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d B-spline degree
k knot vector
M number of B-spline bases functions
bd

m(·) the mth B-spline basis function of degree d
b[·] vector gathering the B-spline bases functions
βd

m(·) bivariate B-spline basis function of degree d
β[·] vector gathering the bivariate B-spline bases function
φ

j
m the mth amplitude control point of source j

σ
j
m the mth delay control point of source j

ω
j
m the mth shape control point of source j

Φ ∈ RM×J matrix gathering the amplitude control points φ
j
m

Σ ∈ RM×J matrix gathering the delay control points σ
j
m

Ω ∈ RM×J matrix gathering the shape control points ω
j
m

λmax the wavelength with the highest energy in the mixture sum
wmin shape parameter lower bound
wmax shape parameter upper bound
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Résumé étendu

Contexte et objectifs

Cette thèse fait partie du projet DSIM (Décomposition Spectroscopique en Imagerie Multispectrale,
dsim.unistra.fr) financé par l’ANR (Agence Nationale de la Recherche). Ce projet vise à développer
des méthodes numériques pour analyser plusieurs signaux spectroscopiques (spectres) obtenus à
partir d’un même phénomène physique.

Le sujet de cette thèse est motivé par deux applications. La première est la spectroscopie pho-
toélectronique à résolution temporelle, qui est un outil expérimental pour obtenir la configuration
électronique des atomes ou des molécules [SBN04]. Les données consistent en un ensemble de
spectres acquis à différents instants pendant une expérience, donnant ainsi une séquence temporelle
de spectres. Chaque spectre contient plusieurs raies à partir desquelles la distribution d’électrons
par rapport aux niveaux d’énergie peut être déterminée. L’évolution de ces raies dans la séquence
temporelle des spectres renseigne sur la dynamique de relaxation de la distribution des électrons.
La deuxième application traite de la cinématique des galaxies et de l’étude du mouvement des gaz
galactiques [MB81]. Les données sont des images multispectrales où les raies observées dans les
pixels sont décalées spectralement. Ceci est une conséquence de l’effet Doppler provoqué par le
mouvement du gaz.

Les deux applications considérées proviennent de phénomènes très différents et reposent sur
diverses données (une séquence temporelle de spectres pour la spectroscopie de photoélectrons à
résolution temporelle et une image multispectrale pour la cinématique des galaxies). Cependant,
les deux données présentent un ensemble de spectres ordonnés où les raies portent les informations
d’intérêts. De plus, deux spectres voisins sont très similaires car ils sont acquis à des instants très
proches où en des positions spatiales contiguës. Par conséquent, les raies montrent un évolution
lente (temporellement ou spatialement) dans les spectres.

Cette thèse vise à atteindre deux objectifs:

• estimer les caractéristiques de chaque pic dans les données, telles que l’intensité, la position
spectrale ou la largeur;

• associer les raies de différents spectres à mesure qu’ils évoluent lentement.

La Figure 1.7 illustre ces deux objectifs dans le cas d’une séquence temporelle de spectres et dans le
cas d’une image multispectrale.

Extraire des informations d’intérêts (les caractéristiques des raies et leur évolution) à partir des
mesures est un problème inverse. Un tel problème est souvent mal posé au sens de Hadamard [Had23],
c’est-à-dire que la solution n’existe pas ou n’est pas unique ou n’est pas une fonction continue des

http://dsim.unistra.fr
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Figure 1: (a) Exemple synthétique d’une séquence temporelle de spectres avec trois
groupes de raies en évolution lente indiquées par des couleurs différentes. (b) Illus-
tration d’une image multispectrale avec deux groupes de raies qui se chevauchent
spatialement. Des spectres provenant de différentes positions spatiales sont égale-

ment affichés.

données. Pour obtenir une solution satisfaisante, il faut inclure des connaissances supplémentaires
sur le problème. Par conséquent, les spectres sont modélisés comme une somme de fonctions
paramétrées décrivant les raies, et la lente évolution de leurs caractéristiques peut être favorisée.

Plusieurs méthodes dans la littérature ont abordé ces objectifs (ou des objectifs similaires).
Une première approche [MCV] consiste à estimer les caractéristiques des raies dans les spectres
indépendamment des autres, puis à les associer avec un post-traitement. Cependant, une telle
approche n’exploite pas les similitudes entre les spectres voisins lors de l’étape d’estimation et
peut conduire à une propagation d’erreur. Ainsi, les méthodes qui traitent conjointement les deux
objectifs constituent une meilleure solution. Plus précisément, un problème très similaire a été
abordé dans le cadre bayésien [Maz+15]. Cette méthode est efficace mais souffre d’un temps de
calcul élevé et ne peut être appliquée à des images multispectrales. Un autre cadre conjoint est la
séparation des sources [CJ10] qui vise à extraire des sources (raies) de leurs mélanges (spectres).
En particulier, la séparation de source retardée est capable de traiter les sources décalées. Les
connaissances préalables sont introduites en supposant souvent que les sources sont non corrélées
ou statistiquement indépendantes. Malheureusement, ces hypothèses ne sont pas valables dans les
applications considérées.

Dans cette thèse, nous adoptons une approche conjointe en utilisant le cadre de séparation
des sources. Nous exploitons explicitement la connaissance des sources paramétrées, ce qui nous
permet de traiter des sources très corrélées. Les approches proposées peuvent être appliquées à des
séquences temporelles de mélanges et d’images multispectrales, tout en étant à la fois efficaces et
rapides.
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Formulation de problème

Modèle de mélange

Considérons I mélanges. Chaque mélange xi ∈ RN est modélisé comme étant la somme de J
sources paramétriques s

[
cij; wij

]
∈ RN plus un bruit additif ni ∈ RN :

∀ i, xi =
J

∑
j=1

aijs
[
cij; wij

]
+ ni. (1)

ou i ∈ {1, . . . , I} est l’indice d’un mélange qui peut représenter un instant d’acquisition ou une
position spatiale. Les paramètres aij, cij et wij représentent respectivement les amplitudes, retards
(position spectrale) et paramètres de formes (largeur par exemple) de la source j dans le mélange i.
Par ailleurs, les amplitudes sont supposées positives au fait des applications considérées.

Le problème de séparation de sources revient à estimer les paramètres aij, cij et wij. Trois méth-
odes ont été proposées. Les deux premières utilisent en particulier les approches d’approximation
parcimonieuses. La deuxième méthode diffère de la première par la considération de l’évolution
lente des retards à travers les mélanges en utilisant une régularisation. La troisième méthode
considère que les paramètres sont modélisés par des fonctions B-splines afin de garantir leur
évolutions lentes et de réduire le nombre d’inconnus.

Sources paramétriques

En spectroscopie, il est habituel de considérer les sources s
[
c; w

]
comme des fonctions paramétrées

par w [Pav+08]. De nombreux facteurs conduisent à ce que l’on appelle l’élargissement des
raies [Pea81] tels que l’effet Doppler et la pression. Par conséquent, les sources sont rarement
modélisées par des impulsions de Dirac, mais plutôt par des fonctions en forme de cloche. De plus,
les fonctions sont généralement symétriques par rapport à la position spectrale de leur maximum.
Les fonctions gaussiennes et lorentziennes [Hol04; Maz05; VC14] sont très utilisées en spectroscopie
et ont un seul paramètre de forme w caractérisant leur largeur. Les méthodes proposées dans cette
thèse ne sont pas limitées à une fonction spécifique. Sans perte de généralité, les méthodes seront
testées avec des fonctions gaussiennes.

Modèle du bruit

Dans cette thèse, on considère un bruit additif, gaussien, de moyenne zéro et de variance σ2
n :

∀i, ni ∼ N (0, σ2
n I), (2)

où I est la matrice d’identité.
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Méthodes proposées

Séparation de sources paramétriques et retardées

Dans la première méthode proposée nous faisons l’hypothèse que les retards sont discrétisés sur
une grille avec un pas d’échantillonnage ∆. Les retards s’écrivent alors cij = `ij∆ où `ij ∈ N est
l’indice d’échantillonnage. En plus on fait l’hypothèse que les paramètres de forme pour une source
j ne varient pas dans les mélanges. Cela conduit au modèle suivant:

∀ i, xi =
J

∑
j=1

aijs
[
`ij∆; wj

]
+ ni. (3)

La séparation de sources retardées et paramétriques est adressé comme un problème de moin-
dres carrés. L’estimateur du maximum de vraisemblance est alors obtenu en minimisant le critère
suivant:

min
A,L,w

E(A, L, w) = min
A,L,w

I

∑
i=1

∥∥∥∥xi −
J

∑
j=1

aijs
[
`ij∆; wj

]∥∥∥∥2

2
(4)

où ‖.‖2 est la norme `2. Les matrices A ∈ R
I×J
+ et L ∈ NI×J et le vecteur w ∈ RJ regroupent

respectivement les amplitudes, retards et paramètres de forme.
On propose de résoudre ce problème complexe d’optimisation en utilisant un schéma de moin-

dres carrés alterné en deux étapes. La première étape consiste à estimer les paramètres de formes
w: pour cela on utilise un solveur de moindres carrés non-linéaire (l’algorithme de Levenberg-
Marquardt). La deuxième étape consiste à estimer les amplitudes et les retards. D’après (4), il
apparaît que le critère E est séparable par rapport à A et C, i.e.,

min
A≥0,L

E(A, L, w)⇔ ∀i, min
Ai:≥0,Li:

∥∥∥∥xi −
J

∑
j=1

aijs
[
`ij∆; wj

]∥∥∥∥2

2
. (5)

On propose d’utiliser un algorithme d’approximation parcimonieuse glouton inspiré d’OMP [PRK93]
pour estimer les amplitudes et les retards dans chaque mélange séparément. Cela revient à ap-
proximer chaque mélange comme le produit d’un dictionnaire avec un vecteur parcimonieux. Le
dictionnaire est construit à partir de J blocs contenant toutes les versions retardées d’une source.
Par ailleurs, le vecteur parcimonieux à estimer est contraint d’avoir au plus un élément non-nul
pour chaque bloc comme illustre la Figure 2. Cette contrainte assure qu’une source peut apparaître
au plus une fois dans un mélange et permet d’associer les sources dans les mélanges simultanément
avec l’estimation de leurs paramètres.

Séparation de sources paramétriques avec évolution lente des retards

Dans la deuxième méthode proposée, on considère l’évolution lente des retards d’un mélange
à un autre. L’ajout de cette connaissance est justifié par les applications considérées et permet
de mieux séparer les sources surtout quand elles sont très corrélées. On propose donc d’ajouter
une régularisation au terme d’attache aux données présentées dans la méthode précédente. Cette
régularisation a comme objectif de mesurer les distances entre les retards des mélanges et ceux des
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xi

≈

S[1] S[2] S[3]
αi3

αi2

αi1

Figure 2: Un exemple de l’approximation parcimonieuse d’un mélange xi avec J = 3
sources. Le support du vecteur parcimonieux (les indices des carrées colorées) indique
les retards estimés, alors que les valeurs non-nulles correspondent aux amplitudes.

mélanges voisins. Ainsi, le critère composé s’écrit:

F(A, L, w) = E(A, L, w) + τ∆2
J

∑
j=1

∑
(i,i′)∈G

(
`ij − `i′ j

)2 , (6)

où τ est le terme de régularisation et G contient tous les cliques d’ordre deux, c’est-à-dire toutes les
couples i et i′ de deux mélanges voisins.

De nouveau, un schéma ALS est proposé pour minimiser ce critère et estimer les amplitudes,
les retards et les paramètres de formes. La première étape qui consiste à estimer w reste identique
à la première méthode car le terme de régularisation ne dépend pas des paramètres de forme. Par
contre, la deuxième étape est modifiée puisque le critère n’est plus séparable par rapport à A et
L. Un algorithme glouton conjoint est proposé (Figure 3). A chaque itération la contribution de
la “meilleure” source est estimée dans tous les mélanges en utilisant une stratégie d’estimation
séquentielle des retards et des amplitudes inspirée par l’algorithme ICM [Bes86]. La meilleure
source est celle qui modélise au mieux les données (en minimisant le terme d’attache aux données)
et avec l’évolution la plus lente possible des retard (en minimisant le terme de régularisation).

Modélisation des paramètres par des B-splines

Une troisième méthode proposée consiste à modéliser l’évolution lente des amplitudes, retards
et paramètres de formes par des B-splines [DB72]. Les fonctions B-splines sont multipliées par
des scalaires nommés poids. Évidemment, cette modélisation permet de prendre en compte
l’évolution lente des paramètres car les B-splines sont obtenues par combinaison linéaire des
fonctions polynomiales (on utilise des B-spline cubiques, donc les degrées des polynômes est trois)
définis par un ensemble des nœuds. La Figure 4 présente un exemple génératif d’une séquence de
mélanges en illustrant les fonctions B-spline pondérées. Les modélisations B-spline des amplitudes,
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Figure 3: Exemple d’approximation parcimonieuse de J = 3 sources et I = 6 mélanges
voisins. (a) Cas ou il n’y a pas de régularisation sur les retards (τ = 0). (b) cas avec

régularisation modérés. (c) cas avec régularisation très forte.

retards et paramètres de formes s’écrivent comme suit:

∀ j, aij =
M

∑
m=1

γ
j
mbm(i), cij =

M

∑
m=1

σ
j
mbm(i), wij =

M

∑
m=1

ω
j
mbm(i) (7)

où bm(i) est la mème fonction B-spline de degré trois évalué en i. Les nouvelles inconnues sont
γ

j
m,σj

m et ω
j
m et représentent respectivement les poids des B-splines pour les amplitudes, retards et

paramètres de formes. Notons que cette modélisation réduit largement le nombre des inconnues à
estimer (M < I). En remplaçant ces paramètres dans le modèle (1), on obtient:

∀ i, xi =
J

∑
j=1

b[i]Tφjs
[
b[i]Tσ j; b[i]Tωj

]
+ ni, (8)

ou b[i] ∈ RM est un vecteur qui regroupe les fonctions B-splines bm(i). Les poids des B-splines pour
les amplitudes(γj

m), retards (σj
m) et paramètres de formes (ω j

m) pour la source j sont respectivement
regroupés dans φj, σ j et ωj. Le critère à minimiser devient:

L(Φ, Σ, Ω) = ∑
i

∥∥∥∥xi −
J

∑
j=1

b[i]Tφjs
[
b[i]Tσ j; b[i]Tωj

]∥∥∥∥2

2
. (9)

Les matrices Φ ∈ R
M×J
+ et Σ ∈ RM×J et Ω ∈ RM×J regroupent respectivement les poids des

amplitudes, retards et paramètres de formes. Pour minimiser ce critère on utilise un algorithme
de type SQP (Sequential Quadratic Programming) [NW99] qui permet de prendre en compte les
contraintes (par exemple la positivité des amplitudes).
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Figure 4: Une exemple générative.(a)–(c) Les amplitudes, retards et paramètres (les
points bleus) d’une source on été généré avec des B-spline qui sont également affiché.

(d) Les mélanges résultants.
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Figure 5: I = 40 mélanges avec J = 4 sources et un RSB = 15 dB. Chaque source est
représentée par une couleur particulière.

Résultats

Dans cette partie nous présentons des résultats obtenues avec les trois méthodes proposées, no-
tamment la méthode non-régularisée , la méthode régularisée et la méthode des B-splines . En
outre, une comparaison est effectué avec la méthode de [Maz+15] qui est une méthode bayésienne
adaptée au problème de décomposition des spectres qui tient compte de l’évolution lente des am-
plitudes, retards et largeurs. Les résultats sont obtenus sur une séquence temporelle de mélanges
synthétiques, des données réelles de spectroscopie de photo-électrons et une image multispectrale
de galaxie.

Données synthétiques

D’abord, on applique les méthodes proposées et la méthode de [Maz+15] sur une séquence synthé-
tique de I = 40 mélanges avec J = 3 sources modélisées par des gaussiennes de largeur w. Les
paramètres réels sont générés grâce à des polynôme de degré deux, trois ou quatre. la Figure 5
affiche les mélanges et les vérités terrains des sources. Les données présentent plusieurs difficultés.
D’abord, deux sources partagent exactement la même largeur. Ensuite, les mélanges présentent
plusieurs chevauchements spectraux entre les sources. Finalement, les sources n’apparaissent pas
dans tous les mélanges.

Les reconstructions des mélanges et les paramètres estimés sont affichées Figure 6. Les résultats
montrent que toutes les méthodes réussissent à reconstruire les sources correctement. Concernant
les paramètres estimés, on peut remarquer que l’estimation des retards obtenus avec la méthode
non-régularisée n’est pas satisfaisante surtout pour les deux sources avec largeurs identiques (la
séparation devient ambigue dans ce cas). En revanche, les méthodes qui considèrent l’évolution
lente des paramètres donnent des meilleurs résultats. L’avantage principal des méthodes proposées
par rapport à la méthode de [Maz+15] c’est le temps de calcul; les méthodes non-régularisée et
régularisée sont au moins vingt fois plus rapide, et la méthode des B-splines est quatre fois plus
rapide.
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Figure 6: Reconstructions et sources estimées sur les données de Figure 5.

Photoélectrons

Les méthodes sont appliquées sur des données réelles provenant de la spectroscopie de photoélec-
tron; il s’agit d’une séquence temporelle de I = 44 mélanges (Figure 7). Le nombre de sources a été
fixé à J = 6 pour toutes les méthodes.

Les reconstructions, les paramètres estimés et les vérités terrains sont affichés Figure 8. De nou-
veau, les résultats montrent qu’il est indispensable de considérer l’évolution lente des paramètres,
en particulier pour les retards et que les méthodes proposées sont beaucoup plus rapides que
la méthode de [Maz+15]. Les résultats obtenus avec la méthode régularisée et la méthode des
B-splines ont été validés par un expert.
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Figure 7: Une séquence temporelle de spectre de photoélectons (I = 44 mélanges)
représentée comme une carte d’intensité de dimension I × N.

Galaxie NGC-4254

Dans cette section des résultats obtenus sur l’image multispectrale de la galaxie NGC-4254 de
dimension 140× 140× 42 (Figure 9). On montre juste les résultats obtenus avec la méthode régu-
larisée car les autres méthodes donnent des résultats moins satisfaisants et la méthode de [Maz+15]
n’est pas applicable à des images multispectrales. Le nombre de sources est fixé à trois. La recon-
struction de la galaxie est correcte comme illustre la Figure 9. Les résultats de l’estimation des
paramètres qui montrent les amplitudes et les retards de chaque source sont présentés Figure 10.
La méthode permet de bien identifier les différentes structures dans la galaxie. En particulier, la
structure principale représentant le bras de la galaxie (la source 1 pour les deux méthodes), une
source artificielle avec retards et largeurs fixes (la source 2), et une troisième source très atténuée en
intensité (source 3), mais malgré ça la méthode a réussi à l’estimer. Ces résultats montrent que les
méthodes proposées permettent de traiter de grandes données et de bien identifier les différentes
structures de gaz. Aussi, l’évolution des retards est douce comme attendu.
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Figure 8: Premier colonne: la reconstruction des mélanges surimposé par les retards
estimés. La deuxième, troisième et quatrième colonnes représentent respectivement

les amplitudes, retards et largeurs estimés.
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Figure 9: L’image moyenne de la galaxie NGC-4254, sa reconstruction et le résidu.
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Introduction

This thesis takes part in the project DSIM1 funded by the ANR (the French National Research
Agency). The project aims at developing numerical methods to analyze multiple spectroscopic
signals (spectra) obtained from the same physical phenomenon.

The work in this thesis is motivated by two applications. The first one is time-resolved photo-
electron spectroscopy, which is an experimental tool to obtain the electronic configuration of atoms
or molecules [SBN04]. Data consist of a set of spectra acquired at different time instants during an
experiment, thus giving a temporal sequence of spectra. Each spectrum shows several peaks from
which the electron distribution with respect to the energy levels can be determined. The evolution
of these peaks within the temporal sequence of spectra informs about the relaxation dynamics of
the electron distribution. The second application deals with galaxy kinematics and the study of
galactic gas motion [MB81]. Data are multispectral images where the peaks observed in the pixels
are spectrally shifted. This is a consequence of the Doppler effect caused by gas motion.

The two considered applications come from very different phenomena and rely on various data
(a temporal sequence of spectra for time-resolved photoelectron spectroscopy and a multispectral
image for galaxy kinematics). However, both data are a set of ordered spectra where the peaks
carry the information of interest. Moreover, two neighboring spectra are very similar, therefore the
peaks show a (temporally or spatially) slow evolution within the spectra. Hence, this thesis aims at
achieving two goals:

• estimate the characteristics of each peak in the data, such as intensity, spectral position or
width;

• associate the peaks from different spectra as they evolve slowly.

Extracting information of interest (the peak characteristics and their evolution) from measure-
ments is an inverse problem. Such problem is often ill-posed in the sense of Hadamard [Had23],
that is the solution does not exist, or is not unique, or is not a continuous function of the data. In
order to obtain a satisfying solution, one must include additional knowledge about the problem.
Therefore, the spectra are modeled as a sum of parameterized functions describing the peaks, and
the slow evolution of their characteristics may be favored within the spectra.

Multiple methods in the literature have addressed these goals (or similar ones). A first approach
is to estimate the peak characteristics in the spectra independently of the others, and then associate
them in a post-processing. However, such an approach does not exploit the similarities between
neighboring spectra during the estimation step and may lead to error propagation. Thus, methods
that jointly process the two goals are a better solution. Specifically, a very similar problem has

1DSIM is the French acronym of Décomposition Spectroscopique en Imagerie Multispectrale, dsim.unistra.fr.

http://dsim.unistra.fr
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been addressed in the Bayesian framework [Maz+15]. This method is effective but suffers from
high computation time and cannot be applied to multispectral images. Another joint framework
is source separation [CJ10] that aims at extracting sources (peaks) from their mixtures (spectra).
In particular, the delayed source separation is able to deal with shifted sources. Prior knowledge
is introduced by often assuming the sources to be non-correlated or statistically independent.
Unfortunately, these assumptions are not valid in the considered applications.

In this thesis, we adopt a joint approach by using the source separation framework. We explicitly
exploit the knowledge of parameterized sources allowing us to deal with highly correlated sources.
The proposed approach can be applied to temporal sets of mixtures and multispectral images while
being both effective and efficient.

The thesis is organized into six chapters.
Chapter 1 details the considered spectroscopic applications (time-resolved photoelectron spec-

troscopy and galaxy kinematics) and justify the need for numerical methods. In addition, we define
the goal of the thesis from a signal processing point of view and we present the mathematical
model of the mixtures, sources and noise. Finally, we highlight the main difficulties related to this
model and data, i.e., the indeterminacies inherent in the model, the high correlation between the
sources and the unknown number of sources in each mixture.

Chapter 2 presents a survey on methods of the literature which are related to the thesis goals.
First, we present methods that estimate the source parameters in a single mixture. Then we present
methods that allow to associate the sources of different mixtures. Finally, methods that jointly
estimate and associate the sources are presented.

Chapter 3 considers the problem of delayed and parameterized source separation. It is solved
by minimizing a data-fit criterion using an Alternating Least Squares (ALS) scheme; the shape
parameters are estimated using the Levenberg-Marquardt algorithm, while the amplitudes and
delays in each mixture are estimated using a sparse approximation method.

Chapter 4 gives the first solution to take into account the slow delay evolution of each source.
To do so, a regularization term is added to the data-fit criterion of Chapter 3. This implies a new
sparse approximation strategy to estimate the amplitudes and delays jointly in all the mixtures.

Chapter 5 proposes an alternative model where the shape parameters vary within the mixtures
similarly to the amplitudes and delays. The slow evolution of the amplitudes, delays and shape
parameters is modeled using B-splines. This modeling significantly reduces the number of un-
knowns since the source parameters are replaced by the B-spline control points. The problem is
then addressed as a constrained optimization problem which is solved using a Sequential Quadratic
Programming (SQM) algorithm.

Chapter 6 presents simulations where the three proposed methods are compared both quali-
tatively and quantitatively with state-of-the-art methods. Comparisons are done in terms of the
ability to reconstruct mixtures and accurately recover the sources, their amplitudes and delays.
Results on real photoelectron spectra and galaxy multispectral images are also presented. We
show that the proposed methods are both effective and efficient, in particular, the knowledge of
parameterized sources is crucial.

The methods presented in Chapters 3 and 4 are detailed in a journal paper:

• [Mor+19] H. Mortada, V. Mazet, C. Soussen , C. Collet and L. Poisson. “Parameterized source
separation for delayed spectroscopic signals”, Signal Processing, vol. 158, May 2019, p. 48-60.
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Two international conference papers with proceedings cover the methods of Chapters 3 and 5:

• [Mor+17b] H. Mortada, V. Mazet, C. Soussen, and C. Collet. “Separation of delayed parame-
terized sources”. EUSIPCO, Aug 2017, pages 1080–1084, Kos, Greece.

• [Mor+18] H. Mortada, V. Mazet, C. Soussen and C. Collet. “Spectroscopic decomposition of
astronomical multispectral images using B-splines”. WHISPERS, Sep 2018, Amsterdam, The
Netherlands.

One national conference paper (the French version of [Mor+17b]):

• [Mor+17a] H. Mortada, V. Mazet, C. Soussen and C. Collet. “Séparation de sources retardées
paramétriques”. GRETSI, Sep 2017, Juan-Les-Pins, France.

One oral presentation in the scientific day “Inversion et problèmes multi-*” organized by GDR-ISIS,
March 2019, Institut d’Astrophysique de Paris (IAP), Paris, France.
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1
Sequential spectra modeling

1.1 Introduction

Spectroscopy deals with measuring and analyzing photons obtained from the interaction of elec-
tromagnetic radiation with matter [Pav+08]. The resulting signal is called spectrum and shows
emission and absorption peaks that carry important information. So, the determination of peak
characteristics such as intensity, spectral position and width is crucial for the practitioner to analyze
and understand the studied object. The applications are numerous and can be found in almost every
field of science. For instance, in astrophysics [Ten11], the peaks determine the chemical composition
of stellar objects or galaxies. In medicine [BH09], the peaks in magnetic resonance spectroscopy
identify the molecular structure of organic compounds. To preserve painting artworks [Ang01], the
peaks may be used to identify the pigments.

In some applications, numerous spectra of the same object are measured. The order in which
the spectra have been acquired is important since it brings precious information about the temporal
or spatial evolution of the studied phenomenon. We will refer to such data as sequential data.
Spectroscopic measurements may be acquired at discrete consecutive time instants, leading to a
time series of spectra such as in time-resolved photoelectron spectroscopy [SBN04]. Also, spectra
may represent a spatial set of measurements leading to multispectral or hyperspectral images where
each pixel represents a spectrum; such images are used for example in remote sensing [Goe+85] or
astronomical imaging [MB81]. In other frameworks, such as in chemometrics [Mal02], different
spectra are measured when a physical parameter (e.g., temperature or viscosity) variates.

Generally, two neighboring spectra in a sequence, while different, are similar. In other words, the
peaks are typically characterized by a slow evolution within the sequential spectra; their intensities,
spectral positions and widths evolve slowly from one spectrum to its sequentially adjacent ones.
This can be the consequence of a fine resolution in time between two acquisition instants in
time-resolved photoelectron spectroscopy, or in space between neighboring pixels in astronomical
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Figure 1.1: Electromagnetic spectrum.

imaging.
In practice, the visual analysis is impossible for accurate peak detection in an acceptable time

due to the noise induced by the measurement process, the relatively large number of spectra and
the need to account the slow peak evolution. In consequence, numerical methods are required to
process the measured spectra.

The numerical methods developed in this thesis are applied to two spectroscopic applications:
time-resolved photoelectron spectroscopy and galaxy kinematics, which are detailed in Section 1.2
in addition to a brief introduction to spectroscopy. Then, the goal is stated from a signal processing
point of view: the problem is addressed as a parameterized source separation in Section 1.3, and
the difficulties that can be encountered in such a model are given in Section 1.4.

1.2 Spectroscopic applications

1.2.1 Light and electromagnetic spectrum

3 ← 1 2 ← 1

ground level

level 2
level 3
level 4

(a)
3 → 1 2 → 1

ground level

level 2
level 3
level 4

(b)

Figure 1.2: (a) Absorption and (b) emission spectra.

Light is composed of photons that have both particle and wave-like properties and carry discrete
amounts of energy called quanta that can be transferred to atoms and molecules [Pav+08]. Besides,
light is a part of a spectrum of electromagnetic energy that includes the following spectral bands
(from lower to higher frequencies): radio waves, microwaves, infrared radiation, visible light,
ultraviolet, x-rays, and gamma rays as shown in Figure 1.1. Light in the visible region ( 4 · 10−5 cm
to 7 · 10−5 cm) makes up only a small region of the entire electromagnetic spectrum. The energy E
in Joules (J) of a photon is proportional to its frequency ν in Hertz (Hz) and inversely proportional
to its wavelength λ in centimeters (cm), following the relation:

E = hν = h
c
λ

, (1.1)
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where h ≈ 6.62× 10−34 J·s is the Planck constant and c ≈ 3× 1010 cm·s−1 is the light speed in
vacuum. The energy can be equivalently expressed in electron-volt (eV) where 1 eV ≈ 1.6× 10−19 J.

The peaks allow one to identify the chemical composition of the studied sample since the
spectrum of a sample is unique; the same atoms or molecules will always have same spectra.
Two kinds of spectroscopy exist. On the one hand, absorption spectroscopy is the study of light
absorbed by a sample. When light passes through a sample, the electrons of the sample absorb
some quanta and pass from the “ground” level (the lowest energy level) to a higher “excited”
level. The levels refer to atomic of molecular orbitals. The resulting spectrum contains peaks with
a negative intensity at these wavelengths. Figure 1.2a shows an absorption spectrum and the
corresponding transitions between the energy levels.

On the other hand, emission spectroscopy happens after an absorption when an atom, element
or molecule in an excited level returns to a configuration of lower energy level. An emission peak
(a peak with positive intensity) appears in a spectrum if the sample emits specific wavelengths
of radiation. The energy of the emitted light is equal to the difference between the higher and
lower energy levels. Figure 1.2b illustrates an emission spectrum and the corresponding transitions
between the energy levels. In this thesis, the proposed methods focus on spectra with emission
peaks due to considered applications detailed in the sequel.

1.2.2 Time-resolved photoelectron spectroscopy

A first application that interest us is time-resolved photoelectron spectroscopy since measurements
consist in a temporal sequence of spectra with slow evolving peaks.

Photoelectron spectroscopy is an experimental tool that aims at determining the electronic
configuration of atoms or molecules i.e., the distribution of electrons according to their energy in
atomic or molecular orbitals [SBN04]. Photoelectron spectrometers ionize samples by bombarding
them with high-energy radiation resulting in electron ejection; the ejected electrons are called pho-
toelectrons. This reaction occurs on a femtosecond to picosecond time-scale and the measurement
of this reaction has been made possible with the pump-probe spectroscopy method developed by
Zewail [Zew88] and for which he awarded the chemistry Nobel prize in 1999. This was the key
to real-time observations of ultrafast changes in chemical reactions, the so-called femtochemistry.
The pump-probe method uses a first ultrafast laser pulse (the pump pulse) to excite an atom or a
molecule. The subsequent relaxation is monitored by an interaction with a second ultrafast laser
pulse (the probe pulse) which is delayed at a certain time from the pump pulse. The probe pulse
lifts the electrons above the final energy level. Then, the electrons are analyzed using an appropriate
spectrometer. The latter measures the photoelectron kinetic energy resulting from the absorption
of photons with an energy hν. Figure 1.3 illustrates the photoelectron experiment and the energy
transitions after the pump-probe ionizations.

