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Résumé

Cette thèse a les objectifs suivants :

1. Mieux comprendre comment les isotope du bore dans les sédiments fluviaux modernes
enregistrent le régime d’altération à la échelle du bassin versant.

2. Mieux comprendre comment le « signal » d’altération porté par les sédiments fluviaux est transféré
des zones sources vers l’environnement de dépôt.

3. Déterminer si les isotopes du B dans les dépôts sédimentaires (paléo-canaux) peuvent être utilisés
pour reconstituer les conditions paléo-climatiques et paléo-environnementales et ainsi révéler 
comment l’altération continentale au sens large (production et transport de sédiments) a réagi à la 
variabilité climatique au cours du dernier cycle glaciaire-interglaciaire (derniers 100 ka).

Ces objectifs ont été examinés en étudiant les matériaux fluviaux des fleuves Gandak (Himalaya) et 
Murrumbidgee (NSW, Australie) et des dépôts de sédiments fluviaux de la Riverine Plain (bassin 
versant de Murrumbidgee, Australie). La connaissance des paramètres qui contrôlent le 
fractionnement isotopique du bore des sédiments fluviaux au cours de la formation et du transport a 
d'abord été acquise dans les systèmes modernes, puis appliquée à d'anciens dépôts de 
paléochenaux.

Résumé en anglais 

This thesis has the following objectives:

1. To better understand how boron isotopes in modern fluvial sediments record the weathering
regime at the catchment scale. 

2. To better understand how the weathering “signal” carried by river sediments is transferred from
source areas to the depositional environment. 

3. To determine if boron isotopes in sediment deposits (paleochannels) can be used to reconstruct
paleo-weathering and paleo-environmental conditions and reveal how continental weathering at large 
(production and sediment transport) responds to climatic variability over the last glacial-interglacial 
cycle (approximately the last 100 ka). 

These objectives were addressed by studying fluvial material from the Gandak (Himalayas) and 
Murrumbidgee (NSW, Australia) Rivers and fluvial sediment deposits from the Riverine Plain 
(Murrumbidgee catchment, Australia). Knowledge of the parameters that control boron isotope 
fractionation of river sediment during formation and transport was first gained in the modern systems 
and then applied to ancient paleochannel deposits.
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ABSTRACT 

Chemical weathering coupled with carbonate precipitation in the oceans is largely responsible 

for the sequestration of atmospheric CO2, which balances CO2 inputs into the atmosphere from

mantle degassing and thus participates in the global climate regulation at the geological time 

scale. Despite the importance of chemical weathering in maintaining habitable conditions on 

the Earth's surface, quantification of past and present chemical weathering remains difficult. 

The intensity of modern chemical weathering is generally determined from the geochemistry

of solutes and sediments transported by rivers. However, this approach suffers from the 

lithological control on the composition of the dissolved load and granulometric/mineralogical 

sorting during sediment transport. Alternatively, boron (B) isotopes have physicochemical 

properties suitable to study of water-rock interactions, including those involving a biological 

component. The processes responsible for B isotope fractionation are adsorption on clay and 

detrital particles, precipitation in secondary phases, and recycling through vegetation. While 

several studies have used B isotopes as a proxy to quantify chemical weathering reactions in 

the dissolved load of rivers, few have focused on river sediments. As a result, the parameters 

that control B isotope behavior during the production of secondary products and subsequent 

transport from source areas to the deposition environment are not fully understood. 

Additionally, the use of B isotopes as potential proxy for paleo-weathering and paleo-

environment reconstruction is relatively unknown. In the Gandak River (Himalayas) suspended 

and river bank sediments were collected along the course of the river in order to better 

understand the parameters that control B isotope fractionation in sediments transported by 

rivers. Grain size fractions were analyzed for B isotopes and major and trace element 

ly fractionated with respect 

to the primary minerals, represented by the sand fraction (63 µm - 2 mm), and evolve 

downstream, while all other size fractions have a constant composition. The downstream 

evolution of B isotope compositions and concentrations in the clay fraction reflect differences 

in the weathering regime; dissolution reactions are dominant in the headwaters, while secondary 

phase precipitation reactions dominate downstream. Similarly, bank sediments and the 

dissolved load of the Murrumbidgee River and its tributaries (NSW, Australia) were analyzed 

to assess the role of lithology, climate, and geomorphology on B isotope fractionation in 

weathering products and their transport from source areas to the depositional environment. 
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Boron isotopes in the clay fraction of bank sediments also show an increase in isotope ratios 

downstream in the watershed, a behavior attributed to changes in the weathering regime in

sediment production areas. The B isotope composition of clay fractions is disconnected from 

that of the dissolved load of the river, which reflects both an absence of isotopic exchange 

during transport and a disconnection between the fluid that produces the clay and the fluid that 

composes the dissolved phase of the river. A mass balance model reveals that the composition 

of the clay fraction represents a mixture of sediment sources throughout the watershed.

Therefore, no chemical or isotopic evolution of the sediments was observed during transport. 

Paleochannel sediments in the Murrumbidgee catchment were also analyzed for boron and 

neodymium (Nd) isotopes, major and trace element concentrations, and sediment mineralogy. 

After identification and removal of samples which were affected by post-depositional alteration, 

distinct B isotope variations between paleochannel systems can be made. This B isotope record 

in the paleochannels correlates with a sea surface temperature (SST) and vegetation cover 

records over the last 100 ka indicating that clay formation in source areas has responded to 

climatic variability, particularly temperature and vegetation cover. During warmer and wetter 

periods (Marine Isotope Stages 1, 3, and 5), the role of vegetation on pedogenesis is greater 

than during colder periods (Marine Isotope Stage 2). Finally, Nd isotopes in the clay fraction 

show that there has been no significant change in sediment provenance for the last 100 ka. 

These results highlight the potential for the use of B isotopes to quantify modern and past 

weathering regimes, including their use in sediment deposits as a proxy to reconstruct paleo-

weathering and paleo-environmental conditions. 
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INTRODUCTION
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1.1 Introduction to chemical weathering 

The study of chemical weathering has been a topic of scientific exploration and advancement 

dating back to the 1800s with various implications in a wide range of fields such as geology, 

biology, chemistry, and more recently, global climate. Chemical weathering of rocks forms part 

of the geologic cycle in which rocks are continuously formed, broken down, and recycled, thereby 

shaping the surface of the Earth. Chemical weathering occurs because silicate rocks and minerals 

are formed under very different conditions deep in the Earth than those that are present on the 

surface. Examples of these differences include changes in temperature, pressure, oxygen 

availability, and water content (Livingstone, 1972). The process is initiated when primary minerals 

formed at high temperature and pressure deep in the Earth’s interior are transported to the surface 

via uplift or erosion and exposed to circulating water on or near the surface. Surface processes 

that have the greatest influence on silicate weathering are associated with the chemistry and flow 

patterns of water and the term “weathering” implies strong dependency on processes associated 

with the hydrosphere, atmosphere, and biosphere. Exposure to increased water content, lower 

temperature and pressure, and increased atmospheric oxygen causes exposed rocks and minerals 

to become thermodynamically unstable in ambient conditions at the Earth’s surface (Garrels, 

1988). During this process, minerals in rocks are dissolved primarily by water and other solutes 

releasing various elemental constituents to the soil.  This in turn provides raw material needed for 

soil development and formation, nutrients for living organisms, and defines the chemical 

composition of soil solutions and rivers. The biogeochemical cycle of nearly every element is 

affected by chemical weathering. 

During chemical weathering protons are the primary weathering agent, commonly derived 

from the dissolution of carbon dioxide gas in water (1-1). Protons can also be derived through 

chemical reactions such as the oxidation of sulphide minerals and organic matter.  Acid hydrolysis 

occurs when a mineral react with protons in water which changes the chemical composition of the 

mineral. Examples of this reaction involving a silicate (anorthite) and a carbonate (calcite) are 

shown in Equations 1-2 and 1-3, respectively.

 ( ) + ( )  ( )   ( ) +  ( )                            (1-1) 



18

 ( ) +  2 ( ) + 3 ( )  ( ) + ( ) + 2  ( )  (1-2) 

 ( ) +  ( ) +  ( )  ( ) + 2 ( )                (1-3) 

In Equation 1-1, the combination of C02 and H2O produces carbonic acid, which dissociates 

into bicarbonate (HCO  ) and a hydrogen ion (H ), both active weathering agents. Notice the 

difference between the silicate (1-2) and carbonate (1-3) examples. Unlike the carbonate reaction, 

the weathering of silicates rarely results in the total dissolution of the initial mineral, leading to the 

production of secondary minerals, kaolinite (H Al Si O ), in the example used in Equation 1-2.

This reaction holds true regardless of the type of silicate mineral, as weathering results in the 

release of cations and bicarbonate into the environment, coupled to the consumption of 

atmospheric CO2 (White and Brantley, 1995). As shown in Equations 1-2 and 1-3, chemical 

weathering of silicate and carbonate minerals is associated with the conversion of atmospheric 

CO2 to HCO in an aqueous solution. By this mechanism, mineral weathering consumes CO2 and 

the rate of mineral dissolution reactions therefore determines the importance of mineral weathering 

as a sink for atmospheric CO2 (Jenny, 1941). The release of the bicarbonate ions from this reaction 

into solution will be transported across Earth’s surface by the rivers that eventually flow to the 

ocean. During this process, silicate weathering supplies cations (Ca and Mg ) to the oceans 

where they react with carbonate ions and precipitate Ca-Mg carbonate minerals. The weathering 

of silicate minerals followed by the deposition of carbonate minerals in the ocean to form 

carbonates and eventually sedimentary rocks is the main process by which carbon dioxide is 

transferred from the atmosphere back to solid earth (Figure 1-1) (Berner, 1992, 2003; Siever, 

1968). The deep burial and thermal decomposition of carbonates releases carbon dioxide back into 

the atmosphere. After burial, carbon is recycled in the crustal material through plate subduction, 

where rocks under extreme temperature and pressure melt and recombine into silicate mineral.

Finally, upon volcanic eruption, CO2 is released back into the atmosphere where it can once again 

bind with water molecules to form carbonic acid, react with silicate minerals when precipitated, 

and ultimately be consumed via silicate weathering (right side) or photosynthesis (left side), shown 

in Figure 1-1. In the case of photosynthesis uptake of CO2, carbon would be transferred to organic 

material; upon death and burial, it will be transformed into organic carbon in sediments and 

eventually hydrocarbons. Oxidation or burning of organic matter / hydrocarbons releases CO2 to 
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the atmosphere, while deep burial and plate subduction returns carbon to the mantle where it is 

recycled (Berner, 2003).

Silicate weathering is governed by the rate of dissolution reactions which should depend  

mineralogy of the rocks and their characteristics (i.e. supply, exposed surface area, reactivity, etc.), 

availability of water and its residence time in the soil, soil pH, presence of vegetation (i.e. 

increasing production of organic acids and humic matter), and Arrhenius’ rate law which describes 

the temperature-dependency of the weathering reaction (Kump et al., 2000; Lasaga et al., 1994; 

Jackson, 1975). The temperature-dependence of this reaction on Earth’s surface

Figure 1-1.  A model of the long-term carbon cycle. Source:  Berner (2003). 

has been proposed to provide the feedback mechanism that regulates climate over geologic 

timescales (Berner et al., 1983; Walker et al., 1981) and maintains relative climatic stability over 

Earth’s history. This hypothesis and other competing hypotheses regarding the chemical 

weathering – climate relationship will be further discussed in the next section (Section 1.2). 

If temperature plays a crucial role in silicate weathering and thus promoting stable climatic 

conditions on Earth, being able to distinguish the role of the temperature from other factors that 

influence mineral dissolution reactions is vital. However, isolating the effect of temperature from 

other variables influencing chemical weathering such as precipitation, geomorphology, vegetation, 

and lithology has proven to be a difficult task (West et al., 2005).
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There are two general approaches that are used to investigate the role of temperature on 

chemical weathering: laboratory experiments that focus on the mineral dissolution (rate-

dependencies) as a function of temperature; and natural field experiments on various scales 

(individual rock types, soil profiles, and small and large catchments) typically measuring solute 

discharges. Field experiments are often used in combination with laboratory experiments to

ground-truth laboratory results (Velbel, 1993a). Decades of laboratory experiments have focused 

on systematically defining the rate-dependency of silicate weathering reactions and mineral 

dissolution on these controlling factors, including temperature and solution chemical composition. 

The effects of temperature on the weathering rates of certain silicate minerals such as feldspars 

(Blum and Stillings, 1995), granites (White et al., 1999), quartz (Dove, 1995), and pyroxenes and 

amphiboles (Brantley and Chen, 1995) have been well established. These studies indicate that an 

increase in temperature from 0 – 25 C should increase weathering rates by approximately an order 

of magnitude (based on average experimental dissolution activation energies of 50 – 80 kJ/mol); 

an effect that is observable in natural environments. The activation energy is the energy that must 

be available for the chemical reaction to occur (Brady and Carroll, 1994). The effect of temperature 

on chemical weathering was also investigated both experimentally and in the field on fresh and 

weathered granitoid rocks, showing that increasing temperature correlates with an increase in Si 

dissolution, measured at four different sites (White et al., 1999) (Figure 1-2). Temperature trends 

for Si effluents are parallel for fresh and weathering paired granitoids, indicating that their 

sensitivity to temperature changes are similar regardless if they have experienced natural 

weathering. This implies that the nature of the weathering reactions are also similar. However, at 

any temperature, Si effluent concentrations from weathered rocks are lower than effluents taken 

from pristine rocks. White et al. (1999) also found similar relationships between the dissolution of 

Na and K in both fresh and weathered granitoids as a function of temperature (not shown).  

Additionally, a coupled temperature-precipitation model (White et al., 1999) produced apparent 

activation energies for Si which were comparable to those derived in the experimental field sites. 

This finding reinforces the fact that temperature significantly impacts natural silicate weathering 

rates. Several other studies have also shown the effects of temperature on the weathering and 

dissolution of various silicate minerals (e.g. anorthite, augite, kaolinite, smectite), demonstrating 

than in most cases an increase in temperature positively correlates with the rates of silicate mineral 

dissolution (e.g. Bauer and Berger, 1998; Brady and Carroll, 1994, among others). However, 



21

silicate dissolution rates between laboratories are often inconsistent (within two orders of 

magnitude) and therefore generally considered to be not well-constrained (Brantley and Chen, 

1995).

Figure 1-2. Arrhenius diagrams of the log Si effluent concentrations from both fresh and 

weathered granitoid rocks. The inverse of absolute temperature is displayed in the lower x-axis 

and the nonlinear scale to the temperature increase ( C) on the upper x-axis. Solid and dashed 

lines both correspond to linear fits of the effluent measurements of fresh and weathered 

granitoid rocks. Source: White et al. (1999). 

Long term, direct observations in natural systems is the alternative approach to derive mineral 

weathering rates. Although this approach is a more direct way to study the relationship between 

temperature and weathering, it proves to be difficult because chemical, biological, and physical 

conditions, i.e. mineral compositions, temperature, surface area, fluid residence times and 

pathways, are generally not well-constrained. In addition, the time scale on which natural 
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weathering occurs is rarely able to be duplicated in experimental studies, accounting for and 

possibly explaining contradictions in silicate weathering rates among studies (White and Hochella, 

1992). In general, as the scale in which we study weathering processes increases, our ability to 

detect and isolate a temperature signal decreases. This is mainly due to the complexity of 

interacting factors in larger systems and may explain why the comparison of solute concentrations 

and fluxes in the world’s largest rivers systems often fail to detect a temperature effect that is 

independent from other factors (Huh et al., 1998; Edmond et al., 1995). However, there have been 

a relatively small number of studies that have successfully isolated the effects of temperature from

other factors. For example, estimated elevation-dependent temperature differences on the 

weathering of plagioclase minerals was determined in the Coweeta watershed (North Carolina) 

with a calculated activation energy of 77 kJ mol-1 by Velbel (1993b) while Dorn and Brady (1995)

used plagioclase porosity in Hawaiian basaltic flows sampled at different temperatures/elevations 

to calculate an activation energy of 109 kJ mol-1. In contrast, the study of weathering as function 

of temperature on the smaller scale has proved to be more rewarding. A compilation of works 

illustrating the impact of mean annual air temperature on weathering rates from various small 

granitoid catchments worldwide has been compiled by White and Brantley (1995) which 

collectively point to increased temperature and precipitation as a means to explain rapid 

weathering rates in various geographical settings (White et al., 1999). These efforts have 

significantly assisted weathering and kinetic models, for example, by providing rate constants for 

the dissolution of primary minerals (Brantley and Olsen, 2013; Hilley et al., 2010; White and 

Brantley, 1995). The positive correlations between dissolution rates of various minerals and rocks 

as a function of temperature both in the field and laboratory have provided support for the linkage 

between climate and silicate weathering on Earth’s surface. 

Lithology is considered to be a major control on chemical denudation and weathering rates by 

controlling the composition of minerals involved in water-rock interactions and their susceptibility 

to weathering (Bluth and Kump, 1994; Meybeck, 1987; Peters, 1982; Garrels and Mackenzie, 

1971). For example, mafic silicates in basalts such as olivine and pyroxene tend to be more reactive 

and weather much faster than felsic minerals in granites like quartz and feldspar. Meybeck (1987)

reported a relative index of chemical weathering rates for common continental rocks ranging from 

1–80: granites and gneisses being the lowest (1 - least likely to weather); limestones (12 – low to 
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intermediate) and saltrocks (80 - easier to weathering). This is because different minerals are 

composed of different elemental compounds which have different degrees of solubility in water. 

Generally, field studies that have sought to estimate the supply of major ions coming from specific 

lithologies often have had difficulties because the mobility of elements is dependent upon the 

parent rock composition (mineral composition, grain size, joints/fractures) and not geochemical 

processes alone (Sayyed, 2014). This problem became apparent in early studies that investigated 

the controls of stream chemistry at the watershed scale, i.e. (Peters, 1982; Garrels and Mackenzie, 

1971), who found that the rates of dissolution and dissolved load chemistry are directly related to 

catchment lithology and the permeability of soils and bedrock material. The study of dissolved 

load chemistry at the basin scale, such as the Amazon, was undertaken by Stallard and Edmond 

(1983). The objective of this study was to determine the relationship between the major dissolved 

species in Amazonian rivers and factors such geology, topography, and the role of catchment soils. 

Results from this study also revealed that substrate catchment lithology and associated erosional 

regime were the major controls on the chemistry of surface waters within a catchment. For 

example, rivers that drained siliceous lithologies were relatively high in silica content and low in 

total dissolved cations; rivers draining carbonates were found to be high in alkalinity and 

intermediate levels of total cations. These results are consistent with mineral susceptibility trends 

for minerals in tropical environments such as the Amazon. More recent studies focusing on 

determining the global weathering rates and budgets by analyzing the dissolved load and 

suspended loads in large river systems (i.e. Bluth and Kump, 1994b; Gaillardet et al., 1999a) also 

report the dominant control lithology has on stream chemistry. Gaillardet et al. (1999a) reports that 

the chemical weathering (and possibly climate) signals carried by the rivers was also found to be 

dependent on and obscured by effects from parent lithology. The observation of the dependency 

of silicate weathering rates and intensities on parent lithology is not unique to studies focusing on 

large catchments nor to studies only using major and trace element as proxies for chemical 

weathering. For example, the chemical and isotopic compositions of dissolved load and solid 

phases carried by the river in small catchments may also be affected. A recent study of detrital 

material in stream sediments points to the strong control lithology has on the lithium (Li) isotopic 

composition of the clay fraction and therefore correct for it by subtracting the composition of 

bedrock from that of the sediment clay fraction before making any chemical weathering 

interpretations (Dellinger et al., 2017). Due to the inherent problem lithology often causes when 
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trying to get estimates of silicate weathering rates and access to the weathering regime in the field, 

many find it preferable to perform laboratory experiments on specific minerals (e.g. illites or 

smectites) (Williams et al. 2001a), or rock types such as basalts or granites  (e.g. White and 

Brantley, 1995) and field experiments in small watersheds where monolithological units can be 

identified and studied (e.g. Dessert et al., 2003; Meybeck, 1987; Nesbit and Wilson, 1992).

The contributions of cations provided to streams and rivers by silicate weathering is to a large 

extent influenced by watershed hydrology and surface runoff and ultimately control the total 

dissolved yield in rivers (Garrels and Mackenzie, 1971).  Additionally, the rates at which silicate 

weathering occur are thought to be a function of hydrology (Lasaga et al., 1994; Berner, 1978).

Generally, the dissolution of minerals in water-saturated rocks, soils, and sediments are expected 

to rise with increasing flushing/flow rates up to a certain threshold where increased flow rates have 

no effect on dissolution (Berner, 1978); beyond the threshold, weathering reactions are no longer 

transport-controlled and become surface reaction-controlled. Therefore, one could expect 

weathering to be transport-limited at low flushing rates and surface-reaction controlled, also 

referred to as interface-limited, at high flushing rates. Holland (1978) reported TDS data from 

rivers worldwide as a function of runoff (Figure 1-3) which show that increasing flushing rates 

above a critical value do not increase the dissolve solid concentration in rivers throughout the 

world, but rather dilute them; a theory that is in agreement with Berner (1978). According to 

Schnoor (1990), lower flushing rates of field systems can account for the lower Si release rates 

observed in natural systems. Although this is the first order relationship between total dissolved 

solids (TDS) concentrations and runoff, other hydrological factors may also take part in this 

relationship to a lesser degree such as the activation of alternative flow ways and increasing 

drainage area during large storm events (Burns et al., 2001).

1.2 Chemical weathering and climate 

Our current understanding of Earth’s climate system from Quaternary geology, including 

sedimentary, isotopic, and glaciological records, is that the climate system appears to be extremely 

sensitive to perturbations, particularly near critical thresholds between glacial and interglacial 

conditions (e.g. Rasmussen et al., 2014; Clement and Peterson, 2008; Ganopolski and Rahmstorf, 

2001) . However, on longer time scales (millions to billions of years), we find a climate system 
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that is relatively stable and resilient to external forcing (Kasting, 1993). This would indicate that 

the processes affecting climate on shorter, millennial time scales may be components of positive 

feedbacks (where an initial change in the climate system leads to a secondary change which in turn 

enhances or magnifies the initial change) and those affecting climate on longer geologic time scales 

most often create negative feedbacks (where an initial change in the climate system leads to a 

secondary change  which acts to reverse that initial

Figure 1-3. Total dissolved solids vs. runoff for rivers worldwide. The solid curve shows the 

general trend between TDS and annual runoff; solid line shows the dilution trend. The red dot 

shows the average values for the rivers worldwide. This figure demonstrates that past a critical 

threshold, increased runoff dilutes rather than increases TDS. Source: Holland (1978). 

change) (Kump et al., 2000). Through positive feedbacks, subtle changes within the climate system 

can be detected and amplified (e.g. Curry et al., 1995), while the long-term response of the climate 

system acts within stable bounds through negative feedbacks (Walker et al., 1981). In the 

following, the current state of knowledge regarding potential drivers of chemical weathering and 

its relation to climate variability over both millennial and geologic timescales will be discussed.
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1.2.1 Chemical weathering over geological timescales 

Using the stratigraphic record, we can roughly estimate climatic conditions on Earth’s 

surface for the last 2.4 billion years, with more coherent estimates over the last 700 million years 

(Hambrey and Harland, 1981). Over the last 570 million years, four major glaciation events are 

recognized: Late Precambrian (1st); Ordovician-Silurian boundary (2nd); Permo-Carboniferous 

(3rd); and, the present Cenozoic Era (4th) (Harland, 1981). The first, third, and fourth events are 

spaced roughly 300 million years apart and occur during times of continually low sea level (Vail 

et al., 1977). In contrast, the time period between the 1st and 3rd glaciations (Early- and Mid-

Paleozoic), including the 2nd glaciation, corresponds to a general period of high sea levels and is 

similar climatically to the Mesozoic. Prior to Phanerozoic glaciations, there are several 

approximately known intervals of glaciation in the Proterozoic, with the oldest being in the Early 

Proterozoic (2.5 – 2.1 Ga ago) and several intervals in the Middle to Late Proterozoic (1.0 – 0.57 

Ga) (Christie-Blick, 1982).

Significant climatic oscillations between greenhouse and icehouse states indicate that the 

mechanism(s) responsible for climatic regulation on Earth’s surface is (are) not perfect. However, 

they are able to correct for large climatic variations, thus promoting climatic stability over 

geological timescales and have not allowed the Earth to become locked into an inescapable 

Snowball Earth state (Caldeira and Kasting, 1992). Although some of the original energy-balance 

climate models such as those by Budyko (1969) and Sellers (1969) have predicted that a slight (2-

5%) decrease in solar output could lead to a runaway glaciation, we now know that solar fluxes 

were 25-30% lower than present (Gough, 1981; Sagan and Mullen, 1972) and did not lead to 

irreversible freezing on Earth’s surface. Hence, the stability of Earth’s climate therefore requires 

a negative feedback between chemical weathering and climate and a mechanism allowing the 

extent of regulation or strength of the feedback to vary (Ruddiman, 1997).

Principle components of climate, i.e. temperature and precipitation, have been proposed to 

be responsible for controlling the rates of surficial silicate weathering and balancing the rates of 

atmospheric CO2 production, thereby producing stable climatic conditions on Earth (Broecker and 

Sanyal, 1998; Berner and Berner, 1997; Walker et al., 1981). Walker et al. (1981) suggested that 

the partial pressure of carbon dioxide in the atmosphere is buffered by a negative feedback 
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mechanism where the rate of weathering of silicate minerals, and subsequent deposition of 

carbonate minerals, is controlled by surface temperature, and surface temperature, in turn, depends 

on the carbon dioxide partial pressure via the greenhouse effect. If this hypothesis is correct, a 

link must exist between climate and tectonics in which a balance must be reached between 

planetary degassing of CO2 and the supply of CaO derived from the chemical weathering of 

silicates. In theory, if the supply of CaO to the oceans were too small to match the input of CO2 to 

the ocean-atmosphere system, then the CO2 content of the atmosphere would rise, thereby 

increasing the rate of chemical weathering until the system was balanced. On the contrary, if the 

rate of CaO supplied to the oceans were larger than the amount of CO2 inputted to the ocean-

atmosphere system, then the atmosphere’s CO2 content would be drawn down causing the planet 

to cool and thereby reducing the rate of chemical weathering. Although the quantitative estimates 

of this mechanism were crude, they were considered reasonable in partially explaining the 

stabilization of Earth’s surface temperature against the continuous increase in solar luminosity. 

Several subsequent studies (e.g. Broecker and Sanyal, 1998; Berner and Caldeira, 1997; Berner 

and Kothavala, 1994; Lasaga et al., 1985; Berner et al., 1983) have agreed with the hypothesis 

proposed by Walker et al. (1981).

For example, Berner et al. (1983) reconstructed the CO2 content of the atmosphere over 

the last 100 Myr using a series of assumptions based on carbon cycling and geologic processes. 

Model outputs indicate that the CO2 content of the atmosphere is highly sensitive to changes in 

rates of seafloor spreading and continental land area. Accordingly, this study reports that plate 

tectonics may have a major control on world climate. By calculating the changes in the carbonate 

chemistry of the modern surface ocean as function of varying amounts of CaO and calcite, 

Broecker and Sanyal (1998) conclude that the most likely mechanism to “police” or stabilize 

Earth’s climate is the CO2 content of the atmosphere because it controls silicate weathering rates. 

Berner and Caldeira (1997) found through a series of carbon mass balance equations that in the 

absence of a negative feedback mechanism, atmospheric CO2 levels would highly fluctuate. 

Important conclusions were drawn from this study that support the now-accepted “Walker 

hypothesis”:

– Carbon inputs and outputs to and from the oceans, atmosphere, and biosphere are 

closely balanced over geological time scales 

– A negative feedback related to atmospheric CO2 levels is required to maintain this 
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balance 

– Silicate weathering response to climatic variability is sufficient to provide this negative 

feedback 

– The rate of CO2 supply to the surficial system along with imbalances in the organic 

carbon cycle control long-term global weathering rates 

However, the CO2 policing mechanism proposed by Walker et al. (1981) and agreed on by 

others (e.g. Berner and Kothavala, 1994; Lasaga et al., 2013) did not go unchallenged by the 

scientific community. Raymo et al. (1988) and Raymo and Ruddiman (1992) were the first to 

challenge this concept which lead to a significant amount of controversy regarding the role of 

chemical weathering in regulating the atmospheric partial pressure of CO2, thus the extent and 

strength of the greenhouse effect and global climate (Kump et al., 2000). Arguments in the 

literature generally center around the sensitivity of chemical weathering to various climatic factors, 

particularly temperature and to a lesser extent precipitation. Those that do not accept the climate-

continental silicate weathering-atmospheric CO2 relationship proposed by Walker et al. (1981) not 

only question the effect of surface temperature on chemical weathering, but also point to other 

drivers of long-term control on atmospheric CO2 such as tectonic uplift, denudation, and erosion 

(Raymo et al., 1988), a combination of both tectonic uplift and climate (West et al., 2005), and 

global climate change (Molnar and England, 1990). Most notably, the hypothesis first proposed 

by Raymo et al. (1988) is likely the strongest opponent of the “Walker hypothesis” and is the center 

of controversy in the literature because it fundamentally challenges the idea that the Earth’s 

“thermostat” is controlled by balancing the rates of CO2 production via silicate weathering and 

carbonate deposition which is ultimately a function of climate. The challenging “Raymo 

hypothesis” proposes that episodes of orogenic activity, i.e. tectonic uplift and erosion, may have 

caused increases in chemical weathering rates which resulted in a decrease of atmospheric CO2

concentration over the last 40 million years (Myr). This argument stems from the suggestion that 

the rapid uplift of the Himalayan-Tibetan plateau region and the Andes in the late Cenozoic had a 

significant impact on atmospheric circulation (Ruddiman et al., 1988). Using ocean box models of 

the geochemical cycles of strontium (Sr), calcium (Ca), and carbon (C) in marine sediments, 

Raymo et al. (1988) showed that the their record of carbonate sedimentation, calcite compensation 

depth, Sr, and C indicate increasing fluxes of weathering products to the sea over the past 5 
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Myr. It is proposed that this increase in chemical weathering rates over that time period caused a 

drawdown of atmospheric CO2 and therefore may have caused global cooling. By pairing their 

marine record data with evidence of substantial mountain building throughout the world, enhanced 

uplift rates, and an apparent increase in global erosion,  Raymo et al. (1988) conclude that chemical 

weathering rates and dissolved fluxes to the sea would increase stating the following reasons: 

– rapid mechanical breakdown of rocks in areas experiencing rapid uplift would 

enhance exposure of primary minerals to chemical weathering, while abrasion of 

mountain stream would remove the iron-oxide coating that inhibits and slows 

weathering reactions (Stallard and Edmond, 1983) 

– dissolved load of rivers are highest in areas that drain easily-eroded sedimentary 

rocks, a characteristic that is found in highly tectonic areas (Stallard and Edmond, 

1983) 

– Chemical and physical weathering rates increase with runoff which is often highest in 

mountainous regions because of the orographic effects of mountain ranges on 

precipitation patterns  

The hypothesis that rapid uplift of the Himalayas and Tibet has the potential to change 

Earth’s atmosphere and climate over the Cenozoic period, proposed by Raymo et al. (1988), 

Raymo and Ruddiman (1992), and Ruddiman (1997), has found support of subsequent studies 

such as Hilley et al. (2010); and Hilley and Porder (2008). In an effort to shed light on how 

tectonics, climate, and rock-type influence silicate weathering and drive global rates, Hilley and 

Porder (2008) developed a model that considers whether local erosion rates, GCM-derived dust 

fluxes, temperature, and water balance can adequately capture global variation in silicate 

weathering. The model predicts that 50% of the atmospheric CO2 drawdown via silicate 

weathering occurs in active mountain belts worldwide (20% within the Indo-Asian mountains) 

which lend support to the hypothesis that the continual uplift of the Himalayas over the late 

Cenozoic played a major role in regulating climate proposed by Raymo and Ruddiman (1992).

Hilley et al. (2010) then attempts to clarify the relative role that mineral supply and reaction 

may play on a select group of various mineral phases by modeling denudation and reaction 

kinetics. Laboratory and field measurement values of silicate weathering kinetic constants, 

observed weathering zone thicknesses, and denudation rates inferred from topography, were used 
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in the model. The study concludes that fresh mineral supply plays a dominant role in moderation 

silicate weathering fluxes for the minerals considered which suggests that the concentration of 

atmospheric CO2, which is regulated by silicate weathering over geological timescales, may 

depend on those factors that control long-term erosion rates.

Another competing hypothesis to Walker et al. (1981) and Raymo et al. (1988) which 

essentially stems from the “Raymo hypothesis” is that proposed by Molnar and England (1990).

In this case, the recent uplift of most mountain ranges documented by increased denudation and 

sedimentation rates, along with paleo-botanical evidence suggesting a shift to colder climatic 

conditions, are proposed to be the result of late Cenozoic climate change

In essence, they support the finding that erosion is controlled by climate (Wilson, 1973; Fournier, 

1960), i.e. sediment yield is directly related to precipitation, and propose that increasing 

precipitation rapidly enhances erosion which causes isostatic rebound and uplift of the landscape. 

However, they argue that the mean elevation of the Himalayas perhaps did not rapidly accelerate 

over the Cenozoic, when accounting for both erosion and isostatic compensation of the landscape 

but that climate change, weathering, erosion, and isostatic rebound might interact in a system of 

positive feedback causing further global cooling. A more recent study (Willenbring and von 

Blanckenburg, 2010) has provided evidence of long-term stability of global weathering and 

erosion rates over the Cenozoic which partly contradicts the hypothesis proposed by Molnar and 

England (1990). Using the ocean dissolved 10Be/9Be record as a proxy for chemical weathering, 

stable weathering fluxes are observed over the past 12 Myr. Results from this study question 

whether the apparent fourfold increase in global sedimentation rates (driven by increased 

precipitation) proposed by studies such as Hay et al.(1988) has actually occurred. These results 

agree with other studies (e.g. Derry and France-Lanord, 1996) which suggest that an increase in 

burial of young organic matter (which would accompany increased sedimentation) is not apparent. 

Accordingly, the conclusions from this work are that neither global erosion nor weathering have 

increased as a results of climate change over the timescale of analyses (4 Mya) in spite of pulses 

of mountain building.

1.2.2 Chemical weathering over glacial-interglacial timescales 
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Over the last 420 ka, we observe four distinct glacial-interglacial sequences (Petit et al., 

1999) (Figure 1-4); interglacial periods are characterized by a thicker greenhouse atmosphere 

(higher atmospheric CO2 and CH4 content), higher atmospheric temperatures, greater June 

insolation (at 65 N), and more positive O values in the atmosphere; during glacial periods we 

observe the opposite. The pattern of climate variability observed in the ice core can be described 

as ‘sawtooth’ during warm inter-glacial periods (stages 11.3, 9.3, 7.5 and 5.5), followed by 

increasingly colder interstadial events which end with a rapid return towards the following 

interglacial period (Petit et al., 1999). The coldest part of each glacial cycle occurs immediately 

before glacial termination and return to interglacial conditions, except in the third glacial cycle 

(225,000 to 325,000 yr BP), which according to Petit et al. (1999) may reflect a greater influence 

from the June 65 N insolation minimum prior to the transition. The ice core record presented by 

Petit et al. (1999), and others from Antarctica (Augustin et al., 2004) and Greenland (Andersen et 

al., 2004), have shown that the climate of the Earth over short timescales is sensitive to 

perturbations while oscillating within a stable bound between glacial and interglacial conditions. 

Over 60 years have passed since the discovery of glacial-interglacial cycles via O

measurements in carbonates (Emiliani, 1955) and nearly 20 years since they have been thoroughly 

investigated using ice cores. Nevertheless, our current understanding of how silicate weathering 

has or will respond to climatic variability remains limited. This is primarily because until very 

recent times, the role of chemical weathering was thought to be slowly reactive to climate change 

and therefore only considered in studies investigating geologic climate variability (e.g. 

Livingstone, 1972). However, recent modeling efforts (Beaulieu et al., 2012) have shown that the 

weathering regime can respond very quickly (<100 yr) to changes in climate and may regulate 

atmospheric CO2 levels over short time periods. Although the role of climate on chemical 

weathering is still debated, several studies (Bastian et al., 2017; Dosseto et al., 2015; Gislason et 

al., 2009) have challenged the notion that chemical weathering responds slowly to climate change 

and have shown that climate (temperature and precipitation) does play a role in determining 

chemical weathering regimes over glacial-
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Figure 1-4. Ice core data from Vostok (Antarctica); time series (lower axis) and insolation, with 

corresponding depth in the ice core on the top axis. A) CO2; B) isotopic temperature of the 

atmosphere (see text); C) CH4; D)  ; and E) mid-June insolation at 65 N (in Wm-2) (Berger, 

1978). CO2, isotopic temperature of the atmosphere, CH4, and   data all taken from Petit 

et al. (1999). Source: Petit et al. (1999). 

interglacial timescales. For example, Gislason et al. (2009) reported a rapid increase (up to 30% 

over four decades) in the chemical weathering flux in Iceland attributed to high latitude climate 

change. Here, ice melt is attributed to increasing temperatures which increased the liquid water 

available for chemical weathering. Others report that climate can affect chemical weathering rates 

by increasing soil respiration and cause perturbations in net primary production (i.e. Zhao and 

Running, 2010), which in turn can change soil acidity and impact chemical weathering rates. A 

strong link between physical erosion, runoff, and chemical weathering was observed by Dosseto 

et al. (2015) in the clay composition of Himalayan terrace sediments. In this work, temperature 

was shown to play a secondary role to both runoff and physical erosion, which acted to retard 

chemical weathering by accelerating sediment transport in the system, hence controlling the 

feedback between chemical weathering and atmospheric carbon dioxide. 
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Foster and Vance (2006) investigated the relationship between climatic variability and 

chemical weathering rates over a long timescale (550 ka) by coupling lead (Pb) isotope 

compositions of ferromanganese crusts which precipitated directly from seawater in the North 

Atlantic to a quantitative model of the changes in the Pb isotope composition of the North Atlantic 

Deep Water (NADW) in response to continental chemical weathering rates. Agreeing with 

previous studies, they find negligible variation in chemical weathering rates during glacial-

interglacial cycles. Foster and Vance (2006) report that during glacial periods, a two to three times 

lower chemical weathering regime is observed on continental landmasses compared to interglacial 

times, however this decrease is nearly balanced by chemical weathering of the exposed continental 

shelves, resulting in nearly constant chemical weathering regimes in warm and cold periods alike.

Later, Vance et al. (2009) contend that an increase in chemical weathering is inevitable 

during deglaciation periods such as that which followed the last glacial maximum (LGM) 18 ka 

ago. They hypothesized that weathering rates would rise rapidly as pristine parent minerals would 

be exposed after the retreat of the ice-sheet and then rates would slowly decay over the duration 

of the subsequent interglacial. Applied to Sr isotopes and the ocean budget, this weathering 

scenario would suggest that there are indeed cyclic patterns in chemical weathering related to 

glacial-interglacial cycles. However, Vance et al. (2009) conclude that these variations are not 

observed in the oceans over the past 400 kyr (Henderson et al., 1994) because Sr (and various other 

elements) have oceanic residences times that are longer than Quaternary glacial-interglacial cycles. 

Here, they stress the importance of temporal variability in riverine fluxes to the oceans as they 

likely play a critical role in reconciling the long-standing chemical and mass imbalance problems 

in the oceans.

1.3 Budget and rates of chemical weathering  

Rock weathering and sediment transport by rivers to the ocean is one of the most important 

processes controlling landscape evolution, biogeochemical cycles, and ultimately Earth’s climate 

over geological and possibly millennial timescales. Proposed by the works of e.g. Berner et al.

(1983) and Walker et al. (1981), silicate weathering regulates ocean alkalinity and thus is a major 

long-term sink of atmospheric CO2 and hence acts to regulate the greenhouse effect. Accordingly, 

as chemical weathering rates increase with temperature, this should create a negative feedback 
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which buffers Earth’s climate from increasing solar luminosity. However, chemical weathering 

rates are also dependent on physical erosion and vice versa. Simply, chemical weathering rates 

depend on the availability of fresh mineral surfaces which tend to increase with physical erosion 

rates via the physical breakdown of rock (West et al., 2005; Riebe et al., 2003). From this 

relationship, increased physical erosion will then drive chemical rates, followed by an increase in 

atmospheric CO2 consumption, leading to global cooling (Raymo et al., 1988). As the hypotheses 

of both Raymo et al. (1988) and Walker et al. (1981) illustrate, there is a need to better 

understanding the factors, i.e. temperature, runoff, relief, controlling both silicate weathering and 

denudation in order to access the extent of their influence on past, present, and future climates. 

There are different scales in which to study the controls on continental denudation in nature 

and derive chemical weathering rates, budgets and fluxes: soil profile scale; small catchment scale; 

and the global scale. Although the experimental approach in the laboratory is another possibility, 

most attempts to mimic natural conditions have failed and therefore the results are less conclusive 

and applicable to natural systems (Lasaga et al., 1994). The study of in-situ chemical weathering 

reactions via soil profiles, e.g. Nesbit and Wilson (1992), are the classic way to derive chemical 

weathering rates in nature by comparing mass loss of mobile vs. immobile elements in soil 

compared to parent material. Data from this approach is more straightforward to interpret as 

weathering product form in situ, however physical erosion and continual soil development often 

complicate the quantification of weathering rates. Additionally, soil profiles have been used to 

determine factors influencing climate. For example, Fedo et al. (1995) determined paleo-

weathering regimes using the major element geochemistry and minerology of bulk siliclastic soils, 

while Curtis (1990) showed that climate influences clay mineralogy and the geochemistry of soils, 

palaeosols and clastic sedimentary rocks.  Smaller scale studies on monolithological watersheds, 

e.g. Louvat and Allègre (1997); White and Blum (1995); Bluth and Kump (1994); Velbel (1993b),

have also been able to discern the interconnection between climate and chemical weathering. Data 

from these studies tends to be of better quality than larger-scale studies because hydrology and 

solute budgets are better defined. Possibly the most successful of these approaches, capable of 

deriving global laws on the controls of continental denudation as well as global budget and 

chemical weathering fluxes is the global approach via the study of the dissolved load of the world’s 

largest rivers (e.g. Gaillardet et al., 1999; Meybeck, 1987; Moon et al., 2014). Although lithology 

is dominant control on the river water composition, several studies have been made to reasonably 
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correct for lithological effects with success (Berner et al., 1983; Gaillardet et al., 1999; Holland, 

1978). Additionally, there have been successes at quantifying the weathering regime by analyzing 

the suspended load (Bouchez et al., 2012; Dellinger et al., 2014; Gaillardet et al., 1999) and more 

recently weathering products of riverine material such as clay fractions (Dellinger et al., 2017; 

Dosseto et al., 2015; Cividini et al., 2010) using a variety of chemical weathering proxies from 

traditional chemical mass balance approaches based on elemental loss to non-traditional stable 

isotopes.  

Commonly used approaches in gaining insight to both physical denudation and chemical 

weathering processes which shape the landscape, control biogeochemical cycles, and control the 

evolution of climate will be discussed below. 

1.3.1 Chemical mass budget approach 

1.3.1.1 Soil profile and sediment deposits 

Chemical weathering rates over long-term time scales have traditionally been measured on 

the soil scale using soil mass balance techniques to quantify the total mass of an element that is 

removed when a known volume of pristine parent material is converted to soil (Brimhall Jr. and 

Dietrich, 1987; April et al., 1986). However, mass loss can be attributed solely to chemical 

weathering only if physical erosion has been negligible over the time the soil has been forming. If 

the age of the soil is known, it can be used to average the mass loss over the soil formation time 

(Taylor and Blum, 1995). This scenario is unlikely because in nature non-eroding soils are rare; 

hence most quantifications of chemical weathering using this method will involve some 

comparison of physical erosion or denudation to chemical weathering. Examples of where physical 

erosion in soil profiles may be negligible would include flat-topped moraines (Taylor and Blum, 

1995) and fluvial terraces (Bain et al., 1993). In these rare cases, measurements of immobile 

element enrichment provide estimates of mass loss that can be attributed directly to chemical 

weathering rates. However in mountainous settings, most soils are actively being eroded and the 

age of the soil is difficult to determine, mainly because of the continual renewal of fresh material 

that replaces weathered material removed by physical erosion (Riebe et al., 2003). Alternatively, 

soil residence times can be paired to mass loss to infer chemical weathering rates (White et al., 
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1999). The use of cosmogenic isotopes, i.e. beryllium isotopes (10Be), to measure long-term 

chemical weathering rates of eroding catchments and soils will be discussed in the next section 

(section 1.3.2). 

To determine chemical weathering rates in eroding soils using immobile element 

enrichments, a conservation of mass assumption must apply where the mass of weathered material 

in storage on the landscape is approximately constant over time. This assumption implies that the 

rate of transformation from bedrock to weathering products is equal to total denudation rate, which 

is defined as the sum rates of chemical weathering and physical erosion (Riebe et al., 2003; 

Brimhall Jr. and Dietrich, 1987):

R = D = E + W                                                               (1-4) 

where R is the conversion rate of bedrock to weathered material; D is the total denudation flux; E 

is the physical erosion flux of weathered material; and, W is the chemical weathering flux. All 

fluxes in Equation 1-4 are expressed as mass per area per time. Accordingly, rock and soil densities 

are not necessary in this expression. However, if using data from the literature that reports 

denudation rates in units of length per time, knowledge of the material density is necessary to yield 

a denudation flux which can then be used in Equation 1-4. The conservation of mass equation

above can be written for individual elements in the rock and soil as such:

D  [X]rock = E  [X]soil + Wx                                                                   (1-5) 

where [X]rock and [X]soil are the concentrations of the element of interest in the rock and soil, 

respectively, and Wx is the chemical weathering rate of that element. In the case of an immobile 

element, (e.g. Zr, Al, Ti), the Wx term is zero and can be ignored and one obtains: 

D  [Zr]rock = E  [Zr]soil                                                                                  (1-6) 

where zirconium (Zr) is used as an example of an immobile element. Then rearranging Equations 

1-4 and 1-5 one obtains:

= 1
[ ]

[ ]
                                                     (1-7) 

Here, the chemical weathering rate is expressed as a fraction of the total denudation rate that is 

accounted for by chemical weathering, also referred to the chemical depletion factor  (CDF) (Riebe 
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et al., 2003). The bulk chemical weathering rate in the soil in Equation 1-6 can then be partitioned 

into weathering rates of specific elements by rearranging Equations 1-5 and 1-6 which yields:

=  [ ]  [ ]  
[ ]

[ ]
                                      (1-8) 

By normalizing W to the total rate of denudation of element X, one is able to obtain the negative 

mass transfer coefficient for any element considered to be mobile during weathering reactions, 

which directly corresponds to those calculated by Brimhall Jr. and Dietrich (1987):

[ ]
= 1  

[ ]

[ ]
  

[ ]

[ ]
=                                 (1-9) 

Equation 1-9 is similar to the expression in Equation 1-7, however it expresses chemical 

weathering rates as a fraction of the total denudation for individual elements, rather than the bulk 

soil as a whole. 

This mass balance approach can also be used to determine weathering rates of individual 

soil units within a weathering profile and regolith as a whole. For example, in the case of regolith 

composed of saprolite which is overlain by soil, as in the case of the Rio Icacos watershed in Puerto 

Rico (Riebe et al., 2003): if we respect the law of mass conservation, that is to state that the 

conversion of rock to saprolite is balanced by chemical weathering in the saprolite and physical 

conversion of saprolite to soil, then the mass of the saprolite remains constant through time. This 

can be expressed as in two ways: saprolite as a whole (Equation 1-10) and for individual elements 

of interest within it (Equation 1-11):

= 1
[ ]

[ ]
                                              (1-10) 

 

, =  [ ]  [ ]  
[ ]

[ ]
                             (1-11) 

where W and W , are the chemical weathering rates for the whole saprolite and for 

an individual element X within the saprolite, respectively; [X] and [Zr] are element 

X in the saprolite and the concentration of an immobile element in the saprolite (Zr in this 

example). The partitions of chemical weathering rates from an entire profile to the scale of 
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individual contributions from soil and saprolite weathering, allows quantification of the 

weathering regime within regolith profile.

Apart from mass transfer coefficients, there are several other commonly used chemical 

weathering indices or indices of alteration for characterizing chemical weathering in soil profiles 

and watersheds.  Weathering indices essentially measure the degree of mobile element depletion

relative to immobile elements during chemical weathering. Each index typically incorporates the 

bulk major element oxide chemistry into a single value, allowing comparisons between samples 

(typically as a function of depth within a profile). Changes in the bulk chemistry with depth within 

the profile are then attributed to the weathering regime of the parent material. Often these changes 

are gradual, steady, and continuous for homogenous rocks like granite (Sutton and Maynard, 1992)

which reflect the continuous leaching of elements on homogenous host material. However, 

weathering profiles developed on heterogeneous, i.e.  metamorphic, parent rocks often does not 

yield systematic trends of elemental change throughout the profile and highly complicates the 

interpretation of chemical weathering in the vertical profile (Price and Velbel, 2003). In this case, 

changes in major element concentrations between the parent rock and the soil or sediment could 

simply be attributed to variations in parent rock chemistry and minerology, and not the degree of 

weathering.

Examples of these indices of chemical weathering include the Weathering Index of Parker 

(WIP) (Parker, 1970), Chemical Index of Alteration (CIA) (Nesbitt and Young, 1982), Chemical 

Index of Weathering (CIW) (Harnois, 1988), and the Plagioclase Index of Alteration (PIA) (Fedo 

et al., 1995). The WIP is based on the proportions of alkali and alkaline earth metals present, as 

these are considered to be the most mobile of the major elements. Here, the bond strengths of 

major elements to oxygen are used as weighing factors, which measures the degree intensity of 

rock weathering with respect to the parent material and also its susceptibility to weathering. Since 

this index only includes highly mobile elements, it yields values that are significantly different 

than the parent rock. Hence, this proxy is most appropriate to use on profiles developed on 

heterogeneous bedrock.

Nesbitt and Young (1982) were the first to propose the CIA in an attempt to reconstruct 

paleoclimate from Early Proterozoic sediments north of Lake Huron (Canada). Since then, it has 

been widely used as a proxy of chemical weathering intensity in weathering profiles (e.g. Braun 
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et al., 2009), and in drainage basins (e.g. Li and Yang, 2010; Vital and Stattegger, 2000). The CIA 

is defined as:

=  
(   )

 ×  100                                       (1-12) 

where all terms are molar contents, with CaO* being the CaO content in the silicate fraction of the 

sample. The CIA values are typically interpreted as the extent to which feldspar has converted to 

clays (Fedo et al., 1995; Nesbitt and Young, 1982). McLennan (1993) first 

calculated CIA values in the suspended load of rivers worldwide and found there to be a negative 

correlation between weathering history and sediment yield. More recently, Li and Yang (2010) re-

calculated the CIA values of 44 rivers worldwide and suggested globally that the CIA is sensitive 

to land surface temperature, latitude of the river mouths and soil depth in the watershed, reflecting 

the integrated weathering history. 

The CIW proposed by Harnois (1988) which is generally applied to modern soils and 

paleosols is very similar to the CIA, however K2O is not part of the expression; it is defined as:

=  
(  )

 ×  100                                                               (1-13) 

Here, all elements are in molar proportions and Al2O3 is used as the immobile element while CaO 

and Na2O are the mobile elements that are readily leached during weathering reactions. The CIW 

does not include K2O because most paleosols are enriched in potassium, which may be a diagenetic 

effect (Retallack, 1986). In solution, K+ can be incorporated into K-minerals, preferentially 

absorbed on clays particles via ion exchange compared to Na+ and Ca2+ which have lower 

exchange capacities than K+ (Kronberg et al., 1987), or previously leached out and removed by 

soil solutions (Harnois, 1988). As other indices (e.g. CIA; WIP) use K2O as a mobile component, 

this would limit their ability to interpret chemical weathering in paleosols and soils. Harnois (1988)

argues that in order for a chemical weathering index to truly and accurately quantify the amount 

of chemical weathering in a sample (relative to the parent material) it should: 1) only include 

elements that have consistent geochemical behavior during weathering, 2) be independent of the 

state of oxidation of the weathered material, 3) only involve elements that are commonly reported 

in the literature, and 4) be simple and straightforward to use. Hence, in this view, this proxy is seen 

as a better estimate of the degree of weathering of a material relative to its source rock.
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In the case where the plagioclase weathering alone needs to be monitored, the Plagioclase 

Index of Alteration (PIA) can be used: 

=  
( )

(  )
 ×  100                                           (1-14) 

This equation is simply a modification of the CIA and CIW formulas. As stated earlier, there can 

be problems including K20 in the weathering calculation (in the case of the CIA), as K is often 

enriched in certain materials, and leaving it out of the equation (in the case of the CIW) neglects 

the contribution of aluminum associated with K-feldspar. A comparison of the CIA, CIW, and PIA 

methods in a weathering profile of bedrock and saprolite is shown in Figure 1-5.

1.3.1.2 Dissolved and suspended loads  

In addition to obtaining long-term weathering rates and intensities in weathering profiles 

using chemical mass balance techniques, modern silicate weathering rates can be studied in a 

similar manner by analyzing the major and trace elemental composition of riverine material and 

the dissolved load. River geochemistry can provide an enormous amount of data on various scales 

by integrating factors such as climatic, lithologic, and weathering. To model the global carbon 

cycle and better understand how atmospheric CO2 has varied in the past, we first need to 

understand and be able to quantify the current global silicate weathering rate (Berner and 

Kothavala, 1994; Walker et al., 1981). In this effort, studies generally focus on large rivers with 

large drainage areas and floodplains such as rivers in the Amazon, Congo, Canadian Shield, and 

Himalayas (Dessert et al., 2003; Edmond et al., 1995; Gaillardet et al., 1995;1999; Lupker et al., 

2012; Millot et al., 2002; Moon et al., 2014; Stallard and Edmond, 1983; Vital and Stattegger, 

2000) and on the factors that control silicate weathering rates (West et al., 2005; Millot et al., 2002; 

White and Blum, 1995).

Chemical weathering rates at the catchment scale are typically quantified by measuring 

chemical fluxes in the dissolved load. These fluxes are calculated as the product of discharge and 

the concentrations of major elements. The concentrations of the ‘grab’ or ‘spot’ samples, (that is 

samples which are taken at a selected location, depth, and time) are then multiplied by mean annual 

precipitation and runoff values or temporally-averaged discharge values from gauging stations 

(Huh et al., 1998; Edmond et al., 1995). However, to accurately quantify silicate weathering rates, 
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high-temporal resolution sampling is needed of river chemistry and discharge in order to capture 

the overall variation of chemical fluxes and discharge regimes

Figure 1-5. Chemical Index of Weathering (CIW), Chemical Index of Alteration (CIA), and 

Plagioclase Index of Alteration (PIA) taken from a weathering profile consisting of bedrock and 

saprolite. Source: Price and Velbel (2003).

(e.g. Moon et al., 2014). Additionally, chemical elements in the river may derive from various 

sources such as silicate and carbonate weathering, atmospheric inputs, evaporite dissolution, and 

anthropogenic sources. The identification and partitioning of sources is necessary to isolate the 

contribution of silicate weathering from the total dissolved load flux of the river (Meybeck, 1987; 

Garrels and Mackenzie, 1971).

There are two standard approaches to differentiate silicate vs. non-silicate chemical 

sources: forward and inverse models. Although both models use the composition of silicates to 

calculate the relative contribution of silicate weathering in the chemical fluxes, each take a 

different approach in determining the composition of silicates and calculating the contribution 

from each source. The forward method calculates the contribution of each source sequentially, by 

subtracting a pre-determined composition for each element from their measured concentration. 

The silicate fraction is then determined based on the corrected Na concentration and pre-
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determined Ca/Na and Mg/Na ratio values for weathering of silicate rocks, which are taken from 

the underlying bedrock or from small catchments that drain exclusively silicate rocks (Moon et al., 

2014).

Using this approach, Edmond et al. (1995) measured major element concentrations and 

found a clear chemical expression in the dissolved load derived from the primary weathering of 

bedrock in the Guayana Shield. by combining the dissolved load data in this study with the 

discharge and suspended load data from Meade et al. (1990), estimates of the chemical and 

mechanical weathering yield were made. Total denudation rates found to be extremely low (~10 

m per Mya), with equal contributions from the dissolved and suspended loads. The relationship 

between elevation and weathering is not pronounced, with little difference in weathering rates 

between highland and lowlands. Here, continual recycling of sediment and little production of 

“new” sediment by actively eroding margins leads to a relatively small consumption of 

atmospheric CO2.

Galy and France-Lanord (1999) took this approach and characterized the weathering 

reactions in different regions within the Ganges–Brahmaputra (G–B) Basin, spanning from Tibet 

to the Gangetic plain. Major element concentrations were measured in the dissolved load of stream 

waters within the Narayani basin in Nepalese Himalaya and in the G–B in Bangladesh with the 

goal of refining the budget of silicate weathering in the Himalayas. Carbonate dissolution was 

found to represent 80-90% of the total cationic charge in all of areas of their study basin, making 

it the lithological control on the chemical signature of rivers flowing north to south. Taken together 

with the fact that most Himalayan silicate rocks have alkaline compositions, this implies that the 

overall long-term CO2 uptake related to modern Himalayan erosion seems to be minor on the 

global scale, similar to the findings of Edmond et al. (1995).

The other method to differentiate silicate from non-silicate sources is via the inverse model 

which calculates the contributions from chemical sources based on mass balance equations of Na-

normalized elemental ratios of major elements (Garrels and Mackenzie, 1967). The mass balance 

equations can be written as:

 
=  ,                                                   (1-15) 
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where the subscript indicates a chemical source endmember, i.e. silicate, carbonate, precipitation, 

evaporite; X denotes the element of interest, i.e. Mg, Ca, Cl. The ratio is the Na-normalized 

elemental ratios of the various source end-members; and , represents the mixing proportions 

of the end-members. Here, the sum  of , values = 1. All data points will share the same (X/Na)i

value, however each will have a different a , value. Starting from a range of a priori ranges 

of (X/Na)i, , the model determines the best a posteriori value of both (X/Na)i and , (Moon et 

al., 2014). This model differs from the forward model in that it does not assign input ratio values 

from known sources but rather finds the best fit values for the chemical sources from observed 

datasets within an a priori range of values. This approach is favorable when the chemical 

compositions from monolithological silicate catchments is not known or trace inputs of calcite are 

suspected.

In the Congo, Négrel et al. (1993) used this approach to determine erosional sources by 

measuring Cl, Na, Mg, Ca, and Sr concentrations in the dissolved load in combination with Sr 

isotope compositions as a source tracer (Dasch, 1969). Here, dissolved Na inputs are dominated 

by silicate weathering, while both dissolved Ca and Mg inputs come from carbonate sources which 

even though are poorly exposed, significantly influence river geochemistry. Additionally, 

rainwater inputs to all river systems in the study have an impact on Ca, Mg, and Sr concentrations 

in the dissolved load. 

This approach was also used by Gaillardet et al. (1999) in calculating global silicate 

weathering rates and CO2 from sixty of the world’s largest river systems. Here, weathering rates 

were calculated using Na-normalized ratios and source data from large rivers worldwide. 

Regarding sources of dissolved solutes, Gaillardet et al., (1999) finds that: 1) contribution of 

silicate weathering to the dissolved load of rivers never exceeds 40%; 2) all rivers are influenced 

to some extent by carbonate dissolution; and 3) for most large rivers, rain inputs are negligible. A 

good correlation is observed between 1) cationic silicate weathering fluxes and the total silicate 

weathering fluxes (Figure 1-6a) and 2) the flux of CO2 removed from the atmosphere via 

weathering of aluminosilicates (Figure 1-6b). The cationic weathering rates (either total: Na+ K+ 

Ca+ Mg; or derived from Ca-Mg silicates: Ca + Mg) are given because for some rivers, dissolved 

silica represents the major component of the TDS coming from silicate weathering. Rivers that are 

rich in silica (Amazon, Zaire, Orinoco, Niger, Zambese) somewhat deviate from these global 
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trends. These important findings then suggest that the time frame in which silicate weathering can 

influence atmospheric CO2 may be much shorter than originally proposed by Berner et al. (1983).

In the Mackenzie River basin (Canada), Millot et al. (2003) used the inverse approach, 

similar to both Négrel et al. (1993) and Gaillardet et al. (1999), on Sr isotopes and chemical ratios 

of the suspended and dissolved loads of the Mackenzie River and its tributaries to distinguish

between the weathering of silicate and carbonate fractions. The overall aim of this study was to 

determine the erosion rates of rocks under cold climatic conditions. Results from both (chemical

ratio and Sr isotopes) inversions show that the chemistry of Mackenzie Basin rivers is derived 

primarily from the weathering of sedimentary rocks. The Sr isotope compositions of the dissolved 

load reveal that the presence of unradiogenic carbonate rocks can explain the gradual decrease of 

the Sr isotope ratio from the headwaters out to the ocean, confirming the extreme sensitivity of Sr 

isotopes to lithology types. A surprising but important finding of this study was that chemical 

denudation rate of silicate minerals was much higher (3 or 4 times) in the lowlands (Interior 

Platform) than compared to those in the Rocky and Mackenzie Mountains. This result contradicts 

the “Raymo hypothesis” (Raymo and Ruddiman, 1992) that states that mountains are the place 

where erosion and chemical weathering is accelerated (see earlier discussion in Section 1.2.1). 

Reasons for higher chemical denudation and weathering in low-lying areas was attributed to poorly 

lithified sediments and the contributions of local factors such as organic material which can 

enhance weathering yields even at low temperatures. 
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Figure 1-6. Relationships between the fluxes of material coming from chemical weathering of 

silicates and a) the fluxes of cations from the weathering of silicate material and b) the flux of 

CO2 removed from the atmosphere from weathering attributed to aluminosilicate weathering. 

Source: Gaillardet et al. (1999) 

1.3.1.3 River sediments 

As shown in the studies above, modern denudation and weathering rates are often derived 

from river solute and suspended load fluxes in some of the world’s largest river systems, providing 

reasonable estimates of CO2 consumption via the weathering of silicates. 

However, studies that focus on solid phases such as the suspended load, bedload, and detrital

material, e.g. Bouchez et al. (2012); Gaillardet et al. (1999b); Gislason et al. (2006), have received 
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much less attention possibly because of the difficulties in integrating temporal and spatial 

variability of detrital sediments.  An example of a novel study that used the sediment record in the 

Ganga fluvial system to understand and quantify the link between chemical weathering and the 

chemical composition of river sediment is Lupker et al. (2012). They argue that although this 

Himalayan system has gained much attention in the literature (e.g. Galy and France-Lanord, 1999; 

France-Lanord and Derry, 1997; Raymo et al., 1988) regarding the role mountain uplift plays in 

promoting physical erosion, chemical weathering, and ultimately atmospheric CO2 consumption, 

the budget and ‘locus’ (meaning location or place) of weathering within the entire Himalayan basin 

has not been established. Although, Galy and France-Lanord (1999) and West et al. (2005) both 

point to the floodplain as a key component in the weathering budget. From Galy and France-

Lanord, (2001), major elements (K, Fe, Na, Si, Al), carbonate content, and sediment hydration 

were measured in the suspended and bedload sediments to characterize the weathering regime. To 

remove mineralogical sorting effects from the chemical weathering signal (and possible 

downstream evolution), element concentrations are normalized to silicon (Si) content to exclude 

dilution effects (Galy and France-Lanord, 2001) and plotted as function of their Al/Si molar ratio 

(see example in Figure 1-8 from Bouchez et al., 2012). The Al/Si ratio is used as proxy of mineral 

sorting (linked to grain size), as coarse-grained material will be enriched in quartz having a low 

Al/Si ratio and finer-grained material enriched in phyllosilicates/clay minerals that tend to have 

higher Al/Si ratios. To determine the role the floodplain in chemical weathering of sediments, the 

weathering regime is characterized and quantified from source to sink. For a select grain size 

fraction, the loss or gain of the mobile element, X, relative to Si ( / ) can be calculated from 

the difference in X/Si composition between upstream and downstream river sediment samples:

( / ) =                                          (1-16) 

The average loss of mobile elements ( X/Si) for a given river reach can also be determined if the 

average Al/Si ratio of the transported sediment is known:

/ = /  /                                         (1-17) 
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To determine where in the system mobile elements are being lost, Lupker et al. (2012) divide the 

Himalayas into three sub-regions (Himalayan Range; Floodplain North, and Floodplain South) in 

order to partition the loss of mobile elements occurring throughout the range. The 

average mobile element loss (relative to Si) in each sub-region was then determined by subtracting 

the average element loss from the sub-region directly upstream. Results from their dataset and 

analyses show that by using the relationship between silicon-normalized mobile element 

concentration and Al/Si ratios it is possible to determine the average chemical composition of a 

targeted river reach and hence trace its evolution downstream. Spatial analysis, combined with 

temporal discharge data allow the loss of chemical elements in the sediment to be budgeted. Lupker 

et al. (2012) show that 1) sediment undergo significant major element loss accompanied by a gain 

in hydration during floodplain transfer;

Figure 1-7. Evolution of the normalized mobile elements composition (relative to Si) of Himalayan 

sediments. Green shading represents the weathering in the Himalayan range; red shading 

represents weathering in the floodplain. Source: Lupker et al. (2012). 

