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RÉSUMÉ  
 

Le développement à grande échelle de dispositifs électroniques plus performants, plus légers, pliables 

conduira à une nouvelle génération de technologies pour smartphone, ordinateur portable et de 

technologies sans fil. De tels outils sont essentiels pour de nombreuses autres applications 

technologiques, par exemple dans le domaine de la médecine, et plus généralement pour améliorer la 

qualité de nos vies.1 Pour relever ces défis, il est important de développer des matériaux de pointe dont 

les propriétés sont ajustées en fonction de leur application.  

Récemment, des matériaux bidimensionnels (2D) tels que le graphène, les chalcogénures de métaux 

de transition (TMDC) et le h-BN ont montré un grand potentiel comme matériaux actifs dans les 

transistors à couche mince2-3, les photodétecteurs,4 les capteurs,5-6 les super condensateurs7 et les 

cellules solaires.8-9 Il s’agit de matériaux de seulement un ou de quelques atomes d'épaisseur et 

possèdent des propriétés physicochimiques uniques (par exemple, une conductivité électrique et 

thermique exceptionnelle) qui n'existent pas dans leurs équivalents 3D. De plus, ils sont transparents 

et peuvent supporter de grandes quantités de contraintes sans dégradation, ce qui en fait des candidats 

parfaits pour les technologies flexibles de nouvelle génération.10  

Les propriétés exceptionnelles du graphène découvertes en 2004 par Geim et Novoselov11 ont rendu 

ce matériau intéressant pour une grande variété d’applications technologiques potentielles.12 

Cependant, la production à grande échelle de matériaux 2D de haute qualité représente un problème 

majeur limitant l'émergence de nombreuses applications. L’approche la plus populaire jusqu’à présent 

pour produire des couches minces intactes et de haute qualité consiste en la méthode basée sur le 

«scotch-tape»,11 qui a été exploitée pour isoler le graphène en 2004. Ce procédé repose sur le clivage 

répétitif d'un cristal stratifié avec un ruban adhésif. Bien que cette approche soit appropriée pour la 

réalisation d’études fondamentales visant à dévoiler les propriétés physiques et chimiques des 

matériaux 2D, cette méthode n’est guère applicable à grande échelle, ce qui empêche toute application 

technologique. Une méthode de production alternative qui peut être mise en œuvre pour croître un 

matériau 2D à l'échelle d’un wafer est le dépôt chimique en phase vapeur (CVD), qui peut être classé 

comme une approche «bottom-up». La principale faiblesse de ce processus de fabrication réside dans 

la nature même du procédé qui est très chronophage et énergivore. De plus, la qualité limitée du 

matériau obtenu par rapport aux couches minces vierges exfoliées mécaniquement est à considérer. 

D'autres améliorations de l'approche CVD sont nécessaires pour répondre à la demande de fabrication 
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industrielle, en termes de qualité, reproductibilité et coût.13 Ainsi, il est clair que le principal obstacle 

à l’apparition de matériaux 2D dans notre utilisation quotidienne réside dans l’absence de méthodes 

fiables et évolutives pour leur synthèse.  

L’approche la plus prometteuse pour la production en série de matériaux 2D consiste en l’exfoliation 

en phase liquide (LPE) de cristaux.14 Les techniques associées à cette approche sont généralement très 

faciles, peu coûteuses et peuvent être écologiques. Des matériaux 2D exfoliés en phase liquide peuvent 

exister sous la forme d’encres pouvant être déposées sur n’importe quel substrat. Récemment, la 

communauté a constaté le développement de nouvelles méthodes de LPE, notamment l’exfoliation en 

phase liquide induite par ultrasons (UILPE),14-15 éventuellement assistée par des molécules ad-hoc,16 

l’exfoliation électrochimique (EE) réalisée dans divers électrolytes, l’exfoliation par cisaillement17 et 

par micro-fluidisation,18 le broyage à billes19 dans différents environnements, etc. 

Cette thèse est consacrée à la production de matériaux 2D en phase liquide, en utilisant des approches 

pouvant permettre la production en masse de graphène et de matériaux apparentés. Notre objectif est 

de surmonter certains problèmes critiques pour le traitement et l'utilisation pratique des encres de 

matériaux 2D, tels que la tendance des nanofeuilles à se réagréger, leur capacité de traitement limitée. 

Notre but est également d’obtenir une profonde comprehension des relations entre structure et 

propriété dans de tels matériaux, étant une étape obligatoire pour leurs futures applications. Ce travail 

couvre le passage de l’exfoliation en phase liquide par ultrasons à celle assistée par des molécules 

jusqu’au développement du processus d’exfoliation électrochimique. Plus précisément, nous nous 

sommes concentrés sur l'UILPE et l'exfoliation électrochimique du graphène et du disulfure de 

molybdène (MoS2), qui ont été choisis comme matériaux prototypiques 2D. Les approches 

synthétiques sont combinées à une caractérisation physico-chimique des matériaux produits, à l'aide 

de techniques telles que l'AFM, la microscopie électronique, la spectroscopie XPS et Raman, couplées 

à des mesures électriques. 

Le manuscrit est divisé en trois parties expérimentales principales ; la première est centrée sur la 

production et les études fondamentales des propriétés physiques et chimiques des matériaux produits, 

et les deux suivants sur l’utilisation possible des matériaux 2D en électronique : 

• Exfoliation électrochimiques du graphène et de MoS2 : propriétés structurales et électroniques 

• LPE de MoS2 induite par ultrasons pour des applications de détecteurs 
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• LPE de graphite induite en présence de polymères semiconducteurs pour l’amélioration de 

l’homogénéité et des performances électriques du film  

Les processus d'exfoliation en phase liquide utilisent des forces physiques externes, telles que des 

ondes ultrasonores, des forces de cisaillement ou des forces motrices électrochimiques, pour 

surmonter les interactions de van der Waals entre des feuilles adjacentes dans des matériaux stratifiés 

immergés dans un solvant approprié. Celui-ci, à son tour, doit interagir avec le matériau 2D en 

équilibrant les forces attractives entre les feuilles pour maintenir le matériau en suspension. Les 

approches LPE sont des processus peu coûteux qui peuvent facilement aboutir à des dispersions 

pouvant être traitées par des méthodes bien établies, telles que le revêtement à la tournette, le dépôt 

par goutte et l’impression à jet d’encre.20  

Investiguer la structure et les propriétés des matériaux 2D produits par des approches LPE et obtenir 

un contrôle précis de leurs propriétés sont des aspects essentiels pour révéler leur potentiel et 

permettre leur intégration dans de nouveaux dispositifs multifonctionnels. 

Dans ce travail de thèse, nous avons exploité deux méthodes pour la production de matériaux 2D en 

milieu liquide, à savoir EE et UILPE. La première est une approche récemment développée pour la 

production à grande échelle et rapide de graphène, alors que la seconde approche est plus en 

adéquation avec l'exfoliation en milieu liquide de divers matériaux assemblés en couches. 

La première partie expérimentale de la thèse est consacrée à l’exfoliation électrochimique du graphite 

en graphène. Contrairement aux autres procédés d’exfoliation en milieu liquide, l’EE sur feuille de 

graphite présente l’avantage unique de permettre la production de grandes quantités de graphène en 

peu de temps, dépassant également 20 g / heure.21 Cependant, une compréhension approfondie de la 

relation entre structure-propriétés de ce matériau fait toujours défaut. 

Nous avons mené une caractérisation physicochimique du graphène électrochimiquement exfolié 

(EEG) combinée à une étude des propriétés électroniques de ce matériau réalisée à la fois au niveau 

des feuillets de graphène et sur les films (Figure 1). De plus, nous avons utilisé pour la première fois 

l'irradiation par micro-ondes pour réduire la quantité de fonctionnalités d'oxygène dans l'EEG, 

démontrant ainsi qu'elles ne constituaient pas le goulot d'étranglement du transport de charges dans 

l'EEG, ce qui est plutôt gêné par la présence de défauts de structure dans le plan de base. 
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Figure 1 : Caractérisation morphologique et électronique de l'EEG montrant la présence de défauts de structure. 

Une étude similaire a été réalisée après l’exfoliation de MoS2 par intercalation électrochimique d’ions 

lithium. Comparée à la littérature antérieure,22 cette approche permet d’obtenir plus de 60% de MoS2 

en phase 2H. Cependant, les analyses Raman et XPS montrent un matériau défectueux. Enfin, une 

forte amélioration des performances électriques des FET à base de feuillets de MoS2 isolés, après 

traitement à la vapeur de butanethiol, montre que les lacunes en soufre constituent une part 

abondante des défauts dans un tel matériau. Ces travaux ont inspiré la deuxième partie expérimentale 

présentée dans cette thèse. Les défauts créés lors des processus d’exfoliation peuvent agir en tant que 

sites réactifs pour des interactions covalentes et non covalentes. La première peut être utilisée dans le 

but d’une modification ultérieure via une fonctionnalisation chimique, tandis que la nature réversible 

et sélective des interactions non covalentes est idéale pour la détection. 

La détection chimique est un domaine scientifique d'actualité car elle apportera une contribution 

essentielle à l'amélioration de la qualité de la vie des personnes en proposant des solutions concrètes 

en matière de surveillance de la sécurité sanitaire des aliments, de l'environnement et de la santé 

(diagnostic précoce et surveillance continue des maladies), etc. Des études récentes ont révélé que le 

MoS2 recèle un grand potentiel en tant que matériau actif pour la détection de gaz, en tirant parti du 

rapport surface / volume le plus élevé associé à des caractéristiques électriques semi-conductrices et à 

une composition chimique contrôlée. Grâce à ses propriétés chimiques et physiques uniques, le MoS2 

peut interagir avec le gaz adsorbé à sa surface (O2, H2O, NO2, CO, NH3, etc.), ce qui entraîne une 

modification de la conductivité du matériau, qui peut être mesurée en tant que variation de courant 

dans les appareils à deux et trois terminaux.23 Cependant, à ce jour, les dispositifs basés sur des 

matériaux 2D ne peuvent pas concurrencer les capteurs disponibles dans le commerce en raison de 

leur faible sensibilité. Un autre inconvénient, qui empêche encore l’apparition sur le marché 
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d’appareils à base de matériaux 2D, est encore l’absence de méthode de production efficace et peu 

coûteuse à grande échelle de couches minces. 

