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Introduction

Since photons do not carry any electrical charge there is no photon-
photon interaction at tree level [1]. This is the main reason why optical
signals are the favorite technique for transferring information in a fast and
efficient way over large distances [2]. An other important reason is that
photons allow for a wider bandwidth compared to electrons [3] and thus a
higher information carrying capacity [4]. However, if the linearity of light
propagation through a vacuum allows for high-quality information trans-
fer, this same immunity to crosstalk and signal-signal interference makes
the photonic logic (fundamental in signal processing) very hard to imple-
ment. In order to enable light-light interaction one needs nonlinear optical
processes.

Typically, when a weak light beam travels through an optical medium
only linear optical processes take place, such as absorption or refraction. In
order to observe a nonlinear response a sufficiently intense light beam is
necessary: The associated electric field that acts on the electrons must be of
the same order of magnitude as the field produced by the nucleus [2]. If this
is the case, the index of refraction acquires a dependence on the amplitude
of the electric field of the beam. This is different from linear optics, where
the physics is taken into account by introducing an imaginary component
of the index of refraction. A famous example of nonlinear response is the
optical Kerr effect [5], where the light propagation depends on the local
irradiance of the field itself. The need for powerful lasers explains why the
first optical (classical) nonlinearities were only observed in the 1960s [6].

From then until today, the research has progressed greatly towards the
implementation of optical nonlinearities at lower and lower light powers
[7]. The ultimate limit for this progressive increase in resolution and ac-
curacy is the quantum regime, where single photons interact so strongly
between each other that the behavior of light pulses composed of a few pho-
tons heavily depends on the number of photons. At quantum level the non-
linear coefficients of the conventional optical materials are extremely small.
However, there are several techniques to implement strong interactions be-
tween individual photons. This regime was first theoretically investigated
by early works [8–10] in the 1980s. The emerging field of quantum infor-
mation and computing [11] constituted an additional pressing motivation
towards looking for experimental results.

The first experimental work dates back to 1995 [12] where a single atom
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was placed inside an optical cavity in the strong coupling regime. This work
has demonstrated the realization of nonlinear optical susceptibility at quan-
tum level. By employing the atomic saturation, the authors of the paper
managed to apply a shift (19° ± 3°) to the phase of one photon. They also
proposed to use this nonlinearity for a quantum-phase gate. The work pre-
sented in Ref. [12] was the first experimental step towards photonic quan-
tum logic. After then, many advances have been made: The realization of
nonlinear all-optical routers [13, 14] as well as switches [15–21] (even at ul-
trafast timescale [22]) and controlled-phase gates [12, 23–26] could allow
for high-quality quantum information manipulation and communication
through quantum networks [27].

Nonlinearities between single quanta of radiation are useful not only in
quantum information science but also in fields such as quantum metrol-
ogy [28] or microscopy [29]. Furthermore, photon-photon nonlinearities
pave the way towards new nondestructive ways to detect [30] and sort [31,
32] photons, create deterministic single-photon sources [33] and tailor di-
rectional scattering processes [34–36]. Nonlinear optics at quantum level
would enable all those applications that need creation and processing of
nonclassical fields.

Nowadays there are several ways to realize strong photon-photon in-
teractions: All of them rely on a non-photonic counterpart (an atom or an
ensemble of atoms) which mediates the interaction between photons. The
stronger the interaction between each photon and the non-photonic coun-
terpart the stronger the resulting photon-photon effective interaction. The
nonlinear nature of such interaction originates either from the nature of the
electronic spectrum of the non-photonic element (e.g. atomic saturation or
atom-atom interactions) or from its mechanical degrees of freedom; in the
latter case we are in the domain of optomechanics [37, 38].

The most elementary platform to realize photon-photon nonlinearities
consists in placing one atom inside a high-finesse cavity and employing
atomic saturation; this procedure was used in the pioneering work [12]. In
this fundamental cavity quantum electrodynamics platform, the element
that mediates the interaction between two photons is an atom. The role
of the cavity is to enhance the probability for a single photon to interact
with the atom: Due to the cavity mirrors the photon bounces back and forth
through the intracavity space several times, which enhances the probabil-
ity for a photon to interact with the atom; namely, the higher the cavity fi-
nesse the higher such probability. For a two-level atom coupled to a cavity,
the nonlinear nature of the interaction comes from the shape of the energy
spectrum of the Jaynes-Cummings Hamiltonian [39] which naturally arises
when an atom is placed inside a resonator. The Jaynes-Cummings spectrum
depends on the square root of the photon number and this anharmonicity
can be used to realize interesting nonlinear effects such as photon blockade
[40] or a two-photon gateway [41] as well as a single-atom quantum mem-
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ory [42] and quantum gates [43]. The drawback of this method is the short
lifetime of the excited state of the atom [2]. However, one can use multilevel
atoms with metastable states [44, 45]. This atom-cavity platform can be re-
produced also in solid-state systems by fabricating microring resonators in
monocrystal diamonds and coupling the cavity photons to individual ni-
trogen vacancies [46, 47] or by using semiconductor quantum dots [48–51].

A more complex method to realize quantum optical nonlinearities, which
does not need any cavity, consists in employing the electromagnetic induced
transparency technique in order to create slow photons traveling through
an ensemble of atoms [45, 52]. In this case, a preferred nonlinear medium
is composed of a trapped cold gas of three-level atoms in Rydberg states
[31, 53–56]. Rydberg atoms are convenient because of their strong dipole
moments and therefore strong mutual interactions. Additionally, the Ry-
dberg blockade mechanism [57–59] enhances the probability for an atom-
photon interaction: From the point of view of the photon, every atom be-
haves as a giant superatom of radius equal to the blockade radius. This
effect is similar to that one described by the finesse of a resonator but unlike
the cavity case, where one photon approaches many times the same atom,
here one photon approaches a superatom characterized by a larger cross
section, proportional to the number of atoms inside a Rydberg volume. If
this number is large enough, nonlinearities happen [60–62].

In a dissipative regime, where two photons close enough to each other
break the electromagnetic induce transparency condition and get absorbed
by the medium, an effective photon-photon repulsion can be implemented
[31]. On the contrary, in a dispersive regime one can implement an effec-
tive photon-photon attraction [56]; in this case the index of refraction of
the medium depends on the photon-photon separation. Rydberg media
demonstrate attraction between photons owing to the formation of bound
bipolariton states [63, 64].

For an atom in a high-finesse cavity in the strong coupling regime or for
a large enough Rydberg volume (when the cooperativity of the system is
much larger than unit) the atom and the cavity exchange photons on a time-
scale much faster than any other dynamical process: From the point of view
of the system atom and photon can not be anymore distinguished. These hy-
bridize and form a bosonic quasiparticle which is called exciton-polariton or
just polariton [65]. Polaritons are coherent superpositions of a cavity photon
and an exciton. Owing to their mixed nature, polaritons have many fasci-
nating properties such as a lighter effective mass than the atom and thus a
steeper dispersion relation or, in other words, a larger group velocity [66]
(on the other hand, dressed photons can account for mechanisms such as
“slow light”). Polaritons in semiconductor microcavities show superfluid-
ity [67] and for a sufficiently high density can condensate [65, 68–72]; in
recent years, Bose-Einstein condensates of organic polaritons were realized
at room temperature [73, 74]. Due to the progressive improvement in fab-
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ricating semiconductor microcavities [75–79] Bose-Einstein condensates of
polaritons are promising candidates for quantum simulations.

Until now we have considered nonlinearities caused by the electronic
spectrum of an atom. However, optical nonlinearities can be mediated also
by the phononic vibrations. This is what happens in optomechanical sys-
tems [37] where the spatial motion of a mechanical element (or an ensem-
ble of mechanical elements) produces a shift in the resonance frequency of
the surrounding resonator. A sufficiently strong optomechanical coupling
can lead to quantum nonlinear optical phenomena such as photon blockade
effect [80] or optical bistability at photon numbers below unity [81]. There
are also theoretical proposals for realizing effective photon-photon interac-
tions [82].

In free space a light beam can not be focused to subwavelength mode
volumes. In the last years, much experimental effort has been devoted to
fabricating light-matter nanointerfaces whose radiation modes can access
diffraction-limited volumes such as photonic crystal waveguides [83–88],
optomechanical crystals [89–92], tapered optical fibers [93–95], or conduct-
ing nanowires [96, 97]. All these platforms allow for integration of nanopho-
tonics with atomic systems. Since the diameter of the tapered fibers must
be smaller than the wavelength of the guided mode, the atoms are placed
outside of the fiber and are coupled to the evanescent field. Up to now
this was done for more than 1000 cold atoms [83]. An attractive alternative
are the hollow-core photonic crystal fibers [98–100] where as many as 105
atoms [100] can be accommodated inside the micrometer core. All these
platforms combined together with nano- and micro-size photonic crystal
cavities [101–103] could allow for the implementation of quantum networks
[13, 16, 104]. Finally, strong optical nonlinearities can be achieved also in
some optical materials [105] such as graphene [106]

Even though most research works are devoted to single-photon physics,
nonlinear optics can of course involve also many-body photonic systems.
Because of the high capacity, fibers can present a nonlinear response [107].
From a quantum point of view researches have been performed on solitons
in fibers [108, 109]. Also photon bound states in Kerr nonlinear media have
been theoretically studied in 1990s [110–112] and, recently, effective two-
photon bound states have experimentally been observed in Rydberg nonlin-
ear media [56]. There are also proposals for systems of coupled cavity arrays
(Jaynes-Cummings-Hubbard model) where photons can hop from one cav-
ity to another, and each cavity contains a single emitter [66, 113–118]. Here,
the nonlinearities are provided by the nodes of this photonic network due
to the anharmonicity of the Jaynes-Cummings eigenenergies. The interplay
between the linear propagation in the intercavity vacua and the nonlinear
nodes is expected to give rise to phase transitions. Arrays of resonators can
of course be combined with Rydberg atoms [119]. There are also propos-
als for the observation of novel collective states of light, such as crystal-like
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states in optical fibers [120] and Rydberg media [121].

In this thesis we study several methods to implement strong photon-
photon nonlinearities, ranging from quasiperiodic photonic crystals to Ry-
dberg atoms inside a cavity. We also study the transport of an atomic ex-
citation through an array of two-level emitters embedded in a cavity and
show that the polaritonic modes can enhance the efficiency of the transport
and help overcome the localization induced by possible disorder in atomic
position and dipole orientation.

The thesis is organized as follows. Chapter 1 is devoted to an optome-
chanical problem. First, we analyze a high-finesse cavity surrounding a
quasiperiodic stack of dielectric membranes affected by a quadratic spatial
defect and we extend the results of Refs. [122, 123]; then, we use this model
to simulate an optomechanical photonic crystal [89, 92]. We show that the
presence of the defect greatly enhances the linear and quadratic optome-
chanical couplings for the array in the cavity. On the contrary, the enhance-
ment for the crystal is only caused by the extreme localization of the light
within tiny mode volumes. Sec. 1.1 reviews the transfer matrix formalism.
In Sec. 1.2 we describe the optomechanical platforms. In Sec. 1.3 we perform
a study of the array embedded in the cavity: In Sec. 1.3.1 we work out the
transfer matrix for the quasiperiodic array of membranes up to first order in
defect magnitude whereas in Secs. 1.3.2 and 1.3.3 we perform a numerical
study of the optical response of the medium and the linear and quadratic
optomechanical couplings, respectively. In Sec. 1.3.4 we exemplify our find-
ings with an experimental case. In Sec. 1.4 we move to the second platform,
the photonic crystal. First, in Sec. 1.4.1 we study the outer equidistant parts,
then in Sec. 1.4.2 we study the crystal as a whole. In Sec. 1.4.3 we discuss
the structure of the optical modes inside the crystal. Finally, Sec. 1.5 sum-
marizes the main results.

Appendix 1.A reviews the findings of Refs. [122, 123]. Appendix 1.B
contains the algebraic computations leading to the first-order transfer ma-
trix for the quasiperiodic array. Appendix 1.C exposes the Chebyshev’s
identity. In Appendix 1.D some considerations about the optical response
of an empty Fabry-Pérot cavity are carried out. Appendix 1.E reviews a
few aspects of the band structure for an infinite one-dimensional photonic
crystal. Finally, Appendix 1.F quickly reviews the Kronig-Penney model by
strictly following Ref. [124].

In Chapter 2 we consider the transport of an exciton through a cavity.
We show that the polaritonic modes allow for a ultrafast propagation of the
exciton through the cavity and help overcome the exponential suppression
induced by disorder [125]. In Sec. 2.1 we illustrate the model. Sec. 2.2 re-
views the concept of polariton as well as its most basic properties. In Sec. 2.3
we consider a wave-packet scattering problem applied to our model and
present both analytical (Sec. 2.3.1) and numerical (Sec. 2.3.2) results con-
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cerning the transmission of the wave packet through the cavity. In Sec. 2.4
we include dissipation in the model and by employing the master equation
formalism we study the steady-state current in the system under incoher-
ent pumping from the left side of the cavity. Finally, Sec. 2.5 summarizes
the main results.

In Appendix 2.A we provide a solution for the Schrödinger equation as-
sociated to the model and find the polaritonic eigenstates. In Appendix 2.B
we show the analytical time-independent computations about the polari-
tons and the transmission of the wave packet through the cavity. In Ap-
pendix 2.C we consider some realistic parameters.

In Chapter 3 we consider photons coupled to an array of cold atoms
trapped in an optical lattice inside a hollow-core photonic crystal fiber. We
study photon-photon interactions mediated by hard-core repulsion between
excitons. We show that, in spite of underlying repulsive interaction, pho-
tons in the scattering states demonstrate bunching, which can be controlled
by tuning the interatomic separation. In Sec. 3.1 we introduce the model.
In Sec. 3.2 we provide a solution for the associated Schrödinger equation
and plot the wave functions for three exemplar eigenstates. In Sec. 3.3 we
consider the kinematics of two bare excitons interacting via kinematic inter-
action. Sec. 3.4 provides a qualitative explanation for the bunching effect.
Sec. 3.5 deals with the dependence of the bunching over the experimen-
tal parameters. Sec. 3.6 considers the possibility of having two-polariton
bound states (bipolaritons) when the spectrum becomes gapped. Finally,
Sec. 3.7 summarizes the results.

Appendix 3.A presents an analytical explanation for the bunching mech-
anism.

In Chapter 4 we extend the findings of Chapter 3 to Rydberg atoms. The
presence of a forbidden blockade volume results in an extended kinematic
interaction, which further enhances the bunching. We also study the effect
of dynamical interactions on top of the hard-core repulsion. In Sec. 4.1
we introduce the model. In Sec. 4.2 we solve the associated Schrödinger
equation when the center of mass of the two-excitation system is at rest.
In Sec. 4.3 we provide the numerical solution to the problem and plot the
two-polariton wave functions. In Sec. 4.4 we analytically solve the prob-
lem of two bare excitons interacting via an extended kinematic repulsion.
Then, we add the photonic degrees of freedom and use these results to un-
derstand the kinematics of two polaritons in Sec. 4.5. Sec. 4.6 is devoted to
the numerical study of bunching. In Sec. 4.7 we switch on the dynamical
interaction and study its contribution; for attractive interaction we look at
the bound states that form below the continuum. Sec. 4.8 is devoted to the
study of the in-gap bipolaritons, which form for a kinematic or a repulsive
dynamical interaction. Finally, Sec. 4.9 summarizes the main results.

In Appendix 4.A we review the basic properties of Rydberg atoms. In
Appendix 4.B we solve the Schrödinger equation for a generic total wave
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vector. In Appendix 4.C we calculate the dispersion relation for the simple
case of two bare excitons interacting via a long-range dynamical interaction.

Chapter 1 can be found in:
E. Tignone, G. Pupillo, C. Genes,
Transmissive optomechanical platforms with engineered spatial defects,
Phys. Rev. A 90, 053831 (2014)

Chapter 2 can be found in:
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Finally, Chapter 4 contains the results of:
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Cavity polaritons with Rydberg blockade and long-range interactions,
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1
Transmissive optomechanics with engineered spatial

defects

Cavity optomechanics is the branch of physics that explores the interac-
tion between optical and mechanical degrees of freedom in driven electro-
magnetic cavities [37, 126].

Micromechanical and nanomechanical motion of massive oscillators in-
side a cavity can be controlled at the quantum level via the cavity radiation.
For instance, cooling to the motional quantum ground state of several me-
chanical objects has already been achieved, ranging from atoms [127] to
mirrors [128] to microtoroids [129] and submicron particles [130, 131]. An
example of a classical optomechanical system is illustrated in Fig. 1.1.

In an optomechanical platform the frequency of the cavity mode 𝜔c de-
pends on the spatial displacement �̂� of the mechanical oscillator [37, 38,
132]. Such a dependence can be Taylor-expanded, and for most experimen-
tal situations it suffices to keep the linear term:

𝐻 = ℏ(𝜔c(0) − 𝑓
(1)
𝑐 �̂�)�̂�†�̂� + ℏΩm�̂�†�̂� + ... (1.1)

Here,Ωm is the mechanical frequency of the massive oscillator; �̂� destroys a
photon in the cavity mode whereas �̂� destroys a phonon in the mechanical
mode of the oscillator; 𝑓(1)𝑐 = 𝜕𝜔c(�̂�)/𝜕�̂�|�̂�=0 is the optomechanical frequency
shift per displacement. The force term ℏ𝑓(1)𝑐 �̂�†�̂� represents the radiation pres-
sure; it derives from the momentum transfer when a single photon hits the
oscillator.

In the rotating frame at the incoming laser frequency 𝜔L = 𝜔c(0) + Δ,
the displacement �̂� can be expressed in terms of phononic operators as �̂� =
𝑥0(�̂� + �̂�†) with 𝑥0 the size of the zero point fluctuations 𝑥0 = √ℏ/2𝑚effΩm:

𝐻 = −ℏΔ�̂�†�̂� − ℏ𝑔(1)
0 (�̂� + �̂�†)�̂�†�̂� + ℏΩ𝑚�̂�†�̂� + ... (1.2)

In expansion (1.2) 𝑔(1)
0 = 𝑓(1)𝑐 𝑥0 is the so-called linear optomechanical

coupling between a single photon and a single phonon; it measures the shift
of the optical frequency of the cavity mode 𝜔c produced by a zero point
mechanical displacement of the oscillator inside the cavity. Typically 𝑔(1)

0 is
smaller than both Ω𝑚 and the decay rate 𝜅 of the cavity.

1



2 Transmissive optomechanics with engineered spatial defects

Figure 1.1: A classical optomechanical problem consists of a laser-driven Fabry-
Pérot cavity whose light mode exerts a radiation pressure force ℏ𝑓(1)𝑐 �̂�†�̂� (see main
text) on one of the side mirrors, which is free to vibrate. Source: Ref. [38].

Had we kept also the quadratic term in Taylor expansion (1.1), we would
have had the quadratic optomechanical coupling 𝑔(2)

0 as well. It is given by
𝑔(2)
0 = 𝑓(2)𝑐 𝑥20, where 𝑓(2)𝑐 is 𝑓(2)𝑐 = 𝜕2𝜔c(�̂�)/𝜕�̂�2|�̂�=0.

Unlike the linear coupling, which allows for readout of the mechanical
displacement �̂� of the membrane hit by photons [133, 134], the quadratic
coupling can be used for a quantum nondemolition measurement of the
energy of the membrane and a high-quality obervation of its quantized na-
ture [135, 136].

Improving both couplings is a main goal for the current generation of
optomechanical experiments [80, 136–141].

Although most optomechanical studies have so far focused on platforms
consisting of a single mechanical element in a Fabry-Pérot cavity setup [142–
145], recent works have started to investigate multi-element approaches from
both a theoretical [122, 123, 146–156] and experimental [157–161] point of
view. This latter approach allows for large collective mechanical effects and
is therefore a promising step towards the enhancement of both linear and
quadratic optomechanical couplings.

In the limit of a one-dimensional scattering problem, an efficient analyt-
ical approach to these multi-element systems is provided by the so-called
transfer matrix formalism, which is reviewed in Sec. 1.1.

Interesting experiments have been performed in this direction, by em-
ploying ensembles of 𝑁 atoms either in a cloud [133] or trapped in optical
lattices [162] which have indeed shown an improved linear optomechanical
coupling 𝑔(1)

0 proportional to √𝑁.
Theoretical proposals have recently shown that 𝑔(1)

0 can be further en-
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hanced by using cavities surrounding an array of𝑁 equidistant membranes
characterized by a polarizability 𝜁. For these systems a linear optomechan-
ical coupling scaling as 𝜁2𝑁3/2 has been predicted. The main results con-
cerning this model are collected in Appendix 1.A.

Eventually, also quasiperiodic photonic crystals have demonstrated a re-
markable increase in the strength of the linear coupling [89, 92]. In this case
the increase is due to the localization of light within a small volume inside
the dielectric structure and the following activation of collective vibrational
modes defined by an engineered quadratic defect and localized within the
same reduced volume.

Inspired by these quasiperiodic crystals, in this chapter we extend the
investigations of Refs. [122, 123] to quasiperiodic arrays in the presence of
engineered spatial defects in the membrane positions; we place the array
inside a high-finesse optical cavity and demonstrate that indeed a tremen-
dous enhancement in both linear and quadratic couplings is possible. We
also build up a simple theoretical model for the photonic crystals them-
selves. For the crystal case, however, we show that a further increase of the
optomechanical couplings induced by the defect can not be reached.

This chapter is organized as follows. Sec. 1.1 reviews the transfer matrix
formalism. In Sec. 1.2 we introduce both of the above-mentioned optome-
chanical platforms: The quasiperiodic array surrounded by a cavity and the
photonic crystal. In Sec. 1.3 we study the array inside the cavity. First, we
find the transfer matrix for the quasiperiodic array up to first order in defect
magnitude (Sec. 1.3.1 and 1.3.2), then the linear and quadratic couplings are
numerically studied (Sec. 1.3.3). In Sec. 1.3.4 we exemplify our findings with
an experimental case. Sec. 1.4 is instead entirely devoted to the study of the
photonic crystal. We analyze the outer parts of the crystal (Sec. 1.4.1) as
well as the crystal as a whole (Sec. 1.4.2) and make some general consider-
ations about the structure of the optical modes inside it (Sec. 1.4.3). Sec. 1.5
contains the conclusions of the chapter.

Appendix 1.A presents the main results of Refs. [122, 123]. The algebraic
steps to obtain the approximate transfer matrix for the quasiperiodic ar-
ray are gathered in Appendix 1.B. Appendix 1.C illustrates the Chebyshev’s
identity. Appendix 1.D considers the optical response of an empty Fabry-
Pérot cavity. Appendix 1.E reviews a few features of the band structure
for an infinite one-dimensional photonic crystal. Eventually, Appendix 1.F
presents the Kronig-Penney model, by following Ref. [124].

The results from this chapter have been collected in the following paper,
published during the PhD:

E. Tignone, G. Pupillo, C. Genes,
Transmissive optomechanical platforms with engineered spatial defects,
Phys. Rev. A 90, 053831 (2014)

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.053831
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1.1 Transfer matrix formalism

This formalism treats the one-dimensional problem of light impinguing on
a mechanical element (scatterer), provided that its interaction with the elec-
tromagnetic field 𝐸(𝑥, 𝑡) is linear [122, 123, 163].

The one-dimensional Helmoltz equation for an electric field 𝐸(𝑥, 𝑡) =
𝐸(𝑥)𝑒𝑖𝜔𝑡 which at a time 𝑡 = 0 interacts with a scatterer at 𝑥 = 0 is

􏿰𝜕2𝑥 + 􏿵
𝜔
𝑐
􏿸
2
𝜖𝑟(𝑥)􏿳 𝐸(𝑥) = 0. (1.3)

The relative permettivity is 𝜖𝑟(𝑥) = 𝜖𝑟0+𝛿𝜖𝑟(𝑥)where the first contribution 𝜖𝑟0
is the vacuum permettivity whereas the second one describes the dielectric
scatterer:

𝛿𝜖𝑟(𝑥) =
2
𝑘
𝜁𝛿(𝑥). (1.4)

In Eq.(1.4) the wavevector 𝑘 = 2𝜋/𝜆 is equal to the frequency 𝜔 divided
by the speed of light in the vacuum 𝑐.

The optical element, which is treated as a beam splitter, is fully charac-
terized by a polarizability 𝜁 which is real and negative (in the absence of
absorption). The polarizability 𝜁 is connected to the amplitude reflectivity
𝑟 of the optical element via

𝑟 =
𝑖𝜁

1 − 𝑖𝜁
, (1.5)

that is

𝑅 = |𝑟|2 =
𝜁2

1 + 𝜁2
. (1.6)

Here 𝑅 is the intensity reflectivity.
The transfer matrix approach is a very useful tool when the electric field

travels through a set of multiple elements, for instance an array of thin di-
electric membranes, or mirrors, or a chain of ultracold atoms trapped in an
optical lattice.

The left and right propagating waves at the left and right side of the 𝑖-th
scatterer (with polarizability 𝜁𝑖) can be expressed as vectors as

𝐸(±)𝑖 = (𝐸±𝐿,𝑖, 𝐸±𝑅,𝑖)𝑇 (1.7)

and the scattering of the light field is then simply described by𝐸−𝑖 = 𝑀𝑖(𝜁𝑖)𝐸+𝑖 ,
with

𝑀𝑖(𝜁𝑖) = 􏿰
1 + 𝑖𝜁𝑖 𝑖𝜁𝑖
−𝑖𝜁𝑖 1 − 𝑖𝜁𝑖􏿳

. (1.8)

Matrix (1.8) is called transfer matrix of scatterer 𝑖.
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The propagation of the beam over a distance 𝑑𝑖,𝑖+1 through free space
between the 𝑖-th and the 𝑖+1-th elements is instead described by the matrix

𝐹(𝑑𝑖,𝑖+1) = 􏿰
𝑒𝑖𝑘𝑑𝑖,𝑖+1 0
0 𝑒−𝑖𝑘𝑑𝑖,𝑖+1􏿳 . (1.9)

For a sequence of membranes, the total transfer matrix is the product of
the transfer matrices of the single elements.

For any one-dimensional optical system, no matter how complicated it
is, the transfer matrix can always be read as

𝑀 = 􏿰
𝑀11 𝑀12
𝑀21 𝑀22

􏿳 =
1
𝑡 􏿰
𝑡2 − 𝑟2 𝑟
−𝑟 1􏿳 (1.10)

so that the complex amplitude transmissivity is 𝑡 = 1/𝑀22 while the po-
larizability is 𝜁 = −𝑖𝑟/𝑡 [cf. matrix (1.8)]. More details can be found in the
Supplemental Material of Ref. [122].

In order to simplify the notation, from now on we will refer to intensity
reflectivity and intensity transmissivity as simply reflectiviy and transmis-
sivity (or reflection and transmission), respectively.

1.2 The optomechanical platforms

We consider 𝑁 equidistant membranes arranged around the origin (𝑥 = 0)
according to

𝑥0𝑗 = 𝐷􏿶−
1
2
+
𝑗 − 1
𝑁 − 1􏿹

, (1.11)

where 𝑥0𝑗 is the position of the 𝑗-th membrane.
Each dielectric membrane has a polarizability 𝜁, and the distance be-

tween two adjacent membranes is 𝑑 = 𝐷/(𝑁 − 1). This array of membranes
behaves as a single optical discrete medium, whose overall length is D.

To mimic the quadratic defect in Refs. [89, 92] we push the membranes
progressively towards the center of the ensemble, while keeping 𝐷 fixed; it
is pretty much like squeezing an accordion. The position 𝑥𝑗 of element 𝑗 is
thus

𝑥𝑗 = 𝑥0𝑗 −
𝛼
𝑑 􏿶

𝐷2

4
+ 𝑥0𝑗

2
􏿹 sgn(𝑥0𝑗 ), (1.12)

where 𝛼 is the dimensionless magnitude of the defect (𝛼 = 0 is the equidis-
tant configuration).

Eq. (1.12) shows that the separation between neighboring membranes
decreases continuously, following a quadratic law, when proceeding from
the sides of the array towards its center.

The defect 𝛼 can not be arbitrarily large; there is a physical threshold
above which membranes can not be pushed: Left membranes, that are being
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pushed rightwards, and right membranes, that are being pushed leftwards,
can not compenetrate each other. This constraint sets 𝛼 = 2/[𝑁(𝑁 − 1)] and
𝛼 = 4/[(𝑁 − 3)(𝑁 + 1)] as upper bounds in case of an even and odd number
𝑁 of membranes, respectively.

The optomechanical setups that we are going to analyse in this chapter
are depicted in Fig. 1.2.

The first platform includes a high-finesse Fabry-Pérot cavity (whose ba-
sic properties are reviewed in Appendix 1.D). Namely, we surround the
above-mentioned array with two mirrors located at ±𝐿/2 with 𝐿 ≫ 𝐷, see
Fig. 1.2a. Tuning 𝐿 allows for modifications of the free spectral range 𝑘𝐹𝑆𝑅 =
𝜋/𝐿 of the bare optical cavity: A large 𝐿 can make 𝑘𝐹𝑆𝑅 smaller than the width
of typical wave-vector window over which the optical response of the cen-
tral array presents strong variations, which entails a higher sensitivity for
operational procedures in 𝑘-space.

With the second platform, shown in Fig. 1.2b, we try instead to simulate
a quasiperiodic photonic crystal as in Refs. [89, 92]. We position two arrays
of𝑁𝑚 membranes with polarizability 𝜁𝑚; one is placed on the left of element
1 of the middle array and one on the right of element 𝑁. These membranes
are separated from the central ensemble and from each other by a distance
𝑑𝑚. Unlike the previous platform, the dependence of the reflectivity 𝑅 on
the wave vector 𝑘 of the impinging wave is not fixed. We will demonstrate
in Sec. 1.4.1 that the optical response 𝑇(𝑘) = 1 − 𝑅(𝑘) depends on 𝑑𝑚.

As in Refs. [122, 123], throughout this chapter we work in the so-called
transmissive regime, illustrated in Appendix 1.A, where the central array
is transparent to light and all 𝑁 membranes are free to oscillate, indepen-
dently, around their equilibrium positions.

As explained in the Introduction to this chapter, we quantify the op-
tomechanical couplings by measuring the changes induced by these me-
chanical displacements (or oscillations) on the resonances of system, each
resonance being identified by the corresponding wave vector 𝑘 = 𝜔𝑐/𝑐, where
𝜔𝑐 is the resonant frequency of the whole medium and 𝑐 the speed of light
in the vacuum. We apply the definition of 𝑔(1)0 and 𝑔(2)0 , see Introduction, to
the element 𝑗 of the array:

𝑔(1)𝑗 = 𝑐
𝛿𝑘
𝛿𝑥𝑗

𝑥0 and 𝑔(2)𝑗,𝑗′ = 𝑐
𝛿2𝑘
𝛿𝑥𝑗𝛿𝑥′𝑗

𝑥20. (1.13)

Notice that, unlike the Introduction, where a single mechanical element
was considered, for a multiple set of oscillators also cross terms (𝑗 ≠ 𝑗′)
must be taken into account for the quadratic coupling. As a matter of fact,
the displacement of an oscillator depends on the effect of a second distant
membrane onto the cavity field.

For a single membrane in the middle of a cavity, the couplings are
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d

equidistant

with defect

b

defect region

mirror regionmirror region
a

Cavity multi-element platform Optomechanical crystal

Figure 1.2: a) In an optical cavity, light propagates through an equidistant array
of membranes in a transparent configuration. Localization of the cavity mode
becomes possible when quadratic spacing defects are introduced (see inset). b)
One-dimensional model of a quasiperiodic optomechanical crystal; the side re-
gions effectively behave as dispersive mirrors while the central region hosts the
quadratic defect.

𝑔(1)0 =
2𝑐𝑘
𝐿

𝜁

√1 + 𝜁2
𝑥0 and 𝑔(2)0 =

2𝑐𝑘2

𝐿
𝜁𝑥20. (1.14)

The momentum transferred from a photon to a mechanical oscillator is en-
hanced by surrounding the oscillator with a couple of mirrors, since the
same photon bounces back and forth several times, and hits the oscillator
several times: This provides a heuristic explanation for the 1/𝐿 dependence
in couplings (1.14).

For the rest of the chapter we will adopt the optimal value

𝑔(1)0 =
2𝑐𝑘
𝐿
𝑥0 ≡ 𝑔 (1.15)

as a benchmark. It is obtained at unit reflectivity 𝑅 = 1, that is 𝜁 ≫ 1 [see
Eq.(1.6)].

1.3 Array with engineered quadratic defect

In this section we perform a study of the first optomechanical platform
presented in Sec. 1.2 and depicted in Fig. 1.2a. First, we analyze an array
affected by a quadratic spatial defect in membrane positions; then, we put
it inside a high-finesse optical cavity and study the optical response of the
compound setup.

1.3.1 Transfer Matrix

We compute an analytical expression of the transfer matrix for an array with
quadratic defect, see inset in Fig. 1.2a.
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The transfer matrix for a membrane 𝑖 with polarizability 𝜁𝑖 is 𝑀𝑖(𝜁𝑖) =
𝕀 + 𝑖𝜁𝑖(𝜎1 + 𝑖𝜎2), see also Eq. (1.8) for the matrix form. Here 𝜎1, 𝜎2 are Pauli
matrices and 𝕀 is the two-times-two identity matrix.

To mimic a typical experimental setup, all membranes are chosen to have
the same polarizability 𝜁, that is 𝑀𝑖(𝜁𝑖) = 𝑀(𝜁) ≡ 𝑀 for any 𝑖 ∈ {1, ..., 𝑁}.

In order to further simplify the notation we also dub 𝐹𝑖,𝑖+1 the free-space
matrix 𝐹(𝑑𝑖,𝑖+1) [see Eq. (1.9)] which describes the light propagation through
the free space between membrane 𝑖 and 𝑖 + 1; it can be written in a more
compact form by using the Pauli matrix 𝜎3 as 𝐹𝑗,𝑗+1 = 𝑒𝑖𝑘(𝑥𝑗+1−𝑥𝑗)𝜎3, where 𝑥𝑗
indicates the position of membrane 𝑗, see Eq. (1.12).

The transfer matrix for the entire array simply consists in an alternate
sequence of 𝑀’s and 𝐹’s matrices:

𝑀𝑎𝑟 = 𝑀 ⋅
⎛
⎜⎜⎜⎜⎝
𝑁−1
􏾟
𝑗=1

𝐹𝑗,𝑗+1 ⋅ 𝑀
⎞
⎟⎟⎟⎟⎠ . (1.16)

The distance between neighboring membranes is 𝑥𝑗+1 − 𝑥𝑗 = 𝑑𝑗,𝑗+1, and
its correction to the equidistant configuration, where 𝑑𝑗,𝑗+1 = 𝑑 for every
𝑗 ∈ [1, … ,𝑁 − 1] (see Appendix 1.A), is

d𝑗,𝑗+1 =
𝑑 − 􏿴𝑥𝑗+1 − 𝑥𝑗􏿷

𝛼
(1.17)

so that 𝑑𝑗,𝑗+1 = 𝑑 − 𝛼d𝑗,𝑗+1.
Since the defect is symmetric with respect to reflection about the center

of the array (𝑥 = 0) the correction obeys d𝑖,𝑖+1 = d𝑁−𝑖,𝑁−𝑖+1 for any positive
integer 𝑖 ∈ {1, Floor[(𝑁 − 1)/2]}.

Unfortunately, an analytical expression for matrix (1.16) valid for any
defect magnitude can not be obtained. We can nevertheless consider the
defect as a small perturbation 𝛼 ≪ 1 to the equidistant configuration.

A Taylor expansion of 𝐹𝑗,𝑗+1 around 𝛼 = 0 up to order 𝑂(𝛼2) leads to

𝐹𝑗,𝑗+1 = (𝕀 − 𝑖𝑘𝛼d𝑗,𝑗+1𝜎3) ⋅ 𝐹 + 𝑂(𝛼2) (1.18)

where matrix 𝐹 = 𝑒𝑖𝑘𝑑𝜎3 corresponds to the propagation of a plane wave with
wave vector 𝑘 over a free space distance 𝑑.

Inserting Eq. (1.18) in Eq. (1.16) and neglecting quadratic terms we get

𝑀𝑎𝑟 = 𝑀 ⋅
⎛
⎜⎜⎜⎜⎝
𝑁−1
􏾟
𝑗=1
(𝕀 − 𝑖𝑘𝛼d𝑗,𝑗+1𝜎3) ⋅ 𝐹 ⋅ 𝑀

⎞
⎟⎟⎟⎟⎠ . (1.19)

If we gather all linear terms in 𝛼, the transfer matrix becomes

𝑀𝑎𝑟 = 𝑀𝑁 + 𝛼𝑀𝑐𝑜𝑟𝑟 + 𝑂(𝛼2). (1.20)
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The computational details can be found in Appendix 1.B: A key point
consists in employing the Chebyshev’s identity to find the 𝑁-th power of a
unimodular matrix; the identity is reported in Appendix 1.C.

Matrix𝑀𝑁 is the transfer matrix for the equidistant configuration of the
membranes (𝛼 = 0). According to Refs. [122, 123] it has the following shape:

𝑀𝑁 = 􏿰
(1 + 𝑖𝜒)𝑒𝑖𝜇 𝑖𝜒

−𝑖𝜒 (1 − 𝑖𝜒)𝑒−𝑖𝜇􏿳 , (1.21)

with an effective polarizability 𝜒 = 𝜁𝑈𝑁−1(𝑎) and an effective phase 𝜇 satis-
fying

𝑒𝑖𝜇 =
1 − 𝜁𝑈𝑁−1(𝑎)

(1 − 𝑖𝜁)𝑈𝑁−1(𝑎) − 𝑒𝑖𝑘𝑑𝑈𝑁−2(𝑎)
. (1.22)

Here, 𝑎 ≡ 𝑎(𝑘𝑑) = cos(𝑘𝑑) − 𝜁 sin(𝑘𝑑) and 𝑈𝑗 stands for the Chebyshev poly-
nomial of the second kind of degree 𝑗.

These results are shortly reviewed in Appendix 1.A; in this chapter we
only provide the final expression.

The corrective term introduced by the quadratic defect, which is second
term in Eq. (1.20), can be written as

𝑀𝑐𝑜𝑟𝑟 = 􏿰
(1 + 𝑖𝜉)𝑒𝑖𝜈 𝑖𝜉
−𝑖𝜉 (1 − 𝑖𝜉)𝑒−𝑖𝜈􏿳 , (1.23)

with first-order effective polarizability 𝜉 given by

𝜉 = 4𝜁𝑘𝑏
[𝑁/2]
􏾜
𝑗=1

d𝑗,𝑗+1 􏿶1 −
𝛿𝑗,𝑁/2
2 􏿹𝑈𝑗−1(𝑎)𝑈𝑁−𝑗−1(𝑎), (1.24)

where 𝛿𝑗,𝑁/2 is the Kronecker delta of 𝑗 and 𝑁/2. The first-order effective
phase 𝜈 in Eq. (1.23) is defined as

𝑒𝑖𝜈 =
(𝑖 + 𝜉)𝑒−𝑖𝑘𝑑

𝑘∑[𝑁/2]
𝑗=1 d𝑗,𝑗+1 􏿵

𝛿𝑗,𝑁/2
2 − 1􏿸 [𝐶]22

. (1.25)

Function 𝑏 in Eq. (1.24) is the same as 𝑎 after an argument shift 𝑘𝑑 → 𝑘𝑑 −
𝜋/2, [see Eq. (1.87)]. Matrix element [𝐶]22 is also provided in Appendix 1.B
[Eq. (1.85)]. Inserting both Eqs. (1.21) and (1.23) in Taylor expansion (1.20),
to first order in 𝛼 matrix 𝑀𝑎𝑟 becomes

𝑀𝑎𝑟 = 􏿰
(1 + 𝑖𝛾)𝑒𝑖𝜆 𝑖𝛾

−𝑖𝛾 (1 − 𝑖𝛾)𝑒−𝑖𝜆􏿳 , (1.26)

with an effective polarizability and an effective phase described by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝛾 = 𝜒 + 𝛼𝜉,

𝑒𝑖𝜆 =
1 − 𝑖(𝜒 + 𝛼𝜉)

(1 − 𝑖𝜒)𝑒−𝑖𝜇 + 𝛼(1 − 𝑖𝜉)𝑒−𝑖𝜈
.

(1.27)

(1.28)
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Notice that in the absence of defect (𝛼 = 0) 𝛾 and 𝜆 reduce to 𝜒 and 𝜇
respectively, as it should be.

1.3.2 Numerical results

Despite expansion (1.19) being correct, the transfer matrix (1.20) is valid
only for small magnitudes of the defect, on the order of 𝛼 < 10−3. Unfortu-
nately, for such tiny values of the defect the optical response of the array is
almost identical to that one in the equidistant case (𝛼 = 0). This statement
is supported by Fig. 1.3(a), where the optical response for 𝛼 = 9 × 10−4 is
depicted as a dashed blue curve, compared to the solid red curve which is
the reflectivity for an array with 𝛼 = 0: The two lines practically overlap.
In this case all 𝑁 − 1 resonances lie within a transmissive band of width
2 arcsin[cos(𝜋/𝑁)/√1 + 𝜁2].

In order to obtain more interesting as well as stronger deviations from
the optical response of the equidistant case we need larger defects [for in-
stance those illustrated in Figs. 1.3(b) and 1.3(c)]. For larger values of𝛼 keep-
ing the linear terms as we did in the previous section is not enough; an exact
evaluation of the transfer matrix (1.16) to any order of 𝛼 is necessary.

Unfortunately, an expression for it is not an easy analytical achievement.
We will therefore perform a numerical investigation, valid for any magni-
tude of 𝛼.

In Fig. 1.3 we consider an array of 𝑁 = 7 membranes characterized by
a polarizability 𝜁 = −5 and separated by a distance 𝑑 = 525 nm for the
equidistant configuration (depicted by the dashed blue line). From top to
bottom the solid red line illustrates𝛼 = 9×10−4, 𝛼 = 5×10−3, and𝛼 = 5×10−2.

For a tiny defect, Fig. 1.3(a) shows that the reflectivity is pretty much the
same as for 𝛼 = 0.

For increasing defects, we observe both a shift of the transmissive points
(resonances) and a redistribution of their degeneracies. For 𝛼 = 5 × 10−3 a
doubly degenerate resonance moves towards larger wave vectors 𝑘𝑑/𝜋 ∼
1.02 in the first transmissive band gap whereas a further increase of 𝛼 leads
to the vanishing of all resonances but two, which merge in a doubly degen-
erate resonance lying in the zeroth transmissive band gap at 𝑘𝑑/𝜋 ∼ 0.825,
see Fig. 1.3(c).

We now proceed to an analysis and a comparison of the linear as well as
quadratic couplings with (and without) defect.

The engineered quadratic defect as implemented in the photonic crys-
tals is particularly appropriate for enhancing both couplings [89, 92]. As
a matter of fact, because of the quadratic character of the defect, the wave
functions of the optical modes localized inside the array resemble Hermite
polynomials and have Hermite-Gauss envelopes, similarly to what happens
to the ladder of modes confined by a one-dimensional harmonic potential.
The optical modes are indeed subjected to a local effective quasiharmonic



1.3 Array with engineered quadratic defect 11

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.2

0.4

0.6

0.8

1.0

k @units of Π�dD

re
fl

ec
tiv

ity

HaL
Α = 9´10-4

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.2

0.4

0.6

0.8

1.0

k @units of Π�dD

re
fl

ec
tiv

ity

HbL
Α = 5´10-3

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.2

0.4

0.6

0.8

1.0

k @units of Π�dD

re
fl

ec
tiv

ity

HcL
Α = 5´10-2

Figure 1.3: Optical response of an array of 𝑁 = 7 membranes characterized by
a polarizability 𝜁 = −5; the red continuous curves correspond to the array with
defect, whereas the blue dashed curves correspond to the equidistant case. From
up to down 𝛼 is scanned through values 9×10−4, 5×10−3, and 5×10−2. It is evident
from panels (b) and (c) that for large magnitudes of the defect single resonances
are pushed into the transmissive band gap.
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Figure 1.4: The uppermost left plot shows the dispersion relation for an array of
𝑁 = 8 membranes with 𝜁 = −4. Both equidistant (dashed blue line) and defect
(solid red line) cases with 𝛼 = 3 × 10−3 are illustrated. For each of the 𝑁 − 1
resonances visible in the dispersion relation, we plot the electric field amplitude
(normalized to the maximal value reached in the equidistant case) throughout the
array. The plots are labeled in such a way that (a)-(g) correspond to the resonances
in increasing order of 𝑘.

potential that closely follows the spatial defect itself and is therefore concave
downwards.

