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Part I Résumé en Français 
 

Chapter I Introduction Générale 

A.  Les avancées dans le domaine de la protéomique quantitative 

Des informations quantitatives peuvent être extraites de données shotgun acquises en mode DDA par des approches 

de comptage de spectres MS/MS mais la nature stochastique de la sélection des peptides fragmentés rend cette 

méthode sujette au sous échantillonnage, à des valeurs manquantes, à un manque de reproductibilité et donc à une 

quantification aujourd’hui considérée comme approximative [1]. 

Les avancées technologiques extraordinaires de ces dernières années en spectrométrie de masse permettent de 

profiter d’un vaste panel de modes d’acquisition hautement performants pour l’analyse quantitative de protéines. 

Trois approches basées sur des modes d’acquisition différents peuvent être distinguées: l’extraction de signaux 

chromatographiques à partir de données acquises en mode DDA, le suivi de peptides prédéfinis par des approches 

ciblées, et une approche récemment introduite basée sur l’acquisition des données en mode Data-Independent 

Acquisition (DIA).  

L’extraction de pics chromatographiques pour l’ensemble des peptides identifiés, voire détectés, à partir de données 

DDA permet d’obtenir des résultats quantitatifs plus fiables et reproductibles que des approches par comptage de 

spectres mais est plus complexe à mettre en œuvre et les outils logiciels existants doivent encore être améliorés. 

Les approches ciblées permettent de doser de manière précise et sensible des dizaines, voire centaines de protéines 

prédéfinies dans un mélange contenant plusieurs milliers de protéines [2]. Le choix des protéines ciblées est fondé sur 

la vérification d’hypothèses et/ou la découverte préalable de cibles par des approches globales. La méthode de 

référence en analyse ciblée est l’analyse en mode Selected Reaction Monitoring (SRM) couplée à l’utilisation de la 

dilution isotopique. Cette méthode utilise des appareils de type triple quadripôle. La détection de plusieurs signaux 

d’un même ion parent permet une quantification très précise grâce à la mesure simultanée de peptides de référence 

marqués aux isotopes stables, identiques aux peptides ciblés et introduits en quantité connue. Des instruments à 

haute-résolution peuvent aussi être utilisés en mode d’analyse ciblée pour obtenir une sélectivité plus grande. La 

méthode est alors communément appelée Parallel Reaction Monitoring (PRM) [3, 4]. Les approches ciblées sont 

souvent utilisées dans des étapes de vérification de candidats biomarqueurs, notamment dans des fluides biologiques, 

et de très nombreux paramètres relatifs à la préparation d’échantillon et à l’instrumentation sont à optimiser pour 

atteindre les sélectivités et les sensibilités nécessaires pour la quantification des protéines ciblées dans des mélanges 

aussi complexes que du plasma ou de l’urine. L’optimisation de méthodes ciblées est longue mais des méthodes bien 

optimisées ont montré les meilleures sensibilités et les limites de détection atteintes sont encore inégalées par des 

approches globales aujourd’hui [5]. Cependant, la vulnérabilité de cette méthode est le faible nombre de protéines 

quantifiées relativement au grand nombre de protéines généralement présentes dans un protéome complexe. 

Le mode d’acquisition DIA  récemment introduit promet de combiner les avantages d’une analyse sans a priori de type 

DDA à la reproductibilité, la sensibilité et la justesse des méthodes de quantification ciblée [6]. En DIA, le 

spectromètre de masse génère des spectres MS/MS de tous les peptides isolés dans une grande fenêtre de masse 
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prédéfinie (25 Da en général). Les spectres MS/MS sont donc des spectres multiplexés de tous les fragments des 

peptides co-elués et co-isolés à un temps donné. Ce mode d’acquisition permet, en théorie, de cartographier les 

fragments de tous les peptides d’un échantillon complexe [7]. 

Devant ce choix, le travail du protéomiste consiste à définir la stratégie la plus appropriée, à développer et optimiser 

des méthodes de quantification capables de fournir la sensibilité, la justesse, la sélectivité et la couverture nécessaires 

afin de répondre au mieux au questionnement biologique posé. 

B.  L’analyse protéogénomique 

La protéogénomique est un nouveau domaine de recherche à l’intersection entre la génomique, la transcriptomique 

et la protéomique. Ce domaine avait initialement été introduit avec comme objectif d’utiliser des données protéiques 

pour améliorer les annotations génomiques [8]. Sa définition a depuis été étendue à la découverte de nouveaux 

peptides liés à des variants de séquence d’acides aminés, des variants d’épissage, d’édition de l’ARN, d’un nouveau 

cadre de lecture ouvert codant et d’autres évènements biochimiques qui sont finalement traduits jusqu’au niveau 

protéique. L’identification de ces nouveaux peptides est d’un intérêt majeur puisqu’ils pourraient être directement 

utilisés comme biomarqueurs diagnostiques ou pronostiques d’une pathologie donnée [9]. 

Des modifications pré- ou post-traductionnelles peuvent aussi donner lieu à la présence de biomolécules dont la 

fonction diffère d’autres biomolécules provenant d’un même gène et conduire à un changement de la fonction de la 

protéine. Dans ce contexte, le début d’une protéine, sa partie N-terminale, est une caractéristique importante qui va 

définir sa stabilité, sa localisation et sa fonction dans la cellule. De nombreuses méthodes spécifiques existent pour 

analyser spécifiquement les parties N-terminales des protéines et ces méthodologies entrent parfaitement dans le 

cadre de la protéogénomique [10]. 

Enfin, est intégré dans le champ des stratégies de protéogénomique l’ensemble des stratégies qui viseront à tirer 

avantage de l’utilisation conjointe des données produites par différentes approches omiques sur des échantillons 

donnés. Ces approches seront optimales dans les cas où des données multi-omiques pourront être acquises sur un 

même échantillon [11].  

Les principaux verrous de ces approches de protéogénomique résident dans les outils bioinformatiques partiellement 

développés ou encore manquants pour permettre leur mise en œuvre. 

Chapter II Développements méthodologiques en analyse protéomique 

quantitative 

A.  Optimisation du workflow de développement de méthodes de quantification ciblée 

Lors de mon travail de thèse j’ai participé à l’optimisation du workflow pour le développement de méthodes ciblées 

par LC-SRM. Ceci a été fait en déterminant les paramètres clés à optimiser afin d’augmenter la sensibilité et la 

spécificité des méthodes. La Figure IV-1 montre le workflow pour le développement des méthodes SRM que j’ai 

optimisé, qui commence par le développement de la méthode de préparation des échantillons qui doit être adaptée 

et optimisée à chaque nouveau type d’échantillon. En parallèle, le développement d’une méthode spécifique à chaque 

protéine ciblée est fait. Cela commence par le choix des peptides signatures pour chaque protéine. Ces peptides 

doivent avoir des propriétés physicochimiques particulières pour être visibles en spectrométrie de masse, ne pas être 

sujets à des modifications indésirables et être uniques à la protéine. L’utilisation de peptides marqués isotopiquement 



 Résumé en français 
 

15 

  

permet l’optimisation des paramètres  expérimentaux (énergie de collision, temps de rétention). La partie ana lytique 

a aussi été améliorée grâce à la mise en place et l’utilisation en routine d’échantillons standards, avant et pendant une 

série d’analyses, pour vérifier les performances et le bon fonctionnement des appareils du couplage LC-SRM. 

 
Figure I-1 : Workflow de développement de méthodes de quantification ciblée. 

 
B.  Evaluation de la compatibilité d’une méthode de séparation de protéine (SDS-PAGE) avec une 

quantification ciblée par LC-SRM 

Mon travail de thèse a également consisté à optimiser et développer des méthodes de préparation d’échantillons 

compatibles avec des études quantitatives. Une première étude a eu pour but de mesurer les performances 

analytiques du couplage d’une méthode de fractionnement de protéines par gel d’électrophorèse (SDS-PAGE) avec 

une méthode de quantification ciblée par LC-SRM. Cette méthode permet de réduire la complexité d’un échantillon et 

ainsi de réduire la gamme dynamique de chaque fraction analysée, augmentant ainsi la spécificité de l’analyse. 

Cependant cette méthode requiert un temps d’analyse conséquent et n’est donc pas compatible avec une 

quantification à haut débit. De plus, l’interprétation de données d’échantillons fractionnés n’est pas triviale. 

Afin d’obtenir une méthode de préparation d’échantillons compatible avec des méthodes de  quantification, j’ai 

évalué la compatibilité de l’utilisation du gel stacking SDS-PAGE en amont d’une stratégie de quantification. Cette 

stratégie analytique permet de bénéficier de l’excellente capacité du SDS à extraire et solubiliser des protéines. Cette 

méthode a également l’avantage de ne pas introduire de fractionnement et est donc plus compatible avec des études 

quantitatives. Après avoir optimisé les paramètres clés pour améliorer le protocole, nos résultats ont montré que 

cette méthode donne des résultats quantitatifs très satisfaisants (Figure I-2). Les performances analytiques trouvées 

sont mêmes supérieures à celles obtenues par une méthode de digestion liquide. 



  

 

16 

 

 
Figure I-2 : Développement d’un protocole de purification de protéines par Gel Stacking SDS-PAGE. 

Plusieurs paramètres clés ont été optimisés pour améliorer les performances quantitatives de cette approche de préparation 

d’échantillons : la taille des gels stackings (A), l’influence des volumes d’échantillons déposés (B), l’influence des effets de bord (C) 

et le pourcentage d’acrylamide (D). Un exemple d’un gel stacking optimisé est montré (E). 

 

C.  Mise en place de stratégies d’évaluation des performances analytiques des couplages LC-MS et 

des outils bioinformatiques dédiés à la quantification 

Devant le nombre important de méthodes d’identification et de quantification du protéome, le travail du protéomiste 

consiste à définir la stratégie la plus appropriée, à l’adapter et à l’optimiser pour répondre au mieux au 

questionnement biologique posé. Afin d’obtenir l’analyse la plus robuste et la plus juste, les performances 

instrumentales doivent être monitorées très fréquemment. 

Pour évaluer avec précision et objectivité une étape ou l’ensemble du workflow de l’analyse protéomique, un 

échantillon standard bien caractérisé doit être utilisé. Cet échantillon doit être conçu pour pouvoir définir une valeur 

vraie avec laquelle les résultats des évaluations seront comparés. 

L’échantillon standard développé est constitué de d’un digestat de levure dans lequel sont rajoutés : 

 Des peptides tryptiques des protéines d’un mélange de 48 protéines humaines purifiées (Universal Protein 

Standard, UPS1, Sigma), 

 Leurs peptides homologues lourds isotopiquement marqués, 

 11 peptides standards de temps de rétention (iRT standard peptides, Biognosys). 

Cet outil s’est révélé extrêmement utile pour évaluer et améliorer les workflows d'analyse tels que le développement 

d'un test de performance sensible et objectif pour les plateformes LC-SRM, l'évaluation des pipelines bioinformatiques 
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pour l’analyse quantitative Label-free et l'amélioration de l'extraction de signal à partir de données acquises en mode 

DIA. 

Afin d’évaluer les performances des couplages LC-SRM du laboratoire, un test de performance sensible et objectif a 

été développé. Les protéines UPS1 ont été rajoutées à une concentration finale de 2,5 fmol/µl dans 1 µl de digestat de 

levure à 500 ng/µl. Ce test de performance a été utilisé pour évaluer régulièrement les performances des instruments 

au cours d'une année, et a été injecté au moins 4 fois par mois. La Figure I-3 montre le résultat d’un test de 

performance. Des critères individuels sur les caractéristiques chromatographiques (intensité, aire, largeur à mi-

hauteur, temps de rétention) de certains ions ont été mis en place. Egalement, des critères globaux ont été mis en 

place pour déceler des perturbations dans le système LC-SRM. Le chromatogramme a été découpé en trois parties (la 

zone hydrophile en début du gradient, le milieu du gradient et la zone hydrophobe en fin de gradient). Une déviation 

des performances dans une des zones permet de diriger la stratégie la plus adapté pour le dépannage. 

 

 
Figure I-3 : Test de performance appliqué à l’évaluation de performances de plateformes LC-SRM. 

A. Les critères individuels et globaux avec leurs critères d’acceptation correspondants sont listés en rouge dans le tableau. Les 

valeurs extraites d’une analyse sont en noir. Ce test de performances est sensible, objectif et permet de détecter des perturbations 

dans le système LC-SRM  et diriger la stratégie la plus adapté pour le dépannage. B. Suivi des temps de rétention et des aires des 

pics d’un peptide cible pendant une année. C. Comparaison des largeurs à mi-hauteurs d’un système performant et d’un système 

non-performant. 

 

Une autre stratégie pour l’évaluation des plateformes instrumentales a été développée. Elle est basée sur l’utilisation 

de peptides isotopologues, c’est-à-dire de peptides de même séquence primaire mais constitués d’acides aminés 

isotopiquement marqués qui leur confèrent des masses différentes (Figure I-4). Cette stratégie repose sur le fait que 

ces peptides ont les mêmes caractéristiques physico-chimiques donc répondent de la même manière en 

chromatographie et en spectrométrie de masse. Ces peptides ont été mélangés à des concentrations différentes afin 

de créer des droites de calibration couvrant une large gamme de concentration (5,3 log). Cette stratégie permet 
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d’évaluer rapidement et de manière fiable la gamme dynamique, la sensibilité et les limites de quantification de 

différentes plateformes instrumentales. Des travaux ont montré la preuve de concept pour évaluer des plateformes 

de LC-MS par l’utilisation de peptides isotopologues [12, 13]. Nous avons étendu ce concept et nous l’avons appliqué à 

différentes plateformes de LC-MS. Nous avons aussi évalué les effets de différents paramétrages d’une méthode en 

mode DIA sur la sensibilité de l’appareil lors de l’analyse de mélanges simples et complexes. Enfin, nous avons utilisé 

cette stratégie pour confirmer que  des systèmes chromatographiques en débit capillaire(5 µl/min) permettent 

d’atteindre une sensibilité similaire voire meilleure que celle obtenue en débit nano (450 nl/min) tout en apportant 

plus de robustesse et confort à l’utilisateur [14]. Une publication présentant ces résultats est en cours de préparation.  

 
Figure I-4 : Utilisation de peptides isotopologues pour l’évaluation de performances de plateformes de LC-MS/MS.   

Un mélange de peptides isotopologues ayant le même comportement chromatographique mais séparés en spectrométrie de masse 

ont été utilisés pour créer des droites de calibration. Ces droites, constituées de 24 points allant de 3 amol à 656 fmol et couvrant 

une gamme de 5,3 log, ont été utilisées pour évaluer la gamme dynamique, la sensibilité et les limites de quantification de 

différents instruments. 
 

D.  Optimisation et développement de méthodes pour l’analyse en mode DIA 

La DIA est souvent présentée comme une méthode standardisée de type « plug-and-play» utilisant un unique set de 

paramètres pour quantifier des protéines indépendamment du type d'échantillon. Cependant, pour les méthodes de 

DIA basées sur l’utilisation de fenêtres d'isolement successives (type SWATH [6]), il est important de paramétrer 

correctement l'instrument afin d'obtenir la meilleure sélectivité, sensibilité, précision de quantification et la plus 

grande couverture du protéome. 

Gillet et al. a proposé une approche pour l'analyse de données DIA, initialement appliquée pour les données de type 

SWATH, nommée extraction ciblée de données [6]. L'identification et la quantification d'un peptide sont effectuées en 

utilisant des informations obtenues au préalable par des approches DDA (stockées dans une librairie spectrale). Les 

traces des ions fragments sont ensuite extraites pour des peptides d'intérêt dans les données DIA. La qualité des 

données est évaluée et un score est attribué afin de pouvoir valider l'identification du peptide. Cette approche 

centrée sur les peptides (par opposition aux approches centrées sur les spectres qui utilisent des algorithmes de 

recherche de banque de données pour identifier des protéines) utilise les caractéristiques chromatographiques des 

signaux extraits afin de vérifier l'identification des peptides ciblés. Comme pour la SRM, les paramètres de validation 

de l'identification du peptide sont la co-élution d'ions fragments, la forme des pics, les intensités relatives et le temps 

de rétention. D'autres mesures supplémentaires peuvent également être utilisées lors de l’analyse de données DIA 

comme la précision de la masse, la co-élution des ions précurseurs et des ions fragments et la co-élution des différents 

états de charge d’un même peptide. Cette approche confère aux données DIA une structure ressemblant à celle 

obtenue en SRM. Comme pour la SRM, les données sont complètes pour les peptides ciblés et aucune valeur 

manquante n’est présente dans les données. Cependant les données DIA sont très bruiteuses, ce qui rend très difficile 

l’identification des pics à intégrer. 
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Deux outils logiciels ont été évalués en utilisant un échantillon standard bien caractérisé composé d’un mélange de  48 

protéines humaines purifiées (Universal Protein Standard, UPS1, Sigma) rajouté à un digestat de levure. Deux points 

de concentration ont été utilisés pour l'évaluation : 5 et 25 fmol d’UPS1 dans 1 µg de lysat de levure. Les deux outils 

logiciels évalués sont PeakView (AB Sciex) et Skyline [15]. Les résultats sont décrits dans la Figure I-5. La liste de 

peptides pour lesquels un signal a été extrait est la même entre les deux outils logiciels. Pour Skyline, le choix et 

l’identification des pics chromatographiques à intégrer ont été dirigés par l’algorithme mProphet [16]. Le taux de faux 

positifs (False Discovery Proportion, FDP), le taux de vrais positifs (True Positive Rate, TPR) et la justesse des rapports 

de l’abondance des protéines entre les deux échantillons ont été utilisés comme métriques pour évaluer ces logiciels. 

Les deux logiciels arrivent à discriminer les protéines d’UPS1 et ceux de la levure. Toutefois, les protéines UPS1 

semblent être plus proches du facteur de variation attendu (Fold change = 5) en utilisant PeakView. Cependant 

PeakView est un logiciel propriétaire et n’est compatible qu’avec des données obtenues par un instrument de la 

marque AB Sciex. Même si Skyline a de moins bonnes performances, il reste un logiciel open-source compatible avec 

des données brutes provenant de différents instruments et dont les principes de fonctionnement sont connus et donc 

peuvent être optimisés. 

 
Figure I-5 : Evaluation de deux outils logiciels pour l’analyse des données DIA. 

 
En raison de leur nature, l'analyse de données acquises en mode DIA est compliquée. La complexité des spectres 

MS/MS et le nombre élevé de peptides à quantifier (dizaines de milliers) rendent la validation visuelle et manuelle des 

données très difficile et peu pratique. Les pipelines de validation automatique (mProphet [16]) peuvent être utilisés, 

mais pour le moment il y a encore une marge de progression importante pour le traitement des données DIA. Les 

problèmes majeurs restent le choix automatisé des pics chromatographiques à intégrer et l’alignement des temps de 

rétention entre analyses. 

E.  Application à la validation de biomarqueurs de la maladie de Crohn 

Ce projet a été réalisé en collaboration avec l’unité MICALIS de l'Institut National de la Recherche Agronomique 

(INRA), et en particulier avec Catherine Juste et Joël Doré. 

La maladie de Crohn est un type de maladie inflammatoire chronique de l'intestin (MICI) caractérisée par une 

inflammation chronique et récurrente des segments intestinaux et peut potentiellement être accompagnée par des 
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manifestations extra-intestinales [17]. Cette maladie touche environ 0,32% de la population en Europe et en 

Amérique du Nord. Elle est plus fréquente dans les pays développés et moins fréquente en Asie et en Afrique [18]. 

Il n’existe pas de cure pour la maladie de Crohn. Des médicaments et la chirurgie sont utilisés pour soulager les 

symptômes, maintenir la rémission, et prévenir les rechutes [19]. Le diagnostic de cette maladie est très difficile car il 

n'y a pas de symptômes spécifiques de la maladie et ses manifestations sont communes avec d'autres pathologies 

telles que la gastro-entérite, la rectocolite hémorragique et le syndrome de l'intestin irritable. Il est très important de 

pouvoir distinguer l'ensemble de ces pathologies car chacune nécessite un traitement thérapeutique particulier. Le 

diagnostic de la maladie de Crohn est basé sur un ensemble d'arguments cliniques qui prend du temps pour être 

rassemblé. Le temps moyen pour poser le bon diagnostic pour la maladie de Crohn est d’environ 2,6 ans. Pour 

l'instant, aucun biomarqueur moléculaire spécifique à la maladie de Crohn n’a atteint le stade de l’usage clinique. 

Dans ce contexte, une méthode LC-SRM a été développée pour la validation de treize protéines du microbiote 

intestinal marqueurs de la maladie de Crohn. 

Le développement de cette méthode LC-SRM pour des protéines microbiennes a été compliqué à cause de la nature 

de l’échantillon. En effet, le microbiome intestinal humain est un échantillon d'une extrême complexité, l'existence de 

plus de 9,8 millions de gènes différents a récemment été confirmée [20]. Ceci représente 445 fois plus de gènes que 

dans le génome humain complet. En outre, il y a une grande diversité dans la composition microbienne entre 

individus. La Figure I-6 résume le workflow analytique mis en place pour ce projet. Une cohorte de patients sains et 

malades a été analysée. La fraction microbienne a été extraite à partir des échantillons de selles fraiches grâce à un 

gradient de densité sous conditions inertes. Le protocole de purification de protéines par Gel Stacking SDS-PAGE a été 

employé. Cette étude a permis de confirmer grâce à une méthode ciblée les tendances de sous- et surexpressions de 

protéines microbiennes préalablement identifiées lors d’une étude de découverte par 2D-DIGE (Figure I-7). 

 
Figure I-6 : Workflow analytique pour la validation de protéines microbiennes par LC-SRM. 
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Figure I-7 : Résultats de l’analyse par LC-SRM de 13 protéines microbiennes liées à la maladie de Crohn. 

Heat map des résultats de l’étude de 2D-DIGE montrant les spots de gels avec un changement significatif de l’abondance de 

protéines entre des patients sains et malades. Les protéines en jaune ont été choisies pour être validées par LC-SRM. Les tendances 

observées lors de l’étude de quantification par 2D-DIGE ont été validées par LC-SRM. 

 
Cette étude apporte la première preuve que des protéines bactériennes du microbiome intestinal humain peuvent 

être liées à la maladie de Crohn [21]. La quantification de ces protéines cibles a été faite sans fractionnement dans un 

milieu d’une extrême complexité. Ce travail a été valorisé par un dépôt de brevet et une publication. 

F.  Applications à la quantification relative et absolue de méthionines aminopeptidases 

Ce projet a été réalisé en collaboration avec l'Institut de biologie intégrative de la cellule (I2BC) à Gif-Sur-Yvette, et en 

particulier avec Frédéric Frottin, Willy Bienvenut, Thierry Meinnel et Carmela Giglione. 

Les méthionines aminopeptidases (MetAP) sont en charge de l’excision de la méthionine N-terminale. Ce processus 

biologique a une grande importance dans la cellule illustrée par le fait qu'il est un processus hautement conservé 

entre les organismes. La plupart des protéines sont synthétisées avec une méthionine sur le premier résidu. Toutefois, 

pour deux tiers des protéines cette méthionine est éliminée par la suite. La raison exacte de ce processus est mal 

connue. Ce processus est supposé contrôler la stabilité de la protéine et sa demi-vie [22]. Dans les cellules eucaryotes, 

il existe deux classes de méthionine aminopeptidases, MetAP1 et MetAP2. Frottin et al. a montré que ces deux 

protéines ont une spécificité de substrat in vitro très similaires et qu'elles sont interchangeables dans les plantes [23, 

24]. Ces enzymes sont très régulées à différents stades de la vie de la cellule ou lorsque celle-ci est soumise à des 

conditions de stress [22, 25]. Toutefois, il n’est pas encore bien compris comment la régulation des MetAPs affecte le 

protéome. 

Une façon d'étudier les rôles respectifs des MetAP1 et MetAP2, et d’en connaitre plus sur le rôle de l’excision de la 

méthionine N-terminale dans la cellule, consiste à utiliser des médicaments ciblant spécifiquement la MetAP2. La 

fumagilline est un médicament qui se lie et inhibe MetAP2 mais n'a aucune incidence sur l'activité de MetAP1 [23, 26]. 

La fumagilline et ses dérivés, provoque un arrêt du cycle cellulaire dans les cellules endothéliales et dans plusieurs 

lignées cellulaires cancéreuses. Ceci suggère que MetAP2 pourrait être une cible pour la thérapie contre certains 
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cancers. Cependant, les dérivés de ce médicament ont été montrés comme provoquant une neurotoxicité dans des 

essais cliniques de phase III [27]. 

Nos collaborateurs ont identifié des lignées cellulaires avec des sensibilités différentes à la fumagilline: 

• des lignées cellulaires hautement sensibles, à savoir ayant une prolifération faible lorsqu'elles sont 

exposées à la drogue : HUVEC, U87, U937 et A549. 

• des lignées cellulaires insensible : Jurkat, HCT116 et K562. 

Avec cette information, ils ont caractérisé les protéomes et les profils N-terminomiques de plusieurs lignées de 

cellules pour identifier les variations possibles au niveau de la protéine qui pourraient expliquer la différence de 

sensibilité à la fumagilline. De cette étude, ils ont conclu que les variations spécifiques des protéomes n'expliquent pas 

la sélectivité dans le phénotype. Par ailleurs, les MetAP1 et MetAP2 n’ont pas pu être identifiées. Par conséquent, 

pour vérifier si la différence d'abondance de ces deux protéines peut expliquer la différence de sensibilité de 

différentes lignées cellulaires, des méthodes de quantification par immunodétection ont été développées en utilisant 

plusieurs anticorps commerciaux. Cependant aucune des MetAPs n'a pu être détectée ce qui suggère que ces 

protéines sont présentes à des niveaux très faibles dans les lignées cellulaires. 

Nous avons donc développé une méthode de quantification ciblée par LC-SRM pour la quantification relative des deux 

protéines MetAP1 et MetAP2 dans un premier temps,  et la quantification absolue pour la protéine MetAP2 dans un 

deuxième temps. Trois lignées cellulaires ont été choisies pour être analysées : la lignée cellulaire la plus sensible 

parmi les tissus cancéreux (U87), une lignée sensible parmi les cellules endothéliales (HUVEC) et une lignée de cellules 

insensibles à la fumagilline (K562). Dans cette étude nous avons montré que la sensibilité des cellules à cette drogue 

est bien corrélée à l’abondance de MetAP2 dans la cellule (Figure I-8). Ce résultat a été obtenu par le développement 

d’une méthode de quantification relative utilisant des peptides isotopiquement marqués, et confirmé par une 

méthode de quantification absolue s’appuyant sur des courbes de calibration pour un peptide signature de la protéine 

de MetAP2. Une publication résumant ces résultats est en cours de révision. 
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Figure I-8 : Résultats de la quantification relative et absolue pour la protéine MetAP2 dans trois lignées cellulaires. 

A. Ratios de la somme des aires de toutes les transitions des versions légères et lourdes des peptides ciblées (L/H) pour les peptides 

de MetAP2 dans trois lignées cellulaires. Chaque analyse a été répliquée 4 fois. B. Droite de calibration pour la quantification 

absolue de METAP2 en suivant le peptide IDFGTHISGR. La droite de calibration a été faite en utilisant les points avec des CVs 

inférieurs à 15% et une exactitude entre 80% et 120% (losanges remplis), le dernier point respectant ces critères est la limite de 

quantification (LOQ). Les points ne respectant pas ces limites n’ont pas été utilisés pour générer la droite de calibration (losanges 

vides). 

 

 

Chapter III Développements méthodologiques en analyse protéogénomique 

Dans le vaste champ couvert par les approches protéogénomiques, mes travaux de thèse ont porté dans deux 

directions : 

A.  Développement d’une approche de caractérisation du N-terminome 

Ce projet a été réalisé en collaboration avec l’Institut de Biosciences et Biotechnologies de Grenoble et en particulier 

avec Thierry Rabilloud. 

Ce projet a aussi été réalisé en collaboration avec le groupe CALIPHO (Computer Analysis and Laboratory Investigation 

of Proteins of Human Origin)  Group, de l’institut Suisse de Bioinformatique (SIB), et en particulier avec Lydie Lane et  

Amos Bairoch, pour l’intégration des résultats dans la banque de données UniProtKB/Swissprot. 

 

Dans le contexte d’améliorer la caractérisation du protéome, j’ai participé au développement d’une approche pour 

l’identification des parties N-terminale des protéines. Cette méthode est basée sur la derivatisation spécifique des 

parties N-terminales par le triméthoxyphényl phosphonium (TMPP) (Figure I-9) [28].  
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Figure I-9 : Marquage spécifique des parties N-terminales des protéines par le TMPP. 

 
Dans ce projet j’ai développé un workflow analytique et bioinformatique pour la validation automatique et fiable des 

peptides marqués au TMPP. Cette étape finale de validation des peptides marqués était jusqu’ici réalisée 

manuellement et constituait le frein à l’application de cette méthode car trop compliquée et sujette à des erreurs 

subjectives d’interprétation. A présent ce workflow permet l’analyse haut-débit des parties N-terminales de protéines 

dans des mélanges complexes et l’étape de validation peut être faite en quelques minutes. 

J’ai appliqué cette stratégie pour caractériser le N-terminome mitochondrial humain, et des fractions enrichies en 

mitochondries de cellules humaines en culture ont été utilisées.  Les protéines sont extraites et marquées sur leur 

partie N-terminale libre au TMPP léger (
12

C-TMPP-Ac-OSu) et lourd (
13

C9-TMPP-Ac-OSu). Les échantillons sont ensuite 

purifiés par Gel Stacking SDS-PAGE ou fractionnés par gel SDS-PAGE (Figure I-10). Les bandes de gel sont coupées, 

réduites, alkylées et digérées enzymatiquement pendant une nuit. Les peptides résultants sont extraits et analysés par 

nanoLC-MS / MS. 

Une stratégie utilisant une série de deux recherches dans des banques de données a été mise en œuvre (Figure I-10). 

La première recherche est une recherche avec les paramètres classique de l’analyse protéomique pour identifier des 

peptides internes. Les spectres de bonne qualité sont extraits de l’ensemble des spectres non attribués lors de la 

première recherche. Les peptides TMPP marqués sont ensuite recherchés sur ce plus petit jeu de données et validés si 

et seulement si l’identification d'une séquence peptidique marquée au TMPP léger et lourd est confirmée, si la paire 

de peptides porte les mêmes modifications et si l’identification de cette paire a été réalisée avec des temps de 

rétention proche (< 30 s). Les positions N-terminales ne sont validées que si le spectre utilisé permet d’obtenir une 

identification non-ambiguë de la séquence peptidique. Egalement, la séquence doit être unique dans la banque de 

données recherchée pour que la position exacte du marquage en position N-terminale soit bien confirmée (Figure 

I-10). 
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Figure I-10 : Vue d’ensemble de la stratégie analytique pour la préparation d’échantillons et pour la validation des 

données. 

 
J’ai appliqué cette stratégie comme preuve de principe à la correction des annotations des codons d’initiation d’un 

génome bactérien Herminiimonas arsenicoxydans [28]. J’ai ensuite appliqué ces développements  à la caractérisation 

du protéome mitochondrial humain. Nous avons ainsi pu établir un catalogue de plus de 4600 protéines dont 963 sont 

mitochondriales et obtenir l’identification de la partie N-terminale pour 35% de l’ensemble des protéines identifiées 

[29]. Ce haut pourcentage a pu être atteint grâce au marquage TMPP qui permet d’augmenter la sélectivité et la 

sensibilité des peptides marqués. Les résultats de ce projet ont servi à améliorer les annotations protéiques 

(acétylation en position N-terminales, sites de clivages de peptide signaux et transit…) dans la banque 

UniProtKB/SwissProt et ont fait l’objet de trois publications (dont une est en cours de soumission). 

 

B.  Développement d’une stratégie de recherche en banques personnalisées grâce à l’utilisation 

conjointe de données de génomique, transcriptomique et protéomique acquises sur les mêmes 

échantillons 

Ce projet a été réalisé en collaboration avec la Plateforme GENOMAX du Laboratoire d’ImmunoRhumatologie 

Moléculaire de l’Université de Strasbourg, et en particulier Raphaël Carapito, Nicodème Paul, Ghada Alsaleh, Louise 

Ott et Seiamak Bahram. 

J’ai développé une stratégie permettant de construire des banques de séquences protéiques personnalisées, stratégie 

qui s’inscrit parfaitement dans les objectifs fixés par la protéogénomique. J’ai pu réaliser cela dans le contexte d’un 

projet biologique dans lequel des études du génome (par séquençage d’exome) et du transcriptome (par RNASeq) ont 

été menées sur les mêmes échantillons en parallèle des analyses protéomiques (Figure I-11). Cette étude multi-
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omique avait pour but d’étudier des membres d’une famille atteinte de fièvre récurrente avec hyper-IgD. Nous avons 

ainsi étendu la banque de séquences protéiques de référence (UniProtKB/Swissprot) avec des informations de 

variants de séquence et d’épissage alternatif propres à chaque individu étudié. Ceci a permis d’avoir une banque plus 

complète sans compromettre la spécificité et la sensibilité de la recherche des peptides. 

 

Figure I-11 : Approche protéogénomique permettant l’amélioration de la caractérisation du protéome par l’utilisation de 

données de séquençage du génome et du transcriptome pour générer des banques personnalisées. 

 

Notre approche protéogénomique a permis d’améliorer l'identification des protéines et d’augmenter la couverture 

des séquences protéiques. Un exemple peut être vu dans la Figure I-12 où les avantages de l'utilisation d'une banque 

personnalisée sont illustrés. Pour la protéine présentée dans la figure, la recherche utilisant une banque personnalisée 

a permis l'identification de deux peptides supplémentaires contenant des variants de séquences génomiques 

spécifiques à chaque individu. Un acide aspartique et une lysine ont été remplacés par deux acides glutamiques dans 

la séquence peptidique VLWLDEIQQAVDDANVDKDR. Une leucine a été remplacée par une valine dans la séquence 

peptidique QTFIDNTDSIVK. SI le protéome de référence avait été utilisé cette information aurait été perdue. 
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Figure I-12 : Avantages de la protéogénomique pour l’identification de protéine et la couverture des séquences. 

La recherche utilisant une banque personnalisée a permis l'identification de deux peptides supplémentaires, pour la protéine 

présentée dans la figure, contenant des variant de séquences génomiques spécifiques à chaque individu. Un acide aspartique et 

une lysine ont été remplacés par deux acides glutamiques dans la séquence peptidique VLWLDEIQQAVDDANVDKDR. Une leucine a 

été remplacée par une valine dans la séquence peptidique QTFIDNTDSIVK. 

 

De la même manière nous avons montré que cette approche permet d’identifier de nouveaux peptides provenant de 

mutations spécifiques dans le génome de chaque individu étudié. Egalement nous avons pu identifier des paires de 

produits de gènes hétérozygotes. L’utilisation d’informations de séquençage du l’ARN a également permis 

l’identification de variants d’épissage spécifiques à chaque individu. 

L’amélioration de l’identification de protéines par l’utilisation de banques de données personnalisées implique 

également l’amélioration de la quantification des protéines. La Figure I-13.A. montre que l’augmentation de la 

couverture de séquence améliore la quantification de la protéine et la rend plus juste. La Figure I-13.B. montre que la 

protéine canonique P32455 a été vue sous deux protéoformes provenant de deux allèles différents d'un même gène. 

Deux peptides, l’un avec une thréonine et l’autre avec une serine en position 349, ont été identifiés. Les résultats du 

comptage spectral ont montré que l'une des formes hétérozygotes est surexprimée dans une condition analysée, 

tandis que l'autre forme ne l’est pas. Cet exemple démontre que la quantification de produits d'allèles spécifiques est 

possible au niveau de la protéine. 
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Figure I-13 : L’amélioration de l’identification de protéines par l’utilisation de banques de données personnalisées implique 

l’amélioration de la quantification des protéines. 

A. En utilisant une approche d’analyse protéomique classique avec une banque de données consensus un seul peptide a été 

identifié (peptide souligné). Les résultats de la quantification par comptage de spectres ont montré un changement non significatif. 

Cependant, lorsqu'on utilise une banque de données personnalisée un peptide supplémentaire est trouvé et la quantification 

relative montre une surexpression de cette protéine. B. En utilisant une banque de données personnalisée la quantification des 

produits spécifiques d'allèles différents d’un même gène est possible au niveau de la protéine. Dans cet exemple la forme 

hétérozygote 1 a un changement non significatif alors que la forme hétérozygote 2 est surexprimée dans une des conditions 

étudiée. 

 
Nous avons pu ainsi obtenir des informations qui n’auraient pas pu être obtenues par une approche classique. Nous 

avons pu identifier 106 variants de séquence appartenant à 96 protéines en utilisant les banques de séquence 

personnalisées à partir du séquençage de l’exome et 2 nouveaux variants d'épissage à partir du séquençage de l’ARN. 

Cette méthode a permis d’identifier de nouveaux peptides provenant de mutations spécifiques dans le génome de 

chaque individu, la preuve d’expression de gènes hétérozygotes et l’identification de variants d’épissage spécifiques à 

chaque individu. Cette approche a également permis d’obtenir une quantification relative plus juste entre les individus 

étudiés. 
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Chapter IV Conclusion Générale 

En conclusion, ce travail de thèse m’a permis d’acquérir des compétences en analyse protéomique et spectrométrie 

de masse. Les développements méthodologiques que j’ai réalisés ont permis d’une part d’améliorer et d’organiser la 

stratégie de développement de méthodes quantitatives ciblées par LC-SRM et de mettre en place les outils pour la 

quantification globale par DIA. D’autre part, j’ai développé des échantillons standards permettant des contrôles 

internes et externes pour améliorer la fiabilité des analyses et obtenir un suivi juste des performances instrumentales. 

Les développements que j’ai réalisés pour améliorer les approches de protéomique quantitative m’ont permis de 

résoudre avec succès une série de questionnements biologiques : j’ai pu montrer que la différence de la sensibilité de 

différentes lignées cellulaires face à la fumagilline (un traitement contre certains types de cancer) est bien corrélée à 

l’abondance de la protéine MetAP2 dans la cellule. Un résultat utile pour comprendre comment cette drogue induit 

l’arrêt de la croissance cellulaire. Mon travail de thèse a également ouvert des perspectives intéressantes pour la mise 

au point d’un nouveau diagnostic de la maladie de Crohn. 

Le second volet de mon travail de thèse a consisté à développer de nouvelles méthodologies en protéogénomique. 

Dans ce contexte, mes travaux ont permis de créer des outils innovants de protéogénomique pour améliorer 

l’annotation des génomes et des protéomes et corriger les banques de séquences. D’une part, j’ai mis au point et 

optimisé un workflow complet, robuste, rapide et fiable pour l’analyse N-terminomique. J’ai appliqué cette stratégie 

pour corriger les annotations des codons d’initiation d’un génome bactérien (Herminiimonas arsenicoxydans) et pour 

caractériser finement le N-terminome du protéome mitochondrial humain. D’autre part, j’ai développé les outils 

nécessaires à l’amélioration de l’identification des protéines grâce à l’utilisation de données multi-omiques 

(séquençage d’exome et du RNA) pour créer des banques de séquences protéiques personnalisées. J’ai appliqué cette 

stratégie dans le contexte d’une recherche de biomarqueurs d’une maladie rare, la fièvre récurrente avec hyper-IgD. 
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General introduction 
 

Proteomics is the field of science that focuses in identifying, characterizing and quantifying all the proteins of a sample 

in a given moment and in a given condition[30]. The aim of Proteomics is to provide information on protein 

expression, cellular localization, post-translational modifications (PTMs), protein interactions, and protein turnover 

[31]. This is of major importance as proteins have a direct function in living organisms, and thus the comprehensive 

study of the proteome can offer the understanding of complex biological processes. 

Contrary to the Genome which is static, the proteome is dynamic. The dimension of time, space, and nature of the 

samples, make the comprehensive analysis of a proteome more challenging than that of a genome. Additionally the 

full study of the proteome is hampered by its extreme complexity due to the multiplicity of chemically different 

versions of a same protein, called proteoforms [32]. These originate from genomic sequence variants, alternative 

splicing events, proteolytic events or post-translational modifications. Moreover, added to this complexity, the depth 

of analysis that can be achieved is challenged by the protein abundance dynamic range [33].  

Proteomic analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS/MS) is a technology-

driven science that has rapidly developed by the advances in techniques for protein extraction, peptide and protein 

separation and mass spectrometry analysis. In recent years rapid advances in mass spectrometry enable now large-

scale protein analysis due to advances in terms of resolution, mass accuracy, sensitivity and scan rates. In parallel, the 

exponential growth of protein sequence databases, their curation, the quality of the annotations and the 

improvement of bioinformatic resources have also played a key role in the development of Proteomics.  

Global proteomic strategies are used for discovery studies that try to identify the maximum number of proteins 

present in a sample, and if possible, characterize their modifications. This approach uses mass spectrometers with 

high sensitivity, high resolution and high acquisition rates which enable the acquisition of data in data-Dependent 

Acquisition mode (DDA). In this mode, the most intense precursor ions of a MS spectrum are successively isolated and 

fragmented in a collision cell. The resulting fragments are recorded in a MS/MS spectrum. The identification of a 

protein is done by comparing the experimental mass list of parents and fragment ions to a mass list obtained in silico 

from a protein sequence database. This method has proved to be a powerful method to identify thousands of proteins 

in complex biological samples, and is today the standard method for the characterization of proteomes [34]. 

However, while the coverage of the proteome is becoming greater and greater - and the lists of identifications 

become longer and longer - without the quantitative information associated to each protein the response to biological 

questions remains only partial and insufficient in most cases. 

It is also important to keep in mind that this strategy is not a de novo peptide sequencing method but is based on the 

matching of experimental and expected lists of masses, calculated from a reference protein sequence database. The 

inherent limitation of this approach is thus that it relies heavily on the protein sequence database used and on its 

completeness. 

My doctoral work falls within this context and was intended to improve the proteome characterization by quantitative 

mass spectrometry and Proteogenomic method development. The methodological developments were optimized for 

and applied to several biological projects. 
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The first part of this manuscript provides a summary of the state of the art of bottom-up proteomics. It describes the 

steps and tools used to analyze and identify proteins in complex sample matrix by LC-MS-MS/MS. It then describes 

quantification strategies, both global and targeted. Lastly it will introduce the state of the art of recent methodologies 

promising the comprehensive proteome analysis, termed Data-independent Acquisition mode. 

The Second part of this manuscript will focus on the state of the art of Proteogenomics, a field of research at the 

intersection between proteomics, transcriptomics and genomics. In this approach, personalized protein sequence 

databases are generated using genomic and transcriptomic information. This approach aims at eliminating the 

inherent dependency problem to protein sequence databases of Proteomics. In this part I will describe the current 

state of proteogenomic methods and software tools. Additionally I will summarize the state of the art of 

methodological strategies aiming to analyze the ensemble of proteins N-termini. 

In the third part the results of the methodological developments for quantitative proteomics and its applications are 

presented. 

- The first chapter will describe in a general way the optimizations made for the development of quantitative 

proteomics. The SRM assay method development workflow will be thoroughly described. Then the results of 

the evaluation of sample preparation protocols compatible with quantification methods will be discussed. 

During my thesis I also set up performance standard samples for targeted and global quantification 

platforms. These will be presented in this part as well.  Additionally, an alternative targeted quantification 

method will be presented: Parallel Reaction Monitoring (PRM). The optimization and method development of 

Data-independent Acquisition methods will also be presented.  

- The second chapter will describe the optimization steps and the results of the quantification of microbial 

proteins in the human gut microbiome, a sample of extreme complexity, without fractionation. This project 

aimed at validating biomarkers of Crohn’s disease. 

- The third chapter will present the development of targeted methods for the relative and absolute 

quantification of Methionine Aminopeptidase Proteins.  

In the Four part the methodological developments concerning proteogenomic approaches and their applications will 

be presented. 

- In the first chapter I will present the optimization of N-terminomic approach based on chemical labelling of 

proteins’ N-termini using light/heavy TMPP reagent. The analytical workflow will be described as well as the 

steps towards the engineering of an automated workflow for the data interpretation for this approach. This 

method was applied to deeply characterize the proteome and N-terminome of human mitochondria. 

- In the last chapter a personalized multi-omics profiling strategy to improve the proteome characterization 

with the use of personalized databases derived from exome sequencing and RNASeq data will be discussed. 

This method was applied to the study of a rare disease, Hyperimmunoglobulinemia D and periodic fever 

syndrome (HIDS).  



 Part II 
 

33 

  

 

Part II State of the art of 
quantitative proteomics 

 

 

Chapter I  Bottom-up proteomics 

A.  Strategies for protein analysis by mass spectrometry 

Three proteomic strategies have been developed in recent years: bottom-up, middle-down and top-down proteomics 

(Figure II-1). These strategies are described below.  

Bottom-up proteomics: Bottom-up proteomics is a term referring to the characterization of proteins by the analysis of 

peptides created after enzymatic digestion, most commonly by trypsin (Figure II-1). The resulting tryptic peptides are 

easily fractionated, ionized and fragmented, making their analysis possible by liquid chromatography coupled to mass 

spectrometry. The identification of a protein is done by comparing the experimental mass list of parents and 

fragments ions to a mass list obtained in silico from a protein sequence database. In bottom-up proteomics the 

measure of protein is indirectly inferred from tryptic peptides. The protein inference is performed by assembling 

multiple peptide identifications a protein. Since peptides can be either unique to a given protein or shared by multiple 

proteins the identified proteins may be further grouped. The result of bottom-up proteomics is the smallest list of 

identified protein groups explaining the maximum number of peptide identification [35]. This approach has become 

the most popular approach for the large-scale analysis of protein by mass spectrometry[31].  

This approach was used for all the studies detailed in this manuscript and will be further detailed in this chapter. 

Top-down proteomics: in this approach intact proteins are characterized without an enzymatic digestion step (Figure 

II-1). The identification of proteins is done using the information of the MS and the MS/MS signals. The top-down 

approach promises to provide several advantages over the bottom-up approach, especially for the study of post 

translational modifications (PTMs) and proteoforms. Large scale studies have identified more than a thousand 

proteins using multi-dimensional separations in complex samples [36, 37]. 

However, the top-down method has major limitations compared with bottom-up proteomics due to the challenges 

regarding protein solubility, protein fractionation, protein ionization and fragmentation in the gas phase [38]. Due to 

the high complexity of the signals obtained in top-down proteomics, and the multiple charge states of intact proteins, 

this approach needs highly purified and fractionated samples. Additionally this method needs high-resolution 

instruments in order to resolve isotopic envelopes of multiple proteins present in several charge states. Time-of-flight 

or Fourier-transform based instrument can be used. However the scanning rates for this type of analysis are high. For 

example the Orbitrap Elite using a resolving power of 120000 at 400 m/z scans at 2,3 Hz handicapping thus the high-

throughput capability of this method. Lastly, one of the bottlenecks for top-Down proteomics is the lack of dedicated 

instrumental software and bioinformatic pipelines[38]. 
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Middle-down proteomics: This is a hybrid method between bottom-up and top-down proteomics. For middle-down 

proteomics larger peptide fragments are generated when compared to bottom-up proteomics. This minimizes the 

number of shared peptides between proteins. Additionally the larger peptides provide the main advantage of top-

down proteomics, i.e. the characterization of PTMs, minus the challenges inherent to the analysis of intact proteins. 

Bottom-up proteomics is now the method of choice for the analysis of proteins and their PTMs. The complementarity 

of top-down and middle-down methods will certainly improve the characterization of the proteome in the future. 

 
Figure II-1: Bottom-up, middle-down and top-down workflows (Adapted from [31]). 

 

B.  Analytical workflow considerations for Bottom-up Proteomics 

The proteome is an extremely complex sample, not only due to the number of proteins present in a sample (20250 

protein-coding genes for humans), but also for the multiplicity of chemically different versions of a same protein, 

called proteoforms [32]. These originate from genomic sequence variants, alternative splicing events, proteolytic 

events or post-translational modifications [9]. Moreover, added to this complexity, the depth of analysis that can be 

achieved is challenged by dynamic range of protein abundance that can reach more the 6-7 orders of magnitude [5, 

33]. The dynamic range of an MS instrument can reach 3 to 5 orders of magnitude depending on the acquisition 

parameters. To be able to sensitively and selectively analyze proteins of interest it is necessary to decomplexify the 

samples prior to MS analysis. Depletion of highly abundant proteins, the fractionation of samples at the protein-level 

and/or the separation of peptides prior to MS analysis can be used to reduce the overall complexity. 

B.1. Protein separation and purification 

Several methods exist to separate proteins based on their different physico-chemical properties [39]. These are 

among others the molecular weight (size exclusion chromatography, sodium dodecyl sulfate-Polyacrylamide gel 

electrophoresis (SDS-PAGE), the charge or the hydrophobicity (hydrophobic interaction chromatography, ion 

exchange chromatography, affinity chromatography, immunoaffinity chromatography, reversed phase 
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chromatography…), the isoelectric point (Isoelectric focusing) or a combination of many (Two-dimensional gel 

electrophoresis). 

In the projects described in this manuscript, when a fractionation was needed, the SDS-PAGE approach was used[40]. 

Sodium dodecyl sulfate (SDS) is an amphipathic detergent. It has an anionic group and a lipophilic tail. It binds 

uniformly and non-covalently to proteins, with an approximated ratio of 1.4g SDS/1g protein. SDS denatures proteins, 

disassociates complexes and confers a uniformly distributed negative charge. The proteins’ intrinsic charge is thus 

masked and all proteins have very similar charge-to-mass ratios. During the migration in SDS-PAGE, the protein 

migration will be determined by the molecular weight. A clear advantage of this sample preparation is the high yield 

of protein extraction and solubilization. 

When a fractionation was not necessary, or not recommended for the type of analysis that was going to be 

performed, a liquid digestion protocol was most commonly used. In this protocol the proteins were extracted using an 

urea buffer, and then separated from non-protein contaminants using a protein precipitation step (Acetone 

precipitation). An unfractionated sample preparation protocol using the SDS-PAGE approach was developed and will 

be presented in Part IVChapter IB.2 on page 93. 

B.2. Peptide separation and purification 

The separation of peptides prior to mass spectrometry analysis is crucial in order to increase the sensitivity, the 

selectivity and the depth of the analysis of a proteome. The most commonly used approach is liquid chromatography 

(LC) [41]. 

In the projects presented in this manuscript reverse-phase LC was used to separate peptides prior to MS-MS/MS 

analysis. Three types of LC systems were used and are described in Table II-1. 

Table II-1: Description of LC-systems present in the laboratory.  

LC system MicroLC nanoLC-Chip UPLC
TM

 

Manufacturer Dionex or 

Agilent 

Agilent Waters 

Stationnaire phase C18 C18 C18 

Colum lenght (mm) 150 150 200 

Internal diameter (µm) 300 75 75 

Particles size (µm) 3,5 5 1,7 

Flow rate (µL/min) 5 

Capillary-

flow 

0,3 

Nano-flow 

0,3 or 0,45 

Nano-flow 

 

In Proteomics the UPLC systems are now the method of choice for protein identification. The use of small particles 

provides excellent chromatographic resolution. Nano-flow LC platforms provide also good sensitivity, high peak 

capacity, high resolution and it enables low sample injection volume. But technical problems common to nano-flow LC 

systems still remain a challenge (ESI spray instability, not-easily detectable leaks, high back pressure or dead volumes). 

However the main advantage of nano-flow LC is the detection sensitivity that can be achieved as a result of reduced 

sample dilution. It is ideally suited for studies in which the sample amount is limited. 

 Miniaturized systems (nanoLC-Chip) enable the reduction of void volumes and analysis times. However the sample 

capacity is limited. 



 Chapter I : Bottom-up proteomics 

 

36 

 

Standard-flow provides lower sensitivity compared to nano-flow LC. However in some cases this can be countered by 

the higher sample capacity. A study showed that standard-flow can provide globally superior sensitivity than nano-

flow, with higher retention time reproducibility and increased ease of use [14].  

Nano-flow and capillary-flow systems were used in my thesis. Nano-flow LC was used for discovery studies and 

capillary-flow systems were used for targeted quantification studies in which the robustness was necessary. 

C.  Mass spectrometry analysis 

C.1. Tandem Mass spectrometry 

In bottom-up Proteomics hybrid instruments combining the properties of different mass analyzers are used. These 

instruments are used to obtain information about the sequence of peptides. 

This strategy is called tandem Mass Spectrometry. Two stages of MS are coupled in series, this way a given peptide 

can be isolated and fragmented in a collision cell. A mass spectrum of the resulting fragments is then generated called 

MS/MS or MS2 spectrum [30]. 

In the projects described in this manuscript several types of hybrid instruments were used: Triple quadrupole (QQQ), 

Quadrupole-Time-of-flight (Q-TOF) and Quadrupole-Orbitrap (Q-Orbitrap). 

C.2. Peptide fragmentation 

Four fragmentation modes are commonly used in Proteomics: CID (Collision induced Dissociation) [42], HCD (Higher 

collision Dissociation)[43], ETD (Electron Transfer Dissociation)[44] and ECD (Electron Capture Dissociation) [45]. In 

proteomics the most common fragmentation mode is CID. The isolated ions are accelerated to induce a high kinetic 

energy and then they collide with neutral molecules present in the collision cell (helium, nitrogen or argon). As a result 

of the collision some of the kinetic energy is converted into internal energy which induces the fragmentation of the 

peptide. In CID the fragmentation follows the mobile proton model [46]. This type of fragmentation is perfectly 

adapted to tryptic peptides as they usually possess two charges (One in the N-terminal position and one on the side-

chain of Lysine or Arginine). The fragmentation in CID provokes the peptide bond breakage. This fragmentation 

characteristic is why this fragmentation mode made possible the rapid development of Proteomics. The peptide 

fragmentation rules and nomenclature was extensively studied by Biemann [47] (Figure II-2). The most predominant 

and informative ions are the fragments resulting from the breakage of the amide bond between amino acids. The 

resulting ions are called b- and y-ions if the charge is respectively retained by the N-terminal or the C-terminal part of 

the peptide. When using CID b- and y-ions are the predominant ions. In ETD and ECD, z- and c-ions are most common.  

 
Figure II-2: Biemann nomenclature for peptide fragmentation. 

 

Recent instrumental developments have rendered possible the combination of ETD and CID fragmentation mode, 

termed EThcD [48]. 
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After the fragmentation, all the fragment ions of a peptide are measured simultaneously on a MS/MS spectrum. Using 

this MS/MS spectrum the sequence of the peptide can be determined (Figure II-3). 

 
Figure II-3: Example of an annotated MS/MS spectrum providing the peptide sequence. 

 

D.  Data-dependent acquisition (DDA) 

The most common acquisition mode used in bottom-up Proteomics is Data-Dependent Acquisition (DDA). In this 

mode the instrument acquires alternative MS and MS/MS cycles (Figure II-4). First a MS survey scan is acquired and a 

number N of precursor ions are selected to be analysis by a MS/MS scan. The cycle of one MS and N MS/MS repeats 

throughout the whole duration of the analysis. The N precursor ions which are chosen are the most intense ions in the 

MS spectrum. The analysis of a given peptide will depend thus on its intensity and on the intensity of the other co-

eluting peptides. This is why this method is called Data-Dependent Acquisition. 

To improve this acquisition mode, technological efforts have been made to improve instrumental sensitivity and scan 

rates. The depth of the identifications can be increased by excluding already selected peptides for a given amount of 

time (frequently the half of the average chromatography peak width) to reduce spectral redundancy.  

Even if this method has proved to be a powerful tool for Proteomics, enabling the identification of thousands of 

proteins per run [34], its major drawback is the stochastic nature of the peptide selection that causes 

undersampling[1]. The analysis of samples in replicates can help to reduce the undersampling. To improve the depth 

of analysis exclusion or inclusion list of precursor ions can be used [49, 50]. 
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Figure II-4: Scheme of Data-Dependent Acquisition mode. 

 

E.  Protein identification strategy 

E.1. Search engines 

The method to identify peptides from DDA data is termed peptide fragmentation fingerprinting (PFF) [51]. This 

strategy consists in transforming the raw DDA data in mass lists composed of the precursor peptide and its 

corresponding fragments m/z ratios. These experimental mass lists are matched with the mass lists all peptides from a 

protein sequence database digested and fragmented in silico. Many search engines have been developed in the last 

years, such as Sequest [52], Mascot [53], OMSSA [54], X!Tandem [55] and Andromeda [56]. 

All these search engines need information about the experimental and instrumental conditions in which the data were 

acquired. The following information is necessary to perform the search: 

 The tolerance of the precursor and the fragment ion m/z ratio. 

 The charge of the precursor and the fragment ions. 

 The digestion enzyme used and the maximum number of tolerated missed cleavages. 

 The protein sequence database. 

 The type of fragmentation mode (CID, ETD). 

In the work presented in this manuscript the search engines used were Mascot and OMSSA.  

Mascot is a proprietary search engine and thus the complete description of the algorithm is not openly accessible. For 

each MS/MS spectra an ion score is calculated. This corresponds to the probability that the observed match between 

the experimental mass list and the in silico calculated mass list happens by chance. The higher the score the more 

confident the peptide identification is. This score does not depend on the search space, only on the quality of the 

spectra. Moreover Mascot also calculates an identity score which is associated to the size of the search space. This 

value will provide an idea of how well the peptide’s identification separates from the distribution of random scores. If 

it is well separated then this match is not a random event. However, the larger the search space, the higher the 

identity score will be [53]. Then for each spectrum all possible peptide identifications, termed Peptide Spectrum 

Matches (PSM), are ranked. 

For OMSSA, the score is an expectation value (e-value) which is the probability that the matching of a peptide 

sequence to an experimental MS/MS spectrum would occur by chance if the trial was repeated several times [57]. For 

example, an e-value of 1 indicates that there is the same chance of having a true or false positive identification. An e-

value of 0.01 indicates that the matching of a peptide sequence to an experimental MS/MS spectrum would occur by 

chance one time in 100 given many trials. This value directly depends on the search space [54]. 

Since the algorithms of the search engines are not based on the same principles (scoring, ranking…) they provide 

complementary results. The combination of search engines provides thus complementary results that increase the 

total number of protein identifications and give high confidence to spectra for which multiple search engines 

identified the same peptide sequence [58-60]. 
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E.2. Protein sequence databases 

The protein sequence database has a central place in the identification of proteins. It is thus very important to work 

with high quality and curated databases. However the publically available databases have different degrees of data 

quality [61]. 

E.2.1 NCBI’s Entrez Protein database 

This database was created by the National Center for Biotechnology Information (NCBI) [62]. This database is an 

example of a protein sequence repository with high redundancy and no data curation. The Entrez Protein database is 

composed of protein sequences translated from nucleotide sequences databases (EMBL, DDBJ[63] and GenBank [64]). 

It also contains sequences from Swiss-Prot, Protein Information Ressource (PIR) [65], RefSeq  [66] and the Protein 

Databank (PDB) [67]. This database does not create new annotations but extracts the information from the databases 

cited above. Additionally the database is very redundant. 

E.2.2 NCBI’s RefSeq Database 

The RefSeq database is also a database produced by the NCBI [66]. RefSeq however is a curated and non-redundant 

database. For each protein the link between the protein and the gene and transcript information is done. The data is 

periodically updated, curated and stored in a consistent format. However, the data is automatically generated with 

very little manual curation. In May 2016, the database obtained more than 61 million protein sequences for more 

than 58 thousand organisms (RefSeq Release 75). 

These databases can be prone to hold sequence and annotation errors. Errors in gene annotation can propagate 

errors in protein sequences, such as incorrectly defined open reading frames or wrong annotated translational start 

sites, thus leading to errors or impossible MS spectra identifications [68]. 

E.2.3 UniProtKB Database 

The UniProtKB/SwissProt database has now emerged as the database of reference for Proteomic analysis of model 

organisms[69]. This database is the manually annotated and reviewed section of the UniProt Knowledgebase. This 

database was created by the European Bioinformatics Institute (EBI) and the Swiss Institute of Bioinformatics (SIB). 

This database is non-redundant and integrates information from other databases. This database provides annotations 

of high-quality, accurate, up-to-date and manually curated from the literature. The database provides, among others, 

information of function, subcellular location, related pathologies, related pathways, PTMs, Processing events, level of 

expression and structure. 

The other part of this knowledgebase is UniProtKB/TrEMBL which is composed of automatically annotated and 

classified data. The data from this database is then selected for full manual annotation and integration into 

UniProtKB/SwissProt. 

E.2.4 neXtProt Database 

The neXtProt database is a human protein-centric knowledgebase [70]. It was created by the SIB and focuses 

exclusively on human proteins. It is a high-quality highly curated database and also includes a focus on Proteomic 

analysis by mass spectrometry. Very helpful information for proteomics is accessible such as information of all 

proteins with respect to their existence (protein evidence index), their abundance, their distribution and subcellular 

localization. Information is also given about the isoforms expressed, post-translational modifications, sequence 
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variants, peptide unicity and information on previously observed peptides by LC-MS-MS/MS, with links to PeptideAtlas 

and SRMAtlas. 

In this manuscript high quality databases were preferred, when possible. The databases were customized to contain 

only the proteins corresponding to the taxonomy of the samples being analyzed. This was done to reduce the 

processing time and more importantly to reduce the number of false positives. 

E.3. Validation of protein identification 

The protein identifications returned by search engines have to be validated. The score given by a search engine cannot 

by its own validate the true identification of a protein, as the possibility of having false positive identifications in the 

data is non-negligible. 

The most common approach to validate proteomic data is the target-decoy strategy [71]. In this approach a 

concatenated protein database containing the target proteins (the real protein sequences) and decoy proteins 

(reversed protein sequences) is generated. The identifications of reverse peptide sequences, which are by definition 

false, provide the rate of false positive identifications. 

The False Discovery Rate (FDR) [72] can then be calculated as : 

 !"% = 2 ×
#$&'() +, -(.+/0

#$&'() +, -(.+/0 + 3$&'() +, 45)6(40 
× 100 

The calculation of the FDR has to be done at the PSM, peptide and protein level [57]. To obtain high-confidence results 

a 1% false discovery rate (FDR) at the protein level is often used. 

Several guidelines for publication have set stringent validation criteria for proteomic data[73]. In the context of the 

Human Proteome Project (HPP) guidelines have also been established for the publication and the dissemination of 

results [74]. 
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Chapter II Global Quantification approaches 

 

A.  Stable-isotope Label-based quantification 

Peptide and protein quantification using stable-isotope labeling relies on the fact that the labeled and unlabeled 

peptides have the same physicochemical properties. This implies that they will have the same behavior in mass 

spectrometry (MS signal response, ionization efficiency, fragmentation pattern…) and in chromatography conditions. 