2) weathering on the floodplain is significant; and 3) carbonate dissolution accounts for most of 

the weathering which ultimately makes the floodplain a relatively limited carbon sink. In 

agreement with other studies (e.g. Millot et al., 2003), these results then suggests that weathering 

not only occurs in uplifted, erosion-prone areas, but also in the lowlands.

Following a similar approach as Lupker et al. (2012), Bouchez et al. (2012) analyzed major 

chemical elements (Na, K, Mg, Ca) of the suspended load in river depth profiles taken at various 

locations in the Amazon River basin. Here, weathering intensities were calculated based on the 
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loss of major elements derived from weathering reactions during transport, in three different 

tributary reaches (two in the headwaters and one on the floodplain). Water discharge data in this 

study was provided by Moquet et al. (2011). To determine the loss or gain of soluble elements in 

the sediment composition between two points in the river, a steady-state mass balance is written 

in regard to each sediment grain size, by using the Al/Si ratio, which states that the sum of the 

particulate flux of a mobile element at the mouth of the river is equal to sum of the particulate flux 

coming from tributary inputs minus the flux from sediment deposition from the channel to the 

floodplain, plus the flux of floodplain sediment incorporation to the channel. They consider no 

imbalance between deposition and incorporation of sediment into the channel, but that a gain or 

loss of mobile elements may occur in sediments that are stored in the floodplain. Sediments are 

then analyzed based on their Al/Si and X/Al ratios. As explained earlier, the Al/Si ratio is proxy 

for grain size, where coarse material have lower Al/Si values due to increased content of Si and 

fine material are Al-rich; intermediate sediments represent a mixture of each end-member. The 

X/Al ratio is considered a weathering proxy because major elements like Na, K, Mg, and Ca are 

soluble during weathering reactions; Al is considered a major insoluble element, not preferentially 

carried by any accessory minerals (Bouchez et al., 2011; Dupré et al., 1996), and can be used to 

correct for the dilution of quartz. Using both X/Al and Al/Si proxies then allows a weathering 

characterization which is corrected for grain-size sorting. Conceptually, this is shown in Figure 

1-8. The brown star represents the fine grained end-member of sediment carried by the river,

typical of a sample at that channel surface, and the yellow star is the coarse grained end-member, 

typical of a sample at the bottom of channel. All samples taken at intermediate depths are a mixture 

of each end-member that depend on sorting/mixing processes. In this example, weathering induces 

a change in the X/Al ratio during transport between upstream and downstream locations; for

example mineral dissolution would cause a decrease in the X/Al ratio. Here, Si loss due to 

weathering processes was found to be negligible and therefore can be ignored. On the contrary, 

incorporation of soluble elements into the clay fraction will lead to an upward shirt in the diagram 

if the source(s) are external to the catchment (not shown). Results from this study show that the 

chemistry of sediment does not dramatically change downstream and therefore changes in 

chemical composition associated with chemical weathering in floodplains are small. However, due 

to the overall smaller fluxes carried by the dissolved load, changes of chemical weathering on the 

floodplain should be more strongly expressed in the dissolved load. 
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Figure 1-8. Conceptual diagram of an Al-normalized soluble element concentration (X/Al) used 

as a weathering index, as function of Al/Si, used as a grain size proxy. The brown star represents 

the fine grained end-member (channel surface) of sediment carried by the river and the yellow 

star is the coarse grained end-member (bottom of channel). All samples taken at intermediate 

depths are a mixture of each end-member that depend on sorting/mixing processes. In this 

example, weathering indices a changes in the X/Al ratio during transport between upstream and 

downstream locations; an example being that mineral dissolution would cause a decrease in the 

X/Al ratio. Here, Si loss due to weathering processes can be ignored. Source: Bouchez et al. 

(2012). 

As demonstrated above, the use of mobile and immobile elements as weathering proxies 

can be a very tool in quantifying the weathering regime in a variety of environments including soil 

profiles and rivers. For example, in soil profiles, mass balance approaches to determine element 

loss using mass transfer coefficients and chemical weathering proxies such as the CIW, CIA, and 

PIA are very useful in deriving  chemical weathering rates (e.g. Price and Velbel, 2003; 

Brimhall Jr. and Dietrich, 1987). In rivers, major and trace element analyses of the dissolved and 

suspended loads can provide an enormous amount of information as rivers integrates factors such 

as lithology, climate, and weathering. When study the world’s largest rivers (e.g. Moon et al., 

2014; Gaillardet et al., 1999b), modern global silicate weathering rates can be estimated, which 
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can then be used to model the global carbon cycle and associated CO2 consumption rates. Although 

harder to interpret than the dissolved load, the use of river sediments and transported detrital 

material have proven very useful in estimating weathering fluxes and the ‘lotus’ or place of 

chemical weathering in the watershed (Bouchez et al., 2012; Lupker et al., 2012). However, the 

use of elemental concentrations in deriving weathering fluxes, whether in soil profiles, dissolved 

load of rivers, or river sediments, suffers from the dominant control lithology plays on sediment 

and dissolved load compositions. Additionally, sediment sorting in rivers also adds to the difficulty 

in quantifying weathering reactions at the catchment scale.

1.3.2 Radiogenic and cosmogenic isotope approach 

The use of radiogenic (e.g. U-series) and cosmogenic (e.g. 10Be, 26Al) isotopes to study 

erosion and weathering are an alternative and often complimentary approach to the use of major 

and trace elements. They are an integral part in the effort of refining the geologic timescale, 

calibrating events in Earth’s history, and provide quantitative information about rates of landscape 

evolution. 

1.3.2.1 Soil Profiles 

Analytical advancements in the precise measurement of U-series nuclides (238U– 234U–
230Th) in geological material have recently (40 – 50 years)  led to the study of U-series nuclides in 

weathering profiles and soils and the ability to quantify regolith production along weathering 

profiles (e.g. Ackerer et al., 2016; Chabaux, 2003; Dosseto et al., 2008; Ma et al., 2010). The use 

of U-series nuclides is primarily based on the (234U/238U) and (230Th/234U) activity ratios which 

provide estimates of regolith and soil production rates and timescales of chemical weathering. The 

ability to use the U-series radioactive disequilibria as both a tracer and chronometer of weathering 

processes stems from the dual property of the nuclides series in which: a) fractionation occurs 

during water-rock interaction and b) nuclides have radioactive periods of the same order of 

magnitude as the time constants of most weathering processes and subsequent transfers to ground 

and river waters (Chabaux, 2003). During chemical weathering, 234U is preferentially lost from 

minerals compared to 238U, resulting from recoil and preferential leaching (Carroll, 1970). The 
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loss of 234U continues through time since the weathering reaction began, referred to as the 

‘weathering age’ (Dosseto et al., 2014), which results in a lower 234U/238U ratio. This ratio is 

expressed as 234U, where 234U = ( 234 N234 / ( 238 N238 – 1) x 1000; units are in parts per 

thousand (‰). Here, represents the decay constant (yr-1); N the number of atoms for each isotope; 

and the subscripts 234 and 238 represent the 234U and 238U isotopes, respectively. In soil profiles, 

234U values are expected to decrease with depth as the weathering age increase (Rothacker et al., 

2018).

An example of the application of U-series isotopes to quantify regolith formation rates on 

shale lithology was performed by Ma et al. (2010) in three weathering profiles on a hillslope at the 

Susquehanna/Shale Hills Observatory in central Pennsylvania. All profiles displayed significant 
234U – 238U disequilibria whose activity ratios are consistent with U-series isotope fractionation 

during chemical weathering and relative element mobility which decrease in the following order: 
234U> 238U> 230Th. Depth profiles can be explained by a) loss of U-series isotopes during water-

rock interactions and b) re-deposition of these U-series isotopes downslope. Here, regolith 

production rates calculated using U-series isotopes systematically decrease from 45 m/Myr to 17 

m/Myr with increasing regolith thickness from the ridge to the valley floor. The apparent 

equivalent regolith residence times increase from 7 to 40 kyr with increasing distance from the 

ridge to the valley floor. Considering peri-glacial climatic conditions and an average erosion rate 

~15 m/Myr, it was concluded that the hillslope retains the regolith formed before the peri-glacial 

conditions and geomorphologically is not at steady state. This research demonstrates the use of U-

series isotopes in constraining chemical weathering timescales and regolith production rates.

The application of cosmogenic 10Be and 26Al measurements in depth profiles have enabled 

the estimation of exposure ages, mean denudation rates, and soil production rates (Braucher et al., 

2003; Heimsath et al., 2000; Brown et al., 1995; McKean et al., 1993). In-situ 10Be and 26Al 

isotopes have also been used to determine regolith denudation rates (Ferrier and Kirchner, 2008; 

Small et al., 1999) and to constrain the age of depositional landscape features such as alluvial 

terraces and fans (Schaller et al., 2002; Anderson et al., 1996). In the case of cosmogenic isotopes 

such as 10Be and 26Al, cosmic rays induce in-situ nuclear reactions which produce rare nuclides 

within mineral grains in soils and rocks which accumulate at or immediately below Earth’s surface. 

To quantify erosion or exposure time, it is essential to know how their production varies with depth 

with the profile. Since the production rates of most cosmogenic nuclides decrease exponentially 
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with depth, their concentrations in substrates are directly linked to the time of surface or near-

surface exposure (Brown et al., 1991; Lal, 1991). These properties make it a powerful tool to trace 

and date transported sediment. However, to be able to use in situ nuclides for the study of erosional 

histories of sediments, one must first have knowledge of production rates under different 

irradiation conditions such as latitude, altitude, irradiation geometry, and shielding (Lal, 1991).

Recently, Ackerer et al. (2016) used U-series isotopes and in-situ 10Be together to 

independently constrain production and denudation rates of regolith in a weathering profile in the 

Strengbach catchment (France). The mean production rate of regolith using U-series isotopes was 

estimated using a system of equations that describe the radioactive decay and loss and gain 

constants over time between a reference weathering state and the sample’s current state (for review 

see Dosseto et al., 2008). The depth variations of in-situ 10Be concentrations within the weathering 

profile were determined using the method described by Braucher et al. (2003). The denudation 

rates determined by cosmogenic nuclides were then used in combination with geochemical mass 

balance approach of the chemical depletion factor (CDF) described by Riebe et al. (2003) allowing 

them to distinguish the chemical and physical components of the total denudation as well as 

estimating the long-term weathering fluxes along the regolith profile. Results from this combined 

proxy approach suggest that the long-term evolution of the regolith in the Strengbach catchment 

is relatively close to steady- state and that physical erosion is the dominant process of regolith loss 

in the catchment.

1.3.2.2 Sediments transported by rivers 

Uranium-series and 10Be isotopes have also been used in river material to trace and 

determine quantitative time constraints on the transfer of erosion products from source to sink (i.e. 

Brown et al., 1988; Dosseto et al., 2014, 2010; Handley et al., 2013), providing a better 

understanding of sediment transport processes and ultimately the long-term evolution of Earth’s 

surface. For example, Schaller et al. (2002) measured cosmogenic 10Be in river-borne quartz sands 

in fluvial terraces in France (Allier and Dore catchments) and the Netherlands (Meuse River) to 

derived paleo-erosion rates. After correction for post-depositional effects on the 10Be 

concentrations of quartz grains, palao-erosion rates in the terraces along the Allier River varied 

between 40 and 70 mm/kyr where the highest value occurred during the Pleistocene-Holocene 
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transition, while those from the Dore terraces varied between 48 and 53 mm/kyr and remained 

relatively constant over time (within error between ~15 kyr and 5 kyr). Differences between 

catchments were attributed to possible differences in glaciation history and relief. Their method 

was independently verified by comparing their 10Be-derived paleo-erosion rates with a study that 

estimated paleo-erosion rates in nearby lake deposits within the same (Allier) catchment (Macaire 

et al., 1997) and erosion rates between the two studies are in good agreement. In the Meuse 

terraces, paleo-erosion rates decreased steadily from 81 mm/kyr in the late Pleistocene to 31 

mm/kyr in the Holocene, with enhanced erosion rates during the last glacial maximum (LGM) 

when peri-glacial processes prevailed in the catchment. The estimates of paleo-erosion using 

modern river sediments agree well with the Holocene estimation taken from the river terraces.

Recently Dosseto et al. (2014) applied U-series isotopes to riverine material in two spatial 

distinct small granitic catchments: Nunnock River catchment (SE Australia) and Puerto Rico in 

order to determine the controls the U-series isotope composition of river material and to understand 

how erosion products acquire their geochemical compositions. Here, thorium (Th) isotopes record 

the origin of sediments and the dissolved load; stream solutes mainly derive from the deepest part 

of the weathering profile; and stream sediment originate from shallower horizons. These 

observations suggest solute and sediments have distinct origins in environments where thick 

weathering profiles have developed. The weathering ages of sediments were modeled using the 

method in Dosseto et al. (2008) and reveal much older weathering ages in Australian stream 

sediments  (between 346 kyr and 1.8 Myr) compared to Puerto Rican (between 5 and 19 kyr) 

reflecting the type of erosion in each catchment. The old ages likely reflect shallow erosion of 

sediment mobilized by near-surface soil transport, while the younger weathering ages in Puerto 

Rico likely reflect sediments derived from less weathered, deeper profiles mobilized by landslides. 

In this study, U-series-derived weathering ages were also used to calculate catchment-wide 

weathering rates, demonstrating the usefulness of U-series isotopes in not only constraining 

weathering ages of eroded sediment but also in estimating weathering rates in small catchments. 

Although there are others, these studies illustrate the ability of both of radiogenic and 

cosmogenic isotopes to resolve issues regarding the rates of regolith and sediment production, 

style and rates of erosion, timescales of sedimentary processes, and depositional characteristic of 

sediment on the landscape from source to sink. Ultimately, the use of radiogenic (and cosmogenic) 
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isotopes enables a better understanding of the relationships between tectonics, climate, and 

landscape evolution, and enhance the use of geochronology (DePaolo et al., 2006).

1.3.3 Non-traditional stable isotope approach 

The chemical composition of the components in the weathering zone (i.e. unweathered 

substrate, bulk saprolite, soil and sediments, organic matter, soil and river water, etc.) is controlled 

by the partitioning of elements during various weathering reactions (Bouchez et al., 2013).

However, the use of elemental concentrations and ratios to quantify and trace physico-chemical 

processes in the weathering zone suffer from a variety of problems such as the dominant control 

lithological plays on the weathering regime and mineral sorting effects.  As such, estimates of 

chemical weathering using major and trace element ratios may be crude. Alternatively, the mass-

dependent fractionation of “non-traditional” stable isotopes of metals and metalloids (e.g. Li, B,

Ca, Mg, Sr) imprints a strong signal on material in the weathering zone which can be used to track 

elemental fluxes. The composition of this signal depends on specific physico-chemical processes 

that induce a characteristic shift in the isotope ratios of the elements involved. In spite of the years 

of progress in the field, pinpointing the exact processes that result in isotopic shifts remains 

difficult. Hence, much is still to be learned in this relatively new field. A conceptual and 

mathematical framework which to interpret these isotope ratios was provided by Bouchez et al.

(2013) who takes a steady-state elemental and isotopic mass balance approach to model the various 

components in the weathering zone, designed to be applicable to any element affected by stable 

isotope fractionation. This model 1) links novel stable ratios with weathering processes through 

the use of element fluxes, 2) presents a diverse spatial-scale approach (from the soil profile to large 

rivers to entire continents), and 3) enables the calibration of isotope fractionation factors based on 

field measurements. The conceptual diagram of this model and summary of symbols are shown in 

Figure 1-9. Five compartments are represented in the weathering zone, regardless of 

geomorphological setting. The saprolite and soil are lumped into one term regolith, which is then 

divided into three compartments based on their mineralogical and structural composition, and their 

process: a) unweathered primary minerals, b) secondary solid weathering products which include 

elements adsorbed onto mineral surfaces, precipitates, clays, oxi-hydroxides, and c) solid organic 

material comprised of litter fall or dead roots. Water passing through the regolith is termed ‘soil 

water’ which includes dissolved inorganic and organic species. Plants take up their nutrients from 
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this compartment and secondary weathering products are precipitated. In this case, the weathering 

zones is treated as a ‘batch reactor’ indicating that all compartments interact with one another in 

their entirety (Bouchez et al., 2013). The use and premise of this model assumes a steady state, 

implying that within each box or component, over some time scale, incoming mass fluxes balance 

outgoing fluxes for each and every isotope or element considered.

Figure 1-9. Schematic diagram of the weathering zone model. Source: Bouchez et al. (2013). 

Table 1-1. Summary of symbols corresponding to Figure 1-9. Source: Bouchez et al. (2013).
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1.4 Boron and boron isotopes 

1.4.1 General overview of boron isotopes 

Boron (B), a moderately volatile metalloid, is a relatively light (atomic number 5) and low-

abundance element in the Earth’s crust because of its poor stability during nucleosynthesis 

reactions in stars. Crystalline boron is a very hard, black material with a melting point about 

2000°C, however it also exists in three other polymorphs.  Boron is highly incompatible during 

magmatic processes which results in the continental crust being highly enriched (~10 ppm) 

compared to the mantle (~0.1 ppm) (Gao et al., 2004). Boron is present at Earth’s surface in its 

more common naturally occurring compounds such as borate minerals. Boron forms covalent, 

rather that ionic, bonds owing to its high ionization potential. Boron has two stable isotopes, 10B

and 11B, which make up approximately 19.82% and 80.18% of total boron, respectively.  Boron 

isotope ratios are given in the delta notation 11B (‰) and defined as the deviation from the 

standard NIST-SRM 951 (Catanzaro, 1970):

11B (‰) = [(11B/10B) sample / (11B/10B) NIST-SRM 951 –1] x 1000                         (1-18)
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The large relative mass difference (10%) between 10B and 11B leads to significant boron isotopic 

fractionation during geologic processes, particularly low temperature water-rock interactions 

(Lemarchand et al., 2002a, 2012; Schmitt et al., 2012; Muttik et al., 2011; Spivack et al., 1987; 

Schwarcz et al., 1969). Unlike most other stable isotope systems, but similar to lithium (Li), the 

heavy and odd mass isotope 11B is the dominant species, such that the average 11B/10B in nature is 

approximately 4.05. This particular feature is due to a combination of nuclear instability in stars 

during nucleosynthesis and a high neutron cross section producing stable 11B after capture of a 

neutron by the 10B isotope. Boron is a very soluble element in aqueous environments and has a 

high geochemical reactivity. In solution, B is present as two dissolved species, boric acid and 

borate ion, the proportion of which is dependent on the pH of the solution (Hershey et al., 1986)

(see discussion below); this leads to large isotope fractionation between these two species and 

produces quite diverse 11B values in different environments. In nature, strong isotope 

fractionations produce 11B values between –70‰ (Leeman et al., 2004) and +75‰ (Hogan and 

Blum, 2003). Figure 1-10 displays the 11B variation in different natural reservoirs. Due to the 

long residence time of boron in seawater (about 10 Ma) (Chaussidon and Albarède, 1992) modern 

seawater taken from offshore has a nearly constant 11B value of +39.7 0.3‰ (n = 17, 2SE) 

(Palmer et al., 1998). The continental crust and most plutonic rocks have 11B values ranging from 

approximately 0‰ to –20‰ with an estimated mean value of –7‰ (Chaussidon and Albarède, 

1992); in non-marine evaporitic and tourmaline minerals in the continental crust up to +60‰ in 

brines from salt lakes (Palmer and Swihart, 1996). The B isotope composition in rainwaters can 

vary significantly from –10‰ to +45‰ with an average 11B value of about +20‰. Hence, the 

large isotopic fractionation observed in nature makes boron suitable to investigate various Earth 

surface processes such as water-rock interactions, including those involving a biological 

component (as B is highly fractionated by vegetation) (Cividini et al., 2010) and well as in the 

deep crust and mantle (Leeman et al., 2004).

In silicates, boron substitutes for Si or Al which makes it part of the group of structure-

forming elements. Silicate minerals display large variations in B concentrations with orders of 

magnitude between them in increasing order: quartz (only traces), feldspars and plagioclases (~10 

ppm); phyllosilicates (~100 ppm); and secondary clay minerals displaying a very large range in B 

content (as high as 10 wt% in tourmaline). The concentration of B in clay minerals is highly 

dependent on the context in which they formed; examples include: boron content, salinity, and 
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water temperature of the solution from which they formed; grain size of minerals formed (fine 

clays are more enriched than coarser clays); and type of minerals formed (e.g. illite or mica contain 

more B than other mineral types) (Harder, 1970). Incorporation of B into illite, for example, occurs 

in two steps (Harder, 1970): 1) adsorption of boron-anion on the clay surface, occurring very 

quickly. This reaction is reversible, suggesting that the ionic bonds to the surface layer of illite are 

weak because the adsorbed B is able to be desorbed very easily. The second step of boron uptake 

involves the incorporation in the tetrahedral sites of the mica structure. This process occurs very 

slowly and the attachment bonds are very strong. Boron distribution between the crystalline 

structure and interlayer sites is highly variability and depends on the rate of mineral transformation 

(from illite to smectite) and the progression of the reaction between the mineral and contact fluid

(Voinot et al., 2013; Williams, 2001). In carbonates, boron content and isotopic composition is 

pH-dependent and has been utilized as a proxy to reconstruct seawater paleo-pH from various 

marine records by several studies, (e.g. Kakihana et al. (1977); Klochko et al. (2006); Lemarchand 

et al. (2000); Palmer et al., (1998).

Figure 1-10.  Boron isotopic compositions in nature. Source: Xiao et al., (2013).
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1.4.2 Isotope fractionation processes  

1.4.2.1 Adsorption of dissolved B on mineral surfaces 

In aqueous solutions, dissolved boron is present as boric acid B(OH)3, the borate ion 

B(OH)4
– , polyborates and borates (i.e. NaB(OH)4

+, MgB(OH)4
+ and CaB(OH)4

+); in seawater the 

dominant species are trigonal and tetrahedral forms (Hershey et al., 1986). At low concentrations, 

the relative proportion of the two species is mainly a function of pH, unlike high concentrations 

where speciation is also influenced by the formation of polyborates (Palmer et al., 1987). In 

solution with low pH, boron is predominately present as B(OH)3 and as B(OH)4
– at high pH. The 

ionization of boric acid is expressed as:

( ) + =  ( ) +                                             (1-19) 

Hershey et al. (1986) and Vengosh et al. (1991) have studied the ionization of boric acid 

experimentally in a variety of Na-Cl-Ca-Mg solutions at 25 C; results shows that when applied to 

typical seawater (pK* = 8.83; pH = 8.2), the mole fractions of B(OH) and B(OH) species are 

calculated to be 0.81 and 0.19, respectively. In seawater for example, the two aqueous species are 

in a pH-dependent equilibrium which can be expressed as:

10B(OH)3 + [11B(OH)4]–    11B(OH)3 + [10B(OH)4]–                      (1-20) 

The isotopic composition of the seawater is governed by B isotope exchange between the 

two aqueous species. Vengosh et al. (1991) proposed that the calcium carbonates preferentially 

uptake 10B in the tetrahedral form and that the coprecipitation of different proportions of both 

species can explain their B concentration and isotopic compositions. Shortly after, Hemming and 

Hanson (1992) reported a relatively narrow range in B isotope compositions of various 

carboniferous species and also concluded that only the borate ion aquatic species is involved in 

reactions in which boron is incorporated into the carbonate structure, a finding that was also 

supported by Gaillardet and Allègre (1995). However, more recent works have challenged this 

idea (Mavromatis et al., 2015; Noireaux et al., 2015). These works report that trigonal and 

tetrahedral species were present in the crystallographic sites of the synthetic calcite and aragonite 



60

samples measured which was a function of solution pH and mineralogy of the precipitated 

carbonate mineral. Therefore, with conflicting results from older and newer studies, the 

mechanism responsible for B incorporation into carbonates remains elusive and perhaps more 

complex than once though. 

The differential uptake of the two boron species during the interaction of dissolved boron 

with solid phases leads to significant isotope fractionation. The adsorption of boron onto clay 

surfaces was first documented by Schwarcz et al. (1969) who made the preliminary observation 

that 10B is preferentially adsorbed from solution relative to 11B. However, application of this 

finding to natural solutions was not possible due to the experimental design. Several studies have 

shown the relationship between boron isotope fractionation and various factors such as boron 

species, temperature, pH and pressure (Vengosh et al., 1991b; Palmer et al., 1987; Spivack and 

Edmond, 1987; Kakihana and Kotaka, 1977). Palmer et al. (1987) for example, reported the 

variations of adsorption constants and isotope fractionation with pH and temperature during B 

adsorption from seawater onto marine clays. Here, the partition coefficient of boron exchange 

between the solution and clay fraction is expressed as:

=  
[ ]

[ ]
                                                      (1-21) 

Here [B]sediment and [B]solution are the boron concentrations (for example, in ng g-1 or µg g-1) of the 

adsorbed and dissolved species. Under experimental conditions, Keren and Mezuman (1981)

demonstrate that adsorption is reversible and that the fractionation factor between the adsorbed 

and dissolved species can be expressed as:

=  
( )

( ) ) ( ) )
                      (1-22) 

where ( B) is the initial B of the solution (here seawater was used, +39.5‰), ( B) is the 

final B of the solution and F represents the ratio of the final to initial boron concentrations in 

the solution. In agreement with Keren and Mezuman (1981), Palmer et al. (1987) reported that Kd

increases with pH over the range of pH  (6.5 – 8.5) values considered in the study (Figure 1-11a) 

using both standard clay minerals and natural clays. The cause of the pH dependence of Kd is 

attributed to the speciation of dissolved boron (Figure 1-11c and d). At lower pH values (<7) Kd

is low because clays have a low affinity for B(OH)3; accordingly Kd increases with pH since clays 

have a stronger adsorption affinity for the B(OH)4
– (Palmer et al., 1987). Note that Kd decreases

as a function of pH beyond the upper limits for this study due to competition for sites with OH–
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(not shown). A positive correlation between the fractionation factor and pH is also observed 

(Figure 1-11b), where the fractionation factors obtained at 40 C are analytically undistinguishable 

from those at 5 C. This demonstrates that the effect of temperature on the fractionation factor 

appears not to play as significant of a role as does pH. The dissolved boron speciation as a function 

of pH (Figure 1-11d) is likely observed because the -Al2O3-boron complex is tetrahedrally 

coordinated for both species adsorbed from the solution. Therefore, the fractionation factor 

calculated for the trigonally coordinated B(OH)3 should undergo a higher degree of fractionation 

during formation of the tetrahedrally coordinated boron adsorption complex than the B(OH)4
–

which is already tetrahedrally coordinated (Palmer et al., 1987; Spivack and Edmond, 1987).

Hence, the difference in isotope fractionation factors between both species leads to a pH 

dependence 

Figure 1-11. a) Boron adsorption distribution coefficient as a function of pH. ( C ( ) 15 C, 
(+) 25 C, () 40 C. b) Boron adsorption isotopic factor as a function of pH. c) Boron coordination 
at 25 C at 1 atm as function of pH (data from Hershey et al., 1986). d) Boron isotopic composition 
of B(OH)3 and B(OH)4

– at 25 C at 1 atm as function of pH (using the theoretical fractionation 
factor calculated by Kakihana et al. (1977). Source: Palmer et al. (1987).
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of the measured isotope fractionation, where less fractionation occurs at higher pH values. These 

combined results then indicate that isotope fractionation factors are the result of equilibrium 

processes and are not caused by a kinetic effect. A compilation of published relationships between 

pH and the B partition coefficient (kd) and the B isotopic fractionation factor ( ) for different 

geologic and synthetic material is shown in Figure 1-12 (Lemarchand et al. 2015). All material 

(Amberlite resin, humic acids, birnessite and goethite minerals, ‘carbonates’, and ‘sediments’) 

display relatively similar behavior regarding the partition coefficient as a function of pH with 

maximum Kd values reached between pH values of approximately 8 and 10; B isotopic 

fractionation factor – pH relationships in geologic and synthetic materials are also similar. 

For example, the mechanisms by which dissolved boron adsorbs on solids and 

coprecipitates in minerals was investigated by Lemarchand et al. (2007) who focused on boron 

isotope fractionation during adsorption on goethite and birnessite as function of solution of pH 

(see Figure 1-12). Boron adsorption at the surface of goethitite was found to induce strong pH-

dependent isotopic fractionation over a pH range of 8–10. Adsorption of boron on birnessite at low 

or neutral pH caused a lower boron isotopic fractionation compared to goethetite and decreased

with increasing pH above 8 and reverses at pH = 9. Dissolved boron was reported to react as a 

Lewis acid with mineral surfaces forming predominately inner-sphere complexes by ligand 

exchange with hydroxyl groups; however Lemarchand et al. (2007) also found outer-sphere 

complexes to be formed on birnessite by physical adsorption. Here, boron isotope fraction is 

strongly dependent on the structure of the surface complexes formed. Lemarchand et al. (2007)

concluded that 11B enrichment should be expected in waters in equilibrium with iron or manganese 

oxides, which is a function of pH that changes boron speciation in solution and at solid surfaces, 

typically the case for soil solution and in seawater. Additionally, since boron complexation relies 

on protonation and deprotonation reactions (protons and hydroxides only), the absence of other 

cations suggests an almost independence of boron surface reactions to the ionic strength of the 

solution (Lemarchand et al., 2007)
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Figure 1-12. Kd – pH and  – pH relationships for different geology and synthetic material. 

Sources: Amberlite resin values: Lemarchand (2001); humic acids: Lemarchand et al. (2005); 

birnessite and goethite values: Lemarchand et al. (2007); carbonate values: Hemming et al. 

(1995) and Goldberg and Forster (1991); and sediment values: Spivack et al. (1987). Source of 

figure: Lemarchand et al. (2015). 
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In soil profiles and in rivers, boron has an affinity of clay minerals, metal oxides, and 

organic matter due to their high boron partition coefficient which is a function of specific surface 

area of the solid exposed to water and on the density of surface hydroxyl groups (Gaillardet and 

Lemarchand, 2017). The boron partition coefficient can be expressed as:

=  
[ ]

[ ]
=  

 

 
                            (1-23) 

where [B] and [B] are the concentrations (for example, in ng g-1 or µg g-1)   of the 

adsorbed and dissolved boron and  , ,  , and are the mass of 

adsorbed boron (ng; µg), mass of solid (g), the mass boron in solution (ng; µg), and the mass of 

solution (g), respectively. Accordingly, solid surfaces with less surface area and fewer hydroxyl 

group such as tectosilicates, i.e. quartz, have very low Kd values (< 1); carbonates are intermediate 

(Kd ranges between 1 – 6); while organic compounds and phyllosilicates have much higher values 

(10 – 100) (Goldberg, 1997). The Kd maximum value of 40,000 is reached with the synthetic boron 

specific resin Amberlite IRA 743 (Lemarchand et al., 2002a). In soils and groundwaters with 

relatively low water-rock ratios (about 0.1), large Kd values of minerals, secondary phases, and 

organic surfaces lead boron to be largely adsorbed in the weathering zone. For example, with a 

partition coefficient of just 5 and water-rock ratio of 0.1, 98% of the dissolve boron will be 

absorbed by the clay fraction. On the contrary, boron is mostly found in the dissolved phase in 

rivers where the water-rock ratio is about 10,000 (Gaillardet and Lemarchand, 2017). The 

exchangeability of boron between solution and the solid then depends on the acid dissociation 

constant of both boric acid and the ligand involved, where adsorption on surfaces reflects the 

competition for surface reactive sites (possibly produced by variations in pH) between the two 

boron species, protons, and hydroxides (Pizer and Selzer, 1984).

1.4.2.2 Coprecipitation of boron into solids 

The mechanism by which boron is precipitated into minerals during clay formation is less 

studied than adsorption processes and therefore not completely understood. Regarding 

precipitation, most studies have focused on boron isotope behavior of carbonates (e.g. Vengosh et 



65

al. (1991), with a goal determining if both or only one of the boron species is incorporated into the 

carbonate structure. As mentioned earlier, this question is still unresolved due to new evidence 

provided by Mavromatis et al. (2015) and Noireaux et al. (2015) stating that both the trigonal and 

tetrahedral forms of boron can be incorporated into carbonate crystals, thereby challenging the 

hypothesis that only the borate ion is incorporated (e.g. Hemming and Hanson, 1992). Studies that 

have investigated the precipitation of boron into silicates remain limited. Mainly, the experimental 

works of Williams et al., (2001a), (2001b); and Williams and Hervig (2005) in diagenetic 

environments have provided sights in boron behavior during precipitation into newly formed clay 

minerals. Williams et al., (2001a) performed experiments to measure the isotopic fractionation of 

boron between illite/smectite clay minerals and water as a function of temperature and degree of 

illitization (Figure 1-13). Combined with the B-adsorbed on clay surfaces data at 25 C from 

Palmer et al. (1987) and fluid-silicate melt fractionation measurements at 300 C and 350 C (1kbar) 

of Hervig et al. (2002), a linear change in fractionation with reciprocal temperature is observed. 

Interestingly, the temperature dependence of the boron isotope fractionation factor between the 

clay mineral and the water appears to be similar for all silicate-water reactions considered, 

regardless of the conditions in which the reaction occurred (i.e. adsorption onto clay minerals, 

silicate melts/water, illitization of smectite to illite). Williams et al. (2001b) demonstrated that 

during illitization, that boron is initially adsorbed onto the newly formed clay surface at low 

temperature and then is incorporated into the silicate lattice by substitution of Si in the borate ion 

form when the experiment temperature exceeds 60 C. Because tetrahedral boron is preferentially 

enriched in the 10B isotope, the illitization process of smectite is characterized by a preferentially 

incorporation of 10B during the transformation, thereby producing isotopically lighter neoformed 

clay minerals. Without more detailed studies on B behavior during precipitation, we can only 

speculate that the incorporation of 10B into the silicate structure proceeds in the same manner as 

adsorption, i.e. through the formation of surfaces complexes, followed by subsequent 

incorporation into the mineral lattice (Lemarchand et al., 2007).
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Figure 1-13. Boron isotope fractionation as a function of reciprocal temperature. Source: re-

drawn from Williams et al. (2001a).

1.4.2.3 Boron uptake during biological processes 

Boron is a micronutrient in plants where it is involved in many biochemical and 

physiological functions such as: sugar transport (Saleem et al., 2013), cell wall structure where it 

forms a cross-linking structure with rhamnogalacturonan-II (RG–II) units (Matoh, 1997), nitrate 

assimilation (Ruiz et al., 1998), and hormonal metabolism and reproduction (Blevins and 

Lukaszewski, 1998). The function of boron in the formation and stabilization of the primary cell 

wall structure have also been reported by O’Neill et al. (2001). Boron deficiency symptoms have 

been observed in more than 80 countries, making boron deficiency the second largest global 

nutritional problem in crops (Alloway, 2008). Understanding the mechanisms that control the 

boron transfer between vegetation and soil is therefore fundamental to the constraint of the 

biological cycling of this nutrient. Despite the fact that the physiological role of boron in plants is 

well documented, e.g. Lehto et al. (2010), very little is known about the B isotope fractionation 

during root absorption, and the very few studies which are published lead to contradictory 

conclusions. The principle reason for the lack of B isotope data stems from the difficulties in 

separating boron from an organic matrix; incomplete separation in the form of residual organic 
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material in the sample will lead to isobaric interferences when measured by mass spectrometry 

(Roux et al., 2015; Lemarchand et al., 2002a). Vanderpool and Johnson (1992) reported that B 

isotope fractionated occurs during incorporation into commercial produce however with various 

results (enrichments of both 10B and 11B dependent on the species); while Wieser et al. (2001)

observed fractionation in coffee beans (with 11B values ranging from –12‰ to +19‰) but 

concluded that since boron was not readily translocated once bound in plant tissue, that the 11B

of coffee beans represented the cumulative input of various sources. In this case, no isotope 

fractionation was assumed between the crop and soil. This hypothesis has been challenged by the 

work of Cividini et al. (2010) and Noireaux et al. (2017) who propose that although the B isotope 

composition of the plant/tree leaves are similar to that of the soil solution, a large isotope 

fractionation occurs between various compartments within the plant/tree (i.e. leaves, branches, 

roots, and trunk). These works suggest that no isotope fractionation occurs during boron uptake 

from the soil solution but that B isotope fractionation occurs via translocation within the plant 

biomass. In this case, boron excreted from leaves is enriched in 11B compared to the woody parts 

of the plant that store 10B. Upon abscission and decay or via throughfall, the soil solution will then 

become enriched in 11B. By this mechanism, biological cycling is thought to induce boron isotope 

fractionation within the ecosystem and the extent of the 11B enrichment therefore depends on the 

rate at which boron is cycled through the ecosystem. However, the working hypothesis behind 

these preliminary findings needs further exploration to clarify boron isotope behavior during 

biological processes.

1.4.2.4 Evaporation and condensation processes 

Due to volatile nature of boron, it is partitioned between the solid, liquid, and vapor phases. 

One of the earliest recognitions of this phenomenon was during seawater evaporation experiments 

in 1959 conducted by Gast and Thomas who reported that seawater is a major source of 

atmospheric boron. In a later investigation of boron behavior during seawater evaporation, 

Vengosh et al. (1992) reported a gradual increase in 11B values of evaporated seawater (from 

39‰ to 54.7‰) relative to the standard NIST 951. They find that higher 11B values of brines and 

lower values of coexisting precipitates (MgSO4 and K-MgSO4 salts with 11B that range from 

11.4‰ to 36.0‰) may be attributed to selective uptake of 10B by the salts. Vengosh et al. (1992)
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suggested that the coprecipitation of B(OH)4
- species within the salts, and/or precipitation of Mg-

borate minerals with a coordination number of 4 are the responsible mechanisms for boron isotope 

fractionation during evaporation of seawater. Experiments conducted at high temperatures, e.g. 

Spivack et al. (1990), were in agreement with the finding of Vengosh et al. (1992) and reported 

that in hydrothermal conditions, boron is partitioned into both the vapor and brine/solid phases 

where the composition of the vapor is slightly enriched in 11B. However, there have been several 

other studies that show that the behavior of boron isotopes during seawater evaporation is highly 

dependent on the experimental conditions (Gaillardet et al., 2001; Xiao et al., 1997). For example, 

Xiao et al. (2001) performed airflow experiments and reported that the vapor phase was enriched 

in 10B. In the natural system, Rose-Koga et al. (2006) found a similar result and proposed that 

boron evaporation at the seawater-atmosphere interface and boron condensation in the clouds lead 

to seawater-vapor kinetic fractionation of 25.5‰ where the vapor is characterized by a 10B

enrichment and a rain-vapor fractionation of 32‰. These contradictory findings regarding 

condensation and evaporation demonstrate how significant experimental conditions can be in 

influencing measured 11B fractionation values. Recently, Roux et al. (2017) investigated boron 

atmospheric inputs (dust and dissolved depositions) to continents in order to better understand the 

sources and processes that control the cycling of atmospheric boron. They reported 11B

compositions in dust and dissolved inputs of 1‰ and 18‰, respectively. High B contents (190 –

390 µg g-1) of dust sample were attributed to the spreading of boron-rich fertilizers. Boron isotope 

compositions in dissolved depositions were attributed to a Rayleigh-like evolution of the 

atmospheric gaseous B reservoir with limited anthropogenic contributions. These results are in 

opposition to the hypothesis that atmospheric boron is controlled by the dissolution of sea salts. 

Nevertheless, our understanding of boron isotope fractionation during these processes remains 

somewhat limited because of the lack of research in this field and the specific mechanisms 

responsible for preferential uptake of one boron species over the other are not clearly identified.

1.4.3 Boron isotopes in the weathering zone 

This section will review the state of the art of the use of boron isotopes to better understand 

water-rock interactions in the weathering zone, the distinctive layer of Earth’s surface where 

chemical weathering occurs. As reviewed in the previous section (section 1.4.2) boron displays 
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physico-chemical properties that are suitable for investigating water-rock interactions, including 

those that involve a biological component. Particularly the large isotope fractionations induced by 

adsorption on clay or organic particles, coprecipitation, vegetation cycling, and evaporation and 

condensation processes allow boron to trace the processes responsible for the chemical weathering 

of rock into soil and sediment. Boron systematics suggest that during the dissolution of the bedrock 

and primary minerals, no significant isotope fractionation occurs (Lemarchand et al., 2000, 2012; 

Rose et al., 2000; Schwarcz et al., 1969). Due to the speciation of boron in solution and affinity of 

the borate ion to clay particles and organic matter, large isotope fractionations occur during 

adsorption and coprecipitation processes. This fractionation is characterized by a 10B-enrichment 

in the solid phase and a complimentary enrichment of 11B in the solution. To the best of our 

knowledge, biological processes induce isotope fractionation between the leaves and the plant 

characterized by an 11B-enrichment in the leaves and (upon abscission and/or throughfall) the soil 

solution, and a complimentary 10B-enrichment in the plant tissue (Cividini et al., 2010; Noireaux 

et al. 2017). These general characteristics of boron isotope fractionation during silicate weathering 

and vegetation cycles are perhaps the reasons many of the following studies have chosen boron 

isotopes as their proxy to understand and quantify water-rock interactions at a variety of scales.

1.4.3.1 Boron isotopes in soil profiles 

Very few studies have investigated the behavior of boron isotopes in soils. Taken from an 

90-cm thick oxisol on the upper Orinoco (Venezuela), Spivack et al. (1987) measured the boron 

isotope composition of the bulk soil. They reported that boron is partially mobilized during 

weathering as a function of distance from the bedrock, with a slight 10B-enrichment in the labile 

and refractory minerals. They noted that boron was lost at the bottom of the profile (behaving as a 

mobile element) and then conservatively upwards. This behavior should not be generalized 

however, as Lemarchand et al. (2012) reported a boron depletion in a temperate soil profile in 

northeastern France relative to the immobile element titanium (Ti) and an 11B enrichment in the 

clay-sized fraction which was associated with the incorporation of 11B into the clay fraction 

derived from a soil solution that was heavily impacted by vegetation. Differences in the B isotopes 

between the two profiles are consistent with the pedogenic processes that govern their formation. 

In the podzolic soil, B isotopes have are explained by a model in which pedogenesis occurs by 
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continuous dissolution of primary minerals and precipitation of secondary minerals. A more 

complex model is proposed for the brown soil where clay precipitation occurs in the deep soil 

horizons while being gradually dissolved in the upper layers. Therefore, the clay fraction records 

the nature of weathering processes that are controlling mineral transformations. Here, the effect of 

grain size on boron isotope geochemistry was also studied. They reported that unlike the clay 

fraction, coarse sand, fine sand, and silt fractions have similar boron isotope compositions and 

unchanging or depleted B concentrations throughout the profile and reveal information about the 

primary minerals, and by extension, the bedrock. On the contrary, B concentration in the clay 

fraction (<2 µm) increases and an isotope fractionation towards heavier values between the clay

fraction and the bedrock of approximately 9‰ is observed, with an expected hydrothermal 

component lighter than -35‰.

Figure 1-14. B/Ti* (a) and 11B in bulk soil samples as 

a function of depth taken in the Strengbach forest 

catchment (France). The grey star represents the 

value of the altered bedrock in the catchment which 

was used to normalize the B/Ti ratio. Open and closed 

symbols refer to podzolic and brown soil profiles, 

respectively. Source: Lemarchand et al. (2012). 
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At Mule Hole in southern India, Noireaux et al. (2017) reported B isotope compositions of 

soils in a dry tropical soil profile. In spite of the significant role vegetation cycling plays in the 

tropics, vegetation control on the 11B signal of the soil was not observed. In this profile, a B 

enrichment in the soil was observed resulting from the downward migration of boron within the 

profile and the fixation of B on clay-size particles. This result is different from Spivack et al. 

(1987) who reported boron depletions in the soil. They report that the clay fraction in this profile 

appears to be fractionated by approximately –50‰ with regard to the soil solution, indicating that 

it is very unlikely to be in equilibrium with the porewater (unless considering an unrealistic clay-

fluid isotope fractionation factor). It is interesting to note here that the clay fraction is lower than 

the bedrock, which is contrary to the situation found in the Strengbach. The reason for this 

occurrence is yet to be explored. In this profile, B isotope compositions of between the bulk soil 

and the bedrock correlate with the Al/Si ratio, which is a grain size proxy used to discriminate 

between clay-rich particles and quartz-rich coarse particles (Figure 1-15). Other published values 

from two soil profiles in the Strengbach, France  (Lemarchand et al., 2012) and Shale Hills, 

Pennsylvania (Noireaux et al., 2014a) are compared to the Mule Hole data. The 11B enrichment 

observed in the Strengbach may be attributed to boron cycling through vegetation, while no isotope 

fractionation between the bulk soil and the bedrock was observed at Shale Hills. Although, in the 

Shale Hills soil profile, (Noireaux et al., 2014a) reported a loss of B along the profile, which 

mimics that of Al, thought to be caused by the migration of clay particles causing isotope 

fractionation. Studies of soil profiles consistently suggest that differences in grain size play an 

important role in understanding B isotope geochemistry in soil.

1.4.3.2 Boron isotopes at the catchment scale 

Only in the rare cases are we able to gather data from many different components in the 

weathering zone at the catchment scale. Two recent examples are the previously discussed 

watersheds in the Strengbach catchment, France (Cividini et al., 2010) and in Mule Hole, India 

(Noireaux et al., 2017) where boron isotope data was gathered in Critical Zone Observatories 

(CZO) on throughfall, precipitation, overland flow, stream and stream water time series, 

groundwater, litterfall, bedrock and soils (Figure 1-16).  Boron isotopes show a wide range
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Figure 1-15. Published boron isotopes compositions in bulk soils as function of the Al/Si ratio in 

different soil profiles. The Al/Si ratio is proxy for grain size where low Al/Si values indicate larger 

grain sizes and higher ratios indicate smaller finer grain sizes. Enrichments in 11B are likely caused 

by the incorporation of biogenic boron. Data sources: Strengbach (Lemarchand et al. 2012); Mule 

Hole (Noireaux et al. 2017); Shale Hills (Noireaux et al., 2014a). Source of figure: Gaillardet and 

Lemarchand (2017). 

(80‰) of distribution. Comparison of these watersheds, particularly in regards to assessing the 

relative impacts of chemical weathering and vegetation cycling on boron isotope compositions in 

the weathering zone, highlight the potential of boron isotopes in understanding geological and 

biological processes at the catchment scale.

Climatically, the biggest difference between the two catchments is that the Strengbach is 

located in a cold temperature zone, while the Mule Hole catchment has a dry tropical climate. 

Regardless, both catchments show that boron isotopes behave similarly in most of the 

compartments, with few significant differences. In particular, vegetation in both systems is 

characterized by a 11B enrichment; dissolved loads are significantly isotopically heavier than the 

bedrock; and wet atmospheric deposition inputs to the soil/vegetation system are significant. The 

high flux associated with vegetation cycling is a common thread between the catchments, although 
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different in magnitude. In the Strengbach, this flux is 5 times greater than the boron exported from 

the catchment by streams, while in the Mule Hole it is 10 times greater. Both studies report that 

the transfer of boron from the vegetation to the soil and soil solution is equally shared between 

litterfall and soluble boron leached from leaves by rainfall (Noireaux et al., 2017; Cividini et al., 

2010). Interestingly, the biomass reported in both studies is highly enriched in 11B compared to 

soil minerals, bedrock, and rainwater. Within the Mule Hole basin, boron derived from chemical 

weathering of bedrock is negligible, with the throughfall being 10-15‰ enriched in the heavy 

isotope compared to the rainfall and litter samples, suggesting a major boron fractionation process 

occurs between the plant and plant leaves (Gaillardet and Lemarchand, 2017).

In the Strengbach, Cividini et al. (2010) assessed the impact of biological and atmospheric 

cycling on the isotopic signature of the runoff by sampling pore water with depth in a soil profile. 

Here, a characteristic decrease in B concentrations in the soil solution is attributed to active plant 

uptake via roots in the upper soil layers (~50% of B removed in the top 10 cm where roots are 

most active; and 25% of the remaining portion is removed down to 30 cm). In order to assess how 

much boron in soil solution is derived from weathering reactions compared to that involved in 

vegetation cycling (investigating the large B isotopic difference between vegetation, +30-35‰, 

and soil minerals, -25‰) a simplistic boron budget model was created and applied to difference 

depths in the profile. In this model, boron in soil solution is derived from biological cycling, 

atmospheric inputs, and chemical weathering; mineral dissolution is assumed to release B but 

cause no isotope fractionation, while clay mineral formation induces a strong isotope fractionation 

of 30‰ by enriching the soil solution in 11B. Results from the model show that the flux associated 

with B uptake by roots is higher than that released by the weathering of silicates in all depths in 

the profile, but particularly in the upper layers where leaf litter is recycled.

An important distinction between the two catchments is in regards to composition of the 

stream water leaving the catchment. Although both settings produce stream water that is 

isotopically heavier than the bedrock ( 11B = 45‰ in the Strengbach and 60‰ in Mule Hole), the 

origin of the signature is different. In the Strengbach, about 50% of the boron in the dissolved load 

was calculated to be derived from water-rock interactions; while the composition of the dissolved 

load in Mule Hole is controlled entirely by overland flow (e.g. B derived from the cycling of 

vegetation).
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Figure 1-16. 11B values in the different compartments of two contrasted Critical Zone 

Observatories, Mule Hole basin, India (tropical climate) and Strengbach basin, France 

(temperature climate). The dashed line in both panels represents the composition of catchment 

bedrock. Source: Gaillardet and Lemarchand (2017). 

An important finding of these works is that the boron isotope composition of both the solid 

and dissolved phases in a soil profile may be a function of depth. Cividini et al., (2010) explains 

that below the depth of B uptake by active tree roots, the control of B isotopes by biologically-

mediated reactions on the composition of the porewater diminishes and its composition is then 

controlled by weathering reactions; therefore, the distribution of boron isotopes in deep soils is 

imprinted solely by weathering reactions and reflects differences in mineralogy and/or the 



75

weathering regime. Soil solutions derived from shallower profiles should then be expected to have 

much heavier B isotope signatures than those derived from deeper locations where the influence 

of weathering reactions control their isotope compositions (Gaillardet and Lemarchand, 2017).

1.4.3.3 Boron isotopes in the dissolved phase  

The study of boron isotopes in the dissolved load of rivers generally has two goals. The 

first is the need to reconcile the global boron oceanic budget which will help to determine how the 

seawater pH has evolved overtime in response to ancient pCO2 and hence climate variability 

(Goddéris and François, 1996; Lasaga et al., 1985). The second is a need to better understand the 

mechanisms that drive silicate weathering rates and reactions and the ability to precisely quantify 

them, as changes in silicate weathering rates may have the potential to regulate atmospheric CO2

(Raymo et al., 1988; Berner et al., 1983). Boron isotope compositions in large rivers worldwide 

have shed light on both these issues. The dissolved load of large rivers in the Himalayas (Ganges-

Brahamaputra basin) (Rose et al., 2000), Mississippi (Spivack et al., 1987), Changjiang basin 

(Chetelat et al., 2009), Mackenzie basin (Canada) (Lemarchand and Gaillardet, 2006), and many 

other rivers worldwide, including the Amazon and Congo (Lemarchand et al., 2002b) displaying 

a very large range of 11B values from approximately –6‰ to +45‰ with an average 11B of 10‰ 

and a discharge-weighted mean B concentration of 10.2 ppb (Lemarchand et al., 2002b). Low 

concentrations in river water have historically made the analyses of boron isotopes in river waters 

difficult. However, a pre-concentration step developed by Lemarchand et al. (2002a) using the B-

specific resin Amberlite IRA 743 has made boron isotope analyses of diluted solution much easier.

The significant boron isotope fractionation during water-rock interactions associated with 

B adsorption onto clay particles and organic 11B a good tracer for hydrographic circulation, 

especially in large rivers to study continental weathering (Chetelat et al., 2009; Rose et al., 2000).

In the Himalayan rivers, Rose et al. (2000) 11B values 

and the major ion chemistry of the dissolved load, except that B- and Cl- rich waters have the 
11B values, likely controlled by evaporite dissolution. Here, they report a large range of

isotopic fractionation among river waters controlled by: 1) crystallization of newly formed clay 

minerals derived from alteration of silicate in soils, and 2) adsorption processes on suspended 

matter or bedload sediments in rivers. After correction for evaporate dissolution (which was a 

major source of B to the dissolved load), it was concluded that most of the 30‰ range of 11B
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values is due to processes occurring in soils where dissolved [B] in waters can be several order of 

magnitude higher than in the river waters and that incongruent weathering of bedrock occurs with 

a large boron isotope fractionation between the soil solution and clay fraction that depends on pH

(Figure 1-17). This interpretation assumes that the B isotope fractionation between the neo-formed 

clay minerals and the soil solution is pH dependent and that only the borate species is incorporated 

into the clay mineral. Therefore, high 11B values of the dissolved load in Himalayan rivers can be 

interpreted  as being influenced by a large proportion of B which have been uptaken by secondary 

mineral formed in high pH soils.

In the Changjiang basin, the total about of boron derived from silicate weathering varies 

highly (between 40% and 88%), with up to 20% of dissolved boron originating from evaporites 

and 20% from anthropogenic sources. Here, boron is reported to be highly mobile during silicate 

weathering, partitioning between the suspended (70%) and dissolved (30%) loads. A range of 

11Bsolid-dissolved values from –19‰ to –3‰ was reported, where ‘solid’ and ‘dissolved’ refer to the 

boron isotope compositions of the suspended and dissolved loads, respectively, whose

compositions were explained as the extent of boron leaching from bedrock dissolution relative

Figure 1-17. Modelled changes in B isotopes in Himalayan soil porewaters during weathering 

processes as a function of water pH. Increasing K*/Si* ratios relative to the HHC value (bedrock) 

indicate an increase in secondary clay mineral formation. At pH values  7.5, the largest changes 

in 11B values between clay minerals and porewater can be expected. This graph shows that 11B 

values of the dissolved load seem to keep a record of the pH variations at the secondary minerals 

formation cites. Source: Rose et al. (2000). 
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to boron uptake into secondary minerals. Chetelat et al. (2009) stress that leaching is characterized 

by a loss of boron relative to the bedrock with no apparent isotope fractionation, where the 

precipitation/adsorption leads to a large isotope fractionation which enriches the dissolve load in 
11B compared to suspended sediments. 

The 11B of rivers in the Congo, French Guiana, and Niger (Lemarchand et al., 2002b) are 

characterized by the highest B isotope compositions (between +28‰ and +43‰) where higher 
11B values are attributed to the strong impact of biological cycling; strong atmospheric inputs can 

also explain isotopically heavier dissolved load compositions, especially in coastal rivers where 

the proportion of atmospheric input is higher (Chetelat et al., 2005). In the tropical basaltic-

draining rivers of Réunion Island and andesite-draining rivers of Guadeloupe (Lesser Antilles), 

Louvat et al. (2014, 2011) report similarly high 11B compositions (up to 48‰) in the dissolved 

loads as those reported by Lemarchand et al. (2002b). Here, the large variation in 11B values (1 –

48‰) are reflect mixed B-sources and water-rock interaction processes: rain ( 11B = 40‰); 

hydrothermalism ( 11B = 0‰), low temperature basalt weathering ( 11B = 30‰), and cycling with 

soil and vegetation ( 11B 40‰). Rivers on Réunion were characterized have two types of 11B

signatures which reflect low-temperature water-rock interactions: rivers with high weathering rates 

(~30‰) and those in small forested catchments under low weathering rates (~45‰). The soil-

vegetation cycle, although not clearly characterized, was reported to enriched soil solution in 11B

and therefore contribute to higher 11B values in the dissolved load of the rivers.

In Guadalupe, B isotopes in rivers and springs show a distinct contrast with non-

hydrothermally impacted rivers displaying B isotope compositions between 40 – 45‰ and low B 

content (30 µg/L), and thermal springs between 8‰ and 15‰ with higher B content (250µg/L). A 

large difference between surface waters and volcanic bedrock was noted. The 40‰ difference 

between the average B isotope composition surface waters (40‰) compared to the bedrock (0‰) 

reveals either a huge isotope fractionation takes places during rock weathering, characterized by 

either a preferential 10B incorporation into the clay fraction during clay formation or adsorption on 

clays during rock weathering in soil. Alternatively, the soil-vegetation cycle was reported to 

possibly cause such a fractionation. Results from these studies demonstrated that a wide range of 
11B values could be produced in the dissolved load without being impacted by hydrothermal 

activity. 
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Figure 1-18. Boron isotope compositions as a function of B concentrations for Réunion Island 

rivers and springs. Circles represent rain-like samples, triangles represent Piton de la Fournaise 

rivers and springs, diamonds for Pition des Neiges’s, squares for river in between the two massifs, 

and crosses for the tunnels. Source: Louvat et al. (2014) 

In tropical southern Taiwan Liu et al. (2012) did not measure such high 11B compositions 

in the dissolved load. Here, mass balance calculations indicate that the major contribution of B in 

the dissolved load comes from silicate weathering that is characterized by low B concentrations 

and intermediate 11B values. Other B sources include seawater, groundwater, geothermal inputs, 

and anthropogenic inputs. Therefore, they conclude that the dissolved B and 11B in the river are 

controlled by a mixing of these sources. Similar to Louvat et al. (2014), lower 11B values and 

higher B concentrations in the dissolved load of the Kao-ping River were attributed to 

contributions from local geothermal inputs. The mobility of boron in hydrothermal systems have 

also been used to trace hydrothermal inputs to groundwaters  (e.g. Millot et al., 2010b; Millot and 

Négrel, 2007). For example, using a multi-proxy approach (boron, lithium, and strontium 

isotopes), Millot and Négrel (2007) find that the strontium and boron isotopes compositions of 

various hydro- and geothermal sites in France are quite variable (87Sr/86Sr = 0.70755 – 0.72187

and 11B = –8.3‰ to +21.6‰) and reflect a lithological control over both their signatures while 

7Li values range between –0.1‰ and +10.0‰ and seem to be controlled by the temperature of 

hydro- and geothermal fluids. Others have also used boron isotopes as a tracer of anthropogenic 
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sources in groundwater and rivers (i.e. (Petelet-Giraud et al., 2009; Chetelat and Gaillardet, 2005).

Generally in unpolluted groundwater, the broad agreement is that the boron isotope 

composition is controlled by mineralogy of the parent bedrock and boron isotope fractionation 

processes such as adsorption onto solid phases (clay minerals, organic matter, etc.) and the 

coprecipitation of boron into secondary minerals (Gaillardet and Lemarchand, 2017; Lemarchand 

et al., 2015; Lemarchand and Gaillardet, 2006). During the dissolution of primary minerals, boron 

is partitioned between the solution and adsorbed or precipitated onto solid phases. In order to 

model this interaction, two basic equations govern the exchange of boron between the solution and 

the solid surface. The first describes when a volume of water containing dissolved boron with an 

initial concentration of dissolved boron [B]T equilibrates with a mineral or organic surface:

[ ] =   [ ]                                                     (1-24) 

where [ ] is the soluble B concentration, K is the boron partition coefficient and is the 

water rock ratio. Using a typical porosity value between 20 – 30% and a K value of 20, 

Lemarchand and Gaillardet (2006) estimate that 98% of the boron stock is absorbed. This result 

implies that in groundwater, the dissolved B and isotopic composition are buffered by the solid 

phase and that slight changes in caused by changes in solution pH and/or temperature may have 

a dramatic effect on the composition of the dissolve load. The isotopic composition of the solution 

in equilibrium ( B ) can then be written as:

=  
 

 
+ 1000

( )

 
                             (1-25) 

where is the averaged boron isotope fractionation factor between the solid and solution and 

 is the initial boron isotope composition of the solution (in ‰ notation). 

Lemarchand and Gaillardet (2006) proposed a water-rock interaction model that aims to 

explain the high 11B composition of the dissolved load of the Mackenzie River and tributaries by 

considering variations in the residence time of water in the catchment (water advection), partition 

coefficient between the groundwater and clay surfaces, and weathering rates. Projections from the 

model show that the boron isotope composition of the river responses to changes in weathering 

rates and residence time of the solution. The dissolved load then evolves in two steps after an 

induced perturbation resulting from boron exchange and associated isotope fractionation (Figure 
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1-19). The first step involves ion exchange reactions which cause a retardation factor via 

scavenging or releasing boron on/from mineral surface with an associated isotopic fractionation. 

Secondly, after the perturbation front has passed through the system, a new steady state can be 

established where the isotopic composition of the porewaters are no longer controlled by ion 

exchange, but rather dissolution and precipitation reactions (Lemarchand and Gaillardet, 2006).

This water-rock interaction model shows that the 11B of the groundwater can response to a 

perturbation, such as a B-enrichment caused by increased erosion and chemical weathering for 

example, given that all other parameters (e.g. source rocks, pH) remain fairly constant. The 

duration of the perturbation is then proportional to the chemical properties of the hosting rock 

together with residence time of the solution. In the case of the Mackenzie, Lemarchand and 

Gaillardet (2006) estimate that the groundwater residence time is about 500 years, hence the 

composition of the dissolved load of the catchment’s rivers can be expected to be controlled by 

ion exchange for over 10 – 25 kyr. Measured 11B values of the dissolved load on the plain were 

therefore reported to represent an ancient perturbation caused by increased weathering associated 

with the last glaciation; the groundwater in the Mackenzie still has not reached steady state.

1.4.3.4 Boron isotopes sediments, lakes, and brines 

Very few studies have focused on boron isotopes in river sediments. Boron content and 

isotope compositions of fluvial suspended and deep sea marine sediments were reported by 

Spivack et al. (1987). Here, an experimental approach was used to determine the low temperature 

interaction of dissolved boron with detrital sediment. Grain size separation (bulk sediment, < 64 

µm, and < 4 µm) revealed that B contents increase with decreasing grain size, while the B isotope 

composition of the bulk and < 64 µm fraction at the river delta were 2‰ heavier than in the 

upstream river. The < 4µm fraction in the delta sediment was distinctly heavier (+1.9‰) than the

bulk sediment (–4.3‰) at this location, similar to the range found in marine sediments in this study 

(between –1.2‰ and –9.0‰). The adsorption of boron from seawater onto fluvial sediment during 

estuarine mixing is the proposed mechanism for explaining the composition of the clay fraction at 

the river delta, which still being 26‰ lighter than the seawater. Additionally, the high boron 

content of deep sea detrital samples suggests that boron is also incorporated into authigenic 

silicates forming on the sea floor, thus acting a major boron sink in the oceans. In the Changjiang 

River basin, Chetelat et al. (2009) reports B isotope compositions of suspended particulate matter 
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ranging –11‰ to –6‰ where about 70% of the boron is transported by the suspended sediments 

and 30% by solution. Here, they show a positive correlation between 11B solid-dissolved values and 

Al/B ratios used as a proxy for boron mobility during weathering, which suggests that the re-

incorporation of boron onto the suspended load may be controlling the isotopic composition of the 

dissolved load. 