Nous avons exploité l’approche LPE pour préparer des nanofeuilles à base de MoS2 à faible coût, dans 

le but de fabriquer des détecteurs de gaz ayant une grande surface spécifique. La méthode LPE induite 

par ultrasons a été conçue de manière à favoriser la formation de défauts sur les bords des feuilles, 

pouvant alors être bénéfiques pour les propriétés de détection de gaz. Grâce à une méthode de 

traitement simple et efficace, l'encre à base de MoS2 a été déposée sous forme de films homogènes 

pour la fabrication de dispositifs chimiorésistif. Les couches minces de MoS2 ont montré une 

sensibilité remarquable à l'humidité, avec une haute sélectivité vis-à-vis de diverses petites molécules, 

prouvant que l’approche LPE de MoS2 peut être un bon choix pour l’élaboration de la prochaine 

génération de détecteurs de gaz, car elle peut permettre la fabrication de dispositifs flexibles de grande 

surface, légers et très performants. 

 

Figure 2. Schéma de la procédure de fabrication des détecteurs de gas à base de MoS2-thiol (a) et performances 

des films de MoS2 en tant que capteurs d'humidité à différentes humidités relatives (b). Le graphique indique le 

rapport G / G0% RH par rapport à l'humidité relative (%RH), G étant la valeur de conductance en présence 

d'humidité et G0% HR, la valeur de conductance à 0% HR. 

Enfin, dans la troisième partie expérimentale de la thèse, nous présentons une nouvelle stratégie pour 

moduler les propriétés des matériaux 2D en exploitant la méthode LPE. Ce projet implique l’utilisation 

de systèmes moléculaires tels que des semi-conducteurs organiques (OSC) en combinaison avec les 

matériaux 2D.  

Bien que les matériaux pour l’(opto)électronique classique tels que les semi-conducteurs organiques 

(OSC), soient largement étudiés et peuvent présenter de nombreux avantages tels que la modulation 
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de leurs propriétés physiques via une fonctionnalisation chimique, pouvant être déposés de manière 

optimale, et présentant une aptitude aux processus évolutifs, même sur des supports flexibles, leurs 

performances restent modestes. Pour résoudre ce problème, plusieurs tentatives de combinaison 

d’OSC avec des matériaux 2D ont été rapportées dans la littérature antérieure.24 

Dans la dernière partie de la thèse, nous proposons une nouvelle approche basée sur le mélange 

simultané d’OSC, tels que P3HT et PCDTPT, avec du graphène lors de l’exfoliation de poudre de 

graphite en nano-feuillets de graphène, les OSC jouant le rôle d’agents stabilisants de dispersion, en 

empêchant la réagrégation des feuillets de graphène exfoliés, permettant finalement la production de 

dispersions homogènes à deux composants. La caractérisation électrique des films hybrides résultants 

a révélé une forte amélioration des performances électriques dans le cas des films hybrides FLG / 

PCDTPT par rapport à ses composants d'origine (Figure 3). 

 

Figure 3 : Caractérisation optique et électrique du graphène exfolié en absence (a) et en présence (b) de PCDTPT. 

 

Ces travaux pourraient ouvrir la voie à l’utilisation de méthodes LPE pour l’optimisation des propriétés 

des matériaux 2D en vue de leur utilisation en tant que composants actifs dans de nouveaux dispositifs 

multifonctionnels. 
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En conclusion, nous avons développé de nouvelles approches pour la production en milieu liquide de 

matériaux 2D ouvrant la voie à leur exploitation en tant que matériaux actifs pour des applications en 

électronique et en détection. En particulier, l’approche électrochimique a été largement étudiée, jetant 

ainsi les bases de l’amélioration du processus, vers la production en série de matériaux 2D pouvant 

être utilisés de manière pratique dans des dispositifs (opto) électroniques flexibles et à faible coût. 
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ABSTRACT 

 

The tremendous pace towards the fabrication of more performing, lighter, foldable and wearable 

electronic components will lead to a new generation of smartphone, portable computer and wireless 

technologies. Such tools will be key for many other technological applications, e.g. in the field of 

medicine and healthcare, and more generally to improve the quality of our lives.1 To afford these 

challenges, it is important to develop advanced materials whose properties are tuned in view of their 

final application.  

Recently, two-dimensional materials (2DMs) like graphene, transition metal dichalcogenides (TMDs) 

and hexagonal boron nitride (h-BN), have shown great potential as components in thin film 

transistors,2-3 photodetectors,4 sensors,5-6 supercapacitors7 and solar cells.8-9 They are just one or few 

atoms thick materials and hold unique physicochemical properties (e.g. exceptional electrical and 

thermal conductivity) that do not exist in their bulk counterparts. In addition, they are transparent 

and can bear large amounts of strain without degradation being, therefore, they are perfect candidates 

for next-generation flexible technologies.10  

The discovery of graphene’s exceptional properties in 2004 by Geim and Novoselov11 has made 

graphene and related materials of great interest for a wide variety of potential technological 

applications.12 Yet, the large-scale production of high quality 2DMs represents a greatest problem 

limiting the emergence of numerous daily life applications. Hitherto the most popular approach to 

produce high-quality pristine thin layers consists in the “top-down” “scotch-tape”11 based method, 

which was exploited to isolate graphene for the first time. This method relies in the repetitive cleavage 

of a layered crystal by the use of an adhesive tape.11 While it is appropriate for performing fundamental 

studies aimed at unveiling the physical and chemical properties of 2DMs, this method is hardly up-

scalable, thereby hampering any technological application. An alternative production method which 

can be executed to the growth in wafer-scale is chemical vapour deposition (CVD), which can be 

classified as a “bottom-up” approach. The major weakness of such approach is the high energy- and 

time-consuming nature of the process, and the limited quality of the obtained material compared to 

pristine mechanically exfoliated (ME) thin layers. Further improvements of CVD approach are needed 

to meet the demand of industrial manufacture, e.g. high quality, reproducibility and low cost.13 Thus, 

it is clear that the key bottleneck in the emergence of 2DMs in our daily use is in the absence of reliable 

and scalable methods for their synthesis.  



 

IX 

 

Approaches that are proving being very promising for the mass production of 2DMs, consist in the 

liquid-phase exfoliation (LPE) of layered crystals.14 These techniques are usually very easy, low-cost 

and can be environmentally-friendly. Liquid-phase exfoliated 2DMs can exist in the form of inks which 

can be deposited on any arbitrary substrate. Recently, the community has perceived an outbreak of 

new methods of LPE including ultrasound-induced liquid-phase exfoliation (UILPE)14, 25 of layered 

crystals – eventually assisted by ad-hoc molecules16 – , electrochemical exfoliation (EE) – carried out 

in a variety of electrolytes26 – , shear exfoliation17 and ball milling19 in different environments, and so 

forth.  

This thesis is devoted to the production in liquid-phase of 2DMs, by using approaches that may enable 

mass production of graphene and related materials. We aim to overcome some issues that are critical 

for the processing and practical use of 2DMs-inks like the tendency of nanosheets to undergo 

aggregation and their limited processability. Our purpose is also gaining a deep understanding of the 

structure-properties relationship in such materials being a mandatory step toward their future 

applications. This manuscript outlines the evolution of LPE approaches, from the liquid-phase 

exfoliation by means of ultrasounds to the one assisted by molecules, until the discovery and 

development of the electrochemical exfoliation process. More specifically, we focussed on ultrasound-

induced LPE and electrochemical exfoliation of graphene and molybdenum disulfide (MoS2), which 

have been chosen as prototypical 2DMs. The synthetic approaches were combined with a multiscale 

physico-chemical characterization of the produced materials by means of techniques such as atomic 

force microscopy (AFM), electron microscopies, X-ray photoelectron spectroscopy (XPS) and Raman 

spectroscopy, coupled with electrical measurements.  

The manuscript is divided in three main experimental parts, with the first one more focussed on the 

production and fundamental studies on the physical and chemical properties of produced materials, 

and the latter two on the possible uses of the 2DMs in electronics: 

• Electrochemical exfoliation of graphene and MoS2: structural and electrical properties 

• Ultrasound-induced LPE of MoS2 for sensing applications 

• Ultrasound-induced LPE of graphite in the presence of semiconducting polymers for improved 

film homogeneity and electrical performances 

LPE processes use external physical forces, like ultrasound waves, shear forces or electrochemical 

driving forces, to overcome the van der Waals interactions between adjacent sheets in layered 

materials immersed in a proper solvent. This latest, in turn, needs to interact with exfoliated flakes 
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balancing the inter-sheet attractive forces to keep the material in suspension. LPE approaches are 

inexpensive processes that can be easily up-scaled to obtain dispersions processable by well-

established methods, like spin coating, drop casting and ink-jet printing.20 

Investigating on the structure and properties of the 2DMs produced with LPE approaches and 

achieving fine control over their properties are key aspects to unveil their potential and to allow their 

integration in novel multifunctional devices. In this thesis work, we have exploited two methods for 

the production of 2DMs in liquid-media, i.e. EE and ultrasound-induced LPE. The former is a recently 

developed approach for the large scale and fast production of graphene,27-28 whereas the latter is a 

more established approach for the exfoliation in liquid-medium of various layered materials.29 

The first experimental part is dedicated to the electrochemical exfoliation of graphite into graphene. 

Unlike the other exfoliation processes in liquid media, EE of graphite foil holds the unique advantage 

of allowing the production of large quantities of graphene – exceeding 20 g hours-1 – in a short time.21 

However, an in-depth understanding of the structure−properties relationship of this material is still 

lacking.  

We conducted a physicochemical characterization of electrochemically exfoliated graphene (EEG) 

combined with an investigation of the electronic properties of this material carried out both at the 

single flake level and on the films. Additionally, we used for the first time microwave irradiation to 

reduce the amount of oxygen functionalities in EEG, demonstrating that they are not the bottleneck 

for charge transport, which is rather hindered by the presence of structural defects within the basal 

plane of the electrochemically exfoliated material (Figure 1).  

 

Figure 1. Morphological and electronic characterization of EEG showing the presence of structural defects. 
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The electrochemical approach was then extended to the exfoliation of other 2DMs, e.g. MoS2, 

developing a novel method of exfoliation based on electrochemical lithium-ion intercalation. 

Compared to past literature,22 this approach allows to obtain more than 60% of 2H-phase MoS2. 