The measured spectrum gives the photoelectron distribution with respect to the kinetic en-
ergy. The peak characteristics i.e., their intensity, spectral position and width are crucial for the
practitioner for the following reasons:

• the spectral position indicates the energy level from which photoemission is occurring;

• the area under each peak (which depends on both the intensity and width) corresponds to
the relative number of electrons.
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Figure 1.3: The photoelectron spectroscopy experiment. A first pulse (pump pulse)
hits the sample to eject electrons from the ground level to an intermediate energy.
Then, a second delayed pulse (probe pulse) hits the excited electrons to eject them
out of the sample. The ejected electrons are called photoelectrons and are captured
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Figure 1.4: (a) a 3D representation of 44 real photoelectron spectra at different pump-
probe delay times with respect to the binding energy. (b) Another representation of

the spectra.

In time-resolved photoelectron spectroscopy, multiple spectra are obtained for different time de-
lays between pump and probe pulses allowing one to record the relaxation dynamics of the different
energy levels [SBN04]. The time delay between the pump and probe pulses is slightly incremented
or decremented from one measurement to another. Consequently, the peak characteristics are
subject to a slow variation from one spectrum to its adjacent ones.

Figure 1.4 shows a sequence of 44 photoelectron spectra acquired at 44 pump-probe delays.
The corresponding experiment studies the relaxation of an atom of barium on an argon droplet;
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to get more details of the experiment, the reader could refer to [Mas+10]. For each spectrum, the
energy varies from fractions of eV to 3.5 eV (180 energy values). The acquisitions are not regular for
the pump-probe delays: for the first 20 spectra, the pump-probe delay step between two adjacent
spectra is incremented by 0.02 ps while for the rest of spectra the delay step is incremented by
0.13 ps. Similarly, the energy distribution sampling is not regular and it can be assimilated to a
decreasing exponential function. Moreover, a continuum (background) is observed in the spectra
and must be corrected to estimate the peak characteristics. Finally, one can observe the slow
evolution of multiple groups of peaks within the spectra (the most obvious group of peaks are
around 0.5 and 1.2 eV).

1.2.3 Galaxy kinematics

Galaxy kinematics is the second application we focus on and correspond to a different physical
phenomenon than the previous one. Data consists in an ordered spatial set of spectra with slowly
evolving peaks.

A galaxy is composed of a huge number of stars, as well as gas and interstellar dust that are
held together by gravitational attraction [KJ98]. One of the most exciting question in astrophysics
is the process of formation and evolution of galaxies. The theory states that clouds of hydrogen
and helium have been created in the first few minutes of the Universe. Then, the clouds collapsed
due to gravity, resulting in stars. This process of collapse and star formation leads to galaxies
around 1 billion years after the beginning of the Universe. When gas clouds are excited by a source
of energy (e.g., stars, galactic nucleus), the electrons are excited and as they go back to ground
level, they emit photons of a specific wavelength. When analyzing the photons emitted from a
given spatial position, a spectrum is obtained and its peaks carry information such as the chemical
composition.

The ability to acquire multispectral images provides critical answers like the composition, star
birth rates and the rotational velocity of the different part of the galaxies. Telescopes today routinely
provide high-resolution multispectral images in the visible, infrared or radio bands. A multispectral
image is a 3D data cube where two dimensions correspond to the angular coordinates and the third
dimension is the wavelength. Therefore, each pixel of the multispectral image is an electromagnetic
spectrum; the length of this spectrum equals the number of bands in the image. Usually, there are
tens of spectral bands, such as in VIMOS, FLAMES, SINFONI, VLA or IRAM Interferometer 1 ,
but very recent instruments now provide a high number of bands (from a few hundreds to four
thousands, e.g., CALIFA, KMOS or MUSE) 2.

The spectra in galaxies are characterized by a shift [MB81]. This is a manifestation of the
Doppler effect. On the first hand, observers looking at an object that is moving away from them,
see a light with higher wavelengths than the emitted ones (a redshift). On the other hand, observers

1 VIMOS (VIsible Multi-Object Spectrograph), FLAMES (Fibre Large Array Multi Element Spectrograph), and
SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) are integral field spectrographs installed
at the Very Large Telescope in Chile in the last decade. The VLA (Very Large Array) and the IRAM Interferometer are
radio interferometers respectively located in New Mexico, USA and the French Alps.

2 CALIFA (Calar Alto Legacy Integral Field Area) is installed on the telescope of Calar Alto Observatory located
in Andalucía, Spain; KMOS (K-band Multi-Object Spectrograph) and MUSE (Multi-Unit Spectroscopic Explorer) are
second-generation integral field spectrographs installed at the Very Large Telescope in Chile in 2012 and 2014.
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looking at an approaching object see a light that is shifted to lower wavelengths (a blueshift). We
encounter at least three kinds of shifts in the Universe:

• Cosmological redshift: has been discovered by Edwin Hubble and is a consequence of the
Universe expansion; the first piece of the Big Bang theory. By measuring how far the pattern
of peaks moves from where it is supposed to be, astronomers can calculate the distance of
astronomical objects such as stars and galaxies relative to Earth. Cosmological redshift only
becomes noticeable for very far objects (a distance of hundreds of megaparsecs) and it is
defined such that:

z =
λo − λe

λe
, (1.2)

where λo is the observed wavelength and λe is the expected wavelength of the gas.

• Gravitational redshift: since photons always travel at the speed of light, the only place where
an energy loss can show up, when light tries to escape from a gravitational field, is in a
change of frequency. This phenomenon was predicted by Einstein and has been confirmed in
laboratory experiments carried out by Pound and Rebka [PRJ59].

• Doppler shift: this is the spectral shift resulting from the inner gas motion of an astronomical
object. It shows us how fast each part of the galaxy is moving away from us. Both redshift and
blueshift are thus observed: light from parts of the galaxy rotating away from us is shifted
towards the red part of the spectrum, while light from parts of the galaxy rotating towards us
is shifted towards the blue end of the spectrum [MB81].

The measurement of galaxy kinematics is possible due to the Doppler shift. Indeed, by detecting
the peak spectral positions in a spectrum (pixel), one can deduce the velocity of the correspond-
ing kinematic structure since the spectra are shifted proportionally to the gas speed. Different
spectroscopic bands allow one to study galaxy kinematics. For instance, in optical spectroscopy
and for nearby galaxies, the Hα spectral peak (the first atomic transition in the hydrogen Balmer
series) is used [Phi+86]. For distant galaxies, the spectral peak of oxygen [RPL13] is used. In radio
spectroscopy, the 21 cm peak of hydrogen is often used to measure the rotation of the galaxy [Bos81]
since those radio waves can easily pass through the Earth’s atmosphere and can penetrate the
massive clouds of interstellar cosmic dust with little interference.

In addition to the gas velocity obtained from the spectral positions of peaks, the peak intensities
and widths yield the flux (the amount of energy that crosses a unit area per unit time) and velocity
dispersion of gas. Hence, astronomers are interested in obtaining spatial maps3 of the intensities,
positions and widths of the peaks. Traditionally, astronomers analyze galaxy kinematics by visual
inspection of the spectra. Such a solution is only feasible for small and simple galaxy spectra.
Alternatively, a fast method is to calculate the multispectral image moments which only rely on the
observed spectra and do not explicitly estimate the peak characteristics. Namely, the moments 0, 1
and 2 can respectively be interpreted as the flux, velocity field and velocity dispersion maps and
are calculated at each spatial position using the following equations:

M0 = ∑
λ

X(λ), M1 =
∑λ X(λ)λ

M0
, M2 =

√
∑λ(λ−M1)2X(λ)

M0
, (1.3)

3A map refers to an image whose colors represent the value of a parameter.
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Figure 1.5: (a) NGC 4254 white image of dimension 140× 140 (equivalent to the
galaxy moment 0). The pixels indicated in blue squares in (a) are plotted in (b) with

respect to the spectral dimension.
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Figure 1.6: The moments 1 and 2 of galaxy NGC-4254 calculated only for pixels with
high moment 0.
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where X(λ) represents a pixel spectrum and λ represents the wavelengths. However, this method
is very sensitive to noise and only yields a coarse approximation of the maps.

Figure 1.5 shows the white image 4 (which is equivalent to the moment 0 map) of the galaxy
NGC-4254 [PVM93] acquired in the radio bands, as well as a sequence of spectra from different spa-
tial positions. This real example clearly shows the slow spatial evolution of the peak characteristics.
Besides, multiple peaks can be observed for some pixels, this is the result of multiple kinematic
structures with different velocities in the same spatial position. The moments 1 and 2 of the galaxy
NGC-4254 are displayed in Figure 1.6.

1.3 Problem statement

The two considered applications represent different physical phenomena with very different scales
(from molecules to galaxies). In the first application, a sequence of time-resolved photoelectron
spectra is obtained for different time delays. In the second one, the measurement of galaxy
kinematics is considered by exploiting the Doppler shift in the galaxy multispectral image. The
two applications have the following common points:

• the measurement of multiple spectra issuing from the same object;

• the spectra are ordered in a given dimension: a temporal dimension for the photoelectron
spectra and spatial dimensions for galaxies;

• a slow evolution of the peak characteristics (intensity, spectral position and width) from one
spectrum to its adjacent ones;

• the spectra contain only bell-shaped peaks with non-negative intensities;

• the number of peaks is unknown in each spectrum.

From a signal processing point of view, the two applications are similar except for the dimension
of the data. The processing of these data aims at achieving two tasks:

1. the detection of an unknown number of peaks and the estimation of their characteristics in
each spectrum;

2. the association of the peaks as they evolve slowly within the spectra. This task can be
assimilated to a classification problem where:

• each class is represented by a unique peak in each spectrum;

• a class does not necessarily appear in all the spectra;

• a class is contiguous; meaning that all the peaks sharing the same label appear in a
(temporally or spatially) sequentially connected set of spectra.

Figure 1.7 clarifies the two tasks on two synthetic examples for both one and two sets of spectra.

4A white image refers to an averaged multispectral image along the spectral dimension.
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Figure 1.7: (a) a synthetic example of noisy spectra time-series with 3 evolving class
of peaks indicated by different colors. The peak characteristics within each class
are slowly evolving. (b) A synthetic illustration of a multispectral image with two
evolving classes of peaks. The two classes are spatially overlapping and each is a set
of spatially connected pixels. Spectra from different spatial positions are sketched as

well.

1.3.1 Notations

In this thesis, we address the peak characteristic (parameter) estimation and association as a
source separation problem: each source corresponds to a peak with a given label and each mixture
corresponds to a spectrum and is the sum of the sources. Therefore, the terms mixture and source
will be used in the sequel. The reader is referred to Section 2.5 for more details about the source
separation framework. Also, the terms amplitude, delay and shape are respectively used to indicate
the source parameters: intensity, spectral position and width.

The mathematical notations used in this thesis are as follows. Bold and lowercase variables
correspond to vectors. Bold and uppercase variables correspond to matrices. The ith row and jth
column of a matrix M are respectively denoted as M i: and M :j, whereas a matrix element is denoted
as mij as shown in Figure 1.8. A set of columns in M with indices gathered in L are denoted as M :L.

1.3.2 Mathematical modeling

Let us consider I mixtures. Each mixture xi(λ) is modeled as the noisy sum of J parameterized
sources s(λ; wij):

∀ i, xi(λ) =
J

∑
j=1

aijs(λ− cij; wij) + ni(λ), (1.4)

where:

• λ ∈ {1, . . . , N} represents a mixture sample (or wavelength) and N is the number of samples.
Without loss of generality, the sampling step is supposed to be one;

• i ∈ {1, . . . , I} represents the mixture index. We distinguish two cases:
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M i:

M :j

mij

M =

Figure 1.8: Mathematical notation for the elements of a matrix M: a row Mi:, a column
M :j and an element mij.

1. in case of a temporal sequence of mixtures with dimension N × I such as the photoelec-
tron data, i is the index of the discrete acquisition instants. We refer to this case as 1D set
of mixtures;

2. in case of a multispectral image of dimension U ×V × N, the index i , [u v] gathers the
spatial coordinates of a mixture. Also, the number of mixtures I is equal to U ×V. We
refer to this case as 2D sets of mixtures;

• the index j refers to the jth source;

• aij ∈ R+ is the amplitude of source j in mixture i. The positivity is considered on the
amplitudes since we are only interested in emission peaks;

• cij ∈ [1, N] is the delay of source j in mixture i;

• wij ∈ R is the shape parameter of source j in mixture i. Additional constraints like positivity
can be added to the shape parameters. For the sake of clarity, we consider wij to be scalar, but
the extension to a multidimensional shape parameter is straightforward;

• ni(λ) is the noise in mixture i. More details about the noise are given in Section 1.3.4.

Further, we introduce xi as the vector gathering the N samples of a mixture:

xi =
[
xi(1) xi(2) . . . xi(N)

]T ∈ RN , (1.5)

and ni gathers the noise samples:

ni =
[
ni(1) ni(2) . . . ni(N)

]T ∈ RN . (1.6)

Similarly, the samples of each delayed and parameterized source are gathered into a vector s[cij; wij]

that reads:

s
[
cij; wij

]
,
[
s(1− cij; wij) s(2− cij; wij) . . . s(N − cij; wij)

]T ∈ RN . (1.7)
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Figure 1.9: 1D and 2D representations of I mixtures.
The two considered 1D and 2D representations of I mixtures.

Finally, using vector notation, equation (1.4) now reads:

∀ i, xi =
J

∑
j=1

aijs
[
cij; wij

]
+ ni. (1.8)

We introduce the matrices A, C and W of dimension I × J that respectively gather the amplitudes
aij, delays cij and shape parameters wij:

A =

a11 . . . a1J
...

. . .
...

aI1 . . . aI J

 , C =

c11 . . . c1J
...

. . .
...

cI1 . . . cI J

 , W =

w11 . . . w1J
...

. . .
...

wI1 . . . wI J

 . (1.9)

Indeed, in case of 2D sets of mixtures the number of rows is equal to U ×V.
A special case of this model is considered in Chapters 3 and 4, where the shape parameter of a

source is supposed to be constant within the mixtures, thus the model writes:

∀ i, xi =
J

∑
j=1

aijs
[
cij; wj

]
+ ni. (1.10)

In this case, the index i vanishes for w and the shape parameters are gathered in the vector w:

w =
[
w1 . . . wJ

]
. (1.11)

1.3.3 Parameterized source

It is usual in spectroscopy to consider the sources s(λ; w) as functions parameterized by w [Pav+08].
The sources are not infinitely sharp: numerous factors lead to the so-called broadening of peaks [Pea81]
such as the Doppler effect, the pressure or the Point Spread Function (PSF) of the spectrometer.
Therefore, the sources are rarely modeled as Dirac functions but rather as bell-shaped functions.
Also, the functions are mostly symmetric about the spectral position of their maximum. The
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Figure 1.10: (a) The white image of the Galaxy NGC-4254. The pixels outside of the
black box are supposed to contain only noise. The pixel inside the box are represented
in Figure 1.5a. (b) The histogram of the noise pixels superimposed by a Gaussian

function fit with a mean equals to 0 and a standard-deviation equals to 4.6 · 10−4.

Gaussian and Lorentzian [Hol04; Maz05; VC14] functions are highly used in spectroscopy and
have a single shape parameter w characterizing their width. A more complicated function with two
shape parameters is the Voigt function [OL77] (convolution of Gaussian and Lorentzian functions).

The methods proposed in this thesis are not restricted to a specific function. Nevertheless,
we consider for the sake of clarity, that all the sources are modeled with the same parameterized
function which is parameterized by a scalar shape parameter w. Without loss of generality, the
methods will be tested with Gaussian functions.

1.3.4 Noise model

The noise ni in a mixture mainly models:

• the physical noise resulting from the acquisition process;

• the imperfection of the mathematical model.

For the first element, it is known that the acquisitions which are obtained from photon counting, as
for spectroscopic data, induce a Poisson noise (or shot noise). Moreover, the Poisson probability dis-
tribution is correlated with the intensity of each measurement (not additive) making it challenging
in the processing. Fortunately, when the number of photons is significant, the Gaussian model for
the noise is a good approximation. This is confirmed by the central limit theorem, which states that
the sum of a large number of independent random variables tends to a Gaussian, independently of
their probability density function [Pet95].

For photoelectron spectroscopy, the number of photons is high; therefore the Gaussian ap-
proximation is justified. For the galaxy multispectral images, we are not able to confirm this
assumption since the data are acquired using a complex procedure including fast Fourier transform
spectrometer. However, the galaxy images considered in this thesis are acquired in the radio
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Figure 1.11: Synthetic 1D set of mixtures. (a)–(c) the amplitudes, delays and shapes of
J = 3 sources. The parameters of each source are plotted in different colors. (d) The

resulting mixtures using the generated parameters.
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Figure 1.12: A generative example of 2D mixtures and J = 1 source. (a)–(c) the
amplitude, delay and shape maps. (d) The resulting averaged image following the

spectral dimension.

band (to detect the 21 peaks of hydrogen) which are characterized by a small noise level since, as
mentioned earlier, those waves can penetrate the massive clouds of interstellar cosmic dust with
little interference. Furthermore, Figure 1.10 represents the histogram of the pixels in the Galaxy
NGC-4254 observation which are supposed to only contain noise. This histogram can be correctly
fitted by a Gaussian distribution with zero mean as it is shown in Figure 1.10. Thus, in this thesis,
the noise is additive, white, zero mean and Gaussian with variance σ2

n :

∀i, ni ∼ N (0, σ2
n I), (1.12)

where I is the identity matrix.

1.3.5 Synthetic data generation

To generate synthetic 1D or 2D sets of mixtures, which are used to evaluate and compare the
different methods5, the model (1.8) is used with Gaussian sources, i.e., s(λ; w) = exp(−λ2/2w2). A
zero mean Gaussian noise with variance σ2

n is added to the mixtures. The noise level is measured

5All the simulations are done using Matlab on a computer with Intel Core i7, 3.6 GHz CPU and 16 GB RAM.
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by the Signal to Noise Ration (SNR) in dB, it is defined as:

SNR = 10 log10

∑
i

∥∥∥∥ J

∑
j=1

a∗ijs
[
c∗ij; w∗ij

]∥∥∥∥2

2

N · I · σ2
n

, (1.13)

where ‖ · ‖2 is the `2 norm 6.
In case of a 1D set of mixtures, the ground-truth parameters a∗ij, c∗ij and w∗ij

7 are generated for
each source j within the mixture using polynomial functions with random coefficients. The degree
d of the polynomial allows us to control the evolution smoothness. An example of synthetic data is
displayed in Figure 1.11 with I = 40 mixtures, J = 3 sources, N = 130 samples and SNR = 15 dB.
The amplitudes, delays and shapes are respectively generated using polynomials of degree 3, 4
and 5.

In case of 2D sets of mixtures, the parameters for each source are represented by maps and
are generated using B-spline surfaces [DB72] with random control points thus ensuring a smooth
spatial evolution. An example of synthetic multispectral image is displayed in Figure 1.12 with
I = 40× 40 mixtures, J = 1 sources, N = 100 samples and SNR = 15 dB. The parameters are only
generated for a rectangle zone in the image. The amplitude A∗:1, delay C∗:1 and shape W∗

:1
8 maps

are also given in Figure 1.12.

1.4 Main difficulties in practical cases

In this section, we discuss the main indeterminacies inherent in the model and the main difficulties
that we encountered in practice.

1.4.1 Model indeterminacies

Indetermination in a given mixture arises if different sets of parameters yield the same outputs.
Without additional information on the sources or mixtures, the model (1.10) admits at least three
indeterminacies, namely, scale, permutation and delay indeterminacies (the parameters can only
be estimated up to these indeterminacies) [Mou05, Chapter 2][MBI05; RGJ05].

• The scale indetermination in a given mixture i and for a given source j is the result of a factor
switch between the sources and amplitudes:

aijs(λ; wj) = a′ijs
′(λ; wj), (1.14)

where a′ij =
aij
η and s′(λ; wj) = ηs(λ; wj) with η a constant.

6The `p norm (p > 0) of a vector v =
[
v1 . . . vN

]
is defined as ‖v‖p ,

(
N

∑
n=1
|vn|p

)1/p

.

7The ground truth parameters are always followed with the superscript ∗.
8In case of 2D sets of mixtures, the notations A:j, C:j, W :j represent vectorized 2D maps so they are displayed as an

image of dimension U ×V.
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In order to overcome this indetermination, one can impose the norm of the source signals
or their amplitudes. For unimodal sources, a strategy would be to set their maximum to
one. In Chapters 3 and 4 we impose the sources to have a unit `2 norm and in Chapter 5 the
maximum of the source is set to 1;

• the delay indetermination in a given mixture i and for a given source j happens in the
following case:

s(λ− cij; wj) = s′(λ− c′ij; wj), (1.15)

where s′(λ; wj) = s(λ + η; wj) and c′ij = cij + η with η a constant.

This indetermination can be alleviated by setting an initial position of the sources. In this
thesis, we suppose that the source maximum is centered at its corresponding delay cij.

• the order (or permutation) indetermination affects the order j in which the sources are
estimated. This indetermination cannot be alleviated but does not affect the interpretation.

It is worth mentioning that in some works [PD05; Nio+], the scale and delay indeterminacies
are alleviated by picking a "reference" mixture in which the sources are assumed to have unit
amplitudes and zero delays. Then the source amplitudes and delays in the other mixtures are
relatively estimated to the sources of the reference mixture.

Even though the indeterminacies are alleviated, the estimated parameters do not necessarily
correspond to the true parameters. However, in most of the practical cases, this is not an issue as
long as the obtained solution is unique.

1.4.2 Correlated sources

Another difficulty that is encountered when dealing with spectroscopic sources is the fact that
they can be highly correlated. The source correlation can be observed when the sources appear
in the same mixture and is mainly governed by two factors: the source shape similarities and the
source spectral overlap. Figure 1.13 shows the two factors in an example of two sources in a single
mixture.

The shape similarity between two sources, in a given mixture i, can be measured by the distance
between their shapes given by |wi1 −wi2|. Two sources with similar shapes may be confused in the
mixtures if the sources are associated together using only their shape difference (as it is the case in
Chapter 3). This ambiguity motivated us to include the slow evolution of the source parameters in
Chapters 4 and 5 as an additional discriminating factor between the sources.

The spectral overlap between two sources, in a given mixture i, can be measured by the distance
between their delays given by |ci1 − ci2|. For some parametrized sources such as Gaussian and
Lorentzian functions, the source support practically occupies all the samples of a mixture since
they are not limited-support functions. However, the energy of these sources is highly concentrated
around their delay (99.7% of a Gaussian function energy is bounded between−3w and +3w around
the Gaussian maximum). Therefore, such sources can be assumed to be non-overlapping if the
distance between their delays is sufficiently large. The estimation of overlapping source parameters
becomes of higher complexity and classical strategies would fail to give an accurate estimation.
For instance, when two sources are extremely overlapping, their shape merges and becomes as
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(a) ν = 1.8 · 10−8 (b) ν = 1.5 · 10−7 (c) ν = 1.6 · 10−6 (d) ν = 1.7 · 10−5 (e) ν = 1 · 10−4

(f) ν = 3.6 · 10−5 (g) ν = 1.3 · 10−4 (h) ν = 5.4 · 10−4 (i) ν = 2 · 10−3 (j) ν = 6 · 10−3

(k) ν = 8 · 10−3 (l) ν = 1.7 · 10−2 (m) ν = 3.4 · 10−2 (n) ν = 6.3 · 10−2 (o) ν = 1 · 10−1

(p) ν = 2 · 10−1 (q) ν = 3 · 10−1 (r) ν = 4 · 10−1 (s) ν = 5 · 10−1 (t) ν = 5.7 · 10−1

(u) ν = 6.2 · 10−1 (v) ν = 8.3 · 10−1 (w) ν = 9.3 · 10−1 (x) ν = 9.8 · 10−1 (y) ν = 1

Figure 1.13: The shape similarity between two sources increases horizontally while
their spectral overlap increases vertically. For each case we calculate the coherence
level (variates between 0 for non-correlated sources to 1 for extremely correlated

sources) defined as ν ,
s
[

ci1;wi1

]
s
[

ci2;wi2

]T∥∥∥s
[

ci1;wi1

]∥∥∥
2

∥∥∥s
[

ci2;wi2

]∥∥∥
2

.
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Figure 1.14: Two scenarios of separation when J = 2 source spectrally overlap in the
mixtures around i = 20.

if it was a single peak. In case of multiple mixtures, multiple “trajectories” of the source can be
observed when two or more sources overlap in some mixtures. To make this idea clearer, we show
in Figure 1.14, two possible scenarios of source separation (sources overlapping around the mixture
i = 20). These two scenarios are visually acceptable since the evolution of the delays is slow in
both of them. In Chapter 4 we set a regularization on the source delay evolution in order to favor
solutions with the slowest delay evolution. For the same purpose, in Chapter 5 we model the
parameter evolutions using B-splines functions.

1.4.3 Varying number of sources

In most applications, the number of sources J (or the model order) is not known. This includes
an additional unknown to the problem that is very challenging to estimate. The simplest solution
is to fix the source number to a predefined value. An alternative would be to choose a large
number of sources then to remove the sources with a small contribution in a post-processing. In
addition, we encounter an additional difficulty: the number of sources can vary within the mixtures
(see Figure 1.7).

In Chapters 3 and 4 we use sparse approximation methods that aim to correctly approximate
the mixtures with the smallest possible number of sources while in Chapter 5 we suppose that the
number of sources is known.

1.5 Conclusion

This thesis provides numerical methods to process a set of ordered spectra with slowly evolving
peaks. The goal is to get the peak characteristics (intensity, spectral position and shape) and also
their temporal or spatial evolution. These data can be found in many applications such as in
time-resolved photoelectron spectroscopy or galaxy kinematics. In this thesis, we use a source
separation framework to model the problem; the spectra and the peaks are respectively referred
to the mixtures and sources. The mixtures are modeled as the noisy sum of parameterized and
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delayed sources. However, multiple difficulties can be encountered in practice when dealing with
such data and model. Indeed, the model presents indeterminacies, the sources are highly correlated
and their number is unknown and vary within the mixtures.
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2
State of the art

2.1 Introduction

This chapter presents a survey on methods that, given a 1D or 2D sets of mixtures, aim at achieving
two tasks. The first one is to estimate the source parameters (amplitudes, delays and shapes) and
the second one is to associate these parameters as they slowly evolve (temporally or spatially)
within the mixtures. Two strategies are possible:

• a two-step strategy, that is to first estimate the source parameters independently in each
mixture and then apply a post-processing to associate the estimated parameters;

• a one-step strategy, that is to estimate and associate the source parameters jointly.

The first part of this chapter considers the two-step strategy: in Section 2.2, we present different
approaches that allow estimating the source parameters (or a subset of them) in a single mixture. A
special attention is given to sparse approximation methods which are used in Chapters 3 and 4. In
Section 2.3 we present methods that can be used as a post-processing to associate the parameters.

The second part of this chapter considers the one-step strategy. In Section 2.4, Bayesian and
joint sparse approximation methods for parameterized sources are presented. In Section 2.5, we
present the problem from a source separation point of view.

2.2 Parameter estimation in a single mixture

When considering a unique mixture (I = 1), the index i can be alleviated and thus the model writes:

x =
J

∑
j=1

ajs
[
cj; wj

]
+ n. (2.1)
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Each source j in this case corresponds to a unique parameterized function whose parameters are the
amplitude aj, delay cj and shape wj. Moreover, we consider that all the sources are parameterized
by the same function, e.g., Gaussian function. The estimation of source parameters in a single
mixture is an inverse problem that has been intensively studied in the past.

2.2.1 Least-squares based methods

The use of a deterministic optimization algorithm is a common approach to estimate the source
parameters, in particular for spectroscopic signals. Assuming a white Gaussian noise, the maximum
likelihood estimator minimizes the sum of squared differences between the mixture x and its model,
i.e., the squared sum of the residual vector r(a, c, w) ∈ RN :

(â, ĉ, ŵ) = argmin
a,c,w

‖r(a, c, w)‖2
2 = argmin

a,c,w

∥∥∥∥∥x−
J

∑
j=1

ajs
[
cj; wj

]∥∥∥∥∥
2

2

, (2.2)

where a, c and w are vectors of dimension J × 1 that respectively gather the amplitudes aj, delays
cj and shapes wj.

The problem (2.2) is a non-linear least squares problem. It is often referred as peak or curve
fitting [Bud+96; Sad+05]. Indeed, the criterion may be non-convex because of the non-linearity
induced by the delays cj and shapes wj. A linearization strategy of the delays and shapes is
proposed in [Car+86] for Gaussian sources. This method exploits the natural logarithm of the
Gaussian function, that writes:

ln

(
aj exp

(−(λ− cj)
2

2w2
j

))
= ln(aj)−

c2
j

2w2
j
+

2cjλ

2w2
j
− λ2

2w2
j
. (2.3)

The new expression can be fitted by a second degree polynomial of the form v1 + v2λ + v3λ2. This
method has been shown to be sensitive to noise in [Guo11] where an improvement is proposed
by using a weighted least-squares method, the weight being the Gaussian expression. However,
the drawback of these methods is that they are only adapted to a unique Gaussian function in the
mixture.

In many works such as in [BM68; Na+00] and also in commercial peak fitting softwares [HCS03;
Woj10] the problem is solved by using an iterative non-linear optimization algorithm, e.g., the Gauss-
Newton and the Levenberg-Marquardt algorithms [NW99]. Moreover, for some non-linear least
squares algorithms (e.g., trust-region and sequential quadratic programming algorithms [NW99]) it
is possible to have constraints on the parameters like the non-negativity of the amplitudes. This
would force the solution to be in a feasible region or would include an additional information on
the parameters [Paa97].

These algorithms start from an initial solution of the parameters which is then iteratively
updated till it converges towards a local minimum. Setting a good initial solution is important
in order to find the best solution but this is not an easy task. Yet, it is possible to use available
theoretical or laboratory results [Clé+11] (such as the theoretical spectrum of the gas). Another
way is to use the inflection points in the mixture [MPB09]; they are detected from the derivative
so as to obtain a first initialization of the source delays. However, this approach is very sensitive
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to noise. Hereafter, we give more details on the Gauss-Newton and the Levenberg-Marquardt
algorithms [NW99] for unconstrained non-linear least squares.

Let all the source parameters aj, cj and wj be gathered in a vector θ =
[
θ1 θ2 . . . θ3·J

]
∈ R3·J ,

thus the optimization problem (2.2) reads:

θ̂ = argmin
θ

‖r(θ)‖2
2 . (2.4)

The algorithms find an update step δ ∈ R3·J at each iteration l such that:

θ(l) = θ(l−1) + δ, (2.5)

where θ(l) is the solution at iteration l and θ(l−1) is the solution found at the previous iteration,
while θ(0) is the initialization.

