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Introduction

ANR Project CHORUS

This thesis has been funded by the French National Research Agency (ANR)
and the project CHORUS (Common Horizon of Open Research in Uncertainty for
Simulation) started in 2013. This project aimed to support the research activities
and the software development in the domain of the uncertainty quantification.
The work was split into three main topics: the academic research, the software
development and the benchmarking on industrial test-cases. All the implementation
was made under the open source license to benefit to a large community.

The quantification of uncertainty is the capacity to measure the effect of the
uncertainty in numerical models and simulations. In the industry, this subject is
particularly important during the early phases of design and certifications. Although
the topic is well defined and mastered in the academic community, the application to
industrial problems raises some scalability issues. The majority of the methods are
based on many query techniques which imply to perform a considerable number of
parametric simulations to collect and analyze the data. This kind of procedure leads
to scalability issue when we are working on large dimension cases. To tackle that
scalability issue there exist two main solutions: the exploitation of the growing HPC
(High-Performance Computing) capabilities and the development of efficient and
accurate model order reduction methods. Those two topics are highly interconnected
and have been widely studied in the context of this ANR project.

1
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The project gathered different industrial and academic research teams to work
on these subjects. Our goal was to improve the robustness, the scalability and
the reliability of different reduction modeling techniques used for uncertainty
quantification:

• the low rank and tensor reduction

• the PGD

• the Reduced Basis

• the Multi fidelity kriging

• the Bayesian calibration

In parallel of the research efforts, industrials proposed different concrete appli-
cations. The idea was to confront the academic work to the resolution of complex
test-cases.

Airbus Use Case

Airbus Group was one of the leading company in the project. They proposed
different subjects of research and test-cases. In particular, they were interested
in the development of a reliable reduced model for aerothermal simulations. This
research topic has a double objective. First, it makes conceivable the use of nu-
merical simulations in the design and certification phases. The actual full order
aerothermal models require huge computation capabilities. With that constraint, it
is not practicable to perform a large number of simulations, necessary for the uncer-
tainty quantification or the design optimization. In a second time, Airbus Group was
interested in the interface between their environment conditioning system (ECS)
and a reduced aerothermal model. This ECS is a numerical model, based on the
resolution of multiple ordinary differential equations (ODE). Among other things, it
control the pressure and the quality of the air in the aircraft. The integration of a
reduced high fidelity 3D model in the ECS would highly increase its possibilities.
However, it requires real-time embedded simulations which are impossible with a
full order model but achievable with a reduced one.
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Airbus proposed to work on an aerothermal flow problem in an airplane. The
geometry is decomposed into two sub-domains: the cabin on the top with passengers
and the bay on the bottom with various electric equipment. A cooling system
controls the temperature in both areas, see figure 1

Figure 1 – Description of the Cabin Use Case Proposed by Airbus Group

The development of a reliable reduced order model for this test case was the
starting point of this thesis.

Modeling Aerothermal Flows

Before thinking about the reduction of the model, we had to implement a reliable
truth approximation. That kind of simulations implies to model the fluid flow and
the heat transfers in a complex coupled system. The temperature of the fluid is
subject to two phenomena: the usual diffusion and the convection through the
effect of the velocity of the fluid. These heat transfers can be modeled by a classic
advection-diffusion equation. In addition, we have to determine the fluid behavior,
governed by the laws of the fluid dynamics.

The Navier-Stokes equations are the key to computational fluid dynamics (CFD).
This non-linear system provides a mathematical model for the velocity and pressure
field of a Newtonian fluid. The original equations are designed for compressible
fluids. In our case, we will only consider flow with reasonably low velocity, and
we can use the incompressibility assumption to simplify the equations. The effect
of the temperature of the fluid will be model using the Boussinesq approximation
to express the density of the fluid as a function of its temperature. Even with a
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simplified version of the Navier-Stokes equations, there exists no known analytical
solutions to this problem. Thus the numerical resolution is the only actual way
to perform CFD[79]. Many approaches exist for the numerical treatment of these
equations: finite volume, finite element, finite difference, spectral element, boundary
element,... All those methods are based on a discretization of the spatial domain
and a resolution of the equations projected on the discrete space.

In the context of this thesis, we chose to work with the finite element method
(FEM). This technique is particularly adapted for the resolution of algebraic equa-
tions on complex domains. It can be performed on non-structured discretizations
and provide accurate approximations with robust convergence theories [17]. We
chose this method for its reliability and its convenient formulation. We were also
motivated in our choice by the use of the reduced basis method which was initialy
designed for the finite element formulation[80].

However, in our case, the physical parameters of the air imply almost negligible
diffusion compared to the convection effects. Using the FEM for the resolution of that
kind of convection dominated problems, usually produces non-physical oscillations.
Thus, the finite element community developed various solutions to tackle this
annoying instability issue. In this thesis, we chose to focus on the streamline
diffusion methods [46, 7], which allows stabilizing the problem by adding numerical
diffusivity in the direction of the convection field. These techniques were widely
studied to find the most appropriate formulation for our model.

Those stabilization methods allow recovering a numerically stable solution.
Nevertheless, when the Reynolds number is growing, these methods do not take
care of the energy dissipated in the smallest scales. To capture these effects, the
naive solution would be to use ridiculously thin discretization[57]. This solution
is called Direct Numerical Simulation and is not achievable for industrial cases.
The alternative is the use of turbulence models to compute an additional turbulent
viscosity, modeling the loss of energy in the smallest scales. There exist two main
families of turbulence models. The large eddy simulation (LES) is used for transient
simulations. The Reynolds average Navier-Stokes (RANS) is adapted for stationary
problems, and that is why decide to implement two RANS models: the Spalart-
Allmaras and the k − ω SST [41].

The cited methods allow performing fluid and aerothermal simulations, including
for high Reynolds or turbulent flows. The next step is now to build a reduced version
of this model.

Model Order Reduction

The model order reduction methods are particularly adapted in the context
of parametrized Partial Differential Equations (PDE). The physic and the mesh
are always the same, but the parameters of the equations may vary (boundary
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conditions, geometrical parametrization, source terms, ... ). It is interesting to
develop a reduced model when it becomes necessary to solve a parametrized PDE
multiple times, with different sets of parameters. The reduced models are usually
built from an expensive learning procedure to gather information on the model.
Then, it exploits the invariant structures of the problem to compute a new reduced
order approximation.

We chose to focus our research on the Reduced Basis Method (RBM), one of
the principal model order reduction methods, which presents some interesting
advantages [80, 103, 81, 83, 88]:

• Rigorous a posterior error estimators

• An efficient Offline/Online decomposition.

The idea of the reduced basis method is to build a small (relatively to the finite
element dimension) dimension space. Then the resolution of the PDE in this
low dimension space is very fast and produce accurate approximation as long as
the reduced space is rich enough. There exist different algorithms to build this
reduced space and the methods are usually problem-dependant. In the context of
aerothermal simulations, the constructions of an efficient reduced model also require
some advanced techniques to deal with non-linearity: the Empirical Interpolation
Method (EIM)[3, 65, 23, 37] will be an essential tool for our reduced basis framework.

Feel++: Finite Element Embedded Library

Feel++ is a finite element embedded library in C++. It offers a very convenient
language designed for the resolution of PDE, relying on a Domain Specific Language
(DSEL). The goal of Feel++ is to provide a language close to the mathematical one to
solve complex PDE. The idea is to provide to scientists a framework in which they
can express in a language close to the mathematics the strategy they propose for
solving complex systems of PDE and generate a high performance code. To this goal,
Feel++ uses the last standards of C++ and meta-programming (through the tem-
plate and boost meta-programming library) to have a maximum of generality. The
library also offers seamless parallel computing. This High Performance Computing
capability is essential for the treatment of concrete industrial problems.
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Figure 2 – The DSEL offered by Feel++ provides high level language to break the complexity of
scientific computing software while keeping the performances of a low level language.

Feel++ is an open-source library developed under the LGPL and GPL License. It
is used in numerous scientific projects funded by different institutions such as the
French National Research Agency or the European Commission.

During this thesis, all the applications have been developed using Feel++. We
also widely contributed to the reduced basis framework of the library.

Plan

Just after this introduction, the chapter 1 introduces useful mathematical no-
tions.

Then, the manuscript is organized into three parts.
The part I is dedicated to the aerothermal simulation using the finite element

method.
In chapter 2 we introduce the governing equations, we present our discretization

method and the numerical strategy implemented for the resolution of the non-
linear system. The last section of the chapter is dedicated to the validation of our
implementation with numerical results on different benchmarks.

In chapter 3, we detail the stabilization method studied during this thesis. We
remind the different formulation of the SDM such as the Streamline Upwind/Petrov-
Galerkin (SUPG) or the Galerkin Least Square (GLS). Then we discuss the design of
the stabilization parameter which significantly impact the efficiency of the method.
As a complement of the SDM, we also compare the different discontinuity captur-
ing method, essential for high order stabilization. The efficiency of the methods
introduced in this chapter will be discussed with various numerical applications.

In chapter 4, we propose a very brief review of the existing turbulent models,
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and we focus on the RANS method. We detail two models in particular: the
Spalart-Allmaras and k-ω SST. The implementation of these models is validated by
numerical results on the well-known NACA0012 benchmark proposed on the NASA
turbulence modeling resource website.

The part II presents our work on the model order reduction. In chapter 5, we
remind the principle of the RBM for coercive and saddle-point elliptic problems.
We give an example of an application with a reduced model of Stokes flow in a
parametrized geometry.

In chapter 6, we present the Empirical Interpolation Method (EIM) and a new
implementation of this method developed during this thesis. This new development
allows constructing an affine approximation for discrete operators. We also detail
the interface of this version of EIM with the Simultaneous EIM and RB (SER)
algorithm allowing a decrease of the computational cost. The implementation
and the efficiency of the method are discussed with the resolution of a standard
benchmark in the last section.

In chapter 7, we finally propose our solution for the reduction of an aerothermal
model. We detail the treatment of the quadratic non-linearity, the reduction of the
stabilization operators and the construction of the reduced spaces. The method is
illustrated with two applications. The first one is a simulation of the heat transfers
in the neighboring of an electronic component, refreshed by a cooling system. The
second one is a simplified version of the use-case proposed by Airbus Group; we
proposed a reduced model of the aerothermal flow into the airplane cabin.

The last part III is an overview of the implementation work realized during this
thesis. In chapter 8, we present the design and the different features implemented
in our aerothermal library. These tools and algorithms are now progressively
integrated into the Feel++ toolboxes.

In chapter 9, we give an overview of the developments in Feel++ RB framework.
The main contributions are the implementation of the reduced basis by block for
multi-physics problem and the reduced basis for aerothermal problems.

In chapter 10, we finally detail the implementation of the EIM for discrete
operators. This development has been entirely realized during this thesis and
involved interesting methods of parallel and metaprogramming.
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Preliminary Notions
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2.2 Finite Element Definition . . . . . . . . . . . . . . . . . . . . 14

2.3 Galerkin Projection . . . . . . . . . . . . . . . . . . . . . . . . 15

This first chapter is dedicated to the definition of some mathematical notions
and notations, relevant to the context of this document.

1 Function Spaces

In the following sections, and more generally in this thesis report, Ω is supposed
to be a bounded domain of Rd, d = 1, 2, 3, with a Lipschitz boundary ∂Ω = Γ.

9



10 CHAPTER 1. PRELIMINARY NOTIONS

1.1 Lebesgue Space

Lebesgue spaces, Lp(Ω), are spaces of functions on Ω for which the p-th power of
its absolute value is Lebesgue integrable,

Lp(Ω) = {v : Ω→ R,
∫

Ω

|v|p dΩ <∞} (1.1)

Lp(Ω) is a Banach space with the usual p-norm || · ||p,

||v||p = (

∫
Ω

|v|p dΩ )1/p. (1.2)

We can extend this notion to the particular case of p = ∞ using the essential
supremum of the function v as∞-norm,

L∞(Ω) = {v : Ω→ Rn, ||v||∞ <∞}, ||v||∞ = ess sup
x∈Ω
|v(x)|, (1.3)

where the essential supremum of a function is defined as the supremum of the
function almost everywhere, i.e. except on a set of measure zero. This notion is an
adaptation of the usual global supremum to measure theory.

In the following report, we essentially use the common L2(Ω) space of square-
integrable functions,

L2(Ω) = {v : Ω→ Rn, ||v||2 <∞}, ||v||2 =

√∫
Ω

|v|2 dΩ . (1.4)

L2 is particularly interesting since he has an Hilbert structure, with its usual scalar
product

(u, v)0 =

∫
Ω

u · v dΩ . (1.5)

1.2 Sobolev Space

A Sobolev space W k,p(Ω) is a subspace of Lp(Ω) such that for any v ∈ W k,p(Ω) all
the weak derivatives of v, up to the order k, are in Lp(Ω),

W k,p(Ω) = {v ∈ Lp(Ω), Dαv ∈ Lp(Ω), |α| ≤ k}, (1.6)

where Dαv is the generalised weak derivative operator, defined for any multi-index
α = (α1, ..., αd), such that αi ≥ 0, 1 ≤ i ≤ d, and for any x = (x1, .., xd) ∈ Ω as

Dα =
∂|α|

∂xα1
1 ...∂x

αd
d

, |α| =
d∑
i=1

αi. (1.7)
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Sobolev spaces have Banach structure with the norm

‖v‖k,p =

∑
|α|≤k

‖Dαv‖pp

1/p

, 1 ≤ p ≤ +∞

‖v‖k,∞ = max
|α|<k
‖Dαv‖∞.

(1.8)

In the context of parametrized differential equations, the Sobolev spaces with
p = 2 are particularly interesting since they have an Hilbert structure, with the
scalar product

(u, v)k =

∫
Ω

u ·v dΩ +
∑

0<|α|≤k

∫
Ω

Dαu ·Dαv dΩ = (u, v)0 +
∑

0<|α|≤k

∫
Ω

Dαu ·Dαv dΩ , (1.9)

and the associated norm
||v||k =

√
(v, v)k. (1.10)

In this case, we use the notation Hk(Ω) = W k,2(Ω),

Hk(Ω) = {v ∈ L2(Ω), Dαv ∈ L2(Ω), |α| ≤ k}. (1.11)

1.3 Dual Space

Let X be an Hilbert space with scalar product (·, ·)X and associated norm || · ||X .
The dual spaces X ′ of X is the set of continuous linear forms on X,

X ′ = {l : X → R, l continuous linear}. (1.12)

For any l ∈ X ′, we define its dual norm by

||l||X′ = sup
v∈X

|l(v)|
||v||X

(1.13)

The Riesz representation theorem establishes that X and X ′ are isometrically
isomorphic. A direct consequence of this theorem is the existence, for any l ∈ X ′, of
a Riesz representation l̂ ∈ X such that

(l̂, v)X = l(v), ∀v ∈ X. (1.14)

This Riesz representation is very convenient to evaluate the dual norm of a linear
form l, using the isometrical relation between X and X ′,

||l̂||X = ||l||X′ = sup
v∈X

|l(v)|
||v||X

. (1.15)

This relation is widely used in the reduced basis methodology, see chapter 5.
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2 The Finite Element Method

2.1 Variational Formulation

In a weak formulation, an equation is no longer required to hold absolutely
as in its strong formulation. Instead, the weak formulation requires a solution
in the sense of distributions and might not be defined on a set of measure zero.
This formulation is crucial in the context of functional analysis and especially for
treatment of PDEs.

In the present report, we assume that all studied PDE admit a weak formulation,
written as find u ∈ X such that

a(u, v) = f(v), ∀v ∈ X, (1.16)

where X is an Hilbert space on Ω, a : X ×X → R is a bilinear form and f : X → R
is a linear form. u is called the trial function and lives in the trial space X while v
are the test functions living in the test space X.

We now remind two fundamental theorems that ensure the well-posedness of the
examined problems. In the rest of this report, when we describe a problem and its
weak formulation, we assume that it fulfills the conditions of one of these theorems
- depending on the nature of the problem.

Theorem 1 (Lax-Milgram).
We consider the problem (1.16) and we furthermore assume that

(a) the linear form l is continuous,

γl = sup
v∈X

|l(v)|
||v||X

<∞ (1.17)

(b) the bilinear form a is continuous,

γa = sup
u∈X

sup
v∈X

|a(u, v)|
||u||X ||v||X

<∞ (1.18)

(c) the bilinear form a is coercive,

αa = inf
v∈X

a(v, v)

||v||2X
> 0. (1.19)

Under these assumptions, there exists an unique solution u ∈ X to the weak formula-
tion (1.16).

Proof. See [60].
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Remark 1. The proof of this theorem comes from the calculus of variations; that is
why the term of variational formulation is often used to refer to the weak formulation.

Theorem 2 (Brezzi).
In the context of fluid simulation we will consider saddle point problems expressed
under the variational formulation: find (u, p) ∈ V ×Q such that{

a(u,v) + b(v, p) = f(v), ∀v ∈ V,
b(u, q) = g(q), ∀q ∈ Q,

(1.20)

where V and Q are two Hilbert spaces with associated scalar products (·, ·)V , (·, ·)Q
and norms || · ||V , || · ||Q. Z is the composite space Z = V × Q with inner product
(·, ·)Z = (·, ·)V +(·, ·)Q and norm || · ||Z =

√
(·, ·)Z . a(·, ·) : V ×V → R, b(·, ·) : V ×Q→ R

and f(·) : V → R, g(·) : Q→ R are bilinear and linear bounded forms respectively.

We furthermore assume that :

(a) a and b are continuous

γa = sup
u∈V

sup
v∈V

|a(u,v)|
||u||V ||v||V

<∞ (1.21)

γb = sup
v∈V

sup
q∈Q

|b(v, q)|
||v||V ||q||Q

<∞, (1.22)

(b) a is coercive on V

αa = inf
v∈V

a(v,v)

||v||2Q
> 0, (1.23)

(c) b satisfies the inf-sup condition (or Ladyzhenskaya–Babuška–Brezzi condition),
expressed either using the Brezzi definition,

βBr = inf
q∈Q

sup
v∈V

b(v, q)

||v||V ||q||Q
> 0, (1.24)

or the Babuška definition,

βBa = inf
(u,p)∈Z

sup
(v,q)∈Z

a(u,v) + b(v, p) + b(u, q)

||(u, p)||Z ||(v, q)||Z
> 0. (1.25)

Under these assumptions, there exists a unique couple of solutions (u, p) ∈ Z to the
problem (1.20).

Proof. See [5].
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2.2 Finite Element Definition

Using the formalism introduced in [17], a finite element is defined by a tuple
(K,P,Σ). K is a compact, connected and non-empty geometrical element with a
Lipschitz boundary - typically a simplex or a hypercube. P is a finite dimensional
function space on K. Σ is a set of Nl linear forms {σi : P → R}Nli=1 such that

P → RNl

p→ (σ1(p), ..., σNl(p))
(1.26)

is bijective. Those linear forms are called the degrees of freedom (DoF) of the finite
element.

We find many kinds of finite element in the literature: Lagrange, Hermite,
Raviart-Thomas, Crouzeix-Raviart, Nedelec,... Lagrange finite element is probably
the most common type and will be used in this work. For more details on the finite
elements available in the Feel++ library, we refer the reader to [15, 24].

Lagrange Finite Element

We denote by Pk(K) the set of polynomial functions on K of maximum degree k.
We introduce the interpolation points {ti}Nli=1 defined on the element K. The linear
forms in Σ are then defined as

σi : Pk(K)→ R
p→ p(ti)

(1.27)

A Lagrange finite element of order k is defined by the tuple (K,Pk(K),Σ) and the
local basis functions {φi}Nli=1 are set such that

σi(φj) = δij, ∀1 ≤ i, j ≤ Nl, (1.28)

where δij is the Kronecker symbol.

Lagrange Finite Element Space

We introduce now a conforming partition of the domain Ω

Th = {Km}Nem=1 (1.29)

where all the elements Ki are of same nature - simplex or hypercubes. For any
Hilbert space X(Ω) on Ω, we can define its discrete representation on the mesh Th,
as the continuous Lagrange finite element space of order k

Xh(Ω) ≡ Lkch(Ω) = {v ∈ X(Ω) ∩ C0(Ω), v|Km ∈ Pk(Km)}. (1.30)
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The subscript c stands for the continuous property which is actually not mandatory,
depending on the projection method. Hereafter we will only consider the Galerkin
projection with continuous Lagrange space Lkch. The subscript h stands for the
characteristic length of the mesh Th. We usually denote by N the dimension of
the FE space Xh(Ω) and use the convenient notation Xh ≡ Xh(Ω) when it is not
ambiguous.

The FE space Xh is an Hilbert space with scalar product (·, ·)X and associated
norm || · ||X inherited from X.

Remark 2. It was convenient in the previous definition to make the assumption
Ωh = Ω, with Ωh = ∪K∈ThK. In practice, we only have an approximation Ωh ≈ Ω and
the FE element space Xh is not defined on Ω but only on the approximated domain
Ωh.

2.3 Galerkin Projection

We use the Galerkin method as internal approximation method. In order to
numerically solve the problem (1.16), we introduce a FE subspace Xh ⊂ X. The
exact solution u of (1.16) will be approximated by the discrete solution uh ∈ Xh such
that

a(uh, vh) = f(vh), ∀vh ∈ Xh. (1.31)

Since the solution uh ∈ Xh = span{φi, 1 ≤ i ≤ N}, we have,

uh =
N∑
j=1

ujhφj. (1.32)

The variational formulation can then be rewritten as find (u1
h, ...u

N
h ) such that

N∑
i=1

ujha(φj, φi) = f(φi), ∀1 ≤ i ≤ N . (1.33)

And finally, introducing the matrix Ah, (Ah)ij = a(φj, φi) and the vector Fh, (Fh)i =
f(φi), the Galerkin projection uh of the continuous solution u is the solution of the
linear system

Ah uh = Fh (1.34)

Well-Posedness of the Discrete Problem

Assuming that the problem (1.16) is well-posed in the sense of the Lax-Milgram
theorem 1, we have the following relations:

γl ≥ γlh = sup
vh∈Xh

|l(vh)|
||vh||X

, (1.35)
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γa ≥ γah = sup
uh∈Xh

sup
vh∈Xh

|a(uh, vh)|
||uh||X ||vH ||X

, (1.36)

αa ≤ αah = inf
vh∈Xh

a(vh, vh)

||vh||2X
. (1.37)

The properties of continuity and coercivity are then inherited from the continuous
problem, and it guarantees the well-posedness of discrete problem (1.34), [60].

In the case of saddle point problem, the property of continuity is also inherited
from the continuous problem. However, the inf-sup condition is not automatically
satisfied for any FE space Vh × Qh. A very convenient solution to satisfy this
necessary condition is to choose specific finite element space. For instance, in the
context of this thesis, we use Taylor-Hood spaces of degree k,

THk
ch = [Lk+1

ch ]d × Lkch. (1.38)

This discretization ensures the inf-sup condition to be satisfied [5], and then the
well-posedness of the discrete problem is ensured by the Brezzi theorem 2.

Convergence of the Method

The finite element methodology provides bounds on the error between the exact
solution u and the FE approximation uh, [17]. This error depends on the following
parameters:

• the polynomial order k of the FE space,

• the nature of the considered norm: usually the Hm-norm || · ||m, as defined in
section 1.2. The case m = 0 stands for the L2-norm,

• the characteristic length h of the mesh Th,

• the regularity of the solution.

Considering these elements, we have the existence of a constant C ∈ R, C > 0 such
that

||u− uh||m ≤ Chk+1−m. (1.39)

This bound ensures the convergence of the FE solution uh when the characteristic
length of the mesh decrease,

uh →
h→0

u. (1.40)
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Modeling of an Aerothermal Problem
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In this first chapter we describe the full resolution process, from the continuous
level to the computation of a discrete solution. We start with the formulation of the
governing equations arising from different physical laws and approximations. In
the second section, we detail the discretization of the continuous problem, using
the FEM. And finally, we present our resolution strategy for the non-linear system,
in section3. The last section of this chapter is dedicated to numerical results and
especially to the validation of our implementation.
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1 The Navier Stokes Equations and the Boussinesq
Approximation

In the context of this thesis, the fluid is always supposed Newtonian and incom-
pressible. Besides, we use the Boussinesq approximation for modeling the buoyancy
force. With these hypotheses, it only remains three quantities of interest in the
aerothermal system: the velocity (u), the pressure (p) and the temperature (T ).

In this first section, we briefly remind the laws of conservation involved in the
establishment of the Navier-Stokes equations [79]. These equations mainly derive
from the principles of continuity of mass, momentum, and energy. Those physical
rules combined with the Boussinesq approximation lead to a coupled system between
the three quantities, u p, and T .

Derivation of continuity equation

This equation arises from the fundamental law of Newton mechanics that states
the conservation of mass (M ) in an arbitrary control volume (Vm) which leads to

0 =
dM

dt
=

d

dt

∫
Vm

ρ dV =

∫
Vm

∂ρ

∂t
dV +

∫
Sm

ρu · n dS =

∫
Vm

(
∂ρ

∂t
+∇ · (ρu)) dV, (2.1)

where Sm is the boundary surface of the volume Vm, n is the outward normal vector
to the surface and ρ is the density of the fluid. Since the volume Vm is arbitrary
chosen, the integrand has to be zero and leads to the continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0. (2.2)

In the particular case of incompressible fluids, the density (ρ) is considered constant,
this leads to the simplified continuity equation,

∇ · u = 0. (2.3)

Derivation of Momentum Equation

One way to obtain this second equation is the application of the second Newton’s
law to a fluid volume element. It leads to the first form of the momentum equation,

ρ(
∂u

∂t
+ u · ∇u) = s, (2.4)

where s is the momentum source. This term is composed of two kinds of forces: the
surface forces act only on the surface of a control volume whereas body forces act on
the whole control volume. Thus, by splitting s, we obtain the Cauchy equation

ρ(
∂u

∂t
+ u · ∇u) = ∇ · T + f (2.5)
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where f represents the sum of different body forces applied on the fluid and T is
the Cauchy stress tensor, used to express the surface forces acting on the fluid. This
equation can again be rewritten by introducing the viscous stress tensor T and the
pressure field p,

ρ(
∂u

∂t
+ u · ∇u) = −∇p+∇ · T + f . (2.6)

A fluid is defined as Newtonian [4] when the following assumptions are verified:

• The viscous stress tensor is a linear function of the strain rate tensor, T = 2µS,
where S(u) = 1

2
(∇u+∇uᵀ),

• The fluid is isotropic,

• ∇ · T = 0 at rest.

And by adding the incompressible hypothesis (2.3), we obtain

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ 2∇ · (µS(u)) + f . (2.7)

Henceforth, the only body force considered is the gravity: f = ρg, where g is the
gravitational field.

The Boussinesq Approximation

The Boussinesq approximation states that density differences are sufficiently
small to be neglected, except where they appear in terms multiplied by g. So we can
assume that ρ = ρ0 except in the buoyancy force which is the only force acting on
the fluid (in the considered model).

The Boussinesq approximation also links the density variation to the tempera-
ture field with the relation

ρ− ρ0 = −ρ0β(T − T0), (2.8)

where ρ0 and T0 are reference density and temperature and β is the coefficient of
thermal expansion. We can then rewrite the buoyancy force

f = ρg = ρ0g − ρ0β(T − T0)g. (2.9)

This yields to a new momentum equation

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ 2∇ · (µS(u)) + ρ0g − ρ0β(T − T0)g. (2.10)
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To avoid the evaluation of the term ρ0g, we use a pressure shift and we define the
new pressure p∗ = p+ ρ0gh, where h is the elevation. From here, we will just ignore
the ∗ superscript and denote by p the shifted pressure.

The Boussinesq approximation also gives a simplified energy equation [98], by
considering the different hypothesis exposed and the fact that the heat capacity is
constant,

∂T

∂t
+ u · ∇T = ∇ · (κ∇T ) +

J

ρCp
(2.11)

where κ is the thermal diffusivity, Cp is the heat capacity of the fluid and J is
the rate per unit volume of internal heat production. This last quantity is always
supposed to be zero in the present work.

Strong Formulation

We obtain a non-linear system of three coupled equations
ρ(
∂u

∂t
+ u · ∇u) +∇p− 2∇ · (µS(u)) = −ρβ(T − T0)g,

∇ · u = 0,

∂T

∂t
+ u · ∇T −∇ · (κ∇T ) = 0.

(2.12)

This system is completed with boundary conditions and initial values for the dif-
ferent fields of interest. These closure conditions will be detailed for each studied
model and test case but we can already enumerate some usual boundary conditions
and notations.

We consider the problem (2.12) on a domain Ω ∈ Rd, d = 2, 3, with a sufficiently
smooth boundary, ∂Ω = Γ. This boundary is partitioned (in two different ways) to
settle the different boundary conditions

Γ = ΓFD ∪ ΓFN ∪ ΓS = ΓTD ∪ ΓTN ∪ ΓTR, (2.13)

where the F and T superscript stand for fluid or temperature and the D, N , S and
R subscript stand for Dirichlet, Neumann, Slip and Robin conditions. On these
subsets of Γ, the boundary conditions can be described as

u = uD(x, t), on ΓFD, Dirichlet condition on Fluid
T (u, p)n = 0, on ΓFN , Neumann condition on Fluid

u · n = 0, (T (u, p)n)τ = uS on ΓFS , Slip condition on Fluid

T = TD(x, t) on ΓTD, Dirichlet condition on Temperature
κ∇T · n = φΓ(x, t) on ΓTN , Neumann condition on Temperature
κ∇T · n = κΓ(TR(x, t)− T ) on ΓTR, Robin condition on Temperature

(2.14)
where uD, uS, TD, FΓ and κΓ are at least L2 functions on Γ.
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2 Finite Element Approach

We now detail the application of the finite element method (FEM) to the aerother-
mal system (2.12). We are mainly interested in the steady state of the model (when
it exists) and then the stationary system reads

ρu · ∇u+∇p− 2∇ · (µS(u)) = −ρβ(T − T0)g,

∇ · u = 0,

u · ∇T −∇ · (κ∇T ) = 0,

+Boundary Conditions 2.14.

(2.15)

2.1 Variational Formulation

We start by introducing the Hilbert spaces V , Q and X with the scalar products
(·, ·)V , (·, ·)Q, (·, ·)X and associated norms || · ||V , || · ||Q, || · ||X , respectively. We also
define the composite space Z = V ×Q with the scalar product (·, ·)Z = (·, ·)V + (·, ·)Q
and associated norm || · ||Z =

√
|| · ||V + || · ||Q.

We apply the scalar product to each row of the system (2.15) with its respective
test function v ∈ V , q ∈ Q or S ∈ X. Then, by using standard integration by
part formulas, we obtain the variational formulation, where the weak solution
(u, p, T ) ∈ V ×Q×X is such that∫

Ω

ρ(u · ∇u) · v dΩ +

∫
Ω

2µS(u) : S(v) dΩ −
∫

Γ

T (u, p)n · v dΓ

−
∫

Ω

p∇ · v dΩ − α
∫

Ω

(∇ · u)q dΩ = −
∫

Ω

ρβ(T − T0)g · v dΩ ,∫
Ω

(u · ∇T )S dΩ +

∫
Ω

κ∇T · ∇S dΩ −
∫

Γ

κ∇Tn · S dΓ = 0,

∀(v, q, S) ∈ V ×Q×X,
(2.16)

where α = ±1 determines when we use symmetric or asymmetric formulation.

The terms
∫

Γ
T (u, p)n · v dΓ and

∫
Γ
κ∇T · nS dΓ allow to apply the boundary

conditions 2.14. The test spaces V and X are supposed to verify v|ΓFD = 0,∀v ∈ V
and T |ΓTD = 0,∀T ∈ X. Thus the terms

∫
Γ
T (u, p)n ·v dΓ and

∫
Γ
κ∇T ·nS dΓ are zero

on ΓFD and ΓTD, respectively, and the Dirichlet boundary conditions will be imposed
strongly as described later. The Neumann boundary conditions on fluid also set the
term

∫
Γ
T (u, p)n · v dΓ to zero since the Cauchy stress tensor is supposed to be null.

The treatment of the slip boundary condition was not trivial and will be detailed in
a further paragraph. It remains the Robin and Neumann boundary conditions on
the temperature which leads to∫

Γ

κ∇T · nS dΓ =

∫
ΓTN

φΓS dΓ +

∫
ΓTR

κΓ(TR − T )S dΓ . (2.17)
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2.2 Discretization

In order to solve the problem, (2.16) we introduce the discrete spaces

Vh ×Qh = THk
ch ⊂ V ×Q, Xh = Lkch ⊂ X, (2.18)

see section 2 for a description of these FE spaces. The resolution on these discrete
spaces leads to the computation of the FE approximation (uh, ph, Th) ∈ Vh ×Qh ×Xh

such that

c(uh,vh;uh) + du(uh,vh) + αb(vh, ph) + b(uh, qh) = f(vh;Th),

a(Th, Sh;uh) + dT (Th, Sh) = g(S),

∀(vh, qh, Sh) ∈ Vh ×Qh ×Xh,
(2.19)

where, ∀(u,v,w) ∈ V 3, ∀q ∈ Q, ∀(T, S) ∈ X2,

c(u,v;w) =

∫
Ω

ρ(w · ∇u) · v dΩ , du(u,v) =

∫
Ω

2µS(u) : S(v) dΩ ,

b(u, q) = −
∫

Ω

(∇ · u)q dΩ ,

a(T, S;u) =

∫
Ω

(u · ∇T )S dΩ , dT (T, S) =

∫
Ω

κ∇T · ∇S dΩ +

∫
ΓTR

κΓTS dΓ

f(v;T ) =

∫
Ω

ρβ(T − T0)g · v dΩ , g(S) =

∫
ΓTN

φΓS dΓ +

∫
ΓTR

κΓTRS dΓ

(2.20)

By introducing the basis Bu = {ζi}Nui=1, Bp = {ηi}Npi=1 and BT = {ξi}NTi=1 of the spaces
Vh, Qh and Xh respectively, we can rewrite system (2.20) in the matrix formulation:
find (uh, ph, Th) ∈ Vh ×Qh ×Xh such thatDu +C(uh) Bᵀ 0

αB 0 0
0 0 A(uh) +DT

uhph
Th

 =

F (Th)
0
G

 , (2.21)

with, for any 1 ≤ i, j ≤ Nu, 1 ≤ m ≤ Np, 1 ≤ k, l ≤ NT ,

(Du)ij = du(ζj, ζi), (C(uh))ij = c(ζj, ζi;uh), (F (Th))i = f(ζi;Th),

(B)mj = b(ζj, ηm)

(DT )kl = dT (ξl, ξk), (A(uh))kl = a(ξl, ξk;uh), (G)k = g(ξk).

(2.22)

Dirichlet Boundary Conditions

As explained in the previous paragraph, we usually strongly impose the Dirichlet
boundary conditions. We modify the algebraic structures after the assembly of the
system (2.21) to force the value on the Dirichlet boundaries.
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We introduce the application ϕu : [1 : Nu] → Ω such that for any i ∈ [1 : Nu],
x = ϕu(i) is the point in Ω corresponding to the i-th DoF. We can now define
IΓD = {i ∈ [1 : Nu], ϕu(i) ∈ ΓD}. The entries of the matrix M = Du +C(uh) and the
entries of the vector F (Th) are then modified such that

(M)ij = 0, ∀i, j ∈ IΓD , i 6= j

(M )ii = 1, ∀i ∈ IΓD ,

(F )i = uΓ(ϕu(i)), ∀i ∈ IΓD .

(2.23)

We apply the same process in order to impose the value TΓ of temperature field on
the boundary ΓTD.

Nevertheless, we also implemented a weak formulation to compare the results of
the two methods. The weak formulation does not set any constraint on the function
spaces, and use Nitsche’s penalization methods to impose the Dirichlet conditions
through the variational formulation. When imposing the Dirichlet conditions weakly,
we add the following terms to the variational formulation:

−
∫

ΓFD

T (uh, ph)n · vh + (uh − uD) · T (vh, qh)n+ γFh (uh − uD) · vh dΓ = 0, (2.24)

−
∫

ΓTD

κ∇Th · nSh + κ(Th − TD)∇Sh · n+ γTh (Th − TD)Sh dΓ = 0, (2.25)

where γTh > 0, γFh > 0 are suitable constants defined by elements.

Slip Boundary Conditions

The slip boundary conditions are mainly required for the wall functions of the
turbulence models, see chapter 4. We can strongly impose this kind of condition
when the concerned boundary is parallel to the axis. In this particular case, we can
edit the algebraic structures as we do for the Dirichlet conditions. However, in a
general context - on curved boundaries - the application of slip conditions is not
trivial.

Kuzmin et al.proposed in [59] an algebraic version but this technique requires an
additional linear resolution and it was not appropriate to our solving strategy. As an
alternative solution, we initially implemented a penalization formulation method
following the design presented in [100]. This technique is close to the Nitsche’s
approach and is very convenient since it only adds extra terms in the variational
formulation. Unfortunately, the convergence rate of this method is very low, and we
preferred looking for alternative solutions. We nevertheless detail this formulation,
and we present our convergence study for Stokes problem in the appendix 2.

After this unfruitful effort, we found two options. Dione proposes the first one
in his thesis work [27]. In this review of the penalization method, he suggested
some modifications to boost the convergence rate. Those adjustments mainly aim to
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improve the quality of the geometric approximation either with a continuation of the
normal-to-the-face vector field or with high-order elements on the curved boundaries.
This approach was interesting, but we finally chose to implement the alternative
method proposed in [100] using Lagrange multipliers. The formulation is a bit more
constraining as it requires introducing a new FE space for the Lagrange multiplier,
but it significantly improves the accuracy of the results.

For any point of the boundary ∂Ω, we note n the outgoing unit normal vector
to ∂Ω. We also introduce, for any vector a, its normal and tangential components
respectively denoted by (a)n and (a)τ .

(a)n = (n · a)n

(a)τ = a− (a)n
(2.26)

We define the Lagrange multiplier space Λh, which is a P0 discontinuous space on
the boundary ΓS. The fluid part of the variational formulation (2.19) is completed
into: find (uh, ph, ξh) ∈ Vh ×Qh × Λh such that

Bγ,h((uh, ph, ξh), (vh, qh, λh)) = Lγ,h(vh, qh, λh), ∀(vh, qh, λh) ∈ Vh ×Qh × Λh, (2.27)

where

Bγ,h((uh, ph, ξh), (vh, qh, λh)) =

∫
Ω

(uh · ∇uh) · vh dΩ +

∫
Ω

2µS(uh) : S(vh) dΩ

−
∫

Ω

ph∇ · vh dΩ − α
∫

Ω

(∇ · uh)qh dΩ

+

∫
Γ

ξhvh · n dΓ +

∫
Γ

uh · nλh dΓ

− γ
∫

Γ

hf (ξh + nT (uh, ph)n)(λh + εnT (vh, qh)n) dΓ ,

(2.28)
and

Lγ,h(v, q, λ) =

∫
Ω

f · vh dΩ +

∫
Γ

gτ · (vh)τ dΓ (2.29)

where γ is a positive constant and ε = 1,−1 and hf is the characteristic length of
the current face. The values of γ and ε will be discussed in the further numerical
tests in the section 4.2.

3 Solution Strategy

The Galerkin projection on the FE spaces defined in the previous section requires
the resolution of the non-linear system (2.21). The actual resolution of such systems
might be non-trivial for different reasons:
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• The numerical instability of the model: this issue is prevalent when using
the FEM to solve convection dominated problems. We usually overcome this
problem by adding stabilization terms in the discrete formulation. The chapter
3 is dedicated to such techniques.

• The choice of the resolution scheme: there are many possibilities to treat the
non-linearity of the system. We present and discuss some of these options in
the present section.

• The preconditioning of the system: this point might not be an issue when the
size of the problem remains reasonable (typically in 2D). In that case, a direct
resolution is usually achievable using, for instance, an LU decomposition.
However, in 3D we need proper preconditioning strategies to succeed solving
large linear systems. This issue is directly related to the choice of the resolution
scheme.

During this thesis work, we mainly considered two iterative methods for the
resolution of non-linear problems: the Picard algorithm (or fixed point algorithm)
and the Newton algorithm. The Newton method theoretically presents an attractive
quadratic convergence rate. However, the algorithm is very sensitive to the initial
guess, and the convergence radius decrease very fast for high Reynolds number. This
point rapidly became an issue, and we had to find new solutions. We implemented
the Picard algorithm as an alternative. This method has slow convergence rate
compared to the Newton algorithm however, it is usually more robust and less
sensitive to the initial guess. The Picard algorithm offered a new option but was
still unsuccessful to solve aerothermal problems for high Reynolds numbers.

At this point, we decided to implement a transient version of our model. Our
initial motivation was to understand the evolution of the flow when the Reynolds
number was growing. But we finally considered the transient resolution as a way to
reach the stationary state. We tested different time integration algorithms. The use
of the standard backward differentiation formulas, present in Feel++, produced a
considerable number of iterations to reach the stationary state. Then we started
looking at adaptive time-step, and we implemented the algorithm proposed by Kay
et al.in [54, 38]. We give implementation details and a review of the method in the
appendix 1. Unfortunately, as illustrated in our numerical results, the technique
was not entirely stable. We finally dropped the idea of using transient resolution,
and we start studying the pseudo time-step methodology.

In the current section, we briefly remind the mentioned iterative methods and
the different resolution schemes we envisaged. Then we will detail the pseudo-
transient continuation and discuss its advantages. We dedicate the last part to the
different preconditioning strategies.
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3.1 Non-Linear Iterative Methods

Picard Algorithm

We consider the generic non linear discrete problem: find w ∈ RN such that

M (w)w = F (w), (2.30)

where M : RN → RN×N and F : RN → RN . This problem can be solved using Picard
iterations. From an initial guess w0, we build a sequence (wn), hopefully convergent
such that wn → w. For any n ≥ 0, assuming that wn is known, wn+1 is computed by
solving the linear system

M (wn)wn+1 = R(wn). (2.31)

The Picard algorithm presents a wider radius of convergence than the Newton
algorithm. However, this method has potentially very slow convergence rate and is
very sensitive to local minima.

Newton Algorithm

We consider the generic non-linear discrete system: find w ∈ RN such that

F(w) = 0 (2.32)

where F : RN → RN is supposed to be differentiable. Here again we iteratively
build a sequence (wn) such that wn → w, from an initial guess w0. For any n ≥ 0,
assuming that wn is known, we set wn+1 = wn + δn, with δn solution of the linear
system

F ′(wn)δn = −F(wn), (2.33)

where F ′ is the Jacobian matrix of F . This method as a theoretical quadratic
convergence, but is very sensitive to the choice of the initial guess w0. Local minima
of the function F might also be an issue.

Resolutions Schemes

These two algorithms work with the same idea: splitting the non-linear reso-
lution in multiple linear resolutions. This technique might be very costly if the
algorithm is not able to quickly converge. In both cases, the choice of an appropriate
initial guess is crucial since it affects both the capability to converge and the number
of required iterations.

Once we dispose of these iterative solvers, we have to decide if we want to treat
the system (2.21) in a monolithic way or by splitting the problem. The monolithic
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resolution consists in the direct application of an iterative solver to the non-linear
system Du +C(uh) Bᵀ 0

αB 0 0
0 0 A(uh) +DT

uhph
Th

 =

F (Th)
0
G

 . (2.34)

The decoupled resolution consists in fixed point iterations between the resolution of
the non-linear system (using our favorite iterative method)[

Du +C(uh) Bᵀ

αB 0

] [
uh
ph

]
=

[
F (Th)

0

]
(2.35)

and the linear one [
A(uh) +DT

] [
Th
]

=
[
G
]
, (2.36)

The different options were implemented and tested. Each configuration has its
advantages and will be chosen following the needs. For instance, the decoupled
version is particularly efficient for transient resolution. In this particular case, we
can use an Oseen linearization for the fluid system to run quick simulations. On
the other hand, this decoupled scheme is hardly practicable for steady resolution
since we have to manage the non-linearity between u and p and then between the
fluid and T . When we finally decided to only work with the steady state directly, we
abandoned the decoupled resolution.

Continuation

The remaining issue was the choice of the initial guess. Our framework was
still unable to reach the solution for more dynamic problems (smaller viscosity and
diffusivity). To improve the convergence of our solver, we envisaged two solutions:
a physical continuation and a transient continuation. We finally implemented a
mixed solution in which both kind of continuation can be used.

The physical continuation iteratively solves the system with evolving parameters.
Each new resolution uses the previous solution as an initial guess. In practice,
the continuation is made on the viscosity µ and the thermal diffusivity κ. For a
continuation of N steps, we will successively solve

F(uk, pk, T k;µk, κk) = 0 (2.37)

where µk = ε(k)µ and κ = ε(k)κ, ε(N) = 1. There are many possibilities for the
design of the continuation function ε. We chose a log-equidistributed partitioning of
the viscosity range with

ε(k) =
µk/N

µ
. (2.38)

This technique is very efficient and particularly stable for high Reynolds simulations.
However, we usually need a well tuned continuation to guaranty the convergence.
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To remedy this issue, we implemented the pseudo-transient continuation which
remarkably improves the convergence of the Newton algorithm. This technique
allows to remove the physical continuation or, at least, to only consider few steps.

3.2 Pseudo Transient Continuation

The pseudo-transient continuation [55, 19] is a modification of the Newton
algorithm to improve the convergence capabilities of the method. The continuation
is made by imposing local transient states to the system, to progressively reach the
steady state.

We consider a Differential Algebraic Equation

F(w) = 0 (2.39)

resulting of a FEM discretization. In a generic formulation, we suppose w ∈ N and
F : RN → RN differentiable. The non-linear system F(w) = 0 has to be solved using
an iterative method of successive linear resolutions. For such techniques, the choice
of the initial guess is crucial. For instance, for the Navier-Stokes system, for a low
Reynolds number, a common initialization is to start by resolving the associated
stokes problem. For larger Reynolds numbers, the convergence radius of iterative
methods becomes smaller, and we have to choose a better initial guess.

The pseudo-transient continuation (Ψtc) method is particularly adapted for
problems deriving from a transient dynamic. From the generic stationary equation
(2.39), we can define the transient problem associated

w′ + F(w) = 0,w(0) = w0, (2.40)

where w′ = ∂w
∂t

. Then, it is natural to seek a root of F as the limit of w(t)

w = lim
t→∞

w(t). (2.41)

When we are not interested in the transient states, we can reach this limit faster by
considering non-physic intermediary states of the problem. This idea is the main
ingredient of the pseudo-transient continuation.

In [55], Kelley et al.propose a continuation algorithm that integrates iteratively

V w′ = F(w), w(0) = w0 (2.42)

by a variable time step δn. This time step is supposed to grow as the residual F(wn)
approaches zero. Here V is a nonsingular matrix used to improve the scaling of the
problem and usually build to balance the local CFL number through the domain.

The convergence results for Ψtc in [55] are extended in [19] for systems in
which it is more convenient to not parabolize all the equations. For instance, in
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: Newton Algorithm
1 Choose ε;
2 Set w = w0 ;
3 repeat
4 Solve F ′(w)s = −F(w);
5 Set w = w + s;
6 Evaluate F(w);
7 until ||F(w)|| < ε;

: Ψtc Algorithm
1 Choose ε;
2 Set w = w0 and δ = δ0 ;
3 repeat
4 Solve

(1
δ
D + F ′(w))s = −F(w);

5 Set w = w + s;
6 Evaluate F(w);
7 Update δ;
8 until ||F(w)|| < ε;

Figure 2.1 – Comparison of Ψtc and Newton algorithms

the incompressible Navier-Stokes problem, it is entirely natural only to evolve the
velocity through pseudo-time stepping. It results in the equations,

Dw′ = −F(w), (2.43)

with
D =

[
V

0

]
(2.44)

with V a non-singular matrix. The design of this matrix will be discussed in a
further paragraph.

The procedure of Ψtc is very close to the usual Newton method, but we add the
matrix 1

δn
D to the Jacobian matrix, F ′, of the function F . The pseudo transient

iteration then reads

wn+1 = wn − (1/δnD + F ′(wn))−1F(wn). (2.45)

As a comparison we remind the Newton algorithm and present the Ψtc algorithm in
figure 2.1.

Choice of parameter δn

An updating procedure for the pseudo time step δ is proposed in [55] using the
Switched Evolution Relaxation. This method increases the time step in inverse
proportion of the residual reduction.

δn+1 = δn
||F(wn−1)||
||F(wn)||

= δ0
||F(w0)||
||F(wn)||

(2.46)

In order to control the evolution of this pseudo time step, a bounding function φ is
often added

δn+1 = φ(δn
||F(wn−1)||
||F(wn)||

), (2.47)
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with
φ(ξ) = min(ξ, δmax), (2.48)

where δmax is a custom threshold parameter. When this bounding function is used,
the system switches into a steady state resolution after some iterations. The initial
value δ0 is another custom parameter and has to be chosen depending of the dynamic
of the problem.

Another version of the Switched Evolution Relaxation proposes not to consider
the norm of the residual ||F(w)|| but the norm of the increment ||wn − wn−1||.
However, this method is more prone to convergence failures and requires a uniformly
well conditioned Jacobian. The update of the time step then reads

δn+1 = φ(δn||wn −wn−1||). (2.49)

This alternative was not studied in this thesis work since the first version gives
satisfying results.

