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Chapter 1

General introduction to quantum
transport

Advances in miniaturization of micro and nanostructures have led to the
development of new theoretical and experimental aspects that have consid-
erably deepened our understanding of condensed matter at the nanoscale.
Devices with sizes smaller than the coherence length Lφ (the distance over
which the electronic wave-function maintains a well-defined phase), have at-
tracted particular interest of condensed matter physicists and have led to
what we call mesoscpic physics, where quantum corrections are important.
Besides the quantum mechanical effects we encounter when studying meso-
scopic samples, some classical aspects. This is the reason why semi-classical
tools have been developed [12], in order to better understand the underlying
physics at such a scale.

The understanding of the quantum transport properties has led to im-
portant discoveries in the field of nanoscience.

Quantum transport is a branch of condensed matter physics that is impor-
tant to the field of mesoscopic physics. It deals with the transport properties
of mesoscopic devices at the quantum mechanical level. Thus, a nice mix-
ture of classical and quantum effects is encountered. Moreover, fascinating
phenomena characteristic of quantum "particles" arise.

Different regimes of quantum transport can be distinguished by compar-
ing some characteristic length scales with the size of the studied sample. At
sufficiently low temperatures the transport through a disordered conductor
is said to be coherent if the coherence length Lφ is larger than the size L
of the underlying system. Another length scale relevant for characterizing
quantum transport regimes is the elastic mean free path of the electrons l,
which is the typical distance between two elastic collisions with static im-
purity centers. If this distance is larger than L, the sample is said to be

1



1.1 Two dimensional electron gas

Figure 1.1: Layer sequence in a typical GaAs/AlGaAs hetero-structure with
remote doping. The donor layer is situated at a distance s from the 2DEG.
The figure is taken from [1].

ballistic. However if the elastic mean free path l is much smaller than the
sample’s size the transport is called diffusive provided that the L is smaller
than the localization length ξ. In samples where L is bigger than ξ Anderson
localization dominates [13].

1.1 Two dimensional electron gas

Due to the epitaxial growth techniques, the creation of electron gases with a
frozen degree of freedom in the growth direction has been made possible. In
these techniques, a semi-conducting material is put into contact with another
semiconductor with smaller band gap. In Fig. 1.1 an AlGaAs layer is put
in contact with a GaAs crystal. Since the energy band gap of the former is
bigger an electrostatic potential is created by the migration of the electrons
from the AlGaAs to the interface with GaAs resulting in a bending of the
energy profiles as shown in Fig. 1.2. The two-dimensional electron gas forms
at the interface where the Fermi energy lies inside the conduction band of
GaAs.

1.2 Transport through QPCs

The quantum point contact (QPC) is an important paradigm in quantum
transport and is actually one of the most investigated nanostructures. It
consists of two metallic gates (see the inset of Fig. 1.3) grown on top of a

2



1.2 Transport through QPCs

Figure 1.2: Illustration of the energy bending at the inversion layer where
the 2DEG forms. The image is taken from [1].

Figure 1.3: The main figure shows one of the first observations of conductance
quantization. The resistance of the QPC (shown in the inset ) is measured
with respect to the gate voltage [2].

3



1.3 Scattering approach to describe QPCs

2DEG. As the distance between the electrostatic gates at the level of the gas
is changed by applying negative voltages, the resistance (and similarly, the
conductance) evolves in quantized plateaus (see Fig. 1.3) with conductance
values which are multiples of 2e2

h
.

In the aim at giving a description of the transport properties in QPCs we
will first introduce the scattering matrix formalism and the scattering wave-
functions. We will then calculate the conductance through various simplified
QPC models. Relevant concepts that will be useful for the next chapters will
be also introduced here.

1.3 Scattering approach to describe QPCs

x

y

Lead 1 Lead 2

−L/2 L/2

2W

Figure 1.4: A sketch of the scattering system (black) attached to two semi
infinite leads (red areas).

Let us consider a quantum scatterer attached to two 2-dimensional semi
infinite waveguides of width 2W representing the leads (see Fig. 1.4). The
wave-functions inside the waveguides are solutions of the Schrödinger equa-
tion with energy ε

(ε+
h̄2

2Me

(∂2x + ∂2y))ψ
(0)(x, y) = 0, (1.1)

where Me is the effective mass of the electrons. Imposing the boundary
conditions

ψ(0)(x,−W ) = ψ(0)(x,W ) = 0, (1.2)

the solution of (1.1) reads

ψ(0)s
εa (r) =

c√
ka
esikaxφa(y), (1.3)

4



1.3 Scattering approach to describe QPCs

where s = ± stands for respectively right-moving and left-moving waves,

and c =
√

Me

2πh̄2 is a convenient normalization constant leading to a current

density se/h for each mode, with s = + for right moving mode coming from
the left lead and s = − for left moving mode coming from the right lead.
The ath transverse wave-function φa is given by

φa(y) =
1√
W

sin[qa(y −W )], (1.4)

with qa =
πa
2W

, a integer.

The total wave-vector k =
√

k2a + q2a, where ka and qa denote, respectively,
the longitudinal and the transverse momenta, is determined by the energy

ε =
h̄2k2

2Me

.

The channels a with transverse energies ε
(t)
a = h̄2q2a

2Me
smaller than εF are

called open channels (or propagating modes). Their number is equal to

N = Int{2kFW/π}, (1.5)

where the Fermi wave-vector kF is given by

εF =
h̄2k2F
2Me

.

On the other hand, if the transverse energy is larger than the total energy,
the corresponding longitudinal wave-number is purely imaginary, giving rise
to an exponentially damped wave. These are called evanescent or closed
modes since they vanish far a way from the scatterer.

Now, if the scattering potential V (x, y) is considered, the solution ψ of
the full Schrödinger equation can be expanded as a series in the basis of the
transverse modes [14] as follows:

ψs
lεm(x, y) =

∞
∑

a=1

[ψs
lεm(x)]aφa(y), (1.6)

l being the lead of incidence.
Inserting (1.6) into the inhomogeneous Schrödinger equation and using

the differential equation

(∂2y + q2n)φn(y) = 0, (1.7)

5



1.3 Scattering approach to describe QPCs

we find

∑

a

(ε+
h̄2

2M
(∂2x − q2a))[ψ

s
lεm(x)]aφa(y) =

∑

b

[ψs
lεm(x)]bV (x, y)φb(y), (1.8)

writing the total energy ε as a sum of the longitudinal and the transverse
energies and multiplying both sides of (1.8) by φa′(y) and integrating over y,
we find that the set of coefficients α obey the equation

(∂2x + k2a′)[ψ
s
lεm(x)]a′ =

∞
∑

b=1

[ψs
lεm(x)]bVa′b(x), (1.9)

with

Va′b(x) =
2M

h̄2

∫ W

−W

φa′(y)V (x, y)φb(y)dy. (1.10)

Notice that the sum in the left hand side of Eq. (1.8) has disappeared due
to the Kronecker delta resulting from the scalar product of two transverse
wave-functions.

Considering the right hand side of (1.9) as the inhomogeneous part of
an otherwise homogeneous equation one introduces the unperturbed Green
function G(0)

s for the open channels given by [14]

G(0)
s (x, x′, εa) = 2sπc2

eiska|x−x′|

ika
, (1.11)

and satisfying

(∂2x + k2a)G(0)
s (x, x′, εa) = δ(x− x′), , (1.12)

this allows us to write

[ψs
lεa0

(x)]a = δa,a0
c√
ka
esikax +

∞
∑

b=1

∫

G(0)
s (x, x′, εa)Vab(x

′)[ψs
lεa0

(x′)]bdx
′.

(1.13)
For the closed channels the corresponding Green function is obtained by

taking ka purely imaginary in (1.11).
The Eq. (1.13) is the Lippmann-Schwinger equation for the components

[ψs
lεa0

(x)]a.
The general form of the Lipmann-Schwinger equation in arbitrary dimen-

sion d, that expresses the scattering wave-functions in terms of the unper-
turbed quantities is given by

ψlεa(r) = ψ
(0)
lεa(r) +

∫

dr̄G(0)(r, r̄, ε)V (r̄)ψlεa(r̄) (1.14)
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1.4 Asymptotic form of the scattering wave-functions

where G(0) is the d−dimensional Green function constructed from the
unperturbed wave-functions ψ(0) as

G(0)(r, r̄, ε) =
2

∑

l̄=1

∫ ∞

ε
(t)
1

dε̄

ε+ − ε̄

N̄
∑

ā=1

ψ
(0)∗
l̄,ε̄,ā

(r̄)ψ
(0)

l̄,ε̄,ā
(r) (1.15)

1.4 Asymptotic form of the scattering wave-

functions

Using the expression of the Green function (1.11) for x > L
2

in the Eq. (1.13)
and considering the incidence from a channel a0 in the left (s = +), we are
left with [14]

[ψ+
1εa0

(x)]a = δa,a0
c

√

ka0
eika0x−2πi

c√
ka
eikax

∞
∑

b=1

∫

c√
ka
e−ikax′Vab(x

′)[ψ+
1εa0

(x′)]bdx
′.

(1.16)
Similarly, in the left of the scatterer one can write

[ψ+
1εa0

(x)]a = δa,a0
c

√

ka0
eika0x−2πi

c√
ka
e−ikax

∞
∑

b=1

∫

c√
ka
eikax

′Vnm(x
′)[ψ+

1εa0
(x′)]bdx

′.

(1.17)
Since the Schrödinger equation is linear, the linear combination αns

lε of the
2N coefficients [ψs

lεn0
(x)]n constitutes a solution of the Schrödinger equation

for the same energy. It can be written as

αns
lε (x) =

N
∑

n0

(a(1)n0
[ψs

1εn0
(x)]n + a(2)n0

[ψs
2εn0

(x)]n), (1.18)

where a
(1)
n0 and a

(2)
n0 with 1 ≤ N , are some arbitrary coefficients. Since

[ψs
lεn0

(x)]n are linear combinations of the plane waves c√
kn
eisknx according

to (1.13), αns
1ε (x) can be written as a linear combination of the same plane

waves as

αn+
1ε (x) =

{

c√
kn
(a

(1)
n eiknx + b

(1)
n e−iknx) x < −L/2

c√
kn
(a

(2)
n e−iknx + b

(2)
n eiknx) x > L/2

(1.19)

where a
(l)
n stands for the incoming amplitudes from lead l and b

(l)
n the outgoing

ones, and 1 ≤ n ≤ N .
Plugging the asymptotic form of the coefficients [ψlεm]a in (1.6) the asymp-

totic behavior of the scattering wave-functions can be obtained [14].
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1.5 Scattering matrix

1.5 Scattering matrix

The 2N by 2N matrix S relating the 2N vectors a =

(

a(1)

a(2)

)

and b =
(

b(1)

b(2)

)

as :

b = Sa (1.20)

This is the definition of the scattering matrix in the basis of the lead wave-
functions (1.3).

The scattering matrix can be written in terms of the reflection r(r′) and
transmission t(t′) submatrices, where the unprimed quantities are those cor-
responding to the incidence from the left lead and the primed ones correspond
to incidence from the right

S =

(

r t′

t r′

)

(1.21)

According to the asymptotic coefficients in (1.17) and (1.16) one can obtain
the explicit form of the reflection and transmission submatrices as

rnn0 = −2πi
∞
∑

m=1

∫

c√
kn
eiknxVnm(x)[ψ

+
1εn0

(x)]mdx, (1.22)

and

tnn0 = δn,n0 − 2πi
∞
∑

m=1

∫

c√
kn
e−iknxVnm(x)[ψ

+
1εn0

(x)]mdx. (1.23)

rnn0 is simply the amplitude of the reflected wave in channel n when incidence
is from n0 and tnn0 is the amplitude of the transmitted wave in channel n
when incidence is from n0 in the left lead. In order to obtain the matrix
elements of r′ and t′ we have to consider the incidence to be from the right.

1.6 Unitarity and symmetry of the scattering

matrix

The conservation of the current imposes that the current flowing towards the
system has to be equal in absolute value to the one flowing outwards of it.
This conservation law reads

b†b = a†a, (1.24)
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1.7 Scattering wave-functions in the transmission eigenbasis

now starting from (1.20) one can write

b†b = a†S†Sa, (1.25)

with the current conservation law (1.24) the scattering matrix S has to be
unitary

S† = S−1. (1.26)

Another remarkable feature of the matrix S of a time reversal invariant sys-
tem, is its symmetry property. In fact, for a system with time reversal
symmetry the complex conjugate of (1.19) leads to the time reversal partner
of the scattering wave-function (1.6). The corresponding coefficients of such
scattering state are

αn+∗
lε (x) =

{

c√
kn
(a

(1)∗
n e−iknx + b

(1)∗
n eiknx) x < −L/2

c√
kn
(a

(2)∗
n eiknx + b

(2)∗
n e−iknx) x > L/2

(1.27)

Since the time reversal partner of the scattering wave-function is a solution of
the corresponding Schrödinger equation with the same energy, the amplitudes
in (1.27) are related by the same scattering matrix S

a∗ = Sb∗, (1.28)

the complex conjugation of (1.28) with inversion leads to

b = (S∗)−1a, (1.29)

therefore using the unitarity of S (1.25) we obtain the relation

S = ST , (1.30)

expressing the symmetry property of the scattering matrix of a spinless sys-
tem with time-reversal symmetry.

1.7 Scattering wave-functions in the transmis-

sion eigenbasis

In the basis of the 2N incoming and outgoing modes, the scattering matrix
is defined by (1.21).

However it is more convenient to write S using the polar decomposition
[14]. In the case of time-reversal symmetry, S takes the form

S =

(

uT1 0
0 uT2

)(

−R T
T R

)(

u1 0
0 u2

)

. (1.31)
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1.7 Scattering wave-functions in the transmission eigenbasis

R and T are diagonal reflection and transmission submatrices with real en-
tries, while u1 and u2 are unitary matrices.

The transmission eigenmodes (forming the transmission eigenbasis in
which the current matrix is diagonal) can be written as linear combinations of
the lead modes (1.3). If we shrink the scatterer into x = 0, the transmission
eigenmodes are given by [15]

̺
(−)
1,ε,m(r) =

∑N
a=1 [u1]

∗
ma ϕ

(−)
1εa(r) , x < 0 ,

̺
(−)
2,ε,m(r) =

∑N
a=1 [u2]

∗
ma ϕ

(−)
2εa(r) , x > 0 ,

(1.32)

with
ϕ
(±)
1,ε,a(r) = c√

ka
e∓ikaxφa(y) , x < 0 ,

ϕ
(±)
2,ε,a(r) = c√

ka
e±ikaxφa(y) , x > 0 .

(1.33)

Identifying (1.21) and (1.31), the transmission and reflection submatrices
can be expressed as t = uT2 T u1, t′ = uT1 T u2, r = −uT1Ru1, and r′ = uT2Ru2.
Thus, t†t = u†1T 2u1 and t′†t′ = u†2T 2u2.

Considering the vector of coefficients C1(2)m = ([u∗1(2)]m1, [u
∗
1(2)]m2, ...)

T of

the transmission eigenmode ̺
(−)
1,ε,m(r), one can write

t†tC1m = u†1T 2u1C1m = T 2
mC1m . (1.34)

The second equality stems from the definition of C1m and implies that C1m

is an eigenvector of t†t with the eigenvalue T 2
m. In the same way, one finds

that C2m is an eigenvector of t′†t′ with the same eigenvalue.
The scattering eigenstates in the region x > 0 for an incoming transmis-

sion eigenmode ̺
(−)
1,ε,m(r) are obtained as tC1m = uT2 T u1C1m. Using again the

definition of C1(2)m and the unitarity of u1 we find

tC1m = TmC
∗
2m , (1.35)

and similarly
rC1(2)m = ∓RmC

∗
1(2)m . (1.36)

Thus, the basis of scattering eigenfunctions is asymptotically given by

χ1,ε,m(r) =

{

̺
(−)
1,ε,m(r)−Rm ̺

(+)
1,ε,m(r), x < 0

Tm ̺
(+)
2,ε,m(r), x > 0

χ2,ε,m(r) =

{

Tm ̺
(+)
1,ε,m(r), x < 0

̺
(−)
2,ε,m(r) +Rm ̺

(+)
2,ε,m(r), x > 0

.

(1.37)

This basis is very convenient and useful when discussing the conductance
formulas of the perturbation theory that will be presented in the following
chapter.
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1.8 Landauer-Büttiker approach for quantum conductance

1.8 Landauer-Büttiker approach for quantum

conductance

The Kubo formalism [16] is the traditional framework for evaluating the
response functions of non-equilibrium systems in terms of equilibrium corre-
lations up to first order in the forces driving the system out of equilibrium.
Instead of using the Kubo approach, Rolf Landauer [17] used a counting
argument as well as the Einstein relation between diffusion constant and mo-
bility in order to express the conductance of a disordered one-dimensional
conductor in terms of its reflection and transmission coefficients. Therefore,
in the Landauer approach the transport problem is reduced to a quantum
mechanical scattering problem. To obtain the quantum conductance formula
let us consider the same system as the one we considered in the first section
of this chapter.

The matrix elements of the current density operator in the transmission
eigenbasis is

[j(r)]l̄lm̄m (ε̄, ε) =
eh̄

2iMe

[

χ∗
l̄,ε̄,m̄(r) ∂xχl,ε,m(r)− χl,ε,m(r) ∂xχ

∗
l̄,ε̄,m̄(r)

]

, (1.38)

where l and l̄ stand for lead indices. Its diagonal matrix element jlεm repre-
sents the current density associated to the scattering state χl,ε,m. Considering
that the incidence is from the left we shall take l = 1.

Using the expression of χ1,ε,m in (1.38) and taking the diagonal matrix
element we have for x > 0

j1εm(r) = T 2
m

[

eh̄

2iMe

(

̺
(−)
2,ε,m(r) ∂x̺

(+)
2,ε,m(r)− ̺

(+)
2,ε,m(r) ∂x̺

(−)
2,ε,m(r)

)

]

, (1.39)

since the lead wave-functions ϕ
(±)
lεa (r) are normalized such that the current

carried by each mode is e/h, the same holds for the states ̺
(±)
lεm(r) of the

transmission eigenbasis. Therefore the quantity between brackets in (1.39)
after integration over y reduces to e/h, and thus the energy dependent current
of each mode m is simply

I1εm =
e

h
T 2
m. (1.40)

The current flowing between two reservoirs set at different chemical potentials
µ1 and µ2 is

I1 =
e

h

∫ µ2

µ1

∑

m

T 2
m(f1 − f2)dε, (1.41)
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1.9 Conductance of a narrow-wide geometry

where fl is the Fermi-Dirac distribution of the electrons in lead l with chem-
ical potential µl.

At zero temperature the derivative of the Fermi-Dirac distribution func-
tion with respect to the energy variable reduces to a Dirac delta, and the
current is given in first order to the applied bias V = µ1−µ2

e
by

I1 =
2e2

h

∑

m

T 2
mV, (1.42)

where the factor 2 is for spin degeneracy. We define the dimensionless zero
temperature linear conductance g = I1/V (i.e in units of G0 =

2e2

h
) as

g = Tr[T 2] = Tr[t†t] (1.43)

The previous derivation gives the two-probe multichannel conductance
formula provided by Daniel Lee and Patrick Fisher as a generalization [18] of
the original formula proposed by Landauer for a one dimensional disordered
conductor [17]. The multiprobe version of (1.43) has been later proposed by
Markus Büttiker [19].

The formula (1.43) implies that a fully transmitting one dimensional wire
(e.g) would have a finite resistance of h

2e2
. This counter-intuitive observation

has led to a controversy in the mesoscopic community [20]. It was only later,
that this residual resistance has been understood [21, 22] to be arising from
the contact between the electron reservoirs and the conducting wire.

Although the initial Landauer formula has been derived in the single
electron scattering picture, a similar formula for the quantum conductance of
an interacting scatterer has been derived [23] in the non-equilibrium Keldish
Green function framework by Yigal Meir and Ned S. Wingreen.

1.9 Conductance of a narrow-wide geometry

Following the discussion of Ref. [24], let us consider the narrow-wide (NW)
geometry sketched in Fig.1.5.

The asymptotic behavior of the scattering wave functions coming from
the left lead with energy ε in the narrow region can be written as

ψ1εa(x, y) =
c√
ka

Φa(y)e
ikax +

∑

b

c√
kb
Φb(y)rbae

−ikbx, (1.44)

and,

ψ1εa(x, y) =
∑

b

c√
Kb

φb(y)tbae
iKbx, (1.45)
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1.10 Mean field approximation

in the wide region, where Φ and φ are the transverse wave-functions in the
wide and the narrow regions and Ka, ka the longitudinal momenta in the two
regions given by Ka =

√

k2 − (πa/2W )2 and ka =
√

k2 − (πa/2w)2 with k
the total momentum.

Matching the wave-functions and their derivatives at the interface be-
tween the two regions (x = 0) we obtain

Φa(y) +
∑

b

√

Ka

kb
rbaΦb(y) =

∑

b

tba

√

Ka

kb
φb(y), (1.46)

Φa(y)−
∑

b

√

kb
Ka

rbaΦb(y) =
∑

b

tba

√

kb
Ka

φb(y). (1.47)

Multiplying (1.46) by Φm and (1.47) by φm and integrating over the trans-
verse direction we get

δam +

√

Ka

km
rma =

∑

b

tba

√

Ka

kb
Obm, (1.48)

Oam −
∑

b

√

kb
Ka

rbaObm =

√

km
Ka

tma. (1.49)

here we have introduced the overlap O between the transverse wave func-
tions in the two regions, it is given by

Obm =

∫ W

−W

Φb(y)φm(y)Θ(w − |y|)dy, (1.50)

where Θ is the Heaviside step-function.
Eliminating rma between (1.48) and (1.49) we arrive at the set of equations

√

Kmtma +
∑

b

tba√
Kb

Abm = 2
√

kaOam, (1.51)

with
Abm =

∑

n

knObnOnm. (1.52)

1.10 Mean field approximation

The equations (1.48) and (1.49) can be solved exactly numerically or by
further analytic considerations [24].
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1.10 Mean field approximation

2w 2W

Figure 1.5: A sketch of the wide-narrow geometry.

However, noticing that the square of the overlap Onw is peaked at w such
that the transverse momenta in both regions match qn = qw, Szafer and Stone
[24] have introduced the mean field approximation (MFA) stipulating that
Anm is small for n different to m. This has allowed to approximate the true
overlaps by a uniform coupling to all modes within one level spacing of the
corresponding transverse energy in the narrow region. In this approximation
Anm is found to be diagonal [24, 15]. Thus we can write

Anm = Knδnm (1.53)

with Kn the average value of the longitudinal wave-number in the momentum
interval [Qn−1, Qn+1] where the overlap is appreciably different from zero,
with Qn = πn

2W
.

Within the MFA, the average longitudinal wave-number Kn is given by

Kn =
w

π

∫ Qn+1

Qn−1

dq
√

k2 − q2. (1.54)

The transmission matrix elements in (1.51) can be expressed in term of
K as

tba = 2
√

kaKb
Oba

Kb +Kb

. (1.55)

The conductance gn of a given mode n is then found by summing |tna|2 over
all the open channels :

gn =
∑

a

|tna|2 =
4KnRe{Kn}
|Kn +Kn|2

(1.56)
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1.11 Conductance of a wide-narrow-wide geometry

It is worth noting that the contribution of the evanescent modes to the con-
ductance (1.56) is incorporated by taking the corresponding Kn purely imag-
inary.

