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Résumé de thèse

Les variétés holomorphes symplectiques irréductibles sont l'analogue al-
gébrique des variétés hyperkähler irréductibles en géométrie Riemannienne.
Soit X une variété complexe compact et kählerienne; X est holomorphe sym-
plectique irréductible si son groupe fondamental est trivial et H0(X,Ω2

X) =
C · σ, avec σ une 2-forme holomorphe non dégénérée en tout point.

Des exemples de variétés holomorphes symplectiques irréductibles sont:
le schéma de Hilbert Hilbn(S) qui paramètre les sous-schemas Z ⊂ S avec S
une surface K3, dim(Z) = 0 et lg(OZ) = n, ∀n ≥ 2 (cf. [Bea83], 6), les var-
iétés de Kummer généralisées Kn(A), où A est tore complexe de dimension
2 et n > 2 (cf. [Bea83], 7), la variété K̃6 de O'Grady connue sous le nom de
OG 6 (cf. [O'Gb]) et la variété M̃10 de O'Grady connue sous le nom de OG 10
(cf. [O'Ga]). Tous les exemples connus à ce jour de variétés holomorphes
symplectiques irréductibles sont déformation d'un de ces exemples.

Soit X une variété holomorphe symplectique irréductible avec dim(X) =
2; alors X est une surface K3. Dans ce cas, si de plus X est projective,
d'après d'un théorème de Bogomolov et Mumford (cf. [MM83]), chaque
courbe ample sur X est linéairement équivalente à une somme de courbes
rationnelles. La présence de nombreuses courbes rationnelles dans X simpli-
�e la structure du 0-group de Chow CH0(X)Q de X: les courbes rationnelles
dé�nissent le cycle canonique de Beauville-Voisin (cf. [BV04]), qui est la
classe d'un point dans une courbe rationnelle dans X. L'existence de cette
classe est très importante car le group CH0(X)Q n'est pas représentable
(c'est le célèbre théorème de Mumford, cf. [Voi03b], Chapitre 10), et le cycle
canonique de Beauville-Voisin fournit un candidat naturel pour la �ltra-
tion de Bloch-Beilinson du group CH0(X) pour une surface K3; en général,
l'existence de la �ltration de Bloch-Beilinson de CH0(X)Q pour une variété
projectiveX est une conjecture ouverte et très di�cile, cf. [Voi03b], Chapitre
11.
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Une question intéressante est de savoir si on peut construire de manière
géométrique un candidat pour la �ltration de Bloch-Beilinson de CH0(X)Q
pour toute les variétés holomorphes symplectiques irréductibles X. À cet
égard il y a une nouvelle approche conjecturale de Voisin (cf. [Voi16], Conjec-
ture 0.8), et le premier pas de cette approche consiste à montrer l'existence de
"nombreux" diviseurs uniréglés dansX; rappelons qu'un diviseur est uniréglé
s'il est couvert par des courbes rationnelles. L'existence de diviseurs uniréglés
dans tous les systèmes linéaires amples serait une généralisation du thèoréme
de Bogomolov et Mumford sur les courbes rationnelles sur les surfaces K3.

Dans [CMP19], Charles, Mongardi et Pacienza ont démontré l'existence
de diviseurs uniréglés dans (presque) tous les systèmes linéaires amples sur
une variété holomorphe symplectique qui est déformation d'un schéma de
Hilbert Hilbn(S); dans [MP17] et [MP19], Mongardi et Pacienza ont dé-
montré le même résultat pour une variété holomorphe symplectique irré-
ductible qui est déformation d'une variété de Kummer generalisée Kn(A).
La stratégie de la preuve a été la même dans les deux cas: le groupe de
monodromie Mon2(X) permet d'identi�er des représentants spéciaux dans
toute composante connexe de l'espace des modules des variétés holomorphes
symplectiques irréductibles d'un type de déformation �xé; en raison d'un
résultat de déformation des courbes rationnelles sur une variété holomorphe
symplectique irréductible (cf. [CMP19], Corollaire 3.5), il su�t de trouver
des diviseurs uniréglés sur les représentants "spéciaux" déterminés grâce au
groupe de monodromie.

Dans ma thése, j'ai travaillé sur le cas OG 10. La variété M̃10 dé�nie
par O'Grady est une désingularisation symplectique d'un espace des mod-
ules des faisceaux semistables sur une surface K3, avec des invariants �xés.
Les variétés OG 10 sont importantes car elles ont fourni le premier exemple
de variétés irréductibles holomorphes symplectiques qui ne soit pas défor-
mation d'un schéma de Hilbert ponctuel sur une K3 ou d'une Kummer
généralisée. Elles sont encore aujourd'hui très activement étudiées, cf. par
exemple [MZ16], [LSV17], [Ono18], [dCRS19].

Le résultat principal de ma thèse démontre l'existence de diviseurs uniréglés
amples sur chaque variétés holomorphes symplectiques irréductibles projec-
tives appartenant à trois composantes connexes de l'espace de modules des
OG 10. La stratégie consiste à construire de tels diviseurs sur des OG 10
spéciales. S'il est facile de véri�er qu'ils sont uniréglés, il est beaucoup
plus compliqué de véri�er qu'ils sont amples. Cette véri�cation est faite
en calculant le carré de ces diviseurs par rapport à la forme d'intersection de
Beauville-Bogomolov-Fujiki, qui est une forme d'intersection sur le groupe
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H2(X,Z) dé�nie grâce à la forme symplectique; cette forme d'intersection a
été calculée par Rapagnetta (cf. [Rap08]) dans le cas d'une variété holomor-
phe symplectique irréductible de type OG 10. Le résultat d'existence s'étend
ensuite à toute la composante connexe grâce à un argument de déformation
ra�nant celui de [CMP19].

J'ai également démontré, grâce au calcul de certains invariants de mon-
odromie, que les trois composantes connexes pour lesquelles mon résultat
précédent montre l'existence de diviseurs uniréglés amples sont à deux à
deux distinctes.

Malheureusement le groupe de monodromie n'est pas entièrement connu
dans le cas OG 10: il n'y a qu'une description partielle (cf. [Mon14] et
[Ono18]). Cette description partielle a été su�sante pour obtenir mes ré-
sultats, mais à ce stade elle ne permet pas de savoir s'il existe d'autres
composantes connexes de l'espace des modules des variétés holomorphes
symplectiques irréductibles de type OG10 non couvertes par mon résultat
d'existence de diviseurs uniréglés amples.

Une considération sur le cas de la variété OG 6. Ce cas n'est pas encore
connu, et l'intention de l'auteur est de l'explorer: le groupe de monodromie
d'une variété holomorphe symplectique irréductible qui est déformation de
OG 6 a été très récemment calculé par Mongardi et Rapagnetta (cf. [MR19]).
Ces résultats n'étaient pas disponibles lorsque nous avons commencé à tra-
vailler sur le cas OG 10, ce qui explique pourquoi nous n'avons pas décidé
d'enquêter avec le cas OG 6, ce qui semble aujourd'hui le cas naturel pour
commencer.

Principaux résultats

Nous listons ici les principaux résultats que nous présentons dans ce
travail. Nous nous référons à la section suivante pour une description de
ce travail chapitre par chapitre.

� Corollaire 2.2.4: il s'agit d'un résultat sur la déformation de courbes
rationnelles réduites mais réductibles régissant un diviseur sur une var-
iété holomorphe symplectique irréductible, qui généralise celle présen-
tée par Charles, Mongardi et Pacienza (cf. [CMP19]) pour les courbes
irréductibles et réduites.

� Théorème 5.3.1 et Corollaire 5.3.3: nous y a�rmons l'existence d'un
premier exemple de diviseur ample uniréglés sur une variété holomor-
phe symplectique irréductible OG 10. Ces résultats sont la conséquence
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de nombreux résultats intermédiaires, présentés dans les Chapitres 4
et 5.

� Théorème 6.1.5 et Conjecture 6.1.6: nous construisons deux nouveaux
diviseurs uniréglés sur variétés OG 10; nous a�rmons que l'un est
ample, et nous conjecturons qu'il en va de même pour le second.
L'amplitude du second n'est conjecturale que parce qu'il manque quelques
petites véri�cations; nous présentons ici toutes les étapes terminées
dans cette direction.

� Corollaire 6.2.5: nous calculons ici la divisibilité dans le réseauH2(OG 10,Z)
des trois diviseurs trouvés précédemment. Cela donne de nouveaux
invariants de déformation des nombreuses classes que nous avons trou-
vées.

Description de la thèse chapitre par chapitre

Dans le Chapitre 1, nous commençons par une présentation générale
rapide des variétés holomorphes symplectiques irréductibles, en introduisant
les constructions et en énonçant quelques résultats fondamentaux que nous
utiliserons fortement dans tout ce qui viendra plus tard. En particulier,
dans la section 1.1, nous introduisons la structure de réseau de Beauville-
Bogomolov-Fuijiki sur le groupe H2(X,Z) et nous listons les exemples con-
nus de variétés holomorphes symplectiques irréductibles. Dans la section ??,
nous introduisons l'espace des modules des variétés IHS marquées (et polar-
isées) et dans la Section 1.3, nous dé�nissons le groupe de monodromie (po-
larisé) d'une variété holomorphes symplectiques irréductibles, qui se révèle
être un outil fondamental pour comprendre l'espace des modules des variétés
holomorphes symplectiques irréductibles marquées (et polarisées), et pour ré-
soudre le problème de trouver sur eux de nombreux diviseurs uniréglés.

Avec Chapter 2, nous nous concentrons sur le problème de la recherche de
courbes rationnelles sur les variétés holomorphes symplectiques irréductibles.
Nous motivons notre intérêt pour ce problème dans la section 2.1, en ex-
posant certaines conséquences pertinentes d'une telle existence sur le 0-
groupe de Chow de la variété, et en le reliant à la �ltration conjecturale de
Voisin du 0-groupe de Chow, qui réalise conjecturellement la �ltration Bloch-
Beilinson plus générale dans le cas des variétés holomorphes symplectiques
irréductibles. Dans la Section 2.2 nous exposons le résultat fondamental de
Charles et Pacienza sur la déformation des courbes rationnelles sur les di-
viseurs sur les variétés holomorphes symplectiques irréductibles, qui motive
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la stratégie de résolution du problème, présentée dans la Section ??. Avec
Corollaire 2.2.4 nous présentons une légère généralisation du résultat origi-
nal de Charles et Pacienza à des courbes non nécessairement irréductibles;
nous avons besoin de cette généralisation pour les chapitres suivants. L'état
de l'art concernant la recherche de courbes rationnelles sur les variétés holo-
morphes symplectiques irréductibles est présenté dans la section 2.3, où la
stratégie de solution est également illustrée dans le cas OG 10, qui est celui
qui nous intéresse dans ce thèse.

Historiquement, les variétés holomorphes symplectiques irréductibles de
type OG 10 sont produites comme désingularisation des espaces de modules
des faisceaux semi-stables sur les surfaces K3, avec quelques invariants �xes;
ceci est présenté dans le Chapitre 3. Dans la Section 3.3, nous présentons la
structure lagrangienne des espaces de modules qui nous intéressent, ce qui
aide beaucoup à comprendre la géométrie de ces variétés et sera utilisé pour
dé�nir les exemples diviseurs amples uniréglés dans les chapitres suivants.

Dans le Chapitre 4, nous abordons le problème réel de trouver des courbes
rationnelles sur les variétés holomorphes symplectiques irréductibles de type
OG 10. Dans la Section 4.1, nous présentons une stratégie pour véri�er
l'amplitude d'un diviseur sur une variété holomorphe symplectique irré-
ductible, en calculant le carré Beauville-Bogomolov-Fujiki du diviseur; cette
stratégie sera appliquée aux exemples de diviseurs uniréglés que nous présen-
terons en suite. La stratégie introduite commence par la dé�nition de deux
courbes sur la variété holomorphe symplectique irréductible X, dé�nies dans
la Section 4.2, et par le calcul de l'intersection de l'image des générateurs du
réseau de Mukai avec ces courbes. Le résultat de ce calcul est indiqué dans
la Proposition 4.2.3, et nous dédions la Section 4.3 à la preuve de ce résultat.

Le premier exemple de diviseur uniréglé est �nalement introduit dans le
Chapitre 5. Dans la Section 5.2, nous calculons son intersection avec les
courbes introduites dans le chapitre précédent, ce qui est une étape dans
la stratégie de calcul du carré du diviseur. Le carré est calculé dans le
Théorème 5.3.1 et le Corollaire 6.1.9. La conclusion sur tout diviseur dans le
même composant connecté de l'éspace de module est énoncée dans le Corol-
laire 5.3.4.

Dans le Chapitre 6, nous appliquons la même stratégie pour véri�er
l'amplitude de deux nouveaux diviseurs uniréglés dans une variété holo-
morphe symplectique irréductible de type OG 10; dans le Théorème 6.1.5
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et le Corollaire refconj.q.generalization, nous calculons le carré de Beauville-
Bogomolov-Fujiki du premier diviseur, et nous conjecturons le carré du sec-
ond. Le calcul du carré du premier diviseur présenté dans le Chapitre 6
est plus délicat que le cas présenté dans le Chapitre 5, car ce diviseur peut
être non Cartier; cela dépend du modèle de OG 10-variété que nous devons
choisir pour dé�nir le diviseur. Étant donné que la stratégie présentée dans
le chapitre 4 pour calculer le carré Beauville-Bogomolov-Fujiki d'un diviseur
n'est valable que pour les diviseurs Cartier, nous commençons à prouver que
le diviseur introduit est Cartier. Dans la section 6.2, le Corollaire 6.2.5, nous
concluons le calcul d'un autre invariant de monodromie: la divisibilité des
diviseurs.

À la �n, nous avons inséré deux appendices. Dans l'Appendice A, nous
avons collecté des théorèmes sur la représentabilité des groupes de Chow
et les �ltrations conjecturales de Bloch-Beilinson et Voisin; ce motive notre
intérêt pour les courbes rationnelles sur les variétés holomorphes symplec-
tiques irréductibles. Dans l'Appendice B, nous avons rappelé la dé�nition
des transformées de Fourier-Mukai, qui donnent des morphismes birationnels
parmi les variétés IHS de type OG 10 que nous avons utilisées dans la Sec-
tion 6.2 pour calculer la divisibilité des diviseurs amples uniréglés trouvés
précédemment.
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Introduction

Irreducible holomorphic symplectic varieties are the algebraic analogous
of irreducible hyperkähler manifolds in Riemannian geometry. A compact
and connected Riemannian manifold (M, g) of dimension 4n is said to be hy-
perkähler if its holonomy groupH is contained in the symplectic group Sp(n);
it is said to be irreducible hyperkähler if H = Sp(n). In general, a manifold
(M, g) is said to be irreducible if its holonomy representation is irreducible.
By a theorem of de Rham, any complete and simply connected Riemma-
nian manifold decomposes as product of irreducible manifolds; furthermore,
a theorem of Berger classi�es all possible holonomy groups for an irreducible
Riemannian manifold (M, g) which is not locally symmetric. When M is
Kähler, the only possibilities are the unitary group U(m), the special uni-
tary group SU(m) and the symplectic group Sp(n), with dim(M) = 2m = 4n
(see e.g. [Bea83]). The locally symmetric case was already known by a result
of Cartan (see Section 3 in [GHJ03]).

The holonomy group H is a powerful tool to study the geometry of
the manifold (M, g). For example, if H ⊂ U(m), then M is Kähler; if
H ⊂ SU(m), then (M, g) is Ricci �at and M is called a Calabi-Yau mani-
fold. When H ⊂ Sp(n), which is the case we are interested in, as a conse-
quence of the holonomy principle one gets an action of the quaternions H
on the tangent bundle of M , and then an almost complex structure on M
for any h ∈ H with h2 = −1. It turns out that all those complex structures
are integrable, and once �xed a basis {I, J,K} of H any such an h can be
written as aI + bJ + cK, with a2 + b2 + c2 = 1. In this way one gets a
S2-family of complex structures on M , and g is Kähler with respect to any
such h ∈ S2 ∼= P1. If M is compact and irreducible, all those Kähler struc-
tures give to M a structure of irreducible holomorphic symplectic variety,
cf. De�nition 1.1.1; see Remark 1.1.2 and [Huy99] for more details on the
link between hyperkähler manifolds and irreducible holomorphic symplectic
varieties. Irreducible holomorphic symplectic (IHS) varieties are the objects
we are interested in, and most of the time will be interested on projective
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ones.

Several examples of IHS varieties are known; anyway, up to deforma-
tions, they reduce to the folliwing ones: two families of examples introduced
by Beauville in [Bea83], for any possible dimension; they are the Hilbert
scheme of 0-dimensional subschemes of length n on a K3 surface, for any
n ≥ 1 (see Example 1.1.9) and the generalized Kummer variety (see Example
1.1.10). The only two other examples are due to O'Grady (cf [O'Ga] and
[O'Gb]); they are two special examples in dimension 6 and 10 respectively,
see Example 1.1.11. Note that IHS varieties have always even complex di-
mension, because of the existence of a symplectic form, see Remark 1.1.3.
We will refer to an IHS variety deformation equivalent to one of those listed
above as to an IHS variety of K3[n]/Kn(A)/OG 6/OG 10-type respectively.

When dimX = 2, with X an IHS variety, then X is a K3 surface.
In fact, IHS varieties of higher dimension share many properties with K3
surfaces. The intersection pairing gives to the second integral cohomology
group of a K3 surfaces a lattice structure, which determines the K3 surface
itself: the Torelli theorem for a K3 surface states that K3 surfaces with
Hodge-isometric second integral cohomology groups are actually isomorphic.
Thanks to the work of Beauville, Bogomolov and Fuijiki, it is possible to
give a lattice structure to the group H2(X,Z) for any IHS variety X (see
Fact 1.1.6), and a weaker version of the Torelli theorem is known thanks to
Huybrechts (in [Huy99]), Markman (in [Mar11]) and Verbitsky (in [Ver13]),
see Theorem 1.2.4.

A relevant geometrical property of K3 surfaces is that they contain many
rational curves. This is the content of Bogomolov-Mumford theorem (cf.
Theorem 2.1.1), which states that any ample linear system on a projectiveK3
surface contains an element which is sum of rational curves. Rational curves
simplify the structure of the rational 0-Chow group CH0(X)Q of a variety
X: in the K3-case, they individuate a special class in CH0(X)Q, known as
the Beauville-Voisin canonical 0-cycle, which is the class of any point on a
rational curve. This is particularly relevant because the 0-Chow group of a
K3 surface is known to be non-representable, as consequence of the Mumford
theorem (see Theorem A.1.5), and the Beauville-Voisin canonical 0-cycle
gives the Bloch-Beilinson �ltration for the group CH0(X)Q, see Conjecture
A.2.3.

Mumford theorem implies the non-representability of the group CH0(X)Q
not only for X a K3 surface, but for any IHS variety X. An interesting
question is then weather it is possible to �nd a geometrical Bloch-Beilinson
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�ltration for any IHS variety X, once proved the existence of enough rational
curves in X; this is the content of Voisin's Conjecture 2.1.4 (cf [Voi16]). A
�rst step in this direction would be the existence of rational curves ruling
divisors on IHS varieties in any ample linear system; a divisor ruled by ratio-
nal curves is called uniruled (see De�nition 2.1.6). The existence of uniruled
divisors in any ample system would be a generalization of the Bogomolov-
Mumford theorem in the K3-case. By a theorem of Charles, Mongardi and
Pacienza (see Theorem 2.1.7 and [CMP19]), the existence of uniruled divi-
sors in any ample linear system would imply the existence of a canonical
subgroup S1 CH0(X)Q ⊂ CH0(X)Q, which is the group generated by points
on an uniruled divisor; this would generalize the Beauville-Voisin canonical
0-cycle of the K3-case, realizing the �rst subgroup of the conjectural Voisin's
�ltration mentioned above.

The existence of uniruled divisors on IHS varieties have been proved
for most of the IHS varieties of K3[n]/Kn(A)-type by Charles, Mongardi,
Pacienza in [CMP19] and Mongardi, Pacienza in [MP17] and [MP19] re-
spectively, see Section 2.3 for the precise statement. The technique used is
the same in both cases, and it is the following: they consider the moduli
spaces Mpol

K3[n] and Mpol
Kn(A) of marked and polarized IHS varieties of K3[n]

andKn(A)-type respectively, whose number of connected components equals
the index of the monodromy group in the group of isometries of H2(X,Z),
for X an IHS variety of K3[n]/Kn(A)-type respectively (we refer to Sec-
tion 1.2 and Section 1.3 for the fundamental de�nitions and results about
that). In particular, thanks to the knowledge of the monodromy group in
theK3[n]/Kn(A)-case, they �nd an explicit representative for each connected
component of Mpol

K3[n] and Mpol
Kn(A) respectively, and they prove the existence

of uniruled divisors for almost all those representatives. Thanks to a result
of deformation of reduced and irreducible rational curves ruling divisors on
IHS varieties presented in [CMP19] (see also Corollary 2.2.4), they conclude
the existence of uniruled divisors in any class on a connected component of
Mpol

K3[n] andMpol
Kn(A) where they could prove the existence of uniruled divisors

for the respective representative.

The main goal of this work is to explore the OG 10-case. In this regard,
a remark is necessary: the monodromy of an IHS variety of OG 10-type is
not known yet. There are some partial results by Mongardi (cf. [Mon14])
and Onorati (cf. [Ono18]) in this direction (see Section 2.3), but they are
not enough to estimate the number of connected components of the moduli
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space Mpol
OG 10 of marked and polarized IHS varieties of OG 10-type.

Nevertheless, one can still start �nding explicit examples of ample unir-
uled divisors on IHS varieties of OG 10-type, and compute some monodromy
invariants to check weather they are or not in the same connected component
of Mpol

OG 10. We proved the existence of two ample uniruled divisors and we
conjecture the existence of a third one, and we compute their monodromy
invariants, see Chapter 5 and Chapter 6. The de�nition of these divisors is
done using the rich geometry of some moduli spaces of semistable sheaves on
K3 surfaces, which have a desingularization that is an IHS variety of OG 10-
type containing, as dense open subset, a relative Jacobian on some linear
system on the K3 surface. As consequence of the result by Charles, Mon-
gardi and Pacienza about deformations of rational curves presented above,
we can conclude the existence of ample uniruled divisors for any element of
Mpol

OG 10 in the connected component of one of the three divisors found.

We conclude this section with a consideration on the OG 6-case. This
case is not know yet, and it is intention of the author to explore it: the
monodromy group of an IHS variety deformation equivalent to OG 6 has
been very recently computed by Mongardi and Rapagnetta in [MR19]. This
results was not available when we started working on the OG 10-case, which
motivates why we didn't decide to investigate the OG 6-case, which seems
today the natural case for starting with.

Main results

We list here the main results we present in this work. We refer to the
next section for a description of this work chapter by chapter.

� Corollary 2.2.4: this is a result about deformation of reduced but re-
ducible rational curves ruling a divisor on an IHS variety, that general-
izes the one presented by Charles, Mongardi and Pacienza in [CMP19]
for irreducible and reduced curves.

� Theorem 5.3.1 and Corollary 5.3.3: we state there the existence of a
�rst example of ample uniruled divisor on a IHS variety of OG 10-type.
These results are consequence of many intermediates results, presented
in Chapter 4 and Chapter 5.

� Theorem 6.1.5 and Conjecture 6.1.6: we construct two new uniruled
divisors on IHS varieties of OG 10; we state that one is ample, and we
conjecture that the same holds true for the second one. The ampleness
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of the second one is only conjectured because there are some small
veri�cation missing; we present here all the completed steps in this
direction.

� Corollary 6.2.5: we compute here the divisibility in the latticeH2(OG 10,Z)
of the three divisors found previously. This gives new deformation in-
variants of the ample classes that we have found.

Description of the thesis chapter by chapter

In Chapter 1 we start with a quick general presentation of IHS varieties,
introducing the constructions and stating some fundamental results that
we will strongly use in everything that will come later. In particular, in
Section 1.1 we introduce the Beauville-Bogomolov-Fuijiki lattice structure
on the group H2(X,Z) and we list the known examples of IHS varieties. In
Section 1.2 we introduce the moduli space of marked (and polarized) IHS
varieties and in Section 1.3 we de�ne the (polarized) monodromy group of
an IHS variety, which turns out to be a fundamental tool for understanding
the moduli space of marked (and polarized) IHS varieties, and to solve the
problem of �nding ample uniruled divisors on them.

With Chapter 2 we focus on the problem of �nding rational curves on IHS
varieties. We motivate our interest in this problem in Section 2.1, stating
some relevant consequence of such existence on the 0-Chow group of the vari-
ety, and relating it to the conjectural Voisin's �ltration of the 0-Chow group,
which conjecturally realizes the more general Bloch-Beilinson �ltration in
the case of IHS varieties. In Section 2.2 we state the fundamental result by
Charles and Pacienza on deformation of rational curves on divisors on IHS
varieties, which motivates the strategy of solution of the problem, presented
in Section 2.3. With Corollary 2.2.4 we present a slight generalization of the
original result by Charles and Pacienza to curves non necessarily irreducible;
we need this generalization for the following chapters. The state of art about
the research of rational curves on IHS varieties is presented in Section 2.3,
where the strategy of solution is also illustrated in the OG 10-case, which is
the one of interest in this thesis.