The Scaling Matrix

The construction of the scaling matrix V is made to balance the local CFL
number,

CK = ∆t
d∑
i=1

ui
hi

(2.50)

where ∆t is the time step, ui is the component of the velocity field hi is the charac-
teristic length of the cell in the i-eme direction of the element K. Hence it naturally
appears to choose the scaling factor per-element

ωK =
||u||2
h

(2.51)

where ||u||2 is the usual norm-2 of the convection field on the center of the element
and h is the characteristic length of the element. The evaluation of h is discussed in
chapter 3.

4 Validation

In this section, we present the results obtained with our aerothermal framework
on different test-cases. The following problems are usually fundamental and aim
to validate our implementation, see chapter 8. By default the configuration is the
following:

• TH1
ch FE space for the fluid part,
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• L2
ch FE space for the temperature,

• domain meshed with linear simplex,

• unstructured homogeneous mesh of characteristic size h,

• monolithic resolution with Newton algorithm and eventually Ψtc continuation,

• LU direct solver in 2D.

This default configuration may be edited for certain test-cases, it will be specified
where appropriate.

The common quantities of interest are the following errors (usually normalized):

• L2-error on the velocity: ‖u− uh‖0,

• H1-error on the velocity: ‖u− uh‖1,

• L2-error on the pressure (up to an additive constant): ‖p− ph‖0,

• L2-error on the temperature: ‖T − Th‖0.

4.1 Validation of the Fluid Solver

Fluid Convergence Study, Kovasznay Test Case

We run a convergence study on the well known case proposed by Kovasznay
in [58]. The geometry of the problem is a 2D grid, Ω = [−0.5, 2] × [−0.5, 1.5]. The
analytic solution is given by

u = (1− eλx cos(2πy),
λ

2π
eλx sin(2πy))

p = p0 − eλx
(2.52)

where λ = Re
2
−
√

Re2

4
+ 4π2, see figure 2.2. For the present study we fixed Re =

ρ
mu

= 40. We impose the analytic solution as strong Dirichlet condition on the
boundaries of the domain, and we treat the non-linearity with Newton algorithm.
We measured the three errors : ‖uh − ue‖0, ‖uh − ue‖1 and ‖ph − pe‖0. The evolution
of these quantities with respect to the characteristic size h is presented in figure
2.3. The study is performed with or without stabilization method (SUPG1d, see
chapter 3 ), for different polynomial orders : TH1

h, TH2
h and TH3

h. We retrieve the
expected convergence rates for u and p. We also notice that the use of stabilization
method does not influence the results. It proves the consistency of the method: the
stabilization terms vanish when the characteristic length of the mesh goes to zero.
Those results are identical with other configuration for the stabilization method.
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Figure 2.2 – Streamline of the analytic solution, capture from [58]
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Figure 2.3 – Kovasnzay test-case. Convergence study for different polynomial orders, with or
without stabilization method. Log/Log scale.
Stab and No-Stab plots are perfectly stacked
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Turek 2D Benchmark: Flow Around a Cylinder, Re=20

This benchmark is proposed on http://www.featflow.de. The geometry of
the model is a pipe without a circular cylinder of radius r = 0.05, as described in
figure 2.4. No-slip boundary conditions are imposed on upper and lower walls and

Figure 2.4 – Geometry of the Problem

on the boundary of the cylinder. The left edge is the input of the pipe where a
Poiseuille profile is prescribed,

u(0, y) = (
4Uy(0.41− y)

0.412
, 0) (2.53)

with the maximum amplitude of the velocity Uy = 0.3. The right edge is the output
of the pipe and with a do-nothing condition

σ̄ = 0. (2.54)

The parameters of the fluid are set to ρ = 1.0 and µ = 0.001. With this configuration,
the Reynolds number obtained is Re = 20 and the system turns into a stationary
state.

In this benchmark, we are interested in three quantities. The lift and drag
coefficients are respectively defined by

CD =
2

Ū2L
FD, CL =

2

Ū2L
FL (2.55)

with Ū = 0.2 the mean velocity at the input, L = 0.1 the characteristic length of the
flow configuration and (FD, FL) such that

(FD, FL) =

∫
ΓC

σ̄ndΓ (2.56)

where ΓC is the boundary of the cylinder and n is the outer normal vector of the circle.
The last quantitity of interst is the pressure difference ∆p = p(a1)− p(a2) between
the points a1 = (0.15, 0.2) and a2 = (0.25, 0.2). We will compare our results with the
reference values: CD = 5.57953523384, CL = 0.010618948146 and ∆p = 0.11752016697.

We tested the framework with or without stabilization method (SUPG1d,see
chapter 3). The results obtained with our fluid solver are coherent with the reference
values, see table 2.5.

http://www.featflow.de
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No Stab With Stab
CD 5.5769 [0.047] 5.5771 [0.043]
CL 0.010629 [0.100] 0.010630 [0.110]
∆p 0.11751 [0.008] 0.11751 [0.007]

Figure 2.5 – Turek benchmark: flow around a cylinder, Re = 20. Numerical results for the drag
coefficient, lift coefficient and pressure difference. In bracket: relative error in %, compared with the

reference values.

4.2 Validation of the Slip Boundary Condition Implementa-
tion

We present, in this subsection, a convergence study for two problems with
slip conditions: one with a straight boundary and the second one with a curved
boundary. The principle will be identical for both test-cases: we solve the Navier-
Stokes equations on a closed domain, where a manufactured function is imposed on
the boundary, using slip conditions. We can then compare the numerical solutions
with the exact solutions and we evaluate the quantities: ‖uh − ue‖0, ‖uh − ue‖1 and
‖ph − pe‖0. For each problem, we display the evolution of these errors as a function
of the characteristic size of the mesh. To determine the best configuration, we
performed simulations for different values of the constants α, γ and ε. We remind
the role of these constants:

• α = ±1 determine the treatment of the pressure/velocity term in the Navier-
Stokes weak formulation (symmetric or skew-symmetric), see (2.16),

• γ is a positive penalty constant used in the stabilized formulation for slip
boundary conditions, see (2.28)

• ε = ±1 determine the form of the stabilization terms in this formulation for
slip boundary conditions: symmetric or skew-symmetric, see (2.28).

We also performed one simulation with strongly-imposed Dirichlet conditions to
compare the convergence rates.

Slip Conditions on a Square

The domain is a square Ω = [−1, 1] × [−1, 1]. The viscosity is supposed to be
constant µ = 1. The manufactured solution is

u = (2y(1− x2),−2x(1− y2)),

p = x2 + y2.
(2.57)

With this solution we can evaluate the slip condition on the boundary

u · n = 0,

(T (u, p)n)τ = (2y(1− x2),−2x(1− y2)).
(2.58)
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The source term is chosen to fit with this solution. The discrete solution is computed
for different values of h = 0.2, 0.1, 0.05, 0.025. The method only converges when
ε = α, so we presented results for (α, ε) = (1, 1) and (α, ε) = (−1,−1). We also tested
different values for γ = 10−4, 10−2, 1, 102, 104. The convergence study is summarized
on figure 2.6.

Slip Conditions on a Ring

The second test-case is made on a ring, defined by 1 ≤ x2 + y2 ≤ 4. The exact
solution

u = (−y
√
x2 + y2, x

√
x2 + y2),

p = x2 + y2,
(2.59)

is imposed with a Dirichlet condition on the internal boundary (x2 + y2 = 1) and
with the slip condition

u · n = 0,

(T (u, p)n)τ = (−2y, 2x),
(2.60)

on the external boundary (x2 +y2 = 4). Again the source term f is designed to obtain
the exact solution in the domain. The results for this test-case can be seen on figure
2.7.

Considering the results of the figures 2.6 and 2.7, we observe that:

• as announced in [100], the version with (α, ε) = (−1,−1) is more robust, and
seems to be unconditionally stable,

• the convergence is globally better for small values of γ,

• we almost retrieve the theoretical convergence rate, except for the L2 error on
u, on the ring,

• with a suited configuration, the method is as efficient for curved or straight
boundary.

From those observations, we can choose our favorite setup for later simulations
with slip boundary conditions: γ = 10−4, α = −1 and ε = −1. These values will be
used by default. For that reason, the parameter α will not appear in the variational
formulation anymore: we always use the anti-symmetric formulation.
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Figure 2.6 – Slip conditions applied on a squared geometry.
Convergence study of the errors between exact and FE solutions as function of the characteristic
length h. Log/Log scale. Linear regression and slope displayed for different values of α, γ and δ.
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Figure 2.7 – Slip conditions applied on a ring geometry.
Convergence study of the errors between exact and FE solutions as function of the characteristic
length h. Log/Log scale. Linear regression and slope displayed for different values of α, γ and δ.
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4.3 Validation of the Aerothermal Solver

The Buoyancy Driven Cavity

We test here our aerothermal framework on the closed insulated heated cavity
benchmark. The domain is a square Ω = [0, 1] × [0, 1], the left and right walls
have fixed temperature, respectively to T = 1 and T = 0. The bottom and top
walls are supposed to be adiabatic. We also impose a no-slip boundary condition,
u = (0, 0), on the whole boundary. This setup is summarized in figure 2.8. We
solved the aerothermal problem with different parameters. For this benchmark, the
aerothermal system is usually written in a dimensionless formalism and the regime
can be characterized using the Rayleigh number,

Ra =
gβ

νκ
ΘL3, (2.61)

where ν, g, β and κ are the physical parameters defined in previously, Θ is the
characteristic temperature difference and L is the characteristic length of the
problem.

y

x
(0, 0)

(1, 1)

T = 0T = 1

Adiabatic Wall

Adiabatic Wall

g

Figure 2.8 – Buoyancy Driven Cavity Setup

We performed simulations for 103 ≤ Ra ≤ 108, and we measured the following
quantities:

• the maximum vertical velocity at the mid-height (value and location), table
2.1,

• the maximum horizontal velocity at the mid-width (value and location), table
2.2,

• the maximum Nusselt number on the hot wall (value and location), table 2.3,

• the averaged Nusselt number on the hot wall, table 2.4.



42 CHAPTER 2. MODELING OF AN AEROTHERMAL PROBLEM

Ra Present Ref.[106] Ref.[25] Ref.[67] Ref.[69]
103 3.697 (0.178) 3.686 (0.188) 3.679 (0.179) 3.73 (0.182) 3.696 (0.179)
104 19.63 (0.118) 19.79 (0.120) 19.51 (0.120) 19.90 (0.124) 19.61 (0.119)
105 68.59 (0.068) 70.63 (0.072) 68.22 (0.066) 70.0 (0.068) 68.69 (0.067)
106 221.1 (0.038) 227.1 (0.040) 216.8 (0.039) 228.0 (0.039) 220.8 (0.038)
107 697.6 (0.022) 714.5 (0.022) - 698.0 (0.024) 703.3 (0.022)
108 2206 (0.12) 2259 (0.012) - - 2223 (0.013)

Table 2.1 – Buoyancy Driven Cavity. Maximum vertical velocity (uy) at the mid-height (y = 0.5).
Value (x position) for different Rayleigh numbers

Ra Present Ref.[106] Ref.[25] Ref.[67] Ref.[69]
103 3.649 (0.812) 3.489 (0.813) 3.634 (0.813) 3.680 (0.817) 3.649 (0.813)
104 16.18 (0.822) 16.12 (0.815) 16.20 (0.823) 16.10 (0.817) 16.18 (0.824)
105 34.73 (0.852) 33.39 (0.835) 34.81 (0.855) 34.00 (0.857) 34.77 (0.854)
106 64.82 (0.848) 65.40 (0.860) 65.33 (0.851) 65.40 (0.875) 64.69 (0.846)
107 148.6 (0.878) 143.6 (0.922) - 139.7 (0.919) 145.3 (0.885)
108 321 (0.927) 296.71 (0.930) - - 283.7 (0.946)

Table 2.2 – Buoyancy Driven Cavity. Maximum horizontal velocity (ux) at the mid-width (x = 0.5).
Value (y position) for different Rayleigh numbers

Our results are compared with reference values from [106], [25], [67] and [69].
We can reasonably conclude in the accuracy of our aerothermal framework. The
measured values perfectly fit with the references, even for high Rayleigh numbers
(Ra ≥ 107) when the resolution is definitely not trivial.

Ra Present Ref.[106] Ref.[25] Ref.[67] Ref.[69]
103 1.506 (0.088) 1.501 (0.08) 1.50 (0.092) 1.47 (0.109) 1.506 (0.090)
104 3.531 (0.142) 3.579 (0.13) 3.53 (0.143) 3.47 (0.125) 3.530 (0.143)
105 7.721 (0.082) 7.945 (0.08) 7.71 (0.08) 7.71 (0.08) 7.708 (0.084)
106 17.56 (0.038) 17.86 (0.03) 17.92 (0.038) 17.46 (0.039) 17.53 (0.038)
107 39.92 (0.018) 38.6 (0.015) - 30.46 (0.024) 41.02 (0.039)
108 93.63 (0.008) 91.16 (0.010) - - 91.21 (0.067)

Table 2.3 – Buoyancy Driven Cavity. Maximum Nusselt number on the hot wall (x = 0). Value (y
position) for different Rayleigh numbers.
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Ra Present Ref.[106] Ref.[25] Ref.[67]
103 1.118 1.117 1.12 1.074
104 2.245 2.254 2.243 2.084
105 4.522 4.598 4.52 4.3
106 8.835 8.976 8.8 8.743
107 16.63 16.66 - 13.99
108 31.12 31.49 - -

Table 2.4 – Buoyancy Driven Cavity. Averaged Nusselt number on the hot wall (x = 0). Value for
different Rayleigh numbers.

Conclusion

In this chapter, we detailed the different techniques implemented for the resolu-
tion of an aerothermal problem:

• formulation: incompressible Navier-Stokes equations coupled with an energy
equation in the Boussinesq approximation,

• discretization: finite element method

• non linear resolution:

– iterative method: Newton algorithm

– continuation method on physical parameters

– pseudo-transient continuation

In this framework, we developed an efficient tool for the resolution of aerother-
mal problems. We also proposed techniques to reach high Reynolds numerical
solutions. And eventually, the numerical results confirmed the adequacy of our
implementation.

However, in this chapter, we were only working on small academic problems, and
we were free to refine the meshes when necessary. This refining solution is hardly
practicable for industrial problems, and we have to consider new approaches. To
avoid the Direct Numerical Simulation (DNS), we will introduce turbulence models
in the chapter 4. But in a first instance, we have to deal with the instability issue of
the Galerkin method. This delicate point is detailed in the next chapter.
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The instability of the Galerkin method is a well-known issue of advection/convec-
tion dominated problems. When we started working on aerothermal simulations,
the physical parameters were very smooth and not convection dominated. In these
conditions, the stability of the solution was not an issue. Our straightforward recipe
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was to refine the mesh when oscillations appeared. However, when we started
looking at industrial configurations - with realistic physical parameters - it was not
possible to refine meshes that much. We had to introduce new ingredients.

We naturally studied turbulence models and started working on the implemen-
tation. Nevertheless, it appeared very soon that the turbulence model would not
be enough. We needed a specific feature to handle the numerical instability. We
considered two kinds of method: the Continuous Interior Penalty (CIP) [11], and the
Streamline Diffusion Methods (SDM) [46]. After some tests with the CIP method,
we were not fully satisfied: the procedure was either not stable enough or too diffu-
sive. We finally chose to focus our efforts on the SDM which are, by the way, the
most common techniques to deal with turbulent flows.

The SDM were first introduced by Hughes and Brooks [46, 7], with the Stream-
line Upwind/Petrov-Galerkin (SUPG) method for advection dominated flows. Then,
this technique has been extended into two new stable Petrov-Galerkin formulations:
the Galerkin Least Square (GLS), Hughes et al. [43] and the Douglas-Wang (or
SGS) for Stokes equations, Douglas and Wang [29]. In the following section, we
propose a review of these different approaches for the advection-diffusion-reaction
equation and the Navier-Stokes system.

Our implementation of those methods has been enriched progressively to face
different issues:

• First SUPG implementation: efficient on homogeneous isotropic meshes. The
design of the stabilization parameter was very basic and did not take into
account the polynomial order of the finite element space.

• We implemented a new design for the stabilization parameter, and we intro-
duced the weighting coefficient λK . The stabilization on anisotropic meshes
(boundary layers) with very stretched cells remains inefficient.

• We expected some improvement with the implementation of the GLS and SGS
formulations. The GLS helps in some configuration, but the SGS does not
provide any significant upgrade. For that reason, we only propose numerical
results for GLS and SUPG in this chapter.

• A significant enhancement came with the implementation of a new approach
for the evaluation of the characteristic length. The new design is adapted
to triangular cells and takes into account the direction of the advection field.
Thus, the stabilization parameter became more efficient in the boundary layers,
and we finally obtained stable solutions. However, the SDM still produces some
under/overshoots in regions of sharp discontinuities. These small oscillations
usually generate new kind of instability within the turbulence transport
equations.

• The under/overshoots issue have been covered with the implementation of
shock capturing (or discontinuity capturing) methods. With this new feature,
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we can finally envisage the modeling of turbulent flows.

We give the details of those developments in the further sections. In the last
section, we also propose a comparison of the different configurations with some
relevant test cases. Hopefully, at the end of the chapter we will be able to determine
the optimal stabilization technique for each kind of problems.

1 Streamline Diffusion Methods

Let X an Hilbert space on Ω, with scalar product (·, ·)X and associated norm
‖ · ‖X . We introduce a stationary advection-diffusion problem, where u ∈ X is the
solution of

a · ∇u−∇ · (κ∇u) + σu = f, (3.1)
where a ∈ [L2(Ω)]d is the advection flow satisfying∇·a = 0 on Ω, κ ∈ H1(Ω), κ(x) > 0
is the diffusivity coefficient, σ > 0 ∈ L2(Ω) is a reaction coefficient and f ∈ L2(Ω) is
source function.

To solve this problem, we introduce a suitable FE space Xh ⊂ X and we write
the variational formulation of equation (3.1), as find uh ∈ Xh such that∫

Ω

a · ∇uhvh dΩ +

∫
Ω

κ∇uh · ∇vh dΩ +

∫
Ω

σuhvh dΩ =

∫
Ω

fvh dΩ , ∀vh ∈ Xh. (3.2)

This discrete problem is called advection (or convection) dominated when the Peclet
number is larger than 1,

Pe =
‖a‖∞L

2κ
> 1, (3.3)

with L the characteristic length of the domain. This definition might be inappropri-
ate when the nature of the flow a brutally changes in the domain or when the mesh
is not homogeneous. For that reason we usually prefer the local Peclet number

Peh =
|a|ph

2κ
, (3.4)

where | · |p denotes the p-norm and h is the characteristic length of the current
element. Using the local Peclet number we can define a problem as advection
dominated as soon as its max on the domain is larger than 1,

max
x∈Ω

Peh(x) > 1. (3.5)

In the context of advection-dominated flow, the error bound on the Galerkin
projection uh does not guarantee a good approximation anymore. In practice the
system becomes numerically unstable and non-physical oscillations appear. A trivial
solution would be to refine the mesh to reduce the Peclet number, but this approach
might be very costly and not achievable in practice. The alternative solution is to
add a stabilization operator to take care of these numerical oscillations.
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1.1 Stabilized Formulation

We first introduce the stabilized formulation, using the decomposition of the
operators, as proposed in [43]. We denote by L the advection diffusion reaction
operator, defined as

L u = a · ∇u−∇ · (κ∇u) + σu,∀u ∈ X (3.6)

and we also define its symmetric and skew-symmetric contributions

LSu = −∇ · (κ∇u) + σu, LSS = a · ∇u, ∀u ∈ X (3.7)

respectively.

The stabilized formulation of equation (3.2) can be written as, find uh ∈ Xh such
that

a(uh, vh) + aK(uh, vh) = l(vh) + lK(vh), ∀vh ∈ Xh, (3.8)

where for any (u, v) ∈ X2

a(u, v) =

∫
Ω

a · ∇uv dΩ +

∫
Ω

κ∇u · ∇v dΩ +

∫
Ω

σuv dΩ , l(v) =

∫
Ω

fv dΩ , (3.9)

and the stabilization terms aK and lK are defined, for any (uh, vh) ∈ Xh, such that

aK(uh, vh) =
∑
K∈Th

∫
K

τhL uh(LSSvh + γLSvh) dΩ , (3.10)

lK(vh) =
∑
K∈Th

∫
K

τhf(LSSvh + γLSvh) dΩ . (3.11)

The computation of the stabilization parameter τh is detailed in the following section.
The constant γ determines the nature of the stabilization method:

• γ = 0 : SUPG,

• γ = 1 : GLS,

• γ = −1 : DW.

Remark 3. The stabilization terms (3.10) are consistent with respect to the strong
formulation of the problems. They vanish if we plug the exact solution in the equa-
tions.

1.2 The Navier-Stokes Equations

The stationary Navier-Stokes system{
ρu∇u−∇ · (µ∇u) +∇p = g

∇ · u = 0
(3.12)
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can be seen as a particular case of the generic advection diffusion reaction problem
presented in former section by identifying f = g − ∇p, a = ρu, κ = µ and σ = 0.
We can then extend the stabilization operator described previously and write the
stabilized variational formulation for NS system, as find (uh, ph) ∈ Vh × Qh such
that ∫

Ω

ρuh∇uh · vh dΩ +

∫
Ω

µ∇uh : ∇vh dΩ

−
∫

Ω

ph∇ · vh dΩ +

∫
Ω

(∇ · uh)qh dΩ + aNSK (uh,vh; ph) =

∫
Ω

gvh dΩ + lNSK (uh,vh)

(3.13)
where

aNSK (uh,vh; ph) =
∑
K∈Th

∫
K

τh(ρuh∇uh −∇ · (µ∇uh) +∇ph) · (ρuh∇vh − γ∇ · (µ∇vh)) dΩ

(3.14)

+
∑
K∈Th

∫
K

δh∇ · uh∇ · vh dΩ (3.15)

lNSK (uh,vh) =
∑
K∈Th

∫
K

τhg · (ρuh∇vh − γ∇ · (µ∇vh)) dΩ (3.16)

with γ and τh defined in previous paragraph. We choose here to keep the term
lNSK on the right-hand side since the value of the convection field in that term is
usually taken at the previous linear iteration, see section 3 for more details on the
non-linear resolution.

Remark 4. We add a stabilization term on the divergence. This term is controlled
by a new parameter δh = 2|uh|2pτh, where | · |p is the p-norm as used in the definition
of τh, see next section. The divergence stabilization term is not mandatory, but we
observed a clear improvement of the results when using it. In further sections, we
suppose that this term is present in the stabilized formulation by default.

1.3 Convergence of the Method

We will not detail the error analysis of the SDM in this manuscript. The conver-
gence of this formulation has been studied, for instance, in [43, 44, 53]. We remind
here the global result: for sufficiently smooth u, there exists a constant Cu such that

‖uh − u‖2 ≤ Cuh
2l (3.17)

where
2l = 2k + 1, α large
2l = 2k, α small

(3.18)

with k the polynomial order of the finite element space and α is the weight local
Peclet number introduced in (3.26), see section 2.
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We reporter the reader to the cited references for a rigorous formulation of the
hypothesis and a proof of this result.

2 Stabilization Parameter

The present stabilization methods are particularly sensitive to the choice of the
parameter τh. Many different definitions of this parameter can be found in the
literature. We present in this section a non-exhaustive list of suitable parameters
determined from different mathematical error analysis [45, 43, 61, 62]. We first
detail the design of the parameter for advection-diffusion problem and then an
extension of this definition for problems with reaction term. In the last subsection,
we present different approaches for the delicate computation of the characteristic
length of an element.

The required ingredient for the stabilization parameter is the evaluation of the
local Peclet number, Peh, presented in (3.4). For the Navier Stokes equation, the
Peclet number is replaced by the Reynolds number but definition and roles are
identical,

Reh =
|u|ph

2ν
. (3.19)

These quantities mainly depend on the characteristic size h and have real impacts
on the efficiency of the method. For now, we do not specify the form of the length h.
We will focus on this delicate detail in the subsection 2.2.

The value of the local Peclet/Reynolds number will determine the type of prob-
lem we are dealing with. Small Peclet/Reynolds numbers correspond to diffusive
problems and are usually stable. Large Peclet/Reynolds numbers define convection
dominated cases and require adapted stabilization. For the rest of the section, we
use Peclet number and associated notations (a, κ) in the formulas. The computation
of stabilization parameter is equivalent for Navier Stokes equations, by replacing
the corresponding quantities Peh ∼ Reh, a ∼ u and κ ∼ ν.

The stabilization parameter τh has to satisfy the asymptotic behaviors

τh = O

(
h

|a|

)
, Peh large , τh = O

(
h2

κ

)
, Peh small (3.20)

In [8], Hughes et al. determine the optimal stabilization parameter, for 1-D
problem with linear FE, as

τ 0
h = (coth(Peh)−

1

Peh
). (3.21)

This formula has been generalized for multi-dimensional problems but requires
some modifications for higher FE polynomial order. An extension of this formula
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was proposed in [45, 43], with the introduction of a function ξ(α) to locally switch
between diffusive and convective problems. We can then define the stabilization
parameter as

τ 1
h =

h

2|a|2
ξ(α). (3.22)

where α is a weighted version of Peh and ξ(α) has the properties described in figure
3.1, with m ≤ 2C and C is a constant satisfying the inverse estimate inequality

C
∑
K∈Th

h2‖∆v‖2
K ≤ ‖∇v‖2, v ∈ Xh (3.23)

where ‖ · ‖K is the L2-norm in the cell K. The practical evaluation of the constant

Figure 3.1 – Definition of ξ(α), from [43]

C is explained in [48] : some basic values of C are given for particular shapes and
polynomial degrees, for instance C = 1/24 for biquadratic rectangular elements.
A general method is also proposed in order to evaluate C in any cases using the
solution of the local eigen value problem

λK = max
v∈(Pk(K)\R)

‖∆v‖2
K

‖∇v‖2
K

(3.24)

we can then define
C =

1

λKh2
. (3.25)

With this definition, C is a constant independent of the shape of the cell as long as
we use the definition of h given in [48], this definition is detailed in the subsection
2.2. We actually figured out that C has to be a constant on the whole mesh. This
property is particularly important on anisotropic meshes. To recover this constant
value we always use the hh definition (3.45) to compute C. Then, we can use any
definition for the characteristic length to compute the local Peclet number.

Hughes et al.proposed different formulas for ξ(α) first in [45] and [43] and finally
in [61, 62]. This last version is more convenient to use and became the most common
formulation, we recall here the main ingredients:

ξ(α) =

{
α, 0 ≤ α ≤ 1,

1, α ≥ 1,
(3.26)
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α =
m|a|ph

2κ
, (3.27)

|a|p =


(∑d

i=1 |ai|p
)1/p

, 1 ≤ p <∞,
max
i=1,..,d

|ai|, p =∞,
(3.28)

m = min{1

3
, 2C}. (3.29)

with C defined as in (3.23) and then τ is defined as in (3.22).

Remark 5. The interest of the weighted Peclet/Reynolds number α is to take into
account the effect of the polynomial FE degree. Indeed, polynomial degree k ≥ 2 has
non-negligible effects on local Peclet/Reynolds number since it highly improves the
quality of the discrete approximation.

We will compare this definition of τ 1
h with a formula proposed by Burda et al.in

[10] using the approximation h ≈ 1√
λK

which also takes into account the influence of
the polynomial order,

τ 2
h =

ξ(α)√
λK |a|p

, (3.30)

ξ(α) =

{
α, 0 ≤ α ≤ 1,

1, α ≥ 1,
(3.31)

α =
|a|p

2κ
√
λK

, (3.32)

(3.33)

where λK is defined as in (3.24) and | · |p is the usual p-norm defined in (3.26).

2.1 Extension to Advection Diffusion Reaction Problems

The parameter τ 1
h defined in (3.22) is very efficient for advection dominated flows,

but he does not take care of the potentially high reaction coefficient σ. It is not an
an issue for the resolution of the aerothermal model presented in chapter I but we
met some difficulties with the stabilization of the turbulence models equations, see
chapter 4.

An extension of τ 1
h for problem with reaction term is proposed in [33], with a new

stabilization parameter τ 3
h defined by

τ 3
h =

h2

σh2ξ(ασ) + 4κ
m
ξ(ακ)

, (3.34)

ασ =
2κ

mσh2
, (3.35)
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ακ =
m|a|ph

2κ
, (3.36)

ξ(α) =

{
1, 0 ≤ α ≤ 1,

α, α ≥ 1,
(3.37)

|a|p =

(
d∑
i=1

|a|p
)1/p

, 1 ≤ p <∞. (3.38)

We did minor changes in the constants of τ 3
h and ακ in order to recover exactly the

definition of τ 1
h when σ = 0.

2.2 Choice of the characteristic length

The definition of the characteristic size of a cell is a key ingredient in the
computation of a stabilization parameter. This choice is particularly crucial for
anisotropic meshes with important aspect ratios. For isotropic meshes, most of the
following solutions will produce acceptable results.

We want to compare these different options for highly anisotropic meshes, as
used in the turbulent boundary layers. The same kind of study has been made by
Mittal, [73] for the stabilization of equal-order-interpolation velocity-pressure for
Navier-Stokes equations.

hm definition : h = hm is the length of the smallest edge of the cell.

hd definition : We use the projection of the current convection field a on the
directions of the cell. This definition was introduced by Hughes in [42] and is
particularly convenient for anisotropic meshes. We first define the local convection
field â on the reference element, K̂:

â = J−1a (3.39)

where J is the Jacobian of the geometric mapping from the reference element to the
current cell. We can then define

h = hd =
|a|p
|â|p

ĥ, (3.40)

where ĥ is the characteristic length of the reference element. This definition works
particularly well on hypercubes, but we noticed some regularity issue when we
applied this method on triangles. We finally figured out that these irregularities
came from the shape of the reference cell. In Feel++, the reference simplex (in
2D) is a squared isosceles triangle. This shape is not symmetric by rotation and
then the advection field â would depend on the rotation between the current cell
and the reference element. To overcome this problem, we decided to refer â to a
new reference triangle K̃ which is equilateral. An illustration of this procedure
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a
â ã

Figure 3.2 – Geometric transformation back on a reference element K̃.
Computation of the local field ã, used for the characteristic size hd.

is proposed in figure 3.2. In our case the geometric mapping from K̂ to K̃ can be
written as

X̃ = MX̂ (3.41)

with

M =

[
1 1/2

0
√

3/2

]
. (3.42)

Then we can use the matrix M to report the field â on K̃.

ã = Mâ = MJ−1a (3.43)

and finally the characteristic length is computed as

h = hd =
|a|p
|ã|p

h̃. (3.44)

hh definition : Harari and Hughes proposed this definition in [48] and provided
an interesting measure for anisotropic meshes. The idea is to compute the size of
the cell using the area of the element and the average vertex-to-centroid distance.
The formulation for triangle is

hh =
4S√

3
∑3

a=1 |xi − xc|2
(3.45)

where S is the surface of the cell, xi are the vertex of the triangle and xc the centroid
of the triangle. We have a similar definition for quadrangle elements

hh = hxhy

√
2

h2
x + h2

y

(3.46)

where hx and hy are the characteristic length of the quadrangle in both direction.

he definition : an almost optimal definition for anisotropic elements would be
to compute the inscribed ellipse for each element and then to take as h = he the
radius of this ellipse in the direction of the advection field a. Even if this approach
is interesting in theory, it appears impracticable to implement and we did not take
time to study this version.
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3 Shock Capturing Method

The SDM are particularly efficient to stabilize convection-dominated problems,
however these methods also generate significant overshoots and undershoots in
regions of high gradient. An example of this non-physical oscillations can be seen in
figure 3.3

Figure 3.3 – Non-physical oscillations resulting from supg stabilization on the advection skew mesh
test case 4.2

Different methods have been developed in the last decades to eliminate or at
least diminish these oscillations. We particularly noted three families of methods.
The non-linear upwinding techniques, introduced by Mizukami and Hughes [74],
is very effective to remove the oscillations but is known to introduce too much
numerical diffusion and then a loss of accuracy. Another solution is to add artificial
diffusion. This diffusion can be either isotropic [45], orthogonal to the streamlines
[52] or based on an edge stabilization [13]. In their implementation of a k − ε
model, Kuzmin et al. [59] proposed an alternative algebraic solution, by applying
an iterative flux correction. Note that all these methods are non-linear.

In this work, we chose to focus on the artificial diffusion methods. These methods
are convenient to implement once the SUPG/GLS framework is in place. Also,
they succeed in being very effective with no excessive artificial diffusivity. We
implemented different versions proposed in the literature, and we give some details
in this section.

3.1 Isotropic Artificial Diffusion

Hughes et al.[45] first proposed to add a new term in the SUPG stabilization

(Rh(uh), τ
sc
h a

‖ · ∇vh) (3.47)
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where Rh(uh) is the discrete residual, a|| is the projection of the convection field
a in the direction of ∇uh and τ sch is a non negative stabilization parameter. Many
definitions and improvements were developed after this first version, we remind
hereafter the most common versions.

Galeão and do Carmo [28] proposed to replace the projected convection field a||
by the new vector field zh = Rh(uh)

∇uh
‖∇uh‖22

. The new additional term then reads

(Rh(uh), τ
sc
h zh · ∇vh), (3.48)

with the following definition for τ sch

τ sch = τh max

(
0,
‖a‖2

‖zh‖2

− 1

)
, (3.49)

where τh is the SUPG/GLS stabilization parameter as defined in section 2.

Almeida et al.[1] also use the formulation (3.48) but they introduce a new quan-
tity ζh in their definition of τ sch to reduce the artificial diffusion in regions where the
numerical solution is smooth enough.

τ sch = τh(a) max

(
0,
‖a‖2

‖zh‖2

− ζh
)
, with ζh = max

(
1,
a · ∇uh
Rh(uh)

)
. (3.50)

3.2 Artificial Diffusion Added Orthogonally to Streamlines

This method, introduced by Johnson et al.[52] is very similar to the isotropic
diffusion, but it is only applied in the direction orthogonal to Streamlines adding
the term

(τ sch D̄∇uh,∇vh) (3.51)

where D̄ = I− a⊗ a
‖a‖22

is the projection orthogonally to vector a and τ sch is defined
as τ sch = max

(
0, ‖a‖2h

3/2 − κ
)
.

Codina [18] gives a new definition for τ sch , based on the validation of the discrete
maximum principle for several problems,

τ sch =
1

2
max

(
0, C − 2κ

‖a‖‖2h

)
h
Rh(uh)

∇uh
, (3.52)

where C is a suitable positive constant (proposed constant are C = 0.6 for linear
elements and C = 0.35 for quadratic elements).

Knobloch et al.proposed in [51] to replace |a||| by the quantity QK(uh) = ‖Rh(uh)‖2
‖∇uh‖2

which leads to the formulation

τ sch =
1

2
max

(
0, C − 2κ

QK(uh)h

)
hQK(uh). (3.53)
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In the same reference, Knobloch et al.also proposed a modified version of the shock
capturing terms presented by Burman and Ern in [12] with

τ sch = τh(a)
‖a‖2

2‖Rh(uh)‖2

‖a‖2‖∇uh‖2 + ‖Rh(uh)‖2

(3.54)

Considering all these methods and the results of section 4, we propose to use the
shock capturing term (3.51) but with the new parameter

τ sch = τh(a) max
(
0, ‖a‖2

2QK(uh)−Q2
K(uh)

)
. (3.55)

We had no time to perform a proper convergence study for this parameter, but the
numerical results presented in further sections are clearly encouraging.

4 Validation

We have implemented and compared the previously introduced methods on
different well-known test cases. We proposed in this section a validation and a
comparison of the different configurations. We tested the different stabilization
methods : SUPG and GLS, with parameters 1 (3.26), 2 (3.30) and possibly 3 (3.34).
We use the subscript m, d or h for the different h formulations proposed in section 2.2.
We compare those methods with standard Galerkin method (SGM) when it makes
sense. All the simulations are made on triangular meshes with order 2 FE.

4.1 Comparison of the Stabilization Methods

Advection Skew the Mesh

We propose here a qualitative observation of the results computed with different
configurations, on the well known advection skew the mesh example, [8]. The
advection field is constant a = (cos(α), sin(α)), the diffusivity coefficient is κ = 10−8.
There is no reaction and no source term. The test case consists in the propagation
of a discontinuity in quasi pure advection setup. The domain is a square Ω =
[0, 1] × [0, 1] with the boundary conditions: u(x, y) = 1 on Γ1 and u(x, y) = 0 on Γ0,
with Γ1 = {(x, y), x = 0, 0 ≤ y ≤ 0.2} ∪ {(x, y), y = 0} and Γ0 = ∂Ω\Γ1. This setup is
recapped on figure 3.4.

We compare the two methods (SUPG and GLS) for different values of α, α =
atan(0.5) on figure 3.5, α = atan(1) on figure 3.6 and α = atan(2) on figure 3.7. Those
quantitative results allow some observations:

• All the configurations succeed in stabilizing the model where the SGM does not
converge. We note the apparition of non-physical undershoot and overshoot
near the discontinuities.
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y

x(0, 0)
u = 1

u = 0

α
a

Figure 3.4 – Advection Skew the Mesh Setup

• The two methods (SUPG and GLS) give almost identical results and the
stabilization parameter seems to have more influence than the method.

• The parameters τ 2
h is more sensitive to discontinuities and boundaries.

• For τ 1
h , the choice of the characteristic length has only slight influence.

Thermal Boundary Layer

In this test case, we want to compare the different stabilization parameters
for advection-diffusion-reaction problems and especially their accuracy on non-
homogeneous anisotropic meshes.

We consider a rectangular domain Ω = [0, 1] × [0, 0.5], the boundary conditions
are :

u = 0, 1 ≤ x ≤ 1, y = 0,

u = 1, x = 0, 0 ≤ y ≤ 0.5,

u = 1, 0 ≤ x ≤ 1, y = 0.5

u = 2y, x = 1, 0 ≤ y ≤ 0.5

(3.56)

On this geometry, we do consider two configurations, see figure 3.9. The first one
with a coarse non-structured mesh, with a diffusion κ = 10−5. The second case is set
on an non-homogeneous anisotropic structured mesh, with κ = 10−8. This second
mesh presents high mesh ratio on the bottom boundary (up to 105). The stabilization
on this kind of stretched elements is particularly complicated and requires a suitable
definition of the characteristic length h. For both configurations, the advection field
is defined as a = (2y, 0). The interest of using the advection-diffusion-reaction
parameter τ 3

h will be discussed with different values for the reaction parameter σ.
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(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.5 – Advection Skew the Mesh profiles for α = atan(0.5).
Comparison of the two methods with different parameters and characteristic length

(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.6 – Advection Skew the Mesh profiles for α = atan(1).
Comparison of the two methods with different parameters and characteristic lengths
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(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.7 – Advection Skew the Mesh profiles for α = atan(2).
Comparison of the two methods with different parameters and characteristic lengths

y

x(0, 0) u = 0

u = 2yu = 1

u = 1

a = (2y, 0)

Figure 3.8 – Thermal Boundary Layer Setup

We first compare the results obtained with different methods, parameters, and
characteristic lengths. This study is made on the unstructured homogeneous con-
figuration. The setup presents sharp discontinuities and is not trivial to stabilize.
The profiles are presented in figure 3.10. We also propose three profile cuts (x = 0.2,
x = 0.5 and x = 0.8) to accurately compare the methods, see figure 3.11. We globally
retrieve the same conclusions we made in the previous test case: all configurations
stabilize, with more oscillations for τ 2

h parameter. From those first test cases, we can
reasonably conclude that the choice of the characteristic length will not influence
the stabilization method, at least on isotropic meshes. Also, the underlying method,
SUPG or GLS, has very little influence on the solution. For those reasons, we will
usually choose SUPG formulation (which is a bit less expensive to assemble) and
the τ 1

h parameter with hm definition for advection-diffusion on isotropic meshes.
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(a) Unstructured Homogeneous Mesh (b) Structured Non-Homogeneous
Anisotropic Mesh

Figure 3.9 – Meshes Used for the two Different Configurations of the Thermal Layer Teste Case

(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.10 – Thermal Layer on Coarse Unstructured Homogeneous Mesh. σ = 0, κ = 10−5.
Comparison of the two methods with different parameters and characteristic length
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(a) Vertical Cut x = 0.2
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(b) Vertical Cut x = 0.5
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(c) Vertical Cut x = 0.8

Figure 3.11 – Thermal Layer on Coarse Unstructured Homogeneous Mesh. σ = 0, κ = 10−5.
Comparison of the two methods with different parameters and characteristic length
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(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.12 – Thermal Layer on Structured Anisotropic Mesh. σ = 0, κ = 10−8.
Comparison of the two methods with different parameters and characteristic length
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(b) Vertical Cut x = 0.5
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(c) Vertical Cut x = 0.8

Figure 3.13 – Thermal Layer on Structured Anisotropic Mesh. σ = 0, κ = 10−8.
Comparison of the two methods with different parameters and characteristic length

The second configuration proposed on this geometry is setup to illustrate the
importance of the characteristic length definition for anisotropic meshes. On figures
3.12 and 3.13, we notice boundary oscillation for τ 2

h and τ 1
h with hm and hh versions.

The hd definition is the most accurate for anisotropic mesh since it takes into account
the direction and the magnitude of the advection field. We will prefer this definition
for problems with boundary layers. In this case again, the choice of the method
between SUPG and GLS does not significantly influence the results.

As a last configuration on the thermal layer problem, we now add reaction term,
σ = 1. This last study aims to discuss the interest of the parameter τ 3

h which
takes into account the value of the reaction coefficient σ. Since the parameter τ 2

h is
significantly less accurate than τ 1

h we chose to only perform comparisons with this
latter parameter. In both cases, we set h = hd which is the most robust definition.
The comparison is made on the unstructured homogeneous mesh with κ = 10−5,
figures 3.14 and 3.16, and also on the structured one with κ = 10−8, figures 3.15
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(a) SUPG1d (b) SUPG3d (c) GLS1d (d) GLS3d

Figure 3.14 – Thermal Layer on Coarse Unstructured Homogeneous Mesh. σ = 1, κ = 10−5.
Comparison of the two methods with different parameters and characteristic length

(a) SUPG1d (b) SUPG3d (c) GLS1d (d) GLS3d

Figure 3.15 – Thermal Layer on Structured Anisotropic Mesh. σ = 1, κ = 10−8.
Comparison of the two methods with different parameters and characteristic length

and 3.17. On the homogeneous mesh, both parameters and both methods have
comparable results. Nevertheless, we can denote a slight smoothing of the solution
with parameter τ 3

h . On the structured mesh, the activation of the reaction generates
non-physical oscillations on the boundaries. Those oscillations are significantly
bigger in the SUPG1d configuration. Using either GLS instead of SUPG or τ 3

h instead
of τ 1

h reduces this numerical issue. However, we never succeeded in completely
removing this annoying side effect. After many efforts, the best results we obtained
are those presented for GLS3d. Note that the use of shock capturing methods does
not improve the results.
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(b) Vertical Cut x = 0.5
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(c) Vertical Cut x = 0.8

Figure 3.16 – Thermal Layer on Coarse Unstructured Homogeneous Mesh. σ = 1, κ = 10−5.
Comparison of the two methods with different parameters and characteristic length
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Figure 3.17 – Thermal Layer on Structured Anisotropic Mesh. σ = 1, κ = 10−8.
Comparison of the two methods with different parameters and characteristic length

4.2 Shock Capturing Methods

The different methods tested in the present subsection are: ID-GC, from Galeão
and Carmo (3.48) and (3.49) , ID-A from Almeida et al.(3.50), OD-CK from Codina,
modified by Knobloch et al.(3.53) and OD-K proposed by Knobloch et al.(3.54). We
also present the results of our HOME shock capturing parameter, (3.55). According
to the previous results, the choice of method and characteristic length definition
does not have real influence on the solution, for this test case. All simulations are
then performed with the method denoted by SUPG1d.

Advection Skew the Mesh

We are considering again the advection skew the mesh test-case presented
in section 4.1. The aim of the shock capturing methods is the reduction of the
undershoots and overshoots produced by streamline diffusion methods, as identified
in figure 3.3.

Starting with a qualitative observation of the profiles on figure 3.18 we notice
reduction of the under/overshoots. To have a better idea, we propose a cut of these
profiles at x = 0.5, see figure 3.19. All the methods are smoothing the profile and
the under/overshoot entirely disappears except for OD-CK where the oscillations
are only reduced.

Advection in a Rotating Flow Field

We observed in the latter test case, the efficiency of the different methods.
Nevertheless, those methods are reducing the non-physical oscillations by adding
diffusivity. We now have to ensure that the considered methods are not too diffusive.
For that, we compare their results on the advection in a rotating field test case.

The problem is defined on a unit square (−0.5 ≤ x, y ≤ 0.5), see figure 3.20 with
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(a) SUPG1d (b) ID-GC (c) ID-A

(d) OD-CK (e) OD-CK (f) HOME

Figure 3.18 – Advection Skew the Mesh profiles for α = atan(0.5).
Comparison of the different shock capturing methods, using SUPG1d as stabilization method.

a velocity flow given by a = (−y, x). The boundary conditions are given by u = 0 on
all the external boundaries and we add an internal boundary condition with

u =
1

2
(cos(4πy + π) + 1) (3.57)

on the segment [OA], defined by x = 0, −0.5 ≤ y ≤ 0.5. The diffusivity is set to
κ = 10−8.

With this setup, the problem is almost purely advective, and so we should not
see any loss of energy. If the numerical scheme is too diffusive, a discontinuity
will appear along the segment [OA]. It is not supposed to happen with streamline
diffusion methods which only add diffusivity along the streamline. However, for
shock capturing method, we do see a discontinuity, see figure 3.21. As expected, the
SUPG used solo does not cause any loss of energy. For the shock capturing methods,
the results are very different. OD-K was one of the most effective methods when
considering results on the previous test case, but it produces here a massive loss of
energy. The discontinuity is less pronounced for ID-A and ID-GC and even less for
OD-CK, but this latter method was not very convincing on the previous test case.
Finally, our HOME method has the best results in term of energy loss, with a very
small discontinuity. Those observations are very encouraging, and we will use this
method in further numerical experiences.
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Figure 3.19 – Advection Skew the Mesh profiles for different values of α.
Comparison of the different shock capturing methods, using SUPG1d as stabilization method.
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Figure 3.20 – Advection in a rotating flow field setup

4.3 Stabilized Navier-Stokes Equations

The previous preliminary results, on advection diffusion reaction problems,
allows to efficiently chose the stabilization method, depending on the nature of the
problem. In this section, we want to validate those results for the Navier-Stokes
system.

The Driven Cavity

The steady NS equations are solved on a unit square Ω = [0, 1] × [0, 1]. A
constant velocity field u = (1, 0) is imposed on the top boundary y = 1, 0 ≤ x ≤ 1.
Homogeneous Dirichlet condition u = (0, 0) is imposed on other boundaries, see
figure 3.22. We run simulation with four different configurations: Re = 400/h =
0.125, Re = 1000/h = 0.125, Re = 5000/h = 0.0625 and Re = 10000/h = 0.03. All
those simulations are performed on a non-structured mesh. The discretization is a
standard Taylor-Hood FE space TH1

h. We performed all the stabilized simulation
with the stabilization term on divergence: without this term, the results are not
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(a) SUPG (b) ID-GC (c) ID-A

(d) OD-CK (e) OD-K (f) HOME

Figure 3.21 – Advection in a Rotating Flow Field.
Comparison of the different shock capturing methods, using SUPG1d as stabilization method.

conclusive for high Reynolds numbers. Our data are compared to reference values
from [77]. In this unpublished study, the author made an accurate compilation of
different results from many references, [108, 99, 20, 40, 14, 92, 93, 31] and also
proposed his own results.

As for the advection-diffusion problem, we will compare the two methods SUPG
and GLS, with parameters τ 1

h and τ 2
h . As we figured out in the previous study,

the influence of the characteristic length definition is negligible on homogeneous
meshes, thus we only present results with definition hm for this test case. For each
configuration, we present: an horizontal cut along the axis y = 0.5, 0 ≤ x ≤ 1 on
figure 3.24, a vertical cut along the axis x = 0.5, 0 ≤ y ≤ 1 on figure 3.23, a pressure
profile with contour on figure 3.26and a velocity profile with streamlines on figure
3.25.

First, regarding the cuts 3.24 and 3.23, we observe some differences between
the stabilized simulation and the reference for Re = 5000 and Re = 10000. The
localization of the extremum is correct but not their values. We hypothesized that
the mesh was too coarse to model the diffusion in the smaller scales accurately.
We performed a new simulation on a thin mesh (h = 0.01) and obtained better
results. This example perfectly illustrates the issue of using too coarse meshes
with stabilization methods: those techniques may give a stable numerical solution,
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Figure 3.22 – Driven Cavity. Problem Setup
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Figure 3.23 – Driven Cavity on Unstructured Homogeneous Mesh. ux along a Vertical cut x = 0.5.
Comparison of the two methods with different parameters

but will not properly model the diffusion in the small scales. In the next chapter,
we present a solution to this issue, using turbulence models. Eventually, we can
conclude in the efficiency of the two considered stabilization methods, as long as the
mesh is not too coarse. The methods give comparable results for both parameters,
τ 1
h and τ 2

h , as illustrated on figures 3.25 and 3.26.