Different samples can thus be compared using the MS signal response. 

A.1. Metabolic labeling strategies 

In metabolic labelling strategies, the isotope label is done during cell growth and division. This ensures that every 

protein is labelled in the sample of interest. It has the major advantage of introducing the labelling step at the earliest 

possible step in a proteomic workflow. This can correct confounding errors originating from sample preparation steps 

and thus provide high quantification accuracy and high precision. The most wide-spread metabolic labelling method is 

the stable isotope labeling with amino acids in cell culture (SILAC) [75]. In this approach isotopically labeled arginine 

and lysine (
13

C,
 15

N) are introduced in the culture medium. This way all tryptic peptides contain at least one labeled 

amino acid. The samples to be compared are mixed together and the relative quantification is done by comparing the 

intensities of the labelled and unlabelled peptides. 

However this technique is time-consuming as the culture process is slow. Additionally the samples have to be 

compatible with cell culture processes, which is not always the case. [76]. 

A.2. Chemical protein and peptide labelling 

It this approach a peptide’s reactive group (α-amino groups, ε-amino group of lysine or thiol of cysteine) is modified 

using stable-isotope labels.  

Isotopic labelling: Among this type of approaches, historically, the first approach was the one termed ICAT (Isotope 

Coded Affinity Tag)[77]. This technique is based on the use of light and heavy reagent containing biotine group. The 

reagent reacts with thiol groups of cysteine. The biotine group enables the protein purification by affinity 

chromatography prior to MS analysis. However with this technique only cysteine-containing peptides can be analyzed. 

Additionally the deuterated labelling of the heavy reagent induces a shift in retention times during reversed-phase LC 

compared to the light reagent[78]. 

Isobaric tags: This method targets mostly the peptide or protein N-terminus and the ε-amino group of lysine. Several 

variations of the same tag having the same mass (isobaric) but producing fragment ions of different masses (reporter 

ions). The reporter ions are in the lower mass region of MS/MS spectra. The relative quantification of several samples 

is done by labelling each sample with a different isobaric tag at the peptide level. The intensities of the reporter ions 

are used for the quantification. The advantages of isobaric labeling approaches are the higher multiplexing capability 

compared to isotopic labelling approaches (8 or 10-plex) [79, 80]. Also the complexity of LC separations and of the MS 

analysis is not increased thanks to the co-elution of isobaric labelled-peptides. The most popular approaches are the 

isobaric Tag for Relative and Absolute Quantification (iTRAQ) [81] and the tandem Mass Tags (TMT) approaches [82]. 
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B.  Label-Free Quantification 

Label-based approaches are rather expensive and the total multiplexing capabilities is limited by the number of stable-

isotope reagents. In order to overcome these limitations label-free approaches have been developed in recent years 

[83]. In label-free approaches the number of samples that can be analyzed is, in theory, not limited. Moreover 

contrary to the SILAC approach which can only be used for samples compatible with cell culture conditions, label-free 

approach can be applied to all types of samples (tissue, cells, body fluids…). The data used in these types of 

approaches is acquired in DDA mode. 

B.1. Spectral Counting 

The spectral count approach is based on the assumption that in DDA mode a protein concentration is correlated to the 

number of acquired MS/MS spectra for the protein [84]. 

The major advantage of this quantification strategy is the simplicity of the data analysis. However this method is 

limited by the undersampling of the DDA acquisition mode which creates incomplete data with missing values. 

Moreover to be able to carry out a spectral counting quantification the DDA method has to be set up differently than a 

classical DDA discovery approach where the objective is to identify low-abundant proteins. For spectral count, the 

exclusion times have to removed or very short, to have a spectral redundancy that represents the protein abundance 

in the sample. This means that the depth of the analysis (the number of identified/quantified proteins) will be 

reduced. 

The data analysis of spectral count data is different when compared to other quantitative techniques. In spectral 

count the values attributed to the peptides and proteins are discrete values. Thus the statistical procedures 

performed on the data (imputation of missing values, normalization, testing the significance of protein abundance 

variations) have to be adapted to the nature of the data [85]. To be able to confidently quantify a difference in protein 

abundance the spectral count for a protein has to be high. This is why this method performs better to quantify high-

abundant proteins and is not very performant to detect variations on low abundant proteins. 

B.2. MS1 Filtering - Extracted Ion Chromatograms (XIC) 

This strategy consists in extracting ion chromatograms from MS1 scans of precursor ions of peptides of interest. The 

area under the curve is then used for the relative quantification between samples [86]. This approach requires 

instruments with high-resolution, high-accuracy instruments and high scanning speed, in order to be able to 

reconstruct well-defined chromatogram peaks and reduce the risk of integrating wrong precursor ions with close m/z 

ratios. 

Two approaches have developed for the extraction of ion chromatograms: 

Extraction of all detected ions: The detection and integration in the MS1 signal is done for all ions having an isotopic 

pattern resembling that of a peptide. The integrated ions are called features. The identification of the peptide 

sequence corresponding to each feature is not necessary for this first step. The advantage of this approach is that, for 

all analyses that have to be quantified, the retention times are aligned and matched to a reference analysis. The XIC 

for a given feature can be extracted even if the peptide could not be identified. In a second step, each feature will be 

matched to the corresponding peptide sequence. Several software tools have been developed using this approach. 

The most popular ones are Progenesis LC-MS (Nonlinear Dynamics), MaxQuant [87], MFPaQ [88]. 
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A software tool implementing such an approach is being developed in the frame of the French Proteomics 

Infrastructure (ProFI), named Proline (http://proline.profiproteomics.fr/) and I have participated in its evaluation as an 

alpha tester during my PhD. 

Targeted Extraction of validated peptide precursor ions: The list of precursor ions for which a XIC will be extracted is 

defined by the list of identified peptides. Since the data is acquired in DDA mode the same data can be used to 

identify and quantify the peptides present in the sample. However, this limits the quantification only to the list of 

identified peptides. A spectral library is often used to guide the extraction of the chromatograms. For a given peptide 

the extraction and the signal integration is done around the retention time indicated in the MS/MS spectrum which 

was used to identify the peptide. The most popular software tool using this approach is Skyline [15]. The principles of 

operation of Skyline are described in Figure II-5. 

 

Figure II-5: Schematic of MS1 filtering (Adapted from [86]) 

A. Peptide distribution in the m/z and the retention time dimension. B. Isotopic envelope for the molecular ion of a peptide with 

peaks at M, M + 1, and M + 2 selected showing changes in MS1 intensity over time. C. High resolution data allow specific filtering of 

molecular ions and separation of individual peaks within the isotope distribution. Skyline sums intensities within a window of twice 

the theoretical resolution, predicted full width at half-maximum (2×FWHM). The resolution setting can be selected by the user 

depending on MS instrument type. 

 

 

C.  Label-free quantification development Workflow 

The steps required for the development of a Label-free quantification method are shown in Figure II-6. The steps 

required to develop a label-free method start with a hypothesis. Then the LC-MS instrument parameters are 

optimized according to the sample and the instrument used. The parameters used for a XIC quantification method will 

be the same as those used for discovery method where the objective is to identify the maximum number of peptides. 

After the acquisition is done, the peptides and proteins present in the sample are identified and validated (<1% FDR). 

A spectral library with the information of a peptide’s m/z ratio and retention time is created. The use of a spectral 

library is not necessary for the extraction of ion chromatograms but it is highly recommended as the coordinates of 

the targeted peptides are inferred. This enables to reduce the processing time and reduces the chances of integrating 

wrong peaks originating from peptides having close m/z ratios. Finally the confirmation of the presence of a given 

peptide in the sample is done. 
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Figure II-6: Label-free quantification development Workflow. 
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Chapter III Targeted Quantification 

A.  Selected-Reaction Monitoring 

A.1. Principle of Selected Reaction Monitoring MS for targeted quantification 

The SRM approach is a targeted quantification strategy that allows the quantification of only a predefined set of 

peptides of interest, such as biomarker candidates. It is used when a reproducible and accurate quantification is 

needed across large number of samples. 

It is mostly run on triple quadrupole type instruments composed of two quadrupole mass analyzers with a collision-

induced dissociation (CID) cell between them (Figure II-7). In Selected Reaction Monitoring (SRM) or Multiple Reaction 

Monitoring (MRM) mode the first quadrupole (Q1) acts as a mass filter for a predefined mass. It will isolate a 

precursor ion that will then be fragmented in the collision cell. The third quadrupole (Q3) also acts as a mass filter for 

a predefined mass of a fragment ion. The couple of precursor and fragment ion is called a transition. 

 
Figure II-7: Principle of Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM) scanning mode. 

 

The SRM acquisition mode is an iterative process: during an analysis, the mass spectrometer scans all the predefined 

transitions sequentially. The double selection of a precursor and a specific fragment ion provides high specificity and 

sensitivity. The higher the number of monitored transitions per peptide is the higher the specificity will be (Figure II-8). 

 
Figure II-8: Monitoring multiple transitions per peptide provides higher specificity. 

 

The perfect coelution of transitions with similar peak shape proves the presence of the peptide in the analyzed sample 

without any interference and without any ambiguous peak identification. 

Additional characteristics of targeted proteomics are that it provides comprehensive data without any missing value 

conversely to global label free MS1 quantification strategies. Since it is a deterministic approach it is able to monitor 

peptides across their whole chromatographic elution peak. The precise and accurate quantification is done by 

integrating the area under the curve for each trace. Even when a peptide is not present, a background signal is 
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measured thus proving that the peptide is absent or in a concentration lower than the instrument’s detection limit. 

Targeted proteomics is therefore often used when reproducible and accurate quantification is required across a large 

number of samples. 

This method has become the gold-standard method for precise quantitative proteomics and has won the title of 

Method of the year by the journal Nature Methods in 2012 [89]. 

During my PhD, I have enhanced the LC-SRM assays development workflow by optimizing key parameters to attain 

highest sensitivity and specificity (Part IVChapter IA. on page 69). 

A.2. SRM assay development Workflow 

The steps required for the development of an SRM assay are shown in Figure II-9. SRM is a hypothesis-driven 

technique and the quantification is done on a predefined set of proteins of interest. The proteins will be quantified by 

a set of proteotypic peptides, i.e. peptides unique to the protein and visible in mass spectrometry. For each one, the 

best-responding transitions will be chosen. Then the LC-SRM platform’s parameters need to be optimized in order to 

achieve the best sensitivity. All these steps and the methodological developments towards improving this workflow 

will be discussed in detail in Part IVChapter I. 

 
Figure II-9: SRM assay development workflow. 

A.3. Balancing instrument time and multiplexing capabilities 

During an LC-SRM analysis hundreds of transitions can be analyzed in a single run. The time spent to measure a given 

transition is called the dwell time. It often ranges between 5ms and 100ms. This parameter is related to the sensitivity 

of the analysis. The higher the dwell time the higher the signal-to-noise ratio and thus the higher the sensitivity. The 

cycle time corresponds to the time necessary to monitor the complete list of transitions. This parameter is related to 

the accuracy of the quantification. The lower the cycle time, the more points will be acquired to reconstruct the 

chromatographic peak for a given transition. Typical chromatographic peak widths range between 15 to 30 s. The 

cycle time needs to be adjusted to obtain at least 8 to 10 points across the chromatographic peak. The cycle time 
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often ranges between 1 and 3 seconds. The inter-scan time is the time necessary to change the voltages to monitor 

another transition. It has a fixed value around 1 ms (depending on the instrument used). 

Optimizing an LC-SRM method consists in finding a balance between the dwell time, the cycle time and the number of 

transitions to be analyzed. All these parameters are related by the following equation: 

 
During a SRM experiment a typical set of parameters will be a cycle time of 3 seconds, a dwell time of 20ms and 3 

transitions monitored per peptide. This means that 150 transitions corresponding to 50 peptides can be analyzed in a 

given run. 

In order to extend the number of analyzed peptides in a single run, the transitions of a given peptide can be analyzed 

only during the time the peptide is eluted out of the chromatographic column. This method is known as Scheduled-

SRM [2] (Figure II-10). The transitions are only monitored during a time window often between 2 to 5 min. This 

method optimizes the instrument time and increases its multiplexing capabilities. In this method, the cycle time is 

kept constant but the number of transitions changes during the analysis. The dwell time is thus optimized to reach the 

best sensitivity. The instrument time parameters are now related by the following equation:  

 
 

 
Figure II-10: Scheduled SRM optimizes instrument time and increases multiplexing capabilities. 

 

Figure II-11 illustrates the multiplexing capabilities of Scheduled SRM for the analysis of highly complex samples. We 

analyzed a set of almost 300 heavy-labelled standard peptides by monitoring almost 1000 transitions. To analyze this 

sample using a regular SRM method with a 1 hour run time and with the typical set of parameters described above, it 
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would take 7 independent runs to analyze all the targeted peptides whereas with a time scheduled SRM method all 

the peptides could be analyzed in a single run. This is possible using 2,5 minutes time windows but this requires a 

highly reproducible liquid chromatography system. 

 
Figure II-11: Illustration of the multiplexing capabilities of the Scheduled-SRM approach. 

 

When developing an LC-SRM assay to answer a given biological question, it is of crucial importance to balance the 

instrument scanning times to reach best quantification performances. Developing a SRM method consists in finding a 

trade-off between the accuracy, the sensitivity and the multiplexing (Figure II-12). These parameters depend on the 

instrument’s user-defined scan speeds. They have to be adapted to the purpose of the quantification. SRM can be 

used as a discovery tool to screen several proteins. In this case the sensitivity and quantification accuracy are reduced 

in favor of the multiplexing capabilities. In a context of the need of precise quantification, then the multiplexing 

capabilities are reduced in favor of a higher sensitivity and accuracy. 

 
Figure II-12: Trade-off between sensitivity, accuracy, multiplexing and easiness of use. 

These parameters depend of the instrument’s user-defined scan speeds. They have to be adapted to the purpose of the 

quantification. 

A.4. Use of isotope dilution for precise quantification 

The use of synthetic isotopically-stable internal standards enables the precise quantification of proteins. The most 

common approach is the use of the Stable Isotope Dilution (SID) method that consists in adding to all analyzed 

samples isotopically-labelled standards in the same known amount. The concentration of the targeted peptides can be 

measured by comparing the signals from the synthetic heavy-labelled and endogenous unlabeled species (Figure 

II-13). The endogenous and heavy-labelled forms of a peptide have the same physicochemical properties and differ 
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only by their mass. The standard samples are also used to correct for LC-MS signal fluctuations and sample 

preparation biases. The light-to-heavy ratio is then used to inform of the peptide’s concentration. 

Since Trypsin is the most commonly used enzyme in proteomics workflows, the targeted peptides are often tryptic 

peptides. The heavy-labelled versions of these peptides are thus commonly labelled on C-terminal Lysine or Arginine 

residues (
13

C and 
15

N). 

Low-quality Crude synthetic peptides: Several quality ranges exist for synthetic standards. The quality of the internal 

standard depends on the objective of the quantification. A screening quantification for putative biomarkers between 

several different samples each representing a particular condition (healthy vs. diseased, time-course variations, 

different chemical perturbations…) does not necessarily need accurately quantified internal standards. Crude 

synthetic standards of low-purity are frequently used in these cases as they are cheap to produce. They are also very 

useful to optimize the LC-SRM methods. We mostly used crude PEPotec peptides from Thermo Fischer. 

High-quality synthetic peptides: When a project needs a precise relative quantification (absolute quantification) 

highly purified and accurately quantified internal standards are required (AQUA peptides) [90]. However the high cost 

of these standards remains a drawback and this often limits their use in highly multiplexed assays. 

 
Figure II-13: Use of isotope dilution for precise quantification. 

 

If heavy-labelled standard peptides are used it is important to spike the peptides as early as possible to correct 

eventual biases introduced during sample preparation. However, when using peptide level standards, some 

confounding errors cannot be corrected, namely incomplete or nonspecific enzymatic digestion [91, 92], artifactual 

chemical modifications of the targeted peptides or incomplete solubilization of the standard peptide. 

Concatemer proteins: An alternative approach to AQUA peptides consists in using QconCAT (Quantification 

conCATamer)[93]. In this strategy, artificial proteins that are concatamers of tryptic peptides originating from several 

proteins are built. This method consists of the design, the expression in a media enriched in isotopically-labelled 

amino acids of a concatemer protein combining all targeted peptides and a purification step. The advantage of this 

approach is that this heavy labelled protein can be spiked at an early step of the sample preparation protocol thus 

allowing correcting for biases introduced at these steps. However a drawback of this approach is that the efficiency of 
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the tryptic digestion step highly depends on the protein sequence and might thus differ between the QconCAT protein 

and the endogenous proteins. Mirzaei et al. showed that the efficiency of expression of QconCAT proteins depends on 

the arrangement order of concatenated peptides and changing this order can help to increase the yield [94]. This work 

also showed that peptides that are difficult to synthetize chemically can alternatively be generated by the QconCAT 

method. This shows that there is no fit-for-all method and that it is the proteomist’s task to choose the method that 

better fits to the objective of the quantification. 

Full-length stable-Isotopically labelled protein: Alternatively full-length stable-Isotopically labelled proteins can be 

used. The PSAQ (Protein Standard Absolute Quantification) method was introduced by Brun et al. in 2007 [95]. All 

Lysine and Arginine in the protein are labelled with 
13

C and 
15

N stable isotopes. This method has the advantage to 

recreate the same sequence between the internal standard and the endogenous protein. All tryptic peptides can thus 

be used for the quantification of a protein. However, this strategy remains very expensive and requires a long 

development time for the synthesis, the purification and the precise quantification of these proteins. Additionally 

PTMs are not taken into account as they are not present in the internal standard protein which can also result in a 

different behavior between light and heavy proteins. 

All in all, targeted MS-based quantitative assays using internal standards are characterized by high specificity, high 

sensitivity, high multiplexing capability, and high precision which make this approach ideal for biomarker verification 

studies for instance. 

B.  Parallel-Reaction Monitoring 

B.1. Principle of PRM 

Parallel Reaction Monitoring (PRM) is performed using high-resolution high mass-accuracy instruments (Figure II-14). 

The most common instruments used for PRM are hybrid quadrupole Orbitrap (Q-Orbitrap) or quadrupole time-of-

flight (Q-TOF) mass spectrometers [3, 96]. The approach resembles SRM on a triple quadrupole instrument as the 

targeted precursor ion is first selected at unit resolution by a quadrupole and is then fragmented in a collision cell. A 

full scan spectrum of all resulting fragments is acquired. Then the PRM traces for each transition (couple of 

precursor/fragment ions) are extracted in a post-acquisition step. The simultaneous measurement of all fragments of 

a peptide facilitates the method development steps as only the precursors’ m/z ratios and chromatographic 

coordinates are needed. This is an advantage over SRM which needs to previously determine the best transitions for a 

given peptide. Also if interferences from the background matrix are found, in PRM it is possible to easily refine the 

transitions list. 

 
Figure II-14: Principle of Parallel Reaction Monitoring (PRM) in a hybrid Q-Orbitrap or Q-TOF instrument. 
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One additional advantage of PRM over SRM is the higher resolution of Q-Orbitrap and Q-TOF instruments compared 

to QqQ instruments. For example the AB Sciex Triple-TOF 6600 instrument can reach a resolution of 15k (in high 

sensitivity mode) or 30k (in high resolution mode) and hybrid Q-Orbitrap instrument such as the Thermo Scientific Q-

Exactive Plus instrument can work at resolutions of 18k, 35k, 70k or 120k (@200 m/z). This high-resolution added to 

the high-accuracy measurements drastically increase the selectivity of the analysis. This higher selectivity can also 

mean a higher sensitivity as well, because the targeted signal is characterized by higher signal-to-noise ratio and is less 

likely to be interfered by biochemical background noise. 

The development of a LC-PRM method follows the same steps as the ones for an LC-SRM method. However these are 

simplified due to the fact that there is no need to pick the best-responding transitions for each peptide. 

B.2. Instrumental parameters for a hybrid Q-Orbitrap instrument 

The development of a targeted PRM method needs fewer parameters to be optimized. The necessary information to 

analyze a peptide is only its m/z ratio and, optionally, its elution time. This makes PRM significantly user-friendly and 

amenable to rapidly perform targeted quantitative assays on a limited list of targets. The optimization of individual 

transitions is not required. Additionally as for SRM, time-scheduled acquisition can also be performed in PRM 

methods. 

The parameters to be set on a Q-Exactive plus instrument are the resolving power, the maximum injection time, the 

AGC target, the normalized collision energy and the scheduling parameters. The isolation width of the quadrupole is 

normally set at 2Da. The resolving power value is of critical importance as it will have an influence on the selectivity of 

the analysis but also on the sensitivity and on the multiplexing capabilities. Indeed, on an Orbitrap there is a trade-off 

between the resolving power and the acquisition time. There are four working resolution settings on the Q-Exactive 

plus: 18k, 35k, 70k and 140k at 200 m/z. The respective transient times are: 64, 128, 256 and 512ms. Thus, it is 

important to balance the instrument parameters to obtain the best sensitivity, selectivity and accuracy for the 

quantification. 

An important feature of the Q-Exactive Plus is its capacity of parallel acquisition, i.e the accumulation and preparation 

of ions for injection into the Orbitrap during the analysis of the previous ion package in the Orbitrap. This is illustrated 

in Figure II-15. A. This feature results in faster scan cycles. Moreover, the transient time of the Orbitrap becomes the 

limiting factor of the analysis scanning rate. 

To obtain a reliable quantification at least 8 to 10 data points are needed across a chromatographic peak. Therefore, 

for an average FWHM of 30 s, the cycle time must be shorter than 3 s. To fully optimize the instruments duty cycle, 

the maximum fill time of the C-Trap must be shorter than the transient time of the Orbitrap. Otherwise there is down 

time during which the instrument does not acquire any data. If this condition is met then the cycle time can be 

calculated with the following equation in the case of a scheduled PRM method: 

 
An important characteristic of the Q-Exactive Plus is its multiplexing capabilities. The multiplex mode is illustrated in 

Figure II-15. B. In this mode 2 to 10 precursors are sequentially isolated and fragmented in the HCD cell and all the 
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resulting fragments are trapped and accumulated in the HCD cell. Then all the fragments are analyzed simultaneously 

in the Orbitrap. In this case the maximum fill time for each precursor has to be set shorter than the transient time 

divided by the number of co-analyzed precursors (multiplexing degree). The cycle time can be calculated with the 

following equation: 

 
 

This mode can increase the total number of analyzed precursors in a single run. However it can impair the sensitivity 

and the accuracy of the quantification as the fill time of the c-trap is greatly reduced and the resulting data are 

convoluted spectra. This is discussed in further detail on section Part IVChapter IC. on page 100. 

 

 
Figure II-15: Parallel Reaction Monitoring on a Thermo Scientific Q-Exactive Plus (Adapted from [97])  
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Chapter IV Data-Independent Acquisition (DIA) 

A.  Principles of DIA 

Data-Independent Acquisition (DIA) is a group of newly developed acquisition methods that combine the benefits of 

the unbiased characteristics of DDA with the reproducibility, sensitivity and accuracy of targeted methods. 

In DIA, the acquisition of MS/MS spectra is completely independent from the information of MS survey scans. In fact 

the MS scan is not required for some DIA methods. The acquisition of MS/MS spectra is not made to target a given 

precursor ion, making DIA an untargeted and unbiased acquisition mode.  The instrument generates MS/MS spectra 

of all precursor ions isolated in a given predefined large isolation window, or eventually the entire mass range (Figure 

II-16). The MS/MS spectra are thus multiplexed data composed of fragments coming from all peptides coeluted and 

coisolated at a given time.  

 
Figure II-16: Principle of Data-Independent Acquisition 

 

This mode promises the comprehensive MS/MS sampling of all fragment ions of all peptides in a complex sample, with 

the only limitation of them being above the instrument’s limit of detection.  

DIA has emerged in recent years due to the extraordinary technological developments enabling faster scan rates, high 

resolution and reproducible LC conditions. DIA is executed using high-resolution, high mass-accuracy and high scan-

rate instruments. The most common instruments used for DIA are hybrid quadrupole Orbitrap (Q-Orbitrap) or 

quadrupole time-of-flight (Q-TOF) mass spectrometers [7, 98]. 

 

B.  The development of DIA 

The first proof-of-principle study concerning DIA was done by Purvine et al. in 2003 [99]. In this study two analyses of 

the same sample were done using low and high nozzle-skimmer voltages, the first produced mainly MS/MS spectra of 

precursor ions and the second of fragment ions of multiple precursor ions. They also proposed the idea of matching 

extracted chromatographic peak shape of precursor ions to those of suspected fragment ions. This method was 

termed shotgun-CID. In 2005, a refinement of this approach was proposed and commercialized by Waters under the 

name MS
E
 [100]. This approach was executed in a hybrid Q-TOF instrument which scans the full m/z range with 

alternating low and high collision energies (Figure II-17.A). 
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Figure II-17: Signal acquisition scheme of data-independent acquisition 

 

Another school of thought developed in parallel as in 2004 Venable et al. proposed a method based on the sequential 

analysis of small isolation windows (Figure II-17.B) on a linear ion trap mass spectrometer and introduced the term 

data-independent acquisition [101]. In this study sequential twenty 10 m/z isolation windows were analyzed to cover 

only the 900− 1100 m/z range. The gain of signal-to-noise ratio was established when comparing MS2 to MS1 

extracted chromatograms. In 2009 Panchaud et al. proposed a method called precursor acquisition independent from 

ion count, PAcIFIC, which consisted of using 2,5 Da isolation windows to reduce the complexity of MS/MS spectra. 

However multiple runs were needed to analyze a single sample (67 injections during 5 days of analysis) [102]. In 2012, 

the Fourier-transform all reaction monitoring (FT-ARM) was proposed by Weisbrod et al. which consisted in using 

broad 12 or 100m/z isolation windows and profit from the ultrahigh-resolution of FT-instruments to match fragment 

ions to in silico calculated peptide fragment ions [103]. 

Even if these strategies offered quantification advantage, the use of sequential isolation windows was not commonly 

adopted. This was due to the low scan rate of the mass spectrometers at the time and due to the complexity of MS/ 

MS spectra which made the identification of peptides difficult.  

With the commercialization of a faster scanning, more accurate and high-resolution instrument, Gillet et al. proposed 

the Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH MS) method. This was executed on a Q-

TOF instrument that scanned sequential 32x25Da isolation windows to cover the 400-1200 m/z range [6]. The 

identification and quantification of a peptide of interest is done by targeted signal extraction approach. The signal of a 

given peptide is looked for at its corresponding SWATH window and around the retention time window informed by a 

spectral library. Since then new method developments and DIA strategies have been developed and will be presented 

and discussed in Part IVChapter IE. . 

Even if several new studies have used DIA strategies for quantitative proteomic studies with high sensitivity and high 

precision [104, 105], several challenges still remain. Since DIA generates very complex convoluted MS/MS spectra, the 

data analysis is non-trivial. Indeed, even if high resolution and high accuracy instruments are used, due to the wide 
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isolation windows of DIA experiments this approach is still vulnerable of co-eluting interferences that handicap the 

quantification. Moreover several software tools exist but a direct side-by-side assessment of these tools have not 

been done yet. The best practices for protein quantification using DIA data are still to be defined. Finally, the real gain 

in terms of sensitivity, dynamic range and selectivity are still to be proved. This will be discussed in further details in 

Part IVChapter IE. . 

C.  DIA assay workflow 

The steps required for the development of a DIA assay are shown in Figure II-18. The steps required to develop a DIA 

are different from those for targeted proteomics. The quantification analysis starts with a hypothesis, generally less 

specific than those for targeted quantification workflows. Then the LC-MS instrument parameters are optimized 

according to the sample and the instrument used. After the acquisition is done, the data is analyzed using prior 

knowledge concerning the analyzed sample. A targeted signal extraction approach is most commonly used. The 

coordinates of the targeted peptides are inferred by the use of spectral libraries, obtained by previous discovery 

analyses or using publically available databases. Then the confirmation of the presence a given peptide is necessary to 

be able to reliably quantify it. All these steps and the methodological developments towards improving this workflow 

will be discussed in detail in Part IVChapter IE. . 

One of the major advantages of DIA is the possibility of reprocessing the same dataset to test new hypothesis without 

the need to reacquire the sample. For example, if a protein of interest was found to be up-regulated after a given 

stimulus, all proteins related to the pathway where the protein interacts can be quantified without the need to 

develop a targeted SRM method or time-consuming ELISA assays. 

 
Figure II-18: DIA assay development workflow. 
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Chapter V Fit-for purpose strategy for discovery or quantitative Proteomics 

A.  Considerations for the choice of the analytical strategy 

In order to choose the best fitting strategy to respond to a biological question, the following information is needed: 

 The nature of the sample and the nature of the proteins of interest. 

 The proteome coverage that needs to be analyzed (global or targeted). 

 If a targeted method must be used: How many proteins are targeted and if the quantitative response needs 

to be relative or absolute. 

 The MS instruments accessible for the analysis. 

 How many samples need to be analyzed in a short-term and in a long-term. 

 The budget accessible for the project. 

Given the high number of quantification approaches now accessible to the proteomics community, it becomes the 

Proteomist’s task to choose the strategy fitting the best to the purpose of the quantification. The proteomist’s work 

consists in developing and optimizing the quantification method by finely tuning the LC-MS parameters in order to 

correctly balance between the needed sensitivity, the highest accuracy, the highest selectivity and the broadest 

protein coverage. But also keep in mind to reduce the cost of the analysis, the throughput needed in shot- and long-

term. 

B.  Mass spectrometers used during my doctoral work 

Table II-2 presents the description of the MS instruments used in the projects described in this manuscript. For each 

instrument its performance is described for common operation conditions. A description of the application 

possibilities of each platform is provided. 
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Table II-2: Description of Mass Spectrometry instruments present in the laboratory 

Name AmaZon 

ETD 

Synapt G1 Maxis4G Impact HD TripleTOF 

5600 

TripleTOF 

6600 

TSQ 

Vantage 

Q-Exactive 

Plus 

Manufacturer Bruker 

Daltonics 

Waters Bruker 

Daltonics 

Bruker 

Daltonics 

AB Sciex AB Sciex Thermo 

Fisher 

Scientific 

Thermo 

Fisher 

Scientific 

Analyzer type IT (3D) Q-TOF Q-TOF Q-TOF Q-TOF Q-TOF QQQ Q-Orbitrap 

Resolution 3K 9K 40K 40K 30K (MS)  

15K 

(MS/MS) 

 

30K (MS)  

15K 

(MS/MS) 

 

Unit 17,5K to 140K 

at 200 m/z 

70K (MS) and 

17,5K 

(MS/MS) 

70K (MS) and 

17,5K 

(MS/MS) 

Mass accuracy 0,1 - 0,5 Da 15 ppm 10 ppm 10 ppm 15ppm 15ppm 0,7 Da 5 ppm 

Mass range 3 000 m/z 20 000 

m/z 

20 000 m/z 20 000 m/z 40 000 m/z 40 000 m/z 3 000 m/z 6000 m/z 

Q1 selection 

range 

-  4000 m/z 4000 m/z 4000 m/z  5–1250 

m/z 

 5–2250 m/z 3 000 m/z 6000 m/z 

Acquisition 

speed 

4Hz 1Hz 10 Hz 17 Hz 20 Hz 20 Hz 50Hz 13 Hz 

(17,5K 

@200 m/z) 

7Hz (35K 

@200 m/z) 

3 Hz (70K 

@200 m/z) 

Year of 

installation 

2009 2009 2011 2013 2014 2015 2011 2014 

Applications Discovery 

Proteomics 

(Highly 

fractionated 

samples) 

Discovery 

Proteomics 

(Highly 

fractionate

d samples) 

Discovery 

Proteomics 

(Highly 

fractionated 

samples) 

Discovery 

and 

Quantitative 

Proteomics 

Discovery 

and 

Quantitative 

Proteomics 

Discovery 

and 

Quantitative 

Proteomics 

Quantitative 

Proteomics 

Discovery 

and 

Quantitative 

Proteomics 

Quantification 

possibilities 

Spectral 

Count 

Spectral 

Count 

Spectral 

Count 

MS1 

Filtering 

PRM, MS1 

Filtering 

and DIA 

PRM, MS1 

Filtering and 

DIA 

SRM PRM, MS1 

Filtering 

and DIA 

 

C.  Challenges for Quantification 

As stated before the proteome is an extremely complex sample due the high number of proteoforms that can be 

present for a single canonical protein [3], and also due to the broad dynamic range of protein abundance [4, 11]. Since 

the dynamic range of an MS instrument can reach 3 to 5 orders of magnitude depending on the acquisition mode, 

complex sample preparation workflows have to be carried out in order to reduce the dynamic range or to 

decomplexify the sample. However this can introduce biases in overall protein recovery. 

For quantification the data reproducibility and accuracy is very important. The LC-MS systems must be regularly 

monitored to avoid confounding errors due to instrumental perturbations. As well, the sample preparation protocols 

must be validated and optimized to minimize sample losses and the inherent variability that is associated with 

complex and multi-step sample preparation protocols.   

In bottom-up Proteomics the inference of protein quantitative information from peptide information is still a 

challenge and a “best-practice” method is still not defined [35]. Since the most common approach for protein 

identification highly depends on the protein database, this must be as complete and as adapted to the sample 
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analyzed as possible. However due to the enormous number of proteoforms that can be expected, a consensus 

database will never completely represent the protein content of a sample. This has consequences in the quantification 

of a protein as the analysis of a given protein could only be partial. Likewise, a challenge of proteomics is to determine 

post-translational modifications and the added difficulty of the quantification of PTMs comes from the fact that they 

are dynamic.  

The quantification of a proteome can only benefit from extending the reach of bottom-up proteomics to 

comprehensively analyze the proteome. Understanding the limitations of the methodologies is absolutely necessary 

to propose solutions to them. These limitations can originate from analytics or informatics.  

In this context Proteogenomics can have a significant beneficial impact on the quantification of a proteome. This field 

of science will be presented in the next part. 
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Part III State of the art of 
proteogenomics 

 

Chapter I  Proteogenomic analysis 

A.  Introduction 

Protein identification is carried out by search algorithms that compare the experimental lists of precursor and 

fragment masses obtained by LC-MS-MS/MS to a list of masses produced in silico from a protein database. This 

procedure relies on the completeness of the protein database used by the search algorithm. If a peptide sequence 

differs, even slightly, from the peptide sequence present in the database, it will not be identified. Yet databases used 

in bottom-up proteomics are often incomplete. 

Additionally it is necessary to control the database and the search space size. The more candidates there are to 

explain a given spectrum, the lower the specificity of the identification and the higher the risk to have false positive 

interpretations. The reliability of protein identification relies on the correct balance between the database size and its 

completeness in regard with the proteome being analyzed. 

For non-model organisms, protein databases are populated by homologous protein sequences from related 

organisms. This allows the identification of highly conserved peptide sequences but this approach does not allow the 

identification of organism-specific variant peptides. 

Furthermore not all protein-coding genes are known and thorough gene annotation is far from complete. Novel 

protein coding genes are still being identified, even for the human genome [106]. Errors in gene annotation can 

propagate errors in protein sequences, such as incorrectly defining open reading frames and badly identifications of 

translational start sites, thus making identification of MS spectra impossible [68]. Furthermore, a single gene can give 

rise to many different biomolecules, for example splice variants [107], and these biomolecules might not be present in 

the reference database. Furthermore even if an extremely important amount of genomic, transcriptomic and 

proteomic knowledge is already available, the challenge remains to integrate all this big-data towards the 

improvement of peptide identification without compromising sensitivity and specificity. 

To identify peptides that are not present in the database several bioinformatic methodologies have been developed, 

such as variant-tolerant sequence-tag based algorithms [108, 109] and de novo sequencing [110]. Variant-tolerant 

sequence-tag based algorithms search to identify small sequence tags, of 3 to 5 amino acids, in a given spectra and 

find candidate peptides in the protein database that possess the sequence-tag allowing a mutation in the peptide 

sequence. These techniques enable the identification of protein sequence variants or splice isoforms. However, they 

require large computational power and are prone to error when used in large-scale studies. Additionally these 

approaches need a reference protein database for peptide identification. Even if they allow a small change in the 

peptide sequence compared to the one present in the database, they still depend on the completeness of the 

database. As a response to this problem the field of Proteogenomics has developed. 
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B.  Proteogenomics 

B.1. Definition 

Proteogenomics is a field at the interface between Genomics and Proteomics. At the early stages of this science, 

proteogenomics aimed at refining genome annotations from protein analysis [8]. Now the meaning of 

Proteogenomics was extended to all applications integrating multi-omics data in order to unify genome information 

and measures of abundance and characterization of proteins. This enables a better understanding of a biological 

system and provides information that could not be obtained otherwise by the isolated analysis of DNA, RNA or 

proteins [9, 111, 112].  

Several factors have helped the fast development of this field: 

 The expansion of Knowledgebases and data repositories. 

 The remarkable technical development in sequencing techniques (next generation sequencing (NGS), exome 

sequencing (WES), RNA sequencing (RNA-seq), ribosome profilling). 

 The appearance of proteogenomics bioinformatics tools. 

 The developments of mass spectrometers with high scanning rates, high resolution, high sensitivity and high 

mass accuracy. 

B.2. Types of novel peptides identified 

Proteogenomics allows the identification of novel peptides that would otherwise be missed by a classical proteomics 

approach. Several studies have shown the capability of proteogenomics to identify sequence variants and 

polymorphisms [11], small open reading frames [113], and proteins arising from annotated genes as novel protein-

coding genes, pseudogenes [114], long non coding RNA (encoding polypeptides) [115] and gene fusions (Figure 

III-1.A). When using RNA data it is possible to identify peptides mapped to alternative splicing, RNA edits, and regions 

annotated as introns, exon boundaries and untranslated regions (3’-UTR and 5’-UTR). Also there is the possibility to 

identify out- of-frame peptides arising from alternative open reading frames. 

 
Figure III-1 : Overview of variant peptides that can be identified in proteogenomics. 
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C.  Tools for proteogenomics 

C.1. Database customization using public resources 

Proteogenomics can improve protein identification by creating customized protein sequence databases using genomic 

and transcriptomic information.  Different methodologies exist to use the information already provided by the 

scientific community. Table III-1 lists the most common resources for genomic, transcriptomic and proteomic 

annotations. 

The most direct approach is to use a six-frame translation of the whole genome. This approach does not depend on 

gene models and contains all possible proteins with the exception of peptides mapping the exon junction regions 

[116]. The major drawback of this approach is the large size of the database and the large amount of background 

noise. For example, the translation of the whole human genome is 70 times larger than a curated reference database. 

However, only 2% of the genome is protein-coding. This approach drastically increases the search space. Consequently 

there’s a high risk of false positive and false negatives. Also it requires a great amount of computational power.  

Some approaches have been developed to circumvent this problem. The use of multi-stage searches with multiple 

databases, fractionated by chromosomes for example [117], has been proposed. Other methods use a prior step of 

peptide fractionation and several customized databases based on predicted physico-chemical characteristics, such as 

pI [118]. Approaches using ab initio prediction algorithms to identify protein-coding regions have been used to reduce 

the database size [119].  The use of exon prediction has the advantage to account for splicing events. A database 

containing theoretical exon-exon junctions accounting for all possible combinations can be created in order to identify 

novel slicing variants [120]. Even if when using these methods the computational efficiency can be increased, large 

amount of background noise are still generated, as there is no proof of the transcriptional evidence of these predicted 

biomolecules. 

Using data from annotated RNA transcripts - using GENCODE [121] or RefSeq [66] databases for example – to make a 

three-frame translation it is possible to generate a protein sequence database. This enables the identification of out-

of-frame peptides and alternative translation initiation sites. The database can also contain information of RNA 

transcripts annotated as long non-coding RNA [122] or as pseudogenes [123]. However, the problem of the size 

expansion of the protein database remains. 

Single nucleotide variants or polymorphisms can also be included in a customized database. Databases listing these 

genomic variations exist (COSMIC [124], dbSNP [125]) and protein-centric knowledgebases also include annotations of 

sequence variants (Uniprot [69], Nextprot[70]). However, the number of reported SNPs is very large and the majority 

of them are rare. In the latest NeXtProt release (January 2016) 2,481,976 variants have been annotated for the entire 

human proteome. To reduce the number of SNPs, it is possible to work in a specialized subset of variants. For 

example, Li et al. created a database for single amino acid variations found to be related to human cancer [126]. 

Finally, when looking for SNPs one must keep in mind to make sure that the small mass changes found are not 

originated by a chemical modification that generates the same mass change. 
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Name Description URL Ref. 

COSMIC Catalogue of Somatic Mutations in Cancer. 
 

http://cancer.sanger.ac.uk/cancergeno

me/projects/cosmic/ 

[124] 

dbSNP The NCBI dbSNP database of genome variation complements GenBank by 

providing the resources to build comprehensive catalogs of common genomic 

variations in humans and other organisms. 
 

http://www.ncbi.nlm.nih.gov/SNP/ [125] 

ECgene Genome annotation for alternative splicing. 
 

http://genome.ewha.ac.kr/ECgene/ [127] 

ENSEMBL Publicly available software system which produces and maintains automatic 

genomic annotation and integration of this annotation with other available 

biological data. 
 

http://www.ensembl.org/ [128] 

GenBank GenBank is a comprehensive database that contains publicly available 

nucleotide sequences for more than 300 000 organisms named at the genus 

level or lower, obtained primarily through submissions from individual 

laboratories and batch submissions from large-scale sequencing projects. 
 

http://www.ncbi.nlm.nih.gov [64] 

GENCODE High quality reference gene annotation and experimental validation for 

human and mouse genomes. 
 

http://www.gencodegenes.org/ [121] 

neXtProt The human protein-centric knowledgebase provides a state of the art 

resource for the representation of human biology by capturing a wide range 

of data, precise annotations and fully traceable data provenance. 
 

http://www.nextprot.org [70] 

NONCODE A database of noncoding RNAs. 
 

http://noncode.org/ [122] 

OMIA Online Mendelian Inheritance in Animals - Catalogue/compendium of 

inherited disorders, other (single-locus) traits, and genes in 219 animal 

species. 
 

http://omia.angis.org.au/  [129] 

Pseudogene.org Comprehensive database of identified pseudogenes, utilities used to find 

pseudogenes, various publication data sets and a pseudogene 

knowledgebase.  
 

http://pseudogene.org/ [123] 

RefSeq The NCBI Reference Sequence (RefSeq) database provides curated non-

redundant sequence standards for genomic regions, transcripts (including 

splice variants), and proteins. 
 

http://www.ncbi.nlm.nih.gov/RefSeq/ [66] 

UniProt The Universal Protein Resource (UniProt) is the world's most comprehensive 

catalog of information on proteins. It is a central repository of protein 

sequence and function created by joining the information contained in Swiss-

Prot and TrEMBL. 

http://www.uniprot.org/  [69] 

Table III-1 : Most common databases used in proteogenomics studies 
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Chapter II N-terminomics analysis 

A.  The importance of N-terminomics 

As seen above, pre- and post-translational modifications give rise to a plethora of proteoforms originating from a 

single gene. These proteoforms can differ by amino acid composition, chemical modifications and size. The start of a 

protein, the N-terminus, is a highly critical protein characteristic that has a great impact in protein function, protein 

stability and its localization in the cell. The protein N-terminus can contain signal peptides that direct protein 

translocation or activation. For example, in mitochondria and chloroplasts transit peptides guide proteins specifically 

to these subcellular locations. Once the proteins reach their destination the transit peptides are often cleaved. 

Furthermore, some proteins need proteolysis to reach maturation. For example, trypsin is synthetized as its precursor 

inactive form Trypsinogen. The proteolysis causes a slight rearrangement of the protein structure that activates the 

protease site. Additionally proteolysis can also regulate biological processes such as removal of N-terminal methionine 

and protein degradation. Protein truncation is an irreversible modification, and as such, it can have a direct effect on 

the phenotype. Proteases exist in all domains of life and constitute one of the largest enzyme families in humans 

[130]. 2% of the human genome codes for proteases but their respective substrates and functions have not been fully 

characterized [131]. 

N-terminal post-translational modifications also play a role in biological processes [132]. N-α-acetylation is a very 

common modification. It is present in more than 50% and 80% of yeast and human cytosolic proteins [22, 133]. It has 

been shown that this modification is essential for cell viability and survival but the reasons for this are yet to be found. 

Some studies link N-terminal acetylation to protein protection or specific signaling for degradation, protein delivery 

and localization and complex formation [134]. 

In the proteogenomics context, studying the real start positions of proteins has an interest in the refinement of 

database annotation. The majority of protein databases are obtained from prediction and translation of DNA 

sequences. For example, the database of all species in UniprotKB/Swissprot (version 2016_02) contains only 27, 1% of 

proteins with evidence at protein or transcript level. 

B.  State of the art of N-terminomics 

Multiple strategies exist for the analysis of proteins N-termini In a bottom-up proteomics experiment highly complex 

samples are analyzed and N-terminal peptides are greatly outnumbered and overshadowed by internal peptides. In a 

common DDA experiment only the information of the canonical protein N-terminus present in the database can be 

obtained. To be able to study specifically, with high confidence and sensitivity, the exact position of the protein N-

terminus after processing, enrichment and tagging protocols are necessary. I listed in the following sections recent 

developments in N-terminomics separated by positive (i.e. concentration of N-terminal peptides) and negative 

selection strategies (i.e. depletion of internal peptides). N-terminomics approaches are reviewed in the following 

references: [134-136]. 

B.1. Positive selection of protein N-termini 

Positive selection strategies for the analysis of protein N-termini often consist in a chemical or enzymatic 

derivatization of the protein N-terminus followed by trypsination and ending with a concentration and purification 

step. For this to be possible the α-amino group of the protein must be unmodified. An illustration of the methods 

presented here is available on Figure III-2 and a summary of their characteristics is presented in Table III-2. 
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A method called N-terminalomics by Chemical Labeling of the α-Amine of Proteins (N-CLAP) uses a protection step by 

phenylisothiocynate of all the primary amines in the protein (α-amines of protein N-termini and ε-amines of lysine 

side chain) followed by a single cycle of the Edman degradation reaction [137]. The new N-terminus is linked to a 

sulfo-NHS-SS-biotin group which can be cleaved by a reduction step. The protein is typsynized and then captured by 

immobilized avidin. A similar strategy uses a modified subtiligase enzyme to enzymatically biotinylate the α-amino 

group of protein N-termini [138]. In this approach the Biotin is bonded to a tobacco etch virus (TEV) cleavage motif. 

After digestion and immobilized avidin capture, the n-terminal peptide can be released by a highly specific TEV 

proteolysis step. N-terminal peptides keep a SerTyr tag in the N-terminal position. Possible drawbacks of these 

methods are the low enzymatic biotin reaction efficiency [139] needing thus high quantities of samples (typically 50–

100 mg of a complex mixture per experiment) and the selection bias of the subtiligase specificity to the N-terminal 

sequence of the protein [140]. A recent development of the enzymatic biotynilation by the modified subtiligase 

enzyme method, enabled the targeted quantification of N-terminal peptides by LC-SRM [141]. 

Two other methods are based on a first step consisting of guanidination protection of ε-amino groups. Then the n-

termini is labelled by chemical biotylination with sulfo-NHS-SS-biotin previous to digestion and capture by immobilized 

avidin [142]. N-succinimidyl S-acetylthioacetate (SATA) can also be used to label free protein N-termini and add a thiol 

group. Then after digestion, N-terminal peptides are covalently bound to a thiol-reactive resin. Internal peptides are 

washed away and N-terminal peptides are released by a reduction reaction [143].  

Bland et al. introduced a recently developed N-terminomics technique[144]. It consists of a TMPP-derivatization step 

((N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium) at the protein level followed by a 

digestion step. Reverse phase chromatography is used to eliminate the excess of TMPP and degradation by-products. 

Then TMPP-derivatized N-terminal peptides are captured onto magnetic beads having an anti-TMPP antibody. 

All methods mentioned above enable the study of free protein N-termini. In order to study natural occurring 

acetylated N-termini different strategies must be employed. An example is the used of dimethyl labelling of the α-

amino groups of internal peptides after protein digestion. Then acetylated N-terminal peptides are purified by SCX-

SPE. Dimethylation does not change the overall charge of the peptide but it increases its basicity enabling thus the 

separation from acetylated peptides[145]. 
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Figure III-2: N-terminomics strategies by positive selection of protein N-termini 

 

B.2. Negative selection of protein N-termini 

Negative selection strategies consist in selectively depleting internal peptides. They enrich both free and modified 

protein N-termini thus providing a more comprehensive analysis of the N-terminome. These strategies consist in a 

chemical derivatization of the protein N-terminus followed by digestion. The internal peptides have now a free α-

amino group and these will be used to selectively remove them. An illustration of the methods presented here is 

available on Figure III-3 and a summary of their characteristics is presented in Table III-2. 

One of the most mentioned method is the combined fractional diagonal chromatography (COFRADIC). In it α-amino 

and ε-amino groups are acetylated, then proteins are digested and the resulting peptides are fractionated by reverse 

phase chromatography. For each fraction the α-amino group of internal peptides is derivatized by 2,4,6-

Trinitrobenzenesulfonic acid (TNBS). Trinitrophenylated internal peptides are more hydrophobic than prior to the 

derivatization. During a second reverse phase chromatography step, internal peptides retention time is shifted to the 

right and separated from N-terminal peptides whose retention time did not change. Although this method enables a 

comprehensive analysis, the extensive fractionation can lead to sample loss and it requires significant instrument time 

(>100 fractions per run) [146]. The COFRADIC method also enables N-terminome relative quantification by introducing 

stable heavy isotopically labeled reagents during the workflow (such as the trideutero-acetylation of primary free 
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amines in the first stage to determine the degree of naturally occurring α-N-acetylation) or the metabolic labeling by 

SILAC approach [147].

Variations of this protocol exist where the chemical label can change. A method using TMPP to label the protein N-

termini was recently reported [148]. After the acetylation of ε-amino groups of lysine the protocol is the same as 

COFRADIC. Another derived method is the charged-based fractional diagonal chromatography (chaFRADIC) where the 

protein N-termini are dimetylated, then proteins are digested and fractionated using SCX-HPLC [149]. Internal 

peptides are then trideutero-acetylated, decreasing thus their charge by one state of charge. A second SCX-HPLC step 

is carried out, N-terminal peptides having not change their charge state will elute at the same elution time. 

Another widely reported method is the terminal amine isotope labeling substrate (TAILS) [150]. In this method protein 

α-amino groups are dimetylated before digestion with trypsin. Internal peptides are then captured by an amine-

reactive polymer (hyperbranched polyglycerol-aldehydes, HPG-ALD). Internal peptides are removed by ultrafiltration 

and N-terminal peptides collected. The TAILS method also enables N-terminome relative quantification by using light 

or heavy stable-isotope dimethyl labelling to compare two samples or iTRAQ labelling to achieve an 8-plex comparison 

[151].  

As the TAILS strategy, two other methods use a demethylation step prior to digestion and use the reaction between 

an aldehyde and a primary amine to remove internal peptides. The dimethyl Isotope-Coded Affinity Selection (DICAS) 

method also resembles this approach but utilizes an aldehyde matrix to deplete internal peptides (POROS-AL) [152]. 

The phospho tagging method (PTAG) uses glyceraldehyde-3-phoshate (GAP3) reagent to derivatize internal peptides 

which are subsequently depleted through binding to TiO2 [153].  

 

 
Figure III-3 : N-terminomics strategies by negative selection of protein N-termini 
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B.3. Databases dedicated to the study of proteolysis 

Several databases dedicated to the study of proteolysis exist. The MEROPS database classifies proteases from all 

species and provides information about their substrates, cleavage sites and inhibitors [154]. However access to 

original data is not available. 

Other databases are specific to a certain N-terminomic approach. The data coming from the Gevaert laboratory that 

developed the COFRADIC approach is stored in the online protein processing resource (TOPPR) [155]. It provides 

information of proteolytic sites coming from studies on human and mouse samples. The Wells laboratory, which 

developed the enzymatic biotynilation by the modified subtiligase enzyme method, stores its data on the DegraBase 

[156]. This database contains proteolysis information coming from normal and apoptotic human cells. The Overall 

laboratory, which developed the TAILS method, created the Termini-oriented protein Inferred Database (TopFIND) 

database [157]. Contrary to the two previous databases this one is open to contribution from the scientific community 

but access to the original data is not possible. 

B.4. Current limitations 

N-terminomic analysis is not an easy task, several approaches exist and each one is accompanied by its set of 

limitations. These will be discussed here and more details can be found on this subject in Table III-2. 

As for proteomic analysis, one of the most difficult limitations to overcome in N-terminomic analysis is the large 

dynamic range of complex proteomes that hinders proteome coverage. To reduce the impact that highly abundant 

peptides have on lower abundant peptides, strategies using extensive fractionation can be used. Also protocols 

enriching subproteomes, such as organelle enrichment, can be used to increase specific proteome coverage. 

Another shortcoming of some N-terminic strategies is the non-specific labelling of ε-amino groups on lysines. Even if 

α-amines and ε-amines have close reactivity, close attention must be put on finding experimental conditions in which 

derivatization specificity for α-amines is attained. Especially when using positive selection strategies. Furthermore 

positive selection strategies are also very dependent on the completeness of the α-amines derivatization. If 

incomplete this can impede the identification of N-terminal positions present in the sample. 

The goal of enrichment is to separate internal peptides from N-terminal peptides. However enrichment is sometimes 

incomplete and can result in sample loss. For example, when using a non-covalent interaction the internal peptides 

are not fully depleted. For example when using a SCX-based protocols to enrich acetylated peptides more than 50% of 

identified peptides are internal peptides [145]. These number is reduced when using covalent interaction as in the 

TAILS protocol where 6% of all identification are internal peptides [132].  

Distinguishing between naturally occurring proteolysis and protein degradation during sample preparation is also a 

challenge. To tackle this problem protease inhibitors should be used and the number of sample preparation steps at 

the protein level should be reduced.  

The enzyme used for digesting proteins into peptides has a direct effect on the proteome coverage. Depending on the 

physicochemical properties of the N-terminal peptide (charge, hydrophobicity, size…) it can maybe not be detected 

even if it is present in the sample. Complementary proteases can be used to create different sequences for the n-

terminal peptides and enlarge the coverage [158]. 

Finally the most challenging problem in N-terminomics is to understand the biological origin of a given N-terminal 

position. Fortelny et al. illustrated the problem of the current ignorance of the genesis of truncated protein N-termini 

[157]. In this work they took the N-terminal positions measured experimentally from the TopFIND database and tried 
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to match them to predicted N-terminal positions. These predictions came from predicted protease cleavage sites and 

predicted N-termini coming from alternative translation and alternative splicing. They found out that only 6% of all 

experimentally observed N-terminal positions can be explained. 

This gap in knowledge illustrates the need for more enriched and curated databases. It also shows that the 

identification of N-terminal positions alone is no longer sufficient to answer biological questions. Quantification 

strategies should be developed in order to find specific cleavage sites induced by specific experimental conditions. 

Table III-2 : List and characteristics of some N-terminomic approaches 

  

Strategy  

Quantity 

needed per 

experiment 

(in µg) 

Unmodified 

N-terminus 

Modified 

N-terminus 

Relative 

quantification 
Comments Ref. 
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N-terminalomics by Chemical Labeling 

of the α-Amine of Proteins (N-CLAP) 
100 yes     

- Peptides loose first amino acid after Edman reaction.  

The true N-terminal amino acid is not measured. 

- Incomplete PITC-labelling reaction could lead to 

erroneous identification of the protein N-terminus. 

[137] 

Enzymatic biotinylation of protein N-

terminal by Subtiligase enzyme 
20000-100000 yes   yes 

- Expensive patent-protected enzyme 

- Selection bias of the subtiligase enzyme 

- Large quantities of sample are needed 

[138] 

Lysine guanidination 2000 yes     

- labelling reagent NHS-SS-biotin can react with side 

chains of serine, threonine, histidine and unreacted 

lysine residues. 

[142] 

Resin-Assisted Enrichment of N-

Terminal Peptides 
100 yes   

 

- Very dependent of the efficiency of the guanidination 

reaction. Must not have overguanidination of α-amino 

groups or low efficiency at ε-amino groups. 

- Needs thiol-reactive resin 

[143] 

Magnetic Immunoaffinity Enrichment 

of N-Terminal-TMPP-Labeled Peptides 
3000 yes     

- Multiple preparation steps prone to sample loss 
[144] 

Nα-Acetylated Peptide Enrichment 

Following Dimethyl Labeling and SCX 
50   yes   

- Loss of unmodified N-terminal peptides 
[145] 
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Combined fractional diagonal 

Chromatography (COFRADIC) 
1000 yes yes yes 

- Extensive fractionation prone to sample loss 

- Instrument time consuming (>50 fractions/sample) 
[146] 

Terminal amine isotopic labeling of 

substrates (TAILS) 
100 yes yes yes 

- losses due to non-specific binding to polymer 
[150] 

Phospho tagging (PTAG) 100 yes 

yes (except 

phosphoryl

ated) 

  

- Losses due to non-specific binding to TIO2 

- Time-consuming preparation protocol (4-days) [153] 

Dimethyl Isotope-Coded Affinity 

Selection (DICAS) 
100 yes yes   

- Needs one home-made packed cartridge per sample 

- 8 to 10h of loading time 
[152] 

              
 

doublet N-terminal Oriented Proteomics (dN-TOP) 50-100 yes yes yes 
- Modified N-termini are not lost but they are not 

enriched. 
[159] 
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Part IV Results: Quantitative 
proteomics developments and 

applications 
 

Chapter I Methodological developments for quantitative proteomics 

A.  Optimization of targeted proteomics method development workflow 

I developed a fast and efficient method for SRM assay development. The general workflow can be seen in Figure IV-1. 

The development of a LC-SRM assay starts with defining the list of targeted proteins. This choice can be hypothesis-

driven, based on previous knowledge or result from previous discovery proteomics studies. 

The development of the assay is then followed by the development of, in one side, the sample-specific preparation 

method, and in the other side the development of the protein-specific LC-SRM assay. The detailed explanation of each 

step is presented in the following paragraphs (paragraphs A.1 to A.5) and a step-by-step walkthrough for SRM assay 

development is described in paragraph A.6. 

A.1. Sample preparation 

The sample preparation method needs to be optimized every time and adapted for each analyzed sample. It is 

important to keep in mind that in order to obtain a more precise and accurate quantification, the sample preparation 

method has to be a simple and non-fractionated protocol. 

The development of a rapid and non-fractionated sample using Stacking SDS-PAGE protocol was discussed in Chapter I 

part B.2above. 

 
Figure IV-1: LC-SRM method development workflow. 
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A.2. Peptide selection 

To choose the best signature peptides to quantify the targeted proteins all possible tryptic peptides are filtered based 

on the peptide backbone sequence, on its unicity and on their physico-chemical properties that make them visible in 

LC-MS conditions and make them accurate proxys for the proteins of interest. This is illustrated in Figure IV-2. 

First all possible peptides are filtered based on their backbone sequence. Tryptic peptides between 7 to 25 amino 

acids are chosen to fit within the m/z range analyzable with triple-quadrupole instruments (50-2000 range). Peptides 

below 7 amino acids are not well retained on a reverse phase column and long hydrophobic peptides are not well 

eluted and should be avoided. Peptides without any missed cleavages are preferred and possibly without ragged ends 

(two enzymatic cleavage sites next to each other) which produces irreproducible digestion yields. An advantage of 

SRM is that it enables the possibility to monitor interesting PTMs (acetylation, phosphorylation…). However it is 

important to verify that the surrogate peptides are not prone to unwanted modifications, such as Oxidation (Met, 

Trp), N-terminal pyroglutamic acid (N-terminal Glu under acidic conditions) and deamidation (Asn to Asp, Gln to Glu). 

This information can be found in Protein-centric Knowledgebases as Uniprot and NeXtprot. Also it is important to 

verify that the chosen peptides are not subject to other types of modifications (proteolysis, signal/transit cleavage 

sites…) or have possible sequence variants (SNPs). 

 
Figure IV-2: Choosing proteotypic peptides. 

All possible tryptic peptides are filtered based on the peptide backbone sequence, on its unicity and on their physico-chemical 

properties that make them visible in LC-MS conditions.  

If the sample preparation conditions are well controlled to avoid oxidation, Tryptophan-containing peptides can be 

chosen preferentially since the tryptophan residue is quite rare which provides a higher degree of specificity. 

Moreover proline-containing peptides can also be chosen preferentially as their fragmentation at the N-terminal side 

of the proline residue generates an intense fragment ion which can result in high sensitivity. It is also important to 

choose signature peptides well distributed across the protein sequence to obtain a good coverage of the protein. 

Once a set of possible candidates is found the unicity of each peptide is checked by performing a BLAST against the 

whole proteome of interest. At this point the method can target specific isoforms or sequence variants. 

An important step is to verify the peptide’s response to LC-MS conditions. To choose the best peptide to quantify a 

protein a priority-based system was developed. A high priority is given to peptides that have already been seen and 
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respond well to LC-MS conditions in previous experiments. Data provided by the scientific community in databases or 

repositories (SRMAtlas [160], PeptideAtlas [161], ProteomeXchange [162], ProteomicsDB [163]). If no LC-MS data has 

been acquired for the surrogate peptides prediction algorithms exist to predict LC-MS behavior (PeptideSieve [164], 

ESP predictor [165], Detectability predictor [166], STEPP [167], PeptidePicker [168]). 

If enough peptides pass the filters described above, an additional hydrophobicity filter can be used to select the best 

responding peptide. For example, the SSRCalc algorithm uses a sequence-specific model to predict peptide behavior in 

reverse phase liquid chromatography[169]. It serves in this case to eliminate possible too much hydrophilic or too 

much hydrophobic peptides. 

The peptides that pass all the filters mentioned above are called proteotypic peptides. These peptides will be 

signature peptides to accurately represent the level of the targeted protein. 

 
Figure IV-3: Number of proteotypic peptides per protein in the entire human proteome. 

The entire human proteome was digested in silico and filtered in order to obtain all possible proteotypic peptides. A. The 

distribution of the number of proteotypic peptides per protein is shown. B. For all tryptic peptides between 7 to 25 amino acids in 

length the percentage of peptides that have been observed in LC-Ms experiments is given. The small percentage of observed 

peptides illustrates that not all of the potential proteotypic peptides are good candidates for quantification. 

