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CHAPTER
Résumé en Francais

0.1 Introduction

La mémoire partagée et la mémoire distribuée sont les deux abstractions de bas niveau
prédominantes de la programmation parallele. OpenMP et POSIX sont les interfaces
de programmation les plus couramment utilisées pour la programmation en mémoire
partagée. Cependant, la puissance de traitement des multiprocesseurs a mémoire
partagée reste limitée par I'impossibilité de mettre a 1'échelle la mémoire partagée a un
grand nombre de processeurs. Pour de nombreux domaines scientifiques et d’ingénierie,
ol des simulations a grande échelle et intenses en calcul sont nécessaires, écrire un code

parallele pour les architectures a mémoire distribuée devient inévitable.

La programmation sur les architectures a mémoire distribuée a ses propres défis in-
hérents. Un défi majeur consiste a définir comment les processeurs peuvent se coordon-
ner pour résoudre ensemble un probléeme commun. Une telle coordination implique la
définition d'un schéma de partitionnement des données en plus de la synchronisation ex-
plicite et de la communication pour gérer le mouvement des données entre les différents
processeurs. MPI est actuellement le paradigme dominant et le plus largement utilisé
pour la programmation parallele a mémoire distribuée. Aucun des paradigmes listés
précédemment n’est suffisant pour résoudre les défis actuels des plateformes a grande
échelle qui combinent les mémoire partagées et distribuées dans des architectures hiérar-
chiques.

ORWL [CG10b] propose un modele d’acces uniforme pour les ressources (données,
processeurs, mémoire, etc.) utilisables en mémoire partagée, en mémoire distribuée
ou en contextes mixtes. Ce paradigme de synchronisation inter-taches cible des algo-
rithmes paralléles itératifs orientés ressources. Il favorise le contrdle algorithmique et la
cohérence des données en introduisant un mécanisme de verrouillage basé sur des FIFOs
qui gere les dépendances de données entre les taches et les ressources. Lune des origi-
nalités de ORWL est 'annonce proactive des ressources qu'une tache nécessite pour un
calcul futur. Une implémentation de référence [CG10a, GVM14] a prouvé la validité et la
performance du modele ORWL.

De méme que d’autres paradigmes de programmation paralléle a usage général pour
les architectures a mémoire distribuée, le code ORWL peut étre complexe et fastidieux
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a écrire. Actuellement, le principal obstacle a I'utilisation d’ ORWL réside dans sa phase
d’initialisation exigeante ol le programmeur doit spécifier le schéma d’acces entre les
taches et les ressources et les positions initiales des taches dans les FIFOs. Ces derniers
sont décisifs pour la vivacité de 'application, et doivent donc étre attribués avec beau-
coup de soin. Une fois que cette étape fastidieuse mais nécessaire est effectuée correcte-
ment, toutes les itérations suivantes sont garanties d’étre équitables et sans interblocage.
Afin de réduire ce fardeau et améliorer la productivité des programmeurs, nous visons
a générer automatiquement le code ORWL, y compris l'attribution de positions initiales
dans les FIFOs, sans sacrifier la performance. Une approche commune est d’abandonner
la généralité et d’adapter une solution pour un domaine particulier, ici les stencils. Le
modeéle de calcul des stencils consiste en des balayages itératifs sur une grille de données,
ol chaque élément de grille est mis a jour en fonction de ses éléments voisins. Comme
les noyaux des calculs stencils sont bien structurés, ils devraient considérablement béné-
ficier d'une modélisation utilisant ORWL. Bien que le pouvoir de modélisation de ORWL
dépasse largement les stencils, nous nous concentrons dans ce travail sur ceux-ci.

Les calculs stencils constituent la partie dominante de nombreuses applications sci-
entifiques et d'ingénierie. Par exemple, de nombreux phénomenes physiques tels que
la dynamique moléculaire ou les ondes sismiques peuvent étre décrits par des équa-
tions aux dérivées partielles elliptiques dépendantes du temps (EDP), et s'appuyer sur
des méthodes de discrétisation numérique basées sur des stencils pour les résoudre. Les
calculs stencils constituent la partie dominante de nombreuses applications scientifiques
et d’'ingénierie. D’autres calculs de stencils sont au coeur de nombreux algorithmes de
traitement d’images et applications telles que I'imagerie CT et IRM [CZ08], ainsi que la
détection d’objets et le tracking. Une parallélisation et une optimisation efficaces des
noyaux de stencil peuvent grandement améliorer les performances globales de ces appli-
cations.

Les calculs de stencils sont souvent parallélisés par une décomposition de la grille
de données en plusieurs blocs, de telle sorte que le calcul d'un bloc spécifique nécessite
des données mises a jour des blocs voisins. Conceptuellement, ceci impose I'utilisation
de régions dites régions d’ombre (shadow regions) qui entourent chaque bloc avec ses
données de voisinage mises a jour. Celles-ci sont tres difficiles a gérer car elles nécessitent
souvent une analyse de cas complexe pour la gestion des communication ainsi que de
complexes calculs d'index. Habituellement, le fardeau de la création et de la gestion des
régions d’'ombre repose sur le programmeur d’application.

De plus, le programmeur est responsable de la gestion des calculs et des commu-
nications qui s’alternent sur les ressources des blocs, d’ot1 la nécessité du support d'un
puissant mécanisme de synchronisation inter-taches tel que ORWL, mais pas sans effort
comme mentionné précédemment. Pour alléger ce fardeau, notre approche consiste a
ajouter une couche, basée sur un langage dédié (DSL) implicitement paralléle [FRR*07]
au-dessus de ORWL.

Les DSLs offrent d'une part des notations, des constructions et des abstractions spéci-
fiques au domaine, ce qui améliore I'expressivité et ainsi, la productivité dans le domaine
particulier pour lequel ils sont congus. D’un autre coté, les frameworks spécifiques au
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domaine sont efficaces grace aux connaissances spécifiques au domaine qui y sont incor-
porées. Ils fournissent généralement des performances acceptables et peuvent parfois
atteindre des niveaux de performance qui surpassent les implémentations codées a la
main. Par conséquent, ils permettent d’équilibrer la programmabilité et la performance.

Avec ce travail, nous visons a combler le fossé entre la productivité et la haute per-
formance en permettant aux experts des domaines scientifiques ou aux programmeurs
moyens de développer des codes stencils ORWL qui répondent aux besoins spécifiques
de leurs applications sans devenir experts en programmation paralléle en général, ni en
ORWL en particulier. Nous proposons une solution basée sur un DSL pour rendre les
implémentations de stencils dans le cadre ORWL plus simples et plus facile a utiliser.

0.2 ORWL

ORWL (Ordered Read-Write Locks) est un paradigme de synchronisation inter-taches
pour les algorithmes paralleles et distribués orientés ressources. Il fournit des méth-
odes de synchronisation basées sur le verrouillage qui permettent un controle implicite,
équitable et sans interblocage des ressources protégées. Ici, une ressource peut étre une
abstraction des données, du matériel ou du software sur lesquels des taches interagissent.
ORWL fournit un moyen de controler de maniere algorithmique 'ordre d’exécution des
taches en fonction de leurs dépendances de données en introduisant un mécanisme de
verrouillage basé sur des FIFOs qui gere les dépendances de données entre les threads. Il
favorise le contrdle algorithmique et la cohérence des données, tout en garantissant un
degré élevé de parallélisme et d’asynchronicité. Le modele ORWL est basé sur les pro-
priétés suivantes:

1. Association d'un verrou a chaque ressource ORWL. Les verrous et les ressources sont
étroitement liés.

2. Une file d’acces (FIFO) pour chaque verrou.

3. Une distinction entre verrouillage pour écriture exclusive et verrouillage pour acces
inclusif en lecture.

4. Une distinction entre les verrous et les handles de verrous (LH) qui sont des inter-
faces agissant sur les verrous. L'acquisition est accordée pour les handles de verrous
(LH) plutot que les threads.

5. Une opération de verrouillage consiste en une séquence formée de trois étapes: re-
quest (insertion a la file), acquire (bloquant jusqu’a atteindre la premiere position
dans la file d’attente), puis release (libérer la ressource).

Toutes ces propriétés combinées assurent la vitalité, I'équité et l'efficacité de
I'application.
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Annonce Proactive de I’Utilisation des Ressources

La logique derriere ORWL est qu'une tache anticipe et annonce de maniére proactive les
ressources nécessaires pour les calculs futurs. Par I'intermédiaire d'un handle de verrou,
la tache demande une place dans la file d’attente FIFO de la ressource (voir Listing 1).
Ce mécanisme est non bloquant, c’est-a-dire qu’apres avoir effectué la demande, la tache
est libre de poursuivre son exécution. Ce n’est que lorsque I'acces a la ressource devient
indispensable a la poursuite de la tache que celle-ci tente de 'acquérir. La tache est en-
suite bloquée jusqu’a ce que la demande atteint la premiere position dans la file d’attente
et que 'acces a la ressource associée soit autorisé. Une tache n’est dite active et ne peut
étre exécutée que lorsqu’elle acquiert tous les verrous demandés. En d’autres termes, une
tache est retardée jusqu’'a ce qu’elle atteigne le premier rang dans les files d’attente de
toutes les ressources nécessaires. Ce n’est qu’alors qu’elle est autorisée a étre exécutée et
a effectuer toute action pour laquelle elle est concue.

Listing 1 — Une simple section critique opérant sur une ressource via un orwl_handle.

/% announce the access x/
orwl_write_request (&loc, &handle);

/% some operation without the resource */
/% then, block until access granted */
orwl_acquire (&handle) ;

/% some critical operation with locked resource */
/ * then, free the resource */

orwl_release (&handle);

Overlay de Synchronisation

Pour un systéme de taches interdépendantes donné, le modele ORWL associe un overlay
de synchronisation en tant qu’abstraction du modele d’acces aux données. Son role prin-
cipal est de spécifier 'ordre d’exécution exact des différentes taches. Il permet également
de détecter d’éventuels blocages. Un overlay de synchronisation sur un systeme de taches
interdépendantes est défini comme suit:

1. L'espace de données est partitionné de facon maximale en fragments primitifs ap-
pelés les lieux ORWL en fonction des différentes dépendances de données.

2. Un verrou ORWL est associé a chaque lieu ORWL.
3. Un handle de verrou est associé a chaque demande (request) de verrouillage.

4. Chaque lieu ORWL peut empiler un nombre illimité de demandes de verrouillage en
lecture et en écriture.
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5. Les demandes de verrouillage en attente d'un lieu dans une file d’attente sont
numérotées de bas en haut. Cette numérotation correspond a la position de la de-
mande de verrouillage dans la file d’attente des ressources.

6. Une demande ne peut étre servie que si elle occupe le rang le plus bas dans la file
d’attente de la ressource en question.

7. Une tache est active et peut donc étre exécutée lorsque toutes ses demandes de ver-
rouillage sont acquises.

Initial FIFO Ordering

Locations

Figure 1 — Un overlay de synchronization

Loverlay de synchronisation est visualisé via un graphique de dépendance des don-
nées, comme illustré a la figure 1. Les lieux sont représentés sur I'axe des x. Les files
d’attente sont présentées par des lignes pointillées verticales. Les demandes d’écriture
exclusives (Xreqs) et les demandes de lecture inclusives (Ireqs) sont symbolisées par L] et
O, respectivement. Les fleches connectent les Xreqs aux Ireqs, symbolisant ainsi le be-
soin d'une demande d’écriture donnée d’accéder en lecture a d’autres lieux requis avant
son exécution.

0.3 Modele Polyédrique

Le modele polyédrique, également appelé modele polytope, est une abstraction math-
ématique qui offre une représentation capturant 'exécution de programmes sous une
forme mathématique adaptée a I'analyse et a la transformation a l'aide d’outils de
I'algebre et de la programmation linéaires. Il offre une plateforme puissante pour
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'optimisation des programmes a la compilation. Lutilisation la plus courante du mod-
eéle polyédrique est la transformation des boucles imbriquées. Le modele polyédrique
représente 'espace d’itération sous la forme d'un ensemble de points entiers a I'intérieur
d'un polyeédre paramétrique sur lequel des opérations correspondant a des transforma-
tions de boucles sont effectuées. Les polytopes transformés sont ensuite traduits en
nids de boucles équivalents, mais optimisés. Le modele polyédrique est applicable a
toute séquence de boucles imbriquées de maniere arbitraire avec des bornes et des ac-
ceés affines, également appelées nids de boucles affines. Ceux-ci constituent le noyau des
calculs stencils.

Lutilisation du modele polyédrique en tant que représentation de programmes
permet l'utilisation d'une large gamme d’outils puissants et de libraries qui implé-
mentent des opérations liées telles que Clan [Bas08], ISL [Ver10], Pluto [Bon09] et Cloog-
ISL [Bas13] pour I'extraction polyédrique, test de dépendance, transformation automa-
tique et génération de code, respectivement. Dans ce travail, nous utilisons Pluto, un opti-
miseur de boucles source a source basé sur le modele polyédrique. Il est largement utilisé
pour sa capacité a fournir simultanément un parallélisme a gros grain sans synchronisa-
tion et a améliorer la localité des données pour des boucles affines statiques imbriquées.
Pluto est principalement connu pour ses capacités de parallélisation et de tiling efficace,
mais il prend également en charge un large éventail de transformations de boucles, telles
que la fission, fusion, skewing, etc. Pluto prend en entrée des nids de boucles affines
séquentiels écrits en C et génere du code C OpenMP parallele.

0.4 Calculs Stencils

Les noyaux de stencils apparaissent dans un large éventail d’applications scientifiques
et techniques allant des solveurs numériques et d’équations différentielles partielles au
calculs de physique [TU90, BRHS92, NKV94], ainsi qu’au traitement d’images [CHZ11,
CZ08]. Malgré leur apparente simplicité et similitude, les calculs stencils sont en effet
divers et peuvent étre distingués par différents aspects et caractéristiques. Ceux-ci ont un
impact direct sur leur parallélisation efficace.

Les calculs stencils constituent un pattern de calcul largement utilisé qui effectue
des balayages sur une grille réguliere multidimensionnelle, réalisant des calculs de plus
proches voisins. La grille de calcul est un sous-ensemble contigu de Z" dans un systéeme
de coordonnées cartésien. A chaque itération, chaque élément de la grille est mis a jour
en fonction d'un sous-ensemble des éléments voisins des itérations actuelles ou précé-
dentes. Dans ce travail, nous considérons des calculs stencils effectuant des mises a jour
itératives point par point sur une grille a n dimensions, selon une fonction similaire au
calcul suivant:
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R?[i1]liz]...[in] =

i

ZO ; Crlinlliz)...lin] x APV iy + hi | 1liz £ By, lin £ Ry ]
Y=

+ ) A x APV i 207, i 2 0}, o) lin £ 07, )]
m

Ici, ¢ est l'itération actuelle et u le nombre d’itérations précédentes impliquées dans
le calcul. L'élément central et ses éléments voisins des précédentes itérations AY~", v =
0,...,u, sont pondérés par des grilles de coefficients Cy et des constantes scalaires ;.

Le calcul peut impliquer autant de grilles de coefficients Cy et de constantes scalaires
a, que nécessaire. La notation + est un raccourci que nous utilisons ici pour économiser
de I'espace. Le nouvel élément A? est déduit de la valeur intermédiaire R¥. Nous ap-
pelons A la donnée principale (main data), c’est-a-dire la grille qui subit le calcul. Nous
présupposons qu’il n‘existe qu'une seule grille de données principale, mais qu'’il peut y
avoir plusieurs grilles de coefficients que nous appelons des données auxiliaires. Les
données auxiliaires sont restreints a avoir la méme topologie et la méme taille que les
données principales. Ils doivent également étre accessibles au méme endroit [i1][i2]...[i;]
que I'élément central. Contrairement aux grilles de coefficients, il est possible d’accéder
a la grille de données principale a n'importe quelle position. h% 4 €t [";1, 4 Présentent des
offsets séparant les éléments voisins accédés de I’élément central. Nous appelons le max-
imum de ces offsets le halo du calcul:

halo= max {h) ,,¢* .}.
v.kd.m k,d’*~ m,d

0.5 Dido

Dido est un langage dédié implicitement parallele pour les applications stencils multi-
dimensionnelles générales qui utilise ORWL en tant que backend de communication et
d’exécution. Dido offre une interface conviviale qui capture les spécifications de stencils
et génere automatiquement du code haute performance paralléle pour les architectures
a mémoire distribuée.

0.5.1 Architecture

Comme illustré dans la figure 2, Dido est en interne composé de quatre composants prin-
cipaux: le lexer, 'analyseur syntaxique (parser), I’arbre de syntaxe abstraite (AST) et le
générateur de code. Lutilisateur fournit des spécifications écrites dans le langage in-
troduit. Celles-ci sont analysées afin d’extraire les caractéristiques du stencils qui sont
transformées, dans un deuxiéme temps, en un arbre de syntaxe abstraite (AST). Etant
donné la représentation interne du stencil sous la forme d’'un AST, Dido génére du code
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ORWL. Dido est implémenté en utilisant les générateurs de lexer et d’analyseur syntax-
ique OCaml (ocamllex, ocamlyacc).

Dido Stencil Specification

|

Token Specification Dido Lexer

lexer.ml
lexcrmll OCamllex

Tokenization

l

Grammar Specification Dido Code Parser

parser.mli & parser.ml

Abstract Syntax Tree (AST)

l

Dido Code Generator

parser.mly OCamlyacc

compiler.ml

!

ORWL Generated Code

Figure 2 — Architecture de Dido.

0.5.2 Grammaire

Dido prend en entrée un fichier contenant un ensemble de parametres spécifiant la
topologie et la taille du calcul stencil dans une syntaxe concise et triviale. Le Listing 2
décrit la grammaire compléte de la syntaxe de spécification de stencil au sein de Dido.

Afin d’économiser du temps et des efforts de compilation, le DSL est divisé en deux
parties:

e La premiere partie englobe les parametres structurels de l'application. Ces
parametres définissent la topologie du probleme et permettent la génération des
parties les plus complexes du code ORWL. Cela inclut les lieux de données, les opéra-
tions, les initialisations des handles et des positions initiales dans les FIFOs, ainsi que
les sections critiques. Le temps de compilation du code ORWL, généré par cette par-
tie du DSL, peut étre relativement long.
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* La deuxiéme partie comprend les parametres d’exécution pour une instance parti-
culiere de probléme. Ils peuvent étre fournis dans le DSL, s’ils sont fixes, ou sous
forme de parametres runtime. Le code résultant de la partie structurelle du DSL peut
étre utilisé pour différentes instances de problemes. Lutilisateur a la possibilité de
générer tout le code a partir de zéro ou de ne générer que la fonction main en fonc-
tion des parametres d’exécution spécifiés dans la partie instanciation.

0.5.3 Pattern de Génération de Code

Le but de ce travail est d’automatiser la génération de code stencil multidimensionnel
avec ORWL comme interface de communication et d’exécution. Pour ce faire, nous de-
vions définir un pattern d’utilisation généralisé qui réponde aux propriétés de vivacité des
stencils ORWL. A cette fin, une connaissance approfondie de la sémantique du domaine
était nécessaire. Nous devions d’abord analyser les implémentations ORWL des stencils
2D et 3D et extraire les contraintes qu’ils devaient respecter. Ensuite, le pattern extrait
était généralisé pour des stencils multidimensionnels. Le pattern suggéré consiste de la
combinaison d’'un schéma non trivial de partitionnement des données, avec une forme
itérative d’opérations que nous appelons CompUp.

CompUp Form

Pour améliorer I'expressivité de notre outil et faciliter la génération de code, nous avons
convenu d’exprimer les programmes itératifs ORWL sous une forme que nous avons nom-
mée CompUp. Comme le montre la Figure 3, nous convertissons un programme ORWL
sous la forme de trois types d’opérations itératives: Compute, Local Update et Global Up-
date.

1. Lopération Compute effectue le calcul comme spécifié par I'application. Elle lit les
données accessibles localement qui sont importées par les opérations Global Update
et sauvegardées dans des buffers locaux. Ensuite, elle exécute le noyau de calcul et
écrit les résultats a la main location.

2. Lopération Local Update assure le transfert de données entre différentes ressources
d’'une méme tache. Elle lit les données mises a jour a partir de la main location et les
stocke dans des buffers locaux pour les rendre disponibles pour les taches voisines.

3. Lopération Global Update établit la communication entre la tache principale et les
taches voisines. Elle lit les données des taches voisines distantes et les écrit sur des
buffers locaux, en les rendant disponibles pour la prochaine opération de calcul.

Afin de respecter les contraintes de forme canonique, des efforts ont été faits pour
associer une seule opération a chaque lieu et, par conséquent, un acces en écriture ex-
clusive a chaque lieu. Nous ajoutons des contraintes supplémentaires sur les positions
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program
app-name
name

Listing 2 — Grammaire du Langage Dido.

app-name, structural -params,
"ORWL_Application = ",
string;

name, ";";

(* Structural Parameters *)

structural -params

main-data

md -name

md-dim

dimlist

dim
auxiliary-data
auxlist

aux

application

kernel
kernel -fun

kernel -file-name

types
type-file-name
halo

halo-value
iter-halo
iter-halo-value

boundary -conditions

neighbourhood

shapelist
shape

coord
grid-traversal

data-element -type

main-data, auxiliary-data, application;

(* Execution Parameters *)

execution-params

sizelist
blocksizelist
iter -nmb

node -nmb

size

natural number; blocksize =

execution-params;

natural number;

"Main_Data = {",

md-name, "(", md-dim, "D) in (", dimlist, ");",

50 g

string;

natural number;

dim, {",",dim};

string;

"Auxiliary_Data = {", auxlist, "1}";

laux, {",",aux}, ";"];

string;

"Application = {", kernel, types, halo,

iter-halo, boundary-conditions,

neighbourhood, grid-traversal, data-element-type,

1p0 e

"kernel = ", kernel-fun, "in", kernel-file-name;

string;

string, ";";

"types = ", type-file-name, ";";

string;

"halo = ", halo-value, ";";

natural number;

"iteration_halo = ", iter-halo-value, ";";

natural number;

= "boundary_conditions = ",

("periodic" | "non-periodic"), ";";

"neighb = ",

("Moore" | "von-Neumann" | shapelist), ";";

shape, {",",shape};

"(", coord, {",",coordl}, ")";

natural number;

"grid_traversal = ", ("Jacobi" | "Seidel"), g

"data_element_type = ", string, ";";
"Execution_Parameters = {",
["iterations_number = ", iter-nmb, ";",

md -name, sizelist, "into", blocksizelist, ";"
"number_nodes = ", node-nmb, ";",
"number_tasks_per_node = ", tpn-nmb, ";"],
"init_file =", init-file, ";"

S

"[", size, "1", {"[", size, "1"};

"[", blocksize, "]1", {"[", blocksize, "]1"};

natural number; init-file = string;

natural number; tpn-nmb = natural number;
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D Write Request Global Update Operation -
Local Update Operation
Read Request
O Compute Operation l:l

Neighboring Task MyTask Neighboring Task

I

I

:

Plus Shadow Location ___________B____&,__ .

Main Location
Main Location
Shadow Location
Main Location

Shadow Location
Plus Shadow Location

Shadow Location

Shadow Location
Plus Shadow Location -——————————B— __K____
Plus Shadow Location ——-&-)

Figure 3 — Overlay de la Forme CompUp: Ordre d’insertion des requests des opérations
Compute, Local Update et Global Update dans les FIFOs.

initiales prises par les opérations dans les FIFOs des lieux de données. D’abord, chaque
opération doit avoir la méme position initiale sur toutes les ressources dont elle a besoin.
De plus, nous imposons que ces positions de priorités initiales suivent I'ordre ci-dessus. A
savoir, I'opération Compute a la priorité sur les autres. Ensuite, 'opération Local Update
arrive en deuxiéme position pour enregistrer les résultats calculés sur les buffers locaux.
La derniére priorité est attribuée a 'opération de mise a jour globale. En résumé, les or-
dres de requéte dans les FIFOs sont d’abord organisés avec les positions indiquées par
I’énumération ci-dessus, puis régénérés cycliquement au fur et a mesure de I’avancement
des itérations. Nous prouvons qu’en ajoutant ces contraintes a la forme CompUp, la suite
du calcul est garantie sans interbloccage.

Partitionnement Chevauché des Données

Le partitionnement chevauché des données consiste a étendre la main location pour in-
clure les éléments de la région halo. Chaque bloc est ensuite agrandi par deux fois le halo
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Figure 4 —Principaux schémas de partitionnement des données appliqués par Dido pour
un stencil 2D.

sur chaque dimension, comme indiqué a la figure 4(a). Le partitionnement chevauché
des données simplifie grandement le code et plus précisément le calcul des éléments sur
les frontieres de chaque bloc. Il constitue le schéma par défaut de partitionnement des
données appliqué par le générateur de code de Dido.

Localité Temporelle des Données

Ayant une faible intensité arithmétique, réduire la quantité et la fréquence des échanges
de données frontieres entre différents noceuds de calcul peuvent avoir un impact notable
dans la parallélisation des calculs stencils. Le blocage temporel est 'une des optimisa-
tions les plus largement utilisées pour réduire le temps de communication [DMV*08,
CSN*10, MS11, WHZ*09]. 1l consiste a partitionner I’espace d’itération en séquences de
taille fixe. Une telle séquence est composée d’itérations locales qui sont calculées alors
que les données sont conservées dans la mémoire locale. Les communications ne sont
effectuées qu’a la fin de chaque séquence. A cette fin, dans chaque dimension, chaque
bloc de données est agrandi de deux fois le halo multiplié par la taille de la séquence,
comme illustré a la figure 4(b). Pour calculer la premiere itération locale d'une séquence,
tous les éléments du bloc étendu sont requis. Les résultats sont stockés localement. Pour
la prochaine itération, aucune autre communication n’est requise car tous les éléments
sont déja présents. Apres chaque itération locale, le domaine de la boucle est réduit de
deux fois le halo.

Dido applique I'optimisation du blocage temporel lors de la génération du code pour
les stencils 2D et 3D uniquement si spécifié par 'utilisateur. Sinon, le schéma par défaut
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de partitionnement de données est appliqué.