Gauss-Newton algorithm

By applying the first-order Taylor approximation to r(θ(l−1) + δ), we get:

r(θ(l−1) + δ) = r(θ(l−1)) + J(θ(l−1))δ. (2.6)

J(θ(l−1)) ∈ RN×3·J is the Jacobian matrix of r evaluated at θ(l−1):

J(θ(l−1)) =

[
∂r(θ(l−1))

∂θ
(l−1)
1

. . . ∂r(θ(l−1))

∂θ
(l−1)
3·J

]
. (2.7)

At each iteration, the Gauss-Newton algorithm determines the step δ by solving the following
minimization problem:

min
δ

∥∥∥r(θ(l−1)) + J(θ(l−1))δ
∥∥∥2

2
. (2.8)

This is a linear least-squares problem that can be explicitly resolved at each iteration by:

JT(θ(l−1))J(θ(l−1))δ = −JT(θ(l−1))r(θ(l−1)). (2.9)

Levenberg-Marquardt algorithm

This method for optimizing non-linear least squares was proposed by Marquardt [Mar63] and
is, in fact, a slight variation of the initial method proposed by Levenberg [Lev44]. It is more
robust to the initialization than the Gauss-Newton because when the solution is far from the
minimum; the algorithm behaves more like a gradient descent algorithm, whereas the Gauss-
Newton algorithm assumes the problem to be locally quadratic around each solution. Following
the Levenberg-Marquardt algorithm, the step δ is obtained from the following equation:[

JT(θ(l−1))J(θ(l−1)) + ηdiag
(

JT(θ(l−1))J(θ(l−1))
)]

δ = −JT(θ(l−1))r(θ(l−1)), (2.10)

where η is a positive parameter. When η is large, the Levenberg-Marquardt is almost a gradient
descent algorithm; this is useful when the current solution is far from the minimum. On the contrary,
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when η is small, the Levenberg-Marquardt algorithm is almost identical to the Gauss-Newton.
The value of η is automatically updated at each iteration according to the following strategy: if
the criterion decreases, then η is divided by a constant (typically two), otherwise the update is
discarded and η is multiplied by a constant (typically two).

2.2.2 Sparsity-aware methods

Often, spectroscopic mixtures can be expressed as linear combinations of a few sources. That is
the unknown number of sources J is usually small. This leads us to sparse approximation (or
sparse representation) that aims at approximating a mixture as the linear combination of a small
number of elementary signals drawn from a large set of vectors gathered in a matrix denoted by
the dictionary.

The sparse approximation of a mixture x writes as:

x ≈ Dγ. (2.11)

D ∈ RN×M is the dictionary whose columns dm are called atoms:

D =
[
d1 d2 . . . dM

]
. (2.12)

We suppose in the sequel that the atoms are normalized such that ∀ m, ‖dm‖2 = 1. This is a
very common assumption in sparse approximation [Ela10]. Moreover, the dictionary in sparse
approximation is overdetermined; the number of atoms (number of columns) is much larger than
the mixture length (number of rows), i.e., M � N. γ =

[
α1 . . . αM

]T ∈ RM is a sparse vector
(most of its elements are zeros). We denote by S the support of γ gathering the indices of non-zero
elements in γ:

S = {m : γm 6= 0}. (2.13)

The cardinal of the support indicates the sparsity level of the vector. The indices in S indicate
which atoms are used to approximate x and the values of the non-zeros elements in γ correspond
to the atom weights, i.e.,

x ≈ ∑
j∈S

γjdj. (2.14)

Parametric dictionary

The construction of the dictionary is a crucial element to get a good approximation of the mix-
ture. For instance, in image processing, wavelet dictionaries are highly used [RBE10] since most
natural images are approximately sparse when projected onto such dictionaries. In compressed
sensing [Don06a], the atoms are required to be uncorrelated in order to have an accurate recovery
of the signal when sampled at a lower rate than Nyquist’s frequency. Here, randomly generated
dictionaries are a simple and good choice since it has proven that they respect the restricted
isometry propriety [EK12] which ensures that the atoms extracted from the dictionary are almost
orthonormal [CRT06; Don06a]. However, verifying this property is an NP-hard problem [TP14], a
simpler metric to measure the non-correlation of a dictionary is the mutual coherence defined as
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the maximum inner product between two distinct normalized atoms, i.e., :

µD , max
m 6=m′

|dT
mdm′ |. (2.15)

µD varies between 0 and 1, and the dictionary is more correlated as this values increases.
For parameter estimation, the dictionary is constructed by sampling the parameters of interest

(mostly the non-linear ones) over a predefined grid characterized by a sampling step [Aus+10;
YDD09]. In other words, each atom corresponds to the parametric model evaluated at a certain
value on the grid. The main drawback of such an approach is that the parameters are discretely
estimated.

An example of a parametric dictionary can be seen in spectral line estimation [BCI07; DB13]
where the goal is to estimate the unknown frequencies of multiple mixed sinusoidal signals. Here,
the atoms are sinusoidal signals, each with a certain grid frequency. Another example of using a
parametric dictionary is sparse spike deconvolution [Bou+11; DP15; DM05; DP17]. Here all the
sources in (2.1) have the same known shape parameter w and the goal is to retrieve their delays and
amplitudes and thus the dictionary gathers the delayed source versions. In [BMS11] a parametric
dictionary is constructed for estimating the main features of astrophysical mixtures (MUSE-like
spectra). A mixture is modeled as the superposition of three features: emission and absorption
peaks with unknown width and position, step spectrum with an unknown center to model the
mixtures discontinuity and a continuum modeled by sinusoids with unknown frequencies. To find
the unknown parameters for each feature, the dictionary is composed of three sub-dictionaries that
respectively sample the parameters of the three features.

Sparse approximation

The sparse solution γ is the one that allows to fit at best a mixture with the smallest number of
atoms. Mathematically speaking, this corresponds to solve the following optimization problem:

min
γ
‖γ‖0 such that ‖x− Dγ‖2

2 ≤ ε, (2.16)

where ‖ · ‖0 is the `0 pseudo-norm that counts the number of non-zero elements in a vector and ε

is a small positive constant. In this formulation, the desired sparsity level is unknown, rather an
upper bound is set on the residual norm. An equivalent formulation sets a maximal sparsity level
constraint K on the sparse vector:

min
γ
‖x− Dγ‖2

2 such that ‖γ‖0 ≤ K. (2.17)

A third formulation, which is not equivalent to both previous formulations (from an optimization
point of view), uses a regularization to trade-off between the data-fit term and the sparsity level:

min
γ
‖x− Dγ‖2

2 + η ‖γ‖0 . (2.18)

Indeed, as the value of the regularization term η gets larger, the sparsity level decreases since it
would cost more to add an atom to the support.
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The `0 optimization problem is known to be NP-hard [AK98]. The optimal solution can be
obtained by an exhaustive search over all the possibilities with the desired sparsity level, which is
only tractable for very small scale problems. Alternative solutions have been proposed over the
past years, the two main method categories are presented in the sequel.

Greedy algorithms

These methods provide an approximated solution to the `0 optimization problem (mostly to the
problem (2.17)) and construct the solution iteratively. At each iteration, one or more atoms that
yield the best improvement are added to the solution support: this is a forward strategy. A forward-
backward strategy may add or remove atoms at each iteration. Most of the greedy algorithms share
the following structure: selection or withdraw of an atom, estimation of the non-zero elements of
the sparse vector, and residual update. The main difference between the methods lies in the atom
selection step and the weight estimation strategies.

Matching Pursuit (MP) [MZ93] is a simple iterative algorithm: at each iteration, the atom that is
the most correlated to the residual r is selected (the residual is defined as the mixture x from which
the previously selected atoms have been removed). This is done by maximizing the inner-product
between the residual and the normalized atoms dm:

m̂ = argmax
m

|dT
mr|. (2.19)

Then, the weight of the newly selected atom is estimated by γ̂m̂ = dT
m̂r and the residual is updated.

MP has a low computational time but is known to propagate erroneous atom for highly correlated
dictionaries [Tro04] and to re-select the same atoms several times.

Orthogonal Matching Pursuit (OMP) [PRK93; Tro04] tries to overcome the MP limitations by
projecting, at each iteration, the mixture onto the space defined by the currently selected atoms:

γ̂S = argmin
γS

‖x− D:SγS‖2
2 , (2.20)

where γS = {γm; m ∈ S}. This step is computationally expensive, relatively to MP, since it includes
a matrix inversion. Assuming that D:S is full column rank, the selected atom weights estimation
writes:

γ̂S = (DT
:SD:S )−1DT

:Sx. (2.21)

Nevertheless, strategies like QR or Cholesky matrix factorizations can be used to efficiently imple-
ment the iterative inversions [SC12]. In addition, non-negative weight constraint can be consid-
ered [BEZ08; YWD15; Ngu+17].

Orthogonal Least Squares (OLS) [CBL89] selects the atom that minimizes the residual error.
This implies the resolution of a linear least squares problem for each tested atom to estimate its
weight in addition to the weights of the atoms which are in the support. Obviously, this requires
high computation time. The difference between OMP and OLS is addressed in [BD07].

The Single Best Replacement algorithm (SBR) [Sou+11] aims at minimizing the criterion in (2.18).
This algorithm can be interpreted as a forward–backward extension of OLS where each iteration
consists in choosing between adding or retiring an atom.
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All the greedy algorithms presented above start with an empty support, but other algorithms
start from an initial solution. Orthogonal Matching Pursuit with Replacement (OMPR) [JTD11]
adds and retires one atom from the support at each iteration. First, the best atom in a gradient
descent sense is added and then a threshold step retires the atom with the lowest contribution (in
the gradient decent sense) from the support.

SWAP [VB13] computes the residual error for each switch between an atom in the support
and all the other atoms and the one yielding the lowest criterion is considered. This operation is
repeated until no further decrease of the criterion is possible. The authors present this algorithm as a
solution when the dictionary is highly correlated, however, this algorithm is very time-consuming.

Another popular algorithm that can be classified as a greedy algorithm (in the wide sense) is
the Iterative Hard Thresholding (IHT) [BD09] that optimizes the problem (2.18). The main IHT
iteration consists of a gradient descent step followed by hard thresholding. However, this method
performs poorly in the presence of noise [BD09, Section 8].

More details on greedy pursuit algorithms can be found in [TGS06], and a comparative study is
given in [RS09].

`0 relaxation algorithms

The idea of this family of methods is to replace the non-convex `0 pseudo-norm by another norm
or function which are easier to solve and favor sparse solutions. We distinguish between the `1

convex relaxation and non-convex relaxations.
The `1 norm is the closest convex norm to the `0 pseudo-norm. It calculates the absolute sum

of the vector entries, i.e., ‖γ‖1 = ∑M
m=1 |γm| and it has been proven that its minimization favors

sparse solutions [DE03]. Especially, relaxing the `0 optimization problem in (2.18), leads to the
Lasso problem:

min
γ
‖x− Dγ‖2

2 + η‖γ‖1. (2.22)

The solution of the `1 relaxed optimization problem is identical to the initial `0 optimization
problem under some conditions [Don06b]. Nevertheless, the `1 relaxation algorithms can be used
to yield an approximated solution to the original `0 optimization problem.

Despite, the convexity of the `1 norm, the optimization remains challenging because the `1-norm
is not smooth. A first family of optimization methods reformulate the problem (2.22) as a smooth
differentiable constrained optimization problem. Some methods in this family are based on gradient
projection [FNW07], interior-points [Kim+07] or alternating direction [YZ11] algorithms. A second
family of methods exploits the proximal operator [PB14] to iteratively solve computationally easier
sub-problems than the original `1 optimization problem. A popular algorithm in this family is the
Iterative Shrinkage Thresholding Algorithm (ISTA) [DDDM04]. At iteration l, ISTA calculates the
sparse solution γ(l) as:

γ(l) = shrink
(

γ(l−1) − ηDT(x− Dγ(l−1)), γη
)

, (2.23)

where η is the step size. The operator shrink is the element-wise soft thresholding operator defined
as shrink(a, b) = sign(a)max{|a| − b, 0} where a and b are constants. This operator is the proximal
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operator for the `1-norm. Fast ISTA (FISTA) [BT09] is an improvement of ISTA that accelerates its
convergence. A survey on the different `1 relaxation methods can be found in [Zha+15].

A number of non-convex relaxation approaches, such as the log penalty [Fri12], the smoothly
clipped absolute deviation penalty [FL01] and the minimax concave penalty [Zha10] have also
been proposed.

Continuous sparse approximation

One of the limitations of parameter estimation using a sparse approximation method is that the
parameters are estimated among a set of discretized values. Obviously, a small sampling step yields
a better estimation but yields a large dictionary. Therefore, the performance of sparse approximation
algorithms is negatively affected since the dictionary mutual coherence may increases. Also, the
computation time increases and additional memory resources may be required as the dictionary
size increases. In the recent years, multiple methods have been proposed to get a continuous
estimation using sparse approximation techniques.

In [ETS11], the Continuous Basis Pursuit (C-BP) algorithm is proposed to estimate the de-
lays. The idea is to generate a dictionary with auxiliary interpolation functions to express local
translations of the parameterized function. The first studied interpolation is based on the Tay-
lor approximation which is motivated by the fact that delays can be linearized using the source
derivative. Specifically, let cij be the continuous delay and c̃ij is its discrete approximation, then
cij = c̃ij + ψ with ψ is the discrete estimation error. Following the first order Taylor approximation,
the error ψ can be linearized such that:

s(λ− cij; wij) = s(λ− c̃ij − ψ; wj) ≈ s(λ− c̃ij; wj)− ψṡ(λ− c̃ij; wj), (2.24)

where ṡ(λ; wj) is the derivative of s(λ; wj). Indeed by finding the discrete estimation c̃ij and by
using s(λ − cij; wij) as the data, one can find ψ to get a continuous estimation. Therefore, the
mixture is approximated as x ≈ Dγ− Ḋγ̇ where D and Ḋ respectively gather the delayed sources
and their derivatives. This resulting optimization problem [ETS11, equation (13)] is solved using a
a standard `1 optimization method (e.g., interior points methods). The C-BP algorithm is discussed
and evaluated in [DP17]. In [CPF14] the Taylor interpolation is used to estimate parameters
of dimension greater than 1 and the resulting criterion is minimized using a proximal iterative
algorithm.

Another interpolation strategy is proposed in [ETS11]: the so-called “polar” interpolation. This
strategy empirically outperforms the Taylor interpolation as shown in [ETS11]. The idea comes
from the observation that the manifold of shifted signals lies on the surface of a hypersphere since
the `2 norm of the atoms is preserved under translation. Thus, any segment on the manifold can
be approximated by an arc, in particular, the segment induced by three adjacent atoms. In [FDJ15;
Knu+14] the “polar” interpolation is extended to a greedy algorithm inspired from OMP. In [PPZ17]
a polynomial interpolation method, and in [ZY17] a least squares gradient-based method is used as
post-processing to estimate the continuous parameters.

Although the above methods yield a continuous estimation, they are implicitly based on a finite
dictionary and thus still dependent on the grid sampling step so that the parameters may not be
recovered perfectly. Methods based on the minimization of the atomic norm [Tan+12; BTR13] have
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been proposed without predefining a grid. However, this approach is mainly adapted to spectral
line estimation problem.

2.2.3 Time-delay estimation

Time delay estimation methods estimate the delays when the shape of the sources is known.
Applications can be found in radar, sonar and audio signal processing [Car87]. A classical method
is to determine the delay that maximizes the cross-correlation between the delayed mixture and
a reference non-delayed mixture [KC76]. This method yields discrete estimations governed by
the resolution of the cross-correlation function. In the presence of white noise, this method is
equivalent to the optimal matched filter. However, in the case of multiple sources, this method fails
since multiple peaks appear in the cross-correlation.

Another approach is to convert the delay estimation problem to phase estimation problem by
using the Fourier transform leading to a line spectral estimation problem [BTR13]. Traditional ap-
proaches to recover signals are the Multiple Signal Classification (MUSIC) algorithm [Sch86] or the
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm [RK89].
However, these methods usually suppose the signals to be spatially uncorrelated and their per-
formance would decrease when the sources are highly correlated [YX16]. Another strategy is the
use of sparse approximation techniques using a dictionary of pure frequencies as shown in the
previous section.

2.2.4 Stochastic methods

Stochastic optimization is a powerful tool for optimizing criteria which are very costly or slow
to evaluate [BCDF10]. The maximum entropy [UB75], the maximum-likelihood [Cap79] and
the Bayesian approaches [Ben00; Bre13; Maz05; HG02; RFA03; FD05] are widespread stochastic
methods.

In [Fli+05; VC14] the galaxy kinematics is considered. The mixtures from each spatial position
are processed independently and a single Gaussian parameterized source is considered. The source
parameters are estimated using an expectation-maximization algorithm in [Fli+05]. A Monte Carlo
Markov Chain (MCMC) algorithm is used in [VC14] in addition to an image deconvolution task to
remove the blur effect of the PSF induced by the acquisition instrument. Also, in [Maz05, Chapter 4]
the estimation of multiple source parameters in a single mixture is done with an MCMC algorithm.
A Reversible Jump MCMC (RJMCMC) algorithm [Gre95] is used in [HG02; RFA03; FD05]. This
algorithm permits the simulation of the posterior distribution of varying dimension. The difference
between these methods lies in the choice of the priors. Even though the statistical methods
are effective and have attractive convergence guarantees, they suffer from high computational
time [HKW16].

2.3 Parameter association

At this stage, we suppose that we have a set of I × J value for each of the three parameters
(amplitudes aij, delays cij and shapes wij), which are independently estimated for each mixture.
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Figure 2.1: First row: a possible output of estimating the parameters independently
in each mixture of Figure 1.11d. Second row: the expected association where each

color and marker corresponds to a source.

Indeed, nothing imposes that the parameters with the same index j belong to the same physical
source due to the independent processing of the mixtures. Therefore, a post-processing is required
to associate the independently estimated parameters in such way to give a joint meaning for the
index j; all the parameters sharing the same index j belong to a slow evolving source within the
mixture. Let us consider again the mixtures in Figure 1.11. A possible estimation of the source
parameters is given in the first row of Figure 2.1 and we wish to associate the parameters in order
to have the results of the second row in Figure 2.1.

This problem can be assimilated to multiple object tracking where the objects are data points
(scatters). They usually evolve with respect to time instants. Tracking can be found in radar to
detect targets [Bla86] or in computer vision to follow the trajectories of vehicles [Coi+98]. The
works in this literature consider two main steps: object detection and tracking. In this section, we
concentrate on the tracking step that yields “trajectories” of the objects which are so often smooth.
Hereafter, we suppose that we deal with a temporal sequence of data point objects representing the
estimated parameters, whilst the time instants in our case are equivalent to the discrete mixture
index i. The methods used for this purpose can be grouped into deterministic and statistical
methods.

The deterministic methods define a cost of associating a source in the mixture i to one of the
other sources in the mixture i− 1. The cost usually measures the distance between the estimates
(e.g. their Euclidean distance). However, the assignment problem is a combinatorial problem. Yet,
good solutions can be found using adapted assignment algorithms such as the Hungarian [Kuh55],
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greedy [AOT00] or metaheuristic algorithms [BR03].
In [MSD13], similar synthetic 1D sets of mixtures to the ones used in this thesis are considered.

After estimating the source parameters using the SBR algorithm, a matrix PJ×J is computed, whose
elements pjj′ represent the cost of associating the source j ∈ {1, . . . , J} in the mixture i to the source
j′ ∈ {1, . . . , J} in the mixture i− 1:

pjj′ =
(aij − a(i−1)j′)

2

ha
+

(cij − c(i−1)j′)
2

hc
+

(wij − w(i−1)j′)
2

hw
, (2.25)

where ha, hc and hw are constants that are manually tuned. Then, the Hungarian algorithm finds the
best match and the same process is repeated for the other mixtures sequentially. The assignment
methods may suffer from high computation time especially when the number of sources is larger.
Also, an erroneous association for a mixture leads to a propagation error due to the sequential
assignment.

Another deterministic strategy, often used for spectroscopic signals, is Dynamic Time Warping
method (DTW) [Mül07], that is a strategy to cancel the delays by aligning the mixtures. A cost
matrix of dimension N × N (N is the length of a mixture) must be calculated to measure the
distance between mixture samples. Then, a discrete optimization algorithm is used to solve the
assignment problem, that is to find the best path with the least global distance, which is the sum
of costs along the path. An example of a cost matrix between two synthetic and noisy mixtures
with 2 sources is represented in Figure 2.2. In Figure 2.3 the alignment result of DTW is displayed.
However, DTW can only be applied to two mixtures. Also, this method only cancels the delays and
does not yield an explicit delay estimation.

Stochastic methods, especially, the Kalman [Hay04] and the particle filters [Aru+02] are very
popular methods to achieve multiple object tracking since they allow to model the uncertainties
in the model. These algorithms are based on two steps; prediction and correction. The first step
predicts the parameters to track (e.g., the delays in a mixture) in a mixture i by using a predefined
parameter evolution model and the estimated parameters at the previous mixture i− 1. Let θi be
the vector of parameters that we want to track, the prediction step writes:

θi = f (θi−1) + vi, (2.26)

where f is the parameter evolution model and vi is the process noise vector. The correction step,
corrects the predicted parameters θi by exploiting the actual measurements at index i given in yi:

yi = g(θi) + bi, (2.27)

where g is the model mapping the observation to the parameters and bi is the measurement noise
vector. The Kalman filter considers that the functions f and g are linear and that the process
and measurement noise are Gaussian random variables. It starts from an initial guess and the
parameters are then sequentially estimated. If the models representing the parameter evolution and
the model mapping are non-linear, the Taylor series expansion is used to linearize them, yielding
the extended Kalman filter [Hay04]. However, the drawback of this method lies in the need to
predefine the dynamic models analytically, which is not always possible.

Contrary to the Kalman filter, the particle filter [VDM+01] can deal with non-linear function
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Figure 2.3: (a) the generated two mixtures and the DTW assignments of each sample
of the first mixture to a sample of the second mixture. (b) The result of the DWT

where the first mixture i = 1 is aligned with the second mixture i = 2.

and with non-Gaussian noise distributions. The particle filter uses simulation methods, e.g.,
Monte-Carlo sampling strategy to generate estimates of the parameters. The parameters are
estimated in the maximum likelihood sense and are propagated to the next mixture. The quality
of the estimation is related to the number of generated particles and thus this method can be
computationally expensive if an accurate estimation is required.

2.4 Joint parameterized source decomposition

Addressing independently the problems of parameter estimation and association is not ideal
because such a strategy does not exploit the high similarity between two adjacent mixtures. Indeed,
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both problems are dependent since the parameters evolve slowly from one mixture to another
one. In addition to this, a two-step approach may lead to error propagation. In this section, we
present methods that address the parameter estimation and association jointly (one-step strategy).
In particular, we present the Bayesian and joint sparse approximation frameworks.

2.4.1 Bayesian Framework

In [Maz11] the problem of decomposing a sequence of a 1D set of mixtures is considered. The
mixtures are modeled as the noisy sum of Gaussian functions (the number of sources is supposed
to be known), and the peak parameters are supposed to evolve slowly from a mixture to its adjacent
ones. To estimate the source parameters, a Bayesian generative model is used. Priors are set on
each parameter to impose some physical information and to impose their slow evolution from one
mixture to another one by using smoothness derivate operator. An MCMC algorithm is proposed,
where the source parameters are updated using a Gibbs sampler. In particular, the delays c and
shapes w are sampled with a random walk Metropolis-Hastings algorithm and the amplitudes a
are directly sampled from a Gaussian posterior distribution.

This previous work is extended in [Maz+15] to estimate the number of sources in each mixture.
For this purpose, a RJMCMC [Gre95] algorithm is used. In addition, Markovian priors are set on
the parameters to ensure their slow evolution. However, the methods in [Maz11; Maz+15] would
suffer from high computation time when the data dimension becomes large and are only adapted
to a 1D set of mixtures (their extension to the case of a 2D sets of mixtures is not straightforward).

2.4.2 Joint sparse approximation

In Section 2.2.2, we discussed the problem of sparse approximation of a single mixture. Given I
mixtures, we can rewrite the I sparse approximations problems (2.17) together as:

∀ i, min
γi
‖xi − Dγi‖2

2 such that ‖γi‖0 ≤ K. (2.28)

This is an independent mixture approximation strategy that does not exploit the relationship
between the mixtures.

When multiple mixtures can be sparse approximated by the same dictionary D, the sparse
approximation problem can be written as:

X = DΓ, (2.29)

where X =
[
x1 . . . xI

]
∈ RN×I is the set of observed mixtures, and Γ =

[
γ1 . . . γI

]
∈ RM×I is

the set of the sparse approximation vectors corresponding to each mixture after being decomposed
following the dictionary D ∈ RN×M.

Most of the works that consider joint sparse approximation are based on the assumption that
all the sparse vectors share a common support, this is known as the Multiple Measurement Vector
(MMV) problem [TGS06]. Several methods developed for the case of a single mixture are extended
to the MMV problem. Simultaneous OMP (S-OMP) [TGS06] is an extension of OMP. In [BDB14]
SBR is also extended. Five other greedy algorithms are extended in [Bla+14] and a survey on greedy
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extensions can be found in [Rak11]. However, the assumption that all the observed signals must
share the same support is too restrictive in many applications, especially when the parameters vary
from one mixture to another such as the delays in the considered thesis applications.

Dynamic approaches where the support varies from one sparse vector to another can be found
in the literature. Recursive sparse approximation [VZ16] compute the sparse approximation of a
mixture from the knowledge of the sparse approximation of the previous spectrum. More precisely,
the new support Si resulting from the sparse approximation of mixture xi is calculated from the
support of the previously approximated mixture such that Si = Si−1 ∪ T \ P where T and P
respectively gather the set of indices to add and retire from the support. A review on recursive
sparse approximation methods can be found in [VZ16].

The concept of social sparsity was introduced in [KSD13] by promoting a structure between the
sparse approximation of consecutive signals with less restrictive support assumptions. However,
this approach requires a precise definition of the neighborhood which is not always possible.

2.5 Source separation

In its general definition, source separation aims at recovering source signals from their noisy
mixtures by exploiting all the available information on the mixing process and the sources [CJ10].
The sources are usually non-parameterized, therefore, in this section, the parameterized source
notation s(λ; wj) is replaced by sj(λ) which is a non-parameterized signal. This problem can be
found in many fields: in audio signal processing [YR04; Vin+14], the goal would be to retrieve the
voice of multiple persons having a conversation from their recordings (the so-called cocktail party
problem). In digital communications [TVP96], the goal would be to separate signals containing infor-
mation from different emitters. In astrophysics, the goal would be to retrieve several astrophysical
components from their hyperspectral image [Bob+15].

2.5.1 Mixing model

The mixing model describes the relationship between the mixtures and the sources. The most
general mixing model is the convolutive model, where each mixture is the sum of J convolution
product between the sources and filters with unknown impulsion response hij(λ):

∀ i, xi(λ) =
J

∑
j=1

(hij ∗ sj)(λ) + ni(λ). (2.30)

This model is not in the scope of this thesis. However, a review of works considering this model
can be found in [CJ10].

Several special cases of the convolutive model are studied in the literature. Especially, the
instantaneous mixing model is the most used one. Another special case is the delayed (or anechoic)
mixing model that interests us the most since it allows to model the delays. These two special cases
are discussed in the sequel.
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Instantaneous source separation

The simplest model of source separation is the instantaneous model: the filter hij(λ) is a unshifted
Dirac of amplitude aij, thus each mixture xi(λ) is the linear combination of the source sj(λ):

∀ i, xi(λ) =
J

∑
j=1

aijsj(λ) + ni(λ). (2.31)

To resolve this ill-posed inverse problem, additional information must be made on the sources.
The Independent Component Analysis (ICA) separation framework assumes that the sources are
statistically independent and that their distributions are non-Gaussian. These family of methods
tries to find the mixing matrix A in such a way that the sources are as independent as possible.
Among the many possible measurements used to measure the statistical independence e.g., one
find the Kullback–Leibler divergence, the mutual information or higher-order statistics [LAC97].
Most of the methods that have been proposed for the ICA problem exploit second or higher-order
statistics to discriminate the sources [CJ10]. However, the assumption of statistical independence
is very restrictive in many real-world applications. Some methods reduce the importance of this
assumption by introducing the non-negativity constraint such as in spectral decomposition [MBI05]
or image processing [Lee+01].

The Alternating Least Squares (ALS) is a strategy often used when the amplitudes and source
are non-negative: the amplitude and sources are estimated in two distinct steps. This approach
guarantees the convergence to a stationary point [GS00], but it requires to solve a non-negative
linear least squares optimizations which can be computationally expensive.

The Non-negative Matrix Factorization (NMF) [ZC07] also alternates between the amplitude and
source estimation but presents a computationally cheaper solution by exploiting the multiplicative
update rules [AHK12]. This strategy updates the amplitudes and sources in a gradient descent
fashion but the solution obtained is not unique.

Delayed source separation

In between the general convolutive and the simplest instantaneous mixtures, lies the delayed
source separation mixing model, also known as the anechoic mixing model. The mixture model
is the linear combination of delayed and scaled versions of sources, without permitting multiple
occurrences of the same source in the mixtures. For this model, the filter impulse responses are given
by hij(λ) = aijδcij(λ) where δcij(λ) is the Dirac delta function positioned on cij. Figure 2.4 displays
a scheme for the model of a mixture for spectroscopic bell-shaped sources. The corresponding
mixing model can be written as:

∀ i, xi(λ) =
J

∑
j=1

aijsj(λ− cij) + ni(λ). (2.32)

Note that the source shapes do not vary within the mixtures (sj(λ) is independent from the index i).
Usually, delayed source separation is proposed for under-determined applications (when the

number of mixtures is lower than the number of sources). Additional assumptions are needed in
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Figure 2.4: Delayed source separation mixing mode for the ith mixture of J = 3
sources.

this case due to the infinite number of solutions. In [JRY00] the W-Disjoint Orthogonality (WDO)
assumption first introduced to discriminate the sources; they are assumed to be orthogonal in the
frequency domain. The DUET algorithm proposed in [YR04] also make the WDO assumption
and retrieves the delays and amplitudes in the case of two mixtures by calculating the ratio of the
time-frequency representation of the mixtures. The DEMIX anechoic method proposed in [AGB10]
relies on the assumption that in the neighborhood of some time-frequency points, only one source
contributes to the mixture. However, the under-determined setting does not correspond to the
considered spectroscopic data and assumption such as the WDO are not valid since the sources
may spectrally overlap and thus cannot be orthogonal in the frequency domain.

Many methods have been also proposed for the over-determined applications (when the num-
ber of mixtures is larger than the number of sources). In [CB06; JF11] the Taylor expansion is
applied to the mixtures in the temporal domain to linearize the delays and hence use instanta-
neous source separation methods. Another linearization strategy is to analyze the mixtures in
the frequency [MMH07a; Oue+14] or time-frequency [Nio+; OG11] domains, so that delays be-
come phases which allows using instantaneous source separation approaches coupled with phase
estimation methods.

The above methods are based on the independence and non-correlation assumptions and may
be valid in many real-world applications [Dua10]. Efforts have been done though to relax these
assumptions. In [PD05], the AD-TiFROM algorithm simplifies the strong W-disjoint orthogonality
assumption needed in the DUET algorithm [YR04] and the assumption that the sources must
be orthogonal in the time-frequency domain is relaxed: each source must be dominant at least
in one time-frequency window, AD-TiFROM main task is to detect these windows. However,
this assumption becomes invalid when the evolution of a source delay is fast from one mixture
to another, o or when two delayed source signals significantly overlap in some mixtures. For
spectroscopic signals, in particular, some delayed source separation methods have been proposed.
In [HHL03; HH03], a time warping strategy was used to cancel the effect of the delays on each
mixture after finding the delays over a predefined discrete grid using an exhaustive search strategy.
The sources and amplitudes were then estimated in the linear least squares sense. However, the
exhaustive search step is not feasible when the delays take too many values. In [MMH07b], NMF
was extended to consider delays: non-negative amplitudes and sources were found by using
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multiplicative updates, and delays were estimated with a gradient descent algorithm coupled with
a maximizing cross-correlation procedure to reduce the effect of local minima.