To illustrate the importance of these selection criteria we applied these filters to all the possible tryptic peptides 

between 7 to 25 amino acids of the entire human proteome (UniportKB/Swissprot version 2014_04). No shared 

peptide and no methionine-containing peptides were kept. We obtained with these filters 389974 tryptic peptides 

belonging to 19815 different proteins. For 98% of all proteins in the database a potential proteotypic peptide was 

found. The results showed that the mean number of potential proteotypic peptides per protein is around 19 and the 

median is at 14 (Figure IV-3). Seeing the distribution of proteotypic peptides per protein we could therefore conclude 

that there are enough peptides to quantify all proteins in the human proteome. However, to evaluate the peptides’ 

response to LC-MS conditions, we looked for the number peptides that have been detected. We extracted this 

information from the high-quality and highly-curated database neXtProt [70]. As of April 2014, only 26% of all possible 

proteotypic peptides have been detected using LC-MS systems covering 66% of all proteins. This shows that not all of 

the potential proteotypic peptides are good candidates for quantification. That’s why the highest priority has to be 

given to peptides already seen in LC-MS experiments. This ensures that the developed LC-SRM assay will give the best 

results. 

A.3. Transition selection 

For each signature peptide, it is important to make the choice of the transitions that will provide the best sensitivity 

and specificity, i.e. the highest signal response and the lowest interfering signals. 

Using CID fragmentation singly charged y- and b- fragment ions are chosen. Small m/z ratios are not specific enough 

since multiple amino acid combinations can result in the same mass. Fragment ions with high m/z ratios are preferred 
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over small fragments, since this gives more specificity to the measure, preferably those with m/z ratios higher that the 

precursor m/z ratio. 

To choose the best transitions it is possible to calculate in-silico all the fragments m/z ratios for a given peptide and 

filter them with the criteria listed above. But this does not take into account how a peptide will respond to mass 

spectrometry and CID fragmentation. Public repositories and databases can be used to export spectra that can be 

used to choose the best-responding fragments (SRMAtlas [1], PeptideAtlas [2], ProteomeXchange [3], Proteomics DB 

[163]). 

To facilitate the choice of transitions crude heavy-labelled peptides can be synthetized and use them to create 

spectral libraries from which the most intense fragment ions for each peptide can be picked. The library can come 

from different instrument configurations (IT, QqQ, Q-TOF or Q-Orbitrap). This method has the advantage of knowing 

how the peptide responds chromatographically (peak shapes, retention times) and in mass spectrometry (response 

factor, fragmentation pattern, charge states). Some small differences in the fragmentation pattern and the peptide 

charge distribution can exist between different instruments [170], however choosing the most intense transitions 

from a spectral library enables to fasten the SRM assay development step. The most intense transitions identified in 

Q-TOF, IT or Q-Orbitrap using CID fragmentation will be the same in triple-quadrupole instruments. The instrument-

specific changes in relative intensities/fragmentation pattern will be discussed below. 

Finally it is important to keep in mind to look for interferences using the real sample matrix, especially in complex 

digest samples where hundreds of peptides can coelute and have close m/z ratios which can impair the quantification.  

A.4. Concentration-balanced mixture of synthetic heavy –labelled peptides 

To be able to correctly quantify the targeted proteins, the heavy-labelled and the light peptides have to be close in 

intensity. This enables a more accurate estimation of the endogenous protein abundance. 

In our approach we use crude heavy-labelled peptides (Thermo Fischer PEPotec peptides) that are not fully purified 

and the exact concentration is not known. These peptides are used to optimize LC and MS parameters. First a mixture 

of all targeted peptides is prepared by empirically finding the dilution factors needed to obtain a mixture where all 

peptides are in detectable levels. Each peptide has to be in a sufficient amount to be easily detectable but not in an 

excessive amount to overshadow other analytes or have a bad behavior in LC-MS conditions (column saturation, ion 

suppression effects...). 

A first estimation of the correct dilution factor for each peptide can be obtained when creating the spectral library. To 

do this, a series of LC-MS/MS runs with different dilutions factor are performed. If a peptide can be detected than it 

goes into the spectral library, if it does not a less diluted solution is prepared and analyzed until the peptide is 

detected correctly. This way the targeted peptides can be divided into categories of dilution factors to generate a 

concentration balanced mixture. In a latter step of the SRM assay optimization the levels of each heavy-labelled 

peptide are adjusted to match the levels of the endogenous peptides. Kuzyk et al. showed that the use of 

concentration-balanced mixtures improve the precision of the quantification [171]. 

A.5. LC-MS parameter optimization 

A.5.1 Retention time prediction 

In a classical SRM experiment, all transitions are monitored throughout the whole run. Using this scanning mode we 

are limited in the multiplexing and the scanning time parameters. A way to enhance the instruments capabilities is to 
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use the Scheduled-SRM mode, where the transitions of a peptide are monitored only around its retention time. This 

allows optimizing the instrument’s scanning time and also increasing the total number of transitions and peptides that 

can be monitored in single run. 

Thousands of SRM signals can be monitored in a single run using scheduled SRM mode with small time windows [172]. 

But this is only possible if the retention times of all targeted analytes are precisely known and the chromatography 

system is precisely controlled and reproducible. 

Several methods exist to determine the retention time of a peptide. We evaluated four of these methods by listing all 

the characteristics of what the ideal method for retention time determination should have. It should be 

straightforward and accurate, based on experimental data, not sample- and time-consuming, take PTM into account 

and easily allow method transferability between platforms. To decide which one would be implemented for our SRM 

method development workflow, we graded how each method performed according to the different criteria listed 

above (Figure IV-5). The most straightforward method was the direct injection method, which consists of making an 

LC-MS run using the same instrumentation and LC-MS parameters as for the real analysis conditions. However this 

method is sample- and time-consuming and has to be performed each time the LC conditions change. Repositories 

and databases can inform about the targeted peptide’s chromatographic behavior in reverse-phase chromatography. 

However the stored values have to be adapted to the LC-MS system. This method is not as straightforward as the 

previous one, it also has to be adapted each time there is a change in LC conditions and the accuracy of the retention 

time estimation is not very good. Algorithms exist to predict in silico retention times based on peptide backbone 

sequences. An example of this is the SSRcalc algorithm that uses a sequence-specific model to calculate 

hydrophobicity indexes for each peptide based on their peptide sequences. Then peptides of known retention time 

are used to create a calibration curve from which one can predict a peptide’s behavior in reverse phase liquid 

chromatography[169]. This method is fast and very useful to obtain a first idea of a peptide’s retention time. Also this 

method does not consume a lot of sample since it only requires the analysis of a few peptides used to create the 

calibration curve. However, the accuracy is not very good thus long time windows are needed for scheduled SRM if 

this method is used. Also the algorithm does not take PTMs into account which impairs the accuracy even more. 
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Figure IV-4: Standard retention time peptides to predict retention times. 

Standard peptides that elute throughout the whole LC gradient are used (A). Each standard peptide is associated to a dimensionless 

normalized RT value to calibrate the linear equation between the two (B). Based on experimental data (C) normalized retention 

time values for the targeted peptides are calculated (D). These are relative to standard peptides and dimensionless values that are 

independent of the LC conditions. A database of these normalized values is created and once the LC conditions change (E), the 

retention times of all peptides can be easily predicted by recalibrating the linear equation in the new LC conditions (D). 

The use of retention time standard peptides is a method that combines both experimental measurements and in silico 

prediction. For this method, standard peptides that elute throughout the whole gradient are used. In a given 

chromatographic condition a calibration curve is created to transform the real RT values into normalized RT values 

(Figure IV-4. A and B). Then each targeted peptide is analyzed in the same LC conditions and a normalized RT value is 

calculated for each one (Figure IV-4. C and D). These normalized values are relative to the standard RT peptides and 

are dimensionless values independent of the LC conditions. This step has to be performed only once for each peptide 

and the calculated values can be stored in a database. So when the LC conditions change the retention times of all 

peptides can easily be predicted by analyzing only the standard RT peptides in the new LC conditions to calibrate the 

calibration curve and, from it, predict the new retention times of each targeted peptide (Figure IV-4. E and F). We 

decided to implement this approach for determining RT values as it meets most of our expectations as illustrated on 

Figure IV-5. This method is rather straightforward. It does not require a lot of sample and it is not time-consuming. It 

uses experimental data and takes PTMs into account. It also facilitates method transfer between platforms and it is an 

accurate RT determination method. 

Several standard retention time peptides exist and they can be present in various forms to evaluate not only retention 

time but also other steps as the enzymatic digestion yields, overall LC-MS performance or be used for mass 

recalibration. They can be in the form of a peptide standard kit( iRT-Kit [173] (Biognosys AG,Zurich, Switzerland), 

Peptide Retention Time Calibration Mixture (Pierce, Rockford, IL), MS RT Calibration Mix (Sigma-Aldrich, Poole, U.K.)), 
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in the form of recombinant proteins (DIGESTIF [174], Reversed-phase liquid chromatography calibrant (RePLiCal) 

[175]) or highly conserved peptides across many samples (Common internal Retention Time standards (CiRT) [176]). 

 
Figure IV-5: Evaluation of retention time determination methods. 

These four radar charts show the results of the evaluation of different methods for RT determination according to seven criteria. 

Each criterion was empirically graded from 1 to 10. 

 

A.5.2 Collision energy 

The optimal collision energy (CE) for a given peptide can be estimated using a linear equation between the collision 

energy and the mass over charge ratio of the precursor ion [177, 178]. This equation is dependent of the instrument 

used and the charge state. Using this approach provides a good estimation of the optimal CE. However to fully achieve 

the best possible sensitivity it is necessary to optimize the CE of each targeted peptide. The use of these linear 

equations provides a good starting point for collision energy optimization. 

To optimize a peptide’s CE in a fast and reliable way, Sherwood et al. developed a method consisting in making a 

subtle alteration of the precursor and product m/z targets of a given transition. This enables the monitoring of the 

same transition within a single SRM run but having a different CE value [178]. This approach has also the advantage to 

be very reproducible as all the measurements for a given peptide are performed within a single run, thus reducing the 

variance due to the LC-MS system. Additionally this approach is fully implemented into Skyline [177]. 

Figure IV-6.A shows the calibration curve of the CE values against the precursor m/z values for doubly charge peptide 

for the Thermo Scientific TSQ Vantage instrument. For a peptide of 960 m/z the red square shows the estimated 

optimal CE value that is equal to 32 Volts. To rapidly optimize the CE the transitions for this peptide are monitored 

with several CE values centered on the predicted value. In this example 9 different collision energies were followed, 4 

steps on each side of the predicted value, each being separated by 2 volts, covering the range of 24 to 40 Volts. The 

optimization can be done by precursor m/z, i.e. using the same CE value for all the transitions and finding which value 

gives the best sensitivity for the summed area for the targeted precursor (Figure IV-6. B.). In this example, recreated 

chromatograms and the summed intensities of all transitions for a given CE value are shown. The triply charged 

peptide EGAEQIISEIQNQLQNLK gains more than 135% of signal intensity. The optimal CE value for this peptide is 6V 

lower than the predicted value. The optimization can also be done by each transition, i.e. looking for the best CE value 

for each transition of a given peptide. This method is preferred as it enables reaching the maximum possible 
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sensitivity. In Figure IV-6. C, the CE optimization results are shown for three transitions for the doubly charged peptide 

GLTLAPADGPTTDEVTLQVSGER. The CE optimization for the y5 and y8 transition gave a very small increase in the 

measured intensity. The calibration curve gives a good estimate of the optimal CE value in this case. However, the 

intensity of the y10 transition had an increase of +60% of the intensity with an 8V-increase of the CE value. 

This method has the disadvantage of changing the fragmentation pattern and can possibly affect the calculation of 

dot-products using a spectral library (see Part IVChapter IA.7.2 on page 81). However this effect was shown to be 

minimal [177]. 

 
Figure IV-6: Collision energy optimization using linear equations as a starting point. 

 

I used this approach to optimize the CE values of a set of 270 peptides and 867 transitions in order to determine the 

correct linear equation to predict CE values for our instrument. Figure IV-7. A. and B. show the results of this study. 

The linear equations for our instrument could be improved. The old linear equation for the doubly charge peptides 

was not adapted to m/z ratios higher than 1000. For the triply charge peptides, the old linear equation was too 

energetic and did not correlate with the data. These new equations will enable to have a better estimation of the 

optimal collision energy and provide a more correct starting point for the CE optimization. We believe that the 

collision energy optimization has to be part of the development workflow of a targeted method in order to achieve 

the best sensitivity. 

Figure IV-7. C. shows the gain in intensity for all peptides in the data set using the same CE value for all transitions for 

a given peptide (lower boxplot) or using the best CE value for each transition (upper boxplot). Using the same CE value 

for a given precursor resulted in an increase of intensity of more than 13% for a quarter of all peptides with a 

maximum of 140%. Optimizing the collision energies for each transition gave even better results as seen in the upper 
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boxplot where a quarter of all peptides have a gain in intensity of more than 23%. One in 10 peptides had an intensity 

gain of more than 45% and 1 in 20 peptides had an increase of more than 72%. This significant increase in sensitivity is 

peptide-dependent and difficult to predict. The tools in Skyline to create and manage SRM methods for CE 

optimization make this step very easy and fast. Furthermore the optimized values can be stored in a database and 

thus be easily accessible. This step is not time-consuming and has to be done only once for each peptide and 

instrument setup. 

 
Figure IV-7: Results of the collision energy optimization of 270 heavy-labelled standard peptides on a Thermo Scientific TSQ 

Vantage. 
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A.6. Step-by-step walkthrough for the method development of targeted quantitative 

proteomics  

The development of a targeted method requires taking into account many different parameters. In order to obtain the 

best selectivity and sensitivity, multiple parameters must be optimized. The difficulty for a non-experienced 

researcher wanting to develop a targeted quantification method is to know where to start, how to do it and in what 

order to do it. In this section, I present a step-by-step walkthrough to guide proteomist in the development of 

targeted proteomics method development. The workflow is illustrated in Figure IV-8. 

 

Figure IV-8: Step-by-step LC-SRM method development workflow. 

 

Step 1 and 2: These steps have been discussed above and are done in silico. 

Step 3: Once the final choice of the signature peptides is done, the heavy-labelled standard peptides can be 

synthetized. This step takes at least two months. 

Step 4: Once the peptides have been synthetized. A spectral library is created and in the process it is possible to 

determine roughly the dilution factors necessary to create a concentration-balanced mixture. The spectral library can 

be done on different instrument geometries (IT, QqQ, Q-orbitrap or Q-TOF). For crude synthetic heavy-labelled 

peptides (Thermo Fischer PEPotec peptides) that are of low-purity and for which the concentration is not exactly 

known, a mixture of all targeted peptides can be done where all peptides are diluted by a factor of 1000. Then 

proceed to analyze the mixture. Do another mixture at a lower dilution factor solely of peptides that could not be 

observed in the first analysis. Do this until all peptides can be detected with good quality spectra. The peptides can 

now be divided into categories of dilution factors. Using this determined dilution factors, proceed to create a mixture 

where all peptides are present in detectable amounts. This mixture can be done on a pure solvent (5% Acetonitrile + 

0.1% formic acid) or using a simple background matrix (BSA digest) to reduce peptide loss due to the coating on the 

vial walls. 
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Step 5: Create a method that will be the starting point for the optimization. In this method 3-5 transitions are chosen 

for each peptide using the spectral library. They correspond to the most intense transitions in the MS/MS spectra of 

each peptide. The collision energy is predicted using a linear equation (CE=a*m/z+b). The easiest way at this point is to 

create unscheduled methods but if the number of targeted peptides is too high the retention times can be predicted 

based on a RT prediction algorithm (SSRcalc), and large time windows are used. 

Step 6: The starting point method can now be used to analyze the mixture where all peptide are present in detectable 

amounts spiked with retention time standard peptides (iRTs). This mixture will be used to optimize the 

chromatography parameters. The exact retention time can be measured and normalized RT values can be determined. 

These values will be saved on a database. The chromatographic conditions can now be easily optimized. 

The amounts of each peptide in the mixture can now be adjusted so that all peptides reach a correct level of 

detectability. The intensity should not be too low (close of the limit of detection (LOD)) as the signal will not be 

reproducible. It also should not be too high to avoid oversaturation of the chromatographic column or suppression 

effects. 

Step 7: Knowing now the exact retention time of each peptide scheduled-SRM methods can now be created to 

analyze the mixture of heavy-labelled peptides. Since the multiplexing capabilities are increased when using scheduled 

SRM, all peptides can be monitored by following a higher number of transitions to look for other possible precursor 

charge states that had not been seen when creating the spectral library and also look for other well-responding 

transitions. An example to illustrate this can be seen in Figure IV-9. In this example two triple-quadrupole instruments 

were used to analyze the peptide GSYTAQFEHTILLRPTCK, a Thermo Scientific TSQ Vantage and an Agilent 6490. This 

peptide was analyzed in the 3+ and 4+ state of charge. The chromatograms and the relative intensities of the 

transitions for the 3+ and 4+ charge states are shown. The relative intensities are not exactly the same in the two 

instruments since the collision cells are not the same. So it is important to look for transitions that can respond well in 

the instrument used for the quantification. Another important result is the difference in the distribution of charge 

states between the two instruments. On the Thermo Scientific TSQ Vantage the 3+ and 4+ charge states have almost 

the same intensity. However on the Agilent 6490 the 4+ charge state is more than three times more intense than the 

3+ charge state. These differences can be explained by the different source configurations (geometry, voltage, 

temperature) of the two instruments that might favor high charge states on the Agilent 6490.  

This shows that it is important to adapt the method and do a fast screening using the same instrument used for the 

quantification to account for specific changes in fragmentation patterns and charge distributions. 

Once the best transitions have been chosen then collision energies can be optimized using scheduled SRM to reduce 

the number of runs necessary. This step can be done in triplicate but a duplicate is enough as the approach to 

optimize collision energies for a given peptide within a single run makes it very reproducible. 

Step8: Until this step all previous optimization steps have been done using heavy-labelled standards in a pure solvent 

or a simple background matrix. This final step is done using the real sample matrix. The transition choice is refined to 

eliminate interfered transitions. This can be done by comparing dot-products calculated using the spectral library 

(Dotp) or calculated using the light and heavy SRM traces for a given peptide (rDotp) (see Part IVChapter IA.7.2 on 

page 81). 

The heavy-labelled standard peptides are finally adjusted to match the levels of the endogenous peptides to create a 

concentration-balanced mixture. 
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If a sufficient amount of sample is available the optimal loading amount on column can be determined. This is a 

parameter that can depend on each peptide [14]. We have seen that sometimes loading a lower amount of sample 

can result in a better signal-to-noise ratio and thus a better sensitivity. This can also be explained by a lower response 

due to ion suppression when higher amounts are loaded into the column. Another possible explanation is that the 

total amount of protein is estimated using colorimetric assays that can be biased by interfering compounds present in 

the sample. We have determined that in our capillary-flow system 10 µg of total protein digest is the maximum 

loading capacity. But depending on the sample matrix, the real protein amount can be under- or overestimated. Thus, 

if possible, the optimal loading capacity of each different sample matrix must be evaluated to reach the best 

sensitivity. 

Finally to obtain an unbiased quantification carry-over effects must be sought by analyzing a blank sample after a real 

sample analysis, and one must look for residual compounds from the previous injection. To illustrate this, an example 

is given in Figure IV-56 on page 154. 

 
Figure IV-9: Instrument-specific changes in fragmentation patterns and charge distribution. 

Two triple-quadrupole instruments were used to analyze the peptide GSYTAQFEHTILLRPTCK, a Thermo Scientific TSQ Vantage and 

an Agilent 6490. This peptide was analyzed in the 3+ and 4+ state of charge. Instrument-specific changes in fragmentation patterns 

and charge distribution can be observed. It is thus important to look for well-responding precursor m/z and transitions for the 

instrument used for the quantification. 

 

A.7. Data analysis 

A.7.1 The use of Skyline for SRM and PRM data analysis  

Skyline is an open-source software [15], capable of importing raw files from different vendors (Agilent, AB Sciex, 

Thermo Scientific, Bruker Daltonics, Waters) and acquired using different acquisition modes (DDA, SRM, PRM and 

DIA). It enables the user to visualize SRM/PRM data, perform peak picking and integration of transition peak areas. 
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The user-friendly interface facilitates the development of targeted quantitative methods. Additionally, Skyline 

supports the use of MS/MS spectral libraries to aid the creation of SRM/PRM assays and to verify the correct peak 

group identification. During my PhD this is the software that I used for all targeted quantification studies. 

A.7.2 Metrics for peak identification and validation 

When analyzing complex samples a validation set of criteria must be defined to validate the signals used for the 

quantification. Even in targeted quantification there is the possibility of having interfered signals. Especially in SRM 

assays due to the fact that the acquisition is performed on low-resolution instruments. Another challenge is that in 

complex samples different peptides can have the same or close precursor or fragment ion masses. This means that 

several peak groups will be extracted for a same precursor/fragment ion mass. The challenge is thus to pick the 

correct peak group corresponding to the peptide of interest (Figure IV-10). 

Validating a peak group for the quantification thus means two things: 

- Verifying the correct identification of the peak group 

- Verifying that the peak group does not contain bad-quality signals due to low intensity or interferences by 

other chemical compounds. 

 

 
Figure IV-10: Validating a peak group for quantification means verifying the correct peak identification and checking the quality 

of the signals.  

A. Several peak groups having an m/z ratio close to the one of the peptide of interest can be seen. The use of Heavy-labelled 

peptides enables to determine the correct peak group identification and is the method that enables the highest selectivity. B. A bad 

quality transition can be seen for the light peptide.  

 

In order to validate a peak group a set of metrics are used and will be presented here.  

Co-elution and peak shape of light and heavy-labelled peptides: First, the strategy that provides the highest 

selectivity is the use of heavy isotopically-labelled peptide standards. Since the light and heavy-labelled peptides have 

the same physico-chemical properties, they will behave in the same way in liquid-chromatography and in mass 

spectrometry. In Figure IV-10.A. several peak groups can be seen in the upper panel. The identification of the correct 

peak group is facilitated by verifying the coelution of the light and heavy peptides. Another metric to identify the 

correct peak group is the fact that the peak shape of the two peptides has to be the same. This also helps to find 

interfered transitions. 
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Fragment ion relative intensities: A Spectral library not only facilitates the choice of transitions but can also be used 

to verify the correct peak group identification and also identify bad quality transitions. An example can be seen in 

Figure IV-11. The relative fragment ion intensities are show in the histograms. The relative intensities from the MS/MS 

spectra of the chosen fragment ions are annotated as “library”. The relative intensities of the SRM trace of the light 

peptide in sample S1 are the same as the ones from the library, suggesting that this is the correct peak. For the light 

peptide of sample S2, the relative ion intensities do not match the ones on the spectral library. Since the heavy-

labelled peptide is present, we know that this is the correct peak integration but the signal is of low-intensity and it is 

likely interfered by signals of other compounds. 

 
Figure IV-11: Comparing relative fragment ion intensities to assess the quality of the data. 

 

Library and Light-to-heavy Dot-products: To quantify the similarity of the relative ion intensities a very useful metric 

is the calculation of dot-products. The calculation of dot-products was originally used to assess the similarity between 

MS/MS spectra [179]. The output of this calculation is a value between 0 and 1. The closer the dot-product is to 1 the 

more similar the two spectra are. In the case of SRM or PRM signals this tool is very useful to assess the quality of the 

signals used for the quantification. Skyline provides two types of dot-product calculations. The first one is the 

calculation of a dot-product between the full scan MS/MS spectrum fragment ion intensities and the SRM traces. In 

Figure IV-11 the calculated library dot-product are shown for the two samples. The dotp for sample S1 is 0.93 which 

shows a high similarity between the SRM trace and the MS/MS spectrum, on the contrary the sample S2 shows low 

similarity (dotp=0.73). If heavy-labelled peptides are present a more accurate metric is the dot-product calculation 

between the light and the heavy-labelled peptides’ SRM traces. This has the advantage that both peptides are 

analyzed in exactly the same conditions and this eliminates the difference of fragmentation patterns that can exist 

between the SRM trace and the MS/MS spectrum if this has been obtained with another instrument. 

Automatic validation pipelines: To validate large-scale and highly multiplexed assays, software solutions have been 

developed (AuDIT [180], mProphet [16], Ariadne [181]). The output information of these algorithms is a score 

reflecting the quality of the integrated signals based on a series of metrics (peak shape, co-elution of transitions, co-

elution of light/heavy peptides, difference between measured and predicted retention times, relative fragment ion 
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intensities...). Some of these algorithms have implemented a false discovery rate assessment. As for shotgun peptide 

identification approaches, target/decoy strategies have been developed for targeted proteomics [16]. 

These automated pipelines work very well to discriminate signals of very good-quality from signals of very bad quality. 

It also helps to point out the problematic signals. However, several issues still remain and we have found that a visual 

verification step and manual peak picking and integration are still needed. Automatic tools can be used to reduce the 

number of peptides that the user has to manually inspect. 

Additionally, to assess the FDR of the quantification with these strategies, decoy transitions have to be measured in 

other to determine the distribution of decoy targets. In SRM this is very constraining as this significantly reduces the 

multiplexing capabilities of the SRM assay. 

 
Figure IV-12: The difficulty of assessing the meaning of bad-scoring SRM traces. 

 

Figure IV-12 shows the case of the comparison of two samples using an automated algorithm to score the quality of 

the peaks. For sample S1 the signal has a good score. The peptide was integrated in the right time window and the 

peptide can be correctly quantified in this sample. However in sample S2 the signal obtained a bad score. In this 

situation three cases are possible: 

 The targeted peptide is not present in sample S2, or it is below the limit of detection. This is the ideal case in 

which a bad score implies the detection of the non-presence of the peptide. In this case the comparison of 

the two samples can be done. The overexpression of the peptide in sample S1 thus can be measured. 

 The targeted peptide is present in sample S2 but the signal is of bad quality or interfered. In this case the 

comparison of the two samples is biased. The visual inspection of the chromatograms and manual validation 

would be the best option in this case. However, due to the large number of targeted peptides this is very 

constraining. Figure IV-13 shows the choices that the proteomist has to make in this type of situation. If an 

automatized workflow is chosen, in order to compare the two conditions the proteomist has to either 

consider the measured signal for the sample 2 as a missing value and use an imputed value to make the 

comparison [182]. He can also eliminate the peptide completely since the value for this peptide in a single 

condition cannot be used as it is interfered and including this peptide in the quantification would bias the 

quantification. Another option is to visual inspect the chromatograms and manually validate the peak group 

to obtain an accurate quantification. The automatic validation software tools can in this case guide the user 

to the signals that need a manual verification. 
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 The targeted peptide is present (or not) in sample S2 but the integration is done at the wrong retention time.  

We have seen that one of the major causes of errors in quantification is the erroneous peak picking, i.e. an 

integration of the signal at the wrong retention time. Even if software tools now have integrated the use of 

scoring and FDR assessment strategies for the peak picking and integration steps (Skyline[15], Spectronaut 

[16]), one of the most challenging steps in data analysis of chromatogram signals is the correct peak group 

identification. This is often the case when the targeted peak is not present (or below the LOD) and thus the 

peak picking algorithm tries to find the best peak in the extracted signal. 

In conclusion, these automatic validation pipelines can help to accelerate the data analysis of large-scale targeted 

quantitative proteomic studies but the user has to be conscious of the problems that underlie behind them. We 

recommend to visually inspect the signals of the peptides of interest. And use these automated workflows to reduce 

the number of signals that the user has to inspect. 

 
Figure IV-13: Visual inspection and manual peak picking are still needed to obtain an accurate and reliable quantification. 

 

A.7.3 Relative quantification 

For all relative quantification studies I carried out, I used crude heavy-labelled standard peptides (PEPotec peptides, 

Thermo Scientific). The overall reproducibility of the experiment was verified by calculating light/heavy area ratios for 

each transition, and verifying that coefficients of variation were lower than 20% for triplicate injections. To compare 

different samples, the light over heavy area ratios of the sum of all the transitions was used. Evidently, all transitions 

with interfered signals were eliminated. 

The protein relative quantification and the testing for differential protein expression were performed using the R 

package MSstats [183, 184]. 

The acceptance criteria for statistically different protein abundance changes between two conditions were set at a p-

value lower than 0.05 and a fold change higher than 2. The use of these two criteria is necessary as the use of the p-

value alone is not recommended. A statistical test shows if, in a pairwise comparison, the differential expression is 

different from zero, but it does not show if the difference observed is biologically meaningful. 
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A.7.4 Absolute quantification 

For all absolute quantification studies I carried out, I used high-quality, highly purified and accurately quantified 

internal standard peptides (AQUA peptides) [90]. 

For absolute quantification experiments it is important to determine the range of linearity and the limits of detection 

(LOD) and limit of quantification (LOQ). The LOQ is the lowest amount of an analyte in a sample that can be 

quantitatively determined with acceptable precision and accuracy. To define the LOQ, a signal-to-noise ratio higher 

than 10 is commonly used [185]. However, due to the nature of SRM and PRM, the background noise is extremely low. 

Accurately measuring the co-eluting noise of a SRM/PRM transition is challenging. In 2007, Keshishian et al. quantified 

low-abundant plasma proteins using the stable isotope dilution method. In this study they calculated the signal to 

noise ratio by dividing the peak intensity at the apex by a fixed intensity. This value was obtained based upon visual 

inspection of preceding and following regions around the targeted peptide’s chromatographic peak [185]. Linnet and 

Kondratovitch proposed a procedure to determine the LOD using measurements of blank samples (processed matrix 

sample without analyte and without internal standards). In 2009, Keshishian et al. modified this equation and 

calculated the LOD as: 

9:! = &(53; +
4<.?@ × (B; + BC)

√3
 

Where meanb is the limit of blank; σb and σS are the standard deviations of the blank samples and the lowest level 

spike-in sample; n is the number of replicates [186]. Then, the LOQ was defined as three times the LOD. 

However, it is very difficult to assess the LOQ this way as there is no practical way to obtain blank samples. Hence a 

more adapted way to assess the LOQ in proteomic studies is to define the LOQ as the lowest analyte concentration 

that can be measured with <20% CV [171].  

The definition used for the linearity range and the LOQ for the experiments described in this thesis are the following: 

- Calibration points in standard curves must show an average CV precision below 20% among triplicate 

injections.  

- The coefficient of determination R² should be higher than 0,99 between the area under the peaks (sum of all 

transitions) and the injected amount on column (Figure IV-14.A). 

- The coefficient of determination R² should be higher than 0,99 between the back-calculated and the real 

injected amount on column (Figure IV-14.B). 

- Calibration points must show a 80–120% accuracy range by back-calculating expected injected amounts using 

regression equations after logarithmic transformation. (Figure IV-14.C). 

- The limit of quantitation (LOQ) is the lowest point satisfying all the criteria reported above. 

All signals were visually evaluated and validated to ensure high-quality results. Only the points satisfying all these 

criteria were used to calculate the linear regression equation and coefficient of determination. 
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Figure IV-14: Determination of the limit of quantification. 

A. Logarithmic area under curve against the logarithm of the amount of peptide injected on column. The full boxes are validated 

calibration points (CV<20%; accuracy between 80 and 120%, R²>0.98), the limit of quantitation (LOQ) is shown by the dashed line 

and empty boxes are calibration points below the LOQ. B. Logarithm of the back-calculated peptide amount against the real 

injected amount on column. C. CV (%) and the accuracy (%) against the number of calibration points arranged in increasing amount 

of injected peptide.  
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B.  Evaluation of the compatibility of SDS-PAGE with targeted quantification by LC-SRM  

B.1. SDS-PAGE separation prior to quantification 

B.1.1 Context of the project 

As stated before, one of the major challenges in quantitative proteomics is to overcome the extremely large dynamic 

range of protein abundance in biological fluids. In order to quantify proteins in complex samples in a reproducible and 

accurate manner, sample preparation strategies must be developed. One possibility to overcome the problem of the 

protein abundance dynamic-range is to fractionate the samples. This will decomplexify the samples, increase the 

proteome coverage and make the detection of low-abundant proteins possible. Even if any type of fractionation is not 

ideal for further quantification, it is sometimes the only way to be able to reach the dynamics and sensitivity required 

to quantify specific targets of interest. 

In this section I will present the results of an evaluation of the compatibility of SDS-PAGE separation with targeted 

quantification by LC-SRM. Indeed, numerous sources of variability can compromise the quantification of several 

samples, namely the electrophoretic migration, the gel cutting and the in-gel migration [187]. 

B.1.2 Experimental design 

The analytical workflow of this experiment is illustrated in Figure IV-15. A whole yeast digest was used as a 

background matrix to mimic a complex biological sample. Then, the Universal Protein Standard (UPS1, Sigma) 

consisting of 48 human proteins was spiked-in at three different known amounts. Then, the samples were loaded on a 

monodimensional SDS-PAGE system. The equivalent of 100µg of yeast lysate was loaded with UPS1 spiked-in at 250 

fmol, 500 fmol and 1 pmol. After migration, the gels were washed with water and fixed using 3% phosphoric acid in 

50:50 methanol:water (v:v). Gels were stained by a colloidal coomassie blue method (G250, Fluka, Buchs, 

Switzerland). To avoid introducing errors due to the gel cutting step, gel grids commonly used in gel-based workflows 

were not used in this experiment. Instead, the gel was cut in two steps. First the gels were cut horizontally using a 

ruler and a bistoury in order to minimize the variations of this step. Then the gel was cut vertically to excise the gel 

bands (Figure IV-15). Bands were divided into three pieces and washed to get rid of the coomassie blue dye (25mM 

ammonium bicarbonate followed by acetonitrile, 3 times) using the MassPrep Station (Waters, Milford, MA, USA), 

proteins were in-gel reduced with Dithiothreitol (10 mM DTT in a 25mM ammonium bicarbonate solution, 30 min) and 

alkylated with Iodoacetamide (55mM IAA in a 25mM ammonium bicarbonate solution, 20 min). Finally, proteins were 

in-gel digested overnight at 37°C using modified porcine trypsin (Promega, Madison, WI). Resulting tryptic peptides 

were extracted using 60% ACN in 0.1% formic acid for 1h at room temperature. The volume was reduced in a vacuum 

centrifuge and resuspended using 0.1% formic acid in water before capillaryLC-SRM analysis. 
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Figure IV-15: Overview of the analytical workflow for the evaluation of the compatibility of SDS-PAGE separation with targeted 

quantification by LC-SRM. 

 

B.1.3 Protein-specific migration profiles 

Figure IV-16 shows the migration profiles of four peptides signatures of four different proteins P16083. First, one 

important result is the different types of migration profiles observed for each protein. These migration profiles are 

dependent on the protein. For example proteins P99999 and P16083 have a Gaussian profile that spans more than 8 

gel bands, whereas proteins P63165 and P08263 migrated in only a few number of gel bands. This difference in 

migration profiles can be a problem for the quantification that will be discussed later on. I will now first list the 

advantages of this approach. 

 
Figure IV-16: Protein-specific migration profiles in monodimensional SDS-PAGE. 

 

B.1.4 Advantages of the SDS-PAGE separation technique prior to LC-SRM analyses 

Figure IV-17.A. shows the migration profile of protein P16083 monitored by three peptides covering different parts of 

the protein sequence. These three peptides have the same migration profiles confirming that the protein is only 

present in a single form. As for chromatographic peak shapes, the migration profile can provide an added level to the 

selectivity of the protein quantification. Quantifying a protein only using the peptides that have the same migration 

profile can increase the accuracy and selectivity for a given proteoform, knowing that there is no other isoform that 

can bias the quantification. The corollary of this statement is also true. Coupling the SDS-PAGE separation to targeted 

quantification by LC-SRM can enable the quantification of isoforms. In Figure IV-17.B two forms of protein P02788 can 
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be discriminated as two migration profiles of a long and a short form of the protein can be observed with an apex at 

bands 2 and 4 respectively. This migration profile was observed in all 8 samples and with three different peptides 

confirming that the migration profile is due to the presence of two protein forms and cannot be attributed to an 

instrumental artifact. The protein P02788 is obtained from milk, HPLC purified and quantified by AAA. Two isoforms 

exist for this protein with one missing 44 amino acids in the N-terminal part of the protein. Unfortunately the three 

signature peptides chosen to monitor this protein are after the position 285 in the protein sequence. However the 

two migration profiles are likely to be these two isoforms. Thus, the use of 1D-SDS-PAGE coupled to mass 

spectrometry can inform about the presence of different isoforms and proteoforms like proteolytic events. In 2008 Dix 

et al. introduced the Protein Topography and Migration Analysis Platform (PROTOMAP) approach to analyze 

proteolytic events using SDS-PAGE coupled to quantification by mass spectrometry using spectral count [188]. 

Furthermore, this approach enables to increase the specificity of the quantification as possible biomolecular 

interferences are separated from the proteins of interest. An example can be seen in Figure IV-17.C. in which the 

peptide VLDALQAIK was monitored using three transitions. The protein was identified in the gel band number 10 and 

the peptide was eluted at minute 24. Another molecule having a precursor and a fragment m/z ratio close to the y4 

transition of peptide VLDALQAIK and eluting at exactly the same retention time was found in the gel band number 7. 

Fortunately, the added separation dimension of the SDS-PAGE enabled to completely discriminate these two 

molecules. Using an unfractionated protocol, the y4 transition would be interfered and could not be used for the 

quantification. 
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Figure IV-17: Advantages of SDS-PAGE-LC-SRM approach. 

The added separation dimension of the 1D-SDS-PAGE  approach increases the specificity of the quantification (A), enables the 

quantification of different proteoforms  of a given protein (proteolysis products, isoforms) (B) and reduces the sample complexity 

and lowers the presence of interferences (C). 

 

B.1.5 Drawbacks of the approach 

Even if this approach promises several advantages it also has several drawbacks. First, this approach requires longer 

instrument time when compared to unfractionated protocols. In this study 16 gel bands were analyzed for each 

sample with a 1-hour gradient. This very long analysis time constraints the overall number of samples that can be 

analyzed, especially if the samples are analyzed in replicates. Additionally, studies with long analysis time are more 

prone to quantification biases. Indeed, the instrumental performances can decrease over time (or even fail to 

perform) and produce confounding errors. 

Additionally, as seen in Figure IV-16 the migration of several proteins can span across multiple gel bands. This means 

that the overall sensitivity for these proteins is lowered as the proteins are diluted in multiple gel bands. This is due to 

the low resolving power of the SDS-PAGE system.  

Moreover the quantification when using this approach can be biased as each gel band contains a different background 

matrix and this can change the ionization efficiency due to ion suppression effects. In order to limit these effects, 

internal standards can be used. In this study however internal standards were not used and the quantification was 

done with a label-free approach. Another way to reduce the impact of the changing instrumental performance over 
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time is to analyze the equivalent gel bands of all samples close to each other (Horizontal analysis) and avoid analyzing 

the entire lane for each sample before analyzing another sample (Vertical analysis) as this will increase the time 

between the analyses of two equivalent gels bands. 

B.1.6 Data analysis of fractionated samples by SDS-PAGE 

All these factors have to be taken into account in the strategy used for the data analysis. We wanted to evaluate 

which approach enabled the correct quantification of our targeted proteins. First, we wanted to evaluate the 

reproducibility when using only the most intense transition or three transitions per peptide. We also wanted to 

compare the reproducibility of the quantification when using only the most intense gel band or when summing the 

intensities of three gel bands centered on the most intense band (the most intense band and the adjacent gel bands 

on either side). Two factors can influence the quantification when summing several gel bands: the ion suppression 

effects due to different background matrices in each gel band and the migration of proteins across multiple gel bands. 

The Skyline open-source software package was used to visualize the SRM data. A manual inspection of the peak 

picking and the integration of transition peak areas were done. In the study of fractionated samples, the manual 

inspection of all signals is very important as the proteins are only present in a few fractions. It is important to 

confidently determine in which fractions the proteins are present. And in fractions in which the protein is not present, 

Skyline erroneously picks and integrates another peak group. This is a problem as it can result in errors of peak group 

identification. It also compromises the use of automated workflows. We have seen that a manual inspection is 

required. This step however is time consuming. For example, in this experiment 126 peptides were monitored with 

three transitions in 8 samples and each sample consisted of 16 fractions resulting in more than 48300 SRM traces to 

be inspected manually. 

B.1.7 Results of the evaluation  

The results of the evaluation are presented in Figure IV-18. We have seen that the migration profile was reproducible 

in different gel lanes. An example can be seen in Figure IV-18.A in which protein P02787 is monitored in three gel 

lanes. The migration profile is the same and the most intense band is the 4th gel band for all lanes. Overall, 65 out of 

126 peptides were quantified for 34 of the 48 proteins. We also evaluated the quantification reproducibility when 

using 1 or 3 transitions per peptide and when using only the most intense gel band or when summing the intensities 

of three gel bands centered on the most intense band. The coefficient of variation was calculated for each quantified 

peptide. The frequency and the cumulative frequency are shown in Figure IV-18 B. and C. where we can clearly see 

that the quantification is not significantly affected when quantifying with 1 (solid lines) or 3 transitions (dashed lines) 

per peptide. However, the quantification is undoubtedly more precise when summing the three adjacent gel bands 

(purple lines) when compared to using only the most intense gel band (green lines). 

Since this experiment did not use internal standard peptides a global normalization procedure was carried out. This 

consisted in aligning for all replicates of the same sample, the median value of all the intensities measured. This will 

correct for different loading amounts on the gel and overall MS performance but will not have an impact on further 

variations such as ion suppression effects. The normalization did improve the precision of the quantification. Overall 

the coefficient of variations showed a mean and median value of 17% when not normalized and a mean value of 13% 

and a median of 10% when the global normalization procedure was applied (Figure IV-18.D and E). 
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Figure IV-18: Results of the evaluation of the SDS-PAGE-LC-SRM workflow. 

We evaluated the reproducibility of the quantification of the technique. An example of the migration profile reproducibility of the 

same protein in three different gel lanes is shown (A). The quantification was evaluated when using 1 (solid lines) or 3 transitions 

(dashed lines) per peptide and when using only the three adjacent gel bands (purple lines) when compared to using only the most 

intense gel band (green lines). The distribution (B) and the cumulative frequency (C) of coefficient of variations are shown. The 

need for a normalization step was also evaluated. The distribution (D) and the boxplots (E) of the coefficients of variations of raw 

and the normalized data are shown. 

B.1.8 Evaluation of a high-resolution SDS-PAGE system 

The low resolution and the diffusion of protein peaks in the gel can be explained by the Joule heating caused by the 

electric current passing through the gel. Joule heating not only increases the fluid temperature, but also produces 

temperature gradients that can broaden the protein peaks and the widths of the migration lanes. In order to improve 

the coupling of SDS-PAGE with LC-SRM a high performance electrophoresis system was evaluated. The HPE flattop 

tower (The Gel Company, San Francisco, CA, USA) system uses very thin gels with 420 µm of thickness covalently 

polymerized to a thin film support. The system uses a horizontal system with a cooling plate constantly cooled by 
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water delivered by a pump. This enables an efficient heat dissipation to obtain rapid and straight electrophoretic 

migration. As a result of the controlled temperature the resolution of the SDS-PAGE system should be improved. 

However the very small thickness of the gel implies two problems: low loading volume capacity and low protein 

amount loading capacity. The loading volume capacity is maximum 15µl. We tried to use the system by loading 100µg 

per sample. However the gels burned due to high tension possibly due to the presence of salts. 

When loading lower amounts (<50µg), the migration of the samples could be done. Nevertheless, since the gel is 

covalently bonded to the plastic support is was not possible to separate them without losing some sample. All in all, 

this system did not meet our needs since the low amount of protein loading was not compatible with the amounts 

needed for quantification by capillaryLC-SRM. The very low gel thickness and the fact that it was covalently bond to 

the support made this item very impractical, very time-consuming and prone to sample losses. 

B.1.9 Conclusion 

In conclusion, the SDS-PAGE separation coupled to a targeted quantification by LC-SRM can be an alternative when a 

limited number of proteins have to be quantified in a small number of samples. This strategy can be used to efficiently 

reduce the sample complexity and analyze low-abundant proteins. However, it requires a significant amount of 

instrument time and a dedicated data analysis workflow. 

If only a few proteins are to be quantified, then this workflow can be used to purify them and analyze only a few 

bands, or even pool several bands together in order to reduce the complexity while keeping a reduced number of 

samples to be analyzed. 

B.2. Development of an unfractionated stacking Gel SDS-PAGE protein purification protocol 

B.2.1 The principle of stacking gels 

In order to benefit from the advantages of SDS to solubilize and extract proteins, we wanted to evaluate an 

unfractionated SDS-PAGE protocol to obtain a more precise, accurate and simple quantification workflow. To do this 

we wanted to take advantage of the fact that the stacking gel focusses all proteins in sharp bands before they enter 

the resolving gel. 

The principle behind the staking gel is illustrated in Figure IV-19. The electrophoresis buffer contains glycine which is a 

zwitterion that at low pH is protonated and thus uncharged. At pH 6,8 of the stacking gel the glycine migrates very 

slowly (trailing ion). The stacking gel contains chloride ions (leading ions) which have a very high mobility. This creates 

a narrow zone of very low conductance (very high electrical resistance). The protein molecules are trapped in a sharp 

band between the leading ions and the trailing ions. The negatively charged proteins move forward due to the very 

high field strength but they can never go faster than the chloride ions. If somehow they would outrun the leading ions 

they would be in a region of very low field strength, due to the high conductance (low resistance) and would 

immediately slow down. As a result, all the proteins move in the stacking gel in a sharp band. When the proteins reach 

the resolving gel, the glycine becomes deprotonated and negatively charged as the pH is now of 9. Its mobility 

increases and the mobility of the proteins decrease due to the sieving properties of the gel (smaller pore size of the 

resolving gel). The proteins are no longer in a narrow zone of very high electric field. They are now in a uniform 

electric field where they are separated based on their size. 
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Figure IV-19: Principle of a SDS-PAGE stacking gel. 

 

B.2.2 The optimization of key parameters to enhance the quantification performances of 

the stacking gel protocol 

We developed and optimized a protocol to use stacking gel as an unfractionated sample-preparation method 

compatible with further quantification by mass spectrometry. Figure IV-20 shows some practical results obtained 

during the development of the optimized protocol. The upper right part of the figure shows how the gel should be 

polymerized. The percentage of a stacking gel is normally 5% of acrylamide. It should not be polymerized by its own as 

it is very fragile. A resolving gel should be used to hold stacking gels in place and to easily manipulate the gels without 

breaking them. 

We also found out that the width of the migration lane depends on the loading volume on the gel (Figure IV-20.B). To 

increase the reproducibility of the migration when comparing several samples, all samples must be loaded with the 

same volume. The samples should not be loaded on neighboring loading wells as the migration front could be very 

close and difficult to cut or possibly mixed between two neighboring samples. To avoid this, a loading well should be 

left empty between each sample. But it should contain the same volume of sample buffer with the exact same 

composition as the one used for the samples. If not, the migration front will not be straight. Additionally it is best to 

avoid the loading wells on the borders of the gel. We have seen that the migration front in these positions is irregular 

(Figure IV-20.C). Finally, the acrylamide percentage of the stacking gel was also studied. A 5% staking gel is commonly 

used in proteomics workflows. We evaluated this acrylamide percentage and found out that large proteins (>250 kDa) 

might not migrate at the same speed than smaller proteins (Figure IV-20.D), and will thus not be correctly stacked in 

the migration front. Using a 4% acrylamide stacking gel, this phenomenon was reduced. However, lower acrylamide 

percentage could not be used as the gel lost its consistency and could not be easily handled. An example of the 

stacking gel outline is shown in Figure IV-20.E. Using a 10 loading wells gel, only four samples can be loaded per gel. 

Empirically, we found that the best results in terms of sensitivity and reproducibility were found when more than 50µg 

were loaded into the stacking gels. Below this amount we believe that peptides are most likely partially lost due to 

adsorption on the vial walls in subsequent preparation steps.  

Since all proteins are stacked in a single sharp band, the coloration of the gel should not exceed 15 minutes. The high 

concentration of proteins in a tight band is rapidly colored and if longer times are used then the coomassie blue 

cannot be removed and can affect chromatographic MS conditions. 

The optimized protocol is described in the Experimental Part on page 216. 



 Part IV 
 

95 

  

 
Figure IV-20: Development of the SDS-PAGE stacking gel purification protocol. 

Several key parameters were optimized to enhance the quantitative performances of the sample preparation protocol these were 

the stacking gel size (A), the influence of loading volumes (B), the effects of loading samples in the border loading well (C), The 

acrylamide percentage (D). An example of the optimized stacking gel is also shown (E). 

 

B.2.3 Evaluation of the reproducibility: experimental design 

We tested three ways to cut the gels. The Figure IV-21 shows in red the template to cut the gels. The first one 

consisted in migrating the samples 2 cm into the stacking gel and then cutting only the migration front, where the 

proteins should be stacked in a sharp band (Protocol 1). The second consisted in migrating the samples 1 cm into the 

stacking gel and cutting all the gel above and including the migration front (Protocol 2). And the third one consisted in 

stopping the migration after the samples entered the resolving gel (Protocol 3). 

To evaluate this parameter, a whole lysate of human cells (HepaRG cell line) was used. 50µg of total lysate was loaded 

on stacking gels in triplicates on a single gel (intra-gel replicates) and on three different gels (inter-gel replicates). 

Additionally, the stacking gels were also compared to a liquid digestion protocol (Protocol 4). The nanoLC-MS/MS 

analyses were done using a Bruker Daltonics MaXis 4G Q-TOF instrument. 
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Figure IV-21: Evaluating the cutting template of stacking gels. 

Three ways of cutting the gels were evaluated. The cutting pattern is shown by the red rectangle (A). The samples were prepared in 

inter- and intra-gel triplicates. And these were compared to a liquid digestion/C18-SPE protocol (B). 

 

B.2.4 Evaluation of the reproducibility: results 

The number of protein and peptide identifications obtained with each sample preparation protocol is shown in Figure 

IV-22. The average number of proteins and peptides identified in each sample is shown in part A and the cumulated 

number of identifications is shown in part B of the figure. One interesting result is the significant difference between 

the average number of peptides identified in a single run, around 3400, and the total cumulated identifications, 

around 6000. This important difference shows the important undersampling effect of which DDA analysis still suffer 

on this Q-TOF platform. 

Of note is the fact that gel-based sample preparation protocols showed overall higher performances than the liquid 

digestion protocol. This can be explained by two factors. The SDS used in the Laemmli buffer helps to extract and 

solubilize the proteins when compared to the urea buffer used for the liquid digestion protocol. Also, in gel digestion 

has been proven to be more effective than in liquid digestion [189]. And, in the case of stacking gels, the lattice is 

much lower than the one of resolving gels, 4-5% and 10-12% respectively. This facilitates the access of the digestion 

enzyme increasing thus the yield of digestion. Among the gel-based protocols, it is the protocol 1 gave the highest 

number of identifications. 



 Part IV 
 

97 

  

Parts C and D of the figure show the complementarity of the protocols. This can partly be explained by different 

protein migration profiles that were not present or partially present in the region of the gel that was cut and analyzed. 

It can also be explained by the undersampling of the instrument. This is illustrated in part E of the figure, that shows 

the cumulative number of identifications according to the number of replicates analyzed. In this case the data from 

the 5 replicate analyses using the protocol 2 are shown.  This clearly shows the undersampling of the instrument as 

each new replicate adds a significant number of new identifications. 

 
Figure IV-22: Number of identifications of proteins and peptides according to the sample preparation protocol. 

The average number of proteins and peptides identified in each sample (A) and cumulated number of identifications of peptides 

and proteins (B) according to the sample preparation protocol are shown. The Venn diagrams showing the complementarity of the 

methods in terms of identifications of proteins (C) and peptides (D) are also shown. The cumulative number of identifications 

according to the number of replicates analyzed (E) illustrates the undersampling of the instrument. 

 

We wanted next to assess the analytical performances of intra-gel and inter-gel replicates using each sample 

preparation protocol. To do this we used a Label-free MS1 filtering strategy. 

One of the major problems in MS1-filtering is the correct peak identification and integration (see Part IVChapter ID.4 

on page 109), which can increase the number of false positives and false negatives. To minimize this problem and 

obtain a value of the variability that originates solely from the sample preparation steps, we used the following data 

analysis strategy. 
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To minimize the errors of peak picking and peak integration due to errors in matching peptides across different runs, 

only the set of peptides that were identified in all four sample preparation protocols were used for the quantification. 

We used Skyline to extract the 3 isotopes (P, P+1 and P+2) for each peptide. We used a spectral library to provide the 

retention time coordinates of each peptide in each LC-MS run. The quantification method extracted information for 

1407 peptides and 1623 precursor ions and monitored 4869 MS1 signals. For each peptide, the summed area under 

the 3 isotope peaks was used. Additionally, to minimize the variability originating from the LC-MS instrument (sample 

dilution, sample injection, MS performance…) a normalization step was used. This way we ensure that the remaining 

variability is a product only of the sample preparation protocol. To perform the normalization step we used the 

Normalyzer tool [190], an open-source tool in R language [184]. We used a Log2 transformation and each sample in a 

replicate group was normalized to the median of all the samples in the replicate group. 

The results can be seen in Figure IV-23. The results show the analytical performance of inter- and intra-gel replicates. 

The boxplots show the distribution of log2-transformed intensities in each sample after the normalization. All three 

gel-based protocols have the same levels of intensities, and have overall higher intensities than the liquid digestion 

protocol. The Relative Log Expression (RLE) plots show the ratio between the intensity of a peptide and the median 

intensity of the peptide across all samples. Since the assumption that the majority of peptides are unchanged across 

all samples is made, the samples should be aligned around zero. Any deviation would indicate discrepancies in the 

data. What is interesting here is to see that the peptide intensities from the liquid digestion protocol are quite 

different than those obtained by the gel-based protocols. From this plot we can see that at least 25% of the peptides 

have intensities 2 times lower than the corresponding median intensity of the peptide across all samples. This is in 

agreement with the previous result. What it interesting is to see that there are also peptides that are more intense in 

the liquid digestion protocol than with the gel-based protocol. Further data mining must be performed to determine 

whether this result comes from protein or peptide physico-chemical characteristics that make a peptide respond 

better in one condition compared to the other. However, only 37 peptides were found to have a higher intensity when 

using the protocol 4 when compared to the gel-based protocols. 

Moreover it is important to note that the gel-based protocols are very similar to each other. This can also be seen in 

the dendograms where all the gel-based protocols are grouped together. And among the gel-based protocols the two 

stacking gel protocols (protocol 1 and 2) are also grouped together and cannot be distinguished. Finally, the 

distribution of coefficients of variations for all quantified peptides is shown. All protocols show similar performances. 

Though, one intra-gel replicate of protocol 1 had a problem of the injected volume. This affected the coefficient of 

variations in the intra-gel conditions.  However the plot showing the inter-gel replicates show that the protocol 1 and 

specially the protocol 2 have overall lower CVs. 

Finally in terms of practicability the protocol 2 is the one that requires the less amount of expertise from the 

researcher performing the experiment. 

All in all, the protocol 2 is the one providing the best analytical performances in terms of precision and proteome 

coverage. A parameter not discussed here is the accuracy that can be obtained by this method. Further studies can be 

done to evaluate this important parameter using a well-characterized sample in which known amounts of variant 

proteins are spiked into a complex biological sample. This strategy will be discussed in the next section. 
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Figure IV-23: Intra-gel and inter-gel replicate performance assessment of each sample preparation protocol. 

The results of the evaluation of the different protocols by label-free quantification are summarized here for the intra-gel (A) and 

the inter-gel replicates (B). The boxplots show the distribution of log2-transformed intensities in each sample after a normalization 

step. The Relative Log Expression (RLE) plots show the ratio between the intensity of a peptide and the median intensity of the 

peptide across all samples. The similarity of quantification results is summarized by the dendograms and the distribution of the CVs 

is also shown. 
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C.  Setup of an alternative targeted quantification method: Parallel Reaction Monitoring (PRM) 

Figure IV-24 shows a comparison of the multiplexing capabilities of SRM versus PRM. For SRM and PRM different 

acquisition methods were evaluated. The instrumental parameters in Figure IV-24 are adapted to the instruments 

present in the laboratory. The SRM platform is a Thermo Scientific TSQ Vantage; the Q-TOF platform is an AB Sciex 

Triple-TOF 6600; and the Q-Orbitrap is a Thermo Scientific Q-Exactive Plus. The data presented here shows the 

scheduling of a heavy-labelled peptide set containing 316 targeted precursor ions and 959 transitions. This is a non-

biased standard sample to evaluate the multiplexing capabilities as it mimics the elution profile of multiple peptides in 

a biological complex digest sample. In this section, the optimization of the chromatographic conditions to better 

separate the peptides and thus increase the multiplexing will not be discussed. This dataset will be used to evaluate 

whether or not the analysis of all the peptides can be done in a single run. It is important to keep in mind that 

scheduled windows higher than 5 minutes are commonly used in order to take account for common retention time 

shifts due to small differences in mobile phase composition, stationary phase, flow rate, temperature and matrix 

effects. Using shorter time windows lower than 2-minutes represents a high risk of missing the analytes. Indeed if the 

retention times shifts then a targeted peptide could elute before or after the scheduled time-window or it can be 

truncated rendering its quantification impossible. The scheduled time windows were set to be at least 5-minutes long 

in order to account for possible retention time variations. This value will be used as a metric for the comparison of 

SRM and PRM. 

 For SRM, at least 3 transitions per peptide were monitored. For the two first methods (Figure IV-24), the dwell times 

and cycle times were adjusted to enable an accurate and sensitive quantification. Using these methods all the 

transitions can be analyzed in a single run with Scheduled-SRM. However, the time windows need to be respectively 

of 1,5 min and 2,5 min. Using such small time windows size represents a high risk. It is thus not reasonable to use 

these methods to analyze this set of peptides. To be able to confidently quantify all the transitions in this peptide set, 

it is possible to reduce the minimum dwell time to 9-14 ms, knowing that the TSQ Vantage can go as low as 5ms. And 

keeping in mind that the average FWHM for a chromatographic peak in our LC conditions is 30 seconds, the cycle time 

can be increased to 2,5-3 seconds. Respectively 12 and 10 data points can be measured per peak in these conditions 

which is enough for an accurate quantification. With these parameters (SRM methods 3 and 4), all the transitions can 

be monitored within a single run with 4 and 5 min time windows. 

It is important to understand that in a scheduled SRM method the cycle time is fixed and the dwell time is optimized 

according to the number of concurrent transitions. That means that dwell times are short only when a high number of 

concurrent transitions have to be measured. Otherwise the dwell time is longer, as the cycle time is divided by a 

smaller number of transitions, which allows increasing the sensitivity. 
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Figure IV-24: Multiplexing comparison between SRM and PRM. 

 

These results show that the SRM multiplexing capability allows reliably measuring all peptides in the dataset within a 

single run. Additionally, the SRM method can still be tuned to achieve higher multiplexing (SRM methods 5 and 6). 

However using these screening methods the sensitivity and quantification accuracy are reduced. 

Using a PRM method on an AB Sciex Triple-TOF 6600 Q-TOF instrument with a 50ms accumulation time for each 

MS/MS scan and a 2 second cycle time, the analysis using a scheduled-PRM method of all heavy-labelled peptides set 

requires the use of 2-min scheduling time windows (Method 1). For this Q-TOF instrument, scanning at a higher rate 

using smaller accumulation time is not recommended. Thus it would not be recommended to monitor the full set of 

peptides in a single run because of possible LC variations that can compromise the quantification. To be able to 

increase the multiplexing a cycle time of 3s can be used. In this case a 3,5-minutes time window is required (Method 

2). In a recent study, Schilling et al. showed that scheduled-PRM on a Triple-TOF 5600 reached the same levels of 

sensitivity (dynamic range and LOD/LOQ) as SRM [191]. It achieved the quantification of around 500 peptides in a 

single run in different complex samples by using accumulation times of 50-60ms and 1-2 minutes time windows to 

obtain a maximum of 50 concurrent precursor ions at a given time. However, the number of analyzed samples is small 

(10 runs to evaluate RT shifts using a standard protein and a triplicate injection per sample matrix) and it is not 

possible to assess the risk of using such small scheduling time windows in large-scale analyses during several weeks. 

Using a PRM method on a Q-Exactive Plus instrument results in the same problem. The limiting factor in this case is 

the transient time of the Orbitrap. To be able to quantify in a simplex mode (non-multiplexing mode) all precursors in 

our set, very small time-windows are required. Less than 30s time windows are required using a resolving power of 

70000 or 35000 (Methods 3 and 4) which is not realistic. The same can be said for the method 3 using a resolving 

power of 17500. Using this method the time windows needed are smaller than 1,5 minutes. An advantage of the Q-
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Exactive Plus is its ability to analyze multiple precursors in a multiplexed way. In the multiplex mode, several 

precursors are sequentially isolated and sequentially fragmented in the HCD cell. All fragments are trapped and 

accumulated, and then sent into the Orbitrap where they are analyzed together. This approach enables to increase 

the total multiplexing. As seen in Figure IV-24 the methods 6, 7, 8 and 9 use the multiplexing mode. These methods 

enable the analysis of all the precursors in our peptides set with correct scheduling time-window size. However, it is 

important to note that these methods have several downsides, the first being the fact that the fill times are 

considerably reduced (30 ms) and this highly reduces the sensitivity. Gallien et al. showed the negative impact of 

reducing the fill times to this extend on low-abundant peptides and suggest not using low fill times (30-60 ms) when 

co-analyzing wide m/z ranges (4x2m/z, 8x2m/z) [97]. Additionally, it is important to keep in mind that in a PRM 

analysis the intensity values observed in the MS/MS spectra are normalized values corresponding to the number of 

charges of the precursor and its corresponding fill time. In this context, in a multiplexed analysis the intensity values 

observed are wrongly normalized by the total fill time. A supplemental data processing step is necessary to correct for 

this. Finally the multiplexing approach can lead to the co-analysis of peptides with very different abundances. This can 

decrease the dynamic range and thus the overall sensitivity. 

Additional methodological developments have been reported to increase the multiplexing capabilities notably by 

enabling the reduction of time scheduled window sizes. One of these approaches is “on-the-fly” retention time 

correction with the analysis of retention time standard peptides evenly distributed throughout the gradient [172]. 

Another approach termed IS-PRM uses internal standards to trigger PRM events and thus optimize the instrument 

analysis time and increase the multiplexing [4]. This approach promises to highly increase the data quality (as higher 

resolutions can be used) and the analysis throughput.  