Optical modes with higher energies will thus be more localized within
the center of the quasiperiodic region. This is depicted in Fig. 1.4, where for
a stack of 𝑁 = 8 membranes all 𝑁 − 1 resonances of the first transmissive
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band are considered with 𝛼 = 3×10−3 (red curve) and 𝛼 = 0 (blue curve); for
each membrane 𝜁 = −4. Panels (a) to (g) show the amplitude of the electric
field 𝐸(𝑥) normalized with respect to the maximal value of the field itself
for an equidistant array, 𝐸eq,max. Panel (g) indeed illustrates that the higher
energy mode is the most localized (red curve), since it is pushed within the
band gap similarly to what happens in Fig. 1.3(b).

An instructive analogy that can provide us with a heuristical compre-
hension of what is happening in Fig. 1.4[(b)-(g)] is the following: We can
look at photons in this optomechanical platform as particles of mass𝑚 along
a chain of connected one-dimensional boxes. It is known that the width
𝑊 of each box defines the energetic spectrum of its inner modes as 𝐸𝑛 =
𝑛2 × ℏ𝜋2/(2𝑚𝑊2) (in fact 𝑘 = 𝑛𝜋/𝑊); namely, by shortening and increasing
the separation between the walls of a box it is possible to tune the ladder of
available energies.

In the “same” way, by shortening and increasing the separation between
two neighboring membranes one can tune the ladder of available photonic
intensities.

Since the linear coupling |𝑔(1)𝑗 | at membrane 𝑗 depends on the local-field
gradient (while the sign depends on whether the amplitude of the electric
field is maximal on the left or right side of membrane 𝑗), field localization
as the one shown in Fig. 1.4(g) allows for a dramatic enhancement with re-
spect to the case 𝛼 = 0. Trapping modes in the transmissive band gaps is
indeed a standard trick used by experimentalists to enhance couplings (see
for instance the so-called photonic band-gap systems).

Let us now numerically look at linear and quadratic couplings.

1.3.3 The optomechanical couplings

We insert the array of Fig. 1.3 in a high-finesse optical cavity (the end mirrors
have 𝜁𝑚 = −20 and the length of the cavity is 𝐿 = 6.3 cm).

Looking at Fig. 1.3 we select a few notable resonances of the array with-
out any surrounding cavity, and then look for nearby overall resonances of
the compound system, in order to study the couplings for those wave vec-
tors. We will see that the higher energy resonance in Fig. 1.3(b) at 𝑘𝑑/𝜋 ∼
1.02 is the one that actually reaches the best coupling. According to the
previous section, this is due to the fact that it lies in the band gap and is
therefore localized [similarly to panel (g) of Fig. 1.4]: The normalized field
amplitude at this resonance is depicted in Fig. 1.5.

The numerical results about the linear and quadratic couplings are illus-
trated in Fig. 1.6. Blue triangles correspond to the couplings at the blue res-
onance with smallest 𝑘 in Fig. 1.3(a): According to Refs. [122, 123] this first
transmissive point indeed maximizes the linear coupling for an equidistant
array. Green dots, instead, correspond to the higher-energy resonance in
presence of defect in Fig. 1.3(b) whereas red squares refer to the only sur-
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Figure 1.5: Electric field amplitude (normalized to its maximal value in the equidis-
tant case) through the array for two cases where it is transparent to light: Without
(blue solid line) and with (red dashed line) defect 𝛼 = 5 × 10−3. Although both sit-
uations show field localization, the introduction of defect dramatically enhances
it.

viving degenerate resonances in Fig. 1.3(c): Since they lie in a band gap,
these two last resonances allow for localization of trapped light in the mid-
dle region. That is why we have chosen them.

It is apparent from Fig. 1.6 that the defect improves both couplings by
several orders of magnitude, as expected from the previous discussion.

The reference blue curve (𝛼 = 0) shows an enhancement of 217, which
is consistent with the scaling (1.67). In panel (b) the reference effective
quadratic coupling is approximately 0.789 × 103 relative to the single ele-
ment counterpart 𝑔(2)0 .

Increasing a bit the defect pushes the higher energy resonance in the
first energy band gap, see blue curve in Fig. 1.3(c), and improves the linear
and quadratic couplings by factors of approximately 23 and 430 over the
equidistant case.

A further increase of 𝛼makes all resonances vanish except two (degener-
ate) that are pushed in the zeroth energy band gap. Here the enhancements
are 1.7 and 2.9 respectively.

Fig. 1.6 illustrates as a proof of concept that the desired enhancements
in the couplings do indeed take place.

In the next subsection an experimental situation is considered, with re-
alistic numbers, in order to demonstrate the feasibility of an experiment.
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Figure 1.6: Optomechanical linear (a) and quadratic (b) coupling strengths. Here,
an array of 𝑁 = 7 membranes with 𝜁 = −5 in a cavity is considered. Separation
between adjacent membranes is 𝑑 = 525 nm. The end mirrors of the cavity have
a polarizability 𝜁𝑚 = −20 and are separated by a distance 𝐿 = 6.3 × 10−2 m, such
that 𝐿 ≫ 𝑑. The three thin curves blue/green/red, correspond to 𝛼 = 0, and 𝛼 =
5 × 10−3 and 𝛼 = 5 × 10−2 respectively. For the numerical example considered,
the introduction of the defect builds on the enhancement provided already by the
access of the last transmission point by increasing 𝑔(1)/𝑔(1)0 by a factor of 23 and
𝑔(2)/𝑔(2)0 by a factor 434. Notice that we fixed 𝑔(1)/𝑔(1)0 for the equidistant case to the
maximum value allowed, roughly equal to √2/𝜋𝜁2𝑁3/2 ≃ 217. For an even larger
defect (𝛼 = 5 × 10−2), only one resonance survives and it is moved into the zeroth
energy band gap instead, with corresponding lower enhancement factors 1.73 and
2.94.

1.3.4 Experimental discussion

Let us consider an array of 𝑁 = 7 membranes each characterized by a neg-
ative polarizability 𝜁 = −5 and a mechanical frequency 𝜔𝑚 = 2𝜋 × 211 kHz.
The zero point motion of these membranes is 𝑥0 = 2.7 fm.

When the immobile membranes are in the equidistant configuration and
we consider the collective modes propagating along the array, according to
Refs. [122, 123] the linear coupling at the first resonant point [see Eq. (1.66)
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with 𝑙 = 1] can achieve the value

𝑔(1)sin,1 ∼ 2𝜋 × 5kHz.

This is already a great enhancement, far beyond the optimal coupling 𝑔 for
a single membrane placed at the center of a cavity, 𝑔 = 2𝜋 × 24 Hz [see
Eq. (1.15)].

If a quadratic spatial defect is introduced, a further increase of the linear
coupling is obtained. It can be as large as

𝑔(1) ∼ 2𝜋 × 117kHz,

which is a value comparable to typical mechanical resonant frequencies 𝜔𝑚
and optical cavity decay rate 𝜅.

Concerning the quadratic coupling, instead, for a single membrane in
the middle of a cavity it assumes very small values such as

𝑔(2)0 ∼ 2𝜋 × 2 × 10−6Hz.

Working in a regime where the array is completely transparent to light, the
introduction of quadratic defect (which allows for field localization) can ren-
der the quadratic coupling as large as

𝑔(1) ∼ 2𝜋 × 1.4Hz, (1.29)

which is potentially observable in realistic optomechanical experiments.
Finally, we must point out that in realistic experiments several imper-

fections can occur and affect the performance of the array. For instance,
real membranes are not infinitely thin but on the contrary they have a finite
width. Also, there may be displacement problems and membranes may
be misaligned with respect to cavity axis; this would eventually lead to the
loss of photons, scattered outside the cavity mode, as well as absorption and
other issues that are not taken into account in our simple theoretical model.

These effects are examined in detail in the Supplementary Material of
Refs. [122, 123] for the case of an equidistant array. Although here we study
an array with an engineered quadratic defect their analysis holds true in our
case as well.

1.4 Quasiperiodic optomechanical crystal

In this section we perform a study of the second optomechanical platform
presented in Sec. 1.2: An optomechanical photonic crystal.

As shown in Fig. 1.2b the crystal is modeled as a compound optome-
chanical medium composed of three well-defined parts: Two identical mir-
ror regions and one defect region in between. Namely, we place a quasiperi-
odic array affected by a defect 𝛼 in the middle of a cavity whose side mirrors
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consist in two arrays of equidistant membranes. We call this cavity a “su-
percavity” with extended side mirrors.

To begin with, we study the empty supercavity by making use of the
results of Refs. [122, 123].

1.4.1 Supercavity

The supercavity is not a classical cavity: Instead of two mirrors, we have to
consider two arrays of 𝑁𝑚 equidistant membranes characterized by a neg-
ative polarizability 𝜁𝑚 and intermembrane distance 𝑑𝑚 (see Fig. 1.2b). Nev-
ertheless, the computational procedure to obtain its resonances and thus its
free spectral range is the same as the one for a standard Fabry-Pérot cavity;
which is why the latter is reviewed in Appendix 1.D.

The distance between the two mirror regions (the cavity length) is 𝐷.
The two mirror regions have an effective polarizability𝜒𝑚 = 𝜁𝑚𝑈𝑁𝑚−1(𝑎𝑚)

and effective phase 𝜇𝑚, see Sec. 1.3.
The transfer matrix of the supercavity is made up of a free space ma-

trix (1.9) describing the propagation of the light inside the cavity plus two
matrices (1.21) for the extended side mirrors:

𝑀 = 𝑀𝑁𝑚 ⋅ 𝐹(𝐷) ⋅ 𝑀𝑁𝑚

= 􏿰
(1 + 𝑖𝜒𝑚)𝑒𝑖𝜇𝑚 𝑖𝜒𝑚

−𝑖𝜒𝑚 (1 − 𝑖𝜒𝑚)𝑒−𝑖𝜇𝑚􏿳 􏿰
𝑒𝑖𝑘𝐷 0
0 𝑒−𝑖𝑘𝐷􏿳 􏿰

(1 + 𝑖𝜒𝑚)𝑒𝑖𝜇𝑚 𝑖𝜒𝑚
−𝑖𝜒𝑚 (1 − 𝑖𝜒𝑚)𝑒−𝑖𝜇𝑚􏿳

.

(1.30)

As usually, the transmission is 1/|𝑀22|2:

𝑇 =
1

|𝑒−𝑖(𝑘𝐷+2𝜇𝑚)(1 − 𝑖𝜒𝑚)2 + 𝑒𝑖𝑘𝐷𝜒2𝑚|2
. (1.31)

Fig. 1.7 illustrates the optical response of each side mirror (dashed blue
line) of a supercavity (𝑁𝑚 = 6, 𝜁𝑚 = −0.5, 𝑑𝑚 = 768 nm) as well as that
one of the supercavity as a whole (red solid line). It shows that the reflec-
tivity 𝑅 = 1 − 𝑇 of the supercavity has two different kinds of resonances
(𝑅 = 0): Those formed by the overlapping of common resonances of both
side mirrors, lying thus in the transmission band, and those lying in the
transmission band gaps for the single side mirrors (where they reach unity
reflectivity).

The resonances of the first kind correspond to the roots of the Chebyshev
polynomials of the second kind 𝑈𝑗 (𝑘𝑑/𝜋 ≈ 0.29, 0.39, … , 0.6 etc.). Indeed,
from Eq. (1.31) it is apparent that when 𝑈𝑁𝑚−1(𝑎𝑚) = 0 (that is 𝜒𝑚 = 0), 𝑇 is
exactly 1.

However, we are interested in the other resonance. Since they lie in the
gap of the mirrors regions, the supercavity behaves as a high-finesse optical
cavity, where each mirror regions has a very high polarizability (𝜒𝑚 ≫ 1).
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Figure 1.7: Transmission of an empty supercavity (solid red curve) and of a single
extended side mirror (dashed blue curve) as a function of the momentum of the
incoming plane wave. The momentum is expressed in units of 𝑘0 = 2𝜋/𝜆 with
𝜆 = 10−6 m. Here the parameters of our cavity are𝑁 = 6, 𝛼 = 5×10−6, and 𝜁 = −0.5.
Had we done a more realistic choice of the number of membranes, for instance 𝑁
larger than 10, then we would have hardly been able to see the resonances.

A priori, these resonances should be like the Lorentzian peaks of a sim-
ple Fabry-Pérot resonator with length𝐷, but with end mirrors having a po-
larizability 𝜒𝑚; being their linewidth inversely proportional to 𝜒2𝑚 which is
a strongly increasing function of𝑁, these peaks become extremely sharp by
increasing 𝑁𝑚 (the dependence on 𝜁𝑚 is instead quite complicated and has
a sinusoidal character).

Since we want to analytically find these resonances, we shall work in a
regime where the finesse 𝐹 of the cavity is very high, which means 𝜒𝑚 ≫ 0:

𝐹 =
𝑘𝐹𝑆𝑅
𝜅𝑘

=
𝜋
𝐷
𝐷|𝜒𝑚|􏽮1 + 𝜒2𝑚

𝜋
= |𝜒𝑚|􏽮1 + 𝜒2𝑚 ≈ 𝜒2𝑚. (1.32)

𝜅𝑘 is the linewidth of the cavity in the momenta space; according to Eq. (1.102)
we have that for a simple cavity with length 𝐿 and polarizability 𝜁 of the two
end mirrors

𝜅𝑘 =
𝜋

𝐿|𝜁|√1 + 𝜁2
. (1.33)

In the high-finesse regime 1 − 𝑖𝜒 ≈ 𝑖𝜒 because if the imaginary part of a
complex number is much larger than the real one, then both the modulus
and the argument of the complex number will be uneffected by the real part.
Consequently

𝑇 =
1

𝜒4𝑚|1 − 𝑒−2𝑖(𝑘𝐷+𝜇𝑚)|
(1.34)
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which implies that we have a resonance (𝑇 = 1) when

|1 − 𝑒−2𝑖(𝑘𝐷+𝜇𝑚)| =
1
𝜒4𝑚

≈ 0 (1.35)

or, in other terms, when

𝑘(𝑛)𝐷 + 𝜇𝑚 = 𝑛𝜋 with 𝑛 ∈ ℤ. (1.36)

Let us notice that 𝑘(0) = 0 since 𝜇𝑚 is exactly zero at k=0. This can be
inferred from Eq. (1.22) by using the property that 𝑎𝑚 = 1 at 𝑘 = 0 and
𝑈𝑗(1) = 𝑗 + 1 for any 𝑗.

Following this order, 𝑘(1) is the first positive resonance, 𝑘(2) the second
positive resonance, and so forth. Of course this series covers the whole real
axis but first, negative values of 𝑛 mean negative 𝑘(𝑛) which has no physical
sense, and second, our analytical findings are valid only when 𝐹 ≈ 𝜒2 ≫ 0,
that is inside the transmission band gaps.

After some algebraic computations, by using Eq. (1.22) we can express
Eq. (1.36) as

𝑈𝑁𝑚−2(𝑎
(𝑛)
𝑚 )

𝑈𝑁𝑚−1(𝑎
(𝑛)
𝑚 )

= 􏿮1 − 𝑖𝜁𝑚(1 − 𝑒𝑖(𝑘
(𝑛)𝐷−𝑛𝜋))􏿱 𝑒−𝑖𝑘(𝑛)𝑑𝑚 (1.37)

where 𝑎(𝑛)𝑚 is 𝑎𝑚 at 𝑘 = 𝑘(𝑛).
Expression (1.37) can be further simplified:

𝑈𝑁𝑚−2(𝑎
(𝑛)
𝑚 )

𝑈𝑁𝑚−1(𝑎
(𝑛)
𝑚 )

=
sin((𝑁𝑚 − 1) arccos(𝑎

(𝑛)
𝑚 ))

sin(𝑁𝑚 arccos(𝑎
(𝑛)
𝑚 ))

= 𝑎(𝑛)𝑚 − 􏽯1 − 𝑎
(𝑛)2
𝑚 cot(𝑁𝑚 arccos(𝑎

(𝑛)
𝑚 )).

(1.38)

The cotangent of a purely-imaginary number 𝑧 such that |𝑧| ≫ 0 satisfies
cot 𝑧 → −𝑖. We can apply this property to Eqs. (1.37) and (1.38) in order to
achieve

tan(𝑘(𝑛)𝑑𝑚) = 𝜁𝑚[(−1)𝑛 cos(𝑘(𝑛)(𝑑𝑚 − 𝐷)) − 1] (1.39)
which provides us with a simple equation for the resonances 𝑘(𝑛), valid pro-
vided that

| arccos(𝑎(𝑛)𝑚 )| ≪
1
𝑁𝑚

and |𝜁𝑚| >
1 − cos(𝑘𝑑𝑚)
sin(𝑘𝑑𝑚)

. (1.40)

Looking at Eq. (1.36), we notice that adjacent resonances are not sepa-
rated by a free spectral range𝜋/𝐷 as we could expect for a Fabry-Pérot cavity
(see Appendix 1.D), but there is an extra factor Δ(𝑖,𝑗) which depends on the
intermembrane distance 𝑑𝑚:

𝑘(𝑖) − 𝑘(𝑗) = (𝑖 − 𝑗)
𝜋
𝐷
+ Δ(𝑖,𝑗), (1.41)
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with

Δ(𝑖,𝑗) =
1
𝑖𝐷
log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝑒𝑖𝑘(𝑖)𝑑𝑚
1−𝑖𝜁𝑚

𝑈𝑁𝑚−2(𝑎
(𝑖)
𝑚 )

𝑈𝑁𝑚−1(𝑎
(𝑖)
𝑚 )

1 − 𝑒𝑖𝑘(𝑗)𝑑𝑚
1−𝑖𝜁𝑚

𝑈𝑁𝑚−2(𝑎
(𝑗)
𝑚 )

𝑈𝑁𝑚−1(𝑎
(𝑗)
𝑚 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.42)

The extra factor goes to 0 at 𝑑𝑚 = 0 (the argument of the logarithm reaches
a unit value). This perfectly makes sense: 𝑑𝑚 = 0 means that each extended
mirror region collapses into a single mirror, so that the supercavity reduces
to a standard cavity, where

𝑘(𝑖) − 𝑘(𝑗) = (𝑖 − 𝑗)
𝜋
𝐷

(1.43)

and the free spectral range is 𝑘𝐹𝑆𝑅 = 𝜋/𝐷 (cfr Appendix 1.D).

1.4.2 Array surrounded by supercavity

In the previous section, the optical response of an empty supercavity was
analyzed. In this sections we place inside the supercavity an array affected
by a quadratic defect, see Fig. 1.2b.

The optical response of the array was theoretically studied in Sec. 1.3.1
whereas a numerical analysis was performed in Sec. 1.3.2; see for instance
Fig. 1.3.

As shown in Refs. [122, 123], within the framework of a multi-element
optomechanical approach, the optimal regime to improve the optomechan-
ical linear coupling is the transmissive regime (for a review of these results
see Appendix 1.A).

In the transmissive regime the entire medium (array plus supercavity)
is transparent to light, when the membranes do not move.

To reach this regime we need to tune the resonances of both the super-
cavity and the array in order to make them overlap and obtain an overall
resonance. From this point of view the supercavity is a helpful device since
its resonances are easily tunable: It is sufficient to vary the distance 𝑑𝑚 be-
tween the single membranes, as shown in Eqs. (1.41) and (1.42).

The operational procedure to reach the transmissive regime is illustrated
in Fig. 1.8: The first step consists in singling out one resonance of the array
[panel (b)]; then we have to find a close resonance of the supercavity [panel
(a)]; this latter resonance must lie in the band gap, and is typically much
more narrow than the array resonance. Finally, by modifying 𝑑𝑚 we tune
the resonance of the supercavity so that it coincides with a resonance of the
array [panel (c)].

The optomechanical crystal that we study in this section consists in a
couple of extended side mirrors composed of 𝑁𝑚 + 1 elements with inter-
membrane separation 𝑑𝑚, plus an array (affected by a defect 𝛼) containing
𝑁𝑑 = 𝑁 − 2 membranes. For simpleness’ sake, we also assume 𝜁𝑚 = 𝜁.
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Figure 1.8: (a) Optical response of an empty supercavity as a function of the wave
vector k (in units of 𝑘0 ≡ 𝜋/𝑑). (b) Under proper conditions, a membrane array
affected by a quadratic defect can localize light. (c) The resonances of an optome-
chanical crystal are located close to the wave vectors for which both reflectivity
plots (a) and (b) display zeros.

In the following, we chose 𝑁𝑚 = 20, 𝑁 = 7 and 𝜁 = −0.5, which cor-
responds to 20% reflectivity membranes. The magnitude of the quadratic
defect is 𝛼 = 10−3.

In Fig. 1.9 the first 8 resonant wave vectors of the supercavity are shown
(dotted lines) as a function of 𝑑𝑚. The dashed horizontal lines, instead, rep-
resent the fixed resonances of the array.

The resonances of the supercavity are found by using Eq. (1.36) with
𝑛 ∈ [1, 8].

All dotted lines in Fig. 1.9 display irregular breaches of “fake” reso-
nances; these transmission points correspond to the resonances which, in
Fig. 1.7, lie between band gaps; these are resonances of the empty super-
cavity but with low finesse [let us not forget that Eq. (1.36) is true provided
that the supercavity remains a high-finesse optical cavity].
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Figure 1.9: Procedure of tuning the resonances by varying 𝑑𝑚. The intersections
of the empty supercavity resonances (dotted lines) with array resonances (dashed
lines) are the common resonances. Only the first 7 resonances of the empty super-
cavity are plotted. Here, there is only one common resonance which is marked by
a black square. The scattered plot regions indicate resonances which are located
in the transmission bands (small cavity finesse); in these points the analysis is not
valid. The red triangle is a true overall resonance; it is slightly shifted with respect
to the common resonance because of the effective phase 𝜇𝑚 [see Eq. (1.22)]. The ex-
tended cavity mirrors are composed of 20 membranes whereas the array contains
7 membranes. The other parameters are 𝛼 = 10−3, and 𝜁 = 𝜁𝑚 = −0.5.

Black square indicates a common resonance of the supercavity and the
array whereas the red triangle marks the corresponding overall resonance of
the crystal; it does not exactly coincide with the square: The slight shift is in
fact introduced by the effective phase of the mirror regions 𝜇𝑚 [see Eq. (1.22)
with 𝑁𝑚 → 𝑁𝑚 + 1]. Nevertheless, the triangle is a good resonance, since
even after the shift it is located inside the transmissive band gap, where the
supercavity has a high finesse.

Using as a working point the overall resonance (red triangle in Fig. 1.9),
we numerically investigated both linear and quadratic optomechanical cou-
plings in the transmissive regime. Namely, we allowed the array mem-
branes to vibrate around their equilibrium position while keeping the side
mirrors in a frozen configuration.

The results are not as good as for the previous platform (Sec. 1.3.2): The
linear coupling along the array has the sinusoidal shape characteristic of the
transmissive regime, see Fig.1.6a but unfortunately we do not see a similarly
large enhancement with respect to the equidistant configuration. The large
values that we find are simply due to the localization of the field within a
space of dimension 𝐷 and do not depend on the defect 𝛼.

To exemplify this fact we consider a defective array (𝛼 = 10−3) composed
of 7 membranes with 𝜁 = −0.5 with an intermembrane separation 𝑑 = 500



1.4 Quasiperiodic optomechanical crystal 23

nm. Let us place it in between two mirror regions consisting in 20 mem-
branes with 𝜁𝑚 = 𝜁: We have an optomechanical crystal made up by 47
membranes. Following the procedure depicted in Fig. 1.9, we tune the res-
onance by varying 𝑑𝑚 until 𝑑𝑚 = 247 nm. We reach an overall (linear) cou-
pling of 1.98MHz which is close to the value expected from the localization
of the cavity mode within a one dimensional space of 3.5 𝜇m [(𝑐𝑘/𝐷)𝑥0 = 2.9
MHz]. Concerning the quadratic coupling, instead, the numerical estimate
is 0.023 Hz whereas the analytical estimate for a cavity length of 3.5 𝜇m is
0.025 Hz.

The lacking performance of the crystal can be explained by the cavity
linewidth narrowing, an optomechanical effect that was already introduced
in Refs. [122, 123]. The denominator of Eq. (1.66) can be thought of as an
effective cavity optical lenght

𝐷eff = 𝐷 − 2𝑁𝑑𝜁 csc2 𝜋/𝑁􏽯sin
2 𝜋/𝑁 + 𝜁2. (1.44)

The favorable scaling (1.67) holds true only when the ratio 𝑑/𝐷 is small
or, in other words, when 𝐷 ≈ 𝐷eff.

Unfortunately, this is the not case for the optomechanical crystal: For
𝑑 ≪ 𝐷 we have

𝐷eff = 𝐷 + (2/𝜋2)𝑑𝜁2𝑁3. (1.45)

It approaches 𝐷 as long as the quantity (2/𝜋2)𝜁2𝑁3 can be neglected. For
the chosen parameters, the requirement is approximately 2(𝜁𝑁/𝜋)2 < 1; for
𝜁 = −0.5, an array composed of 𝑁 = 5 already violates the condition.

1.4.3 Light mode structure

In this last section we briefly describe the light modes inside the cavity, in-
duced by the presence of an engineered quadratic defect. A qualitative un-
derstanding of the localization of light within the defective region can help
to design specific defect configurations with the purpose of optimizing both
linear and quadratic optomechanical couplings.

For an electric field interacting with a fixed scatterer, the Helmoltz equa-
tion (1.3) can be recast in the form of a Schrödinger-type equation:

􏿰−
ℏ2

2𝑚
𝜕2𝑥 + 𝑉(𝑥)􏿳 𝐸(𝑥) = ℰ𝐸(𝑥) (1.46)

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ℰ =
ℏ2

2𝑚
􏿵
𝜔
𝑐
􏿸
2
,

𝑉(𝑥) = −
ℏ2

2𝑚
􏿵
𝜔
𝑐
􏿸
2
𝛿𝜖𝑟(𝑥).

(1.47)

(1.48)
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Here 𝑚 = ℏ2/(2𝐽𝑑2) and the width of the lowest energy band is 4𝐽. Since
the beam splitter is at the origin, see Eq. (1.4), the potential 𝑉(𝑥) vanishes at
𝑥 ≠ 0 and the electric field propagates through vacuum:

􏿰𝜕2𝑥 + 􏿵
𝜔
𝑐
􏿸
2
􏿳 𝐸(𝑥) = 0. (1.49)

For a plane wave, 𝐸(𝑥) = 𝐴𝑒𝑖𝑘𝑥 (with 𝐴 complex amplitude), we get the
typical dispersion relation 𝜔 = 𝑘𝑐 for an electromagnetic wave traveling
through vacuum.

An infinite photonic crystal can be exemplified by an infinite array of
identical beam splitters, one for each membrane. We assume that mem-
brane 𝑖 is centered at position 𝑥𝑖. In that case 𝑉(𝑥) is the straightforward
extension of potential (1.48):

𝑉(𝑥) = −
ℏ2

𝑚
􏿵
𝜔
𝑐
􏿸
2
􏿶
𝜁
𝑘􏿹
􏾜
𝑖∈ℤ

𝛿(𝑥 − 𝑥𝑖). (1.50)

In the absence of defect this is the analytical model for the well-known
Kronig-Penney model:

𝐻0𝐸(�̄�, ̄𝑡) = 𝑖
𝑑𝐸(�̄�, ̄𝑡)
𝑑 ̄𝑡

, (1.51)

with 𝐻0
𝐻0 = −𝜕�̄�2 − 𝛽􏾜

𝑖∈ℤ
𝛿(�̄� − �̄�𝑖). (1.52)

Here 𝛽 = 2(𝜔/𝑐)2(𝜁𝑑/𝑘).
In Eq. (1.52), a set of dimensionless coordinates

�̄� =
𝑥
𝑑

and ̄𝑡 =
𝑡𝐽
ℎ

(1.53)

has been adopted. In Eqs. (1.53) 𝐽 and ℎ stand for the characteristic kinetic
energy of the system and the Planck’s constant, respectively.

Model (1.52) has an exact analytical solution [164]: It describes the for-
mation of the band structure, similar to what has been analyzed in this chap-
ter. The Kronig-Penney model is indeed a convenient framework to study
light propagation along a one-dimensional photonic crystals. The basic idea
of band structure for an infinite one-dimensional photonic crystal is briefly
reviewed in Appendix 1.E while a short review of the Kronig-Penney model
is available in Appendix 1.F.

From now on a well-formed band structure will be assumed.
For the purpose of looking at the dynamics in the lowest band, we follow

Ref. [165] and expand the electric field 𝐸(�̄�, ̄𝑡) in terms of first-band Wannier
functions; Ref. [124] provides an analytical expression for them (see also
Appendix 1.F).
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Energy 𝐽 can be, instead, extrapolated from Eq. (1.51) by employing the
lowest-band Wannier functions.

If we introduce a defect 𝛼, Eq. (1.51) for the crystal assumes a potential
term:

[𝐻0 + 𝑉(eff)(�̄�)]𝐸(�̄�, ̄𝑡) = 𝑖
𝑑𝐸(�̄�, ̄𝑡)
𝑑 ̄𝑡

. (1.54)

Namely, for a quadratic defect we can heuristically assume that the in-
duced potential is 𝑉(eff)(�̄�) = Ω�̄�2 with strength Ω = 𝛼𝛽.

As already pointed out in Sec. 1.3.1, 𝑉(eff) is a parabola which is open
downwards (inverted harmonic potential) and, as for a particle in a parabolic
potential, solutions of Eq. (1.54) resemble Hermite-type polynomials.

More precisely, solutions for a particle in a parabolic potential (with pos-
itive curvature) in the discrete tight-binding limit contain Mathieu func-
tions [165].

Following Ref. [165], for 4𝐽/Ω ≫ 1 we can distinguish two classes of
energy eigenmodes, which are in agreement with the findings presented in
this chapter.

On the one hand, for a low energy 𝐸 ≲ 4𝐽, the modes are close to posi-
tion eigenstates. Owing to the external harmonic trapping as well as the
Bragg scattering induced by the membranes [Dirac-comb term in (1.52)]
these modes are localized on either side of the potential induced by the
defect.

On the other hand, in the regime 𝐸 ≳ 4𝐽 the modes are close to harmonic
oscillator eigenstates and are located at the center of the (inverted) parabolic
defect.

1.5 Conclusions

Recent theoretical studies [122, 123] on multi-element transmissive optome-
chanics show that, for an equidistant array of membranes inside a high-
finesse cavity, extremely large values of linear coupling are possible; far be-
yond those allowed by the reflective regime.

In this chapter, motivated by these results as well as by new experiments
with quasiperiodic photonic crystals [89, 92], we carried out a thorough
analysis of two different optomechanical setups with the purpose of maxi-
mizing the linear and quadratic couplings.

First, we extended the theoretical investigations of Refs. [122, 123] by
introducing a quadratic spatial defect in the array of membranes. We also
studied the quadratic coupling and, as expected, we were able to further
enhance both couplings.

Then, we tried to simulate a one-dimensional photonic crystal by insert-
ing an array affected by quadratic defect between two equidistant arrays.
Due to the typical small size of the crystal, further improvement of the cou-
plings by employing this setup could not be achieved though.
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Eventually, in the last section of this chapter, we drew an analogy be-
tween arrays of elements with an engineered quadratic defect and ultra-
cold atoms trapped in a one-dimensional optical lattice to which we super-
impose an inverted harmonic potential.

I would like to point out that the quadratic shape is not the only defect
configuration allowing for the enhancement of optomechanical couplings.
For instance, light modes can already be localized within a small volume by
uniformly shifting the positions of a few membranes in the central region
of the array (provided that the shift pushes at least one resonance into the
band gap).

Introducing defects in order to trap field modes has many exciting per-
spectives; for example, one could think of a periodic spatial distribution of
isolated defects along an array of dielectric elements. At least in principle,
such superlattice of localized defects may allow for light-induced interac-
tions between vibrational modes of membranes located around different
defects.



Appendices

1.A Equidistant array in an optical cavity

In this Appendix, some results of Refs. [122, 123] are briefly reviewed.
The authors of the papers consider an equidistant array of 𝑁 lossless

membranes separated by a distance 𝑑 and placed inside a high-finesse Fabry-
Pérot cavity of length 𝐿 ≫ 𝑁𝑑, as shown in Fig. 1.2a. The end mirrors of the
cavity have a polarizability 𝑍 ≫ 1.

The main purpose of their work is to study the linear optomechanical
coupling between the light mode of the cavity and the collective mechanical
motion of the equidistant array.

By using the transfer matrix formalism, see Sec. 1.1, along with the Cheby-
shev’s identity, see Appendix 1.C, the authors find an analytical expression
for the transfer matrix 𝑀𝑁 of the array.

Given the matrices introduced in Sec. 1.1, see Eqs. (1.8) and (1.9), the
transfer matrix 𝑀𝑁 for an equidistant array of 𝑁 membranes is described
by the matricial product𝑀(𝜁) ⋅ 𝐹(𝑑) ⋅𝑀(𝜁) ⋅ 𝐹(𝑑) ⋅ ⋅ ⋅𝑀(𝜁), where𝑀(𝜁) appears
𝑁 times (one for each membrane).

In Refs. [122, 123], the authors adopt the trick of defining a unitary ma-
trix 𝑀 through the relation

𝐹(𝑑/2) ⋅ 𝑀(𝜁) ⋅ 𝐹(𝑑) ⋅ 𝑀(𝜁) ⋅ 𝐹(𝑑) ⋅ ⋅ ⋅ 𝑀(𝜁) ⋅ 𝐹(𝑑/2)
= [𝐹(𝑑/2) ⋅ 𝑀(𝜁) ⋅ 𝐹(𝑑)]𝑁 ≡ 𝑀𝑁.

(1.55)

Since 𝑀 has a unitary determinant its 𝑁-th power is straightforwardly
obtained thanks to Chebyshev’s identity, see Appendix 1.C, and turns out
to be

𝑀𝑁 = 􏿰
(1 + 𝑖𝜒)𝑒𝑖(𝑘𝑑+𝜇) 𝑖𝜒

−𝑖𝜒 (1 − 𝑖𝜒)𝑒−𝑖(𝑘𝑑+𝜇)􏿳 . (1.56)

Here 𝜒 ≡ 𝜁𝑈𝑁−1(𝑎), where𝑈𝑛(𝑥) is the Chebyshev polynomial of the second
kind and 𝑎 = cos(𝑘𝑑) − 𝜁 sin(𝑘𝑑). The phase 𝜇 instead satisfies and is defined
by relation (1.22).

Matrix 𝑀𝑁 is not exactly what we are looking for though, since it was
obtained by adding on either side of𝑀𝑁 a matrix 𝐹(𝑑/2), as it can be seen in
Eqs. (1.55).

We remove this contribution and get

𝑀𝑁 = 𝐹[𝜇/(2𝑘)] ⋅ 􏿰
1 + 𝑖𝜒 𝑖𝜒
−𝑖𝜒 1 − 𝑖𝜒􏿳 ⋅ 𝐹[𝜇/(2𝑘)]. (1.57)

27
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Figure 1.A.1: Dispersion relation for a stack of 𝑁 = 6 lossless membranes. The
dotted green line shows the optical response of a single element with 𝜁 = −0.5.
There are𝑁−1 = 5 transmissive point, with unit intensity transmissivity 𝑇 = 1−𝑅;
the first and last resonances are marked as 𝑑1 and 𝑑5. An other important point is
𝑑0: For 𝑑 ≈ 𝑑0 the array is almost completely reflective. Source: Ref. [122].

Notice that the central matrix is the transfer matrix for a dielectric scatterer
with a polarizability 𝜒 [cf. Eq. (1.8)]. It means that 𝜒 is the effective polariz-
ability of the array as a whole discrete optical medium.

From matrix (1.57) an analytical expression for the transmission 𝑇 =
1/|𝑀22|2 and reflection 𝑅 = |𝑀12/𝑀22|2 is straightforwardly obtained.

For 𝑁 = 6 membranes characterized by a reflectivity of 20% (𝜁 = −0.5),
Fig. 1.A.1 shows a plot of the reflectivtiy𝑅 in the first transmissive band (the
optical response has a period of 𝜆/2).

It is apparent from Fig. 1.A.1 that there are𝑁−1 = 5 transmissive points,
where the transmission 𝑇 = 1 − 𝑅 reaches unity. In these points the entire
array is transparent to light in the immobile configuration. It is remark-
able that despite the single elements having only a reflectivity of 20% the
reflectivity of their collection ranges from 0% to 99% (for 𝑑 ≈ 𝑑0).The set
of 𝑘-values between the first and last transmissive points is called trans-
missive band. The concept of band structure for an infinite (𝑁 → ∞) one-
dimensional photonic crystal is briefly reviewed in Appendix 1.E.

The equidistant array is then put inside a high-finesse optical cavity. In
order to study the linear optomechanical coupling between mechanical vi-
brations and optical field one can work either in the reflective or in the trans-
missive regime:

• Reflective regime: One considers the whole array as a single com-
pletely reflective mirror and looks at the coupling of the mechanical
center of mass to the light field.

• Transmissive regime: One considers the whole array as transparent
to light and looks at the coupling of each membrane separately to the
light field.
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1.A.1 Reflective regime

The whole array is free to shift from the center. The authors of the papers
consider a uniform displacement along the cavity axis, where 𝑥 indicates
the magnitude of the shift.

To obtain the resonances of the system (array plus cavity), they evaluate
the transfer matrix as

𝑀 = 𝑀(𝑍) ⋅ 𝐹(𝐿/2 − 𝑥) ⋅ 𝑀𝑁 ⋅ 𝐹(𝐿/2 − 𝑥) ⋅ 𝑀(Ζ) (1.58)

where 𝑀𝑁 is the matrix (1.57) for the equidistant array placed inside the
cavity; matrices 𝐹(𝑥)’s are given in Eq. (1.9) and 𝑀(Ζ)’s correspond to the
end mirrors of the cavity [cf. Eq. (1.8)]. The constraint 𝑀22 = 1 must be
required in order to have unit transmissivity:

𝑒𝑖𝑘𝐿 =
𝑒−𝑖𝜇

1 + 𝑖𝜒 􏿰
𝑖𝜒 cos(2𝑘𝑥) ± 􏽯1 + 𝜒

2 sin2(2𝑘𝑥)􏿳 . (1.59)

By using Eq. (1.59) one can find the linear optomechanical coupling of
the center of mass of the array to the light field. We substitute 𝑘 → 𝑘 + 𝛿𝑘
and 𝑥 → 𝑥 + 𝛿𝑥 in Eq. (1.59). For a uniform spatial displacement neither 𝜇
nor 𝜒 change.

Around a resonance, the result is

𝐿𝛿𝑘 = ∓ 􏿰2𝜒 sin(2𝑘𝑥)/􏽯1 + 𝜒
2 sin2(2𝑘𝑥)􏿳 𝑘𝛿𝑥. (1.60)

The optical response is maximized by both sin(2𝑘𝑥) = ∓1 and maximal
𝜒 (that is at 𝑑 = 𝑑0). Under these conditions, the linear coupling is

𝑔𝑐𝑜𝑚 = 𝑔􏽰
𝑅
𝑁

(1.61)

where g is given by Eq. (1.15) and 𝑅 = 𝜒20/(1 + 𝜒20) [cf. Eq. (1.6)].
Eq. (1.61) tells us that the center-of-mass coupling is optimized for unit

reflectivity 𝑅 = 1 and that 𝑔𝑐𝑜𝑚 can not be better than 𝑔.
As a consequence, if we want to enhance the linear optomechanical cou-

pling by using a multi-element approach (getting a value larger than 𝑔),
working in a reflective regime, where the entire array behaves as a single
reflective mirror, is definitely not a good choice.

We will see in the next section that, instead, the transmissive regime is
what we are looking for.

1.A.2 Transmissive regime

In the transmissive regime, when the𝑁membranes are immobile the whole
array is transparent to light: Each membrane interacts with and couples to
the cavity field.
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To reach this regime we have to work in one of the𝑁−1 resonant points
where 𝑇 = 1. These points are dubbed 𝑑1, … , 𝑑𝑁−1 (see Fig. 1.A.1 for 𝑁 = 6)
and are given by

𝑑𝑙 ≡
1
𝑘 􏿻
cos−1 􏿯cos(𝑙𝜋/𝑁)/􏽮1 + 𝜁2􏿲 − tan−1(𝜁)􏿾 . (1.62)

Again, the array is inserted in a near resonant cavity.
Also in this case, the authors of Refs. [122, 123] use the transfer matrix

formalism but unlike the previous section here they allow a single mem-
brane, let us say the 𝑗-th membrane, to oscillate independently of the rest of
the array.

We can choose as operational point any resonance 𝑑𝑙 (the coupling will
thus be 𝑙-dependent).

After some tedious computations, the authors find that the linear cou-
pling (corresponding to the shift of the cavity resonance due to a displace-
ment of membrane 𝑗when the array lies in the 𝑙-th transmissive point 𝑑𝑙) has
a sinusoidal shape:

𝑔(𝑙)𝑗 ∝ sin

⎛
⎜⎜⎜⎜⎜⎝2𝑙𝜋

𝑗 − 1
2

𝑁

⎞
⎟⎟⎟⎟⎟⎠ . (1.63)

Namely, for the first and last transmissive points (𝑑1 and 𝑑𝑁−1), they get

𝑔(1)𝑗 = 𝑔(𝑁−1)𝑗 = −2𝜔𝑐𝑥0
𝜁 csc 􏿴 𝜋𝑁􏿷 􏿯􏽯sin

2 􏿴 𝜋
𝑁
􏿷 + 𝜁2 − 𝜁􏿲

𝐿 − 2𝑁𝑑𝜁 csc2 􏿴 𝜋𝑁􏿷􏽯sin
2 􏿴 𝜋

𝑁
􏿷 + 𝜁2

× sin

⎛
⎜⎜⎜⎜⎜⎝2𝜋𝑙

𝑗 − 1
2

𝑁

⎞
⎟⎟⎟⎟⎟⎠ .

(1.64)

Similar expressions hold true for the intermediate 𝑁 − 3 resonances.
In the transmissive regime all 𝑁 elements are coupled to light. Under

certain assumptions, it is possible to show that the dynamics of the system
array plus cavity is properly described by a Hamiltonian where a single
cavity mode is coupled to a single collective mechanical mode. Within this
framework, the collective linear coupling strength at 𝑑 = 𝑑𝑙 is

𝑔(𝑙)sin,1 =
􏽱

𝑁
􏾜
𝑗=1
􏿴𝑔(𝑙)𝑗 􏿷

2
. (1.65)

The role of the single-membrane couplings 𝑔(𝑙)𝑗 ’s is to select the sinusoidal
profile of the collective mechanical motion coupled to light.
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The analytical expression of the collective coupling is

𝑔(𝑙)sin,1 = 𝑔√𝑁
𝜁 csc(𝑙𝜋/𝑁) 􏿰􏽯sin

2(𝑙𝜋/𝑁) + 𝜁2 − 𝜁􏿳

𝐿 − 2𝑁𝑑𝜁 csc2(𝑙𝜋/𝑁)􏽯sin
2(𝑙𝜋/𝑁) + 𝜁2

. (1.66)

For low reflectivity scatterers like atoms (𝑁|𝜁|/𝜋 ≪ 1) and comparatively
large cavities (𝑑 ≪ 𝐿), the collective coupling strength depends on √𝑁 as
𝑔|𝜁|√𝑁/2 [133, 162].