Raman and XPS analysis show that the material is rather defective, throwing light on its electrical 

characteristics. The electrical performances of FETs based on single MoS2 flakes were greatly improved 

through butanethiol vapour treatment, proving that sulfur vacancies are an abundant part of defects 

in such a material. This work inspired the second experimental part presented in this thesis. Defects 

created during the exfoliation processes can act as reactive sites for covalent and non-covalent 

interactions. The first can be exploited for post modification via chemical functionalization, while the 

reversible and selective nature of non-covalent interactions is ideal for sensing. 

Chemical sensing is a topical field of science as it will provide a key contribution to the improvement 

of people’s quality of life by offering concrete solutions towards food safety, environmental and 

biohealth monitoring (as early diagnostics and continuous monitoring of diseases), etc. Recent studies 

have revealed that MoS2 holds a great potential as an active material for gas sensing, by taking 

advantage of the highest surface-to-volume ratio combined with the semiconducting electrical 

characteristics and controlled chemical composition. Thanks to its unique chemical and physical 

properties, MoS2 can interact with the gas adsorbed on its surface (O2, H2O, NO2, CO, NH3, etc.) 

yielding a consequent change in the conductivity of the material, which can be measured as a variation 

in current in two- and three-terminal devices.23  

 

Figure 2. Sketch of the procedure for fabricating MoS2-thiol sensors (a) and characteristic performance of MoS2 

films as humidity sensors at different relative humidity (b). The graph reports the ratio G/G0% RH versus the 

relative humidity (%RH), where G is the conductance value in the presence of humidity and G0% RH is the 

conductance value at 0% RH. 
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However, to date, 2D material-based devices cannot compete with commercially available sensors 

because of their low sensitivity. Another drawback, which is still hindering the appearance of 2D 

material-based devices on the market, is again the lack of an efficient and cost-effective method of 

production on a large scale of 2DMs with competitive sensing properties. 

We exploited the LPE approach to prepare MoS2 nanosheets at low cost for fabricating large-area gas 

sensors (Figure 2). The ultrasound-induced LPE method was tailored in order to promote the 

formation of edge defects which might be beneficial to MoS2 gas sensing properties. Through a simple 

and effective processing method, MoS2 ink was deposited in the form of homogeneous films for the 

fabrication of chemiresistor devices. MoS2 thin films showed remarkable sensitivity toward humidity 

and selectivity to various small molecules, proving that LPE MoS2 can be a good candidate for next 

generation of gas sensors as it can allow the fabrication of large-area, light and highly performant 

flexible devices. 

Finally, in the third experimental part of the thesis, we present a new strategy for modulating the 

properties of 2DMs by exploiting the LPE methods. This project involves the use of molecular systems, 

e.g. organic semiconductors (OSCs) in combination with 2DMs.  

 

Figure 3. Optical microscopy images (top) and electrical characterization (bottom) of graphene exfoliated in the 

absence (a) and in the presence (b) of the polymer PCDTPT. 
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While conventional (opto)-electronic materials like organic semiconductors (OSCs) are well 

established and can display numerous advantages including the tunability of their physical properties 

via chemical functionalization, excellent processability, and suitability for up-scalable processes even 

on flexible supports, their electrical performances are modest. To solve this problem, several attempts 

of combining OSCs with 2D materials have been reported in the past literature.24 Herein, we propose 

a new approach based on the simultaneous blending of OSCs, such as poly(3-hexylthiophene) (P3HT) 

and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-

c]pyridine] (PCDTPT), with graphene during the exfoliation of graphite powder into few-layer 

graphene (FLG) nanosheets, with OSCs acting as a dispersion stabilizing agents (DSAs) and preventing 

the re-aggregation of the exfoliated graphene flakes, ultimately enabling the production of 

homogeneous bi-component dispersions (Figure 3). The electrical characterization of the resulting 

hybrid films revealed a strong improvement of electrical performances in the case of hybrid 

FLG/PCDTPT films compared to its pristine components. This work might open the doors to the use 

of LPE methods for the tuning of 2DMs properties in view of their introduction as active components 

in novel multifunctional devices.  

In conclusion, we developed new approaches for the production in liquid media of 2D materials paving 

the way to their exploitation as active materials for applications in electronics and sensing. In 

particular, the electrochemical approach has been extensively investigated, casting the basis for the 

process improvement towards the mass production of 2D materials which can be conveniently 

employed in low-cost flexible (opto)-electronic devices. 
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CHAPTER 1. 
 

INTRODUCTION 

Graphene, owing to its exceptional properties including the high thermal conductivity30 and optical 

transparency,31 outstanding mechanical strength and flexibility,32 has revolutionized the field of 

material science and nanotechnology. It has reawakened and catalysed the research on other layered 

crystals beyond graphite – most of which already well-known like molybdenum disulfide (MoS2) and 

hexagonal boron nitride (h-BN) – permitting the discovery of outstanding properties never revealed 

before. Unexpected characteristics show up when these materials are reduced to one or a few 

atomically thick sheets. The rise of graphene has hence led to the rapid development of a new class of 

nanomaterials, known as two-dimensional materials (2DMs). Among them, there are transition metal 

dichalcogenides (TMDs) most of which are semiconductors displaying a sizeable direct bandgap (1-3 

eV) in their single layer form, extremely high Ion/Ioff ratios reaching ≈108 and field-effect mobilities 

within the range of 10-100 cm2V-1s-1.33 Black phosphorus (BP) stands out for its high carrier mobility 

(up to 1000 cm2V-1s-1),34 while there are also insulating 2DMs like h-BN which exhibits bandgap of ≈ 

6eV.35 Many other atomically flat materials are part of these growing family, each one holding their 

own distinctive properties. Such a wide range of diverse properties makes the 2DMs attracting 

components for numerous technological applications in opto-electronics, energy storage and 

generation and sensing to name a few. 

Once demonstrated their existence and properties, one of the first objectives in this field has been to 

prepare such atomic-thin materials. Many strategies for the production of 2DMs have been proposed 

and classified in bottom-up and top-down methods.20 Bottom-up techniques, such as chemical vapor 

deposition (CVD)36-37 and epitaxial growth,20, 38-39 makes it possible to produce high-quality materials 

which resulted good candidates for application in nanoelectronics. Nevertheless, these approaches are 

expensive and limited to the wafer scale production. Conversely, top-down methods are generally 

simple and low-cost, as they are based on the mechanical cleavage of layered crystals using exfoliation 

techniques such as Scotch tape method and liquid phase exfoliation (LPE). 

Methods such as Scotch tape-based exfoliation, chemical vapor deposition and epitaxial grown have 

been essential for the isolation and the study of 2DMs fundamental properties, as well as, for the 

development of the first prototypes of flexible electronics, wearable sensors, batteries, membranes etc. 

Soon, however, it has become urgent the necessity of having low-cost and up-scalable methods to 

realize such applications on a real scale.  

The methods of liquid-phase exfoliation represent the most viable way toward the large-scale 

production of 2DMs. Their success is due to the possibility to produce 2DMs in form of inks which 

can be deposited on different substrates enabling the formation of large area 2DMs. Moreover, the 

LPEs are cost-effective approaches and do not require specific production conditions such as high 

vacuum or high temperature. On the contrary, the exfoliation usually occurs in mild conditions. 

Presently, the approaches which operate in liquid media are numerous, e.g. ultrasound-induced LPE 

(UILPE),16, 40 shear exfoliation (SE),41 electrochemical exfoliation (EE),26 ball milling,42 etc. and can be 

carried out in a large variety of conditions e.g. various liquid media and operating parameters. As a 

result, LPEs yield rather different materials in terms of thickness, lateral size and quality. Although 
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that has aroused suspicious and notable confusion on the processes themselves and on the 

characterization and applicability of the produced materials, on the other hand, the possibility to 

produce materials with distinct and modulable characteristics makes LPE approaches very appealing 

for different applications. Yet, much greater attention on the structure and properties of the 2DMs 

produced with LPE approaches is necessary to unveil their potential and achieve fine control over their 

properties, as a prerequisite towards their integration in novel multifunctional devices. 

Often, the characteristics of the 2DMs inks have been presented by indicating the performances of a 

chosen single flake devices. Considered the large inhomogeneity in terms of sizes of the nanosheets 

which form an LPE ink, it is clear that such findings are not representative of the overall ink’s 

properties. On the contrary, they, often, overestimate the performances of the material with respect 

to its practical use as ink. As the use of LPE 2DMs is meant for large scale applications, and not as a 

single flake, approaches of deposition which permit of generating large continuous films from 2D inks 

are highly desirable. The deposition of these inks for electronics application should avoid the use of 

surfactants or polymers that cannot be easily removed. On the contrary, the development of methods 

of exfoliation and deposition from pure solvents or, alternatively, as embedded in a functional matrix 

which can be beneficial for the final product, would be the key for application in electronics. Once 

overcome these challenges, the properties of 2DMs can be investigated in form of films disclosing the 

practical potential of such materials. In addition, the comparison with single flake devices 

performances would allow understanding whether 2DMs films properties are affected by the 

deposition approach – which can be eventually improved – or reflect the intrinsic properties of the 

material.  

The main goal of research in this field has been for a long time the one of achieving high-quality 2DMs 

flakes featuring large lateral sizes and nanometre thicknesses, aiming at similar performances to 

Scotch tape or CVD 2DMs but with the advantage of processing these materials into large-area thin 

films. That remains still an open challenge as it is now possible to obtain large amount of mictrometre-

size thin flakes but at the cost of more defective materials. Nevertheless, many applications, for 

example in the fields of sensors, composites, energy etc., don’t require such characteristics. Conversely, 

the use of inks constituted by nanometre-size flakes can be more convenient in certain respects. 

By providing insight into the multiscale analysis of the chemical and physical properties of LPE 

materials and their relative films, with or without additional functionalities, this thesis aims to achieve 

a profound understanding of the fundamental properties of such materials in view of their future 

applications in electronics. To this purpose, we investigated different approaches of liquid-phase 

exfoliation (e.g. electrochemical exfoliation and liquid-phase exfoliation) and developed methods of 

deposition in order to explore the properties of the materials not only at single flake level, but on films 

as well, and to reach a deep comprehension of the relationship between their structure and properties. 