All in all, Parallel Reaction Monitoring enables the targeted analysis of peptides of interest with a higher selectivity 

due to the significantly higher resolving power (15k-70k) and higher accuracy (5-10ppm) when compared to SRM. It 

also provides greater assay flexibility as all fragments for a given peptide are simultaneously measured, enabling the 

post-acquisition refinement of signals by eliminating weak, noisy or interfered transitions. Several studies have 

compared PRM and SRM methods [4, 191-193]. These studies found that PRM reaches similar performances as SRM in 

selectivity, accuracy and sensitivity. And in certain conditions (IS-PRM) it can outperform it. However for the moment 

PRM is limited by its low multiplexing capabilities. Recent technological advances can alleviate this problem as faster 

scanning instruments have been developed [194]. Moreover, of SRM and PRM the latter is the one with the most 

potential for progress. 

Though, triple quadrupole instrumentation is significantly low-cost when compared to Q-TOF or Q-Orbitrap 

instruments that could achieve the same analytical performances. The low-price and the ease-of-use of triple 

quadrupole instruments make them the most promising technology for routine analyses if mass spectrometry assays 

become commonly used in hospitals.  
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D.  Setup of performance standard samples for targeted and global quantification 

platforms 

As seen above several new acquisition modes allowing large-scale protein quantification by mass spectrometry have 

recently emerged due to the remarkable technical progress.  These can be grouped in three categories:  

 Data dependent acquisition Label-free quantification based on MS signal. 

 Targeted data acquisition (SRM/MRM and PRM). 

 Data-independent acquisition (DIA) modes (Swath, MSX, MS
E
…). 

All these approaches have been shown to be suitable for protein quantification, and in this context it becomes the 

proteomist’s task to choose the strategy fitting the best to the purpose of the quantification. The proteomist’s work 

consists in developing and optimizing the quantification method by finely tuning the LC-MS parameters in order to 

correctly balance between the needed sensitivity, the highest accuracy, the highest selectivity and the broadest 

protein coverage (Figure IV-25). In order to assess the performances and the effects of the optimization, simple and 

standardized tools are needed. 

 
Figure IV-25: Balancing LC-MS parameters to optimize quantification methods. 

The figure shows a list of LC-MS parameters impacting the accuracy, the selectivity, the proteome coverage and the sensitivity of a 

quantification method.  

 

Additionally in order to obtain robust and reliable quantification data it is important to evaluate each step of the 

proteomics workflow, form sample preparation, LC-MS analysis to the bioinformatic data treatment. Indeed, each 

step is characterized by an inherent technical variance that is added to the total analysis variance. This is illustrated in 

Figure IV-26 which shows a fishbone diagram describing the technical variability that must be evaluated and 

controlled in a proteomic experiment [195]. The causes of the variability observed are separated in six categories. In 

an analytical study, the majority of the variance is due to the sample preparation step. But Piehowski et al. showed 

that the variance due to the LC-MS instrumentation can in some cases contribute to 25% of the overall variability in 

studies requiring long periods of time [196]. It is thus imperative to systematically verify the instrumental 

performances. 

Undeniably acquiring data on an instrument with suboptimal performances will culminate in lower peptide 

identifications and irreproducible quantitative data that can even end in loss of precious biological samples. And more 

importantly it will be accompanied with a significant loss of the investment of personnel time, instrument time and, of 

course, financial resources. Moreover, if the data is not of good quality there will be no data transformation or 

statistical tool capable of correcting it. 
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In order to evaluate LC-MS performances several types of performance tests have been developed based on either 

peptide identifications or chromatogram signal extraction [195] using simple [197] or complex protein digests that can 

also be spiked with standard references [85, 198]. This evaluation must also identify the sources of the disturbances 

that handicap the instrumental performances and guide the troubleshooting corrective actions. To obtain robust 

quantification data the systematic assessment of the system performance must be planned from early stages of the 

experimental design. 

 
Figure IV-26: A fishbone diagram describing the technical variation that must be evaluated and controlled in a proteomic 

experiment (Adapted from [195]). 

 

The choice of the bioinformatic workflow used for the protein identification and quantification is also of high 

importance. In quantitative proteomics the data processing consists in multiple sequential steps, such as pick picking, 

pick area integration, retention time alignment, data normalization, inference of protein abundances from peptide 

abundances, and application of statistical tests to find proteins with differential abundances. Several software tools 

have been developed in the last years for protein identification and protein quantification, such as MaxQuant [87], 

MFPaQ [88], Scaffold [199] or Skyline [15]. However, each software tool uses a different strategy to tackle each of 

these steps. The same tool can produce good or bad results according to the parameters used and the user’s level of 

expertise. In order to evaluate these workflows a well-characterized dataset can be used to evaluate and find the best 

practices for protein quantification and determine the specificities of each bioinformatic tool. 

D.1.1 Well-characterized standard samples and datasets to evaluate proteomics 

workflows  

In order to accurately and objectively evaluate a step or an entire proteomic workflow, a well-characterized and 

standardized sample must be used. This sample must be designed to set ground truth characteristics with which the 

results of the evaluation will be compared. 

The LSMBO is one of the three nodes of the French Proteomics Infrastructure ProFI (together with  IPBS from 

Toulouse and EdyP from Grenoble, http://www.profiproteomics.fr). This consortium aims at improving the fields of 

computing/bioinformatics, and method development for high throughput targeted and global quantitative 

proteomics. These methodological developments are applied to the dynamic analysis of biological systems and to 

biomarker discovery. In this context, one of ProFI’s initial goals was to develop standardized samples and metrics for 

proteomics workflows performance evaluation and I have actively participated in this task. 
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To set up a standard sample, we have chosen the Universal Proteomics Standard (UPS1, Sigma) consisting of 48 

purified human proteins that we spiked in a whole yeast proteome. To mimic relative quantitative changes produced 

by biological up-or down-regulations of a set of proteins, different spike concentrations were defined and prepared 

[85]. 

This tool revealed to be extremely useful to evaluate and improve analytical workflows such as the development of a 

sensitive and objective performance test for LC-SRM platforms, the side-by-side evaluation of label-free bioinformatic 

pipelines and the improvement of signal extraction of Data-Independent Acquisition data as described in the following 

sections. 

D.2. Engineering of a sensitive and objective performance test for Targeted 

data acquisition (LC-SRM) 

D.2.1 Designing a sensitive and highly multiplexed standard sample for the 

evaluation of LC-SRM platforms 

In the context of the ProFI consortium it was necessary to assess the intra- and inter-laboratory transferability of SRM 

assays across the three laboratories. A standard sample and a standard targeted method needed to be developed in 

order to standardize the way that targeted quantification was done in each platform. Additionally, the LC-MS 

platforms present in each laboratory were not of the same vendors (AB Sciex Q-Trap5500 and 6500 and Thermo 

Scientific TSQ Vantage) and were not set to use the same flow-rates (nanoLC and capillaryLC, respectively). As part of 

the method transferability across LC-SRM platforms, it was important to develop a standardize performance test. The 

yeast+UPS1 sample was chosen to routinely verify the instrumental platforms performances. The key steps of the 

development of the performance test are described below. 

First, each laboratory chose and identified the set of well-responding peptides for their corresponding LC-SRM 

platform. Since different LC and QqQ instruments were used, each platform found a different set of peptides. 

However a common list of peptides could be defined. 117 peptides were chosen for the 48 human proteins of the 

UPS1 mixture. Heavy isotopically stable labelled peptides were spiked in the sample to facilitate the identification of 

the peaks and correct LC-MS signal fluctuations. Additionally, retention time standard peptides (iRT standard peptides, 

Biognosys) were used to predict retention times. Each peptide was monitored using at least 3 transitions, totaling 669 

transitions. The developed assay was a time-scheduled SRM method with 6-minutes time windows. 

In order to obtain a reliable and accurate performance test that shows the state of an instrument, it should be 

sensitive to small changes in performances. For the TSQ Vantage platform, the only performance test recommended 

by the vendor is an infusion of a polytyrosine solution. This only enables to check for mass calibration, mass resolution 

and roughly for the sensitivity of the MS instrument. To check the coupling of the LC and the MS, we had introduced in 

the lab the injection of a BSA digest using a fast gradient to determine some chromatography and ESI problems (spray 

instabilities, poorly made connections, void volumes…). However this simple test does not  give a full picture of the 

state of the instrument’s performance and a complex standard mimicking a real biological sample analyzed with a long 

gradient is by far more relevant. It is also important to evaluate the instrument using a highly multiplexed method in 

order to detect the global state of the instrument and more importantly detect peptide-dependent variations by 

individually monitoring chosen peptides. That way the performance test will be sensitive to small changes in a subset 

group of peptides, indicating for example a bad ionization efficiency of hydrophilic peptides at the hydrophilic region 

of the chromatogram, spray instabilities or retention time shifts at the hydrophobic regions of the chromatogram. 
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Taking all these aspects into account, a 4-points dilution series of UPS1 (0.1, 1.0, 5.0, 10.0 fmol) spiked in 2µg of yeast 

was created to evaluate the performances of each platform in terms of sensitivity and linearity,. From this linearity 

experiment, the breaking point of the instruments performance was found to be around 1 fmol of UPS1 injected into 

the column. At this quantity the majority of peptides were below the limit of quantification. For the performance test, 

the amount of UPS1 to be spiked was thus determined to be 5fmol spiked in 1µg of yeast background matrix. The 

amount of yeast background matrix was reduced to 1µg of total protein injected into the column as 2µg seemed to 

damage the Nano-flow columns and a carry-over effect of highly hydrophobic peptides was observed. This quantity of 

background matrix was thus not compatible with a routine performance test evaluation. 

The amount of UPS1 was chosen as it is close to the breaking point of the instrument’s performances, i.e. a small 

deviation from the acceptable instrumental performances would induce very detectable consequential changes in the 

SRM traces of UPS1 peptides. At 5 fmol of injected UPS1 all the peptides were observed but the signals were close to 

the limits of detection and would thus enable easily detecting a loss in sensitivity. 

The performance test, consisting of tryptic peptides of UPS1 proteins, their heavy-labeled peptide counterparts and 

11 retention time standard peptides (iRT standard peptides, Biognosys) spiked-in a yeast lysate background matrix, 

was named the Performance Evaluation Standard (PES). The UPS1 proteins were spiked at 2,5fmol/µl in a 500ng/µl 

yeast lysate background matrix. Two microliters of the PES were injected into the LC-SRM system. The PES was used to 

routinely evaluate the performances of the instruments during a year and it was injected at least 4 times per month. 

D.2.2 Automated and rapid performance evaluation of LC-SRM platforms 

To facilitate the data treatment and fasten the decision making of whether or not the instrument platform is suitable 

for accurate and precise analyses, an automated workflow was developed. 

The skyline open-source software was chosen for the data treatment steps [15]. Heavy-labelled peptides were spiked 

in for every targeted UPS1 peptide to facilitate the peak picking and integration. The heavy-labelled peptides were 

spiked in a sufficient amount to always be detected but not suppress the signal of the targeted peptides. The use of 

these standard peptides eliminated the need to manually verify all SRM traces fastening the data analysis step. 

Additionally Retention time peptides were used to correct for shifts in retention time. The PES was designed to be 

used as a routine performance test throughout long periods of time. In this time period the retention times of the 

peptides can change as the chromatographic conditions can change (column changes, solvent changes, different 

tubing lengths …). To account for this, the nominal retention times were not used instead normalized retention times 

and relative to the standard RT peptides were used. The description of the set of global and individual criteria that 

were established is given below. 

To obtain a general view of the instrument’s performance the global criteria were the following: first the 

chromatogram was divided in three regions: the hydrophilic part, the intermediate part and the hydrophobic part. The 

boundaries of each region were set by the elution times of RT standard peptides (Figure IV-27). That way the retention 

time shifts were taken into account and the three regions will always be composed of the same set of eluting 

peptides. Then, for each region the number of transitions observed with S/N ratio > 3 were counted and compared to 

an expected value with a tolerance value. This makes the performance test sensitive to small changes in a subset 

group of peptides and can thus guide to the appropriate troubleshooting procedure. 

Furthermore, the performance test also follows a restricted set of peptides to determine peptide-dependent 

variations. The so called individual criteria are the following: six peptides well-distributed across the gradient were 
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chosen. For each peptide the best transitions were chosen and the following information was extracted: the peak 

area, the peak height (intensity) and the full width at half maximum were compared to a reference value. The 

reference values were set by analyzing the PES multiple times and determining the values that enabled to confidently 

discriminate between a good and a bad instrument state.  

As stated before, the nominal retention times could not be used. This is why we developed a mean to use normalized 

retention times to RT standard peptides. To do this, for each peptide we calculated the difference in time between the 

peptide’s RT and the RT of the previous RT standard peptide (value amesured in Figure IV-27.B) and divided it by the 

difference in time of the two RT standard peptides surrounding the peptide (value bmesured in Figure IV-27.B). The 

difference of the measured a/b ratio and the a/b reference ratio was used to calculate the difference in time between 

the RT of the measured peptide and the predicted RT for that same peptide (Δ in Figure IV-27.B). The difference has to 

be smaller than half of the time tolerance defined by the user (c Figure IV-27.B). This means that the retention time of 

the peptide falls within the time tolerance window defined by the user.  

 
Figure IV-27: Engineering a performance test using standard retention time peptides to correct for RT shifts in long periods of 

time. 

A. Normalized retention times and relative to the standard retention time peptides were used. A ratio was calculated using the RT 

value of the target peptide and the two Retention time standard peptides surrounding the peptide (a/b ratio). B. The difference in 

time between the RT of the measured peptide and the predicted RT (Δ) is calculated. In order to classify a peptide as having the 

correct retention time, the observed RT should fall within the time tolerance window defined by the user (c). 

 

The choice of the reference values is a challenge as they have to be sensitive enough to detect perturbations in the 

system’s performance, but they don’t have to become an obstacle to the use of the instrument. For the intensity and 

the peak areas, the defined threshold value was chosen after running several PES analyses and it was defined as 70% 

of the average value. For the retention time, the reference value is a/b ratio and a user-defined tolerance time 

window. For the FWHM, it was the maximum FWHM observed after several analyses of the PES. 

An in-house Excel tool was developed to fasten the data analysis, and rapidly and confidently decide whether or not 

the instrument platform is suitable for accurate and precise analyses, or if cleaning and maintenance are required. 

This macro only needs the peptide sequences for which the information is going to be extracted.  

The output of this tool is a table giving a pass/fail summary (Figure IV-28.A). 

D.3. Results of a year-long routine evaluation of LC-SRM platforms 

The PES was used to routinely assess the LC-SRM instrument performances for more than a year. The monitoring of 

the retention times, scheduling window and peak areas of a targeted peptide over a year can be seen in Figure 
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IV-28.B. An abnormal event is shown by a red arrow. In this case it was the chromatography that was in cause as the 

peptide was eluted outside of the scheduling window. Figure IV-28.C. shows the results using another metric. The 

comparison of FWHM shows the clear difference of a well-performing system and a suboptimal system. 

 
Figure IV-28: Pass/Fail performance test applied to a year-long routine evaluation of LC-SRM platforms. 

A. The individual and global criteria and the thresholds are listed in this table in red. The values extracted from a given LC-SRM 

analysis are in black. This is a pass/fail performance test sensitive enough to detect any perturbations and direct the most 

appropriate troubleshooting. B. Monitoring of the retention times, scheduling window and peak areas of a targeted peptide over a 

year. C. Comparison of FWHM of a well-performing and a suboptimal system.  
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D.4. PES applied to the benchmarking of Label-free LC-MS data processing 

workflows  

The results presented here were published in 2016 in the Journal of Proteomics and the dataset was published in the 

journal Data in brief. The first paper is available on page 115. 

D.4.1 Context of the project 

Label-free quantification is based on high-throughput peptide sequencing by LC-MS/MS. This approach has emerged 

in recent years due to significant technological improvements of mass spectrometers in terms of sequencing-speed, 

resolution, and dynamic range. This technique is a powerful tool to deeply characterize and quantify whole 

proteomes. However, it is important to objectively assess label-free methods and bioinformatic pipelines. 

This project is also inscribed in the context of the ProFI consortium which objectives are, in part, to optimize all the 

analytical steps involved in a workflow for global protein quantification and to define robust analytical methods.  

The accuracy of the quantification by label-free methods is highly dependent on the bioinformatic pipeline used to 

process the data. Using the yeast+UPS1 standardized sample, the aim of this study was to make a side-by-side 

evaluation of several bioinformatic tools, namely MaxQuant [87], MFPaQ [88] and Skyline [15]. Having a sample 

providing a ground truth, the different bioinformatic pipelines were dissected in order to determine the best 

parameter sets to be used for each one. 

D.4.2 Experimental design 

Nine samples were prepared by spiking different quantities of UPS1 (Sigma) standard into a yeast background matrix. 

The concentrations spanned from 50 amol to 50 fmol of UPS1 proteins in 1 μg of yeast lysate. Protein samples were 

digested with trypsin, and resulting peptides were analyzed by nanoLC–MS/MS on a LTQ Velos-Orbitrap instrument 

using a Top 20 data-dependent acquisition. Each sample was analyzed in triplicate resulting in 27 .raw data files 

(Figure IV-29). 

This dataset was then used to evaluate different quantitative workflows. In total, the protein identification was done 

using two different software (Mascot and Andromeda) and the protein quantification was done using 5 different tools 

(Scaffold, MFPaQ and IRMa/hEIDI for the spectral count quantification; MaxQuant, MFPaQ and Skyline for the XIC 

MS1 Label-free quantification). Finally, 8 different quantitative datasets were obtained.  

Three pairwise comparisons were chosen to evaluate the different bioinformatic pipelines. These were the 

comparison A (500 amol/μg versus 50 fmol/μg; Fold change =100), comparison B (5 fmol/μg versus 50 fmol/μg; Fold 

change =10) and comparison C (12.5 fmol/μg versus 25 fmol/μg; Fold Change=2). They respectively mimicked a 

condition where in one sample the proteins are under the detection level of the instrument, a high fold change up-

regulation and a low fold change up-regulation, thus covering the spectrum of what can be observed in a real complex 

biological sample. 

The same statistical processing method was performed on all results output files of each pipeline. The criteria used to 

compare the software were the true positive rate (the number of UPS1 successfully classified as variant) and the false 

discovery proportion (the number of yeast proteins erroneously classified as variant). 
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Figure IV-29: Experimental design (adapted from [85]) 

A series of 9 yeast lysate samples spiked with growing concentrations of the Sigma UPS1 standard was analyzed in triplicate by 

nanoLC–MS/MS mass spectrometry on a LTQ Velos-Orbitrap instrument. Different computational workflows were used to identify, 

validate, and quantify proteins based on spectral counting or MS signal analysis. In the present study, 3 different pairwise 

quantitative comparisons (A, B, and C) were performed between samples spiked with different amounts of UPS1, involving in each 

case the quantification of 6 raw files (2 conditions × 3 replicates), trying to mimic distinct biochemical situations. The 3 individual 

quantitative datasets containing protein abundance values were then gathered. This global quantitative dataset was generated for 

each data processing workflow, and identical downstream statistical processing methods were then applied for classification of 

variant proteins. 

 

D.4.3 Characteristics of the Skyline Software 

During this project, I was in charge of evaluating the Label-free XIC MS1 quantification using Skyline. Skyline is an 

open-source software capable of importing .raw files from different vendors (Agilent, AB Sciex, Thermo Scientific, 

Bruker Daltonics, Waters) and acquired using different acquisition modes (DDA, SRM, PRM and DIA). It has a large and 

growing user community. This is why we chose to evaluate this software. 

Skyline is a very flexible software. It does not have a default parameters setting or a single-path workflow. This is a 

very useful feature that enables to use Skyline for many applications. However, this can also be a problem for non-

experienced users, as there are many parameters to be set correctly to obtain an accurate quantification. 

Moreover, Skyline does not have an implemented algorithm for protein identification, protein validation nor protein 

grouping. All these steps have to be performed previously in another software tool. For this project, the Mascot 

searches followed by Scaffold validation [199] was chosen as it was the commonly used workflow in the laboratory at 

that time. It is important to understand that Skyline can extract signals of any defined target, whether it is a validated 

or non-validated peptide. This can highly increase the number of false positives. We have found that to obtain an 

accurate quantification it is best to perform the protein quantification using only validated peptides. 

Additionally, Skyline has two drawbacks that handicap its performance: (i) it does not perform a recalibration of the 

m/z dimension and (ii) it does not align the retention times of the quantified peptides.  

(i) Skyline extracts for a given peptide the signal of its corresponding precursor m/z ratio with a mass tolerance related 

to the resolving power of the instrument. If the mass calibration shifted considerably during the analysis this could not 

be corrected and the quantification will be handicapped (Figure IV-30). This highlights the importance of working with 
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well-performing instruments and systematically controlling the instrument’s state with quality control samples. In the 

case of a shift of the mass calibration a higher tolerance of the extraction mass can be set, but this reduces the 

selectivity of the method. 

 
Figure IV-30: Example of the negative consequences of a badly calibrated instrument. 

Skyline extracts the signal of the precursor calculated m/z ratio with a mass tolerance related to the resolving power of the 

instrument. The color squares represent the signal extraction window. If the mass calibration is not done correctly the extraction 

will be wrong and the quantification will be handicapped. 

 

(ii)The lack of retention time alignment considerably hinders the quantification with Skyline. Skylines uses an 

alignment algorithm to direct the chromatogram extraction in the time region where a peptide should elute according 

to a spectral database or using a prediction based on retention time standard peptides. However, once the signal is 

extracted, another algorithm will try to detect the best peak in these, eventually multiple, extracted signals. These two 

steps are independent so that the peak picking does not benefit from a retention time alignment step and this has an 

impact on the selection of the peak group to be quantified. 

D.4.4 Results of the evaluation of Skyline for MS1 Label free quantification 

Figure IV-31 shows the results of the evaluation. The volcano plots, showing the negative logarithmic of the t-test p-

values plotted against the base-2 logarithmic fold changes, are given for the raw skyline output results and for the 

output after manual validation. The criteria to consider a protein as having a statistically significant changing 

abundance between two comparisons (variant protein) are in this case a t-test p-value lower than 0.05 and a fold 

change higher than 2. The combination of these two criteria is very important to discriminate false from true positives. 

The use of the p-value alone is not recommended as the statistical test shows if, in a pairwise comparison, the 

differential expression is different from zero, but it does not show if the difference observed is biologically meaningful. 

This can clearly be seen in the volcano plots (Figure IV-31. left panels) where the yeast proteins are represented by 

grey diamonds. If only the p-value is used to validate the significance of a differential expression at the commonly 

employed value of 0.05 (represented by the horizontal dashed line), the quantification results would have hundreds of 

proteins wrongly declared as variants. 
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Figure IV-31: Manual peak picking and integration correction and validation. 

Volcano plots showing the negative logarithmic of the t-test p-values plotted against the base-2 logarithmic fold changes and base-

2 logarithmic fold changes plotted against the logarithmic intensities. The results are shown for the Skyline raw output (A) and after 

manually validating each MS1 signal (B). 

 

We can see that the volcano plot made using the Skyline .raw output files shows many yeast proteins considered as 

variant and many UPS1 proteins are falsely considered as non-variant proteins in the comparison C (yellow points) 

(Figure IV-31.A). The overall true positive rate and the false discovery proportion, defined in Figure IV-29, were used 

as the criteria to assess the quality of the quantification. In this case, they were respectively 88% and 22%. When 

compared to the other bioinformatic pipelines, Skyline showed the poorer results. In the left panel of Figure IV-31.A 

the fold changes are plotted against the intensity in log scale. The blue crosses show false positives proteins (yeast 

proteins erroneously classified as variant) and it can clearly be seen that the majority of false positives are of low 

intensity, suggesting that the errors in the quantification are mostly done on low-abundant peptides close to the LOQ 

and where irreproducible signals are common. The peak picking is thus more challenging for these peptides. 

In order to have an accurate and reproducible quantification, each signal has to be manually validated. This is a very 

time-consuming step and subjective to the user interpretation. At the time of this evaluation the mProphet [16] 

automatic validation was not implemented into Skyline and was thus not evaluated. However, it was later tested and 

did not significantly improve the results. 

D.4.5 Improving the results of MS1 Label free quantification by manually 

validating each MS1 signal 

Contrary to other software, Skyline shows the peak integration boundaries and they can be manually corrected. The 

manual correction and validation of every MS1 signal was carried out. The results can be seen in Figure IV-31.B. After 

the manual validation the results clearly improved. The overall true positive rate and the false discovery proportion 

were respectively 97% and 7% and these results were better than any other quantification workflow. Another 

important result is that the false positive proteins (blue crosses) distributed in the intensity axis (left panel Figure 

IV-31.B). This means that there is no longer a correlation between the intensity of the proteins and the fact that they 

are erroneously considered as variant. 
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Each false positive protein was examined and we found that the reason of their wrong classification was that they had 

an isobaric peptide that had exactly the same mass as an UPS1 peptide and they were eluted at close (or at the same) 

retention time. This means that UPS1 peptides contaminated the yeast signals and thus the corresponding proteins 

were classified as variants. This can be seen in the volcano plot in Figure IV-31.B. as the majority of false positives 

appeared in the same reagion as UPS1 proteins. An example is illustrated in Figure IV-32, the peptide 

FVGTAVNFEDNLR belonging to a yeast protein is an isobaric peptide with the exact same mass as peptide 

AFYNVLNEEQR belonging to an UPS1 protein. The MS/MS spectra that served to identify each peptide are shown. This 

peptide was only observed when the UPS1 protein was present in a low concentration. The XICs for these two 

peptides are thus exactly the same. In the bottom panels, the histograms show the total intensities in 5 samples 

analyzed in triplicate; these also describe the same trend for the two peptides. This clearly shows a problem that is 

inherent to MS1 XIC label-free quantification. In this case the two pepetides are isobaric but this problem can also 

exist when there are coeluting peptides with prescursor masses that are close to each other. 

 
Figure IV-32: Example of isobaric peptides with the same RTs distorting the quantification results at the MS1 level. 

Precursor masses of peptide FVGTAVNFEDNLR belonging to a yeast protein and peptide AFYNVLNEEQR belonging to an UPS1 

protein. The MS/MS spectra that served to identify each peptide and the chromatograms are shown for each peptide. In the 

bottom panels the histograms show the total intensities in 5 samples analyzed in triplicate. 

D.4.6 Conclusion and perspectives 

In conclusion, the percentage of false positives in label-free quantification remains still significantly high (8-22% of 

false positives). A way to reduce the number of false positives is to manually verify the quantitative information 

extracted from the raw data, verify and correct the peak picking and the integration boundaries. This is a unique 

feature of Skyline and most alternative software do not allow this manual correction of peak integrations. 

There are still challenges that are inherent to the nature of Label-free quantification using MS1 signals like the 

coelution of peptides with close prescursor masses. A way to overcome these limitations requires the increase of the 

resolving power of the instrument or the use of MS2 information as it is the case when using Data-Independent 

Acquisition. However, we will see in the Part IVChapter IE.3 on page 141 that other challenges arise with the use of 

DIA. 
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Proteomic workflows based on nanoLC–MS/MS data-dependent-acquisition analysis have progressed tremen-

dously in recent years. High-resolution and fast sequencing instruments have enabled the use of label-free

quantitative methods, based either on spectral counting or on MS signal analysis, which appear as an attractive

way to analyze differential protein expression in complex biological samples. However, the computational

processing of the data for label-free quantification still remains a challenge. Here, we used a proteomic standard

composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different concentrations into a

background of yeast cell lysate to benchmark several label-free quantitative workflows, involving different

software packages developed in recent years. This experimental design allowed to finely assess their

performances in terms of sensitivity and false discovery rate, by measuring the number of true and false-

positive (respectively UPS1 or yeast background proteins found as differential). The spiked standard dataset

has been deposited to the ProteomeXchange repositorywith the identifier PXD001819 and can be used to bench-

mark other label-free workflows, adjust software parameter settings, improve algorithms for extraction of the

quantitative metrics from raw MS data, or evaluate downstream statistical methods.

Biological significance: Bioinformatic pipelines for label-free quantitative analysismust be objectively evaluated in

their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic

studies. This can be done through the use of complex spiked samples, for which the “ground truth” of variant

proteins is known, allowing a statistical evaluation of the performances of the data processing workflow.

We provide here such a controlled standard dataset and used it to evaluate the performances of several

label-free bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different

workflows, for detection of variant proteins with different absolute expression levels and fold change values.

The dataset presented here can be useful for tuning software tool parameters, and also testing new algorithms

for label-free quantitative analysis, or for evaluation of downstream statistical methods.
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1. Introduction

Label-free quantitative methods based on LC–MS/MS have become

increasingly popular in proteomic studies, as an attractive and powerful

way to analyze differential protein expression in complex biological

samples [1–3]. They can be based either on the measurement of the

MS/MS sampling rate for a particular protein (spectral counting), or

on the MS chromatographic peak area of its corresponding peptides

in the survey MS scan (MS trace analysis), both values being directly

related to protein abundance. Both approaches have benefited from

tremendous improvements in instrumentation, namely increased

sequencing speed for spectral counting approaches (up to 15–20 Hz in

recent orbitrap or Q-TOF mass spectrometers) and higher resolution

allowing more accurate MS signal analysis and improved matching of

complex LC–MS maps. These methods have concomitantly gained in

analytical depth, and can now routinely be used to profile the expres-

sion of thousands of proteins from biological systems submitted to

different conditions. An important point is however to be able to assess,

minimize, and eventually correct the variability associated to the LC–

MS/MS analytical workflow, to ensure sufficient repeatability of the

measurements and provide robust relative quantification of proteins

across samples. To this respect, the development of proteomic

standards has proved to be essential to assess the performances of

LC–MS platforms, provide a quality control of the system and identify

potential sources of variability. Importantly, they are also needed

to evaluate the downstream elements of the analytical pipeline,

i.e. bioinformatics processing and statistical analysis, which represent

critical steps to generate the final comparative results.

The yeast Saccharomyces cerevisiae proteome has been used inmany

studies as a test sample to illustrate the benefits of various technological

optimizations in the LC–MS/MS workflow. Due to its wide availability

and relatively high complexity and dynamic range, it can be considered

as a good surrogate to many real biological samples, both for method

development and quality control. In previous studies, yeast samples

have been used to establish and demonstrate the efficiency of a wide

range of metrics to evaluate the LC–MS/MS performances [4,5]. These

metrics were directly related to the LC system, the MS instrument

(electrospray source, MS1 and MS2 intensities), the dynamic sampling,

and also the first steps of data processing, i.e. peptide identification

results. They were applied by Paulovich et al. for LC–MS benchmarking

of several instrumental systems operated in different laboratories [6].

Instead of focusing on specific proteins or peptides, the monitoring

proposed by the authors allowed them to give a global and very exhaus-

tive view of the quality of the analysis through general metrics

reflecting for example the median peak FWHM on the whole peptide

population, the number ofMS1orMS2 scans triggered over various por-

tions of the chromatogram, the level of TIC, the median MS1 signal for

the population of identified precursors, or the number of peptides and

proteins identified.

However, the final objective of most label-free studies is to measure

quantitative levels, and detect variation of some proteins across

samples. To evaluate the performances of a workflow in this respect, it

is relevant to use a standard spiked with known amounts of some

peptides or proteins, which can then be specifically monitored to assess

the ability of the analysis in detecting relative quantitative changes.

Controlled datasets based on spike-in experiments thus represent a use-

ful tool to objectively assess the performances of quantitative methods

for differential analysis. Paired comparison between spiked versus

non-spiked samples can be performed to benchmark analytical and

computational pipelines for biomarker discovery. Such controlled

datasets with known “ground truth” have been for example generated

in the past in the field of microarray analysis, by spiking at different

concentrations a panel of 100–200 specific RNAs into a well-defined,

constant background of RNA species [7], and was then widely used as

a gold standard to evaluate various data processing methods [8–12].

In the proteomics field, spiked samples are also often used to evaluate

MS methods or data processing tools, although generally the number

of spiked proteins or peptides is relatively low [13–16]. Interestingly,

as exemplified in the report from Paulovich et al. [6], the use of a more

complex spiked material, such as the UPS1 standard containing 48

well-characterized purified proteins, allowed the authors to compute

more extensively the exact proportion of false discoveries (number of

yeast false positives relative to the total number of proteins declared

as variant) and of true discoveries (number of true positives out of the

48 real variant UPS1 proteins). As a proof of concept of the kind of

benchmarking that can be donewith this spiked standard, they showed

the performances of a spectral count approach (the SASPECT method)

for detection of biomarkers when comparing the spiked sample

(simulating a case sample) and the pure yeast reference sample (control

sample).

In the present study, we wanted to extend this concept and use the

yeast + UPS1 standard to benchmark several tools developed in recent

years for relative quantification, includingwidely used software such as

MaxQuant and Skyline. Indeed, while numerous software tools have

been developed and are more and more routinely used for label-free

quantitation, stringent and side-by-side evaluations have to be

performed to prove the efficiency of the quantification. In addition,

proper tuning and parameter settings in each of these software tools

are also important for optimal downstream analysis.We thus generated

a dataset from yeast samples spiked with 9 different concentrations of

UPS1, analyzed in triplicate on an Orbitrap-Velos mass spectrometer.

Starting from this dataset, different data processing workflows were

implemented to perform relative quantification of proteins. Common

statistical tests and fold-change criteria were used to identify differen-

tial peptides and proteins, for several theoretical fold variations of the

spiked UPS1 standard. This experimental design allowed us to assess

the performances of several workflows (4 based on spectral-count

analysis and 4 based on MS signal analysis) in discovering true positive

(UPS1 proteins successfully classified as variant) and avoiding false

positive (yeast proteins erroneously detected as variant). Overall, this

study allowed to objectively evaluate label-free quantitative methods

and concretely illustrate what one can expect from these approaches

in terms of false discovery proportion and sensitivity for the detection

of variant proteins.

2. Experimental procedures

2.1. Sample preparation

A yeast cell lysate was prepared in 8 M urea/0.1 M ammonium

bicarbonate buffer, protein concentration was adjusted at 8 μg/μL after

Bradford assay, and this lysate was used to resuspend and perform a

serial dilution of the UPS1 standard mixture (Sigma). Twenty microli-

ters of each of the resulting samples, corresponding to 9 different spiked

levels of UPS1 (respectively 0.05–0.125–0.250–0.5–2.5–5–12.5–25–

50 fmol of UPS1/μg of yeast lysate), was reducedwith DTT and alkylated

with iodoacetamide. The urea concentration was lowered to 1 M by

dilution, and proteins were digested in solution by the addition of 2%

of trypsin overnight. Enzymatic digestion was stopped by the addition

of TFA (0.5% final concentration).

2.2. NanoLC–MS/MS analysis

Samples (2 μg of yeast cell lysate + different spiked levels of UPS1)

were analyzed in triplicate by nanoLC–MS/MS using a nanoRS UHPLC

system (Dionex, Amsterdam, The Netherlands) coupled to an LTQ-

Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Bremen,

Germany). 2 μL of each sample was loaded on a C-18 precolumn

(300 μm ID × 5 mm, Dionex) at 20 μL/min in 5% acetonitrile, 0.05%

TFA. After 5 min desalting, the precolumn was switched online with

the analytical C-18 column (75 μm ID × 15 cm, in-house packed with

C18 Reprosil) equilibrated in 95% solvent A (5% acetonitrile, 0.2% formic
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acid) and 5% solvent B (80% acetonitrile, 0.2% formic acid). Peptides

were eluted using the following gradient of solvent B at 300 nL/min

flow rate: 5 to 25% gradient during 75 min; 25 to 50% during 30 min;

50 to 100% during 10 min. The LTQ-Orbitrap Velos was operated in

data-dependent acquisition mode with the XCalibur software. Survey

scan MS were acquired in the Orbitrap on the 300–2000 m/z range

with the resolution set to a value of 60,000. The 20 most intense ions

per survey scan were selected for CID fragmentation and the resulting

fragments were analyzed in the linear trap (LTQ). Dynamic exclusion

was employed within 60 s to prevent repetitive selection of the same

peptide.

2.3. MS data processing

The datasetwas processed according to differentworkflows listed in

Table 1, consisting in the following steps: peaklist generation, database

search, validation of the identified proteins and extraction of quantita-

tive metric (spectral count or MS signal). According to the different

tools used for each step, eight distinct workflows were evaluated. The

same databases were used for peptide identifications: yeast database

from UniprotKB (S_cerevisiae_ 20121108.fasta, 7798 sequences) and

a compiled database containing the UPS1 human sequences (48

sequences).

2.3.1. Workflow 1: ExtractMSn/Mascot/MFPaQ/Spectral counting

The Mascot Daemon software (version 2.4; Matrix Science, London,

UK) was used to perform database searches, using the Extract_msn.exe

macro providedwithXcalibur (version 2.0 SR2; Thermo Fisher Scientific)

to generate peaklists. Parameters used for creation of the peaklists were:

parent ions in the mass range 400–4500, no grouping of MS/MS scans,

and threshold at 1000. Peaklists were submitted to Mascot database

searches (version 2.4.2). ESI-TRAP was chosen as the instrument, tryp-

sin/P as the enzyme and 2 missed cleavages were allowed. Precursor

and fragment mass error tolerances were set at 5 ppm and 0.8 Da,

respectively. Peptide variable modifications allowed during the search

were: acetyl (Protein N-ter), oxidation (M), whereas carbamidomethyl

(C) was set as fixed modification. To calculate the false discovery rate

(FDR), the search was performed using the “decoy” option in Mascot.

Validation was performed with an in-house developed module

associated to MFPaQ [17] (http://mfpaq.sourceforge.net/), based on the

target-decoy strategy, as described before [18]. Briefly, FDR at peptide

level was calculated as described in [19] and set at 5% by adjusting

peptide p-value threshold. Validated peptides were assembled into

protein groups following the principle of parsimony (Occam's razor)

[20]. Protein groups were then validated to obtain a FDR of 1% at the

protein level, by adjusting the threshold on a protein group score defined

as the sum of peptide score offsets (difference between each peptide

Mascot score and its homology or identity threshold). The total spectral

count metric was extracted for each protein group by MFPaQ in each

analytical run.

2.3.2. Workflow 2: Andromeda/MaxQuant/Spectral counting

Acquired MS data were processed using MaxQuant version 1.3.0.5

[21]. Derived peak lists were submitted to the Andromeda search

engine [22]) (www.maxquant.org). For database searches, the precur-

sor mass tolerance was set to 20 ppm for first searches and 6 ppm for

main Andromeda database searches. The fragment ion mass tolerance

was set to 0.5 Da. Trypsin/P was chosen as the enzyme and 2 missed

cleavages were allowed. Oxidation of methionine and protein

N-terminal acetylation were defined as variable modifications, and

carbamidomethylation of cysteine was defined as a fixed modification.

Minimum peptide length was set to six amino acids. Minimum number

of unique peptides was set to one. Maximum FDR – calculated by

employing a reverse database strategy – was set to 1% for peptides

and proteins. Proteins identified as “reverse” and “only identified by

site”were discarded from the list of identified proteins. In this particular

workflow, total spectral count for each validated protein group was

computed from msms.txt table.

2.3.3. Workflow 3: Mascot Distiller/Mascot/IRMa-hEIDI/Spectral counting

Data were processed automatically using Mascot Distiller software

(version 2.4.3.0, Matrix Science). ESI-TRAP was chosen as the instru-

ment, trypsin/P as the enzyme and 2 missed cleavages were allowed.

Precursor and fragment mass error tolerances were set at 5 ppm and

0.8 Da, respectively. Peptide variable modifications allowed during the

search were: acetylation (Protein N-ter), oxidation (M), whereas

carbamidomethyl (C) was set as fixed modification. The IRMa software

v1.31 [23] was used to filter the results. Filters used were: (1) peptides

whose score ≥ query homology threshold (p b 0.5) and rank ≤1 are

marked as significant; (2) single match per query filter was: Move to

ambiguous all peptides which aren't assigned to best protein for this

query (best is higher protein score); (3) FDR seeker filter : Seek a 1%

FDR based on score filtering; (4) Accession filter : Delete proteins

coming from reverse database; (5) Specific peptide filter : Accept only

protein hits whose specific peptides count ≥1. The filtered results

were then compiled and structured within dedicated relational

Databases and a homemade tool (hEIDI) was used for the compilation,

grouping and comparison of the proteins from the different samples,

analytical replicates and conditions to compare (Hesse et al., in prepara-

tion). In such workflow, total spectral count values calculated for each

protein groups are used for quantification.

2.3.4. Workflow 4: ExtractMSn/Mascot/Scaffold/Spectral counting

Peaklists generation and protein identifications were made as

detailed in workflow 1. Mascot results were loaded into the Scaffold

software (Version 3.6.5, Proteome Software, Portland, USA). To

minimize false positive identifications, results were subjected to very

stringent filtering criteria as follows. For the identification of proteins,

a Mascot ion score had to be minimum 30 and above the 95% Mascot

significance threshold (“Identity score”). The target-decoy database

search allowed us to control and estimate the false positive identifica-

tion rate of our study, and the final catalog of proteins presented an

Table 1

LC–MS quantification workflows evaluated. Combinations of tools were used for peaklist creation, database search, validation and quantification, resulting in 8 different workflows based

on either spectral counting or MS signal extraction procedures, as described in details in the Experimental procedures section. The software tools used for spectral count quantification

were Scaffold, IRMa/hEIDI, MaxQuant and MFPaQ. In the case of MS intensity-based quantification, protein intensity metrics were obtained from MFPaQ, MaxQuant or Skyline.

Workflow

number

Peaklist creation

device

Database search

engine

Validation of identified proteins/

spectral counting device

MS signal extraction

device

Quantification

method

1 ExtractMSn Mascot MFPaQ Spectral counting

2 Andromeda Andromeda MaxQuant Spectral counting

3 Mascot Distiller Mascot IRMa/hEIDI Spectral counting

4 ExtractMSn Mascot Scaffold Spectral counting

5 ExtractMSn Mascot MFPaQ MFPaQ MS signal analysis

6 Andromeda Andromeda MaxQuant MaxQuant (Intensity) MS signal analysis

7 Andromeda Andromeda MaxQuant MaxQuant (LFQ) MS signal analysis

8 Mascot Distiller Mascot Scaffold Skyline MS signal analysis
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estimated false discovery rate (FDR) below 5%. The spectral count

metric used for quantitation corresponds to the Unweighted Spectrum

Count values in Scaffold.

2.3.5. Workflow 5: ExtractMSn/Mascot/MFPaQ/MS Signal analysis

The first steps (peaklist creation, database search, validation) were

the same than in workflow 1. Quantification of proteins was then

performed using the label-free module implemented in the MFPaQ

v4.0.0 software, as previously described [18,24]. Briefly, the software

uses the validated identification results and retrieves the XIC of the

identified peptide ions in the corresponding raw nanoLC–MS files,

based on their experimentally measured RT and monoisotopic m/z

values. Peptide ions identified in all the samples to be compared are

used to build a retention time matrix and re-align in time LC–MS

runs. For peptides not identified by MS/MS in a particular run, this

re-alignment matrix is used to perform cross-assignment and extract

their XIC signal starting from a predicted RT. Normalization across

conditions is performed based on the median of XIC area ratios for all

the extracted peptide ions. Protein quantification is based on a protein

abundance index calculated as the average of XIC area values for at

most three intense reference tryptic peptides per protein.

2.3.6. Workflow 6 and 7: Andromeda/MaxQuant/MS Signal analysis

The first steps (database search with Andromeda and validation)

were the same as in workflow 2. For quantification purposes, either

Intensities (workflow 6) or LFQ [25] (workflow 7) calculated by

MaxQuant were used. The LFQ metric, as described in [25], is derived

from the raw intensities by theMaxLFQ algorithm, which uses a specific

normalization procedure, as well as a particular aggregation method to

calculate protein intensities, by taking into account, for each protein, all

thepeptide ratiosmeasured in all pair-wise comparisons of thedifferent

quantified samples. “Match between run” time window was set to

2 min. For LFQ quantification, only protein ratios calculated from at

least two unique peptides ratios (min LFQ ratio count=2)were consid-

ered for calculation of the LFQ protein intensity.

2.3.7. Workflow 8: Mascot Distiller/Mascot/Skyline/MS Signal analysis

Peaklist creation was performed with Mascot Distiller as described

in workflow 3, then database searches were performed with Mascot

and validated with Scaffold as described for workflow 4. XIC signal

corresponding to all validated peptideswere extractedusing the Skyline

software [26] (Skyline version v2.5, daily updates of April 2014, https://

skyline.gs.washington.edu). This method was well described by

Schilling et al. (Schilling et al., MCP, 2012). Total areas, corresponding

to the sum of the 3 extracted isotopes areas, were used for statistical

analysis.

2.4. Statistical analysis

For pairwise comparisons of samples spiked at different concentra-

tions of UPS1, same statistical tests and fold-change criteria were

applied to the quantitative data obtained from each workflow, as

follows:

When working on spectral count metrics (workflows 1–2–3–4), a

beta-binomial test was performed based on triplicate MS/MS analyses.

p-values were calculated with the software package BetaBinomial_1.2

[27] implemented in R. Fold change was calculated as ratio of average

spectral counts from both conditions. For proteins absent in all

replicates of one specific condition, their spectral count values were

modified by adding 1 spectrum to all 6 samples in order to be able to

calculate a fold change for these particular proteins. To classify proteins

as variant and non-variant and plot ROC curves, different combinations

of criteria were tested (|log2 fold change| N x, from 0.8 to 3; p-value b y,

from 0.05 to 0.0001).

When working on MS signal intensity-based metrics (workflows 5–

6–7–8), proteins were filtered out if they were not quantified in at least

all replicates from one condition. Missing protein intensity values were

replaced by a constant value calculated independently for each sample

as the 5-percentile value of the total population. A Welch t-test (two-

tailed t-test, unequal variances) based on triplicate MS analyses was

then performed on log2 transformed values using the Perseus toolbox

(version 1.4.0.11; http://141.61.102.17/perseus_doku). Criteria used to

classify the proteins were the Welch t-test difference calculated by

Perseus (difference between the two compared conditions of the

mean log2 transformed value for triplicate MS/MS analyses), and the

Welch t-test p-value. Results were filtered using different combinations

of these criteria: |Welch t-test difference| N x (from 0 to 7) and

p-value b y (from 0.3 to 0.0001). z-score was also calculated as

z-score = {(Welch t-test difference) − Median [(Welch t-test differ-

ence) for all quantified proteins]} / Standard deviation [(Welch t-test

difference) for all quantified proteins].

3. Results

3.1. Experimental design, sample preparation and analysis

In order to evaluate different quantitative workflows in their ability

to correctly detect known variant proteins in complex samples, we

prepared a series of 9 yeast lysate samples spikedwith growing concen-

trations of the SigmaUPS1 standard composed of an equimolarmixture

of 48 human proteins. To that aim, UPS1 lyophilized proteins were

directly resuspended using the yeast lysate prepared in urea buffer,

and a serial dilution of this initial mixture was then performed using

the same yeast lysate, resulting in spiked UPS1 concentrations ranging

from 50 amol/μg up to 50 fmol/μg of yeast lysate. Protein samples

were digested with trypsin, and resulting peptides were analyzed by

nanoLC–MS/MS on a LTQ Velos-Orbitrap instrument, using routine

chromatographic conditions (15 cm C18 reverse-phase column, 2 h

gradient) and data-dependent acquisition MS parameters (resolution

60,000 for MS survey scan, top 20 CID sequencing in the ion trap).

Triplicate MS analysis was performed for each sample, resulting in 27

raw data files that were subsequently processed in different ways,

using several computational workflows (Table 1). Two different soft-

ware were used for protein identification (Mascot and Andromeda)

and 5 solutions were employed for protein quantification (Scaffold,

IRMa/hEIDI (Hesse et al., in preparation), MaxQuant [21,22,28],

MFPaQ [17,24] and Skyline [26,29]), some of them generating a unique

quantitative output, either spectral counting or MS signal extraction

data, and some of them generating both types of quantitative data.

Finally, 8 different quantitative datasets were obtained, as indicated in

Table 1 and described in details in the Experimental procedures section.

We first evaluated the identification datasets in a qualitative way by

simply reporting the number of identified and validated proteins for

both the background (yeast proteins) and the spiked standard (UPS1

proteins) in each sample. Sup data 1 shows the number of proteins

identified byMS/MS sequencing and validated by various bioinformatics

workflows. As expected, the total number of proteins, reflecting mainly

the constant yeast background proteome, was fairly reproducible across

triplicate MS analysis and across the series of spiked samples, whereas

the number of identified UPS1 proteins increased with the spiked

amount. While no UPS1 protein was correctly identified at a concentra-

tion of 500 amol/μg (as none of the peptide sequence matches could be

validated at this concentration), all 48 human proteins were sequenced

and correctly identified at 50 fmol/μg. From these results, we decided to

select different concentration levels of UPS1 to perform pairwise quan-

titative comparisons of samples, trying to mimic distinct biochemical

situations, as illustrated in Fig. 1. Comparison A (500 amol/μg versus

50 fmol/μg) should reflect a case were a protein is typically under the

detection level of the instrument in one condition, and strongly

expressed in the other conditionwith a fold change of 100. In comparison

B (5 fmol/μg versus 50 fmol/μg), the protein may be in turn detectable in

both conditions, and strongly up-regulated with a fold change of 10.
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Finally, comparison C (12.5 fmol/μg versus 25 fmol/μg) should simulate a

situation where the protein is detectable in both conditions, but only

slightly up-regulatedwith a fold change of 2. Because “real-life”biological

samples usually contain many proteins with a differential abundance,

encompassing awide range of absolute expression levels and fold change

values, we tried to approximate such a situation by gathering together

the quantitative data obtained for each binary comparison, after

computational processing. Using this post-processing assembly of the 3

individual datasets, we composed a global quantitative dataset contain-

ing theoretically 144 variant proteins (UPS1 proteins issued from the 3

relative quantitative analyses, and thus expected to vary with a fold

change of 100, 10 or 2), and a background of around 2500 non-variant

yeast proteins (measured and quantified in the different pairwise

comparisons) (see ref [30], Sup Table 1). The generation of this synthetic

dataset allowed us to illustrate, in a single representation, the perfor-

mance of quantitative proteomic tools and methods, challenged with

different situations.

The final aim of relative quantitative analysis in discovery proteo-

mics is usually to identify differentially expressed proteins. Therefore,

the tested informatics workflows were mainly evaluated in their ability

to correctly detect the expected variants, rather than in the accuracy of

the measured fold change. The experimental design and the spiked

standard used here allowed us to unambiguously assess such perfor-

mances by counting the number of true-positives (TP) and false-

positives (FP), respectively UPS1 or yeast background proteins found

to be differentially expressed. Clearly, the classification of proteins as

variant (positive hits) or non-variant (negative hits) both relies on the

one hand, on the accuracy of the quantitative metrics generated by

the bioinformatics software, and on the other hand, on the performance

of the statistical test and criteria used to discriminate the positive and

negative populations. Here, we mainly tried to benchmark the former

step of the workflow (extraction of quantitative metrics by informatics

tools), andwe didn't aim to evaluate statisticalmethods.We thus used a

common, simple statistical test for protein classification, based either on

the beta-binomial method for spectral count datasets [27], or on a

modified t-test for datasets containing peptide intensity-based values

(see Experimental procedures section and below). Proteins were classi-

fied as variant or non-variant by a combined filtering on the p-value of

this statistical test and on the fold change value, as very often performed

in “real life” biological studies [31–34]. Following such classification, the

sensitivity of the workflows for the detection of variant proteins

(number of true positive hits relative to the real total number of variant

proteins, i.e. TP/144), and false discovery proportion (FDP, defined as

the number of false positive hits relative to the total number of proteins

found as variant, i.e. FP/(TP + FP)) could easily be computed.

3.2. Performances of spectral counting for discrimination of variant proteins

Fig. 2A shows the volcano plots obtained by applying spectral

counting quantificationmethods, inwhich the log10(p-value) (calculated

from the results of the BetaBinomial R package) is plotted against the

calculated protein log2(fold change). As illustrated on these graphs,

Fig. 1. Experimental design. A series of 9 yeast lysate samples spiked with growing concentrations of the Sigma UPS1 standard was analyzed in triplicate by nanoLC–MS/MS mass

spectrometry on a LTQ Velos-Orbitrap instrument. Different computational workflows were used to identify, validate, and quantify proteins based on spectral counting or MS signal

analysis. In the present study, 3 different pairwise quantitative comparisons (A, B, and C) were performed between samples spiked with different amounts of UPS1, involving in each

case the quantification of 6 raw files (2 conditions × 3 replicates), trying to mimic distinct biochemical situations. The 3 individual quantitative datasets containing protein abundance

valueswere then gathered. This global quantitative datasetwas generated for each data processing workflow, and identical downstream statistical processingmethodswere then applied

for classification of variant proteins.
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themajority of UPS1 proteins from comparisons A and B (green and red

populations, theoretical fold changes of respectively 100 and 10) were

easily discriminated from the background of yeast proteins (gray), by

both their p-values and fold changes. This was particularly the case

with software tools such as IRMa/hEIDI and Scaffold. These results

indicated the ability of the spectral count-based quantitative ap-

proaches to confidently detect protein variations of high to medium

amplitude while minimizing the level of false discoveries. However, it

can be noted that the UPS1 proteins quantified in the comparison C

(12.5 fmol/μg versus 25 fmol/μg, yellow dots) were not well segregated

from the background independently of the software used. Overall, these

observations pointed out some limitations of quantification with spec-

tral count data when dealing with low fold change variations or weakly

concentrated proteins.

From these data, we tried to determine which criterion was best

suited to retrieve significantly variant proteins. Sensitivity-FDP curves

were plotted for the data obtained from the different workflows by

using either the fold change or the p-value as a unique criterion to

classify the proteins, and we further wanted to apply combinations of

these filters to improve the classification. Resulting curves (Sup data

2A) show that the beta-binomial test was per se more efficient than a

simple fold change to discriminate the TP from the TN. However,

Fig. 2. Quantitative results obtained with spectral counting workflows. A. Volcano plots (−log10(p-value) of the beta-binomial test versus protein log2(fold change)) are shown for

the different software tools tested. The graphs illustrate the quantitative results for the UPS1 proteins quantified in each binary comparison (green: comparison A, 0,5 fmol/μg versus

50 fmol/μg, theoretical fold change 100; red: comparison B, 5 fmol/μg versus 50 fmol/μg, theoretical fold change 10; yellow: comparison C, 12.5 fmol/μg versus 25 fmol/μg, theoretical

fold change 2). Gray dots correspond to yeast proteins quantified in all of these comparisons. Dotted lines represent a fixed p-value threshold of 0001 and a fixed |log2(fold change)|

threshold of 1. B. For each spectral count workflow, proteins of the mixed dataset (comparison A + B + C) were classified as variant after application of different p-value thresholds

combined to a fixed log2(fold change) threshold of 1. The number of true positives (TP) and false positives (FP) was retrieved, and true positive rate (TPR or sensitivity = TP/144) was

plotted as a function of false-discovery proportion (FDP = FP / (TP + FP)).
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applying an additional fixed fold change cutoff improved significantly

the results, as could be anticipated already from the volcano plots. On

the dataset presented here, the best classification was obtained for all

theworkflows by applying this double-filtering approachwith a thresh-

old of 2 (or 1/2) on the fold change. Therefore sensitivity-FDP curves

were plotted this way (variation of the p-value combined with a fixed

threshold of 1 on the absolute log2(fold change)) for the different

spectral count workflows as shown in Fig. 2B. Globally, the best results

were obtained with workflow 3 (Mascot/IRMa-hEIDI) which allowed

for example to obtain a reasonable sensitivity (62%) with a very low

FDP (4%)when setting a stringent p-value threshold of 0.001. Leveraging

the p-value threshold at 0.0025 led to a slightly better sensitivity (67%)

at the cost of a FDP increase to about 10%. Interestingly, in the case

of workflows 3 (Mascot/IRMa-hEIDI) and 4 (Mascot/Scaffold), it was

possible to reach really low FDP values by increasing the stringency on

the p-value, showing the efficiency of these data processing tools for

the exclusion of FP. Altogether, it turns out that spectral count

approaches were very efficient for detecting high levels of variations

on relatively abundant proteins, but tends to fail to reach high sensitivity

on the present dataset which includes a population with moderate fold

change variations. Markedly, very low levels of FDP can be reached

with appropriate filtering.

3.3. Performances of MS intensity-based methods

Fig. 3A shows the volcano plots from data obtained using different

MS feature extraction tools (− log10(p-value) – calculated with the

two-samples Welch t-test from Perseus – plotted against the log2(fold

Fig. 3. Quantitative results obtained with MS feature extraction workflows A. Volcano plots (−log10(p-value) of the Welch t-test versus protein Welch t-test difference) are shown for

the different software tools tested. As in Fig. 2, the graphs illustrate the quantitative results for the UPS1 proteins quantified in the different binary comparisons A, B and C. Gray dots

correspond to yeast proteins quantified in all of these comparisons. Dotted lines represent a fixed p-value threshold of 0.05 and a fixed |Welch t-test difference| threshold of 1. B. For

each MS signal analysis workflow, proteins of the mixed dataset (comparison A + B + C) were classified as variant after application of different p-value thresholds combined to a

fixed |z-score| threshold of 1. TPR (sensitivity) = TP/144) was plotted as a function of false-discovery proportion (FDP = FP / (TP + FP)).
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change)). Conversely to what we observed with spectral-counting, the

plots obtained with MS intensity-based techniques show that a large

majority of UPS1 proteins quantified in the different pair-wise compar-

isons (green, red, and yellow populations) can be visually discriminated

from the background of yeast proteins. While proteins with high signal

levels andhigh theoretical fold changesweremost often easily classified

as variant (good p-values and high calculated fold changes), it can be

noticed that even the UPS1 proteins quantified in the comparison C

can be segregated from background, although with a partial overlap.

Here again we plotted different sensitivity-FDP curves by classifying

the proteins either on their absolute fold change, on their Welch t-test

p-value, or by a combination of these criteria (setting up a fixed thresh-

old for one of them and varying the other) (Sup data 2B). In the case of

MS intensity values obtained in our dataset, the fold change appeared to

be generally a more efficient filter to discriminate TP from background

than a simple statistical test based on the variance of the protein inten-

sities. Indeed, themodifiedWelch t-test may produce a high number of

FP hits on this particular dataset containing only three analytical repli-

cates, finally leading to a high FDP after multiple testing. For example,

on the MaxQuant LFQ dataset (workflow 7), filtering the proteins at a

0.05 cutoff only on the Welch p-value allowed to efficiently retrieve

almost all UPS1 variant proteins (134 out of 144, e.g. 94% sensitivity),

but with as many as 387 FP yeast proteins declared as variant (i.e. a

final FDP of 74%). On the other hand, correction of the p-values for

multiple-testing with methods such as the Benjamini–Hochberg (BH)

procedure can be used to limit the number of FP and control the final

FDR, but at the cost of a much lower sensitivity. For example, applying

this correction on the same dataset and filtering afterwards with a BH

adjusted p-value cutoff of 0.05 led to only 3 FP yeast proteins, but the

number of TP UPS1 proteins also dropped to 50 (i.e. a calculated final

FDP of 6%, close to the desired theoretical value, but a sensitivity of

only 35%, see ref [30], Sup Table 1). Finally, combining fold change and

Welch t-test p-value criteria emerged as the most discriminant

approach, and allowed to reach good sensitivity with relatively low

FDP. It has to be noticed that, unlike with the statistical t-test, setting a

fold change threshold was quite sensitive to any shift in the population

fold change distribution and to the optional normalization procedure

applied in the workflows. Since some of the used methods contained a

normalization step (e.g. MFPaQ or MaxQuant with the LFQ metric)

and others not (e.g. Skyline or MaxQuant based on summed peptide

intensity values), we used a z-score to avoid possible discrepancies be-

tween quantitative data depending on their origin. This z-score reflects,

for each protein, the distance between the protein fold change and the

mean of the population fold changes, relative to the standard deviation

of this population (see Experimental procedures for calculation of the

z-score). The combination of z-score and p-value criteria gave efficient

discrimination results, as shown in Sup data 2B. For example, in the

case of the MaxQuant LFQ workflow, we obtained a sensitivity of 94%

and a calculated FDP of 8% when combining a |z-score| threshold of 1

and a Welch t-test p-value threshold of 0.05.

Fig. 3B shows the sensitivity-FDP curves obtained for the MS

intensity based workflows by varying the Welch t-test p-value filter,

with a fixed |z-score| cut-off of 1. Altogether, it appeared that the tested

label-free tools based on MS signal analysis have the potential to be

globally very sensitive (detect a large proportion of the true variant

UPS1 proteins), with sensitivity values up to 94% when setting a

p-value of 0.05. Comparative results for the different software are

shown in Table 2 with sensitivity and FDP for this specific p-value. It

has to be noticed however that all workflows produced still relatively

elevated FDP values, that may be related to signal extraction errors by

the software. The best compromise between sensitivity and FDP was

obtained using the LFQmetric fromMaxQuant [25] and the Top 3metric

from MFPaQ [24].

3.4. Use of the spiked standard dataset to highlight data processing

problems and optimize the workflows.

We next wanted to take advantage of this model dataset to identify

quantification errors associated to the generation of false-negative (FN)

and false-positive (FP) proteins, and illustrate a number of possible

mistakes introduced by the different MS intensity based workflows.

Protein quantification is a multi-step process, and possible errors asso-

ciated to each of these steps may influence the final result. Obviously,

processing steps based on peptide validation, grouping, and peptide-

to-protein inference are important for final protein quantification. Sup

data 3A illustrates a case where quantification based on non-specific

peptides, shared between a stable yeast protein and a UPS1 variant

protein (Ubiquitin-40S ribosomal protein S27a), compromised the

result and led to classification of the spiked protein as a FN. Most of

the time however, errors seem to take place at the signal extraction

step itself. Sup data 3B shows a situation with overlapping isotopic

patterns from several coeluting species, in which the MFPaQ software

wrongly picked, in addition to the monoisotopic peak of the correct

peptide, the third and second isotope peaks from other species, as

well as the monoisotopic peak of a closely eluting isobaric peptide.