IHS varieties of OG 10-type are historically produced as desingulariza-
tion of moduli spaces of semistable sheaves on K3 surfaces, with some �xed
invariants; this is presented in Chapter 3. In Section 3.3 we present the La-
grangian structure of the moduli spaces we are interested in, which helps a
lot to understand the geometry of these varieties and will be used to de�ne
the examples of ample uniruled divisors in the following chapters.

xi



In Chapter 4 we enter into the actual problem of �nding rational curves
on IHS varieties of OG 10-type. In Section 4.1 we present a strategy to check
the ampleness of a divisor on an IHS variety, done computing the Beauville-
Bogomolov-Fujiki square of the divisor; this strategy will be applied to the
examples of uniruled divisors that we will introduce in the sequel. The
strategy introduced start with the de�nition of two curves on the IHS variety
X, de�ned in Section 4.2, and with the computation of the intersection of the
image of the generators of the Mukai lattice with those curves. The result
of this computation is stated in Proposition 4.2.3, and we dedicate Section
4.3 to the proof of this result.

The �rst example of uniruled divisor is �nally introduced in Chapter 5.
In Section 5.2 we compute its intersection with the curves introduced in the
chapter before, which is a step in the strategy to compute the square of the
divisor. The square is computed in Theorem 5.3.1 and Corollary 6.1.9. The
conclusion on any divisor in the same connected component of the ample
uniruled found is stated in Corollary 5.3.4.

In Chapter 6 we apply the same strategy to check the ampleness of two
new uniruled divisors in an IHS variety of OG 10-type; in Theorem 6.1.5 and
Corollary 6.1.6 we compute the Beauville-Bogomolov-Fujiki square of the
�rst one and we conjecture the square of the second one. The computation
of the square of the �rst divisor presented in Chapter 6 is more delicate than
the case presented in Chapter 5, since this divisor can happen to be non
Cartier; this depends on the model of OG 10-variety that we need to chose
in order to de�ne it. Since the strategy presented in Chapter 4 to compute
the Beauville-Bogomolov-Fujiki square of a divisor is valid only for Cartier
divisors, we start proving that the divisor introduced is Cartier. In Section
6.2, Corollary 6.2.5 we conclude computing a further monodromy invariant:
the divisibility of the divisors.

At the end we inserted two appendices. In Appendix A we collected
theorems about representability of Chow groups and the conjectural �ltra-
tions by Bloch-Beilinson and Voisin, which motivates our interest in rational
curves on IHS varieties. In Appendix B we recalled the de�nition of Fourier-
Mukai transforms, which give birational morphisms among IHS varieties of
OG 10-type that we used in Section 6.2 to compute the divisibiliy of the
ample uniruled divisors found previously.
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Chapter 1

Generalities on irreducible

holomorphic symplectic

varieties

We start with a general introduction on irreducible holomorphic sym-
plectic varieties, where we will give the basic de�nitions and we will collect
some very useful and general results that we will need in the next chapters.
In particular, we will introduce irreducible holomorphic symplectic varieties
and give the fundamental examples, and we will present the moduli space
of irreducible holomorphic symplectic varieties, stating some Torelli type
theorems and introducing the monodromy group of these varieties.

Most of the results we are going to state can be found in Huybrechts'
notes [Huy99]. We will always work over the �eld of complex numbers.

1.1 De�nitions and examples

De�nition 1.1.1. Let X a compact Kähler manifold. X is an irreducible
holomorphic symplectic (IHS) variety if the following conditions hold true:

� π1(X) = {e}

� H0(X,Ω2
X) = C · σ, with σ everywhere non-degenerate holomorphic

2-form; σ is called the symplectic form of X.

Remark 1.1.2. IHS varieties are the algebraic analogous of hyperkähler
manifolds in Riemannian geometry. A hyperkähler manifold (HK) is a Rie-
mannian manifold (M, g) such that its holonomy group is contained in Sp(n).
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IHS and HK are analogous in the sense that any IHS variety X with a �xed
Kähler class α determines a HK manifold (M, g), where M is the real man-
ifold underlying X and g is the unique Ricci-�at Kähler metric with Kähler
class α. Conversely, any HK manifold (M, g) carries an integrable almost
complex structure de�ning a complex Kähler variety X which turns out to
be IHS. For more details, see [Bea83].

Remark 1.1.3. An immediate consequence of the existence of the symplec-
tic form σ on an IHS variety X is that dim(X) is even. This just follows
from the existence of a non-degenerate alternating form on the tangent space
TxX for any x ∈ X. In what follows, we will always denote dim(X) = 2n.

Remark 1.1.4. Given an IHS variety X, the symplectic form σ gives an
isomorphism TX ∼= Ω1

X , and then H0(X, TX) ∼= H0(X,Ω1
X) ∼= H1,0(X) ∼=

H0,1(X) = 0: by de�nition X is simply connected, then H1(X,Z) = 0 and
0 = H1(X,C) ∼= H1,0(X) ⊕H0,1(X). More in general, H0(X,Ωp

X) = 0 for
any odd p, see Section 1.7 in [Huy99].

The top power σn of the symplectic form gives a nowhere vanishing global
section of the canonical bundle ωX ; hence ωX ∼= OX and c1(X) = 0. One
of the main motivation behind the interest in IHS varieties is that they are
actually building blocks of varieties with trivial �rst Chern class, as stated
in the following Beauville-Bogomolov decomposition theorem (see [Bea83]):

Theorem 1.1.5. Let X be a smooth projective variety with c1(X) = 0.
Then there exists a �nite étale covering X ′ → X such that X ′ decomposes
as X ′ = T ×ΠiYi×ΠjZj with T complex torus, Yi Calabi-Yau varieties and
Zj IHS varieties.

A generalization of Theorem 1.1.5 has been recently proved in [HP19]
in the case of normal projective varieties with at most klt singularities with
trivial �rst Chern class.

IHS varieties are the higher dimensional analogous of K3 surfaces. In-
deed, not only any 2-dimensional IHS variety is a K3 surface (see Exam-
ple 1.1.8), but it is also possible to de�ne a symmetric form on the group
H2(X,Z) for any IHS variety X, which generalizes the intersection product
on a K3 surface and which permits to obtain very powerful consequences on
the moduli space of IHS varieties, as we will see in Section 1.2. The existence
of such a symmetric form is due to Beauville (see [Bea83]); we will quickly
sketch his construction here.
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Fact 1.1.6. Let X be an IHS variety and σ ∈ H0(X,Ω2
X) s.t.

∫
X(σσ̄)n = 1.

Given α ∈ H2(X,Q),

fX(α) :=
n

2

∫
X

(σσ̄)n−1α2 + (1− n)
(∫

X
σn−1σ̄nα

)
·
(∫

X
σnσ̄n−1α

)
de�nes a quadratic form on H2(X,Q). Furthermore, there exists a pos-
itive constant c ∈ R s.t. qX := c · fX is a primitive integral quadratic
form on H2(X,Z), known as the Beauville-Bogomolov-Fujiki form of X.
(H2(X,Z), qX) is a lattice of index (3, b2(X)− 3). Furthermore, qX(σ) = 0
and qX(σ + σ̄) > 0. We will denote by qX(·, ·) the associated bilinear form.

Fact 1.1.7. In [Fuj87], Fujiki showed that there exists a positive constant
c ∈ Q, known as Fujiki constant, such that for any α ∈ H2(X,Z)∫

X
α2n = c · qX(α)n.

We end this section giving some example of IHS varieties. This list of
examples is particularly relevant since any known example of IHS varieties
is deformation equivalent to one of the examples we are going to present. It
is not known whether this list of examples is complete or not.

Example 1.1.8. As �st example, we look to the case dim(X) = 2. Since
π1(X) = {e} one has H1(X,Z) = 0, and as we have already noticed the
existence of the symplectic form implies that the canonical bundle of X is
trivial. We get that X is a projective K3 surface. In this case, qX is just
the intersection product.

Example 1.1.9. Given S projectiveK3 surface, one can consider the Hilbert
schemes of 0-dimensional subschemes of S of length n, that we will denote
here and in the next by S[n]. In [Bea83], Beauville showed that S[n] is an
IHS variety; for n = 2 the result was already obtained by Fujiki.

Beauville also showed b2(S[n]) = 23 for n > 1, and he computed the
Beauville-Bogomolov-Fujiki form of S[n]:

(H2(S[n],Z), qS[n]) ∼= H2(S,Z)⊕ Z · δ

where H2(S,Z) is equipped with the intersection pairing, the direct sum is
orthogonal and δ2 = −2(n − 1). Geometrically, δ is a primitive class s.t.
2δ = [E] in H2(S[n],Z), where E is the exceptional divisor of the Hilbert-
Chow morphism S[n] → Symn(S).
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Example 1.1.10. Given A abelian surface, one can also consider the Hilbert
scheme A[n] of 0-dimensional subschemes of lenght n, but it fails both to be
simply connected and to have a unique symplectic form. In [Bea83], Beauville
proved that a �ber of the composition of the Hilbert-Chow morphism and the
sum map of the abelian surface A[n+1] → A is an IHS variety of dimension
2n, known as the generalized Kummer variety Kn(A), n ≥ 1.

Beauville also proved that b2(Kn(A)) = 7 for n > 1 and he computed
the Beauville-Bogomolov-Fujiki form of Kn(A):

(H2(Kn(A),Z), qKn(A)) ∼= H2(A,Z)⊕ Z · δ

where as before H2(A,Z) is equipped with the intersection pairing, the sum
is orthogonal and now δ2 = −2(n + 1). Geometrically, δ is a primitive
class s.t. 2δ is the class of the restriction of the exceptional divisor of the
Hilbert-Chow morphism A[n+1] → Symn+1(A) to Kn(A).

Note that these families of examples given by Beauville actually give two
examples of IHS varieties in each possible dimension, and for a long time
they have been the only known examples up to deformations. Furthermore,
these two families of examples are not deformation equivalent since they have
di�erent Betti numbers.

Example 1.1.11. In [O'Gb] and [O'Ga] O'Grady gave two examples of IHS
varieties of new deformation types; one is known as K̃6 and has dimension 6,
and another one is known as M̃10 and has dimension 10. They are obtained
as desingularization of moduli spaces of sheaves on an abelian variety or a
projective K3 surface respectively, with some �xed invariants.

Very brie�y, K̃6 is a Beauville-Bogomolov building block (cf. Theorem
1.1.5) of a desingularization of the moduli space of semistable sheaves F on
the Jacobian J of a smooth projective genus two curve, with rk(F) = 2,
c1(F) = 0 and ch2(F) = −2; M̃10 is a symplectic desingularization of the
moduli space of semistable sheaves F on a K3 surface with rk(F) = 2,
c1(F) = 0 and c2(F) = 4. We will be particularly interested in M̃10, that
we will introduce in Chapter 3. O'Grady also showed that b2(K̃6) = 8 and
b2(M̃10) ≥ 24, which proves that K̃6 and M̃10 are not deformation equivalent
to the Beauville's examples.

The Beauville-Bogomolov-Fujiki quadratic forms of K̃6 and M̃10 have
been computed by Rapagnetta in [Rap07] and [Rap08] respectively; in [Rap08],
Rapagnetta also proved b2(M̃10) = 24. If we set q6 := qK̃6

,

(H2(K̃6,Z), q6) ∼= H2(J,Z)⊕ Λ
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where J is the Jacobian of a genus 2 curve where sheaves in K̃6 are supported,
the direct sum is orthogonal and Λ is the lattice generated by the divisors
A and Σ̃, where A is a primitive divisor s.t. 2A is the pullback through
the desingularization of the locus of non-locally free sheaves in K6, and Σ̃ is
the strict transform of the singular locus Σ ⊂ K6 via the desingularization
morphism; q6(A) = −2, q6(Σ̃) = −4 and q6(A, Σ̃) = 2.

If we set q10 := q
M̃10

,

(H2(M̃10,Z), q10) ∼= H2(S,Z)⊕ Λ

where S is the K3 surface where sheaves in M̃10 are supported, the direct
sum is orthogonal and Λ is a lattice generated by the divisors B̃ and Σ̃,
where B̃ is the pullback through the desingularization of the locus of non-
locally free sheaves in M10 and Σ̃ is the strict transform of the singular locus
Σ ⊂ M10 via the desingularization morphism; q10(B̃) = −2, q10(Σ̃) = −6
and q10(B̃, Σ̃) = 3.

De�nition 1.1.12. A deformation of an IHS variety X is a smooth and
proper holomorphic map X → B, where B analytic space and the �ber over
a distinguished point 0 ∈ B is X0

∼= X.

Remark 1.1.13. Any small deformation of an IHS variety is again an IHS
variety, see [Bea83]. As consequence, locally around 0 ∈ B all the �bers Xb
are IHS varieties.

Terminology. We will refer to an IHS variety deformation equivalent to a
K3[n]/ Kn(A)/ K̃6/ M̃10 as to an IHS of K3[n]/ Kn(A)/ OG 6/ OG 10-type
respectively.

Remark 1.1.14. In all the examples of IHS variety above, the Beauville-
Bogomolov-Fujiki form is even, but up to now there is no general reason to
expect it to hold true in general. Furthermore, we do not know IHS vari-
eties with the same Beauville-Bogomolov-Fujiki form but not deformation
equivalent, but again this has not been proved in general.

1.2 Moduli space of IHS varieties

In the next we will be interested in the moduli space of IHS varieties,
that we are going to introduce in this section.
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Fix a lattice Λ with signature (3, k− 3) with k ≥ 3. We are interested in
the moduli space

MΛ := {(X,φ)}/∼
where X is an IHS variety of �xed deformation type and φ a marking, i.e. an
isometry of lattices φ : H2(X,Z)→̃Λ. We say that (X,φ) ∼ (X ′, φ′) if and
only if there exists an isomorphism f : X → X ′ s.t. f∗ = ±φ−1 ◦φ′; such an
isomorphism is said to be an isomorphism of marked IHS varieties. The plus-
minus sign in the equality is meant to identify the points (X,φ) and (X,−φ)
in the construction of the moduli space, since they do not carry di�erent
geometrical information. Note that the notation MΛ is slightly misleading,
since the deformation type is �xed but it does not appear in the notation;
nevertheless, we decided to keep this notation here since it is the standard
one used in literature. Only when the deformation type will be relevant we
will denote by MY the moduli space of marked IHS varieties of deformation
type Y.

MΛ turns out to be a non-Hausdor� complex manifold of dimension k−2,
where k is the rank of Λ. This is consequence of the work of several authors;
we will brie�y sketch here its proof, listing the main steps to reach it.

Fact 1.2.1. A well known result by Kuranishi (see [Kur65]) states that for
any compact Kähler manifold X there exists a semiuniversal deformation
X → Def(X); furthermore, the Zariski tangent space of Def(X) is isomorphic
to H1(X, TX). If H0(X, TX) = 0 then X → Def(X) is universal; if ωX ∼=
OX then Def(X) is smooth, and one says that the deformations of X are
unobstructed; this is due to Bogomolov, Tian and Todorov (see e.g. Theorem
VII.1 in [Man05], and the same reference for more details on deformation
theory).

We noticed in Remark 1.1.4 that ifX is an IHS variety thenH0(X, TX) =
0. We conclude that for X an IHS variety there exists an universal deforma-
tion X → Def(X), where Def(X) is smooth of dimension

dim(Def(X)) = h1(X, TX) = h1(X,Ω1
X) = h1,1(X) = b2(X)− 2.

Note that X → Def(X) is universal for any �ber Xb for b close to 0 in B.
Let (X,φ) be a marked IHS variety. The marking extends to an isometry

φC : H2(X,C)→ Λ⊗C =: ΛC; in the next, we will call φC just φ. We de�ne
the period of X to be the point P(φ(H2,0(X))) ∈ P(ΛC). If p : X → Def(X)
is the universal deformation of X, then φ : H2(X,Z)→ Λ de�nes a marking
φb : H2(Xb,Z) → Λ on each �ber Xb: up to restricting Def(X) to a simply
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connected space, R2p∗Z becomes a constant sheaf on Def(X), then there
exists a canonical isomorphism ψb : H2(X,Z) → H2(Xb,Z) for any b ∈ B,
and φb := φ ◦ ψ−1

b .
One de�nes the period map to be

P : Def(X)→ P(ΛC)

b 7→ P(φ(H2,0(Xb)))

The period map is holomorphic, see e.g. in [Voi03a]; this result is due to
Gri�ths, who also computed the di�erential of the period map. By Fact
1.1.6, the image Im(P) is contained in the period domain QΛ = {λ ∈
P(ΛC)|qΛ(λ) = 0, qΛ(λ+ λ̄) > 0}.

In [Bea83], Beauville proved the following Local Torelli Theorem:

Theorem 1.2.2 (Local Torelli for IHS varieties). Let (X,φ) be a marked
IHS variety. Then the period map P : Def(X)→ QΛ is a local isomorphism.

The Local Torelli Theorem gives to MΛ a structure of non-Hausdor�
complex manifold patching the charts Def(X). This allows to consider the
period map as a holomorphic map

P : MΛ → QΛ.

Remark 1.2.3. The period map P fails to be an isomorphism, conversely
to the case of K3 surfaces. The �rst example of non-isomorphic IHS vari-
eties with the isometric weight-two Hodge structure was found by Debarre
in [Deb84]. Since the non-isomorphic IHS varieties found by Debarre are bi-
rational, the period map was hoped to determine the birational type of the
IHS variety; this would have also been a nice generalization of the K3 case,
since birational K3 surfaces are always isomorphic. In [Nam02], Namikawa
showed that elements on a �ber of the period map are not necessarily bira-
tional.

The surjectivity of the period map has been proved by Huybrechts in
[Huy99], while a description of the �bers of the period map has been done
by Markman in [Mar11] and Verbitsky in [Ver13]:

Theorem 1.2.4 (Global Torelli for IHS varieties). Let be M0
Λ ⊂MΛ a

connected component and P0 := P|M0
Λ
the restriction. Then P0 is surjective

onto QΛ and two points on the same �ber are birational varieties.
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A nice reference for Global Torelli Theorem for IHS varieties is [Huy11].

A polarized IHS variety is an IHS variety X together with a polarization,
i.e. an ample line bundle H on X. Since the �rst Chern class map c1 :
Pic(X) → H2(X,Z) is injective for an IHS variety, we will often refer to a
polarization as to its class h := c1(H) ∈ H2(X,Z). Since in the following we
will be interested in polarized IHS varieties, we want to consider the moduli
space of marked and polarized IHS varieties.

De�nition 1.2.5. Let (X,h) and (X ′, h′) be polarized IHS varieties. (X,h)
and (X ′, h′) are deformation equivalent as polarized varieties if there exists a
deformation of IHS varieties X → B, two points b, b′ ∈ B and a line bundle
L on X such that Xb ∼= X, Xb′ ∼= X ′, c1(L|Xb) = h and c1(L|X ′b) = h′.

Analogously to the non polarized case, one has the following:

Fact 1.2.6. Given an IHS variety X, there exists a universal polarized
deformation (X ,L) → Def(X,h) with L ∈ Pic(X ) and (X0, c1(L|X0)) ∼=
(X,h), for 0 ∈ Def(X,h) distinguished point. The Zariski tangent space
of Def(X,h) is isomorphic to ker(h : H1(X, TX) → H2(X,OX)) ∼= C · σ̄,
where the map h is the contraction with h given by the natural pairing
H1(X, TX)⊗H1(X,Ω1

X)→ H2(X,OX); this contraction is in fact surjective
(cf. 1.8 in [Huy99]). Furthermore, Def(X,h) is a smooth hypersurface of
Def(X) (cf. 1.14 in [Huy99]).

The costruction of the moduli space of marked and polarized IHS varieties
is more subtle than the non-polarized case, we refer to Section 8 in [Mar11]
for a construction of it. In the next, we will denote by Mpol

Λ the moduli space

of marked and polarized IHS varieties with lattice Λ, or by Mpol
Y when we

will want to emphasize that we are considering IHS varieties of deformation
type Y.

1.3 Monodromy and connected components

We are going to introduce the monodromy group of an IHS variety, since
it is a fundamental tool for the study of the moduli space of marked (and
polarized) IHS varieties. A very complete reference for what we are going to
sketch is Markman's survey [Mar11].

De�nition 1.3.1. Let X1 and X2 be IHS varieties. An isomorphism g :
H2(X1,Z) → H2(X2,Z) is a parallel transport operator if there exists a
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deformation family p : X → B, two points b1, b2 ∈ B and isomorphisms ψ1 :
X1

∼−→ Xb1 , ψ2 : X2
∼−→ Xb2 such that (ψ−1

2 )∗ ◦ g ◦ψ∗1 : H2(Xb1)→ H2(Xb2) is
the parallel transport (see De�nition I.2.1 [GHJ03]) inside the local system
R2p∗Z along a path γ in B from b1 to b2.

De�nition 1.3.2. Let X be an IHS variety. A parallel transport operator
g : H2(X,Z)→ H2(X,Z) along a loop γ is called a monodromy operator.

Remark 1.3.3. One can de�ne monodromy operators for any degree k, con-
sidering the parallel transport inside the local system Rkp∗Z. Nevertheless,
we will talk about monodromy operators always referring to the k = 2 case,
which is the most interesting one for example because of the Torelli type
theorems stated in Section 1.2.

Remark 1.3.4. By the deformation invariance of the Beauville-Bogomolov-
Fujiki form (see e.g. Lemma 5.5 in [BL18]), a monodromy operator is in fact
an isometry of the lattice (H2(X,Z), qX). We will denote by Mon2(X) the
subgroup of O(H2(X,Z)) generated by monodromy operators.

Note that by de�nition the groups Mon2(X) and Mon2(X ′) are isomor-
phic if X and X ′ are deformation equivalent, where the isomorphism is given
by conjugation with a parallel transport operator from X to X ′. Fixed a
deformation type Y of IHS varieties, will denote by Mon2(Y) the group of
monodromy operators of IHS varities of Y type.

Let M0
Λ be a connected component of the moduli space MΛ. Given

(X,φ) ∈ M0
Λ, the subgroup Mon2(M0

Λ) := φ ◦ Mon2(X) ◦ φ−1 ⊂ O(Λ) is
independent, up to conjugation, of the choice of the point in M0

Λ. Fur-
thermore, if τΛ is the set of connected components of MΛ, then O(Λ) acts
on τΛ: a point t ∈ τΛ corresponds to a component Mt

Λ of MΛ, and given
(X,φ) ∈ Mt

Λ, f ∈ O(Λ) sends t to the component of (X, f ◦ φ). Note that
this action is well de�ned, and it is transitive. Furthermore, the stabilizer
of t ∈ τΛ is by de�nition the group Mon2(Mt

Λ), since monodromy operators
are those isometries coming from deformations of (X,φ). Summarizing, one
has the following result:

Fact 1.3.5. Given a deformation type Y of IHS varieties, the cardinality
τY of the set of connected components of MY equals the index [Mon2(X) :
O(H2(X,Z))], for any X IHS variety of Y type.

Remark 1.3.6. The cardinality of τΛ is actually �nite. This result is due
to the contribution of many authors, as Huybrechts in [Huy03], Markman in
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[Mar11], Sullivan in [Sul77], Verbitsky in [Ver13]. We refer to [Mar11] for a
presentation of this result.

In what follows, we will be interested to the polarized case.

De�nition 1.3.7. Let (X1, h1) and (X2, h2) be polarized IHS varieties. An
isomorphism g : H2(X1,Z) → H2(X2,Z) is a polarized parallel transport
operator if there exists a deformation family p : X → B such that g is the
parallel trasport operator associated to this family, and if there exists a �at
section h of R2p∗Z such that h(b) is a polarization on Xb for any b ∈ B and
ψi,∗(h) = hi for i = 1, 2.

De�nition 1.3.8. Let (X,h) be a polarized IHS variety. A polarized parallel
transport operator along a loop γ is called polarized monodromy operator.
We denote by Mon2(X,h) the group generated by polarized monodromy
operators.

By de�nition, a polarized monodromy operator in Mon2(X,h) needs to
�x the polarization h. In [Mar11], Proposition 7.4, Markman proved that
also the viceversa holds true:

Theorem 1.3.9. Mon2(X,h) equals the stabilizers of h in Mon2(X).

Let O(H2(X,Z))h be the group consisting of the isometries of H2(X,Z)
stabilizing the class h; observe that any isometry of H2(X,Z) preserves the
degree of h, that is its square with respect to the Beauville-Bogomolov-Fujiki
form. By Theorem 1.3.9, we have Mon2(X,h) = Mon2(X) ∩O(H2(X,Z))h.

As consequence of the discussion about the non-polarized case, we get
the following:

Fact 1.3.10. The index [Mon2(X,h) : O(H2(X,Z))h] equals the number of
connected components of Mpol

Y,d, where X is an IHS variety of deformation

type Y and Mpol
Y,d is the connected component of Mpol

Y of �xed polarization
degree equal to d.

The monodromy group has been described in almost all the known ex-
amples of IHS varieties:

� Mon2(K3[n]) has been described by Markman in [Mar10], Theorem 1.2
and Lemma 4.2.

� Mon2(Kn(A)) has been described by Mongardi in [Mon14], Theorem
2.3.
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� Mon2(OG 6) has been described by Mongardi and Rapagnetta in [MR19],
Theorem 5.4(1).

� The OG 10 case is still open, but some partial results have been ob-
tained by Mongardi in [Mon14], Theorem 3.3, and by Onorati in [Ono18],
Theorem 5.1.12 and Theorem 5.3.2.

We will see in Chapter 2 how the monodromy group will play a central
role in the research of rational curves on IHS varieties.
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Chapter 2

Rational curves on IHS

varieties

In this chapter we will try to motivate our interest in rational curves
on IHS varieties. We will also present the state of the art of the problem,
stating the known results and presenting a strategy by Charles, Mongardi
and Pacienza to solve the problem in the K3[n] and Kn(A)-type case, and
from which we will take inspiration to investigate the OG 10-type case.