More importantly, instead, for 𝑁|𝜁|/𝜋 ≫ 1 the collective linear coupling
behaves as

𝑔(𝑙)sin,1 ≈
√2
𝜋
𝑔𝜁2𝑁3/2, (1.67)

which, unlike the coupling in the reflective regime, can be order of mag-
nitudes larger than the coupling for a single membrane in the middle of a
cavity 𝑔.

Throughout Chapter 1 we operate in this transmissive regime.

1.B First-order Taylor expansion

In this Appendix it is shown how to reduce expansion (1.19) into the more
compact form (1.20). We will first apply the procedure to an array composed
of 𝑁 = 3 and 𝑁 = 4 membranes, and then extend the result to a generic
number 𝑁.

1.B.1 Array of three membranes

For three membranes, Eq. (1.19) takes the simple form

𝑀𝑎𝑟 = 𝑀 ⋅ (𝕀 − 𝑖𝑘𝛼d1,2𝜎3) ⋅ 𝐹 ⋅ 𝑀 ⋅ (𝕀 − 𝑖𝑘𝛼d2,3𝜎3) ⋅ 𝐹 ⋅ 𝑀 (1.68)

where, due to symmetry reasons, d1,2 = d2,3.
Matrix (1.68) can be expaned up to order 𝑂(𝛼2) as

𝑀𝑎𝑟 = 𝑀3 − 𝑖𝑘𝛼d1,2[𝑀 ⋅ �̃� ⋅ 𝑀 ⋅ 𝐹 ⋅ 𝑀
+𝑀 ⋅ 𝐹 ⋅ 𝑀 ⋅ �̃� ⋅ 𝑀]

(1.69)

with �̃� = 𝐹 ⋅ 𝜎3 = 𝜎3 ⋅ 𝐹 and 𝑀3 = 𝑀𝑁=3 is the matrix for an array in its
equidistant configuration (𝛼 = 0): 𝑀3 = 𝑀 ⋅ 𝐹 ⋅ 𝑀 ⋅ 𝐹 ⋅ 𝑀. Matrix 𝑀𝑁 can be
computed by following Refs. [122, 123], and is given by Eq. (1.21), see also
Appendix 1.A.

We need now to estimate the terms within square brackets in Eq. (1.69).
On this purpose, we first decompose �̃� as

�̃� = 𝐹 1
2
⋅ �̃� 1

2
(1.70)
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where as usually the first matrix in the product represents a monochromatic
beam of wave number 𝑘 that propagates over a distance 𝑑/2 through free
space, see Eq. (1.9):

𝐹 1
2
=

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑖𝑘

𝑑
2 0

0 𝑒−𝑖𝑘
𝑑
2

⎤
⎥⎥⎥⎥⎥⎦ , (1.71)

whereas
�̃� 1

2
= 𝐹 1

2
⋅ 𝜎3 = 𝜎3 ⋅ 𝐹 1

2
. (1.72)

Then, we express the free-space matrix on the left side of �̃� as

𝐹 = 𝐹 1
2
⋅ 𝐹 1

2
, (1.73)

and that on the right side as

𝐹 = �̃� 1
2
⋅ �̃� 1

2
. (1.74)

We multiply the square brackets by the identity matrices

𝐼 = 𝐹−11
2

⋅ 𝐹 1
2

(1.75)

on the left side, and
𝐼 = �̃� 1

2
⋅ �̃�−11

2

(1.76)

on right side, in order to obtain the following expression:

𝑀𝑎𝑟 = 𝑀3 − 𝑖𝑘𝛼d1,2𝐹−11
2
􏿯𝐴 ⋅ 𝐴𝑡2 + 𝐴2 ⋅ 𝐴𝑡􏿲 �̃�−11

2

(1.77)

with
𝐴 = 𝐹 1

2
⋅ 𝑀 ⋅ 𝐹 1

2
. (1.78)

Notice that both matrices 𝐴 and 𝐴𝑡 are unimodular matrices.

1.B.2 Array of four membranes

For four membranes, Eq. (1.19) is

𝑀𝑎𝑟 = 𝑀 ⋅ (𝕀 − 𝑖𝑘𝛼d1,2𝜎3) ⋅ 𝐹 ⋅ 𝑀 ⋅ (𝕀 − 𝑖𝑘𝛼d2,3𝜎3) ⋅ 𝐹
⋅ 𝑀 ⋅ (𝕀 − 𝑖𝑘𝛼d3,4𝜎3) ⋅ 𝐹 ⋅ 𝑀,

(1.79)

where, again, for symmetric properties of the engineered defect, d1,2 = d3,4.
A first-order expansion in the magnitude 𝛼 of the defect leads to

𝑀𝑎𝑟 = 𝑀4 − 𝑖𝑘𝛼d1,2[𝑀 ⋅ �̃� ⋅ 𝑀 ⋅ 𝐹 ⋅ 𝑀 ⋅ 𝐹 ⋅ 𝑀
+𝑀 ⋅ 𝐹 ⋅ 𝑀 ⋅ 𝐹 ⋅ 𝑀 ⋅ �̃� ⋅ 𝑀]
− 𝑖𝑘𝛼d2,3[𝑀 ⋅ 𝐹 ⋅ 𝑀 ⋅ �̃� ⋅ 𝑀 ⋅ 𝐹 ⋅ 𝑀].

(1.80)
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Matrix 𝑀4 = 𝑀𝑁=4 represents the stack of four membranes in the absence
of defect.

Following the previous section we get

𝑀𝑎𝑟 = 𝑀4 − 𝑖𝑘𝛼𝐹−11
2

⋅ [d1,2 􏿵𝐴 ⋅ 𝐴𝑡
3 + 𝐴3 ⋅ 𝐴𝑡􏿸 + d2,3 ⋅ 𝐴2 ⋅ 𝐴𝑡

2] ⋅ �̃�−11
2

. (1.81)

After symmetrization of 𝐴2 ⋅ 𝐴𝑡2:

𝐴2 ⋅ 𝐴𝑡2 =
𝐴2 ⋅ 𝐴𝑡2 + 𝐴2 ⋅ 𝐴𝑡2

2
, (1.82)

we get

𝑀𝑎𝑟 = 𝑀4 − 𝑖𝑘𝛼
2
􏾜
𝑗=1
d𝑗,𝑗+1 􏿶1 −

𝛿𝑗,2
2 􏿹

× 𝐹−11
2

⋅ [𝐴𝑗 ⋅ 𝐴𝑡4−𝑗 + 𝐴4−𝑗 ⋅ 𝐴𝑡𝑗] ⋅ �̃�−11
2

.
(1.83)

1.B.3 Array of 𝑁 membranes

For a stack of 𝑁 membranes, the extension of Eqs. (1.77) and (1.83) yields

𝑀𝑎𝑟 = 𝑀𝑁 − 𝑖𝑘𝛼
[𝑁/2]
􏾜
𝑗=1

d𝑗,𝑗+1

⎛
⎜⎜⎜⎜⎜⎝1 −

𝛿𝑗,𝑁2
2

⎞
⎟⎟⎟⎟⎟⎠

× 𝐹−11
2

⋅ [𝐴𝑗 ⋅ 𝐴𝑡𝑁−𝑗 + 𝐴𝑁−𝑗 ⋅ 𝐴𝑡𝑗] ⋅ �̃�−11
2

.
(1.84)

Since both𝐴 and𝐴𝑡 are unimodular matrices, we can express their pow-
ers through the Chebyshev’s identity, see Appendix 1.C.

After a bit of manipulations, it is possible to demonstrate that the two-
times-two matrix 𝐶 = 𝐴𝑗 ⋅ 𝐴𝑡𝑁−𝑗 + 𝐴𝑁−𝑗 ⋅ 𝐴𝑡𝑗 is composed of the following
elements:

[𝐶]11 = [𝐶]∗22 = 2 􏿮ℂ𝑗−1ℂ𝑁−𝑗−1 − 𝜁2𝑈𝑗−1(𝑎)𝑈𝑁−𝑗−1(𝑎)􏿱 ,
[𝐶]12 = [𝐶]21 = 4𝜁𝑏𝑈𝑗−1(𝑎)𝑈𝑁−𝑗−1(𝑎),

(1.85)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑎(𝑥) = cos(𝑥) − 𝜁 sin(𝑥),
𝑏(𝑥) = 𝑎(𝑥 − 𝜋/2) = sin(𝑥) + 𝜁 cos(𝑥),

ℂ𝑖(𝑥) = 􏿴𝑈𝑖−1(𝑎(𝑥)) − 𝑒𝑖𝑥(1 + 𝑖𝜁)𝑈𝑖(𝑎(𝑥))􏿷 .

(1.86)
(1.87)

(1.88)

Notice that in Eqs. (1.85) we omitted the arguments in order to simplify the
notation: 𝑎, 𝑏, and ℂ𝑖, stand for 𝑎(𝑘𝑑), 𝑏(𝑘𝑑), and ℂ𝑖(𝑘𝑑), respectively.
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In Eq. (1.84), matrix 𝐹−11
2

⋅ 𝐶 ⋅ �̃�−11
2

is

𝐹−11
2

⋅ 𝐶 ⋅ �̃�−11
2

= 􏿰
[𝐶]11𝑒−𝑖𝑘𝑑 −[𝐶]12
[𝐶]12 −[𝐶]∗11𝑒𝑖𝑘𝑑

􏿳 . (1.89)

When we insert it in Eq. (1.84) we get 𝛼-expansion (1.20).

1.C Chebyshev’s identity

As stated in Ref. [166], the 𝑁-th power of a unimodular matrix can be sim-
plified by the following matrix identity:

􏿰
𝐴 𝐵
𝐶 𝐷􏿳

𝑁

= 􏿰
𝐴𝑈𝑁−1 − 𝑈𝑁−2 𝐵𝑈𝑁−1

𝐶𝑈𝑁−1 𝐷𝑈𝑁−1 − 𝑈𝑁−2
􏿳 (1.90)

where the Chebyshev polynomials of the second kind 𝑈𝑗 = 𝑈𝑗[(𝐴 + 𝐷)/2]
are given by:

𝑈𝑁(𝑥) =
sin 􏿮(𝑁 + 1) cos−1 (𝑥)􏿱

sin 􏿮cos−1 (𝑥)􏿱
. (1.91)

1.D Fabry-Pérot cavity

An empty Fabry-Pérot cavity is composed of two sufficiently good end mir-
rors (with polarizability 𝜁𝑚 ≫ 1) separated by a certain distance 𝐿.

The corresponding transfer matrix is made up of a free-space matrix
(1.9) for the propagation of the light inside the cavity along with two matri-
ces (1.8) for the end mirrors:

𝑀 = 𝑀(𝜁𝑚) ⋅ 𝐹(𝐿) ⋅ 𝑀(𝜁𝑚)

= 􏿰
1 + 𝑖𝜁𝑚 𝑖𝜁𝑚
−𝑖𝜁𝑚 1 − 𝑖𝜁𝑚􏿳 􏿰

𝑒𝑖𝑘𝐿 0
0 𝑒−𝑖𝑘𝐿􏿳 􏿰

1 + 𝑖𝜁𝑚 𝑖𝜁𝑚
−𝑖𝜁𝑚 1 − 𝑖𝜁𝑚􏿳

.
(1.92)

According to Sec. 1.1, the transmission of the cavity is 1/|𝑀22|2:

𝑇 =
1

|𝜁2𝑚𝑒𝑖𝑘𝐿 + (1 − 𝑖𝜁𝑚)2𝑒−𝑖𝑘𝐿|2

=
1

4𝜁2𝑚􏿵𝜁2𝑚 sin2(𝑘𝐿) − 2𝜁𝑚 cos(𝑘𝐿) sin(𝑘𝐿) + 1 − sin2(𝑘𝐿) +
1
4𝜁2𝑚
􏿸
.

(1.93)

In order to detect the cavity resonances, the denominator has to be equal
to 1. Since 𝜁𝑚 ≫ 1 we simplify the resulting expression by noticing that
1/(4𝜁2𝑚) ≈ 0. We also rewrite cos(𝑘𝐿) as

cos(𝑘𝐿) = 􏽯1 − sin
2(𝑘𝐿) (1.94)
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so that |𝑀22|2 = 1 reduces to

(𝜁2𝑚 − 1) sin2(𝑘𝐿) + 1 = 2𝜁𝑚 sin(𝑘𝐿)􏽯1 − sin
2(𝑘𝐿). (1.95)

By squaring the members we get a quartic equation in terms of sin(𝑘𝐿),
whose solution is

sin2(𝑘𝐿) =
1

1 + 𝜁2𝑚
(1.96)

or

sin(𝑘𝐿) = ±
1

􏽮1 + 𝜁2𝑚
. (1.97)

This equation in general has two solutions in the interval [−𝜋/2, 𝜋/2]:

𝑘𝐿 = ±arcsin
⎛
⎜⎜⎜⎝

1

􏽮1 + 𝜁2𝑚

⎞
⎟⎟⎟⎠ , (1.98)

and two solutions in the interval [𝜋/2, 3𝜋/2]:

𝑘𝐿 = 𝜋 ∓ arcsin
⎛
⎜⎜⎜⎝

1

􏽮1 + 𝜁2𝑚

⎞
⎟⎟⎟⎠ . (1.99)

These four solutions are not unique, due to the periodicity of the sine func-
tion, and therefore we have to add a 2𝜋𝑛-term with 𝑛 ∈ ℤ. Eventually, we
should notice that not all the solutions are valid in our case, but only those
for which the right member of Eq. (1.95) is positive.

As a result, in an empty cavity with sufficiently good side mirrors (𝜁𝑚 ≫
1) the transmission spectrum consists of well-separated Lorentzian peaks
(resonances) at momenta

𝑘𝑛 =
𝑛𝜋
𝐿

(1.100)

or frequencies

𝜔𝑛 =
𝑛𝜋𝑐
𝐿

(1.101)

as well as linewidth, see [167],

𝜅𝜈 =
𝑐

2𝐿|𝜁𝑚|􏽮1 + 𝜁2𝑚
. (1.102)

The distance 𝜋/𝐿 between two neighboring resonances is called free spectral
range.
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Figure 1.E.1: Optical response of an array of𝑁 = 10membranes (blue solid line) in
comparison with the band structure (red dotted line) of an infinite periodic pho-
tonic crystal. The polarizability of each membranes is 𝜁 = −0.9.

1.E Band Theory

An infinite array of membranes can be decomposed as a product of mini-
mal moduli given by one membrane plus the free space up to the next mem-
brane. The transfer matrix of each modulus is the product𝑀 = 𝑀(𝜁)⋅𝐹(𝑑) of
a membrane with a polarizability 𝜁 [matrix (1.8)] times a free-space matrix
over a distance 𝑑 [matrix (1.9)].

Matrix 𝑀 is a unimodular matrix and has a real trace [168, 169]. The
eigenvalues thus satisfy

𝜆2 =
1
𝜆1
. (1.103)

If |𝜆1| = 1 we can write it as
𝜆1 = 𝑒𝑖𝑞𝑑, (1.104)

with real quasi-momentum 𝑞. As 𝜆2 = 𝑒−𝑖𝑞𝑑, Tr [𝑀 ⋅ 𝐹] = 2𝑎 = 𝜆1 + 1/𝜆1 =
2 cos 𝑞𝑑, where 𝑎 is function of 𝑘𝑑 as defined in Eq. (1.86).

It follows that
|Tr [𝑀 ⋅ 𝐹]| ≤ 2. (1.105)

If |𝜆1| ≠ 1, instead, |Tr [𝑀 ⋅ 𝐹]| = |2𝑎| = |𝜆1 + 𝜆−11 | = 2 cosh 𝜅𝑑 > 2 and the
amplitude of the transmitted wave decreases in an exponential way as the
membrane gets thicker.

Eq. (1.105) is a sufficient condition for propagating waves to exist.
Real wave vector 𝑘 and Bloch wave vector 𝑞 satisfy the dispersion relation
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cos 𝑞𝑑 = 𝑎:

𝑞 =
1
𝑑
arccos 𝑎 =

1
𝑑
arccos (cos 𝑘𝑑 − 𝜁 sin 𝑘𝑑). (1.106)

For a repulsive potential (𝜁 < 0) the top of the 𝑛-th band (with 𝑛 ∈ ℕ0) is
located at 𝑘 = (𝑛+ 1)𝜋/𝑑while the lowest band starts from a strictly positive
𝑘.

When the photonic crystal has a finite size every band turns into a so-
called mini-band, which contains𝑁−1 resonances (for simpleness’ sake, in
this chapter we refer to the mini-band as band). This can be observed in
Fig. 1.E.1 where an infinite crystal band structure (red dotted line) is over-
lapped to the optical response of an array of 𝑁 = 10 elements.

The band-gap width is proportional to exp(𝜁) whereas the band width
to exp(−𝜁).

1.F The Kronig-Penney model

According to Sec. 1.4.3, light propagation along an infinite photonic crystal
without defect is described by the following Schrödinger equation:

􏿰−
ℏ2

2𝑚
𝜕2𝑥 + 𝑉(𝑥)􏿳 𝐸(𝑥, 𝑡) = 𝑖ℏ

𝑑𝐸(𝑥, 𝑡)
𝑑𝑡

. (1.107)

The potential term𝑉(𝑥) is provided by Eq. (1.50). As already stated, Eq. (1.107)
is the Kronig-Penney model, where 𝛿-walls are located at

𝑥𝑗 = 􏿶𝑗 −
1
2􏿹
𝑑 with 𝑗 ∈ ℤ. (1.108)

Following Ref. [124], Eq. (1.107) is solved by Bloch functions

𝜓𝑛,𝑞(𝑥) = 𝑒𝑖𝑞𝑥𝑢𝑛,𝑞(𝑥) (1.109)

which in the interval 𝑗𝑑 < 𝑥 ≤ (𝑗 + 1)𝑑 change as

𝜓(𝑗)𝑛,𝑞(𝑥) = 𝑒𝑖𝑞𝑗𝑑𝜓(0)𝑛,𝑞(𝑥 − 𝑗𝑑). (1.110)

Here 𝑞 is the Bloch wave vector (quasimomentum). Between 𝛿-walls the
wave function obeys the Schrödinger equation in free space and only posi-
tive energies are allowed:

ℰ =
ℏ2𝑘2

2𝑚
≥ 0, (1.111)

with real wave vector 𝑘 = 𝜔/𝑐 [cf. Eqs. (1.47)] connected to 𝑞 via Eq. (1.106).
For −𝑑/2 < 𝑥 ≤ 𝑑/2

𝜓(0)𝑛,𝑞(𝑥) = 𝐴[ cos (𝑞𝑑/2) sin (𝑘𝑑/2) cos (𝑘𝑥)+
𝑖 sin (𝑞𝑑/2) cos (𝑘𝑑/2) sin (𝑘𝑥)],

(1.112)
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where |𝐴| satisfies the renormalization constraint:

􏾙
cell
|𝜓𝑛,𝑞(𝑥)|2𝑑𝑥 = 􏾙

𝑑/2

−𝑑/2
|𝜓(0)𝑛,𝑞(𝑥)|2𝑑𝑥 = 1. (1.113)

The result is

4
𝑑
|𝐴|−2 = sin (𝑘𝑑)2 −

𝜁
𝑘𝑑
sin (𝑘𝑑)(sin (𝑘𝑑) − 𝑘𝑑 cos (𝑘𝑑)). (1.114)

The Wannier functions are then given by

𝑤𝑛,𝑗(𝑥) =
𝑑
2𝜋 􏾙

𝜋/𝑑

−𝜋/𝑑
𝑒𝑖𝑞𝑗𝑑𝜓(0)𝑛,𝑞(𝑥 − 𝑗𝑑)𝑑𝑞. (1.115)

Usually, finding the convenient set of Wannier functions is not an easy
task due to a “gauge freedom” in their definition [170].

Eventually, let us notice that Eqs. (1.107) and (1.50) explain why the po-
larizability has to be negative. For 𝜁 > 0 each mirror would behave as an
infinite well (attractive 𝛿-potential) so that Eq. (1.107) would admit, among
its solutions, also bound states in the lowest energy band. A mirror can not
trap photons though.



2
Cavity-enhanced transport of excitons

The capability of transporting quanta over large distances and in a very
efficient way through a physical platform is a long-sought goal for exper-
imentalists; improving the speed of the transport as well as its robustness
against external perturbations is, for example, essential in quantum infor-
mation theory [171–173] as well as experiments involving cold atoms and
ions [54, 174–176] and organic semiconductor or solar cell physics [177–179].
A main obstacle for the effectiveness of the transport is the disorder in the
system.

In the presence of disorder, in a one-dimensional chain of two-level sys-
tems the transmission of single-particle excitations is exponentially sup-
pressed: Eigenstates are subjected to an Anderson-type localization [125]
so that their transmission over a distance of 𝑁 sites decays as 𝑇 ∝ 𝑒−𝑁. Here
we show that the presence of an optical cavity, under certain conditions,
helps overcome this exponential suppression and allows for ultrafast ballis-
tic transmission.

In this chapter we study the transport of excitons through a chain of
two-level systems surrounded by a high-finesse Fabry-Pérot cavity in the
limit of strong collective light-exciton coupling. Unlike the weak coupling
regime, where interaction between light and matter consists in single events
of emission and absorption of photons, in the strong coupling regime light
and matter can not be anymore considered as independent: The coupling of
the excitons to the structured vacuum field of the cavity allows for the for-
mation of a couple of polaritonic eigenstates. Due to their photonic fraction,
polaritons are effectively endowed with a lighter mass (with respect to the
bare excitons) and are thus less sensitive to the disorder in the medium. As a
matter of fact, we report a dramatic enhancement in the transport efficiency
which, at its worst, decays in an algebraic way 𝑇 ∝ 𝑁−2. This tremendous
improvement should be measurable for realistic parameters, also at room
temperature [69, 73, 180–188].

As we shall see later, what couples to the vacuum field of the cavity
is the symmetric superposition of the (localized) excitonic eigenstates: This
highly entangled quantum state is known as collective Dicke state [189] and
behaves as a uniformly delocalized exciton. Dicke states appear sponta-
neously in ensembles of many particles which are characterized by sym-
metric dynamics [190].

39
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The results presented in this chapter, despite regarding exciton dynam-
ics, were initially inspired by groundbreaking experiments on electronic
transport through molecular semiconductors in the strong-coupling regime
[180]. These experiments were performed in Strasbourg, in the group led
by Prof. T. W. Ebbesen at I.S.I.S., and show that molecular materials are in-
deed (at least in principle) promising alternatives to standard semiconduc-
tors based on silicon [177, 191–197]: These new molecular materials are in
fact less expensive and more versatile.

The theoretical model that we present can be applied to a variety of arti-
ficial systems inside a cavity, ranging from Rydberg lattice gases [198, 199],
to polar molecules trapped in optical lattices [200, 201], to ions confined in
a linear Paul trap [202, 203]. By employing these systems one may further
extend the study to systems with multiple excitations and in higher dimen-
sions which nowadays can not be efficiently analyzed via numerical meth-
ods [204–206]. This, in turn, may help better understand the transport in
real media as well as the propagation of information in strongly correlated
systems coupled to light [174, 175, 207, 208].

For large coupling [209] and reduced decoherence rate from sponta-
neous emission we will see that our model allows for instantaneous coher-
ent transport of excitonic wave packets where an almost perfect efficiency
(𝑇 ∝ 1) may be reached.

This chapter is organized as follows. In Sec. 2.1 we introduce the model.
In Sec. 2.2 we introduce the concept of polaritons and briefly review the
basic features of these hybrid quasiparticles. In Sec. 2.3 we study a wave-
packet scattering problem applied to our model and show both analytical
(Sec. 2.3.1) and numerical (Sec. 2.3.2) results concerning the transmission
of the wave packet through the transverse cavity. In Sec. 2.4 we include
dissipation in the model; within the framework of the master equation for-
malism we study the steady-state current in the system under incoherent
pumping from the left side of the cavity. Finally, Sec. 2.5 contains the con-
clusions.

In Appendix 2.A we solve the Schrödinger equation for the model and
single out the polaritonic eigenstates. The solution is obtained by using
both open and periodic boundary conditions. Appendix 2.B presents the
analytical time-independent computations concerning the polaritons and
the transmission of the wave packet through the cavity.

The results from this chapter have been collected in the following paper,
published during the PhD:

J. Schachenmayer, C. Genes, E. Tignone, G. Pupillo,
Cavity-Enhanced Transport of Excitons,
Phys. Rev. Lett. 114, 196403 (2015)

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.196403
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2.1 The model

We consider a one-dimensional chain composed of𝑁 two-level systems sur-
rounded by a transverse single-mode optical cavity. Each two-level system
can be mapped into a spin which can be either up (|↑⟩) or down (|↓⟩) de-
pending on whether the two-level system is in the excited or in the ground
state.

The Hamiltonian 𝐻 of the system (ℏ ≡ 1) can be decomposed as 𝐻 =
𝐻0 + 𝐻cav:

𝐻0 =􏾜
𝑖
􏿮𝜔𝑖𝜎+𝑖 𝜎−𝑖 − 𝐽𝑖 􏿴𝜎+𝑖 𝜎−𝑖+1 + 𝜎−𝑖 𝜎+𝑖+1􏿷􏿱 ,

𝐻cav = 𝑔􏾜
𝑖
􏿴𝜎+𝑖 𝑎 + 𝜎−𝑖 𝑎†􏿷 .

(2.1)

The operators 𝜎+𝑖 and 𝑎+ create a localized exciton on site 𝑖 (|↑⟩𝑖) and a
photon in the cavity mode, respectively. In the spinorial framework 𝜎+𝑖 is
a raising operator. Since the atomic excitons we are dealing with have a
size which is comparable to the interatomic separation, these are Frenkel
excitons [210]: Extended wave functions resulting from hopping.

The first term in the Hamiltonian, 𝐻0, corresponds to the energy of the
free exciton (𝜔𝑖 for an exciton located at site 𝑖) which is free to hop from
one site to the next-nearest-neighboring ones at an energy cost of 𝐽𝑖. The
site-dependent tunnelling rate is affected by disorder drawn from a normal
distribution:

𝐽𝑖 = 𝐽 + 𝛿𝐽𝑖; (2.2)

the standard deviation of such distribution is dubbed 𝛿𝐽. We neglect long-
range contributions to the hopping since they are not large enough to sup-
press the disorder-induced localization [211]. Since for the system that we
consider the wavelength of the dipole transition is usually much larger than
the average spacing 𝑎 between dipoles (𝑘𝑎 << 1) we can neglect also retar-
dation effect and inelastic interactions.

The cavity-related term𝐻cav is a typical Jaynes-Cummings Hamiltonian,
with 𝑔 being the single-exciton-single-photon coupling.

Here we only study the case when one excitation is present in the system:
Either one exciton or one photon.

We will consider two different transport experiments: A scattering-type
experiment and an incoherent-pumping experiment. In the first experi-
ment we will look at the transmission 𝑇 of an exciton wave packet traveling
through the medium; in the second one instead we will look at the steady-
state exciton currents propagating along the medium.
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2.2 Polaritons

Let us consider the generalization of the system introduced in the previous
section: 𝑁 two-level systems embedded in a multimode cavity. The system
is described by the Hamiltonian 𝐻 = 𝐻0 + 𝐻cav where the two terms are
presented in Eq. (2.1). Here, however, we consider a non-flat photonic dis-
persion relation and we also explicitly insert the photonic creation energy:

𝐻 =􏾜
𝑘
𝜔𝑝(𝑘)𝑎+𝑘 𝑎𝑘 + 𝜔0􏾜

𝑗
𝜎+𝑗 𝜎−𝑗 − 𝐽􏾜

𝑗
􏿴𝜎+𝑗 𝜎−𝑗+1 + 𝜎−𝑗 𝜎+𝑗+1􏿷

+ 𝑔􏾜
𝑗
􏿴𝜎+𝑗 𝑎𝑘𝑒𝑖𝑘𝑗 + 𝜎−𝑗 𝑎+𝑘 𝑒−𝑖𝑘𝑗􏿷 .

(2.3)

In Hamiltonian (2.3) there is no disorder: 𝜔𝑖 = 𝜔0 and 𝐽𝑖 = 𝐽 for all sites.
In the absence of light-exciton coupling (𝑔 = 0), the dispersion relation

𝜔𝑝(𝑘) ≡ 𝐸𝑝(𝑘) for the cavity mode and the dispersion relation 𝐸𝑒(𝑘) for the
hopping exciton are

𝐸𝑝(𝑘) = 𝑐􏽯𝑘
2 + 𝑘2⟂,

𝐸𝑒(𝑘) = 𝜔0 − 2𝐽 cos(𝑎𝑘),
(2.4)

where we took a unit spin-spin separation 𝑎; 𝑘 and 𝑘⟂ are the wave vectors
along the cavity axis and along the perpendicular direction; notice that 𝑘⟂ is
constant. These two curves are illustrated in Fig. 2.1 (black dashed curves).

When the interaction with light is switched on (𝑔 ≠ 0) the exciton and the
photon coherently superpose and form a symmetric doublet of polaritonic
modes with energies

𝐸𝐿(𝑘) =
1
2 􏿻
𝐸𝑒(𝑘) + 𝐸𝑝(𝑘) − 􏽯[𝐸𝑒(𝑘) − 𝐸𝑝(𝑘)]

2 + 4𝐺2􏿾 ,

𝐸𝑈(𝑘) =
1
2 􏿻
𝐸𝑒(𝑘) + 𝐸𝑝(𝑘) + 􏽯[𝐸𝑒(𝑘) − 𝐸𝑝(𝑘)]

2 + 4𝐺2􏿾 ,
(2.5)

for the lower (𝐿) and upper (𝑈) polaritons, respectively. The collective cou-
pling 𝐺 is simply

𝐺 = 𝑔√𝑁. (2.6)
The polaritonic energies are plotted in Fig. 2.1 as red, solid curves. The
magnitude of the avoided crossing at 𝑘 = 0 is 2𝐺.

Notice that for the single-mode cavity (2.1) with photonic Hamiltonian
𝜔0𝑎+𝑎 if we neglect quadratic terms in the hopping constant 𝐽, then the po-
laritonic energies at 𝑘 = 0 reduce to

𝐸𝐿(𝑘 = 0) = 𝜔0 − 𝐽 − 𝐺 ≡ Ω𝑑,
𝐸𝑈(𝑘 = 0) = 𝜔0 − 𝐽 + 𝐺 ≡ Ω𝑢,

(2.7)
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Figure 2.1: Polaritonic bands 𝐸𝐿(𝑘) and 𝐸𝑈(𝑘) compared with the free-photon and
bare-exciton bands, 𝐸𝑝(𝑘) and 𝐸𝑒(𝑘) respectively; 𝑎 is the spin-spin separation; 𝐺 the
collective light-matter coupling

and the polaritonic creation operators for the upper and the lower modes
are given by

𝑢+ =
𝑎+ + 𝜎+0
√2

and 𝑑+ =
𝑎+ − 𝜎+0
√2

(2.8)

where

𝜎±0 =
𝑁
􏾜
𝑖=1

𝜎±𝑖
√𝑁

(2.9)

are the Fourier transforms 𝜎±𝑘 at 𝑘 = 0 [see Eq. (2.50)]. They create and
annihilate, respectively, a collective Dicke state. Results (2.7) and (2.9) are
reviewed in Appendix 2.A

2.3 Wave-packet scattering

As shown in Fig. 2.2, via the Hamiltonian term 𝐻0 in (2.1) we add 𝑀 two-
level systems to the left and to the right of the cavity, so that the total number
of spins is 𝒩 = 𝑁 + 2𝑀.

For simplicity we consider a unit spin-spin separation. We neglect any
site dependence of the on-site energy and define 𝜔𝑖 = 𝜔0 inside the cavity
(𝑖 = 𝑀 + 1,… ,𝑀 + 𝑁) while 𝜔𝑖 = 𝜔 outside of the cavity. The detuning is
Δ = 𝜔 − 𝜔0. Moreover, in order to simulate an impedance-like mechanism,
we introduce a different hopping constant 𝐽𝑖 = 𝐽′ to hop in (𝑖 = 𝑀) and out
(𝑖 = 𝑀 + 𝑁) of the cavity.

In this scattering experiment, at an initial time 𝑡 = 0we consider a wave
packet of excitons

|𝜓(𝑡 = 0)⟩ ∝
𝒩
􏾜
𝑗=1
𝑒−𝑖𝑞0𝑗𝑒−(𝑗−𝑗0)2/(4𝛿2)|𝑗⟩ (2.10)
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Figure 2.2: A chain of 𝑁 two-level systems is embedded in a cavity and coupled to
𝑀 sites to the left of the cavity and 𝑀 sites to the right. An excitonic wave packet
enters the cavity and propagates through it, from left to right; 𝑔 is the exciton-
photon coupling; 𝐽 is the exciton hopping constant and is identical everywhere
except the first and last site inside the cavity where 𝐽 = 𝐽′ to allow for impedance
effects.

with width 𝛿 (which corresponds to the standard deviation of the Gaussian
envelope).

The wave packet is initially centered at site 𝑗0, so that the initial distance
from the (left) end mirror of the cavity is 𝛿𝑥 = 𝑀 − 𝑗0.

In Eq. (2.10), |𝑗⟩ stands for a single excitation at site 𝑗:

|𝑗⟩ ≡ |↑⟩𝑗􏽿
𝑖≠𝑗

|↓⟩𝑖 . (2.11)

We inject this wave packet from the left by kicking it with an initial quasi-
momentum 𝑞0. To provide a realistic example, we take 𝛿𝑥 = 20, 𝛿 = 5 and
𝑞0 = 𝜋/2 [which entails a group velocity 𝑣𝑔 = 2𝐽 sin(𝑞0) = 2𝐽; unit interspin
distance 𝑎].

We want to check how large is the portion of wave packet that, under
the right choice of parameters, can be transported almost instantaneously
to the other side of the cavity upon scattering (cf. Fig. 2.3).

2.3.1 Analytical results

In the absence of coupling to light (𝑔 = 0), the wave packet propagates
through the cavity via ordinary hopping: If it was centered about the left
side mirror of the cavity, the wave packet would thus reach the right side
mirror after a time 𝑁/𝑣𝑔 with 𝑣𝑔 = 2𝐽. We also have to take into account the
initial displacement 𝛿𝑥 of the wave packet with respect to the cavity as well
as its finite width 𝛿; in this case the (long) time required to overcome the
cavity is

𝑡𝑙𝐽 = 𝛿𝑥 + 2𝛿 + 𝑁/2. (2.12)

In this section we want to show that, by switching the coupling 𝑔 on, we
can employ the collective polariton mode to make the wave packet hop 𝑁
sites almost immediately.
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Figure 2.3: For 𝑁 = 50,𝑀 = 20, 𝑣𝑔 = 2𝐽, 𝛿 = 3, Δ = 69𝐽, 𝐽′ = 10𝐽, 𝑔 = 10𝐽, a large
wave-packet fraction can be nearly instantaneously transferred to the right end of
the cavity, on a timescale which is much smaller than the one required by ordinary
site-by-site hopping 𝑡 ≪ 𝑁/𝑣𝑔.

For large values of the coupling, the timescale 𝑡𝑐 for an atomic excitation
to couple in and out of the polariton mode can be very small, since

𝑡𝑐 ∝ √𝑁/𝑔. (2.13)

The transmission of the wave packet to the right side of the cavity can then
take place on a ultrashort timescale 𝑡𝑠 ≪ 𝑡𝑙:

𝑡𝑠𝐽 = 𝛿𝑥 + 2𝛿 (2.14)

which is dominated by the time required for the whole wave packet to enter
the cavity plus the time to get completely out of it.

From a dynamical point of view, this problem can be dealt with as if it
was an elastic-scattering process through the cavity, characterized therefore
by a Bloch momentum 𝑞 and a transmission function 𝑇𝑞 = |𝑡𝑞|2 which estab-
lishes all the transmission properties of the medium [212–215] (the trans-
missivity 𝑡𝑞 is the coefficient contained in the corresponding Lippmann-
Schwinger scattering equation [216]). Following Ref. [214], we find an ana-
lytical expression for 𝑇𝑞 (see Appendix 2.B):

𝑡𝑞 = −2𝑖
𝛽

1 + 2𝑖𝛽
(2.15)

with
𝛽 =

1
2𝑁𝐽 sin(𝑞)

􏾜
𝑛

|𝐽′|2

𝜔 − 2𝐽 cos(𝑞) − Ω𝑛
. (2.16)

In Eq. (2.16), Ω𝑛 indicates the 𝑛-th eigenvalue of the reduced Hamilto-
nian for the𝑁 sites which are coupled to the cavity mode, see Appendix 2.A.
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The transmission 𝑇𝑞 is obtained by inserting Eq. (2.16) in Eq. (2.15).
There are three resonant regions where perfect transmission (𝑇𝑞 = 1)

can be reached:

• Δ ∼ 0: The transmission takes place via ordinary hopping. The width
of this energy window (which contains 𝑁 − 1 resonances) is approx-
imately 4𝐽, as expected from the kinematics of a bare exciton. Four
hopping rates is indeed the typical bandwidth in the case of bare ex-
citons allowed for hopping in a one-dimensional tight-binding model.

• Δ ∼ −𝐽 − 𝐺: At this energy, the resonance with the lower polariton
is fully established. The transmission of the wave packet is then me-
diated by the collective lower polariton mode. The resonance has a
Lorentzian shape, whose full width at half maximum depends on the
number of spins embedded in the cavity, as 𝑤 = 𝐽′2/(𝑁|𝑣𝑔|).

• Δ ∼ −𝐽 + 𝐺: The same as the previous point, but for the upper polari-
ton.

Notice that the overall number of resonances (where ballistic scattering
occurs) is 𝑁 + 1, which corresponds, as it should, to the initial number of
degrees of freedom: 𝑁 spins plus one photon.

The condition
𝑔√𝑁 > max[𝑤, 4𝐽, 𝜅] (2.17)

defines the strong coupling regime, where the three above-mentioned re-
gions (lower polariton, hopping “band”, upper polariton) are well sepa-
rated in energy from each other. This regime corresponds to the region in
momentum space where the photonic and excitonic energies are near res-
onance. Here the polaritonic energies are qualitatively different from the
free-case ones. Far from this region, however, we enter the weak-coupling
regime, where the lower and upper polaritons behave as free exciton and
photon, respectively:

𝐸𝐿(𝑘) ≈ 𝐸𝑒(𝑘) and 𝐸𝑈(𝑘) ≈ 𝐸𝑝(𝑘). (2.18)

This is apparent in Fig. 2.1 where solid and dashed lines start overlapping.
In the following we concentrate on the strong-coupling regime, where

close to a polaritonic resonance 𝑇𝑞 is

𝑇𝑞 =
1

1 + 𝑁2𝐽2 sin2(𝑞)
𝐽′4 [𝜔 − 2𝐽 cos(𝑞) − Ω𝑢,𝑑]2

(2.19)

where pedices 𝑢, 𝑑 indicate the upper and lower polaritons respectively.
The details concerning Eq. (2.19) are collected in Appendix 2.B.
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2.3.2 Numerical results

We performed a numerical study of the time-dependent wave-packet scat-
tering via exact diagonalization. We adopt as figure of merit the following
time-dependent transmission:

𝑇𝑡′ = 􏾜
𝑗>𝑀+𝑁

⟨𝜎+𝑗 𝜎−𝑗 ⟩𝑡′. (2.20)

At a given time 𝑡′, 𝑇𝑡′ measures the total number of excitations that have
successfully passed through the cavity.

In this section we demonstrate that a large ultrafast transmission 𝑇𝑡𝑠
[where 𝑡𝑠 is given by Eq. (2.14)] is in fact possible if the exciton propagates
as a dressed exciton via the polaritonic mode. This can happen provided
that two conditions are fulfilled:

• The energy of the incoming wave packet |𝜓(𝑡)⟩ has to be on resonance
with the chosen polariton.

• Since the polariton peaks are characterized by a full width at half max-
imum 𝑤 [see Eq.(2.102)], in order to pass through the cavity the wave
packet has to fit into the energy window𝑤. It means that in real space
the wave packet has to be sufficiently large, on the order of 𝑁 (the
length of the cavity in units of spin-spin separation).

In order to fulfill the second condition we notice that 𝑤 depend on 𝐽′; by
properly tuning 𝐽′ we can ensure that 𝑤 does not depend on 𝑁 anymore:

𝐽′ ∝ ̃𝐽𝑁 ≡ (2 ln 2)1/4𝐽􏽰
𝑁
2𝛿

(2.21)

Plot 2.4(a) illustrates 𝑇𝑡′ for different detunings. The red continuous
curve describes the dynamics on a short timescale (𝑡′ = 𝑡𝑠) whereas the
black dotted one on a long timescale (𝑡′ = 𝑡𝑙). We consider 𝑁 = 100 two-
level systems inside the cavity, each of them independently coupled to light
via 𝑔 = 50𝐽. We also choose 𝐽′ = 4 ̃𝐽𝑁.

We detect the two polariton peaks, which as expected allow for unit
transmission on the ultrafast timescale 𝑡𝑠. Their positions and widths fol-
low the analytical time-independent result of the previous section (see also
Appendix 2.B), depicted as a blue solid curve. The transmission 𝑇𝑡𝑙 on a
long timescale shows an additional peak at Δ ∼ 0. This central band, which
actually contains 𝑁 − 1 resonances, corresponds to regular hopping of the
exciton through the cavity; here 𝑇𝑡𝑙 < 1 (because of the backscattering at the
cavity entrance owing to the impedance-like effect, 𝐽′ > 𝐽). The red curve
does not display this central small peak because 𝑡𝑠 is a too short time for an
uncoupled exciton to hop through the entire cavity.
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Figure 2.4: Transmission 𝑇𝑡𝑠 within a ultrafast timescale 𝑡𝑠 for a wave packet with
𝛿 = 5, 𝛿𝑥 = 20, 𝑣𝑔 = 2𝐽, and 𝐽′ = 4 ̃𝐽𝑁. Panel (a) compares the transmission on a long
timescale 𝑇𝑡𝑙 (dotted black curve) with the transmission on a ultrafast timescale 𝑇𝑡𝑠
(solid red curve). We consider𝑁 = 100 sites inside the cavity, each of them coupled
to light via 𝑔 = 50𝐽: Since we are in the strong collective coupling regime (𝐺 =
500𝐽) the two polariton peaks are well resolved in momentum space; numerical
computations agree with the analytical estimate of Sec. 2.3.1 (blue solid curve). 𝑇𝑡𝑙
presents an additional peak at Δ ∼ 0, which corresponds to the propagation via
regular hopping. Panel (b) illustrates how maxΔ(𝑇𝑡𝑠) changes by varying 𝑔 and 𝑁.
For 𝑔 ∝ √𝑁 (solid line) ultrafast transmission remains constant. Panel (c) shows the
transition at 𝑔 ∼ √𝑁𝐽 (dotted vertical line) between inelastic- and elastic-scattering
regime: For 𝑁 = 50, 100, 200, optimal transmission maxΔ(𝑇𝑡𝑠) is plotted as function
of 𝑔/√𝑁 in units of 𝐽. For small coupling values, 𝑇𝑡𝑠 ∼ 𝑔

4/𝑁2 (black solid segment).
Panel (d) shows the impact of finite cavity decay 𝜅 on the resonance peaks; the
other parameters are 𝑁 = 𝑀 = 50 and 𝑔 = 10𝐽.
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Usually, for small values of 𝑔 the scattering process on a ultrashort ti-
mescale 𝑡𝑠 becomes inelastic since the exciton starts losing its photon-like
properties, and 𝑇𝑡𝑠 < 1. Despite this, as shown in Fig. 2.4(b), a large por-
tion of the wave packet succeeds in passing through the whole cavity and
reaches the𝑀 spins on its right. Fig. 2.4(b) illustrates the best possible 𝑇𝑡𝑠 for
a detuning Δ chosen in proximity of the upper polariton energy when both
𝑔 and 𝑁 are varied: Along the black solid curve 𝑔 ∼ √𝑁𝐽 the transmission
𝑇𝑡𝑠 acquires a large constant value even for small couplings, which does not
depend on the number of spins in the cavity.