Such errors could be avoided through a better recognition by the algo-

rithms of peptide isotopic patterns. In addition, in the cases illustrated

here, 16 peptides were correctly quantified for the protein, while signal

extraction error occurred occasionally on a single peptide. Enabling the

detection and elimination of outlier peptides with adequate testing

procedures (option not enabled in that case) would alleviate such prob-

lems. Good alignment of LC–MS runs in retention time is also important

for correct peak picking when cross assignment between runs is imple-

mented. Some errors in Skyline could be attributed to wrong selection

of a particular peptide in one of the runs in which the peptide was not

sequenced by MS/MS, and in which XIC extraction was thus performed

based on the RT of the peptide in another run (not shown). It must be

noticed that tracking and eventually correcting these signal extraction

errors is quite dependent on the software interface. To this respect, a

software like MFPaQ offers a visualization interface that enables a

rapid inspection of the XICs extracted for each peptide in the different

conditions, and possibly unselects some of them to eliminate these

peptides from the final quantification of the protein. However, it does

not allow going back to raw MS data and correct for example the

selection of the integration area directly on the chromatogram. This in

turn is possible in Skyline, which really offers an interactive interface

to efficiently review the results andmanually correct possible mistakes.

We thus wanted to take advantage of this feature and evaluatewhether

Table 2

FDP and TPR obtained on the spiked dataset for different quantitativeworkflows. Similar criteria were used for all workflows to classify proteins as variant (positive hits), i.e. |z-score| N 1

andWelch t-test p-value b 0.05. HumanUPS1 proteins and yeast proteins verifying these criteria were counted respectively as True Positive and False Positive. False Discovery Proportion

and True Positive Rate (sensitivity) were computed as described in the table.

MFPaQ

(workflow 5)

Maxquant intensity

(workflow 6)

Maxquant LFQ

(workflow 7)

Skyline

(workflow 8)

True positive 135 130 134 126

False positive 25 18 11 36

FDP = FP / (FP + TP) ∗ 100 16% 12% 8% 22%

TPR = TP / (TP + FN) ∗ 100 94% 90% 93% 88%
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manual validation of the entire datasetwas practically possible and how

efficient it could be to improve the quantitative results. It took around

15 h to manually check all the peptide ions from the dataset and either

validate or correct the integration of the correspondingXIC. Fig. 4 shows

the result of this exhaustive reviewing of the data on the accuracy of the

quantitative result. While relatively time consuming, the manual

correction clearly reduces the number of both false positive and false

negative. The sensitivity was thus improved (from 88% using raw data

to 97% after manual correction) and the FDP was significantly reduced

(from 22% to around 9%) (sensitivity and FDP values calculated by

filtering proteins based on a Welch t-test p-value b 0.05 calculated

with the two-samples test from Perseus and |z-score| N 1). In addition,

the calculated fold changes were closer to the expected theoretical

values. It appeared that most of the extraction errors generating false

positive hits were related to low intensity signals, as illustrated in

Fig. 4. Finally, after manual correction, no more than 8 yeast proteins

were classified as variant. Out of these 8 false positive hits, 3 contained

peptides that were clearly “contaminated” with UPS1 peptides, 4 had

very low intensity signals, and one of them was detected as variant

while the expression profile of the related peptides did not follow that

of UPS1 peptides. Altogether, these residual mistakes remaining after

in-depth manual validation may reflect the minimal margin of error of

the label-free, MS intensity-based quantification process, which may

be difficult to reduce even by improving the automatic signal extraction

algorithms of the software.

4. Discussion

In this study, we generated a complex, spiked proteomic standard

dataset, in which the ground truth is well characterized, and showed

its utility for benchmarking label-free relative quantification computa-

tional workflows. Different protein standards have been used in the

past tomeasure the performances of such software and data processing

methods, ranging from simple mixtures of recombinant proteins, to

complex cellular extracts spiked with a known amount of exogenous

proteins. In the design of such a standard, it is important to be able to

easily differentiate the spiked proteins from the background after the

database search and identification process, in order to perform a correct

classification of spiked (TP) and background (TN) molecules. The most

straightforward approaches are either to apply some isotopic labeling

on the background or the spiked samples, or to use sets of proteins

from different species. Ideally, the number of spiked molecules should

be large enough to provide a relevant statistical estimation of the sensi-

tivity and FDP of the quantitative methods. Typically, samples can be

spiked with recombinant purified proteins added in known quantities

to the background, or with a much more complex sample, such as a

biological extract from another species. In recent studies aiming at

benchmarking software tools, such “double-proteome” samples have

been used. For example, a mixture of lysates from human cells and

from the Streptococcus pyrogenes bacterium at different ratios was

used in a comparative study to show the performances of the OpenMS

Fig. 4. Manual feature-extraction correction in Skyline. The graphs illustrate the log2(fold change) calculated from protein intensity values in each binary comparison (A, B, and C) as a

function of protein intensity. Protein intensity values were calculated as the sum of all peptide area values extracted by Skyline for each protein, and fold changes were computed from

the mean of triplicate protein intensity values for each spiked concentration point. Results were plotted either from the raw Skyline output, or after an extensive manual check of all

the peptide ions from the dataset (leading to either validate or correct the integration of the corresponding XIC, or eliminate the peptide from quantification). UPS1 proteins quantified

in each binary comparison are represented as indicated in the legend, and yeast proteins are represented either as gray dots (non-variant, true negatives) or blue crosses (variant,

false-positives). Tables on the right indicate thenumber of proteins and peptides actually quantified in each case. Proteinswere classified as variant after application of a p-value thresholds

of 0,05 combined to a fixed log2(fold change) threshold of 1. TPR (TP/144) and FDP(FP / (TP+ FP)) are indicated after classification of the proteins individually for each binary comparison

(A, B or C), or on the mixed dataset (comparison A + B + C).
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software [35]. Similarly, Cox et al. used a complex digest of Hela cells,

spiked with an Escherichia coli digested cellular extract at two different

amounts, creating a 3 fold variation of the E. coli proteins in the quanti-

tative comparison [36]. In that later case, the spiked population repre-

sents a significant portion of the total sample (about one third of the

identified proteins). Such a dataset may simulate particular biological

experiments where a stimulation could for example induce a massive

variation of the proteome, or some interaction proteomics experiments

where a control is compared to an affinity purified sample containing

many up-regulated proteins. However, normalization of such datasets

may be difficult, because the usual hypothesis underlying normalization

procedures is that the major part of the protein population remains

stable, and the median of the fold change distribution should be 1. On

the other hand, spiking a proteome background with a calibrated set

of recombinant purified proteins is statistically less representative, as

the number of TP decreases, but allows to simulate easily a classical

expression proteomics experiment, in which a very minor part of the

proteome will undergo a fold change. The UPS1 commercial standard,

containing an equimolar mixture of 48 purified human proteins, repre-

sents a convenient sample for a spiking scheme experiment, and offers

already a significant number of TP that allows to get an estimation of the

sensitivity and FDP of the computational methods.

As software tools are expected to perform unequally depending on

the fold change and amount of the spiked proteins, producing signals

that will be more or less difficult to extract from the raw data according

to their intensities, it is important to challenge them with different

simulated variations. In a previous study, Cox et al. spiked UPS1 in com-

bination with the UPS2 standard, which contains the same proteins

than UPS1, but distributed into 6 groups of decreasing concentration,

spanning 5 orders of dynamic range [36]. By adding respectively these

two standards into a background E. coliproteome, the authors simulated

a situation where groups of proteins vary with different ratios, in a

single pairwise comparison (6 analytical runs corresponding to 2

conditions with 3 technical replicates). However, in that case, only a

small number of proteins are representative of each ratio, and many

highly dilutedUPS2 proteins are hardly detectable, creating a significant

set of proteins which are differentially expressed but not really

quantifiable.

In the present study, we chose to spike the UPS1 mixture at 9

different concentrations in a background yeast proteome, as described

previously in Paulovich et al. [6], and analyzed these samples in tripli-

cate, resulting in a dataset of 27 runs. In order to artificially recreate a

simulated dataset containing TP with different intensities and fold

change values, we performed several pairwise comparisons by label-

free quantification, and then combined the quantitative outputs. This

approach has the benefit to illustrate the performances of the computa-

tional and statistical methods in a more comprehensive way. As a proof

of principle, we show here the results obtained by simulating 3 kinds of

variations (comparisons A, B and C: detection in only one condition;

high fold change; moderate fold change). In principle, more compari-

sons could be performed and gathered to better approximate the inher-

ent complexity of the variations that take place in a real biological

experiment. For example, we didn't challenge here the software tools

with comparisons involving only the more diluted spikes of the UPS1

concentration range, which would simulate variations of lower abun-

dance proteins. Nevertheless, the different UPS1 spikes considered

here could represent different types of biological samples, notably affin-

ity purifications for large fold change analyses, or more classical

proteome-wide analyses including moderate but significant expression

fold change for some regulated proteins.

While label-freemethods aremore andmore used for quantification

of complex protein mixtures in biological studies, they are sometimes

still considered as less accurate and reliable than label-based

approaches. In addition, while many software tools for label-free quan-

tification have been developed and are available, it may be difficult for

an unexperienced user to choose a particular workflow. Finally, the

quality of the results may be influenced by the parameter settings and

the user's expertise with the programs. Consequently, test datasets are

really needed to assess the performances of a given label-freeworkflow,

adjust the parameters of a particular algorithm, and optimize post-

processing methods such as missing value imputation, normalization,

and statistical tests. The dataset presented here offers such possibilities,

as illustrated on 8 different label-free pipelines which were objectively

evaluated, and for which the number of FN and FP could be easily

measured. The results obtained here show that label-free approaches

are indeed efficient to detect variant proteins on the standard dataset.

Globally, compared to signal extraction procedures, spectral counting

workflows exhibited limited sensitivity (see Sup data 4A, showing over-

laid ROC curves for both type of approaches). Even with lenient p-value

cutoff, spectral count methods could only reach sensitivity levels up to

70–80%, mainly due to inefficiency to classify low abundance proteins

with moderate fold change (comparison C). However, it must be

noticed that they are easier to implement (shorter data processing

time), and work quite well to sort out proteins with medium to high

fold change (comparisons A and B). Noticeably, they also proved to be

quite specific, with the possibility to reach low level of FDP. Indeed,

with data from such workflows, it was possible to set stringent filtering

criteria and to almost completely avoid the detection of false positive

yeast proteins, whereas this was muchmore difficult with MS intensity

based methods (see below). Thus, as illustrated in Sup data 4B, at a

given FDP level of e.g. 5%, spectral count approaches globally provided

better sensitivity levels than MS intensity based approaches. In other

words, if one is interested in the generation of a very “clean” and

reduced list of differentially expressed proteins, the analysis of spectral

count data with stringent filtering may represent a safe way to sort out

very confident hits — probably with some compromise on sensitivity.

Among spectral count workflows, coupling Mascot peptide identifica-

tion with IRMa validation and hEIDI grouping and comparison ended

up with the best compromise between sensitivity and FDP (Fig 2B).

Indeed, even if retrieving the spectral count metric could per se be

seen as a basic process which is not error-prone, depending on the

workflow used, some differences in FDP were observed at the same

sensitivity levels. In fact, spectral count approaches are still dependent

on the quality of peptide validation, selection and grouping, which

may directly influence the performances of the different software

tools tested here.

On the other hand, our results indicated that workflows based on

signal extraction clearly have the potential to be globally very sensitive,

and are effective in detecting large variations as well as accurately mea-

suringmoderate fold changes. Sensitivity levels up to 90–100% could be

reached by relaxing filtering criteria. Thus, when admitting FDP levels

higher than 10%, suchworkflows outperformed spectral countmethods

for the classification of differentially expressed proteins in the dataset

(Sup data 4B). They represent promising approaches to detect varia-

tions even on minor proteins expressed at low level in the sample,

and/or showing subtle changes. However, it has to be noticed that at

present, software tools based on MS intensity analysis still generate a

significant number of FN and FP. The presence of false positive hits

(type I error) associated to statistical tests in multiple comparisons is a

well documented problem when using high-throughput analytical

methods which enable the quantification of hundreds or thousands of

species. When a large number of statistical tests are performed, the

final proportion of false discoveries (FDP) is actually larger than the

user-specified p-value cutoff used for each individual test. Multiple

testing correction procedures are classically used to adjust the individu-

al p-values of each gene or protein, and to control the final FDR, such as

the Benjamini-Hochberg method. Interestingly, spiked datasets, such as

the yeast-UPS1 dataset provided here, allow to experimentally measure

this FDP rate as well as the associated sensitivity, and could represent a

useful tool for optimization of statistical processing steps for proteomic

data. The Benjamini–Hochberg adjustment, while very effective for con-

trolling the final FDR of the process, appeared to be very conservative
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and reduced strongly the sensitivity of the workflows. In our hands,

empiric filtering based on the combination of p-value and fold change

(or z-score) cutoffs offered a more efficient compromise to obtain

good sensitivity with relatively low levels of experimentally measured

FDP, although this FDP was not formally controlled through the

statistical process. Clearly, further studies will be needed to implement

statistical methods allowing to control the FDR rate when looking for

differentially expressed proteins in proteomic experiments. For

example, while we used here arbitrary, fixed fold-change and p-value

cutoffs, other approaches have been described in which the fold-

change cutoff can be modulated as a function of the t-test P-value, to

increase sensitivity for a given FDR after Benjamini-Hochberg correction

[37]. Additionally, pre-filtering can also be implemented to eliminate

lowly abundant proteins which tend to give artificially high fold change

values after spectral count quantification, and create false positives [37].

Finally, other statistical methods have bee proposed previously for

microarray data in order to take into account a fold-change threshold

of interest in a formal hypothesis test with FDR control [38–40].

The occurrence of FP and FN hits is also a problem that has to be

tackled upstream of statistical processing, at the level of quantitative

analysis and raw data processing tools, as these false hits are very

often associated to signal extraction or matching problems (Sup data

3). Indeed, extraction of peptide intensity values is a complex process

based on MS peak picking, isotope pattern and chromatographic peak

recognition, and association of peptide features with MS/MS identifica-

tion results, which can be complicated by the frequent occurrence of

overlapping peptides in the LC–MS space. In our comparison, the

MaxQuant software performed the best when using the LFQ metric

(Fig. 3B). In MaxQuant, the data analysis starts from the detection of

features in the LC–MS map, based on recognition of elution peaks and

peptide isotope profiles. In contrast, the processing in MFPaQ and

Skyline is based on direct XICs extraction, using as a starting point m/z

and RT coordinates derived from MS/MS identification results. Our

study indicates that the later approach can however also produce

good results, as illustrated by the good sensitivity and FDP obtained

from MFPaQ quantification. A higher number of false positive hits

were obtainedwith Skyline,which could be attributed inmost instances

to the absence of realignment procedure in the version of Skyline used

for this study, and incorrect retrieving of peptide signals at deviated

RT in someof the conditions. On theother hand, the interactive interface

of Skyline allowed to efficiently check the signal extraction, and enabled

an in-depth manual verification which clearly improved the final

quantitative results, and particularly allowed to reduce the number of

false-positive. The reduction of false-positive is an important challenge

in label-free based discovery proteomic approaches, as it will directly

influence the success of further validation steps, based on the selection

of protein candidates from the first quantitative analysis. Although

manual validation of the whole population of peptide ions, as

performed in this study, is certainly overly long and impracticable in

“real-life” biological studies, the ability to go back to the raw data for

manual inspection of some specific proteins is probably an important

feature for a label-free quantitative software. Indeed, the user can in

this way really check the evidence for the differential expression of a

protein, directly on the XIC and MS spectra of the different peptides.

This manual verification can be performed on specific proteins that

make biological sense (e.g. on some expected markers which would

not be found as variants, due to signal extraction errors by the software,

but also on new candidate proteins that will be subsequently selected

for further validation studies, to ensure that these are not false positive).

In summary, our study on the presented standard dataset indicates

that 1/the number of false-positive hits from label-free quantitative

analysis is still significant, even with the best performing workflows,

2/that manual verification by the expert allows to reduce it, illustrating

that there is still some margin of improvement for the automatic signal

extraction step by label-free software, and 3/that a residual number of

errors remain inherently difficult to avoid, independently of the quality

of the signal extraction procedure, particularly in the case of co-elution

and overlapping peptide features, which would in turn require better

resolution of both chromatographic and MS instruments. Ideally,

label-free software should offer good performances in order to keep

this number of FP relatively low, but also offer a user-friendly interface

allowing to efficiently going back to the raw data and check the MS

signal extraction on all the peptides of a particular candidate protein.

5. Conclusion

As outlined in previous reports, benchmark datasets are really

needed to evaluate software algorithms in mass spectrometry-based

protein analysis, and should be made freely available [41]. All raw MS

data generated from the spiked standard presented here have been

deposited to the ProteomeXchange Consortium [42] via the PRIDE

partner repositorywith the dataset identifier PXD001819, and quantita-

tive outputs from the different workflows tested are given in ref [30],

Sup Table 1. It must be noticed that all these results are dependent on

the parameter settings used for each computational workflow, and to

this respect, one main utility of this model dataset may be to help the

users in optimizing the tuning and finding the best parameters for a

particular tool. Additionally, we hope that such spiked datasets could

be useful for developers in order to efficiently test algorithms and

improve the extraction of intensity metrics for protein quantitation.

Finally, post-processing steps such as possible normalization, imputa-

tion of missing values, and downstream statistical analysis will also

strongly influence the results. The use of spiked datasets could be

beneficial to objectively evaluate their performances and their ability

to reduce the level of FP and correctly classify variant proteins in

large-scale studies.

This material is available free of charge via the Internet at http://

pubs.acs.org. Supplementary data associated with this article can be

found in the online version, at http://dx.doi.org/10.1016/j.jprot.2015.

11.011.
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D.1. Evaluation of instruments and acquisition methods performance using isotopologue peptides  

D.1.1 Context of the project 

An essential parameter for quantification, the dynamic range, is not often assessed as its evaluation needs a high 

number of runs and instrument time (Figure IV-25). The routine evaluation of dynamic range remains a challenge. 

Previous work presented the proof of principle concept of using isotopologues peptides for evaluating LC-MS/MS 

performance [12, 13]. 

Isotopologues only differ by the number of isotopically stable heavy-labeled amino acids included in their peptide 

sequence. In chromatography, all isotopologues of the same peptide have the same behavior, i.e. the same retention 

time and elution peak shape. In mass spectrometry, all isotopologues can be separated by their m/z ratio in the MS 

signal while they have the same response factor and fragmentation patterns. These characteristics make 

isotopologues ideal to perform absolute targeted protein quantification by SRM [2]. In this context heavy-labeled 

peptides are used to correct sample preparation biases and MS signal fluctuations. Recent studies have used 

isotopologues to correct for differences in response factors [13] , as a mean to trigger in real-time PRM experiments in 

order to optimize the instrument’s scanning time [4] or for the routine quality control of both sample preparation and 

LC–MS platforms[200]. 

In the present study, we wanted to extend this concept and develop a performance assessment workflow using 

dilution series of isotopologue standards by deriving calibration curves with an increased number of calibration points 

and a large concentration range. The use of isotopologue peptides facilitates the creation of calibration curves with 

large concentration ranges. In this study we wanted to take advantage of this approach’s capability to rapidly and 

confidently evaluate an instrument’s dynamic range and sensitivity. We applied it to the comparison of the 

performance of different LC-MS platforms. We benchmarked different acquisition modes within a single instrument. 

Using PRM and DIA methods, we wanted to answer whether or not the isolation windows widths in DIA mode have an 

effect on the dynamic range, and evaluated the quantification using MS1 or MS2 signals in simple and complex 

samples. We compared quantification performance of nano-flow and capillary-flow platforms. And finally we 

developed a workflow for routine evaluation of the dynamic range as a performance test. Overall, this study was 

carried out on five different LC-MS platforms and 17 different experiments were carried out, resulting in 52 different 

LOQ and dynamic range determinations. 

The detailed description of the experimental parameters can be seen on the Experimental Section on page 216. 

D.1.2 Description of the strategy 

Figure IV-33 presents the overall strategy. Briefly, a mixture of isotopologue peptides was spiked into a simple Bovine 

Serum Albumin (BSA) or a complex yeast lysate background matrix. Two sample sets were used in this study: 

 Sample set 1: Eight synthetic stable-isotope 
15

N- and 
13

C-labeled isotopologue peptides based on the peptide 

sequence AALPAAFK (provided from Thermo Fisher) were mixed in the different concentrations each. The 

mixture of isotopologue peptides was diluted by a factor of two in a background matrix (either 5 fmol/µl of 

BSA digest or 50ng/µl of total yeast digest). Then two dilutions by a factor of 10 and 100 were done by 

cascade dilution using the background matrix. The background matrix is used to mimic a proteomic sample 

and also to avoid peptide adsorption to the walls of vials so it should always be added first. Two microliters 

were analyzed by LC-MS/MS and each solution was analyzed in triplicate. This resulted in nine injections of 
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three solutions of isotopologues peptides covering a range of 5,3 logs, i.e. 3 amol to 656 fmol injected on 

column. 

 Sample set 2: The 6 × 5 LC-MS/MS Peptide Reference Mix which contains six sets of isotopologue peptides 

(with each isotopologue peptide in a different concentration) was diluted by a factor of two in a background 

matrix (either 5 fmol/µl of BSA digest or 50ng/µl of total yeast digest). Two microliters were analyzed by LC-

MS/MS and each solution was analyzed in triplicate. For each peptide a calibration curve could be created 

with the following calibration points: 30 amol, 300 amol, 3fmol, 30fmol and 300 fmol of injected amount on 

column. 

  
Figure IV-33: Overview of the analytical workflow. 
A mixture of isotopologue peptides, having the same chromatographic behavior but resolved in MS, was used to create a 24-points 

calibration curve spanning a 5,3-log range from 3amol to 656 fmol in order to assess the dynamic range, sensitivity and limits of 

quantification. 

 

To obtain high-quality data, the extracted signal was visually examined to verify the correct peak group identification 

and integration of peak areas by checking the exact coelution of isotopologue peptides. The limit of quantitation 

(LOQ) was defined as the last point having a coefficient of variation lower than 20% among triplicate injections, 

showing an accuracy between 80 and 120% and giving a coefficient of determination R² higher than 0,98 between the 

area under the peaks and the injected amount on column, and between the recalculated and the real injected amount 

on column. 

D.1.3 LC-MS/MS platform comparison 

This approach was used to compare the performances of different LC-MS platforms. As an example three nanoLC-MS 

platforms were compared: AB Sciex TripleTOF 6600, Thermo Q-Exactive plus and a Waters Synapt HDMS all coupled to 

Waters nanoAcquity systems (Figure IV-34). The isotopologue peptides were spiked in a simple BSA background 

matrix. The Synapt HDMS, being an 8 years old instrument, was set to monitor only MS scans since its scan rate is 

lower than the other two instruments. It showed a 2-log dynamic range and below the LOQ (7,3 fmol of injected 

amount on column), the accuracy and CVs were rapidly off the tolerated values. 
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Figure IV-34: Rapid and accurate performance comparison in terms of sensitivity of three LC-MS platforms. 

Targeted methods were used for each instrument and the MS1 and MS2 signals were used. Five calibration curves are shown for 

three different LC-MS platforms. Empty calibration points are not validated calibration points. The CV and the accuracy are plotted 

against the number of calibration points in increasing order of injected amount. All signals were visually evaluated and validated to 

ensure high-quality results. The vertical dashed lines indicate the LOQ. 

 

The other two instruments were set to perform PRM targeted analysis of the isotopologue peptides. The MS1 and 

MS2 signal was used to determine the dynamic range. Figure IV-35 shows the results obtained on a Thermo Q-

Exactive plus instrument using a PRM method targeting the isotopologue peptides. The curves were created using the 

MS2 signals. The LOQ was found to be 27 amol of injected peptide into the column. Below this injected amount the 

accuracy falls out of the 80-120% range. The LC-MS system showed a 4,4-log dynamic range with excellent accuracy 

and  reproducibility. The TripleTOF 6600 proved to have the same performances in targeted analysis when using the 

PRM MS2 signal with a LOQ equal to 27 amol and a 4,4-log dynamic range (Figure IV-34). For both instruments no 

saturation effects were detected even at the highest injected amount, suggesting that higher quantities could be used, 

and that the dynamic range could be larger. Furthermore, the Q-Exactive plus showed a lower LOQ in MS2 signal than 

with the MS1 signal, respectively 27 and 243 amol of injected peptide on column. This illustrates the gain of sensitivity 

coming from the increase of the selectivity by quantifying  MS2 signals.  
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Figure IV-35: Validation criteria for the LOQ and the dynamic range determination. 

The example here shows data from a PRM experiment where the MS2 signal was used. The bottom graphic shows the CV (%) and 

the accuracy (%) against the number of calibration points arranged in increasing amount of injected peptide. The upper chart shows 

the logarithm of the area under curve against the logarithm of the amount of peptide injected on column. The full boxes are 

validated calibration points (CV<20%; accuracy between 80 and 120%, R²>0.98), the limit of quantitation (LOQ) is shown by the 

dashed line and empty boxes are calibration points below the LOQ. 

 

The use of isotopologue peptides to determine the dynamic range and limits of quantification is a novel, fast and 

accurate method to assess instrumental performances. By multiplying the number of occurrences of the same peptide 

sequence analyzed in a single run, the number of injections needed to create a calibration curve with a satisfying 

number of points is lowered. Therefore dedicated instrument time is also drastically reduced. Using only 9 LC-MS runs, 

a calibration curve with 24 points analyzed in triplicate could be constructed. Performing the same experiment 

without the use of isotopologues would require 72 LC-MS runs and, using a 30-minute method per run, 36 hours 

would be needed. With the approach described in this paper only 4,5 hours are needed to create a 24-points 

calibration curve covering a 5,3-log concentration range and analyzed in triplicate. 

D.1.4 Comparison of different acquisition modes in the same instrument 

By determining the LOQ in different experimental conditions, we wanted to answer the question of whether or not 

the isolation windows widths in DIA mode have an effect on the dynamic range. To evaluate this, seven different 

experimental conditions were tested on an AB Sciex TripleTOF 6600 (Table IV-1). A PRM method was compared the 

different DIA methods and the analyses were done on a simple and a complex background matrix.  

For PRM, an MS survey scan was acquired followed by a set of 8 sequential Q1 isolation windows targeting the 

isotopologue peptides. The first type of DIA method was a SWATH method covering the 350-1200 m/z range 

corresponding to the mass range of the majority of tryptic peptides in a bottom-up proteomic experiment. An MS 

survey scan was acquired followed by a set of 34 sequential Q1 windows with a fixed width of 25 Da. The second type 



 Part IV 
 

131 

  

of DIA method used only 8 isolation windows in order to be able to obtain comparable cycle and dwell times as with 

the PRM experiments. 

 
Table IV-1: Changes in sensitivity by the effects of the acquisition mode and the sample complexity. 

These experiments were carried out on an AB Sciex Triple TOF 6600. For each experimental condition, the LOQ is given in attomoles 

of injected peptide on column and the corresponding dynamic range in logarithmic scale is given in brackets. 
Experiment Acquisition  

mode 
Number 
and size 
of 
isolation 
window  

Covered 
range 
(m/z) 

Cycle 
time  
(s) 

Background 
matrix 

LOQ 
(amol); 
Dynamic 
range 
 
Signal: 
MS1:P, P+1 
and P+2 

LOQ 
(amol); 
Dynamic 
range 
 
Signal: 
MS1:P 

LOQ 
(amol); 
Dynamic 
range 
 
Signal: 
MS2: y4-y5-
y6-y7 

LOQ 
(amol); 
Dynamic 
range 
 
Signal: 
MS2: y6-y7 

1 PRM 8 x 2Da - 1,1 BSA 27 [4,4] 27 [4,4] 27 [4,4] 243 [3,4] 

2 DIA 8 x 4Da 390-422 1,1 BSA 27 [4,4] 27 [4,4] 30 [4,3] 30 [4,3] 

3 DIA 8 x 25Da 369-569 1,1 BSA 30 [4,3] 27 [4,4] N/A* 81 [3,9] 

4 DIA 8 x 50Da 375-775 1,1 BSA 27 [4,4] 27 [4,4] N/A* 243 [3,4] 

5 SWATH 34 x 25Da 350-1200 3,1 BSA 30 [4,3] 27 [4,4] N/A* 270 [3,4] 

6 PRM 8 x 2Da - 1,1 Yeast N/A** 810 [2,9]*** 30 [4,3] 81 [3,9] 

7 SWATH 34 x 25Da 350-1200 3,1 Yeast N/A** 900 [2,9]*** N/A* 300 [3,3] 

*shared fragments making the LOQ assessment impossible; **interfered signals making the LOQ assessment impossible; ***signal detected 

at lower amounts but is interfered 

D.1.4.1 Effects of the background matrix on MS1 and MS2 quantification 

A first result that can be noted is that, even when using a high-resolution instrument, the complexity of the yeast 

background generates interferences in MS1 signals making the determination of the LOQ impossible (Table IV-1). For 

the PRM experiment (Exp. 6), by eliminating the interfered MS1 signals (P+1 and P+2), the LOQ was determined to be 

810 amol of peptides injected on column. This value is significantly higher than the LOQ obtained in a simple BSA 

matrix (Exp. 1), i.e 27 amol. These results suggest that the MS1 signal is not specific enough and the sensitivity is thus 

impaired. 

For the PRM experiments in both a simple and a complex background matrix (Exp 1 and 6) the LOQ is approximately 

the same, respectively 27 and 30 amol. The gain in sensitivity when quantifying MS2 signals thanks to the selection of 

the peptide and the reduction of interfered signals is clearly demonstrated here. The MS2 signal is less affected by the 

complexity of the sample and can thus be used to achieve a higher sensitivity. 

In contrast, when the sample complexity is lower (BSA background matrix, Exp. 1) there is no difference when 

quantifying MS1 or MS2 signals. For low complexity matrices, quantification on the MS1 signal alone seems to be 

enough to achieve high sensitivity. 

D.1.4.2 The problem of shared fragments in DIA experiments 

It is important to note that in DIA multiple peptides are coisolated and fragmented together. The selectivity of this 

method is thus reduced, leading to the increase of the number of interferences present in the MS2 signals. This is the 

case in our study where it should be noted that the isotopologue peptides have shared fragment ions. Figure IV-36 

shows an example of shared and non-shared fragment ions for two sets of isotopologue peptides used in this study. 
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Figure IV-36: Example of shared and non-shared fragment ions in two isotopologue peptides. 

Two sets of isotopologue peptides are shown. The heavy-labelled amino acid is shown in red. The m/z ratio of precursor and 

fragment ion for each isotopologue peptide is given. The cells in gray are shared transitions between peptides. A. For peptide 

AALPAAFK only the b7, y6 and y7 transitions are not shared. B. For peptide YVYVADVAAK only the y9, b8 and b9 are not shared but 

this transitions are not well-responding. This peptide cannot be used to evaluate DIA approaches with large isolation windows. 

When using an isolation window large enough to co-isolate two or more isotopologues the determination of the 

dynamic range becomes impossible, as the signal from one isotopologue peptide interferes with the signal of another 

isotopologue peptide. The PROMEGA 6x5 LC-MS/MS peptide mix (sample set 2) could not be used to evaluate DIA 

strategies as the majority of fragment ions were shared. Also for the peptide from the sample set 1, its two most 

intense fragment ions are shared between isotopologue peptides. These two transitions can thus not be used to 

evaluate DIA analyses. However the y-6 and y-7 fragment ions can be used as they are specific to each of the 

isotopologue peptides. These transitions are only the 3
rd

 and 4
th

 most intense fragment ions for this peptide, thus the 

sensitivity will be impaired. 

D.1.4.3 Effects of DIA isolation windows size on the dynamic range 

The isotopologue peptide from the sample set 1 had specific y5- and y6-ions for each of the eight isotopologue 

peptide. These two transitions are only the third and fourth most intense transitions for this peptide, increasing thus 

the value of the LOQ for this peptide. However they could still be used to evaluate DIA approaches. 

Using the y5- and y6-ions the performances of DIA were found to be similar to PRM as the LOQ was found to be in the 

range of hundreds of attomoles. Additionally the isolation window size in DIA seems to have no significant effect on 

the sensitivity of the instrument (Exp 1 to 4).  

A

Peptide Sequence AALPAAFK AALPAAFK AALPAAFK AALPAAFK AALPAAFK AALPAAFK AALPAAFK AALPAAFK

precursor 394,7369 402,7511 405,2626 407,7647 410,2731 412,7752 415,2804 418,2873

precursor [M+1] 395,2384 403,2526 405,7641 408,2662 410,7746 413,2767 415,7821 418,7897

precursor [M+2] 395,7397 403,7539 406,2652 408,7673 411,2755 413,7776 416,2827 419,2894

b1 72,0444 72,0444 72,0444 72,0444 72,0444 72,0444 76,0515 76,0515

b2 143,0815 143,0815 143,0815 143,0815 143,0815 147,0886 151,0957 151,0957

b3 256,1656 256,1656 263,1827 256,1656 263,1827 260,1727 271,1969 271,1969

b4 353,2183 353,2183 360,2355 353,2183 366,2493 363,2392 368,2497 374,2635

b5 424,2554 428,2625 431,2726 428,2625 441,2935 438,2835 443,2939 449,3077

b6 495,2926 503,3068 506,3168 503,3068 516,3377 513,3277 518,3381 524,3519

b7 642,361 650,3752 663,4125 660,4024 673,4334 670,4233 675,4338 681,4476

y1 147,1128 155,127 147,1128 155,127 147,1128 155,127 155,127 155,127

y2 294,1812 302,1954 304,2084 312,2226 304,2084 312,2226 312,2226 312,2226

y3 365,2183 377,2396 379,2527 387,2669 379,2527 387,2669 387,2669 387,2669

y4 436,2554 452,2838 450,2898 462,3111 454,2969 462,3111 462,3111 462,3111

y5 533,3082 549,3366 547,3425 559,3638 557,3634 565,3776 559,3638 565,3776

y6 646,3923 662,4207 667,4438 672,4479 677,4647 678,4617 679,4651 685,4789

y7 717,4294 733,4578 738,4809 743,485 748,5018 753,5059 754,5093 760,5231

B

Peptide Sequence YVYVADVAAK YVYVADVAAK YVYVADVAAK YVYVADVAAK YVYVADVAAK

precursor 553,8022 556,8091 559,816 562,8229 566,83

precursor [M+1] 554,3038 557,3107 560,3176 563,3245 567,3316

precursor [M+2] 554,8051 557,812 560,8189 563,8257 567,8328

y9 943,5339 949,5477 955,5615 961,5753 969,5895

y8 844,4654 850,4793 856,4931 856,4931 864,5073

y7 681,4021 687,4159 693,4297 693,4297 701,4439

y6 582,3337 588,3475 588,3475 588,3475 596,3617

y5 511,2966 517,3104 517,3104 517,3104 525,3246

y4 396,2696 402,2835 402,2835 402,2835 410,2977

y3 297,2012 297,2012 297,2012 297,2012 305,2154

y2 226,1641 226,1641 226,1641 226,1641 230,1712

y1 155,127 155,127 155,127 155,127 155,127

b1 164,0706 164,0706 164,0706 164,0706 164,0706

b2 263,139 263,139 263,139 269,1528 269,1528

b3 426,2023 426,2023 426,2023 432,2162 432,2162

b4 525,2708 525,2708 531,2846 537,2984 537,2984

b5 596,3079 596,3079 602,3217 608,3355 608,3355

b6 711,3348 711,3348 717,3486 723,3624 723,3624

b7 810,4032 816,417 822,4308 828,4447 828,4447

b8 881,4403 887,4542 893,468 899,4818 903,4889

b9 952,4775 958,4913 964,5051 970,5189 978,5331

YVYVADVAAK

AALPAAFK
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Another important result is that even if the SWATH experiment (34x25Da) maps a larger m/z range and has a cycle 

time three times longer than the other methods; the LOQ is not significantly different of that obtained by PRM (Exp. 5 

and 7). Overall, the instruments performance does not seem to be massively affected by the different acquisition 

modes. The most influent parameter on the performance is the loss of selectivity when changing the isolation-window 

size; this has certainly a higher effect on impairing the sensitivity. However these results should be viewed cautiously 

as in this comparison the background matrix was not complex and the results reflect the behavior of a small set of 

peptides. 

D.1.5 Evaluation of chromatography scale: Comparison of Nano-LC-PRM vs. capillaryLC-

SRM systems 

Nano-flow LC platforms are most widespread in proteomic research laboratories. NanoLC provides good sensitivity, 

high peak capacity, high resolution and it enables low sample injection volume. But technical problems common to 

nanoLC still remain a challenge, such as nanoESI spray instability, not-easily detectable leaks, high back pressure or 

dead volumes. Standard-flow was found to provide globally superior sensitivity than nano-flow, with higher retention 

time reproducibility and increased ease of use [14]. For projects where sample amount is not an issue, this alternative 

platform can be ideal to enhance analysis throughput and reduce instrument downtime. Capillary-flow LC is another 

option that lays in-between nano-flow and standard-flow. 

We applied the method described in this paper to compare the performance of our nanoLC-PRM system versus our 

capillaryLC-SRM system. The sample set 1 and 2 described above with a yeast background matrix were used. The LOQ 

and dynamic range determination can be seen in Table IV-2. 

 

Table IV-2: Comparison of NanoLC-PRM to CapillaryLC-SRM. 
For each experimental condition the LOQ values are given in amol of peptide injected on column, the corresponding dynamic range 

is the value in brackets. For the third experiment, 9,6 times more sample was injected into the column to take advantage of the 

higher sample capacity of the capillary-flow platform, the equivalent amounts in nano-flow conditions are shown in parenthesis. 
Instrument Acquisition  

mode 
LC  
conditions 

Relative  
injected  
amount 

LASVSVSR 
(y4-y5-y6-y7) 

YVYVADVAAK 
(y4-y6-y7-y8) 

VVGGLVALR 
(y4-y6-y7-y8) 

LLSLGAGEFK 
(y5-y6-y7-y8) 

AALPAAFK 
(y4-y5-y6-y7) 

Q-Exactive 
plus 

PRM Nano-flow x1 300 
[3-log] 

300 
[3-log] 

30 
[4-log] 

300 
[3-log] 

27 
[4,4-log] 

TSQ Vantage SRM Capillary-flow x1 300 
[3-log] 

300 
[3-log] 

300 
[3-log] 

300 
[3-log] 

x 

TSQ Vantage SRM Capillary-flow x9,6 288 (30) 
[4-log] 

288 (30) 
[4-log] 

288 (30) 
[4-log] 

288 (30) 
[4-log] 

2592 (270) 
[3,4-log] 

 

First, a direct comparison was made between the two platforms, i.e. the same solution and exactly the same amount 

was injected on both systems. Surprisingly, the nano-flow and the capillary-flow systems showed globally the same 

performances, giving both a 3-log dynamic range and a LOQ of 300 amol. Only the peptide VVGGLVALR was found to 

have a larger dynamic range (4-logs) and a lower LOQ (30 amol) in nano-low compared to capillary-flow. 

A second comparison was made by taking into account the higher sample loading capacity of the capillary-flow 

platform. The total amount of sample loaded on column was 9,6 higher to account for the up-scaling from nano-flow 

to capillary-flow column dimensions. The calibration curve spanned now from 2,88 pmol to 288 amol of injected 

peptide and 9,6µg of yeas background matrix injected on column. From this comparison, the sensitivity of the 

capillary-flow LC-SRM platform was found to be 10-fold higher when the up-scaling was taked into account. In these 

conditions, 4 out of 5 peptides attained at least a 4-log dynamic range and a LOQ equal to 288 amol which is 

equivalent to 30 amol in nano-flow conditions. What is important to note is that for these peptides the last measured 
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calibration point had coefficients of variation and accuracy values respecting the tolerated criteria. This suggests that 

the LOQ could be even lower and the dynamic range larger for these peptides. 

However, peptide AALPAAFK had the opposite behavior. It showed a better sensitivity when using the nano-flow 

platform, suggesting that, even if globally the capillary-flow system is more sensitive than the nano-flow system, this 

trend is peptide-dependent. 

As a conclusion, when access to sample is not an issue, capillary-flow seems to be a robust alternative to nanoflow 

allowing high throughput analysis and lower instrument downtime without losing quantification performances. 

However it is important to keep in mind that these results only reflect the behavior of a small set of peptides. 

D.1.6 Routine dynamic range evaluation as an instrument performance test 

Several system suitability experiments have been developed specifically for quantitative proteomics by LC-MS/MS. 

These experiments use metrics based on chromatogram signal extraction (such as retention time variability, FWHM, 

chromatographic peak shape, peak capacity, etc..). In this experiments sensitivity is often determined by analyzing 

standards at known quantities and comparing the measured response, i.e peak areas or heights, to a reference value 

[195, 197, 201]. Quality control (QC) standards are often used to check system performance. These samples are 

regularly injected all over the sample sequence and analyzed at fixed times. 

In this context, a mixture of isotopologue peptides would constitute a perfect standard to monitor LC-MS instruments 

over time, to benchmark instrument performance and routinely assess sensitivity, as it gives a full view of the 

instrument’s dynamic range. 

 To assess the feasibility of this idea, a targeted PRM experiment was setup on a Bruker Daltonics Impact II system. 

The same sample set 1 solution was analyzed before and after the instrument cleaning and maintenance (Figure 

IV-37.A). Before maintenance, the LOQ was 2,4 fmol of injected amount on column and the dynamic range spanned 

2,4-logs. The high LOQ value suggested a problem in the instruments sensitivity. The instrument was cleaned and the 

collision cell received maintenance. After this, the sensitivity was increased by a factor of 8 to reach a 3,3-log dynamic 

range and a LOQ of 300 amol. 

What is important to note is that, since the equation of the calibration curve is directly related to the instrument’s 

sensitivity, the slope and the intercept of the calibration curve changed in a significant manner after the maintenance. 

Here we propose an idea of how to use these mixtures to make a simple, cost-efficient and rapid performance test 

(Figure IV-37.B). First, using the method described in this section, a signal intensity corresponding to a level close to 

the LOQ should be defined for each peptide (yref in Figure IV-37.B). The equation of the calibration curve can then 

routinely be easily derived using a single injection of an isotopologue mixture. The LOQ can rapidly be approximated 

by looking for the intersection of the calibration curve with the horizontal line corresponding to the intensity under 

which the signal is not of good quality (yref in Figure IV-37.B). The x-value of this interception (xLOQ in Figure IV-37.B) 

will be an approximation of the LOQ. This value can be compared to a reference value (xref in Figure IV-37.B) to obtain 

a pass/fail type of performance test. 

In Figure IV-37.C the calibration curve of the instrument before and after maintenance was plotted using only one 

sample injection. The x1LOQ and x2LOQ shows the value of the approximated LOQ values for each injection. It can clearly 

be seen that the sensitivity improved after the maintenance. The estimated value of the LOQ after maintenance was 

6,5 times lower than before the maintenance. The equation of the calibration curve changes in a significant manner. If 

only a single data point was used to assess the sensitivity, the instrument’s bad performance could have gone 
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unnoticed as the two curves are close to each other at high concentrations. Since this performance test provides a full 

view of the instruments response and dynamic range the sensitivity of the instrument can be more accurately 

evaluated. 

The isotopologue mix could be used as a QC sample with a short LC gradient to limit the dedicated instrument time, 

but by doing so they may not be giving the best representation of the instrument when using a long gradient. The 

isotopologue mixture could be used spiked directly into the samples to measure dynamic ranges directly in the sample 

of interest, and increase sample throughput. 

 
Figure IV-37: Routine dynamic-range evaluation using isotopologue peptides. 

A. Dynamic range and sensitivity assessment before (gray) and after (black) instrument maintenance and cleaning. The dashed lines 

correspond to the LOQ values. yref indicates an intensity under which the signal is no longer of good quality. B. The strategy of a 

performance test using isotopologue peptides is described. A single LC-MS is sufficient to generate a calibration curve that can be 

used to evaluate the instrument sensitivity. C. Application of the strategy to an instrument before (gray) and after (black) 

maintenance. The approximation of the LOQ obtained with the extrapolation of the calibration curve is a good mean to assess the 

instrument sensitivity. 
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D.1.7 Conclusion and perspectives 

In the present study we applied and extended the concept of using isotopologue peptide standards for instrument 

performance evaluation. We developed a performance assessment workflow using dilution series of isotopologue 

standards by deriving calibration curves with an increased number of calibration points and a larger concentration 

range. The accurate performance assessment of five different nanoLC-MS platforms with different acquisition 

methods was conducted. This would not have been possible without the use of isotopologue peptides as more than a 

thousand injections would have been necessary to reproduce the results presented here. The comparison of nano-

flow and capillary-flow platforms showed that capillary-flow systems constitute an appropriate alternative to 

nanoflow systems for protein quantification as they provide good sensitivity, higher robustness and achieve equal or 

better performance in terms of sensitivity. Using PRM and DIA methods on the same instrument, we showed that the 

isolation-window width in DIA analysis does not have a significant effect on the instrument’s sensitivity but the most 

significant impact on the performance comes from the loss of selectivity. However these results should be viewed 

cautiously as in this comparison the background matrix was not complex and the results reflect the behavior of a small 

set of peptides. 

We also introduced a workflow aimed at routine evaluation of instruments’ dynamic range: a performance test that 

allows a fast, accurate and complete view of the instrument’s sensitivity. 

Finally, the use of isotopologue peptides is a powerful tool that will be useful in the proteomic community. However 

the development of peptide mixtures, without shared fragment ions, is still to be achieved to obtain standards 

suitable for the evaluation for new technologies such as DIA. 

A publication resuming the results of this project is in preparation. 

 

E.  Optimization and method development of Data-independent Acquisition methods 

E.1. Data-Independent method optimization 

DIA is often presented as a “plug-and-play” method using a unique set of parameters to quantify proteins 

independently of the sample type. However, for DIA methods based on sequential isolation windows it is important to 

correctly parameter the instrument in order to achieve the best selectivity, sensitivity, quantification accuracy and 

proteome coverage. During my last 2 PhD years I was responsible for the maintenance, the method development, the 

training of new users and the day-to-day operations of a new LC-MS system in the laboratory (Waters nanoAcquity; 

AB Sciex TripleTOF 6600). My task was thus to evaluate the different acquisition methods available, prepare default 

acquisition methods and train new users to setup their methods in the laboratory. In this context, I gained expertise in 

DIA methods setup and will thus present and discuss the key parameters to be optimized to setup DIA methods in the 

following section. 

Scanning times, selectivity and proteome coverage: The time spent to measure a given isolation window is called the 

accumulation time. It is often in the range of 40ms and 100ms. This parameter is related to the sensitivity of the 

analysis. The higher the accumulation time the higher the signal-to-noise ratio and thus the higher the sensitivity. The 

cycle time corresponds to the time necessary to monitor the complete m/z range. This parameter depends on the 

average chromatographic peak widths, to obtain at least 8-10 points per peak. The lower the cycle time the more 

points will be acquired to reconstruct the chromatographic peak for a given transition and thus the better the 

accuracy of the quantification will be. Typical chromatographic peak widths range between 15 to 30 s. Thus the cycle 
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time often ranges around 3 seconds. The proteome coverage depends on the total m/z range analyzed. This depends 

on the peptide distribution on the m/z dimension of the sample to be analyzed. Commonly tryptic peptides distribute 

in the range of 350 to 1200 m/z with a high density in the range of 500 to 800 m/z. The range that can be covered is 

also dependent on the scanning rate of the instrument. In order to cover a larger m/z range, DIA methods use large 

isolation windows (10-50m/z). However even if high-resolution and high-accuracy instruments are used this approach 

is still vulnerable of co-eluting interferences that handicap the quantification. A balance between the number and the 

width of isolation windows, and the instrument’s scanning times is necessary. 

 
Figure IV-38: Balancing LC-MS parameters to optimize DIA methods 

 

For example, the SWATH method presented by Gilet et al. used 32x25Da isolation windows each one acquired with an 

accumulation time of 100ms to cover the 400-1200m/z range. It also used a MS survey scan with an accumulation 

time of 100ms and thus totaled a cycle time of 3.3s [6]. In order to increase the selectivity, smaller windows could be 

used but this could affect the sensitivity as the number of windows required to scan the same total m/z range must be 

increased, thusly reducing the accumulation time of each isolation window. 

Q1 isolation window overlaps: The quadrupole ion transmission in Triple-TOf instruments was shown to be almost 

squared shape. However in the border of the isolation windows the transmission is not optimal. To overcome this, two 

consecutive SWATH windows need to have an overlap of at least 1Da to ensure that a peptide in the borders of the 

window will be analyzed correctly in at least one of the overlapping windows. Then 0.5Da margins will be set and no 

data will be used in these regions (Figure IV-39). 

 
Figure IV-39: Q1 isolation window overlaps and margins. 

 

Collision energies: Contrary to targeted quantitative proteomics where all instrument parameters can be optimized 

for a small set of peptides, in DIA the parameters must be averaged to fit a majority of peptides. The collision energy is 

an example of this. It cannot be optimized for a given peptide in an isolation window. Commonly, the collision 
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energies for doubly charged peptides are used. This means that peptides with a charge higher than two can be non-

optimally fragmented and it will not be possible to quantify these peptides. 

Additionally since a spectral library will be used to target the signal extraction, this must preferably be acquired with 

the same collision energy values as the ones used for the DIA experiment [202]. This will provide a more accurate 

comparison between the extracted signals and the corresponding MS/MS spectra in the library. 

MS full scan: Even if the MS scan is not required to create a DIA method the selectivity can be increased if the MS1 

signal is present[203]. It can also help to discriminate a posteriori ambiguous peak group identifications. This will be 

discussed further in detail below. 

Mass accuracy: The mass accuracy is a very important parameter for DIA, especially because the signal extraction is 

done using the exact theoretical mass of the targeted peptides. And contrary to DDA peptide identification where a 

post-acquisition recalibration can be done, in DIA this step is challenging. When using hybrid Q-Orbitrap instruments 

this is not a problem as the mass calibration is very stable over time and a lock-mass recalibration is done constantly. 

However for the Triple-TOF 6600 instrument, the software does not integrate a lock-mass recalibration. Instead the 

strategy used to correct for mass drifts, is to finely control the temperature inside the instrument and use an external 

calibration to periodically correct the mass calibration shifts. The external calibration is an injection of a simple 

mixture of tryptic peptides (Bovine Serum Albumine, BSA in our case), and the instrument extracts the precursors and 

fragments masses of selected peptides to perform an external calibration of the instrument in MS and MS/MS mode. 

Figure IV-40 shows the measurement of 50 consecutive injections of a BSA digest using a 30-minutes gradient. The 

average mass accuracy error of six monitored BSA peptides is shown over time. This experiment was done after 

observing important mass shifts in the measurements over time. The blue trace shows significant mass accuracy 

errors over time and important mass deviations from one injection to the other. The reason for this problem was a 

badly tuned temperature inside the instrument. The temperature regulation system could not correct for temperature 

changes in the room even if the difference was lower than 2°C during the study. An electronic problem could also be 

implicated but this hypothesis could not be verified. The red trace shows the results of the same experiment once the 

instrument received maintenance. The mass errors are within the 5 ppm tolerance and the deviations from one 

injection to the other are much lower. In this case the deviations can be corrected by the use of periodically injected 

external calibration samples. 

In conclusion, it is important to often check the mass accuracy in this type of instruments. An error in the mass 

calibration can drastically bias the quantification results (as discussed in Part IVChapter ID.4.3on page 110). 

 
Figure IV-40: Monitoring mass errors in a Q-TOF instrument over time. 
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Mass resolution: For Q-TOF instruments there is a trade-off between the resolution and the sensitivity. For the Triple 

TOF 6600 two resolutions can be used in MS/MS mode: 20k and 35k. However the sensitivity is divided by at least a 

factor of two when choosing the latter. For the Q-Exactive instrument the resolution is directly proportional to the 

transient Length. In order to obtain correct scan rates necessary to cover a large m/z range and obtain correct cycle 

times for quantification, the lowest resolution value must be used (17,5K at 200 m/z). However, this resolution is not 

constant throughout the m/z dimension and is more than two times lower at 1000m/z (7,8K) than the one of the 

Triple-TOF 6600 which can be considered constant [204]. However recent technological advances of hybrid Q-orbitrap 

instruments have doubled the resolving power attained with the same transient times. This can directly benefit DIA 

methods as a higher resolution can be used without affecting the cycle time [194]. 

Figure IV-41 shows the proportion of fragment ions showing interference in PRM analyses of 122 isotopically labeled 

peptides spiked into a urine matrix. When the Orbitrap resolving power is increased the number of interfered 

transitions decreases. When the isolation window decreases the proportion also decreases considerably. 

 
Figure IV-41: Comparison of the proportion of fragment ions showing interference in PRM analyses of 122 isotopically 

labeled peptides spiked into a urine matrix as a function of various combinations of experimental conditions (quadrupole 

isolation window and Orbitrap resolving power) (Adapted from [205]). 

 

E.2. Recent developments in DIA acquisition modes 

Recent remarkable technical progress made in mass spectrometry in terms of resolution, mass accuracy, scan speed 

and sensitivity have made available to the scientific community a panel of high performing acquisition modes, 

allowing large-scale protein analysis. For Data-Independent acquisition several new acquisition strategies have 

emerged in the last years.  

Stepwise sequential predefined isolation windows: Figure IV-42.A. shows the peptide distribution during an 80-

minute long DDA analysis of a whole yeast lysate sample. It is clear to see that the tryptic peptides observed here are 

not well distributed along the m/z ratio or the time dimension. Small hydrophilic peptides are eluted in early parts of 

the gradient and large hydrophilic peptides are eluted at late parts of the gradient. For this sample the distribution of 

precursor ions shows that peptides between 400 to 700 m/z ratio are more common (Figure IV-42.B.). Undoubtedly 

the use of a common SWATH method for this sample would result in inefficient instrument scanning time, and very 

complex MS/MS spectra for the isolation windows of low mass range. The use of varying isolation windows according 

to the ion density would help to evenly distribute the ion population and thus increase the selectivity and the overall 

quantification performances. The use of variable windows in SWATH method was termed SWATH 2.0 [98]. 

I have applied this method to the analysis of the whole yeast lysate sample. Figure IV-42.C. shows the common Swath 

method (32x25Da isolation windows) and a customized variable window Swath method. For this method 67 isolation 

windows were used with an accumulation time of 45ms to cover the 400-1250 m/z range. A MS1 full scan of 150ms 
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was also acquired in each cycle. The total cycle time was 3.2s. The size of the isolation windows is show in Figure 

IV-42.D. Small windows of 7Da were used to cover the m/z range with the most dense ion population and larger 

windows were used to cover the less populated regions with isolation windows larger than 30 Da and up to 120Da. 

Zhang et al. introduced an open-source tool, swathTUNER,  to create variable isolation windows based on different 

information to further optimize the methods [206]. The windows can be set to contain the same number of peptides 

ions or the same total ion intensity. The latter can be useful to distribute high abundant protein in different windows 

than low-abundant proteins. This can thus help to avoid loss of intra-spectrum dynamic range. 

 
Figure IV-42: Variable isolation window SWATH method. 

A. Distribution of peptides over the m/z and the time dimension. B. Density of ions according to the m/z ratio. C. Comparison of a 

typical 32x25Da SWATH method and a customized variable window SWATH method. Smaller isolation windows are used to analyze 

the regions of high ion density. D. Isolation window sizes. For high ion density regions 7Da windows are used to improve selectivity 

and sensitivity. 

 

Multiplexed DIA data Random windows: Egertson et al. presented in 2013 a new acquisition method termed MSX 

[207, 208]. This method uses the possibility of multiplex capabilities of Q-Exactive instruments (see the description of 

the multiplex mode in Part IIChapter IIIB.2. on page 51). The method consists in dividing the 500-900m/z range in 100 

non-overlapping 4Da isolation windows. For each MS/MS spectrum, five isolation windows are randomly chosen and 

are sequentially isolated, fragmented and then analyzed simultaneously (Figure IV-43.A). The process is repeated until 

all 100 isolation windows are analyzed. For each cycle the isolation windows are randomly chosen. This method is 

equivalent to analyzing the same m/z range with a method of 20x20m/z consecutive isolation windows. However the 

information contained in the randomly chosen isolation windows and analyzed together will enable the 

demultiplexing of the spectra to generate demultiplexed pseudo MS/MS spectra corresponding to 4Da isolation 

windows. This method was shown to improve the selectivity and the signal-to-noise ratio. However, the main 
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drawback of this method is that the fill times needed to obtain a correct cycle time handicaps the performances of this 

method. Indeed the ion counts showed that the instrument does not perform at the maximum of its possibilities as fill 

times do not let the trap to completely fill [207]. 

To avoid this problem an improved method was proposed consisting of a method resembling a 20x20m/z consecutive 

isolation windows method. But even-numbered cycles cover the 500-900m/z range and odd-numbered cycles cover 

have a 10m/z offset to cover the 510-910m/z range (Figure IV-43.B) [209]. The information of overlapping MS/MS 

spectra can be used to generate demultiplexed MS/MS spectra equivalent to 10m/z isolation windows (Figure 

IV-43.C). This is done by looking for common ion fragments present in overlapping isolation windows belonging to two 

consecutive cycles. Using the common fragment ions a new MS/MS spectra will be generate corresponding to an 

pseudo isolation window of 10Da.  

 
Figure IV-43: Multiplexed DIA approaches. 

 

E.3. DIA Data analysis 

E.3.1 Targeted data extraction – Peptide-centric approaches 

DIA data by its definition is very complex. As wide isolation windows are used several precursor ions are fragmented 

together. The MS/MS spectra are highly convoluted data. Contrary to DDA data where one MS/MS spectrum 

corresponds to only one precursor ion, in DIA this changes. New data analysis methods had to be developed in order 

to overcome the complexity of DIA data. This approach has been implemented by software like PeakView (AB Sciex), 

Skyline [15], Spectronaut [16] and OpenSWATH [210]. 

Gillet et al. proposed an approach for DIA data analysis, initially applied for SWATH data, named targeted data 

extraction [6]. A peptide’s identification and quantification is performed by using the peptide’s prior information 

obtained by DDA approaches and stored in a spectral library. Then fragment ions traces are extracted for peptides of 

interest in DIA data and then the quality of the data is assessed to validate the peptide’s identification. This peptide-

centric approach (as opposed to spectrum-centric that use database search algorithms to identify the peptides) uses 

chromatographic characteristics of the extracted signals to verify the identification of the targeted peptides. Like SRM 

the metrics to validate the peptide’s identification are the co-elution of fragment ions, the peak shape, the fragment-

ions relative intensities and the retention time. Other additional metrics can be used in DIA due to the fact that the 

analysis is done using high-accuracy high-resolution instruments. These are the mass accuracy of the signal, the co-
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elution of precursor and fragment ions and the co-elution of different charge states. This approach gives to DIA data 

SRM-like characteristics in the sense of data completeness. Like SRM, the data is comprehensive for targeted peptides 

and no missing values are present in the data. However DIA has the advantage over SRM of being able to provide data 

for any peptide of interest by specifically extracting their signals form the data without the need to reacquire new 

data. 

DIA is very noisy and this makes peptide picking very challenging. Common challenges concerning DIA Data analysis 

will be discussed below. 

Spectral library generation: Generating a spectral library for DIA experiments has to respect certain considerations.  

First, it is important to consider that DDA undersampling is still a problem in modern day instruments. To be able to 

increase the number of identifications of low-abundant proteins and the quality of their spectra it is recommended to 

build the spectral library using fractionated samples [202]. It is preferred to use the same instrument to build the 

spectral library and to perform the DIA analysis, as the fragmentation pattern (and the charge state distribution) can 

change between instruments. Additionally, contrary to DDA analysis where a single spectrum can be used to identify a 

peptide, for a spectral library all identified and validated peptide must have high quality spectra with representative 

fragmentation pattern. To this aim, the instruments parameters must be set to obtain high quality spectra instead of 

favoring deepness of analysis. Accumulation times must be longer and exclusion times must be short to enable a 

spectral redundancy to ensure the acquisition of high quality data. To counter the effect of the loss of depth of the 

analysis, fractionation can be used. Finally retention time standard peptides must be used to correct retention time 

shifts between the analysis used to build the spectral library, but also to enable the prediction of retention times for 

the DIA targeted data extraction. 

Interferences: Event if high-resolution and high-accuracy instruments are used in DIA analysis, due to the use of broad 

isolation windows, the signal can suffer from interferences. Figure IV-44 shows two examples of peptides with 

interfered signals. The first one shows a peptide (TREIHNEAESQLR) with interfered MS1 signal. However the MS2 

signal is clean. This shows the undeniable advantage of quantification using the MS2 signal. The second example 

shows a peptide with interfered MS2 signal (GALATYGLTIDDLGVASFHGTSTK). However the advantage of DIA is that all 

fragment ions are recorded. In this case the interfered could be deleted and this peptide can be correctly quantified. 

Interferences handicap the use of automatic validation pipelines as these try to assess the identification of the 

peptides based on the similarity of the chromatogram traces with the corresponding spectra in the spectral library. If 

interferences are present then the peak picking algorithm can erroneously chose another peptide and bias the 

quantification. Moreover it can assign a bad score to a peptide that will eventually not be quantified even if it is 

present in the sample and could be quantified with another set of transitions (see Part IVChapter IA.7.2. on page 81). 
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Figure IV-44: Interferences in MS1 and MS2 DIA signals. 

 

Automatic vs. manual validation: Figure IV-45 shows the gain of manual data refinement. By eliminating two 

interfered transitions the dot-product jumps from 0.81 to 0.97 showing a high similarity between the DIA trace and 

the corresponding spectra in the library. 

However in typical DIA studies thousands of proteins and tens of thousands of peptides are analyzed. Additionally 

when large-scale studies are performed manual validation is no longer feasible. Automatic validation tools like 

mProphet have emerged as a solution to this problem[16]. However there is still room for progress to automate the 

data analysis. Two important points need to be addressed: the peak piking and the elimination of interfered signals. 

An example of this will be shown below for the complicated case of PTMs. 

 
Figure IV-45: Manual refinement of DIA data. 

 

Post-translational modifications: A challenge of DIA data is that since broad isolation windows are used, modified and 

unmodified peptides can be isolated and fragmented together if the modification does not produce a sufficient 

retention time shift to discriminate them. In this case the presence of the MS1 signal could be useful for the 

quantification. However the MS1 signal has a lower limit of detection than the MS2 signal, so this could not always be 

used. 

If the modified and unmodified peptides are separated chromatographically, two peak groups having very similar 

fragmentation patterns are extracted and can produce errors of peak picking and identification, and thus bias the 

quantification.  
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Figure IV-46: Chemically modified peptides can be isolated in the same isolation window producing similar peak groups thus 

handicapping the peak picking. 

