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Introduction générale

La compréhension et l’asservissement des systèmes physiques qui nous entourent
s’expriment souvent par le biais d’un langage mathématique. La théorie des systèmes
dynamiques est développée depuis des siècles et permet la modélisation abstraite des
systèmes concrets à travers des observations, mesures et validations. Toutefois, cette
traduction du monde réel dans un formalisme mathématique dépend de la précision
de la description. Bien évidemment, des erreurs de mesure et la manque de précision
peuvent produire un modèle erroné voir incapable de fournir des prédictions fiables
du comportement d’un système. En effet, la description de la réalité est une tâche dif-
ficile, pouvant être soit excessivement complexe et superflue, soit trop simpliste pour
une application spécifique. Par exemple, dans les expérimentations d’école, telles que
prédire l’arrivée d’une balle lancée au sol, nous n’avons pas besoin de précision élevée.
Au contraire, dans les domaines médical et aérospatial, des erreurs ou des événements
imprévus peuvent mener à des pertes irréparables [Gar03; Has+08]. Ainsi, il existe un
compromis entre la précision et la simplicité dans la modélisation d’un système, et ce
compromis doit être effectué en fonction du contexte et de l’application.

Le formalisme mathématique proposé par les systèmes incertains fournit une bonne
précision avec une complexité abordable pour plusieurs domaines d’applications tels
que l’aéronautique, la robotique et les applications industrielles, entre autres. Les
systèmes incertains sont classifiés comme étant entre les systèmes linéaires et non-
linéaires parce qu’ils représentent une famille paramétrée de systèmes linéaires. Ces
paramètres peuvent être variables dans le temps, ce qui mène à une dynamique égale-
ment variable dans le temps. La représentation compacte des systèmes incertains est
très convenable, permettant non seulement l’étude de la stabilité de toute la famille
de systèmes à la fois, mais aussi la synthèse de correcteurs qui maintiendront le com-
portement souhaité de cette famille en dépit des variations paramétriques. Bien que
cette représentation reste puissante et polyvalente, elle peut engendrer des difficultés
et, par conséquent, un certain conservatisme dans le développement des résultats
d’analyse. Comme illustration, il peut être impossible de certifier la stabilité d’un sys-
tème incertain stable par le biais d’une fonction de Lyapunov quadratique. Cela est
dû au fait que la classe de fonctions de Lyapunov quadratiques n’est pas universelle
pour la classe de systèmes incertains. La propriété d’universalité d’une fonction de
Lyapunov consiste dans l’équivalence entre la stabilité d’un système et l’existence
d’une fonction de Lyapunov dans cette classe qui vérifie sa stabilité. Une difficulté
complémentaire de ce large formalisme est le domaine de vérification. Étant donnée
que les paramètres d’un système incertain sont passibles de varier dans un intervalle
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réel compact, une infinité de tests est requise pour s’assurer que chaque réalisation
possible d’un système incertain est stable. À cause de cela, des techniques de convex-
ification sont utilisées pour rendre possible la résolution numérique du problème, ce
qui normalement augmente le conservatisme de l’évaluation. En effet, la recherche de
techniques qui réduisent le conservatisme dans l’analyse des systèmes incertains est
cruciale et reste un domaine ouvert.

Dans la littérature, on retrouve différentes techniques pour aborder le problème de
l’analyse et de la commande des systèmes incertains. Plusieurs de ces techniques ont
comme motivation la réduction du conservatisme. Ci-dessous, quelques uns de ces
travaux sont évoqués, étant organisés par le type de systèmes qu’ils adressent.

Pour les systèmes incertains à paramètres invariants dans le temps, l’article [OBG99]
présente des conditions pour l’analyse de stabilité des systèmes incertains à temps dis-
cret par le biais d’une fonction de Lyapunov indépendante des paramètres et une fonc-
tion de Lyapunov dépendant des paramètres. Dans l’étape de résolution numérique,
l’utilisation des variables faibles est proposée. Ces techniques sont devenues la base
de plusieurs travaux qui utilisent des variables faibles dans des conditions sous la
forme d’inégalités linéaires matricielles (LMIs). Les travaux dans [Pea+00] proposent
des conditions pour l’analyse de D-stabilité robuste des systèmes à temps continu et
à temps discret avec des incertitudes polytopiques par l’utilisation des fonctions de
Lyapunov dépendantes des paramètres et des variables faibles. Dans les travaux de
[RP01], la stabilité robuste des systèmes incertains à temps discret ayant des paramètres
variants dans le temps est étudiée par l’existence d’une fonction de Lyapunov dépen-
dante des paramètres. Les conditions obtenues sont bornées par des scalaires obtenus
de la majoration de polynômes semi-définis positifs. En [RP02], les résultats mention-
nés précédemment sont étendus au cas des systèmes incertains à temps continu. Dans
[Che+03b], une fonction de Lyapunov quadratique dans le vecteur d’état et homogène
dans le vecteur des paramètres est proposée pour l’analyse de stabilité des systèmes
incertains à temps continu. La possibilité d’étendre ces résultats au cas à temps discret
y est évoquée.

Pour les systèmes incertains ayant des paramètres variants dans le temps avec des
taux de variation bornés, les auteurs de [Che+07] proposent des conditions d’analyse
de stabilité pour des systèmes à temps continu par des fonctions de Lyapunov qui
sont homogènes autant dans le vecteur d’état que dans le vecteur des paramètres.
Le cas à temps discret est le sujet des travaux de [DB01], où les auteurs étendent
les résultats trouvés en [OBG99] aussi en utilisant des fonctions de Lyapunov dépen-
dant des paramètres et des variables faibles. Dans [OP08], les auteurs proposent une
nouvelle description de la variation paramétrique comme une fonction des valeurs
des paramètres. Une fonction de Lyapunov dépendante des paramètres est utilisée
pour dériver des conditions LMI. Dans [OP09], les travaux précédents sont étendus à
une représentation plus complexe décrivant la relation entre le taux de variation des
paramètres et la valeur des paramètres. Des conditions d’analyse sont obtenues par
des fonctions de Lyapunov dépendant des paramètres.
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Dans le cas des paramètres variants dans le temps avec des taux de variation arbi-
traires, [Che+02; Che+03a] abordent le problème d’analyse des systèmes incertains à
temps continu en utilisant des fonctions de Lyapunov polynomiales homogènes dans
le vecteur d’état et indépendantes des paramètres. Des conditions suffisantes pour la
stabilité sont proposées, et dans certains cas, ces conditions sont prouvés comme étant
aussi nécessaires.

Le choix de représentation d’un système physique doit être suffisamment com-
plète pour proposer une bonne approximation du comportement entrée-sortie de ce
système. La modélisation mathématique standard peut décrire des sorties qui sont
des fonctions des entrées dans des instants précédents et des états internes, étant
absolument causale. Néanmoins, plusieurs systèmes réels présentent un comporte-
ment non-causal provoqué, par exemple, par les étincelles dans les circuits électriques
et les impulsions dans des systèmes robotiques [MG89]. Par ailleurs, les systèmes
à chaîne cinématique fermée présentent des contraintes algébriques qui ne peuvent
pas être décrites sous la modélisation mathématique standard. Ces limitations sont
comblées par l’utilisation de l’approche descripteur qui peut exprimer un comportement
non-causal et des contraintes algébriques. Dans la littérature, les systèmes descrip-
teurs peuvent être référés comme des systèmes singuliers et systèmes dégénérés, entre
autres appellations. Cette représentation est assez nouvelle, datant des années 70.

Étant donnée que les systèmes descripteurs sont apparus plus tard dans la littéra-
ture, des efforts sont mis en place pour étendre les techniques utilisées dans l’analyse
et la commande des systèmes standard vers le cas des systèmes descripteurs. Cette
extension doit prendre en compte que la versatilité trouvée dans le formalisme de-
scripteur est suivie d’une complexité croissante. Par exemple, l’existence et l’unicité
des solutions sont garanties pour un système linéaire standard, mais pas pour un sys-
tème descripteur. Ainsi, une loi de commande conçue pour un système descripteur
doit non seulement maintenir la stabilité de la boucle fermée, mais aussi assurer que
plusieurs autres propriétés du système se conservent. Ces propriétés sont présentées
et discutées en profondeur dans la thèse.

Une extension naturelle de la classe des systèmes descripteurs est la fusion avec
le formalisme incertain. La classe des systèmes descripteurs incertains peut à la fois
représenter des incertitudes du modèle, du comportement non-causal et des con-
traintes algébriques, ce qui est bien au delà de ce qu’un système dynamique standard
peut décrire. Cela veut aussi dire qu’une analyse plus complexe des systèmes descrip-
teurs incertains est requise, et en effet cela s’agit d’un domaine de recherche ouvert.
De même, la littérature dédiée aux systèmes linéaires descripteurs à temps invariant
est bien plus vaste que celle adressant les systèmes descripteurs incertains.

Des travaux dans la littérature traitent les problématiques associées à l’analyse et
la commande des systèmes descripteurs en utilisant des fonctions de Lyapunov de
différents types, bien comme de diverses techniques de convexification. Une petite
synthèse de la recherche faite dans ce domaine se retrouve dans la suite.

Par rapport à la classe des systèmes descripteurs incertains ayant des paramètres
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invariants dans le temps, les travaux dans [Fan02] fournissent des conditions d’admissi-
bilité autant pour des systèmes à temps continu qu’à temps discret. Les conditions
contiennent des inégalités non-strictes bornées par des coefficients obtenus de la ma-
joration des polynômes semi-définis positifs. L’article [KF03] propose une étude de
l’admissibilisation des systèmes descripteurs incertains à temps continu et à temps
discret par des fonctions de Lyapunov quadratiques menant à des conditions d’iné-
galité non-strictes. Dans les travaux de [GCS03], la D-admissibilité des systèmes à
temps continu et à temps discret est étudiée en utilisant deux fonctions de Lyapunov
quadratiques: une indépendante et l’autre dépendante des paramètres. Les conditions
obtenues sont aussi des inégalités matricielles non-strictes. Les travaux en [SF05] pro-
posent des inégalités strictes comme des conditions pour l’analyse de stabilité robuste
des systèmes descripteurs incertains à temps continu dépendant d’un seul paramètre.
Des fonctions de Lyapunov quadratiques dans le vecteur d’état et polynomiales dans
le vecteur de paramètres sont utilisés. En [YBC08], des conditions pour l’admissibilité,
la D-admissibilité et les normes H2 et H∞ sont proposées pour les systèmes descrip-
teurs incertains à temps continu en utilisant une fonction de Lyapunov dépendant des
paramètres et des variables faibles.

Pour les systèmes descripteurs incertains ayant des paramètres variants dans le temps
avec des taux de variation bornés, les travaux en [Bar11b] proposent des conditions
d’analyse d’admissibilité pour des systèmes à temps continu par des inégalités strictes
issues de l’utilisation des fonctions de Lyapunov dépendant des paramètres et des
variables faibles. Dans l’article [Bar11a], l’auteur traite le cas à temps discret avec
des paramètres possiblement variant dans le temps. Dans [BSC12], l’admissibilité des
systèmes incertains à temps discret est évaluée par l’utilisation des fonctions de Lya-
punov quadratiques dans le vecteur d’état et affines ou quadratiques dans le vecteur
des paramètres. En [BSC13], les mêmes auteurs se dirigent vers le cas à temps continu
en proposant l’analyse d’admissibilité et de performance H∞ par le biais de fonctions
de Lyapunov du même type qu’auparavant.

Des problématiques ouvertes et inexplorées peuvent être retrouvées dans la littéra-
ture. D’abord, les techniques proposées pour l’analyse d’admissibilité des systèmes
incertains sont nécessaires et suffisantes dans peu de cas, étant seulement suffisantes
pour la plupart des systèmes. Cette source de conservatisme peut être adressée par
l’utilisation de classes de fonctions de Lyapunov universelles. Deuxièmement, on note
que de nombreux outils et techniques originalement destinés pour le cas des systèmes
incertains standard ont été transposés pour le contexte des systèmes descripteurs in-
certains. Toutefois, ce travail n’est pas encore terminé, et, en effet, l’utilisation des
fonctions de Lyapunov polynomiales de degré arbitraire dans le vecteur d’état n’a pas
encore été proposée pour l’analyse des systèmes descripteurs incertains. Troisième-
ment, les conditions d’admissibilité proposées dans la littérature sont souvent non-
convexes et demandent des techniques de convexification qui peuvent apporter du
conservatisme dans les solutions.
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Cette thèse est une compilation des efforts placés dans les problèmes mention-
nés et propose l’extension de l’utilisation des fonctions de Lyapunov polynomiales
homogènes dans le cadre des systèmes descripteurs incertains. Ces extensions ont
donné lieu à plusieurs contributions originales et ont fait l’objet de deux publications
en conférences internationales de très haut niveau et deux soumissions en cours en
revue. Ce manuscrit est structuré comme suit:

• Chapitre 1: Les concepts de base et les outils mathématiques utilisés dans les
chapitres suivantes de la thèse y figurent. Dans ce chapitre, la formulation math-
ématique de plusieurs termes évoqués dans cette introduction est présentée.

• Chapitre 2: Une étude d’analyse d’admissibilité des systèmes descripteurs incer-
tains à temps discret est proposée. Nous présentons des conditions nécessaires
et suffisantes pour l’analyse d’admissibilité des systèmes descripteurs à temps
variant. De ces nouvelles conditions contenant des variables faibles variant dans
le temps, nous obtenons des conditions suffisantes et numériquement tractables
pour l’analyse d’admissibilité des systèmes descripteurs incertains polytopiques
ayant des paramètres avec des taux de variation bornés.

• Chapitre 3: L’analyse d’admissibilité des systèmes descripteurs incertains à temps
continu ayant des paramètres variants dans le temps y est abordée. Cette analyse
est produite par la pionnière utilisation des fonctions de Lyapunov homogènes
dans le cadre des systèmes incertains descripteurs. Une fonction de Lyapunov
homogène et indépendante des paramètres est proposée pour les systèmes ayant
des paramètres variant dans le temps avec des taux de variation arbitraires.

• Chapitre 4: Des fonctions de Lyapunov homogènes dépendant des paramètres
sont utilisées pour l’analyse d’admissibilité des systèmes descripteurs incertains
à temps continu ayant des paramètres variants dans le temps avec des taux de
variation bornés. Cela étend l’étude du chapitre précédent à un contexte plus
général. Des dépendances de degré 1 et de degré quelconque sont étudiées et
fournissent des conditions via des techniques de convexification différentes.

• Chapitre 5: La conclusion des travaux réalisés le long de la thèse et des perspec-
tives des lignes de recherche qui suivent à cette investigation y sont proposées.
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Introduction

The understanding and mastering of the many physical systems that surround us
often take a mathematical form. The theory of dynamical systems has been devel-
oped for centuries so far and has enabled the abstract modeling of concrete systems
through observations, measurements and validation. However, this translation of the
real world into a mathematical formalism is subject to how precisely we describe it.
Evidently, measurement errors and inaccuracy might lead to a false model that cannot
offer a trustworthy prediction of a system’s behavior. Nevertheless, a refined descrip-
tion of the reality is a challenging task, sometimes being overwhelmingly complex
and unnecessary for an envisaged application. For instance, fine precision might not
seem to be a significant issue in school experiments, such as predicting the arrival
time of a falling object, but for aerospace and medical fields, errors or unpredicted
events can lead to irrecoverable losses [Gar03; Has+08]. Therefore, there exists a trade-
off between accuracy and simplicity of the mathematical model of a system, and this
trade-off must be tunned according to the context and application.

The framework of uncertain systems seems to give enough precision under afford-
able complexity for a variety of applications in aeronautics, robotics and industrial
fields, to cite a few. Uncertain systems are said to be situated between linear and non-
linear systems because they consist of a parameterized family of linear systems. The
parameters might be time-varying resulting in time-varying dynamics. The compact
representation of uncertain systems is very convenient, enabling not only the study
of stability of the whole family of systems but also the synthesis of controllers that
will keep this family well-behaved regardless of the parameters’ variations. Although
the uncertain formalism is a powerful and multi-purpose representation, its use may
lead to challenges in the analysis that are eventually traded by a certain level of con-
servativeness in the numerical results. One may not be able to certify the stability an
uncertain system using a quadratic Lyapunov function even if the given system is sta-
ble. This happens because the class of quadratic Lyapunov functions is not universal
for the class of uncertain systems. The universality property of a class of Lyapunov
functions consists in the equivalence between stability of a system and existence of a
Lyapunov function within this class that certifies its stability. Another difficulty pre-
sented by this broad formalism is the space search. Given that the parameters of an
uncertain system are able to vary in the real set (IR), there is an infinite amount of
tests to be performed in order to ensure that every realization of an uncertain system
is stable. Because of that, convexification techniques are employed on the numerical
resolution of the stability problem, often increasing the degree of conservatism of the
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evaluation. Indeed, many attempts of progressively reducing the conservatism of the
analysis of uncertain systems have been made, but this is still an open field of work.

In the literature, different techniques have been used to approach the stability anal-
ysis and control synthesis problems for uncertain systems. Many of these techniques
were propelled by the aforementioned reduction in conservatism, and below, they are
classified by the type of systems they address.

For uncertain systems subject to time-invariant parameters, the work of [OBG99]
presents conditions for the stability analysis of discrete-time uncertain systems by us-
ing parameter-independent and parameter-dependent Lyapunov functions with slack
variables. This became the basis for several of the following works that also employ
slack variables in linear matrix inequality (LMI) conditions. The work of [Pea+00]
proposes conditions for robust D-stability analysis of continuous and discrete-time
systems with polytopic uncertainties by employing a parameter-dependent polytopic
Lyapunov function along with constant slack variables. In the work of [RP01], con-
ditions for the stability analysis of discrete-time uncertain systems subject to time-
invariant parameters are evaluated by means of the existence of a parameter-dependent
polytopic Lyapunov function. The derived conditions are bounded by scalars ob-
tained from the maximization of positive-semidefinite polynomials. In [RP02], the au-
thors extend the previous results on discrete-time uncertain systems to the continuous-
time case. In [Che+03b], a Lyapunov function that is quadratic in the state vector
and homogeneous in the parameter vector is proposed for the stability analysis of the
continuous-time case with the possibility of extension to the discrete-time case.

For uncertain systems subject to time-varying parameters with finite rates of varia-
tion, the work [Che+07] proposes stability analysis conditions for the continuous-time
case by means of Lyapunov functions that are homogeneously dependent both on the
state and on the parameter vectors. The discrete-time case is addressed in [DB01],
where the authors extend the results of [OBG99] also using parameter-dependent
polytopic Lyapunov functions and slack variables. In [OP08], the authors propose
a novel way to describe parameters’ rates of variation as a function of the actual val-
ues of parameters and use a parameter-dependent polytopic Lyapunov function to
derive LMI conditions. In [OP09], the previous work is extended to a more complex
representation of the relationship between the parameter’s values and their rates of
variation and stability analysis conditions are obtained through parameter-dependent
polytopic Lyapunov functions.

When the time-varying parameters are subject to unbounded rates of variation,
[Che+02; Che+03a] address the problem of stability analysis of continuous-time un-
certain systems by using Lyapunov functions that are parameter-independent and ho-
mogeneous polynomial in the state vector, deriving conditions that are are sufficient,
but in some limited cases, also proven to be necessary.

The chosen representation of a physical system must be comprehensive enough to
describe a good approximation of the output behavior of a real plant. The massively
standard mathematical modeling can provide outputs based on previous inputs and
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inner states, being inherently causal. Yet, many systems that surround us present non-
causal behavior, such as sparks in an electrical circuit and impulses in robotic systems
[MG89]. Furthermore, some systems, such as closed kinetic chain robots, present al-
gebraic constraints that cannot be represented in a standard state-space system. For-
tunately, non-causal behavior and algebraic constraints are phenomena that can be
depicted through the descriptor approach, that in the literature can be named as, for in-
stance, generalized state space systems, semistate systems, degenerate systems, and
so on. This broader representation is relatively new, being firstly studied in the 70s.

Given that descriptor systems have been subject of later interest in the literature,
there exists an effort in extending techniques used in the analysis and control of stan-
dard state-space systems to the case of descriptor systems. This extension must take
into account that the versatility found in the descriptor formalism is followed by a
more complex analysis. For instance, existence and unicity of solutions are guaranteed
for a linear state-space system but not for a descriptor system. Therefore, a control law
conceived for a descriptor system must not only provide stability of the closed-loop,
but also ensure that a set of other system properties are maintained. These properties
are presented in the following chapters of the present thesis.

A natural extension to the class of descriptor systems is the fusion with the uncer-
tain framework. This last class of uncertain descriptor systems can simultaneously rep-
resent uncertainties in the model, impulsive behavior and algebraic constraints, that
is far beyond what can be depicted by standard dynamic systems. This also means
that uncertain descriptor systems require a more complex analysis and are an open
field of research. Indeed, there is vaster literature dealing with linear time-invariant
descriptor systems than with uncertain descriptor systems.

Many works in the literature have addressed the analysis and control of uncer-
tain descriptor systems. To obtain mathematical conditions for such class of systems,
Lyapunov functions of different types have been employed, as well as different con-
vexification techniques. Below, there is a non-exhausting list of previous works related
to the field.

Concerning the class of uncertain descriptor systems subject to time-invariant pa-
rameters, the work [Fan02] provides admissibility conditions for both continuous and
discrete-time cases using parameter-dependent polytopic Lyapunov functions. These
conditions are given by nonstrict inequalities that are bounded by coefficients coming
from the maximization of positive-semidefinite polynomials. The work [KF03] pro-
poses a study on the admissibilization of continuous-time and discrete-time uncer-
tain descriptor systems using a quadratic Lyapunov function to derive nonstrict in-
equality conditions. The work [GCS03] studies the D-admissibility of continuous and
discrete-time systems using a quadratic and a parameter-dependent polytopic Lya-
punov functions, also providing nonstrict inequalities as evaluation conditions. The
work [SF05] proposes strict inequalities as conditions for the robust stability analysis
of continuous-time uncertain descriptor systems with one parameter by employing
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Lyapunov functions that are quadratically dependent on the state vector and poly-
nomially dependent on the parameter vector. In the work [YBC08], conditions for
the admissibility, D-admissibility and H∞ and H2 norms are proposed for continuous-
time uncertain descriptor systems using a parameter-dependent Lyapunov function
and slack variables.

For uncertain descriptor systems with time-varying parameters subject to finite
rates of variation, the work [Bar11b] proposes admissibility analysis conditions for
continuous-time uncertain descriptor systems through strict inequalities by means of
parameter-dependent Lyapunov functions and slack variables. In the work [Bar11a],
the discrete-time case with possibly time-varying parameters is addressed. In the
work [BSC12], the admissibility of discrete-time uncertain descriptor systems is eval-
uated through the use of Lyapunov functions that are quadratic in the state vector and
affine or quadratic in the parameter vector. In [BSC13], the authors proceed to the
admissibility and H∞ performance analyses of continuous-time uncertain descriptor
systems also with Lyapunov functions that are quadratic in the state vector and affine
or quadratic in the parameter vector.

In the cited works, some open problems can be found. First, the proposed ap-
proaches for the admissibility analysis of uncertain descriptor systems are necessary
and sufficient for restricted cases, being only sufficient for the vast majority of systems.
This source of conservatism can be tackled by the use of classes of Lyapunov functions
that are guaranteed to provide necessary and sufficient conditions, and there is still
much work to be done in this investigation. Second, it is observed that many tech-
niques and tools that are employed in standard uncertain systems have been trans-
posed to the case of uncertain descriptor systems. However, this transposition is still
in progress, and the study of Lyapunov functions that are polynomial with arbitrary
degree on the state vector has not been performed for the uncertain descriptor case.
Third, the stability/admissibility conditions obtained from many of the Lyapunov
functions proposed in the literature are not convex, demanding convexification tech-
niques that may bring conservatism to the solutions.

This thesis is a compilation of the efforts placed over the aforementioned problems
and aims to extend the homogeneous polynomial Lyapunov function theory proposed
for classical uncertain systems to the uncertain descriptor system framework. This
document is structured as follows:

• Chapter 1: Base concepts and mathematical tools that are used in the following
parts of this thesis are reunited. In this chapter, a mathematical formulation for
the many concepts evoked in this introduction is presented.

• Chapter 2: Admissibility analysis of discrete-time uncertain descriptor systems
is studied. We propose necessary and sufficient admissibility criteria for time-
varying descriptor systems. Then, with this novel criteria containing time-varying
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slack variables, we obtain numerically tractable sufficient conditions for the ad-
missibility analysis of polytopic parameter-dependent uncertain descriptor sys-
tems subject to parameters with bounded rates of variation.

• Chapter 3: Admissibility analysis of continuous-time uncertain descriptor sys-
tems subject to time-varying parameters is addressed. This analysis is performed
by the novel use of parameter-independent homogeneous polynomial Lyapunov
functions in the context of uncertain descriptor systems having parameters with
arbitrary velocities.

• Chapter 4: Parameter-dependent homogeneous polynomial Lyapunov functions
are used for the admissibility analysis of continuous-time uncertain systems sub-
ject to time-varying parameters with bounded rates of variation. This extends
the previous studies to a more general case. Dependences of degree 1 and of ar-
bitrary degree on the parameter vector are explored and lead to conditions that
are obtained by different convexification techniques.

• Chapter 5: Conclusions of the work and topics of further analysis are proposed.

Finally, this thesis led to the publication of the following works:

• dos Santos Paulino, Ana Carolina and Gabriela Iuliana Bara. “Homogeneous poly-
nomial Lyapunov functions for the admissibility analysis of uncertain descriptor sys-
tems”. In: Proceeding of the 56th IEEE Conference on Decision and Control,
Melbourne, Australia, pp. 3187–3193.

• dos Santos Paulino, Ana Carolina and Gabriela Iuliana Bara. “New LMI condi-
tions for admissibility analysis of time-varying descriptor systems”. In: Proceeding of
the 20th IFAC World Congress, Toulouse, France 50.1, pp. 15477–15482.

The ensuing works have been submitted for publication:

• dos Santos Paulino, Ana Carolina and Gabriela Iuliana Bara. “Polytopic parameter-
dependent homogeneous polynomial Lyapunov functions for the analysis of uncertain
descriptor systems”.

• dos Santos Paulino, Ana Carolina and Gabriela Iuliana Bara. “Robust admissibil-
ity of time-varying polytopic descriptor systems via parameter-dependent homogeneous
polynomial Lyapunov functions”.
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Chapter 1

Theoretical background

In this chapter, mathematical tools that are fundamental for the understanding of the
ensuing parts of this thesis are presented. We are mainly interested in the analysis
of uncertain descriptor systems, that reunite concepts from both descriptor systems and
uncertain systems. In the following, we present the formalism of the aforementioned
systems, their uses, properties, and techniques in stability/admissibility analysis that
can be found in the literature.

Descriptor systems are a powerful framework for dynamic systems because they
not only describe the time evolution of the states but they also allow the insertion of
algebraic constraints between the state variables and the representation of impulsive
behavior in a model. Several names may refer to descriptor systems such as behav-
ioral models, implicity systems, singular systems, semistate representation, generalized state-
space systems, differential-algebraic systems, degenerate systems, constrained systems [Dai89;
Lew86; Ger04; CKM11].

The use of the descriptor representation is useful for various applications. In
robotics, parallel driven cable robots, multi-legged robots, tensegrity structures, and
closed kinematic chain robots present rigid constraints between their actuators or
joints [HLB14; CH08; MG89]. In electronics, frequently used components, such as
capacitors and inductors, present impulsive behavior by releasing sparks due to the
signal change in circuits. In chemistry and physics, conservation of physical laws,
such as conservation of energy and mass, must hold for the mathematical models and
can be expressed through algebraic constraints. The class of descriptor systems has
also been used in other applications, such as catastrophic behavior, neurology, aircraft
dynamics, neutral delay systems, economics [LA77] and demography, as explicited in
[Lew86].

A descriptor system can be represented in a state-space representation by the quadru-
plet (E, A, B, C) in which the elements of the triplet (A, B, C) have the usual meaning
found for the standard systems, namely dynamic matrix, input matrix and output ma-
trix, respectively. The innovation is found in the derivative matrix E that multiplies
the vector of state derivatives, in the continuous-time case, or the time-shifted state
vector, in the discrete-time case.

A descriptor system in which matrices E, A, B and C are time-invariant is called
a linear time-invariant (LTI) descriptor system. In case these matrices present an explicit
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time dependence E(t), A(t), B(t) and C(t), they describe the so-called time-dependent
descriptor system, here also referred as linear time-varying (LTV) systems. If this time
dependence can be parameterized by a vector of parameters w ∈ IRm, matrices E(w),
A(w), B(w) and C(w) refer to a parameter-dependent linear system here also called a lin-
ear parameter varying (LPV) system. The relationship between the dynamic matrices
of LTI, LPV and LTV systems is portrayed in Figure 1.1. The same reasoning is applied
for the other matrices of the models.