2.6 Conclusion

In this chapter, we presented state-of-the art methods that aim at estimating and associating
the source parameters (amplitudes, delays and shapes) in a set of mixtures. Methods from two
strategies are presented. In the first one, the parameters are estimated independently for each
mixture, then the parameters are associated together in order to have a slowly evolving parameter
set for each source. However, a two-step strategy does not exploit the relation between the mixtures
during the estimation step. In the second one, the parameter estimation and association are done
jointly which present a more optimal solution than a two-step strategy.

In this thesis, we adopt a one-step source separation framework and we explicitly exploit the
knowledge of the parametrized source, thus the source estimation is recast to the estimation of their
shape parameters. This knowledge would allow us to significantly relax the strong assumptions
often made in the source separation framework such as the source statistical independence and
non-correlation. Three one-step methods are proposed in the following three chapters, the first two
(Chapters 3 and 4) are based on sparse approximation strategies whereas the third one (Chapters 5)
is based on B-spline parameter modeling.
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3
Separation of parameterized and delayed sources

3.1 Introduction

This chapter presents a first approach to address the separation of delayed and parameterized
sources. The source parameters (amplitudes, delays and shapes) are jointly estimated and associated
in a one-step strategy. Specifically, the sources are only discriminated by the difference of their
shape parameters which are assumed to be constant for each source. So, in this chapter, we do not
impose the slow evolution of any parameter within the mixtures.

We address the problem as a constrained optimization problem of a data-fit criterion (Sec-
tion 3.2). The latter is minimized using an Alternating Least Squares (ALS) scheme of two steps
(Section 3.3). First, the shape parameters are estimated with the Levenberg-Marquardt algorithm.
Second, an algorithm inspired from Orthogonal Matching Pursuit (OMP) estimates the amplitudes
the delays and it is designed in such a way to associate the sources from different mixtures fol-
lowing their shape similarities (Section 3.4). Results on synthetic 1D and 2D sets of mixtures, in
addition to a discussion about some of the method settings, are presented in Section 3.5.

3.2 Model and criterion

3.2.1 Model and assumptions

Let us recall the mixing model of delayed and parameterized sources:

∀ i, xi =
J

∑
j=1

aijs
[
cij; wj

]
+ ni. (3.1)
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Here, i is the index of a mixture (corresponding to either a 1D or 2D position) and all the parameters
sharing the same index j belong to the same source. Besides, this model does not permit multiple
occurrences of the same source in the mixtures and each source has a unique shape parameters (wj
is independent from i).

We consider that the amplitudes are non-negative (aij ≥ 0). Without loss of generality, we
suppose that the sources are all parameterized with the same function and that the corresponding
shape parameter is a scalar. Specifically, in this chapter, we make the following assumptions which
are motivated by the sparse approximation method used in the sequel:

• the delays cij are discretized over a grid with a sampling step ∆:

cij = `ij∆, (3.2)

where `ij ∈ N is the delay index. Note that the sampling step ∆ can be smaller than the
mixture sampling step i.e., ∆ < 1, so that a higher allocation resolution can be obtained for
the delays.

• the sources are energy-normalized and invariant to translation (their unit `2-norm is preserved
when delayed):

∀ i, j,
∥∥s
[
cij; wj

]∥∥
2 = 1. (3.3)

As stated in Section 1.4.1, the source normalization allows us to overcome the scale indetermi-
nation. Recall that the sources are centered around their delays cij allowing us to overcome
the delay indetermination.

Finally, the model considering the above assumptions now reads:

∀ i, xi =
J

∑
j=1

aijs
[
`ij∆; wj

]
+ ni, (3.4)

where the normalization factors 1∥∥s
[

cij;wj

]∥∥
2

are merged with the amplitudes aij.

3.2.2 Criterion

The delayed and parameterized source separation problem is recast to a parameter estimation
problem, where the parameters to estimate are the amplitudes aij, delays cij and shape parameters
wj. Supposing the noise to be white and Gaussian, the maximum likelihood estimator is obtained
by minimizing the criterion:

E(A, L, w) = ∑
i

ε(Ai:, Li:, w), (3.5)

where ε(Ai:, Li:, w) is the quadratic error related to mixture i:

ε(Ai:, Li:, w) =

∥∥∥∥xi −
J

∑
j=1

aijs
[
`ij∆; wj

]∥∥∥∥2

2
, (3.6)
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Figure 3.1: (a) A noisy mixture of two Gaussian sources (I = 1, J = 2) with a∗11 =
5.95, a∗12 = 2.66, `∗11∆ = 50, `∗12∆ = 65, w∗1 = 5, w∗2 = 4 and N = 100. (b) The

criterion L1: → ε(A∗1:, L1:, w∗) admits local minimizers
and flat surfaces. The red × indicates the global minimum.

and A ∈ R
I×J
+ , L ∈ N, w ∈ RJ respectively gather the amplitudes aij, delays `ij and shape

parameters wj for mixtures i and sources j (see equation (1.9)).
Therefore, the parameterized source separation problem is formulated as the following con-

strained minimization problem:
min

A≥0,L,w
E(A, L, w). (3.7)

3.3 Sparse-based alternating least squares

The optimization problem (3.7) is challenging because of the non-convexity of the criterion E,
induced by the nonlinearity of model (3.4) with respect to L and w. As an example, Figure 3.1
displays the variations of criterion E(A, L, w) with respect to L in the case of I = 1 mixture and
J = 2 sources: one can see that it admits multiple local minimizers as well as flat regions, making
its optimization difficult even for this simple example.

Therefore, we choose an ALS scheme to optimize the criterion. This is an iterative descent
strategy consisting of minimizing the criterion E with respect to a block of variables while fixing
the others, and vice-versa. The algorithm stops if the criterion decrease at one iteration becomes
lower than a constant ρ. It is not guaranteed that the ALS scheme converges towards the global
minimizer of (3.7) since it is a block minimization of a non-convex criterion. Yet, this scheme is often
used in delayed source separation, where, e.g., the sources, delays and amplitudes are alternately
estimated [Nio+; MMH07a; HH03]. However, the methods proposed by these authors, suffer from
several limitations, as stated in Section 2.5.1 (source independence assumption [Nio+; MMH07a] or
unfeasible exhaustive search [HH03]) making them unsuitable for the considered problem.

The proposed ALS scheme is given in Algorithm 1 and optimizes the criterion alternately with
respect to the source shape parameters w on the one hand and with the delays L and amplitudes A
on the other hand. More precisely:
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Algorithm 1: ALS scheme for min
A,L,w

E(A, L, w).

Initialization: Â = L̂ = 0I×J , ŵ randomly
1 do
2 (A0, L0, w0)← (Â, L̂, ŵ)
3 for i = 1 : I do
4 (Âi:, L̂i:)← argmin

Ai:,Li:

ε(Ai:, Li:, ŵ)

5 end
6 ŵ← argmin

w
E
(

Â, L̂, w
)

7 while E(A0,L0,w0)−E(Â,L̂,ŵ)

E(A0,L0,w0)
≥ ρ;

• the shape estimation is a continuous non-linear least–squares problem:

ŵ← argmin
w

E(A, L, w), (3.8)

and is solved using the Levenberg-Marquardt algorithm (see Section 2.2.1). In case some
constraints (e.g., non-negativity or lower and upper bounds) are required for the shape
parameters, methods like trust-region-reflective or sequential quadratic programming can be
used instead;

• the amplitude and delay estimation step writes:

(Â, L̂)← argmin
A≥0,L

E(A, L, w). (3.9)

This is the main challenging problem and is detailed hereafter.

3.4 Amplitude and delay estimation

It follows from (3.5) that problem (3.9) is separable to I independent sub-problems:

min
A≥0,L

E(A, L, w)⇔ ∀i, min
Ai:≥0,Li:

ε(Ai:, Li:, w). (3.10)

We propose to minimize each ε(Ai:, Li:, w) using a sparse approximation algorithm. The principle of
sparse approximation is to represent each mixture i with a few atoms of an overcomplete dictionary
(see Section 2.2.2). This choice is justified in the case of spectroscopic signals which contain very
few peaks.

3.4.1 Dictionary formulation

Let us introduce the dictionary S as the matrix composed by J blocks denoted as S[j] ∈ RN×M:

S =
[
S[1] . . . S[j] . . . S[J]

]
. (3.11)
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xi

≈

S[1] S[2] S[3]
αi3

αi2

αi1

Figure 3.2: Sparse representation model of a mixture xi with J = 3 sources. Each
block S[j] of the dictionary gathers the delayed versions of s

[
`ij∆; ŵj

]
. The sparse

representation is structured so that each block vector αij is 1-sparse.

Each block contains M possible version of source j sampled over the delay grid:

S[j] ,
[
s
[
0; wj

]
s
[
∆; wj

]
... s

[
(M− 1)∆; wj

]]
. (3.12)

Each mixture xi is approximated as:

xi ≈
J

∑
j=1

S[j]αij, (3.13)

where αij =
[
0 . . . 0 aij 0 . . . 0

]T ∈ RM
+ is a 1-sparse vector, so that each source appears

at most once in each mixture (see Fig. 3.2). The value and index of the non-zero element in αij
respectively indicate the amplitude aij and delay `ij of source j in mixture i. Moreover, once can
notice that all the delayed versions selected from the same block dictionary S[j] from different
mixtures will be associated together.

In consequence, the optimization problem (3.10) can be rewritten as:

min
∀j,αij≥0

∥∥∥∥xi −
J

∑
j=1

S[j]αij

∥∥∥∥2

2
s.t. ∀ j, ‖αij‖0 ≤ 1. (3.14)

3.4.2 OMP-like implementation for delayed source separation

Greedy algorithms are effective and efficient when the sparsity level J is small and overcome the
performance of `1 relaxation methods for highly correlated dictionaries [Tro04]. Also, they can
easily be adapted to obtain a structured sparse solution such as a 1-sparse per block solution. In
particular, we choose to adapt the Non-Negative OMP (NN-OMP) algorithm [BEZ08].

Let us first recall the main steps in each iteration of NN-OMP:
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Algorithm 2: NN-OMP-like implementation for (Âi:, L̂i:)← argmin
Ai:,Li:

ε(Ai:, Li:, ŵ)

Initialization: Âi: = L̂i: = 01×J , J = ∅, ri = xi
1 while k ≤ J and ‖ri‖2

2 ≥ ς do
2 k← k + 1
3 for j ∈ {1, . . . , J}\J do
4 ˜̀ ij ← argmax

`ij

(
rT

i s
[
`ij∆; ŵj

])
+

5 end
6 ĵ← argmax

j/∈J

(
rT

i s
[ ˜̀ ij∆; ŵj

])
+

7 ̂̀
i ĵ ← ˜̀

i ĵ

8 J ← J ∪ { ĵ }
9 Update amplitudes ÂiJ according to (3.15)

10 ri ← xi − ∑
j∈J

âijs
[̂̀ij∆; ŵj

]
11 end
12 if ε(A0

i:, L0
i:, ŵ) < ε(Âi:, L̂i:, ŵ) then

13 (Âi:, L̂i:)← (A0
i:, L0

i:)
14 end

1. first, the so-called forward selection step consists in choosing the column of the dictionary
that is the most positively correlated with the residual;

2. second, the amplitudes corresponding to the chosen columns are updated by solving a
non-negative least–squares estimation problem [LH95];

3. finally, the residual is updated by removing the contributions of the chosen columns.

NN-OMP considers the constraint in (3.14) to be
J

∑
j=1
‖αij‖0 ≤ J. However, this constraint does not

enforce the sources to appear at most once in each mixture. Therefore, the proposed implementation
consists in forcing the sparse vector to be structured in blocks, each αij being 1-sparse (this allows
to jointly associate the source with their amplitude and delay estimation).

The proposed algorithm is given in Algorithm 2 and reproduces the three steps of an iteration
of NN-OMP:

• the column in the dictionary that is the most positively correlated with the residual is selected,
yielding the corresponding source ĵ and its delay ̂̀i ĵ (lines 3–7). The selected source ĵ is then
added to the list J of selected sources (line 8) so that the sub-block dictionary S[j] for j ∈ J
will not be tested in the next iterations;
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• the amplitudes of the selected sources gathered inJ are estimated by solving the non-negative
linear least–squares problem (line 9):

Âi: ← argmin
Ai:

ε(Ai:, L̂i:, ŵ) s.t.
{

AiJ ≥ 0
AiJ = 0

(3.15)

where J denotes the complementary subset of J , i.e., J = {1, . . . , J} \ J ;

• lastly, the residual vector ri (defined as the difference between mixture i and the sum of the
estimated sources) is updated (line 10).

The main difference between NN-OMP and our implementation lies in the first step. Also, lines
11–13 have been added to ensure a decrease of the criterion by invalidating the estimates if they
produce a criterion value that is greater than the value obtained at the previous iteration of
Algorithm 1.

Furthermore, Algorithm 2 offers the possibility to obtain a variable number of sources per
mixture. To do so, an additional stopping criterion is added in line 1 of Algorithm 2 such that the
loop breaks if the squared residual norm ‖ri‖2

2 becomes lower than a threshold ς, e.g., related to the
noise variance. So, to enforce J sources to appear in each mixture, ς must be set to zero.

3.5 Results

3.5.1 Synthetic 1D set of mixtures

The performance of the proposed algorithm is evaluated on a synthetic 1D set of mixtures. The
following settings are set. All the sources are modeled by a Gaussian function: s(λ; wj) =

exp(−λ2/2w2
j ) where the shape parameters wj correspond to the Gaussian widths. The num-

ber of mixtures is equal to I = 40, each with N = 150 samples and the number of sources is
set to J = 3 where two of them are spectrally overlapping. The delay sampling step is set to
∆ = 0.2. Moreover, all the sources do not appear in all the mixtures, to deal with this situation we
set the threshold ς in Algorithm 2 to 1.5σ2

n where σ2
n is the noise variance and the ALS stopping

parameter ρ is set to 10−6. The amplitudes and delays are generated using polynomials with
random coefficients, and the ground-truth shape parameters are w∗ =

[
1.3 3.6 5.2

]
.

The ground truth and the estimated parameters are superimposed in Figure 3.4 for the am-
plitudes, delays and shapes. The shape parameter estimation is adequate as we have ŵ =[
1.22 1.78 5.2

]
. The amplitude estimation is correct with a little perturbation induced by the

noise. The delay estimation largely corresponds to the ground truth except around the mixture
i = 20 where the estimates are slightly affected because of the spectral source overlap. Moreover,
this example shows that the algorithm is able to successfully deal with a varying number of sources
within the mixtures. Therefore, when the source shape parameters are sufficiently different the
separation (association) is satisfactory without the need to include any additional discriminating
factors.
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Figure 3.3: (a) A synthetic noisy set of 1D mixtures superimposed by the ground-truth
sources. (b) the mixture reconstruction superimposed by the estimated sources.
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Figure 3.4: The estimated parameters (amplitudes âij, delays cij = ̂̀ij∆ and shapes
ŵj) of the estimated sources in Figure 3.3. The ground truth parameters are plotted in

plain lines.
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Figure 3.5: The white images of the generated multispectral image, the reconstruction
and the absolute residual.



3.5. Results 61

(a) A∗:1 (b) C∗:1 (c) A∗:2 (d) C∗:2

2 3 4

(e) Â:1
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Figure 3.6: First row: the ground truth parameters (amplitudes A and delays C = L∆)
of the two sources. Second row: the corresponding estimated parameters.

3.5.2 Synthetic 2D sets of mixtures

The proposed algorithm is adapted for both 1D and 2D sets of mixtures. We evaluate the perfor-
mance of the algorithm in case of a 2D sets of mixtures (a synthetic multispectral image) with
dimension 40× 40× 100 and J = 2 Gaussian parameterized sources. The SNR is set to 15 dB. The
parameters are generated using cubic B-spline surfaces with random control points except for the
shape parameters which are w∗ =

[
1.37 3.84

]
. The sampling step ∆ is set to 0.2 and the ALS

stopping parameter ρ is set to 10−6. The generated multispectral image, its reconstruction and the
residual image are displayed in Figure 3.5. This figure shows that the proposed algorithm correctly
reconstructs and denoises the mixtures. The computation time is equal to 15 s.

The estimated shape parameter are very close to the ground truth values: ŵ =
[
1.37 3.85.

]
.

The ground truth and the estimated maps of the amplitudes and delays are shown in Figure 3.6,
one can observe that they are well estimated.

3.5.3 The impact of the delay discretization

Delay estimation is constrained to be on a grid. The easiest way to refine its estimation is to
decrease the value of ∆, but this results in a bigger dictionary, and in turn, an increase of the
computational burden. Recently, Fyhn et al. [FDJ15, Section IV] proposed a continuous extension
of OMP, named IBOMP, for sparse deconvolution. Their approach makes use of an interpolation
strategy introduced in [ETS11]. Specifically, this approach first requires to estimate the delays on
a sampling grid and then to refine the delay estimation by using an interpolation between two
consecutive delays. The authors in [ETS11; FDJ15] advocate the use of polar interpolation which
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Figure 3.7: Comparison between both versions of the non-regularized method, with-
out (dashed) and with (solid) delay interpolation.

empirically outperforms other interpolation techniques in terms of estimation quality. This can
be done in our algorithm by refining the estimation of ̂̀i ĵ with ̂̀i ĵ + η where η ∈ [−∆/2, ∆/2] is
estimated as in [FDJ15].

To compare the proposed algorithm with and without delay interpolation, 30 datasets with
random parameters are generated, each with I = 40 mixtures, J = 3 Gaussian parameterized
sources, N = 200 samples and an average SNR equals to 15 dB. Besides, the stopping threshold is
set to ρ = 10−6. The data are processed with a delay sampling step ∆ varying from 0.1 to 8. Recall
that the sampling step of the mixtures is set to 1 by default. Figure 3.7 shows the results in terms
of estimation quality and the computation time. Results show that introducing the interpolation
scheme improves the estimation quality, especially for large values of ∆, at the price of an increasing
computation time. More important, this simulation shows that for a given estimation quality, the
implementation without using interpolation remains faster than the one using the interpolation as
shown in Figure 3.7c.

3.5.4 Shape discriminating limit

Algorithm 1 is able to assign the estimated peaks to the right source because the sources can be
discriminated by their shape parameter (see Figure 3.2). We are interested in finding the resolution
limit, that is the least difference between the shape parameters of two sources beyond which the
sources can be discriminated. For this purpose, we consider I = 40 mixtures each with N = 200
samples, and J = 2 Gaussians sources of widths w1 and w2 and with constant delays through the
mixtures. We gradually vary the ratio w2/w1 from 0.5 to 1.5. For each ratio, we measure the switch
percentage defined as the percentage of wrongly assigned peaks over the total number of peaks (a
peak is wrongly assigned if it belongs to source 1 while it is assigned to the source 2 and vice versa).
The experiment is repeated for three SNRs (Figure 3.8).

The results show that for high SNR, the proposed method can separate the sources whatever the
ratio w2/w1 except of course when both parameters are equal. In Figure 3.9 we show an example of
I = 15 mixtures and J = 2 sources with the same shape parameters w∗1 = w∗2 = 4 and SNR equals
to 15 dB. The resulting source separation and delays estimation show clearly that the method
fails to separate the sources in this case even though the sources do not spectrally overlap. This
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Figure 3.8: Switch percentage with respect to the ratio of two Gaussian widths, for
three different SNR.
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Figure 3.9: (a) a synthetic noisy set of 1D mixtures with two sources sharing the same
shape. (b) the mixture reconstruction obtained by the proposed method. (c) the delays

C estimation.

motivates us to introduce a regularization term to overcome this limitation in Chapter 4 or to model
the parameter evolution using B-splines in Chapter 5.

3.6 Conclusion

We propose a method to separate delayed and parameterized sources from their mixtures where
the sources are discriminated by the difference of their shape parameters. The problem is addressed
as an optimization problem of a data-fit criterion which is resolved using an ALS scheme. First,
the sources are estimated by estimating their shape parameters using the Levenberg-Marquardt.
Second, the amplitude and delays are jointly estimated using an adapted version of the OMP
algorithm. The latter finds a structured sparse solution (1-sparse per block) after projecting each
mixture on an overcomplete block-dictionary: each block gathers the delayed version of a source
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where the delays are sampled over a grid. This method is validated on both 1D and 2D sets
of mixtures. However, when two sources share very similar shapes, the separation becomes
ambiguous. This motivates us to introduce a new discriminating factor, the slow parameter
evolution, in Chapters 4 and 5.



65

4
Separation of parameterized sources with slow

delay evolution

4.1 Introduction

In this chapter, we give a first solution to take into account the temporal or spatial delay slow
evolution of the sources within the mixtures. The motivation of considering the slow delay
evolution is twofold. First, as stated in Chapter 1, this is physically justified in practice as it can
be the consequence of a short acquisition time between the measurement of the mixture signals
(such as in photoelectron spectroscopy [Glo+05]) or neighboring spatial sensors (such as in galaxy
kinematics [GWK89] or audio recorded mixtures [CB06]). Second, it helps to better discriminate
sources that have similar shapes and overlap in the spectral domain (highly correlated sources).

Similarly to Chapter 3 the delayed and parameterized source separation problem is considered.
To favor the slow delay evolution, we introduce a regularization term to the data-fit criterion
(Section 4.2). An ALS scheme is used to optimize the criterion, where the shape parameters are
estimated using the Levenberg-Marquardt. The amplitudes and delays are estimated in all the
mixtures using a joint greedy sparse approximation method inspired from OMP and coupled with
the Iterated Conditional Modes (ICM) algorithm (Section 4.3). Results on synthetic 1D and 2D sets
of mixtures are given in Section 4.4.

4.2 Delay regularization

4.2.1 Criterion

To get a slow delay evolution for each source, we propose to add a regularization term to the data-fit
term (defined in Section 3.2.1) and minimize the augmented criterion with respect to the source
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(a) 1D set of mixtures (b) 2D sets of mixtures

Figure 4.1: Neighbor mixtures (white dots) for several mixtures (blue dots) in case of
1D and 2D sets of mixtures.

amplitudes, delays and shape parameters. The aim of the regularization term is to favor slow
temporal (respectively spatial) delay evolution of each source within a 1D set (respectively 2D sets)
of mixtures by measuring the delay variation of each source. The latter is measured, for a given
delay `ij∆, by calculating the difference between this delay and the delays of neighboring mixtures
for the same source j. Therefore, we need to set a generalized definition of mixture neighboring
that can be adapted to both 1D and 2D sets of mixtures.

In case of 1D set of mixtures, the neighbors of a mixture i are the mixtures i − 1 and i + 1
(see Figure 4.1a) and in case of 2D sets of mixtures, the neighbors are the 4 connected spatial
positions (see Figure 4.1b). Of course, the neighbors are less on the edges (e.g., for i = 1 and i = I
in case of 1D set of mixtures). Moreover, we use the notion of clique as defined for Markov random
fields [PL97]. In a simple definition, a subset is called a clique of order two if any indices i and i′ in
this subset are neighbors. Let G be the set of all the cliques of order two.

Now, we can define the regularization term R(L):

R(L) =
J

∑
j=1

∑
(i,i′)∈G

(
`ij∆− `i′ j∆

)2
= ∆2

J

∑
j=1

∑
(i,i′)∈G

(
`ij − `i′ j

)2 . (4.1)

with `ij ∈N is the delay index and ∆ is the delay sampling step. Finally, the regularized criterion

F(A, L, w) composed of the data-fit term E(A, L, w) = ∑
i

∥∥∥∥xi −
J

∑
j=1

aijs
[
`ij∆; wj

]∥∥∥∥2

2
and regulariza-

tion term R(L) writes:

F(A, L, w) = E(A, L, w) + τR(L), (4.2)

with τ the regularization parameter that allows to trade-off between the two terms. Note that we
do not consider the problem of determining the best value of τ, rather it is manually tuned by the
user.
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Algorithm 3: ALS scheme for min
A,L,w

F(A, L, w).

Initialization: Â = L̂ = 0I×J , ŵ randomly
1 do
2 (A0, L0, w0)← (Â, L̂, ŵ)

3 (Â, L̂)← argmin
A,L

F(A, L, ŵ)

4 ŵ← argmin
w

F
(

Â, L̂, w
)

5 while F(A0,L0,w0)−F(Â,L̂,ŵ)

F(A0,L0,w0)
≥ ρ;

4.2.2 ALS scheme

Criterion F(A, L, w) is optimized using Algorithm 3 which is based on an the ALS scheme:

• the shape estimation is a continuous non-linear least–squares problem:

ŵ← argmin
w

F(A, L, w), (4.3)

Since R(L) does not depend on w, the shape estimation (line 4) is identical to the optimization
of E(A, L, w) with respect to w given in equation (4.3) and is solved using the Levenberg-
Marquardt algorithm (see Section 2.2.1);

• the amplitudes and delays are jointly estimated:

(Â, L̂)← argmin
A≥0,L

F(A, L, w). (4.4)

This problem differs from the one seen in Section 3.4 because F(A, L, w) does not read as a
separable sum with respect to Li:. Indeed, the terms (`ij− `i′ j)

2 appearing in the regularization
term R(L) not only depend on `ij but also on delays in neighboring mixtures. Therefore, a
new optimization strategy must be proposed to address (4.4).

In the sequel we will detail the estimation strategy for A and L.

4.3 Amplitude and slow delay estimation

A sparse approximation strategy is used to estimate the amplitudes and delays. Recall that when
using the dictionary formulation (see Section 3.4.1), each mixture is approximated such that:
xi = ∑J

j=1 Dαij. The delay `ij can be obtained from the support of the sparse vectors αij. Therefore,
since the delays are imposed to evolve slowly, the support of the sparse vectors will move slowly as
well. Figure 4.2 visualizes the sparse solutions αij for neighboring mixtures when the regularization
term τ is very small, moderate and very high. One can remark that the regularization goal is to get
slowly moving support for each source and thus allows to get an intermediate solution between
the case where the mixtures are approximated independently and the MMV case where the sparse
vectors share a common vector.
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Figure 4.2: Examples of a sparse model for J = 3 sources and I = 6 mixtures
where the white and the colored squares respectively represent the zero and non-zero
amplitudes. Each column corresponds to a mixture i, and is divided into J blocks
representing the sources (each source is indicated with a unique color). (a) The case of
no delay regularization. (b) The case of a slow-moving regularization. (c) The case of
a very strong regularization, resulting in a simultaneous sparse approximation with

constant support for all mixtures.

Algorithm 4 is proposed to optimize F(A, L, w) with respect to A and L. It is a greedy algorithm
in the spirit of Algorithm 2. However, Algorithm 4 takes all mixtures as inputs while Algorithm 2
considers a single mixture.

At each iteration, the source ĵ inducing the largest decrease of criterion F is selected (lines
2–5) and added to the list of selected sources J (line 6). The corresponding delays Ltemp

: ĵ
are

computed. Then, the amplitudes of the selected sources in J in all the mixtures are estimated
using a non-negative least squares solver (line 8). Finally, the residual vectors of all the mixtures
are updated (line 11). Note that adding a new source results in a decrease of the data-fit term
E(A, L, w) but makes the regularization term R(L) increasing. In other words, the criterion
F(A, L, w) = E(A, L, w) + τR(L) can either increase or decrease. Therefore, the condition in line 9
is set to break the loop in case of an increase of F, so that Algorithm 4 is indeed a descent algorithm.
Similarly, the condition in line 13 ensures a decrease of the criterion by invalidating the estimates if
they produce a criterion value that is larger than the value obtained at the previous iteration of
Algorithm 3.

Let us now specify the rule for selecting the source ĵ among all candidate sources j /∈ J . Since ĵ
is defined as the source yielding the largest decrease of criterion F, lines 4–6 in Algorithm 4 aim
at estimating, for each source j that has not already been selected, the value of the corresponding
delays L:j (denoted by L̃:j) as well as the value of F obtained while considering the set of sources
J ∪ {j}. To do so, OMP selection rule philosophy is used: the amplitudes aij′ and delays cij′ of



4.3. Amplitude and slow delay estimation 69

Algorithm 4: Implementation of (Â, L̂)← argmin
A,L

F(A, L, ŵ)

Initialization: Â = L̂ = Ltemp = 0I×J , J = ∅, ri = xi ∀i
1 for k = 1→ J do
2 for j ∈ {1, . . . , J}\J do
3 Compute L̃:j defined in (4.8) using the ICM algorithm
4 end

5 ĵ← argmax
j/∈J

I

∑
i=1

(
rT

i s
[˜̀ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G

(˜̀ij − ˜̀i′ j

)2

6 J ← J ∪ { ĵ }
7 Ltemp

: ĵ
← L̃: ĵ

8 Atemp ← argmin
A

F(A, Ltemp, ŵ) s.t. {A:J ≥ 0, A:J = 0}

9 if F(Atemp, Ltemp, ŵ) > F(Â, L̂, ŵ) then Break end
10

(
Â, L̂

)
←
(

Atemp, Ltemp)
11 for i = 1→ I do ri ← xi − ∑

j∈J
âijs
[̂̀ij∆; ŵj

]
end

12 end
13 if F(A0, L0, ŵ) < F(Â, L̂, ŵ) then (Â, L̂)← (A0, L0) end

previously selected sources (j′ ∈ J ) are fixed and one source j is considered. Thus, one needs to
consider the minimization of F(A, L, w) with respect to A:j and L:j, while fixing the values of L:j′

and A:j′ for j′ ∈ J :

L̃:j ← argmin
L:j

min
A:j≥0

I

∑
i=1

∥∥∥∥ri − aijs
[
`ij∆; ŵj

]∥∥∥∥2

2
+ τ∆2 ∑

(i,i′)∈G

(
`ij − `i′ j

)2 , (4.5)

where ri is the current residual of mixture i by removing the previously selected sources, i.e., :

∀ i, ri = xi − ∑
j′∈J

âij′s
[̂̀ij′∆; ŵj′

]
. (4.6)

The minimization of (4.5) with respect to A:j while fixing L:j has a closed form solution:

∀i, aij =
(
rT

i s
[
`ij∆; ŵj

])
+

. (4.7)

Plugging back (4.7) into (4.5), (4.5) simplifies to:

L̃:j ← argmax
L:j

∑
i

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G

(
`ij − `i′ j

)2 . (4.8)

which is the cost function appearing at line 7 in Algorithm 4. We now detail the adapted strategy
to resolve this discrete optimization problem.
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4.3.1 Delay estimation with an ICM-like algorithm

The optimization problem (4.8) is combinatorial, therefore we propose to use Iterated Conditional
Modes (ICM) [Bes86] which is a popular iterative coordinate-wise optimization method in image
processing. While it converges to a local optimizer, it generally gives good results. At each ICM
iteration, the optimization problem (4.8) is replaced by a series of I optimization problems of
dimension one. More precisely, at each ICM iteration, all the mixtures i ∈ {1, . . . , I} are swept and
whenever a mixture i is visited, the related delay ˜̀ij is estimated by maximizing the criterion in (4.8)
with respect to `ij whilst fixing the other delays ˜̀i′ j with i′ 6= i. Then:

˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G

(
`ij − ˜̀i′ j

)2
. (4.9)

The convergence of ICM is considered to be reached when the relative distance between the
estimates of two consecutive iterations is small enough. Mathematically, the stopping condition

reads
∥∥L̃

(t)
:j − L̃

(t−1)
:j

∥∥2
2/
∥∥L̃

(t−1)
:j

∥∥2
2 < ξ where t indicates the current ICM iteration.

The order in which the mixtures are swept in an ICM iteration t is important and can have an
influence on the estimation. In order to exploit at best the relationship between the mixtures we
propose two sequential sweeping strategies that are respectively applied in case of a 1D and a 2D
sets of mixtures.