 

In Figure IV-46, the oxidized and un-oxidized versions of the LPNCPRPNMSICIFGDAFDVDR peptide are shown. The two 

versions of this peptide fall in the same isolation window since the triply charge precursors are separated by 5,3Da. In 

this case three peak groups are present in the MS2 signal. The peak at 70 minutes and the one at 72 minutes have 

exactly the same fragmentation pattern. In this case the two peaks can be discriminated using the MS1 signal. The 

peak the un-oxidized peptide and the oxidized peptides are respectively the peaks at 72 and 70 minutes. In this case, 

the prediction of the retention time can also help to discriminate each peptide. Other useful information to 

discriminate these two peptides is to use the signal of other charge states that could be analyzed in two distinctive 

isolation windows instead of one. This was not used here as the doubly charged precursors were too big to be 

selected by the instrument (>1250Da) and any other charge could be identified. More importantly, since in DIA all 

fragment ions are recorded, specific fragment ions for a given version of the peptide can be used to discriminate a 

modified peptide and even find a specific modification site. This has been widely used to quantify phosphopeptides 

[203, 211, 212]. 

After a visual inspection of these peaks the correct identification of both peptides can be made. The presence of the 

chemically modification producing similar peak groups handicaps the peak picking algorithm. In Figure IV-47, the 

integration boundaries for the un-oxidized version of the peptide are shown over 18 analyses. Two algorithms were 

used, the Skyline default peak picking algorithm and the implemented version of mProphet into Skyline. It can clearly 
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be seen that both algorithms still make mistakes, certainly due to the fact that retention times are predicted but they 

are not strictly aligned. And the identification of a peptide in a sample is not translated to the other samples but each 

analysis is independently treated. There is still room for progress to automate the analysis of DIA data. 

 
Figure IV-47: Peak boundaries chosen by two algorithms for a modified peptide. 

 

E.3.2 Evaluation of two peptide-centric software tools for DIA analysis 

Two software tools were evaluated using the well-characterized standard sample described in Part IVChapter ID.1.1 

on page 104. The dataset used here was the analysis of two samples composed of Universal Protein Standard (UPS1, 

Sigma) consisting of 48 purified human proteins spiked in a whole yeast proteome. Two concentration points were 

used for the evaluation: 5 and 25 fmol of UPS1 in 1µg of whole yeast lysate. Retention time standard peptides were 

also spiked in the samples. 

To evaluate the different software tools the False Discovery Proportion (FDP) and the True Positive Rate (TPR) were 

used. The definition of these two metrics can be seen in Figure IV-29 on page 110. In the spectral library only 43 of the 

48 UPS1 proteins could be identified. This means that the maximum value that can be obtained for the TPR is 89.6% 

(43/48). Additionally, a fold change of 5 is expected for UPS1 proteins. The deviation to this value was also used to 

evaluate the software tools. 

A DDA analysis was performed in the same instrument to generate the spectral library. Then these analyses were 

validated at 1%FDR using the Proline software (Proline Studio, ProFI, Proteomics French Infrastructure) and a non-

redundant spectral library was exported.  

The first software tool to be evaluated was PeakView (AB Sciex). This is proprietary software from AB Sciex. PeakView 

extracts the target peptides present in the spectral library. To be able to control for which peptides a signal is 

extracted, the only possibility is to create a spectral library only containing validated and high quality spectra. This was 

done using Proline software. Then the user sets several parameters for the extraction: number of transitions, MS/MS 

tolerance, number of peptides per protein, extraction window and false discovery rate threshold. The software uses 

an algorithm close to mProphet [16]. The user then can define a list of peptides to be used as retention time 

calibration peptides. Then PeakView aligns the retention times of all the analyses to a chosen analysis that is used as a 

reference. Finally Peakview calculates a false discovery rate for each peptide and only uses peptides for which the FDR 

is lower than 1% for the protein quantification. 

The results of the PeakView evaluation can be seen in Figure IV-48.A. A good discrimination of yeast proteins and 

UPS1 proteins was done. The UPS1 nicely align in the expected fold change of 5. The TPR was 85% and the FDP was 
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15%. These values were the reference to which Skyline will be compared. These were very satisfying results. However 

since PeakView is a proprietary software it cannot be used to analyze data from other vendors. Additionally the 

manual verification of the chromatographic traces is not easy and the integration boundaries are not shown and 

cannot be corrected if necessary. 

The open-source software Skyline [15] was then evaluated. The workflow for this software consists in using a 

redundant spectral library in which each peptide’s retention time will be normalized using a linear regression curve 

calibrated with RT standard peptides. The list of validated peptides from the DDA analysis by the Proline software was 

used as the list of targeted peptides. This list will be used to target the signal extraction. 

For each DIA analysis, Skyline uses the retention times of the RT standard peptides to predict where the targeted 

peptides will elute (see the description of this approach in Part IVChapter IA.5.1 on page 72). The results of the 

evaluation for Skyline using its default peak picking algorithm can be seen in Figure III 46.B. The discrimination of UPS1 

and yeast proteins could be done. However, compared to PeakView the UPS1 proteins do not align correctly around 

the expected fold change. The number of UPS1 where a variation in protein abundance that could be detected is 

lower (TPR= 81%) and the FDP is higher (FDP=19%). 

To try to improve these results the implemented version of mProphet into Skyline was evaluated [16] (Figure III 46.C.). 

In this case, for each targeted peptide and for each analysis, all the peak groups found on the chromatogram are 

scored and the best one is chosen and integrated. This enabled to increase the TPR to 83% and reduce the FDP to 

16%. However the UPS1 proteins were still not centered on the expected fold change. 

For the last two previous evaluations, all peptides were used to quantify the proteins without eliminating any peptide. 

This is different than what Peakview does, as it eliminates all peptides below an FDR of 1%. To be certain that the 

quantification is not biased, the same list of peptides was chosen between Skyline and PeakView. Figure III 46.D. and 

E. shows the results of the evaluation using the same list of targeted peptides between the two software tools. This 

step did not drastically improve the TPR or FDP. However the UPS1 proteins seem to be closer to the expected fold 

change. 

Figure IV-49 shows the results of PeakView and Skyline (using the Prophet algorithm) and both software were 

evaluated using the same peptides. The base-2 logarithm of the fold changes are plotted against the logarithm of the 

summed area under the peaks. It can clearly be seen that PeakView performs better at lower intensities as the UPS1 

and the yeast proteins are close to the axis representing their expected fold change, respectively 2,3 and 0. It is only at 

lower protein abundances that the points start to spread out. In fact the majority of false positives (green triangles) 

are at low abundances. However, for Skyline the proteins start to spread out at higher protein abundances compared 

to PeakView, showing that the peak picking algorithm loses its performances at low concentrations. 

As stated above the peak picking algorithms still make mistakes, certainly due to the fact that retention times are 

predicted but they are not strictly aligned. And the identification of a peptide in a sample is done independently from 

the other analysis. This phenomenon is more frequent in Skyline. 

To illustrate that the major problem of the quantification is the lack of retention time alignment, the CVs and the 

spread of retention times (maximum minus minimum value) was calculated for all peptides in common between the 

two software tools. It is important to keep in mind that the signals are extracted only in a small window of time (6 

minutes), the CVs and spreads will thus not have very large values but these have to be compared to the elution time 
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of a chromatographic peak which is between 15 to 30s. The retention time CVs and spread show larger values for 

Skyline demonstrating that the Peak picking is different between the two software tools.  

In conclusion there is still room for progress to automate the analysis of DIA data. A strict retention time alignment 

seems to be the best option to avoid errors in the quantification. The matching of peptides between different runs can 

be an option to improve this. Future developments to improve automatic DIA analysis are ongoing. 

 

 
Figure IV-48: Evaluation of two peptide-centric DIA data analysis software tools. 
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Figure IV-49: Comparison of PeakView and Skyline 

 

 
Figure IV-50: Retention time CVs and spread for the same peptides quantified by Skyline and PeakView. 

 

E.3.3 Spectrum-centric approaches 

Spectrum-centric approaches have developed with the appearance of DIA approaches. In these approaches co-eluting 

fragment and precursor ions are clustered together to generate pseudo DDA spectra. These spectra are then used to 

perform peptide identification by standard database search algorithms. This approach was first introduced by Purvine 

et al. to reconstruct DDA-like spectra from low and high voltage analysis by manually identifying precursors and 

fragment ions with similar chromatographic characteristics [99]. This technique was refined and commercialized by 

Waters under the name MS
E
 [15]. In theory the MS

E
 approach could be used in any type of high-resolution instrument. 

However the software tool capable of treating this type of data (ProteinLynx Global SERVER
TM

, PLGS
TM

) is a proprietary 

software tool. This added to the complexity of the MS/MS spectra have slowed the progress of this technology. 

With the emergence of new DIA methods several bioinformatic research groups have developed new spectrum-

centric data analysis algorithms. An example is DIA Umpire, which generates DDA-like spectra from SWATH-like DIA 

data [213]. This tool enables the identification and quantification of proteins directly from DIA data. However for the 

moment, it generates an excessive amount of spectra which have a negative impact on the total protein identification 

and on the time necessary to analyze a single run. 

These approaches are still new in the field but they are very promising as they have the advantage of profiting from 

the discoveries and advances of standard workflows that have been developed in the last 20 years in proteomic 

analysis. 

E.4. Conclusion and perspectives 

In conclusion, DIA is a very promising acquisition mode for protein quantification. The method has taken advantage of 

the recent technological advances that provided the scan rate, sensibility and mass-accuracy necessary for this type of 

approach. 
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Due the nature of DIA, data analysis is challenging. The complexity of the MS/SM spectra and the high number of 

peptides to be quantified (tens of thousands) made the visual and manual validation of the data very difficult and 

impractical. Automatic validation pipelines must be used but at the moment there is still room for progress.  

This is why to ensure an accurate and reliable quantification, the best strategy is to have a defined hypothesis before 

analyzing the data. This way the list of peptides that have to be analyzed can be reduced. Once this first set of 

peptides has been quantified, the results can guide the user to reestablish his hypothesis and expand the list of 

peptides accordingly, and so on. A reduction of protein targets that represent biological processes has been proposed 

by several groups [212, 214, 215]. 

Finally, both peptide-centric and spectrum-centric approaches strongly rely on protein databases. A challenge in DIA 

will certainly be in the future the quantification of protein sequences not present in the consensus databases 

(sequence variant peptides, isoforms…). In the context of personalized medicine and the developments of 

Proteogenomic approaches, DIA is likely a very promising type of quantification as novel peptides could be queried in 

the already acquired data without the need of developing targeted approaches. 
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Chapter II  Application of targeted proteomics to validate Crohn’s disease 

biomarkers 

A.1. Crohn’s disease 

Crohn’s disease (CD) is a type of inflammatory bowel disease (IBD) characterized by chronic and relapsing 

inflammation of intestinal segments and potentially be accompanied by extra-intestinal manifestations [17]. Crohn's 

disease affects about 0,32% of people in Europe and North America. It is more common in the developed countries 

and less common in Asia and Africa [18].  

 
Figure IV-51: Worldwide CD incidence rates and prevalence for countries reporting data after 1980 (adapted from [18]) 

Incidence and prevalence values were ranked into quintiles representing low (dark and light blue) to intermediate (green) to high 

(yellow and red) occurrence of disease. 

 

CD is caused by a combination of several contributing factors, including heritable traits, environmental cues, 

abnormalities in intestinal mucosal barrier integrity and function, immune regulation, and gut microbiota. Exaggerated 

immune responses are presumably directed against normal commensal enteric bacteria in genetically susceptible 

hosts. Host genetic susceptibility may be related to defective mucosal barrier function and/or bacterial killing, leading 

to an overexposure to luminal antigens and to inadequate immunoregulation, resulting in abnormal responses and 

tissue damage [17]. 

There is no cure for Crohn's disease. Medications and surgery are used to ease symptoms, maintain remission, and 

prevent relapse [19]. Diagnosing CD is very difficult as there is no specific symptom for the disease and its 

manifestations are common with others pathologies such as gastroenteritis, ulcerative colitis and irritable bowel 

syndrome. It is very important to differentiate all these pathologies as they require different therapeutic handling. The 

diagnosis of CD is based on a body of clinical arguments that takes time to generate. The average time to make the 

correct diagnosis for CD is 2,6 years. For the moment no molecular maker specific to Crohn’s disease has reached 

clinical use. 

A.2. The Human Gut Microbiome 

The human gut microbiota is the community of microorganisms present in the human gut. The latest estimation of the 

total amount of microbial cells in the human gut is 1 to 2 kg and the number of microbial cells is about the same as the 

total number of human cells in the human body [216]. These microbes play a crucial role in human life for example in 

nutrition, immune system and protection against pathogens. They thus have a direct or indirect effect on human 
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health. Several studies have shown that imbalances in the composition of the microbiota are linked to diseases such 

as obesity, IDB, anorexia, cancer, obesity and autism [217]. 

The analysis of the gut microbiota is challenging. Early approaches aimed at cultivating bacteria but it is estimated that 

up to 80% of the bacterial species cannot be cultivated by conventional techniques. This is due to the fact that 

bacteria in the gut need an anaerobic environment, specific nutrients and they have a codependency on one another. 

This is why these techniques have now been taken over by molecular techniques such as targeted sequencing of the 

16S Ribosomal rRNA-encoding gene and metagenomic sequencing of the whole microbial DNA [218].  

Technological advancements in DNA sequencing have enabled the expansion of knowledge through large-scale 

metagenomic studies of the human gut microbiome, such as the European consortium Metagenomics of the Human 

Intestinal Tract (MetaHit) [219] and the Human Microbiome Project [220]. In 2014, an integrated and expanded gene 

catalog of this metagenomic data was published [20]. The human gut microbiome is an organ of high complexity as 

this study showed the existence of more than 9,8 million different genes. This is more than 445 times more genes 

than the human genome. However, this number is very large and mostly composed of rare genes (Figure IV-52). 

 
Figure IV-52: Number of non-redundant genes against the number of samples analyzed (Adapted from [20]). 

Rare genes, those present in less than 1% of samples, constitute the majority of sequenced genes. The most common genes, those 

present in more than 50% of samples, are around 300,000. 

 

The gut microbiome was found to show a significant diversity between healthy individuals. Only around 300,000 genes 

have been found to be common bacterial genes present in 50% of all sequenced individuals [20, 219] (Figure IV-52). 

Figure IV-53 shows the results of the analysis of the microbiome extracted from stool samples. The microbial taxa 

varies significantly from individual to individual and is mostly constituted by Bacteroidetes and Firmicutes [220]. 

However the metabolic function of the microbial communities is very stable from individual to individual. 

 
Figure IV-53 : Microbial taxa composition and metabolic pathways on different stool samples (Adapted from [220]). 

Vertical bars represent microbiome extracted from stool samples. The microbial phyla (A) and the metabolic pathways (B) are 

shown. The human gut microbiome is highly diverse from individual to individual and is mostly constituted by Bacteroidetes and 

Firmicutes. The metabolic pathways are very stable from individual to individual. 

 

A.3. Context of the project 

This project was carried out in collaboration with the Micalis laboratory of the National Institute of Agricultural 

Research (INRA), and particularly with Drs. Catherine Juste and Joël Doré.  
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Beyond functional metagenomic analysis, our collaborators were interested in studying the microbial proteomes of 

patients with Crohn’s disease. They have therefore developed a workflow for microbial extraction and discovery 

metaproteomic analysis using 2D-DIGE and LC-MS/MS. 

The study included six patients with Crohn’s disease (CD) and six healthy controls (HC). A conscious selection of the 

patients was made to avoid confounding errors. The CD and HC patients matched for sex, age and tobacco use. The HC 

patients did not have any symptoms or family history of gastrointestinal disease and were not medicated. The 

participants provided fresh stool samples that were collected in anaerobic conditions. Bacterial fractions were 

separated from fecal matrix using a density gradient (nicodenz based) at low temperature and in anaerobic conditions. 

 The discovery metaproteomic analysis using 2D-DIGE and LC-MS/MS conducted by our collaborators allowed the 

identification of 59 gel spots found to have a significant expression change between CD and HC proteomes (30 

increased and 29 decreased) (Figure IV-54). From this list of biomarker candidates, we selected a subset of proteins to 

be further validated using an  LC-SRM approach (candidate proteins highlighted in yellow in Figure IV-54). 

 
Figure IV-54: Cluster heat map of 2D-DIGE gel spots with significantly different intensities between HC and CD patients. 

Proteins highlighted in yellow were chosen for further validation by LC-SRM. 

 

A.4. LC-SRM method development  

The development of the LC-SRM method for microbial proteins was challenging. As detailed above, the microbiome is 

a sample of extreme complexity. Furthermore there is large microbial composition diversity between individuals. 
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These factors complicated the task of creating an LC-SRM assay targeting microbial proteins. Figure IV-55 summarizes 

the analytical workflow we have setup for this project. 

 
Figure IV-55: LC-SRM analytical workflow for the validation of microbial proteins. 

 

Here is a description of most crucial steps of the method development: 

Choice of targeted proteins and signature peptides: With the close expertise of our collaborator, a list of 21 microbial 

proteins was chosen to be further validated by LC-SRM. Among all candidate proteins, using the METAHIT database 

[219] we chose those having specific and unique peptides to a protein or a group of proteins with the same function 

from phylogenetically close bacterial strains. In this extremely complex sample it is very difficult (almost impossible) to 

find truly proteotypic peptides. However, the importance here is to relatively quantify proteins or a group of proteins 

having the same biological function. To choose the peptides, priority was given to peptides that had already been 

identified in previous shotgun experiments acquired on equivalent samples, preferentially without fractionation, and 

showing high-quality MS/MS spectra. Chosen peptides were 7 to 25 amino acids long, contained no miscleavage and 

no methionine in their sequences. 

Choice of sample preparation protocol: The LC-SRM validation was performed on aliquots of microbial proteins 

prepared in Laemmli buffer for the 2D-DIGE experiment. This restrained the choice of the methodology to be 

employed and we therefore chose a SDS-PAGE Stacking gel preparation protocol. This is compatible with the Laemmli 

buffer and allows further quantification without sample fractionation. The development of this unfractionated sample 

preparation protocol was described above in Part IVChapter IB.2 on page 93. 

Choice of the best transitions and heavy labelled standard peptide mixture: In order to determine the best 

transitions for each peptide, four randomly chosen protein samples were prepared and pooled together, heavy 

labelled standard peptides were spiked in the samples and injected using the same microLC-SRM system used for 

sample analysis (See Experimental Section C.1 on page 219). At least 6 transitions (including y- and b-type ions) were 

monitored for each peptide in an unscheduled method. This allowed determining the retention times of all targeted 

peptides, verifying endogenous and isotopically-labelled peptides co-elution, eliminating interfered transitions and 

adjusting the isotopically-labelled peptides concentrations. A concentration-balanced mixture of crude heavy-labelled 

peptides was prepared in order to obtain comparable signal-intensities to the endogeneous peptides (the peptides 

were split into 4 groups defined by signal intensities and diluted 2400, 1200, 600 or 300 times from the purchased 

stock solutions). 

MicroLC-SRM Analyses: A Dionex Ultimate 3000 system coupled to a TSQ Vantage Triple Quadrupole instrument 

(Thermo Fischer Scientific, San Jose, CA, USA) was used for the quantification. A carry over effect was detected at 
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early stages of the development. A two-step LC gradient was developed. The first step was for peptide separation and 

LC-SRM analysis and the second step was a rapid washing step to elute potential remaining peptides on the column. 

Using this two-step gradient we eliminated the carry-over effect and we made sure this phenomenon would not 

compromise the quantification (Figure IV-56). This also reduced the total amount of instrument time needed as fewer 

blank runs were needed. The reproducibility of the retention times was good and showed that this two-step LC-

gradient did not affect the reproducibility of the elution. A detailed description of the LC-SRM parameters is provided 

in page 219. 

 
Figure IV-56: Elimination of the carry-over effect. 

A. A two-step LC gradient was developed. The first step was for peptide separation and LC-SRM analysis and the second step was a 

rapid washing step to elute potential remaining peptides on the column. B. Example of SRM traces of the endogenous (Light) and 

the isotopically stable heavy-labelled standard (Heavy) counterpart  of the same peptide. C. SRM traces of the blank injection just 

after the analysis of a sample. Using the two-step LC gradient allowed eliminating the carry-over effect. 

 

Quality control samples and metrics: To assess the LC-SRM system stability and performance over the course of the 

experiment a quality control sample was created. This quality control was created by pooling together randomly 

chosen samples and preparing them in the same way as the samples (Figure IV-55). The quality control pool was 

analyzed ten times over the whole course of the experiment. For each transition, coefficients of variation were 

calculated for light/heavy area ratios obtained during the ten repeated injections, and we set the acceptance level for 

coefficients of variation below 20%. 

In order to limit the impact of confounding errors we used the blocking and randomization method [183]. The order of 

sample injection was randomized within the CD and the HC conditions and then blocks by groups of three samples of 
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the same condition. In between each group a quality control pool sample was introduced. The injection scheme can 

be seen in Figure IV-55. 

Data Analysis: The Skyline open-source software package [15] was used to visualize the SRM data, perform peak 

picking and integration of transition peak areas. Protein relative quantification and testing for differential protein 

expression were performed using the R package MSstats [184, 221]. The acceptance criteria for statistically different 

protein abundance changes between controls and CD patients were set at a p-value lower than 0.05 and a fold change 

higher than 2. 

A.5. Results 

Using the quality control pool sample we assessed the overall performance of the LC-SRM system by monitoring the 

overall behavior of our targeted peptides in the real analysis conditions and within the real analysis matrix. Because 

the quality control pool sample was made by randomly pooling CD and HC samples, some endogenous peptides were 

not present in sufficient amount to be detected in the pool. However, this quality control sample was very useful to 

assess the stability of the overall LC-SRM system. Over the course of the analysis some peptides were found to be very 

stable overtime (Figure IV-57). Others were found to be unstable maybe due to degradation or coating to the vial 

walls. The peptides having this latter behavior were not considered for further quantification. We set the acceptance 

level for coefficients of variation below 20%. All transitions met this criterion, except for those present in low amounts 

in the quality control pool, thus proving that the LC-SRM system was stable and performing well over the course of the 

experiment. 

 
Figure IV-57: Stable and unstable peptides over the course of the experiment. 

The measured intensity of the heavy-labelled standard peptide is shown for each peptide. Over the course of 6 analyses of the 

quality control sample, some peptides were found to be stable (A) and others were unstable (B) maybe due to degradation or 

coating to the vial walls. 

The overall reproducibility of the experiment was verified by calculating light/heavy area ratios for each transition, 

and verifying that coefficients of variation were lower than 20% for triplicate injections. An example of this can be 

seen in Figure IV-58. In general, all transitions used for quantification in the sample cohort showed coefficients of 

variation lower than 20% with a mean value of 9.4% and a median value of 8.5%. 

Thirteen microbial proteins could be quantified and the trends of under- and overrepresentation in CD patients 

observed in the discovery 2D-DIGE experiment were confirmed (Figure IV-59).
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Figure IV-58: Assessment of the precision of the developed LC-SRM method. 

A. Example of reproducible LC-SRM traces of two peptides. The signals from endogenous and heavy-labelled peptides are 

respectively in red and in blue. B. Boxplot representing the coefficient of variation of the whole sample cohort. 

 

 
Figure IV-59: Results of the validation of 13 microbial proteins related to Crohn’s disease by LC-SRM. 

The trends observed in the 2D-DIGE experiment were validated by the LC-SRM experiment. 
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A.6. Conclusion and Perspectives 

The results presented here were published in 2014 in the journal Gut (available on page 157) and a patent for 

diagnostic biomarkers for Crohn’s disease was filed in December 2014 and extended internationally (PCT) in 

December 2015 (N°FR1462867 «MARQUEURS DIAGNOSTIQUES DE LA MALADIE DE CROHN»). These biomarkers could 

help to reliably diagnose Crohn’s disease, discriminate between similar intestinal pathologies and assess the 

therapeutic efficiency of treatments directed against CD. 

The biomarkers presented in this work were analyzed in fresh stool samples. In order to carry out a large-scale study 

of these candidates, the sample preparation step should ideally be simplified. Further studies are on their way to 

determine whether or not the biomarker candidates can be detected in frozen stool samples. This would alleviate the 

organization of large–scale studies. Similarly, we are evaluating the feasibility of simplifying the sample preparation 

protocol by detecting our biomarkers in the fecal water (the liquid extracted after centrifugation of stool samples). 

This idea originated from the fact that some of the targeted proteins are secreted by the microbial cells. This would 

considerably simplify the sample preparation protocol. Though, the main drawback of this approach is that the 

targeted proteins are no longer enriched, as the microbial secreted proteins/peptides are no longer isolated from 

other components of the stool. Human or food-derived proteins can now become possible interferences. The impact 

of this will be evaluated in future experiments. 

A.7. Publication 
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ABSTRACT
Objective No Crohn’s disease (CD) molecular maker
has advanced to clinical use, and independent lines of
evidence support a central role of the gut microbial
community in CD. Here we explore the feasibility of
extracting bacterial protein signals relevant to CD, by
interrogating myriads of intestinal bacterial proteomes
from a small number of patients and healthy controls.
Design We first developed and validated a workflow—
including extraction of microbial communities, two-
dimensional difference gel electrophoresis (2D-DIGE),
and LC-MS/MS—to discover protein signals from CD-
associated gut microbial communities. Then we used
selected reaction monitoring (SRM) to confirm a set of
candidates. In parallel, we used 16S rRNA gene
sequencing for an integrated analysis of gut ecosystem
structure and functions.
Results Our 2D-DIGE-based discovery approach
revealed an imbalance of intestinal bacterial functions in
CD. Many proteins, largely derived from Bacteroides
species, were over-represented, while under-represented
proteins were mostly from Firmicutes and some
Prevotella members. Most overabundant proteins could
be confirmed using SRM. They correspond to functions
allowing opportunistic pathogens to colonise the mucus
layers, breach the host barriers and invade the mucosae,
which could still be aggravated by decreased host-
derived pancreatic zymogen granule membrane protein
GP2 in CD patients. Moreover, although the abundance
of most protein groups reflected that of related bacterial
populations, we found a specific independent regulation
of bacteria-derived cell envelope proteins.
Conclusions This study provides the first evidence that
quantifiable bacterial protein signals are associated with
CD, which can have a profound impact on future
molecular diagnosis.

INTRODUCTION
Independent lines of evidence converge to suggest a
central role of the gut microbial community in
Crohn’s disease (CD): microbiota is required for the
development of inflammation in genetically predis-
posed colitis animal models,1 reinfusion of luminal
contents after ileal resection rapidly produces recur-
rent disease in CD patients,2 antibiotics delay

postoperative recurrence of CD,3 and the hitherto
identified susceptibility polymorphisms contribute
or relate to bacterial sensing through innate and
adaptive immune pathways.4–6 Finally, a vicious

Significance of this study

What is already known on this subject?
▸ There are unmet needs for diagnosis, treatment

and patient monitoring in Crohn’s disease (CD).
▸ No molecular marker has yet advanced to

clinical use in CD.
▸ The intestinal microbiota is recognised as an

essential contributor to disease initiation and
perpetuation and, therefore, represents an
enormous reservoir for the discovery of novel
signatures that could be used as biomarkers
and predictors for different disease phenotypes
or stages.

What are the new findings?
▸ The feasibility of extracting bacterial protein

signals relevant to CD by interrogating myriads
of intestinal bacteria, even from a small
number of subjects.

▸ Twelve bacterial protein signals and one human
protein signal (glycoprotein 2 of zymogen
granule membranes, GP2) were robustly
quantified by targeted MS-based proteomics,
without the need for antibodies and ELISA
testing. All of them make sense in the context
of our understanding of CD.

▸ Increased IgA at the surface of microbial cells
of CD patients coincides with the over-
representation of various bacterial proteins with
a high immunogenic potential in CD patients.

▸ Decreased GP2 at the surface of microbial cells
of CD patients may favour adhesion of bacteria
to the mucosa and then promote inflammation.

How might it impact on clinical practice in
the foreseeable future?
▸ Using meta-proteome-wide association studies,

we point out new potential biomarkers in CD.
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circle of ‘mutualism breakdown’ has been postulated, where the
host does not tolerate its own microbiota any longer, and inflam-
mation can favour the selection of aggressive symbionts.7

However, the micro-organisms, or microbial products that signal
the disruption of gut homeostasis and may have a critical role in
CD, are unknown. Their identification remains a significant chal-
lenge due to the high complexity of the intestinal microbiota,
forming the most densely populated microbial community in the
body. It is composed of 1013–1014 micro-organisms belonging to
about a thousand different species, most of them anaerobic,8 and
is hitherto largely uncultivable (only 20–30% of enteric bacterial
species have been propagated in pure culture). Our group9–11

and others12–15 have used diverse culture-independent
approaches based on molecular profiling of 16S rRNA genes to
compare the microbial diversity of intestinal or faecal samples
from CD patients and healthy people. Despite the biases inherent
to different methodological approaches, varying sampling sites
(faeces or mucosa along the intestine), heterogeneity in clinical
phenotypes, and variable statistical power, the overall consensus
is that the diversity of dominant bacterial species is reduced in
CD, notably among members of the Firmicutes phylum.

Largescale metagenomic sequencing (as in MetaHit and the
Human Microbiome Project), which analyses whole genomic
DNA directly extracted from human intestinal communities,
offers a new dimension for the characterisation of these commu-
nities from a functional point of view, and represents an enor-
mous reservoir for the discovery of novel signatures that could
be used as biomarkers and predictors for different disease phe-
notypes or stages.16–18 Beyond functional metagenomics, meta-
proteomic studies will reveal the true expression of metabolic
and cellular functions that govern physiology, become disrupted
in disease, and can have a profound impact on molecular diag-
nosis. Therefore, while there are unmet needs for diagnosis,
treatment and patient monitoring in CD, especially while no
molecular maker has advanced to clinical use in CD,19 and con-
sidering that the intestinal microbiota is recognised as an essen-
tial contributor to disease initiation and perpetuation, we here
demonstrate the feasibility of discovering and validating a range
of CD-associated bacterial proteins by using a proteomic
approach from discovery to validation. With protein profiling
providing assays closer to activated functions, such
metaproteome-wide association studies have the potential to

become an important tool in modern medicine, and could
answer major yet unmet clinical needs.

METHODS
Subjects and samples
We conducted a cross-sectional study including six patients with
CD (four women and two men, aged 26 through 41 years) and
six healthy controls (HC) matched for age, sex and tobacco use
(table 1). Patients were followed and selected in the gastroenter-
ology unit of the Saint-Antoine Hospital (Paris). We made a con-
scious selection of different phenotypes to avoid an unnaturally
uniform patient population for this pilot study. Exclusion cri-
teria, however, were active disease with a Harvey–Bradshaw
score >5, and any use of antibiotics within the preceding
2 months. The control group comprised healthy volunteers with
neither symptoms nor a family history of gastrointestinal
disease, and with no use of medication. All participants gave
informed consent to the protocol that was approved by the
ethics committee of the hospital.

Every participant was asked to provide a fresh stool sample
collected at home in a Stomacher 400 plastic bag (Seward
Medical), which was left open in a one-litre hermetic plastic
box containing a catalyst (Anaerocult, Merck, Darmstadt,
Germany) to generate anaerobic conditions. This faecal material
was maintained in a coolbox and transferred within 2 h into an
anaerobic chamber (90% N2, 5% H2 and 5% CO2) for process-
ing. We had verified in preliminary assays, that measurements at
a single time point gave a reliable picture of individual metapro-
teomes, which showed little variation over time (see online
supplementary figure S1).

Preparation of bacterial fractions and diversity profiling
Given the high complexity of faecal samples that contain bacter-
ial, dietary and host proteins, we first extracted bacterial com-
munities, to focus on the collected bacterial proteomes.
Bacterial fractions were extracted in duplicate, at low tempera-
ture and in an anaerobic atmosphere (see online supplementary
method 1, supplementary figure S2), from freshly collected
stool specimens. The final bacterial pellets, as well as 150 mg
stool aliquots, were kept at −80°C until further analyses.
Diversity profiling was performed by 16S rRNA gene pyrose-
quencing (see online supplementary method 2).

Table 1 Gender and age of matched participants and clinical characteristics of Crohn’s disease patients at the time of stool collection

Controls Patients
Common to controls
and patients

Designation
Gender/age

Designation
Gender/age Disease location Disease activity Diagnosis year Medication Surgery Smoking

HC.1
F/39 years

CD.1
F/41 years

L1 4 1994 Azathioprine Small bowel No

HC.2
M/36 years

CD.2
M/37 years

L2 2 1987 Azathioprine+Prednisone Small bowel Yes

HC.3
F/26 years

CD.3
F/29 years

L1+L4 5 1998 Azathioprine No Yes

HC.4
M/27 years

CD.4
M/26 years

L1 5 2006 Budesonide No No

HC.5
F/41 years

CD.5
F/41 years

L3 2 1990 Azathioprine Subtotal colectomy No

HC.6
F/36 years

CD.6
F/38 years

L1 5 2005 Mesalazine No No

Disease location according to the Montreal classification: L1 ileum; L2 colon; L3 ileocolon; L4 upper gastrointestinal tract.
Disease activity according to the Harvey–Bradshaw index.20

CD, Crohn’s disease; HC, healthy controls.
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Discovery of CD-associated gut microbial proteins using
2D-DIGE/LC-MSMS
We used two-dimensional differential gel electrophoresis
(2D-DIGE), coupled with tandem mass spectrometry (MS/MS)
and searches against metagenomic databases (MetaHit) as a non-
targeted comprehensive approach to discovering CD-associated
proteins. Briefly, microbial fractions were extracted in duplicate
for the 12 participants leading to 24 samples, which were ana-
lysed in a dye-swap design comprising 12 gels in total (see
online supplementary table S1 and supplementary method 3).
For differential expression analysis, we applied two complemen-
tary methods, both established and commonly used in micro-
array gene expression analysis: a hierarchical analysis of
variance (ANOVA) (false discovery rate (FDR) <10%) and an
empirical Bayes moderated single-group t test per gene (FDR
<10%). They represent different approaches to the challenge of
comparing small sets of samples for thousands of variables (see
online supplementary method 4).21 22 The complementary can-
didate lists were combined to yield a set of protein spots identi-
fied by at least one of the methods as showing significant
differences between CD and HC.

For protein identification, nine gels (see online supplementary
table S1) were poststained with SYPRO Ruby (BioRad), and spots
of interest were robotically excised under computer-assisted
visual control. In-gel trypsin digestion and LC-MS/MS analyses
are detailed in online supplementary method 5. Finally, we used
the X!TandemPipeline to identify and group the differentially
expressed proteins (see online supplementary method 6).

Validation of CD-associated candidate proteins using
selected reaction monitoring (SRM)-based targeted
proteomics
A targeted LC-SRM assay was developed to validate a subset of
13 candidate proteins discovered in the original 2D-DIGE non-
targeted comprehensive survey. The subset of proteins was
defined by choosing the ones containing at least two specific
peptides for a protein or a group of proteins with identical

function in phylogenetically close bacterial strains, and that at
the same time, had already been identified in previous label-free
shotgun experiments run on equivalent samples, preferentially
without prefractionation. Details on sample preparation, the
SRM-assay development, the list of transitions, chromatographic
and acquisition conditions, data processing and statistical ana-
lysis of the quantitative datasets using MSstats,23 are given in
online supplementary method 7. The 284 optimised transitions
measured for the 13/46 targeted proteins/peptides are detailed
in online supplementary table S2.

Other general statistical analyses are detailed in online supple-
mentary method 8.

RESULTS
Pyrosequencing and quality of the microbial extracts
As illustrated by the dendrogram produced by hierarchical clus-
tering of the 16S rRNA pyrosequencing data at the genus and
operational taxonomic unit (OTU) levels (figure 1), microbial
extracts were closely related to the corresponding stool total
16S rRNA. This illustrates the ability of our extraction method
to preserve the microbial diversity observed in the raw sample
material. On the other hand, samples did not cluster by clinical
diagnosis, CD, or HC, based on their 16S rRNA gene profile
alone. This highlights the need for a complementary proteomics
viewpoint.

Discovery of protein signatures of CD-associated gut
microbiota by 2D-DIGE
The electrophoretic profile was well conserved across individual
samples, and the internal standard (see online supplementary
figure S3 and magnified regions thereof in online supplementary
figure S4), making it possible to accurately compare spot
volumes across the entire experiment. After image alignment
and spot co-detection, 2007 protein spots were validated and
simultaneously quantified in all 36 images derived from measur-
ing three image channels for each of the 12 gels. There were no
pronounced systematic differences between biological replicates

Figure 1 Structure of all crude samples and half the corresponding extracted microbial pellets profiled by 16S rRNA gene pyrosequencing.
Hierarchical clustering of the 16S rRNA gene pyrosequencing dataset (at genus and OTU level) showed a high similarity between population
structure of crude samples and those of the corresponding microbial extracts, but did not allow distinguishing between clinical status, CD or HC.
HC.1 to HC.6 and CD.1 to CD.6 denote HC and CD patients, respectively; suffix letters, F and a, denote native faeces and bacterial cell extracts,
respectively. CD, Crohn’s disease; HC, healthy controls.
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(samples from a clinical group), and most protein spots (93%)
were unchanged between patients and controls allowing reliable
normalisation of the data (see online supplementary figure S5).
A cluster tree based on the pairwise distances between
2D-DIGE profiles is shown in figure 2. Microbial fractions pre-
pared in duplicate from the same stool specimen always clus-
tered together, reflecting good technical reproducibility, and
pairs of duplicates tended to cluster by clinical status, indicating
a clinically relevant strong signal. A list of 141 candidate spots
(7% of total, 53 increased and 88 decreased in CD patients) was
obtained by hierarchical ANOVA or empirical Bayes moderated
single-group t test, and all visible selected spots were repeatedly
excised from nine SYPRO Ruby poststained gels for LC-MS/
MS-based identification (see online supplementary table S1).
Eighty-nine spots were found to contain bacterial proteins from
a single functional category, and which could be attributed to a
defined bacterial subpopulation, with most proteins being from
Bacteroides/Parabacteroides species, or Prevotella species, or
members of the order Clostridiales (see online supplementary
table S3). For robust reporting, however, only a subset of 59
spots were retained (30 increased and 29 decreased in CD
patients), which could be identified independently in several
gels containing different patient-control pairs (see online
supplementary figure S6 for the sequential spot selection
process, and see online supplementary table S3 for lists of pro-
teins and peptides). Human proteins were identified in five add-
itional spots with differential signal. Results are summarised in
the heat map of figure 3, showing the normalised volumes of
those 59 bacterial and 5 human protein spots.

Of the 30 bacterial protein spots which were increased in CD
patients, 25 were from the phylum Bacteroidetes, essentially
Bacteroides species, three were from the phylum Firmicutes,

order Clostridiales, and two were from the phylum
Proteobacteria (see the lower half of figure 3). Human proteins
IgA immunoglobulins and carboxypeptidase A1 were identified
in two additional spots that we found to be over-represented in
CD patients (lower half of figure 3). Proteins that were identi-
fied in these spots are reported in table 2, where they are orga-
nised according to their lineage and function. Of the 29
bacterial protein spots which were decreased in CD patients, 18
were from the phylum Firmicutes, invariably Clostridiales when-
ever order or lower phylogenic affiliation could be determined,
three were from Prevotella species, and three others from
undefined Bacteroidales members, one was from Escherichia
coli, and four from unknown bacteria (see the upper half of
figure 3). Another interesting result was the presence of frag-
ments of human GP2 (pancreatic glycoprotein 2 of zymogen
granule membranes) in three under-represented protein spots
(upper half of figure 3). Proteins that were identified in these
spots are listed in table 3 with their lineage and function.

Validation of protein signatures of CD-associated gut
microbiota by SRM
A subset of 13 proteins (highlighted in yellow on figure 3)
found to be differentially abundant between CD and HC on the
basis of 2D-DIGE were selected to be validated using a targeted
LC-SRM assay. Totally, 46 peptides were chosen and 284 transi-
tions were finely optimised using heavy isotope-labelled syn-
thetic peptides spiked into a sample pool in order to allow the
precise relative quantification of the 13 candidate proteins in
the sample cohort without further sample fractionation other
than a stacking gel (see online supplementary table S2). Thus,
all 13 proteins could be unambiguously detected with 2–6 spe-
cific peptides in single injections of the total bacterial protein
extracts. Results are summarised in figure 4 representing the
fold change value (differential expression) and the adjusted
p value for each targeted protein from the triplicate analyses of
the six CD versus six HC individual samples. Details on individ-
ual peptide quantification are given in online supplementary
table S4. The differential expression of all candidates detected
in the discovery experiment was validated and fold changes
spanning 14–28 were detected with a very high confidence.23

Clearly, we could validate in CD patients a significant eleva-
tion of Bacteroides proteins that participate in the protection
against oxidative stress (AhpC), in protein synthesis, folding and
repair (FusA, DnaK and ClpB), in energy saving, and the main-
tenance of a high carbon flux within both glycolysis and
pentose phosphate pathways (PPi-dependent PfK and
TktA-TktB), in the biosynthesis of precursors through the reduc-
tive branch of the tricarboxylic acid cycle (KorA), in nutrient
acquisition and sensing of the environment (TonB), and in adhe-
sion and colonisation (PepD), while some of these proteins
(DnaK, AhpC and TonB-dependent receptors) are recognised
for their strong immunogenic properties. We also confirmed ele-
vation of type 1 dockerin from members of the family
Ruminococcaceae, in CD patients. Other confirmed proteins
included the glycolytic enzyme GapA of Prevotella, a cell
surface protein of undefined Bacteroidales members, and the
human protein GP2, which were all depleted in CD patients
(figure 4).

Correlating functional shifts with the structure of the
bacterial community
We then investigated the question whether the imbalance in bac-
terial protein abundance that we observed in CD corresponded
to changes in gene expression in a stable bacterial community,

Figure 2 Cluster tree based on the pairwise distances between
2D-DIGE profiles. Similarities between patterns (normalised volumes of
2007 spots) were assessed by unsupervised hierarchical clustering. HC.1
to HC.6 and CD.1 to CD.6 denote HC and CD patients, respectively;
g01–12 denote gel numbers. Microbial fractions prepared in duplicate
from the same stool specimen always clustered together, reflecting
good technical reproducibility of our method, and pairs of duplicates
tended to cluster by clinical status, CD or HC, indicating a clear
clinically relevant signal in the proteomics data. CD, Crohn’s disease;
HC, healthy controls; 2D-DIGE, two-dimensional difference gel
electrophoresis.
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or whether they reflected a remodelling of the population struc-
ture, or whether both events could have occurred. OTU richness
estimated by the bias-corrected Chao 1 richness estimator, was
significantly lower (p=0.015) in the CD group (840 OTUs, SD

259) compared with the HC group (1371 OTUs, SD 286), but
the α diversity Simpson index did not significantly differ
between the two groups. This means that a lower number of
species was present, which was more evenly distributed in the

Figure 3 Cluster heat map constructed from the normalised volumes of spots with significant different intensities between HC and CD patients,
and that could be robustly identified. Spot numbers and meaningful names for the associated functions are in the right margin. Similarities between
patterns are visualised by unsupervised hierarchical clustering. HC.1 to HC.6 and CD.1 to CD.6 denote HC and CD patients, respectively; g01–12
denote gel numbers. Since all spot variables were centred at the mean (the mean has been subtracted to each value), the new mean for each spot
variable is now at 0, making half the values negative as indicated in the colour key. Blue and red tones therefore signify under-represented and
over-represented, respectively. Proteins highlighted in yellow in the right margin are those that were chosen for SRM validation. As different forms
of the same protein (typically TonB-dependent receptors of Bacteroides) may occur in different spots, the number of highlighted spots exceeds 13.
Proteins annoted ‘surface’, ‘TonB’, ‘OMP’ and ‘lipoprotein’ in the right margin, may be grouped into ‘cell envelope proteins’ in the text when several
categories are concerned, including proteins of unknown function that have specific features known to be characteristic of cell envelope localisation.
CD, Crohn’s disease; HC, healthy controls; SRM, selected reaction monitoring.
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CD group. Specific traits of CD microbiota are illustrated by
figure 5. Thirty-four OTUs varied or tended to vary in abun-
dance (see online supplementary table S5). Those that were
increased in CD were related to Bacteroides vulgatus and
Ruminococcus obeum (genus Blautia) and interestingly included
one OTU similar to the potentially anti-inflammatory butyrate-
producing bacterium SR1/1, while those that were decreased in
CD were related to the butyrate-producing bacterium L2-21, to
Roseburia faecis (T) M72/1, Faecalibacterium prausnitzii
A2-165, or other clostridial members, and also included one
OTU most similar to Prevotella oralis. The heat map of figure 6
shows a positive correlation between the abundance of most of
the varying protein groups and the abundance of the related

varying OTUs. There were, however, a number of interesting
exceptions suggesting additional effects at work, for instance a
subset of TonB proteins attributed to Bacteroides members that
were increased in CD patients independently of a modulation of
the corresponding bacterial populations (see the green-yellow
bands on the right middle part of figure 6).

DISCUSSION
The present work is a clear demonstration that environmental
proteomics of gut microbes can provide molecular signatures of
IBDs, becoming a powerful complementary tool for their study
and, ultimately, their diagnosis and treatment. So far, long lists
of candidate biomarker proteins, notably in oncology,

Table 2 List of proteins that were discovered to be over-represented in CD, using the without a priori 2D-DIGE approach

Lineage Protein name Cellular function/pathway 2D-DIGE
SRM (fold
change)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

AhpC Protection against oxidative stress + + (4.4)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

Pnp Protection against oxidative stress +

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; NA; NA ProS Protein synthesis, folding, and repair +

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

FusA Protein synthesis, folding, and repair + + (5.2)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

DnaK Protein synthesis, folding, and repair + + (4.1)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

ClpB Protein synthesis, folding, and repair + + (4.8)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

PPi-dependent PfK Energy saving and maintenance of a high flux of
carbon within both glycolysis and pentose phosphate
pathways

+ + (3.9)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

TktA-TktB Energy saving and maintenance of a high flux of
carbon within both glycolysis and pentose phosphate
pathways

+ + (5.2)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

FumA-FumB Biosynthesis of precursors through the reductive
branch of the tricarboxylic acid cycle

+

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

KorA Biosynthesis of precursors through the reductive
branch of the tricarboxylic acid cycle

+ + (4.3)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

TonB-dependent
receptors

Nutrient acquisition and sensing of the environment + + (11.3)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

Other cell envelope
proteins

Nutrient acquisition and sensing of the environment +

Bacteria; Bacteroidetes; NA; NA; NA; NA TonB-dependent
receptors

Nutrient acquisition and sensing of the environment +

Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae;
Bacteroides

PepD Adhesion and colonisation + + (3.9)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

ACH1 Pyruvate metabolism +

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides/Porphyromonadaceae;
Parabacteroides

PckA Energy saving and maintenance of a high flux of
carbon within both glycolysis and pentose phosphate
pathways

+

Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae;
Ruminococcus

type 1 dockerins Cellulosome assembly + + (27.8)

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA AtpA ATP production +

Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;
Blautia

AckA ATP production +

Bacteria; Proteobacteria; Gammaproteobacteria;
Enterobacteriales; Enterobacteriaceae; NA

Dnak Protein synthesis, folding, and repair +

Bacteria; Proteobacteria; delta/epsilon subdivisions;
Deltaproteobacteria; Desulfovibrionales; Desulfovibrionaceae;
Bilophila

DsrA Energy conservation by reducing sulfite +

Human IgA immunoglobulins Coating bacterial cells +

Human Carboxypeptidase A1 Coating bacterial cells +

Those that were confirmed by SRM are indicated in the last column on the right, with their fold change.
CD, Crohn’s disease; SRM, selected reaction monitoring; 2D-DIGE, two-dimensional difference gel electrophoresis; NA, not assigned.
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remarkably never progressed from research discovery to clinical
application because de novo development of multiple ELISA
would have been prohibitive in time and money. SRM, by con-
trast, offers a valuable alternative to antibody-based validations,
as it allows the accurate and robust multiplexed quantification
of a range of proteins in complex samples without the need for
antibodies and ELISA testing. This technology has, for instance,
recently been used successfully for the verification of diagnostic
and prognostic cancer biomarkers.24 25 In the present study, we
first developed and validated a workflow for the discovery of
protein signals specific to CD-associated gut microbial commu-
nities without any a priori assumption of the metabolic and/or
cellular functions that can accompany CD. Then we developed
a SRM assay to confirm a set of candidates, as de novo develop-
ment of ELISA assays would not have been feasible in a reason-
able timeframe and poorly adapted to multiple verifications.

Simple unsupervised hierarchical clustering of samples based
on their 2D-DIGE profiles showed that five pairs of replicates
out of six within each group, CD and HC, already clustered
together, indicating a clear signal, whereas, hierarchical cluster-
ing based on 16S rRNA gene pyrosequencing (at the genus and
OTU levels) did not allow a distinction between clinical status.
This illustrates well that the metaproteomic approach is a
powerful tool for highlighting functional imbalances even in the
absence of clear major shifts in the dominant bacterial groups or

species. The 2D-DIGE strategy further solved the specific ques-
tion of detecting differences between groups, a problem that
faces even greater challenges in label-free shotgun metaproteo-
mics.26–31 A set of proteins from members of the Bacteroidetes
phylum, largely Bacteroides species, were over-represented in
CD microbiota. By contrast, under-represented proteins were
mostly from Clostridiales (Firmicutes phylum), and more rarely
from Prevotella and undefined Bacteroidales members.
Functions that we found to be increased in the Bacteroides/
Bacteroidales population from CD microbiota included proteins
corresponding, in general, to functions related to strategic adap-
tation for survival in challenging environments. For instance,
DnaKs and other chaperones, such as ClpB homologues, have a
defensive role against oxidative, nitrosative, nutritional, osmotic
and pH stresses that are likely to occur in the gut of CD
patients.32–35 AhpCs represent another important defence
mechanism to cope with reactive nitrogen intermediates and
reactive oxygen species.36 37 An over-representation of proteins
involved in the binding and import of nutrients (TonB-
dependent receptors and other cell envelope proteins) could be
related to an increased need for carbon substrates and/or for
micronutrients to fuel increased central metabolism in
Bacteroidales.38 39 Consistent with this, a set of key enzymes
that maximise the energy yield from monosaccharide catabolism
in Bacteroides (PPi-dependent Pfk, PEP-carboxykinase PckA and

Table 3 List of proteins that were discovered to be under-represented in CD, using the without a priori 2D-DIGE approach

Lineage Protein name Cellular function/pathway 2D-DIGE
SRM (fold
change)

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA flagellins FliC Nutrient acquisition and sensing of the environment –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA UgpB Nutrient acquisition and sensing of the environment –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA S-layer proteins Nutrient acquisition and sensing of the environment

Bacteria; Firmicutes; NA; NA; NA; NA S-layer proteins Nutrient acquisition and sensing of the environment –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA UshA Nucleotide transport and metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA ARO8 Transcription, amino acid transport and metabolism –

Bacteria, Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae, Faecalibacterium, Faecalibacterium
prausnitzii

Tig Folding of newly synthesised proteins –

Bacteria; Firmicutes; NA; NA; NA; NA IlvC Amino acid transport and metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA MetH Amino acid transport and metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA PrdF Amino acid transport and metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA IscU General metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA FixB General metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA AtoB General metabolism –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA GapA Glycolysis –

Bacteria; Firmicutes; Clostridia; Clostridiales; NA; NA Unknown
function

Unknown –

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; NA; NA Surface proteins Nutrient acquisition and sensing of the environment – −(3.2)

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; NA; NA Lipoprotein Nutrient acquisition and sensing of the environment –

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Prevotellaceae; Prevotella

TktA-TktB Energy saving and maintenance of a high flux of carbon
within both glycolysis and pentose phosphate pathways

–

Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Prevotellaceae; Prevotella

GapA Glycolysis – −(14)

Escherichia Outer membrane
proteins

Nutrient acquisition and sensing of the environment –

Bacteria; NA; NA; NA; NA; NA ABC transporters Nutrient acquisition and sensing of the environment –

Bacteria; NA; NA; NA; NA; NA PckA Energy saving and maintenance of a high flux of carbon
within both glycolysis and pentose phosphate pathways

–

Bacteria; NA; NA; NA; NA; NA Unknown
function

Unknown –

HUMAN Fragments of GP2 Coating bacterial cells – −(2.4)

Those that were confirmed by SRM are indicated in the last column on the right, with their fold change.
CD, Crohn’s disease; SRM, selected reaction monitoring; 2D-DIGE, two-dimensional difference gel electrophoresis.
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fumarate hydratase FumA-FumB) were also over-represented in
CD-associated microbial proteomes.40 Finally, a higher abun-
dance of PepD could contribute to increased surface colonisa-
tion by Bacteroides members observed in CD patients.41–44

Remarkably, the overexpression of 10 of these proteins was reli-
ably confirmed by quantitative SRM measurements in unfractio-
nated bacterial protein extracts. Therefore, we reach an
attractive hypothesis, that a number of Bacteroidales members,
essentially Bacteroides species, might be adapted or promoted
under environmental conditions specific to the gut of CD
patients, and that a set of overabundant bacterial proteins that
can be quantified by SRM, could be regarded as bacterial signa-
tures for CD. Moreover, all of them make sense in the context
of our understanding of CD. Indeed, a number of these proteins
have been proposed as major traits for allowing opportunistic
pathogens, including Bacteroides fragilis, to colonise mucus
layers, breach host barriers, and invade the mucosae. For
instance, DnaK and AhpC, which are usually intracellular pro-
teins, may also be found in the outer membrane where they
bind human plasminogen and enhance its conversion into
plasmin by host activators, a scenario which might promote col-
onisation and host invasion.45 DnaK proteins exhibit strong
immunostimulatory properties both at the level of the innate
and adaptative immune system, and can, moreover, promote the
processing and presentation of other bacterial or food antigens
by chaperoning them.46 AphC of several bacteria also demon-
strate immunogenic properties as assessed by high titres of seric
antibodies against purified/recombinant targets or whole prote-
ome maps,47 and the β-barrel domains of TonB-dependent
receptors are suspected to play an important role in the viru-
lence of Gram-negative bacteria, exposing epitopes on the bac-
terial surface.48 Consistent with this and with a previous
report,49 we found an over-representation of microbiota-
associated secretory IgA in CD patients. These results encourage
inspection of the immunome of the intestinal microbiota to
capture those strongly IgA-coated bacteria as well as a set of

derived antigenic peptides that could be used to map and distin-
guish specific antibody profiles in subgroups of IBD patients,
and thus facilitate appropriate therapeutic options, evaluation of
treatment efficacy, and long-term follow-up.

Conversely, many members of the order Clostridiales and
some of the genus Prevotella appeared unable to meet the eco-
logical challenge imposed in CD patients, as judged from the
decrease in abundance of key proteins involved in diverse cellu-
lar and biochemical functions within this population. For
instance, 25 different flagellin FliC proteins attributed to
Clostridiales members were identified in three under-
represented spots, while common enteric flagellins are proposed
as major targets of the CD-associated aberrant immune
response.50 The under-representation of trigger factor Tig attrib-
uted to Faecalibacterium prausnitzii further suggests that this
numerically dominant and potentially anti-inflammatory sub-
group,51 might fail to sustain efficient protein synthesis in CD
patients. Finally, under-representation of key enzymes, notably
GapA and TktA-TktB, attributed to Prevotella members could
reflect the inability of this subpopulation in maintaining the flux
of carbon within both glycolysis and pentose phosphate path-
ways. Interestingly, the CD-associated under-representation of
GapA from Prevotella was confirmed by SRM. Consistent with
this, we found that the relative abundances of members of the
lineage Prevotellaceae-Prevotella tended to decrease in CD
patients, and that one OTU assigned to Prevotella was under-
represented in CD.

While sequencing of the 16S rRNA-encoding genes revealed
many positive correlations between the abundances of the
varying protein groups and the abundances of the related
varying OTUs, it also highlighted a number of unexpected inter-
esting deviations. In particular, some of the TonB-dependent
receptors and other uncharacterised proteins localised in bacter-
ial cell envelopes of Bacteroides species were increased in CD
patients independently of a modulation of the corresponding
bacterial populations. Therefore, findings in the present study
clearly point to functional changes beyond what can be
explained by a mere shift in populations, and extend earlier
observations of possible dissociations between structural and
functional changes in obese individuals29 30 or CD patients.31

The fact that completely different approaches independently
identified Bacteroides membrane proteins as over-represented in
CD,31 and moreover, that this was confirmed here by SRM, also
gives strong support for regarding these proteins as possible
relevant bacterial signatures for CD, and highlights the need for
future work focusing on microbial cell envelopes in health and
disease, inasmuch as this subcellular fraction constitutes the first
line of interaction with the host.

Our study also provides the first and unexpected clue
towards under-representation of intestinal microbiota-associated
GP2 in CD patients. This was confirmed by SRM, and may
favour adhesion of bacteria to the mucosa, and then promote
inflammation. Indeed, it has been demonstrated recently that
recombinant human GP2 binds Escherichia coli Type I fim-
briae, a bacterial adhesin commonly expressed by members of
the intestinal microbiota. A role in host defence has been pro-
posed in which GP2 may serve as a physical barrier that pre-
vents bacteria from binding to host cell receptors.52 Consistent
with this, a higher bacterial biomass on the mucosa, and an
adherent mucosal biofilm enriched with Bacteroides fragilis
were shown to be prominent features in IBD patients.43

Finally, the question arises as to whether decreased GP2
binding to bacteria might be related to increased anti-GP2
titres reported in CD patients.53

Figure 4 Volcano plot representing results of the LC-SRM assays on
the 13 targeted proteins. The logarithmic fold changes (CD vs HC) are
plotted against negative logarithmic adjusted p values calculated with
the R package MSstats and performed from triplicate injections.23 All
targeted proteins were found to be either upregulated or
downregulated in CD patients compared with controls, and the results
validated all candidates identified in the discovery experiments. CD,
Crohn’s disease; HC, healthy controls; SRM, selected reaction
monitoring.
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In conclusion, our metaproteomics approach spanning discov-
ery to confirmation demonstrates, for the first time, the feasibil-
ity of extracting bacterial protein signals relevant to CD, by
interrogating myriads of intestinal bacteria, even from a small

number of patients and HCs. We provide an initial list of
CD-associated microbial proteins extracted from a typical group
of patients, which could represent major common features in
CD patients. The next step should be to validate the specificity

Figure 5 Box plots of the relative abundances of faecal bacterial populations found by 454 pyrosequencing. Differences between Crohn’s patients
(□) and HCs (□) at the different phylogenetic levels were considered *significant for p≤0.05, and (*)tendencies were reported up to p≤0.10 (‘glm’
with the ‘quasibinomial family’). Specific traits of CD microbiota were significantly increased abundances of members in the lineage
Betaproteobacteria-Burkhoderiales-Alcaligenaceae, a tendency towards increased abundances of Bacteroidaceae-Bacteroides and Blautia, significantly
lower numbers of Roseburia, and a tendency towards lower numbers of Alphaproteobacteria, Prevotellaceae-Prevotella and Oscillospira. On the other
hand, inter-individual variability was higher in CD patients, which is in agreement with heterogeneity of CD. CD, Crohn’s disease; HCs, healthy controls.
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and sensitivity of bacterial protein signals either in individual
clinical trials with well-defined and homogenous CD popula-
tions, or in a comprehensive study with a larger heterogeneous
patient cohort. Given that effects are harder to detect in smaller
samples, one can expect that even more subtle differences could
be detected in larger cohorts, and that inclusion and accurate
quantification of additional predefined sets of proteins could be
used to refine recognition of IBD entities in the very near
future. The extraction and robust quantification of bacterial
protein signals is also a way to identify disrupted protein net-
works that drive onset and perpetuation of CD and, therefore,
candidate targets for IBD treatment based on gut-ecological
intervention strategies.
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Chapter III Application of targeted proteomics for the relative and absolute 

quantification of Methionine Aminopeptidase Proteins 

A.1. Context of the project 

This project was carried out in collaboration with the Institute for Integrative Biology of the Cell (I2BC) in Gif-Sur-

Yvette, and particularly with Frédéric Frottin, Willy Bienvenut, Thierry Meinnel and Carmela Giglione. 

Methionine aminopeptidase proteins are in charge of N-terminal Methionine excision. This biological process has an 

extreme importance in the cell illustrated by the fact that it is a highly conserved process across organisms. Most 

proteins are synthetized with a methionine in the first residue. However for two-thirds of all proteins this methionine 

is removed later on. The exact reason for this process is not well known. It is believed that this process controls 

protein stability and half-life [22]. 

In eukaryotic cells there are two classes of methionine aminopeptidase proteins, MetAP1 and MetAP2. Frottin et al. 

showed that these two proteins have highly similar substrate specificity in vitro and that they are interchangeable in 

plants [23, 24]. They also share a similar 3D structure of the active site and a conserved metal binding site. 

Enzymes responsible of N-terminal Methionine excision are highly regulated when cells are in different states or when 

submitted to different stress conditions [22, 25]. However it is not well understood how exactly the regulation of 

MetAPs affects the proteome.  

A way to study the respective roles of MetAP1 and MetAP2 and gain more insight into the crucial role of N-terminal 

Methionine excision in the cell consists in the use of drugs specifically targeting MetAP2. Fumagillin is a drug that 

binds and inhibits MetAP2 but does not affect the activity of MetAP1 [23, 26]. Fumagillin and its derivatives cause cell-

cycle arrest in endothelial cells and several cancer cell lines. This suggests that MetAP2 could be a target for cancer 

therapy. However, derivatives of this drug were shown to cause neurotoxicity in phase III clinical trials [27]. 

To take full advantage of the inhibition of MetAP2 as a cancer therapy, it is crucial to identify and understand the 

function of the N-terminal Methionine excision processed by MetAPs as well as improving our understanding of the 

molecular consequences of the MetAP2 inhibition. 

Our collaborators identified cell lines with different sensitivities to fumagillin: 

 Highly sensitive cell lines, i.e. having a low proliferation when exposed to the drug: HUVEC, U87, U937, A549. 

 Insensitive cell lines : Jurkat, HCT116 and K562.  

 

With this information, they characterized the proteomes and N-terminomic profiles of several cell lines to identify 

possible variations at the protein level that could explain the difference in sensitivity to fumagillin. From this study, 

they concluded that the specific variations in the proteomes do not explain the selectivity in the phenotype. Also, they 

established that the MetAP2 inhibition does not significantly affect the protein N-terminal Methionine excision 

process nor does it affect the downstream N-terminal modifications such as N-myristoylation and N-acetylation. 

In this bottom-up proteomic study, the MetAP1 and MetAP2 could not be identified. Therefore, to check if the 

difference of abundance of these two proteins could explain the difference of sensitivity of the different cell lines, 

they developed a quantification assay using immunodetection using several commercial antibodies. But none of the 

MetAPs could be detected even in the highest sensitive cell lines and even using high protein amounts, suggesting that 

these proteins accumulate in the analyzed cell lines at very low levels. 



