rings. Briefly, the arteries were excised, carefully cleaned of connective tissue in Krebs 

bicarbonate solution and cut into rings (3 mm length). Rings were suspended in organ 

chambers containing oxygenated (95% O2; 5% CO2) Krebs bicarbonate solution (mM: NaCl 

119, KCl 4.7, KH2PO4 1.18, MgSO4 1.18, CaCl2 1.25, NaHCO3 25, and D-glucose 11, pH 7.4 

at37°C) for the determination of changes in isometric tension. After an equilibration period, 

rings were subjected to functional test before construction of either a concentration-

contraction curve to phenylephrine, or a concentration-relaxation curve to acetylcholine on 

rings precontracted with phenylephrine (10 μM). The concentration-response curves were 

constructed both in absence or presence of an eNOS inhibitor (L-NA, 300 μM) to assess the 

role of the basal endothelial NO formation. 

Statistical analysis 

All values are expressed as the mean ± SEM of n different rats. Statistical analysis  was 

performed using either a one-way or a two-way analysis of variance test (ANOVA), followed 

by Bonferroni’s post-hoc test as appropriate using GraphPad Prism software (version 5.04 for 

Windows, GraphPad software, Inc., San Diego, CA, USA). A P value < 0.05 was considered 

to be statistically significant.  
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RESULTS 

EPA:DHA 6:1 prevents the MCT-induced increase in mPAP and RVSP  

Three weeks after MCT injection, hemodynamic parameters were monitored by 

echocardiography and right ventricular catheterization. MCT-treated rats consistently 

developed pulmonary hypertension associated with a significant increase in mPAP from 16 ± 

0.3 to 35.2 ± 0.7 mmHg and RVSP from 17.4 ± 0.5 to 40.5 ± 1.9 mmHg (Fig. 1A, B). In 

addition, CO was significantly decreased in the MCT group compared with the control group 

(124 ± 7.4 to 67.7 ± 3.7 ml/min) (Figure 1C). Oral intake of EPA:DHA 6:1 significantly 

reduced mPAP to 29.6 ± 0.8 mmHg and RVSP to 31.9 ± 0.8 mmHg and also improved CO to 

90.2  ± 4.4 mL/min (Fig. 1A, C). 

The heart rate was slightly but significantly lowered  from 392.7 ± 8.1 bpm to 333.2 ± 4.9 

bpm by the MCT treatment and the mean systemic arterial pressure is not significantly 

different in the  four groups (Fig. 1D, E).  

EPA:DHA 6:1 prevents the MCT-induced RV remodeling and hypertrophy  

RV morphology and function were evaluated by echocardiography. The MCT group 

presented a significant dilatation of the RV indicated by the increased RV area, end-diastolic 

and systolic diameters compared to the control group. The dilatation of the RV was associated 

with a decreased of the RV fractional area chance (RVFAC %) (control vs MCT: 42.4 ± 1.6 

vs 27.6 ± 3.1). Oral intake of EPA:DHA 6:1 prevented RV remodeling by improving RV 

morphology and function (Fig. 2A-D).  

Right ventricular hypertrophy was assessed by the weight ratio of RV/(LV+S). The MCT 

group developed severe RV hypertrophy manifested by an RV/(LV+S) ratio of 0.54 ± 0.03 

compared with 0.22 ± 0.01 in the control group (Fig. 2E). Similarly, the ratio of RV weight to 

body weight was significantly higher in the MCT-treated group compared to the control 

group. The marked MCT-induced RV hypertrophy was reduced significantly to 0.33 ± 0.01 

by the EPA:DHA 6:1 treatment indicating that chronic oral intake of  EPA:DHA 6:1 was able 

to prevent PAH-induced RV hypertrophy.   
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EPA:DHA 6:1 prevents the MCT-induced RV cardiomyocytes hypertrophy and 

macrophages infiltration  

In the RV, representative H-E staining showed that the MCT treatment induced a significant 

cardiomyocytes hypertrophy as compared to the control group (Figure 3A). The RV 

cardiomyocytes hypertrophy was associated with enhanced perivascular infiltration of 

macrophages detected by anti-CD68 staining (Figure 3B). The EPA:DHA 6:1 treatment 

prevented the MCT-induced RV cardiomyocytes hypertrophy by restored RV area and 

reduced infiltration of macrophages (Fig. 3A, B). In contrast, in the left ventricle, 

cardiomyocytes size was similar in all group studied, and only a low level of infiltration of 

macrophages was observed.  

EPA:DHA 6:1 prevents MCT-induced pulmonary arterial remodeling  

Pulmonary vascular remodeling was assessed by pulse-wave Doppler of pulmonary outflow. 

MCT significantly increased the pulmonary artery diameter and pulmonary vascular 

resistance (control vs. MCT: 0.37 ± 0.03 vs. 0.84 ± 0.05 unite wood), indicating hypertrophy 

and stiffness of the pulmonary artery, and reduced the velocity-time integral (VTI) and 

pulmonary artery acceleration time (43.05 ± 2.39 vs. 26.06 ± 0.91 ms), indicating an 

increased pulmonary arterial pressure. EPA:DHA 6:1 treatment significantly prevented the 

MCT-induced  changes on pulmonary artery diameter, PVR, PAAT, and pulsatility (Fig. 4). 

Indeed, to examine the level of pulmonary vascular remodeling, morphometric analysis was 

performed on lung tissue sections stained with H-E or α-actin. Quantitative morphometric 

analyses showed pulmonary arterioles remodeling in MCT group (Figure 5). The medial 

thickness of pulmonary arterial was markedly increased in arterioles with external diameter < 

50 μm in the MCT group (control vs. MCT: 25.9 ± 0.6 vs. 73.7 ± 0.5). The medial wall 

hypertrophy was accompanied with muscularization of small pulmonary arteries evidenced by 

enhanced α-actin staining (Fig. 5).  The EPA:DHA 6:1 treatment  significantly attenuated the 

MCT-induced increase in wall thickness and pulmonary arterioles muscularization. In 

addition, an increased collagen deposition in MCT group as assessed by Gomori’s Trichrome, 

which was prevented by the EPA:DHA 6:1 treatment  (Fig. 5).  

To determine the perivascular inflammatory cell infiltration, immunohistochemical staining 

was performed in lung sections with CD68 for macrophages and CD3 for T lymphocytes. The 

MCT-treatment was associated with a significantly macrophages and lymphocytes infiltration 
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surrounding pulmonary remodeled arterioles. The EPA:DHA 6:1 treatment significantly 

prevented the MCT induced infiltration of macrophages and lymphocytes (Fig. 5B).   

EPA:DHA 6:1 treatment prevents MCT-induced vascular oxidative stress involving 

several sources in  pulmonary arterioles 

Reactive oxygen species (ROS) have been proposed as a pathogenic mechanism underlying 

the vascular remodeling observed in MCT-induced PAH (5). The pulmonary vascular level of 

oxidative stress was assessed using the redox-sensitive fluorescent probe DHE. The MCT 

treatment increased the formation of ROS as indicated by the markedly increased the DHE 

fluorescence signal throughout the medial wall in comparison to the control group. These 

effects were significantly prevented by EPA:DHA 6:1 treatment (Figure 6A). In order to 

determine the source of ROS, lung sections were treated with different inhibitors major 

vascular sources of ROS. The MCT-induced formation of ROS in the pulmonary arterioles 

wall was significantly inhibited by N-acetylcysteine (NAC, antioxidant), VAS-2870 (an 

NADPH oxidase inhibitor and antioxidant), L-NA (an eNOS inhibitor), indomethacin (a 

cyclooxygenase inhibitor) and by a combination of inhibitors of the mitochondrial respiration 

chain (MRK: myxothiazol, rotenone and KCN) suggesting the involvement of NADPH 

oxidase, COXs, uncoupled eNOS and the mitochondrial respiration chain (Fig. 6B). The 

levels of NO- and O2
- in lungs was determined by electron paramagnetic resonance (EPR) in 

frozen tissues at liquid nitrogen temperature. The MCT treatment increased NO- and O2
- 

production in lungs. EPA:DHA treatment significantly prevented the increased of NO- and O2
- 

production (Fig. 6 C, D). 