2.1 Why rational curves

The existence of rational curves on IHS varieties is not known in general.
The �rst known case was the 2-dimensional one, thanks to the following
theorem due to Bogomolov and Mumford (see [MM83]).

Theorem 2.1.1. Let S be a projective K3 surface. Any ample system on S
contains an element which is sum of rational curves.

A very interesting consequence of this theorem has been pointed out by
Beauville and Voisin in [BV04]. Their result is about the 0-Chow group of
a K3 surface; for an overview on Chow groups, see Appendix A.

Theorem 2.1.2. Let S be a projective K3 surface and R a rational curve
on S.

1. The subgroup Im(i∗ : CH0(R)Q → CH0(S)Q) ⊂ CH0(S)Q is indepen-
dent of the rational curve R; here i : R ↪→ S is the inclusion. Further-
more, Im(i∗ : CH0(R)Q → CH0(S)Q) = Q · cS, where cS is the class of
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any point on a rational curve in S; cS is known as the Beauville-Voisin
canonical 0-cycle of degree 1 on S.

2. The image of the intersection product

Pic(S)Q ⊗ Pic(S)Q → CH0(S)Q

is generated by cS.

Remark 2.1.3. Theorem 2.1.2 is actually an immediate consequence of
Theorem 2.1.1. Indeed, if two rational curves intersect, then any point on the
�rst one is rationally equivalent to any point on the second one, since points
on rational curves are movable up to rational equivalence. If two rational
curves do not intersect, they both intersect any ample divisor, which by
Theorem 2.1.1 is sum of rational curves up to linear equivalence, then again
points are movable through those curves. Finally, point 2 follows from the
fact that Pic(S) is generated by ample curves (see Chapter 8 in [Huy16]).

Theorem 2.1.1 is particularly relevant since it individuates a canonical
class in the 0-Chow group of any projective K3 surface, which is well know
to be not representable (see Corollary A.1.6). Furthermore, the Beauville-
Voisin canonical class realizes the (conjectural) Bloch-Beilinson �ltration in
the case of a projective K3 surface (see Conjecture A.2.3 and Remark A.2.4).

In [Voi16], Voisin conjectured a geometrical shape of Bloch-Beilinson �l-
tration of the 0-Chow group of an IHS variety, which would be a generaliza-
tion of the one obtained in the K3 case; we brie�y recall Voisin's conjecture
here.

If X is an IHS variety and x ∈ X, let Ox be the orbit of rational equiva-
lence of x, which is proved to be a countable union of closed algebraic subsets
inX; therefore it makes sense to talk about the dimension of Ox, which is the
supremum of the dimensions of the algebraic sets appearing in that union.

Voisin de�nes
SiX := {x ∈ X| dim(Ox) ≥ i},

which is a coutable union of closed algebraic subsets in X; as before, its
dimension is de�ned as the maximum of the dimensions of the components,
and dimSiX ≤ 2n− i.

In [Voi16], Conjecture 0.4, Voisin conjectured:

Conjecture 2.1.4. Let X be a projective IHS variety of dimension 2n; then
dimSiX = 2n− i for any i ≤ n.
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Let F •BB CH0(X)Q be the Bloch-Beilinson �ltration of CH0(X)Q (see
Conjecture A.2.3). In Remark 1.1.4 we noticed that if X is a projective IHS
variety, then hi,0(X) = 0 for i odd; it follows F iBB CH0(X)Q = F i+1

BB CH0(X)Q
for i odd. As consequence we are just interested in F 2i

BB CH0(X)Q; we denote
by F ′•BB CH0(X)Q the �ltration de�ned by F ′kBB CH0(X)Q := F 2k

BB CH0(X)Q.
Voisin de�nes a �ltration S•CH0(X)Q of CH0(X)Q, where Si CH0(X)Q is

the subgroup of CH0(X)Q generated by classes of points in SiX. Conjecture
2.1.4 would imply that the natural map

f : Si CH0(X)Q → CH0(X)/F ′n−i+1
BB CH0(X)Q (2.1.1)

is surjective (see Lemma 3.9 in [Voi16]). Then Voisin conjectured

Conjecture 2.1.5. Let X be a projective IHS variety. Then the map f in
(2.1.1) is an isomorphism.

For i = 1, S1X is the set of points ofX with orbit the union of subvarieties
of dimension greater or equal to 1. This leads us to the following crucial
de�nition:

De�nition 2.1.6. A divisor D ⊂ X is uniruled if there exists a variety Y
with dim(Y ) = dim(D)− 1 and a dominant rational map Y × P1 99K D.

Note that Im(i∗ : CH0(D) → CH0(X))Q ⊂ S1 CH0(X)Q for i : D ↪→ X
uniruled. A �rst evidence of Conjecture 2.1.4 is given by the following theo-
rem, due to Charles, Mongardi and Pacienza (see Theorem 1.5 and Theorem
1.6 in [CMP19]):

Theorem 2.1.7. Let X be a projective IHS variety such that there exists an
ample divisor on X which is sum of irreducible uniruled divisors. Then:

1. The subgroup

Im(i∗ : CH0(D)Q → CH0(X)Q) = S1 CH0(X)Q ⊂ CH0(X)Q

is independent of the uniruled divisor D; here i : D ↪→ X is the inclu-
sion.

2. Suppose that Pic(X)Q is generated by classes of uniruled divisors. Then
for any non-torsion L ∈ Pic(X) one has

L · CH1(X) = S1 CH0(X),

where the product is the intersection product.
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Note that Theorem 2.1.7 is the higher-dimensional version of Theorem
2.1.2. As Theorem 2.1.2 was a consequence of the existence of rational
curves on K3 surfaces, we would like to have a result of existence of uniruled
divisors on IHS varieties, to verify the hypothesis of Theorem 2.1.7. We will
investigate on the existence of uniruled divisors of IHS varieties in the next
sections and in the rest of this work.

2.2 Deformation of rational curves

The results we will present in this section are a slight modi�cation of
some results proved by Charles, Mongardi and Pacienza in [CMP19]. We
start by introducing some notations.

Let p : X → B be a smooth projective morphism among quasi-projective
varieties of relative dimension 2n, and let α ∈ Γ(R4n−2p∗Z, B) be a class of
type (2n− 1, 2n− 1). Under these hypothesis one can consider the relative
Kontsevich moduli stack M0(X/B, α) of genus zero stable curves, whose
points parametrize maps f : C → X with C a stable curve of genus 0 and
X = Xb a �ber of π, such that f∗[C] = αb; we will denote such a point by
[f ]. Note that the natural mapM0(X/B, α)→ B is proper.

Let now X be a projective IHS variety of dimension 2n and f : C → X a
�xed map from a stable genus 0 curve C; we also assume that f is unrami�ed
along the generic point of any irreducible component of C. Let X → B as
above, with central �ber X0 = X, 0 ∈ B; let α ∈ Γ(R4n−2p∗Z, B) as above,
with α0 = f∗[C] in H4n−2(X,Z).

Under these notations, we state the following results, which are Proposi-
tion 3.1 and Proposition 3.2 of [CMP19]. Our goal is to arrive to Corollary
2.2.4, whose proof will be a consequence of the propositions we are going to
state.

Proposition 2.2.1. Let M ⊂ M0(X, f∗[C]) be an irreducible component
containing the point [f ]. Then dimM ≥ 2n− 2, and if dimM = 2n− 2 then
any irreducible componentM⊂M0(X/B, α) containing [f ] dominates B.

Remark 2.2.2. The result above holds true for any X smooth projective
with trivial canonical bundle.

Proposition 2.2.3. Let X be a projective 2n-dimensional manifold endowed
with a symplectic form and let Y ⊂ X be subvariety of codimension k. If
W ⊂ X is a subvariety such that any point of Y is rationally equivalent to a
point in W , then the codimension of W in X is at most 2k.
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From these results, one can conclude that it is possible to deform rational
curves ruling a divisor along the base B, and that the deformations still
rule a divisor. They proved this result in the case of irreducible curves
(see Corollary 3.5 of [CMP19], whose statement is analogous to the one
of Corollay 2.2.4 here below), but in the next we will need it also for non
irreducible curves. For this reason we will prove here the reducible case, even
if its proof is just a slight modi�cation of the one given in [CMP19].

Corollary 2.2.4. Let f : C → X be a non constant map from a possibly
reducible stable genus zero curve C, and let M be an irreducible component
of M0(X, f∗[C]) containing [f ]. Let D ⊂ X be the subscheme covered by the
deformations of f parametrized by M . If D is a divisor, then any irreducible
component of M0(X/B, α) containing [f ] dominates B. Furthermore, Xb
contains a uniruled divisor Db for any point b ∈ B.

Proof. By Proposition 2.2.1, dimM ≥ 2n − 2; we want to prove that the
equality holds, so that Proposition 2.2.1 will imply that under our hypothesis
any irreducible component ofM0(X/B, α) containing [f ] dominates B.

Let us assume dimM ≥ 2n− 1, and let C→M the universal curve. Let
us consider the evaluation map C→ D ⊂ X, and let D0 ⊂ D an irreducible
component of D ruled by the deformations of f |C0 : C0 → X, with C0

rational irreducible component of C. Since we are assuming dimM ≥ 2n−1,
the �bers of the evaluation map on D0 have dimension at least 1, which
means that there exists a subvariety W0 ⊂ X with dimW0 ≤ dimD −
2 = 2n − 3 such that any point of D0 is rationally equivalent to a point
of W0. Choosing Y = D0 and W = W0 in Proposition 2.2.3, this gives a
contradiction.

The last part of the statement follows as in the proof of Corollary 3.5
in [CMP19]; for completeness, we repeat here their argument. Let M ⊂
M0(X/B, α) be an irreducible component containing M , and let D ⊂ X →
B be the locus covered by deformations of f parametrized by M. Any
irreducible component of D dominates B, because from what we said before
M dominates B. The central �ber of D → B is by construction D, which is
a divisor in X0; as consequence, the �ber of D → B is a divisor Db ⊂ Xb at
any point b ∈ B, which is uniruled by construction.

Remark 2.2.5. We want to emphasize that the argument of the proof of
Corollary 2.2.4 can not be used to prove that, given a rational curve whose
deformations cover a subvariety of codimension k > 1, the deformations of
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the curve in another �ber Xb of X → B still cover a subvariety of codimen-
sion k. Indeed the request that the deformations of the curve still cover a
divisor is translated to an open condition, because it is the condition that
the evaluation map C → X has maximal rank. The same would not hold
true for a codimension k > 1.

2.3 A possible approach to the problem

We will present here a possible approach to the problem of �nding unir-
uled divisors on any ample system on an IHS variety X of �xed deforma-
tion type. This has been introduced by Charles, Mongardi and Pacienza in
[CMP19], where they used it in the case of IHS variety of K3[n]-type; in
[MP17] and [MP19], Mongardi and Pacienza used the same approach in the
case of IHS varieties of Kn(A)-type. The reference we are giving for the
K3[n]-case is an amend of a previous work of Charles and Pacienza; for this
reason it is more recent then the article presenting the Kn(A)-case.

The approach we are going to present will motivate the results of the
next chapters, since they are part of the �rst step here below.

The approach can be divided three steps. Let Y be a �xed deformation
type of IHS varieties.

First step: The moduli space Mpol
Y of polarized IHS varieties of Y-type

can have many connected components, counted by the polarized mon-
odromy group Mon2(Y) (see Section 1.3). Thanks to the knowledge
of Mon2(Y) one can try to write explicit representatives for each con-
nected component of Mpol

Y , as done in the K3[n]-case in Section 2.2 of
[CMP19] and in the Kn(A)-case in [MP17], Section 4.1 and in [MP19].

Second step: Find an example of ample uniruled divisor D in each con-
nected component of Mpol

Y found in the �rst step thanks to Mon2(Y).
More precisely, one can try to �nd a pair (X, c1(D)) with X an IHS
variety of Y-type and D ample and uniruled divisor for each repre-
sentative of a connected component of Mpol

Y . It turns out that it is
not always possible to �nd uniruled divisors ruled by primitive curves
in each connected component of Mpol

Y , then the goal becomes to �nd
explicit examples of such uniruled divisors in as many connected com-
ponents as possible.

In the K3[n]-case explicit examples of ample uniruled divisors have
been presented in Section 4 of [CMP19]. Furthermore, they proved
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in Section 5 of the same work that there exists at most �nitely many
connected components of Mpol

K3[n] where ample uniruled divisors ruled
by primitive curves do not exist, and they give conditions ensuring
their existence (see also Corollary A.3 in [OSY18]).

Explicit examples of ample uniruled divisors are presented in Section
4.2 of [MP17] and in [MP19] in the Kn(A)-case.

Third step: This is the conclusion following by the previous steps, and the
result one would like to reach. By the results about deformations of
rational curves ruling divisors on IHS varieties (see Section 2.2), one
can conclude that there exist ample uniruled divisors in each element
of a connected component of Mpol

Y where explicit examples of uniruled
divisors have be found in the second step.

We recap here the situation for the OG 10-case, since it is the case we
are going to discuss in the rest of this work.

First step - OG10: A description of the monodromy group Mon2(OG 10)
is known just partially thanks to the work of Mongardi in [Mon14]
and Onorati in [Ono18], as discussed at the end of Section 1.3. As
consequence, we can not conclude yet what is the number of connected
components the moduli space Mpol

OG 10.

Second step - OG10: Finding examples of ample uniruled divisors on IHS
varieties of OG 10-type is the main goal of this work. Original results
in this direction will be presented in Chapter 5 and Chapter 6.

Third step - OG10: Since in Chapter 5 and Chapter 6 we will prove the
existence of three ample and uniruled divisors on IHS varieties of
OG 10-type, we will conclude that the existence of ample uniruled divi-
sors holds true for any element in the connected component of Mpol

OG 10

of those special examples.

Our contribution to the second and the third step will be discussed in
detail along Chapter 4, 5 and 6. In order to do that, from the next chapter
on we will focus on the 10-dimensional example of O'Grady, concluding here
our discussion about IHS varieties in general.
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Chapter 3

Moduli spaces of sheaves

Moduli spaces of semistable sheaves are one of the main tool to produce
examples of IHS varieties. In this chapter we will introduce them, we will
see how we can recover Beauville's examples of IHS varieties as moduli space
of sheaves and we will explain how O'Grady produces two new examples of
IHS varieties out of them. Finally, we will focus on some particular moduli
spaces, which have a powerful geometric structure which makes them easier
to handle with. Indeed, in the next chapters we will consider just those
particular moduli spaces, where it will be easier to construct examples of
ample uniruled divisors.

3.1 Some generalities about semistable sheaves

In this section X will be a smooth projective variety over C with a polar-
ization H. All the notions we are introducing and all the fact we are stating
here can be found in [HL10].

Given a coherent sheaf E ∈ Coh(X) on X, the Hilbert polynomial
of E with respect to the polarization H is the polynomial PH(E,m) :=

χ(E(m)) =
∑d

i=0 αi(E)m
i

i! , with E(m) := E⊗H⊗m and d := dim(supp(E));
d is called the dimension of the sheaf E and will be denoted dim(E).

For any E ∈ Coh(X), we de�ne:

� the rank of E as rk(E) := αd(E)
αd(OX) ; in case E is locally free, this is just

the usual de�nition of rank for vector bundles;

� the degree of E as deg(E) := αd−1(E)− rk(E) · αd−1(OX).
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De�nition 3.1.1. The reduced Hilbert polynomial of a coherent sheaf E of
dimension d over X is the polynomial

pH(E,m) :=
PH(E,m)

αd(E)
.

For simplicity, we will denote by P (E) and p(E) the Hilbert polynomial
and the reduced Hilbert polynomial of a sheaf E, when the polarization will
be clear from the context. We recall that there is an ordering of polynomials
given by the lexicographic order of their coe�cients, and that we will denote
with the symbol ≤.

We say that E ∈ Coh(X) is pure if dim(F ) = dim(E) for any F ⊂ E
non trivial coherent subsheaf; for example, any torsion-free sheaf is pure.

De�nition 3.1.2. A pure sheaf E ∈ Coh(X) is semistable if p(F ) ≤ p(E)
for any F ⊂ E proper. E is called stable if it is semistable and p(F ) < p(E)
for any F ⊂ E proper.

Remark 3.1.3. The de�nition of (semi)stability really depends on the choice
of the polarization.

In the following, it will be useful the following characterization of stability
(for a reference see Proposition 1.2.6 in [HL10]):

Proposition 3.1.4. Let E ∈ Coh(X) be a pure sheaf of dimension d. Then
E is (semi)stable if an only if for any proper purely d-dimensional sheaf
E → F → 0 one has p(E)(≤) < p(F ).

The following fact (see Corollary 1.2.8 in [HL10]) will be useful in the
next:

Proposition 3.1.5. If E ∈ Coh(X) is stable, then End(E) ∼= C, i.e. E is
a simple sheaf.

Given E ∈ Coh(X), a Jordan-Hölder �ltration for E is a �ltration in
coherent sheaves:

0 = E0 ⊂ E1 ⊂ ... ⊂ Ek = E

such that Ei/Ei−1 is stable with reduced polynomial p(E) for any i = 1, ..., k.
The sheaf JH(E) := ⊕ki=1Ei/Ei−1 is called the Jordan-Hölder sheaf associ-
ated to E. The Jordan-Hölder sheaf is well de�ned for semistable sheaves,
thanks to the following proposition (see Proposition 1.5.2 in [HL10]):
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Proposition 3.1.6. For E ∈ Coh(X) semistable there always exists a Jordan-
Hölder �ltration, which may not be unique. Up to isomorphism, the sheaf
JH(E) does not depend on the choice of the �ltration.

De�nition 3.1.7. Two semistable sheaves E,F ∈ Coh(X) with the same
reduced Hilbert polynomial are called S-equivalent if JH(E) ∼= JH(F ). A
semistable sheaf E ∈ Coh(X) is called polystable if it is a direct sum of
stable sheaves.

The S-equivalence relation will be crucial to have a moduli space of
semistable sheaves with good properties.

Remark 3.1.8. Stable sheaves are S-equivalent if and only if they are iso-
morphic, since a Jordan-Hölder �ltration is given just by the stable sheaf
itself. Nevertheless, on semistable sheaves the S-equivalent relation is in
general weaker than the equivalence relation given by isomorphisms.

Note also that every S-equivalence class of semistable sheaves contains,
up to isomorphisms, only one polystable sheaf: the Jordan-Hölder sheaf of
any element in the S-equivalence class.

We can �nally introduce the moduli functor we are interested in. Fixed
a Hilbert polynomial P , we can de�ne a contravariant functor

MP : Sch/C→ Sets

as follows:

� Given T ∈ Ob(Sch/C), MP (T ) := {E ∈ Coh(X × T ) | E is T −
flat, Et semistable and P (Et) = P ∀t ∈ T}/∼, where E ∼ E′ if
and only if E ∼= E′ ⊗ p∗L with L ∈ Pic(T ) and p : X × T → T the
projection. Note that Et ∼= (E ⊗ p∗L)t for every t ∈ T , which makes
reasonable to consider elements up to the relation introduced.

� Given f : T ′ → T morphism in Sch/C, MP (f) : MP (T ) → MP (T ′)
is the map [E] 7→ [(f × idX)∗E]. For simplicity, if f : T ′ → T is a
morphism we will call F ∗ :=MP (f).

We callMs
P : Sch/C→ Sets the analogous functor obtained considering

stable sheaves instead of semistable ones. Obviously,Ms
P ⊂MP .

De�nition 3.1.9. A contravariant functor F : Sch/C → Sets is corep-
resented by F ∈ Ob(Sch/C) if there exists a natural transformation α :
F → MorSch/C(·, F ) such that any other natural transformation α′ : F →
MorSch/C(·, F ′) factorises through a unique β : MorSch/C(·, F )→MorSch/C(·, F ′).
F is represented by F ∈ Ob(Sch/C) if there exists a natural isomorphism

α : F→̃MorSch/C(·, F ).
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We are interested in the representability of the functor MP . If a pro-
jective scheme MP represents MP , we call it a �ne moduli space; if MP

corepresentsMP , we call it just a moduli space.

Remark 3.1.10. Representability of a functor can be read in terms of the
existence of universal families. Let MP be a �ne moduli space forMP ; then
there exists a sheaf E ∈ Coh(X ×MP ) corresponding to the identity map
idMP

∈ Hom(MP ,MP ). By representability, any F ∈ Coh(X × T ) with
[F ]∼ ∈MP (T ) corresponds to a morphism φF ∈ Hom(T,MP ) such that the
following diagram

Mp(MP ) MP (T )

Hom(MP ,MP ) Hom(T,MP )

MP (φF )=:Φ∗F

= =

−◦φF

is commutative, which means in particular that Φ∗F (E) ∼ F since (− ◦
φF )(idMP

) = φF ∈ Hom(T,MP ) corresponds to F ∈ MP (T ). In other
words, E satis�es the following property: for any [F ]∼ ∈ MP (T ) there ex-
ists L ∈ Pic(T ) such that Φ∗F (E) = p∗L ⊗ F , where p : X × T → T is the
projection and Φ∗F = (idX × φF )∗ by the very de�nition ofMP .

A sheaf E inMP (MP ) satisfying this property is called a universal family.
Note that the existence of a universal family is actually equivalent to the
representability of the functorMP .

The following fundamental result is due to Maruyama and Simpson.

Theorem 3.1.11. Given a Hilbert polynomial P , the functorMP is corep-
resented by a projective scheme MP . Closed points of MP parametrize S-
equivalence classes of semistable sheaves with Hilbert polynomial P .

We will call Ms
P ⊂ MP the open subset parametrizing stable sheaves.

Remark 3.1.12. We want to remark that, since S-equivalent sheaves corre-
spond to the same point in MP , the functorMP is for sure non representable
every time there exists a properly semistable sheaf E onX with Hilbert poly-
nomial P .

Universal families do not always exist. We de�ne here a weaker notion
of "universal" families that will be useful in the next.

De�nition 3.1.13. A family of semistable sheaves E ∈ Coh(X ×MP ) �at
over MP is called quasi-universal of similitude ρ if for any T -�at family
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F ∈ Coh(X × T ) of semistable sheaves with Hilbert polynomial P there
exists a OT -locally free module V of rank ρ such that F ⊗ p∗V ∼= Φ∗FE ,
where p : X × T → T is the projection and Φ∗F = MP (φF ) as in Remark
3.1.10.

We state here some results about the local structure of MP .

Proposition 3.1.14. Let MP be the moduli space of Theorem 3.1.11, and
let x ∈ MP be a point corresponding to a stable sheaf E.

1. There exists an isomorphism Tx MP
∼= Ext1(E,E).

2. If the trace map Ext2(E,E)→ H2(X,OX) is injective and the Picard
scheme PicX is smooth at the point corresponding to det(E), then MP

is smooth at x.

For the de�nition of the Picard scheme PicX we refer to Chapter 10.1 of
[Huy16].

In the following we will be interested in moduli spaces of sheaves on pro-
jective K3 surface, since they will give new examples of IHS varieties. A
similar theory could be done for abelian surfaces, leading to examples defor-
mation equivalent to the generalized Kummer varieties or to the O'Grady
6-dimensional example K̃6, see Example 1.1.11.

3.2 Moduli spaces of sheaves on K3 surfaces

From now on we will assume X = S projective K3 surface with polar-
ization H. In this case, instead of the Hilbert polynomial of a semistable
sheaf, it is more convenient to �x a di�erent invariant of the sheaf: its Mukai
vector.

De�nition 3.2.1. Let be E ∈ Coh(S). The Mukai vector of E is

v(E) := ch(E)
√

td(S) = (rk(E), c1(E), rk(E) + ch2(E)) ∈ H∗(S,Z).

Note that the equality above follows from
√

td(S) = (1, 0, 1) for S a K3
surface. Note also that, since S is K3, the cohomology ring H∗(S,Z) is non
trivial only in even degrees.

Remark 3.2.2. The Hirzebruch-Riemann-Roch formula

χ(E) =

∫
S

ch(E) td(S) =

∫
S
v(E)

√
td(S)
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implies that given the Mukai vector of a sheaf on a K3 surface, one can get
its Hilbert polynomial. Notice that the converse does not hold true: the
Hilbert polynomial of a sheaf E �xes its rank and its second Chern class,
but not its �rst Chern class: it only �xes c1(E) · c1(H).

Anyway, we can (and we will) consider the functor Mv de�ned as MP

but �xing a Mukai vector v instead of a Hilbert polynomial P . By Theorem
3.1.11 the functor Mv is corepresented by a projective scheme Mv, and we
will denote by Ms

v ⊂ Mv the open subset of stable sheaves.

De�nition 3.2.3. Let v, w ∈ H∗(S,Z). The Mukai pairing on H∗(S,Z) =
H0(S,Z)⊕H2(X,Z)⊕H4(X,Z) is

< v,w >:= −
∫
S
v ∧ w∨

where, given w = (w0, w1, w2), we de�ne w∨ := (w0,−w1, w2).

The Mukai pairing makes (H∗(S,Z), <,>) a lattice, known as the Mukai
lattice associated to the K3 surface. The minus sign in the de�nition of the
Mukai pairing is just a convention, whose reason is to have a nicer formula
in Corollary 3.2.4.

The Mukai lattice H∗(S,Z) can be equipped by a pure Hodge structure
of weight 2, de�ned as follows:

(H∗(S))2,0 := H2,0(S)

(H∗(S))1,1 := H0(S,C)⊕H1,1(S)⊕H4(S,C)

(H∗(S))0,2 := H0,2(S).

The Euler characteristic de�nes a pairing on the Groethendieck group
K(S), called Euler pairing:

χ(E,F ) :=
2∑
i=0

(−1)i dim Exti(E,F ).