1.11 Conductance of a wide-narrow-wide ge-

ometry

Although the NW geometry captures the most important feature observed in
QPCs being the conductance quantization [24], the wide-narrow-wide model
(WNW) (see Fig. 1.6) is more similar to the realistic QPCs.

Writing the scattering wave functions in each part of the geometry and
processing in the same way we have done for the NW geometry we obtain
that the conductance of the nth channel through the narrow region is given
by:

gn =
4K2

nRe{Kn}2
|Dn|2

(1.57)

where Kn is the longitudinal momentum in the narrow region, Kn the average
momentum (calculated in Appendix A ) and Dn is given by

Dn = (Kn +Kn)
2e−iKnL − (Kn −Kn)

2eiKnL. (1.58)

In Ref. [24], Szafer and Stone have obtained a differently written formula for
gn. But we can show that the two formulas are equivalent (see Appendix B).

2w 2W

Figure 1.6: A sketch of the wide-narrow-wide geometry.

In Fig. 1.7, the conductance of the WNW geometry is plotted with respect
to kw, for different lengths of the constriction. In addition to the quantized
behaviour, this figure shows oscillation features that increases with increas-
ing length. These oscillations are due to the constructive an destructive
interference between the traveling channels.
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1.12 Adiabatic QPCs

1
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L = 5w
L = 10w

Figure 1.7: The conductance through the (WNW) geometry given by
Eq.(1.57), is plotted versus kw for different lengths of the QPC.

1.12 Adiabatic QPCs

An ideal way to understand the quantized behavior of the conductance is
achieved by considering a wire with finite width perfectly matching with the
electron reservoirs. In this simplified picture a transport channel is either
transmitted or fully reflected to the initial lead it comes from, and the total
conductance is given by the number of the transmitted channels N which
changes in unit steps with the width of the wire or the Fermi energy EF of
the incoming electrons that is

G =
2e2

h
N(EF ). (1.59)

If now we assume an abrupt constriction inside the wire which plays the
role of a QPC the quantization of G is modified by Fabri-Perot oscillations
due to interferences inside the constriction (see Fig. 1.7).

However, if the narrowing of the constriction is not uniform as shown in
Fig. 1.8 the conductance quantization (shown in the main figure of Fig. 1.3
) is surprising.
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Figure 1.8: Example of an adiabatic QPC with variable cross section a(x).
The figure is taken from [3].

In the case of uniform narrowing of the QPC, we were able to separate
the Schrödinger equation and match the wave-functions at the boundaries
of the system. However, in the case of not uniform narrowing this is not
possible in general.

To study the role of the continuously varying potential and why the
quantization is still observed in such geometries Glazman [25] assumed the
transition from the narrow constriction to the leads to be slow and smooth
compared to the scale of the Fermi wavelength in the so-called adiabatic ap-
proximation. In this approximation, the solution of the Schrödinger equation
can be locally separated as follows [3]

ψn(x, y) = ψ(x)φn(a(x), y), (1.60)

with a(x) is the x dependent cross section (see Fig. 1.8). The local flatness
of the constriction implies that the first derivative of a(x) can be neglected.
Therefore, the 2-dimensional Schrödinger equation leads to a simple effective
one-dimensional one [3]

(− h̄2

2M
∂2x + En(x))ψ(x) = Eψ(x), (1.61)

where En is a channel-dependent energy playing the role of the transverse
energy in the uniform narrowing problem, it is given by

En(x) =
πh̄2

2M

n2

a2(x)
. (1.62)

In Fig. 1.9, En(x) is plotted versus the x, it shows that for each electronic
channel a potential barrier is forming in the narrowest region of the constric-
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Figure 1.9: Effective potential energy for transport channels at given energy
E. Three open channels are shown (solid lines). The dashed lines correspond
to the closed channels. The figure is adapted from [3].

tion. So at given energy E a finite number of channels is transmitted, and
the quantization of conductance is observed.

Furthermore, Glazman has shown that in the adiabatic approximation,
the shape of the conductance steps depends only on the curvature at the
center of the constriction and on its length. He found that the adiabatic
correction to the nth perfectly quantized conductance is

δG(z) =
2e2

h
(1 + e−zπ

√
2R/d)−1, (1.63)

with z = kF d
π

− n , d and R are the diameter and the radius of curvature at
the center of the constriction and kF is the Fermi wave-number. Therefore
the quality of the conductance steps is governed by the local curvatures of the
adiabatic QPC. In other words the conductance at the nth quantized plateau
is

G =
2e2

h
(n− 1 +

h

2e2
δG). (1.64)

In the adiabatic approximation, the knowledge of the exact form of the
confining potential is not relevant. However if a parabolic confinement is
assumed the scattering problem can be exactly solved [26], yielding a similar
smooth conductance behavior [27].
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1.13 Numerical simulation package for quan-

tum transport (KWANT)

In order to be able to obtain the underlying physical quantities in quantum
transport, the exact solution of the Schrödinger equation is required. Unfor-
tunately, this task cannot be analytically done except for very few physical
systems.

In addition to this difficulty, the scattering wave-functions which are fun-
damental objects in any scattering problem involve matching conditions be-
tween different pieces of the studied system. This makes the analytical de-
scription of an arbitrary scattering problem a very difficult task. Thus, as in
many other fields of physics, numerical simulations are useful and have been
introduced. For this purpose, numerical methods and algorithms [28, 29] have
been proposed in order to solve special scattering problems. Subsequently,
different implementations of these algorithms have been adopted.

Within the idea of providing a general and unifying easy to use platform
for quantum transport, a group of physicists has proposed the highly efficient
software package Kwant [30] that uses sparse linear algebra library [31] to
efficiently solve the underlying scattering problem.

In Kwant, the Schrödinger equation is discretized in a tight binding net-
work in which the Hamiltonian can be written as

H =
∑

ab

Habc
†
acb, (1.65)

where c†a(cb) are the usual fermionic creation (annihilation) operators, a and
b are indices encoding the lattice sites and the underlying degrees of freedom.
To simulate a physical open system a finite number of semi infinite leads can
be attached to it. This yields a priori an infinite system. However, using
the translational symmetry of the leads allows to tackle the physical system.
The eigenstates of the translational operator in a given lead are a product
of plane waves propagating along the longitudinal direction with transversal
ones, they read [30]

φn(b) = eibknχn, (1.66)

with i the imaginary unit. The scattering wave-functions in the leads are
then given by

ψn(j) = φin
n (j) +

N
∑

m=1

Smnφ
out
m (j) +

∞
∑

m=N+1

S̃mnφ
ev
m(j) (1.67)

19



1.13 Numerical simulation package for quantum transport (KWANT)

with S the scattering matrix of the propagating modes, S̃ the one for the
evanescent modes φev, for which the longitudinal momentum kn is purely
imaginary, and N is the number of the open modes. in (and out) stands
respectively for incoming and outgoing waves. The scattering matrix S and
the scattering wave function φS inside the system (which is here a matrix
containing the system states corresponding to different incoming modes) are
the main outputs we will get from Kwant. They can be found by appro-
priately solving the Schrödinger equation Hψ = Eψ [32]. Another object
we can also obtain as an output from Kwant is the Green function which is
computed by simple matrix inversion.

1.13.1 Finite size effects in Kwant simulations

We consider a QPC defined with a hard walled square well of width w = 11a
and length L = 19a. The discretization of the two dimensional Schrödinger
equation yields a hopping amplitude t = h̄2

2Mea2
, where a is the distance

between two neighboring sites in the square lattice and Me the effective
mass of the electrons. The hopping energy t and the lattice spacing a are
respectively, the natural units of energy and distance. The parameters a and t
can be chosen to correspond to realistic situations. For GaAs heterostructures
the electron effective mass is Me = 0.067. Hence, if we take a = 10nm, we
find the hopping energy t = 5.69meV . If the Fermi wavelength is an order
of magnitude bigger than a the tight-binding model describes the continuous
system with high accuracy.

The lateral boundaries of the wide region in Fig. 1.10 lead to finite
size effects. To remove this artifact periodic boundary conditions could be
adopted, as provided by the module "Wraparound" included in the latest
Kwant release (see kwant-project.org).

In this work we attached side leads (Fig. 1.10) to allow for translational
invariance in the transverse direction. Therefore, electrons entering the side
leads are not scattered back. However, the corners situated at the edges re-
lating between two adjacent leads will still have minor effects in the transport
properties. In fact, electrons supposed to enter the leads can be reflected by
these corners. However, the finite size artifacts can be totally eliminated, if
one dimensional leads are attached at these corners in the direction perpen-
dicular to the 2DEG as done in Ref. [33]. Furthermore, in the presence of a
fluctuating disorder, the configuration of the latter can be chosen such that
there is no current flow towards these corners.
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Figure 1.10: The tight binding lattice output by Kwant is shown. The width
of the QPC is w = 11a and its length is L = 19a. The red areas represent the
transitionally invariant leads. Additional leads in the transverse direction are
attached to the right wide region.

1.13.2 Model for long-range disorder

In order to take into account the disorder in the 2DEG, we use the method
proposed by Thomas Ihn [Private communication]. We consider the disorder
to be caused by the Coulomb potential of singly-ionized dopants in the doping
plane, situated at the δ−donor layer (see Fig. 1.1) at some distance s from
the 2DEG. The distribution of the randomly placed donor atoms is given by

Nd(r, z) =
M
∑

j=1

δ(r− rj)δ(z − s), (1.68)

where the rj are drawn randomly from a two-dimensional uniform distribu-
tion defined within an area A, and M is the number of dopants. We split Nd

into a smeared mean doping density Nd =
M
A

and the fluctuating part of the
density

C(r) =

[

M
∑

j=1

δ(r− rj)−Nd

]

δ(z − s) (1.69)

responsible for the disorder potential in the 2DEG. In real-space, the bare
fluctuating potential seen by the electrons in the 2DEG is

V (r) = − e2

4πǫǫ0

∫

dr̄
C(r̄)

√

(r− r̄)2 + s2
, (1.70)

which is a two-dimensional convolution of C(r) with the Coulomb potential
of a point charge. The quantity ǫ is the relative dielectric constant of the
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material. The Fourier transform of V (r) is

V (q) = − e2

2ǫǫ0
C(q)

e−qs

q
, (1.71)

Thomas-Fermi screening will reduce the potential fluctuations in the plane
according to the dielectric function

ǫTF (q) = 1 +
2

qa∗B
, (1.72)

where a∗B is the effective Bohr-radius of the material. The screening potential
is given by

V (q) = − e2

2ǫǫ0
C(q)

e−qs

ǫTF q
= − e2

2ǫǫ0
C(q)

e−qs

q + qTF

, (1.73)

where qTF = 2/a∗B is the Thomas-Fermi screening momentum, which does
not depend on electron density in case of 2DEGs.The potential in real space
can be obtained from an inverse Fourier transform of V (q), it is given by

V (r) =

∫

d2q

(2π)2
V (q)e−iqr. (1.74)

In a tight-binding network of length L, width W and grid spacing a we have
[Thomas Ihn, private communication]

V (x, y) = −∆qx∆qy
π

∑

j( 6=0)

e−qjs

qj + qTF

C(qj)e
−iqjr, (1.75)

where ∆qx = 2π
L

and ∆qy = 2π
W

are the step widths of the corresponding
discretized q−space. The maximum q−value we have to consider is

qmax =
2π

a
(1.76)

in both directions. A particular realization of the fluctuating potential is
obtained by drawing numbers αj and βj from a normal distribution with the
variance M/2. The resulting distribution can be written as

C(qj) = cje
iφj , (1.77)

with random amplitudes

cj =
√

α2
j + β2

j (1.78)
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and random phases
φj = arg(αj + iβj). (1.79)

Given these random numbers, the potential is given by

V (x, y) = −∆qx∆qy
π

∑

j( 6=0)

e−qjs

qj + qTF

cje
−i(qjr+φj). (1.80)

Making use of the symmetry property C(−q) = C∗(q) we can write

V (x, y) = −2
∆qx∆qy

π

∑

j(>0)

e−qjs

qj + qTF

cje
−i(qjr+φj). (1.81)

Due to the exponential decay of the contributing terms with qjs one can
limit the numerical efforts by neglecting the terms with large qj. We took
3.5/s as a cut-off which leads to an reduction of the computational time by
more than two orders of magnitude in practical cases.

To characterize the resulting disorder potential we introduce the trans-
port mean free path lT , which is the distance over which an initial electron
momentum is randomized.

According to Fermi’s Golden Rule, the life time τ of an initial state |i〉
scattered by the disorder potential V (r) into a final state |f〉 is given by

τ−1 =
2π

h̄
| 〈f |V (r) |i〉 |2ρ, (1.82)

where ρ is the 2-dimensional density of states.
Considering the initial and the final states as 2-dimensional plane waves

〈r| i〉 = eikr√
A
, (1.83)

and

〈r| f〉 = eik
′r

√
A
, (1.84)

the absolute square of the the matrix element in Eq. (1.82) reads

| 〈f |V (r) |i〉 |2 = 16π2E∗
Rya

∗
B

A2

∣

∣

∣

∣

C(q)e−qs

q + qTF

∣

∣

∣

∣

2

, (1.85)

where we have introduced the Rydberg energy defined by

e2

ǫǫ0
= 8πE∗

Rya
∗
B, (1.86)
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Figure 1.11: The dependence of the transport mean free path on s is shown.
We take the effective Bohr radius as a∗B = 12nm, a dopant density of Nd =
4.5× 1012cm−2 and εF = 16meV .

and the momentum variable q = k− k′. Therefore, the relaxation time can
be obtained by taking the average of τ−1.

To not take into account forward back-scattering processes, the average
should be weighted by the factor 1− cos θ, with θ the collision angle between
initial and final states. This yields,

l−1
T = (τvF )

−1 =
4πNdE

∗
Ry

εFλF

∫ 2π

0

dθ(1− cos θ)
e−2q(θ)s

(q(θ) + qTF)2
, (1.87)

with q(θ) =
√

2(1− cos θ)kF , and vF , kF are respectively, the Fermi velocity
and the Fermi wave-number.

The transport mean free path is determined by the two parameters of
the disorder, the doping density Nd and the distance s between the doping
layer and the 2DEG. Its value can be obtained by numerically evaluating the
integral in Eq.(1.87).

In Fig. 1.11 the transport mean free path is plotted as a function of s at
fixed density of donors Nd = 4.5× 1012cm−2, we observe that as the distance
between the donor layer and the 2DEG increases, the transport mean free-
path becomes longer. For s = 60nm we find lT = 38µm, which is a realistic
value for the transport mean free path in high mobility 2DEGs.

In principle, to change the disorder strength we could modify Nd and/or
s. But this will result in changing the disorder configuration too. Therefore,
it is advantageous to introduce a factor γ to account for the disorder strength.
It will be a pre-factor multiplying V (r). Consequently, if lT is the transport
mean free path in the presence of the disorder potential V , then the transport
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mean free path corresponding to the potential γV is equal to lT/γ
2, according

to the above presented calculation.
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Chapter 2

Introduction to Scanning gate
microscopy

2.1 Overview

Scanning gate microscopy (SGM) is an innovative technique that has been
developed in the group of R. Westervelt at Harvard University [34, 4] during
the last decade of the twentieth century. In this technique, the conductance
through a mesoscopic sample is measured while the tip of an atomic force
microscope (AFM) is scanned above its surface.

The AFM tip acts as a movable gate which induces a potential that
scatters the electrons, leading to a space modulation of the measured con-
ductance. This spatial dimension added to the transport experiment is the
most important ingredient of the SGM technique.

SGM is not the only technique that leads to such spatial resolution. The
scanning tunneling microscopy (STM) [35], for instance, has the same prop-
erty, and has been used to access the local density of states by measuring the
transversal current through a given structure.

The STM technique is therefore useful when conducting surfaces are stud-
ied. However, if the region of interest is buried underneath some distance
from the surface this technique fails.

SGM gives a hope to have space resolved quantum transport measure-
ments where the probe tip is weakly invasive, such that information about
the unperturbed transport properties of the nanostructure can be extracted.

Since the very early days of its development, the measured conductance
change induced by the SGM tip has been interpreted in terms of the current
flow in the considered nanostructures [4, 5].

Nevertheless, no complete view has been yet offered in order to fully

26



2.1 Overview

understand the circumstances and regimes under which this interpretation
holds. One of the most investigated nanostructures is the quantum point
contact (QPC)[2, 36] defined in a two dimensional electron gas (2DEG).When
the tip is raster-scanned over the surface of the system, electrons are back-
scattered to the QPC, giving rise to a conductance map that exhibits a
branched pattern. In the case of a QPC opening into an unconstrained 2DEG
these patterns have been interpreted as a signature of the electron flow in the
disordered potential resulting from the ionized donor atoms [5, 37]. Thus, a
link is presumed to exist between SGM measurements and local properties
(local densities of states [LDOS] and current densities) of the unperturbed
devices. Typically, the tip voltages used to study QPC setups operating
in the regime of conductance quantization are strong enough to create a
large depletion disk (much bigger than the Fermi wavelength) in the 2DEG
underneath the tip. The connection with local properties has been argued to
concern the classical turning point of the electron trajectories with the Fermi
energy that leave the QPC and encounter the tip potential [38] .

In order to address this problem, the paradigmatic case of a QPC per-
turbed by a weak tip has been considered in the linear [11, 15] and non-linear
[39] regimes (in source-drain bias voltage). In particular, in the regime of con-
ductance quantization of clean 2DEGs, spatial and time-reversal symmetries
have been shown to play a key role in establishing a correspondence of the
SGM response with the LDOS and the current density on both sides of the
QPC in the weakly invasive regime.

The SGM technique has also been used to study systems with a vari-
ety of electronic confinements, including open quantum dots [40, 41, 42, 43,
44, 45]and Aharonov-Bohm rings built in high-mobility semiconductor het-
erostructures [46, 47, 48, 6], as well as carbon nanotubes [49] and graphene-
based microstructures [50, 51]. For systems with sufficient electronic con-
finement, charging effects are relevant, and for very small quantum dots a
biased SGM tip mainly acts as a gate that modifies the number of electrons in
the dot and affects the conductance via the Coulomb-blockade phenomenon
[52, 53, 49, 54, 50].

For relatively large and open quantum dots, the charging effects are not
crucial and, as in the case of QPC setups, the connection between the SGM
measurements and local properties has been pursued. In these systems, qual-
itative similarity between conductance changes and LDOS has been noted
whenever the LDOS exhibits some localized structure. For instance, minima
of the SGM response appear where the LDOS vanishes [48, 6] . Further-
more, numerical simulations for rectangular resonant cavities [55] indicated
that the conductance terms derived in Ref. [11] are correlated with the LDOS
when the Fermi energy is close to a resonance with a cavity state. For one-
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dimensional systems, a perturbative approach has revealed that the conduc-
tance change in the presence of a delta-tip up to first-order in tip strength is
related to the Hilbert transform of the LDOS [56, 48] .

It is important to note that electronic confinement is associated with
a change in the interpretation of SGM maps with respect to the case of a
QPC. Specifically tailored experiments have shown the need of such a change
of interpretation when the QPC setup is modified by electronic confinement
guiding the electron transport [8, 45]. The need of different interpretations
for setups with and without electronic confinement can be traced, in the case
of weakly invasive probes, to special features of conductance quantization
characterizing QPCs in the absence of confinement, where the transmission
channels are either completely open or closed [11].

The issue of whether the transmission channels are completely open (and
otherwise completely closed), i.e. the perfect transmission case, turns out
to play a crucial role in the interpretation of measurements and their rela-
tionships to local properties. It has been shown that in the case of perfect
transmission, the second order conductance change in tip strength is the first
non-vanishing term in a perturbation series [11] and it is proportional to the
square of the LDOS [15]. However, as we will see in chapter 6, the analytic
relationship between conductance changes and local properties becomes more
complicated for imperfect transmission.

2.2 Concepts of local partial density of states

In a paper of 1993, Büttiker, Prêtre and Thomas introduced the concept of
local partial densities of states, or partial local density of states (PLDOS) as
we prefer to call it here. In this paper such a quantity appeared as a math-
ematical object naturally arising when the equilibrium admittance matrix is
calculated [56].

Three years later, in a paper entitled Partial densities of states, scattering

matrices and Green function, Gasparian, Christen and Büttiker discussed
the relevance of PLDOS as a physically meaningful quantity. The latter was
expressed in terms of the functional derivatives of the scattering matrix with
respect to the confining electrostatic potential as well as the Green function
of the underlying system.

In a one dimensional picture, these authors showed that the PLDOS is
related to the imaginary part of the diagonal Green function. A further
more general study has considered the PLDOS in a quasi one-dimensional
scattering problem [57].

The PLDOS can be seen as a decomposition of the total local density of
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states (LDOS). This decomposition is related to the fact that the scattering
matrix is itself constructed from reflection and transmission submatrices.
The definition of PLDOS is based on both a preselection and a postselection
of carriers. This means that the asymptotic region from which the carriers
come from or the region into which they are scattered have to be considered.

In the same framework the authors have pointed out that the PLDOS
involving only the carriers reflected to the same region from which they are
originally emitted does not have physical meaning of density, since they even
do reach negative values. Accordingly, they have called the PLDOS generated
by the carriers incident from a given asymptotic region regardless into which
region these carriers are scattered the injectivity of the emitting asymptotic
region. So this is a preselection of carriers indeed. In this sense the PLDOS
for electrons incoming from lead l with energy ε can be defined as

ρlε(r) = 2π
N
∑

a=1

|ψl,ε,a(r)|2 , (2.1)

where ψl,ε,a(r) is the scattering wave function coming from the ath mode of
lead l at energy ε.

A postselection of carriers has also led to another type of PLDOS they
have called emmisivity. It basically represents the PLDOS generated by
carriers scattered to a given lead regardless of the region they are emitted
from. But this quantity will not be considered here. Therefore when we
talk about PLDOS in the framework of this thesis we are referring to the
injectivity of a given lead in the sense of Ref. [56].

Furthermore, the PLDOS has been shown to be related to some character-
istic times in quantum dynamics [58, 59]. Namely, the dwell time which is the
time a density of carriers would remain in a given interval of space. While the
results in [58, 59] were specific for 1D systems, Innacone [60] demonstrated
that for a 2D system the LDOS can be also expressed as a sum of all dwell
times of the various incoming channels .

2.2.1 SGM in Quantum point contacts

Among the most investigated nanostructures using SGM are QPCs described
in the previous chapter. We have seen that the conductance of such a system
can assume well-defined plateaus. If the QPC is tuned to a quantized value
of conductance, the effect of the tip is to reduce the conductance, depend-
ing on its position yielding different space resolved properties, among them
interference fringes and branching behavior.
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We study whether the measured conductance changes have some simple
or complex relationship with the local properties of the traveling electrons
via different interference mechanisms [5, 38].

The question we should ask is, can we quantitatively extract some physi-
cally relevant, and meaningful quantities such as local current densities, local
density of states or LDOS from an SGM measurement?

In Fig.2.1 the SGM response measured at temperature T = 1.7K is shown
for the first three plateaus (g = 1, 2 and 3). The Fermi energy of the electrons
is εF = 16meV corresponding to a Fermi wavelength of λF = 37nm.

Besides the interference fringes spaced by half the electron Fermi wave-
length shown in Fig.2.1 evidencing the fact that the imaged features are of
coherent origin, the branching behavior reveals quite rich information re-
lated to the potential landscape in which electrons move that is defined by
the ionized donor atoms located at some distance from the 2DEG.