Figure 1-19. Modeled temporal evolution of the B isotope ratio in shallow groundwaters in the 

Mackenzie River basin in response to changes in the weathering conditions (caused by past glacial 

events). An isotopic composition of –7‰ is assumed for the silicate source of B. This model 

illustrates the competition between ion exchange reactions between groundwater and clay 

surfaces (fast reaction) and bedrock dissolution (slow reaction), and time, expressed as the 

dimensionless  symbol (normalized to the residence time of groundwater). Higher 11B values 

are generated when fast ion exchange reactions occur. Source: Gaillardet and Lemarchand 

(2017). 

The behavior of boron isotopes have also been studied in several lakes throughout the world with 

the goal of determining their geochemical evolution and also assessing the origin of evaporates in 

the sediment archives (marine or non-marine sources) (Leslie et al., 2014; Vengosh et al., 1991a, 

1995; Xiao et al., 1992). Vengosh et al. (1991a) investigated brines, groundwaters, and detrital
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Figure 1-20. Evolution of the 11B solid-dissolved as a function of the Al/B mass ratio measured 

in suspended sediments of the Changjiang basin rivers. Filled and open stars refer to the Al/B 

ratios of the upper continent crust used for comparison, taken from Hu and Gao (2008) and 

Wedepohl (1986), respectively. Source of figure: Chetelat et al. (2009). 

sediment in modern Australian salt lakes and reported various B isotope compositions (Figure 

1-21). Two different lakes types were characterized, both however strongly influenced by marine 

sources. The first was characterized by high Na/Cl molar ratios similar to that of marine water, 

low B/Cl indicating B depletion relative to seawater, and very high 11B values (between 54‰ and 

59‰). These properties were attributed to a marine cyclic salt origin and adsorption processes on 

clay materials and in closed systems with low water-rock ratios. Here, a 10B enrichment in the clay 

fraction contributes to isotopically heavier 11B values in the dissolved load. In the second type, 

surface brines were characterized by very high salinities, low B/Cl values and 11B values ranging 

from 25‰ to 35‰. Vengosh et al. (1991b) concludes that Na/Cl ratios can be used as indicators 

of the origin of the salt, while 11B values and B/Cl ratios are sensitive to a marine or non-marine 

origin, boron adsorption onto clays, and water-rock ratios. 
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Figure 1-21. 11B compositions in some Australian brines, surface waters, groundwaters, 

sediments, and bedrock. Seawater value taken from Spivack et al. (1987). GAB = Great Artesian 

Basin. Source: (Vengosh et al., 1991a) 

Xiao et al. (1992) finds a wide range of B isotope compositions between the brine, minerals, 

source water, and sediment in a Chinese lake which reveal the sedimentary cycle of boron isotopes. 

The composition of the lake is explained as a portion of boron in the lake derived from source 

waters which is adsorbed by the sediment on the lake floor and a portion coprecipitated into boron 

minerals; both processes causing enrichment of 11B in the aqueous phase relative to the continental 

crust (–7‰). In Antarctica, Leslie et al. (2014) also reports a wide range of 11B values (between 

+12‰ to +51‰) which correspond to the variations from glacier meltwater streams and an in situ, 

hypersaline frozen lake layer. Here, the sources of B are controlled by terrestrial chemical 

weathering of aluminosilicates within stream channels and a marine source, either derived from 

marine aerosols or in the form of ancient seawater. All studies considered, the general behavior of 

boron isotopes in lakes, lake sediments, and brines is that boron is a mobile element in solution 

and is likely to be adsorbed onto clay surfaces and coprecipitated into minerals, causing an 10B-

enrichment in the solid phase and a complimentary 11B-enrichment in the solution. The wide range 

of isotope compositions (0 – 60‰) and B concentrations (between 1 µg L-1 and 0.5 g L-1) reported 
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therefore likely reflect a mixture of different inputs to the lake and internal geochemical processes 

such as absorption and coprecipitation onto/into clay-sized particles and possibly organic matter. 

1.5 Conclusion 

The use of boron isotopes as a proxy to quantify and trace weathering reactions at Earth’s 

surface have been demonstrated in a variety of environments such as soil profiles, groundwater, 

rivers, and lakes using both the dissolved and solid phases. Due to its high mobility and isotope 

fractionation during weathering processes, boron isotopes display great potential in exploring 

chemical weathering reactions on both the local and global scales, including those with a biological 

component. Boron isotopes are largely fractionated by absorption and coprecipitation processes 

(characterized by a 10B enrichment in the clay-sized fraction and organic matter and a 

complementary 11B enrichment in the solution), evaporation and condensation processes (showing 

both 10B and 11B enrichments which appear to be highly controlled by experimental conditions), 

and boron cycling through vegetation which appears to induce an 11B enrichment on the 

surrounding environment and soil solutions. Boron isotope fractionation at Earth’s surface can 

mainly be attributed to the difference in affinity of B isotopes between trigonal and tetrahedral 

species. Competition between boron species in solution and onto solids produces large isotope 

variations in nature with an observed range of approximately 70‰. The dissolved load of river, 

rainwater, and vegetation are typically enriched in 11B, while a complimentary depletion in 11B

(enrichment in 10B) is observed in clay minerals, with an average B isotope value of continental 

crust being approximately -10‰.  On the ecosystem scale, chemical weathering does not induce a 

large flux of B. The major flux of B to the ecosystem is associated with biological recycling. On 

the global scale, B is added to the oceans by rivers, where the most important B sink is adsorption 

on clay-sized particles. This characteristic also makes boron a good proxy to reconcile the global 

weathering/erosion budget, including its use for reconstructing the pH of ancient seawater. 

1.6 Objective of the thesis  

Variations in silicate weathering rates have the potential to regulate atmospheric CO2

concentrations and therefore climate on geological timescales (e.g. Raymo et al., 1988; Walker et 

al., 1981). The quantification of modern silicate weathering rates and identification of their 
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controls are therefore necessary to order to interpret paleo-weathering records and reconstruct past 

climatic changes (White and Brantley, 1995). Modern silicate weathering rates and intensities are 

typically derived from the dissolved load of large rivers, with few studies focusing on the solid 

phase (e.g. West et al., 2005; Gaillardet et al., 1999b). Recently, new isotope tracers such as Li, 

Ca, and Si have been developed to study to chemical weathering because they typically do not 

suffer from the sample limitations as other weathering proxies which use major and trace element 

concentrations. For example, these limitations include the dominant role lithology plays on 

controlling the composition of the dissolved load and weathering products (Gaillardet et al., 1999b; 

Bluth and Kump, 1994) and grain sizes/mineral sorting of river sediments (e.g. Garzanti et al., 

2011; Galy and France-Lanord, 2001; Morton and Hallsworth, 1999). Boron isotopes in the 

dissolved load (e.g. Louvat et al., 2014; Lemarchand and Gaillardet, 2006; Lemarchand et al., 

2002b), suspended load (e.g. Chetelat et al., 2009; Spivack et al., 1987), and soil profiles (e.g. 

Noireaux et al., 2017; Lemarchand et al., 2012; Cividini et al., 2010) have also been used in this 

regard and show great potential as a chemical weathering proxy. However, our lack of knowledge 

of B isotope behavior during chemical weathering remains limited, particularly during pedogenesis 

and subsequent transport of the weathering “signal” from source areas to the depositional 

environment. Additionally, no other study has investigated if B isotope in fluvial sediment deposits 

can be used as a proxy to reconstruct paleo-weathering and paleo-environmental conditions. As 

such, more research needs to be done to better understand B isotope behavior during weathering 

reaction and sediment transport, including its use in sediment deposits as a paleo-weathering 

proxy. With this in mind, this study focuses on three key aspects of B isotope behavior in the 

weathering zone that are currently understudied with the following objectives:

1. To gain a better understanding of the parameters than control boron isotope fractionation in 

modern river sediment and how these sediments record the weathering regime.  

 

2. To understand how the weathering ‘signal’ carried by river sediment is transferred from 

sources areas of the catchment to the depositional environment.  
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3. To determine if boron isotopes in sediment deposits (paleochannels) can be used as a proxy to 

reconstruct paleo-weathering and paleo-environmental conditions and therefore reveal how 

pedogenesis has responded to climate variability over the last glacial-interglacial cycle.

The study of the paleochannel systems aims to determine if: 

a) spatial variations exist in the chemical and isotopic signatures of the sediment clay 

fraction within a given channel. 

b) chemical and isotope differences exist in the sediment clay fraction between channel 

systems that can be attributed to weathering and/or vegetation cycling in the source 

areas, which can be used to re-construct paleo-weathering and paleo-environmental 

regimes over the last glacial cycle. 

c) post-depositional processes have overprinted the chemical and isotopic signature of 

the sediment clay fraction thereby preventing an accurate paleo weathering regime 

reconstruction 

d) the source of the sediments have changed over the last glacial cycle 
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Chapter 2  

SAMPLING AND ANALYTICAL 

TECHNIQUES
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2.1 Sample collection and processing

2.1.1 Bedrock

Bedrock samples were collected in monolithological catchments throughout the 

Murrumbidgee River basin. The location of the monolithological catchments and bedrock samples 

were predetermined by Ersi ArcGIS 10.4 software by overlaying a lithology map (source: NSW 

Government, Resources & Energy), a calculated drainage basin map (Figure 2-1) which displays 

the location of monolithological drainage areas where bedrock samples were taken, as well as 

sediment and water sampling points along the tributaries and main channel. Bedrock outcrop 

exposures were identified in each of the 11 monolithological catchments (when possible) and were 

either exposed on the surface of the landscape or exposed by stream incision, giving relatively 

easy access to them. The outmost surface of the rock was chipped away using a hammer and then 

discarded because this portion has likely been exposed to weathering processes. A sub-sample was 

then chipped off of the inner portion of the bedrock and taken back to the laboratory for preparation 

at the University of Wollongong (UOW). After sample collection, the remaining weathered edges 

of the rocks were cut off with a diamond saw and only the inner core saved. This pristine portion 

of the rock was crushed to a fine power using a tungsten carbide mill (TEMA).

2.1.2 River sediment

In the modern Murrumbidgee River catchment, approximately three kilograms in total of 

sediment per sample were taken from the river banks and sandbar deposits along the river in an 

area of approximately 1 m2 (where possible) and amalgamated (Figure 2-2). Where sandbar 

deposits were not present, samples were taken directly from the stream bedload. To assess site 

variability, particularly at sites where multiple deposits were present, two or more aliquots of 

sediment were taken several meters apart (Figure 2-2). Samples were scooped by hand into large 

plastic sample bags, sealed, labeled and transported directly back to the laboratory.
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Figure 2-1. Lithology and digital elevation map (DEM) of the upper Murrumbidgee River and 
tributaries displaying sampling points for sediments and water (black dots) and sampling points for 
sediment, water, and bedrock in monolithological catchments with respective drainage catchment 
areas (hashed areas). The dashed line separates the upper (> 600 m elevation) and lower (< 600 m) 
catchments. Inset map: southeastern Australia; red rectangle shows area displayed in the main 
panel. Source of DEM: Geoscience Australia; source of lithology map: NSW Government; 
Resources and Energy; source of inset map: Esri, USGS, NOAA

In the laboratory, sediment samples were dried at 60°C for approximately one week to stop further 

chemical reactions and allow for proper storage. Following this, samples were wet-sieved with 

distilled water at 2 mm to remove gravels and organic debris, 500 µm, and 63 µm. Both the fine 

sand-sized (63 µm – 500 mm; termed ‘sand fraction’ hereafter) and < 63 µm  fractions were 

retained. The sand fraction was wet-sieved an additional time to remove any fine particles then 

times to suspend remaining fine particles. The supernatant was then removed and The <63 µm 

fraction was transferred to a centrifuge tube and further processed by centrifugation to extract
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Figure 2-2. Examples of river sediment collection on the river bank of the Murrumbidgee River. 
Left panel: sediment collection at the banks of the stream, displaying the location of the two 
aliquots taken (A and B), Right panel: sediment collection of river sand bank deposits (A and B). 
Two aliquots are used to assess local site variability.

the clay-sized fraction (<2 µm; termed ‘clay fraction’ hereafter) using the protocol established by 

Starkey et al. (1984). Approximately 0.25 g of NaPO3 (< 1% w/w) (acting as a dispersing agent) 

was added to approximately 25 g of the < 63 µm fraction and suspended in 18.2 M water. The 

slurry was then centrifuged in order to separate the clay fraction (supernatant) from the course 

fraction. The supernatant was then transferred to another centrifuge tube, centrifuged a second 

time, and the supernatant (water) poured out. The clay fraction was thoroughly rinsed with 18.2 

M water following grain size separation and chemical treatment. Grain size separation was 

verified by particle size analysis, performed on a Malvern Mastersizer 3000 particle analyzer. This 

then oven-dried at 60°C and crushed by hand with an agate mortar prior to chemical and isotopic 

analyses.
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2.1.3 River water

Water samples in the Murrumbidgee River catchment were collected in acid-washed HDPE 

plastic bottles in the middle of the channel when possible (Figure 2-3). Samples were filtered in 

the field using a Merck Millipore portable filtration unit with 0.2 µm MCE membrane filters. The 

pH and the alkalinity were determined on the < 0.2 µm fraction (termed ‘dissolved load’ hereafter). 

Alkalinity was measured by titration using 0.01M HNO3 following the method of Barnes (1964).

The filtered river water was slightly acidified using Merck Ultrapur -grade HNO3 acid prior to 

storage. In the laboratory, samples were filtered an additional time and centrifuged prior to isotopic 

analyses. This was done as a precautionary measured to remove any solid particles remaining in 

the river water, however little residue remained and no precipitates were observed.

Figure 2-3. River water sample taken from the middle of the stream in a plastic HDPE bottle.
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2.1.4 Paleochannel sediment deposits 

On the alluvial plain, paleochannel sediment deposits were obtained by drilling horizontal 

core samples in the face of the sediment profile using a 9–cm diameter aluminum pipe, a metal 

core head, and a sledgehammer (Figure 2-4). Prior to coring, sediment profiles faces were 

‘cleaned’ with a shovel, removing any visible traces of weathered material from the profile surface 

and exposing the most pristine inner portion of sediment, then sampled. The core pipe was 

forcefully removed by pulling on the opposite end, being careful not to disturb or lose the 

compacted sediment sample inside. Core lengths were determined by sediment compaction, 

solidity, and ultimately our ability to drive the core pipe into the sediment wall. Typical core 

lengths were approximately 50 cm. The sample was then spilt into two portions labeled ‘inside’ 

and ‘outside’, where inside and outside refer to the sediment furthest into the sediment profile and 

the sediment closest to the exposed profile surface wall respectively. By this measure, an estimate 

of sample variability can be made which may or may not be attributed to sample positioning 

relative to the exposed surface and therefore preservation integrity. It was first conceived that 

sediments further in the deposit would be less likely to be affected by post-deposition alteration 

and therefore better preserved. Both portions of the sample were sealed in plastic bags and brought 

back to the laboratory for analysis.

To access chemical and isotopic variability and possible post-depositional alteration of the 

sediment deposit, core samples were taken along the sediment profile with depth (Figure 2-4). On 

average 3 – 4 horizontal cores were taken at each site. The first sample was taken at the bottom of 

the profile, followed by the middle sample(s), and finally a sample was extracted from the top 

(about 30 -50 cm) of the surface. Cores were taken in this order to prevent contamination of falling 

sediment from above. After collection, sediment samples were treated in the same manner as 

described in Section 2.1.2 to obtain both sand and clay fractions.

2.2 X-ray Diffraction 

Mineral identification of the bedrock and clay fraction of monolithological and main river 

sediment samples was determined by X-ray diffraction (XRD) at the University of Wollongong. 

Using a Phillips 1130/90 diffractometer, samples were analyzed between 4 and 70° 2-theta at 2°



94

Figure 2-4. Paleochannel sediment deposit profiles showing sampling strategy. Left panel: 
sampling profile with depth displaying 3 core locations: one at the bottom of the profile; one in 
the middle of the profile; and one near the surface, Right panel: bottom core sample being 
hammered in, displaying aluminum core pipe and metal core head.

per minute with a step size of 0.02. For both the bedrock and the clay fraction, an aliquot of 

powdered sample was mounted in aluminum holders and placed into the diffractometer for 

measurement. The clay fraction sample was mounted specifically to orientthe clay minerals based 

on their principle reflection. After first analyses, clay fraction samples were treated with ethylene 

glycol and processed a second time allowing better quantification of the expandable clay content. 

Traces were produced through a GBC 122 control system and a semi-quantitative analysis of the

relative proportions of crystalline phases was performed using the Traces and SIROQUANT 

software. An example of a diffraction pattern is shown in Figure 2-5 displaying a non-glycol 

treated clay fraction diffraction pattern (green) overlain by a glycol-treated diffraction pattern (red) 

for the same sample. The red square highlights the difference between the two patterns which 

represents the relative amount of expandable clays in the sample. In this example approximately 

20% of mixed (I/S) layer clays was identified. In Figure 2-6, an example is provided of a clay 
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fraction diffraction pattern which was quantified by the SIROQUANT software. Using the Traces 

software on the diffraction pattern (shown in Figure 2-5), the quartz peak was first shifted to 26.66. 

The pattern was then loaded in SIROQUANT and specific mineral phases selected. The first 5 

degrees and from 44.4 – 44.6 degrees were removed from the analyses as the diffractometer causes 

interference in these areas and therefore cannot quantify them. The yellow pattern is the sample 

diffraction pattern from the diffractometer and the red pattern is the software’s modelled projection 

based on specified mineral phases (Figure 2-6). Percent abundances were calculated using the 

SIROQUANT software by matching the modelled diffraction pattern (using selected mineral 

phases) with the observed diffraction pattern. Based on this example, a chi-squared ( 2) value of 

4.34 was obtained, which indicates the goodness-of-fit between the model and the data. For clay 

sample diffraction patterns, particularly those with large amorphous humps like observed in Figure 

2-5, generally 2 values 5 indicate an acceptable quantification. The reproducibility of the 

mineral quantification for the bedrock and clay fraction was performed by repeated (n = 2) analyses 

of same sample with mixed (I/S) layer ranging from 8 – 19; kaolinite ranging from 66 – 77; and 

illite ranging from 7 – 11 (Table 2-1).  Based on these results of sample replicates the 

reproducibility of biotite, chlorite, kaolinite, quartz, muscovite, orthoclase, albite, and k-feldspar 

is 3%, 0%, 1%, 6%, 1%, 3%, 4%, and 7% (2SD, n = 2), respectively. The reproducibility of mixed 

(I/S) layer, kaolinite, and illite mineral quantification for the clay fraction is 16%, 16%, and 6% 

(2SD, n = 2), respectively. 

Figure 2-5. XRD diffraction pattern of a clay fraction sample showing the non-glycol (green) 
diffraction patter overlain by the glycol (red) diffraction patter. The difference between the two 
patterns represents the amount of expandable clays in the sample.
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Figure 2-6. XRD diffraction pattern of a clay fraction sample being quantified by the 
SIROQUANT software. The yellow pattern is the sample diffraction pattern and the red line is the 
software match to mineral phases. In this example, the chi squared ( 2) value = 4.34 after 
background subtraction, indicating the goodness-of-fit between the sample minerals and the 
software quantification. Large x2 values indicate the model is poor, while smaller 2 values indicate 
the model is in better agreement with the data.

Table 2-1. XRD results of bedrock and clay fraction sample replicates 

2.3 Major and trace elements

2.3.1 Introduction to the Q ICP-MS

Major and trace elements were measured by quadrupole inductively coupled plasma mass 

spectrometer (Q ICP-MS) iCAP (Thermo Scientific, Bremen, Germany) at the Wollongong 
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Isotope Geochronology Laboratory (WIGL) at UOW. The iCAP can be used for direct analyses of 

samples in liquid form. The instrument can be divided into four main components: sample 

introduction; interface (ion generation); ion optics (ion focusing); and, mass analyzer. The 

introduction system of the iCAP used at WIGL consists of a peristaltic pump, a PFA-100 

microflow nebulizer (ESI, Omaha, NE, USA) with a flow rate of 90 – 150 µL min-1, a cyclonic 

quartz spray chamber, and an ICP torch with injector; the interface consists of a Ni sample and 

skimmer cone (Thermo Scientific), and the extraction lens. The introduction system is where the 

liquid sample is pumped via the peristaltic pump to be nebulizer. The sample is transformed into 

an aerosol by the nebulizer and passed to the spray chamber which filters out large aerosol drops, 

thereby improving the signal stability. Then, the sample is carried to the interface region where it 

is injected into the plasma (made by partially ionizing argon gas) and ionized. The newly generated 

ions are brought from atmospheric pressure to the vacuum region via the sample cone and then 

into the mass spectrometer as an ion beam via the skimmer cone. Ions are then introduced into the 

quadrupole mass analyzer which filters out ions based on a specific mass to charge ratio, depending 

on the voltage applied to the quadrupole rods. Finally, ions are passed through the quadrupole, 

transferred to the dual mode secondary electron multiplier (SEM) and detected (Thermo Fisher 

Scientic, 2012); the electrical signal is measured in counts per second (cps).

2.3.2 Sample preparation and concentration quantification

All sample preparation was performed in a Class 100 cleanroom laboratory at WIGL, UOW. 

Perfluoroalkoxy alkane (PFA) vials were used for sediment sample digestion and to dry down 

solutions. Approximately 100 mg of sample powder were weighted in PFA vials and then 

dissolved in Ultrapur 48% HF and Suprapur 65% HNO3 at 100 C for > 12 hours. After drying 

down, the samples were re-dissolved twice in aqua regia (made from Suprapur reagents) at 130 C

for >12 hours to drive off any fluorides. After another dry down step the samples were re-dissolved 

in 4 mL of Suprapur 0.3M HNO3 and an aliquot was diluted and used for measurement. Samples 

were processed alongside full procedure blanks. Geological reference materials: BCR-2, a basalt 

(Oregon, U.S.); GSP-2, a granodiorite (Colorado, U.S.) (both USGS reference materials); and JG-

2, a granite (GSJ reference material) along with replicate samples were processed to assess external 

reproducibility of the concentration measurements.
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Concentration measurements were performed using 50 sweeps and a dwell time of 0.01 s. 

Major elements (Na, Mg, Al, K, Ti, and Ca) were measured in standard mode; most trace elements 

(i.e. Li, Nb, Ta, Nd, Sm, Rb, Ba, La, Ce, Pr) were measured KED mode. A multi-element external 

calibration curve from 0.05 to 300 ppb was used to quantify elemental concentrations using a 

mixture of 71A and 71B multi-element standards (Inorganic Ventures, USA). To assess 

instrumental drift, 1 ppb and 200 ppb solutions were measured every 10 samples for trace and 

major elements, respectively. Instrumental drift was assessed to be < 1% (2RSE) for trace elements 

and approximately 2% (2RSE) for majors. Measures were corrected for blank contribution by 

analyzing a blank solution every 10 samples and subtracting it from the concentration 

measurement. The external relative analytical uncertainty (2 RSD, n = 5) of concentration 

measurements was obtained for major and trace elements by repeatedly measuring geological 

reference materials (BCR-2, JG-2, GSP-2) and assessed for major elements Na, K, Mg, Al, and Ti 

to be 4%, 3%, 3%, 3%, and 3%, respectively; and for trace elements Li, Nb, Ta, Sm, and Nd is 

4%, 5%,7%, 6%, and 5%, respectively (Table 2-2). Sample replicates were also measured to assess 

the local variability within the datasets. The average 2 RSD (n = 5) calculated for major elements 

(Na, K, Mg, Al, and Ti) using natural sample replicates is 18%, 10%, 6%, 8%, and 9% respectively, 

and for trace elements (Li, Nb, Ta, Sm, and Nd) is 7%, 7%, 6%, 8%, and 9%. The larger relative 

errors associated with the measurement of natural samples (particularly clays) likely derives from 

the heterogeneity of the samples themselves; precision on presumably more homogenous reference 

material was therefore better, particular for major elements.

Accuracy of major and trace element concentration measurements was assessed by 

comparison with recommended values measured by Raczek et al. (2001) for BCR-2 and GSP-2

and Korotev, (1996) for JG-2 (Table 2-3). For BCR-2, all measured concentrations for rock 

standards agree with recommended values. For GSP-2, all major elements agree with 

recommended values except Ti, which measured 0.41 0.02% compared to 0.69 0.04% reported 

by Raczek et al. (2001). The Sm and Nd values measured in this study (23.3 0.8 ppm and 181 

12 ppm, respectively) are also slightly less than reported values of 26.2 0.4 ppm and 207 ppm. 

For JG-2, all measured elements except K (measured: 4.33 0.3%; reported: 3.6 0.3%) are in 

agreement with those reported by (Korotev, 1996).
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Table 2-2. External reproducibility of major and trace element concentrations using reference 
materials BCR-2, JG-2, and GSP-2

Table 2-3. Recommended values for BCR-2, JG-2, and GSP-2 geologic reference materials.

BCR-2 and GSP-2 values were reported by Raczek et al. (2001). Li, Nb, and Ta values associated with 
these rock standards derive from the certificate of analysis issued with the reference material. JG-2 values 
were reported by Korotev (1996). Errors were not reported for JG-2 reference materials not for Li, Nb, and 
Ta measurement associated with the GSP-2 material. All reported errors are RSD.

Full procedure blanks were run alongside samples and standards then measured for major and 

trace elements (Table 2-4). For major elements Na, Mg, Al, K, and Ti, blanks ranged from 0.13 

µg – 3.6 µg, 0.3 µg – 2.8 µg, 3.6 µg – 29.5 µg, 0.6 ng – 3.0 µg, and 0.014 µg – 0.9 µg, respectively. 

The average blank mass of Na, Mg, Al, K, and Ti is 1.4 µg, 0.4 µg, 11.7 µg, 1.9 µg, 0.5 µg, 

respectively, which represents an average blank contribution of < 1% for all major elements 

measured. Blanks for trace elements Li, Nb, Ta, Sm, and Nd range from 0.57 ng –
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1.22 ng, 0.01 ng – 0.02 ng, 0.001 ng – 0.005 ng, 0.011 ng – 0.025 ng, and 0.002 ng – 0.005 ng, 

respectively. The average blank mass of Li, Nb, Ta, Sm, and Nd is 0.81 ng, 0.01 ng, 0.002 ng, 

0.003 ng, and 0.015 ng, which represents a blank contribution of << 1% for trace elements. The 

local variability of natural samples was determined by individually processing separate aliquots of 

several samples in order to determine if blank contributions are negligible. The average 

measurement reproducibility (RSD) of major elements Na, K, Mg, Al, and Ti in natural sample 

replicates is 18%, 10%, 6%, 8%, and 9% respectively; and trace elements Li, Nb, Ta, Sm, and Nd 

is 7%, 7%, 6%, 8%, and 9%, respectively. Since the local sample variability is greater than the 

blank contribution for both major and trace elements, blank contributions are considered 

negligible. 

Table 2-4. Full procedure blanks for both major and trace elements

2.4 Sample preparation for B isotopes and concentration

2.4.1 Alkali fusion

Crushed bedrock and sediment samples were digested by alkali fusion in platinum 

(PtAu5%) crucibles using potassium carbonate in a 5:1 flux to sample ratio (Lemarchand et al., 

2012; Tonarini et al., 1997). Routinely, 50 mg of powdered sample, corresponding to 

approximately 2500 ng B, is mixed with 250 mg of ground K2CO3, loaded into the crucible and 

placed in a muffle furnace at 950°C for 40 min. After cooling to room temperature the resulting 

fusion residue typically has a green-blue color, though other colors such as dark red and purple 

have been observed. Approximately 4 mL of 1M HCl (Suprapur ) is added to the crucible causing 

immediate outgassing of CO2 and dissolution of carbonate phases. The crucible is then placed in 

an ultrasonic bath for 20 mins. The solution and the suspended material are pipetted into a 

centrifuge tube and diluted to 40 mL with 18.2 M water. The tube is centrifuged for 20 minutes. 
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This procedure yields a solid residue; however it has been shown not to contain boron 

(Lemarchand et al., 2012).

2.4.2 Reagents

Reagents used in the chromatography include Merck HCl (Suprapur ), NaOH (technical 

grade), NaCl (technical grade), and deionized 18.2 M -cm H2O (Millipore) was used to prepare 

stock solutions. NaOH is B-purified by processing the commercial solution on 1.5 mL of 

Amberlite IRA 743 resin previously cleaned with 6M HCl. Then approximately 5 mL of NaOH is 

loaded onto the column and the effluent goes to the waste. After checking that the eluted solution 

has a basic pH, the column is then filled with NaOH and the eluent is collected in a PFA vial. NaCl 

is B-purified by adding dry Amberlite IRA 743 resin (approximately 10 g) to the stock solution 

and the pH of the solution is adjusted to 8 – 10 by adding several milliliters of B-purified NaOH. 

The pH of the solutions can be checked by pipetting a small amount of solution onto pH paper (not 

dipping it in solution). The K2CO3 used in the alkali fusion was 99.995% trace metals basis, 

powder and chunks form (Sigma Aldrich). Note: the batch of 0.5M HCl used for sample elution is 

the same as that used to make standard solutions and blanks when running the MC ICP-MS; this 

is what is meant by 0.5M HCl (precise).

2.4.3 Ion exchange chromatography

Boron is extracted from the supernatant by ion exchange chromatography performed under 

Class 100 cleanroom conditions at WIGL. Following the method of Lemarchand et al. (2012) and 

Roux et al. (2015), ion exchange is performed in two steps. First, a column containing 1.5 mL of 

BIORAD AG50W-X8 cation exchange resin is cleaned with 6M HCl by filling the column at least 

twice (Table 2-5). The column is then conditioned by adding 2 mL of 0.01M HCl three separate 

times, waiting for the solution to completely pass before proceeding to the next step. The sample 

is weighed and loaded onto the column, which typically consists of 5 mL of the total sample 

solution, corresponding to approximately 300 ng of B. The sample is passed through the column 

and collected into a 15 ML centrifuge tube. To ensure full sample recovery, 1 mL of 0.01M HCl 

is added to the column twice after the sample passes and collected. The first column is used to 
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remove cations from the solution, particularly K, which is added to the sample via the K2CO3 flux 

during alkali fusion. Because boron is present in acidic solutions as uncharged boric acid, B(OH)3,

it is not retained by the cation exchange resin. However, some other elements may not stick to the 

resin and also pass to the second step where they will be removed. The pH of the solution is then 

raised to 8 – 10, which is optimal for B adsorption on the Amberlite resin in the second step, by 

adding a small (~500 µL – 2000 µL) amount of purified NaOH to the sample elution. 

A second column filled with 0.5 mL of crushed and sieved (100 – 200 mesh) Amberlite 

IRA 743 B-specific resin is then cleaned with approximately 20 mL of HCl; more (~50 mL) if the 

column has not been used in a long time (10 – 15 days) (Table 2-5). The column is then filled with 

10 mL of Milli-Q water to rinse all traces of acid from the resin. The resin is conditioned with 5 

mL of Milli-Q water in three steps: 1 mL, 2 mL, and 2 mL. The pH-adjusted sample is then 

slowly pipetted onto to the column as not to disturb the resin. There are three matrix elution steps 

which are accomplished by adding 2.5 mL of water, 2.5 mL of NaCl, and then 2.5 mL of water 

again, consecutively. Each individual step is done in three phases: 0.5 mL; 1 mL; and 1 mL. The 

two water steps are acting to rinse the resin, while the chloride in the NaCl solution exchanges 

with anions that are possibly absorbed on the Amberlite resin due to the presence of tertiary amino 

groups in the resin. After the three matrix elution steps, B is eluted in 5 mL of precise 0.5M HCl 

in three steps: 1 mL, 2 mL, and 2 mL. Ten minutes should pass between the loading of the first 

and second aliquots of precise 0.5M HCl during the sample elution. This is to ensure the resin 

becomes fully acidified and all B is desorbed from the resin. 

2.5 Boron concentration measurements by ID ICP-MS

Boron concentrations were determined by isotopic dilution (ID ICP-MS) on the Q ICP-MS iCAP 

(Thermo Scientific, Bremen, Germany) at WIGL, UOW following the procedure of Roux et al. 

(2015). Isotope ratios were measured on the iCAP to prevent cross-contamination of 10B-enriched 

solutions on the MC ICP-MS, which is used for isotope ratio determination of natural samples. 

Isotope dilution was used because it has the best analytical precision compared to other methods 

even at low concentrations (ng g-1); provides ideal internal standardization which allows accurate 

correction of the measured ion currents from instrumental fluctuations (because isotope ratios are 

measured); and whose results are not significantly affected by sample to sample variations or the 
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chemical matrix (Menard et al., 2013). The isotope dilution technique consists of mixing a well-

known mass of a sample solution and a 10B isotopically enriched “spike” solution; NIST SRM 

952, certified 11B/10B = 0.0532 in this case. The measured 11B/10B ratio is then used to calculate 

the mass of B in the sample using Equation 2-1:

= × ×
×

×
×

 – 

 – 
(2-1)

where is the mass of B in the sample given atomic mass units (amu); and are the 

volume (mL) and concentration (ppb) of the spike solution that are added to the sample,

respectively; and are the atomic masses of 10B and 11B (M11 = 11.009305 amu and M10

= 10.012938 amu); , , and are the 11B/10B isotopic ratios of the sample, the

Table 2-5. Ion exchange chromatography protocol for the separation of B from silicate materials 
and waters

Column Step Purpose Volume (mL) Reagent

1# 1 Clean column 10 6 M HCl 

2 Clean column 10 6 M HCl
3 Condition column 6 0.01M HCl
4 Sample load 5
5 Boron elution 2 0.01M HCl

2* 1 Clean column 20 0.5M HCl

2 Clean column 10 H2O
3 Condition column 5 H2O
4 Load Sample at pH 9 7 – 25
5 Matrix elution 2.5 H2O
6 Matrix elution 2.5 0.5 M NaCl

7 Matrix elution 2.5 H2O

8 Boron elution 5 0.5 M HCl (precise)
# BIORAD AG50W-X8 cation exchange resin (100 – 150 µm), 1.5 mL bed volume
* Amberlite IRA 743 B-specific anion exchange resin (100 – 200 µm), 0.5 mL bed volume
Column 1 (Step 4): Be sure to collect sample in PFA vial after loading onto column. Column 1 and 2 (Step 
4): Sample is not loaded in a specific reagent, rather the supernatant solution from the alkali fusion process 
(column 1) and the sample elution from column 1 + an unspecified amount of NaOH, sufficient to raise to 
the pH level to 8 –10 (column 2). For water samples, the amount of sample loaded onto column 2 depends 
on the B concentration of the sample.

spike, and the measured value of the mixture, respectively. As the ratios of the sample and spike 

need to be known independently, the accepted 11B/10B values for B isotope standards NIST SRM 

951 and 952 are used for and , which are 4.0436 and 0.038, respectively.

In the laboratory, the sample was typically prepared by placing a rinsed ICP vial onto the 

balance and weighing 1 mL of sample elution which passed both steps of ion exchange 

chromatography. Spike solution was then added to the vial and its weight recorded; the mixture is 
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isotopically homogenized by shaking and letting rest for several hours. The ideal sample to spike 

mixture ratio is between 0.3 and 1.5, which results in a measurement uncertainty as low as 1% (

2 RSE) for B concentrations (Roux et al., 2015). Sample introduction is similar to that explained 

in Section 2.3.2, the only difference being introduction acid, which for this protocol is 0.5 M HCl 

(same as the sample), opposed to the 0.3 M HNO3 used to measure major and trace elements. 

Intensities of both B isotopes at masses 10 and 11 were measured in a 0.5M HCl solution to 

establish the baseline signal before each sample and subtracted from the sample ratio ( ). The 

average baseline counts per second (cps) represent approximately 0.6% and 0.4% of the total B on 

mass 11 and 10, respectively, in the measured sample. Mass discrimination on the measurement 

of B isotopes by ICP-MS is significant. Measured sample ratios are therefore corrected by the 

classical exponential law:

= × (2-2)

where is the true (corrected) 11B/10B isotope ratio of the sample; and is the mass 

discrimination exponential factor. According to Roux et al. (2015), who performed experiments 

on the relationship between and using solutions with various 11B/10B ratios, within and 

between analytical sessions, only varies slightly (< 5%) over the range of measures isotope 

ratios, however the value may vary significantly from one session to the other (up to 50%) 

attributed to changes in instrumental settings. Hence, must be determined each session by 

preparing and measuring a 10 ppb NIST SRM 951 standard solution with a known 11B/10B isotope

ratio of 4.0436; all sample ratios are then corrected for mass discrimination based on the value 

of the standard solution using Equation 2-2.

Geological reference materials and sample replicates were used to access the external 

reproducibility and accuracy of B concentration measurements (Table 2-6). The average B 

concentration obtained for the W-2a rock standard is 11.7 0.4 ppm (2 SE, n = 6), which is in 

good agreement with Govindaraju (1994) who report a B concentration of 12 0.3 ppm (2 SE). 

The 2 RSE associated with the repeated B concentration measurement of this reference material is 

3% (n = 6). Three individually processed aliquots of the SDC-1 reference material were also 

measured for B concentration and yield an average B value of 12.6 0.3 ppm (2SE, n = 3) also in 

agreement with the reported value Govindaraju (1994) who reported a B concentration of 13 (

n/a). A sample replicate (14B) was also measured to assess the external variability of natural 
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sediment samples. An average value of 15.6 0.3 ppm (2SE, n = 3) was obtained for the bulk 

sediment, yielding a 2 RSE of 2% which is the same as that obtained for the SDC-1 reference 

material and slightly better than that obtained for the W-2a material. External reproducibility of 

all standards (W-2a and SDC-1) and sample replicate (14B) in this study is 3% (RSD).

Table 2-6. External reproducibility and accuracy of B concentration measurements of geological 
reference materials and sample replicates processed through the entire chemical procedure

Full procedure blanks were run alongside of silicate samples and measured for B 

concentration to access the blank contribution on B measurements. Throughout the course of this 

study the full procedure blank from powdered sample to measurement on the Q ICP-MS ranged 

from 26 to 39 ng of B with an average value of 33 2.3 ng (2SE, n = 11) (Table 2-7). 

Contamination tests aiming to identify the B contributions from each individual source including: 

1) K2CO3 flux used in the alkali fusion, 2) contamination from the muffle furnace, 3) 

contamination from the resins during chromatography, and 4) contamination via introduction to 

the mass spectrometer yield that on average approximately 26 ng of B contamination originate 

from the furnace, 7 ng of B from the K2CO3 flux, < 1ng of B from the resins, and < 1 ng of B via 

introduction to the mass spectrometer. Since the muffle furnace was identified as the greatest 

contributor of B in the process, regular cleaning via long hours of baking (empty) and cleaning of 

any residue inside was performed regularly throughout the study. The range of B blank 

contributions on the geological reference materials used to test the protocol (W-2a and SDC-1) are 

between 4 – 5 % of the total B analyzed in each sample. Due to their lower concentrations (12 –

13 ppm), the blank contribution on these rock standards are higher than most measured samples in 

this study. Similar to the rock standards, bedrock and sand fraction samples also have lower B 

concentrations ranging from 12 – 19 ppm and 11 – 37 ppm, respectively, which represent blank 



106

contributions between 3 – 5% (2 RSE) and 1 – 6% (2 RSE), respectively. On the contrary, clay 

fraction samples, which were the majority of samples measured in this study, typically have higher 

B concentrations (average 50 ppm) with an actual range between 19 – 61 ppm which represent 

blank contributions between 1 – 4% (2 RSE). In instances where B concentrations were 

particularly low, more than 50 mg (~60 – 65 mg) was processed through the chemistry to maintain 

a low blank to sample ratio. Additionally, more than 5 mL (between 5 – 15 mL) of sample 

supernatant was B- purified in order to obtain approximately 250 ng of B in the analyzed sample.

Dissolved load samples were also processed by ion exchange chromatography (column 2 

only) and analyzed for B concentration. The blank contribution coming from ion exchange 

columns and chemistry reagents was assessed by running blanks alongside dissolved load samples. 

The B concentration of the blanks passed on the water columns vary from 1 ng – 5 ng, with the 

average value of 2 1 ng (2SE, n = 9) (Table 2-7). The amount of B processed for dissolved load 

samples and seawater standards in this study is 250 ng of B per sample/standard. Hence, the B 

blank contribution on a dissolved load sample and standard is < 1% (2 RSE).

Table 2-7. Full procedure blank measurements processed with silicate and dissolved load (water) 
samples throughout the course the study

Silicate samples underwent alkali fusion, two steps of ion exchange chromatography, and 
measurement by ICP-MS. Dissolved load samples passed on the water columns only underwent 
one chromatography step (column 2) and measurement on the ICP-MS. 
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2.5.1 Boron recovery

The efficiency of the B chemical purification was tested by repeatedly (5x) processing 

a NIST SRM 951 reference solution through the entire ion exchange chromatography. The B 

concentration of the solutions were determined before the experiment and the effluents analyzed 

for B content after the second purification step. The total elution volume from the second 

chromatography step was 5 mL; this solution was measured in one aliquot. Results for this effort 

show that the B recovery from the chromatography ranged from 97% to 102% 2 (1SD, n = 5) 

with an average value of 98%. Boron recovery was also tested for the entire protocol from alkali 

fusion to sample elution. Individually processed aliquots of the geological reference material W-

2a (USGS) were processed through the entire protocol and yield a recovery of 97% 3 (1SD, n = 

6). Although slightly less (and more) B was measured after the entire procedure than compared to 

before, these results indicate a good B recovery and efficiency of the protocol. Additionally, 

accurate and precise B concentration measurements of geological reference materials demonstrate 

that an average recovery of 98% is sufficient to yield reported standard values (see below). 

2.6 Boron isotope measurements by MC ICP-MS

Boron isotope ratios were determined by multi-collector inductively coupled plasma mass 

spectrometer (MC ICP-MS) on a Neptune Plus (Thermo Scientific, Bremen, Germany) at 

WIGL, using a protocol adapted from Roux et al. (2015). The MC ICP-MS offers easy and robust 

sample introduction, high sample throughput and mass resolution, and comparable precision to 

that achieved by TIMS (Albarède et al., 2004). The instrument can be divided into three parts: the 

ICP module, the ESA module, and the multi-collector module (Figure 2-7). The ICP module 

includes the inlet system where the liquid (or gas) sample is continuously fed into the nebulizer 

where an argon/sample aerosol is created and then passed to the quartz spray chamber that refines 

the aerosol by removing large droplets. The mixture is then directed into the injector of the plasma 

torch, which is located in the center of the load coil which couples inductive RF field into the Ar 

gas flow. Here, the fine sample aerosol from the inlet system is injected into the plasma with a 

sustained temperature of 8000 C where it is ionized. In the ESA module, ions (and other sample 

and gas elements) enter the mass spectrometer through the opening of the sample cone and further 

refined through the skimmer cone. A differential pumping system is used to pump down the 
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atmospheric pressure at the sample cone creating a vacuum. Inside the transfer lens, the ion beam 

is accelerated to kinetic ion energy. The mass analyzer controls, shapes, and focuses the 

Figure 2-7. Components of the MC ICP-MS Neptune Plus (Thermo Fisher Scientific). Figure 
modified from Thermo Fisher Scientific (2009).
kinetic energy of the ion beam. In the multi-collector module, the ion beam is accelerated through 

a magnetic field, which separates ions based on their mass to charge ratio. This multi-collector is 

fitted with a series of Faraday cups which are connected to a current amplifier that receive the 

accelerated ion beams from individual masses (element isotopes) and report the resulting intensity 

(in Volts).

For the measurement of boron isotopes, the sample is introduced in liquid form dissolved 

in 0.5M HCl. The blank measurement and standard bracketing solution were all prepared with 

same batch of 0.5M HCl acid as that used for samples as to avoid isotopic bias induced by different 

acid media matrices, which was demonstrated by Roux et al. (2015). The instrument wash solution 

is also 0.5M HCl. The sample introduction system consists of a standard sample and skimmer 

cone, dual cyclonic spray chamber, and an APEX PFA nebulizer (Elemental Scientific, Omaha, 

USA) with a 100 µL min-1 flow rate (Table 2-8). Processing of all samples was automated using a 

CETAC ASX-112FR autosampler. H3 and L3 Faraday cups were used for collection of the 11B

and 10B ion currents, respectively, which were each connected to 10-11 amplifiers. Data acquisition 
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was performed over 10 blocks of 10 cycles for samples and standard measurements and 5 blocks 

of 10 cycles for instrument blank measurements with eight seconds of integration for each 

measurement. An amplifier baseline and peak center were performed at the start of each analysis. 

Tuning was routinely performed on mass 11 using a 50 ppb NIST SRM 951 primary standard 

solution; this yielded an instrument sensitivity of approximately 6 – 9 V of 11B per ppm of B. 

Figure 2-8 displays a typical peak shape after tuning. To correct for the instrumental blank 

contribution, a 0.5M HCl solution was measured before every sample and standard and subtracted 

from the sample measurement. The measured 11B/10B ratio was corrected for instrumental mass 

discrimination through external normalization using standard bracketing. Mass discrimination-

corrected 11B/10 11B (unit: ‰) by normalizing the ratio of the sample to that 

of the NIST SRM 951 reference material:
11B (‰) = [(11B/10B) sample / (11B/10B) NIST-SRM 951 –1] x 1000                     (2-3)

Between sample and standard analyses, rinsing was performed for 10 min with a 0.5M HCl 

solution. The slope generated for this baseline correction was 0.15 mV min-1 corresponding to an 

uncertainty of approximately 0.16‰, which is deemed acceptable for this method (Roux et al., 

2015).

2.6.1 MC ICP-MS Performance 

The accuracy and precision of the 11B/10B measurements on the MC ICP-MS and overall 

instrument performance (tuning, signal stability, mass calibration, etc.) was assessed before and 

during every analytical session by measuring a 50 ppb certified B isotope standard ERM AE120

solution whose certifie 11B = –20.2 0.6‰ (2 SD) (Brand et al., 2014; Vogl and Rosner, 2012).

11B measured over the course of the study was –20.5 0.1‰ (2 SE, n = 34) (Figure 

2-9). The grey line in Figure 2-9 is the average certified value of the standard; the grey box is the
11B value measured in this 

study with its associated error (1SD) in t 11B values

in this study are slightly lower that the reported average but within range of the reported error on

the reference material. Over time, no significant or systematic drift in the 11B/10B measurements 

of this reference solution was observed. If the measured value of the reference solution did not fall 
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with the error margin of the certified value, the analytical session was terminated and the 

instrument re-tuned. 

Table 2-8. Neptune Plus MC ICP-MS measurement settings for B isotopes at WIGL

Component Setting

RF power 1200 W

Ar cooling gas flow 1.050 l min–1

Acceleration voltage 10 kV

Faraday cups L3, H3

Spray chamber Quartz dual-cyclonic

Nebulizer APEX PFA ST-2056

Uptake time 70 sec

Uptake rate 100µL min–1

No. cycles (baseline) 50

No. cycles (sample, standard) 100

Sensitivity on 11B 9 V per µg g–1

Primary standard

NIST SRM 951

50 ng g–1

Sample concentrations 20 – 60 ng g–1

Figure 2-8. Typical peak shape measured on mass 11 after tuning in a 50 ppb NIST 951 solution 
during an analytical session on the Neptune Plus MC ICP-MS at WIGL, UOW
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Figure 2-9. MC ICP-MS instrument performance over time assessed by measurement of the 
11B = –20.2 0.6‰ (2 SD); solid grey line is the certified standard 

average; grey box is the 2 SD on the certified a 11B
obtained throughout this course of the study, –20.5 0.1‰ (2 SE, n = 34). The red box represents 
a 1 SD error on the average measures. Data points are plotted sequentially from left to right over 
time.

2.6.2 Method verification by measurement of reference materials

Various certified geological reference materials (W-2a, diabase; BCR-2, basalt) and 

sample replicates (BLK 4D) were processed through the entire chemical procedure including rock 

dissolution, ion exchange chromatography, and measurement by MC ICP-MS to verify the 

precision and accuracy of the protocol. Additionally, the standard solutions ERM AE 120 and 

seawater were repeatedly processed via ion exchange chromatography alongside dissolved load

samples and analyzed by MC ICP-MS to verify the ion exchange chromatography. All rock 

standard and sample aliquots were processed by alkali fusion individually. Measurement of the 

11B values ranging from –20.1 0.2‰ to –20.7 0.2‰ (Figure 

2-10A; Table 2-9); BCR-2 values ranging from –5.7 0.2‰ to –6.1 0.2‰ (Figure 2-10B, Table 

2-9); seawater values ranging from 39.7 0.2‰ to 40.0 ± 0.2‰ (Figure 2-10C; Table 2-9); W-2a 

values ranging from 11.90 0.2‰ to 12.60 0.2‰ (Figure 2-10D, Table 2-9); and the sample 

11B values ranging from –11.5 0.2‰ to –12.14 0.2‰ (Figure 2-10E, 

Table 2-9 11B error values are reported as 2 SE. 

11B value of –20.4 0.2‰ (2 SE, n = 7) is 

11B value of –20.2 0.6‰ (2SD) (Brand 

et al., 2014; Vogl and Rosner, 2012) 11B value of seawater measurements is 39.8 
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0.2‰ (2 SE, n = 4), which is in agreement with Foster et al. (2010) who reported an average value 

of 39.61 0.04‰ (2 SE, n = 28). However, the seawater used in this study was not the international 

seawater standard, but rather collected nearshore in Los Angeles, California in 2010 (reported in 

Roux et al., 2015). Therefore, comparisons of reported seawater measurements in this study to 

those of Foster et al. (2010) are only general comparisons to assess accuracy, as the same exact 

solution was not analyzed in both cases. These results indicate that the ion exchange 

chromatography used to extract and purify B has no significant effect on the measured B isotopic 
11B compositions of the geological reference materials 

W-2a and BCR-2 are 12.2 0.2‰ (2 SE, n = 6) and –5.9 0.2‰ (2 SE, n = 4), respectively. These 

values are very similar to measurements made by Gangjian et al. (2013) 11B values 

for W-2a and BCR-2 of 12.2 0.4‰ (2 SE, n = 3) and –5.9 0.2‰ (2 SE, n = 4). These results 

show that the entire procedure of B extraction and purification has no significant effect on the 

measured B isotopic composition of the samples. 

Overall, the B isotope measurements in the different reference materials demonstrate good 

repeatability (Figure 2-11) and are within two standard errors of reported values for all reference 

materials. In addition to reference materials, sample replicates were used to assess precision of B 

11B value of –11.9 0.2‰ (2 SE, n = 6) 

for the sample replicate BLK 4D was obtained which demonstrates good reproducibility of natural 

samples. The reproducibility of B isotope measurements in natural samples is therefore the same 

as those of BCR-2 and W-2a reference materials. Therefore, considering the external 

reproducibility of all silicate materials measured in this study (W-2a, BCR-2, and BLK 4D), which 

were processed through the entire chemical procedure including alkali fusion, the average external 

reproducibility on B isotope measurements is 0.4‰ (2 SD). Similarly for dissolved load samples, 

by considering the external reproducibility of both the ERM AE 120 and seawater solutions which 

passed only the ion exchange chromatography steps and measurement on the MC ICP-MS, the 

average external reproducibility of B isotope measurements is also 0.4‰ (2SD).
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Figure 2-10. Reproducibly of 11B/10B ratio measurements ( 2SE) for A) standard solution ERM 
AE120 (n = 7), B) W-2a diabase (n = 6), C) seawater (n = 4), D) BCR-2 basalt (n = 4), and E) 
sample replicate BLK 4D (n = 6). The average measurement value and 2 SE for each standard and 
sample replicate is listed at the top right of each graph. The general agreement between sample 
and standard replicates demonstrates high reproducibility of boron isotope measurements.
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Table 2-9. Boron isotope ratios of reference material processed through the entire chemical 
procedure
Sample 11B (‰) 2 SE n Reported Value

ERM AE 120 -20.5 0.2 7 –20.2 0.6‰ (2SD) 

boric acid standard Vogl and Rosner (2012);
Brand et al. (2014)

W-2a 12.2 0.2 6 12.2 0.4‰ (2 SE, n = 3) 

diabase Gangjian et al. (2013)

BCR-2 -5.9 0.2 4 –5.9 0.2‰ (2 SE, n = 4) 

basalt Gangjian et al. (2013)

Seawater 39.8 0.2 4 –39.61 0.04‰ (2 SE, n = 28)  

natural solution Foster et al. (2010)

BLK 4D -11.9 0.2 6

Sample replicate
Internal analytical uncertainties are reported at 95% confidence interval. Samples were processed as 
individual aliquots and measured over several sessions throughout this study.
Reproducibility of B isotope ratios is assessed to be 0.4‰ (2SD).

2.7 Neodymium isotope analysis

2.7.1 Sample preparation and analyses for neodymium (Nd) isotopes

In addition to boron isotopes, many silicate samples were also measured for Nd isotopes in 

order to better understand sediment provenance, particularly in the paleochannel sediment 

deposits. Similar to B isotopes, Nd isotopes were processed at WIGL, UOW in a Class 100 

cleanroom laboratory; concentrations and isotopes were measured by Q ICP-MS and MC ICP-

MS, respectively. The entire protocol was then verified with geochemical reference materials.

2.7.2 Reagents, labware, and reference materials

Reagents used in sample preparation include Merck Suprapur and Ultrapur® grades: HCl 

(Suprapur®); HNO3 (Ultrapur®); and HF (Ultrapur®). Deionised 18.2 M -cm H2O (Millipore) 

was used to prepare stock solutions and for dilution. Perfluoroalkoxy alkane (PFA) vials were used 

for sample digestion and to dry down solutions. Vials used for MC ICP-MS analysis were made 

of high-density polyethylene (HDPE), and for Q ICP-MS analysis, of polypropylene (PP). The 

PFA labware was washed overnight at 100 C in 7.5 M HNO3, followed by a wash with 6 M HCl 

- 0.16 M HF at 100 C and rinsed with H2O. This cleaning procedure yields Nd blanks of <0.06 pg. 
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HDPE and PP vials and caps were twice rinsed with 1.5 M HNO3. Reference materials with known 
143Nd/144Nd ratios were used in this study to assess accuracy of the 143Nd/144Nd ratios: BCR-2,

basalt from the Bridal Veil Flow Quarry (Oregon, U.S.) (Wilson, 1997); GSP-2, granodiorite from 

the Silver Plume Quarry (Colorado, U.S.) (Wilson, 1998) (both USGS reference materials), and 

JG-2, granite from Hirukawa-mura (Japan) (GSJ reference materials) (IMAI et al., 1995).

2.7.3 Sample digestion and ion exchange chromatography 

Approximately 100 mg of powdered geological reference material were weighed, 

corresponding to 2.6 µg, 2.8 µg, and 2.0 µg of Nd for BCR-2, JG-2, and GSP-2, respectively. The 

aliquots were then dissolved in PFA vials with 48% HF and 65% HNO3 at 100 C for >12 hours. 

The samples were then dried down and re-dissolved twice in aqua regia at 130 ºC for >12 hr to 

break down any fluorides. Samples were then dried down and re-dissolved in 6 mL of Ultrapur®

1.5 M HNO3. Solutions showed no signs of undissolved residues.

The automated purification of Nd is performed using the prepFAST-MC™ system (ESI, 

Omaha, NE, USA). The prepFAST-MC™ is a fully-automated, low pressure (<100 psi), PFA 

chromatography system that performs several basic functions to isolate elements of interest, such 

as sample loading, cleaning and conditioning of the column, matrix wash and elution of the target 

fraction. Two PFA columns to perform the chromatography: the first is a 600 µL column, filled 

with 100 µL of 100-150 µm Prefilter resin (Eichrom Technologies, USA) under 500 µL of 100-

150 µm TRU resin (Eichrom Technologies, USA); the second is a 2000 µL column which is filled 

with 2000 µL of 50-100 µm Ln resin (Eichrom Technologies, USA). This technique was adapted 

from Pin and Zalduegui (1997) and further developed (automated) at WIGL, UOW.

For the first separation, samples are loaded in 2 mL of 1.5 M HNO3 (1/3 of the total digested 

sample) onto the first column. The Prefilter resin is used to prevent leakage of TRU resin during 

the elution. The resin is first cleaned with 6 mL of 3 M HCl, then 6 mL of 0.5 M HCl, and 6 mL 

of 0.1 M HCl – 0.3 M HF. The resin is then conditioned with 4 mL of 1.5 M HNO3 and the sample 

is loaded in 2 mL of 1.5 M HNO3. Following the initial sample load, 2 mL of 1.5 M HNO3 is 

deposited into the sample vial to reflux any remaining sample residue and then loaded onto the 

column. The matrix is washed with 5 mL of 1.5 M HNO3, and finally REE are eluted in 4.5 mL of 

3 M HCl. The procedure is summarized in Table 2-10 and the elution profile is shown in Figure 

2-11A. Following the first separation, the REE elution cut was dried down then refluxed in 500µL 
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of 0.25 M HCl. The second column is cleaned twice with 6 mL of 6 M HCl and then 4 mL of 18.2 

2O. The column is conditioned with 4 mL of 0.25 M HCl and the sample is loaded in 0.5 

mL of 0.25 M HCl. The matrix is then washed with 5 mL of 0.25 M HCl. The Nd fraction is finally 

eluted in two 7.5 mL steps using 0.25 M HCl. This procedure is summarized in Table 8 and the 

elution profile is shown in Figure 2-11B. After the chromatography, the Nd elution was dried down 

and refluxed in 4 mL of 0.3 M HNO3, to achieve a concentration of 200 ppb Nd, ready for isotope 

ratio measurement by MC ICP-MS.

Separation of Nd from the sample matrix is achieved with the two-step chromatographic 

separation method described above and summarized in Table 2-10. For the first column, the elution 

curve determined using 9 mL of 1.5 M HNO3 shows an almost complete matrix removal from the 

REE elution: Na (100%); Mg (100%); Al (100%); Fe (99.8%); and K (100%) (A). In the REE 

elution, 4.5 mL of 3M HCl was used to recover 100% of the Nd and 94.5% of the Sm in the 

solution.

Table 2-10. Ion exchange chromatography protocol for the separation of Nd from silicate 
materials

Column Step Purpose Volume (mL)
Flowrate

(µL min-1)
Reagent

1§# 1 Clean column 6 5000 3 M HCl (UP)

2 Clean column 6 5000 0.5 M HCl (UP)
3 Clean column 6 5000 0.1 M HCl – 0.3 M HF (UP)
4 Condition column 4 4000 1.5 M HNO3 (UP)
5 Load Sample 2 400 1.5 M HNO3 (UP)
6 Reflux into vial and load 2 400 1.5 M HNO3 (UP)
7 Elute sample matrix 5 3000 1.5 M HNO3 (UP)
8 Elute REE fraction 4.5 3000 3 M HCl (UP)

2* 1 Clean column 2 x 6 4000 6 M HCl (SP)

2 Clean column 4 4000 H2O (Millipore)
3 Condition column 4 4000 0.25 M HCl (SP)
4 Load Sample 0.5 600 0.25 M HCl (SP)
5 Elute sample matrix 5 3000 0.25 M HCl (SP)
6 Elute Nd fraction 2 x 7.5 3000 0.25 M HCl (SP)

§Prefilter Resin [100-150 µm] (Eichrom Technologies), 100µL bed volume
#TRU Spec resin [100-150 µm] (Eichrom Technologies), 500µL bed volume
*Ln Spec resin [100-150 µm] (Eichrom Technologies), 2000µL bed volume
Reagent grades: Ultrapur® (UP); Suprapur® (SP), Merck; Deionized 18.2 M -cm H2O (Millipore)

For the second column, the elution curve determined using a total of 140 mL of 0.25 M 

HCl shows that the Nd elution starts after 5 mL of 0.25M HCl are passed through the column, and 

>94% of Nd are recovered by collecting the following 15 mL (B). Following this protocol, 100% 
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of the Sm in solution is separated from the Nd fraction, which is eluted 20 mL after Nd elution and 

slowly trickles out of the column for the next 100 mL. Other REE present in the Nd elution include 

Pr (95% of the amount loaded), Ce (90%), Gd (83%), and La (11%) (Figure 2-11B). The presence 

of Pr and Gd does not interfere on the measured 143Nd/144Nd ratio, as they do not cause any relevant 

isobaric or spectral interferences. Both Gd isotopes (152Gd and 154Gd) only cause interferences on 
152Sm and 154Sm, respectively (Yang et al., 2011), while Pr only has one stable isotope (141Pr) that 

may only cause interference on the 142Nd isotope through the molecular formation of PrH+ (Pin et 

al., 1997; Braun and Ghersini, 1975). Previous studies have shown that the presence of 140Ce has 

no effect on 143Nd/144Nd measurements (Yang et al., 2008, 2011; Gioia and Pimentel, 2000). For 

example, Yang et al. (2011) tested this by spiking a single element Nd solution with different 

amounts of Ce up to Ce/Nd = 3 (Figure 2-12). Results from this experiment confirm that the 

measured 143Nd/144Nd ratios are not affected by Ce/Nd ratios of 3. Note that for the geochemical 

reference materials analyzed in this study, the Ce/Nd ratio was always < 2. Therefore, the presence 

of Ce in Nd elution does not impact 143Nd/144Nd ratios. Additionally, the residual 139La in the Nd 

elution does not cause isobaric interference on the 143Nd/144Nd ratio; the La oxide (139LaO+) would 

only cause interference on mass 155, which is not of interest.

2.7.4 Neodymium isotope measurements

Neodymium isotope measurements were performed on Neptune Plus MC ICP-MS at 

WIGL, UOW using jet sample and standard skimmer cones, a cyclonic spray chamber and a PFA 

nebulizer with ~100 µL min-1 flow rate (Elemental Scientific, Omaha, USA). The analysis was 

performed in static low-resolution mode via multi-collection with nine Faraday cups, monitoring 

masses 140, 142, 143, 144, 145, 146, 148 and 150. Data acquisition was performed over nine 

blocks of 10 cycles of eight seconds integration each. An amplifier baseline and peak center were 

performed at the start of each analysis. A routine instrumental sensitivity of ~3 V of 145Nd per ppm 

of Nd was achieved. To correct for the instrumental blank contribution, a blank solution was 

measured before and after every sample and the average value was subtracted from the sample 

measurement. For all measured 143Nd/144Nd isotope ratios, the mean and two standard deviations 

from the mean (2SD) were calculated and tested for outliers. Beyond this threshold, measurements 

were rejected.
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Figure 2-11. Elution profiles for Nd chromatography procedure. A) Elution curve for the first 
column, where REE are separated from the sample matrix (blue shaded area). B) Elution curve for 
the second column; Nd elution shown in blue shaded area. Neodymium and Sm are efficiently 
separated (inset). Concentration determination methods are explained in Section 2.3.2.
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Figure 2-12. The 143Nd/144Nd isotope ratios for IGG Nd (200 µg L-1) in-house standard spiked with 
different and increasing amounts of Ce from Ce/Nd 10-4 to 101. Error bars for individual 
measurements are 2SE. The red line represents the Mean Square of Weighted Deviates (MSWD) 
for all measurements. Results show that there are no spectral interferences on the mass biased 
corrected 143Nd/144Nd ratio for Ce/Nd up to 3 (maximum ratio found in most geological samples). 
The maximum Ce/Nd ratio of samples measured in our study is < 2. Modified from Yang et al. 
(2011). 

Table 2-11. Faraday cup configuration on the MC ICP-MS

Cup
Isotope 
monitored

Application

L4 140Ce Indication of Ce content in sample
L3 142Nd Monitored; not used
L2 143Nd Isotope of interest
L1 144Nd Isotope of interest; used for mass bias correction
C 145Nd Used for tuning
H1 146Nd Used for mass bias correction
H2 147Sm Monitored for its interference on 144Nd

H3 148Nd Monitored; not used
H4 150Nd Monitored; not used

For a radiogenic isotopes such as Sm-Nd, the use of internal normalization for mass 

discrimination correction is commonplace in MC ICP-MS. In this study, internal normalization of  
143Nd/144Nd ratio measurements is performed using Russell's exponential law (Baxter et al., 2006)

with an accepted 146Nd/144Nd ratio value of 0.7219 (Wasserburg et al., 1981). In each analytical 
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session, the mass fractionation coefficient ( ) for the 146Nd/144Nd ratio was determined using 

Equations 2-4 and 2-5 (Yang et al., 2010):

= ( / ) (2-4)                                                     

where R and R represent the true and measured ratios of an isotope of exact mass M to an 

isotope with an exact mass of M . Therefore, is the mass fractionation coefficient which can be 

expressed as:

= /  (2-5)

Mass bias correction is necessary to calculate accurate 143Nd/144Nd isotope ratios. Here, relatively 

small variations of (0.0298 – 0.0373) were observed within individual sessions. Interferences 

from 147Sm were corrected by normalization to the 147Sm/144Nd ratio, applying the reported value 

of 4.83870 (Thermo Scientific, 2008).