To obtain further evidence for a role of eNOS, NADPH oxidase and COXs. Their expression 

level was determined by immunofluorescence staining in the pulmonary arterioles. A 

significantly increased immunofluorescence signal of the NAPDH oxidase subunits p22phox, 

p47phox, and of COX-1 and COX-2 was observed in pulmonary arterioles of the MCT group 

compared to the control group (Fig. 7). The EPA:DHA 6:1 treatment significantly reduced the 

MCT-induced stimulatory effect for p22phox, p47phox, COX-2 and COX-1 (Figure 7A). In 

addition, an upregulation of eNOS was observed in the MCT group which was prevented by 

the EPA:DHA 6:1 treatment (Fig. 7).  



13 

 

EPA :DHA 6 :1 prevents the expression of endotheline-1 receptors (ETA, ETB) and 

angiotensin II receptor on pulmonary arterioles wall.  

It has been suggested that PAH is associated with the increased expression of endothelin-1 

(31) and angiotensin II (32) may contribute to the arterioles remodeling. An increased 

immunofluorescence level of endothelin-1 receptors (ETA, ETB) and angiotensin II receptor 

(AT1) throughout the pulmonary arterioles wall was observed in the MCT group (Fig 7). The 

EPA:DHA 6:1 treatment prevents MCT-induced changes of ETA, ETB and AT1 expression in 

pulmonary arterioles (Fig. 7).  

EPA:DHA 6:1 prevents MCT-induced endothelial dysfunction in the pulmonary artery  

Vascular reactivity was performed in primary pulmonary artery rings to evaluate the 

endothelial function using organ chambers. The MCT treatment significantly reduced the 

contractile responses to phenylephrine, and also the acetylcholine-induced endothelium-

dependent relaxation of pulmonary artery rings pre-contracted with phenylephrine. The 

concentration-response curves were constructed both in absence or presence of an eNOS 

inhibitor (L-NA) to assess the role of the basal endothelial NO formation. The MCT treatment 

increased basal nitric oxide (NO) production. The EPA:DHA 6:1 prevented MCT-induced 

endothelial dysfunction as indicated by the increased relaxation to Ach (Fig. 8).  
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DISCUSSION  

The present study demonstrated that the optimized EPA:DHA 6:1 formulation prevents the 

development of PAH in MCT-treated rat. Since, rats were treated with EPA:DHA 6:1 one 

week before the induction of PAH, the findings indicate the capacity of the omega-3 products 

to prevent the disease and not to cure it. The MCT-induced PAH rat model has been widely 

used as an experimental model of PAH (33) and it is tough to the most similar animal model 

to the human form of the disease (34). It is characterized by pulmonary endothelial cell 

damage, associated with an inflammatory response and vascular oxidative stress. It also leads 

to small pulmonary arterial and RV remodeling and dysfunction (35, 36). Previous studies 

focused on the effects of omega-3 on the systemic circulation but provided little information 

on its pulmonary effects. 

The presents findings indicate that daily oral treatment with EPA:DHA 6:1 significantly 

prevented an elevation of mean pulmonary arterial pressure, RV systolic pressure and 

improved cardiac output in rats model of MCT-induced PAH. EPA:DHA 6:1 treatment also 

prevented pulmonary arterioles remodeling and dysfunction, RV hypertrophy and dilation, 

attenuated oxidative stress and inhibited inflammation. Our studies show that EPA:DHA 6:1 

exerts anti-inflammatory, antioxidant and antiproliferative effects in the pulmonary arteries, 

which may contribute to prevent pulmonary hypertension. Recent study showed that DHA 

therapy reduced mPAP in a rat model of hypoxia-induced PAH and this effect was linked 

with inhibition of pulmonary vascular remodeling (37). 

Echocardiography is widely used in the evaluation of PAH in the rat MCT model (38). The 

echocardiography analysis of control and MCT groups indicates that oral treatment of 

EPA:DHA 6:1 prevented  in the pulmonary arteries of the MCT-treated rats the elevation of 

vascular resistance and the reduction of pulmonary acceleration time compared to control rats, 

suggesting that this formulation has the beneficial effect of reducing the stiffness of the 

pulmonary artery. In addition, oral treatment with EPA:DHA 6:1 significantly prevented the 

MCT-induced RV dilatation as indicated by increased RV area and decreased RV fractional 

area change (RVFAC), suggesting a beneficial effect of EPA:DHA 6:1 to reduce RVSP. The 

FAC is an ideal echocardiography parameter reflecting RV dysfunction and disease severity 

in PAH (39). Oral treatment with EPA:DHA 6:1 prevent RV hypertrophy characterized by 

increased RV/(LV + S) ratio, cardiomyocytes hypertrophy and extracellular matrix changes 

with fibrosis.  
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Previous studies have been revealed that inflammation plays a key role in human PAH as well 

as in experimental models including MCT-induced PAH (7, 40) . In response to injury and 

stress, a pronoucial lung vascular inflammatory response is observed including macrophages, 

monocytes, lymphocytes and mast cells (41, 42) and they have been involved  in the initiation 

of pulmonary vascular remodeling by matrix remodeling, collagen deposition, and vascular 

cell proliferation and migration in PAH (43, 44). These process lead to increased pulmonary 

resistance and right heart failure. Consistent with these previous findings, a substantial 

increased number of CD68 (ED-1) and CD3+ positive cells were observed in the lungs of 

MCT-treated rats. In addition an increased pulmonary arterial medial thickness and RV 

cardiomyocytes hypertrophy were observed and associated with an increased the number of 

macrophages in perivascular intra-alveolar spaces, and of lymphocytes around the pulmonary 

arteries in the MCT-treated rats relative to the control group. Importantly, oral intake of 

EPA:DHA 6:1 significantly prevented the stimulatory effect of MCT on macrophages and T 

lymphocytes infiltration in the lung and right ventricle. Thus, these findings suggest that the 

EPA:DHA 6:1 formulation prevented MCT-induced PHA by reducing the inflammatory 

responses.  

In addition to the inflammatory response, oxidative stress has been implicated in the 

pathogenic mechanism underling the vascular remodeling and heart failure observed in 

pulmonary hypertension (14, 32, 45). Dysregulation of the pro-oxidant/antioxidant balance 

contributes to impair vascular tone and the pathological activation of anti-apoptotic and 

mitogenic pathways, leading to cell proliferation and obliteration of the vasculature (46). 

There is solid evidence in MCT-treated rats, that oxidative injury to the pulmonary vascular 

endothelium precedes pulmonary arterial smooth muscle cells proliferation and medial 

hypertrophy in the distal pulmonary vascular bed and the rise in pulmonary artery pressure 

Small pulmonary arterioles and RV remodeling is associated with an increased inflammatory 

infiltrate and oxidative stress as indicated by high levels of ROS formation throughout the 

pulmonary arterioles wall of MCT-treated rats. The characterization of the cellular sources of 

ROS in the small pulmonary arterioles indicated the involvement of several sources including 

NADPH oxidase, uncoupled eNOS, cyclooxygenase (COXs) and the mitochondrial 

respiration chain. Moreover, an up-regulation of several pro-oxidant enzymes including 

NADPH oxidase submits p22phox and p47phox, COX-1, and COX-2 is observed in the small 

pulmonary arteries of MCT-treated rats. Oral intake treatment of EPA:DHA 6:1 substantially 

attenuated the level of vascular oxidative stress and  remodeling by reducing in arterioles as 
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well as the upregulation of the NADPH oxidase submits p22phox and p47phox, COX-1 and 2 

and eNOS expression in MCT-treated rat.  Both in vitro and in vivo studies have shown that 

ROS promote cardiomyocyte hypertrophy as well as fibrosis (47) and also right ventricular 

failure in the MCT-induced PAH, (48). EPA:DHA 6:1 due to its antioxidant, anti-

inflammatory and cardioprotective properties, improved right ventricular function as indicated 

by an increased CO and with inhibition of cardiomyocyte hypertrophy and fibrosis.  