By Serre duality, the Euler pairing is symmetric. The Hirzebruch-Riemann-
Roch theorem generalizes to

χ(E,F ) =

∫
S

ch(E)∨ ch(F ) td(S) = − < v(E), v(F ) > .

By Proposition 3.1.5 every stable sheaf is simple, i.e. End(E) ∼= C. Further-
more, Serre duality and S = K3 give Ext2(E,E) ∼= Ext0(E,E ⊗ ωS)∗ ∼=
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End(E) ∼= C, and in this case that the trace map C ∼= Ext2(E,E) →
H2(X,OX) ∼= Cσ is injective (see Section 2.1 in Chapter 10 of [Huy16]
for more details). Furthermore, H1(S,OS) = 0 gives that the Picard scheme
PicS of the K3 surface consists of reduced isolated points (see again Chapter
10 in [Huy16]), hence in particular PicS is smooth. We get, as Corollary of
Proposition 3.1.14:

Corollary 3.2.4. If Ms
v is not empty, then it is a smooth quasi-projective

variety of dimension 2 + v2, where v2 is the square wrt the Mukai pairing.

As consequence, if there are not strictly semistable sheaves on S with
Mukai vector v then the moduli space Mv is smooth. This happens under
some condition, but in order to state the main result in this direction we
need to introduce the notion of v-genericity.

De�nition 3.2.5. An element v = (r, l, s) ∈ H∗(S,Z) is called Mukai vector
if r ≥ 0 and l ∈ NS(S), and if r = 0 then either l is the �rst Chern class of
an e�ective divisor, or l = 0 and s > 0.

Note that, if we want Mv to be not empty, we need to ask that v is a
Mukai vector. The other notion we need to introduce is the notion of v-
genericity for a polarization H. Here we will just give the de�nition, for a
more complete discussion on v-genericity see [PR13], section 2.1.

Let v = (r, l, s) be a Mukai vector. We need to consider two cases sepa-
rately:

1. r ≥ 1: set |v| := r2

4 < v, v > + r4

2 ; we de�ne

Wv := {D ∈ NS(S) | − |v| ≤ D2 < 0}.

2. r = 0: let E be a pure sheaf with v(E) = v, and F ⊂ E subsheaf
with v(F ) = (0, l′, s′). The divisor associated to the pair (E,F ) is by
de�nition D := ls′ − l′s. We de�ne Wv to be the set of all non-zero
divisors associated to all the possible pairs (E,F ).

De�nition 3.2.6. Given D ∈Wv, the v-wall associated to D is

WD := {a ∈ Amp(S)R | α ·D = 0}.

A v-chamber is a connected component of Amp(S)R r
⋃
D∈Wv

WD.

Notice that WD is an hyperplane in the ample cone Amp(S)R; further-
more,

⋃
D∈Wv

WD ⊂ Amp(S)R is locally �nite.
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De�nition 3.2.7. Let H be a polarization on S. H is v-generic if it belongs
to some v-chamber.

Notice that for a polarization H the condition of being v-generic is a
generic condition. Very roughly speaking, it is useful to assume that a po-
larization H is v-generic because then it minimizes the amount of strictly
semistable sheaves with respect to H.

Remark 3.2.8. There is a more general de�nition of v-genericity, see Def-
inition 2.1 in [PR13]; usually, to belong to a v-chamber is given only as
a consequence of this more general de�nition. Anyway, since some of the
results we are going to state do not hold true for v-generic polarization ac-
cording to this more general de�nition, we decided to give the de�nition
above.

The key point is the following observation, whose proof can be found in
[Yos01a]:

Proposition 3.2.9. Let v a Mukai vector which is primitive in the lattice
H∗(S,Z). Then, given any v-generic polarization H, any H-semistable sheaf
E is H-stable, i.e. Mv = Ms

v if not empty is a smooth projective variety of
dimension 2 + v2.

We are interested in moduli spaces of sheaves on K3 surfaces because
they turn out to be IHS varieties. Indeed, the moduli spaces Ms

v carry on a
symplectic structure, as observed �rst by Mukai in [Muk84]:

Proposition 3.2.10. The moduli space Ms
v is endowed with a regular and

everywhere non degenerate 2-form σ ∈ H0(Ms
v,Ω

2
Ms
v
).

The symplectic form σ is just a globalization of the following pairing
Tx Mv ×Tx Mv → C, that we can de�ne thanks to Proposition 3.1.14: if x cor-
responds to the stable sheaf E, then Serre duality Ext1(E,E) ∼= Ext1(E,E)∗

gives a non-degenerate pairing

Ext1(E,E)× Ext1(E,E)→ C,

which is actually just (α, β) 7→ tr(α∪ β) ∈ H2(S,OS) ∼= C, where ∪ denotes
the Yoneda product and tr : Ext2(E,E) → H2(X,OX) is the trace map.
Note that the isomorphism H2(S,OS) ∼= C is not canonical, but it is given
by the choice of a global section of ωS .
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Example 3.2.11. Let v = (0, 0, n). Then Mv parametrizes sheaves with
constant Hilbert polynomial P ≡ n and Mv

∼= S(n). When n > 1 one has
Ms
v = ∅, but Mv has a symplectic desingularization given by the Hilbert

scheme S[n].

Example 3.2.12. Let v = (1, 0, 1− n). Then Mv parametrizes torsion free
sheaves of rank one, i.e. sheaves of the form E = L⊗ IZ , where L ∈ Pic(S)
and Z is a 0-dimensional subscheme of S. Note that such a E �ts in the
short exact sequence

0→ E → L→ OZ → 0

and then

(1, 0, 1−n) = v(E) = v(L)− v(OZ) =
(

1, c1(L),
c1(L)2

2

)
−(0, 0, 1−h0(OZ))

which implies L ∼= OS and h0(OZ) = n. In other words, a sheaf E in Mv

gives a 0-dimensional subscheme of S of length n, and actually there exists
an isomorphism Mv

∼= S[n], i.e. we get back Beauville's examples obtained
starting from a K3 surface.

Thanks to the work of Beauville, Mukai, O'Grady and Yoshioka (see
[Bea83], [Muk87], [o'G95], [Yos01a] and [Yos99]), it is known that Mv is
indeed always an IHS variety for v primitive and H v-generic. We collect all
their results in the following

Theorem 3.2.13. Let v be a primitive Mukai vector on the projective K3
surface S and let H be a v-generic polarization.

1. If v2 = −2, then Mv = Ms
v is a single point.

2. If v2 = 0, then Mv = Ms
v is a projective K3 surface. Moreover, there

exists a Hodge isometry v⊥/Z · v → H2(Mv,Z) wrt the Mukai pairing
and the intersection pairing of the K3 surface Mv.

3. If v2 ≥ 2 then Mv = Ms
v is an IHS variety, which is deformation

equivalent to S[ 2+v2

2
], the Hilbert scheme of 2+v2

2 points on S. Moreover,
there exists a Hodge isometry v⊥ → H2(Mv,Z) wrt the Mukai pairing
and the Beauville-Bolomolov-Fujiki form.

Remark 3.2.14. The Hodge isometry of Theorem 3.2.13 comes from the
existence of quasi-universal families on Ms

v = Mv. Indeed, even if in general
an universal family does not exist even for v primitive (see [Yos98]), Mukai
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noticed that quasi-universal families always exist (see [Muk87] and Section
4.6 of [HL10]). If E is a quasi-universal family on S ×Ms

v of similitude ρ,
one can de�ne:

H∗(S,Z)→ H2(Ms
v,Q)

α 7→ 1

ρ

[
pMv ,∗

(
ch(E)p∗S(α∨

√
td(S))

)]
1
.

Here by [−]1 we mean that we consider the part of degree 1 of the expression
above. Restricting the morphism to v⊥ ⊂ H∗(S,Z), this does not depend
on the choice of the quasi-universal family; furthermore, one can verify that
it takes values in H2(Ms

v,Z).

Theorem 3.2.13 says that moduli spaces of sheaves with primitive Mukai
vector give examples of IHS varieties which are deformation equivalent to the
Beauville's examples. The next case to explore is the case of non-primitive
Mukai vector. The question in this case is whether the singular moduli spaces
Mv admit a symplectic desingularization π̃ : M̃v → Mv, i.e. a desingulariza-
tion extending the symplectic structure on Ms

v to M̃v.
For a long time moduli spaces of sheaves have been expected to give

new examples of IHS varieties, but actually this is the case only for very
special non-primitive Mukai vectors. The �rst result in this direction has
been obtained by O'Grady in [O'Ga]:

Theorem 3.2.15. Let be v = (2, 0,−2) and H a v-generic polarization on
the projective K3 surface S. Then M10 := Mv admits a symplectic desin-
gularization π̃ : M̃10 → M10, which is an IHS variety of dimension 10 and
second Betti number 24.

Remark 3.2.16. In [O'Ga], O'Grady proved b2(M̃10) ≥ 24; since deforma-
tion equivalent IHS varieties have the same Betti numbers, b2(M̃10) ≥ 24
implies that M̃10 is not deformation equivalent to any of the Beauville ex-
amples. Then b2(M̃10) = 24 has been proved by Rapagnetta in [Rap08].

M̃10 is actually the only (up to deformation) new example of IHS variety
that can be found out as symplectic resolution of a moduli space of sheaves
on a projective K3 surface:

Theorem 3.2.17. Let v be a Mukai vector of the form v = mw, with w
primitive, m ≥ 2 and w2 > 0. Let H be a v-generic polarization on the
projective K3 surface S.
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1. If m = 2 and w2 = 2, there exists a symplectic desingularization π̃ :
M̃v → Mv obtained as blow-up of Mv along the singular locus Σ :=
Mv \Ms

v, taken with reduced structure. M̃v is deformation equivalent
to M̃10.

2. If m ≥ 3 or w2 ≥ 4, then Mv does not admit any symplectic resolution.

The existence of the symplectic resolution in point 1 of the theorem has
been proved by Lehn and Sorger in [LS06], and the deformation type by
Perego and Rapagnetta in [PR13]. The second point of the theorem as been
proved by Kaledin, Lehn and Sorger in [KLS06].

Also in the case of non primitive Mukai vectors such that there exists
a symplectic desingularization, there exists the following Hodge isometry of
lattices, shown by Perego and Rapagnetta in [PR13]:

Theorem 3.2.18. Under the hypothesis of Theorem 3.2.17 and m = 2, w2 =
2, the pullback π̃∗ : H2(Mv,Z) → H2(M̃v,Z) is injective. H2(Mv,Z) has a
pure weight-two Hodge structure and lattice structure given by the restriction
of the pure weight-two Hodge structure of H2(M̃v,Z) and of its Beauville-
Bogomolov-Fujiki form. Furthermore, there exists a Hodge isometry λv :
v⊥ → H2(Mv,Z).

Remark 3.2.19. The isometry λv is an extension of the morphism de�ned
in Remark 3.2.14, i.e. given the inclusion i : Ms

v ↪→ Mv one has that i∗ ◦ λv :
v⊥ → H2(Ms

v,Z) equals map in Remark 3.2.14 (see Section 3.2 in [PR13]).

Remark 3.2.20. A very similar theory can be done starting from an abelian
surface instead of a K3 surface, see for example in [HL10]. In this case, when
v is primitive then the moduli space Mv has a decomposition, with respect
to the decomposition Theorem 1.1.5, such that one factor is an IHS vari-
ety deformation equivalent to a generalized Kummer variety. Regarding the
non-primitive case, also for A abelian surface some non-primitive Mukai vec-
tors give moduli spaces admitting a symplectic desingularization, that IHS
varieties deformation equivalent to the 6-dimensional example K̃6 introduced
by O'Grady in [O'Gb].

3.3 Lagrangian structure

In this section we want to focus on moduli spaces with some particular
Mukai vectors, which are the ones we will use in the next chapters.

These moduli spaces are particularly interesting because they turn out
to contain as dense open set a relative Jacobian over the smooth locus of a
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certain linear system of curves on S, which is very useful to understand the
geometry of the moduli space itself.

Let S be a projective K3 surface with Pic(S) = Z ·H, with H ample and
H2 = 2; put h := c1(H).

Remark 3.3.1. Under the hypotheses above, the polarization H induces a
surjective morphism f : S → |H|∨ ∼= P2 which has degree 2 and rami�es
along a sextic. Since f has degree 2, it induces an involution on S, that
we will denote ι. Furthermore, we will use many times in the next chapter
that f∗ induces a bijection among lines of P2 and curves of |H| on S, and a
bijection among conics in P2 and curves of |2H| on S.

If the Mukai vector has the form v = (0, bh, c) with b > 0, then there
exists a regular morphism pb,c : M(0,bh,c) → |bH| sending a sheaf in M(0,bh,c) to
its Fitting scheme, that is the support of the sheaf endowed with a schematic
structure, see [LP93]. When v = (0, bh, c) is not primitive, we call p̃b,c :=

pb,c ◦ π̃ : M̃(0,bh,c) → |bH|, where π̃ : M̃(0,bh,c) → M(0,bh,c) is the symplectic
desingularization. Thanks to Matsushita's theorem (see [Mat99]), p̃b,c is a
Lagrangian �brations.

The following proposition will be crucial in the next. We decided to give
a proof of it, since we could not �nd a detailed reference in literature.

Proposition 3.3.2. If C ∈ |bH| is a smooth curve then p−1
b,c (C) ∼= Jb

2+c(C),

where Jb
2+c(C) is the Jacobian of degree b2 + c over the curve C. It follows,

in particular, that a sheaf in M(0,bh,c) supported on a smooth curve is always
stable.

Proof. Let C ∈ |bH| be a smooth curve, and let i : C ↪→ S the inclusion of
C in S. If [F ] ∈ p−1

b,c (C), then v(F ) = (0, bh, c) implies F = i∗G, with G ∈
Coh(C). Under these hypotheses we can apply the Grothendieck-Riemann-
Roch theorem on i, getting

ch1(i∗G) = i∗(ch0(G)td0(Trel)) = i∗(rk(G)) = rk(G)[C]

where the rank of a coherent sheaf is the rank of the �ber over the generic
point, and Trel is the relative tangent bundle with respect to the inclusion
i : C ↪→ S. Again by v(i∗G) = (0, bh, c), we get ch1(i∗G) ∈ |bH|, and then
by the equation above C ∈ |bH| implies rk(G) = 1.

Since [F ] ∈ M(0,bh,c), we have dim(F ) = 1, and we call PH(F,m) =
α0 + α1m its Hilbert polynomial with respect to the polarization H. By
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de�nition

deg(G) = α0(G)− α1(G)

α1(OC)
α0(OC) = χ(G)− χ(G|H)

χ(OC |H)
χ(OC)

where:

� χ(G) = χ(F ) = c because [F ] ∈ M(0,bh,c)

� χ(OC |H) = bH ·H = 2b

� χ(G|H) = 2b · rk(G|C) = 2b

� χ(OC) = 1− g(C) = −b2.

It follows that deg(G) = b2 + c. In other words, an element in the �ber of
pb,c over a smooth curve C ∈ |2H| is the push-forward of a coherent sheaf of
rank 1 and degree b2 + c over C. Finally, a pure sheaf has no torsion on its
support, and a torsion free sheaf of a smooth curve is locally free.

Remark 3.3.3. Note that a similar result holds true on a curve C ∈ |bH|
that is union of k smooth curves C1, ..., Ck, with Ci ∈ |miH| and m1 + ...+
mk = b: one can apply the Grothendieck-Riemann-Roch theorem on the
smooth components of C and sum up the results. As consequence, we can
say more in general that an element in the �ber of pb,c over a curve C ∈ |2H|
which is an union of the form of above is the push-forward of a coherent
sheaf of rank 1 and degree b2 + c over C.

Note that in M(0,bh,c) there are also sheaves of higher rank, e.g. sheaves
of rank b supported on a single curve in H. As consequence, a similar
description is not possible on non reduced curves.

Notation 1. By J d|bH|sm we will denote the relative Jacobian of degree d on

the smooth locus |bH|sm of the linear system |bH|, i.e.
(
J d|bH|sm

)
|C ∼= Jd(C)

for every C ∈ |2H|sm. For a de�nition of relative Jacobian on |2H|sm, see
[ACGH85], Chapter XXI.2.

Corollary 3.3.4. Using the notation just introduced, J b2+c
|bH|sm ⊂ M(0,bh,c),

and J b2+c
|bH|sm is a dense open set in M(0,bh,c) since |bH|sm is a dense open set

of |bH|.

In other words, we can look at M(0,bh,c) as a compacti�cation of J b2+c
|bH|sm .

This point of view will always be adopted in the next.
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Chapter 4

Rational curves on the

O'Grady 10-dimensional

example

Let X be a projective IHS variety of OG 10-type. The (optimistic) goal is
to �nd ample uniruled divisors for any ample class on any such X, following
the strategy presented in Section 2.3.

In this chapter we will deal with a preliminary problem: given an uniruled
divisor D ⊂ X, how to check that it is ample. The strategy that we will
present will be used in the next chapters, and we think it can be considered
as a general strategy to check the ampleness of an (uniruled) divisors on an
IHS variety of OG 10-type.

4.1 The ampleness of a divisor

LetX be an IHS variety,D ⊂ X an uniruled divisor and qX the Beauville-
Bogomolov-Fujiki form of X. The following easy observation is a crucial
point in the strategy we are going to present.

Remark 4.1.1. If qX(D) > 0 then there exists a deformation of (X,D)
where the divisor (or its dual) is ample. Indeed, we can deform (X,D)
to a couple (X ′, D′) where Pic(X ′) ∼= Z; since qX′(D′) = qX(D) > 0, by
Huybrechts projectivity criterion (see [Huy99], Theorem 3.11) this implies
that X ′ is projective, hence D′ or (D′)∨ is ample (this argument is also
presented in Remark 3.12(i) of [Huy99]).

By the proof of Corollary 2.2.4, the ample deformation of D (or of its
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dual) is still uniruled. Furthermore, D and its the ample deformations obvi-
ously belong to the same connected component of Mpol

OG 10, the moduli space
of marked and polarized IHS varieties of OG 10-type (see Section 1.2 for the
notations).

Summarizing, the new goal is to answer to the following question:

Question 4.1.2. Let D be a (uniruled) divisor in X, with X an IHS variety
of OG 10-type. How to compute the square qX(D)?

An answer to this question is given by Theorem 3.2.18: given X = Mv

with v Mukai vector as in the hypothesis of Theorem 3.2.17 part 1, there ex-
ists a Hodge isometry λv : v⊥ → H2(Mv,Z); furthermore, the desingulariza-
tion π : M̃v → Mv gives an inclusion of lattices π∗ : H2(Mv,Z)→ H2(M̃v,Z).
It follows that, given D ⊂ M10 divisor, one has q10(π∗D) = (λ−1

v D)2, where
the square on the right is with respect to the Mukai pairing introduced on
the sublattice v⊥ ⊂ H∗(S,Z) in Section 3.2.

As consequence, the new goal is to understand the class λ−1
v D inside the

Mukai lattice; once this is done, the Mukai square (λ−1
v D)2 will follow from

an easy computation. We will use the following Corollary of Theorem 3.2.18,
proved by Perego and Rapagnetta in [PR14]:

Corollary 4.1.3. Let X, H and v as in the hypothesis of Theorem 3.2.18.
Then the isometry λv restricts to an isometry (v⊥)1,1 := v⊥ ∩ (H∗(S))1,1 →
Pic(Mv).

Remark 4.1.4. In the corollary above we are identifying line bundles with
their class in H2(Mv,Z) through the �rst Chern class c1. We have already
pointed out that this can be done because for IHS varieties the �rst Chern
class homomorphism is an injection.

For S with Pic(S) ∼= Z, dim(v⊥)1,1 = dim Pic(Mv) = 2; in the next, we
will call {e, f} a basis of (v⊥)1,1. We present here the strategy we will follow
in order to answer Question 4.1.2:

Strategy 4.1.5. Let us assume the hypothesis of Theorem 3.2.18, and let
D ∈ Pic(Mv). In order to compute q10(D), we will follow the following steps.

1. We will de�ne two "independent" curves in Mv, see the next remark
for the precise meaning of the word "independent".

2. We will compute the geometrical intersection in Mv of the divisors
λv(e), λv(f) with the curves de�ned in point 1.
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3. We will compute the geometric intersection inside Mv of D with the
curves de�ned in point 1.

4. We will compare what computed in points 2 and 3 to write λ∗vD in
terms of the basis {e, f} of (v⊥)1,1, and we will compute (λ∗vD)2 =
q10(D).

Remark 4.1.6. By the word "independent" in point 1 of the Strategy 4.1.5
we mean that we will need two curves such that the system of two equations
and two variables that we will get comparing the intersections in 2 and 3
will have a unique solution.

Remark 4.1.7. We will see in the next (cf. Chapter 6) that Mv is not
always locally factorial; this means that a Weil divisor D ⊂ Mv can happen
to be non Cartier. As consequence, once de�ned a Weil divisor in a moduli
space Mv the �rst step will actually be to check that D ∈ Pic(Mv).

4.2 Generators of the Mukai lattice

In this section we will deal with point 1 and 2 of the Strategy 4.1.5. First
of all, we want to �x a moduli space:

Notation 2. From now on S will be a generalK3 surface with Pic(S) = Z·H
with H ample and H2 = 2; we will call c1(H) =: h. We also �x the Mukai
vector

v := (0, 2h, 4) ∈ H∗(S,Z).

Note that v is not primitive in the Mukai lattice, and it satis�es the
hypotheses of Theorems 3.2.17 and 3.2.18; it follows that there exists a sym-
plectic desingularization π̃ : M̃v → Mv s.t. M̃v is of OG 10-type. Notice also
that v is chosen as in Section 3.3, then Mv carries a Lagrangian structure:
Mv contains the relative Jacobian J 8

|2H|sm .

We start with point 1 of Strategy 4.1.5: we de�ne two curves in Mv, that
we will use in all our next computations. Consider:

� a smooth curve γ ∈ |2H|, a �xed point p0 ∈ γ, the inclusion i : γ×γ ↪→
S × γ and the diagonal ∆ ⊂ γ × γ.

� four generic points q1, ..., q4 ∈ S, their dual points qi+4 := ι(qi) for
i = 1, ...4 (cfr. Remark 3.3.1), the pencil τ ⊂ |2H| ∼= P5 de�ned by
taking {q1, ..., q8} as base points, the inclusion j : C ↪→ S × τ of the
universal curve of τ .
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De�nition 4.2.1. Using the notation of above, we de�ne

EΓ := i∗Oγ×γ(7p0 × γ + ∆) ∈ Coh(S × γ)

ET := j∗OC

(
2(q1 × τ + q2 × τ + q3 × τ + q4 × τ)

)
∈ Coh(S × τ).

The families EΓ and ET are meant to de�ne curves in the moduli space Mv,
see Lemma 4.2.2 here below. They have been chosen in order to parametrize
a "vertical" curve contained in J8(γ) ⊂ Mv, that is a copy of γ inside its
Jacobian of degree 8, and an "horizontal" curve in Mv, that is a section of
the pencil τ ⊂ |2H| obtained using the base points of the pencil.

Lemma 4.2.2. The families EΓ and ET of De�nition 4.2.1 de�ne two curves
in Mv, that we will call Γ and T respectively.

Proof. This is just consequence of the fact that Mv is the object corepresent-
ing the functorMv, as explained in Section 3.1. The families EΓ and ET de-
�ne curves in the moduli space we are interested in because they parametrize
families of line bundles of degree 8 on the curves of |2H|, and J 8

|2H|sm ⊂ Mv.
Note that these families are �at because their bases are reduced and all the
�bers have the same Hilbert polynomial, cf. Proposition 2.1.2 in [HL10].

In order to pass to point 2 of Strategy 4.1.5, we start choosing a basis
for (v⊥)1,1, where as before v = (0, 2h, 4) ∈ H∗(S,Z).

(v⊥)1,1 := {(a, bh, c) | < (0, h, 2), (a, bh, c) >= 0} = {(a, ah, c), a, c ∈ Z}
=< (1, h, 0), (0, 0, 1) >Z .

We set e := (1, h, 0) and f := (0, 0, 1). An answer to point 2 of Strategy
4.1.5 is given by the following result:

Proposition 4.2.3. Let e, f be the generators of (v⊥)1,1 just de�ned above,
Γ, T ⊂ Mv the curves corresponding to the universal families of De�nition
4.2.1 and λv : (v⊥)1,1→̃Pic(Mv) the isometry of Corollary 4.1.3. One has
the following intersections:

1. λv(e) · Γ = −5, λv(f) · Γ = 0.

2. λv(e) · T = −5, λv(f) · T = 1.

We will end this section explaining the strategy we will use to compute
the intersection in Proposition 4.2.3, leaving to the next section the actual
computations. The fundamental tool is Theorem 4.2.7 below; in a particular
case this is Proposition 2.3.7 in [Per08], and more in general it is Theorem
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8.1.5 in [HL10]. But before stating the theorem, we need to translate some
results obtained for Mv in terms of classes in the Grothendieck group K(S)
of S.

We have seen in Section 3.2 that the Mukai vector de�nes an homomor-
phism v : K(S)→ H∗(S,Z) sending the class of a sheaf to its Mukai vector;
it follows that one can de�ne the usual moduli spaces starting from one class
c ∈ K(S): we will call Mc := Mv(c). Since χ(E,F ) = − < v(E), v(F ) >,
given a class c ∈ K(S) the Mukai vector homomorphism restricts to the
orthogonal of c with respect to the Euler pairing: we get c⊥ → v(c)⊥ ⊂
H∗(S,Z). If v∨ : K(S) → H∗(S,Z) is the dual Mukai vector homomor-
phism c 7→ v(c)∨, we will call λc : c⊥ → H2(Mv,Z) the composition of v∨

restricted to c⊥ and the isometry λv(c) of Theorem 3.2.18. The next step is
to understand what corresponds to (v⊥)1,1 in c⊥.