Code Généré

Apres avoir exécuté le générateur de code Dido, Dido géneére cinq fichiers différents, y
compris le fichier Makefile. Les quatre autres fichiers contiennent le code ORWL appli-
catif suivant:

* {ApplicationName}-def.h et {ApplicationName}-def.c composentla déclaration et déf-
inition des taches ORWL, des lieux et des unités d’exécution.

* Lefichier {ApplicationName}-main.c contient la fonction main du programme ORWL.

* Le fichier {ApplicationName}-tasks.c comprend le code de communication ainsi que
le différentes fonctions et opérations CompUp.

Le code généré est constitué de code C avec les bibliotheques P99 et ORWL.

Pluto pour I'Optimisation du Code Généré

Les calculs de stencil peuvent étre écrits sous forme de simples boucles imbriquées avec
des bornes et des acces affines linéaires. Cependant, les implémentations intuitives de
boucles souffrent souvent d'une faible localité de cache. Pour améliorer la réutilisation
des données et la localité intra-nceuds, nous avons combiné notre technique de généra-
tion de code avec I'optimiseur de boucle polyédrique Pluto. Nous avons choisi Pluto car
il s’agit d'un transformateur de code source a source et peut donc étre appliqué directe-
ment. Cependant, nous devions décider de |’entrelacement du code généré par Pluto avec
ORWL et avons proposé deux solutions différentes: La premiere consiste a utiliser Pluto
pour optimiser la localité des données sur chaque cceur, c.-a-d. au niveau de la tache. Ici,
chaque nceud de calcul est associé a un processus ORWL composé de plusieurs taches.
Ces taches fonctionnent sur différents blocs de données en parallele. Nous utilisons Pluto
pour optimiser le noyau servi par ces taches. Donc, ici, Pluto n’est pas utilisé comme un
paralléliseur, mais plutdt comme un optimiseur de localité de données: le parallélisme est
uniquement basé sur ORWL et le code généré est exclusivement du code ORWL. En par-
ticulier, cette solution n'utilise pas OpenMP. La deuxiéme solution consiste a utiliser du
code parallélisé par Pluto au niveau du nceud. Ici, nous plagons un processus ORWL con-
sistant en une tache/bloc par nceud. Pour cette solution, nous nous appuyons sur Pluto
pour la localité des données, mais également pour le parallélisme a gros grain. Ceci four-
nit une solution hybride ot ORWL et OpenMP sont utilisés pour garantir le parallélisme a
différents niveaux.

Propriétés de Dido

Dido est un langage dédié implicitement parallele qui présente une grande variabilité et
prend en charge une large gamme de calculs stencils multidimensionnels. Il répond aux
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Table 1 — Nombre de lignes de code manuscrites vs. nombre de lignes de code générées

métrique Livermore | 3D Wave | 3D 27-pt Jacobi
lignes manuscrites 68 63 77
lignes générées 711 988 2081

besoins spécifiques de I'application a un niveau d’abstraction élevé et offre a la fois des
avantages en termes de productivité et de performances. Dido a été congu pour améliorer
la productivité des programmeurs en leur évitant d’écrire les parties complexes du code
parallele ORWL. Avec une spécification de stencils qui ne dépasse pas quelques lignes de
code simple, des centaines de lignes de code sont générées. Le code généré est garanti
d’étre correct et sans erreur. Le tableau 1 présente le nombre de lignes manuscrites par
rapport au nombre de lignes de code générées pour les benchmarks considérés. Le nom-
bre de lignes a écrire par l'utilisateur, dans le cas d’'un Jacobi 3D a 27 points par exemple,
est réduit de 96%. Nous estimons qu’il s’agit d’'une amélioration considérable en termes
de productivité des programmeurs.

En outre, Dido offre des caractéristiques intéressantes pour les applications basées sur
des stencils multi-dimensionnelles. D’abord, il permet de profiter de toutes les propriétés
de ORWL. A cela s’ajoute de nouvelles propriétés telles que la garantie de |'exactitude, de
la lisibilité et de la découvrabilité du code généré. La combinaison de ces propriétés fait
de Dido un outil puissant de génération de code pour les calculs stencil en général, et en
particulier pour les architectures a mémoire distribuée.

0.6 Evaluation des Performances

Nous avons effectué une campagne de tests pour prouver l'efficacité et la scalabilité du
code généré par Dido sur des configurations composées de 768 coeurs physiques. Nous
avons évalué les performances de différents benchmarks avec de différentes configura-
tions:

1. Code ORWL généré par Dido avec uniquement les optimisations standards du com-
pilateur.

2. Code ORWL généré par Dido avec blocage temporel.

3. Code ORWL généré par Dido avec blocage temporel et les optimisations de localité
de données de Pluto. Cette solution n'utilise pas OpenMP.

4. Code ORWL généré par Dido avec blocage temporel ainsi que les optimisations de
localité de données et la parallélisation de Pluto. ORWL et OpenMP sont ici tous
deux utilisés pour assurer le parallélisme a de différents niveaux.

5. Code stencil MPI.
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Figure 5 —Scalabilité du Code Généré par Dido pour les Benchmarks Heat 2D et Wave 3D

Nous avons aussi étudié la scalabilité du code généré par Dido pour une application
réelle, i.e. la dynamique moléculaire.

Les expériences ont montré que le code généré par Dido est scalable et exploite les
propriétés d’efficacité et de scalabilité du modéle ORWL (cf. figure 5). Ceci reste valable
pour de différentes caractéristiques de stencils ainsi que pour des applications réelles (cf.
figure 6). Le code généré par Dido atteint également des performances plus élevées que
les implémentations manuscrites ORWL et MPI. Ceci est di aux connaissances du do-
maine qui ont été incluses dans le pattern de génération de code ansi qu’a la qualité du
code généré. La forme CompUp, en particulier, assure aux taches une certaine indépen-
dance par rapport a leurs voisins. En fait, des que les régions d’ombre sont mis a jour
dans la main location, les buffers correspondant aux lieux d’'ombres sont libérés et préts
a recevoir les prochaines mises a jour des données des voisins sans interférer avec le cal-
cul. Des que l'opération Compute nécessite des valeurs mises a jour, celles-ci sont déja
disponibles et prétes a étre lues. En conséquence, les opérations Compute des taches
voisines peuvent étre exécutées simultanément, ce qui améliore considérablement les
temps d’exécution. Quant aux optimisations appliquées, le blocage temporel améliore
dans la plupart des cas le temps de calcul. De plus, la combinaison du blocage temporel
avec les transformations de boucles de Pluto fournissent des accélérations élevées. Les
deux configurations, utilisant Pluto pour la localité des données, conduisent a des gains
de performance substantiels. Cependant, la configuration hybride, utilisant OpenMP
pour garantir le parallélisme intra-nceud, a donné de meilleurs résultats en termes de
performances sur la plupart des tests. Cette solution hybride est donc un candidat clair
pour un choix par défaut automatisé pour les utilisateurs de Dido qui ne souhaitent pas
effectuer de calibrage a I’exécution.
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Figure 6 — Scalabilité du Code Généré par Dido pour I'’Application de Dynamique
Moléculaire

0.7 Conclusions

Nous avons présenté Dido, un langage dédié implicitement parallele pour la génération
de code ORWL de stencils. Dido réalise a la fois des gains en termes de productivité et
de performances. Il permet a une grande communauté de programmeurs d'implémenter
facilement et en toute sécurité des codes de stencils paralléles et d’exploiter, a moindre
colit, les propriétés du modele ORWL. Cela évite a I'utilisateur tous les détails de paral-
lélisme nécessaires a I’écriture d’'un code stencil haute performance. Il répond aux be-
soins des applications réelles en prenant en charge plusieurs types de données et de con-
ditions de bords. En outre, des expériences ont montré que la productivité et les per-
formances, souvent considérées comme antagonistes, peuvent étre réconciliées lors de
l'utilisation de Dido. Le code généré est scalable et offre des performances concurren-
tielles supérieures a celles du code écrit a la main.

De plus, nous montrons que le code ORWL généré est bien structuré et se préte a de
différentes optimisations parmi lesquelles le blocage temporel que nous utilisons dans
certains cas afin de réduire les cofits de communication et de minimiser les transferts
de données. Nous combinons I'optimisation du blocage temporel avec les capacités de
réutilisation des données intra-nceud de ’optimiseur de boucle polyédrique Pluto. Cela a
considérablement amélioré les performances du code généré. Nous montrons également
que Dido a le pouvoir d’expression pour modéliser des applications réelles basées sur des
stencils.

La lisibilité du code généré par Dido permet a 'utilisateur de le prendre facilement
en main. Il peut donc facilement le modifier. Dido peut ainsi devenir un outil intéractif
aidant les utilisateurs a mettre en ceuvre de grandes applications comprenant des calculs
stencils et a générer du code stencil pour des architectures a mémoire distribuée.
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Introduction and
Motivation

1.1 Context

Shared memory versus distributed memory are the two predominant low-level abstrac-
tions of parallel programming. At first glance, programming on shared-memory multi-
processors may seem easy as processors share a single view of the data. There is conse-
quently no first-hand need for adding specific abstractions to the computational model
for communication. Yet, this apparent facility is not met in practice. In general, three
major problems persist:

» The existence of several writers or readers poses a threat to data integrity.

* Locking strategies, often used to grant access to critical sections, jeopardize the exe-
cution liveness.

e Shared data accesses from different processing cores can substantially subvert par-
allel acceleration.

OpenMP! and POSIX threads? are the most commonly used programming interfaces
for shared-memory programming that deal with these difficulties. However, the pro-
cessing power of shared-memory multiprocessors remains limited by the impossibil-
ity of scaling shared memory to a large number of processors. For numerous sci-
entific and engineering fields where compute-intensive large-scale simulations are re-
quired [CB95, MW04, BBG"98, PPS*13] writing parallel code for distributed memory ar-
chitectures becomes inevitable. Programming on distributed-memory architectures has
its own inherent challenges. One major challenge consists in defining how the processors
may coordinate in order to cooperatively solve a common computing problem. Such a
coordination involves the definition of a data partitioning scheme in addition to explicit
synchronization and communication to manage the data movement between the differ-
ent processors. MPI3 (Message Passing Interface) is currently the dominant and most

http://www.openmp.org/
Zhttp://pubs.opengroup.org/onlinepubs/9699919799/
3http://mpi-forum.org/
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widely used paradigm for distributed-memory parallel programming. None of the previ-
ously listed computing paradigms by itself is adequate to solve today’s challenges on large
scale computing platforms which combine shared and distributed memory in hierarchi-
cal architectures.

ORWL, see [CG10b], proposes a uniform access model for resources (data, proces-
sors, memory, etc.) that can be used in shared memory, distributed-memory or mixed
contexts. This inter-task synchronization paradigm targets iterative resource-oriented
parallel algorithms. It favors algorithmic control and data consistency by introduc-
ing a FIFO-based lock mechanism that handles data-dependencies between tasks and
data resources. One of the originalities of ORWL is the proactive announcement of
the resources that a task requires for a future computation. A reference implementa-
tion [CG10a, GVM14] has proven the validity and performance of the ORWL model.

Similarly to other general purpose parallel programming paradigms for distributed-
memory architectures, ORWL code can be complex and tedious to write. Currently, the
main hurdle for using ORWL lies in its demanding initialization phase where the pro-
grammer has to specify the access scheme between tasks and resources and the initial
positions of the tasks in the FIFOs. The latter are decisive for the liveness of the applica-
tion, and thus should be attributed with a lot of care. Once this tedious but necessary step
is done correctly, all subsequent iterations are guaranteed to be deadlock-free and fair.
In order to alleviate this burden and enhance programmer productivity, we aim to auto-
matically generate ORWL code, including the attribution of initial handle positions in the
FIFOs, without sacrificing the performance. A common approach is to give up generality
and tailor a solution for a particular domain, here stencils. The computational pattern
of stencil computations consists of iterative sweeps over a data grid, where each grid el-
ement is updated as a function of its neighboring elements. As stencil kernels are well
structured and computation-intensive, they should considerably benefit from a model-
ing using ORWL. Eventhough the modeling power of ORWL largely exceeds the stencils,
in this work we concentrate on these.

Stencil computations constitute the dominant part of many scientific and engineer-
ing applications. For instance, plenty of physical phenomena such as molecular dy-
namics or seismic waves can be described by elliptic time-dependent partial differen-
tial equations (PDEs) and rely on stencil-based numerical discretization methods to be
solved. Other stencil computations are at the core of many image processing algorithms
and applications such as CT and MRI imaging [CZ08] and object detection [SGRP16]
and tracking [GJM16a]. An efficient parallelization and optimization of stencil kernels
can greatly enhance the overall performance of those applications. Therefore, a num-
ber of recent studies target optimizing stencil computations on both multicore CPUs and
GPUs [CM09, PF10, Wol89, DMV*08, NSC*10].

Stencil computations are often parallelized through a decomposition of the data grid
into several blocks or tiles, such that the computation of a specific block requires updated
data from neighboring blocks. Conceptually, this enforces the use of so-called shadow
regions that surround each block with its updated neighborhood information. These
are very difficult to handle since they often need complex case analysis for communi-
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cation statements and index calculations. Usually, the burden of the creation and man-
agement of the shadow regions lays on the application programmer. Apart from that, the
programmer is responsible for handling overlapped computations and communications
over block resources. Therefore, they need the support of a powerful inter-task synchro-
nization mechanism such as ORWL, though not without effort as previously mentioned.
To alleviate this burden, our approach is to add a layer, based on an implicitly parallel
domain-specific language (DSL) [FRR*07] on top of ORWL.

DSLs offer on one hand appropriate domain-specific notations, constructs and ab-
stractions, which improves the expressiveness and thus the productivity in the partic-
ular domain they are designed for, compared with general-purpose programming lan-
guages (GPL). On the other hand, domain specific frameworks achieve code efficiency
thanks to the incorporated domain-specific knowledge. They usually provide accept-
able performance and can sometimes reach the performance levels that are attained by
hand-coded implementations. Hence, they allow to balance programmability and per-
formance. Not surprisingly, in recent years, DSLs have been widely used in parallel pro-
gramming to spare the user the details and the complexity related to parallel program-
ming. In particular, numerous research efforts have adopted DSL solutions to optimize
stencil computations. Some of them introduce auto-tuning frameworks for multicore ar-
chitectures [DMV*08] and GPU accelerators [ZM12, HPS12] within DSLs. Others sug-
gest DSL-based stencil compiler transformations to generate efficient code for GPUs and
multicore processors[HHV*]. The Pochoir stencil compiler[TCLL11], for example, uses
cache-oblivious parallelograms for parallel execution on shared-memory systems to pro-
duce high-performance code for stencils.

1.2 Contributions

With this work, we aim to bridge the gap between productivity and high performance
by allowing scientific domain experts or average programmers to develop ORWL sten-
cil codes that meet their specific application needs without becoming experts in parallel
programming in general, nor in ORWL in particular. We propose a DSL-based solution
to make stencil implementations within the ORWL framework simpler and more user-
friendly.

Dido [SGM16] is an implicitly parallel domain-specific language for general multidi-
mensional stencil computations that uses ORWL as a communication and runtime back-
end. It meets the specific needs of the application at a high level of abstraction and
achieves both productivity and performance benefits. Our main contributions are:

* We present Dido, a user-friendly interface based on a Domain-Specific Language
(DSL) that captures high level stencil abstractions and automatically generates
ORWL parallel high-performance stencil code. The generated code can be deployed
on shared-memory, distributed-memory or mixed contexts.

* We suggest a pattern for ORWL stencil programs that we call CompUP. This pattern
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is relevant for different ORWL implementations not only for stencil computations.
It ensures expressiveness, deadlock-freeness and better performance for ORWL pro-
grams.

e We show that Dido achieves a huge progress in terms of programmer productivity
without sacrificing the performance. We expose the complexity of the generated
code and the amount of complex details the DSL spares the user.

* We expose the large variability of Dido and its ability to support a wide range of sten-
cil computations and real-world stencil-based applications.

* We show that the well-structured code generated by Dido lends itself to different pos-
sible optimizations and study the performance of two of them:

- We integrate a temporal blocking optimization to the Dido code generator in
order to reduce the communication overhead and minimize data transfers.

- We combine Dido’s code generation technique with the polyhedral loop opti-
mizer Pluto to increase data locality and improve intra-node data reuse.

* We present experiments that prove the efficiency and scalability of the generated
code that outperforms hand-crafted code.

* We present a benchmark and testing campaign that proves the efficiency and scal-
ability of the Dido generated code on configurations composed up to 768 physical
cores. We show that Dido stencil codes are widely scalable. They outperform MPI
stencil implementations. On top of that, the two integrated optimizations combined
show important performance gains.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2 and Chapter 3, we
present the Ordered Read-Write Locks (ORWL) model and the polyhedral model, respec-
tively. In Chapter 4, we describe the stencil computational pattern considered in this work
as well as the motivations of our work. Chapter 5 describes the stencil benchmarks and
real-world applications considered in this work. An overview of automatic code gener-
ation and optimization frameworks for stencil computations is presented in Chapter 6.
In Chapter 7, we suggest a code generation pattern for ORWL multi-dimensional stencil
computations. Chapter 8 provides a full specification of Dido grammar and architecture.
In Chapter 9, we exhibit the structure of Dido generated code, as well as the different
measures taken in order to make the complex generated code as clear, readable and effi-
cient as possible. Chapter 10 highlights the different features that Dido guarantees for the
generated code. Chapter 11 gives a performance evaluation of Dido generated code. We
summarize our work in Chapter 12 and present future directions in Chapter 13.



CHAPTER
Ordered Read-Write Locks

Applications requiring parallel computation over a data space usually involve a set of in-
terdependent tasks that present data dependencies over different shared resources, i.e.,
the output of one task may be the input to one or more other tasks. The data dependen-
cies can be read or write operations that are not necessarily atomic. As an illustration, take
the example of block-partitioned iterative matrix computations where tasks are responsi-
ble for computing their own blocks, but still need to read data from neighboring blocks.
These tasks would compete to acquire a write access to their own blocks and a read-access
to neighboring blocks that are usually too big for an atomic wait-free operation on system
level.

In [CG10Db], PN. Clauss et al. came up with a new model that offers an efficient solution
to similar problems. The building block of this model is called Ordered Read-Write Locks
(ORWL), a special kind of read-write locks. ORWLs have similar semantics to common
read-write locks i.e., Concurrent Read and Exclusive Write, but apply in addition a FIFO
ordering on the requesting tasks.

In this chapter, we provide a description of the Ordered Read-Write Locks (ORWL)
model as presented in [CG10b]. Section 2.1 presents the ORWL model. Section 2.2 de-
scribes a formal representation of the data access pattern of ORWL tasks that enables the
detection of deadlocks. In Section 2.3, we show that ORWL is particularly suitable for the
cyclic data access pattern present in iterative computations. Section 2.4 describes the
standalone reference implementation of ORWL. In Section 2.5, we highlight the fact that
the ORWL model is a local-view programming paradigm. Section 2.6 outlines the main
features that distinguish it from classic Read-Write Locks (RWL).

2.1 ORWL Model

ORWL (Ordered Read-Write Locks) is an inter-task synchronization paradigm for
resource-oriented parallel and distributed algorithms. It provides lock-based synchro-
nization methods that allow an implicit deadlock-free and equitable control of protected
resources. Here, a resource can be an abstraction of data, hardware or software on which
tasks interact. ORWL provides a way to control algorithmically the execution order of
tasks based on their data dependencies by introducing a FIFO-based lock mechanism
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that handles data-dependencies between threads. It favors algorithmic control and data
consistency, while guaranteeing a high degree of parallelism and asynchronicity.

The ORWL model is based on the following features:

1. An association of a lock with each ORWL resource. Lock objects and resources are
tightly coupled.

2. An access queue (FIFO) for each lock.

3. A distinction between locking for exclusive writing access and locking for inclusive
reading access.

4. A distinction between locks and lock handles (LH) that are user interfaces acting on
the locks. Acquisition is granted to lock handles rather than threads.

5. A three-step lock operation by a sequence of request (queue insertion), acquire
(blocking until first in queue) and then release.

All of these features combined insure the liveness, equity and efficiency of the application.

Pro-active announcement

The logic behind ORWL is that a task anticipates and pro-actively announces the re-
sources it is going to require for future computation. Through a lock handle, it requests a
slotin the FIFO queue of the resource (cf. Listing 2.1). Such a mechanism is non-blocking,
that is, after posting the request, the task is free to continue execution. Only when the ac-
cess to the resource becomes indispensable for the continuation of the task, this latter
attempts to acquire it. It is then blocked until the request moves first in the FIFO queue
and the access to the associated resource is granted. A task is said to be active and can
be executed only when it acquires all the locks it has requested. In other terms, a task is
delayed until it detains the first rank in all the required resources waiting queues. Only
then, it is allowed to be executed and can perform whatever action it is designed for.

Listing 2.1 — A simple critical section operating on one resource through an
orwl_handle

/% announce the access */
orwl_write_request (&loc, &handle);

/% some operation without the resource x/
/ * then, block until access granted */
orwl_acquire (&handle) ;

/ * some critical operation with locked resource x/
/ * then, free the resource */

orwl_release (&handle);
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Such a mechanism enables the runtime system to anticipate the access, e.g. by doing
a data prefetching, at a reduced cost. In particular, it allows to hide access latency that
could be caused by slow communication links.

2.2 Synchronization Overlay

For a given interdependent system of tasks, the ORWL model associates a synchronization
overlay as an abstraction of the data access pattern. Its main role is to specify the exact
execution order of the different tasks. It also enables the detection of deadlocks, if any, as
explained in Subsection 2.2.3.

A synchronization overlay atop a system of interdependent tasks is defined as follows:

* The data space is maximally partitioned into primitive chunks called ORWL locations
according to the different data dependencies.

* An ORWL lock is associated to each ORWL location.
* A lock handle (LH) is associated to each lock request.
e Each of the ORWL locations can stack any number of read and write lock requests.

* Lockrequests in alocation waiting queue are numbered bottom-up. This numbering
corresponds to the position of the lock request in the resource waiting queue.

* A request can be served only when it holds the lowest rank in the resource waiting
queue.

» Ataskis active and can thereby be executed when it has acquired all its lock requests.

The synchronization overlay is visualized through a data dependency graph as shown
in Figure 2.1. Locations are represented on the x-axis. The waiting queues are presented
by vertical dotted lines. Exclusive Write Requests (Xreqs) and Inclusive Read Requests
(Ireqs) are symbolized by [J and O, respectively. Arrows connect Xregs to Ireqs symboliz-
ing the need for a given write request to hold read-locks on other required locations before
getting executed.

2.2.1 Canonical Form

The canonical form is a configuration where each ORWL task has exactly one ORWL loca-
tion to which it has requested an exclusive write access, and where each ORWL location
is required for writing by only one task. In other words, in the canonical form, tasks and
resources are in a 1-1 correspondence, where each task "owns" its unique resource for
which it is responsible, and each resource has its unique task that will be able to modify
it. Thereby, in the canonical form, each task posts exactly one Xreq.
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Initial FIFO Ordering

Locations

Figure 2.1 — An ORWL synchronization overlay
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Figure 2.2 — An overlay in a non-canonical form and its equivalent overlay in the canoni-
cal form after transformation [CG10b]

In its general form, the ORWL model allows multiple tasks to have write access to the
same ORWL location. It has been proven in [CG10b] that such a general overlay system
can be transformed into an overlay in the canonical form while keeping the same execu-
tion order of the tasks as shown in Figure 2.2. This canonical form can be achieved by
splitting the original tasks into auxiliary sub-tasks that keep the same read-write seman-
tics, see [CG10Db] for the procedure and the proofs.

Ultimately, given an overlay in the canonical from, a task is executable if it acquires a
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Figure 2.3 — Delays imposed by the priority order on the lock requests [CG10b]

write access to the resources it owns and a read access to the required resources owned
by other tasks.

2.2.2 Delay Digraph

Given an overlay in the canonical form, the corresponding delay digraph is a directed
graph that is constructed as follows:

1. Vertices correspond to locations.

2. Edges correspond to existing links in the overlay between a pair of locations L1 and
L2.

3. Edge orientations are determined by the link in the overlay as follows:
e L1 — L2 if the Xreq for L1 is connected to an Ireq which is above an Xreq for L2

(cf. Subfigure 2.3(a)).

e L2 — L1 if the Xreq for L1 is connected to an Ireq which is below an Xreq for L2
(cf. Subfigure 2.3(b)).

2.2.3 Liveness Conditions

The liveness of an overlay depends only on the initial configuration, precisely the initial
ordering of the lock-handles. It has been proven in [CG10b] (see Lemma cited below)
that, for an overlay to be in deadlock, there must be a cycle among its dependencies that
is detectable on its delay digraph (cf. Figure 2.4). If there is no such cycle, the overlay is
guaranteed to be deadlock-free.

Lemma:

An overlay S in canonical form has a deadlock iff there is a cycle in its delay digraph.
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Figure 2.4 — An example of an overlay in the canonical form and its corresponding delay
graph presenting a cycle and hence a deadlock

2.2.4 Overlay Initialization

Given a set of tasks 9, the conflict graph C(J) is an auxiliary graph that models paral-
lelism between tasks. An edge is drawn between v, w € 9 if v reads the output of w or w
reads the output of v. We say that a subset of tasks 7' < J is independent if there is no
data dependency between any pair of tasks v, w € J'. Independent sets of tasks may be
executed in parallel.

Algorithm 1 : Compute an initial request ordering [CG10b].
Input: A set of tasks I, a set of lock locations £ and for each task T € 9~ a list of
Xregs (X1, ..., Xy) and of Iregs (I3, ..., I), where the X; and I; are locations in £.

Output: For each L € £, a priority ordering of the requests for L such that the
resulting overlay as a whole is deadlock-free.