These fundamental studies have been supported by the development of new strategies to overcome 

some of the challenges in the introduction of LPE materials in working devices. In particular, this 

thesis intends to explore the use of LPE methods to modify 2DMs materials in order to achieve a 

control over their properties that is necessary for the integration of these materials in multifunctional 

devices. 

This thesis has been divided in the following parts: 

The next two chapters revise the state of the art on 2DMs production and related properties. Chapter 

2 gives an overview of 2DMs and their properties, with a focus on the materials which have been 

investigated in this work, which are graphene and MoS2. Particular attention is given to the methods 

for their production via liquid-phase exfoliation, providing the reader with a detailed literature review 
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on the latest advancements on ultrasound-induced liquid-phase exfoliation and electrochemical 

exfoliation approaches. Finally, some of the attractive applications of LPE materials are discussed. 

Chapter 3 introduces the techniques employed in this work for the characterization of the produced 

materials (optical microscopy (OM), atomic force microscopy (AFM), X-ray photoelectron 

spectroscopy (XPS) and Raman spectroscopy). Together with the fundamental principles of the 

technique, each chapter reviews the main achievements in the characterization of graphene and MoS2. 

These first two chapters are followed by three experimental chapters which are organized in a similar 

way: they include an introduction to the project, a part of materials and methods where the details 

regarding samples preparation and characterization are reported, a section that covers the results of 

the research and, finally, the conclusions of the project are summarized at the end of the chapter.  

Chapter 4 is the first experimental chapter which deals with the method of electrochemical exfoliation. 

This chapter offers a detailed understanding over the chemical and structural properties of 

electrochemically exfoliated graphene (EEG) on different scales, combined with a focus on its 

electronic characteristics both at single flake level and on film. This approach has been extended to 

the exfoliation of MoS2. The produced material has been characterized in detail demonstrating the 

applicability of electrochemical approach for the exfoliation of other 2DMs and unveiling the intrinsic 

characteristics of this material. 

Chapter 5 explores one of the possible applications of LPE 2DMs in the field of sensors and show that 

MoS2 produced by UILPE offers great potential as humidity sensor. 

In chapter 6 the world of 2DMs is merged with molecular systems via LPE methods. This work shows 

that graphene can be advantageously combined with semiconducting polymers through ultrasound-

induced LPE toward the generation of novel multifunctional devices.  

In the last chapter 7, the main results of this research work are summarized. The work ends with 

conclusions and suggestion for future research, discussing the challenges which need to be faced for 

the integration of LPE 2DMs in electronics devices. 
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CHAPTER 2. 
 

TWO-DIMENSIONAL CRYSTALS: A NEW GENERATION OF 

MATERIALS 

 

2.1  2D materials’ families and their properties 

The discovery of the astounding properties that layered solids exhibit when layered down, or 

exfoliated, to monolayers like graphene has paved the route to a new branch of material science which 

is spreading like wildfire: two-dimensional materials. This topic became of interest for scientists in 

many classical disciplines including physics, chemistry, materials, engineering, biology, and also in the 

interdisciplinary fields of materials and nanoscience’s. 

Two-dimensional materials including graphene, transition metal dichalcogenides, hexagonal boron 

nitride etc. are a novel class of materials which can be thick just a few atoms, in the form of monolayers. 

Graphene can be even thinner, being just one carbon atom-thick. They belong to the family of 

nanomaterials and own unique physical and chemical properties compared to the bulk counterpart. 

They are transparent and flexible, with exceptional thermal and electrical properties. Therefore, there 

are great expectation that such materials will be soon part and parcel of our future technologies based 

on ultrathin and flexible devices towards a lighter and comfortable life style.  

The breakthrough on the detected extraordinary properties of graphene isolated by “Scotch-tape 

method” in 2004 has led to a renewed interest in these materials, although the exfoliation of layered 

materials, like MoS2 and graphite, dates back to the ‘60s.43,44-45 Today, while graphene continues to 

play a dominant role in various fields, and research based on discovering its potentials is far from 

having reached the peak, they are approaching some limits. The “Scotch-tape approach”, that is still 

the only effective method for the production of pristine graphene, cannot clearly be employed on an 

industrial level, while methods like CVD suffer from expensive production. Moreover, the use of 

graphene as active component in electronic-switching devices is not feasible due to its zero bandgap. 

As a consequence of such apparent drawbacks, researchers attention is being directed again to other 

materials such as 2D semiconductors. Indeed, there are plenty of other layered materials which have 

revealed peculiar properties when thinned to monolayers as a consequence of quantum confinement 

and they can either supplement or replace graphene in electronic devices. Moreover, their 

development is even more rapidly leveraging the understanding gained for graphene. Most of the 

elements of periodic table are involved in these materials (see Figure 2. 1). Consequently, these 

compounds exhibit a wide variety of electronic properties including metallic, insulating and 

semiconducting ones. 

Besides graphene, that will be discussed more in detail in section 2.1.1, a carbon-based dimensional 

material that has gain lots of interest similarly to graphene, if not even more due to its higher 

versatility, is graphene oxide (GO).  

GO is the oxidized form of graphene, that is mainly synthetized by Hummers’ method, namely 

immersing graphite in concentrated acids in the presence of oxidizing agents, in particular in a mixture 

of sodium nitrate, potassium permanganate and concentrated sulfuric acid. GO can be readily 

dispersed in water. The negatively charged surface of GO flakes allows stable water dispersions 
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containing more than 90% of monolayers with concentrations up to 4 mg ml-1. GO has given, 

therefore, the opportunity to explore the chemistry in solution of this material, although its final 

properties largely differ from graphene due to the extensive presence of oxygen functionalities and 

defects. To reach similar properties to graphene, GO needs to be reduced (electro)chemically, 

thermally or with other methods, giving rise to the, so called, reduced graphene oxide (rGO). 

 

Figure 2. 1. Some of the elements across the periodic table involved in 2D materials (2DMs). The element 

families are color grouped and the 2DMs which contain the indicated elements are reported in brackets in the 

legend. (TMDs = transition metal dichalcogenides; h-BN = hexagonal boron nitride) 

A big fraction of the other 2D materials are compounds made of two or more elements. Their bulk 

counterparts are generally layered crystals, featuring strong in-plane covalent bonds and out-of-plane 

van der Waals (vdW) forces, which hold the different planes together in a vertical layered structure. 

Therefore, these layered compounds are generally classified as vdW ls solids. Due to this structure, 

layered vdW materials are extremely anisotropic both mechanically and electrically. For example, in 
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bulk MoS2 the conductivity along the planes is higher by a factor of at least 102 compared to the one 

perpendicular to the planes. Moreover, owing to their layered structure, characterized by weak forces 

between layers, these materials can be exfoliated making possible the formation of bi-dimensional 

materials. 

Following the era of graphene and graphene oxide, an escalation of other layered compounds has been 

proposed. The list opens with MoS2 and the other transition metal dichalcogenides (TMDs) like WS2, 

MoSe2 and WSe2 and goes on with hexagonal boron nitride (h-BN), black phosphorous (BP), Mxenes, 

etc. When produced in form of mono- or few-layer, their atomic-scale thicknesses allow to have a good 

control of the properties. Furthermore, new properties have been discovered as a result of quantum 

confinement. 

The class of 2DMs more studied after graphene is undoubtedly the one of TMDs. Unlike graphene 

which consists of only one carbon atom thick layer, TMDs follow a MX2 structure where M is a 

transition metal (e.g. Mo, W, Nb, Ta, Re) and X is chalcogen element (S, Se and Te), being therefore 

more chemically versatile.46 This family of materials results intriguing for the wide range of properties 

(electronic, optical, chemical and thermal ones) that they can cover.47 They present a wide spectrum 

of electronic properties. For example, MoS2 and WS2 are semiconductors, NbS2 and VSe2 are metals, 

HfS2 behave as insulator. Many TMDs are difficult to be produced by bottom-up approaches because 

of the high melting point of the precursors.48 Nevertheless, they are relatively easy to exfoliate. A more 

detailed description of this class of materials is reported in section 2.1.2 where a particular attention 

is given to MoS2, whose production by electrochemical exfoliation and ultrasonication, and its 

potential as gas sensor are the subject of this research work. 

Relevant was also the discovery of the “white graphene”, namely hexagonal boron nitride (h-BN), for 

its exceptional properties of insulator (bandgap of 5.97 eV). Similarly, to graphene, boron and nitrogen 

atoms are covalently bond in a planar h-BN layer. h-BN can be obtained either via LPE or CVD process, 

the latter being the preferred method for the good controllability of crystal size and quality. However, 

the CVD growth of h-BN is currently feasible only on some specific substrates, reaching the largest 

grain area of 7500 µm2 on Cu-Ni alloy;49 while the fabrication of large-area on other non-metal 

substrates still needs to be developed. h-BN could be practically used as gate dielectric layers or 

oxidation-resistant coatings.  

Besides 2D compounds, there are also the elemental 2DMs, headed from graphene, which include 

elements from III-V A groups. Also these materials exhibit exotic electronic, magnetic and catalytic 

properties compared to their bulk counterparts. For instance, graphyne and its derivatives are new 2D 

allotropes of carbon, developed as alternative to graphene. They consist of sp- and sp2-hybridized 

carbon atoms. In particular, one or more acetylenic units bonds two carbon atoms in different ways 

rising up to graphyne, graphdiyne, graphtriyne and so on. Unlike graphene, graphynes allotropes are 

semiconductors with a small bandgap (~1.2 eV for graphynes and ~0.46 eV for graphdiynes). However, 

despite the high carrier mobilities and suitable bandgaps, graphyne family finds difficulties to advance 

as alternative to graphene due to the efforts in synthesis of high quality large-area films. 