The branches in Fig. 2.2 are understood to be due to the fluctuating
potential induced by the donor atoms situated few tens of nanometers from
the 2DEG [5]. The same interference fringes observed in Fig.2.1 are visible
along the branches.

In [4] a qualitative comparison between the measured SGM and numer-
ically calculated PLDOS has been made see (Fig. 2.3). The suppression of
the interference fringes presented above is due to the fact that the measure-
ments are done at high source drain voltage, fifteen times bigger than the
one applied in the data of Fig. 2.1.

One observes that the angular propagation and the number of lobes of
the electron flow are qualitatively the same for both, SGM and PLDOS.

Figure 2.1: SGM measurement in the neighborhood of a QPC (depicted in
gray) for the first three plateaus of conductance ordered from left to right.
The figure is adapted from [4].
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Figure 2.2: SGM measurement of transport through a QPC (tuned to the
first plateau of conductance ) with a branching pattern is shown. Fringes
similar to those observed in 2.1 can be seen along the branches. The figure
is taken from [5].

2.2.2 SGM in quantum rings

Another system that has been widely studied, both theoretically and exper-
imentally, is the quantum ring [48, 6] (see Fig.2.4). Since the boundaries of
the studied geometry play an important role in the scattering process, the
wave functions coming from both sides of the ring have to be taken into con-
sideration. In this situation the total LDOS has been shown to play a role
in the interpretation of the measured conductance [48].

Based on a one-dimensional model the authors of Ref. [48] found that
the first-order conductance correction due to a local tip is proportional to
the Kramers-Kronig partner of the LDOS. In other terms, they found that
the SGM is directly related to the Hilbert transform of the LDOS.

Although they did not evaluate the Kramers-Kronig partner of the calcu-
lated LDOS to be compared with the SGM conductance, they have qualita-
tively compared between the direct quantities (i.e. SGM and LDOS) which
are apparently similar as we can see from Fig.2.4.

Furthermore, experimental and numerical results [61, 7] have evidenced
the presence of recurrent quantum scars (concentration of wave functions
along classical periodic orbits) [62] in the SGM response of a mesoscopic
graphene ring.

In the graphene ring [61] the period of the recurrent features is found to be
proportional to the Fermi energy, in contrast to what has been reported for
conventional semiconductor nanostructures where the period of the recurrent
scars has been found to be proportional to the square root of the Fermi energy
[63, 64].
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Figure 2.3: In the left column the measured SGM responses at high voltage
for the first three plateaus are shown. The corresponding calculated PLDOS
are shown in the right column. Figure from Ref.[4].

This difference has been understood as a signature of the energy disper-
sions which are not the same for normal semiconductors and Dirac materials.

In panels a and b of Fig.2.5 the SGM response is measured at two different
energies separated by a period of recurrence of the star-like shape [7].

Although the interpretation of the observed shapes as quantum scars has
no strong theoretical support, the presence of such recurrent features in the
computed LDOS (see the right panel of 2.5) with the same period of appear-
ance as for the SGM maps suggests a link between the SGM conductance
change and the LDOS.

A more technical analysis about the SGM-LDOS correspondence will be
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Figure 2.4: The calculated LDOS in a quantum ring is shown in the top figure
and the conductance through the ring in the presence of a weakly invasive
tip is presented in the bottom figure, the qualitative similarity between the
two quantities is observed . The figure is taken from [6].

given in chapter 7.

2.3 SGM imaging in confined geometries

Recently R. Steinacher and coauthors from the group of Klaus Ensslin and
Thomas Ihn at the ETH Zürich have carried out an experiment where the
branches observed in the SGM measurement are guided by confining gates [8].
In this experiment, the electrons transmitted through the QPC are injected
into a channel of width w = 1µm defined by lateral Schottky gates. In Fig.2.6
the branches behind the QPC are shown. Whereas the lateral gates are set
to zero voltage, the branches are found to be confined within the channel
through which the electrons are injected from the neighboring QPC (situated
in the center bottom of each of the maps (a) and (b) of Fig.2.6). In region
I and III outside of the central channel (II) the SGM pattern is smooth,
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2.3 SGM imaging in confined geometries

Figure 2.5: Experimental SGM images are presented at two different Fermi
energies in a and b. In d and c the LDOS is calculated for two different
energies. The figure is taken from [7].

meaning that the electrons have no possibility to be reflected back to the
QPC. However in the central region (II) they do not have any possibility to
skip out of the channel gates. This effect has been interpreted as a result of
a shallow potential barrier existing below the unbiased gates [8, 9].
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2.4 SGM in the weakly invasive regime

2.4 SGM in the weakly invasive regime

In Ref.[11] and [15] the authors have presented an analytic theory in the per-
turbative regime where the effect of the AFM tip on the local properties can
be considered as weak. In this regime, the SGM response in first and second
order in the tip strength have been analytically obtained. The corrections
are given by matrix elements of the tip-induced potential with scattering
wave-functions.

Since the invasiveness of the tip is usually necessary for observing the
SGM signal with a sufficient signal-to-noise ratio, performing an SGM mea-
surement in the regime where the theory applies has remained as a difficult
task, at least in the case of QPCs opening to unconstrained 2DEG. In Ref.
[9] and in a very recent paper [65], an interesting experimental setup (see
Fig. 2.7 ) has been proposed to approach as much as possible the weakly
invasive regime.

In order to enhance the observed SGM signal, a circular reflector has been
put in front of the QPC. This enhances the scattering wave-functions within
the region between the QPC and the reflector, allowing by consequence for a
significant SGM signal even when applying smaller tip voltages. As shown in
Fig.2.7 the SGM response could be observed at relatively small tip voltages
provided that the reflector gate is biased.

2.5 Signatures of spin-orbit coupling in SGM

response

In Ref. [10], the authors have numerically investigated the signatures of
spin-orbit coupling (SOC) in the SGM response of a QPC opening to a
disorder-free 2DEGs.

In their work the authors have considered the Rashba type SOC, which
turns out to be important in InGaAs hetero-structures.

The Rashba interaction reads

HR = α(σxky − σykx), (2.2)

where α is the strength of the SO interaction, σx(y) is the x(y) component
of the Pauli matrix σ, and kx(y) is the momentum projection along the x(y)
direction. The QPC was modeled by a smooth potential

V (x, y) =
m∗ω2x2

2
exp[−((y − Yqpc)/

√
2w)2], (2.3)
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2.6 Motivation of this thesis

where Yqpc is the position of the QPC along the y direction, w = 100nm con-
trols its length, and h̄ω describes its parabolic confinement in the transverse
direction (the x direction).

In Fig. 2.8, the SGM response has been calculated for the three first
plateaus in the absence of SOC (upper row) and in the presence of SOC
(lower row). In the presence of SOC, additional features between the usual
lobes appear.

The additional lobes have been explained [10] to be due to particular
values of the transfer probability, resulting from the transformation of the
kinetic energies between anti-crossing modes, due to the spin mixing caused
by the last term of the Rashba SOC (2.2).

2.6 Motivation of this thesis

According to the Heisenberg uncertainty principle we cannot measure at the
same moment the position and the velocity of a quantum mover. However,
the quantum "particles" are described by some wave-functions whose dy-
namics is governed by a deterministic equation (the Schrödinger equation)
in the sense that the latter allows us to predict the wave-functions at each
later time provided its knowledge at a given initial moment.

Interestingly, the SGM technique provides position-dependent conduc-
tance data and one can ask the question whether those can be used to access
some quantities directly related to the electronic local properties by experi-
mental measurements ?

Although the first experimental studies have claimed imaging coherent
electron flow in mesoscopic devices, a quantitative study of the link between
the measured SGM conductance and the local electronic properties is missing.

In this PhD thesis a theoretical effort is devoted to develop the necessary
tools for a quantitative extraction of the local electronic properties from SGM
measurements in realistic mesoscopic systems.
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2.6 Motivation of this thesis

Figure 2.6: In the left panel the SGM conductance is shown. In the right
panel its derivative with respect to the direction of flow (y) is shown. The
QPC is at the bottom of the figures. The thin line indicates the position of
the guiding gates. The figure is taken from [8].
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2.6 Motivation of this thesis

Figure 2.7: Spatial derivative of the SGM conductance measured throughout
a QPC positioned some distances from the center bottom of each figure as
a function of tip position is shown, at different tip voltages and for different
reflector gate (the circular arc in front of the QPC) bias [9]. One observes
that for a fixed tip voltage, the SGM resolution is enhanced just by applying
a bias to the reflector. The QPC is tuned to the third plateau of conductance.
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2.6 Motivation of this thesis

Figure 2.8: Simulation of SGM images for the three first plateaus. The
QPC model of (2.3) is used. In the upper (lower) row of data, the SGM
conductance without (with) SOC is shown. The figure is taken from [10].
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Chapter 3

Analytical formulation of the
SGM response (perturbation
theory)

In this chapter we want to present the lowest order terms of the perturbation
theory for the conductance corrections due to a local potential, following
Ref.[11]. The calculated conductance corrections will be crucial for the next
chapters.

3.1 First order correction

Let us consider a quantum scatterer attached to two semi infinite leads as
the one sketched in Fig. 1.4 in the previous chapter. The asymptotic form
of the unperturbed scattering wave-functions can be written in terms of the
matrix element of the scattering matrix and the transverse wave-functions of
the leads as well as the longitudinal one :

Ψ
(0)
1,ε,a(r) =

{

ϕ
(−)
1εa(r) +

∑N
b=1 rba ϕ

(+)
1εa(r), x < 0

∑N
b=1 tba ϕ

(+)
2εb (r), x > 0

Ψ
(0)
2,ε,a(r) =

{

∑N
b=1 t

′
ba ϕ

(+)
1εa(r), x < 0

ϕ
(−)
2εa(r) +

∑N
b=1 r

′
ba ϕ

(+)
2εb (r), x > 0

(3.1)

The matrices r, r′, t and t′ are submatrices of the scattering matrix S given
by (1.21). The lead wave-functions ϕ

(s)
lεa(r) have been defined in Sec. 1.7.
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3.1 First order correction

In general, the nth order correction to the scattering wave-function is
obtained from (1.14) as follows

Ψ
(n)
l,ε,a(r) =

∫

dr̄ G(0)(r, r̄, ε)VT(r̄)Ψ
(n−1)
l,ε,a (r′) , (3.2)

where VT(r̄) is the potential induced by the tip. Up to linear order in the
tip potential the correction to the scattering wave-function in the presence
of the tip is obtained by taking n = 1 in (3.2), which gives

Ψ
(1)
l,ε,a(r) =

∫

dr̄ G(0)(r, r̄, ε)VT(r̄)Ψ
(0)
l,ε,a(r̄) . (3.3)

The first-order correction to the current density associated with such a state
specified by the corresponding lead index l, energy ε and mode number a, is
given by

δ(1)Jlεa =
eh̄

Me

Im(Ψ
(0)∗
lεa (r)∂xΨ

(1)
lεa(r)−Ψ

(1)
lεa(r)∂xΨ

(0)∗
lεa (r)). (3.4)

Substituting Ψ
(1)
lεa by its expression (11.1) in Eq. (11.2), the current correction

up to first order in VT reads

δ(1)Jlεa(r) = 2
2

∑

l̄=1

Re

{

∫ ∞

ε
(t)
1

dε̄

ε+ − ε̄

N̄
∑

ā=1

[j(r)]l,l̄aā (ε, ε̄) [VT]
l̄,l
āa (ε̄, ε)

}

, (3.5)

where

[j(r)]l,l̄aā (ε, ε̄) =
eh̄

2iMe

[

Ψ
(0)∗
l,ε,a(r) ∂xΨ

(0)

l̄,ε̄,ā
(r)−Ψ

(0)

l̄,ε̄,ā
(r) ∂xΨ

(0)∗
l,ε,a(r)

]

, (3.6)

is the longitudinal current density matrix element after integration over the
transverse direction, and

[VT]
l̄,l
āa (ε̄, ε) =

∫

Ψ
(0)∗
l̄,ε̄,ā

(r̄)VT(r̄)Ψ
(0)
l,ε,a(r̄)dr̄, (3.7)

the matrix element of the tip potential between two scattering wave-functions.
If we are interested in the current coming from the left to the right we

shall take l = 1.

[j(r)]11āa (ε, ε̄) =
e

2h

N̂
∑

b=1





√

k̄b
kb

+

√

kb
k̄b



 t∗bat̄bā exp
[

i(k̄b − kb)x
]

(3.8)
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3.1 First order correction

[j(r)]12āa (ε, ε̄) =
e

2h





√

kā
k̄ā

−
√

k̄ā
kā



 t∗āa exp
[

−i(k̄ā + kā)x
]

+
e

2h

N̂
∑

b=1





√

k̄b
kb

+

√

kb
k̄b



 t∗bar̄
′
bā exp

[

i(k̄b − kb)x
]

. (3.9)

While the matrix t is taken at the energy ε, the matrices t̄ and r̄′ are evaluated
at the energy ε̄. The summations in (3.9) is up to N̂ = min(N(ε), N(ε̄)).

According to Appendix C, the first term of [j(r)]12āa (ε, ε̄) plugged in (3.5)
leads to a vanishing energy integral. Therefore, only [j(r)]11āa (ε, ε̄) and the
second term of [j(r)]12āa (ε, ε̄) contribute to δ(1)J1εa(r).

Using the results of Appendix C.1 we find that the current resulting from
a given mode a in lead 1 at energy ε in first-order in the tip potential is

I
(1)
1,ε,a =

e

h̄
Im

{

t†t V11 + t†r′ V21
}

aa
, (3.10)

where V ll̄
aā = [VT]

ll̄
aā (ε, ε). Summing over all the modes we obtain the total

current as
I
(1)
1,ε =

e

h̄
Im(Tr

{

t†t V11 + t†r′ V21
}

) . (3.11)

In the linear response regime the zero temperature conductance is obtained
by differentiating the total current with respect to the applied voltage, that
is

G(1) =
2e

∆µ
(∆µI

(1)
1,εF

), (3.12)

with ∆µ the chemical potential difference between the two probes. The
∆µ factor in the numerator results from the fact that at zero temperature
only the Fermi energy current contributes to the transport and therefore the
integration between the two chemical potentials reduces to a multiplication
by ∆µ. This leads to the dimensionless conductance (in units of 2e2

h
) [15, 11]

g(1) = 4πIm
{

Tr
[

t†t V11 + t†r′ V21
]}

. (3.13)

Since the first term of 3.13 is real g(1) simplifies to [11, 15]

g(1) = 4πIm
{

Tr
[

t†r′ V21
]}

(3.14)
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3.2 Second order correction

3.2 Second order correction

The obtained first order correction (11.9) is applicable to any open system. In
the case of a quantum point contact where the conductance is quantized, this
linear contribution vanishes on a conductance plateau (r′ = 0). Therefore,
the second order conductance correction has been also calculated [11, 15] .

The current density carried by the second order scattering wave-function
from (3.2) can be separated into two contributions

δ(2)J
(α)
lεa =

eh̄

Me

Im(Ψ
(0)∗
lεa (r)∂xΨ

(2)
lεa(r)−Ψ

(2)
lεa(r)∂xΨ

(0)∗
lεa (r)) (3.15)

and

δ(2)J
(β)
lεa =

eh̄

Me

Im(Ψ
(1)∗
lεa (r)∂xΨ

(1)
lεa(r)). (3.16)

Replacing the second order scattering wave-functions by their expressions
from (3.2) (with n = 2) in (3.15), the contribution δ(2)J

(α)
1εa can be written as

δ(2)J
(α)
1εa = 2

2
∑

l̄,¯̄l=1

Re







∫ ∞

ε
(t)
1

dε̄

ε+ − ε̄

∫ ∞

ε
(t)
1

d¯̄ε

ε+ − ¯̄ε

∑

ā,¯̄a

[j(r)]1l̄aā (ε, ε̄) [VT]
l̄,¯̄l
ā¯̄a (ε̄, ¯̄ε) [VT]

¯̄l1
¯̄aa (¯̄ε, ε̄)







.

(3.17)
To benefit from the results of the above calculation of the first-order correc-
tion, we write δ(2)J

(α)
1εa as

δ(2)J
(α)
1εa = 2

2
∑

l̄=1

Re

{

∫ ∞

ε
(t)
1

dε̄

ε+ − ε̄

∑

ā

[j(r)]1l̄aā (ε, ε̄) [W ]l̄1āa (ε̄, ε)

}

, (3.18)

where

[W ]l̄1āa (ε̄, ε) =
2

∑

¯̄l=1

∫ ∞

ε
(t)
1

d¯̄ε

ε+ − ¯̄ε

∑

¯̄a

[VT]
l̄,¯̄l
ā¯̄a (ε̄, ¯̄ε) [VT]

¯̄l1
¯̄aa (¯̄ε, ε̄).

Noticing that W plays the same role of VT in Eq. (3.5), the conductance

correction resulting from δ(2)J
(α)
1εa , after summation over a can be straightfor-

wardly deduced from (3.13) as

g(2)α = 4πvTIm
{

Tr
[

t†t W11 + t†r′ W21
]}

(3.19)

with W ll̄
aā = [W ]ll̄aā (ε, ε).
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3.2 Second order correction

Using the Sokhotsky’s formula ([66], Sec.5.7), W can be written as

W ll̄
aā = −iπ

∑

¯̄l

∑

¯̄a

[VT]
l̄,¯̄l
ā¯̄a (ε, ¯̄ε) [VT]

¯̄l1
¯̄aa (¯̄ε, ε) + P{W ll̄

aā}, (3.20)

and the α− like term of the second-order formula provided by [11, 15, 67] is
straightforwardly obtained. Furthermore, if we assume that the tip is of the
form

VT(r) = vTδ(r− rT), (3.21)

rT being the position of the tip and vT its strength, the following relation

[VT]
l̄,¯̄l
ā¯̄a (ε̄, ¯̄ε) [VT]

¯̄l1
¯̄aa (¯̄ε, ε̄) = [VT]

l̄1
āa (ε̄, ε) [VT]

¯̄l,¯̄l
¯̄aā (¯̄ε, ¯̄ε) (3.22)

holds. Therefore, one can write

W l̄1
āa = vTV l̄1

āaG(0)(rT, rT, ε). (3.23)

As a consequence, the α-like term of the conductance correction due to a
δ-tip is simply

g(2)α = 4πvTImTr
{

G(0)(rT, rT)(t
†t V11 + t†r′ V21)

}

. (3.24)

On the other hand the beta like term (3.16) can be written as

δ(2)J
(β)
1εa =

eh̄

Me

2
∑

l̄,¯̄l=1

Im







∫ ∞

ε
(t)
1

dε̄

ε− − ε̄

∫ ∞

ε
(t)
1

d¯̄ε

ε+ − ¯̄ε

∑

ā,¯̄a

[VT]
ll̄
aā (ε, ε̄)

[

j1/2
]l̄,¯̄l

ā¯̄a
(ε̄, ¯̄ε) [VT]

¯̄ll
¯̄aa (¯̄ε, ε)







,

(3.25)
where

[

j1/2
]l̄l

āa
(ε̄, ε) =

eh̄

2iMe

∫

[

Ψ
(0)∗
l̄,ε̄,ā

(r) ∂xΨ
(0)
l,ε,a(r)

]

dy. (3.26)

After performing the energy integrals as in the Appendix C.2, this current
correction leads to the following conductance correction [11, 15, 67]

g(2)β = 4π2Tr
{

Re[V11t†tV11 + 2V11t†r′V21 + V12r′†r′V21]
}

(3.27)

On a perfect conductance plateau (r = r′ = 0) the total change of conduc-
tance up to second-order reduces to g(2), which simplifies to

g(2) = 4π2Tr{t†tV11(V11 − ρ(rT, ε)1)}, (3.28)

with 1 the identity matrix and ρ(rT, ε) = − 1
π
ImG(0)(rT, rT, ε). The obtained

first and second order corrections, are real and basis independent. The traces
have to be taken over the incoming right moving modes.

The results of this theory are important and will lead to an unambiguous
interpretation of the SGM experiment as presented in Chapter 6.
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Chapter 4

Higher order terms of the
conductance expansion

In the previous chapter we have recalled how the lowest two orders of the
perturbation theory can be obtained in the general case for any tip profile.
It turns out that if the tip has the form of a δ-function, the full scattering
wave-function is proportional to the unperturbed one. This enables us to
sum up all the conductance corrections.

The calculation of the higher order terms of the conductance allows us to
have an idea of how the SGM response behaves at large tip strengths.

4.1 The scattering wave-function in the case of

a delta tip

Assuming a delta tip potential

V (r) = vTδ(r− rT), (4.1)

let us start again from the Lippmann-Schwinger equation, giving

ψlεa(r) = ψ
(0)
lεa(r) + vTG(0)(r, rT, ε)ψlεa(rT). (4.2)

Since the arguments of the scattering wave-function in the two sides of the
equation are different one cannot simply isolate it. We can however take
ψlεa(r) at the tip position rT, which yields

ψlεa(rT) = ψ
(0)
lεa(rT) + vTG(0)(rT, rT, ε)ψlεa(rT). (4.3)

Thus, the scattering wave function at the tip position is given by

ψlεa(rT) =
ψ

(0)
lεa(rT)

1− vTG(0)(rT, rT, ε)
(4.4)
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4.2 Current density corrections

Subsequently, the scattering state at an arbitrary position r can be written
in terms of the unperturbed quantities and the strength of the tip as follows

ψlεa(r) = ψ
(0)
lεa(r) + vT

G(0)(r, rT, ε)ψ
(0)
lεa(rT)

1− vTG(0)(rT, rT, ε)
(4.5)

To shorten the notation we introduce the function β(rT, ε)

β(rT, ε) =
1

1− vTG(0)(rT, rT, ε)
, (4.6)

and write ψlεa as

ψlεa(r) = ψ
(0)
lεa(r) + vTβ(rT, ε)G(0)(r, rT, ε)ψ

(0)
lεa(rT). (4.7)

Now, the aim is to evaluate the conductance correction due to the second
term of Eq. (4.7). To do so, we will replace the Green function by its
expression in (1.15). This yields

ψlεa(r) = ψ
(0)
lεa(r) +

∑

ā,l̄

∫

dε̄

ε+ − ε̄
Ṽ l̄l
āa(ε̄, ε)ψ

(0)

l̄ε̄ā
(r) (4.8)

where we have introduced an effective tip matrix element as

Ṽ l̄l
āa(ε̄, ε) = vTβ(rT, ε)ψ

(0)∗
l̄ε̄ā

(rT)ψ
(0)
lεa(rT). (4.9)

One can systematically consider the second term of the right hand side of Eq.
(4.8) as an effective first-order correction to the unperturbed wave-function.
This will allow us to use the same results as the previously presented ones
within the perturbative approach.

The current resulting from this term will neither be linear nor quadratic
in the tip strength vT. This is due to the fact that the factor β(rT, ε) depends
on the tip strength according to (4.6), and will therefore contain higher order
terms in vT.