Construct an implicit representation of the conflict graph C(9);

Compute a coloring 97 , ..., 9 of C(9), by partitioning the tasks into independent
task sets and attributing a different color to each partition;

Foreach location Le £ of T do
| initialize p(L) to 0;

Foreach colorc=1,...,x do
Foreach task T € . do

Foreach X;.; X of T, X=X, ..., X, do
increment p(L), set the priority of X to the new value and increment
p(L) again;

Foreach I,., I of T ,1=1, ..., I, do
| set the priority of I to p(L);
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Figure 2.5 — Two different initializations of the same set of requests [CG10b].

Algorithm 1 provides a strategy to construct a deadlock-free overlay. It consists of par-
titioning the tasks into independent task sets that do not have conflicts, and distinguish-
ing them by attributing a different color to each partition. For a given task, lock initial
requests are then placed according to the position of its color class. Figure 2.5 shows, e.g.,
two possible initializations of the same set of requests following Algorithm 1. It has been
proven in [CG10b] that Algorithm 1 generates an overlay that is deadlock-free.

2.3 Iterative Tasks

The pro-active locking in ORWL enables a thread or a process to define several handles
on the same lock, and thereby to newly request a lock by means of one handle while still
actively holding alock via another handle. Thereby, iterative tasks may insert their request
for the next iteration in the FIFO while still holding a lock for the current one. This is a big
advantage for iterative computations that access data in a cyclic pattern, and the library
provides specific tools that implement this pro-active iteration scheme.

The type orwl_handle2 presents a pair of orwl_handle that are bound to the same re-
source and used in alternation. At the start of each iteration, one of the two handles is
bound to the resource to grant the access for the current iteration, while the other is inac-
tive. At the end of the iteration, before releasing the lock, a new request for the next itera-
tion is automatically posted through the inactive handle. This guarantees the reservation
of the resource for the next iteration at the same initial FIFO ordering, before releasing the
lock to grant access to other tasks operating on the same resource. Listing 2.2 shows an
example of a request-acquire-release sequence over a resource accessed iteratively.

2.4 ORWL Library and Runtime

The ORWL model comes with a standalone reference implementation, 1iborwl [GVM14],
that uses standard languages and interfaces (C and POSIX). It can be used in shared, dis-
tributed or mixed contexts. It is solely based on sockets for inter-node communication



© ® N g A W N =

—
5]

CHAPTER 2. ORDERED READ-WRITE LOCKS 28

Listing 2.2 — A critical section operating on one resource, accessed iteratively, through an
orwl_handle2

/% bind a pair of handles to the resource */
orwl_write_request2 (&loc, &handle2);

/% some operation without the resource x/
/ * then, block until acces granted */
orwl_acquire2 (&handle2);

/% some critical operation with locked resource x/
/ * free resource + new request for next iteration * /

orwl_release2 (&handle2);

and on threads for intra-node sharing of data. In fact, Taktuk! is responsible for deploying
the remote execution on available nodes as well as transporting files and commands. It
sets up an interconnection network by collecting node properties (IP address, port num-
ber) and sending them to all nodes. This allows a point-to-point communication between
the different tasks.

The runtime is decentralized: after an initial starting phase, no global task schedul-
ing or explicit synchronization is necessary. Data transfer is triggered by events, such as
the termination of a specific task, and is performed as much as possible concurrently to
computation.

2.5 Local-View Programming Paradigm

An ORWL application is often composed of a set of equivalent concurrent tasks. Each task
has a set of owned resources on which it executes its specific program code. An ORWL
program is then specified as a local description of one task that we call the main task.
The main task can refer to its own resources (local) or those of other tasks (remote). The
tasks interact through communication and synchronization operations via the locks they
subsequently acquire for these resources. This includes all operations executed on the
locally owned resources. The tasks are realized by threads (local execution) and processes
(remote execution) and the operations on the resources are implemented in shared mem-
ory, when possible, or through network communications on the socket level.

2.6 ORWL Features

Implementations of classic read-write locks (RWL), do not guarantee the access order of
tasks in case of multiple simultaneous access requests over the same resource. To avoid
starvation, these implementations tend to prioritize write requests even if these have

http://taktuk.gforge.inria.fr/
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been preceded by pending read-requests. This has many disadvantages. It is first a se-
rious issue for the application accuracy. Applications should therefore not rely on the
access order. In addition, possible lock inversion may lead to deadlocks that are tedious
to avoid. Besides, writing tasks could alternate over one lock leaving the other reading
tasks endlessly waiting. It is thus difficult to guarantee an equitable progression for all
tasks. This explains the limited use of RWL despite its availability in all modern OS.

Unlike classic read-write locks, ORWL allows to retrace the exact execution order of
tasks on a given resource. This order is fully determined by the initial configuration, and
namely by the initial priorities attributed to the different lock-handles. This guarantees
both accuracy and liveness for the application. ORWL guarantees, in addition, an equi-
table progression of all tasks. Since the order specified in the initialization phase is strictly
respected, readers and writers, that have reserved a slot in the resource waiting queues are
guaranteed an access. This prevents tasks from endlessly seizing or waiting for a lock and
therefore guarantees the equity among tasks.

Experiments have also shown that ORWL is a powerful synchronization tool that
guarantees efficiency for a wide range of applications, and several series of bench-
marks have demonstrated outstanding performance in different computational con-
texts [CG10a, GVM14, SGM16]. It also presents a valid choice for out-of-core computa-
tion [CG10a].

To sum up, ORWL has many distinguishing features such as guaranteeing efficiency,
accuracy, liveness and equity among tasks, which makes of it an excellent choice for pro-
gramming parallel and distributed applications.

2.7 Initialization Phase

In the iterative setting, ORWL can guarantee the crucial properties of liveness and eq-
uity for all tasks, although this comes not without effort. As evoked in Subsection 2.1, the
initial FIFO positions of the locking requests are decisive. They must be attributed with
a lot of care in order to avoid cyclic dependencies that may lead to a deadlock. Conse-
quently, the initialization phase where the programmer specifies the initial access order
of the tasks to the resources is tedious to implement and error prone. As an example,
Listing 2.3 corresponds to the initialization phase of a triangle of tasks, Task 0, Task 1 and
Task 2 where each task of the three communicates with the two others. Each task has thus
a write access to two local locations and a read access to two remote locations. Despite
the simplicity of the example, it is obvious that the initialization phase is not trivial and
can easily result in errors.

On the other hand, once this key step is done correctly, all subsequent iterations are
guaranteed to be deadlock-free and fair. One of the main motivations of this work is to
alleviate this programming task and automate the initialization phase, including the at-
tribution of initial FIFO positions.
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Listing 2.3 — Example of the initialization phase: a triangle of tasks, Task 0, Task I and
Task 2, each communicating with the two others.

ORWL_LOCATIONS_PER_TASK( // ORWL Location Declarations
orwl_location_O,
orwl_location_1,

)
ORWL_LOCATIONS_PER_TASK_INSTANTIATION();

static void orwl_taskdep_init_O(orwl_handle2 hdl_in[static 2],
orwl_handle2 hdl_out[static 2]) {
// the internal state used for p99_rand
p99_seed * const seed = p99_seed_get ();
// an ORWL server thread responsible for receiving incoming
// connections and dispatching the data to callback threads
// that will handle the requests.
orwl_server * const server = orwl_server_get ();

orwl_write_insert (&hdl_out[0], ORWL_LOCATION(0,0), O, seed, server);
orwl_write_insert (&hdl_out[1], ORWL_LOCATION(O,1), O, seed, server);

orwl_read_insert (&hdl_in[0], ORWL_LOCATION(1,1), 1, seed, server);
orwl_read_insert (&hdl_in[1], ORWL_LOCATION(2,0), 1, seed, server);

orwl_schedule(); // synchronization

};

static void orwl_taskdep_init_1(orwl_handle2 hdl_in[static 2],
orwl_handle2 hdl_out[static 2]) {
p99_seed*const seed = p99_seed_get ();
orwl_server*const server = orwl_server_get ();

orwl_write_insert (&hdl_out[0], ORWL_LOCATION(1,0), O, seed, server);
orwl_write_insert (&hdl_out([1], ORWL_LOCATION(1,1), O, seed, server);

orwl_read_insert (&hdl_in[0], ORWL_LOCATION(2,1), 1, seed, server);
orwl_read_insert (&hdl_in[1], ORWL_LOCATION(O0,0), 1, seed, server);

orwl_schedule(); // synchronization

};

static void orwl_taskdep_init_2(orwl_handle2 hdl_in[static 2],
orwl_handle2 hdl_out[static 2]) {
p99_seed*const seed = p99_seed_get ();
orwl_serverx*const server = orwl_server_get ();

orwl_write_insert (&hdl_out [0], ORWL_LOCATION(2,0), O, seed, server);
orwl_write_insert (&hdl_out[1], ORWL_LOCATION(2,1), O, seed, server);

orwl_read_insert (&hdl_in[0], ORWL_LOCATION(O,1), 1, seed, server);
orwl_read_insert (&hdl_in[1], ORWL_LOCATIONC(1,0), 1, seed, server);

orwl_schedule(); // synchronization
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In this work, we use PLuTo[BHRS08], an automatic source-to-source loop-optimizer
based on the polyhedral model, to increase data locality and improve intra-node data
reuse. The polyhedral model, also called polytope model, is a mathematical abstraction
that offers a representation capturing the execution of programs in a mathematical form
suitable for analysis and transformation using machinery from linear algebra and linear
programming. It offers a powerful platform for compile-time program optimization. Un-
like typical compilers where intermediate representations abstract the input code as ab-
stract syntax trees (AST) or control-flow graphs (CFG), polyhedral compilers reason about
individual statement iterations.

The polyhedral model represents the iteration space as a set of integer points inside a
parametric polyhedron on which operations corresponding to loop transformations are
performed. The transformed polytopes are then translated into equivalent, but opti-
mized, loop nests.

This chapter provides an overview of the polyhedral model. In Section 3.1, we present
the basic mathematical notions behind the polyhedral model. Section 3.2 shows how
affine loop nests are represented in this model. In Section 3.3, we present an overview of
the most commonly used polyhedral tools and libraries.

3.1 Mathematical Background

In the following, K denotes an Euclidean space.

Definition 1 (Affine function). A function f : K™ — K" is affine if there exists a matrix
AeK™" and a vector b € A" such that:

VEeK™ f(X)=AX+ b
Definition 2 (Affine hyperplane). An affine hyperplane of an n-dimensional space K" is

an affine subspace of dimension n—1. For @ € K" with d # 0 and a scalar b € K, an affine
hyperplane is the set of all vectors X € K" such that:
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a.x =b,

For instance, a point, a line and a plane are hyperplanes in 1-, 2- and 3-dimensional Eu-
clidean spaces, respectively.

Definition 3 (Affine half-space). An affine hyperplane of equation a.x = b divides the
space into two half-spaces, defined by the inequalities:

a.x<bandd. X =b
where @ € K"(G #0) and (b € K).

Definition 4 (Convex Polyhedron) The intersection of a finite number of affine halfspaces
defines a convex polyhedron, each half-space providing a face of the polyhedron. A poly-
hedron P c K" can be expressed as a set of m affine constraints in a constraint matrix

A e K™ and a constraint vector b € K™ as:
P={XeK"|AX+ b =0}

Definition 5 (Parametric Polyhedron) A parametric polyhedron denoted P(p) is a polyhe-
dron parametrized by a vector p € KP such that:

P(p)={X K" | AX +Bp + b =0}

where A € K™ is a constraint matrix, B € K"*? is a coefficient matrix and b € K™ a
vector of contants.

3.2 Polyhedral Representation of Loop Nests

The most common use of the polyhedral model is for loop nest transformation in pro-
gram optimization. The polyhedral model is applicable to any sequence of arbitrarily
nested loops with affine bounds and accesses, also called affine loop nests. These form the
compute-intensive core of linear algebra kernels and stencil computations. For example,
the left loop nest in Listing 3.1 can be represented using the polyhedral model as all of the
loop bounds, data access expressions and control statements are affine functions. On the
contrary, the right loop cannot be represented because of the array indirection present in
the second loop upper bound (c[i]) that cannot be analyzed statically using the polyhe-
dral model.

The polyhedral model allows the representation of memory references of individual
statement iterations without handling the semantics of the instructions inside each state-
ment. It represents statements in loop nests as a combination of three essential con-
structs: the iteration domain, the access function and the schedule function. In the follow-
ing Subsections, we detail these constructs.
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Listing 3.1 — Affine and non-affine loop nest examples.

for (i = 0; i <= N; i++) for (i = 0; i <= N; i++ )
for (j = i; j <= N; j++ ) for (j = 0; j <= C[il; j++ )
if (i+j-P>=0) ATil[j]1 = BL[jl; //s2

A[il[j] = BLi+j-P]; // S1

3.2.1 Iteration Domain

Definition 6 (Iteration Vector). Let S be a statement of a program. An iteration vector of a
statement S is an n-dimensional vector containing a possible combination of loop iterator
values surrounding the statement S, where n is the depth of the loop nest enclosing the
statement.

The iteration vector represents thus a dynamic instance of a statement. For example,
vectors (0, p), (1,p—1), ..., (N—1, N—1) are possible iterator vectors for S1 (see Listing 3.1
left).

Definition 7 (Iteration Space or Domain). The set of all iteration vectors for a statement S
is called the iteration domain. It is denoted by 2°.

The iteration domain presents a compact way to represent all the instances of a given
statement. It can be expressed as a system of linear constraints. For example, the itera-
tion domain of the one statement in Listing 3.1 left, i.e., s1= {A[i][j1=B[i+j-P];}, can be
expressed as:

Ds, (N,P) = (;)ezz i<j<N

The iteration domain may be represented graphically as in Figure 3.1. Each integer
point in the graphical representation stands for one instance of the statement.

3.2.2 Access Function and Schedule Function

In the polyhedral model, memory references accessed by each instance, corresponding
to are represented as accesses to multidimensional arrays through linear functions of the
enclosing loop iterators. These are the key for performing precise dependency analysis.

Definition 8 (Access Function). For a statement S at depth d accessing a m-dimensional
array, its access function is defined as: f{X} = MX + m, where M € Z**™. The access
function maps each point of the iteration domain with an array access.
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i+j=4

Figure 3.1 —Iteration Domain Graphical Representation.

Definition 9 (Schedule Function). The scheduling function of a statement S, known also
as the schedule of S, is a function that maps each dynamic instance of S to a logical date,
expressing the execution order between statements:

VxeDS,0s(X)=T.X+ 1

Definition 10 (SCoP). A maximal set of consecutive statements in a program with convex
polyhedral iteration domains is called a static control part, or SCoP. for short.

More details about the polyhedral model and its uses in program representation are given
in [Bas04].

3.3 Polyhedral Tools

The use of the polyhedral model as a program representation allows the use of a
wide range of powerful tools and libraries that implement related operations such as
Clan [Bas08], ISL [Ver10], Pluto [Bon09], and Cloog-ISL [Bas13] for polyhedral extraction,
dependence testing, automatic transformation, and code generation, respectively. In this
section, we enumerate the most commonly used polyhedral tools and libraries.

3.3.1 Polylib

Polylib (Polyhedral Library) [Loe99] is a polyhedral library that operates on both parame-
terized or non parameterized unions of polyhedra to compute intersections, differences,
unions, convex hulls, simplifications, images and preimages, in addition to some input
and output functions. It can also be used to compute Ehrhart polynomials in order to
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count the vertices in a parameterized polyhedron. VisualPolylib is a visualization envi-
ronment that enables the interactive use of Polylib.

3.3.2 OpenScop

OpenScop (SCoPLib) [Bas11] is a portable polyhedral specification format that is widely
used to simplify the exchange between different polyhedral tools.

3.3.3 Clan

Clan (Chunky Loop ANalyzer) [Bas08] is a polyhedral parser for high level programs writ-
ten in C, C++, C# or Java. It extracts the polyhedral loop nests and translates them to
a polyhedral representation (OpenScop). The output can be then manipulated by other
tools for dependence analysis, program transformation, parallelization, efc.

3.3.4 Candl

Candl (Chunky ANalyzer for Dependencies in Loops) [Bas12] is a dependency-analysis li-
brary. It extracts the dependency graph and the associated dependency polyhedra from a
loop nest encoded in the OpenScop representation. It can also perform violation depen-
dence analysis to check whether a given transformation respects the program dependen-
cies. Thus, it is useful to build program transformations that respect the original program
semantics.

3.3.5 ISL

ISL (Integer Set Library) [Ver10] is a thread-safe C library that provides operations to ma-
nipulate sets and relations of integer points bounded by linear constraints. It is mainly
used in the polyhedral model for program analysis and transformation and for manipu-
lating unions of polyhedra.

ISL supports a large range of operations to manipulate sets such as intersection,
union, set difference, emptiness check, convex hull, affine hull, integer projection, com-
puting the lexicographic minimum using parametric integer programming, coalescing
and parametric vertex enumeration, efc.

3.3.6 CLooG

CLooG (Chunky Loop Generator) [Bas02] is a polyhedral library that has been originally
written to generate the code resulting from optimizing compilers based on the polytope
model. It can generate efficient code for a given polyhedron, i.e., it finds a code (e.g,,
C, FORTRAN...) that reaches each integral point of a union of parameterized polyhedra.
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CLooG embeds many optimizations that aim at avoiding control overhead to produce
highly efficient code. Additionally, it provides flags that enable the users to control the
code generation mechanisms for efficiency or for readability. CLooG is used in major
projects, e.g., Pluto and Graphite, to generate the output code. It is also embedded in the
GCC compiler for its advanced loop optimization features.

3.3.7 Pluto

PLuTo[BHRSO08] is an automatic source-to-source loop-optimizer based on the polyhe-
dral model. It is widely used for its ability to simultaneously provide synchronization-free
coarse-grained parallelism and improve data locality for arbitrarily nested static affine
loops. Pluto is mostly renowned for its parallelization and efficient tiling and diamond
tiling capabilities, but it also supports a wide range of loop transformations such as fis-
sion, fusion, skewing, interchanging, reversal, unrolling, etc. Pluto takes as input sequen-
tial affine loop nests written in C and generates parallel OpenMP C code.

First, it uses Clan to parse and scan the input C code, extract the polyhedral loop nests
and translate them to the OpenScop format. Second, Candl/ISL computes dependencies.
Then, the Pluto transformation framework takes as input the polyhedral domains and
dependence polyhedra and computes the polyhedral loop transformations. These are
provided in an OpenScop representation to Cloog that generates finally the transformed
code. Pluto automatically inserts OpenMP pragmas at the right place of the loop nest. The
code generated by Pluto is OpenMP parallel code for shared-memory multicores. Itis also
optimized for locality and made amenable to auto-vectorization. Additional options are
also provided to further tune tile sizes, unroll factors, outer loop fusion structures, etc.

In this work, we use the Pluto library for intra-node data locality optimization. Details
are given in Chapter 9.



CHAPTER
Stencil Computations

Stencil kernels appear in a wide range of scientific and engineering applications ranging
from numerical and PDE (Partial Differential Equations) solvers to computational physics
[TU90, BRHS92, NKV94], as well as image processing [CHZ11, CZ08].

This Chapter presents an overview of stencil computations. In Section 4.1, we describe
the computational pattern considered in this work. Section 4.2 highlights the diversity
of stencil computations by exposing the different characteristics that distinguish them.
Section 4.3 outlines the challenges in stencil programming on both shared and distributed
memory architectures. In Section 4.4, we exhibit a motivating example to highlight the
complexity of writing stencil code for distributed-memory architectures in general, and
within ORWL in particular. We conclude in Section 4.5 by exposing the motivations of our
work.

4.1 Computational Pattern

Stencil computations constitute a widely used computational pattern that performs
global sweeps over a multi-dimensional regular grid, realizing nearest neighbor compu-
tations. The computation grid is a contiguous subset of Z” in a Cartesian coordinate sys-
tem. At each iteration, each grid element is updated following a function of a subset of its
neighboring elements from current or previous iterations. In this work, we consider sten-
cil computations performing iterative point-wise updates over an n-dimensional grid, ac-
cording to a function similar to the following computation:

R?[iy]liz)...[in) =

o
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+ ) A x APV 2 O iz 207, in 207, ]
m

Here, ¢ is the current iteration and p is the number of previous iterations involved
in the computation. The center element and its neighboring elements from previous it-
erations A, v =0,...,u, are weighted by coefficient grids Cy and scalar constants «,.
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The computation can involve as many coefficient grids C; and scalar constants a, as
neeeded. The + notation is a short-hand that we use here to save space (A?""[i +1][j +1]
corresponds to A?V[i+1][j+ 1]+ A’ V[i+1][j - 11+ A’ V[i-1][j+ 11+ A?"V[i—-1][j —1]).

The new element A? is deduced from intermediate value R¥ by any set of statements.
We refer to A as the main data, that is the grid that undergoes the computation. We pre-
sume that there is only one such main data, but that there can be multiple coefficient
grids that we call auxiliary data. The auxiliary data are constrained to have the same
topology and size as the main data. They must also be accessed at the same position
[i1]1Z2]...[i,] as the center element. Unlike the coefficient grids, the main data grid can be
accessed at any position. hy r,q and ¢y, present offsets separating the accessed neighbor-
ing elements from the center element We call the maximum of these offsets the halo of
the computation:

halo = Vgcl,gyx {hk alm Y

It has to be noted however, that the function above is valid only for inner elements and
not for boundary elements. The most common boundary conditions for stencil compu-
tations are evoked in Subsection 4.2.4.

4.2 Stencil Characteristics

Despite their apparent simplicity and similarity, stencil computations are indeed diverse
and can be distinguished by different aspects and characteristics. These have a direct
impact on their efficient parallelization. For instance, some stencil computations are it-
erative, e.g., Laplacians, and others are not, e.g., image convolution and corner detection
which is usually used in computer vision programs to extract certain features from an im-
age. In this work, we specifically target iterative stencil computations as these can better
benefit from a modeling using ORWL. In the following, we outline a number of important
stencil characteristics that have a direct impact on their parallelization.

4.2.1 Operators

Stencils include a large panel of computations, involving the most commonly used differ-
ential operators, i.e., divergence, gradient and Laplacian. Our suggested framework does
not support stencils that have vector-valued input or output structure, e.g., divergence or
gradient operators. In this work, we focus on iterative stencil computations where the in-
put and output grids have the same structure. Laplacians, e.g., follow this computational
pattern. They are commonly used to solve iteratively elliptic or time-dependent PDEs.

4.,2.2 Structure

Stencil computations can be classified according to their structure or topology, including
their dimension, halo and neighborhood as follows.
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Stencil computations can be classified according to their structure or topology, includ-
ing their dimension, halo and neighborhood as follows.

The dimension of the main data is one of the main stencil characteristics. The higher
the dimension is, the more challenging the parallelization and optimization are. In this
work, we support multi-dimensional stencil computations.

4.2.2.1 Dimension

The dimension of the main data is one of the main stencil characteristics. The higher the
dimension is, the more challenging the parallelization and optimization are. In this work,
we support multi-dimensional stencil computations.

4.2.2.2 Neighborhood

Stencil computations, also called structured grid computations, exhibit a static depen-
dence pattern. Hence, the neighboring relationship remains constant during time. The
most common neighborhood types for stencil computations are the von Neumannneigh-
borhood and the Moore neighborhoods. As shown in Figure 4.1, while the von Neumann
neighborhood is composed of only the elements that are orthogonally surrounding the
center element, the Moore neighborhood includes in addition the elements on the cor-
ners.

More formally, a von Neumann neighborhood of range halo on an n-dimensional grid
G is defined by:

(vN)
Nil ..... i

n:{j:(jl,jg,...,jn)eG | 1j1=i1l+...1jn—inl < halo}
A Moore neighborhood of range halo on a n-dimensional grid G is defined by:
R ={j=(1jomjn)€G | li—il<halo and .. and |j,—isl<halo}

Other stencil neighborhoods can also exist. The dependence pattern can be symmet-
ric or asymmetric.

4.2.3 Grid Traversal

The three most common stencil grid traversal methods are Jacobi, Gauss-Seidel, and
Gauss-Seidel Red-Black (GSRB) iterations.

4.2.3.1 Jacobi

Jacobi-like iterations require at least two copies of the main data grid swapping their roles
after each iteration. To update one grid element, required elements from input grids cor-
responding to previous iterations are read, and the result is written in the output grid as
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Halo =1

(a) von Neumann neighborhood (b) Moore neighborhood

Halo = 2

(c) von Neumann neighborhood (d) Moore neighborhood

Figure 4.1 —Moore and von Neumann neighborhoods for a 2D stencil.

shown in Figure 4.2(a). Hence, each output grid element can be computed independently
from other elements. Therefore, Jacobi-like iterations are easily parallelizable. However,
requiring distinct input and output data grids increases memory storage and bandwidth.

4.2.3.2 Gauss-Seidel

As shown in Figure 4.2(b), Gauss-Seidel-like iterations require only one single copy of the
main data grid that undergoes in-place sweeps. One element update requires both al-
ready updated elements and other elements that have not yet been updated in the cur-
rent iteration. The inherent dependency imposes an order to respect when computing
elements, which significantly lowers the amount of available parallelism during one it-
eration. On the other hand, Gauss-Seidel iterations consume less memory than Jacobi
iterations as they do not require several copies of the main data grid as for Jacobis.

4.2.3.3 Gauss-Seidel Red-Black

Similarly to Gauss-Seidel iterations, Gauss-Seidel Red-Black (GSRB) require only one sin-
gle copy of the main data grid that undergoes in-place sweeps. However, GSRB defines
two dependent iteration domains. In fact, points are divided into two categories, i.e., SO
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Data from previous iterations Data from current iteration

(a) Jacobi iterations

(b) Seidel iterations

(c) GSRB iterations: Red phase (d) GSRB iterations: Black phase

Figure 4.2 — Grid traversal methods of stencil computations: Jacobi, Gauss-Seidel, and
Gauss-Seidel Red-Black (GSRB) iterations.
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called Red and Black, and the computation consists of two alternating phases. As shown
in Figure 4.2(c), the red phase computes the red elements of the grid, which are every
second point in the axis directions. The black phase computes the black elements from
the updated red ones using the same stencil as shown in Figure 4.2(d). A black grid point
can be updated only when all required red points have been updated. Once the required
black points have been updated, a red point computation can restart. Since the same
color points are independent from each other, their updates can be performed in parallel.
A straightforward GSRB implementation would sweep twice over the grid, which is costly
in terms of memory bandwidth. A classic solution to handle this problem is to have two
wavefronts, i.e., a leading one for red points and a trailing one for black points. Besides,
GSRB iterations present non-linear conditionals as depicted in Listing 4.1. As a result,
they are not handled by the automatic loop optimizer Pluto [BHRS08].