Two-direction sweeping for 1D set of mixtures

The local optimization problem (4.9) can be explicitly detailed in the case of 1D set of mixtures
following the visited mixture i, yielding the following updates:

• if i = 1: ˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2(`ij − ˜̀(i+1)j)

2, (4.10)

• if 1 < i < I:

˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2(`ij − ˜̀(i−1)j)

2 − τ∆2(`ij − ˜̀(i+1)j)
2, (4.11)

• if i = I: ˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2(`ij − ˜̀(i−1)j)

2. (4.12)

The sequential sweeping strategy is as follows. First, a starting mixture i0 ∈ {1, . . . , I} is randomly
chosen, the corresponding delay ˜̀i0 j is estimated using one of the above updates. Then, the delays
in mixtures i0 + 1 to I are sequentially estimated, and the same sequential procedure is used for
mixtures i0 − 1 to 1.

Of course, the delays are not known at first ICM iteration so equations (4.10), (4.11) and (4.12)
cannot be computed as they require the delays in the adjacent mixtures of a given mixture i.
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i ∈ T

i ∈ B

Figure 4.3: An illustration where the mixture spatial positions represented by a blue
dot belong to T and the ones represented by a red dot belong to B. Other spatial

positions without dots have not been swept.

Therefore, we propose a recursive initialization strategy (only for the first ICM iteration, t = 0)
based on (4.5) after discarding the unknown delays, that is detailed now.

The starting mixture i0 is the one maximizing the data-fit term. The corresponding delay is then
easily estimated by using only this data-fit term, leading to:

(i0, ˜̀i0 j)← argmax
i,`ij

(
rT

i s
[
`ij∆; ŵj

])2
+

. (4.13)

Then, the delays are sequentially estimated from mixtures i = i0 + 1 to I. Two regularization

terms depending on `ij may appear in (4.8). The term
(
`ij − `(i−1)j

)2
can be computed since

`(i−1)j = ˜̀
(i−1)j is known whereas

(
`ij − `(i+1)j

)2
is discarded since `(i+1)j has not been estimated

yet. Hence, ˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2(`ij − ˜̀

(i−1)j)
2. (4.14)

Finally, the delays `ij in the mixtures going from i = i0− 1 down to i = 1 are sequentially estimated.

Only the regularization term
(
`ij − `(i+1)j

)2
is taken into account in (4.8). Hence:

˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2(`ij − ˜̀

(i+1)j)
2. (4.15)

Region growing inspired sweeping for 2D sets of mixtures

Contrary to the case of a 1D set of mixtures, multiple strategies can be used to sequentially sweep a
2D sets of mixtures departing from a starting mixture i0. For example, the mixtures can be swept
by columns or following the Hilbert-Peano sequential trajectory [CT07]. We choose a correlation-
driven sequential sweeping strategy (the mixtures with higher correlations with the residual are
swept first) that is inspired from the popular region growing image segmentation algorithm [AB94].

The region growing inspired sweeping procedure for an ICM iteration (t) starts with empty
sets denoted by T and B and iterates as follows:
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1. a starting mixture i0 ∈ {1, . . . , I} is randomly selected, added to B and its corresponding
delay ˜̀i0 j is estimated using (4.9);

2. the mixture with the highest correlation with the residual and belonging to B is selected. Let
is be the index of this mixture, then is ← argmax

i∈B

(
rT

i s
[˜̀ij∆; ŵj

])2
+

;

3. is is retired from B and added to T ;

4. the neighbors of is which are neither in T and B are added to B and their delays are estimated
using (4.9);

5. repeat from 2 till B is empty.

Figure 4.3 illustrates an example showing spatial positions i that belong to T and B.
For the first ICM iteration, the delays are not known so the optimization problem (4.9) cannot

be solved as it requires the delays in the neighboring mixtures of a given mixture i. This implies to
only modify the steps 1 and 4 of the procedure given below (the optimization problem (4.9) is only
needed in these steps). For step 1, the starting mixture i0 is selected and its corresponding delay is
estimated by only using the data-fit term:

(i0, ˜̀i0 j)← argmax
i,`ij

(
rT

i s
[
`ij∆; ŵj

])2
+

. (4.16)

For step 4, we redefine the optimization problem (4.9) in such a way to only consider the delays
in the mixtures which have been swept i.e., the mixtures that belong to T or B. The redefined
optimization problem writes:

˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G
i′∈T ∪B

(
`ij − ˜̀i′ j

)2
. (4.17)

4.3.2 Remarks

If no regularization is considered (i.e., τ = 0), then F(A, L, w) = E(A, L, w). We recommend to
use Algorithm 1 rather that Algorithm 3 since the former exploits the separability of the criterion.
Conversely, when τ tends to infinity, the delays related to each source are necessarily constant:
∀i 6= i′, `ij = `i′ j. Therefore, the sparse vectors αij ∀i share a common support (see Fig. 4.2(c)). The
estimation of L:j in (4.8) becomes:

L̃:j = [˜̀j, . . . , ˜̀j] with ˜̀j ← argmax
`

∑
i

(
rT

i s
[
`∆; ŵj

])2
+

; (4.18)

and can be obtained using an exhaustive search by testing the M possibilities for `. This is very
similar to the S-OMP algorithm [TGS06] (which is a greedy algorithm for sparse recovery of vectors
having a common support) with the difference that the vectors αij are 1-sparse (see equation (3.14)).

In Appendix A we present an extension of Algorithm 4 that allows obtaining a varying number
of sources in each mixture, i.e., a source that appears in a contiguous subset of mixtures. In
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particular, sweeping strategies for both 1D and 2D sets of mixtures are presented; they consist of
modified versions of the sweeping procedures detailed above.

In Appendix B we present a new method to estimate the amplitudes, delays and shapes. These
parameters are also supposed to vary slowly within the mixtures in contrary to this chapter where
the shape parameters are constant for each source. The resulting algorithm estimates all the
parameters jointly and is very similar to Algorithm 4.

4.4 Results

4.4.1 Synthetic 1D set of mixtures

The performance of the proposed algorithm is evaluated on a synthetic 1D set of mixtures. The
following settings are set. All the sources are modeled by a Gaussian function: s(λ; wj) =

exp(−λ2/2w2
j ). The number of mixtures is equal to I = 40, each with N = 150 samples and

the number of sources is set to J = 4 where two of them are spectrally overlapping. The SNR
defined in equation (1.13) is equal to 15 dB. The amplitudes and delays are generated using polyno-
mials with random coefficients, and the shape parameters are w∗ =

[
1.17 1.45 1.49 5.49

]
. One

can remark that the first three sources have very similar shape parameters. The delay sampling step
is fixed to ∆ = 0.2, the regularization parameter is tuned τ = 0.02, the ALS and the ICM stopping
parameters ρ and ξ are respectively set to to 10−6.

The generated mixtures are displayed in Figure 4.4, and the mixture denoised reconstruction
is displayed in Figure 4.4b superimposed by the estimated sources. These results show that the
reconstruction is adequate and that the sources are well recovered. The computation time to obtain
this result is 1.5 s.

The ground-truth and the estimated amplitudes, delays and shapes are displayed in Figure 4.5.
The shape parameter estimation is adequate as we have ŵ =

[
1.07 1.45 1.47 5.6

]
. The ampli-

tude estimation suffers from a little perturbation induced by the noise. Moreover, despite the fact
that some sources share similar shapes and some others are overlapping, the delay estimates are
good and evolve slowly due to the regularization.

4.4.2 Synthetic 2D sets of mixtures

The proposed algorithm is tested on a 2D sets of mixtures with dimension 40× 40× 100 and J = 2
Gaussian parameterized sources. The SNR is set to 15 dB. The parameters are generated using cubic
B-spline surfaces with random control points except for the shape parameters which are exactly the
same w∗ =

[
5 5

]
. The delay sampling step is fixed to ∆ = 0.2, the regularization parameter is

tuned to τ = 0.04, the ALS and the ICM stopping parameters ρ and ξ are respectively set to to 10−6.
The generated multispectral image, its reconstruction and the residual image resulting from

the absolute difference between the image and its reconstruction are displayed in Figure 4.6. This
figure shows that the proposed algorithm correctly reconstructs the mixtures. The computation
time equals 50 s.

The estimated shape parameter are very close to the ground truth values: ŵ =
[
5.2 5.1

]
. The

ground truth and the estimated maps of the amplitudes and delays are shown in Figure 4.7. One
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Figure 4.4: (a) a synthetic noisy set of 1D mixtures superimposed by the ground-truth
sources. (b) the mixture reconstruction superimposed by the estimated sources.
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Figure 4.5: The estimated parameters (amplitudes âij, delays cij = ̂̀ij∆ and shapes
ŵj) of the estimated sources in Figure 4.4. The ground truth parameters are plotted in

plain lines.

can observe that the amplitude and delay parameters are well estimated even though the sources
share the same shape parameter. The delay maps are smooth due to the regularization.

4.4.3 Regularization parameter influence on very noisy mixtures

To show the benefit of the regularization term for mixtures with high noise level (low SNR) we set
the following experiment. We generate a 1D set of I = 40 mixtures, N = 70 and J = 1 source with
SNR equals to −3 dB (Figure 4.8). The delay sampling step is fixed to ∆ = 0.2, the ALS and the
ICM stopping parameters ρ and ξ are respectively set to 10−6. Then, the proposed algorithm is run
for three different regularization parameters τ. First, τ is set to zero, the delay estimation is mainly
affected by the noise and the estimation is not precise this is shown in the mixture reconstruction
and the estimated source (Figure 4.9a) and the estimated delays (Figure 4.9d). Second, we set
a tuned value of τ equals to 0.01, the obtained results (Figures 4.9b, 4.9e) show that the delay
estimation is very close to the ground truth. Finally, we set a very high τ equals to 8, obviously, the
estimated delays are constant (Figures 4.9c, 4.9f) since the regularization term is much favored over
the data-fit term. This simulation demonstrates that the proposed algorithm can deal with very
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(a) Data (b) Reconstruction
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Figure 4.6: The white images of the generated multispectral image, the reconstruction
and the absolute residual.
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Figure 4.7: First row: the ground truth parameters (amplitudes A and delays C = L∆)
of the two sources. Second row: the corresponding estimated parameters.
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Figure 4.8: A very noisy synthetic set of 1D mixtures (SNR = −3 dB) with J = 1
source.
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Figure 4.9: The first and second row respectively display the estimated sources
superimposed on the mixture reconstruction and the estimated delays superimposed
on the ground-truth delays. Each column shows the results obtained for a different

regularization parameter τ value.
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noisy mixtures and that the regularization allows the algorithm to be more robust to high noise
levels.

4.5 Conclusion

Taking into account the slow parameter evolution is important since it allows to consider a physical
observation that is valid in many applications and since it allows to better discriminate the sources.
In this chapter, we propose to favor the slow evolution of the parameters by adding a regularization
term to the data-fit term. The resulting criterion is optimized using an ALS scheme. The amplitudes
and delays are estimated jointly within this scheme by using a joint greedy algorithm inspired by
OMP. Results on synthetic 1D and 2D sets of mixtures validate the proposed methods and prove
that the consideration of the slow delay evolution is useful, especially for highly correlated sources.
In the next chapter, the slow evolution of the parameter is considered in an alternative way; the
parameter evolutions are modeled using B-splines.
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5
Source parameter modeling using B-splines

5.1 Introduction

In this chapter we exploit an alternative strategy, of the two previous chapters, to estimate the
parameters (amplitudes, delays and shape parameters) and to consider their slow evolution. We
exploit the B-splines to model the temporal or spatial evolution of the parameters. This modeling
is embedded in the delayed and parameterized source mixing model, with the possibility to have
varying shape parameters. The motivations for using B-splines are numerous. First, it allows
ensuring the slow evolution of the parameter, due to the polynomial aspect of B-splines, which
is a description of the considered physical phenomena. Second, the number of the parameters
can be highly reduced because only a few B-spline weights (control points) describes a parameter
evolution.

The road-map of this chapter is as follows. Some basic elements on B-spline basis functions
and curves are presented in Section 5.2. In Section 5.3 we present the mixing model combined
with the parameter B-spline modeling (1D set of mixtures) where the problem is addressed as a
constrained non-linear least squares problem. The adopted optimization strategy is detailed in
Section 5.4. We then extend the model and the optimization strategy for 2D sets of mixtures by
modeling the spatial evolution of the source parameters as B-spline surfaces in Section 5.5. Finally,
numerical results to quantify the performance of the proposed method are presented in Section 5.6.

5.2 B-splines

B-splines (Basis splines) were first introduced in 1946 by Schoenberg [Sch46] and are a set of piece-
wise polynomial functions, the latter are referred as B-spline basis functions with very interesting
properties (some of them are given later). The linear combination of these functions allows one to
express a continuous function with a countable number of parameters, called control points.
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B-splines have been used in many signal processing topics and have proved their effectiveness.
Especially, a common application of B-splines is interpolation [Rei67; Uns99]. In image resizing and
re-sampling, B-spline interpolation is used to find the pixel values over continuous positions after
some geometric transformations. Moreover, B-Splines were used in image registration [Rue+06],
contour detection [MZ92], signal compression [MY86] and 3D modeling [MGB94]. For spectroscopic
signals, B-splines were used as a fit of absolute reflectance measurements in [Thu+03].

5.2.1 B-spline basis function

Two main elements are required to define the set of B-spline basis functions:

• a degree d (or order d + 1), that specifies the maximal degree of the polynomial functions;

• a knot vector k that is a sequence of increasing real numbers, i.e., k =
[
k0 k1 . . . kK

]
with

k0 ≤ k1 ≤ . . . kK.

The number of knots in k is K + 1 where each couple of two consecutive knots yields a knot interval
in which a polynomial function of degree d is defined. A B-spline basis function of degree d is
defined over d + 2 consecutive knots from the support knot vector k. Therefore, the number of
B-spline basis functions of degree d that can be generated over a knot vector k with K + 1 knots is:
M = K− d.

We denote by bd
m(x) the mth B-spline basis function (m ∈ {1, . . . , M}) of degree d and defined

over km, . . . , km+d+1. x denotes here an arbitrary variable and must be distinguished from a mixture
sample x(λ). Following the Cox de Boor recursion formula [DB72], a B-spline basis function can be
generated using the following recurrence relations:

bd
m(x) =

x− km

km+d − km
bd−1

m (x) +
km+d+1 − x

km+d+1 − km+1
bd−1

m+1(x), (5.1)

b0
m(x) =

{
1, if km ≤ x < km+1

0, otherwise.
(5.2)

Another way to generate a B-spline basis function is to apply a d repetitive convolution on b0
m(x),

such that:
bd

m(x) = (b0
m ∗ b0

m ∗ . . . ∗ b0
m)︸ ︷︷ ︸

d times

(x). (5.3)

Figure 5.1 shows the B-spline basis functions b0
0, b1

0, b2
0, and b3

0 and their corresponding knots.

B-spline basis function properties

In the following list, we recall the main properties of B-spline basis functions (for detailed study of
these and other properties, the reader is referred to [DB72]):

• Local support: the support of a B-spline basis function is limited:

bd
m(x) = 0 if x /∈ [km, km+d+1]; (5.4)
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Figure 5.1: B-spline basis functions of degree 0, 1, 2 and 3 and their corresponding
uniform (equidistant) knots.

• the B-spline basis functions are null on the extreme knots defining their interval:

∀ d ≥ 1, bd
m(km) = bd

m(km+d+1) = 0; (5.5)

• non-negativity: a B-spline basis function is non-negative:

∀x ∈ R, bd
m(x) ≥ 0; (5.6)

• sum-to-one: the sum of all the B-splines basis on the knot interval [km, km+1) is 1, if and only
if, d + 1 basis functions are non-null on the knot interval:

M

∑
m=1

bd
m(x) = 1; (5.7)

• continuity: B-spline basis functions belong to the highest possible class of continuity, that is
all the derivatives of bd

m(x) exist in the interior of a knot interval:

bd
m(x) ∈ Cd−1([km, km+d+1]). (5.8)
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k0 k1 k2 k3 k4 k5 k6 k7 k8 k9
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1

Figure 5.2: 6 cubic B-spline basis functions (d = 3) with 10 uniform knots. The sum
of the basis functions is plotted in dashed gray line. The interval inside of the two

vertical lines is the interval where the sum-to-one property is valid.
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Figure 5.3: 6 cubic B-spline basis functions (d = 3) with 11 knots at 5 distinct positions
(the first and last d + 1 knots are coincident). The sum of the basis functions is plotted

in dashed gray line. The sum-to-one property is valid everywhere.

B-spline settings

The definition of B-splines needs to choose its degree and the associated knot vector. Common
choices are:

• the degree d: cubic B-splines (d = 3) are a good compromise between effectiveness and
computational complexity and have the minimal curvature property [Uns99]. Cubic B-splines
are considered in this thesis;
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• the knot vector: the most common setting is to consider a uniform knot vector, that is all the
knots are equally spaced. This has some computational advantage because in this case, the
B-spline basis functions are expressed as shifted versions of each others, i.e.,

∀ m ∈ {1, . . . M}, bd
m(x) = bd

0(x− km). (5.9)

Figure 5.2 shows an example of cubic B-spline basis functions (d = 3) with uniform knot
vector. A non-uniform knot vector gives the ability to have a variable resolution of the data
representation; closer knots increase the resolution.

• sum-to-one enforcement by coincident knots: if a knot vector k ∈ RK+1 is defined over K + 1
different positions, the sum-to-one property cannot be satisfied on the first and last d knot
intervals as it is shown in Figure 5.2, and the B-spline is always null at the boundary knots k0

and kK (when d ≥ 1). A common setting to overcome this limitation, is to use d+ 1 multiplicity
on the boundary knots k0 and kK, that is k0 = k1 = . . . = kd and kK = kK−1 = . . . = kK−d.
Thus, the K + 1 knot vector elements are:

k0 = . . . = kd ≤ . . . ≤ kK−d = . . . = kK.

Figure 5.3 displays an example of cubic B-spline basis functions (d = 3) with coincident
boundary knots. In the sequel, this setting is adopted for constructing the knot vectors.

5.2.2 Linear combination of B-splines

We stated in section 5.2.1 that one can construct M = K − d B-spline basis functions of degree
d defined over a knot vector containing K + 1 knots. The linear combination of these M basis
functions yields a continuous B-spline curve f (x) of degree d, such that:

f (x) =
M

∑
m=1

umbd
m(x), (5.10)

where um ∈ R is the control point of the mth B-spline basis function bd
m(x). The control points are

sometimes denoted as coefficients or weights. Equation (5.10) can be rewritten in vector notation
as:

f (x) = b[x]Tu, (5.11)

where b[x] ,
[
bd

1(x) bd
2(x) . . . bd

M(x)
]T

and u =
[
u1 u2 . . . uM

]T
. We omit the degree d

from the notation b[x] for brevity. Note that, since the B-spline functions bd
m(x) have local supports,

the control points um only have influence on the curve for x ∈ [km km+d+1]. Figure 5.4 plots an
example of a B-spline curve and shows the local influence of the control points.

Two applications arise as a direct application of B-spline curve modeling: interpolation and
approximation problems. Given a set of data points, the B-spline interpolation aims to build a
knot vector and estimate the B-spline weights in such way that the B-spline curve passes exactly
through the data points. However, in the presence of noise, interpolation becomes useless since it
models the noise in addition to the data. In practice, B-spline approximation allows one to smoothly
approximate the data by tolerating a small error. Namely, the data are approximated by minimizing
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Figure 5.4: (a) a B-spline curve with knot vector
k = [1 1 1 1 1.6 2.3 3 3.6 4.3 5 5 5 5] and control points
u = [0.6 3.8 1 2.5 2 1.6 3.6 2 4]. Each circle is associated with a B-
spline basis function with the ordinate of the corresponding control point. (b) The
same B-spline curve as in (a) is considered except for the 4th element of u that is set

to 0.5 instead of 2.5; this shows the local influence of a control point.

the error that is often the squared difference between the data ordinates and the B-spline curve at
the position of these data.

5.3 Source parameter B-spline modeling

In this section, we present how to model the source parameters (amplitudes, delays, and shapes)
using B-splines so as to favor their slow evolution. This parameter modeling is then embedded in
the mixing model.

Let us first consider an example of I = 40 noisy 1D set of mixtures with a unique source J = 1
parameterized by a Gaussian function (Figure 5.5). A B-spline curve with random control points is
used to generate each parameter. The parameters are then obtained by evaluating the curves at the
discrete mixture positions i. This is the direct problem, but the inverse problem is to estimate the
B-spline curve control points from the observed mixtures. Further, in this example, one can remark
the high reduction in the unknowns number to estimate: only 21 control points must be estimated
(7 for each parameter since cubic B-splines and 10 knots are used) instead of 40× J × 3 = 120
parameters.
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Figure 5.5: A generative example. The amplitudes, delays, and shapes (dots) of a
source generated as B-spline curves and the B-spline basis functions weighted by
their randomly generated control points (a)–(c). The same knot vector is used for all
the parameters and is given by k = [1 1 1 1 14 27 40 40 40 40]. (d) The generated

mixtures with a Gaussian parameterized source using the parameters in (a)–(c).

5.3.1 Parameter modeling using B-spline curves

In this chapter we consider the mixing model where the shape parameters vary within the mixtures.
Let us recall the corresponding model:

∀ i, xi =
J

∑
j=1

aijs
[
cij; wij

]
+ ni. (5.12)

The evolution through the mixtures of the amplitudes aij, delays cij and shapes wij for each
source is modeled by cubic B-spline curves with unknown control points. Without loss of generality,
we suppose that all the parameters are modeled with B-splines curves defined over the same knot
vector k. The knot positions are bounded by i = 1 and i = I, and they can either be defined
on discrete or real positions. Moreover, the first d + 1 knots are coincident for the reasons stated
in Section 5.2.1. Similarly, the last d + 1 knots are coincident.
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The amplitude evolution B-spline curve modeling for any source j can be seen as a continuous
function of i, i.e., aj(i). But, only the discrete values of i ∈ {1, . . . , I} interest us:

∀ j, aij , aj(i) =
M

∑
m=1

φ
j
mbd

m(i) = b[i]Tφj, (5.13)

where φj =
[
φ

j
1 φ

j
2 . . . φ

j
M

]T
is a vector gathering the amplitude control points of source j and

b[i] =
[
bd

1(i) bd
2(i) . . . bd

M(i)
]T

is is a vector gathering the B-spline basis functions evaluated at
mixture index i. Similarly, the delay and shape modeling writes as:

∀ j, cij =
M

∑
m=1

σ
j
mbd

m(i) = b[i]Tσ j, (5.14)

∀ j, wij =
M

∑
m=1

ω
j
mbd

m(i) = b[i]Tωj, (5.15)

where the delay and shape control points of source j are respectively gathered in

σ j =
[
σ

j
1 σ

j
2 . . . σ

j
M

]T
and ωj =

[
ω

j
1 ω

j
2 . . . ω

j
M

]T
.

It is worth noting that the B-spline modeling reduces the number of the unknown for each
parameter from (I × J) to (M× J) with M much smaller than I.

Note that, the proposed parameter modeling can easily consider the particular case where the
shape parameters of sources are invariant within the mixtures (the model used in Chapters 3 and 4).
To consider this model, the shapes must be modeled as a B-spline curve with degree d = 0 and two
knots where first is positioned on i = 1 and the second on i = I. Indeed, the B-splines of degree 0
are constant piecewise functions.

5.3.2 Source separation meets B-spline curve modeling

By combining the mixing model (5.12) and the parameter B-spline modeling in (5.13), (5.14) and
(5.15) we get:

xi =
J

∑
j=1

(b[i]Tφj)s
[
b[i]Tσ j; b[i]Tωj

]
+ ni i = 1, . . . , I. (5.16)

The problem of estimating the parameter with the assumption of slow evolution is recast to
the estimation of the control points. Supposing the noise to be Gaussian and i.i.d, the maximum
likelihood estimation is obtained by minimizing the following criterion:

L(Φ, Σ, Ω) = ∑
i

∥∥∥∥xi −
J

∑
j=1

(b[i]Tφj)s
[
b[i]Tσ j; b[i]Tωj

]∥∥∥∥2

2
, (5.17)
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where:

Φ =
[
φ1 φ2 . . . φJ

]
∈ RM×J ,

Σ =
[
σ1 σ2 . . . σ J

]
∈ RM×J ,

Ω =
[
ω1 ω2 . . . ωJ

]
∈ RM×J .

(5.18)

In contrary to the methods proposed in Chapter 4, we do not need a regularization term to favor the
parameter slow evolution; the data-fit term is enough since the slow evolution is directly embedded
in the model. Therefore, the optimization problem reads:

min
Φ,Σ,Ω

L(Φ, Σ, Ω). (5.19)

Constraints

The specificities of the spectroscopic application are considered by adding constraints to the
optimization problem (5.19). The amplitudes must be non-negative, the delays are bounded by
the two extreme values of the wavelength vector. Besides, we impose the shapes to be bounded
by wmin and wmax. We apply the same constraints on the control points modeling the parameters.
Thus we have the following constrained optimization problem:

min
Φ,Σ,Ω

L(Φ, Σ, Ω) such that C =


Φ ∈ R

M×J
+

Σ ∈ [1, N]M×J

Ω ∈ [wmin, wmax]M×J

. (5.20)

These constraints on the control points allow one to respect the constraints on the physical pa-
rameters aij, cij and wij. However, some possible solutions are excluded since the parameters are
the linear combination of the control points and the B-spline basis functions. For instance, the
non-negativity constraint on the physical amplitudes, yields:

aij ≥ 0, (5.21)

therefore:

∀ i, j,
M

∑
m=1

φ
j
mbd

m(i) ≥ 0. (5.22)

Knowing that bd
m(i) ≥ 0 ∀ m, i and that ∑m bd

m(i) = 1, for some φ
j
m that are non-positive the equa-

tion (5.22) might still holds. Even though some solutions are excluded by considering the constraints
in C. We choose to tolerate this limitation for implementation reasons and since this only have
negligible influence on the result.

5.4 Proposed optimization strategy

The joint optimization problem (5.20) can be addressed as a constrained non-linear least squares
problem. Indeed, the non-linearity of model (5.16) is due to the presence of the delay σ

j
m and shape



88 Chapter 5. Source parameter modeling using B-splines

50 100 150
0

10

20

30

40

λ

i

(a)

50 100 150
0

10

20

30

40

λ

i

(b)

Figure 5.6: (a) I = 40 noisy mixtures and the ground truth sources. (b) the noisy mix-
tures superimposed by the estimated sources obtained by minimizing equation (5.20)
initialized by random control points. All the parameters are modeled with cubic

B-spline curves with knot vector k = [1 1 1 1 10.7 20.5 30.2 40 40 40 40].

ω
j
m control points. We propose to use a Sequential Quadratic Programming (SQP) algorithm [NW99]

to solve this optimization problem; it gives the possibility to solve constrained non-linear least
squares problem. SQP iteratively updates the solution, starting with an initial solution. We
respectively denote by Φ0, Σ0 and Ω0 the initial solutions for the amplitude, delay and shape
control points.

The criterion (5.17) is non-convex and the choice of the initial solutions for optimization solver
is crucial, especially for the delay control points (see Figure 3.1). The choice of the initial solution is
not an easy task, and it has a significant influence on the output results. Figure 5.6 shows the output
result of a I = 40 mixtures with J = 3 sources. The result is obtained by solving the optimization
problem (5.20) using SQP algorithm where the control points are randomly initialized. The result is
not satisfactory since one source models the noise. The reason is that the (random) initialization
of the delay control points is far from the actual source delays. Therefore we propose to exploit
information from the observed mixtures to initialize the delay control points.

We adopt an iterative strategy where the number of estimated sources is incremented by one at
each iteration. In addition to the estimation of a new source, the parameters of the previous ones are
also updated at each iteration. We propose to initialize the delay control points as the wavelength
of the highest energy in the average mixture (computed by summing up all the mixtures) after
removing the contributions of the previously estimated sources; this is a simple and efficient choice
for finding a potential delay, around which a source takes place.

The proposed algorithm is given in Algorithm 5. At each iteration, the number of sources to
estimate is incremented from k = 1 to k = J. In other words, at each iteration, the optimization
problem (5.20) is solved with respect to a subset of the parameters, namely the first k columns of Φ,
Σ and Ω by using an SQP algorithm. At iteration k + 1, the solution previously found at iteration k
is used to initialize the first k sources (corresponds to the k first columns of Φ0, Σ0 and Ω0) . The
k + 1 column of Φ0 and Ω0 is set to a random value generated following a uniform distribution
U over the intervals in C. All the elements in the k + 1 column of Σ0 are set, as said above, to the
wavelength with the highest intensity in the average residual spectrum λmax.
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Algorithm 5: Minimization of L(Φ, Σ, Ω) s.t. (Φ, Σ, Ω) ∈ C
Outputs: Φ̂, Σ̂, Ω̂

Initialization: Φ̂ = 0M×J , Σ̂ = 0M×J , Ω̂ = 0M×J
for k = 1 : J do

Solve

(Φ̂:,1:k, Σ̂:,1:k, Ω̂:,1:k)← argmin
Φ:,1:k ,Σ:,1:k ,Ω:,1:k

L(Φ, Σ, Ω) s.t. (Φ:,1:k, Σ:,1:k, Ω:,1:k) ∈ C

using SQP algorithm, initialized as follows:

Φ0
:,1:k =

[
Φ̂:,1:k−1 φ0

k

]
with φ0

k ∼ U (0,+∞)

Ω0
:,1:k =

[
Ω̂:,1:k−1 ω0

k

]
with ω0

k ∼ U (wmin, wmax)

Σ0
:,1:k =

[
Σ̂:,1:k−1 σ0

k

]
with σ0

k = λmax1M

λmax is the wavelength with the highest energy in the residual pixel sum:

λmax = argmax
λ

∑
i

(
xi(λ)−

k−1

∑
j=1

b[i]Tφ̂js(λ− b[i]Tσ̂ j; b[i]Tω̂j)

)2

end

5.5 Extension to two dimensional mixtures

The extension of B-splines to the case of two-dimensional functions is straightforward. In this
section, we introduce the bivariate B-spline basis functions, before detailing their linear combina-
tions to construct B-spline surfaces. Finally, we combine the source separation model in the case
of multispectral images and the parameter modeling as B-spline surfaces with unknown control
points.

5.5.1 Bivariate B-spline basis functions

Let us suppose a two-dimensional space defined by the variables u and v. Let bdu
p (u) be a one-

dimensional B-spline basis function of degree du and knot vector ku ∈ RKu+1 defined over the first
spatial dimension u (see Section 5.2.1). Similarly, bdv

q (v) is a B-spline basis function of degree dv

and knot vector kv ∈ RKv+1 defined over the second spatial dimension v.
The two knot vectors ku and kv generate a knot grid containing (Ku + 1)× (Kv + 1) knots. Again,

the knot vectors can be either uniform, non-uniform and with coincident boundary knots (see
Section 5.2.1). For the sake of brevity, and without loss of generality, we suppose that du = dv = d.

We denote by i =
[
u v

]
∈ N2 the spatial index of a pixel in an image where u and v are

respectively the column and the row of the pixel. The bivariate B-spline basis function with degree
d at the spatial position i is denoted as:

βd
p,q(i) = bd

p(u)b
d
q(v). (5.23)

Figure 5.7 shows a cubic (d = 3) bivariate B-spline basis function β3
0,0(i).
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Figure 5.7: (a) a perspective view of a bivariate B-spline basis function of degree d = 3.
(b) a top view of the bivariate B-spline basis function and the knot grid in black lines.

The knot grid contains (d + 2)2 = 25 knots.