Lemma 4.2.4. Following the notation above, let α ∈ K(S); then α ∈
{1, h, h2}⊥⊥ if and only if c1(α) ∈ NS(S).

Proof. Let β ∈ K(S); then β ∈ {1, h, h2}⊥ if and only if:

� χ(β, 1) =
∫

ch(β) ch(OS) td(S) = 2ch0(β) + ch2(β) = 0, i.e. ch2(β) =
−2ch0(β);

� χ(β, h) =
∫

ch(β) ch(OS(H)) td(S) = ch0(β) + ch1(β) · h = 0, i.e.
ch1(β) · h = −ch0(β);

� χ(β, h2) =
∫

ch(β) ch(OS(2H)) td(S) = 4ch0(β)− 2ch1(β) · h = 0, i.e.
ch1(β) · h = −2ch0(β).

Combining the last two points, we get ch(β) = (0, c1(β), 0) with c1(β)·h = 0,
i.e. c1(β) ∈ H2(S,Z)∩ (H2,0(S)⊕H0,2(S)). It follows that α ∈ {1, h, h2}⊥⊥
if for any b ∈ H2(S,Z) ∩ (H2,0(S)⊕H0,2(S)) one has∫

S
(0, b, 0) ch(α) td(S) = c1(α) · b = 0,

meaning c1(α) ∈ NS(S).

Remark 4.2.5. By de�nition (v⊥)1,1 = v⊥∩(H0(S,C)⊕NS(S)C⊕H2(S,C)),
i.e. a = (a0, a1, a2) ∈ v⊥ belongs to (v⊥)1,1 if and only if a1 is the �rst
Chern class of a line bundle. In other words, Lemma 4.2.4 says that the
Mukai vector homomorphism restricts to an homomorphism λc : c⊥h :=
c⊥ ∩ {1, h, h2}⊥⊥ → (v⊥)1,1.
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De�nition 4.2.6. Let C be a curve, EC ∈ Coh(S×C) and πs : S×C → S,
πC : S × C → C the projections. We de�ne the homomorphism λEC :
K(S)→ Pic(C) to be the composition of the following homomorphisms:

K(S) K(S × C) K(S × C) K(C) Pic(C).
π∗S [EC ]· πC,! det

Theorem 4.2.7. Following the notations above, let EC be a �at family of
semistable sheaves of class c parametrized by a curve C, with classifying
morphism φEC : C → Mc. Then the following diagram commutes:

c⊥h Pic(Mc)

K(S) Pic(C)

λc

φ∗EC
λEC

In other words, given α ∈ c⊥h and a curve C ⊂ Mc with universal family
EC , Theorem 4.2.7 gives a way to compute the intersection of λc(α) with the
curve as follows:

λc(α) · C = deg
(
λEC (α)

)
.

Remark 4.2.8. We want to apply Theorem 4.2.7 to compute the intersec-
tion of λv(e) and λv(f) with the curves Γ and T . Since the morphism λc is
the composition of v∨ and λv(c), we need to choose generators [E], [F ] ∈ c⊥h
such that v(E) = e∨ = (1,−h, 1) and v(F ) = f∨ = (0, 0, 1).

4.3 Proof of Proposition 4.2.3

In this section we will prove Proposition 4.2.3, applying Theorem 4.2.7
for [E], [F ] ∈ K(S) as in Remark 4.2.8 and EΓ, ET as in De�nition 4.2.1.

4.3.1 Intersections 1 of Proposition 4.2.3

Following the notations above, in this section we want to compute λc(e)·Γ
and λc(f) ·Γ. Let πS : S×γ → S and πγ : S×γ → γ be the two projections.
Thanks to Theorem 4.2.7, we need to compute

c1

(
πγ,!(EΓ ⊗ π∗SE)

)
= ch1

(
πγ,!(EΓ ⊗ π∗SE)

)
and

c1

(
πγ,!(EΓ ⊗ π∗SF )

)
= ch1

(
πγ,!(EΓ ⊗ π∗SF )

)
.
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The Grothendieck-Riemann-Roch theorem on the projection πγ : S× γ → γ
states that the following diagram commutes:

K(S × γ) K(γ)

H∗(S × γ,Q) H∗(γ,Q)

πγ,!

ch(·) td(Tπγ ) ch(·)
πγ,∗

where Tπγ := TS×γ − π∗γTγ ∈ K(S × γ). In other words:

ch1

(
πγ,!(EΓ ⊗ π∗SE)

)
= πγ,∗

[
ch(π∗SE ⊗ EΓ) td(Tπγ )

]
3

(4.3.1)

and
ch1

(
πγ,!(EΓ ⊗ π∗SF )

)
= πγ,∗

[
ch(π∗SF ⊗ EΓ) td(Tπγ )

]
3
. (4.3.2)

We start by computing the �rst expression.
Since TS×γ − π∗γTγ = π∗STS in K(S × γ), then td(Tπγ ) = td(π∗STS) =

π∗S td(S); it follows that:

ch(π∗SE ⊗ EΓ) td(Tπγ ) = ch(EΓ)π∗S
(
ch(E) td(S)

)
,

where ch(E) td(S) = v(E)
√

td(S) = (1,−h, 1) because by de�nition
v(E) = (1,−h, 0), and

√
td(S) = (1, 0, 1) since S is a K3 surface. It follows

that:
π∗S
(
ch(E) td(S)

)
= (1,−[H × γ], [pt× γ], 0). (4.3.3)

It remains to compute the Chern character of EΓ = i∗Oγ×γ(7(p0×γ)+∆);
set G := Oγ×γ(7(p0 × γ) + ∆). We use the Grothendieck-Riemann-Roch
theorem on the inclusion i : γ × γ ↪→ S × γ, i.e. the commutativity of the
following diagram:

K(γ × γ) K(S × γ)

H∗(γ × γ,Q) H∗(S × γ,Q)

i!

ch(·) td(Ti) ch(·)

i∗

where Ti := Tγ×γ − i∗TS×γ ∈ K(γ × γ).
Since i!G = i∗G = EΓ (i is a closed inclusion), we get:

chk
(
EΓ

)
= i∗

([
ch(G) td(Ti)

]
k−1

)
.

G is a line bundle on γ × γ, then:

ch(G) =
(

1, c1(G),
(c1(G))2

2

)
=
(

1, 7[p0 × γ] + ∆, 3
)
,

where we used the following intersections:
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� ∆2 = deg(N∆/γ×γ) = deg(Tγ) = −deg(ωγ) = −8, since a curve γ ∈
|2H| has g(γ) = 5;

� (p0 × γ)2 = 0;

� ∆ · (p0 × γ) = 1.

To compute td(Ti) we argue as follows: by the very de�nition of Ti and
by the following short exact sequence

0→ Tγ×γ → i∗TS×γ → Nγ×γ/S×γ → 0

it follows that Ti = N−1
γ×γ/S×γ ∈ K(γ × γ). If π1 : γ × γ → γ is the

projection on the �rst factor, then N−1
γ×γ/S×γ = π∗1N

−1
γ/S = π∗1ω

−1
γ where the

last equality follows from the adjunction formula on the K3 surface S. Since

td(ω−1
γ ) =

(
1,

c1(ω−1
γ )

2

)
= (1,−4), it follows that:

td(Ti) = (1,−4[pt× γ], 0).

Therefore, we get:

ch(G) td(Ti) = (1, 7[p0 × γ] + ∆, 3)(1,−4[pt× γ], 0) = (1, 3[p0 × γ] + ∆,−1)

and then:
ch(EΓ) =

(
0, [γ × γ], 3[p0 × γ] + [i∗∆],−1

)
. (4.3.4)

We can �nally compute
[
ch(π∗SE ⊗ EΓ) td(Tπγ )

]
3
, inserting in (4.3.1) what

we have computed in (4.3.3) and (4.3.4):[
ch(π∗SE⊗EΓ) td(Tπγ )

]
3
=
[
ch(EΓ)π∗S

(
ch(E) td(S)

)]
3
=

=
[(

0, [γ × γ], 3[p0 × γ] + [i∗∆],−1
)(

1,−[H × γ], [pt× γ], 0
)]

3

= [γ × γ][pt× γ] + [3(p0 × γ) + i∗∆][−(H × γ)]− 1

= −5,

where we used the following intersections:

� (γ × γ)(pt× γ) = deg
(
Nγ×γ/S×γ

)
|pt×γ = 0

� i∗∆ · (H × γ) = 4

� (p0 × γ)(H × γ) = 0.
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This means that λv(e) · Γ = πγ,∗(−10) = −5.
The computation of λc(f) · Γ is similar; we start from 4.3.2, where now

v(F ) = (0, 0, 1). We get:

ch(π∗SF ⊗ EΓ) td(Tπγ ) = ch(EΓ)π∗S
(
ch(F ) td(S)

)
= ch(EΓ)π∗S

(
v(F )

√
td(S)

)
= ch(EΓ)π∗S(0, 0, 1) =

(
0, [γ × γ], 3[p0 × γ] + [i∗∆],−1

)(
0, 0, [pt× γ], 0

)
and then: [

ch(π∗SF ⊗ EΓ) td(Tπγ )
]
3
= [γ × γ][pt× γ] = 0,

i.e. λv(f) · Γ = 0.

4.3.2 Intersections 2 of Proposition 4.2.3

Let πS : S × τ → S and πτ : S × τ → τ be the projections. We need to
compute

c1

(
πτ,!(ET ⊗ π∗SE)

)
= ch1

(
πτ,!(ET ⊗ π∗SE)

)
and

c1

(
πτ,!(ET ⊗ π∗SF )

)
= ch1

(
πτ,!(ET ⊗ π∗SF )

)
.

By the Grothendieck-Riemann-Roch theorem on the projection πτ , we get

c1

(
πτ,!(ET ⊗ π∗SE)

)
= πτ,∗

[
ch(π∗SE ⊗ ET ) td(Tπτ )

]
3

and
c1

(
πτ,!(ET ⊗ π∗SF )

)
= πτ,∗

[
ch(π∗SF ⊗ ET ) td(Tπτ )

]
3
,

where Tπτ := TS×τ − π∗τTτ = π∗STS in K(S × τ). Also in this section, we
start from λv(e) · T .

Since td(Tπτ ) = π∗S td(S), similarly to the previous section the following
holds:

ch(π∗SE ⊗ ET ) td(Tπτ ) = ch(ET )
(
1,−[H × τ ], [pt× τ ], 0

)
. (4.3.5)

It remains to compute the Chern characters of ET .
Set T := OC

(
2(q1 × τ + ... + q4 × τ)

)
, so that ET = j∗T . Since j : C ↪→

S × τ is a closed immersion, j∗T = j!T , as in the section above; using the
Grothendieck-Riemann-Roch theorem on j, we get:

ch(ET )k = j∗
(
[ch(T ) td(Tj)]k−1

)
,

where Tj := TC − j∗TS×τ ∈ K(C).
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Remark 4.3.1. There exists an isomorphism C ∼= S̃, under which qi×τ gets
mapped into the exceptional divisor Ei over the point qi, i = 1, ..., 8. Now
on, we will use the blow-up notations.

It follows:

ch(T ) =
(

1, c1(T ),
c1(T )2

2

)
= (1, 2(E1 + E2 + E3 + E4),−8).

In order to compute ch(ET ) it remains to compute td(Tj) =
(

1,
c1(Tj)

2 ,
c1(Tj)

2

12

)
.

By de�nition of Tj , we need to compute:

det(TC)⊗ det(TS×τ |C)−1 = ω−1
C ⊗ π

∗
S(ωS)|C ⊗ π∗τ (ωτ )|C.

We will use the following facts:

� ωS = 0 since S is K3, and then π∗S(ωS)|C = 0;

� since τ ∼= P1, ωτ = Oτ (−2). Furthermore, for t ∈ τ , π−1
τ (t)|C ∼= Ct × t,

with Ct the curve corresponding to t, and then π∗τ (ωτ )|C = OC(−2(Ct×
t));

� since C ∼= S̃, if π : C → S is the blow-up map then ω−1
C = π∗ω−1

S −∑8
i=1Ei = −

∑8
i=1Ei.

Then:

td(Tj) =
(

1,−[Ct × t]−
8∑
i=1

[Ei]

2
,

(
−2(Ct × t)−

∑8
i=1Ei

)2
12

)
=
(

1,−[Ct × t]−
8∑
i=1

[Ei]

2
, 2
)
,

where the last equality follows from (Ct × t)2 = 0 and (Ct × t) · Ei = 1,
∀i = 1, ..., 8.

In conclusion, we have that:

ch(T ) td(Tj) =
(

1, 2[E1 + E2 + E3 + E4],−8
)(

1,−[Ct × t]−
8∑
i=1

[Ei]

2
, 2
)

=
(

1, 2[E1 + E2 + E3 + E4]− [Ct × t]−
8∑
i=1

[Ei]

2
,−10

)
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and we get:

ch(ET ) =
(

0, [C], 2[E1 +E2 +E3 +E4]− [Ct × t]−
8∑
i=1

[Ei]

2
,−10

)
. (4.3.6)

Using the expression (4.3.6) just computed, we obtain that the expression
(4.3.5) equals to:

[C][pt× τ ]−2[

4∑
i=1

Ei][H × τ ] + [Ct × t][H × τ ] +

8∑
i=1

[Ei]

2
[H × τ ]− 10.

Notice that:

� (C)(pt × τ) = |{(pt, t) ∈ S × τ | pt ∈ Ct}|; we can assume pt = p /∈
{q1, ..., q8}, and such a p determines an unique Cp ∈ τ . It follows
(C)(pt× τ) = 1;

� Ei · (H × τ) = (pi × τ)(H × τ) = 0 ∀i = 1, ..., 8;

� (Ct × t)(H × τ) = Ct ·H = 4;

It follows that: [
ch(π∗SE ⊗ ET ) td(Tπτ )

]
3
= 1 + 4− 10 = −5,

i.e. λv(e) · T = −5.
In order to compute λv(f) · T , we still need to compute only

c1

(
πτ,!(ET ⊗ π∗SF )

)
= j∗

[
ch(π∗SF ⊗ ET ) td(Tπτ )

]
3
.

where now

π∗S(ch(F ) td(S)) = π∗S(0, 0, 1) = (0, 0, [pt× τ ], 0).

Using (4.3.6) of the previous section we get:

λv(f) · T = j∗

([
ch(π∗SF ⊗ ET ) td(Tπτ )

]
3

)
= j∗

(
[C][pt× τ ]

)
= 1.

This completes the proof of Proposition 4.2.3.
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Chapter 5

A �rst example of ample

uniruled divisor

In this chapter we will de�ne a divisor on an IHS variety of OG 10-type,
and we will show that it has an ample and uniruled deformation, following
Strategy 4.1.5 introduced in Section 4.1.

Along this chapter we will use the notations introduced in Notation 2.

5.1 De�nition of the divisor

Fix ρ ∈ |H| a rational curve; we ask ρ to satisfy the following conditions:

(a) Consider the surjective morphism f : S → P2 discussed in Remark
3.3.1, and call τ ′ the pencil of conics in P2 corresponding to the pencil
τ ⊂ |2H|. We �x ρ ∈ |H| such that the line f(ρ) ⊂ P2 is not tangent
to any of the three singular conics in the pencil τ ′.

(b) The line f(ρ) ⊂ P1 is not tangent to the conics of τ ′ which are tangent
to the sextic in P2 that is the branch locus of f : S → P2.

We will de�ne a divisor in Mv using the open inclusion J 8
|2H|sm ⊂ Mv of

Corollary 3.3.4.

De�nition 5.1.1. Let D ⊂ Mv be the divisor de�ned as the closure in Mv

of the locus in J 8
|2H|sm consisting of sheaves of the form i∗OC(4r+ p1 + p2 +

p3 + p4), where C ∈ |2H|sm, i : C ↪→ S, p1, .., p4 ∈ C and r ∈ C ∩ ρ.

Note that the multiplicities of the points in the de�nition of D are just
chosen in order to have line bundles of degree 8 over the curves of |2H|sm.
The geometrical intuition behind the de�nition ofD is given by the following:
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Lemma 5.1.2. The divisor D of De�nition 5.1.1 is uniruled.

Proof. There exists a rational dominant map

φ : ρ× Sym4(S) 99K D

de�ned as follows: φ : ξ :=
(
r, (p1, ..., p4)

)
7→ i∗OCξ(4r + p1 + ... + p4),

where Cξ is the unique curve of |2H| passing through ξ and i∗ : Cξ ↪→ S its
embedding in S. Note that such a curve is actually unique for a generic choice
of r, p1, ..., p4: it is the pullback through f : S → |H|∨ ∼= P2 of the unique
conic passing through the �ve generic points f(r), f(p1), ..., f(p4) ∈ P2, see
Remark 3.3.1.

Remark 5.1.3. The schematic structure of D is given by the Brill-Noether
theory on curves in the linear system |2H|, see [ACGH11], Section 3 of
Chapter XXI. Consider U := |2H|sm, its universal curve U → U and a
Poincaré line bundle L8 ∈ Pic(U ×U J 8

U ) of the relative Jacobian J 8
U ; we call

q : U ×U J 8
U → J 8

U

the projection on the second factor. Furthemore, consider the universal curve
C ⊂ ρ× U , i.e. C := {(r, u) ∈ ρ× U | r ∈ Cu := p−1(u)}, and its projection
to the second factor pU : C → U . Finally, let U ×U J 8

U → U be the natural
map induced by the �ber product on U , and consider the �ber product:

C×U U ×U J 8
U U ×U J 8

U

C U

qU

α

pU

Let s : C→ C×U U ×U J 8
U be a section of α, and call C := s(C). Given the

sheaf
R1q∗

(
L8 ⊗ qU,∗OC×U×J 8

U
(−4C)

))
∈ Coh(J 8

U ),

the scheme W8
ρ ⊂ J 8

U is de�ned to be its Fitting scheme. Notice that:

Supp(W8
ρ ) = {(u, L) ∈ U × J8(Cu) | ∃r ∈ Cu ∩ ρ s.th. h0(Cu, L(−4r)) > 0}.

The divisor D is the closure of W8
ρ in Mv. Notice that, as closure of the

image of the map given in Lemma 5.1.2, D is irreducible. Furthermore, it
is reduced, since it is irreducible and W8

ρ |Cu is reduced for any u ∈ U , see
[ACGH85], Proposition 4.4 in Chapter IV.
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Given v ∈ H∗(S,Z) non primitive, the moduli spaces Mv can happen to
be non locally factorial, i.e. there could be divisors which are Weil but non
Cartier. We recall here the de�nition of locally and k-factorial.

De�nition 5.1.4. Let X be a normal projective variety, and let A1(X) be
the group of Weil divisors of X, up to linear equivalence; consider the natural
inclusion d : Pic(X) → A1(X) associating to any line bundle its associated
Weil divisor. X is said to be k-factorial if the cokerne of d is k-torsion, and
it is said to be locally factorial if d is an isomorphism.

Perego and Rapagnetta showed in [PR14] that the moduli spaces Mv

are either locally factorial or 2-factorial. In the same paper, they gave the
following criterion:

Theorem 5.1.5. Let us consider a Mukai vector of the form v = 2w ∈
H∗(S,Z). Then

� Mv is 2-factorial if and only if it exists γ ∈ (H∗(S))1,1 such that
< γ,w >= 1.

� Mv is locally factorial if and only if for any γ ∈ (H∗(S))1,1 one has
< γ,w >∈ 2Z.

Lemma 5.1.6. The divisor D ⊂ Mv introduced in De�nition 5.1.1 is a
Cartier divisor.

Proof. We just need to apply Theorem 5.1.5 to our case: v = (0, 2h, 4), then
w = (0, h, 2); an element γ ∈ (H∗(S))1,1 is a vector of the form (a, bh, c),
then

γ · (0, h, 2) = 2b− 2a ∈ 2Z

for any γ ∈ (H∗(S))1,1. It follows that M(0,2h,4) is locally factorial and the
divisor D is a Carter divisor.

5.2 Intersection of the divisor and the curves

We start this section with a very easy remark, that we want to write in
detail since it will be useful in the next.

Remark 5.2.1. Let C be a smooth curve. Jk(C) is a torsor on the abelian
variety J0(C), i.e. by de�nition there is a free and transitive action of the
group J0(C) on the space Jk(C). A theta divisor on Jk(C) is an e�ective
divisor whose translate in J0(C) is a principal polarization. If g is the genus
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of C, then the subtorsor of Jg−1(C) consisting of e�ective divisors up to linear
equivalence is a theta divisor in Jg−1(C) (this can be found for example in
[BL13]). It follows that, for r ∈ Jk−g+1(C),

θr := {r + α| α is e�ective}

is a theta divisor in Jk(C), since it is a translate of the previous one. Fur-
thermore, θr and θs do not coincide if r 6= s in Jk−g+1(C). Indeed Jk(C) is
a torsor on J0(C), then the morphism

φθ : J0(C)→ (Jk(C))∨

d 7→ θd ⊗ θ−1

is an isomorphism for any theta divisor θ in Jk(C); choosing the theta divisor
θr ⊂ Jk(C) as before and d = s − r ∈ J0(C), we get θr 6= θs if r 6= s in
J0(C).

Proposition 5.2.2. Let D be the divisor introduced in De�nition 5.1.1 and
Γ be the curve de�ned by Lemma 4.2.2. Then D · Γ = 20.

Proof. Let p : Mv → |2H| the map associating to a S-equivalence class of
sheaves its Fitting scheme. Γ is supported inside the �ber p−1(γ), which is
J8(γ) by Proposition 3.3.2. It follows that we need to compute the intersec-
tion of D and Γ just inside J8(γ); for simplicity, we set Dγ := D|J8(γ).

If AJ : γ → J8(γ) is the Abel-Jacobi map translated by 7p0, then

[Γ] = AJ∗[γ] =
[θ4

4!

]
∈ H2(J8(γ),Z),

where [θ] is the class of a theta divisor on J8(γ). If we denote by {r1, r2, r3, r4} =
ρ ∩ γ, then Dγ =

∑4
i=1Dri , where Dri is the component of Dγ obtained by

�xing the point ri in the intersection ρ ∩ γ; by Remark 5.2.1, [Dri ] = [θ].
Using the Poincaré formula, it follows that:

Γ ·D = 4
[θ4

4!

]
·[θ] = 4

[θ5

4!

]
= 20.

Proposition 5.2.3. Let D be the divisor introduced in De�nition 5.1.1 and
T the curve de�ned by Lemma 4.2.2. Then D · T = 84.
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Proof. We divide the proof in two parts. In the �rst one, we will give a strat-
egy to compute the intersection D · T ; in the second one, we will proceed
with the computations.

1. Reformulation of the intersection D · T . We noticed in the proof
of Proposition 4.2.3 that the universal curve C ⊂ S × τ parametrizing T is
isomorphic to S̃ := Blq1,...,q8S, where q1, ..., q8 are the base points of τ . In
this setting, the universal family of τ is the sheaf

OS̃
(
2(E1 + E2 + E3 + E4)

)
∈ Coh(S̃),

where E1, ..., E4 are the exceptional divisors of the blow-up S̃ over the points
q1, ..., q4 respectively. Notice that, in this setting, the �at morphism S̃

g−→ τ is
the morphism that at any point s ∈ S̃ associates the point in τ corresponding
to the unique curve in τ individuated by s, q1, .., q8.

In order to compute the intersection of T with D, let us consider the
following �ber product:

X := ρ̂×τ S̃ S̃

ρ̂ τ

f̂

ĝ g

f

where ρ̂
ν−→ ρ is the normalization of ρ and f : ρ̂ → τ is de�ned as follows:

the inclusion of ρ in S̃ de�nes a map h : ρ → τ of degree 4, since for any
α ∈ τ one has ρ · α = 4; let f := h ◦ ν. Note that f̂ : X → S̃ is a covering of
degree 4.

Let us consider the identity morphism id : ρ̂→ ρ̂ and the morphism ρ̂→
S̃ given by the composition of the inclusion of ρ ↪→ S̃ and the normalization
morphism ν; by the universal property of the �ber product, that there exists
a section σ : ρ̂ → X of ĝ. We call Cρ := σ(ρ̂) its image. Note that it is a
divisor on the surface X. Finally, set Êi := f̂∗Ei for i = 1, ..., 8. We �nally
de�ne

L := OX
(
2(Ê1 + Ê2 + Ê3 + Ê4)− 4Cρ

)
∈ Pic(X).

By the very de�nition of D (see also Remark 5.1.3), in order to compute
the intersection D · T we need to check when h0(L|r) = 0, for r ∈ ρ̂. This
will be make precise in what follows.

Since the family L is �at over ρ̂, it follows that χ(Lr) is constant in r ∈ ρ̂.
Let r ∈ ρ̂ be such that Cr is a smooth curve; thanks to the Riemann-Roch
theorem:

χ(Lr) = deg(Lr)− g(Cr) + 1 = 0
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since g(Cr) = 5 for Cr ∈ |2H|. It follows h0(Lr) = h1(Lr) for any r ∈ ρ̂.
Furthermore, note that

H1(ĝ−1(r), Lr) ∼= (R1ĝ∗L)r

since H2(ĝ−1(r), Lr) = (R2ĝ∗L)r = 0. Because of the schematic structure
given to D in Remark 5.1.3, we conclude that

D · T = c1(D|T ) = c1(R1ĝ∗L).

2. Computation of the intersection. We need to compute c1(R1ĝ∗L).
In the Grothendieck group K(S) one has

ĝ!L = ĝ∗L−R1ĝ∗L.