Listing 4.1 — Gauss-Seidel Red-Black (GSRB) iteration code.

// Red phase
for (i=1; i<n-1; i++)
for (j=1; j< n-1; j++)
if (4 + j) % 2 == 1)
ulil[j] = £ (uli+110j], wli-11(j1, uw [il[j+1], ulil[j-11);
// Black phase
for (i=1; i<n-1; i ++)
for (j=1; j<mn-1; j ++)
if ((i+j) %h 2 == 0)
ulil[j] = £ (uli+11[j1, uli-11[0j1, u [il1[j+11, uwlillj-11);

4.2.4 Boundary Conditions

Separate boundary treatment, often imposed by PDE boundary conditions, is commonly
required. The boundary conditions can be periodic or non-periodic. For periodic bound-
ary conditions, the data grid is rolled up as an n-dimensional torus. Thus, the index cal-
culations in each dimension are computed modulo the data grid size. As for non-periodic
boundary conditions, the most commonly used are Dirichlet and Neumann [MF46].
While Dirichlet boundary conditions apply time-dependent functions, Neumann bound-
ary conditions specify a time-constant value that often corresponds to the value the
derivative should take on the boundary. Applications may however require further cus-
tomization of boundary conditions in order to improve the problem simulation accuracy.

4.3 Stencil Programming Challenges

At first glance, the efficient parallelization of stencil computations appears to be straight-
forward and easy to achieve because of the high regularity of the computational pattern.
Namely, stencils operate on regular Cartesian grids and are often uniformly defined as
nested loops with affine bounds and accesses over the entire grid exhibiting a static and
locally contained dependence pattern. This suggests massive parallelism, good potential
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for locality optimization and easily achievable code efficiency. However, efficient paral-
lelization of stencil computations remains challenging on both shared and distributed
memory architectures.

4.3.1 Low Arithmetic Intensity

Stencil computations are memory-bandwidth bound with low constant arithmetic inten-
sity. The latter is a kernel-specific metric that is used to predict and analyze the perfor-
mance of algorithms and compute kernels. It is defined as the total number of floating-
point operations per grid point divided by the number of data elements that need to be
transferred from memory to the compute unit (CPU or GPU) in order to perform one grid
point update [DJ05].

For a given stencil kernel, both the number of floating-point operations per grid point
and the number of memory references are constant. Hence, unlike, e.g.,, matrix multi-
plication , the arithmetic intensity is constant and independent from the problem size.
Besides, the number of floating-point operations is often low compared to the number
of transferred data elements. In fact, following the hardware data loading pattern, when
reading one element from memory, the entire data cache line is loaded. This assumption
is valid for both cache-based CPU architectures and shared memory CUDA-programmed
GPUs. Hence, when loading the center point of a stencil, the halo layer including the
neighboring points is automatically made available. Roughly speaking, for one grid ele-
ment computation, the entire n-dimensional domain surrounding the element is brought
to memory and the result is written back.

Stencil code efficiency is often impaired by the high memory I/0 costs and low com-
putational intensity. In fact, the performance is often limited by the available memory
bandwidth, leading to idle processing cores. Hence, optimizing data movements in sten-
cil codes is crucial to achieve high performance. ORWL proactive resource announce-
ment could be a promising solution to minimize the cost of data transfers.

4.3.2 Boundary Irregularities

Stencil computations are pleasantly regular and their parallelization may therefore seem
to be intuitive. However, stencil-based real-world applications are more challenging as
they may, e.g., present irregularities in terms of boundary conditions. If not well handled,
boundary conditions can easily become a bottleneck in the performance of the overall
stencil computation. The impact of, e.g., making a test at every point to determine if it
falls on the boundary can tremendously degrade the stencil code performance.

4.3.3 Distributed Memory Programming

Stencil computations are at the core of multiple scientific and engineering fields where
compute-intensive large-scale simulations are required [WYTX13, Rap04]. Therefore,
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writing parallel code for distributed memory architectures becomes sometimes in-
evitable. However, programming on distributed-memory architectures is particularly
challenging, tedious and error-prone. In addition to the above mentioned challenges,
stencil programming on distributed-memory architectures implies the definition of a
data partitioning scheme, explicit synchronization and communication to manage the
data movement between the different processors. In fact, an intuitive method to paral-
lelize stencil computations is to decompose the main data grid into a set of blocks or tiles.
While the computation in each block that is sufficiently far from the edges is independent
from other blocks, the computation near the edges and corners depends on a subset of
neighboring blocks, that are computed by different tasks. Thus, communication between
tasks is needed in order to exchange updated values between blocks after each iteration. A
specific mechanism must ensure the synchronization of overlapping computations and
communications that access a protected resource. Here, the inter-task synchronization
model ORWL, presented in Chapter 2 could be very helpful. In Section 4.4, we present a
modeling of stencil computations using ORWL.

4.4 Stencils within ORWL

By the nature of their regular structure, stencil computations should considerably ben-
efit from a modeling with ORWL: a block decomposition can be used to distribute the
work to nodes and processors, and the limited and controlled overlap of access between
neighboring blocks can be easily modeled by an access to shared resources.

Stencil modeling, within ORWL, implies the definition of a number of data locations
and the attribution of an ORWL Lock to each of the defined data locations. A classic sim-
plistic solution would be to define a number of shadow locations in addition to the main
location that is composed of the block itself. These shadow locations consist in buffers
where, at the end of each iteration, the newly computed data of block edges are saved.
They are then available to neighboring tasks for reading. The number of ORWL data loca-
tions depends on the neighborhood type and shape of the stencil computation.

Figure 4.3 shows an example of a simple decomposition of a 2D matrix into four neigh-
boring blocks (MT0, MT1, MT2 and MT3): Each task consists of one compute and 8
update operations acting on 9 locations that are the main location and 8 shadow loca-
tions: S, N, E, W, SE, NE, SW, NW. The compute operation reads (R) the data it requires
through handles from the shadow locations of the remote neighboring blocks. These are
first copied into the corresponding edges of the main location block. Then, the compute
operation executes the computation kernel and writes (W) the results to the main loca-
tion. The update operations, one for each shadow location, are then used to read (R) the
newly computed values from the main location and write (W) them in the shadow loca-
tions to make them available for neighboring tasks. An excerpt from the corresponding
ORWL code and initialization phase in particular is provided in Listing 4.2.
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Figure 4.3 — An example of a 2D stencil ORWL modeling with a decomposition into four
blocks

4.5 Motivations

As mentioned in Chapter 2, to take full advantage of ORWL properties, the programmer
has to go through a tedious but necessary initialization phase. They have to carefully
specify the access scheme between tasks and resources and to assign the initial positions
of lock handles in the resource FIFOs as in Listing 4.2. The code corresponding to the
initialization phase is long, complex and error-prone. Mistakes at this level may lead to
deadlocks. Our principal motivation for developing our DSL, called Dido, is to alleviate
this burden by automating the generation of this initialization phase in a fail-safe manner.

Furthermore, without the aid of the DSL, the programmer is responsible for handling
the updates of the halo regions. They have to define the ORWL data locations explicitly,
allocate their associated buffers and write the update operations. These programming
tasks are by far longer and more involved than the computational kernel they serve. Addi-
tionally, it is very likely that the programmer makes mistakes when writing the indices in
the complex update operations that have to be specified by using the halo margin offsets
in each direction of the problem grid. The more dimensions the main data has, the more
complex the indices become and the higher is the risk of making mistakes. With our DSL,
we spare the programmer from writing complex indices and error-prone parts, by fully
generating them.
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Listing 4.2 — Initialization phase code of a 2D stencil ORWL modeling.

orwl_handle2 here = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 handle[task_neighb_amount] = {P99_DUPL (TASK_NEIGHB_AMOUNT,
ORWL_HANDLE2_INITIALIZER)};
/* Take the local lock in write mode */
orwl_write_insert (&here, myloc, O, seed);
/* Take the distant locks in read mode*/
if (is_border (borders, borderP0)) {
orwl_read_insert (&handle [NN],
relative_task(row-1, <col, S, global_cols), O, seed);
if (is_border (borders, borderPP)) {
orwl_read_insert (&handle [NEN],
relative_task(row-1, <col, SE, global_cols), 0, seed);
}
if (is_border (borders, borderPM)) {
orwl_read_insert (&handle [NWN],
relative_task(row-1, <col, SW, global_cols), 0, seed);
}

if (is_border (borders, borderM0)) {
orwl_read_insert (&handle[SS],
relative_task(row+l, <col, N, global_cols), O, seed);
if (is_border (borders, borderMP)) {
orwl_read_insert (&handle [SES],
relative_task(row+1l, <col, NE, global_cols), 0, seed);
}
if (is_border (borders, borderMM)) {
orwl_read_insert (&handle [SWS],
relative_task(row+1l, <col, NW, global_cols), 0, seed);
}

if (is_border (borders, borderOM)) {
orwl_read_insert (&handle [WW],
relative_task(row, col-1, E, global_cols), 0, seed);
if (is_border (borders, borderMM)) {
orwl_read_insert (&handle [SWW],
relative_task(row, col-1, SE, global_cols), 0, seed);
}
if (is_border (borders, borderPM)) {
orwl_read_insert (&handle [NWW],
relative_task(row, col-1, NE, global_cols), 0, seed);
}

if (is_border (borders, borderOP)) {
orwl_read_insert (&handle [EE],
relative_task(row, col+1l, W, global_cols), 0, seed);
if (is_border (borders, borderMP)) {
orwl_read_insert (&handle [SEE],
relative_task(row, col+l, SW, global_cols), 0, seed);
}
if (is_border (borders, borderPP)) {
orwl_read_insert (&handle [NEE],
relative_task(row, col+l, NW, global_cols), O, seed);
}
}
}

orwl_schedule (myloc, 1, srv);
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Furthermore, it is difficult for non-experienced developers to achieve good parallel
performance results, be it by using ORWL or any other programming framework. Dido
also allows us to incorporate our ORWL domain-specific knowledge in a code generation
framework that helps the user achieve high performance, in addition to productivity ben-
efits.



CHAPTER
Benchmarks & Real-World
Applications

In this work, we suggest a framework that generates parallel stencil code for distributed-
memory architectures. It supports a wide range of iterative multi-dimensional stencil
computations. This Chapter gives an overview of the benchmarks and real-world appli-
cations that we have considered to evaluate both the expression power and efficiency of
our suggested framework. Section 5.1 presents the benchmarks that we have considered
as well as their characteristics. In section 5.2, we describe two applications that we have
used in this work to prove the validity of our approach.

5.1 Benchmarks

In this section, we present the benchmarks that we have considered in this work to val-
idate our approach and prove the efficiency of the generated code. In the following, the
superscript ¢ denotes the discrete time step or iteration number, the subscripts x, y, z, etc.
denote the spatial coordinates, V2 denotes Laplacian and the + notation is a short-hand
that we use here to save space.

5.1.1 Heat Transfer Equations

The heat equation % u = xV?u describes the temperature variation over time given initial
temperature distribution and boundary conditions. If we assume that the heat conduc-
tion coefficient x is constant and that there are no heat resources, the equation might be
solved by applying an explicit finite difference scheme on a uniform mesh of points.

e 2D Heat Transfer:

The 2D heat equation can be solved using ADI (Alternating Directions Im-
plicit) [DOR*99] method. It consists of combining two implicit half-steps in one timestep,
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Listing 5.1 — Livermore Kernel 23.
for (i = 1; i < N-1; ++i) {
for (j = 1; j < M-1; ++j ) {

q = data [i-1][j] * zb [i]l[j]
data [i] [j-1] * zv [i][j]
data [i1[j+1] * zu [i][j]
data [i+1] [j] * =zr [i]1[j]
zz [i]1[j] - data [il[j];

data [i][j] += 0.175 * q ;

}
}

+ 4+ 4+

+

one in each direction (x or y). It results in the following Jacobi-style equation:
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¢ 3D Heat Transfer:

The 3D heat equation discretization results in the following Jacobi-Like equation:
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5.1.2 LINPACK Livermore

The Livermore Kernel 23, a classic benchmark taken from LINPACK, has always been con-
sidered as a reference benchmark for ORWL in previous works [CG10a, GVM14]. As shown
in Listing 5.1, it is a 5-point Stencil. Each element is updated by the element at the same
position from the previous iteration and 4 neighbors offset by 1 on each direction. This
stencil algorithm is cache-unfriendly. It has the particularity that data grows quickly in
memory, as it requires a set of five coefficient grids (zb, zv, zu, zr and zz) in addition to the
main data grid, which makes the overall memory footprint bigger.

5.1.3 Wave Equations

The classic linear wave equation g?u —c® A u =0 is a second-order partial differential

equation that arises in multiple fields such as acoustics, electromagnetics, and fluid dy-
namics. It describes the physics of waves including water waves, sound waves and light

waves.
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* 2D Wave Equation

A second-order-in-time discretization of the 2D wave equation results in the following 2D
second-order stencil. In addition to data from two previous timesteps, an auxiliary data
grid v, , corresponding to the inverse of velocity squared is required.

r+1

ux,y

_ t t—1 t t t
=2Uy = Uy + Uy, y(Co Uy + 01 (U ) + Uy )
* 3D Wave Equations

A second-order in time discretization of the 3D wave equation results in a 3D order-k
stencil where k=2, 4, 6, 8, 10 or 12.

k/2

+1 _ t -1 t . t t t

X,z 2ux,y.z - ux,y,z + vayyz‘(co'ux,y,z + Z Cl'(uxii,y,z + ux,yii,z + ux,y,zii))
i=1

u

where vy, is the inverse of velocity squared.

5.1.4 Gauss-Seidel Methods

Solving Laplace equation using Gauss Seidel method results in the following equations:

¢ 2D Gauss-Seidel

t+1 _ t t+1 t+1 t t
Uy yz = Co-Uyy .+ Cl'(ux—l,y Flyy gt Uyt uxyyﬂ)
* 3D Gauss-Seidel
+1 _ t r+1 r+1 r+1 t t t
ux,y,z - CO'ux,y,z + Cl'(ux—l,y,z + ux,y—l,z + ux,y,z—l + ux+1,y,z + ux,y+1,z + ux,y,z+l)

* Gauss-Seidel Red-Black (GSRB) Laplacian

Gauss-Seidel Laplacians, resulting from high-order discretization of the 3D Laplacian, are
often used as smoothers in multigrid methods. The following 3D 25-point stencil equa-
tion corresponds to two iterations of a red-black Gauss-Seidel iteration collapsed into
one.

2
! P 3
ui:aui+bz ui+j+Zcr Z Uit j i,jeZ
[jh=1 r=1 [jli=2
Jx€l0,£71}
k=1,2,3

where j = (j1, jo, j3) € Z3 is an offset vector, a= a + 6%, b= ap, ¢, = 2% and ¢, = f°.



CHAPTER 5. BENCHMARKS & REAL-WORLD APPLICATIONS 51

5.1.5 27-point 3D stencil

Eventhough the simple 7-point 3D stencil is fairly common, there are many instances
with compute-intensive stencils that require more neighboring points. For instance, the
NAS Parallel MG (Multigrid) benchmark utilizes a 27-point stencil to calculate the Laplace
operator for a finite volume method [BBB*91].

5.1.6 4D+ Jacobis

The framework suggested in this work supports multi-dimensional stencils. For that, we
consider as benchmarks 4D 9-point Jacobi and 5D 11-point Jacobi .

5.1.7 Summary

Table 5.1 presents a summary of the characteristics of the considered benchmarks.

5.2 Real-World Applications

The expressive power of our suggested framework exceeds the scope of benchmarks. It
also targets real-world stencil-based applications. In this work, we consider two real-
world applications that we describe in the following sections.

5.2.1 Cell Nuclei Recognition in Breast Cancer Images

Breast cancer is the most common cancer affecting women on a worldwide scale, with
over 1.6 million new cases per year.Early detection greatly increases the chances of suc-
cessful treatment. Nowadays, diagnosis is mostly performed through a microscopic slide
analysis of biopsy tissue. Several criteria are observed in order to grade the cancer on a
scale of 1 to 3. One of these criteria is the size of cell nuclei that beyond a certain limit
is considered as anomalous. Given the large number of stained biopsies that have to be
analyzed every day in health-care institutions, efficient methods for automatic nuclei de-
tection can be very helpful to fight the disease and monitor its progression.

A previous work [AFB13] has suggested an algorithm that automatically detects cell
nuclei abnormalities by analyzing scans of biopsy slides (cf. Figure 5.1). The suggested
algorithm is based on the Marked Point Process (MPP) which is a promising tool usually
used to extract objects in remote sensing. The Marked Point Process (MPP) is a stochastic
process that models objects that are random in number, random in geometry parameters
and randomly localized. The algorithm involving a birth-death process is composed of
five main steps as follows:
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Figure 5.1 — Example of cell nuclei detection using the Marked Point Process [AFB13]

1. Birth: Generation of birth points that are randomly distributed throughout the image
following a birth coefficient which is a probability that decreases at each iteration to
favor convergence. A cell nuclei has approximately the shape of an ellipse. Thus,
every point created in the birth step is randomly given a major axis, a minor axis and
an inclination angle.

2. Data-Fidelity Computation: For each ellipse, a data fidelity value, also called attach-
ment, is computed depending on its geometry parameters. It is also necessary to
calculate the Bhattacharyya distance [ATR98] to measure the intensity difference be-
tween the inner and outer borders of an ellipse.

3. Cover Map Update: Based on the data fidelity values, a cover map indicating the num-
ber of ellipses overlapping each pixel is drawn. A map value of a given pixel inside an
ellipse is updated when it is higher than the ellipse data fidelity value.

4. Death: First, the less attached ellipses are killed. Then, a random filter is applied. It
keeps only a few percent of the surviving ones. This filter depends on both the data
fidelity value and the death probability which is a coefficient that increases at each
iteration to favor convergence.

5. Convergence Step: Steps 1 to 4 are iteratively repeated. At each iteration, surviving
ellipses are competing with the newly created ones. Convergence is reached when
all born ellipses in one superstep are killed within the same iteration.

In [AFB13], Avenel et al. have parallelized the suggested algorithm for nuclei detection
on CPU using OpenMP and on GPU using CUDA. Though, because of memory limita-
tions, a single GPU is not able to support the analysis of a complete biopsy slide that
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may reach 10° x 10° pixels at full resolution. Distributing the algorithm becomes thus
inevitable.

The main challenge in distributing the algorithm lies in the Cover Map Update step as
it consists of a nearest-neighbor computation, hence a stencil. The cover map containing
data fidelity values is distributed among nodes. Updates of neighboring blocks newly
computed values are needed.

A handwritten implementation using Ordered Read-Write Locks (ORWL) paradigm
has been suggested in [SGRP16]. In this work, we prove that Dido has the expression
power to handle such applications. We succeeded in generating a code that is equivalent
to the handwritten code used in [SGRP16]. Unfortunately, no performance results are
provided for this application.

5.2.2 Molecular Dynamics

Molecular dynamics (MD) is a widely spread method used to simulate a particle system
and analyze the dynamical properties of particles. It is heavily used in multiple areas such
as biology [Ber96], materials [KLH*04] and chemistry [Rap04]. It presents the particular-
ity of providing an individual particle view of the simulation system, which is not reach-
able through laboratory experiments. MD simulations study the trajectory of particles by
numerically time-integrating Newton’s equation of motion [HDS96] defining the force on
one particle as an interaction of all others.

Large-scale MD simulations may involve billions of particles and thus require a high
computation power only available on distributed-memory clusters. For that, writing MD
code for distributed-memory architectures becomes often inevitable. The MD algorithm
is composed of seven main steps as follows:

1. Compute particle positions.

2. Test the periodicity and assign particles to cells.
3. Compute the partial velocities.

4. Compute the forces.

5. Compute the kinetic energy.

6. Compute and normalize the velocities.

7. Compute the instantaneous physical quantities.

Step 2 and step 4 of the MD algorithm, i.e., force computations and periodicity test and
assignment to cells, present nearest-neighbor dependencies.

In this work, we use Dido, an implicitly parallel domain-specific language for stencil
computations, to automatically generate MD distributed code. In our implementation,
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Figure 5.2 — Particle-Box-Block Partitioning

we consider three-body forces, which are more compute-intensive than two-body forces
only. We also consider that beyond a certain distance called the cutoff distance Rc, two
particles are considered as non-interactive. This means that only pairs and triplets of
particles within Rc are taken into account, reducing the computation of the forces to a
O(N) complexity where N is the total number of particles.

We uniformly divide the spatial simulation domain into boxes where each box con-
tains the particles that physically belong to its space as shown in Figure 5.1. The main
data consists then of a grid of boxes through which it is necessary to go in order to access
the particles. In several steps of the MD algorithm, the same attribute of several particles
is accessed at once. For this reason, we chose to organize a box of P particles as a struc-
ture of arrays (SOA), i.e., several separate arrays of length P, one array for each particle
attribute. Each box is then able to manage its own attributes independently. This mod-
eling makes parallelization easier. Since particles may enter and leave the box, this latter
has the behavior of a list. However, the number of particles in a box quickly stabilizes
and oscillates around a mean value. For each particle, there are in total fourteen physi-
cal quantities: three spatial coordinates, velocity in each dimension, acceleration in each
dimension, forces in each dimension in addition to mass and temporary quantities.

As particles beyond cutoff distance Rc are considered as non-interactive, each particle
belonging to one box interacts only with particles belonging to its 27 neighboring boxes.
However, the edges of each box must be slightly longer than the cutoff distance. As de-
picted in Figure 5.2, we combine several boxes together forming blocks. Each block is a
sub-grid of the main data grid. The system is considered as infinite by imposing peri-
odic boundary conditions, i.e., when a particle enters/leaves the simulation domain, an
image particle leaves/enters respectively, in a way that the number of particles remains
constant.

In this work, we succeeded in automatically generating MD parallel code for
distributed-memory architectures. Performance results are given in Chapter 11.



CHAPTER
Automatic Code Generation
and Optimization
Frameworks for Stencil
Computations

Numerous research efforts have focused on improving stencil computation performance,
either automatically or manually. The stencil computation methods and frameworks sug-
gested in previous works fall into three categories:

* Hand-coded implementations that strive to achieve the highest possible perfor-
mance for one specific stencil kernel.

e Implementations that focus on tuning particular parameters for achieving the high-
est possible performance.

* Implementations that target user-friendliness and ease of programming by building
domain-specific frameworks.

In fact, parallel programming turns out to be considerably more difficult than sequen-
tial programming, be it on shared-memory or distributed-memory architectures. In ad-
dition, achieving portability and performance is more and more challenging given the
diversity of the current and emergent parallel architectures. As a result, domain-specific
frameworks have been widely used in recent years to spare the user the details and com-
plexity related to parallel programming. In particular, numerous research efforts have
adopted domain-specific solutions to optimize stencil computations. Some of the sug-
gested frameworks automatically generate stencil optimizations and transformations for
GPUs and multicore processors. Others present auto-tuning frameworks for stencil com-
putations. A few other frameworks target distributed-memory architectures. Some other
works focus on stencil-like image processing applications.

Existing domain-specific frameworks have taken two approaches according to the
form of the user input. One approach consists in building a completely new program-
ming language, i.e., a DSL. The other consists in adding a small set of extensions, e.g.,
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pragma annotations, on an existing general-purpose language to build an an embedded
DSL While external DSLs enable a maximally optimized language design that is tailored
to the domain-specific needs, embedded DSLs are limited to the traditional program-
ming language basic syntax. On the other hand, embedded DSLs leverage existing com-
pilers rather than developing and maintaining a separate compiler as for external DSLs.
They also inherit syntax, operators, and operator precedence that are well-defined, well-
documented, and well-understood by the general-purpose language programmers.

In this chapter, we provide an overview of automatic code generation and optimiza-
tion frameworks for stencil computations. Section 6.1 describes domain-specific frame-
works that automatically generate stencil optimizations and transformations for GPUs
and multicore processors. Section 6.2 presents domain-specific languages for stencil-
based image processing applications. In section 6.3 provides an overview of the autotun-
ing frameworks for stencil computations. Section 6.4 describes the few available domain-
specific frameworks that generate code for distributed-memory architectures.

6.1 Stencil Code Optimization Frameworks

Multiple research works have targeted stencil code optimizations in order to improve
data locality and parallelism, optimize data movements, and control the synchroniza-
tion frequency and communication volume when applicable. The optimizations vary
from blocking and tiling [DMV*08, SC04, RT00, WCO* 08, KW01, DHK"00] to more ad-
vanced techniques such as cache oblivious, time skewing, wavefront or overlapped
tiling [WLSG*06, NSC*10, DKW*09, FS05, SL99, Won00, WHZ*09, ZWN*08, GKV12,
7ZGG*12, KBB*07, Mic09].

Despite these numerous research efforts and the proven gains in performance, using
these achievements is not straightforward as they introduce significant complexities in
the stencil code, which adds a difficulty layer to the parallelism. Writing the code becomes
too complex and error-prone for average programmers. In this section we provide an
overview of the most common stencil optimizations and the state-of-the-art frameworks
that enable the automatic generation of those optimizations for both multiprocessors and
GPU architectures.

6.1.1 Stencil Optimizations

Stencil computations are often bound by capacity misses in cache. However, the stencil
data access pattern is regular and logically-related data are often near in memory. There-
fore, loop tiling [Xuel2], also called loop blocking, is a key transformation for stencil com-
putations. Loop tiling techniques have proven to offer the potential to generate large
performance speedups by enhancing data locality and parallelism, and reducing cache
misses [GAKO03, HCC*09, LS04, RKRS07, RT00].