Fluid Layer

This second test case for stabilized Navier-Stokes equation was run on a flat
plate geometry, proposed on NASA turbulence resources website1, see figure 3.27.
This test case was initially designed to benchmark turbulence codes, but for now,
we only want to test the robustness of our Navier-Stokes solver with high Reynolds
numbers and anisotropic meshes. We only consider the fluid resolution, without
turbulence model. The test case will be studied again, with turbulence, in a further
section. The geometry of the model is a rectangle domain [−0.5, 2]× [0, 1] with the
following boundary conditions, see figure 3.28:

1https://turbmodels.larc.nasa.gov/
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Figure 3.24 – Driven Cavity on Unstructured Homogeneous Mesh. uy along a Horizontal cut y = 0.5.
Comparison of the two methods with different parameters

• Inlet (x = 0.5, 0 ≤ y ≤ 1): u = (1, 0),

• Solid Wall (0 ≤ x ≤ 2, y = 0): no-slip condition u = (0, 0),

• Bottom (−0.5 ≤ x ≤ 0, y = 0) : slip condition u · n = 0, (T (u, p)n)t = 0,

• Top (−0.5 ≤ x ≤ 2, y = 1): slip condition u · n = 0, (T (u, p)n)t = 0,

• Outlet (x = 1, 0 ≤ y ≤ 1): free stream condition T (u, p)n = (0, 0).

We faced different issues with this simulation. The geometry presents a harsh
singularity at the point (0, 0) as the boundary condition turns from slip to a no-
slip condition. This discontinuity became annoying for high Reynolds numbers
(Re ≥ 104). Another difficulty stands in the highly anisotropic mesh. We generated
a simplex-mesh from the grid proposed by the NASA. All the rectangular cells
were split into two triangles. In the boundary layer on the bottom, the cells have
huge aspect ratios, and we had to adapt our stabilization parameters to fit with it.
Initially, we performed simulations on the 35× 35 grid but this mesh was too coarse,
and the solution was not acceptable. We finally present the more satisfying results
obtained on the 69× 49 grid. The most challenging point of these simulations was
the stability of the solution around the singularity at (0, 0). To give a better view of
the problem we present the velocity profile as a warp of the velocity field magnitude.
This representation highlights the non-physical oscillations in the boundary layers,
see figure 3.29. Note that those oscillations are not visible if you only display
the streamlines of the velocity field. The pressure may also present significant
fluctuations just after the discontinuity. We never succeeded in entirely removing
those oscillations, but we aimed to keep them local near the singularity, see figure
3.30. We ran the simulations with high Reynolds number, Re = 105. From a physical
point of view, the results have no interest since the model lacks diffusivity, but for
now, we are only interested in the numerical stability of the different configurations:
SUPG/GLS, τ1/τ2, hm/hh/hd.

From the results of figures 3.29 and 3.30, we clearly see the influence of the
characteristic length. This test case confirms the practicality of the hd version.
This version will be now systematically used on anisotropic meshes. Again, we
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(a) SUPG1, Re = 400 (b) SUPG1, Re = 1000 (c) SUPG1, Re = 5000 (d) SUPG1, Re = 1000

(e) SUPG2, Re = 400 (f) SUPG2, Re = 1000 (g) SUPG2, Re = 5000 (h) SUPG2, Re = 1000

(i) GLS1, Re = 400 (j) GLS1, Re = 1000 (k) GLS1, Re = 5000 (l) GLS1, Re = 1000

(m) GLS2, Re = 400 (n) GLS2, Re = 1000 (o) GLS2, Re = 5000 (p) GLS2, Re = 1000

Figure 3.25 – Driven Cavity on Unstructured Homogeneous Mesh. Velocity Streamlines.
Comparison of the two methods with different parameters
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(a) SUPG1, Re = 400 (b) SUPG1, Re = 1000 (c) SUPG1, Re = 5000 (d) SUPG1, Re = 1000

(e) SUPG2, Re = 400 (f) SUPG2, Re = 1000 (g) SUPG2, Re = 5000 (h) SUPG2, Re = 1000

(i) GLS1, Re = 400 (j) GLS1, Re = 1000 (k) GLS1, Re = 5000 (l) GLS1, Re = 1000

(m) GLS2, Re = 400 (n) GLS2, Re = 1000 (o) GLS2, Re = 5000 (p) GLS2, Re = 1000

Figure 3.26 – Driven Cavity on Unstructured Homogeneous Mesh. Pressure Contours.
Comparison of the two methods with different parameters
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Figure 3.27 – Flate Plate Boundary Conditions, as presented on Nasa resource page.

Slip
Free Streamu = (1, 1)

No-Slip

Figure 3.28 – Fluid Layer Setup

denote only small differences between the SUPG and GLS methods. However, the
convergence of our non-linear solver is improved when we use the GLS, and this
method will be preferred for high Reynolds simulations.
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(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.29 – Fluid Layer on structured anisotropic mesh with boundary structure on the bottom.
Focus on the region around the singularity. Warp of the magnitude of the velocity field.

Comparison of the two methods with different parameters

(a) SUPG1m (b) SUPG1h (c) SUPG1d (d) SUPG2

(e) GLS1m (f) GLS1h (g) GLS1d (h) GLS2

Figure 3.30 – Fluid Layer on structured anisotropic mesh with boundary structure on the bottom.
Focus on the region around the singularity. Pressure profile.
Comparison of the two methods with different parameters
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Conclusion

In this chapter, we presented the stabilization strategy we developed in our
aerothermal framework. The SDM is very efficient and offers an appropriate
response to the numerical instability of the Galerkin method. The numerical
examples of the last section illustrate the importance of the stabilization parameter.
The method is usually very robust but encounters some difficulties on anisotropic
meshes or near geometric singularities. In that cases, the formulation hd proposed
in this chapter appears to be particularly adapted. It also provides accurate results
on homogeneous isotropic meshes. However, the computation of this characteristic
length is a bit more expensive than the hm or hh versions which do not depend on
the convection field.

For advection-diffusion problems, SUPG and GLS usually give similar solutions
and the SUPG will be used by default since it is a bit cheaper to compute. However,
for advection-diffusion-reaction or the Navier-Stokes equations, GLS produces sig-
nificantly smoother results. In the table 3.1, we propose a recap of the recommended
configurations for each kind of problems.

In all this chapter we only presented and discussed the formulations for triangu-
lar meshes. This constraint is proper to the Feel++ library which does not provide
the required tools for hypercubes. We expected to recover a more stable system,
especially in the boundary layers, when working with hypercubes. Unfortunately,
the needed implementation in Feel++ was not fulfilled, and this conjecture remains
an open question.

Those stabilization issues were more challenging than initially expected. We
spend a considerable amount of time on this topic, but once those stabilization
methods were fully mastered, it finally opened the way to the turbulence modeling.

Isotropic Mesh Anisotropic Mesh
SDM τ h SDM τ h

Advection Diffusion SUPG τ1 or τ2 hm or hh SUPG τ1 hh
Advection Diffusion Reaction GLS τ3 hm or hh GLS τ3 hd
Navier-Stokes SUPG τ1 or τ2 hm or hd GLS τ1 hd

Table 3.1 – Recap of recommended configurations for different kinds of problems.
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The behavior of a fluid is defined by the Reynolds number Re,

Re =
U0L

ν
(4.1)

where U0 is the far-field velocity magnitude, L is the characteristic length of the
problem (usually the smallest significant length) and ν is the kinematic viscosity
of the fluid. For low Reynolds number, the flow is laminar: the viscosity forces
dominate, the model usually admits a steady state and is totally stable. When the

75
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Reynolds number grows, the physic becomes less compliant: the stationary state is
not guaranteed anymore, and we usually need stabilization methods if we do not
want to pay the price of a very thin mesh. This kind of flow is not turbulent yet but
can be defined as a transition state. If the flow is not stationary, he may recover a
periodic behavior and is still deterministic. For higher Reynolds, the flow becomes
turbulent: the behavior is chaotic with many scales of eddies.

The methodologies presented in the previous chapter provide an accurate frame-
work for modelization of laminar and transitional flows but are inefficient in the
simulation of turbulent problems. Even if the stabilization method allows to perform
simulations with high Reynolds numbers, they do not take care of the energy which
is supposed to be diffused in the smallest scales. We could theoretically solve all the
different scales and perform what is know as a Direct Numerical Simulation (DNS)
but for very high Reynolds number, the required time and space discretization
would be ridiculously not practicable [57].

Here comes the necessity to introduce a turbulence model in order to modelize all
the energy exchanges, at all scales, but with no proper resolution and a reasonable
discretization. We mainly distinguish two families of turbulence model:

• The Large Eddy Simulation (LES) in which only the small structures are
modelized. The larger structures are solved using Navier-Stokes equations.
This method is particularly adapted to transient problems and was not studied
in detail during this thesis.

• The Reynolds Average Navier-Stokes (RANS) method which consists in the
averaging of the chaotic component of the flow. The next section is dedicated
to this method and will present the main ingredients.

The field of turbulence modelization is very dense and complicated (especially
when you want to tackle it with a mathematical background ). In this chapter, we
only briefly remind the equations and the main ingredient of the presented models.
For more details, we refer the reader to [41], and the further cited references.

1 Reynolds Averaged Navier-Stokes Method

1.1 Time-Averaged Equations

We detail here the averaging of the Navier-Stokes equations, in order to recover
the RANS equations. The treatment of the energy equation will be discussed further.



1. REYNOLDS AVERAGED NAVIER-STOKES METHOD 77

Reynolds Decomposition

The Reynolds Decomposition is used in order to separate the value of a quantity
into its mean value and its fluctuations,

u = ū+ u′, (4.2)

where ū is the mean value, also called steady or averaged component, and u′ is the
fluctuations.

The Reynolds Averaged Navier-Stokes (RANS) equations are obtained by consid-
ering the Reynolds decomposition of the two fluid quantities

u = ū+ u′

p = p̄+ p′
(4.3)

Averaged Equations

After substitution of (4.3) into the Navier-Stokes equations, we obtain{
ρ(ū+ u′) · ∇(ū+ u′) +∇(p̄+ p′)− µ∆(ū+ u′) = f

∇ · (ū+ u′) = 0.
(4.4)

This system of equation is then averaged. In the couple further formulas, we chose
to use the tensor notation which was a bit more convenient.

ρ(ūj + u′j) ·
∂(ūi + u′i)

∂xj
+
∂(p̄+ p′)

∂xi
− µ∂

2(ūi + u′i)

∂xjxj
= fi

∂(ūi + u′i)

∂xi
= 0.

(4.5)

Given that ·̄ is a Reynolds operator, we may use the following properties,

ā′ = 0, a = ā, a+ b = ā+ b̄, ab = āb̄+ a′b′, (4.6)

to rewrite the previous equation (4.5),
ρūj

∂ūi
∂xj

+ ρu′j
∂u′i
∂xj

+
∂p̄

∂xi
− µ ∂2ūi

∂xj∂xj
= fi

∂ūi
∂xi

= 0.

(4.7)

This formulation is very close to the classic incompressible Navier-Stokes equa-
tions, except for the term u′j

∂u′i
∂xj

which can be rewritten (using the continuity equation

of the fluctuation) as ∂u′iu
′
j

∂xi
. The quantity Rij = ρu′iu

′
j is known as the Reynolds
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stress tensor and represents the effects of velocity fluctuation on the averaged
system. With this notation, the system (4.7) reads,


ūj
∂ūi
∂xj

+
∂p̄

∂xi
− µ ∂2ūi

∂xj∂xj
+ ρ

∂Rij

∂xj
= fi

∂ūi
∂xi

= 0.

(4.8)

Using the Reynolds decomposition in this averaged equations, we introduced
3 unknown quantities: ū, p̄ and R. Unfortunately, we have gained no additional
equations. We now need to close this system with additional equations. That closure
is provided by the different turbulence models. In what follow we focus on models
derived from the Boussinesq approximation.

1.2 The Boussinesq Approximation and Derived Models

The key of the RANS approach is to find an appropriate model for the Reynolds
stress tensor. A common method is to relate the Reynolds stresses to the mean
velocity gradients

−Rij = µt
∂ui
∂xj
− 2

3
ρkδij (4.9)

where the turbulence kinetic energy is defined as k = 1
2
u′iu

′
j and µt is the eddy

viscosity.

The RANS models derived from the Boussinesq approximation provide closure
equations in order to compute µt and k. Many different models can be found in the
literature. In the simplest models, the kinetic energy is neglected, and the turbulent
viscosity is directly express from the velocity fields. Those algebraic models are
usually not accurate enough. The most common models express the turbulent
viscosity µt and the kinetic energy k as solutions of one (Spalart-Allmaras, Baldwin-
Barth, ...) or two equations (k − ε, k − ω, SST, ...). Those models are reasonably
complex to be solved efficiently and are sufficiently accurate in their dedicated fields
of application. More complex models exist but were not studied.

In the context of this thesis, we were first interested in the Spalart-Allmaras
model which is known as efficient and relatively simple. In a second time, we chose
to implement a solver for the k − ω-SST model which appears to be more adapted
to the kind of problems we were studying. Those two models are detailed in the
following sections.
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1.3 Resolution Strategy

The resolution of the coupled RANS problems is integrated into the iterations of
the non-linear solver for the aerothermal problem described in chapter 2. Turbulent
problems requires both physical and Ψtc continuations, the turbulence model is
then activated when the molecular viscosity reaches a limit value µ∗ in the physical
continuation process. Then, the turbulent viscosity µt is updated at each iteration
in the non-linear solver (usually during the update of the Jacobian in Newton
algorithm). The actual computation of µt depends on the choice of the model and
will be detailed for each of them in the following sections.

We summarized the resolution procedure in the algorithm

Algorithm 1: Resolution Procedure for RANS Model using Newton Algo-
rithm
/* We denote by W the composite vector W = (uh, ph, Th) */

1 Choose µ∗; // Limit viscosity
2 Choose N ; // Number of steps in the physical continuation
3 Choose δ0 ; // Initial Ψtc pseudo time-step
4 Choose ε; // Tolerance for Newton algorithm
5 for 0 ≤ n ≤ N do // Physical continuation loop
6 µn ← µ

n
N ;

7 κn ← κ
n
N ;

8 δ ← δ0;
9 repeat // Newton iterations

10 if µn ≤ µ∗ then
11 Update µkt with W k; // Solve turbulence model PDE
12 else
13 µt ← 0;
14 end
15 Solve (1

δ
D + F ′(W k;µn, κn, µ

k
t ))S = −F(W k;µn, κn, µ

k
t );

16 W k ←W k + S;
17 Update δ; // See section 3
18 until ‖F(W k;µn, κn, µt)‖2 ≤ ε;
19 end
20 return W n

2 Spalart Allmaras Model

The Spalart Allmaras (SA) [96] model is probably one of the most used RANS
model. He is very popular thanks to its relative simplicity and accuracy. In this
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model, the kinetic energy k is neglected and the eddy viscosity µt is computed
through the resolution of a non-linear PDE.

2.1 Equations

The model is described by one transport equation. The calibration of the many
closure constants and more details can be read in [95, 50].

The eddy viscosity is given by µt = ρν̄fv1, where ν̄ is the solution of

u · ∇ν̄︸ ︷︷ ︸
Convection

− 1

σ
[∇ · ((ν + ν̄)∇ν̄) + cb2(∇ν̄ · ∇ν̄)]︸ ︷︷ ︸

Diffusion

− cb1(1− ft2)Sν̄︸ ︷︷ ︸
Production

+ [cw1fw −
cb1
κ2
ft2]
( ν̄
d

)2

︸ ︷︷ ︸
Destruction

= 0,

(4.10)
with the following notations,

χ =
ν̄

ν
, S =

√
(∇× u) · (∇× u) +

ν̄

κ2d2
fv2,

fv1 =
χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χfv1

, ft2 = ct3 exp(−ct4χ2),

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), r = min
( ν̄

Sκ2d2
, 10
)
,

(4.11)
where d is the distance from the closest surface. We furthermore consider the
constant parameters

cb1 = 0.1355, cb2 = 0.622, cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.2, cw3 = 2

cv1 = 7.1, ct3 = 1.2, ct4 = 0.5, κ = 0.41, σ = 2/3.
(4.12)

The problem is closed with the following boundary conditions,
ν̄ = 0, on ΓW (Walls)
ν̄ = 3ν, on ΓI (Inlets)

∇ν̄ · n = 0, on ΓO (Outlets),.
(4.13)

3 k − ω SST model

The k − ω SST model is known to be very robust and adaptive. The model was
first proposed in [70] and [71]. The model was then improved in [72]. We chose to
work on this formulation, known as the SST-2003 model. Note that many other
versions of the model were proposed, for instance in [94].
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3.1 The Equations

The turbulent eddy viscosity is computed by

µt =
ρa1k

max (a1ω,SF2)
(4.14)

where the turbulent kinetic energy k and the specific dissipation ω are solutions of
the coupled transport equations

∂k

∂ω
+ u∇k + β∗kω −∇ · [µ+ σkµt

ρ
∇k] = Pk,

∂ω

∂t
+ u∇ω + βω2 −∇ · [µ+ σwµt

ρ
∇ω] =

γ

µt
Pk + 2(1− F1)

σw2

ω
∇k · ∇ω,

(4.15)

with the following closure relations

F1 = tanh (arg4
1), arg1 = min

[
max

( √
k

β∗ωy
,
500µ

ρy2ω

)
,

4σw2k

CDkωy2

]
(4.16)

F2 = tanh (arg2
2), arg2 = max

(
2
√
k

β∗ωy
,
500µ

ρy2ω

)
(4.17)

Pk = min (τ̄ : ∇u, 10β∗kω), CDkω = max
(

2ρ
σw2

ω
∇k∇ω, 10−10

)
, (4.18)

S =
√

2(S̄ : S̄). (4.19)

Each closure constant is a blend of an inner and an outer constant, via

φ = F1φ1 + (1− F1)φ2 (4.20)

where φ1 represents constant 1 and φ2 represents constant 2. The closure constants
are

σk1 = 0.85, σω1 = 0.5, β1 = 0.075, γ1 = 5/9

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, γ2 = 0.44

β∗ = 0.09, κ = 0.41, a1 = 0.31.

(4.21)

We also remind some usual notations. τ̄ is the Reynolds stress tensor, defined,
for incompressible flow, by

τ̄ij = 2µtS̄ij −
2

3
ρkδij (4.22)

where δij is the Kronecker delta and S̄ is given by stress tensor,

S̄ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.23)

We can also rewrite this tensors as

τ̄ = 2µtS̄ −
2

3
ρkId, S̄ =

1

2
(∇u+ (∇u)T ) (4.24)
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3.2 Boundary and Initial Conditions

As initial values for k and ω, we choose

k0 =

(
µ0

ρl0

)2

, ω0 =
k1/2

l0
(4.25)

where µ0 = O(µ) is a constant initial viscosity and l0 is a default length such that
l0 ∈ [lmin, lmax], lmin corresponding to the size of the smallest admissible eddies.

At the inflow boundary the prescribed value are

k = cbc|u|2, ω =
k1/2

l0
, on Γin, (4.26)

where cbc ∈ [0.003, 0.01] is an empirical constant.

At the walls, we impose slip condition on the velocity

u · n = 0, on Γw. (4.27)

Wall functions

We denote by tw the tangential component of the force exerted by the viscous
stress tensor ε̄(u) = µ+µt

ρ
(∇u+∇uT ) on Γw

tw = n · ε̄(u)− ((n · ε(u)) · n)n. (4.28)

We consider an internal boundary Γy located at a distance y from the physical wall
Γw. Assuming that we are in the log-layer region, the logarithm wall laws leads to
the boundary conditions

tw = −uτ
u

|u|
, k =

u2
τ√
β∗
, ω =

uτ√
β∗κy

(4.29)

where β∗ = 0.09, κ = 0.41 is the von Karman constant. The friction velocity satisfy
the equation

|u|
uτ

=
1

κ
log y+ + β (4.30)

assuming that the local Reynolds number y+ = ρuτy
µ

is in the range 11.06 ≤ y+ ≤ 300.
In theory we have to impose the wall function on the inner boundary Γy and the
boundary layer of width y should be removed from the domain Ω. In practice, the
wall function is applied on the first degree of freedom at the interior of the domain
but we can not guarantee that this first dof will not fall into the viscous layer where
the current model would not be valid anymore.

To avoid this issue, we chose a solution proposed in [39]. We assume that the
first node always corresponds to a fixed value of y+. Since the deviation to the wall
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is assumed to remain very small, we can neglect the width of this layer and then
we avoid a costly mesh adaptation for each iteration. The wall function are then
directly applied on Γw, just as if the nodes of this boundary were shifted in the
normal direction by the distance y.

The accuracy of this model depends of the choice of y which has to be chosen as
small as possible. [39] explains that the smallest acceptable value for y corresponds
to meeting point between the log-layer and the viscous sub-layer. At this point y+

verifies the both equations

|u|
uτ

=
1

κ
log y+ + β, (4.31)

|u|
uτ

= y+. (4.32)

We can then identify the corresponding value, ỹ+, which verifies

ỹ+ =
1

κ
log ỹ+ + β, (4.33)

for the default value of κ = 0.41 and β = 5.2, the non linear equation(4.33) can be
solved iteratively and we find ỹ+ = 11, 06. All the nodes of Γw are now supposed to
be at a distance y of the physical wall such that y+ = ỹ+.

On this boundary Γw we can now evaluate the friction velocity uτ

uτ =
|u|

1
κ

log ỹ+ + β
=
|u|
ỹ+

(4.34)

on the other hand, by considering (4.29) we have the relation uτ = (β∗)
1
4

√
k, [39]

proposes to set

uτ = max

(
(β∗)

1
4

√
k,
|u|
ỹ+

)
, tw = −uτ

ỹ+
u. (4.35)

Resulting of (4.35) we have natural boundary condition to plug in the variational
formulation for the RANS equation∫

Γw

tw · v dΓ = −
∫

Γw

uτ
ỹ+
u · v dΓ (4.36)

when the condition (4.27) will be imposed weakly with term∫
Γw

γh(u · n) · (v · n) dΓ = 0 (4.37)

with γh = γmax
(
µ+µt
he

, |u|
)

, where γ is a penalty constant and he is the characteristic
length of the cell, see 3 for the evaluation of he.

Using (4.29) we now evaluate the eddy viscosity on Γw, assuming that the model
for this value of y+ will act as a classic k − ω model,

µt = ρ
k

ω
= ρuτκy = κỹ+µ (4.38)
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This value is automatically satisfied if we strongly impose the value of k and ω
on Γw, but this would results in a one way coupling for the boundary conditions
between the fluid equations and the k − ω system. To avoid this problem, we chose
to weakly impose the boundary condition for k and ω,

∇k · n = −∂k
∂y

= 0, (4.39)

∇w · n = −∂ω
∂y

=
uτ√
β∗κy2

=
ω

y
(4.40)

we can then replace the unknown y = ỹ+µ
ρuτ

, and we obtain the natural weak formula-
tion for the boundary condition on Γw∫

Γw

µ+ σkµt
ρ

∇k · nw dΓ = 0, (4.41)∫
Γw

µ+ σωµt
ρ

∇ω · nw dΓ =

∫
Γw

µ+ σωµt
µ

uτ
ỹ+
ωw dΓ. (4.42)

Since these two quantities are not imposed strongly, we have to impose the exact
value for the eddy viscosity µt using the relation (4.34) and the production term Pk
on Γk,

Pk = 10β∗ρωk = 10
u3
τ

κy
= 10

ρu4
τ

µt
= 10

ρuτ
κỹ+µt

(4.43)

4 Validation: 2D Naca0012 Airfoil

In this section we propose to validate our implementation of the presented
turbulence models on a classic 2D benchmark. This validation case is proposed on
the NASA Turbulence Modeling Resource page1

4.1 Problem Description

The geometry is a 2D cut of a NACA0012 airfoil, in sufficiently large domain to
neglect the side effects. The airfoil surface is defined by the curve

y = ±0.5946891(0.2982227
√
x− 0.1271252x− 0.3579079x2 + 0.2919849x3− 0.1051746x4).

(4.44)
The figure 4.1 is an overview of the domain, discretized with a grid proposed by the
NASA. The problem is described for compressible code but with low mach number
M = 0.15. The Reynolds number is Re = 6 · 106. It corresponds to a viscosity
µ = 0.16 · 10−6 with a density ρ = 1, a farfield velocity V = 1 and the characteristic
length of the airfoil L = 1.

1https://turbmodels.larc.nasa.gov/index.html

https://turbmodels.larc.nasa.gov/index.html
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Figure 4.1 – NACA0012 : Grid 449× 129 from the NASA website
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Part II

Model Order Reduction
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The efficient resolution of parametrized PDEs is of great interest for both indus-
try and academic research. With the development of super calculators and suitable
methods, it is now possible to perform simulations of complex 3D models with high
accuracy. However, the needs of high-speed simulations are also growing. For in-
stance in the context of risk analysis or uncertainty quantification where thousands
of simulations are needed. For those many-query methods, it is not realistic to
perform a full order resolution (FEM, FVM, ... ) of an industrial problem, for each
new set of parameters. A solution is to replace the full order model with a reduced
one. Different methods of reduction exist: surrogate models, proper generalized
decomposition, proper orthogonal decomposition, reduced basis, ...

89
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In this work, we chose to focus on the Reduced Basis Method (RBM) which
presents some interesting characteristics:

• Rigorous a posteriori error estimators

• An efficient Offline/Online decomposition.

Those features are provided by two necessary ingredients: a Galerkin projection
onto a low-dimensional space spanned by properly selected basis functions and an
affine parametric dependency.

The development of the RBM started in the late 70’s, initially for non-linear
mechanics problems [76]. The method was then extended to many different kinds
of problems [2, 32, 78, 84]. The RBM knew in the early 2000’s an important im-
provement with the development of the Certified Reduced Basis Method (CRBM)
[80, 103, 81, 83, 88]. The main improvement of the CRBM is the use of efficient
error estimators, evaluated through an offline/online procedure. Those error es-
timators allow quantifying the error made with the reduced model. This error is
usually measured on a quantity of interest, called the output of the model. A direct
consequence of this fast error evaluation is the possibility to explore the parameter
space efficiently and to optimally select the parameters used to build the reduced
space XN .

This chapter is split into three sections. The basics of the method are introduced
in the first section using the convenient example of the linear coercive problems.
In the second section, we will introduce some specific features, required for the
reduction of saddle point models. In the last part we detail the algorithm applied to
aerothermal simulations.

1 Method and Notations : Application to Coercive
Problems

We first introduce the reduced basis method (RBM) in a very general context.

Let Ω ∈ Rd, d = 2, 3 be a bounded domain and X ⊂ H1(Ω) a Hilbert space on this
domain, we denote by (., .)X and ||.||X =

√
(., .)X respectively the inner product and

associated norm on X. We also introduce a parameter space D ∈ RP of dimension
P ≥ 1. Let us consider, for a first time, a very generic problem, depending on a
parameter µ ∈ D, as finding u(µ) ∈ X such that

F(u(µ);µ) = 0. (5.1)

In the context of parametrized PDE, the resolution of this problem using the FEM
as discretization method will lead to the resolution of the discrete problem: find
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uh(µ) ∈ Xh such that
Fh(uh(µ);µ) = 0 (5.2)

where Xh ⊂ X is a finite element function space of high dimension N , as introduced
in section2.

The resolution of this discrete problem can be very costly, even with an optimized
method and comfortable computation capabilities. The idea of the reduced basis
method, and more generally of the different model order reduction methods is to
build a low (relatively to N ) dimensional space in which the resolution of problem
(5.2) will give an acceptable approximation.

Note that when we use the RBM, we make a non-trivial assumption on the
manifold

S(D) = {u(µ)|F(u(µ);µ) = 0,µ ∈ D}, (5.3)
which has to be approximable by a finite-dimensional function space XN of relatively
small dimension N . The Kolmogorov N -width determines the feasibility of such an
approximation. We will not detail this notion in this work, but we assume that, for
the considered problems, the Kolmogorov N -width will decay sufficiently rapidly
and then it makes sense to consider a reduced model.

In the context of RBM, this space XN is usually constructed as

XN = span{uh(µ),µ ∈ SN} (5.4)

where SN ⊂ D is a sample of parameters chosen in D. The construction of this
sample can be more or less optimized and will determine the quality of the reduced
basis space XN . For instance, we can imagine choosing SN as a random or an
equidistributed subset of D, but more efficient techniques have been developed
using, for instance, a greedy algorithm to optimally select the parameters in SN .

Parameters Selection through Greedy Algorithm

The greedy algorithm builds a sample SN in order to minimize a quantity ∆N(µ)
on D. For instance, this quantity could be the error, ∆̃N(µ) = ||uh(µ) − uN(µ)||,
between the FEM solution uh(µ) and the reduced solution uN(µ). But the algorithm
requires the evaluation of the maximum of this quantity on the entire parameter
space D, ∆̃N = maxµ∈D ∆̃N(µ). Such maximum is obviously not computable.

Hence we introduce two significant simplifications. First, we compute this
maximum on a discrete subset Ξ ⊂ D (potentially very large). Then, we do not use
the real error ∆̃N(µ) but error indicators ∆N(µ) which can be evaluated for many
values µ for a minimal cost. Alternatively, we might be more interested in the error
measured for a specific quantity of interest: the output of the model. The greedy
construction remains the same using an output-based error bound. The nature of
these error indicators is problem-dependent and will be detailed further for the
different kinds of considered PDE.
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We present in the algorithm 2 a generic version of the greedy algorithm. The
general idea of the algorithm does not depend on the nature of the problems.

Algorithm 2: Generic Greedy Algorithm
1 Choose Ξ ⊂ D ; // Super Sampling
2 Choose Nmax ; // Maximum size of XN

3 Choose δtol ∈ (0, 1) ; // Algorithm tolerance
4 Choose µ1 ∈ D ; // Arbitrary chosen first parameter
5 Set N ← 0, SN ← {}, XN ← {} ; // Initialization
6 repeat
7 N ← N + 1;
8 SN ← SN−1 ∪ {µN};
9 Solve Fh(uh(µ);µ);

10 XN ← XN−1 ⊕ span{uh(µN)};
11 for µ ∈ Ξ do
12 Compute error indicator, ∆N(µ) ;
13 end
14 µN+1 = arg max

µ∈Ξ
∆N(µ);

15 until ∆N(µN+1) < δtol or N ≥ Nmax;

1.1 Reduced Basis for Coercive Problems

We detail in this section the use of the RBM for coercive problems. The problem
is defined as in the previous section. We also introduce a parametrized bilinear
form a(., .;µ) : X ×D → R and a parametrized linear form f(.;µ) : X ×D → R. The
problem (5.1) can be written as the variational formulation of a parametrized PDE,
then we want to find u(µ) ∈ X such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X. (5.5)

We also do some assumptions on this parametrized weak formulation, for any
value of µ ∈ D :

(a) a(., .;µ) is symmetric and positive definite. We can then define a scalar product
and the associated norm

(., .)µ = a(., .;µ), ||.||µ =
√

(., .µ). (5.6)

In practice we will essentially use the scalar product (., .)µ̄ and norm ||.||µ̄
associated to a reference parameter µ̄.

(b) a(., .;µ) is continuous and coercive with respect to the norm ||.||X , i.e., there
exist a positive coercivity constant α(µ) > 0 and a finite continuity constant
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γ(µ) <∞ such that

a(v, v;µ) ≥ α(µ)||v||2X , a(w, v;µ) ≤ γ(µ)||w||X ||v||X , ∀v, w ∈ X (5.7)

These constants are defined respectively as

α(µ) = inf
v∈X

a(v, v;µ)

||v||2X
, γ(µ) = sup

w∈X
sup
v∈X

a(w, v;µ)

||v||X ||w||X
, ∀µ ∈ D (5.8)

(c) The forms a(., .;µ) and f(.;µ) have affine decompositions

a(w, v;µ) =

Qa∑
q=1

θaq (µ)aq(w, v), (5.9)

f(v;µ) =

Qf∑
q=1

θfq (µ)fq(v) (5.10)

where each form

aq : X ×X → R, fq : X → R

is independent of parameter µ and each

θaq : D → R, θfq : D → R

is a function which only depends on µ.

This affine decomposition is essential to provide an efficient offline/online
strategy. This point is detailed in subsection 1.1.

Offline Procedure: Construction of the RB Space

We construct the reduced basis space using the greedy algorithm as proposed in
section 1. We assume that we have a good error bound ∆N(µ), defined on a quantity
of interest. For coercive problems, the evaluation of this error bound is detailed in
section 1.2.

The first parameter µ1 to initialize the greedy procedure is usually arbitrarily
chosen. With µ1 we obtain the first snapshot uh(µ1) which is not directly used as
basis vector, but normalized, with respect to the specific norm ||.||µ̄, as ξ1 = uh

||uh||µ̄
.

The reduced basis space X1 is then defined as X1 = span{ξ1}.

After this initialization, at any rank N , we use the greedy algorithm (2) to
chose the next parameter µN+1 and then the next snapshot uh(µN+1). The next
basis vector ξN+1 is obtained using the Gram-Schmidt process on the set of vectors
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(ξ1, ..., ξN , u(µN+1)), still with respect to the norm ||.||µ̄. And eventually, the reduced
space is defined as

XN+1 = span{ξn, 1 ≤ n ≤ N + 1}. (5.11)

The recursive construction ends when either the expected error or the max size
N is reached, as proposed in the algorithm (2). This way, a nested set of reduced
basis spaces is built, X1 ⊂ X2 ⊂ ... ⊂ XN . Note that even if the orthonormalization
process on the basis is not mandatory, it allows controlling the conditioning of the
reduced matrix obtained after the Galerkin projection. Otherwise, this matrix can
be very ill-conditioned, and it generates numerical instability.

The reduced solution uN(µ), on XN , can then be written as

uN(µ) =
N∑
i=1

uNi(µ)ξi (5.12)

the coefficient u(µ)Ni are evaluated during the online phase of the RBM, detailed in
next paragraph.

Online Evaluation : Computation of uN(µ)

Once the reduced space is built we can use this structure to solve the problem
introduced in (5.5) on XN , for any new parameter µ ∈ D. The reduced solution
uN(µ) is then the Galerkin projection of the continuous solution u(µ) on the reduced
basis {ξi, 1 ≤ i ≤ N}. This projection implies the resolution of the linear problem

AN(µ)uN = FN(µ) (5.13)

where

(AN(µ))ij = a(ξi, ξj;µ), (FN(µ))i = f(ξi;µ), ∀ 1 ≤ i, j ≤ N. (5.14)

The size N ×N of this problem is supposed to be very small compared to the finite
element dimension N . The order of the model is reduced as expected. However the
assembly of the reduced matrix AN(µ) and the reduced vector FN(µ) still involve
the finite element dimension through the evaluation of the quantities a(ξi, ξj;µ)
and f(ξi;µ). To be efficient the online part has to be totally independent of the full
dimension N . The assumption of affine decomposition introduced in (5.9) allows to
decompose the evaluation of AN(µ) and FN(µ) in a online/offline procedure, with a
N -independent online part.
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Using (5.9) we can rewrite (5.14)

(AN(µ))ij = a(ξi, ξj;µ), (FN(µ))i = f(ξi;µ),

=

Qa∑
q=1

θaq (µ)aq(ξi, ξj), =

Qf∑
q=1

θfq (µ)fq(ξi)

=

Qa∑
q=1

θaq (µ) (AqN)ij︸ ︷︷ ︸
precomputed

, =

Qf∑
q=1

θfq (µ) (F q
N)i︸ ︷︷ ︸

precomputed

, ∀ 1 ≤ i, j ≤ N.

(5.15)
Thanks to the affine decomposition we can now precompute the matrices AqN and
the vectors F q

N during the offline phase, since they do not depend of the parameter
µ. Hence the online phase only consist in a sum of Qa N ×N -matrices, a sum of Qf

N -size vectors and the resolution of the N ×N linear system.

During the offline phase, we have to introduce a new step in the construction of
the nested RB spaces: the update of the precomputed AqN and F q

N . Thanks to the
nested structure of the RB spaces XN , we only have to evaluate the last row, and
the last column of the AqN matrices, the other values are similar to AqN−1. The same
argument allows only to compute the last value of the vectors F q

N .

1.2 Error Estimation

The computation of an efficient error bound for coercive problems has been
widely studied [80, 21] during last decades, we remind in this section the main
ingredients. In the context of the parametrized PDE, we may be interested either in
the solution itself or by the evaluation of a particular quantity of interest (output).
In this latter situation, we need some assumption on the considered quantity, s(µ).

We assume the existence of a parametrized linear form l(.;µ) : X ×D → R such
that the output s(µ) can be expressed as

s(µ) = l(u(µ);µ). (5.16)

We furthermore assume that the form l admits an affine decomposition

l(v;µ) =

Ql∑
q=1

θlq(µ)lq(v) (5.17)

with the conditions stated in (5.9).

For an efficient error bound of the error |sh(µ)− sN(µ)| we need to introduce a
dual problem associated to the linear form l(.;µ), as find ψ(µ) ∈ X such that

a(v, ψ(µ);µ) = −l(v;µ), ∀v ∈ X. (5.18)
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For this dual problem we build a dual reduced space

Xdu
N = span{ξdun , 1 ≤ n ≤ N} (5.19)

where the basis vectors ξdun are generated through a Gram-Schmidt algorithm on
the snapshots ψh(µn) as we did for the construction of the primal reduced space XN .

Once this dual problem and reduced space are introduced, we can define the first
main ingredient for the error bound: the dual norm of the residuals associated with
the primal and dual problem, respectively εN(µ) and εduN (µ), defined as

εN(µ) = sup
v∈Xh

rN(v;µ)

||v||µ̄
= ||êN(µ)||µ̄ (5.20)

εduN (µ) = sup
v∈Xh

rduN (v;µ)

||v||µ̄
= ||êduN (µ)||µ̄ (5.21)

where

rN(v;µ) = f(v;µ)− a(uN(µ), v;µ) (5.22)
rduN (v;µ) = l(v;µ) + a(v, ψN(µ);µ), ∀v ∈ Xh (5.23)

are the residuals, respectively of the primal and dual problems. êN(µ) ∈ Xh and
êduN (µ) ∈ Xh are their Riesz representations which satisfy

(êN(µ), v)µ̄ = rN(v;µ) (5.24)
(êduN (µ), v)µ̄ = rduN (v;µ), ∀v ∈ Xh (5.25)

the evaluation of these Riesz representations through a efficient offline/online
procedure is detailed in the appendix 3.1.

The second ingredient for the error bound are lower bound αLB(µ) and an upper
bound αUB(µ) for the coercivity constant introduce in (5.8)

αLB(µ) ≤ α(µ) ≤ αUB(µ), ∀µ ∈ D. (5.26)

The evaluation of these bounds has to be independent of the FE dimension N . The
successive constraint method (SCM) [47, 89, 101] has been developed specifically to
provide an efficient computation of such bounds for coercive or inf-sup problems. In
the context of coercive problems, we can also use the Min−θ approach [63, 104]. We
did not detail these methods in this report and refer the interested reader to the
cited publications.

We can now introduce the error bounds for the errors on the reduced solution
∆N(µ) and for the output ∆s

N(µ) defined as

∆N(µ) =
εN(µ)

(αLB(µ))1/2
, (5.27)

∆du
N (µ) =

εduN (µ)

(αLB(µ))1/2
, (5.28)
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∆s
N(µ) = ∆N(µ)∆du

N (µ), (5.29)

and satisfying

||uh(µ)− uN(µ)||µ̄ ≤ ∆N(µ) (5.30)
|sh(µ)− sN(µ)| ≤ ∆s

N(µ). (5.31)

For a study of effectiveness of these error estimators, we refer the reader to [80, 89,
9]. Once we have an efficient procedure for the evaluation of the error bounds, it can
be used within the greedy algorithm 2 in order to guide the parameters selection.
The evaluation of the reduced output using a dual problem (during the online part)
is then made through

sN(µ) = l(uN(µ);µ)− rN(ψN(µ);µ), ∀µ ∈ D (5.32)

Remark 6 (Error bound for compliant problems). A compliant problem is defined
when the linear form defining the output also defines the right hand side of the
variational formulation (5.5) : l(.;µ) = f(.;µ). In this case we don’t need the
resolution of the dual problem. The error bound on the output is simply defined as
∆s
N(µ) = (∆N(µ))2

Remark 7 (Problem with no output). When we do not need the evaluation of a
particular output or when we need to evaluate many outputs, we will directly use the
error bound on the solution ∆N(µ) instead of an error bound on the output. In that
case, we will not use the dual problem but we lose the quadratic convergence of the
reduced solution. Another solution is proposed in [109] for a generalization to vector
valued quantities of interest.

The two ingredients are evaluated through an efficient offline/online strategy.
The coercivity constant can be computed using the Successive Constraint Method
(SCM) [47, 89, 101]. The dual norm of the residual is partly precomputed offline,
using the affine decomposition. This procedure is detailed in appendix 3.1.

Summarized Offline Algorithm for Coercive Problems

We complete the generic algorithm 2 with the different procedures introduced in
this section. Some steps might not be necessary, for instance, if we do not need the
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dual problem.

Algorithm 3: Offline Procedure for Coercive Problems
1 Choose Ξ ⊂ D ; // Super Sampling
2 Choose Nmax ; // Maximum size of XN

3 Choose δtol ; // Algorithm tolerance
4 Choose µ1 ∈ D ; // Arbitrary chosen first parameter
5 Set N ← 0, SN ← {}, ,XN ← {}, Xdu

N ← {} ; // Initialization
6 repeat
7 N ← N + 1;
8 SN ← SN−1 ∪ µN ;
9 Solve a(u, v;µN) = f(v;µN); // (5.5)

10 ξN ←Gram-Schmidt({ξ1, ..., ξN−1, u(µN)});
11 XN ← XN−1 ⊕ span{ξN};
12 Solve dual problem a(v, ψ;µN) = −l(v;µ); // (5.17)
13 ξduN ←Gram-Schmidt({ξdu1 , ..., ξduN−1, ψ(µN)});
14 Xdu

N ← Xdu
N−1 ⊕ span{ξduN };

15 Precompute AqN and F q
N ; // (5.15)

16 Precompute (f̂q, f̂q′), Cfa
qq′,N , Caa

qq′,N ; // (43)
17 for µ ∈ Ξ do
18 Compute error bound, ∆N(µ) or ∆s

N(µ) ;
19 end
20 µN+1 = arg max

µ∈Ξ
∆N(µ) or µN+1 = arg max

µ∈Ξ
∆s
N(µ);

21 until ∆
(s)
N (µN+1) < δtol or N ≥ Nmax;

2 Reduced Basis for Saddle Point Problems

In this section, we present the RBM applied to saddle point problems, and we will
especially focus on the Stokes equations as an illustration. The RBM is very well
developed for coercive problems, but saddle point parametrized systems introduce
new difficulties with the construction of stable reduced spaces and the development
of efficient a posteriori error bounds[66, 90, 86] . The delicate problem of geometric
parameters is particularly developed in [34] with a penalty method and later in
[35, 87] with specific construction algorithm of the reduced space.

We propose a quick review of the reduced basis framework for saddle point prob-
lem. We present the problem formulation, the existing methods for the construction
of a stable reduced space and the detailed error estimators. We provide more techni-
cal details about the integration of these features in the Feel++ framework in the
implementation part III.
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2.1 Problem formulation

Let V and Q two Hilbert spaces on a bounded domain Ω with inner products
(·, ·)V , (·, ·)Q and associated norms || · ||V =

√
(·, ·)V , || · ||Q =

√
(·, ·)Q respectively.

We also define the product space Z = V × Q with inner product ((u, p), (v, q))Z =
(u,v)V + (p, q)Q and norm || · ||Z =

√
(·, ·)Z . We consider a parametrized saddle point

problem: for any µ ∈ D, find u(µ) ∈ V and p(µ) ∈ Q such that

a(u(µ),v;µ) + b(v, p(µ);µ) = f(v;µ), ∀v ∈ V
b(u(µ), q;µ) = g(q;µ) ∀q ∈ Q

(5.33)

where a(·, ·;µ) : V × V → R, b(·, ·;µ) : V ×Q→ R and f(·;µ) : V → R, g(·;µ) : Q→ R
are bilinear and linear bounded forms respectively, for any µ ∈ D.

We furthermore assume that :

(a) a(·, ·;µ) and b(·, ·;µ) are continuous

γa(µ) = sup
u∈V

sup
v∈V

a(u,v;µ)

||u||V ||v||V
<∞, ∀µ ∈ D, (5.34)

γb(µ) = sup
v∈V

sup
q∈Q

b(v, q;µ)

||v||V ||q||Q
<∞, ∀µ ∈ D, (5.35)

(b) a(·, ·;µ) is coercive on V

αa(µ) = inf
v∈V

a(v,v;µ)

||v||2V
> 0, ∀µ ∈ D, (5.36)

(c) b(·, ·;µ) satisfies the inf-sup condition, this can be expressed either using the
Brezzi constant,

βBr(µ) = inf
q∈Q

sup
v∈V

b(v, q;µ)

||v||V ||q||Q
> 0, ∀µ ∈ D, (5.37)

or the Babuška constant

βBa(µ) = inf
(u,p)∈Z

sup
(v,q)∈Z

a(u,v;µ) + b(v, p;µ) + b(u, q;µ)

||(u, p)||Z ||(v, q)||Z
> 0, ∀µ ∈ D, (5.38)

(d) The bilinear forms a(·, ·;µ), b(·, ·;µ) and the linear forms f(·;µ) and g(·;µ)
admit affine decompositions

a(u,v;µ) =

Qa∑
k=1

θak(µ)ak(u,v), f(v;µ) =

Qf∑
k=1

θfk(µ)fk(v) (5.39)

b(u, q;µ) =

Qb∑
k=1

θbk(µ)bk(u, q), g(q;µ) =

Qg∑
k=1

θgk(µ)gk(q) (5.40)
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Truth Approximation

As truth approximation of the continuous problem, we use the finite element
solution (uh, ph) of (5.33) on a regular triangulation Th of the domain Ω. To that
end, we introduce finite element function spaces Vh, Qh and Zh and their respective
scalar products and norms. The coercivity and continuity properties of the forms
are naturally inherited from the continuous formulation. The spaces Vh and Qh

are supposed to be properly defined to satisfy the Ladyzhenskaya–Babuška–Brezzi
condition. More details about the finite element resolution are given in section 2.

Offline Procedure : Construction of the RB Space

The classical procedure for the construction of the RB space, as seen in section1.1,
is not adapted for saddle point problems. This procedure would build the RB
spaces V 0

N ans QN as spans of the truth solutions {u(µn)} and {p(µn)}, 1 ≤ n ≤ N ,
respectively,

V 0
N = span{u(µn), 1 ≤ n ≤ N} = span{ζn, 1 ≤ n ≤ N}, (5.41)

QN = span{p(µn), 1 ≤ n ≤ N} = span{ηn, 1 ≤ n ≤ N}. (5.42)

With such RB spaces, the online saddle-point system would not be well-posed, since
it does not satisfy the inf-sup condition, see [5, 6],

βN(µ) = inf
qN∈QN

sup
vN∈VN

b(vN , qN ;µ)

||qN ||Q||vN ||V
> 0. (5.43)

It is proved in [85, 90] that the space V 0
N = span{u(µn), 1 ≤ n ≤ N} can be

enriched in order to obtain a stable pair (V 1
N , QN) in the sense of the inf-sup condition.

This space V 1
N is built by adding the supremizer functions T kηn for any 1 ≤ k ≤ Qb,

1 ≤ n ≤ N .
V 1
N = V 0

N ⊕ span{T kηn, 1 ≤ k ≤ Qb, 1 ≤ n ≤ N}. (5.44)

The supremizer function T kq is defined for any q ∈ Q and any 1 ≤ k ≤ Qb as

(T kq,vh)V = bk(vh, q), ∀vh ∈ Vh. (5.45)

In practice, it is widespread not to build the RB space V 1
N which might become

very large, depending on Qb. The usual alternative is to add the global supremizer
Tµnηn, for any parameters µn ∈ SN ,

VN = V 0
N ⊕ span{Tµnηn, 1 ≤ n ≤ N}, (5.46)

where Tµq is defined, for any µ ∈ D and any q ∈ Q as

(Tµq,vh)V = b(vh, q;µ), ∀vh ∈ Vh. (5.47)
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With this definition of VN it is no longer possible to prove the stability of the pair
(VN , QN) a priori. Nevertheless, different numerical tests conclude in the stability of
this option, see [34, 35].

The basis {ηn, 1 ≤ n ≤ N} of the RB space QN is obtained, just like in the coercive
case, by an orthonormalization of the snapshots p(µn), 1 ≤ n ≤ N . We apply the same
process to the RB space VN to recover an orthonormal basis {ζn, 1 ≤ n ≤ 2N}. The
complete offline procedure implemented for saddle point problems is summarized in
algorithm 4. The nature of the error indicator ∆N(µ) used in the greedy selection is
discussed in section 2.2.

Algorithm 4: Offline Procedure for Saddle Point Problems
1 Choose Ξ ⊂ D ; // Super Sampling
2 Choose Nmax ; // Maximum size of XN

3 Choose δtol ; // Algorithm tolerance
4 Set N ← 0, SN ← {}, ,VN ← {}, QN ← {} ; // Initialization
5 repeat
6 N ← N + 1;
7 SN ← SN−1 ∪ {µN};
8 Find (u(µ), p(µ)) solution of system (5.33);
9 ηN ← Gram-Schmidt({η1, ..., ηN−1, p(µN)});

10 Compute TµNηN ; // (5.47)
11 ζ2N−1, ζ2N ← Gram-Schmidt({ζ1, ..., ζ2N−2,u(µN), TµNηN});
12 VN ← VN−1 ⊕ span{ζ2N−1, ζ2N};
13 QN ← QN−1 ⊕ span{ηN};
14 Precompute online structures;
15 for µ ∈ Ξ do
16 Compute error bound, ∆N(µ);
17 end
18 µN+1 = arg max

µ∈Ξ
∆N(µ);

19 until ∆N(µN+1) < δtol or N ≥ Nmax;

Advanced algorithms exist in the literature to improve the convergence of the
method. For instance, [35] and [87] propose specific enrichment of the RB space VN
to provide better error bounds. Unfortunately, we had no time to implement these
methods properly, and we refer the readers to the cited references for more details.