Endothelial dysfunction has been shown to plays a key role in the development of PAH and 

results in a decrease of vasodilatator and antiproliferative factors (prostacyclin, nitric oxide) 

and in an increase in vasoconstrictor and proliferative factors (endothelin [ET]-1) (49). 

Moreover, inflammation and oxidative stress have been shown to contribute to the MCT-

induced endothelial dysfunction most likely by reducing the bioavailability of NO and 

oxidizing tetrahydrobiopterin, an essential cofactor for eNOS (5, 10). Although decreased 

endothelium-dependent relaxation was observed in the pulmonary artery (50). The present 

findings indicated that MCT-induced pulmonary hypertension is associated with an 

endothelial dysfunction in main pulmonary artery without any effect on systemic vascular 

functions. The MCT treatment significantly reduced the contractile response of pulmonary 

artery rings to α-adrenergic agonist PHE. Blockade of NO production by L-NA enhanced 

PHE potency in MCT-treated rats. In addition, ACh-induced endothelium-dependent 

relaxation was reduced in pulmonary arteries of MCT treated-rats. Although the reduced ACh 

relaxation in the PH rats could be due to increased oxidative stress and decreased NO 

bioavailability in MCT treated-rats. The decreased bioavailability of NO reduces the 

antiproliferative effects of NO and thus contributes to the increased of pulmonary vascular 

remodeling and resistance. Previous studies have shown in isolated pulmonary arteries a 

reduced responsiveness to endothelium-dependent vasodilators including ACh and A23187, 

whereas others have suggested an increased basal NO production in the MCT-treated rats 

from (51, 52). We have showed that inflammation and oxidative stress of the lung in PAH 

stimulates the eNOS uncoupled. Oral intake of EPA:DHA 6:1 prevented the MCT-induced 

the development of PAH, reversed vascular remodeling, reduced vascular inflammation and 

improved the endothelial function, as indicated by an improvement ACh-induced relaxation. 

Thus, it could be hypothesized that EPA:DHA 6:1-induced elevation of cGMP. It is possible 

that up-regulation of eNOS contributes to the therapeutic action of omega-3. Furthermore, 

EPA:DHA 6:1 has been shown to stimulate the endothelial release of NO and to improve 
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endothelial function subsequent to phosphorylation of PI3K/Akt/eNOS signaling pathway 

(22).  

The endothelin (ET) system is activated in human pulmonary hypertension (PH) of various 

pathogeneses (53, 54). ET-1 could contribute to the development of human PH through its 

strong vasoconstrictive and promitogenic properties (55). Previous studies have shown 

enhanced ET-1-induced pulmonary vasoconstriction and vascular resistance in the MCT-PAH 

(56) and increased vasomotor tone in hypoxic PAH (5, 32). The present findings support a 

role for the ET-1 in the MCT-induced endothelial dysfunction. Indeed, an increased 

expression of ETA and ETB receptors was observed throughout the arterial wall of the MCT 

treatment group. The ETA receptors are located on smooth muscle cells, where they mediate 

vasoconstrictive and proliferative effects (57). The ETB receptor is the only subtype found 

predominantly on the vascular endothelium, where it promotes vasodilation through the 

release of nitric oxide and prostacyclin (31). There is also evidence that the ETB receptor 

indirectly modulates ET-1 synthesis through negative feedback under the action of nitric 

oxide (53). They are also consistent with the fact that chronic bosentan, a non-selective ET-

1 receptor antagonist reduced pulmonary hypertension in MCT-treated rats and prevented the 

MCT-induced endothelial dysfunction and oxidative stress (31, 58). Our data show that 

EPA:DHA 6:1 prevented the MCT-induced upregulation of the expression ETA and ETB 

receptors in MCT-induced PAH rats. 

However, the mechanism explaining best the beneficial effect of omega-3 treatment to 

prevent pulmonary hypertension most likely includes its antioxidant, anti-inflammatory and 

endothelial protective properties. Two previous studies have demonstrated potential benefits 

of oral administration of MAG-DPA to reduce inflammation (decreased NF-kB and p38 

MAPK activation) and proliferation (reduction in MMP-2, MMP-9 and VEGF expression 

levels in lung tissue homogenates) of pulmonary artery smooth muscle cells in MCT-treated 

rats (59) and DHA to inhibit the development of hypoxic pulmonary hypertension in vitro and 

in vivo studies (60). The effects of EPA and DHA have not be investigated in PAH; however, 

these two fatty acids affect cell function differently (61, 62).  

Moreover, the beneficial role of omega-3 in cardiovascular health is supported by its 

metabolism. Indeed, omega-3, unlike omega-6, decreases the production of pro-inflammatory 

cytokines and leukocyte reactive oxygen species, increase the synthesis of anti-inflammatory 
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cytokines, lead to the release of resolvins and modulate the activation of genes involved in the 

inflammatory process (63, 64). Furthermore, when administrated per os, omega-3 represents a 

stable compound that could serve as a precursor to generate proresolving (resolvins and 

protectins) molecules, which are known for their anti-inflammatory properties (65, 66). 

Study limitation  

This study indicates the ability of a formulation omega-3 to prevent MCT-induced PAH, in 

which inflammatory mechanisms related to pulmonary vascular endothelial dysfunction and 

remodeling may contribute to the development and progression of the pathology. A 

subsequent study will be necessary to determine the efficacy of omega-3 in the treatment of 

an established PAH.  

CONCLUSION  

The present findings indicate that EPA:DHA 6:1 exerts a significant anti-oxidant, anti-

inflammatory and endothelial protective effect in the pulmonary circulation and prevents the 

progression of pulmonary hypertension in MCT-treated rats by reducing pulmonary vascular 

remodeling, endothelial dysfunction, right ventricular hypertrophy and failure. The beneficial 

effects were associated with a reduced vascular inflammatory responses and oxidative stress 

mostly by preventing overexpression of NADPH oxidases, COXs and also of uncoupled 

eNOS. Further investigations are necessary to better assess the biological effects, elucidate the 

underlying mechanisms and to evaluate the political of this omega-3 formulation in the 

clinical setting.  
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Table 1. Characteristics of the different omega-3 fatty acid products 

Fatty acids Purity (in %) Ratio 
EPA:DHA Content of Omega-3 EPA-DHA as EE Sum Omega-3 as 

EE (mg/g) 
EPA (mg/g) DHA (mg/g) 

EPA:DHA 93.4 01:01 476 386 934 
EPA:DHA 91.3 06:01 694 121 913 
EPA:DHA 46.0 06:01 352 65 460 
EPA 99.5 991 995 
DHA 98.6     945 986 
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Table 2. Echocardiography parameters of the inferior vena cava, the right atrium and the left 
ventricular. 