Other techniques aim at increasing temporal locality, e.g., time tiling that consists in
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tiling along the time dimension, which also enhances data locality and performance.
To make time-tiling of stencil computations legal, loop skewing [Won00] is often re-
quired. Different time tiling schemes for stencil computations on a variety of hardware
architectures, i.e. GPUs and shared memory CPUs, are discussed in [DMV*08, CSN* 10,
MS11, WHZ"09]. Time-tiling is often also coupled with ghost-zone optimizations, such
as overlapped tiling and split tiling in order to preserve inter-tile concurrency [Won00].
However, combining parallelization and locality optimization techniques often results in
pipelined startup of tasks, leading to idle cores during parallelized execution. Diamond
tiling is one of the techniques used to avoid pipelined startup and allow concurrent start
of tiles [BBP17]. It also ensures load balancing between two synchronization points.

Other more advanced optimization techniques for stencil computations exist. For
instance, cache-oblivious algorithms [FLPR99] can be designed to optimally use a CPU
cache without having its size as a predefined parameter. Unlike explicit blocking which
optimally divides a problem into blocks that fit a given cache size, cache-oblivious al-
gorithms rely on divide and conquer algorithms to recursively divide the problem until
reaching a subproblem size that fits into the cache. One way to avoid machine-specific
tuning, is to build cache-oblivious algorithms.

6.1.2 Stencil Code Optimization Frameworks for Multiprocessors

Pochoir [TCK*11] is a compiler and runtime system for implementing multidimen-
sional stencil computations on multicore processors. The Pochoir compiler allows pro-
grammers to write stencil specifications in a domain-specific language embedded in
C++ and translates it into high-performing Cilk code. Behind Pochoir, there is TRAP, a
cache-oblivious divide-and-conquer algorithm based on recursive trapezoidal decompo-
sitions introduced by Frigo and Strumpen [FLPR99, FS05]. TRAP employs, in addition,
a hyperspace-cut strategy that yields asymptotically more parallelism without sacrificing
cache-efficiency. It consists of applying parallel space cuts simultaneously to as many di-
mensions as possible, instead of only one parallel space cut at a time. Pochoir applies, in
addition, multiple optimizations such as code cloning, loop index calculations and coars-
ening the base case of recursion. However, Pochoir is limited to shared-memory architec-
tures and does not achieve as much speedup over the loop code in cases where the stencil
contains conditionals or high ratio of memory accesses compared to floating-point oper-
ations.

6.1.3 Stencil Code Optimization Frameworks for GPU accelerators

Given the high regularity and locally contained dependence pattern of stencil computa-
tions, these computations can achieve high performance benefits from a parallelization
on GPU accelerators. However, writing parallel code for these architectures presents a
higher degree of complexity and remains challenging even for highly skilled experts. Low-
level programming models are commonly used to write GPU programs. The two most
common models are CUDA [Nvil0] and OpenCL [SGS10]. Since GPU architectures are
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massively threaded, performance on these accelerators can easily be degraded in case of
branch divergence or lack of memory coalescing. Hence, efficient GPU programs typ-
ically involve the scheduling of a large number of concurrent threads to hide memory
latency. In particular, stencil computations require special attention to data movements.
Locality optimizations are thus required to keep data close to processor cores and en-
sure the overlapping of communications and computations. Several recent efforts aimed
to provide high-level abstractions to make GPU programming easier without sacrificing
performance. The suggested frameworks can be divided into two groups, i.e., DSLs and
embedded DSLs.

6.1.3.1 Embedded DSLs

PSkel [PRG15] is an API for high-level stencil programming implemented as a C++ tem-
plate library. It is based on parallel skeletons and provides abstractions for developing
parallel stencil computations on CPU-GPU systems. PSkel enables the programmer to
partition tasks and assign data and computation across CPU and GPU. It also provides
templates for manipulating input and output data, specifying stencil masks, encapsulat-
ing memory management, computations, and runtime details.

Mint [UCB11] also embodies a domain-specific approach for stencil methods. It con-
sists in a source-to-source translator that generates optimized CUDA C from annotated
C code. The user has only to annotate their traditional C source with intuitive Mint di-
rectives. Thanks to the incorporated domain-specific knowledge, Mint generates efficient
CUDA C code that delivers performance that is competitive with hand-optimized CUDA.

In [GCK*13], Grosser et al. present a static code generation approach for stencil com-
putations that is implemented as a prototype extension of the PPCG tool [VCJC*13], an
existing polyhedral code generator targeting GPUs. The framework applies split tiling over
both time and parallel loops to take advantage of the parallelism and local memory re-
sources of modern GPUs, without the need for skewing or redundant computations. The
underlying algorithm deduces index-set splitting from dependence vectors, then applies
tiling. The generated code keeps intermediate results of several iterations of the time loop
in shared memory, which significantly reduces the pressure on the global memory band-
width and therefore increases the computational throughput.

Physis [MNSM11] is also a source-to-source translator that targets GPU-based hetero-
geneous systems. It takes as input annotated C code and generates C for CPU execution,
CUDA code for GPU acceleration and MPI for node-level parallelization. It also generates
automatic optimizations such as computation and communication overlapping.

Previous work also includes Nebo [MKCKO00] that targets partial differential equations
in particular. Nebo [EMBS17] is a declarative domain-specific language embedded in C++
solving partial differential equations for transport phenomena such as computational
fluid dynamics on structured meshes. It supports single-thread execution, multi-thread
execution, and many-core GPU-based execution. Eventhough Nebo handles data paral-
lelism, it does not provide memory management or inter-node communication. It also
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keeps data transfers between CPU and GPU to the user.

6.1.3.2 DSLs

Holewinski et al. [HPS12] introduce a DSL and its associated compiler algorithms that
automatically generate stencil code for GPU accelerators, including both nVidia and AMD
devices. The code generation follows a predefined scheme that uses overlapped tiling to
generate time-tiled efficient code.

In [HHV*, HVF*13], Henretty et al. present a DSL for stencil computations combined
with its multi-target compiler that generates code for GPUs and short-vector SIMD ISAs
(e.g., SSE, AVX). Given the difference between these two types of architecture, different
target-specific optimization strategies are apllied by the compiler. Split tiling is used for
multi-core CPUs, while overlapped tiling is used for GPUs, achieving data reuse and par-
allelism along spatial and time dimensions. Efficient stencil implementations on short-
vector SIMD ISAs are particularly challenging as they involve arithmetic operations on
physically contiguous data elements. In fact, vector operations on SIMD devices require
the loading of contiguous data elements from memory into different slots in different vec-
tor registers, and the execution of identical and independent operations on the compo-
nents of vector registers. The suggested DSL overcomes this problem by combining tiling
with dimension-lifting-transpose (DLT) transformation [HSP*11], in a way that operands
that need to be combined are located in the same slot of different vectors.

6.2 Image Processing Frameworks

Many image processing applications can be viewed as pipelines consisting of several in-
terconnected processing stages that follow the stencil computational pattern. A number
of previous works suggest domain-specific languages for this particular domain, i.e., im-
age processing applications.

Polymage [MVB15] is a domain-specific language for image processing applications
based on the polyhedral model. It allows the user to express the commonly used im-
age processing computation patterns in the form of point-wise operations, stencils, up-
sampling, down-sampling, histograms, and time-iterated methods. Functions within
Polymage are defined by a list of cases where each case construct takes a condition and an
expression as arguments. Conditions are used to specify constraints involving variables,
function values, and parameters. The compiler takes as input the program specified in the
Polymage syntax and the names of the live out functions. The image processing pipelines
are represented internally as a directed acyclic graph (DAG), where each node represents
a stage specified by the user and the edges represent the dependencies. The polyhedral
representation is then extracted from the specification. After selecting a tiling strategy
based on a set of criteria, the transformed C++ code is generated. Finally, automatic tun-
ing is performed to choose the right tile size.

Halide [RKBA*13] is a domain-specific language and compiler for image processing
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pipelines. It targets multiple architectures, i.e., x86, ARM and GPUs. It offers trade-offs
between locality, parallelism, and redundant recomputation in stencil pipelines. Halide
compiler requires, in addition to the problem specification, a scheduling representation.
Given the input specification, a loop synthesizer based on range analysis is used for data
parallel pipelines to produce a complete loop nest and corresponding allocations. Then,
bounds of each dimension are obtained in a recursive manner, by interval analysis of the
expressions in the caller which index that dimension. The compiler performs later sliding
window optimization and storage folding to improve data reuse when possible. The final
code is generated after vectorization and unrolling optimizations. An autotuner based on
stochastic search is finally applied to automatically find a fitting schedule.

These frameworks target image processing and provide performance and program-
mer productivity benefits for this particular applicative domain. When compared to our
approach, Polymage and Halide are specialized and limited to image processing appli-
cations, while Dido is more general. Dido has the expression power to model image pro-
cessing applications, e.g. Cell Nuclei Recognition, in addition to other stencil kernels such
as PDE solvers. Unlike Dido syntax, Polymage and Halide specifications are also compli-
cated and not intuitive. Additionally, they do not also support distributed-memory archi-
tectures

6.3 Autotuning Frameworks

Given the growing diversity and complexity of nowadays micro-architectures,
architecture-specific tuning is often necessary to fully leverage the computation
power of the current machines. However, manual tuning is costly in time and effort
and requires a deep understanding of the specific architecture. Given the breadth of
architectures, stencil kernels and problem sizes, creating a separate hand-tuned stencil
code is both time-consuming and error-prone. Automatic tuning, also called autotuning,
could alleviate this burden. Autotuners are often designed to maximize performance
metrics, but can also be designed to maximize other metrics, e.g. power efficiency. For
instance, in [TLCS11], software and hardware facilities are used to tune applications for
several combinations of power and performance.

Building an auto-tuner requires extensive domain-specific knowledge in order to de-
termine which code transformations are legal and potentially useful. Additionally, build-
ing a code generator that generates the selected optimizations can be challenging, es-
pecially when combining different optimizations for a co-parameter space. However, the
one-time cost invested in building an autotuner can easily be compensated by the perfor-
mance portability. Auto-tuners are often designed to be scalable and support any num-
ber of cores, making them achieve good performance on nowadays architectures, but also
other architectures supporting similar programming models, e.g. manycore architectures.

Autotuning consists in automatically searching and selecting the code variant that
achieves the best performance among a set of possible versions. In other terms, a bench-
marking executable is built and run on the target machine. Autotuning can be per-
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formed either offline (e.g. ATLAS [TCC*09] and FFTW [FJ05]) or at runtime (e.g. Active
Harmony [TCH"02]). The code versions can range from determining the best configu-
ration for an optimizing compiler [PE06], to re-parameterizations that have an impact
on performance-related tunables, e.g., cache tiling factors and loop unrolling factors as
for Patus [CSB11] to code transformations, which can be achieved by a source-to-source
transformation framework such as CHiLL [CCHO08].

Autotuning had proved successful in creating high performance codes for multi-
ple scientific computing kernels, including dense and sparse linear algebra and dis-
crete transforms. Among the most reknown production-quality auto-tuning libraries and
code generators, there is ATLAS [TCC*09] for dense linear algebra, OSKI [VDY05] and
PHiPAC [WD98] for sparse linear algebra and FFTW [FJ05] and SPIRAL [VDY05] for spec-
tral algorithms. Eventhough the computation structure of stencil computations maps
well to current hardware architectures, meticulous architecture-specific tuning is still re-
quired to fully leverage the computational power of the platform. Previous efforts have
successfully developed stencil-specific auto-tuners. These can be divided into two cate-
gories, i.e.,, DSLs and embedded DSLs.

6.3.1 Embedded DSLs

In [KCO"10], Kamil et al. suggest a source-to-source multi-target framework for auto-
parallelizing and auto-tuning multi-dimensional stencil loops. It takes ordinary Fortran
95 as input, and produces Fortran, C, or CUDA code. It targets both multicore architec-
tures and GPGPUs. The tool uses an intermediate abstract syntax tree (AST) represen-
tation of the Fortran stencil problem specification to explore possible auto-tuning trans-
formations. The framework achieves perfomance gains over the reference sequential im-
plementation. However, the generated code uses GPU device memory only and does not
take advantage of shared memory. Additionally, the suggested framework does not sup-
port distributed-memory architectures.

Datta et al. [DMV*08] developed an optimization and auto-tuning framework for
stencil computations, targeting multi-core systems, NVidia GPUs, and Cell SPUs It gen-
erates stencil optimizations, including core blocking, thread blocking, register blocking,
NUMA-aware data allocation, array padding, software prefetching, cache bypass, SIMD-
ization, and common subexpression elimination.

6.3.2 DSLs

PATUS [CSB11] is a code generation and auto-tuning framework for stencil computations
on multicore processors and GPUs. In PATUS, the user describes the stencil kernel in a
C-like syntax, and either chooses one of the parallelization and optimization predefined
strategies, or specifies a customized strategy. PATUS then generates C code from strategy
templates and optimizes strategy-dependent parameters for the specific hardware archi-
tecture in use. In fact, the code generator creates in a first step a benchmark harness from
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a strategy-specific templated implementation. Then, the autotuner repeatedly runs the
executable and measures the runtime of the stencil kernel, while varying the autotuning
parameters specified in the strategy definition. The aim is to find the optimal configu-
ration with minimal running time for the strategy-dependent parameters in addition to
internal parameters such as loop nest unrolling and padding factors. Thanks to the incor-
porated domain-specific knowledge, Patus enables code optimization beyond the abil-
ities of current compilers. It can thus be considered as an experimentation toolbox for
parallelization and optimization strategies. However, PATUS has some limitations. First,
it is restricted to shared memory architectures, that are multicore CPU and single-GPU
systems. It supports traditional CPU architectures and NVIDIA GPUS using OpenMP and
CUDA respectiveley for parallelization. Additionally, unlike Dido, it is limited to shared-
memory, Jacobi iterations, Dirichlet-type boundary conditions.

6.4 Distributed-Memory Frameworks

Despite the high regularity of their computational pattern, programming stencil compu-
tations on distributed-memory architectures remains challenging. It involves the defini-
tion of a data partitioning scheme in addition to explicit synchronization and commu-
nication to manage the data movement between the different processors. This can be
tedious, complex and error-prone. There is a significant need in alleviating this burden
by automatically generating stencil code for distributed-memory architectures.

One of the few stencil code generation frameworks that support distributed-memory
architectures is presented in [DRRB13]. It consists in a source-to-source transformer that
translates sequential affine loop nests to parallel code using the asynchronous Message
Passing Interface (MPI) primitives for communication. It is implemented as an exten-
sion for Pluto [Bon09]. It generates code for distributed memory clusters as well as CPU
and GPU heterogeneous systems where CPUs act as orchestrators of data movement be-
tween compute devices. The communication code generation is based on non-trivial
data dependency partitioning techniques described in [Bon13]. This method statically
determines the data to be transfered between compute devices in oder to avoid both un-
necessary and duplicate data from being communicated. In fact, the data dependencies
are classified into three types; i.e, Read-after-Write (RAW), Write-after-Read (WAR), and
Write-after-Write (WAW). The framework generates the communication code using only
WAW dependences. Bondhugula proved in [Bon13] that these are sufficiant for efficient
communication code generation and result in the minimum communication volume to
preserve program semantics for a vast majority of cases. The tool relies on polyhedral
tools such as Clan [Bas08], ISL [Ver10], Pluto, and Cloog-isl [Bas13] to extract the polyhe-
dral representation and data dependencies, transform the input code and generate the
output code. The input code is tiled and parallelized using Pluto not only to improve
locality and increase the parallelism granularity, but also to reduce the frequency of com-
munication and the bound buffer sizes. Polylib [Loe99] is used to implement the polyhe-
dral operations and ISL [Ver10] is used to eliminate transitive dependences and compute
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last writers or the exact dataflow. The framework is scalable and achieves performance
that is close to manually written code and exceeds it in some cases.

Previous work also includes ParAgent [MKCKO00], a source-to-source code generation
framework that targets finite difference methods (FDM) in particular. It takes as input
Fortran-77 programs based on the explicit time-marching FDM and produces parallel
programs for distributed-memory computers. It uses static analysis to help minimize
communication between compute nodes.

In [LAB*14], Christian Lengauer et al. present an ongoing project that aims to realize
a platform based on a domain-specific approach targeting stencil computations for ex-
ascale systems. ExaStencils project follows Wirth’s notion of stepwise refinement [Wir71],
i.e, the platform is composed of multiple layers of abstraction, starting from the math-
ematical statement of the stencil computation to the code to be executed on the target
platform. Each layer is associated with a domain-specific code generation and optimiza-
tion step. ExaStencils follows a path of refinement steps and makes choices at the differ-
ent layers relying on the combined knowledge base of domain experts, mathematicians,
and software and hardware specialists. It recommends suitable combinations of config-
uration option such as algorithmic components, alternatives of data structures, and pa-
rameter values based on a machine-learning approach. The aim is to detect and handle
explicitly interactions among those configuration options through a small number of con-
crete stencil-code variants. Then, a weaving algorithm applies optimizations according to
the made choices. Among the suggested optimizations, ExaStencils uses the polyhedron
model for automatic loop parallelization and optimization. However, Exastencils is for
the moment prototyped but still not implemented. The preliminary version generates
C++ code with OpenMP and CUDA. The prototype works only for shared-memory archi-
tectures. The version targeting distributed memory architectures is still not implemented.

When compared to our approach, all of the previously enumerated frameworks for
distributed memory-architectures are embedded domain-specific languages, while Dido
is a domain-specific language. Additionally, all of them use MPI as a message passing
programming model, whereas Dido uses ORWL as a programming backend.

Beyond the scope of stencils, i.e., structured grids, Listz is a domain-specific language
for solving partial differential equations (PDEs) on unstructured meshes. Unlike affine
partitioning, Listz uses the logic of mesh-topology rather than affine transformations to
automate the analysis. It captures the data-parallelism of the mesh, the locality of the PDE
stencil, and the synchronization of dependencies that occur between phases of an appli-
cation. It provides language statements for interacting with an unstructured mesh, and
storing data at its elements. The program analyses results in a partitioning method based
on message passing and a scheduling method based on graph coloring. The Liszt com-
piler then generates native code for multiple runtimes. Listz targets different architec-
turesi.e., clusters, SMPs and GPUs. It therefore supports different parallel programming
models, i.e., MPI, pthreads, and CUDA. However, Liszt supports for the moment only a
small subset of applications. It lacks support for implicit methods and linear solvers.
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The aim of this work is to automate the generation of multi-dimensional stencil code with
ORWL as communication and runtime back-end. To this end, we needed to define a
generalized use pattern that fulfills the liveness properties for ORWL stencils. For this
purpose, deep knowledge of the domain semantics was needed. We had first to analyze
ORWL 2D and 3D stencil implementations and extract the constraints they must meet.
Then, the extracted pattern was generalized for multi-dimensional stencils.

In this Chapter, we suggest a pattern that ensures deadlock-freeness, liveness and ef-
ficiency for ORWL multi-dimensional stencil programs. The suggested pattern consists
of the combination of a non-trivial data partitioning scheme with an iterative operation
form that we call CompUp. Section 7.1 introduces the CompUp form. In Section 7.2, we
present the overlapped data partitioning as the default data partitioning scheme for Dido.
In Section 7.3, we address the inter-node data locality by applying the temporal blocking
optimization for a class of stencil computations.

7.1 CompUp Form

To enhance the expressiveness of our tool and make code generation easier, we agreed to
express iterative ORWL programs in a form that we named CompUp. Here, as shown in
Figure 7.1, we cast an ORWL program in the form of three types of iterative operations:
Compute, Local Update and Global Update.

1. The Compute operation performs the computation as specified by the application.
It reads the locally accessible data that is imported by Global Update operations and
saved in local buffers. Then, it executes the computation kernel and writes the results
in the main location.

2. The Local Update operation ensures the data transfer between different resources of
the same task. It reads the updated data from the main location and stores it in local
buffers to make it available for neighboring tasks.
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3. The Global Update operation performs the inter-task communication between the
main task and neighboring tasks. It reads the data in the remote neighboring tasks’
buffers, updated by their own Local Update operations, and writes it on local buffers,
making it available for the next Compute operation.

In order to meet the canonical form constraints, careful efforts have been made to as-
sociate one single operation to each location, and thus one exclusive write access to each
location. We add additional constraints on the initial positions that the previously enu-
merated operations take in the data location FIFOs. First, each operation should have the
same initial position over all the resources it needs. Second, we impose that these initial
positions of priorities follow the order above. Namely, the Compute operation has priority
over the others. Then, the Local Update comes second to save the computed results on
local buffers. The last priority is assigned to the Global Update operation. To sum up, the
request orderings in the FIFOs are initially arranged with the positions indicated by the
enumeration above, and then regenerated cyclicly as the iterations progress. In the fol-
lowing, we prove that by adding these constraints to the CompUp form, the subsequent
computation is guaranteed to be deadlock-free.

In addition to the liveness guarantees that it provides, the CompUp form enables the
automatic attribution of the FIFO initial positions. It has to be mentioned that the Com-
pUp form is valid for different ORWL iterative implementations, not only for stencil com-
putations, e.g., graph processing. But, these are not the object of this work.

Proof

Apart from the assigned priorities, the CompUp form is made of three types of iterative
operations: Compute, Local Update and Global Update. One single operation, and thus
one exclusive write access, is associated to each location. Operations of the same type,
i.e., Compute, Local Update or Global Update, do not have any conflicts. As a result, op-
erations can be trivially partitioned into three sets. We attribute one color to each set as
shown in Figure 7.1. Algorithm 1 given in Chapter 2 generates the FIFO request ordering
suggested above for the CompUp form operations. It also guarantees that the resulting
overlay is deadlock-free. This can be easily verified by observing the corresponding delay
digraph depicted in Figure 7.2. The delay digraph does not contain any cycles on its de-
pendencies. As evoked in Subsection 2.2.3, this implies that the corresponding overlay is
deadlock-free.

7.2 Overlapped Data Partitioning

As mentioned in Chapter 4, stencil parallelization within ORWL implies the definition of a
number of shadow locations, in addition to the main location that undergoes the compu-
tation. Instead of the standard block partitioning presented in Section 4.4, we extend the
main location to include the halo region elements. Each block is then enlarged by twice
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Figure 7.3 — Dido main data partitioning schemes for a 2D stencil

the halo offset on each dimension as shown in Figure 7.3(a). The overlapped data par-
titioning greatly simplifies the Compute operation code and more precisely the compu-
tation of the frontier elements of each block. On one hand, it improves code locality and
spares the analysis and specific treatment details that would have been, otherwise, neces-
sary for their computation (cf. Listing 4.2). On the other hand, it helps avoid the complex
indexing relative to the halo region updates. The computation part in the compute op-
eration is thus reduced to one simple case that is applied on all the block elements. No
special treatment of the edges is necessary. This considerably simplifies the code, making
it clearer and easier to understand, to write, and thus to generate. Further details are given
in Chapter 9. Preliminary experiments have shown that the overlapped data partitioning
has no negative impact on performance. The overlapped data partitioning is the default
data partitioning scheme applied by the Dido code generator.

Example

Figure 7.4 provides an example combining the CompUp form with the overlapped data
partitioning for a 2D stencil with von Neumann neighborhood. Unlike the modeling pre-
sented in Section 4.4, each task consists of one Compute operation, 4 Local Update oper-
ations and 4 Global Update operations acting on 9 locations:

* The main location as shown in Figure 7.4 is extended and includes the halo region
elements.

* 4 of the 8 shadow locations (NN, SS, EE, WW) present locations where the newly com-
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Figure 7.4 — Compute - Local Update - Global Update (CompUp) modeling combined
with overlapped data partitioning for a 2D stencil example with von Neumann neighbor-
hood

puted data of the local block edges is exported, saved and made available to neigh-
boring tasks for reading.

* The remaining 4 shadow locations (NNP, SSP, EEP, WWP) are needed to store updated
data that is imported from neighbors.

As shown in Figure 7.2, there are three types of operations:

* Compute: It has read/write access to the main location and read access to the shadow
locations (NNP, SSP EEP, WWP). At each iteration, it updates first the halo margin
elements on the main location. Then, it executes the computation kernel.

* Local Update: copies updated data from main location and stores it in local buffers.
The updated data is then made available for neighboring tasks and ready to be read
without interrupting the main block computation. It has read access to the main
location and write access to the corresponding shadow location.

* Global Update: reads the data from the shadow locations of the neighboring tasks
and writes it into local buffers.
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7.3 Temporal Data Locality

Stencil computations are memory-bound with a low arithmetic intensity. Namely, the
quotient between the number of floating-point operations and the number of memory
references is small. Reducing the amount and frequency of frontier data exchange be-
tween different compute nodes can have a noticeable impact.

Temporal blocking is one of the most widely used optimizations to reduce the com-
munication overhead [DMV*08, CSN*10, MS11, WHZ*09]. It consists of partitioning the
iteration space into sequences of a fixed size. Such a sequence is composed of local iter-
ations that are computed while the data is kept on local memory. Communications are
only performed at the end of each sequence. To this end, in each dimension each data
block is enlarged by twice the halo multiplied by the sequence size as depicted in Fig-
ure 7.3(b). To compute the first local iteration of a sequence, all elements of the extended
block are required. The results are stored locally. For the next iteration, no further com-
munication is required since all elements are already present. After each local iteration,
the loop domain shrinks by twice the halo.

Temporal blocking considerably improves the temporal data locality and reduces both
communication and synchronization overhead. However, it introduces redundant com-
putations and extra loading of data for the halo regions. Thus, there is a tradeoff between
the additional computations and loads, and the gains in terms of bandwidth, waiting
time and communication and synchronization overhead. In fact, the overhead of tem-
poral blocking can be compensated only when the local share of the problem size is large
enough. To conserve the semantics of the application and avoid redundant data copies,
the size of an iteration sequence has to be odd.

Dido applies temporal blocking optimization while generating code for 2D and 3D
stencils only if specified by the user as will be further explained in Chapter 9. Otherwise,
the default data partitioning scheme is applied as specified in Section 7.2. For higher
dimensions, preliminary performance tests have shown that, in most of the cases, the
overhead of temporal blocking is too important and counteracts any potential gain in
performance that we could achieve by improving temporal data locality. For 2D and 3D
stencils, we opt for an iteration sequence size of 5 and 3, respectively. We have run tests
for different stencil configurations and most of them are not deteriorated by using tem-
poral blocking. On the contrary, performance gains are achieved and will be presented in
Chapter 11, below.