2.7.5 Blanks and Carryover

Total procedure blanks were interspersed, processed and measured alongside rock standard 

aliquots. The average total procedure blank mass was 136 ± 103 pg Nd (2SE; n = 3). It affects 

measured 143Nd/144Nd isotope ratios by only ± 0.000003, which is less than the average analytical 

precision of a typical session (±0.000005). Thus, the blank contribution on the 143Nd/144Nd isotope 

ratio can be therefore considered negligible. The blanks observed here are comparable to those 

reported in other studies, ranging from 1 to 385 pg of Nd (Saji et al., 2016; Z. Chu et al., 2014; C. 

F. Li et al., 2007; Gioia and Pimentel, 2000).

The prepFAST-MC™ processes samples sequentially on a unique set of columns, thus the 

same resin is used for a number of samples. Therefore, the carryover from previous samples on 

the resin must be minimized. Chromatography blanks were processed and interspersed with 

samples to assess carryover effects from previous samples. The typical sample load for the 

geochemical reference materials used here was 800 ng of Nd. The amount of Nd carried over 

between samples was 102 ± 42 pg of Nd in the final Nd elution (n = 16; 2SE), or 0.01% of the 

total amount of processed Nd. Since the total procedure blank of the protocol is on average about 

136 pg Nd, the carryover greatly contributes to the total procedure blank of the protocol (~75%). 



121

Carryover from the total procedure was only determined after using both sets of columns, hence 

the contribution coming from each individual column is not known.

2.7.6 Method verification by measurement of reference materials

Geochemical reference materials were processed through the entire procedure including rock 

dissolution, ion exchange chromatography, and measurement by MC ICP-MS to verify the 

protocol accuracy and precision. All reference standards were processed as individually digested 

aliquots. Measurement of standard GSP-2 yielded 143Nd/144Nd ratio values ranging from 0.511330 

± 9 (2SE) to 0.511408 ± 13 (2SE); JG-2 values ranging from 0.512193 ± 20 (2SE) to 0.512299 ± 

24 (2SE) and BCR-2 values ranging from 0.512583 ± 23 (2SE) to 0.512649 ± 84 (2SE) (Figure 

2-13; Table 2-12). Samples were processed and measured in two separate sessions. For BCR-2 (n 

= 7), two samples were processed in the first session and five in the second; for JG-2 (n = 8),  five 

samples in the first and three in the second; and for GSP-2 (n = 9),  five in the first and four in the 

second. No apparent systematic drift in the isotopic ratio was found in any of the individual rock 

standard replicates that were processed over the entire series of experiments or within individual 

sessions (Figure 2-13). For geochemical reference materials GSP-2 and JG-2, average 143Nd/144Nd 

ratios values of 0.511364 ± 18 (2SE, n = 9) and 0.512231 ± 31 (2SE, n = 8), respectively, were 

obtained. These values were in good agreement with published values in most cases (Figure 2-14B

and C). The average value for BCR-2 is 0.512612 ± 20 (2SE, n = 7). Although this value is within 

error of many other reported values, several published values were significantly different (Figure 

2-14D). Here, measurements are isotopically heavier compositions compared to the literature. This 

could have several origins: a) isotopic heterogeneity of the reference material; b) isotopic

fractionation during separation of Nd from sample matrix, [studies have shown that insufficient 

recovery of Nd can cause a shift in the elution curve which results in Nd isotope fractionation (Saji 

et al., 2016; Míková and Denková, 2007) and poor matrix separation can lead to isobaric 

interference and introduction of mass bias on Nd isotope measurements]; c) systematic enrichment 

of the eluents with carried over Nd from a previous step or sample; and d) hydride and oxide 

formation during sample introduction causing isobaric interference and non-linear mass dependent 

isotope fractionation. To reduce this occurrence, the use of the X-skimmer cone was avoided, 

which is known to induce additional instrumental mass fractionation compared to the standard 
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skimmer cone (Georg and Newman, 2015; Newman, 2012). Since an isotopic shift in 

measurements was only observed for BCR-2 and not with any of other geological material, it is 

unlikely that the shift was induced by the measurement setup and/or chromatography carryover as 

this should have affected all samples equally, including the JNdi-1 isotopic standard solution. 

Therefore, the difference of Nd isotope ratios for BCR-2 in this study compared to others is likely 

attributable to natural isotopic heterogeneity of the rock powder or specific matrix effects of the 

BCR-2 material.

Figure 2-13. Reproducibility of 143Nd/144Nd ratio measurements (± 2SE) for geochemical reference 
materials GSP-2 (n = 9), JG-2 (n = 8) and BCR-2 (n = 7). The agreement between replicates 
demonstrates low carryover and a high degree of reproducibility.

Table 2-12. Results of 143Nd/144Nd ratio measurements of various geochemical reference 
materials
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2.7.7 Repeatability of Nd isotope ratios

Overall the isotope measurements in the different rock standard types demonstrated good 

repeatability (Figure 2-13), with two standard errors for GSP-2 standard comparable to published 

values, for instance Chu et al. (2014); Chu et al. (2009) (Figure 15B). The two standard error on 
143Nd/144Nd for JG-2 is larger than that of Miyazaki and Shuto (1998) (Figure 2-14C). Other 

published work that measured the JG-2 granite reference material did not report 143Nd/144Nd 

isotope ratio measurements of individual standard aliquots, therefore no external precision for this 

reference material can be calculated (Arakawa, 1992; Li et al., 2007; Shibata et al., 2003).

Although the overall precision associated with measuring this reference material is somewhat

lower than reported, all individual 143Nd/144Nd isotope ratios are within the range of published 

values demonstrating accuracy. The 2SE on the 143Nd/144Nd isotope ratio measurements of the 

BCR-2 standard is comparable to the one reported in the literature (Figure 2-14D). Despite the 

shift in the isotopic ratio towards lower values associated with our BCR-2 measurements, their 

repeatability is within an acceptable range. Additionally, the repeatability for JNdi-1 isotopic 

standard solution is better than that of previously published values (Aciego et al., 2009; Ali and 

Srinivasan, 2011; Chu et al., 2014; Chu et al., 2009; Chu et al., 2014; Crocket et al., 2014; Huang 

et al., 2012; Miyazaki and Shuto, 1998; Tanaka et al., 2000; Valeriano et al., 2008) (Figure 2-14). 

Considering geologic reference material measured in this study (BCR-2; JG-2; and GSP-2), the 

overall external reproducibility of the 143Nd/144Nd using this protocol is 0.000064 (2SD).

2.7.8 Nd isotope method conclusion

The automated chromatography method presented in this study enables the fast and 

reproducible separation of Nd from geological material for Nd isotope analysis. This two-step fully 

automated approach provides >94% Nd recovery and nearly complete separation (<5% remaining) 

from interfering elements such as Sm. Method verification was accomplished by processing 

several aliquots of the GSP-2, JG-2 and BCR-2 reference materials yielded 143Nd/144Nd ratios of 

0.511364 ± 18 (2SE, n = 9), 0.512213 ± 31 (2SE, n = 8) and 0.512612 ±20 (2SE, n = 7), 

respectively. These values are within the range of published values. However, an observed shift to 

lower values was observed for BCR-2, which could result from composition heterogeneity or 

matrix effects of the reference material. This method has distinct advantage over previous
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Figure 2-14. Results of 143Nd/144Nd ratio measurements in rock standards compared to previously 
published values: (A) JNdi-1, Nd certified isotopic standard solution, geochemical reference 
materials (B) GSP-2, (C) JG-2, and (D) BCR-2.

manual methods. First, it allows for the unsupervised and rapid processing of large numbers of 

samples. While conventional manual approaches can achieve an equally high sample throughput 

as the here-presented method (~90 samples per week with one set of columns), samples can be 

processed here unsupervised and over-night, freeing up time and resources. Secondly, it reduces 

the potential for human induced error to impact on the isotope ratios, and thirdly, it is characterized 

by low blank contribution and carryover, and ultimately allows for accurate isotope measurements 

with reasonable reproducibility. Since this method was adapted from an existing gravimetric

protocol to fit the needs to users at WIGL, certain limitations apply. These include the incomplete 
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separation of 140Ce and 142Ce from the sample. This restricts its application to the analysis of 
143Nd/144Nd isotope ratios, and precludes the accurate measurement of 142Nd/144Nd ratios. Despite 

the presence of Ce in the Nd elution, our results show that accurate measurement of 143Nd/144Nd 

appropriate from all sample matrixes, as shifts such as observed in the BCR-2 samples processed 

may be matrix dependent. With these limitations in mind, the approach is adapted for the rapid 

production of large datasets consisting of 143Nd/144Nd isotope ratios in sediments and rocks. 
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Chapter 3

MODERN RIVER SEDIMENTS
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3.1 STUDY RATIONALE

This chapter focuses on modern river sediment of two active systems: The Gandak River 

in the Himalayan Mountain range (Ganges Basin) of India and Nepal, and the Murrumbidgee River 

in the Murray-Darling Basin in southeastern Australia. The Gandak River study was a preliminary 

study which investigated how mineral separates in transported river material record water-rock 

interactions using boron isotopes as a proxy for chemical weathering. This work was motivated by 

previous investigations on mineral separates in soil profiles from the Breuil-Chenue (Voinot, 2012)

and Strengbach (Lemarchand et al., 2012) Forests (northeastern France), and laboratory 

experiments (Voinot et al., 2013) whom all reported a very similar behavior for boron isotopes in 

various weathering environments. Voinot (2012) and Lemarchand et al. (2012) both indicated that 

cogenetic primary minerals have very similar boron isotope compositions ( 11B), which closely 

resemble those of the parent bedrock. This indicates little to no B isotope fractionation during the 

dissociation of bedrock into primary minerals. On the contrary, phyllosilicates such as clay 

minerals, are subject to a variety of chemical reactions in soils that differentially involve their

crystallographic sites, leading to large isotope fractionations between the clay fraction and the 

parent material. Neo-formed clays were reported to have similar 11B values to one another but 

different from coarse sand and silt-size fractions, regardless of mineralogy, likely representing the 

pedogenic conditions in which they were formed (i.e. the competition between dissolution and 

precipitation reactions). In the laboratory, Voinot et al. (2013) investigated mineral dissolution vs. 

transformation rates of biotite minerals by conducting flow-through experiments. Results from 

these experiments show that the dissolution of B isotopes in mineral separates is highly dependent 

on the chemistry of the reacting solution. At acidic conditions (pH 3), biotite dissolves almost 

stoichiometrically, while at moderate acidic conditions (pH 4.5), interlayer sites react much faster 

than structural sites. Voinot (2012) also hand-picked biotite and muscovite mineral separates along 

a soil profile developed on granite and found that during mineral weathering, B isotopes in both 

biotite and muscovite mineral separates become highly fractionated early in the weathering process 

likely in response to the preferential dissolution of the isotopically heavy interlayer sites (Figure 

3-1); this makes B a good tracer of early water-rock interactions. However, during the weathering 

of biotite minerals, B appears to be more mobile than in the muscovite.
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Figure 3-1. Evolution of B chemical and isotopic composition in weathered minerals. B 
concentrations are normalized to the corresponding unweathered samples. The grey ellipse 
indicates a narrow range of 11B values of difference primary minerals. The horizontal gray bar 
illustrates the 11B value to which all weathered minerals tend to converge. Curves with arrows 
illustrate two distinct weathering pathways shown by B: the left curve corresponds to micas; the 
right curve corresponds to albite. The dashed-line shows a binary mixing between pristine and 
weathered minerals, explaining some of the biotite data points. 

The preliminary study of the river sediment in the Gandak River was then intended to study the 

parallel evolution of different grain sizes, focusing primarily on the sand and clay-sized fractions 

which are composed of primary and secondary minerals, respectively. Additionally, hand-picked 

biotite and muscovite mineral samples provide the opportunity to further explore B isotope 

behavior in handpicked minerals during weathering and transport, work that was started by 

Voinot (2012). In this study, the hypothesis that coarse sand grains trace their sources, while clay-

sized fractions record weathering conditions at the location of their formation is tested. If the clay 

fraction is capable of keeping a record of the weathering regime (ratio between dissolution and 

precipitation rates) obtained during their formation when transported from the soil profile to the 

depositional environment on the alluvial plain, then it could be used as a proxy for paleo-

weathering condition in sediment deposits. Alternatively, the clay fraction may lose its pedogenic 

signal, it may evolve downstream, or may record weathering conditions of the depositional 

environment. Since very few studies have investigated boron isotope behavior of solid phases in a 
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river during transport (i.e. Chetelat et al., 2009; Spivack et al., 1987), previous acquisition of the 

river bank and suspended load sediments taken along the course of the Gandak River provided an 

opportunity to further investigate B isotope behavior of mineral separates in riverine material 

during transport from the river headwaters to the alluvial plain.

The basic knowledge of B isotope systematics in mineral separates in soil profiles (Voinot 

et al., 2013; Lemarchand et al., 2012; Voinot, 2012; Muttik et al., 2011) and riverine material, 

which was gained from this preliminary work on Gandak River sediments, was then applied to the 

main study site of the Murrumbidgee River in the Murray-Darling Basin of southeastern Australia 

and the associated paleochannel systems (see Chapter 4). Similar to the Gandak, bedload and sand 

bank material was collected from the headwaters to the alluvial plain, separated by grain size into 

the sand (63 µm – 2 mm) and clay fraction (<2 µm), and analyzed for B isotopes and 

concentrations, as well as major and trace elemental composition. However, a much more 

comprehensive sampling approach and analyses was taken in the Murrumbidgee River watershed. 

Sampling in this watershed was conducted over the course of 3 field campaigns from 2015 – 2017.

The Murrumbidgee River was chosen because it carries sediment from the upper catchment to its 

depositional environment on the alluvial plain, where a series of paleochannel systems ranging in 

depositional age from approximately 13 – 105 ka, lies. Channel-infill sediments of these 

paleochannel systems is thought to have derived from the same catchment as the modern 

Murrumbidgee River. It is a goal of this thesis to determine if B isotopes in these paleochannel 

sediment deposits could be used as a paleo-weathering proxy. A thorough understanding of how 

the sediment obtains its weathering signal and how that signal is transferred from source to 

depositional environment in the modern system must first be gained. To this end, modern 

sediments from the Gandak and Murrumbidgee Rivers are used to characterize B isotope behavior 

during pedogenesis and transport (Chapter 3). Then, with this knowledge of B isotope systematics 

in the modern river sediments, interpretations of paleochannel sediment deposits using B isotopes 

can be made (Chapter 4) with the ultimate goal of determining sediment response (paleo-

weathering regime) to climate variability over the last full glacial cycle.
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3.2 CHAPTER INTRODUCTION

Chemical weathering of silicate rocks shapes Earth’s surface and landscapes, supplies 

essential nutrients to ecosystems, and is believed to be one of the main controls that regulate global 

climate over millennial timescales via the consumption of atmospheric CO2 and carbonate storage 

in the oceans (West et al., 2005; Berner and Berner, 1997; Walker et al., 1981). Given the 

importance chemical weathering plays in regulating atmospheric CO2 and maintaining a steady 

climate over geological timescales, a unified model of how tectonic uplift, chemical weathering, 

and climate interact is lacking and still a subject of debate (i.e. Berner et al., 1983; Raymo et al., 

1988; Ruddiman, 1997). To better understand the climate-silicate weathering relationship, the 

dissolved load of both small and large rivers are often studied as they integrate information such 

as weathering conditions within its catchment area, which can then be extrapolated to the global 

scales when the river drains a large continental area such as the Amazon (i.e. Bouchez et al., 2014; 

Stallard and Edmond, 1983), Himalaya (i.e. Gaillardet et al., 1999; Galy and France-Lanord, 

1999), and the Congo (i.e. Dupré et al., 1996). The use of solid phases such as the suspended load, 

bedload sediment, and clay fractions, have also been used to quantify the weathering regime (i.e. 

Bouchez et al., 2012; Lupker et al., 2012) although they generally received less attention.

Classical geochemical proxies used to study silicate weathering are based on major and trace 

elemental concentrations and ratios (Gaillardet et al., 1999; Price and Velbel, 2003). Examples of 

these include the chemical index of alteration, chemical index of weathering, and various 

chemical ratios using a mobile and immobile counterpart (Harnois, 1988; Nesbitt and Young, 

1982). Although somewhat useful in determining silicate weathering rates and intensities, these 

proxies suffer from limitations that primarily arise from the dominant control lithology plays on 

the composition of the dissolved load and weathering products, often obscuring the effects of 

chemical weathering drivers (Bluth and Kump, 1994; Stallard and Edmond, 1983). Additionally, 

granulometric sorting of sediment during transport strongly controls sediment mineralogy and 

therefore the chemical composition of bedload sediments, leading to large inter-sample variability 

(e.g. Garzanti et al., 2007, 2010, 2011). The determination of sediment provenance by sampling 

bedload sediments, for instance, is complicated by grain-size fractionation and hydraulic 

processes such as physical sorting of minerals with different hydraulic behavior (e.g. 

concentrating heavy minerals in placer deposits or platy minerals in lower-environments) (Morton 
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and Hallsworth, 1999). Therefore, any provenance interpretation using the chemical or 

mineralogical composition of river sediment requires a thorough understanding of hydraulic 

control on compositional variability, which proves to be a difficult task (Garzanti et al., 2010).

Unlike these chemical weathering proxies, “non-traditional” stable isotopes systems such as 

boron (B), lithium (Li), calcium (Ca), silicon (Si), iron (Fe), and magnesium (Mg) are an attractive 

new alternative because isotopic fingerprints rely on the fact that each physico-chemical process 

is associated with a characteristic shift in isotopic ratios of the elements involved (Bouchez et al., 

2013).

Boron (B) displays physico-chemical properties that are suitable for investigating water-rock 

interactions, including those involving a biological component (Cividini et al., 2010; Williams, 

2001). It is present in a wide range of concentrations in various natural reservoirs (ranging from 

low ppb levels in rivers and rainwater to hundreds of ppm in clays and thousands of ppm in some 

minerals like tourmaline), with moderate to high concentrations in silicate rocks (5-100 ppm). 

Boron has two stable isotopes, 10B and 11B, that undergo large isotopic fractionation during Earth 

surface processes, particularly during low temperature water/rock interactions (Lemarchand et al., 

2002a, 2012; Muttik et al., 2011; Rose et al., 2000; Spivack and Edmond, 1987; Schwarcz et al., 

1969). 11B values show a large range of variation from –40‰ in non-marine 

evaporitic and tourmaline minerals in the continental crust up to +60‰ in brines from salt lakes 

(Palmer and Swihart, 1996). Processes responsible for B isotope fractionation include adsorption 

of B onto clay and detrital particles (Lemarchand et al. 2006, 2007, 2015; Schwarcz et al., 1969; 

Spivack et al., 1987), precipitation of B during neoformation of secondary phases (Cividini et al., 

2010; Lemarchand et al., 2012; Noireau et al., 2014; Rose et al., 2000; Williams et al., 2001a),

hydrothermal alteration of clays, bedrock, and oceanic crust (Muttik et al., 2011; Williams, 2001; 

Spivack and Edmond, 1987) evaporation and precipitation processes during B atmospheric cycle 

(Rose-Koga et al., 2006; Chetelat et al., 2005; Xiao et al., 1997), and B cycling through vegetation 

(Noireaux et al., 2017; Roux, 2016; Cividini et al., 2010; Wieser et al., 2001; Vanderpool and 

Johnson, 1992)

Boron is mobile during water-rock interaction and is partitioned into the soluble and solid 

phases. It is released into the hydrosphere via the dissolution of primary minerals and can be 

incorporated into secondary phases such as clay minerals and amorphous iron oxyhydroxides. 

Significant isotope fractionation occurs during secondary phase neoformation whereby the lighter 
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isotope has a greater affinity for neo-formed solids becoming enriched in 10B leaving the residual 

solution enriched in the heavier isotope (Lemarchand et al., 2005; Palmer et al., 1987; Schwarcz 

et al., 1969). A wide range of boron isotope compositions in both the solid and dissolved phases 

have been reported which were attributed to silicate weathering processes on the watershed scale. 

For instance, in the Himalaya, Rose et al. (2000) reported a 30‰ range in 11B values in the 

dissolved load (–6‰ to +24‰) reflecting different conditions of silicate weathering (congruent 

vs. incongruent silicate weathering) where large isotopic fractionations (–31‰) between the clay 

fraction and dissolved load is driven soil pH. Similarly, the clay fraction in soil profiles in the 

Strengbach catchment, France (Lemarchand et al., 2012), and at the Ries crater, Germany (Muttik 

et al. 2011) have 11B compositions ranging from –35 to –2‰ which are attributed to the possible 

hydrothermal alteration of bedrock and pedogenic processes occurring after B exchange with the 

surrounding 11B-rich soil solution, and clay formation under different temperature and pH 

conditions, respectively. In the Mackenzie Basin (Canada), 11B compositions in the dissolved 

load of various rivers and tributaries show a range from –2 to +30‰ reflecting changes of the

weathering rates of catchment shales and changes in the partition coefficient between soluble B 

and adsorbing surfaces (Lemarchand and Gaillardet, 2006). In the Changjiang basin (China), 11B

compositions derived from silicate weathering are reported for both the dissolved and suspended 

loads of various rivers having values of –3 to +9‰ and –11 to –6‰, respectively (Chetelat et al., 

2009). Here, they show that the isotopic compositions of both phases are controlled by the 

competition between boron leaching and uptake into secondary phases, where the former process 

causes no apparent isotopic fractionation. These studies demonstrate that B isotopes are a useful 

proxy in the identification and quantification of silicate weathering processes as well as broaden 

our understanding of the controls on B isotope fractionation at the watershed scale. However, a 

clear understanding of the parameters that control B isotopes during the production of secondary 

minerals and subsequent transport throughout the watershed is still lacking. Given the critical role 

secondary products play in recording water-rock interactions at present, and their potential for 

storing information on paleo weathering regimes in depositional environments, further research on 

this topic is needed. 

In the following two studies, B isotope behavior of granulometrically separated riverine 

material is investigated during transport from the headwaters to the alluvial plain. River bank and 

suspended load sediments of the Gandak River in the Ganges Basin, Himalaya were collected from 
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the headwaters to the plain, granulometrically separated into bulk, sand (2 mm – 63 µm), and clay 

(< 2µm) fractions, and analyzed for B isotopes and major and trace element concentrations. 

Additionally, primary mica minerals (biotite and muscovite) were hand-picked from the bulk 

sediment in several of the river bank samples and analyzed in the same manner. In the 

Murrumbidgee River catchment, riverbank and bedload sediments and dissolved loads from 

monolithological streams, tributaries, and the main Murrumbidgee were sampled. Bedrock 

samples were also taken from monolithological catchment. The clay fraction (< 2 µm) of sediment 

samples, bedrock, and the dissolved load were analyzed for B isotopes and major and trace element 

concentrations. Mineral analyses by XRD was also performed on the bedrock and clay fractions.

3.3 GANDAK RIVER, HIMALAYA

3.3.1 Study Site

The Gandak River is the most important tributary of the Ganges (Ganga) river (both in 

terms of discharge and particle flux) and is located in central Nepal and northern India in the 

Himalayan Mountain range (Granet et al., 2007). It is formed by the convergence of the Kali 

Gandaki and Trisuli Rivers, which in turn form the Narayani River in Nepal and then the Gandak 

River in India (Figure 3-2). Flowing southwest into India, the river bends southeast along the state 

border of Uttar Pradesh–Bihar and continues for approximately 765 km across the Indo-Gangetic 

Plain merging with the Ganges River, and emptying into the Bay of Bengal. It is considered one 

of the major rivers in Nepal, along with the Kosi and Karnali Rivers, all which are running 

southward across the strike of the Himalayan ranges and form in transverse valleys with deep 

gorges. Its watershed of the Gandak River lies to the north of the river, in Tibet. The river rises to 

a maximum elevation of 7,620 m near its origin and has a total catchment area of 46,300 km2

(Foster and McDonald, 2018).

The Gandak River lies within the Ganges basin; the basin drains 1,086,000 km2 in Tibet, 

Nepal, India, and Bangladesh and contains the largest river system on the subcontinent. The 

Ganges basin is situated between the Himalayan Ranges to the north which form the Ganges-

Brahmaputra divide, the Indus basin to the west, and the Vindhyas and Chota Nagpur Plateau to 
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the south. The Ganges River merges with the Brahmaputra and Meghna River to the east in 

Bangladesh via a complex system of common rivers which drain into the Bay of Bengal where

Figure 3-2.  Location of the Gandak River in the Ganges-Brahmaputra-Meghna basin in the 
Himalayas. It originates in Nepal, flows into northern India where it merges with the Ganges River; 
then across the Gangetic Plain and emptying in the Bay of Bengal. Source: 
http://img1.wikia.nocookie.net.

it forms the Ganges Delta. Worldwide, the Ganges-Brahmaputra system has the third greatest 

average discharge of all the world’s rivers, approximately 30,700 m3 s-1, of which approximately 

11,000 m3 s-1 is supplied by the Ganges River alone (Ahmad and Lodrick, 2018). The Amazon and 

Congo Rivers are first and second, respectively, in terms of discharge. Combined, the Ganges-

Brahmaputra-Meghna Rivers’ suspended sediment load is approximately 1.84 billion tons per 

year, which makes it highest in the world (Holeman, 1968).

The volume of water that flows in this system is highly variable depending on region and 

seasonal flow. Monsoonal rains cause flooding from July to September, while Himalayan glacial 

and snow melt feed the river system from April to June. The basin receives nearly 1,000 mm of 

precipitation annually, with 84% of the annual rainfall occurring during the monsoon season. In 

the upper Gangetic Plain near the outlet of the Gandak River, rainfall averages approximately 760 

– 1,020 mm, in the Middle Ganges Plain near Bihar from 1,020 – 1,520 mm, and in the delta 
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region, between 1,520 – 2,540 mm, annually. The climate in the Ganges Basin is classified as CSA 

(temperate mesothermal climate) by the Köppen classification system (Pravettoni, 2015). The 

average temperature in the Ganges Basin is 13.3 C; summers reach 31 C in June; and winters 

reach approximately 5 C in January (Pravettoni, 2015). The CSA classification is referred to as 

“hot dry summer” climate; the same climate classification as the Mediterranean under the Köppen 

climate classification.          

The Gandak River is fed by the Kali Gandaki and Trisuli Rivers which form in alpine 

climate conditions at an elevation of 6,268 m in the Himalayan mountain range near the Nepal-

Tibet border (Pravettoni, 2015). The Gandaki River basin, in the far north of the larger Ganges 

basin, is reported to contain 1025 glaciers and 338 lakes, which greatly contribute to seasonal flow 

of the river. These source rivers in the highlands are characterized by steep slopes and deep gorges, 

as the river incises the uplifting mountain. Climate in the highlands (6,268 – 4,267m) and mid 

elevations (3,352 – 2,133 m) is classified as CWB (subtropical highland climate) and CWA (humid 

subtropical climate) by the Köppen classification system, respectively (Pravettoni, 2015). Both 

climate regimes are monsoon-influenced, with changes in elevation significantly affecting local 

temperature. For instance, a temperature decrease of 6.5 C occurs with every 1000 m rise in 

altitude, giving rise to a variety of climates from nearly tropical at the foothills to tundra with 

permanent ice and snow at alpine locations (Rose et al., 2018).

The headwaters of the Gandak River (Kali Gandaki and Trisuli Rivers) drain a series of 

lithological formations in central Nepal. On the basis of lithology, tectonic structure, and geologic 

history, Nepal can be divided into 5 major zones: from north to south a) the Tibetan Tethys zone; 

b) the Higher Himalayan zone; c) the Lesser Himalayan zone; d) the Churia (Siwaliks) zone, and 

e) Terai (foreland basin) zone (Figure 3-3). Each of the zones is characterized by its own lithology 

and tectonics. The northernmost Tibetan-Tethys zone consists of sedimentary rocks known the 

Tethyan Sedimentary Series (TSS) consisting of a thick and continuous Paleozoic to lower Tertiary 

marine sedimentary succession. The TSS series composes the upper section of the Kali Gandaki 

River. The Higher Himalayan Zone is composed of a variety of gneisses that form a basement to 

the Tibetan-Tethys sedimentary pile such as quartzite gneisses, granitic gneiss, and garnet-kyanite 

gneisses (Le Fort, 1975), all which are present in the Kali Gandaki and Trisuli sections. A notable 

feature of the Higher Himalayan formation is the gorge carved by the Kali Gandaki river which is 

one of the deepest gorges in the world. The lithology of the Lesser Himalayas in central Nepal 
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consists of metasedimentary and crystalline rocks which are Late Precambrian-Early Paleozoic in 

the older sequence and Late-Carboniferous-Permian to Oligocene-Early Miocene for the younger 

Lesser Himalayan rocks in the western portion western Nepal. The older sequence is termed the 

Kali Gandaki Supergroup and is drained by the Kali Gandaki (Sakai, 1983). The Churia (Siwalik) 

zone forms one of largest foreland basin accumulations of Earth, consisting of Neogene to 

Quaternary fluvial sediment and sedimentary rocks that form in the southernmost hill range of 

Nepal (Upreti, 1999). It is overlain by thrusted Lesser Himalaya metasedimentary rocks, and itself, 

is thrusted over the Recent alluvium of the Terai zone. The sedimentary rocks of the Lower Churia 

Group are composed of fine-grained sediments such as mudstone, siltstone and shale with thick 

beds of sandstones at the base of the formation. The high abundance of biotite and light-colored 

quartz and feldspars gave these sandstones the nickname “salt and pepper sandstones”. The Terai 

zone represents the northern edge of the alluvial Indo-Gangetic foreland and location of the 

sampling points in the study along the lower part of the Gandak River. The Terai plain consists of 

Pleistocene to Recent alluvium resting on rocks of the Peninsular India which are Permo-

Carboniferous in age or younger (Eocene-Oligocene). Coarser Terai sediments lie closer to the 

mountain front forming large alluvial fans, while finer sediments are found further south (Upreti, 

1999).

Figure 3-3. Geology of the Nepal. LH: Lesser Himalaya; HH: Higher Himalaya; TTS: Tibetan-
Tethys; MBT: Main Boundary Thrust; MCT: Main Central Thrust; MT: Mahabharat Thrust; 
STDS: South Tibetan Detachment System. Source: Upreti (1999).
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3.3.2 Methods

3.3.2.1 Sampling location 

This study focuses on the analyses of sediments from the Gandak River, taken at 8 sampling 

locations along the river: one upstream in the Himalayan mountain range (Churia/Siwalik 

formation, Nepal) and 7 others located along the river in the alluvial plain from the mountain 

foothills to the confluence with the Ganges River (Figure 3-4). A total of eight bank samples (red 

pies) and 6 suspended load samples (yellow pies) were collected. The bank samples were collected 

by scooping small quantities of surface sediments at distinct points on the same river bank (~ 7 kg 

in total) in order to integrate a larger area (several meters squared) to obtain a representative sample 

of the site (Bosia et al., 2016; Chabaux et al., 2012; Granet et al., 2007). Suspended loads were 

collected using a 5 L PVC sampler operated from a boat situated in the center of the river (Galy et 

al., 2007; Granet et al., 2010). Dissolved load samples were collected and filtered through a 0.22 

µm PES filter in a pressurized Teflon coated filtration unit. In this study, a total of 6 suspended 

load samples were collected at different depths in the water column at an upstream (#1) and a 

downstream (#8) location: three samples were collected from the upstream site in 2011 at 3 m, 5 

m, and 8 m, depths, and three from the downstream location in 2008 at 1.5 m, 3 m, and 4.8 m 

depths. 

The processing of these sample is described by Lupker et al. (2011). At the Laboratoire 

d’Hydrologie et de Geochimie de Strasbourg (LHyGeS) at the Université de Strasbourg 

(Strasbourg, France), bank samples were dried at 50 C in an oven, sieved at 2 mm to remove 

organic debris and gravels, and a representative portion of < 2 mm sample portion was obtained 

by quartering and labeled ‘bulk’. In four of the bank samples (#1, #3, #6 and #8 in Figure 3-4), 

~50 mg of biotite minerals and ~50 mg of muscovite minerals were hand-picked from the bulk 

sample portions using a toothpick. Quartz and other undesirable mineral species were repeatedly 

separated from the sample until a pure fraction was obtained. Each bank sample was then wet-

sieved at 63 µm; the 63 µm – 2 mm portion was labeled ‘sand fraction’; and the < 63 µm fraction 

was repeatedly centrifuged following the procedure of Starkey et al. (1984) to obtain the < 2 µm 

fraction labeled ‘clay fraction’. Suspended load samples were not sieved due to lack of material; 

instead, they were processed as bulk samples. All wet-sieved and centrifuged sediments were then 

oven-dried at 50 C overnight. The bulk and sand fractions were then crushed using an agate mill 
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and the grain size verified by sieving the obtained powder. Suspended load and clay fraction 

sediments were crushed by hand using a mortar and pestle prior to chemical and isotopic analyses. 

To verify that the clay fraction separation protocol described by Starkey et al. (1984) is suitable 

for B isotopes, the clay fraction was separated from the silt fraction by centrifugation using 18.2 

m Milli-Q water; both the clay fraction and water were retained and analyzed for B 

concentration and isotopes. Taking an aliquot of the same clay sample, the centrifugation was 

performed a second time and both the clay and water were analyzed again for B concentration and 

isotopes to ensure that the protocol does not dissolve a soluble B-bearing phase. Experimental 

results indicate that approximately 1% of the total B analyzed in the clay fraction dissolves in the 

water during the first step, while the B concentration of the water after the second centrifugation 

was significantly less and nearing zero. This indicates that nearly all labile B is exchanged during 

the first step. Boron isotope compositions of the clay fraction were –15.3‰ and –15.7‰ after the 

first and second centrifugation step, respectively. This results show that the separation protocol 

has a negligible effect on both B concentrations and isotopes in the clay fraction, making it suitable 

for this study.

3.3.2.2 Sample preparation for B isotope and concentration measurements

Boron was extracted and purified from powdered sediment samples via alkali fusion and 

ion exchange chromatography following the protocol in Chapter 2.4 of this thesis.

3.3.2.3 Major and Trace elemental analysis

Major and trace element concentrations were measured by inductively coupled plasma 

atomic emission spectrometer (ICP-AES) and inductively coupled plasma mass spectrometer 

(ICP- MS), respectively, after lithium metaborate fusion following the techniques at LHyGeS (e.g. 

Prunier et al., 2015). The relative analytical uncertainty (2SD) is better than 3% for major element

concentrations and better than 10% for trace element concentations (e.g. Dequincey et al., 2002).

Accuracy of the protocol was assessed by regular analyses of rock standards (BE-N, GS-N and 

AN-G) (see Prunier et al., 2015).
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3.3.2.4 Boron Concentrations

Boron concentrations were measured by isotope dilution on an ICP-MS Element at 

LHyGeS. The procedure is described in detail by Roux et al. (2015) and is the same as described 

in Chapter 2.5 of this thesis. The analytical uncertainty of B concentration measurements at 

LHyGeS was estimated by repeated measurement of a standard solution, yielding measurement 

uncertainty as low as 1% (2SD) when the sample to spike ration is between 0.3 to 1.5, and 2% 

when ratios are vary from 0.3 to 2.0 (Roux et al., 2015). Therefore, all samples measured for B 

concentration in this study had sample-spike ratios between 0.3 and 2.0, producing a maximum 

measurement uncertainty of 2%.

Figure 3-4. Map of the Gandak River showing sample locations #1 – #8 (numbers correspond to 
samples listed in Table 3-1 and Table 3-2). Map data 2016 Google Imagery 2016 TerrMetics). 
Source: re-drawn from Bosia et al. (2016). Inset map: Ganges-Brahmaputra River basin taken from 
Galy and France-Lanord (1999).
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3.3.2.5 Boron isotope ratio measurements

Boron isotope ratios were measured by an MC ICP-MS Neptune (Thermo Scientific, 

Bremen, Germany) at LHyGeS. This procedure is described in detail by Roux et al. (2015) and in 

Chapter 2.6 of this thesis. The only difference between B isotope measurements at LHyGeS and 

WIGL is the wash time before baseline and sample measurements. At LHyGeS, the wash time is 

20 mins to obtain the lowest baseline measurement as possible; while at WIGL, the wash time is 

10 mins. Differences may be related to the maintenance or overall usage age of the instrument, as 

B may accumulate in the lines over a sufficient time. Precision and accuracy of B isotope ratios 

was assessed by routinely processing and analyzing standard solutions alongside samples. ERM 

AE120 and natural seawater, were used to verify the procedure and access measurement 

uncertainty. The average 11B values for the AE120 and seawater standards processed through the 

entire chemical procedure in this study is –20.16 0.11 (2SE, n = 2) and 39.80 0.18‰ (2SE, n 

= 6). Measured values are in agreement with those reported by Vogl and Rosner (2012) for ERM 

AE120, –20.2 0.6‰ (2SE, n = 20), and with Foster et al. (2010) who reported 39.61 0.04‰

(2SE, n = 28) for seawater, which demonstrates accuracy of B isotope measurements. The seawater 

used in this study was collected from Los Angeles, CA in 2010 and not the international standard 

solution used by Foster et al. (2010), therefore slight differences in isotopic composition can be 

expected. Overall analytical uncertainty of the B isotope measurements at LHyGeS is 0.45‰ 

(2SD, n = 6)

3.3.3 Results and Discussion

3.3.3.1 Major and trace elements 

Major and trace element concentrations, including boron, were measured on all grain size 

fractions of riverine material in this study (Major elements : Table 3-1; trace elements: Table 3-2). 

Following Bouchez et al. (2012) and Lupker et al. (2012), the Al/Si ratio can be used a proxy of 

weathering intensity and a proxy for grain size as coarse-grained, quartz-rich sediments have low 

Al/Si ratios and phyllosilicate-rich sediments, such as clays, have higher Al/Si ratios. Weathering 

indices are obtained by comparing mobile to immobile elements in all grain size fractions. 
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Aluminum (Al) was chosen as the immobile element as it is a major insoluble element; while Si, 

B, Mg, Ca, and Na are all considered mobile elements which are soluble during silicate weathering 

being partitioned between the dissolved and solids phases (Bouchez et al., 2012; Gaillardet et al., 

1999a; Dupré et al., 1996). Because samples in the study are already sorted into grain size 

(suspended load – bulk fraction; bank sediment – bulk fraction; bank sediment – sand fraction; 

bank sediment – clay fraction) the Al/Si ratio is mainly used as a weathering intensity proxy 

(assuming Si is soluble during weathering reaction and Al is not) but also illustrates differences in 

chemical composition based on grain size. To investigate the mobility of other elements during 

weathering such as B, Ca, Mg, and Na, weathering indexes (X/Al ratios) are plotted for the entire 

set of sediment samples taken from the Gandak River as a function of the Al/Si ratio (Figure 3-5). 

Generally, for all sediments, B/Al, Cal/Al, and Na/Al decrease with increasing Al/Si. The bulk 

sediment and coarse-grained sand represent the relatively unweathered end-member displaying 

higher X/Al and lower Al/Si ratios, while the clay fraction represents the fine-grained fairly 

weathered end-member in the system displaying lower X/Al and higher Al/Si ratios. The 

suspended load, which was taken at several depths in the water column, appears to be a mix 

between the two end-member displaying both intermediate X/Al and Al/Si values. The relationship 

between Mg/Al and Al/Si is less clear, however in many cases Mg/Al increases as a function of 

increasing Al/Si when comparing all grain sizes; therefore the clay fraction generally has a higher 

Mg/Al than other size fractions. This classic relationship is often interpreted as being diagnostic 

of high temperature (>150 C) water-rock interactions resulting from the dependence of Mg 

hydration in solution and an inhibitor of Mg incorporation at low temperature (Schott et al., 2016; 

Hajash and Chandler, 1982). Data in Figure 3-5 displayed as X/Al vs. Al/Si can then be interpreted 

in terms of both minerals sorting/mixing between upstream and downstream locations and 

different degrees of weathering along the course of the river (Bouchez et al., 2012; Lupker et al., 

2012). This relationship is displayed in Figure 1-8 and Figure 3-6.

3.3.3.2 B isotope measurements

Boron isotope measurements in the bulk fraction of bank sediment show indistinguishable 

values, ranging from –11.7 to –12.4‰ (±0.5‰, 2SD, Figure 3-7, Table 3-2); Similarly, the sand 

fraction of bank sediment and the bulk fraction of the suspended load B compositions also show 
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little variation throughout the Gandak River with compositions ranging from –11.0 to –12.4‰ and 

–10.5 to –12.2‰, respectively (Figure 3-7, Table 3-2). On the contrary, the clay fraction of bank 

sediments shows a larger range of B isotope compositions from –15.2

Figure 3-5. Weathering proxies B/Al, Ca/Al, Mg/Al and Na/Al as a function of the grain size proxy 
Al/Si for suspended load (<0.2 µm), bulk (< 2 mm), clay (<2 µm), and sand fractions (2 mm – 63
µm) in the Gandak River, Ganges Basin

to –11.9‰ which evolve towards isotopically heavier 11B values downstream (Figure 3-7, Table 

3-1). This change is greatest (from –15.2 to –11.9‰) in the first 100 km of the river and then the 

11B composition of the clay fraction becomes slightly lighter again but generally follows that of 

the suspended load, bulk, and sand fractions. Hand-picked biotite and muscovite minerals have B 

isotope compositions ranging from –15.4 to –7.4‰ and –15.4 to –12.6‰, respectively (Figure 3-8,

Table 3-3). The B isotope composition of muscovite minerals evolves slowly and continuously 
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towards isotopically heavier values downstream (from –15.4 to –12.6‰), while the B isotope 

composition of biotite rapidly evolves towards an isotopically heavier value (from –15.4 to –7.4‰) 

in less than 100 km and then gradually shifts towards isotopically lighter values (as light as –9.5‰) 

over the next 200 km of the river. Interestingly, the 11B compositions of both the biotite and 

muscovite are identical in the headwater sampling location, evolve differently downstream, then 

seem to be converging towards a common value downstream. The magnitude of isotope shift in 

the biotite minerals downstream is much greater than that observed in the clay fraction.

Figure 3-6. Conceptual diagram of an Al-normalized soluble element concentration (X/Al) used 
as a weathering index, as function of Al/Si, used as a grain size proxy. The brown star represents 
the fine grained end-member (channel surface) of sediment carried by the river and the yellow star 
is the coarse grained end-member (bottom of channel). All samples taken at intermediate depths 
are a mixture of each end-member that depend on sorting/mixing processes. In this example, 
weathering indices a changes in the X/Al ratio during transport between upstream and downstream 
locations; an example being that mineral dissolution would cause a decrease in the X/Al ratio. 
Here, Si loss due to weathering processes can be ignored. Source: Bouchez et al. (2012).
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Table 3-1. Major element concentrations and B isotope compositions of Gandak River sediments

Major element concentrations were measured by ICP-AES after an alkali fusion procedure at LHyGeS. 
Analytical uncertainties (2 ) are based on the external reproducibility of rock standards and are estimated 
between 6 – 8% for major elements; uncertainties of B isotope measurements were assessed based on 
external reproducibility of the seawater standard and is 0.45‰ (2 )
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Table 3-2. Trace element concentrations of Gandak River sediments

Trace element concentrations were measured by ICP-MS after an alkali fusion procedure ay LHyGeS. Analytical uncertainties (2 ) are based on the 
external reproducibility of rock standards and are 10% for trace elements. Boron concentrations were determined by ID-ICP-MS at LHyGeS. 
Analytical uncertainty of B concentrations is based on repeated measurement of a NIST 951 standard solution estimated to be ~1%
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Figure 3-7. Boron isotope composition of the bulk fraction of the suspended load, and the bulk, 
sand, and clay fractions of bank sediment from the Gandak River as a function position 
downstream. Sampling positions downstream at 0 km, 60 km, 80 km, 125 km, 145 km, 220 km, 
245 km, and 275 km corresponds to positions #1; #2, #3, #4, #5, #6, #7, and #8, respectively, in 
Figure 3-4. Dotted and solid lines are simply used to connect samples of the same category based 
on their position downstream.

Table 3-3. Boron isotope compositions and concentrations of hand-picked biotite and muscovite minerals 
from the bulk fraction of bank sediment samples
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Figure 3-8. B isotope composition of hand-picked biotite and muscovite minerals from the bulk 
fraction of bank sediment samples from the Gandak River as function of position downstream. The 
dotted and solid lines connect each sample in the respective category based on position 
downstream. The pink bar represents the approximate variability of bulk and sand fractions of 
bank sediments and the bulk fraction of suspended load sediments in this study.

The B isotope compositions of the bulk sediment, sand fraction and suspended loads do 

not vary very significantly ( 1‰) from the headwaters out to the alluvial plain. This likely 

indicates that the river is delivering well-mixed sediment composed of primary and secondary 

minerals derived from the various lithological units upstream; the B isotope composition of the 

bulk sediment reflects this mixture. As the B isotope composition of the suspended load (at both 

sites) is very similar to that of the bulk and sand fraction at those locations, it likely consists of a 

mixture of both secondary minerals and finely ground clay-sized primary minerals; its B isotope 

composition would then reflect both the source of the primary minerals, which is the bedrock, and 

the weathering regime associated with the secondary minerals. The exception to this is the sample 

taken closest to the surface (3 m depth) at headwater sampling location whose B isotope 

composition is –10.5‰, which is isotopically heavier than any other sample taken at that location, 

including the other suspended load samples at 5 m (–12.1‰) and 8 m (–12.2‰) depths. The 

composition of the 3 m sample may be different from the others and likely contains a larger portion 

of clay-sized primary minerals that are derived from an isotopically heavier source. However, clay 
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mineral identification was not performed on these samples; as such, this hypothesis remains 

speculative. The B isotope composition of the sand fraction most likely reflects only a mixture of 

B-carrying primary minerals derived from bedrock dissolution and therefore experiences little to 

no B isotope fractionation. If so, then the sand fraction would keep the memory of the bedrock and 

can be used as a source tracer in the catchment. This observation was also noted by Lemarchand 

et al. (2012) who found that the B isotope composition of the silt and sand fractions in soil profiles 

in the Strengbach CZO recorded the composition of the parent material. 

In the absence of parent bedrock material, the 11B composition of the sand fraction in each 

sample can then be compared to that of the clay fraction ( 11Bclay-sand = 11Bclay – 11Bsand) in order 

to estimate the isotope fractionation factor between weathered clay minerals and unweathered 

primary minerals. This assumes all mineral fractions have a common origin and therefore 

comparable to one another and that most of the B in the clay-size fraction is carried by the 

secondary minerals. The 11Bclay-sand value of the headwater sample is the largest displaying an 

isotope fractionation of –3.3‰ (Figure 3-9A). The isotope fractionation between the two mineral 

separates progressively becomes smaller downstream, reaching a minimum of –0.8‰ in less than 

100 km and showing a slight increase to approximately –2‰ before converging with the Ganges

River. This may indicate differences in the conditions of sediment production along the course of 

the river with the clay fraction in the headwater sample experiencing different conditions than 

those on the Ganga plain.

To quantitatively determine B behavior during clay formation and investigate how this may 

relate to the weathering regime, the relative magnitude of the B transfer from primary minerals in 

the sand fraction, and by proxy the bedrock, to the neoformed clay minerals ( , ) can be 

calculated:

, =  
[ ]

[ ]
 ×  

[ ]

[ ]
(3-2)

The soluble nature of boron implies its progressive depletion in clay minerals as weathering 

reactions progress, leading to , values starting from 1 in pristine materials down to 0 in totally 

leached weathering products. Assuming that all Al in the clay fraction comes from the dissolution 

of the sand fraction and no Al is lost during the reaction, then , values greater than 1 would 

indicate boron incorporation from an external source. In the headwaters, large B isotope 

fractionation correlates with intense B leaching in the clay fraction (inferred from low ,
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values); on the plain, relatively small B isotope fractionation correlates with milder B loss, 

(inferred from higher , values, Figure 3-9B). Low , values in the headwaters indicate that 

weathering reactions are dissolution dominated, where B and other mobile elements are 

progressively dissolved in solution and B precipitation into the clay fraction is low. High ,

values on the plain indicate that weathering reactions are either limited in intensity (slight loss of 

B) or precipitation-dominated which produce clay-sized fractions with a more quantitative B 

incorporation and hence higher , values. 

Figure 3-9. A) 11B clay-sand values as a function of downstream position of Gandak River 
11B clay-sand values as a function of the mass transfer coefficient ( , )

The use of , as mass transfer coefficient in this case is imperfect however, and should 

be used with caution, as a true mass transfer from primary minerals to weathered products would 

involve the bulk weathered material, not only the clay fraction as calculated in Equation 3-2.
11Bclay-sand values showing a relative scatter when plotted against distance 

downstream (Figure 3-9A) tend to organize when compared to the B depletion. This may indicate 

a mixing in variable proportions of clay minerals produced under different weathering regimes in 

tributary watersheds along the course of the Gandak.

To interpret B isotopes in terms of the weathering regime (competition between dissolution 

and precipitation reaction rates), a conceptual model is proposed at the end of this chapter, that 

will also include the results from the Murrumbidgee River.
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3.3.3.3 Mineral Separates

The B isotope of hand-picked biotite and muscovite mineral separates is a complimentary 

and parallel approach to the analyses of the clay fraction and may provide information on the 

weathering regime. In particular, B isotope compositions of mica mineral separates may give 

insights into the stage of weathering of river sediments, as B isotope fractionation was reported to 

occur very early in the weathering process (Voinot, 2012). Boron mobilization in biotite was also 

reported to be faster than in muscovite, however the mechanism for this rapid evolution is still 

unknown (Voinot, 2012; Williams et al., 2001b). Possible explanations of changes in the B isotope 

compositions of minerals separates in these studies was attributed to a preferential release of B 

from interlayers sites and gradual replacement by secondary minerals such as kaolinite (mineral 

transformation). In the present study, the B isotope composition of hand-packed micas and their 

downstream evolution closely resemble that of the clay fraction, although taking slightly different 

paths to arrive at isotopically heavier values on the plain compared to the headwater sample (Figure 

3-8). As shown by Voinot (2012) (Figure 3-1), primary minerals have very similar B isotope 

compositions, while all weathering minerals may evolve at different rates yet converge towards a 

common value that is expected to hold information on the weathering regime (i.e. the ratio between 

the dissolution and precipitation rates). This is a similar pattern observed in this study where 

minerals separates (including the clay fraction) start out with similar B isotope compositions in the 

headwaters, then evolve towards isotopically heavier values at different rates, and finally seem to 

be converging on a common value downstream. Large differences in the B isotope composition 

between biotite and muscovite minerals, as seen in the first two samples on the plain (taken at 75 

km and 225 km, respectively) can be interpreted as weathering processes in the early stage. 

Without a framework to interpret these results, however, it remains difficult to determine 

the mechanisms driving these patterns. When considering mineral dissolution as a possible 

explanation, as evoked by previously mentioned studies, it seems unlikely that mineral dissolution 

is the cause of the trend observed in the biotite since its isotopic signature rapidly increases in the 

first 100 km of the river and then decreases further downstream. Additionally, the biotite sample 

with the highest 11B (CA11 307; -7‰) has the lowest B concentration, indicating a preferential 

loss of 10B, not 11B expected by dissolution of isotopically heavy interfolia layers. A possible 

explanation for the composition of the biotite along the course of the river could be a progressive 
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replacement of interfolia B that is originally inherited from the conditions of the bedrock 

formations. Since weathering of the phyllosilicates often starts with a progressive opening of the 

interfolia layers, it can release B with advancement of the water front. Muscovite are more resistant 

to interfolia opening and therefore needs more time of water contact. Variations of 11B in micas 

along the course of the Gandak would therefore record mixture of micas differently affected by 

interactions with water. Dissolved boron in river being characterized by low concentrations (about 

10-20 of µg.L-1) and relatively high 11B compared to bedrock, exchange of original interfoliar B 

with water would tend to lower the bulk B concentration and increase the 11B value. However, 

without knowledge of the mineral phases of the biotite and muscovite separates and a thorough 

understanding of B isotope systematics during mica weathering and transformation, this study 

cannot clearly identify the specific mechanisms controlling B isotopes during the mineral 

weathering (e.g. structural breakdown of B sites or solid diffusion). 

3.3.4 Conclusions

A preliminary investigation into transported riverine material in the Gandak River reveals 

that B isotopes in the various mineral separates transported by the river behave differently. The 

bulk, sand, and suspended loads all have very similar B isotope signatures that show little variation 

along the course of the river, likely reflecting the source of B. The sand fraction in particular may 

be used as a source tracer, as it does not contain a significant amount of secondary minerals and 

experiences with little or no isotopic fractionation during production and transport; this makes the 

sand fraction a good representative of the parent bedrock in the catchment. On the contrary, the 

clay-sized fraction that is mostly composed of secondary minerals shows an evolution towards 

higher 11B compositions downstream which is expected to reflect the weathering regime 

(competition between dissolution and precipitation reactions). The lower 11B values of the clays 

produced in the headwaters indicate a higher dissolution rate, where more intense bedrock 

dissolution produces isotopically lighter soil solutions and relatively little removal of B by 

production of secondary phases. Here, sediment is rapidly transported downstream which results 

in little clay production and therefore minimal partitioning of B between the secondary phases and 

the soil solution. On the alluvial plain, precipitation rates increase. This yields a higher clay 

production and therefore a more quantitative re-incorporation of 10B into the clay fraction and a 
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complimentary 11B enrichment of the solution. As clay formation increases and the amount of B 

in solution decrease, the soil solution becomes exponentially heavier; this yields neo-formed clays 

which also have exponentially heavier compositions (Rose et al., 2000) and bulk clay closer to that 

of the parent material. 

To assess loss or gain of mobile elements during transport, *B/Al, *Ca/Al, *Mg/Al, and 

*Na/Al ratios were calculated by normalizing the ratio concentration measurements for each 

sediment fraction in downstream samples to the corresponding fraction of the most upstream 

sample. Results show that all sediment size fractions display a relatively similar behavior and show 

no significant evolution downstream. This indicates that the river sediment is not being weathered 

during transport and whose elemental composition reflects the original conditions in which the 

sediment was formed. This has important implications as it suggests that the composition of the 

sediment may reflect weathering conditions in source areas of the catchment.

The evolution of hand-picked biotite and muscovite minerals from bank sediment samples 

towards isotopically heavier values reveals a more complex B isotope behavior than other size 

fractions. Both biotite and muscovite minerals have the same B isotope composition in the 

headwaters, then show an evolution towards isotopically heavier values from the headwaters out 

to the alluvial plain, with biotite evolving faster downstream than the muscovite. This observation 

is in agreement with other studies that note the same behavior (Voinot et al., 2013; Voinot, 2012).

Large B isotopic differences between the muscovite and biotite in upstream river samples would 

then indicate that mineral weathering is in the early stage, as biotite evolves faster than muscovite; 

inversely, their compositions seem to converge towards a similar point downstream, likely 

indicating more advanced weathering reactions. However, the mechanism responsible for the 

isotopic shift in the present study has yet to be identified and therefore warrants future research. 

These results suggest that a combined study of handpicked biotite and muscovite in sediments may 

help determine the advancement of the early reactions of weathering, before the first evidence of 

mineralogical evolution. From this conceptual view, similar but low 11B values in both biotite 

and muscovite (close to the sand value) would then indicate very early stage of water-rock 

interaction. With biotite evolving faster than muscovite, the isotopic shift between these two 

minerals first increases before decreasing again as the weathering reactions progress and 11B

increases. Finally, both minerals are expected to have similar or close compositions once 

exchangeable B has equilibrated with water (state not reached in the present study).
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Although preliminary, results from this study demonstrate the potential of B isotopes in 

various riverine mineral separates to record the weathering regime and therefore highlight its 

potential as a paleo-weathering proxy in sediment deposits. To better understand what drives the 

B isotope composition of biotite and muscovite mineral separates, future work on this topic should 

focus on these fractions in downstream sediment deposits.

3.4 MURRUMBIDGEE RIVER BASIN, SOUTHEASTERN AUSTRALIA

3.4.1 Study site 

The Murrumbidgee River, located in the Murray-Darling Basin in southeastern Australia, 

is the major tributary of the Murray River and is Australia’s third longest river (1,690 km) behind 

the Murray (2,530 km) and Darling River (2,740 km) (Figure 3-11). The entire basin covers an 

area of more 1 million km2, roughly 14% of the Australian continent, and lies between Queensland, 

New South Wales, South Australia, and the Australian Capital Territory. Worldwide, the basin is 

the 20th largest river catchment however has the lowest rate of discharge (average annual discharge 

from 1885 to present: 760 m3 s-1) of all major river systems (Pigram, 2007). The Murray-Darling 

Basin is bound by the Great Dividing Range in the south and east, the central Queensland 

sandstone belt in the north, and the arid interior in the west. The Murray-Darling Basin is composed 

of 23 major river catchments (Figure 3-12) all of which ultimately flow to the Southern Ocean. In 

general, northern catchments drain to the Darling River and southern catchments drain to the 

Murray River. Watercourses generally start as fast-flowing streams in the Great Dividing Range 

which then flow inland across riverine plains, where channels widen and rivers meander, 

significantly slowing down the water flow (Murray-Darling Basin Authority, 2018). Owning to 

warm–hot semi-arid conditions and low-lying topography in many regions of the Basin, 

evaporation and transpiration rates are high (94% of the total rainfall in the Basin is transpired or 

evaporated). Additionally, a large portion of water in the system fills wetlands, and more recently 

is used to supply towns, industry, and irrigation. As a result, many lakes, creeks, and rivers are 

ephemeral and only reach larger rivers during the wet season or flooding events (Murray-Darling 

Basin Authority, 2016).
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Figure 3-10. Fluvial catchment of the Murray-Darling Basin in southeastern Australia showing the 
location of the Darling and Murray Rivers, and the Murray’s largest tributary, the Murrumbidgee 
River. Source: Murray-Darling Basin Authority (2015). 

Climate in the basin is quite variable, reflecting its large size and diverse geography from 

rugged mountains to arid plains. The northern portion of the basin is sub-tropical; semi-arid in the 

west; and mainly temperate in the south. The eastern mountainous portion of the basin receives a 

high annual rainfall of 1,500 mm with several months of snowfall on the peaks of the Great 

Dividing Range. The western side of the basin is generally hot and dry with an average annual 

rainfall of < 300 mm. The average annual rainfall in the catchment is 470 mm, with potential 

evaotranspiration of 1,174 mm, and daily summer and winter temperatures of 25 C and 9 C, 

respectively (Murray-Darling Basin Authority, 2016). Many smaller catchments in the south and 

southeast that drain the Great Dividing Range make larger contributions to total runoff than other 

larger catchments.  
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Figure 3-11. River catchments with the Murray-Darling Basin in southeastern Australia. Source: 
Murray-Darling Basin Authority (2018) 

The basin can be divided into major tectonic units using a framework developed by 

Palfreyman (1984) where rock types are grouped according to dominant lithology and broad time 

periods. The largest groups being the Murray Basin, Lachlan Fold Belt (LFB), Surat Basin, New 

England Fold Belt, Eromanga Basin, and the Barka Basin (Figure 3-13). Sediments from the 

Murrumbidgee River catchment (area: 84,000 km2), located in the southeastern portion of the 

basin, originate from the Lachlan Fold Belt, comprising the Australian Alps (Snowy Mountains). 

The Lachlan Fold forms a major part of the southeastern basin, which extends from central and 

southeastern New South Wales (NSW) to Victoria. It is composed of three major lithotectonic 

assemblages (Coney, 1992): greenstone belts of Early-Middle Cambrian age, turbidite fan deposits 

of Ordovician-Silurian age, and the complex sedimentary, volcanic, and plutonic units of early-

mid Silurian to early-Carboniferous age. The turbidite fan deposits are composed of quartz-rich 

sands and muds which dominate much of the LFB and appear to be sourced from Gondwanaland 

(Coney, 1992). Extensive orogenic granites were set in the Silurian and Devonian periods, 

representing a major transition towards a mature continental margin orogeny in the LFB, linked to 

complex sedimentary units and intense volcanism (Coney, 1992). Additional post-orogenic 

granites from the Carboniferous completed the development of the LFB. Plains in the Snowy 

Mountains northwest of Australia’s highest peak, Mt. Kosciusko (2,228m). It flows north through 
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the Southern Highlands and then westward across the Riverine Plain before joining the Murray 

River (Figure 3-14). Within the drainage basin, three topographic regions can identified: the 

mountainous Southern Highlands east of Jugiong; the valley section westward until the town of 

Naranderra; and the Riverine Plain west of Naranderra. The focus of this study shown in Figure 

3-14 is located predominately in the Southern Highlands, which itself can be subdivided into three 

distinct topographic units based on elevation. The highest part of the catchment and origin of the 

Murrumbidgee River is on the Kosciusko Plateau (average elevation: approximately 1375 m). 

Downstream of the headwaters, near town of Cooma, (average elevation: approximately 930 m) is 

an area of significant relief which extends just south of the capital city, Canberra. This lower sub-

region (average elevation: approximately 500 m) extends westward to the town of Jugiong and is 

the end of the true highland region (Schumm, 1968). The river continues into the valley section 

westward towards Wagga Wagga progressively becoming wider until reaching the town of 

Narrandera (average elevation: approximately 150 m) where the valley ends and the 

Murrumbidgee River flows onto the Riverine Plain where it becomes highly sinuous until 

converging with the Murray River nearly 1,500 km from its headwaters (Wallbrink et al., 1998; 

Schumm, 1968). The major topographic relief on the Riverine Plain is characterized by the modern 

river and a series of paleochannel systems with their levee systems and associated sand dunes.

Figure 3-12. Tectonic units within the Murray-Darling Basin displaying the Murrumbidgee 
catchment and the Murrumbidgee River. Source: re-drawn from Kingham (1998).
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Climate in the catchment is considered temperate in the Southern Highlands transitioning 

to semi-arid on the Riverine Plain. Climatic conditions in the Murrumbidgee River drainage basin 

range between two extremes characterized by cold wet winters in alpine elevations (up to 1,500 

mm of average annual rainfall), and hot dry summers on the Riverine Plain (less than 300 mm of 

average annual rainfall) with an estimated increase of 250 mm of rainfall every 300 m rise in 

elevation (Murray-Darling Basin Authority, 2015). Evapotranspiration rates also increases (1,200 

to 1,600 mm of potential evapotranspiration) from upper to lower elevations due to the increasing 

temperature gradient and decrease in precipitation, resulting in a decrease in soil moisture in lower 

elevations (Murray-Darling Basin Authority, 2015). 