In order to simplify the calculation of the current, we write the scattering
wave function as

ψlεa(r) = ψ
(0)
lεa(r) + ψ̃

(1)
lεa(r). (4.10)

4.2 Current density corrections

To get the corrections to the current density, one can proceed in exactly
the same way as in Chapter 3 where we have obtained the two first order
corrections in vT.
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4.2 Current density corrections

In addition to its unperturbed term J{ψ(0)
lεa(r)}, the current density car-

ried by the scattering wave function (4.10) can be split into two contributions,

J̃{ψlεa(r)} = J{ψ(0)
lεa(r)}+ δJ̃ (1) + δJ̃ (2), (4.11)

with

δJ̃ (1) =
eh̄

Me

Im(ψ̃
(1)∗
lεa (r)∂xψ

(0)
lεa(r) + ψ

(0)∗
lεa (r)∂xψ̃

(1)
lεa(r)), (4.12)

and

δJ̃ (2) =
eh̄

Me

Im(ψ̃
(1)∗
lεa (r)∂xψ̃

(1)
lεa(r)). (4.13)

The corresponding conductance corrections can be easily found from the
corrections given in the previous section. We just have to substitute the real
potential V by the effective complex potential Ṽ even if the latter does not
present the physical meaning of a potential supposed to be real to ensure the
hermiticity of the Hamiltonian of the problem.

This substitution leads to the conductance correction

g̃1 = 4πIm{β(rT, ε)Tr[t†tV11 + t†r′V21]} (4.14)

which obviously presents a structure of conductance, since it is real and basis
independent.

We see from the expression of δJ̃ (2) that only the term similar to the β
term of equation (3.27) is present, this leads to the correction

g̃2 = 4π2|β(rT, ε)|2Tr
{

Re[V11t†tV11 + 2V11t†r′V21 + V12r′†r′V21]
}

(4.15)

These results are valid for any dimension provided that the tip is local.
In Ref. [68] a similar result has been obtained for the resonant level

model, where two semi-infinite leads are connected by a tunable single site
impurity. On a conductance plateau, g̃1 and g̃2 simplify to

g̃1 = 4πIm{β(rT, ε)Tr[t†tV11]}, (4.16)

g̃2 = 4π2|β(rT, ε)|2Tr
{

Re[V11t†tV11]
}

. (4.17)

Noticing that Tr[t†tV11] and Tr[V11t†tV11] are real the conductances (4.16)
and (4.17) can be simplified to

g̃1 = 4πIm{β(rT, ε)}Tr[t†tV11], (4.18)

g̃2 = 4π2|β(rT, ε)|2Tr[t†t(V11)2]. (4.19)
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4.2 Current density corrections

The imaginary part of β(rT, ε) in (4.18) can be expressed in terms of the
imaginary part of the Green function as

Im{β(rT, ε)} = |β(rT, ε)|2Im{G(0)(rT, rT, ε)}, (4.20)

Introducing the LDOS ρε defined as

ρε(rT) = − 1

π
Im{G(0)(rT, rT, ε)}, (4.21)

Im{β(rT, ε)} can be written as

Im{β(rT, ε)} = −π|β(rT, ε)|2ρ(rT, ε). (4.22)

Therefore using (4.22) in (4.18) and summing up the resulting g̃1 with g̃2 the
total conductance correction g̃ = g̃1 + g̃2 reads

g̃ = 4π2|β(rT, ε)|2Tr{t†tV11(V11 − ρ(rT, ε)1)}, (4.23)

with 1 the identity matrix. While this conductance formula is already rather
simple, its expression in the transmission eigenbasis is even simpler. In that
basis one can write

g̃ = 4π2|β(rT, ε)|2
∑

m

[U11(U11 − ρ(rT, ε)1)]mm, (4.24)

where U11
mn are the matrix elements of the tip potential in the transmission

eigenbasis they are generally given by

U ll′

mm′ =

∫

χ∗
lεm(r

′)VT(r
′)χl′εm′(r′)dr′. (4.25)

Since we have considered a delta-tip, these matrix elements are simply the
product between the involved scattering states with the tip strength as a
prefactor

U11
mn = vTχ

∗
1εm(rT)χ1εn(rT). (4.26)

Plugging (4.26) in (4.24) one can write

g̃ = 4π2|β(rT, ε)|2
∑

m

U11
mm(

∑

n

U11
nn − ρ(rT, ε)). (4.27)
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4.3 Numerical check of the conductance saturation

Figure 4.1: A sketch illustrating the geometry of the considered quantum
ring with inner radius of Ri = 50a and outer radius of Ro = 100a.

4.3 Numerical check of the conductance satu-

ration

We consider a ring geometry defined in a tight binding network with lattice
parameter a = 1 the ring possesses an inner radius of 50a and an outer radius
of 100a (see Fig. 4.1). The numerical implementation is done via Kwant.
The effective mass is m∗ = 0.04m, with m the bare electron mass as in Ref.
[6], where such a system was made in InGaAs/InAlAs heterostructure.

In Fig. 4.2 the conductance of the ring is plotted versus the strength vT of a
local tip. We observe that the conductance of the ring saturates at different
values for the different tip positions. This is due to the fact that the value
at which the conductance saturates depends on the diagonal Green function
according to (4.14) and (4.15). We observe that the analytical predictions
coincides perfectly with the numerical calculations.

In the inset of Fig. 4.2 we compare between the full SGM response and
the sum of the two lowest order corrections to the conductance. We see that
for relatively strong tips the higher order terms should be taken into account.
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4.3 Numerical check of the conductance saturation
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Figure 4.2: In the main figure the conductance of the quantum ring is plotted
as a function of the strength of a local tip. Each color line corresponds to
an arbitrarily chosen tip position in the ring geometry. The dashed lines
correspond to the analytical predictions of (4.14) and (4.15). In the inset
we show the sum of the two lowest order corrections to g (dots) and the full
conductance g with higher order terms (solid lines).
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Chapter 5

Green function method for
computing the conductance in the
presence of a finite-size scatterer

In the previous chapter, we have shown how the full scattering wave-function
in the presence of a δ−like tip can be expressed in terms of the unperturbed
scattering wave-function, and this has enabled us to obtain the analytical
form of the conductance corrections without any restriction on the strength
of the δ−like tip.

In this chapter we propose a method that allows us to iteratively construct
the scattering wave-function in the presence of an arbitrary tip potential with
finite range, starting from the unperturbed scattering wave-function as well
as the unperturbed Green function, enabling us to compute the conductance
for each position of the scatterer, just from the unperturbed quantities. This
prevents us to to calculate the transmission at each tip position.

5.1 Scattering wave-function

The Lippmann-Schwinger equation is an integral equation, that is not easy
to solve except for simple cases, when the scattering potential is assumed
to have a simple form, a Dirac-Delta form for instance. This case has been
treated in the previous chapter, as mentioned in the introductory paragraph.

Let V (r) be an arbitrary potential, then it can be written as a convolution
product with a Dirac δ

V (r) =

∫

dr̄V (r̄)δ(r− r̄). (5.1)
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5.1 Scattering wave-function

In a tight-binding model the previous convolution (5.1) becomes the sum

V (rj) =
∑

i

viδi,j, (5.2)

with vi = V (ri).
The idea therefore, is to successively consider the individual Kronecker-δs.
According to (4.7), the scattering wave-function in the presence of the

first added δ localized at r1 is

ψ(1)(r) = ψ(0)(r) + v1
ψ(0)(r1)

1− v1G(0)(r1, r1)
G(0)(r, r1), (5.3)

where G(0)(r, r1), ψ
(0) is the unperturbed Green function and the unperturbed

scattering wave-function. For the quest of simplifying the notation, we have
omitted the lead index, the energy and the mode index. Thus ψ(0) is under-
stood to be the ath scattering wave-function coming from lead l at energy
ε. Now, we add another δ−function at r = r2, and the resulting scattering
wave-function can be obtained from ψ(1) as

ψ(2)(r) = ψ(1)(r) +
ψ(1)(r2)

1− v2G(1)(r2, r2)
G(1)(r, r2). (5.4)

To express ψ(2) in terms of the unperturbed scattering wave-function ψ(0),
we replace ψ(1) by its expression in terms of ψ(0), this gives

ψ(2)(r) = ψ(0)(r) +
ψ(0)(r1)

1− v1G(0)(r1, r1)
G(0)(r, r1) +

ψ(1)(r2)

1− v2G(1)(r2, r2)
G(1)(r, r2).

(5.5)
The generalization of (5.5) for the added nth point-like potential vn at rn is
straightforward, and reads

ψ(n)(r) = ψ(0)(r) +
n

∑

i=1

ψ(i−1)(ri)

1− viG(i−1)(ri, ri)
G(i−1)(r, ri) (5.6)

this provides the main equation of this section. The next step is to get rid
of the r dependence in G(i−1)(r, ri) in order to be able to easily perform the
energy integrals in the Green function as done in Chapter 3. This means
that the dependence on r should appear only in the unperturbed quantities
ψ(0) and G(0). Therefore, the Green function G(i−1)(r, ri) involved in (5.6)
has to be expressed in terms of the unperturbed quantity G(0)(r, ri).
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5.2 The full Green function in terms of the unperturbed quantities

5.2 The full Green function in terms of the un-

perturbed quantities

Considering the nth δ−potential as a perturbation of the system with n− 1
δs, the Dyson equation relating the Full Green function i.e in the presence
of the nth point-like potential to the Green function of the system with the
first n− 1 point-like potentials reads

G(n)(r, r′) = G(n−1)(r, r′) + vn
∑

k

G(n−1)(r, rk)δk,nG(n)(rk, r
′). (5.7)

After summation (5.7) becomes

G(n)(r, r′) = G(n−1)(r, r′) + vnG(n−1)(r, rn)G(n)(rn, r
′). (5.8)

By taking r = rn in (5.7), we find G(n)(rn, r
′) as

G(n)(rn, r
′) =

G(n−1)(rn, r
′)

1− vnG(n−1)(rn, rn)
. (5.9)

Plugging (5.9) into (5.8) we find

G(n)(r, r′) = G(n−1)(r, r′) + zn(r
′)G(n−1)(r, rn), (5.10)

where we have introduced the function zn defined as

zn(r
′) = vn

G(n−1)(rn, r
′)

1− vnG(n−1)(rn, rn)
. (5.11)

The application of (5.10) for n = 1 gives

G(1)(r, r′) = G(0)(r, r′) + z1(r
′)G(0)(r, r1). (5.12)

For n = 2, Eq. (5.10) yields,

G(2)(r, r′) = G(0)(r, r′) + z1(r
′)G(0)(r, r1) + z2(r

′)G(1)(r, r2). (5.13)

Replacing G(1)(r, r2) by its expression (5.12) in (5.13) we get

G(2)(r, r′) = G(0)(r, r′) + z1(r
′)G(0)(r, r1)

+ z2(r
′)G(0)(r, r2) + z1(r2)z2(r

′)G(0)(r, r1). (5.14)

This is more adequate to write (5.14) as

G(2)(r, r′) = G(0)(r, r′) + [z1(r
′) + z1(r2)z2(r

′)]G(0)(r, r1)

+ z2(r
′)G(0)(r, r2). (5.15)
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5.2 The full Green function in terms of the unperturbed quantities

Similarly, for n = 3, the full Green function is given by

G(3)(r, r′) = G(0)(r, r′) +

{

z1(r
′) + z1(r2)z2(r

′) + z1(r3)z3(r
′)

+ z1(r2)z2(r3)z3(r
′)

}

G(0)(r, r1)

+

{

z2(r
′) + z2(r3)z3(r

′)

}

G(0)(r, r2)

+ z3(r
′)G(0)(r, r3). (5.16)

We introduce the function Z
(n)
k (r′) such that

Z
(3)
1 (r′) = z1(r

′) + z1(r2)z2(r
′) + z1(r3)z3(r

′) + z1(r2)z2(r3)z3(r
′),

Z
(3)
2 (r′) = z2(r

′) + z2(r3)z3(r
′),

Z
(3)
3 (r′) = z3(r

′). (5.17)

To construct Z
(n)
k , we should perform the maximal crossing product

zk(rk+1)...zn−1(rn)zn(r
′)

and add all the other possible products by decreasing a term after each
iteration, until we arrive to the single element zk(r

′).

The Z
(n)
k obey the following two recursion relations

Z
(n+1)
k (r′) = Z

(n)
k (r′) + zn+1(r

′)Z
(n)
k (rn+1),

Z
(n)
k+1(r

′) =
Z

(n)
k (r′)− zk(r

′)

zk(rk+1)
. (5.18)

The use of (5.17) in (5.16), allows us to write G(3)(r, r′) as

G(3)(r, r′) = G(0)(r, r′) + Z
(3)
1 (r′)G(0)(r, r1)

+ Z
(3)
2 (r′)G(0)(r, r2) + Z

(3)
3 (r′)G(0)(r, r3). (5.19)

We generalize Eq. (5.19) for any n as follows

G(n)(r, r′) = G(0)(r, r′) +
n

∑

k=1

Z
(n)
k (r′)G(0)(r, rk) (5.20)

with Z
(n)
n (r′) = zn(r

′).
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5.2 The full Green function in terms of the unperturbed quantities

To prove (5.20) we assume that it holds for n and show that it necessarily
holds for n+ 1.

We have from (5.10)

G(n+1)(r, r′) = G(n)(r, r′) + zn+1(r
′)G(n+1)(r, rn+1). (5.21)

Plugging (5.20) into (5.21) the latter becomes

G(n+1)(r, r′) = G(0)(r, r′) +
n

∑

k=1

{

Z
(n)
k (r′) + zn+1(r

′)Z
(n)
k (rn+1)

}

G(0)(r, rk)

+ zn+1(r
′)G(0)(r, rn+1), (5.22)

using the first line of (5.18), and the fact that Z
(n+1)
n+1 (r′) = zn+1(r

′), we end
up with

G(n+1)(r, r′) = G(0)(r, r′) +
n+1
∑

k=1

Z
(n+1)
k (r′)G(0)(r, rk). (5.23)

This provides a proof of the recursion relation (5.20) which is the main result
of the present section. It expresses the full Green function G(n) in terms of
the unperturbed Green function G(0).

Now, let us return to the calculation of the scattering wave-function.
Using Eq. (5.20) in (5.6), the scattering wave-function ψ(n)(r) (for n > 0)
can be written as

ψ(n)(r) = ψ(0)(r) +
n

∑

i=1

viψ
(i−1)(ri)

1− viG(i−1)(ri, ri)

{

G(0)(r, ri)

+
i−1
∑

k=1

Z
(i−1)
k (ri)G(0)(r, rk)

}

,

(5.24)

with Z
(0)
k = 0.

Replacing the Green functions G(0)(r, ri) and G(0)(r, rk) by their expres-
sions (Eq. (1.15)) in (11.21) we get

ψ
(n)
lεa (r) = ψ

(0)
lεa(r) +

∑

āl̄

∫

dε̄

ε+ − ε̄
V̂ l̄l
āa(ε̄, ε)ψ

(0)

l̄ε̄ā
(r) (5.25)

where we have introduced the matrix V̂ with matrix elements defined by

V̂ l̄l
āa(ε̄, ε) =

n
∑

i=1

viψ
(i−1)
lεa (ri)

1− viG(i−1)(ri, ri)

{

ψ
(0)∗
l̄ε̄ā

(ri) +
i−1
∑

k=1

Z
(i−1)
k (ri)ψ

(0)∗
l̄ε̄ā

(rk)

}

.

(5.26)
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5.3 Comments on the method

To compute the conductance, note that the scattering wave-function (5.25)
is analogous to the one given by Eq. (4.8). Therefore, the conductance
correction due to the scatterer can be analogously deduced by replacing the
tip matrix element by an effective one defined by (11.23). Accordingly, the
resulting conductance reads

δg = 4πIm

{

Tr[t†tV̂11 + t†r′V̂21]

}

+ 4π2Tr

{

Re[V̂11t†tV̂11 + 2V̂11t†r′V̂21 + V̂12r′†r′V̂21]

}

,

(5.27)

where V̂ ll̄
aā = V̂ ll̄

aā(ε, ε).
The case of one δ−tip located at position r0 is obtained by noticing that

Z
(0)
k = 0, therefore the Eq. (5.27) coincides with the result of the previous

chapter.

5.3 Comments on the method

The advantage of the method is to provide an analytical result for the con-
ductance. Instead of calculating the scattering matrix for each position of
the scatterer, we are only concerned with the unperturbed scattering ma-
trix, scattering wave-function and the Green function at a given energy. In
principle, this method should be quicker than the traditional calculation of
conductance, most remarkably if the potential extension is not large.

Interestingly, this method is quite useful in calculations involving disorder
average and similar memory consuming calculations. Moreover, the method
provides an algorithm that can be easily parallelized.

5.4 Summary of the method

For an implementation of the method, the following steps have to be per-
formed

• 1) Calculate the unperturbed quantities G(0) and ψ(0) and the unper-
turbed scattering matrix.

• 2) Construct the successive G(i) and ψ(i) from step 1).

• 3) Construct the coefficients z from (5.11).
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5.4 Summary of the method

• 4) Construct the coefficients Z from (5.18).

• 5) Use the Eq. (5.27) to compute the conductance.
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Chapter 6

PLDOS from SGM measurements

In this chapter the first and second order corrections to the quantum conduc-
tance given in Chapter 3 are used to derive correspondence relations between
the low-temperature SGM response (that can be measured in an experiment)
and the PLDOS in clean and disordered structures, thereby providing a way
to indirectly measure the PLDOS. The results of this chapter are in our
publication [69].

6.1 g(1)(rT) versus PLDOS in the conductance

steps

Focusing first on the QPC setup without disorder sketched in Fig. 1.6, the
asymptotic form of the scattering eigenfunctions can be used everywhere in
the 2DEG, except in and very close to the constriction. The form (1.37) of the
scattering eigenfunctions gives the product of scattering functions impinging
from different leads in the first order correction (11.9) due to a weak δ-
potential scanned in the right hand side of the QPC as

χ∗
2,ε,m(r)χ1,ε,m(r)

= Tm

{

̺
(+) 2
2,ε,m(r) +Rm̺

(+)
2,ε,m(r)̺

(−)
2,ε,m(r)

}

. (6.1)

Using the fact that ̺
(−)
2,ε,m(r) = ̺

(+) ∗
2,ε,m(r) we have

Im
{

χ∗
2,ε,m(r)χ1,ε,m(r)

}

= TmIm
{

̺
(+) 2
2,ε,m(r)

}

. (6.2)

From (1.37) ̺
(+)
2,ε,m(r) = χ1,ε,m(r)/Tm for x > 0 and Eq. (11.9) simplifies to

g(1)(rT) = 4π
M
∑

m=1

RmIm
{

χ2
1,εF,m

(rT)
}

. (6.3)
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6.1 g(1)(rT) versus PLDOS in the conductance steps

Denoting αl,ε,m(r) the argument of χl,ε,m(r), Eq. (6.3) can be written as

g(1)(rT) = 4π
M
∑

m=1

Rm sin[2α1,εF,m(rT)]|χ1,εF,m(rT)|2 . (6.4)

The sum over eigenmodes reduces to the contribution of the last one (m =
M), which is the only partially open channel having Rm > 0.

In order to establish a link between the conductance corrections and the
local properties, we recall the spinless PLDOS for electrons incoming from
lead l

ρlε(r) = 2π
N
∑

a=1

|ψl,ε,a(r)|2 . (6.5)

Interestingly, in the case of a single open channel (M = 1) there is a direct
relation between the first-order conductance change and the PLDOS,

g(1)(rT) = 2R1 sin[2α1,εF,1(rT)]ρ1εF(rT) (6.6)

for rT in the RHS of the scatterer. In a disorder-free 2DEG, the prefactor
sin(2α1,εF,1) of the SGM response is simply sin(2kFr + α0) with a constant
phase α0, thus generating half Fermi wavelength, λF/2, oscillations and a
proportionality factor 2R1 between the spatial oscillation amplitude of the
first order conductance correction in the first step and the PLDOS.

In the case of a disordered structure, Eq. (6.6) does not apply inside the
disordered region, nevertheless if the disorder is weak and leads to small-
angle forward scattering only, one can expect the structure of Eq. (6.6) to
mostly remain. For example, the phase oscillation cannot have such a sim-
ple position-dependence strictly speaking, but a paraxial optical approxima-
tion [70] holds and a fairly regular radial phase behavior of nearly the same
wavelength persists in the eigenfunctions. In these circumstances, the explicit
dependence of the SGM response on the phase of the scattering eigenfunction
might be helpful in characterizing properties of the fluctuating potential in
the 2DEG with further analysis.

In Fig. 6.1 we have numerically verified the validity of (6.6) in the pres-
ence of disorder. In the left panel of this figure the numerically calculated
SGM for very weak tip (vT = εFa

2/4) in the first conductance step is pre-
sented. We used the QPC defined in Chapter 1, the width of the QPC is
w = 11a and its length L = 19a. The disorder is generated using the proce-
dure introduced in 1.13.2. The resulting configuration is shown in Fig. 6.2.
The QPC is tuned to the first conductance step, with g = 0.7 corresponding
to the Fermi energy εF = 0.06t. In the right panel of Fig. 6.1 we evaluated
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6.1 g(1)(rT) versus PLDOS in the conductance steps

−100

−50

0

50

100

50 100 150 200

y
/a

x/a

v−1T δg

50 100 150 200

x/a

−0.04

−0.02

0

0.02

0.04

g(1)

Figure 6.1: Left panel : the numerically calculated SGM for very weak tip
(vT = εFa

2/4) in the step of conductance is presented. Right panel : the
analytical form of g(1) is calculated. Notice that in these conditions (weak
vT with QPC tuned to a step of conductance) the full SGM response is well-
approximated by vTg

(1).

the analytical form of g(1) according to (6.6). The wave-functions, their ar-
guments α1,εF,1 and the scattering matrix are calculated using Kwant. One
observes that in the presence of weak disorder the first order SGM response
is related to the PLDOS exactly as predicted by the analytical theory leading
to (6.6).

In general, the first-order conductance correction in tip-strength is not
simply proportional to the PLDOS, even in the case of a δ-tip. In fact,
g(1)(rT) is only local in the sense that (with a space independent proportion-
ality constant) Im

{

χ2
1,εF,m

(rT)
}

is the local information about the eigenfunc-
tion of the unperturbed system. However, in the case of a single partial mode
the PLDOS provides an upper bound for the absolute value of the former,
and the sinusoidal term creates a fringing effect.

For one-dimensional tight-binding systems the SGM response has been
expressed in terms of the real part of the local Green function [56, 48] and
thereby related to the LDOS. We have checked that in the case of a one-
dimensional chain the first-order conductance correction (11.9) (and therefore
also the relation (6.6)) is consistent with the result of Refs. [56, 48]. However,
(11.9) is more general and (6.6) is expected to be valid whenever there is only
one single partially open mode of the QPC, without being limited to strictly
one-dimensional systems. This issue will be discussed later in the Chapter 8.
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6.2 Correspondence between g(2)(rT) and PLDOS for perfect transmission
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Figure 6.2: Electrostatic potential in the 2DEG resulting from the disorder
configuration used in Fig. 6.1.

6.2 Correspondence between g(2)(rT) and PL-

DOS for perfect transmission

Symmetries have been shown to play a key role in the quest of identifying
SGM maps with local properties [15]. In particular, for a four-fold symmetric
QPC operating in the regime of perfect transmission, the conductance change
induced by a non-invasive local tip in the absence of magnetic field has been
shown to be proportional to the square of the LDOS, and also proportional
to the local current density. In the same framework, it has been pointed
out [67] that the correspondence with the PLDOS holds even for asymmetric
QPCs, provided that the conductance is set to the first plateau, as long as
the system remains time reversal invariant.