Besides temporal locality and the resulting gains in efficiency and performance, tem-
poral blocking offers good optimization opportunities that can be used by Pluto as will be
explained in Section 9.1.
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Dido is an implicitly parallel domain-specific language for general multidimensional
stencil computations that uses ORWL as a communication and runtime back-end. It of-
fers a user-friendly interface that captures high-level stencil specifications and automat-
ically generates ORWL parallel high-performance code for distributed-memory architec-
tures.

In this chapter, we discuss the different design choices that we have made in order to
meet the needs of real-world applications. Section 8.1 depicts the internal Dido architec-
ture. In Section 8.2, we present the complete grammar of Dido syntax. Section 8.3 exhibits
structural and execution parameters that need to be specified within Dido.

8.1 Architecture

Internally, Dido is made of four main components that are the lexer, the parser, the ab-
stract syntax tree (AST) and the code generator. The user provides specifications written
in the introduced language. These are parsed in order to extract stencil features that are
transformed, in a second step, into an abstract syntax tree (AST). Given the internal rep-
resentation of the stencil put in the form of an AST, Dido generates ORWL code following
the CompUp form and the defined pattern presented in Chapter 7. The internal workflow
of the framework is depicted in Figure 8.1. Dido is implemented using OCaml [LDG*08]
lexer and parser generators (ocamllex, ocamlyacc).

8.2 Dido Grammar

Dido takes as input a file that contains a set of parameters specifying the stencil compu-
tation topology and size in a concise and trivial syntax. Listing 8.1 depicts the complete
Extended Backus-Naur Form (EBNF) grammar of Dido stencil specification syntax.
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Figure 8.1 — A high-level overview of the Dido framework architecture.

8.3 Parameter Specification

Dido is intended to generate ORWL code following the pattern we have described in
Chapter 7. Therefore, additional parameters have to be provided by the user, specifying
the topology and size of their specific problem instance. In order to save compile time
and efforts, the DSL is divided into two parts:

 The first part encompasses structural parameters of the application. Those parame-
ters define the topology of the problem and enable the generation of the most com-
plex parts of the ORWL code. This includes data locations, operations, handle initial-
izations, initial positions in the FIFOs and critical sections. The compilation time of
the ORWL code, generated by this part of the DSL, could be moderately long.

* The second part consists of the execution parameters for a particular problem in-
stance. They can be provided within the DSL, if they are fixed, or as parameters at
runtime.

The code resulting from the structural part of the DSL can be used for different problem
instances. The user has the option to generate all the code from scratch or only generate



11

12

13

14

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

CHAPTER 8. DIDO: GRAMMAR & ARCHITECTURE

73

program
app-name
name

Listing 8.1 — Grammar of the Dido Language.

app-name, structural -params,
"ORWL_Application = ",
string;

name ,

(* Structural Parameters *)

structural -params

main-data

md -name

md-dim

dimlist

dim
auxiliary-data
auxlist

aux

application

kernel
kernel -fun

kernel -file-name

types
type-file-name
halo

halo-value
iter-halo
iter-halo-value

boundary -conditions

neighbourhood

shapelist
shape

coord
grid-traversal

data-element -type

main-data, auxiliary-data,

(* Execution Parameters *)

execution-params

sizelist
blocksizelist
iter -nmb

node -nmb

size

>

n .

B

execution-params;

application;

"Main_Data = {",

md-name, "(", md-dim, "D) in (", dimlist, ");",
50 g

string;

natural number;

dim, {",",dim};

string;

"Auxiliary_Data = {", auxlist, "1}";

laux, {",",aux}, ";"];

string;

"Application = {", kernel, types, halo,

iter-halo, boundary-conditions,

neighbourhood, grid-traversal, data-element-type,
1p0 e

"kernel = ", kernel-fun, "in" kernel -file-name;

string;

string, ";";

"types = ", type-file-name, ";";

string;

"halo = ", halo-value, ";";

natural number;

"iteration_halo = ", iter-halo-value, ";";

natural number;

= "boundary_conditions = ",

("periodic" | "non-periodic"), ";";

"neighb = ",

("Moore" | "von-Neumann" | shapelist), ";";

shape, {",",shape};

"(", coord, {",",coordl}, ")";

natural number;

"grid_traversal = ", ("Jacobi" | "Seidel"), ";";

"data_element_type = ", string, ";";
"Execution_Parameters = {",
["iterations_number = ", iter-nmb, ";",
md-name, sizelist, "into", blocksizelist, ";",
"number_nodes = ", node-nmb, ";",
"number_tasks_per_node = ", tpn-nmb, ";"],
"init_file =", init-file, ";"

S

"[", size, "1", {"[", size, "1"};

"[", blocksize, "]1", {"[", blocksize, "]1"};

natural number; init-file = string;

natural number; tpn-nmb = natural number;

natural number; blocksize

natural number;
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the main function depending on the execution parameters specified in the instantiation
part.

8.3.1 Structural Parameters

Listings 8.2, 8.3 and 8.4 show Dido specifications of 2D wave, 2D seidel and 3D molecular
dynamics (MD) stencils, respectively.

* Main & Auxiliary Data:

The main data, that is the grid that undergoes the computation, is specified by its name
(here wave_grid, seidel_grid or box_grid) and dimension (3D or 2D). The user has also to
provide names for the problem axes (x, y and z) (see Line 3 of Listings 8.2, 8.3 & 8.4). These
will be used for the generation of, e.g., the ORWL location and task identifiers. As men-
tioned in Chapter 4, we presume that there is only one main data grid, but there can be
multiple coefficient grids, here called auxiliary data. These are specified by their names
(seeLine 6).

e Computation Halos:

To obtain solutions with the desirable accuracy, Dido supports high-order stencils in both
time and space. Hence, the user has to specify the halo of the computation (see Line 11)
as well as the discretization order in time iteration_halo (see Line 12) which corresponds
to the number of previous iterations needed for the computation. The halo values are
compile-time constants.

¢ Kernel:

Dido enables a natural description of the parallel computation, where the compute kernel
itself is specified in the form of a sequential function. The user is therefore not exposed to
any of the parallelism details as they just have to describe the sequential computation for
one central stencil point. In order to broaden the spectrum of the supported applications,
we have made the design choice to specify the sequential kernel function on the level of
C code rather than within the DSL (cf. Listing 8.5). Hence, the kernel can be any arbitrary
C code, which enables the user to combine different types of statements and easily reuse
legacy code. The kernel can therefore be a simple call to an existing predefined function,
or it can also contain hundreds of lines of code (cf. molecular dynamics (MD) with around
800 lines of code). A reference to the kernel function as well as the kernel header file
should be given within the DSL (see Line 9).

The only constraints that a user has to respect when writing the kernel function is
to follow a predefined order for the the kernel function arguments (cf. Listing 8.6) as
these have to meet the function call at the level of the generated code (See Line 15 in
Listing 9.10).
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Listing 8.2 — ORWL 2D Wave stencil specification within Dido.

ORWL_Application = wave_2D;

Main_Data = {
wave_grid (2D) in (x,y);

}

Auxiliary_Data = {
velocity;

X

Application = {
kernel = compute_wave_2D in "kernel-wave-2D.h";
types = "types-wave-2D.h";
halo = 1;
iteration_halo = 2;
boundary_conditions = non-periodic;
neighb = von Neumann;
grid_traversal = Jacobi;
data_element_type = float;

X

Execution_Parameters = {
init_file = "init-wave-2D.h";
iterations_number = 100;
wave_grid [10000][10000] into [1000]1[1000];
number_nodes = 50;
number_tasks_per_node = 2;

Listing 8.3 — ORWL 2D Seidel stencil specification within Dido.
ORWL_Application = seidel_2D;
Main_Data = {
seidel_grid (2D) in (x,y);

}
Auxiliary_Data = {
(x empty x*)
}
Application = {
kernel = compute_seidel_2D in "kernel-seidel-2D.h";
types = "types-seidel-2D.h";
halo = 1;
iteration_halo = 1;
boundary_conditions = non-periodic;
neighb = (1,0),(0,1),(-1,0),(0,-1); (* or von Neumann
grid_traversal = Seidel;
data_element_type = float;
}
Execution_Parameters = {
init_file = "init-seidel-2D.h";
iterations_number = 100;
seidel_grid [10000]1[10000] into [1000][1000];
number_nodes = 25;
number_tasks_per_node = 4;

*)
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Listing 8.4 — ORWL 3D MD application specification within Dido.

ORWL_Application = MD_3D;
Main_Data = {
box_grid (3D) in (x, y, z);
}
Auxiliary_Data = {
(* empty *)
X
Application = {
kernel = compute_MD in "kernel-MD.h";

types = "types-MD.h";

halo = 1;

iteration_halo = 1;
boundary_conditions = periodic;
neighb = Moore;

grid_traversal = Jacobi;
data_element_type = box;

}

Execution_Parameters = {
init_file = "init-MD.h";
iterations_number = 100;
box_grid [1000] [1000][1000] into [250][250][250];
number_nodes = 16;
number_tasks_per_node = 4;

}

Listing 8.5 — Molecular Dynamics Kernel
void compute_MD (size_t n, box box_grid_out[][n+2][n+2],
box box_grid_in[][n+2][n+2]) {
compute_positions (box_grid_in[k][jI1[i]);
periodicity (n, box_grid_out, box_grid_in);
compute_partial_velocities (box_grid_in[k][jI[il);
compute_forces(n, box_grid_out);
compute_kinetic_energy (n, box_grid_out);
compute_velocities (box_grid_out[k][jI[i]);
normalization_velocities (n, box_grid_out);
compute_physical_quantities ();

The user has also to make sure that the specified kernel is coherent with the parame-
ters given within Dido, i.e., halo and iteration halo, so that the access does not fall out-
side the computation domain. Otherwise, a compilation error will be inevitably generated
when compiling the generated code.

e Neighbourhood:

Dido does not extract the stencil neighborhood from the kernel since the latter is spec-
ified in a separate header file that is not parsed by the DSL. Therefore, the user has to
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Listing 8.6 — Kernel function arguments order for a 2D wave kernel example

void compute_wave_2D (size_t n, float wave_out[][n+2],
float wave_in_1[][n+2],
float wave_in_2[][n+2],
float v[]l[n+2]) {
size_t y,x;
for (y = 1; y < n+1; y++) {
for (x = 1; x < n+1; x++) {
wave_out [yl [x] = 2 * wave_in_1[y][x] - wave_in_2[y][x]
+ v[yl[x] * (cO * wave_in_1[y][x]
+ cl * (wave_in_1[y][x-1] + wave_in_1[y][x+1]
+ wave_in_1[y-1][x] + wave_in_1[y+1][x]1));

3
}

provide the neighborhood of his computation within Dido input code. This can be the
classic von Neumann or Moore neighborhoods that they can specify directly (see Line 14).
Alternatively, they can refine the neighborhood shapes by specifying the exact accessed
neighboring points as in Listing 8.3, in order to avoid redundant communications.

¢ Grid Traversal:

In this work, we address both Jacobi-like and Seidel-like methods. The DSL enables the
user to specify the iteration types, i.e., Jacobi or Seidel (see Line 15). These have a consid-
erable impact on the generated code as will be further explained in Chapter 9.
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* Data Types and Scalar Constants:

Stencils supported by Dido are not constrained to classic basic numeric types, i.e., floats,
doubles, etc. The stencil grid elements can be of any data type whether it is a basic type
or an aggregate data type. The user has a free hand to specify all the necessary types,
data-structures and scalar constants that may be necessary for their application. These
are defined on the level of C code in a separate header file. A reference to the type header
file and the main data element type is included in the Dido code (cf. Line 10 & 16, re-
spectively). This header file will be included in the generated ORWL code as shown in
Figure 9.1. As an illustration, take the example of molecular dynamics (see Listing 8.7)
where particle and box are both aggregate types (Systems of Arrays).

Listing 8.7 — Particle and Box type definitions in the Molecular Dynamics (MD) applica-
tion as specified in the type header file types-MD.h included in Dido specification

typedef struct particle {
float X;//positions
float Y;
float Z;
float VX;//velocities
float VY;
float VZ;
float massp;
float ipab;

} particle;

typedef struct box {
float ppX[NPP];//positions
float ppY[NPP];
float ppZ[NPP];
float ppxD[NPP];//accelerations
float ppyD[NPP];
float ppzD[NPP];
float ppVX[NPP];//velocities
float ppVYI[NPP];
float ppVZ[NPP];
float ppFX[NPP];//forces
float ppFY[NPP];
float ppFZI[NPP];
float ppmass[NPP];
float ppipab[NPP];
int nbpart;
particle var_x_n[];//vector of particles to displace in x direction
particle var_x_pl[];

int numb_x_n;//number of particles to displace in x direction
int numb_x_p;

} box;
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Listing 8.8 — Neumann boundary conditions.

float dido_boundary (size_t x, size_t y,
size_t global_x, size_t global_y,
size_t t) {
float border_value=0;
if ((x == global_x-1)||(y == global_y-1))
border_value=10;
return border_value;

}

Listing 8.9 — Dirichlet boundary conditions.

float dido_boundary (size_t x, size_t y,
size_t global_x, size_t global_y,
size_t t) {
return 10 + 0.2 * t;
}

¢ External libraries:

Dido enables the user to utilize any library or header file that they find necessary for their
application. This can be easily done by including them in the types header file or in the
kernel header file. For instance, in the Cell Nuclei Recognition application, the CImg im-
age processing library [Tsc04] is used to load, save, display and process the image. It was
sufficient to include this library in the code in order to take full advantage of its useful
functions.

* Boundary conditions:

To comply with real application requirements and provide better simulation accuracy;,
Dido supports both periodic and non-periodic boundary conditions (see Line 13). In case
of non-periodicboundary conditions, we allow the user to customize the boundary condi-
tions according to their application needs. It can be one of the commonly used conditions
such as Neumann (constant value for borders), Dirichlet (a specific function to compute
element values on the edges) or any other border specification described through a C
function called dido_boundary in the kernel header file. Listing 8.9 and Listing 8.8 show
Dido specifications of a Dirichlet and a Neumann boundary condition, respectively.

8.3.2 Execution Parameters

The second part of Dido specifies the execution parameters for a particular problem in-
stance. These consist of the initialization files, the convergence criteria and the problem
size and repartition among available nodes.
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¢ Initialization:

For a particular problem instance, the user has to provide a header file (see Line 19) that
contains initialization functions for the main and auxiliary data. The user can use their
own routines, just like they did for handwritten applications.

The following naming conventions have to be respected when specifying the init func-
tions:

e initialization for the main data.

* initialization_{auxiliary-data-name} for auxiliary data.
* Stopping Criteria:

A stencil computation is often repeated either for prefixed number of iterations or until
the computation stabilizes. Thus, the user has to provide a stopping criterion that can
be either a maximum number of iterations within the DSL (cf. Line 20), or a convergence
condition at the level of C code.

* Problem Size and Repartition:

The user has also to specify the global size of the problem as well as the data reparti-
tion into blocks. These can be specified either within the Dido input (see Line 21) or as
parameters at runtime. Finally, they have to specify the number of nodes on which the
computation is deployed as well as the number of tasks per node (see Line 22-23).



CHAPTER
Dido: Code Generation and
Optimization

Given a stencil specification that does not exceed a few lines of trivial code, Dido generates
hundreds of lines of ORWL parallel code. In addition to the defined pattern presented in 7,
the quality of the generated code is crucial for performance. Careful attention has been
dedicated to make the complex generated code as clear, readable and efficient as possible.

In this chapter, we exhibit the structure as well as the details of Dido generated code.
Section 9.1 describes how Dido code is generated. Section 9.2 presents the structure of
the generated code. In section 9.3, we describe the generated code components,i.e., Lo-
cations, tasks, operations, etc. Section 9.4 shows the impact of the different stencil char-
acteristics on the generated code. In section 9.5, we describe how Pluto can be used for
data locality optimization of Dido generated code.

9.1 Code Generation

As shown in Listing 9.1, the code is generated through a simple call to the Dido executable
(./dido) with the name of the file containing the stencil specifications as argument (e.g.
MD-3D.dido). The user can also add additional options as following:

e —-temp: to apply the temporal blocking optimization to the generated code as de-
scribed in Section 7.3. It is recommended to use this option for 2D and 3D stencil
computations with basic type data elements (e.g. int, float, double, efc). Without
this option, the generated code follows the default pattern specified in Section 7.2.

* —-output: to specify the output directory. The default would be the directory contain-
ing the Dido executable.

* --mainonly: to only generate the main function as specified in the instantiation part
of Dido code, instead of regenerating all of the applicative code from scratch.
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Listing 9.1 — Generating ORWL code from a Dido stencil specification.
./dido MD-3D.dido --temp --output=outdirectory --mainonly

9.2 Structure of the Generated Code

As shown in Figure 9.1, after running the Dido code generator, Dido generates five dif-
ferent files including the Makefile. The four other files contain applicative ORWL code as
following:

* {ApplicationName}-def.h and {ApplicationName}-def.c comprise the declaration and
definition of the ORWL tasks, locations and operation threads.

e {ApplicationName}-main.c file contains the main function of the ORWL program.

e {ApplicationName}-tasks.c file encompasses the communication code as well as the
different functions and CompUp operations.

The generated code consists of C code with includes of both P99! and ORWL libraries
(cf- Listing 9.2).

9.3 Generated Code Components

9.3.1 Locations and tasks

The number of ORWL data locations and neighboring tasks depends on the dimension n
of the main data and the computation neighborhood. In the case of a Moore neighbor-
hood, the number of neighboring tasks is:

|neigboring tasks| = Z,’C’ZIZk * C,’;‘k

Otherwise, the number of neighboring tasks is reduced. It corresponds to 2 * n in the
case of von Neumann neighborhood. Following the CompUp form, the number of shadow
locations is twice the number of tasks, in addition to the main location:

|locations| =2 *|neigboring tasks|+1

In order to guarantee a minimum of discoverability and readability for the complex
generated code, the naming conventions for the ORWL tasks and locations have been
carefully chosen. The attributed names encode the type of the object as prefix, i.e., LO-
CATION or TASK, as well as the direction. For the direction, each axis name given by the
user is followed by a suffix that encodes the direction in that particular dimension. There
are three possible direction suffixes as following:

'https://www.p99.gforge.inria.fr/
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P99 Library ORWL Library

types.h kernel.h init.h

# include # include

Generated ORWL Code

# include # include # include

ApplicationName-def.h

#include "orwl.h"

#include "orwl_gresource.h"
#include "p99_c99 default.h"
#include "p99_str.h"
#include "orwl_instrument.h"

ORWL_LOCATIONS_PER_TASK(Main,

)
P99_DECLARE_ENUM(task_neighb,

Task_z_p,

Task_z_n,

)i
P99_DECLARE_STRUCT(task_thread);
P99_DEFINE_STRUCT(task_thread,

ool

DECLARE_NEW_DELETE(task_thread);
DECLARE_THREAD(task_thread);

# include

# include

ApplicationName-tasks.c
#include "orwl.h"
#include "orwl_gresource.h"
#include "p99_c99_default.h"
#include "p99_str.h"
#include "orwl_instrument.h"
#include "types.h"
#include "kernel.h"
#include "init.h"
#include "ApplicationName-def.h"

/I update functions
)).CompUp operations

static
void compute_task (task_thread* Arg, orwl_server* srv, size_t myloc) {

static
void local_update_task (task_thread* Arg, orwl_server* srv, size_t myloc) {

}
static
void global_update_task (task_thread* Arg, orwl_server* srv, size_t myloc) {

}

ApplicationName-def.c

#include "orwl.h"

#include "orwl_gresource.h"
#include "p99_c99_default.h"
#include "p99_str.h"

#include "orwl_instrument.h"
#include "ApplicationName-def.h"

// Location Definitions
ORWL_LOCATIONS_PER_TASK_INSTANTIATION();

// Task Definitions

P99_DEFINE_ENUM(task_neighb);

extern inline task_thread* task_thread_init(task_thread* task);
extern inline void task_thread_destroy(task_thread *task);

DEFINE_NEW_DELETE(task_thread);

Makefile Running Script

ApplicationName-main.c

#include "orwl.h"

#include "orwl_gresource.h"
#include "p99_c99_default.h"
#include "p99_str.h"

#include "orwl_instrument.h"
#include "types.h"

#include "ApplicationName-def.h"

int main(int argc, char **argv) {

orwl_init();
for (size_ti=0; i< orwl_ll; i++) {
task_thread* task=P99_NEW(task_thread);
*task = (task_thread) {
.n=n,
.iterations = iterations,
.global_z = global_z,
.global_y = global_y,

t
task_thread_operation(task, orwl_locidsl[il);

¥
return EXIT_SUCCESS;

-

Figure 9.1 — Structure of Dido generated code
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Listing 9.2 — Head of the generated code files with includes of P99 and ORWL libraries

#include "orwl.h"

#include "orwl_qresource.h"
#include "p99_c99_default.h"
#include "p99_str.h"
#include "orwl_instrument.h"

* p suffix corresponds to positive directions, i.e., the directions in which the indices
grow in the main data grid.

* n suffix corresponds to negative directions, i.e., the directions in which the indices
decrease in the main data grid.

* [ suffix indicates that the size of the location in that direction is equal to the block
size.

To sum up, the neighboring tasks and shadow location names follow the pattern:
{TASK|LOCATIONj}_dimy{p|n|k}..._dim,{p|n|k}{|_PLUS}

The _PLUS suffix indicates that the location serves for the Global Update operation to
locally save neighboring task updated data as described in Section 7.1.

For face shadow locations, i.e., locations that have the same size as the main data grid
in all dimensions except one dimension dim, the location and task names are reduced to:

{TASK|LOCATION}_dim{p|n}{@|_PLUS}

Figure 9.2 depicts the location names for a 2D stencil example following the naming con-
ventions specified above. Despite the effort spent on the naming conventions, the code
remains complex and can not be easily written by hand as further shown in Listing 9.3
and Listing 9.4.

9.3.2 An ORWL Program: a Loop over Locations

As an immediate result of the canonical form as evoked in Chapter 2, the main function of
an ORWL program is nothing but a loop over all ORWL locations as shown in Listing 9.5.
For each location, an operation is automatically generated. That operation is then instan-
tiated at run time by a separate thread. The type and structure of the operation, whether it
is a Global Update, Local Update or Compute, depends on the identifier of the associated
location as depicted in Listing 9.6.
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LOCATION_xn_yn_PLUS LOCATION_xp_yn_PLUS

LOCATION_yn_PLUS
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Figure 9.2 — Location names for a 2D Stencil with Moore neighborhood and (x, y) as axis
names.

9.3.3 Operations

Excerpts from the Compute, Local Update and Global Update operations, corresponding
to a 2D wave as specified in Listing 8.2, are depicted in Listing 9.7, Listing 9.8 and List-
ing 9.9, respectively. These show that all operations, apart from their type, have common
features. Each operation consists of four main steps:

1. Data Buffer Initialization: Buffers corresponding to locations are initialized.

2. Lock Initialization Step: Lock objects and handles are initialized. Initial requests to
the specified locations are inserted for each handle. The request orderings in the FI-
FOs are initially arranged with the positions indicated by the CompUp form as spec-
ified in Section 9.7.

3. Initialization Iteration: An introductory iteration, that distributes all control and
data to the appropriate operations is executed.

4. Computation Iterations: The proper computations (or data copies) are run in an
iteration loop.
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Listing 9.3 — ORWL Task declarations for a 27-pt 3D Stencil with (x, y, z) as axis names

P99 _DECLARE_ENUM (task_neighb,
TASK_zk_yp_xp, TASK_zk_yp_xn, TASK_zk_yn_xp,
TASK_zk_yn_xn, TASK_zp_yk_xp, TASK_zp_yk_xn,
TASK_zn_yk_xp, TASK_zn_yk_xn, TASK_zp_yp_xk,
TASK_zp_yn_xk, TASK_zn_yp_xk, TASK_zn_yn_xk,
TASK_zp_yp_xp, TASK_zp_yp_xn, TASK_zp_yn_xp,
TASK_zp_yn_xn, TASK_zn_yp_xp, TASK_zn_yp_xn,
TASK_zn_yn_xp, TASK_zn_yn_xn,
TASK_zp, TASK_zn, TASK_yp,
TASK_yn, TASK_xp, TASK_xn
)

Listing 9.4 — ORWL Location declarations for a 27-pt 3D Stencil with (x, y, z) as axis names.

ORWL_LOCATIONS_PER_TASK(MAIN_LOCATION,
LOCATION_zk_yp_xp, LOCATION_zk_yp_xn, LOCATION_zk_yn_xp,
LOCATION_zk_yn_xn, LOCATION_zp_yk_xp, LOCATION_zp_yk_xn,
LOCATION_zn_yk_xp, LOCATION_zn_yk_xn, LOCATION_zp_yp_xk,
LOCATION_zp_yn_xk, LOCATION_zn_yp_xk, LOCATION_zn_yn_xk,
LOCATION_zp_yp_xp, LOCATION_zp_yp_xn, LOCATION_zp_yn_xp,
LOCATION_zp_yn_xn, LOCATION_zn_yp_xp, LOCATION_zn_yp_xn,
LOCATION_zn_yn_xp, LOCATION_zn_yn_xn,
LOCATION_zp, LOCATION_zn, LOCATION_yp,
LOCATION_yn, LOCATION_xp, LOCATION_xn,
LOCATION_zk_yp_xp_PLUS, LOCATION_zk_yp_xn_PLUS,
LOCATION_zk_yn_xp_PLUS, LOCATION_zk_yn_xn_PLUS,
LOCATION_zp_yk_xp_PLUS, LOCATION_zp_yk_xn_PLUS,
LOCATION_zn_yk_xp_PLUS, LOCATION_zn_yk_xn_PLUS,
LOCATION_zp_yp_xk_PLUS, LOCATION_zp_yn_xk_PLUS,
LOCATION_zn_yp_xk_PLUS, LOCATION_zn_yn_xk_PLUS,
LOCATION_zp_yp_xp_PLUS, LOCATION_zp_yp_xn_PLUS,
LOCATION_zp_yn_xp_PLUS, LOCATION_zp_yn_xn_PLUS,
LOCATION_zn_yp_xp_PLUS, LOCATION_zn_yp_xn_PLUS,
LOCATION_zn_yn_xp_PLUS, LOCATION_zn_yn_xn_PLUS,
LOCATION_zp_PLUS, LOCATION_zn_PLUS, LOCATION_yp_PLUS,
LOCATION_yn_PLUS, LOCATION_xp_PLUS, LOCATION_xn_PLUS
)

These steps are synchronized by an ORWL barrier (cf. Line 28 in Listing 9.7) and a schedul-
ing step (cf. Line 37 in Listing 9.7). The latter ensures that the initial FIFO positions of all
handles of the different operations are inserted consistently at all locations. Thereafter,
the execution order of tasks, based on their data dependencies, is fixed globally, and the
operations can run concurrently without the need for any further global synchronization.