5.5.2 B-spline surfaces

A B-spline surface function f (i) , f (u, v) is the linear combination of M = P×Q bivariate B-spline
basis functions such that:

f (i) =
P

∑
p=1

Q

∑
q=1

µp,qβd
p,q(i), (5.24)

where µp,q is the control point of the B-spline bivariate basis function βp,q(i). Using vector notation,
equation (5.24) writes:

f (i) = β[i]Tµ, (5.25)

where β[i] =
[

βd
1,1(i) βd

1,2(i) . . . βd
1,P(i) βd

2,1(i) . . . . . . βd
P,Q(i)

]T
∈ RM.

and µ =
[
µ1,1 µ1,2 . . . µ1,P µ2,1 . . . . . . µP,Q

]T ∈ RM. An example of a cubic B-spline
surface is given in Figure 5.8.

5.5.3 Parameter B-spline surface modeling

The amplitudes, delays, and shapes are modeled as B-spline surfaces. Therefore, the amplitude,
delay and shape parameters modeling at mixture i for a given source j respectively write:

∀ j, aij =
P

∑
p=1

Q

∑
q=1

φ
j
p,qβd

p,q(i) = β[i]Tφj, (5.26)

∀ j, cij =
P

∑
p=1

Q

∑
q=1

σ
j
p,qβd

p,q(i) = β[i]Tσ j, (5.27)
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Figure 5.8: A B-spline surface with degree dx = dy = d = 3 and knot vectors
k = l = [1 1 1 1 2.3 3.6 5 5 5 5]. The corresponding control point vector µ is not

displayed.

∀ j, wij =
P

∑
p=1

Q

∑
q=1

ω
j
p,qβd

p,q(i) = β[i]Tωj, (5.28)

where the amplitude, delay and shape control points of source j are respectively gathered in:

φj =
[
φ

j
1,1 φ

j
1,2 . . . φ

j
1,P φ

j
2,1 . . . . . . φ

j
P,Q

]T
,

σ j =
[
σ

j
1,1 σ

j
1,2 . . . σ

j
1,P σ

j
2,1 . . . . . . σ

j
P,Q

]T
,

and ωj =
[
ω

j
1,1 ω

j
1,2 . . . ω

j
1,P ω

j
2,1 . . . . . . ω

j
P,Q

]T
.

(5.29)

Source separation meets B-spline surface modeling

The new model is obtained by combining the source separation model equation (5.12) and the
B-spline parameters in (5.26), (5.27) and (5.28):

xi =
J

∑
j=1

(β[i]Tφj)s
[
β[i]Tσ j; β[i]Tωj

]
+ ni ∀i. (5.30)

The source separation problem is recast to the estimation of the control points gathered in φj,
σ j and ωj, therefore we define the following criterion:

O(Φ, Σ, Ω) = ∑
i

∥∥∥∥xi −
J

∑
j=1

(β[i]Tφj)s
[
β[i]Tσ j; β[i]Tωj

]∥∥∥∥2

2
. (5.31)
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where,
Φ =

[
φ1 φ2 . . . φJ

]
, (5.32)

Σ =
[
σ1 σ2 . . . σ J

]
, (5.33)

Ω =
[
ω1 ω2 . . . ωJ

]
. (5.34)

The corresponding constrained optimization problem writes:

min
Φ,Σ,Ω

O(Φ, Σ, Ω) such that (Φ, Σ, Ω) ∈ C. (5.35)

The same strategy that is used to optimize the criterion L(Φ, Σ, Ω) is used to solve the optimization
problem equation (5.35). The Algorithm to optimize O(Φ, Σ, Ω) is similar to Algorithm 5 up to
minor modifications:

• O(Φ, Σ, Ω) replaces L(Φ, Σ, Ω);

• λmax ← argmax
λ

∑
i

(
xi(λ)−

k

∑
j=1

β[i]Tφ̂js
(
λ− β[i]Tσ̂ j; β[i]Tω̂j

))2

.

5.6 Results

5.6.1 Synthetic 1D set of mixtures

The performance of the proposed algorithm is evaluated on a synthetic 1D set of mixtures. The
following settings are set. All the sources are modeled by a Gaussian function: s(λ; wj) =

exp(−λ2/2w2
j ) where the shape parameters correspond the Gaussian width. The number of

mixtures is equal to I = 40, each with N = 150 samples and the number of sources is set to J = 3
where two of them are spectrally overlapping. The SNR defined in equation (1.13) is equal to 15 dB.
The amplitudes and delays and shapes are generated using polynomials with random coefficients.
The amplitudes, delays and shapes are modeled using cubic B-splines. The amplitude knot vector
is k =

[
1 1 1 1 20 40 40 40 40

]
, whereas the delay and shape are modeled with more knots

using this knot vector k =
[
1 1 1 1 10 20 30 40 40 40 40

]
. The lower and upper bounds of the

shape parameters control points are respectively wmin = 0.5 and wmax = 8. The generated mixtures
and the mixture denoised reconstruction are displayed superimposed by the estimated sources are
displayed in Figure 5.9. One can remark that the reconstruction and the source recovery are very
satisfactory. The computation time to obtain this result is 6.1 s.

The ground truth and the estimated amplitudes, delays and shapes are displayed in Figure 5.10.
These results show that the parameters are well estimated and their evolution is smooth due to
their B-spline modeling.
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Figure 5.9: (a) a synthetic noisy set of 1D mixtures superimposed by the ground-truth
sources. (b) the mixture reconstruction superimposed by the estimated sources.
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Figure 5.10: The estimated parameters (amplitudes âij, delays cij and shapes ŵj) of
the estimated sources in Figure 5.9. The ground truth parameters are plotted in plain

lines.

5.6.2 Synthetic 2D sets of mixtures

The proposed algorithm is tested on a 2D sets of mixtures with dimension 40× 40× 100 and
J = 2 Gaussian parameterized sources. The SNR is set to 15 dB. The ground-truth parameters are
generated using cubic B-spline surfaces with random control points. The parameters are modeled
using cubic surface B-splines with the following knot vectors ku = kv

[
1 1 1 1 20 40 40 40 40

]
.

The lower and upper bounds of the shape parameters control points are respectively wmin = 0.5
and wmax = 8.

The generated multispectral image, its reconstruction and the residual image resulting from
the absolute difference between the image and its reconstruction are displayed in Figure 5.11. This
figure shows that the proposed algorithm correctly reconstructs the mixtures. The computation
time is equal to 50 s.

The ground-truth and the estimated maps of the amplitudes, delays and shapes are shown
in Figure 5.12. One can observe that the amplitude, delay and shape parameters are very well
estimated and spatially slow evolving as expected.
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Figure 5.11: The white images of the synthetic multispectral image, its reconstruction
and the residual error.

5.6.3 SNR and knot number influence

To study the impact of the knot number, we consider modeling the parameters (aij, cij and wij) with
cubic B-spline curves (d = 3) defined over a knot vector containing different numbers of knots.
Namely, we variate the knot number from 10 to 14 knots. The knot positions are equally-spaced.
The five calls of the algorithm with different knot numbers are compared following different criteria
with respect to the SNR which varies between 0 and 30 dB with a step of 2 dB. We generate 200
sequences of I = 40 noisy mixtures with SNR equal to 15 dB, each with J = 3 sources and N = 150
samples. The parameters are generated using polynomial functions with degrees varying from 3 to
5. The average of the 200 results are displayed in Figure 5.13 where we compare the effect of knot
number in means of the MSE1 and computation time.

Results show that the MSE and the parameter estimation qualities decrease as the SNR increases.
On the other hand, as the number of knots increases the MSE is lower at the price of higher
computation time which is expected since a larger number of knots yields more estimation flexibility
(less regularized solutions) but the number of control points to estimate increases (Figure 5.13a).
On the other hand, the computation time increases as the SNR increases for all the versions
(Figure 5.13b). This is due to the non-linear least solvers that require more iterations for high SNR
mixtures to find an accurate local minimizer where such an accurate solution cannot be found
when the SNR is low.

1MSE =
1

N · I ∑
i
‖xi −

J

∑
j=1

âijs
[
ĉij; ŵij

]
‖2

2.
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1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 30 40 50 60 70 80 90 100 1.4 1.82.1 2.52.8 3.23.5

Figure 5.12: The estimated and the ground-truth parameters.
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Figure 5.13: MSE and Computation time comparison with respect to the SNR for
different knot numbers. The blue, green, red, cyan and purple plots respectively

correspond the number of knots varying from 10 to 14.

5.7 Conclusion

In this chapter, we propose to model the parameter evolution within the mixture using B-splines.
In cases of 1D set of mixtures, B-spline curves are used whereas in the case of 2D sets of mixtures
B-spline surfaces are used. This modeling has numerous advantages. First, it naturally yields a
slow evolution of the parameters. Second, the B-spline modeling results in a significant reduction
of the number of unknowns, which is particularly interesting in the case of multispectral images.
So, the parameter estimation is replaced by the estimation of their corresponding control points.
The latter are found using a constrained non-linear least squares solver (SQP). Results on synthetic
examples show that the proposed method can successfully achieve the goal in very acceptable
computation time and that the method is robust to the noise level.
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6
Simulations and application to real data

6.1 Introduction

This chapter is dedicated to illustrate the performance of the proposed methods and to compare
them with state-of-the-art methods. The proposed methods are the methods of Chapter 3, 4 and 5
and in the sequel they will respectively be referred to the non-regularized, regularized and B-spline
methods. The non-regularized and regularized methods both deal with delayed and parameterized
source separation problem where the shape parameters of each source are constant within the
mixtures, with the difference that the regularized method considers the slow delay evolution by
using a regularization. The B-spline method considers a more general model by allowing for
varying shape parameters for each source. The amplitudes, delays and shapes are modeled using
B-splines to ensure their slow evolution.

The proposed and state-of-the-art methods will be compared in terms of the following criteria:

• computation time;

• Mean Squared Error (MSE) defined as:

MSE ,
1

N · I
I

∑
i
‖ri‖2

2, (6.1)

where ri is the residual of mixture i, i.e., ri = xi −
J

∑
j=1

âijs
[
ĉij; ŵij

]
.

• amplitude, delay and shape errors, respectively defined as:

‖C∗ − Ĉ‖2
F

‖C∗‖2
F

,
‖A∗ − Â‖2

F
‖A∗‖2

F
and

‖W∗ − Ŵ‖2
F

‖W∗‖2
F

, (6.2)
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where ‖ · ‖F denotes the Frobenius norm and the superscript ∗ refers to the ground-truth

parameters. Note that in Chapters 3 and 4, the shape error was computed as ‖w
∗−ŵ‖2

2
‖w∗‖2

2
(constant

source shapes) and Ĉ = ∆L̂ is the estimated delay matrix.

This chapter is organized as follows. First, a synthetic set of 1D mixtures is used for com-
parison between the proposed methods, two other delayed source separation methods with
non-parameterized sources and a Bayesian method (Section 6.2). Second, we establish statis-
tical comparisons with respect to different noise levels (SNR’s) (Section 6.3). Finally, in Section 6.4,
we show results obtained with the proposed methods on real time-resolved photoelectron spectra
(1D set of mixtures) and a multispectral image of a galaxy (2D sets of mixtures).

6.2 Comparison on a synthetic 1D set of mixtures

The three proposed methods are compared with the following state-of-the-art methods:

• the method of [MMH07b] considers the delayed source separation problem where the mix-
tures are analyzed in the frequency domain. The number of sources J is supposed to be
known and to be constant in all the mixtures. No slow evolution prior on the parameters is
supposed. This method extends NMF to deal with delays: the sources and amplitudes are
estimated using multiplicative updates and the delays are estimated with a gradient descent
algorithm coupled with a maximizing cross-correlation procedure;

• the method of [Nio+] also considers the delayed source separation problem and the mixtures
are analyzed in the time-frequency domain. The number of sources J is supposed to be
known and to be constant in all the mixtures with no slow evolution prior on the parameters.
An ALS scheme of two steps is used where the source signals and the amplitudes and delays
are estimated in the least-squares sense;

• the method of [Maz+15] is a Bayesian method that addresses the separation of parameterized
sources where the amplitudes, delays and shape parameters are supposed to slowly evolve
within a 1D set of mixtures (this method is not applicable to 2D sets of mixtures) by setting
Markovian priors. Moreover, this method can deal with varying number of sources in the
mixtures by using the RJMCMC algorithm [Gre95].

The methods are evaluated on I = 40 synthetic mixtures of N = 200 samples, J = 4 sources,
each with a constant shape parameter. The SNR defined as:

SNR = 10 log10

∑
i

∥∥∥∥ J

∑
j=1

a∗ijs
[
c∗ij; w∗j

]∥∥∥∥2

2

N · I · σ2
n

, (6.3)

is set to 15 dB (noise variance σ2
n equals to 0.12). The sources are Gaussian, i.e., s(λ; wj) =

exp(−λ2/2w2
j ) where the shape parameters wj refers to the Gaussian widths. The amplitudes

and delays of each Gaussian source are continuously generated from polynomials of degree 2, 3
or 4. Besides, the shape parameters are set to w∗ =

[
4 4 2 6

]T
. The mixtures are displayed
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Figure 6.1: Synthetic data used for comparison: 40 mixtures with 4 sources and SNR
= 15 dB. Each source is represented with a different color.

in Figure 6.1 and show noticeable behavior: two sources (around λ = 50) are very close and highly
correlated (Gaussians with same shape parameter, equals to 4); there are several overlaps of the
sources; and the number of sources per mixture is varying (e.g., two sources for mixtures i < 10
and four sources for mixtures ≥ 10).

6.2.1 Evaluation of non-parameterized methods

We first discuss the results obtained with the non-parameterized methods [MMH07b; Nio+].
Figure 6.2 displays the estimated source signals sj ∈ RN and Figure 6.3 shows the mixture
reconstruction and the estimated amplitudes and delays.

First, the method of [MMH07b] yields two sources (s3 and s4) with one Gaussian shaped peak
and two sources (s1 and s2) with two Gaussian-shaped peaks (Figure 6.2a). The sources s3 and s4

are more adequate with the ground-truth source which are Gaussian functions, while the sources
s1 and s2 do not correspond to any ground truth source. This result can be expected since this
method does not impose the source shapes or any constraints such as the unimodality of the
sources. Yet, the mixture reconstruction corresponds to a denoised version of the mixtures. For
the estimated amplitudes and delays shown in Figure 6.3, multiple observations can be made. On
the one hand, the amplitudes and delays of s3 and s4 are close to the ground-truth in the mixtures
where the sources are present and have low amplitudes and arbitrary delays in the other mixtures.
On the other hand, the delays and amplitudes of s1 and s2 are affected by the non-accurate source
signal estimates. Their amplitudes alternate in values; when the amplitude of s1 is close to the
ground-truth, the amplitude of s2 is low and vice-versa. This indicates that these two sources are
redundant, which is validated when observing their delay estimates which are almost identical
and are situated in between the ground truth delays of the two sources with identical shapes. The
MSE, computation time and amplitude and delay errors of this method are presented in Table 6.1
which numerically compares the methods based on the criteria defined in Section 6.1. These results
show that the method of [MMH07b] can yield satisfactory parameter estimates only for unimodal
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Figure 6.2: The estimated source sj with non-parameterized delayed source separation
methods applied to the mixtures in Figure 6.1.

sources. However, unimodal source estimates cannot be guaranteed and, in practice, multimodal
sources are often obtained with this method.
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Figure 6.3: The mixture reconstruction and the estimated amplitudes and delays with
the method of [MMH07b] (first row) and the method of [Nio+] (second row) applied
to the mixtures in Figure 6.1. The circle, square, triangle and diamond markers

respectively represent s1, s2, s3 and s4.

Second, from the source estimates of the method of [Nio+] displayed in Figure 6.2b, it is
obvious that this method was not able to produce peak-shaped source signals, but rather oscillating
signals with numerous peaks. This may be due to the source statistical independence assumption
made in [Nio+] which is not valid for highly correlated sources such as in this example. In
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non-regularized regularized B-splines [Maz+15] [MMH07b]
Time (s) 3.9 1.0 7.5 41.5 9.8

MSE 0.123 0.126 0.25 0.124 0.15
Shape error 3.9 · 10−4 3.5 · 10−4 4 · 10−3 0.2 n/a
Delay error 3.2 · 10−2 5.6 · 10−5 2.7 · 10−5 3.6 · 10−5 1.3 · 10−1

Amplitude error 3.9 · 10−2 1.0 · 10−2 4.1 · 10−2 6.8 · 10−3 2.1 · 10−1

Table 6.1: Numerical performance of the compared methods on the synthetic mixtures
plotted in Figure 6.4. The amplitude, delay and shape errors are defined as in (6.2)

and are only calculated in the mixtures where ground truth sources are present.

consequence, the mixture reconstruction is not satisfactory and the amplitude and delay estimates
do not correspond to the ground-truth as shown in Figure 6.3. The method of [Nio+] clearly does
not yield good results for the family of mixtures that we consider in this thesis.

6.2.2 Comparison with a parameterized method

We now compare the non-regularized, regularized and B-spline methods respectively presented
in Chapters 3, 4 and 5 with the method of [Maz+15] that explicitly exploits the knowledge of
parametrized source shapes. Again, the methods are tested with the mixtures displayed in Fig-
ure 6.1. The four methods model the sources by Gaussian signals. The ALS stopping constant for
the non-regularized and regularized methods is ρ = 10−6 and the delay sampling step is ∆ = 0.2.
The non-regularized and regularized methods are able to deal with varying number of sources
per mixture, to do so we set the threshold ς appearing in Algorithm 2 to 1.2σ2

n and the threshold κ

relative to the regularized method (see Appendix A) to 1.5σn. The regularization parameter and the
ICM stopping constant of the regularized method are respectively set to τ = 8 · 10−2 and ξ = 10−6.
For the B-spline method, the amplitudes and delays are modeled using cubic B-splines with a
knot vector k =

[
1 1 1 1 14 27 40 40 40

]
, while the shape parameters are modeled using

B-splines with degree 0 and two knots k =
[
1 40

]
in order to force the shape parameters to be

constant for each source. The optimization of shape control points is constrained with a lower
bound wmin = 0.5 and an upper bound wmax = 8. Note that the B-spline modeling reduces the
number of unknowns from 480 (amplitudes, delays and shapes) to 72 control points.

The mixture reconstruction and the estimated parameters are displayed in Figure 6.4. Besides,
the methods are numerically compared in Table 6.1. One can remark that the reconstruction is
equally good for the non-regularized, regularized and B-spline methods. The B-spline method
yields lower reconstruction quality since it is not designed to deal with a varying number of sources.

The amplitude estimates of the non-regularized and regularized methods and the method
of [Maz+15] are adequate. However, the B-spline method is affected by the varying number of
sources; the amplitudes gradually attenuate when a source becomes absent and thus the amplitudes
are shifted towards estimates lower than the ground-truth values.

The delay estimates of the non-regularized method are not satisfactory for the two sources with
the similar shape as the switch percentage between these sources is 45 % (see Section 3.5.4), this is
because when sources have the same shape parameter, the identification becomes ambiguous. On
the contrary, the regularized and B-spline methods and the method of [Maz+15], yield improved
delay estimates due to the slow delay evolution consideration. Note that the delay evolution keeps



102 Chapter 6. Simulations and application to real data

Reconstruction Amplitudes Delays Shapes

no
n-

re
gu

la
ri

ze
d

0

20

40

i

re
gu

la
ri

ze
d

0

20

40

i

B-
sp

lin
es

0

20

40

i

[M
az

+1
5]

0 50 100 150 200
0

20

40

λ

i

0 2 4 6 8 10
a

0 50 100 150 200
c

2 4 6
w

Figure 6.4: Results on the synthetic data of Figure 6.1. The first column displays
the reconstructed mixtures as well as the estimated sources. The second, third and
fourth columns display the estimated amplitudes, delays and shapes. Each source is
represented with unique color and marker. The ground truth delays and amplitudes

are plotted in dark blue lines.
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being smooth in the mixtures where sources are absent for the B-spline method. These results are
numerically validated in Table 6.1.

The estimated shape parameters of the non-regularized and regularized methods are very
close to the ground-truth, they are respectively given by: ŵ =

[
4 3.8 1.9 6

]T
and ŵ =[

3.9 3.9 2.1 5.9
]T

. The B-spline method yields less accurate shape estimation for the two sources

that do not appear in all the mixtures ŵ =
[
4 3.9 2.28 5.5

]T
. For the method of [Maz+15], the

shape parameters can vary within a source, but the variations remain small around the ground-
truth.

These simulations show that including the parameterized source knowledge is of interest when
dealing with highly correlated sources and allow to overcome difficulties encountered when using
non-parameterized methods as [MMH07b; Nio+]. The proposed regularization of Chapter 4 and the
B-spline parameter modeling of Chapter 5 ensure to separate correctly the sources with very similar
shape parameters. The proposed methods give accurate results within a very low computation
time, especially the regularized method is the fastest. On the contrary, the method of [Maz+15],
while very effective, is 12 to 40 times slower than the proposed non-regularized and regularized
methods and 5 times slower than the B-spline method. Note, however, that the latter model is more
versatile since the shape parameter are allowed to vary within a source and additional priors on
the shapes and amplitudes are considered.

6.3 Influence of the SNR

We perform statistical simulations to compare the three proposed methods and the method
of [Maz+15] with respect to the SNR. The methods of [Nio+] is not tested since it does not yield
accurate outputs. Also, the method of [MMH07b] is not tested since it is not straightforward to
obtain the delays and amplitudes from the algorithm output especially when the sources are not
unimodal.

The simulations are set for SNR values varying between 0 and 30 dB with a step of 2 dB. For
each SNR, 1000 1D sets of I = 30 mixtures with Gaussian sources are generated, each J = 3 sources
that appear in all the mixtures and N = 200 samples. The shape parameters are chosen randomly
between 0.5 and 5; the delays and amplitudes are generated by polynomial functions with random
coefficients and degrees varying between 2 and 4. Figure 6.5 displays two examples of mixtures
with the lowest and the highest considered SNR’s (0 and 30 dB). For the non-regularized and
regularized methods, the delay sampling step is equal to ∆ = 0.2 and the ALS stopping constant
is set to ρ = 10−6. The thresholds ς and κ are set to zero so that the sources are present in all the
mixtures. The ICM stopping constant and the regularization parameter of the regularized method
are respectively set to ξ = 10−4 and τ = 0.1. For the B-spline method, cubic B-splines with knot
vector k =

[
1 1 1 1 14 27 40 40 40 40

]
are used to model the amplitudes, delays, and

B-splines with zero degree and knot vector k =
[
1 40

]
are used to model the constant shapes

of each source. The methods are compared in terms of the MSE, the parameter errors and the
computation time. The results are shown in Figure 6.6 where for each SNR, the average of the
results obtained for the 1000 generated datasets is plotted.

As expected, the MSE decreases as the SNR increases for all the methods, and it should be
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Figure 6.5: Two examples of mixtures with the two extreme SNR values used in the
simulations of Section 6.3.

noticed that the variations between the methods are very similar. Indeed, the non-regularized
method yields the best MSE since it minimizes only the data-fit criterion (equivalent to the MSE)
without any additional regularizations.

For the amplitude error, the B-spline method slightly over-perform the competitors which
behave almost similarly. The delay error for the non-regularized method decreases as the SNR
increases but remains higher than its competitors. On the contrary, the regularized and B-spline
methods and the method [Maz+15] that impose the slow delay evolution give substantially im-
proved estimation of the delays and the estimates are more robust to the noise variation. The
shape error of the method of [Maz+15] is higher than its competitors; this is because this method
estimates varying shape parameters while the ground truth ones are constant for each source. The
three proposed methods give equally good shape estimation quality which is also robust to the
SNR. The amplitude, delay and shape errors suggests that the B-spline method is more effective
than its competitors. However, this method is favored, in these simulations, since the ground-truth
parameters are generated using polynomial functions that can be perfectly fitted by B-splines.

Again, it is shown that the method of [Maz+15] is much slower than the proposed methods
(approximately 14 times slower than the non-regularized and regularized methods and 6 times
slower than the B-spline method). Therefore, the regularized and B-spline methods are competitive
with the method of [Maz+15] with much lower computation time.

6.4 Real data

In this section, we present results obtained with the proposed methods on real data. Two sets of
real data are considered: the first is a 1D set of time-resolved photoelectron spectra and the second
consists of 2D sets of spectra representing a galaxy multispectral image.
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Figure 6.6: Comparison of the three proposed methods and the method of [Maz+15]
with respect to the SNR. A zoom is made on the delay and shape error results, so
some points with high values are not shown for the non-regularized method (delay

error) and the method of [Maz+15] (shape error).
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6.4.1 Time-resolved photoelectron spectra

The non-regularized, regularized and B-spline methods and the method of [Maz+15] were applied
to the sequence of photoelectron mixtures (the experiment studies the relaxation of an atom of
barium [Mas+10; Maz+15]) shown in Figure 1.4. The sequence gathers I = 44 mixtures (covering
a duration of 3.47 ps), each of N = 181 samples (from 0.02 eV to 2.52 eV). The sampling in both
energy (λ) and time (i) is irregular, but we suppose the sampling to be regular for simplicity and
because it is of less influence.

For the non-regularized and regularized methods, the delay sampling step is set to ∆ = 5 · 10−4

and the ALS stopping constant is set to ρ = 10−6. All the sources are supposed to appear in all
the mixtures, therefore the thresholds ς and κ are set to zero. For the regularized method, we
set the regularization term to τ = 100 and the ICM stopping constant is set to ξ = 10−6. For the
B-spline method, cubic B-splines with knot vector k =

[
1 1 1 1 15 29 44 44 44 44

]
is

used to model the amplitudes, delays and shapes. The optimization of the shape control points is
constrained with a lower bound wmin = 0.01 and an upper bound wmax = 0.1. The use of B-splines
allows to reduce the number of parameters from 729 to 108.

Besides, the photoelectron mixtures include a background that must be estimated and removed.
The background in each mixture i can be modeled as an exponential of the form hi exp(−λ/q).
Therefore, the additional parameters q and hi (gathered in a vector h ∈ RI) must be estimated
in addition to the amplitudes, delays and shapes. To do so, an additional step is added to
the ALS scheme in Algorithms 1 and 3 (respectively representing the algorithms of Chapters 3
and 4) to estimate the new unknowns by using the Levenberg-Marquardt algorithm. Let e(q) ,[
exp(−1/q) exp(−2/q) . . . exp(−N/q)

]T
be a vector gathering the exponential function sam-

ples for λ ∈ {1, . . . , N}, then the new optimization problem writes as:

(
q̂, ĥ
)
← argmin

q,h
∑

i

∥∥∥∥∥xi −
J

∑
j=1

âijs
[̂̀ij∆; ŵj

]
− hie(q)

∥∥∥∥∥
2

2

. (6.4)

This optimization problem takes place in between the lines 6 and 7 of Algorithm 1 and in between
the lines 4 and 5 of Algorithm 3. Indeed, the amplitudes, delays and shapes are estimated in the
ALS scheme by considering q̂ and ĥ to subtract the background form the mixtures. The estimated
backgrounds using the non-regularized and regularized methods and the method of [Maz+15] are
presented in Figure 6.8. These results show that these methods estimate correctly the background
and that they can be easily extended to consider this additional application requirement. Moreover,
one can note that the results obtained by the proposed methods are smoother than the one obtained
with the method of [Maz+15]. The B-spline method is applied to data from which the background
estimated by the regularized method is removed in a pre-processing.

The reconstruction and the estimated parameters of the compared methods are presented
in Figure 6.9. The reconstruction quality of the four compared methods is equivalently good, which
can be visually confirmed. Let us now compare the parameter estimates. The delay seems to be the
most significant parameter in this comparison:

• the non-regularized method yields non-satisfactory delay estimation. Only one source
(around 0.5 eV) presents a slow evolution, whereas the other five sources present multiple
discontinuities in their evolutions;
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Figure 6.7: Time-resolved photoelectron spectra (I = 44 mixtures) represented as an
intensity map of dimension I × N.
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Figure 6.8: The estimated background using the methods of Chapters 3 and 4 and the
method of [Maz+15].
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Figure 6.9: First column: mixture reconstruction superimposed by the estimated
delays using the regularized, non-regularized and B-spline methods and the method
of [Maz+15]. The second, third and fourth columns respectively represent the esti-

mated amplitudes, delays and shapes.
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• the regularized method yields a smoother and better delay evolution than the non-regularized
method due to the delay regularization. Thus, the practitioner is capable to track the temporal
evolution of the peaks issuing from the same molecule energy levels;

• the B-spline method gives similar results as the regularized method, except for the three
sources in the main band which are tighter;

• the method of [Maz+15] yields similar delay evolution for five sources out of six when
compared to the regularized and B-spline methods (two sources represent the band around
0.2 eV instead of one in the proposed methods). The regularized and B-spline methods rather
improve the shape of the main band (around 0.5 eV) by addition of nearby new sources than
focusing on the low-intensity energy ones as seen for method [Maz+15]. Such behavior looks
reasonable according to the shape of the decay simulated [Mas+14].

Next, regarding the amplitude estimates, one can remark that the behavior of the non-regularized
and regularized methods and the method of [Maz+15] is roughly similar. Yet, the B-spline method
yields remarkably smoother evolution and different solutions than the competitors for the three
sources representing the main band around 0.5 eV. This may suggest that the amplitude B-spline
modeling is not required in this application. For the shape parameter estimation, the regularized
and non-regularized methods yield constant shapes for each source. The B-spline method and the
method of [Maz+15] allow for shape varying and give comparable solutions. Again the B-spline
method gives a smoother solution.

Note that the method of [Maz+15] is able to deal with a varying number of sources through
the mixtures. This was not possible to consider in the proposed methods since setting a threshold
would eliminate some sources with very small amplitudes (like the source around 1.6 eV). A
solution would be to consider different thresholds for each source.

The regularized and B-spline methods are respectively about 127 and 27 times faster than the
method of [Maz+15] (respectively 33 seconds, 156 seconds and 70 minutes). Note that for the
B-spline method, the time for estimating the background has not been considered.

In conclusion, the slow parameter evolution, especially for delays, seems to be crucial to obtain
good solutions and the proposed methods appear to be both effective and efficient.

6.4.2 Galaxy NGC-4254

The proposed method is applied to a real observation in the radio band (around the HI peak at
21 cm) of the galaxy NGC-4254 [PVM93]. The multispectral image is of dimension 140× 140× 42
(I = 1402 mixtures) and its white image (the average multispectral images following the wavelength
dimension) is displayed in Figure 6.10. It is worth mentioning that a synthetic kinematic structure
has been manually added to the image by an astronomer. This structure occupies a circular small
part in the top-left of the galaxy. Its amplitude is spatially Gaussian, while the delays and shapes
are constant within this structure. Adding this synthetic structure would allow us to test the
performance of the proposed methods.