LTI

LPV

LTV

Choice of a constant
parameter vector
ALTI = ALPV(w0)

Change of variables often
implying parametric constraints

ALPV(w) = ALTV(t)
∣∣∣
w(t)

Choice of a particular
parameter’s trajectory
ALTV(t) = ALPV(w(t))

Choice of time-invariant dynamics
ALTI = ALTV(tk)

FIGURE 1.1: Relationship between linear time-invariant (LTI), linear
parameter-varying (LPV) and linear time-varying (LTV) systems

In this thesis, we are mostly interested in the class of parameter-dependent lin-
ear descriptor systems with possibly time-varying parameters. Because of that, the
chapter is organized as follows: in the first section, we present concepts related to the
simplest version of descriptor systems, i.e. LTI descriptor systems. Then, in the sec-
ond section, we recall the theory of standard parameter-dependent systems. Finally,
in the third section, we group the two precedent ones in our subject of interest, the
parameter-dependent descriptor systems.

1.1 LTI descriptor systems

The versatility found in descriptor systems, when compared to standard ones, is due
to the presence of a derivative matrix, here denoted as E, that multiplies the derivative
vector, as follows:

Definition 1.1.1 (Descriptor system): A descriptor system is given by

Eδ[X] = AX + Bu (1.1a)

y = CX, (1.1b)
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where X ∈ IR(n+nξ ) is the system state vector, δ is a derivative operator for the continuous-
time case, and a time-shift operator for the discrete-time case, A ∈ IR(n+nξ )×(n+nξ ) is
the associated dynamic matrix, B ∈ IR(n+nξ )×g is the input matrix, C ∈ IRh×(n+nξ ) is the
output matrix, E ∈ IR(n+nξ )×(n+nξ ) is the derivative matrix where rank(E) = n, and
vectors u ∈ IRg and y ∈ IRh are the input and the output, respectively.

Remark 1.1.2 (Dimensions’ notations). Dimensions n and nξ have been introduced in order
to clearly emphasize the dimensions of the dynamic and algebraic parts of the system state
vector X. These two parts can be explicitly retrieved through a transformation in the system
state vector X given by the Singular value decomposition normal form. This manipulation will
be detailed in the ensuing section 1.1.2.

Remark 1.1.3 (Continuous-time and discrete-time representations). Time-dependence is here
omitted for the sake of unified notation. If the descriptor system (1.1) is continuous-time, we
have

EẊ(t) = AX(t), (1.2)

and if it is discrete-time, we have

EX(k + 1) = AX(k). (1.3)

We note that the descriptor framework is a generalization of the standard state-
space representation. For describing a standard-space system, one can choose to use
the formalism in (1.1) with a full-rank E matrix. Please note that for E = In+nξ

we
obtain a standard dynamic system.

1.1.1 Examples

To illustrate the formalism of descriptor systems, some examples based on the afore-
mentioned applications follow:

Example 1: A simple circuit network [Dai89]

Vs(t)

R I(t) L

C Vc(t)

FIGURE 1.2: A RLC circuit network

Consider the classic resistor-inductor-capacitor (RLC) serial circuit network in Fig-
ure 1.2. Its dynamical equation is given by

Vs(t)−VR(t)−VL(t)−VC(t) = 0, (1.4)
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m1

κ1

δ1

u m2

k1

d1

κ2

δ2

m3

k2

d2

κ3

δ3

FIGURE 1.3: A mechanical system

and the dynamics of the components are characterized as

VR(t) = RI(t), (1.5)

VL(t) = L
d
dt

I(t), (1.6)

VC(t) =
1
C

∫ t

0
I(τ)dτ. (1.7)

Choosing the state vector X(t) =
[

I(t) VR(t) VL(t) VC(t)
]T

, equations (1.4) to
(1.7) are stacked in the following descriptor representation:

0 0 0 0
0 0 0 0
L 0 0 0
0 0 0 C




İ(t)
V̇R(t)
V̇L(t)
V̇C(t)

 =


0 1 1 1
R −1 0 0
0 0 1 0
1 0 0 0

 ·


I(t)
VR(t)
VL(t)
VC(t)

+


−1
0
0
0

 ·Vs(t). (1.8)

The output is given by y(t) =
[
0 0 0 1

]
X(t).

The formulation of the dynamics in (1.8) shows the use of the descriptor state-
space representation that employs a rank-deficient matrix E. Note that relation (1.4)
describing the electrical circuit Kirchhoff law appears as an algebraic constraint in the
descriptor formulation (1.8). Even if for this particular system an equivalent standard
formulation can be obtained, for which the matrix E has full rank, it is important to
recall that, in general, if algebraic constraints are no longer explicit, numerical methods
might deviate from the constraints and lead to physically meaningless results [CKM11].

Example 2: A mechanical system [BW18]

Consider the constrained damped mass-spring system in Figure (1.3). The movement
is associated with the following equations:
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Mv̇(t) = Kp(t) + Dv(t)− GTλ(t) + Bu(t) (1.9)

ṗ(t) = v(t) (1.10)

0 = Gp(t), (1.11)

in which the mass matrix is given as M = Bdiag(m1, m2, m3), the damping matrix is

K =

−k1 − κ1 k1 0
k1 −k1 − k2 − κ2 k2

0 k2 −k2 − κ3

, the stiffness matrix is

D =

−d1− δ1 d1 0
d1 −d1 − d2 − δ2 d2

0 d2 −d2 − δ3

, the constraint matrix is G =
[
1 0 −1

]
,

and the input matrix is B =

1
0
0

. Grouping the formulation in the descriptor form,

one obtains:  0 M 0
I3 0 0
0 0 0


 ṗ(t)

v̇(t)
λ̇(t)

 =

K D GT

0 I3 0
G 0 0


p(t)

v(t)
λ(t)

+

B
0
0

 u(t). (1.12)

The representation (1.12) presents not only the possibility of explicitly describing
algebraic constraints (1.11), but a further study shows that this system also presents
impulsive behavior, as will be discussed in the following.

1.1.2 The singular value decomposition (SVD) normal form

System (1.1) can be subject to a transformation that separates the state vector X into
a dynamic part and an algebraic part. Then, as the notation suggests, the system
presents distinctly dynamical equations concatenated with algebraic relations. This
is known as the singular value decomposition (SVD) normal form. The transforma-
tion that leads to this form is non-unique, and can be obtained through SVD over the
derivative matrix E and rank-decomposition. Below, it is shown in what the SVD form
consists.

Lemma 1.1.4 (SVD normal decomposition): There exist invertible matrices
S ∈ IR(n+nξ )×(n+nξ ) and T ∈ IR(n+nξ )×(n+nξ ) such that SET = Bdiag(In, 0nξ

). Then,
considering the change of variables X̄ = T−1X, the SVD normal decomposition of
system (1.1) is [

In 0
0 0nξ

]
δ[X̄] =

[
A11 A12

A21 A22

]
X̄ +

[
B1

B2

]
u, (1.13)

y =
[
C1 C2

]
X̄,
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where SAT =

[
A11 A12

A21 A22

]
, SB =

[
B1

B2

]
and CT =

[
C1 C2

]
. Consider X̄ =

[
x
ξ

]
. The

matricial equality (1.13) is equivalent to two sets of equations, one being dynamic and
the other, algebraic:

δ[x] = A11x + A12ξ + B1u (1.14a)

0nξ×1 = A21x + A22ξ + B2u (1.14b)

y = C1x + C2ξ. (1.14c)

Remark 1.1.5 (Calculation through SVD and scaling). Consider the derivative matrix E.
Given that rank(E) = n, E has n non-null eigenvalues. Therefore, calculating its SVD, we ob-
tain E = RUV, where R, V ∈ IR(n+nξ )×(n+nξ ) are unitary matrices and U ∈ IR(n+nξ )×(n+nξ )

is a diagonal matrix with nonnegative entries. The matrix U is of form
U = Bdiag(u1, u2, . . . , un, 0nξ

), in which ui, i = 1, . . . , n are not necessarily equal to 1.
However, U = Bdiag(u1, u2, . . . , un, Inξ

) · Bdiag(In, 0nξ
). With such manipulation, we ob-

tain:

E = RUV

= R


u1

. . .

un

Inξ

 ·
[

In

0nξ

]
V, (1.15)

and we can set S = Bdiag( 1
u1

, 1
u2

, . . . , 1
un

, Inξ
) · R−1, Ē = Bdiag(In, 0nξ

) and T = V−1.

Remark 1.1.6 (Rank decomposition). Suppose that the rank decomposition of the matrix E
is E = HJ, with H ∈ IR(n+nξ )×n and J ∈ IRn×(n+nξ ). One can expand this product by
introducing a block-diagonal matrix Bdiag(In, 0nξ

) as follows:

E =
[

H Hk

]
·
[

In

0nξ

] [
J
Jk

]
, (1.16)

where Hk = Ker(HT) ∈ IR(n+nξ )×nξ and Jk = Ker(JT) ∈ IRnξ×(n+nξ ). Please note that

matrices
[

H Hk

]
and

[
J
Jk

]
are full-rank.

In this case, Ē = Bdiag(In, 0nξ
) = SET, in which S =

[
H Hk

]−1
and T =

[
J
Jk

]−1

.

1.1.3 Properties of descriptor systems

The versatility of the descriptor framework is not exempted of costs. Though this
formalism can represent more phenomena than a standard state-space representation,
existence and uniqueness of solutions for any initial conditions must be verified. This
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is an indication that the problem has been well-posed, and it might give some in-
sight about the pertinence of the modeling process. Furthermore, one needs to verify
whether the system is stable and causal, and if not, act upon it by designing a suitable
control law. Some properties of descriptor systems, and how to compute them, are
given on the following.

Regularity

This property ensures the existence and uniqueness of solutions for a given descriptor
system.

Definition 1.1.7 (Regularity): The descriptor system (1.1) is regular if det(λE− A) is
not identically zero, i.e. det(λE− A) 6= 0 for some λ ∈ C.

Consider the application of the Laplace transform over the continuous-time ver-
sion of the autonomous system (1.1) given by EẊ(t) = AX(t). We obtain:

E(sX(s)− X(0)) = AX(s), (1.17)

where s is the Laplace variable, X(s) =
∫ ∞

0
e−stX(t)dt and X(0) is the initial condition

of the generalized state vector. We have that X(s) = (sE− A)−1EX(0), therefore, the
existence of the inverse of the matrix (sE− A) is necessary for X(s) to be defined for
every X(0).

Concerning the discrete-time version of the autonomous system (1.1), given as
EX(k + 1) = AX(k), consider the application of the Z-transform:

Ez(X(z)− X(0)) = AX(z), (1.18)

where z is the Z-transform variable, X(z) =
∞

∑
k=0

x[k]z−k and X(0) is the vector initial

condition. We find X(z) = (zE − A)−1zEX(0) and, as for the continuous-time case,
the inverse of (zE− A) must be well-defined for the computation of X(z).

Therefore, for either continuous and discrete-time cases, we observe that the in-
verse of a matrix λE− A must exist for some λ. Therefore, regularity is mathematically
given by det(λE− A) 6≡ 0.

Besides regularity, other properties are to be verified and ensured over a system,
such as absence of impulsive modes and the stability of finite modes.

Absence of impulsive modes or causality

When a continuous-time descriptor system is impulse-free, its time-response does not
contain impulsions or derivatives of the input. Likewise, when a discrete-time de-
scriptor system is causal, its response is free of Dirac impulsions, and all of the cur-
rent states can be calculated from past information of the states and the entries of the
system. It is important to ascertain the impulsive behavior of a descriptor system
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because impulses may lead to degradation in performance and damaging of system
components [IT02].

Definition 1.1.8 (Absence of impulsive modes or causality): The descriptor system (1.1) is
impulse-free (continuous-time systems) or causal (discrete-time systems) if
deg(det(λE− A)) = rank(E).

The poles of a descriptor system are the λ solutions of the characteristic polynomial
det(λE − A). The finite solutions of this equation are the finite modes. There are at
most rank(E) finite modes in a descriptor system and the number of finite modes and
infinite modes sum up to n + nξ . A system has no impulsive modes if the number of finite
modes equals rank(E).

Provided that a descriptor system is regular, there exists a similarity transforma-
tion that explicits the presence or absence of impulsive modes as presented in the
following. The canonical form of a descriptor system is obtained through another sim-
ilarity transformation that leads to a clear insight of the time response of a given de-
scriptor system. Differently from the dynamic-algebraic separation in the SVD normal
form, the canonical form, also known as Weierstrass canonical form and Kronecker’s
canonical form, divides a regular descriptor system into a fast and a slow subsystems.
The fast subsystem contains the impulsive behavior, and the slow one presents the dy-
namics of a classical state-space system. The formulation of the given transformation
is found below.

Lemma 1.1.9 (Canonical form): Consider the regular descriptor system (1.1). There ex-
ist invertible matrices S ∈ IR(n+nξ )×(n+nξ ) and T ∈ IR(n+nξ )×(n+nξ ) such that matrices
SET = Bdiag(In f ,N ) and SAT = Bdiag(J, In∞). The matrix N ∈ IRn∞×n∞ is nilpotent
with index of nilpotency µ, meaning that N k = 0n∞ ∀ k ≥ µ. The matrix J ∈ IRn f×n f

contains all the finite modes found in the characteristic polynomial det(λE− A). Di-
mensions n f and n∞ indicate the sizes of the vectors of finite and infinite modes, such
that the equality n + nξ = n f + n∞ holds. With the change of variables

X̄ = T−1X =

[
x1

x2

]
, the canonical form of (1.1) is given by the equivalent forms:

{
SETδ[X̄] = SATX̄ + SBu
y = CTX̄

⇔



[
In f

N

]
δ

[
x1

x2

]
=

[
J

In∞

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [x1

x2

]

The procedure for obtaining the canonical form is detailed in [Ger04] and evoked
in several different works [Dai89; Dua10; BMS05; VD79].

We observe that the canonical form is given by the sets of equations below:

δ[x1] = Jx1 + B1u (1.19a)

N δ[x2] = x2 + B2u (1.19b)

y = C1x1 + C2x2 (1.19c)
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Equation (1.19a) describes the slow subsystem, being defined by an ordinary dif-
ferential equation. Its solution for the continuous-time case is given as

x1(t) = eJtx1(0) +
∫ t

0
eJ(t−τ)B1u(τ)dτ, (1.20)

and for the discrete-time case, is given as

x1(k) = Jkx1(0) +
k

∑
τ=1

Jk−τB1u(τ − 1). (1.21)

For obtaining the solution x2 of equation (1.19b), we use the properties of nilpo-
tency of matrixN . For the continuous-time case, we successively derive and multiply
by N equation (1.19b) for µ− 1 times, obtaining:

N ẋ2 = x2 + B2u

N 2x(2)2 = N ẋ2 +N B2u̇

. . .

N µx(µ)2 = N µ−1x(µ−1)
2 +N µ−1B2u(µ−1). (1.22)

We recursively fetch the equations and recall that N µ = 0n∞ for obtaining the
solution:

x2(t) = −
µ−1

∑
i=1
N iB2u(i)(t). (1.23)

For the discrete-time case, we successively shift in time and multiply by N the
equation (1.19b), leading to:

N x2(k + 1) = x2(k) + B2u(k)

N 2x2(k + 2) = N x2(k + 1) +N B2u(k + 1)

. . .

N µx2(k + µ) = N µ−1x2(k + µ− 1) +N µ−1B2u(k + µ− 1), (1.24)

and analogously to the continuous-time case, we have:

x2(k) = −
µ−1

∑
i=1
N iB2u(k + i). (1.25)

We note that we may find impulses in (1.23) if the input function is less than µ − 1
smooth derivatives, and that the behavior of (1.25) is clearly non-causal, because the
output counts upon the values of µ− 1 future inputs.
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Furthermore, a consistent initial condition must be respected for continuous and
discrete times, respectively:

x2(0) = −
µ−1

∑
i=1
N iB2u(i)(0+), (1.26)

x2(0) = −
µ−1

∑
i=1
N iB2u(i). (1.27)

If such conditions are not respected, impulses may be observed in the output.
Therefore, to avoid impulsive or non-causal behavior, the nilpotency index of ma-

trix N must be µ = 0. We notice that if this happens, we have a special case of SVD

normal form as in (1.13) where

[
A11 A12

A21 A22

]
is a diagonal matrix and A22 = In∞ . Fur-

thermore, n and nξ in (1.13) are respectively n f and n∞.

Stability of finite modes

As for standard dynamic systems, stability is an important characteristic for descriptor
systems. It is desirable that the time response of an autonomous descriptor system is
such that the system leaves from an arbitrary initial configuration and arrives to the
equilibrium states after a certain time. Without loss of generality, we consider in the
following that the equilibrium point is the origin of the state space.

Definition 1.1.10 (Stability of finite modes): Among the finite modes, stability is en-
sured if asymptotic convergence towards zero of the associated states is satisfied.

Considering a LTI standard system, for the continuous-time case, stability means
that poles must lay in the left side of the complex plan, and for the discrete-time case,
poles must be inside the unit circle.

Admissibility

Definition 1.1.11 (Admissibility): The descriptor system (1.1) is admissible if it is regu-
lar, impulse-free and its finite modes are stable.

Admissibility is a property to be maintained, or ensured, through the process
of conceiving a control law. In other words, it is envisaged to maintain the well-
posedness of the representation while bringing all the impulsive modes and unstable
poles to a finite and stable subset.

It is also important to stress that the existence of constraints and infinite modes do
not necessarily impose the presence of impulsive modes. We recall that constraints
can be embedded in a pure dynamic representation, the so-called equivalent standard
form, and a standard form cannot represent non-causal/impulsive behavior.

Remark 1.1.12 (Admissibility of a system in the SVD normal form). Consider the au-
tonomous LTI descriptor system in SVD normal form (1.13) with u = 0. The invertibility of
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submatrix A22 ensures simultaneously regularity and absence of impulsive modes, while the
stability of such system is evaluated by the equivalent standard form, that is obtained by
implicitly embedding the constraints in a standard space-state form. Indeed, given that A22 is
invertible and considering equation (1.14b), the algebraic vector ξ can be written as a function
of the dynamic vector x as

ξ = −A−1
22 A21x. (1.28)

Introducing (1.28) in equation (1.14a), one obtains the so-called equivalent standard form:

ẋ = (A11 − A12A−1
22 A21)x. (1.29)

The asymptotic stability of the equivalent standard form is equivalent to the admissibility
of the descriptor system.

1.1.4 Admissibility analysis of descriptor systems

Lyapunov functions are massively used in the control field, and, likewise, they have
been employed to derive conditions for the admissibility analysis of descriptor sys-
tems. It is known that, for standard LTI systems, stability conditions are equivalent to
the existence of a Lyapunov function that is quadratic on the state vector. This fact also
holds for descriptor systems and different results have been proposed in the literature
for computing such Lyapunov functions.

A quadratic Lyapunov function candidate for descriptor systems has the following
form

V(X) = XTETPEX. (1.30)

Conditions for the existence of such a Lyapunov function for the system (1.1) are de-
rived below for the continuous-time and discrete-time cases.

Admissibility analysis of continuous-time descriptor systems

For the Lyapunov function candidate (1.30) to actually be a suitable Lyapunov func-
tion for the descriptor system (1.1), positive-definiteness of the function and negative-
definiteness of its time-derivative are required, and the each of these conditions are
here deployed for the continuous-time case.

• Positive-definiteness of the Lyapunov function: Given that the Lyapunov function
of form (1.30) is quadratic with respect to the states, positive-definiteness is en-
sured once ETPE > 0. However, we recall that E is not full-rank, rather imposing
the non-strict inequality ETPE ≥ 0. Still, we note that the strict positivity of ma-
trix P is sufficient but not necessary to provide the strict positivity of the scalar
function (1.30). Nevertheless, the authors of [UI99] suggest that a relaxation in
this condition would be of no gain.
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• Negative-definiteness of the time derivative of the Lyapunov function: The time-derivative
of the Lyapunov function candidate (1.30) is given as

d
dt

V(X(t)) = ẊTETPEX + XTETPEẊ (1.31)

= XT(ATPE + ETPA)X.

In the work of [Mas+97], we find a Lyapunov function candidate in the form

V(X) = XTET P̄X, (1.32)

that corresponds to the choice P̄ = PE in the Lyapunov function formulation (1.30).
This choice leads to the following set of conditions for the admissibility analysis of

continuous-time descriptor systems:

ET P̄ = P̄TE ≥ 0, (1.33)

AT P̄ + P̄T A < 0. (1.34)

These conditions present non-strict inequalities that are undesirable for the nu-
merical implementation. In [UI99], we find that "because of round-off errors in digital
computation, the equality constraints are fragile and in usual not satisfied perfectly. In such
cases, it is difficult to judge whether the constraint is really unsatisfied or satisfied but looks
unsatisfied for computational reasons." Such an inconvenient led to the research of Lya-
punov function candidates providing strict inequalities.

In the works of [UI99; IT02; MKG03], not only is a Lyapunov function in the form
of (1.32) used, but also an extra degree of freedom associated to the rank-deficiency
of matrix E is exploited. Consider the orthogonal complement of E as being a matrix
E0 ∈ IR(n+nξ )×nξ such that ETE0 = 0(n+nξ )×nξ .

This degree of freedom is introduced through different ways:

• In the works of [UI99; MKG03], a matrix Q ∈ IRnξ×nξ is proposed, so that PE in
(1.31) is replaced by PE + E0QET

0 as:

d
dt

V(X(t)) = XT(AT(PE + E0QET
0 ) + (ETP + E0QTET

0 )A)X. (1.35)

Therefore, the obtained admissibility conditions are given by the existence of
P > 0 and Q such that AT(PE + E0QET

0 ) + (ETP + E0QTET
0 )A < 0 holds.

• In [IT02], a matrix Q ∈ IRnξ×(n+nξ ) is used when replacing PE in (1.31) with PE +

E0Q. This leads to

d
dt

V(X(t)) = XT(AT(PE + E0Q) + (ETP + QTET
0 )A)X. (1.36)

Therefore, besides condition
P > 0, (1.37)
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it is required that

(AT(PE + E0Q) + (ETP + QTET
0 )A) < 0 (1.38)

for ensuring the admissibility of system (1.1) by means of the Lyapunov function
(1.30).

We notice that conditions (1.33) and (1.34) can be transformed respectively in (1.37)
and (1.38) by the change of variables P̄ = PE + E0Q, converting the nonstrict inequal-
ities into strict inequalities. Also note that this same change of variables converts the
Lyapunov function (1.32) into (1.30).

Remark 1.1.13 (Lyapunov functions for descriptor systems and the SVD normal form).
Consider the Lyapunov function with the structure given in (1.30) proposed for the descriptor
system in the SVD normal form given in (1.13) as V(X̄) = X̄T ĒTPĒX̄. Consider also a par-

tition in the Lyapunov matrix P =

[
P11 P12

P21 P22

]
. Replacing the values of Ē and the partitioned

P in the expression of the Lyapunov function, we obtain

V(X) = xTP11x. (1.39)

We note, then, that only the dynamic part of the state vector appears.

Admissibility analysis of discrete-time descriptor systems

For the discrete-time case, the Lyapunov candidate found in the literature must also
respect positive-definiteness, as well as negative-definiteness on its time rate of varia-
tion. The deployed conditions follow.

• Positive-definiteness of the Lyapunov function: Analogously to the continuous-time
case, the Lyapunov function (1.30) is quadratic with respect to the states. Positive-
definiteness is given, therefore, by the enforcement of the condition ETPE ≥ 0.

• Negative-definiteness of the time rate of variation of the Lyapunov function: The rate of
variation of (1.30) is given by:

∆V(X(k)) = V(X(k + 1), k + 1)−V(X(k), k)

= XT(k + 1)ETPEX(k + 1)− XT(k)ETPEX(k). (1.40)

In the work of [HL99], the proposed conditions for the admissibility of a discrete-
time uncertain system were given by the existence of a positive-definite matrix
P that satisfies the conditions below:

ATPA < ETPE (1.41)

ETPE ≥ 0. (1.42)
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The condition (1.42) is a nonstrict inequality that one would rather avoid for a
numerical implementation. Later in [IT03; ZXS08; CD12], positive-definiteness
of the Lyapunov function is enforced through the strict inequality condition
P > 0. Furthermore, these works exploit the use of the extra degree of freedom
due to the rank-deficiency of E in different ways:

– In the works of [ZXS08; CD12], a symmetric matrix Q ∈ IRnξ×nξ in (1.40) is
introduced, being multiplied to the right and to the left to the orthogonal
complement of the derivative matrix:

∆V(X(k)) = XT(k)(AT(P− E0QET
0 )A− ETPE)X(k), (1.43)

leading to the condition AT(P− E0QET
0 )A− ETPE < 0;

– In the work of [IT03], a rectangular matrix Q ∈ IRnξ×(n+nξ ) is introduced and
appears into two terms, being multiplied by the orthogonal complement of
the derivative matrix only from one side, so that
ATPA + ATE0Q + QTET

0 A− ETPE < 0.

Remark 1.1.14 (Numerical resolution). The numerical resolution of the presented admissi-
bility analysis conditions, as well as for the following conditions that follow in the manuscript,
is massively addressed by the use of Linear Matrix Inequalities (LMIs). For more details about
LMIs, please refer to Appendix A.

1.2 Standard uncertain systems

Modeling of physical systems is subject to many sources of inaccuracies, such as res-
olution of sensors and their influence over the process to be modeled, nonlinearities
associated to hysteresis, dry friction, backlash, dead zone, approximations to a single
operation point, to cite a few. All of these imprecisions lead to a model that is not per-
fectly identical to reality, but there is a trade-off between accuracy and complexity of
the model. A model that is too refined and complex also requires complex mathemat-
ical tools and massive computational power. Uncertain systems are a mathematical
formalism that let us represent a family of dynamics within a compact and intuitive
notation.

Therefore, the concept of robustness is paramount in the context of uncertain sys-
tems: we wish that the controlled system behaves within predefined metrics even
though precise knowledge of the dynamics is lacking. These uncertain models are
used for analysis and control synthesis and we envisage to ensure closed-loop stabil-
ity and performances in spite of all the possible uncertainties.
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FIGURE 1.4: An electromechanical circuit

1.2.1 Example

An adapted example from [Bar94] shows the application of the uncertain formalism
in describing physical systems. It depicts a DC motor driving a viscously damped
inertial load.

In the electromechanical circuit given in Figure 1.4, we consider the motor constant
to be K = 0.4 V/rps, the load moment of inertia to be JL = 2 · 10−5 kg ·m2, the motor
moment of inertia as Jm = 2 · 10−3 kg ·m2, the motor damping as
Bm = 2 · 10−5 N · m/rps, the armature inductance as L = 10−2 H and the armature
resistance as R = 1 Ω. We suppose that the load damping BL is imprecisely known,
such that 10−5 ≥ BL ≥ 3 · 10−5 N ·m/rps.

A possible uncertain state representation of the electromechanical circuit is given
as: [

ω̇m

ω̈m

]
=

[
0 1

−R(BL+Bm)+K2

L(JL+Jm)
−R(JL+Jm)+L(BL+Bm)

L(JL+Jm)

] [
ωm

ω̇m

]
+

[
0
K

L(JL+Jm)

]
e

τ =
[

BL JL

] [ωm

ω̇m

]
, (1.44)

where ωm, ω̇m and ω̈m are respectively the angular position, velocity and acceleration
of the rotor and e is the motor input voltage. In addition, in Figure 1.4, eg is the elec-
tromotive force, I is the armature current, τm is the torque released to the motor and τ

is the torque applied on the load.
We observe that the dynamic and output matrices of (1.44) are affinely dependent

on the value of the load damping BL. In this sense, this state representation depicts an
infinity of possible dynamic behaviors in the input-output relationship.

1.2.2 Parameter-dependent systems

During the modeling of uncertain systems, it is possible that the sources of uncertain-
ties are known, as well as their ranges of variation. When this is the case, the uncertain
model can be described as a function of such variables, that we name as parameters.
The model is, then, called as a parameter-dependent (PD) system.
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Definition 1.2.1 (Parameter-dependent system): Parameter-dependent systems are un-
der the form:

δ[x] = A(w)x, (1.45)

where x ∈ IRn is the system state vector, δ is a derivative operator for the continuous-
time case, and a time-shift operator for the discrete-time case, A ∈ IRn×n is the as-
sociated dynamic matrix, and w ∈ W ⊂ IRm is the possibly time-varying parameter
vector. The setW contains the possible values parameters can take. Further character-
izations of the parameter’s trajectories are available, so that, for the continuous-time
case, ẇ(t) ∈ V , and for the discrete-time case, ∆w(k) = w(k + 1)− w(k) ∈ V . SetsW
and V compose the parameter admissible domain. Prior available information about the
parameters is generally given by bounds on their values and rates of variation.

Remark 1.2.2 (Time dependence). As suggested by the presence of the set V , that describes
the velocities of parameters, the vector of parameters w can be time-varying and represented as
w(t) for the continuous-time case and w(k) for the discrete-time case. As a matter of fact, a
continuous-time characterization ẋ = A(t)x, respectively x(k + 1) = A(k)x for the discrete-
time one, belongs to the larger group of time-varying (TV) systems, and if the time evolution
of matrices A(t), or A(k), can be parameterized, we refer to A(w(t)), or A(w(k)), as being a
parameter-dependent characterization.