Figure 3-13. Lithology and digital elevation map (DEM) of the upper Murrumbidgee River and 
tributaries displaying sampling points for sediments and water (black dots) and sampling points 
for sediment, water, and bedrock in monolithological catchments with respective drainage 
catchment areas (hashed areas). The dashed line separates the upper (> 600 m elevation) and lower 
(< 600 m) catchments. Inset map: southeastern Australia; red rectangle shows area displayed in 
the main panel. Source of DEM: Geoscience Australia; source of lithology map: NSW 
Government; Resources and Energy; source of inset map: Esri, USGS, NOAA 
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The Murrumbidgee River, upstream from the town of Gundagai, drains primarily 

sedimentary siliciclastic rocks (sandstones, shales, and limestones), igneous intrusive rocks 

(predominately granite, granodiorite, and gabbro) and igneous volcanic rock compositions 

(Schumm, 1968).  The source region of the Murrumbidgee is composed of both granite intrusives 

and sedimentary siliclastic rock compositions of Silurian and Middle Devonian ages, respectively 

(David and Browne, 1950). As it follows a southeastward course towards the town of Cooma, the 

catchment area drains shales, sandstones, and granites of Middle Devonian age (Figure 3-14). The 

river then flows north for 80 km over predominately volcanic and sedimentary rocks of the Silurian 

age, east of the Murrumbidgee batholith. Southeast of Yass, the river begins bending to the west 

and travels across north to south-oriented lithological units in the Southern Highlands. From east 

to west these lithologies include: sedimentary and volcanic formations of the Middle Devonian, 

granites of the Middle Devonian near Jugiong, shales, conglomerates, and volcanics of the 

Siluarian near Gundagai, and finally a mixture of limestone and sandstone of the Ordovician period 

near town of Wagga Wagga (Schumm, 1968). Further west, the river flows on Quaternary alluvium 

with small outcrops of Middle Devonian granite and clastic rocks near Narrandera. It is here where 

the river flows onto the alluvial plain across Quaternary fluvial sediments until joining the Murray 

River. A late Pliocene uplift in the eastern section of the Murrumbidgee River catchment caused a 

major shift in sediment type delivered to the Riverine Plain, marked by a transition from marine 

and lacustrine sediment deposition to fluvial sedimentation. Despite Tertiary sea-level fluctuations 

impacting sedimentation patterns to the west and south (Mallee Basin), the Riverine Plain has 

maintained continuous terrestrial environments over the last 60 Ma (Bowler, 1986). 

In this study, 18 sites along the course of the Murrumbidgee River were sampled for river bank 

sediments and 12 sites for river water at the same locations. Additionally, eight major tributaries 

were sampled along their course and at their confluence with the Murrumbidgee. Using spatial 

data (see Methods below), monolithological catchments were identified in different parts of the 

Murrumbidgee River basin. Four catchments draining only granitic rocks were sampled for river 

sediments and bedrock, two of which were also sampled for river water. Four catchments draining 

only volcanic rocks were sampled for sediments, two of which were sampled for water and 

bedrock. Three catchments draining exclusively sedimentary rocks were sampled for sediments, 

two of which were also sampled for water and bedrock. For sediments collected in 

monolithological catchments and tributaries, only the clay-sized fraction was analyzed. 
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3.4.2 Methods

3.4.2.1 Spatial Analysis 

A 1 arc second digital elevation model (DEM) (source: Geoscience Australia) was used in 

Esri ArcGIS™ 10.4 to determine catchment boundaries and average values for each catchment 

(elevation, rainfall, temperature). Calculated catchment boundaries were used in combination with 

geological spatial data (source: Geological Survey of NSW, Australia) to determine the 

proportions of each lithology in each catchment. Additionally, monolithological sites were 

identified using geological spatial data in combination with the DEM (location and type of 

lithological catchment shown in Figure 3-14).

3.4.2.2 Sample collection, preparation, and analysis 

Bedrock samples were collected from rock outcrops in monolithological catchments (Figure

3-14) and crushed to a fine powder. Sediment samples were collected by sampling an area of 

approximately 1m2 on the river bank or sandbar and amalgamated. Sediment samples were dried 

at 60°C and sieved at 2 mm to remove gravels and debris. The <2 mm fraction was then wet sieved 

at 63 µm with DI water. Both the sand-sized (63 µm – 2 mm; termed “sand fraction” hereafter)

and silt-sized (<63 µm) fractions were kept. The silt-sized fraction was further processed by 

centrifugation to extract the clay-sized fraction (<2 ; termed “clay fraction” hereafter) using 

the protocol established in Starkey et al. (1984). River water was collected from small streams 

in monolithological catchments and the Murrumbidgee River. Water samples were filtered in 

the field using a portable water filtration system with 0.2 µm MCE membrane filters. The pH 

and alkalinity were determined on the <0.2 µm fraction (termed “dissolved load” hereafter) 

following the method of Barnes (1964). More information on bedrock, river sediment, and 

river water collection and sample preparation can be found in sections 2.1.1 to 2.1.3.

Bedrock and sediment clay fractions in this study were analyzed for mineralogy, major and 

trace element concentrations, B concentration, and B isotopes. The dissolved load was analyzed 

for major and trace elements, B concentration, and B isotopes. Sample preparation and analysis 

for mineral identification by XRD and major and trace elements by ICP-MS are described in 

section 2.2 and 2.3, respectively. Sample preparation for B isotope and B concentration analyses 
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can be found in section 2.4. Details on sample analyses for B concentration by ID-ICP-MS and B 

isotope measurements by MC ICP-MS can be found in sections 2.5 and 2.6, respectively. 

3.4.3 Results

3.4.3.1 Spatial analysis 

Using a geospatial lithological map and DEM (sources: Geological Survey of NSW, Australia 

and Geoscience Australia, respectively) monolithological catchments in both the higher (n = 5) 

and lower (n = 6) elevation catchments were identified (Figure 3-14). Catchments areas vary: <10 

km2, n = 4; 10 – 150 km2, n = 5; and 500 – 1000 km2, n = 2 (Table 3-4). In general, lower elevation 

catchments (LEC) are larger than higher elevation catchments (HEC). The average elevation of 

the Murrumbidgee HEC ranges from approximately 1415 – 1155 m, with an average elevation of 

1270 m above sea level whereas those in LEC range from 433 – 595 m with have an average 

elevation of approximately 532 m. According to Olley and Wasson (2003), a relatively significant 

change in average landscape elevation occurs just south of Canberra at approximately 600 m above 

sea level. Mean annual temperature, mean annual rainfall, and mean catchment slope (source: 

Australian Government, Bureau of Meteorology) were also calculated for each of the 

monolithological catchments (Table 3-4). The mean annual temperatures within the five HEC and 

six LEC range from 6.2 – 10.0 C and 12.6 – 14.3 C with averages of 8.5 C  and 13.3 C , 

respectively The HEC and LEC have mean annual rainfall values ranging 811 – 1259 mm and 660 

– 986 mm with averages of 1143 mm and 770 mm, respectively. The average mean catchment

slope in the HEC and LEC ranges from 9.8 – 13.3 and 6.7 – 10.5 with averages of 12.5  and 

7.5 , respectively. Statistical analyses (one-way ANOVA, = 0.05) of mean annual temperature, 

mean annual rainfall, and mean catchment slope was performed to illustrate differences between 

the HEC and LEC. Results from the one-way ANOVA tests show significant differences; in mean 

annual temperature (p < 0.001), and mean annual rainfall (p = 0.004), and mean catchment slope

(p = 0.004), between the HEC and LEC (Table 3-5).

Quantification of the proportions of lithologies drained by the Murrumbidgee River was 

performed at nine locations along the main channel (Figure 3-15). The proportion of felsic 

volcanics, hereafter referred to as ‘volcanic’, decreases from approximately 70% to between 20 

and 30% downstream and felsic intrusives, hereafter referred to as ‘granitic’, proportions increase 

to approximately 30%. The proportion of sedimentary siliclastic, hereafter referred to as 
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‘sedimentary’, is relatively constant with proportions as low as 10%. The proportions of other 

compositions, mainly carbonate rocks, and regolith (alluvium) are relatively low (< 10%) and 

constant along the Murrumbidgee River; however its composition dominates downstream areas on 

the plain (not shown).  

Table 3-4. Mean temperature and annual rainfall at both higher and lower locations in the 
Murrumbidgee River catchment  

Source: Bureau of Meteorology, Australian Government 

3.4.3.2 Mineralogy

Bedrock samples taken from volcanic, granitic, and sedimentary monolithological 

catchments consists of biotite, chlorite, quartz, muscovite, orthoclase, K-feldspar, and albite; the 

identification of secondary minerals in the bedrock was also performed and yielded traces of 

kaolinite in some samples (Figure 3-16; Table 3-6). The average composition (n = 2) of 

sedimentary bedrock is: biotite (7%); chlorite (5%); quartz (58%); muscovite (12%); orthoclase 

(7%); and K-feldspar (3%). Sedimentary bedrocks contained a small portion of secondary mineral 

(kaolinite: 10%) which is inevitable due to their formation. This finding is particularly important 

to note because this study focuses on the clay fraction of modern sediments. Hence, any residual 

secondary minerals in the bedrock from a previous environment would perhaps give a record of 

past weathering conditions and not reflect the modern weathering regime or unweathered source 

material, making comparisons between the compositions of the bedrock and modern sediments 
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less accurate. The average composition (n = 2) of volcanic bedrock is: biotite (5%); chlorite (3%); 

quartz (36%); muscovite (7%); orthoclase (5%), and albite (39%). Volcanic rocks were determined 

to be dacite, a common quartz-bearing volcanic rock in the Lachlan Fold Belt. The average 

composition (n = 3) of granitic bedrock is: biotite (14%); quartz (48%); muscovite had 

insignificant traces (2-4%) of kaolinite. Reproducibility of the quantification of biotite, chlorite, 

kaolinite, quartz, muscovite, orthoclase, albite, and k-feldspar in the bedrock was determined 

repeated analyses of a granitic bedrock sample and is 4%, 0%, 2%, 8%, 2%, 4%, 4%, and 5% 

(2SD, n = 2), respectively. 

Table 3-5. One-way ANOVA single-factor between groups, statistical tests comparing the annual 
mean temperature, annual mean rainfall, and average catchment slope in the high elevation 
catchments (HEC) compared to the lower elevation catchments (LEC)

Statistical significant:  = 0.05 

In all three monolithological catchments, the average mineral assemblage of the riverine 

clay fraction consists of kaolinite (ordered and disordered), phlogopite and lepidolite which are 

grouped as illite, and an illite/smectite (I/S) mixed layer. The mixed (I/S) layer clay minerals have 

regularly interstratified illite/smectite crystallite in a coherent stack of 2:1 layers composed of both 

illitic and smectitic interlayers (Veblen, 1990). Since pure smectite or montmorillonite was not 

detected, the mixed (I/S) layer is the best estimate of expandable (smectite) clay content in the 

sample; the illite interlayers are non-expandable. The average mineral composition of the clay 
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fraction in each of the three monolithological catchments is dominated by kaolinite (56 – 60%), 

with lower compositions of mixed (I/S) layer (21 – 26%) and illite (17 – 18%).

Figure 3-14. Proportions of the lithologies drained by the Murrumbidgee River catchment at 
different locations along the main channel. The x-axis shows the distance from the source of the 
river. Dashed lines represent the approximate location of sampling sites along the river.

Table 3-6. Mineral compositions of monolithological bedrock samples from the Murrumbidgee 
River catchment 

Quantification reproducibility based on replicate analyses of same sample yielded results with an error 
margin for biotite, chlorite, muscovite, orthoclase, albite, K-feldspar, and kaolinite is 2%, 0%, 1%, 4%, 
1%, 2%, 3%, and 5% respectively. 
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Figure 3-15. Mineral composition of the monolithological sediment and bedrock measured by XRD. Top panel: average mineral 
composition of granitic (n = 2), volcanic (n = 2), and sedimentary (n = 3) bedrock; Low panel: average mineral composition of the clay 
fraction of monolithological riverine sediments:  granitic (n = 4), sedimentary (n = 6), volcanic (n = 4)
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Accordingly, the average clay composition of each lithology is very similar to one another (Figure 

3-16; Table 3-7). The reproducibility of the mineral quantification was performed by repeated (n 

= 2) analyses of same sample with mixed (I/S) layer ranging from 8 – 19; kaolinite ranging from 

66 – 77; and illite ranging from 7 – 11.  Based on these results of sample replicates, the 

reproducibility of mixed (I/S) layer, kaolinite, and illite mineral quantification is 11%, 11%, and 

4% (2SD, n = 2), respectively. 

Table 3-7. Mineral composition of the clay fraction of riverbank samples from creeks draining 
monolithological units in the Murrumbidgee River catchment 

Mixed layer represents a mixed layer (illite/smectite) clay composition; kaolinite composition includes both 
ordered and disordered varieties; illite composition includes phlgopite and lepidolite minerals. Replicate 
analyses of same sample produced results with an error margin for mixed (I/S) layer, kaolinite, and illite of 

11%, 11%, and 4%, respectively 

3.4.3.3 Chemical and B isotopic compositions of the bedrocks

Major elements (Al, K, Mg, Na) and both B concentrations and isotopic compositions were 

determined on 8 bedrock samples in monolithological catchments (Table 3-8): sedimentary (n =2); 

volcanic (n = 2); and granitic (n = 4). Concentrations of range from: 2.9 – 7.5% (Al); 1.0 – 4.9% 

(K); 0.7 – 1.4% (Mg); 1.3 – 3.2% (Na) and 15 – 36 ppm (B). Although distinctive differences 

between rock types are not present, we can broadly categorize volcanic bedrock as having the 

highest Na (3.2%) and Al (7.5%) concentrations and significant amount of quartz (~35%) 

indicating its dacite composition which is the common volcanic rock type in the Murrumbidgee 
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catchment. Granitic bedrock has the highest Mg (1.4%) and K (4.9%) concentrations and 

sedimentary bedrock has equivalent or lower concentrations than both the granitic and volcanic 

bedrocks in all measured elements excluding B, which has the highest concentration in 

sedimentary rocks compared to volcanic and granitic rock.   

In the sedimentary catchments, B isotope compositions for the bedrock sample at higher 
11B composition than the sample at low average elevation: –

12.5 and –10.6‰, respectively (Table 3-8). In the volcanic catchments, the higher elevation 
11B composition (–10.3‰) than the low elevation one (–8.3‰). 

11B compositions of bedrock samples in higher and lower elevations 

catchments are –5.5 and –9.0‰; and –7.0 and –7.8‰, respectively (Figure 3-17 11B
11B

composition for volcanic and sedimentary bedrocks are for the most part lower than in granitic 

catchments. Considering the 11B of all bedrock samples and the proportions of different 
11B of the bedrock for the Murrumbidgee 

River catchment at Wagga Wagga (~450 km downstream) would be –8.9  4.4 ‰ (2SD, n = 8). 

3.4.3.4 Boron isotopes in the sand fraction 

The sand fraction of bank sediments from the Murrumbidgee River main channel show a 

narrow range of B isotopic composition, from –9.6 ‰ to –11.0 ‰, illustrating no significant 

variation as the sediment is transported downstream (Figure 3-17, Table 3-9). When comparing 
11B value in the sand fraction of bedload sediment from the Murrumbidgee River (–

10.4 1.0‰, 2SD, n = 6) to the average value for the bedrock in the catchment (–8.9  4.4‰,2SD, 

n = 8), a strong similarity is observed. This indicates that the sand fraction in the river sediment is 

likely a mixture of bedrock material from difference parts of the catchment and undergoes little to 

no isotope fractionation. To test if the B isotope composition of the sand fraction of bedload 

sediment reflects a mixture a unweathered source material in the catchment, simple mixing 

equations were performed using the proportions of drained lithology and B isotopic compositions 

and content of bedrock samples in the drainage area of each sand sample (see discussion below).  
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Table 3-8. Boron isotope compositions, B concentration, and major element concentrations of the 
clay fraction, dissolved load, and bedrock samples taken in monolithological catchment.  

Abbreviations: clay fraction (clay); dissolved load (diss.); bedrock (rock); higher elevation catchment 
(HEC); lower elevation catchment (LEC). Analytical uncertainty of B isotope measurements is 0.4‰ 
(±2SD).  Analytical uncertainty for major element measurements is approximately 3% and for B is 2%.

3.4.3.5 Chemical and B isotopic compositions of the clay fraction 

Chemical composition

The B concentration of the clay fraction in the main stream and tributary samples range 

from 16 to 60 ppm (Table 3-9). B/Al ratios decrease downstream (Figure 3-18A) and follow Mg/Al 

and K/Al ratios (Figure 3-18B and C, respectively). Aluminum was chosen as the reference 

element as it is a major insoluble element during chemical weathering and allows for B, Mg, and 

K concentrations in the clay fraction to be corrected for dilution by quartz (Bouchez et al., 2012).

B/Al, Mg/Al and K/Al ratios in clay-size fractions sampled in downstream tributary locations 

(directly before the convergence with the main channel) appear undistinguishable from those 

sampled in the main river channel. 
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Figure 3-16. Boron isotope compositions in bedrock, the clay fraction (< 2µm) of sediments from 
monolithological drainage catchments, and of the clay (<2 µm) and sand fractions (63-2000 µm) 
from the Murrumbidgee River and its major tributaries. The x-axis in the right panel represents the 
distance from the source of the Murrumbidgee River. Tributary samples are plotted in regards to 
the convergence sample (sample taken directly before the convergence with the main river) 
(yellow square) being their relative position downstream and the distance between each upstream 
tributary sample (black dot) is subtracted from the convergence sample; individual tributaries are 
connected with a dotted line. Site variability was determined by taking multiple aliquots of 
sediment at several locations and is less than 1‰ in most cases (Table 3-10). Analytical uncertainty 

11B composition of the clay fractions from the 
Murrumbidgee River significantly increases from the headwaters to the lower catchment where it 
levels off on the alluvial plain. Interestingly, these compositions are similar to those of clay 
fractions from most neig 11B composition of the sand 
fractions from the Murrumbidgee River remains relatively constant downstream reflecting a 
mixture of unfractionated bedrock material.  

Boron isotopes in the clay fractions from the Murrumbidgee tributaries

The B isotope composition of the clay fraction in the eight major tributaries range from   –

15‰ to –9.8‰ and display a slight to moderate evolution downstream characterized by 

isotopically lighter values in upstream locations than compared to the downstream sample taken 

just before the convergence with the main channel (Figure 3-17, Table 3-9). However, this 
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Table 3-9. Boron isotope, B concentration, and major element concentrations of the clay fraction, 
sand fraction, and dissolved load of Murrumbidgee River and tributaries

Abbreviations: clay fraction (clay); sand fraction (sand); dissolved load (diss.) Tributary samples with 
labels ending in A-C refer to replicate samples taken at the same site to assess site variability.

observation can only be made for 6 of the 8 tributaries, as both the Gudgenby and Cotter Rivers 

were only sampled directly before the convergence due to limited field access. Similar to the 

concentration ratios the B isotope composition of the tributary convergence sample in most cases 

is nearly indistinguishable from the clay fraction taken after the convergence with the main river. 



171

The exception to this is at approximately 200 km downstream where the lighter composition (–

10.1‰) of the Cotter River does not significantly influence the composition of the main channel 

(–13.5‰). 

At several stream and tributary locations within the watershed, multiple samples were taken 

at the same site to assess site variability. The difference in B isotope composition between sample 

replicates at a given site are nearly undistinguishable from each other when considering the 

analytical uncertainty (+0.45, 2SD) in most cases. The exceptions being Umbango Creek and the 

Yass River. The largest standard deviation from the mean observed is 1.3‰ on the Yass River, 

where three sample aliquots were taken. However, the two bank samples that were collected have 

the same B isotope composition, while the one deposit (taken several meters away from the river) 

has a slightly higher B isotope composition. These results generally indicate that while site specific 

data is observed, the B isotope composition at a given site is quite homogenous and that sampling 

one location at given site over another does not significantly bias the data, with the exception of 

the Yass River where both bank and sediment deposits were sampled. This also may indicate that 

sediment deposits have a slightly heavier B isotope composition than actively transported bank 

sediments.

Boron isotopes in the clay fractions from the Murrumbidgee main channel

In contrast with the sand fraction, clay fractions in the Murrumbidgee River show more 
11B values and a systematic increase downstream (Figure 3-17, Table 3-9). The B 

isotopic composition of the clay fraction in higher elevation catchments (600 – 2,230 m elevation) 

range from –18.4‰ to – 11B composition of the clay fractions collected in the lower 

catchment (< 600 m elevation) range from –12.5‰ to –10.8‰. Accordingly, the upper catchment 

is characterized by clay fractions with lighter B isotopic compositions that those in the lower 

catchment where they eventually plateau on the alluvial p 11B

values suggests that either isotopic fractionation is taking place during transport and/or the 

tributaries deliver sediments to the Murrumbidgee with increasingly heavy B isotope 

compositions. This point is discussed below.
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Figure 3-17. Major and trace elemental concentration ratios in clay fractions of Murrumbidgee 
River and main tributaries. A) an anti-correlation between the B/Al and position in the river; B and 
C) Mg/Al and K/Al ratios, respectively, also as a function of position downstream from the
headwater sample. Major (Mg and K) and trace (B) elements are considered to be mobile elements 
during weathering reactions in sediments while Al is immobile in riverine clays with respect to 
mobile elements involved in weathering reactions. Error bars on ratio measurements are 2 SE. 

3.4.3.6 Dissolved boron 

Analyses of the B concentrations in the dissolved load of water samples taken along the course of 

the main Murrumbidgee River reveal a continuous increase (from 1 to 10 µg/L) from headwaters 

to the alluvial plain (Figure 3-19A, Table 3-9). After a rapid decrease upstream, B/Na and B/Mg 

ratios show little variation in the plain (Figure 3-19B and C). Boron isotope ratios of the dissolved 

load appear relatively constant (26 – 32‰) all along the Murrumbidgee River and do not show 

any systematic evolution downstream (Figure 3-19A). These values are high compared to other 
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rivers worldwide (Chetelat et al., 2009; Lemarchand and Gaillardet, 2006; Lemarchand et al., 

2000; Rose et al., 2000). The 11B values of the Murrumbidgee River are significantly higher than 

the world average value inferred from largest rivers (+10‰) and are similar to those observed in 

the Niger River, Nigeria (+35‰) and the Maroni River, French Guyana (+43‰) (Lemarchand et 

al., 2000). In these river systems, the B geochemical cycle is thought to be heavily impacted by 

biological activity and atmospheric inputs.  

Table 3-10. Replicates sediment samples taken at the same sites in the Murrumbidgee River 
catchment

Samples were taken several meters apart at the same location to assess site variability. In the Yass River, 
samples 4A and 4C are river bank samples, while sample 4B is a river deposit collected several meters 
away from the river.
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Figure 3-18. A) Boron isotopic composition and B concentration of the dissolved load showing an 
11B composition as function of its position 

downstream; B) B/Na ratio of the dissolved load used a proxy to test for evaporation C) B/Ma ratio 
of the dissolved load also used as a proxy testing for evaporation. In both B and C, Na and Mg are 
considered conservative elements whose behavior appears similar to B in the dissolved load and 
also increases downstream.

3.4.4 Discussion

3.4.4.1 Origin of the B isotopic signal recorded by the clay-size fraction

The expandable (e.g., mixed I/S layer) or non-expandable (e.g., illite, kaolinite) nature of the 

clay mineral phases is a key parameter because it determines their ability to exchange cations with 

the surrounding solution (Mana et al., 2017). For instance, Williams et al. (2001) demonstrated 
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that structural B in illite minerals does not exchange readily with pore fluids and only happens 

when Si-O bonds are broken. This study also demonstrated that the amount of B structurally 

incorporated into illite clay minerals is five times greater than in smectites under experimental 

conditions, which agrees with Harder (1970) who reported a similar trend in nature.  Bassett (1976)

reported that B adsorbed on clay surfaces is easily exchangeable with aqueous fluids compared to 

structurally-held B. Hence, non-expandable clay minerals like illite and kaolinite retain B in their 

structure and may record the original conditions of their formation, while B in expandable minerals 

like smectite tend to exchange B with the environment and may lose record of their origin. In all 

the lithologies sampled in the present study, the clay-size fraction is mainly composed of kaolinite 

and illite (74 – 79% in total). Residual primary quartz minerals were also detected (7–10%). 

However, since quartz minerals are not important B carriers and are present in our samples in 

relative small and constant abundance, they are not expected to significantly affect the trends 

defined neither by B isotopes nor by concentrations in the clay-size fractions. Therefore, B in the 

sediment clay-size fractions is considered to be primarily bounded to the structural sites of the clay 

mineral and in the non-exchangeable form. Note that the procedure to separate the clay size 

fraction includes a prolonged contact with a large volume of water that has removed all labile B 

from the surface of the sediments. 

3.4.4.2 Mixing or reactions during transport of sediments in the river?

The B isotopic composition of the clay fraction in the Murrumbidgee increases from the 

headwaters out to the alluvial plain where its composition plateaus (Figure 3-17) while B/Al, 

Mg/Al, and K/Al ratios systematically decrease up to approximately 300 m downstream and also 

plateau (Figure 3-18). Here, we quantitatively tested by mass balance if the clay fraction in the 

Murrumbidgee is undergoing chemical and isotopic evolution during transport or if its composition 

primarily reflects mixing of material supplied by the tributaries. The B isotopic compositions and 

B/Al, Mg/Al, and K/Al ratios in the clay fractions of the sediments collected along the 

Murrumbidgee main stream are compared to those calculated assuming that all lithologies drained 

have similar clay-size particle production rates per surface unit. The surface proportion (Figure 

3-15) and chemical/isotopic signature of each lithology drained upstream of the sampling location 

(Figure 3-17) have been used. The mixing equations are as follows: 
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11Bth and (X/Al)th are the theoretical B isotope composition and chemical ratio, respectively 

of a Murrumbidgee River sample. ƒi corresponds to the surface fraction of the ith lithology drained 

(granite, volcanic or sedimentary) as calculated by ArcGIS 10.4 software in Equation 3 and the 

proportion of Al in each of the ith lithologies in Equation 4. [B]i and [Al]i are the B and Al 

concentrations measured for each lithology, respectively. The 11Bi and (X/Al)i correspond to the 

B isotope and chemical composition of the clay fraction from each lithology drained upstream of 

the sampling location. Proportions of drained granitic, volcanic, and sedimentary lithologies used 

in these calculations were normalized to 100%. The strong correlation between the observed and 

calculated values together with the lack of evidence of chemical evolution in the plain (Figure 3-

18) indicate that the composition of the sediment clay fraction in the main channel can be explained

as a simple mixing of clays derived from each of the major catchment lithologies and delivered to 

the Murrumbidgee River by the tributaries without significant chemical and isotopic evolution 

(Figure 3-20A – C). This also indicates that the clay fraction in large rivers, at least the kaolinite 

and illite, retains its chemical composition acquired during its formation and therefore may be 

interpreted as a record of the weathering regime at the location of their production. 

The assumption that all major lithologies contribute equally to the clay-sized sediment load in 

the Murrumbidgee River is a large one, as there are many factors that contribute to sediment 

production and mobilization such as the type of lithology, climate, topography, and tectonics (e.g. 

Ludwig and Probst, 1998; Probst and Suchet, 1992; Suresh et al., 2014). In a dry climate system 

(such as the Murrumbidgee) Ludwig and Probst (1998) reported that climate and lithology are the 

key factors influencing sediment mobilization. It was reported that erodibility was greater in dry 

parts of the basin than compared to wet parts, a relationship that was driven by heavier
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Figure 3-19. Calculated chemical and B isotopic compositions as a function of measured 
compositions of Murrumbidgee River sediment. Monolithological end-members used in the 
calculation of 11B and X/Al are as shown as colored symbols. A) Calculated vs. measured 

11B compositions of the clay fraction; B and C) calculated vs. measured B/Al and Mg/Al ratios 
11B values of the sand fraction of Murrumbidgee 

11B and chemical ratios are 2 SD.

vegetation cover which reduces sediment mobilization in wet areas. However, in the 

Murrumbidgee River catchment, vegetation in the upper (wetter) part of the catchment is not

significantly different that the lower (drier) areas, indicating that differences in climate 

(particularly precipitation) likely do not drive differences in sediment transport within the 

catchment. The influence of lithology on sediment mobilization was reported by Ludwig and 

Probst (1998) to likely be greatest when sediment is predominately supplied by channel erosion 
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and to much lesser extent when sediment is delivered to the river channel by hillslope erosion. In 

the Murrumbidgee, Suresh et al. (2014) reported very long (~200 kyr) hillslope transport times 

of sediment delivered to the main channel, likely owning to the tectonic stability of the catchment. 

Following Ludwig and Probst (1998), this finding would then suggest that the influence of 

lithology type on sediment mobilization in the Murrumbidgee is likely not a key factor. In the 

absence of significant climatic (mainly precipitation) or lithologic control on sediment 

mobilization, it is then plausible that all lithologies in the catchment contribute equally to the clay-

sized sediment load. 

Similar to the clay fraction, the B isotope composition of the sand fraction was calculated 

using Equation 3-3 to assess whether its isotopic composition is representative of a mixture of 

unweathered parent bedrock in the catchment. A positive correlation between the measured and 
11B values of the sand fraction is observed, indicating that the B isotope composition 

of the sand fraction can adequately be explained as a mixture of bedrock material throughout the 

catchment (Figure 3-20D). Therefore, the sand fraction is considered to be a good estimate of the 

average B isotopic composition of the parent material at the catchment scale.

3.4.4.3 Boron chemical and isotopic fractionation during weathering

In order to quantitatively determine B behavior during clay formation and to investigate how 

this may relate to the weathering regime, the relative magnitude of the B transfer from the bedrock 

to the neoformed clay minerals ( , ) is calculated using samples from monolithological 

catchments: 

, =  
[ ]

[ ]
 ×  

[ ]

[ ]
(3-3) 

The soluble chemical character of B implies its progressive depletion in clay minerals as 

weathering reaction progress, with , values starting from 1 in pristine materials down to 0 in 

totally leached weathering products. An intense B leaching is observed for volcanic and 

sedimentary catchments: , values in lower and higher elevation sedimentary catchments are 

as low as 0.11 and 0.15, respectively (with caution that clay minerals may be inherited from the 

sedimentary bedrock and not derive from weathering reactions in the catchment); the ,  value 

for the higher elevation volcanic catchment is 0.51 (Figure 3-20). Like observed in the Gandak, 

more intense leaching is associated with a larger isotopic shift towards more negative values. In 
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contrast, granitic catchments (at both higher and lower elevations) display , values closer to 1 

indicating a limited B loss, associated with a small isotopic shift. Similarities between the two 

systems likely confirm the universal character of this relationship. The apparent 11Bclay-bedrock

differences between lithologies demonstrates a lithological control on clay production rates 

throughout the catchment.

Figure 3-20 11Bclay-bedrock values in monolithological catchments observed in the Murrumbidgee 
11Bclay-sand values from the Gandak River both as a function of the mass transfer 

coefficient ( Al,B). The black star (bedrock) would be equivalent to clay-sized fraction which is 
composed only of crushed primary minerals or alternatively has experienced a 100% 
reincorporation of B (considering Al to be immobile). 

3.5 CONCEPTUAL FRAMEWORK TO INTERPRET B ISOTOPES IN SEDIMENTS

In both case studies, the Gandak and Murrumbidgee catchments, the B isotopic 

composition of the clay size fraction is slightly lower that the parent materiel (as determined by 

the sand fraction and bedrock). This is consistent with the general, and well documented, 

preferential incorporation of 10B into secondary products but also rises some issues and 

inconsistencies with our present knowledge or assumptions on the B behavior during clay 

formation. To simplify, 11B values in clays are either too low compared to soil solution or too 

high compared to the bedrock. Following is a detailed discussion of this statement and possible 

explanation of the results.
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3.5.1 Model of reactive transport of B and B isotopes in weathering profile

Weathering reactions occur by rock exposure to water. A classical modeling approach is 

to consider reactive transport of elements supplied by meteoric waters that migrate downward 

through the weathering profile. Working with trace elements, the basic assumptions are that they 

do not affect the solubility constant of the rock-forming minerals implying that their dissolution 

rate is independent of its concentration in solution and that its incorporation in secondary phases 

occurs proportionally to its concentration in solution through the partition coefficient. Here, we 

use the mathematical derivation for 1D reactive transport in porous media (considering only 

vertical water transfer) for elemental concentrations and isotopes in the percolating fluid as 

proposed for instance by Johnson and DePaolo (1997) or by DePaolo (2006) and many others and 

textbooks. 

= +    (3-4) 

Where and are the density of the fluid and the solid, respectively; is the porosity; is the 

concentration (moles/gram) of the element of interest in the fluid a, respectively; is the 

diffusivity of the element of interest in water; is the water velocity in the porous media; is 

the dissolution time constant for the phase i (grams dissolved / unit volume / time); is the 

concentration of the element of interest in the solid phase i (moles/gram); is the precipitation 

time constant for the phase j (grams precipitated / unit volume / time); and is the distribution 

coefficient of the element of interest between the fluid and the solid phase j. For a porous media 

whose ambient conditions are stable over a time long enough to ensure steady state; where the 

transport of dissolved element is dominated by advection and not diffusion (water velocity >> 10

cm/yr); no spatial and temporal change in porosity occurs and considering Rd, Rp,  and K as 

bulk values of the mineral assemblage, then Equation (3-5) simplifies as follows:

= (3-5) 

Where M is the solid/fluid mass ratio in the porous media. If parameters are constant all along the 

weathering profile, then the analytical solution of the is of exponential form as given by 

Equation 3-7 (initial condition at =0, = ), otherwise the solution is more complex and 

depends on the relation with depth each parameter takes. 
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( ) = + (3-6) 

The concentration of the element of interest therefore starts at , which is controlled by 

atmospheric inputs including more or less contribution of the vegetation cover and then 

exponentially evolves to plateaus at the value given by ( ) with a reaction length , as follows:

( ) = (3-7) 

= (3-8) 

The reaction length L (expressed in m-1) is equivalent to the reaction constant k for order 1 reaction, 

dN/dt=-kN). For > ~5 , the concentration of the fluid no longer evolves because the budget of 

the element of interest is balanced between the dissolution and precipitation reactions. From 

Equation (3-9) it comes that the distance to reach the plateau value increases with the water 

velocity in the porous media and decrease with all the other parameters. This distance is therefore 

greatly dependent of the local hydrogeochemical conditions as well as the chemical affinity of the 

element of interest for the precipitating phase. For B, this distance is expected to be short because 

of the relatively large B chemical affinity for the clay and metal-hydroxide surfaces as well as 

because of its large implication in the vegetation cycle that largely consumes B from the top soil 

solution. In contrast, this distance is expected much larger for elements like Li or Na that are 

slightly involved in the vegetation cycle (Li) and those showing little chemical affinity for mineral 

surfaces (Na).

Following the same hypothesis, the isotopic ratio of the fluid can be modeled as follows: 

= ( 1) (3-9) 

Where  and are the isotopic composition of the fluid and the dissolving rock, respectively and 

is the isotopic fractionation factor between the secondary phase and the fluid. At , the 

isotopic ratio of the fluid ( ) greatly simplifies when combined with Equation 3-10: 

( ) = (3-10) 

Finally, because the model assumes that the neo-formed secondary phases are immobile and at 

chemical equilibrium with the local fluid, it comes:

( ) = ( )                          (3-11) 
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( ) = ( ) (3-12) 

Where  and are the concentration and the isotopic ratio in the neoformed phase, respectively. 

Interestingly, we can note that for the concentration of the secondary phases is linked to 

that one of the bedrock by the ratio the dissolution and precipitation rates and that their isotopic 

composition is identical to the bedrock: 

( ) = (3-13) 

( ) = (3-14) 

3.5.2 Sensitivity tests for B and B isotopes in weathering profiles

This reactive transport model described above has the advantage of explaining two features 

of B data in clay minerals that look counterintuitive at first sight: at a distance long enough to 

allow chemical equilibrium of the percolating fluid with the host rock (i.e. balanced B budget 

between dissolution and precipitation reactions), secondary phase can be more concentrated than 

the primary minerals (if Rd>Rp) and their isotopic composition equals the parent material even 

deriving from fractionating precipitation reactions. The explanation comes from the percolating 

fluid that becomes highly concentrated and isotopically strongly fractionated. However, in order 

to test the applicability of such a reactive transport approach to model the behavior of B and B 

isotopes during weathering, different scenarios of dissolution and precipitation rates were tested 

and computationally solved the Equations 3-6 and 3-10 to evaluate how realistic such reactive 

transport model can be to explain the data. 

Here, it is important to note that, in saprolite, water and minerals chemistry show opposite 

gradients: dissolved elements supplied by meteoric waters equilibrate with soil solids by 

dissolution/precipitation reactions during their downward migration through the saprolite, whereas 

minerals chemically evolve from the bottom of the saprolite (most pristine material and therefore 

chemically more reactive) to surface layers, which concentrate the weathering products and the 

residual primary minerals which are most resistant. Given these opposite trends and assuming that 

secondary products 1) may significantly form around the bedrock-saprolite interface as shown by 

typical profiles of the mass transfer coefficients (e.g. Brantley and White, 2009) and 2) keep a 

chemical record of the conditions of their formation (no significant exchange with the solution 
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once formed), then there is no reason that the water and clay chemistry should match (Figure 3-21).

Moreover, the removal of top soil particles by erosion would imply that the solids are actually in 

movement in the soil in the opposite direction of the water. Therefore, the following numerical 

tests are not intended to reproduce depth profile of clay minerals in a saprolite but rather to explore 

the hydrogeochemical conditions that can lead to the relationship observed between 11B and B 

concentrations in our clay size fraction as illustrated in Figure 3-20. We consider here that the B 

concentrations and 11B of the clay size fraction is held by secondary phases. 

Figure 3-21. Schematic representation of the 
parameters controlling B isotopes in the clay 
fraction of soils. Dark, medium and light gray 
correspond to the pristine bedrock, weathered 
bedrock and the saprolite, respectively. The solid 
line corresponds to the production rate of clay 
minerals that is highest in the weathered bedrock 
and the bottom of the saprolite. Dashed line 
corresponds to the influence of the atmospheric 
inputs on the soil solution. The dash-dotted line 
corresponds to the influence of biologically-
dominated reactions that are maximum at depth of 
maximum tree root density. Both atmospheric and 
biological imprint decrease downward as solutions 
migrate and interact with soil minerals. In the deep 
saprolite (A), clays form at a depth dominated by 
water-rock interactions. In the shallow saprolite (B), 
clays form under the control of water-rock 
interactions, biology, and the atmosphere. From 
previous work, the typical depth in which vegetation 
and atmospheric influence the B isotope 
composition of the clay fraction is approximately 2 
m, however this depth is likely to be highly variable 
(Cividini et al., 2010). 
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3.5.2.1 Scenario 1: constant dissolution and precipitation rates

In this first scenario, the dissolution and precipitation are kept constant all along the 

weathering profile. This would imply that the changes with depth of the water chemistry and soil 

mineralogy do not affect the reactions of dissolution and precipitation. Despite being rather 

unlikely, the principal interest of such a simple scenario is to test the characteristic distance of 

water chemical equilibration with the solids it comes in contact with as well as the influence of the 

B isotopic composition of the entering solution on the pedogenic clays (or secondary phases in a 

large sense). Results are illustrated in Figure 3-22 with a zoom on the top 100m in Figure 3-23. 

Taken parameter values in the order of those classically found in the literature (see caption of the

Figure 3-22), it is clearly shown that such a model mismatches our data by several orders of

magnitude because it requires about 10 km of water/rock interaction to allow B concentration and 

11B to be similar to that observed and are is therefore not consistent with the development of 

saprolite in the order of 10 m. Moreover, it would require a B concentration in the percolating 

solution of 12 ppm, whereas it never exceeds 10 ppb in soils and may reach 100 ppb in aquifers. 

Looking at the top 100 m only, the model also predicts very B-poor clays (0.01-0.6 ppm) and very 

low 11B (about -40‰). Finally, in the most likely case of the entering solution with 11B around 

+30‰ (close to the atmosphere and vegetation), then an anticorrelation is observed between the B 

concentration and isotope in the clay, which is contradictory with the observed data. However, 

erroneous values could have been taken for some of the model parameters like the actual water 

porous velocity or the reaction rates. The reaction rates chosen (10-5 yr-1) are likely on the upper 

limit and reducing this value would increase the reaction length. For the water velocity, V=5 m yr-

1 is the average value determined in the Strengbach watershed (Cividini et al., 2010) when actually 

there are average periods of rapid flush after a rain event and periods of stagnant waters between 

rain events during the summer. To reduce the reaction length by 3 orders of magnitude, we should 

take V = 5 mm yr-1, leading to conditions where elements would mostly move by diffusion. 
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Figure 3-22. Numerical results of the transport reactive Equations (3-6) and (3-10) in the case 
where the dissolution and precipitation rates are kept constant. Parameters of the model are: v=5
m/yr; M=10; Rd=Rp=10-5 g.g-1.yr-1; K=5; Cs=30 ppm; rr=-11‰; Cf0=0.003 ppm; rf0=30‰ (blue 
dots) or -11‰ (red line); =0.970; K=25. The dashed black line represents the 11B of value taken 
for the bedrock (rr).

Figure 3-23. Zoom of the top 100 m along the flowpath. Parameters are identical as in Figure 
3-22.
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3.5.2.2 Scenario 2: hot spots of dissolution and precipitation

More realistic scenario would be to consider that the reaction rates vary with depth 

according to the change of water chemistry and mineralogy. A linear relationship between reaction 

rates and depth has been tested but gives very similar results and conclusion as taking constant 

ones. More likely, clays may massively form at particular depth(s), associated with strong 

gradients of the hydrogeochemical conditions. Two locations in the saprolite are of particular 

interest: 1) the top soil where meteoric water enters the soil with which it is far from chemical 

equilibrium, enhanced by the presence of organic compounds (acids, ligands,…) that promotes 

mineral dissolution, and 2) the saprolite/bedrock interface where porosity rapidly decreases and 

fresh minerals are exposed to water (see Figure 3-21). The hypothesis of clay minerals being 

massively formed at the surface can be dismissed because clays are also largely found deep in the 

weathering profile and because B in clays should be in equilibrium with a B-poor and high 11B 

solution, inconsistent with the data. We then tested the following scenario: dissolution and 

precipitation reactions exist all along the saprolite but at limited rate (Rd>Rp, allowing the 11B 

of the solution to decrease) but drastically increase (by 2 orders of magnitude at the bottom of the 

saprolite, Rd=Rp). Results are shown in Figure 3-24 and do not show much of a difference 

compared to the constant parameter scenario. The principal difference is that the reaction length is 

shorter; this is in line with increased precipitation and the fact that neo-formed clays have lower B 

concentrations due to the increased precipitation rate which reduces the B concentration of the 

solution. 

3.5.3 Implication for weathering reactions in soils 

The sensitivity tests described above indicate that the classical reactive transport modelling 

approach misses the B data by several orders of magnitude and hint severe contradictions on how 

to produce B-rich clays over a short distance, at a composition close to the bedrock, and from a 

diluted soil solution? Even being already mentioned in previous studies, the soil solution chemistry 

as determined from the samples collected with the lysimeter plates is not the one from which 

secondary particles form. Its diluted chemical composition driven by rapid transfer through the 

soil layers hinders the formation of secondary products. Instead, B data in the clay size fraction 

indicate that its incorporation into secondary phases must be quantitative and, since the reaction 
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Figure 3-24. Numerical results of the transport reactive Equations (3-6) and (3-10) in the case 
where the dissolution and precipitation rates are increased by a factor of 100 at -10m following a 
gaussian distribution ( . Parameters of the model are: v=5 m/yr; M=10; background Rd=10-

5 g.g-1.yr-1; Rp=0.5 Rd; K=5; Cs=30 ppm; rr=-11‰; Cf0=0.003 ppm; rf0=30‰; =0.970; K=25. 
The dashed black line represents the 11B of value taken for the bedrock (rr).

rates are relatively low, it implies that the precipitation must take place in a confined environment. 

To approach the case where clays precipitate in a partially closed system,  Figure 3-25 shows the 

results of a Rayleigh-like B chemical and isotopic evolution of a pore volume. The model predicts 

that the 11B of the bulk clays formed in a given pore volume approach the source value as B gets 

quantitatively re-incorporated. This trend appears closer to our results than the reactive transport 

as presented above. Here, the conceptual view for the formation of clays in soil as inferred from B 

concentration and isotopes is that they precipitate from partially isolated pore volumes with limited 

connection to the principal water flow path. Most of the soil water migrates relatively fast across 

the weathering profile, keeping a diluted concentration of B. At much slower rate, water and 

dissolved elements diffuse into small-scale pores at the mineral surface and/or grain boundaries 

where they interact with the host mineral and produce in-situ clay (Figure 3-26). The water 
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transport across these secondary pores should be slow compared to dissolution and precipitation 

rates to ensure a quantitative removal of B before the water replacement. Here, the main source of 

B is therefore the hosting mineral itself and not the soil solution. However, the initial composition 

of the starting solution in the Fig. 3-25 is set to +10‰, producting clays in equilibrium with this 

solution which are 30‰ ligher and in the range of the observed data.  If boron were exclusively 

sourced from mineral dissolution, then the soil solution would have an isotope composition of the 

mineral/bedrock (approximately -10‰) as dissolution does not cause isotope fractionation. A soil 

solution with a composition of +10‰, as modelled in Fig. 3-25, would then indicate a B 

contribution from an isotopically heavy source, most likely B which has been cycled through 

vegetation and/or deriving from the atmosphere. In polluted environments or those near the sea, 

this isotopically heavy source may be from contamination or marine-derived sources such as sea 

spray, respectively. Regardless of the source, those secondary pore waters slowly leak to the soil 

solution to allow a low B concentration but a gradual isotopic imprint of the mineral dissolution. 

Figure 3-25. Schematic representation of B isotope systematics in a closed system where B 
isotopes of the soil solution and clay fraction evolve by Rayleigh distillation. This schematic can 
be used to describe the observed relationship between the clay fraction, porewater, and the 
bedrock. The average the average 11B of the bedrock was used (-10‰) as the initial composition 
of the porewater. The fractionation factor ( ) between the adsorbed and dissolved species in this 
model is 0.969 which corresponds to a 11B clay – fluid = –30‰ at pH 6.9 following Palmer et al. 
(1987). 
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Following this model, local hydrogeochemical conditions still have a strong influence on 

the B geochemical signature of clays since more aggressive weathering conditions (strong 

hydrological cycle, high temperature, etc.) leading to stronger chemical gradients and larger 

secondary pores for instance that promote dissolution reactions over the precipitation ones and 

therefore lead to lower B concentration and 11B in secondary products. Their numerical modeling 

would require to implement equations for a double porosity in reactive transport codes (e.g.

DePaolo et al., 2006), beyond the scope of the present work.  

Figure 3-26. Albite mineral surface displaying a porous surface where soil solution may become
trapped and evolve in a partially-closed system. Image taken by scanning electron microscopy 
(SEM).

3.5.4 Conclusion 

This chapter comprehensively focused on how river sediments record the weathering 

regime and how that weathering “signal” is transported from source areas to the depositional 

environment using boron isotopes. Chemical and B isotope values in the Gandak and 

Murrumbidgee Rivers show similar behavior. Boron isotope compositions of the clay fraction in 

the headwaters displays large isotope fraction compared to those formed on the alluvial plain, 

indicating different weathering conditions in each location. The chemical composition of riverine 

material from the Gandak was found not to be evolving during transport. Similarly in the 

Murrumbidgee River, a mass balance model reveals that the chemical and B isotope composition 

of sediment from the main channel reflects a mixture of sediment produced in the source areas of 
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the catchment and drained to the main channel via the tributaries in varying proportions. To this

end, no chemical or isotopic evolution of the sediment is observed during transport. This important 

finding implies that the chemical and B isotopic composition of river sediment can possibly be 

used as a proxy to reconstruct paleo-weathering conditions. 

While the chemical and B isotope composition of the sand fraction keeps a record of the 

source of catchment material (bedrock), the clay fraction records weathering conditions at 

formation sites. Low 11Bclay-bedrock values in monolithological samples correlate with low mass 

transfer coefficient values while higher 11Bclay-bedrock compositions correlate with higher mass 

transfer coefficients. This behavior was also noted in Gandak River sediments indicating that B 

mobility during clay formation is controlling the B isotope composition of secondary minerals. To 

explain this possible global trend, a reactive transport model was used to model the composition 

of the percolating surface/groundwater and the clay fraction. Results show that model cannot 

predict B concentrations or isotopes of the soil solution and precipitating clay fraction without 

using unrealistic modeling parameters such as flow path distance and water velocity. This likely 

indicates that the clay fraction is not precipitating from the bulk soil solution. On the contrary, 

clays are hypothesized to be precipitating from a porewater solution that evolves in a partially-

closed system best described by Rayleigh distillation. The source of B to the clay fraction comes 

from the mineral itself which has an isotopic composition close to that of the clay fraction. 

Similarly, high B concentrations in these porewaters (in the range of 10 ppm) are needed to 

produce clay fractions with even higher concentrations (in the range of 50 ppm), which can be 

explained by continual mineral dissolution in a partially-closed system. This implies a long 

reaction time between the secondary mineral and the porewater, likely not present in transient soil 

solutions.  

If correct, this description has an important implication: there is no reason that B in clay 

minerals should be in equilibrium with dissolved B, neither in top soils nor in rivers. This is evident 

by the approximate -40‰ B isotopic difference between the clay fraction and the dissolved load. 

Clays may record only the very local conditions of their formation (possibly in a confined 

environment) whereas soil solutions and rivers may be fed by waters that have not substantially 

exchanged matter with minerals. This would imply that both the dissolved and particulate phases 

may record weathering information and serve as proxy. However, there is no reason to dismiss 
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evidence from decades of studies using mass balance made from water and particles budgets, but 

this research questions the direct link that exists between them.
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Chapter 4

RIVERINE PALEOCHANNELS
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4.1 Chapter Introduction

To date, few studies have investigated boron isotope behavior in silicate sediments transported 

by rivers (Chetelat et al., 2009; Spivack et al., 1987) or in subsequent sediment deposits such as 

lakes (Vengosh et al. 1991a, 1991b and Xiao et al. 1992) or paleochannels.  Past studies such as 

Chetelat et al. (2009) and Spivack et al. (1987) have analyzed the suspended load in rivers for B 

isotopes to determine the modern weathering regime in the catchment. Studies using B isotope in 

lake sediment deposits are often investigating the geochemical evolution of the lake and have not 

specifically focused on the paleo-weathering information sediment deposits may contain. To 

evaluate chemical and isotopic variations of lake sediment Xiao et al. (1992) identified the sources 

of B which contribute to the composition of the lake water then calculated isotope fractionation 

factors between the sediment clay minerals / boron minerals and the lake water / brine to determine 

if changes in source or geochemical processes can explain their compositions. Results show that 

isotope fractionation between the brine and sediments in the salt lake is due to adsorption of 10B 

onto clay mineral surfaces, resulting in an 11B aqueous phase enrichment. Large differences in the 

B isotope compositions between the various B-contributing sources were also reported. Vengosh 

et al. (1991a) reconstructed the geochemical history of Australian salt lake brines by analyzing the 

chemical and B isotope composition of lake brines, groundwaters, and lake sediments over time. 

Similar to Xiao et al. (1992), variations in the B isotope composition of lake waters, brines, and 

sediments were compared to those of the B end-member sources to the lake (e.g. seawater, 

groundwater, mineral evaporites) and the geochemical processes within the lakes that may cause 

B isotope fractionation between the various components (e.g. interactions between dissolved B 

and clay minerals) were considered. A series of isotopic mass balance equations were also used to 

identify the source of the brines and chemical/geomorphological evolution of the lakes over time 

and to determine the marine or non-marine origin of the lakes. Results showed that in closed 

system maar lakes (with respect to local groundwater), 11B enrichment of the lake water was caused 

by continual removal of 10B by the sediments (enriching the water in 11B) and an accumulation of 

11B by atmospheric inputs. In interior (terrestrial) salt lakes, higher 11B values of the lake water 

was interpreted to reflect a mixture of marine aerosols, internal adsorption processes within lake 

basins, and a mixture of terrestrial waters. This research demonstrated for the first time that B 

isotopes in sediment (and brine) archives can be a useful proxy in reconstructing paleo-
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environmental conditions, particularly in evaporite environments, if an understanding of the B 

isotope systematics in the system is obtained. Boron isotopes in aeolian loess/paleosol deposits 

were studied by Zhao et al. (2003) and Wei et al., (2015) in China. The aim of these studies was 

to describe the geochemical characteristics of B isotopes during loess and paleosol weathering and 

to link variations in the B isotope composition of loess/paleosol deposits with paleo-environmental 

or paleoclimate regimes. Zhao et al. (2003) found that chemical and B isotopic signals were carried 

by the adsorbed phase on clay particles, with a negligible contribution of the carbonate phase 

within the deposit. Variations in B content and isotope values of the adsorbed phase mainly reflect 

a change in boron source, while those of the acid-soluble phases in the loess and paleosol layers 

are dominantly constrained by the intensity of weathering pedogenesis controlled by climate and 

environmental conditions (Figure 4-1). Specifically, higher B content and isotope ratios in the 

paleosols layers compared the loess 

Figure 4-1. Boron content and isotope composition of the acid-soluble phases in the samples taken 
from the Luochuan loess section on the Chinese Loess Plateau. Source: Zhao et al. (2003). 

layers occurs as a result of more intense chemical weathering during warm and moist climate 

regimes (paleosol layers) compared to cold-dry climates (loess layers). Increases in temperature 
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and precipitation lead to an intensification of low-temperature mineral alteration which increases 

the amount of B available for adsorption and adsorption capacity of clay minerals. Warm-moist 

conditions produce different weathering products, such as  more clay minerals, thus changing the 

source of B in the water-rock system and producing variation in B isotope compositions. A similar 

result was found by Wei et al. (2015) who analyzed the B isotope composition of 5 loess-paleosol 

profiles in China. Variations in Sr and B concentrations, 11B, and magnetic susceptibility (a paleo-

climate proxy used to determine degree of pedogenesis) correlate well with pedogenetic intensity 

based on the CIW index (a weathering index using relative proportions of mobile/immobile 

elements, specially, aluminum, calcium, and sodium).Pedogenesis under cold climates produced 

low 11B, lower B concentrations, higher Sr concentrations, and low magnetic susceptibility values 

indicating low weathering intensities; whereas warmer-humid climates show the opposite and 

indicate higher weathering intensities. 

Figure 4-2. Paleoclimate reconstruction data over the last interglacial cycle compared to various 
proxies (magnetic susceptibility, B isotopes, and CIW index) taken from the Yangguo Reservoir 
Profile, China. Source: Wei et al. (2015).

Although these studies did not focus on riverine transported sediment, they employed the use of B 

isotopes in wind-blown soils and sediments to reconstruct paleo-environmental conditions over 

the last glacial-interglacial cycle with success. These pioneering studies provide evidence 
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supporting the use of B isotope compositions in soils and sediment as a potential geochemical 

proxy to reconstruct paleo-environmental changes.

In the present study, B isotope behavior in riverine sediment paleochannel deposits was 

investigated with the goal of reconstructing paleo-environmental and paleo-weathering conditions 

over the last glacial-interglacial cycle (MIS 1 – MIS 5). This study focuses on a series of well-

dated and studied paleochannel deposits on the alluvial plain in the Murray-Darling Basin within 

the Murrumbidgee River catchment in southeast Australia (i.e. Banerjee et al., 2002; Bowler, 1986, 

1967; Bulter, 1950; Dosseto et al., 2010; Page et al., 2009, 1996; Pels, 1964; Schumm, 1968).

Sediment infill of these channels is thought to have derived from the headwaters of the 

Murrumbidgee River catchment over the last glacial cycle (Suresh et al., 2014; Page et al., 2009; 

Page and Nanson, 1996; Page, 1994), similar to the source of river sediment studied in Chapter 3. 

Because the existing study is the first to use this approach, the capability of B isotope to record 

paleo-weathering conditions of fluvially-transported sediments is unknown. However, one of the 

main conclusions in Chapter 3 (modern Murrumbidgee sediments) was a lack of chemical and B 

isotopic evolution in the clay fraction during transport, indicating that the B isotopic composition 

of clay fractions delivered to the downstream paleochannel systems are representative of those 

produced in source areas throughout the catchment. This finding reveals great potential for the 

application of this new proxy in fluvial sediment deposits with the goal of reconstructing 

conditions of their formation. The first study objective is to determine if the clay fractions of 

sediment deposits have retained their pedogenic signature or if they suffered from post-

depositional alteration. If samples affected by post-depositional alteration can be identified they

will be removed from the dataset before a paleo-environmental interpretation is made. The second 

study objective is to determine if the chemical and isotopic variation within each paleochannel 

system is distinct from other paleochannel systems. If so, it is necessary to determine if these 

variations are related to changes in sediment source or chemical weathering conditions during clay 

formation including weathering intensity and the influence of vegetation,  both of which may be 

ultimately driven by climatic variability over the last glacial-interglacial period.

4.2 Modern climate drivers and paleoclimate in temperate Australia over the last 100 ka
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In order to better understand how paleochannel formation, sediment deposition, and ultimately 

soil formation (pedogenesis) has responded to climate variability over the last glacial cycle in the 

Murrumbidgee River catchment, an understanding of modern drivers of climate variability and 

compilation of paleoclimate proxy records of the region is needed. The following text will discuss 

both, starting with the current Australian climate synoptic and drivers of modern climate  then 

review relevant paleoclimate reconstructions of southeast Australia, including those throughout 

the Murray-Darling Basin, Riverine Plain, and the broader region. 

4.2.1 Modern drivers of climate variability in temperate Australia

The known modern drivers that affect climate variability in terrestrial temperate Australia 

which include: El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), 

Southern westerly winds (SWW), the Southern Annular Mode (SAM), and the Indian Ocean 

Dipole (IOD) (Petherick et al., 2013). ENSO has two distinctly different phases, El Niño and La 

Niña, which have highly different impacts on both the spatial and temporal rainfall patterns in 

northern and eastern Australia (Risbey et al., 2009). Notably during an El Niño phase, the central 

and eastern Pacific Ocean becomes anomalously warm, with a high-pressure zone over Indonesia 

and northern Australia. In northern and eastern Australia, extending as far south as Tasmania, 

lower than average rainfall is experienced (Hill et al., 2009) which can result in major periods of 

drought. The opposite phase, La Niña, results in anomalously high rainfall across much of 

temperate Australia and can result in major flooding events, such as those observed in Lake Eyre 

sediment archives (Kotwicki and Allan, 1998). Operating on decadal (2 – 8 yr) timescales, ENSO 

was found to have increased in frequency over the Holocene until about 1,200 years ago, and then 

declined toward the present (Moy et al., 2002). Alternating periods of high and low ENSO activity 

(~2,000 years timescales) are superimposed on this long-term trend. Although ENSO variability 

over longer millennial timescales is poorly understood, coral records from Papua New Guinea do 

not indicate changes in ENSO cyclicity for the last 130 kyr (Moy et al., 2002) but rather a major 

change in amplitude and intensification to modern conditions (e.g. Ayliffe et al., 2004). 

The Pacific Decadal Oscillation (PDO) describes an oscillation of SSTs in the North 

Pacific, which occurs on a decadal cycle, and has a significant influence on Australian rainfall 

(Mantua and Hare, 2002). The oscillations have a warm phase, which are associated with below 
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average rainfall in Australia, and a cool phase associated with above average rainfall in Australia. 

The influence of the PDO on Australian rainfall can be modulated by ENSO interactions, which 

can affect rainfall variability due to the combinations of both systems. This interaction extends as 

far south as the Murray River, where rainfall, river flow, and surface temperature correlates with 

PDO and ENSO interactions (Power et al., 1999).

The Southern westerly winds (SWW) are important components of Southern Hemisphere 

climate which have been implicated in governing precipitation in the mid to high latitudes 

(Garreaud et al., 2013; Garreaud, 2009). Variations in their intensity and latitudinal position are 

proposed to be important drivers of global climate because of their influence on deep-ocean 

circulation patterns (i.e. up-welling of the Southern Ocean deep water) and associated changes

in atmospheric CO2 (Rojas et al., 2009). Hesse and McTainsh (1999) suggest that SWW play an 

important role in Australian climate and that SWW-induced cold fronts can influence landscape 

dynamic through wind sediment transport and wind erosion. The Southern Annular Mode 

(SAM)/Antarctic Oscillation (AAO), which is the dominant inter-annual mode of the SWW, 

results in either a northward (negative SAM/AAO) or southward (positive SAM/AAO) shift of the 

SWW mean position, and therefore significantly correlated with southern temperate Australian 

precipitation (Hendon et al., 2007). Similar to the ENSO/PDO correlation, SAM/AAO is 

modulated by interactions with ENSO and amplifies climate effects of each mode when in sync.

The Indian Ocean Dipole (IOD) is a aperiodic oscillation of sea surface temperatures across 

the Indian Ocean involving three distinct phases: positive, neutral, and negative (Australian 

Government, Bureau of Meteorology, 2018). During a positive phase, westerly equatorial winds 

weaken, causing warm water to flow to the western part of the Indian Ocean basin (off the coast 

of Africa) and cool waters to upwell from the eastern basin off the coast of northwestern Australia, 

creating temperature differences across the Indian Ocean. In Australia, this generally produces less 

moisture than normal in the atmosphere and reduced rainfall. During a negative IOD phase, 

westerly winds intensify causing warmer water to build up near Australia and cooler than normal 

water in the western basin. This results in above average rainfall over Western and South 

Australian, as warm waters tend to supply weather systems with more atmospheric moisture. A 

neutral phase does not create temperature differences across the Indian Ocean basin, therefore 

having little influence on weather patterns in Australia. 
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Figure 4-3. Major climatic features of Australia displaying rainfall patterns and the Murray-
Darling Basin. Source: Kershaw and van der Kaars (2012) 

4.2.2 Paleo-environment proxy records of the Murray-Darling Basin, Southeastern 

Australia, and surroundings

Despite the arid nature of much of the Australian continent, a significant amount of long, 

fairly continuous records of environmental change have been produced from its more humid 

eastern side (e.g. Mills et al., 2013; Petherick et al., 2013; Hesse et al., 2004; Page et al., 1996; 

Singh and Geissler, 1985; Colhoun et al., 1982). The southern portion of the Murray-Darling Basin 

is one of the areas most affected by climatic variability and has a high capability of recording it, 

including the Kosciuszko Massif in the Snowy Mountains out to the Riverine Plain (Figure 4-3). 

The Murray-Darling Basin (and Murrumbidgee River catchment) lies within the temperate zone 

in southern Australia. The zone extends from modern subtropical Queensland in the north, 

southward into New South Wales and Victoria, coastal South Australia, Tasmania, and southern 

portions of Western Australia (~20 – 45°S) (Petherick et al., 2013). The temperate zone is situated 

between the warm tropics in the north and the cold Southern Ocean and experiences a range of 
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rainfall patterns that results from different climatic drivers (Figure 4-3). The southern part of the 

continent (~35°S) (location of the Riverine Plain) experiences a winter dominant rainfall regime 

and low summer rainfall through a zone of uniformly distributed seasonal rainfall. This results 

from the incursion of moist westerly winds inland to southern Australia, as the subtropical 

dominant high pressure system shifts north in response to the Northern Hemisphere insolation 

maxima (Kershaw and van der Kaars, 2012). To the opposite, the northern part of the temperate 

zone experiences a summer dominant rainfall patterns through a zone of weakly seasonal rainfall, 

resulting from the poleward migration of the Inter-tropical Convergence Zone (ITCZ) and 

responding to the Southern Hemisphere solar maxima and rainfall brought by the southeastern 

trade winds. Monsoon influences are derived from the equatorial north-west and also the quasi-

monsoon where moisture is derived from the Pacific Ocean.

Over long timescales (104 – 105 yr), glacial-interglacial cycles dominate climate change which 

are produced by solar insulation variations caused by reoccurring perturbations in Earth’s orbit

and rotation, known as Milankovitch Cycles(Petit et al., 1999; Raymo et al., 1998; Fischer, 1981).

Additionally, a large number of complex feedback mechanisms are superimposed on these cycles 

including the expansion and contraction of Northern Hemisphere icesheets and the sea level 

fluctuations (Mills et al., 2013). Throughout the southern portion of the temperature zone and 

within the Murray-Darling Basin, higher temperatures during northern hemisphere interglacial 

periods are broadly associated with extensive woodlands in the lowland areas of the Basin 

compared to glacial intervals. Although vegetation (Kershaw et al., 2007) and aeolian (Twidale, 

2007; Hesse et al., 2004) records within the Basin suggests increasing availability of moisture 

during the Holocene than compared to the LGM (20–18 kyr), other hydrological indicators suggest 

the opposite (Figure 4-4). For example, high lake levels (Bowler et al., 2003) and paleochannel 

discharges (Page and Nanson, 1996) indicate a wet LGM and a dry Holocene in the Basin. 