The method of [Maz+15] is not applied to this galaxy multispectral image since it is not adapted
to deal with 2D sets of mixtures. For the non-regularized and regularized methods, the number
of sources is set to J = 3, the delay sampling step is set to ∆ = 0.2 and the ALS stopping constant
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Figure 6.10: The white image of the galaxy NGC-4254. The center synthetic structure
appears on the spatial position (50,100).

is set to ρ = 10−6. Moreover, we set the threshold ς = σ2
n for the non-regularized method, while

we use the algorithm extension presented in Appendix A to the regularized method by setting
the threshold κ = 2σn (the NGC-4254 noise variance has been estimated in Section 1.3.4). For
the regularized method, we set the regularization term to τ = 2 · 10−4 and the ICM stopping
constant is set to ξ = 10−6. For the B-spline method, the number of sources is set to J = 2
and cubic surface B-splines with the following knots are used to model the delays and shapes:
ku = kv =

[
1 1 1 1 24 47 70 93 116 140 140 140 140

]
. The optimization of shape control

points is constrained with a lower bound wmin = 0.5 and an upper bound wmax = 6. The amplitudes
are modeled with more knots so as to fit the complex behavior of the intensities in the multispectral
image: ku = kv =

[
1 1 1 1 12 33 44 54 65 76 87 97 108 119 129 140 140 140 140

]
. Overall,

the number of unknowns is thus reduced from 39200 to only 706.
Figure 6.11 displays the white images of the reconstruction and the residual error obtained by

the proposed methods. The reconstruction of the non-regularized method is better than the other
two methods. This is confirmed when observing the residual maps, also this is expected since
this method minimizes the residual error without considering the slow evolution of parameters.
In addition, the reconstruction of the B-spline appears to be “blurred”; this is due to the smooth
amplitude, delay and shape estimates.

First, the good reconstruction quality of the non-regularized method does not imply good
source separation quality as confirmed in Figure 6.12 that displays the estimated parameters. In
fact, the three estimated sources do not have any physical meaning as they do not represent the
kinematic structures of the galaxy. The amplitudes of the first source present some regions with
high intensities while the amplitudes of the third source are low everywhere. Moreover, the delay
estimate of the three sources does not show a smooth evolution. The computation time of this
method is 150 s.

Second, despite a lower reconstruction quality of the regularized method compared to the
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non-regularized method, the estimated source parameters of the method of Chapter 4 (Figure 6.13)
represent well the galaxy kinematics of NGC-4254. Specifically, the first estimated source represents
the main galaxy kinematic structure: two spiral arms rotating around the center as shown in
the amplitude map. The delay maps of this source clearly show that the gas is rotating within
the galaxy as the lower part is mostly delayed towards red regions and the upper part is mostly
delayed towards blue regions of the electromagnetic spectrum. Thus the upper part is moving
slower away from the Earth than the lower part. The second estimated source represents a very
attenuated source as shown in the amplitude map. Also, it has a constant delay in the red region;
this structure moves away from the earth in a constant and relatively high speed. Note that, to
detect this very attenuated source, its starting mixture in the ICM sweeping i0 (see Section 4.3.1)
has been manually selected. The third estimated source represents the added synthetic kinematic
structure. The amplitude map has a Gaussian form, the delays and shapes are constant and the
estimates correspond to the ground-truth of the synthetic kinematic structure. These results show
that the regularized method is capable to estimate the galaxy kinematics of real data from a high
number of mixtures in a very fast computation time (271 s). Besides, the threshold κ introduced
in Appendix A allows us to obtain sources that only appear in a connected subset of mixtures
(pixels). However, this method estimates constant shapes for each source and thus the velocity
dispersion field information that can be extracted from the shape variation cannot be obtained.

Third, we evaluate the source separation of the B-spline method. In Figure 6.14 we represent
the estimated parameters after applying a threshold on the amplitudes (the same threshold is
then applied to the delay and shape maps) so that we only display the sources in the mixtures
with relatively high amplitudes. Indeed, the first estimated source represents the main kinematic
structure of the galaxy and can be compared to the first source of the regularized method. Again,
the delay map allows us to determine the kinematic structure rotation velocity but also the shape
parameter variation that yields additional information for the astronomer which is the velocity
dispersion field. The estimated parameters of the second source highlight the presence of three
sources which can be visually distinguished. The source on the top is the added synthetic structure.
The source on the left is very faint and difficult to find but the proposed method was able to find it
automatically. This source can be compared with the second source obtained with the regularized
method. Finally, the source on the right is mostly a part of the main kinematic source but it was
estimated in a second source. This method allows retrieving the three main kinematic structures of
the galaxy. However, a post-processing is required in order to apply a threshold and to distinguish
between multiple sources which are estimated as a unique source. Moreover, this method is much
slower than the non-regularized and regularized methods with almost 6 hours of computation
time.
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Figure 6.11: The white images of the reconstruction (first column) and the absolute
residual (second column) obtained with the three proposed methods.
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Figure 6.12: The estimated parameter maps of J = 3 sources using the non-regularized
method of Chapter 3.
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Figure 6.13: The estimated parameter maps of J = 3 sources using the regularized
method of Chapter 4.
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Figure 6.14: The estimated parameter maps of J = 2 sources using the B-spline
method of Chapter 5.
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6.5 Conclusion

This chapter presents numerical simulations on synthetic and real data. The three proposed method
of Chapter 3 (non-regularized method), Chapter 4 (regularized method) and Chapter 5 (B-spline
method) are compared together and with state-of-the-art methods. Namely, the state-of-the-art
methods are two delayed source separation methods that deal with non-parameterized sources
and a Bayesian method adapted for the decomposition of spectra and peak association. The results
show that:

• The two non-parameterized methods that we test yield non-satisfactory results when com-
pared to the parameterized methods. Thus, the use of parameterized sources, when it is
possible, is beneficiary;

• the consideration of the slow parameter evolution, especially the delays, is crucial to obtain
good results especially for highly correlated sources;

• the proposed methods are as effective as the Bayesian method but are much faster;

• the proposed methods can be applied to real-data (time-resolved photoelectron spectra and
galaxy multispectral image) and yield physically justified results.
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Conclusion

The work in this thesis aims at achieving two goals. First, estimate the peak characteristics (intensity,
spectral position and width) in a temporal sequence of spectra or multispectral image. Second,
associate the peaks of different spectra as they evolve slowly from one spectrum to its neighboring
ones. Two applications motivate this work: time-resolved photoelectron spectroscopy and galaxy
kinematics. We propose to address the two goals jointly in a delayed source separation framework
where the mixtures and the delayed sources respectively refer to spectra and peaks with varying
spectral positions. Although the sources may be highly correlated, the three proposed approaches
are effective due to the source parameterization.

The first method (Chapter 3) addresses the delayed and parameterized source separation
problem [Mor+17b; Mor+17a]. An ALS scheme is proposed to minimize a data-fit criterion. On
one hand, the shape parameters are estimated using a non-linear least squares solver, namely the
Levenberg-Marquardt algorithm. On second hand, the amplitudes and delays are estimated by a
greedy sparse approximation algorithm. In addition, we show that choosing a sufficiently small
delay sampling step yields equally good but faster results than using a continuous extension to the
OMP-like algorithm. The contributions are:

• the use of a sparse strategy to jointly approximate multiple spectroscopic measurements;

• the sparse vectors are enforced to be structured so that they are 1-sparse per block. This
ensures a single occurrence of the same source in the mixtures and thus associate the sources
jointly with their parameter estimation;

• the varying number of sources within the mixtures is taken into account by the OMP-like
algorithm.

The second method (Chapter 4) considers the slow evolution of the delays of each source within
the mixtures by adding a regularization term to the data-fit criterion defined in Chapter 3 [Mor+19].
This implies a new sparse approximation strategy coupled with ICM to estimate the amplitudes
and delays jointly in all the mixtures. The contributions are:

• a new regularization to favor delay slow evolution in spectroscopic data;

• the sparse approximation algorithm produces solutions with a slow-moving support that can
be seen as an intermediate solution between the solutions given by independent simultaneous
sparse approximation;

• the use of classical image processing algorithms (namely, ICM and region growing) within
the sparse approximation algorithm.
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The third method (Chapter 5) uses B-splines to model the slow evolution of the amplitudes,
delays and shapes [Mor+18]. The number of unknowns is significantly reduced since the parameters
are replaced by the B-spline control points. The problem is then addressed as the optimization of
a data-fit term using an SQP algorithm. The contribution is the use of B-splines in the context of
spectroscopic data to model the parameter evolution.

The proposed methods are validated on both synthetic and real data. They overcome the
state-of-the-art method limitations since they can deal with highly correlated sources and are
effective and efficient.

Perspectives

The OMP-like implementation algorithms in Chapters 3 and 4 are forward greedy algorithms. This
means that each iteration of these algorithms is dedicated to make a local optimization so as to
pick a new source while keeping the previously selected sources. This yields sub-optimal solutions
which cannot be improved, even with more iterations. A first possible solution to overcome this
limitation is to use forward-backward sparse approximation algorithms such as as [Sou+11; VB13;
JTD11] where a selected source can be retired in favor of a better one. Another solution can be
found in [CDP17] where a continuous optimization step is added at each iteration to update the
selected sources.

In this thesis, the mixtures are analyzed in their natural domain. An alternative solution would
be to analyze the mixtures in the frequency or time-frequency domains, as it is often proposed
in delayed source separation [MMH07b; PD05]. This has the advantage to linearize the delays
and thus yielding a simpler optimization problem. The resulting problem shares similarities with
spectral line estimation problem [BCI07; DB13].

The knot vector in the B-spline modeling (Chapter 5) is a set of equidistant knots covering all
the mixtures. This strategy is the simplest but does not consider sources that only appear in a
subset of the mixtures. Also, additional knots are required between the mixtures in case a source
has a complex evolution behavior. Therefore, a strategy where the knots positions are optimized
with respect to the data would be interesting. In the literature, this is known as free or adaptive
knots optimization [Jup78; DGK01].



119

Appendices





121

A
Varying source number extension for the method

of Chapter 4

In the considered application, a source does not appear necessary in all mixtures. However, the
amplitudes and delays in Chapter 4 are estimated in all the mixtures i ∈ {1, . . . , I}with Algorithm 4
(Section 4.3). In this appendix, we present an extension so that this algorithm only yields estimates
in a subset of mixtures. Moreover, we constraint this subset to be contiguous; all the mixtures are
connected.

Let Ij be the set of mixture indices in which the source j appears. This implies that the
amplitudes of source j in the mixtures that do not belong to Ij are null, i.e.,

∀ j, i /∈ Ij aij = 0. (A.1)

A.1 Amplitudes and slow delay evolution in Ij

The modified version of Algorithm 4 that considers the subsets Ij is given in Algorithm 6. Ij is
computed simultaneously with the estimation of the delays of a source j in line 5. More precisely,
the computation of Ij takes place in the ICM sweeping strategies presented for both 1D and 2D
sets of mixtures in Section 4.3.1.

It is straightforward to show that, when considering a subset of mixtures Ij, that the optimiza-
tion problem to estimate the delays of source j (L̃Ij j) given in (4.8) implies the sum of the correlation
products to be only over the mixtures in Ij. In addition, the two mixtures i and i′ appearing in the
regularization term must both belong to Ij:

L̃Ij j ← argmax
LIj j

∑
i∈Ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G
i,i′∈Ij

(
`ij − `i′ j

)2 . (A.2)
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Algorithm 6: Implementation of (Â, L̂)← argmin
A,L

F(A, L, ŵ), considering the subsets Ij

Initialization: Anew = Lnew = Â = L̂ = 0I×J , J = ∅, ri = xi ∀i, k = 0
1 do
2 k← k + 1
3

(
Aold, Lold)← (

Anew, Lnew)
4 for j ∈ {1, . . . , J}\J do
5 Compute Ij and L̃Ij j defined in (A.2) using the ICM algorithm
6 end

7 ĵ← argmax
j/∈J

∑
i∈Ij

(
rT

i s
[˜̀ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G
i∈Ij

(˜̀ij − ˜̀i′ j

)2

8 J ← J ∪ { ĵ }
9 Lnew

I ĵ ĵ
← L̃I ĵ ĵ

10 for i ∈ I ĵ do
11 Anew

iJ ← argmin
AiJ≥0

F(A, Lnew, ŵ)

12 end
13 if F(Anew, Lnew, ŵ) < F(Aold, Lold, ŵ) then
14

(
Â, L̂

)
←
(

Anew, Lnew)
15 for i ∈ I ĵ do ri ← xi − ∑

j∈J
âijs
[̂̀ij∆; ŵj

]
end

16 end
17 while k ≤ J and F(Anew, Lnew, ŵ) < F(Aold, Lold, ŵ);
18 if F(A0, L0, ŵ) < F(Â, L̂, ŵ) then
19 (Â, L̂)← (A0, L0)
20 end

Consequently, the optimization of (A.2) with respect to one delay while fixing all the others
(ICM strategy) reads:

˜̀ij ← argmax
`ij

(
rT

i s
[
`ij∆; ŵj

])2
+
− τ∆2 ∑

(i,i′)∈G
i,i′∈Ij

(
`ij − ˜̀i′ j

)2
. (A.3)

Furthermore, we introduce a threshold κ in the ICM sweeping procedure. It is compared to the
correlation product

(
rT

i s
[˜̀ij∆; ŵj

])
+

for a delay estimate ˜̀ij: the corresponding mixture i is added
to Ij only if the correlation product is larger than κ. This comparison is justified since the correlation
product corresponds to the amplitude source j as demonstrated inequation (4.7). Therefore, κ can
be related to the noise standard variation (e.g., 3σn). For instance, in astronomy, it is common to set
such a threshold to 3σn with σn is the noise standard-deviation.

In the sequel, we detail how the threshold κ is included in the 1D and 2D ICM sweeping
procedures.
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A.2 Determining Ij and L̃Ij j in 1D ICM sweeping

Each iteration of the ICM is as follows when dealing with a 1D set of mixtures. First, a starting
mixture i0 is randomly selected and its corresponding delay ˜̀i0 j is estimated using (A.3). i0 is added
to Ij only if the correlation product

(
rT

i s
[˜̀i0 j∆; ŵj

])
+

is larger than κ. Otherwise, ˜̀i0 j is discarded
and a new starting mixture is randomly selected; this is repeated till a correlation higher than
κ is obtained. Next, the mixtures with index going from i0 + 1 to I are sequentially visited and
their corresponding delays ˜̀ij are estimated using (A.3). But, if a delay estimate for a mixture
i ∈ {i0 + 1, . . . , I} results in a correlation product

(
rT

i s
[˜̀ij∆; ŵj

])
+

smaller than κ, then the mixtures
from i to I are not added to Ij and their delays are discarded. A similar procedure is applied when
sweeping the mixtures from i0 − 1 to 1.

A.3 Determining Ij and L̃Ij j in 2D ICM sweeping

In Section 4.3.1 we detailed the sequential sweeping procedure when dealing with a 2D sets
of mixtures which is inspired from the region-growing algorithm. Introducing a threshold to
this sweeping strategy is straightforward since the region-growing algorithm is designed to give
“regions” of connected subsets of spatial positions. The sweeping procedure given in Section 4.3.1
is modified as follows to consider the threshold κ:

1. a starting mixture i0 ∈ {1, . . . , I} is randomly selected, and its corresponding delay ˜̀i0 j
is estimated using (A.3). i0 is added to B only if the corresponding correlation product(
rT

i s
[˜̀i0 j∆; ŵj

])
+

is larger than κ. Otherwise, a new starting mixture is randomly selected;

2. the mixture with the highest correlation and belonging to B is selected. Let is be the index of
this mixture, then is ← argmaxi∈B

(
rT

i s
[˜̀ij∆; ŵj

])2
+

;

3. is is retired from B and added to Ij;

4. the neighbors of is which are neither in Ij and B are considered. Their delays are esti-
mated using (A.3) and only the mixture indices of the ones yielding correlation product(
rT

i s
[˜̀ij∆; ŵj

])
+

larger than κ are added B ;

5. repeat from 2 till B is empty.
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B
Joint sparse approximation: amplitudes, slow

evolving delays and shapes

B.1 Delay and shape sampling and regularization

In this appendix, we consider a new method inspired from Algorithm 4; a joint greedy algorithm
inspired from OMP to estimate the amplitudes and the slow evolving delays within the mixtures.
In this appendix, we extend Algorithm 4 to also estimate the shape parameters which are supposed
to evolve slowly, in contrary to Chapter 4 where the shapes are supposed to be constant for each
source within the mixtures. Another difference with Chapter 4 is that all the parameters are
estimated in one step, hence avoiding an ALS scheme.

B.1.1 Delay and shape regularized criterion

Similar to the delay sampling in Chapter 4 (cij = `ij∆ with ∆ is the delay sampling step), the shape
parameters are also sampled over a grid. This is due to the use of a sparse approximation strategy
to estimate the delays and shapes. The shape sampling step is denoted by Θ, such that wij = pijΘ
with pij ∈N. Besides, pij is sampled in such a way that wmin ≤ pijΘ ≤ wmax where wmin and wmax

are respectively predefined lower and upper bounds of the shape parameters. Therefore, the new
mixing model considering the delay and shape sampling writes as:

∀ i, xi = ∑
j

aijs
[
`ij∆; pijΘ

]
+ ni. (B.1)

The shape slow evolution is favored by a regularization term H(P) which is added to the

data-fit term E(A, L, P) = ∑
i

∥∥∥∥∥xi −
J

∑
j=1

aijs
[
`ij∆; pijΘ

]∥∥∥∥∥
2

2

and the delay regularization term
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R(L) = ∆2
J

∑
j=1

∑
(i,i′)∈G

(`ij − `i′ j)
2. The shape regularization term is defined similarly to the delay

regularization term R(L), i.e., :

H(P) = Θ2
J

∑
j=1

∑
(i,i′)∈G

(pij − pi′ j)
2. (B.2)

where P ∈ RI×J is a matrix gathering the shape indices pij and G is the set of all the cliques of order
two.

Hence, the global criterion reads:

G(A, L, P) = E(A, L, P) + τ∆2R(L) + µΘ2H(P), (B.3)

with τ and µ are respectively the delay and shape regularization terms.

B.1.2 Amplitudes and slow delays and shapes estimation

The considered optimization problem is:(
Â, L̂, P̂

)
← argmin

A≥0,L,P
G(A, L, P). (B.4)

We propose to optimize the criterion G jointly (without using an ALS scheme as it was done for the
optimization of E and F in Chapters 3 and 4).

The proposed algorithm is given in Algorithm 7 which is a greedy algorithm that shares
similarities with Algorithm 4 (therefore some aspects are not detailed as they were developed
in Section 4.3). At each iteration the algorithm follows the OMP philosophy: the delays and shapes
of a source j are estimated while fixing the other sources (the next section details how this is done).
j is then added to the list of estimated source J . Next, the amplitudes of the sources in J are
estimated using a non-negative least squares solver (line 6). Finally, the residual vectors of all the
mixtures are updated (line 9). The condition in line 7 is set to break the loop in case of an increase
of G induced by the regularization terms.

B.1.3 Delay and shape estimation with an ICM-like algorithm

Let us now detail the estimation of the delays and shapes of source j at each iteration of Algorithm 7
(line 5). First, one needs to consider the minimization of G(A, L, P) with respect to A:j,L:j and P:j,
while fixing the values of previously estimated sources:

(
Lnew

:j , Pnew
:j
)
← argmin

L:j,P:j

min
A:j≥0

I

∑
i=1

∥∥∥∥ri− aijs
[
`ij∆; pijΘ

]∥∥∥∥2

2
+ τ∆2 ∑

(i,i′)∈G

(
`ij − `i′ j

)2
+µΘ2 ∑

(i,i′)∈G

(
pij − pi′ j

)2 .

(B.5)
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Algorithm 7: Implementation of (Â, L̂, P̂)← argmin
A≥0,L,P

G(A, L, P)

Initialization: Anew = Lnew = Pnew = Â = L̂ = P̂ = 0I×J , J = ∅, ri = xi ∀i, j = 0
1 do
2 j← j + 1
3 J ← J ∪ {j}
4

(
Aold, Lold, Pold)← (

Anew, Lnew, Pnew)
5 Compute Lnew

:j and Pnew
:j defined in (B.6) using the ICM algorithm

6 Anew ← argmin
A

G(A, Lnew, Pnew) s.t. {A:J ≥ 0, A:J = 0}

7 if G(Anew, Lnew, Pnew) < G(Aold, Lold, Pold) then
8

(
Â, L̂, P̂

)
←
(

Anew, Lnew, Pnew)
9 for i = 1 : I do ri ← xi − ∑

j∈J
âijs
[̂̀ij∆; p̂ijΘ

]
end

10 end
11 while j ≤ J and G(Anew, Lnew, Pnew) < F(Aold, Lold, Pold);

After using the amplitude closed-form estimation in (4.7), (B.5) simplifies to:

(
Lnew

:j , Pnew
:j
)
← argmax

L:j,P:j

I

∑
i=1

(
rT

i s
[
`ij∆; pijΘ

])2
+
− τ∆2 ∑

(i,i′)∈G

(
`ij − `i′ j

)2 − µΘ2 ∑
(i,i′)∈G

(
pij − pi′ j

)2 .

(B.6)

Again, we propose to use the ICM algorithm to solve this combinatorial problem. At each
ICM iteration all the mixtures are swept. Whenever a mixture is visited, its delay `ij and shape pij
are estimated while fixing all the other couples (`i′ j, pi′ j) with i′ 6= i. This leads to the following
estimation problem with two unknowns:

(
`new

ij , pnew
ij
)
← argmax

`ij,pij

(
rT

i s
[
`ij∆; pijΘ

])2
+
− τ∆2 ∑

(i,i′)∈G

(
`ij − `new

i′ j

)2
− µΘ2 ∑

(i,i′)∈G

(
pij − pnew

i′ j

)2
.

(B.7)
This optimization problem can be easily solved by trying all the combinations of the couples `ij
and pij (an optimized implementation allows to resolve this problem very efficiently).

At each ICM iteration, the mixtures are swept sequentially so that the neighboring information
is effectively exploited. The same sequential sweeping strategies as in Section 4.3.1 are used to
find `ij and pij for a source j. The only difference would be to resolve the local optimization
problem (B.7) instead of (4.9).

B.2 Results

Algorithm 7 is tested on a synthetic 1D set of mixtures and real data, namely, time-resolved
photoelectron spectra and the galaxy NGC-4254.
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Figure B.1: (a) a synthetic noisy set of 1D mixtures. (b) the mixture reconstruction
obtained by the proposed method.
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Figure B.2: The estimated parameters (amplitudes âij, delays cij = ̂̀ij∆ and shapes
ŵij = p̂ijΘ) of the estimated sources. The ground truth parameters are plotted in

plain lines.

B.2.1 Synthetic 1D set of mixtures

The performance of the proposed algorithm is evaluated on synthetic 1D set of mixtures. The follow-
ing settings are set. All the sources are modeled by a Gaussian function: s(λ; wj) = exp(−λ2/2w2

j )

where the shape parameters wj represent the Gaussian widths. The number of mixtures is equal to
I = 40, each with N = 150 samples and the number of sources is set to J = 2. The delay sampling
step is set to ∆ = 0.2. The shape sampling step is set to Θ = 0.1 with wmin = 1 and wmax = 5.5. The
delay and shape regularization parameters are respectively tuned to τ = 0.1 and µ = 5.

The generated mixtures, their reconstruction and the estimated sources are displayed in Fig-
ure B.1 and the estimated parameters are shown in Figure B.2. The reconstruction and the source
recovery are satisfactory. In addition, the delays and shapes evolve slowly as expected. However,
around the mixture i = 30 the estimation is slightly affected when the two sources are spectrally
close. These results are obtained in only 0.3 s.
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Figure B.3: First column: mixture reconstruction superimposed by the estimated
delays. The second, third and fourth columns respectively represent the estimated

amplitudes, delays and shapes.

B.2.2 Time-resolved photoelectron spectroscopy

Figure B.3 presents the results obtained on a real 1D set of mixtures, namely real time-resolved
spectra (the real data are presented in Figure 6.7). Note that the background has been removed
from the mixtures before the processing using the results of Chapter 4. The delay sampling step is
set to ∆ = 5 · 10−4. The shape sampling step is set to Θ = 1 · 10−3 with wmin = 0.01 and wmax = 0.1.
The delay and shape regularization parameters are respectively tuned to τ = 3000 and µ = 100.
The obtained results are similar to the method of Chapter 4 (displayed in Section 6.4.1), in terms of
mixture reconstruction and amplitude and delay estimates. The shape parameter evolution is slow
and smoother that the one obtained by the method of [Maz+15] (see Figure 6.9). The results are
obtained in 16 s.

B.2.3 Galaxy NGC-4254

Finally, the algorithm is applied to the galaxy NGC-4254 multispectral image presented in Fig-
ure 6.10. The delay sampling step is set to ∆ = 0.2. The shape sampling step is set to Θ = 0.1 with
wmin = 1 and wmax = 5. The delay and shape regularization parameters are respectively tuned to
τ = 3 · 10−4 and µ = 5 · 10−4. The sources appear only in a subset of the mixtures, therefore the
extension used in Appendix A is applied to Algorithm 7 and we set the threshold κ = 2σn.

The amplitude, delay and shape estimates of the three sources are given in Figure B.4. Concern-
ing, the parameter estimates, the amplitude and delay estimates are similar to the ones obtained
with the method of Chapter 4 (regularized method in Figure 6.12). The shape parameters between
the two methods are different, namely for the first source as we get a map of varying shapes
indicating the velocity dispersion of the main kinematic structure. The results are obtained in 43 s.



130

Amplitudes Delays Shapes

So
ur

ce
1

So
ur

ce
2

So
ur

ce
3

0 0.5 0.9 1.4 1.9 2.4 2.8 3.3

·10−2

0 5 9 14 19 24 28 33 0.1 0.7 1.2 1.8 2.3 2.9 3.4 4

Figure B.4: The estimated parameter maps of J = 3 sources with the method of
Appendix B.



131

Bibliography

[AB94] R. Adams and L. Bischof. “Seeded region growing”. In: IEEE Transactions on pattern
analysis and machine intelligence 16.6 (1994), pp. 641–647.

[AGB10] S. Arberet, R. Gribonval, and F. Bimbot. “A robust method to count and locate audio
sources in a multichannel underdetermined mixture”. In: IEEE Transactions on Signal
Processing 58.1 (2010), pp. 121 –133.

[AHK12] S. Arora, E. Hazan, and S. Kale. “The Multiplicative Weights Update Method: a
Meta-Algorithm and Applications.” In: Theory of Computing 8.1 (2012), pp. 121–164.

[AK98] E. Amaldi and V. Kann. “On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems”. In: Theoretical Computer Science 209.1-2 (1998),
pp. 237–260.

[Ang01] D. Anglos. “Laser-induced breakdown spectroscopy in art and archaeology”. In:
Applied Spectroscopy 55.6 (2001), 186A–205A.

[AOT00] R. K. Ahuja, J. B. Orlin, and A. Tiwari. “A greedy genetic algorithm for the quadratic
assignment problem”. In: Computers & Operations Research 27.10 (2000), pp. 917–934.

[Aru+02] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. “A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking”. In: IEEE Transactions on
Signal Processing 50.2 (2002), pp. 174–188.

[Aus+10] C. D. Austin, R. L. Moses, J. N. Ash, and E. Ertin. “On the relation between sparse
reconstruction and parameter estimation With Model Order Selection”. In: IEEE
Journal of Selected Topics in Signal Processing 4.3 (2010), pp. 560–570.

[BCDF10] E. Brochu, V. M. Cora, and N. De Freitas. “A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning”. In: arXiv preprint:1012.2599 (2010).

[BCI07] S. Bourguignon, H. Carfantan, and J. Idier. “A sparsity-based method for the estima-
tion of spectral lines from irregularly sampled data”. In: IEEE Journal of Selected Topics
in Signal Processing 1.4 (2007), pp. 575–585.

[BD07] T. Blumensath and M. E. Davies. On the difference between orthogonal matching pursuit
and orthogonal least squares. Tech. rep. 2007.

[BD09] T. Blumensath and M. E. Davies. “Iterative hard thresholding for compressed sensing”.
In: Applied and computational harmonic analysis 27.3 (2009), pp. 265–274.

[BDB14] L. Belmerhnia, E.-H. Djermoune, and D. Brie. “Greedy methods for simultaneous
sparse approximation”. In: Proceedings of the European Signal Processing Conference,
EUSIPCO. IEEE. 2014, pp. 1851–1855.



132

[Ben00] N. Benitez. “Bayesian photometric redshift estimation”. In: The Astrophysical Journal
536.2 (2000), p. 571.

[Bes86] J. Besag. “On the statistical analysis of dirty pictures”. In: Journal of the Royal Statistical
Society B 48.3 (1986), pp. 48–259.

[BEZ08] A. M. Bruckstein, M. Elad, and M. Zibulevsky. “On the uniqueness of nonnegative
sparse solutions to underdetermined systems of equations”. In: IEEE Transactions on
Information Theory 54.11 (2008), pp. 4813–4820.

[BH09] A. Barth and P. I. Haris. Biological and biomedical infrared spectroscopy. Vol. 2. IOS press,
2009.

[Bla+14] J. D. Blanchard, M. Cermak, D. Hanle, and Y. Jing. “Greedy algorithms for joint sparse
recovery.” In: IEEE Transactions on Signal Processing 62.7 (2014), pp. 1694–1704.

[Bla86] S. S. Blackman. Multiple-Target Tracking with Radar Applications. Norwood, MA: Artech
House, 1986.

[BM68] A. Bauder and R. J. Myers. “Least squares curve fitting of EPR spectra”. In: Journal of
Molecular Spectroscopy 27.1-4 (1968), pp. 110–116.

[BMS11] S. Bourguignon, D. Mary, and É. Slezak. “Restoration of Astrophysical Spectra With
Sparsity Constraints: Models and Algorithms”. In: IEEE Journal of Selected Topics in
Signal Processing 5.5 (2011), pp. 1002–1013.

[Bob+15] J. Bobin, J. Rapin, A. Larue, and J.-L. Starck. “Sparsity and adaptivity for the blind
separation of partially correlated sources”. In: IEEE Transactions on Signal Processing
63.5 (2015), pp. 1199–1213.

[Bos81] A. Bosma. “21-cm line studies of spiral galaxies. II. The distribution and kinemat-
ics of neutral hydrogen in spiral galaxies of various morphological types”. In: The
Astronomical Journal 86.12 (1981), pp. 1825–1846.

[Bou+11] S. Bourguignon, C. Soussen, H. Carfantan, and J. Idier. “Sparse deconvolution: Com-
parison of statistical and deterministic approaches”. In: 2011 IEEE Statistical Signal
Processing Workshop, SSP. IEEE. 2011, pp. 317–320.

[BR03] C. Blum and A. Roli. “Metaheuristics in combinatorial optimization: Overview and
conceptual comparison”. In: ACM Computing Surveys 35.3 (2003), pp. 268–308.

[Bre13] G. L. Bretthorst. Bayesian spectrum analysis and parameter estimation. Vol. 48. Springer
Science & Business Media, 2013.

[BT09] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems”. In: SIAM journal on imaging sciences 2.1 (2009), pp. 183–202.

[BTR13] B. N. Bhaskar, G. Tang, and B. Recht. “Atomic norm denoising with applications
to line spectral estimation”. In: IEEE Transactions on Signal Processing 61.23 (2013),
pp. 5987–5999.

[Bud+96] D. E. Budil, S. Lee, S. Saxena, and J. H. Freed. “Nonlinear-least-squares analysis of
slow-motion EPR spectra in one and two dimensions using a modified Levenberg–
Marquardt algorithm”. In: Journal of Magnetic Resonance, Series A 120.2 (1996), pp. 155–
189.



133

[Cap79] J. Capon. “Maximum-likelihood spectral estimation”. In: Nonlinear methods of spectral
analysis. Springer, 1979, pp. 155–179.

[Car+86] R. A Caruana, R. B. Searle, T. Heller, and S. I. Shupack. “Fast algorithm for the
resolution of spectra”. In: Analytical chemistry 58.6 (1986), pp. 1162–1167.

[Car87] G. C. Carter. “Coherence and time delay estimation”. In: Proceedings of the IEEE 75.2
(1987), pp. 236–255.