 
Control Omega MCT MCT+OM 

RA diameter (mm) 1.6 ± 0.1 1.8 ± 0.1 2.9 ± 0.2* 2.2 ± 0.1# 

RA area (mm2) 9 ± 0.2 9.1 ± 0.1 13.3 ± 0.1* 10.2 ± 0.1# 

IVC diameter (mm) 1.6 ± 0.2 1.8 ± 0.2 2.7 ± 0.1* 2.4 ± 0.1 

IVC systolic area (mm2) 3.6 ± 0.7 3.6 ± 0.4 4.5 ± 0.3* 3.9 ± 0.2 

LV Strock volume (ml) 0.32  ± 0.02 0.31  ± 0.01 0.20 ± 0.01* 0.24  ± 0.01 

LV End-diastolic (mm) 7.9 ± 0.1 7.8 ± 0.1 6 ± 0.1* 6.4 ± 0.1 

LV End-systolic (mm) 4.3 ± 0.1 4.4 ± 0.2  3.6 ± 0.1 3.7 ± 0.2 

Septal wall thikness (mm) 1.5 ± 0.1 1.6  0.1 1.8 ± 0.1 1.7 ± 0.1 

LVP wall thickness (mm) 1.7 ± 0.1 1.7 ± 0.1 1.9 ± 0.1 1.8 ± 0.1 

LV area (mm2) 53.3 ± 1.1 50.2 ± 3.4 35.1 ± 0.7 39.6 ± 2.0 

LV fractional shortening (%) 45.3 ± 1.5 42.9 ± 2.2 39.4 ± 1.4 42.5 ± 2.4 

LV ejection fraction (%) 70 ± 1.7 67.2 ± 2.4 62.1 ± 1.6  66.4 ± 2.9 

 All values are mean ± SEM, n = 6-11/group. IVC, inferior vena cave, MCT, monocrotaline, LV, left 
ventricle; RV, right ventricle. *P < 0.05 versus control; #P < 0.05 versus MCT. 



27 

 

Figure 1.  Oral intake of EPA:DHA 6:1 prevents MCT-induced pulmonary hypertension and 

right heart dysfunction. (A) Mean pulmonary artery pressure (mPAP) was monitored by 

catheter inserted into the jugular vein and advanced to the pulmonary artery. (B) Right 

ventricular systolic pressure (RVSP) was evaluated by echocardiography from tricuspid 

regurgitation velocity (RVSP = 4 × Vmax2). (C) Cardiac output (CO) and (D) heart rate (HR) 

were monitored by pulsed wave Doppler. (E) Systemic arterial pressure (SAP). All 

measurements are presented as the average of three cardiac cycles. Values are given as mean 

± SEM. *P < 0.05 versus control, #P < 0.05 versus MCT. 

Figure 2. The EPA:DHA 6:1 treatment prevents MCT-induced right ventricular remodeling 

and hypertrophy. (A) Echocardiographic views of the right ventricle.  (B) RV end-diastolic 

(RVEDD), (C) end-systolic diameter (RVESD), (D) RV fractional area changes (RVFAC). 

Images were obtained by two-dimensional and M-mode echocardiography from a parasternal 

short-axis view. (E) RV hypertrophy was assessed by Fulton’s index, calculated as RV to LV 

weight ratio [RV/(LV+S)], (F) RV weight/body weight and (G) LV+S weight/body weight. 

Values are given as mean ± SEM. *P < 0.05 versus control, #P < 0.05 versus MCT. 

Figure 3. The EPA:DHA 6:1 treatment prevents the MCT-induced RV cardiomyocytes 

hypertrophy and macrophages infiltration. (A) Quantitative morphometric analyses of 

cardiomyocytes section area were done using hematoxylin and eosin and gomori’s blue 

trichrome staining of right and left ventricle walls. (B) Evaluation of macrophage infiltration 

was performed by quantitative analysis of the macrophages counted in 10 fields of 

immuhistochemical staining with CD68 antibody (20X, objective). Results are presented as 

representative micrographies (left) and corresponding cumulative data (right). Values are 

given as mean ± SEM. *P < 0.05 versus control, #P < 0.05 versus MCT.  

Figure 4. The EPA:DHA 6:1 treatment prevents MCT-induced pulmonary artery remodeling. 

(A) Notching of the pulse wave Doppler profile in the pulmonary artery outflow, (B) 

pulmonary artery diameter, (C) pulmonary artery acceleration time (PAAT), (D) pulmonary 

vascular resistance (PVR) and (E) pulsatility. Pulse-wave Doppler of pulmonary outflow was 

recorded in the parasternal view at the level of the aortic valve. PAAT was measured from the 

time of onset of systolic flow to peak pulmonary outflow velocity. Values are given as mean ± 

SEM. *P < 0.05 versus control, #P < 0.05 versus MCT. 
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Figure 5. The EPA:DHA 6:1 treatment prevents pulmonary vascular remodeling, pulmonary 

macrophages and lymphocytes infiltration in MCT-treated rats. (A) Representative images of 

hematoxylin-eosin, gomori’s blue trichrom and immunohistochemical (α-actin as a mesure of 

the dedree of muscularization) staining of lung section in rats for determination of the wall 

thickness and wall area of small pulmonary arteries sized < 20 μm. Images are shown on the 

left and quantification analysis on the right. Sixteen pulmonary arteries from 6 

rats/experimental group were analyzed (n= 8). (B) Immunofluorescent (green) and 

immunohistochemical (purple arrows) staining with antibodies against CD68 [ED-1] for 

detection of macrophages and CD3 for lymphocytes T, respectively. Quantification of 

positive cells was analyzed of the fraction area occupied macrophages and lymphocytes T 

were counted in 10 different fields. Scale bar, 20 μm (20X objective). Values are given as 

mean ± SEM. *P < 0.05 versus control, #P < 0.05 versus MCT.  

Figure 6. The EPA:DHA 6:1 treatment prevents MCT-induced vascular oxidative stress in 

pulmonary arterioles. (A) The determination of the vascular formation of ROS formation was 

done in unfixed cryosections of the right lung using the redox-sensitive probe 

dihydroethidium (DHE). (B) The characterization of the source of ROS formation was 

performed in presence of either N-acetylcysteine (NAC, antioxydant 1 mM), VAS-2870 ( 

NADPH oxidase inhibitor, 10 μM), N-nitro-L-arginine (LNA, NO synthase inhibitor, 300 

μM), indomethacin (Indo, cyclooxygenase inhibitor, 10 μM), or MRK (inhibitors of the 

mitochondrial respiration chain, myxothiazol, 0.5 μM + rotenone, 1 μM + potassium cyanide 

(KCN), 1 μM) for 30 min before DHE staining. Thereafter, ethidium fluorescence was 

determined by confocal laser-scanning microscope (Leica SP2 UV DM IRBE). (C and D) 

Nitric oxide (NO.) and superoxide anion (O2.-) measured by electron paramagnetic resonance 

in small pulmonary arterioles. Values are given as mean ± SEM. *P < 0.05 versus control, #P 

< 0.05 versus MCT. 

Figure 7. The EPA:DHA 6:1 treatment prevents MCT-induced changes of protein expression 

in pulmonary arterioles. Protein expression levels were determined in unfixed cryosections of 

right lung, the determination of the expression level of endothelial NO synthase (eNOS), 

NADPH oxidase subunits p22phox and p47phox, cyclooxygenase (COX-1 and COX-2), ET-1 

receptors (ETA, and ETB) and the AT1R was done by immunofluorescence. All samples for 

immunofluorescence studies were observed using a confocal laser-scanning microscope 

(Leica SP2 UV DM IRBE).  
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Figure 8. The EPA:DHA 6:1 treatment prevents MCT-induced endothelial dysfunction in the 

main pulmonary artery as assessed in organ chamber. The concentration-contraction curves in 

response to phenylephrine (A and B) and the concentration-relaxation curves to acetylcholine 

in pulmonary artery rings pre-contracted by phenylephrine (10-6 mol/L) (C and D) were 

constructed in the absence (A and C) and the presence (B and D) of eNOS inhibitor (L-NA, 

300 μM) to assess the role of the basal formation of endothelial NO. (n = 7 to11). Values are 

given as mean ± SEM. *P < 0.05 versus control, #P < 0.05 versus MCT. 
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Figure 2. 
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Figure 3.  
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7.  
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Figure 8. 
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Abstract 

Ethnopharmacology relevance: Phyllanthusamarus(Euphorbiaceae family) has been reported 

in traditional medicine to possess beneficial effects in the management of hypertension. In 

different animal models of hypertension, an impairment of the vascular function has been 

linked to an endothelial dysfunction. Therefore, the aim of the present study was to determine 

if an aqueous extract of Phyllanthus amarus (AEPA)obtained by decoction was able to 

prevent hypertension and endothelial dysfunction in DOCA-salt rats, and, if so, to clarify the 

underlying mechanism. 