Following carbon, in IV A group also silicon, germanium and tin exist as 2D structures, which 

analogously to graphene are called with the suffix –ene to distinguish the monolayer from the bulk: 

silicene, germanene and stanine. They have high carrier mobilities and are semiconductors with a 

direct bandgap. However, silicene and germanene are considered nonlayered materials as they are sp3-

hybridized and their synthesis is rather challenging. Their properties are mainly theoretically 

predicted. 2D materials from V A group are black phosphorus (PB), arsenene, antimonene and 

bismuthene. Among them, the one is receiving unquestionable attention for its high electron mobility 
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and non-zero band gap is BP. In BP each phosphorus atom is covalently bonded with three adjacent 

phosphorus atoms in a single layer honeycomb structure. Unlike few-layers TMDs having an indirect 

bandgap, BP is a direct band semiconductor with a tuneable electronic bandgap that increases from 

0.3 to 1.5 eV when the thickness decreases going from bulk to monolayer. Moreover, few-layer BP 

presents a higher carrier mobility, as high as 1000 cm2V-1s-1,34 compared to TMDs (mobility of few 

cm2V-1s-1) , even if with a smaller Ion/Ioff, and an ambipolar behaviour, being therefore in between 

graphene and TMDs. Similarly, to graphene, BP single crystals are composed by vertically stacked 

layers held together by vdW interactions. Therefore, it can be easily produced by mechanical 

exfoliation or in liquid phase. Despite such positive characteristics, the main weakness of BP is related 

to its environmental instability. Finally, in 2018, a new 2D allotrope of phosphorus has been proposed 

and named blue phosphorus. In blue phosphorus atoms are arranged in a honeycomb structure similar 

to graphene, although not completely flat but regularly "buckled". Recently, it has been predicted its 

stability and its bandgap of 2 eV that bodes well for optoelectronic applications.50 Antimonene is 

another semiconductor with a bandgap up to 2.28 eV and having the peculiarity of being transformed 

from indirect to direct bandgap semiconductor just applying a small strain to the monolayer. Similarly, 

the structure of bismuthene is compressed when the 3D crystal is thinned down to single-layer flake, 

leading to its transformation from semimetal to semiconductor which promote its introduction in 

optoelectronics. For III A group, the only elemental 2DMs is the borophene, whose structure and 

properties are predicted by theory. Most of the elements of transition group exist also as 2DMs, but 

the low yield of synthesis hinders their applicability.  

Finally, recently a new group of 2D compounds named MXenes has joint the list of 2DMs that is 

growing fast. MXenes are transition metal carbides (TMCs), namely, crystals where the interstitial sites 

of early transition metals (group III−VI B, 3d elements and 4d/5d elements) are filled with carbon 

atoms. In particular, MXenes are layered TMCs and are the more recently studied of this family. The 

general formula of MXenes is Mn+1AXn where n= 1, 2, or 3, M is an early transition metal, A is an element 

from the main group (generally, group III A and IV A) and X is carbon. The strong M-X bond has mixed 

covalent/metallic/ionic character, whereas the M-A bond is metallic. Therefore, in contrast to other 

layered materials, such as graphite and TMDs, where weak vdW interactions hold the structure 

together, the bonds between the layers in the MAX phases are too strong to be broken directly by 

means of shear forces, cavitation and similar mechanical stimuli, but usually a preliminary etching 

process is necessary before the exfoliation. Immersing them in HF solutions results in the Al being 

selectively etched away. In this process Al atoms are replaced by O, OH and/or F atoms. In other 

words, the metallic bond M-A are replaced by hydrogen bonds using aqueous HF as etching agents. 

That dramatically weakens the interaction between the layers making possible the exfoliation of the 

material. These new materials were labelled as MXenes to emphasize the loss of the A element from 

the MAX parent and highlight their 2D nature, similarly to graphene. They have attracted interest 

because they combine the metallic conductivity of transition metal carbides with the hydrophilic 

nature of their hydroxyl or oxygen terminated surfaces in one material only. In other words, they 

behave as “conductive clay’’.51 MXenes can be extensively used in battery electrode materials, as 

electrons can move fast across their microstructures. 

This list of 2DMs could probably be longer since always new materials are added, thereby inspiring 

numerous studies and challenges. However, it can be already seen as a rich library where finding 

materials with specific properties for any kind of application. Importantly, to enable the use of these 

materials for practical applications, it is necessary to overcome one of the main challenges in this field, 

that is the production of 2DMs at large scale. 
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In this thesis we explore new methods of exfoliation in liquid media towards the large production of 

these materials. To this aim, we have focussed our effort to two prototypical 2DMs, that are graphene 

and MoS2. Some of the aspects of their structure and proprieties, that can be relevant for this work, 

are reported in section 2.1.1 and 2.1.2.1. 

 

2.1.1 Graphene 

Graphene is a single layer of carbon atoms arranged in a hexagonal lattice. Actually, it can be seen as 

a single atomic layer of graphite that is its bulk counterpart. In a graphite crystal, graphene layers are 

stacked on top of each other with an interlayer distance of 0.335 nm and held together by vdW 

interactions. 

Graphene is the thinnest and lightest known material. Furthermore, it holds exceptional properties. It 

displays extremely high electrical and thermal conductivities, transparency, flexibility, strength and 

impermeability to molecules. It exhibits an extremely i) high mobility of 200,000 cm2V-1s-1 in 

comparison with 1,400 cm2V-1s-1 for silicon, ii) high thermal conductivity 52 > 4000 WmK-1 that is 10 

times larger than copper and aluminium, iii) high theoretical surface area of 2600 m2 g-1,53 and iv) high 

optical transparency of 97.7%, to name a few. Such extraordinary characteristics result from its 

structure. Graphene is a planar carbon allotrope where carbon atoms are sp2 hybridized. The 

superposition of 2s orbital with 2px and 2py ones generates stable and localized σ-bonds with the 

three neighbouring carbon atoms. Being strongly covalent bonds, they are responsible for stability and 

flexibility of graphene. The remaining 2pz orbitals are perpendicular respect to the plane connecting 

carbon atoms. Their overlap form delocalized π bond that are responsible of the exceptional thermal 

and electronic properties. Since only the π bond contributes to the electronic properties, the electronic 

band structure of graphene can be described by an orthogonal nearest-neighbour tight-binding 

approximation, that consider graphene as a set of atoms with a single pz orbital per site. The band 

structure of graphene yields conduction and valence bands which are symmetric with respect to the 

Fermi energy, also called Dirac point or Charge neutrality point, which is set at 0 eV. Graphene valence 

and conduction bands are degenerated in 6 points, located at the corner of the Brillouin zone, called 

Dirac points (Figure 2. 2).54 

 
Figure 2. 2. Representation of graphene band structure, the inset shows the valence and conduction bands that 

touch at the k points in the Brillouin zone. Adapted from ref. 54. 

Because of this characteristic, graphene is called gapless semiconductor or semi-metal. In neutral 

graphene the Fermi level is located at these points. Such peculiar band structure explains the 
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characteristic ambipolar electric field-effect in graphene (Figure 2. 3). Charge carriers can be tuned 

continuously between electrons and holes in concentrations n as high as n =1013cm–2 and their 

mobilities can exceed 15,000 cm2 V–1 s–1, even under ambient conditions.55 The gate voltage induces a 

surface charge density and accordingly the Fermi level shifts. The surface charge density is expressed 

as n = ε0 εVg/te, where ε0 is the permittivity of free space and ε the one of SiO2, e is the electron charge 

and t is the thickness of SiO2 layer. The doping induced by the electric field transforms the shallow-

overlap semimetal into either completely electron or completely hole conductor through a mixed state 

containing both electrons and holes. For the regions with only electrons or holes, the Hall coefficient 

decreases with increasing carrier concentration as 1/ne. The resistivity also follows the standard 

dependence ρ-1= σ= neµ, where σ is carrier mobility. In the mixed state, σ changes little with Vg, 

indicating the substitution of one type of carrier with another, while the Hall coefficient is 

proportional to the difference between electron and hole concentration. Without electric field doping 

i.e. at zero Vg, FLG was found to be a hole metal, showing a shift of the peak to large positive Vg. 

However, this shift is attributed to doping of the films by absorbed water. In fact, by annealing the 

devices in vacuum a shift of the peak close to zero voltage is observed. The mobility of FLG was 

determined as µ = σ(Vg)/en(Vg).11 

 
Figure 2. 3. Ambipolar electric field effect in graphene monolayer. The insets show the conical low energy 

spectrum E(k) that show the changes in the position of Fermi level with the gate voltage Vg. Positive voltage 

induce electrons, vice versa a negative voltage induces holes. Reproduced from ref. 55. 

A similar study is challenging in the case of graphene produced by ultrasound-induced LPE due to the 

nanometre size of the flakes. On the contrary, benefitting of the micrometre sizes of electrochemically 

exfoliated graphene (EEG) flakes, it is possible to investigate on the electrical properties of such 

material at single flake level shedding light on its potential. 

 

2.1.2 Transition metal dichalcogenides (MS2, MSe2 etc.)  

Transition metal dichalcogenides (TMDs) consist of a hexagonally packed layer of transition metal 

atoms (e.g. Mo, W, Nb, Ta, Re) sandwiched between two layers of chalcogen atoms (S, Se and Te). 

While in-plane M-X bonds are usually covalent, intralayer interactions are governed by vdW forces. 

TMDs cover a wild spectrum of electronic properties by virtue of their different structure. For example, 

MoS2 and WS2 are semiconductors, NbS2 and VSe2 are metals, HfS2 behaves as an insulator. The 

electronic structure of TMDs strongly depends on the coordination environment of the transition 

metal and its d-electrons. Referring, for the sake of simplicity, to monolayers, in both 1H and IT phases 
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(a description of such polymorphs is displayed for the representative case of MoS2 in section 2.1.2.1), 

d-orbitals in the non-bonding d bands are located within the gap between the bonding (σ) and 

antibonding (σ*) bands of M-X bonds. According to ligand field theory, octahedrally coordinated 

transition metal centres (D3d) of TMDs form degenerate dz2
, x

2
–y

2 (eg) and dyz,xz,xy (t2g) orbitals that can 

together accommodate the TMDs’ d electrons (a maximum of 6, for group 10 TMDs). On the other 

hand, the d orbitals of transition metals with trigonal prismatic coordination (D3h) split into three 

groups, dz
2 (a1), dx

2
–y

2
,xy (e), and dxz,yz (eʹ), with a sizeable gap (~1 eV) between the first two groups of 

orbitals (Figure 2. 4). 

 

Figure 2. 4. Qualitative sketch that describes the progressive filling of d orbitals located within the bandgap 

between the bonding (σ) and antibonding (σ*) bands in TMDs. D3d and D3h refer to trigonal prismatic and 

octahedral coordination of transition metals. Reproduced from ref. 46. 