9.3.4 Update Functions

The generated code includes four update functions used to update shadow region buffers
with newly computed data as following:
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Listing 9.5 — Main function of ORWL genrated parallel code.

int main(int argc, char **xargv) {

1

2 PR

3 orwl_init ();

4 for (size_t i = 0; i < orwl_11; i++) {

5 task_thread* task = P99_NEW(task_thread);
6 xtask = (task_thread) {

7 .n = n,

8 .iterations = iterations,

9 .global_y = global_y,

10 };

11 task_thread_operation(task, orwl_locids[i]);
12 T

13 return EXIT_SUCCESS;

1}

Listing 9.6 — Operation thread instantiation based on associated location ID.

DEFINE_THREAD (task_thread) {
size_t myloc = orwl_myloc;
orwl_server *const srv = orwl_server_get ();
orwl_locations taskl = ORWL_LOCAL (myloc);
if (taskl == MAIN_LOCATION) {
compute_task (Arg, srv, myloc);
} else {
if (taskl <= LOCATION_xn) {
update_local_task (Arg, srv, myloc, taskl);
} else {
update_global_task (Arg, srv, myloc, taskl);
}
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* update_edge_in_matrix (See Listing 9.12) called by the Compute operation (cf. Line 10
in Listing 9.10).

* update_edge_from_matrix (See Listing 9.13) called by the Local Update operation (cf.
Line 35 & Line 45 in Listing 9.8).

* update_edge_from_edge and update_border (See Listing 9.15 & Listing 9.14) called by the
Global Update operation (cf. Line 37 & Line 41 in Listing 9.9).

As depicted in Listings 9.12, 9.13, 9.15 & 9.14, inside these update functions, the
unit-stride loop index is incremented first, then the middle indices are incremented,
and finally the least-contiguous index is incremented. In other terms, the inner loop
corresponds to the unit-stride loop index and the outer loop corresponds to the least-
contiguous index. To sum up, we stream contiguously through memory. Additionally, the
iterator names are followed by suffixes that encode the dimension using the axis names
provided by the user at the level of Dido code. This guarantees a minimum of discover-
ability for the update functions code.
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Listing 9.7 — Structure of a Compute operation for a 2D wave stencil computation:
second-order in time Jacobi-like iterations with von Neumann neighborhood

1 static
2 void compute_task (task_thread* Arg, orwl_server* srv, size_t myloc) {
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ORWL_THREAD_USE(task_thread, n, iterations, global_y);

p99_seed *const seed = p99_seed_get ();

size_t mtask = ORWL_TASK(myloc); // main task id and coordinates
size_t const global_x = ORWL_TASK(orwl_nl) / (global_y);

size_t const x = mtask / (global_y);

size_t const y = (mtask % (global_y)) ;

VAR TR Data Buffer Initialization * ok k% % /
size_t const np2 = n+2; // data buffer sizes
typedef float fline [np2]; // data buffers

typedef float mline [np2];
mline * mtrx = P99_MALLOC (float[np2][np2]);
mline * mtrxl = P99_MALLOC (float[np2][np2]);
mline * mtrx2 = P99_MALLOC (float[np2][np2]);
float (*velocity)[][np2] = P99_MALLOC (float[np2][np2]);
for (size_t i_y = 0; i_y < n; i_y++) { // initialization
for (size_t i_x = 0; i_x < n; i_x++) {
(*velocity)[i_y + 1][i_x + 1] =
initialization_velocity (n*x + i_x, n*y + i_y);

}
}
mline (* matrix [3]) = {mtrx, mtrxl, mtrx2};
orwl_global_barrier_wait(myloc, 1, srv); // synchronization
VEELELS Lock Initialization Step * ok ok ok x /

orwl_handle2 LWrite = ORWL_HANDLE2_ _INITIALIZER;
orwl_handle2 buffer_y_n_Read = ORWL_HANDLE2_INITIALIZER;

orwl_write_insert (&LWrite, myloc, 0, seed);
orwl_read_insert (&4buffer_y_n_Read,

ORWL_LOCATION (ORWL_TASK(myloc), LOCATION_y_n_PLUS), 0, seed);

orwl_schedule (myloc, 1, srv);

VAET TR Initialization Iteration * % k% % /
ORWL_SECTION (&buffer_y_n_Read, 1, seed) {

//empty
}

ORWL_SECTION (&LWrite, 1, seed) {

orwl_truncate (&LWrite, sizeof (voidx*));

float (** mtrxP)[np2] = orwl_write_map (&LWrite);

*mtrxP = matrix [0];
}

VEEEEES Computation Iterations *kok ok k /

// see Listing 9.10

// disconnect handles and free buffers

orwl_disconnect (LWrite, 1, seed);

orwl_disconnect (buffer_y_n_Read, 1, seed);

free(mtrx);
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Listing 9.8 — Structure of a Local Update operation for a 2D wave stencil computation:
second-order in time Jacobi-like iterations with von Neumann neighborhood

1 static void local_update_task(task_thread *Arg, orwl_server* srv,
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size_t myloc, orwl_locations taskl) {
ORWL_THREAD_USE (task_thread, n, iterations);
p99_seed *const seed = p99_seed_get ();

VAR LS Data Buffer Initialization * Kok ok ok /
typedef float const line [n+2];
typedef float fline [n+2];
size_t t_x;
switch (taskl) {
case LOCATION_y_n:

t_x = n+2;

break;
case LOCATION_x_n:

t_x = 1;

break;

3

orwl_global_barrier_wait(myloc, 1, srv);

VEELELS Lock Initialization Step * ok ok ok x /
orwl_handle2 buffer_Write = ORWL_HANDLE2_ _INITIALIZER;
orwl_handle2 main_Read = ORWL_HANDLE2_INITIALIZER;
orwl_write_insert (&buffer_Write, myloc, 1, seed) ;
orwl_read_insert (&main_Read,

ORWL_LOCATION (ORWL_TASK(myloc), MAIN_LOCATION), 1, seed);
orwl_schedule (myloc, 1, srv);

VEEEE L Initialization Iteration * %%k % /
ORWL_SECTION (&buffer_Write, 1, seed) {

orwl_truncate (&Ybuffer_Write, sizeof (fline));

ORWL_SECTION (&main_Read, 1, seed) {

line *const *matrixP = orwl_read_map(&main_Read);
fline xfrontier = orwl_write_map (&buffer_Write);
update_edge_from_matrix(taskl, t_x, n, frontier, *matrixP);
}
}
VEELELS Computation Iterations *ok ok ok % /
for (size_t iter = 0 ; iter <iterations; iter++){

ORWL_SECTION (&buffer_Write, 1, seed){
ORWL_SECTION (&main_Read, 1, seed){
line *const *matrixP = orwl_read_map(&main_Read);
fline *frontier = orwl_write_map(&buffer_Write);
update_edge_from_matrix(taskl, t_x, n, frontier, *matrixP);
}
}
}
orwl_disconnect (&main_Read, 1, seed);
orwl_disconnect (&buffer_Write, 1, seed);
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Listing 9.9 — Structure of a Global Update operation for a 2D wave stencil computation:
second-order in time Jacobi-like iterations with von Neumann neighborhood and non-

periodic Neumann boundary conditions
1 static void global_update_task(task_thread *Arg, orwl_server* srv,
size_t myloc, orwl_locations taskl) {
ORWL_THREAD _USE (task_thread, n, iterations, global_y);
p99_seed *const seed = p99_seed_get ();
size_t mtask = ORWL_TASK(myloc); // main task id and coordinates
bool border = false;
VEELELS Data Buffer Initialization * ok ok ok x /
orwl_global_barrier_wait (myloc, 1, srv);
VAR L ELS Lock Initialization Step * kK ok % /
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orwl_handle2 there_buffer_Read = ORWL_HANDLE2_ _INITIALIZER;
orwl_handle2 here_buffer_Write = ORWL_HANDLE2_INITIALIZER;
orwl_write_insert (&here_buffer_Write, myloc, 2, seed);
switch (taskl) {
case LOCATION_y_p_PLUS
if (y + 1 < global_y) {
orwl_read_insert (&there_buffer_Read,
relative_task(x, y+1, LOCATION_y_n, global_y), 2, seed);
} else {
border = true;
}

break;

}

orwl_schedule (myloc, 1, srv);

/[ * ok ok % Initialization Iteration * % kok * /
ORWL_SECTION (&here_buffer_Write, 1, seed) {
orwl_truncate (&here_buffer_Write, sizeof (fline));
if (!border) {
ORWL_SECTION (&there_buffer_Read, 1, seed) {
line #*neighb_frontier = orwl_read_map (&there_buffer_Read);
fline *frontier = orwl_write_map (&here_buffer_Write);
update_edge_from_edge (taskl, n, frontier, neighb_frontier);
}
} else {
fline xfrontier = orwl_write_map(&here_buffer_Write);
update_border (taskl, t_x, n, x, vy,
global_x, global_y, 0, frontier);

3

VEELELS Computation Iterations * ok ok ok x /
// see Listing 9.11

orwl_disconnect (&there_buffer_Read, 1, seed);

orwl_disconnect (& here_buffer_Write, 1, seed);
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Listing 9.10 — Computation iteraions inside a Compute operation for a 2D wave stencil
computation: second-order in time Jacobi-like iterations with von Neumann neighbor-

hood
1 for (size_t iter = 0 ; iter < iterations ; iter++) {
2 size_t inbr = iter % 3;
3 float (*const wave_grid) [np2] = matrix[inbr];
4 float (*const wave_grid_iter_minus_1)[np2] = matrix[(inbr+1) % 31;

5 float (*xconst wave_grid_iter_minus_2) [np2] matrix [(inbr+2) % 3];
6 // Data Updates Followed by Computation

7 ORWL_SECTION (buffer_y_n_Read, 1, seed){

8 fline *frontier = orwl_read_map(&buffer_y_n_Read);

9 t_x = n+2;

10 update_edge_in_matrix(

11 ORWL_LOCAL (ORWL_LOCATION (ORWL_TASK (myloc), LOCATION_y_n_PLUS)),
12 t_x, n, frontier, wave_grid_iter_minus_1);
13 }

14 “ ..

15 compute_wave_2D(n, wave_grid, wave_grid_iter_minus_1,

16 wave_grid_iter_minus_2, *velocity);

17 ORWL_SECTION (&LWrite, 1, seed) {

18 float (** matrixP)[n+2] = orwl_write_map (&LWrite);

19 *matrixP = wave_grid;

20 }

21 }

Listing 9.11 — Computation iteraions inside a Global Update operation for a 2D wave
stencil computation: second-order in time Jacobi-like iterations with von Neumann
neighborhood and non-periodic Neumann boundary conditions

1 if (!'!border) A

2 for (size_t iter = 0 ; iter < iterations; iter++){

3 ORWL_SECTION (&here_buffer_Write, 1, seed){

4 ORWL_SECTION (&there_buffer_Read, 1, seed){

5 line *neighb_frontier = orwl_read_map(&there_buffer_Read);
6 fline *frontier = orwl_write_map(&here_buffer_Write);

7 update_edge_from_edge (taskl, n, frontier, neighb_frontier);
8 }

9 }

10 }

n} else {

12 for (size_t iter = 0 ; iter < iterations; iter++){

13 ORWL_SECTION (&here_buffer_Write, 1, seed){

14 fline *xfrontier = orwl_write_map(&here_buffer_Write);

15 update_border (taskl, t_x, n, x, vy,

16 global_x, global_y, iter, frontier);

17 }

18 }
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Listing 9.12 — Update Edge in Matrix function

1 static
2 void update_edge_in_matrix(orwl_locations task, size_t t_x,
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assert (frontier);
switch (task) {
case LOCATION_y_n_PLUS
for (size_t i_y = 0;
for (size_t i_x =
jacobi[i_yl[i_x]
}
}
break;
case LOCATION_y_p_PLUS
for (size_t i_y = 0;
for (size_t i_x =

}
}

break;
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0 .
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ize_t const n,

float frontier [J[t_x],

float jacobi[l[n+2]) {
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Listing 9.13 — Update Edge from Matrix function

1 static
2 void update_edge_from_matrix(orwl_locations task, size_t t_x,
size_t const n, float frontier[][t_x],
float const jacobi[][n+2]) {

10

12

13

14

15

17

18

19

20

21

22

23

size_t const np2ml = n
assert (frontier);
switch (task) {
case LOCATION_y_n
for (size_t i_y = 0;
for (size_t i_x =
frontier[i_y][i_
}
}
break;
case LOCATION_y_p
for (size_t i_y = 0;
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}
}
break;
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Listing 9.14 — Update Border Function

static
void update_border (orwl_locations task, size_t t_x, size_t const n,
size_t x, size_t y,
size_t global_x, size_t global_y,
size t t, float frontier[l[t_x]) {
assert (frontier) ;
switch (task) {
case LOCATION_y_n_PLUS
for (size_t i_y = 0; 1
for (size_t i_x = 0;
frontier [i_y][i_x]

< 1; i_y++) {
_x < n+2; i_x++) {
dido_boundary (x*n+i_x, y*n+i_y,
global_x, global_y, t);

NP

}
}

break;

case LOCATION_x_n_PLUS
for (size_ t i_y = 0; i_y < n+2; i_y++) {

for (size_t i_x = 0; i_x < 1; i_x++) {
frontier[i_y]l[i_x] = dido_boundary (x*n+i_x, y*n+i_y,
global_x, global_y, t);
}
3
break;
}
}
Listing 9.15 — Update Edge from Edge function
static

void update_edge_from_edge(orwl_locations task, size_t const n,
float here_frontier[][n+2], float const frontier[][n+2]) {
assert (frontier);
for (size_t i_y = 0; i_y < 1; i_y++) {
for (size_t i_x = 0; i_x < n+2; i_x++) {
here_frontier[i_y][i_x] = frontier[i_y]l[i_x];

9.4 Generated Code Variability

Dido supports a wide range of stencil computations with different characteristics such as
grid traversal and boundary conditions. This section gives an overview of the impact of
those characteristics on the generated code.
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Listing 9.16 — Waiting iterations inside operations for Seidel-like grid iterations

VEEEEES Waiting iterations *ok ok ok x /
for (size_ t wi = 0; wi<xzx+y; wi ++) {
ORWL_SECTION (&buffer_y_n_Read, 1, seed) {
//enpty
}
ORWL_SECTION (&buffer_y_p_Read, 1, seed) {
//empty
}
ORWL_SECTION (&buffer_x_n_Read, 1, seed) {
//empty
}
ORWL_SECTION (&4buffer_x_p_Read, 1, seed) {
//empty
}
ORWL_SECTION (&LWrite, 1, seed) {
//empty
}
}

9.4.1 Grid Traversal

Dido handles both Jacobi-like and Gauss-Seidel-like grid traversals. Listing 9.7 depicts the
compute operation code corresponding to Jacobi-like iterations. Instead of two copies
of the main data grid swapping their roles after each iteration, only one single copy of
the main data grid is required by Gauss-Seidel-like iterations. Additionally, the inherent
dependency imposes an order to respect when computing elements. On the level of the
generated code, this is handled by adding waiting iterations (cf. Listing 9.16) just after the
initialization iterations and before computation iterations creating a wavefront.

9.4.2 Boundary Conditions

As specified in Section 8, Dido supports both periodic and non-periodic boundary condi-
tions. These have an impact on the generated code, and more particularly, on the Global
Update operation code. The other types of operations, i.e. Compute and Local Update,
are not affected by the boundary condition treatment. Listing 9.17 and Listing 9.9 show
the Global Update operations corresponding to a 2D Jacobi-like stencil with periodic and
non-periodic boundary conditions, respectively.

As evoked in Subsection 4.3, boundary conditions can easily become a bottleneck in
the stencil code performance, especially if a test is made at every point to determine if the
stencil point falls on the boundary. Therefore, we devoted significant attention in order
to encapsulate all necessary treatment in the initialization phase so that the computa-
tion iterations remain test-free. In case of non-periodic boundary conditions, a control is
made in the lock initialization step inside the Global Update operation to check whether
the corresponding block edge falls on the boundary (cf. Line 17-27 in Listing 9.9) If it is
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the case, the update_boder function is called in the initialization iteration. It is this update
function that calls the dido_boundary function provided by the user (¢f. Line 11 in List-
ing 9.14). Following the same scheme, one treatment or the other is performed inside the
computation iterations as shown in Listing 9.11. Subsequently, the computation iterations
are test-free.

As for periodic boundary conditions, the treatment is completely confined in the lock
initialization step. The lock handles are initialized appropriately in a way to form a torus
as shown in Listing 9.17. No specific treatment has to be made at the level of the compu-
tation iterations. The computation iterations are consequently test-free (See Line 40-48 in
Listing 9.17).

9.4.3 Temporal Blocking

As mentioned in Chapter 7, the overlapped data partitioning is the default data partition-
ing scheme for Dido generated code. Each block is then enlarged by twice the halo offset
on each dimension as shown in Listing 9.7. However, if the user chooses to apply the tem-
poral blocking optimization to the generated code as described in Section 7.3, each data
block is enlarged by twice the halo multiplied by the sequence size on each dimension.

9.5 Pluto for Data Locality Optimization

Stencil computations can be written as simple nested loops with linear affine bounds and
accesses. However, naive loop implementations often suffer from poor cache locality. To
improve locality and intra-node data reuse, we combined our code generation technique
with the polyhedral loop optimizer Pluto. We have chosen Pluto over other code gen-
eration and optimization frameworks and Stencil DSLs as it is a source-to-source code
transformer and can therefore be directly applied. However, we had to decide how to
interleave Pluto generated code with ORWL, and came up with two different solutions:

The first consists of using Pluto to optimize data locality on each core, i.e, at the task
level. Here, each compute node is associated with one ORWL process which is composed
of several tasks. These tasks operate on different data blocks in parallel. We use Pluto to
optimize the kernel served by these tasks. So, here Pluto is not used as a parallelizer, but
rather as a data locality optimizer: the parallelism is only ORWL-based and the generated
code is exclusively ORWL code. In particular, this solution does not use OpenMP.

The second solution is to use code that is parallelized by Pluto at the node level. Here,
we place one ORWL process consisting of one task/block per node. For this solution,
we rely on Pluto for data locality but also for coarse-grained parallelism. This provides
a hybrid solution where ORWL and OpenMP are both used to guarantee parallelism on
different levels.

Pluto does not alter in any way the accuracy of Dido generated code. Per default, its
data dependency detection guarantees that operations are performed in exactly the same
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Listing 9.17 — Global Update operation of a 2D Jacobi stencil with periodic boundary con-
ditions

1 static void update_global_task(task_thread *Arg, orwl_server* srv,

10

11

12

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

size_t myloc, orwl_locations taskl) {

VEELELS Lock Initialization Step * ok ok ok % /
orwl_handle2 there_buffer_Read = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 here_buffer_Write = ORWL_HANDLE2_INITIALIZER;
orwl_write_insert (&here_buffer_Write, myloc, 2, seed);
switch (task1l) {
case LOCATION_y_p_PLUS
if (y + 1 < global_y) { // x and y are the block coordinates
orwl_read_insert(&there_buffer_Read,
relative_task(x, y+1, LOCATION_y_n, global_y), 2, seed);
} else {
orwl_read_insert (&there_buffer_Read,
relative_task(x, O, LOCATION_y_n, global_y), 2, seed);
}
break;
case LOCATION_y_n_PLUS
if (y > 0) {
orwl_read_insert (&there_buffer_Read,
relative_task(x, y-1, LOCATION_y_p, global_y), 2, seed);
} else {
orwl_read_insert (&there_buffer_Read,
relative_task(x, global_y-1, LOCATION_y_p, global_y), 2, seed);

}
break;
}
orwl_schedule (myloc, 1, srv);
VAET TR Initialization Iteration * % %k % /

ORWL_SECTION (&here_buffer_Write, 1, seed) {
orwl_truncate (Yhere_buffer_Write, sizeof(fline));
ORWL_SECTION (&4there_buffer_Read, 1, seed) {
line *neighb_frontier = orwl_read_map (&there_buffer_Read);
fline xfrontier = orwl_write_map(&here_buffer_Write);
update_edge_in_edge (taskl, n, frontier, neighb_frontier);
}
}
VEELELS Computation Iterations *ok ok ok % /
for (size_t iter = 0 ; iter < iterations; iter++){
ORWL_SECTION (&here_buffer_Write, 1, seed){
ORWL_SECTION (&there_buffer_Read, 1, seed){
line *neighb_frontier = orwl_read_map(&there_buffer_Read);
fline *frontier = orwl_write_map(&here_buffer_Write);
update_edge_in_edge (taskl, n, frontier, neighb_frontier);
}
}
}
orwl_disconnect (&there_buffer_Read, 1, seed);
orwl_disconnect (& here_buffer_Write, 1, seed);
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Figure 9.3 — Dido’s Compilation Flow

order as specified in the original program. There are specific flags, though, that allow to
suppose commutativity or associativity of certain operations that then slightly change the
program semantic. In all experiments that are reported in Chapter 11, we did not use such
intrusive flags. Figure 9.3 depicts the full compilation flow of Dido, including Pluto as a
data locality optimizer.



CHAPTER
Dido Features

Dido is an implicitly parallel domain-specific language that has a wide variability and
supports a large range of multi-dimensional stencil computations. It meets the specific
needs of the application at a high level of abstraction and achieves both productivity and
performance benefits. Additionally, Dido offers interesting features for the supported
multi-dimensional stencil-based applications. First, it leverages all of the ORWL features
evoked in Section 2.6. It also adds on new capabilities such as guaranteeing the correct-
ness, readability and discoverability of the generated code. The combination of those
features makes of Dido a powerful code generation framework for stencil computations
in general, and for distributed-memory architectures in particular.

This Chapter provides an overview of the different features of the suggested frame-
work. Section 10.1 highlights the different features that Dido guarantees for the generated
code. Section 10.2 outlines the variability of Dido and its capacity to handle a wide range
of stencil computations. In Section 10.3, we exhibit the programmer productivity benefits
achieved by Dido. Section 10.4 underlines the efficiency of the generated code .

10.1 Generated Code Features

Given a stencil specification captured in a concise and trivial syntax, Dido generates hun-
dreds of lines of C code. Details about the generated code are provided in Chapter 9. In
this section, we outline the different features of Dido generated code.

10.1.1 Correctness

Dido ensures the correctness of the generated code. The latter is guaranteed to be both
error-free and deadlock-free. Prior to code generation, the framework verifies that all the
parameters specified within the DSL are coherent. If not, an error message is displayed.
The error message indicates the error line. For example, in Listing 8.3 the problem is
divided into 10 x 10 = 100 blocks, which corresponds to the total number of tasks, 25 x4 =
100. In this case, no error message is displayed and the code is automatically generated.
If the error is syntactic, only the error line number is displayed. If the error is related to
the computation repartition, the following error message is displayed:



CHAPTER 10. DIDO FEATURES 99

./dido seidel-2D.dido

Error: Please verify the computation repartition among nodes.

Additionally, Dido generated code is guaranteed to be equivalent to the sequential
code. We speak here of code accuracy. In fact, accuracy is one of the most interesting fea-
tures that Dido inherits from ORWL. As evoked in Section 2.6, the access order of ORWL
tasks to the data is completely determined by the static order given in the initialization
phase of the FIFOs. Thereby, we can guarantee that each individual data element is com-
puted in exactly the same order with exactly the same low-level operations as it would
be in a conventional sequential setting. As a result, the generated parallel code preserves
the semantics of the original sequential kernel and gives provably correct results. If the C
pragma FP_CONTRACT is set to OFF such that the compiler is not allowed to reorder instruc-
tions, not even a numeric derivation of the results is to be expected.

Pluto does not alter in any way the accuracy of Dido generated code. Per default, its
data dependency detection guarantees that operations are performed in exactly the same
order as specified in the original program. There are specific flags, though, that allow to
suppose commutativity or associativity of certain operations that then slightly change the
program semantic. In all experiments that are reported in Chapter 11, we did not use such
intrusive flags.

10.1.2 Readability & Discoverability

Despite its complexity, the generated code is relatively clear and readable. This is first
due to the defined pattern described in Chapter 7. In fact, the overlapped data partition-
ing simplifies considerably the code and more precisely the computation of the frontier
elements of each block. It improves code locality and spares the analysis and specific
treatment details that would have been, otherwise, necessary for their computation. It
also helps avoiding the complex indexing relative to the haloregion updates. The compu-
tation part in the compute operation is thus reduced to one simple case that is applied on
all the block elements. This considerably simplifies the code, making it clearer and easier
to understand.

Additionally, naming conventions are carefully chosen not only for tasks and loca-
tions, but also functions, iterators and data buffers (See Chapter 9). Besides, the generated
code is well-indented. For all of these reasons, the generated code is relatively clear and
readable.

The readability of the generated code enables the user to easily take it in hand. They
can therefore easily modify it in order to optimize it or tune it for specific usage or archi-
tecture, or even include it as a part of a larger application that comprises a stencil com-
putation. Larger applications that include stencils in addition to other parts can therefore
benefit from Dido to parallelize the stencil part.
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10.1.3 Modularity

Dido is oriented towards real-world applications. In real use, users would not be able
or even willing to recompile their code for each problem instance as this is moderately
time-consuming and involves many technical details. On the other hand, it would be
impossible for developers to provide binaries for every possible configuration.