[CB06] G. Chabriel and J. Barrère. “An instantaneous formulation of mixtures for blind
separation of propagating waves”. In: IEEE Transactions on Signal Processing 54.1
(2006), pp. 49–58.

[CBL89] S. Chen, S. A. Billings, and W. Luo. “Orthogonal least squares methods and their
application to non-linear system identification”. In: International Journal of control 50.5
(1989), pp. 1873–1896.

[CDP17] P. Catala, V. Duval, and G. Peyré. “A low-rank approach to off-the-grid sparse decon-
volution”. In: Journal of Physics: Conference Series. Vol. 904. 1. IOP Publishing. 2017,
p. 012015.

[CJ10] P. Comon and C. Jutten. Handbook of blind source separation: independent component
analysis and applications. Academic Press, 2010.

[Clé+11] H. Clénet, P. Pinet, Y. Daydou, F. Heuripeau, C. Rosemberg, D. Baratoux, and S.
Chevrel. “A new systematic approach using the modified Gaussian model: insight
for the characterization of chemical composition of olivines, pyroxenes and olivine–
pyroxene mixtures”. In: Icarus 213.1 (2011), pp. 404–422.

[Coi+98] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. “A real-time computer vision
system for vehicle tracking and traffic surveillance”. In: Transportation Research Part C:
Emerging Technologies 6.4 (1998), pp. 271–288.

[CPF14] E. Chouzenoux, J. C. Pesquet, and A. Florescu. “A multi-parameter optimization
approach for complex continuous sparse modeling”. In: In Proceedings of the 19th
International Conference on Digital Signal Processing, DSP. 2014, pp. 817–820.

[CRT06] E. J. Candes, J. K. Romberg, and T. Tao. “Stable signal recovery from incomplete and
inaccurate measurements”. In: Communications on pure and applied mathematics 59.8
(2006), pp. 1207–1223.

[CT07] J. W. Cannon and W. P. Thurston. “Group invariant Peano curves”. In: Geometry &
Topology 11.3 (2007), pp. 1315–1355.

[DB13] M. F. Duarte and R. G. Baraniuk. “Spectral compressive sensing”. In: Applied and
Computational Harmonic Analysis 35.1 (2013), pp. 111–129.

[DB72] C. De Boor. “On calculating with B-splines”. In: Journal of Approximation theory 6.1
(1972), pp. 50–62.

[DDDM04] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint”. In: Communications on Pure and
Applied Mathematics 57.11 (2004), pp. 1413–1457.



134

[DE03] D. L. Donoho and M.l Elad. “Optimally sparse representation in general (nonorthog-
onal) dictionaries via `1 minimization”. In: Proceedings of the National Academy of
Sciences 100.5 (2003), pp. 2197–2202.

[DGK01] I. DiMatteo, C. R. Genovese, and R. E. Kass. “Bayesian curve-fitting with free-knot
splines”. In: Biometrika 88.4 (2001), pp. 1055–1071.

[DM05] C. Dossal and S. Mallat. “Sparse spike deconvolution with minimum scale”. In:
Proceedings of Signal Processing with Adaptive Sparse Structured Representations, SPARS.
Citeseer. 2005, pp. 1–4.

[Don06a] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on information theory 52.4
(2006), pp. 1289–1306.

[Don06b] D. L. Donoho. “For most large underdetermined systems of linear equations the
minimal `1-norm solution is also the sparsest solution”. In: Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences
59.6 (2006), pp. 797–829.

[DP15] V. Duval and G. Peyré. “Exact support recovery for sparse spikes deconvolution”. In:
Foundations of Computational Mathematics 15.5 (2015), pp. 1315–1355.

[DP17] V. Duval and G. Peyré. “Sparse spikes super-resolution on thin grids II: the continuous
basis pursuit”. In: Inverse Problems 33.9 (2017), p. 095008.

[Dua10] J. Duan. “Restoration and separation of piecewise polynomial signals. Application to
Atomic Force Microscopy”. PhD thesis. Université Henri Poincaré, Nancy, 2010.

[EK12] Y. C. Eldar and G. Kutyniok. Compressed sensing: theory and applications. Cambridge
University Press, 2012.

[Ela10] M. Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. Springer New York, 2010.

[ETS11] C. Ekanadham, D. Tranchina, and E. P. Simoncelli. “Recovery of sparse translation-
invariant signals with continuous basis pursuit”. In: IEEE Transactions on Signal
Processing 59 (2011), pp. 4735–4744.

[FD05] R Fischer and V Dose. “Analysis of mixtures in physical spectra”. In: Monographs of
official statistics: Bayesian methods with applications to science, policy, and official statistics.
2005, pp. 145–154.

[FDJ15] K. Fyhn, M. F. Duarte, and S. H. Jensen. “Compressive parameter estimation for
sparse translation-invariant signals using polar interpolation”. In: IEEE Transactions
on Signal Processing 63.4 (2015), pp. 870–881.

[FL01] J. Fan and R. Li. “Variable selection via nonconcave penalized likelihood and its oracle
properties”. In: Journal of the American statistical Association 96.456 (2001), pp. 1348–
1360.

[Fli+05] F. Flitti, C. Collet, B. Vollmer, and F. Bonnarel. “Multiband segmentation of a spectro-
scopic line data cube: application to the HI data cube of the spiral galaxy NGC-4254”.
In: EURASIP Journal on Advances in Signal Processing 2005.15 (2005), p. 921039.



135

[FNW07] M. Figueiredo, R. D. Nowak, and S. J. Wright. “Gradient projection for sparse recon-
struction: application to compressed sensing and other inverse problems”. In: IEEE
Journal of selected topics in signal processing 1.4 (2007), pp. 586–597.

[Fri12] J. H. Friedman. “Fast sparse regression and classification”. In: International Journal of
Forecasting 28.3 (2012), pp. 722–738.

[Glo+05] E. Gloaguen, J.-M. Mestdagh, L. Poisson, F. Lepetit, J.-P. Visticot, B. Soep, M. Coroiu, A.
Eppink, and D. H. Parker. “Experimental evidence for ultrafast electronic relaxation
in molecules, mediated by diffuse states”. In: Journal of the American Chemical Society
127.47 (2005), pp. 16529–16534.

[Goe+85] A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock. “Imaging spectrometry for earth
remote sensing”. In: Science 228.4704 (1985), pp. 1147–1153.

[Gre95] P. J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711–732.

[GS00] L. Grippo and M. Sciandrone. “On the convergence of the block nonlinear Gauss–
Seidel method under convex constraints”. In: Operations research letters 26.3 (2000),
pp. 127–136.

[Guo11] H. Guo. “A simple algorithm for fitting a Gaussian function”. In: IEEE Signal Processing
Magazine 28.5 (2011), pp. 134–137.

[GWK89] G. Gilmore, R. FG Wyse, and K. Kuijken. “Kinematics, chemistry, and structure of the
Galaxy”. In: Annual review of Astronomy and Astrophysics 27.1 (1989), pp. 555–627.

[Had23] J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. Yale
University Press, 1923.

[Hay04] S. Haykin. Kalman filtering and neural networks. Vol. 47. John Wiley & Sons, 2004.

[HCS03] R. Hesse, T. Chassé, and R. Szargan. “Unifit 2002—universal analysis software for
photoelectron spectra”. In: Analytical and bioanalytical chemistry 375.7 (2003), pp. 856–
863.

[HG02] N. M. Haan and S. J. Godsill. “Bayesian models for DNA sequencing”. In: Proceedings
of International Conference on Acoustics, Speech, and Signal Processing, ICASSP. Vol. 4.
IEEE. 2002, pp. IV–4020.

[HH03] S. Hong and R. A. Harshman. “Shifted factor analysis—part II: algorithms”. In: Journal
of Chemometrics: A Journal of the Chemometrics Society 17.7 (2003), pp. 379–388.

[HHL03] Richard A Harshman, Sungjin Hong, and Margaret E Lundy. “Shifted factor anal-
ysis—Part I: Models and properties”. In: Journal of Chemometrics: A Journal of the
Chemometrics Society 17.7 (2003), pp. 363–378.

[HKW16] G. A Hanasusanto, D. Kuhn, and W. Wiesemann. “A comment on “computational
complexity of stochastic programming problems””. In: Mathematical Programming
159.1-2 (2016), pp. 557–569.

[Hol04] J. M. Hollas. Modern spectroscopy. John Wiley & Sons, 2004.



136

[JF11] N. Jiang and D. Farina. “Covariance and time-scale methods for blind separation of
delayed sources”. In: IEEE Transactions on Biomedical Engineering 58.3 (2011), pp. 550–
556.

[JRY00] A. Jourjine, S. Rickard, and O. Yilmaz. “Blind separation of disjoint orthogonal signals:
demixing N sources from 2 mixtures”. In: Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, ICASSP. Vol. 5. 2000, pp. 2985–2988.

[JTD11] P. Jain, A. Tewari, and I. S. Dhillon. “Orthogonal matching pursuit with replacement”.
In: In proceedings of the 25th Annual Conference on Neural Information Processing Systems,
NIPS. 2011, pp. 1215–1223.

[Jup78] D. L. Jupp. “Approximation to data by splines with free knots”. In: SIAM Journal on
Numerical Analysis 15.2 (1978), pp. 328–343.

[KC76] C. Knapp and G. Carter. “The generalized correlation method for estimation of
time delay”. In: Proceedings of International Conference on Acoustics, Speech, and Signal
Processing, ICASSP. Vol. 24. IEEE. 1976, pp. 320–327.

[Kim+07] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. “An interior-point method
for large-scale `1-regularized least squares”. In: IEEE journal of selected topics in signal
processing 1.4 (2007), pp. 606–617.

[KJ98] Robert C. Kennicutt J. “Star formation in galaxies along the Hubble sequence”. In:
Annual Review of Astronomy and Astrophysics 36.1 (1998), pp. 189–231.

[Knu+14] K. C. Knudson, J. Yates, A. Huk, and J. W. Pillow. “Inferring sparse representations of
continuous signals with continuous orthogonal matching pursuit”. In: Proceedings of
Advances in neural information processing systems, NIPS. 2014, pp. 1215–1223.

[KSD13] M. Kowalski, K. Siedenburg, and M. Dörfler. “Social sparsity! neighborhood systems
enrich structured shrinkage operators”. In: IEEE transactions on signal processing 61.10
(2013), pp. 2498–2511.

[Kuh55] Harold W Kuhn. “The Hungarian method for the assignment problem”. In: Naval
Research Logistics 2.1-2 (1955), pp. 83–97.

[LAC97] J.-L. Lacoume, P.-O. Amblard, and P. Comon. Statistiques d’ordre supérieur pour le
traitement du signal. MASSON, 1997.

[Lee+01] J. S. Lee, D. D. Lee, S. Choi, and D. S. Lee. “Application of nonnegative matrix fac-
torization to dynamic positron emission tomography”. In: Proceedings of International
Conference on Independent Component Analysis and Signal Separation, ICA. 2001, pp. 629–
632.

[Lev44] K. Levenberg. “A method for the solution of certain non-linear problems in least
squares”. In: Quarterly of applied mathematics 2.2 (1944), pp. 164–168.

[LH95] C. L. Lawson and R. J. Hanson. Solving least squares problems. SIAM, 1995.

[Mal02] E. R Malinowski. Factor analysis in chemistry. Wiley, 2002.

[Mar63] D. W Marquardt. “An algorithm for least-squares estimation of nonlinear parameters”.
In: Journal of the society for Industrial and Applied Mathematics 11.2 (1963), pp. 431–441.



137

[Mas+10] A. Masson, L. Poisson, M.A. Gaveau, B. Soep, J.M. Mestdagh, V. Mazet, and F. Spiegel-
man. “Dynamics of highly excited barium atoms deposited on large argon clusters. I.
General trends”. In: Journal of Chemical Physics 133.5 (2010), p. 054307.

[Mas+14] A Masson, M.C. Heitz, J.M. Mestdagh, M.A. Gaveau, L. Poisson, and F. Spiegelman.
“Coupled electronic and structural relaxation pathways in the postexcitation dynam-
ics of Rydberg states of BaAr N Clusters”. In: Physical Review Letters 113.12 (2014),
p. 123005.

[Maz+15] V. Mazet, S. Faisan, S. Awali, M.-A. Gaveau, and L. Poisson. “Unsupervised joint
decomposition of a spectroscopic signal sequence”. In: Signal Processing 109 (2015),
pp. 193–205.

[Maz05] V. Mazet. “Développement de méthodes de traitement de signaux spectroscopiques:
estimation de la ligne de base et du spectre de raies”. PhD thesis. Université Henri
Poincaré-Nancy I, 2005.

[Maz11] V. Mazet. “Joint Bayesian decomposition of a spectroscopic signal sequence”. In: IEEE
Signal Processing Letters 18.3 (2011), pp. 181–184.

[MB81] D. Mihalas and J. Binney. Galactic astronomy: Structure and kinematics. WH Freeman
and Co., 1981.

[MBI05] S. Moussaoui, D. Brie, and J. Idier. “Non-negative source separation: range of admis-
sible solutions and conditions for the uniqueness of the solution”. In: Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, ICASSP. Vol. 5. 2005,
pp. 289–292.

[MCV] V. Mazet, C. Collet, and B. Vollmer. “Decomposition and Classification of Spectral
Lines in Astronomical Radio Data Cubes”. In: SCIA 2009.

[MGB94] H. Michael, F. Georg, and G. Bernd. “Modeling and animation of facial expressions
based on B-splines”. In: The Visual Computer 11.2 (1994), pp. 87–95.

[MMH07a] M. Mørup, K. H. Madsen, and L. K. Hansen. “Shifted independent component analy-
sis”. In: Proceedings of International Conference on Independent Component Analysis and
Signal Separation, ICA. Springer. 2007, pp. 89–96.

[MMH07b] M. Mörup, K. H. Madsen, and L. K. Hansen. “Shifted non-negative matrix factoriza-
tion”. In: IEEE Workshop on Machine Learning for Signal Processing. 2007.

[Mor+17a] H. Mortada, V. Mazet, C. Soussen, and C. Collet. “Séparation de sources retardées et
paramétriques”. In: GRETSI. 2017.

[Mor+17b] H. Mortada, V. Mazet, C. Soussen, and C. Collet. “Separation of delayed parameter-
ized sources”. In: Proceedings of the European Signal Processing Conference, EUSIPCO.
2017.

[Mor+18] H. Mortada, V. Mazet, C. Soussen, and C. Collet. “Spectroscopic decomposition of
astronomical multispectral images using B-splines”. In: Workshop on Hyperspectral
Images and Signal Processing, WHISPERS. 2018.

[Mor+19] H. Mortada, V. Mazet, C. Soussen, C. Collet, and L. Poisson. “Parameterized source
separation for delayed spectroscopic signals”. In: Signal Processing 158 (2019), pp. 48–
60.



138

[Mou05] S. Moussaoui. “Séparation de sources non-négatives : Application au traitement des
signaux de spectroscopie”. PhD thesis. Université Henri Poincaré, Nancy, 2005.

[MPB09] H. D. Makarewicz, M. Parente, and J. L. Bishop. “Deconvolution of VNIR spectra
using modified Gaussian modeling (MGM) with automatic parameter initialization
(API) applied to CRISM”. In: WHISPERS. IEEE. 2009, pp. 1–5.

[MSD13] V. Mazet, C. Soussen, and E.-H. Djermoune. “Décomposition de spectres en motifs
paramétriques par approximation parcimonieuse”. In: GRETSI. 2013, pp. 1–4.

[MY86] G. Medioni and Y. Yasumoto. “Corner detection and curve representation using cubic
B-splines”. In: IEEE International Conference on Robotics and Automation. Vol. 3. 1986,
pp. 764–769.

[MZ92] S. Mallat and S. Zhong. “Characterization of signals from multiscale edges”. In: IEEE
Transactions on pattern analysis and machine intelligence 14.7 (1992), pp. 710–732.

[MZ93] S. G. Mallat and Z. Zhang. “Matching pursuits with time-frequency dictionaries”. In:
IEEE Transactions on signal processing 41.12 (1993), pp. 3397–3415.

[Mül07] M. Müller. “Dynamic time warping”. In: Information retrieval for music and motion
(2007), pp. 69–84.

[Na+00] R. Na, I.-M. Stender, L. Ma, and H. C. Wulf. “Autofluorescence spectrum of skin:
component bands and body site variations”. In: Skin Research and Technology 6.3 (2000),
pp. 112–117.

[Ngu+17] T. T. Nguyen, C. Soussen, J. Idier, and E.-H. Djermoune. “An optimized version of
non-negative OMP”. In: GRETSI. 2017.

[Nio+] D. Nion, B. Vandewoestyne, S. Vanaverbeke, K. Abeele, H. Gersem, and L. De Lath-
auwer. “A Time-Frequency Technique for Blind Separation and Localization of Pure
Delayed Sources”. In: LVA/ICA 2010.

[NW99] J. Nocedal and S. Wright. “Numerical optimization”. In: Springer Science 35.67-68
(1999), p. 7.

[OG11] Lars Omlor and M. A. Giese. “Anechoic Blind Source Separation Using Wigner
Marginals”. In: J. Mach. Learn. Res. 12 (2011), pp. 1111–1148.

[OL77] John J Olivero and RL Longbothum. “Empirical fits to the Voigt line width: A brief
review”. In: Journal of Quantitative Spectroscopy and Radiative Transfer 17.2 (1977),
pp. 233–236.

[Oue+14] W. Ouedraogo, B. Nicolas, B. Oudompheng, J. I. Mars, and C. Jutten. “A frequency
method for blind separation of an anechoic mixture”. In: Proceedings of the European
Signal Processing Conference, EUSIPCO. 2014.

[Paa97] P. Paatero. “Least squares formulation of robust non-negative factor analysis”. In:
Chemometrics and intelligent laboratory systems 37.1 (1997), pp. 23–35.

[Pav+08] D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. A. Vyvyan. Introduction to spectroscopy.
Cengage Learning, 2008.

[PB14] N. Parikh and S. Boyd. “Proximal algorithms”. In: Foundations and Trends in Optimiza-
tion 1.3 (2014), pp. 127–239.



139

[PD05] M. Puigt and Y. Deville. “Time–frequency ratio-based blind separation methods for
attenuated and time-delayed sources”. In: Mechanical Systems and Signal Processing
19.6 (2005), pp. 1348–1379.

[Pea81] G. Peach. “Theory of the pressure broadening and shift of spectral lines”. In: Advances
in Physics 30.3 (1981), pp. 367–474.

[Pet95] V. V. Petrov. Limit theorems of probability theory: sequences of independent random variables.
Tech. rep. Oxford, New York, 1995.

[Phi+86] M. Phillips, C. Jenkins, M. Dopita, E. Sadler, and L. Binette. “Ionized gas in ellipti-
cal and S0 galaxies. I-A survey for H-alpha and forbidden N II emission”. In: The
Astronomical Journal 91 (1986), pp. 1062–1085.

[PL97] R. Paget and D. Longstaff. “Extracting the cliques from a neighbourhood system”. In:
IEE Proceedings-Vision, Image and Signal Processing 144.3 (1997), pp. 168–170.

[PPZ17] T. A. R. Passarin, D. R. Pipa, and M. V. W. Zibetti. “A minimax dictionary expansion
for sparse continuous reconstruction”. In: Proceedings of the European Signal Processing
Conference, EUSIPCO. 2017, pp. 2136–2140.

[PRJ59] R. V. Pound and Glen A. Rebka J. “Gravitational red-shift in nuclear resonance”. In:
Physical Review Letters 3.9 (1959), p. 439.

[PRK93] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. “Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition”. In:
Proceedings of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers.
IEEE. 1993, pp. 40–44.

[PVM93] B. Phookun, S. N. Vogel, and L. G. Mundy. “NGC 4254: a spiral galaxy with an m= 1
mode and infalling gas”. In: The Astrophysical Journal 418 (1993), pp. 113–122.

[RBE10] R. Rubinstein, A. M. Bruckstein, and M. Elad. “Dictionaries for sparse representation
modeling”. In: Proceedings of the IEEE 98.6 (2010), pp. 1045–1057.

[Rei67] C. H. Reinsch. “Smoothing by spline functions”. In: Numerische mathematik 10.3 (1967),
pp. 177–183.

[RFA03] S. G. Razul, W. Fitzgerald, and C. Andrieu. “Bayesian model selection and parameter
estimation of nuclear emission spectra using RJMCMC”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 497.2-3 (2003), pp. 492–510.

[RGJ05] B. Rivet, L. Girin, and C. Jutten. “Solving the indeterminations of blind source sepa-
ration of convolutive speech mixtures”. In: Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, ICASSP. Vol. 5. IEEE. 2005, pp. 533–536.

[RK89] R. Roy and T. Kailath. “ESPRIT-estimation of signal parameters via rotational invari-
ance techniques”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 37.7
(1989), pp. 984–995.

[RPL13] I. Ramírez, C. Prieto, and D. Lambert. “Oxygen abundances in nearby FGK stars and
the galactic chemical evolution of the local disk and halo”. In: The Astrophysical Journal
764.1 (2013), p. 78.



140

[RS09] G. Rath and A. Sahoo. “A comparative study of some greedy pursuit algorithms for
sparse approximation”. In: Proceedings of the European Signal Processing Conference,
EUSIPCO. IEEE. 2009, pp. 398–402.

[Rue+06] D. Rueckert, P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Hammers. “Diffeo-
morphic registration using B-splines”. In: Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer. 2006, pp. 702–
709.

[Sad+05] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl. “Raman mi-
crospectroscopy of soot and related carbonaceous materials: spectral analysis and
structural information”. In: Carbon 43.8 (2005), pp. 1731–1742.

[SBN04] A. Stolow, A. E. Bragg, and D. M. Neumark. “Femtosecond time-resolved photoelec-
tron spectroscopy”. In: Chemical reviews 104.4 (2004), pp. 1719–1758.

[SC12] B. L. Sturm and M. G. Christensen. “Comparison of orthogonal matching pursuit im-
plementations”. In: Proceedings of the European Signal Processing Conference, EUSIPCO.
IEEE. 2012, pp. 220–224.

[Sch46] I. J. Schoenberg. “Contributions to the problem of approximation of equidistant data
by analytic functions. Part B. On the problem of osculatory interpolation. A second
class of analytic approximation formulae”. In: Quarterly of Applied Mathematics 4.2
(1946), pp. 112–141.

[Sch86] R. Schmidt. “Multiple emitter location and signal parameter estimation”. In: IEEE
transactions on antennas and propagation 34.3 (1986), pp. 276–280.

[Sou+11] C. Soussen, J. Idier, D. Brie, and J. Duan. “From Bernoulli–Gaussian deconvolution
to sparse signal restoration”. In: IEEE Transactions on Signal Processing 59.10 (2011),
pp. 4572–4584.

[Tan+12] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht. “Compressive sensing off the grid”.
In: Proceedings of Allerton Conference on Communication, Control, and Computing. 2012,
pp. 778–785.

[Ten11] J. Tennyson. Astronomical Spectroscopy: An Introduction to the Atomic and Molecular
Physics of Astronomical Spectra Second Edition. World Scientific Publishing Company,
2011.

[TGS06] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. “Algorithms for simultaneous sparse
approximation. Part I: Greedy pursuit”. In: Signal Processing 86.3 (2006), pp. 572–588.

[Thu+03] P. Thueler, I. Charvet, F. P. Bevilacqua, M. Saint Ghislain, G. Ory, P. Marquet, P. Meda,
B. Vermeulen, and C. D. Depeursinge. “In vivo endoscopic tissue diagnostics based
on spectroscopic absorption, scattering, and phase function properties”. In: Journal of
biomedical optics 8.3 (2003), pp. 495–504.

[TP14] A. M. Tillmann and M. E. Pfetsch. “The computational complexity of the restricted
isometry property, the nullspace property, and related concepts in compressed sens-
ing”. In: IEEE Transactions on Information Theory 60.2 (2014), pp. 1248–1259.

[Tro04] J. A. Tropp. “Greed is good: Algorithmic results for sparse approximation”. In: IEEE
Transactions on Information theory 50.10 (2004), pp. 2231–2242.



141

[TVP96] S. Talwar, M. Viberg, and A. Paulraj. “Blind separation of synchronous co-channel
digital signals using an antenna array. I. Algorithms”. In: IEEE Transactions on Signal
Processing 44.5 (1996), pp. 1184–1197.

[UB75] T. J. Ulrych and T. N. Bishop. “Maximum entropy spectral analysis and autoregressive
decomposition”. In: Reviews of Geophysics 13.1 (1975), pp. 183–200.

[Uns99] M. Unser. “Splines: A perfect fit for signal and image processing”. In: IEEE Signal
processing magazine 16.6 (1999), pp. 22–38.

[VB13] D. Vats and R. Baraniuk. “When in doubt, SWAP: High-dimensional sparse recovery
from correlated measurements”. In: Proceedings of the conference on Neural Information
Processing Systems, NIPS. 2013, pp. 989–997.

[VC14] E. Villeneuve and H. Carfantan. “Nonlinear deconvolution of hyperspectral data
with MCMC for studying the kinematics of galaxies”. In: IEEE Transactions on Image
Processing 23.10 (2014), pp. 4322–4335.

[VDM+01] R. Van D. M., A. Doucet, N. De Freitas, and E. A. Wan. “The unscented particle filter”.
In: Proceedings of the conference on Advances in Neural Information Processing Systems,
NIPS. 2001, pp. 584–590.

[Vin+14] E. Vincent, N. Bertin, R. Gribonval, and F. Bimbot. “From blind to guided audio source
separation: how models and side information can improve the separation of sound”.
In: IEEE Signal Processing Magazine 31.3 (2014), pp. 107–115. ISSN: 1053-5888.

[VZ16] N. Vaswani and J. Zhan. “Recursive recovery of sparse signal sequences from com-
pressive measurements: A review”. In: IEEE Transactions on Signal Processing 64.13
(2016), pp. 3523–3549.

[Woj10] M. Wojdyr. “Fityk: a general-purpose peak fitting program”. In: Journal of Applied
Crystallography 43.5-1 (2010), pp. 1126–1128.

[YDD09] M. Yaghoobi, L. Daudet, and M. E. Davies. “Parametric Dictionary Design for Sparse
Coding”. In: IEEE Transactions on Signal Processing 57.12 (2009), pp. 4800–4810.

[YR04] Ö. Yilmaz and S. Rickard. “Blind separation of speech mixtures via time-frequency
masking”. In: IEEE Transactions on Signal Processing 52.7 (2004), pp. 1830–1847.

[YWD15] M. Yaghoobi, D. Wu, and M. E. Davies. “Fast non-negative orthogonal matching
pursuit”. In: IEEE Signal Processing Letters 22.9 (2015), pp. 1229–1233.

[YX16] Z. Yang and L. Xie. “Exact joint sparse frequency recovery via optimization methods”.
In: IEEE Transactions on Signal Processing 64.19 (2016), pp. 5145–5157.

[YZ11] J. Yang and Yin Zhang. “Alternating direction algorithms for `1-problems in compres-
sive sensing”. In: SIAM journal on scientific computing 33.1 (2011), pp. 250–278.

[ZC07] R. Zdunek and A. Cichocki. “Nonnegative matrix factorization with constrained
second-order optimization”. In: Signal Processing 87.8 (2007), pp. 1904–1916.

[Zew88] A. H. Zewail. “Laser femtochemistry”. In: Science 242.4886 (1988), pp. 1645–1653.

[Zha+15] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang. “A survey of sparse representation:
Algorithms and applications”. In: IEEE Access 3 (2015), pp. 490–530.



142

[Zha10] C.-H. Zhang. “Nearly unbiased variable selection under minimax concave penalty”.
In: The Annals of statistics 38.2 (2010), pp. 894–942.

[ZY17] W. Zhang and F. Yu. “Off-the-grid compressive time delay estimation via manifold-
based optimization”. In: IEEE Communications Letters 21.5 (2017), pp. 983–986.

[Rak11] A. Rakotomamonjy. “Surveying and comparing simultaneous sparse approximation
(or group-Lasso) algorithms”. In: Signal processing 91.7 (2011), pp. 1505–1526.



Hassan MORTADA

Separation of parameterized and delayed sources:
application to spectroscopic and multispectral data

Résumé – Ce travail est motivé par la spectroscopie de photoélectrons et l’étude de la cinématique des galaxies
où les données correspondent respectivement à une sequence temporelle de spectres et à une image multispec-
trale. L’objectif est d’estimer les caractéristiques (amplitude, position spectrale et paramètre de forme) des raies
présentes dans les spectres, ainsi que leur évolution au sein des données. Dans les applications considérées,
cette évolution est lente puisque deux spectres voisins sont souvent très similaires : c’est une connaissance a
priori qui sera prise en compte dans les méthodes developpées. Ce problème inverse est abordé sous l’angle de
la séparation de sources retardées, où les spectres et les raies sont attribués respectivement aux mélanges et aux
sources. Les méthodes de l’état de l’art sont inadéquates car elles supposent la décorrélation ou l’indépendance
des sources, ce qui n’est pas le cas. Nous tirons partie de la connaissance des sources pour les modéliser par une
fonction paramétrique. Nous proposons une première méthode de moindres carrés alternés : les paramètres
de formes sont estimés avec l’algorithme de Levenberg-Marquardt, tandis que les amplitudes et les positions
sont estimées avec un algorithme inspiré d’Orthogonal Matching Pursuit. Une deuxième méthode introduit
un terme de régularisation pour prendre en compte l’évolution lente des positions; un nouvel algorithme
d’approximation parcimonieuse conjointe est alors proposée. Enfin, une troisième méthode contraint l’évolution
des amplitudes, positions et paramètres de forme par des fonctions B-splines afin de garantir une évolution
lente conforme à la physiques des phénomène observés. Les points de contrôle des B-splines sont estimés par
un algorithme de moindre carrés non-linéaires. Les résultats sur des données synthétiques et réelles montrent
que les méthodes proposées sont plus efficaces que les méthodes de l’état de l’art et aussi efficaces qu’une
méthode bayésienne adaptée au problème mais avec un temps de calcul sensiblement réduit.

Mots-clés : séparation de source retardées, mélange anéchoïque, approximation parcimonieuse, décompostion
de spectres, images multispectrales, B-splines

Abstract – This work is motivated by photoelectron spectroscopy and the study of galaxy kinematics where
data respectively correspond to a temporal sequence of spectra and a multispectral image. The objective is to
estimate the characteristics (amplitude, spectral position and shape) of peaks embedded in the spectra, but also
their evolution within the data. In the considered applications, this evolution is slow since two neighbor spectra
are often very similar: this a priori knowledge that will be taken into account in the developed methods. This
inverse problem is approached as a delayed source separation problem where spectra and peaks are respectively
associated with mixtures and sources. The state-of-the-art methods are inadequate because they suppose the
source decorrelation and independence, which is not the case. We take advantage of the source knowledge in
order to model them by a parameterized function. We first propose an alternating least squares method: the
shape parameters are estimated with the Levenberg-Marquardt algorithm, whilst the amplitudes and positions
are estimated with an algorithm inspired from Orthogonal Matching Pursuit. A second method introduces a
regularization term to consider the delay slow evolution; a new joint sparse approximation algorithm is thus
proposed. Finally, a third method constrains the evolution of the amplitudes, positions and shape parameters by
B-spline functions to guarantee their slow evolution. The B-spline control points are estimated with a non-linear
least squares algorithm. The results on synthetic and real data show that the proposed methods are more
effective than state-of-the-art methods and as effective as a Bayesian method which is adapted to the problem.
Moreover, the proposed methods are significantly faster.

Keywords : delayed source separation, anechoic mixing, sparse approximation, spectra decomposition, multi-
spectral images, B-splines
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