The diverse electronic properties of TMDs (metals, semiconducting, etc.) arise from the progressive 

filling of the non-bonding d bands from group 4 to group 10 species.46 When the orbitals are partially 

filled, as in the case of 2H-NbSe2 and 1T-ReS2, the Fermi level (EF) is within the band and TMDs exhibit 

metallic character. When the orbitals are fully occupied, such as in 1T-HfS2, 2H-MoS2 and 1T-PtS2, the 

Fermi level is in the energy gap and the materials are semiconductors. The effect of chalcogen atoms 

on the electronic structure is minor compared with that of the metal atoms, but a trend can still be 

observed: the broadening of the d bands and corresponding decrease in bandgap with increasing 

atomic number of the chalcogen. For example, the bandgap of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 

decreases gradually from 1.2 to 1.0 eV.  

Table 2. 1. Properties of layered TMDs. The values of energy bandgap are reported for the semiconducting 

materials in form of bulk and monolayer (1L). Adapted from ref. 56. 

MX2 -S2 -Se2 -Te2 

 
Mo 

 
Semiconducting 

1L: 1.8 eV 
Bulk: 1.2 eV 

 
Semiconducting 

1L: 1.5 eV 
Bulk: 1.1 eV 

 

 
Semiconducting 

1L: 1.1 eV 
Bulk: 1.0 eV 

 
W Semiconducting 

1L: 1.9 eV 
Bulk: 1.4 eV 

 
Semiconducting 

1L: 1.7 eV 
Bulk: 1.2 eV 

 

Semiconducting 
1L: 1.1 eV 

 

Nb Metal 
Superconducting 

 

Metal 
Superconducting 

 

Metal 
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These models assume ideal coordination but, when a structural distortion occurs, as often seen in 

group 7, the electronic structure can change. Destabilization of the original phase may be attributed 

to the effective change in the d-electron count. For example, when 2H-MoS2 is intercalated with 

lithium, the transfer of an electron from the valence s orbital of the alkali metal to the d orbital of the 

transition metal centre can cause the transformation of 2H phase in 1T phase.46, 57 The opposite 

transition from 1T to 2H has also been observed in TaS2 after Li intercalation.58 Bulk semiconducting 

2H-phase TMDs, such as MoS2, WS2, WSe2 and MoSe2 have an indirect bandgap but when thinned 

down to monolayer they exhibit direct bandgaps, resulting in an enhanced PL intensity (See section 

2.1.2.1 dedicated to the representative example of MoS2). With an intrinsic bandgap typically in the 

range of 1-2 eV, 2D TMDs can be used instead of graphene for switching applications, having on/off 

current ratio that is 8 orders of magnitude higher than graphene. Moreover, in function of the 

application, one can chose the proper TMDs based on their different properties, which has been 

summarized in Table 2. 1. 

 

2.1.2.1 Molybdenum disulfide (MoS2) 

Among all the TMDs, the best known is certainly MoS2, which is commonly used as dry lubricant in 

racing car engines and ultrahigh-vacuum technology.59 Similarly to graphite, MoS2 is a vdW solid. Both 

materials have a similar bulk structure formed by stacking of atomic layers weakly interacting among 

each other, while the atoms within each plane are covalently bond. Consequently, even MoS2 can be 

exfoliated into mono and few-layer flakes like graphene. However, while graphene is the thinnest 

material possible, being only one atom thick, MoS2 monolayer consist of three atomic layers, i.e. a 

plane of Mo atoms sandwiched between two planes of S (S-Mo-S) in a trigonal prismatic coordination. 

Such chemical structure is responsible for the differences in chemistry and properties between 

graphene - only composed by carbon atoms- and MoS2. For example, while graphene is a semimetal 

with a zero bandgap, MoS2 monolayer is a semiconductor. Therefore, MoS2 can be used, instead of 

graphene, in digital electronic switches. Moreover, MoS2 is offering more opportunities for its 

functionalization, mainly through coordination chemistry,60 besides via non-covalent interactions 

(e.g. vdW or electrostatic interactions).  

 

Figure 2. 5. Band structure of MoS2 bulk crystal, four-layer (4L), tri-layer (3L) and monolayer (1L). In blue is 

highlighted the highest VB and in red the lowest CB. Adapted from ref. 61. 
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MoS2 is an indirect bandgap semiconductor (Eg ~ 1.2 eV), where the valence band (VB) maximum lies 

at the high-symmetry point Γ and the conduction band (CB) minimum at a low-symmetry point 

between K and Γ. As the thickness is reduced from bulk to monolayer, the indirect gap increases while 

the direct gap at the K point remains almost unaffected. In monolayer (1L in Figure 2. 5) the indirect 

gap is larger than the direct gap and both CB minimum and VB maximum shift to the K point. 

Therefore, monolayer MoS2 can be considered a direct bandgap semiconductor. The occurrence of an 

indirect-to-direct bandgap transition is demonstrated through a much stronger photoemission in 

monolayers than in few layers where the photoluminescence can be quenched.61-62 Although studies 

on optical and electronic properties of MoS2 date back to the 60s, the interest toward this material 

exploded in the era of graphene and in particular in 2011 when the first single-layer MoS2 transistors 

displayed remarkably high on/off current ratio (Ion/Ioff » 108).33 The possibility to have a semiconductor 

at atomic-scale thickness has raised enormous interest towards MoS2 and similar materials, 

demonstrating the viability of these materials in electronics. 

The crystal structure of MoS2 was reported in 1923 by Dickinson and Pauling, who revealed the 

hexagonal lattice and the structural parameters of MoS2 by X-ray diffraction.63 Bulk MoS2 displays 

three polymorphs that are usually indicated as 2H, 3R and 1T (Figure 2. 6). The polymorphs 2H and 

3R share the same structure where each Mo atom is covalently bonded to 6 atoms of S with trigonal 

prismatic coordination (D3h). The difference between the two polymorphs is in the stacking of the 

layers. 2H has two layers per unit cell stacked in hexagonal symmetry, whereas 3R has three layers per 

unit cell stacked in rhombohedral symmetry. In 1T polymorph, Mo and S atoms are arranged in 

octahedral coordination (Oh) with only one layer per unit cell (tetragonal symmetry).  

In single-layer MoS2 only 1T and 2H can exist. Among them, the most stable is the 2H polymorph that 

is an intrinsic semiconductor, whereas 1T is metastable and it is the metallic phase of MoS2. A powerful 

tool for identifying the presence of 2H and/or 1T phase is high resolution transmission electron 

microscopy (HRTEM).  

In the next section, we report on the methods for producing 2DMs. In particular, we will focus on the 

methods of exfoliation in liquid-phase since they allow the easy and low-cost production of thin layers 

in large quantities, giving the opportunity to exploit their properties also on large scale. A particular 

attention will be paid to the approaches of exfoliation in liquid media that were explored in this 

research work, that are ultrasound-induced LPE (UILPE) and electrochemical exfoliation (EE). 
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Figure 2. 6. a) Schematic representation of MoS2 polymorphs: 2H, 3R and 1T; Top view of monolayer MoS2 

crystalline structure with b) trigonal prismatic and c) octahedral coordination. Reproduced from ref. 56. 

 

2.2  2D materials via liquid-phase exfoliation of layered crystals: 

the approaches 

Likewise graphene, 2DMs can be produced either by following the bottom-up or top-down strategies. 

Bottom-up approaches generally exploit the chemical reaction of small molecular building blocks to 

form 2D networks.64-65 The chemical synthetic approaches produce generally limited quantities of 

material. On the other hand, other bottom-up technologies like CVD and epitaxial growth have 

advanced in the last years because they can lead to large area, high quality 2DMs. Nevertheless, they 

are rather complex methods that generally require high temperatures and high vacuum, resulting 

expensive. They lack versatility because in some cases, the precursors are not easily accessible, or they 

are expensive. Moreover, additional transfer step are always needed to exploit the properties of 2DMs 

on different target substrates. 

In parallel, a great effort has been devoted to the development of new strategies for the large-scale 

production of 2DMs by employing low cost methods, so that the potential of such extraordinary 

materials can be finally exploit for industrial applications. LPE methods are proving very promising 

towards the large-scale production of 2DMs because, by means of easy and chip processes, allow to 
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obtain the largest number of thin layers possible. LPE methods share the same basic principle. These 

methods take advantage of the common structure of some layered materials that are characterized by 

weak interlayer forces and exploit different phenomena to lower and/or overcome such interactions 

between adjacent layers, allowing the separation of the individual sheets, or exfoliation. The benefit 

of producing 2DMs by LPEs is that the methods employed are very simple and require basic laboratory 

equipment. Moreover, exfoliated 2DMs can be solution-processable, facilitating their applications.  

Originally, the term liquid-phase exfoliation (LPE) was referred to the process of exfoliation of graphite 

into graphene by ultrasonication in a proper liquid.66 Now that the number of proposed methods is 

increased, it has become commonplace using this term  in a general extent when referring to all the 

approaches of exfoliation occurring  in liquid phase such as shear mixing, ball milling, the more recent 

microfluidization, electrochemical exfoliation, etc. 

As it will be shown throughout this thesis, LPE methods are attractive approaches, being extremely 

versatile and applicable to various experimental conditions. 2DMs dispersed in liquid media can be 

modified by exploiting the solution chemistry, can form composites by solution mixing, produce films 

or coating by means of well-established techniques like spin-coating,67-68 dip-coating or spray coating9, 

69-70, and more recent ones like inkjet printing.71-72 These systems can be used for many applications 

like battery electrodes, barrier composites, photodetectors or energy storage systems and there can be 

wide space even for new other applications.  

In the next subchapters, we discuss the two methods of exfoliation in liquid phase that were employed 

in this work, namely the ultrasound-induced liquid phase exfoliation and the electrochemical 

exfoliation. We point out the mechanisms of exfoliation that have been proposed and recent advances 

in the production of mono- and thin-layer sheets by LPE methods. 

 

2.2.1 Ultrasound-induced liquid-phase exfoliation (UILPE) 

The ultrasound-induced LPE, or UILPE, has been introduced in 2005 by McEuen73 who partially 

exfoliate graphite in dichlorobenzene, while the first observation of graphene monolayers was 

reported by Coleman in 2008.15 So far, this is the method that has demonstrated the highest versatility, 

enabling the exfoliation of many others 2DMs beyond graphene like h-BN,74 TMDs,14, 75 phosphorene, 

Ni(OH)2,76 MXenes,77 etc. 