However, the complex relationships and feedbacks between these vegetation, rainfall, and runoff 

may explain this discrepancy. Evidence for long-term drying in eastern Australia over the last 

glacial cycle is evident in the hydrological records in the Murray-Darling Basin (Figure 4-4) in

addition to several other sources including dust deposits in the Tasman Sea (Hesse, 1994) and 

decline of river activity in the Lake Eyre Basin (Maroulis et al., 2007)
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Figure 4-4. Last glacial cycle in the Murray-Darling Basin. All data are plotted as a function of 
depositional age before present (bottom x-axis) and Marine Isotope Stage (MIS) 1–6  (top x-axis) 
taken from the oxygen isotope record (not shown) from ODP Site 677 (Mix et al., 1995). A) paleo-
discharge ratios from the Murrumbidgee River paleochannel systems expressed as multiples of 
modern river bankfull discharge (Page and Nanson, 1996); B) Lake level history of Lake Mungo 
based on OSL chronology (scale: 0 = dry; 1 = overflowing) (Bowler et al., 2003); C) proportion 
of tree and shrub pollen taken from Caledonia Fen, Victorian Highlands (Kershaw et al., 2007);
D) number of investigated sites with TL-dated longitudinal sand dunes in the Murray-Darling
Basin (Twidale, 2007; Hesse et al., 2004). Note that all bins are 10 ka except 0 – 5 ka where the # 
sites has been doubled. Source: re-drawn from Mills et al. (2013) 

4.2.2.1 Temperature and Glaciation

Throughout the Quaternary Period (last 2.6 Ma), glaciation in Australia was restricted to the 

Tasmanian Highlands and a very small catchment in the Kosciuszko Massif (Snowy Mountains) 

on the eastern border of the Murray-Darling Basin, only for brief periods during glacial interval 

extremes (Barrows et al., 2001, 2002; Colhoun, 1985). However, periglacial soil processes may be 
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acted on sediment over much broader areas down to altitudes of 600 – 800 m (Barrows et al., 2002; 

Galloway, 1965). Accordingly, this would have affected soil formation in the headwaters of Basin 

rivers that supply sediment to the Riverine Plain and likely enhanced seasonal runoff. Modelling 

of these glacial advances indicates that large decreases in temperature and atmospheric moisture 

were necessary to form small ice caps (Barrows et al., 2001). Evidence of a substantial (6–10 C) 

decrease in temperature at sea-level in the western portion of the Basin and at Lake Eyre was 

reported by Miller et al. (1997) from 45 – 16 ka, however a SST reconstruction of the LGM inferred 

from fossil plankton assemblages (Barrows and Juggins, 2005).  From the Australian margin and 

Indian Ocean indicate a SST change of only 5 C. More recently there have been continuous, high-

resolution records of SST (Barrows et al., 2007; Calvo et al., 2007) taken off the coast of New 

Zealand and from the mouth of Murray River, respectively, that are in better agreement with glacial 

models and whose timing and degree of temperature change are more consistent with those 

determined by Antarctic ice cores (Petit et al., 1999) (Figure 4-5). The alkenone-derived SST 

record taken offshore of the Murray River in South Australia (Calvo et al., 2007) is the first 

Figure 4-5. Temperature reconstruction records over the last glacial cycle. A) Estimates of SST 
from planktonic foraminifera at DSDP Site 594 off the east coast of New Zealand, source: re-
drawn from Barrows et al. (2007); B) alkenone-derived SST record from core MD03-2611 taken 
from near the mouth of Murray River in South Australia, source: re-drawn from Calvo et al. (2007);
C) Isotopic temperature reconstruction of the atmosphere taken from the Vostok ice core record in
Antarctica, source: re-drawn from Petit et al. (1999)
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continuous, high-resolution record in the Australian region, although relatively limited in duration 

compared to other records. The record suggests a significantly colder LGM period, with 

temperatures approximately 8 C lower than today (Figure 4-5B). The 150,000 year SST record 

inferred from planktonic foraminifera taken off of the east coast of the New Zealand’s South Island 

(Barrows et al., 2007) offers a longer representation of climatic variability in the Southern Ocean 

and Southern Hemisphere in general. This record shows that rapid temperature changes occur 

within a few centuries in the Southern Ocean and that an approximate temperature difference of 

6 C is apparent between glacial and interglacial periods. Barrows et al. (2007) reported that first-

order climate change in the Southern Hemisphere (at least from the perspective of New Zealand 

and Australia) occurs in concert with changes in insolation of the North Hemisphere and that the 

glacial extent and vegetation changes (see discussion below) in New Zealand and Australia occur 

in tandem with SSTs, indicating a tight link between oceanic and terrestrial temperature. Taken 

together, the Barrows et al. (2007) and Calvo et al. (2007) records support larger changes in 

temperatures and moisture content, compared to today, which the glacial models require to form 

icecaps in temperate Australia.

4.2.2.2 Hydrological Records 

As discussed earlier, our understanding of climate-driven fluvial activity in the Murray-

Darling Basin is primarily based on the paleochannel work of Page et al. (1996), (1991); and Page 

and Nanson (1996) who used TL-dating to extend the previous chronology back to MIS 5 (105 

ka). Banerjee et al. (2002) and Mueller (2017) later confirmed the TL dates of Page et al. (1996)

using optimally stimulated luminescence (OSL), although Mueller (2017) dates the Yanco System 

to be slightly older than reported (pre-LGM) with an average age of 23 ka. Together, these studies 

allow an understanding of large paleochannel morphology and high bankfull discharge over a

range of climate regimes including MIS 5, MIS 3, and MIS 2 (Page et al., 1996).  

Few direct observations or reconstructions of climatic conditions during MIS 5 on the Riverine 

Plain have been made. Enhanced fluvial activity associated with the Coleambally System (Page et 

al., 1996) is likely the best direct evidence of paleo-environmental conditions. This record also 

correlates well with the fluvial activity in the Murray-Goulburn region to the south and also to a 
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pluvial period in northern and central Australia and coastal New South Wales (Page et al., 1991).

Sea surface temperatures were about 2 C cooler than present (Figure 4-5A). Comparatively, more 

information is known about the timing and fluvial conditions during the Kerarbury Phases (55 –

35 ka; MIS 3). This phase correlates with Bowler's (1986) Lake Mungo lacustral phase recorded 

in the southern inland lakes of the Riverine Plain such as Lake Urana (Page, 1994). Schumm (1968)

estimated that the bankfull discharges during MIS 3 on the Plain were between three to six times 

higher than the present Murrumbidgee River; the Plain experienced lower evaporation rates; and 

that there was a significantly larger winter snowpack in the southern Highlands. The latter likely 

induces a strong seasonal flow regime with high flood peaks during spring thawing. The active 

Gum Creek paleochannel system (35 – 25 ka) (Page et al., 1996) occurs during late MIS 3 and 

correlates with a high stand lake level of Lake George (Coventry, 1976), a nearby lake on the 

eastern side of the Snowy Mountains. The Gum Creek phase also correlates with active 

paleochannels of a neighboring river, the Lachlan, which also formed large channels prior to the 

LGM (from 34–21 ka) with peak discharges up to 16 times that of the modern river (Kemp and 

Rhodes, 2010). All records indicate higher energy fluvial activity around 30 ka. These records 

coincide with the appearance of the first glaciers since MIS 4 (Barrows et al., 2001). Large channel 

dimensions throughout the Plain are interpreted as reflecting high rates of lateral channel 

migration, driven by high sediment loads which were derived from denuded and stabilized 

catchments in the river headwaters. Other hydrologic records on the Riverine Plain come from

lakes that were fed by large river systems, including the Willandra Lakes and Lakes Mungo and 

Arumpo, all which show overflowing conditions around 30 ka (Page, 1994) with oscillating lake 

levels persisting through the LGM (Bowler et al., 2003). Kemp and Rhodes (2010) argue that the 

fluvio-lacustrine activity represents increased runoff in response to increased snow melt and 

reduced vegetation in the catchment. Just before and right after the arid and relatively dry LGM 

(Kemp and Rhodes, 2010; Barrows et al., 2001, 2007; Ayliffe et al., 1998; Page and Nanson, 1996; 

Page, 1994; Page et al., 1991), is the Yanco paleochannel system (14 – 23 ka; MIS 2) (Mueller, 

2017; Page et al., 1996). The average age for channel deposits before the LGM are about 21 – 22 

ka and after is about 16 ka; there is one date associated with the Yanco System as old as 32 ka, 

however it is uncertain if this sample is truly part of the Yanco System or re-worked sediment from 

a Gum Creek paleochannel (Mueller, 2017). These periods broadly correspond to increased rates 

of speleothem formation in Southern Australia, suggesting increased precipitation during those 
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times (Ayliffe et al., 1998). Additionally, the older deposit (32 ka) of the pre-LGM phase of the 

Yanco System correlates with previously discussed hydrologic records in late MIS 3, similar to 

the Gum Creek phase. Deglaciation was nearly complete by 16 ka (Barrows et al., 2001), with SST 

rapidly increasing and sea ice vanishing (Calvo et al., 2007). Evidence of high fluvial activity post-

LGM is shown by the large bankfull discharges of the Yanco system channels (Page and Nanson, 

1996) including the migrational channels on the Murray, Goulburn, and Murrumbidgee Rivers, 

and shoreline and ostracod evidence suggesting high lake levels at Lake George around 14 ka and 

10 ka  (De Deckker, 1982). Similar increases in fluvial activity were reported in coastal rivers of 

New South Wales (NSW) (Nanson and Erskine, 1988). Temperature during the Holocene (12 – 0

ka) in temperature Australia is characterized as a relatively warm and wet climate by nearly all 

proxy records and marks the transition to modern fluvial and lacustrine environments (Petherick 

et al., 2013; Bowler, 1986). The shrinkage of the area subjected to periglacial activity undoubtedly 

reduced the amount of coarse-grained debris delivered to the river catchments, which contributed 

to the establishment of suspended load-dominated stream conditions (Prosser et al., 1994).  

The nature of the climate forcing which caused dramatic changes in these paleochannels 

remains unclear. Although bankfull discharges were calculated from channel dimension (i.e. Page 

and Nanson, 1996) and produce evidence of fluvial activity, bankfull discharge may be a biased 

measure of total annual discharge or precipitation due to greater peak flows during seasonal snow 

melt in glacial periods, for example. Additionally, factors such as vegetation cover, soil thickness 

and temperature may largely impact runoff and therefore channel size (Hesse and McTainsh, 

1999). Due to the complexity of factors that control catchment hydrology, there is no direct 

relationship between channel size and precipitation or runoff. Therefore, it is difficult to say with 

any certainty what the precipitation/climate regime was like during the active period of the channel 

based solely on channel bankfull discharge. The hydrologic record should be paired with a more 

direct indicator of paleo-precipitation in order to better understand the drivers of channel formation 

and morphology in response to climate. Ayliffe et al. (1998) provided a high-resolution 500 k.y. 

record of precipitation in southern Australia by 230Th/243U dating speleothems which provide a 

better picture of continental aridity and moisture over the last glacial cycle. However, the growth 

of speleothems, which reflects effective precipitation (rainfall minus precipitation), did not occur 

during strictly glacial or interglacial periods, but rather during interstadial intervals (short warm 

periods between extreme warm and cold intervals of glacial cycles). Ayliffe et al. (1998) suggested 
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that largest paleochannel volumes on the Riverine Plain occurred during times when the effective 

moisture was high. However, large river systems post-LGM do not correlate with intensive 

paleochannel growth on the Riverine Plain and cannot be explained by precipitation alone.

Therefore, large channel systems (i.e. Yanco System) may possibly represent high seasonal 

discharge and flooding in an overall drier landscape (Page and Nanson, 1996). 

4.2.2.3 Vegetation records

Sites suitable for paleoecological study are few due to the semi-arid climate in Australia’s 

interior and on the Riverine Plain; sites are therefore restricted to the humid highland margins of 

the Murray-Darling Basin. The oldest and longest pollen and charcoal record in Australia comes 

from an 18 m core sample taken from Lake George that dates beyond 700 ka BP (Singh and 

Geissler, 1985; Singh et al., 1981). Pollen analysis indicates warm and wet interglacials with 

dominant Casuarinaceae forests or woodlands, while glacial periods were cool and dry denoted by 

extensive herbaceous vegetation cover with likely small patches of cool temperate rainforests. The 

charcoal record indicates that burning was largely restricted to interglacials, caused by a lack a 

fuel during glacial periods. The last interglacial saw the replacement of Casuarinaceae by 

Eucalyptus and the decline of rainforest taxa, debated to be caused by Aboriginal people and 

burning (Kershaw, 1986). However, the continuity of sediment deposition in the large tectonic 

lake system, biased pollen preservation, and limited dating all raise concerns of the integrity of 

this record and may explain why correlations could not be made to other long terrestrial records or 

the marine isotope record. 

A recent pollen record taken at fairly high altitude (1300 m) in the Victorian Highlands 

(Kershaw et al., 2007) shows less detailed and sustained change over the last glacial cycle (Figure 

4-4C). Two major periods of forest expansion to present-day levels are show in the record related 

to the last interglacial (MIS 5e) and the Holocene (MIS 1), with a third during an interstadial in 

the early part of MIS 3 dated at about 68 ka BP. Over the last glacial period, vegetation at this site 

was dominated by alpine steppe species typical of temperatures at least 5 C cooler than present 

with a local extinction of cool temperate rainforest taxa between 30 – 40 ka BP. 

In Southwestern NSW (Darling Anabranch dunefields region), a 70 ka BP pollen record was 

recovered from playa lakes showing vegetation changes during pre-glacial, glacial, and post-
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glacial periods (Cupper, 2005). This record is consistent with other records in Southeast Australia 

that indicate the last glacial period was cooler and drier with dominant herbaceous and shrubland 

species. After the LGM, a more complex vegetation structure emerged with greater diversity, 

however forests did not become abundant until the Holocene. This record is consistent with 

headwater sites in the Castlereagh catchment, Ulungra Springs (northern NSW), where trees were 

present during MIS 3 (until about 25 ka BP), absent during MIS 2, and then returning once again 

after the glacial termination during the early Holocene (Dodson and Wright, 1989). 

A longer and broader record of vegetation in Southeast Australia and New Zealand can be 

drawn from the deep-sea core (DSDP Site 594) taken offshore of New Zealand (Barrows et al., 

2007). This 150 ka BP record details the relative abundance of dominant vegetation types on 

nearby New Zealand, which can be broadly correlated to southeast Australia, and reflects changes 

in terrestrial climate (mainly precipitation and temperature). The pollen record shares common 

features with the SST records from the same cores (Figure 4-5A); 51% of the variation in tree and 

shrub pollen can be explained by variations in SST estimates, therefore variation in temperature. 

This demonstrates that SST is closely linked with land surface climate (Barrows et al., 2007). Over 

the last glacial cycle, the record shows the greatest decrease in abundances of tree pollen during 

MIS 2 and to lesser extent during MIS 4. The percentage of tree to shrub pollen from about 80 to 

130 ka (MIS 5 – MIS 6) was slightly less (~10%) than during the Holocene and about 30% less 

from 40 to 60 ka (MIS 3). Similar to the Dodson and Wright (1989) record in NSW, this offshore 

record indicates woody species throughout much of the glacial cycle, excluding the cold and dry 

LGM and MIS 4. The similarities between this record and those from mainland Australia in terms 

of vegetation (i.e. Cupper, 2005; Dodson and Wright, 1989) and also SST (i.e. Calvo et al., 2007) 

make this record applicable to not only New Zealand, but also Southeast Australia (Barrows et al., 

2007). 

4.3 Site Description

Paleochannel systems investigated in this study are located on the Riverine Plain of the 

Murrumbidgee River catchment in the Murray-Darling Basin, Southeast Australia (Figure 4-6). 

The Riverine Plain is approximately 70,000 km2, occupies a large portion of the eastern Murray 

Sedimentary Basin, and consists of coalescing floodplains of the western-flowing Murrumbidgee, 
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Lachlan, and Murray Rivers which originate in the Southeastern highlands of Australia. Although 

Tertiary sea-level fluctuations have greatly impacted sedimentation patterns in the western 

(Mallee) part of the Basin, the Riverine Plain has maintained terrestrial environments over the last 

60 Ma (Cenozoic) and provide a superb record of episodic fluvial, lacustrine, and aeolian 

sedimentation (Bowler, 1986). Modern aeolian landscapes were established in the western Mallee 

region of the Murray Basin by about 0.5 or 0.4 Ma which coincided with the onset of semi-arid 

conditions in the Basin and fluvial deposition of the Shepparton Formation in the eastern Riverina 

region leading to the formation of the modern Riverine Plain landscape (An et al., 1986). Sediment 

depths are < 500 m and have accumulated under a quiescent erosion regime (David and Browne, 

1950). However, despite the shift to semi-arid conditions in southeast Australia, landscape

evolution in the Murray-Darling Basin and on the Riverine Plain was significantly affected by 

repeated global glacial-interglacial climate cycles, evidenced by fossil lakes, dune fields, and large 

fluvial channel systems (Bowler, 1986). The surficial features found on the Plain are impressively 

ancient and span more than a full glacial cycle (Page et al., 1996).

The Riverine Plain in the Murray-Darling Basin is perhaps the most intensively studied fluvial 

landscape in Australia, producing several classic studies in fluvial geomorphology and 

paleohydrological change (e.g. Bowler, 1986, 1967; Page et al., 2009; Schumm, 1968). Early 

interests in the Riverine Plain, i.e. Bulter (1950); Pels (1964), focused on the production of soil 

and ground-water maps for proposed irrigation projects and agriculture whose work systematically 

tries to explain the very complex geomorphologic patterns of sediment deposits, soils types, and 

vegetation on the landscape. Aerial photographs surveys of the Plain revealed that the distribution 

and pattern of soil and sediment variation were controlled to a large extent by the course of ancient 

river systems, not by the modern drainage patterns. The surficial geomorphology reflects a long 

history of fluvial activity and interaction with groundwater, fine sediments, and the episodic 

expansion of an arid climate, which produced a wide range of sedimentary and geomorphic 

archives including floodplain lakes, terraces, aeolian source-bordering dunes, and fluvial 

sediments (bedload, mixed load, and suspended load). 
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4.4 Paleochannel Formation and Age Constraint

4.4.1 Formation of Riverine Plain paleochannels 

The most studied feature on this complex landscape are the channel deposits (e.g. Banerjee et al., 

2002; Bulter, 1950; Page et al., 1996; Pels, 1964; Schumm, 1968). An example of a paleochannel 

system (Gum Creek) near Darlington Point on the Riverine Plain in the Murrumbidgee River 

catchment is shown in Figure 4-7. The paleochannel left behind visible oxbow and meander

Figure 4-6. Location of the paleochannel systems investigated in this study. A) location of the 
Murrumbidgee River catchment (red square) within the Murray-Darling Basin (light green 
shading) in southeast Australia. B) The Murrumbidgee River catchment with the location of the 
paleochannel systems (box). C) Location of the paleochannel systems on the Riverine Plain in the 
Murrumbidgee River catchment approximately 550 km downstream from the headwaters of the 
modern Murrumbidgee River. Sources: Green left weekly, November, 2011 (inset); New South 
Wales State Government (main panel)
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meander scars on the landscape which are much larger than those produced by the adjacent modern 

Murrumbidgee River. Smaller paleochannel reaches are shown branching off of the main trunk 

stream. Butler (1961, 1958, 1950) established in a series of papers of what he called “prior streams” 

which were ancient rivers that extended as a vast network of channels across the surface of the 

Plain. These prior streams were slightly leveed, and aggraded bedload channels with low sinuosity 

forming an overlapping pattern on the landscape which fade out and become less notable in the 

western part of the Plain. Butler argued that the phases of prior stream bedload deposition required 

an abundant supply of coarse-grained sediment driven by an arid and therefore vegetation-limited 

catchment. This was contested by Langford-Smith (1960; 1959) who responded to the argument 

proposed by Butler stating that on the basis of meander wavelength and discharge, that the large 

dimensions of the prior stream channels were associated with large discharges in wet (pluvial), 

rather than arid conditions. In his final rebuttal, Langford-Smith (1962) modified his previous 

argument and suggested that although the onset of a pluvial period, if sudden, could cause 

Figure 4-7. Examples of a paleochannel systems on the Riverine Plain, Murrumbidgee River 
catchment, near Darlington Point. Some are visible on the floodplain as oxbows and meander scars 
much larger than those formed by the adjacent modern Murrumbidgee River. Source: Google 
Earth 2018
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aggradation of the Plain, channel incision most likely resulted from increased precipitation and 

runoff. Langford-Smith inferred that during a waning pluvial period of climate change, progressive 

aggradation of prior-stream channels occurred.

The work of Pels (1964) was the next contribution to this research which argued that the 

differences in hypotheses between Langford-Smith and Butler stemmed from the failure to identify 

two distinctly different paleochannel types. Pels (1964) described in detail what he called 

“ancestral rivers” which were a set of paleochannels thought to post-date the prior streams and be 

the direct precursors of the modern drainage channels. He argued that the youngest stratigraphic 

unit (Coonambidgal) described by Butler (1958) was part of the ancestral river systems and more 

complex than first reported. According to Pels (1964) the ancestral rivers were deep, sinuous 

channels without levees and carried predominately suspended load sediment. Unlike the prior 

streams which appear to have aggraded and terminate on the Plain, the more recent ancestral rivers 

maintained their course across the Plain and exited as powerful rivers. In total, Pels had identified 

three phases of ancestral rivers, each formed by channel incision during humid periods and 

abandoned by aggradation during periods of waning river discharge and increased aridity (Pels, 

1971). Schumm (1968) supported the prior stream–ancestral rivers paleochannel model and 

estimated that the ancestral river of the Murrumbidgee River had a bankfull discharge of nearly 5 

times greater than the modern river. However, Bowler (1978) reported gravel and coarse-grained 

ancestral river sediments similar to that of the prior streams, which contradicted the finding that

ancestral rivers carried mostly suspended loads, not coarse sand and gravel. The view held by Pels 

(1971) and Schumm (1968) was therefore rejected by Bowler (1978) who hypothesized that, in 

time, aggradation of ancestral channels might result in the development of prior stream 

characteristics. He also questioned Pels's (1971) cyclic incision-aggradation model of ancestral 

channel development and proposed instead a long period of high discharge and greater transport 

of coarse bedload sediment during the late Pleistocene, then followed by a shift to the present 

suspended load, lower discharge regime near the time of the Last Glacial Maximum (LGM).  

Depictions of prior stream and ancestral river stratigraphy proposed by various authors in 

the literature are shown in Figure 4-8. The interpretations of the channel stratigraphy are however 

based on a limited 30 ka chronology established by the works of Bowler (1967), Butler (1958), 

and Pels (1964). The original model of paleochannel stratigraphy developed by Butler (1958)

(Figure 4-8A) identifies lenses of gravelly sand confined to infills of incised channels. Next to the 
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channels are low levees and laterally tapering wedges of overbank alluvium with increasing clay 

content with distance from the channels. In Figure 4-8B, Schumm (1968) modifies Butler’s 

diagram by the overbank wedges, highlights the cut and fill sequences of the channels, and notes 

the “shoestring” nature of the channel infills. Pels (1966) and Bowler (1978) (Figure 4-8C and 4-

8D, respectively) provide cross sections of the ancestral Murray River, showing a sequence of 

basal gravel and sand, capped off with an approximate 3 m of medium and heavy clay. These 

fining-upwards deposits were approximately 2 km wide and interpreted as stream deposits whose 

discharge had waned in response to arid climatic conditions. Bowler (1978) challenged this 

interpretation by concluded that although the channels’ sedimentation was thick gravel and sand 

beds overlain by sandy loam and clay, these were deposits of large, laterally migrating mixed-load 

stream. However, a better understanding of paleochannel formation, geomorphology, and 

sediment deposition on the Riverine Plain was not obtained until a more robust chronology of the 

channel deposits was established.

4.4.2 Revised formation of Riverine paleochannels 

Stratigraphic profiles and boreholes of the Murrumbidgee River paleochannel systems 

(Page and Nanson, 1996) along with comprehensive efforts in thermo luminescence (TL) dating 

of paleochannel sediment throughout the Riverine Plain (Banerjee et al., 2002; Page et al., 1991, 

1996) provided evidence of a new model of channel evolution, which resolved many of the 

discrepancies found in the literature regarding the sequential prior-ancestral model. These studies 

provide strong support for Bowler's (1978) doubts regarding the accepted model describing the 

sequential paleochannel evolution of the Riverine Plain from early ‘prior streams’ which were 

bedload-dominated, to later ‘ancestral rivers’ which were characterized as suspended load. 

Extensive TL dating of the Murray and Murrumbidgee sector paleochannels was conducted by 

Page et al. (1991) which revealed a 100 ka record of fluvial (paleochannel) activity on the Plain, 

which extended the radiocarbon-based chronology, and called into question all previous 

chronologic and stratigraphic interpretations of the last 40 years. Page et al. (1991)



213

Figure 4-8. Riverine Plain paleochannel stratigraphic models. A) Butler's (1958) generalized 
model showing the relationship between ‘prior’ stream deposits, aeolian parna and younger 
Coonambidgal ‘ancestral’ deposits. B) Schumm's (1968) arroyo-style version of the Butler model. 
C) bore hole section across the ‘ancestral’ Murray showing laterally extensive fining-upwards
alluvium. D) Bowler’s (1979) river bank section showing lateral migration deposits of the Kotupna 
Complex and inset Holocene alluvium of the Goulburn River. Source: re-drawn from Page and 
Nanson (1996) 
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concluded that the simplistic model of early prior streams and later ancestral river with 

fundamentally different characteristics, a theory that gained significant support (e.g. Butler, 1950; 

Pels, 1971; Schumm, 1968), could no longer be supported. Surficial deposits in the Murray sector 

in the south of the Plain were originally TL-dated and although the antiquity of the paleochannels 

was demonstrated, tectonic movement in the region was noted to cause disruption of drainage in 

the vicinity of the Cadell Fault, hence complicating any interpretation of riverine response to 

climate variability (Page et al., 1996). The search for a better site lead to the tectonically stable 

Murrumbidgee sector where an equally complex system of paleochannels developed from the 

confined upstream valley near Narrandera. 

In combination with extensive TL-dating, Page and Nanson (1996) studied many 

stratigraphic profiles in each of the paleochannel systems in the Murrumbidgee sector and reported 

that paleochannels aggraded with coarse sand and connected laterally to varying sequences of 

fining-upward alluvium that rest on a truncated clay basement (Figure 4-9). Paleochannel 

sequences are diagnostic of lateral migration by mixed-load systems and suggest that the older 

systems experienced alternate episodes of channel activity and occasional transitions from laterally 

migrating mixed-load mode to vertically aggrading bedload mode. According to Page and Nanson 

(1996), the complete evolution of an aggradational paleochannel consists of the following general 

steps: 1) establishment of a laterally migrating, sinuous, mixed load channel with occasional short-

lived bedload accretion events; then 2) a shift to an aggrading bedload-dominated channel in 

response to a change in the sediment/water delivery ratio; and finally 3) channel avulsion and 

establishment of a new mixed-load sinuous system elsewhere on the alluvial plain. 

The terminology used by previous studies (e.g. Butler, 1958; Pels, 1964) such as ‘prior’ 

and ‘ancestral’ streams was based on several inaccurate assumptions related to both channel 

chronology and formation. The older ‘prior stream’ which were thought to be older and 

characterized as laterally stable bedload-carrying streams were actually largely mixed-load 

streams characterized by periodic episodes of significant lateral accretion. Their termination 

feature, however, is a bedload-dominated phase of vertical aggradation; this is the facies sampled 

in most studies, including this study (described below).  Page and Nanson (1996) termed 
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Figure 4-9.  Revised model of the Riverine Plain paleochannel stratigraphy displaying sequential 
development of a migrational mixed-load system and an aggradational bedload system.  Source: 
Page and Nanson (1996)

these aggradational paleochannels, which on the plain surface appear to have low sinuosity, levees, 

and no visible scrolls. Ancestral river is the other type of paleochannel, described as highly sinuous 

with visible scrolls, and thought to be much younger. We now know that these channels were 

created by lateral migration, similar to the early phases of the aggradational paleochannels, 

however did not terminate in an aggradational phase; these are termed migrational paleochannels 

by Page and Nanson (1996). According to the Page et al. (1996) chronology, both types of channels 

were coeval and therefore occurred on the Plain simultaneously, often in different reaches of the 

same paleochannel system and having substantially larger discharges than modern rivers on the 

Plain.  

Through extensive TL dating of paleochannel sediments in the Murrumbidgee sector, Page 

et al. (1996) identified four sequential phases of paleochannel activity: the oldest being the 

Coleambally System (105 – 80 ka); then Kerarbury System (55 – 35 ka); Gum Creek System (35 

– 25 ka); and pre- and post-LGM, Yanco System (23 – 14 ka) (Figure 4-10; Table 4-1). These

dates were confirmed by Banerjee et al. (2002) and extensive OSL dating of the Gum Creek and 

Yanco Systems by Mueller (2017). However, there is one sample (MYA-2#4 uow 1523) dated by 

Mueller (2017) which dates the Yanco system at 32 ka, which is much older than all other dates 
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of the system. However, because the Yanco and Gum Creek paleochannel intersect at the site 

location, Mueller (2017) concluded that the deposit was likely part of the Gum Creek System, not 

the Yanco. Out of convenience, it is helpful to summarize patterns of environmental change over 

the last full glacial cycle in relation to the well-established deep-sea oxygen isotope record of 

Shackleton and Opdyke (1973), which identifies five major climatic phases (Figure 4-10). These 

stages correlate well with documented phases of enhanced fluvial and lacustrine activity in 

southern Australia and within the Murrumbidgee paleochannels (Kershaw and Nanson, 1993; 

Nanson et al., 1992; Bowler, 1986); particularly during Oxygen Isotope Stages 3 and 5. Estimates 

of paleo-bankfull discharge (Page, 1994), obtained by paleochannel cross-section reconstructions, 

indicate that the discharge of the channel systems exceeded that of the modern Murrumbidgee 

River by approximately 4 – 8 times (Table 4-2).

Figure 4-10. TL dates for fluvial and aeolian sediments taken from the Murrumbidgee and Murray-
Goulburn sectors of the Riverine Plain. Murrumbidgee data source: Page et al. (1996); Murray-
Goulburn data source: Page (1994) and Page et al. (1991); Oxygen isotope stages data source: 
Shackleton and Opdyke (1973); Source of figure: Page et al. (1996) 

Although climatic variability is clearly implicated in the estimated higher peak discharges 

of each distinct channel system over the last 100 kyr, a major continental-scale climatic forcing

Table 4-1. TL dates of paleochannel sediments taken from the Murrumbidgee sector of Riverine 
Plain
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Sources: Page et al. (1996) and Mueller (2017). Errors on the average ages are 1 SD.
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might not be necessary to explain the channel stratigraphy which demonstrates frequent shifts from 

stable laterally migrating mixed load facies to aggrading bedload facies (Page and Nanson, 1996).

For example, if the shifts were caused by major climate change in the Murrumbidgee River 

catchment, then repeated climatic shifts within the catchment during a single oxygen isotope stage 

would need to have occurred to explain the higher frequency of channel shifts, which is not 

documented in the wider regional or global climatic records (Porter, 1989). The likely explanation 

for channel shifts is the channel’s response to threshold exceedance, rather than major 

environmental or climatic change (e.g. Brizga and Finlayson, 1990; Nanson and Erskine, 1988).

For instance, a modest change in channel bankfull discharge and slope (in response to reduced 

channel sinuosity) could greatly affect the river’s morphology according to the Lane's (1957) scale 

which separates meandering from braiding streams; e.g. an increasing of bankfull discharge and 

slope by factors of 2 and 5, respectively, would change the category in which Murrumbidgee 

paleochannel systems are placed: from meandering to the intermediate zone between braided and 

meandering (Lane, 1957) and above Ferguson's (1987) transition from sandy non-braided to 

sandy-braided streams. In addition to Page and Nanson (1996) who propose this hypothesis to 

explain channel shifts, Schumm (1979) also supports the idea of stream response to threshold 

exceedance and suggest that streams within the zone between braided and meandering are most 

prone to sudden changes in river morphology. Page and Nanson (1996) also suggest that shifts 

from mixed load migrating to bedload aggrading were likely initiated by floods which mobilized 

large amounts of coarse sands from the upper catchment. After the flooding waves carried 

sediments onto the Plain, the combination of decreased stream slope and minimal tributary input 

resulted in a downstream reduction of peak flows such as that observed in the modern system. This 

theory is in line with modelling efforts that predict that a 50% peak reduction across the Plain 

compared to present values would lead to the majority of the sediment entering the eastern Plain 

not to reach to the outlet in the western Mallee region (Page, 1994). The excess sediment would 

have entered the channel and floodplain storage during a flood event and contributed to bedload 

aggradation, channel shoaling, levee and marginal dune formation, and finally lead to the 

formation of channel distributaries by avulsion (Page and Nanson, 1996). Upon the reduction of 

bedload input, the new channel would re-establish itself with laterally migrating, mixed load 

characteristics.  
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Table 4-2. Estimated bankfull discharges of Murrumbidgee sector paleochannel systems on the 
Riverine Plain based on reconstructed cross-sections.  

Discharges were calculated using the Manning Equation and ‘n’ value of 0.035 at each section. Paleo-
bankfull discharges on the Coleambally, Kerarbury and Gum Creek systems were compared to modern 
bankfull discharge of the Murrumbidgee River at Darlington Point (313 m3s-1) and on the Yanco system 
compared to present bankfull discharge of the Murrumbidgee River at Hay (278m3s1). Source: Page (1994). 

4.4.2.1 Coleambally System 

The Coleambally paleochannel system is the oldest set of paleochannel to be TL dated and 

is located near the Coleambally Irrigation Area. Four TL ages of the Coleambally system range 

from 100.0 ± 9.0 – 83.0 ± 4.5 ka (Table 4-1) and lie within Oxygen Isotope Stage 5, a time of 

enhanced fluvial activity in Australia’s northern and inland river systems (Nanson et al., 1992).

Estimated paleo-discharge for the Coleambally system is 1,740 m3s-1 (Page, 1994); making it the 

second greatest of the four paleochannel systems (Kerarbury is the first) and 5.6 times greater than 

the modern system. The system consists of two main arms that correspond to the Central and 

Southern prior-streams (Schumm, 1968), which are the Yamma and Bundure Arms. Both arms 

can be traced back to a single paleochannel that emerges from the modern Yanco Creek floodplain 

(Figure 4-11), however the Yamma Arm can be traced downstream generally to Booroorban, 

nearly 100 km west of the arm formation, while the Bundure Arm heads southwest for less than 

half that distance. Because the Bundure Arm pre-dates 100 ka BP, its limited lateral extent is 

consistent with a short duration and therefore a period post-dating the last interglacial maximum 

of Oxygen Isotope Stage 5e (Chappell and Shackleton, 1986). The Bundure Arm extends laterally 

for between 1300 – 600 m and indicates alternate phases of lateral migration and vertical 

aggradation. However, the channel activity did not terminate with an avulsion, rather with lateral 

migration over a distance of 550 m (Page and Nanson, 1996). Trough and crossed-bedded coarse 

sand at pit exposures suggest that it was a wide, shallow channel bordered by levees and occasional 

aeolian dunes in the northeast section. Source-bordering dunes are present to the east and north of 
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the Yamma Arm, while being absent along the Bundure Arm. Page et al. (1996) suggests that this 

difference may indicate that the two channels were not contemporaneously active and that 

migration of marginal dunes across the Bundure Arm may indicate that the Bundure Arm is older. 

The Bundure channel intersects sands from an underlying sequence of earlier paleochannels which 

possibly extend more than 20 m below the present ground surface. 

No TL-dated sediments yielded ages between 80 – 70 ka on the Riverine Plain and only 3 

samples yielded ages between 70 – 55 ka (Page et al., 1996). Therefore, the period between the 

Coleambally and Kerarbury systems (approximately 80 – 55 ka) was likely one of significantly 

reduced fluvial activity. This period overlaps Oxygen Isotope Stage 4 which correlates with a 

major dust peak in the Antarctic Vostok ice core (Petit et al., 1999), suggesting widespread aridity 

at that time.

4.4.2.2 Kerarbury System

Kerarbury system paleochannels are the second oldest paleochannels in the Murrumbidgee 

River system, after the Coleambally system, and lie within Oxygen Isotope Stage 3 and border 

early Stage 2 (55 – 35 ka) (Page et al., 1996) (Table 4-1). This system is relatively complex, large, 

and forms a vast distribution of channels across the Riverine Plain. Major distributaries include 

the McGrath, Benerembah, Hay, and Romani Arms. It is an aggradational system that includes the 

northern prior-stream described by Schumm (1968) and channels southwest of Griffith mapped by 

Pels (1964). The estimated bankfull discharge of the Kerarbury System is 2610 m s-1, making the 

Kerarbury System the largest of all paleochannels on the Riverine Plain in terms of discharge 

volume. The stream trunk can be traced from Tombullen Swamp in the northeast across the Plain 

to Moulamein in the southwest where it is obscured by more recent channels and floodplains of 

the Edward and Murray Rivers (Figure 4-11). The modern Murrumbidgee River and Gum Creek 

paleochannel system cut through the Kerarbury system in the northeast, both which largely post-

date it.  Unlike the Coleambally system, this system flowed completely across the Plain and exited 

as a powerful river. Near the town of Moulamein, the main Kerarbury channel is well defined, 

occurring as a slightly elevated sinuous depression. The spatial extent of this paleochannel system 

demonstrates that not all “prior” aggradational systems dissipate on the Plain. As with 

Coleambally, the distinct red color of the sediment is associated with pedogenesis of the sediments 
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which has produced red duplex profiles with abundant pisolitic carbonate (Page and Nanson, 

1996). The channel infills are characterized by fining-upward sequences of coarse sand, loam and 

clay above the nearly horizontal clay basement. These sequences provide sufficient evidence of 

lateral channel migration more than 1000 m wide by a stable mixed load channel. Channel 

boreholes of the Mcgrath Arm reveal that the Kerarbury system is overlaying a westward flowing, 

deeper paleochannel system which was described by Pels et al. (1968). Sedimentation in this older 

system is similar to that of the Kerarbury and older Coleambally system showing a horizontal 

truncated clay layer at 14 – 15 m below the surface overlain by a fining upward sequence of coarse 

sand, loam, and clay. Alternate periods of mixed-load lateral channel migration and bedload 

aggradation are present, indicating that channel formed under similar hydrologic conditions as the 

Kerarbury and Coleambally systems and though not TL-dated, this system could have been active 

during the penultimate glacial cycle (before 130 ka) (Page and Nanson, 1996).

4.4.2.3 Gum Creek System

The Gum Creek system is generally composed of upstream migrational and downstream 

aggradational paleochannels (Page and Nanson, 1996) and corresponds to the sinuous ‘ancestral’ 

Murrumbidgee system described by Schumm (1968). Channels in the Gum Creek date from 35 to 

25 ka (Page et al., 1996) coinciding with early to mid-Oxygen Isotope Stage 2. This system is 

distinctly different from the slightly older Kerarbury system in terms of morphology and discharge; 

it is estimated that the system’s bankfull discharge was only 4 times larger that of the modern 

Murrumbidgee river, making it the smallest of the four paleo-river systems (Page, 1994) and highly 

sinuous and laterally-migrating in upstream regions carrying suspended load rather than bedload. 

It forms a complex anabranching pattern along the modern Murrumbidgee floodplain (Figure 

4-11). The Gum Creek system is subdivided into three downstream reaches: Tombullen Reach 

(Narrandera to Yarradda); Oolambeyan and Carrathool Reaches (Yarradda Laggon to Hay); and, 

Uara Reach (Hay to Balranald). Upstream of the Yarradda laggon, the Tombullen Reach generally 

follows the modern drainage flow leaving behind remnants of large meander scars and scroll 

patterns on the present floodplain; this indicates it was a laterally-migrational paleochannel in this 

region (Page et al. 1996b). Further downstream, the Oolambeyan and Carrathool Reaches form an 

anabranching distributary system, with the Oolambeyan arm being superimposed by a modern 
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suspended load channel often carrying floodwaters and directed irrigation water. It is possible that 

both reaches operated simultaneously and together carried the total discharge from the Tombullen

Reach upstream. The Carrathool Reach, which parallels the present floodplain for nearly 30 km, 

is cut by the modern Murrumbidgee and branches into three separate distributaries near Hay. 

Further west on the Plain, the Gum Creek continues in the Lowbidgee region in the Uara Reach. 

Boreholes at the Tombullen Swamp where the Gum Creek intersects the older Kerarbury 

system show a heavy clay basement stratigraphy from 5 – 6 m below the surface which is overlain 

by 0.5 – 2.0 m of coarse sand that grades upwards to sandy clays, and finally a surficial heavy grey 

clay layer. The fining-upward sediment are typical of laterally migrating mixed-load streams and 

resemble the lateral migration facies of the older Coleambally and Kerarbury systems (Page et al., 

1996a). The upstream portion of the Oolambeyan and Carrathool Reaches remains highly sinuous 

with auger holes revealing 2.5 – 5.0 m of fine-grained sediment overlaying 1 – 4 m of coarse sands 

with a maximum channel depth of 7.5 m. Further downstream, the channel becomes less sinuous 

and is intersected by the Murrumbidgee River at Tabratong Station (20 km east of Hay, Figure 

4-11). A northern bank exposure shows fine-grained pedogenically-altered sediments with 

embedded carbonate pisoliths near the surface which rest on cross-bedded coarse sand infill and a 

clay paleosol base (Page and Nanson, 1996). The aggradational or “prior stream” characteristics 

of the paleochannel system and young (24.7 2.8 ka) (Page et al., 1996) TL date at this location 

provide clear evidence that aggradational paleochannel characteristics are not limited to older 

channel systems and disproves the prior-ancestral theory stating that these system characteristics 

were chronological with aggradational/prior streams being older. In the western Uara Reach, the 

Gum Creek forms a branching system of aggradational arms, with some channels petering out and 

others modern depositional environments in the Lowbidgee region.

4.4.2.4 Yanco System

The Yanco system is the youngest of the four paleochannel systems described by Page et 

al. (1996) and Page and Nanson (1996), who first dated these sediment deposits and source-

bordering dunes to be between 18.2 ± 1.5 to 13.6 ± 1.6 ka. However, more recent dating by Mueller 

(2017) reports the average age of Yanco system sediments to be 21 6 ka (1 SD, n = 7) which 

would make the system both pre-LGM and post-LGM. Unlike the older paleochannel systems, the 
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Yanco system is entirely migrational (failing to terminate with bedload aggradation) and can be 

traced from west of Narrandera across the Plain westward to Moulamein (Figure 4-11). The system 

has a slightly trenched floodplain belt approximately 1 – 3 m below the surface of the Plain, with 

widths upstream of Murundah at their maximum of 5 km and downstream minimum widths of 2 

km (Page and Nanson, 1996). The Yanco is a large system with impressive dimensions and 

continuity across the Plain; the estimated bankfull discharge of the Yanco system is 1240 m s-1

which is about 4.5 times larger than that of the modern Murrumbidgee at Hay. It has scroll-

patterned floodplains, large sinuous channels, and source-bordering dunes. Sediment from pit 

exposures at Thurrowa Road and Wanganella Station show a thin layer of fine-grained alluvium 

deposits from the modern Yanco and Billabong Creeks overlying sand clays and coarse 

paleochannel sands of the Yanco system. In the upstream Thurrowa Road pit, there is about 2 m 

of fine-grained surface sediment that lies on top of approximately 4 m of yellowish-brown and 

grey coarse sand layers. Downstream sediments at Wanganella Pit also show a grey clay surface 

unit graded to brown sand clays, followed by coarse sand down to 5.4 m, with a clay basal unit at 

the bottom of the profile. West of Wanganella, surveying and drilling evidence reveal a well-

preserved channel cross-sections 200-250 m wide which are filled with 3 m of coarse sand, capped 

off with a 1-m unit of light to heavy clay. 

Having discussed in detail the previous work on the Murrumbidgee catchment paleochannels 

and the environmental and climatic conditions in southeast Australia over the last approximately 

100 ka that led to their formation, I will now move on to my current study which focuses on the 

reconstructing the paleo-weathering regime of paleochannel sediments in each of the four 

paleochannel systems on the Riverine Plain in the Murrumbidgee River catchment described in 

the literature (Banerjee et al., 2002; Page and Nanson, 1996; Page, 1994; Page et al., 1991), using 

boron isotopes as my principle proxy for interpreting the sediment’s response to climatic 

variability

4.5 Riverine Paleochannel Study

4.5.1 Field Sites
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In this study, paleochannel sediments were collected from the 4 major fluvial phases on 

the Riverine Plain: Coleambally (105 – 80 ka); Kerarbury (55 – 35 ka); Gum Creek (35 – 25 ka); 

and Yanco (14 – 23 ka). In order to determine if the chemical and isotopic composition of 

paleochannel sediment is homogeneous along a single reach or if systematically evolves as it 

travels downstream, multiple sampling points (upstream and downstream) along a single reach 

was sought after. This was accomplished in all paleochannel systems besides the Coleambally, 

where downstream sampling locations could not be accessed. To compensate for this, several 

upstream locations were sampled, including different reaches of the same paleochannel system. 

Sampling locations in this study of the Murrumbidgee River paleochannel systems on the Riverine 

Plain are displayed in Figure 4-11. Channel sediment ages were obtained by TL and OSL dating 

from previous studies: Mueller (2017); Page et al. (1996), and (1991); and Banerjee et al. (2002).

In the Yanco System, five locations were sampled, four upstream: Yanco at Morundah; Thurrowa 

Road; Yanco at Bundure; and Yanco A, and one downstream: Wanganella Pit. In the Coleambally 

System, three sites were sampled, all upstream: Gala Vale; Gala Vale South; and Bundure Pit. In 

the Kerarbury System, two locations were sampled, one upstream: Kerarbury Pit, and one 

downstream: Booroorban Pit. In the northernmost channel system, the Gum Creek, four locations 

were sampled, three upstream: GC at Darlington Point, Yarradda Lagoon, and Yarradda Lagoon 

West, and one downstream: Tabratong. Below I will describe each of the sites and profile 

stratigraphy on a system-by-system basis and display sampling locations. There are a number of 

sites from the Yanco and Gum Creek Systems that were not sampled as part of this project and 

therefore cannot be described in great detail.  These samples were taken deep in each profile by 

coring with a drill rig and not collected in the same manner as other samples were in this project. 

The stratigraphical context of these sample are reported in Mueller (2017). Here, I report all core 

sample locations (Figure 4-11), depths, and OSL ages (Table 4-1), including the core samples 

taken by Mueller (2017) from the three upstream Gum Creek locations (GC at Darlington Point, 

Yarradda Lagoon, and Yarradda Lagoon West) and two upstream Yanco locations (Yanco at 

Morundah and Yanco at Bundure).
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Figure 4-11. Map of Murrumbidgee River paleochannel systems on the Riverine Plain displaying sampling locations (stars) in this study 
and channel dates obtained by Page et al. (1996). Source of main panel and inset: re-drawn from Page and Nanson (1996)

23 – 13 ka
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YANCO SYSTEM (23 – 13 ka) 

Yanco A 
GPS: 35.1481967°S, 145.7683284°E; Elevation: 117 m

Site Description: This pit is in the middle of a flat field, near the modern Yanco River. 

Profile Description: The pit shows clear stratigraphy. The outer exposed face of this wall is very 
brittle. The top soil layer is organic-rich and contains several imbedded greyish clay layers, which 
continue for approximately 1 m deep. This top layer is likely alluvial. Below this there is a series 
of coarse-grained paleochannel sand layers. The upper layer is a distinct light brown/white layer 
at 1 m depth, which is clay-rich and not as brittle as the other layers in the profile. Below this is a 
thick reddish layer composed of coarse-grained sand about 30 cm thick. Below this layer, again is 
a coarse-grained orange sand layer which transitions into a whitish coarse-grained sand layer. The 
entire exposed wall is approximately 3 m in thickness, however the section sampled is 2 m thick. 

Notes: The pit is located about 50 m SW from where the road ends. It appears that this face has 
been exposed for quite some time and looks and feels dry, brittle and weathered. The face was 
cleaned as best as possible to avoid sampling weathered soils at depth. 

Site photos and sample locations: 

Figure 4-12. Yanco A paleochannel site, Yanco System
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Thurrowa Road

GPS: 35°9’7.57”S 145°56’14.60”E

Site Description: This pit was a former mining area, likely excavated for gravel/fill material for 
road construction. The pit is located on the south side of Thurrowa Road. 

Profile Description: The total profile thickness according to Page and Nanson (1996) is 
approximately 6 m; the top 370 cm of this profile was accessible and sampled. The top soil layer 
is quite thick, measuring 80 – 100 cm in thickness, and is a fine-grained clay-rich organic layer. 
Below this, lie approximately 2 m of alluvium with friable pedogenic carbonate (not pisoliths) 
(Page and Nanson, 1996). Below this, from about 2 – 6 m are white and orange coarse-grained 
sands visibly layered. A fining-upward sediment sequence is visible in some of the layers. The top 
white sand layer is fine-grained, overlain by the final layer orange layer of paleochannel infill. 
Overall, there are many changes in grain sizes throughout profile, likely indicating fluvial sorting 
a high energy environment.

Notes: The pit is subject to flooding and was covered in vegetation. 

Site photos and sample locations:

Figure 4-13. Thurrowa Road paleochannel site, Yanco System
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Wanganella Pit
GPS: 35°12’57.56”S 144°49’54.53”E

Site Description: Located south of the modern Yanco system. This pit is a former mining pit 
displaying a large (~250 m) cross-section of the system. Source-bordering dunes present outside 
the pit.

Profile Description: It appears that the top layer of this pit (alluvium), which is a white well-sorted 
coarse-grained sand has been eroding into the pit. The original paleochannel layers below this 
seem to be still intact. Below this top layer is a fine-grained white sand layer, then a reddish layer 
composed of a coarse-grained sand. Following down the profile, is a thin coarse sand\gravel layer 
about 1 cm in thickness. Below this a thick orange-red layer with imbedded white coarse sands. 
There is a color gradient in the profile: darker orange-red on the bottom transitioning to lighter 
closer towards the surface. Total profile is approximately 1 m.

Site photos and sample locations:

Figure 4-14. Wanganella Pit paleochannel site, Yanco System
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GUM CREEK SYSTEM (35 – 25 ka)

Tabratong
GPS: 34°28.31964', 145°01.48696'

Site Description: This site is located near (about 30 m) back from the banks of modern 
Murrumbidgee River, approximately 20 km east of Hay. Both systems interact at this location. 
There are large (about 3 – 4 m) riverbanks on the modern river on both sides.

Profile Description: The entire exposed profile (north bank) is 150 cm in thickness and the base 
is approximately 10 m higher than the present river height The entire profile is approximately 6 
m in thickness (Page and Nanson, 1996), therefore the paleochannel’s true base is about 4 m 
higher than the modern river. There are three horizons. The top layer is a dark brown organic and 
clay-rich layer, about 50 cm in thickness. Below this layer is an orangish-brown sand. Both top 
layers appear pedogenically altered and contain CaCO3 pisoliths. The bottom layer of the profile 
is a coarse-grained whitish sand and shows cross-beds, which evidences the aggradation 
character of this channel. There is a color transition from darker (modern sediments) on top to 
lighter (channel infill sands) down the profile.

Site photos and sample locations:

Figure 4-15. Tabratong paleochannel site, Gum Creek System



230

KERARBURY SYSTEM (55 – 35 ka)

Headless Horseman (Booroorban Pit)
GPS: 34°54’24.44”S 144°45’34.57”E

Site Description: This is located near the main road and is an old mining/gravel pit. The pit is 
approximately 5 m deep and about 150 m wide. 

Profile Description: The entire profile is about 5 m in thickness; we were able to access and sample 
just the top meter. The top layer is a fine-grained reddish coarse-sand layer, 15 cm in thickness 
and appears weathered; there are roots present in this layer. Below is a coarse-grained gravel layer 
(channel fill) and is very hard. This layer is the largest and extends to the bottom on the profile 
which is 1 m in thickness. Within this white layers are many reddish coarse-grained sand 
laminations, occurring mostly at 70 – 80 cm. This coarse sandy channel infill continues to a depth 
of approximately 5 m with a basal clay layer (Page, 1994).

Site photos and sample locations:

Figure 4-16. Headless Horseman paleochannel site, Kerarbury System



231

Kerarbury Pit
GPS: 34°37'44.81"S 145°50'30.64"E

Site Description: Pit is located off of road A20 on the Kerarbury property, which is an orange 
grove. It is towards the back of the property with three exposed faces (north, south, and west). The 
south side appeared more weathered and penetrated by modern rainwater (Figure 4-17), so the 
more pristine northern face was sampled (Figure 4-18). 

Profile Description: The entire profile is approximately 9 m; we were only able to access and 
sample the top 4 m. The top soil horizon is light brown and 15 cm in thickness with roots. From 
15 – 60 cm is a truncated red-brown earth with CaCO3 pisoliths. The rest of the profile displays 
co-sets of cross-beds in coarse and very coarse sand. The general thickness of these cross-beds is 
10 – 20 cm. The sand is reddish-yellow in color with darker red laminations. These laminations 
are gravel-sized and show signs of sediment sorting. Some exposed faces on this side are now 
covered by modern muds which came from the organic, clay-rich soil layer, these were not 
sampled.

Notes: This was the first site visited. For each core taken, sediment was split between inside and 
outside, outside being 1-25cm from outer face to mid-pipe, and inside being 26-50cm mid-pipe to 
end of pipe. This was done to test if there might be differences in the sediment more exposed to 
surface processes and the sediment further in which likely has less interaction with surface 
weathering and therefore more pristine.

Site photos and sample locations:

Figure 4-17. Kerarbury Pit, south face (not sampled), Kerarbury System
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Figure 4-18. Kerarbury Pit, south face, Kerarbury System. A) Upper portion of profile 
(sampled); B) Surface layer showing sampling location and CaCO3 pisoliths embedded in the top 
60 cm of the profile
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COLEAMBALLY SYSTEM (105 – 85 ka)

Gala Vale
GPS: 30°19.23392'S, 177°10.93240'E
Elevation: 125 m

Site Description: This site is a pit exposure near the side of the road main road. This site had 
been sampled and dated before (Page et al., 1996).

Profile Description: The entire pit exposure is approximately 130 cm in thickness. However, 
boreholes indicate that the channel fill extends to approximately 6 m. Stratigraphy at this site 
best corresponds to Page and Nanson's (1996) ‘Yamma B’ description (See below). Sediment 
within the profile is darker red on top and transitions to lighter down the profile (orange and then 
yellow). The top layer is 3 cm in thickness and is a hard clay layer, which prevents water from 
penetrating into the profile. Vegetation roots penetrated at least 80 cm though. Below the clay 
layer is the gravel/sand channel infill. No trough cross-beds or sediment sorting is present.

Stratigraphy of the Yamma B Arm of the Gala Vale system. Source: Page and Nanson (1996)

Site photos and sample locations:

Figure 4-19. Gala Vale paleochannel site, Coleambally System
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Gala Vale South  
GPS: 34°56.95565'S, 145°47.16573E 
Elevation: 120 m 

Site Description: This site was near the road on the way to the Kulki site (which was not 
sampled), near the town of Gala Vale.  

Profile Description: The entire pit exposure is approximately 2.4 m in thickness. This site is also 
part of the Yamma Arm of the Coleambally system and is similar to Gala Vale. The entire 
paleochannel fill is about 6 m in thichness. The top layer is a thick clay-rich soil/sediment layer 
with roots than extends to 80 cm. Below this is a medium-grained orange-yellow sand which 
extends to bottom of the profile. No sediment lamination or no obvious differences in grain-size 
were noted throughout this sand facies; homogeneous. 

Site photos and sample locations: 

Figure 4-20. Gala Vale South paleochannel site, Coleambally System
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Bundure Pit
GPS: 35°05.10345'S, 145°48.01006'E
Elevation: 109 m

Site Description: Pit located on farmland with many cows (not all alive). This exposed pit is very 
large. The southern face of the pit was sampled (closest to the road).

Profile Description: The pit exposure is approximate 2.5 m in thickness. However, previous 
boreholes were taken by Page and Nanson (1996) and indicate that the paleochannel infill is 8 – 9
m in total thickness. Two profiles were sampled because sediment was too hard to remove. The 
top is a very red organic-rich clay layer with coarse gravels embedded; it appears pedogenically 
altered. Roots and grass were present in this almost lithified pedogenic layer. Below this layer is a 
white coarse-grained sand/gravel layer. There was no sorting present in the sand layer. An adjacent 
exposure showed a loam layer between the red clay and white sand layer that showed possible
signs of fluvial sorting (fining-upwards). However, this layer was not present in the profiles 
sampled.

Site photos and sample locations:

Figure 4-21. Bundure Pit paleochannel site, Coleambally System
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4.5.2 Methods

4.5.2.1 Field Methods

Field collection methods for paleochannel sediments are described in Chapter 2.1.4 of 

this thesis. Core depths, core locations, and sediment stratigraphy descriptions are described in 

the previous section. 

4.5.2.2 Sample preparation and analytical analysis

Paleochannel sediment clay fractions in this study were analyzed for minerology, major 

and trace element concentrations, B concentration, B isotopes, and Nd isotopes. The sand fraction 

(63 µm –2 mm) of a limited number of samples (one from each channel system) was also analyzed 

for B isotopes. Sample preparation and analysis for mineral identification by XRD and major and 

trace elements by ICP-MS are described in Chapter 2.2 and 2.3, respectively. Sample preparation 

for B isotopes and B concentration analyses can be found in Chapter 2.4. Details on sample 

analyses for B concentration by ID-ICP-MS and B isotope measurements by MC ICP-MS can be 

found in Chapters 2.5 and 2.6, respectively. Sample preparation for Nd isotopes by automated ion 

exchange chromatography and analysis by MC ICP-MS can be found in Chapter 2.7.

4.5.3 Results

4.5.3.1 Minerology

The mineral composition of the clay fraction of paleochannel sediments was determined at 

each site and consists of kaolinite (ordered and disordered), phlogopite and lepidolite (which are 

grouped in the illite category), quartz, and an illite/smectite (I/S) mixed layer (Figure 4-22; Table 

4-3). To facilitate an easy comparison of the secondary clay mineral assemblages between samples, 

the measured abundance of quartz was removed from each sample and the remaining clay minerals 

were normalized to 100%. The mixed (I/S) layer clay minerals have regularly interstratified 

illite/smectite crystallite in a coherent stack of 2:1 layers composed of both illitic and smectitic 
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interlayers (Veblen, 1990). Since pure smectite or montmorillonite was not detected, the mixed 

layer (I/S) is the best estimate of expandable (smectite) clay content in the sample; the illite 

interlayers are non-expandable. Modern transported clay fractions taken from the Murrumbidgee 

River are primarily composed of kaolinite (ranging from 56% – 60%), then mixed (I/S) layer 

(ranging from 29% – 21%), and a small portion of illite (12% – 19%) (Figure 4-22A). On the 

contrary, clay fractions from the Yanco and Gum Creek Systems are primarily composed of the 

mixed (I/S) layer (49% – 65%), followed by kaolinite (23% – 41%), and illite (6% – 10%) (Figure 

4-22B). Clay fractions from the Wanganella Pit are an exception to this and are similar to modern 

sediments with the highest composition being kaolinite (65%). Clay fractions from the Gum Creek 

system have kaolinite compositions ranging from 52% – 63%, followed by mixed (I/S) layer (28 

– 45%), and illite (3% – 9%) (Figure 4-22C). In the Kerarbury System (Figure 4-22D), sediments 

at Kerarbury Pit have the highest composition of kaolinite (63%) with lower compositions of the 

mixed (I/S) layer (28%), and illite (9%). Sediments at the Headless Horseman site have 

compositions more similar to those in the Yanco and Gum Creek paleochannels with a high 

composition of the mixed (I/S) layer (62%), followed by kaolinite (37%), and illite (1%). The 

mineralogy of the clay fraction of all three Coleambally System paleochannels is quite similar to 

one another (Figure 4-22E), all having kaolinite-dominated compositions ranging from 66 – 72%, 

followed by mixed (I/S) layer (20 – 29%), and illite (4 – 8%). In general, younger Yanco and Gum 

Creek samples contain higher percentages of expandable mixed-layer, while older Kerarbury and  

Coleambally samples contain higher percentages of kaolinite. Modern sediment is most similar to 

older Coleambally samples with higher compositions of kaolinite. 

4.5.3.2 Chemical composition of the clay fraction

Concentrations of major and trace elements in the clay fraction of paleochannel sediments are 

listed in Table 4-4 and Table 4-5, respectively. Similar to the modern sediments (Chapter 3), Al 

was used as an immobile elements in which to compared the mobile element B. Aluminum 

concentrations range from 8.5 – 14.2 wt.%. Boron concentrations in the clay fraction range from 

21 – 78 µg g-1. The B/Al ratios in the sample dataset range from 0.0004 – 0.0019.
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Table 4-3. Mineral compositions of Murrumbidgee paleochannel clay fractions

4.5.3.3 Isotopic Composition of the paleochannel sediments

Boron isotope composition of the sand fraction 

In each system, the sand (63 µm – 2 mm) fraction of one sample was measured for B 

isotopes in order to determine the composition of relatively unweathered material which is thought 

to represent a mixture of bedrock (parent) material from the upper catchment. These paleochannel 

samples were collected on a field campaign in 2010 from the same sites that were sampled on the 

2015 field campaign. In addition to the four main paleochannel systems, two modern sediment 

deposits were collected on the alluvial plain alongside the modern Murrumbidgee River (Eunony 

Bridge at Wagga Wagga; Mucklebar near Darlington Point) and the sand fraction analyzed for B 

isotopes. The sample at Wagga Wagga is thought to have been 
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Figure 4-22. Mineralogy of the modern Murrumbidgee and paleochannel channel sediment clay fraction measured by XRD.  A) Modern 
system (0 ka): average granitic, average volcanic, and average sedimentary compositions taken from stream sediment in 
monolithological catchments and the main Murrumbidgee River at Gundagai (downstream);  B) Yanco System (13 – 23 ka): Wanganella 
Pit; Thurrowa Road; Yanco A; and Yanco at Morundah; C) Gum Creek System (25 – 35 ka): Tabratong; Yarrada Lagoon D) Kerarbury 
System (35 – 55 ka): Kerarbury Pit; and Headless Horseman E) Coleambally System: Bundure Pit; Gala Vale; and Gala Vale South.



240

deposited in that last 50 years (although not dated); while the Mucklebar sample was OSL-dated 

with a deposition age of approximately 3 kyr (T. Pietsch, pers. comm., see Dosseto et al., 2010).

The sand fraction of both modern deposits shows very similar B isotope compositions of -9.7‰ 

and -10.0‰ at Wagga Wagga and Mucklebar, respectively. These values are also very similar to 

the average 11B of the sand fraction of bank sediments from the Murrumbidgee River measured 

in the modern system study (Chapter 3) which is -10.3 0.4‰ (2 SE, n = 9), indicating that 

sediment (particularly primary minerals in the sand fraction) in downstream deposits is 

representative of that being carried by the modern river. At the Yanco A site, the 11B of the sand 

fraction is -10.1‰; at Tabratong (Gum Creek) it is -9.8‰; at Kerarbury Pit is it -8.9‰; and at the 

Coleambally sites of Gala Vale and Bundure they are -6.6‰ and -5.7‰, respectively, showing a 

steady increase in B isotope composition as a function of age (Figure 4-23). This likely indicates 

either an increasing contribution of granites over the last 100 ka with different mineral 

compositions than volcanic or sedimentary lithologies or possibly preferential mineral dissolution 

of isotopically lighter minerals (e.g. albite).