 Chapter III : Application of targeted proteomics for the relative and absolute quantification of Methionine 

Aminopeptidase Proteins 

172 

 

Thus, we developed a targeted method using Selected Reaction Monitoring to attempt monitoring and quantifying 

these two proteins. Three cell lines were chosen to be analyzed: the most sensitive cell line from cancer tissues (U87), 

a sensitive endothelial cell line (HUVEC) and one insensitive cell line (K562). 

A.2. LC-SRM method development and sample preparation protocol optimization 

A.2.1 LC-SRM method development 

For each of the two methionine aminopeptidase proteins MetAP1 and MetAP2, six signature peptides were chosen. 

The list of chosen peptides and the reasons why they were chosen can be seen on Figure IV-60. For each protein at 

least 20 proteotypic peptides between 7 and 25 amino acids are predicted. To find the best peptides, a high priority 

was given to peptides already seen in LC-MS/MS experiments by our collaborators. Then, we looked for well-

responding peptides in LC-MS conditions using SRM Atlas [161] and ProteomicsDB [163]. For each peptide, the 

hydrophobicity index was calculated using SSRCalc in order to eliminate very hydrophilic or very hydrophobic 

peptides. The hydrophocity index was calculated using the web server and the following equation HI = -2.6687 + 

0.4954xH was used (http://hs2.proteome.ca/SSRCalc/SSRCalcX.html). We empirically determined that with this 

equation, peptides with a hydrophobicity index between 15 and 45 are good candidates. In the final list of signature 

peptides, three of them had a potential ragged end in the C-terminal part of the peptide, i.e. the peptide sequence is 

followed by a cleavage site (KK, RR, KR or RK motif). However these three peptides were found to be very well-

responding peptides in experimental data. Furthermore the peptide GSYTAQFEHTILLRPTCK has a missed-cleavage in 

its sequence. Even if the activity of the trypsin is reduced when the cleavage site is followed by a proline [222] 

peptides with missed-cleavages should be avoided. In this case this peptide was nevertheless maintained as it was 

found to be a very well-responding peptide on ProteomicsDB and was chosen as a signature peptide in SRM Atlas. The 

quantification will not be done solely on the ragged-end and missed-cleavage peptides but they will help to monitor 

the protein and control the presence or absence of the protein in the samples. Finally, the peptides were also chosen 

to try to cover different regions of the protein and were thus chosen well distributed over the protein sequences 

(Figure IV-60). 

 
Figure IV-60: Signature peptides choice and positions in the protein sequence. 

 

A.2.2 Sample preparation protocol optimization 

Next we tried different sample preparation protocols to asses which one would give the best results in terms of 

sample extraction and protein coverage. MetAP1 and MetAP2 are cytosolic proteins thus the protocols were chosen 
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to try to fully extract soluble proteins. Three protocols were tested. The first two were protocols routinely used by our 

collaborators. The third one was the liquid digestion protocol used at the LSMBO. K562 cell lines were used for this 

test as it was expected that out of the three cell lines tested, the protein abundance would be highest in this sample. 

 Single-band resolving gel: Briefly cells were disrupted using glass beads and the extracted proteins were 

loaded onto a SDS-PAGE gel. The electrophoretic migration was stopped as soon as the protein sample 

entered the resolving gel. The proteins were digested using trypsin (Overnight, 37°, enzyme:protein ratio 

1:100). A detailed description can be found in Experimental section D.1 on page 220. 

 Liquid digestion protocol 1: Briefly cells were disrupted using glass beads and the extracted proteins were 

precipitated using acetone (4 to 1 volumes of acetone, -20°C, 2 hours). The proteins were resuspended using 

ammonium acetate buffer. The trypsin digestion was done using a two-step protocol (2x[1h30, 37°, 

enzyme:protein ratio 1:100]) to avoid non-specific trypsin cleavages. Then, samples were desalted and 

concentrated using solid phase extraction. A detailed description of this protocol can be found in 

Experimental section D.2 on page 220. 

 Liquid digestion protocol 2: Briefly cells were disrupted using needle sonication and the extracted proteins 

were precipitated using acetone (9 to 1 volumes of acetone, -20°C, overnight). The proteins were 

resuspended using urea buffer. The trypsin digestion was performed overnight (1:120 enzyme:protein ratio, 

37°C, overnight). Then samples were desalted and concentrated using solid phase extraction. A detailed 

description of this protocol can be found in D.3on page 221. 

The results of this assessment can be found in Figure IV-61. 
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Figure IV-61: Sample preparation evaluation results. 

A. Overview of the different protocols tested. The chromatograms of endogenous peptides are shown using the three different 

sample preparation protocols for protein MetAP1 (B) and MetAP2 (C). 

 

The chromatograms of endogenous peptides are shown using the three different sample preparation protocols for 

protein MetAP1 and MetAP2. For all three protocols the peptide ALDQASEEIWNDFR of protein MetAP2 can be 

observed with similar intensities. This proves that the protein could be extracted correctly using the three protocols. 

However, for all the other peptides the signal was clearly most intense when using the liquid digestion protocol 2. This 

could be explained by an incomplete enzymatic digestion when using short time periods. The idea behind using a two-

step trypsin digestion was to avoid non-specific digestion by self-digested trypsin still active, possibly having different 

specificity. However the digestion did not generate enough peptides to confidently quantify the protein. For the SDS-

PAGE the problem was possibly that the quantity of loaded protein (10µg) was not sufficient. We found that the best 

results are found using a stacking gel protocol when loading more than 50µg. In conclusion, the liquid digestion 

protocol 2 was chosen for the rest of the project based on these results. Collision energies for each transition were 

optimized using the heavy labeled synthetic peptides to achieve highest sensitivity. 
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A.3. Relative and absolute quantification results  

To verify the hypothesis formulated by our collaborators, a first relative quantification experiment was performed 

using low-purity crude standard peptides. Three cell lines were compared: HUVEC, U87 and K562. The samples were 

prepared in quadruplicates and injected once. The results can be seen in Figure IV-62. 

 
Figure IV-62: Results of the relative quantification experiment. 

Ratios of the summed areas of all transitions of the light over the heavy-labelled peptide (L/H) and coefficients of variation (CV%) 

for sample preparation quadruplicates for the 6 targeted peptides of MetAP1 (A) and MetAP2 (B) in three different cell types. 

Out of the twelve chosen signature peptides only three peptides per protein were validated. The peak group 

identification and integration of SRM traces were manually verified, checking the exact coelution and the correct 

relative fragment-ions intensities between light and heavy-labelled peptides. Overall, all signature peptides showed 

coefficients of variation lower than 20% with a mean value of 10,2% and a median value of 9,4%. These were 

calculated using light/heavy area ratios for the sum of all transitions. Since we worked with sample preparation 

quadruplicates these results prove that the whole sample preparation protocol is very reproducible. The results show 

that the abundance of MetAP1 and MetAP2 are significantly lower in the sensitive cell lines (U87 and HUVEC) 

compared to the insensitive cell line (K562). 

To validate this trend we carried out an absolute quantification experiment using highly purified and precisely 

quantified peptides for MetAP2. Two AQUA peptides, ALDQASEEIWNDFR and IDFGTHISGR, were used to monitor 

MetAP2. However, only peptide IDFGTHISGR could be detected in the samples. A calibration curve was done using a 

pool of the three cell types. Six calibration points were created: 1.6, 3.1, 6.3, 12.5, 25 and 50 fmol of injected peptide 

into the column in 10µg of total digest. The results of this study can be seen in Figure IV-63. 

The limit of quantitation (LOQ) was defined as the last point having a coefficient of variation lower than 20% among 

triplicate injections, showing an accuracy between 80 and 120% and giving a coefficient of determination R² higher 

than 0,98 between the summed area under the curve and the injected amount on column, and between the 

recalculated and the real injected amount on column. In this case the LOQ was found to be 3.1 fmol of injected 
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peptide into the column in 10µg of total digest. All calibration points above had a CV lower than 15%. The coefficient 

of determination R
2
 for the two regressions mentioned above was 0.998. 

As a conclusion, targeted proteomics allowed confirming the extremely low abundance of MetAP2 in all three cell 

lines. The limit of quantification was determined to be 310 amol per µg total proteins. For the K562 the abundance of 

MetAP2 was determined to be 350 amol per µg of total protein. For U87 and HUVEC, a precise estimation could not 

be done as their abundances were below the limit of quantification. 

Furthermore both independent quantification studies showed the same trend: MetAP2 is more abundant in 

insensitive cell lines than in sensitive cell lines. These results are well correlated with an independent quantification 

performed by our collaborators of mRNA of the same proteins. These results also show a higher abundance of METAP 

1 and 2 in insensitive cell lines. 

An important result of this quantification was that mRNA and protein expression are well correlated for the two 

MetAP proteins. Thusly in future experiments mRNA could be used as proxies for these two proteins. 

 
Figure IV-63: Results of the absolute quantification of MetAP2 in three cell lines. 

The calibration curve is shown for the absolute quantification of METAP2 by monitoring the IDFGTHISGR peptide. The calibration 

curve was done using the points where CVs were lower than 15% and the accuracy was between 80-120% (full diamonds), the 

lowest point being the limit of quantification (LOQ). The points not meeting these criteria were discarded (empty diamonds). 

A.4. Conclusion and perspectives 

The development of an LC-SRM assay enabled the detection and relative quantification of proteins, MetAP1 and 

MetAP2, that could not be detected in a global shotgun experiment and using an immunodetection assay. The results 

showed a higher abundance of METAP 1 and 2 in insensitive cell lines, as expected. These results were well correlated 

with an independent mRNA quantification experiment performed by our collaborators. An absolute quantification of 

MetAP2 could also be achieved for one of the three cell lines and confirmed the same trend. 

In order to be able to quantify the two proteins more accurately, the protein dynamic range should be reduced. A 

protein depletion protocol could be used to eliminate highly abundant proteins. Since the two proteins have similar 

molecular weights, 43kDa and 53kDa for MetAP1 and MetAP2 respectively, a SDS-PAGE separation protocol could be 

used to “roughly isolate” the proteins, reduce the background noise and lower the total protein dynamic range in the 

sample. 

 A publication resuming the results of this project is in preparation. 



 Part V 
 

177 

  

 

Part V  Results of proteogenomics 

analysis 
 

Chapter I Engineering an automated N-terminomics workflow 

A.  N-TOP: N-terminal Oriented Proteomics 

The N-Terminal oriented proteomics approach (N-TOP) was initially developed at the LSMBO by Sebastien Gallien 

[223]. It is based on a selective derivatization of α-amine group by TMPP.  

TMPP was historically used to increase ionization efficiency in mass spectrometry using fast atom bombardment 

ionization [224], MALDI [225] and electrospray ionization [226]. The structure of TMPP can be seen in Figure V-1. 

TMPP improves the ionization efficiency in electrospray because of its hydrophobicity and its permanent positive 

charge. Hydrophobicity of the reagent increases the ionization efficiency as this means that TMPP-derivatized 

peptides have an increased affinity for the non-polar electrospray droplet surface [227-229] resulting in more 

successful competition for excess charge and higher ESI response. 

One of the important results from the work of Gallien et al. is the optimized experimental conditions to profit from 

the difference in pKa of α-amines and the ε-amino group in lysine residues to achieve a good regioselectivity of the 

derivatization reaction. The regioselectivity is controlled by strictly setting the pH at 8.2 (Figure V-1). This gives 

selectivity of 78-95% on the free N-terminal amino group (pKa ~7.8) relative to the protonated ε-amino group of the 

lysine side chain (pKa~11) [225]. 

 
Figure V-1 : TMPP selective derivatization towards N-terminal amines. 

 

The analytical workflow for the N-TOP approach, illustrated in Figure V-2, consisted in a TMPP-derivatization at the 

protein level after reduction and alkylation, followed by SDS-PAGE separation in order to remove the excess TMPP and 

decomplexify the samples. Proteins were then in-gel digested and analyzed by LC-MS/MS. 

 
Figure V-2 : Analytical workflow of the N-Terminal Oriented Proteomics (N-TOP) approach 
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The hydrophobicity of the TMPP reagent induces a shift in retention time towards more hydrophobic regions of the 

chromatogram. The distribution of retention times of TMPP-labelled and non-labelled peptides can be seen in Figure 

V-3. The two distributions are well separated and TMPP-labelled peptides are eluted later in the gradient. The 

separation of TMPP peptides from internal peptides favors their sampling in data dependent acquisition MS/MS 

experiments and enhances the sensitivity since the complexity in this part of the chromatogram is lower. This 

behavior added to the efficiency in ESI ionization highly increases the overall sensitivity of N-terminal peptides. 

 
Figure V-3 : Distribution of retention times for non-labelled and TMPP-labelled peptides. 

The retention times of labelled and un-labelled peptides are shown. The two distributions are well separated and TMPP-labelled 

peptides are eluted late in the gradient. This helps to increase the sensitivity of N-terminal peptides. 

However, TMPP is also known to give a specific fragmentation pattern. TMPP-derivatized peptides are fragmented in 

CID by a charge-remote fragmentation mechanism [223, 226, 230, 231]. The fixed and permanent positive charge 

induces a charge-remote fragmentation of derivatized peptides that facilitates peptide fragmentation for MS/MS, 

constituted predominantly by a- and b-type ions. Compared to a non-derivatized peptide, a spectrum of TMPP-

derivatized peptides has few y-ions at the lower mass range. This is expected because only y-ions can be present 

below 630 m/z (the mass of the a-type fragment corresponding to the TMPP-labeled glycine). An example of a 

spectrum from a TMPP-derivatized peptide can be seen in Figure V-4.A. This particular pattern of fragmentation is 

specific to the TMPP-labeled peptides. For these peptides, in spite of high-quality fragmentation spectra, Mascot ion 

scores are generally lower than for unlabeled peptides because few fragments remain in the lower mass range of the 

MS/MS spectra and thus creating a bias in the scoring. 

As a result of the scoring problem, each spectrum of a TMPP-derivatized peptide had to be individually manually 

curated. This was a tedious and time-consuming step that was highly prone to errors and subjective to the user 

interpretation. This remained for some years the bottle-neck of the N-TOP approach. 

B.  dN-TOP: doublet N-terminal Oriented Proteomics 

The results presented here were published in June 2013 in the Journal of Proteomic Research [28] and the newly 

optimized workflow was published in April 2015 in the Protein N-terminal Biology special issue in Proteomics [159] 

(available at the end of this section). 

To overcome the scoring problem of TMPP-derivatized peptides a strategy was developed using a light and heavy 

isotopically stable version of the TMPP. The approach named doublet N-terminal Oriented Proteomics (dN-TOP) 

consist in labelling N-terminal peptides with an equimolar mixture of light and heavy TMPP. 

Light and heavy TMPP-derivatized peptides had the same behavior in liquid chromatography and mass spectrometry. 

They only differ their mass corresponding to the isotopically stable tag, i.e. nine 
13

C atoms for the heavy TMPP. The 
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doublet identification of a peptide derivatized with the light TMPP and the identification of that same peptide but 

derivatized with the heavy TMPP validates its presence in the sample. 

A first try at an automated validation workflow was developed. A two-stage database search pipeline was 

implemented. The first search round was a classic proteomics search of fully-tryptic peptides validated at 1% FDR. The 

second search round enabled the identification of TMPP-derivatized peptides. We then developed a macro to search 

for doublets of N-terminal peptides derivatized with light and heavy TMPP.  

This workflow was applied as a proof of concept to the characterization of the N-terminome of a bacterium, 

Herminiimonas arsenocoxydans. 650 unique protein groups could be identified using the internal peptides and 90 N-

terminal positions were found. Of these, 77 were correctly annotated in the database and 13 N-terminal positions 

enabled the correction of the gene annotation or could be explained by proteolysis. However this bacterium is of low 

complexity: its genome consists of 3,4 mega base pairs almost 950 times smaller than the human genome [232]. To be 

able to tackle highly complex samples an optimized automated and reliable validation workflow needed to be 

developed. 

B.1. Automated validation workflow 

The results presented here were published in April 2015 in the Protein N-terminal Biology special issue in Proteomics 

[159] and available at the end of this section. 

To be able to have a reliable and automated workflow allowing high-throughput analysis of samples coming from 

complex organisms some problems had to be resolved. 

 The problem of a possible double interpretation of the same spectrum in the two search rounds. 

 The problem of an ambiguous spectral interpretation. 

 The problem of an ambiguous TMPP labelling position either in α-amines or ε-amines. 

 The problem of shared peptides between different proteins. 

These problems were solved by engineering a data analysis workflow that is now completely automated, accurate and 

user-friendly. The final workflow can be seen in Figure V-5. The important steps of the workflow are described below. 

To tackle the problem of a possible double interpretation of the same spectrum in the two search rounds, high-quality 

spectra were extracted from all non-assigned spectra after the first search round using the in-house developed 

Recover module of MSDA [233]. This tool extracts spectra using user-defined filters and creates a peaklist made of 

high-quality spectra. Using this tool spectra were kept if they had at least 4 peaks higher than 3 times the intensity of 

the background noise and at least one peak above the m/z ratio of the precursor ion. Recover was also used in our 

workflow to eliminate spectra of singly charged precursor, spectra with unassigned charge states and spectra already 

used to identify a validated peptide during the first search round . 

When analyzing samples of high complexity the problem of a possible ambiguous spectral interpretation arose. 

Normally for a given spectrum a search engine scores all possible interpretations of that spectrum and ranks them. 

Then data interpretation software, as Scaffold [199], MaxQuant [87] or Proline (Proline Studio, ProFI, Proteomics 

French Infrastructure), uses this information and for each spectrum attributes the first ranked peptide sequence to 

the spectrum.  Figure V-4.A. shows a spectrum giving a non-ambiguous identification. In this example the spectrum 

has enough information to identify one single peptide sequence. An example of an ambiguous interpretation can be 

seen in Figure V-4.B. In this example the spectrum is not informative enough to discriminate between several possible 
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peptide sequences present in the database. In this case MASCOT gives the same ranking value to all peptides with 

identical scores. This ranking value is named the pretty rank. The pretty rank is a value similar to the rank except that 

equivalent scores get equivalent ranks. In early stages of my PhD, I used the Scaffold software to validate MS-MS/MS 

results. However, I found out that in the case of an ambiguous identification, Scaffold chose the first peptide sequence 

in alphabetical order. So in the example the peptide sequence AAAVSPSK would be kept. This biased selection 

compromised the reliability of the identifications. The Proline software does not make a decision about these peptides 

and keeps all interpretations with a pretty rank equal to 1. We used this value to detect and eliminate ambiguous 

spectra. The use of pretty ranks also allows detecting and eliminating spectra for Tyr- or Lys-containing peptides for 

which the exact TMPP labelling position (α-amino terminal group or ε-amino group of Tyr or Lys) could not be 

determined (Figure V-4.C). The use of the pretty rank is a criterion of great importance in the reliability of the results 

in the output of the automation tool. 

Finally, the retention times of light and heavy-TMPP derivatized peptides are compared and the difference must be 

lower than a user-defined value. The information of the unicity in the searched database is also indicated in the 

output file. This automation tool enabled to reduce the time necessary to confidently validate high-throughput 

analysis of N-terminomics data using the dN-TOP approach. 
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Figure V-4 : Examples of spectra giving ambiguous and non-ambiguous peptide identifications 
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Figure V-5 : Overview of the analytical workflow for sample preparation and the data validation strategy. 

 

B.2. Advantages of the optimized dN-TOP approach 

Here is a summary of the advantages of using the dN-TOP approach: 

 dN-TOP uses a simple SDS-PAGE-LC-MS-MS/MS workflow with just an additional labelling step at the 

protein level. 

 dN-TOP can be used to analyze extensively fractionated samples (SDS-PAGE separation) or 

unfractionated samples (Stacking Gel SDS-PAGE). 

 dN-TOP allows analyzing in a single experiment both N-terminal and internal peptides unlike most 

alternative N-terminomics approaches focusing only on N-terminal peptides. Among others, it even 

allows identifying acetylated N-termini.  

 dN-TOP does not need dedicated HPLC system and all reagents are commercially available and 

inexpensive. 

 TMPP increases the electrospray ionization efficiency of derivatized peptides. 

 TMPP reagent induces a shift in retention time towards more hydrophobic regions of the chromatogram, 

thus shifts N-terminal peptides to regions usually of low complexity, favoring their sampling in data 

dependent acquisition MS/MS experiments. This increases the overall sensitivity for derivatized peptides  

 The use of a pair of labeling reagents containing the light and an isotopically heavy-labelled form of 

TMPP allows establishing an unambiguous, reliable and automated identification strategy of N-terminal 

peptides. 

 Double interpretation of a same spectrum is prevented. 
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 The use of the pretty rank in the automation tool avoids the problem of ambiguous spectral 

interpretation. 

 The use of the pretty rank in the automation tool avoids the problem of ambiguous labelling at α- or ε-

amine groups. 

C.  N-terminome analysis of the human mitochondrial proteome 

This project was carried out in collaboration with the Laboratory of Chemistry and Biology of Metals of the CNRS in 

Grenoble, and particularly with Thierry Rabilloud. 

And in collaboration with the Computer Analysis and Laboratory Investigation of Proteins of Human Origin  (CALIPHO) 

Group, of the Swiss Institute of Bioinformatics, and particularly with Lydie Lane and Amos Bairoch , for the integration 

of the data into the UniProtKB/Swissprot knowledgebase. 

The dN-TOP approach was applied to the characterization of the proteome and N-terminome of human mitochondria. 

Mitochondria are very important organelles implicated in vital functions such as bioenergetics, protein folding and 

degradation, metabolism of amino acids, lipids, heme and iron, signaling and apoptosis [234]. Mitochondria are thus 

essential for eukaryotic cells. 

Mitochondria are believed to have evolved from endosymbiosis of a primitive bacterial cell [235]. From this 

evolutionary past, 13 human proteins are encoded by mitochondrial DNA. Besides these 13 proteins, it is estimated 

that around 1200-1500 proteins are located in the mitochondria. These proteins are synthesized as precursor forms in 

the cytosol and must be imported into mitochondria. As a result of this process, for most mitochondria addressed 

proteins, a transit peptide, 10 to 100 amino-acids long, is cleaved while passing mitochondrial membranes. However, 

the exact position of the cleavage sites is not known for most mitochondrial proteins (Figure V-6). The majority of 

knowledge on the exact position of the cleavage sites comes from predictions and homologies using prediction 

algorithms [236, 237]. Knowing the exact start position of mature and active proteins inside the mitochondria is 

important as N-terminal start positions have an impact on protein half-life, protein function and a defect in the 

process have been shown to be involved in human diseases [238]. Yeast has been used as a model to understand 

dysfunctions in the mitochondria [239] but  human cells contain protease complexes that are not present in yeast 

[235]. More experimental data is therefore urgently needed using human mitochondria samples.  

 
Figure V-6 : Overview of protein import into mitochondria. 

 

We applied the dN-TOP approach to the characterization of the proteome and N-terminome of human mitochondria. 

In the first publication of 2015, I analyzed human mitochondria enriched samples and collected data acquired 
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between 2010 and 2014. In total, I compiled data from 12 experiments, obtained in low- and high-resolution Q-TOF 

instruments, with ETD and CID fragmentation and using Asp-N and trypsin digestion. A total of 2714 protein groups 

and 897 N-terminal peptides were identified (424 N-α-acetylated and 473 TMPP-labelled peptides). Information of the 

exact position of the N-terminus could be obtained for 26% of all identified proteins (693 unique proteins). 120 

already annotated processing cleavage sites were confirmed while 302 new cleavage sites were identified. 

In the publication recently compiled in 2016, we have extended these results by using a high-resolution Orbitrap 

instrument to analyze unfractionated and fractionated mitochondria-enriched samples. Compared to the results of 

the previous publication, the total number of identified proteins was multiplied by a factor of 2 and the number of 

unique N-terminal positions identified was multiplied by a factor of 4,4. We identified 4655 protein groups of which 

963 are annotated as being mitochondrial proteins. We managed to identify 2740 unique N-terminal positions (687 N-

α-acetylated and 2067 TMPP-labelled peptides) which provided N-terminus information for 35% of all identified 

proteins. 

These two datasets provide valuable information as only a small part of the processing cleavage site positions were 

annotated in Human UniProtKB/SwissProt database, 28% for the first dataset and 12% for the second.  

Figure V-7 shows the results for the second dataset, in total only 223 N-terminal positions matched with an annotated 

processing cleavage with experimental evidence, i.e. 49 canonical protein free N-termini (2,6%), 57 methionine 

cleavage (3%) and 117 processing cleavages sites (6,2%). Some predicted positions (annotated as “By similarity”, 

“potential” or “Probable”) were confirmed by our study (6 methionine cleavage (0,3%) and 68 processing cleavage 

sites (3,6%)). The exact position was corrected from an erroneous annotation for 109 processing cleavage sites (5,8%). 

Finally, we identified 45 unannotated methionine cleavage sites (2,4%) and 1439 (76,1%) of new processing cleavage 

site positions. 

Among all the identified start positions, 791 were identified in the region where transit and signal peptides are 

expected (between position 2 and 100 in the protein sequence) (Table 1). 515 of these positions are new non-

annotated cleavage sites and 197 of these are annotated either as mitochondrial proteins (138 start positions) or 

belonging to the endoplasmic reticulum (59 start positions). These are possible new transit/signal peptide cleavage 

sites due to translocation/processing events. 

The first dataset contributed to annotate the Human UniProtKB/Swissprot database : our work was included in the 

Release 2015_10 (14
th

 October 2015), in which 36 N-terminal acetylations (position 1), 153 N-terminal acetylations 

(position 2 + methionine initiator), 22 methionine initiator sites, 43 transit peptides, 29 signal peptides, 2 propeptides 

and 1 sequence variant were included. 
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Figure V-7: Distribution of N-terminal positions identified with the dN-TOP approach. 

 

D.  Conclusions and perspectives 

The results presented here were published in April 2015 in the Protein N-terminal Biology special issue in Proteomics 

[159] (available below) and an expanded publication of the results is in preparation. 

The newly engineered dN-TOP approach is now a powerful tool for reliable and accurate high-throughput N-

terminomics. It was used to deeply characterize the human mitochondria N-terminome and proteome. This workflow 

will now be used for a quantitative analysis of N-terminal peptides in different stress conditions in order to expand the 

understanding of the powerhouse of the cell. 

E.  Publications 
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ABSTRACT: In silico gene prediction has proven to be prone
to errors, especially regarding precise localization of start
codons that spread in subsequent biological studies. Therefore,
the high throughput characterization of protein N-termini is
becoming an emerging challenge in the proteomics and
especially proteogenomics fields. The trimethoxyphenyl
phosphonium (TMPP) labeling approach (N-TOP) is an
efficient N-terminomic approach that allows the character-
ization of both N-terminal and internal peptides in a single
experiment. Due to its permanent positive charge, TMPP
labeling strongly affects MS/MS fragmentation resulting in
unadapted scoring of TMPP-derivatized peptide spectra by
classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual
score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP)
that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a
combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of
validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with
an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.

KEYWORDS: N-terminome analysis, proteogenomics, TMPP derivatization, automated data validation

■ INTRODUCTION

In a mass spectrometry-based proteomic discovery experiment,
protein identifications are achieved by matching the exper-
imentally obtained spectra with the theoretical mass lists
obtained by in silico digestion and fragmentation of the protein
sequences available in databases. This well-known workflow
relies on the assumption that the database is an error free,
exhaustive list of all proteins coded by a genome. The reality is
far from this assumption since protein databases are mainly
obtained by in silico translation of the genome sequence. An
approach that has proven to be prone to errors and to generate
incomplete protein data sets.1−3 The consequence of this can
be dramatic as it can affect any biological experiment that has
been based on it.
UniProtKB/SwissProt4 is a curated protein sequence data-

base in which each entry gets thoroughly analyzed and
annotated by expert curators ensuring a high standard of
annotation and maintaining the quality of the database.5 When
considering the last reported global statistics of UniProtKB/
SwissProt, only 14.2% of all entries have evidence at protein
level; 70.1% are inferred from homology; 12.7% have evidence

at the transcription level; the predicted entries represent 2.7%
and the uncertain entries 0.4% (released the 31-Oct-12).
Among the common errors introduced by in silico predictions

and propagated by ortholog alignments, the incorrect
prediction of initiation codon is particularly pervasive as, up
to now, any bioinformatics tool is able to properly estimate
with high confidence all initiation sites of the mature
proteins;6,7 this is especially the case for prokaryotic genomes
with high GC content since they are characterized by many
long open reading frames that are not genic.8 Based on this
evidence, the necessity to collect experimental data to assess
and refine the quality of the genome annotation becomes
obvious and the development of proteogenomic approaches
urgent. In this context, proteomics data are unique resources
and can improve many of the problematic areas of genome
annotation, like the start site assignment.
To maximize the number of identified N-terminal sequences,

the classical high-throughput proteomic workflow has been
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implemented with many complementary approaches able to
specifically target the protein N-termini, based on chemical
derivatization of the N-terminal function.9

The TMPP labeling approach (N-TOP approach) is an
efficient N-terminomic approach, that allows the character-
ization of both N-terminal and internal peptides in a single
experiment and has been applied very successfully to various
proteomes such as Mycobacterium smegmatis and Sterolibacte-
rium denitrif icans in our laboratory10,11 and by others.12 This
now well-established N-TOP method is based on a N-terminal
protein labeling performed with (N-succinimidyloxycarbonyl-
methyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide
(TMPP-Ac-OSu) on a total biological extract and is fully
compatible with all standard detergents, chaotropic agents, and
reduction conditions used for protein extraction in proteomics.
Two characteristics of this labeling reagent promote the
sensitivity of the method: (i) TMPP labeling introduces a
permanent positive charge resulting in an enhanced ionization
efficiency and thus a better detection of low-abundance
proteins; (ii) the hydrophobic TMPP group shifts the retention
time of derivatized peptides in reversed phase chromatography
toward a less complex part of the chromatogram, therefore,
increasing the sensitivity of detection (including the possibility
to detect short N-terminal peptides that otherwise would not
be retained on the column).
Besides the fact that this approach allows maintaining intact

all internal proteolytic peptides, its easy experimental design is
the major advantage of this approach: a single chemical
derivatization step, performed at the protein level, that can
easily be integrated in a classical 1D SDS-PAGE/LC-MSMS
proteomics workflow, without requiring any other additional
step like immune capture or multidimensional chromatography.
Nevertheless, one limitation of the approach resides so far in
the validation of labeled peptides, as they present unusual
fragmentation patterns. It is well-known that low energy
peptide fragmentation (post source decay (PSD) or collision
induced dissociation (CID)) is obtained thanks to the
delocalization of a proton on the peptidic backbone generating
mainly y- and b-type ions.13

Alternatively, a peptide labeled with a chemical tag that
carries a fixed charge, a permanent positive charge in the case of
a TMPP derivatization, behaves in the mass spectrometer in a
completely different way; all fragments are generated with a
charge remote mechanism that results in a massive production
of uncommon ions.14 The TMPP labeling significantly
enhances a- and b-type ions that are usually missing in tryptic
peptide MS/MS spectra. Since the search algorithms have been
developed and educated for classical fragmentation patterns, a
TMPP-derivatized peptide will not be assessed with an optimal
score, resulting in a too stringent filtration when operated by
the target/decoy approach with 1% FDR and thus in
underestimated validation of N-terminal peptides.
To overcome those difficulties, we have developed a new

method allowing an easy, reliable and automated TMPP-
derivatized peptides’ validation based on a stable isotope
labeling experiment, a widely applied method in quantitative
proteomics.15−17

For this purpose, a 13C-labeled analog of the TMPP reagent
was designed and a double labeling was performed (1:1 light
and heavy TMPP) allowing to identify doublets of identical N-
terminal peptide sequences. We designate this labeling strategy
as doublet N-terminal oriented proteomics (dN-TOP).

As proof of concept, we applied this method to a cellular
lysate of Herminiimonas arsenicoxydans. The 3.4 Mbp single
chromosome of this arsenite-oxidizing bacterium has already
been sequenced and carefully annotated.18,19 A previously
generated proteome map allowed us to characterize 447
proteins among which 365 proteins are in the soluble fraction,
representing 13.6% of the total proteome predicted from the
genome sequence for this bacterium. For 5 proteins, proteomic
data had allowed correcting 5 start codons, even if no N-
terminal labeling strategy was applied.20 To evaluate the
specificity and the labeling kinetics of the new isotopically
labeled TMPP compared to the light reagent, we present here
the comparison of N-TOP to dN-TOP applied to our model
organism H. arsenicoxydans.

■ EXPERIMENTAL PROCEDURES

Unless otherwise specified, all chemicals were obtained from
Sigma Aldrich (St. Louis, MO).

Growing Conditions and Cell Lysis

H. arsenicoxydans was cultivated in a chemically defined
medium (CDM) containing 2.66 mM of As(III) (NaAsO2)
in the same conditions as previously described.20 Late
exponential phase cells (100 mL) were disrupted as previously
described,20 and the soluble extract was further analyzed.

Protein Labeling and 1D SDS-PAGE

The protocol used here was carried out according to the
original reference paper by Gallien et al. with slight
modifications.10 A batch of heavy labeled (N-succinimidylox-
ycarbonyl-methyl)tris(2,4,6-trimethoxyphenyl)phosphonium
bromide (13C9 TMPP-Ac-OSu) was synthetized in collabo-
ration with Alsachim. This 13C9-TMPP induces a mass increase
of 581.21 Da instead of 572.18 Da for light TMPP on labeled
peptides. After reduction and alkylation, an equimolar solution
of 0.1 M of 12C-TMPP-Ac-OSu and 13C9-TMPP-Ac-OSu in
CH3CN:water (2:8; v/v) was added at a molar ratio of 200:1 to
50 μg of H. arsenicoxydans protein extract solubilized in labeling
buffer (50 mM Tris-HCl, 6 M urea, 2 M thiourea, pH 8.2, 1
mM phenylmethylsulfonyl fluoride, 1 mM EDTA, 5 mM TBP
(Bio-Rad Laboratories)). Selective N-terminal TMPP derivati-
zation is achieved by a careful control of reaction pH at 8.2,
exploiting the weaker basicity of the N-terminal amine relative
to the ε-amino group of the lysine side chain. After a short mix,
the reaction was maintained at room temperature for 1 h.
Residual derivatizing reagent was quenched by adding a
solution of 0.1 M hydroxylamine at room temperature for 1
h, in order to minimize derivatization of tyrosine residues. N-
terminal labeled protein extract was finally supplemented with
glycerol at a concentration of 10%. Proteins were then
separated on a 12% 1D SDS-PAGE (10.1 cm × 7.3 cm) on a
mini PROTEAN (Bio-Rad) apparatus at 10 mA for 20 min and
100 mA until the complete migration of the blue front. After
electrophoresis, gels were stained with colloidal Coomassie
Blue (BioSafe coomassie stain; Bio-Rad) and whole lanes were
systematically cut into 28 bands (5 × 2 mm) using a disposable
grid-cutter (The Gel-Company, Tübingen, Germany). Bands
were cut into three pieces and in-gel digestion using trypsin
(Promega, Madison, WI) was performed overnight at 37 °C
after in-gel reduction and alkylation using the MassPrep Station
(Waters, Milford, MA). Tryptic peptides were extracted using
60% CH3CN in 0.1% formic acid for 1 h at room temperature.
The volume was reduced in a vacuum centrifuge and adjusted
to 10 μL using 0.1% formic acid in water before nanoLC-MS/
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MS (nanoliquid chromatography coupled to tandem mass
spectrometry) analysis.

LC-MS/MS and Data Analysis

NanoLC-MS/MS analyses were performed on a NanoAcquity-
LC coupled with a QToF mass spectrometer (maXis 4G,
Bruker Daltonics, Bremen, Germany). The UPLC system was
equipped with a Symmetry C18 precolumn (0.18 × 20 mm, 5
μm particle size, Waters, Milford, MA) and an ACQUITY
UPLC BEH130 C18 separation column (75 μm × 200 mm, 1.7
μm particle size, Waters). The solvent system consisted of 0.1%
formic acid in water (solvent A) and 0.1% formic acid in
acetonitrile (solvent B). Of each sample 3 μL was injected.
Peptides were trapped during 1 min at 15 μL/min with 99% A
and 1% B. Elution was performed at 60 °C at a flow rate of 450
nL/min, using a linear gradient from 6 to 50% B over 50 min.
The mass spectrometer was operating in positive mode, with
the following settings: source temperature was set to 160 °C
while dry gas flow was at 5 L/min. The nanoelectrospray
voltage was optimized to −5000 V. External mass calibration of
the TOF was achieved before each set of analyses using Tuning
Mix (Agilent Technologies, Paolo Alto, CA) in the mass range
of 322−2722 m/z. Mass correction was achieved by
recalibration of acquired spectra to the applied lock masses
(methylstearate ([M + H] + 299.2945 m/z) and hexakis-
(2,2,3,3,-tetrafluoropropoxy)phosphazine ([M + H] +
922.0098 m/z)). For tandem MS experiments, the system
was operated with automatic switching between MS and MS/
MS modes in the range of 100−2500 m/z (MS acquisition time
of 0.4 s), MS/MS acquisition time between 0.05 s (intensity
>250 000) and 1.25 s (intensity <5000). The 6 most abundant
peptides (absolute intensity threshold of 1500) were selected
from each MS spectrum for further isolation and CID
fragmentation using nitrogen as collision gas. Ions were
excluded after acquisition of one MS/MS spectrum and the
exclusion was released after 0.25 min.
Peak lists in mascot generic format (.mgf) were generated

using Data Analysis (version 4.0; Bruker Daltonics) and merged

for each lane using an in-house developed tool available at
https://msda.unistra.fr.

Internal Peptide Data Processing

MS and the MS/MS data were analyzed using a local Mascot
server (version 2.4.1, Matrix Science, London, England). The
search were performed against a H. arsenicoxydans database
composed of all the original entries (created 2013-02-22 and
containing 3400 sequences) downloaded from the public
available repository (http://www.genoscope.cns.fr/agc/mage/
). The reverse sequences of all entries and common
contaminants (keratins, trypsin) were added using our in-
house toolbox (Mass Spectrometry Data Analysis, MSDA)
freely available after registration at https://msda.unistra.fr. Full
trypsin enzyme specificity was fixed, carbamidomethylation of
Cysteine (+57 Da) and of oxidation of Methionine (+16 Da)
were set as variable modifications and mass tolerances on
precursor and fragment ions of 10 ppm and 0.02 Da were used,
respectively. Mascot results files (.dat files) were uploaded into
the Scaffold software (version 3.6.5; Proteome Software Inc.,
Portland, USA) for identification validation.
The following filtering criteria based on probability-based

scoring of the identified peptides were applied in order to
obtain a false discovery rate (FDR) <1% based on the number
of decoy hits. Peptides having a Mascot Ion scores higher than
Mascot’s threshold score of identity (95% confidence level) and
absolute Mascot Ion scores >25 were validated.

N-Terminal Labeled Peptide Data Processing

A second Mascot search was performed using semitrypsin
enzyme specificity and adding the different TMPP modifica-
tions (TMPP N-ter (+572.18 Da), 13C-TMPP N-ter (+581.21
Da), TMPP derivatization of Tyr and Lys (+572.18 Da) and
13C-TMPP derivatization of Tyr and Lys (+581.21 Da)) as
variable modifications when compared to the first search.
The Mascot results files (.dat files) were uploaded into the

Scaffold software and directly exported, without ion score
filtration, in an excel file. An automation tool, Validor freely
available at https://msda.unistra.fr in the download software

Figure 1. Schematic overview of the dN-TOP approach and its improvement steps (in black) when compared to N-TOP, the steps in common are
presented in gray in the dN-TOP workflow.
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section, was in-house developed to automate N-terminal
peptides validation. In a first step, identical peptide sequences
are detected and retained if both the 12C-TMPP-derivatized
and the 13C-TMPP-derivatized peptides are identified. In a
second step, retention times are extracted for every doublet and
a user defined tolerance window is applied to ensure coelution
of both heavy and light forms. Validor requires an excel file with
the following information present in separate columns:
accession number, peptide sequence, retention time, peptide
modification (see Supporting Information and Method for
details).

■ RESULTS AND DISCUSSION

A general schematic overview of the N-TOP and dN-TOP
strategies is depicted in Figure 1. Both experimental workflows
are comparable except for the use of the 12C-TMPP/13C-TMPP
mixture for the labeling reaction instead of using only the 12C-
TMPP reagent. This allowed us to significantly improve the so
far limiting step of N-terminal peptide validation and to
significantly increase the number of the validated protein starts,
while maintaining the strength of the approach, i.e. preserving
intact all internal peptides.

dN-TOP Identification and Validation of Internal Peptides

The workflow starts with the denaturation of proteins by
reduction and alkylation of cysteine residues to enhance the
accessibility of N-termini for chemical derivatization. After

treatment of the protein extract with a 1:1 mixture of light and
heavy TMPP, a 1D gel separation followed. 1D SDS-PAGE
step was shown to be ideal to remove TMPP excess and had
the additional advantage not only of being compatible with
strong detergents but also reducing the complexity of protein
extracts prior to LC-MS/MS analysis. After systematic band
cutting, tryptic in gel digestion and nanoLC-MS/MS of each
band, all files are merged to generate a global peak list for each
lane. This global peak list is then submitted to database
searches using Mascot (with full enzyme specificity). Proteins
are identified thanks to internal peptides and validated in a
usual way (using Scaffold software and score filtering for
significant identification at a false discovery rate of 1% with a
target/decoy database), since internal peptides are not
chemically affected by the TMPP labeling.10

dN-TOP Identification and Validation of N-Terminal
Peptides

A second database search is then performed with semitrypsin
specificity and TMPP modifications to identify N-terminal
peptides. Semitrypsin specificity, which allows a one peptidic
termini to be aspecific, is required for this search in order to
identify also unpredicted protein starts (downstream of the
predicted protein start) that would be missed with full trypsin
searches. Indeed, a full trypsin search only allows identifying the
N-terminal peptides of the proteins as predicted and present in
the database. During this search, both light and heavy forms of

Figure 2. Detailed characterization of the tryptic N-terminal peptide VHLTPEEK of the alpha chain of hemoglobin: (A) Ion extracted
chromatogram (EIC) from an LC-MS/MS analysis of the peptide derivatized with 13C-TMPP and 12C-TMPP that clearly shows the perfect
coelution of the two peptides. Below the MS spectrum of the two peptides on which the two isotopic profiles are separated by 9 Da is presented. (B)
The underivatized peptide produced the expected fragmentation generating mainly yn- or bn-type ions. (C and D) The comparison of MS/MS
spectra of the peptide derivatized with light TMPP and with heavy TMPP, respectively. The derivatized peptides present similar fragmentation
patterns with predominant an- and bn-type ion series when compared to the predominant yn-type ion in the nonderivatized spectrum (B). As
expected, the mass difference of 9 Da affects all an-and bn-type fragments, when comparing the MS/MS spectra of the light and heavy TMPP
derivatized peptides.
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TMPP are set as variable modifications. The 13C9-TMPP
modification has been added to the UNIMOD database
(http://www.unimod.org). The list of identified peptides
contains a series of peptides modified on their N-termini by
light or by heavy TMPP. As suspected, those identifications
have assigned scores non representative of the spectral quality
due to their unusual fragmentation patterns. Figure 2b−d
illustrates, in the case of a mixture of model proteins (alpha and
beta chains of hemoglobin), the unusual fragmentation pattern
of TMPP-derivatized peptides compared to the nonmodified
peptides. For TMPP-derivatized peptides, a- and b-type
fragmentation ions are dominant due to the permanent charge
introduced by the TMPP reagent while the nonmodified
peptide produces the expected tryptic peptide fragmentation
(mostly y-type ions and a few b-type ions).
Perfect coelution of N-terminal tryptic peptides derivatized

by light or heavy TMPP is verified on all doublet peptides.
Figure 2a shows that intensities between light and heavy labeled
peptides are in close agreement with the initial 1:1 ratio of 12C-
and 13C-TMPP reagent. The MS spectrum shows that the
difference of mass-to-charge values (m/z) of the doublet
monoisotopic peaks is 4.5 for this doubly charged peptide,
corresponding to a mass increase of 9 Da which is adapted to
separate the light and heavy peptides’ isotope envelopes.
As described in the Experimental Procedures section, Validor

allows an automatic validation of the N-terminal peptides based
on 2 criteria: the identification of both the 12C-TMPP-modified
and the 13C-TMPP-modified peptide sequence and a perfect
coelution of both forms.

Application of the Workflow to H. arsenicoxydans
Proteome

H. arsenicoxydans is a β-proteobacteria which uses organic
compounds as an electron donor, oxidizes As(III) and can resist
to up to 6 mM As(III) and 200 mM As(V).18 H. arsenicoxydans
is the first arsenite-oxidizing bacterium whose genome has been
sequenced in 2007 and is rather well annotated.18,20 However,
start site assignment has not yet been validated by experimental
proteomics data. Therefore, we have applied our N-TOP and
dN-TOP strategies to this organism and we present here a
deeper characterization of its proteome, with a special focus on
its N-terminome.

Comparison of N-TOP versus dN-TOP

To verify that the doublet dN-TOP strategy allows identifying a
maximum of N-terminal peptides, we have first performed two
separate experiments using a single TMPP isotopologue. One
protein extract of H. arsenicoxydans lysate was treated with 12C-
TMPP while the other one with the 13C-TMPP, and both
derivatized protein mixtures were subjected to the classical N-
TOP workflow as described in Figure 1. The two MS/MS data
sets were validated using the classical target/decoy approach
with a FDR ≤1%. These experiments yielded 50 and 74 N-
terminal peptides with 12C-TMPP and 13C-TMPP labeling,
respectively, when using classical validation criteria (Table 1).
Then, the dN-TOP strategy was applied to the same lysate of

H. arsenicoxydans.
Except for the labeling with a 1:1 mixture of 12C-TMPP and

13C-TMPP reagents, the same experimental workflows was
applied, i.e., derivatization, separation on 1D SDS-PAGE, in gel
digestion and LC-MS/MS analysis of the extracted peptides. In
total, Validor allowed the automatic validation of 90 N-terminal
peptides thanks to the light and heavy doublet identification
(Supporting Information Table S2). This experiment illustrates

the significantly underestimated validation of N-termini when
using the N-TOP strategy and proves the major advantage of
the dN-TOP approach as half of the peptides have been
discarded in the 2 individual N-TOP experiments (Table 1).
Concerning total protein identifications in these three

separate experiments, comparable numbers of proteins have
been identified (Table 1 and supplemental Table S1). This
proves that the doublet labeling does not affect the global
identification rate (even if sample complexity is slightly
increased by the labeling with the 2 TMPP forms). This is
also due to the fact that TMPP labeling shifts N-terminal
peptides’ elution times toward a less complex part of the
chromatogram, out of the eluting area of internal peptides.

The H. arsenicoxydans N-Terminome with dN-TOP

In total, 504 unique proteins were identified from internal
digestion peptides (Table 1). When combining the lists of
unique identified proteins over the three experiments (12C
TMPP labeling N-TOP, 13C TMPP labeling N-TOP and dN-
TOP, Supporting Information Table S1), the total number of
proteins raises to 650, increasing the previously published
proteome with 384 additional proteins.20

From the same data set, 90 unique N-terminal peptides were
identified with Validor among which 77 were correctly
predicted by the genome annotation (Supporting Information
Table S2). The 13 remaining N-terminal peptides did not
match to the predicted starts annotated in the H. arsenicoxydans
database (Table 2). We carefully analyzed these N-terminal
peptides in order to highlight possible annotation errors or
proteolytic events.
In the case of Flavoprotein HEAR0503, we have identified an

N-terminal derivatized peptide presenting a wrongly annotated
start site. As illustrated in Figure 3, the identified N-terminal
peptide of protein HEAR0503 showed clearly that the start site
was experimentally detected 13 amino acids downstream of the
annotated translational start site. We checked further if this new
start may be in agreement with alternative start prediction
algorithms, and if this start would fit to alignments with other
known proteins. This identification provides the experimental
evidence of remaining incorrectly predicted start sites even after
expert manual annotation.18

Besides start site annotation errors, we have identified six
TMPP-derivatized peptides corresponding to signal peptide
cleavage sites (Table 2), allowing to experimentally validate
those cleavage sites as predicted by the SignalP 4 algorithm.21

Interestingly, in one case, identification of the N-terminal
TMPP labeled peptide FDFNDVAK supports the predicted
cleavage site of protein Glucan Biosynthesis G HEAR3286, and
indirectly the prediction of an alternative start codon (Figure
4A). Indeed, in the case of this periplasmic protein involved in
the synthesis of membrane-derived oligosaccharides (MDO),
two possible starts were predicted according to two different

Table 1. Results Obtained with the Classical N-TOP Method
Compared to the dN-TOP Approach with Validor

N-TOP N-TOP dN-TOP
12C TMPP 13C TMPP

Number of N-ter validated with
FDR < 1%

55 78 n.d

Number of N-ter validated with Validor n.d n.d 90

(Not expected N-ter) (13)

Number of proteins identified with
FDR < 1%

566 588 504
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algorithms (AMIGene and Yuko-Makita), with a good
prediction obtained only for the second algorithm. Thus,
identification of this TMPP-derivatized peptide allowed to
experimentally validate the signal peptide prediction after
protein reannotation.
An interesting case of post-translational proteolytic cleavage

is illustrated in figure 4B. An N-terminal derivatized peptide
was identified starting at position 196 on HEAR 2797,
Bifunctional glutamate N-acetyltransferase/amino-acid acetyl-
transferase. A sequence alignment with C. crenatum Arginine
biosynthesis bifunctional protein showed a high degree of
similarity. In this organism, the protein undergoes a proteolytic
autolysis between the amino acids 182 and 183, corresponding
to residues 195 and 196 in H. arsenicoxydans, which generates
two chains, the α and the β chains.22 Figure 4 thus shows that
the dN-TOP provides a useful tool to identify proteolytic
events such as cleavage sites and signal peptide processing.
Five additional TMPP-derivatized peptides were identified

with N-termini that could correspond to proteolytic cleavage
sites. However, no proteolytic fragments for these proteins
identified in vivo are yet reported in the literature. Therefore, no
biological interpretation can be given to those proteolytic
events without additional experiments.

■ CONCLUSION AND OUTLOOK

In conclusion, our proof-of-concept experiment on H.
arsenicoxydans allowed confirming predicted N-termini, correct-
ing wrong start site predictions, and identifying proteolytic

events, such as signal peptide cleavages and a proteolytic

cleavage sites. We have also demonstrated that dN-TOP
presents a significant improvement over the N-TOP approach,

for which the labeled peptide validation step was limiting. This

improvement makes this methodology compatible with high-
throughput and large-scale proteomics studies. This opens also

the door to the possibility of performing large-scale
experimental validations of predicted genome annotations and

dN-TOP reveals to be a powerful proteogenomics tool.
Additionally, the availability of a 13C9 TMPP reagent offers

the possibility to perform quantitative N-terminomics. It will

indeed be possible to compare the N-terminome of two
different samples by labeling them with light or heavy TMPP,

respectively. The identification and validation method
presented here will be useful for a fast detection of the mass

spectrum of interest for determining the ratio of the two

molecular ions.

Table 2. List of Identified N-Terminal Peptides That Do Not Match with the Annotated Protein N-Termini

protein accession numbers peptide sequence peptide start index SignalP prediction

sp|HEAR0005 AIPNDNTPQSPSTLSAAYGASSIQILEGLEAVR 3 Between amino acid 27 and 28

sp|HEAR0225 TNSIAR 114

sp|HEAR0310 ATVLK 28

sp|HEAR0348 AWEPTKPVEFVVPAGTGGGADQMAR 34 Between amino acid 33 and 34

sp|HEAR0415 DAAYPNK 23 Between amino acid 22 and 23

sp|HEAR0503 SQNFPDLPNIDPALFTTPTR 13

sp|HEAR1107 ADITGAGATFPYPIFSK 26 Between amino acid 25 and 26

sp|HEAR1195 APSAAK 30 Between amino acid 29 and 30

sp|HEAR1337 TTPAYK 28

sp|HEAR2797 TMLGFMATDAK 196

sp|HEAR3286 FDFNDVAK 31 Between amino acid 30 and 31

sp|HEAR3424 TTTFR 95

sp|HEAR3468 MLLTR 97

Figure 3. Example of a H. arsenicoxydans protein, Flavoprotein (HEAR0503), with an experimental start codon correction (13 amino acids after to
the currently annotated translation start site).
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3 Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UGA 5249, iRTSV/LCBM, CEA Grenoble,

Grenoble, France
4 CALIPHO Group, SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
5 Department of Human Protein Sciences, Faculty of Medicine, Geneva, Switzerland

Received: December 22, 2014

Revised: March 10, 2015

Accepted: April 30, 2015

The high throughput characterization of protein N-termini is becoming an emerging

challenge in the proteomics and proteogenomics fields. The present study describes the free

N-terminome analysis of human mitochondria-enriched samples using trimethoxyphenyl

phosphonium (TMPP) labelling approaches. Owing to the extent of protein import and

cleavage for mitochondrial proteins, determining the new N-termini generated after transloca-

tion/processing events for mitochondrial proteins is crucial to understand the transformation

of precursors to mature proteins. The doublet N-terminal oriented proteomics (dN-TOP)

strategy based on a double light/heavy TMPP labelling has been optimized in order to improve

and automate the workflow for efficient, fast and reliable high throughput N-terminome

analysis. A total of 2714 proteins were identified and 897 N-terminal peptides were char-

acterized (424 N-a-acetylated and 473 TMPP-labelled peptides). These results allowed the

precise identification of the N-terminus of 693 unique proteins corresponding to 26% of all

identified proteins. Overall, 120 already annotated processing cleavage sites were confirmed

while 302 new cleavage sites were characterized. The accumulation of experimental evidence

of mature N-termini should allow increasing the knowledge of processing mechanisms and

consequently also enhance cleavage sites prediction algorithms. Complete datasets have been

deposited to the ProteomeXchange Consortium with identifiers PXD001521, PXD001522

and PXD001523 (http://proteomecentral.proteomexchange.org/dataset/PXD001521, http://

proteomecentral.proteomexchange.org/dataset/PXD0001522 and http://proteomecentral

.proteomexchange.org/dataset/PXD001523, respectively).
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Within the frame of large proteome projects and especially the

human proteome project, there is an urgent need for large

scale determination of human mitochondrial N-termini to

achieve a more accurate prediction of mitochondrial proteins

and their processing, as most of the existing knowledge and

practice is based on predictions and homologies and not on
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direct experimental data on human proteins. Their process-

ing is crucial for the normal functioning of mitochondria [1,2]

and deficiency in one of these proteases causes a genetic dis-

ease [3]. Such N-terminome data have been generated on yeast

[4] and have shed considerable light on the processing events

taking place when mitochondrial proteins are imported, e.g.

the role of aminopeptidases to generate stable termini.

Although yeast is considered to be a powerful model for

the study of mitochondria dysfunction [5], generation of N-

terminome data directly on human mitochondria is a more

straightforward approach. Furthermore, as it appears more

and more obvious that post-transit peptide cleavage process-

ing events are important to produce active and stable mi-

tochondrial proteins, it remains to be determined whether

yeast and human mitochondrial proteins are processed in

the same way or not. This remains an open question as some

of the mitochondrial proteases are shared between yeast and

mammals, but mammals also use protease complexes that

are not present in yeast [6]. Finally, mitochondrial proteins

are degraded by proteases present in the matrix [6, 7] and

here again, by determining neo N-termini at downstream po-

sitions, N-terminomics will provide the cleavage sites for the

endoproteases controlling the half-life of mitochondrial pro-

teins, a feature that has not been fully explored in previous

N-terminome approaches [4].

This is why we have undertaken an N-terminomics

study on mitochondrial proteins using the recently-developed

N-terminomics approach based on a chemical deriva-

tization of the N-terminal alpha amine function with

light and heavy (N-succinimidyloxycarbonylmethyl)tris(2,4,6-

trimethoxyphenyl)phosphonium bromide [8,9]. Unlike other

widely applied N-terminomics strategies requiring specific N-

terminal peptide enrichment steps such as the combined frac-

tional diagonal chromatography [10] or the terminal amino

isotope selection [11] approaches and others reviewed recently

by Hartmann and Armengaud [12], this method enables the

characterization, in a single experiment, of both the free pro-

tein N-termini and all other internal peptides, and possibly

N-terminal a-amino acetylated peptides. The approach also

benefits from its easy experimental design, since it requires a

single derivatization step at the protein level followed by a clas-

sical SDS-PAGE/LC-MS/MS workflow making it fully com-

patible with standard and efficient proteomics sample prepa-

ration protocols (standard buffers and detergents; chaotropic,

reducing and alkylating agents; and proteolytic enzymes).

Additionally, trimethoxyphenyl phosphonium (TMPP)

derivatization enhances labelled peptides’ LC-MS/MS re-

sponse, both thanks to the added hydrophobicity of the

TMPP reagent shifting retention times of derivatized peptides

in reverse-phase chromatography to a less complex part of

the chromatogram (as illustrated in Supporting Information

Fig. 1) and to the introduction of a permanent positive charge

that increases their ionization efficiency. Both advantages

lead to increased sensitivity to detect low abundant pro-

teins. Furthermore, the dN-TOP [9] strategy recently devel-

oped to improve the N-TOP [8] approach is based on the

use of a pair of light (12C-TMPP) and heavy stable-isotope

labelled (13C9-TMPP) TMPP reagents in order to identify

doublets of identical N-terminal peptides and automate the

validation of labelled peptides. The validation automation is

done by looking for this double light/heavy identification

of a peptide sequence, with identical modifications, identi-

cal elution times and after verifying the peptide’s unicity in

the searched database as described in Supporting Informa-

tion. The present work describes an improved workflow of

the dN-TOP approach and its direct application to the char-

acterization of the human mitochondrial proteome and N-

terminome.

Figure 1A presents the overall sample preparation strategy

and a detailed description of the experimental procedures is

provided in Supporting Information. Briefly, proteins were

precipitated and resuspended in freshly prepared derivatiza-

tion buffer (50 mM Tris-HCl, pH 8.2, 6 M urea, 2 M thiourea,

SDS 1%), reduced (5 mM TBP, 1 h) and alkylated (50 mM

Iodoacetamide, 1 h, room temperature). An equimolar so-

lution of light and heavy TMPP (100 mM, 30% Acetonitrile,

170:1 reagent:protein molar ratio, 1 h, room temperature) was

added. Light- and heavy-labelled TMPP induce mass shifts

on peptides of 572.18 and 581.21 Da, respectively. Deriva-

tized samples were loaded on a 10% mono-dimensional SDS-

PAGE. This electrophoresis step is important since it allows

separating and decomplexifying the samples and eliminat-

ing the excess of unbound TMPP reagent. After colloidal

coomassie blue staining, the gels were cut in regular 2 mm

bands, proteins were in-gel reduced (10 mM dithiotreitol

in 25 mM ammonium bicarbonate), alkylated and digested

overnight with trypsin or Asp-N. Extracted peptides were anal-

ysed on different nanoLC-MS/MS platforms.

Overall, four different experiments (12 different samples)

were carried out as described in Supporting Information

Table 1. Among these experiments, different mitochondria

enrichment protocols were evaluated, two proteolytic en-

zymes were used (Trypsin and AspN) and nanoLC-MS/MS

analyses were performed on two different instrumental plat-

forms [low-resolution ion-trap with two fragmentation modes

(CID and ETD) and high-resolution Q-TOF]. All data were

searched with two database search engines (MASCOT, Ma-

trix Science, London, UK and the open-source OMSSA algo-

rithms [13]).

The combination of search engines provides complemen-

tary results that increase the total number of protein identifi-

cations. The gain of combining OMSSA to MASCOT results

goes from 5% for the high-resolution/trypsin digestion/CID

fragmentation experiment to 59% for the low-resolution/Asp-

N digestion/ETD fragmentation experiment (Supporting In-

formation Fig. 2). Coincidentally, this experiment allowed

demonstrating that ETD fragmentation is not adapted for

TMPP-labelled peptides.

The new data validation workflow is illustrated in Fig. 1B.

In a first round, original peak lists were searched with two

search engines against a concatenated target/decoy database

including all human entries extracted from UniProtKB-

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Figure 1. Overview of the analytical workflow (A) Proteins and N-termini identification and validation strategy (B).

SwissProt (release-2012 03, 20250 entries) using the database

generation toolbox of the MSDA pipeline [14]. MASCOT

searches were run on a local server while OMSSA searches

were run on a computer grid using the MSDA interface [14].

This first search round was done using full trypsin enzyme

specificity, one missed cleavage allowed, carbamidomethyla-

tion of cysteine was set as a fixed modification and oxidation

of methionine and protein N-terminal acetylation were set

as variable modifications. MASCOT and OMSSA results files

were loaded into the Scaffold software (version 3.6.5; Pro-

teome Software Inc., Portland, USA). Filtering criteria based

on probability-based scoring of the identified peptides were

taken into account in order to reach a false discovery rate

(FDR) <1% based on the number of decoy hits. This first

search round enabled the identification of the protein sets

present in the samples thanks to internal peptides (Support-

ing Information Table 2) and N-terminal a-amino acetylated

peptides (Supporting Information Table 3).

A second round of searches was performed to identify

free protein N-termini labelled by TMPP. Therefore, the re-

cover module of MSDA [14] was used to create subset peak

lists composed of filtered “high-quality” spectra from all non-

assigned spectra during the first round of searches. “High-

quality” spectra were defined as including at least four peaks

higher than 1.5 times the intensity of the background noise

and at least one peak above the m/z ratio of the precursor

ion and all spectra having led to a successful identification

in the first round were filtered out. Using these subset peak

lists, a second round of database searches was performed

using semi-trypsin enzyme specificity. Light (+572.18 Da)

and heavy (+581.21 Da) TMPP derivatization on any peptide

N-terminal amino acid, side-chain derivatization of tyrosine

and lysine by light and heavy TMPP, and methionine oxida-

tion were set as variable modifications. The searched frag-

ment ions were a-, b- and y-ions. All other parameters were

identical to the first search round. Results files were loaded

into an in-house developed software Proline Studio and all

spectra leading to an identification exceeding a minimum

set threshold (MASCOT Ion Score of 13 and OMSSA -log(e-

value) of 4) and having a pretty rank (as defined by MASCOT)

equal to 1 were kept. The pretty rank is a value similar to

the rank except that equivalent scores get equivalent ranks.