Materials and methods:Male Wistar rats were randomly assigned into the control group, the 

AEPA group (100 mg/kg/day, by gavage), the DOCA-salt group (50 mg/kg, s.c, per week), 

and the DOCA-salt + AEPA group (100 or 300 mg/kg/day, by gavage). DOCA-salt-treated 

rats were allowed free access to water containing 1% NaCl. Systolic blood pressure (SBP) 

was determined by tail-cuff plethysmography twice a week, in the morning during 5 weeks. 

Vascular reactivity using main mesenteric artery rings was assessed in organ chambers. 

Dihydroethidine (DHE) and immunofluorescence methods were used for the determination of 

the vascular formation of reactive oxygen species (ROS) and the expression level of proteins, 

respectively. 

Results: After 5 weeks, SBP (mmHg) increased significantly in DOCA-salt hypertensive rats. 

It was significantly lowered by the treatment with AEPA (100 or 300 mg/kg/day) by 24 and 

21mmHgrespectively. In mesenteric artery rings, the phenylephrine induced contractile 

response was increased significantly in the DOCA-salt group in comparison to the control 

group. After treatment by AEPA, the contractile response was shifted to the right. Both the 

NO-mediated (assessed in the presence of indomethacin and TRAM-34 plus apamin) and the 

endothelium-dependent hyperpolarization (EDH)-mediated (assessed in the presence of 
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indomethacin and Nω-nitro-L-arginine) relaxation to acetylcholine were significantly reduced 

in the DOCA-salt group compared to the control group. Fluorescence study showed that the 

endothelial dysfunction was associated with a reduced expression level of Cx37, an increased 

expression of eNOS and the formation of ROS in main mesenteric artery. The 

antihypertensive effect of AEPA was related to an improvement of the blunted NO- and 

EDH- mediated relaxation, and an increased vascular oxidative stress and modulation of the 

expression levels of target proteins in DOCA- salt rats. 

Conclusion: Altogether, our study shows that AEPA is able to act as an antihypertensive 

agent, and to prevent endothelial dysfunction in DOCA-salt hypertensive rats, in part, by 

preventing vascular oxidative stress.   

 

Keywords: Phyllanthusamarus, DOCA-salt, hypertension, endothelial dysfunction, 
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Introduction 

Hypertension is a major public health problem (WHO, 2013). In chronic situation, 

hypertension increases the risk factor for cardiovascular diseases including atherosclerosis, 

coronary disease, congestive heart failure and stroke (Kannel, 2000; Tsotetsi et al., 2001; 

D’Agostino et al., 2008). For a better understanding of hypertensive disease physiopathology, 

several animal models such as spontaneously hypertensive rats (SHR), angiotensin II (Ang 

II)-induced hypertension, Dahl salt-sensitive hypertensive rats, DOCA-salt rats and other 

models are usedas a mimetic of human essential hypertension (Galisteo et al., 2004;  Wilcox 

and Pearlman, 2008). A DOCA-salt model isa characteristic of human volume-overload 

induced hypertension with sodium retention (Galisteo et al., 2004; Iyer et al., 2010 ), 

obtainedthrough several weeks administration of a synthetic mineralocorticoid 

deoxycorticosterone acetate (DOCA) to rat allowed free access to water containing NaCl.This 

model isalso associate to a low rennin and potassium-depleted (Galisteo et al., 2004; Liu et 

al., 2014). 

Almost deleterious effects found in human hypertension are observed in DOCA-salt 

hypertensive rat as a model ofendothelial dysfunction, cardiac hypertrophyand renal damage, 

and inflammation (Fenning et al., 2005).These phenomena are related to an excessive 

production of reactive oxygen species (ROS) by NADPH oxidase (O’Brien et al., 2010). Left 

ventricular hypertrophy is found in most animal models of hypertension (Perez-Vizcaino et 

al., 2009). Numerous studies have indicated that endothelial dysfunction in pathological 

modelswas linked to animpairment of endothelium-derived relaxing factors mediated-

relaxations, such as NO and EDH component(Li et al., 2013; Rashid et al., 2014). 

Hypertension management required the use of classic antihypertensive drug agents such as 

diuretics, beta-blockers, angiotensin converting enzyme inhibitors or angiotensin II type 1 

receptor (AT1R) blockers, and calcium channel blockers. Since efficacy of antihypertensive 
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drugs was relative, in most patients, two or more drugs combined are required in 

antihypertensive therapy (Chobanian et al., 2003). Moreover, chemical drugs cause a risk of 

side effects. During the last few decades, besides chemical drugs, other therapeutic 

approaches were privileged. Within this framework, the modifications of lifestyle or the use 

of natural products derived from plant extractsgained muchattention (Perez-Vizcaino et al., 

2009; Zapata-Sudoetal., 2014). Besides, many researches are focusingon herbal preparations 

for their cardioprotective properties. For instance, Moringa oleifera (Moringaceae) seeds 

show a beneficial effect on cardiac structure and function in SHR associated with an 

upregulation of PPARα and δ signaling (Randriamboavonjy et al., 2016). Euterpe oleracea 

(Arecaceae) prevented cardiac dysfunction, hypertrophy and fibrosis on rats subjected to 

myocardial infarction (Zapata-Sudo et al., 2014). 

In Ivorian folk medicine, Phyllanthus amarus Schum. & Thonn. a plant belonging to the 

Euphorbiaceae family is used by local population as decoction of whole/leave of plant to treat 

hypertension and cardiovascular disorders (N’guessan et al., 2009). P. amarus is an erect 

annual found in all the tropical regions of the world for instance, Africa, India or South 

America (Kuttan and Harikumar, 2012).  

P.amarus extracts are rich in several secondary metabolites such as lignans, hydrolysable 

tannins, flavonoids, alkaloids, triterpenes, sterols and volatile oils (Kuttan and Harikumar, 

2012; Patel et al., 2011). Preliminary phytochemical analysis of aqueous extract of 

phyllanthus amarus revealed the presence of alkaloids, polyphenols, terpenes and sterols 

(Amonkan et al., 2013). 

Numerous studies have indicated that P. amarus extractexhibited different pharmacological 

activities such as, anti-inflammatory (Kiemer et al., 2003),antioxidant (Roengrit et al., 2014) 

orvasodilatation and hypotensive effects(Srividya and Periwal, 1995; Amaechina et al., 2007; 

Inchoo et al., 2011).P. amarus induced a potent anti-inflammatory effect resulting by 
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inhibition of iNOS, COX-2, and cytokines via the NF-kB pathway (Kiemer et al., 2003). The 

antihypertensive activity has been shown to be related to stimulation of muscarinic receptor 

and involving endothelium-derived nitric oxide (NO) and also to blocking of calcium channel 

(Amaechina et al., 2007; Amonkan et al., 2013). Little data are available about 

cardioprotective and antihypertensive effects of P. amarus in chronic hypertension. Therefore, 

the aim of the present study was to determine if an aqueous extract of P. amarus (AEPA) 

obtained by decoction is able to prevent hypertension, cardiac hypertrophy and endothelial 

dysfunction in DOCA-salt hypertensive rats, and, if so, to clarify the underlying mechanism. 