As evoked in Section 8.3, Dido is composed of two parts, i.e., structural parameters and
execution parameters. The structural parameters part results in the generation of all the
computation and communication code. The resulting code is parametric in the number
of processes, tasks and problem sizes. Once compiled, it can be used for different problem
instances specified in the second part involving the execution parameters. These can be
given either within the DSL, if they are fixed, or as parameters at runtime. This solution
saves compile time and efforts and significantly enhances the portability of the generated
code.

10.1.4 Optimal Communications

Dido enables the user to coarsely choose one of the standard neighborhood types, i.e.,
Moore or von Neumann, or alternatively to specify the exact access pattern if it does not
correspond exactly to one of these. This option helps eliminating redundant or extra com-
munications. Consequently, it alleviates the contention over the communication bus and
provides better performance.

10.2 Variability

Dido meets the needs of real applications at a high level of abstraction by supporting a
wide range of stencil computations. It gives the user a free hand to specify, e.g., data ag-
gregate types and customize boundary conditions, among other features. Table 10.1 de-
picts the variability of Dido and shows its great capacity to support stencil computations
with various properties.

10.3 Programmer Productivity

Dido was designed to improve the programmer productivity by sparing them from writ-
ing the complex parts of ORWL parallel code. Given a stencil specification that does not
exceed a few lines of straightforward code, bare of any details needed for parallelization,
hundreds of lines of code are generated. The generated code is guaranteed to be cor-
rect and error-free. Table 10.2 depicts the number of hand-written lines compared to the
number of generated code lines for the considered benchmarks. The number of lines to
be written by the user, in the case of a 3D 27-pt Jacobi for example, is reduced by 96%.
We estimate this to be a considerable improvement in terms of programmer productivity.



CHAPTER 10. DIDO FEATURES 101

Table 10.1 — Variability of Dido

Variability Level Options
Boundary Conditions structural Periodic, Non-periodic
(Dirichlet, Neumann ...)
Computational Domain structural multi-dimensional (2D, 3D, 4D, ...)
Kernel structural arbitrary C code
Halo structural various
Iteration_Halo structural various
Shape/Neighborhood structural | Moore, von Neumann or any other ...
Data types structural basic types or aggregate types
Problem Size instantiation various
Block Size instantiation various
Number of Nodes instantiation various
Temporal Blocking optimization with or without
Pluto Optimization optimization with or without
Parallelization optimization | ORWL and OpenMP or ORWL only

Table 10.2 — Number of hand-written lines of code vs. number of generated lines of code

metric Livermore | 3D Wave | 3D 27-pt Jacobi
hand-written lines 68 63 77
generated lines 711 988 2081

This measurement of a gain in productivity uses a comparison to explicit hand coding
with ORWL. We think that the result would not be much different if we would compare
to coding with other paradigms for parallel computation, as long as these involve explicit
creation of buffer space, data communications or access locks.

Not only does the DSL reduce the number of hand-coded lines, but it also avoids to
manually write complex and error-prone parts such as the halo region update operations.
A lot of time and effort is saved by automatically generating the indexing expressions and
communication statements. Table 10.3 lists the number of complex programming de-
tails such as communication statements and indexing operations that are automatically
generated by the DSL. For example, if the user had to write the ORWL parallel code of a
3D 27-point stencil without the aid of the DSL, they would have to handle 53 data loca-
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Table 10.3 — Parallel programming details automatically generated and spared for the
user

metric Livermore | 3D Wave | 3D 27-pt
neighboring tasks 4 6 26
locations 9 13 53
handle initializations 9 13 31
communication statements 29 48 110
indexing expressions 124 167 674

tions. To do so, they would have to initialize 31 handles and write 110 communication
statements and 674 indexing operations.

Seeing all these properties, the total development time of a parallel stencil computa-
tion within our framework can be just a few minutes. In addition, it took an PhD candidate
one year to write the ORWL code of the Cell Nuclei Recognition application. With the help
of Dido, we implemented an equivalent code in only two weeks.

For all those reasons, it seems clear that Dido achieves a considerable improvement in
terms of programmer productivity.

10.4 Efficiency

Dido provides a big leap in productivity without sacrificing the performance. Thanks to
the incorporated domain-specific knowledge that went into the defined patterns, it lever-
ages all the features of the ORWL model including liveness, efficiency and equity among
tasks. Additionally, Dido generated code is scalable and achieves competitive perfor-
mance compared to hand-crafted ORWL code. The achieved gain in performance is even
enhanced through the use of the temporal blocking optimization and the loop optimizer
Pluto. More details are given in Chapter 11 where a complete performance evaluation of
Dido generated code is presented.



CHAPTER
Dido Performance
Evaluation

Dido is an implicitly parallel domain-specific language that automatically generates
ORWL code for multi-dimensional stencil computations following the pattern presented
in Chapter 7. Details about the generated code are given in Chapter 9. In this Chap-
ter, we measure the efficiency of our approach experimentally. In order to validate our
modeling, we investigate the overhead, if any, that it might add to the computation. We
also explore the efficiency of the applied optimizations, i.e., temporal blocking and Pluto
for intra-node data locality. Additionally, we compare the performance of the generated
code to both handwritten ORWL code and MPI implementations. We also explore the
performance of Dido generated code of the molecular dynamics real-world application.
In section 11.1, we describe the testbed architectures. The experimental setups and the
performance results are presented in section 11.2. We conclude in section 11.3.

11.1 Testbed Architectures

The experiments as presented here have been conducted on the Grisou and Graphene
clusters of the Grid’5000 experimental testbed!, using a total of over 10% CPU hours count-
ing physical cores.

* Grisou: It consists of 51 nodes with two Intel Xeon E5-2630 processors, each, of which
48 were available to us. Each of the processors has 8 physical cores at 2.4 Ghz, so the
total number of physical cores available for us was 768. Each physical core is doubled
by two hyperthreaded cores, a total of 1536. Each node is equipped with 126 GiB of
memory, 6.3 TiB in total. The nodes are connected through a 10 Gb/s network.

* Graphene: It consists of 144 nodes with one Intel Xeon X3440 per node, of which 100
were available to us. Each of the processors has 4 physical single-threaded cores at
2.53 GHz, so the total number of physical cores available for us was 400. Each node is
equipped with 16 GiB of memory. The nodes are connected through an Infiniband-
20G network.

"https://www.grid5000.fr/
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The relevant software on this platform is a GNU/Linux system (kernel 3.16), a gcc
compiler (version 4.8.2) and the pet branch of Pluto. All the following results are obtained
after running 100 iterations. For greater accuracy, we take an average over four runs.

11.2 Experimental Results

11.2.1 Setupl

In [G]J11], a set of experiments is conducted to evaluate the performance of the ORWL
parallel model, by studying the computation efficiency depending on the blocks’ number
and size. For that purpose, a handwritten implementation of the Livermore Kernel 23 was
considered. As a first step in our performance study, we repeat exactly the same setup
used in [GJ11], but with Dido Livermore Kernel 23 generated code instead of the hand-
written version. Our aim here is to verify that our approach did not add any overhead to
the computation and conserved the ORWL efficiency properties. Similarly to [G]J11], we
consider problems of 4, 16, 36, 64 and 100 blocks, where one compute node is reserved for
each block. For each configuration, we increase the global problem size, until we reach
the maximum size per block that fits into the RAM of the target machines. This set of
experiments is conducted on the Graphene cluster. Results are shown in Figure 11.1 and
Figure 11.2. Figure 11.1 shows the variation of the average execution time per data ele-
ment depending on the blocks’ number and size. Figure 11.2 relates the time spent on
computation to the time spent on waiting for some frontier data.

e Comparison with Handcrafted Code:

As shown in Figure 11.1, the computation time per data element decreases when the
problem size increases. It tends to a lower limit. The times for different block partitions
are almost indistinguishable, especially for large block sizes. This proves that the over-
head for subdividing into more blocks is negligible. Figure 11.2 shows that for small prob-
lems, almost all the time is spent waiting. However, for larger problems, the time spent on
computation increases and finally reaches about 99% of the total execution time. These
results are similar to the results reported in [GJ11], which proves that Dido does not in
nay way degrade the performance of the ORWL model. On the contrary, it conserves the
ORWL efficiency properties.

11.2.2 Setup 2

In this set of experiments, we study the scalability of Dido generated code and the impact
of the applied optimizations on performance. For each of the considered benchmarks,
we have launched tests for the five following configurations:

1. Dido generated ORWL code with standard compiler optimizations, only.



CHAPTER 11. DIDO PERFORMANCE EVALUATION 105
10 ¢ T ]
- L 2*2 blocks  + ]
= 4*4 blocks A |
e 6*6 blocks O ]
] 8*8 blocks @ ]
& 10%10 blocks A |
[J)
© ]
©
©
g 1 g
Q 4
£ ‘ ]
* &
E @ 2 2 4 o 4 8 o @
E 4
>
o 4
£
o
O
01 | | | | |
2000 4000 6000 8000 10000 12000
block size
Figure 11.1 — Average computation time for a data element
100 : O C—
| @f@f — A~ O AN
/ - —
. 90 —
£ 80 /A .
s JAN
.© 70 -
I
3 60 -
£
S 50 8
bS]
o 40 8
(@)
3 30 8
S 2*2 blocks —+—
o 20 4*4 blocks —A— -
g 6*6 blocks —(O—
10 8*8 blocks —@—
10*10 blocks —A—
0 /A | | | |
0 2000 4000 6000 8000 10000 12000
block size

Figure 11.2 — Percentage of computation time



CHAPTER 11. DIDO PERFORMANCE EVALUATION 106

2. Dido generated ORWL code with temporal blocking.

3. Dido generated ORWL code with temporal blocking and Pluto’s data locality opti-
mization. This solution doesn’t use OpenMP.

4. Dido generated ORWL code with temporal blocking and Pluto’s data locality opti-
mization and parallelization. ORWL and OpenMP are both used to guarantee paral-
lelism on different levels.

5. An MPI Stencil code.

For the three first configurations, we place one task/block per hyperthreaded core,
that is 32 tasks/blocks per node on 1,4,8,12,...,48 nodes of the Grisou cluster. So, the
largest configuration consists of 1536 tasks and blocks. The considered block repartitions
and block sizes in single precision floats are given in Table 11.1 and Table 11.2, respec-
tively. For the largest configurations, there is about 14 and 420 billion elements for the
2D and 3D case, respectively. For the fourth configuration, one compute node is reserved
for each block having a total equivalent problem size per node as the three first configu-
rations. The OpenMP runtime then uses as many threads as there are hypercores, so in
total for the largest configuration this amounts again to 1536 OpenMP threads over the
whole system.

Given the complexity of MPI stencil codes, reference implementations to which we
can compare the performance of our code were difficult to find. Therefore, we have con-
sidered in-house hand-written MPI implementations.

For the Livermore Kernel 23 benchmark, an additional configuration is launched. It
consists of a handwritten code that has been implemented by an expert in parallel pro-
gramming, and in the ORWL model in particular. This code follows the modeling pre-
sented in Subsection 4.4 and has been used in [GJ11] to evaluate the efficiency of the
ORWL model. Similarly to the three first configurations, we place 32 tasks/blocks per
nodeon 1,4,8,12,...,48 nodes of the Grisou cluster.

Results are shown in Figures 11.3-11.7. Figure 11.3, Figure 11.4 and Figure 11.5 re-
late the achieved 10 stencil operations per second (GStencils/s) to the number of nodes
for the considered benchmarks with the different configurations. To better perceive the
speedups, summarized weak scaling results for 2D and 3D stencils on 4, 16 and 48 nodes
are given in Figure 11.6 and Figure 11.7, respectively.

e Weak Scaling:

As shown in Figure 11.3, Figure 11.4 and Figure 11.5, all of the 5 implementations, includ-
ing MPI, show linear weak scaling, i.e., the number of GStencils/s grows linearly with the
number of nodes that is at the disposal of the application. This remains valid for different
stencil characteristics, i.e., dimension, neighborhood, grid traversal and boundary condi-
tions.
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Table 11.1 — Block Repartitions

Dimension 3D 2D 41D 5D
Number 32 Tasks | 16 Tasks | 32 Tasks 32 Tasks 32 Tasks
of Nodes | per Node | per Node | per Node | per Node per Node

1 4x4x2 4x2x%x2 8x4 4x2x2x2 2Xx2x2%x2x%x2
4 8x4x4 4x4x4 16 x 8 4x4x4x2 4x4x2x2x2
8 8x8x4 8x4x4 16 x 16 4x4x4x%x4 4x4x4x2x%x2
12 8x8x6 8x6x4 24 x 16 8x4x4x%x3 4x4x4x3x%x2
16 8x8x8 8x8x4 32x16 8x4x4x4 8x4x4x2x%x2
20 10x8x8 8x8x5 32 x20 8x5x4x4 8x5x4x2x%x2
24 12x8x8 8x8x6 32x24 8x6x4x4 8xb6x4x2x2
28 14 x8x8 8§x8x7 32 x 28 8x7x4x4 ExT7x4x2x%x2
32 16 x8x8 8x8x8 32 x32 8x8x4x4 8x8x4x2x2
36 12x12x8 | 12x8x6 36 x 32 I9x8x4x4 Ix8x4x2x2
40 16 x10x8 | 10x8x8 40 x 32 10x8x4x4 | 10x8x4x2x2
44 22x8x8 | 11 x8x8 44 x 32 11 x8x4x4 | 11 x8x4x2x2
48 16 x12x8 | 12x8x8 48 x 32 8x8x6x4 8x8x6x2x2

Table 11.2 —Block sizes
Benchmark Block Size

2D Heat ADI 30007
2D Seidel 30002
2D Wave 30002

Livermore 30002
3D Heat 6503
3D Seidel 6503

3D order-k Wave 4503
3D 27-pt Jacobi 6503
3D GSRB 650°

4D 9-pt Jacobi 140*
5D 11-pt Jacobi 50°
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Figure 11.3 —Dido Generated Code Scalability for 2D Benchmarks

e Comparison with Handcrafted Code:

Figure 11.3(d) shows that Dido generated code outperforms the handwritten Livermore
Kernel 23 with an average speedup of 1.33x.

e Comparison with MPI:

As shown in Figures 11.3-11.7, all of the four ORWL stencil code configurations, includ-
ing ORWL code using only standard compiler optimizations, outperform the MPI stencil
implementation. ORWL optimization-free code outperforms MPI stencil code with an av-
erage speedup over all benchmarks of 1.28 x. ORWL code optimized for data locality using
Pluto following the (3) and (4) configurations outperform MPI stencil code with average
speedups of 2.31x and 3.60x, respectively.

e Temporal Blocking:

As shown in Figures 11.3-11.7, in most of the cases, temporal blocking is beneficial to the
performance. The only exceptions are the 3D Seidel and 3D wave (k=12) benchmarks for
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Figure 11.4 —Dido Generated Code Scalability for 3D Heat, Seidel, GSRB and 27-pt Jacobi

which the temporal blocking leads to a slight slow down. For the 3D wave (k=12) bench-
mark, given the large halo regions, the redundant computations and extra loading that are
introduced by temporal blocking counter any gains in temporal locality and any reduc-
tion in communication and synchronization overhead. However, it is this same temporal
blocking that, when combined to Pluto loop transformations, results in high speedups of
3.97x and 1.43 %, respectively.

e Data Locality Optimizations:

As shown in Figures 11.3-11.7, both configurations (3) and (4) lead to substantial gains
in performance. The hybrid solution (4) gave better performance results on most of the
benchmarks, especially the 3Ds. Its average speedup over all benchmarks is 2.82x com-
pared to 1.88x for the solution (3). This can be explained by the fact that while solution
(3) requires intra-node ORWL communication and synchronization between the different
tasks inside one node, the tiling capabilities of Pluto in solution (4) result in dependency-
free tiles that can be parallelized using OpenMP without inter-tile communications.
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Figure 11.8 —Dido Generated Code Scalability for 4D and 5D Jacobis

11.2.3 Setup 3

In this setup of experiments, we study the scalability of the generated code for stencils
with higher dimensions, i.e., 4D and 5D stencils, by increasing the global problem size.
We place one task/block per hyperthreaded core, that is 32 tasks/blocks per node on
1,4,8,12,...,48 nodes of the Grisou cluster. The largest configuration consists thus of 1536
tasks and blocks. The considered block repartitions and block sizes in single precision
floats are given in Table 11.1 and Table 11.2, respectively. Results are shown in Figure 11.8.
They relate the achieved 10 stencil operations per second (GStencils/s) to the number of
nodes.

e Weak Scaling:

Figure 11.8 shows that even for stencils with higher dimensions, adding compute
nodes/processes with equal problem size does not alter the execution time.

11.2.4 Setup 4

In this setup of experiments, we study the scalability of the generated code of the molecu-
lar dynamics real-world application, by increasing the global problem size. We place one
task/block per physical core, that is 16 tasks/blocks per node on 1,4,8,12,...,48 nodes of
the Grisou cluster. Each task computes a block of size 50° boxes. We launch three config-
urations with different numbers of particles per box: 100, 150 and 200 particles per box.
For the largest configurations, these are 9.6 x 10%, 14.4 x 109, 19.2 x 10 particles in total
per global problem. Results are depicted in Figure 11.9. It relates the number of nodes to
achieved 10° box computations per second (MBoxes/s).

e Weak Scaling:

As depicted in Figure 11.9, the generated code for the molecular dynamics application
shows also linear weak scaling for different particle numbers per box.
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11.3 Conclusion

Dido generated code is scalable and leverages the efficiency and scalability properties of
the ORWL model. This is valid for benchmarks with different stencil characteristics as
well as compute-intensive real-world applications, It also outperforms both ORWL and
MPI handwritten implementations. This is due to the expert knowledge that went into the
pattern defined in Chapter 7 and the quality of the generated code. The CompUp form, in
particular, ensures for tasks a certain independence from their neighbors. In fact, as soon
as the shadow regions are updated in the main datalocation, the shadow location buffers
are released and ready to receive next data updates from neighbors without interfering
with the computation. As soon as the Compute operation needs updated values, those
are already available and ready to be read. As a result, Compute operations of neighboring
tasks can be executed simultaneously, which considerably improves the execution times.

As for the applied optimizations, the temporal blocking improves in most cases the
computation time. Additionally, the combination of the temporal blocking with Pluto
loop transformations provides high speedups. Both configurations using Pluto for data
locality lead to substantial gains in performance. However, the hybrid configuration (4),
using OpenMP to guarantee intra-node parallelism, gave better performance results on
most of the benchmarks. So, this hybrid solution is a clear candidate for an automated
default choice for Dido users that don’t want to perform runtime calibrations.
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Conclusion

We have presented Dido, an implicitly parallel domain-specific language for ORWL sten-
cil code generation. It allows a large programmer community to easily and safely im-
plement parallel stencil codes and leverage, at a low cost, the ORWL model properties.
Dido supports general multidimensional stencil computations. It alleviates the burden
of writing complex code for distributed-memory architectures and spares the user all the
parallelism details necessary for writing highly efficient stencil code. Dido achieves both
productivity and performance benefits. It meets the needs of real-world applications by
supporting multiple data types and boundary conditions.

The DSL captures high-level stencil abstractions written by the user in a simple syn-
tax and generates all the complex parts such as the shadow region updates and the lock
handle positions in the FIFOs. This presents a considerable improvement in terms of pro-
grammer productivity.

Additionally, experiments have shown that productivity and performance, often con-
sidered as antagonistic, can be reconciled when using Dido. The generated code is scal-
able and achieves competitive performance that outperforms hand-crafted code. This
is due to the domain-specific knowledge about ORWL the stencil computational pattern
that went into the defined patterns. It has to be noted that the CompUp form can be used
for different ORWL applications not only for stencil computations. It ensures expressive-
ness, deadlock-freeness and better performance for ORWL programs.

Additionally, we show that the ORWL code following the suggested pattern is well-
structured and lends itself to different optimizations among which temporal blocking that
we use in some cases in order to reduce the communication overhead and minimize data
transfers. We combine the temporal blocking optimization with the intra-node data reuse
capabilities of the polyhedral loop optimizer Pluto. This has considerably improved the
performance of the generated code.

We also show that Dido has the expression power to model real-world stencil-based
applications and generated code for two different real-world applications. The readabil-
ity of the generated code enables the user to easily take it in hand. They can therefore
easily modify it. Dido can thus become an interactive tool that assists users to implement
large applications that comprise stencil computations and generate code for distributed-
memory architectures.
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1 3 Future Work

Dido provides both performance and programmer productivity benefits for multi-
dimensional stencil computations on distributed memory architectures. However, there
are still ideas to revisit in order to further enhance the framework on different levels.

Multi-Stencils

Stencils involve a large panel of computations. In this work, we focus on iterative one-
stencil computations applied on one input grid, where the input and output grids have
the same structure. There is hence one main data grid. These involve the most commonly
used stencil algorithms. However, some applications may contain multiple stencil com-
putations, i.e., computations that perform stencils on different main data grids. Among
the short-term goals, the priority would be to extend Dido to handle multi-stencil com-
putations. From a development point of view, this does not require much of effort, as all

of the suggested patterns and techniques remain valid. However, synchronization has to
be added.

Autotuning Tile Sizes

For the moments, tiles sizes taken by Pluto are default. Pluto offers the possibility to spec-
ify tile sizes in a separate file. One way of enhancing Dido is to autotune tile sizes for
optimal performance.

Adaptive Mesh Refinement

In real-world applications, some regions of the main data grid may contain details that are
more difficult to approximate and require finer blocks or meshes, compared to the rest of
the grid. For example, solutions for systems of hyperbolic partial differential equations
(PDE) are often smooth and easily approximated over large portions of their domains,
but may contain boundary layers or locally isolated internal regions with steep gradients,
shocks, or discontinuities. Adaptive mesh refinement [BO84] is a finite-difference method
that consists in adaptively placing finer grids in these regions, or removing existing ones
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to attain a given accuracy with a minimum cost. The approach is recursive and values on
the boundaries of the finer grids are defined using interpolation.

Dido could be enhanced by supporting adaptive mesh refinement. An intermediary
step would be to allow the definition of different stencils over different domains of the
main data grid. The main difficulty in implementing adaptive mesh refinement in Dido
lies in disconnecting the ORWL lock handles and linking them with new locations which
is challenging because of the static nature of ORWL and its initialization step.

Adaptive ORWL

Computational science and engineering applications may sometimes exhibit irregular
structure. It is thus difficult to subdivide the problem such that every partition has equal
computational load. In addition, computational load requirements of each partition may
vary as computation progresses as for Adaptive Mesh Refinement. Among the long-term
goals, ORWL and thus Dido could be enhanced by adding dynamic load balancing fea-
tures i.e., re-mapping partitions to physical processors in response to variation in load
conditions. Given the static nature of ORWL and its initialization step, this is particularly
challenging as it implies disconnecting the ORWL lock handles and linking them with new
locations.

Heterogeneous Architectures

For the moment, Dido targets distributed-memory clusters of CPUs. One way to en-
hance Dido is to support heterogeneous architectures with GPU accelerators and Xeon
PHI manycore processors. ORWL can be used to ensure both inter-node communication
as well as CPU-GPU communication.

Affinity

In [GJM16b], Gustedt et al. were able to automatically map the task graph of ORWL ap-
plications to the hierarchy of the execution platform. For the shared memory part, the
ORWL runtime thereby ensures a better placement of tasks. In particular, it can then
guarantee that exactly one compute thread is executed per physical core, and that threads
that exchange data are placed close in the hierarchy. This strategy minimizes migration
of threads and drastically reduces the number of cache misses and pipeline stalls. First
benchmark results are very promising and outperform affinity placement by means of
OpenMP by a substantial amount. We are confident that a combination of this strategy
with Dido will allow to improve the performance of the generated programs even more.

Sparse Computations

To cover a wider range of applications, one promising direction are sparse matrices and
applications. This type of algorithms is in widespread use by scientific communities and
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lacks user-friendly specific tools for distributed-memory architectures. The ORWL library
provides tools that can be particularly useful for sparse computations.
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Automatic Code Generation and Optimization
of Multi-dimensional Stencil Computations
on Distributed-Memory Architectures

Résumeé

Nous proposons Dido, un langage dédié (DSL) implicitement paralléle qui capture les spécifications
de haut niveau des stencils et génere automatiquement du code paralléle de haute performance
pour les architectures a mémoire distribuée. Le code généreé utilise ORWL en tant que interface de
communication et runtime. Nous montrons que Dido réalise un grand progres en termes de
productivité sans sacrifier les performances. Dido prend en charge une large gamme de calculs
stencils ainsi que des applications réelles a base de stencils. Nous montrons que le code généré par
Dido est bien structuré et se préte a de differentes optimisations possibles. Nous combinons
également la technique de génération de code de Dido avec Pluto l'optimiseur polyédrique de
boucles pour améliorer la localité des données. Nous présentons des expériences qui prouvent
l'efficacité et la scalabilité du code généré qui atteint de meilleures performances que les
implémentations ORWL et MPI écrites a la main.

Mots-clés: langage dédié, verroux ordonnés de lecture/écriture, calculs stencils, modéle polyédrique,
mémoire distribuée

Summary

In this work, we present Dido, an implicitly parallel domain-specific language (DSL) that captures
high-level stencil abstractions and automatically generates high-performance parallel stencil code for
distributed-memory architectures. The generated code uses ORWL as a communication and
synchronization backend. We show that Dido achieves a huge progress in terms of programmer
productivity without sacrificing the performance. Dido supports a wide range of stencil computations
and real-world stencil-based applications. We show that the well-structured code generated by Dido
lends itself to different possible optimizations and study the performance of two of them. We also
combine Dido's code generation technique with the polyhedral loop optimizer Pluto to increase data
locality and improve intra-node data reuse. We present experiments that prove the efficiency and
scalability of the generated code that outperforms both ORWL and MPI hand-crafted
implementations.

Key Words: domain-specific language, ordered read write locks, stencil computations, polyhedral
model, distributed memory