The coupling 𝑔 = √𝑁𝐽 traces the border between the inelastic and elastic-
scattering regimes; indeed, beyond such value the exciton couples in and
out the polariton mode in a timescale 𝑡𝑐 which can be neglected compared
to the other timescales, see Eq. (2.13). Fig. 2.4(c) shows 𝑇𝑡𝑠 as a function
of 𝑔/√𝑁𝐽 for 𝑁 = 50, 100, or 200 spins in the cavity. We notice that the
transmission follows a universal behavior, which is independent on 𝑁. As
expected, for 𝑔 ≪ √𝑁𝐽 and within a ultrafast timescale 𝑡𝑠, the exciton wave
packet has not enough time to completely reach the other side of the cavity,
and 𝑇𝑡𝑠 reaches finite but small values. By increasing 𝑔 the fraction of wave
packet which succeeds in passing trough the cavity increases, and 𝑇𝑡𝑠 ∼ 80%
for 𝑔 = √𝑁𝐽. Eventually, in the elastic regime 𝑔 ≫ √𝑁𝐽 we reach a ballistic
transmission 𝑇𝑡𝑠 ∼ 100% over arbitrarily long arrays of spins.

Fig. 2.4(c) also shows that in this inelastic-scattering regime with a strong
collective coupling (2.17) the transmission behaves as𝑇𝑡𝑠 ∼ 𝑔

4/𝑁2: The trans-
mission decreases only algebraically with the number of spins 𝑁. This re-
sults may have a positive impact when disorder is introduced in the system.
As we shall see at the end of this section, the algebraic dependence will
contribute to overcome the typical exponential suppression induced by the
disorder.

Up to now we considered a perfect medium in a perfect cavity. How-
ever, a realistic cavity is characterized by a nonzero cavity decay rate 𝜅 ≠ 0.
A realistic resonator implies the leakage of exciton (and photon) popula-
tion which, in turn, implies both a decrease of 𝑇𝑡𝑠 and a broadening of
the full width at half maximum of the Lorentzian transmission. Fig. 2.4(d)
shows that, nevertheless, a large wave-packet fraction can be still transferred
within a ultrafast timescale 𝑡𝑠 for 𝜅 ∼ 𝐽, which is a typical decay rate for ex-
periments that employ polar molecules.

For 𝜅 ≫ 1 the dynamics of the system can be described by an all-to-all
flipping mechanism:

𝐻𝑒𝑓𝑓 ≈
2𝑔2

𝜅
􏾜
𝑖,𝑗
𝜎−𝑖 𝜎+𝑗 . (2.22)

Hamiltonian (2.22) is obtained via an adiabatic elimination of the photonic
mode; it allows for ultrafast transmission too. This situation can be exper-
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imentally reproduced with trapped ions, which even without a cavity can
display long-range interactions (see Appendix 2.C).

In the artificial media that we have analyzed so far there is no disorder.
Realistic systems are of course not perfect; for instance, in organic semi-
conductors disorder affects both the spatial distribution and dipole orien-
tation of molecules [site-dependent hopping (2.2)]. Moreover, the coupling
strength of a single molecule to light is usually a fraction of the hopping
energy scale (𝑔 ∼ 0.1𝐽).

Fig. 2.5(a) illustrates the results for the same system as in Fig. 2.4 with a
fixed detuning Δ = 𝑔√𝑁− 𝐽, on resonance with the energy of the upper po-
lariton; a disorder in the hopping is introduced, characterized by a standard
deviation 𝛿𝐽 = 0.2 [see Eq. (2.2)]. In the absence of a cavity the transmission
𝑇𝑡𝑙 within a long timescale 𝑡𝑙 is exponentially suppressed, in agreement with
Anderson-type localization [125]. The result is then a vanishing transmis-
sion for a large number of sites. For instance, for 𝑁 ≳ 400 we get 𝑇𝑡𝑙 < 10

−6.
However, the introduction of a cavity and a nonzero coupling 𝑔 can impor-
tantly modify the nature of the localized eigenstates of the system [217, 218]:
Even weak couplings as 𝑔 = 0.05𝐽, 0.1𝐽, or 0.2𝐽 can lift the exponential sup-
pression of the transmission so that a small but significant part of the wave
packet can be transferred beyond the cavity, even for a very large number
of site as 𝑁 = 104. In the strong collective coupling regime (right of vertical
lines) we notice that the universal algebraic behavior 𝑇𝑡′ ∼ 1/𝑁2 survives
the disorder. Finally, notice that the presence of a small coupling has a re-
markable effect also in the weak collective coupling regime (left of vertical
lines): A constant transmission is possible (even though small), which is
orders of magnitudes larger than the transmission without a cavity. These
parameters are relevant, for example, for current experiments with organic
semiconductors, where molecules have a typical dipole moment 𝑑 = 𝑒×0.75
nm and a spacing 𝑥 = 3 nm (𝛿𝑥 = 0.2 nm), which entail a tunnelling rate
𝐽 = 𝑑2/(4𝜋𝜖0𝑥3) ≈ 0.03 eV. Since for𝑁 = 105 molecules a Rabi splittingΩ𝑅 ≈ 1
eV can be obtained, the coupling to light is indeed 𝑔 ≈ 0.0016 ≈ 0.05𝐽. More-
over, 𝜔 = 2eV ≈ 70𝐽.

All the above-mentioned results keep being true also at higher dimen-
sions 𝑑. On the one hand it is true that, for 𝑑 > 1, relative improvement
of 𝑇𝑡𝑙 over the 𝑔 = 0 case can get smaller and smaller as 𝑑 increases, since
it becomes easier for the wave packet to overcome an impurity along the
path (whereas for 𝑑 = 1 it can not be avoided). On the other hand, however,
according to the Lieb-Robinson bound [172], a finite 𝑇𝑡𝑠 without a cavity is
impossible also for two or three dimensions whereas the cavity mode (and
thus the polaritonic mechanism that we are presenting in this chapter) takes
place in any dimension 𝑑. Since Anderson localization takes place also in
two and three dimensions (below the mobility edge [219]), we still expect
an exponential enhancement.
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2.4 Incoherent pumping

In this case the dynamics of our model is studied via the master equation
formalism. Within this framework, the time evolution of the density matrix
𝜌 of the system follows

�̇� = −𝑖[𝐻, 𝜌] +􏾜
𝛼
ℒ𝛼(𝜌) (2.23)

and all dissipative processes are taken into account by the terms

ℒ𝛼(𝜌) ≡ −{𝐿†𝛼𝐿𝛼, 𝜌} + 2𝐿𝛼𝜌𝐿†𝛼 (2.24)

with 𝐿𝛼 being the Lindblad operators.
We consider a variety of dissipative channels: Since the cavity is not

perfect but photons can actually leak out, we account for the cavity decay
by means of the operator 𝐿𝜅 ≡ 𝜅𝑎/2 with 𝜅 being the decay rate; we also
include spontaneous emission from each two-level system via 𝐿 sp.em.,𝑖 ≡
𝛾 sp.em.𝜎−𝑖 /2 (due for instance to radiative decay) as well as dephasing via
𝐿deph,𝑖 ≡ 𝛾deph𝜎+𝑖 𝜎−𝑖 /2. The latter is caused, for example, by the finite tem-
perature which makes the system vibrate and induces fluctuations in level-
spacing.

In this experiment, unlike the scattering-type one of Sec. 2.3, we do not
couple external arrays to the cavity; we instead consider 𝑁 spins inside a
cavity and incoherently pump excitons to the leftmost site (𝑖 = 1) and re-
move them from the rightmost one (𝑖 = 𝑁). Within the master equation
formalism these two operations can be taken into account by including two
additional dissipative terms with Lindblad operators

𝐿𝑃 ≡
􏽰
𝛾𝑃
2
𝜎+1 (2.25)

for the incoherent exciton pumping, and

𝐿out ≡
􏽰
𝛾out
2
𝜎−𝑁 (2.26)

for the exciton removal.
We are interested in the output current

𝐼out = tr[𝑛𝑒ℒout(𝜌)]
= tr[𝜎+𝑁𝜎−𝑁ℒout(𝜌)]

(2.27)

in the steady state.
In analogy to Ref. [220], since we are considering a steady state, 𝑑⟨𝑛𝑒⟩/𝑑𝑡 =

0, that is
𝑑
𝑑𝑡

tr[𝑛𝑒𝜌] = tr[𝑛𝑒�̇�] = 0. (2.28)
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By replacing �̇� according to the master equation (2.23), one obtains

𝐼out = tr[𝑛𝑒ℒ𝑃(𝜌)] + tr[𝑛𝑒ℒout(𝜌)] + tr[𝑛𝑒ℒsp.em.(𝜌)]
+ tr[𝑛𝑒ℒdeph(𝜌)] − 𝑖tr[𝑛𝑒[𝐻, 𝜌]].

(2.29)

In the next section we analyze the dynamics of the system with both
𝛾𝑃 > 0 and 𝛾out > 0 in order to show how the steady-state current 𝐼out
behaves. As we shall see, 𝐼out is tremendously enhanced via the coupling to
the cavity mode.

2.4.1 Numerical results

Here we consider a spontaneous emission rate 𝛾sp.em. = 0.04𝐽 as well as a
dephasing rate 𝛾deph = 0.9𝐽. The pump rate 𝛾𝑃 operates as a “voltage” for
the exciton current: Fig. 2.5(b) depicts 𝐼out as a function of 𝛾𝑃. Contrary to
previous studies on excitons traveling through multimode cavities [221], the
plot shows that even realistically small exciton-light couplings (𝑔 = 0.05𝐽,
0.1𝐽, 0.2𝐽) dramatically enhances 𝐼out over the cavity-free current.

In agreement with the previous study on the wave-packet scattering,
Fig. 2.5(c) illustrates that in the absence of a cavity 𝐼out is suppressed in an ex-
ponential way as the number𝑁 of sites is increased; this is of course caused
by the various dissipation channels as well as by the disorder. If a cavity
is added, however, even for small values of 𝑔 which can barely guarantee
the strong collective coupling regime (as 𝑔 = 0.05, 0.1, 0.2𝐽), the exponential
decrease is traded for an algebraic one, 𝑔 ∝ 1/𝑁2, exactly as for the ultrafast
transmission 𝑇𝑡𝑠 in the previous section.

Finally, in Fig. 2.5(d) the steady-state current 𝐼out is plotted as a function
of 𝑔 for different rates 𝜅 of the cavity decay. We can see that 𝐼out undergoes
a sudden enhancement as 𝑔 becomes larger than e specific value which is
indicated by vertical lines; this values indicates the coupling beyond which
𝐺 exceeds all other energy scales and we enter the strong collective coupling
regime. Clearly, the larger is 𝜅 the larger has to be the threshold coupling in
order to compensate a more effective exciton loss from the cavity (see 𝜅 = 10
in the plot).

2.5 Conclusions

In this chapter, we demonstrated that the presence of an optical cavity en-
hances in a tremendous way the transport of excitons along a chain of two-
level systems. We studied this transport problem through two different ap-
proaches.

In Sec. 2.3 we dealt with a wave-packet scattering experiment where a
wave packet, starting from a spin chain on the left side of the cavity, en-
ters the cavity and propagates through it until reaching the other side. Our
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figure of merit was the time-dependent transmission 𝑇𝑡′, which measures
the overall number of excitations that reach the right side of the cavity. We
have numerically shown that a ballistic transmission on a ultrafast time-
scale is possible via the polaritonic modes, which is much faster than the
usual transmission via regular hopping. We also provided an analytical
expression for the time-independent transmission close to the polaritonic
resonances (either lower or upper) in the strong coupling regime, that is
when they are well resolved.

In Sec. 2.4 we introduced several dissipative channels in our problem
(cavity decay, disorder in hopping, spontaneous emission, dephasing) and
we looked at the steady-state current under an incoherent pumping process
where an exciton is injected on the leftmost site of the cavity. Everything is
carried out numerically, within the framework of the master equation for-
malism. The results, also in this case, show that the current is incredibly en-
hanced by the coupling of the exciton to light (𝑔 > 0). More importantly, we
demonstrated that in the strong collective coupling regime the current only
decays algebraically with the number of sites as 1/𝑁2 instead of showing the
exponential suppression typical of Anderson-type localization [125].

The findings collected in this chapter are relevant for organic semicon-
ductors at room temperature, which being affected by disorder can not effi-
ciently conduct; the presence of a transverse cavity may indeed increase
their conduction properties by several orders of magnitude. Of course, also
the performances of artificial media are strongly ameliorated; for instance,
systems made up of Rydberg atoms, cold ions at sub-mK temperatures, or
polar molecules, would certainly benefit from our discoveries. While pa-
rameters for the organic media are reported in the main text, examples of
parameters concerning these last systems can be found in Appendix 2.C.

This work has many exciting perspectives. It paves the way towards
new studies on strong coupling. For instance, one could extend the prob-
lem to multiple excitations which can interact with each other, and try to
understand whether the strong coupling regime can induce a propagation
on ultrashort timescales of both classical and quantum correlations [207,
208, 222].

From a numerical point of view, at least in one dimension, an answer
might be provided by an adjusted density matrix renormalization group
algorithm [204–206]. Higher dimensionalities are tougher; in order to con-
duct a proper investigation at 𝑑 > 1 one should abandon the idea of using a
numerical approach and try instead to simulate the problem by employing
experimental setups [223].
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Figure 2.5: In panels (a), (b), and (c) the blue solid lines indicate realistic values
of coupling 𝑔 = 0.05𝐽, 0.1𝐽, 0.2𝐽 (the darker the blue the larger the value). Panel (a)
presents both transmissions 𝑇𝑡𝑠 and 𝑇𝑡𝑙 as function of 𝑁. As in Fig. 2.4(a), we tune
the wave-packet energy on resonance with the energy of upper polariton; we show
an average over 200 disorder realization in 𝐽𝑖, characterized by the same standard
deviation 𝛿𝐽 = 0.2𝐽. The black dotted curve corresponds to 𝑇𝑡𝑙 in the absence of a
cavity; for 𝑔 > 0 we only plot the ultrafast transmission 𝑇𝑡𝑠. It is again apparent
the exponential decay of 𝑇𝑡𝑙 with 𝑁. On the contrary, 𝑇𝑡𝑠 gets a constant value in
the weak coupling regime and then decays algebraically as 1/𝑁2 (see black solid
segment) for couplings above𝐺 = 3𝐽 (vertical lines). Panels (b), (c), and (d) illustrate
the response of the system under incoherent pumping in presence of spontaneous
emission (𝛾sp.em. = 0.04𝐽), dephasing (𝛾deph = 0.9𝐽), and disorder (𝛿𝐽 = 0.2𝐽), where
a single disorder realization is taken into account. In panel (b) the steady-state
current 𝐼out is depicted for 50 sites inside the cavity and in presence of dissipation.
The incoherent pumping rate is 𝛾𝑃 = 0.5𝐽 whereas 𝛾out = 2𝐽. The presence of a
cavity (𝑔 > 0) induces a large increase in the current. In plot (c) the exponential
Anderson-type localization (𝑔 = 0) is overcome thanks to the coupling to light: In
the weak coupling regime the decay is subexponential, while in the strong coupling
regime 𝐼out decays algebraically; it is illustrated by the black solid segment. In panel
(d) the current 𝐼out is plotted against 𝑔 for𝑁 = 50 sites and a few different values of
cavity decay 𝜅. Vertical lines indicate the thresholds of the strong coupling regime:
𝑔√𝑁 = 3𝐽 and 𝑔√𝑁 = 10𝐽, respectively.



Appendices

2.A Schrödinger equation

In this Appendix we look for the 𝑁 + 1 eigenvalues Ω𝑛 of the Hamiltonian
(2.1) where we explicitly introduce the photonic energy 𝜔0:

𝐻 = 𝜔0𝑎+𝑎 + 𝜔0
𝑁
􏾜
𝑖=1
𝜎+𝑖 𝜎−𝑖 − 𝐽

𝑁−1
􏾜
𝑖=1

􏿴𝜎+𝑖 𝜎−𝑖+1 + 𝜎−𝑖 𝜎+𝑖+1􏿷

+
𝑁
􏾜
𝑖=1
𝑔 􏿴𝜎+𝑖 𝑎 + 𝜎−𝑖 𝑎†􏿷 .

(2.30)

We will see how polaritons naturally arise from the Schrödinger equa-
tion 𝐻 |𝑛⟩ = Ω𝑛 |𝑛⟩; we will use two different approaches (open boundary
conditions and periodic boundary conditions) and reach the same results.

Eventually, we will see how polaritonic eigenstates are modified after
introduction of disorder in the coupling 𝑔.

2.A.1 Open boundary conditions

We forget about the cavity (it will come back later).
Open boundary conditions means that we are considering a chain of 𝑁

sites with finite length 𝐿 = 𝑁 − 1 (in units of lattice constant) while on the
left of site 1 and on the right of site 𝑁 there is the vacuum; the state has to
be strictly zero there.

To solve this problem we adopt a trick: We add a zeroth site on the left of
the first site and a (𝑁+1)-th site on the right of the𝑁-th site and change the
boundary conditions in such a way that the wave function vanishes at sites 0
and𝑁+1. This is, in principle, the setup of a chain with length 𝐿 = 𝑁+1 and
periodic boundary conditions with the further boundary condition that at
the zeroth site the wave function vanishes. Without the additional bound-
ary condition the energy eigenstates have the typical Fourier-type form

𝜎†f,𝑞 =
1

√𝑁 + 1

𝑁
􏾜
𝑗=1
𝑒𝑖𝑞𝑗𝜎+𝑗 . (2.31)

According to the additional boundary condition we need that 𝜎𝑗=0𝜎†f,𝑞 = 0,
which is not satisfied by the Fourier-type operators.

55
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The following linear combination, however, does satisfy such require-
ment:

𝜎†𝑘 =
1

√2𝑖
(𝜎†f,𝑞(𝑘) − 𝜎†f,𝑞(𝑘)) = 􏽰

2
𝑁 + 1

𝑁
􏾜
𝑗=1
sin 􏿵

𝜋
𝑁 + 1

𝑘𝑗􏿸 𝜎†𝑗 (2.32)

and limits 𝑞 to the set of values {𝜋/(𝑁+1)𝑘}with 1 ≤ 𝑘 < (𝑁+1). The inverse
transformation is

𝜎†𝑗 = 􏽰
2

𝑁 + 1

𝑁
􏾜
𝑘=1

sin 􏿵
𝜋

𝑁 + 1
𝑘𝑗􏿸 𝜎†𝑘. (2.33)

Eqs. (2.32) and (2.33) imply |𝑘⟩ = ∑𝑁
𝑗=1 𝛼

𝑗
𝑘 |𝑗⟩ and |𝑗⟩ = ∑𝑁

𝑘=1 𝛼
𝑗
𝑘 |𝑘⟩, with

𝛼𝑗𝑘 = 􏽰
2

𝑁 + 1
sin 􏿵

𝜋
𝑁 + 1

𝑘𝑗􏿸 . (2.34)

These coefficients satisfy

𝑁
􏾜
𝑗=1
𝛼𝑗𝑘𝛼

𝑗
𝑘′ = 𝛿𝑘,𝑘′ and

𝑁
􏾜
𝑘=1

𝛼𝑗𝑘𝛼
𝑗′
𝑘 = 𝛿𝑗,𝑗′. (2.35)

Let us now come back to our problem, where the chain is surrounded by
a high-finesse optical cavity. All the above considerations justify the choice

|𝑛⟩ =
𝑁
􏾜
𝑗=1
𝛼𝑗𝑘 |𝑗0⟩ + 𝛽 |01⟩ (2.36)

for the single-excitation subspace ansatz; 𝛼𝑗𝑘 is the probability amplitude for
an exciton at the 𝑗-th two-level system whereas 𝛽 is the probability ampli-
tude for a cavity photon. As we shall see, the exciton amplitudes take into
account the lenght of the cavity.

By solving 𝐻𝑀𝑀 |𝑛⟩ = Ω𝑛 |𝑛⟩, the projection on the photonic state turns
out to be

𝛽 =
𝑔

Ω𝑛 − 𝜔0

𝑁
􏾜
𝑗=1
𝛼𝑗𝑘 (2.37)

whereas that one on the exciton at site 𝑗 (that is |𝑗0⟩) is:

𝜔0𝛼
𝑗
𝑘 − 𝐽(𝛼

𝑗−1
𝑘 + 𝛼𝑗+1𝑘 ) + 𝑔𝛽 = Ω𝑛𝛼

𝑗
𝑘. (2.38)

By employing definition (2.34) of 𝛼𝑗𝑘 we get

𝛼𝑗−1𝑘 + 𝛼𝑗+1𝑘 = 2𝛼𝑗𝑘 cos 􏿵
𝜋

𝑁 + 1
𝑘􏿸 . (2.39)
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As a consequence, the photonic projection reduces to

𝜔𝑘𝛼
𝑗
𝑘 + 𝑔𝛽 = Ω𝑛𝛼

𝑗
𝑘, (2.40)

where
𝜔𝑘 = 𝜔0 − 2𝐽 cos 􏿵

𝜋
𝑁 + 1

𝑘􏿸 . (2.41)

Inserting the value of 𝛽:

𝛼𝑗𝑘 =
𝑔2

Ω𝑛 − 𝜔0

∑𝑁
𝑖=1 𝛼

𝑖
𝑘

Ω𝑛 − 𝜔𝑘
. (2.42)

Then, by multiplying both members by 𝛼𝑗𝑘, taking the sum over 𝑘, and using
the fact that ∑𝑁

𝑝=1 |𝛼
𝑗
𝑝|2 = 1, we obtain

𝑔2

Ω𝑛 − 𝜔0

𝑁
􏾜
𝑘=1

𝛼𝑗𝑘∑
𝑁
𝑖=1 𝛼

𝑖
𝑘

Ω𝑛 − 𝜔𝑘
= 1 (2.43)

and a further sum of both members over 𝑗 leads to

𝑔2

𝑁(Ω𝑛 − 𝜔0)

𝑁
􏾜
𝑘=1

􏿴∑𝑁
𝑖=1 𝛼

𝑖
𝑘􏿷
2

Ω𝑛 − 𝜔𝑘
= 1. (2.44)

To achieve analytical expressions for the polaritonic resonances without
using the numerically exact formula (2.44) we notice that Eq. (2.40), after
insertion of the 𝛽-value, reduces to:

𝜔𝑘𝛼
𝑗
𝑘 +

𝑔2∑𝑁
𝑖=0 𝛼

𝑖
𝑘

Ω𝑛 − 𝜔0
= Ω𝑛𝛼

𝑗
𝑘. (2.45)

By summing over 𝑗 and eliminating the common factor∑𝑁
𝑖=0 𝛼

𝑖
𝑘, one obtains

𝜔𝑘 +
𝑔2𝑁

Ω𝑛 − 𝜔0
= Ω𝑛. (2.46)

Since in the above formulas we used sums over photonic probabilities over
all sites, it should presumably give us the polaritonic energies and, indeed,
by inserting 𝑘 = 0 we obtain

Ω𝑑 = 𝜔0 − 𝐽 − 􏽯𝐽
2 + 𝑔2𝑁,

Ω𝑢 = 𝜔0 − 𝐽 + 􏽯𝐽
2 + 𝑔2𝑁,

(2.47)

which are the polaritonic resonances. We can neglect the quadratic term in
𝐽 and obtain Eqs. (2.7).
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We choosed 𝑘 = 0 because it entail a vanishing group velocity; we could
also have chosen 𝑘 = 𝑁 + 1.

For completeness’ sake, let us finally see how Eq. (2.44) changes in the
presence of random hopping:

𝐻 = 𝜔0𝑎+𝑎 + 𝜔0
𝑁
􏾜
𝑖=1
𝜎+𝑖 𝜎−𝑖 −

𝑁−1
􏾜
𝑖=1

𝐽𝑖 􏿴𝜎+𝑖 𝜎−𝑖+1 + 𝜎−𝑖 𝜎+𝑖+1􏿷

+ 𝑔􏾜
𝑖
􏿴𝜎+𝑖 𝑎 + 𝜎−𝑖 𝑎†􏿷 .

(2.48)

If we had assumed 𝐽𝑖 = 𝐽 + 𝛿𝐽𝑖 with 𝛿𝐽𝑖 small enough to leave the sinusoidal
nature of the exciton modes unchanged, the relation (2.44) would have had
a further term:

𝑔2

𝑁(Ω𝑛 − 𝜔0)

𝑁
􏾜
𝑘=1

􏿴∑𝑁
𝑖=1 𝛼

𝑖
𝑘􏿷
2

Ω𝑛 − 𝜔𝑘
= 1 + 2

𝑁−1
􏾜
𝑘=1

𝑁−1
􏾜
𝑗=1

𝛿𝐽𝑗𝛼
𝑗
𝑘𝛼

𝑗+1
𝑘

𝑁(Ω𝑛 − 𝜔𝑘)
. (2.49)

Indeed, if 𝛿𝐽𝑖 = 𝐶 was a constant we could gather it as a common factor,
remaining thus with the sum ∑𝑁−1

𝑗=1 𝛼
𝑗
𝑘𝛼

𝑗+1
𝑘 which is 0.

2.A.2 Periodic boundary conditions

The solution in this section is in principle exact as 𝑁 → ∞. The Fourier
transforms of the excitonic operators are

𝜎+𝑘 =
1

√𝑁 − 1

𝑁−1
􏾜
𝑗=0

𝜎+𝑗 𝑒
−𝑖 2𝜋𝑘𝑁 𝑗,

𝜎−𝑘 =
1

√𝑁 − 1

𝑁−1
􏾜
𝑗=0

𝜎−𝑗 𝑒
+𝑖 2𝜋𝑘𝑁 𝑗.

(2.50)

It can be easily demonstrated that

𝜔0
𝑁
􏾜
𝑖=1
𝜎+𝑖 𝜎−𝑖 − 𝐽

𝑁−1
􏾜
𝑖=1

􏿴𝜎+𝑖 𝜎−𝑖+1 + 𝜎−𝑖 𝜎+𝑖+1􏿷 =
𝑁−1
􏾜
𝑘=0

𝜔𝑘𝜎+𝑘 𝜎−𝑘 (2.51)

with
𝜔𝑘 = 𝜔0 − 2𝐽 cos 􏿶

2𝜋
𝑁
𝑘􏿹 . (2.52)

We can then rewrite
𝑁−1
􏾜
𝑘=0

𝜔𝑘𝜎+𝑘 𝜎−𝑘 =
𝑁−1
􏾜
𝑘=1

𝜔𝑘𝜎+𝑘 𝜎−𝑘 + (𝜔0 − 2𝐽)𝜎+𝑘=0𝜎−𝑘=0

≡
𝑁−1
􏾜
𝑘=1

𝜔𝑘𝜎+𝑘 𝜎−𝑘 + (𝜔0 − 2𝐽)𝜎+0𝜎−0 .
(2.53)
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The operators 𝜎±0 [cf. Eq. (2.50)] create and destroy a collective Dicke state:

𝜎±0 =
1

√𝑁

𝑁
􏾜
𝑖=1
𝜎±𝑖 . (2.54)

The Jaynes-Cummings term in (2.30) transforms according to

𝑔
𝑁
􏾜
𝑖=0
􏿴𝜎+𝑖 𝑎 + 𝜎−𝑖 𝑎†􏿷 = 𝑔√𝑁(𝜎+𝑘=0𝑎 + 𝜎−𝑘=0𝑎+)

≡ 𝐺(𝜎+0 𝑎 + 𝜎−0𝑎+).
(2.55)

The photonic energy 𝜔0𝑎+𝑎, instead, does not change. Collecting all
terms, Hamiltonian (2.30) becomes

𝐻 = 𝜔0𝑎+𝑎 + (𝜔0 − 2𝐽)𝜎+0𝜎−0 + 𝐺(𝜎+0 𝑎 + 𝜎−0𝑎+) +
𝑁−1
􏾜
𝑘=1

𝜔𝑘𝜎+𝑘 𝜎−𝑘 . (2.56)

Introducing the polaritonic operators (2.8), Hamiltonian (2.56) can be recast
in the form:

𝐻𝑀𝑀 = 𝑢†𝑢(𝜔0−𝐽+𝑔√𝑁)+𝑑†𝑑(𝜔0−𝐽−𝑔√𝑁)+𝐽(𝑑†𝑢+𝑢†𝑑)+
𝑁−1
􏾜
𝑘=1

𝜔𝑘𝜎†𝑘𝜎−𝑘 , (2.57)

where the nondiagonal term can be neglected since 𝐽 is small compared to
the other energy scales.

The Hamiltonian can be rewritten in a short form as

𝐻𝑀𝑀 = Ω𝑢 |𝑢⟩ ⟨𝑢| + Ω𝑑 |𝑑⟩ ⟨𝑑| +
𝑁−1
􏾜
𝑘=1

Ω𝑘 |𝑘⟩ ⟨𝑘| , (2.58)

where

Ω𝑢,𝑑 = 𝜔0 − 𝐽 ± 𝑔√𝑁,

Ω𝑘 = 𝜔0 − 2𝐽 cos 􏿶
2𝜋
𝑁
𝑘􏿹 .

(2.59)

This, again, demonstrates Eqs. (2.7).

2.A.3 Random coupling

For the Hamiltonian (2.30) with a site-dependent coupling 𝑔𝑗,

𝐻 = 𝜔0𝑎†𝑎 + 𝜔0
𝑁
􏾜
𝑗1
𝜎†𝑗 𝜎−𝑗 − 𝐽

𝑁−1
􏾜
𝑗=1
(𝜎†𝑗+1𝜎−𝑗 + 𝜎†𝑗 𝜎−𝑗+1)

+
𝑁
􏾜
𝑗=1
𝑔𝑗(𝑎†𝜎−𝑗 + 𝑎𝜎†𝑗 ),

(2.60)
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one solves the Schrödinger equation in the single excitation subspace. Fol-
lowing Sec. 2.A.1 one obtains a nonlinear equation for the eigenvalues Ω𝑛:

1
𝑁(Ω𝑛 − 𝜔0)

𝑁
􏾜
𝑘=1

􏿴∑𝑁
𝑖=1 𝑔𝑖𝛼

𝑖
𝑘􏿷
2

Ω𝑛 − 𝜔𝑘
= 1, (2.61)

where 𝛼𝑗𝑘 are given by (2.34). One of the steps to obtain this expression was
the projection onto the single-exciton subspace:

𝜔𝑘𝛼𝑖𝑘 +
𝑔𝑖∑

𝑁
𝑗=0 𝑔𝑗𝛼

𝑗
𝑘

Ω𝑛 − 𝜔0
= Ω𝑛𝛼𝑖𝑘. (2.62)

From Eq. (2.62) one obtains an estimate for the polaritonic resonances by
just multiplying all terms by 𝑔𝑖 and then summing over 𝑖:

𝜔𝑘 +
∑𝑁
𝑖=0 𝑔

2
𝑖

Ω𝑛 − 𝜔0
= Ω𝑛. (2.63)

As a consequence, in fact, for a site-dependent coupling 𝑔𝑖, the two polari-
tonic resonances are located at:

Ω𝑢,𝑑 = 𝜔0 − 𝐽 ±
􏽱
𝐽2 +

𝑁
􏾜
𝑖=0
𝑔2𝑖 (2.64)

or, neglecting the quadratic term in 𝐽,

Ω𝑢,𝑑 = 𝜔0 − 𝐽 ± �̃� (2.65)

with a collective photon-exciton coupling �̃� = 􏽯
∑𝑁
𝑖=0 𝑔

2
𝑖 .

2.B Transmission

In this Appendix we demonstrate that the transmission for the system stud-
ied in Sec. 2.3 close to the polaritonic peaks is indeed given by Eq. (2.19).

2.B.1 General form

In order to calculate the transmission 𝑇𝑞 we follow Ref. [214]. We write
the Hamiltonian for the 𝑁 spins embedded in the cavity (central region of
Fig. 2.2) in its eigenbasis,

𝐻𝐶 =􏾜Ω𝑛Π+
𝑛Π𝑛, (2.66)

with eigenvalues Ω𝑛 and projectors Π𝑛 = |vac⟩ ⟨𝑛|, which annihilate an ex-
citation in the eigenstates {|𝑛⟩}; the vacumm state |vac⟩ corresponds to the
absence of excitons and photons inside the cavity.
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The Hamiltonian 𝐻 = 𝐻0 + 𝐻𝑐𝑎𝑣 of the system conserves the number of
excitations [see Eqs. (2.1)]:

􏿰𝐻,
𝒩
􏾜
𝑖=1
𝜎+𝑖 𝜎−𝑖 +􏾜

𝑛
Π+
𝑛Π𝑛􏿳 = 0. (2.67)

Therefore we can write the following ansatz for a general one-excitation
eigenstate of 𝐻:

|𝜓𝑞⟩ =
⎡
⎢⎢⎢⎢⎣
𝑀
􏾜
𝑗𝐿=1

𝐶(𝐿)𝑗𝐿,𝑞𝜎
+
𝑗𝐿 +

𝒩
􏾜

𝑗𝑅=𝑀+𝑁+1
𝐶(𝑅)𝑗𝑅,𝑞𝜎

+
𝑗𝑅 +􏾜

𝑛
𝑝𝑛𝑞Π+

𝑛

⎤
⎥⎥⎥⎥⎦ |vac⟩ (2.68)

which depends on the quasimomentum 𝑞. The first and second terms rep-
resent an exciton hopping through the array on the left and right side of the
cavity, respectively, whereas the third term describes a generic single exci-
tation inside the cavity. In Eq. (2.68)𝒩 = 2𝑀+𝑁 is the total number of sites
(cf. Sec. 2.3).

The Hamiltonian 𝐻 of the system in Fig. 2.2 can be decomposed as

𝐻 = 􏾜
𝛼=𝐿,𝑅

􏿮𝐻𝛼 + 𝐻int,𝛼􏿱 + 𝐻𝐶. (2.69)

where the pedices 𝐿, 𝑅 and 𝐶 refer to the left, right, central regions of the
system, namely

𝐻𝐿 = 𝜔
𝑀
􏾜
𝑗𝐿=1

𝜎+𝑗𝐿𝜎
−
𝑗𝐿 − 𝐽

𝑀−1
􏾜
𝑗𝐿=1

􏿴𝜎+𝑗𝐿+1𝜎
−
𝑗𝐿 + 𝜎

−
𝑗𝐿+1𝜎

+
𝑗𝐿􏿷 ,

𝐻𝑅 = 𝜔
2𝑀+𝑁
􏾜

𝑗𝑅=𝑀+𝑁+1
𝜎+𝑗𝑅𝜎

−
𝑗𝑅 − 𝐽

2𝑀+𝑁−1
􏾜

𝑗𝑅=𝑀+𝑁+1
􏿴𝜎+𝑗𝑅+1𝜎

−
𝑗𝑅 + 𝜎

−
𝑗𝑅+1𝜎

+
𝑗𝑅􏿷

(2.70)

and

𝐻int,𝐿 = −𝐽′ 􏿴𝜎+𝑀+1𝜎−𝑀 + 𝜎−𝑀+1𝜎+𝑀􏿷 ,

𝐻int,𝑅 = −𝐽′ 􏿴𝜎+𝑀+𝑁+1𝜎−𝑀+𝑁 + 𝜎−𝑀+𝑁+1𝜎+𝑀+𝑁􏿷 .
(2.71)

𝐻int,𝐿 and𝐻int,𝑅 describe the interaction with the cavity as the exciton enters
and comes out from it.

The Fourier transforms of the excitonic creation operators (𝛼 = 𝐿, 𝑅),

𝜎+𝑗𝛼 =
1

√𝑀

𝑀−1
􏾜
𝑘=0

𝑒−𝑖
2𝜋𝑘
𝑀 𝑗𝛼𝜎+𝑘𝛼,

𝜎−𝑗𝛼 =
1

√𝑀

𝑀−1
􏾜
𝑘=0

𝑒𝑖
2𝜋𝑘
𝑀 𝑗𝛼𝜎−𝑘𝛼,

(2.72)
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allow us to rewrite 𝐻𝐿 and 𝐻𝑅 as

𝐻𝛼 =
𝑀−1
􏾜
𝑘=0

𝜔𝑘𝛼𝜎
+
𝑘𝛼𝜎

−
𝑘𝛼 (2.73)

where 𝑘𝛼 ∈ 𝐾𝑀 ≡ 􏿻0, 2𝜋𝑀 , … ,
2𝜋(𝑀−1)

𝑀 􏿾 and 𝜔𝑘𝐿 = 𝜔𝑘𝑅 ≡ 𝜔𝑘:

𝜔𝑘 = 𝜔 − 2𝐽 cos 􏿶
2𝜋
𝑀
𝑘􏿹 . (2.74)

In position space:

𝐻𝐿 =
𝑀
􏾜
𝑗𝐿,𝑖𝐿=1

𝑓(𝐿)𝑖𝐿,𝑗𝐿(𝜔0, 𝐽) |𝑗𝐿⟩ ⟨𝑖𝐿| ,

𝐻𝑅 =
2𝑀+𝑁
􏾜

𝑗𝑅,𝑖𝑅=𝑀+𝑁+1
𝑓(𝑅)𝑖𝑅,𝑗𝑅(𝜔0, 𝐽) |𝑗𝑅⟩ ⟨𝑖𝑅| ,

(2.75)

with

𝑓(𝛼)𝑖𝛼,𝑗𝛼(𝜔0, 𝐽) =
𝑀−1
􏾜
𝑘=0

𝜔𝑘
𝑀
𝑒𝑖

2𝜋
𝑀 𝑘(𝑖𝛼−𝑗𝛼). (2.76)

In order to find a general expression for𝑇𝑞 we have to solve the Schrödinger
equation for Hamiltonian (2.69) in the single-excitation subspace:

𝐻 |𝜓𝑞⟩ = 𝐸𝑞 |𝜓𝑞⟩ ; (2.77)

we adopt ansatz (2.68).
The Schrödinger equation (2.77) leads to a set of three equations. More

precisely, the projections on the left and right regions give

𝑀
􏾜
𝑖𝐿=1

𝐶(𝐿)𝑖𝐿,𝑞𝑓
(𝐿)
𝑖𝐿,𝑗𝐿(𝜔0, 𝐽) + 𝛿𝑗𝐿,𝑀􏾜

𝑛
𝑝𝑛𝑞 𝐽′

∗
𝑛,𝐿 − 𝐸𝑞𝐶

(𝐿)
𝑗𝐿,𝑞 = 0 (2.78)

for every 𝑗𝐿 ∈ {1, … ,𝑀}, and

2𝑀+𝑁
􏾜

𝑖𝑅=𝑀+𝑁+1
𝐶(𝐿)𝑖𝑅,𝑞𝑓

(𝑅)
𝑖𝑅,𝑗𝑅(𝜔0, 𝐽) + 𝛿𝑗𝑅,𝑀+𝑁+1􏾜

𝑛
𝑝𝑛𝑞 𝐽′

∗
𝑛,𝑅 − 𝐸𝑞𝐶

(𝑅)
𝑗𝑅,𝑞 = 0 (2.79)

for every 𝑗𝑅 ∈ {𝑀 + 𝑁 + 1,… ,𝒩}. Quantities 𝐽′𝑛,𝐿 and 𝐽′𝑛,𝑅 involve excitation
amplitudes for the two outermost two-level systems inside the cavity: 𝐽′𝑛,𝐿 =
−𝐽′ ⟨𝑛| 𝜎+𝑀+1 |vac⟩, 𝐽′𝑛,𝑅 = −𝐽′ ⟨𝑛| 𝜎+𝑀+𝑁 |vac⟩. The equation relative to the cavity
system, valid for every |𝑛⟩, instead, is

𝐶(𝐿)𝑀,𝑞𝐽′𝑛,𝐿 + 𝐶
(𝑅)
𝑀+𝑁+1,𝑞𝐽′𝑛,𝑅 + 𝑝

𝑛
𝑞 (Ω𝑛 − 𝐸𝑞) = 0. (2.80)
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We assume the following probability amplitudes:

𝐶(𝐿)𝑗𝐿,𝑞 =
2 − 𝛿𝑗𝐿,𝑀

2
􏿴𝑒−𝑖𝑞(𝑗𝐿−𝑀) + 𝑟𝑞𝑒𝑖𝑞(𝑗𝐿−𝑀)􏿷 ,

𝐶(𝑅)𝑗𝑅,𝑞 =
2 − 𝛿𝑗𝑅,𝑀+𝑁+1

2
𝑡𝑞𝑒𝑖𝑞(𝑗𝑅−(𝑀+𝑁+1)).

(2.81)

The delta factors take into account the fact that we are not dealing with a
side-coupled cavity but with a direct-coupled cavity [224].

From Eqs. (2.80) and (2.81), it follows that the probabilistic weight for
the eigenstate |𝑛⟩ is, up to an arbitrary phase,

𝑝𝑛𝑞 =
(1 + 𝑟𝑞)𝐽′𝑛,𝐿 + 𝑡𝑞𝐽

′
𝑛,𝑅

2(𝐸𝑞 − Ω𝑛)
. (2.82)

To find the transmission and reflection coefficients we employ Eqs. (2.78)
and (2.79). Let us consider, for instance, Eq. (2.78). After some algebraic
computation, and by using using the following properties:

𝑀
􏾜
𝑖𝐿=1

𝑒
𝑖 2𝜋𝑀 𝑖𝐿􏿵𝑘−

𝑀𝑞
2𝜋
􏿸
= 𝑀𝛿𝑘,𝑀𝑞

2𝜋
,

𝑀
􏾜
𝑖𝐿=1

𝑒
𝑖 2𝜋𝑀 𝑖𝐿􏿵𝑘+

𝑀𝑞
2𝜋
􏿸
= 𝑀𝛿𝑘,−𝑀𝑞

2𝜋
,

(2.83)

one gets, for 𝑗𝐿 < 𝑀,

𝑀−1
􏾜
𝑘=0

𝜔𝑘 􏿵𝛿𝑘,𝑀𝑞
2𝜋
𝑒−𝑖𝑞(𝑗𝐿−𝑀) + 𝑟𝑞𝛿𝑘,−𝑀𝑞

2𝜋
𝑒𝑖𝑞(𝑗𝐿−𝑀)􏿸

+􏾜
𝑛
𝑝𝑛𝑞 𝐽′𝑛,𝐿 − 𝐸𝑞 􏿴𝑒−𝑖𝑞(𝑗𝐿−𝑀) + 𝑟𝑞𝑒𝑖𝑞(𝑗𝐿−𝑀)􏿷 = 0.