 

Materials and Methods 

Plant material and extraction procedure 

The whole plant of Phyllanthus amarus (Euphorbiaceae) was collected in the district of 

Cocody (Abidjan, Côte d’Ivoire) in April 2014. The plant is registered under No. 3, 141 and 

248 at the Centre National de Floristique (CNF). Extraction procedure was similar to a 

method previously described (Amonkan et al., 2013).  Briefly, the whole plant was harvested, 

washed, and extracted in boiling distilled water for 30 min at ratio of 500 g of plant for 1 liter. 

The decoction was filtered and then lyophilized to obtain a powder of aqueous extract of 

Phyllanthus amarus (11.72 g from 1 kg of plant). 

 

Animals and experiments groups 

Experiments were performed in accordance to the Guidelines for experiments involving 

animals (McGrath et al., 2010).Male Wistar rats (Janvier, Le Genest-Saint-Isle, France) 

weighing between 180 and 200 g were maintained under standard laboratory conditions (21-

22 °C) with dark and light cycle (12/12 h) and had free access to a standard dry pellet diet 
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from Scientific Animal Food and Engineering (SAFE, France) and water ad libitum. Animals 

were randomly assigned 7-8 rats per group, into the control group, the AEPA group (100 

mg/kg/day, by gavage), the DOCA-salt group (50 mg/kg, s.c, per week), and the DOCA-salt + 

AEPA groups (100 or 300 mg/kg/day, by gavage). DOCA-salt-treated rats were allowed free 

access to water containing 1% NaCl.  

 

Blood pressure measurements 

Prior to start the blood pressure monitoring, rats were subjected to a period (one week) of 

adaptation to the system. Systolic blood pressure (SBP) was determined by tail-cuff 

sphingomanometry twice weekly during 5 weeks using blood pressure analysis system 

(Bioseb, Vitrolles, France). Blood pressure was monitoredat 9 a.m.,and at least 12 

determinations were made for each session.  

Echocardiographic studies 

After the 5 weeks treatment, the rats were anaesthetized by intraperitoneal injections of 

pentobarbital (50 mg/kg). Cardiac structure and function were determined by 

echocardiography transthoracic using the Phillips Sonos 5500 machine equipped with a probe 

12 MHz, transducer. Two-dimensional short axis views of the left ventricle and M-mode 

tracings were recorded through anterior and posterior LV walls at the papillary muscle level. 

Morphological characterization of the cardiac left ventricle (LV) was assayed following the 

determination of these parameters: LV end-diastolic diameter (LVEDD), LV end-systolic 

diameter (LVESD), posterior and septum diastolic wall thickness (PWT and SWT, 

respectively). Left ventricular mass (LVM) and LV ejection fraction (% LVEF) were 

subsequently derived from these parameters. The pulsed Doppler was used to assess the 
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isovolumetric relaxation time (IVRT), measured as the interval between aortic closure and the 

start of the mitral flow. 

Assessment of cardiac and kidney weight indices 

 At the end of study, rats were prior weighed, anaesthetized by intraperitoneal injections of 

pentobarbital (50 mg/kg) and sacrificed. Blood was taken directly by cardiacpuncture. The 

heart and the left kidney, werecarefully taken, cleaned, and then weighed. The heart was after 

separation into left and right ventriclerespectively,also weighed.  Thereafter, cardiac and renal 

weight ratios were determined.  

 

 

Biochemical analysis 

After taken blood pressure, it was put into heparinized tubes and, thereafter the plasma was 

obtained by centrifugation 1500 g for 15 min. Plasma aliquots were stored at -80°C for 

subsequent determination of the electrolyte content, urea and uric acid. 

 

Vascular studies 

Vascular studies were performedusing main mesenteric artery rings according to a similar 

method described previously in our team (Lee et al., 2013).Briefly,rings were contracted with 

1 μM of phenylephrine (PE) before the application of increasing concentrations of 

acetylcholine (ACh)ranging from0.1 nM -10 μM to construct concentration-response curves. 

In some experiments, rings were exposed to an inhibitor for 30 min before contraction with 

PE. The NO-mediated component of relaxation was determined in the presence of 

indomethacin (10 μM) and TRAM-34 (1 μM) plus apamin (100 nM) to inhibit the formation 

of prostanoids and EDH-mediated relaxation, respectively. The EDH-mediated component of 

the relaxation was determined in the presence of indomethacin (10 μM) and Nω-nitro-L-
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arginine (L-NA, 300 μM) to inhibit the formation of prostanoids and NO, respectively. In 

endothelial-intact rings, rings were contracted with an increasing concentration of PE (0.1 

nM-10 μM) in order to obtain PE induced contractile responses. 

 

 

Immunofluorescence studies 

Main mesenteric arteries ring were removed, embedded in OCT compound (Tissue-Tek®, 

Sakura Finetek, Villeneuve d'Ascq, France) and snap-frozen in liquid nitrogen. Frozen arteries 

rings were cryosectioned at 14 μm. Sections were air-dried for 15 min and stored at -80 °C 

until use. The slides were fixed with paraformaldehyde (4%), washed and treated with 10% 

milk containing 0.1% Triton X-100for 1 h at room temperature to block non-specific binding. 

Next, overnight at 4 °C, mesentery artery sections were incubated with an antibody directed 

against either eNOS(1:50), NADPH oxidase subunits p22phox (1:50),cyclooxygenase-

1(COX-1, 1:250), cyclooxygenase-2 (COX-2, 1:200), or connexin 37 (Cx, 1: 100).  Sections 

were then washed with PBS, incubated with the secondary antibody (1/400, 633-conjugated 

goat anti-rabbit or anti mouse IgG ) for 2 h at room temperature in the dark before being 

washed with PBS and mounted in Dako fluorescence mounting medium (Dako, Carinteria, 

USA) and cover-slipped. For negative controls, primary antibodies were omitted. The samples 

were kept in the dark until, observation using a confocal laser-scanning microscope (Leica 

TSC SPE-Mannheim, Germany).Analyse for quantification of protein levels expression was 

performed using Image J software (NIH, Bethesda, Maryland, USA). 
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Determination of vascular reactive oxygen species formation 

 

Determination of in situ formation of reactive oxygen species (ROS) was performed into the 

main mesenteric artery rings using the oxidative fluorescent dye dihydroethidium (DHE) 

method. Mesenteric arterial rings (3-4 mm length) were embedded in OCT compound and 

snap-frozen in liquid nitrogen. Frozen arteries were cryosectioned at 25 μm. Sections were 

air-dried for 15 min and stored at -80 ◦C until use. Dihydroethidium (2.5 μM, Sigma) was 

applied onto unfixed cryosections of mesenteric arteries for 30 min at 37 °C in a light-

protected humidified chamber, before being mounted in Dako fluorescent mounting medium 

and cover-slipped. The sample were kept in the dark until fluorescence was determined using 

a confocal laser-scanning microscope. Analyse forquantification of the fluorescence intensity 

was performed using ImageJ software. 

 

Drugs 

DOCA was obtained from Sigma 

Antibodies 

Antibodies were purchased as indicated:  mouse anti-eNOS (BD Transduction Laboratories, 

East Rutherford, New Jersey, United States), COX-1 monoclonal antibody (Abacam, Paris 

France), COX-2 polyclonal antibody (Abacam, France), rabbit anti-p22phox (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), Alexa  633-conjugated goat anti-rabbit or anti mouse 

IgG, ( Life technologies, USA). 

 

Statistical analysis 
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Data are expressed as means ± standard error of mean (SEM) of n experiments. Mean values 

were compared by ANOVA followed by the Bonferroni post-hoc test to identify significant 

difference between treatments, using GraphPad Prism (version 5 for Microsoft windows. 

GraphPad software, Inc, San Diego, CA, USA). The difference was considered to be 

significant when the P <0.05. 