Remark 1.2.3 (Parameter’s measurability). In the context of uncertain systems, parameter’s
values are not available for the controller in real-time. However, if we can measure the pa-
rameters, for instance, the temperature that linearly changes the operation point of a chemical
reaction, we classify the system as being a classic linear parameter-varying (LPV) system.
There is no difference on the analysis procedures for uncertain and classic LPV systems, be-
cause stability must be ensured for all the possible configurations of parameters, regardless of
them being measurable or not. Nevertheless, the knowledge on the parameters can be useful for
synthesizing a control law. When parameters cannot be assessed in real-time, a single control
law is designed for working under any possible parameters’ trajectories, thus being categorized
as robust control. When parameters are measurable, the control law can be a function of them,
and this procedure is known as control scheduling.

The class of uncertain systems is more refined and comprehensive than LTI sys-
tems, but less complex than the nonlinear one. In this sense, uncertain systems’ frame-
work is a good compromise between complexity and precision. This formalism has
been widely used in different applications, such as automobilistics, aeronautics, elec-
tronics, robotics, and so on.

The parameter dependency can be represented by different forms: affine, poly-
topic, norm-bounded, rational, among others. In this thesis, we are particularly inter-
ested in the affine and polytopic forms, which we will discuss more in detail in the
following.
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Affine parameter-dependent systems

An affine parameter-dependent system is given by (1.45), in which the dynamic ma-
trix A(w) is given in an affine form and the parameters are allowed to vary inside
minimum and maximum bounds. Our mathematical characterization is given as:

Definition 1.2.4 (Affine parameter-dependent system): The affine parameter-dependent
system is a system of form (1.45), so that:

• Parameter values

– Continuous-time: wi ≤ wi(t) ≤ wi, i = 1, . . . , m,

– Discrete-time: wi ≤ wi(k) ≤ wi, i = 1, . . . , m,

• Parameter rates of variation

– Continuous-time: vi ≤ ẇi(t) ≤ vi, i = 1, . . . , m,

– Discrete-time: vi ≤ ∆wi(k) ≤ vi, i = 1, . . . , m,

• Dynamic matrix

– Continuous-time:

A(w) = A(0) +
m

∑
i=1

wi(t)A(i), (1.46)

– Discrete-time:

A(w) = A(0) +
m

∑
i=1

wi(k)A(i). (1.47)

Remark 1.2.5 (The constant parameter case). The affine parameter-dependent representa-
tion in Definition 1.2.4 comprises the case of constant parameters through the choice
vi = vi = 0, i = 1, . . . , m.

Since each parameter wi, i = 1, . . . , m is bounded, then the parameter vector w
belongs to the convex setW . For the continuous-time case, this set is given by

W = {w(t) ∈ IRm|wi ≤ wi(t) ≤ wi, i = 1, . . . , m} (1.48)

and for the discrete-time,

W = {w(k) ∈ IRm|wi ≤ wi(k) ≤ wi, i = 1, . . . , m}, (1.49)

thus containing all the possible combinations between the maximum and minimum
values of the entries of w. The vertices of W are all the possible combinations of
vectors whose entries are exclusively either the minimum bounds wi or the maximum
bounds wi, i = 1, . . . , m. There are N = 2m vertices w(i), i = 1, . . . , N that can describe
the setW asW = Co{w(1), w(2), . . . , w(N)}.
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For the continuous-time case, when the parameters’ rates of variation are bounded,
the vector ẇ(t) belongs to the convex set V that is characterized by

V = Co{v(1), v(2), . . . , v(N)}, (1.50)

where N = 2m. Each of the entries of the vertices v(i), i = 1, . . . , N contains either the
minimum bounds vi or the maximum bounds vi, i = 1, . . . , m. However, we notice
that for the discrete-time case, the characterization of V must respect the parameter
admissible domain by enforcing that w(k) remains inside W for any instant k. That
actually means

max{wi − wi(k), vi} ≤ ∆wi(k) ≤ min{wi − wi(k), vi}. (1.51)

Finally, matrices A(w) are characterized by a convex envelope whose vertices are
A(w(i)), i = 1, . . . , N. Therefore, A(w) ∈ Co{A(w(i))}, i = 1, . . . , N.

Polytopic parameter-dependent systems

A polytopic parameter-dependent system is such that the dynamic matrix A(w) and
the parameters’ values w are comprised within polytopes. Such system is given by the
ensuing definition.

Definition 1.2.6 (Polytopic parameter-dependent system): The polytopic parameter-dependent
system is of form (1.45), and:

• Parameter values

– Continuous-time: 0 ≤ wi(t) ≤ 1, i = 1, . . . , N,
N

∑
i=1

wi(t) = 1 ∀t ≥ 0,

– Discrete-time: 0 ≤ wi(k) ≤ 1, i = 1, . . . , N,
N

∑
i=1

wi(k) = 1 ∀k ≥ 0,

• Parameter rates of variation

– Continuous-time: vi ≤ ẇi(t) ≤ v̄i, i = 1, . . . , N,

– Discrete-time: vi ≤ ∆wi(k) ≤ v̄i, i = 1, . . . , N,

• Dynamic matrix

– Continuous-time:

A(w) =
N

∑
i=1

wi(t)A(i), (1.52)

– Discrete-time:

A(w) =
N

∑
i=1

wi(k)A(i). (1.53)
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Remark 1.2.7 (The constant parameter case). The polytopic parameter-dependent repre-
sentation in Definition 1.2.6 encompasses the case of constant parameters by choosing
vi = vi = 0, i = 1, . . . , N, in accordance with the affine parameter-dependent representation
(cf. Remark 1.2.5).

Calculating the continuous-time derivative of the parameter condition
N

∑
i=1

wi(t) = 1,

and the discrete-time rate of variation of
N

∑
i=1

wi(k) = 1, we obtain respectively

N

∑
i=1

ẇi(t) = 0 and
N

∑
i=1

∆wi(k) = 0. This is a requirement that a characterization of the

parameter rates of variation domain must obey in order to respect the parameter ad-
missible domain. If this is not the case, we may find restrictive analysis conditions.

For the continuous-time case [Che+07; GC06], we consider a polytope of admissi-
ble velocities V as

V = {v ∈ IRN , v ∈ Co {g1, . . . , gh}|
N

∑
i=1

gj
i = 0, j = 1 . . . h}. (1.54)

Vectors gi are such that ||gi||∞ ≤ β, i = 1 . . . h.
However, for the discrete-time case we must respect not only the condition

N

∑
i=1

wi(k) = 1, but also take into account the current values of parameters. We remark

that the polytope of allowed velocities might change over time because

max{wi − wi(k), vi} ≤ ∆wi(k) ≤ min{wi − wi(k), v̄i}. (1.55)

In [OP08; OP09], the authors formalize the dependence between the parameters’ val-
ues and their current possible rates of variation, and propose LMI conditions for the
stability analysis of uncertain systems that consider this relationship.

The set of admissible parameters values and parameters’ rates of variation is of-
ten referred as admissible polytope or consistent polytope, but its actual construction is
not simple. We notice that a clear definition of the set V is complex for both continu-
ous and discrete-time systems. Because of that, different works [GC06; SBN06; OP08;
OP09] have attempted to provide characterizations that combine low complexity and
numerical tractability.

Finally, matrices A(w) are characterized by an envelope whose vertices are A(i),
i = 1, . . . , N. Therefore, A(w) ∈ Co{A(i)}, i = 1, . . . , N.

Remark 1.2.8 (Conversion polytopic-affine). For the case of time-invariant parameter-
dependent systems, a conversion between the affine and polytopic formulations can be per-
formed. In the case of time-varying parameters, the conversion between velocities in affine and
polytopic representations is more complex than the one employed for the parameters’ values,
because of the velocity coupling and the requirement that the parameters always remain in the
parameter admissible domain.
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1.2.3 Stability analysis of uncertain systems

The stability analysis of an uncertain system is a complex problem because asymptotic
convergence of the states must be verified for all possible values and trajectories of
parameters. To tackle this task, different types of Lyapunov functions have been used
in the literature. A brief discussion about such systems and the employed Lyapunov
functions follow.

The general conditions for a candidate function to be an actual Lyapunov function
for a given system are given in the following.

Lemma 1.2.9 (Existence of a Lyapunov function): The candidate function V(X, w), hav-
ing dependencies in the state vector X and in the vector of parameters w ∈ W , with
δ[w] ∈ V is a Lyapunov function for a given dynamical system of interest if the condi-
tions are verified:

V(X(t), w(t)) > 0 ∀X(t) 6= 0, w(t) ∈ W , t > 0; (1.56)

Continuous-time:

d
dt

V(X(t), w(t)) < 0 ∀X(t) 6= 0, w(t) ∈ W , ẇ ∈ V , t > 0, (1.57)

Discrete-time:

∆V(X(t), w(t)) = V(X(t + 1), w(t + 1))−V(X(t), w(t)) < 0 ∀X(t) 6= 0, w(t) ∈ W ,

∆w = w(t + 1)− w(t) ∈ V , t > 0. (1.58)

In this case, V(X, w) is a Lyapunov function that guarantees the asymptotic con-
vergence of the state vector towards zero. Conditions (1.56) and (1.57) are, respec-
tively, the positive-definiteness of a Lyapunov function and the negative-definiteness
of its time derivative associated to a continuous-time system. Conditions given (1.56)
and (1.58) are the positive-definiteness of a Lyapunov function and the
negative-definiteness of its rate of variation associated to a discrete-time system. In
the discrete-time case, we recall that the time dependence can be represented by the
variable k.

Quadratic Lyapunov functions

Quadratic Lyapunov functions are Lyapunov functions that are quadratic in the state
vector and assume the form

V(x, w) = xTP(w)x. (1.59)

In the following, we present different dependencies a Lyapunov function candi-
date (1.59) may display with respect to the parameter vector, and to which classes of
systems these functions are used for robust stability analysis purposes.

Lemma 1.2.10 (Parameter-dependent quadratic stability): The uncertain system (1.45) is
quadratically stable with a parameter-dependent Lyapunov function (1.59) if the following
conditions are verified:
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• Positive-definiteness of the Lyapunov function candidate (1.59):

P(w) > 0 ∀ w ∈ W . (1.60)

• Negative-definiteness of the time rate of variation of (1.59):

– Continuous-time:

AT(w(t))P(w(t)) + P(w(t))A(w(t)) +
d
dt

P(w(t)) < 0

∀w(t) ∈ W , ẇ(t) ∈ V , t ≥ 0. (1.61)

– Discrete-time:

AT(w(k))P(w(k + 1))A(w(k))− P(w(k)) < 0

∀ w ∈ W , ∆w(k) ∈ V , k ≥ 0. (1.62)

Conditions (1.60), (1.61) and (1.62) can be expressed in different ways depending
on the type of parameter dependence. On the following, we present different cases
namely parameter independent, affine/polytopic parameter-dependent and homogeneously
parameter-dependent Lyapunov functions.

Corollary 1.2.11 (Quadratic stability): The uncertain system (1.45) is stable with re-
spect to a parameter-independent Lyapunov function if conditions (1.60), (1.61) and
(1.62) are satisfied with P(w) = P. In this case d

dt P(w(t)) = 0 in (1.61) and
P(w(k + 1)) = P(w(k)) = P in (1.62).

This quadratic stability criterion is convenient for its simplicity, leading to numer-
ically tractable conditions for robust stability analysis, robust control and robust filter
design [MP03]. This choice of Lyapunov functions is robust with respect to the param-
eter’s trajectories. Indeed, if an uncertain system is stable by means of a parameter-
independent Lyapunov function, it is stable for every possible values of parameters,
and any arbitrarily fast parameters trajectories. This fact is easily remarkable by the
fact that the term d

dt P(w(t)) is null in (1.61) and P(w(k + 1)) = P(w(k)) = P in (1.62)
and any infinitely big variation on the parameters is invisible to the referred condi-
tions. However, the existence of a common Lyapunov function is a strong require-
ment for the case of uncertain systems either with time-invariant parameters or with
parameters varying with bounded rates of variation, because a single matrix P is re-
searched for ensuring the stability of the whole uncertainty domain. As a matter of
fact, one may be unable to prove the stability of a stable uncertain system by means of
a common quadratic Lyapunov function.

This issue of conservativeness is an invitation for more general classes of Lyapunov
functions with polynomial dependence on the parameter vector. Indeed, the knowl-
edge of the parameters’ domain can be used by adding extra degrees of freedom to the
Lyapunov function’s structure. It is expected to obtain less restrictive results because
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parameter-independent Lyapunov functions are a particular case of the parameter-
dependent type. The parameter dependence can be of degree 1, on the so-called
affine/polytopic quadratic Lyapunov functions [OBG99; Pea+00], of degree 2, being called
as biquadratic Lyapunov functions [TS99], or of degree equal or higher than two, named
as homogeneous polynomially parameter-dependent quadratic Lyapunov functions [Che+03b;
OP07; OBP08]. Such Lyapunov functions can be employed to the stability analysis of
uncertain systems whose parameters are either time-invariant, or time-varying with
bounded rates of variation. We deploy the use of these Lyapunov functions below.

Corollary 1.2.12 (Affine/polytopic quadratic stability): The uncertain system (1.45) is sta-
ble with respect to an affine/polytopic parameter-dependent Lyapunov function if
conditions (1.60), (1.61) and (1.62) are satisfied for

P(w) = P(0) +
m

∑
i=1

wiP(i) (1.63)

if the sought Lyapunov function is affine, characterizing (1.45) as affinely quadratically
stable [GAC96], and

P(w) =
N

∑
i=1

wiP(i) (1.64)

if the sought Lyapunov function is polytopic.

Corollary 1.2.13 (Stability analysis of uncertain systems using homogeneous polynomially
parameter-dependent quadratic Lyapunov functions): The uncertain system (1.45) is stable
with respect to a homogeneous polynomially parameter-dependent quadratic Lya-
punov function that is homogeneous of degree s on the parameter vector w if condi-
tions (1.60), (1.61) or (1.62) are satisfied with

P(w) = ∑
k∈K(s)

wk1
1 wk2

2 . . . wkN
N P(k), (1.65)

where k =
[
k1 k2 . . . kN

]
, P(k) ∈ IRn×n ∀ k ∈ K(s) and k ∈ K(s) is such that

N

∑
i=1

ki = s.

The definition here displayed comes from [OP07] for a polytopic parameter-dependent
system. The same type of system is addressed in works [Che+03b; OBP08].

Results in the literature point out that conservatism in robust stability analysis
results might be reduced when we progressively increase the degree of parameter de-
pendence in a Lyapunov function. However, stability by means of a Lyapunov func-
tion that is quadratic in the state vector is not a necessary condition for the stability
of an uncertain system. This fact led to the research of even less conservative results
through the use of Lyapunov functions that are no longer quadratic with respect to
the state vector.
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Nonquadratic Lyapunov functions

The particular choices of Lyapunov function candidates that are quadratic in the state
vector and independent or affinely/polytopically-dependent on the parameter vector
are motivated by simplicity and because of the important number of mathematical
tools that have been developed to handle them. However, the obtained conditions are
often only sufficient, what motivates the research for less restrictive and numerically
tractable stability conditions. The requirements of low conservatism of the solutions
and numerical tractability of the conditions are generally related by a trade-off. On
the one hand, there are works that provide different and oftentimes more complex
structures of Lyapunov functions for obtaining less conservative results. On the other
hand, we find in literature an effort to relax stability conditions, in order to render a
criterion verifiable in a finite amount of iterations.

The idea of a non-restrictive Lyapunov function is apprehended by the concept of
universality, here quoted:

Definition 1.2.14 (Universality [AAA12]): A given class of Lyapunov functions is said
to be universal for the uncertain system under consideration if the robust stability of
the system is equivalent to the existence of a Lyapunov function belonging to the class.

The concept of universality has been a propeller of the research of Lyapunov func-
tions of various different forms. For instance, homogeneous polynomial Lyapunov
functions are known to be a universal class for uncertain systems [BM95; Che+03a],
and piecewise quadratic and polyhedral Lyapunov functions are not conservative for
robust stability analysis and robust control synthesis of uncertain systems with time-
varying structured uncertainties [Che+03a].

The present section brings two types of nonlinear Lyapunov functions that have
been studied aiming for numerical solvability and absence of conservatism.

• Polyhedral: This is a universal class of Lyapunov functions for uncertain systems
[Boy+94; BM95; Ama06; AAA12], and it is given in the form

V(x) = max
i=1,...,a

vT
i x, (1.66)

where vi, i = 1, . . . , a are appropriate row vectors. The whole set of polyhedral
functions is spanned for an optimal search when a→ ∞.

• Homogeneous polynomial: This is also a universal class of Lyapunov functions
for uncertain systems [Zel94; BM95; Che+03a; Alt06; Che11], and it is defined
for containing homogeneous polynomial dependence on the state vector and/or
the parameter vector. This functions are also called as "smooth" polyhedral Lya-
punov functions [BM99; AAA12]. Some possibilities can be found below:
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– Classic homogeneous polynomial Lyapunov functions (HPLFs): A homo-
geneous polynomial Lyapunov function of degree 2q is given by

V2q(x) = ∑
i1,...,in

pi1i2 ...in xi1
1 xi2

2 . . . xin
n , (1.67)

where i1, . . . , in ∈ Z≥0 and
n

∑
j=1

ij = 2q.

– Homogeneously Parameter-dependent Homogeneous Polynomial Lyapunov
functions (HPD-HPLFs) [Che+07]: This class of functions is homogeneously
dependent both on the state and on the parameter values, as follows:

V2q,s(x(t), w(t)) = ∑
i∈INm, j∈INn

∑n
k=1 jk=2q, ∑m

k=1 ik=s

ai,jwixj. (1.68)

Homogeneous polynomial Lyapunov functions have been a great subject of in-
terest during this thesis, and they are presented in detail in an ensuing section.

1.2.4 Mathematical tools for numerical tractability

The aforementioned Lyapunov function candidates generate conditions that are not
easily exploitable because they require an infinite amount of conditions to be satis-
fied. Because of that, a number of techniques has been used to render the conditions
numerically tractable.

Quadratic separation

This technique is also known as the utilization of slack variables. After the work of
[OBG99], the use of slack variables appear in the numerical implementation of sev-
eral robust stability criteria in different works [DB01; LP03a; LCF04; Bar11b; BSC12].
These variables can not only characterize more degrees of freedom that lead to less
conservatism, but they also render a robust stability problem convex by decoupling
dynamic and Lyapunov matrices. As an example, a realization of the use of slack vari-
ables is found in [Pea+00], where continuous and discrete-time examples are found
for the robust stability analysis of an uncertain system through a polytopic Lyapunov
function.

Theorem 1.2.15 ([Pea+00]). Consider an uncertain system (1.45) whose dynamic matrices
are of form (1.52) for the continuous-time case and (1.53) for the discrete-time case. The pa-
rameters w are uncertain, but time-invariant. Also consider a polytopic Lyapunov function
candidate whose Lyapunov matrix is of form (1.64).

The uncertain system is robustly stable if there exists matrices F and G ∈ IRn×n and N
symmetric positive-definite matrices P(i), i = 1, . . . , N such that, for the continuous-time case,
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one finds: [
He(FA(i)) P(i) − F + A(i)TG

? −He(G)

]
< 0, (1.69)

and for the discrete-time case,[
−P(i) +He(FA(i)) −F + A(i)TG

? P(i) −He(G)

]
< 0. (1.70)

Matrices F and G are the so-called slack variables and matrices P(i), i = 1, . . . , N
are the Lyapunov matrices from the polytopic Lyapunov function. Please note that
inequalities (1.69) and (1.70) are linear in the decision variables P(i), F and G. The
equivalence between forms (1.61) and (1.69), and respectively of (1.62) and (1.70), is
proved in [Pea+00].

Sum of polynomials

The method referred in this thesis as sum of polynomials has been explicited in works
such as [RP01; RP02; LP03b; LP03a; OP08] and it reduces the infinite amount of in-
equality conditions to a finite amount that is bound from above by diagonal matrices
whose non null entries come from the coefficients of positive semidefinite polynomi-
als. An example of the use of such technique follows:

Theorem 1.2.16 ([RP01] - Robust stability). Consider a discrete-time polytopic parameter-
dependent uncertain system (1.45) whose dynamic matrix is given by (1.53) and a polytopic
parameter-dependent Lyapunov function whose Lyapunov matrix is given by (1.64).

The uncertain system is robustly stable by means of the given Lyapunov function if there
exist positive-definite Lyapunov matrices P(i), i = 1, . . . , N such that

AT(i)P(i)A(i) − P(i) < −In, (1.71)

i = 1, . . . , N,

AT(i)P(i)A(j) + AT(j)P(i)A(i) + AT(i)P(j)A(i) − 2P(i) − P(j) <
1

(N − 1)2 In,

(1.72)

i = 1, . . . , N, j 6= i, j = 1, . . . , N,

AT(j)P(i)A(k) + AT(k)P(i)A(j) + AT(i)P(j)A(k)+

+AT(k)P(j)A(i) + AT(i)P(k)A(j) + AT(j)P(k)A(i) − 2(P(i) + P(j) + P(k)) <
6

(N − 1)2 In,

(1.73)

i = 1, . . . , N − 2, j = i + 1, . . . , N − 1, k = j + 1, . . . , N.
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Indeed, replacing the definitions of the dynamic matrix (1.53) and the Lyapunov
matrix (1.64) into the stability condition (1.62), one obtains

N

∑
i=1

w3
i (AT(i)P(i)A(i) − P(i))

−
N

∑
i=1

N

∑
j=1; j 6=i

w2
i wj(AT(i)P(i)A(j) + AT(j)P(i)A(i) + AT(i)P(j)A(i) − 2P(i) − P(j))

−6
N

∑
i=1

N

∑
j=1; j 6=i

N

∑
k=1; k 6=i,j

wiwjwk(AT(j)P(i)A(k) + AT(k)P(i)A(j) + AT(i)P(j)A(k)

+ AT(k)P(j)A(i) + AT(i)P(k)A(j) + AT(j)P(k)A(i)

− 2(P(i) + P(j) + P(k))) < 0 (1.74)

∀w(t) ∈ W , ẇ(t) ∈ V , t ≥ 0.

If conditions (1.71) to (1.73) hold, then the left side of inequality (1.74) is upper
bounded by the sum(

N

∑
i=1

w3
i −

1
(N − 1)2

N

∑
i=1

N

∑
j=1; j 6=i

w2
i wj −

6
(N − 1)2

N

∑
i=1

N

∑
j=1; j 6=i

N

∑
k=1; k 6=i,j

wiwjwk

)
· (−In).

(1.75)
The expression in (1.75) is negative-semidefinite because the sums of polynomi-

als within the left parenthesis are equal to
Θ

(N − 1)
+

Ω
2(N − 1)2 , where Θ and Ω are

positive semidefinite since they given by:

Θ =
N

∑
i=1

N

∑
j=1

wi(wi − wj)
2 (1.76)

= (N − 1)
N

∑
i=1

w3
i −

N

∑
j=1; j 6=i

w2
i wj

Ω =
N

∑
i=1

N

∑
j=1; j 6=i

N

∑
k=1; k 6=i,j

wk(wi − wj)
2 (1.77)

= 2(N − 2)
N

∑
j=1; j 6=i

w2
i wj − 12

N

∑
i=1

N

∑
j=1; j 6=i

N

∑
k=1; k 6=i,j

wiwjwk.

Therefore, based on this sum of polynomials technique, the stability condition
(1.62) is satisfied whenever conditions (1.71) to (1.73) hold.

Squares of homogeneous polynomials

This method is found in the work of [Che+07] for rendering convex the robust anal-
ysis of continuous-time parameter-dependent uncertain systems by means of homo-
geneously parameter-dependent homogeneous polynomial Lyapunov functions. It is
stated as:
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Theorem 1.2.17 ([Che+07] - Squares of homogeneous polynomials). Let g(w),
g(w) : IRm → IR be a homogeneous form. Then

g(w) > 0 ∀w ∈ W ⇐⇒ g(sq(w)) > 0 ∀w ∈ IRm\{0m}, (1.78)

where sq(w) ∈ IRm is the vector whose entries are the square of the entries of w:

sq(w) =
[
w2

1 w2
2 . . . w2

m

]T
.

This convexification method is further exploited on Chapter 4.

Other convexification techniques

The aforementioned convexification techniques have been used throughout the fol-
lowing chapters of the thesis, but some other techniques are also cited here below:

• Kharitonov test: the Kharitonov test addresses the robust stability of an interval
polynomial family. It states that the robust stability of this family is verified by
the stability of four Kharitonov polynomials that are built from the maximum
and the minimum values of the parameters.

One of the reasons of the importance of this method is historical. It is responsi-
ble for reviving the interest on the research of parametric uncertainties on the
80s [Bar94]. It is also powerful for consisting in an algebraic analysis. The
Kharitonov test is nonconservative when each coefficient of the characteristic
polynomials is a function of a single parameter [GAC96]. On the other hand, it
can be conservative for disconsidering the existing couplings among parameters
[Aou12].

• S-procedure: This technique is based upon the constraint that a quadratic form
is negative-definite whenever another set of quadratic forms is negative-definite
[Boy+94]. The S-procedure can conveniently lead to structuring the negative-
definiteness problem in a LMI fashion.

This technique was used, for instance, in the work of [XSF97] to provide robust
stability conditions for a time-varying uncertain system containing two vertices,
and in [Alm+01] for the more general case of an arbitrary number of vertices.

• Multiconvexity approach: This convexification technique consists in imposing
convexity on the robust admissibility conditions in each direction of the param-
eter space in order to ensure global convexity. In [GAC94; GAC96; Bar01], defi-
nitions and uses of the multiconvexity techique are found. One example is here
cited:

Definition 1.2.18 ([GAC96] - Multiconvexity): Consider a scalar quadratic func-
tion of w ∈ IRm as

f (w) = α0 + ∑
i

αiwi + ∑
i<j

βijwiwj + ∑
i

γiw2
i , (1.79)
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and assume that f (w) is multiconvex, that is 2γi =
∂2

∂w2
i

f (w) ≥ 0 for i = 1 . . . m.
Then f (w) is negative inW if and only if it takes negative values at the vertices
of the parameter setW .

In this work, the definition of multiconvexity is applied for obtaining robust
stability conditions for an affine uncertain continuous-time system with time-
varying parameters subject to bounded rates of variation by means of an affine
parameter-dependent Lyapunov function.

1.2.5 Homogeneous Polynomial Lyapunov functions

Homogeneous Polynomial Lyapunov functions are set aside for a more thorough dis-
cussion because they are universal for uncertain systems and because a number of
interesting results combining techniques for quadratic Lyapunov functions have been
used. This is possible because of one can rewrite a homogeneous polynomial Lya-
punov function in a quadratic standard form where the new state vector is given by
a nonlinear transformation over the state vector of the original system. Conditions
derived from these Lyapunov functions can be non-conservative for a given uncertain
system if the degree of the homogeneous forms is properly chosen. In this thesis, we
are particularly interested in this class of Lyapunov functions not only because of their
aforementioned desirable attributes, but also because they had only been employed
for the stability analysis of uncertain standard systems, but not for the admissibility
analysis of uncertain descriptor systems. Important properties associated to this type
of Lyapunov functions are presented in the following.

Definition 1.2.19 (Base vector of homogeneous forms): The base vector of homogeneous
forms of degree q of a vector x ∈ IRn is here denoted by x[q] ∈ IRd(n,q) , and is composed
by all the integer powered monomials of degree q that can be made from the entries
of x. These components are given as

x[q]l = xi1
1 xi2

2 . . . xin
n , i1 + i2 + . . . + in = q

i1, i2 . . . , in ≥ 0, l ∈ {1, . . . , d(n, q)}

where d(n, q) =
(n + q− 1)!
(n− 1)!(q)!

.

The formula d(n, q) is, by definition, the multiset coefficient or multiset number, ie.
the number of multisets of cardinality q having elements taken from a finite set of
cardinality n.

Remark 1.2.20 (Power transformation). The nonlinear mapping between x[q] and x is
known as a power transformation of degree q of x.

Definition 1.2.21 (Square matricial representation): Consider the homogeneous polyno-
mial Lyapunov function (1.67). Its square matricial representation (SMR) is defined
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as
V2q(x) = x[q]

T
Px[q]. (1.80)

The matrix P = PT ∈ IRd(n,q)×d(n,q) in (1.80) is non-unique, and can be parameter-
ized as P + P0, P0 ∈ P being

P = {P0 = PT
0 ∈ IRd(n,q)×d(n,q) | x[q]

T
P0x[q] = 0 ∀ x ∈ IRn}. (1.81)

The set P is a linear space whose dimension is

dP (n, q) =
1
2

d(n, q)(d(n, q) + 1)− d(n, 2q). (1.82)

Indeed, any matrix of P can be written as a linear combination of dP (n, q) matri-
ces, leading to an affine parameterization of the coefficient matrix P. Therefore, the
complete square matricial representation (CSMR) of a homogeneous polynomial Lya-
punov function is given by:

V2q(x) = x[q]
T

P(γ)x[q] = x[q]
T
(P + P0(γ))x[q]

= x[q]
T
(P +

dP (n,q)

∑
i=1

γiP0i)x[q] (1.83)

where the matrices P0i form a base of the linear space (1.81).