Notice that ĝ∗L = 0 because it is torsion free (as push forward of a line
bundle) and with generic �ber equal to 0; it follows

ch(R1ĝ∗L) = − ch(ĝ!L).

We compute ch(ĝ!L) using the Grothendieck-Riemann-Roch theorem on
ĝ : X → ρ̂:

ch(ĝ!L) = ĝ∗
(
ch(L) td(X)

)
td(ρ̂)−1. (5.2.1)

Note thatX is smooth (which is a necessary condition to apply the Grothendieck-
Riemann-Roch theorem). Indeed, X is a �ber product of smooth varieties,
hence it is smooth where the morphisms f and g are smooth; g is not smooth
on points lying on a singular curve of the pencil τ , while f is not smooth
on rami�cations points, that are the points of ρ̂ where the image of ρ̂ in S
is tangent to a curve in τ . We conclude that X is smooth if the singular
conincs in τ are not tangent to the rational curve ρ, which is true thanks to
conditions (a) and (b) on the rational curve ρ.

In the following, we will compute the factors of equation (5.2.1).

1. td(ρ̂) =
(

1,
c1(ω∨ρ )

2

)
= (1, 1) since ρ̂ ∼= P1; it follows that td(ρ̂)−1 =

(1,−1).

2. td(X) = td(TX) =
(

1, c12 ,
c21−c2

12

)
, where ci := ci(ω

∨
X) for i = 1, 2.

Because of the short exact sequences

0→ ĝ∗Ω1
ρ̂ → Ω1

X → Ω1
ρ̂/X
∼= f̂∗Ω1

τ/S → 0

and
0→ g∗Ω1

τ → Ω1
S̃
→ Ω1

τ/S̃
→ 0
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one has

c1(ω∨X) = ĝ∗c1(ω∨ρ̂ ) + f̂∗[c1(ω∨
S̃

) + g∗c1(ωτ )]

= 2ξ + f̂∗[−E1 − ...− E8 − 2C̃t] = 2ξ + [−Ê1 − ...− Ê8]− 8ξ

= −6ξ + [−Ê1 − ...− Ê8].

In the above computations ξ is the class of a �ber of X → ρ̂, C̃t =
g−1(t) for t ∈ τ , and the intersections follow from: S̃ is the blow-up
of a K3 surfaces in 8 points, τ ∼= P1 and f̂ : X → S̃ is a covering of
degree 4. It follows that:

c2
1 = (−6ξ)2 + 12(ξ · [Ê1] + ...+ ξ · [Ê8]) + [Ê1 + ...+ Ê8]2.

Because of the following intersections:

� ξ2 = 0 since ξ is a �ber;

� ξ · Êi = 1 because it is a product of a �ber and a section;

� Êi · Êj = 4Ei · Ej = −4δij

we get
c2

1 = 12 · 8− 4 · 8 = 64.

It remains to compute c2(TX). We recall that, for a smooth projec-
tive complex manifold of dimension d, cd(TX) = χtop(X); this is a
combination of Hirzebruch-Riemann-Roch theorem, Borel-Serre iden-
tity and the Hodge decomposition theorem. Given a rami�ed covering
φ : X → Y of degree d with branch locus Bφ and rami�cation locus
Rφ, one has χ(X \Rφ) = d · χ(Y \Bφ), which implies

χ(X) = d · χ(Y ) + χ(Rφ)− d · χ(Bφ).

In our case: X is a covering of degree 4 of a blow-up of aK3 surface in 8
points; the branch locus of f : ρ̂→ τ are the points of τ parametrizing
curves of the pencil which are tangent in S to the rational curve ρ;
translating the problem in P2 via the morphism S → P2 associated to
the linear system |H| (cf. Remark 3.3.1), we need to count how many
conics in a pencil are tangent to a line. This happens for 2 conics, which
correspond to 2 curves on P2 and then 2 curves of |2H| pulled-back on
Ŝ; it follows that the branch locus Bf̂ of f̂ corresponds to 2 curves of

genus 5. Regarding the rami�cation locus of f̂ , observe the following:
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each conic in P2 tangent to the line has one point of intersection with
the line, which corresponds on S to 2 points of tangence among the
curve of |2H| and the rational curve ρ; this happens for 2 branch curves
parametrized by τ , which means that the rami�cation locus Rf of f
consists of 4 points, and then the rami�cation locus Rf̂ of f̂ consists
of 4 curves of genus 5. Then:

χ(X) = 4χ(S̃) + χ(Rf̂ )− 4χ(Bf̂ )

= 4χ(S̃) + 4χ(α)− 4 · 2χ(α)

= 4χ(S̃)− 4χ(α)

where α is a curve of genus 5. Because of the following expressions:

� χ(S̃) = χ(S) + 8(χ(P1) − χ(pt)) = 24 + 8 · 1 = 32 since S̃ is the
blow up of S along 8 points

� χ(α) = 1− 10 + 1 = −8

it follows that χ(X) = 4 · 32 + 32 = 5 · 32. Summing up, we obtain

td(X) =
(

1,
−6ξ + [−Ê1 − ...− Ê8]

2
,−8

)
.

3. ch(L) =
(

1, c1(L), c1(L)2

2

)
with c1(L) = 2(Ê1 + Ê2 + Ê3 + Ê4) − 4Cρ

and c1(L)2 = 4(Ê1 +Ê2 +Ê3 +Ê4)2 +16C2
ρ−16Cρ(Ê1 +Ê2 +Ê3 +Ê4).

Notice that:

� By the adjunction formula:

C2
ρ = deg(KCρ)− deg(KX |Cρ).

Note that deg(KCρ) = −2 because Cρ ∼= P1. On the other hand

KX = f̂∗KS̃ +Rf̂

and

deg(f̂∗KS̃ |Cρ) = f̂∗KS̃ · Cρ = KS̃ · f̂∗Cρ
= (KS +

∑
Ei) · f̂∗Cρ.

Since S is a K3, KS = 0. Furthermore, f̂∗Cρ = ν(ρ̂): by the
universal property of the �ber product, f̂ ◦ σ is the inclusion of
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ν(ρ̂) in S̃, with ν : ρ̂→ ρ desingularization. The curve ν(ρ̂) does
not intersect E1, ..., E8, since ρ does not pass through {q1, ..., q8};
it follows (KS +

∑
Ei) · f̂∗Cρ = 0.

Finally, Rf̂ · Cρ = 4, since the map f has 4 rami�cation points,

as noticed before. It follows C2
ρ = −6.

� Cρ · Êi = f̂∗Cρ · Ei = 0 for all i = 1, ..., 8.

Then:
ch(L) =

(
1, 2[Ê1 + Ê2 + Ê3 + Ê4]− 4[Cρ],−80

)
.

Combining all the above computations with equation (5.2.1), we �nally get:

ch(ĝ!L) = ĝ∗
(
1, td1(X) + ch1(L),−88 + td1(X) · ch1(L)

)(
1,−1

)
= ĝ∗

(
1,
−6ξ −

∑8
i=1[Êi]

2
+ 2[Ê1 + Ê2 + Ê3 + Ê4]− 4[Cρ],−84

)
(1,−1)

where we used ξ ·Cρ = 1 since ξ is a �ber and Cρ is a section. Since ĝ∗(ξ) = 0,
ĝ∗(Êi) = 1 and ĝ∗(Cρ) = 1, we get

ch(ĝ!L) = (0,−84)(1,−1) = (0,−84)

i.e. ch(R1ĝ∗L) = (0, 84) and D · T = 84.

Thanks to Proposition 5.2.2 and 5.2.3 we have now completed the Step
(2) of Strategy 4.1.5.

5.3 The Beauville-Bogomolov-Fujiki square of the

divisor

We are ready to compute the square with respect to the Beauville-
Bogomolov-Fujiki form of the divisor D introduced in De�nition 5.1.1.

Theorem 5.3.1. Let D ⊂ Mv be the divisor de�ned in De�nition 5.1.1 and
D∗ := π̃∗D, where π̃ : M̃v → Mv the symplectic desingularization. Then

q10(D∗) = 544,

where q10 is the Beauville-Bogomolov-Fujiki pairing of M̃v.
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Proof. This is a straightforward consequences of the computations done
along the previous sections. Indeed, write D = aλv(e) + bλv(f), with
e = (1, h, 0) and f = (0, 0, 1) as in Section 4.2. Intersecting D with Γ, com-
bining Proposition 4.2.3 and Proposition 5.2.2 we get that 20 = D ·Γ = −5a,
which implies a = −4. Intersecting D with T , combing Proposition 4.2.3
and Proposition 5.2.3 we get that 84 = D · T = 20 + b, which means b = 64;
hence

D = −4λv(e) + 64λv(f). (5.3.1)

It follows

q10(D∗) = q10(D) = (−4e)2 + 2 < −4e, 64f > +(64f)2 = 544,

since e2 = 2, < e, f >= −1 and f2 = 0 in the Mukai lattice H∗(S,Z).

Remark 5.3.2. We want to stress here that in (5.3.1) we have computed
the class of D∗ in H2(M̃v,Z):

D∗ = −4π̃∗
(
λv(e)

)
+64π̃∗

(
λv(f)

)
in H2(M̃v,Z)

with e = (1, h, 0), f = (0, 0, 1) ∈ v⊥ ⊂ H∗(S,Z).

Corollary 5.3.3. Let D∗ ⊂ M̃v as in Theorem 5.3.1. Then D∗ (or its dual)
has a deformation which is ample and uniruled.

Proof. This is consequence of Theorem 5.3.1 and of the discussion in Section
2.3.

Corollary 5.3.4. For any (X, c1(H)) ∈Mpol
OG 10 in the connected component

of (M̃v, c1(D∗)) (or of (M̃v,−c1(D∗))), a multiple of the ample linear sys-
tem |H| contains a divisor whose irreducible components are uniruled. As
consequence, it satis�es the hypothesis of Theorem 2.1.7.

Proof. This is consequence of Corollary 5.3.3 and of the strategy presented
in Section 2.3. Note that D∗ could be ruled by irreducible but not reduced
curves, since D could contain the singular locus Σ; in this case, D∗ would
have a component ruled by (some) rational curve ruling the exceptional
divisor Σ̃. We can anyway conclude thanks to the hypothesis of Corollary
5.3.3.
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Chapter 6

Further developments

There are many natural modi�cations of the construction of the ample
uniruled divisor presented in the previous section, that could give ample
uniruled divisors in other connected components of Mpol

OG 10. In this chapter
we will present some possible modi�cations, which give two new examples
of ample uniruled divisors. Furthermore, we will compute some monodromy
invariants of the examples found, which will ensure us that the divisors are
in di�erent connected components of Mpol

OG 10.

6.1 Natural modi�cations of the divisor

From Chapter 4 on we have �xed the Mukai vector v = (0, 2h, 4) ∈
H∗(S,Z) and we have de�ned a uniruled divisor D ⊂ Mv using the inclusion
J 8
|2H|sm ⊂ Mv. It is very natural to de�ne divisors similar to the one intro-

duced in De�nition 5.1.1 changing the Mukai vector to any v = (0, 2h, 2a),
using that J 4+2a

|2H|sm ⊂ M(0,2h,2a), see Proposition 3.3.2. From now on, we will
call v4 := (0, 2h, 4) and D4 the divisor introduced in De�nition 5.1.1.

In this section we will de�ne two new divisors D2 and D6, and we will
compute their Beauville-Bogomolov-Fuijiki squares. The will live in the mod-
uli spaces M(0,2h,2) and M(0,2h,6) respectively, which are the cases where less
modi�cations to the divisor D4 are needed.

We want to emphasize that we are not going to de�ne divisors D2a in
any M(0,2h,2a) since, by the Strategy presented in Section 2.3, it is necessary
to �nd only one ample uniruled divisor in each connected component deter-
mined by the polarized monodromy group. Since the polarized monodromy
group of a OG 10-type IHS variety is not known yet, and then number of
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connected components of Mpol
OG 10 is not determined yet, we decided to stop

here, for the moment, with the de�nition and the computation of the square
of uniruled divisors in M(0,2h,2a) similar to D4 ⊂ M(0,2h,4).

Set v2 := (0, 2h, 2), v6 := (0, 2h, 6) ∈ H∗(S,Z).

De�nition 6.1.1. Let D2 ⊂ Mv2 be the divisor de�ned as the closure in Mv2

of the locus in J 6
|2H|sm consisting of sheaves of the form i∗OC(2r+p1+...+p4),

with C ∈ |2H|, i : C ↪→ S, p1, ..., p4 ∈ C and r ∈ C ∩ ρ.

De�nition 6.1.2. Let D6 ⊂ Mv6 be the divisor de�ned as the closure in Mv6

of the locus in J 10
|2H|sm consisting of sheaves of the form i∗OC(6r+p1+...+p4),

with C ∈ |2H|, i : C ↪→ S, p1, ..., p4 ∈ C and r ∈ C ∩ ρ.

Remark 6.1.3. The schematic structure of D2 and D6 is given by the
relative Brill-Nother theory on |2H|, cf. Remark 5.1.3: one can easily adapt
the Remark to D2 and D4, changing the coe�cients as in the de�nition of
the divisors. Furthermore, adapting Lemma 5.1.2 to these new cases one
gets immediately that D2 and D6 are uniruled.

Remark 6.1.4. Note that a similar de�nition in M(0,2h,8) of a divisor con-
sisting of sheaves of the form i∗OC(8r+p1+...+p4) as in the de�nitions above
would give a divisor not well de�ned on curves on the type C1 ∪ C2 ∈ |2H|,
since the associated sheaves on such curves would be unstable. For this rea-
son, a generalization of the divisor D4 to the moduli spaces M(0,2h,2a) with
a ≥ 4 is less immediate, and we decided to stop with a = 3 since we don't
know how many examples of uniruled divisors we actually need.

We state here the results about the Beauville-Bogomolov-Fujiki squares
of the pullback in M̃v2 and M̃v6 of the divisors D2 and D6 respectively. The
square of the second divisor will be stated as a conjecture: some details are
still to check, but we have good evidence for thinking that the square of the
divisor is as conjectured.

Theorem 6.1.5. Let D2 be the divisors introduced in De�nition 6.1.1, and
let π̃2 : M̃v2 → Mv2 be the symplectic resolution of Mv2. Then:

q10(π̃∗2D2) = 232.

Conjecture 6.1.6. Let D6 be the divisor introduced in De�nition 6.1.2, and
let π̃6 : M̃v6 → Mv6 be the symplectic resolution of Mv6 respectively. Then:

q10(π̃∗6D6) = 1064.
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The following Corollary assumes both the Theorem and the Conjecture
stated above.

Corollary 6.1.7. Assume that π̃∗2D2 and π̃∗6D6 are ample (this is true up to
pass to their duals). For any (X, c1(H)) ∈Mpol

OG 10 in the connected compo-
nent of (M̃v2 , c1(π̃∗2D2)) or of (M̃v6 , c1(π̃∗6D6)), a multiple of the ample linear
system |H| contains a divisor whose irreducible components are uniruled. As
consequence, it satis�es the hypothesis of Theorem 2.1.7.

Proof. This is consequence of Theorem 6.1.5, Conjecture 6.1.6, the discussion
in Section 2.3 and the fact that in Corollary 2.2.4 we did not require the
curves to be irreducible.

Theorem 6.1.5 and the computations behind Conjecture 6.1.6 will be
proved following Strastegy 4.1.5, as done for D4; Nevertheless, the case of the
divisorsD2 andD6 is a bit more delicate, because the spaces Mv2 and Mv6 are
not locally factorial, but only 2-factorial; this is an immediate consequence
of Theorem 5.1.5, as done in Section 5.1 for D4. As consequence, we will
have to check that the divisors D2 and D6 are Cartier divisors, in order to
apply Strategy 4.1.5.

Remark 6.1.8. In the next section we will compute the class of D∗2 in
H2(M̃v2 ,Z), and we will see that it contains the class of the exceptional
divisor Σ̃2 with multiplicity 2 (see (6.1.5)). As consequence, it is very natural
to wonder weather the strict transform D̃2 ofD2 also has a positive Beauville-
Bogomolov-Fujiki square, since it would give a new class of ample uniruled
divisor ruled by reduced and irreducible curves; this is indeed the case.

Corollary 6.1.9. Let D̃2 ⊂ M̃v be the strict transform through π̃ : M̃v → Mv

of the divisor D2. Then q10(D̃2) = 208.
As consequence, for any (X, c1(H)) ∈ Mpol

OG 10 in the connected compo-
nent of (M̃v2 , c1(D̃2)) (or of (M̃v2 ,−c1(D̃2))), a multiple of the ample linear
system |H| contains a divisor whose irreducible components are uniruled.

Proof. The expression in (6.1.5) gives D̃2 = D∗2 − 2Σ̃2. Then

q10(D̃2) = q10(D∗2) + 4q10(Σ̃2)− 4q10(D∗2, Σ̃2)

where q10(D∗2) = 232 by Theorem 5.3.1 and q10(Σ̃2) = −6, as said in Example
1.1.11. The thesis follows from q10(D∗2, Σ̃2) = 0, for which we refer the reader
to Lemma B.2.3
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Remark 6.1.10. In the moduli space M(0,2h,1) we can consider the divisor
D1 similar to D2, D4 and D6, i.e. D1 is the closure in M(0,2h,1) of the
locus in J 5

|2H|sm consisting of sheaves of the form i∗OC(r + p1 + ... + p4),
with C ∈ |2H| and r ∈ C ∩ ρ. The moduli space M(0,2h,1) is birational to
the Hilbert scheme S[5], and through this birational morphism the divisor
D1 corresponds to the �rst uniruled divisor found by Charles, Mongardi and
Pacienza in [CMP19] (i.e. the divisorD1 of Section 4). To complete our work,
it would be natural to try to �nd new example of uniruled divisors writing all
the divisors in [CMP19] in the moduli space M(0,2h,1) through the birational
morphism, and adapting their de�nition to moduli spaces Mv with v non
primitive Mukai vector. For this a complete description of Mon2(OG 10) is
necessary, in order to obtain a numerical characterization of the connected
components of Mpol

OG 10.

6.1.1 Proof of Theorem 6.1.5

The proof of Theorem 6.1.5 goes exactly as the proof of Theorem 5.3.1.
We will present here all the steps, but we will skip most of the computations,
since they are just slight modi�cations of the D4 case presented in details in
the previous chapters.

Let us assume the notations introduced right before De�nition 4.2.1.

De�nition 6.1.11. We de�ne

EΓ := i∗Oγ×γ(5p0 × γ + ∆) ∈ Coh(S × γ).

ET := j∗OC(3q1 × τ + q2 × τ + q3 × τ + q4 × τ) ∈ Coh(S × τ).

Along this section we will call Γ and T the curves in Mv2 de�ned by EΓ and
ET respectively.

Remark 6.1.12. Notice that the coe�cients in the de�nition of ET are
chosen di�erently from the ones in De�nition 4.2.1. Our idea behind the
choice of the coe�cients de�ning ET is the di�erent cases is to make the
induced line bundles as much balanced as possible on the points q1, ..., q4, in
order to avoid unstable sheaves on the singular curves of τ .

Given v2 = (0, 2h, 2), one has (v⊥2 )1,1 = {(2a, ah, b)| a, b ∈ Z}; we choose
as generators e := (2, h, 0) and f := (0, 0, 1). Let

λv2 : (v⊥2 )1,1→̃Pic(Mv2)

be the isometry of Corollary 4.1.3.
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Proposition 6.1.13. Following the notations introduced above, one has:

1. λv2(e) · Γ = −10, λv2(f) · Γ = 0.

2. λv2(e) · T = −8, λv2(f) · T = 1.

Proof. The proof goes exactly as the proof of Proposition 4.2.3. Let us �x
[E], [F ] ∈ K(S) with v(E) = e∨ = (2,−h, 0) and v(F ) = f∨ = (0, 0, 1). We
will use notations analogous to the ones in the proof of Proposition 4.2.3.

� We need to compute

λv2(e) · Γ =
[
ch(π∗SE ⊗ EΓ) td(Tπγ )

]
3

(6.1.1)

where

ch(π∗SE ⊗ EΓ) td(Tπγ ) = π∗S
(
ch(E) td(S)

)
ch(EΓ)

= π∗S(2,−h, 2) ch(EΓ)

= (2,−[H × γ], 2[pt× γ], 0) ch(EΓ).

Since ch(EΓ) = i∗
(
ch(G) td(Ti)

)
, with G := Oγ×γ(5p0 × γ + ∆),

ch(G) = (1, 5[pt× γ] + ∆, 1)

and
td(Ti) = (1,−4[pt× γ], 0)

one gets
ch(EΓ) = (0, [γ × γ], [pt× γ] + [i∗∆],−3).

Combining everything in equation (6.1.1) one gets λv4(e) · Γ = −10.

� λv4(f) · Γ = 0 follows from

ch(π∗SF ⊗ EΓ) td(Tπγ ) = (0, 0, [pt× γ], 0) ch(EΓ).

� We now need to compute
[
ch(ET )(2,−[H × τ ], 2[pt × τ ], 0)

]
3
, where

ch(ET ) = j∗
(
ch(T ) td(Tj)

)
, with T := OC(3q1 × τ + ...+ q4 × τ). One

has
ch(T ) = (1, [3E1 + ...+ E4],−6)

and

td(Tj) =
(

1,−[Ct × t]−
[ 8∑
i=1

Ei
2

]
, 2
)
.
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Therefore

ch(ET ) =
(

1, [C], [3E1 + ...+ E4]−
[ 8∑
i=1

Ei
2

]
−[Ct × t],−7

)
which implies λv4(e) · T = −8.

� λv4(f) · T = 1 follows from

ch(π∗SF ⊗ ET ) td(Tπτ ) = (0, 0, [pt× τ ], 0) ch(ET ).

Before passing to the intersections of the curves with the divisor D2, we
need to check that D2 is a Cartier divisor. This will be done in two steps.

Lemma 6.1.14. The divisor D2 contains the singular locus Σ2 := Mv2 \Ms
v2
.

Proof. Let R ⊂ |2H| be the locus of curves C = C1 ∪C2, with C1 6= C2 and
Ci smooth, i = 1, 2. Since Ci ∈ |H|, we have C1 · C2 = 2. We assume that
C1 ∩ C2 = {n1, n2} with n1 6= n2.

A generic point p ∈ Σ2 corresponds to a sheaf with support on a curve
C ∈ R. Furthermore, O'Grady showed in [O'Ga] that a generic singular point
in the moduli space M2w with w primitive inH∗(S,Z) is a S-equivalence class
with polystable representative F = F1⊕F2, with F1,F2 non isomorphic stable
sheaves with Mukai vectors v(F1) = v(F2) = v (cf. proof of Proposition 5.2 in
[LS06]). In our case, we can assume p ∈ Σ2 generic to be of the form [F1⊕F2],
with F1 sheaf supported on C1 and F2 on C2, v(F1) = v(F2) = (0, h, 1); it
follows that each Fi is the push-forward of a torsion free sheaf on Ci of rank
1, hence a line bundle because of the smoothness of Ci. Summing up, we
obtain that a generic point p ∈ Σ2 is a class [F1 ⊕ F2] with Fi push-forward
of a (generic) line bundle Li of degree 2 on Ci, i = 1, 2. We want to prove
that such a generic p ∈ Σ2 belongs to D2.

By generality of L2, we can assume that it is e�ective, since g(C2) = 2.
Regarding L1: �xed r ∈ C1 ∩ ρ, any line bundle of degree 2 on C1 can be
written as x + 2r − n1 − n2, with x ∈ J2(C1); this is true because x 7→
x+2r−n1−n2 is an automorphism of J2(C1). Furthermore, we can assume
that x is e�ective because g(C1) = 2. Summing up, we got that we can write
a generic p ∈ Σ2 as

p = [j1,∗OC1(2r + q1 + q2 − n1 − n2)⊕ j2,∗OC2(q3 + q4)], (6.1.2)
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for some q1, q2 ∈ C1 and q3, q4 ∈ C2, where ji : Ci ↪→ S is the inclusion,
i = 1, 2; we want to prove that such a point belongs to D2. By generality of
p ∈ Σ, the points q1, ..., q4 that we got in the expression (6.1.2) determine a
pencil Q ⊂ |2H|, and a point in ρ determines one curve of the pencil. Let
us consider the incidence variety C ⊂ S × ρ, C := {(q, x) ∈ S × ρ | q ∈ Cx},
with Cx the unique curve of Q determined by x ∈ ρ; let i : C ↪→ S × ρ be
the inclusion and ∆ ⊂ S × ρ the diagonal. The curve parametrized by the
family i∗OC(2∆ + q1 × ρ + ... + q4 × ρ) is contained in the divisor D2 (on
the smooth curves of Q it consists of line bundles as in the de�nition of D2),
and choosing r ∈ ρ as in (6.1.2) we get back the class of the point p. We
conclude that p ∈ D2 and then Σ2 ⊂ D2.

The fact that the singular locus Σ2 is contained in the divisor D2 implies
that D2 can actually happen to be non Cartier. Luckily this is not the case,
as stated in the following proposition.

Proposition 6.1.15. D2 is a Cartier divisor.

Proof. Let D̃2 be the strict transform of D2 via the symplectic resolution
π̃2 : M̃v2 → Mv2 , and let δ ⊂ M̃v2 be the �ber of π̃2 over a generic point
p ∈ Σ2. The �rst observation is that a divisor D2 ⊂ Mv2 is Cartier if and
only if the intersection D̃v2 · δ is even; we start proving this assertion. Let n
be the smallest positive integer such that nD2 is Cartier, and let m be the
multiplicity of Σ2 in nD2, i.e. the multiplicity of a generic p ∈ Σ2 in D2;
then

π̃∗(nD2) = nD̃2 +mΣ̃2.