An important task, undertaken in this section, is the generalization of
previous results to any conductance plateau of an arbitrary QPC under the
sole assumptions of time-reversal symmetry and a local tip.

To describe transport within the Landauer formalism, the QPC can be
treated as a scatterer centered at the origin r = 0. With the definitions of Sec.
1.7 of Chapter 1, ϕ

(−)∗
l,ε,m(r) = ϕ

(+)
l,ε,m(r), and ̺

(−)∗
l,ε,m(r) = ̺

(+)
l,ε,m(r). Therefore,

for perfectly transmitted modes with Rm = 0,

χ2,ε,m(r) = χ∗
1,ε,m(r) (6.7)
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6.3 g(2)(rT) versus PLDOS near perfect transmission

in the 2DEG on both sides of the QPC. Using this relationship in the second
order correction (3.28) leads to

g(2)(rT) = −ρ21εF(rT) (6.8)

for rT on the right hand side of the QPC. Unlike the relation for the first
step, which is linear and fringed, perfect transmission on any plateau leads
to a quadratic dependence on the PLDOS without fringing. Therefore, the
conductance change due to a local tip on a plateau is unambiguously related
to the square of the PLDOS. Interestingly, no spatial symmetry is required
for the correspondence in the considered regime of conductance quantization.
Nevertheless, a perfect conductance quantization with exact unit transmis-
sion is a regime difficult to reach in experiments with real QPCs.

6.3 g(2)(rT) versus PLDOS near perfect trans-

mission

In Sec. 6.2 perfect transmission is assumed in order to establish the corre-
spondence between the second order conductance correction and the PLDOS.
Here that condition is relaxed. Beyond the unity case of perfect conductance
quantization where all Rm = 0, the first-order correction (6.4) is nonzero,
and all terms of the second-order correction g(2) in (11.11) and (3.27) must
be considered.

Begin with the situation of transmission slightly below the unity case on
the M th conductance plateau, where the transmission of the highest open
channel M is not perfect. The expressions of the scattering eigenstates pro-
vided by (1.37) can be used to find that

χ2,ε,m(r) =
1

Tm

(

1 +Rme
2iα1,ε,m(r)

)

χ∗
1,ε,m(r) (6.9)

on the RHS of a generic QPC. Here we aim at approximating the second order
conductance correction g(2) to the lowest order in the reflection coefficient
Rm, assumed to be very small.

Starting from (11.11) and (3.27) the second order conductance correction
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6.3 g(2)(rT) versus PLDOS near perfect transmission

g(2) can be written as

g(2) = 4π2
∑

mm′

{R2
m|χ1,εF,m′(r)|2|χ2,εF,m(r)|2 − T 2

m|χ1,εF,m(r)|2|χ2,εF,m′(r)|2}

+ 4π2
∑

mm′

RmTmRe{χ∗
2,εF,m

(r)χ1,εF,m(r)}(|χ2,εF,m′(r)|2 − |χ1,εF,m′(r)|2)

− 4π
∑

m

RmTmIm{χ∗
2,εF,m

(r)χ1,εF,m(r)}P
∫ ∞

εt1

dε̄

ε̄− εF
ρε̄(r).

(6.10)

In order to approximate g(2) for a tip on the RHS of the QPC, let us write
it in terms of the PLDOS from the left ρ1, expressing all the χ2’s in terms of
χ1. According to (6.9)

|χ2,εF,m(r)|2 =
|χ1,εF,m(r)|2
1−R2

m

(1 +R2
m + 2Rm cos 2α1,εF,m(r)). (6.11)

On the other hand

χ∗
2,εF,m

(r)χ1,εF,m(r) =
χ2
1,εF,m

(r)
√

1−R2
m

(1 +Rme
−2iα1,εF,m(r)). (6.12)

Thus, the real and imaginary parts of χ∗
2,εF,m

(r)χ1,εF,m(r) appearing in the
two last terms of (6.10) read

Re{χ∗
2,εF,m

(r)χ1,εF,m(r)} =
|χ1,εF,m(r)|2
√

1−R2
m

(cos 2α1,εF,m(r) +Rm),

Im{χ∗
2,εF,m

(r)χ1,εF,m(r)} =
|χ1,εF,m(r)|2
√

1−R2
m

sin 2α1,εF,m(r). (6.13)

Inserting (6.11) and (6.13) into (6.10), and only keeping the lowest order
terms in Rm, g(2) reads

g(2)(rT) = −2πρ1εF(rT)
M
∑

m=1

|χ1,εF,m(rT)|2
{

1 + 2Rm

{

cos [2α1,εF,m(rT)]

+ ηεF sin [2α1,εF,m(rT)]

}}

,

(6.14)

where

ηεF = ηεF(rT) =
1

π
P
∫ ∞

εt1

dε̄

ε̄− εF

ρε̄(rT)

2ρ1εF(rT)
(6.15)
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for positions r on the RHS of the QPC. Notice that the relation of the
LDOS to the imaginary part of the diagonal Green function Gε(r, r) implies
ηεF(r) = −Re[GεF(r, r)]/(2πρ1εF(r)). Taking Rm = 0 for all m < M gives

g(2)(rT) = −ρ21εF(rT)− 4πRMρ1εF(rT)|χ1,εF,M(rT)|2
{

cos [2α1,εF,M(rT)]

+ ηεF sin [2α1,εF,M(rT)]

}

,

(6.16)

and the small reflection amplitude is linked to the deviation from unit con-
ductance by ∆g = R2

M , where ∆g = M − g(0) quantifies the departure from
unit transmission on the M th plateau. In the case of unit transmission we
have RM = 0, and (6.16) reduces to (6.8). For completeness, in the same
regime Eq. (6.6) can be rewritten as

g(1)(rT) = 4πRM |χ1,εF,M(rT)|2 sin[2α1,ε,M(rT)] , (6.17)

which has similarities in its form with respect to the correction terms for
g(2)(rT). Recall however, the corresponding conductance correction varies
linearly with the strength of the tip potential unlike for g(2)(rT).

In the case of transmission just above the unity case, with low transmis-
sion TM+1 through the QPC for the mode M +1, a similar procedure can be
used. Assuming Rm = 0 for all m ≤ M and keeping only the lowest terms
in TM+1 yields

g(2)(rT) = −ρ21εF(rT) + 2πT 2
M+1

∣

∣

∣
̺
(−)
2,εF,M+1(rT)

∣

∣

∣

2

×
{

ρ1εF(rT) + 4π
∣

∣

∣
̺
(−)
2,εF,M+1(rT)

∣

∣

∣

2

(1 + cos [2α1,εF,M+1(rT)])
2

− 2ρ1εF(rT)ηεF sin [2α1,εF,M+1(rT)]

}

. (6.18)

The small transmission in the QPC channel M + 1 causes departures from
(6.8) that are expected to be proportional to T 2

M+1.
However, in a real system slightly above integer dimensionless conduc-

tance, the small transmission of the M + 1st channel can coexist with an
imperfect transmission of the M th channel, ∆g = R2

M − T 2
M+1, and the

departure from (6.8) has contributions from both channels. To avoid this
complication, we concentrate in the following on the case of positive ∆g, at
positions on the conductance plateau where the opening of the next channel
is exponentially suppressed and thus negligible.
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It is worth emphasizing a few features of the expressions contained in
Eqs. (6.16, 6.17). The scale of the deviations from the square of the PLDOS
is greatly magnified by being proportional to the square root of ∆g, as op-
posed to the case that would be encountered if the departure were linear. In
other words the approach to the perfect transmission case is rather slow with
respect to the limit ∆g → 0, and even tiny imperfections produce highly
visible deviations. Nevertheless, all the deviations oscillate around zero with
a wavelength on the order of λF/2, and thus a spatial averaging over a re-
gion λF/2× λF/2 results in a near uniform distribution of angles α over 2π,
giving a means for the near elimination of the correction terms in (6.16).
Thus, though with reduced spatial resolution, it is still possible to extract
the PLDOS. The PLDOS is not proportional to the LDOS in this case, and
the distinction matters.

Furthermore, since the contribution of g(1)(rT) to δg(rT) is linearly pro-
portional to the tip strength vT and the contribution of g(2)(rT) quadratic,
measurements with two well chosen values of vT would be sufficient to sepa-
rate out the contributions from Eqs. (6.16, 6.17); with a few more tip strength
measurements, noise and other inaccuracies could be overcome in the separa-
tion as well. In the event that |χ1,εF,M(rT)|2 mostly varies slowly on the scale
of λF , then probability densities due to individual eigenstates and the spatial
behavior of α could be extracted as well. Given that η(r) is related to the
phase of the real part of the diagonal Green function, in an ideal situation,
it could also be extracted.

In order to quantify the departures of g(2)(rT) from the perfect case, in-
troduce the ratio between the coefficient of the second order SGM correction
and the square of the PLDOS

κ(rT) = − g(2)(rT)

ρ21εF(rT)
(6.19)

If the unperturbed conductance g(0) is just below that of M = 1, and the
sum over QPC eigenmodes is restricted to m = 1, then

κ(r) = 1 + 2
√

∆g {cos [2α(r)] + η(r) sin [2α(r)]} (6.20)

The indices of α and η are omitted; it is understood that α = α1,εF,1 and
η = ηεF .

As mentioned above, even fairly local spatial averaging approximately
yields κ = 〈κ(r)〉 = 1. Interest is therefore in the quantity κ− 1. Similar to
the case of the first-order SGM correction at a conductance step, discussed
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in Sec. (6.1), the above relationship provides bounds for the possible values
of the ratio κ,

|κ− 1| ≤ 2
√

∆g
√

1 + η2max , (6.21)

where ηmax is the maximum value of |η(r)|. A priori, ηmax is not known,
but if not extracted as described, it can be obtained by direct numerical
computation of the scattering wave-functions (see Sec. (6.4)) or estimated
from simple setups, like that of an abrupt QPC, where the analytical form of
the scattering wave-functions is known [15]. The maximum value of η occurs
in regions where the PLDOS is weak, and can in general approach infinity.
Its actual value depends on the problem and region under consideration. In
one numerical example given ahead, its maximum is of the order of 60.

Another interesting quantity is the variance of κ− 1 given by

σ2 = 2∆g(1 + η2) (6.22)

where η2 is the average value of η2 in the scan region.

6.4 g(2)(rT) versus PLDOS for local tips : sim-

ulations

In order to test our analytical approach and go beyond the above described
perturbation theory we performed numerical simulations using the quantum
transport package KWANT [30] introduced in chapter 1. From Kwant, one
can calculate δg(r) as a direct subtraction, and g(1)(rT) or g(2)(rT) by con-
structing numerical derivatives with respect to vT.

We chose an abrupt constriction defined by a hard-walled square well
of width w = 11a and length L = 19a attached to two semi-infinite leads,
sketched in the inset of Fig. 6.3. In order to optimize the computational
time the left lead is narrowed. Fig. 6.3 shows the dimensionless conductance
through the QPC as a function of the Fermi energy of the incoming electrons.
As the latter is increased the QPC’s conductance increases in steps of unit
height. The structures on the plateaus are due to the abruptness of the QPC
that lead to Fabry-Perot like oscillations within the constriction [24].

6.4.1 Local correspondence for perfect transmission

In order to address this regime, consider the analytically predicted relation-
ship (6.8) between the second-order conductance correction g(2)(rT) for a
δ-tip and the PLDOS for perfect conductance. On the tight binding lattice
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Figure 6.3: The conductance of the QPC defined in a tight binding lattice
with lattice parameter a and hopping t as a function of Fermi energy. The
inset shows the geometry of the QPC. The width and length of the narrow
channel are w = 11a and L = 19a, respectively. The points P1–P8 indicate
the Fermi energies and unperturbed conductances at which the statistics of
Sec. 6.4 have been performed using tip positions inside the dashed white
rectangle.
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with lattice parameter a, the δ-tip is modeled as an additional on-site energy
εT on a single site, corresponding to a tip area of a2 and thus vT = εTa

2.
This strength is varied so as to extract g(2)(rT). The Fermi energies are cho-
sen on the first and second plateaus for which the values of the unperturbed
conductances g(0) are very close to perfect transmission with |∆g| < 10−5

(points P1 and P5 in Fig. 6.3). The corresponding Fermi wavelengths are
λF = 16.8a and λF = 9.4a, respectively. The resultant conductance re-
sponses are shown in Fig. 6.4, where g(2)(rT) is compared to −ρ21εF for the
first plateau case in panels (a) and (b) and likewise for the second plateau
case in panels (d) and (e). The correspondence is excellent as expected given
the regime of the calculation. This is illustrated in panels (c) and (f), which
show the differences,

[

ρ21εF + g(2)(rT)
]

, respectively, for the two plateaus. The
differences are quite small as is expected and they show the λF/2 oscillations,
which are characteristic of the correction terms for imperfect transmission.

6.4.2 Departures from local correspondence for imper-

fect transmission

It is shown in Sec. 6.3 that the precise local correspondence between the
second-order SGM correction and the PLDOS squared degrades away from
perfect transmission. We now present a quantitative numerical analysis of the
departure from local correspondence for the example of the second conduc-
tance plateau of the QPC. Similar results can be obtained on other plateaus.
Fig. 6.5 presents the values of g(2)(rT) and ρ21εF at different points of the
scanned region inside the white dashed rectangle shown in the inset of Fig.
6.3. The region of length 10w has been chosen so as to contain points close to
the QPC and at larger distances. This region width is small as compared to
the width of the 2DEG (30w), and additional lateral leads on the full length
of the right hand side are used in order to avoid finite size effects.

The data shown in Fig. 6.5 confirm that the exact point-by-point local
correspondence is progressively broken as |∆g| increases. Close to the perfect
transmission condition, for the case with ∆g = 8 × 10−6 (P5 in Fig. 6.3
with scans depicted in the lower panels of Fig. 6.4), the equivalence between
−g(2)(rT) and the square of the PLDOS is attained (black dots). For other
points of the unperturbed conductance shown in Fig. 6.3, P6 with ∆g =
5×10−4 (blue), P7 with 10−3 (green) and P8 with 6×10−3 (red), the sampled
points exhibit progressively wider distributions around the equivalence (6.8).
The distributions are displayed in Fig. (6.6), where κ−1 is plotted for different
Fermi energies on the first plateau (P1, P2, P3, and P4 in Fig. 6.3), labeled
by the value of ∆g. In agreement with our analytical findings of the previous
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Figure 6.4: Upper row : −g(2) (with the energy and length units introduced
through the hopping integral t and the spatial tip extension a2) vs. the tip
position for the first (a) and second (d) plateaus (points P1 and P5 in Fig.
6.3, respectively) Central row: the square of the PLDOS for the same points
on the first (b) and second (e) plateau. Last row: difference between the two
first rows. The QPC is situated at the left side of the figures.
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Figure 6.5: Second order SGM correction vs. ρ21εF at random sampled tip
positions in the scanned region for different values of the unperturbed con-
ductance on the second plateau (points P5, P6, P7, and P8 in Fig. 6.3).
The corresponding departures from the quantized value are ∆g = 8 × 10−6,
5 × 10−4, 10−3, and 6 × 10−3 for the black, blue, green and red points, re-
spectively. Inset: the same data are presented after a spatial average over a
disc of radius of λF/2, exhibiting a clear data collapse.
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Figure 6.6: κ− 1 is plotted vs. the departure from perfect transmission ∆g,
when a wide region in the right side of the QPC is sampled. The results for
the clean structure of Figs. 6.4 and 6.5, ∆g = 6 × 10−6 (black; P1 in Fig.
6.3), ∆g = 8× 10−5 (blue; P2), 7× 10−4 (green; P3) are presented, but those
for ∆g = 7× 10−3 (red; P4) are out of the scale of the main figure. The data
corresponding to two different disorder configurations are represented by the
grey distributions. The black solid lines show the analytical bounds κ± of
Eq. (6.21) taking ηmax = 60. Upper inset: the probability density of κ − 1.
The color code is the same as in the main figure. For comparison, the dotted
line shows a Gaussian probability density. Lower inset: the corresponding
standard deviation vs. ∆g. The black solid line corresponds to the analytical
expression 6.22 of σ with η2 = (ηmax/2)

2.
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section, the average value of κ remains equal to one, but the width of the
distribution drastically increases with ∆g within the bounds κ± established
in Eq. 6.21 (solid lines) using the value ηmax = 60 of the abrupt QPC.

The probability density of (κ − 1)/σ is shown in the upper inset of Fig.
6.6, for the same positions on the first conductance plateau. The rescaling
by the variance collapses the probability densities for all the values of ∆g
to approximately a universal Gaussian form (dotted line). The analytical
result of 6.22 for the standard deviation σ of the ratio κ from its mean value
(κ = 1), is evaluated using the assumption η2 = (ηmax/2)

2, and is shown to
agree with the numerical results (lower inset of Fig. 6.6).

The possible connection of SGM response with local properties needs
to be extended to the realistic situation where the QPC is surrounded by a
disordered 2DEG. Though it is difficult to treat this case analytically because
the asymptotic form of the scattering wave-functions is attained only beyond
the region of disorder far from the QPC, the incorporation of disorder in the
numerically tackled model is straightforward. We assume the disorder to be
due to randomly distributed donor atoms in a plane situated at a distance
z = 10a, with a concentration of Nd = 4 × 10−4a−2. By taking a = 5nm,
Nd is equal to 1012cm−2, which is a realistic value for a high mobility 2DEG,
and corresponds to elastic and transport mean free paths of 1µm and 52µm,
respectively. The two vertical gray lines in Fig. 6.6 correspond to samplings
of different disorder configurations resulting in small departures from unit
transmission, which are quantified by the values of ∆g. Thus, disordered
QPCs, as well as clean ones, have departures from the local relation between
−g(2)(rT) and the PLDOS squared that are uniquely governed by the crucial
parameter ∆g.

6.4.3 Locally averaged correspondence for local tips

Sections 6.3 and 6.4.2 show that even small deviations from perfect conduc-
tance drastically alter the SGM-PLDOS correspondence. However, according
to Eq. 6.20 and the calculations of the (Fig. 6.5) inset, the average of κ is
equal to unity. The precise κ values though should fluctuate in a quasi-
random way with a standard deviation scaling as the square root of ∆g.
Such a behavior is the signature of the λF/2-wavelength oscillations in the
SGM response occurring in the clean case, which is modified in the presence
of disorder. Nevertheless, as discussed in Sect. 6.3, the oscillations should self
cancel once averaged over a domain of length scale as short as λF/2 in both
directions of the plane. In order to verify this interpretation, the numerically
obtained values are averaged over a disk of radius of λF/2. As illustrated
in the inset of Fig. 6.5, the averaging results in a data collapse yielding the
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Figure 6.7: SGM response for two tip strengths, vT = εFa
2/4 (left column)

and vT = 3εFa
2 (right column) with ∆g = 1.3× 10−4 on the second conduc-

tance plateau of a QPC in a disordered 2DEG. The disorder configuration is
the same as in Sec. 6.1, but the strength is increased by a factor of 10. Or-
dered vertically for each case, the quantities plotted are: full response δg(rT),
first correction g(1)(rT), and second correction g(2)(rT). The changing nature
and relative balance of the different order terms is clearly visible. The weaker
tip strength is expected to be dominated by the first order term in the left
column, but not so for the stronger tip strength in the right column.
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Figure 6.8: Extracting an accurate PLDOS squared from the full SGM
response in the weakly invasive regime for the disorder configuration of Fig.
6.7, for the weaker tip strength vT = εFa

2/4: (a) δg(rT) on the right side
of the QPC ; (b) the quadratic tip dependence portion of δg(rT); (c) the
negative of the squared PLDOS, −ρ21εF . In (d), (e), and (f), respectively, the
data of panels (a), (b), and (c) have been averaged over a disc of radius λF/2.
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equivalence between 〈−g(2)(rT)〉 and 〈ρ21εF(rT)〉, even in the case of imper-
fect unit transmission. The recovery of the SGM-PLDOS correspondence
upon averaging shows that there is a global structural correspondence with
a characteristic length scale given by the Fermi wavelength. However, this
correspondence is found for a local tip and only between the PLDOS squared
and the second order correction.

A finite temperature also has a tendency to reduce the fringes with period
λF/2 that are the main deviations from the SGM-PLDOS correspondence.
Though the related mechanism is an energy average, very different from the
spatial average proposed above, it might still be possible that a moderate
temperature helps to improve the extraction of the PLDOS from SGM data.

6.5 Full SGM response for local tips

A priori, from an experimental point of view, the relationship between the
various order terms and the full conductance change is not obvious. Even
for weakly imperfect transmission somewhere on a plateau, depending on
the tip strength, the full SGM response may depend not just on the leading
second order term, but also crucially on the first and the other higher order
terms. Thus, δg(rT) can vary considerably as a function of the tip strength
for less than perfect transmission cases, which would most often be the case
in experiments. This is illustrated in Fig. 6.7, where δg(rT), g

(1)(rT), g
(2)(rT)

are plotted for two different tip strengths. The longer system treated here, in
comparison with the simulations of Fig. 6.4, is numerically more demanding
and thus the width of the 2DEG on the right hand side of the QPC is
limited to 20w. The specific example illustrated is on the second plateau
of the quantized conductance where ∆g = 1.3 × 10−4 using tip strengths
of vT = εFa

2/4 and vT = 3εFa
2. The characteristic branching behavior of

the fringes due to disorder [5] is observed. The changing nature of the full
SGM response and its relationships with the linear and quadratic parts of
the response are clearly seen.

Continuing to restrict ourselves to the weakly invasive regime, if the goal
were to extract a local quantity, in this case, the square of the PLDOS, two
operations would greatly enhance the quality of the analysis. The first is
to make a few measurements with different tip strengths. Depending on
the accuracy of the measurements or ambient noise, this would allow one to
separate linear, quadratic, or even higher order variations with respect to tip
strength. The quadratic dependent response is the one related to the PLDOS
squared; see Eq. (6.16). Second, one would average the data over a region
of sidelength or radius λF/2. Consider the weak tip strength case illustrated
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Figure 6.9: Cross-correlation factor (6.23) as a function of the strength vT
of a local tip (horizontal axis) and the deviation from perfect transmission
(vertical axis), on the second conductance plateau of the QPC in a disordered
2DEG of Figs. 6.7 and 6.8.

in Fig. 6.7. There, the first order term dominates the full SGM response
δg(rT). Nevertheless, extracting first the quadratic tip dependent part of the
full response before averaging leads to a much more accurate extraction of
the PLDOS squared. This is illustrated in Fig. 6.8. In the first row, δg(rT)
is shown with its locally averaged image to the right. In the next row, the
quadratic tip dependence is deduced first, and then averaged. Finally in the
bottom row, the negative of the squared PLDOS is plotted along with its
average. The improvement in the correspondence of the quadratic portion of
δg(rT) relative to the full response to the average PLDOS is quite striking.

The results shown in Fig. 6.8 demonstrate that the combined operations
of extracting the quadratic tip dependence of δg(rT) and λF/2-averaging
result in nearly perfect extraction of the PLDOS squared. Still, it is valuable
to have a quantitative measure of the quality of this process to answer how
well this works as a function of the imperfection of transmission on or near
a plateau, and how well it works as a function of tip strength if one chooses
just to use δg(rT) without extracting the quadratic tip-dependence first. A
good measure is given by the cross-correlation factor [55]

C =
|(〈δg〉 − δg)(〈ρ2〉 − ρ2)|

σδgσρ2
(6.23)
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Figure 6.10: Cross-correlation factor C (6.23) vs. the strength of a local tip
in the disordered system of Fig. 6.7.