Remark 1.2.22 (About the dimension ofP). The size of setP , given by dP (1.82), informs the
amount of degrees of freedom associated to the CSMR form. We note that the Lyapunov matrix
P in (1.80) is of size d(n, q)× d(n, q). Due to its symmetry, P has 1

2 d(n, q)(d(n, q) + 1) free
entries, namely either its upper or the lower triangle. We also remark that the function V2q(x)
is a polynomial of degree 2q in the state vector, what means that V2q(x) is a weighted sum of
d(n, 2q) monomials. Therefore, the degrees of freedom due to the size of the Lyapunov matrix
P that are not used to describe the polynomial V2q(x) are of size dP .

Definition 1.2.23 (Extended matrix): Consider the generic system ẋ = Ax. The ex-
tended matrix A[q] ∈ IRd(n,q)×d(n,q) is defined by

d
dt

x[q] =
∂x[q]

∂x
Ax = A[q]x

[q].

The transformation introduced in this definition is such that, if A, B ∈ IRn×n and α,
β ∈ IR, then,

(αA + βB)[q] = αA[q] + βB[q].

For a complete presentation of the properties of this transformation, the interested
reader can see [Bro73; BZ83] and [Zel94].
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Definition 1.2.24 (Extended system): Consider an affine parameter-dependent standard
system

ẋ(t) =
(

A(0) +
m

∑
i=1

wi(t)A(i)
)

x(t), (1.84)

and let A(0)
[q] and A(i)

[q] , i = 1, . . . , m denote the extended matrices of A(0) and A(i),
respectively. Then, the associated extended system is given by:

d
dt

x[q](t) = A(w(t))[q]x
[q](t) (1.85)

=
(

A(0)
[q] +

m

∑
i=1

wi(t)A(i)
[q]

)
x[q](t).

Likewise, consider a polytopic parameter-dependent standard system

ẋ(t) =
( N

∑
i=1

wi(t)A(i)
)

x(t), (1.86)

and let A(i)
[q] be the extended matrices of A(i). The associated extended system is given

by:

d
dt

x[q](t) = A(w(t))[q]x
[q](t) (1.87)

=
( N

∑
i=1

wi(t)A(i)
[q]

)
x[q](t).

Remark 1.2.25 (Relation between quadratic and homogeneous polynomial Lyapunov
functions). The time-derivative of the Lyapunov function V2q(x) along the trajectories of the
extended system (1.85) equals the time-derivative of V2q(x) along the trajectories of (1.84) ie.
d
dt

V2q(x)
∣∣∣∣
(1.85)

=
d
dt

V2q(x)
∣∣∣∣
(1.84)

(see Lemma 3 in [Zel94] for more details). Therefore, the

problem of computing a HPLF of degree 2q for the system (1.84) is equivalent to computing
a quadratic LF for the extended system (1.85). The reasoning here developed for the affine
descriptor case is valid for the polytopic descriptor case by considering the uncertain system as
(1.86) and the extended system (1.87).

It has been emphasized in the literature that there is a linear mapping between the
entries of the dynamic matrices of the original and the extended systems [JW01]. A
parameterization of this linear mapping is proposed in Chapter 3.

1.3 Uncertain descriptor systems

Uncertain descriptor systems gather the properties of both descriptor and uncertain
systems presented so far. Therefore, they can represent simultaneously time-varying
behavior, algebraic constraints and non-causal phenomena. A number of applications
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has been found for this formalism, such as in aeronautics, robotics, economics, elec-
tronics, and so on.

The use of the uncertain descriptor formalism can be useful to reduce the degree of
dependence on the parameters. It is known that a parameter-dependent system with
rational dependence on parameters can be rewritten as an equivalent descriptor sys-
tem with affine dependence on parameters. An application that highlights the impor-
tance of such property is the study of stability of parameter-dependent systems. The
affine dependence may render the stability conditions convex with respect to these
parameters, being a positive factor in numerical evaluations.

As for standard uncertain systems, where E is full-rank, several different types
of parameter dependences may take place, such as affine, polytopic, rational, norm-
bound. Here, we focus on systems with affine and polytopic dependence on parame-
ters.

Definition 1.3.1 (Uncertain descriptor system): An autonomous uncertain descriptor
system is given as

Eδ[X] = A(w)X, (1.88)

where X ∈ IR(n+nξ ) is the system state vector, δ is the derivative operator in the
continuous-time case and a time-shift operator in the discrete-time case,
E ∈ IR(n+nξ )×(n+nξ ) is the derivative matrix, rank(E) = n, A ∈ IR(n+nξ )×(n+nξ ) is the as-
sociated dynamic matrix and w ∈ IRm is the parameter vector. If w is a time-dependent
vector, we refer to (1.88) as an uncertain parameter-dependent descriptor system with time-
varying parameters. Vector w varies inside the domain W , and the allowed rates of
variation of w are comprised in the domain V . Definitions of setsW and V are found
in section 1.2.2, depending whether the system is continuous-time or discrete-time,
affine or polytopic.

Therefore, a continuous-time uncertain descriptor system is given by

EẊ(t) = A(w(t))X(t) (1.89)

and a discrete-time uncertain descriptor system has the form

EX(k + 1) = A(w(k))X(k). (1.90)

Remark 1.3.2 (About parameter-dependence). A parameter-dependent descriptor system can
be given by parameter-dependent matrices (E(w), A(w)). In this manuscript, as explicited in
(1.88), we consider E(w) = E. Actually, this consideration is not restrictive because, for the
systems in which there are uncertainties on the E matrix, a state augmentation method can be
used in order to obtain a constant derivative matrix as in the form (2.1) [SBF08].

1.3.1 Example

Consider the autonomous version of Example 1 of section 1.1.1. It shows an RLC cir-
cuit network whose mathematical expression is given through a descriptor formalism,



44 Chapter 1. Theoretical background

here below: 
0 0 0 0
0 0 0 0
L 0 0 0
0 0 0 C




İ(t)
V̇R(t)
V̇L(t)
V̇C(t)

 =


0 1 1 1
R −1 0 0
0 0 1 0
1 0 0 0

 ·


I(t)
VR(t)
VL(t)
VC(t)

 . (1.91)

Now, consider the following values for the components: the capacitance is
C = 4µF, the inductance is given by L = 5mH and the resistance is variable, com-
prised in the interval 1.5Ω ≤ R ≤ 100Ω. We observe that the system contains one
constraint given by the Kirchhoff’s laws, and throughout the infinity of possible val-
ues that the resistance R can assume, the behavior of this system can be either under-
or overdamped.

1.3.2 The singular value decomposition normal form

Analogously to the prior discussion in section 1.1.2, there is a SVD normal form as-
sociated to system (1.88). Given that matrix E is constant and of rank n, there exist
time-independent invertible matrices S and T such that SET = Bdiag(In, 0nξ

). A coor-
dinate transformation X̄ = T−1X produces the equivalent SVD normal form of (1.88):[

In 0
0 0nξ

]
δ[X̄] = SA(w)TX̄ =

[
A11(w) A12(w)

A21(w) A22(w)

]
X̄.

We observe that this notation is similar to a collection of equations, as given below:

δ[x] = A11(w)x + A12(w)ξ (1.92a)

0nξ×1 = A21(w)x + A22(w)ξ. (1.92b)

in which the first is a dynamic equation, and the second is an algebraic equation that
reveals the constraints among state variables. The state vector X̄ is divided in two
parts: x ∈ IRn is a vector composed of the dynamic states, and ξ ∈ IRnξ regroups the
algebraic states. We recall that this system formulation is intuitive for many physical
systems such as for robots with joint constraints [MG89; CH08].

Following the lines of the section 1.1.2, one can retrieve the SVD normal form of the
uncertain descriptor system (1.88) through SVD or rank decomposition of matrix E.

Remark 1.3.3 (Studies on a time-invariant derivative matrix). As mentioned in Re-
mark 1.3.2, our study is here limited to a time-invariant derivative matrix E. Note that a
time-varying matrix E may have time-varying rank, leading to a SVD normal form with dy-
namic and algebraic parts of variable sizes.
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1.3.3 Properties of uncertain descriptor systems

As for time-invariant descriptor systems, definitions of regularity, absence of impul-
sive modes or causality, stability and admissibility (cf. section 1.1.3) are given below.
The set of pairs (E, A(w)) is:

• regular if det(λE− A(w)) 6= 0 for some λ ∈ C and all w ∈ W , ensuring exis-
tence and uniqueness of solutions;

• impulse-free, or causal, if deg(det(λE− A(w))) = rank(E) for every possible
values of parameter vector w ∈ W ;

• stable, if the state vector converges to equilibrium once the system is autonomous.
Stability will be discussed more in detail in the ensuing sections.

• robustly admissible, if it is regular, impulse-free and stable for every possible
trajectory of w(t) ∈ W and, for continuous-time systems, ẇ(t) ∈ V , while for
discrete-time systems, ∆w(k) ∈ V .

Remark 1.3.4 (SVD form and admissibility analysis of uncertain descriptor systems).
For the case of time-invariant uncertain descriptor systems, stability is verified by the
stability of the finite solutions of the characteristic polynomial det(λE− A(w)) = 0. Under
the SVD normal form (1.3.2), the pair (E, A(w)) is admissible if and only if A22(w) matrix is
invertible for every w ∈ W and the equivalent standard form

δ[x] = (A11(w)− A12(w)A22(w)−1A21(w))x (1.93)

is stable for all w ∈ W . The invertibility of A22(w) guarantees regularity and absence of
impulsive modes of the pair (E, A(w)), while ensuring that we are able to re-write the algebraic
vector as a function of the state vector [BL87; IT02].

For the case of time-varying descriptor systems, stability of the finite solutions of the
characteristic polynomial det(λE− A(w)) = 0 is not sufficient for ensuring the stability of
the descriptor system. That happens because certain choices of parameter’s rate of variation
may destabilize the system. Under the SVD normal form, the pair (E, A(w)) is admissible if
and only if A22(w) matrix is invertible for every w ∈ W and the equivalent standard form
(1.93) is stable for every possible parameter’s values and trajectories.

1.3.4 Polytopic/affine uncertain descriptor systems

In this manuscript, parameter dependence in uncertain descriptor systems is of order
one, so that the dynamic matrices A(w) can be comprised inside a convex polytope,
while matrix E remains constant. Polytopic and affine forms of a uncertain descriptor
system are given below.
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Affine uncertain descriptor systems

Affine uncertain descriptor systems are given as (1.88), in which parameter values w,
parameter rates of variation ẇ or ∆w and dynamic matrix A(w) are given accordingly
to Definition 1.2.4.

Polytopic uncertain descriptor systems

Polytopic uncertain descriptor systems are in the form of (1.88). Parameter values w,
parameter rates of variation ẇ or ∆w and dynamic matrix A(w) are set as in Defini-
tion 1.2.6.

Remark 1.3.5 (Polytopic/affine dependence and the equivalent standard form). Re-
calling Remark 1.3.4, if an uncertain descriptor system is known to be regular and impulse-
free, its stability can be evaluated through its equivalent standard form (1.93) for all possible
parameter’s values and parameters’ rates of variation.

Though the same holds for polytopic and affine uncertainty structures in (E, A(w)), the
associate form (1.93) no longer retains a polytopic or affine parameter dependence and con-
stitutes a nonconvex admissibility conditions, whose numerical treatment is rather complex
[SBF08].

1.3.5 Admissibility analysis of uncertain descriptor systems

The tool set for analysis and control of uncertain descriptor systems is being expanded
throughout the years and it is naturally founded upon previous works in descrip-
tor systems and in uncertain systems fields. Here we present some Lyapunov func-
tions that have been proposed in the area so far, namely parameter-independent and
parameter-dependent quadratic Lyapunov functions. Please note that the types of
Lyapunov functions found in the literature are all quadratic with respect to the state
vector. Indeed, to the best of our knowledge, Lyapunov functions that are nonquadratic
in the states have not been employed for the analysis of uncertain descriptor systems,
and this is an open field that this thesis aims to explore.

Recalling the general definition of a Lyapunov function in Lemma 1.2.9, henceforth
we bring some structures of Lyapunov functions used for the admissibility analysis of
uncertain descriptor systems found in the literature.

In the following, consider the parameter-dependent Lyapunov function candidate
given by

V(X, w) = XTETP(w)EX, (1.94)

that has clear correlation with the Lyapunov function candidate given in (1.30). Con-
ditions that such a candidate must fulfill for the admissibility analysis of uncertain
descriptor systems can be found in the following.
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Admissibility analysis of continuous-time uncertain descriptor systems

The Lyapunov candidate (1.94) is given as

V(X(t), w(t)) = X(t)TETP(w(t))EX(t) (1.95)

when dealing with a continuous-time system. Conditions over the function and its
time derivative are imposed so that it is able to ascertain the admissibility of a continuous-
time uncertain descriptor system of form (1.89).

• Positive-definiteness of the the Lyapunov function:

The positive-definiteness of the scalar Lyapunov function (1.95) is given by the
condition ETP(w(t))E ≥ 0 ∀w(t) ∈ W because of its quadratic dependence with
respect to the state vector. We note that this condition is not strict, but given
that the Lyapunov function is, after all, a scalar function, a sufficient condition,
but not necessary, for fulfilling the requirement is conveniently given by a strict
inequality:

P(w(t)) > 0 ∀ w(t) ∈ W , t > 0. (1.96)

• Negative-definiteness of the time derivative of the Lyapunov function:

The time-derivative of (1.95) given by

d
dt

V(X(t), w(t)) = X(t)T(AT(w(t))P(w(t))E + ETP(w(t))A(w(t)) (1.97)

+
d
dt

P(w(t)))X(t)

is kept negative-definite when

AT(w(t))P(w(t))E + ETP(w(t))A(w(t)) +
d
dt

P(w(t)) < 0 (1.98)

∀ w(t) ∈ W , ẇ(t) ∈ V , t > 0.

Admissibility analysis of discrete-time uncertain descriptor systems

The admissibility analysis of the discrete-time version is assessed by means of a Lya-
punov function in an analogous fashion of the continuous-time version, being:

V(X(k), w(k)) = X(k)TETP(w(k))EX(k). (1.99)

Conditions for the existence of such a Lyapunov function that verifies the admissibility
of system (1.90) follow:

• Positive-definiteness of the Lyapunov function: This condition is similar to its
continuous-time counterpart, being given as ETP(w(k))E ≥ 0 ∀w(k) ∈ W . Like-
wise, though the given inequality is not strict, the positive-definiteness of the
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Lyapunov matrix is sufficient for maintaining the positive-definiteness of the
Lyapunov function. In other terms, the condition consists in

P(w(k)) > 0 ∀ w(k) ∈ W , k ≥ 0. (1.100)

• Negative-definiteness of the time rate of variation of the Lyapunov function:

Given that the time rate of variation of the Lyapunov function candidate (1.99)
is given as

∆V(X(k), w(k)) = V(X(k + 1), w(k + 1), k + 1)−V(X(k), w(k), k)

= X(k)T(A(w(k))TP(w(k + 1))A(w(k))− ETP(w(k))E)X(k),
(1.101)

this condition is fulfilled once

A(w(k))TP(w(k + 1))A(w(k))− ETP(w(k))E < 0 (1.102)

∀ w(k) ∈ W , ∆w(k) ∈ V , k ≥ 0.

With the admissibility conditions presented, we derive in the following the vari-
ants for different types of Lyapunov functions.

Corollary 1.3.6 (Admissibility analysis of uncertain descriptor systems using quadratic pa-
rameter-independent Lyapunov functions): The continuous-time uncertain system (1.89)
(respectively, the discrete-time uncertain system (1.90)) is admissible by means of a
quadratic parameter-independent Lyapunov function if conditions (1.96) and (1.98)
(respectively, conditions (1.100) and (1.102)) hold for the choice P(w) = P.

The quadratic parameter-independent Lyapunov function appeared in the section
1.1.4 for the LTI case and is here evoked in the context of uncertain descriptor systems.
Differently from the section presented before, the admissibility must be ensured for all
the possible values and variations of the parameters.

Quadratic parameter-independent Lyapunov functions have been employed both
for the case of time-invariant uncertain parameters and for the case of time-varying
parameters subject to arbitrary rates of variation. In [KF03], nonstrict conditions are
found for the admissibility analysis of time-invariant polytopic parameter-dependent
systems. These conditions come from a choice of Lyapunov function as
V(x, w) = XTETPX. We remark that this choice leads to the function (1.99) once
P = P(w)E. The obtained conditions are given as nonstrict inequalities in the positivity-
definiteness of the Lyapunov function. Indeed, nonstrict inequalities may lead to nu-
merical issues and are avoided with the Lyapunov function structure as (1.99).

As a matter of fact, the parameter-independent Lyapunov function (1.99) is robust
for arbitrary rates of change in the parameters because the terms related to their varia-
tions, namely d

dt P(w(t)) in (1.98) and P(w(k + 1)) in (1.102), are respectively null and
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independent of the ensuing values of parameters. However, for an uncertain descrip-
tor system with known bounds on the parameter’s rates of variation, such information
can be used for reducing the conservatism of the analysis. This fact also motivates the
use of a Lyapunov function containing more degrees of freedom than the parameter-
independent case, leading to the ensuing parameter dependences.

Corollary 1.3.7 (Admissibility analysis of uncertain descriptor systems using quadratic
affine/polytopic parameter-dependent Lyapunov functions): The uncertain system (1.89) (re-
spectively (1.90)) is admissible by means of a quadratic affine parameter-dependent
Lyapunov function if conditions (1.96) and (1.98) ((1.100) and (1.102)) hold for the

choice P(w) = P(0) +
m

∑
i=1

wiP(i), here recalled from (1.63). For the case of a quadratic

polytopic parameter-dependent Lyapunov function, the aforementioned conditions must

hold for P(w) =
N

∑
i=1

wiP(i), as previously given in (1.64).

Time dependence on the parameters was here omitted for clarity in the represen-
tation.

In the work of [Fan02], a Lyapunov function of form V(X, w) = XTETP(w)X is
proposed, and once its Lyapunov matrix is set as P(w) = P(w)E, we retrieve the Lya-
punov function given by (1.94). In this work, sufficient conditions for the stability
robustness of time-invariant polytopic parameter-dependent uncertain descriptor sys-
tems with a polytopic parameter-dependent derivative matrix E were provided.

In [GCS03], we find conditions for the existence of a Lyapunov function that are
similar to the ones found in [Fan02]. There, the robust D-admissibility of a poly-
topic parameter-dependent uncertain descriptor system subject to time-invariant pa-
rameters can be found by means of a parameter-dependent Lyapunov function. In
[MAS03], the synthesis of output-feedback gain-scheduling controllers for standard
LPV systems is proposed through a descriptor formulation, where the conditions are
also derived from a Lyapunov function of an identical form of [Fan02; GCS03].

The conditions presented in these works contain nonstrict inequalities that are un-
desirable from the perspective of numerical implementation. This was a strong mo-
tivation for the use of Lyapunov functions of different structures that would produce
admissibility conditions presented as strict inequalities. Choices found in the litera-
ture comprise the full structure of the Lyapunov function (1.94).

Indeed, in the more recent works of [YBC08; SBF08; Bar11b; Bar11a; BSC12; BSC13],
admissibility conditions for uncertain descriptor systems subject to possibly time-
varying parameters are proposed in the form of strict inequalities.

Admissibility analysis of uncertain descriptor systems using quadratic Lyapunov
functions with polynomial dependence on parameters

Following the course of the investigations in the time-invariant descriptor systems,
there is interest in producing Lyapunov functions containing more complex depen-
dences in the parameter vector, and one of these efforts follows below, being expressed
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through the use of a Lyapunov function containing terms that are quadratic functions
of the parameters. In the work of [BSC12], such a function is used for the admissibil-
ity analysis of discrete-time uncertain descriptor systems. A prior reformatting of the

uncertain descriptor system is proposed as A(w(k)) = A
[

In+nξ

w(k)⊗ In+nξ

]
. The Lya-

punov matrix is given as P(w(k)) =

[
In+nξ

w(k)⊗ In+nξ

]T

P
[

In+nξ

w(k)⊗ In+nξ

]
, what leads

to a parameter-dependent Lyapunov matrix containing parameter dependences from
degrees 0 to 2.

Furthermore, in the work [SF05], we find conditions for the robust admissibility
analysis of time-invariant affine parameter-dependent uncertain descriptor systems
containing a single parameter. There, a quadratic Lyapunov function with polynomial

dependence of degree dw on the parameter is proposed, such that P(w) =
dw

∑
i=0

wiP(i).

1.3.6 Mathematical tools for numerical tractability

The existence conditions for the Lyapunov functions, as presented in the precedent
section, are often not numerically tractable. Their evaluation relies upon the use of
mathematical tools, such as slack variables. A collection of examples using these tech-
niques follows below.

Quadratic separation

The use of slack variables is presented onto different forms for the uncertain descriptor
formalism. Some works [Bar11b; Bar11a] propose the use of slack variables of reduced
size, while others [GCS03; YBC08; BSC12; BSC13] deal with an analogous form of what
is found on the standard uncertain case (cf. inequalities (1.69) and (1.70)). Examples of
both sorts are here cited:

Theorem 1.3.8 ([Bar11a]). The discrete-time polytopic parameter-dependent uncertain de-
scriptor system (1.90) is admissible by means of a polytopic parameter-dependent Lyapunov
function if there exist symmetric positive-definite matrices P(i) ∈ IRn×n, i = 1, . . . , N, F and
G ∈ IRn×n, X1 and X3 ∈ IRnξ×n and X2 ∈ IRnξ×nξ such thatHe(

[
F X3

0 X2

]
SA(i)T) +

[
P(i) 0
0 0

]
?[

G X1

]
SA(i)T +

[
FT 0

]
He(G)− (qP(i) + (1− q)P(j))

 < 0 (1.103)

holds for every (i, j) within the index sets. Here, S and T ∈ IR(n+nξ )×(n+nξ ) are the matrices of
the SVD normal form and q stands for an indicator function. Its value is 1 for time-invariant
parameters and 0 for time-varying parameters with arbitrary rates of variation.

Theorem 1.3.9 ([BSC12]). The discrete-time affine uncertain descriptor system (1.90) is ro-
bustly admissible if there exist matrices P(i) = P(i)T ∈ IR(n+nξ )×(n+nξ ), Q(i) ∈ IR(n+nξ )×nξ ,
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i = 0 . . . m, F and G ∈ IR(n+nξ )×(n+nξ ) satisfying the following LMIs:

P(w) > 0 ∀w ∈ W , (1.104)[
−EP(w)E +He(FA(w)) ?

E0Q(w) + GA(w)− FT P(w + ∆w)−He(G)

]
< 0 ∀w ∈ W , ∆w ∈ V . (1.105)

In this case, the associated affine parameter-dependent Lyapunov matrix is in the form
(1.63).

We note that the choice of constant slack variables in this example led condition
(1.105) to be a LMI, but slack variables need not always be parameter-independent for
leading to convex inequality conditions.

Sum of polynomials

In [Fan02], we find numerically tractable conditions for the analysis of time-invariant
parameter-dependent uncertain descriptor systems that are derived from the inequal-
ities below, for the continuous-time case:

There exists a Lyapunov matrix P(w) such that

P(w)E(w) = (P(w)E(w))T ≥ 0, (1.106)

P(w)A(w) + (P(w)A(w))T < 0 ∀w ∈ W . (1.107)

These numerically tractable conditions are obtained when conditions (1.106) and
(1.107) are bounded by parameter-dependent semipositive-definite polynomials, as
follows:

Theorem 1.3.10 ([Fan02]). If there exist semipositive-definite matrices Q, Z ∈ IR(n+nξ )×(n+nξ )

and P(i), i = 1, . . . , N such that

P(i)E(i) = (P(i)E(i))T ≥ Q, (1.108)

i = 1, . . . , N;

P(i)E(j) + P(j)E(i) = (P(i)E(j) + P(j)E(i))T ≥ −2
N − 1

Q, (1.109)

i = 1, . . . , N − 1, j = i + 1, . . . , N;

P(i)A(i) + (P(i)A(i))T < −Z, (1.110)

i = 1, . . . , N;

P(i)A(j) + P(j)A(i) + (P(i)A(j) + P(j)A(i))T <
2

N − 1
Z, (1.111)

i = 1, . . . , N − 1, j = i + 1, . . . , N.

Use of Finsler’s lemma

The Finsler’s lemma (cf. Appendix A) was used in the works [BSC12; BSC13] to lead
to convex conditions in the admissibility analysis problem of an uncertain descriptor
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system through a parameter-dependent Lyapunov function that is quadratic on the
parameters. In these works, the Finsler’s lemma was used to remove the nonlinear
parameter dependence from the inequality conditions, so that the resulting admissi-
bility conditions contain parameter dependence of degree 1.

1.4 Conclusion

In the present chapter, a collection of concepts and mathematical tools was recalled
from the literature. The class of dynamical systems of interest is the uncertain descrip-
tor one. Therefore, we discuss separately about descriptor systems, then uncertain
systems and, finally, about uncertain descriptor systems. In each of these sections, ex-
amples found in the literature are referred. Stability properties of uncertain systems
and admissibility properties of LTI descriptor and uncertain descriptor systems are
presented, as well as their calculation through different types of Lyapunov functions.

We would like to stress that the reduction of conservatism in the choice of the meth-
ods to assess the stability or admissibility of the addressed classes of systems is still an
open subject of research. Furthermore, Lyapunov functions that are nonquadratic in
the state vector have never been employed for the admissibility analysis of uncertain
descriptor systems. This open field is precisely the motivation and the subject of the
study of the next chapters that gather our main contributions.
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Chapter 2

Admissibility analysis of
discrete-time time-varying
descriptor systems

2.1 Introduction

In the present chapter, we present our contributions that deals with the admissibility
analysis of discrete-time descriptor systems. First, we deploy necessary and sufficient ad-
missibility criteria for time-varying discrete-time descriptor systems. These criteria are
an extension of some conditions found in the literature concerning the time-invariant
case. Then, we use this novel criteria to obtain sufficient admissibility conditions for
the polytopic parameter-dependent case. These conditions are LMI, so numerically
tractable, contain parameter-dependent slack variables and are obtained through the
upper bounds provided by positive-semidefinite polynomials.

Therefore, in this chapter, we first deal with time-varying discrete-time descriptor
systems, recalling notions from Chapter 1 and presenting the necessary and sufficient
conditions for the admissibility analysis of such systems. Later, we evoke concepts
about polytopic discrete-time descriptor systems and present sufficient conditions for
the admissibility analysis problem. Finally, we bring numerical examples that high-
light the advantages of the proposed sufficient conditions and we draw conclusions
from the presented techniques.

2.2 Time-varying (TV) descriptor systems

In this section, we explicit properties of TV descriptor systems, that are closely related
to uncertain descriptor systems (cf. section 1.3). Then, we introduce a novel and im-
portant assumption for TV descriptor systems in the SVD normal form that is followed
by new admissibility analysis conditions.
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2.2.1 Class of systems

Consider the uncertain linear time-varying descriptor system:

EX(k + 1) = A(k)X(k) (2.1)

where X(k) ∈ IRn+nξ is the state vector and A(k) ∈ IR(n+nξ )×(n+nξ ) is a time-varying
matrix function. E ∈ IR(n+nξ )×(n+nξ ) is a constant and, possibly, singular matrix with
rank(E) = n.

Remark 2.2.1 (The time-dependent derivative matrix case). We recall from Remark 1.3.2
that a system containing a time-varying derivative matrix E can be recast into the form (2.1)
through a state augmentation method.

We recall from Figure 1.1 that a linear time-varying descriptor system can be seen
as a linear parameter-varying system with a particular choice of parameters’ trajec-
tories. Conversely, a time-varying system can be converted in a parameter-varying
system once the time dependences are encapsulated in parameters that are related
to each other through the implicit time variable. Because of this close relationship
between LTV and LPV systems, we recollect the properties of uncertain descriptor
systems evoked in section 1.3.3 with little adaptation for the LTV case.

• System (2.1) is regular if det(λE− A(k)) 6= 0 for some λ ∈ C and for all k ≥ 0.

• The discrete-time descriptor system (2.1) for which the relation
deg(det(λE− A(k))) = rank(E) holds for all k ≥ 0 is called causal.

• The discrete-time descriptor system (2.1) is asymptotically stable if there exists
a Lyapunov function guaranteeing the asymptotic convergence of state vector
X(k) towards zero.

• A discrete-time descriptor system is admissible if it is regular, causal and stable.