(2.84)

At low momenta (𝑀≫ 1)𝜔𝑘 = 𝜔−2𝐽+𝑣𝑘𝑘where 𝑣𝑘 is the group velocity
and satisfies 𝑣−𝑥 = −𝑣𝑥:

𝑣𝑘 =
𝑀
2𝜋

𝜕𝜔𝑘
𝜕𝑘

= −2𝐽 sin 􏿶
2𝜋𝑘
𝑀 􏿹 . (2.85)

By using the low-energy effective field theory [224], the diagonal term of
the Hamiltonian in momentum space can be expressed as:

􏾜
𝑘∈𝐾𝑀

𝜔𝑘𝜎+𝑘 𝜎−𝑘 = 􏾙
+∞

−∞
𝜙+(𝑥) 􏿶𝜔 − 2𝐽 − 𝑖𝑣𝑘

𝜕
𝜕𝑥􏿹

𝜙(𝑥), (2.86)
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where𝜙(𝑥) ≡ ∫
+∞

−∞
𝑑𝑘𝑒𝑖𝑘𝑥𝜎−𝑘 satisfies the commutation relation 􏿮𝜙(𝑥), 𝜙(𝑥′)+􏿱 =

𝛿(𝑥 − 𝑥′). In the continuum limit, Lippman-Schwinger states (2.81) for a
direct-coupled cavity can be written as:

𝐶(𝐿)𝑞 (𝑥𝐿) = 𝑒
𝑖𝑞􏿵𝑥𝐿−

𝑀
2
􏿸
[𝜃(−𝑥𝐿) + 𝑟𝑞𝜃(𝑥𝐿)],

𝐶(𝑅)𝑞 (𝑥𝑅) = 𝑒
𝑖𝑞􏿵𝑥𝑅−

𝑀
2
􏿸
𝑡𝑞𝜃(𝑥𝑅),

(2.87)

where 𝑥𝐿 and 𝑥𝑅 run both from −∞ to +∞. Strictly speaking, these formulae
imply a prefactor 𝑒𝑖𝑘𝑀/2 in Eq. (2.82); it is irrelevant though since it disap-
pears in all physical results.

Notice that in Eq. (2.84) the delta functions change 𝜔𝑘 in

𝜔𝑀𝑞
2𝜋
= 𝜔−𝑀𝑞

2𝜋
= 𝜔 − 2𝐽 cos(𝑞) ≡ 𝜔𝑞 (2.88)

which does not depend on the cavity length𝑀 anymore. The corresponding
group velocity of the wave packet is 𝑣𝑞 = −2𝐽 sin(𝑞).

Using Eqs. (2.86) and (2.87) then

􏿶𝜔 − 2𝐽 − 𝑖𝑣𝑞
𝜕
𝜕𝑥𝐿

􏿹𝐶(𝐿)𝑞 (𝑥𝐿) = 𝐸𝑞𝐶
(𝐿)
𝑞 (𝑥𝐿) − 𝑖𝑣𝑞𝑒

𝑖𝑞􏿵𝑥𝐿−
𝑀
2
􏿸
[−𝛿(−𝑥𝐿) + 𝑟𝑞𝛿(𝑥𝐿)].

(2.89)
where everything is a function of 𝑞 and does not depend on the number 𝑀
of two-level systems.

The term proportional to 𝐸𝑞 = 𝜔−2𝐽−𝑖𝑣𝑞𝑞 eliminates with the same term,
but with opposite sign, that is the third term of the time-independent equa-
tion for the left branch [Eq. (2.78)], so that Eq. (2.78) in continuum space,
after eliminating all deltas through an overall integration [𝑥𝐿 ∈ (−∞,+∞)],
reduces to:

2𝑖𝐽 sin(𝑞)(−1 + 𝑟𝑞) +􏾜
𝑛
𝑝𝑛𝑞 𝐽′

∗
𝑛,𝐿 = 0. (2.90)

Similarly, the equation for the transmission (2.79) reduces to:

2𝑖𝐽 sin(𝑞)𝑡𝑞 +􏾜
𝑛
𝑝𝑛𝑞 𝐽′

∗
𝑛,𝑅 = 0. (2.91)

Inserting expression (2.82) for the 𝑝𝑛𝑞 ’s, Eqs. (2.90) and (2.91) lead to

𝑡𝑞 =
−2𝑖𝛽

Γ𝐿Γ𝑅 + 􏿖𝛽􏿖
2 , (2.92)

and

𝑟𝑞 =
Γ ∗𝐿Γ𝑅 − 􏿖𝛽􏿖

2

Γ𝐿Γ𝑅 + 􏿖𝛽􏿖
2 , (2.93)



2.B Transmission 65

where, after taking into account that our variables do not run from −∞ to
∞ but actually travel back and forth through the same path,

Γ𝛼 = 1 −
𝑖

𝐽 sin(𝑞)
􏾜
𝑛

􏿗𝐽′𝑛,𝛼􏿗
2

𝜔 − 2𝐽 cos(𝑞) − Ω𝑛
, (2.94)

and

𝛽 = −
1

𝐽 sin(𝑞)
􏾜
𝑛

𝐽′𝑛,𝐿𝐽
′∗
𝑛,𝑅

𝜔 − 2𝐽 cos(𝑞) − Ω𝑛
. (2.95)

Now we have to find the eigenvaluesΩ𝑛 and the quantities 𝐽′𝑛,𝐿 and 𝐽′𝑛,𝑅;
for this purpose we have to solve the Schrödinger equation 𝐻𝐶 |𝑛⟩ = Ω𝑛 |𝑛⟩,
where 𝐻𝐶 is

𝐻𝐶 = 𝜔0𝑎+𝑎 + 𝜔0
𝑀+𝑁
􏾜

𝑗=𝑀+1
𝜎+𝑗 𝜎−𝑗 − 𝐽

𝑀+𝑁−1
􏾜

𝑗=𝑀+1
(𝜎+𝑗+1𝜎−𝑗 + 𝜎+𝑗 𝜎−𝑗+1) + 𝑔

𝑀+𝑁
􏾜

𝑗=𝑀+1
(𝑎+𝜎−𝑗 + 𝑎𝜎+𝑗 ).

(2.96)
Such Schrödinger equation was already solved in Appendix 2.A.

2.B.2 Transmission close to polaritonic peaks

Let us now imagine that the energy of the wave packet coming from the left
is nearly resonant with one of the polariton states, 𝜔𝑞 ≈ Ω𝑢,𝑑. By using the
results in Sec. 2.A.2 we can check that

𝐽′𝑢,𝐿 = −𝐽
′ ⟨𝑢| 𝜎+𝑀+1 |vac⟩ = −

𝐽′

√2𝑁
,

𝐽′𝑑,𝐿 = −𝐽
′ ⟨𝑑| 𝜎+𝑀+1 |vac⟩ = +

𝐽′

√2𝑁
,

(2.97)

for every 𝑘 ∈ {1, … ,𝑀}. Similarly,

𝐽′𝑢,𝑅 = −𝐽
′ ⟨𝑢| 𝜎+𝑀+𝑁 |vac⟩ = −

𝐽′

√2𝑁
,

𝐽′𝑑,𝑅 = −𝐽
′ ⟨𝑑| 𝜎+𝑀+𝑁 |vac⟩ = +

𝐽′

√2𝑁
.

(2.98)

In the eigenbasis {|𝑑⟩ , |𝑢⟩ , 𝐾𝑁 = {|2𝜋/𝑁⟩ ,… , |2𝜋(𝑁 − 1)/𝑁⟩}} then, close to one
polaritonic resonance, expression (2.95) reduces to

𝛽 =
|𝐽′|2

𝑁|𝑣𝑞|
1

􏿴𝜔𝑞 − Ω𝑢,𝑑􏿷
(2.99)

whereas Γ𝐿 = Γ𝑅 ≡ Γ becomes

Γ = 1 + 𝑖𝛽. (2.100)
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Consequently the transmission is

𝑇𝑞 =
𝑤

𝑤 + [Δ + 𝐽[1 − 2 cos(𝑞)] ∓ 𝐺]2
(2.101)

where Δ = 𝜔 − 𝜔0, which is exactly Eq. (2.19); 𝑤 is the full width at half
maximum of the resonance:

𝑤 = −
|𝐽′|2

𝑁𝐽 sin(𝑞)
. (2.102)

Finally, let us notice that the resonance 𝑇𝑞 = 1 occurs for an energy of in-
coming exciton wave packet equal to

𝜔𝑢,𝑑 = 𝜔0 − 𝐽[1 − 2 cos(𝑞)] ± 𝑔√𝑁. (2.103)

2.C Realistic parameters

We report some realistic numbers for artificially engineered media.

2.C.1 Cold Ions

For ions trapped in a linear Paul trap a hopping rate 𝐽 ≈ 400Hz is within
reach [175]. In this case, however, the hopping is mediated by mechanical
degrees of freedom of the ion crystal; we have thus to take into account
also long-range contributions to it. Usually the decay exponents range from
𝛼 = 0.1, which corresponds to fully established all-to-all interactions, to
𝛼 = 2. For all-to-all interactions there is no need of a cavity or a photonic
mode to mediate the interaction. However, if we consider a cavity with
𝜅 ∼ MHz, then 𝑔 ∼ 10MHz can be achieved [225]: A very strong collective
coupling 𝐺 can thus be engineered even for a lossy cavity (𝜅 ≫ 𝐽).

2.C.2 Rydberg atoms

We consider a Rydberg lattice gas [199], where the two spin states are the
states |𝑛𝑆⟩ and |𝑛′𝑃⟩, respectively. An example, for 87Rb atoms, are the
states |60𝑆1/2⟩ and |59𝑃3/2⟩ with a transition energy 𝜔0 ≈ 18.5GHz [199].
The transition dipole moment (𝑑 ∼ 𝑛2) for such transition is of the order
of 𝑑 = 2000 𝑒𝑎0. According to Ref. [209], microwave high-finesse cavities
(Q-factor = 3 × 108, 𝜅 ≈ 1 kHz ) can be engineered for resonant transition
frequencies of 51GHz with 𝑑 ≈ 1000 𝑒𝑎0 and 𝑔 ∼ 𝑑√𝜔0 ≈ 300 kHz. For an in-
teratomic separation 𝑥 ≈ 20𝜇m, the tunneling rate (in the nearest neighbor
approximation) is 𝐽 ≈ 80 kHz [226], which means that the regime 𝑔 ≫ 𝐽 ≫ 𝜅
can be reached. Finally, also the spontaneous emission rate is negligible,
since the lifetime of the Rydberg states can be as large as tens of millisec-
onds.
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2.C.3 Polar molecules

We consider polar molecules where rotational states can be mapped on spin
states (𝜔0 ∼ 2GHz). These molecules trapped in an optical lattice can be in-
serted into a microwave optical cavity. In these systems 𝐽 ≈ 50Hz is experi-
mentally achievable [200, 201] and it is thus easy to obtain a strong coupling
to light 𝑔 ≫ 𝐽. The drawback of having such a small hopping rate, however,
is that in order to have a negligible cavity decay rate (𝜅 ≪ 𝐽) an extremely
good cavity is required. For 𝑄 = 108, for instance, 𝜅 = 125Hz ≫ 𝐽 The
states are long-lived and allow to study coherent dynamics over a timescale
∼ 0.1 s [200].





3
Broadband two-photon interactions mediated by cold

atoms in a photonic crystal fiber

In classical electrodynamics light does not interact with light and in
quantum electrodynamics photons do not directly couple to each other. In
order to describe photon-photon interactions higher-order processes must
be taken into account, which are very unlikely to happen: The Feynman di-
agram for the two-photon scattering is a box diagram (the photon-photon
interaction is mediated by a virtual fermion-antifermion couple) with cross
section 𝜎(𝛾𝛾 → 𝛾𝛾) ∝ 𝛼4 where 𝛾 indicates a photon and the fine-structure
constant is 𝛼 = 1/137 [1].

Making photons strongly interact with each other is a long sought-after
goal in physics [2, 227]. Several fields would benefit from interacting pho-
tons, ranging from many-body physics [66, 120, 121] to quantum informa-
tion [19–23, 98, 228–230] and metrology [231–233]. Several techniques are
nowadays available to induce interactions between photons. It is for in-
stance possible to induce photonic nonlinearities via the coupling of pho-
tons to saturable atomic or molecular single two-level emitters by surround-
ing them with an optical cavity [26, 234]. An other way is employing the
anharmonicity of the spectrum of the Jaynes-Cummings Hamiltonian as a
function of number of photons [235, 236]; the photon blockade is based on
this effect [40]. Moreover, such anharmonicity is the main reason why ar-
rays of coupled resonators with emitters are interesting systems [115, 119].
A third possible approach consists in dressing the photons with atoms and
employing the atomic dipolar or van der Waals interaction between the lat-
ters. In this case, in order to realize the nonlinear medium, Rydberg atoms
under condition of electromagnetically induced transparency are preferred
[31, 53–56] because of the strong dipole moment carried by Rydberg atoms.
Recent experimental results with Rydberg media [31, 56] have shown attrac-
tion between photons caused by formation of narrow bound states of two
polaritons [63, 64] with frequencies of the order of MHz.

In this chapter we propose to observe photon-photon interactions in a
one-dimensional chain of two-level atoms trapped in an optical lattice (in a
Mott insulator state) inside a hollow-core photonic crystal fiber, see Fig. 3.1.
A similar setup is for instance adopted in Ref. [99] where strontium atoms
are used. We will, however, choose Rb atoms and we will not take losses
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through the fiber walls into account. Alternative systems are array of cold
atoms along nanophotonic waveguides [93, 95, 237–241].

In the strong coupling regime [cf. Eq. (2.17)] light and atoms in the fiber
exchange excitations so fast that photons and excitons can not be consid-
ered independently: Due to their strong coupling a doublet of lower and
upper polaritons naturally arises in the system, as illustrated in Fig. 3.3 (for
a review on polariton see Sec. 2.2).

Unlike systems that employ Rydberg gases here we do not need any ex-
plicit dynamical interaction between atomic excitations. We only need the
very basic fact that each two-level system is saturable, meaning that each
atom can accommodate only one excitation at the time; this exclusion prop-
erty is called kinematic interaction [210]; it is usually a very weak effect in
solids. Since the excitons, despite being bosons, exclude each other on a
same site (on-site replusion), we will refer to them as hard-core bosons.
Here we show that for cold atoms the kinematic interaction is instead a
non negligible effect and causes bunching in the photonic component of
the two-polariton states, which occurs in the continuum of unbound two-
polariton states and can be realistically observed within a broad GHz fre-
quency range. The ultimate explanation for these correlations is the mis-
match of the quantization volumes for excitonic and photonic states. We ex-
pect this bunching to be particularly robust against decoherence. Photonic
crystal fibers are commonly used [98–100, 242–246] but our scheme may be
engineered also in different ways. There are indeed many theoretical pro-
posals for coupling light modes to ordered one-dimensional ensembles of
quantum emitters [93, 95, 237–241, 247–253] and even solid-state realiza-
tions can be implemented, for example by introducing silicium vacancies in
photonic crystals [254, 255].

This chapter is organized as follows. In Sec. 3.1 we describe the model.
In Sec. 3.2 we solve the Schrödinger equation and plot the wave functions
for three exemplar eigenstates. In Sec. 3.3 we solve the problem of two bare
excitons which interact via kinematic interaction. In Sec. 3.4 we explain in
a qualitative way the bunching effect. Sec. 3.5 is devoted to the dependence
of the bunching effect over the various experimental parameters. Sec. 3.6
analyzes the possibility of having true bound states when the spectrum is
gapped. Finally, in Sec. 3.7 we sum up the main results.

In Appendix 3.A we provide an analytical explanation for the bunching.

The results from this chapter have been collected in the following paper,
submitted (not yet published) during the PhD:

M. Litinskaya, E. Tignone, G. Pupillo,
Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber,
(Submitted to Scientific Reports)

http://arxiv.org/abs/1512.02312
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3.1 The model

The model that we propose is depicted in Fig. 3.1. We consider an ordered
array of 𝑁 atoms separated by a lattice spacing 𝑎 and placed inside a pho-
tonic crystal fiber; the transition frequency for each atom is 𝐸0 whereas the
hopping constant is 𝑡 ∝ 𝑑2/𝑎3 with 𝑑 being the transition dipole moment.
We consider nearest-neighbor hopping only. The Hamiltonian describing
the dynamics of such system is [cf. Eq. (2.3)]:

𝐻 = 𝐸0􏾜
𝑠
𝑃†𝑠𝑃𝑠 + 𝑡􏾜

𝑠
􏿴𝑃†𝑠𝑃𝑠+1 + 𝑃†𝑠𝑃𝑠−1􏿷 +􏾜

𝑞𝜈
𝐸𝑝(𝑞𝜈)𝑏†(𝑞𝜈)𝑏(𝑞𝜈)

+ 𝑔􏾜
𝑠,𝑞𝜈
􏿮𝑃†𝑠𝑏(𝑞𝜈)𝑒𝑖𝑞𝑠 + 𝑃𝑠𝑏†(𝑞𝜈)𝑒−𝑖𝑞𝜈𝑠􏿱 .

(3.1)

Operators 𝑃†𝑠 and 𝑏†(𝑞𝜈) create, respectively, an atomic excitation at site 𝑠
and a cavity photon characterized by a wave vector 𝑞𝜈 along the cavity axis.
According to Eq. (2.4), the photonic dispersion relation is

𝐸𝑝(𝑞𝜈) = 𝑐􏽯𝑞
2
𝜈 + 𝑞2⟂ (3.2)

with
𝑞𝜈 =

2𝜋𝜈
𝑁𝑎

(3.3)

and 𝜈 integer. As usually 𝑐 is the speed of light whereas 𝑞⟂ is the transverse
momentum of the photon. If we consider the lowest-energy mode of a per-
fect open cylindrical cavity, 𝑞⟂ is the smallest-valued quantity that satisfies

𝐽0(𝑞⟂𝑅) = 0 (3.4)

where 𝐽0 is the zeroth Bessel function of the first kind and 𝑅 is the radius of
the cavity [256]. We have to consider 𝐽0 since it is the only Bessel function
of the first kind that does not vanish in correspondence of the cavity axis,
where the array of atoms lies.

The light-matter coupling is

𝑔 = 𝑑
􏽰
2𝜋𝐸0
𝑉

(3.5)

with 𝑉 = 𝜋𝑅2𝑁𝑎 being the the volume of the cylindric hollow core.

3.2 Solution

The atomic part of the Hamiltonian (3.1) can be automatically diagonalized
by taking the Fourier transform

𝑃(𝑞𝜈) =
1

√𝑁
􏾜
𝑛
𝑃𝑛𝑒−𝑖𝑞𝜈𝑛, (3.6)
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Figure 3.1: (a) Longitudinal sketch of an ensemble of two-level atoms inside a pho-
tonic crystal fiber; 𝑔 is the light-emitter coupling; 𝐸𝑝 is the guided mode of the
cavity while 𝐸0 is the energy of the atomic transition; 𝛿 = 𝐸𝑝(0)−𝐸0 is the detuning.
(b) Transversal section of the photonic crystal fiber; 𝑅 is the radius of the hollow
core.

which leads to the following dispersion relation for bare excitons:

𝐸𝑒(𝑞𝜈) = 𝐸0 + 2𝑡 cos 𝑎𝑞𝜈. (3.7)

Notice that Eq. (3.7) is analogous to the second equation in (2.4). The effect of
the hopping is much weaker than the effects originating from the formation
of polaritons; as a consequence, the hopping term could be easily dropped.
This is apparent in Fig. 3.3, where the excitonic dispersion relation (lower
dashed line) is practically constant and equal to 𝐸0. This is visible also in the
inset of Fig. 3.2, where the lower-lower polariton branch (blue curve) looks
flat compared to the others.

Since we are interested in the two-particle dynamics, we have to solve
the Schrödinger equation in the two-particle subspace where the most gen-
eral ansatz for a wave function is

|Ψ⟩ = 􏾜
𝑛𝑚
􏿼
𝐴𝑛𝑚
√2

|𝑏𝑛𝑏𝑚⟩ + 𝐵𝑛𝑚 |𝑏𝑛𝑃𝑚⟩ +
𝐶𝑛𝑚
√2

|𝑃𝑛𝑃𝑚⟩􏿿 (3.8)

with
𝑏𝑛 =

1

√𝑁
􏾜
𝑞𝜈
𝑏(𝑞𝜈)𝑒𝑖𝑞𝜈𝑛. (3.9)

In Eq. (3.8) the coefficients𝐴𝑛𝑚, 𝐵𝑛𝑚 and 𝐶𝑛𝑚 are the probability amplitudes
for having two photons, one photon and one exciton, or two excitons at sites
𝑛,𝑚 respectively.

Since photons are identical bosons, and so are excitons, their amplitudes
are symmetric (𝐴𝑛𝑚 = 𝐴𝑚𝑛, 𝐶𝑛𝑚 = 𝐶𝑚𝑛). Additionally, the 𝐶-coefficients
have to satisfy the hard-core repulsion condition

𝐶𝑛𝑛 = 0, (3.10)
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which comes from the saturability of the two-level systems.
A photon and an exciton are instead distinguishable particles, therefore

𝐵-coefficients do not have a particular symmetry. 𝐵𝑛𝑚 can be decomposed
into its symmetric (S) and antisymmetric (A) components as 𝐵𝑛𝑚 = 𝐵𝑆𝑛𝑚 +
𝐵𝐴𝑛𝑚.

The Schrödinger equation obtained by letting the Hamiltonian operator
(3.1) act on the wave function (3.8) can be rearranged as a set of equations
for 𝐴-, 𝐵- and 𝐶-coefficients:

𝐸𝐴𝑛𝑚 =􏾜
𝑠
􏿴𝐸𝑝(𝑛 − 𝑠)𝐴𝑠𝑚 + 𝐸𝑝(𝑚 − 𝑠)𝐴𝑠𝑚􏿷 + √2𝐺𝐵𝑆𝑛𝑚,

𝐸𝐵𝑆𝑛𝑚 = 𝐸0𝐵𝑆𝑛𝑚 +
1
2 􏿰
􏾜
𝑠
𝐸𝑝(𝑛 − 𝑠) 􏿴𝐵𝑆𝑠𝑚 + 𝐵𝐴𝑠𝑚􏿷 + 𝐸𝑝(𝑚 − 𝑠) 􏿴𝐵𝑆𝑠𝑛 + 𝐵𝐴𝑠𝑛􏿷􏿳

+ √2𝐺(𝐴𝑛𝑚 + 𝐶𝑛𝑚) +
𝑡
2
􏿮𝐵𝑆𝑛,𝑚−1 + 𝐵𝐴𝑛,𝑚−1 + 𝐵𝑆𝑛,𝑚+1 + 𝐵𝐴𝑛,𝑚+1􏿱

+
𝑡
2
􏿮𝐵𝑆𝑛−1,𝑚 − 𝐵𝐴𝑛−1,𝑚 + 𝐵𝑆𝑛+1,𝑚 − 𝐵𝐴𝑛+1,𝑚􏿱 ,

𝐸𝐵𝐴𝑛𝑚 = 𝐸0𝐵𝐴𝑛𝑚 +
1
2 􏿰
􏾜
𝑠
𝐸𝑝(𝑛 − 𝑠) 􏿴𝐵𝑆𝑠𝑚 + 𝐵𝐴𝑠𝑚􏿷 − 𝐸𝑝(𝑚 − 𝑠) 􏿴𝐵𝑆𝑠𝑛 + 𝐵𝐴𝑠𝑛􏿷􏿳

+
𝑡
2
􏿮𝐵𝑆𝑛,𝑚−1 + 𝐵𝐴𝑛,𝑚−1 + 𝐵𝑆𝑛,𝑚+1 + 𝐵𝐴𝑛,𝑚+1􏿱

−
𝑡
2
􏿮𝐵𝑆𝑛−1,𝑚 − 𝐵𝐴𝑛−1,𝑚 + 𝐵𝑆𝑛+1,𝑚 − 𝐵𝐴𝑛+1,𝑚􏿱 ,

𝐸𝐶𝑛𝑚 = 2𝐸0𝐶𝑛𝑚 − 𝐷(𝑛 − 𝑚)𝐶𝑛𝑚 + 􏿮𝑡(𝐶𝑛𝑚−1 + 𝐶𝑛𝑚+1 + 𝐶𝑛+1𝑚 + 𝐶𝑛−1𝑚) + √2𝐺𝐵𝑆𝑛𝑚􏿱
× (1 − 𝛿𝑛𝑚).

(3.11)

We move in the Fourier space by using the relation

𝐶𝑛𝑚 =
1
𝑁
􏾜
𝑘1,𝑘2

𝐶(𝑘1, 𝑘2)𝑒𝑖(𝑛𝑘1+𝑚𝑘2) (3.12)

for 𝐶-coefficients. A similar expression is valid for 𝐵- and 𝐴- coefficients.
We define the total and relative wave vectors:

𝐾𝜈′ = 𝑞𝜈1 + 𝑞𝜈2 and 𝑘𝜈 =
𝑞𝜈1 − 𝑞𝜈2

2
. (3.13)

Since we are working in a lattice geometry (i.e. translational invariant) 𝐾𝜈′
is a good quantum number. Here we analyze in details the case 𝐾𝜈′ = 0
whereas the case 𝐾𝜈′ ≠ 0, which is qualitatively similar, is shortly discussed.

For 𝐾𝜈′ = 0, 𝑞𝜈2 = −𝑞𝜈1, and

𝑘𝜈 =
2𝜋𝜈
𝑁𝑎

(3.14)
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with an index
𝜈 = −

𝑁
2
+ 1, ...,

𝑁
2

(3.15)

The integer index 𝜈 runs over the Brillouin zone as usual because 𝐾/2 = 0 is
a legal lattice momentum, see Ref. [257] for major details. By using several
times the property

𝑁/2
􏾜

𝑛=−𝑁/2+1
𝑒𝑖𝑘𝑛 = 𝑁𝛿𝑘,0 (3.16)

we get:

𝐸𝜌𝐴𝜌(𝑘𝜈) = 2𝐸𝑝(𝑘𝜈)𝐴𝜌(𝑘𝜈) + 𝐺√2𝐵𝜌(𝑘𝜈),

𝐸𝜌𝐵𝜌(𝑘𝜈) = [𝐸𝑒(𝑘𝜈) + 𝐸𝑝(𝑘𝜈)]𝐵𝜌(𝑘𝜈) + 𝐺√2[𝐴𝜌(𝑘𝜈) + 𝐶𝜌(𝑘𝜈)],

𝐸𝜌𝐶𝜌(𝑘𝜈) = 2𝐸𝑒(𝑘𝜈)𝐶𝜌(𝑘𝜈) + 𝐺√2𝐵𝜌(𝑘𝜈) + 𝑆𝜌,

(3.17)

The index 𝜌 labels the two-polariton state and the term

𝑆𝜌 = −
𝐺√2
𝑁

􏾜
𝑞𝜈
𝐵𝜌(𝑞𝜈) −

4𝑡
𝑁
􏾜
𝑞𝜈
𝐶𝜌(𝑞𝜈) cos 𝑎𝑞𝜈 (3.18)

accounts for scattering between polaritons induced by the kinematic inter-
action. For 𝐾𝜈′ = 0, 𝐵 = 𝐵𝑆 and 𝐵𝐴 = 0. The collective coupling 𝐺 between
the Dicke state and the cavity mode is 𝐺 = 𝑔√𝑁 [cf. (2.6)]. Qualitatively, it
is clear that if 𝑆(𝑘) is less than the typical level spacing 2𝜋/𝑁𝑎, the interac-
tion is ineffective. This is true for small-𝑘 region, where the density of states
is low. The role of the scattering increases with the increase of density of
states, that is at larger 𝑘, where the polariton states acquire more excitonic
character.

If 𝑆𝜌 = 0 the problem described by the system (3.17) reduces to two
polaritons inside the hollow core of a photonic crystal fiber which do not
interact with each other; in this case the dispersion relation is just

[𝐸 − 2𝐸𝐿(𝑘𝜈)][𝐸 − 𝐸𝐿(𝑘𝜈) − 𝐸𝑈(𝑘𝜈)][𝐸 − 2𝐸𝑈(𝑘𝜈)] ≡ Δ(𝐸, 𝑘𝜈) = 0 (3.19)

with 𝐸𝐿(𝑘𝜈) and 𝐸𝑈(𝑘𝜈) being the energies of the polaritons, see Eqs. (2.7).
The dispersion plot is analogous to Fig. 2.1 but with two polaritons instead
of one. In other words we have four polaritonic curves corresponding to all
possible combinations:

• 𝐸𝐿𝐿(𝑘𝜈) = 𝐸𝐿(𝑘𝜈) + 𝐸𝐿(𝑘𝜈) (blue curve in Fig. 3.2);

• 𝐸𝐿𝑈(𝑘𝜈) = 𝐸𝑈𝐿(𝑘𝜈) = 𝐸𝐿(𝑘𝜈) + 𝐸𝑈(𝑘𝜈) (green curve in Fig. 3.2);

• 𝐸𝑈𝑈(𝑘𝜈) = 𝐸𝑈(𝑘𝜈) + 𝐸𝑈(𝑘𝜈) (red curve in Fig. 3.2).
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Figure 3.2: Band structure in the presence of two excitations. 𝐸𝐿𝐿(𝑘𝜈), 𝐸𝐿𝑈(𝑘𝜈) =
𝐸𝑈𝐿(𝑘𝜈), 𝐸𝑈𝑈(𝑘𝜈) are the energy bands of two lower, one lower and one upper, and
two upper polaritons; 𝑎 is the lattice constant. The shaded region corresponds to
the strong coupling region 𝑘𝜈 < 𝑘𝑆𝐶, see Eq. (3.20). The lower polariton is plotted
on a different energy scale; the inset, instead, shows all polariton bands plotted on
the same scale.

The lower-upper (𝐿𝑈−) and upper-lower (𝑈𝐿−) curves are degenerate.
We define the characteristic wave vector

𝑘𝑆𝐶 = 2
√𝐸0𝐺
𝑐ℏ

(3.20)

which satisfies the relation 𝐸𝐿(𝑘𝑆𝐶) = 𝐸0 where the lower band 𝐸𝐿(𝑘𝜈) is
approximated by a parabola.

Figure 3.2 illustrates the first Brillouin zone, which is divided into two
distinguished regions: For 𝑘𝜈 < 𝑘𝑆𝐶 (grey area around 𝑘𝜈 = 0) the matter
and light are strongly coupled; this is the strong coupling region. Outside
of the grey region (𝑘𝜈 > 𝑘𝑆𝐶), we enter the weak coupling regime where
the polariton components practically behave as free excitons and photons,
see Eq. (2.18). This is very clear also in Fig. 3.3 and Fig. 2.1, where one
excitation is considered: At large momenta the lower and upper polaritonic
energies (solid curves) strictly follow the energies of an uncoupled exciton
and photon (dashed curves), respectively.

If 𝑆𝜌 ≠ 0 (the case we are interested in) the hard-core repulsion between
excitons is turned on; now the two polaritons effectively interact via their
excitonic fractions and the solutions of equations (3.1) are wave packets
of free-polariton states. We will prove that the correlations between pho-
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Figure 3.3: Band structure in the presence of a single excitation [cf. Fig. (2.1)];
only the positive half of the Brillouin zone is depicted. 𝐸𝐿(𝑘) and 𝐸𝑈(𝑘) are the
energy bands of the lower and upper polaritons, respectively; 𝐸𝑝(𝑘) and 𝐸𝑒(𝑘) are
the energies of a free photon and a free exciton; 𝑎 is the lattice constant. We consider
a positive detuning 𝛿 = 𝐸𝑝(0) − 𝐸0. The shaded region corresponds to the strong
coupling region 𝑘𝜈 < 𝑘𝑆𝐶.

tons are induced by constructive interference among several components of
these wave packets. Since the atomic dressing of the photons (and thus the
effective interaction between the photons themselves) increases for larger
coupling, this interference effect is more visible at momenta 𝑘𝜈 ≲ 𝑘𝑆𝐶 when
a strong coupling is reached.

3.2.1 Analytical solution

For 𝑆𝜌 ≠ 0, system (3.17) has an analytical solution. The Fourier transform
of the constraint 𝐶𝑛𝑛 = 0 is, see Eq. (3.12):

𝑁/2
􏾜

𝜈=−𝑁/2+1
𝐶(𝑘𝜈) ≡ 0. (3.21)

By employing relation (3.21), we rewrite Eqs. (3.17) as a set of three inde-
pendent equations of the form

𝐴𝜌(𝑘𝜈)Δ(𝐸𝜌, 𝑘𝜈) =
1
𝑁
􏾜
𝑘𝜈′
𝐴𝜌(𝑘

′
𝜈)Δ(𝐸𝜌, 𝑘

′
𝜈),

𝐵𝜌(𝑘𝜈)Δ(𝐸𝜌, 𝑘𝜈)
(𝐸𝜌 − 2𝐸𝑝(𝑘𝜈))

=
1
𝑁
􏾜
𝑘𝜈′

𝐵𝜌(𝑘
′
𝜈)Δ(𝐸𝜌, 𝑘

′
𝜈)

(𝐸𝜌 − 2𝐸𝑝(𝑘
′
𝜈))

,

𝐶𝜌(𝑘𝜈)Δ(𝐸𝜌, 𝑘𝜈)
𝜙(𝐸𝜌, 𝑘𝜈)

=
1
𝑁
􏾜
𝑘𝜈′

𝐶𝜌(𝑘
′
𝜈)Δ(𝐸𝜌, 𝑘

′
𝜈)

𝜙(𝐸𝜌, 𝑘
′
𝜈)

,

(3.22)

where Δ(𝐸𝜌, 𝑘𝜈) is defined in Eq. (3.19) while

𝜙(𝐸, 𝑘𝜈) = [𝐸 − 2𝐸𝑝(𝑘𝜈)][𝐸 − 𝐸𝑝(𝑘𝜈) − 𝐸𝑒(𝑘𝜈)] − 2𝐺2. (3.23)
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Eqs. (3.22) are of the form

𝑥𝜌(𝑘𝜈) =
1
𝑁
􏾜
𝑘𝜈′
𝑥𝜌(𝑘𝜈′). (3.24)

Each of them is solved by 𝑥𝜌(𝑘𝜈) = 𝑐𝑜𝑛𝑠𝑡(𝜌). More precisely, we get

𝐴𝜌(𝑘𝜈) =
2𝐺2𝑐𝜌
Δ(𝐸𝜌, 𝑘𝜈)

, 𝐵𝜌(𝑘𝜈) =
[𝐺√2(𝐸𝜌 − 2𝐸𝑝(𝑘𝜈))𝑐𝜌]

Δ(𝐸𝜌, 𝑘𝜈)
, 𝐶𝜌(𝑘𝜈) =

𝜙(𝐸𝜌𝑘𝜈)𝑐𝜌
Δ(𝐸𝜌, 𝑘𝜈)

,

(3.25)
with the normalization constant 𝑐𝜌 being

𝑐𝜌 =
⎛
⎜⎜⎜⎜⎝􏾜
𝑘𝜈
[𝜙2(𝐸𝜌, 𝑘𝜈) + 2𝐺2(𝐸𝜌 − 2𝐸𝑝)2 + 4𝐺4]/Δ2(𝐸𝜌, 𝑘𝜈)

⎞
⎟⎟⎟⎟⎠

−1/2

. (3.26)

3.2.2 Numerical results

Figure 3.4 illustrates the real-space Fourier transform of the amplitudes (3.25)
for three different eigenstates belonging to the two-polariton spectrum. We
consider three eigenstates located in the lower-lower (𝐿𝐿-) branch; their en-
ergies are singled out by arrows in Fig. 3.5. The states are labelled by indices
𝜌1, 𝜌2, and 𝜌3 for increasing energies. The corresponding exemplar plots in
Fig. 3.4 illustrate how the three components (𝐴, 𝐵 and 𝐶) of the wave func-
tion modify according to the region of the Brillouin zone.

For small 𝜌 [𝐸𝜌 ≲ 2𝐸𝐿(𝑘𝑆𝐶)] the exciton-light coupling prevails over the
kinematic interaction. In this region the two-polariton 𝐿𝐿-band almost over-
laps with the bare photonic dispersion relation [cf. Figs. 3.3 and 2.1 for one
excitation]; it means that the polaritons are mostly photonic. Since the dis-
persion curve is steep the group velocity is high and the photonic fraction
of the two-polariton state does not have “time” to feel the weak kinematic
interaction induced by the small excitonic fraction. In this regime the three
components, 𝐴, 𝐵, and 𝐶 behave as monochromatic free wave states (see
upper panel in Fig. 3.4) except for the condition 𝐶(𝑛) = 0 at interexcitonic
separation of 𝑛 = 0 sites. Each eigenstate is approximately described by a
single wave vector 𝑘𝜈 belonging to the set (3.14). In particular, the excitonic
fraction behaves as:

𝐶𝜈(𝑛) ∝ (1 − 𝛿𝑛0) cos 𝑎𝑛𝑘𝜈. (3.27)

For larger energies, that is larger values of 𝜌, both 𝐵(𝑛) and 𝐶(𝑛) dis-
play modulated oscillations, whose amplitude increases at larger interpar-
ticle separations. On the contrary the photon-photon amplitude 𝐴(𝑛) starts
showing a pronounced peak at 𝑛 = 0 (see middle plot in Fig. 3.4), proving
a bunching feature.
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Figure 3.4: Photon-photon, exciton-photon, and exciton-exciton amplitudes 𝐴(𝑛) −
⟨𝐴(𝑛)⟩ (solid red line), 𝐵(𝑛) − ⟨𝐵(𝑛)⟩ (dashed blue line), 𝐶(𝑛) − ⟨𝐶(𝑛)⟩ (dotted green
line) as a function of the interparticle separation 𝑛. Here, the notation ⟨𝑋(𝑛)⟩ =
∑
𝑛𝑋(𝑛)/𝑁 (𝑋 = 𝐴, 𝐵, 𝐶) is the average over all sites. Scaling factors are shown in

the plots; 𝑁 = 40; 𝑎 = 5.3 𝜇m. From top to bottom, panels refer to the points 𝜌1, 𝜌2,
𝜌3 of Fig. 3.5.

Eventually, by further increasing the energies [𝐸𝜌 ≳ 2𝐸𝐿(𝑘𝑆𝐶)], the two-
polariton 𝐿𝐿-band almost overlaps with the bare excitonic dispersion rela-
tion [cf. Figs. 3.3 and 2.1 for one excitation]; here the two polaritons are
mostly excitons. The bunching effect is further enhanced, since it is due to
the kinematic interaction; however, as shown by the lower panel in Fig. 3.4,
in term of amplitudes it looks like it actually becomes smaller: It is due to
the fact that at larger energies the photonic fraction gets smaller and smaller,
see Fig. 3.6. In other words there is a stronger bunching effect but a smaller
photonic fraction which is available for it. For 𝐸𝜌 ≳ 2𝐸𝐿(𝑘𝑆𝐶) the polaritons
effectively behave as two bare excitons interacting via kinematic interaction.
In this case, as we shall see in the next section, the set {𝑘𝜈} does no properly
describe the system anymore.

In order to better understand the effect of the kinematic interaction, and
the reasons why it induces bunching in the photonic component, we have
to study the case of two bare excitons.

3.3 Kinematics of two bare excitons

We consider two excitons uncoupled to light (𝐺 ≡ 0) accommodated on
a one-dimensional lattice by sites 𝑛1 and 𝑛2 and separated by a distance
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𝑛 = |𝑛1 − 𝑛2|. These excitons interact kinematically by repelling each other
away from the same site. The Schrödinger equation of the system is

𝐸𝐶(𝑒𝑥)𝑛1𝑛2 = 2𝐸0𝐶
(𝑒𝑥)
𝑛1𝑛2 + (1 − 𝛿𝑛1𝑛2)􏾜

𝑠
􏿴𝑡𝑛1𝑠𝐶

(𝑒𝑥)
𝑠𝑛2 + 𝑡𝑛2𝑠𝐶

(𝑒𝑥)
𝑛1𝑠 􏿷 (3.28)

with 𝑡𝑖𝑗 being the long-range hopping constant.
Let us choose the index 𝜇 to label the eigenstates of Eq. (3.28). Since

excitons are hard-core bosons, their compound amplitude obeys

𝐶(𝑒𝑥)𝑛𝑛 = 0. (3.29)

By means of property (3.29) and moving in the framework of a near-
est neighbor approximation for the hopping (𝑡𝑖𝑖+1 = 𝑡), Eq. (3.28) can be
straightforwardly expressed in following the form:

𝐸(𝑒𝑥)𝜇 𝐶(𝑒𝑥)𝜇 (𝑛) = (1 − 𝛿𝑛0)􏿻2𝐸0𝐶
(𝑒𝑥)
𝜇 (𝑛) + 2𝑡[𝐶(𝑒𝑥)𝜇 (𝑛 + 1) + 𝐶(𝑒𝑥)𝜇 (𝑛 − 1)]􏿾. (3.30)

The normalized solutions of Eq. (3.30) are

𝐶(𝑒𝑥)𝜇 (𝑛) ≡ 𝑔𝑛(𝜇) =
√2(1 − 𝛿𝑛0)

√𝑁
sin |𝑛|𝜅𝜇 (3.31)

with wave vectors 𝜅𝜇 with

𝜅𝜇 =
2𝜋𝜇
𝑁𝑎

, (3.32)

and
𝜇 = 􏿰−

(𝑁 − 1)
2

,
(𝑁 − 1)
2 􏿳 . (3.33)

Notice that since the index 𝜇 is half-integer the wave vectors of the set {𝜅𝜇}
lie exactly between the wave vectors belonging to the set {𝜅𝜈} in Eq. (3.14).

The functions (3.31) constitute an orthonormal basis in both position and
momentum spaces:

∑
𝑛 𝑔𝑛(𝜇1)𝑔𝑛(𝜇2) = 𝛿|𝜇1|,|𝜇2|

∑
𝜇 𝑔𝑛1(𝜇)𝑔𝑛2(𝜇) = (1 − 𝛿𝑛10)𝛿|𝑛1|,|𝑛2|.

(3.34)

Also the spectrum of Eq. (3.30) is described by the wave vectors 𝜅𝜇:

𝐸(𝑒𝑥)𝜇 = 2𝐸0 + 4𝑡 cos 𝑎𝜅𝜇. (3.35)

The fact that the elements of {𝜅𝜇} are in-between those of {𝜅𝜈} is of crucial
importance; it entails the fact that amplitudes 𝐶(𝑒𝑥)𝜇 (𝑘𝜈) do not have poles
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but rather a boosted contribution from the wave vectors 𝑘𝜈 ≈ 𝜅𝜇. This is
apparent from the denominator of the Fourier transform of Eq. (3.31):

𝐶(𝑒𝑥)𝜇 (𝑘) =
sin 𝑎𝜅𝜇 + (−1)𝜇 sin 𝑎𝑘𝜈 sin(𝑎𝑘𝜈𝑁/2)

cos 𝑎𝑘𝜈 − cos 𝑎𝜅𝜇
. (3.36)

We see how the hard-core repulsion, despite being weak, can not be ne-
glected at all since it modifies the nature of the excitonic modes in a non-
perturbative way.

3.4 Discussion

As we have seen in the previous sections, at large 𝜌 the problem of two
effectively free excitons interacting via kinematic interaction is described by
a wave vector set {𝜅𝜇}with an half-integer index 𝜇 [see Eqs. (3.32) and (3.33)]
whereas when the coupling of excitons to light gets sufficiently stronger
than the kinematic interaction, we can describe the physics via a wave vector
set {𝑘𝜈} with an integer index 𝜈 [see Eqs. (3.14) and (3.15)].

In other terms, the quantum number 𝜌 which labels the two-polariton
states is subjected (while increasing) to a gradual transition from 𝜈-numbers
to𝜇-numbers. In the basis {𝑘𝜈} this smooth passage represents the formation
of wave packets.