 

Results 

 

Intake of AEPA improves the DOCA-salt-induced hypertension 

 

After 5 weeks, the SBP (mmHg) increased significantly in DOCA-salthypertensive rats, 

compared to the control group (P < 0.05; Fig. 1).  Daily oral administration with AEPA (100 

or 300 mg/kg/day) significantly prevented the increasing of SBP observed in DOCA-saltrats 

by 24 and 21 mmHg, respectively at the end of treatment. The SBP of animal receiving only 

AEPA (100 mg/kg/day) remained unaffected compared to the control groups (P >0.05; Fig. 

1). 

 

Effect of AEPA treatment in cardiac structure and function 

 

Transthoracic echocardiography revealed that after 5 weeks, DOCA-salthypertensive rats 

developed an important modification of cardiac structure, marked by left ventricular 

hypertrophy, compared to the control group. We observed asignificant increase of PWT 

(1.58± 0.02 mmversus 2.24±0.05 mm in the control and DOCA-salthypertensive group 

respectively; Fig. 2A) and SWT (1.54±0.03 mm versus 1.77±0.05 mm in the control and 

DOCA-salt hypertensive group respectively; Fig. 2B). The LVM was also significantly 
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greater in DOCA-salt hypertensive group than control (1103.61±40.13mg versus 

755.29±24.66 mg; Fig. 2C). No significant modification of LVEDD was observed (P >0.05; 

Fig. 2D). The AEPA treatment (100 or 300 mg/kg/day) reduced significantly the increase of 

PWT by 0.36 mm and 0.30 mm respectively,SWT by 0.18 mm and 0.17 mm, LVM by 

268.55mg and 251.61mg respectively. Parameters for AEPA (100 mg/kg/day) remained 

unaffected compared to the control groups (P >0.05). 

Concerning cardiac function, our results show that, in DOCA-salt rats, IVRT was 

significantly increased compared to the control (35.5± 2.83ms versus 45.71±1.96 ms, 

respectively; Fig. 3A). AEPA treatment (100 or 300 mg/kg/day) improves these parametersat 

a value close to normal, 36.67±3.47 and 36.88± 2.37 ms respectively (Fig. 3A). No significant 

difference was observed between rats treated only with AEPA (100 mg/kg/day) and control 

group. The ejection fraction was affected slightly but not significantly in DOCA-salt rats 

compared to the control (P >0.05; Fig. 3B). 

 

Analyse of morphological parameters 

 

Post mortem morphometric analysis of organ shows that except right ventricularDOCA-salt 

rats increase significantly the cardiac (3.4 ± 0.23 versus 2.73 ± 0.08), left ventricular (1.34 ± 

0.11 versus 1.04 ± 0.05) and , left kidney (3.71 ± 0.18 versus 3.18 ± 0.12) weight indices, as 

compared respectively to the control group (Table1). The cardiac and kidneyweight indices 

were reduced in the DOCA-salt + AEPA groups (100 or 300 mg/kg/day), compared to the 

DOCA-salt rats (P ˂ 0.05; Table 1). These parameters remained similar between AEPA (100 

mg/kg/day) group and control rats (P > 0.05; Table 1). 
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Effect of DOCA-salt on plasma electrolyte levels 

DOCA-salt treatment increases the plasma uric acid level (11.25 ± 0.48 in DOCA-salt rats 

versus 7.00 ± 1.00 in control; Table 2) and decrease the plasma potassium level (4.18 ± 0.08 

versus 5.54 ± 0.2 in the control; Table 2). EAPA treatments (100 or 300 mg/kg/d) normalize 

the plasma levels of potassium (5.26 ± 0.3 and 5.14 ± 0.3 respectively; Table 2) and uric acid 

level (6.67 ± 0.52 and 8.0 ± 0.50 respectively; Table 2). 

At the end of experiment, the plasma sodium level in DOCA-salt rat increase slightly, but not 

significantly compare to the control group (147.50 ± 0.65 in DOCA-rats versus 143.20 ± 1.11 

in control; Table 2). The plasma chlorine and urea levels remained also unaffected (Table 2). 

 

 

AEPA improves the DOCA-salt-induced endothelial dysfunction in the mesenteric artery 

In mesenteric artery rings with endothelium, DOCA-salt treatment increase significantly 

phenylephrine-induced vasoconstriction compared to the control rats (P ˂ 0.05; Fig. 4A). In 

the DOCA-salt + AEPA groups (100 or 300 mg/kg/day), the phenylephrine induced-

contractile response was shifted to the right (Fig. 4A). The significant effect was obtained 

with AEPA at dose of 300 mg/kg/day (P ˂ 0.05; Fig. 4A). 

DOCA-salt group, present an endothelial dysfunction, marked by a significant reduction 

ofacetylcholine induced endothelium-dependent vasorelaxation, compared to the control 

group (P ˂ 0.05; Fig. 4B).Treatment with AEPA (100 or 300 mg/kg/day) improve these 

endothelial dysfunction (P ˂ 0.05; Fig. 4B). 

AEPA improves the DOCA-salt-blunted NO- and EDH-mediated relaxations in the mesenteric 

artery 
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In mesenteric artery rings with endothelium, both the NO-mediated (assessed in the presence 

of indomethacinand Tram-34 plus Apamin) and the endothelium-dependent hyperpolarization 

(EDH)-mediated (assessed in the presence of indomethacinand Nω-nitro-L-arginine) 

relaxation to acetylcholine were significantly reduced in the DOCA-salt group compared to 

the control group (P˂ 0.05; Fig.5A and Fig. 5B). Treatment with AEPAimproves the DOCA-

salt-blunted NO- and EDH-mediated relaxations in the mesenteric artery (Fig. 5A and Fig. 

5B). 

AEPA prevents the DOCA-salt-induced increased vascular oxidative stress and up-regulation 

of NADPH oxidase 

Immunofluorescence studies show that DOCA-salt treatment induced an important increased 

of vascular oxidative stress, attest by the significant increase of DHE fluorescence signal 

amounted to 124.17 ± 4.89 %, compared to control (100.00 ± 3.97 % ; Fig. 6A). This 

oxidative stress was accompanied by a significant increase of NADPH oxidase subunits 

p22phox (198.82 ± 17.17% in DOCA-salt rat versus 100.00 ± 17.34 %; Fig. 6B). AEPA 

treatmentprevents the DOCA-salt-induced increased vascular oxidative stress and up-

regulation of NADPH oxidase (P˂ 0.05; Fig. 6A and Fig. 6B). 

 

AEPA prevents the DOCA-salt-induced increased expression of eNOS and decreased 

expression of Cx37 

Immunofluorescence staining indicated a significant increased expressionofeNOS (188.22 ± 

12.91 %; Fig. 7A) and a decreased expression of Cx37 (32.39 ± 3.23 %; Fig. 7B) in DOCA-

salt rats compared to control rats. (P ˂ 0.05). AEPA treatment normalized these deleterious  

effect by preventing the DOCA-salt- induced increased expression of eNOS and decreased 

expression of Cx37 (P ˂ 0.05; Fig. 7A and Fig. 7B).   
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DOCA-salt-induced increased expression of COX-2, but not expression of COX-1 

The expression of COX-2 signal was significantly increased in DOCA-salt rats compared to 

the control (153.72 ± 12.44 %, versus 100.00 ± 9.07%; Fig. 8A). After treatment, a preventing 

effect was observed by a significant reduction of COX-2 levels expression in DOCA + AEPA 

(100 or 300 mg/kg/day) group (P ˂ 0.05; Fig. 8A). In contrast to COX-2 signal, the 

expression COX-1 levels expression remained unaffected (P ˂ 0.05; Fig. 8B). 

Discussion 

The present findings show that after 5 weeks ofinjection of deoxycorticosterone acetate 

(DOCA) followed by1% NaCl diet, ratsbecome hypertensive. This hypertension is associated 

to left cardiac hypertrophy and endothelial dysfunction. 