We also recall from section 1.3.2 the SVD normal form of an uncertain descriptor
system. It implies the existence of full-rank matrices S and T ∈ IR(n+nξ )×(n+nξ ) such

that SET = Bdiag(In, 0nξ
), X̄ = T−1X =

[
x
ξ

]
:[

In

0nξ

]
X̄(k + 1) = SA(k)TX̄(k) =

[
A11(k) A12(k)
A21(k) A22(k)

]
X̄(k). (2.2)

Furthermore, as discussed in Remark 1.3.4 for the uncertain case in the SVD nor-
mal form, this equivalent LTV system is regular and causal if and only if matrix A22(k)
is invertible for all k ≥ 0. The asymptotic stability of the dynamic part of state
vector X̄(k) is guaranteed by the asymptotic stability of time-varying state matrix
A11(k) − A12(k)A−1

22 (k)A21(k). In order to also guarantee the convergence towards
zero of the algebraic part of state vector X̄(k) when the dynamic part converges to-
wards zero, it is necessary and sufficient that matrix A−1

22 (k) remains bounded for all
k ≥ 0. Therefore, the following assumption has to be made.
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Assumption 1. The matrix A22(k) involved in the equivalent SVD normal form (2.2) of
system (2.1) is invertible and its inverse is bounded for all k ≥ 0.

To seize the importance of the aforementioned assumption, consider a system (2.1)
given as [

1 0
0 0

]
X(k + 1) =

[
1/2 0

k + 5 e−k

]
X(k). (2.3)

Given that the algebraic variable is computed as ξ = −A−1
22 (k)A21(k)x, for this spe-

cific example ξ = −(k+ 5)ekx. We verify that the algebraic variable is prone to diverge
even when the dynamic variable approaches the equilibrium. Thus, Assumption 1 en-
sures that if the dynamic part of the state vector converges to zero, the algebraic part
will also converge to equilibrium. Despite the importance of this assumption, it had
never been discussed in the literature, to the best of our knowledge.

In the following, for systems of form (2.1), we focus on admissibility analysis as-
sessed by means of a quadratic time-varying Lyapunov function:

V(k, X(k)) = xT(k)ETP(k)EX(k), (2.4)

in correlation with the Lyapunov function candidate presented in (1.99).

2.2.2 New admissibility analysis conditions for TV descriptor systems

This section presents equivalent conditions for the admissibility analysis of discrete
time-varying descriptor systems.

Theorem 2.2.2. [SPB17b] The descriptor system (2.1) under Assumption 1 is admissible with
a quadratic time-varying Lyapunov function (2.4) if and only if one of the following equivalent
conditions hold for all k ≥ 0:

(i) there exists a bounded matrix P(k) = P(k)T such that

ETP(k)E ≥ 0, AT(k)P(k + 1)A(k)− ETP(k)E < 0, (2.5)

(ii) there exist bounded matrices P(k) = P(k)T > 0 and Q(k) = Q(k)T such that

AT(k)
(

P(k + 1)− E0Q(k + 1)ET
0
)

A(k)− ET P(k)E < 0, (2.6)

(iii) there exist bounded matrices P(k) > 0, Q(k) = Q(k)T, F(k, k + 1) and G(k, k + 1)
such that−ETP(k)E +He(F(k, k + 1)A(k)) ?

GT(k, k + 1)A(k)− FT(k, k + 1)
P(k + 1)− E0Q(k + 1)ET

0

−He(G(k, k + 1))

 < 0. (2.7)

Proof. (i)↔(ii) [ZXS08] presented the proof for the LTI case and the extension of their
result to the time-varying case may be done by following the same considerations. In
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addition, this proof can also be done by using the results of [BSC12]. Indeed, our con-
dition (i) is equivalent to the admissibility of time-varying system based on Theorem
1.(a) of [BSC12] by choosing R(k) = − 1

2 Q(k)ET
0 A(k).

(ii)→(iii) Suppose (2.6) holds. Then, for any positive-definite matrix P(k + 1) and
for any general symmetric matrix Q(k+ 1) there always exists a general matrix G(k, k + 1)
such that

P(k + 1)−E0Q(k + 1)ET
0−He(G(k, k + 1)) < 0. (2.8)

Therefore, gathering (2.8) and (2.6) yields

Bdiag(AT(k)(P(k + 1)− E0Q(k + 1)ET
0 )A(k)− ETP(k)E,

P(k + 1)− E0Q(k + 1)ET
0 −He(G(k, k + 1))) < 0.

(2.9)

Left- and right-multiplying (2.9) with matrices

[
In+nξ

−AT(k)
0n+nξ

In+nξ

]
and, respectively,[

In+nξ
0n+nξ

−A(k) In+nξ

]
and using the notation

F(k, k + 1) = AT(k)
(

P(k + 1)− E0Q(k + 1)ET
0 − G(k, k + 1)

)
leads to (2.7).

(ii)←(iii) Left- and right-multiplying the inequality (2.7) by
[

In+nξ
AT(k)

]
and,

respectively,
[

In+nξ
AT(k)

]T
leads to the inequality (2.6).

Remark 2.2.3. Note that in the case of LTI descriptor systems i.e. A(k) = A, the equivalent
conditions of Theorem 2.2.2 cover the ones proposed by [CD12] (see Theorem 4).

Remark 2.2.4. Although [BSC12] proposed, allegedly necessary and sufficient, admissibility
conditions for time-varying descriptor systems (see their Theorem 1), their results are only
sufficient. As a matter of fact, for proving the equivalence of their conditions, non-causal
variable attributions were made, generating the loss of necessity. However, when reducing
the class of systems to the case of uncertain descriptor systems with time-invariant uncer-
tainties i.e. A(k) = A(w) with w belonging to a convex domain, the conditions proposed
by [BSC12] become necessary and sufficient. Indeed, in this case P(k + 1) = P(k) = P(w),
Q(k + 1) = Q(k) = Q(w), and the conditions of [BSC12] are equivalent to our conditions
(ii) and (iii) in Theorem 2.2.2 by choosing R(k) = − 1

2 Q(k)ET
0 A(k) = − 1

2 Q(w)ET
0 A(w).

Unlike the results of [BSC12], we exploit in the following parameter-dependent slack variables
F(w) and G(w) in order to obtain less conservative and easily tractable new admissibility
conditions as sustained by our numerical examples.

2.3 Polytopic descriptor systems

In this section, we aim to provide numerically tractable admissibility analysis condi-
tions in the form of LMIs from the novel conditions presented in the previous section.
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For so, we choose to use TV descriptor systems in a polytopic structure, so that the
time dependence is given in terms of time-varying polytopic parameters. The choice
of slack variables in the admissibility analysis conditions follows the same principle,
becoming parameter-dependent. In the following, the structure of the time-varying
parameters is presented, as well as the form of the parameter-dependent slack vari-
ables and the LMI admissibility conditions that use them.

Therefore, consider the polytopic time-varying descriptor system:

EX(k + 1) = A(w(k))X(k), (2.10)

as given in (1.90) and discussed in Section 1.3.4. The real time-varying parameters are

w(k) =
[
w1(k) . . . wN(k)

]T
and they lie in the unit simplex

w(k) ∈ W = {w ∈ IRN∣∣ N

∑
i=1

wi = 1, 0 ≤ wi ≤ 1} ∀k ≥ 0.

We assume that the system dynamic matrix A(w(k)) is given by A(w(k)) =
N

∑
i=1

wi(k)A(i)

as proposed in (1.53) and therefore, it belongs to a convex polytopic set whose vertices
are A(i).

2.3.1 Parameters’ variation space

Many physical systems exhibit bounded rates of variation on their parameters due to
physical limitations, according to [OP09]. Furthermore, information of the maximum
allowed variations may be taken into account in the admissibility analysis in order to
reduce conservatism on the approaches based on parameter-independent Lyapunov
functions. The concept of the set (w(k), ∆w(k)) of admissible values for the param-
eter’s polytope was described by [OP08; OP09] and referred as consistent polytope by
[TS99; SBN06; BSC12]. In the works of [OP08; OP09], all the parameters are subject
to the same variation span. Meanwhile, for different variation bounds for each pa-
rameter, there is no precise algorithm or technique for obtaining the convex hull of a
consistent polytope, to the best of authors’ knowledge.

On the other hand, different variation bounds are referred by [BSC12], but no algo-
rithm or technique for obtaining the convex hull of a consistent polytope is precisely
provided.

In the following, we introduce in more detail the description of the parameters’
variation space proposed in [OP08], that is used for retrieving numerically tractable
admissibility conditions. We consider that each component wi(k) of the vector of pa-
rameters w(k) has bounded rates of variation given by:

− b ≤ ∆wi(k) = wi(k + 1)− wi(k) ≤ b, i = 1, . . . , N, b ∈ IR≥0. (2.11)
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Note that b = 0 corresponds to time-invariant parameters, referred by [OP08] as frozen
parameters, while b = 1 corresponds to time-varying parameters that are allowed to
vary arbitrarily inside the simplex W . When 0 < b < 1, the set of all admissible
values of w(k) and ∆w(k) is defined by all possible values of w(k) and ∆w(k) such

that w(k + 1) belongs to simplexW . Therefore, we have the relation:
N

∑
i=1

∆wi(k) = 0,

∀k ≥ 0. Indeed, the values of ∆wi(k) are highly dependent of wi(k):

− bwi ≤ ∆wi ≤ b(1− wi), i = 1, . . . , N (2.12)

and hence, the vector ∆w(k) belongs to a polytope whose vertices are hj, j = 1, . . . , N,
where

[h1 h2 . . . hN ] = b


1− w1 −w1 −w1 . . .
−w2 1− w2 −w2 . . .

...
...

. . . . . .
−wN −wN −wN 1− wN

 .

Therefore, ∆w(k) can be described as

∆w(k) =
N

∑
i=1

βihi where β ∈ W .

Using simplexW definition, it follows that ∆wi = b(βi − wi).
For the sequel, our admissibility analysis results are based on quadratic Lyapunov

function such as (2.4) with a polytopic Lyapunov matrix i.e.

V(X(k), w(k)) = xT(k)ETP(w(k))EX(k), P(w(k)) =
N

∑
i=1

wi(k)P(i), (2.13)

as evoked in Corollary 1.3.7. Based on previous considerations, it follows that P(w(k + 1))
is given by

P(w(k + 1)) = (1− b)
N

∑
i=1

wiP(i) + b
N

∑
i=1

βiP(i).

This section presents admissibility analysis results for polytopic descriptor sys-
tems based on the results of our previous section. Given that inequalities (2.5) to (2.7)
are not convex with regards to the unknown parameters w(k), it is not possible to
use LMI tools to directly solve them. However, transformations can be employed to
decouple the non-linear parametric dependence on the admissibility inequality (2.7).

2.3.2 Structure of slack variables

The approaches proposed in the literature successfully rendered their respective sta-
bility (or admissibility) inequalities linear with relation to the parameters at the ex-
pense of losing the necessity property. For instance, [LP03a] gave a finite number of
conditions using sum of polynomials and linearly polytopic variables F(k, k + 1) = F(k)
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TABLE 2.1: Choices of indicator functions and their implications over a
matrix M(w(k), w(k + 1))

ηM

ρM 0 1

0 M(w(k)) M(w(k + 1))
1 M(w(k), w(k + 1))

and G(k, k + 1) = G(k), while [BSC12], Theorem 2, fixed constant matrices
F(k, k + 1) = F and G(k, k + 1) = G all over the polytope.

However, according to our necessary and sufficient conditions stated in (2.7), the
structures of F(k, k + 1) and G(k, k + 1) can be more general than the ones proposed
in the aforementioned contributions. The dependence of F(k, k + 1) and G(k, k + 1)
to the parameters encompasses a relation not only with w(k), but also with w(k + 1).
Aiming to exploit the numerous possibilities to define F(k, k + 1) and G(k, k + 1), we
introduce two indicator functions ρM and ηM that are related to a given matrix M, as
follows:

ρM =

{
1, if M = M(w(k), w(k + 1)),
0, if M = M(w(k)).

ηM =

{
1, if M = M(w(k), w(k + 1)),
0, if M = M(w(k + 1)).

Therefore, we define the following matrix variables:

P(w(k + 1)) = (1− b)
N

∑
i=1

wiP(i) + b
N

∑
j=1

β jP(j),

Q(w(k + 1)) = (1− b)
N

∑
i=1

wiQ(i) + b
N

∑
j=1

β jQ(j),

F(w(k), w(k + 1)) = ρFb
N

∑
i=1

N

∑
j=1

wiβ jFηF ·i,j + (1− ρFb)
N

∑
i=1

wiFi,

G(w(k), w(k + 1)) = ρGb
N

∑
i=1

N

∑
j=1

wiβ jGηG ·i,j + (1− ρGb)
N

∑
i=1

wiGi.

The indicator functions ηM and ρM act over a given matrix M by regulating its
degrees of freedom. Indeed, as indicated in Table 2.1, ρM = 1 and ηM = 1 allow us
to obtain a matrix whose parameter dependence includes both w(k) and w(k + 1). If
ρM = 0, then the indicator function ηM is canceled and the matrix depends only on

w(k). For instance, if ρF = 1 and ηF = 0 the term
N

∑
i=1

N

∑
j=1

wiβ jFηF ·i,j of

F(w(k), w(k + 1)) shrinks to
( N

∑
i=1

wi
)
·

N

∑
j=1

β jF0,j =
N

∑
j=1

β jFj. In such a situation,

F(w(k), w(k + 1)) depends only on w(k + 1) and displays a structure analogous to
P(w(k + 1)) and Q(w(k + 1)).



60 Chapter 2. Admissibility analysis of DT TV descriptor systems

2.3.3 New admissibility analysis conditions for polytopic descriptor sys-
tems

The main contribution of this chapter is presented in the following theorem and it is
expressed as a new set of LMI conditions for assessing the admissibility of descriptor
systems with bounded time-varying parameters.

Theorem 2.3.1. [SPB17b] The discrete-time polytopic descriptor system (2.10) subject to
parameters in the unit simplex W with rates of variation given by (2.11) is admissible if
there exist symmetric positive-definite matrices P(i) ∈ IR(n+nξ )×(n+nξ ), symmetric matri-
ces Q(i) ∈ IRn×n, and general matrices Fi,j, Fi, Gi,j, Gi ∈ IR(n+nξ )×(n+nξ ), i = 1, . . . , N,
j = 1, . . . , N such that conditions (2.14) and (2.15) are satisfied. Moreover, the associated
parameter-dependent time-varying Lyapunov matrix is given by (2.13).

Proof. Polytopic system (2.10) is admissible if and only if (2.7) holds according to our
Lemma 2.2.2. Using the definitions of P(w(k + 1)), Q(w(k + 1)), F(w(k), w(k + 1))
and G(w(k), w(k + 1)) proposed above, the left-hand side of inequality condition (2.7)
in Theorem 2.2.2 can be rewritten as (2.16). Whenever conditions (2.14) and (2.15)
hold, and recalling that w and β belong to unit simplexW , it follows that expression
(2.16), which is the left-hand side of (2.7) in Theorem 2.2.2, satisfies the condition (2.17).
Moreover, the scalar that multiplies the matrix Bdiag(In+nξ

, 0n+nξ
) in (2.17) can be re-

written as
1

N − 1

N

∑
m=1

βm

(
(N − 1)

N

∑
j=1

w2
j − 2

N−1

∑
j=1

N

∑
k=j+1

wjwk

)
, which is positive semi-

definite since βm ≥ 0 and through the following sum of powers:

(N − 1)
N

∑
k=1

βk

N

∑
i=1

w2
i − 2

N

∑
k=1

βk

N−1

∑
i=1

N

∑
j=i+1

wiwj =
N

∑
k=1

βk
( N−1

∑
i=1

N

∑
j=i+1

(wi − wj)
2) ≥ 0.

Therefore, whenever conditions (2.14) and (2.15) are satisfied, it follows that con-
dition (2.7) in Theorem 2.2.2 holds and system (2.10) is admissible.

Remark 2.3.2. The time-invariant case is a particular case covered by (2.5), (2.6) and (2.7)
for which P(k + 1) = P(k), Q(k + 1) = Q(k), F(k, k + 1) = F(k), and G(k, k + 1) = G(k)
∀ k. Thus, the admissibility results given in Theorem 2.3.1 boil down to the frozen parameters
case, by taking b = 0.

2.3.4 Numerical Examples

In this section, conditions in our Theorem 2.3.1, the ones given in [BSC12], Theorem 2,
and the ones given in [Bar11a], Theorem 4.3 are compared by means of robust admis-
sibility margins, that are the maximum κ-expansion of the convex hull Co(E, κA(k))
that still ensure admissibility.

To perform these evaluations, a sample system from the literature (example 2 from
the work of [Bar11a] referred as Bex2) and some randomly generated examples were
used. The three randomly generated systems (RGS) are defined as follows:
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 −ETP(i)E +He(((1− ρFb) · Fi + ρFbFηF ·i,k)A(i)) ?

((1− ρGb) · GT
i + ρGbGT

ηG ·i,k) · A
(i) − (1− ρFb) · FT

i − ρFbFT
ηF ·i,k

(1− b) · (P(i) − E0Q(i)ET
0 − ρG · He(Gi))

+b · (P(k) − E0Q(k)ET
0 − ρG · He(GηG ·i,k))

 <

[
−In+nξ

0n+nξ

]
, (2.14)

i = 1, ..., N; j = 1, ..., N.



−ET(P(i) + P(j))E +He(((1− ρFb) · Fi + ρFbFηF ·i,k)A(j))+

He(((1− ρFb) · Fj + ρFbFηF ·j,k)A(i))
?

((1− ρGb) · GT
i + ρGbGT

ηG ·i,k) · A
(j)

+((1− ρGb) · GT
j + ρGbGT

ηG ·j,k) · A
(i)

−(1− ρFb) · (FT
i + FT

j )− ρFb(FT
ηF ·i,k +F

T
ηF ·j,k)

(1− b) · (P(i) + P(j) − E0(Q(i) + Q(j))ET
0 )

−(1− b)ρG · He(Gi + Gj)

+2b · (P(k) − E0Q(k)ET
0 )

−ρGb · He(GT
ηG ·i,k + G

T
ηG ·j,k)


<

2
(N − 1)

[
In+nξ

0n+nξ

]
, (2.15)

i = 1, ..., N − 1; j = i + 1, ..., N; k = 1, ..., N.
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left-hand side of
(2.7) in Lemma 2.2.2

=
N

∑
k=1

βm

N

∑
i=1

w2
i

−ETP(i)E +He(((1− ρFb) · Fi + ρFbFηF ·i,k)A(i)) ?

((1− ρGb) · GT
i + ρGbGT

ηG ·i,k) · A
(i)

−(1− ρFb) · FT
i − ρFbFT

ηF ·i,k

(1− b) · (P(i) − E0Q(i)ET
0 − ρG · He(Gi))

+b · (P(k) − E0Q(k)ET
0 − ρG · He(GηG ·i,k))

+

N

∑
k=1

βk

N−1

∑
i=1

N

∑
j=j+1

wiwk



−ET(P(i) + P(k))E +He(((1− ρFb) · Fi + ρFbFηF ·i,k)A(k))

+He(((1− ρFb) · Fk + ρFbFηF ·j,k)A(i))
?

((1− ρGb) · GT
i + ρGbGT

ηG ·i,k) · A
(k)

+((1− ρGb) · GT
k + ρGbGT

ηG ·j,k) · A
(i)

−(1− ρFb) · (FT
i + FT

k )− ρFb(FT
ηF ·i,k +F

T
ηF ·j,k)

(1− b)· (P(i) + P(k) − E0(Q(i) + Q(k))ET
0

−ρG · He(Gi + Gk))

+2b · (P(k) − E0Q(k)ET
0 )

−ρGb · He(GT
ηG ·i,k + G

T
ηG ·j,k)


(2.16)

−ETP(j)E + He{F(j, j + 1)A(j)} ?

GT(j, j + 1)A(j) − FT(j, j + 1)
P(j+1) − E0Q(j+1)ET

0

−He{G(j, j + 1)}

 < −
N

∑
k=1

βk

(
N

∑
i=1

w2
i −

N−1

∑
i=1

N

∑
j=i+1

2
N − 1

wiwj

)[
In+nξ

0n+nξ

]
(2.17)
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Example Bex2:

E = Bdiag(I4, 0),

A(1) =


0.0248 0.2201 −0.1472 −0.2277 0.0387
0.2275 −0.0767 0.0767 −0.0626 −0.0440
0.0442 0.0466 0.0938 −0.1470 0.0949
0.0223 0.1898 0.0151 −0.1052 −0.2549
−0.0125 −0.2178 0.0815 −0.2472 0.1321

 ,

A(2) =


0.3567 0.3709 0.7896 −0.3370 1.1710
0.1948 0.3811 0.1587 0.0232 0.5549
−0.5563 −0.1224 0.4842 −0.1492 0.1469
0.3336 0.8812 −0.5565 0.6562 0.0446
1.1669 −0.3536 0.0632 0.2750 0.9339

 ,

A(3) =


0.1949 0.1114 0.0837 −0.3888 −0.0733
−0.0248 −0.4704 0.3497 0.0521 0.1290
−0.0252 −0.1563 −0.2602 0.2649 0.3457
0.0482 −0.0678 0.0674 −0.1122 −0.2558
0.0017 0.2108 −0.0577 0.0213 0.1153

 .

Example RGS1:

E = Bdiag(I2, 0),

A(1) =

0.3912 −0.4072 0.4
0.0460 0.2556 0

0 0 1.2

, A(2) =

 0.0836 0.4008 0
−0.3680 −0.3420 −0.4

0 0 1.2

,

A(3) =

0.0204 −0.2240 0.4
0.4892 0.4444 −0.4
0.4000 0 1.2

 .

Example RGS2:

E = Bdiag(I3, 0),

A(1) =


0.1631 −0.0713 0.0518 0.2840
−0.0925 −0.2532 −0.1265 0.0295
0.1797 0.3297 0.4962 0.0407
−0.1323 −0.1194 −0.1547 −0.3188

 ,

A(2) =


−0.1551 −0.2571 0.0537 −0.2151
0.2398 −0.3308 −0.4228 0.1174
0.0911 −0.0780 −0.1064 −0.3144
0.0423 −0.1919 0.4452 −0.5161

 ,
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A(3) =


0.2840 0.1739 0.0302 0.1450
−0.0330 0.0051 0.1020 0.0902
0.0455 0.0607 0.0209 0.0357
−0.0264 0.0726 0.2341 −0.0458

 .

Example RGS3:

E = Bdiag(I2, 0),

A(1) =

−0.0191 −0.0162 −0.0031
−0.0232 −0.0112 0.0404
−0.0430 0.0177 −0.0130

 , A(2) =

−0.1012 0.0149 0.0526
−0.0234 0.0152 −0.0301
0.0166 0.0391 −0.0976

 ,

A(3) =

0.0057 −0.0087 −0.0427
0.0690 −0.0824 −0.0782
0.1310 −0.0977 −0.0203

 , A(4) =

−0.0901 0.0796 −0.0153
0.0278 0.0098 −0.0733
0.1076 0.0252 −0.0831

 .

Time-invariant systems

For our Theorem 2.3.1, the time-invariant case is expressed by setting b = 0, as pointed
out in Remark 2.3.2. When we let b = 0, the complementary degrees of freedom given
by k+ 1 in matrices F(k, k+ 1) and G(k, k+ 1) are lost, and the robust stability margins
become the same for any chosen combination of indicator functions ρF, ρG, ηF, ηG. For
the conditions from [BSC12], Theorem 2, null parameter variation is given by fixing
∆θ = 0, according to their notation. Finally, for the conditions from [Bar11a], Theorem
4.3, the time-invariant case is assessed by setting the indicator function q = 1. The
results were displayed in the time-invariant (TI) portion of Table 2.2, showing either
the same or better admissibility robust margins derived from our technique.

Time-varying systems subject to bounded rates of variation

In the time-varying context, parameters were allowed to vary in the consistent poly-
tope (w(k), ∆w(k)) with limits described in (2.12) for b = [0.25; 0.5; 0.75; 1]. The
conditions presented in our Theorem 2.3.1 were tested for different configurations of
the indicator functions ρF, ρG, ηF, ηG, according to Table 2.1:

i) ρF = 1, ρG = 1, ηF = 1 and ηG = 1, leading to matrices F(w(k), w(k + 1)) and
G(w(k), w(k + 1));

ii) ρF = 1, ρG = 1, ηF = 0 and ηG = 0, yielding matrices F(w(k + 1)) and
G(w(k + 1));

iii) ρF = 0 and ρG = 0 canceling the indicator functions ηF and ηG and hence the
dependence on w(k + 1), leading to matrices F(w(k)) and G(w(k)).

The condition in [BSC12], Theorem 2, was applied for the time-varying case on a
consistent polytope. The conditions presented in [Bar11a], Theorem 4.3, apply only for
arbitrary parameter variation, i.e. b = 1, what is done by setting the indicator function
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TABLE 2.2: Robust admissibility margins κ for different analysis techniques

b Examples Bex2 RGS1 RGS2 RGS3

TI 0

Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 1, ηG = 1 1.399 2.629 2.5487 11.1746
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 0, ηG = 0 1.399 2.629 2.5487 11.1746

Theorem 2.3.1 with ρF = 0, ρG = 0 1.399 2.629 2.5487 11.1746
[BSC12], Theorem 2 1.380 2.384 2.4697 10.2789

[Bar11a], Theorem 4.3 1.367 2.311 2.0672 9.5464

TV

0.25
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 1, ηG = 1 1.276 2.155 2.1437 9.4695
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 0, ηG = 0 1.276 2.155 2.1426 9.4695

Theorem 2.3.1 with ρF = 0, ρG = 0 1.273 2.131 2.1358 9.3517
[BSC12], Theorem 2 1.239 2.110 2.1079 9.0246

0.5
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 1, ηG = 1 1.128 1.984 1.9681 8.4206
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 0, ηG = 0 1.127 1.984 1.9679 8.4206

Theorem 2.3.1 with ρF = 0, ρG = 0 1.124 1.960 1.9663 8.3217
[BSC12], Theorem 2 1.104 1.938 1.9528 8.0813

0.75
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 1, ηG = 1 0.994 1.874 1.8416 7.7732
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 0, ηG = 0 0.993 1.874 1.8414 7.7687

Theorem 2.3.1 with ρF = 0, ρG = 0 0.992 1.855 1.8410 7.7077
[BSC12], Theorem 2 0.988 1.829 1.8356 7.5225

1

Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 1, ηG = 1 0.929 1.812 1.7462 7.3895
Theorem 2.3.1 with ρF = 1, ρG = 1, ηF = 0, ηG = 0 0.929 1.812 1.7462 7.3585

Theorem 2.3.1 with ρF = 0, ρG = 0 0.928 1.795 1.7462 7.3754
[BSC12], Theorem 2 0.927 1.758 1.7462 7.1964

[Bar11a], Theorem 4.3 0.927 1.737 1.7462 7.1897
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q = 0, according to her notation. The results on Table 2.2 shows that our technique
can convey less restrictive results compared to [BSC12] and [Bar11a].

2.4 Conclusion

This chapter presents a contribution that was published in the proceeding of IFAC
World Congress 2017 and is about new admissibility analysis conditions for discrete-
time parameter-dependent polytopic descriptor systems. It uses parameter-dependent
slack variables as well as the orthogonal complement of the derivative matrix E in or-
der to achieve less conservative results. These new admissibility analysis conditions
are expressed as a LMI feasibility problem and were obtained by exploiting the con-
vexification technique of sums of polynomials. Numerical examples are proposed
for both time-varying and time-invariant cases. They show that the proposed condi-
tions can convey less restrictive results than the ones developed by [Bar11a; BSC12].
This comes from the more comprehensive structure chosen for the slack variables,
along with the technique for eliminating the parametric dependence, namely sums of
polynomials. Furthermore, a novel assumption was evoked for the stability of time-
varying descriptor systems, being necessary for the convergence of the state vector as
a whole.

As a future work, the presented admissibility conditions can be improved by in-
corporating different variation rates for each element of the parameter vector, and the
implications of parameter dependence on the derivative matrix E can be evaluated.
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Chapter 3

Extension of homogeneous
polynomial Lyapunov functions
approach to continuous-time
uncertain descriptor systems

3.1 Introduction

The present chapter addresses the admissibility analysis of continuous-time uncer-
tain descriptor systems subject to time-varying parameters. We recall that though
quadratic Lyapunov functions provide necessary and sufficient conditions for the sta-
bility of LTI standard systems, they lead to conservative results for uncertain sys-
tems because they do not constitute a universal class for stability analysis (cf. Def-
inition 1.2.14). Hence, results assessing the universality other classes of Lyapunov
functions have been proposed in the literature for standard uncertain systems using
polyhedral [BM95; BM08], piecewise quadratic and homogeneous polynomial func-
tions [Che+03a; Che+07; Che11; Alt06].

Among these classes, the use of homogeneous polynomial Lyapunov functions
(HPLFs) for stability analysis is highly advantageous since it can take profit of mathe-
matical tools originally conceived for quadratic Lyapunov functions, as suggested by
the form of the square matricial representation in Definition 1.2.21 and explicited through
Remark 1.2.25, that explains the relation between a quadratic and a homogeneous
polynomial Lyapunov function.