Online Evaluation : computation of (uN(µ), pN(µ))

As for the coercive problem, we use a Galerkin projection of on the RB space
ZN = VN ×QN . It implies the resolution of the linear system[

AN(µ) Bᵀ
N(µ)

BN(µ) 0

] [
uN(µ)
pN(µ)

]
=

[
FN(µ)
GN(µ)

]
(5.48)
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where
(AN(µ))i,j = a(ζj, ζi;µ), (F (µ))i = f(ηi;µ), 1 ≤i, j ≤ 2N

(BN(µ))l,j = b(ζj, ηl;µ), (GN(µ))l = g(ηl;µ), 1 ≤l ≤ N.
(5.49)

Here again the affine assumption (5.39) is crucial in order to precompute these
matrices and vectors.

(AN(µ))i,j =

Qa∑
k=1

θak(µ) ak(ζj, ζi)︸ ︷︷ ︸
precomputed

, (F (µ))i =

Qf∑
k=1

θfk fk(ζi)︸ ︷︷ ︸
precomputed

, 1 ≤i, j ≤ 2N

(BN(µ))l,j =

Qb∑
k=1

θbk bk(ζj, ηl)︸ ︷︷ ︸
precomputed

, (GN(µ))l =

Qg∑
k=1

θgk gk(ηl)︸ ︷︷ ︸
precomputed

, 1 ≤l ≤ N.

(5.50)

These quantities are evaluated once during the offline procedure and then stored
for online phases. During the online phase, the assembly of the linear system (5.49)
only requires the additions of matrices (resp. vectors) of size O(N2) (resp. O(N)).

2.2 Error Estimation

Unfortunately, we did not have enough time to implement error estimators for
the saddle-point problems: the computation of the dual norm of the residual is
working, but we had no time to adapt the SCM algorithm for saddle-point problems.
In the further numerical results, we will use the dual norm of the residual as
an error indicator. Nevertheless, we remind in this section the principal error
estimators found in the literature [21, 26, 80, 87].

We assume that the RB spaces VN and QN are built and so we are able to evaluate
a reduced basis solution (uN(µ), pN(µ)) for any µ ∈ D. We are also interested in
giving a sharp and efficient bound to the different errors, with respect to the truth
model,

euN(µ) = uh(µ)− uN(µ) ∈ V, (5.51)
epN(µ) = ph(µ)− pN(µ) ∈ Q, (5.52)
eN(µ) = (euN(µ), epN(µ)) ∈ Z. (5.53)

We also may be interested in the evaluation of the error for a linear output. We
assume here that the output s(µ) can be express as

s(µ) = l((u(µ), p(µ));µ) = lu(u(µ);µ) + lp(p(µ);µ) (5.54)

where l : Z → R, lu : V → R and lp : Q → R are linear forms which admit affine
decompositions. In the particular case where lu = f and lp = g the problem is
compliant. We denote by esN(µ) the error on the output s(µ)

esN(µ) = sh(µ)− sN(µ). (5.55)
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For the construction of the different error bounds, we may need the following
ingredients:

• Online-efficient upper and lower bounds for the continuity and coercivity
constants introduced in (5.34)-(5.36),

γLBa (µ) ≤ γa(µ) ≤ γUBa (µ), (5.56)
αLBa (µ) ≤ αa(µ) ≤ αUBa (µ). (5.57)

Those bounds can be computed using the SCM, as mentioned in section 1.2.

• Online-efficient upper and lower bounds for the inf-sup constant, either the
Brezzi (5.37) or the Babuška (5.38) version,

βLBBr (µ) ≤ βBr(µ) ≤ βUBBr (µ), (5.58)
βLBBa (µ) ≤ βBa(µ) ≤ βUBBa (µ). (5.59)

These bounds can also be computed using the SCM.

• The dual norms of the residuals associated with the RB approximation

||ruN(·;µ)||V ′ = sup
v∈V

ruN(v;µ)

||v||V
, (5.60)

||rpN(·;µ)||Q′ = sup
q∈Q

rpN(q;µ)

||q||Q
, (5.61)

where, ∀µ ∈ D,

ruN(v;µ) = f(v;µ)− a(uN(µ),v;µ)− b(v, pN(µ);µ), (5.62)
rpN(q;µ) = g(q;µ)− b(uN(µ), q;µ). (5.63)

We also define the total residual rN((v, q);µ) as

rN((v, q);µ) = ruN(v;µ) + rpN(q;µ), ∀v ∈ V, ∀q ∈ Q, (5.64)

and its dual norm as

‖rN(·;µ)‖Z′ = sup
(v,q)∈Z

rN((v, q);µ)

‖(v, q)‖Z
=
√
‖ruN(·;µ)‖2

V ′ + ‖r
p
N(·;µ)‖2

Q′ . (5.65)

The efficient evaluation of this dual norms through an offline-online decompo-
sition is detailed in appendix 3.

Error Bounds for the Solutions

A first error bound ∆N(µ) for Saddle Point problems, and especially Stokes
equations, uses the Babuška inf-sup constant in order to bound the global error of
the solutions eN(µ), with respect to the truth model,

||eN(µ)||Z ≤ ∆N(µ) :=
||rN(·;µ)||Z′
βLBBa (µ)

, ∀µ ∈ D. (5.66)
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This error bound is a direct extension of the error estimation for coercive problems.

Another bound is proposed in [35, 34], in order to measure separately the errors
on the velocity field euN(µ) and the pressure field epN(µ). This formulation requires
more elements and uses the Brezzi inf-sup constant to define two bounds ∆u

N(µ)
and ∆p

N(µ), for any µ ∈ D,

||euN(µ)||V ≤ ∆u
N(µ) :=

||ruN(·;µ)||V ′
αLBa (µ)

+

(
1 +

γUBa (µ)

αLBa (µ)

)
||rp(·;µ)||Q′
βLBBr (µ)

, (5.67)

||epN(µ)||Q′ ≤ ∆p
N(µ) :=

||ruN(·;µ)||V ′
βLBBr

+
γUBa (µ)

βLBBr (µ)
∆u
N(µ). (5.68)

From these two bounds, we can then define a new global error estimator for the
solution (uN(µ), pN(µ)) as

||eN(µ)||Z ≤ ∆Br
N (µ) :=

√
(∆u

N(µ))2 + (∆p
N(µ))2, ∀µ ∈ D. (5.69)

For a sharpness study and a comparison of these different error bounds, we refer
the readers to the cited references.

Error Bound for Linear Output

In the convenient case of compliant problems, as in the coercive case, we can
directly evaluate the error bound on the error esN(µ)[87],

|esN(µ)| ≤ ∆s,c
N (µ) := 2

||rn(·;µ)||2Z′
βLBBa (µ)

, (5.70)

this formulation is again a direct generalization of the coercive framework.

In the more general case of non-compliant problems, we introduce a dual problem,
as find (ψ(µ), λ(µ)) ∈ V ×Q such that{

a(v,ψ(µ);µ) + b(λ(µ),v;µ) = −lu(v;µ) ∀v ∈ V
b(q,ψ(µ);µ) = −lp(q;µ), ∀q ∈ Q

(5.71)

where lu and lp are defined in (5.54). We denote by (ψh(µ), λh(µ)) the discrete
solution of system (5.71) obtained using our truth model, with a discretization and
a space definition adapted in order to satisfy the inf-sup condition. We denote by
V du
n and Qdu

N the dual RB spaces. We assume that these RB spaces are built during
the greedy algorithm in a way similar to the coercive case. We can then define the
dual residuals,

ru,duN (v;µ) = lu(v;µ) + a(v,ψN(µ);µ) + b(λN(µ),v;µ), ∀v ∈ V,
rp,duN (q;µ) = lp(q;µ) + b(q,ψN(µ);µ), ∀q ∈ Q,
rduN (v, q;µ) = ru,duN (v;µ) + rp,duN (q;µ),

(5.72)
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and the associated dual norms

||ru,duN (·;µ)||V ′ = sup
v∈V

ru,duN (v;µ)

||v||V

||rp,duN (·;µ)||Q′ = sup
q∈Q

rp,duN (q;µ)

||q||Q

||rduN (·;µ)||Z′ = sup
(v,q)∈Z

rduN ((v, q);µ)

||(v, q)||Z
=
√
||ru,duN (·;µ)||2V ′ + ||r

p,du
N (·;µ)||2Q′ .

(5.73)

The error bound for non-compliant linear output is then defined as

|esN(µ)| ≤ ∆s
N(µ) := 2

||rduN (µ)||1/2Z′ ||rN(µ)||1/2Z′

βLBBa (µ)
(5.74)

The evaluation of the dual norms of the residuals associated with each RB space
is detailed in appendix 3.2.

3 Numerical Applications : RB for Stokes Problem

To validate our implementation of the RB framework for Saddle Point problems,
we present, in this section, our results on a test case proposed in [35].

3.1 Problem Formulation

We consider a Stokes flow in a 2D channel with an obstacle, see figure 5.1. The
channel is a rectangle with fixed dimension (4 × 1). The obstacle is rectangular
with variable width (µ1) and height (µ2). The parameter µ = (µ1, µ2) is bounded
such that µ ∈ D = [0.1, 0.5] × [0.1, 0.5]. Thus the parametrized domain is given by
Ω̃(µ) = [0, 4] × [0, 1]\Õ(µ) where Õ(µ) =]2 − µ1/2, 2 + µ1/2[×]0, µ2[ is the obstacle.
We denote by Γ̃(µ) the boundary of Ω̃(µ), Γ̃in the inflow boundary, Γ̃out the outflow
boundary and by Γ̃0(µ) = Γ̃(µ)\(Γ̃in ∪ Γ̃out) the boundary on where we assume a
no-slip condition. Here the ˜ symbol refers to the parametrized domain in opposition
to the reference domain Ω.
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x2

x1(0, 0)

(4, 1)

Ω̃(µ)Γ̃in Γ̃out

Γ̃0(µ)

Γ̃0(µ)

µ1

µ2

Figure 5.1 – 2D Geometry of the Problem

Formulation on a Parametrized Domain Ω̃(µ)

The Stokes equations for the velocity ũ(µ) : Ω̃(µ) → R2 and the presure p̃(µ) :
Ω̃(µ)→ R are given by

∇̃p̃(µ)− ν∆̃ũ(µ) = 0, in Ω̃(µ)

∇̃ · u(µ) = 0, in Ω̃(µ),

ũ(µ) = 0, on Γ̃0(µ),

(ν∇̃ũ(µ)− Ip̃(µ)) · ñ = 0, on Γ̃out,

ũ = φφφ, on Γin,

(5.75)

with φφφ =

(
4x̃2(1− x̃2)

0

)
and ν = 1 the fluid viscosity.

We introduce the finite element space Z̃h(µ) = Ṽh(µ)× Q̃h(µ) = THk
ch(Ω̃(µ)) and

the usual associated scalar products and norms. The weak formulation on the
parametrized domain Ω̃(µ) can be written as: find (ũh, p̃h) ∈ Z̃h(µ) such that

ã(ũh, ṽh) + b̃(ṽh, p̃h) = f̃(ṽh), ∀vh ∈ Ṽh(µ), (5.76)

b̃(ũh, q̃h) = g̃(q̃h), ∀qh ∈ Q̃h(µ), (5.77)

where

ã(u,v) =

∫
Ω̃(µ)

ν∇̃u : ∇̃v dΩ̃, f̃(v) = 0, (5.78)

b̃(ũ, q̃) = −
∫

Ω̃(µ)

q(∇̃ · u) dΩ̃, g̃(qh) = 0. (5.79)

Formulation on the Reference Domain Ω

In order to apply the RBM to this problem, we perform the simulation on a
reference domain Ω = Ω̃(µr). We denote by Zh = Vh ×Qh = THk

ch(Ω) the FE space on
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the reference domain Ω. We will use a mapping from Ω̃(µ) to Ω in order to solve the
problem (5.76) in the space Zh.

We first introduce ∀µ ∈ D a domain decomposition of Ω̃(µ),

Ω̃(µ) =
P⋃
k=1

Ω̃k(µ), s.t. Ω̃k(µ) ∩ Ω̃l(µ) = ∅, ∀1 ≤ k < l ≤ P. (5.80)

This construction is also naturally verified for the reference domain Ω,

Ω =
P⋃
k=1

Ωk, s.t. Ωk ∩ Ωl = ∅, 1 ≤ k < l ≤ P. (5.81)

We now define P continuous and bijective affine mappings Gk(.;µ) such that ∀µ ∈ D,
Gk(Ω̃k(µ)) = Ωk, ∀1 ≤ k ≤ P and Gk(x̃;µ) = Gl(x̃;µ), ∀x̃ ∈ Ω̃k(µ) ∩ Ω̃l(µ), ∀1 ≤ k <
l ≤ P ,

Gk(x̃;µ) = Gk(µ)x̃+Hk(µ), 1 ≤ k ≤ P. (5.82)

We propose such a decomposition for the domain Ω = Ω̃(µr) in figure 5.2. Note
that the design of this decomposition will definitely change the affine decomposition,
but not the number of terms (as long as the decomposition is adapted to the geometry
and the parametrization).

x2

x1

1

2
3

4 5 8
7

6

9

(a) µ = (µr, µr)

x2

x1

1

2

3
4 5 8

7

6

9

(b) µ = (0.1, 0.5)

Figure 5.2 – Domain Decomposition used for the mapping

Using the usual composition rules for differentiation operators, we have the
relations,

∂/∂xi = Gk
ij∂/∂xj

dΩ̃(µ) = Jk(µ)dΩ, Jk(µ) = | det(Gk(µ))−1|.
(5.83)

We can then rewrite the weak formulation (5.76) on the reference domain Ω as find
(uh(µ), ph(µ)) ∈ Zh such that

a(uh,vh) + b(vh, ph) = f(vh), ∀vh ∈ Vh, (5.84)
b(uh, qh) = g(qh), ∀qh ∈ Qh, (5.85)

with

a(u,v;µ) =
P∑
k=1

Gk
mj(µ)Gk

ljJ
k(µ)

∫
Ωk

∂ui
∂xm

∂vi
∂xl

dΩ, f(v) = 0 (5.86)
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b(u, q) =
P∑
k=1

−Gk
jiJ

k(µ)

∫
Ωk

∂ui
∂xj

q dΩ, g(q) = 0. (5.87)

The detailed affine decomposition is presented in appendix 4.

3.2 Numerical Results

We use a FE space Zh = Vh ×Qh = TH1
ch. The discretization leads to N = 66857

velocity and pressure degrees of freedom The mesh of the reference domain is
presented in figure 5.3. We illustrate the results with some velocity and pressure
profiles in figure 5.4. These solutions were computed on the reference domain and
then warped onto the real domain for visualization.

The supersampling Ξ is an equidistributed grid of D with 1000 points. We are
interested in this case in the convergence of the errors

‖euN(µ)‖2 = ‖uh(µ)− uN(µ)‖2,

‖epN(µ)‖2 = ‖ph(µ)− pN(µ)‖2,

‖eN(µ)‖2 =
√
‖euN(µ)‖2

2 + ‖epN(µ)‖2
2.

(5.88)

We computed these quantities for 100 different values of µ. The figure 5.5 presents
the evolution of the maximum, minimum and mean value of these errors, for N ∈
J1, 50K. The reduced basis was built with 50 different parameters in SN , using the
dual norm of the residual as an error indicator in the greedy algorithm 4. We clearly
observe the convergence of the method. We also notice an unexpected behavior with
the error growing again near the value N = 20. We found no explanation for this
“jump” for now, however these results validate our implementation of the method.

Figure 5.3 – Mesh Used for the FE simulation.
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(a) Velocity Profile with Streamlines,
µ = (0.1, 0.1)

(b) Pressure Profile with Contours,
µ = (0.1, 0.1)

(c) Velocity Profile with Streamlines,
µ = (0.3, 0.5)

(d) Pressure Profile with Contours,
µ = (0.3, 0.5)

(e) Velocity Profile with Streamlines,
µ = (0.5, 0.2)

(f) Pressure Profile with Contours,
µ = (0.5, 0.2)

Figure 5.4 – Velocity and pressure profiles for 3 different parameters.
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(a) ‖euN (µ)‖2 = ‖uh(µ)− uN (µ)‖2
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(b) ‖epN (µ)‖2 = ‖ph(µ)− pN (µ)‖2
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(c) ‖eN (µ)‖2 =
√
‖euN (µ)‖22 + ‖epN (µ)‖22

Figure 5.5 – Convergence of the errors with respect to the number of vectors in the reduced basis.
Maximum, minimum and mean values evaluated from 100 approximations.
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Conclusion

In this chapter, we presented the main ingredients of the Reduced Basis Method.
We started by introducing the method with the coercive problems. Then we detailed
the algorithms required for the construction of a stable reduced space in the case
of saddle-point problems. In the last section of this chapter, we tested the imple-
mentation of our RB saddle-point framework on a Stokes problem with geometric
parameters.

The theoretical part of this chapter was essentially a reminder of techniques
which are already well developed in the literature. However, it seemed important to
rewrite these algorithms. Indeed, the RBM was already implemented in Feel++ for
coercive problems, but the framework for decoupled multi-physics problems (and
saddle-point in particular) was entirely implemented during this thesis work. This
implementation is detailed in part III.

With the validation of our framework for saddle-point problems, we can now
consider the reduction of Stokes problems. It is a first step towards the reduction of
Navier-Stokes and aerothermal problems. We now need tools to deal with the non-
linearity. The next chapter will present solutions like the Empirical Interpolation
Method which allows building an affine approximation of non-affine and non-linear
operators.
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We presented in the previous chapter the Reduced Basis Method for two different
kinds of problems, all with the common assumptions: the affine decomposition and
the linearity. In this chapter, we will present solutions to deal with complex problems
which might be non-affine or non-linear.

One of the main advantages of the RBM is the offline/online procedure which
allows very fast online N -independent computations, once the expensive offline
phase is done. However, it is only possible thanks to the affine decomposition of
the operators as we detailed in the section 1.1. Many problems do not present an
affine decomposition. For instance, we cannot recover an affine dependency for the

113
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stabilization operators introduced in the chapter 3. Another limitation of the RBM
as presented in the previous chapter is the delicate problem of non-linear operators.
We need a solution to deal with the non-linearity. The iterative solvers introduced
in the chapter 2 allows to solve the non-linearity. However, we want to keep an
online resolution independent of the FE dimension N , even for non-linear problems.
The Empirical Interpolation Method (EIM) [3, 65, 23, 37] is an answer to both of
these problems: the non-affine dependency and the non-linearity of the models. This
method allows recovering an affine approximation which will be used within the
RBM.

In the present chapter, we first remind the principle of this method. Then we
propose a discrete version of the EIM which was implemented during this thesis.
And finally, we present the Simultaneous EIM and RB (SER) construction which
was also integrated into our discrete version of EIM. The last section is dedicated to
a brief validation of our implementation.

1 The Empirical Interpolation Method

Assuming that a parametrized PDE is not affine in parameter µ mean that it
depends at least on a non-affine - and potentially non-linear - function w(u(µ),x,µ) :
X×Rd×D → R. In this section we present how the Empirical Interpolation Method
allows to recover an affine approximation wM of this function such that

w(u(µ),x,µ) ≈ wM(u(µ),x,µ) =
M∑
m=1

βm(u(µ),µ)qm(x). (6.1)

The construction of this approximation requires an expensive offline phase which es-
sentially consists in the selection of a set of parameters S̄M = µ̄m, 1 ≤ m ≤M . From
this set of parameters will be built a function space W̄M and a set of interpolation
point T̄M . We detail this greedy algorithm in the next paragraphs.

Offline Construction : Greedy Algorithm

Let Ξ̄ ⊂ D a sample of the parameter space D. The algorithm starts with
an arbitrary choice of µ̄1 ∈ Ξ̄, assuming that ξ̄1 = w(u(µ̄1), ·, µ̄1) 6= 0. The first
interpolation point t1 is chosen as the maximum of the function ξ̄1 over the domain
Ω. The first basis function q1 is then a normalization of the snapshot ξ̄1,

t1 = arg max
x∈Ω
|ξ̄1(x)|, q1 =

ξ̄1

ξ̄(t1)
. (6.2)

And then we set

S̄1 = {µ̄1}, W̄1 = span{ξ̄1} = span{q1}, T1 = {t1} (6.3)
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Once this initialization is done, for any M ≥ 2, the next parameters µ̄M are
chosen to maximize the EIM approximation error,

µ̄M = arg max
µ̄∈Ξ̄
||w(u(µ̄), ·, µ̄)− wM−1(u(µ̄), ·, µ̄)||∞. (6.4)

From this new parameter µ̄M we define the residual, between the exact function w
and its affine approximation wM of rank M ,

rM(x) = w(u(µ̄M),x, µ̄M)− wM(u(µ̄M),x, µ̄M). (6.5)

The next interpolation point tM is chosen to maximize this residual. The next basis
function qM is the normalization of the residual.

tM = arg sup
x∈Ω
|rM(x)|, qM =

rM(x)

|rM(tM)|
. (6.6)

And we can set

S̄M = S̄M−1 ∪ {µ̄M}, W̄M = W̄M−1 ⊕ span{qM}, TM = TM−1 ∪ {tM}. (6.7)

Online : Evaluation of the βm(u,µ)

For a new parameter µ, and a function u ∈ X, the coefficients βm(u,µ) are
evaluated in order to ensure the exactness of the affine approximation wM at the
M interpolation points {tm}Mm=1. In practice, the computation is made through the
resolution of a M ×M system,

AMβM(u,µ) = FM(u,µ), (6.8)

where (AM)ij = qj(ti), (βM(u,µ))i = βi(u,µ) and (FM(u,µ))i = w(u, ti,µ). Once this
resolution is made, we can build the affine approximation

w(u, x,µ) ≈ wM(u,x,µ) =
M∑
m=1

βm(u,µ)qm(x). (6.9)

The considered matrix AM is independent of the parameter µ and can be assembled
and stored during the offline phase. But the right hand side FM(µ) has to be rebuilt
for each new parameter µ, by evaluating the function w on the interpolation points.

1.1 Reduced Basis for Non-Linear Problems

We detailed above how to recover an affine approximation to efficiently use the
RBM with non-affine problems. We are now interested in using the EIM with an
iterative solver for non-linear problems.
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Let consider a non-linear parametrized problem. We assume that we have an
iterative algorithm - Picard or Newton for instance - in which the solution at the
k-th iteration is denoted by uk(µ). We suppose that a step of the considered iterative
method can be express as find uk+1(µ) such that

a(uk+1(µ), v;uk(µ);µ) = f(v;uk(µ);µ), ∀v ∈ X, (6.10)

where X is a suitable function space on domain Ω. a(·, ·;u;µ) : X × X → R and
l(·;u;µ) : X → are continuous bilinear and linear forms, for any parameter µ ∈ D
and any u ∈ X.

The RBM will not be applied directly on the parametrized problem (6.10), which
is obviously not affine in parameters, but on an affine approximation given by the
EIM, written in a generic formulation as

QMa∑
q=1

θaq (u
k(µ);µ)aq(u

k+1, v) =

QMf∑
q=1

θfq (uk(µ);µ)fq(v), ∀v ∈ X (6.11)

This affine approximation is obtained using once or several times the EIM algorithm,
depending on the number of non-affine components of the original problem. Note
that some of the coefficients θaq and θfq might not depend on the iterates uk and
remain linear. Some of these coefficients might also come from an affine part of the
original problem, their evaluation is then analytical and does not require the use of
EIM.

Once we have an affine decomposition thanks to the EIM, we can perform a
usual RB offline/online procedure. Offline, the resolution is made using our favorite
iterative solver until convergence, uk(µ) → u(µ). This solution -snapshot- will be
used to build the RB space XN , as detailed in chapter 5.

The online resolution will require some non-linear iterations as well, which can
be written, using the same affine approximation: find uk+1

N (µ) such that

QMa∑
q=1

θaq (u
k
N(µ);µ)aq(u

k+1
N , v) =

QMf∑
q=1

θfq (ukN(µ);µ)fq(v), ∀v ∈ XN . (6.12)

We rewrite this equation under a matricial formulation after the projection on the
RB space WN = span{ξn, 1 ≤ n ≤ N},

N∑
j=1

QMa∑
q=1

N∑
n=1

θaq (u
k
N(µ);µ)(Aq

N)iju
k+1
Nj =

QMf∑
q=1

θfq (ukN(µ);µ)(F q
N)i, 1 ≤ i ≤ N (6.13)

where, ∀1 ≤ i, j ≤ N ,

(Aq
N)ij = aq(ξj, ξi) (F q′

N )j = fq′(ξj) ∀1 ≤ q ≤ QM
a , ∀1 ≤ q′ ≤ QM

f (6.14)
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The matrices Aq
N and the vectors F q

N are precomputed once during the online phase.
The online resolution then consists in several resolutions of the N ×N systemQMa∑

q=1

θaq (u
k
N(µ);µ)Aq

N

uk+1
N (µ) =

QMf∑
q=1

θfq (ukN(µ);µ)F q
N

 . (6.15)

The reduced solution uN(µ) is obtained after convergence of the non-linear solver,
ukN(µ)→ uN(µ).

2 EIM for Discrete Operators

We saw in the previous section that the Empirical Interpolation Method is a
required enabler for RBM applied to non-affine or non-linear problems. In the
Feel++ framework, this method was already implemented, see [105], but it required
an analytical expression of the non-affine component w. Also it was not adapted
for the stabilization operators presented in chapter 3. To tackle this problem, we
implemented a discrete version of the algorithm, known in the literature as multi-
component EIM or Matrix EIM [97]. This method is also called Discrete Empirical
Interpolation Method (DEIM) [16], when a Proper Orthogonal Decomposition (POD)
is used to select the EIM vectors. The method and the global algorithm are identical
to the one described in previous section but the formalism and the implementation,
detailed in chapter 10, are different, and then we chose to dedicate a section to this
particular version of the EIM.

The algorithm aims at building an affine approximation of a parametrized tensor
T (u(µ),µ). The algorithm as presented in this section is independent of the order of
the tensor, r = 1, 2, ... and can be used either for discrete linear or bilinear operators.
The affine approximation of tensor T (u(µ),µ) can be express as

T (u(µ),µ) ≈ TM(u(µ),µ) =
M∑
m=0

βm(µ)Φm (6.16)

where βm(µ) are scalar functions, βm : D → R, and Φm are order r tensors indepen-
dent of µ. The affine approximation TM lives in a space W̄M = span{Φm} of low
dimension M << N . The space W̄M is built during an offline phase, using a greedy
construction.

W̄1 is built by choosing an arbitrary first parameter µ̄1. For this parameter we
compute T (u(µ̄1), µ̄1) and look for the index i1 of the maximum entry of the tensor
T (u(µ̄1), µ̄1)

i1 = arg max
i∈I
|T (u(µ̄1), µ̄1)i|. (6.17)
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We can then initialize the greedy algorithm with

Φ1 =
1

|T (u(µ̄1), µ̄1)i1|
T (u(µ̄1), µ̄1), W̄1 = span{Φ1}, I1 = {i1}, S̄1 = {µ̄1}.

(6.18)

Remark 8. The nature of the indices i depends on the order r of the tensor. An index
can be defined, in a general way as i ∈ I = J1 : N Kr.

We assume now that W̄M−1 is built. The next parameters µ̄M is chosen to
maximize the norm of the residual, RM−1(µ),

RM−1(µ) = T (u(µ),µ)− TM−1(u(µ),µ), µ̄M = arg max
µ∈Ξ̄
||RM(µ)||∞. (6.19)

Then we can select the next interpolation index iM as the maximum entry of the
tensor RM−1(µ̄M)

iM = arg max
i∈I
|(RM−1(µ̄M))i|, (6.20)

and we set

ΦM =
1

|(RM−1(µ̄M))iM |
RM−1(µ̄M), W̄M = W̄M−1 ⊕ span{ΦM},

IM = IM−1 ∪ {iM}, S̄M = S̄M−1 ∪ {µ̄M}.
(6.21)

The complete offline methodology is summarized in algorithm 5.

Remark 9. We focused in this chapter on the treatment of the non-linearity of the
problems. However, the EIM proposed in this section is also very convenient to
automatically provide the affine decomposition of complex affine operators. For
instance, it is widespread to have huge and complex affine decomposition when we
are working with geometric parameters. EIM allows to recover this decomposition
and to avoid the painful calculus session. We successfully tested this use on the
Stokes test case 3.

2.1 Online evaluation

The coefficients βm(u,µ) are defined to ensure the exactness of the interpolation
in entries corresponding to the indices im ∈ IM . Then we can evaluate these
coefficients by solving the M ×M system

AMβM(u,µ) = FM(u,µ), (6.22)

where (AM)lj = (Φj)il, (βM(u,µ))l = βl(u,µ) and (FM(u,µ))l = (T (u,µ))il.

The matrix AM is built during the offline phase of the algorithm since it does
not depend on the parameter µ. However, the assembly of the vector FM(µ) is
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Algorithm 5: EIM offline algorithm for discrete operators
1 Choose Ξ̄ ⊂ D; // Super Samplings
2 Choose Mmax ∈ N; // Max size for W̄M

3 Choose δEIM ; // Algorithm tolerances
4 Choose µ̄1 ∈ Ξ̄ ; // Initialization of EIM construction

5 Set iM ← arg maxi∈I |T (uh(µ̄1), µ̄1)i|, ΦM ← T (uh(µ̄1),µ̄1)
|(T (uh(µ̄1),µ̄1))i1 |

;
6 Set M ← 1, S̄1 ← {µ̄1}, W1 ← {Φ1}, I1 ← {i1};
7 repeat
8 µ̄M+1 ← arg maxµ∈Ξ̄ ||T (uN(µ),µ)− TM(uN(µ),µ)︸ ︷︷ ︸

RM (µ)

||∞;

9 if ||RM(µ̄M+1)||∞ ≤ δEIM then
10 break;
11 else
12 M ←M + 1;
13 iM ← arg maxi∈I |(RM−1(µ̄M))i|;
14 ΦM ← RM−1(µ̄M )

|(RM−1(µ̄M ))iM |
;

15 S̄M ← S̄M−1 ∪ {µ̄M}, W̄M ← W̄M−1 ⊕ span{{}ΦM}, IM = IM−1 ∪ {iM};
16 end
17 until M ≥Mmax;

not trivial if we want to guarantee the N -independence of the online phase. We
have to assemble this vector for each new evaluation of the coefficients βm(u,µ).
Since T (u,µ) depends non-affinely of the parameter µ, we cannot pre-compute
anything. A trivial solution would be to reassemble the full tensor T (u,µ) and then
to extract the entries corresponding to the indices in IM . However, this assembly
depends directly on the FEM dimension N , and is potentially very costly. To remain
independent of this high dimension N we have to assemble the tensor only on the
necessary degrees of freedom. We detail this procedure in the next paragraphs and
its implementation in chapter 10.

Thanks to the compact support nature of the basis functions, we only need to
save a limited number of data to rebuild a reduced tensor TIM (u(µ),µ). We first
define the set DIM as the set of degrees of freedom (DoF) associated with the indices
in IM . Then we define NIM the set of nodes in the triangulation Th of the domain
Ω, associated to the DoFs in DIM . From this set of nodes NIM , we can extract an
interpolation mesh TIM out of the original Th. This sub-mesh is composed with the
elements of Th containing at least one node of NIM . The interpolation mesh is then
of very low dimension O(M) << N . We construct and store this mesh at the end of
the EIM greedy algorithm when the space W̄M is complete. From this interpolation
mesh, we can build an interpolation function space XIM = Xh(TIM ). This low
dimensional function space will be used to assemble the tensor TIM (u(µ),µ), for any
µ ∈ D, only on the needed DoFs.
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2.2 Operator on a Product Space

An issue appeared when we applied EIM to discrete operators on product of
spaces: when the physics corresponding to the different spaces do not have the
same order of magnitude, the use of EIM on the whole operator may totally “miss”
the non-affine dependency of one (or more) block in the composite operator. We
propose here to build multiple EIM, one for each block, to correctly decompose each
sub-operator.

Let W = X1, ..., XNs, Ns Hilbert spaces. We also introduce Ns FE space Wh =
X1
h, ..., X

Ns
H such that X i

h ⊂ X i, ∀1 ≤ i ≤ Ns. The respective dimension of each FE
space X i

h is denoted by Ni and N =
∑Ns

i=1Ni. We consider the discrete parametrized
operator T (w(µ);µ), typically obtained by the projection of a parametrized system
of PDE on Wh. To set these ideas, we take here the example of a bilinear discrete
operator T (·; ·) : W ×D → RN×N . The assembled matrix T (w(µ);µ) can be written
under a block form,

T (w(µ);µ) =

M
11(w(µ);µ) · · · M 1Ns(w(µ);µ)

...
...

MNs1(w(µ);µ) · · · MNsNs(w(µ);µ)

 . (6.23)

From this point we can consider two options. The first one is to perform an EIM
algorithm on the whole matrix/tensor T . The other one is to perform multiple EIM
algorithm on each submatrices Mij. With this second solution we ensure that all
the different physics of the system have a proper affine approximation of maximum
rank M . On the other hand, performing an EIM on each block can be very costly
and not necessary if the physics are of comparable order of magnitude.

The affine approximation of maximum rank M for T is then express, in a block
version,

TM(w(µ);µ) =

M
11
M (w(µ);µ) · · · M 1Ns

M (w(µ);µ)
...

...
MNs1

M (w(µ);µ) · · · MNsNs
M (w(µ);µ)

 (6.24)

where, for any 1 ≤ i, j ≤ Ns,

M ij
M(w;µ) =

M∑
m=1

βijm(w;µ)Φij
m. (6.25)

Remark 10. A lot of the βijm in this generic formulation might be zero in practice.
Also, we do not need to run the EIM on each block but only on blocks with non-
affine/non-linear contributions.
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3 Simultaneous Empirical Interpolation and Re-
duced Basis Method for Non-linear Problems

We detailed in the two previous section the EIM algorithm allowing to recover
an affine approximation for non-affine and non-linear problems. During the greedy
algorithm, an important part is the selection of the parameters µ̄m ∈ S̄M . For any
rank M ≥ 2, the new parameter µ̄M is chosen as

µ̄M = arg max
µ∈Ξ̄
||RM−1(µ)||∞ = arg max

µ∈Ξ̄
||T (u(µ),µ)− TM−1(u(µ),µ)||∞. (6.26)

The evaluation of µ̄M then requires to compute T (u(µ),µ) for any µ ∈ Ξ̄. In the case
of non-linear problems, this implies to solve a non-linear FEM problem for each
µ ∈ Ξ̄. Depending of the dimension of the problem, this is often really costly and
not reachable for too large sampling Ξ̄. A solution, proposed in [22], is to use the
Simultaneous Empirical Interpolation and Reduced Basis (SER) method in order to
build alternatively the RB space XN = span{ξn} and the EIM space W̄M = span{Φm}.
The RB approximation uN(µ) is then used in the evaluation of the residual RM(µ)
instead of the FEM solution uh(µ).

The SER algorithm was already interfaced with EIM in the Feel++ library. How-
ever, we interfaced the method with the discrete version described in the previous
section. We present the theory of the method in this section. The implementation
work is detailed in chapter 10.

We consider a non-linear parametrized problem which requires an affine approx-
imation for the tensor T (u(µ),µ). Since the reduced basis methodology needs an
affine decomposition, SER starts with the initialization of the EIM algorithm, for
M = 1. During this initialization, the FEM problem is solved once to build the first
EIM basis vector Φ1, see (6.18). With this first EIM basis vector, we have a first
affine approximation T1(u(µ),µ) = β1(u(µ),µ)Φ1, ∀µ ∈ D. This approximation is
totally inaccurate but will be used as a starting point to build the first RB vector ξ1,
using the classical RBM detail in chapter 5.

Once the first RB basis is computed, we dispose of a -very bad- first RB approxi-
mation u1(µ), for any µ ∈ D. This RB approximation will be used to evaluate the
EIM residual R1,1(µ) and chose the next parameter µ̄2,

µ̄2 = arg max
µ∈Ξ̄
||R1,1(µ)||∞ = arg max

µ∈Ξ̄
||T (u1(µ),µ)− T1(u1(µ),µ)||∞ (6.27)

This iterative construction is summarized in the algorithm 20, for the sake
of clarity, we used an elementary version of the offline RB construction but any
advanced features presented in chapter 5 could be included in the loop.

SER algorithm iterates between the construction of a new EIM basis vector ΦM

and a new RB vector ξN . The important features of this coconstruction are
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• The use of the RB approximation uN(µ) in the evaluation of RM,N(µ) =
T (uN(µ),µ) − TM(uN(µ),µ). This residual is used in the greedy algorithm
to select the next parameter. This major improvement changes the number of
FEM resolutions needed from NEIM+RB = card(Ξ̄) +N to NSER = N +M , where
N is the dimension of the RB space and M the dimension of the EIM space.

• The update of the affine decomposition throughout the RB greedy algorithm.

• The simultaneously growing accuracy of both approximations uN(µ) and
TM(u,µ). This growing accuracy allows recovering a very good convergence
after some iterations in the SER algorithm.

Difference with the Original Algorithm

SER algorithm was first presented in [24] and [22]. In these references, the RB
approximation is used in the EIM greedy algorithm to select the parameters but
also to build the EIM basis vectors. After some numerical experiments, we decided
to use the RB approximation only during the selection process. The basis vectors
are still built using the FEM solutions. This modification of the SER algorithm
greatly increases the accuracy of the EIM expansion. However, the number of FEM
solutions to be computed changes from NSER∗ = N + 1 to NSER = N +M .

This increase is not negligible. However, in the original SER algorithm (denoted
SER∗ hereafter), the multi-levels SER∗(l) is usually used. It consists of performing
multiple passes in SER algorithm, in order to improve the RB approximation. Each
new level is built using the RB approximation of the previous level. With this
procedure, the number of FEM evaluations is now NSER∗(l) = lN + 1.

With our version of SER, the multi-levels method becomes useless since we
already used a truth solution for the construction. We compare the convergence of
SER and SER∗ in the following preliminary results.

4 Preliminary Results

To illustrate the method and also to validate our implementation of the discrete
SER algorithm, we propose some numerical results on a 2D non-linear and non-
affinely parametrized benchmark, proposed in [37]. The discrete version of EIM
does not have a great interest in this test case since we have an analytic expression
of the non-linear term. However, this benchmark is excellent to validate our imple-
mentation. The interest of the discrete EIM will be illustrated in the chapter 7 with
the treatment of the stabilization operators.
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Algorithm 6: SER Algorithm
1 Choose Ξ ⊂ D, Ξ̄ ⊂ D; // Super Samplings
2 Choose Nmax ∈ N, Mmax ∈ N; // Max size for XN and W̄M

3 Choose δEIM , δRB ; // Algorithm tolerances
4 Choose µ1 ∈ Ξ; // Initialization of RB construction
5 Set N ← 0, S0 ← {}, X0 ← ∅;
6 Choose µ̄1 ∈ Ξ̄ ; // Initialization of EIM construction

7 Set iM ← arg maxi∈I |T (uh(µ̄1), µ̄1)i|, ΦM ← T (uh(µ̄1),µ̄1)
|(T (uh(µ̄1),µ̄1))i1 |

;
8 Set M ← 1, S̄1 ← {µ̄1}, W1 ← {Φ1}, I1 ← {i1};
9 Set stateEIM ← todo, stateRB ← todo;

10 repeat
11 if stateRB = todo then // RB Iteration
12 N ← N + 1;
13 SN ← SN−1 ∪ {µN};
14 uh(µN)← FE solution using current EIM affine approximation;
15 XN ← XN−1 ⊕ span{uh(µN)};
16 µN+1 = arg max

µ∈Ξ
∆N(µ);

17 if ∆N(µN+1) ≤ δRB or N ≥ Nmax then
18 stateRB ← finished;
19 end
20 end
21 if stateEIM = todo then
22 µ̄M+1 ← arg maxµ∈Ξ̄ ||T (uN(µ),µ)− TM(uN(µ),µ)︸ ︷︷ ︸

RM,N (µ)

||∞;

23 if ||RM,N(µ̄M+1)||∞ ≤ δEIM or M ≥Mmax then
24 stateEIM ← finished;
25 else
26 M ←M + 1;
27 iM ← arg maxi∈I |(RM−1(µ̄M))i|;
28 ΦM ← RM−1(µ̄M )

|(RM−1(µ̄M ))iM |
;

29 S̄M ← S̄M−1 ∪ {µ̄M}, W̄M ← W̄M−1 ⊕ span{ΦM}, IM = IM−1 ∪ {iM};
30 end
31 end
32 until stateEIM = finished and stateRB = finished;
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4.1 Problem Formulation

The domain Ω = [0, 1]2 is the unit square. The parameter space is D = [0.01, 10]2.
We consider the following elliptic and non linear equation, ∀µ = (µ1, µ2) ∈ D

−∆u(µ) + µ1
eµ2u(µ) − 1

µ2

= 100 sin(2πx) sin(2πy), (6.28)

and u(µ) = 0 on Γ = ∂Ω.

For this case, the output s is the average of u on the whole domain,

s(µ) =

∫
Ω

u(µ) dΩ . (6.29)

We introduce a discretization of Ω and a FE space Xh = Lkch(Ω). We can then
write the weak formulation, ∀µ ∈ D, as find uh(µ) ∈ Xh such that∫

Ω

∇uh(µ)·∇vh dΩ +

∫
Ω

µ1
eµ2uh(µ) − 1

µ2

vh dΩ =

∫
Ω

100 sin(2πx) sin(2πy)vh dΩ , ∀vh ∈ Xh

(6.30)

The term µ1
eµ2uh(µ)−1

µ2
will be approximated by an EIM approximation

µ1
eµ2uh(µ) − 1

µ2

=
M∑
m=1

βm(µ)gm. (6.31)

This affine approximation will be used to build the RB approximation uN(µ).

4.2 Numerical Results

The simulation is made with Xh = L2
ch(Ω). The mesh is basically a 33× 33 grid of

simplex. We present a profile of the solution for an arbitrary chosen µ, on figure 6.1.
The non-linearity is solved using a fixed point algorithm during the offline and the
online phases. We choose a uniform grid 15 × 15 as sampling for the EIM greedy
algorithm. A thinner discretization would be very costly, at least for the classical
EIM greedy algorithm. We used the dual norm of the residual as an error indicator
in the RB greedy selection.

We compare the truth approximation uh(µ), computed with the exact formulation,
and the RB approximation uN(µ) computed using the EIM affine approximation.
We are particularly interested in the quantities

euN(µ) =
‖uh(µ)− uN(µ)‖0

‖uh(µ)‖0

,

esN(µ) =
|sh(µ)− sN(µ)|
|sh(µ)|

.

(6.32)
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Figure 6.1 – Example of the solution for problem (6.28)
Profile of the FE solution uh(µ) with µ = (1.91, 2.77).

This comparison is made for 100 different parameters, chosen randomly in D. We
study the convergence of these errors with M = 25 EIM basis vectors. We also
considered three different configurations: EIM with classical greedy, SER and SER*
(see paragraph 32). We plotted the evolution of these errors for each configuration
on figures 6.2 and 6.3. We also compare the maximal errors for each method on
figure 6.4.

The variant SER*, which uses the RB approximation to build the EIM basis
vector, is apparently less accurate than our version of the SER algorithm. This
method will not be used anymore. The convergence is slightly slower than the
convergence of the EIM solution, but eventually, the errors are comparable.

The results of this benchmark validate our implementation of SER with our new
EIM. The convergence study is very promising concerning the use of SER. It is now
time to test these methods on more complicated cases. We propose an interesting
application in the next chapter, with the reduction of the stabilization operators
introduced in 3.
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Figure 6.2 – Convergence of the errors euN (µ) = ‖uh(µ)−uN (µ)‖0
‖uh(µ)‖0 with respect to the number of vectors

in the reduced basis. Maximum, minimum and mean values evaluated from 100 approximations.
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Figure 6.3 – Convergence of the errors esN (µ) = |sh(µ)−sN (µ)|
|sh(µ)| with respect to the number of vectors in

the reduced basis. Maximum, minimum and mean values evaluated from 100 approximations.
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Conclusion

In this chapter, we detailed the methods which allow applying the RBM to
non-linear and non-affine problems. The EIM is the key to recover an affine ap-
proximation and then to keep an efficient offline/online procedure. We presented a
discrete version of EIM, recently implemented in the Feel++ RB framework. This
new implementation of the method allows recovering an affine approximation of
vectors or matrices and then to tackle more general problems. The EIM can also
separates the non-linear dependency from the spatial one. It allows to use iterative
solvers during the online phase and to preserve the N -independence. The offline
phase of EIM for non-linear problems is greatly improved using the SER construc-
tion. We proposed a slight modification of the original algorithm to improve the
accuracy of the approximation provided by the coconstruction.
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The reduction of an aerothermal problems includes some non-trivial issues. In
this chapter, we detail the choices we made and the numerical solutions we used to
build a reduced version of the framework presented in the first part.

First of all, we have to deal with the Navier-Stokes equations. [78, 49] proposed
a first stable approximation for the incompressible Navier-Stokes flow. Rigorous a
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posteriori error estimator were first developed later in [102, 21] and more recently
in [68, 82]. Using the quadratic non-linearity of the Navier-Stokes equations, the
RBM introduced in the chapter 5 can be adapted with no major difficulties. We
usually build a stable RB space - in the sense of the Brezzi-Rappaz-Raviart (BRR)
condition - by enriching the velocity space as detailed in the section 2.

The RB method for trilinear problems has already been used for natural convec-
tion problems [91, 26, 56]. However, the construction of the RB space is usually made
monolithically. We propose in this section to build a product space VN ×QN ×XN to
improve the stability and the accuracy of the reduced approximation.

The introduction of the stabilization operators will be treated with the EIM
method presented in the previous chapter. This solution was already used for
convection dominated problems using DEIM [75]. We proposed here to extend the
idea to the whole aerothermal system. Other approaches were proposed for the
stabilization of reduced convection dominated problems. In [64] the stabilization in
the online stage is made independently of the offline one by adding an appropriate
vanishing viscosity in the high RB modes. In [36, 107], the SUPG stabilization
method is used with Proper Orthogonal Decomposition (POD) to reduce transient
convection dominated problems.

In the section 1, we detail the construction of our reduced aerothermal frame-
work, using the RBM for trilinear multi-physic problems and the EIM for the
stabilization operators. Then, the following sections are dedicated to numerical
applications. The first one is a simulation with no natural convection in the neighbor-
hood of an electronic component submitted to cooling air flow. The second application
is a simulation of mixed natural and forced convection in an airplane cabin proposed
by Airbus Group.

1 Reduction of the Aerothermal Model

We consider the problem describe in chapter 2, and we remind here the system
of equation, 

ρu · ∇u+∇p− 2∇ · (µS(u)) = −ρβ(T − T0)g,

∇ · u = 0,

u · ∇T −∇ · (κ∇T ) = 0,

+Boundary Conditions 2.14.

(7.1)

We also introduce the Hilbert spaces V , Q and X with the scalar products (·, ·)V ,
(·, ·)Q, (·, ·)X and associated norms || · ||V , || · ||Q, || · ||X , respectively. We define the
product space Z = V ×Q with the scalar product ((u, p), (v, q))Z = (u,v)V + (p, q)Q
and associated norm ||(·, ·)||Z =

√
|| · ||V + || · ||Q. We finally note the full composite

space W = V ×Q×X with scalar product (·, ·)W and norm ‖ · ‖W .

We supposed that the problem 7.1 is parametrized by a parameter µ ∈ D ∈ RP
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of dimension P ≥ 1. The discretization of this system, using the finite element
method (see chapter 2, section 2), leads to the weak problem: for any µ ∈ D, find
(uh(µ), ph(µ), Th(µ)) ∈ Vh ×Qh ×Xh such that

c(uh,uh,vh;µ) + du(uh,vh;µ)− b(vh, ph;µ) + b(uh, qh;µ) = f(Th,vh;µ),

a(Th,uh, Sh;µ) + dT (Th, Sh;µ) = g(Sh;µ),

∀(vh, qh, Sh) ∈ Vh ×Qh ×Xh,
(7.2)

where ∀µ ∈ D,

• c : V × V× → R and a : X × V ×X → R are continuous trilinear forms

• du : V ×V →, b : V ×Q→ R, f : X×V → R and dT : X×X → R are continuous
bilinear forms

• g : X → R is a continuous linear form.