Concerning cardiac structure, our result is in agreement with previous study indicated that 

DOCA-salt induces cardiac hypertrophy, especially in left ventricular in rat (Fenning et al., 

2005). Transthoracic echocardiography result show an increase of PWT and SWT associated 

with an increase of LVM without any significant dilation of the left ventricular 

chamber, indicating that hypertrophy observed in rat was concentric type (Chan et al., 2006). 

Analyses of cardiac function show an impairment of diastolic function in DOCA-salt rats, 

attest by an increase of IVRT. Ejection fraction (LVEF) was slightly reduced, in DOCA-salt 

group. However, this parameter remained in the normal range i.e. upper than 50 % 

(Kawaguchi et al., 2003). This result is in agreement with previous study indicating that in 

hypertension, at early stages, cardiac diastolic function was prior affected before systolic 

function (Ayme-Dietrich et al., 2015). 

Moreover, the beneficial cardioprotective effect of AEPA in DOCA-salt rats was related to its 

ability to exhibit an antihypertrophic effectby reducing near to the normal PWT,SWT and 
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LVM, together with an improvement of cardiac function. Similar effect was reported with oral 

extract of Moringaoleiferaseeds which decreases the LVM and improves diastolic function in 

SHR (Randriamboavonjy et al., 2016). 

The experimental models of salt-insensitive hypertension induce also a renal damage 

(Manning et al., 2005).In this study, we found an increase of kidneyweight indices, an 

increase of uric acid and a depletion of potassium plasma levels in untreated pathological rats.  

Chronic hypokalemia has been involved incardiac hypertrophy, thus, 

potassiumsupplementations seem to be a strategy to prevent the development of cardiac 

hypertrophy (Wang et al., 2005; Liu et al., 2014). Our result shows that in hypertensive rats, 

EAPA treatment was able to restore near to the normal, the potassium plasma level. The same 

result was obtained with sesame oil and quercetin in DOCA-salt hypertensive rats (Galisteo et 

al., 2004; Liu et al., 2014). 

Endothelial dysfunction is a common vascular deleterious effect found in hypertension 

(Perez-Vizcaino et al., 2009). In the present study, we demonstrated that AEPA treatment 

prevent endothelial dysfunction by reducing the maximal contractile response to 

phenylephrine and an improvement of vascular effect of acetylcholine in DOCA-salt 

hypertensive rat. Moreover, endothelial dysfunction was corroborating by an impairment of 

both NO- and EDH-mediated relaxations in the mesenteric artery in DOCA hypertensive rats. 

Previous reports indicatethat in animal artery, endothelium-dependent relaxations to 

acetylcholine most likely involve a NO component (Furchgott and Zawadzki 1980) and an 

EDH component (Pannirselvam et al., 2006). Thus EAPA treatment prevent endothelial 

dysfunction by improvement of the bluntedof NO- and EDH-mediated relaxations in the 

mesenteric artery. Other natural product derived from plant extract such as red wine 

polyphenols (RWPs) or the sesame lignan, sesamin have been reported to restore endothelial 

function in DOCA-salt hypertension mainly by preventing vascular oxidative stress 
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(Jiménezet al., 2007;Nakano et al., 2008). We therefore examine the possibility that AEPA 

exert a beneficial effect on cardiovascular system by such mechanism, since the DOCA-salt 

hypertensive rat is described as a model of cardiovascular oxidative and inflammatory stress 

(Iyer et al., 2010). Interestingly, in the present study,in mesenteric artery of DOCA-

salthypertensive rat, we observed an increaseof reactive oxygen species production and an 

overexpression of NADPH oxidase subunits p22phox. It is well established that NADPH 

oxidase activation induces a release of ROS production, contributing to vascular endothelial 

dysfunction (Nediani et al., 2007). 

eNOS expression was up-regulated in the mesenteric artery of DOCA-salt hypertensive. We 

can explain this phenomenon by the fact that, in presence of vascular oxidative stress, 

tetrahydrobiopterin (BH4) can promote oxidation, anda compensatory mechanism take place 

and lead consequently to eNOs uncoupled (Landmesser et al., 2003).Thus, the effect of AEPA 

was similar in part toresveratrol which attenuates hypertension spontaneously inhypertensive 

rats by preventing endothelial nitric oxide synthase uncoupling (Bhatt et al., 2011).Connexin 

(Cx) protein subunits present into the gap junctions play a crucial role in EDH component of 

endothelium-dependent relaxation (de Wit et al., 2010). In accordance with our results, 

previous results haveindicated that vascular oxidative stress also reducesconnexin subunits 

expression such as Cx37, and thus leading to an impairment of EDH- mediated relaxation 

(Rashid et al., 2014). 

DOCA-salt hypertension promotes an overexpression of COX-2 in artery (Callera et al., 

2006).Such effect was most likely restored and the value observed was close to the normal 

level after AEPA treatment. These resultsare in agreement with previousin vivo and invitro 

studies, which have been showed that Phyllanthus species such as P. amarus or P.acidusare 

able to reduce inflammatory stress by inhibiting COX-2 overexpression(Kiemer et al., 

2003;Hossen et al., 2015). 
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In most human and experimental salt sensitivehypertension, antioxidant level is down-

regulated, thus antioxidant therapy can be helpful (Manning et al., 2005). Taken together, the 

antioxidant properties ofP. amaruspreviously described (Roengrit et al., 2014), might 

contribute to explain theability of AEPAto counteract the deleterious effectsdescribed in 

DOCA-salt rats. 

Altogether, our study indicates that AEPA has antihypertensive properties, and prevents 

endothelial dysfunction and cardiac hypertrophy in DOCA-salt hypertensive rats, in part, by 

preventing vascular oxidative stress. The antihypertensive effect of AEPA was associated 

with an improvement of the blunted NO- and EDH- mediated relaxation, and a reduced 

vascular oxidative stress level and improvement of target proteins (eNOS, Cx37, COX-2 and 

p22phox) and cardiac hypertrophy in DOCA-salt rats. 
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Résumé 
La présente étude évalue la capacité de EPA:DHA 6:1, une formulation d’omega-3 capable d’induire 
la formation continue de monoxyde d’azote par la NO synthase endothéliale, à prévenir 
l’hypertension et la dysfonction endothéliale induites par l’angiotensine II (Ang II) chez le rat. 
L’hypertension induite par l’Ang II est associée à une dysfonction endothéliale caractérisée par une 
altération des composantes de la relaxation et une augmentation des réponses contractiles 
dépendantes de l’endothélium. L’Ang II augmente le stress oxydant vasculaire et l’expression de 
NADPH oxydase, COXs, eNOS, et  AT1R, alors que SKCa et connexin 37 sont sous-exprimés. 
EPA:DHA 6:1 prévient l’hypertension, la dysfonction endothéliale et la surexpression des protéines 
cibles. En conclusion, la consommation chronique de EPA:DHA 6:1 prévient l’hypertension et la 
dysfonction endothéliale induites par l’Ang II chez le rat, probablement en  prévenant le stress 
oxydant dû à la NADPH oxydase et aux cyclooxygénases.  

 

 

Résumé en anglais 
EPA:DHA 6:1 has been shown to be a superior omega-3 formulation inducing a sustained 
endothelial NO synthase-derived formation of nitric oxide. This study examined whether chronic 
intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II 
(Ang II) in rats. Ang II-induced hypertension was associated with endothelial dysfunction 
characterized by blunted components of relaxation and increased endothelium-dependent contractile 
responses. Ang II increased the vascular oxidative stress, and the expression of NADPH oxidase 
subunits, COXs, eNOS, and AT1R whereas SKCa and connexin 37 were down-regulated. Intake of 
EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction, and improved 
expression of target proteins. In conclusion, chronic intake of EPA:DHA 6:1 prevented the Ang II-
induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- 
and cyclooxygenase-derived oxidative stress.  

 