Although the use of homogeneous polynomial Lyapunov functions shows clear
advantages, it still constitutes an open field of research. First, it is known that there
exists a linear mapping between a standard uncertain system and its associated ex-
tended system (cf. Definition 1.2.24), but a formalized description of this mapping has
not yet been proposed, as far as we know. Plus, there is no rule to set a maximum
bound of the degree of HPLFs in order to obtain necessary and sufficient robust stabil-
ity conditions for a time-varying parameter-dependent system. Besides, to the best of
our knowledge, homogeneous polynomial Lyapunov functions have never been used
in the more general framework of descriptor systems. This is mainly due to the fact
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that, so far, it is completely unclear how the power transformations (Remark 1.2.20)
shall be defined with regards to the dynamic and algebraic parts of the state vector.

Therefore, among the contributions of this chapter, we propose a description of
the linear mapping between a a standard uncertain system and its associated ex-
tended system. Then, a novel power transformation applied to the uncertain descrip-
tor framework is defined, affecting dynamic and algebraic parts of the state vector
differently and leading to a new extended descriptor system that remains linear with
respect to the parameters. Thus, we are able to propose a novel description of the
extended system for affine uncertain descriptor systems that is linear with respect the
uncertain parameters, and after, this extended system is used to elaborate new LMI
admissibility analysis conditions by means of homogeneous polynomial Lyapunov
functions for the original uncertain descriptor system. These results tend to fill the
gap between the standard uncertain state-space systems and the uncertain descrip-
tor ones by investigating the use of homogeneous polynomial Lyapunov functions
for admissibility analysis purposes. Finally, numerical examples show that our new
LMI-based robust admissibility analysis results are less restrictive than the ones using
quadratic Lyapunov functions.

3.2 Affine parameter-dependent standard uncertain systems

In this section, we recall some concepts related to standard uncertain systems in order
to introduce the first contribution of this chapter, namely a description of the mapping
between a standard uncertain system and its extended version.

3.2.1 Class of systems and HPLF

Consider a continuous-time affine parameter-dependent uncertain system in the form
(1.45):

ẋ = A(w(t))x =

(
A(0) +

m

∑
i=1

wi(t)A(i)

)
x, (3.1)

where, as precised in Definition 1.2.4, the uncertain time-varying parameter vector

w(t) =
[
w1(t) . . . wm(t)

]T
belongs to the convex set w(t) ∈ W = Co{w(1), . . . w(N)}

where the vectors w(i), for i = 1, . . . , N, are given. As a consequence, the matrices
Aij(w(t)) also belong to convex sets whose N vertices are Aij(w(k)) for k = 1, . . . , N.

Concerning HPLFs, its properties can be found in section 1.2.3 and are here given:

• A HPLF of degree 2q is given, as shown in, by (1.67):

V2q(x) = ∑
i1,...,in

pi1i2...in xi1
1 xi2

2 . . . xin
n ,

where i1, . . . , in ∈ Z≥0 and i1 + i2 + . . . + in = 2q;
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• (Definition 1.2.19) The base vector of homogeneous forms of degree q over the

vector x is denoted as x[q], and dim(x[q]) = d(n, q) =
(n + q− 1)!
(n− 1)!(q)!

. The mapping

between x and x[q] is called power transformation;

• (Definition 1.2.21) The square matrix representation associated to the Lyapunov
function is V2q(x) = x[q]

T
Px[q]. The matrix P is not unique, so a complete matri-

cial representation can take place in the form (1.83):

V2q(x) = x[q]
T

P(γ)x[q] = x[q]
T
(P + P0(γ))x[q]

= x[q]
T
(P +

dP (n,q)

∑
i=1

γiP0i)x[q]

where P0i constitute a base of the linear space P whose size is

dP (n, q) =
1
2

d(n, q)(d(n, q) + 1)− d(n, 2q);

• (Definition 1.2.24) The extended system associated to an affine uncertain system
(3.1) is (1.85):

d
dt

x[q](t) = A(w(t))[q]x
[q](t) =

(
A(0)
[q] +

m

∑
i=1

wi(t)A(i)
[q]

)
x[q](t). (3.2)

Matrices A(0)
[q] and A(i)

[q] , i = 1, . . . , m are named as extended matrices of A(0) and

A(i), respectively.

With these concepts in mind, we are able to introduce our description of the map-
ping between (3.1) and (3.2).

3.2.2 Linear mapping between the original and extended standard uncer-
tain systems

It has been emphasized in the literature that there is a linear mapping between the
entries of the dynamic matrices of the original and the extended systems [JW01]. This
fact is also sustained by the following lemma.

Lemma 3.2.1: [BSP16] There exist matrices Mi, Ni, for i = 1, . . . , d(n, q− 1), such that
the extended matrix A(w(t))[q] is given by

A(w(t))[q] =
d(n,q−1)

∑
i=1

Mi A(w(t))Ni, (3.3)
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where d(n, q− 1) = dim(x[q−1]) =
(n + q− 2)!

(n− 1)!(q− 1)!
, and Mi ∈ IRd(n,q)×n, Ni ∈ IRn×d(n,q)

are constant matrices. Matrices Ni are such that x[q−1]
i x = Nix[q] and matrices Mi are

given by Mi =
d
(

∂x[q]
∂x

)
dx[q−1]

i

.

Proof. The extended matrix definition (Definition 1.2.23) involves the term
∂x[q]

∂x
which

is the jacobian matrix of x[q]. Each (l, j)-entry of this matrix is given by
∂x[q]l
∂xj

= ijx
i1
1 . . . x

ij−1
j . . . xin

n , where ik > 0, k = 1, . . . , n and
n

∑
k=1

ik = q. This means

that each entry of the jacobian matrix is proportional to a monomial of degree q − 1
of x. Therefore, using the definitions of Mi and Ni given in the formulation of the
lemma and since there are d(n, q− 1) = dim(x[q−1]) monomials of degree q− 1 of x,

the jacobian matrix of x[q] is given by
∂x[q]

∂x
=

d(n,q−1)

∑
i=1

Mix
[q−1]
i . This implies that the

dynamic of the extended system is defined by:

ẋ[q](t) =
d(n,q−1)

∑
i=1

Mix
[q−1]
i A(w(t))x =

d(n,q−1)

∑
i=1

Mi A(w(t))x[q−1]
i x.

Since the entries of x[q−1]x are monomials of degree q of x there exist constant unique
matrices Ni ∈ IRn×d(n,q) such that x[q−1]

i x = Nix[q]. This yields the form (3.3) for the
extended matrix A(w(t))[q].

Matrices Mi and Ni depend only on the choice of the base vector x[q] of homoge-
neous forms of degree q. In general, this vector is chosen in lexicographical order.
Examples of matrices Mi, Ni for different matrix dimensions n and degrees q are given
below.

Example 3.2.1. Consider a parameter-dependent system (3.1) where dim(x) = n = 2 and

A(w(t)) =

[
a11(w(t)) a12(w(t))
a21(w(t)) a22(w(t))

]
. We deploy the dimensions and the matrices of the map-

ping Mi, Ni, i = 1, . . . , d(n, q− 1) for power transformations of different degrees below:

• Choice of power transformation of degree q = 2: We obtain d(n, q) = 3 and

d(n, q− 1) = 2. The power transformation of degree 2 of x is x[2] =
[

x2
1 x1x2 x2

2

]T

and the extended state matrix is

A[2](w(t)) =

2a11(w(t)) 2a12(w(t)) 0
a21(w(t)) a11(w(t)) + a22(w(t)) a12(w(t))

0 2a21(w(t)) 2a22(w(t))

.
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Lemma 3.2.1 holds with

[
M1 M2

]
=

 2 0 0 0
0 1 1 0
0 0 0 2

 ,

[
N1

N2

]
=


1 0 0
0 1 0

0 1 0
0 0 1

 .

• Choice of power transformation of degree q = 3: We have d(n, q) = 4 and

d(n, q− 1) = 3. The power transformation of degree 3 of x is x[3] =
[

x3
1 x2

1x2 x1x2
2 x3

2

]T

and the extended matrix is

A[3](w(t)) =


3a11(w(t)) 3a12(w(t)) 0 0
a21(w(t)) 2a11(w(t)) + a22(w(t)) 2a12(w(t)) 0

0 2a21(w(t)) a11(w(t)) + 2a22(w(t)) a12(w(t))
0 0 3a21(w(t)) 3a22(w(t))

.

Matrices Mi and Ni in Lemma 3.2.1 are given by

 MT
1

MT
2

MT
3

 =



3 0 0 0
0 1 0 0

0 2 0 0
0 0 2 0

0 0 1 0
0 0 0 3


and

 N1

N2

N3

 =



1 0 0 0
0 1 0 0

0 1 0 0
0 0 1 0

0 0 1 0
0 0 0 1


.

Example 3.2.2. Consider now a parameter-dependent descriptor system (3.1) where
dim(x) = n = 3 and

A(w(t)) =

a11(w(t)) a12(w(t)) a13(w(t))
a21(w(t)) a22(w(t)) a23(w(t))
a31(w(t)) a32(w(t)) a33(w(t))

 .

The dimensions and the matrices of the mapping Mi, Ni, i = 1, . . . , d(n, q− 1) for power
transformations of different degrees are found in the following:

• Choice of power transformation of degree q = 2: We obtain d(n, q) = 6,

d(n, q− 1) = 3, x[2] =
[

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

]T
and A[2] extended matrix

is

A[2](w(t)) =



2a11(w(t)) 2a12(w(t)) 2a13(w(t))
a21(w(t)) a11(w(t)) + a22(w(t)) a23(w(t))
a31(w(t)) a32(w(t)) a11(w(t)) + a33(w(t))

0 2a21(w(t)) 0
0 a31(w(t)) a21(w(t))
0 0 2a31(w(t))
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0 0 0
a12(w(t)) a13(w(t)) 0

0 a12(w(t)) a13(w(t))
2a22(w(t)) 2a23(w(t)) 0
a32(w(t)) a22(w(t)) + a33(w(t)) a23(w(t))

0 2a32(w(t)) 2a33(w(t))


.

Therefore, Lemma 3.2.1 holds with

[
M1 M2 M3

]
=



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2


,

[
NT

1 NT
2 NT

3

]
=



1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1


.

Remark 3.2.2 (Parameter dependence in the extended system). Note that, for a standard
affine/polytopic parameter-dependent system with time-varying parameters, the entries of the
extended dynamic matrix generated by the use of power transformations are linear with respect
to the coefficients of the original dynamic matrix and therefore affine with respect to uncertain
parameters. This property can be exploited in order to reduce the infinite set of robust stability
analysis conditions to a finite one involving the vertices of the uncertainties polytope.

The characterization proposed in the previous lemma is fundamental for the con-
tributions of the ensuing section, that no longer deals with standard uncertain sys-
tems, but with the uncertain descriptor case.

3.3 Affine parameter-dependent descriptor systems

In this section, concepts about the class of affine parameter-dependent descriptor sys-
tems are recalled and novel admissibility analysis conditions are provided for such
systems by means of parameter-independent HPLFs. Furthermore, a power transfor-
mation for descriptor systems state vectors is proposed. Numerical examples give
some insight on the relevance of the results.
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3.3.1 Class of systems

Consider an affine parameter-dependent descriptor system in section 1.3.4 in the SVD
normal form (1.92):

ẋ(t) = A11(w(t))x(t) + A12(w(t))ξ(t) (3.4a)

0nξ×1 = A21(w(t))x(t) + A22(w(t))ξ(t). (3.4b)

Matrices Aij(w(t)) are affine according to the uncertain parameters and given by

Aij(w(t)) = A(0)
ij +

m

∑
k=1

wk(t)A(k)
ij (3.5)

where A22(w(t)) is square and A(k)
ij , for i = 1, 2, j = 1, 2, k = 1, . . . , m, are given ma-

trices. The characteristics of the parameter space are given in Definition 1.2.4 and re-
called in the previous section 3.2.1. Likewise, matrices Aij(w(t)) also belong to convex
sets with N vertices given as Aij(w(k)) for k = 1, . . . , N.

From section 1.3.2, we have that any time-varying descriptor system
EẊ(t) = A(t)X(t), where rank(E) = n ≤ n + nξ and dim(X) = n + nξ , can be rewrit-
ten in the SVD normal form (3.4) through a change of coordinates whenever E is a
constant matrix. Important properties for uncertain descriptor systems, such as regu-
larity, absence of impulse modes, stability of finite modes and admissibilty are detailed
in section 1.3.3.

3.3.2 Parameter-independent homogeneous polynomial Lyapunov functions

This section presents one of our main contributions in the context of this thesis, that
is the extension of the homogeneous polynomial Lyapunov function approach, pre-
viously developed only for standard state-space systems, to the more general case of
uncertain descriptor time-varying systems. As far as we know, the power transforma-
tions have never been used in the context of uncertain descriptor systems, and there is
no available literature defining how the dynamic and the algebraic parts of the original
state vector should compose the extended state vector.

For evaluating the admissibility of the uncertain descriptor system (3.4) using ho-
mogeneous polynomial Lyapunov functions, one could try to rewrite it according to
the equivalent standard form as stated in Remark 1.3.4, and then, employ the power
transformations to study the stability of this equivalent standard system. However,
this procedure leads to an augmented system whose state matrix entries are nonlinear
functions of the entries of matrices Aij(w(t)), i = 1, 2, j = 1, 2, producing nonlinear
couplings between the uncertain parameters.

In the following, we provide a new technique circumventing this nonlinearity
problem by exploiting the equivalent standard form while preserving the affine de-
pendence property. The lemma and theorem below aim to fill the gap between the
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standard state-space systems and the descriptor systems by extending the HPLF ap-
proach to the context of descriptor systems.

Lemma 3.3.1 ([SPB17a]): The uncertain descriptor system (3.4) is robustly admissible
with a HPLF of degree 2q if and only if the extended descriptor system

E

[
d
dt x[q](t)

d
dt (x[q−1](t)⊗ ξ(t))

]
=

A11[q](w(t)) M1A12(w(t)) M2A12(w(t)) . . . Md(n,q−1)A12(w(t))

A21(w(t))N1 A22(w(t))
A21(w(t))N2 A22(w(t))

...
. . .

A21(w(t))Nd(n,q−1) A22(w(t))


[

x[q](t)
x[q−1](t)⊗ ξ(t)

]

(3.6)

is robustly admissible with a quadratic Lyapunov function. In (3.6),
E = Bdiag(Id(n,q), 0d(n,q−1)nξ

), Mi ∈ IRd(n,q)×n, Ni ∈ IRn×d(n,q), i = 1, . . . , d(n, q− 1) are
given according to Lemma 3.2.1.

Proof. As presented in section Remark 1.3.4, the uncertain descriptor system (3.4) is
robustly admissible if and only if A22(w(t)) matrix is invertible for all possible values
of the parameter vector w(t) ∈ W and the following equivalent standard state-space
system

ẋ(t) = Γ(w(t))x(t), (3.7)

where the matrix Γ(w(t)) defined as

Γ(w(t)) = A11(w(t))− A12(w(t))A22(w(t))−1A21(w(t)),

is stable for all possible uncertain parameters trajectories w(t) ∈ W . In order to ensure
the stability of this standard system, we employ HPLFs of degree 2q. Therefore, the
extended system obtained by applying a power transformation of degree q on the state
vector x of system (3.7) is given, according to Definition 1.2.24, by

ẋ[q](t) = Γ[q](w(t))x[q](t). (3.8)

The HPLFs-based stability of system (3.7) is guaranteed whenever the extended sys-
tem (3.8) is quadratically stable. Using Lemma 3.2.1, it follows that there exist matrices
Mi, Ni, for i = 1, . . . , d(n, q− 1), such that this extended system state-matrix rewrites

Γ[q](w(t)) =
d(n,q−1)

∑
i=1

MiΓ(w(t))Ni

=
d(n,q−1)

∑
i=1

Mi A11(w(t))Ni −
d(n,q−1)

∑
i=1

Mi A12(w(t))A−1
22 (w(t))A21(w(t))Ni.
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The first sum of the right-hand expression represents the extended matrix A11[q](w(t))
throughout Lemma 3.2.1. Using the Schur lemma, and exploiting the same Lemma 3.2.1,
it follows that the quadratic stability of the extended system (3.8) for all possible un-
certain parameters trajectories w(t) ∈ W and the invertibility of A22(w(t)) matrix for
all possible uncertain parameters trajectories w(t) ∈ W is equivalent to the robust ad-
missibility (cf. section 1.3.3) of the extended descriptor system (3.6) based on quadratic
Lyapunov functions.

Remark 3.3.2. The application of a power transformation of degree q over the equivalent stan-
dard state-space system (3.7) leads to the extended descriptor system (3.6) with the associated

state vector

[
x[q]

x[q−1] ⊗ ξ

]
. This extended state vector is homogeneous of degree q but it does

not involve all the possible monomials of degree q of the vector

[
x
ξ

]
. The upper part of this

extended state vector, x[q], represents the power transformation of degree q of the dynamic state
x of the original descriptor system (1.88) while the lower part, x[q−1] ⊗ ξ, represents the al-
gebraic state of the extended descriptor system. This algebraic part of the extended descriptor
system is homogeneous of degree q and involves products between the algebraic state variables
ξ of the original system and all the monomials of degree q − 1 of the dynamic state x of the
original system (1.88).

From now on, we refer to equation (3.6) with the compact notation

E

[
d
dt x[q](t)

d
dt (x[q−1](t)⊗ ξ(t))

]
= A{q}(w(t))

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
. (3.9)

Note that the extended descriptor system (3.6) is affine with respect to the uncertain
parameters. This property allows to formulate new LMI admissibility conditions for
affine parameter-dependent continuous-time descriptor systems based on HPLFs as
stated in the following theorem.

Theorem 3.3.3 ([SPB17a]). The time-varying parameter-dependent descriptor system (3.4) is

robustly admissible based on HPLFs if there exist a bloc-partitioned matrix P =

[
P11 0
P21 P22

]
,

where P11 ∈ IRd(n,q)×d(n,q), P21 ∈ IRd(n,q−1)·nξ×d(n,q) and P22 ∈ IRd(n,q−1)·nξ×d(n,q−1)·nξ , and
scalars γij, i = 1, . . . , N, j = 1, . . . , dP (n, q), satisfying the following LMI conditions:

P11 > 0,

A{q}(w
(i))TP + PA{q}(w

(i)) +
dP (n,q)

∑
j=1

γij

[
P0j

0

]
< 0,

i = 1, . . . , N

where w(i) are the vertices ofW and matrices P0j are a base of the linear space P .
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Proof. The LMI conditions of this theorem derive from the strict LMI admissibility
conditions proposed in [IT02]. In fact, the work [IT02] showed that a descriptor sys-
tem EẊ = AX is admissible if and only if there exist a positive-definite matrix P and
a general matrix Q such that He(AT(PE + E0Q)) < 0 where E0 is such that ETE0 = 0.

Whenever the system is in the SVD form, i.e. E = Bdiag(In, 0nξ
), then E0 =

[
0nξ×n Inξ

]T

and one can easily prove that this necessary and sufficient condition is equivalent to

the existence of a block-partitioned matrix P =

[
P11 0
P21 P22

]
such that P11 > 0 and

ATP + PA < 0. Therefore, the use of a triangular structure in P is not restrictive,
because the degree of freedom given by the use of Q in [IT02] is embedded in the
submatrices P21 and P22.

This result generalizes to affine parameter-dependent systems by using the con-
vexity principle. Therefore, the application of this generalization to the extended de-
scriptor system (3.6), that is affine with respect to the parameters, leads to the LMI
admissibility conditions of our theorem with γij = 0.

The Lyapunov function ensuring the robust admissibility of the extended descrip-
tor system (3.6) is

V2q =

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]T

E TP

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
. (3.10)

Considering the block structure of the matrix P and the definition of E in (3.6), it fol-
lows that V2q = x[q]T(t)P11x[q](t). As mentioned in Definition 1.2.21, the use of HPLFs
generates the nonuniqueness of the matrix P associated to the SMR representation.
Therefore, the complete parameterization P0(γ) of the linear space P associated to P11

may be added in order to introduce complementary degrees of freedom leading to
less conservative results for the admissibility analysis problem. Different parameteri-
zations for each vertex of the parameters domainW are obtained for γij 6= 0.

The next section shows that the HPLF approach extended to uncertain time-varying
descriptor systems allows to obtain less restrictive results than the ones based on
quadratic Lyapunov functions.

3.3.3 Numerical examples

The following examples illustrate the interest of using HPLFs for assessing robust
admissibility margins for uncertain descriptor systems. For the comparison, we use
the following metrics:

Definition 3.3.4 (κ∗2q� admissibility margins): The `∞ 2q-HPLF asymmetric and sym-
metric admissibility margins with respect to the perturbation set, respectively κ∗2q+
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and κ∗2q|·|, are defined as:

κ∗2q� = sup{κ : ∃V2q for (3.4), w(t) ∈ B̄κ�}, � = {+, | · |},

B̄κ+ = {b ∈ IRm : 0 ≤ bi ≤ κ, i = 1, . . . , m},
B̄κ|·| = {b ∈ IRm : |bi| ≤ κ, i = 1, . . . , m}.

These robust admissibility margins are based on [Che+03a], and are applied here
for robust admissibility analysis purposes.

Example 1

Consider the parameter-dependent descriptor system

E

[
ẋ(t)
ξ̇(t)

]
= A(w(t))

[
x(t)
ξ(t)

]
, (3.11)

where x(t) ∈ IR3, ξ(t) ∈ IR, E = Bdiag(I3, 0), and A(w(t)) = A(0) + w(t)A(1), with

A(0) =


0 1 0 0.5
0 0 1 1
−1 −2 −4 0
1 0 0 1

, A(1) =


−2 0 −1 0
1 −10 3 1
3 −4 2 0
−1 0 0 0.2

.

Since m = 1, the set W has N = 21 vertices given by w(1) = 0 and w(2) = κ.
For HPLFs of degree 4 (q = 2), the vector x[2] in lexicographical order is given by[

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

]T
. The dimension of the linear space P is dP (n, q) = 6

and the parameterization of the HPLF is

P0(γ) =



0 0 0 −γ1 −γ2 −γ3

0 2γ1 γ2 0 −γ4 −γ5

0 γ2 2γ3 γ4 γ5 0
−γ1 0 γ4 0 0 −γ6

−γ2 −γ4 γ5 0 2γ6 0
−γ3 −γ5 0 −γ6 0 0


.

The matrices Mi and Ni for this system are described in Lemma 3.2.1. Their nu-
merical values and the vector x[2] are indicated in Example 3.2.2 of the same Lemma.
Using HPLFs of degree 4 throughout the application of our criteria stated in Theo-
rem 3.3.3 guarantees an admissibility margin κ∗4+ = 16.3943, while for a quadratic
Lyapunov function one finds κ∗2+ = 4.6667. This shows an important improvement
of the `∞ 2q-HPLF positive admissibility margin when using the HPLF approach here
given.
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Example 2

Consider the parameter-dependent descriptor system given by (3.11), with x(t) ∈ IR2,
ξ(t) ∈ IR, E = Bdiag(I2, 0), and A(w(t)) = A(0) + w(t)A(1),

A(0) =

 0 1 0.2
−6 −1 0
0.1 0.2 1

, A(1) =

 0 0 0
−1 0 0
0 0 0.1

.

Since m = 1, the set W has N = 21 vertices given by w(1) = −κ and w(2) = κ.
For different degrees 2q of the HPLF, the obtained values of κ∗2q|·| are provided in Table
3.1, showing progressive improvements of the robust admissibility margins for higher
values of q.

TABLE 3.1: κ∗2q|·| obtained for Example 2

2q 2 4 6 8 10 12 14
κ∗2q|·| 2.5726 3.4510 3.6506 3.7157 3.8170 3.8205 3.8660

3.4 Conclusion

The present chapter provides new LMI admissibility analysis conditions for time-
varying parameter-dependent continuous-time descriptor systems. The results here
presented tend to fill the gap between the uncertain standard state-space systems and
the uncertain descriptor ones by investigating the use of homogeneous polynomial
Lyapunov functions for admissibility analysis purposes. This has been achieved by
using a new power transformation of the state vector that takes into account its dy-
namic and algebraic parts differently. Numerical examples show that the use of power
transformations of higher degrees may lead to less conservative results.
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Chapter 4

Admissibility analysis of
continuous-time uncertain
descriptor systems by
parameter-dependent homogeneous
polynomial Lyapunov functions

4.1 Introduction

In the previous chapter, conditions for the admissibility analysis of continuous-time
affine parameter-dependent descriptor systems were provided. There, the analysis re-
sults hold for arbitrary parameters’ rates of variation, what is particularly important
for the cases in which there is no knowledge available about the parameters’ veloci-
ties or when parameters can vary instantaneously, such as in the context of switched
systems.

However, in [OP08] it is evoked that many systems contain parameters with bounds
in their variation, and by experience and observation, we remark that, for certain sys-
tems, parameters such as the temperature cannot change instantaneously. Therefore,
when knowledge about the limits of parameters’ velocities is available, the use of this
information can lead to less conservative results.

In this chapter, we present admissibility analysis conditions for continuous-time
polytopic parameter-dependent descriptor systems. The system parameters’ veloci-
ties are considered to be bound, and this information is incorporated in the analysis
criteria through the use of parameter-dependent homogeneous polynomial Lyapunov
functions.

For proceeding with the extension of the scope of applications of homogeneous
polynomial Lyapunov functions, the chapter has been structured with the introduc-
tion of the class of systems of interest, followed by the presentation of admissibility
conditions based upon the existence of parameter-dependent homogeneous polyno-
mial Lyapunov functions. Two functions are given: one with dependence of degree



80 Chapter 4. Analysis of CT TV descriptor systems with PD-HPLFs

one in the uncertain parameter vector, and the other, with dependence of arbitrary
degree in the parameters. Numerically tractable sufficient conditions are obtained
through different convexification techniques and compared with the use of numerical
examples.

4.2 Polytopic uncertain descriptor systems

In this first section, we introduce the class of systems we address, namely the continuous-
time polytopic parameter-dependent descriptor systems, and we characterize the pa-
rameter variation space.

4.2.1 Class of systems

Consider a parameter-dependent descriptor system in the SVD normal form (1.92):

ẋ(t) = A11(w(t))x(t) + A12(w(t))ξ(t) (4.1a)

0nξ×1 = A21(w(t))x(t) + A22(w(t))ξ(t). (4.1b)

In such form, matrices Aij(w(t)), i = 1, 2, j = 1, 2 have polytopic parameter depen-
dence, so that

Aij(w(t)) =
N

∑
k=1

wk(t)A(k)
ij . (4.2)

Recalling Definition 1.2.6, the parameter w lies in the unit simplex and the matrices
Aij(w(t)) are also described within polytopes of matrices.

Considerations about the SVD normal form for uncertain descriptor systems can
be found in section 1.3.2, properties of uncertain descriptor systems, such as admis-
sibility, are found in section 1.3.3, and information about HPLFs can be retrieved in
section 1.2.5. In addition, we define the following matrix space that regroups the set
of realizations of the linear space P (cf. Definition 1.2.21):

U = {P0(γ) ∈ IRd(n,q)×d(n,q)|P0(γ) =
dP (n,q)

∑
i=1

γiP0i with γi ∈ IR and P0i ∈ P}. (4.3)

Given that we are working with time-varying parameters subject to bounded ve-
locities, a characterization of the space of parameters’ variations is necessary. This is
done in the following section.

4.2.2 Parameters’ variation space

Recalling section 1.2.2, the characterization of the space of parameters’ variations is
not a simple task because there are algebraic constraints to be satisfied and, eventually,
the shape of this space can be time-varying. In Chapter 2, we explored a description
proposed in [OP08], and here we employ a characterization given in [GC06].
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Polytopic parameters belong to the setW , as

w(t) ∈ W = {w ∈ IRN |
N

∑
i=1

wi = 1, 0 ≤ wi ≤ 1} ∀t ≥ 0.

A natural consequence of the parameter description w(t) ∈ W over the velocities

of parameters ẇ(t) is that
N

∑
i=1

ẇi(t) = 0 must always hold true. Accordingly to the

formulation of [GC06; Che+07], the set of admissible parameters is w(t) ∈ W and
ẇ(t) ∈ V ∀t ≥ 0 as (1.54):

V = {v ∈ IRN , v ∈ Co (g1, ..., gh)|
N

∑
i=1

gj
i = 0, j = 1 . . . h},

and ||gj||∞ ≤ β, j = 1 . . . h holds.
As an example, consider the case N = 2, where velocities are bound by a scalar β:

|ẇ(t)| ≤ β. The set of admissible parameters is given by w(t) =
[
w1(t) w2(t)

]T
∈ W

and parameters’ velocities are such that ẇ(t) ∈ V , h = 2 and {g1, g2} =
{[

β

−β

]
,

[
−β

β

]}
.

The fact that ẇ(t) ∈ V allows us to employ the following polytopic notation:

ẇ(t) =
h

∑
j=1

σj(t)gj, σ(t) ∈ W ∀t ≥ 0. (4.4)

4.3 Admissibility analysis based on polytopic HPLFs

In this section, we propose new admissibility analysis conditions for uncertain de-
scriptor systems subject to parameters with bounded velocities by means of Lyapunov
functions that are homogeneous polynomial in the states and polytopic-dependent in
the uncertain parameters as defined below.