We also assume that these forms can be written using an affine decomposition,
∀µ ∈ D,

c(u,v,w;µ) =

Qc∑
k=1

θck(µ)ck(u,v,w), a(T,u, S;µ) =

Qa∑
k=1

θak(µ)ak(T,u, S),

du(u,v;µ) =

Qdu∑
k=1

θd
u

k (µ)du,k(u,v), dT (T, S;µ) =

QdT∑
k=1

θd
T

k (µ)dT,k(T, S),

b(u, q;µ) =

Qb∑
k=1

θbk(µ)bk(u, q), f(T,v;µ) =

Qf∑
k=1

θfk(µ)fk(T,v)

g(v;µ) =

Qg∑
k=1

θgk(µ)gk(v)

(7.3)

Truth Approximation

As truth approximation of this problem, we will use the finite element solution.
The resolution of this system of equation is widely described in the part I. Thereafter
we assume that ∀µ ∈ D we dispose of a FE solution (uh(µ), ph(µ), Th(µ)) ∈ V ×Q×X
of the system 7.1.

1.1 Offline Procedure: Construction of the RB Space

The reduced basis space will be built on a sampling SN , as described in the
chapter 5. This sampling can be iteratively determined using a greedy algorithm, if
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we have an error indicator for our problem, or chosen randomly otherwise. In both
cases, the aim of the offline procedure it to iteratively construct three set of spaces
V1 ⊂ · · · ⊂ VN , Q1 ⊂ · · · ⊂ QN and X1 ⊂ · · · ⊂ XN .

The first spaces V1, Q1 and X1 are built as

V1 = span{uh(µ1),T µη1} = span{ζ1, ζ2},
Q1 = span{ph(µ1)} = span{η1},
X1 = span{Th(µ1)} = span{ξ1}.

(7.4)

As mentioned in the chapter 5, the actual basis {ζn}, {ηn} and {ξn} are obtained
from an orthonormalization of the respective snapshots {uh(µn),T µnηn}, {ph(µn)}
and {Th(µn)}. T µ is the supremizer operator, defined in the chapter 5, section 2.
However, the random selection of the µn or the greedy selection might provide
snapshots that already live in the RB spaces. For instance, if the difference between
the parameters µn−1 and µn is only acting on the fluid temperature and not on the
fluid dynamic, the new snapshots (uh(µn), ph(µn)) will not be relevant to enrich the
space Vn and Qn. It is then important to eliminate these useless contributions.

This selection phase is made during the orthonormalization process. When a new
solution uh(µn) is computed for the parameter µn, we first evaluate its component
orthogonal to the space Vn−1,

ζ∗n = uh(µn)−
Nun−1∑
k=1

(uh(µn), ζk)V , (7.5)

where Nu
n−1 is the size of the space Vn−1. At this point, if the norm, ‖ζ∗n‖V , is too

small, this solution is not normalized and not added to the space Vn. We do the
same verification during the orthonormalization of the bases of the spaces Qn and
Xn. This way, we ensure that the vectors of each reduced basis remain linearly
independent. A direct consequence of this construction is the variable sizes of the
RB spaces. From now on, we denote by N the size of the sampling SN . We denote
respectively by Nu

N , Np
N and NT

N the dimensions of the RB spaces VN , QN and XN .
We have the immediate, but notable relations: Nu

N ≤ 2N , Np
N ≤ N and NT

N ≤ N .

We present a summarized version of the selective Gram-Schmidt procedure in
the algorithm 7. We also propose a greedy selection for the aerothermal problems in
the algorithm 8.

1.2 Online Evaluation

The idea of the online evaluation is similar to the coercive or saddle point
problems presented in the chapter 5. We perform a Galerkin projection of our
continuous problem on the reduced space WN = VN ×QN ×XN . The main difference
with the current system of equations is the treatment of the non-linearity. We
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Algorithm 7: Selective Gram-Schmidt Orthonormalization
Input: {ξ1, · · · , ξN}, un
Output: {ξ1, · · · , ξN}

1 Choose δtol ; // Algorithm tolerance
2 ξ∗ ← un;
3 for 1 ≤ k ≤ N do
4 ξ∗← ξ∗ − (un, ξk)Xh;
5 end
6 if ‖ξ∗‖X ≥ δtol then
7 N ← N + 1;
8 return {ξ1, · · · , ξN} ∪ { 1

‖ξ∗‖X
ξ∗}

9 else
10 return {ξ1, · · · , ξN}
11 end

Algorithm 8: Offline Procedure for Aerothermal Problems
1 Choose Ξ ⊂ D ; // Super Sampling
2 Choose Nmax ; // Maximum size of XN

3 Choose δtol ; // Algorithm tolerance
4 Set SN ← {}, ,VN ← {}, QN ← {}, XN ← {} ; // Initialization
5 Set Nu

0 ← 0, Np
0 ← 0, NT

0 ← 0;
6 repeat
7 SN ← SN−1 ∪ {µN}, Nu

N ← Nu
N−1,N

p
N ← Np

N−1, NT
N ← NT

N−1;
8 Find (uh(µN), ph(µN), Th(µN)) solution of system (7.1);
9 {η1, · · · , ηNp} ←Selective Gram-Schmidt({η1, · · · , ηNp}, ph(µN));

10 if ph(µN) added then
11 {ζ1, · · · , ζNu} ←Selective Gram-Schmidt({ζ1, · · · , ζNu},T µηNp});
12 end
13 {ζ1, · · · , ζNu} ←Selective Gram-Schmidt({ζ1, · · · , ζNu},uh(µN)});
14 {ξ1, · · · , ξNT } ←Selective Gram-Schmidt({ξ1, · · · , ξNT }, Th(µN)});
15 VN ← span{ζ1, · · · , ζNuN};
16 QN ← span{η1, · · · , ηNp

N
};

17 XN ← span{ξ1, · · · , ξNT
N
};

18 Precompute online structures;
19 for µ ∈ Ξ do
20 Compute error bound, ∆N(µ);
21 end
22 µN+1 = arg max

µ∈Ξ
∆N(µ); // Or can be chosen randomly

23 until ∆N(µN+1) < δtol or N ≥ Nmax;
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choose to use a Newton iterative method to deal with this non-linearity. Note that
the method described after is easily adaptable to other iterative methods.

We assume that the RB spaces VN , QN and XN have been built during the
offline phase, with the respective orthonormal basis BuN = {ζi}

NuN
i=1, B

p
N = {ηi}

Np
N

i=1 and
BTN = {ξi}

NT
N

i=1. The Galerkin projection of the problem (7.1) on these spaces, leads to
the matricial equation: find (uN(µ), pN(µ), TN(µ)) such thatDu

N(µ) +CN(uN ;µ) BN(µ)ᵀ −FN(µ)
−BN(µ) 0 0

0 0 AN(uN ;µ) +DT
N(µ)


︸ ︷︷ ︸

MN (uN ;µ)

uN(µ)
pN(µ)
TN(µ)

 =

 0
0

GN(µ)

 ,
(7.6)

where, ∀µ ∈ D and for any 1 ≤ i, j ≤ Nu
N , 1 ≤ m ≤ Np

N , 1 ≤ n, l ≤ NT
N ,

(Du
N(µ))ij = du(ζj, ζi;µ), (CN(u;µ))ij = c(ζj,u, ζi;µ), (FN(µ))i,l = f(ξl, ζi;µ),

(BN(µ))mj = b(ζj, ηm;µ)

(DT
N(µ))nl = dT (ξl, ξn;µ), (AN(u;µ))nl = a(ξl,u, ξn;µ), (GN(µ))n = g(ξn;µ).

(7.7)
The system (7.6) can be solved using a Newton method. For that, we have to
evaluate, ∀(u, p, T ) ∈ VN ×QN ×XN , ∀µ ∈ D the Jacobian JN(u, p, T, µ) (or Fréchet
Derivative) of the application F(µ) : (u, p, T ) → M (u;µ)(u, p, T )ᵀ. We also need
the residual RN(u, p, T ;µ) of the system (7.6). The evaluation of these two objects
during the online phase has to be independent of the finite element dimension N .

Thanks to the quadratic form of our problem, we can easily write the Jacobian
JN , ∀(u, p, T ) ∈ VN ×QN ×XN , ∀µ ∈ D

JN(u, p, T ;µ) =

Du
N(µ) +CN(uN ;µ) +C∗N(uN ;µ) BN(µ)ᵀ −FN(µ)

−BN(µ) 0 0
A∗N(TN ;µ) 0 AN(uN ;µ) +DT

N(µ)


(7.8)

where, ∀µ ∈ D and for any 1 ≤ i, j ≤ Nu
N , 1 ≤ n, l ≤ NT

N ,

(C∗N(u;µ))ij = c(u, ζj, ζi;µ), (A∗N(u;µ))nj = a(T, ζj, ξn;µ). (7.9)

By using the affine decomposition assumption (2.2), we can rewrite the definitions
of the matrices Du

N , BN , FN and DT
N , ∀µ ∈ D and for any 1 ≤ i, j ≤ Nu

N , 1 ≤ m ≤ Np
N ,

1 ≤ n, l ≤ NT
N ,

(Du
N(µ))i,j =

Qdu∑
k=1

θd
u

k (µ) duk (ζj, ζi)︸ ︷︷ ︸
precomputed

, (DT
N(µ))n,l =

Q
dT∑

k=1

θd
T

k (µ) dTk (ξl, ξn)︸ ︷︷ ︸
precomputed

(BN(µ))m,j =

Qb∑
k=1

θbk(µ) bk(ζj, ηm)︸ ︷︷ ︸
precomputed

, (F (µ))i,l =

Qf∑
k=1

θfk(µ) fk(ξl, ζi)︸ ︷︷ ︸
precomputed

.

(7.10)
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We use the same idea to precompute the quadratic contributions, ∀µ ∈ D,
∀(u, p, T ) ∈ VN ×QN ×XN ,

(CN(u;µ))ij = c(ζj,u, ζi;µ) (C∗N(u;µ))ij = c(u, ζj, ζi;µ)

=

NuN∑
n=1

unc(ζj, ζn, ζi;µ) =

NuN∑
n=1

unc(ζn, ζj, ζi;µ)

=

Qc∑
k=1

NuN∑
n=1

θck(µ)un ck(ζj, ζn, ζi)︸ ︷︷ ︸
precomputed

, =

Qc∑
k=1

NuN∑
n=1

θck(µ)un ck(ζn, ζj, ζi)︸ ︷︷ ︸
precomputed

,

(AN(u;µ))ij = a(ξj,u, ξi;µ) (A∗N(T ;µ))ij = a(T, ζj, ξi;µ)

=

NuN∑
n=1

una(ξj, ζn, ξi;µ) =

NT
N∑

n=1

Tna(ξn, ζj, ξi;µ)

=

Qa∑
k=1

NuN∑
n=1

θak(µ)un ak(ξj, ζn, ξi)︸ ︷︷ ︸
precomputed

, =

Qa∑
k=1

NT
N∑

n=1

θak(µ)Tn ak(ξn, ζj, ξi)︸ ︷︷ ︸
precomputed

.

(7.11)
Then we have to store Qa+Qc order-3 tensors of size Nu

N×Nu
N×Nu

N and Nu
N×NT

N×NT
N .

It remains reasonable (in term of memory cost) and allows to totally ignore the
finite element dimension during the assembly of the Jacobian JN .

The residualRN(u, p, T ;µ) can be expressed using the same submatrices, ∀µ ∈ D

RN(u, p, T ;µ) =

Du
N(µ) +CN(u;µ) BN(µ)ᵀ −F (µ)
−BN(µ)

AN(u;µ) +DT
N(µ)

up
T

−
 0

0
GN(µ)

 ,
(7.12)

and so we can use the method described previously and the precomputed tensors
to evaluate the residual RN independently of the finite element dimension. The
complete online non-linear resolution is summarized in algorithm 9.

Remark 11. During the Newton algorithm, the blocks coming from the bilinear
contributions are only assembled once. The blocks coming from the trilinear contri-
butions have to reassembled for each new linear resolution.

The convergence of the Newton algorithm during the online procedure was an
issue for some problems. We had to consider some improvements to help the con-
vergence. First, for any new parameter µ, we search the closest parameter (in
the sense of the usual norm for vectors) in SN . We note µ̄ this reference parame-
ter. Then we initialize the Newton algorithm using the projection of the solution
(u(µ̄), p(µ̄), T (µ̄)). This projection has been evaluated and stored during the offline
phase. This initialization greatly improves the convergence of the solver. However,
it might not be enough. When this procedure is not sufficient, we add a continuation
on the parameter. The online problem is solved for a sequence (µk)

K
0 such that
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µ0 = µ̄ and µK = µ. This procedure is particularly costly, but it is only required for
a few numbers of parameters and is not used if the direct resolution converges.

Algorithm 9: Newton Algorithm for the online non-linear resolution
Input: µ
Output: (uN(µ), pN(µ), TN(µ))

1 Choose δtol ; // Algorithm tolerance
2 Choose (u0, p0, T 0); // Initial guess
3 Assemble linear contribution GN(µ);
4 Assemble bilinear contributions Du

N , BN , FN ,DT
N ;

5 repeat
6 Assemble trilinear contributions: CN(uk−1,µ), C∗N(uk−1,µ);
7 Assemble trilinear contributions: A(uk−1;µ), A∗(T k−1;µ);
8 Assemble Jk−1

N = JN(uk−1, pk−1, T k−1;µ), see (7.8);
9 Assemble Rk−1

N = R(uk−1, pk−1, T k−1;µ), see (7.12);
10 Solve Jk−1

N Hk−1 = −Rk−1
N ;

11 (uk, pk, T k)← (uk−1, pk−1, T k−1) +Hk−1;
12 until ‖RN(uk, pk, T k;µ)‖2 ≤ δtol;
13 return (uN(µ), pN(µ), TN(µ)) = (uk, pk, T k);

1.3 Treatment of the Stabilization Terms

We consider the system (2.2) and we add the stabilization terms. We obtain the
new weak formulation: find (uh(µ), ph(µ), Th(µ)) ∈ Vh ×Qh ×Xh such that

a∗u(uh(µ), ph(µ),vh;µ)− b(vh, ph;µ) + b(uh, qh;µ) = f ∗u(Th,vh;µ),

a∗T (Th,uh, Sh;µ) = f ∗T (Sh;µ),

∀(vh, qh, Sh) ∈ Vh ×Qh ×Xh,
(7.13)

whith
a∗u(uh, ph,vh;µ) = c(uh,uh,vh;µ) + du(uh,vh;µ) + aSDM

u (uh, ph,vh;uh,µ)

a∗T (Th,uh, Sh;µ) = a(Th,uh, Sh;µ) + dT (Th, Sh;µ) + aSDM
T (Th, Sh;uh,µ)

f ∗u(Th,vh;µ) = f(Th,vh;µ) + fSDM
u (Th,vh;uh,µ)

f ∗T (S;µ) = g(Sh;µ) + fSDM
T (Th, Sh;uh,µ),

(7.14)

where the forms c, du, a, dT , f and g are defined in (7.3). The operators aSDM
u , aSDM

T ,
fSDM
u and fSDM

T are the stabilization terms detailed in the chapter 3.

Those stabilization operators are non-linear and non-affine in parameters. By
introducing these terms in the variational formulation, we can rewrite the Jacobian
JN and the residual RN as

JN(u, p, T ;µ) = J tri
N (u, p, T ;µ) + JSDM

N (u, p, T ;µ),

RN(u, p, T ;µ) = Rtri
N (u, p, T ;µ) +RSDM

N (u, p, T ;µ),
(7.15)
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where J tri
N andRtri

N are the contributions detailed respectively in (7.8) and (7.12).JSDM
N

and RSDM
N are the contributions from the stabilization operators. Using the EIM

for discrete operators introduced in the previous chapter, we can compute an affine
approximation for these contributions,

JSDM
N (u, p, T ;µ) ≈

MJ∑
m=1

θJm(u, p, T,µ)Jm,N

RSDM
N (u, p, T ;µ) ≈

MR∑
m=1

θRm(u, p, T,µ)Rm,N

(7.16)

where the matrices Jm,N and the vectors Rm,N are pre-computed during the offline
procedure. The online phase then consists in the evaluation of the θJm(u, p, T,µ) and
θRm(u, p, T,µ) using the EIM algorithm. This allows to compute the Jacobian matrix
and the Residual vector independently of the FE dimension.

Remark 12. With very basic stabilization parameters we might retrieve a quadratic
non-linearity for the stabilization terms. However, it is a particular case, and we will
not detail this point. In such a situation, the stabilization terms can be integrated
into the trilinear contribution of the aerothermal system.

1.4 Reduction of a Turbulent Model

We had some difficulties with turbulent simulations and especially with the
stabilization of the turbulent models. The final development of the full turbulent
model is very recent, and then we had no time to start the implementation of the
reduced version. However, we will present in this section how we planned to apply
the RBM to RANS simulations. The presented method is only a theory and was not
implemented.

We assume here that we have a fully operational turbulence model. This model
allows to compute the turbulent viscosity νt(u,µ). In RANS models, this turbulent
viscosity is usually computed from scalar quantities, solutions of one (or several)
PDE(s). For instance, the Spalart Allmaras model and the k − ω SST models pre-
sented in the chapter 4 require the resolution of one and two equations respectively.

A natural idea is to use the EIM to build an affine approximation of the turbulent
viscosity νt(u,µ). However, the EIM requires to know for any new u and µ, the exact
value of νt(u,µ) on the interpolation points. To obtain theses values, we have to
build reduced basis spaces for the scalar quantities of the turbulence model (ν̄(u,µ)
for Spalart Allmaras or (k(u,µ), ω(u,µ)) for k−ω SST). To simplify the explanations
in the following paragraphs, we suppose now that the viscosity νt is computed from
one generic scalar quantity ν̄(u,µ), solution of one PDE. The following method is
easily adaptable in the case of a model with multiple PDE.
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In most of the RANS models, the scalar field ν̄(u,µ) is expressed as the solution
of a non-linear transport equation on the domain Ω. We will solve this PDE in a
adapted FE space Ph(Ω). The generic weak formulation for this problem can be
written as find ν̄(u,µ) ∈ Ph, ∀uh ∈ Vh, ∀µ ∈ D, such that

ct(ν̄h, γh,uh;µ) + at(ν̄h, γh;µ,uh) = ft(γh), ∀γh ∈ Ph, (7.17)

where, ∀µ ∈ D

• ct : Ph × Ph × Vh → R is a continuous trilinear form,

• at : Ph × Ph → R is a continuous bilinear form,

• ft : Ph → R is a continuous linear form.

In practice, at is usually not bilinear and we suppose here that we use the EIM to
obtain an affine approximation, ∀µ ∈ D, ∀uh ∈ Vh

at(ν̄h, γh;µ,uh, ν̄h) =

Qat∑
k=1

θatk (µ,uh, ν̄h)at,k(ν̄h, γh)

ft(γh;µ) =

Qft∑
k=1

θftk (µ)ft,k(γh).

(7.18)

We also suppose that the convection term ct admits an affine decomposition

ct(ν̄h, γh,uh;µ) =

Qct∑
k=1

θctk (µ)at,k(ν̄h, γh,uh). (7.19)

During the offline procedure, the reduced spaces VN , QN , XN are built as de-
scribed in the previous section. We also construct the space PN ,

PN = span{ν̄h(uh(µn),µn), 1 ≤ n ≤ N} = span{ψn, 1 ≤ n ≤ N}, (7.20)

where (ψn)Nn=1 is an orthonormalized basis of PN . During this phase, we will also
compute the quantities

ct,k(ψi, ψj, ζl), ∀1 ≤ i, j ≤ N, ∀1 ≤ l ≤ Nu,

at,k(ψi, ψj), ∀1 ≤ i, j ≤ N,

ft,k(ψi), ∀1 ≤ i ≤ N.

(7.21)

Then, during the online phase, we can evaluate the RB approximation ν̄N(uN ,µ),
∀uN ∈ RNu, ∀µ ∈ D as the solution of the reduced non-linear system

(Ct(uN ,µ) +A(µ,uh, ν̄N))ν̄N = Ft(µ), (7.22)
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with

(Ct(uN ,µ))i,j =

Qct∑
k=1

Nu∑
l=1

θctk (µ)ct,k(ψi, ψj, ζl),

(At(µ,uN , ν̄N))i,j =

Qat∑
k=1

θatk (µ,uN , ν̄N)at,k(ψi, ψj)

(Ft(µ))i =

Qft∑
k=1

θftk (µ)ft,k(ψi).

(7.23)

Once this system is solved, the RB approximation ν̄N(uN ,µ) can be used to evaluate
the turbulent viscosity νt(uN ,µ). It is then possible to iterate between the two
reduced models with classical fixed point iterations.

The method described might theoretically work. However, it implies the use of
multiple EIMs. The resolution of the turbulent PDE is usually not trivial and very
sensitive. There is no guaranty that the many approximations made through the
EIMs provide a stable solution.

2 OPUS Test-Case: Application to the Cooling of
Electronic Components

We present in this section our numerical results on a test case proposed in 2009
by Michel Fouquembergh and Annabelle Le-Hyaric, both from Airbus Group.

2.1 Problem Description

We consider a 2D model representative of the neighboring of an electronic
component submitted to a cooling air flow. It is described by four geometrical
domains in R2 named Ωi, i = 1, 2, 3, 4, see figure 7.1. We then want to compute the
temperature field T , in the whole domain Ω = ∪4

i=1Ωi, and the velocity/pressure
(u, p) in the sub-domain Ω4, as the solution of the aerothermal system of equations

ρu · ∇u− 2∇ · (µS(u)) +∇p = 0, on Ω4

∇ · u = 0, on Ω4

ρiCiv · ∇T −∇ · (ki∇T ) = Qi, on Ωi, i = 1, 2, 3, 4

(7.24)

where, in each subdomain Ωi, ki is the thermal diffusivity and Qi is a volumic heat
dissipated. ρ and µ are respectively the density and the viscosity of the air. We do
not consider natural convection in this case and so the coupling between the fluid
and the thermal equations is only one way.
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Figure 7.1 – Geometry of the problem

The subdomains Ω1 and Ω2 define two Integrated Circuits, respectively IC1 and
IC2, simplified as two rectangles of height hIC and width eIC. These IC are soldered
to the Printed Circuit Board (PCB) which is a rectangle of height hPCB and width
ePCB. The Air is flowing along the PCB in the domain Ω4, of width eA.

The notation for the external boundaries of the domain Ω:

Γ1 = { x = 0, 0 ≤ y ≤ hPCB},
Γ2 = { x = ePCB + eA, 0 ≤ y ≤ hPCB},
Γ3 = { 0 ≤ x ≤ ePCB + eA, y = hPCB},
Γ4 = { 0 ≤ x ≤ ePCB + eA, y = 0},

(7.25)

we also define the convenient notations: ΓI = (Ω3 ∪ Ω2 ∪ Ω1) ∩ Ω4 for the internal
boundary between fluid and solid domains and Γij = Γi ∪ Ωj for the sub-boundaries.

Boundary Conditions on the Temperature

• on Γ1 ∪ Γ2 ∪ Γ3, a zero flux condition (Neumann)

−k∇T · n = 0, (7.26)
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• on Γ4, imposed temperature (Dirichlet)

T = T0; (7.27)

• on all the internal boundaries, the continuity of the heat flux and temperature

Ti = Tj, ki∇T · n = −kj∇T · n (7.28)

Boundary Conditions on the Fluid

• on Γ3, a free stream condition

µ∇u · n− pn = 0 (7.29)

• on Γ2 ∪ ΓI , a no-slip wall condition (Homogeneous Dirichlet)

u = 0 (7.30)

• on Γ4, a Poiseuille Profile (Dirichlet)

u = uP =

0,
3

2(eA − eIC)
D

1−

(
x− ( eA+eIC

2
+ ePCB)

eA−eIC
2

)2
 (7.31)

Modifications of the Original Model

The boundary conditions presented above are slightly simplified compared to the
conditions proposed in the original test case.

• The conditions of the temperature on Γ1 and Γ2 are supposed to be periodic
conditions

T |x=0 = T |x=ePCB+eA

k3∇T |x=0 · n3 = −k4∇T |x=ePCB+eA · n4

(7.32)

• The conditions at the interfaces between ICi and the PCB are supposed to be
a thermal contact conductance

−ki∇T · ni − k3∇T · n3 = ri3(T∂Ωi − T∂Ω3) (7.33)

where ri3 is a positive coefficient.

These conditions have been simplified into the respective conditions (96) and (98)
because these kinds of conditions are not supported in Feel++.
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Inputs of the Model

We present in table 7.1 the different parameters of this case. We indicate a
nominal value and eventually a range. The nominal value is the default. The
variables with a range are the parameters of the model.

Name Description Nominal Value Range Units
IC

ρ1C1 = ρ2C2 Heat Capacity 1.4 · 106 J.m−1.K−1

Q1, Q2 Heat source 106 [0, 106] W.m−3

k1, k2 Thermal conductivity 2 [0.2, 150] W.m−1.K−1

eIC Thickness 2 · 10−3 m
hIC Height 70 · 10−3 m

PCB
ρ3C3 Heat Capacity 2 · 106 J.m−1.K−1

Q3 Heat source 0 W.m−3

k3 Thermal conductivity 0.2 W.m−1.K−1

ePCB Thickness 2 · 10−3 m
hPCB Height 130 · 10−3 m

Air
ρ4C4 Heat Capacity 1100 J.m−1.K−1

Q4 Heat source 0 W.m−3

k4 Thermal conductivity 3 · 10−2 W.m−1.K−1

ρ Density 1.0 kg.m−3

µ Viscosity 1.8 · 10−5 kg.m−1.s−1

eA Thickness 14 · 10−3 m
T0 Inflow temperature 300 K
D Inflow rate 7 [0.5, 50] 10−3 m2.s−1

Table 7.1 – Opus Application: Parameters of the model

Remark 13. A geometric parameter was initially introduced in the benchmark
configuration. The thickness eA was supposed to vary. It appeared that some shapes
produced recirculations at the outlet and then the Newton solver was not able to
converge anymore. We are still working on this issue, and we hope to propose the
results with geometric parameter very soon.

Output of the Model

We compute, ∀µ ∈ D the mean temperature on the second IC,

s(µ) =

∫
Ω2

T (µ) dΩ . (7.34)
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(a) Mesh (b) Velocity (c) Pressure (d) Temperature

Figure 7.2 – Opus Application: mesh and example of solution profiles (RB) for parameter
µ = (150, 150, 106, 106, 10−2). (a) coarser mesh used for the stabilized simulations, (b) velocity profile,
in m.s−1, with streamlines, (c) pressure field, in Pa, with contour lines, (d) temperature field, in K

2.2 Numerical Results

The following results have been produced on a non-structured simplex mesh.
The mesh is presented in figure 7.2 with an example of profiles for the temperature,
velocity and the pressure (µ = (150, 150, 106, 106, 10−2)). The FE space is TH1

ch(Ω)×
L2
ch(Ω).

No Stabilization

We first present some results with no stabilization. In order to keep a stable
solution, we do two small modifications. First, the mesh has been refined by splitting
all the cells in the mesh presented in figure 7.2. Then, the range for the inflow rate
has been reduced, and we consider for now D ∈ [0.5 · 10−3, 10 · 10−3]m2.s−1.

We built the reduced basis using δtol = 10−12 in the selective Gram-Schmidt
algorithm 7, with 50 parameters in SN . At the end of the offline procedure, the size
of the spaces VN ×QN ×XN is 89× 38× 50. We present the convergence of the errors
for s, u, p and T on the figure 7.3. These results are very satisfying, considering the
dimension of the parameter space. Of course, the convergence of the errors can still
be improved by using an adapted error estimator in the greedy algorithm.

As expected, the time for the resolution of the reduced problem increases with
the size of the reduced spaces. We present in figure 7.4 the mean runtime for
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the reduced problem vs. the size N of SN . To explain these runtimes, we also
plotted (figure 7.5) the execution times for the main components of the resolution
process. We observe that the assemblies of the reduced Jacobian and Residual
become very expensive when N is growing. However, we figured out that the time
for these operations depends on the dimension N but also on the max dimension
Nmax. Indeed, if we compare the assembly times for different values of Nmax, see
figure 7.6, we see a significant difference. This gap is probably the consequence of
the block extraction methods used to assemble the reduced operators. The reduced
matrices and vectors are stored using data structures from the C++ library Eigen.
This library is very convenient for the extraction and the operations on submatrices.
However, these extraction methods seem to depend on the size of the global matrix.
This issue should be investigated in future works.
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Figure 7.3 – Opus Application without Stabilization: convergence of the errors vs the size of N .
Maximum minimum and average errors evaluated from 50 approximations. δtol = 10−10 in selective

Gram-Schmidt algorithm 7, maximum size of the reduced spaces 89× 38× 50

These first results with our RB aerothermal solver are very encouraging. How-
ever, the geometry was very basic, and thus there were no significant variations in
the fluid flow. We are now interested in the validation of our solver on more complex
problems and also for simulations with stabilization methods.
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Figure 7.4 – Opus Application without Stabilization: average resolution time (in s) for the reduced
problem vs N .
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Figure 7.5 – Opus Application without Stabilization: Runtime of the main phases for the online
resolution. Mean value for 50 runs. Other contributions are negligible
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Figure 7.6 – Opus Application without Stabilization: assembly time for the reduced Jacobian (a) and
the reduced Residual (b) for different values of Nmax. Mean values evaluated over 50 reduced

resolutions.
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Results with Stabilization

We now introduce stabilization operators. For this test case we choose the
formulation GLS1 for both the fluid and the temperature, see chapter3. We use
the non-refined mesh presented in figure 7.2 and the full range for the inflow
rate, D ∈ [0.5 · 10−3, 50 · 10−3] m2.s−1. The tolerance in the selective Gram-Schmidt
algorithm is set to δtol = 10−10.

There are two possibilities for the treatment of the stabilization. We can either
use an EIM for the stabilization of the whole system or two EIMs, one for each
physic. We initially wanted to compare the results of both versions. However, it
appears that the results with the monolithic construction of the EIM approximation
was not convincing and we finally abandoned this idea. It seems necessary to build
one EIM for each physic.

We present on figure 7.7 a comparison to the errors for classical EIM and SER
construction, both with the same offline sampling and the same EIM size M = 25.
The convergence of SER is very satisfying in comparison of the classic EIM. It
confirms the preliminary results of the chapter 6. We also propose a plot of the
minimal, maximal and averaged values of the errors for the construction using
SER on figure 7.8. Regarding the convergence of the errors for the velocity and the
pressure fields, we observe a deterioration of the results after N = 16. For now, we
have no explanation for this phenomena, and we are still investigating this issue.

With these simulations, we highlighted another problem with our implemen-
tation of the discrete EIM. The computation of the EIM coefficients is relatively
expensive and is limiting the performance of the reduced model. Even if the as-
sembly is made on a minimal mesh, it requires between 0.1 and 0.3s per assembly.
With the four EIM of this model and the non-linear iterations, the time spent in
computing the non-linear coefficients becomes particularly expensive. To illustrate
this issue, we present on figure 7.9 the runtimes of the principal components of the
online resolution: the assembly of the Jacobian, the assembly of the Residual and
the evaluation of the nonlinear coefficients. This excessive computation time, in
addition to the runtime issue already exposed with the previous test-case, became a
problem for the study of simulations with stabilization. We started thinking about
some optimizations to fix this issue but it requires some implementation efforts and
the modification could not be made in the context of this thesis.

Even if the numerical results are encouraging for this test-case, it remains some
work to do in order to be completely satisfied. We have to identify the cause of the
bad accuracy for the pressure and the velocity fields and we still have to optimize
the computation of the non-linear coefficients using EIM. We will now test our
framework on more complex geometries with the following problem.
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Figure 7.7 – Opus Application with Stabilization: convergence of the errors vs the size of N .
Comparison of the maximum values for classical EIM and SER algorithm. Maximum size of the

reduced spaces 50× 25× 25
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Figure 7.8 – Opus Application with Stabilization + SER: convergence of the errors vs N .
Maximum minimum and average errors evaluated from 50 approximations. Maximum size of the

reduced spaces: 50× 25× 25. Number of basis vectors in EIM approximations M = 25
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Figure 7.9 – Opus Application without Stabilization: Runtime of the main phases for the online
resolution. Mean value for 50 runs. Other contributions are negligible
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3 CHORUS Test-Case: Application to Aerothermal
Simulations in an Airplane

We present in the test case proposed by Airbus Group in the context of the
CHORUS project.

3.1 Problem Description

The geometry of the problem is a 2D slice of an aircraft, see 7.10. The top of the
geometry is the Cabin ΩC . In this part are six passengers Pi, 1 ≤ i ≤ 6, one inlet IC
for the cooled air and two outlets OC1 and OC2. The bottom part is the bay of the
aircraft. It contains two electrical equipment E1 and E2, three bleed air ducts D1,
D2 and D3 and three electrical harnesses H1, H2 and H3. There are also two inlets
IB1 and IB2 and two outlets OB1 and OB2. For any of these items X we denote by
ΓX its boundary. All the remaining boundaries are denoted by ΓW . We finally note
Ω = ΩC ∪ ΩB.

IC

IB2IB1

OC2OC1

OB1 OB2

P1 P2 P3 P4 P5 P6

D1 D2 D3H1 H2 H3

E1

E2

Inlets
Outlets

Cabin

Bay

Figure 7.10 – Isometric 2D slice of the avionic bay

The aim of this test-case is the computation of the velocity field u, the pressure
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field p and the temperature field T , as solutions of the strong problem

ρu · ∇u− 2∇ · (µS(u)) +∇p = −ρβ(T − T0)g,

∇ · u = 0,

v · ∇T −∇ · (κ∇T ) = 0, on Ω.

(7.35)

The closing boundary conditions and the parameters of this system are detailed in
the following paragraphs.

Boundary Conditions on the Temperature

• Passengers: on ΓP = ∪6
i=1ΓPi, a constant heat flux (Neumann condition)

−κ∇T · n = QPi , (7.36)

• Inlets: on ΓIk , k = IC , IB1, IB2, a constant temperature (Dirichlet condition)

T = TIk (7.37)

• Ducts: on ΓDi , 1 ≤ i ≤ 3, a constant temperature (Dirichlet condition)

T = TDi (7.38)

• Harnesses: on ΓHi , 1 ≤ i ≤ 3, a constant flux (Neumann condition)

−κ∇T · n = QHi , (7.39)

• Equipment: on ΓEi , 1 ≤ i ≤ 2, a constant flux (Neumann condition), the same
for both equipment

−κ∇T · n = QE, (7.40)

• All the other solid walls are supposed to be insulated (Homogeneous Neumann
condition)

∇T · n = 0 (7.41)

Boundary Conditions on the Fluid

• Cabin Inlet: on ΓIC , a Poiseuille profile (Dirichlet)

u = uIC = (0,−DIC600(0.05− x)(x+ 0.05)) (7.42)

• Bay Inlets: on ΓIB1
and ΓIB2

, a Poiseuille profile (Dirichlet)

u = uIB1
= −(DIB600(y + 1.65)(−1.55− y), 0), on ΓIB1

u = uIB2
= (DIB600(y + 1.65)(−1.55− y), 0), on ΓIB2

(7.43)
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• Outlets: on ΓOk, k = C1, C2, B1, B2, a free stream condition

µ∇u · n− pn = 0 (7.44)

• All the other solid walls have no-slip conditions (Homogeneous Dirichlet)

u = (0, 0) (7.45)

Modifications of the Original Model

The boundary conditions presented above are slightly simplified compared to the
conditions proposed in the original test case.

• The floor between the two parts is not supposed to be insulated. We should
model it as a solid part with a thickness of 0.05m. This simplification allows
decoupling the two resolutions. The modeling of the floor might be added in a
future version of this application.

• The external walls of both the bay and the cabin are not supposed to be
insulated. The walls should be modeled as solid parts with a thickness of 0.1m.
The outside temperature of the air is then a new parameter. This part might
be added in a future version of the application.

• In the following numerical experiments, we will not consider the physical
parameters of the air (µ and κ). Such parameters do not allow to reach a
steady state without turbulence models. We will use larger viscosity and
diffusivity to ensure the convergence of the solver. As soon as the turbulence
models are fully operational, we will reconsider this simplification.

• The heat sources of the different passengers, harnesses and ducts are originally
supposed to be independent. To keep the dimension of the parameter space
reasonable, we suppose here that

TDi = TDj = TD, ∀1 ≤ i, j ≤ 3,

QHi = QHj = QH , ∀1 ≤ i, j ≤ 3,

QPi = QPj = QP , ∀1 ≤ i, j ≤ 6.

(7.46)

Inputs of the Model

We present in table 7.2 the different parameters of this case. We indicate a
nominal value and eventually a range. The nominal value is the default. The
variables with a range are the parameters of the model.
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Name Description Nominal Value Range Units
Cabin

QP Passengers heat source 0.016 [0, 0.016] K.s−1

TIC Inflow temperature 288 [273, 303] K
DIC Inflow rate 0.5 [0.001, 1] m2.s−1

Bay
QH Harnesses heat source 0.004 [0, 0.0045] K.s−1

QE Equipment heat source 0.05 [0, 0.05] K.s−1

TD Ducts temperature 293 [293, 373] K
TIB Inflow temperature 288 [273, 303] K
DIB Inflow rate 0.5 [0.001, 1] m2.s−1

Air
κ Thermal conductivity 2.7 · 10−3 m2.s−1

ρ Density 1.0 kg.m−3

µ Viscosity 1.8 · 10−3 kg.m−1.s−1

Table 7.2 – Chorus Application: Parameters of the model

Output of the Model

The original model was described with 15 quantities of interest. We chose here to
focus on two of them: the mean temperature of the cabin and the mean temperature
of the walls of the bay,

sC(µ) =

∫
ΩC

T (µ) dΩ

sB(µ) =

∫
ΓWB

T (µ) dΓ
(7.47)

3.2 Numerical Results

The following results have been produced on non-structured simplex meshes.
The FE space is the same for both the cabin and the bay, TH1

ch(Ω) × L2
ch(Ω). The

physical parameters presented previously guarantee to find a stationary state for
the problem. It also ensures the stability of the numerical solution with a reasonable
mesh. For that reason, we do not need to consider the stabilization operators for
this test-case.

Results on the Cabin

The mesh used for the simulation on the cabin part, and an example of solution
profiles are proposed in figure 7.11. We built the reduced basis using δtol = 10−10 in
the selective Gram-Schmidt algorithm 7, with 50 parameters in SN . At the end of
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(a) Mesh (b) Velocity

(c) Pressure (d) Temperature

Figure 7.11 – Chorus Application, Cabin Part: (a) meshes and example of solution profiles
(µ = (1.6 · 10−2, 288, 1)) (b) velocity profile, in m.s−1, with streamlines, (c) pressure field, in Pa, with

contour lines, (d) temperature field, in ◦C

the offline procedure, the size of the spaces VN ×QN ×XN is 97× 47× 50. We present
the convergence of the errors for s, u, p and T on the figure 7.12.

We observe a small deterioration of the results (for the max value) after N = 35.
We have no explanation for these error pikes however these inaccurate results
only happened for one parameter value. This kind of wrong approximation would
probably disappear with a suitable error estimator and a thinner super sampling Ξ.
Regarding the mean value of the errors, the results are very satisfying.

Again the resolution time for the online resolution grows very fast with N . For
this test case, we also observed that the number of iterations in the non-linear
solver is more consequent and fluctuating. We present the mean resolution times
and number of iterations in figure 7.13 for Nmax = 50 and Nmax = 25 as a comparison.
We observe the same gap between the runtime for Nmax = 25 and Nmax = 50, but
the number of iterations is broadly the same. The evolution of the time required
for the assemblies of the reduced Jacobian and Residual is also presented on figure
7.14. Considering the fluctuating number of iterations in the non-linear solver, we
decided to plot the mean value per iteration to have a better idea of the actual
evolution.
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Figure 7.12 – Chorus Application, Cabin Part: convergence of the errors vs the size of N .
Maximum minimum and average errors evaluated from 50 approximations. δtol = 10−10 in selective

Gram-Schmidt algorithm 7, maximum size of the reduced spaces 97× 47× 50
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Figure 7.13 – Chorus Application, Cabin Part: average resolution time (in s) and number of
iterations in the non-linear solver for the reduced problem vs N .
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Figure 7.14 – Chorus Application, Cabin Part: Runtime of the main phases for the online resolution.
Mean value for 50 runs. Other contributions are negligible. Jacobian and Residual assembly times

per iteration.

Results on the Bay

This part of the problem is more complex than the cabin. First, the dimension of
the parameter space is larger, with five independent inputs. Then geometry is more
complex and so is the fluid flow. The convergence of our solver was complicated even
for the FEM resolution, and we had to use both physical and Ψtc continuation, see
chapter 2. We present the mesh of simulation and an example of solution profiles
on the figure 7.15

Regarding the convergence of the errors in figure 7.16 we observe that the
reduced model is not able to correctly approximate the truth solution, even for large
values of N . This bad accuracy can be explained by the complexity of the geometry
and the larger dimension of the parameter space. We hope that an appropriate error
estimator would improve these convergence results.

We did not plot any runtime information for this test-case, because these results
are entirely similar to those of the cabin case.
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(a) Mesh (b) Velocity

(c) Pressure (d) Temperature

Figure 7.15 – Chorus Application, Bay Part: (a) meshes and example of solution profiles
(µ = (0.004, 0.05, 293, 288, 0.5)) (b) velocity profile, in m.s−1, with streamlines, (c) pressure field, in Pa,

with contour lines, (d) temperature field, in ◦C
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Figure 7.16 – Chorus Application, Bay Part: convergence of the errors vs the size of N .
Maximum minimum and average errors evaluated from 50 approximations. δtol = 10−10 in selective

Gram-Schmidt algorithm 7, maximum size of the reduced spaces 100× 50× 50
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Conclusion

We proposed in this chapter a method for the reduction of an aerothermal model,
using the Reduced Basis Method. The reduced spaces are built for each field, u,
p, and T . The non-linearity is solved using a Newton algorithm and standard
reduction methods for quadratic problems. We also described a method for the
reduction of stabilized operators, based on the EIM applied to discrete operators.
Finally, we proposed some ideas for the reduction of turbulent problems, this last
point remaining theoretical.

The results presented in this chapter are the outcome of this thesis. The res-
olutions of the FEM problems required most of the techniques developed in the
part I (non-linear resolution, stabilization, continuations). The reduction procedure
also used the different advanced methods presented in previous chapters (RB for
multi-physics and saddle-point problems, EIM and SER for stabilization operators).
We obtained excellent results on the opus test case and the cabin. The results for
the stabilized simulation and the bay are less accurate and probably require some
optimizations.

We propose here some points to study in future works to improve the reduced
model:

• The error estimators are missing. We saw in the applications that the conver-
gence of the errors might be difficult, especially when the dimension of the
parameter space is growing. The development of an accurate error estimator
would significantly improve this convergence. In a first time, we could imagine
implementing the dual norm of the residual for aerothermal problems, as an
error indicator.

• The theoretical study of the problem is missing too. For now we validated our
framework with numerical experiments. It would be interesting to have also a
theoretical study of the well-posedness of the reduced problem.

• The reduction of the turbulent models presented in the chapter 4.

We also highlighted two technical issues in the current implementation:

• The data structure used to store the reduced operators is not optimized. The
operations on the reduced matrices and vectors become very expensive when
the dimension of the reduced space is growing.

• The online computation of the EIM coefficients is still too slow. This part has
already been optimized by assembling the online tensors only on the required
degrees of freedom, see section 2. However, the cost of these evaluations
is a limiting factor, especially when we use multiple EIM. It remains some
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optimization to do, for instance, it is possible to store the evaluations of the FE
basis functions for all the quadrature points of the interpolation mesh. This
kind of technical improvements requires consequent implementation works
and could not be achieved in the context of this thesis.
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The implementation of the aerothermal framework evolved a lot during the
thesis. As explained in the first part of this report, we tried many strategies for
the resolution of the coupled problems. When we eventually fixed the global idea of
our solver, we decided to design a very generic solver to use it for many different
applications. That kind of “black box” solvers already exists in Feel++ library
and are called toolboxes. An aerothermal toolbox has been implemented since the
beginning of this thesis, however, it does not have all the features required for our
simulations. Thus, we started to implement our own toolbox with the advanced
features presented in part I. These specific tools are now progressively adapted,
optimized and integrated into the Feel++ aerothermal toolbox.

In this chapter, we present the main components of these aerothermal library.
The models corresponding to these developments are detailed in the chapters 2, 3
and 4.
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1 The Navier Stokes Solver

The resolution of the Navier-Stokes equations is managed by the class NS
template <typename meshType, int Order, int LMOrder, int TOrder>
class NS

where

• meshType is the type of mesh. We can change the shape (simplex or hyper-
cube), the dimension and the geometrical order.
Eventually, we used Mesh<Simplex<2,1» in almost all our applications.

• Order is the polynomial order k of the Taylor Hood FE space used for the
resolution : Vh ×Qh = THk

ch, see chapter 2 for the definition.

• LMOrder is the polynomial order of the Lagrange Multiplier space used to
impose the slip condition when needed. This template argument was used to
test the implementation, but the results are only concluding with order 0.

• TOrder is the polynomial order k used for the temperature field when the
aerothermal option is activated, Xh = Lkch

This class has been designed to be very generic. Once the polynomial orders are
chosen through the template parameters, we can set

• the viscosity µ of the fluid ( as a constant or a scalar field),

• the density ρ of the fluid,

• the thermal diffusivity κ of the fluid,

• the thermal expansion coefficient β,

• the source term of the NS equation.

Then we can choose some of the characteristics of the solver through the command
line options:

• the solver type: Newton, Picard or Stokes resolution,

• the formulation (symmetric or not),

• the stabilization method used (if needed),

• the continuation method used (if needed),

• the turbulence method used (if needed).
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Listing 8.1 – Minimal application solving the Turek 2D benchmark, using the NS class
1 int main( int argc, char** argv )
2 {
3 typedef Mesh<Simplex<2,1» mesh_t; // define the mesh type
4
5 Environment env( _argc=argc, _argv=argv ); // create Feel environment
6
7 auto mesh = loadMesh( _mesh=new mesh_t );
8
9 auto ns_solver = NS<mesh_t>( mesh ); // instantiate the solver

10 ns_solver.setMu( 0.001 ); // set the viscosity
11
12 auto U = ns_solver.solve(); // solve the system
13 }

We propose an elementary example of code in the snippet 8.1. This piece of
code is a minimal application to solve the Turek benchmark 4.1. Once the solve()
function is called (l.12), the solution U can be exported or used to compute quantities
of interest.

The solve() method is the main function of the class. It may be called with
the fixed point (Picard) solver or the Newton solver. However, the most recent
features are not implemented in the Picard version and we will focus on the Newton
algorithm. The global resolution routine is detailed in the algorithm 10. We also
detail the crucial steps of the update of the Jacobian J and the Residual R in the
respective algorithms 11 and 12. Note that most of the operators are updated with
the Jacobian and reused in the Residual.

In the NS class, the number of blocks in the matrices/vectors can be set dynam-
ically. By default, only the block velocity and pressure are built. If the problem
presents slip conditions, we add blocks for the Lagrange multiplier space. Also, if
we want to solve the temperature field, we can add the blocks dynamically for the
temperature. This feature is particularly convenient and allows working with a
very generic solver. This dynamic construction for the matrix is presented in the
snippet 8.2, where Xh, Lh and Th are respectively the fluid, the Lagrange multiplier
and the temperature FE spaces.

2 The Advection Diffusion Solver

In addition to the Navier-Stokes solver presented in the previous section, we
needed a similar tool for the advection-diffusion equations. This class was initially
implemented to test the different versions of the stabilization method. Later it has
been used for the resolution of the turbulence model. To this purpose, we eventually
added the possibility to have a reaction term in the equation.