Intersecting the expression above with δ: π̃∗(nD2) · δ = 0 by the projection
formula, because δ gets contracted by π̃, and Σ̃2 · δ = −2 because M̃v2 has
trivial canonical bundle (cf. proof of Theorem 2.0.8 in [Rap08]). We get:

nD̃2 · δ = 2m.

It follows that if the intersection D̃2 · δ is odd n needs to be an even number,
ore more precisely n = 2, since as already noticed n can be just 1 or 2, see
Theorem 5.1.5; in other words, if D̃2 · δ is odd then Dv2 is not a Cartier
divisor. On the other hand, if D̃2 · δ = 2a then m = an and

π̃∗(nD2) = nD̃2 + anΣ̃2 = n(D̃2 + aΣ̃2)

where (D̃2 + aΣ̃2) · δ = 0. This last equality implies that D̃2 + aΣ̃2 is the
pullback of some Cartier divisor in Mv2 , then D2 is Cartier.
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It follows that we need to compute the intersection D̃2 · δ. In order to do
that, we will use a modular interpretation of δ introduced in [O'Gb], that we
are going to recall. Fix p ∈ Σ2 generic; as already noticed at the beginning of
the proof of 6.1.14, we can assume that p is the S-equivalence class of sheaves
supported on a curve C ∈ R ⊂ |2H|, C = C1 ∪ C2, C1 ∩ C2 = {n1, n2}. Fix
Lj ∈ Pic(Cj) for j = 1, 2, with deg(L1) = 2 and deg(L2) = 4; we will call
Fj := ij,∗Lj , where as usual ij : Cj ↪→ S is the inclusion, j = 1, 2. Fix a
surjective morphism

F1 ⊕ F2
φ−→ Cn1 → 0

that is not null along C1 or C2, and consider the set

α := {ψ : F1 ⊕ F2 � Cn2}/C∗.

Notice that α ∼= P1. Consider the following surjective morphism of sheaves
over S × α:

π∗SF1 ⊕ π∗SF2
(Φ,Ψ)−−−→ π∗Cn1 ⊕ (π∗SCn2 ⊗ π∗αOα(1))→ 0

where:

� πS : S × α→ S and πα : S × α→ α are the projections;

� Φ : π∗SF1 ⊕ π∗SF2 → π∗SCn1 is the morphism induced by φ;

� Ψ : π∗SF1⊕ π∗SF2 → π∗SCn2 ⊗ π∗αOα(1) is the morphism induced by the
dual of the tautological morphism over α.

Finally, we de�ne:
K := ker(Φ,Ψ) ∈ Coh(S × α).

Notice that [Kψ] = p for any ψ ∈ α; in fact, the family K parametrizes the
curve δ. In order to compute the intersection of δ with D̃2, we proceed as
follows: let r ∈ ρ ∩ C, and consider the short exact sequence

0→ H→ K r−→ j∗K{r}×α ∼= j∗O{r}×α → 0

where r : K → Kr×α is the restriction morphism and j : {r} × α ↪→ S × α is
the inclusion; we do the same for H:

0→ G → H r−→ j∗H{r}×α ∼= j∗O{r}×α → 0.

By Remark 5.1.3 and since ρ · C = 4, we get

D̃2 · δ = 4c1(R1πα,∗G) = −4c1(πα,!G) (6.1.3)
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where the last equality follows from πα,∗G = 0: it is a torsion free sheaf
(push-forward via a dominant map of a torsion free sheaf), whose generic
�ber is equal to 0.

Notice that from equation (6.1.3) it follows that D̃2 · δ is even, then we
can already conclude that D̃2 is a Cartier divisor. Nevertheless, we want to
compute the intersection D̃2 · δ, because we will be interested in determining
the multiplicity of Σ̃2 in D2.

From the Grothendieck-Riemann-Roch theorem on the projection πα,∗ :
S × α→ α it follows that:

ch(πα,!G) = πα,∗
(
ch(G) td(S × α)

)
td(α)−1. (6.1.4)

In the next we will compute all the blocks in the equation above.

1. ch(G) = ch(H)− ch(O{r}×α) = ch(K)− 2 ch(j∗O{r}×α), where:

ch(K) = π∗S ch(F1) + π∗S ch(F2)− π∗S ch(Cn1)− π∗S ch(Cn2)π∗α(Oα(1))

= π∗S
(
(0, [H], 1) + (0, [H], 3)− (0, 0, 1)

)
−π∗S(0, 0, 1)π∗α(1, 1)

= (0, 2[H × α], 3[pt× α], 0)− (0, 0, [pt× α], 0)(1, [S × pt], 0, 0)

= (0, 2[H × α], 3[pt× α], 0)− (0, 0, [pt× α], 1)

= (0, 2[H × α], 2[pt× α],−1)

and
ch(j∗O{r}×α) = (0, 0, [r × α], 0).

It follows that:
ch(G) = (0, 2[H × α], 0,−1).

2. td(S × α) = π∗S td(S)π∗α td(α), where td(S) = (1, 0, 2) because S is a
K3 surface and td(α) = (1, 1) because α ∼= P1. It follows that:

td(S×α) = (1, 0, 2[pt×α], 0)(1, [S×pt], 0, 0) = (1, [S×pt], 2[pt×α], 2).

3. td(α)−1 = (1, 1)−1 = (1,−1).

It follows, by (6.1.4), that:

ch(πα,!G) = πα,∗
(
(0, 2[H × α], 0,−1)(1, [S × pt], 2[pt× α], 2)

)
(1,−1)

= πα,∗
(
0, 2[H × α], 2[H × pt],−1

)
(1,−1)

= (0,−1)(1,−1)

= (0,−1).

By the expression in (6.1.3), we conclude that D̃2 · δ = 4.
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Remark 6.1.16. Let m be the multiplicity of Σ2 in the Cartier divisor D2,
i.e. the multiplicity of a generic p ∈ Σ2 in D2. Following the notations
used in the proof of Proposition 6.1.15, π̃∗D2 = D̃ + mΣ̃2, and we proved
4 = D̃2 · δ = 2m. It follows m = 2, i.e.

π̃∗D2 = D̃2 + 2Σ̃2 in H2(M̃v2 ,Z). (6.1.5)

This expression has been used in Remark 6.1.8.

Proposition 6.1.17. Following the notations above, one has:

1. D2 · Γ = 20.

2. D2 · T = 44.

Proof. 1. The proof is almost identical to the proof of Proposition 5.2.2:
one only needs to consider the Jacobian of degree 6 instead of the one
of degree 6 on the curve γ ⊂ S.

2. Using the notations of the proof of Proposition 5.2.3, one needs to
compute ch(R1ĝ∗L) = − ch(ĝ!L), where now

L := OX(3Ê1 + ...+ Ê4 − 2Cρ).

By the Grothendieck-Riemann-Roch theorem, one has

ch(ĝ!L) = ĝ∗
(
ch(L) td(X)

)
td(ρ̂)−1

where:

� td(ρ̂)−1 = (1,−1)

� td(X) =
(
1,−3ξ + [−Ê1−...−Ê8]

2 ,−8
)

� ch(L) = (1, [3Ê1 + ...+ Ê4]− 2[Cρ],−36).

It follows that:

ch(L) td(X) =
(

1, [3Ê1 + ...+Ê4]−2[Cρ]−3ξ+
[−Ê1 + ...− Ê8]

2
,−44

)
and then ĝ∗

(
ch(L) td(X)

)
= (0,−44) and D2 · T = 44.

Combining Propositions 6.1.13 and 6.1.17, we obtain that:

D2 = −2λv2(e) + 28λv2(f)

which implies
q10(D2) = q10(π̃∗2D2) = 232.
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6.1.2 Evidence for Conjecture 6.1.6

The structure of this section we will be the same of the previous one.
We start by de�ning two curves in Mv6 , assuming as usual the notations
introduced before De�nition 4.2.1.

De�nition 6.1.18. We de�ne

EΓ := i∗Oγ×γ(9p0 × γ + ∆) ∈ Coh(S × γ).

ET := j∗OC

(
2(2q1 × τ + q2 × τ + q3 × τ + q4 × τ)

)
∈ Coh(S × τ).

Along this section we will call Γ and T the curves in Mv6 de�ned by EΓ and
ET respectively.

We now have v6 = (0, 2h, 6), and then (v⊥6 )1,1 = {(2a, 3ah, b)| a, b ∈ Z};
we choose as generators e := (2, 3h, 0) and f := (0, 0, 1). As usual, we call

λv6 : (v⊥6 )1,1→̃Pic(Mv6)

the isometry of Corollary 4.1.3.

Proposition 6.1.19. Following the notations introduced above, one has:

1. λv6(e) · Γ = −10, λv6(f) · Γ = 0.

2. λv6(e) · T = −20, λv6(f) · T = 1.

Proof. We proceed as in the proof of Proposition 4.2.3, using the same no-
tations; we �x here [E], [F ] ∈ K(S) with v(E) = e∨ = (2,−3h, 0) and
v(F ) = f∨ = (0, 0, 1). We follow word by word the proof of Proposition
6.1.13, with some modi�cations due to having a di�erent Mukai vector and
di�erent curves.

� We need to compute

λv6(e) · Γ =
[
ch(π∗SE ⊗ EΓ) td(Tπγ )

]
3

(6.1.6)

where

ch(π∗SE ⊗ EΓ) td(Tπγ ) = π∗S
(
ch(E) td(S)

)
ch(EΓ)

= π∗S(2,−3h, 2) ch(EΓ)

= (2,−3[H × γ], 2[pt× γ], 0) ch(EΓ).
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Since ch(EΓ) = i∗
(
ch(G) td(Ti)

)
, with G := Oγ×γ(9p0 × γ + ∆), and

using
ch(G) = (1, 9[pt× γ] + ∆, 5)

and
td(Ti) = (1,−4[pt× γ], 0)

one gets
ch(EΓ) = (0, [γ × γ], 5[pt× γ] + [i∗∆], 1).

Combining everything in equation (6.1.6) one gets λv6(e) · Γ = −10.

� λv6(f) · Γ = 0 follows from

ch(π∗SF ⊗ EΓ) td(Tπγ ) = (0, 0, [pt× γ], 0) ch(EΓ).

� We now need to compute[
ch(ET )(2,−3[H × τ ], 2[pt× τ ], 0)

]
3

where ch(ET ) = j∗
(
ch(T ) td(Tj)

)
, with T := OC

(
2(2q1×τ+...+q4×τ)

)
.

One has
ch(T ) = (1, 2[2E1 + ...+ E4],−14)

and

td(Tj) =
(

1,−[Ct × t]−
[ 8∑
i=1

Ei
2

]
, 2
)
.

Then

ch(ET ) =
(

1, [C], 2[2E1 + ...+ E4]−
[ 8∑
i=1

Ei
2

]
−[Ct × t],−17

)
which implies λv6(e) · T = −20.

� λv6(f) · T = 1 follows from

ch(π∗SF ⊗ ET ) td(Tπτ ) = (0, 0, [pt× τ ], 0) ch(ET ).

We now pass to the intersections of the curves with the divisor D6. As
in the case of D2 the space Mv6 is 2-factorial; thus we need to check weather
D6 is Cartier or not.
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Conjecture 6.1.20. Let D6 be the divisor introduced in De�nition 6.1.2.
D6 is a Cartier divisor in Mv6 .

Proof. The proof that we will present here is not complete; this is the reason
why we are stating the result about the Beauville-Bogomolov-Fujiki square
of π̃∗6D6 as a conjecture.

As in the case of D2 ⊂ M(0,2h,2), we check that D6 is Cartier computing
the multiplicity of the singular locus Σ6 := Mv6 \Ms

v6
in Dv6 , cfr. proof of

Proposition 6.1.15. We show below that the singular locus is not contained
in D6, hence D6 is Cartier.

We proceed as in the proof of Lemma 6.1.14. A generic point p ∈ Σ6 is
a sheaf with support on a curve C ∈ R, i.e. C = C1 ∪ C2 with Ci ∈ |H|
smooth and C1∩C2 = {n1, n2}. It follows that p = [F1⊕F2] with Fi torsion
free sheaves on Ci; let us assume that Fi is locally free on Ci. It follows that
it is a line bundle of degree 4 on Ci, i = 1, 2.

On the other hand, regarding D6: a strictly semistable sheaf

L = OC(6r + p1 + ...+ p4)

on a curve C ∈ R needs to be such that r ∈ C1 and p1, ..., p4 ∈ C2 (or
viceversa), i.e. the polystable class of L is [L1 ⊕ L2] with

L1 := OC1(6r − n1 − n2)

and
L2 := OC2(p1 + ...+ p4).

If L2 is a generic line bundle of degree 4 on C2, the line bundle L1 is not a
generic line bundle on C1, which means that a point in Σ6 represented by
[F2⊕F2] with Fi locally free on Ci generically can not have polystable class
[L1 ⊕ L2].

By Lemma 1.0.7 in [Rap08] in the class of p there are two sheaves such
that their restriction to Ci is not locally free. This case is still to check.

Now on we will assume that D6 is a Cartier divisor, in order to show how
Conjecture 6.1.6 would follow.

Proposition 6.1.21. Following the notations above, one has:

1. D6 · Γ = 20.

2. D6 · T = 164.
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Proof. 1. Again, the proof is almost identical to the one of Proposition
5.2.2: one only needs to consider the Jacobian of degree 10 instead of
the one of degree 6 on the curve γ ⊂ S.

2. We proceed as in the proof on Proposition 6.1.17, with some small
modi�cations due to the di�erent de�nitions of the divisor and the
curves in this case. Using the notations of the proof of Proposition
5.2.3, one needs to compute ch(R1ĝ∗L) = − ch(ĝ!L), where now

L := OX(2(2Ê1 + ...+ Ê4)− 6Cρ).

By the Grothendieck-Riemann-Roch theorem, one has

ch(ĝ!L) = ĝ∗
(
ch(L) td(X)

)
td(ρ̂)−1

where:

� td(ρ̂)−1 = (1,−1)

� td(X) =
(
1,−3ξ + [−Ê1−...−Ê8]

2 ,−8
)

� ch(L) = (1, 2[2Ê1 + ...+ Ê4]− 6[Cρ],−164).

It follows

ch(L) td(X) =
(

1, 2[2Ê1+...+Ê4]−6[Cρ]−3ξ+
[−Ê1 + ...− Ê8]

2
,−164

)
and then ĝ∗

(
ch(L) td(X)

)
= (0,−164) and D4 · T = 164.

Combining Propositions 6.1.19 and 6.1.21 we get

D6 = −2λv6(e) + 124λv6(f)

which implies q10(D6) = q10(π̃∗6D6) = 1064.

6.2 Monodromy invariants

Even if we do not have a characterization of the monodromy orbits of
the moduli space Mpol

OG 10, there are some monodromy invariants that ensure
that two polarized IHS varieties of OG 10-type (X,h) and (X ′, h′) are not one
deformation of the other. We are interested in the following two invariants
of (X,h):
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� the Beauville-Bogomolov-Fujiki square of h;

� the divisibility of h.

De�nition 6.2.1. Let Λ be a lattice, f(·, ·) its symmetric bilinear form and
and let l ∈ Λ. The divisibilty of l is the nonnegative integer div(l) that
generates the ideal {f(l, l′)}l′∈Λ ⊆ Z.

Given (X,h) ∈ Mpol
Λ , the divisibility of h is its divisibility in the lattice

H2(X,Z) endowed with the Beauville-Bogomolov-Fujiki form.

Remark 6.2.2. Given (S, h) and (S′, h′) primitively polarized K3 surface,
the Global Torelli Theorem implies that they are deformation equivalent if
and only if h2 = h′2. This is no longer the case in higher dimension: as
shown in [Apo14], the Beauville-Bogomolov-Fujiki square and the divisibil-
ity together are not enough to determine the deformation orbit of (X,h).
Notice that, by Eichler's criterion (see [Eic52]), if a lattice Λ contains two
copies of the hyperbolic lattice U , then the divisibility and the square of
an element determine its orbit in Λ under the action of O+(Λ). For all
known examples of IHS varieties X, the lattice H2(X,Z) contains U⊕2, but
in general Mon2(X) ⊂ O+(H2(X,Z)).

As last remark, note that for (S, h) polarized K3 surface one always has
div(h) = 1, since the K3 lattice is unimodular (see for example in [Huy16]).

In this section we want to compute the monodromy invariants of the
classes of the three divisors D∗2, D

∗
4 := π̃∗4D4 and D∗6 := π̃∗6D6.

We start recalling their Beauville-Bogomolov-Fujiki squares, computed
in Theorem 5.3.1, Theorem 6.1.5 and Conjecture 6.1.6:

1. q10(D∗2) = 232

2. q10(D∗4) = 544

3. q10(D∗6) = 1064.

In what follows we will compute the divisibility of all the three divisors. Note
that all the computations on D∗6 are only conjectural.

Lemma 6.2.3. Keeping the notations introduced in this chapter, the classes
[D∗2] ∈ H2(M̃v2 ,Z), [D∗4] ∈ H2(M̃v4 ,Z) and [D∗6] ∈ H2(M̃v6 ,Z) correspond
via the Fourier-Mukai transforms introduced in Appendix B to the following
classes in H2(M̃10,Z):

1. [D∗2]: 30[H]− 56[B̃]− 28[Σ̃]
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2. [D∗4]: 72[H]− 140[B̃]− 68[Σ̃]

3. [D∗6]: 134[H]− 264[B̃]− 132[Σ̃].

Proof. We recall the following relations:

λ∗v2
D2 = −2e+ 28f

λ∗v4
D4 = −4e+ 64f

λ∗v6
D6 = −2e+ 124f.

Applying the isometries π̃∗10 ◦ f2 : H2(M2,Z) → H2(M̃10,Z) and π̃∗10 ◦ f6 :

H2(M6,Z)→ H2(M̃10,Z), where f2 and f6 are the Fourier-Mukai isometries
introduced in Section B.2, one gets the expressions 1 and 3 in the statement:
the action of π̃∗10 ◦f2 and π̃∗10 ◦f6 on the usual generators of the lattices have
been explicitly computed at the end of Section B.2, where we obtained the
following expressions:

π̃∗10 ◦ f2 :e 7→ −[H], f 7→ [H]− 2[B̃]− [Σ̃]

π̃∗10 ◦ f6 :e 7→ −5[H] + 8[B̃] + 4[Σ̃], f 7→ [H]− 2[B̃]− [Σ̃].

Regarding point 2, we need one step more. Since |2H|sm consists of hyperel-
liptic curves, there exists a canonical isomorphism J 2

|2H|sm → J
0
|2H|sm , which

extends to a birational map ψ : M(0,2h,−2) 99K M(0,2h,−4); we denote by ψ̃
the extension of ψ to the desingularized moduli spaces. The pullback mor-
phism ψ̃∗ : Pic(M̃(0,2h,−4)) → Pic(M̃(0,2h,−2)) has been explicitly computed
by Claudio Onorati, we thank him for having shared with us the following
still unpublished result:

ψ̃∗ : Pic(M̃(0,2h,−4)) −→ Pic(M̃(0,2h,−2))

(1,−h, 0) 7→
((

1,−h
2
,+

3

2

)
,
σ

2

)
(0, 0, 1) 7→ (0, 0, 1)

where (1,−h, 0) and (0, 0, 1) are generators of Pic(M̃(0,2h,−4)) and σ is the

class of the singular locus, see [PR14] for a description of Pic(M̃v) when Mv

is 2-factorial (as in the case of M(0,2h,−2)). Finally we consider the birational
map

F4 := F2H∨ ◦ ψ ◦ FH ◦ F2 : Mv2 99K M10 .
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An explicit computation shows that the map F4 induces in cohomology a
morphism f4 such that

π̃10 ◦ f4 : Pic(Mv2)→ Pic(M̃10)

(1, h, 0) 7→ −2[H] + 3[B̃] + [Σ̃]

(0, 0, 1) 7→ [H]− 2[B̃]− [Σ̃],

from which the statement in point 2 follows immediately.

Remark 6.2.4. The classes of the divisors D∗2, D
∗
4 and D∗6 are not primitive

in their respective cohomology lattices. We notice here that we could have
stated Corollary 5.3.4 and Corollary 6.1.7 for the primitive classes associated
to these divisors.

Corollary 6.2.5. Keeping the notations introduced in this chapter, one has:

1. div(D∗2) = 2

2. div(D∗4) = 4

3. div(D∗6) = 2.

Proof. This is simply a consequence of Lemma 6.2.3. Recall thatH2(M̃10,Z) ∼=
H2(S,Z) ⊕ Z[B̃] ⊕ Z[Σ̃], where the isomorphism is actually an isometry of
lattices, see Example 1.1.11. Let ξ+a[B̃]+b[Σ̃] be an element of H2(M̃10,Z),
with ξ ∈ H2(S,Z) and a, b ∈ Z.

1. By Lemma 6.2.3, D∗2 corresponds to the class 30[H]− 56[B̃]− 28[Σ̃] =

2(15[H]− 28[B̃]− 14[Σ̃]) in H2(M̃10,Z). One has

q10(15[H]− 28[B̃]− 14[Σ̃], ξ + a[B̃] + b[Σ̃]) = 15H · ξ + 14a

whereH ·ξ is the product inside the latticeH2(S,Z), which is unimodu-
lar; as consequence, there exists ξ ∈ H2(S,Z) such thatH ·ξ = 1. Since
one can choose a = −1, we conclude that div(15[H]−28[B̃]−14[Σ̃]) = 1
and div(D∗2) = 2.

2. By Lemma 6.2.3, D∗4 corresponds to the class 72[H]−140[B̃]−68[Σ̃] =

4(18[H]− 35[B̃]− 17[Σ̃]) in H2(M̃10,Z). One has

q10(18[H]− 35[B̃]− 17[Σ̃], ξ + a[B̃] + b[Σ̃]) = 3(6H · ξ − b) + 19a

which equals to 1 for a = −1, b = 0 and ξ such that H · ξ = 1. It
follows div(18[H]− 35[B̃]− 17[Σ̃]) = 1 and div(D∗4) = 4.
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3. By Lemma 6.2.3,D∗6 corresponds to the class 134[H]−264[B̃]−132[Σ̃] =

2(67[H]− 132[B̃]− 66[Σ̃]) in H2(M̃10,Z). One has

q10(67[H]− 132[B̃]− 66[Σ̃], ξ + a[B̃] + b[Σ̃]) = 67H · ξ + 66a

which equals to 1 for a = 1 and ξ such that H · ξ = −1. It follows
div(67[H]− 132[B̃]− 66[Σ̃]) = 1 and div(D∗6) = 2.

Thanks to the computation of the monodromy invariants of the divisors
introduced, we can conclude our work with the following:

Corollary 6.2.6. The classes [D∗2], [D∗4] and [D∗6] are not one multiple of the
other up to monodromy. As consequence, they give uniruled divisors inside
three di�erent connected components of Mpol

OG 10.

Proof. This is consequence of the fact that they have monodromy invariants
that are not the ones of proportional classes.

70



Appendix A

Chow groups

In this appendix we recall some important results about Chow groups
that are behind Chapter 2.

Here, as always, varieties are considered over the �eld of complex numbers
C.

A.1 Chow groups and representability

We start recalling the de�nition and the basic properties of Chow groups;
for a detailed reference, see [Ful13].

Let X be a normal projective variety. If D ⊂ X is an integral subscheme
of codimension 1 (prime divisor), the local ring OX,D is a DVR; as conse-
quence, given f ∈ k(X)∗, one can de�ne ordD(f), the order of vanishing of
f along D. Given f ∈ k(X)∗ one de�nes

div(f) :=
∑
D⊂X

ordD(f)D

with D any prime divisor in X. Let Z1(X) be the free abelian group gen-
erated by prime divisors; for any f ∈ k(X)∗ one has div(f) ∈ Z1(X), and
such a divisor is called a principal divisor. Since the map k(X)∗ → Z1(X),
f 7→ div(f) is a homomorpshim of groups, the subset of principal divisors
B1(X) ⊂ Z1(X) is a subgroup of Z1(X).

In the same way one can consider the free abelian group generated by
codimension k-subschemes W ⊂ X, and one can de�ne div(f) for any f ∈
K(W ) going to the normalization of W . In this way one gets the groups
Bk(X) ⊂ Zk(X).
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De�nition A.1.1. The k-Chow group ofX is the quotient group CHk(X) :=
Zk(X)/Bk(X). Furthermore, CHk(X) := CHdim(X)−k(X).

Note that CH1(X) = Pic(X) when X is smooth.

Remark A.1.2. The de�nition of CHk(X) is functorial. Indeed, given a
proper morphism f : X → Y the push-forward

f∗ : CHk(X)→ CHk(Y )

is well de�ned. Moreover, given a �at morphism g : X → Y the pull-back

g∗ : CHk(Y )→ CHk(X)

is well de�ned. See [Ful13] for more details.

When X is smooth, a cycle class map

cl : CHk(X)→ Hk,k(X,Z)

is well de�ned. Its de�nition uses the fact that a smooth projective variety
of complex dimension n admits a triangularization, then to a subvariety
W ⊂ X one can associate a cycle in H2n−2k(X,Z) and its Poincaré dual in
H2k(X,Z) (see in [Ful13]). One de�nes

CHk(X)hom := ker
(
cl : CHk(X)→ Hk,k(X,Z)

)
.

Finally, in the case of the 0-Chow group CH0(X) we will use the Albanese
map

albX : CH0(X)hom → Alb(X) := H0(Ω1
X)∨/H1(X,Z)

[Z] 7→
(
α 7→

∫
γ
α
)

where γ is a 1-chain such that ∂γ = Z. When dim(X) = 1 the map albX is
an isomorphism, otherwise in general it is not.