Definition 4.3.1 (Polytopic parameter-dependent HPLFs - PPD-HPLFs [SPB18a]): A poly-
topic parameter-dependent HPLF (PPD-HPLF) of degree 2q for the uncertain system
(4.1) is given by:

V2q =

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]T

E TP(w(t))E

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
, (4.5)

where the Lyapunov matrix is given as P(w(t)) =
N

∑
i=1

wi(t)P(i),

P(i) ∈ IR(d(n,q)+d(n,q−1)∗nξ )×(d(n,q)+d(n,q−1)∗nξ ), i = 1, . . . , N. Parameters are defined as
w(t) ∈ W and ẇ(t) ∈ V . The matrix E comes from the extended descriptor system
associated to (4.1), in accordance with the notation of (3.9).
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Remark 4.3.2. Note that the polytopic definition of P(w(t)) and ẇ(t) ∈ V given in (4.4) can
be employed in the definition of P(ẇ(t)) as follows:

P(ẇ(t)) =
N

∑
i=1

ẇi(t)P(i) =
N

∑
i=1

h

∑
j=1

σj(t)gj
i P

(i) =
h

∑
j=1

σj(t)
N

∑
i=1

gj
i P

(i)

︸ ︷︷ ︸
=P(gj)

. (4.6)

Remark 4.3.3. In the work [BSC13, Theorem 1], some necessary and sufficient conditions
for the admissibility analysis of LTV descriptor systems have been presented. Note that these
conditions are necessary and sufficient only for the existence of a quadratic Lyapunov func-
tion. In the present chapter, we assess the admissibility of a parameter-dependent system by
providing necessary and sufficient conditions for the existence of Lyapunov functions belong-
ing to a larger class, namely the class of homogeneous polynomial Lyapunov functions. This
class of Lyapunov functions is universal for uncertain systems, and its use might lead to less
conservative robust admissibility margins.

Lemma 4.3.4 ([SPB18a]): The polytopic uncertain descriptor system (4.1) subject to
time-varying parameters with bounded rates of variation is robustly admissible with
a PPD-HPLF if and only if there exist matrices P(w(t)), F(w(t)) and
G(w(t)) ∈ IR(d(n,q)+d(n,q−1)·nξ )×(d(n,q)+d(n,q−1)·nξ ),
Q(w(t)) ∈ IR(d(n,q−1)·nξ )×(d(n,q)+d(n,q−1)·nξ ), and Γ(γ(w, ẇ)) ∈ U satisfying one of the
following equivalent sets of conditions:

(i)


P(w(t)) > 0

He(A T
{q}(w(t))

(
P(w(t))E + E0Q(w(t))

)
)+

E TP(ẇ(t))E + Bdiag(Γ(γ(w, ẇ)), 0d(n,q−1)·nξ
) < 0

(4.7)

∀w(t) ∈ W and ẇ(t) ∈ V ;

(ii)



P(w(t)) > 0
E TP(ẇ(t))E+

He(F(w(t))A{q}(w(t)))+
Bdiag(Γ(γ(w, ẇ)), 0d(n,q−1)·nξ

)

?

P(w(t))E + E0Q(w(t))+
G(w(t))A{q}(w(t))− FT(w(t))

−He(G(w(t)))

 < 0
(4.8)

∀w(t) ∈ W and ẇ(t) ∈ V .

The matrix E0 ∈ IR(d(n,q)+d(n,q−1)nξ )×(d(n,q−1)nξ ) is the orthogonal complement of E .
The Lyapunov function associated to the above sets of conditions is given by (4.5).

Proof. Necessity: Suppose that the system (4.1) is admissible with a PPD-HPLF of de-
gree 2q. By using Lemma 3.3.1, the associated extended system (3.9) is known to be
admissible with a quadratic Lyapunov function of the form (4.5). For such candidate
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to be a Lyapunov function, the positive-definiteness of the function is required, as well
as the negative-defineteness of its time derivative. These requirements are fulfilled in
the two sets of inequalities presented in (i).

Sufficiency: Suppose that inequalities (i) are satisfied. Then, a quadratic Lyapunov
function for the extended system (3.9) exists, and it ensures both the admissibility of
the extended system (3.9) via a quadratic Lyapunov function, and the admissibility of
the original system (4.1) via a PPD-HPLF of degree 2q.

Equivalence: (i) → (ii): Consider the strict inequality (4.7). There exists a small
scalar e such that left side of inequality (4.7) < − e

2A T
{q}(w(t))A{q}(w(t)). The choices

F = E TP(w(t))+QT(w(t))E T
0 and G = e · Id(n,q)+d(n,q−1)·nξ

along with the use of Schur
complements lead to inequality (4.8).

(ii) → (i): A multiplication of the left side of inequality (4.8) by the matrices[
Id(n,q)+d(n,q−1)·nξ

A T
{q}(w(t))

]
and

[
Id(n,q)+d(n,q−1)·nξ

A T
{q}(w(t))

]T
, to the right and

to the left respectively, lead to inequality (4.7).

Remark 4.3.5. Some complementary degrees of freedom associated to the Lyapunov function
given above can be highlighted. The first of them is related to the CMSR described in Defi-
nition 1.2.21, caused by the power transformation of the state vectors. The second of them is
related to the rank-deficiency of the matrix E , and it can be exploited by the orthogonal comple-
ment of this matrix. The orthogonal complement appears explicitly in [BSC13, Theorem 1] and
is represented by E0. In our Theorem 3.3.3, it appears implicitly in the triangular structure of
P, as detailed in the proof.

Remark 4.3.6. The negative-definiteness of the derivative of the Lyapunov function can ac-
commodate the so-called slack variables that are referred as F(w(t)) and G(w(t)) in (4.8).
When the infinite amount of conditions to be observed (i.e. inequality (4.8) must be verified
for every possible values of parameters and parameter’s rate of variation) is brought to a finite
amount of conditions due to a certain choice on the structure of the unknown matrices, the
slack variables might provide extra degrees of freedom, leading to less conservative results.

The admissibility conditions presented in Lemma 4.3.4 might lead to nonlinear ma-
trix inequalities. In the following, two different structures of the involved variables are
chosen in order to obtain new LMI admissibility conditions for uncertain descriptor
systems subject to parameters with bounded velocities.

Theorem 4.3.7 ([SPB18a]). The polytopic uncertain descriptor system (4.1) subject to pa-
rameters with bounded rates of variation is robustly admissible based on a PPD-HPLF if there
exist matrices P(i) > 0, Q(i), F, G, and Γil(γ) ∈ U in (4.3), i = 1 . . . N, l = 1 . . . h, of the
same dimensions as in Lemma 4.3.4, satisfying the LMI conditions below:E TP(dl)E +He(FA

(i)
{q}) + Bdiag(Γil(γ), 0d(n,q−1)·nξ

) ?

P(i)E + E0Q(i) + GA
(i)
{q} − FT −He(G)

 < 0, (4.9)

i = 1, . . . , m, l = 1, . . . , h.
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Matrices A
(i)
{q} are the vertices of A{q}, that is the dynamic matrix of the extended descriptor

system associated to (4.1), in accordance with the notation of (3.9).

Proof. Condition (4.9) is directly derived from (4.8) through the particular choice of
constant slack variables F(w(t)) = F and G(w(t)) = G, and by considering polytopic
realizations of matrices P(w(t)) and Q(w(t)). We recall that the term Γ(γ(w, ẇ)) in
(4.8) spams a linear space, and that the dependence of γ(w, ẇ) with respect to the pa-
rameters, and to the parameter’s velocities, can be conveniently chosen in such a way
that the term Γil(γ) is convex with respect to these both independent sets. Therefore,
the matrix inequality (4.9) still holds convexity and can be evaluated in the finite set
W ×V .

Remark 4.3.8. Theorem 4.3.7 covers the results provided in [BSC13]. Indeed, the conditions
in [BSC13] are given for the existence of a quadratic Lyapunov function, and do not consider
extra degrees of freedom related to the CMSR (see Remark 4.3.5). This particular case is trans-
lated to the choice q = 1, and γ(w, ẇ) ≡ 0.

Theorem 4.3.9 ([SPB18a]). The polytopic uncertain descriptor system (4.1) subject to pa-
rameters with bounded rates of variation is robustly admissible based on a PPD-HPLF if there
exist polytopic matrices P(w(t)), F(w(t)), G(w(t)), and Q(w(t)), of the same dimensions as
in Lemma 4.3.4, given by

P(w(t)) =
N

∑
i=1

wi(t)P(i), Q(w(t)) =
N

∑
i=1

wi(t)Q(i),

F(w(t)) =
N

∑
i=1

wi(t)Fi, G(w(t)) =
N

∑
i=1

wi(t)Gi,

for w(t) ∈ W and ẇi(t) ∈ V , such that the LMI conditions (4.10) are satisfied. Matrices
Γil(γ), i = 1, . . . , N, l = 1, . . . , h; Λijl(γ), i = 1, . . . , N, j = 1, . . . , N, j 6= i, l = 1, . . . , h;
and Ωijkl(γ), i = 1, . . . , N− 2, j = i+ 1, . . . , N− 1, k = j+ 1, . . . , N, l = 1, . . . , h, belong
to the set U .

Proof. Consider the polytopic definition of the system (4.1) and of matrices P(w(t)),
Q(w(t)), F(w(t)), G(w(t)) and P(ẇ(t)), this last one being deployed in Remark 4.3.2.
Using Lemma 4.3.4, system (4.1) is robustly admissible if (4.8) holds, whose left side is
given as in (4.11).

Please note that Γil(γ), Λijl(γ) and Ωijkl(γ) are dependent upon (w, ẇ), two inde-
pendent sets. We conveniently choose a structure for such matrices that is affine with
both of these sets.

Whenever inequalities (4.10) hold, it follows that the left hand side of (4.8), ex-
pressed as in (4.11), satisfies inequality (4.12). Since the scalar

h

∑
l=1

σl

( N

∑
i=1

w3
i −

1
(N − 1)2

N

∑
j=1; j 6=i

w2
i wj −

6
(N − 1)2

N−2

∑
i=1

N−1

∑
j=i+1

N

∑
k=j+1

wiwjwk

)
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E TP(dl)E +He(FiA
(i)
{q}) + Bdiag(Γil(γ), 0d(n,q−1)·nξ

) ?

P(i)E + E0Q(i) + GiA
(i)
{q} − FT

i −He(Gi)

 <−
[

Id(n,q)+d(n,q−1)·nξ

0d(n,q)+d(n,q−1)·nξ

]
,

i = 1, . . . , N, l = 1, . . . , h.

 3E TP(dl)E +He(FiA
(j)
{q} + FjA

(i)
{q} + FiA

(i)
{q}) + Bdiag(Λijl(γ), 0d(n,q−1)·nξ

) ?

2(P(i)E + E0Q(i) − FT
i ) + (P(j)E + E0Q(j) − FT

j ) + GiA
(j)
{q} + GjA

(i)
{q} + GiA

(i)
{q} −He(2Gi + Gj)

 <
1

(N − 1)2

[
Id(n,q)+d(n,q−1)·nξ

0d(n,q)+d(n,q−1)·nξ

]
,

i = 1, . . . , N, j = 1, . . . , N, j 6= i, l = 1, . . . , h.


6E TP(dl)E +He(FiA

(j)
{q} + FiA

(k)
{q} + FjA

(k)
{q}

+FjA
(i)
{q} + FkA

(i)
{q} + FkA

(j)
{q}) + Bdiag(Ωijkl(γ), 0d(n,q−1)·nξ

)
?

2(P(i) + P(j) + P(k))E + 2E0(Q(i) + Q(j) + Q(k))− 2(FT
i + FT

j + FT
k )

+GiA
(j)
{q} + GjA

(i)
{q} + GiA

(k)
{q} + GkA

(i)
{q} + GjA

(k)
{q} + GkA

(j)
{q}

−2He(Gi + Gj + Gk)

 <
6

(N − 1)2

[
Id(n,q)+d(n,q−1)·nξ

0d(n,q)+d(n,q−1)·nξ

]
,

i = 1, . . . , N − 2, j = i + 1, . . . , N − 1, k = j + 1, . . . , N, l = 1, . . . , h.
(4.10)
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left-hand side of (4.8) =
h

∑
l=1

σl

N

∑
i=1

w3
i

E TP(dl)E +He(FiA
(i)
{q}) + Bdiag(Γil(γ), 0d(n,q−1)·nξ

) ?

P(i)E + E0Q(i) + GiA
(i)
{q} − FT

i −He(Gi)

+

h

∑
l=1

σl

N

∑
i=1

N

∑
j=1,j 6=i

w2
i wj

 3E TP(dl)E +He(FiA
(j)
{q} + FjA

(i)
{q} + FiA

(i)
{q}) + Bdiag(Λijl(γ), 0d(n,q−1)·nξ

) ?

2(P(i)E + E0Q(i) − FT
i ) + (P(j)E + E0Q(j) − FT

j ) + GiA
(j)
{q} + GjA

(i)
{q} + GiA

(i)
{q} −He(2Gi + Gj)

+

h

∑
l=1

σl

N−2

∑
i=1

N−1

∑
j=i+1

N

∑
k=j+1

wiwjwk


6E TP(dl)E +He(FiA

(j)
{q} + FiA

(k)
{q} + FjA

(k)
{q} + FjA

(i)
{q}

+FkA
(i)
{q} + FkA

(j)
{q}) + Bdiag(Ωijkl(γ), 0d(n,q−1)·nξ

)
?

2(P(i) + P(j) + P(k))E + 2E0(Q(i) + Q(j) + Q(k))− 2(FT
i + FT

j + FT
k )

+GiA
(j)
{q} + GjA

(i)
{q} + GiA

(k)
{q} + GkA

(i)
{q} + GjA

(k)
{q} + GkA

(j)
{q}

−2He(Gi + Gj + Gk)



(4.11)


E T Ṗ(w(t))E +He(F(w(t))A{q}(w(t)))

+Bdiag(Γ(γ(w, ẇ)), 0d(n,q−1)·nξ
)

?

P(w(t))E + E0Q(w(t))
+G(w(t))A{q}(w(t))− FT(w(t)) −He(G(w(t)))

 <

−
h

∑
l=1

σl

( N

∑
i=1

w3
i −

1
(N − 1)2

N

∑
j=1; j 6=i

w2
i wj

− 6
(N − 1)2

N−2

∑
i=1

N−1

∑
j=i+1

N

∑
k=j+1

wiwjwk

) [Id(n,q)+d(n,q−1)·nξ

0d(n,q)+d(n,q−1)·nξ

] (4.12)
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can be rewritten as:

1
(N − 1)2

h

∑
l=1

σl

(
(N − 1)2

N

∑
i=1

w3
i −

N

∑
j=1;
j 6=i

w2
i wj − 6

N−2

∑
i=1

N−1

∑
j=i+1

N

∑
k=j+1

wiwjwk

)

=
1

(N − 1)2

h

∑
l=1

σl

(
(N − 1)Θ +

Ω
2

)
,

then it is positive semidefinite, given Θ as (1.76) and Ω as (1.77).
Furthermore, vector σ belongs to the unit simplex. Therefore, the left hand side of

(4.8) is negative-definite i.e. (4.8) is satisfied, and the system (4.1) is admissible.

Remark 4.3.10. Theorem 4.3.9 also covers results proposed in the literature. When using
a quadratic Lyapunov function and disconsidering the degrees of freedom associated to the
CSMR, or in other words, when choosing q = 1, γ ≡ 0 for the stability analysis of a standard
continuous-time uncertain system (e.g. nξ = 0, E = In), the same conditions can be found in
[LP03a].

The ensuing section brings numerical results that show reduction in the conser-
vatism when using the proposed LMI conditions.

4.3.1 Numerical examples

In this section, numerical examples are proposed to show the performance of the LMI
conditions of Theorem 4.3.7 and Theorem 4.3.9.

First, robust admissibility margins are obtained for uncertain descriptor systems
subject to different bounds on parameters’ velocities, and compared with results pro-
vided from techniques available in the literature. Then, the influence of the degree of
PPD-HPLFs over the robust admissibility margins is evaluated.

Considering the system formulation given in (3.11), the polytopic systems we use
for our numerical analysis are the following:

Example 1

E = Bdiag(I3, 0),

A =


−2r(t) 1 −r(t) 0.5

r(t) −10r(t) 1 + 3r(t) 1 + r(t)
−1 + 3r(t) −2− 4r(t) −4 + 2r(t) 0

1− r(t) 0 0 1 + 0.2r(t)

 ,

0 ≤ r(t) ≤ k, |ṙ(t)| ≤ β,

that corresponds to system (3.11) with:
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A(1) =


0 1 0 0.5
0 0 1 1
−1 −2 −4 0
1 0 0 1

, A(2) =


−2k 0 −k 0

k −10k 1 + 3k 1 + k
−1 + 3k −2− 4k −4 + 2k 0

1− k 0 0 1 + 0.2k

,

{g1, g2} =
{[
−γ/k
γ/k

]
,

[
γ/k
−γ/k

]}
.

Example 2

E = Bdiag(I2, 0),

A =

−5 + 2r(t) −2 + r(t) 0.1r(t)
2 −r(t) 0
0 10r(t) 1 + 0.1r(t)

 ,

0 ≤ r(t) ≤ k, |ṙ(t)| ≤ β,

that corresponds to system (3.11) with:

A(1) =

−5 −2 0
2 −1 0
0 0 1

, A(2) =

−5 + 2k −2 + k 0.1k
2 −k 0
0 10k 1 + 0.1k

 ,

{g1, g2} =
{[
−γ/k
γ/k

]
,

[
γ/k
−γ/k

]}
.

Example 3

E = Bdiag(I2, 0),

A =

 0 1 0.2
−6− r(t) −1 0

0.1 0.2 1 + 0.1r(t)

 ,

−k ≤ r(t) ≤ k, |ṙ(t)| ≤ β,

that corresponds to system (3.11) with:

A(1) =

 0 1 0.2
−6 + k −1 0

0.1 0.2 1− 0.1k

 , A(2) =

 0 1 0.2
−6− k −1 0

0.1 0.2 1 + 0.1k

 ,

{g1, g2} =
{[
−γ/2k
γ/2k

]
,

[
γ/2k
−γ/2k

]}
.

We base the definition of robust admissibility margins on the previously given
Definition 3.3.4 :



4.3. Admissibility analysis based on polytopic HPLFs 89

Definition 4.3.11 (κ∗2q(β)): The `∞ 2q-PPD-HPLF admissibility margin with respect to
the perturbation set κ∗2q(β) for a maximum velocity of parameters β is defined as:

κ∗2q(β) = sup{κ : ∃V2q for (4.1), r(t) ∈ B̄κ,

|ṙi(t)| ≤ β, i = 1, . . . , N},
B̄κ = {b ∈ IRm : 0 ≤ bi ≤ κ, i = 1, . . . , N}.

For the proposed systems, r(t) is a scalar, leading to N = 2.

Evaluation of robust admissibility margins and comparison with results from the
literature

In this part, we compute the robust admissibility margins for the considered systems
using conditions given in Theorem 4.3.7 and Theorem 4.3.9, and the ones found in
Theorem 3.3.3, [Bar11b, Theorem 3.1], and [BSC13, Lemma 3]. The technique in Theo-
rem 3.3.3 uses Lyapunov functions that are independent on the parameters, providing
robust admissibility margins that are valid for an arbitrary parameters’ rate of vari-
ation. However, the other techniques employ a Lyapunov function that is linearly
dependent on parameters. We recall that the technique provided in [BSC13, Lemma
3] is covered by Theorem 4.3.7 for the choice q = 1 and for a realization γ ≡ 0. In other
words, [BSC13, Lemma 3] provides an admissibility analysis based on the existence of
a Lyapunov function that is quadratic on the state vector and that does not contain the
extra degrees of freedom derived from the power transformation over the states.

From the results of the tables 4.1, 4.2 and 4.3, we remark that the results obtained
by using the proposed LMI conditions in both Theorem 4.3.7 and Theorem 4.3.9 can
lead to robust admissibility margins at least as big as the techniques proposed in the
literature. This is particularly true because, first of all, the result proposed in [BSC13,
Lemma 3] is covered in Theorem 4.3.7. Secondly, the condition proposed in [Bar11b,
Theorem 3.1] has significant similarities to its counterpart in [BSC13, Lemma 3], but it
presents less degrees of freedom than this latter one.

Throughout the tables we notice that, for a fixed degree of Lyapunov function,
sometimes conditions Theorem 4.3.7 give better results than Theorem 4.3.9, but not
always. Indeed, these conditions, as the ones previously presented in the literature,
are sufficient, but not necessary, and they might not span the same space of solutions.
Another phenomenon that can be observed in the tables is that a reduction of the
conservatism might be obtained through an augmentation of the dregree of the Lya-
punov function, given by increasing q. However, this is not a rule, as shown in Table
4.2, column β = 0, and Table 4.3, columns β = 0 and β = 5. In these cases, robust ad-
missibility margins become more restrictive with the the augmentation on the degree
of the PPD-HPLFs. This point is discussed in the next section.
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TABLE 4.1: κ∗2q+(100)
for Example 1

κ∗2q(100)

Theorem 3.3.3
q=1 4.6667
q=2 16.3940
q=3 16.7008

[Bar11b, Theorem 3.1] 4.9337
[BSC13, Lemma 3] 4.9621

Theorem 4.3.7
q=1 4.9621
q=2 16.6823
q=3 16.7008

Theorem 4.3.9
q=1 4.9706
q=2 16.6946
q=3 16.7007

TABLE 4.2: κ∗2q+(50)
for Example 2

κ∗2q(50)

Theorem 3.3.3

q=1 2.433
q=2 2.899
q=3 3.107
q=4 3.132
q=5 3.179
q=6 3.195
q=7 3.206

[Bar11b, Theorem 3.1] 2.4434
[BSC13, Lemma 3] 2.4434

Theorem 4.3.7

q=1 2.4434
q=2 2.9097
q=3 3.1074
q=4 3.1449
q=5 3.1855
q=6 3.2022
q=7 3.213

Theorem 4.3.9

q=1 2.4471
q=2 2.9182
q=3 3.1101
q=4 3.1496
q=5 3.1853
q=6 3.2033
q=7 3.2064

Evaluation of the augmentation of the degree of PPD-HPLFs

In this section, we compute for Example 3 the maximum allowed velocity of parame-
ters for a given dilation on the parameter set. We use conditions obtained from PPD-
HPLFs of different orders within Theorem 4.3.7.

Interestingly, we notice from Figure 4.1 that the curves of different orders of PPD-
HPLFs might overlap. For instance, among the performed tests, the PPD-HPLF pro-
viding the biggest allowed velocity of parameters for the dilation κ∗2q|·| = 4 is the one
of order 14, whilst for the dilation κ∗2q|·| = 5, the best choice of order for a PPD-HPLF
is 6. As a matter of fact, these results follow the same tendency displayed in the work
[Che+07] for the standard uncertain systems case (E = In). Indeed, in [Che+07], it is
highlighted that, for Lyapunov functions with parameter dependence of any degree
higher than or equal to one, a mere augmentation on the degree of the state variables
does not necessarily lead to better robust stability margins. That once more high-
lights one open problem concerning parameter-dependent homogeneous polynomial
Lyapunov functions: there is no defined rule for choosing its best suitable order for
a given system and given parameters’ trajectories. It also shows that different PPD-
HPLFs might provide different sets of necessary conditions, so that PPD-HPLFs of
higher orders do not necessarily span the same space of solutions of PPD-HPLFs of
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FIGURE 4.1: Example 3: Maximum allowed velocities of parameters for
imposed admissibility margins κ∗2q|·| under conditions of Theorem 4.3.7

for PPD-HPLFs of different orders
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TABLE 4.3: κ∗2q(β) for Example 3

κ∗2q(5) κ∗2q(100)

Theorem 3.3.3

q=1 2.572
q=2 3.451
q=3 3.650
q=4 3.715
q=5 3.817
q=6 3.820
q=7 3.866

[Bar11b, Theorem 3.1] 5.0139 2.5896
[BSC13, Lemma 3] 5.0304 2.5897

Theorem 4.3.7

q=1 5.0304 2.5897
q=2 5.2756 3.4525
q=3 5.1832 3.6588
q=4 5.0798 3.7318
q=5 4.9715 3.8236
q=6 4.8779 3.8482
q=7 4.8083 3.8728

Theorem 4.3.9

q=1 5.3228 2.5898
q=2 5.2797 3.4531
q=3 5.2423 3.6659
q=4 5.1124 3.733
q=5 4.986 3.826
q=6 4.89 3.8401
q=7 4.8131 3.8669

lower orders. As a matter of fact, the authors of [Che+07] state that, for standard
uncertain systems, the joint augmentation on the degree of the homogeneous poly-
nomial Lyapunov function with respect to the state and the parameter vectors might
lead to less restrictive conditions. However, there is no guarantee that conservatism
will decrease for an augmentation on the degree of the power transformation of the
state vector alone.

4.4 Admissibility analysis based on homogeneously parameter-
dependent HPLFs

In this section, we propose admissibility analysis conditions for uncertain descriptor
systems through the existence of homogeneously parameter-dependent homogeneous
polytopic Lyapunov functions (HPD-HPLFs).

Consider Lemma 3.3.1 that shows the equivalence between the admissibility of an
uncertain descriptor system by means of a HPLF and the admissibility of its corre-
spondent extended system by means of a quadratic Lyapunov function. In the previ-
ous chapter and section, we evaluated HPLFs in the form of (4.5) in which the Lya-
punov matrix P(w(t)) is parameter-independent and linearly dependent on parame-
ters, respectively. In the current section, we employ Lyapunov functions of the form
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(4.5) containing homogeneous polynomial dependence in the vector of parameters.
Indeed, one of the ways to represent the HPD-HPLF (1.68) is through the form (4.5),
in which every entry of the Lyapunov matrix P(w(t)) is a homogeneous polynomial
of degree s of the parameter vector.

It was shown in Theorem 3.3.3 that it is, actually, not restrictive to consider (4.5) in
the following form:

V2q,s(x(t), w(t)) =

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]T

E TP(w(t))

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
(4.13)

= x[q](t)TP11(w(t))x[q](t), (4.14)

with the choice of matrix P(w(t)) =

[
P11(w(t)) 0d(n,q)×d(n,q−1)·nξ

P21(w(t)) P22(w(t))

]
, each entry of

P(w(t)) being homogeneous in w of degree s. As a matter of fact, P(w(t)) in (4.13)
is equivalent to P(w(t))E in (4.5). Furthermore, in (4.13), the degrees of freedom re-
lated to the rank-deficiency of matrix E are embedded in submatrices P21(w(t)) and
P22(w(t)), as discussed in Remark 4.3.5. We recall that E is the derivative matrix of the
extended descriptor system associated to (4.1).

With a Lyapunov function candidate of form (4.13), we derive conditions for its eli-
gibility to ascertain the admissibility of the uncertain descriptor system (4.1), imposing
the positive-definiteness of (4.13) and the negative-definiteness of its time derivative.
Each of these conditions will be developed in the following.

Positive-definiteness of the HPD-HPLF

Using Theorem 1.2.17 on the function V2q,s(x(t), w(t)), we obtain that

V2q,s(x(t), w(t)) > 0 ∀x(t) ∈ IRn\{0n}, w ∈ W
⇐⇒

V2q,2s(x(t), sq(w(t))) > 0 ∀x(t) ∈ IRn\{0n}, w ∈ IRN\{0N}. (4.15)

We are interested in establishing the positive-definiteness of the function
V2q,s(x(t), w(t)), and this will be done through the form V2q,2s(x(t), sq(w(t))). In this
latter form, every entry of the matrix P(sq(w(t))) is a polynomial of degree 2s in the
vector w. Thus, it is possible to write the (i, j) entry of P(sq(w(t))) as

pij(sq(w)) = w[s]TΠijw[s], i = 1, . . . , d(n, q), j = 1, . . . , d(n, q).

Matrices Πij belong to

O(m, s) = {Πij = ΠT
ij ∈ IRd(N,s)×d(N,s) : pij(sq(w)) does not contain monomials in w

with any odd power}.
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The dimension of this linear space is [Che+07]

dO(N, s) =
1
2

d(N, s) (d(N, s) + 1)− (d(N, 2s)− d(N, s)) .

With the definition of matrices Πij, we are able to rewrite V2q,2s(x(t), sq(w(t))) as:

V2q,2s(x(t), sq(w(t))) = x[q](t)TP11(sq(w(t)))x[q](t)

= x[q](t)T


w[s]T

w[s]T

. . .

w[s]T


︸ ︷︷ ︸

(I⊗w[s])T

·


Π11 Π12 · · · Π1d(n,q)

? Π22
. . .