The design of this class is very similar to the Navier-Stokes solver. We will only
present the main features in this section. The prototype of the class is
template <typename MeshType, int Order=1>
class AD
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Listing 8.2 – Example of Dynamic Block Construction for Matrices in Feel++
1 void initMatrix( sparse_matrix_ptrt& M )
2 {
3 if ( M_slip_bc || M_aero )
4 {
5 BlocksBaseGraphCSR myblockGraph(M_nblocks,M_nblocks);
6 myblockGraph(0,0) = stencil(_test=Xh,_trial=Xh,)->graph();
7
8 if ( M_slip_bc )
9 {

10 myblockGraph(0,M_nblocks-1) =
11 stencil(_test=Xh,_trial=Lh)->graph();
12 myblockGraph(M_nblocks-1,0) =
13 stencil(_test=Lh,_trial=Xh)->graph();
14 myblockGraph(M_nblocks-1,M_nblocks-1) =
15 stencil(_test=Lh,_trial=Lh)->graph();
16 }
17
18 if ( M_aero )
19 {
20 myblockGraph(0,1) = stencil(_test=Xh,_trial=Th)->graph();
21 myblockGraph(1,0) = stencil(_test=Th,_trial=Xh)->graph();
22 myblockGraph(1,1) = stencil(_test=Th,_trial=Th)->graph();
23 }
24 M = backend()->newBlockMatrix(_block=myblockGraph);
25 }
26 else
27 M = backend()->newMatrix(Xh,Xh);
28 }

Algorithm 10: Resolution algorithm in the NS class using Newton method:
SOLVE(µ,κ)

1 Assemble diffusion operators Mu
D = µ∇uh : ∇vh;

2 Assemble null divergence operators MB − ph(∇ · vh) + (∇ · uh)qh;
3 if Temperature Field then
4 Assemble diffusion operators MT

D = κ∇Th · ∇Sh;
5 end
6 if Initialize with Stokes then
7 Solve Stokes problem;
8 end
9 repeat

10 J ←UPDATEJACOBIAN(U); // see algorithm 11
11 R←UPDATERESIDUAL(U); // see algorithm 12
12 Solve J∆ = −R;
13 U ← U + ∆;
14 until ‖R(Uk)‖

‖R(U0)‖ ≤ δRtolor ‖R(Uk)‖ ≤ δAtol;
15 return U ;
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Algorithm 11: Updating step for the Jacobian, see resolution algorithm 10:
UPDATEJACOBIAN(U)

1 J ← 0;
2 Assemble trilinear contribution of J ;
3 J ← J +MB; // null divergence operators
4 if Turbulence model then
5 Update µt with the model; // Spalart Almaras or k − ω
6 Re-assemble Diffusion operator Mu

D(µ+ µt)∇uh : ∇vh;
7 if Temperature Field then
8 Re-assemble Diffusion operator MT

D = (κ+ µt
Pr

)∇Th · ∇Sh;
9 end

10 end
11 J ← J +Mu

D;
12 if Temperature Field then
13 J ← J +MT

D ;
14 end
15 if Use Ψtc then
16 Update pseudo time step;
17 Update continuation matrix MM ; // See chapter 2
18 J ← J +MM ;
19 end
20 if Use Stabilization then // Detailed in chapter 3
21 Update Stabilization coefficient;
22 Assemble Stabilization operators Mu

S and MT
S ;

23 J ← J +Mu
S +MT

S ;
24 end
25 Edit J to set boundary conditions;
26 return J ;
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Algorithm 12: Updating step for the Residual, see resolution algorithm 10:
UPDATERESIDUAL(U)

1 R← 0;
2 Assemble trilinear contribution of R;
3 Update right hand side FR; // If needed
4 R← R+ FR;
5 R← R+MBU ;
6 R← R+Mu

DU ;
7 if Temperature Field then
8 R← R+MT

DU ;
9 end

10 if Use Stabilization then // Detailed in chapter 3
11 Update Stabilization coefficient;
12 Assemble Stabilization operators F u

S and F T
S ;

13 R← R+ F u
S + F T

S ;
14 end
15 Edit R to set boundary conditions;
16 return R;

where

• meshType is the type of mesh.

• Order is the polynomial order k of the Lagrange FE space used for the resolu-
tion : Xh = Lkch.

Once the solver is initialized, we can set:

• the advection field,

• the diffusion field or constant,

• the reaction field or constant,

and again we can customize the solver with command line options to choose

• the stabilization method (if needed)

• the shock capturing method (if needed)

We propose a short example in the snippet 8.3. This application was used to
resolve the thermal layer test case 4.1. The solveSc() method allows solving
the system using shock capturing methods. The non-linearity of the model is then
treated with a fixed point iterative method.
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Listing 8.3 – Minimal application solving the Thermal Layer test case, using the AD class
1 int main( int argc, char** argv )
2 {
3 typedef Mesh<Simplex<2,1» mesh_t;
4
5 Environment env( _argc=argc, _argv=argv );
6
7 double sigma = doption("sigma"); // read from command line options
8 double mu = doption("mu"); // read from command line options
9

10 auto mesh = loadMesh( _mesh=new mesh_t );
11 auto ad_solver = AD<mesh_t,2>( mesh, "tlayer" );
12
13 ad_solver.setDiff( mu ); // set the diffusivity
14
15 // set the advection field v=(2*y,0)
16 ad_solver.adcField().on( elements(mesh), vec(2*Py(),cst(0.) ) );
17
18 if ( sigma!=0 ) // set the reaction/mass constant
19 ad_solver.setMass( sigma );
20
21 auto u = ad_solver.solveSc(); // solve the system
22 }

Listing 8.4 – Spalart Allmaras model: resolution loop using the AD class
1 M_solver = boost::make_shared<solver_type>(mesh);
2 M_solver->adcField().on( elements(mesh), idv(u) );
3
4 do
5 {
6 // update RHS and diffusion coefficient
7 M_solver->diffField().on( elements(mesh), 1./sigma*(cst(mu)+idv(mut)) );
8 M_solver->rhsField().on( elements(mesh),
9 cb2/sigma*gradv(mut)*trans(gradv(mut))

10 + cb1*(cst(1.)-ft2)*S*idv(mut)
11 - (cw1*fw - cb1/k2*ft2)*idv(mut)*idv(mut)/d2 );
12
13 /// solve the equation
14 auto results = M_solver->solve( 3*mu);
15
16 // check the norm of the increment
17 double norm2 = normL2( elements(mesh), idv(mut) );
18 diff = normL2( elements(mesh), idv(mut)-idv(results) )/norm2;
19
20 // iterate
21 mut.on( elements(mesh), max(idv(results), cst(0.) ) );
22 i++;
23 } while ( i<ioption(_name="sa.maxit" ) && doption( _name="sa.tol")<diff );

3 Turbulence Models

A direct application of the AD class is the resolution of the equations of the turbu-
lence models presented in the chapter 4. We implemented two class TurbulenceSA
and TurbulenceKOmega both inherited from a base class
template <typename FluidSpaceType, int Order>
class TurbulenceBase

where FluidSpaceType is the type of the fluid FE element space and Order is the
desired polynomial order for the FE space used to solve the turbulent equations.

Both models presented in this chapter involved the resolution of transport
equations. Our advection diffusion solver is used within the turbulence class to
solve these equations. The snippet 8.4 presents the resolution loop in our Spalart
Allmaras class.

Besides the resolution of the transport equation, we also need to compute the
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Listing 8.5 – Fast marching algorithm used to compute the field of the distance to wall
1 auto Yh = Pch<1>( mesh );
2 auto Yh0 = Pdh<0>(mesh);
3
4 auto thefms = fms( Yh );
5 auto phio = Yh->element();
6 auto mark = Yh0->element();
7
8 // the first cell of the mesh on walls is initialized with the distance hmin
9 for ( int i=0 ; i<wall_marker.size() ; i++ )

10 phio.on( _range=elementsWithMarkedFaces( mesh, wall_marker[i]),
11 _expr= hMin() );
12
13 // all the wall boundary are set to distance 0
14 for ( int i=0 ; i<wall_marker.size() ; i++ )
15 phio.on( markedfaces( mesh, wall_marker[i]), cst(0) );
16
17 // we mark the cells which are already initialized
18 for ( int i=0 ; i<wall_marker.size() ; i++ )
19 mark += project( _space=Yh0,
20 _range= elementsWithMarkedFaces(mesh,wall_marker[i]),
21 _expr=cst(1) );
22 mesh->updateMarker2( mark );
23
24 // the fast marching compute the distance field
25 M_distance = thefms->march( phio, true);

distance of each point of Ω to the nearest point of the wall. The evaluation of
this distance to the wall can be particularly challenging - or at least expensive
- for complex meshes. We used the fast marching feature of the Feel++ library
to compute this distance. This algorithm is entirely parallel and allows fast and
accurate computation of the distance to the wall. More details on this feature and
its implementation are proposed in [30]. Snippet 8.5 presents an example of using
the fast marching to recover the distance to the wall.

3.1 The Stabilization Parameters

The final important tool of our framework is the class StabCoeff. It allows
computing the stabilization parameter from the advection field and the diffusion
field (or constant). The version of the stabilization parameter τ and the version of
the characteristic size h can be chosen with command line options. This class is
used in both the NS and the AD class. Once the class is initialized, the coefficient τ
is computed by calling
auto tau = M_stab->update( idv(u), cst(mu) );

where u is the convection field and mu the diffusion (can be a field).

We detail some interesting points of this class in the next paragraphs.

Initialization: computation of λK

As explained in the chapter 3, the coefficient λK is an essential ingredient of
efficient stabilization parameters. This coefficient is used to scale the local Reynolds
number with respect to the polynomial order of the FE space. In practice, λK is
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computed as the solution of the local eigenvalue problem

λK = max
v∈(Pk(K)\R)

‖∆v‖2
K

‖∇v‖2
K

. (8.1)

To solve this eigen value problem, we first assemble the laplacian and the gradient
operators on each cell, in a global matrix. For that we use the Feel++ language,
auto fA = form2( _trial=Xh, _test=Xh, _matrix=matA );
fA = integrate( _range=elements(mesh),

_expr=inner(laplacian(w),laplaciant(w)) );
auto fB = form2( _trial=Xh, _test=Xh, _matrix=matB );
fB = integrate( _range=elements(mesh),

_expr=inner(grad(w),gradt(w)) );

As specified in (8.1) we have to exclude the constants from the solutions. We chose
to add a penalisation term to take care of this constraint.
fB += integrate( _range=elements(mesh),

_expr=penal*inner(id(w),idt(w)) );

Once the operators are assembled, we can extract the local matrices associated
to each cell.
for ( int i=0;i<nLocalIndices;++i )
{

for ( int j=0;j<nLocalIndices;++j )
{

localMatA(i,j) = matA(extractIndices[i],extractIndices[j]);
localMatB(i,j) = matB(extractIndices[i],extractIndices[j]);

}
}

We use an Eigen solver to recover the eigen values of the generalized eigen values
problem associated to these two matrices. The value of λK on each cell is the max of
this eigen values.
GeneralizedSelfAdjointEigenSolver<MatrixXd> es( localMatA,localMatB );
VectorXd eigen_vls= es.eigenvalues();

double lambda = eigen_vls.maxCoeff();
lambdaK.on( idedelements( mesh,elt.id() ), cst(lambda) );

Evaluation of the Characteristic Length h

We defined ans studied three different definition of the characteristic length in
the section 2.2.

• hm is the length of the smallest edge of the cell,

• hd = |a|p
|ã|p h̃ with ã = MJ−1a, is the length of the cell in the direction of the

current convection field a.

• hh is a definition proposed by Harari and Hughes, evaluated from the measure
of the cell and the vertex-to-centroid distance.

The evaluation of hm is already implemented in Feel++ and did not required any
development.
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The evaluation of hd was not very painful, thanks to Feel++ language facilities.
As explain in the stabilization chapter, the evaluation of hd is made by comparing
the convection field a with the convection field ã on a reference cell. To evaluate ã
we first define the matrix M
auto M = mat<2,2>( cst(1.), cst(1./2), cst(0) , cst(std::sqrt(0.75)) );

then we can evaluate hd using the Feel++ keyword JinvT() which compute the
transposed inverse inverse of the jacobian of the geometric transformation associ-
ated to the current cell,
h_d.on( elements(mesh), 2*sqrt(inner(a)/inner(M*trans(JinvT())*a)) );

The evaluation of hh requires some more work. The first issue is that the
definition depends on the shape of the cells. We will use the 2D simplex as an
illustration. For this particular case, hh can be expressed as

hh =
4S√

3
∑3

a=1 |xi − xc|2
. (8.2)

This quantity has to be evaluated on each cell. The following snippet shows how
we compute hh using Feel++ language and a loop over the elements of the mesh.
Thanks to Feel++ parallel implementation, this evaluation is split using the domain
decomposition on each process.
// loop over the elements of the mesh
for ( auto const& eltWrap : elements(mesh) )
{

auto const& elt = unwrap_ref( eltWrap );

auto b = elt.barycenter();
double s = 0;

// loop over the vertices of the cell
for ( int k=0; k<n_vertices; k++ )
{

auto const& c = elt.point(k).node();
// evaluate the vertex-to-centroid distance
s += math::pow(c[0]-b[0],2) + math::pow(c[1]-b[1],2);

}

h_h.on( idedelements( mesh,elt.id() ), 4*meas()/math::sqrt( 3*s ) );
}

Stabilization Parameter on a Reference Mesh

When using the Reduced Basis Method with geometric parameters, we rewrite
the weak formulation on a reference domain, using the composition rules for dif-
ferentiation operators. However, we also have to adapt the stabilization parameter.
It has to be evaluated as if it was on the parametrized domain. In the following
paragraphs, we denote by J̃ the Jacobian of the mapping from the parametrized to
the reference domain.

The evaluation of hd on the reference domain is particularly convenient as long
as we know J̃ . We simply have to compose with J̃−1 in the classical formula.
h_d.on( elements(mesh), 2*sqrt(inner(a)/inner(M*trans(JinvT())*inv(M_J)*a)) );
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where M_J represents J̃ .

The computation of hh on a reference domain was a bit more complex since
we have to recompute the vertex-to-centroid distance for each new parametrized
domain. To optimize this procedure, we first store discontinuous vector fields M_di
containing for each cell the vector ~BVi, where B is the barycenter of the cell, and Vi
is the ith vertices of the cell.
for ( auto const& eltWrap : elements(mesh) )
{

auto const& elt = unwrap_ref( eltWrap );
auto b = elt.barycenter();

auto p0 = elt.point(0).node();
auto p1 = elt.point(1).node();
auto p2 = elt.point(2).node();

M_d1.on( idedelements(mesh,elt.id()),
(p0[0]-b[0])*oneX() + (p0[1]-b[1])*oneY() );

M_d2.on( idedelements(mesh,elt.id()),
(p1[0]-b[0])*oneX() + (p1[1]-b[1])*oneY() );

M_d3.on( idedelements(mesh,elt.id()),
(p2[0]-b[0])*oneX() + (p2[1]-b[1])*oneY() );

}

Then we can used these vectors fields to compute the vertex-to-centroid distance,
using the image of this vector by the jacobian matrix J̃ .
h_h.on( elements(mesh),

4*meas()*det(idv(M_J))/sqrt( 3*(inner(idv(M_J)*idv(M_d1))
+inner(idv(M_J)*idv(M_d2))
+inner(idv(M_J)*idv(M_d3))) ) );

We finally can evaluate the coefficient λK on the parametrized domain, using
the relation λKh

2
h = cst. Once we have the value of h̃h on the parametrized domain,

we can evaluate λ̃K = λK
hh
h̃h

. With this last ingredient, we can compute any version
of the stabilization parameter τ on a reference domain, knowing only the Jacobian
matrix J̃ . We can set this matrix in the StabCoeff class, using the method J()
M_stab->J().on( elements(mesh), mat<2,2>(cst(1.),cst(0),cst(0),cst(1.)) );
M_stab->J().on( markedelements(mesh,"air4"),

mat<2,2>( cst((ea-eic)/(ear-eic)),cst(0),cst(0),cst(1.)) );
auto tau = M_stab->update( rhoC_a*conv, kappa_a );
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In the previous chapter, we detailed the developments of our aerothermal library.
This library was not fully integrated into Feel++ yet. Hereafter, we will present
implementation works made directly in the Feel++ library. We begin, in this chapter,
with the development of the RB basis framework.

At the beginning of this thesis work, the RB framework was already well devel-
oped in Feel++ library, see [105]. The main features are:

• CRBM for elliptic and parabolic linear coercive problems

– Primal/Dual resolution
– Coercivity bounds evaluation through min-θ or SCM
– Offline/Online residual evaluation
– Efficient error bounds on the output

175
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• CRBM approximation for non-affine linear coercive problems

– EIM and error estimators

• RBM for non-linear and multiphysic problems

– EIM + SER

– RB for composite spaces (monolithic resolution)

The multiphysics problems were already treated in the framework, see [24], but
the reduced basis spaces were always built monolithically. The implementation of
composite reduced spaces was the first contribution we needed in Feel++ RB frame-
work. This feature is essential, for instance, with saddle point Stokes problems
when we need to build a velocity space with higher dimension than the pressure
space, see chapter 5. We eventually implemented a block RB framework which
allows building composite RB spaces with a block-structured resolution. In addi-
tion, we also implemented the tools necessary to deal with trilinear and especially
aerothermal problems.

To keep the framework coherent and easy to maintain, it was essential to
integrate the new features into the existing code. Thanks to the C++ inheritance
paradigm, it was very convenient to derive new models from the classic CRB
implementation. To have a better understanding of our choice, we first present an
overview of this classic CRB framework on figure 9.1. The main classes are

• ModelCrbBase is used to implement a new RB model. Each new RB applica-
tion is implemented in a new class inherited from ModelCRbBase. It provides
the necessary interface with the RB framework. The user can then specify
the characteristic of the model: geometry, FE space, parameter space, affine
decomposition... ModelCrbBase also comes with some options used to set up
the RB algorithm (transient or steady, linear or not, ...).

• CRB class executes the suitable offline algorithm and produces the RB space
which is eventually stored in a database.

• CRBModel provides the FEM resolution algorithms specific to each problem.

• EIM is used to recover an affine approximation for non-affine or non-linear
problems, see chapter 6.

The classes ModelCrbBase and EIM are not impacted by the implementation
of our new features. We will essentially focus on the modifications in CRB and
CRBModel which are derived respectively in CRBBlock and CRBModelBlock and
later in CRBAero and CRBModelAero.
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ModelCrbBase CRBModel CRB

Parameter Space D Greedy Selection

Function Space Xh FEM Resolution Reduce Basis Space

Affine Terms Affine Decomposition Error Estimators

Non-Affine Terms

EIM CRBDB

• RB Space XN

• Sampling SN

• Precomputed Structures

Figure 9.1 – Main classes in Feel++ RB framework

1 Reduced Basis by Block

Most of the modification needed for the block construction of the reduced spaces
have been done in the new class
template <typename TruthModelType>
class CRBBlock : public CRB<TruthModelType>

Only a few functions have been rewritten in the inherited class. We detail the most
important modifications in this section.

1.1 Offline Procedure

The offline construction of the reduced basis is entirely managed in the offline()
method of CRB. We keep this algorithm unchanged, but we use virtual functions for
the steps which are impacted by the block structure. In algorithm 13 we present a
very generic version of the offline routine. The steps in blue have been rewritten in
the CRBBlock class and will be detailed in further paragraphs.

Remark 14. We chose to implement a block version of the RB algorithm where
the number of blocks is not fixed. It depends on the number of subspaces in the
product spaces. To implement this class, we had to use meta-programming. In
Feel++, a composite space is a class, mostly defined by template arguments. This
construction is very powerful, but it might also provide some additional constraints.
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Algorithm 13: Offline Construction of the Reduced Basis Space
1 Generate the super sampling Ξ ⊂ D;
2 if Use predefined sampling then
3 Generate Sampling W ;
4 end
5 Chose µ1 ∈ Ξ;
6 repeat
7 N ← N + 1;
8 SN ← SN−1 ∪ {µN};
9 U(µN)← Solve the FE problem with µN ;

10 Add new vector in the Basis;
11 Orthonormalize the basis;
12 Precompute the RB matrix and vectors;
13 if Use predefined sampling then
14 µN+1 ← W [N + 1];
15 else
16 for µ ∈ Ξ do
17 Compute error indicator, ∆N(µ) ;
18 end
19 µN+1 = arg max

µ∈Ξ
∆N(µ);

20 end
21 until ∆N(µN+1) < δtol or N ≥ Nmax;
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Listing 9.1 – Minimal example of a loop over a template range, using meta-programming
1 static const int n_block = space_type::nSpaces;
2 typedef typename mpl::range_c< int, 0, n_block > rangespace_type;
3
4 template <typename T>
5 struct doSomethingOverEachSubSpacesByBlock
6 {
7 template <typename T>
8 void operator()( T const& t )const
9 {

10 // access a subspace using template value
11 auto subXh = Xh->template functionSpace<T::value>();
12 // now I can use this subspace...
13 ...
14 }
15 };
16
17 void doSomethingOverEachSubSpaces()
18 {
19 // instantiate the template struct
20 doSomethingOverEachSubSpacesByBlock my_struct();
21 // instantiate an object of type range
22 rangespace_type range;
23 // loop on the structure
24 boost::fusion::for_each( range, my_struct );
25 }

In the algorithms presented in this section, we regularly iterate over the subspaces of
a composite space. This operation cannot be done in Feel++ with a classical loop. One
solution is to iterate, using tool like boost::fusion::for_each, over templated
structures. We propose a minimal example of this construction in the snippet 9.1.
Note that all the loops over the subspaces, in the following paragraphs, have been
implemented using this kind of structures.

We first introduce some notations for the product space and the block structure.
We denote by Xh = Xh1 × · · · × XhR a composite FE space. Xh can be naturally
decomposed (in the sense of the physic) as the product of R subspaces noted Xhr, 1 ≤
r ≤ R. We also assume for each block the affine decomposition: ∀1 ≤ r, c ≤ R,

arc(ur, uc;µ) =

Qa∑
q=1

θaq (µ)arcq (ur, uc)

f r(ur;µ) =

Qf∑
q=1

θfq (µ)f rq (ur)

(9.1)

where arc(·, ·;µ) : Xhr×Xhc×D → R, arc(·, ·) : Xhr×Xhc → R and f r(·;µ) : Xhr×D → R,
f r(·) : Xhr → R. Since we are detailing discrete algorithms, it is convenient to
identify bilinear/linear forms and matrices/vectors. So we will transparently switch
between arcq , f rq and Arcq , F r

q . The underlying block structure is such that

Aq =

A
11
q · · · A1R

q
...

...
AR1
q · · · ARRq

 , Fq =

F
1
q
...
FR
q

 , U =

u1
...
uR

 (9.2)

We will not detail the steps Add new vector in the Basis; and Orthonormalize
the basis of the algorithm 13. In the first one, we simply add each subfield ur in
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the corresponding reduced subspace XNr. In the second one, we orthonormalize (if
necessary) the basis vectors of each reduced sub-space XNr.

The assembly of the reduced matrices and vectors is a bit more technical than
the previous steps. The aim is to construct, ∀1 ≤ r, c ≤ R the matrices and vectors

ArcNq = arcq (ur, uc) = u
ᵀ
rA

rc
q uc, ∀1 ≤ q ≤ Qa,

F r
Nq = f rq (ur) = u

ᵀ
rF

r
q , ∀1 ≤ q ≤ Qf .

(9.3)

As presented in algorithm 14, it essentially consists in many nested loops. In this
algorithm, nr and nc denote the number of basis vectors added respectively in XNr

and XNc.

Algorithm 14: Block construction of the reduced matrices and vectors. cf
l.12 in algorithm 13

1 for 1 ≤ r ≤ R do // Loop on the Row
2 for 1 ≤ c ≤ R do // Loop on the Columns
3 for 1 ≤ q ≤ Qa do // Loop on the affine decomposition

/* Update the last rows of ArcNq. */

4 for Nr − nr ≤ i ≤ Nr do // Loop on the first basis
5 for 1 ≤ j ≤ Nc do // Loop on the second basis
6 ξi ← i-th basis in XNr;
7 ξj ← j-th basis in XNc;
8 (ArcNq)ij = ξᵀiA

rc
q xj;

9 end
10 end

/* Update the last columns of ArcNq. */

11 for 1 ≤ i ≤ Nr do // Loop on the first basis
12 for Nc − nc ≤ j ≤ Nc do // Loop on the second basis
13 ξi ← i-th basis in XNr;
14 ξj ← j-th basis in XNc;
15 (ArcNq)ij = ξᵀiA

rc
q xj;

16 end
17 end
18 end
19 end
20 for 1 ≤ q ≤ Qf do // Loop on the affine decomposition

/* Update the last rows of F r
Nq. */

21 for Nr − nr ≤ i ≤ Nr do // Loop on the basis
22 ξi ← i-th basis in XNr;
23 (F r

Nq)i = ξᵀi F
r
q ;

24 end
25 end
26 end
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Error Estimator

Using an efficient error bound requires to have two main components: bounds for
the coercivity/inf-sup constants and dual norm of the residual. The first ingredient
is problem dependent and cannot be implemented generically for the multiphysics
problems. We already have solutions (min-theta algorithm, SCM) for the evaluation
of the coercivity constant in the classic CRB framework but these methods have not
been extended to the block structure due to lack of time.

The evaluation of the residual has been implemented but only in the particular
case of 2 subspaces. The offline precomputation of the different structures can be
very expensive since it requires the resolution of many linear systems to evaluate
the Riesz representations, see appendix 3. In the original CRB class, these Riesz
representations were reevaluated multiple times because it was inconceivable to
store all these vectors in the memory. However, these multiple reevaluations are
very costly and especially for block construction. We finally decided to store the
Riesz representations on the disk and to reread them each time they are needed.
The dual norm of the residual is then used as an error indicator for certain problems,
see Stokes test case 3.

The implementation of the residual evaluation for an arbitrary number of sub-
spaces is on the todo list.

1.2 Online Procedure

The online phase of the reduced basis methodology essentially consists in the
resolution of the reduced problem. For now the CRBBlock online integrates a fixed
point algorithm, but a Newton method has been implemented in CRBAero and will
be detailed in a further section.

The fixed point procedure is detailed in the algorithm 15. We simplified the
algorithm by assuming that all the reduced subspaces have the same dimension N .
In practice, with the selective Gram-Schmidt orthonomalization7 and the addition
of the supremizer, the dimension of the sub-spaces may vary. The only remarkable
thing is the assembly of the matrix A and the vector F . In practice, this step is
realized using the block operators of the Eigen library which simplifies the treatment
of the blocks. Here is an example of an addition is the first block of the matrix A of
size N0×N0

A.block(0,0,N0,N0) += betaAqm[q][m]*blockAqm[0][0][q][m].block(0,0,N0,N0);
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Algorithm 15: Online fixed point procedure for block RB.
Input: N , µ

1 Create matrix A of size NR×NR;
2 Create vector F of size NR;
3 Compute θaq (µ) and θfq (µ);
4 repeat
5 for 1 ≤ r ≤ R do
6 for 1 ≤ c ≤ R do
7 for 1 ≤ q ≤ Qa do
8 for (r − 1)N ≤ i < rN do
9 for (c− 1)N ≤ j < cN do

10 (A)ij ← (A)ij + θaq (µ)ArcNq;
11 end
12 end
13 end
14 end
15 for 1 ≤ q ≤ Qa do
16 for (r − 1)N ≤ i < rN do
17 (F )i ← (F )i + θfq (µ)F r

Nq;
18 end
19 end
20 end
21 U∗ ← U ;
22 U ←Solution of AU = F ;
23 is_finished← is_linear or ‖U − U∗‖2 ≤ δtol;
24 until is_finished;
25 return U ;
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2 Reduced Basis for Aerothermal Problems

The reduced basis construction for aerothermal problems, presented in the
chapter 7, is made in a decoupled way. We construct three reduced sub-spaces: for
the velocity, the pressure and the temperature. The CRBBlock class, introduced in
the previous section, provides the tools to construct these reduced sub-spaces. In
this section, we present some details of a new inherited class
template <typename TruthModelType>
class CRBAero : public CRBBlock<TruthModelType>

This class contains the algorithm necessary for the construction of the reduced basis
and for the online evaluation of reduced solution.

2.1 Offline Procedure

We reuse the algorithm 13 of the previous section and we add in red, in algorithm
16, the steps which have to be modified for the RB aerothermal framework. The

Algorithm 16: Offline Construction of the Reduced Basis Space for
Aerothermal RB

1 Generate the super sampling Ξ ⊂ D;
2 if Use predefined sampling then
3 Generate Sampling W ;
4 end
5 Chose µ1 ∈ Ξ;
6 repeat
7 N ← N + 1;
8 SN ← SN−1 ∪ {µN};
9 U(µN)← Solve the FE problem with µN ;

10 Add new vector in the Basis;
11 Orthonormalize the basis;
12 Precompute the RB matrix and vectors;
13 Precompute the reduced trilinear contributions;
14 if Use predefined sampling then
15 µN+1 ← W [N + 1];
16 else
17 for µ ∈ Ξ do
18 Compute error indicator, ∆N(µ) ;
19 end
20 µN+1 = arg max

µ∈Ξ
∆N(µ);

21 end
22 until ∆N(µN+1) < δtol or N ≥ Nmax;
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resolution of the finite element problem is particular since it implies quadratic
non-linearity. This part is modified in the class CRBModelAero. The resolution uses
a Newton iterative method and the model provides the affine decomposition of the
trilinear, bilinear and linear forms.

The precomputation of the reduced structures now integrates the evaluation of
the order-3 tensors, as explained in the chapter 7, in equation (7.11). In the par-
ticular context of the aerothermal problems, we know that we only have quadratic
contributions in certain blocks. We will only assemble the order-3 tensors T 1

q and T 2
q

for the convection operators respectively of the fluid and temperature equations. In
addition of the construction 14, the class CRBAero will also assemble these tensors,
following the algorithm 17, where Nu and NT are the current dimension of respec-
tively the velocity and the temperature spaces, nu and nT are the number of basis
vectors added in these spaces.

Algorithm 17: Precomputation of the reduced order-3 tensors
1 for 1 ≤ q ≤ Qc do
2 for 1 ≤ i ≤ Nu do
3 for 1 ≤ j ≤ Nu do
4 for 1 ≤ k ≤ Nu do
5 if i ≥ Nu − nu or j ≥ Nu − nu or k ≥ Nu − nu then
6 (T 1

q )ijk ← cq(ζi, ζj, ζk);
7 end
8 end
9 end

10 end
11 end
12 for 1 ≤ q ≤ Qa do
13 for 1 ≤ i ≤ NT do
14 for 1 ≤ j ≤ Nu do
15 for 1 ≤ k ≤ NT do
16 if i ≥ NT − nT or j ≥ Nu − nu or k ≥ NT − nT then
17 (T 2

q )ijk ← aq(ξi, ζj, ξk);
18 end
19 end
20 end
21 end
22 end
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2.2 Online Procedure

The online procedure for the aerothermal framework is already well detailed in
the chapter 7. We will not rewrite these algorithms here, but we decided to illustrate
them with a detailed explanation of the code.

In the class CRBAero, the virtual method onlineSolve has been totally rewrit-
ten. Its prototype is
typename CRBAero<TruthModelType>::matrix_info_tuple
onlineSolve( size_type N, parameter_type const& mu, std::vector< vectorN_type > & uN,

std::vector< vectorN_type > & uNdu, std::vector<vectorN_type> & uNold,
std::vector<vectorN_type> & uNduold, std::vector< double > & output_vector,
int K, bool print_rb_matrix, bool computeOutput ) const;

Once the different variables are initialized, we start with the assembly of the
bilinear contributions for the Jacobian
for ( int q=0; q<model->sizeOfBilinearJ(); q++ )
{

for ( int m=0; m<model->mMaxA(q); m++ )
{

// first row
M_Jbil.block( 0, 0, N0, N0) += betaJqm[q][m]*blockAqm(0,0)[q][m].block(0,0,N0,N0);
M_Jbil.block( 0, N0, N0, N1) += betaJqm[q][m]*blockAqm(0,1)[q][m].block(0,0,N0,N1);
M_Jbil.block( 0, N0+N1, N0, N2) += betaJqm[q][m]*blockAqm(0,2)[q][m].block(0,0,N0,N2);
// second row
M_Jbil.block(N0, 0, N1, N0) += betaJqm[q][m]*blockAqm(1,0)[q][m].block(0,0,N1,N0);
M_Jbil.block(N0, N0, N1, N1) += betaJqm[q][m]*blockAqm(1,1)[q][m].block(0,0,N1,N1);
M_Jbil.block(N0, N0+N1, N1, N2) += betaJqm[q][m]*blockAqm(1,2)[q][m].block(0,0,N1,N2);
// third row
M_Jbil.block(N0+N1, 0,N2,N0) += betaJqm[q][m]*blockAqm(2,0)[q][m].block(0,0,N2,N0);
M_Jbil.block(N0+N1, N0,N2,N1) += betaJqm[q][m]*blockAqm(2,1)[q][m].block(0,0,N2,N1);
M_Jbil.block(N0+N1,N0+N1,N2,N2) += betaJqm[q][m]*blockAqm(2,2)[q][m].block(0,0,N2,N2);

}
}

and for the Residual
for ( int q=0; q<model->sizeOfLinearR(); q++ )
{

for ( int m=0; m<model->mMaxF(0,q); m++ )
{

M_Rli.segment( 0,N0) += betaRqm[0][q][m]*blockFqm(0)[q][m].head(N0);
M_Rli.segment( N0,N1) += betaRqm[0][q][m]*blockFqm(1)[q][m].head(N1);
M_Rli.segment(N0+N1,N2) += betaRqm[0][q][m]*blockFqm(2)[q][m].head(N2);

}
}

then, the non-linear solver is called and the rest of the work will be done in the
functions
void
updateJacobianOnline( const map_dense_vector_type& X, map_dense_matrix_type& J,

parameter_type const& mu , int N ) const

and
void
updateResidualOnline( const map_dense_vector_type& X, map_dense_vector_type& R,

parameter_type const& mu , int N ) const

The Jacobian is updated in three steps. First we add the bilinear contributions,
already assembled before the resolution loop
J += M_Jbil;

then we assemble the trilinear contributions



186 CHAPTER 9. REDUCED BASIS FRAMEWORK

auto betaTri = this->M_model->computeBetaTri( mu );
for ( int q=0; q<model->QTri(); q++ )
{

for ( int k=0; k<N0; k++ )
{

for ( int i=0; i<N0; i++ )
{

J(k,i) += betaTri[q]*(blockTriqm(0,0)[q][k].row(i).head(N)).dot(X.segment(0,N0));
J(k,i) += betaTri[q]*(blockTriqm(0,0)[q][k].col(i).head(N)).dot(X.segment(0,N0));

}
}
for ( int k=0; k<N2; k++ )
{

for( int i=0; i<N2; i++ )
{

J(N0+N1+k,N0+N1+i) += betaTri[q]*(blockTriqm(2,0)[q][k].row(i)).dot(X.segment(0,N0));
}

for( int j=0; j<N0; j++ )
{

J(N0+N1+k,j) += betaTri[q]*(blockTriqm(2,0)[q][k].col(j)).dot(X.segment(N0+N1,N2));
}

}
}

and finally we assemble the non linear contributions (if needed), with coefficients
given by the EIM
for ( int q=model->sizeOfBilinearJ(); q< model->Qa(); q++ )
{

for ( int m=0; m<model->mMaxA(q); m++ )
{

// first row
J.block( 0, 0, N0, N0) += betaJqm[q][m]*blockAqm(0,0)[q][m].block(0,0,N0,N0);
J.block( 0, N0, N0, N1) += betaJqm[q][m]*blockAqm(0,1)[q][m].block(0,0,N0,N1);
J.block( 0, N0+N1, N0, N2) += betaJqm[q][m]*blockAqm(0,2)[q][m].block(0,0,N0,N2);
// second row
J.block( N0, 0, N1, N0) += betaJqm[q][m]*blockAqm(1,0)[q][m].block(0,0,N1,N0);
J.block( N0, N0, N1, N1) += betaJqm[q][m]*blockAqm(1,1)[q][m].block(0,0,N1,N1);
J.block( N0, N0+N1, N1, N2) += betaJqm[q][m]*blockAqm(1,2)[q][m].block(0,0,N1,N2);
// third row
J.block( N0+N1, 0, N2, N0) += betaJqm[q][m]*blockAqm(2,0)[q][m].block(0,0,N2,N0);
J.block( N0+N1, N0, N2, N1) += betaJqm[q][m]*blockAqm(2,1)[q][m].block(0,0,N2,N1);
J.block( N0+N1, N0+N1, N2, N2) += betaJqm[q][m]*blockAqm(2,2)[q][m].block(0,0,N2,N2);

}
}

We use the same idea for the update of the Residual. We start by adding the
bilinear an linear contributions
R += M_Rli;
R += M_Jbil*X;

then the trilinear part
auto betaTri = this->M_model->computeBetaTri( mu );
for ( int q=0; q<model->QTri(); q++ )
{

for ( int k=0; k<N0; k++ )
for ( int i=0; i<N0; i++ )

temp(k,i) = (blockTriqm(0,0)[q][k].row(i)).dot(X.segment(0,N0));
for ( int k=0; k<N2; k++ )

for ( int i=0; i<N2; i++ )
temp(N0+N1+k,N0+N1+i) = (blockTriqm(2,0)[q][k].row(i)).dot(X.segment(0,N0));

R += betaTri[q]*temp*X;
}

and finally the non-linear terms
for ( int q=model->sizeOfLinearR(); q<model->Ql(0); q++ )
{

for ( int m=0; m<model->mMaxF(0,q); m++ )
{

R.segment( 0,N0) += betaRqm[0][q][m]*blockFqm(0)[q][m].head(N0);
R.segment( N0,N1) += betaRqm[0][q][m]*blockFqm(1)[q][m].head(N1);
R.segment(N0+N1,N2) += betaRqm[0][q][m]*blockFqm(2)[q][m].head(N2);

}
}
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The work on the EIM algorithm presented in the section 2 represent the most
important implementation effort. This feature has been entirely coded and inte-
grated into the Feel++ RB framework during this thesis. We present in this chapter
some interesting details and advanced C++ techniques used in this implementation.

The Feel++ library already had an EIM framework when we started this im-
plementation. This initial version uses analytic expressions and their evaluation
on the quadrature points. Also, this version was not adapted to the treatment of
discrete operators. To distinguish this version from the discrete one, we used the
abusive notation DEIM for our new implementation. To remain consistent with the
code we will keep using this denomination in this chapter.

1 Design of the Implementation

The DEIM framework have been split into four classes, with the inheritance
relations detailed on the figure 10.1.
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DEIMBase

DEIMModel

MDEIMDEIM

Figure 10.1 – Inheritance Diagram of the Classes in the DEIM Framework

The class
template <typename ParameterSpaceType, typename SpaceType, typename TensorType>
class DEIMBase : public CRBDB

contains the essence of the DEIM algorithm. This class is managing all the algebraic
operations which do not require an access to the RB model:

• The greedy algorithm

• The research of maximum entry in the tensors

• The evaluation of a specific entry in a tensor

• The computation of the βm(u,µ)

The class is templated by the type of the tensor. It allowed to write only one class
for both matrices and vectors. The class also inherits from the class CRBDB which
manages to save the essential information in a database.

The class
template <typename ModelType, typename TensorType>
class DEIMModel :

public DEIMBase<typename ModelType::parameterspace_type,
typename ModelType::space_type, TensorType>

is the interface with the RB model. This class will call the assembly functions of the
model and possibly the resolution functions for non-linear problems. It also contains
the mapping for the degrees of freedom (DoFs) between the interpolation space XIM
and the FE space Xh. This point is detailed in the section 2.

The class
template <typename ModelType>
class DEIM :

public DEIMModel<ModelType,typename Backend<typename ModelType::value_type>::vector_type>

and
template <typename ModelType>
class MDEIM :

public DEIMModel<ModelType,
typename Backend<typename ModelType::value_type>::sparse_matrix_type>
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are specific to the type of tensors. DEIM is the instensiation for the vectors and
MDEIM the instantiation for the matrices. These classes also provide methods for
the construction of the interpolation mesh TIM

The global structure of the DEIM algorithm is basic and did not present many
difficulties for the implementation. The main challenge of the implementation was
the creation of the interpolation mesh and space, required for the optimized online
evaluation of the βm(u,µ).

2 Construction of the Interpolation Space

At the end of the DEIM greedy algorithm, we obtain a set of indices IM . To
optimized the online computation of the βm(u,µ), we have to assemble reduced
tensors TIM (u,µ) only on the associated DoFs. This procedure is detailed in the
section 2. We will describe here some interesting details.

Remark 15. In the following paragraphs, we only present the construction for a
single FE space. The construction for product spaces was also implemented and is
basically a loop of the following method on each space.

The Interpolation Mesh and Space

The first step is to extract the interpolation mesh TIM from the full mesh Th.
From the index_list, we have to create a list of the elements in Th that contains
the indices in index_list
for ( auto index : index_list )
{

auto searchGpDof = Xh->dof()->searchGlobalProcessDof( index );
if ( boost::get<0>( searchGpDof ) )
{

size_type gpdof = boost::get<1>( searchGpDof );
for ( auto const& dof : Xh->dof()->globalDof( gpdof ) )
{

size_type eltId = dof.second.elementId();
if ( mesh->element( eltId ).isGhostCell() )

continue;
this->M_elts_ids.insert( eltId );

}
}

}

After this loop, each processor has a set of elements, M_elts_ids, containing the
local elements to extract. The extraction function is then provided by the Feel++
library
auto submesh = createSubmesh( mesh, idelements(mesh,this->M_elts_ids.begin(),

this->M_elts_ids.end()) );

At this point, each processor contains its local part of the extracted submesh.
To gather all the contributions, we will write them on the disk and then read the
complete extracted mesh with each processor:



190 CHAPTER 10. EIM FRAMEWORK FOR DISCRETE OPERATORS

saveGMSHMesh( _mesh=submesh, _filename=this->name(true)+"-submesh.msh" );
Environment::worldComm().barrier();
auto seqmesh = loadMesh( _mesh=new mesh_type,

_filename=this->name(true)+"-submesh.msh",
_worldcomm= Environment::worldCommSeq() );

Here the mpi barrier, Environment::worldComm().barrier();, is essential
to ensure that all the processors finished writing there contributions before the
seqmesh is read. From this sequential mesh we can now build the interpolation
space
Rh = this->newInterpolationSpace(seqmesh);

Once this space is generated, it will be used in the online model to assemble
the reduced tensors TIM (u,µ). However, we are not interested in all the value in
this reduced tensor. We only need the entry corresponding to the index in IM . Here
the issue is that the DoFs have entirely different indices in XIM and Xh. To deal
with that problem, we implemented a specific class to build the mapping between a
parallel space and a sequential extracted space.

Sequential/Parallel Mapping

In Feel++, once a submesh is extracted, all the elements are renumbered. The
only data remaining unchanged is the numbering of the vertex of the mesh. We will
use this property to build the mapping between the two spaces.

We denote by Xp and Tp the parallel space and mesh. These data are split
between all the processors. We also note Xs and Ts the sequential space and mesh.
All the processors have the entirety of these data. We assume that we have the
relation Ts ⊂ Tp. The map between the two spaces has to contain the two-way
correspondence DoFs←→(np,DoFp ) where np is number of the processor having the
parallel DoF DoFp corresponding to the sequential DoF DoFs.

On each processor, we first store for each element in Ts the numbering of its
vertices
for ( auto const& eltWrap : elements(Xs->mesh()) )
{

auto const& elt = unwrap_ref( eltWrap );
std::set<int> pts_id;
for ( int p=0; p<elt.nPoints(); p++ )

pts_id.insert( elt.point(p).id() );
elts_map_s[pts_id] = elt.id();

}

Then, each processor will look if its part of Tp has elements in commun with Ts.
For each commun element, the map is then constructed by identifying the DoF
associated in Xp and Xs. This procedure is detailed in the snippet 10.1.

Once the map is built, we have access to useful methods to do the correspondence
between the two spaces:
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Listing 10.1 – Construction of the map between the DoF of the sequential and the parallel space
1 // loop on the elements of the full mesh splited between all procs
2 for ( auto const& eltWrap : elements(Xp->mesh()) )
3 {
4 auto const& elt = unwrap_ref( eltWrap );
5 std::set<int> pts_id;
6 for ( int p=0; p<elt.nPoints(); p++ )
7 pts_id.insert( elt.point(p).id() + M_shift );
8
9 // check if this elements is in the submesh of the sequential space

10 auto map_it = elts_map_s.find( pts_id );
11 if ( map_it!=elts_map_s.end() ) // the element exists in the seq mesh
12 {
13 int eid_s = map_it->second;
14
15 // loop on each ldof of the element : get the globaldof id associated
16 // and put it in the maps
17 for ( auto const& ldof : Xp->dof()->localDof(elt.id()) )
18 {
19 int gdof_s = Xs->dof()->localToGlobalId( eid_s, ldof.first.localDof() );
20 int gdof_p = ldof.second.index() ;
21
22 auto s_to_p_it = M_s_to_p.find( gdof_s );
23 if ( s_to_p_it==M_s_to_p.end() )
24 {
25 M_s_to_p[gdof_s] = std::make_pair( Xp->worldComm().globalRank(),
26 gdof_p );
27 M_p_to_s[gdof_p] = gdof_s;
28 }
29 }
30 }
31 }

• int parallelToSequential( size_type const& p_dof ): returns the sequential DoF cor-
responding to the parallel Dof p_dof.

• std::pair<int,int> sequentialToParallel( size_type const& s_dof ): returns the couple
(np,DoFp) corresponding to the sequential Dof s_dof.

• void project( element_type& us, element_type const& up ): projects a parallel element
from Xp on Xs. This function also gathers the contributions from all processors,
this procedure is detailed in the snippet 10.2

This map and those methods are used in DEIM to extract the values of TIM (u,µ)
and to project the reduced basis on the interpolation space (for non-linear problems
only).
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Listing 10.2 – Gathering of the contributions from all processors after the projection of a parallel
element on the sequential space.

1 // loop on the elements of the full mesh splited between all procs
2 template <typename ElementType>
3 void gather( ElementType& us )
4 {
5 int world_size = Environment::worldComm().globalSize();
6 auto Rh = us.functionSpace();
7 auto ut = Rh->element();
8 std::vector<ElementType> all_u( world_size, ut );
9

10 mpi::all_gather( Environment::worldComm().globalComm(),
11 us,
12 all_u );
13
14 for ( auto ut : all_u )
15 {
16 for ( int j=0; j<us.size(); j++ )
17 {
18 if ( ut(j)!=0 )
19 us(j) = ut(j);
20 }
21 }
22 }



Conclusion and Outlook

Conclusion

We started this thesis with the ambition to develop a reduced model for aerother-
mal simulations. We divided this work in two natural parts.

In the first part, we exposed the numerical methods implemented for modeling
aerothermal flows. We considered the incompressible Navier-Stokes equations
coupled with an energy equation in the Boussinesq approximation. We used a
standard Finite Element discretization with a Galerkin projection to numerically
solve this system of PDEs. We introduced a Newton method to solve the non-linear
discrete system. To improve the convergence capability of this iterative method, we
also introduced a physical and a pseudo-transient continuation. These tools allow
to efficiently reach the stationary state of the system if it exists.

We also implemented different versions of the Streamline Diffusion Method
(SDM) to stabilize the numerical resolution. These methods have two aims: the
first one is to deal with non-physical oscillations appearing in the resolution of
convection dominated problems. The second objective is the stabilization of the
numerical solution in the regions of anisotropic meshing. This kind of mesh is
used to model the boundary layers of turbulent flows. To fulfill these two goals,
we compared the efficiency of two SDM formulations: the Streamline-Upwind
Petrov Galerkin (SUPG) and the Galerkin Least Square (GLS). These methods
have been studied with different expressions for the stabilization parameter. We
paid a special attention to the evaluation of the characteristic size of the cells for
anisotropic meshes and we proposed an efficient formulation for simplex with large
aspect ratios. The implemented methods were validated on multiple numerical
applications.
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The objective of the second part of this thesis was the reduction of the model
described previously.

The model order reduction method studied was the Reduced Basis Method
(RBM). This method is particularly adapted for the reduction of problems discretized
with the FEM. It provides an efficient offline/online decomposition and a rapid
convergence when used with efficient error estimators. We presented in this report
our implementation of the RBM for saddle-point and trilinear problems. The
numerical results are very encouraging for the reduced aerothermal model. We
obtained a nice convergence of the reduced solutions although we did not have any
error estimator. However, we noticed the limit of our model for complex geometries
with important variation of the flow. For these kind of problems, our reduced model
was not able to provide accurate solutions.

In order to reduce the stabilization operators presented in the first part, we
proposed to use the Empirical Interpolation Method (EIM). We implemented a
discrete version of this algorithm, allowing to recover an affine decomposition of
parametrized matrices and vectors. This method was successfully applied to obtain
an affine approximation of the Jacobian and the Residual used for the resolution
of stabilized aerothermal problems with a Newton algorithm. We also presented a
discrete version of the Simultaneous EIM and RB (SER) algorithm using this new
discrete version of EIM. Using SER for the reduction of non-linear problems greatly
reduced the cost of the offline procedure by replacing FEM approximations with RB
approximation in the EIM greedy algorithm.

The reduction of the turbulence models, described in the first part, was not
tackled by lack of time. Nevertheless, we exposed some ideas for the development of
reduced RANS model involving the construction of a reduced space for the turbulent
quantities.

We eventually provided a reduced aerothermal model. However, this model still
needs important improvements.

Outlook

Apart from the issue with the turbulent model, the aerothermal framework is
finally robust and efficient. Most of the future developments should concern the
reduction method.

The first priority would concern the optimization of the online resolution. We
highlighted two major issues with our numerical results. First, the assembly of
the reduced operators becomes abnormally expensive when the dimension of the
reduced spaces is growing. This issue leads to excessive online runtimes. This
issue should be fixed by optimizing the data structure used for storing the reduced
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operators. The second important issue concerns the assembly of the reduced tensors
for the discrete EIM. Despite the use of a reduced interpolation space, this procedure
is relatively expensive and is limiting the capabilities of the reduced models. Some
optimizations are still possible. For instance, we could store the evaluation of the
FE basis functions on all the quadrature points of the interpolation mesh.

Another important potential improvement is the implementation of error esti-
mators for the aerothermal model. We observed some convergence issues in the
numerical results which could be solved with a better selection of the parameters
in the greedy algorithm. However, this point remains non-trivial and requires
important theoretical and numerical efforts.

Finally, the ultimate outlook would be the complete development of a reduced
turbulent model. This research subject is still very open in the community of the
model order reduction and we hope that the contribution in this thesis can help
somehow to advance on this problem.
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1 Adaptive Time Stepping and Benchmarks

As an alternative to the standard BDF time discretization, we implemented an
adaptive time-stepping algorithm proposed by Kay and Al. in [54, 38]. We recall in
this section the main ingredients of the methods and we give some results.

Considering the results on the 2D Turek Benchmark and the difficulty to scale
our PCD preconditioner with this formulation, the method does not actually seem
to be adapted to our problem. We nevertheless dedicated a section to this algorithm
which was very interesting to study and implement.