The averages, symbolized by the overlines, are taken over the scanned area
in the right of the QPC (in contradistinction to the local O(λF/2) averages,
〈...〉, defined in Sec. 6.4). The standard deviations of the two quantities are
the usual factors of a properly normalized correlation function. Applied to
δg(rT) for a range of tip strengths and ∆g’s gives the results shown in Fig.
6.9. It shows two correlated trends. The correlation coefficient decreases with
decreasing tip strength and with increasing ∆g. The value of vT for which
near perfect correlation is achieved depends on the departure ∆g from perfect
transmission. Fig. 6.10 shows an example for the case of the disordered
system and tip strengths used in Fig. 6.7, where the saturation is reached
rather quickly as vT/a

2 increases beyond the Fermi energy.
Interestingly, the above dependence of δg(rT) on the tip strength gener-

ates a criterion for the validity of perturbation theory [11]. Note that the
criterion for the Born approximation in a one-dimensional scattering prob-
lem [71] vT ≪ εFλF is consistent with our numerical results since the linear
extension of the local tip in our tight-binding model a is much smaller than
λF. In this regime, close to the perfect transmission, the second order contri-
bution prevails, and the full SGM response to a local tip is highly correlated
to the PLDOS squared even for tip strengths larger than the Fermi energy.
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Chapter 7

Full SGM response for non-local
tips

In the previous chapter the SGM response to a local tip has been discussed.
While the case of a local tip is the simplest to analyze, the existing experi-
mental implementations of SGM setups involve extended tips. In this chapter
we discuss the case of extended tips. Considering the tip as a point charge
at a distance d from the 2DEG, the tip profile in the plane of the 2DEG is
of the form

f(r) =
1

2πd2

[

1 +

(

r− rT

d

)2
]−3/2

. (7.1)

In Fig. 7.1 the SGM response is calculated for different tip profiles with the
same depletion diameter D = 20a that characterizes the size of the region
in which the tip induced potential is bigger than the Fermi energy. While in
(a) and (b) we have respectively used a Gaussian and a hard disc of diameter
D to model the SGM tip, in (c) and (d) the profile 7.1 and a Lorentzian
have been respectively considered. The prefactor of the tips has been fixed
to vT = 3εFa

2 and the parameter d has been adjusted to yield the same
depletion diameter D = 20a.

As we can see from Fig. 7.1, the main features of the SGM map are
mainly conserved for all tip models except at the QPC opening where the
tails of the tips play an important role. This demonstrates that for tip
strengths strong enough to produce a disk of depletion at the level of the
2DEG, the main feature determining the SGM response is the diameter D
of such a disk, and the details of the tip profile are of lesser importance. We
therefore adopt the tip profile (7.1) for the numerical simulations, where D =
2d[{vT/(2πd2εF)}2/3 − 1]1/2 is varied. Working in the previously established
regime of strong tip strength (maximum tip potential VT(rT) = vT/(2πd

2) =
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Figure 7.1: SGM response calculated using different tip shapes with the
same depletion diameter D = 20a and strength vT = 3εFa

2. While in (a)

a Gaussian profile f(r) = 1
2πd2

e−
(r−rT)2

2d2 is used to model the tip, a hard
disc of diameter D has been considered in the panel (b). Panels (c) and
(d) show the results obtained using (7.1) and a Lorentzian form f(r) =

1
2πd2

[

1 +
(

r−rT
d

)2
]−1

, respectively. The depletion diameter of the Gaussian

and the Lorantzian tips are respectively given by D = 2
√
2d ln{vT/(2πd2εF)}

and D = 2d[{vT/(2πd2εF)} − 1]1/2.
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Figure 7.2: SGM response calculated using the tip shape (7.1) for fixed tip
potential height vT/(2πd

2) = 2εF and varying depletion disk size D = λF/2
(a), D = λF (b), and D = 2λF (c). Panels (d), (e), and (f) show the averages
of the SGM responses over a disc of radius λF/2 for the same tip sizes.

80



0.2

0.6

1

0 1 2 3 4

C

D/λF

Figure 7.3: The cross correlation factor C (6.23) vs. the spatial tip-extension
for the smooth extended tip shape (7.1) (grey symbols) and for a hard-disc
tip (black symbols), in a disorder-free structure. Squares and triangles repre-
sent the correlation factor between the SGM response with the unperturbed
PLDOS at the tip center and at the classical tuning points, respectively.

2εF) the SGM response δg(rT) for varying d and thus different depletion
diameters D is present in Fig. 7.2, where the unperturbed conductance and
the disorder configuration is the same as in Fig. 6.7 (second conductance
plateau with ∆g = 1.3× 10−4).

ForD = λF/2 (panel (a)), the SGM scan resembles that of the δ-tip (panel
(d) of Fig. 6.7), but with values of δg(rT) that are one order of magnitude
larger due to the tip extension. For larger tip extensions, D = λF (panel
b) and D = 2λF (panel c), the SGM image gets more blurred and some
resolution is lost. This blurring effect is more pronounced on the averaged
conductance changes, as depicted in the right column panels of Fig. 7.2.

The Fig. 7.3 shows the cross-correlation C between the non-local SGM
and the squared unperturbed PLDOS as a function of the depletion diameter
D. Grey symbols correspond to the case of a tip shape of the form (7.1), the
black ones to the case of a hard wall potential of diameter D. The squares
represent cross-correlations of the SGM response with the PLDOS at the tip
center, while triangles depict the results obtained when the PLDOS is taken
at the classical turning points situated at the edge of the depletion disk.
Since the classical turning point is not determined uniquely in the presence
of disorder, the data in this inset are for the disorder-free structure. We have
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checked that including disorder does not change significantly the results when
the tip center is taken as the reference point for the PLDOS. For both tip
shapes, (7.1) and hard wall, and independently of where the PLDOS is taken,
the cross-correlation decreases with increasing depletion diameter D.

If the PLDOS is taken at the classical turning point (triangles) instead of
the tip center (squares), the SGM response becomes less correlated with the
PLDOS. The classical argument of Ref. [38] that predicts that a large circular
hard-wall tip does image the local properties of the unperturbed structures by
reflecting back the classical trajectories that hit the tip with normal incidence
does not appear as a limiting case of our results. One reason could be that
our numerics did not reach sufficiently large depletion disks with D ≫ λF to
observe such a behavior [72]. However, since our analytics do not predict any
simple relationship between the SGM and the PLDOS at the classical turning
point, another mathematical relation between the two quantities cannot be
excluded from our study.

82



Chapter 8

Link between SGM response and
the Hilbert transform of the
LDOS in 1D and 2D

In the introduction we have mentioned the theoretical work [48] stating that
the linear term of the SGM response in the perturbative regime and the LDOS
are related by a Kronig-Kramers relationship. Here we discuss in more detail
this correspondence and show that it is only valid for one-dimensional scat-
terers. A numerical check that illustrates the breakdown of such a relation
in 2D is provided.

8.1 Derivation of the SGM response for a 1D

scattering problem

In Ref. [48] Pala and coworkers found that the first order perturbation the-
ory of the SGM response is proportional to the real part of the diagonal
Green function, which is simply the Hilbert transform of the LDOS. But
their derivation was based on a one dimensional setup. Our purpose in this
chapter is to test the validity of such a correspondence in two dimensions.

We will first derive the underlying correspondence relationship using a
procedure presented by Gasparian, Christen and Büttiker in 1996 [56], before
the development of the SGM technique.

Let us consider a one-dimensional scattering potential located in the re-
gion x1 < x < x2 and ideal 1D leads attached at positions x1 and x2 .
The scattering properties are described by the 2 × 2 scattering matrix S,
whose matrix elements can be given in terms of the Green function using the
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8.1 Derivation of the SGM response for a 1D scattering problem

Fisher-Lee equation [18] :

Sll′ = −δll′ + ih̄
√
vlvl′G(0)(xl, xl′), (8.1)

where vl is the speed of the carriers coming from the one dimensional lead l
and G(0)(xl, xl′) is the unperturbed Green function between positions xl and
xl′ at the boundaries of the system.

The transmission across the potential barrier in the absence of any per-
turbation is simply

T (0) = |S12|2. (8.2)

Now we would like to calculate the correction to the transmission T (0) in
first order in a perturbation δu(x) = δu0δ(x− x0).

To do so we evaluate the functional derivative of the transmission T with
respect to the perturbation potential δu

δT

δu0
= S∗

12

δS12

δu0
+ S12

δS∗
12

δu0
. (8.3)

According to (8.1) we have

δS12

δu0
= ih̄

√
v1v2

δG(x1, x2)
δu0

. (8.4)

Writing down the Dyson equation up to the first order in δu(x) = δu0δ(x−x0)

G(x1, x2) = G(0)(x1, x2) +

∫

G(0)(x1, x
′′)δu(x′′)G(0)(x′′, x2)dx

′′, (8.5)

we find
δG(x1, x2)

δu0
= G(0)(x1, x0)G(0)(x0, x2), (8.6)

therefore
δS12

δu0
= ih̄

√
v1v2G(0)(x1, x0)G(0)(x0, x2). (8.7)

Plugging (8.7) in (8.3) one finds

δT

δu0
= h̄2v1v2G(0)∗(x1, x2)G(0)(x1, x0)G(0)(x0, x2) + h.c., (8.8)

where h.c. extends for the hermitian conjugate operation.
According to Aronov’s formula [73]

G(0)(x1, x)G(0)(x, x2) = G(0)(x1, x2)G(0)(x, x). (8.9)
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8.1 Derivation of the SGM response for a 1D scattering problem

Thus the variation of the transmission T is

δT

δu0
= h̄2v1v2|G(0)(x1, x2)|2(G(0)(x0, x0) + G(0)∗(x0, x0)), (8.10)

and finally the first order correction due to the potential δu(x) is

δT

δu0
= 2T (0)Re(G(0)(x0, x0)) (8.11)

with T (0) the transmission amplitude in the absence of the perturbation
δu(x). This is the formula also obtained by Pala and coworkers in [48],
but their extension of such a correspondence relation into higher dimensions
was not justified. We now try to understand the difference between the one
and two-dimensional cases in view of the previous result as well as the one
obtained in Ref. [11], which have been presented in Chapter 3.

The first order perturbation theory [11] has been recalled in the equation
(11.9) in Chapter 3. So it does not seem to be related to the Hilbert trans-
form of LDOS in contrast to the one dimensional first order perturbation
theory (8.11). The reason for that is simple. Let us start from the Lipmann-
Schwinger equation (4.3) of the Chapter 3 that we write here up to the first
order in the tip strength as

ψlεa(rT) = ψ
(0)
lεa(rT) + vTG(0)(rT, rT, ε)ψ

(0)
lεa(rT). (8.12)

We now take the absolute square of both sides of (8.12) and omit the terms
in v2T, leading to

|ψlεa(rT)|2 = |ψ(0)
lεa(rT)|2 + 2vTRe(G(0)(rT, rT, ε))|ψ(0)

lεa(rT)|2. (8.13)

Summing over a leads to the relation

ρlε(rT)− ρ
(0)
lε (rT) = 2vTρ

(0)
lε (rT)Re(G(0)(rT, rT, ε)) (8.14)

with ρlε the PLDOS coming from lead l in the presence of the tip and ρ
(0)
lε

the unperturbed PLDOS injected from the lead l. Notice that the same
relation holds for the full LDOS. This relation is correct for any dimension.
Now for a one dimensional scattering problem the ρl’s are directly related to
the transmission amplitudes, therefore the first order conductance correction
obeys the same relation and reads

δg = 2vTg
(0)Re(G(0)(rT, rT, ε)) (8.15)
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8.2 Numerical test

This is the reason why in 1D the Hilbert transform appears in first order
perturbation theory while it is absent in the two dimensional case. However
the second term of the perturbation theory [11] contains a term which is
proportional to the Hilbert transform of the LDOS (which is equal to the real
part of the diagonal Green function) as mentioned in Sec. 6.3 of Chapter 6.

8.2 Numerical test

To illustrate the non correspondence between the SGM response and the
Hilbert transform of the LDOS in 2D we have considered the ring geometry
(see Fig. 4.1) used in chapter 6. We adopt here the same parameters.

The aim is to numerically calculate the SGM response and compare it
with the Hilbert transform of the LDOS (11.17) as well as the first order
perturbation theory of [11].

As illustrated in panel (a) of Fig. 8.1, the full SGM response to a delta
tip, the unperturbed Green function and scattering wave-functions are nu-
merically calculated using Kwant. Since we are interested in the linear term
of the conductance corrections we have chosen a very weak tip strength
vT = εFa

2/30 where εF is the Fermi energy of the electrons, chosen here
to be equal to 50 meV and a the grid spacing of the tight-binding network.

We observe that the analytical formula (11.9) of the first order pertur-
bation theory provided by [11] and plotted in the panel (c) of Fig. 8.1 does
reproduce quite well the fully numerically calculated SGM response in panel
(a) of the same figure. However the formula (11.17) provided by [48], and
plotted in panel (b) does not. It is important to mention here that the an-
alytical formula of the first order perturbation theory (11.9) is evaluated by
using the scattering matrix and the wave functions of the system provided
by Kwant.

Although some of the structures seen in the LDOS plotted in panel (d)
seem to be present in all the other maps, only the first order perturbation the-
ory result [11] plotted in (c) provides a good agreement with the numerically
calculated SGM response.

Furthermore, Pala and coworkers have presented numerical simulations
[48] showing that in cases where the wave functions present a scarring be-
havior along periodic orbits [74], the SGM is well correlated with the LDOS.

From the numerical results presented in Fig. 8.1 we can conclude that the
SGM response in 2D has no evident relationship with the Hilbert transform of
the LDOS. Although a qualitative similarity with conductance measurements
is widely reported in the literature [6, 7, 47, 48] the quantitative analysis of
the presumed link between the two quantities is still missing in case of systems
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8.2 Numerical test

out of the quantization regime. Thus, more theoretical efforts are needed to
understand the underlying correspondence if there is any.
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Figure 8.1: (a) The SGM response in the presence of a delta tip with strength
vT = εF/30 where εF = 50meV . (b) The result of 11.17 which is proportional
to the Hilbert transform of the LDOS is shown. In (c) The linear term of the
SGM response calculated from the scattering wave-functions [11] is plotted.
(d) The total LDOS. Al the data are calculated at the same Fermi energy.
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Chapter 9

Energy dependent branches and
interference phase shifts

In this chapter we present numerical simulations in the attempt to model
physical effects recently observed in the experiment of our ETH colleagues.
First, we discuss the branching behavior depending on the Fermi energy.
Second, we analyze the temperature dependent phase shifts of the SGM
signal. By considering a realistic QPC in the presence of smooth disorder,
we are able to reproduce the experimentally observed effects. We provide
in this chapter a mechanism that may be at the origin of this behavior,
and we present in Appendix D complementary information about the energy
dependent SGM branches.

9.1 Energy dependent branches

The aim of this section is to present numerical simulations of electron branches
in a disordered 2DEG, and see how their location is affected by changing the
Fermi energy of the electrons.

This study has been motivated by recent experimental work performed
at ETH Zürich [Beat Braem et al, private communication, 2017]. In this
experiment a back gate has been used to modify the carrier density in the
2DEG, allowing for the change of the Fermi energy of the electrons. The
stability of the electron branches against the change of Fermi energy has
been observed.

In order to understand the origin of the observed behaviour we performed
numerical simulations considering the QPC model described below.
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9.2 Model for a smooth QPC

Figure 9.1: The potential generated by the model 9.1 with Vg = 0.1t.

9.2 Model for a smooth QPC

The confining potential of the QPC is obtained [75] from the analytical ex-
pression of the electrostatic potential created by a metallic plate situated at
given distance d from the 2DEG. For a metallic gate horizontally situated
between L(left) and R(right) and vertically disposed between B(bottom) and
T (top) and situated at a given distance d from the 2DEG, the potential reads
[75]

V (x, y) = Vg(P (x−L, y−B)+P (x−L, T−y)+P (R−x, y−B)+P (R−x, T−y))
(9.1)

where Vg is the potential at which the gate is held and

P (u, v) =
1

2π
arctan(

uv

d
√
u2 + v2 + d2

). (9.2)

Taking d = 20a, the potential resulting from two rectangular gates of width
|R − L| = 29a, and separated by the distance W = 66a is presented in Fig.
9.1.

In the left panel of Fig. 9.2 the SGM response is calculated at different
energies for the disorder configuration (1) (see Appendix D). At each Fermi
energy, the QPC is tuned to the third plateau of conductance (g(0) ≈ 3).
The tip profile (7.1) has been used. The strength of the tip is varied with
the Fermi energy in order to have the same depletion disc diameter. We take
vT = 10ta2 and fix the distance parameter d at d = 10a. We observe that
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9.2 Model for a smooth QPC

the branches barely move when the Fermi energy is changed from 0.4t to 0.2t
while they change drastically between EF = 0.2t and EF = 0.1t. The same
behavior is observed in the PLDOS (right panel of Fig. 9.2).

In Fig. 9.3 the same data as in Fig. 9.2 are presented for the disorder
configuration (2) (see Appendix D). In these data the tip parameters are
fixed at vT = 10ta2 and d = 10a. We observe the same effect as in Fig. 9.2.

Since the same behavior is present in the unperturbed PLDOS, we think
that this effect can be reproduced without calculating the SGM response
which is numerically demanding. However, the PLDOS can be easily calcu-
lated for more energies to investigate in detail the energy dependence of the
branch locations.

In Fig. 9.4 and Fig. 9.5 the PLDOS is calculated for intermediate en-
ergies not presented in Fig. 9.2 and Fig. 9.3. We observe that for energies
varying from εF = 0.2t to εF = 0.35t the branches are very similar. However,
they start to slightly change below εF = 0.15t for both of the two disorder
configurations. Other disorder realizations are also investigated. The cor-
responding data are shown in Fig.D.2 and Fig.D.3 of Appendix D. Further
data illustrating such an effect when the Fermi energy is fixed at εF = 0.2t
and the strength of the disorder is varied, are shown in Fig.D.4, Fig.D.5 and
Fig.D.6 of Appendix (D). We think that the branches should be stable as
long as εF is larger than a critical potential defined by the disorder level, but
a quantitative study is needed to rigorously clarify on the above observations.

9.2.1 Interference phase shifts at high temperature

The search for new coherent effects possible to be imaged by the SGM tip is
always active in both the experimental and theoretical sides. In a very recent
experiment (not published yet), the team of ETH Zürich [Beat. Braem et al,
private communication (2017)] has observed some interference features that
have not been previously revealed in any other SGM experiment. In this
experiment interference phase shifts persist at high temperatures.

With the aim of understanding this experimental finding we further per-
formed numerical simulations. We considered the QPC model presented in
Sec. 9.2. The QPC is tuned to the third plateau of conductance (g(0) ≈ 3).
The used tip potential is of the form (7.1) with vT = 10ta2 and d = 10a.

Assuming that the observed phase shifts are due to some hard impurities
distributed in the neighborhood of the QPC, we intentionally placed two
hard impurities in the direction of flow. In the left panel of Fig. 9.6 the
SGM conductance is numerically calculated. The narrow branches that are
clearly seen in the PLDOS shown in the right panel, are due to the hard
impurities. These narrow branches are not present if no hard scatterers are
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9.2 Model for a smooth QPC
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Figure 9.2: In the left column the SGM response is shown at different Fermi
energies for disorder configuration (1) (see appendix D). The tip potential is
adjusted with the Fermi energy such that the depletion disc is the same in
all the maps, we have taken vT = 10ta2 and d = 10a. In the right column the
PLDOS is shown for the same disorder configuration. The disorder strength
γ is fixed at γ = 0.2.
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Figure 9.3: The same data as in Fig. 9.2 but for the disorder configuration
(2) (see appendix D). The disorder strength γ is fixed at γ = 0.2 and the tip
parameters are not adjusted but fixed at vT = 10ta2 and d = 10a.
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Figure 9.4: PLDOS at different energies for configuration 1. The disorder
strength γ is fixed at γ = 0.2.
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Figure 9.5: PLDOS at different energies for configuration (2). The disorder
strength γ is fixed at γ = 0.2.
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9.2 Model for a smooth QPC

Figure 9.6: In the left panel the SGM response in the presence of hard
impurities is shown. The QPC situated at (x = 0, y = 0) is tuned to the
third conductance plateau. In the right panel the corresponding PLDOS is
presented.

considered.
To investigate the persistence of the phase shifts (see the black arrow in

Fig. 9.6 ) at high temperature we calculated the SGM response at different
temperatures. To include temperature, we used the finite temperature Lan-
dauer formula (1.41). We calculated the transmission at different energies,
and took the average with weights defined by the Fermi-Dirac distributions.
The results are shown in Fig. 9.7.

The mechanism we propose to explain this observation is as follows. In
the presence of hard impurities the unperturbed branching pattern can be
strongly modified and narrow branches can develop (see the PLDOS in the
right panel of Fig. 9.6 ). In this situation two trajectories originating from
two adjacent branches can interfere giving rise to the observed phase shifts.
Since these interferences are yielded by such trajectories they can persist at
higher temperatures as long as the thermal length is bigger than the length
difference between the involved trajectories.

In conclusion, our numerical simulations of the SGM and the PLDOS in
a realistic QPC, show that the electron branches due to the surrounding dis-
order are very robust against the change of Fermi energy as long as the ratio
between the latter and the disorder strength is bigger than a critical value
but a quantitative argument is missing. The phase-shifts observed in the
experimental data of our colleagues from ETH Zürich have been successfully
reproduced by incorporating hard impurities in our numerical simulations.
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Figure 9.7: The SGM response in the presence of hard impurities at different
temperatures.
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Chapter 10

Conclusions and perspectives

10.1 Extraction of PLDOS from SGM

With the aim of extracting information about local electronic properties in
phase-coherent devices from SGM measurements, we have investigated the
correspondence between the SGM response in the vicinity of a QPC and the
unperturbed PLDOS.

Only on the first conductance step, the PLDOS could be shown to provide
an upper bound for the magnitude of the first-order SGM correction. We have
shown analytically that the unperturbed PLDOS squared is unambiguously
related to the second-order conductance correction induced by a local tip,
provided that the system is time-reversal symmetric and the QPC is tuned
to perfect transmission where the conductance is a multiple of 2e2/h. The
second-order correction dominates the SGM response on a perfect conduc-
tance plateau if the tip strength is not too strong. If the QPC transmission
is imperfect, the exact correspondence between the SGM and the PLDOS
is broken, and the departures are quantified with a perturbative approach.
It does not depend on fine details of the setup, but rather on the scale of
the unperturbed conductance’s deviation ∆g from the perfectly quantized
conductance. .

We have demonstrated that a correspondence between the locally av-
eraged second-order SGM response and the PLDOS survives for imperfect
transmission obtained when the highest propagating eigenchannel is not com-
pletely open. Numerical simulations within a recursive Green function ap-
proach have confirmed our analytical findings and shown that they also hold
in the case of disordered systems. We think that a moderate temperature
would play the same role as the local averaging and helps to reestablish the
SGM-PLDOS correspondence even in the case of non perfect unit transmis-
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sion. Moreover, we found that in the case of a local tip, and sufficiently small
∆g, the full SGM response is related to the PLDOS once the tip is strong
enough such that the second-order conductance correction dominates.