In the rest of this section we will be interested in the group CH0(X)hom.
A very complete reference for what we are going to sketch is [Voi03b].

Let X(d) be the dth-symmetric product of X. One can de�ne a map

σd : X(d) ×X(d) → CH0(X)hom(
(x1, ..., xd), (y1, ..., yd)

)
7→

d∑
i=1

[xi]− [yi].

Note that Im(σd) ⊆ Im(σd+1) and
⋃
d∈N Im(σd) = CH0(X)hom.
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De�nition A.1.3. The group CH0(X) is said to be representable if there
exists d0 ∈ N such that Im(σd0) = CH0(X)hom.

Representability is meant to measure the size of the group CH0(X)hom. It
turns out that in many cases the group CH0(X) is actually non-representable.

The theorems we are going to state are consequence of the work of many
authors (Mumford in [Mum69], Roitman in [Roi72], Bloch and Srinivas in
[BS83], Voisin in [Voi12]). We collect here only two key results, that will
imply the non representability of CH0(X) when X is an IHS variety.

Theorem A.1.4. Let X be a smooth projective variety with CH0(X) repre-
sentable. Then:

1. The Albanese map albX is an isomorphism.

2. There exists a smooth curve i : C ↪→ X such that i∗ : CH0(C) →
CH0(X) is surjective.

Theorem A.1.5. Let X be a smooth projective variety, and let i : W ↪→
X a closed subset such that i∗ : CH0(W ) → CH0(X) is surjective. Then
H0(X,Ωp

X) = 0 for all p > dimW .

Corollary A.1.6. Let X be an IHS variety. The group CH0(X) is non
representable.

Proof. This is an immediate consequences of Theorem A.1.4 and Theorem
A.1.5, as H0(X,Ω2

X) ∼= C.

A.2 The Bloch-Beilinson �ltration

De�nition A.2.1. Let X and Y be smooth projective varieties. A corre-
spondence between X and Y is a class Γ ∈ CHk(X × Y ).

Remark A.2.2. Correspondences are generalizations of regular morphisms:
given any regular morphism f : X → Y one can consider the correspondence
[Γf ] ∈ CHdim(Y )(X × Y ), where Γf is the graph of f .

Let Γ ∈ CHk(X × Y ) be a correspondence and let πX : X × Y → Y ,
πY : X × Y → Y be the projections. We de�ne

Γ∗ : CHr(X)→ CHk−r(Y )

[Z] 7→ πY,∗(Γ · π∗X [Z])
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where the product is the intersection product de�ned on Chow groups (see
[Ful13]). The cohomology cycle class cl(Γ) ∈ Hk,k(X,Z) also de�nes a map

cl(Γ)∗ : Hr(X,Z)→ Hr+2k−2 dim(X)(Y,Z)

α 7→ πY,∗(cl(Γ) ∪ π∗Xα)

Note that Γ∗ and cl(Γ)∗ commute with the cycle-class map, and that they
are the usual pushforwards in the case Γ = [Γf ] is the graph of a regular
morphism f : X → Y .

The Bloch and Beilinson conjecture we are going to state is about a
�ltration of the kth-Chow group of any smooth projective variety; such a
�ltration also needs to satisfy some functorial properties. In [Jan94] there is
a formulation of the Bloch-Beilinson �ltration over an arbitrary �eld; here we
will restrict ourselves, as always, to the case of the �eld of complex numbers
C.

Let CHk(X)Q := CHk(X) ⊗Z Q be the kth-rational Chow group of X.
Given a correspondence Γ ∈ CHk(X × Y ) one gets a Q-linear map Γ∗ :
CHr(X)Q → CHk−r(X)Q by tensoring the de�nition above by Q. We will
call CHk(X)Q,hom the kernel of the rational cycle class map.

Conjecture A.2.3 (Bloch, Beilinson). For any smooth projective variety
X there exists a decreasing �ltration of any kth-rational Chow group

F •BB CHk(X)Q : F 0
BB CHk(X)Q = CHk(X)Q ⊃ ... ⊃ F lBB CHk(X)Q ⊃ ...

with F iBB CHk(X)Q Q-subspaces, satisfying the following properties:

(BB1) F 1
BB CHk(X)Q = CHk(X)Q,hom.

(BB2) F k+1
BB CHk(X)Q = 0.

(BB3) (Good behaviour of the �ltration with respect to correspondences).
If Γ ∈ CHr(X × Y ), then Γ∗(F

i
BB CHk(X)Q) ⊆ F iBB CHr−k(Y )Q.

(BB4) Given Γ ∈ CHr(X × Y ) the map induced by (BB3):

(F iBB CHk(X)Q)/(F i+1
BB CHk(X)Q)→ (F iBB CHr−k(Y )Q)/(F i+1

BB CHr−k(Y )Q)

vanishes if the restriction of cl(Γ)∗ to the following

F dim(X)−kH2 dim(X)−2k−i(X,C)→ H2r−2k−i(Y,C)
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vanishes. Here, as usual:

F dim(X)−kH2 dim(X)−2k−i(X,C) :=
⊕

p≥dim(X)−k
p+q=2 dim(X)−2k−i

Hp,q.

(BB5) (Compatibility of the �ltration with the intersection product).

(F iBB CHk(X)Q) · (F jBB CHl(X)Q) ⊆ F i+jBB CHk+l(X)Q.

We will call this �ltration the Bloch-Beilinson �ltration of CHk(X)Q.

Remark A.2.4. In the case of the 0-Chow group, something more is known
about the Bloch-Beilinson conjecture: if the Bloch-Beilinson �ltration exists,
then F 2

BB CH0(X)Q = ker albX , see Lemma 2.10 in [Jan94]. This result,
together with the properties (BB1) and (BB3) of the conjecture, determines
completely the �ltration F •BB CH0(X)Q when X is a surface.
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Appendix B

Fourier-Mukai transforms

In this appendix we want to sketch some results about Fourier-Mukai
transforms between moduli spaces of sheaves, which are a very useful tool to
construct birational morphisms among IHS varieties. Fourier-Mukai trans-
forms have been used mainly in Chapter 6. For this reason we have decided
to collect the main useful results in an appendix.

B.1 De�nition and generalities

We start by introducing the Fourier-Mukai transforms, giving some ex-
amples of them and stating some general results. For a reference on them,
see for example [Huy06].

Along this section X and Y will be projective varieties and

pX : X × Y → X, pY : X × Y → Y

the projections; let Db(X), Db(Y ) and Db(X × Y ) be the bounded derived
categories of Coh(X), Coh(Y ) and Coh(X × Y ) respectively.

De�nition B.1.1. Given P ∈ Db(X × Y ), a Fourier-Mukai transform with
kernel P is a functor equivalent to

FP : Db(X)→ Db(Y )

E 7→ pY,∗(P ⊗ p∗XE).

Remark B.1.2. In the de�nition above, pY,∗, p∗X and ⊗ are the derived
functors. However, p∗X is simply the usual pullback since p∗X is �at, and ⊗
is the usual tensor product when E is locally free.
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Example B.1.3. Let S be a K3 surface with Pic(S) = Z[H] and H2 = 2.

1. Consider the diagonal inclusion i : S ↪→ S × S. We de�ne FH :
Db(S)→ Db(S) to be the Fourier-Mukai transform with kernel i∗H ∈
Db(S × S), and FH∨ the one with kernel i∗(−H).

2. Let ∆ ⊂ S × S be the diagonal and I∆ its ideal sheaf. We call F∆ :
Db(S)→ Db(S) the Fourier-Mukai transform with kernel I∆.

It is very natural to ask when the Fourier-Mukai transform is an equiva-
lence of categories. There are many results in this direction, see for example
[Bri99] and [BO95]. It turns out that both the Fourier-Mukai transforms of
Example B.1.3 are equivalence of categories, see again in [Huy06].

From now on, we will always assume that X and Y are K3 surfaces. A
Fourier-Mukai transform FP : Db(X)→ Db(Y ) induces an homomorphism

fP : H∗(X,Z)→ H∗(Y,Z)

α 7→ pY,∗
(
v(P)p∗Xα

)
where v(P) is the Mukai vector of the object P ∈ Db(X × Y ), de�ned
analogously to the Mukai vector of a coherent sheaf on a K3 surface (cfr.
with Section 3.2). The following result is due to Mukai (see [Muk87]):

Theorem B.1.4. If the Fourier-Mukai trasform FP : Db(X) → Db(Y ) is
an equivalence among the derived categories of two K3 surfaces, then the
induced homomorphism fP : H∗(X,Z)→ H∗(Y,Z) is a Hodge isometry.

Example B.1.5. Let X = Y = S be a K3 surface.

1. The Fourier-Mukai transforms FH and FH∨ of Example B.1.3,1 are
autoequivalences of the category Db(S), and the induced isometries
fH and fH∨ are simply the multiplication by the Chern characters
ch(OS(H)) and ch(OS(H)∨) respectively.

2. The Fourier-Mukai transform F∆ of Example B.1.3,2 is an autoequiv-
alence of the category Db(S), and it induces an isometry

f∆ : H∗(S,Z)→ H∗(S,Z)

see Example 10.9 part (ii) in [Huy06].
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B.2 Fourier-Mukai transforms between moduli spaces

We are intersted in Fourier-Mukai transforms because they sometimes
happen to restrict to isomorphisms between the moduli spaces Mv → Mv′ .
Roughly speaking, it sometimes happens that the Fourier-Mukai transform
maps a sheaf in Mv to a sheaf (and not just to a complex in the derived
category), and that it preserves semistability. This happens in our case; the
following lemma is a particular case of Lemma 1.1 of [Yos01b]:

Lemma B.2.1. Given a Mukai vector v, the Fourier-Mukai transforms FH
and FH∨ of Example B.1.3.1 give isomorphisms

FH : Mv −→ Mv∧ch(OS(H))

FH∨ : Mv −→ Mv∧ch(OS(H)∨)

sending the exceptional locus of the �rst moduli space to the exceptional locus
of the second one.

The following result is due to Yoshioka and can be found again in [Yos01b]:

Lemma B.2.2. Given a Mukai vector of the form v = 2(0, ξ, a), the Fourier-
Mukai transform F∆ of Example B.1.3.2 induces an isomorphism

F∆ : M2(0,ξ,a) −→ M2(a,ξ,0)

[E] 7→ [F∆(E)∨]

sending the exceptional locus of the �rst moduli space to the exceptional locus
of the second one.

From now on we will assume that S is a K3 surface with Pic(S) = Z ·H
and H2 = 2 Set h := c1(H). We want to focus on the following compositions
of Fourier-Mukai transforms:

� F2 : M(0,2h,2)
F∆−−→ M(2,2h,0)

FH∨−−−→ M(2,0,−2) = M10, inducing the follow-
ing map in cohomology:

f2 : H2(M(0,2h,2),Z) −→ H2(M10,Z)

(2, h, 0)
f∆7−−→ (0,−h,−2)

∧ ch(−h)7−−−−−→ (0,−h, 0)

(0, 0, 1)
f∆7−−→ (−1, 0, 0)

∧ ch(−h)7−−−−−→ (−1, h,−1).
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� F6 : M(0,2h,6)
FH∨−−−→ M(0,2h,2)

F2−→ M10, inducing the following map in
cohomology:

f6 : H2(M(0,2h,6),Z) −→ H2(M10,Z)

(2, 3h, 0)
∧ ch(−h)7−−−−−→ (2, h,−4)

f∆7−−→ (4,−h,−2)
∧ ch(−h)7−−−−−→ (4,−5h, 4)

(0, 0, 1)
∧ ch(−h)7−−−−−→ (0, 0, 1)

f∆7−−→ (−1, 0, 0)
∧ ch(−h)7−−−−−→ (−1, h,−1).

By [Per10], given (2, 0,−2)⊥ = {(n, ξ, n)| n ∈ Z, ξ ∈ H2(S,Z)}, one has

λ(2,0,−2) : (2, 0,−2)⊥ → H2(M̃10,Z)

(n, ξ, n) 7→ ξ + 2n[B̃] + n[Σ̃]

which gives

π̃∗10 ◦ f2 :(2, h, 0) 7→ −[H], (0, 0, 1) 7→ [H]− 2[B̃]− [Σ̃]

π̃∗10 ◦ f6 :(2, 3h, 0) 7→ −5[H] + 8[B̃] + 4[Σ̃], (0, 0, 1) 7→ [H]− 2[B̃]− [Σ̃].

These Fourier-Mukai transforms have been used in computations in Chap-
ter 6.

We conclude with the following observation, that have been used in the
proof of Corollary 6.1.9:

Lemma B.2.3. For any v = (0, 2h, 2(2k+ 1)) and any D divisor in Mv one
has q10(π̃∗D, Σ̃) = 0, where π̃ : M̃v → Mv is the symplectic desingularization.

Proof. Applying FH∨ a suitable number of times in order to arrive to M(0,2h,2),
and then composing with F2, one gets a composition of Fourier-Mukai trans-
forms from Mv to M10, �xing the singular locus. In M10 the relation in the
statement is trivial: indeed, following [Per10], a class in H2(M10,Z) has
the form ξ + 2n[B] with ξ ∈ H2(S,Z), with pullback ξ + 2n[B̃] + n[Σ̃] in
H2(M̃10,Z). By the explicit description of q10 in Example 1.1.11, we obtain
q10(ξ + 2nB̃ + nΣ̃, Σ̃) = 0.

79



Bibliography

[ACGH85] Enrico Arbarello, Maurizio Cornalba, Phillip Gri�ths, and
Joseph Harris. Geometry of algebraic curves, volume I. Springer-
Verlag, New York, 1985.

[ACGH11] Enrico Arbarello, Maurizio Cornalba, Phillip Gri�ths, and
Joseph Harris. Geometry of algebraic curves, volume II. Springer
Science & Business Media, 2011.

[Apo14] Apostol Apostolov. Moduli spaces of polarized irreducible sym-
plectic manifolds are not necessarily connected. In Annales de
l'Institut Fourier, volume 64, pages 189�202, 2014.

[Bea83] Arnaud Beauville. Variétés Kähleriennes dont la première classe
de Chern est nulle. Journal of Di�erential Geometry, 18(4):755�
782, 1983.

[BL13] Christina Birkenhake and Herbert Lange. Complex abelian vari-
eties, volume 302. Springer Science & Business Media, 2013.

[BL18] Benjamin Bakker and Christian Lehn. The global moduli theory
of symplectic varieties. arXiv preprint arXiv:1812.09748, 2018.

[BO95] Alexei Bondal and Dmitri Orlov. Semiorthogonal decomposition
for algebraic varieties. arXiv preprint alg-geom/9506012, 1995.

[Bri99] Tom Bridgeland. Equivalences of triangulated categories and
Fourier�Mukai transforms. Bulletin of the London Mathematical
Society, 31(1):25�34, 1999.

[BS83] Spencer Bloch and Vasudevan Srinivas. Remarks on correspon-
dences and algebraic cycles. American Journal of Mathematics,
105(5):1235�1253, 1983.

80



[BV04] Arnaud Beauville and Claire Voisin. The Chow ring of a K3
surface. J. Algebraic Geom., 13:417�426, 2004.

[CMP19] François Charles, Giovanni Mongardi, and Gianluca Pacienza.
Families of rational curves on holomorphic symplectic varieties
and applications to zero-cycles. arXiv preprint arXiv:1907.10970,
2019.

[dCRS19] Mark Andrea A de Cataldo, Antonio Rapagnetta, and Giulia
Saccà. The Hodge numbers of O'Grady 10 via Ng\� o strings.
arXiv preprint arXiv:1905.03217, 2019.

[Deb84] Olivier Debarre. Un countre-exemple au théorème de Torelli pour
les variétés symplectiques irréductibles. CR Acad. Sci. Paris,
299:681�684, 1984.

[Eic52] Martin Eichler. Quadratische formen und orthogonale gruppen.
Springer-Verlag, 1952.

[Fuj87] Akira Fujiki. On the de Rham cohomology group of a com-
pact Kähler symplectic manifold. In Algebraic Geometry, Sendai,
1985, pages 105�165. Mathematical Society of Japan, 1987.

[Ful13] William Fulton. Intersection theory. Springer Science & Business
Media, 2013.

[GHJ03] Mark Gross, Daniel Huybrechts, and Dominic Joyce. Calabi-Yau
manifolds and related geometries: lectures at a summer school in
Nordfjordeid, Norway, June 2001. Springer Science & Business
Media, 2003.

[HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli
spaces of sheaves. Cambridge University Press, 2010.

[HP19] Andreas Höring and Thomas Peternell. Algebraic integrability of
foliations with numerically trivial canonical bundle. Inventiones
mathematicae, 216(2):395�419, 2019.

[Huy99] Daniel Huybrechts. Compact hyperkähler manifolds: basic re-
sults. Inventiones mathematicae, 135(1):63�113, 1999.

[Huy03] Daniel Huybrechts. Finiteness results for compact hyperkahler
manifolds. Journal fur die Reine und Angewandte Mathematik,
558:15�22, 2003.

81



[Huy06] Daniel Huybrechts. Fourier-Mukai transforms in algebraic geom-
etry. Oxford University Press on Demand, 2006.

[Huy11] Daniel Huybrechts. A global Torelli theorem for hyperkähler
manifolds (after Verbitsky). Asterisque- Societe Mathematique
de France, 06 2011.

[Huy16] Daniel Huybrechts. Lectures on K3 surfaces, volume 158. Cam-
bridge University Press, 2016.

[Jan94] Uwe Jannsen. Motivic sheaves and �ltrations on chow groups.
55, 01 1994.

[KLS06] Dmitry Kaledin, Manfred Lehn, and Ch Sorger. Singular sym-
plectic moduli spaces. Inventiones mathematicae, 164(3):591�
614, 2006.

[Kur65] Masatake Kuranishi. New proof for the existence of locally com-
plete families of complex structures. In Proceedings of the con-
ference on complex analysis, pages 142�154. Springer, 1965.

[LP93] Joseph Le Potier. Systemes cohérents et structures de niveau.
Société mathématique de France, 1993.

[LS06] Manfred Lehn and Christoph Sorger. La singularité de O'Grady.
Journal of Algebraic Geometry, 15, 10 2006.

[LSV17] Radu Laza, Giulia Sacca, and Claire Voisin. A hyper-kähler com-
pacti�cation of the intermediate Jacobian �bration associated
with a cubic 4-fold. Acta Mathematica, 218(1):55�135, 2017.

[Man05] Marco Manetti. Lectures on deformations of complex manifolds.
arXiv preprint math/0507286, 2005.

[Mar10] Eyal Markman. Integral constraints on the monodromy group
of the hyperkähler resolution of a symmetric product of a K3
surface. International Journal of Mathematics, 21(02):169�223,
2010.

[Mar11] Eyal Markman. A survey of Torelli and monodromy results for
holomorphic-symplectic varieties. In Complex and di�erential
geometry, pages 257�322. Springer, 2011.

82



[Mat99] Daisuke Matsushita. Addendum to: On �bre space structures
of a projective irreducible symplectic manifold. arXiv preprint
math/9903045, 1999.

[MM83] Shigefumi Mori and Shigeru Mukai. The uniruledness of the
moduli space of curves of genus 11. In Algebraic geometry, pages
334�353. Springer, 1983.

[Mon14] Giovanni Mongardi. On the monodromy of irreducible symplectic
manifolds. Algebraic Geometry, 3, 07 2014.

[MP17] Giovanni Mongardi and Gianluca Pacienza. Polarized parallel
transport and uniruled divisors on deformations of generalized
Kummer varieties. International Mathematics Research Notices,
2018(11):3606�3620, 2017.

[MP19] Giovanni Mongardi and Gianluca Pacienza. Corrigendum and
Addendum to �Polarized parallel transport and uniruled divisors
on generalized Kummer varieties�. International Mathematics
Research Notices, 2019.

[MR19] Giovanni Mongardi and Antonio Rapagnetta. Monodromy
and birational geometry of O'Grady's sixfolds. arXiv preprint
arXiv:1909.07173, 2019.

[Muk84] Shigeru Mukai. Symplectic structure of the moduli space of
sheaves on an abelian or K3 surface. Inventiones mathematicae,
77(1):101�116, 1984.

[Muk87] Shigeru Mukai. On the moduli space of bundles on K3 surfaces.
Vector Bundles on Algebraic Varieties, Bombay, 1984, 1987.

[Mum69] David Mumford. Rational equivalence of 0-cycles on surfaces.
Journal of mathematics of Kyoto University, 9(2):195�204, 1969.

[MZ16] Ciaran Meachan and Ziyu Zhang. Birational geometry of singu-
lar moduli spaces of O'Grady type. Advances in Mathematics,
296:210�267, 2016.

[Nam02] Yoshinori Namikawa. Counter-example to global Torelli problem
for irreducible symplectic manifolds. Mathematische Annalen,
324(4):841�845, 2002.

83



[O'Ga] Kieran O'Grady. Desingularized moduli spaces of sheaves on a
K3. J. Reine Angew. Math., (512):49�117.

[O'Gb] Kieran O'Grady. A new six dimensional irreducible symplectic
variety. J. Algebraic Geometry, 12(3):435�505.

[o'G95] Kieran o'Grady. The weight-two Hodge structure of moduli
spaces of sheaves on a K3 surface. Journal of Algebraic Geometry,
6, 11 1995.

[Ono18] Claudio Onorati. Irreducible Holomorphic Symplectic Manifolds
and Monodromy Operators. PhD thesis, University of Bath, 2018.

[OSY18] Georg Oberdieck, Junliang Shen, and Qizheng Yin. Rational
curves in the Fano varieties of cubic 4-folds and Gromov-Witten
invariants. arXiv preprint arXiv:1805.07001, 2018.

[Per08] Arvid Perego. A Gabriel Theorem for Coherent Twisted Sheaves
and Picard Group and 2-factoriality of O'Grady's Examples of Ir-
reducible Symplectic Varieties. PhD thesis, Université de Nantes,
2008.

[Per10] Arvid Perego. The 2-factoriality of the O'Grady moduli spaces.
Mathematische Annalen, 346(2):367, 2010.

[PR13] Arvid Perego and Antonio Rapagnetta. Deformation of the
O'Grady moduli spaces. Journal für die reine und angewandte
Mathematik (Crelles Journal), 2013(678):1�34, 2013.

[PR14] Arvid Perego and Antonio Rapagnetta. Factoriality properties
of moduli spaces of sheaves on abelian and K3 surfaces. Interna-
tional Mathematics Research Notices, 2014(3):643�680, 2014.

[Rap07] Antonio Rapagnetta. Topological invariants of O'Grady's
six dimensional irreducible symplectic variety. Mathematische
Zeitschrift, 256(1):1�34, 2007.

[Rap08] Antonio Rapagnetta. On the Beauville form of the known irre-
ducible symplectic varieties. Mathematische Annalen, 340(1):77�
95, 2008.

[Roi72] A. A. Roitman. Rational equivalence of zero-cycles. Mathematics
of the USSR-Sbornik, 18(4):571, 1972.

84



[Sul77] Dennis Sullivan. In�nitesimal computations in topology. Publi-
cations Mathématiques de l'IHÉS, 47:269�331, 1977.

[Ver13] Misha Verbitsky. Mapping class group and a global Torelli the-
orem for hyperkähler manifolds. Duke Mathematical Journal,
162(15):2929�2986, 2013.

[Voi03a] Claire Voisin. Hodge theory and complex algebraic geometry I,
volume 1. Cambridge University Press, 2003.

[Voi03b] Claire Voisin. Hodge theory and complex algebraic geometry II,
volume 2. Cambridge University Press, 2003.

[Voi12] Claire Voisin. Symplectic involutions of K3 surfaces act trivially
on CH0. Doc. Math, 17(851-860):118, 2012.

[Voi16] Claire Voisin. Remarks and questions on coisotropic subvarieties
and 0-cycles of hyper-Kähler varieties. In K3 surfaces and their
moduli, pages 365�399. Springer, 2016.

[Yos98] K	ota Yoshioka. A note on the universal family of moduli of sta-
ble sheaves. Journal für die reine und angewandte Mathematik,
496:149�161, 1998.

[Yos99] Kota Yoshioka. Irreducibility of moduli spaces of vector bundles
on K3 surfaces. 08 1999.

[Yos01a] K	ota Yoshioka. Moduli spaces of stable sheaves on abelian sur-
faces. Mathematische Annalen, 321(4):817�884, 2001.

[Yos01b] Kota Yoshioka. A note on Fourier-Mukai transform. Mathemat-
ical Physics and Mathematics, 2001.

85


	Résumé de thèse
	Introduction
	Generalities on irreducible holomorphic symplectic varieties
	Definitions and examples
	Moduli space of IHS varieties
	Monodromy and connected components

	Rational curves on IHS varieties
	Why rational curves
	Deformation of rational curves
	A possible approach to the problem

	Moduli spaces of sheaves
	Some generalities about semistable sheaves
	Moduli spaces of sheaves on K3 surfaces
	Lagrangian structure

	Rational curves on the O'Grady 10-dimensional example
	The ampleness of a divisor
	Generators of the Mukai lattice
	Proof of Proposition 4.2.3
	Intersections 1 of Proposition 4.2.3
	Intersections 2 of Proposition 4.2.3


	A first example of ample uniruled divisor
	Definition of the divisor
	Intersection of the divisor and the curves
	The Beauville-Bogomolov-Fujiki square of the divisor

	Further developments
	Natural modifications of the divisor
	Proof of Theorem 6.1.5
	Evidence for Conjecture 6.1.6

	Monodromy invariants

	Chow groups
	Chow groups and representability
	The Bloch-Beilinson filtration

	Fourier-Mukai transforms
	Definition and generalities
	Fourier-Mukai transforms between moduli spaces

	Bibliography