We consider the problem described in chapter 2. We will not detail the formula-
tion for the whole system but only for the Navier-Stokes part. The method is similar
for the energy equation and we give the final equations in section 1.1

We introduce a discretization of the time interval [0, tf ], {tn}n=0,...,N with t0 = 0
and tN = tf . We then define the time steps {kn}n=1,...,N by kn+1 = tn+1− tn. We denote
by (un, pn, T n) the velocity, pressure and temperature fields at iteration n.

1.1 Detailed formulation for Navier-Stokes

We consider the fluid equation in the system (63). We first decide to linearise the
equation using an Oseen formulation with extrapolation of the convection velocity

wn+1 =

(
1 +

kn+1

kn

)
un − kn+1

kn
un−1. (1)

We choose a Crank Nicholson scheme for the time discretization. We find differ-
ent propositions for the choice of the scheme in the literature but Crank Nicholson
seams to produce the best results with this kind of time stepping algorithm. And so
the weak formulation becomes

2ρ(
un+1

kn+1

,v) + ρ(wn+1 · ∇un+1,v) + µ(∇un+1,∇v)− (pn+1,∇ · v)− (q,∇ · un+1) =

2ρ(
un

kn+1

, v) + (
∂un

∂t
, v) + (fn, v)

(2)

where fn = β(T n − T0)g.

We introduce now the discrete acceleration given by dn = un+1−un
kn+1

, un+1 = un +

kn+1d
n and we rewrite the equation (2) with this new quantity,
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ρ(dn,v) + ρkn+1(wn+1 · ∇dn,v) + µkn+1(∇dn,∇v)− (pn+1,∇ · v)− (q,∇ · dn) =

µ(∇un,∇v)− ρ(wn+1 · ∇un,v) +
1

kn+1

(q,∇ · un) + (
∂un

∂t
,v) + (f,v). (3)

We recognize a convection diffusion equation very close to the usual Navier-
Stokes weak formulation. But now we want to solve this equation in order to find
a couple (dn, pn+1) ∈ Vh. The solution strategy and especially the preconditioner
choice will be discussed later.

Formulation for the Aerothermal System

With the same method we can rewrite our full system (63), introducing the rate
of change of the temperature field Dn = Tn+1−Tn

kn+1
, the full aerothermal system now

becomes, find (dn, pn+1, Dn) ∈ Xh such that

ρ(dn,v) + ρkn+1(wn+1 · ∇dn,v) + µkn+1(∇dn,∇v)− (pn+1,∇ · v)− (q,∇ · dn) =

(fn,v)− µ(∇un,∇v)− ρ(wn+1 · ∇un,v) +
1

kn+1

(q,∇ · un) + (
∂un

∂t
,v)

(Dn, S)+κkn+1(∇Dn,∇S)+kn+1(wn+1Dn, S) = −κ(∇T n,∇S)−(wn+1T n, S)+(
∂T n

∂t
, S),

∀(v, q, S) ∈ Xh (4)

Once we have solved the system (4) we can evaluate the different quantities
required for the next step :

un+1 = un + kn+1d
n (5)

∂un+1

∂t
= 2dn − ∂un

∂t
(6)

T n+1 = T n + kn+1D
n (7)

∂T n+1

∂t
= 2Dn − ∂T n

∂t
(8)

1.2 Time step computation

The choice of the time step is based on comparison of two solution : the first
one given by our resolution of (4) after the update (5), the second solution is given
by an explicit evaluation using a second order Adams-Baschforth scheme. This
comparison is made for both velocity and temperature field.
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First the AB solution are computed

un+1
AB2 = un +

kn+1

2

[
(1 + kn+1/kn)

∂un

∂t
+
kn+1

kn

∂un−1

∂t

]
, (9)

T n+1
AB2 = T n +

kn+1

2

[
(1 + kn+1/kn)

∂T n

∂t
+
kn+1

kn

∂T n−1

∂t

]
. (10)

The errors between the solution and the AB extrapolation are computed using
the formula

en+1
u =

||un+1 − un+1
AB2||

3(1 + kn+1/kn)
, en+1

T =
||T n+1 − T n+1

AB2||
3(1 + kn+1/kn)

(11)

and then used to evaluate the next time step, taking in account the error on both
velocity and temperature fields.

kn+2 = kn+1

 ε√
(en+1
T )2 + (en+1

T )2

1/3

. (12)

Here the parameter ε is a tolerance used to act on the time step evolution. If this
tolerance is too big the time step will grow too quickly and one will lose in accuracy.
But with too small tolerance, the time step will not take off and then one loses the
interest of this algorithm. We typically use a tolerance ε between 10−2 and 10−6, this
choice greatly depends of the physics of your problem.

Initialization of the algorithm

Since the algorithm is not self-starting, one has to compute acceptable initial
state for the different fields of interest (u, p, T ), for the discrete acceleration and for
rate of change.

The first time step is computed by the resolution of at time t1 = k1. In practice
we use very small value of k1 (10−8 for instance). We start by the computation of
(u1, p1, T 1) such that

µ(∇u1,∇v)− (p1,∇ · v)− (q,∇ · u1) = 0,

κ(∇T 1,∇S) = 0, ∀(v, q, T ) ∈ Vh ×Xh.
(13)

These initial solutions are then used to compute initial acceleration d1 and rate
of change D1 such that

ρ(d1,v)− (p1,∇ · v)− (q,∇ · d1) = −µ(∇u1,∇v)− ρ(u1 · ∇u1,v)

(
∂D1

∂t
, S) = −κ(∇T 1, S)− (u1 · ∇T 1, S), ∀(v, q, S) ∈ Vh ×Xh

(14)
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For the second time step we first have to find (u2, p2) and T 2 such that

2

k2

(u2,v) + µ(∇u2,∇v) + (w2 · ∇u2,v)− (p2,∇ · v)− (q,∇ · u2) =
2

k2

(u1,v) + (d1,v),

2

k2

(T 2, S) + κ(∇T 2,∇S) + (w2 · ∇T 2, S) =
2

k2

(T 1, S) + (D1, S),

∀(v, q, S) ∈ Vh ×Xh.
(15)

This allows to evaluate d2 and D2 with the formula

d2 =
2

k2

(u2 − u1)− d1

D2 =
2

k2

(T 2 − T 1)−D1.
(16)

Since we now have the acceleration and the rate of change at time t2 = 2k1, we
can start the algorithm. The value of u2 and T 2 will be replaced by using the update
(4). And then the algorithm can begin with the resolution of (5) for the next time
step.

Averaging algorithm

The method introduced in this section is prone to “ringing” effects especially
with large tolerance ε or when we are close to a steady state. More details about
this behavior can be found in [54, 38].

To avoid these oscillations effects, we chose to implement an averaging algorithm
as proposed in [54]. This algorithm is invoked periodically, every n∗ steps. For such
a step, we first compute the next time step kn+1, using the method described in
section 1.2. We also compute the current velocity un and the current acceleration
∂un

∂t
with the formula (4).

The time step is then modified as follows

tn =
tn−1 + t∗

2
, kn =

k∗

2
(17)

and we can compute the new value for the fields un and ∂u
∂t

n

un =
un−1 + u∗

2
,

∂u

∂t

n

=
1

2
(
∂u

∂t

n−1

+
∂u

∂t

∗
). (18)

with

t∗ = tn, k∗ = kn, u∗ = un,
∂u

∂t

∗
=
∂u

∂t

n

. (19)

The value of kn+1 choose previously keep unchanged and we can solve the next time
step at tn+1 = tn + kn+1. We gave here the details of the averaging for the fluid part
but the process is exactly the same for the thermal part of the system.
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1.3 Turek Benchmarks

These benchmarks are proposed on http://www.featflow.de. Here we briefly
recall the main parameters of the model. We then present our results obtained with
our implementation of the framework presented in chapter 2.

The results on these two benchmarks were significant to evaluate the efficiency
of our implementation.

Configuration

The parameters of the fluid are ρ = 1.0 and µ = 0.001. The geometry of the model
is a pipe without a circular cylinder of radius r = 0.05, as described in figure 2

Figure 2 – Geometry of the Problem

No-slip boundary conditions are imposed on upper and lower walls and on the
boundary of the cylinder. The left edge is the input of the pipe where a Poiseuille
profile is prescribed,

u(0, y) = (
4Uy(0.41− y)

0.412
, 0) (20)

with the maximum amplitude of the velocity Uy = 0.3. The right edge is the output
of the pipe and with a do-nothing condition

σ̄ = 0. (21)

With this configuration, the Reynolds number is Re = 20 and the system turns into
stationary state.

Quantities of interest

In this benchmark we are interested in three quantities. All this quantities are
measured in the steady state.

http://www.featflow.de
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First we want to evaluate the drag and lift coefficients, respectively CD and CL,
defined by

CD =
2

Ū2L
FD CL =

2

Ū2L
FL (22)

with Ū = 0.2 the mean velocity at the input, L = 0.1 the characteristic length of
the flow configuration and (FD, FL) such that

(FD, FL) =

∫
ΓC

σ̄ndΓ (23)

where ΓC is the boundary of the cylinder and n is the outer normal vector of the
circle.

The last quantitity of interest is the pressure difference ∆p = p(a1) − p(a2)
between the points a1 = (0.15, 0.2) and a2 = (0.25, 0.2).

We will compare our results with the reference which gives CD = 5.57953523384,
CL = 0.010618948146 and ∆p = 0.11752016697.

Mesh Convergence

We first try to find the best compromise between accuracy and computation cost
for our mesh. We chose to use a mesh with 2 characteristic sizes: a default size h for
the whole domain and a smaller size hc applied on the cylinder. It results in a mesh
particularly refined around the cylinder. An example of such a mesh is proposed in
figure 3.

Figure 3 – Mesh used for the simulation

To find the best values for h and hc we ran many simulation and compare the
results for CD, CL and ∆p with the reference values for different value of (h, hc). The
errors in percent, with respect to the reference results, are reported in tables 4, 5
and 6.

Reference Case

We are not only interested in the validation of our algorithms for the steady state
but also for the transient state. For that we start by running a simulation with a
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h\hc 0.1 0.05 0.025 0.01 0.005 0.00025 0.001
0.1 9.72 9.72 5.14 1.69 0.60 0.26 0.17

0.05 9.20 4.94 1.51 0.48 0.17 0.06
0.025 4.51 1.54 9.47 0.16 0.05

Figure 4 – CD error for different values of h and hc (in %)

h\hc 0.1 0.05 0.025 0.01 0.005 0.00025 0.001
0.1 407.17 407.17 71.95 149.20 63.77 11.58 77.98

0.05 2118.51 160.67 1.00 12.28 1.83 3.15
0.025 71.02 13.18 12.12 0.43 0.09

Figure 5 – CL error for different values of h and hc (in %)

very small time step. The result will be our reference to know if we are accurate
enough in the transient state.

This reference simulation is ran on the mesh described in section 1.3 with a time
step δt = 0.01 and an order 2 BDF formulation.

The results over time for CD, CL and ∆p are presented in the figure 7. We
consider that the system is in a steady state once the difference ||u

n+1−un||
||un|| is smaller

than a chosen tolerance εsteady. For this simulation we choose εsteady = 10−5 since we
got very good results for all the quantities of interest with this tolerance.

Considering these results and the results from the mesh convergence study, it
appears that the lift coefficient (CL) is the more sensitive and so we decided to focus
on this quantity to find the optimal time-step (BDF) and tolerance (CNAB2) for this
simulation.

BDF : time step choice

We tried 3 time steps for BDF algorithm, δt = 0.1, 0.25, 0.5. The results are
summarized in figure 8 . If both time step δt = 0.05 and δt = 0.1 give acceptable
results, it is clear that the transient state is not well modeled with bigger time step.
However we note that the system still converge to the steady state with δt = 0.25
but it takes much more time.

CNAB2 : configuration choice

For CNAB2 algorithm, we tried 3 different tolerances, ε = 10−5, Re−5, 10−4. But
we had some issue with the growing time step and the CN scheme. When time step
becomes to big (typically when you are close to the steady state), the scheme loses in
accuracy and generates some non-physics oscillations. To avoid theses oscillations
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h\hc 0.1 0.05 0.025 0.01 0.005 0.00025 0.001
0.1 1.33 1.33 0.21 1.07 0.88 0.71 0.61
0.05 0.74 0.28 0.10 0.14 0.06 0.05

0.025 1.04 0.03 0.02 0.02 0.01

Figure 6 – ∆p error for different values of h and hc (in %)
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Figure 7 – Evolution of the 3 quantities of interest over time for the reference case

we had to use a fixed algorithm in the temporal iterations. We iterate until the
quantity ||u

n+1,i+1−un+1,i||
||un+1,i|| is smaller than the tolerance εpic where un+1,i is the solution

after the i-th fixed point iteration. We fix un+1,0 = wn+1 as defined in (1).

We tried 2 values for this tolerance, εpic = 10−4, 10−5. The results are presented
figures 9 and 10

We finally chose to keep the configuration with ε = 10−4 which was the most
efficient in terms of simulation time and number of resolutions.

Numerical Results

In the table 11 are our results and the error compared to the reference. We also
registered the total time of the simulation tsimu, the number of time-steps nsteps and
the number of resolutions of the Naviers-Stokes system nNS.

We ran all theses simulations on 4 cores. The number of DoF is 37797 × 4862.
The BDF case correspond to a usual second order backward differentiation formula
with a constant time step chosen as described in section 1.3. The CNAB2 case
corresponds to the adaptive time stepping algorithm presented in chapter 2 with
the configuration chosen previously, in section 1.3, with n∗ = 10.

In both cases we iterate in time until the quantity ∆u becomes smaller than a
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Figure 8 – Comparison of the lift coeeficient for 3 diffent time steps

tolerance εsteady. In practice we choose εsteady = 10−4 and ∆u is defined as

∆u =
||un+1 − un||
||un||

. (24)

When using iterative solver (PCD), we typically set the tolerance for the relative
error between two KSP iterations to rtol= 10−9.

Turek 2D, Re = 100

The benchmark configuration is exactly the same than in section 1.3. We consider
the same equations, fluid parameters and geometry, see figure 2.

The only parameter which is different in this configuration is the inflow velocity
profile. We still consider a parabolic profile,

u(0, y) = (
4Uy(0.41− y)

0.412
, 0) (25)

but impose this time a maximum velocity Uy = 1.5. and so the mean velocity is Ū = 1
and it leads to a Reynolds number Re = 100.

For this Reynolds number, the flow turns into a time-periodic behavior with
a vortex shedding behind the cylinder. See http://www.featflow.de for more
details.

http://www.featflow.de
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Figure 9 – Comparison of the lift coefficient for 3 different tolerances ε with a Picard tolerance
ε = 10−4

Data Measurement

The measure of the following data is made during a fully developed time-periodic
solution. For that we wait for 25 seconds simulation, at this time the flow is fully
developed. Then we take an arbitrary cycle between 25 and 30 seconds of simulation
times to measure numerical data.

We are first interested in the value of CL, CD and ∆p as defined in section 4.1.
For these quantities we will compare the max, the min, the amplitude and the mean
value against the reference results.

We also define f the frequency of the periodic flow. If a cycle starts at time t0
where the lift coefficient CL is the smallest, it ends at time t1 = t0 + 1/f when CL
is smallest again. 1/f is then the length of the cycle. With this definition of the
frequency, we can define the Strouhal number

St =
Lf

Ū
(26)

Our measure for f and St will also be compared with the reference data.

For this benchmark we only used direct solver with LU resolution. PCD may be
validated later on 3D benchmark. Our results are presented in table 12 for different
meshes, time step or tolerance. In red are the non acceptable values of the measure
with respect to the reference bounds recalled in table 13.
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Figure 10 – Comparison of the lift coefficient for 3 different tolerances ε with a picard tolerance
ε = 10−5

BDF CNAB2
LU PCD LU PCD

CD 5.57694 [0.047] 5.57694 [0.047] 5.57694 [0.047] 5.56076 [0.33]
CL 0.0106564 [0.35] 0.0106567 [0.35] 0.01056 [0.35] 0.0109929 [3.52]
∆p 0.117512 [0.007] 0.117512 [0.007] 0.117512 [0.007] 0.11711 [0.34]
tsimu 124s 242s 184s 546s
nstep 93 93 61 61
nNS 93 93 147 152

Figure 11 – Summary of benchmark results for different configurations, [ error w.r.t. reference in %]

BDF CNAB2
δt = 0.01 0.005 0.0025 ε = 10−4 10−5 10−6

h 0.025 0.01 0.005 0.01 0.01 0.01 0.01 0.01
CDmax 3.2699 3.2722 3.2724 3.2389 3.2302 3.2333 3.2273 3.2268
CLmax 1.0655 1.0666 1.0666 1.0071 0.99173 0.99391 0.98453 0.98473

∆p 2.50229 2.50718 2.5074 2.49234 2.48609 2.43213 2.48715 2.48501
St 0.31250 0.30303 0.30303 0.30303 0.30303 0.30239 0.30120 0.30130
niter 3000 3000 3000 6000 12000 6504 14218 30925
tsimu 10100s 19800s 28000s 135000s

Figure 12 – Results for turek 2D benchmark, Re = 100

CDmax 3.22 to 3.24
CLmax 0.99 to 1.01

∆p 2.46 to 2.5
St 0.295 to 0.305

Figure 13 – Reference Bounds for the quantities of interest
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2 Nitsche’s Method for Slip Condition

We consider the system
u · ∇u+∇p−∇ · (µ∇u) = f,

∇ · u = 0,

u · n = gn, on Γ

(T (p,u)n)τ = gτ , on Γ

(27)

For any vector u we denote by (u)n = (u · n)n the component of u orthogonal to Γ
and (u)τ = u− (u)n the component of u tangential to Γ.

We apply the usual method, detailed in section 2, to recover the following weak
discrete formulation,∫

Ω

(uh · ∇)uh · vh dΩ +

∫
Ω

µ∇uh : ∇vh dΩ −
∫

Ω

ph∇ · vh dΩ − α
∫

Ω

qh∇ · uh dΩ

−
∫

Γ

T (uh, ph)n · vh dΓ =

∫
Ω

f · vh, ∀(q,vh) ∈ Vh ×Qh. (28)

We rewrite the term on Γ using the normal/tangential decomposition of the vectors∫
Γ

T (uh, ph)n ·vh dΓ =

∫
Γ

(T (uh, ph)n)n ·(vh)n dΓ +

∫
Γ

(T (uh, ph)n)τ ·(vh)τ dΓ , (29)

and we can now apply the boundary condition on (T (uh, ph))τ given by (27). We also
add the symmetric/antisymmetric term for the normal component (depending of the
value of δ) and we finally add a penalization terms to control the value of uh · n,∫

Γ

T (uh, ph)n · vh dΓ =

∫
Γ

(T (uh, ph)n)n · (vh)n dΓ + δ

∫
Γ

(T (vh, qh)n)n · (uh · n− gn)n dΓ

− γ
∫

Γ

1

hS
(uh · n− gn)vh · n dΓ +

∫
Γ

gτ · (vh)τ dΓ ,

(30)
where δ = ±1, hS is the measure of the surface of the current element and γ is a
positive constant. The choice of the different constants (α, δ, γ) and its consequences
will be discussed in the following subsection.

Introducing the expression (30) in equation (28), we obtain the new weak formu-
lation∫

Ω

(uh · ∇)uh · vh dΩ +

∫
Ω

µ∇uh : ∇vh dΩ −
∫

Ω

ph∇ · vh dΩ − α
∫

Ω

qh∇ · uh dΩ

−
∫

Γ

(T (uh, ph)n)n ·(vh)n dΓ −δ
∫

Γ

(T (vh, qh)n)n ·(uh)n dΓ +γ

∫
Γ

1

hS
(uh ·n)(vh ·n) dΓ

= −δ
∫

Γ

(T (vh, qh)n)n · gnn dΓ + γ

∫
Γ

1

hS
gnvh · n dΓ +

∫
Γ

gτ · (vh)τ dΓ +

∫
Ω

f · vh,

∀(q,vh) ∈ Vh ×Qh. (31)
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2.1 Validation

Convergence Study with Stokes Equations

We first consider a square Ω = [−1, 1]× [−1, 1] with a non structured triangular
mesh of characteristic size h. On this domain, with impose an exact solution to the
Stokes equations with µ = 1, on all the boundary Γ. As a comparison we first impose
this condition with strong Dirichlet (DIR) condition and then using the penalization
method for slip condition (SLIP), as written in (31). The exact solution imposed is
ue = (2y(1− x2),−2x(1− y2)). With this solution we have

(T (ue, pe)n)τ = ue = (2y(1− x2),−2x(1− y2)) (32)

on the boundary of the domain. We then use the formulation (31) with

gn = 0, gτ = (2y(1− x2),−2x(1− y2)), (33)

and the source term f is chosen in order to have p2 = 0. The discrete solution
is computed for different values of h = 0.2, 0.1, 0.05, 0.025 and for the 4 different
possibilities for the couple (α, δ). We also tested different value of γ. These results
are summarized in the figure 14. According to these results, only two configurations
have the good convergence rates : α = 1, δ = 1 and α = −1, δ = −1, with a slight
accuracy advantage for this last case. In the following convergence studies we will
only consider the configurations α = δ.

The second convergence test is made on a ring, the domain is defined by 1 ≤
x2 + y2 ≤ 4. The exact solution ue = (−y

√
x2 + y2, x

√
x2 + y2) is imposed strongly on

the inside boundary (x2 + y2 = 1) and with slip conditions on the outside boundary
(x2 + y2 = 4). With this exact solution we can evaluate

gn = 0, gτ = (T (ue, pe)n)τ = (−2y, 2x). (34)

Again we choose p = 0 and the source term is computed to fit with these parameters.
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(a) α = 1, δ = 1 (b) α = 1, δ = −1 (c) α = −1, δ = 1 (d) α = −1, δ = −1

Dirichlet γ = 10−4 γ = 10−2

γ = 1 γ = 102 γ = 104

Figure 14 – Convergence study on square test case
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Figure 15 – Convergence study on ring test case



214

10−1.5 10−1
10−10

10−7

10−4

10−1

||u
h
−
u
e
|| 2

10−1.5 10−1 10−1.5 10−1

10−1.5 10−1
10−10

10−7

10−4

10−1

||u
h
−
u
e
|| 1

10−1.5 10−1 10−1.5 10−1

10−1.5 10−1
10−10

10−7

10−4

10−1

||p
h
−
p e
|| 2

10−1.5 10−1 10−1.5 10−1

(a) P2P1 (b) P3P2 (c) P4P3

Dirichlet γ = 10−4 γ = 10−2

γ = 1 γ = 102 γ = 104

Figure 16 – Convergence study on ring test case G1
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3 Offline/Online Strategy for Residual Evaluation
in the CRB

3.1 Coercive Problems

The residual defined in (5.22) can be rewritten using the affine decomposition of
the problem

rN(v;µ) =

Qf∑
q=1

θfq (µ)fq(v)−
Qa∑
q=1

θaqaq(uN(µ);µ) (35)

and then the Riesz representation satisfies

(êN(µ), v)µ̄ =

Qf∑
q=1

θfq (µ)fq(v)−
Qa∑
q=1

θaqaq(uN(µ);µ), ∀v ∈ Xh. (36)

Now using the projection of uN(µ) on the RB space, as in (5.12), we obtain

(êN(µ), v)µ̄ =

Qf∑
q=1

θfq (µ)fq(v)−
Qa∑
q=1

N∑
i=1

θaquNi(µ)aq(ξi;µ), ∀v ∈ Xh. (37)

And then, using the linear superposition principle, we can write êN(µ) as

êN(µ) =

Qf∑
q=1

θfq (µ)f̂q −
Qa∑
q=1

N∑
i=1

θaquNi(µ)âqi (38)

where the Riesz representations f̂q and âqi satisfy

(f̂q, v)µ̄ = fq(v), ∀v ∈ Xh, 1 ≤ q ≤ Qf , (39)
(âqi, v)µ̄ = aq(ξi, v), ∀v ∈ Xh, 1 ≤ i ≤ N, 1 ≤ q ≤ Qa. (40)

Finally we can write

||êN(µ)||2µ̄ = Cff (µ) +
N∑
i=1

N∑
j=1

(uN(µ))i(C
aa
n (µ))ij(uN(µ))j − 2

N∑
i=1

(uN(µ))i(C
fa
N (µ))i

(41)

= Cff (µ) + uN(µ)
ᵀ
Caa
N (µ)uN(µ)− 2uN(µ)

ᵀ
Cfa
N (µ) (42)

with,

Cff (µ) =

Qf∑
q=1

Qf∑
q′=1

θfq (µ)θfq′(µ) (f̂q, f̂q′)µ̄︸ ︷︷ ︸
precomputed

, (43)
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Cfa
N (µ) =

Qf∑
q=1

Qa∑
q′=1

θfq (µ)θaq′(µ) Cfa
qq′,N︸ ︷︷ ︸

precomputed

, (Cfa
qq′,N)i = (f̂q, âq′i)µ̄, 1 ≤ i ≤ N, (44)

Caa
N (µ) =

Qa∑
q=1

Qa∑
q′=1

θaq (µ)θaq′(µ) Caa
qq′,N︸ ︷︷ ︸

precomputed

, (Caa
qq′,N)ij = (âqi, âq′j)µ̄, 1 ≤ i, j ≤ N. (45)

The precomputed quantities are evaluated once during the online procedure and
allows a efficient online evaluation, independent of the finite element dimension N .

Using the same method, we can express Riesz representation norm of the residual
for the dual problem as

||êduN (µ)||2µ̄ = C ll(µ) + ψN(µ)
ᵀ
Caa
N (µ)ψN(µ) + 2ψN(µ)

ᵀ
C la
N (µ) (46)

3.2 Saddle-Point Problems

Just like in the coercive case, we start by introducing the Riesz representation of
each residual which satisfy

(r̂uN(µ),v)V = ruN(v;µ), ∀v ∈ Vh
(r̂pN(µ), q)Q = rpN(q;µ), ∀q ∈ Qh

(47)

Using the affine decomposition (5.39) of the forms we can rewrite the relation (47)
as,

(r̂uN(µ),v)V =

Qf∑
k=1

θfk(µ)fk(v)−
Qa∑
k=1

θak(µ)ak(uN(µ),v)−
Qb∑
k=1

θbk(µ)bk(v, pN(µ)),

(r̂pN(µ), q)Q =

Qg∑
k=1

θgk(µ)gk(q)−
Qb∑
k=1

θbk(µ)bk(uN(µ), q).

(48)

Now with the projection on the RB spaces we can write

(r̂uN(µ),v)V =

Qf∑
k=1

θfk(µ)fk(v)−
Qa∑
k=1

2N∑
i=1

θak(µ)uNi(µ)ak(ζi,v)−
Qb∑
k=1

N∑
i=1

θbk(µ)pNi(µ)bk(v, ηi),

(r̂pN(µ), q)Q =

Qg∑
k=1

θgk(µ)gk(q)−
Qb∑
k=1

2N∑
i=1

θbk(µ)uNi(µ)bk(ζi, q),

(49)
and then using the linear superposition principle

r̂uN(µ) =

Qf∑
k=1

θfk(µ)f̂k −
Qa∑
k=1

2N∑
i=1

θak(µ)uNi(µ)âki −
Qb∑
k=1

N∑
i=1

θbk(µ)pNi(µ)b̂
ᵀ
ki,

r̂pN(µ) =

Qg∑
k=1

θgk(µ)ĝk −
Qb∑
k=1

2N∑
i=1

θbk(µ)uNi(µ)b̂ki,

(50)
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where the Riesz representations âki, b̂ki, b̂
ᵀ
ki, f̂k and ĝk satisfy

(âki,v)V = ak(ζi,v), ∀v ∈ V, 1 ≤ k ≤ Qa, 1 ≤ i ≤ 2N

(b̂
ᵀ
ki,v)V = bk(v, ηi), ∀v ∈ V, 1 ≤ k ≤ Qb, 1 ≤ i ≤ N

(b̂ki, q)Q = bk(ζi, q), ∀q ∈ Q, 1 ≤ k ≤ Qb, 1 ≤ i ≤ 2N

(f̂k,v)V = fk(v), ∀v ∈ V, 1 ≤ k ≤ Qf

(ĝk, q)Q = gk(q), ∀q ∈ Q, 1 ≤ k ≤ Qg.

(51)

And finally we obtain

||r̂uN(µ)||2V =Cff (µ) + uN(µ)
ᵀ
Caa
N (µ)un(µ) + pN(µ)

ᵀ
Cbᵀbᵀ

N (µ)pN(µ)

+ 2uN(µ)
ᵀ
Cabᵀ

N (µ)pN(µ)− 2uN(µ)
ᵀ
Caf
N (µ)− 2pN(µ)

ᵀ
Cbᵀf
N (µ)

||r̂pN(µ)||2Q =Cgg(µ) + uN(µ)
ᵀ
Cbb
N (µ)uN(µ)− 2uN(µ)

ᵀ
Cbg
N (µ)

(52)

with

Cff (µ) =

Qf∑
k=1

Qf∑
k′=1

θfk(µ)θfk′(µ) (f̂k, f̂k′)V︸ ︷︷ ︸
precomputed

, Cgg(µ) =

Qg∑
k=1

Qg∑
k′=1

θgk(µ)θgk′(µ) (ĝk, ĝk′)Q︸ ︷︷ ︸
precomputed

,

Caf
N (µ) =

Qf∑
k=1

Qa∑
k′=1

θfk(µ)θak′(µ) Caf
kk′,N︸ ︷︷ ︸

precomputed

, (Caf
kk′,N)i = (f̂k, âk′i)V , 1 ≤ i ≤ 2N,

Cbᵀf
N (µ) =

Qf∑
k=1

Qb∑
k′=1

θfk(µ)θbk′(µ) Cbᵀf
kk′,N︸ ︷︷ ︸

precomputed

, (Cbᵀf
kk′,N)i = (f̂k, b̂

ᵀ
k′i)V , 1 ≤ i ≤ N,

Cbg
N (µ) =

Qg∑
k=1

Qb∑
k′=1

θgk(µ)θbk′(µ) Cbg
kk′,N︸ ︷︷ ︸

precomputed

, (Cbg
kk′,N)i = (ĝk, b̂k′i)Q, 1 ≤ i ≤ N,

Caa
N (µ) =

Qa∑
k=1

Qa∑
k′=1

θak(µ)θak′(µ) Caa
kk′,N︸ ︷︷ ︸

precomputed

, (Caa
kk′,N)ij = (âki, âk′j)V , 1 ≤ i, j ≤ 2N,

Cbb
N (µ) =

Qb∑
k=1

Qb∑
k′=1

θbk(µ)θbk′(µ) Cbb
kk′,N︸ ︷︷ ︸

precomputed

, (Cbb
kk′,N)ij = (b̂ki, b̂k′j)Q, 1 ≤ i, j ≤ N,

Cbᵀbᵀ

N (µ) =

Qb∑
k=1

Qb∑
k′=1

θbk(µ)θbk′(µ) Cbᵀbᵀ

kk′,N︸ ︷︷ ︸
precomputed

, (Cbᵀbᵀ

kk′,N)ij = (b̂
ᵀ
ki, b̂

ᵀ
k′j)Q, 1 ≤ i, j ≤ N.

(53)
Here again, the precomputed quantities are evaluated only once during the offline
phase and stored to be reused online. This way, during the online phase the
computation of the residuals remain independent of the FE dimension N . The same
method is used to evaluate the dual norms of the dual residuals.
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4 Detailed Affine Decomposition for RB with Stokes
Flow

We present here the detailed formulation of the affine decomposition associated
to the test case in section 3.
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(a) µ = (µr, µr)
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(b) µ = (0.1, 0.5)

Figure 17 – Domain Decomposition used for the mapping

The domain decomposition is presented on figure 17. The associated mappings
on each sub-domain is

G1(x̃, µ) = G7(x̃, µ) = x̃

G2(x̃, µ) =

(
2−µr
2−µ1

0

0 µr
µ2

)
x̃+

(µr−µ1

2−µ1

0

)
, G6(x̃, µ) =

(
2−µr
2−µ1

0

0 µr
µ2

)
x̃+

(3(µr−µ1)
2−µ1

0

)

G3(x̃, µ) =

(
2−µr
2−µ1

0
2(µr−µ2)

2−µ1
1

)
x̃+

(
µr−µ1

2−µ1
−2(µr−µ2)

2−µ1

)
, G7(x̃, µ) =

(
2−µr
2−µ1

0
−2(µr−µ2)

2−µ1
1

)
x̃+

(
3(µr−µ1)

2−µ1
6(µr−µ2)

2−µ1

)

G4(x̃, µ) =

(
2−µr
2−µ1

0

0 1−µr
1−µ2

)
x̃+

(µr−µ1

2−µ1
µr−µ2

1−µ2

)
, G8(x̃, µ) =

(
2−µr
2−µ1

0

0 1−µr
1−µ2

)
x̃+

(
3(µr−µ1)

2−µ1
µr−µ2

1−µ2

)

G5(x̃, µ) =

(
µr
µ1

0

0 1−µr
1−µ2

)
x̃+

(
−2(µr−µ1)

µ1
µr−µ2

1−µ2
.

)
It allows to write the affine decomposition of the problem, using the relations,

a(u,v;µ) =
P∑
k=1

Gk
mj(µ)Gk

ljJ
k(µ)

∫
Ωk

∂ui
∂xm

∂vi
∂xl

dΩ, f(v) = 0 (54)

b(u, q) =
P∑
k=1

−Gk
jiJ

k(µ)

∫
Ωk

∂ui
∂xj

q dΩ, g(q) = 0, (55)

we have,

a(u,v;µ) =

Qa∑
s=1

θsa(µ)as(u,v), (56)

b(u, q;µ) =

Qb∑
s=1

θsb(µ)bs(u, q), (57)
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with

θ1
a(µ) = 1, θ2

a(µ) = µ1, θ3
a(µ) =

1− µ2

µ1

θ4
a(µ) =

1

2− µ1
,

θ5
a(µ) =

µ2

2− µ1

, θ6
a(µ) =

µ2
2

2− µ1
, θ7

a(µ) =
2− µ1

µ2

, θ8
a(µ) =

µ1

1− µ2

,

θ9
a(µ) =

2− µ1

1− µ2

,

and

a1(u,v) =

∫
Ω1,9

∇u : ∇v dΩ +

∫
Ω3,7

2

2− µr
∂u

∂x2

· ∂v
∂x2

dΩ

a2(u,v) =

∫
Ω3,7

−1

2− µr
∂u

∂x2

· ∂v
∂x2

dΩ ,

a3(u,v) =

∫
Ω5

µr
1− µr

∂u

∂x1

· ∂v
∂x1

dΩ

a4(u,v) =

∫
Ω3,7

(2− µr)
∂u

∂x2

· ∂v
∂x2

+
4µ2

r

2− µr
∂u

∂x2

· ∂v
∂x2

dΩ +

∫
Ω4,8

2− µr
1− µr

∂u

∂x1

· ∂v
∂x1

dΩ

+

∫
Ω3

2µr(
∂u

∂x1

· ∂v
∂x2

+
∂u

∂x2

· ∂v
∂x1

) dΩ +

∫
Ω7

−2µr(
∂u

∂x1

· ∂v
∂x2

+
∂u

∂x2

· ∂v
∂x1

) dΩ

,

a5(u,v) =

∫
Ω2,6

2− µr
µr

∂u

∂x1

· ∂v
∂x1

dΩ +

∫
Ω3,7

−8µr
2− µr

∂u

∂x1

· ∂v
∂x1

dΩ

+

∫
Ω3

−2(
∂u

∂x1

· ∂v
∂x2

+
∂u

∂x2

· ∂v
∂x1

) dΩ +

∫
Ω7

2(
∂u

∂x1

· ∂v
∂x2

+
∂u

∂x2

· ∂v
∂x1

) dΩ

+

∫
Ω4,8

−2− µr
1− µr

∂u

∂x1

· ∂v
∂x1

dΩ ,

a6(u,v) =

∫
Ω3,7

4

2− µr
∂u

∂x2

· ∂v
∂x2

dΩ ,

a7(u,v) =

∫
Ω2,6

µr
2− µr

∂u

∂x2

· ∂v
∂x2

dΩ ,

a8(u,v) =

∫
Ω5

1− µr
µr

∂u

∂x2

· ∂v
∂x2

dΩ ,

a9(u,v) =

∫
Ω4,8

1− µr
2− µr

∂u

∂x2

· ∂v
∂x2

dΩ .

θ1
b (µ) = 1, θ2

b (µ) = µ1, θ3
b (µ) = µ2,
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and

b1(u, q) =

∫
Ω1,9

−q∇ · u dΩ +

∫
Ω5

−1

1− µr
∂u1

∂x1

dΩ

+

∫
Ω2,6

−2

2− µr
q
∂u2

∂x2

dΩ +

∫
Ω4,8

−1

1− µr
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Résumé de Thèse en Français

Introduction

Le projet CHORUS

Cette thèse a été financée dans le cadre du projet CHORUS (Commun Horizon of
Open Research in Uncertainty for Simulation), de l’agence nationale de recherche
(ANR). Le but de ce projet est de supporter les activités de recherche et de développe-
ment informatique dans le domaine de la quantification d’incertitude. Les trois axes
de travail principaux étaient : la recherche académique, le développement informa-
tique et le benchmarking de cas-tests industriels. De plus, toutes les applications
furent implémentées sous une licence open source afin de profiter à une plus large
communauté.

La quantification d’incertitude est la capacité à mesurer les effets des incerti-
tudes sur des modèles numériques et des simulations. Dans l’industrie, ce sujet
est particulièrement important durant la phase de design et de certification. Bien
que ce sujet soit très bien maitrisé dans le milieu industriel, l’application à des
problèmes industriels présentent encore quelques problèmes de scalabilité. Les
méthodes statis- tiques employées dans ce domaine sont essentiellement basées sur
la sur l’exploration des espaces paramétriques et nécessitent de répéter plusieurs
fois la même expérience (numérique ou non) avec des jeux de paramètres différents.
Il est alors difficilement envisageable d’appliquer ce genre de techniques à des
simulations numériques sur des cas-tests industriels qui nécessitent, en général,
plusieurs heures de calcul. Pour remédier à ces soucis de scalabilité, nous pou-
vons envisager deux possibilités : la première est l’exploitation des capacités de
calcul HPC (High-Performance Computing) grandissante, la deuxième solution est

221
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le développement de modèles d’ordre réduit. Ces sujets sont fortement liés et furent
largement étudié dans le cadre de ce projet ANR.

Le projet réunit différents acteurs de la recherche académique et industrielle.
Le but était l’amélioration de la robustesse, de la scalabilité et de la précision de
différentes méthodes de réduction d’ordre utilisée dans la cadre de la quantification
d’incertitude :

• la réduction “Low Rank”

• la POD (Proper Orthogonal Decom-
position)

• les bases réduites (RB)

• le krigeage multi-fidélité

• la calibration Bayesienne

En parallèle de ce travail de recherche, les industriels proposèrent différents ap-
plications concrètes. L’idée étant de confronter le travail académiques à la résolution
de cas-tests complexes et réalistes.

Le cas-test Airbus

Le groupe Airbus fut l’une des compagnies leaders du projet. Ils proposèrent
différents sujets de recherche ainsi qu’un nombre conséquent de cas-tests. Ils
s’intéressaient, en particulier, au développement d’un modèle réduit pour réalisé
des simulations d’écoulements aerothermiques. Ce sujet ambitieux a un double
objectif. Tout d’abord, il doit d’abord rendre abordable l’utilisation de la simulation
numérique lors des phases de design et certification :à l’heure actuelle, la simulation
numérique est peu utilisée car elle demande d’énorme ressources de calcul. Dans un
second temps, Airbus serait intéressé par l’intégration d’un tel modèle réduit dans
son système de de contrôle et de régulation de le l’atmosphère intérieur des avions.
Ce système appelé un ECS (Environmental control system) repose sur la résolution
de nombreuse équations différentielles ordinaires. L’intégration d’un modèle réduit
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3D rapide et précis pourrait grandement améliorer les possibilité de leur ECS, mais
il est pour cela nécessaire de réussir à réaliser ces simulations en temps réel.

Le groupe Airbus nous proposa de travailler sur un problème d’écoulements
aérothermiques dans un avion. Le domaine de résolution est divisé en deux parties
distinctes : en haut, la cabine avec les passagers et en bas, la baie avec différents
équipements électriques. Un système de climatisation régule la température dans
l’intégralité du domaine, voir figure 18

Figure 18 – Description of the Cabin Use Case Proposed by Airbus Group

Le développement d’un modèle réduite pour ce cas-test fut la motivation princi-
pale de cette thèse.

La Librairie Feel++

Feel++ (Finite Element Embedded Library in C++) est une librairie C++ de
calcul scientifique, spécialisée dans la méthode des éléments finis. Elle dispose
d’un langage très pratique pour la résolution d’équations aux dérivés partielles,
en s’appuyant sur un DSEL (Domain Specific Language). Le but de Feel++ est
de rendre ce langage aussi proche que possible de la formulation mathématique.
L’idée est de fournir un environnement performant dans lequel il est possible de
résoudre des problèmes complexes dans un langage mathématique simple et qui
exploite efficacement les capacité du calcul parallèle. Feel++ utilise les derniers
standards du C++ ainsi que la meta programmation afin de fournir un maximum de
généralité. La librairie offre également un parallèlisme complètement transparent
pour l’utilisateur. Ces capacité de calcul haute performance est indispensable pour
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le traitement des problème industriels.
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Figure 19 – Le DSEL dans Feel++ fournit un langage de haut niveau afin de cassé la complexité des
logiciel de calcul scientifique, tout gardant les performances d’un langage de bas niveau.

Feel++ est une librairie open-source développée sous licence LGPL and GPL. Elle
est utilisée dans un grand nombre de projets financés par différentes institutions
telles que l’ANR ou la Commission Européenne.

Durant cette thèse, toutes les applications furent développées en utilisant Feel++.
Nous avons également produit quelques contributions notables pour la librairie.

Plan de la thèse

La thèse se compose de 10 chapitres, divisé en 3 parties.

Chapitre 1 :

• Notions d’analyse numérique, notamment sur les espaces de fonctions,

• Description de la méthode des éléments finis,

La première partie est consacrée à la modélisation d’un problème aérothermie.

Chapitre 2 :

• Introduction des équation du problème

• Discrétisation utilisant la méthode des éléments finis
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• Résolution non-linéaire et continuations

Chapitre 3 :

• Méthode de Stabilisation de type Streamline Diffusion (SDM)

• Discussion sur le coefficient de stabilisation et l’évaluation de la longueur
caractéristique d’une maille

• Méthode de capture de choques

Chapitre 4 :

• La méthode Reynolds Average Navier-Stokes (RANS)

• Le modèle de Spalart-Allmaras

• Le modèle l − ω SST

La deuxième partie est consacré la réduction d’ordre

Chapitre 5 :

• La méthode des bases réduites (RBM) pour les problèmes coercifs

• La méthode des bases réduites pour les problèmes de type point-selle

Chapitre 6 :

• La méthode d’interpolation empirique (EIM)

• EIM pour les opérateurs discrets d’ordre r

• Méthode de coconstruction EIM et RB (SER)

Chapitre 7 :

• Réduction d’un problème d’aerothermie

• Application OPUS : refroidissement de composants électroniques

• Application CHORUS : climatisation dans une cabine d’avion
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La troisième et dernière partie est consacrée à l’implémentation des méthodes
décrites précédemment.

Chapitre 8 : Modèle d’aerothermie stabilisé

Chapitre 9 : Contribution au framework RB de Feel++

Chapitre 10 : Version discrète de l’algorithme DEIM

1 Modélisation d’un problème d’aérothermie

Résolution du système d’équations

Les modèles que nous considérons dans cette thèse se trouve dans des conditions
physiques telles que nous pouvons faire l’hypothèse que le fluide est incompressible.
Nous supposons de plus qu’il est Newtonien et que les conditions de température
permettent de travailler dans l’approximation de Boussinesqu pour le terme de con-
vection naturelle. Avec ces hypothèses, nous pouvons écrire le système d’équations
du problème, sous forme forte,

ρ(u · ∇u) +∇p− 2∇ · (µS(u)) = −ρβ(T − T0)g,

∇ · u = 0,

u · ∇T −∇ · (κ∇T ) = 0.

, (58)

oùu, p et T représentent respectivement la vitesse, la pression et la température du
fluide considéré, avec les paramètres physiques suivant :

• ρ: la densité du fluide en kg.m−3

• µ :la viscosité dynamique du fluide en Pa.s

• κ : la diffusivité thermique du fluide en m2.s−1 kg.m−3

• β : le coefficient d’expansion thermique en K−1

Ce système d’équation sera clos par des conditions aux bords dépendantes du
cas-test considéré.

Ce système d’équation non-linéaire sera résolu en utilisant la méthode des
éléments finis (FEM). Pour cela, nous commençons par introduire les espaces de
Hilbert V , Q et X ainsi que les produits scalaires (·, ·)V , (·, ·)Q, (·, ·)X et les normes
associées || · ||V , || · ||Q, || · ||X .
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Nous pouvons alors réécrire le système (58) sous forme variationnelle afin de
chercher une solution faible (u, p, T ) ∈ V ×Q×X telle que∫

Ω

ρ(u · ∇u) · v dΩ +

∫
Ω

2µS(u) : S(v) dΩ −
∫

Γ

T (u, p)n · v dΓ

−
∫

Ω

p∇ · v dΩ +

∫
Ω

(∇ · u)q dΩ = −
∫

Ω

ρβ(T − T0)g · v dΩ ,∫
Ω

(u · ∇T )S dΩ +

∫
Ω

κ∇T · ∇S dΩ −
∫

Γ

κ∇Tn · S dΓ = 0,

∀(v, q, S) ∈ V ×Q×X.
(59)

Nous introduisons ensuite les espaces discrets

Vh ×Qh = THk
ch ⊂ V ×Q, Xh = Lkch ⊂ X, (60)

où THk
ch et Lkch désignent les espaces éléments finis usuels respectivement de Taylor-

Hood et de Lagrange. La projection de la forme faible (59) sur ces espaces permet de
réécrire le problème sous forme d’une équation matricielle : on cherche (uh, ph, Th) ∈
Vh ×Qh ×Xh telle queDu +C(uh) Bᵀ 0

αB 0 0
0 0 A(uh) +DT

uhph
Th

 =

F (Th)
0
G

 , (61)

Ce système d’équations non-linéaires, peut être écris de façon son générique sous
la forme : trouver w ∈ X tel que

F(w) = 0. (62)

La résolution de ce système non-linéaire est réalisé à l’aide de méthodes itératives
telles que l’algorithme de Newton ou de Picard. Dans les deux cas, l’idée est la
même. Partant d’un état initial w0, nous construisons une suite (wn) telle que
wn → w. Chaque itération pour passer de l’état n− 1 à n impliquant la résolution
d’un nouveau système linéaire (dépendant du choix de la méthode entre Picard et
Newton).

Ce type de méthode étant très sensible au choix de l’état initial, il est crucial de
bien choisir ce dernier, sans quoi l’algorithme peut ne pas converger. Afin d’améliorer
cette initialisation, nous proposons d’appliquer deux méthodes de continuation. La
première est une continuation sur les paramètres physique du fluide µ and κ. La
continuation consiste en une succession de N résolutions non-linéaires, du système

F(w;µk, κk) = 0 (63)

ou µk = ε(k)µ et κk = ε(k)κ. ε étant un coefficient de continuation tel que ε(N) = 1.
Chaque nouvelle résolution est initialisée avec la solution précédente. Cette méthode
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est particulièrement efficace pour résoudre des problèmes stationnaires dans des
physiques très dynamiques (viscosité et diffusivité très faible).

La continuation physique ne suffit pourtant pas toujours. Dans ce cas, nous
utilisons une continuation par pseudo pas de temps afin de “guider” les états inter-
médiaires de la résolution non-linéaire. La continuation par pseudo pas de temps
consiste à introduire une matrice de masse (comme dans la cas d’une résolution
transitoire) sauf que cette matrice est pondérée par un coefficient constant par
cellule. Ce coefficient dépend de la taille de la cellule et de l’amplitude du champs
de vitesse. Cela permet d’adapter la vitesse de résolution localement. Ce pseudo pas
de temps local devient alors de plus en plus grand lorsque le système se rapproche
de son état stationnaire.

Stabilisation

La méthode des éléments finis est connus pour produire des oscillations non-
physiques lors de la résolution de problèmes à convection dominante. En règle
général, il est possible de supprimer ces instabilités en raffinant le maillage. Cepen-
dant, cela peut conduire à des coups de calculs démesurés et cette solution n’est
pas envisageable pour des problèmes industriels. Une autre solution est d’utiliser
des méthodes de stabilisation qui vont supprimer les oscillations non-physiques en
introduisant de la diffusivité numérique. Parmi les différentes méthodes de la lit-
térature, nous avons choisi de nous concentrer sur les méthodes de type Streamline
Diffusion (SDM) qui ajoutent de la diffusion numérique dans la direction du champs
de convection. Nous avons particulièrement étudié les formulations Streamline
Upwind/Petrov-Galerkin (SUPG) et Galerkin Least Square (GLS).