The energy of the two-polariton state is well approximated by

𝐸𝜌 = 2𝐸𝐿(𝑘eff(𝜌)), (3.37)

with
𝑘eff(𝜌) =

2𝜋𝜌∗
𝑁𝑎

, 𝜌∗ = (𝜌 − 1)
𝑁/2 − 1/2
𝑁/2 − 1

. (3.38)

The effective wave vector 𝑘eff and its label 𝜌∗ properly describe the adiabatic
passage from set {𝑘𝜈} to set {𝜅𝜇}: At small 𝜌, in fact, 𝑘eff(𝜌) ≈ 𝑘𝜈 while, at large
𝜌, 𝑘eff(𝜌) ≈ 𝜅𝜇. This can be seen in Fig. 3.5 where the exact numerical results
for the energies (cyan dots) are well reproduced by the following analytical
expression:

𝐸𝜌 = 2𝐸𝐿(𝑘eff(𝜌)). (3.39)

The presence of Δ(𝐸𝜌, 𝑘𝜈) at the denominator of amplitudes (3.25) sug-
gests that 𝐴𝜌(𝑘𝜈) displays a peak-like feature at 𝑘𝜈 ∼ ±𝑘eff(𝜌) [see Eq. (3.19)];
these components, however, control the overall envelope of 𝐴𝜌(𝑘𝜈) only for
𝑘eff(𝜌) < 𝑘𝑆𝐶. On the contrary, inside the weak coupling regime 𝑘eff(𝜌) >
𝑘𝑆𝐶, the upper-upper (𝑈𝑈-) band dominates the general shape of the wave
packet:

1
Δ(𝐸𝜌, 𝑘𝜈)

∝
1

𝐸2𝑈(𝑘𝜈)
≈

1
𝐸2𝑝(𝑘𝜈)

. (3.40)
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Figure 3.5: 𝐿𝐿-band for two polaritons. Blue squares indicate the eingenenergies
2𝐸𝐿(𝑘𝜈) for two polariton that do not interact. The numerically exact energies are
instead depicted as cyan dots and are indicated at the positions that correspond to
𝑘eff(𝜌).

This resonant term decays extremely fast (see inset in Fig. 3.2); as a con-
sequence, it suppresses the contributions𝐴𝜌(𝑘𝜈 ∼ 𝑘eff(𝜌)) to the wave packet
which comes from the monochromatic waves with wave vectors 𝑘eff(𝜌). We
can conclude that for larger 𝜌 only 𝑘𝜈 states which lie in the strong cou-
pling regime 𝑘𝜈 ≲ 𝑘𝑆𝐶 affect and effectively contribute to amplitudes 𝐴𝜌(𝑘𝜈)
while higher-𝑘𝜈 states are off resonance. When 𝜌 is sufficiently large, am-
plitudes 𝐴(𝑘) show a pronounced cusp-like feature around 𝑘𝜈 = 0. This
bunching feature in momentum space is mapped into a bunching feature
in real space too, as shown in the central and lower panels of Fig. 3.4. Let
us finally point out that even for a polychromatic exciting source we will
see bunching, which can not be averaged out since𝐴𝜌(𝑛) displays bunching
(i.e. maximum at 𝑛 = 0) for all 𝜌 such that 𝑘eff(𝜌) ≳ 𝑘𝑆𝐶.

This is of course a qualitative explanation. These reasonings are bet-
ter quantified in Appendix 3.A where we provide an explanation of the
mechanism underlying the bunching phenomenon and demonstrate how
the bunching arises from interference among different 𝐴(𝑘𝜈)-components.

3.5 Control of photon-photon correlations

The platform that we propose (Fig. 3.1) can be realized by employing ul-
tracold rubidium or strontium atoms in a Mott insulator state where each
lattice site accommodates one atom: An example of such system is avail-
able in Ref. [99] where strontium atoms are placed inside the hollow core of
a kagome-lattice photonic crystal.

We consider the𝐷2(52S1/2 → 52P3/2) transition of rubidium atoms at𝐸0 =
384 THz; the transition dipole is then 𝑑 = 4.22 a.u. and we choose the radius
of the fiber in such a way that the lowest cavity mode 𝐸𝑝(0) = 𝑐𝑘⟂ perfectly
hits the atomic transition:

𝑐𝑘⟂ = 𝐸0. (3.41)

Since 𝑘⟂ is defined by the condition 𝐽0(𝑘⟂𝑅) = 0 [cf. Eq.(3.4)] and the first
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Figure 3.6: Strenght of the bunching in absolute value (red circles) or scaled by the
photonic component of the corresponding eigenstate (blue squares) as a function
of 𝜌.

zero of 𝐽0(𝑥) is 2.4048, relation (3.41) becomes

𝑐
2.4048
𝑅

= 𝐸0 (3.42)

which results in a radius 𝑅 = 0.299 𝜇m.
In order to study the photon-photon correlations, we use the following

figure of merit for bunching:

Δ𝐴𝜌 =
|𝐴𝜌(𝑛 = 0)| − ⟨𝐴𝜌⟩

⟨𝐴𝜌⟩
if |𝐴𝜌(𝑛 = 0)| − ⟨𝐴𝜌⟩ > 0,

Δ𝐴𝜌 = 0 otherwise.
(3.43)

with
⟨𝐴𝜌⟩ = 􏾜

𝑛

|𝐴𝜌(𝑛)|
𝑁

. (3.44)

In Fig. 3.6 we plot Δ𝐴𝜌 as a function of 𝜌 (red circles). At large ener-
gies Δ𝐴 displays an apparent decrease, which is due to a decrease of the
photonic component in the two-polariton state. This can be proved by plot-
ting Δ𝐴𝜌 divided by the photonic fraction 𝑋𝐿𝛼(𝑘eff(𝜌)) in the two-polariton
state when there is no kinematic interaction. This is shown by blue squares
in Fig. 3.6 where the ratio monotonically increases. An analytical form for
𝑋𝐿𝛼(𝑘eff(𝜌)) is given by Eq. (3.54).
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Figure 3.7: For 𝑎 = 532 nm, 2.66 𝜇m, and 5.32 𝜇m, the real space amplitude |Δ𝐴(𝑛 =
0)| is plotted versus the energy of the states belonging to the 𝐿𝐿-band. Here, 𝑁 =
100 atoms are considered.

In Fig. 3.7 we show the bunching strength Δ𝐴(𝐸𝜌) for several values of
the lattice constant: 𝑎 = 532 nm, 𝑎 = 2.66 𝜇m, and 𝑎 = 5.32 𝜇m. We see that
Δ𝐴𝜌 increases as 𝑎 increases. This may be a bit counterintuitive, since larger
𝑎 entails a lower atomic density; however, as stated in Appendix 3.A [see
Eq. (3.69) and discussion below] the optimal condition for bunching is hav-
ing large photonic and excitonic fractions at the same time, which happens
in the strong coupling regime only. Since the strong coupling region is of
the order of 𝑘𝑆𝐶 [which is given by Eq. (3.20)] the best situation is when 𝑘𝑆𝐶
can be compared to the size of the Brillouin zone 𝜋/𝑎:

𝑎𝑘𝑆𝐶
𝜋

≈ 1. (3.45)

Since 𝑎𝑘𝑆𝐶/𝜋 ∝ 𝑎3/4 it is clear that the larger 𝑎 the better is. Unlike natural
solids, where 𝑎 is of the order of 5�̊� and electronic transitions are of the
order of ∼ 2 eV (𝑎𝑘𝑆𝐶/𝜋 ∼ 2𝑎√𝑤0𝐺/𝜋𝑐ℏ ∼ 10−4), in cold-atom systems an ex-
tremely flat dispersion relation can be easily obtained, which in turn implies
a pronounced bunching in a continous band with GHz width, see Fig. 3.7.

An other heuristic argumentation to explain why a larger 𝑎 improves
the bunching is the following: If we want the kinematic interaction to be
effective, we need term (3.18) to be larger than the energy spacing between
neighboring eigenstate, which according to Eq.(3.14) is 2𝜋/𝑁𝑎 and thus gets
smaller as 𝑎 increases.
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Figure 3.8: For 𝛿 = −𝐺/2, 0, 𝐺/2, and 𝐺, in the upper panel the bunching strength
is plotted versus the energy of the states in the 𝐿𝐿-band. Below, for the states indi-
cated by 𝜌1 (upper panel) and 𝜌2 (lower panel) in Fig. 3.7, the plots show the figure
of merit for bunching Δ𝐴 as a function of the total wave vector 𝐾𝜈′ .

In Fig. 3.8 (upper panel) we plot Δ𝐴 as a function of energy for different
detunings 𝛿 = 𝐸𝑝(0) − 𝐸0. Large negative detunings imply wider frequency
windows for bunching, since the corresponding 𝐿𝐿-bands 𝐸𝐿𝐿(𝑘eff(𝜌)) get
wider. The central and lower panels, instead, demonstrate that the bunch-
ing is still present for nonvanishing center-of-mass momenta 𝐾𝜈′ ≠ 0. This
is extremely important since can be observed in the experiments.

3.6 Gap states

When the energy 𝐸𝑝(0) of the lowest cavity mode is greater than the energy
𝐸0 of the atomic transition (𝛿 > 0) a gap immediately opens in the polaritonic
spectrum. For a vanishing detuning 𝛿 = 0 and a small lattice constant 𝑎 there
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is no gap since the 𝐿𝐿-band at the border of the Brillouin zone 𝐸𝐿𝐿(𝜋/𝑎) is
equal to 𝐿𝑈-band for a vanishing wave vector 𝐸𝐿𝑈(0) = 𝐸𝐿(0) + 𝐸𝑈(0) = 2𝐸0
[cf. Eq. (2.5)]:

𝐸𝐿𝐿(𝜋/𝑎) = 𝐸𝐿𝑈(0) (3.46)

This can be seen in Fig. 3.2.
If instead 𝑎 is large enough to fulfill condition (3.45) the 𝐿𝐿-band never

overlaps the bare exciton band and a small gap opens, even at zero detuning:

Δ𝐿𝑈 = 𝐸𝐿𝑈(𝑘𝜈 = 0) − 𝐸𝐿𝐿(𝑘𝜈 = 𝜋/𝑎) > 0. (3.47)

Here, bound states of two polaritons form inside the gap region, at the bot-
tom of the 𝐿𝑈-band. Their wave function has a well-defined shape: While
the exciton-exciton (C) amplitude obeys the hard-core constraint and reaches
its maximum for |𝑛| = 1, photon-photon (A) and exciton-photon (B) ampli-
tudes are peaked around 𝑛 = 0 as it can be seen in Fig. 3.9. For moderate
interatomic distance 𝑎, this state merges with the 𝐿𝑈-band; however, as 𝑎
becomes larger (𝑎 ∼ 25 𝜇m) it separates from the band and enters the gap.
The larger is 𝑎, the deeper it will penetrate into the gap, which entails a lar-
ger bunching effect. An example is provideed by Fig. 3.9 for a low atomic
density (𝑎 = 50.3 𝜇m).

Given the repulsive nature of the kinematic interaction, it may seem
counterintuitive the presence of bound states in the system. This gap bipo-
lariton is analogous to the kinematic exciton-exciton bound state that over-
laps with the continuum states in organic crystals with two molecules in
a unit cell [258]; unlike there, however, the bipolariton bound state lies in
the gap and is thus robust against decoherent process such as coupling to
phononic modes or disorder.

Eventually, let us notice that by further lowering the atomic density the
excitons start interacting with photons belonging to higher Brillouin zones.
In other words, an exciton characterized by 𝑘𝜈 couples to photons with 𝑘𝜈,
but also 𝑘𝜈 ± 2𝜋/𝑎, 𝑘𝜈 ± 4𝜋/𝑎, and so on and so forth.

We have numerically checked that for our choice of parameters we enter
this regime for 𝑎 ≳ 50 𝜇m.
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Figure 3.9: Wave function of a polariton-polariton bound state lying within the gap
(see inset) for an interatomic separation 𝑎 = 50.3 𝜇m.

3.7 Conclusions

In this chapter we studied the two-photon correlations in a one-dimensional
system, where an ordered chain of two-level cold atoms is confined in an
optical lattice inside a hollow-core photonic crystal fiber. This system is for
instance implemented in Ref. [99] with strontium atoms; here, we consid-
ered instead realistic parameters for the 𝐷2 transition or rubidium atoms.

The correlations that we observed suggest an attraction between pho-
tons, which tend to bunch in the continuuum; such effect occurs over a
frequency range of several GHz. This is an improvement over the typical
correlations observed for example in nonlinear Rydberg media under elec-
tromagnetically induced transparency where the frequency range is of the
order of MHz.

We also proved both analytically and numerically that this bunching
effect can be easily manipulated by tuning the spacing 𝑎 of the confining
optical lattice.

Our findings hold true as long as the Rabi splitting 2𝐺 between the lower
and upper polaritons is much larger than the sum of the excitonic and pho-
tonic broadenings, which is true for a high-finesse cavity and if the atomic
Mott insulator state is accurately realized. Provided that these conditions
are satisfied, the scheme that we propose can be possibly implemented in
alternative ways other than one-dimensional fibers, such as nanophotonic
waveguides [93, 95, 120, 237–241, 259, 260] and metallic nanowires [96].

Finally, in the last section of this chapter we showed that for a low enough
atomic density, a gap opens in the two-polariton spectrum and despite the
underlying repulsive interaction, bipolaritonic bound state arise. In this
chapter we did not consider dynamical interactions. Dipole forces could
introduce additional kinds of bound states, both in the gap or below the po-
laritonic 𝐿𝐿-band (see chapter 4) analogously to what happens in Refs. [261,
262] for atoms in an optical lattice or in Ref. [263] for a Jaynes-Cummings-
Hubbard model.
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As we shall see in the next chapter, the same phenomenon of photonic
bunching takes place when considering a linear chain of Rydberg atoms
inside a one-dimensional resonator. Since two excited Rydberg atoms have
to stay away from each other by a distance which can not be shorter than
twice the Rydberg radius (this phenomenon is called Rydberg blockade),
the mismatch between the quantization volumes induced by the presence
of the kinematic interaction is much larger. Moreover, unlike low-excited
atoms, Rydberg atoms show nonnegligible long-range interactions; these
dipole-dipole or van der Waals dynamics makes the nonlinear physics of
the system even wealthier.





Appendices

3.A Formation of wave packets

In the Schrödinger equation obtained by letting the Hamiltonian (3.1) act on
the wave function (3.8) we can distinguish two subsystems, depending on
whether there is kinematic interaction or not. In the subsystem composed of
two photons or one photon and one exciton there is no hard-core repulsion
and the physics is properly described by wave vectors 𝑘𝜈 [see Eqs. (3.14)
and (3.15)]. In the presence of kinematic interaction, however, that is in the
subsystem composed of two-exciton states, the physics is better described
by wave vectors 𝜅𝜇 [see Eqs. (3.32) and (3.33)]. The collective light-matter
coupling 𝐺mixes these two sets of quantum numbers ({𝑘𝜈} and {𝜅𝜇}) so that
wave packets form in the wave vector basis {𝑘𝜈}.

Lowest-energy states are almost photon-like, meaning that there the cou-
pling to light prevails over the kinematic interaction; in that case, as shown
in Sec. 3.4, the two-polariton states are well described by wave vectors {𝑘𝜈}.
At largest energies however, when polaritons resemble bare excitons, the
two-polariton states are better characterized by wave vectors {𝜅𝜇}. The shift
from 𝜈- to 𝜇-quantum numbers is continuous.

In this Appendix we quantify this gradual transition by proving that the
bunching is indeed caused by the intermixing of the two sets of 𝜈- and 𝜇-
quantum numbers. We also demonstrate that the bunching feature is opti-
mal when both the excitonic and photonic fractions are significantly present:
On the one hand, the excitonic fraction is required due to its kinematic in-
teraction, which is the necessary mechanism for the bunching itself; on the
other hand, the photonic fraction must be large too, in order to make the
bunching visible.

We define the operators 𝛼†𝑛, 𝛽†𝑛 and 𝛾†𝑛, which create, respectively, two
photons, one photon and one exciton, and two excitons with an interparticle
separation 𝑛.

In terms of these three operators the two-particle wave function can be
written as

|Ψ⟩ = 􏾜
𝑠
􏿮𝐴(𝑠) |𝛼𝑠⟩ + 𝐵(𝑠) |𝛽𝑠⟩ + 𝐶(𝑠) |𝛾𝑠⟩􏿱 (3.48)

while the Hamiltonian

�̃�eff = �̃�𝐴𝐵 + �̃�
(𝐾𝐼)
𝐶 + �̃�(𝐾𝐼)

𝐴𝐵−𝐶 (3.49)

89
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is the sum of three terms:

�̃�𝐴𝐵 =􏾜
𝑛,𝑚

􏿮2𝐸𝑝(𝑛 − 𝑚)𝛼†𝑛𝛼𝑚 + 􏿴𝐸𝑝(𝑛 − 𝑚) + 𝐸𝑒(𝑛 − 𝑚)􏿷 𝛽†𝑛𝛽𝑚􏿱

+ 𝐺√2􏾜
𝑛
􏿮𝛼†𝑛𝛽𝑛 + 𝛽†𝑛𝛼𝑛􏿱 ,

�̃�(𝐾𝐼)𝐶 =􏾜
𝑛,𝑚
(1 − 𝛿𝑛0)2𝐸𝑒(𝑛 − 𝑚)𝛾†𝑛𝛾𝑚,

�̃�(𝐾𝐼)
𝐴𝐵−𝐶 = 𝐺√2􏾜

𝑛
(1 − 𝛿𝑛0) 􏿮𝛾†𝑛𝛽𝑛 + 𝛽†𝑛𝛾𝑛􏿱 .

(3.50)

The Hamiltonian �̃�(𝐾𝐼)
𝐴𝐵−𝐶 couples the noninteracting (𝐴𝐵) and the inte-

racting (𝐶) subsystems.
The corresponding Schrödinger equation is analogous to Eqs. (3.11).
The Hamiltonian �̃�𝐴𝐵 is diagonal in the following operatorial basis:

𝜉†𝑖𝜈 = 𝑋𝑖𝜈𝛼𝛼†𝜈 + 𝑋𝑖𝜈𝛽 𝛽†𝜈, (3.51)

as
�̃�𝐴𝐵 =􏾜

𝑖,𝜈
𝐸𝑝𝑖𝜈𝜉†𝑖𝜈𝜉𝑖𝜈 (3.52)

with 𝑖 = (𝑈, 𝐿) being the polariton index; 𝜈 runs in the interval (3.15) and

𝐸𝑝,(𝑖=𝑈,𝐿)𝜈 = 𝐸𝑝𝜈 +
𝐸𝑒𝜈 + 𝐸𝑝𝜈 ±􏽯

(𝐸𝑒𝜈 − 𝐸𝑝𝜈)2 + 8𝐺2

2
(3.53)

where 𝐸𝑝𝜈 ≡ 𝐸𝑝(𝑘𝜈). Energies 𝐸𝑝,(𝑖=𝑈,𝐿)𝜈 are made up by the energy of one
photon plus the energy of one exciton-polariton whose coupling rate is√2𝐺.
This could have been predicted by studying Eqs. (3.17) in the absence of
exciton-exciton amplitudes, 𝐶 ≡ 0.

In Eq. (3.51)

𝑋𝑖𝜈𝛼 =

􏽭
⃓
⃓
⃓
⎷

􏿴𝐸𝑝,𝑖𝜈 − 𝐸𝑝𝜈 − 𝐸𝑒𝜈􏿷
2

2𝐺2 + 􏿴𝐸𝑝,𝑖𝜈 − 𝐸𝑝𝜈 − 𝐸𝑒𝜈􏿷
2 , 𝑋𝑖𝜈𝛽 =

􏽭
⃓
⃓
⎷

2𝐺2

2𝐺2 + 􏿴𝐸𝑝,𝑖𝜈 − 𝐸𝑝𝜈 − 𝐸𝑒𝜈􏿷
2 .

(3.54)
The Hamiltonian �̃�(𝐾𝐼)𝐶 of the interacting subsystem can be instead diag-

onalized as
�̃�(𝐾𝐼)𝐶 =􏾜

𝜇
𝐸(𝑒𝑥)𝜇 𝜒†𝜇𝜒𝜇. (3.55)

The spectrum 𝐸(𝑒𝑥)𝜇 was introduced in Eq. (3.35); the operators are

𝜒†𝜇 =
𝑁/2
􏾜

𝑠=−𝑁/2+1
𝑔𝑠(𝜇)𝛾†𝑠 (3.56)
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where the orthonormal 𝑔-functions are defined in Eq. (3.31).
Finally, the coupling operator �̃�𝐴𝐵−𝐶 can be expressed by employing

both 𝜉- and 𝜒-operators as

�̃�(𝐾𝐼)𝐴𝐵−𝐶 =
𝐺
𝑁
􏾜
𝑖𝜈𝜇
Λ𝜈𝜇𝑋𝑖𝜈𝛽 􏿴𝜒†𝜇𝜉𝑖𝜈 + 𝜉†𝑖𝜈𝜒𝜇􏿷 (3.57)

with Λ𝜈𝜇 being

Λ𝜈𝜇 =
1
2 􏿰
cot

𝜋(𝜈 + |𝜇|)
𝑁

− cot
𝜋(𝜈 − |𝜇|)

𝑁 􏿳 . (3.58)

These coefficients are ultimately responsible for coupling the wave vectors
𝑘𝜈 and 𝜅𝜇 and inducing the interference phenomena that lead to photon-
photon bunching.

We define the wave function

|Ψ⟩ = 􏾜
𝑖𝜈
𝑝𝑖𝜈 |𝜉𝑖𝜈⟩ +􏾜

𝜇
𝑒𝜇 |𝜒𝜇⟩ ; (3.59)

by applying �̃�eff on it, we get

􏿴𝐸 − 𝐸𝑝,𝑖𝜈􏿷 𝑝𝑖𝜈 =
𝐺𝑋𝑖𝜈𝛽
𝑁

􏾜
𝜇
Λ𝜈𝜇𝑒𝜇, 􏿴𝐸 − 𝐸𝜇􏿷 𝑒𝜇 =

𝐺
𝑁
􏾜
𝑖𝜈
𝑋𝑖𝜈𝛽 Λ𝜈𝜇𝑝𝑖𝜈. (3.60)

In the equation for 𝑝-amplitudes we replace 𝑒-amplitudes by their values
obtained from the second equation in (3.60). If we neglect the hopping (𝑡 =
0) we end up with the following self-consistent equation:

􏿴𝐸 − 𝐸𝑝,𝑖𝜈􏿷 𝑝𝑖𝜈 =
𝐺2𝑋𝑖𝜈𝛽

2𝑁(𝐸 − 2𝐸0)
􏾜
𝑖′𝜈′
𝐹𝜈𝜈′𝑋𝑖

′𝜈′
𝛽 𝑝𝑖′𝜈′ (3.61)

where
𝐹𝜈𝜈′ = 𝑁􏿴𝛿𝜈,𝜈′ + 𝛿𝜈,−𝜈′􏿷 −

2
𝑁
. (3.62)

The kernel function 𝐹𝜈𝜈′ represents two well-distinguished processes: The
𝛿-terms describe elastic-scattering phenomena; the 2/𝑁 term is instead re-
sponsible for the development of wave packets.

The real-space amplitude 𝐴(𝑛) for having two photons at a distance of 𝑛
sites from each other is

𝐴(𝑛) = ⟨𝛼𝑛| Ψ⟩ =
1

√𝑁
􏾜
𝑖𝜈
𝑝𝑖𝜈𝑋𝑖𝜈𝛼 𝑒

− 2𝜋𝑖𝜈𝑛
𝑁 . (3.63)

The exponential weight decays fast and suppresses the amplitude when 𝑛
is large. On the contrary for 𝑛 = 0 the phase vanishes and the amplitude for
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two photons being accommodated by the same site results from a collective
superposition of 𝑝-amplitudes:

𝐴(0) =
1
𝑁
􏾜
𝑖𝜈
𝑝𝑖𝜈𝑋𝑖𝜈𝛼 . (3.64)

By means of Eqs. (3.60) we obtain

𝐴𝜌(0) =
𝐺

𝑁√𝑁
􏾜
𝑖𝜈

𝑋𝑖𝜈𝛼𝑋𝑖𝜈𝛽
(𝐸𝜌 − 𝐸𝑝,𝑖𝜈)

􏾜
𝜇
Λ𝜈𝜇𝑒𝜇. (3.65)

A first important point in Eq. (3.65) is the resonant term 1/(𝐸𝜌 − 𝐸𝑝,𝑖𝜈);
owing to the mismatch between the wave vectors {𝑘𝜈} and {𝑘𝜇} this term
will never diverge; the energy 𝐸𝜌 indeed always lies in-between neighbor-
ing eigenenergies of the ideal-case spectrum. The absence of real energetic
poles avoids the issue of having an imaginary part in the energy, and con-
sequently a decay in time. Nevertheless, the term 1/(𝐸𝜌 − 𝐸𝑝,𝑖𝜈) contains
precious information concerning the bunching: Even though it has no real
poles (which is a good thing) it has quasipoles as soon as 𝐸𝜌 gets resonant
with the band 𝐸𝑝,𝑖𝜈; this gives us information to predict whether a certain
eigenstate at a certain energy will display bunching or not. It also follows
that for

𝐸𝜌 < min 􏿺𝐸𝑝,𝑖𝜈􏿽 = 𝐸𝑝,𝐿,𝜈=0 (3.66)
the photons do not bunch and display a free behavior. We conclude that
even though the eigenstates of the noninteracting subsystem with spectrum
𝐸𝑝,𝑖𝜈 are not real excitations (single polaritons) of the system, they are impor-
tant since they are virtual states through which the two excitons communi-
cate with each other. Indeed, as it can be deduced from the denominator
𝐸𝜌 − 𝐸𝑝,𝑖𝜈 of Eq. (3.65), the nonphysical energies 𝐸𝑝,𝑖𝜈 act as channels for vir-
tual scattering.

From the representations (3.8) and (3.48) of the wave function |Ψ⟩we get
the relation

𝐶(𝑠) = ⟨𝛾𝑠| Ψ⟩ = 􏾜
𝜇
𝑒𝜇𝑔𝑠(𝜇) (3.67)

which, in turn, leads to
2𝑒𝜇 =􏾜

𝑠
𝑔𝑠(𝜇)𝐶(𝑠). (3.68)

At large energies (and quantum numbers 𝜌) the two-polariton states be-
have as two-exciton states so that we can approximate amplitudes 𝐶(𝑠) in
Eq. (3.68) with amplitudes (3.31). In order to take into account the presence
of a nonvanishing photon-exciton and exciton-exciton components we in-
troduce a normalization coefficient 𝑋𝜌𝛾. The orthogonality properties (3.34)
of 𝑔-functions eventually lead to

𝐴𝜌(0) ≈
𝐺𝑋𝜌𝛾

𝑁
3
2

􏾜
𝑖=𝐿,𝑈

􏾜
𝜈

𝑋𝑖𝜈𝛼𝑋𝑖𝜈𝛽
(𝐸𝜌 − 𝐸𝑝,𝑖𝜈)

Λ𝜈𝜇. (3.69)
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From Eq. (3.69) we see how exciton-exciton amplitude 𝑋𝑖𝜈𝛼 and photon-
photon amplitude 𝑋𝑖𝜈𝛽 have to be both large if we want the corresponding
state to contribute in a relevant way to 𝐴(0). This condition, which can be
approximately written as

|𝑋𝑖𝜈𝛼 | ≈ |𝑋𝑖𝜈𝛽 |, (3.70)

is satisfied only in the strong coupling region.
Since a larger lattice constant 𝑎 implies a smoother transition between

photonic-like and excitonic-like parts of the 𝐿𝐿-band, it also entails a larger
strong coupling region over the Brillouin zone. This is why a large 𝑎 is favor-
able for a large bunching. This also explains why in natural solids, where
interparticle separation is of the order of 1 �̊�, the kinematic interaction does
not play an important role as it does in the atomic systems.





4
Cavity polaritons with Rydberg blockade and

long-range interactions

In this final chapter we extend the results of the previous chapter to Ryd-
berg atoms [60, 264]. We propose to implement strong interactions between
single photons of a cavity coupled to an ordered array of Rydberg atoms.
Here, we consider a one-dimensional chain of Rydberg atoms trapped in
an optical lattice in the Mott insulator state inside a hollow-core photonic
crystal fiber, as shown in Fig. 4.1. Other possible realizations are arrays of
atoms trapped outside of a nanophotonic waveguide and coupled to the
evanescent light field [93, 95, 237–241].

Contrary to works that employ the electromagnetic induced transpa-
rency technique in gaseous systems [31, 53–56] where Rydberg atoms are
modelled as three-level emitters, here we model them as two-level systems.
One-photon scheme in excitations of Rydberg states via ultraviolet lasers is
nowadays within reach [265–268] and adopted in several theoretical propos-
als [269, 270]. Rydberg atoms dynamically interact via long-range dipole-
dipole or van der Waals forces, which ultimately entail the so-called Ryd-
berg blockade effect [57–62]. If a low-excited atom can not accommodate
two excitons (usual kinematic interaction), the blockade effect greatly en-
hances such excluded volume leading to a superatom whose radius is equal
to the blockade radius 𝑟𝐵. These superatoms effectively behaving as ex-
tended two-level systems, the accommodated excitons interact via an ex-
tended (repulsive) kinematic interaction. In other words, propagating ex-
citons behave as hard-core bosons whose hard core has a one-dimensional
volume equal to 2𝑟𝐵. As we shall see later, such large excluded volume leads
to a more visible bunching feature with respect to the case of low-excited
atoms, meaning that the deviation of the wave functions from the plane-
wave-like behavior is more pronounced. Furthermore, Rydberg atoms also
allow for the observation of antibunching in the photonic component of the
two-polariton wave function associated to the lowest energy eigenstates.

This chapter is organized as follows. In Sec. 4.1 we introduce the model.
In Sec. 4.2 we solve the associated Schrödinger equation when the center
of mass of the two-excitation system is at rest. In Sec. 4.3 we numerically
solve the problem and plot the wave functions for three exemplar eigen-
states. In Sec. 4.4 we solve the problem of two bare excitons interacting via
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the extended kinematic interaction. Then, we use these results to study the
kinematics of two polaritons in Sec. 4.5. Sec. 4.6 is devoted to the numerical
study of bunching. In Sec. 4.7 we turn on the dynamical interaction and
study its contributions; for an attractive interaction we look at the bound
states that form below the continuum. Sec. 4.8 is devoted to the study of the
in-gap bipolariton states, which form for a kinematic or repulsive dynami-
cal interaction. Finally, Sec. 4.9 summarizes the conclusions.

In Appendix 4.A we review the basic properties of Rydberg atoms. In
Appendix 4.B we provide an analytical solution for a generic total wave vec-
tor. In Appendix 4.C we work out the dispersion relation for the simple case
of two excitons that interact only dynamically.

The results from this chapter have been collected in the following paper,
submitted (not yet published) during the PhD:

M. Litinskaya, E. Tignone, G. Pupillo,
Cavity polaritons with Rydberg blockade and long-range interactions,
(submitted to Journal of Physics B: Atomic, Molecular and Optical Physics)

4.1 The model

The model that we propose is illustrated in Fig. 4.1. We consider an ordered
array of𝑁 Rydberg atoms separated by a lattice spacing 𝑎 and placed inside
a hollow-core photonic crystal fiber; the transition frequency for each atom
is 𝐸0 whereas the hopping constant is 𝑡 ∝ 𝑑2/𝑎3 with 𝑑 being the transition
dipole moment. We consider nearest-neighbor hopping only. 𝐷(𝑛 − 𝑚) ac-
counts for long-range (dipole-dipole or van der Waals) interaction between
atomic excitations located at sites 𝑛 and𝑚. The Hamiltonian describing the
dynamics of such system is [cf. Eqs. (2.3) and (3.1)]:

𝐻 = 𝐸0􏾜
𝑠
𝑃†𝑠𝑃𝑠 + 𝑡􏾜

𝑠
􏿴𝑃†𝑠𝑃𝑠+1 + 𝑃†𝑠𝑃𝑠−1􏿷

+
1
2
􏾜
𝑠,𝑝
𝐷(𝑠 − 𝑝)𝑃†𝑠𝑃†𝑝𝑃𝑠𝑃𝑝 +􏾜

𝑞𝜈
𝐸𝑝(𝑞𝜈)𝑏†(𝑞𝜈)𝑏(𝑞𝜈)

+􏾜
𝑞𝜈
𝐸𝑝(𝑞𝜈)𝑏†(𝑞𝜈)𝑏(𝑞𝜈) + 𝑔􏾜

𝑠,𝑞𝜈
􏿴𝑃†𝑠𝑏(𝑞𝜈)𝑒𝑖𝑞𝜈𝑠 + 𝑃𝑠𝑏†(𝑞𝜈)𝑒−𝑖𝑞𝜈𝑠􏿷 .

(4.1)

Operators 𝑃†𝑠 and 𝑏†(𝑞𝜈) create, respectively, an atomic excitation at site 𝑠
and a cavity photon characterized by a wave vector 𝑞𝜈 along the cavity axis.
As usually, the photonic dispersion relation is

𝐸𝑝(𝑞𝜈) = 𝑐􏽯𝑞
2
𝜈 + 𝑞2⟂ (4.2)

with
𝑞𝜈 =

2𝜋𝜈
𝑁𝑎

(4.3)
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Figure 4.1: Sketch of the ensemble of two-level Rydberg atoms inside the hollow
core of a photonic crystal fiber; the blockade radius is 𝑟𝐵; 𝑔 is the light-emitter cou-
pling, 𝐸𝑝 is the photonic field in the cavity while 𝐸0 is the energy of the atomic
transition; 𝛿 = 𝐸𝑝(0) − 𝐸0 is the detuning. D(n) is the dynamical interaction, which
depends on the exciton-exciton separation.

and 𝜈 an integer; 𝑐 indicates the speed of light through a vacuum whereas
𝑞⟂ is the transverse momentum of the photon and satisfies condition (3.4)
with 𝑅 being the radius of the fiber core.

The light-matter coupling strength is

𝑔 = 𝑑
􏽰
2𝜋𝐸0
𝑉

(4.4)

with 𝑉 = 𝜋𝑅2𝑁𝑎 being the the volume of the cylindric core.

4.2 Analytical solution

As in Chapter 3, we will refer to the lower-lower, lower-upper, and upper-
upper polaritonic bands, as 𝐿𝐿-, 𝐿𝑈-, and𝑈𝑈-band, respectively. The effect
of the hopping is negligible compared to that arising from the strong in-
tracavity light-matter coupling. Indeed, in Fig. 4.2 the curvature of the
dispersion relation for a bare exciton (lower dashed line) is barely visible,
𝐸𝑒(𝑘𝜈) ≈ 𝐸0.

Since we are considering two excitations, following the previous chapter
[see Eq. (3.8)] we can restrict our wave function to a two-particle subspace:

|Ψ⟩ = 􏾜
𝑛𝑚
􏿼
𝐴𝑛𝑚
√2

|𝑏†𝑛𝑏†𝑚⟩ + 𝐵𝑛𝑚 |𝑏†𝑛𝑃†𝑚⟩ +
𝐶𝑛𝑚
√2

|𝑃†𝑛𝑃†𝑚⟩􏿿 , (4.5)

where, because of indistinguishability, both photon-photon and exciton-
exciton amplitudes are symmetric (𝐴𝑛𝑚 = 𝐴𝑚𝑛, 𝐶𝑛𝑚 = 𝐶𝑚𝑛). Contrary, since
a photon and an exciton are distinguishable quanta, 𝐵-coefficients do not
have a particular symmetry. We decompose 𝐵𝑛𝑚 into their symmetric (S)
and antisymmetric (A) components, 𝐵𝑛𝑚 = 𝐵𝑆𝑛𝑚 + 𝐵𝐴𝑛𝑚.
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Figure 4.2: Band structure in the presence of an individual excitation (cf. Fig. 2.1);
only the positive half of the Brillouin zone is depicted. 𝐸𝐿(𝑘) and 𝐸𝑈(𝑘) indicate the
energy bands of the lower and upper polaritons, respectively; 𝐸𝑝(𝑘) and 𝐸𝑒(𝑘) are
the energies of a free photon and a free exciton; 𝑎 is the lattice constant. We take a
positive detuning 𝛿 = 𝐸𝑝(0) − 𝐸0. The shaded pink area corresponds to the strong
coupling region 𝑘𝜈 < 𝑘𝑆𝐶 where 𝑘𝑆𝐶 is defined in Eq. (3.20).

Beyond the usual kinematic interaction between atomic excitations, orig-
inating from atomic saturability [271] (see Chapter 3), here we have to take
into account the Rydberg blockade effect: The presence of an atomic excita-
tion shifts, via its dynamical interaction𝐷, the energy levels of neighboring
atoms out of resonance [58, 59, 272]; this effect is described in Appendix 4.A.
In order to describe the blockade mechanism we introduce a blockade ra-
dius 𝑟𝐵 and assume that interexciton separations less than 2(𝑟𝐵/𝑎) + 1 lattice
sites are forbidden. The radius 𝑟𝐵 can greatly exceed the lattice spacing 𝑎.
Notice that for 𝑟𝐵 = 0 this problem reduces to the ordinary kinematic in-
teraction described in the previous chapter, which only accounts for atomic
saturability of the two-level emitters.

In order to describe this extended kinematic repulsion we remove the
two-exciton states |𝑃𝑛𝑃𝑚⟩ with |𝑛 − 𝑚| ≤ 2(𝑟𝐵/𝑎) + 1 from the total basis set.
We consider the Schrödinger equation obtained by applying Hamiltonian
(4.1) to wave function (4.5) and multiply the terms proportional to |𝑃𝑛𝑃𝑚⟩
by (1 − 𝜃(𝑛 − 𝑚)) with the 𝜃-function defined by:

𝜃(𝑥) = 0 if |𝑥| ≤ 𝑟𝐵/𝑎,
𝜃(𝑥) = 1 otherwise.

(4.6)

Consequently, the amplitudes 𝐶𝑛𝑚 associated to forbidden states where
two atomic excitations lie inside the same blockade sphere [|𝑛−𝑚| ≤ 2(𝑟𝐵/𝑎)+
1] are not defined. For convenience we choose:

𝜃(𝑛 − 𝑚)𝐶𝑛𝑚 = 0. (4.7)

Notice that 𝜃(𝑛 −𝑚) reduces to 𝛿𝑛𝑚 for low-excited atoms, so that constraint
(4.7) reduces to condition (3.10)

We solve the symmetrized Schrödinger equation and Fourier transform
the solution. Afterwards, we follow the typical procedure for taking advan-
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tage of the translational invariance of the overall system and we define the
total and relative wave vectors:

𝐾𝜈′ = 𝑞𝜈1 + 𝑞𝜈2 and 𝑘𝜈 =
𝑞𝜈1 − 𝑞𝜈2

2
, (4.8)

in terms of which we rewrite the solution.
According the Noether’s theorem [273] the total wave vector 𝐾𝜈′ for two

bare atomic excitations is a good quantum number, so that each eigenstate
is labeled by a certain 𝐾𝜈′ . Here we deal with the simpler case 𝐾𝜈′ = 0 and
briefly extend the results to the 𝐾𝜈′ ≠ 0 case. The solution for 𝐾𝜈′ ≠ 0 is
reported in Appendix 4.B.

For 𝐾𝜈′ = 0 only the symmetric component of the mixed amplitudes
survives, 𝐵 = 𝐵𝑆. Since 𝑞𝜈2 = −𝑞𝜈1 we get

𝑘𝜈 =
2𝜋𝜈
𝑁𝑎

(4.9)

with an index 𝜈 covering the usual domain within the first Brillouin zone
[257]:

𝜈 = −
𝑁
2
+ 1, ...,

𝑁
2
. (4.10)

For a vanishing total wave vector (𝐾𝜈′ = 0), we straightforwardly ob-
tain that 𝐴−, 𝐵−, and 𝐶-amplitudes satisfy a set of equations analogous to
Eqs. (3.17) in presence of Rydberg atoms. Again, pedix 𝜌 labels the two-
polariton states:

𝐸𝜌𝐴𝜌(𝑘𝜈) = 2𝐸𝑝(𝑘𝜈)𝐴𝜌(𝑘𝜈) + 𝐺√2𝐵𝜌(𝑘𝜈),

𝐸𝜌𝐵𝜌(𝑘𝜈) = 􏿮𝐸𝑝(𝑘𝜈) + 𝐸𝑒(𝑘𝜈)􏿱 𝐵𝜌(𝑘𝜈) + 𝐺√2[𝐴𝜌(𝑘𝜈) + 𝐶𝜌(𝑘𝜈)],

𝐸𝜌𝐶𝜌(𝑘𝜈) = 2𝐸𝑒(𝑘𝜈)𝐶𝜌(𝑘𝜈) + 𝐺√2𝐵𝜌(𝑘𝜈) + 𝑆𝜌(𝑘𝜈).

(4.11)

In the exciton-exciton equation, the term 𝑆𝜌(𝑘𝜈) describes scattering pro-
cesses between polaritons, induced by both dynamical and kinematic inter-
actions:

𝑆𝜌(𝑘𝜈) =
1
𝑁
􏾜
𝑞𝜈
􏿻𝐷(𝑘𝜈 − 𝑞𝜈)𝐶𝜌(𝑞𝜈) − 𝜃(𝑘𝜈 − 𝑞𝜈)𝐺√2𝐵𝜌(𝑞𝜈)

− 𝜃(𝑘𝜈 − 𝑞𝜈) 4𝑡 cos 𝑎𝑞𝜈 𝐶𝜌(𝑞𝜈)􏿾.
(4.12)

The excitonic energy is 𝐸𝑒(𝑘𝜈) = 𝐸0+2𝑡 cos 𝑎𝑘𝜈 whereas𝐺 = 𝑔√𝑁 is as usually
the collective coupling between the Dicke state and the cavity mode [see
Eq. (2.6)].
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Figure 4.3: Band structure in the two-excitation case. 𝐸𝐿𝐿(𝑘𝜈) = 2𝐸𝐿(𝑘𝜈), 𝐸𝐿𝑈(𝑘𝜈) =
𝐸𝑈𝐿(𝑘𝜈) = 𝐸𝐿(𝑘𝜈) + 𝐸𝑈(𝑘𝜈), 𝐸𝑈𝑈(𝑘𝜈) = 2𝐸𝑈(𝑘𝜈); 𝑎 is the lattice constant. The figure
summarizes the main results from this chapter.

If the polaritons do not interact with each other, Eqs. (4.11) reduce to the
simple form

𝑋(𝑘𝜈)Δ(𝐸, 𝑘𝜈) = 0, (4.13)

with 𝑋 staying for 𝐴,𝐵 or 𝐶, and

Δ(𝐸, 𝑘𝜈) = [𝐸 − 2𝐸𝐿(𝑘𝜈)][𝐸 − 𝐸𝐿(𝑘𝜈) − 𝐸𝑈(𝑘𝜈)][𝐸 − 2𝐸𝑈(𝑘𝜈)]. (4.14)

In the dispersion relation (4.14) 𝐸𝐿(𝑘𝜈) and 𝐸𝑈(𝑘𝜈) are the energies of the free
lower and upper polaritons respectively, see Eqs. (2.5). These are shown in
Fig. 4.2. The two-particle eigenenergies [the roots of Δ(𝐸, 𝑘𝜈)] are the possi-
ble combinations of the kind 𝐸𝐿,𝑈(𝑘𝜈) + 𝐸𝐿,𝑈(𝑘𝜈) (see Fig.4.3).

Now, we turn on the interaction between polaritons, 𝑆(𝑘) ≠ 0; in this
case, a good solution to system (4.11) is given by Eqs. (3.25) with𝜃(𝑘) instead
of 𝑐𝜌.