...
· · ·

? ? · · · Πd(n,q)d(n,q)


︸ ︷︷ ︸

H1

·


w[s]

w[s]

. . .

w[s]


︸ ︷︷ ︸

(I⊗w[s])

x[q](t),

(4.16)

where (I ⊗ w[s]) ∈ IRd(n,q)·d(N,s)×d(n,q) and H1 ∈ IRd(n,q)·d(N,s)×d(n,q)·d(N,s).
Note, however, that though matrix H1 in (4.16) has size d(n, q) · d(N, s)× d(n, q) · d(N, s),

it does not mean that it has (d(n, q) · d(N, s))2 free variables. Actually, V2q,2s(x(t), sq(w(t)))
has only d(n, 2q) · d(N, s) different monomials, and that is the amount of free variables
contained in H1. Let α be the vector that contains these free variables, so that we write
H1 = H1(α). This also allows us to write P11(w(t)) = P11(w(t), α).

Using properties of Kronecker products [Bre78], we obtain:

V2q,2s(x, sq(w), α) = x[q]T · (I ⊗ w[s])T · H1(α) · (I ⊗ w[s]) · x[q]

= (x[q] ⊗ w[s])T · H1(α) · (x[q] ⊗ w[s]). (4.17)

Now, consider the linear space L:

L = {L = LT ∈ IRd(n,q)·d(N,s)×d(n,q)·d(N,s) |
(x[q] ⊗ w[s])T · L · (x[q] ⊗ w[s]) = 0 ∀ x ∈ IRn, w ∈ IRN\{0N}}. (4.18)

The dimension of L is

dL(n, q, N, s) =
1
2

d(N, s)d(n, q)(d(N, s)d(n, q) + 1)− d(N, 2s)d(n, 2q). (4.19)

We are able to comprise extra degrees of freedom in the description of (4.17) as
follows:

V2q,2s(x, sq(w), α, λ) = (x[q] ⊗ w[s])T · {H1(α) +
dL(n,q,N,s)

∑
i=1

λiLi} · (x[q] ⊗ w[s]). (4.20)

With these considerations, we can analyse the second condition to be satisfied by
the Lyapunov function candidate (4.13).
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Negative-definiteness of the time-derivative of the HPD-HPLF

Consider the definition of extended descriptor system presented in Lemma 3.3.1. We
obtain as time-derivative of the Lyapunov function candidate (4.13) the form below:

d
dt

V2q,s(x, w, α) =

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]T (
A{q}(w)TP(w, α)

+P(w, α)A{q}(w) +
d
dt

P(w, α)

)[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
.

(4.21)

The sum of terms A{q}(w)TP(w, α) + P(w, α)A{q}(w) has degree s + 1 in w. Each

entry of d
dt P(w, α) has degree s− 1 in w, and a multiplication by the scalar (

N

∑
k=1

wk)
2 on

each of its entries renders it dependent on w with the same homogeneous degree as
the other terms in (4.21). After this manipulation, the function d

dt V2q,s(x, w, α) becomes

a homogeneous polynomial function of degree 2q in the state vector

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
and of degree s + 1 in the parameter vector w. We express this fact by using the nota-
tion

(
d
dt V2q,s(x, w, α)

)
2q,s+1

.

To ensure the negative-definiteness of form
(

d
dt V2q,s(x, w, α)

)
2q,s+1

, we use Theo-

rem 1.2.17 and rather impose conditions upon the function
(

d
dt V2q,s(x, w, α)

)
2q,2s+2

.

This leads to: (
d
dt

V2q,s(x, w, α)

)
2q,2s+2

=
d
dt

V2q,s(x, w, α)
∣∣∣
w=sq(w)

=

[
x[q](t)

x[q−1](t)⊗ ξ(t)

]T (
A{q}(sq(w))TP(sq(w), α) + P(sq(w), α)A{q}(sq(w))

+
d
dt

P(w, α)
∣∣∣
w=sq(w)

· (
N

∑
k=1

w2
k)

2

)[
x[q](t)

x[q−1](t)⊗ ξ(t)

]
. (4.22)

Using the same considerations made for writing the function V2q,2s(x(t), sq(w(t)))
in the form (4.16), we are able to find a matrix
H2(α) ∈ IR{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )}×{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )} such that

A T
{q}(sq(w))P(sq(w), α)+ P(sq(w), α)A{q}(sq(w)) = (I⊗w[s+1])T ·H2(α) · (I⊗w[s+1]).

(4.23)
Likewise, there exists a matrix

H3(ẇ, α) ∈ IR{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )}×{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )} such that

d
dt

P(w, α)|w=sq(w) · (
N

∑
k=1

w2
k)

2 = (I ⊗ w[s+1])T · H3(ẇ, α) · (I ⊗ w[s+1]). (4.24)
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Consider the linear space U :

U =
{

U = UT ∈ IR{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )}×{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )} |([
x[q]

x[q−1] ⊗ ξ

]
⊗ w[s+1]

)T

·U ·
([

x[q]

x[q−1] ⊗ ξ

]
⊗ w[s+1]

)
= 0,

∀ x ∈ IRn, w ∈ IRN\{0N}.
}

(4.25)

The dimension of U is given by

dU (n, q, N, s, nξ) =



dL(n, q, N, s + 1) + d(n, q)d(n, q− 1)d(N, s + 1)2nξ

−d(n, 2q− 1)d(N, 2s + 2)nξ

+ 1
2 d(n, q− 1)d(N, s + 1)nξ

(
d(n, q− 1)d(N, s + 1)nξ + 1

)
−d(n, 2q− 2)d(N, 2s + 2)d(nξ , 2), if nξ 6= 0,

dL(n, q, N, s + 1), if nξ = 0.
(4.26)

Remark 4.4.1 (About the dimension of the space U , dU ). The scalar dU (n, q, N, s, nξ) re-
groups the amount of degrees of freedom related to the couplings

(
x[q] ⊗ w[s+1], x[q] ⊗ w[s+1]

)
,(

x[q] ⊗ w[s+1], x[q−1] ⊗ ξ ⊗ w[s+1]
)

and
(

x[q−1] ⊗ ξ ⊗ w[s+1], x[q−1] ⊗ ξ ⊗ w[s+1]
)

. When

nξ = 0, the state vector of the extended system (3.9) is given by x[q]. Therefore, the above
mentioned couplings only take place between the pair

(
x[q] ⊗ w[s+1], x[q] ⊗ w[s+1]

)
, and this

explains the reduced formulation of scalar dU (n, q, N, s, nξ) for this particular case.

With the above considerations, we are able to write (4.22) as

(
d
dt

V2q,s(x, w, α, φ)

)
2q,2s+2

=

([
x[q]

x[q−1] ⊗ ξ

]
⊗ w[s+1]

)T

· (4.27)H2(α) + H3(ẇ, α) +
dU (n,q,N,s,nξ )

∑
i=1

φiUi

 ·([ x[q]

x[q−1] ⊗ ξ

]
⊗ w[s+1].

)

Based on the previous considerations, we present in the following theorem novel
admissibility criteria for uncertain descriptor system by means of HPD-HPLFs.

Theorem 4.4.2 ([SPB18b]). The uncertain descriptor system (4.1) subject to time-varying
parameters with bounded rates of variation is robustly admissible with a HPD-HPLF if there
exist free parameter vectors α ∈ IRd(n,2q)·d(N,s), λ ∈ IRdL(n,q,N,s) and φ ∈ IRhdU (n,q,N,s,nξ ), such
that there are symmetric matrices H1(α) ∈ IRd(n,q)·d(N,s)×d(n,q)·d(N,s), H2(α) and
H3(α) ∈ IR{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )}×{d(N,s+1)·(d(n,q)+d(n,q−1)·nξ )} such that the following
LMI conditions hold:

H1(α) +
dL(n,q,N,s)

∑
i=1

λiLi > 0; (4.28)

H2(α) + H3(α, gj) +
dU (n,q,N,s,nξ )

∑
i=1

φijUi < 0, j = 1, . . . , h. (4.29)
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Proof. The first inequality (4.28) ensures the positive-definiteness of the sought Lya-
punov function by enforcing the positive-definiteness over the form (4.20), and the
second condition (4.29) guarantees the negative-definiteness of the time-derivative of
the Lyapunov function by imposing negative-definiteness over the function (4.27).

Remark 4.4.3 (Correlation with [Che+07]). The results of this section cover the ones found
in [Che+07], where HPD-HPLFs are employed for standard uncertain systems. In [Che+07],
the Lyapunov function candidate is given by (1.68) and represented as:

V2q,s(x, w, α) = (sqr(w)[s] ⊗ x[q])T · H1c(α) · (sqr(w)[s] ⊗ x[q]). (4.30)

where H1c(α) is so that all the monomials in V2q(x, sqr(w)) have integer degree in s.
Now we observe the Lyapunov function in (4.17) for the case nξ = 0. Likewise, it can be

represented by:

V2q,s(x, w, α) = (x[q] ⊗ sqr(w)[s])T · H1(α) · (x[q] ⊗ sqr(w)[s]). (4.31)

By using properties of Kronecker products, we are able to determine the relationship be-
tween H1 and H1c. Indeed, based on permutation matrix properties [Bre78], (cf. Appendix A),
the vectors (x[q] ⊗ sqr(w)[s]) and (sqr(w)[s] ⊗ x[q]) are related as:

x[q] ⊗ sqr(w)[s] = Ud(n,q)×d(N,s)(sqr(w)[s] ⊗ x[q]). (4.32)

Finally, replacing (4.32) in (4.31) and identifying the obtained expression, we find that

H1c = UT
d(n,q)×d(N,s)H1Ud(n,q)×d(N,s).

4.4.1 Numerical examples

For the numerical examples, we use systems that were presented in the previous
section for comparing our novel technique with other works found in the literature
that also address the problem of robust admissibility of uncertain descriptor systems
whose parameters have finite rate of variation. We first compare robust admissible
margins for a fixed rate of variation, and then we verify the maximum allowed rate of
variation for a given robustness margin. In our tests, we use Example 2 and Example
3 in section 4.3.1, and we consider the definition of κ∗2q(β) in Definition 4.3.11 for the
computation of robust admissibility margins.

4.4.2 Evaluation of robust admissibility margins and comparison with re-
sults from the literature

In this part, we compute the robust admissibility margins κ∗2q(β) of the given sys-
tems. We compare the results provided by the technique proposed in Theorem 4.4.2
(arbitrary q and s) with Theorem 4.3.7, where a Lyapunov function homogeneous in
the states and polytopic in the parameters is employed (arbitrary q and s = 1); and
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Theorem 3.3.3, where a parameter-independent homogeneous polynomial Lyapunov
function is used (arbitrary q and s = 0). We also display the results generated by
conditions proposed in [Bar11b, Theorem 3.1], and [BSC13, Lemma 3] (q = 1, s = 1).
We recall that the case s = 0 in Theorem 3.3.3 is specially pertinent to the study of
uncertain descriptor systems with arbitrary rates of variation on the parameters.

The obtained robust admissibility margins κ∗2q(β) can be found in tables 4.4 and
4.5. In table 4.4, we notice that the HPLF framework is very powerful when compared
to the quadratic approaches in [Bar11b, Theorem 3.1] and [BSC13, Lemma 3], because
the augmentation of the degree q alone led to less conservative results than the ones
given by the previous references.

It is known that, for standard systems, the augmentation on the state vector de-
gree in a homogeneous polynomial Lyapunov function does not necessarily lead to
less restrictive admissibility conditions. However, an augmentation on the degree of
the parameter vector does not increase the degree of conservativeness [Che+07]. Fur-
thermore, a suitable simultaneous augmentation of the degrees of state and parameter
vectors might lead to less restrictive robustness margins. This has also been confirmed
on descriptor systems through our numerical evaluation. These phenomena can be
seen in both tables 4.4 and 4.5, where, for a given admissibility analysis technique,
values on the same column do not necessarily grow from top to bottom, but values on
the same line either remain constant or increase from left to right. We also note that
the values of robust admissibility margins in the right bottom of each table are the
greatest ones found there, highlighting the benefits of a joint augmentation of q and s.

TABLE 4.4: κ∗2q+(50) for Example 2

κ∗2q(50)
s = 0 s = 1 s = 2 s = 3

[Bar11b, Theorem 3.1] 2.44
[BSC13, Lemma 3] 2.44

Theorem 3.3.3

q=1 2.43
q=2 2.89
q=3 3.10
q=4 3.13

Theorem 4.3.7

q=1 2.44
q=2 2.90
q=3 3.10
q=4 3.14

Theorem 4.4.2

q=1 2.47 2.48 2.48 2.62
q=2 2.9 2.93 3.00 3.15
q=3 2.88 2.91 3.02 3.12
q=4 2.86 2.92 3.11 3.2
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TABLE 4.5: κ∗2q+(5) for Example 3

κ∗2q(5)
s = 0 s = 1 s = 2 s = 3

[Bar11b, Theorem 3.1] 5.01
[BSC13, Lemma 3] 5.03

Theorem 3.3.3

q=1 2.57
q=2 3.45
q=3 3.65
q=4 3.71

Theorem 4.3.7

q=1 5.03
q=2 5.27
q=3 5.18
q=4 5.07

Theorem 4.4.2

q=1 2.33 5.38 5.67 5.73
q=2 4.96 5.82 6.04 6.05
q=3 4.45 5.66 6.03 6.05
q=4 4.56 5.74 6.05 6.05

4.4.3 Evaluation of the maximum allowed parameters’ rates of variation for
different values of robust admissibility margins

In this section, Example 3 was evaluated for increasing values of κ, and for each of
these bounds the maximum velocity β that ensures admissibility was calculated ac-
cording to Theorem 4.4.2. For that, Lyapunov functions of different degrees of depen-
dence on the state and on the parameter vector were employed. Results are found in
figures 4.2 and 4.3.

Once more, we note that an augmentation of q might make all the curves from
a graph recede. That is what can be noticed between figures 4.2b and 4.2c, as well
as in figure 4.3, where the criteria based on a Lyapunov function of degree 4 on the
states (q = 2) lead to less restrictive margins in most part of the interval [4.5, 6] of κ∗2q.
However, we note that curves with the same degree q and different degrees s (figures
4.2) do not cross each other, and that is due to the fact that an augmentation in s does
not increase the conservativeness of a solution.

4.5 Conclusion

The present chapter presents robust admissibility analysis conditions for continuous-
time polytopic uncertain descriptor systems with bounded rates of variation on pa-
rameters. We extend the scope of our previous work in Chapter 3 by proposing con-
ditions that are based on parameter-dependent homogeneous polynomial Lyapunov
functions.

In the first part, homogeneous polynomial Lyapunov functions with parameter
dependence of degree 1 were used along with parameter-dependent slack variables to
obtain necessary and sufficient conditions for the admissibility analysis of uncertain
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FIGURE 4.2: Example 3: Maximum allowed velocities of parameters β
for increasing values of κ∗2q and different degrees s on the parameter

vector. Every figure is traced for a fixed degree q of state vector.
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FIGURE 4.3: Example 3: Maximum allowed velocities β of parameters
for increasing κ∗2q for different degrees q of the state vector, and fixed

degree s = 2 for the parameter vector.
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descriptor systems. Then, through different convexification techniques, LMI condi-
tions were obtained and compared by use on numerical examples. It is shown, in
accordance with [Che+07], that for the case of parameter-dependent homogeneous
polynomial Lyapunov functions, the augmentation of the polynomial degree can lead
to less conservative results.

As a further study, homogeneous polynomial Lyapunov functions with arbitrary
dependence on the parameter vector were employed to obtain LMI sufficient condi-
tions for the admissibility analysis of uncertain descriptor system. It makes use of
the degrees of freedom found in the complete square matricial representation to ob-
tain less conservative solutions. Numerical results show a progressive improvement
of the robust admissibility margins once both the degree of dependence on the state
vector and on the parameter vector increase appropriately.
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Chapter 5

Conclusions and perspectives

5.1 Summary of the thesis

This manuscript gathers research about the admissibility analysis of uncertain de-
scriptor systems. This class of systems is placed among linear and nonlinear systems
and enables the representation of impulses and algebraic constraints. Its versatility
comes with a cost: the complexity of analysis and control is increased with respect
to the classes of descriptor systems and uncertain systems alone. High complexity
can be tackled by relaxations that often increase the conservativeness of solutions, and
though a trade-off is set, research aims to provide less restrictive and reliable results
with affordable computational power.

Therefore, there are still many open fields of research related to uncertain descrip-
tor systems. Particularly about the robust admissibility analysis problem, on the one
side, different convexification techniques have been proposed to reduce the dimen-
sions of the set of conditions to be verified. On the other side, less restrictive condi-
tions have been sought, mainly by means of Lyapunov functions. This thesis is mostly
focused in the latter problem.

Lyapunov functions are a powerful mathematical tool for the analysis and control
of dynamical systems. Its flexibility has provided less restrictive results through the
selection of different dependences on the state and parameter vectors. The choice of
a particular class of Lyapunov function can be determinant in the reduction of con-
servatism because some classes may not be universal for a given system of interest,
meaning that not every class of Lyapunov function is able to assert the admissibility
of an actual admissible system. In this thesis, we are interested in studying homoge-
neous polynomial Lyapunov functions because they are universal for uncertain sys-
tems. Among the universal Lyapunov functions for standard uncertain systems, the
homogeneous polynomial type is particularly appealing because it can be represented
in a quadratic structure through the so-called power transformation in the vector state.
Nevertheless, homogeneous polynomial Lyapunov functions have never been used in
the formulation of admissibility analysis conditions for uncertain descriptor systems
because a definition of power transformation for such systems had not been set. The
central interest of this project was to fill in this scientific gap.
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This manuscript begins with a theoretical introduction to provide a basic under-
standing of the concepts that will be used throughout the document and give some
insight of the open fields of research concerning the admissibility analysis of the larger
class of uncertain descriptor systems. This theoretical introduction contains informa-
tion about LTI descriptor systems and standard uncertain systems with the intention
to facilitate the understanding of the properties of uncertain descriptor systems. Some
findings in the literature concerning the admissibility analysis of descriptor systems,
the stability analysis of standard uncertain systems, and the admissibility analysis of
uncertain descriptor systems are evoked, and informations on homogeneous poly-
nomial Lyapunov functions, that have been used for the robust stability analysis of
standard uncertain systems, are given more in detail.

The second chapter contains our first contribution to the admissibility analysis of
uncertain descriptor systems, and it is the only one related to the discrete-time case.
There, we propose new necessary and sufficient admissibility analysis conditions for
time-varying descriptor systems based on time-dependent Lyapunov functions and
time-dependent slack variables. We also come up with a novel assumption that is
required for the convergence of the time-varying descriptor system state vector to-
wards the equilibrium. Then, we derive LMI sufficient conditions for the admissibility
analysis of polytopic parameter-dependent uncertain descriptor systems containing
parameter-dependent slack variables.

The third chapter brings our main contributions, that consists in generalizing the
homogeneous polytopic Lyapunov function approach proposed for standard uncer-
tain systems to uncertain descriptor systems. At first, we deal with standard uncer-
tain systems, proposing a characterization of the linear mapping between an original
system and its extended version. This novel characterization enables us to introduce
new numerically tractable admissibility conditions using parameter-independent ho-
mogeneous polynomial Lyapunov functions and leads us to retrieve the power trans-
formation of an uncertain descriptor system state vector for the first time.

The promising results obtained with parameter-independent Lyapunov functions
propelled the research of admissibility conditions derived from parameter-dependent
homogeneous polynomial Lyapunov functions for the same class of systems. In the
fourth chapter, we investigate Lyapunov functions with parameter-dependence of or-
der greater or equal to one, exploring different convexification techniques to obtain
numerically tractable admissibility conditions.

5.2 Perspectives

The results obtained so far are merely the beginning of various contributions that may
take place in future. Among them, it was mentioned [Che+07] that there is no tech-
nique to define an upper bound on the degree of homogeneous polynomial Lyapunov
functions in order to obtain necessary and sufficient robust stability conditions for a
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time-varying parameter-dependent system. Furthermore, to the best of our knowl-
edge, all the techniques using homogeneous polynomial Lyapunov functions for sta-
bility and admissibility analysis address the continuous-time case, but not the discrete-
time one. For the techniques here proposed, there can be envisaged extensions to the
evaluation of H2 and H∞ performances, stabilizability, different types of controllability
and observability, and control synthesis. There might be interest in better understand-
ing the relationship between the original and the extended systems, evaluating how
their dynamics are correlated, and extensions to neighbor fields, such as switched sys-
tems and singular perturbed systems, can be considered. Numerical libraries for un-
certain descriptor systems would probably facilitate the use and understanding of this
class of systems, and finally, the research of less restrictive convexification techniques
would be beneficial for our domain and countless others.
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Appendix A

Mathematical tools

A.1 Positive-definiteness of a matrix

A symmetric matrix M ∈ IRn×n is respectively positive-definite, positive semidefinite,
negative-definite and negative semidefinite if for any vector x ∈ IRn, x 6= 0n×1, one ob-
tains xT Mx > 0, xT Mx ≥ 0, xT Mx < 0 and xT Mx ≤ 0. Furthermore, the eigenvalues
of M are respectively all positive, positive and/or zero, all negative, negative and/or
zero.

A.2 The convex hull [BV01]

The convex hull of a set w, Co{w}, is a set containing all the convex combinations of
elements in w, such that

Co{w} = {k1w(1) + k2w(2) + · · ·+ kNw(N) | w(i) ∈ w ∀i = 1, . . . , N, ki ≥ 0,
N

∑
i=1

ki = 1}.

(A.1)
The convex hull of w is the smallest convex set that contains all the elements in w.
Considering w as a set of vectors of size m, w(i), i = 1, . . . , N are not only realizations
of this set, but also the vertices of its convex hull.

A.3 Kronecker product

The Kronecker product between two matrices M ∈ IRa×b and N ∈ Rc×d is given by

M⊗ N ∈ IR(ac)×(bd) =


M11N M12N . . . M1bN
M21N M22N . . . M2bN

. . .

Ma1N Ma2N . . . MabN

 . (A.2)

Several properties of the Kronecker product can be found, for example, in the reference
[Bre78].
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A.4 Norms

The k-norm of a vector w ∈ IRm is given as

||w||k =
( m

∑
i=1

wk
i

) 1
k
. (A.3)

The infinity norm of w is equivalent to ||w||∞ = max(|w1|, |w2|, . . . , |wm|).

A.5 Linear Matrix Inequalities (LMIs) [SW99]

A Linear Matrix Inequality is an inequality constraint in the form

F(z) = F0 + z1F1 + z2F2 + · · ·+ znFn < 0, (A.4)

where Fi ∈ IRa×a, i = 0, . . . , n are symmetric matrices and zi, i = 1, . . . , n are real
scalars named as decision variables. LMIs are, thus, affine functions of the decision
variables.

As a matter of fact, LMIs can be defined in a more general manner, so that the
decision variables are no longer scalars, but matrices. Therefore, a LMI F(Z) < 0 is an
affine function of the decision variable Z ∈ IRa×a whose result is a symmetric matrix.

We note that the affine dependence on the decision variables renders the inequality
(A.4) convex with respect to these decision variables. Convexity is a desirable prop-
erty to be found in a matrix inequality problem because convex functions have only
one global minimum/maximum, and this is of great interest for the numerical opti-
mization.

LMIs are massively used in stability analysis and control synthesis problems be-
cause they count on numerical techniques, such as interior point methods, that grant
them an efficient resolution. Furthermore, numerical tools, such as the Matlab Robust
Control Toolbox and the parser Yalmip, provide a user-friendly experience in coding
and obtaining solutions for LMI problems.

A.6 Schur complement

The Schur complement is a powerful tool that can simplify the parameter dependence
of a problem. Consider the following inequality:

F(z) =

[
F11(z) F12(z)
F21(z) F22(z)

]
< 0. (A.5)

It is equivalent to the following two sets of inequalities:
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{
F11(z) < 0
F11(z)− F12(z)F−1

22 (z)F21(z) < 0

{
F22(z) < 0
F22(z)− F21(z)F−1

11 (z)F12(z) < 0

A.7 Finsler’s lemma - Variant of [BSC12]

Given matrices M(ς) = M(ς)T, N(ς) and vector σ(ς), with ς in a set D and appropri-
ate dimensions for the matrices and vector, then

σT(ς)M(ς)σ(ς) < 0 ∀ς ∈ D (A.6)

in which N(ς)σ(ς) = 0 for σ(ς) 6= 0 holds if there exists a matrix L such that

M(ς) +He(LN(ς)) < 0 ∀ς ∈ D. (A.7)

A.8 Permutation matrix [Bre78]

A permutation matrix Ua×b is a square, full-rank matrix of size ab× ab, given by:

Ua×b =
a

∑
i

b

∑
k

(
ei
(a)
· eT

k
(b)

)
⊗
(

ek
(b)
· eT

i
(a)

)
, (A.8)

where ei
(a)

is an a× 1 vector having one in the i-th entry and zero elsewhere.

A.9 Toolboxes

Several toolboxes explore the subject of uncertain systems and descriptor systems.
Here we collect some of them:

• MATLAB Robust Control Toolbox [Mat]: this toolbox provides mathematical tools
for analysis and control of single-input-single-output (SISO) systems, as well
as of multiple-input-multiple-output (MIMO) systems subject to uncertainties.
Furthermore, it provides general purpose LMI-related resources with different
functions and solvers.

• R-RoMulOC - Randomized and Robust Multi-Objective Control toolbox [Rro]: this
toolbox provides tools for the resolution of the robust control problem for uncer-
tain systems and LMI optimization problems for robust multi-objective control.
The addressed system models can be given with different uncertainty structures,
such as affine polytopic and linear fractional transformation (LFT). The analysis
tools are based on Lyapunov theory and different criteria for robustness evalu-
ations can be assessed. This toolbox uses the parser Yalmip for operating with
different solvers.
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• SLICOT [Sli]: this library proposes Fortran and Matlab based tools for address-
ing problems related to time-invariant multivariable systems analysis and syn-
thesis. Such systems can be either descriptor or standard. Among the function-
alities of the toolbox, one can find similarity transformations for descriptor and
standard systems, solutions of Lyapunov and Riccati equations and model order
reduction.

• Descriptor System Tools (DSTOOLS) [Var17]: this is a MATLAB-based library for
the operation and manipulation of linear time-invariant systems through their
correspondent descriptor realizations. It uses functions from MATLAB Robust
Control Toolbox and SLICOT.

• Model Order Reduction Laboratory (MORLAB) toolbox [Mor; BW18] : this is a MATLAB-
based toolbox that works with the model order reduction of LTI continuous-time
systems and is able to address medium-scale descriptor systems.

Other than toolboxes, some important tools are used in the resolution of descriptor
and uncertain systems related problems. Among them, the solvers provide the solu-
tions of different optimization problems. In this thesis we are mostly interested in
LMI feasibility problems that are solved through semidefinite programming, and for
so, solvers LMILAB [Lmia; Lmib], MoseK [Mos] and SEDUMI [Sed] were employed.
Although not addressed in this thesis, the control synthesis problem can lead to bi-
linear matrix inequality (BMI) problems that can be solved using the solver PENBMI
[Pen]. Another important set of tools is the parsers, that are employed for interfac-
ing optimization problems with different solvers, and are useful to the context of this
thesis because the evoked LMI feasibility problems are solved through semidefinite
programming. In this matter, the MATLAB Robust Control Toolbox and Yalmip tool-
box [Lof04] provide a user-friendly platform for coding optimization problems.
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Résumé
Les systèmes descripteurs incertains sont convenables pour la représentation des in-
certitudes d’un modèle, du comportement impulsif et des contraintes algébriques en-
tre les variables d’état. Ils peuvent décrire bien plus de phénomènes qu’un système
dynamique standard, mais, en conséquence, l’analyse des systèmes descripteurs in-
certains est aussi plus complexe.
Des recherches sont menées de façon à réduire le degré de conservatisme dans
l’analyse des systèmes descripteurs incertains. L’utilisation des fonctions de Lya-
punov qui sont en mesure de générer des conditions nécessaires et suffisantes pour
une telle évaluation y figurent. Les fonctions de Lyapunov polynomiales homogènes
font partie de ces classes, mais elles n’ont jamais été employées pour les systèmes
descripteurs incertains.
Dans cette thèse, nous comblons ce vide dans la littérature en étendant l’usage des
fonctions de Lyapunov polynomiales homogènes du cas incertain standard vers les
systèmes descripteurs incertains.
Mots-clés : systèmes descripteurs incertains, fonctions de Lyapunov non quadratiques,
conditions nécessaires et suffisantes, inégalités matricielles linéaires.

Abstract
Uncertain descriptor systems are a convenient framework for simultaneously repre-
senting uncertainties in a model, as well as impulsive behavior and algebraic con-
straints. This is far beyond what can be depicted by standard dynamic systems, but it
also means that the analysis of uncertain descriptor systems is more complex than the
standard case.
Research has been conducted to reduce the degree of conservatism in the analysis
of uncertain descriptor systems. This can be achieved by using classes of Lyapunov
functions that are known to be able to provide necessary and sufficient conditions
for this evaluation. Homogeneous polynomial Lyapunov functions constitute one of
such classes, but they have never been employed in the context of uncertain descriptor
systems.
In this thesis, we fill in this scientific gap, extending the use of homogeneous polyno-
mial Lyapunov functions from the standard uncertain case for the uncertain descriptor
one.
Keywords: uncertain descriptor systems, nonquadratic Lyapunov functions, necessary
and sufficient conditions, LMIs.
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