Nous considérons la forme faible (59). Les opérateurs de stabilisation sont
ajoutés aux équations de continuité et d’énergie afin d’obtenir la forme stabilisée :
trouvé (uh, ph, Th) ∈ Vh ×Qh ×Xh telle que

∫
Ω

ρ(uh · ∇uh) · vh dΩ +

∫
Ω

2µS(uh) : S(vh) dΩ + aNSK (uh,vh; ph)

−
∫

Ω

ph∇ · vh dΩ +

∫
Ω

(∇ · uh)qh dΩ −
∫

Γ

T (uh, ph)n · vh dΓ

= −
∫

Ω

ρβ(Th − T0)g · vh dΩ + lNSK (uh,vh),∫
Ω

(uh · ∇Th)Sh dΩ +

∫
Ω

κ∇Th · ∇S dΩ −
∫

Γ

κ∇Thn · Sh dΓ + aK(Th, Sh) = 0,

∀(vh, qh, Sh) ∈Vh ×Qh ×Xh.
(64)
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avec

aNSK (uh,vh; ph) =
∑
K∈Th

∫
K

τNSh (ρuh∇uh −∇ · (µ∇uh) +∇ph) · (ρuh∇vh − γ∇ · (µ∇vh)) dΩ

+
∑
K∈Th

∫
K

δh∇ · uh∇ · vh dΩ

lNSK (uh,vh) =
∑
K∈Th

∫
K

τNSh g · (ρuh∇vh − γ∇ · (µ∇vh)) dΩ

aK(Th, Sh) =
∑
K∈Th

∫
K

τh(uh · ∇Th −∇ · (κ∇Th)) · (uh · ∇Sh − γ∇ · (κ∇Sh)) dΩ .

(65)
Le paramètre γ permet de choisir entre les différentes méthodes de stabilisation :

• γ = 0 : SUPG,

• γ = 1 : GLS,

• γ = −1 : DW.

Les coefficients de stabilisation τh et τNSh sont constant par cellule et dépendent
de plusieurs paramètres :

• l’amplitude du champs de convection,

• la taille caractéristique de la cellule,

• l’ordre polynomial de l’espace éléments finis.

Parmi les différentes formulations étudiées, la plus pertinente nous semble être la
suivante :

τh =
h

2|uh|2
ξ(α)

ξ(α) =

{
α, 0 ≤ α ≤ 1,

1, α ≥ 1,

α =
m|uh|ph

2κ
,

|uh|p =


(∑d

i=1 |(uh)i|p
)1/p

, 1 ≤ p <∞,
max
i=1,..,d

|(uh)i|, p =∞,

m = min{1

3
, 2C},

C =
1

λKh2
,

(66)
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(a) SUPG1m (b) SUPG1d

Figure 20 – Intérêt de le formulation adaptée aux maillages anisotropique pour les coefficients de
stabilisation. SUPG1m évalué avec h = hmin, SUPG1d évalué avec h = hd

avec C une constante par élément, vérifiant

C
∑
K∈Th

h2‖∆v‖2
K ≤ ‖∇v‖2, v ∈ Xh (67)

et h la longueur caractéristique de la cellule. Le calcule pour τNSh est identique en
remplaçant κ par µ.

Le choix de la longueur caractéristique a relativement peu d’importance sur le
coefficient de stabilisation, tant que le maillage reste isotropique. Dans ce cas, on
peut exemple choisir d’évaluer h comme la longueur de la plus petite arrête de la
cellule. Cependant, l’évaluation de cette longueur h devient critique lorsque les
mailles sont étirées et donc que le maillage est fortement anisotropique. Dès lors,
il est nécessaire de prendre en compte la direction du champs de convection par
rapport à l’élongation de la maille. Nous utilisons pour cela l’image du champs de
convection sur une maille de référence :

h = hd =
|uh|p
|ûh|p

ĥ (68)

où ĥ est la longueur caractéristique de l’élément de référence. Le champs ûh est
évalué en utilisant la Jacobienne J de la transformation géométrique entre l’élément
de référence et la cellule courante

ûh = J−1uh. (69)

Cette définition permet d’évaluer h dans la direction du champs de convection et
donc d’être plus précis dans le calcul du coefficient de stabilisation. L’intérêt de
cette formulation est particulièrement visible sur des problèmes avec des maillages
fortement anisotropique. La figure 20 met en évidence ce phénomène avec une
résolution d’un problème d’advection dans une couche limite maillée avec des
simplex (rapport de forme des mailles de 105).

Ces méthodes de stabilisation permettent d’éviter les oscillations non-physique
et de résoudre des problèmes à convection dominante, même sur des maillages
relativement grossiers. Cependant, elles génèrent tout de même des undershoots
et overshoots au niveau des discontinuités importantes. Ces petites oscillations
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(a) SUPG1d (b) HOME

Figure 21 – Intérêt des méthodes de capture de choque sur un cas-test avec une importante
discontinuité. SUPG1d sans capture de choque, HOME avec capture de choque

peuvent être critique lorsqu’il est par exemple nécessaire de conserver une solution
positive. Pour remédier à ce problème, nous introduisons une nouvelle méthode
de stabilisation appelé capture de choque. Ces méthodes permettent de réduire
ou de faire disparaître ces undershoots. L’idée étant de rajouter de la viscosité
numérique soit de façon isotropique, soit orthogonalement au champs de convection.
On peut observer de façon qualitative l’effet de ces méthodes sur la figure 21. Dans
cet exemple, nous introduisons une diffusion numérique orthogonale au champs de
convection, avec l’ajout du terme

(τ sch D̄∇uh,∇vh) (70)

ou le coefficient τ sch est donné par

τ sch = τh(a) max
(
0, ‖a‖2

2QK(uh)−Q2
K(uh)

)
. (71)

où QK(uh) = ‖Rh(uh)‖2
‖∇uh‖2

et Rh(uh) est le résidu discret.

Modelisation de la turbulence

Les méthodes de stabilisation introduites précédemment permettent de retrouver
une solution stable à des problèmes à convection dominante, cependant elles ne
modélisent pas correctement l’effet des plus petites échelles physiques. Une partie
de l’énergie est diffusée dans ces petites échelles. Afin de correctement modéliser
ce phénomène, nous allons utiliser des modèles de turbulence. Parmi les différents
modèles existant dans la littérature, nous avons choisi d’étudier le modèle Reynolds
Average Navier-Stokes (RANS) qui est l’un des plus courants et le mieux adapté
aux simulations stationnaires.

L’idée du RANS est de faire une moyenne des quantités fluctuantes et sans
avoir à les résoudre. La contribution des plus petites échelle est alors introduite
par l’ajout d’une viscosité turbulente dans le système d’équation de Navier-Stokes.
La diffusion turbulente dans l’équation d’énergie est alors déduite en utilisant le
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nombre de Prandtl,
ρ(u · ∇u) +∇p− 2∇ · ((µ+ µt)S(u)) = −ρβ(T − T0)g,

∇ · u = 0,

u · ∇T −∇ · ((κ+
µt
Pr

)∇T ) = 0.

, (72)

L’évaluation de la viscosité turbulente µt dépend du modèle considéré. Nous avons
étudié et implémenté deux modèles en particulier durant cette thèse : le modèle de
Spalart Allmaras et le modèle k − ω SST.

Le modèle de Spalart Allmaras est probablement le plus utilisé des modèle
RANS. La viscosité turbulente est donnée par la relation

µt = ρν̄fv1

où ν̄ est solution de l’équation

u · ∇ν̄︸ ︷︷ ︸
Convection

− 1

σ
[∇ · ((ν + ν̄)∇ν̄) + cb2(∇ν̄ · ∇ν̄)]︸ ︷︷ ︸

Diffusion

− cb1(1− ft2)Sν̄︸ ︷︷ ︸
Production

+ [cw1fw −
cb1
κ2
ft2]
( ν̄
d

)2

︸ ︷︷ ︸
Destruction

= 0,

(73)
avec les notations suivantes,

χ =
ν̄

ν
, S =

√
(∇× u) · (∇× u) +

ν̄

κ2d2
fv2,

fv1 =
χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χfv1

, ft2 = ct3 exp(−ct4χ2),

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), r = min
( ν̄

Sκ2d2
, 10
)
,

(74)
où d est la distance à la paroi la plus proche. Les constantes sont données par

cb1 = 0.1355, cb2 = 0.622, cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.2, cw3 = 2

cv1 = 7.1, ct3 = 1.2, ct4 = 0.5, κ = 0.41, σ = 2/3.
(75)

Le modèle k−ω SST est modèle qui semble plus adapté aux problème d’aerothermie
que nous considérons. Il est aussi plus compliqué car implique la résolution d’un
système de deux équations non-linéaires. La viscosité turbulente est donnée par

µt =
ρa1k

max (a1ω,SF2)
. (76)

Ici, l’énergie cinétique turbulente k et la dissipation spécifique ω sont solution du
système,

∂k

∂ω
+ u∇k + β∗kω −∇ · [µ+ σkµt

ρ
∇k] = Pk,

∂ω

∂t
+ u∇ω + βω2 −∇ · [µ+ σwµt

ρ
∇ω] =

γ

µt
Pk + 2(1− F1)

σw2

ω
∇k · ∇ω,

(77)
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avec les relations suivantes

F1 = tanh (arg4
1), arg1 = min

[
max

( √
k

β∗ωy
,
500µ

ρy2ω

)
,

4σw2k

CDkωy2

]
(78)

F2 = tanh (arg2
2), arg2 = max

(
2
√
k

β∗ωy
,
500µ

ρy2ω

)
(79)

Pk = min (τ̄ : ∇u, 10β∗kω), CDkω = max
(

2ρ
σw2

ω
∇k∇ω, 10−10

)
, (80)

S =
√

2(S̄ : S̄), (81)

avec
φ = F1φ1 + (1− F1)φ2. (82)

Les constantes pour ce modèle sont données par

σk1 = 0.85, σω1 = 0.5, β1 = 0.075, γ1 = 5/9

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, γ2 = 0.44

β∗ = 0.09, κ = 0.41, a1 = 0.31.

(83)

2 Réduction d’un problème d’aerothermie

Méthode des bases réduites

Les solutions d’une équation aux dérivées partielles (EDP) paramétrisée vivent
dans une variété. La topologie de cette variété varie en fonction du type d’équation.
La méthode des bases réduites cherche à exploiter cette configuration particulière en
construisant une approximation de la variété des solutions, quand cela est possible.
Cette approximation est un espace, engendré par une base de solution, appelée base
réduite.

La construction de cette base se fait lors d’une première phase, offline, qui
est particulièrement couteuse puisqu’elle nécessitent de résoudre plusieurs fois le
système d’équations. Ces solutions sont alors stockées dans une base de donné et
elles serviront de nouvelle base de projection par la suite. En pratique, la base
réduite est construite de façon itérative, afin de minimiser un critère d’erreur bien
défini. La précision et fiabilité de ce critère d’erreur seront déterminant pour la
qualité de la base engendrée. Nous disposons aujourd’hui de bornes d’erreur très
efficaces pour les problèmes coercifs linéaires, mais il reste un important travail de
recherche et/ou d’implémentation à réaliser pour des problèmes plus complexes tel
que le notre.

Soit Ω ∈ Rd, d = 2, 3 un domaine borné et X ⊂ H1(Ω) un espace de Hilbert sur ce
domaine. Nous notons également (., .)X and ||.||X =

√
(., .)X le produit scalaire et la

norme associé à X. Nous introduisons maintenant un espace de paramètre D ∈ RP
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de dimension P ≥ 1 et un problème paramétrisé, écrit de façon générique sous la
forme

F(u(µ);µ) = 0. (84)

L’idée des bases réduites est de construire un espace XN de petite dimension, de
la forme

XN = span{uh(µ),µ ∈ SN}. (85)

La sélection des paramètres dans SN peut se faire de façon aléatoire ou être op-
timisée par l’application d’un algorithme glouton qui permet de sélectionner le
meilleur paramètre possible à l’aide d’estimateurs d’erreur adaptés. Cette procé-
dure est détaillé dans l’algorithme 18.

Algorithm 18: Algorithme Glouton pour un problème générique
1 Choose Ξ ⊂ D ; // Super Sampling
2 Choose Nmax ; // Maximum size of XN

3 Choose δtol ∈ (0, 1) ; // Algorithm tolerance
4 Choose µ1 ∈ D ; // Arbitrary chosen first parameter
5 Set N ← 0, SN ← {}, XN ← {} ; // Initialization
6 repeat
7 N ← N + 1;
8 SN ← SN−1 ∪ {µN};
9 Solve Fh(uh(µ);µ);

10 XN ← XN−1 ⊕ span{uh(µN)};
11 for µ ∈ Ξ do
12 Compute error indicator, ∆N(µ) ;
13 end
14 µN+1 = arg max

µ∈Ξ
∆N(µ);

15 until ∆N(µN+1) < δtol or N ≥ Nmax;

Dans le cadre des problèmes d’aerothermie, il est nécessaire de construire trois
espaces réduits que nous noterons VN , QN et XN . Ces espaces sont construits de la
façon suivante

VN = span{uh(µn),T µηn} = span{ζn, ζ2},
QN = span{ph(µn)} = span{ηn},
XN = span{Th(µn)} = span{ξn}, 1 ≤ n ≤ N.

(86)

L’ajout d’un vecteur de base supplémentaire dans l’espace réduite de vitesse VN est
nécessaire afin de satisfaire la condition inf-sup lors de la résolution online. La
construction de ces espaces est détaillée dans l’algorithme 19.

Lors de la partie online, la forme faible des équations projeté sur ces espaces
réduits (au lieu des espaces éléments finis). La résolution est alors réduite à un
problème de tailleO(N) au lieu deO(N ).Afin d’être complètement indépendant de la
grande dimension (élément finis) lors de cette partie online, les opérateurs (formes
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Algorithm 19: Procédure offline pour la construction des espaces réduits
pour un problèmes d’aérothermie.

1 Choose Ξ ⊂ D ; // Super Sampling
2 Choose Nmax ; // Maximum size of XN

3 Choose δtol ; // Algorithm tolerance
4 Set SN ← {}, ,VN ← {}, QN ← {}, XN ← {} ; // Initialization
5 Set Nu

0 ← 0, Np
0 ← 0, NT

0 ← 0;
6 repeat
7 SN ← SN−1 ∪ {µN}, Nu

N ← Nu
N−1,N

p
N ← Np

N−1, NT
N ← NT

N−1;
8 Find (uh(µN), ph(µN), Th(µN)) solution of system (7.1);
9 {η1, · · · , ηNp} ←Selective Gram-Schmidt({η1, · · · , ηNp}, ph(µN));

10 if ph(µN) added then
11 {ζ1, · · · , ζNu} ←Selective Gram-Schmidt({ζ1, · · · , ζNu},T µηNp});
12 end
13 {ζ1, · · · , ζNu} ←Selective Gram-Schmidt({ζ1, · · · , ζNu},uh(µN)});
14 {ξ1, · · · , ξNT } ←Selective Gram-Schmidt({ξ1, · · · , ξNT }, Th(µN)});
15 VN ← span{ζ1, · · · , ζNuN};
16 QN ← span{η1, · · · , ηNp

N
};

17 XN ← span{ξ1, · · · , ξNT
N
};

18 Precompute online structures;
19 for µ ∈ Ξ do
20 Compute error bound, ∆N(µ);
21 end
22 µN+1 = arg max

µ∈Ξ
∆N(µ); // Or can be chosen randomly

23 until ∆N(µN+1) < δtol or N ≥ Nmax;
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linéaires, bilinéaires et trilinéaires) doivent admettre une décomposition affine.
La décomposition affine permet de séparer les variables d’espace des variables
paramétrisées. Ainsi, nous pourrons pré-calculer toute les quantités se rapportant
à la variable d’espace (de grande dimension) dans la partie offline.

La décomposition affine des opérateurs est à la fois indispensable et difficile à
obtenir. Il est par exemple impossible d’écrire les problèmes non-linéaire sous cette
forme. Pour palier à ce problème, nous utilisons l’Empirical Interpolation Method
(EIM) qui nous permet de construire une approximation affine d’une expression ana-
lytique. Nous avons également implémenté une version discrète de cette algorithme,
permettant de construire une approximation affine pour des opérateurs discrets,
sous forme de matrices ou de vecteurs. EIM est particulièrement utile lorsque nous
travaillons avec les opérateurs de stabilisation introduits précédemment.

La méthode d’interpolation empirique (EIM)

Afin de produire un approximation affine des opérateurs de stabilisation, il fut
nécessaire d’implémenter une nouvelle version d’EIM pour des opérateurs discrets.
Nous considérons ici un tenseur paramétrisé T (u(µ),µ), d’ordre r = 1, 2, ... Le but
étant de construire une approximation affine de ce tenseur,

T (u(µ),µ) ≈ TM(u(µ),µ) =
M∑
m=0

βm(µ)Φm (87)

où les βm(µ) sont des fonctions scalaires, βm : D → R, et Φm sont des tenseurs
d’ordre r independants de µ. Nous notons W̄M = span{Φm}.

Cette espace W̄M est construit en initialisant arbitrairement avec un premier
paramètre µ̄1 qui nous permet de calculer un premier indice d’interpolation

i1 = arg max
i∈I
|T (u(µ̄1), µ̄1)i|. (88)

Ce qui permet d’initialiser l’algorithme glouton avec

Φ1 =
1

|T (u(µ̄1), µ̄1)i1|
T (u(µ̄1), µ̄1), W̄1 = span{Φ1}, I1 = {i1}, S̄1 = {µ̄1}.

(89)

Une fois cette initialisation réalisée, le nouveau paramètre µ̄M est choisi pour
maximiser la norme du résidu RM−1(µ),

RM−1(µ) = T (u(µ),µ)− TM−1(u(µ),µ), µ̄M = arg max
µ∈Ξ̄
||RM(µ)||∞. (90)

Puis nous pouvons choisir le prochain indice d’interpolation iM ,

iM = arg max
i∈I
|(RM−1(µ̄M))i|, (91)
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et nous intérons avec

ΦM =
1

|(RM−1(µ̄M))iM |
RM−1(µ̄M), W̄M = W̄M−1 ⊕ span{ΦM},

IM = IM−1 ∪ {iM}, S̄M = S̄M−1 ∪ {µ̄M}.
(92)

Une fois l’espace WN construit, à chaque nouvelle évaluation online, nous calcu-
lons les βm(u,µ) en résolvant le système M ×M suivant

AMβM(u,µ) = FM(u,µ), (93)

avec (AM)lj = (Φj)il, (βM(u,µ))l = βl(u,µ) et (FM(u,µ))l = (T (u,µ))il.

Coconstruction EIM et RB

Durant la construction de l’espace EIM, l’algorithme glouton est obligé de réaliser
un grand nombre de résolutions éléments finis pour choisir le nouveau paramètre
donné par

µ̄M = arg max
µ∈Ξ̄
||RM−1(µ)||∞ = arg max

µ∈Ξ̄
||T (u(µ),µ)− TM−1(u(µ),µ)||∞. (94)

Afin de palier à ce problème, une solution est d’utiliser une approximation
RB à la place de uh(µ). Cela implique de construire l’approximation base réduite
simultanément et d’alterner entre RB et EIM. La procédure complète est résumée
dans l’algorithme ??. Cette procédure sera utiliser pour la réduction des opérateurs
de stabilisation.
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Algorithm 20: Algorithme SER
1 Choose Ξ ⊂ D, Ξ̄ ⊂ D; // Super Samplings
2 Choose Nmax ∈ N, Mmax ∈ N; // Max size for XN and W̄M

3 Choose δEIM , δRB ; // Algorithm tolerances
4 Choose µ1 ∈ Ξ; // Initialization of RB construction
5 Set N ← 0, S0 ← {}, X0 ← ∅;
6 Choose µ̄1 ∈ Ξ̄ ; // Initialization of EIM construction

7 Set iM ← arg maxi∈I |T (uh(µ̄1), µ̄1)i|, ΦM ← T (uh(µ̄1),µ̄1)
|(T (uh(µ̄1),µ̄1))i1 |

;
8 Set M ← 1, S̄1 ← {µ̄1}, W1 ← {Φ1}, I1 ← {i1};
9 Set stateEIM ← todo, stateRB ← todo;

10 repeat
11 if stateRB = todo then // RB Iteration
12 N ← N + 1;
13 SN ← SN−1 ∪ {µN};
14 uh(µN)← FE solution using current EIM affine approximation;
15 XN ← XN−1 ⊕ span{uh(µN)};
16 µN+1 = arg max

µ∈Ξ
∆N(µ);

17 if ∆N(µN+1) ≤ δRB or N ≥ Nmax then
18 stateRB ← finished;
19 end
20 end
21 if stateEIM = todo then
22 µ̄M+1 ← arg maxµ∈Ξ̄ ||T (uN(µ),µ)− TM(uN(µ),µ)︸ ︷︷ ︸

RM,N (µ)

||∞;

23 if ||RM,N(µ̄M+1)||∞ ≤ δEIM or M ≥Mmax then
24 stateEIM ← finished;
25 else
26 M ←M + 1;
27 iM ← arg maxi∈I |(RM−1(µ̄M))i|;
28 ΦM ← RM−1(µ̄M )

|(RM−1(µ̄M ))iM |
;

29 S̄M ← S̄M−1 ∪ {µ̄M}, W̄M ← W̄M−1 ⊕ span{ΦM}, IM = IM−1 ∪ {iM};
30 end
31 end
32 until stateEIM = finished and stateRB = finished;
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3 Applications numériques

Nous avons appliqué la réduction d’ordre sur deux applications proposé par
Airbus Group.

Cas test OPUS : refroidissement de composants électroniques

Nous considérons une représentation 2D d’un système de refroidissement au
voisinage d’un circuit imprimé. Deux composants (IC) sont sources de chaleurs. Le
système de refroidissement souffle de l’air froid depuis le bas du domaine et ressort
par le haut. Cette configuration est synthétisée sur la figure 22.

x

y

Ω1

Ω2

Ω3
Ω4

ePCB eA

hPCB

eIC

eIC

hIC

hIC

Cooling Air inflow

Γ1 Γ2

Γ3

Γ4

Figure 22 – Geometry of the problem

Le système d’équations décrivant ce problème est

ρu · ∇u− 2∇ · (µS(u)) +∇p = 0, on Ω4

∇ · u = 0, on Ω4

ρiCiv · ∇T −∇ · (ki∇T ) = Qi, on Ωi, i = 1, 2, 3, 4.

(95)

Nous considérons les conditions aux bords sur la température :
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• sur Γ1 ∪ Γ2 ∪ Γ3,
−k∇T · n = 0, (96)

• sur Γ4,
T = T0; (97)

• sur tous les bords intérieurs

Ti = Tj, ki∇T · n = −kj∇T · n. (98)

et les conditions sur le fluide

• sur Γ3

µ∇u · n− pn = 0 (99)

• sur Γ2 ∪ ΓI
u = 0 (100)

• sur Γ4

u = uP =

0,
3

2(eA − eIC)
D

1−

(
x− ( eA+eIC

2
+ ePCB)

eA−eIC
2

)2
 (101)

Les paramètres du modèle sont rassemblés dans le tableau 1.

Un exemple de solution est présenté en figure 23 ainsi que le maillage utilisé
pour la simulation.

Cette simulation a été réalisée dans deux configurations différentes. La première
n’a pas de stabilisation et est réalisée sur un maillage plus fin. La deuxième a
nécessité l’ajout de stabilisation, sur un maillage plus grossier et avec des vitesses
d’entrée plus élevées. La convergence de la méthode pour ces deux cas test illustré
respectivement sur les figures 24 et 25 Ces résultats sont très satisfaisant et les
seuls réserves apportés sur notre modèle, pour l’instant, porte sur des optimisations
techniques qui doivent être apporté à l’actuelle implémentation.
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Name Description Nominal Value Range Units
IC

ρ1C1 = ρ2C2 Heat Capacity 1.4 · 106 J.m−1.K−1

Q1, Q2 Heat source 106 [0, 106] W.m−3

k1, k2 Thermal conductivity 2 [0.2, 150] W.m−1.K−1

eIC Thickness 2 · 10−3 m
hIC Height 70 · 10−3 m

PCB
ρ3C3 Heat Capacity 2 · 106 J.m−1.K−1

Q3 Heat source 0 W.m−3

k3 Thermal conductivity 0.2 W.m−1.K−1

ePCB Thickness 2 · 10−3 m
hPCB Height 130 · 10−3 m

Air
ρ4C4 Heat Capacity 1100 J.m−1.K−1

Q4 Heat source 0 W.m−3

k4 Thermal conductivity 3 · 10−2 W.m−1.K−1

ρ Density 1.0 kg.m−3

µ Viscosity 1.8 · 10−5 kg.m−1.s−1

eA Thickness 14 · 10−3 m
T0 Inflow temperature 300 K
D Inflow rate 7 [0.5, 50] 10−3 m2.s−1

Table 1 – Application OPUS: paramètres du modèle

(a) Mesh (b) Vitesse (c) Pression (d) Temperature

Figure 23 – Application OPUS: mesh et exemple de solution pour µ = (150, 150, 106, 106, 10−2).
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Figure 24 – Application OPUS sans stabilisation : convergence de l’erreur en fonction de la taille de
l’espace réduit utilisé. Maximum, minimum et moyenne de l’erreur, évalué sur 50 approximation RB
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Figure 25 – Application OPUS sans stabilisation : convergence de l’erreur en fonction de la taille de
l’espace réduit utilisé. Maximum, minimum et moyenne de l’erreur, évalué sur 50 approximation RB



244



Bibliography

[1] Regina C Almeida and Renato S Silva. A stable petrov-galerkin method for
convection-dominated problems. Computer methods in applied mechanics and
engineering, 140(3-4):291–304, 1997.

[2] Etienne Balmès. Parametric families of reduced finite element models. theory
and applications. Mechanical Systems and Signal Processing, 10(4):381–394,
1996.

[3] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T Patera.
An empirical interpolation method: application to efficient reduced-basis dis-
cretization of partial differential equations. Comptes Rendus Mathematique,
339(9):667–672, 2004.

[4] George Keith Batchelor. An introduction to fluid dynamics. Cambridge
university press, 2000.

[5] Franco Brezzi. On the existence, uniqueness and approximation of saddle-
point problems arising from lagrangian multipliers. Revue française
d’automatique, informatique, recherche opérationnelle. Analyse numérique,
8(R2):129–151, 1974.

[6] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods,
volume 15. Springer Science & Business Media, 2012.

[7] A. Brooks and T. J R Hughes. Streamline-upwind/petrov-galerkin methods
for advection dominated flows. IN: PROC. 3RD INT. CONF. ON FINITE
ELEMENTS IN FLOW PROBLEMS, , D.H. NORRIE (ED.), 2 , Calgary,
Canada, Calgary Univ., no date, 1980.

245



246 BIBLIOGRAPHY

[8] Alexander N. Brooks and Thomas J.R. Hughes. Streamline upwind/petrov-
galerkin formulations for convection dominated flows with particular em-
phasis on the incompressible navier-stokes equations. Computer Methods in
Applied Mechanics and Engineering, 32(1):199 – 259, 1982.

[9] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici. A priori
convergence of the greedy algorithm for the parametrized reduced basis.
M2AN Math. Model. Numer. Anal., 46:595–605, 2012.

[10] P. Burda, J. Novotny, and J. Sistek. On a modification of gls stabilized fem
for solving incompressible viscous flows. International Journal for Numerical
Methods in Fluids, 51:1001–1016, 2005.

[11] E. Burman, M. A. Fernandez, and P. Hansbo. Continuous interior penalty
finite element method for oseen’s equations. SIAM Journal of Numerical
Analysis, 44:1248–1274, 2006.

[12] Erik Burman and Alexandre Ern. Nonlinear diffusion and discrete maximum
principle for stabilized galerkin approximations of the convection–diffusion-
reaction equation. Computer Methods in Applied Mechanics and Engineering,
191(35):3833–3855, 2002.

[13] Erik Burman and Alexandre Ern. Stabilized galerkin approximation of
convection-diffusion-reaction equations: discrete maximum principle and
convergence. Mathematics of computation, 74(252):1637–1652, 2005.

[14] N Cardoso and P Bicudo. Time dependent simulation of the driven lid cavity
at high reynolds number. arXiv preprint arXiv:0809.3098, 2008.

[15] Vincent Chabannes. Vers la simulation numérique des écoulements sanguins.
Theses, Université de Grenoble, July 2013.

[16] Saifon Chaturantabut and Danny C Sorensen. Nonlinear model reduction
via discrete empirical interpolation. SIAM Journal on Scientific Computing,
32(5):2737–2764, 2010.

[17] Philippe G Ciarlet. The finite element method for elliptic problems. SIAM,
2002.

[18] Ramon Codina. A discontinuity-capturing crosswind-dissipation for the finite
element solution of the convection-diffusion equation. Computer Methods in
Applied Mechanics and Engineering, 110(3-4):325–342, 1993.

[19] Todd S Coffey, CT Kelley, and David E Keyes. Pseudotransient continuation
and differential-algebraic equations. SIAM Journal on Scientific Computing,
25(2):553–569, 2003.

[20] Thierry Coupez and Elie Hachem. Solution of high-reynolds incompress-
ible flow with stabilized finite element and adaptive anisotropic meshing.
Computer Methods in Applied Mechanics and Engineering, 267:65–85, 2013.



BIBLIOGRAPHY 247

[21] Nguyen Ngoc Cuong, Karen Veroy, and Anthony T Patera. Certified real-
time solution of parametrized partial differential equations. In Handbook of
materials modeling, pages 1529–1564. Springer, 2005.

[22] Cécile Daversin and Christophe Prud’Homme. Simultaneous empirical inter-
polation and reduced basis method for non-linear problems. Comptes Rendus
Mathématique, 353(12):1105–1109, 2015.

[23] Cécile Daversin, Stéphane Veys, Christophe Trophime, and Christophe
Prud’Homme. A reduced basis framework: Application to large scale non-
linear multi-physics problems. In ESAIM: Proceedings, volume 43, pages
225–254. EDP Sciences, 2013.

[24] Cecile Daversin Catty. Reduced basis method applied to large non-linear
multi-physics problems : application to high field magnets design. Theses,
Université de Strasbourg, September 2016.

[25] D De Valhl Davis. Natural convection of air in a square cavity: a benchmark
solution. International Journal for Numerical Methods in Fluids, 3:249–264,
1983.

[26] S. Deparis and G. Rozza. Reduced basis method for multi-parameter-
dependent steady navier–stokes equations: applications to natural convection
in a cavity. Journal of Computational Physics, 228(12):4359–4378, 2009.

[27] Ibrahima Dione. Analyse théorique et numérique des conditions de glissement
pour les fluides et les solides par la méthode de pénalisation. PhD thesis,
Université Laval, 2013.

[28] Eduardo Gomes Dutra Do Carmo and Augusto Cesar Galeão. Feedback petrov-
galerkin methods for convection-dominated problems. Computer methods in
applied mechanics and engineering, 88(1):1–16, 1991.

[29] Jim Douglas and Jun Ping Wang. An absolutely stabilized finite element
method for the stokes problem. Mathematics of computation, 52(186):495–508,
1989.

[30] Vincent Doyeux. Modélisation et simulation de systèmes multi-fluides. Ap-
plications aux écoulements sanguins. PhD thesis, 2014. Thèse de doctorat
dirigée par Peyla, Philippe et Ismail, Mourad Physique Grenoble 2014.

[31] Ercan Erturk and C Gökçöl. Fourth-order compact formulation of navier–
stokes equations and driven cavity flow at high reynolds numbers. Interna-
tional Journal for Numerical Methods in Fluids, 50(4):421–436, 2006.

[32] JP Fink and WC Rheinboldt. On the error behavior of the reduced basis
technique for nonlinear finite element approximations. ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik
und Mechanik, 63(1):21–28, 1983.



248 BIBLIOGRAPHY

[33] Leopoldo P Franca and F Valentin. On an improved unusual stabilized finite
element method for the advective–reactive–diffusive equation. Computer
Methods in Applied Mechanics and Engineering, 190(13):1785–1800, 2000.

[34] A.-L. Gerner and K. Veroy. Reduced basis a posteriori error bounds for the
stokes equations in parametrized domains: A penalty approach. Math. Models
Methods Appl. Sci., 21:2103–2134, 2011.

[35] A-L. Gerner and K. Veroy. Certified reduced basis methods for parametrized
saddle point problems. SIAM, Journal of Scientific Computing, 2012.

[36] Swetlana Giere, Traian Iliescu, Volker John, and David Wells. Supg reduced
order models for convection-dominated convection–diffusion–reaction equa-
tions. Computer Methods in Applied Mechanics and Engineering, 289:454–474,
2015.

[37] Martin A Grepl, Yvon Maday, Ngoc C Nguyen, and Anthony T Patera. Ef-
ficient reduced-basis treatment of nonaffine and nonlinear partial differen-
tial equations. ESAIM: Mathematical Modelling and Numerical Analysis,
41(3):575–605, 2007.

[38] PM Gresho, DF Griffiths, and DJ Silvester. Adaptive time-stepping for incom-
pressible flow part i: scalar advection-diffusion. MIMS EPrint, 2008.

[39] H. Grotjans and F. Menter. Wall functions for general application CFD codes.
In Papailou, editor, ECCOMAS 98, pages 1112–1117, 1998.

[40] Elie Hachem, Benjamin Rivaux, Thibaud Kloczko, Hugues Digonnet, and
Thierry Coupez. Stabilized finite element method for incompressible flows
with high reynolds number. Journal of Computational Physics, 229(23):8643–
8665, 2010.

[41] Yannick Hoarau. Analyse physique par simulation numérique et modélisation
des écoulements décollés instationnaires autour de surfaces portantes. PhD
thesis, 2002. Thèse de doctorat dirigée par Braza, Marianna Dynamique des
fluides Toulouse, INPT 2002.

[42] Thomas J.R. Hughes, Leopoldo P. Franca, and Marc Balestra. A new finite
element formulation for computational fluid dynamics: V. circumventing the
babuska-brezzi condition: a stable petrov-galerkin formulation of the stokes
problem accommodating equal-order interpolations. Computer Methods in
Applied Mechanics and Engineering, 59(1):85 – 99, 1986.

[43] Thomas J.R. Hughes, Leopoldo P. Franca, and Gregory M. Hulbert. A
new finite element formulation for computational fluid dynamics: Viii. the
galerkin/least-squares method for advective-diffusive equations. Computer
Methods in Applied Mechanics and Engineering, 73(2):173 – 189, 1989.



BIBLIOGRAPHY 249

[44] Thomas J.R. Hughes, Leopoldo P. Franca, and Michel Mallet. A new finite ele-
ment formulation for computational fluid dynamics: Vi. convergence analysis
of the generalized supg formulation for linear time-dependent multidimen-
sional advective-diffusive systems. Computer Methods in Applied Mechanics
and Engineering, 63(1):97 – 112, 1987.

[45] Thomas J.R. Hughes, Michel Mallet, and Mizukami Akira. A new finite
element formulation for computational fluid dynamics: Ii. beyond supg. Com-
puter Methods in Applied Mechanics and Engineering, 54(3):341 – 355, 1986.

[46] T.J.R. Hughes and A.N. Brooks. A multidimensional upwind scheme with no
crosswind diffusion. Finite Element Methods for Convection Dominated Flows,
34:19–35, 1979.

[47] Dinh Bao Phuong Huynh, Gianluigi Rozza, Sugata Sen, and Anthony T
Patera. A successive constraint linear optimization method for lower bounds
of parametric coercivity and inf–sup stability constants. Comptes Rendus
Mathematique, 345(8):473–478, 2007.

[48] T. J.R. Hughes I. Harari. What are c and h?: Inequalities for the analysis and
design of finite element methods. Computer Methods in Applied Mechanics
and Engineering, 97:157–192, 1992.

[49] Kazufumi Ito and SS Ravindran. A reduced-order method for simulation and
control of fluid flows. Journal of computational physics, 143(2):403–425, 1998.

[50] Teymour Javaherchi. Review of spalart-allmaras turbulence model and its
modifications. University of Washington, 2010.

[51] Volker John and Petr Knobloch. On discontinuity—capturing methods for
convection—diffusion equations. Numerical mathematics and advanced ap-
plications, pages 336–344, 2006.

[52] C Johnson, AH Schatz, and LB Wahlbin. Crosswind smear and pointwise
errors in streamline diffusion finite element methods. mathematics of compu-
tation, 49(179):25–38, 1987.

[53] Claes Johnson, Uno Nävert, and Juhani Pitkäranta. Finite element methods
for linear hyperbolic problems. Computer methods in applied mechanics and
engineering, 45(1-3):285–312, 1984.

[54] DA Kay, PM Gresho, DF Griffiths, and DJ Silvester. Adaptive time-stepping
for incompressible flow part ii: Navier-stokes equations. SIAM Journal on
Scientific Computing, 2010.

[55] Carl Timothy Kelley and David E Keyes. Convergence analysis of pseudo-
transient continuation. SIAM Journal on Numerical Analysis, 35(2):508–523,
1998.



250 BIBLIOGRAPHY

[56] D. J. Knezevic, N-C. Nguyen, and A. T. Patera. Reduced basis approximation
and a posteriori error estimation for the parametrized unsteady boussinesq
equations. Mathematical Models and Methods in Applied Sciences, 2010.

[57] Andrey Nikolaevich Kolmogorov. The local structure of turbulence in incom-
pressible viscous fluid for very large reynolds numbers. In Dokl. Akad. Nauk
SSSR, volume 30, pages 299–303, 1941.

[58] L. Kovasznay. Laminar flow behind a two-dimensional grid. Mathematical
Proceedings of the Cambridge Philosophical Society, 44:58–62, 1948.

[59] Dmitri Kuzmin, Otto Mierka, and Stefan Turek. On the implementation of the
κ-ε turbulence model in incompressible flow solvers based on a finite element
discretisation. International Journal of Computing Science and Mathematics,
1(2-4):193–206, 2007.

[60] P Lax and A Milgram. Ix. parabolic equations. Contributions to the Theory of
Partial Differential Equations.(AM-33), 33:167, 2016.

[61] Sérgio L. Frey Leopoldo P. Franca. Stabilized finite element methods:i. ap-
plication to the advective-diffusive model. Computer Methods in Applied
Mechanics and Engineering, 95:253–276, 1992.

[62] Sérgio L. Frey Leopoldo P. Franca. Stabilized finite element methods:ii.
the incompressible navier-stokes equations. Computer Methods in Applied
Mechanics and Engineering, 99:209–233, 1992.

[63] Luc Machiels, Yvon Maday, Ivan B. Oliveira, Anthony T. Patera, and Dim-
itrios V. Rovas. Output bounds for reduced-basis approximations of symmetric
positive definite eigenvalue problems. Comptes Rendus de l’Académie des
Sciences - Series I - Mathematics, 331(2):153 – 158, 2000.

[64] Yvon Maday, Andrea Manzoni, and Alfio Quarteroni. An online in-
trinsic stabilization strategy for the reduced basis approximation of
parametrized advection-dominated problems. Comptes Rendus Mathematique,
354(12):1188–1194, 2016.

[65] Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, and George S.H. Pau.
A general, multipurpose interpolation procedure: the magic points. working
paper or preprint, September 2007.

[66] Yvon Maday, A.T. Patera, and Dimitrios Rovas. A blackbox reduced-basis
output bound method for noncoercive linear problems. Studies in Mathematics
and Its Applications, 31, 12 2002.

[67] MT Manzari. An explicit finite element algorithm for convection heat transfer
problems. International Journal of Numerical Methods for Heat & Fluid Flow,
9(8):860–877, 1999.



BIBLIOGRAPHY 251

[68] Andrea Manzoni. An efficient computational framework for reduced basis
approximation and a posteriori error estimation of parametrized navier–
stokes flows. ESAIM: Mathematical Modelling and Numerical Analysis,
48(4):1199–1226, 2014.

[69] David A Mayne, Asif S Usmani, and Martin Crapper. h-adaptive finite
element solution of high rayleigh number thermally driven cavity problem.
International Journal of Numerical Methods for Heat & Fluid Flow, 10(6):598–
615, 2000.

[70] F Menter. Zonal two equation kw turbulence models for aerodynamic flows.
In 23rd fluid dynamics, plasmadynamics, and lasers conference, page 2906,
1993.

[71] Florian R Menter. Two-equation eddy-viscosity turbulence models for engi-
neering applications. AIAA journal, 32(8):1598–1605, 1994.

[72] FR Menter, M Kuntz, and R Langtry. Ten years of industrial experience with
the sst turbulence model. Turbulence, heat and mass transfer, 4(1):625–632,
2003.

[73] S. Mittal. On the performance of high aspect ratio elements for incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 188(1–3):269
– 287, 2000.

[74] Akira Mizukami and Thomas JR Hughes. A petrov-galerkin finite element
method for convection-dominated flows: an accurate upwinding technique for
satisfying the maximum principle. Computer Methods in Applied Mechanics
and Engineering, 50(2):181–193, 1985.

[75] Federico Negri, Andrea Manzoni, and David Amsallem. Efficient model
reduction of parametrized systems by matrix discrete empirical interpolation.
Journal of Computational Physics, 303:431–454, 2015.

[76] Ahmed K Noor. Recent advances in reduction methods for nonlinear problems.
Computers & Structures, 13(1-3):31–44, 1981.

[77] Y. Papadopoulos. A driven cavity exploration. https://www.acenumerics.
com/the-cavity-sessions.html.

[78] Janet S Peterson. The reduced basis method for incompressible viscous
flow calculations. SIAM Journal on Scientific and Statistical Computing,
10(4):777–786, 1989.

[79] Olivier Pironneau and Olivier Pironneau. Finite element methods for fluids.
Wiley Chichester, 1989.

[80] C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera,
and G. Turinici. Reliable real-time solution of parametrized partial differ-
ential equations: Reduced-basis output bound methods. Journal of Fluids
Engineering, 124(1):70–80, 2002.

https://www.acenumerics.com/the-cavity-sessions.html
https://www.acenumerics.com/the-cavity-sessions.html


252 BIBLIOGRAPHY

[81] Christophe Prud’homme and AT Patera. Reduced-basis output bounds for
approximately parametrized elliptic coercive partial differential equations.
Computing and Visualization in Science, 6(2):147–162, 2004.

[82] Alfio Quarteroni and Gianluigi Rozza. Numerical solution of parametrized
navier–stokes equations by reduced basis methods. Numerical Methods
for Partial Differential Equations: An International Journal, 23(4):923–948,
2007.

[83] Alfio Quarteroni, Gianluigi Rozza, and Andrea Manzoni. Certified reduced
basis approximation for parametrized partial differential equations and ap-
plications. Journal of Mathematics in Industry, 1(1):3, 2011.

[84] Werner C Rheinboldt. On the theory and error estimation of the reduced basis
method for multi-parameter problems. Nonlinear Analysis: Theory, Methods
& Applications, 21(11):849–858, 1993.

[85] D. V. Rovas. Reduced-basis output bound methods for parametrized partial
differential equations. Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, 2003.

[86] Dimitrios Vasileios Rovas. Reduced-basis output bound methods for
parametrized partial differential equations. PhD thesis, Massachusetts Insti-
tute of Technology, 2003.

[87] Gianluigi Rozza, DB Phuong Huynh, and Andrea Manzoni. Reduced basis ap-
proximation and a posteriori error estimation for stokes flows in parametrized
geometries: roles of the inf-sup stability constants. Numerische Mathematik,
125(1):115–152, 2013.

[88] Gianluigi Rozza, Dinh Bao Phuong Huynh, and Anthony T Patera. Re-
duced basis approximation and a posteriori error estimation for affinely
parametrized elliptic coercive partial differential equations. Archives of Com-
putational Methods in Engineering, 15(3):1, 2007.

[89] Gianluigi Rozza, Dinh Bao Phuong Huynh, and Anthony T Patera. Re-
duced basis approximation and a posteriori error estimation for affinely
parametrized elliptic coercive partial differential equations. Archives of Com-
putational Methods in Engineering, 15(3):229, 2008.

[90] Gianluigi Rozza and Karen Veroy. On the stability of the reduced basis method
for stokes equations in parametrized domains. Computer methods in applied
mechanics and engineering, 196(7):1244–1260, 2007.

[91] E. Schenone, S. Veys, and C. Prud’Homme. High Performance Computing
for the Reduced Basis Method. Application to Natural Convection. ESAIM:
Proceedings, pages 255 – 273, December 2013.

[92] PN Shankar and MD Deshpande. Fluid mechanics in the driven cavity.
Annual Review of Fluid Mechanics, 32(1):93–136, 2000.



BIBLIOGRAPHY 253

[93] Ratnesh K Shukla, Mahidhar Tatineni, and Xiaolin Zhong. Very high-order
compact finite difference schemes on non-uniform grids for incompressible
navier–stokes equations. Journal of Computational Physics, 224(2):1064–
1094, 2007.

[94] Pavel E Smirnov and Florian R Menter. Sensitization of the sst turbulence
model to rotation and curvature by applying the spalart–shur correction term.
Journal of Turbomachinery, 131(4):041010, 2009.

[95] Philippe R Spalart and Christopher L Rumsey. Effective inflow conditions for
turbulence models in aerodynamic calculations. AIAA journal, 45(10):2544–
2553, 2007.

[96] PRaA Spalart and S1 Allmaras. A one-equation turbulence model for aero-
dynamic flows. In 30th aerospace sciences meeting and exhibit, page 439,
1992.

[97] T Tonn. Reduced-basis method (rbm) for non-affine elliptic parametrized
pdes.(phd). Ulm University, 2012.

[98] David J Tritton. Physical fluid dynamics. Springer Science & Business Media,
2012.

[99] C. T. Shin U. Ghia, K. N. Ghia. High-re solutions for incompressible flow using
the navier-stokes equations and a multigrid method. Journal of Computa-
tional Physics, 48:387–411, 1982.

[100] José M Urquiza, André Garon, and Marie-Isabelle Farinas. Weak imposition
of the slip boundary condition on curved boundaries for stokes flow. Journal
of Computational Physics, 256:748–767, 2014.

[101] Sylvain Vallaghé, Michel Fouquembergh, Annabelle Le Hyaric, and
Christophe Prud’Homme. A successive constraint method with minimal of-
fline constraints for lower bounds of parametric coercivity constant. working
paper or preprint, June 2011.

[102] K. Veroy and A.T. Patera. Certified real-time solution of the parametrized
steady incompressible navier-stokes equations: Rigorous reduced-basis a
posteriori error bounds. Int. J. Numer. Meth. Fluids, 47:773–788, 2005.

[103] Karen Veroy, Christophe Prud’Homme, Dimitrios V Rovas, and Anthony T
Patera. A posteriori error bounds for reduced-basis approximation of
parametrized noncoercive and nonlinear elliptic partial differential equations.
In Proceedings of the 16th AIAA computational fluid dynamics conference,
volume 3847, pages 23–26. Orlando, FL, 2003.

[104] Karen Veroy, Dimitrios V Rovas, and Anthony T Patera. A posteriori error
estimation for reduced-basis approximation of parametrized elliptic coercive
partial differential equations:“convex inverse” bound conditioners. ESAIM:
Control, Optimisation and Calculus of Variations, 8:1007–1028, 2002.



254 BIBLIOGRAPHY

[105] Stéphane Veys. A computational reduced basis framework : applications
to nonlinears multiphysics problems. Theses, Université Joseph Fourier
(Grenoble I), November 2014.

[106] D.C. Wan, B.S.V. Patnaik, and G.W. Wei. A new benchmark quality solution
for the buoyancy-driven cavity by discrete singular convolution. Numerical
Heat Transfer: Part B: Fundamentals, 40(3):199–228, 2001.

[107] Zhu Wang, Imran Akhtar, Jeff Borggaard, and Traian Iliescu. Proper orthogo-
nal decomposition closure models for turbulent flows: a numerical comparison.
Computer Methods in Applied Mechanics and Engineering, 237:10–26, 2012.

[108] K Yapici and Y Uludag. Finite volume simulation of 2-d steady square lid
driven cavity flow at high reynolds numbers. Brazilian Journal of Chemical
Engineering, 30(4):923–937, 2013.

[109] Olivier Zahm, Marie Billaud-Friess, and Anthony Nouy. Projection-based
model order reduction methods for the estimation of vector-valued variables
of interest. SIAM Journal on Scientific Computing, 39(4):A1647–A1674, 2017.



BIBLIOGRAPHY 255



Summary: We present in this thesis our work on model order reduction for aerother-
mal simulations. We consider the coupling between the incompressible Navier-Stokes
equations and an advection-diffusion equation for the temperature. Since the physical
parameters induce high Reynolds and Peclet numbers, we have to introduce stabilization
operators in the formulation to deal with the well known numerical stability issue. The
chosen stabilization, applied to both fluid and heat equations, is the usual Streamline-
Upwind/Petrov-Galerkin (SUPG) which add artificial diffusivity in the direction of the con-
vection field. We also introduce our order reduction strategy for this model, based on
the Reduced Basis Method (RBM). To recover an affine decomposition for this complex
model, we implemented a discrete variation of the Empirical Interpolation Method (EIM)
which is a discrete version of the original EIM. This variant allows building an approxi-
mated affine decomposition for complex operators such as in the case of SUPG. We also
use this method for the non-linear operators induced by the shock capturing method. The
construction of a EIM basis for non-linear operators involves a potentially huge number
of non-linear FEM resolutions - depending on the size of the sampling. Even if this basis
is built during an offline phase, we usually can not afford such expensive computational
cost. We took advantage of the recent development of the Simultaneous EIM Reduced
basis algorithm (SER) to tackle this issue.
Keywords: Model order reduction, Computational fluid dynamic, Reduced Basis
Method, Empirical Interpolation Method, Finite element method, HPC computing
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