In the previous chapter it was shown that in the absence of dynami-
cal interaction (𝐷 = 0) and for low-excited atoms (𝑟𝐵 = 0) the actual spec-
trum was described by a set of wave vectors (3.32) which were gradually
shifted with respect to the ideal wave vectors (3.14): The deviation was ac-
cumulated with the increase of the polariton-polariton label 𝜌, as depicted
in Fig. 3.5. This cumulative displacement leaded to the exclusion of the state
associated to two atomic excitations located at the same site, as expressed in
condition (3.10), which ultimately entailed the fact that in the original wave
vector set (3.14) the eigenstates looked like wave packets, whose mutual in-
terference caused a bunching pattern.
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In the rest of the chapter we fully generalize this model to Rydberg
atoms. We demonstrate that the bunching is greatly enhanced for large
blockade radii. Then, we will shortly discuss the effect of a long-range dy-
namical interaction on photonic correlations.

4.3 Numerical solution

Let us study the effect of the blockade mechanism. For the moment we
neglect the dynamical interaction,𝐷 = 0. In Fig. 4.4, for 𝑟𝐵 = 0 (left column)
and 10𝑎 (right column), we plot the real-space Fourier transform and the
amplitudes that solve Eqs. (4.11) plus the condition ∑

𝑞 𝜃(𝑘 − 𝑞)𝐶(𝑞) ≡ 0;
we center the amplitudes about their average values ⟨𝑋(𝑛)⟩ = ∑

𝑛𝑋(𝑛)/𝑁
(𝑋 = 𝐴,𝐵, or𝐶). A well-defined behavior can be observed; for lowest-energy
eigenstates (upper plots) lying at the bottom of the 𝐿𝐿-band (small 𝜌), all
three amplitudes oscillate as:

𝑋𝜌 ∝ cos(2𝜋𝜈/𝑁𝑎) (4.15)

except for interatomic separations within a blockade sphere (|𝑛| < 2(𝑟𝐵/𝑎) +
1), where 𝐶-amplitudes vanish because of the kinematic interaction. The
photons, which are coupled to the excitons, tend to follow the exciton-exciton
repulsion and effectively repel each other. This antibunching is particularly
visible for large 𝑟𝐵 [panel (b)] where a clear depletion in the photonic 𝐴-
amplitude occurs in correspondence of the Rydberg blockade sphere. For
larger energies the behavior of the photonic component drastically changes
and photons show bunching (although the excitons keep repelling each
other), see panel (c). As expected, also in this case a large 𝑟𝐵 enhances the
deformation [panel (d)]. A further increase of 𝜌 [panels (e) and (f)] leads
to an apparent decrease of the bunching cusp; this effect is due to the fact
that when we exceed the strong coupling regime the total wave function
becomes more and more excitonic. In other words, the photonic fraction
gets smaller and smaller. It was shown in the previous chapter that in fact
the strength of the bunching mechanism increases as 𝜌 increases, see blue
squares in Fig. 3.6. For even larger 𝜌, associated to eigenstates belonging
to the 𝐿𝑈- and 𝑈𝑈-band (not shown in the figure), the bunching is in prin-
ciple still observable since the polaritons are mainly photonic (see Fig. 4.2
for the single-particle case). Yet one has to verify that such states can be
experimentally excited.

In Chapter 3 we have shown that for the usual kinematic interaction, the
bunching feature derives from a mismatch between two quantization vol-
umes: The volume for the noninteracting subsystem and the volume for the
exciton-exciton subsystem, where the state 𝐶(𝑛 = 0)was excluded. Here we
want to generalize that argumentation. We will first solve the Schrödinger
equation for two bare excitons.
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Figure 4.4: Amplitudes 𝐶(𝑛)− ⟨𝐶(𝑛)⟩ (green dotted line), 𝐵(𝑛)− ⟨𝐵(𝑛)⟩ (blue dashed
line), and 𝐴(𝑛) − ⟨𝐴(𝑛)⟩ (red solid line) for 𝑟𝐵 = 0 (left column) and 𝑟𝐵 = 10𝑎 (right
column); we consider𝑁 = 100 atoms loaded in the fiber. First row represents a low-
energy state belonging to the bottom of the polaritonic 𝐿𝐿-band; second and third
rows instead depict a state singled out from the middle and the top of the band. The
collective matter-light coupling is𝐺 = 15 𝐺𝐻𝑧; 𝑎 = 2.66 𝜇m. Panel (b) demonstrates
photon-photon antibunching; second and third rows show bunching.

4.4 Kinematics of two bare excitons

As in Sec. 3.3 we consider two excitons uncoupled to light (𝐺 ≡ 0) accom-
modated on a one-dimensional lattice by sites 𝑛1 and 𝑛2 and separated by a
distance 𝑛 = |𝑛1 − 𝑛2|. These excitons interact kinematically and behave like
hard-core spheres of radius 𝑟𝐵.

The Schrödinger equation of the system is

𝐸𝐶(𝑒𝑥)𝑛1𝑛2 = 2𝐸0𝐶
(𝑒𝑥)
𝑛1𝑛2 + (1 − 𝜃𝑛1𝑛2)􏾜

𝑠
􏿴𝑡𝑛1𝑠𝐶

(𝑒𝑥)
𝑠𝑛2 + 𝑡𝑛2𝑠𝐶

(𝑒𝑥)
𝑛1𝑠 􏿷 . (4.16)

This equation is the same as Eq. (3.28) with 𝜃𝑛1𝑛2 instead of 𝛿𝑛1𝑛2. Here 𝜃𝑛1𝑛2
is the discretized version of 𝜃(𝑥), see Eq. (4.6):

𝜃𝑛1𝑛2 = 0 if |𝑛1 − 𝑛2| ≤ 𝑟𝐵/𝑎,
𝜃𝑛1𝑛2 = 1 otherwise.

(4.17)

As in the previous chapter, we define 𝑛 = |𝑛1 − 𝑛2|. We call 𝜇 the label
that indicates the eigenstates of this equation. By means of the hard-core
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condition
𝜃(𝑛1 − 𝑛2)𝐶

(𝑒𝑥)
𝑛1𝑛2 = 0, (4.18)

and working within the framework of the the nearest neighbor approxima-
tion we can write

𝐸(𝑒𝑥)𝜇 𝐶(𝑒𝑥)𝜇 (𝑛) = (1 − 𝜃(𝑛))􏿻2𝐸0𝐶
(𝑒𝑥)
𝜇 (𝑛)

+ 2𝑡[𝐶(𝑒𝑥)𝜇 (𝑛 + 1) + 𝐶(𝑒𝑥)𝜇 (𝑛 − 1)]􏿾.
(4.19)

Eq. (4.19) is solved by the following normalized amplitudes:

𝐶(𝑒𝑥)𝜇 (𝑛) ≡ 𝑔𝑛(𝜇) =
√2(1 − 𝜃(𝑛))

√𝑁 − 2(𝑟𝐵/𝑎)
sin 𝜅𝜇[|𝑛| − (𝑟𝐵/𝑎)], (4.20)

where

𝜅𝜇 =
2𝜋|𝜇|

𝑁𝑎 − 2𝑟𝐵
, 𝜇 = −

(𝑁 − 1)
2

+
𝑟𝐵
𝑎
, ...,

(𝑁 − 1)
2

−
𝑟𝐵
𝑎
, (4.21)

and the basis elements 𝑔𝑛(𝜇) compose an orthonormal set in position as well
as wave vector space:

∑
𝑛 𝑔𝑛(𝜇1)𝑔𝑛(𝜇2) = 𝛿|𝜇1|,|𝜇2|

∑
𝜇 𝑔𝑛1(𝜇)𝑔𝑛2(𝜇) = (1 − 𝜃(𝑛1))𝛿|𝑛1|,|𝑛2|.

(4.22)

Unlike the solution for low-excited atoms there is a 𝜃-factor instead of
a 𝛿-factor [cf. (3.31) and (3.34)]. Eventually, the eigenspectrum is described
by

𝐸(𝑒𝑥)𝜇 = 2𝐸0 + 4𝑡 cos 𝑎𝜅𝜇. (4.23)
We conclude that the kinematics of bare excitons that interact via an

extended kinematic interaction is fully described by a wave vector set {𝜅𝜇}
(4.21) which mismatches the wave vector set {𝑘𝜈} (4.9) associated to non-
interacting polaritons. This new set has two characteristic features. First,
the normalization depends on the blockade sphere [as 𝑁 − 2(𝑟𝐵/𝑎)] and not
simply on the number 𝑁 of atoms. Second, exactly as for the low-excited
atoms in Chapter 3, {𝜅𝜇} has a half-integer index so that its elements lie in-
between neighboring wave vectors 𝑘𝜈. As we shall see, this behavior will
influence the two-Rydberg-polariton kinematics exactly as it did for low-
excited atoms [cf. Fig. 3.5 and panel (b) in Fig. 4.5].

This mismatch implies that amplitudes 𝐶(𝑒𝑥)𝜇 (𝑘𝜈) do not have zeros, but
rather magnified contributions from wave vectors 𝑘𝜈 ≈ 𝜅𝜇. This is apparent
after Fourier transforming Eq. (4.20):

𝐶(𝑒𝑥)𝜇 (𝑘𝜈) =
sin 𝑎𝜅𝜇 cos(𝑘𝜈𝑟𝐵) + (−1)𝜇 sin 𝑎𝑘𝜈 sin(𝑎𝑘𝜈𝑁/2)

cos 𝑎𝑘 − cos 𝑎𝜅𝜇
. (4.24)
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Now that we have discussed the bare-excitonic case and shown that the
effect of the extended kinematic interaction is not perturbative, we can add
a cavity. In the next section we will see how the extended kinematic inter-
action affects the polariton kinematics.

4.5 Kinematics of two polaritons

We insert the one-dimensional array of two-level Rydberg atoms in a cavity.
We want to study the effects of the blockade volume on the two-polariton
kinematics. As in Appendix 3.A, we notice that in the Schrödinger equation
associated to this system [Hamiltonian (4.1) acting on wave function (4.5),
with 𝐷 = 0] we can distinguish two subsystems, depending on whether
there is an extended kinematic interaction or not. In the subsystem describ-
ing two photons or one photon and one exciton there is no blockade vol-
ume repulsion and the kinematics is correctly described by wave vectors 𝑘𝜈
[see Eq. (4.9) and (4.10)]. In the presence of an extended kinematic interac-
tion, however, that is in the subsystem composed of two-exciton states, as
we have seen in the previous section the physics is better accounted for by
wave vectors 𝜅𝜇 (4.21). The collective light-matter coupling 𝐺 mixes these
two sets of quantum numbers ({𝑘𝜈} and {𝜅𝜇}) so that wave packets form in
the wave vector basis {𝑘𝜈}.

In order to provide some analytics, we introduce the operators 𝛼†𝑛, 𝛽†𝑛
and 𝛾†𝑛. These create a couple of photons, one exciton and one photon, and
a couple of excitons with interparticle separation of 𝑛 sites. Then

|Ψ⟩ = 􏾜
𝑠
􏿮𝐴(𝑠) |𝛼𝑠⟩ + 𝐵(𝑠) |𝛽𝑠⟩ + 𝐶(𝑠) |𝛾𝑠⟩􏿱 (4.25)

whereas the Hamiltonian �̃�eff = �̃�𝐴𝐵+�̃�
(𝐾𝐼)
𝐶 +�̃�(𝐾𝐼)𝐴𝐵−𝐶 corresponds to Hamil-

tonian (3.50) with a 𝜃-factor instead of a 𝛿-factor:

�̃�𝐴𝐵 =􏾜
𝑛,𝑚

􏿮2𝐸𝑝(𝑛 − 𝑚)𝛼†𝑛𝛼𝑚 + 􏿴𝐸𝑝(𝑛 − 𝑚) + 𝐸𝑒(𝑛 − 𝑚)􏿷 𝛽†𝑛𝛽𝑚􏿱

+ 𝐺√2􏾜
𝑛
􏿮𝛼†𝑛𝛽𝑛 + 𝛽†𝑛𝛼𝑛􏿱 ,

�̃�(𝐾𝐼)𝐶 =􏾜
𝑛,𝑚
[1 − 𝜃(𝑛)]2𝐸𝑒(𝑛 − 𝑚)𝛾†𝑛𝛾𝑚,

�̃�(𝐾𝐼)
𝐴𝐵−𝐶 = 𝐺√2􏾜

𝑛
[1 − 𝜃(𝑛)] 􏿮𝛾†𝑛𝛽𝑛 + 𝛽†𝑛𝛾𝑛􏿱 ,

(4.26)

with �̃�(𝐾𝐼)
𝐴𝐵−𝐶 representing the coupling between the interacting (𝐶) and non-

interacting (𝐴𝐵) subsystems. By applying Hamiltonian (4.26) on wave func-
tion (4.25) we get the Fourier transform of (4.11).

Following Appendix 3.A we diagonalize the Hamiltonian terms 𝐻𝐴𝐵
and 𝐻(𝐾𝐼)𝐶 , see (3.52) and (3.55) where now basis functions 𝑔𝑠(𝜇) take into
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account the extended blockade volume and are given by Eq. (4.20). The
coupling operator �̃�𝐴𝐵−𝐶 can be expressed by employing both 𝜉- and 𝜒-
operators as

�̃�(𝐾𝐼)𝐴𝐵−𝐶 =
𝐺

√𝑁(𝑁 − 2(𝑟𝐵/𝑎))
􏾜
𝑖𝜈𝜇
Λ𝜈𝜇𝑋𝑖𝜈𝛽 􏿴𝜒†𝜇𝜉𝑖𝜈 + 𝜉†𝑖𝜈𝜒𝜇􏿷 . (4.27)

As you can notice, unlike the case of low-excited atoms, here the normaliza-
tion constant takes into account the excluded Rydberg sphere via the num-
ber of sites effectively available, (𝑁 − 2(𝑟𝐵/𝑎)), instead of the total number
of sites 𝑁, as in Eq. (3.57). Also the coupling coefficients, responsible for
mixing the wave vector sets {𝑘𝜈} and {𝜅𝜇}, unlike coefficients (3.58) display
a dependence on the Rydberg radius:

Λ𝜈𝜇 =
cos 􏿵𝜋𝜈(2𝑟𝐵+𝑎)𝑁𝑎 + 𝜋|𝜇|𝑎

𝑁𝑎−2𝑟𝐵
􏿸

2 sin 􏿵𝜋𝜈𝑁 + 𝜋|𝜇|𝑎
𝑁𝑎−2𝑟𝐵

􏿸
−
cos 􏿵𝜋𝜈(2𝑟𝐵+𝑎)𝑁𝑎 − 𝜋|𝜇|𝑎

𝑁𝑎−2𝑟𝐵
􏿸

2 sin 􏿵𝜋𝜈𝑁 − 𝜋|𝜇|𝑎
𝑁𝑎−2𝑟𝐵

􏿸
. (4.28)

By using the convenient ansatz (3.59) and letting �̃�eff act on it, we get Eqs. (3.60)
with the renormalized volume:

􏿴𝐸 − 𝐸𝑝,𝑖𝜈􏿷 𝑝𝑖𝜈 =
𝐺𝑋𝑖𝜈𝛽

√𝑁(𝑁 − 2(𝑟𝐵/𝑎))
􏾜
𝜇
Λ𝜈𝜇𝑒𝜇,

􏿴𝐸 − 𝐸(𝑒𝑥)𝜇 􏿷 𝑒𝜇 =
𝐺

√𝑁(𝑁 − 2(𝑟𝐵/𝑎))
􏾜
𝑖𝜈
𝑋𝑖𝜈𝛽 Λ𝜈𝜇𝑝𝑖𝜈.

(4.29)

We can eliminate the excitonic amplitudes 𝑒𝜇 from system (4.29) and get
Eq. (3.61) with

𝐹𝜈𝜈′ = 𝑁􏿴𝛿𝜈,𝜈′ + 𝛿𝜈,−𝜈′􏿷 − 𝜃 􏿰
2𝜋
𝑁
(𝜈 − 𝜈′)􏿳 − 𝜃 􏿰

2𝜋
𝑁
(𝜈 + 𝜈′)􏿳 . (4.30)

This is different from the case of low-excited atoms (3.62): The 𝜃-terms de-
scribe the effect of the Rydberg sphere and describe the scattering processes
through the interacting system (𝐶) which mix different wave vectors and
effectively lead to wave packet of the 𝜈-states. Panel (c) in Fig. 4.5 shows
that a larger Rydberg blockade radius enhances this intermixing.

With the increase of the energy along the 𝐿𝐿-band the photonic fraction
of the states becomes weaker and weaker until far away from the strong
coupling region, where the nature of the states becomes purely excitonic.
This trend is illustrated in Fig. 4.5(a), where the two-photon, exciton-photon,
and two-exciton amplitudes associated to states belonging to the 𝐿𝐿-band
are plotted in the positive half of the first Brillouin zone.
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Figure 4.5: In panel (a) the photon-photon [𝐴0(𝑘𝜈)2; red], photon-exciton [𝐵0(𝑘𝜈)2;
blue], and exciton-exciton [𝐴0(𝑘𝜈)2; green] amplitudes are plotted for the states in
the polaritonic 𝐿𝐿-band; the grey shaded area 𝑘𝜈 > 𝑘𝑆𝐶 is outside of the strong
coupling region, where the photonic fraction gradually drops until it completely
disappears in the excitonic limit. 𝐺 = 15 𝐺𝐻𝑧; 𝑎 = 2.66 𝜇m; 𝑁 = 40. Panel (b)
shows 𝜃(𝑘𝜈) for several values of Rydberg radii, 𝑟𝐵 = 0, 10𝑎, 20𝑎 . In panel (c) for
𝑟𝐵 = 4𝑎 exact two-polariton eigenenergies are depicted as yellow circles; solid blue
vertical lines indicate the elements of {𝑘𝜈}whereas dashed red vertical lines are the
elements of {𝜅𝜇}.

Similarly to relations (3.38), the gradual crossover between 𝜈- and 𝜇-
states can be described by an effective wave vector

𝑘 eff(𝜌) =
𝑁𝑎 − 2𝑟𝐵 − 𝑎
𝑁𝑎 − 2𝑟𝐵

𝜋(𝜌 − 1)
𝑁𝑎/2 − 𝑟𝐵 − 𝑎

(4.31)

where the quantum number 𝜌 ranges from 1 up to𝑁/2−𝑟𝐵/𝑎 for the 𝐿𝐿-band:
For the minimal value 𝜌 = 1 of the argument, 𝑘 eff(𝜌 = 1) vanishes, as for free
states; for the maximal value 𝜌 = 𝑁/2 − 𝑟𝐵/𝑎, instead, it reaches the value

𝑘 eff(𝜌 = 𝑁/2 − 𝑟𝐵/𝑎) = 𝜋
𝑁𝑎 − 2𝑟𝐵 − 𝑎
𝑁𝑎 − 2𝑟𝐵

(4.32)

as for bare excitons. The numerically calculated energies are shown for 𝑟𝐵 =
4𝑎 by yellow circles in panel (c). Indeed, as the energy increases they move
from the wave vectors 𝑘𝜈 (blue solid grid lines) to the wave vectors 𝜅𝜇 (red
dashed grid lines).
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4.6 Photon-photon bunching

By following the steps shown in the previous chapter we directly obtain the
amplitude for having two photons located at the same site. Unsurprisingly,
it is the same as that for low-excited atoms (3.65) apart from the renormal-
ized volume that takes into account the Rydberg blockade:

𝐴𝜌(0) =
𝐺

𝑁√𝑁 − 2(𝑟𝐵/𝑎)
􏾜
𝑖𝜈

𝑋𝑖𝜈𝛼𝑋𝑖𝜈𝛽
(𝐸𝜌 − 𝐸𝑝,𝑖𝜈)

􏾜
𝜇
Λ𝜈𝜇𝑒𝜇. (4.33)

As discussed below Eq. (3.65), due to the mismatch between quantum num-
bers 𝐴𝜌(0) does not have real poles but quasipoles. We can further simplify
Eq. (4.33) by following the steps used to get Eq. (3.69) in order to reduce
Eq. (4.33) to

𝐴𝜌(0) ≈
𝐺𝑋𝜌𝛾

√2𝑁(𝑁 − 2(𝑟𝐵/𝑎))
􏾜
𝑖=𝐿,𝑈

􏾜
𝜈

𝑋𝑖𝜈𝛼𝑋𝑖𝜈𝛽
(𝐸𝜌 − 𝐸𝑝,𝑖𝜈)

Λ𝜈,𝜌− 1
2
. (4.34)

As in Chapter 3, 𝑋𝜌𝛾 is a normalization coefficient that takes into account
the nonvanishing photon-photon and photon-exciton fractions of the wave
packet.

From Eq. (4.34) it is apparent that also for Rydberg atoms condition
(3.70) is fundamental for an efficient bunching and whatever makes the dis-
persion relation flatter increases the bunching because spreads the strong
coupling region over the Brillouin zone. This is why larger lattice constants
𝑎 lead to better bunching.

In order to quantify bunching we use the figure of merit (3.43). In panel
(a) of Fig. 4.6 the bunching Δ𝐴𝜌 is plotted for the states in the 𝐿𝐿-band and
for three different values of the blockade radius 𝑟𝐵 = 0, 𝑟𝐵 = 3𝑎, and 𝑟𝐵 = 10𝑎.
We consider a positive detuning 𝛿 = 0.1𝐺, which explains the presence of a
gap (grey area) between the 𝐿𝐿-band and the 𝐿𝑈-band (not shown). Empty
markers indicate states featuring antibunching. We see that a larger Ryd-
berg radius 𝑟𝐵 enhances the bunching, which can be observed in a frequency
window of the order of the collective light-matter coupling 𝐺 (≈ 𝐺𝐻𝑧).

It has been know for years [274] that bound states can form for repulsive
interactions in a gapped spectrum of noninteracting particles. Due to its
repulsive nature, the extended kinematic interaction implies, other than an
increase in bunching, the creation of an in-gap state. In the previous chapter
we analyzed the formation of this two-polariton state in presence of an usual
kinematic interaction (Fig. 3.9). This repulsively bound pair is indicated by
the highest-energy state shown in Fig. 4.6(a): For 𝑟𝐵 = 0 it corresponds to
the lowest energy state of the 𝐿𝑈-band (it is a quasibound state), for 𝑟𝐵 = 3𝑎
it is pulled down in the middle of the gap, and for 𝑟𝐵 = 10𝑎 it starts merging
with the 𝐿𝐿-band. This process is illustrated with a higher resolution in
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Figure 4.6: Panel (a) depicts the figure of merit for bunching Δ𝐴 [see Eq. (3.43)]
for states belonging to the 𝐿𝐿-band for 𝑟𝐵 = 0, 𝑟𝐵 = 3𝑎, and 𝑟𝐵 = 10𝑎. A larger
Rydberg radius induces a bunching increase and leads to formation of an in-gap
bound state. This is visible in panel (b) which shows for several Rydberg radii how
the lowest-energy state of the 𝐿𝑈-band for 𝑟𝐵 = 0 [rightmost circle in panel (a)]
gradually moves through the gap towards the 𝐿𝐿-band as 𝑟𝐵 increases. This in-gap
bound pair of polaritons gets more and more bounded as 𝑟𝐵 increases. Panels (c)
and (d) show Δ𝐴 as a function of the total wave vector 𝐾𝜈′ for a state located at
the bottom and top of the 𝐿𝐿-band, respectively; bunching survives also for finite
values. Parameters are 𝑎 = 2.66 𝜇m, 𝐺 = 22 GHz, 𝛿 = 0.1𝐺, and 𝑁 = 100.

Fig. 4.6(b) where more Rydberg radii are considered; a magnification of the
gap shows a gradual displacement of the bipolariton energy towards the 𝐿𝐿-
band as well as an increase in bunching. This kinematic bipolariton is a true
bound state and is particularly robust against decoherence, as explained
below Fig. 3.9. The larger the two-exciton repulsion (i.e. 𝑟𝐵), the larger the
binding energy of the bipolariton; we will discuss this point again in Sec. 4.8.

Up to now we have dealt with 𝐾𝜈′ = 0. For practical realizations, how-
ever, it is fundamental the survival of this phenomenon at values 𝐾𝜈′ ≠ 0.
Panels (c) and (d) of Fig. 4.6 show that the bunching survives also for fi-
nite total wave vectors; panel (c) considers a state situated at the bottom of
the 𝐿𝐿-band (low energies) whereas panel (c) illustrates a high-energy state
located at the very top of the band, right below the gap. In panel (c) it is
visible how large 𝑟𝐵 produces larger correlations.

The effects of the lattice spacing 𝑎 were already studied in the previous
chapter for usual kinematic interaction (Fig. 3.7) as well as those of detuning
𝛿, see upper panel in Fig. 3.8. Those results hold true also for extended
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kinematic interaction.

4.7 Dynamical interaction and bound states

Let us now discuss the role of the dynamical interaction (𝐷 ≠ 0) on the top
of the extended kinematic interaction. We find that dynamical interactions
do not spoil bunching, which can be understood by looking at the Fourier
transform of the scattering term (4.12). If we neglect the hopping (𝐺 ≫ 𝑡),
as long as

𝐷(𝑛)𝐶(𝑛) ≪ 𝐺√2𝜃(𝑛)𝐵(𝑛) (4.35)

the dynamical contribution to the two-polariton scattering is greatly ex-
ceeded by the term responsible for bunching. Inside a Rydberg sphere, con-
dition (4.35) is definitely true since the photonic amplitude gets its maximal
value. As a consequence, in the absence of gap (𝛿 = 0) the dynamical in-
teraction is relevant only for attractive interaction; for negative values of 𝐷
bound two-polariton states (bipolaritons) can arise below the 𝐿𝐿-band.

Before studying the bipolaritons let us look at the their simpler photon-
free version, the biexcitons; an instructive analysis is carried out in Ap-
pendix 4.C. The dispersion relation for two bare excitons located at sites
𝑛 and 𝑚 that interact only dynamically (without kinematic interaction and
hopping) is

(𝐸 − 2𝐸0)𝐶𝑛𝑚 = 𝐷𝑛𝑚𝐶𝑛𝑚. (4.36)

Eq. (4.36) provides us with a simple but enlightening reference picture
of biexcitonic spectrum, whose levels split off the continuum. There are
as many split levels from 2𝐸0 as the number of interacting neighbors that
are considered in the specific model; these levels can be distinguished from
each other according to the broadening that affects the system. If we label
our states via the interparticle distance |𝑛−𝑚|, for a long-range dipole-dipole
interaction the |𝑛 − 𝑚|-th eigenstate is split by 𝐷/|𝑛 − 𝑚|3 with 𝐷 being 𝐷𝑛𝑚
at |𝑛 − 𝑚| = 1. For a van der Waals interaction, instead, the split is equal to
𝐷/|𝑛 − 𝑚|6. More details are collected in Appendix 4.C.

Similarly to what is done in Appendix 4.C, bipolaritons can be found
by means of the 𝐾𝜈′ ≠ 0 version of Eqs. (4.11), that is Eqs. (4.62). Provided
that 𝑡 ≪ 𝐺 Eqs. (4.62) allow to substitute 𝐴- and 𝐵- amplitudes, reaching an
integral equation which involves solely the two-exciton component of the
wave functions:

𝐶𝐾𝜈′
(𝑘𝜈) =

1 + 𝜙𝐾𝜈′
(𝐸, 𝑘𝜈)

𝑁(𝐸 − 2𝐸0)
􏾜
𝑞𝜈
𝐷(𝑘𝜈 − 𝑞𝜈)𝐶𝐾𝜈′

(𝑞𝜈) (4.37)

with
𝜙𝐾𝜈′

(𝐸, 𝑘𝜈) = 2𝐺2
𝐸 − 𝐸𝑝𝑝(𝐾𝜈′ , 𝑘𝜈)

Δ𝐾𝜈′
(𝑘𝜈)

(4.38)
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and 𝐸𝑝𝑝 defined in Eq. (4.61).
In the framework of the nearest neighbor approximation the dynamical

interaction simplifies as

𝐷(𝑘𝜈 − 𝑞𝜈) = 2𝐷 cos 𝑎(𝑘𝜈 − 𝑞𝜈) = 2𝐷[cos 𝑎𝑘𝜈 cos 𝑎𝑞𝜈 + sin 𝑎𝑘𝜈 sin 𝑎𝑞𝜈] (4.39)

which, once inserted in Eqs. (4.37), allows to work out a closed-form analyti-
cal expression for its eigenstates. Conjecture (4.39) is a standard assumption
for usual hard-core bosons (𝑟𝐵 = 0) interacting via dipole-dipole interaction;
it is not sufficient for extended hard-core bosons (𝑟𝐵 ≫ 1) where we should
rather consider the long-range nature of the interaction. Nevertheless, we
can employ approximation (4.39) toghether with the intuition deriving from
relation (4.36), where the long-range character of the interaction is taken into
account, to predict that the addition of a further neighbor in the interaction
will entail the splitting of one more state from the continuum of unbound
states.

Similarly to Appendix 4.C we define

𝛼𝐾𝜈′
=􏾜

𝑞𝜈
𝐶𝐾𝜈′

(𝑞𝜈) cos 𝑎𝑞𝜈 (4.40)

and

𝛽𝐾𝜈′
=􏾜

𝑞𝜈
𝐶𝐾𝜈′

(𝑞𝜈) sin 𝑎𝑞𝜈. (4.41)

Then, Eq. (4.37) splints into two parts:

(𝐸 − 2𝐸0)𝛼𝐾𝜈′
=
2𝐷
𝑁 􏿼𝛼𝐾𝜈′

􏾜
𝐾𝜈′

[1 + 𝜙𝐾𝜈′
(𝐸, 𝑘𝜈)] cos2 𝑎𝑘𝜈

+ 𝛽𝐾𝜈′
􏾜
𝐾𝜈′

[1 + 𝜙𝐾𝜈′
(𝐸, 𝑘𝜈)] sin 𝑎𝑘𝜈 cos 𝑎𝑘𝜈􏿿,

(𝐸 − 2𝐸0)𝛽𝐾𝜈′
=
2𝐷
𝑁 􏿼𝛼𝐾𝜈′

􏾜
𝐾𝜈′

[1 + 𝜙𝐾𝜈′
(𝐸, 𝑘𝜈)] sin 𝑎𝑘𝜈 cos 𝑎𝑘𝜈

+ 𝛽𝐾𝜈′
􏾜
𝐾𝜈′

[1 + 𝜙𝐾𝜈′
(𝐸, 𝑘𝜈)] sin2 𝑎𝑘𝜈􏿿.

(4.42)

System (4.42) has a unique nontrivial solution provided that the deter-
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Figure 4.7: Panel (a) illustrates as a blue solid line the bipolariton energy 𝐸𝑏𝑃(𝐾𝜈′)
as a function of the total wave vector 𝐾𝜈′ in the first Brillouin zone. The green
dashed line describes the biexcitonic energy. Panel (b) shows how the bipolariton
energy 𝐸𝑏𝑃(𝐾𝜈′) splits off the continuum as |𝐷| gets comparable to 𝐺 and, finally,
how it asymptotically tends to the energy of a bare biexciton. The inset illustrates
the shape of the bipolariton wave function for the eigenstate corresponding to the
circled energy at 𝐷 = −2𝐺. Parameters are 𝑎 = 2.66 𝜇m, 𝐺 = 22 GHz, 𝛿 = 0.1𝐺, and
𝑁 = 100.

minant of the matrix composed of the coefficients is not zero:
⎛
⎜⎜⎜⎜⎝𝐸 − 2𝐸0 − 𝐷􏿯1 +

2
𝑁
􏾜
𝑘𝜈
𝜙𝐾𝜈′

(𝐸, 𝑘𝜈) sin2 𝑎𝑘𝜈􏿲

⎞
⎟⎟⎟⎟⎠ ×

×
⎛
⎜⎜⎜⎜⎝𝐸 − 2𝐸0 − 𝐷􏿯1 +

2
𝑁
􏾜
𝑘𝜈
𝜙𝐾𝜈′

(𝑘𝜈) cos2 𝑎𝑘𝜈􏿲

⎞
⎟⎟⎟⎟⎠ =

=
⎛
⎜⎜⎜⎜⎝
2𝐷
𝑁
􏾜
𝑘𝜈
𝜙𝐾𝜈′

(𝑘𝜈) sin 𝑎𝑘𝜈 cos 𝑎𝑘𝜈

⎞
⎟⎟⎟⎟⎠

2

.

(4.43)

The two terms within brackets on the left-hand side are reminiscent of
the biexcitonic dispersion (4.36) where the interaction term is now renor-
malized by light-matter coupling. The first of them, however, corresponds
to an unphysical state, where the two-exciton amplitude (𝐶) is asymmetric.
We only keep the contribution from second term, which leads to a real sym-
metric solution 𝐸𝑏𝑃(𝐾𝜈′) corresponding to a bipolariton lying below the 𝐿𝐿-
band continuum. The dependence of 𝐸𝑏𝑃(𝐾𝜈′) on 𝐾𝜈′ is plotted in panel (a)
of Fig. 4.7 as a blue solid line and compared to the biexciton (green dashed
line). A negative value 𝐷 = −𝐺 is taken.
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When the center of mass of the two-polariton system is at rest (𝐾𝜈′ = 0)
the eigenequation (4.43) simplifies:

𝐸 = 2𝐸0 + 𝐷
⎡
⎢⎢⎢⎢⎣1 +

4𝐺2

𝑁
􏾜
𝑘𝜈

𝐸 − 2𝐸𝑝(𝑘𝜈)
Δ(𝐸, 𝑘𝜈)

cos2 𝑎𝑘𝜈

⎤
⎥⎥⎥⎥⎦ . (4.44)

For negative values of𝐷 this equation describes the creation of a bound
bipolariton state below the continuum. As shown in panel (b) of Fig. 4.7, the
eigenenergy of the bipolariton state and its separation from the 𝐿𝐿-band
substantially depend on the competition between 𝐷 and 𝐺. For the same
parameters used in panel (a), we see that as 𝐷 ≈ −1.5𝐺 the bipolariton
(blue solid line) splits off the continuuum (grey region). As the strength |𝐷|
of the dynamical interaction increases and dominates over the light-matter
coupling, the bipolariton level asymptotically tends to the biexciton energy,
𝐸(1)𝑏𝐸 = 2𝐸0 − |𝐷| (green dashed line). The wave function of this split bound
state is mainly excitonic, and presents two symmetric peaks separated by
the forbidden volume 2𝑟𝐵 + 𝑎, as shown in the inset of panel (b).

The three plots in Fig. 4.8 show the figure of merit Δ𝐴 for bunching
for continuum polariton-polariton states in presence of different interac-
tions (and strengths) on top of the hard-core kinematic repulsion; only the
𝐿𝐿-band is shown. Plotted data are the result of exact numerical simula-
tions, where the long-range nature of the interaction is taken into account.
Namely, we consider two different types of interactions: A “nearest neigh-
bor” approximation, whose strength vanishes for interatomic distances lar-
ger than 2𝑟𝐵 + 𝑎, and the long-range van der Waals potential. These two
interactions are implemented in the code as

𝐷(𝑁𝑁𝐴)
𝑛𝑚 = 𝐷𝛿(|𝑛 − 𝑚|𝑎 − 2𝑟𝐵 − 𝑎),

𝐷(𝑉𝑑𝑊)𝑛𝑚 = 𝐷𝜃(𝑛 − 𝑚) 􏿯 2(𝑟𝐵/𝑎)+1𝑛−𝑚 􏿲
6
.

(4.45)

The 𝜃-function is defined in Eqs. (4.6); the role of the weight (2(𝑟𝐵/𝑎)+1)6
is allowing for a better match between the two potentials: Both are equal to
𝐷 at |𝑛 − 𝑚| = 2(𝑟𝐵/𝑎) + 1.

Looking at the upper plot in Fig. 4.8 we can distinguish two different
cases: 0 < −𝐷 < 1.5𝐺 and −𝐷 > 1.5𝐺. In the first case of weak attractive in-
teraction, a single bipolariton state splits from the continuum (black-border
triangle), as shown in the upper panel of Fig. 4.8. For stronger dynamical
attraction −𝐷 > 1.5𝐺 this effect is magnified and the bipolariton reaches
lower energies (black-border square). For a positive Rydberg radius 𝑟𝐵 = 3𝑎
this bunching is destroyed (central plot) since photons follow the excitons
which must stay far apart, keeping an interparticle distance 2𝑟𝐵 + 𝑎. A large
blockade radius thus suppresses the bunching in the lowest-energy split
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Figure 4.8: Panels show the figure of merit for bunching Δ𝐴 for the two-polariton
eigenenergies in the 𝐿𝐿-band. Upper and middle panels consider the nearest neigh-
bor approximation potential (NNA) for an usual (𝑟𝐵 = 0, upper plot) and extended
(𝑟𝐵 = 3𝑎, middle plot) kinematic interaction; the potential is simulated by the first
line in Eqs. (4.45). Lower panel illustrates the situation for 𝑟𝐵 = 3𝑎 in presence of a
van der Waals (VdW) potential, defined in the second line of Eqs. (4.45). Parame-
ters are 𝑎 = 2.66 𝜇m, 𝐺 = 22 GHz, 𝛿 = 0.1𝐺, and 𝑁 = 100.

state. Finally, the van der Waals potential (lower plot) slightly modifies the
situation, yet the significant physics does not change; the case 𝑟𝐵 = 0 with
van der Waals interaction is not shown in Fig. 4.8 since it does not display
significative differences with respect to the nearest neighbor case. Unfor-
tunately we did not have enough time to perform an accurate study of the
disordered pattern induced by the van der Waals potential.

4.8 Gap states

So far we studied the effect of an attractive dynamical interaction. However,
as already noticed in Sec. 4.7 [panels (a) and (b) of Fig. 4.7], provided that
the two-polariton spectrum is gapped (𝛿 > 0), repulsive interaction leads
to formation of in-gap bipolaritons [274]. The same state formation was
observed in Sec. 3.6 for an usual kinematic interaction (𝑟𝐵 = 0), see Fig. 3.9.

The in-gap dynamical bound state is associated to the solution of the
dispersion relation (4.44) for 𝐷 > 0. For simplicity we restrict to the case
𝐾𝜈′ = 0, which can be done without any loss of generality. Panel (a) of
Fig. 4.9 shows the eigenenergy 𝐸𝑏𝑃(𝐾𝜈′ = 0) of the in-gap bipolariton as the
ratio 𝐷 over 𝐺 is tuned. The detuning is 𝛿 = 0.5𝐺. We consider the nearest
neighbor approximation for the potential (𝑟𝐵 = 0), see Eq. (4.43),

𝐸 − 2𝐸0 − 𝐷􏿯1 +
2
𝑁
􏾜
𝑘𝜈
𝜙𝐾𝜈′

(𝑘𝜈) cos2 𝑎𝑘𝜈􏿲 = 0 (4.46)
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Figure 4.9: (a) 𝐷 > 0; position of the bipolariton level 𝐸𝑏𝑃(𝐾𝜈′ = 0) in the gap
(blue solid line) compared the biexciton level (green dashed line). The grey shaded
areas indicate the 𝐿𝐿-band and the 𝐿𝑈-band. Plots in panel (b) show the wave
functions of the bipolariton for 𝑟𝐵 = 0 (upper plot) and 𝑟𝐵 = 3𝑎 (lower plot). Other
relevant parameters are 𝐷 = 0, 𝛿 = 0.1. The two states correspond respectively to
the blue circle and pink up-pointing triangle in panel (b) of Fig. 4.6. Panels (c) and
(d) display the position of the bipolariton for 𝑟𝐵 = 0 and 𝑟𝐵 = 3 as the detuning is
varied from 0 up to 𝐺. Panels (e) and (f), for the same points as panels (c) and (d),
show that the figure of merit Δ𝐴 for bunching gets enhanced by larger detunings.

where long-range contributions are indeed negligible. Notice that the right-
hand side of Eq. (4.46) is 0 only because 𝐾𝜈′ = 0. For 𝐷 ≫ 𝐺 the bipolariton
asymptotically tends to overlap the continuum, which ultimatively switches
the bunching off.

The excitons in the bipolariton wave function try to stay close to each
other, as much as they can be within the framework of the kinematic inter-
action: They keep a distance equal to 2𝑟𝐵 + 𝑎, see panel (b) of Fig. 4.9 where
we only consider extended kinematic interaction (𝐷 = 0). The same behav-
ior holds true if we turn on the dynamical counterpart (𝐷 ≠ 0), as shown in
Fig. 4.10 for van der Waals potential with strength 𝐷 = 0.5𝐺. The photons
instead bunch, this tendency being more pronounced for larger Rydberg
radii [lower plot in panel (b) of Fig. 4.9, 𝑟𝐵 = 3𝑎]. The states in the upper
(𝑟𝐵 = 0) and lower (𝑟𝐵 = 3𝑎) plots of panel (b) are indicated as a blue dot and
a pink up-pointing triangle respectively in panel (b) of Fig. 4.6.

The dynamical strength𝐷 is a powerful control knob to tune the position
of the bound state in the gap, and consequently the enhancement of the
associated bunching. Alternatively, one can think of keeping 𝐷 fixed while
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Figure 4.10: Wave function of an in-gap bipolariton bound state for a repulsive
van der Waals dynamical interaction (𝐷 = 0.5𝐺) with 𝑟𝐵 = 0 (upper panel) and 3𝑎
(lower panel).

changing the detuning 𝛿 of the system. Panels (c) and (d) of Fig. 4.9 show
the position of the bipolariton eigenenergy for 𝑟𝐵 = 0 and 𝑟𝐵 = 3𝑎 as the
detuning is varied from 0 up to 𝐺. For the usual kinematic interaction the
state is always stuck to the continuum of the 𝐿𝑈-band [see also rightmost
blue circle in panels (a) and (b) of Fig. 4.6, where 𝛿 = 0.1𝐺]. For a larger
Rydberg radius (𝑟𝐵 = 3𝑎), as soon as a gap opens (𝛿 ≠ 0) the bipolariton
enters the gap. For larger values of detuning then it penetrates more and
more the gap [see also in-gap pink up-pointing triangle in panels (a) and
(b) of Fig. 4.6, where 𝛿 = 0.1𝐺]. Eventually, panels (e) and (f) show, for the
same points of the upper plots, how the bunching increases by increasing
the detuning 𝛿.

4.9 Conclusions

In this chapter we extended the results of Chapter 3 to Rydberg atoms. We
studied the two-photon correlations for cavity photons coupled to a one-
dimensional ordered array of Rydberg atoms. The optical nonlinearities are
caused by both dynamical and (extended) kinematic interactions. We found
that a large Rydberg radius greatly enhances the nonlinear response of the
system. We observed a two-photon bunching within a GHz frequency win-
dow as well as narrow bipolariton states that split from the continuum ow-
ing to the (attractive) dynamical interaction. Moreover, if the two-polariton
spectrum is gapped a repulsive dynamical interaction leads to formation of
in-gap bound states. The same kind of in-gap pairs can be produced also
by the kinematic interaction provided that the Rydberg radius is sufficiently
large.

This model is valid as far as all broadenings present in the system are
dominated by the collective light-matter coupling 𝐺: A clean preparation
of the Mott insulator state in the one-dimensional lattice is fundamental to
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avoid both collisional and Doppler broadenings; we also need a very low
leakage rate of photons out of the fiber. The model is based on the assump-
tion that the guided mode of the fiber is resonantly coupled to the atomic
transition, see Eq. (4.2):

𝐸0 ≈ 𝐸𝑝(0) = 𝑐𝑘⟂, (4.47)

which can be obtained using a narrow fiber radius 𝑅; for the lowest fiber
mode, the resonance condition requires 𝑅 to be of the order of a micron
fraction. A second requirement for the model to hold, is that such resonance
must be isolated or, in other words, energetically resolved. The separation
between different atomic levels must be larger than𝐺, which does not allow
for a too large principal quantum number 𝑛. According to Eq. (4.54), a large
𝑛 entails too close atomic levels, so that a single cavity photon couples to a
set of excitonic resonances and the physics may slightly change. Contrary,
large 𝑛 is needed for a large blockade radius (𝑟𝐵 ≫ 𝑎), where we heuristically
define

𝑟𝐵 = 􏿶
𝐶6
2𝐺􏿹

1/6

𝑎 (4.48)

as the distance below which the energy levels of a nonexcited atom sitting
in the vicinity of an excited atom will experience the shift ∼ 2𝐺, and there-
fore will be removed from the energy interval useful for interactions with
photons. Due to the large scale of 𝐺, condition (4.48) may suggest that it is
not so easy to reach large Rydberg radii.