Figure 4-23. Boron isotope compositions of the sand fraction of paleochannel deposits as a 
function of deposition age compared to that of the modern Murrumbidgee River and modern 
sediment deposits from monolithological catchments.
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Table 4-4. Major element and B isotope composition of paleochannel clay fractions 

Analytical uncertainly (2 SD) on B isotope measurements is 0.4‰ and major elements (2 RSD) are 
approximately 10%. 
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Table 4-5. Trace element concentrations of paleochannel clay fractions
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Table 4 continued 

Trace element concentrations are in µg g-1. Analytical uncertainty (2 RSD) for trace elements is 
approximately 7%.
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Boron isotope composition of the clay fraction 

Boron isotope compositions of all paleochannel sediments are listed in Table 4-4. When 

possible, core samples were split into two sections, labeled ‘inside’ and ‘outside’ referring to the 

presumably most pristine sediment sampled located deep inside the deposit (inside), and the more 

exposed sediment located closest to the sediment/atmosphere surface (outside). Sediment profiles 

that were too hard to core deep inside were not split into two portions. This was done to assess 

local variability and to test if post depositional processes affect the more exposed sediment face 

compared to the inner portion of the deposit. Differences in chemical composition between ‘inside’ 

and ‘outside’ portions may therefore represent either local variability or post deposition alteration 

which presumably would affect the outside portion of the sample. In the oldest system, the 

Coleambally, three sites were sampled: Gala Vale; Gala Vale South; and Bundure Pit. Boron 

isotope compositions of the six clay fractions measured at Gala Vale South range from –4.7‰ to 

0.20‰; at Gale Vale the six clay fractions range from –4.3‰ to –1.9‰, and at Bundure the two 

clay fractions each show distinct compositions of –4.8‰ (top sample) and +3.1‰ (bottom sample) 

in the profile (Figure 4-24). Both samples taken at Bundure Pit would be considered ‘outside’ 

samples because they were taken with a shovel rather than the traditional hand-coring method as 

the sediment was too hard to penetrate. However, since there is no corresponding ‘inside’ portions 

at Bundure, samples are only labeled by site name. On the contrary, both ‘inside’ and ‘outside’ 

samples were taken at Gala Vale and Gala Vale South sites.

In the Kerarbury System, an upstream (Kerarbury Pit) and a downstream (Headless 

Horseman) site were sampled (Figure 4-25). The B isotope composition of the clay fraction of the 

five samples (3 inside; 2 outside) taken at the Kerarbury Pit range from –7.4‰ to –0.7‰ and the 

two at the Headless Horseman site range from +7.2‰ to +9.5‰. As observed, the inside portion 

of the all samples at the Kerarbury Pit are very consistent with depth, while the ‘outside’ samples 

show more variation. Additionally, samples from the Headless Horseman are significantly 

different from those taken at the Kerarbury Pit. 
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Figure 4-24. Boron isotope compositions of the clay fraction as a function depth within the 
Coleambally paleochannel sediment deposits taken at Gala Vale, Gala Vale South, and Bundure 
Pit. Inside refers to the portion of the sample located deepest within the profile; outside refers to 
the portion of the sample taken closest to the outer surface of the sediment deposit. Bundure Pit 
samples only have an outside portion.  

In the Gum Creek System, three upstream sites were sampled (Figure 4-26): GC at 

Darlington Point, Yarrada Lagoon, and Yarrada Lagoon West and one downstream: Tabratong. 

At GC Darlington Point, only one deep (~450 m) core sample was taken with a 11B of the clay 

fraction of -10.0‰. At Yarrada Lagoon, two deep core samples were obtained with B isotopic 

compositions in the clay fraction of –11.3‰ (405 m) and –10.2‰ (585 m). At Yarrada Lagoon 

West, two deep core samples were also obtained with 11B clay fraction compositions of -8.4‰ 

(381 m) and -9.0‰ (675 m). At Tabratong station, five samples were collected. Three samples 

were taken at relatively shallow depths (< 200 cm) and two taken from deep within the profile 

(~465– 500 cm). The 11B compositions of the three upper and two lower samples range from      –

3.2‰ to +1.5‰ and from -8.4‰ to -9.4‰, respectively. The deeper clay samples show much less 

variation than clays located closer to the surface, suggesting that shallow sediments may be more 

effected by surface processes such as recent pedogenesis and/or interaction with vegetation.  
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Figure 4-25. Boron isotope compositions of the clay fraction as a function depth within the 
Kerarbury paleochannel sediment deposits taken in the Kerarbury and the Headless Horseman Pits. 
Inside refers to the portion of the sample located deepest within the profile; outside refers to the 
portion of the sample taken closest to the outer surface of the sediment deposit. Headless Horseman 
samples only have an outside portion.  

Figure 4-26. Boron isotope compositions of the clay fraction as a function depth within the Gum 
Creek System paleochannel sediment deposits taken Tabratong, GC at Darlington Point, Yarrada 
Lagoon, and Yarrada Lagoon West.  
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In the Yanco system, five locations along the main channel were sampled, four upstream 

and one downstream (Figure 4-27). At the furthest upstream site, Yanco at Morundah, two deep 

core samples were taken at 424 m and 672 m with B isotope clay fraction compositions of –10.9‰ 

and –9.9‰, respectively. Approximately 30 km downstream, the Thurrowa Road Pit exposure, 

which is approximately 400 m in depth, was sampled at 65 cm, 293 cm, and 360 cm. The 11B

clay fraction composition of these samples range from –8.5‰ to –9.1‰, respectively, showing 

very little change in B isotope composition with depth. Approximately 10 km downstream, one 

core sample was taken at a depth of 212 m in the profile at Yanco at Bundure whose clay fraction 

has a 11B composition of –11.9‰. The last upstream site sampled was Yanco A which is located 

approximately 15 km downstream from Yanco at Bundure, where 4 samples were taken in a depth 

profile. Samples were taken at depths of 65 cm, 100 cm, 118 cm, and 200 cm and have 11B clay 

fraction compositions of 2.7‰, -4.7‰, 1.5‰, and 4.4‰, respectively. These values are very 

different from other Yanco System clay fraction samples showing a much larger range of values 

which are isotopically much heavier. Approximately 100 km downstream, 5 samples were 

collected at the Wanganella Pit, which is a relatively shallow pit exposure. All samples were taken 

within the top meter of the profile at 30 cm, 55 cm, and 90 cm depths. The bottom and middle 

sample have both an inside and outside portion, however the top sample does not, due to the 

sediment migration within the core pipe when it was extracted. The clay fraction of all samples 

have very similar 11B compositions ranging from –8.9‰ to –11.0‰ showing little variation with 

depth but slight variation between the inside the outside portion of the sample.

The B isotope clay fraction composition of all samples, including both inside and outside 

portions, taken in the four paleochannel systems of Murrumbidgee sector of the Riverine Plain are 

shown in Figure 4-28. The clay fraction of the two modern system deposits (dated between 50 and 

3,000 years) are also plotted. Systems are grouped by color in the legend. There are noticeable 

differences in B isotope compositions of the clay fraction between most of the systems, however 

every system has one site that is not in agreement with other samples taken within the sample 

paleochannel system. The possibility of these samples being affected by post-
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Figure 4-27. Boron isotope compositions of the clay fraction as a function depth within the 
Yanco System paleochannel sediment deposits taken Wanganella Pit, Thurrowa Road Pit, 
Yanco A, Yanco at Bundure, and Yanco at Morundah 

deposition alteration will be discussed below. In general, the composition of the Yanco 

(orange) and Gum Creek (black) Systems completely overlap and look nearly identical, with 

exception of the Yanco A and Tabratong sites which may have experienced post-deposition 

alteration. These two systems which have formed pre- and post-LGM have 11B clay fraction 

compositions similar to modern transported sediment (average 11B of downstream modern 

Murrumbidgee River clay fractions are about –10‰, reported in Chapter 3) but slightly 

different from the modern Murrumbidgee River deposits (green squares) and paleochannel 

deposits from the Kerarbury and Coleambally systems who have isotopically heavier 

compositions.   

Neodymium isotopes in the clay fraction 

In order to determine if the source of sediment delivered to the Murrumbidgee 

paleochannels on the Riverine Plain has changed over the last glacial cycle, neodymium isotope
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Figure 4-28. Boron isotope clay fraction compositions of all Murrumbidgee sector 
paleochannels (Yanco, Gum Creek, Kerarbury, and Coleambally Systems) and modern 
Murrumbidgee River deposits on the Riverine Plain, southeast Australia. The abbreviation ‘in’ 
and ‘out’ after the site name refers to ‘inside’ and ‘outside’ portions of each core sample which 
are the portions deepest within the sediment deposit and closest to the outside 
(sediment/atmosphere) portion of the deposit, respectively. Systems are listed oldest to 
youngest in the legend and grouped by color. Analytical errors (2 SD) on isotope measurements 
are 0.4‰. 

(143Nd/144Nd) analysis was conducted on the clay fraction of sediments from all paleochannel 

systems as well as bedrock samples from source areas in the upper catchment of the 

Murrumbidgee River and clay fractions taken along the course of the Murrumbidgee River.

Measured 143Nd/144Nd ratios are expressed relative to 143Nd/144NdCHUR = 0.512638 as Nd.

Neodymium isotope compositions in the Yanco System range from –10.95 to –8.94; in the 

Gum Creek System they range from –7.57 to –11.11; in the Kerarbury System they range from 

–2.34 to –8.85; and in the Coleambally System they range from –7.24 to –12.38 (Figure 4-29;

Table 4-6). Sedimentary, volcanic, and granitic bedrock samples from the upper Murrumbidgee 

catchment were also analyzed for Nd isotopes and yield a wide range of Nd values of –16.18, 

–11.03, and –3.90, respectively. Additionally, Nd isotopes in the clay fraction of bank

sediments from the modern Murrumbidgee River range from –7.3 to –13.3. When compared 

to catchment bedrock, the Nd composition of paleochannel clays appear indistinguishable from 

that of the catchment bedrock (Figure 4-29). This comparison suggests that all sediments in 

each of the paleochannel systems derives from within the Murrumbidgee catchment. In order 
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to assess if there was a change in source of sediment over the last 100 ka which may impede 

on any B isotope interpretation, an ANOVA test (one-way between subjects) was performed.

The test specifically checked if there were significant statistical differences in Nd values 

between any of the systems, including actively transported sediment in the modern 

Murrumbidgee River, and the catchment bedrock. Results from the AVOVA test ( = 0.05) 

reveal no significant differences between the means of all five groups with a reported p-value 

of 0.100. These test results indicate that the source of sediment has not varied significantly 

over the last glacial-interglacial cycle and that all samples. This interpretation, however, is 

limited due to the low number of samples included in the statistical test; low counting statistics 

and possible outliers (e.g. Kerarbury Pit, -2.43) make a change in source determination based 

on the available data tentative.

4.5.4 Discussion

4.5.4.1 Source of sediments in the paleochannels 

Riverine paleochannel infill sediments are thought to have derived from the upper and 

lower portions of the Murrumbidgee River catchment and delivered to the paleochannel 

systems via the active river channel. This occurred over the last glacial-interglacial period 

during times of significant runoff which carried large amounts of coarse bedload sediments 

(Bowler, 1986; Kemp et al., 2017; Mueller, 2017; Page and Nanson, 1996; Suresh et al., 2014).

Although all paleochannels were once migrational in character, possibly involving some degree 

of sediment re-working on the alluvial plain, the principle source of channel infill was coarse 

bedload from upstream areas which controlled the channel morphology (Page and Nanson, 

1996). This is particularly evident in the Coleambally, Kerarbury, and downstream reaches of 

the Gum Creek Systems which aggraded with coarse sands that are connected laterally to 

extensive sequences of fining-upward sediments, indicating alternating episodes of channel 

activity which transitioned between laterally migrating mixed-load channels to vertically 

aggrading bedload channels. The terminal feature of these systems is bedload aggradation 

which resulted in channels with low sinuosity, likely triggered by high flood peaks during 

spring melting (Page and Nanson, 1996). Although the Yanco System, particularly after the 

LGM, is characterized by migrational paleochannels carrying large volumes of sand, it did not 

terminate in an aggradational phase, likely caused by a climatic shift which drastically reduced 

the supply of coarse bedload and resulted in a highly sinuous suspended-load system, similar 
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to the present drainage systems (Page and Nanson, 1996). Lack of an aggradational phase and 

presence of large dunefields along the Yanco (compared to the previous Gum Creek System 

which lacks similar dune fields) suggest that sediment re-working on the Riverine Plain was 

likely greatest during this phase.  

Figure 4-29. Neodymium isotope compositions of the clay fraction of paleochannel sediments 
and modern Murrumbidgee River catchment bedrock. Analytical uncertainly (2 SD) on Nd

ratios is 0.5. 

The Nd isotope composition of paleochannel clay fractions reveals that there is no 

statistically significant difference in source of sediments over the last glacial-interglacial cycle 

and all sediments sampled can be explained as deriving from source areas within the 

Murrumbidgee catchment (Figure 4-29). Sedimentary, volcanic, and granitic bedrocks from 

the upper catchment were used for comparison, as well as clay fractions from the modern 

Murrumbidgee River. Neodymium isotope compositions of nearly all paleochannel clays 

closely resemble those of the clay fraction of bank sediment from the modern river. Since the 

source of sediment is confirmed not to have changed over the last glacial-interglacial cycle, 

changes in B isotope of the clay fraction during that period may be related to differences in 

paleo-weathering conditions.

The B isotope composition of sand fraction of bank sediment from the Murrumbidgee 

could be used a potential source tracer of paleochannel sediment. This is because B isotopes in 

the sand fraction is thought to experience little to isotope fractionation during weathering 
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Table 4-6. Neodymium isotope compositions of Murrumbidgee paleochannel systems and 
modern Murrumbidgee River catchment bedrock 

Nd values are based on the measured 143Nd/144Nd ratio and 143Nd/144NdCHUR = 0.512638. Analytical 
error (2 SD) on Nd is 0.5 which is based on repeated analysis of JG-2 reference material.

and transport and therefore is a good representative of unweathered catchment bedrock 

(Lemarchand et al., 2012; Cividini et al., 2010; Ercolani et al. in prep., see Chapter 3). As a 

reliable source tracer, B isotopes in the sand fraction should then agree with Nd isotopes in the 

clay fraction and reveal that there is no change in the source of sediment over the last 100 ka. 

However, this is not the case as both proxies are not in complete agreement. Boron isotopes in 

the sand fraction show a shift towards isotopically heavier values over time (possibly indicating 
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an increasing contribution for granitic sources in older paleochannels), while Nd isotopes show 

that there is no significant change. Since the use of Nd as a proxy for sediment provenance is 

more established, and possibly more reliable than B isotopes in primary minerals, it is 

concluded that no significant change in sediment source occurred. The shift towards heavier B 

isotope compositions in the paleochannel sand fractions over time then is less clear. A possible 

explanation of this trend may derive from the preferential dissolution rate of isotopically lighter 

and more easily weathered minerals (i.e. albite for instance), particularly in older, more 

weathered sediments. However, without a thorough XRD analyses of these sand samples, this 

hypotheses is speculative and warrants further research.

4.5.4.2 Transport of sediment from source to sink

Based on an extensive study of the chemical and isotopic composition of the sand and 

clay fraction of bedload sediment in the modern Murrumbidgee River (Chapter 3), it was 

concluded that the composition of downstream sediment (both sand and clay fractions) is 

representative of a mixture of sediment produced throughout the catchment and experiences 

little or no chemical alteration during transport. This result agrees with a previous study by 

Suresh et al. (2014) who found no chemical  evolution of Murrumbidgee River sediment along 

its course based on the WIS (Si-based Weathering Index).  These results then suggests that the 

chemical and B isotopic composition of downstream paleochannel sediment is representative 

of the ancient weathering signal obtained in the source areas of the upper catchment. However, 

an understanding of B isotope behavior after active transport in the river including deposition, 

burial, and possible re-working is presently lacking. To address this question, the composition 

of modern sediment from the Murrumbidgee River (reported in Chapter 3) is compared to that 

of paleochannel sediment in order to assess similarities and differences. For each sample, the 

B isotope composition of the sand fraction is subtracted from that of the clay fraction ( 11B

clay-sand) in order to determine the extent of isotope fractionation between weathered and non-

weathered material. The 11B clay-sand term is then shown as a function of the B/Al in order to 

assess B isotope fractionation as a function of B mobility relative to the immobile element Al 

(Figure 4-30). All data points in the dataset are not shown; the ‘outside’ portion of core samples 

(when taken) was removed from this figure and only the ‘inside’ portion shown. This was done 

because the ‘outside’ portion, that is, the portion closest to the surface of the deposit, is likely 

to be affected by post-depositional processes (see discussion below). Results show that the B 
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isotope and B/Al compositions of most paleochannel sediments are similar to the downstream 

sediments actively being transported by the modern Murrumbidgee River. This is particularly 

true in the Gum Creek and Yanco Systems, with slightly larger differences in B isotope 

compositions between modern and paleochannel sediments in the Kerarbury and Coleamabally 

Systems; B/Al ratios between most paleochannel and modern sediments are also similar. This 

may indicate that the composition of the paleochannel sediment has not evolved after 

deposition. On the contrary, some paleochannel samples have a much heavier B/Al and/or 11B

clay-sand composition than modern and other paleochannel sediments, possibly indicating a B 

enrichment from an isotopically heavy source after deposition.   

Figure 4-30. 11B clay-sand as a function of B/Al in the clay fraction in both the modern 
Murrumbidgee River and Riverine paleochannel sediments. The dotted line represents 11B
clay-sand = 0 where no isotope fractionation between the clay and sand fractions is observed. 
Corresponding ‘outside’ sample portions at Gale Vale, Gala Vale South, and Kerarbury Pit are 
not shown in this figure. 

4.5.4.3 Effects of post-deposition alteration on the B isotope signature of the clay 

fraction

One of the primary goals of this chapter and thesis is to determine if the chemical and 

B isotope composition of transported and deposited riverine material suffers from post-

depositional alteration or if the ancient weathering signal carried by the fraction is preserved 

over time. If the weathering signal is preserved during transport, deposition, and burial, then it 

may serve as a proxy to reconstruct paleo-environmental or paleo-weathering conditions (Zhao 
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et al., 2003; Singer, 1980). To identify post-depositional alteration, the following stragety was 

employed. First, several sites along the course each paleochannel system were sampled with 

depth to identify a weathering profile. As discussed above, samples were also split between 

‘outside’ and ‘inside’ portions when possible in order to obtain the most pristine portion of the 

deposit. Boron isotope compositions of the clay fraction were the main proxy used to identify 

a weathering profile in each system. Chemical compositions (B/Al ratios) were then paired 

with B isotopes to investigate whether a correlation exists which can explain B isotope 

compositions. Finally, the depth of the depositional environement was considered which may 

affect the preservation of the ancient weathering signal. These points are discussed in detail in 

the following text.

The possible effect of post-deposition was first considered in the sampling strategy by 

boring horizontally into each sediment deposit and separating the core sample in two parts 

(when possible): the ‘inside’ section which is expected to be more pristine part as it located 

further inside the deposits; and the ‘outside’ section which is the section closer to the surface 

and therefore more likely to be affected by post-depositional alteration. By this measure, it is 

possible to assess the local variability of the B isotope composition of the clay fraction in each 

sample and possible identify post-depositional alteration. The B isotope compositions of both 

‘inside’ and ‘outside’ sample portions are shown in Figures 4-24 – 27 as a function of depth 

within each system. In the Yanco System, samples were split between ‘inside’ and ‘outside’ at 

the Wanganella Pit, displaying a 1‰ shift towards isotopically lighter values in ‘outside’ 

samples taken at 55 cm and 90 cm (Figure 4-27). At the Kerarbury Pit (Kerarbury System), 

‘outside’ samples display contradicting behavior, being both isotopically heavier (about 6‰) 

at 300 cm and lighter (about 3‰) at 400 cm than the corresponding ‘inside’ portion of the 

sample. Because a 6‰ shift toward isotopically heavier values in B isotope composition 

between ‘inside’ and ‘outside’ portions of the same sample (300 cm) is quite significant, it is 

likely that the ‘outside’ portion is being or has been influenced by “surface” processes, while 

the 3‰ shift towards isotopically lighter values at 400 cm likely represents site variability 

rather than post-deposition alteration. In the Coleambally System, ‘inside’ and ‘outside’ 

portions of sediment samples do not significantly vary, with a maximum 11B difference of 

3‰ between ‘inside’ and ‘outside’ sample aliquots at Gala Vale South. The composition 

between ‘inside’ and ‘outside’ sample aliquots show inconsistencies with depth in some 

profiles. For example, the ‘outside’ portion is sometime isotopically heavier and sometimes 

lighter, likely representing local sample variability. It appears that the difference in B isotope 
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composition between ‘inside’ and ‘outside’ may be due to both local sample variability (in the 

case of a slight B isotope difference) and post-deposition alteration (in the case of a large B 

isotope difference). Although it is difficult to determine whether isotopic differences between 

the ‘inside’ and ‘outside’ sample portions are caused by local variability or post-depositional 

alteration, these variations are generally less than isotopic variations observed with depth with 

a given profile. Accordingly, the difference between the ‘inside’ and the ‘outside’ is negligible 

compared to the variation with depth. Therefore, as the ‘outside’ portion of the deposit is less 

likely to be intact/preserved than the ‘inside’ portion, the ‘outside’ portion was removed from 

the dataset. The one exception to this occurs at the Kerarbury Pit (sample taken at 300 cm), 

where the difference between ‘inside’ and ‘outside’ is greater than the variation with depth; 

however due to the significant (6‰) difference between ‘inside’ and ‘outside’ sample portions 

at that depth and the lack of significant difference between ‘inside’ and ‘outside’ portions of 

the lower (400 cm) sample, the ‘outside’ portion of the 300 cm sample is likely altered by post-

depositional processes. 

After removal of the ‘outside’ sample portion, the focus was on identifying ‘inside’ 

sample portions that were affected by post-depositional alteration by comparing differences in 

B isotopes with depth (Fig. 4-31). When comparing sites along a given paleochannel system 

with depth, a narrow variation in B isotope values exists for most sites with a given 

paleochannel system, with the exception of one site in each of the systems (Figure 4-31). The 

B isotope composition of clays fractions taken the outlier sites all have much heavier values 

that those than other sites within the same system, indicating a possible incorporation of B

which has been cycled through vegetation after deposition. Sites/samples that appear 

particularly different from other sites within the same paleochannel system or samples within 

the same deposit include: all samples from Yanco A (Figure 4-27); the three shallow samples 

taken at the Tabratong site (Gum Creek System) (Figure 4-26); all samples from the Headless 

Horseman site (Kerarbury System) (Figure 4-25); and the lower sample (190 cm) taken at the 

Bundure Pit (Coleambally System) (Figure 4-24). In the Yanco System, B isotopes in the clay 

fraction of the Yanco A profile show a large range of values from approximately -5‰ to +5‰, 

with nearly all samples in that profile having compositions >2‰. These values are much 

heavier (> 10‰ in most cases) than the clay fractions at the four other sitesin the Yanco System, 

which together display a narrow range in B isotopes from approximately -12‰ to -9‰. As 

such, it likely that all samples from the Yanco A profile have been altered after deposition. In 

the Gum Creek, evidence of a weathering profile was present at the Tabratong site. The three 
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Figure 4-31. Boron isotope composition of Murrumbidgee paleochannel clay fractions as a 

function of depth. All sites from each system are labeled in the same color. Most sites display 

a narrow range of composition with depth with the exception of one site in each system which 

are circled in pink, displaying isotopically heavier values than other sites from the same 

system, possibly evidencing a weathering profile with depth. 

relatively shallow samples have much heavier compositions (> 4‰) than the 2 deeper core 

samples taken at that site. Boron isotopes in the clay fraction of these deep cores samples have 

compositions which are very similar to those taken from the three upstream Gum Creek sites 

(also deep in the profile), likely indicating that the samples taken near to the surface at the 

Tabratong site have been altered after deposition. In the Kerarbury System, there were only 

two sites sampled (Kerarbury Pit and Headless Horseman) which have very different B isotope 

compositions of the clay fraction. Once ‘outside’ portions of samples were removed from those 

taken at the Kerarbury Pit, little B isotope variation (from approximately -6‰ to -4‰) exists 

with depth (profile is >4 m in thickness). On the contrary, shallow samples taken the Headless 

Horseman display B isotope compositions which are more than an 11‰ heavier than those at 

the Kerarbury Pit. Such a dramatic difference between sites would indicate either post-

depositional alteration of samples taken from the Headless Horseman or a dramatic evolution 



258

of the B isotope signature of the clay fraction between the two sites which are less than 100 km 

apart. Since results from Chapter 3 indicate that composition of the clay fraction is preserved 

during transport, this latter scenario does not seem likely. In the Coleambally, all sites/samples 

have similar B isotope compositions exclude the bottom sample taken at Bundure Pit, which is 

almost 8‰ heavier than other samples within this system. Additionally, the top layer sampled 

at the Bundure Pit consists of highly pedogenic clays and its composition would then represent 

modern weathering conditions (Page and Nanson, 1996). In all systems, samples which have 

similar B isotope compositions with depth are considered pristine, while those with isotopically 

heavier signatures to be possibly altered by post-depositional alteration. 

Boron isotopes in paleochannel clay fractions are then compared to the B/Al ratio, an 

established weathering proxy, to investigate how B isotopes relate to B mobility (shown above 

in Fig. 4-30). As discussed above and shown in Figure 4-30, when 11B clay-sand is displayed as 

a function of B/Al, there are a tight cluster of samples with similar compositions to one another 

and to modern sediment, and a group that has much larger 11B clay-sand and/or B/Al values. 

Samples with heavier B isotope compositions than others in their respective systems also 

display higher B/Al values. Therefore, chemical evidence agrees with B isotopes and indicates 

an incorporation of isotopically heavy B into the clay fraction. This likely occurred after 

deposition and is site specific as all other sites within the same system do not have higher 11B

and B/Al values and are relatively homogenous. The use of a chemical ratio such as  B/Al alone 

to distinguish post-depositional alteration is difficult, however, by pairing B/Al ratios to B 

isotopes it is possible to identify post-depositional alteration. In the case of the Murrumbidee, 

the isotopically heavier source most likely is vegetation as the 11B of vegetation is much 

higher (more than 40‰) than that of the bedrock. 

The depositional environment or position within the paleochannel deposit likely 

contributes to the preservation of the chemical and isotope composition of the clay fraction 

(Singer, 1980). Evidence of this is seen at several of the paleochannel sites (e.g. Kerarbury Pit, 

Tabratong) when comparing the B isotope clay fraction compositions of ‘inside’ vs ‘outside’ 

and also shallow vs deep samples. The common trend between the two types of samples is that 

those which are more exposed to the surface, whether higher in the profile or closer to the 

outside face of the deposit wall, typically have much higher B isotope compositions reflecting 

the incorporation of an isotopically heavy source such as B which has been cycled through 

vegetation and atmospheric inputs. In soil profiles from a forested ecosystem, the soil solutions 
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were found to be high influenced by B derived from vegetation cycling and atmospheric inputs 

penetrating to a depth of 60 cm with the profile (Cividini et al., 2010); below this depth, the 

soil solution was reported to be controlled by water-rock interactions. The B isotope 

composition of clays forming in this shallow zone may reflect the 11B-rich soil solution as 

shown by Lemarchand et al. (2012). This would drive the B isotope composition of the clay 

fraction towards isotopically heavier values. However, our knowledge of how deep 

atmospherically and vegetation-cycled (11B-rich) soil solution penetrates in the sediment/soil 

profile is limited and likely to be highly variable from site to site depended factors such as 

hydrology, sedimentology, porosity, etc. For instance, coarse-grained sand-rich deposits 

overlaid by thin layers of soil and vegetation do not have the same porosity as soil profiles. As 

such, one might expect the influence of 11B-rich soil solution to affect or control the B isotope 

signature of the clay fraction to a greater depth than compared to a forested soil profile. In this 

case, the top meter or two might be a reasonable depth to expect an influence of atmospheric 

and vegetation-cycled B on the B isotope composition of the clay fraction. In addition, neo-

formation of clay minerals might be expected in the upper portion of the sediment deposit 

where soil has developed and roots have penetrated into the sand deposit. The B isotope 

composition of paleochannel clay fractions might then be overprinted by modern weathering 

conditions and form in isotopic equilibrium with the 11B-rich soil solution (Lemarchand et al., 

2012). 

An interesting observation between modern transported bank sediment and modern 

sediment deposits taken several meters away from the river was made. In bank sediment from 

the Murrumbidgee River (reported in Chapter 3), the clay fraction is normally isotopically 

lighter than the sand fraction, producing 11B clay-sand values which are less than zero. However, 

the two modern sediment deposits taken at Wagga Wagga and Mucklebar have 11B clay-sand

values between 2 – 3‰. The reason for this difference is unknown, however, may possibly be 

attributed to either sampling different sediment types (e.g. bank sediment vs. bedload sediment 

or suspended load) or a slight shift in isotope ratio during the desiccation process. In the latter 

case, B exchange between the clay fractions and the porewaters within the sediment deposit 

may occur in response to the decrease in the water/rock ratio where a low ratio leads B to be 

largely in the adsorbed form in the weathering environment (Lemarchand and Gaillardet, 

2006). This exchange likely occurs before or during the clay-drying process; once the clay 

mineral becomes dehydrated and interlayer shrinkage occurs, the cation exchange capacity 

(CEC) of the clay mineral will drastically decrease and therefore B exchange between the 
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structural network of the mineral and porewater is significantly less likely to occur (Grim, 

1968). In particular, this slight exchange likely involves the smectite (exchangeable) portion 

of the clay sample, as it contains an expandable interlayer and has the highest CEC (compared 

to kaolinite which has the lowest) of all clay minerals (Ma and Eggleton, 1999). Although 

exchange between deposit porewaters and the kaolinite portion of the clay sample is less likely 

to occur, increased CEC values of kaolinites have been observed which are attributed to 

smectite and interstratified kaolinite/smectite impurities and also smectite layers forming on 

kaolinite minerals; however no structural exchange occurs within kaolinite minerals, only 

surficial exchanges (Ma and Eggleton, 1999). When experienced, the slight exchange between 

the clay fraction and porewaters within the deposit likely involves: 1) the smectite portion of 

the sample, 2) a rapid B exchange while the clay fraction is still wet, 3) B enrichment into the 

clay fraction where B is derived from an isotopically heavy source causing a shift in its isotopic 

composition, and finally, 4) the shrinkage and possible collapse of the mineral interlayers 

during wetting and drying cycles allowing little or no further exchange with the porewaters or 

surrounding environment after final desiccation event (Andreoli et al., 1989).  

An alternative hypothesis would be that the composition of sediment deposits taken 

several meters away from the river may be different from that of the river bank sediments. For 

example, the sediment deposits were likely deposited during a flooding event in a high-energy 

environment, hence their displacement away from the active river. Accordingly, they may be 

composed of bedload and even possibly suspended load sediments which have slightly 

different (more positive) B isotope compositions than bank sediments, particularly in the 

associated clay fraction of the deposit. In the absence of suspended load measurements in the 

modern Murrumbidgee, this hypothesis is speculative. Since the clay fraction of paleochannel 

infill sediments most likely derived from a mixture of bedload, bank sediment, and suspended 

load (similar to modern deposits), its B isotope composition should be comparable to modern 

deposits. If the clay fraction experienced slight alteration due to a desiccation event, then an 

approximate 2‰ shift may also have occurred in paleochannel sediments. Regardless of the 

cause, this may have important implications to the interpretation of paleochannel sediment 

deposits. Unfortunately, no mineralogy, grain size, or major/trace elemental data for these 

modern deposits was available to aid in a more accurate interpretation. Therefore, some caution 

should be given to the interpretation of paleo-weathering or paleo-environmental conditions 

based on the current dataset. The origin of this value should be explored further in order to 

better determine its significance in regard to the composition of paleochannel clays. 
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Although post-depositional processes may have played a significant role in the 

chemical and B isotopic composition of some samples/sites in this study, the original signal 

obtained during weathering appears to be largely preserved for the majority of samples during 

deposition and burial.  After the identification and removal of samples affected by post-

deposition alteration from the data interpretation, distinctions can be made in the 11B clay-sand

between paleochannel systems (Figure 4-32). Based on the analyses discussed above, the 

follow samples were systematically removed from the dataset: all ‘outside’ sample portions, 

all samples from Yanco A, Bundure, and Headless Horseman, and the top three samples (< 200 

cm) from Tabratong; these samples are chemically and isotopically different from samples 

taken at different depths within the same profile and /or other sites within the same 

paleochannel system, possibly evidencing post-depositional alteration. Recent sediment 

deposits taken along the along the Murrumbidgee River (Mucklebar and Wagga Wagga), 

ranging in depositional ages from approximately 50 years to 3,000 years, are also plotted with 

paleochannel deposits in order to compare modern deposits to much older ones. The 11B clay-

sand composition of sediments within the pre- and post-LGM Yanco and Gum Creek Systems 

are nearly identical (both ranging between about –2‰ and +2‰) and are the lowest of all 

systems. The 11B clay-sand composition of sediments within the Yanco and Gum Creek Systems 

are different from those in all other paleochannel systems, including the modern deposits. The 

11B clay-sand composition of modern deposits along with those from the Kerarbury and 

Coleambally Systems are all quite similar, though the Kerarbury System displays with 

narrowest range of B isotope compositions with depth of all paleochannel systems. The 

Coleambally System has the widest range of B isotope compositions, however unlike other 

paleochannel systems, only shallow samples (0 – 2 m) could be obtained. The disadvantage of 

this situation is that the B isotope compositions of these samples cannot be compared to deeper 

samples, therefore it is more difficult to determine if these relatively shallow samples have 

experienced post-depositional alteration. Fortunately, three Coleambally sites were sampled 

and show similar isotope compositions with depth likely indicating that the channel deposits 

were not altered after deposition.
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Figure 4-32. Boron isotope composition between the clay and sand fraction ( 11B clay-sand) as a 
function of depth within the Murrumbidgee paleochannel deposits on the Riverine Plain 

4.5.4.4 Paleo-environmental change over the last 100 ka 

The 11B of the paleochannel clay fractions which are not affected by post-depositional 

alteration is thought to reflect the ancient weathering regime (competition between dissolution 

and precipitation reactions) and the influence of vegetation cover on pedogenesis throughout 

the Murrumbidgee River catchment. Results from the study of modern transported sediment 

within the Murrumbidgee River (Chapter 3) and those from this study indicate that the clay 

fraction is delivered to the paleochannels with little to no bias during transport. In this case, the 

clay fraction of paleochannel sediment may be used as a proxy of paleo-environmental 

conditions and used to understand how pedogenesis has responded to climatic variability 

including changes in the weathering regime and the influence of vegetation on clay formation 

over the last glacial-interglacial cycle. The 11B clay-sand composition of all paleochannel 

samples not affected by post-deposition alteration are plotted as a function of deposition age 

alongside a faunal-based sea surface temperature reconstruction of the Southern Ocean (Figure 

4-33) and a vegetation cover record for New Zealand and southern Australia (Figure 4-34). 

Results show co-variations between 11B clay-sand and both SST and vegetation cover over the 

last glacial-interglacial cycle. Both records were obtained from the same core (DSDP Site 594) 
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taken offshore of the South Island of New Zealand and reported in Barrows et al. (2007). As 

explained in Section 4.3.2, both the SST and vegetation cover records are high resolution and 

provide a broad picture of climatic conditions in the New Zealand and southeastern Australian 

regions over the last 100 ka. Although there is a more local record of SST coming from South 

Australia (i.e. Calvo et al., 2007) it does not cover that last 100 ka. Similarly for vegetation, 

the closest vegetation reconstruction to the Murrumbidgee paleochannels is at Caledonia Fen 

(Kershaw et al., 2007). However, this record is thought to represent a more localized site-

specific reconstruction and therefore may not be representative of other areas of the Basin.  

Figure 4-33. 11B clay-sand compositions of paleochannel sediment as a function of depositional 
age plotted with a SST reconstruction record of the Southern Ocean (Barrows et al., 2007). Co-
variation between 11B clay-sand and SST may indicate that pedogenesis may respond to climatic 
variation. 

Superposition of  11B clay-sand compositions of paleochannel sediment with SST (Figure 

4-32) suggests that B isotope fractionation is closely following climate (temperature and 

precipitation) over the last glacial-interglacial period. Lower 11B clay-sand values occur during 

the coldest period of the record (during and just prior to the LGM) likely indicating that the

clay fraction is primarily recording limited water-rock interactions with little influence of 

vegetation on pedogenesis. Since the cold and dry climate of the LGM during MIS 2 in the 

Murray-Darling Basin did not promote intensive chemical weathering or clay production

(Barrows et al., 2001), the B isotope composition of the clay fraction is low and not

significantly fractionated compared to the source, which in this case is B derived from the 
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Figure 4-34. 11B clay-sand compositions of paleochannel sediment as a function of depositional 
age plotted with pollen-based vegetation cover reconstruction record for New Zealand and 
southeastern Australia (Barrows et al., 2007). Co-variation between 11B clay-sand and % Tree + 
Shrub indicate a variable role of vegetation on pedogenesis over the last glacial-interglacial 
cycle.

catchment bedrock. During the warmer and wetter inter-glacial periods (MIS 1 and 5), as well 

as MIS 3 which is known to be a quite active and relatively wet fluvial period (e.g. Bowler et 

al., 2003; Page et al., 1996), 11B clay-sand values are larger with B isotope values in the clay 

fractions shifting towards more positive values. This indicates that the clay fraction is 

interacting with an isotopically heavy B source such as atmospherically-derived B (e.g. +12‰, 

Wei et al., 2015) brought by increased rainfall and/or interaction with vegetation as a result of 

increased temperature and rainfall. 

Additionally, weathering intensity during warmer/ wetter climates would expected to 

be greater than during colder/drier periods. In this regard, mineral identification of the clay 

fraction can be used to as a proxy for weathering intensity and paleo-environmental 

reconstruction (e.g. Mana et al., 2017; Gingele and De Deckker, 2005; Singer, 1980, 1984; 

Biscaye, 1965). XRD results from this study show that clay fractions in the prior and post-

LGM paleochannel systems (Gum Creek and Yanco Systems) are predominately composed of 

mixed (I/S) layer clays, with percent abundances ranging from 49 to 65%; percent abundances 

of kaolinite range from 23 to 41%, with smaller percent abundances of illite (< 10%) (Figure 

4-22). In modern, MIS 3, and MIS 5 sediments, mixed (I/S) layer clay compositions are much 

lower (ranging from 20 to 29%) while kaolinite compositions are much higher (ranging from 

56 to 72%); illite compositions range from 3 to 19%. Accordingly, the presence of smectite is 
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indicative of early-stage low intensity weathering, climatically-interpreted as being produced 

in a relatively dry climate; kaolinite on the other hand, is typically produced during humid 

periods under more intensive weathering conditions (Singer, 1980). The clay mineral 

compositions measured in this study agree with this interpretation and therefore show that 

weathering intensity was low during the cold and dry LGM, with higher percent abundances 

of mixed (I/S) layer clays; during the warmer and wetter MIS 1, 3, and 5, weathering intensity 

is higher as clay fractions are predominately composed of kaolinite.

The co-variation of 11B clay-sand of the paleochannel sediments with the pollen record 

suggests that pedogenesis is responding to changes in climatic variability via the influence of 

vegetation on pedogenesis (Figure 4-33). Due to the cold and dry climate surrounding the LGM 

in southeast Australia, shrubs and herbaceous plants were dominant which are shown to have 

little effect on the B isotope composition of the clay fraction during pedogenesis in the 

headwaters of the Murrumbidgee catchment. The composition of modern deposits and those 

during MIS 3 (Kerarbury) and MIS 5 (Coleambally) are all very similar and display ranges of 

11B clay-sand values that are notably higher than those from the MIS 2 Gum Creek and Yanco 

Systems. Based on a one-way (between subjects) ANOVA ( =0.05) and Bonfferoni-Dunn 

post-hoc tests, MIS 3 and 5 clay fractions are significantly different (p < 0.001) from those of 

MIS 2; however, MIS 1 and 2 clay fractions are not. Although, the latter result may simply be 

the product of low counting statistics of modern sediment deposits (n = 2). Increasing 

temperature and precipitation contribute to the production of more complex and woody 

vegetation (Barrows et al., 2001; Kershaw, 1986), which in turn have an increased capacity to 

cycle and heavily fractionation B isotopes (Cividini et al., 2010) compared to grassy and 

herbaceous species. It is then expected that a warmer and wetter climate would exert a greater 

influence on clay formation through the increased interaction with organic material and 11B-

rich soil solution. As such, the high 11B clay-sand compositions of the paleochannel deposits 

during MIS 1, 3, and 5 are interpreted as recording the relative influence vegetation exerts on 

clay formation over the last glacial-interglacial cycle. The lowest 11B clay-sand compositions 

during MIS 2 then suggest a minimal role of vegetation on clay formation and the increased 

importance of water-rock interactions on the B isotope signature of the clay fraction.

4.4.3 Conclusions

This study tests the suitability of B isotopes in sediment deposits as a potential 

geochemical proxy to reconstruct paleo-weathering and paleo-environmental conditions. A 
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thorough investigation of modern transported sediments within the Murrumbidgee catchment 

reveals little evidence of chemical or isotopic alteration during transport (Ercolani et al. in prep; 

Chapter 3). This indicates that the clay fraction retains its signature during transport and 

suggests that the composition of downstream paleochannel is representative of the ancient 

weathering signal obtained in the source areas of the catchment. However, upon deposition and 

burial, the behavior of B isotopes is relatively unknown. Here, we investigate B isotope 

behavior in paleochannel sediment deposits in the Murrumbidgee catchment (NSW, Australia) 

which have been deposited over the last glacial-interglacial cycle. It is hypothesize that if 

samples which have been affected by post-depositional alteration can be identified, then B 

isotopes in the clay fraction may reveal how pedogenesis has responded to climatic variability 

over the last 100 ka. 

In this regard, samples which were suspected of being affected by post-depositional 

alteration have much higher B isotope compositions than other samples within the same profile 

or paleochannel system; higher B isotope ratios in the clay fraction are often accompanied by 

a shift in the B/Al ratio. This likely indicates interactions with an isotopically heavy source 

such as soil solution which have been cycled through vegetation. Mineral identification and 

characteristics of the depositional environment were also used to assess post-depositional 

alteration. Samples having higher B isotope and/or B/Al compositions generally have higher 

than average percent abundances of mixed (I/S) layer clays and/or were deposited in relatively 

shallow (<2 m) environments, increasing the likelihood of B exchange with the surrounding 

environment and therefore loss of the ancient weathering signal. In shallow profiles, the 

interactions between 11B-rich soil solution (derived from B cycling through vegetation and 

atmospheric sources) and clay minerals is likely to shift the B isotope compositions of clay 

minerals towards heavier values. On the contrary, sediments deposited deeper within the 

paleochannel deposit (2 – 6 m) are less likely to be affected by surface processes and therefore 

have a better chance or retaining their original weathering signature. In total, clay fractions at 

four of the fourteen paleochannel sites were suspected of being altered by post-depositional 

processes and therefore removed the dataset.

After identifying and removing samples affected by post-deposition alteration from the 

dataset, clear distinctions in the 11B clay-sand can be made between paleochannel systems. Clay 

fractions from the Kerarbury and Coleambally systems deposited during MIS 3 and 5, 

respectively, along with two sediment deposits from the modern Murrumbidgee River have 

similar B isotope composition, while those from the Gum Creek and Yanco systems (pre- and 
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post-LGM; MIS 2) are distinctly different. The 11B clay-sand compositions of the paleochannel 

sediments co-vary with a SST reconstruction of the Southern Ocean (Barrows et al. 2007),

indicating that pedogenesis in the Murrumbidgee catchment responds to climatic variability 

over the last glacial-interglacial period. In particular, higher 11B clay-sand values during MIS 1, 

3, and 5 indicate an increasing influence of vegetation on clay formation, while during the cold 

and dry LGM (MIS 2), the influence of vegetation on clay formation is minimal and the clay 

fraction primarily records water-rock interactions. Weathering intensity of the clay fraction 

was assessed through clay mineral analyses, showing higher percent abundances of mixed (I/S) 

layer clays during the colder and drier LGM (Gum Creek and Yanco Systems) indicative of 

early-stage low intensity weathering. During warmer and wetter periods (MIS 1, 3, and 5), 

kaolinite was in the highest percent abundance, indicative of more intense weathering 

conditions. Additionally, paleochannel 11B clay-sand values co-vary with a pollen-based 

reconstruction of the vegetation cover for the New Zealand and southeastern Australian region 

(Barrows et al., 2007). This record corresponds with the SST record showing that pedogenesis 

responds directly to climate through the influence of vegetation, which peaks during warmer 

and wetter periods when more complex and woody vegetation is present on the landscape and 

at a minimum during the LGM when glassy and herbaceous vegetation are dominant. Since no 

paleochannel system was present on the Riverine Plain during the cold MIS 4, there is no data 

during this period.  

Neodymium isotopic analyses of the Murrumbidgee sector paleochannel clay fractions 

reveal that the sediment delivered to the paleochannel systems derives from the upstream 

reaches of the Murrumbidgee River catchment and has not significantly varied over the last 

glacial-interglacial cycle. This has important consequences when studying B isotope 

compositions of paleochannel clay fractions, as a change in source can be ruled out an 

explanation for B isotope variations over time. Accordingly, observed variations in B isotope 

compositions may be interpreted in termed of the weathering regime and interactions with 

vegetation in the source areas of the upper catchment.  

This research demonstrates the use of B isotopes in sediment deposits as a potential 

proxy to reconstruct paleo-weathering and paleo-environmental conditions. This is particularly 

possible if samples affected by post-depositional processes can be identified. Further research 

in this field should therefore focus on methods to identify the effects of post-depositional 

alteration on the clay fraction, including investigation into why the composition of modern 
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bank sediment is slightly different from modern sediment deposits, as this may play an 

important role in interpreting fluvial sediment deposits.
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Chapter 5

CONCLUSION AND PERSPECTIVES
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5.1 Project Conclusions 

5.1.1 How do boron isotopes in modern river sediment record the weathering regime at 

the catchment scale?  

Knowledge of B isotope fractionation during silicate weathering at the catchment scale is 

limited. A limited number of studies have focused on understanding the mechanisms driving 

weathering reactions at the catchment scale by studying the 11B composition of the dissolved 

load of rivers (Louvat et al., 2011, 2014; Chetelat et al., 2009; Lemarchand and Gaillardet, 

2006; Lemarchand et al., 2002b; Rose et al., 2000), however very few have focused on the 

solid phase (Chetelat et al., 2009; Spivack et al., 1987). To date, no other study has 

comprehensively investigated the 11B composition of the riverine clay fraction with the goal 

of understanding its origin and how it records the weathering regime. Although B incorporation 

by precipitation or adsorption into (onto) the clay fraction during water-rock interactions in the 

groundwater/soil system has been invoked as the mechanism by which the dissolved load 

obtains its 11B signature (e.g. Chetelat et al., 2009; Lemarchand and Gaillardet, 2006; Rose et 

al., 2000), the original source of the 11B in the clay fraction of the river sediment remains 

unknown as is its relationship to the weathering regime. Consequently, no quantitative or 

theoretical model exists in which to explain the 11B composition of the riverine clay fraction 

in regards to the weathering regime. The study of modern river sediments in the Gandak and 

Murrumbidgee River catchments attempts to address these issues and investigate, for the first 

time, how river sediments record the weathering regime (competition between dissolution and 

precipitation reactions). 

In both the Gandak and Murrumbidgee Rivers, a similar trend emerges in the B isotope 

composition of the sand and clay fractions along the course of each river. The 11B composition 

of the sand fraction remains relatively constant downstream, while the 11B of the clay fraction 

shows a gradual evolution towards isotopically heavier values and plateaus on the alluvial 

plain. Since the sand fraction is roughly representative of a mixture of unweathered bedrock in 

the catchment, it can be used to correct for lithological effects and compared to the clay fraction 

when bedrock is not available (as in the case of the Gandak River). In the Murrumbidgee, 

bedrock was sampled in monolithological catchments and its B isotopic composition was 

compared to that of the clay fraction of river bank sediments ( 11B clay – bedrock = 11Bclay –

11Bbedrock); in the Gandak, all sediments were taken from the main channel and the sand and 

clay fractions compared: 11B clay - sand = 11Bclay – 11Bsand. When the isotope fractionation 
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factors are plotted as a function of the calculated mass transfer coefficient ( Al,B) using Al as 

the immobile counterpart in which to compare B mobility, both systems show a positive 

correlation, indicating that B mobility during clay formation is controlling the isotopic 

fractionation factors. In the Murrumbidgee catchment, this occurs in volcanic and sedimentary 

catchments at higher elevations. A more quantitative B reincorporation into the clay fraction 

leads to 11B clay – bedrock values towards zero in the absence of external B sources (other than 

the bedrock dissolution); in the Murrumbidgee, this occurs in all lithologies in the lower 

catchments and granitic lithologies in the upper catchment. The apparent 11B clay – bedrock

differences between lithologies possibly demonstrates a lithological control on clay formation 

rates throughout the catchment, while differences between the upper and lower catchment 

demonstrate a climatic effect which is a function of catchment elevation. It is interesting to 

note that both systems show this trend, possibly indicating a more universal behavior of B 

isotopes during clay formation.

In both systems, bank sediments taken from the headwaters display larger isotope 

fractionations between the clay and sand fractions (in the case of the Gandak) and between the 

clay and bedrock in the Murrumbidgee (between 3‰ and 8‰ in the Murrumbidgee and 

approximately 3‰ in the Gandak) compared to those found on the alluvial plain 

(approximately 2‰ in the both the Murrumbidgee and the Gandak). These observations likely 

indicate different weathering conditions in the mountains than on the alluvial plains. In the 

Murrumbidgee River catchment, sediment source areas in monolithological catchments at both 

higher and lower elevations were identified by spatial analysis in order to determine differences 

in temperature, rainfall, and catchment slope that may influence weathering conditions. The 

upper catchment is characterized by lower temperature, higher rainfall, and steeper slopes than 

the lower catchment, which likely contribute to differences in clay production rates and silicate 

weathering intensity (Lupker et al., 2012; Millot et al., 2003). For example, in the Himalaya, 

Lupker et al., (2012) reported that the clay formation is more favorable in environments where 

the sediments have longer transfer times (in areas with less steep slopes) and in warmer and 

wetter conditions such as the Gangetic Plain, compared to the upper catchment where 

predominately erosion, rapid sediment transport, and little chemical weathering and clay 

formation occur. Lupker et al. (2012) also reported increased proportions of smectites and other 

expandable clays from the Himalaya front downstream to the Gangetic Plain, and increased 

H2O+/Al and D compositions which reflect a larger incorporation of clay minerals in 

equilibrium with floodplain surface waters. Both Lupker et al. (2012) and Millot et al. (2003)
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(Mackenzie Basin, Canada) report that silicate weathering on the floodplain is predominant 

over weathering in the mountain, a finding that contradicts the “Raymo Hypothesis” (Raymo 

and Ruddiman, 1992; Ruddiman et al., 1988). Gandak River sediments do not show a 

systematic decrease in mobile elements downstream (indicative of higher weathering intensity) 

as reported by Lupker et al. (2012) for other Himalayan rivers. When applied to the 

Murrumbidgee, lower temperatures, higher rainfall, and steeper slopes would not favor clay 

formation or intense chemical weathering, but rather physical erosion and rapid sediment 

transport to the lower catchment. On the contrary, warmer temperatures and longer sediment 

transport times at lower elevations would promote clay formation and increased weathering 

rates and intensities. 

The development of a conceptual model for the clay-porewater system capable of 

describing the B isotopic composition between the clay fraction and bedrock in terms of the 

weathering regime (competition between dissolution and precipitation reactions) is a 

significant advancement in this field which has not previously been undertaken. The need for 

a framework to interpret B isotope data in transported river sediment is increasing as more 

studies focusing on the solid phase. For instance, several recent studies, (e.g. Noireaux et al., 

2014; and Lemarchand et al., 2012; Ercolani et al. in prep) investigated B isotope behavior 

during weathering reactions in soil profiles that would benefit from such a model and aid in 

the interpretation of B isotopes in the clay fraction.  

To model the chemical and B isotopic composition of the percolating surface/groundwater 

and clay fraction, a reactive transport model was used, which describes an 11B enriched surface 

water (derived from atmospheric inputs and vegetation) which has percolated through the soil 

profile on its downward migration. With depth, the B isotope composition of this solution 

progressively becomes isotopically lighter (as does the precipitated clay fraction; in 

equilibrium with dissolution/precipitation ratio. Cividini et al. (2010) and Noireaux et al. 

(2017) confirm this hypothesis in forested ecosystems, where the porewaters within the upper 

soil layers (particularly the top 60 cm) are observed being enriched in 11 and that this heavy B 

isotope signature is progressively lost in deeper porewaters. However, results show that model 

cannot predict B concentrations or isotopes of the soil solution and observed clay fraction 

values without using unrealistic modeling parameters such as flow path distance and water 

velocity. This likely indicates that the clay fraction is not precipitating from the bulk soil 

solution. On the contrary, clays are hypothesized to be precipitating from a porewater solution 

that evolves in a partially-closed system best described by Rayleigh distillation. An example 

of such a porewater may be inside a primary mineral (similar to secondary mineral 
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replacement). The source of B to the clay fraction comes from the mineral itself which has an 

isotopic composition close to that of the clay fraction. Similarly, high B concentrations in these 

pore spaces (in the range of 10 ppm) are needed to produce clay fractions with even higher 

concentrations (in the range of 50 ppm), which can be explained by continual mineral 

dissolution in a partially-closed system. This implies a long reaction time between the 

secondary mineral and the porewater, likely not present in transient soil solutions. 

In the case of the Murrumbidgee, the average B isotope composition of the dissolved load 

is approximately +31‰ while the average B isotope composition of clay fraction is –12‰, 

which is more than a 40‰ difference between the two components. If the B isotope 

composition of the dissolved load was controlled by B exchange between clay particles and 

porewaters as proposed by many studies (Chetelat et al., 2009; Lemarchand and Gaillardet, 

2006; Lemarchand et al., 2000; Rose et al., 2000), then the B isotope fractionation between the 

two components, if in equilibrium, would be approximately -30‰ and a function of pH (Rose 

et al., 2000; Palmer et al., 1987; Spivack et al., 1987). However, the average difference of 

~40‰ between clay fraction and the dissolved load makes this possibility very unlikely. This 

indicates that the chemical and B isotope compositions of the dissolved load and clay fraction 

are not in equilibrium and thereofere the clay fraction did not precipitate from a solution with 

characteristics of the dissolve. This apparent disconnection in B isotopic composition between 

the dissolved load and transported sediment likely derives from the fact that river waters 

integrate all surface to underground processes including reactive transport processes, active 

biogeochemical cycles, and incorporate vegetation and atmospheric sources. This produces 

higher boron isotope compositions in soil solution (and dissolve load) with low B 

concentrations while the signature of the clay is obtained from a porewater solution that has a 

low B isotope composition and a relatively high B concentration (at least in the case of the 

Murrumbidgee). This interpretation of B isotopes can likely apply to Noireaux et al. (2014)

who also reported B isotope compositions of the soil (where B is carried by the fine fraction) 

which are lower than the bedrock by 1%. Lemarchand et al. (2012) on the other hand reported 

an isotopically heavier B isotope composition of the clay fraction than the bedrock (up to 7%), 

indicating that the pedogenic clays (formed in the top meter of the profile) are forming in 

contact with an isotopically heavy soil solution which was attributed to B derived from 

vegetation cycling and the atmosphere. If correct, this description has an important implication: 

there is no reason that B in clay minerals should be in equilibrium with dissolved B, neither in 

top soils nor in rivers. This is evident by the approximate -40‰ B isotopic difference between 

the clay fraction and the dissolved load. Clays may record only the very local conditions of 
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their formation (possibly in a confined environment) whereas soil solutions and rivers may be 

fed by waters that have not substantially exchanged matter with minerals. This would imply 

that both the dissolved and particulate phases may record weathering information and serve as 

proxy.

5.1.2 What is the behavior of B isotope in river sediment during transport from sediment 

source areas to the depositional environment? 

No study to date has investigated how the clay fraction in river sediments obtain their 11B

signature or how that signature is transported from upstream sediment source areas to the 

downstream deposition environment. This study therefore constitutes the beginning of our 

understanding of these important topics which will be necessary in order to address the third 

research question: whether B isotopes in sediment deposits can be used a proxy to reconstruct 

paleo-weathering and paleo-environmental conditions. In a previous study of Murrumbidgee 

River sediment (Suresh et al., 2014), bank and sand bar sediment were collected along the 

course of the river and major and trace elemental analyses was performed. A Chemical Index 

of Weathering (CIW) calculation revealed that no significant chemical weathering occurs 

during transport, a result that was confirmed by the present study using both major and trace 

elements, and boron isotopes. Here it was tested whether the chemical and B isotopic 

composition of the clay fraction can be explained as a mixture of sources throughout the 

catchment or if they are evolving downstream. Theoretical 11B, B/Al, and Mg/Al 

compositions of the clay fraction at 10 points along the Murrumbidgee River were calculated 

using a mass balance model. The clay composition of stream bank sediment in 

monolithological catchments (see discussion above) was used as mixing endmembers along 

with surface proportions of drained lithologies to the various points along the Murrumbidgee 

River. Results show that the compositions of the calculated values are all within error of 

measured values, indicating that their 11B, B/Al, K/Al, and Mg/Al compositions are the result 

of a mixture of clays produced throughout the catchment drained to the main channel in 

different proportions by the tributaries with little or no alteration during transport. Using the 

bedrock in monolithological catchments as mixing end-members, the theoretical 11B sand 

values were also calculated in the same manner. Results also show that the composition of the 

sand fraction can adequately be explained as a mixture of catchment bedrock.

This result, shown for the first time, is significant as it suggests that B isotopes in the clay 

fraction of riverine sediment deposits may be used as a paleo-weathering proxy due to the fact 
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that it retains its original chemical and isotopic signature during transport. In terms of the 

paleochannel deposits in the Murrumbidgee, the chemical and B isotopic composition of the 

clay fractions delivered to the channels is expected to reflect weathering conditions in the 

source areas of the catchment, with little to no bias during transport.  

The 11Bclay – sand composition of actively transported bank sediment collected from the 

downstream reaches of the modern Murrumbidgee was compared to modern sediment deposits 

(deposited several meters away from the banks of the modern Murrumbidgee River) to check 

for similarities or differences as this may reveal B isotope behavior after deposit and burial. 

This comparison shows that modern bank sediment has a 11Bclay – sand composition of 

approximately 0‰ while modern sediment deposits have values of approximately 2‰. While 

the reason for this apparent difference is not known (due to lack of chemical, mineralogy, or 

grain-size data of modern deposits), it is hypothesized that a grain size / mineral sorting 

between actively transported bank sediment and a sediment deposit might be the cause. 

Alternatively, the B isotope composition of the sediment deposit may not have been preserved 

after deposition. However, the B isotope composition of the modern sediment deposits are very 

similar to other paleochannel deposits which show no evidence of a weather profile or post-

depositional alteration (see discussion below). Therefore, these differences are more likely to 

be caused by a sorting effect or even the result of local site variability. Regardless of this 

possible shift, the composition of modern deposits and most paleochannel deposits are very 

similar indicating that the B isotope composition of paleochannel sediments is largely 

preserved after deposition and burial. 

5.1.1 Can boron isotopes in sediment deposits be used as a proxy for the paleo-

weathering and paleo-environmental reconstruction and reveal how pedogenesis 

has responded to climate variability over the last glacial-interglacial cycle? 

The investigation of B isotopes in fluvial sediment deposits has not been undertaken prior 

to this study. As with the behavior of B isotopes in sediments during fluvial transport, our 

knowledge of B isotope behavior and its use in fluvial sediment deposits as a paleo-weathering 

proxy is limited to this study. Results from this work constitute a significant advancement in 

the field of B isotope geochemistry and provide the first example of how B isotopes in fluvial 

sediment deposits can be used as a geochemical proxy for paleo-weathering and paleo-

environmental reconstruction. As mentioned earlier in this chapter, B isotopes in loess-paleosol 
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sequences in China (Wei et al., 2015; Zhao et al., 2003) are the only other works that utilize B 

isotopes to reconstruct paleo-weathering conditions over a similar timescale (last glacial-

interglacial cycle). The successful application of B isotopes in loess-paleosol profiles and the 

promising results from the study of B isotopes in modern sediments in the Murrumbidgee River 

catchment (Chapter 3; Ercolani et al., in prep) indicating the retention of the weathering signal 

carried by the clay fraction during transport, provide an indication that this approach may be 

successful and applicable to other depositional settings.

In the absence of post-depositional alteration, the composition of the clay fraction is 

expected to reflect the ancient weathering signal from the source area. Therefore, the 

identification of samples which have been altered after deposition is critical if the aim is to 

determine changes of past weathering regimes because their signature no longer reflects the 

original weathering conditions. This was first considered by splitting the core sample into 2 

portions: a more pristine ‘inside’ portion and a more exposed (closer to the surface) ‘outside’ 

portion. Boron isotope analyses on both sample aliquots indicates contradicting behavior, 

showing that the ‘outside’ portion can be isotopically heavier or lighter depending on the site. 

This may be attributed to either post-depositional alteration or local sample variability. 

Regardless of the cause, the ‘outside’ portion of the samples was removed from the dataset as 

the variation in B isotope composition in the clay fraction with depth was generally greater 

than variation between the inner and outer portion of the sample. Boron isotope compositions 

in the clay fraction at each site were compared with other samples/site within the same system 

as a function of depth in order to identify a possible weathering profile. Within each system 

there was one site where the B isotope clay fraction compositions were much heavier than other 

samples/site within that system. These high B isotope compositions were often accompanied 

by an increase in the B/Al ratio which together indicate interaction with an isotopically heavy 

source such as 11B-rich soil solution that has been cycled through vegetation. Additionally,

these samples were deposited in relatively shallow environments (< 2 m in depth) which would

facilitate greater B exchange with the environment and therefore loss of their original 

weathering signal. The chemical and B isotopic composition of samples/sites that do not show 

visible evidence of a weathering profile nor display exceptionally higher 11B values are 

therefore considered to be pristine and reflect the original weathering conditions; this was the 

case for the majority of paleochannel samples.

To determine whether variations in the B isotope composition of the paleochannel clay 

fraction are the result of the paleo-weathering regime, or due to changes in sediment 
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provenance over the last 100 ka, the source of the sediment was determined using Nd isotopes. 

The Nd isotope composition of paleochannel clay fractions was also compared to that of the 

modern Murrumbidgee River and granitic, volcanic, and sedimentary bedrock. Results show 

that the Nd composition of paleochannel clays can be explained as a mixture of sediment from 

within the Murrumbidgee River catchment with no significant change in sediment source over 

the last glacial-interglacial cycle detected. Without a major change in the source of sediment 

delivered to the Riverine Plain over the last 100 ka, variations in the 11B of the clay fractions 

between channel systems can be interpreted as reflecting processes that affect their B isotope 

compositions such as variations in the weathering regime or changes in environmental 

conditions. 

Finally, after the removal of samples affected by post-depositional alteration and 

determination that changes in sediment source are not responsible for the B isotope variation 

in the clay fraction of paleochannel sediments; variations in the B isotope composition of the 

clay fraction can be compared to overall drivers of the weathering regime such as climate and 

change in the paleo-environments such as vegetation cover. When the 11Bclay – sand composition 

of paleochannel sediment is plotted as a function of depth, clear differences between systems 

can be recognized; both LGM systems, the Yanco (21 – 13 ka) and Gum Creek, have very 

similar 11B clay – sand compositions which are distinct from the Kerarbury and Coleambally 

Systems. Although an ANOVA test reveals the composition of modern sediment deposits are 

not significantly different from those in the Yanco and Gum Creek systems, this result is likely 

caused by poor counting statistics (n = 2) for modern deposits. Nevertheless, clay fraction 

deposited during the LGM have lower B isotope compositions than modern deposits and those 

deposited during the Kerarbury (MIS 3) and Coleambally (MIS 5) phases.