In the case of non-local tips, where the depletion disk created by the tip
exceeds half the Fermi wavelength, the correspondence between the SGM
response and the PLDOS established for weak local tips degrades with in-
creasing depletion disk radius.

10.2 Saturation of the SGM response for strong

delta tips

We have presented the analytical expression of the full SGM conductance
beyond perturbation theory under the assumption of having a delta like tip.
The simplification of the Lippmann-Schwinger and Dyson equations has al-
lowed us to express the scattering wave-function in the presence of the δ−tip
in terms of the unperturbed scattering wave-function. Therefore, the energy
integrals involved in the conductance calculations turned out to be tractable.
The result shows that when the strength of the tip is much bigger than the
Fermi energy the conductance saturates at values given by the unperturbed
Green function. We have checked this behavior by means of numerical sim-
ulations.

If the tip is not in the form of a δ− function, we have shown in Chapter
5 that an iterative method can be used to obtain the SGM response in the
presence of an arbitrary tip potential.

10.3 Hilbert transform of the LDOS and SGM

in 2D

In addition to the perturbation theory [11, 15] presented in Chapter 3, a
somewhat different perturbative approach [6] has related the the SGM re-
sponse to the Hilbert transform of the LDOS. However, in Ref. [6] a one-
dimensional chain has been assumed to obtain the involved correspondence
relation between SGM and LDOS.

In order to understand the difference between the two results we investi-
gated in Chapter 8 the circumstances under which the interpretation of the
SGM signal as a Hilbert transform of the LDOS is possible. We have shown
that this relationship is characteristic of 1D scattering problems. Since there
is no analytical evidence of this interpretation in higher dimension we have
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performed numerical simulations to test whether it holds in 2D or not. Our
numerical simulations show that while the analytical expression provided by
Ref. [11, 15] reproduces the SGM signal, the expression of the conductance
given by the Hilbert transform of the LDOS is different from the SGM re-
sponse. Meaning that the interpretation provided by [6] does not hold for
2-dimensional scattering problems.

10.4 Perspectives

10.4.1 Numerical implementation of the Green function

method for the conductance in the presence of a

moving scatterer

In Chapter 5 we have presented a method allowing us to find the analytical
expression for the conductance of a finite moving scatterer. The efficiency
of such a method for short range potentials is obvious. However, if the
potential is long-range, a comparison with the traditional way of computing
the conductance by iterating over the positions of the scatterer has to be
done.

10.4.2 Role of temperature in the SGM-PLDOS corre-

spondence

In Chapter 6, we have highlighted that a small temperature could enhance
the SGM-PLDOS correspondence in case of not unit transmissions, by aver-
aging out the λF/2 oscillations of the SGM response, like the local averaging
presented in Sub-section. 6.4.1. A quantitative study of the role of the
temperature in the SGM-PLDOS correspondence has yet to be established.

10.4.3 Signatures of spin-orbit coupling in electron branch-

ing flow

In Chapter 2, we have mentioned the numerical simulations of Ref. [10]
showing that in the presence of SOC interaction the SGM response of a
QPC surrounded by a disorder-free 2DEG, is strongly modified due to the
mode mixing induced by the σykx term of the Rashba Hamiltonian (2.2).
Additional features have been shown to appear as a signature of the SOC.
In order to investigate whether this signature can be observed in real exper-
iments or not, we performed KWANT simulations of the SGM response in
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the presence of disorder, with and without SOC. We adopted the same QPC
model and the same physical parameters as in Ref. [10].

As shown in Fig. 10.1, our preliminary results do not show such strong
features. A perspective line of work that we would like to undertake is
the understanding of why the additional lobes observed in the disorder-free
simulations do not appear here.

10.5 Final conclusions

In this thesis we have theoretically investigated the SGM technique in order to
present a rigorous and quantitative analysis of the underlying data. A crucial
ingredient that allows us to have link between the SGM and the unperturbed
PLDOS, is the locality of the used tip. However, most SGM experiments are
performed in high mobility 2DEGs in which the Fermi wavelength is smaller
than the depletion disk under the scanning tip. In this case, the relationship
between the SGM response and the PLDOS squared degrades and beyond
a large enough radius, it cannot be directly used to unambiguously extract
local electronic properties. For experiments in the weakly invasive regime,
the resolution of the SGM response is also limited by the width of the tip
potential [65]. One way to approach the regime where the direct link is
valid would be to use systems with lower Fermi energy and thus larger Fermi
wavelength.

In a very recent SGM experiment [76] performed using ultracold atom
gases, a tightly focused laser beam played the role of the tip and could be
scanned in the neighborhood of a QPC attached to two atom reservoirs.
In this case a resolution better than 10nm with a tip size well below λF was
obtained. In this regime, we expect that the relationship established between
the SGM response and the PLDOS is applicable.

We think that the idea of using 2DEGs with lower Fermi energies is an
important direction of research to be taken into account in the experimental
side in order to achieve the suitable regime in which the local electronic
properties are accessible by conductance measurements.
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Figure 10.1: The SGM response is numerically calculated using KWANT,
in the presence of smooth disorder. In the left panel the SOC is not included.
In the right panel, SOC is considered. The QPC, located at the bottom of
each plot is tuned to the second plateau g(0) ≈ 2 .
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Chapter 11

Résumé de la thèse

11.1 Introduction

Depuis son développement il y a deux décennies [34], la microscopie à grille
locale (Scanning gate microscopy; SGM) a révélée des phénomènes fascinants
de transport quantique [4, 5] et a été considérée comme une technique très
prometteuse [77] pour sonder les propriétés locales des électrons dans une
nanostructure donnée.

Dans cette technique la pointe d’un microscope à force atomique (atomic
force microscope; AFM) est utilisée comme grille locale qui diffuse les élec-
trons d’un gaz bi-dimensionnel créé dans une hétérostructure à base de semi-
conducteurs et modifie ainsi la conductance que l’on mesure en fonction de
la position de la pointe, ce qui rajoute une résolution spatiale à la mesure
(voir FIG. 1).

La possibilité de travailler à très basse température (T < 1◦K) et la
précision subnanométrique du positionnement de la pointe permettent de
travailler dans le régime de transport quantique où le caractère ondulatoire
de la propagation électronique est sondé. La méthode SGM est donc un
outil pour étudier les propriétés de transport quantique dans des gaz bi-
dimensionnels nanostructurés.

La technique SGM a été utilisée pour étudier différents systèmes mé-
soscopiques, parmi lesquels des anneaux Aharanov - Bohm [46], les nan-
otubes de carbone [49] et d’autres systèmes fabriqués à base de graphène
[50, 51]. Dans cette thèse une attention particulière est donnée au contact
quantique (quantum point contact; QPC) qui est crée dans un gaz d’électrons
bi-dimensionnel par deux grilles métalliques (voir FIG. 1). Le changement
du potentiel appliqué sur ces grilles permet de contrôler le nombre de canaux
ouverts dans le contact. Dû au fait que chaque canal ouvert conduit un quan-
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11.1 Introduction

tum de conductance [2, 24], lorsqu’on varie la tension de grille, la conductance
à travers l’échantillon présente des plateaux à valeurs quantifiées.

Les premières expériences SGM à proximité de QPC ont montré des
franges d’interférences avec une période d’une demi longueur d’onde électron-
ique. Cela a permis de conclure qu’il s’agissait d’une observation des pro-
priétés dues au transport cohérent des électrons [4]. La présence de branches
dans les images SGM a été interprétée comme étant reliée [5] à l’écoulement
des électrons dans le paysage du potentiel désordonné créé par des dopants
ionisés situés à une certaine distance du gaz d’électrons.

Figure 11.1: Présentation schématique de la microscopie à grille locale.
Les ondes électroniques traversant une construction créée par deux grilles
métalliques (en jaune) dans un gaz bi-dimensionnel (en vert) sont localement
perturbées par la pointe AFM (en violet). L’image est prise de la référence
[4].

La possibilité d’observer l’écoulement des électrons dans le régime de
transport quantique, évoquée par les expérimentateurs [4, 5], serait une per-
cée importante dans l’étude des phénomènes de transport quantique. Cepen-
dant, l’interprétation des données SGM est restée seulement qualitative. De
plus, la relation d’incertitude de Heisenberg pose des limitations à la possi-
bilité d’observer l’écoulement de particules quantiques.

Dans le but de comprendre ce qui est mesuré par les expériences SGM, une
théorie analytique a été développée dans l’équipe mésoscopique de l’IPCMS,
traitant la pointe SGM comme une perturbation du système [11, 15]. Les
changements de la conductance dus à la pointe AFM ont été exprimés en
fonction des matrices de transmission et de réflexion de la nanostructure non-
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11.2 Théorie de perturbation

perturbée ainsi que les éléments de matrices du potentiel créé par la pointe
entre les états de diffusion incidents des électrodes opposées. En général, cette
expression analytique de la conductance ne présente pas de relation simple
avec les propriétés électroniques locales. C’est seulement dans la situation
très particulière d’un QPC avec symétrie spatiale, en régime de conductance
parfaitement quantifiée qu’il a été constaté que la réponse SGM pour une
pointe locale et faiblement invasive était proportionnelle au carré de densité
locale partielle (PLDOS 1) [15], ce qui permet de remonter à cette quantité
électronique (et dans certaines situations au courant local). Pourtant, une
situation réaliste ne remplit pas les conditions pour lesquelles cette relation
a été établie.

Les travaux de cette thèse établissent la théorie de la relation entre la
réponse SGM et les propriétés électroniques locales pour des situations réal-
istes, expérimentalement envisageables. Un intérêt particulier est porté à
la possibilité d’extraire des propriétés électroniques locales à partir d’une
mesure SGM au-delà des limites du résultat rigoureux des travaux précé-
dents. En plus, une partie de cette thèse est dédiée aux développements
d’approches théoriques permettant de calculer la réponse SGM au delà de la
théorie de perturbation. Pour optimiser le calcul numérique de la réponse
SGM une méthode basée sur les fonctions de Green est proposée.

Finalement, dans un chapitre de cette thèse une clarification théorique est
apportée vis-à-vis une interprétation alternative proposée par nos collègues
dans Ref. [48]. En effet dans cette interprétation la réponse SGM a été liée à
la transformation de Hilbert de la densité locale. Dans un tel chapitre nous
avons montrés que cette dernière relation de correspondance n’est valide que
pour des problèmes de diffusion unidirectionnels.

11.2 Théorie de perturbation

Dans le but de comprendre ce qui est mesuré lors d’une expérience SGM,
l’obtention d’une formule analytique pour la conductance serait un avantage
fabuleux. Néanmoins, la résolution de l’équation de Schrödinger en présence
d’un potentiel d’une forme donnée n’est possible que dans des cas très limités.

Pour avoir une relation entre la réponse SGM et les propriétés locales,
une théorie de perturbation à été élaborée [11, 15]. Le point de départ d’une
telle théorie est l’équation de Lippmann-Schwinger qui relie la fonction de
diffusion (la fonction d’onde en présence d’un potentiel diffuseur avec comme
condition limite un flux incident) en présence de la pointe aux fonctions

1La PLDOS correspond à la densité locale d’états de diffusion incidents d’un seul

réservoir.
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11.2 Théorie de perturbation

de diffusion en son absence. Cette équation est l’analogue de l’équation de
Dyson qui en son tour donne une relation entre les fonctions de Green en
présence et en absence de la pointe.

L’équation de Lippmann-Schwinger en présence d’une pointe SGM de
potentiel VT(r) s’écrit en premier ordre de VT comme suit

Ψ
(1)
l,ε,a(r) =

∫

dr̄ G(0)(r, r̄, ε)VT(r̄)Ψ
(0)
l,ε,a(r̄) , (11.1)

ou Ψ
(0)
l,ε,a représente la fonction de diffusion en absence de la pointe associée

au mode a et l’énergie ε pour une incidence d’un réservoir l, et G(0) est la
fonction de Green non-perturbée. La densité de courant associée à un tel
état de diffusion est donnée par

δ(1)Jlεa =
eh̄

Me

Im(Ψ
(0)∗
lεa (r)∂xΨ

(1)
lεa(r)−Ψ

(1)
lεa(r)∂xΨ

(0)∗
lεa (r)). (11.2)

Le comportement asymptotique des fonctions de diffusion est crucial pour
calculer la conductance, il est donné par

Ψ
(0)
l,ε,a(r) =

{

δl,1ϕ
(−)
l,ε,a(r) +

∑N
b=1(S

1,l)ba ϕ
(+)
1,ε,b(r), x≪ −L/2

δl,2ϕ
(−)
l,ε,a(r) +

∑N
b=1(S

2,l)ba ϕ
(+)
2,ε,b(r), x≫ L/2

(11.3)

où Sl,l′ sont les sous-matrices de la matrice de diffusion S. Lorsque l est
diffèrent de l′, Sl,l′ est la matrice de transmission pour une incidence du
réservoir l. Si l = l′, il s’agit alors d’une réflexion vers le réservoir d’incidence.
Les fonctions d’onde ϕ(±) sont celles des réservoirs, elles sont données par

ϕ
(±)
1εa(r) =

c√
ka
φa(y)e

±ikax, (11.4)

pour le réservoir de gauche (situé dans la zone x < 0) et

ϕ
(±)
2εa(r) =

c√
ka
φa(y)e

∓ikax, (11.5)

pour le réservoir de droite (situé dans la zone x > 0). Le nombre ka est le
module du vecteur d’onde longitudinal du mode a et φa(y) est la fonction

d’onde dans la direction transversale. La constante c =
√

Me

2πh̄2 avec Me la

masse effective de l’électron dans le gaz considéré est choisi de sorte à ce
que chaque mode transversal conduit une densité de courant valant s e

h
, avec

s = + pour les modes se propageant vers la droite et s = − pour ceux qui se
propagent vers la gauche. En supposant que l’incidence est du réservoir de
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11.2 Théorie de perturbation

gauche l = 1, la densité de courant mène à la forme suivante du changement
du courant total à l’énergie ε par l’effet de la pointe

I
(1)
1,ε =

e

h̄
Im(Tr

{

t†t V11 + t†r′ V21
}

) , (11.6)

avec

V l̄,l
āa =

∫

Ψ
(0)∗
l̄,ε,ā

(r̄)VT(r̄)Ψ
(0)
l,ε,a(r̄)dr̄, (11.7)

l’élément de matrice du potentiel de la pointe entre deux états de diffusion.
La trace dans (11.6) est a prendre sur les modes propageant.

Dans le régime de la réponse linéaire à température nulle, la conductance
est obtenue en différenciant le courant total par rapport au voltage appliqué,
ce qui donne

G(1) = 2eI
(1)
1,εF

, (11.8)

avec ∆µ la différence de potentiel chimique entre les deux réservoirs. A
température nulle le courant total se résume en sa valeur à l’énergie de Fermi
εF. Cela mène à la correction de conductance adimensionnée (i.e en unités
de 2e2

h
), en premier ordre au potentiel de la pointe [11, 15]

g(1) = 4πIm
{

Tr
[

t†r′ V21
]}

. (11.9)

La formule (11.9) fournit une expression analytique de la correction au pre-
mier ordre de la théorie de perturbation. Néanmoins, cette conductance
est nulle pour un système dont les canaux sont soit complètement ouverts,
soit totalement fermés ce qui est le cas pour un plateau d’un QPC. Dans
ce cas le calcul de la correction dominante doit être fait pour le second or-
dre de la théorie de perturbation. Pour cela nous devons écrire l’équation
de Lippmann-Schwinger au second ordre au potentiel de la pointe. Ce qui
revient à écrire

Ψ
(2)
l,ε,a(r) =

∫

dr̄ G(0)(r, r̄, ε)VT(r̄)Ψ
(1)
l,ε,a(r̄) , (11.10)

où Ψ
(1)
l,ε,a(r̄) est donnée par (11.10). En passant par les mêmes étapes que

pour le calcul du premier ordre nous aboutissons aux deux contributions du
deuxième ordre

g(2)α = 4πvTIm
{

Tr
[

t†t W11 + t†r′ W21
]}

, (11.11)

et

g(2)β = 4π2Tr
{

Re[V11t†tV11 + 2V11t†r′V21 + V12r′†r′V21]
}

. (11.12)
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où nous avons introduit la matrice W dont les éléments de matrice sont
donnés par

W l̄1
āa =

2
∑

¯̄l=1

∫ ∞

ε
(t)
1

d¯̄ε

ε+ − ¯̄ε

∑

¯̄a

[VT]
l̄,¯̄l
ā¯̄a (ε, ¯̄ε) [VT]

¯̄l1
¯̄aa (¯̄ε, ε),

avec [VT]
l̄,¯̄l
ā¯̄a (ε, ¯̄ε) l’élément de matrice du potentiel de la pointe entre deux

états de diffusion à deux énergies différentes ε et ¯̄ε. Il est important de
noter que si nous considérons une pointe locale l’obtention de la contribution
totale englobant tout les termes d’ordres supérieurs est possible. Dans une
telle circonstance nous avons montré (Chapitre 4) que la conductance SGM
subit une saturation à des potentiels très forts i.e beaucoup plus grand que
l’énergie de Fermi des électrons.

11.3 Extraction de la PLDOS sur une marche

de conductance pour une pointe locale

Pour relier la correction de premier ordre de la théorie de perturbation [11]
pour la conductance en présence de la pointe aux propriétés électroniques
locales nous avons exploité [69] la forme asymptotique des fonctions propres
de diffusion. Pour un QPC non désordonné celle-ci reste valable à toute
position dans le système sauf à l’intérieur du contact. Dans ce cas, nous avons
trouvé [69] que si le QPC est réglé sur une marche de conductance, alors la
correction du premier ordre due au potentiel de la pointe est proportionnelle
à la PLDOS à une modulation sinusoïdale près, qui est due à des oscillations
Fabry-Perot entre la pointe SGM et le QPC

g(1)(rT) = 2R1 sin[2α1,εF,1(rT)]ρ1εF(rT) , (11.13)

avec

ρ1ε(r) = 2π
N
∑

a=1

|Ψ(0)
1,ε,a(r)|2 , (11.14)

R1 est le coefficient de réflexion du QPC, α1,εF,1 est la phase de la fonction
de diffusion et N le nombre de canaux ouverts à l’énergie ε. Dans le cas
d’un QPC entouré d’un gaz d’électron désordonné, la relation précédente
ne s’applique pas dans la région où le désordre est présent. Néanmoins,
nous avons montré numériquement que pour un désordre faible, de sorte
à ne permettre que des processus de diffusion à petit angle, l’écoulement
des électrons peut être caractérisé par des oscillations régulières similaires

108



11.4 Extraction de la PLDOS sur un plateau de conductance pour une
pointe locale

−100

−50

0

50

100

50 100 150 200

y
/a

x/a

v−1T δg

50 100 150 200

x/a

−0.04

−0.02

0

0.02

0.04

g(1)

Figure 11.2: Panel de gauche : la réponse SGM est numériquement calculée
pour une pointe locale de potentiel (vT = εFa

2/4) sur la première marche de
conductance. Panel de droite : la forme analytique de g(1) est évaluée. Le
QPC est situé au coté gauche de chaque image.

à celles que nous observons en absence de désordre [70]. Cela est illustré
dans la Fig. 11.2. Dans le panel de gauche de cette figure la réponse SGM
est calculée à la première marche de conductance pour un faible potentiel
de pointe vT = εFa

2/4. Dans le panel de droite le membre droite de l’Eq.
(11.13) est évalué en utilisant Kwant. Cela montre bien que l’Eq. (11.13)
est valide pas seulement pour un système non-désordonné mais aussi pour
un système présentant un désordre faible.

11.4 Extraction de la PLDOS sur un plateau

de conductance pour une pointe locale

Si le QPC a une transmission parfaitement quantifiée, le terme de premier
ordre discuté dans la section précédente s’avère être nul. Par conséquent
la correction de second ordre doit être considéré. Il a été montré que ce
deuxième terme est exactement proportionnel au carré de la PLDOS pour
un système parfaitement symétrique et invariant par renversement du temps
[15].

Considérant une pointe locale et admettant une transmission parfaite il
est possible de montrer que la correction au second ordre g(2) se réduit a

g(2) = −4π2Tr
{

Re[t†tV12V21]
}

. (11.15)

En tenant compte du fait que, pour un système invariant par renversement de
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temps, les fonctions propres de diffusion provenant des deux réservoirs sont le
complexe conjugué l’une de l’autre, nous avons démontré que la correspon-
dance énoncée dans [15] pour une géométrie symétrique haut-bas gauche-
droite reste valable même en absence d’une telle symétrie spatiale [69], et
ainsi généralisé la correspondance entre g(2) et la PLDOS ρ1εF

g(2)(rT) = −ρ21εF(rT), (11.16)

pour rT à droite du QPC.
Comme illustration de cette relation de correspondance nous présentons

dans la Fig. 11.3 l’opposé de la correction du deuxième ordre pour les deux
premiers plateaux (a) pour le premier (d) pour le deuxième et la PLDOS (b)
pour le premier plateau et (e) pour le deuxième. La différence entre les deux
quantités est de l’ordre de 10−4, elle est montrée dans la ligne de bas de la
figure.

Dans le cas réaliste d’une transmission qui n’est pas parfaitement quan-
tifiée, nous avons utilisé une théorie de perturbation par rapport à un petit
coefficient de réflexion pour évaluer le rapport entre la correction dominante
de la conductance et le carré de la PLDOS [69]. Nous avons trouvé que la
relation se dégrade proportionnellement à la racine carré de la déviation de la
conductance par rapport à la valeur quantifiée. Ceci signifie que la correspon-
dance entre la réponse SGM et la PLDOS est très sensible à la déviation par
rapport à la transmission parfaite. Ce résultat a été vérifié numériquement
[69].

Sachant que les déviations de la relation parfaite montrent des oscillations
spatiales de période correspondant à une demi longueur d’onde électronique,
nous avons constaté que la PLDOS moyennée sur un disque avec la taille
d’une longueur d’onde de Fermi autour de la position de la pointe est di-
rectement reliée à la moyenne du changement de conductance sur le même
disque. Pour démontrer ce phénomène nous avons procédé à des simulations
numériques utilisant le logiciel KWANT [30]. Ce résultat important nous
permet de prédire que la PLDOS peut être extraite de la réponse SGM avec
une résolution spatiale réduite dans la situation réaliste de quantification non
parfaite de la conductance.

11.5 Liaison entre la réponse SGM et la PL-

DOS pour une pointe non locale

Dans la section ci-dessus la pointe a été considérée comme étant locale.
Bien que des expériences très récentes [76] ont pu être réalisées dans des
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11.6 Liaison entre la réponse SGM et la transformé de Hilbert de la densité
locale à 1D et 2D

gaz d’atomes ultra-froids avec une perturbation produite par un rayon laser
suffisamment focalisé et dans des conditions d’application de la théorie de
perturbation [11], la quasi totalité des expériences SGM ne sont pas situées
dans le régime d’une pointe locale et peu invasive. Nous avons alors pris en
compte l’élargissement spatial de la pointe AFM, et mené à bien des simu-
lations numériques de la réponse SGM. Les résultats numériques montrent
que pour des diamètres de la pointe plus grands que la longueur d’onde élec-
tronique, la correspondance entre la réponse SGM et la PLDOS est dégradée
[69].