Generally, this process consists of three steps: i. the sonication process in a liquid media, that provide 

the energy necessary to overcome the interlayer interactions allowing the actual exfoliation, ii. the 

stabilization of the exfoliated material in dispersion, iii. the size selection of exfoliated sheets. The 

primary phenomenon behind the process of sonication is the cavitation. The cavitation is the growth 

and collapse of micrometre-sized bubbles or voids in liquids due to pressure fluctuation. During 

ultrasonication, tensile and shear stress, together with cavitation, act on the bulk material inducing 

both exfoliation and fragmentation (Figure 2. 7).78 It has been demonstrated that collapse of these 

micro-bubbles unavoidably lead to defects in the material, that are mainly localized on the edges for 

short sonication while they occur also on the basal plane of the flakes for sonication longer than 2 

hours, appearing as ‘hole-like’ defects.79 The same group suggest that it is not about sp3 defects or 

vacancies, but rather topological defects. 
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Figure 2. 7. Sketch of the mechanism of exfoliation via ultrasound-induced liquid-phase exfoliation. Reproduced 

from Ref. 18. 

Interestingly, it was found that the intensity of the ultrasounds is strictly dependent on the dimension 

and shape of the vessel. That would explain large discrepancies and poor reproducibility of the 

experiments from one lab to the other, due to the lack of such kind of details in the previously 

published studies. Nevertheless, too many other parameters can affect this process such as sonication 

power, amplitude, frequency, volume, etc. Therefore, the process of exfoliation via UILPE is still not 

totally understood.80 In addition, beside the common laboratory equipment originally used for such 

studies, like the sonication bath, other kind of ultrasounds sources have been recently introduced e.g. 

tip sonicator, cup-horn sonicator, etc. While in the bath sonication the ultrasonic waves propagate 

through both the tank and the vessel, resulting in a non-uniform and low intense ultrasounds 

exposure, the tip sonicator allow high power sonication but only localized beneath the tip. A good 

compromise can be represented by the cup-horn system which allow a more homogeneous sonication, 

and compared to the conventional sonication bath, it allows to operate at different frequencies in 

function of the target system. 

Concerning the step of dispersion of exfoliated material, it generally occurs in the same liquid medium 

where the exfoliation is performed, except some examples that require the post exfoliation solvent 

exchange generally to aid the processing of the material for example using low boiling point solvents 

or mixture.81-82 

UILPE process can be divided in two major classes that is molecule-free and molecule-assisted UILPE, 

as depicted in Figure 2. 8 for the particular case of graphene.83 In the first case, the exfoliation is 

performed in solvents, organic or aqueous; while in the second one, different molecular systems, e.g. 

small molecules or polymers, are introduced during the exfoliation process. Following the classical 

solution thermodynamics, an efficient stabilization occurs when the net energetic cost of mixing a 

solute in a solvent is minimized, that is when the solubility parameters of solvent and solute match. It 

appears clear that, due to the different dimensionality, 2DMs cannot be treated as small molecules. 

Therefore, classical models have been modified to be extended to these new systems. Solubility 

parameters that well describe the exfoliation and stabilization of these new systems are solvent surface 

tension, Hildebrandt or Hansen parameters.14-15, 84-85 Typical solvents that are known to give stable 

dispersions include N-methyl-2-pyrrolidone (NMP), dimethlyformamide (DMF), dimethyl sulfoxide 



 

17 

 

(DMSO) and isopropyl alcohol (IPA).66 The exfoliation in such solvents can be controlled in order to 

maximize the concentration of exfoliated material. However, that become possible only by increasing 

the sonication time up to hundreds of hours (e.g. 200 h). That determine the reduction of the flakes 

lateral sizes as a consequence of the fragmentation during the sonication process, beside be a very long 

process.86 Alternatively, it has widely demonstrated that the use of organic molecules can enhance the 

exfoliation of 2D crystals leading to higher concentrations of thin layers in dispersion. That occurs 

when the chosen molecules have a high energy of adsorption on the basal plane of the material, so 

that they can act as dispersion stabilizing agents (DSAs). Usually, the stabilization is dominated by 

non-covalent interactions, for example through physisorption of hydrophobic chains in the case of 

classical amphiphiles, while hydrophilic heads are usually responsible for the stabilization in 

dispersion.87 In most of the cases, molecule-assisted UILPE is employed to produce 2D crystals in 

water solution, where usually the dispersion and exfoliation are not favoured, or in general to avoid 

the stabilization in hazardous, toxic and high-boiling point solvents. Moreover, molecules prevent re-

aggregation of exfoliated nanosheets by electrostatic and/or steric repulsion.88 While the large 

conjugated surface of graphite give rise to many examples of non-covalent interactions with aromatic 

molecular systems, TMDs have attracted interest towards their covalent functionalization at the 

sulphur vacancies or non-covalent functionalizzation with organic molecules that are believed to 

adsorb to the nanosheets predominantly via vdW and dipole-dipole interactions.16, 89 

For the molecule-assisted UILPE of graphite, several molecular systems like polycyclic aromatic 
hydrocarbons (PAHs) with different substituents, naphthalene diimide (NDI)- and perylene diimide 

(PDI)- based derivatives have been used, since the π–π interactions with graphene basal plane allow 
their adsorption. 

 

Figure 2. 8. Schematic representation of ultrasound-induced liquid-phase exfoliation in presence of absence of 

molecules that act as stabilizing-agents. Reproduced from Ref. 8. 

On the other hand, more recently, the exfoliation of graphene and other layered crystals is being 

performed by using simpler and easily available surfactants like sodium cholate (SC), sodium dodecyl 

benzyl sulfonate (SDBS), sodium dodecyl sulfate (SDS) as anionic surfactants, 

cetyltrimethylammonium bromide (CTAB) as cationic surfactant or Triton X100 or Brij as nonionic 

representatives, because they are easier to be in large part removed. Finally, the use of many polymers, 

including proteins as well, has been investigated to assist the exfoliation of 2DMs. Despite the great 
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versatility of the exfoliation in the presence of polymers which can stabilize the material both in 

aqueous and organic environment, this field was not widely studied. This is may be due to the lower 

quality of exfoliation – as shown and discussed in chapter 6, compared to the use of small molecules, 

or because the polymer cannot be removed after exfoliation due to the strong interaction with the 

material.  

Finally, the third aspect of UILPE process is the size selection. UILPE samples are always highly 

polydisperse in terms of sizes and thicknesses of the flakes. Consequently, very often the dispersion 

cannot be used as prepared, but further step of size selection are essential. That is requested especially 

for electronic applications where it is important to have dispersion that are homogeneous in size and 

thicknesses or for those applications which exploit the potential of monolayers sheets and thin layer. 

During the years, several approaches of size selection have been proposed. One of the most recent 

developed and improved to efficiently separate the flakes in term of sizes is called liquid cascade 

centrifugation (LCC), and it is based on multiple centrifugation steps at centrifugation rates that 

increase from one step to the following. Finally, each sample obtained following such procedure, 

reported in detail in ref, 66 contains nanosheets in a given size ranges. This appears, at the moment, 

the most efficient approach of size selection for materials produced by UILPE. However, many factors 

should be taken into account. Despite the ease of the process, it is certainly time-consuming if 

considered that for having good separation supernatant/sediment long centrifugation are needed (>2h 

for 20 mL of dispersion). Dispersions of thin flakes, that are in general the most requested, are usually 

the final outcome of multiple steps that can last many hours in total. Moreover, this process 

discriminate the flakes in function of their mass, therefore it is difficult to select at the same time thin 

and large flakes. Finally, depending on the density of the material, of the solvent, etc. this process must 

be tailored each time for the production of different 2DMs in different conditions. These all are 

important issues that need to be addressed for the progress of ultrasound-induced LPE. By and large, 

although in some cases, such issues can be avoided by using alternative new exfoliation approaches, 

UILPE continues to stand out for its high versatility.  

 

2.2.2 Electrochemical exfoliation (EE) 

Recently electrochemistry has been considered an alternative route to produce 2DMs in liquid media. 

The EE of layered materials occurs in a electrolytic cell where a fixed potential is applied between the 

layered crystal and a counter electrode both immersed in a electrolyte which ensure the intercalation 

of ionic species between the layers. The ionic intercalation weakens the interlayer forces in the bulk 

crystal, while Coulomb repulsion between charged layers and formation of gas molecules lead to the 

exfoliation of the material.  

Electrochemical exfoliation has earned a great success because, unlike other LPE approaches, enable 

the production of gram quantities of graphene per hour that can be collected in form of powder or 

processed as ink. The produced material is remarkably rich in monolayers and bilayers with lateral 

sizes on the order of micrometer. Besides, the production is extremely fast, lasting from minutes to 

hours, in function of the amount of material one want to obtain. Finally, it requires mild conditions 

and very basic equipment. The exfoliation can indeed occur in water solution without using harmful 

reactants and harsh reaction conditions. The key point of the electrochemical exfoliation is thus its 

high efficiency.  

The set-up that is generally used for the electrochemical exfoliation is a very simple electrolytic cell, 

composed by two electrodes, an electrolyte and a power supply. The working electrode is the material 



 

19 

 

that you want to exfoliate, and the counter electrode is usually a platinum wire or a graphite electrode 

as cheapest option. The electrochemical exfoliation can occur either in anodic or cathodic conditions 

according to electrolyte and potential applied. This means that the working electrode can be either 

positively or negatively charged, allowing the intercalation of anion or cation respectively.  

This chapter, that describes the electrochemical approach used for producing 2DMs, has been divided 

in two sections relative to the two operating modes generally used, namely anodic and cathodic one. 

The two paragraphs report the historical background and more recent advances in the EE of graphene 

and other related materials. Moreover, some conclusions regarding the influencing factors of this 

process are reported, though the electrochemical method is still in its infancy and not totally 

understood. 

 

2.2.2.1 Anodic intercalation of anions 

Anodic exfoliation occurs by applying a positive voltage to the working electrode, thereby driving 

intercalation of negative ions present in solution within the layered crystal. Usually anodic exfoliation 

is carried out in aqueous solution. This aspect makes the process extremely appealing for industrial 

application, being safer and environmentally friendly. Furthermore, it has been observed that the 

electrochemical exfoliation in water is particularly efficient.  