Plotted as a function of age (0 – 100 ka), 11Bclay – sand compositions of paleochannel 

sediment co-vary with a SST reconstruction of the Southern Ocean (Barrows et al., 2007) and  

a vegetation record of southeast Australia and New Zealand (Barrows et al., 2007). The co-

variation of B isotopes in the clay fraction with SST and vegetation indicate that pedogenesis

has responded to variations in climate over the last glacial-interglacial cycle. Increases in 

temperature and precipitation should produce more complex vegetation on the landscape which 

have the potential to increase chemical weathering rates and intensities (e.g. Gíslason et al.,

1996), while amplification of the hydrologic cycle should directly increase weathering fluxes 

(Maher and Chamberlain, 2014; Gaillardet et al., 1999a).
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During the cold period of the LGM (MIS 2) corresponding to the Yanco and Gum Creek 

systems, little B isotope fractionation is observed between the sand and clay fractions, 

indicating that during cold, dry periods clay production is minimal and B is mainly sourced 

from the dissolution of bedrock. During warmer periods such as the Holocene (MIS 1), MIS 3, 

and MIS 5, 11B clay – sand compositions are larger (up to +6‰) and the clay fraction is always 

isotopically heavier than the sand fraction, indicating an active weathering regime of increased 

precipitation with a significant part of B in the clay fraction coming from an isotopically heavy 

source such as vegetation or atmosphere. XRD analysis of the paleochannel clay fractions agree 

with this interpretation, showing the composition of the clay fractions during warmer climates 

is predominantly kaolinite (~75%) which is indicative of clays in a more advanced weathering 

stage produced by higher leaching rates of water in soil profiles (Ma and Eggleton, 1999; 

Singer, 1980). During colder periods, the clay fraction has a much larger percentage of mixed 

(I/S) layer clays which are formed in the first phase of clay production indicating a less 

advanced weathering state in drier conditions (Singer, 1980). This result agrees with Wei et al. 

(2015) who reported that pedogenic intensity correlates with climate variability over the last 

glacial-interglacial cycle using B isotopes in the acid-soluble phase of several loess-paleosol 

sequences; cold climates are characterized by lower 11B values and less intense pedogenesis 

while warmer climate are characterized by higher 11B values and more intense pedogenesis. 

Higher 11B values in loess-paleosol sequence were attributed to increased atmospheric inputs 

during summer monsoon circulation. In the current study 11Bclay – sand compositions of 

paleochannel sediments strongly correlate with vegetation cover in southeast Australia. This 

indicates that higher 11Bclay – sand compositions reflect an increasing role of vegetation on 

pedogenesis during the warmer and wetter climates (MIS 1, 3, and 5) and less of a role during 

colder, drier climates (MIS 2 and 4). 

Specifically, boron isotope compositions in the clay fractions of paleochannel deposits 

reflect climate variability (precipitation and temperature) which produce different vegetation 

covers and influence pedogenesis to different degrees. In particular, during colder and drier 

periods, less precipitation and lower temperatures produce grassy and herbaceous species 

which have less of an influence on pedogenesis. Boron isotope compositions in the clay 

fraction remain low and reflect water-rock interactions. On the contrary, during warmer and 

wetter periods, increased precipitation and temperature produce a more complex vegetation 

cover which have a greater influence on pedogenesis. Boron isotope compositions in the clay 
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fraction are higher and reflect the increased flux of boron which has been cycled through 

vegetation.

5.2 Perspective and future research 

In the study of the Gandak River in the Himalayas, sediment samples were limited. Only 

one sample was obtained from the true headwaters of the Gandak River and no samples were 

taken after the convergence with the Ganges River further downstream on the Gangetic Plain. 

Obtaining additional headwater sediment samples would be particularly important as it appears 

that the weathering regime controlling the B isotope composition of the clay fraction in the 

headwaters is different from that on the plain, though, this hypothesis is only based on one 

point. A similar trend in the 11B composition of hand-picked biotite and muscovite minerals 

and the clay fraction of bank sediment was observed (all showing isotopically lighter values in 

the headwaters which gradually increase downstream), which is difficult to explain and 

therefore warrants further investigation. At the moment, it appears that the primary minerals 

may be incorporating secondary phases into their structures and therefore evolve downstream 

in response to changes in weathering conditions along the river, similar to the clay fraction. It 

is possible, however, the source of the minerals may be different and therefore their B isotope 

composition can only be used as a source tracer and not used to trace weathering reactions. 

Additional downstream samples would be useful for a more detailed investigation. Finally, the 

Gandak River was the only Himalayan River sampled, therefore results may be localized as 

not apply to the entire system. As many Himalayan rivers have been studied for various 

purposes and sediment samples have already been collected by others, it would be prudent to 

conduct a similar study in a different Himalayan river, thereby verifying the generality of the 

conclusions of this study. However, conclusions from the Murrumbidgee study are in 

agreement with those from the Gandak River study, providing support for a more global 

interpretation of the B isotope behavior in river sediment during transport.

In the Murrumbidgee study the sampling strategy was more thorough than the Gandak. 

The study focused on the clay fraction which is particularly difficult to obtain in most bank 

river samples (sometime sieving more than 1 kg of sediment to obtain 50 – 100 mg of clay) 

and quite heterogeneous in its chemical and isotopic composition, therefore, more clay should 

have been sieved at the beginning of the study for each sample. It became particularly obvious 

more clay was needed for each sample when the number of chemical and isotopic analyses was 

realized which included 100 mg of clay for major and trace elements, 50 mg of clay for B 
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isotopes, 10 mg of clay for XRD, and 100 mg of clay for Nd isotopes. Consequently, more clay 

needed to be sieved from the bulk sediment of numerous samples which may have had a 

slightly different chemical and isotopic compositions than the previous aliquot of sieved clays. 

Regarding the relationship between 11B clay – bedrock and the weathering regime at the catchment 

scale, additional studies should be conducted to confirm the results of the preliminary 

Murrumbidgee study because rivers draining different lithologies (e.g. carbonates) and under 

different geologic and climatic settings may not record the weathering regime in the same 

manner (e.g. in tectonically active area with high erosion and high weathering rates, or in 

tropical environments where the B isotopes in clay fraction might be controlled by vegetation 

inputs).  

Boron isotope compositions in sediment deposits show great potential as a new 

geochemical proxy for paleo-weathering and paleo-environmental reconstruction. This is 

evidenced by the ability of B isotopes in the clay fraction of paleochannel sediment to record 

the influence of climate and vegetation cover on pedogenesis over the last glacial-interglacial 

period and also by previous studies using B isotopes in loess-paleosol sequences (Wei et al., 

2015; Zhao et al., 2003) which demonstrate its usefulness in determining paleo-weathering 

intensity in relation to climatic variability. However, the applicability of this proxy in other 

environments or sites is relatively unknown as the development of this proxy is still in the very 

early stages. The ability to use this proxy ultimately depends on the preservation of the B 

isotope composition of the sample which is likely affected by factors such as mineralogy (e.g. 

expandable vs. non-expandable clays), depositional environment (e.g. shallow vs. deep depths 

in the profile), and climate conditions of modern environment (e.g. heavily vegetated, humid 

vs. dry environment). Additionally, the ability to identify and remove samples that have been 

possibly altered by post-depositional processes is essential to obtain a more pristine record of 

paleo-environmental change. Therefore, further research should focus more closely on 

different sampling techniques and analytical methods to identify post-depositional alteration

and applying this proxy to different depoostional environments. In the Murrumbidgee 

catchment, paleochannel deposits were obtained at both shallow (< 2 m) and deep (> 2 m) 

depths in all systems (Yanco, Gum Creek, and Kerarbury) but the Coleambally in order to 

assess chemical and isotopic variation with depth which may be related to post-depositional 

alteration. Deeper samples in the Coleambally system were not obtained because pit exposures 

at all Coleambally sites were relatively shallow, therefore it was not possible to obtain deeper 

samples without using a drill rig (which was not used in this field campaign). At the Kerarbury 
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Pit, the surface exposure was quite deep (~6 m) so obtaining deeper samples was possible. In 

the Yanco and Gum Creek systems, deeper samples in the profile were taken with a drill rig by 

colleagues at UOW and donated to this project. However, in the Coleambally system, neither 

of these options were available, so a comparison between deeper (presumably more pristine) 

and more shallow channel deposits was not possible. Without this comparison, some doubt 

remains if shallow samples collected from the Coleambally system have been altered by post-

depositional processes, although similar B isotope clay fraction compositions in two of the 

three sites (excluding Bundure) suggests that post-depositional alteration has not occurred. To 

better address this issue and strengthen the interpretation of the last 50 ka for the record, 

samples deeper in the sediment profile should be obtained using a drill rig to verify the B 

isotope composition of the clay fraction in shallow samples is similar to those of deeper 

samples at the same sites.
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Appendix 1

RÉSUMÉ
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A.1 Introduction du projet 

L'altération chimique couplée à la précipitation carbonatée dans l'océan est responsable 

d'une grande partie de la séquestration du CO2 atmosphérique qui équilibre les apports de CO2

dans l'atmosphère du dégazage planétaire et des éruptions volcaniques et régule donc le climat 

global sur l'échelle géologique (Ruddiman et al., 1988; Berner et al., 1983; Walker et al., 1981).

Malgré l'importance de l'altération chimique pour redistribuer les éléments chimiques entre les 

réservoirs de surface et maintenir des conditions habitables à la surface de la Terre (White and 

Blum, 1995), la quantification de l'altération chimique passée et présente reste difficile en 

raison de la complexité des facteurs d'interaction. Les régimes d'altération modernes (taux, 

intensités, etc.) sont classiquement déduits des flux de solutés des rivières (e.g. West et al., 

2005; Gaillardet et al., 1999b) en utilisant des concentrations d'éléments mobiles et immobiles. 

Cependant, cette approche est imparfaite en raison du contrôle lithologique sur la charge 

dissoute (Gaillardet et al., 1999b; Dupré et al., 1996). L'autre approche est d’analyser les 

concentrations d’éléments majeurs et traces dans les solides formés au cours d’altération (e.g. 

Lupker et al., 2012; Gaillardet et al., 1999a; France-Lanord and Derry, 1997). Cependant, la 

lithologie a un impact sur la composition des phases solides (Gaillardet et al., 1999a; Vital et 

al., 1999) et il est difficile d'intégrer la variabilité des sédiments détritiques dans le temps et 

dans l'espace, ce qui représente encore un défi pour cette approche (Bouchez et al., 2011; 

Lupker et al., 2011). Contrairement à ces traceurs chimiques de l'altération des silicates, les 

isotopes stables ‘non-traditionnels’ tels que le bore (B), le lithium (Li) et le calcium (Ca) 

constituent une alternative intéressante car les processus d’altération engendrent des 

fractionnements isotopiques entre les phases solides et dissoutes que l’on peut ensuite 

interpréter en terme de bilans des réactions mises en jeu (Bouchez et al., 2013). 

En particulier, B présente des propriétés physico-chimiques propres à l'étude des 

interactions eau-roche, y compris celles impliquant une composante biologique (Noireaux et
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al., 2017; Cividini et al., 2010; Lemarchand et al., 2000). Les processus responsables du 

fractionnement isotopique B sont l'adsorption de B sur les particules argileuses et détritiques 

(Spivack et al., 1987; Schwarcz et al., 1969), la précipitation de B dans les phases secondaires 

(Williams, 2001; Williams et al., 2001a), l’altération de la roche-mère continentale ou 

océanique (Muttik et al., 2011; Williams, 2001; Spivack et al., 1987), l'évaporation et la

dissolution durant le cycle atmosphérique du B (Chetelat et al., 2005; Rose-Koga et al., 2006; 

Roux et al., 2017; Xiao et al., 1997), et le recyclage par la végétation (Noireaux et al., 2017; 

Roux et al., 2017; Cividini et al., 2010; Wieser et al., 2001; Vanderpool and Johnson, 1992).

Alors que plusieurs études ont utilisé les isotopes B comme traceurs pour quantifier et suivre 

les réactions chimiques d'altération dans la charge dissoute des fleuves (Chetelat et al., 2005, 

2009; Lemarchand and Gaillardet, 2006; Lemarchand et al., 2002b; Rose et al., 2000; Spivack 

et al., 1987), peu ont étudié la composition isotopique du B dans des sédiments (Chetelat et al., 

2009; Spivack et al., 1987). Dans les deux études qui se concentrent sur les sédiments des 

rivières, les auteurs ont analysé les isotopes B dans la charge suspendue et négligé la charge de 

fond et les sédiments détritiques (argileux). Spivack et al. (1987) and Chetelat et al. (2009)

montrent que les charges suspendues et dissoutes des rivières ont des valeurs 11B nettement 

différentes et que la charge en suspension a une composition isotopique du bore proche de celle 

de la croûte continentale (-7 ‰). Dans la rivière Chiangjiang, Chetelat et al. (2009) ont montré 

également que B/Al, un indicateur de la mobilité B durant l'altération chimique, est 

positivement corrélé avec le facteur de fractionnement isotopique entre la charge dissoute et la 

charge suspendue, suggérant que la réincorporation de B dans les minéraux secondaires 

contrôle la composition isotopique B de la charge dissoute. En dehors de l'exploration limitée 

de la composition isotopique du B de la charge suspendue, la connaissance du comportement 

des isotopes du B dans les sédiments fluviaux pendant le transport et sa capacité à enregistrer 

les interactions eau-roche à l'échelle du bassin manquent sévèrement. De plus, comme suggéré 
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par Chaussidon and Albarède (1992), l’utilisation des isotopes du B dans les dépôts de 

sédiments comme traceurs de paléo-altération ou paléo-environnement a du potentiel et 

devraient être dévelopée, comme le montrent les quelques séquences de loess-paléosol chinois 

(Wei et al., 2015; Zhao et al., 2003) et des dépôts lacustres (Xiao et al., 1992; Vengosh et al., 

1991a). A travers l'identification des sources B dans les lacs et les processus géochimiques qui 

affectent les isotopes du B (principalement l'adsorption B sur les minéraux argileux entraînant 

un enrichissement en 10B dans la fraction argileuse et un enrichissement en 11B dans la charge 

dissolvante) Xiao et al. (1992) et Vengosh et al. (1991) ont reconstruit l'histoire géochimique 

et géomorphologique des lacs salés qui sont indicatifs des conditions paléo-environnementales. 

Dans les séquences de loess-paléosol, Zhao et al. (2003) ont trouvé que le signal chimique et

isotopique du B était porté par la phase adsorbée sur les particules d'argile, avec une 

contribution négligeable de la phase carbonatée dans le dépôt. Les variations de la teneur de B 

et des isotopes B de la phase adsorbée reflètent principalement un changement de la source de 

bore, tandis que celles des phases acide-solubles dans les couches de loess et de paléosol sont 

contrôlées par l'intensité de l'altération qui est contrôlée par les conditions climatiques et 

environnementales. Spécifiquement, une teneur plus élevée de B dans les phases acide-solubles 

résulte d'une altération chimique plus intense pendant les régimes climatiques chauds et 

humides. Un résultat similaire a été trouvé par Wei et al. (2015) qui ont analysé la composition 

isotopique B de 5 profils loess-paléosol en Chine. Ici, les variations de [Sr], [B], 11B, et la 

susceptibilité magnétique (un proxy paléo-climatique utilisé pour déterminer le degré de 

pédogenèse) corrèlent bien avec l'intensité pédogénétique déterminée par l'indice CIW (dans 

trois des cinq profils) où la pédogenèse pendent des climats froids a produit de faibles 11B, 

des concentrations basses en B mais élevées en Sr ainsi que de faibles valeurs de susceptibilité 

magnétique indiquant des intensités d’altération faibles ; alors que les climats plus chauds et 

humides montrent le contraire et indiquent des intensités d'altération plus élevées. Bien que 
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l'utilisation des isotopes B dans les sédiments comme traceurs des conditions paléo-climatiques 

et paléo-environnementales ait été limitée à quelques études, ces résultats préliminaires 

démontrent son grand potentiel. 

La motivation de ce projet a été fondée sur le manque apparent de connaissance du 

comportement des isotopes B pendant la pédogenèse et le transport, ainsi que sur la promesse 

d'utiliser les isotopes B dans les dépôts de sédiments comme indicateur de la paléo-altération 

et de la reconstruction paléo-environnementale. Dans cette thèse, il a été supposé que si la 

connaissance des isotopes B pendant la production et le transport des sédiments peut être 

acquise (Chapitre 3), les isotopes du B dans les sédiments de paléochenaux (en particulier la 

fraction argileuse) peuvent être utilisés pour reconstituer les conditions des paléo-altérations et 

paléo-environnementales et de mieux comprendre comment l’altération des continents répond 

à la variabilité environnementale/climatique (Chapitre 4). Comme indiqué dans l'introduction 

de cette thèse (Chapitre 1), cette recherche aborde trois aspects clés du comportement des 

isotopes B dans la zone d'altération qui sont actuellement sous-étudiés avec les objectifs 

suivants : 

1. Mieux comprendre comment les isotopes du bore dans les sédiments fluviaux modernes

enregistrent le régime d'altération à l'échelle du bassin versant.

2. Mieux comprendre comment le signal d'altération porté par les sédiments fluviaux est

transféré des zones sources vers l'environnement de dépôt.

3. Déterminer si les isotopes du B dans les dépôts sédimentaires (paléo-canaux) peuvent

être utilisés pour reconstituer les conditions paléo-climatiques et paléo-

environnementales et ainsi révéler comment l’altération continentale au sens large

(production et transport de sédiments) a réagi à la variabilité climatique au cours du

dernier cycle glaciaire-interglaciaire (derniers 100 ka).
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A.2 Méthodes de projet

Les deux premiers objectifs ont été abordés en étudiant le comportement isotopique du B

des minéraux séparés par des fleuves activement transportés dans deux systèmes fluviaux très 

différents : la rivière Gandak dans le bassin du Gange dans l'Himalaya; et la rivière 

Murrumbidgee dans le bassin Murray-Darling du sud-est de l'Australie. L'étude du fleuve 

Gandak a été menée en premier lieu sur le comportement isotopique B des sédiments minéraux 

transportés (les fractions totale - 

et les minéraux sépares biotite et muscovite cueillies à la main). Des échantillons de sédiments 

de berge ont été collectés le long du cours de la rivière Gandak environ tous les 20 km et 

tamisés et centrifugés pour obtenir les fractions sableuse et argileuses. Des échantillons de 

charge en suspension ont été collectés à différentes profondeurs dans la colonne d'eau à un site 

amont (cours supérieur de la rivière) et à un site en aval avant la convergence avec le Gange. 

Des minéraux de biotite et de muscovite ont été sélectionnés dans quatre des échantillons de 

sédiments prélevés le long de la rivière. Toutes les fractions séparées ont été prélevées le long 

de la rivière afin de vérifier si le sédiment évolue chimiquement ou isotopiquement pendant le 

transport, ce qui peut être attribué aux changements dans la source de sédiments, au régime 

d’altération (réactions de dissolution et de précipitation) le long du cours de la rivière, ou peut-

être d’altération chimique pendant le transport. Tous les échantillons de cette étude ont été 

analysés pour les isotopes B par le spectromètre de masse à plasma inductif multi-collecteur 

(MC ICP-MS), la concentration B par dilution isotopique sur l'ICP-MS (ID-ICP-MS), et les 

concentrations d'éléments majeurs par spectroscopie d'émission atomique à plasma couplé par 

induction (ICP-AES) et concentrations d'éléments traces par ICP-MS à LHyGeS, Université 

de Strasbourg. La quantification de la mobilité B pendant la formation d'argile est calculée par 

l’intermédiaire du coefficient de transfert de masse ( Al,B) entre les fractions d’argileuse et 

sable, en utilisant Al comme un élément immobile pour comparer B, un élément mobile durant 
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l'altération chimique. Étant donné que la fraction de sable est composée principalement de 

minéraux primaires et qu'elle subit peu ou pas de fractionnement isotopique B au cours de 

l'altération chimique, elle est considérée comme une bonne estimation de la matière non altérée 

dans le bassin versant. En conséquence, la composition isotopique du B de la fraction sableuse

est également utilisée pour corriger l'effet de la lithologie sur la composition isotopique du B

dans 11Bclay-sand = 11Bclay - 11Bsand. Les comparaisons entre 

11Bclay-sand et Al, B sont ensuite utilisées pour décrire le comportement des isotopes B et la 

mobilité de B pendant la formation d’argile. La composition isotopique du B des minéraux 

biotite et muscovite prélevés à la main donne des informations sur l’évolution des minéraux 

primaires qui portent le B pendant le transport. 

L'étude du bassin versant de la rivière Murrumbidgee a également porté sur les deux 

premiers objectifs de recherche: 1) comprendre comment les isotopes du B dans les fractions 

de sédiments de cours d'eau modernes enregistrent le régime d'altération à l'échelle du bassin 

versant; et 2) déterminer comment le signal d'altération dans les minéraux séparés est transporté 

des zones sources dans les sédiments à l'environnement de dépôt, qui dans le cas du bassin 

versant Murrumbidgee a été des systèmes de paléochenaux dans la plaine alluviale au cours 

des derniers 100 ka. Dans l'étude de la rivière Murrumbidgee, une stratégie d'échantillonnage 

plus approfondie a été utilisée que dans l'étude de la rivière Gandak, y compris l'analyse des 

sédiments de berge du fleuve principal, des principaux affluents, et des cours d'eau dans les 

bassins monolithologiques ; la roche-mère du bassin et la charge dissoute de petits cours d'eau 

dans des bassins monolithologiques ont été échantillonnés également. Les échantillons de 

charge dissoute de la rivière Murrumbidgee ont été échantillonnés le long de son cours environ 

tous les 50 km des eaux d'amont vers la plaine alluviale (jusqu'à Wagga Wagga) pour évaluer 

les changements dans la chimie de l'eau et la composition isotopique B. Des échantillons de 

sédiments ont été prélevés dans la rivière Murrumbidgee environ tous les 20 à 50 km depuis 
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les têtes de bassin jusqu'à la plaine alluviale (~650 km au totale) et tous les 10 à 20 km le long 

de chacun des huit principaux affluents. Les sédiments de fond et de berge ont été tamisés à 2 

raction de taille 

du fleuve Gandak n'a révélé aucune évolution chimique ou isotopique B par rapport à la 

fraction argileuse, la fraction de sable n'a été analysée que pour la concentration de B et les 

isotopes B dans quelques échantillons représentatifs de la rivière Murrumbidgee. La fraction 

argileuse et la roche-mère ont été analysées pour la minéralogie, la concentration en B, les 

concentrations en éléments majeurs et en traces, les isotopes Nd et les isotopes B. La charge 

dissoute a été analysée pour la concentration en B, les concentrations en éléments majeurs et 

en traces et les isotopes B. La minéralogie de l'échantillon a été déterminée par XRD; les 

concentrations de B par ID-ICP-MS; éléments majeurs et traces par ICP-MS; et les isotopes du 

B par MC ICP-MS. Toutes les mesures d'échantillons dans cette étude ont été analysées à 

WIGL, Université de Wollongong.

Dans le bassin versant de Murrumbidgee, les bassins de drainage monolithologiques ont 

été identifiés grâce à une analyse spatiale (logiciel Esri ArcGIS 10.4) du Modèle d'Elévation 

Numérique (DEM), recouverte d'une carte lithologique de bassin versant du Murrumbidgee. 

Au total, 11 bassins versants monolithologiques ont été identifiés dans les bassins versants 

d'altitude supérieure et inférieure ; les charges dissoutes, les sédiments de fond des petits cours 

d'eau et les rocheux-mères ont été échantillonnés. Les compositions chimiques et isotopiques 

du B des sédiments et des échantillons de charge dissoute des bassins hydrographiques 

monolithologiques devraient refléter celles des roches mères et de leurs régimes d'altération. 

Cette approche permet d'identifier le signal d'altération porté par la fraction d'argile 

sédimentaire et la charge dissoute dans chaque lithologie majeure du bassin versant. Similaire 

à l'étude de la rivière Gandak, la mobilité du B pendant la formation d'argile est calculée par le 
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coefficient de transfert de masse Al, B, et été comparée à la composition isotopique du B entre 

11Bclay-bedrock = 11Bclay - 11Bbedrock). 

Afin de tester si la composition en fraction argileuse des sédiments de berge accumulés le 

long de la rivière principale est le résultat d'un mélange de sédiments produits dans les 

différentes zones du bassin versant ou si leur composition indique l'altération durant le 

transport (objectif 2), la composition chimique et isotopique du B de la fraction argileuse dans 

le Murrumbidgee a été calculée quantitativement par bilan de masse. Les compositions 

chimique (B/Al, K/Al, Mg/Al) et isotopique du B des fractions argileuses qui ont été produites 

dans les bassins monolithologiques ont été utilisées pour calculer les proportions de drainage 

de surface de chaque lithologie majeure à divers points le long de la rivière principale (calculées 

par le logiciel ArcGIS 10.4). Si la composition chimique isotopique et la composition 

isotopique du B des fractions argileuses de la rivière Murrumbidgee sont dans l’erreur 

analytique de celles mesurées le long de la rivière, donc la composition de la fraction argileuse 

riveraine peut être expliquée comme un mélange de sources de sédiments dans tout le bassin. 

Si ce n'est pas le cas, leur évolution chimique et / ou isotopique peut être attribuée aux actions 

d'altération qui se produisent pendant le transport dans la rivière. 

Enfin, la relation entre l'altération chimique et la composition isotopique du sédiment 

fluvial transporté est mieux comprise (objectif 1) et la connaissance de la façon dont le signal 

d'altération isotopique du B porté par les sédiments fluviatiles est transférée des zones sources 

à l'environnement de dépôt. ), le troisième objectif de recherche peut être étudié: tester si les 

isotopes du B dans les dépôts de sédiments peuvent servir de proxy pour reconstruire les 

conditions paléo-environnementales (i.e. végétation) et de paléo-altération du dernier cycle 

glaciaire-interglaciaire. Cet objectif de recherche a été examiné en échantillonnant quatre 

systèmes bien datés (Mueller, 2017, Banerjee et al., 2002, Page et al., 1996) et 

stratigraphiquement décrits (Page et Nanson, 1996) (Yanco Phase: 13 - 21 ka; Gum Creek 
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Phase: 25 - 35 ka; Kerarbury Phase: 35 - 55 ka; Coleambally Phase: 80 - 105 ka) sur la Riverine 

Plain du bassin de la rivière Murrumbidgee (Murray-Darling Basin), sud-est de l'Australie. 

Tous les sites paléo-chenaux ont été échantillonnés par carottage à la main horizontalement 

dans la face des expositions sur puits le long d'un profil de profondeur ; plusieurs sites (en 

amont et en aval) ont été échantillonnés à la portée de chaque paléo-canal quand c’était 

possible. Les échantillons ont été tamisés pour obtenir la fraction de sable et ensuite centrifugés 

pour obtenir la fraction d'argile. L'étude s’est concentrée sur la fraction argileuse, qui a été 

analysée pour la minéralogie par XRD, les compositions majeurs et traces par ICP-MS, les 

concentrations B par ID-ICP-MS, et les isotopes des B et Nd par MC ICP-MS à WIGL, 

Université de Wollongong. La concentration du bore et les isotopes du B de la fraction de sable 

n'ont été mesurés que sur un échantillon dans chaque paléo-canal. En échantillonnant le long 

des profils de profondeur à chaque site et à plusieurs sites le long d'un seul paléo-chenal, il est 

possible de déterminer si une évolution chimique et / ou isotopique du B de la fraction argileuse 

existe avec la profondeur et le long d'un paléo-canal qui peut être liée à une modification post-

dépôt ou aux réactions d'altération pendant le transport, respectivement. L'identification des 

échantillons affectés par l'altération post-dépôt a été accomplie par plusieurs méthodes 

différentes qui incluent : la comparaison de la composition chimique et isotopique du B des 

portions d’échantillon ‘'intérieur’ et ‘extérieur’ (qui se réfèrent à la partie la plus l'intérieur et 

à la plus l'extérieur de dépôt de sédiment, respectivement) ; comparaison de la composition 

chimique et isotopique du B à d'autres échantillons dans le même profil de profondeur et dans 

le même système paléo-canal ; comparaisons minéralogiques entre échantillons du même profil 

et système ; prise en compte de l'environnement de dépôt avec une attention particulière sur la 

présence de végétation et profondeur de dépôt dans le profil ; et aussi comparaisons de la 

composition chimique et isotopique du B des sédiments paléo-canaux à ceux des sédiments 

modernes qui sont transportés par la rivière Murrumbidgee. Après l'identification et 
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l'élimination des échantillons qui ont été modifiés après le dépôt, les compositions 

minéralogiques, chimiques et isotopiques (B et Nd) des fractions d'argile ont été comparées 

entre les systèmes paléo-canaux, y compris deux dépôts modernes, dans le but de déterminer 

si les variations des compositions minéralogiques, chimiques et isotopiques des fractions 

argileuses entre chaque système paléo-canal sont liées aux changements dans la source des 

sédiments ou aux changements des conditions d’altération, y compris l'influence de la 

végétation sur la formation d'argile, qui peut être déterminé par la variabilité climatique du 

dernier cycle glaciaire-interglaciaire.

A.3 Résultats, discussion et conclusions

A.3.1 Comment les isotopes de bore dans les sédiments fluviaux modernes enregistrent-

ils le régime d'altération à l'échelle du bassin versant ?

La connaissance du fractionnement des isotopes du B pendant l'altération du silicate à 

l'échelle du bassin versant est assez limitée. Quelques études se sont concentrées sur la 

compréhension des mécanismes qui controlent l'altération à l'échelle du bassin versant en 

analysant la composition isotopique du B de la charge dissoute des rivières (Louvat et al., 2011, 

2014; Chetelat et al., 2009; Lemarchand and Gaillardet, 2006; Lemarchand et al., 2002b; Rose 

et al., 2000), mais très peu se sont concentrées sur la phase solide (Chetelat et al., 2009; Spivack 

et al., 1987). À ce jour, aucune autre étude n'a étudié de manière exhaustive la composition en 

11B de la fraction d'argile des sédiments de la rivière dans le but de comprendre son origine et 

la façon dont elle enregistre le régime d'altération. Bien que l'incorporation de B (précipitation 

ou adsorption) dans la fraction argileuse pendant les interactions eau-roche dans le système eau 

souterraine / sol ait été invoquée comme mécanisme par lequel la charge dissoute obtient sa 

signature 11B (e.g. Chetelat et al., 2009; Lemarchand et Gaillardet, 2006; Rose et al., 2000) 
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(en plus de la contribution du 11B de diverses sources), la source originale du 11B dans la 

fraction argileuse du sédiment fluvial reste inconnue, et aussi sa relation avec l'altération 

régime. L'étude des sédiments fluviaux modernes dans les bassins des rivières Gandak et 

Murrumbidgee tente d'aborder ces problèmes et d'étudier, pour la première fois, comment les 

sédiments fluviaux enregistrent le régime d'altération (compétition entre les réactions de 

dissolution et de précipitation).

Dans les rivières Gandak et Murrumbidgee, une tendance similaire se dégage dans la 

composition isotopique du B des fractions de sable et d'argile le long du cours de la rivière. La 

composition en 11B de la fraction de sable reste relativement constante en aval, tandis que le 

11B de la fraction argileuse montre une évolution progressive vers des valeurs isotopiquement 

plus lourdes qui se stabilisent dans la plaine alluviale. Comme la fraction de sable est 

grossièrement représentative d'un mélange de roches-mères pas modifié isotopiquement dans 

le bassin versant, elle peut être utilisée pour corriger les effets lithologiques et comparée à la 

fraction argileuse quand la roche-mère n'est pas disponible (comme dans le cas de la rivière 

Gandak). Dans le Murrumbidgee, la roche-mère a été échantillonnée dans des bassins 

monolithologiques et sa composition isotopique du B a été comparée à la fraction argileuse de 

sédiments de cours d’eau monolithologiques ( 11B clay – bedrock = 11Bclay – 11Bbedrock); dans le 

Gandak, tous les sédiments ont été prélevés dans le chenal principal et les fractions sable et 

argile ont été comparées : 11B clay - sand = 11Bclay – 11Bsand. Lorsque les facteurs de 

fractionnement isotopique sont tracés en fonction du coefficient de transfert de masse calculé 

( Al,B) en utilisant Al comme contrepartie immobile pour comparer la mobilité de B, les deux 

systèmes montrent une corrélation positive, indiquant que la mobilité de B pendant la formation 

d'argile est contrôler les facteurs de fractionnement isotopique. Dans le bassin versant de 

Murrumbidgee, ceci se produit dans les lithologies volcaniques et sédimentaires à des altitudes 

plus élevées. Une réincorporation plus quantitative de B conduit des facteurs de fractionnement 
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isotopique entre la fraction argileuse et la roche-mère tendant vers zéro en l'absence de sources 

externes de B (autres que la dissolution du roche-mère); dans le Murrumbidgee, ceci se produit 

dans toutes les lithologies des bassins versants inférieurs et des lithologies granitiques dans le 

bassin supérieur. Les différences apparentes des valeurs de 11B argile – roche entre les lithologies 

démontrent probablement un contrôle lithologique sur les taux de formation d'argile dans tout 

le bassin versant, tandis que les différences entre les bassins versant supérieur et inférieur 

démontrent un effet climatique fonction de l’altitude du bassin versant. Il est intéressant de 

noter que les deux systèmes montrent cette tendance, indiquant possiblement un comportement 

commun des isotopes B pendant la formation de l'argile. 

Dans les deux systèmes, les sédiments de berge montrent un grand fractionnement entre les 

fractions argileuse et sableuse (entre 3 ‰ et 8 ‰ dans le Murrumbidgee et environ 3 ‰ dans 

le Gandak, respectivement) par rapport à celles trouvées dans la plaine alluviale (environ 2 ‰ 

dans le Murrumbidgee et le Gandak). Ces observations indiquent probablement différentes 

conditions d'altération dans les montagnes que dans les plaines alluviales. Dans le bassin 

versant de la rivière Murrumbidgee, les zones de source de sédiments dans les bassins versants 

monolithologiques à des altitudes plus élevées et plus basses ont été identifiées par analyse 

spatiale afin de déterminer les différences de température, de précipitations et de pente de 

captage. Le bassin supérieur est caractérisé par des températures plus basses, des précipitations 

plus élevées et des pentes plus abruptes que le bassin inférieur, caractéristiques qui contribuent 

probablement aux différences de taux de production d'argile et des intensités d’altération au 

silicate (Lupker et al., 2012; Millot et al., 2003 ). Par exemple, dans l'Himalaya, Lupker et al. 

(2012) ont signalé que la formation d'argile est plus favorable dans les environnements où les 

sédiments ont des temps de transfert plus longs (dans les zones moins pentues) et dans des 

conditions plus chaudes et plus humides comme la plaine du Gange, comparée au bassin 

supérieur où l'érosion prédomine, le transport rapide des sédiments, et peu d'altération 
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chimique et de formation d'argile. Lupker et al. (2012) ont également signalé des proportions 

accrues de smectites et d'autres argiles expansibles du front de l'Himalaya en aval de la plaine 

du Gange, et des compositions D plus élevées reflétant une plus grande incorporation de 

minéraux argileux en équilibre avec les eaux de surface de plaine d'inondation. Lupker et al. 

(2012) et Millot et al. (2003) (Mackenzie Basin, Canada) signalent que l'altération du silicate 

dans la plaine inondable prédomine plus de l'altération dans la montagne, une conclusion qui 

contredit l'hypothèse de Raymo (Raymo and Ruddiman, 1992, Ruddiman et al., 1988). Les 

sédiments de la Gandak ne montrent pas de diminution systématique des éléments mobiles en 

aval, tel que rapporté par Lupker et al. (2012) pour les autres rivières himalayennes. Les 

températures plus basses, les précipitations plus élevées et les pentes plus raides ne favorisent 

pas la formation d'argile ou l'altération chimique intense, mais plutôt l'érosion physique et le 

transport rapide des sédiments vers le bassin versant inférieur. Au contraire, des températures 

plus élevées et des temps de transport des sédiments plus longs à des altitudes plus basses 

favoriseraient la formation d'argiles et augmenteraient l’intensité de l'altération.

Le développement d'un modèle de bilan massique du système argile-eaux interstitielles, 

capable de décrire la composition isotopique B apparente entre la fraction argileuse et la roche-

mère en termes de régime d'altération (compétition entre dissolution et réactions de 

précipitation) serait un grand progrès dans ce domaine. La nécessité d'un cadre permettant 

d'interpréter les données isotopiques du B dans les sédiments transportés par les rivières 

augmente alors que plusieurs études sont se concentrent maintenant davantage sur la phase 

solide plutôt que dissoute transportée par les fleuves. Par exemple, il y a eu plusieurs études 

récentes, y compris la présente étude (chapitre 3, Ercolani et al., in prep), telles que Noireaux 

et al. (2014) et Lemarchand et al. (2012) qui étudient le comportement des isotopes du B au 

cours des réactions d'altération dans les profils de sol qui pourraient bénéficier d'un tel modèle 

et aider à l'interprétation des isotopes du B dans la fraction argileuse.  
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Un modèle de transport réactif a été utilisé pour modéliser la composition chimique et 

isotopique du B de la fraction percolant surface/eau souterraine et argile, qui décrit une eau de 

surface enrichie en 11B (dérivée des apports atmosphériques et de la végétation) percolée à 

travers le sol. Avec la profondeur, la composition isotopique du B de cette solution devient 

progressivement plus légère (tout comme la fraction argileuse précipitée) en réponse à une 

augmentation de la contribution des reactions de dissolution des minéraux primaires. Cividini 

et al. (2010) et Noireaux et al (2017) confirment cette hypothèse dans les écosystèmes 

forestiers, où les eaux interstitielles dans les couches supérieures du sol (en particulier les 60 

cm supérieurs) sont enrichies en 11B à cause des apports de B par l’atmosphère et la végétation

et que cette signature isotopique du B est progressivement perdue dans les eaux interstitielles 

plus profondes. Les résultats montrent que le modèle ne peut prédire les concentrations B ou 

les isotopes de la solution du sol et les valeurs de la fraction argileuse observée sans utiliser 

des paramètres de modélisation irréalistes tels que la distance du trajet d'écoulement et la 

vitesse de l'eau. Cela indique probablement que la fraction d'argile ne précipite pas à partir de 

la solution de sol, telle que celle échantillonnée par les plaques lysimétriques. Au contraire, les 

argiles sont supposées précipiter à partir d'une solution d'eau interstitielle qui évolue dans un 

système partiellement fermé mieux décrit par la distillation de Rayleigh. Un exemple d'un tel 

espace poreux serait à l'intérieur d'un minéral primaire (similaire au remplacement minéral 

secondaire) ou à des joints de grain. La source de B dans la fraction argileuse provient du 

minéral lui-même qui a une composition isotopique proche de celle de la fraction argileuse. De 

même, des concentrations élevées de B dans ces espaces interstitiels (de l'ordre de 10 ppm) 

sont nécessaires pour produire des fractions argileuses avec des concentrations encore plus 

élevées (de l'ordre de 50 ppm) expliquées par une dissolution minérale continue dans un 

système partiellement fermé. Ceci implique un long temps de réaction entre le minéral 
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secondaire et l'eau interstitielle, probablement incohérent avec l’hypothèse d’une précipitation 

à partir des solutions de sol. 

Dans le cas du Murrumbidgee, la composition isotopique du B moyenne de la charge 

dissoute est d'environ +31‰ alors que la composition isotopique B moyenne de la fraction 

argileuse est de –12‰, ce qui représente plus de 40 ‰ de différence entre les deux composants. 

Si la composition isotopique du B de la charge dissoute était contrôlée par échange de bore 

entre les particules d'argile et les eaux interstitielles comme proposé par de nombreuses études 

(Lemarchand et al., 2009, Lemarchand et al., 2000, Rose et al. 2000), donc le fractionnement 

isotopique du B entre les deux composants, s'ils sont en équilibre, serait d'environ –30‰ et 

serait fonction du pH (Rose et al., 2000, Palmer et al., 1987, Spivack et al., 1987). Cependant, 

la différence moyenne de –40‰ entre les deux rend cette possibilité très improbable. Ceci 

indique que les compositions chimiques et isotopiques du bore de la charge dissoute et de la 

fraction argileuse ne sont pas en équilibre et la fraction argileuse ne précipite pas d’une solution 

présentant les caractéristiques de la charge dissoute. Cette déconnexion apparente de la 

composition isotopique du B entre la charge dissoute et les sédiments transportés pourrait 

dériver du fait que les eaux fluviales intègrent tous les processus de surface et souterrains, y 

compris les processus de transport réactif, les cycles biogéochimiques actifs, incorporent la 

végétation et les sources atmosphériques. Cela produit des compositions isotopiques de bore 

plus élevées dans la solution du sol (et la charge dissolvante) avec de faibles concentrations de 

B tandis que la signature de l'argile est obtenue à partir d'une solution d'eau interstitielle à forte

teneur en B (au moins dans le cas de le Murrumbidgee). Cette interprétation des isotopes du B 

s'applique probablement au Gandak et à Noireaux et al. (2014) qui ont également rapporté des 

compositions isotopiques de B du sol (où B est porté par la fraction fine) qui sont inférieures 

de 1‰ à la roche-mère. Lemarchand et al. (2012) ont rapporté une composition des isotopes 

du B isotopiquement plus lourds de la fraction argileuse que la roche mère (jusqu'à +7‰), 
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indiquant que les argiles pédogéniques (formées dans le mètre supérieur du profil) se forment 

en équilibre isotopique avec un solution de sol isotopiquement lourde qui a été attribuée au B

dérivé du cycle de la végétation et de l'atmosphère. Si correcte, cette interprétation a une 

implication importante: il n’y a aucune raison que la teneur et les isotopes du bore dans les 

minéraux argileux soient en équilibre avec le bore dissous des rivières. Ceci est évident par la 

différence isotopique du bore d'environ -40‰ entre la fraction d'argile et la charge dissoute. 

Les argiles peuvent enregistrer uniquement les conditions très locales de leur formation 

(éventuellement dans un environnement confiné), tandis que les solutions du sol et les rivières 

peuvent être alimentées par des eaux n'ayant pas substantiellement échangé de matières avec 

des minéraux.

A.3.2 Quel est le comportement de les isotopes du B dans les sédiments des cours d'eau 

durant le transport entre les zones sources de sédiments et l'environnement de 

dépôt? 

Aucune étude à ce jour n'a étudié la façon dont la fraction argileuse dans les sédiments 

fluviaux obtient sa signature 11B ou la façon dont cette signature est transportée des zones 

sources de sédiments en amont à l'environnement de dépôt en aval. Cette étude constitue donc 

le début de notre compréhension de ces sujets importants qui seront nécessaires pour répondre 

à la troisième question de savoir si les isotopes du B dans les sédiments peuvent servir de 

traceurs pour reconstruire les conditions paléo-climatiques et paléo-environnementales. Dans 

une étude précédente sur les sédiments de la rivière Murrumbidgee (Suresh et al., 2014), des 

sédiments de berge ont été échantillonnés le long de la rivière et des analyses en éléments 

majeurs and traces ont été effectuées. Le Chemical Index of Weathering (CIW) a révélé qu'il 

n'y a pas d'altération chimique significative au cours du transport, résultat confirmé par la 

présente étude utilisant à la fois des éléments majeurs et traces et des isotopes du bore. Ici, il a 
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été testé si la composition chimique et isotopique du B de la fraction argileuse peut être 

expliquée comme un mélange de sources dans tout le bassin ou si elle évolue en aval. Les 

compositions théoriques 11B, B/Al, et Mg/Al de la fraction argileuse à 10 points le long de la 

rivière Murrumbidgee ont été calculées en utilisant un modèle de bilan de masse. Les résultats 

montrent que les valeurs calculées sont toutes similaires à celles mesurées, indiquant que leurs 

compositions 11B, B/Al, et Mg/Al sont le résultat d'un mélange d'argiles produites dans tout 

le bassin versant drainé vers le chenal principal. En utilisant la composition de la roche-mère 

dans des bassins monolithologiques comme composant du mélange, les valeurs théoriques de 

11B de sable ont également été calculées de la même manière. Les résultats montrent 

également que la composition de la fraction de sable peut être expliquée comme un mélange 

de substrat rocheux. Ce résultat, montré pour la première fois, est significatif car il suggère que 

les isotopes du B dans la fraction argileuse des sédiments de rivière conservent leur signature 

chimique et isotopique d’origine et donc peuvent être utilisés comme traceurs du régime 

d’altération. Dans ce cas, la composition chimique et isotopique B des fractions d'argile dans 

les dépôts de paléo-chenaux du Murrumbidgee devraient refléter les conditions d'altération 

dans les zones sources du bassin versant, avec peu ou pas de biais durant le transport. 

La composition de 11Bargile – sable des sédiments de berge transportés activement dans la 

rivière Murrumbidgee a été comparée aux sédiments modernes (déposés à plusieurs mètres des 

berges de la rivière Murrumbidgee moderne) pour vérifier s'il existe des similitudes ou des 

différences qui peuvent révéler un comportement isotopique du bore après le dépôt et 

l'enfouissement. Cette comparaison montre que les sédiments des berges modernes ont une 

composition de 11B argile – sable d'environ 0‰, tandis que les sédiments modernes ont des valeurs 

d'environ 2‰. Bien que la raison de cette différence apparente ne soit pas connue (en raison 

du manque de données chimiques, minéralogiques ou granulométriques des dépôts modernes), 

l'hypothèse est que la taille des grains et le tri minéral entre les sédiments de la berge transportés 
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activement et un dépôt de sédiments pourrait être la cause. Alternativement, la composition 

isotopique du B du dépôt de sédiments peut ne pas avoir été conservée après le dépôt. 

Cependant, la composition isotopique du B des dépôts de sédiments modernes est très 

semblable à celle des autres dépôts de paléochenaux qui ne montrent aucun signe de profil 

d’altération ou d'altération après dépôt (voir la discussion ci-dessous). Ces différences sont plus 

susceptibles d'être causées par un effet de triage ou peut-être le résultat de la variabilité locale 

du site. Indépendamment de ce biais possible, la composition des dépôts modernes et de la 

plupart des sédiments paléochenaux est très similaire, ce qui indique que la composition isotope 

du B des sédiments de paléochenaux est préservée après le dépôt et l'enfouissement.

A.3.3 Les isotopes du bore présents dans les sédiments peuvent-ils être utilisés comme 

un traceur de la paléo-altération et paléo-environnementale au cours du dernier 

cycle glaciaire-interglaciaire? 

Comme pour le comportement des isotopes du B dans les sédiments pendant le transport 

fluvial, notre connaissance du comportement des isotopes du B et de son utilisation dans les 

dépôts de sédiments fluviatiles comme un traceur de paléo-altération est limitée à cette étude. 

Les résultats de ce travail représentent un avancement significatif dans le domaine de la 

géochimie des isotopes du B et fournissent le premier exemple de la façon dont les isotopes du 

B peuvent être utilisés et interprétés dans les sédiments fluviaux comme un nouveau traceur 

géochimique pour la reconstruction paléo-altération et paléo-environnemental. Comme 

mentionné précédemment, les isotopes du B dans les séquences de loess-paléosol en Chine 

(Wei et al., 2015, Zhao et al., 2003) sont les seuls autres travaux utilisant les isotopes du B pour 

reconstruire les conditions de paléo-altération sur une échelle de temps similaire (dernier cycle 

glaciaire-interglaciaire). L'application des isotopes du B dans les profils loess-paléosol et les 

résultats prometteurs de l'étude isotopique du B dans les sédiments modernes du bassin versant 
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de la rivière Murrumbidgee (Chapitre 3, Ercolani et al., in prep) indiquent la conservation du 

signal d’altération original du sédiment pendent le transport fournit une indication que cette 

approche peut être efficace et applicable à d'autres milieux de dépôt.

En l'absence d'altération post-dépôt, la composition de la fraction argileuse devrait refléter 

le signal d'altération d’origine provenant de la zone source. Par conséquent, l'identification des 

échantillons qui ont été modifiés après leurs dépôt est essentielle si l'objectif est de déterminer 

les changements des régimes d'altération passés. Cela a été considéré en divisant l'échantillon 

en deux moitiés (si possible) : une partie «intérieure» plus vierge et une partie «extérieure» 

plus exposée (plus près de la surface). Les analyses d'isotopes de bore sur les deux aliquotes 

d'échantillon indiquent un comportement contradictoire, montrant que la partie «extérieure» 

peut être isotopiquement plus lourde ou plus légère selon le site. Ceci peut être attribué à une 

modification après dépot ou variabilité locale du site. Indépendamment de la cause, la partie 

«extérieure» des échantillons a été retirée de l'ensemble de données car la variation de la 

composition isotopique du bore dans la fraction argileuse avec la profondeur était généralement 

supérieure à la variation entre la partie «intérieure» et «extérieure» de l'échantillon. Les 

compositions isotopiques du bore dans la fraction argileuse de chaque site ont été comparées à 

d'autres échantillons / sites dans le même système en fonction de la profondeur afin de vérifier 

l’absence de profil d'altération marqué. Dans chaque système, il existe un site où la composition 

isotopique du bore de la fraction argileuse est beaucoup plus lourde que les autres sites. Ces 

compositions d'isotopes du bore élevées étaient souvent accompagnées par une augmentation 

du rapport B/Al qui, ensemble, indique une interaction avec une source isotopiquement lourde 

telle qu'une solution de sol riche en 11B qui a été recyclée à travers la végétation. De plus, ces 

échantillons étaient déposés dans des environnements relativement peu profonds (<2 m de 

profondeur) qui faciliteraient l'échange de bore avec l'environnement et donc la perte de leur 

signal d'altération d’origine. La composition chimique et isotopique du bore des 
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échantillons/sites qui ne présentent pas de traces visibles d'un profil d'altération sont par 

conséquent considérées vierges et reflètent les conditions d'altération d'origine; c'était le cas 

pour la majorité des échantillons de paléochenaux.

Pour déterminer si les variations de la composition isotopique du bore de la fraction d'argile 

dans les paléochenaux sont le résultat du régime de paléo-altération, ou en raison des 

changements de provenance des sédiments au cours des 100 derniers ka, la source du sédiment 

a été déterminée à l'aide d'isotopes de Nd. Aussi, la composition isotopique de Nd des fractions 

d'argile a été comparée à celle de la rivière Murrumbidgee moderne et des roches granitiques, 

volcaniques et sédimentaires. Les résultats montrent que la composition de Nd des argiles 

dans les paléochenaux peut être expliquée comme un mélange de sédiments à l'intérieur du 

bassin versant de Murrumbidgee, sans changement significatif de la source de sédiments au 

cours du dernier cycle glaciaire-interglaciaire. Sans modification majeure de la source de 

sédiments apportée à la Riverine Plain au cours des dernières 100 ka, les variations de la 

composition isotopique du bore de la fraction argileuse entre les systèmes de paleochenaux 

peuvent être interprétées comme reflétant des processus affectant leurs compositions 

isotopiques du B comme les variations de le régime d’altération ou des changements dans les 

conditions environnementales.

Enfin, après l'élimination des échantillons affectés par l'altération post-dépôt et la 

vérification que les variations de la source de sédiments ne sont pas responsables de la variation 

isotopique B dans la fraction argileuse des sédiments paléo-canaux, on peut comparer 

directement les variations de la composition isotopique du B aux paramètres environnementaux 

qui controlent le régime d'altération tels que le climat et les changements dans les conditions 

de paléo-environnement tels que le couvert végétal. Lorsque la composition 11B clay – sand des 

sédiments paléo-canaux est représentée en fonction de la profondeur, des différences claires 

entre les systèmes peuvent être reconnues : les deux systèmes formés près du dernier maximum 
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glaciaire, le Yanco (21 - 13 ka) et le Gum Creek (35 – 25 ka), ont des compositions 11B argile 

– sable très similaires qui sont distinctes des systèmes de Kerarbury et de Coleambally. Bien 

qu'un test ANOVA révèle que la composition des sédiments sédimentaires modernes ne diffère 

pas significativement de celle des systèmes Yanco et Gum Creek, ce résultat est probablement 

dû à de mauvaises statistiques de comptage (n = 2) pour les dépôts modernes. Néanmoins, la 

fraction argileuse déposée pendant le dernier maximum glaciaire présente des compositions 

isotopiques du B plus faibles que les dépôts modernes et ceux déposés lors des phases 

Kerarbury (MIS 3) et Coleambally (MIS 5).

Représentées en fonction de l'âge (0-100 ka), les compositions de 11Bargile – sable des 

sédiments paléochenaux co-varient avec une reconstruction de température de surface de la 

mer de l'océan Austral (Barrows et al., 2007) et une reconstruction de la végétation du sud-est 

de l'Australie et de Nouvelle-Zélande (Barrows et al., 2007). La co-variation des isotopes B 

dans la fraction argileuse avec la température de surface de la mer et la végétation indique que 

la pédogenèse a répondu aux variations du climat au cours du dernier cycle glaciaire-

interglaciaire. L'augmentation de la température et des précipitations devrait produire une 

végétation plus complexe dans le paysage qui pourrait augmenter les taux et les intensités 

chimiques (par exemple Gíslason et al., 1996), tandis que l'amplification du cycle hydrologique 

devrait directement augmenter les flux d’altération (Maher et Chamberlain, 2014, Gaillardet et 

al., 1999a). 

Au cours du dernier maximum glaciaire (MIS 2) correspondant aux systèmes Yanco et 

Gum Creek, un petit fractionnement isotopique B est observé entre les fractions de sable et 

d'argile, indiquant que pendant les périodes froides et sèches la production d'argile est minime 

et le bore est dérivé principalement de la dissolution du roche-mère. Pendant les périodes plus 

chaudes telles que Holocène (MIS 1), MIS 3 et 5, les compositions de 11B argile – sable sont plus 

grandes (jusqu'à + 6 ‰) et la fraction argileuse est toujours isotopiquement plus lourde que la 
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fraction de sable, indiquant un régime d'altération actif de précipitation avec une partie 

significative de bore dans la fraction argileuse dérivant d'une source isotopiquement lourde 

telle que la végétation ou l'atmosphère. L'analyse de diffraction des rayons X fractions d'argile 

est en accord avec cette interprétation, montrant que la composition de la fraction argileuse 

durant les climats chauds est principalement la kaolinite (~ 75%), ce qui est indicatif des argiles 

dans un stade d'altération plus avancé produit par des taux plus élevés de lixiviation de l'eau 

dans les profils de sol (Ma et Eggleton, 1999; Singer, 1980). Pendant les périodes les plus 

froides, la fraction argileuse a un pourcentage beaucoup plus élevé d'argiles interstratifiées (I/S) 

qui sont formées dans la première phase de production d'argiles indiquant un état d'altération 

moins avancé dans les conditions sèches (Singer, 1980). Ce résultat est en accord avec Wei et 

al. (2015) qui ont rapporté que l'intensité pédogénétique est corrélée avec la variabilité 

climatique au cours du dernier cycle glaciaire-interglaciaire utilisant les isotopes du B dans la 

phase soluble dans l'acide de plusieurs séquences loess-paléosol ; les climats froids sont 

caractérisés par des valeurs de 11B plus basses et une pédogenèse moins intense tandis que 

des climats plus chauds sont caractérisés par des valeurs de 11B plus élevées et une pédogenèse 

plus intense. Des valeurs élevées de 11B dans la séquence loess-paléosol ont été attribuées à 

l'augmentation des apports atmosphériques pendant la circulation d'été de la mousson. 

Cependant, dans la présente étude, les compositions de 11B argile – sable des sédiments paléo-

canal sont fortement corrélées avec la couverture végétale dans le sud-est de l'Australie. Ceci 

indique que des compositions plus élevées de 11B argile – sable reflètent un rôle croissant de la 

végétation sur la pédogenèse durant les climats plus chauds et humides (MIS 1, 3 et 5) et moins 

dans les climats plus froids et secs (MIS 2 et 4 ). Les compositions de 11B argile – sable

isotopiquement plus élevées sont ensuite attribuées à l 'incorporation de B isotopiquement 

lourd dans la fraction argileuse qui a été recyclée de la végétation. De cette manière, les 

compositions isotopiques du bore dans les fractions argileuses des dépôts de paléochenaux 
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réagissent directement au climat par les précipitations et la température qui produisent 

différentes couvertures végétales et influencent la pédogenèse à différents degrés. En 

particulier, pendant les périodes plus froides et plus sèches, moins de précipitations et des

températures plus basses produisent des espèces herbacées ; par conséquent, l'influence de la 

végétation sur la pédogenèse est moindre sous un climat plus froid et plus sec. Les 

compositions isotopiques du bore dans la fraction argileuse restent faibles et reflètent les 

interactions eau-roche. Au contraire, pendant les périodes plus chaudes et plus humides, 

l'augmentation des précipitations et de la température produit un couvert végétal plus dense ;

par conséquent, l'influence de la végétation sur la pédogenèse est plus grande sous un climat 

plus humide et plus chaud. Les compositions isotopiques du bore dans la fraction argileuse sont 

plus élevées et reflètent le flux accru de bore qui a été recyclé à travers la végétation. 

A.4Perspective et recherche future

Dans l'étude de la rivière Gandak dans l'Himalaya, les échantillons de sédiments étaient 

limités. Un seul échantillon a été prélevé dans les vraies sources de la rivière Gandak et aucun 

échantillon n'a été prélevé après la convergence avec le Gange, plus en aval dans la plaine du 

Gange. Il serait particulièrement interessant d'obtenir des échantillons de sédiments en amont 

supplémentaires car il semble que l'altération contrôle la composition isotopique de la fraction 

d'argile dans les eaux d'amont est différente de celle de la plaine. Cependant, cette hypothèse 

n'est basée que sur un point. Une tendance similaire a été observée dans la composition en 11B

des biotites et des muscovites ramassés à la main et de la fraction argileuse des sédiments 

riverains (tous montrant des valeurs isotopiquement plus faibles dans les eaux d'amont qui 

augmentent progressivement en aval). Au contraire, la source des minéraux peut être différente 

et, par conséquent, leur composition isotopique B peut seulement être utilisée comme traceur 

de source et non utilisée pour tracer les réactions d'altération. Des échantillons supplémentaires 
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en aval seraient utiles pour une étude plus détaillée. Enfin, la rivière Gandak était la seule 

rivière Himalayenne échantillonnée, par conséquent les résultats peuvent être localisés et ne 

pas s'appliquer à l'ensemble du système. Comme de nombreux cours d'eau himalayens ont été 

étudiés à des fins diverses et que des échantillons de sédiments ont déjà été recueillis par 

d'autres, il serait prudent de mener une étude similaire dans une rivière Himalaya différente, 

vérifiant ainsi la généralité des conclusions de cette étude. Cependant, les conclusions de 

l'étude de Murrumbidgee sont en bon accord avec celles de l'étude de la rivière Gandak, 

fournissant un support pour une interprétation plus globale du comportement des isotopes du 

bore dans les sédiments fluviaux pendant la formation et le transport.

Dans l'étude de Murrumbidgee, la stratégie d'échantillonnage était plus approfondie et 

toutes les données nécessaires ont été recueillies. Cependant, parce que l'étude a porté sur la 

fraction argileuse particulièrement difficile à obtenir dans la plupart des échantillons de rivières 

de fond (tamisage de plus de 1 kg de sédiments pour obtenir 50-100 mg d'argile) et hétérogène 

dans sa composition chimique et isotopique, plus l'argile devrait avoir été tamisée au début de 

l'étude pour chaque échantillon. Il devenait particulièrement évident que plus d'argile était 

nécessaire pour chaque échantillon lorsque le nombre d'analyses chimiques et isotopiques 

comprenait 100 mg d'argile pour les éléments majeurs et traces, 50 mg d'argile pour les isotopes 

du B, 10 mg d'argile pour DRX et 100 mg d'argile pour les isotopes du Nd. Par conséquent, 

plus d'argile devait être tamisée pour de nombreux échantillons qui pouvaient avoir des 

compositions chimiques et isotopiques légèrement différentes de celles de l'aliquote précédente 

des argiles tamisées. En ce qui concerne la relation entre 11Bclay – bedrock et le régime d’altération 

à l'échelle du bassin versant, des études supplémentaires devraient être menées pour confirmer 

les résultats de l'étude préliminaire de Murrumbidgee, car les rivières drainant différentes 

lithologies (par exemple les carbonates) peuvent varier selon les conditions géologiques et 

climatiques ne pas enregistrer le régime d'altération de la même manière (par exemple dans 
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une zone tectoniquement active avec une forte érosion et des taux d'altération élevés, ou dans 

des environnements tropicaux où les isotopes du B dans la fraction argileuse pourraient être 

contrôlés par des intrants végétaux). Cependant, des tendances de 11Bargile – sable vs. Al, B

similaires ont été observées dans les rivières Murrumbidgee et Gandak, indiquant 

probablement une tendance plus globale où un fractionnement isotopique élevé est corrélé avec 

une précipitation B faible dans la fraction argileuse et vice versa.

Les compositions d'isotopes du bore dans les sédiments présentent un grand potentiel en 

tant que nouvelle variable géochimique pour la reconstitution des paléo-altérations et des 

paléo-environnements. Ceci est démontré par la capacité des isotopes du B dans la fraction 

argileuse des sédiments paléo-canaux à enregistrer l'influence du climat et de la couverture 

végétale sur la pédogenèse durant la dernière période glaciaire-interglaciaire et aussi par des 

études antérieures utilisant des isotopes du B dans les séquences loess-paléosol (Wei et al., 

2015; Zhao et al., 2003) qui démontrent son utilité pour déterminer l'intensité des paléo-

altérations par rapport à la variabilité climatique. Cependant, l'applicabilité de cette 

approximation dans d'autres environnements ou sites est relativement inconnue car le 

développement de cette approximation n'en est qu'à ses débuts. La capacité à utiliser ce traceur

dépend finalement de la préservation de la composition isotopique B de l'échantillon qui est 

probablement affectée par des facteurs tels que la minéralogie (e.g. argiles expansibles ou non 

expansibles), l'environnement de dépôt (profondeur faible ou profonde dans le profil), et les 

conditions climatiques de l'environnement moderne (e.g. environnement fortement végétalisé, 

environnements humides vs. secs). De plus, la capacité d'identifier et d'enlever des échantillons 

qui ont été altérés par des processus post-dépôt est essentielle pour obtenir un enregistrement 

plus vierge du changement paléo-environnemental. Par conséquent, les recherches à venir 

devraient se concentrer davantage sur différentes techniques d'échantillonnage et méthodes 

analytiques pour identifier l'altération post-dépôt et appliquer ce traceur à différents 



308

environnements de dépôt. Dans le bassin versant de Murrumbidgee, des dépôts de paléo-

canaux ont été obtenus à des profondeurs peu profondes (<2 m) et plus profondes (> 2 m) dans 

tous les systèmes (Yanco, Gum Creek et Kerarbury) sauf dans le système Coleambally afin 

d'évaluer la variation chimique et isotopique qui peut être liée à une modification après dépôt. 

Des échantillons plus profonds dans le système Coleambally n'ont pas été obtenus parce que 

tous les sites de Coleambally étaient relativement peu profonds et qu'il n'était donc pas possible 

d'obtenir des échantillons plus profonds sans utiliser une foreuse (qui n'a pas été utilisée dans 

cette campagne). À Kerarbury Pit, l'exposition de surface était assez profonde (~6 m), ce qui a 

permis d'obtenir des échantillons plus profonds. Dans les systèmes de Yanco et de Gum Creek, 

des échantillons plus profonds du profil ont été prélevés avec une foreuse par des collègues de 

l'UOW et donnés à ce projet. Cependant, dans le système Coleambally, aucune de ces options 

n'était disponible, donc une comparaison entre des dépôts plus profonds (vraisemblablement 

plus vierges) et plus profonds n'était pas possible. Sans cette comparaison, certains doutes 

subsistent si les processus post-dépôt modifient les échantillons peu profonds recueillis dans le 

système Coleambally, bien que des compositions similaires de fractions d'isotopes B dans deux 

des trois sites (à l'exclusion de Bundure) suggèrent qu'une altération post-dépôt n'a pas eu lieu. 

Pour mieux répondre à ce problème et renforcer l'interprétation des derniers 50 ka du record, 

des échantillons plus profonds dans le profil des sédiments devraient être obtenus à l'aide d'une 

foreuse pour vérifier que la composition isotopique du B de la fraction argileuse est similaire 

à celle des échantillons profonds sur les mêmes sites.
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