It would be very fascinating to observe these phenomena in different
systems such as solids. As diffusely explained in the previous chapter, the
quality of bunching is strictly related to the size of the strong coupling re-
gion 𝑘 < 𝑘𝑆𝐶: The larger the size the better the coupling. Therefore, nat-
ural semiconductors are not promising candidates for the implementation
of photonic bunching. However, recent experiments [275] where Rydberg
Wannier-Mott excitons up to a principal quantum number 𝑛 = 20 have re-
cently been detected in dicopper oxide let us hope that extended kinematic
interaction (𝑟𝐵 ≫ 𝑎) in solids may one day be within reach.



Appendices

4.A Rydberg atoms

In this appendix the main properties of Rydberg atoms are reviewed; more
details can be found in Ref. [60]. Rydberg atoms are excited atoms charac-
terized by a very large principal quantum number 𝑛 [264]. Let us consider
an electron (charge −𝑒) which orbits a nucleus of positive charge +𝑍𝑒. The
centripetal force is

𝐹𝑐 =
𝑚𝑣2

𝑟
(4.49)

whereas the Coulomb potential is

𝐹𝑝 =
𝑍𝑒2

4𝜋𝜖0𝑟2
. (4.50)

In Eq. (4.50) 𝜖0 indicates the vacuum permettivity. Inserting in the equality
between forces (4.49) and (4.50) a quantized angular momentum (𝑚𝑣𝑟 = 𝑛ℏ,
with 𝑚 being the electron mass) we obtain

𝑟 =
𝑎0𝑛2

𝑍
(4.51)

where 𝑎0 = 4𝜋𝜖0ℏ2/(𝑒𝑚2) is the Bohr radius. From the energy conservation
one obtains that the binding energy that keeps the valence electron attached
to the core is

𝐸𝑏 = −
𝑅𝑦
𝑛2

(4.52)

where the Rydberg constant is

𝑅𝑦 =
𝑍2𝑒4𝑚
16𝜋2𝜖20ℏ2

. (4.53)

The binding energy (4.52) is valid for hydrogen-like systems such as alkali
atoms with a high angular momentum 𝑙 > 3. For 𝑙 ≤ 3, the valence elec-
tron can get closer to the core and penetrates the intermediate closed elec-
tron shells, leading to polarisation of the core. Moreover, since the valence
electron is closer, the nucleus feels a stronger potential. Both these effects,
polarisation and stronger potential, contribute to an overall increase of the
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binding energy and formula (4.52) has to be slightly modified by introduc-
ing a quantum defect 𝛿𝑛𝑙

𝐸𝑏 = −
𝑅𝑦

(𝑛 − 𝛿𝑛𝑙)2
. (4.54)

This expression takes into account the effects coming from low angular mo-
menta 𝑙 ≤ 3. We dub this effective quantum number 𝑛∗ = 𝑛 − 𝛿𝑛𝑙.

Other than the dependence 𝐸𝑏 ∝ 𝑛−2, the radius 𝑅 of the orbit scales as
𝑟 ∝ 𝑛2 which automatically leads to the same dependence for the (huge)
dipole moment 𝑑 ∝ 𝑛2. As a consequence, Rydberg atoms feel and react
in an exaggerated way to very weak external fields, and dipole-dipole in-
teraction between Rydberg atoms can be observed on 𝜇m distances. Other
remarkable properties are the radiative timescale 𝜏 ∝ 𝑛−3, which renders
Rydberg atoms long-lived states, and the energy gap between neighboring
𝑛 states, Δ ∝ 𝑛−3.

For a short interatomic separation, Rydberg atoms interact via a dipole-
dipole force:

𝑉(𝑅) = ±
𝐶3
𝑅3

∝ 𝑛∗4 (4.55)

whereas when the atoms are far away from each other the interaction is a
van der Waals force:

𝑉(𝑅) = −
𝐶6
𝑅6

∝ 𝑛∗11. (4.56)

The transition between these two regimes takes place for a separation
𝑅𝑣𝑑𝑤 ∝ 𝑛∗7/3 known as van der Waals radius.

An important property of Rydberg atoms is the dipole blockade. Let us
consider two Rydberg atoms in their ground states |𝑔⟩. We excite them to
their Rydberg states |𝑟⟩ with Rabi frequency Ω = 𝐸|𝑟⟩ − 𝐸|𝑔⟩ (ℏ ≡ 1). If the
atoms are far enough, the state |𝑟𝑟⟩where both atoms are in the excited state
is populated at a rate Ω.

As the atoms approach each other, the van der Waals interaction (4.56)
acts as a pure energy shift over 𝐸|𝑟𝑟⟩ and pulls the energy out of resonance
with the excitation laser, see Fig. 4.A.1. As a consequence, the system can
no longer be excited in the doubly excited state |𝑟𝑟⟩.

In a realistic system the state |𝑟𝑟⟩ has a natural finite linewidth Γ𝑟. Ad-
ditionally, we have to take into account its power-broadened width Ω. The
dipole blockade takes place at an interatomic distance such that

𝑉(𝑅) > ℏ ×max(Ω, Γ𝑟). (4.57)

Since for large 𝑛∗ the lifetime 𝜏 ∝ 1/Γ𝑟 of Rydberg states is typically long,
we can assumeΩ ≫ Γ𝑟 so that we enter the dipole blockade regime as soon
as

𝑉(𝑅) = ℏΩ. (4.58)
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Figure 4.A.1: Interactions between Rydberg dipoles induces a shift by an amount
𝑉(𝑅), bringing the energy of the state |𝑟𝑟⟩ out of resonance with the source. If the
detuning is larger than max(Ω, Γ𝑟) the atoms can not be excited together. Source:
Ref. [60].

If we insert the explicit form of the van der Waals potential (4.56) in
condition (4.58), we obtain

𝑅𝑏 =
6

􏽰
𝐶6
Ω

(4.59)

which is called blockade radius. If we have an ensemble of Rydberg atoms,
we can imagine every excited state as surrounded by a hard sphere of radius
𝑅𝑏. Two excitations within the same sphere are forbidden; in other words,
the minimal separation between two excited Rydberg atoms is 2𝑅𝑏 (or in the
lattice analog 2𝑅𝑏+𝑎with 𝑎 being the lattice spacing). In Chapter 4 we refer
to the Rydberg radius as 𝑟𝐵.

4.B Generic total wave vector

We let the Hamiltonian (4.1) act on the wave function (4.5). In order to elim-
inate the basis elements |𝑃𝑛𝑃𝑚⟩ associated to two excitons within the same
blockade sphere, we multiply the corresponding amplitudes by (1−𝜃(𝑛−𝑚))
with the 𝜃-function 𝜃(𝑥) defined in conditions (4.6). After symmetrization
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of the resulting equations, we obtain:

𝐸𝐴𝑛𝑚 =􏾜
𝑠
[𝐸𝑝(𝑛 − 𝑠)𝐴𝑠𝑚 + 𝐸𝑝(𝑚 − 𝑠)𝐴𝑛𝑠] + 𝐺√2𝐵𝑆𝑛𝑚,

𝐸𝐵𝑆𝑛𝑚 = 𝐸0𝐵𝑆𝑛𝑚 +
1
2
􏾜
𝑠
[𝐸𝑝(𝑛 − 𝑠)(𝐵𝑆𝑠𝑚 + 𝐵𝐴𝑠𝑚) + 𝐸𝑝(𝑚 − 𝑠)(𝐵𝑆𝑠𝑛 + 𝐵𝐴𝑠𝑛)]

+ 𝐺√2(𝐴𝑛𝑚 + 𝐶𝑛𝑚) +
𝑡
2
􏿮(𝐵𝑆𝑛𝑚−1 + 𝐵𝐴𝑛𝑚−1 + 𝐵𝑆𝑛𝑚+1 + 𝐵𝐴𝑛𝑚+1)

+ (𝐵𝑆𝑛−1𝑚 − 𝐵𝐴𝑛−1𝑚 + 𝐵𝑆𝑛+1𝑚 − 𝐵𝐴𝑛+1𝑚)􏿱,

𝐸𝐵𝐴𝑛𝑚 = 𝐸0𝐵𝐴𝑛𝑚 +
1
2
􏾜
𝑠
[𝐸𝑝(𝑛 − 𝑠)(𝐵𝑆𝑠𝑚 + 𝐵𝐴𝑠𝑚) − 𝐸𝑝(𝑚 − 𝑠)(𝐵𝑆𝑠𝑛 + 𝐵𝐴𝑠𝑛)]

+ 𝐺√2(𝐴𝑛𝑚 + 𝐶𝑛𝑚) +
𝑡
2
􏿮(𝐵𝑆𝑛𝑚−1 + 𝐵𝐴𝑛𝑚−1 + 𝐵𝑆𝑛𝑚+1 + 𝐵𝐴𝑛𝑚+1)

− (𝐵𝑆𝑛−1𝑚 − 𝐵𝐴𝑛−1𝑚 + 𝐵𝑆𝑛+1𝑚 − 𝐵𝐴𝑛+1𝑚)􏿱,

𝐸𝐶𝑛𝑚 = 2𝐸0𝐶𝑛𝑚 + (1 − 𝜃(𝑛 − 𝑚))𝐺√2𝐵𝑆𝑛𝑚 + 𝐷(𝑛 − 𝑚)𝐶𝑛𝑚
+ 𝑡(𝐶𝑛𝑚−1 + 𝐶𝑛𝑚+1 + 𝐶𝑛+1𝑚 + 𝐶𝑛−1𝑚)(1 − 𝜃(𝑛 − 𝑚)).

(4.60)

Eqs. (4.11) correspond to the Fourier transform of Eqs. (4.60) after the
introduction of the total and relative wave vectors (4.8). We express the
amplitudes as 𝐴(𝑘1, 𝑘2) → 𝐴𝐾𝜈′

(𝑘𝜈), etc., and introduce the following two-
particle energies:

𝐸𝑖𝑗(𝑘𝜈) = 𝐸𝑖(𝐾𝜈′ /2 + 𝑘𝜈) + 𝐸𝑗(𝐾𝜈′ /2 − 𝑘𝜈) ≡ 𝐸𝑖(𝑞𝜈1) + 𝐸𝑗(𝑞𝜈2), 𝑖, 𝑗 ∈ 𝑒, 𝑝. (4.61)

Each eigenstate is characterized by certain 𝐾𝜈′ and for a generic propa-
gation of the center of mass 𝐵𝐴 does not necessarily vanish. In the 𝑘-space
we finally get:

𝐸𝐴𝐾𝜈′
(𝑘𝜈) = 𝐸

𝐾𝜈′𝑝𝑝 (𝑘𝜈)𝐴𝐾𝜈′
(𝑘𝜈) + 𝐺√2𝐵𝑆𝐾𝜈′

(𝑘𝜈),

𝐸𝐵𝑆𝐾𝜈′
(𝑘𝜈) =

1
2
[𝐸
𝐾𝜈′
𝑝𝑒 (𝑘𝜈) + 𝐸

𝐾𝜈′
𝑝𝑒 (−𝑘𝜈)]𝐵𝑆𝐾𝜈′

(𝑘𝜈) +
1
2
[𝐸
𝐾𝜈′
𝑝𝑒 (𝑘𝜈) − 𝐸

𝐾𝜈′
𝑝𝑒 (−𝑘𝜈)]𝐵𝐴𝐾𝜈′

(𝑘𝜈)

+ 𝐺√2(𝐴𝐾𝜈′
(𝑘𝜈) + 𝐶𝐾𝜈′

(𝑘𝜈)),

𝐸𝐵𝐴𝐾𝜈′𝜈′
(𝑘𝜈) =

1
2
[𝐸
𝐾𝜈′
𝑝𝑒 (𝑘𝜈) + 𝐸

𝐾𝜈′
𝑝𝑒 (−𝑘𝜈)]𝐵𝐴𝐾𝜈′

(𝑘𝜈) +
1
2
[𝐸
𝐾𝜈′
𝑝𝑒 (𝑘𝜈) − 𝐸

𝐾𝜈′
𝑝𝑒 (−𝑘𝜈)]𝐵𝑆𝐾𝜈′

(𝑘𝜈),

𝐸𝐶𝐾𝜈′
(𝑘𝜈) = 2𝐸

𝐾𝜈′
𝑒𝑒 (𝑘𝜈)𝐶𝐾𝜈′

(𝑘𝜈) + 𝐺√2𝐵𝑆𝐾𝜈′
(𝑘𝜈) −

𝐺√2
𝑁

􏾜
𝑞𝜈
𝜃(𝑘𝜈 − 𝑞𝜈)𝐵𝑆𝐾𝜈′

(𝑞𝜈)

−
4𝑡
𝑁
􏾜
𝑞𝜈
𝜃(𝑘𝜈 − 𝑞𝜈)𝐶𝑆𝐾𝜈′

(𝑞𝜈) cos
𝑎𝐾𝜈′
2

cos 𝑎𝑞𝜈 +
1
𝑁
􏾜
𝑞𝜈
𝐷(𝑘𝜈 − 𝑞𝜈)𝐶𝐾𝜈′

(𝑞𝜈).

(4.62)
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The term proportional to 𝐷 in the fourth equation accounts for the dy-
namical interaction between excitons whereas the terms proportional to the
𝜃-function account for the extended kinematic interaction. For 𝐾𝜈′ = 0
Eqs. (4.62) reduce to Eqs. (4.11).

4.C Biexcitons

To get some intuition, let us look at the two-particle eigenstates of Hamilto-
nian

𝐻 = 𝐸0􏾜
𝑠
𝑃†𝑠𝑃𝑠 +

1
2
􏾜
𝑠,𝑝
𝐷(𝑠 − 𝑝)𝑃†𝑠𝑃†𝑝𝑃𝑠𝑃𝑝. (4.63)

We use the two-particle wave function in the site representation, |Ψ𝑒𝑒⟩ =
∑
𝑛,𝑚 𝐶𝑛𝑚𝑃

†
𝑛𝑃†𝑚|0⟩, and find the dispersion equation in the form:

(𝐸 − 2𝐸0)𝐶𝑛𝑚 = 𝐷𝑛𝑚𝐶𝑛𝑚. (4.64)

Both 𝐶𝑛𝑚 and 𝐷𝑛𝑚 = 𝐷(𝑛 − 𝑚) depend on the relative distance between
the excitations, 𝑟 = |𝑛−𝑚|, and this is the quantum number which character-
izes the eigenstates (except for 𝑟 = 0). The 𝑟-th eigenfunction describes two
atomic excitations separated by a distance 𝑟. The corresponding eigenstate
is split from 𝐸 = 2𝐸0 by the energy𝐷/𝑟𝑛 with𝐷 being𝐷𝑛𝑚 at |𝑛−𝑚| = 1. If the
interaction is attractive, then 𝐷 < 0, and the state with the smallest separa-
tion between the excitations has the lowest energy; for repulsive interaction,
instead, it has the highest energy. If we account only for the interactions be-
tween a finite number of neighbors, then the number of split bands is equal
to the number of neighbors we consider as interacting. For instance, in the
nearest neighbor approximation we have a single biexcitonic band. Other
states (with the separations 𝑟 = 2, 3, 4...) are degenerate. We can form any
linear combination of their wave functions, so that they can be considered
as extended. For next- and next-next-neighbor interaction we will find two
biexcitonic bands, and so on. Accounting for all interactions will remove
all the degeneracies. However, in practice it is important to consider only
those bands that are split by an energy larger than the excitonic linewidth.
Finally, adding the kinematic interaction on top of it will modify this picture
to some extent, but most likely not qualitatively.

Now let us look at the solutions in the wave-vector representation. Fourier-
transforming Eq. (4.64) yields:

(𝐸 − 2𝐸0)𝐶(𝑘1, 𝑘2) =
1
𝑁
􏾜
𝑞
𝐷(𝑞)𝐶(𝑘1 − 𝑞, 𝑘2 + 𝑞), (4.65)

with the Fourier transforms defined as

𝐷(𝑞) = ∑
𝑛
𝐷𝑛𝑒−𝑖𝑞𝑛, 𝐷𝑛 =

1
𝑁
∑
𝑞
𝐷(𝑞)𝑒𝑖𝑞𝑛,

𝐶(𝑘1, 𝑘2) =
1
𝑁
∑
𝑛,𝑚
𝐶𝑛𝑚𝑒−𝑖(𝑘1𝑛+𝑘2𝑚), 𝐶𝑛𝑚 =

1
𝑁
∑
𝑘1,𝑘2

𝐶(𝑘1, 𝑘2)𝑒𝑖(𝑘1𝑛+𝑘2𝑚).
(4.66)
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We introduce the total wave vector, 𝐾 = 𝑘1 + 𝑘2, and the wave vector of
relative motion, 𝑘 = (𝑘1 − 𝑘2)/2, and rewrite (4.65) as

(𝐸 − 2𝐸0)𝐶𝐾(𝑘) =
1
𝑁
􏾜
𝑞
𝐷(𝑘 − 𝑞)𝐶𝐾(𝑞). (4.67)

This system of equations has an analytical solution as the dependences
of the interaction potential 𝐷(𝑘 − 𝑞) on 𝑘 and 𝑞 can be separated. In the
nearest-neighbor approximation,𝐷(𝑘−𝑞) = 2𝐷 cos 𝑎(𝑘−𝑞) = 2𝐷[cos 𝑎𝑘 cos 𝑎𝑞+
sin 𝑎𝑘 sin 𝑎𝑞]. Introducing

𝛼𝐾 =􏾜
𝑞
𝐶𝐾(𝑞) cos 𝑎𝑞, 𝛽𝐾 =􏾜

𝑞
𝐶𝐾(𝑞) sin 𝑎𝑞, (4.68)

we get by multiplying (4.67) by cos 𝑎𝑘 and sin 𝑎𝑘 and summing over 𝑘:

(𝐸 − 2𝐸0)𝛼𝐾 =
2𝐷
𝑁 􏿼𝛼𝐾􏾜

𝑘
cos2 𝑎𝑘 + 𝛽𝐾􏾜

𝑘
sin 𝑎𝑘 cos 𝑎𝑘􏿿 ,

(𝐸 − 2𝐸0)𝛽𝐾 =
2𝐷
𝑁 􏿼𝛼𝐾􏾜

𝑘
sin 𝑎𝑘 cos 𝑎𝑘 + 𝛽𝐾􏾜

𝑘
sin2 𝑎𝑘􏿿 .

(4.69)

As ∑𝑘 cos
2 𝑎𝑘 = ∑

𝑘 sin
2 𝑎𝑘 = 𝑁/2, ∑𝑘 sin 𝑎𝑘 cos 𝑎𝑘 = 0, these two equa-

tions decouple and give the same result for the biexciton: 𝐸 = 2𝐸0 + 𝐷.
Similarly, we can include next-next-neighbor interaction, and get two biex-
citonic bands, and so on and so forth.



Résumé en Français

Les photons n’ayant pas de charge électrique, il n’y a pas d’interaction
photon-photon [1]. Pour cette raison, les signaux optiques sont préférés
pour le transfert des données de façon efficace à longue distance [2]. La
propagation linéaire de la lumière dans le vide empêche les interférences
et corrélations croisées entre signaux optiques, et empêche donc l’implé-
mentation de portes logiques photoniques ce qui est indispensable pour le
traitement du signal. Pour activer les interactions entre photons, des pro-
cessus optiques non linéaires sont necéssaires.

Typiquement, lorsqu’un faisceau lumineux très faible se propage dans
un matériau, les processus optiques linéaires comme l’absorption ou la réfrac-
tion dominent. Dans l’optique linéaire, il suffit de considérer un index de
réfraction avec une composante imaginaire. Pour observer une réponse non
linéaire, un faisceau suffisamment intense est nécessaire : le champ élec-
trique associé doit être comparable à celui qui est produit par les noyaux
atomiques [2]. Dans ce cas, l’index de réfraction dépend de l’amplitude du
champ électrique. Un exemple célèbre de réponse non linéaire est l’effet
Kerr optique [5], où la propagation de la lumière dépend de l’éclairement
énergétique local du champ électrique. La nécessité d’utiliser des lasers
puissants est la raison pour laquelle les non linéarités optiques ont été ob-
servés pour la première fois dans les années 1960 [6].

À partir de là, la recherche a beaucoup progressé vers la réalisation de
non linéarités optiques avec des lasers de plus en plus faibles [7], jusqu’au
régime quantique, où un seul photon peut modifier la propagation de la
lumière. Dans le régime quantique, les coefficients non linéaires sont typ-
iquement très faibles. Il existe toutefois plusieurs techniques pour réaliser
des intéractions fortes entre photons. Les premières études théoriques re-
montent aux années 1980, et l’émergence du calcul quantique [11] a accéléré
encore d’avantage les réalisations expérimentales.

Le premiére expérience remonte à 1995 [12]. Avec un seul atome dans
une cavité Fabry-Pérot de haute finesse, une susceptibilité optique non linéaire
au niveau du photon unique a été demontré. L’expérience presentée en
[12] est la premiére expérience vers la réalisation de portes logiques pho-
toniques. Depuis cette expérience, de nombreux résultats ont été obtenu
: La réalisation de routers non linéaires à fonctionnement entièrement op-
tique [13, 14], ainsi que des interrupteurs [15–22] et portes quantique à phase
controllée [12, 23–26]. Tout cela permet une manipulation de l’information
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quantique de haute précision et ouvre la voie vers la réalisation de réseaux
quantiques [27].

Les non linéarités entre quanta de lumière ne sont pas utiles qu’à l’infor-
mation quantique, mais aussi à la métrologie [28] et la miscroscopie quan-
tique [29]. En outre, les non linéarités photon-photon ouvrent la voie vers
de nouvelles techniques non destructive pour mesurer [30] et manipuler
les photons [31, 32]. On peut aussi réaliser des sources déterministes de
photons uniques [33]. En général, les processus optiques non linéares sont
indispensables à toutes les applications qui exigent la création et la manip-
ulation de champs électromagnétiques non classiques.

Actuellement, il existe beaucoup de méthodes pour réaliser des inter-
actions fortes photon-photon. Tous ces méthodes s’appuient sur une com-
posante non photonique (un atome ou un ensemble d’atomes) jouant le rôle
de médiateur entre les deux photons. La nature non linéaire de l’intérac-
tion peut naître soit du spectre électronique de la composante non pho-
tonique (grâce à sa structure anharmonique), soit de ses degrés de liberté
méchaniques ; dans le deuxième cas, il s’agit du domaine de la physique
optoméchanique [37, 38].

Le dispositif le plus simple pour réaliser des non linéarités photon-photon
consiste à mettre un atome dans une cavité Fabry-Pérot de haute finesse, et
utiliser la saturabilité énergétique atomique. Cette procédure a été utilisée
par Turchette Q. A. et al. [12]. Dans cette expérience d’électrodynamique
quantique en cavité, l’élément jouant le rôle de médiateur entre photons
est un atome. La cavité sert à améliorer la probabilité d’intéraction photon-
atome, car le photon pouvant rebondir plusieurs fois entre les miroirs de
la cavité, il peut à chaque passage intéragir avec l’atome. Par conséquent,
plus la finesse de la cavité est grande, plus la probabilité d’intéraction sera
élevée. Pour un atome à deux niveaux énergétiques couplé à la cavité, la non
linéarité de l’intéraction à pour origine le spectre de l’opérateur hamiltonien
de Jaynes-Cummings [39]. Le spectre de Jaynes-Cummings varie comme la
racine carrée du nombre de photons, et cette anharmonicité peut être util-
isée pour réaliser des effets non linéaires comme le blocage photonique [40],
les portes logiques quantiques [41, 43], et la mémoire quantique pour en-
registrer un photon avec un atome unique [42]. Le désavantage de cette
procédure est la durée de vie très courte de l’état excité atomique [2]. Pour
résoudre ce problème, on peut utiliser des atomes à plusieurs niveaux én-
ergétiques métastables [44, 45]. Ce dispositif atome-cavité est aussi réal-
isable avec des systèmes à l’état solide. On citera par exemple les points
quantiques semiconducteurs [48–51].

Une méthode plus complexe pour réaliser des non linéarités optiques
sans aucune cavité consiste à employer la technique de transparence induite
électromagnétiquement pour ralentir les photons qui se propagent dans un
ensemble d’atomes [45, 52]. Typiquement, on considère des atomes froids
à trois niveaux énergétiques dans des états de Rydberg [31, 53–56]. Les
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atomes de Rydberg possèdent un fort moment dipolaire ce qui induit de
fortes intéractions entre atomes. De plus, le mécanisme de blocage de Ry-
dberg [57–59] améliore la probabilité d’interaction atome-photon car, du
point de vue du photon, chaque atome de Rydberg se comporte comme
un atome géant caractérisé par un rayon appelé “rayon de Rydberg”. Cet
effet ressemble à l’effet de la finesse d’une cavité mais contrairement à la
cavité (dans laquelle un photon s’approche de l’atome plusieurs fois), ici un
photon s’approche d’un “super-atome” avec une section efficace qui varie
comme le nombre d’atomes dans le volume de Rydberg. Si le nombre d’atomes
est suffisamment grand, des non linéarités optiques peuvent apparaître [60–
62].

Dans un régime dissipatif, où deux photons proches brisent la condi-
tion de transparence induite électromagnétiquement et sont absorbés par
l’ensemble d’atomes, une repulsion effective entre photons peut être réal-
isée [31]. Au contraire, dans un régime dispersif, une attraction effective a
été récemment realisée [56]. Dans ce cas, l’indice de réfraction dépend de
la distance séparant les photons. L’attraction photon-photon est causée par
la formation d’états liés de deux polaritons [63, 64].

Pour un atome dans une cavité de haute finesse, un fort couplage atome-
photon ou un grand volume de Rydberg (et donc une grande cooperativ-
ité), l’atome et la cavité échangent des photons plus rapidement que tous
les autres processus dynamiques. Du point de vue du système, l’atome et
le photon ne sont plus distinguables. Atomes et photons s’hybrident et for-
ment une quasiparticule bosonique appellée polariton excitonique ou sim-
plement polariton [65]. En raison de leur nature mixte, les polaritons ont
des propriétés intéressantes, comme une masse effective plus légère que
la masse atomique et donc une relation de dispersion plus raide (i.e. une
large vitesse de groupe [66]). Les polaritons de microcavité peuvent de-
venir superfluide [67], et peuvent condenser lorsque la densité est suffisa-
ment élevée [65, 68–72]. Récemment, des condensats de Bose-Einstein ont
été realisé avec des polaritons organiques à température ambiante [73, 74].
Grâce aux progrès techniques réalisés dans la fabrication de microcavités
semiconductrices [75–79], les condensats de Bose-Einstein polaritoniques
sont devenus des candidats prometteurs pour la simulation quantique.

Jusqu’à maintenant, nous avons considéré les non linéarités causées par
le spectre atomique. Toutefois, les non linéarités optiques peuvent être pro-
duites en utilisant des vibrations phononiques, comme dans les systèmes
optomécaniques [37]. Un fort couplage phonon-photon peut causer des
phénomènes optiques non linéaires comme par example le “blocage” pho-
tonique [80] ou la bistabilité optique au niveau quantique [81]. Il y a aussi
de nombreuses propositions théoriques pour réaliser des interactions effec-
tives photon-photon [82].

Dans le vide, la diffraction limite la focalisation de la lumière à des vol-
umes égaux ou supérieurs à la longueur d’onde cubique. Au cours des
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dernières années, la recherche a beaucoup progressé vers la fabrication de
nano-interfaces lumière-matière pour permettre la focalisation de la lumière
en dessous de volumes interdits par la diffraction. On citera par example les
guides d’ondes à cristaux photoniques [83–88], les cristaux optomécaniques
[89–92], les fibres optiques [93–95], ou encore les nano-fils conducteurs [96,
97]. Les fibres optiques ayant un diamètre inférieur à la longueur d’onde
du mode optique guidé, les atomes sont placés à l’exterieur de la fibre et
couplés au champ électromagnétique évanescent [83]. On peut également
placer les atomes à l’intérieur d’une fibre à cristaux photoniques [98–100].
Tous ces dispositifs, lorsqu’ils sont associés à des nanocavités ou microcav-
ités à cristaux photoniques [101–103], ouvrent la voie vers la réalisation de
reseaux quantiques [13, 16, 104]. Enfin, de fortes non linéarités optiques
peuvent être réalisées dans des matériaux comme le graphène [106].

La plupart des chercheurs étudient la physique des photons uniques.
Néanmoins, les non linéarités optiques peuvent également être intéressantes
dans des systèmes à plusieurs photons. Il existe de nombreuses études s’in-
téressant à un ensemble de cavités couplées (modéle de Jaynes-Cummings-
Hubbard) où les photons sautent d’une cavité à une autre, chaque cavité
contenant un atome à deux niveaux énérgetiques [66, 113–118]. Dans ce
cas, les non linéarités sont causées par l’anharmonicité du spectre de Jaynes-
Cummings. L’intéraction entre la propagation linéaire de la lumière dans
le vide et la non linearité dans les cavités est responsable de transitions
de phase. Les ensembles de cavités peuvent être aussi combinés avec des
atomes de Rydberg [119]. Il existe aussi des propositions visant à observer
de nouvelles phase collectives de la lumière, comme les phases cristallines
dans les fibres optiques [120], ou dans des ensembles d’atomes de Rydberg
[121].

Dans cette thèse, je présente tous les projets de recherche menés à bien
pendant mon doctorat, dont deux déjà publiés dans des journaux scien-
tifiques et deux encore en cours de publication. En particulier, la thèse est
divisée en quatre chapitres, avec un chapitre dédié à chaque projet.

Dans ces quatre projets, je m’intéresse à l’optique quantique, plus parti-
culièrement à l’électrodynamique quantique à l’intérieur d’un résonateur :
une cavité Fabry-Pérot à un seul mode optique dans les deux premiers pro-
jets, ainsi qu’une fibre à cristaux photoniques supportant plusieurs modes
dans les deux derniers projets.

Dans le premier chapitre de cette thèse, je présente mes résultats de
recherche sur les cristaux photoniques et l’amélioration du couplage entre
les degrés de liberté optiques et mécaniques [276]. Les cristaux photoniques
sont des structures périodiques construites à partir de matériaux diélec-
triques qui modifie la propagation des photons de la même façon qu’un
potentiel périodique dans un cristal semi-conducteur modifie la propaga-
tion des électrons. Il apparaît des gap d’énergie dans lesquels aucun mode
photonique ne peut se propager [89, 92]. Nous étudions alors la possibil-
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ité d’améliorer le couplage optoméchanique photon-phonon entre le mode
de résonance d’une cavité Fabry-Pérot de haute finesse et les vibrations
mécaniques des éléments diélectriques à l’intérieur de la cavité [37, 38].
Il a été récemment démontré qu’un ensemble périodique de membranes
diélectriques placé à l’intérieur d’une cavité peut augmenter le couplage
optoméchanique linéaire qui devient beaucoup plus grand que la valeur
attendue dans le cas d’un seul élément réfléchissant placé entre les deux
miroirs de la cavité [122, 123]. Pour obtenir ce résultat remarquable, il faut
toutefois opérer dans un régime très particulier, où l’ensemble des mem-
branes (lorsqu’elles sont immobiles) est transparent à la lumière; ce régime
est appelé régime transmissif. Dans le cadre de notre projet de recherche,
nous généralisons ces résultats en introduisant un défaut quadratique dans
la disposition des membranes. En régime transmissif, nous étudions donc
une structure quasipériodique de membranes et cherchons à augmenter en-
core plus les couplages linéaires et quadratiques.

Nous considérons notamment deux dispositifs. Le premier dispositif
[voir Fig. 1.2(a)] est une cavité Fabry-Pérot de haute finesse contenant une
structure quasipériodique d’éléments diélectriques. Le second dispositif
[voir Fig. 1.2(b)] consiste en un modèle très simple avec lequel on cherche
à simuler un cristal photonique quasipériodique. Ici, les deux miroirs de
la cavité du premier dispositif sont remplacés par deux ensembles péri-
odiques de membranes. Dans le premier cas, nous montrons numérique-
ment (et toujours en travaillant dans un régime d’optoméchanique trans-
missif) que l’introduction du défaut spatial induit un régime de localisation
de la lumière autour de la région quadratique, c’est à dire au milieu de la
cavité. A son tour, cette localisation est responsable d’une augmentation
du couplage photon-phonon. De plus, on montre que le couplage photon-
phonon quadratique est également augmenté [122, 123].

Concernant le deuxième dispositif, on détecte aussi une augmentation
des couplages linéaires et quadratiques, mais dans ce cas, cette augmenta-
tion n’est pas dûe aux défauts quadratiques introduits au milieu du cristal,
mais plutôt au fait que la longueur effective de la cavité est beaucoup plus
grande que sa longueur réelle [122, 123].

Dans le deuxième chapitre de cette thèse, nous présentons nos résultats
de recherche sur le transport d’excitons à travers une cavité visant à aug-
menter l’efficacité du transport [277]. Ce projet à été inspiré par des expéri-
ences pionnières menées dans le groupe du Professeur Thomas Ebbesen
sur des semi-conducteurs organiques à l’Institut de Science et d’Ingénierie
Supramoléculaires de Strasbourg [180]. Le modèle que l’on étudie ici est
une chaîne unidimensionnelle d’atomes froids comprenant chacun deux
niveaux énergétiques : un atome peut être dans son état excité ou dans
son état fondamental. De ce point de vue, chaque atome est assimilable
à un spin 1/2. Le modèle est illustré sur la Fig. 2.2. Autour de cette chaîne
d’atomes, on place alors une cavité transversale. Si un atome est excité, il
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peut donc émettre un photon dans la cavité puis se désexciter, ou vice-versa :
un atome dans son état fondamental peut absorber un photon et être promu
dans son état excité. Ce modèle peut être réalisé en laboratoire en utilisant
par exemple des atomes de Rydberg dans une microcavité. Lorsqu’ils sont
excités par un laser, ces atomes s’organisent spontanément dans un réseau
en raison de leur interactions mutuelles [198, 199]. Ce modèle peut égale-
ment être réalisé en utilisant des molécules polaires dans un réseau optique
de microcavité [200, 201], ou encore des ions froids dans un piége de Paul
linéaire [202, 203].

Lorsque l’exciton n’est pas couplé au vide électromagnétique dans la
cavité, il se propage alors le long de la chaîne en sautant d’un site à l’autre.
Autrement dit, dans le formalisme spinoriel, le spin est annihilé sur un site
et recrée sur un des sites premiers voisins. Ce processus de transport site-
par-site prend un certain temps, surtout si l’exciton doit traverser un très
grand nombre d’atomes. De plus, si l’on introduit du désordre dans le
système, ce dernier tend à supprimer le transport de façon exponentielle,
comme dans le processus de localisation d’Anderson [125]. L’objectif de
recherche présenté dans ce chapitre est de rendre ce processus plus rapide
et efficace. Grâce au couplage entre exciton et photon, ces deux quanta
s’hybrident et forment deux branches de polariton à l’intérieur de la cav-
ité [181, 182]. Ces quasiparticules, en tant que superpositions cohérentes de
photons et d’excitons, ont une masse effective très faible. Grâce à leur frac-
tion photonique non nulle, les polaritons possèdent en outre une vitesse de
groupe supérieure à celle d’un exciton non couplé, et sont aussi moins sensi-
bles au désordre et aux processus dissipatifs pouvant affecter les matériaux
réels.

Dans ce chapitre, nous simulons numériquement deux expériences. Dans
la première expérience, on étudie analytiquement et numériquement la trans-
mission d’un paquet d’onde excitonique. Dans la seconde, on injecte de
façon incohérente une excitation à l’intérieur de la cavité, et l’on mesure
le courant excitonique dans un état stationnaire. Dans cette seconde sim-
ulation, nous utilisons le formalisme de l’équation maîtresse [278]. Dans
ces deux expériences, nous avons observé qu’à résonance avec un des deux
modes de polariton, on peut transmettre l’exciton via le mode polaritonique
dans un temps très court. En outre, le désordre n’affecte la propagation ex-
citonique que de façon algébrique (loi de puissance) et non pas exponen-
tielle. Ce résultat est très important : il suggère en effet que l’utilisation de
modes polaritoniques pourrait permettre d’augmenter la conductivité des
semi-conducteurs organiques, et ainsi avoir des applications intéressantes
dans l’industrie.

Dans le troisième chapitre de cette thèse, nous présentons nos résultats
de recherche sur la réalisation d’interactions entre photons grâce à la médi-
ation d’atomes ultrafroids piégés dans un réseaux optique unidimension-
nelle et placés à l’intérieur d’une fibre à cristaux photoniques [279].
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Il est bien connu que les photons n’interagissent pas directement entre
eux. Malgré cela, il existe plusieurs façons de concevoir des non linéarités
photoniques. On peut par exemple exploiter l’anharmonicité du spectre de
l’Hamiltonien de Jaines-Cummings lorsque l’on considère des excitations
multiples [115]. On peut aussi exploiter les interactions dipolaires entre
atomes, en utilisant typiquement des atomes de Rydberg à trois niveaux
sous conditions de transparence induite électromagnétiquement [31, 54–
56]. Ici, nous proposons aux expérimentateurs une méthode plus simple
pour réaliser des interactions entre photons: faire interagir les photons par
l’intermédiaire d’atomes en utilisant la saturabilité énergétique de ces der-
niers.

Chaque atome est décrit comme un système à deux niveaux énergé-
tiques : l’état excité et l’état fondamental, et interagit avec la cavité par
échange d’une excitation. Chaque atome est aussi un système saturable au
sens où il ne peut pas accueillir plus d’un exciton. On dit alors que les ex-
citons agissent comme des bosons de “coeur-dur”, ce qui permet d’inclure
le principe d’exclusion de Pauli: on ne peut pas avoir deux excitons sur
le même site. Cette interaction est de nature cinématique et non pas dy-
namique.

Dans notre problème (voir Fig. 3.1), on considère notamment deux ex-
citons dans la fibre optique et, comme dans le chapitre précédent, chaque
exciton se couple à la lumière pour former un couple de polaritons. Etant
donné que l’on considère deux excitons, on a donc quatre polaritons dans la
fibre. Ces polaritons interagissent entre eux en raison de leur fraction exci-
tonique non nulle. Dans un régime de couplage collective fort, les photons
interagissent indirectement entre eux puisqu’ils sont “collées” aux excitons
et sont par conséquent forcés à suivre leur interaction.

En particulier, nous avons détecté un régime dans lequel on peut réaliser
le “bunching” photon-photon: les deux photons sont enclins à rester ensem-
ble, c’est à dire localisés sur le même site de la chaîne d’atomes.

Dans le case où le spectre d’excitation soit gappé, l’interaction cinéma-
tique permet la formation d’états liés dans le gap.

Dans le quatrième et dernière chapitre de cette thèse, nous étendons les
résultats du chapitre précédent aux atomes de Rydberg.

Dans ce modèle, les atomes de Rydberg dans la fibre à cristaux pho-
toniques ont deux niveaux énergétiques. Les excitons qui se propagent sont
aussi considérés comme des bosons de coeur-dur mais à la différence des
atomes normaux, le rayon d’exclusion appelé “rayon de Rydberg” couvre
en général plusieurs unités de distance atomique. A cause de l’extension
du rayon de Rydberg, la tendance des photons à rester unis est encore plus
évidente et marquée.

Les atomes de Rydberg interagissent aussi dynamiquement par une in-
teraction à longue portée; dans le cas où cette interaction soit attractive on
peut observer la formation d’états liés même si le spectre d’excitation n’est
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pas gappé.
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Edoardo Tignone
Cavity quantum electrodynamics:

From photonic crystals to Rydberg atoms

Résumé

Dans le premier chapitre de la thèse, nous étudions la possibilité d’améliorer le couplage opto-
mechanique photon-phonon entre le mode de résonance d’une cavité Fabry-Pérot de haute finesse
et les vibrations mécaniques des éléments diélectriques (membranes) à l’intérieur de la cavité. En
introduisant un défaut quadratique dans la disposition des membranes, nous montrons que le deux
couplages (linéaire et quadratique) augmentent. Enfin, nous proposons un modèle très simple avec
lequel on cherche à simuler un cristal photonique quasipériodique.
Dans le deuxième chapitre de cette thèse, nous présentons nos résultats de recherche sur le transport
d’excitons à travers une cavité visant à augmenter l’efficacité du transport. Le modèle que l’on étudie
est une chaîne unidimensionnelle d’atomes froids comprenant chacun deux niveaux énergétiques.
Grâce au couplage entre exciton et photon, ces deux quanta s’hybrident et forment deux branches
de polariton à l’intérieur de la cavité. Nous avons observé qu’à résonance avec un des deux modes
de polariton, on peut transmettre l’exciton via le mode polaritonique dans un temps très court. En
outre, le désordre n’affecte la propagation excitonique que de façon algébrique.
Dans le troisième chapitre de cette thèse, nous présentons nos résultats de recherche sur la réalisa-
tion d’interactions entre photons grâce à la médiation d’atomes ultrafroids piégés dans un réseaux
optique unidimensionnelle et placés à l’intérieur d’une fibre à cristaux photoniques. Nous avons
détecté un régime dans lequel on peut réaliser le “bunching” photon-photon.
Dans le quatrième et dernière chapitre de cette thèse, nous étendons les résultats du chapitre précé-
dent aux atomes de Rydberg.

Mots clés: optique non linéaire, cavité, cristal photonique, couplage optoméchanique, transport d’exciton,
polaritons, atomes froids, corrélations entre photons, bunching, atomes de Rydberg.

Abstract

In the first chapter of this thesis, we study a quasiperiodic array of dielectric membranes inside
a high-finesse Fabry-Pérot cavity. We work within the framework of the transfer matrix formal-
ism. We show that, in a transmissive regime, the introduction of a quadratic spatial defect in the
membrane positions enhances both the linear and quadratic optomechanical couplings between
optical and mechanical degrees of freedom. Finally, we propose a theoretical model to simulate a
one-dimensional quasiperiodic photonic crystal.
In the second chapter of this thesis, we consider the problem of the transport of an exciton through a
one-dimensional chain of two-level systems. We embed the chain of emitters in a transverse optical
cavity and we show that, in the strong coupling regime, a ultrafast ballistic transport of the exciton
is possible via the polaritonic modes rather than ordinary hopping. Due to the hybrid nature of
polaritons, the transport efficiency is particularly robust against disorder and imperfections in the
system.
In the third chapter of this thesis, we consider an ordered array of cold atoms trapped in an optical
lattice inside a hollow-core photonic crystal fiber. We study photon-photon interactions mediated
by hard-core repulsion between excitons. We show that, in spite of underlying repulsive interac-
tion, photons in the scattering states demonstrate bunching, which can be controlled by tuning the
interatomic separation. We interpret this bunching as the result of scattering due to the mismatch
of the quantization volumes for excitons and photons, and discuss the dependence of the effect on
experimentally relevant parameters.
In the fourth chapter of the thesis, we extend the results of the previous chapter to the case of
Rydberg atoms.

Keywords: Nonlinear optics, cavity, photonic crystal, optomechanical coupling, exciton transport, polaritons,
cold atoms, photon-photon correlations, bunching, Rydberg atoms.
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