11.6 Liaison entre la réponse SGM et la trans-

formé de Hilbert de la densité locale à 1D

et 2D

Dans la référence [48] une relation de correspondance différente de celle que
nous avons proposés dans les sections précédentes à été proposée. Dans cette
référence la réponse SGM pour une pointe locale avec potentiel

VT(r) = vTδ(r− rT)

à été reliée à la transformé de Hilbert de la densité locale électronique qui est
proportionnelle à la partie réelle de la fonction de Green diagonale. Cette cor-
respondance à été rigoureusement démontrée pour un problème de diffusion
unidimensionnelle. Nous avons retrouvé ce résultat en suivant la référence
[56]. Le résultat s’écrit

δg = 2vTg
(0)Re(G(0)(rT, rT, ε)), (11.17)

ou g(0) est la conductance non-perturbée du système. D’autre part, nous
avons montré qu’il y a un résultat général concernant le changement de la
densité locale dê à une pointe locale pouvant s’écrire pour toute dimension
en premier ordre au potentiel de la pointe comme suit

ρlε(rT)− ρ
(0)
lε (rT) = 2vTρ

(0)
lε (rT)Re(G(0)(rT, rT, ε)), (11.18)

Dans le cas d’une seule dimension d’espace les densités unidimensionnelles
sont proportionnelles aux transmissions et cela implique que la même rela-
tion (11.18) est vérifiée pour la conductance, exactement comme dans l’Eq.
(11.17). N’ayant aucune évidence d’une telle correspondance au dimensions
supérieures, nous avons numériquement calculé les quantités à comparer pour
une géométrie d’anneau et vérifié que la réponse SGM n’est pas liée à la trans-
formation de Hilbert de la densité locale.
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11.7 Dépendance des branches électroniques de l’énergie de Fermi

11.7 Dépendance des branches électroniques de

l’énergie de Fermi

Dans une expérience récente, nos collègues de l’ETH Zurich [Beat Braem
et al, communication privée, 2017] ont étudié de quelle manière la location
des branches dépend de l’énergie de Fermi des électrons. Dans cette expéri-
ence une stabilité des branches à été observée dans les images SGM. Dans
le cadre de cette thèse nous avons conduit des simulations numériques qui
reproduisent les observations expérimentales. En ayant la possibilité de con-
trôler la force du désordre -ce qui est difficile en expérience-, nous avons pu
comprendre que cette stabilité de branche est observable à partir d’un certain
rapport entre le niveau du désordre et l’énergie de Fermi.

Dans la Fig. 11.4, nous montrons des simulations numériques de la PL-
DOS pour différentes valeurs du rapport entre l’énergie de Fermi et le coeffi-
cient adimensionné γ permettant de contrôler le niveau du désordre pour une
configuration donnée. Nous observons que lorsque le rapport εF/γ devient
supérieur ou égal à 1 la location des branches est très robuste. Ce comporte-
ment que nous avons choisi de montrer à travers la PLDOS est aussi observé
en calculant la réponse SGM. Cela à été fait pour différentes configurations
de désordre.

11.8 Méthode basée sur les fonctions de Green

pour calculer la conductance d’un diffuseur

à taille finie

La façon traditionnelle de calculer la conductance d’un diffuseur en fonction
de sa position (la pointe SGM par exemple) nécessite le calcul de la matrice
S à toute position du diffuseur. La méthode que nous proposons ici est basée
sur la résolution de l’équation de Dyson en ajoutant successivement les sites
du réseau sous le diffuseur. Après l’ajout de n sites la fonction de Green G(n)

peut s’exprimer en fonction G(n−1) comme suit

G(n)(r, r′) = G(n−1)(r, r′) + vnβ
(n−1)G(n−1)(r, rn)G(n−1)(rn, r

′), (11.19)

avec

β(n−1) =
1

1− G(n−1)(rn, rn)
,

et rn étant la position du néme site ajouté.

113
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conductance d’un diffuseur à taille finie
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Figure 11.4: PLDOS à des énergies différentes. Le pré-facteur γ du désordre
est fixé à γ = 0.2. Le QPC est positionné au centre gauche de chaque figure.
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11.8 Méthode basée sur les fonctions de Green pour calculer la
conductance d’un diffuseur à taille finie

En introduisant des facteurs Z pouvant être calculés à partir de G(0), la
fonction de Green G(n) peut être exprimée en fonction de G(0) comme suit

G(n)(r, r′) = G(0)(r, r′) +
n

∑

k=1

Z
(n)
k (r′)G(0)(r, rk). (11.20)

En utilisant cette équation dans l’équation de Lippmann-Schwinger la fonc-
tion de diffusion correspondante s’écrit

ψ(n)(r) = ψ(0)(r) +
n

∑

i=1

Qi−1

{

G(0)(r, ri)

+
i−1
∑

k=1

Z
(i−1)
k (ri)G(0)(r, rk)

}

, (11.21)

où les coefficients Q peuvent être construits à partir de la fonction de diffusion
non perturbée ψ(0). En suivant une procédure identique à celle permettant
d’obtenir les corrections de premier et second ordre en potentiel (voir Sec.
11.2 ) nous obtenons le changement de la conductance dû au diffuseur comme

δg = 4πIm

{

Tr[t†tV̂11 + t†r′V̂21]

}

+ 4π2Tr

{

Re[V̂11t†tV̂11 + 2V̂11t†r′V̂21 + V̂12r′†r′V̂21]

}

.

(11.22)

où

V̂ l̄l
āa =

n
∑

i=1

Qi−1

{

ψ
(0)∗
l̄εā

(ri) +
i−1
∑

k=1

Z
(i−1)
k (ri)ψ

(0)∗
l̄εā

(rk)

}

. (11.23)

Pour utiliser la méthode nous proposons l’algorithme suivant

1) Calculer les quantités non perturbées G(0), ψ(0) et la matricez de diffusion
S.

2) Construire les G(i) et ψ(i) à partir de 1).

3) Construire les coefficients Q and Z à partir de G(0).

4) Utiliser Eq. (11.22) pour obtenir la conductance à toute position.
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11.9 Conclusions et perspectives

Afin de pouvoir extraire les propriétés électroniques locales à travers une
nanostructure nous avons étudié la liaison entre la conductance en présence
d’une pointe SGM et la densité partielle locale (PLDOS). Pour un QPC
opérant dans le régime de quantification de conductance, nous avons montré
que la réponse SGM est proportionelle à la PLDOS à une modulation sinu-
soïdale près lorsque le QPC est réglé sur la première marche de conductance.
Dans le cas où le QPC a une transmission entière nous avons généralisé la
relation de correspondance entre les deux quantités pour être valable quelque
soit le plateau de conductance pour tout système invariant par renversement
de temps. Néanmoins, cette correspondance est très sensible à la déviation de
la conductance par rapport à ses valeurs entières. Sachant que cette déviation
est liée aux oscillions du genre Fabri-Perot présentes dans certains termes des
corrections de la conductance, nous avons montré que la relation de corre-
spondance est retrouvée si la PLDOS et la conductance SGM sont moyennées
sur une région spatiale d’extension de l’ordre de la longueur d’onde de Fermi.
Nous pensons par ailleurs qu’une température modérée pourrait jouer ce rôle
de moyennage et alors permettre de retrouver la relation de correspondance.
Pour une pointe non locale nous avons montré que la correspondance se dé-
grade quand l’extension de la pointe est plus grande qu’une demi longueur
d’onde électronique.

Dans une partie de cette thèse nous avons étudié la dépendance des
branches de l’énergie de Fermi des électrons. Nous avons trouvé que tant
que l’énergie de Fermi est plus grande qu’une certaine valeur critique liée au
niveau du désordre, les branches sont stables. Une étude quantitative reste
à mener pour mieux comprendre ce phénomène. Lors de l’investigation de
cette stabilité des branches, nous avons fait des simulations numériques (que
nous n’avons pas montré dans ce résumé) pour comprendre l’origine des sauts
de phase observés sur les données expérimentales communiqués par nos col-
lègues de l’ETH Zurich. Nos simulations numériques montrent que ces sauts
de phase sont dûs aux phénomènes d’interférence entre branches très fines
induites par la présence de dures impunités sur la nanostructure étudiée.

D’autre part nous avons étudié la liaison entre la réponse SGM et la
transformée de Hilbert de la densité locale. Pour une géométrie unidimen-
sionnelle nous avons trouvé qu’il y a une correspondance entre les deux quan-
tités comme annoncé dans la Ref. [48]. Par contre, pour une géométrie bi-
dimensionnelle nous avons montré qu’une telle correspondance ne peut pas
avoir lieu.

Dans le but d’optimiser le calcul de la conductance SGM nous avons
proposé une méthode basée sur les fonctions de Green permettant d’obtenir
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11.9 Conclusions et perspectives

la conductance à toute position de la pointe à partir de la matrice S, les
fonctions de diffusion et la fonction de Green de la structure non perturbée;
ce qui est avantageux si l’étendu de la pointe est de quelques dizaines de sites
du réseau bi-dimensionnel.

Nous avons aussi étudié l’effet du couplage spin orbite sur la réponse SGM.
En calculant numériquement la conductance en présence et en absence du
couplage pour un QPC ouvrant sur un gaz non-désordonné d’électrons, nous
avons retrouvé le résultat obtenu dans [10] montrant que le couplage spin
orbite permet une transmission à travers un canal additionnel (qui n’était
pas permis en absence de couplage spin orbite) ce qui mène à l’observation
d’un écoulement électronique à travers ce dernier. En introduisant le désordre
nous nous retrouvons avec un résultat surprenant. En effet nous trouvons que
lorsque la structure est désordonnée ces canaux dû au couplage spin orbite
ne montrent aucune manifestation apparente. La compréhension d’une telle
observation est une tache que nous voulons entretenir dans un futur proche.
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Appendix A

Evaluation of the average
longitudinal momentum Kn

Here, we calculate the the average longitudinal momentum Kn, which will
be used to calculate the conductance of the WNW geometry presented in
Chapter 1.

The average longitudinal momentum Kn is given by

Kn =
w

π

∫ Qn+1

Qn−1

dq
√

k2 − q2. (A.1)

We split Kn into real (In) and imaginary (Jn) parts

In = Re[Kn] =
w

π

∫ k

Qn−1

dq
√

k2 − q2, (A.2)

and

Jn = Im[Kn] =
w

π

∫ Qn+1

k

dq
√

k2 − q2. (A.3)

To calculate In, we perform the following variable change q = k sin θ, this
gives

In =
w

π
k2

∫ cos−1 Qn−1
k

0

dθ sin2 θ. (A.4)

Using the equality sin2 θ = 1
2
(1− cos 2θ), the integral is straightforward, and

gives

In = −wk
2

4π

[

sin[2 cos−1 Qn−1

k
]− 2 cos−1 Qn−1

k

]

. (A.5)

For Jn we use the variable change q = k cosh a, leading to

Jn =
w

π
k2

∫ cosh-1
Qn+1

k

0

dθ sinh2 θ. (A.6)
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Using the identity sinh2 θ = 1
2
(1− cosh 2θ), we find

Jn =
wk2

4π

[

sinh[2 cosh−1 Qn+1

k
]− 2 cosh−1 Qn+1

k

]

. (A.7)
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Appendix B

Conductance of the WNW
geometry

Here we will show that the formula (1.57) obtained in Ref. [15] is equivalent
to that of Ref. [24].

On one hand the denominator of (1.57) can be written as :

|Dn|2 = |Kn +Kn|4 + |Kn −Kn|4 − 2Re{Ane
−2iKnL}, (B.1)

with
An = [(Kn +Kn)(Kn −Kn)]

2 (B.2)

The real part in B.1 can be straightforwardly brought to:

Re{Ane
−2iKnL} = cos(2KnL)(|Kn|2−|Kn|2)2−4K2

nJ
2
n+4 sin(2KnL)(|Kn|2−|Kn|2)KnJn,

(B.3)
where Jn = Im{Kn}. Introducing the angle φn defined by:

tanφn =
2KnJn

|Kn|2 − |Kn|2
, (B.4)

and the quantity

Vn =
|Kn +Kn|4 + |Kn −Kn|4

4K2
nJ

2
n

, (B.5)

it follows that

|Dn|2
4K2

nJ
2
n

=
1

sin2 φn

(sin2 φnVn − 2 + 4 sin2(KnL+ φn)), (B.6)

that is

gn =
4 sin2 φnI

2
n

J2
n(Vn sin

2 φn − 2 + 4 sin2(KnL+ φn))
, (B.7)
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where In = Re{Kn}. Replacing Vn by its expression and noting that

sin2 φn =
4K2

nJ
2
n

4K2
nJ

2
n + (|Kn|2 − |Kn|2)2

, (B.8)

gn can be written as

gn =
16K2

nI
2
n

|Kn +Kn|4 + |Kn −Kn|4 + 2(4K2
nJ

2
n + (I2n + J2

n −K2
n)

2)(−1 + 2 sin2(φn +KnL))
.

(B.9)
Now, using the two following identities

|Kn +Kn|4 + |Kn −Kn|4 = ((In −Kn)
2 + J2

n)
2 + ((In +Kn)

2 + J2
n)

2, (B.10)

and

4K2
nJ

2
n + (I2n + J2

n −K2
n)

2 = ((In −Kn)
2 + J2

n)((In +Kn)
2 + J2

n), (B.11)

which are easy to check, gn reduces to:

gn =
4K2

nI
2
n

4I2nK
2
n + ((In −Kn)2 + J2

n)((In +Kn)2 + J2
n) sin

2(φn +KnL)
, (B.12)

for the open channels. For the closed channels it reads

gn =
4κ2nI

2
n

4I2nκ
2
n + ((In − κn)2 + J2

n)((In + κn)2 + J2
n) sinh

2(θn + κnL)
, (B.13)

with

tan θn =
2κnJn

κ2n + I2n + J2
n

, (B.14)

and κn = i
√

k2 − (nπ
w
)2. This corresponds to the conductance formula ob-

tained in [24] for the WNW geometry. Notice that in Ref. [24] the formula
was written with typing errors.
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Appendix C

Evaluation of the energy integrals
involved in the corrections to the
current density

When calculating the conductance corrections in Chapter 3, we encounter
the following energy integrals:

Is1(ε) =

∫ ∞

ε
(t)
1

dε̄

ε+ − ¯̄ε
F (¯̄ε)esi

¯̄kx, (C.1)

and

I
(s,σ)
2 (ε) =

∫ ∞

ε
(t)
1

dε̄

ε− − ε̄

d¯̄ε

ε+ − ε̄
H(ε̄, ¯̄ε)ei(σk̄+s¯̄k)x, (C.2)

where smooth dependence of F and H on the energy variables is assumed.
Changing the energy variables to momenta, the integrals become

Is1(ε) =

∫ ∞

0

−2¯̄kd¯̄k

[¯̄k + k + iη̄][¯̄k − (k + iη̄)]
F (̄)esi

¯̄kx, (C.3)

and

I
(s,σ)
2 (ε) =

∫ ∞

0

−2k̄dk̄

[k̄ + k + iη̄][k̄ − (k − iη̄)]

−2¯̄kd¯̄k

[¯̄k + k + iη̄][¯̄k − (k + iη̄)]
H(ε̄, ¯̄ε)ei(σk̄+s¯̄k)x.

(C.4)
To evaluate the energy integral Is1 we use one of the two quadrants of the
complex plane depicted in Fig. C.1. If s = −1, it is appropriate to chose Qu,
in order to ensure that (i) the integration along the corresponding quarter
vanishes as |k̄| tends to ∞; and (ii) the contribution along the imaginary axis
vanishes in the limit of x tending to infinity. In contrast if s = +, Qd should
be considered.

122



Re
[

k̄
]

Im
[

k̄
]

k + iη̄

•

−k − iη̄

•

Qu

Qd

Figure C.1: The complex plane of ¯̄k used to calculate I1, and the ¯̄k integral
of I2 is shown. The orientation of the contours is dictated by the real axis
orientation. The poles of the integral are represented by the dots.

Since there is no pole in Qd, we have I−1 = 0, according to the residue the-
orem. On the other hand the pole k+ iη̄ lies in Qu, therefore the application
of the residue theorem gives

I+1 (ε) = −2πiF (ε)eikx. (C.5)

Similarly, the σ-integral of I2 (the k̄ integral) vanishes for σ = +, since there
is no pole in Qu (see Fig. C.2). Therefore, I2 vanishes if σ = + and/or
s = −. However, if σ = −1 and s = 1 the residue theorem gives

I
(+,−)
2 (ε) = 4π2H(ε, ε). (C.6)
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Figure C.2: The complex plane of k̄ used to calculate I2 is shown. The
orientation of the contours is dictated by the real axis orientation.

124



C.1 First order correction to the current density

C.1 First order correction to the current den-

sity

As we have seen in the main text, the first order correction to the current
density of states coming from the left lead is

δ(1)J1εa(r) = 2
2

∑

l̄=1

Re

{

∫ ∞

ε
(t)
1

dε̄

ε+ − ε̄

N̄
∑

ā=1

[j(r)]1,l̄aā (ε, ε̄) [VT]
l̄,1
āa (ε̄, ε)

}

, (C.7)

with

[j(r)]11āa (ε, ε̄) =
e

2h

N̂
∑

b=1





√

k̄b
kb

+

√

kb
k̄b



 t∗bat̄bā exp
[

i(k̄b − kb)x
]

, (C.8)

and

[j(r)]12āa (ε, ε̄) =
e

2h





√

kā
k̄ā

−
√

k̄ā
kā



 t∗āa exp
[

−i(k̄ā + kā)x
]

+
e

2h

N̂
∑

b=1





√

k̄b
kb

+

√

kb
k̄b



 t∗bar̄
′
bā exp

[

i(k̄b − kb)x
]

. (C.9)

In (C.7), if l̄ = 2 the energy integral of the first term of [j(r)]12āa is of type
(C.1) with s = −, therefore the resulting energy integral is 0. The remaining
terms are of type I+1 . Using Eq. (C.5), the resulting energy integrals are

−2πi
e

h
(t†tV11)aa, (C.10)

for l̄ = 1, and

−2πi
e

h
(t†r′V21)aa, (C.11)

for l̄ = 2.

C.2 Second order correction to the current den-

sity

In the main text, we have shown how can the α-type of the second order
correction to the current density be obtained from the result of calculation
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C.2 Second order correction to the current density

of the first order current density correction. Here, we calculate the β-like
correction, given by Eq. (3.25).

The matrix elements of [j1/2] are straightforwardly obtained by plugging
the scattering wave-functions (11.3) in Eq. (3.26), they read

[j1/2]
11

aā
(ε, ε̄) =

e

2h

N̂
∑

b=1

√

k̄b
kb

t∗bat̄bā e
i(k̄b−kb)x ,

[j1/2]
12

aā
(ε, ε̄) =

e

2h







−
√

k̄ā
kā

t∗āa e
−i(k̄ā+kā)x +

N̂
∑

b=1

√

k̄b
kb

t∗bar̄
′
bā e

i(k̄b−k−
b
)x







,

[j1/2]
21

aā
(ε, ε̄) =

e

2h







√

k̄a
ka

t̄∗aā e
i(k̄a+ka)x +

N̂
∑

b=1

√

k̄b
kb

r′∗bat̄bā e
i(k̄b−kb)x







,

[j1/2]
22

aā
(ε, ε̄) =

e

2h







−δaā

√

k̄a
ka

e−i(k̄ā−ka)x +

√

k̄a
ka

r̄′aāe
i(k̄a+ka)x

−
√

k̄ā
ka

r′∗āa e
−i(k̄ā+kā)x +

N̂
∑

b=1

√

k̄b
kb

r′∗bar̄
′
bā e

i(k̄b−kb)x







.

(C.12)

The first terms of [j1/2]
12 and [j1/2]

21 leads respectively to energy integrals of

types I
(−,+)
2 and I

(+,+)
2 , and therefore vanish according to (C.6), stating that

only integrals of type I
(+,−)
2 are non zero. Similarly, the first three terms

of [j1/2]
22 leads to vanishing energy integrals, respectively of types I

(−,+)
2 ,

I
(+,+)
2 and I

(−,+)
2 . By consequence, only the last terms of [j1/2]

12 , [j1/2]
21 and

[j1/2]
22 in addition to [j1/2]

11 have to be considered. The energy integrals due
to these terms are obtained using (C.6). They reds respectively,

4π2 e

2h
(V11t†tV11)aa, (C.13)

4π2 e

2h
(V11t†r′V21)aa, (C.14)

4π2 e

2h
(V12t†tV11)aa, (C.15)

and
4π2 e

2h
(V12t†tV21)aa. (C.16)
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C.2 Second order correction to the current density

The resulting correction to the current density reads

δ(2)Jβ
1εa = 4π2 e

h
Re(V11t†tV11 + 2V11t†r′V21 + V12t†tV21)aa, (C.17)

where we have used the fact that (V11t†r′V21)aa and (V12t†tV11)aa have the
same real part.
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Appendix D

Energy dependent branches

Here we complement the discussion of Chapter 9 by presenting further nu-
merical data of the energy dependent branching flow.

Here, either the Fermi energy εF or the disorder strength γ are changed,
and different disorder configurations are used (see Fig. D.1).

128



−0.06 −0.02 0.02 0.06

−100

0

100

100 200 300 400

 
 a

x a

(3)

V/t

100 200 300 400

x a

(4)

−100

0

100

 
 a

(1) (2)

Figure D.1: Four disorder configurations are generated using the method
presented in 1.13.2. The corresponding elastic mean free paths are given in
Appendix E.
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Figure D.2: PLDOS at different energies for configuration 3. The disorder
strength γ is fixed at γ = 0.2.
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Figure D.3: PLDOS at different energies for configuration 4. The disorder
strength γ is held at γ = 0.2.
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Figure D.4: PLDOS at different disorder strengths for configuration 1. The
Fermi energy is held at εF = 0.2.
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Figure D.5: The same data as in Fig. D.4 for configuration (3).
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Figure D.6: The same data as in Fig. D.4 for configuration (4).
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Appendix E

Characteristics of the disorder
realizations used in Chapter 9

Here, we give the elastic mean free paths for the disorder configurations used
in Chapter 9. These values are obtained using the Fermi golden rule (1.82).
The corresponding transport mean free paths lT are two orders of magnitude
bigger.

According to (1.82), the elastic mean free path l and therefore, the trans-
port mean free path scale with the disorder strength such that l ∝ 1/γ2 and
lT ∝ 1/γ2.

In the following tables, the elastic mean free paths are given for the four
disorder configurations (see Fig. D.1) at different Fermi energies.

135



Table E.1: The elastic mean free paths l for configuration (1) are given for
γ = 1 and varied εF.

εF/t l/a
0.1 172.56
0.15 211.34
0.2 244.04
0.25 272.84
0.3 298.88
0.35 322.83
0.4 345.12

Table E.2: The elastic mean free paths l for configuration (2) are given for
γ = 1 and varied εF.

εF/t l/a
0.1 148.33
0.15 181.67
0.2 209.78
0.25 234.54
0.3 256.92
0.35 277.51
0.4 296.67
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Table E.3: The elastic mean free path l for configuration (3) are given for
γ = 1 and varied εF.

εF/t l/a
0.1 103.31
0.15 126.54
0.2 146.11
0.25 163.36
0.3 178.95
0.35 193.24
0.4 206.64

Table E.4: The elastic mean free path l for configuration (4) are given for
γ = 1 and varied εF.

εF/t l/a
0.1 47.28
0.15 57.91
0.2 66.87
0.25 74.76
0.3 81.90
0.35 88.46
0.4 94.57
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