The use of pretty ranks allows detecting and eliminating

ambiguous spectra matching to multiple sequences present

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Figure 2. Distribution of already anno-

tated and new identified N-terminal po-

sitions.

in the database with equivalent scores. Pretty ranks also al-

low identifying and eliminating spectra for which the exact

TMPP labelling position (peptide N-terminus or side chain of

tyrosine or lysine) cannot be determined. All ambiguous spec-

tra were discarded. Then, TMPP-labelled peptides were vali-

dated only if the identical peptide sequence and modifications

were identified for both the light and heavy TMPP-derivatized

peptide forms. Also, peptides were validated only when reten-

tion times of MS/MS events of both light and heavy forms

were within a tolerance window of 30 s to ensure perfect co-

elution. A peptide sequence was considered as unique when

it belonged to a single protein in the canonical human protein

database used for the searches. Further annotation interpre-

tation was exclusively deduced for unique/proteotypic pep-

tides. Validated N-terminal TMPP-labelled peptides meeting

all these criteria are listed in Supporting Information Tables

4 and 5.

Taking into account the 12 different experiments, the com-

bined results allowed the identification of 2714 protein groups

among which 810 (30%) are annotated to be mitochondrial

proteins (Table 1 and Supporting Information Tables 6 and

7). A total of 558 different TMPP-derivatized peptide back-

bone sequences, of which 473 were unique in the searched

database, and correspond to the free N-terminal position of

356 different proteins were validated. 85 (15%) non-unique

TMPP-derivatized peptides were validated as their spectra

were of high quality. Even if additional internal peptides were

identified discriminating a unique protein candidate for some

of them, we excluded all these non-unique peptides for any

further annotations and comparisons to previous annotation

information recorded in neXtProt (designed as “shared pep-

tides” in Table 1).

Among the identified start positions, 245 were identified

between amino acids 2 and 100 of the protein sequences, in

accordance with typical transit peptide lengths. Beyond the

100th position, we classified the N-termini as further process-

ing cleavage sites, e.g. protein degradation. This hypothesis

is substantiated by the fact that these 117 termini are located

on 97 proteins, making an average of 1.2 cleavage sites per

protein, indicative of potential protein degradation (Table 1).

Overall, 120 (28%) of all identified start positions had al-

ready been annotated (14 (3%) free N-termini, 24 (6%) me-

thionine cleavages and 82 (19%) processing cleavage sites) in

the highly curated knowledgebase neXtProt. 43 identified po-

sitions enabled the experimental validation of so far only pre-

dicted cleavage positions (3 (1%) methionine cleavages and

39 (9%) processing cleavage sites). 19 (5%) peptides enabled

the identification of new, unpredicted methionine cleavages

and 47 (11%) would allow the correction of wrongly anno-

tated processing cleavage sites. Finally, 194 (46%) completely

new processing cleavage sites were identified on 160 differ-

ent proteins (Fig. 2) among which 80 are annotated mito-

chondrial. Among the 194 new cleavage sites, 88 are located

between amino acids 2 and 100 of the protein sequences and

62 have been identified on annotated mitochondrial proteins.

They are thus possible new transit peptides cleavage sites due

to translocation/processing events. The remaining 106 new

cleavage sites, being located beyond the 100th position can

be classified as describing protein degradation products.

In addition to the free N-terminome analysis, 424 back-

bone peptide sequences of N-terminal acetylated peptides

corresponding to 357 distinct proteins were identified in our

dataset. Among these 357 proteins, 30% are annotated as

mitochondrial proteins, justified by the fact that not all mi-

tochondrial proteins undergo processing [15]. Remarkably,

for the 2-oxoisovalerate dehydrogenase subunit beta (P21953)

we identified the N-terminal acetylated peptide and the

TMPP-labelled peptide starting at position 51, already an-

notated as the transit peptide start site, demonstrating that

we have identified the protein both outside, prior to process-

ing, and inside the mitochondria, after transit peptide cleav-

age [16]. For PGAM5 (Q96HS1), we identified both the N-

terminal acetylated peptide at position 2, and a TMPP-labelled

peptide at position 25. Cleavage by PARL at this position was

shown to have an important physiological role in stress re-

sponse [17]. For two other mitochondrial proteins (Q02978

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Table 1. Summary of identification results obtained from all combined experiments

Type Number of

peptides (unique

backbone

sequences)

Number of unique

N-terminal

positions

Number of

proteins

Number of

mitochondrial

proteins

Percentage of

mitochondrial

proteins

Total validated free-N-terminal

TMPP-labelled peptides

558 – – – –

Validated N-terminal with

unique peptides

473 422 356 188 53%

Position 1 18 14 14 7 50%

Position 2 54 46 46 20 43%

2 < Position ! 100 279 245 220 142 65%

Position > 100 122 117 97 35 36%

Shared peptides 85 – – – –

Total ragged ends 82 – 28 24 86%

Acetylated N-terminus 424 360 357 106 30%

Position 1 84 75 75 19 25%

Position 2 340 285 285 88 31%

Combined results of all

experiments

– – 2714 810 30%

Total N-termini 897 782 693 283 41%

and P54819), we identified both N-terminal acetylated pep-

tides (at positions 2 and 1, respectively) and TMPP-labelled

peptides at positions 6/7 and 2/4, respectively.

Overall, when combining these results with TMPP-based

identifications, information about the actual protein N-

termini for 26% of all identified proteins could be obtained.

This high percentage can be attributed to the unique advan-

tage of the dN-TOP approach offering the possibility to con-

comitantly identify, in a single run, the proteins’ N-terminally

acetylated peptides and the free N-termini derivatized by

TMPP.

Of note is the identification of multiple successive N-

terminal positions for 28 proteins, assimilable to ragged-ends

[4, 18], that may indicate that the mitochondrial processing

could lead to multiple cleavage sites. As an example, for

the isocitrate dehydrogenase [NAD] subunit alpha (P50213),

TMPP-derivatized peptides corresponding to positions 27 and

28 were unambiguously identified and confirmed in nine dif-

ferent samples.

Finally, another remarkable note is that the gain in sensitiv-

ity provided by TMPP-labelling certainly explains the identifi-

cation of 60 proteins solely thanks to their N-terminal TMPP-

derivatized peptide. For example, the protein Cytochrome c

oxidase subunit 8A (P10176) was identified in three different

samples exclusively by its free N-terminal peptide. Even more

remarkable is that four of these 60 proteins are annotated

as “missing proteins” in the context of the chromosome-

centric Human Proteome Project cHPP (neXtProt release

of 19-09-2014) [19]. This certainly demonstrates the power

of our method, combining the gain in sensitivity pro-

vided by TMPP-labelling and the mitochondria enrichment

preparation protocol, to identify low abundant and so far

non-identified proteins (Supporting Information Tables 5

and 6).

The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium [20] with the dataset identi-

fiers PXD001521, PXD001522 and PXD001523. This work was
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Chapter II  Personalized multi-omics profiling 

Proteogenomic analysis is optimized when Genomic, Transcriptomic and Proteomic data are generated from the same 

sample. When optimally integrated, this enables the creation of a sample-specific protein sequence database. In this 

approach personalized databases for each individual sample is generated using DNA and/or RNA sequencing. This 

enables to capture individual-specific differences in the genomic and transcriptomic information onto the protein 

database without drastically increasing the database size, and thus, keeping a good sensitivity, selectivity and 

reliability of the protein identification results. 

The recent remarkable technical developments in sequencing techniques such as next generation sequencing (NGS), 

exome sequencing (WES), RNA sequencing (RNA-seq) and ribosome profiling render this possible. The cost to fully 

sequence a whole human-sized genome has plummeted in recent years, from almost 100 billion dollars in 2001 when 

the whole genome was first sequenced by the Human Genome Project to almost 1200 dollars in October 2015 [240, 

241] (Figure V-8). As well, whole human exome and RNA sequencing are now accessible for less than 500 dollars per 

sample. This will open the possibility of generating personalized databases for individual samples using DNA and RNA 

sequencing. 

 
Figure V-8: Evolution of the cost of sequencing a human-sized genome in dollars (adapted from [240]). 

 

Recent proof-of concept studies have been proposed:  

- Low et al. performed DNA and RNA sequencing to generate a sample-specific database of two rat strains using liver 

tissue. They analyzed the rat proteomes with an extensive fractionation (36 SCX fractions) and using 5 complementary 

digestion enzymes. This study validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous 

variants, and 20 isoforms with nonsynonymous RNA editing [11]. 

- By creating a customized database using Ribosome profiling (RIBO-Seq) data [242, 243], Menschaert et al. identified 

new protein products, new protein splice variants, single nucleotide polymorphism variant proteins, and N-terminally 

extended forms of known proteins in mouse embryonic stem cells [244]. 

In this context, we have developed a workflow to integrate multi-omics data and build personalized protein 

databases. 
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A.  Multi-omics study and generation of personalized databases 

A.1. Context of the study 

This project was carried out in collaboration with the Human Molecular Immunogenetics laboratory of the University 

of Strasbourg, and particularly with Raphaël Carapito, Nicodème Paul, Ghada Alsaleh, Louise Ott and Seiamak Bahram. 

We were interested to study members of a family in which a member was diagnosed with hyperimmunoglobulinemia 

D and periodic fever syndrome (HIDS). This disease is characterized by recurrent fever with inflammatory symptoms. A 

genomic variation in the mevalonate kinase (MK) gene has been identified as being related to this disease [245]. 

The interesting thing about this family, which pedigree is shown in Figure V-9, is that the parents and the brother are 

heterozygous for this mutation and do not have the symptoms of the disease. However, the two sisters are 

homozygous for this mutation but only sister 2 is symptomatic. This suggests that there is another biological process 

that compensates for the MK deficiency in sister 1. To gain insights into the biomolecular processes differences 

between the two sisters a multi-omics approach was carried out. 

 
Figure V-9 : Pedigree of the family showing the allele type of the gene presumably related to HIDS. 

 

A.2. Multi-omics analysis 

We performed a multi-omics analysis of the two sisters with the following technologies (Figure V-10): 

- Whole exome sequencing of the two sisters. 

- Whole transcriptome sequencing by RNA-seq on total RNA (rRNA were depleted). 

- Whole proteome characterization by SDS-PAGE-LC-MS-MS/MS. 

This should enable the identification of variants in the genome that have an impact on protein sequences (missense, 

nonsense, splice-site variants and coding indels). The RNA-Seq analysis should provide information of individual-

specific splice-variants. The RNA-Seq and proteomics analyses were performed in triplicate to obtain quantitative 

information. This integrated personalized multi-omics profiling workflow should give insights to the biomolecular 

dissimilarities that can explain the two sisters’ phenotypic differences. To do this, white blood cells were stimulated 
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with LPS for 6h (Lipopolysaccharides from Salmonella) to elicit an immune response. The unstimulated and stimulated 

cells were analyzed for each sister. 

 

 
Figure V-10 : Overview of the personalized multi-omics profiling workflow. 

 

Additionally, the genomic and transcriptomic data was used to generate personalized databases. These databases 

were used to improve peptide identification, as peptides originating from genomic variations can be detected. Figure 

V-11 shows the Proteogenomic approach used to improve peptide identification. More details about the database 

creation are given below in part A.3.3. 
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Figure V-11 : Overview of peptide identification with classical proteomics and omics-based personalized database 

proteogenomics. 

 

Two mass spectrometry experiments were performed. The first one was a differential quantification analysis by 

spectral count aiming at finding differentially expressed proteins in the different conditions analyzed. 

The second experiment was designed to reach the maximum proteome coverage in order to get best benefit from 

personalized database searches. This in-depth analysis of the proteome was done using long LC gradients and a new 

mass spectrometer whose specifications, at the time, outperformed those of the instruments present at the 

laboratory. 

A.3. Experimental Design 

A.3.1 Sample preparation 

An SDS-PAGE separation followed by LC-MS-MS/MS was chosen for this study as a large protein abundance dynamic 

range was expected. The samples needed to be fractionated to achieve good proteome coverage. A global protein 

quantification was performed with a Bradford assay prior to the loading into the gel. We made sure that the same 

protein quantities were used for all samples. Enzymatic digestion using Trypsin was performed overnight at 37°C. The 

resulting peptides were extracted and analyzed in injection triplicates. More details are given in Experimental Section 

E.1 on page 221. 
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A.3.2 nanoLC-MS analysis 

Relative quantification analysis by spectral count: The nanoLC-MSMS experiments were carried out on a 

NanoAcquity LC-system (Waters, Milford, MA, USA) coupled to a maXis 4G QToF mass spectrometer (Bruker Daltonics, 

Bremen, Germany). The 6 most intense peptides were chosen for MS/MS analysis. The instrument was set to do a 

spectral count analysis. We used a 12 seconds exclusion time to have a compromise between the spectral redundancy 

(i.e. how many spectra per peptide were measured) and the proteome coverage (i.e. how many different peptides 

were measured). Full nanoLC-MSMS parameter details are given in Experimental Section E.2 on page221. 

In-depth proteome characterization experiment: The relative quantification experiments were carried out on 

February 2013, and the second experiment was performed in April 2014. In the meantime a new mass spectrometer 

arrived at the laboratory, a TripleTOF 5600+ (AB Sciex, Framingham, US USA). This instrument has a faster scanning 

speed, a larger dynamic range and a higher sensitivity than the maXis 4G. To obtain the largest proteome coverage 

this instrument was thus chosen. Also the nanoLC sytem, a NanoAcquity LC-system (Waters, Milford, MA, USA), was 

set to provide a 145-minutes long gradient. This enabled an in-depth characterization of the proteome. More details 

are provided in in Experimental Section E.3 on page 222. 

A.3.3 Personalized database creation 

Our collaborators performed whole exome sequencing and RNA-seq experiments on the same samples. Using these 

data, we created personalized protein sequence databases for each individual including following information: 

 Personalized database 1: an exome-derived personalized database 

 Personalized database 2: a RNA-seq derived personalized database.  

Personalized database 1: The first step for the creation of the personalized database was the matching of RefSeq 

identifiers [66] to UniProt identifiers [69]. Tools for the conversion of identifiers across databases exist, but there are a 

significant number of identifiers whose correspondence remains unresolved. It was thus necessary to do the 

annotation using the RefSeq and UniProt databases. Using the RefSeq annotation information and the reference 

Genome (version hg19) the corresponding RNA sequences for each RefSeq entry were generated. These RNA 

sequences were then translated into proteins to be compared with the UniProt database. This provided all 

corresponding protein sequences and their genomic locations. These genomic coordinates are essential for the 

introduction of the sequence variants observed in the exome into the sample-specific databases. 

Using a sequence alignment algorithm (BLAT) [246] the protein sequences were then aligned to the protein sequences 

in the UniProt database. This way, for every protein in the UniProt database, we obtained its genomic location and its 

sequence of introns and exons. 

The analysis of an individual’s exome data enabled the identification of the positions of the variations relative to a 

reference genome. Using this information, an individual’s exome can be fully reconstructed. All exon variations do not 

necessarily induce a variation in translated proteins. It is thus important to identify exon variations affecting protein 

sequences. The list of non-synonymous variants thus determined enables making changes to the RNA sequences. The 

result is the exome-derived personalized protein database. 

Personalized database 2: Patient-specific alternative splicing was obtained from RNA-Seq data. Having found the 

correspondence between the RefSeq and the Uniprot database and having obtained the genomic coordinates for each 

protein, the patient-specific alternative splicing proteins were also introduced in the personalized database. 
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After taking into account exome variations as well as alternative splicing sites, RNA sequences were then generated 

and translated into proteins. Knowing the correspondence of each protein to the UniProt protein entries, a new 

version of the UniProt database was generated. Some proteins were modified taking into account the genetic 

specificity of the studied individuals. 

A.3.4 Data analysis 

The data coming from the samples of each of the two sisters was analyzed using its corresponding personalized 

database. 

The Scaffold software [199] was first used to analyze the data. However, Scaffold failed to make a clear distinction of 

two protein sequences having a single amino acid variant. These two proteins would be grouped together as a single 

protein group making the search for amino acid variants difficult.  

A two-stage search workflow was engineered using the recently in house developed Proline software to improve 

peptide identification (Figure V-12). For a given sister, in the first search stage the data was searched against its 

personalized database 1 containing all human entries including known isoforms extracted from the UniProtKB-

SwissProt database (40654 target entries) and the personalized-genome derived database (Database1-S1: 45834 

target entries, Database1-S2: 45883 target entries) (See part A.3.3 above for details). The false discovery rate was 

controlled to reach <1%. 

Then a new peaklist file was created using the Recover module of MSDA [233] containing all unassigned spectra during 

the first search. This subset peaklist files were searched against the personalized databases 2 (RNASeq-derived 

database). This enabled the identification of patient-specific sequence variants and transcript variants. 

 
Figure V-12 : Improving peptide identification with a Proteogenomic approach using Genome and RNA sequencing data to derive 

personalized protein databases. 

 

A.4. Results of the study 
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Overall we identified in the in-depth proteome characterization experiment, more than 4200 protein groups and more 

than 31200 peptide sequences per sample. We identified 106 nonsynonymous sequence variants on 96 proteins using 

the exome-seq derived databases 1 and 2 new splice variants using the RNA-seq derived databases 2. 

For 77 genomic mutations included in the personalized exome-seq derived databases from both S1 and S2, an 

evidence of expression at the protein level was found by mass spectrometry. 43 were identified in the samples of both 

sisters and some were only observable in a sample coming from only one of the sisters, 18 for S1 and 16 for S2 (Figure 

V-13). 29 genomic mutations specific to only one sister were also observed for sister S1 and S2; 13 and 16 

respectively. 

 
Figure V-13 : Distribution of the sequence variants showing if the genomic mutation is present in the genome of both sisters and 

the number of sequence variants observed by mass spectrometry. 

A.4.1 The use of personalized database enables the identification of sequence variants 

Our Proteogenomic approach improved protein identification and increased the protein sequence coverage. An 

example of this can be seen in Figure V-14 where the benefits of using a personalized database can clearly be seen. 

The search against the personalized database enabled the identification of two additional peptides for the protein 

presented in the figure. The two peptides contained individual-specific genomic variants. An aspartic acid and a lysine 

were replaced by two glutamic acids in the peptide sequence VLWLDEIQQAVDDANVDKDR. A leucine was replaced by 

a valine in the peptide sequence QTFIDNTDSIVK. Using the consensus reference proteome this information was totally 

missed. 
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Figure V-14 : Benefits of proteogenomics for protein identification and sequence coverage. 

The use of personalized databases improves the proteome coverage. The search against the personalized database enabled the 

identification of two additional peptides for this protein. The two peptides contained individual-specific genomic variants. An 

aspartic acid and a lysine were replaced by two glutamic acids in the peptide sequence VLWLDEIQQAVDDANVDKDR. A leucine was 

replaced by a valine in the peptide sequence QTFIDNTDSIVK. 

A.4.2 The use of personalized database enables the identification of new expressed splice 

variants  

The use of a sample-specific databases containing information derived from RNA-seq enabled the identification of two 

novel splice-variants. Figure V-15 shows an example of a splice variant that is longer than the protein sequence 

annotated in the consensus reference database. The protein that was translated from RNA-seq data starts 178 amino 

acids before the annotated position. This splice isoform could be identified in both S1 and S2. The peptide that was 

identified is highlighted in red. The sequence was blasted against the whole human proteome and it was found to be 

unique for this proteoform. 

 

 
Figure V-15 : Alignment of the consensus UniprotKB/Swissprot sequence and the personalized sequence derived from RNA-

sequencing. 

The peptide identified is highlighted in red. The new splice variant sequence for protein O15027 starts before the position 

annotated in the UniprotKB/Swissprot reference database. 



 Part V 
 

209 

  

A.4.3 The use of personalized database enables the identification of patient-specific 

sequence variants 

Another important result that can be obtained when using personalized databases is the identification of protein 

sequence variants specific to each patient. In Figure V-16 the identification of a proteoform specific to each sister was 

done. For sister S1 the protein was identified with a peptide having the same sequence as the one present in the 

reference database. However, for sister S2, the same protein was identified with a peptide having a sequence variant. 

In this example a Proline is substituted by a Threonine. This result is also important since this protein was identified 

for sister 2 solely by this peptide sequence. 

 
Figure V-16 : Identification of protein sequence variants specific to each individual. 

This protein was identified in the samples from the two sisters but they differed by a single amino acid variant. In the personalized 

database for sister 2 a Proline is substituted by a Threonine. 

A.4.4 The use of personalized database enables the identification of allelic pair products 

 

Our approach does not only improve proteome coverage and the identification of individual-specific variants, but also 

supports the identification of allelic pair products. An example can be seen in Figure V-17. The peptides shown in the 

figure belong to the same canonical protein (P13489) and two heterozygote forms of this protein are shown. Sister 2 is 

homozygote for this gene and only the protein sequence present in the reference database was identified. Two 

peptides confirm this identification (ELTVSNNDINEAGVR and VLCQGLK). For Sister 1 a SNP was sequenced in her 

genome. Two proteoforms were identified in mass spectrometry, the protein sequence from the reference database 

and the personalized protein sequence containing the single amino acid variant. Sister 1 is heterozygote for this gene 

and evidence at protein level for the expression of both alleles was found. 

The identification of the products of allele pairs was only possible in our approach because we included the reference 

protein database in the personalized database. All heterozygote products we found were constituted of a SNP seen in 

the genome and the corresponding reference protein sequence. This is due to the fact that when the SNP calling was 

made, if two mutations were found in the same position when comparing to the reference genome, then both 

mutations were discarded to minimize false positives. This is done because having two mutations at a unique position 

is extremely rare. Proteomics can in this case be an extremely useful tool to validate genome sequencing data. 
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Figure V-17 : Examples of identified peptides belonging to two proteins from heterozygote genes. 

Two heterozygote forms are shown for protein P13489. The identified peptide and its corresponding spectrum are shown. Sister 2 

is homozygote for this gene. However, Sister 1 is heterozygote for this gene and both alleles are expressed. 

 

A.4.5 The use of personalized database enables to improve protein quantification 

A relative quantification analysis by spectral count was done using a Bruker Daltonics MaXis 4G mass spectrometer. In 

this experiment 1200 protein groups and 7200 different peptides per sample could be identified. This experiment 

enabled the identification of 757 up- and down-regulated proteins when comparing two conditions: protein extract 

from cells in a basal media (Mi) and protein extract from cells after a stimuli with LPS (LPS). 

The use of personalized databases for protein identification improves protein coverage and characterization which 

consequently improves protein quantification. As seen above, in a classical proteomics workflow sample-specific 

information is lost and this could result in an erroneous estimation of protein abundances. To illustrate this in Figure 

V-18.A. the results of a relative quantification by spectral count are shown. Two conditions are compared: protein 

extract from cells in a basal media (Mi) and protein extract from cells after a stimuli with LPS (LPS). A stretch of protein 

P26373 shows the search results using the consensus database (UniProtKB-Swissprot) and the personalized database. 

The identified peptides are underlined. When using the consensus database only a single peptide was identified and 

the spectral count values for protein P26373 show a non-significant change in abundance. In a high throughput 

analysis this protein would have not have been considered for further investigation since its abundance is not affected 

by the stimuli. However, when using the personalized database, an additional tryptic peptide including a patient-

specific variant was identified. In peptide STESLQANVQR the Alanine is substituted by a Threonine at position 112. The 

relative quantification using spectral count is more accurate as the sequence coverage is higher. A significant 

overexpression of the protein could be detected. This protein now becomes a target for further examination. 

Finally having patient-specific information can allow quantifying allele-specific products. In Figure V-18.B. the 

canonical protein P32455 was found to be present as two proteoforms originating from two different alleles of the 
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same gene.  Two peptides, one with Threonine and one with Serine at position 349, were identified. The spectral 

count results showed that one of the heterozygote forms is overexpressed in the LPS condition whereas the other is 

not. This example demonstrates that allele-specific quantification is possible at protein level. 

 
Figure V-18 : Personalized databases imply more accurate protein quantification. 

A. Using a classical approach with a consensus database only one peptide was identified (peptide underlined) and the spectral 

count results show a non-significant change. However, when using a personalized database an additional peptide is found and the 

relative quantification shows an overexpression for this protein. B. Using a personalized database the quantification of allele-

specific products is possible at the protein level. Here the heterozygote form 1 has a non-significant change whereas the 

heterozygote form 2 is overexpressed in the LPS condition. 

 

A.5. Conclusion 

In conclusion our approach demonstrated the potential of personalized databases to improve the proteome 

characterization. We identified 106 nonsynonymous sequence variants on 96 proteins using the exome-seq derived 

databases and 2 new splice variants using the RNA-seq derived database.  

It also enabled the identification of protein sequence variants specific for each patient and the unambiguous 

identification of allele-specific products. This improvement of protein identification implies the possibility of a more 

accurate quantification. And it also opens the possibility of quantifying allele-specific products at the protein level. 

Finally this information can be extremely useful to understand the phenotype of the two sisters. The genomic and 

transcriptomic findings can be of higher value if they are propagated to the protein level, as they have a higher 

possibility of being functionally significant. In turn, proteomic data can be a tool to validate and filter DNA/RNA 

sequencing data. 

The integrative analysis of the exome sequencing and the relative quantification of the transcriptome and the 

proteome to provide biological insights of the HIDs syndrome are underway. 

A publication resuming the results from this project is in preparation. 
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B.  Challenges and Perspectives of proteogenomics 

One of the main challenges in Proteogenomics is the bioinformatics. Several tools have appeared recently to create 

customized databases from Genomic information [247-249], RNA-Seq [250, 251] and RIBO-Seq [252]. However, these 

tools are very specific to the application they were developed for. To be able to obtain software that can use any type 

of genomics, transcriptomic and proteomic data to build custom databases, more standardization of files and 

annotations is necessary. This would help to build bridges between gene variations and proteoforms. Also a paradigm 

shift in proteomic software is necessary to move from software highly depending on a single database to multi-omic 

strategies which can capture and highlight small differences in proteoforms. Also search engines must evolve to let 

users benefit from meta-information already available in databases or sample-specific DNA/RNA information. 

Furthermore when creating customized databases it is important to control false discovery rates. Nesvizhskii et al. 

proposed in 2014 a series of guidelines for the validation of novel peptides identified by proteogenomics [9]. Peptides 

identified with custom databases should be queried against all major reference databases for the organism of interest 

and common sample contaminants. Different FDR estimation should be determined separately for known and novel 

peptides. Efforts must be done to eliminate the most likely sources of false positives (PTMs, chemical modifications, 

errors in mass measurements). 

Compared to genomic and transcriptomic sequencing, the coverage of the proteome is still lacking behind. To fully 

characterize a proteome, intensive fractionation is still necessary because of the large dynamic range of protein 

abundance. One of the reasons that Proteogenomic is still in its infancy is that sensitivity of mass spectrometers and 

thus global coverage, did not reach a sufficient level until now. Additionally there is the inherent problem that not all 

tryptic peptides have appropriate physico-chemical properties to be analyzed by LC-MS. However in recent years 

instrumental progress in sensitivity has enabled Proteomics to reach a significantly improved maturity of sequencing 

techniques. 

Proteogenomics promises to better characterize the proteome. It can provide the direct evidence that a variation in 

the genome is ultimately translated into a protein. This gives a higher significance to this variation as it can have a 

direct impact on the phenotype. Proteogenomics could set the first steps towards personalized medicine using 

patient-specific -omic information that would help to identify more accurately the causes of a certain phenotype. 

Finally, proteogenomics is key to correctly quantify a proteome. By performing proteomics analysis using incomplete 

databases important information is lost. 
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General Conclusion 
 

My doctoral work intended to improve the proteome characterization by quantitative mass spectrometry and 

Proteogenomic method development. The methodological developments were optimized for and applied to several 

biological projects. 

The first and second parts of this manuscript were focused on describing the state of the art of bottom-up proteomics 

and proteogenomics. It describes the strategies used to identify and characterize proteins in complex sample matrices 

by LC-MS-MS/MS. The strategies for global or targeted protein quantification are then described, including recent 

methodologies promising a comprehensive proteome analysis using Data Independent Acquisition mode. The state of 

the art of proteogenomics and N-terminomics was also described. 

In this context of Bottom-up Proteomic analysis the objectives of this thesis towards the improvement of proteome 

characterization were defined: 

 The improvement of the method development workflow for targeted proteomics by SRM/PRM. 

 The development of sample preparation protocols compatible with quantitative studies. 

 The introduction of standard peptides, both retention time standards and heavy labelled peptides to 

optimize all peptide-specific parameters. 

 The development of standard and well-characterized samples to assess LC-MS platform performances 

compatible with a routine usage. 

 The development of the analytical strategy and the data-treatment workflow for high-throughput N-

terminomics analysis by the dN-TOP approach. 

 The improvement of proteome characterization with the use of personalized databases derived from exome 

sequencing and/or RNA-Seq data. 

 

In response to these questions the results presented in this thesis have helped to reach clear conclusions: 

Quantitative Proteomics: The SRM assay method development workflow was optimized and the key parameters to 

increase the selectivity and the sensitivity of targeted quantitative methods were determined. The organization of 

each step enabled to obtain a fast and reliable method development workflow that was routinely used throughout my 

thesis. The introduction of retention time standard peptides to normalize retention times, and heavy labelled peptides 

to optimize all peptide-specific parameters (collision energies, choice of the monitored transitions, retention times…) 

fastened the development of targeted quantification methods. These standards also highly increased the selectivity, 

multiplexing and the overall throughput capabilities of the method. 

The optimization and method development of DDA, SRM, PRM and DIA methods was shown throughout this thesis. As 

I was responsible for the maintenance, the method development, the training of new users and the day-to-day 

operations of LC-MS systems in the laboratory, my task was to evaluate the different acquisition methods available, 

prepare default acquisition methods and train new users to setup their methods in the laboratory. In this context, I 

gained expertise in developing methods adapted to different types of samples and determined the key parameters to 

be optimized according to the objectives of each study. 
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I developed internal and external standard samples for quality control to improve the reliability of the analysis and 

have an accurate monitoring of instrumental performances. For quantification studies, the data must be reproducible 

and accurate. To achieve this, the LC-MS system must be regularly monitored to avoid confounding errors due to 

instrumental perturbations. And in order to assess the performances of a given step in a proteomic workflow (a 

sample preparation protocol, the LC-MS system performances, a given instrument tuning, a bioinformatic pipeline…) 

well-characterized standard samples were developed. This tool revealed to be extremely useful to evaluate and 

improve analytical workflows such as the development of a sensitive and objective performance test for LC-SRM 

platforms, the side-by-side evaluation of label-free bioinformatic pipelines and the improvement of signal extraction 

of Data-Independent Acquisition. This method enabled understanding where the limitations of each methodology lie; 

and this is absolutely necessary to propose innovative solutions. These limitations can originate from analytics or 

informatics.  

Additionally I evaluated sample preparation protocols compatible with quantification methods. I showed, after 

optimizing all main parameters of a Stacking gel SDS-PAGE protocol, that this strategy not only is fully compatible with 

targeted proteomics but it provides even better performances than a classical liquid digestion protocol. 

All these methodological developments were successfully applied to the quantification of 13 microbial proteins 

related to Crohn’s disease in the human gut microbiome, a sample of extreme complexity, without fractionation. The 

microbial proteins could be quantified and the trends of under- and overrepresentation in Crohn’s disease patients 

observed in a previous discovery experiment were confirmed. These biomarkers could help to reliably diagnose 

Crohn’s disease, discriminate between similar intestinal pathologies and assess the therapeutic efficiency of 

treatments directed against the disease. 

Moreover the development of an LC-SRM assay enabled the detection and relative quantification of proteins, MetAP1 

and MetAP2, that could not be detected in a global shotgun experiment or using an immunodetection assay. The SRM 

results were well correlated with an independent mRNA quantification experiment performed by our collaborators. 

Using an absolute quantification method targeting MetAP2 we could verify this results. 

 

Lastly in bottom-up proteomics the most commonly used approach for protein identification highly depends on the 

protein database, this must be as complete and as adapted as possible to the analyzed sample. However due to the 

high multiplicity of proteins (proteoforms) that can be present in a sample, a consensus database will never 

completely represent the protein content. This has negative consequences in the quantification of a protein as the 

coverage of a given protein could only be partial and thus possibly missing the full state of the protein. The 

quantification of a proteome can only benefit from extending the reach of bottom-up proteomics to comprehensively 

analyze the proteome. In this context Proteogenomics can have a significant beneficial impact in the quantification of 

a proteome. 

 

Proteogenomics: An N-terminomic approach based on the specific chemical labelling of proteins’ N-termini using the 

TMPP reagent has been developed by the LSMBO. I presented in this manuscript my work in the optimization of this 

method and the engineering of an automated workflow for the data treatment. The limitations related to this 

approach were determined and corrected to be able to obtain a reliable and accurate approach enabling high-

throughput analysis of N-terminomes. This method was applied to deeply characterize the proteome and N-

terminome of human mitochondria. 
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Finally a personalized multi-omics profiling strategy was developed to improve the proteome characterization with the 

use of personalized databases derived from exome sequencing and RNA-Seq data. This method was applied to the 

study of a rare disease, hyperimmunoglobulinemia D and periodic fever syndrome (HIDS) characterized by recurrent 

fever with inflammatory symptoms.  With this approach, nonsynonymous sequence variants and new splice-isoforms 

could be identified. Also the identification of protein sequence variants specific for each patient and the unambiguous 

identification of allele-specific products were possible. 

This improvement of protein identification implies the possibility of a more accurate quantification. And it also opens 

the possibility of quantifying allele-specific products at the protein level. 

Finally this extended information revealed to be extremely useful to understand the phenotype of the two sisters. The 

genomic and transcriptomic findings can be of higher value if they are propagated to the protein level, as they have a 

higher possibility of being functionally significant. In turn, Proteomics data can be a tool to validate and filter 

DNA/RNA sequencing data. 

However the main challenges in Proteogenomics remains the bioinformatics. To be able to obtain software that can 

use any type of genomics, transcriptomic and proteomic data to build custom databases, more standardization of files 

and annotations is still necessary. This will help to build bridges between gene variations and proteoforms. Also a 

paradigm shift in proteomic softwares is necessary to move from software highly depending on a single database to 

multi-omic strategies which can capture and highlight small differences in proteoforms. 

Finally Proteogenomics promises to better characterize the proteome and this is key to obtain accurate protein 

quantification data. 

 



 Experimental Section 

 

216 

 

 

Part VI Experimental section 
 

A.  Unfractionated stacking Gel SDS-PAGE protein purification protocol 

Unfractionated stacking Gel SDS-PAGE protein purification protocol was carried out using a 4% polyacrylamide 

stacking gel and a 10% running gel in a Mini PROTEAN cell (Bio-Rad). Running gels are only used to hold stacking gels 

in place. 50 μg of proteins, in freshly prepared denaturating buffer were loaded per lane. A loading-well containing 

only the loading buffer was intercalated between each sample. The same loading volumes were used for all samples. 

No sample was loaded on the loading wells at the border of the gels. The samples were migrated over 1cm in the 

stacking gel (50 V for 25min). After migration, the gels were washed with water and fixed using 50:50 methanol:water 

(v:v)/3% Phosphoric acid. Gels were stained by a colloidal blue method (G250, Fluka, Buchs, Switzerland). Gel bands 

were excised manually using a ruler and a bistoury. 

 

B.  Evaluation of instruments and acquisition methods performance using isotopologue peptides  

B.1. Materials 

Modified porcine trypsin and the 6 × 5 LC-MS/MS Peptide Reference Mix was obtained from Promega (Madison, WI, 

US). Eight synthetic stable-isotope 
15

N- and 
13

C-labeled peptides were acquired from Thermo Fisher Scientific (Ulm, 

Germany). Bovine Serum Albumin Digest was purchased from Bruker Daltonics (Bremen, Germany). All other 

chemicals were obtained from Sigma-Aldrich (St. Louis, MO, US) unless otherwise specified. 

B.2. Sample Preparation  

Yeast Digest. S. cerevisiae protein extracts were prepared using the strain CEN.PK113-7D. Yeast cells were collected by 

centrifugation (3000g, 10 min, 5°C) and washed with MilliQ water. The cells were resuspended in extraction buffer 

(50mM NaPO3, pH 7,3, 1mM EDTA, 5% glycerol and protease inhibitors). The cells were disrupted using glass beads 

(10x30s vortexing steps on ice). After centrifugation (5400g, 5min, 5°C) the supernatant was removed and the beads 

were washed using extraction buffer. The supernatant was centrifuged (20000g, 30 min, 5°C) to eliminate any cell 

debris. Protein concentration was determined by Bradford assay and aliquots of 1µg of total protein were created. 

Acetone precipitation was carried out (6 volumes of acetone to 1 volume of sample; overnight; -20°C). After 

centrifugation (15 min, 15000g, 4°C), the protein pellet was dried and resuspended in solubilization buffer (8M urea, 

0.1M Ammonium bicarbonate, pH8). Proteins were reduced (12mM DTT, 37°C, 30 min) and alkylated (40mM IAA, 

25°C, 1 hour, dark). The samples were diluted to reach a 1M urea concentration using a solution of freshly prepared 

0.1M ammonium bicarbonate and proteins were digested using Trypsin (1:100 enzyme:substrate ratio, 37°C, 

overnight).  After acidification using formic acid (pH 3), the samples were desalted and concentrated using solid phase 

extraction (Sep-Pak C18, 1cc, 50mg, Waters). The volume was reduced in a vacuum centrifuge and adjusted in water + 

0.1% formic acid to reach a final concentration of 1µg/µl. 

Sample set 1: Eight synthetic stable-isotope 
15

N- and 
13

C-labeled isotopologue peptides based on the peptide 

sequence AALPAAFK were mixed in the following concentrations: AALPAAFK 300 amol, AALPAAFK 900 amol, 

AALPAAFK 2,7 fmol, AALPAAFK 8,1 fmol, AALPAAFK 24,3 fmol, AALPAAFK 72,9 fmol, AALPAAFK 218,7 fmol and 
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AALPAAFK 656,1 fmol. The mixture of isotopologue peptides was diluted by a factor of two in a background matrix 

(either 5 fmol/µl of BSA digest or 50ng/µl of total yeast digest). Then two dilutions by a factor of 10 and 100 were 

done by cascade dilution using the background matrix. The background matrix is used to mimic a proteomic sample 

and also to avoid peptide adsorption to the walls of vials so it should always be added first. Two microliters were 

analyzed by LC-MS/MS and each solution was analyzed in triplicate. This resulted in nine injections of three solutions 

of isotopologues peptides covering a range of 5,3 logs, i.e. 3 amol to 656 fmol injected on column. 

Sample set 2: Two picomoles of the lyophilized 6 × 5 LC-MS/MS Peptide Reference Mix was resuspended in 200µl of 

water+0,1% formic acid and then diluted by a factor of two in a background matrix (either 5 fmol/µl of BSA digest or 

50ng/µl of total yeast digest). The background matrix is used to mimic a proteomic sample and also to avoid peptide 

adsorption to the walls of vials so it should always be added first. Two microliters were analyzed by LC-MS/MS and 

each solution was analyzed in triplicate. This mixture contains 6 sets of isotopologue peptides. However the most 

hydrophilic peptide could not be detected as a trapping column was used and the peptide was not retained. For each 

peptide a calibration curve could be created with the following calibration points: 30 amol, 300 amol, 3fmol, 30fmol 

and 300 fmol of injected amount on column. 

B.3. LC-MS/MS 

Nano Liquid Chromatography. NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, 

Milford, MA, USA) coupled to a mass spectrometer. For each analysis a volume of 2µl of sample was injected into a 

Symmetry C18 precolumn (0.18х20mm, 5µm particle size, Waters) and then peptides were separated using an 

ACQUITY UPLC® BEH130 C18 separation column (75µm×200mm, 1.7µm particle size, Waters). Peptides were eluted 

using a gradient of water + 0.1% formic acid (solvent A) and acetonitrile +0.1% formic acid (solvent B). Peptide 

trapping was performed during 3 min at a flow rate of 5µL/min with 99% A and 1% B and elution was performed at 50 

°C at a flow rate of 300 nL/min when the system was coupled to a AB Sciex Triple TOF 6600 (AB SCIEX, Framingham, 

US) and a flow rate of 450 nL/min when coupled to another mass spectrometer. For simple matrix samples (BSA 

digest) the following gradient was used: from 3 %B to 25 %B over 15 minutes, from 25 %B to 50 %B in 2 minutes, from 

50%B to 80%B in 2minute, 80%B for 3 minutes and the column was reconditioned at 3%B. For complex matrix samples 

(whole yeast digest) the following gradient was used: from 3 %B to 8%B over 2 minutes, from 8%B to 35%B in 

77minutes, from 35%B to 90%B in 1minute, 90%B for 5 minutes, from 90%B to 3% in 2minutes and the column was 

reconditioned at 3%B. 

AB Sciex Triple-TOF 6600. NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, Milford, 

MA, USA) coupled to a TripleTOF 6600 (AB SCIEX, Framingham, US). The mass spectrometer was operated in positive 

mode, with the following settings: ionspray voltage floating (ISVF) 2300 V, curtain gas (CUR) 30, interface heater 

temperature (IHT) 75, ion source gas 1 (GS1) 2, declustering potential (DP) 80 V. For PRM, an MS survey scan was 

acquired followed by a set of sequential Q1 isolation windows. The MS scan had a dwell time of 250ms in the mass 

range of 350-1250 m/z and the MS/MS scans 100 ms in the mass range of 100 – 1800 in high sensitivity mode giving a 

total cycle time of 1.1s. The CE was adapted to each peptide calculated using Skyline using the following equation CE= 

0,036m/z + 8,857. For SWATH acquisition, two types of methods were used. The first type of method covered the 350-

1200 m/z range corresponding to the mass range of the majority of tryptic peptides in a bottom-up proteomic 

experiment. A MS survey scan was acquired followed by a set of 34 sequential Q1 windows with a fixed width 25 Da. 

The accumulation time for each MS and MS/MS experiment was respectively 250ms and 82.4 ms for a total cycle time 
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of 3.1 s. The CE for each window was determined according to the calculation for a charge 2+ ion centered upon the 

window with a spread of 15. The second type of SWATH method used only 8 isolation windows in order to be able to 

obtain comparable cycle and dwell times as with the PRM experiments. For each method, a MS survey scan covering 

the precursor m/z range of 350–1250 Da was acquired followed by a set of 8 sequential Q1 windows with either a 

width of 4, 25 or 50 Da covering the range of 390-422 Da, 369-569 Da and 375-775 Da respectively. The accumulation 

time for each MS and MS/MS experiment was respectively 250ms and 100 ms for a total cycle time of 1.1 s. The 

complete system was fully controlled by Analyst TF v1.7 software. 

Thermo Fischer Q-Exactive plus. NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, 

Milford, MA, USA) coupled to a Q-Exactive Plus (Thermo Fisher Scientific, Waltham, MA, USA) mass spectrometer. The 

mass spectrometer was operated in positive mode. For PRM analyses the instruments was set to the following 

parameters: a full MS scan at a resolution of 70000 (at m/z 200), AGC target 3 × 10
6
, and a 50 ms maximum injection 

time. Full MS scans were followed by 8 PRM scans at 17500 resolution (at m/z 200), AGC target of 1 × 10
6
, 100 ms 

maximum injection time, isolation windows of 2Da, normalized collision energy (NCE) of 27. MS/MS scans were 

acquired with a starting mass range of 100 m/z and acquired as a profile spectrum data type. For Data-independent 

acquisition analysis the instruments was performed using the following parameters: a full MS scan at a resolution of 

17,500 (at m/z 200), AGC target 3 × 10
6
, and a 50 ms maximum injection time. Full MS scans were followed by a DIA 

experiment at 17,500 resolution (at m/z 200), AGC target of 1 × 10
5
, 100 ms maximum injection time, count loop of 

10, a default charge of  2, isolation windows of  4Da, normalized collision energy (NCE) of 27. MS/MS scans were 

acquired with a starting mass range of 100 m/z and acquired as a profile spectrum data type. The complete system 

was fully controlled by Xcalibur 3.0.63 (Thermo Fisher Scientific). 

Bruker Daltonics Impact II. NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, Milford, 

MA, USA) coupled to a Q-TOF Impact II (Bruker Daltonics, Bremen, Germany). The mass spectrometer was equipped 

with a CaptiveSpray source and a nanoBooster operating in positive mode, with the following settings: source 

temperature was set at 150 °C while drying gas flow was at 3 L/min. The nano-electrospray voltage was optimized to 

−1300 V. Mass correction was achieved by recalibration of acquired spectra to the applied lock masses hexakis 

(2,2,3,3,-tetrafluoropropoxy) phosphazine ([M+H]
+
 = 922.0098 m/z)]. For PRM analyses the instruments was set to 

scan sequentially 8 PRM (MRM) experiments with the following parameters: isolation windows of 2Da, collision 

energy of 28, MS/MS scans were acquired with a rolling average of 2, at a scan rate of 10 Hz, with a mass range of 150 

to 2200 m/z and acquired as a centroid spectrum data type. The complete system was fully controlled by Hystar 3.2 

(Bruker Daltonics, Bremen, Germany). 

Waters Synapt HDMS. NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, Milford, MA, 

USA) coupled to a Synapt HDMS mass spectrometer (Waters Corp., Milford, USA). The internal parameters of the 

Synapt HDMS were set as follows: The electrospray capillary voltage was set to 3.2 kV, the cone voltage set to 35 V, 

and the source temperature set to 90°C. The MS survey scan was m/z 250–800 with a scan time of 0.5 s. Calibration 

was performed using GFP in 50% acetonitrile + 0.1% formic acid. Data acquisition was piloted by MassLynx software 

V4.1. 

Thermo Ficher TSQ Vantage. SRM analysis was done on a capillaryLC-SRM platform: Dionex Ultimate 3000 system 

coupled to a TSQ Vantage Triple Quadrupole instrument (Thermo Fischer Scientific, San Jose, CA, USA). For each 
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analysis, a volume of 2μL of sample was injected and trapped on a precolumn (Zorbax C18 stable bond, 5 μm, 1.0 × 17 

mm, Agilent Technologies) then separated on a C18 column (Zorbax 300 SB C18, 3.5 μm, 150 × 0.3 mm, Agilent 

Technologies). Trapping was performed for 3 min at a flow rate of 50 μL.min
−1 

with solvent A. Elution was performed 

at a flow rate of 5 μL.min
−1

. For complex matrix samples (whole yeast digest) the following gradient was used: from 3 

%B to 8%B over 2 minutes, from 8%B to 35%B in 77minutes, from 35%B to 90%B in 1minute, 90%B for 5 minutes, 

from 90%B to 3% in 2minutes and the column was reconditioned at 3%B. The TSQ vantage mass spectrometer was 

operated with the following parameters: The system was operated in positive mode, the ion spray voltage was set at 

3000V, the capillary temperature at 300°C, the nitrogen collision gas pressure was set to 1.5 mTorr, Q1 and Q3 

resolution set to 0.7 Da and the collision energy was individually optimized for each transition. The system was 

controlled by Chromeleon Xpress software (v. 6.8) for the liquid chromatography system and Xcalibur (v. 2.1.0) 

software for the mass spectrometry system. 

B.4. Data Analysis 

The Skyline open-source software package[15] was used to visualize the data, to perform peak picking and integration 

of transition peak areas, and to manually verify the correct peak group identification by checking the exact coelution 

of isotopologue peptides. For MS1 signals multiple isotopic precursors were extracted (P, P + 1 and P + 2) and for MS2 

signals at least 4 transitions were extracted per peptide to provide confirmation of proper identification of the 

selected peak and verify the absence of interferences. The linearity range required experimental dots in standard 

curves to exhibit an average CV precision that was below 20% among triplicate injections. Experimental dots also had 

to fall within the average 80–120% accuracy range in calculating expected injected amounts using regression 

equations after logarithmic transformation. The coefficient of determination R² should be higher than 0,98 between 

the area under the peaks and the injected amount on column, and between the recalculated and the real injected 

amount on column. All signals were visually evaluated and validated to ensure high-quality results. The limit of 

quantitation (LOQ) is the lowest point satisfying all the criteria reported above. Only the points satisfying all these 

criteria were used to calculate the linear regression equation and coefficient of determination. 

C.  Application of targeted proteomics to validate Crohn’s disease biomarkers 

C.1. MicroLC-SRM parameters 

After in-gel reduction and alkylation using a MassPrep Station (Waters, Milford, MA), the protein bands excised from 

the stacking gel were in-gel digested using a 1:100 trypsin:protein ratio (Promega, Madison, WI) overnight at 37 °C. 

The resulting tryptic peptides were extracted using 60% acetonitrile in 0.1% formic acid for 1h at room temperature. 

Equal amounts of the concentration-balanced mixture of stable isotope-labeled crude peptides were spiked in each 

peptide extract. The total volume was reduced in a vacuum centrifuge and adjusted to 15μl using 0.1% formic acid in 

water before microLC-SRM analysis. Peptides were analyzed on a Dionex Ultimate 3000 system coupled to a TSQ 

Vantage Triple Quadrupole instrument (Thermo Fischer Scientific, San Jose, CA, USA). For each analysis, a volume of 

1.5μL of sample, i.e. 10μg of protein, was injected and trapped on a precolumn (Zorbax C18 stable bond, 5 μm, 1.0 × 

17 mm, Agilent Technologies) then separated on a C18 column (Zorbax 300 SB C18, 3.5 μm, 150 × 0.3 mm, Agilent 

Technologies). The peptides were eluted with a linear gradient of 2% acetonitrile/98% water/0.1% formic acid (solvent 

A) and 98% acetonitrile/2% water/0.1% formic acid (solvent B). Trapping was performed for 3 min at a flow rate of 50 

μL·min−1 with solvent A. Elution was performed at flow rate of 5 μL.min
−1 

using a two-step optimized gradient : Step 

One (Elution gradient): 3min at 5% B; from 5% to 35% B in 40 min; 5min at 80% B; 2min at 5% B; Step Two (Column 
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washing and regeneration gradient): from 5% B to 50% B in 5min; 2min at 80% B; 15min at 5% B. For optimal microLC-

SRM, the TSQ vantage mass spectrometer was operated with the following parameters. Triplicate injections of each 

sample were performed with two distinct methods, each monitoring a subset of all transitions (supplementary Table 

4). The system was operated in positive mode, the ion spray voltage was set at 3000V, the capillary temperature at 

300°C, the argon collision gas pressure was set to 1.5 mTorr, Q1 and Q3 resolution set to 0.7 Da and the collision 

energy was calculated using the following equation: CE=0.03 x (Precursor ion m/z) + 2.905. Scheduled SRM was used 

for data acquisition, each transition was monitored during a 7 minutes time window centered at previously 

determined peptide retention times, with a cycle time of 2.6 s and minimal dwell times of 22ms and 25ms for the SRM 

method 1 and 2, respectively. The system was controlled by Chromeleon Xpress software (v. 6.8) for the liquid 

chromatography system and Xcalibur (v. 2.1.0) software for the mass spectrometry system. 

D.  Application of targeted proteomics for the relative and absolute quantification of Methionine 

Aminopeptidase Proteins 

D.1. Single-band resolving gel 

Cell pellets were disrupted using glass beads. The extraction buffer was added (50mM Hepes/NaOH pH7,2, 1,5mM 

MgCl2, 1mM EGTA, 10% Glycerol, 1% Triton, 2mM PMSF, 150mM NaCl and protease inhibitors). The samples were 

vortexed and centrifuged at 4°C. The supernatant was collected and the total protein amount was determined by the 

Bradford assay. The samples were loaded on a 10% monodimensional SDS-PAGE (10.1 cmx7.3cm) on a mini PROTEAN 

(Bio-Rad) apparatus. 10 µg were loaded. The electrophoretic migration was stopped as soon as the protein sample 

entered the resolving gel. After the migration, the gels were washed with water and fixed using3% Phosphoric acid in 

50:50 methanol:water (v:v). Gels were stained by a colloidal coomassie blue method (G250, Fluka, Buchs, Switzerland) 

and the band containing all the proteins was cut. The gel bands were washed to get rid of the coomassie blue dye. 

Proteins were reduced, alkylated and digested using trypsin. (1:100 enzyme:substrate ratio, 37°C, overnight). 

Resulting tryptic peptides were extracted using 60% ACN in 0.1% formic acid for 1h at room temperature. Stable 

isotope-labeled synthetic peptides were spiked in the samples. The volume was reduced in a vacuum centrifuge and 

resuspended using 0.1% formic acid in water before nanoLC-MS/MS analysis. 

D.2. Liquid digestion Protocol 1 

Cell pellets were disrupted using glass beads. The extraction buffer was added (50mM Hepes/NaOH pH7,2, 1,5mM 

MgCl2, 1mM EGTA, 10% Glycerol, 1% Triton, 2mM PMSF, 150mM NaCl and protease inhibitors). The samples were 

vortexed and centrifuged at 4°C. The supernatant was collected and the total protein amount was determined by the 

Bradford assay. The aliquots were stripped of non-protein contaminants using an acetone protein precipitation step (4 

to 1 volumes of acetone, -20°C, 2 hours). After centrifugation (10 min, 13000g, 4°C), the protein pellet was dried and 

resuspended in 50 mM ammo nium bicarbonate. Proteins were reduced, alkylated and digested twice using TPCK 

modified porcine trypsin (2x[1:100 enzyme:substrate ratio, 37°C, 1,5 hours]). Stable isotope-labeled synthetic peptides 

were spiked in the samples and after acidification using formic acid (pH 3), the samples were desalted and 

concentrated using solid phase extraction (Sep-Pak C18, 1cc, 50mg, Waters). The eluate volume was reduced in a 

vacuum centrifuge and adjusted using water + 0.1% formic acid to reach a final concentration of 4µg/µl. 



 Experimental Section 
 

221 

  

D.3. Liquid digestion Protocol 2 

Cell pellets were resuspended in 800µl of extraction buffer (8M urea, 2M Thiourea, 1%DTT, protease inhibitors), 

sonicated with a needle and centrifuged (5 min, 8000g, 4°C). The aliquots were stripped of non-protein contaminants 

using an acetone protein precipitation step (9 to 1 volumes of acetone, -20°C, overnight). After centrifugation (15 min, 

15000g, 4°C), the protein pellet was dried and resuspended in 200µl of solubilization buffer (8M urea, 0.1M 

Ammonium bicarbonate, pH8). Protein concentration was determined using the RC-DC protein assay (Bio-Rad, 

Hercules, CA, USA). Proteins were reduced (12mM DTT, 37°C, 30 min) and alkylated (40mM IAA, 25°C, 1 hour, dark). 

Samples were diluted to reach a 1M urea concentration using a solution of freshly prepared 0.1M ammonium 

bicarbonate and proteins were digested using Trypsin (1:120 enzyme:substrate ratio, 37°C, overnight). Stable isotope-

labeled synthetic peptides were spiked in the samples and after acidification using formic acid (pH 3), the samples 

were desalted and concentrated using solid phase extraction (Sep-Pak C18, 1cc, 50mg, Waters). The eluate volume 

was reduced in a vacuum centrifuge and adjusted using water + 0.1% formic acid to reach a final concentration of 

4µg/µl. 

E.  Personalized multi-omics profiling 

E.1. Sample preparation protocol details 

Protein pellets were dissolved in 200µl of 10mM Tris buffer, and protease and phosphatase inhibitors were added. 

The samples were sonicated for 10s and proteins were quantified using the Bradford assay. The samples were 

evapored using a vacuum centrifuge and resuspended in laemmli buffer in order to obtain a 10µg/µl concentration, 

then loaded into a 10% 1D SDS-PAGE (10cmx7.3cmx1mm) and migrated on a mini PROTEAN (Bio-Rad) apparatus at 

50V for 20 min and 100V for 1 hour. Two gels were produced, one were samples were 100 µg of total protein amount 

per sample was loaded and another one with 70µg. Gels were then stained with colloidal Coomassie Blue (BioSafe 

coomassie stain; Bio-Rad) and whole lanes were systematically cut into bands (5x2 mm) using a disposable grid-cutter. 

The gel bands were stored at -20°C until further analysis. The gel with 100-µg of deposited protein was used for the 

relative quantification. The other one was used for the second experiment of in-depth proteome characterization.In-

gel digestion using trypsin (Promega, Madison, WI, USA) was performed overnight at 37°C after in-gel reduction and 

alkylation using a MassPrep Station (Waters, Milford, MA, USA). Tryptic peptides were extracted using 60% 

acetonitrile in 0.1% formic acid for 1h at room temperature. The volume was reduced in a vacuum centrifuge, 

resuspended with 0.1% formic acid in water and split into three aliquots to avoid biases due to sample evaporation. 

Samples were analyzed in triplicate by nanoLC-MS/MS (nanoliquid chromatography coupled to tandem mass 

spectrometry). 

E.2. nanoLC-MS parameters details for the relative quantification analysis by spectral count 

NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, Milford, MA, USA) coupled to a maXis 

4G QToF mass spectrometer (Bruker Daltonics, Bremen, Germany). For each analysis, a volume of 3µl of sample was 

injected into a Symmetry C18 precolumn (0.18х20mm, 5µm particle size, Waters) and then peptides were separated 

using an ACQUITY UPLC® BEH130 C18 separation column (75µm×200mm, 1.7µm particle size, Waters). Peptides were 

eluted using a linear gradient of water + 0.1% formic acid (solvent A) and acetonitrile +0.1% formic acid (solvent B). 

Peptide trapping was performed during 1 min at a flow rate of 15µL/min with 99% A and 1% B and elution was 

performed at 60 °C at a flow rate of 450 nL/min using a linear gradient from 6 to 43.5 % B over 35 minutes. For 

optimal nanoLC-MS/MS, the mass spectrometer was operated in positive mode, with the following settings: the 
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source temperature was set to 160°C, the dry gas flow rate was set to 5L/min and the nanoelectrospray voltage was 

optimized to −5000V. The TOF external mass calibration was achieved before each set of analyses using Tuning Mix 

(Agilent Technologies, Paolo Alto, USA ) in the mass range of 322-2722 m/z. Mass correction was achieved by 

recalibration of acquired spectra to the applied lock masses (methylstearate ([M+H]+ 299.2945 m/z) and 

hexakis(2,2,3,3,-tetrafluoropropoxy)phosphazine ([M+H]+ 922.0098 m/z)). For tandem MS experiments, the system 

was operated with automatic switching between MS and MS/MS modes in the range of 100-2500 m/z (MS acquisition 

time of 0.4s), MS/MS acquisition time between 0.05s (intensity > 250000) and 1.25s (intensity <5000). The 6 most 

abundant peptides (absolute intensity threshold of 1500) were selected from each MS spectrum for further isolation 

and CID fragmentation using nitrogen as collision gas. Ions were dynamically excluded after acquisition of one MS/MS 

spectrum and the exclusion was released after 0.2 minutes.  

E.3. nanoLC-MS parameters details for the in-depth proteome characterization experiment 

NanoLC-MS/MS analyses were performed on a NanoAcquity LC-system (Waters, Milford, MA, USA) coupled to a 

TripleTOF 5600+ (AB Sciex,, USA). For each analysis a volume of 4µl of sample was injected into a Symmetry C18 

precolumn (0.18х20mm, 5µm particle size, Waters) and then peptides were separated using an ACQUITY UPLC® 

BEH130 C18 separation column (75µm×200mm, 1.7µm particle size, Waters). Peptides were eluted using a linear 

gradient of water + 0.1% formic acid (solvent A) and acetonitrile +0.1% formic acid (solvent B). Peptide trapping was 

performed during 3 min at a flow rate of 5µL/min with 99% A and 1% B and elution was performed at 50 °C at a flow 

rate of 300 nL/min using the following gradient: from 3 %B to 20%B over 110 minutes, from 20% to 40% in 35 

minutes, from 40%B to 90%B in 1minute, 90%B for 8 minutes, from 90%B to 3% in 1minute and 3% for 15minutes. For 

optimal nanoLC-MS/MS, the mass spectrometer was operated in positive mode, with the following settings: ionspray 

voltage floating (ISVF) 2300 V, curtain gas (CUR) 25, interface heater temperature (IHT) 75, ion source gas 1 (GS1) 0, 

declustering potential (DP) 100 V. Information-dependent acquisition (IDA) mode was used with Top 40 MS/MS scans. 

The MS scan had a dwell time of 250ms in the mass range of 400 – 1250 and the MS/MS scans 65 ms in the mass 

range of 200 – 1600 in high sensitivity mode giving a total cycle time of 2.90s. Switching criteria were set to ions 

greater than mass to charge ratio (m/z) 350 and smaller than m/z 1250 with charge state of 2–4 and an abundance 

threshold of more than 75 counts, exclusion time was set at 12 s. IDA rolling collision energy script was used for 

automatically adapting the CE. 
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Alvaro Sebastian VACA JACOME 
Progress towards a better proteome characterization by quantitative 

mass spectrometry method development and proteogenomics  

 

 

L'extrême complexité des échantillons biologiques, la variabilité technique et la dépendance de la 
protéomique envers les banques protéiques empêchent l'analyse complète d'un protéome. 

Ce travail de thèse s'est focalisé sur le développement de méthodes pour la protéomique quantitative 
et la protéogénomique afin d’améliorer la caractérisation du protéome. Premièrement mon travail 
s'est centré sur le développement de méthodes quantitatives globales et ciblées. La mise en place 
de standards pour évaluer les performances de tous les niveaux de la stratégie analytique est aussi 
décrite. Ces méthodes ont été optimisées pour répondre à diverses questions biologiques. 

Mon doctorat s’est focalisé aussi autour de la protéogénomique. Une méthode d'analyse N-
terminomique à haut débit a été développée et appliquée à l’étude de la mitochondrie humaine.  
Enfin, ce manuscrit présente une approche multi-omique visant à améliorer l'analyse du protéome 
avec la création de banques de données personnalisées. 

Mots-clés: Spectrométrie de masse, Analyse Protéomique Quantitative, Protéogénomique 

 

 

 

The high intrinsic complexity of biological samples, the technical variability and the dependency of 
Bottom-up Proteomics to consensus protein sequence databases handicap the comprehensive 
analysis of an entire Proteome. 

My doctoral work was focused on method development in quantitative Proteomics and 
Proteogenomics in order to achieve a better proteome characterization. First, I focused on the 
development of global and targeted quantitative methods. The introduction and development of 
standard samples to assess the performances at any level of the analytical workflow is also 
described. These methods were applied to answer different biological questions. 

My PhD also focused on Proteogenomic method development. A high throughput N-terminomic 
analysis approach was developed and applied to the analysis of the human mitochondria. Finally, this 
manuscript presents a personalized multi-omics profiling strategy to improve the proteome analysis 
with the use of personalized databases. 

Keywords: Mass Spectrometry, Quantitative Proteomics, Proteogenomics 

 