However, to observe the direct and effective exfoliation of the material, the electrolyte must be 

conveniently chosen. First attempts of EE of graphite have been demonstrated by Wang et al. who 

applied a bias of 5 V for 4 hours to a graphite rod immersed in poly(sodium-4-styrenesulfonate) 

(PSS),90 and Li. who used sodium dodecyl benzene sulfonate (SDBS) to act both as intercalant and 

stabilizer, for a 48 hours electrolysis at 30 V.91 These approaches produced good quality graphene, but 

PSS molecules remain adsorbed on the sheets. Moreover, the efficiency of the process is clearly not so 

high, as proved by electrolysis processes that span from 4 to 48 hours. 

One of the earliest works that has shown a very fast and efficient exfoliation of a graphite electrode 

consists in the exfoliation in dilute H2SO4 by applying a positive potential of 10 V. In this study, many 

other electrolytes were tested, including HBr, HCl and HNO3, but an ideal exfoliation efficiency was 

observed only in the case of H2SO4 based electrolyte. However, this process produces highly oxidized 

material, rich of structural defects.28 In similar conditions, or rather  applying a potential of +10 V and 

using the same electrolyte (H2SO4), Parvez et al. demonstrated the production of graphene with low 

defects and oxygen content.92  A lower content of oxygen has been reported by adding glycine, thus 

forming a glycine-bisulfate ionic complex,  but the exfoliation was interrupted in this case after 5 

minutes of electrolysis.93 Later, many different electrolytes including inorganic salts, such as 

ammonium sulfate, ammonium chloride, sodium sulfate, sodium nitrate, potassium sulfate, sodium 

chlorate,27 perchlorates, phosphates,94 etc. have been examined in the same conditions (applied 

voltage +10 V) in the attempt of exfoliating the material in milder conditions improving the quality of 

the resulting material. While chlorides have not shown any potential to exfoliate graphite, perchlorate 

ions lead to an extensive oxygen content.26, 95 Other electrolytes display instead different efficiencies 

of exfoliation, difficult to interpret. 

According to the procedure used by Su28 and by Parvez27, many of the methods proposed later were 

based on similar operative conditions.21, 96-101After many screening studies, indeed, it has been 

established that the most efficient anionic intercalant is sulfate102 and the optimal potential applied to 

observe graphite exfoliation is +10 V. Such unconventional electrochemical conditions at which the 
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exfoliation takes place103 justify the use of a two-electrode cell, without the reference electrode. Only 

few works have used a three-electrode set up to achieve a better understanding of the mechanism and 

the conditions at which the exfoliation occurs.104 On the contrary, most of the following studies, 

especially regarding the applications of electrochemically exfoliated graphene (EEG), were performed 

employing the aforementioned standard parameters.  

Lower potentials (+1-3V) have been used but in different electrolytes, e.g. in a mixture of NaOH, H2O2 

and water, impressive yields have been obtained owing to the crucial role exploited by H2O2. On the 

other hand, this method led to thicker graphene sheets (3-6 layers) compared to the standard methods 

that use sulphate ions and a standard bias of 10 V.98, 105 The effect of the potential has been investigated 

also in a study where a saccharin aqueous solution was used as electrolyte and has shown that the 

potential has an effect on yield and quality of the exfoliated material. In particular, by raising the 

applied potential the yield of graphene would increase together with the defect density, whereas the 

thickness of the exfoliated flakes would decrease.106 Otherwise, very little is reported on the effect of 

the applied potential on efficiency and quality of exfoliated material. A possible explanation is that 

when changing the potential, for example higher than 10 V, one could have higher efficiency of 

exfoliation in terms of yield and thinner layers (as reported in ref. 105) but lower quality, e.g. higher 

degree of oxidation or structural defects, that however could be balanced by modifying the electrolysis 

time.  

The pH of the electrolyte can have also a role on the quality of the exfoliated material, as it was 

demonstrated by comparing the material produced in H2SO4 and Na2SO4, or by adding NaOH in 

perchlorate solution which aide the reduction of defects and oxidation.107 In parallel the effect of 

NaOH addition has been investigated during the exfoliation in sulfonated poly(ether-ether-ketone) 

(SPEEK) and it was proved the reduction of oxygen functionalities on graphene surface.108 Regarding 

the electrolyte concentration, it was observed, for instance, that when the concentration of H2SO4, 

HNO3 or HClO4 is increased, a more efficient exfoliation occurs,97 but rise also the degree of oxidation 

of the material.109-111 

In general, the electrochemical processes are evaluated in terms of efficiency, considering time of 

exfoliation and yield of exfoliated material, as well as in terms of quality expresses as C/O ratio and 

density of defects, generally determined by X-ray photoelectron spectroscopy and Raman 

spectroscopy respectively. Although the significant higher yields of thin layers (1-3 layers) obtained by 

EE in contrast with other LPE approaches, the process by its nature leads to a polydisperse material. 

Therefore, judge on the quality of the material in terms of thickness or defects must be done with 

caution, as strictly dependent on how the material is processed and analysed. The same procedure of 

purification of the material, and sample preparation for a standard characterization, should be used 

to enable the comparison from one work to the others. However, such standardization of the 

procedures is not developed yet for new systems like 2DMs produced by electrochemical exfoliation. 

While the efficiency of the process is generally not quantified, Yang et al.21 performed  an attempt of 

upscaling their process of exfoliation in a aqueous solution of tetra-n-butylammonium bisulfate 

(TBA·HSO4) at neutral pH by applying an alternating current to exfoliate both electrodes. They report 

a value of graphene production rate that exceed 20 gh-1 in laboratory scale. Clearly, this result must be 

interpreted with caution bearing in mind that, keeping constant electrolyte and its concentration, the 

amount of produced material strictly depends on the size of both working and counter electrode and 

their reciprocal distance, volume of the electrolytic cell, time during which the electrolysis is 

performed on the same working electrode, number of electrodes changed in one hour, etc. All these 

details are often in part missing, making difficult the reproducibility of the experiments. More 

importantly, many works, as well as our findings reported in chapter 4, prove that by varying these 



 

21 

 

parameters the quality of the material changes with consequent effects on the efficiency. Therefore, 

most of the time, it is necessary reaching a trade-off between amount of produced material and its 

quality in function of the applications. However, by reporting the amount of graphene produced per 

hour (20 gh-1) during laboratory tests, Yang gives an idea of the great potential of this process for large-

scale production of graphene, predicting further improvement by optimizing of the operative 

conditions and engineering the set-up. Moreover, it is important to note that the total yield of 

exfoliation that they report, being up to 80%, probably is referred to the fact that the electrode is not 

completely exfoliated. This value, as well as the mass of exfoliated material, are related to the total 

material produced, that includes un-exfoliated particles as well. Therefore, such results cannot be 

directly related to the goodness of the exfoliation process in terms of thin sheets. Nevertheless, 

combining such findings with the yield of mono- and few-layer sheets, determined analysing the 

material in dispersion, one can conclude that the yields of electrochemical exfoliation process are 

significantly higher compared to other LPE methods, as discussed in more detail in chapter 4.  

It is undoubtedly recognised that the anodic process, especially when performed in aqueous solution, 

is way more efficient than cathodic process. This difference can be attributed to the different 

mechanisms behind anodic and cathodic EE exfoliation. Interestingly, though countless methods that 

operate in anodic conditions have been developed, the mechanism used for explaining these processes 

is always the same;101 while a more detailed understanding of the mechanism has not been suggested 

yet. As reported by Parvez, the anodic EE of a graphite electrode in an aqueous electrolyte containing 

an inorganic sulphate salt is the result of a multiple step process (see Figure 2. 9). 

 

Figure 2. 9. Sketch displaying the mechanism of electrochemical exfoliation of graphite in anodic conditions 

using ammonium sulphate, (NH4)2SO4, as electrolyte. Reproduced from ref. 27. 

The exfoliation is enabled by the nucleophilic attack at edges sites and grain boundaries of graphite 

by hydroxyl ions (OH-) generated from the reduction of water at the cathode (reaction 1). The 

oxidation of the electrode leads to the expansion of graphite layers, thereby facilitating the 

intercalation of negative ions, together with water molecules, into the interstitial spaces between the 

graphitic layers. There, the oxidation of water (reaction 2) and the reduction of SO4
2- (reaction 3) 

produces gaseous species, including SO2 and O2, that exert large forces which are sufficient to 

overcome the weak interactions between graphitic layers, thereby causing the effective exfoliation of 

graphite electrode. This mechanism has been also used to explain the process of exfoliation of other 

2DMs (see Figure 2. 10).102  
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At the cathode: 2H2O + 2e- → 2OH- + H2                                                                                             (1) 

At the anode: 2H2O → O2 ↑+ 4H+ +4e-                                                                                                                 (2)      

SO4
-2 +4H+ + 4e- → SO2↑ + 3H2O                                                                                                                     (3) 

Only recently, Pumera et al. suggested a slightly different interpretation of the mechanism.  Unlike 

the previous proposed mechanism, this considers the formation of active radicals from water 

electrolysis. The attack at graphite edge sites and grain boundaries is carried out by active radical 

species OH· and O·, which are generated from the oxidation of water when a positive voltage is applied. 

This attack by radicals is thought to produce oxygen functional groups which increase the graphite 

interlayer distance. The expansion of the material is favoured by the intercalation of other radicals as 

well as ions present in solution. Finally, the anodic oxidation of the radicals and anions that takes place 

inside the material produces gaseous species (O2, SO2, CO2 etc.) that completely separate the layers. 

Despite the lack of a more detailed mechanism, the experimental findings achieved so far show that 

the exfoliation is enabled by the intercalation of species that release gas molecules inside the material, 

as a consequence of electrochemical reactions occurring at the anode. The energy developed by a 

vigorous gas evolution, that occur when working at high potentials, is most likely the key of an effective 

exfoliation.  

However, when the electrochemical exfoliation is performed in water, the produced material always 

suffers from unavoidable oxidation. Many attempts have been made in order to avoid or minimize this 

oxidation, for example, using sacrificial agents, that are more readily and preferably oxidized than the 

2D material, such as sodium benzene 1,3-disulphonate or sodium naphthalene 1,5 disulfonate in 

aqueous solution.112 An alternative is using some reducing agents like (2,2,6,6-tetramethylpiperidin-1-

yl)oxyl (TEMPO)113 which are expected to preferentially react with OH radicals to protect graphene 

from the extensive oxidation. By adding TEMPO to (NH4)2SO4 electrolyte, an improvement on the 

quality of the material has been expressed as a higher C/O ratio (= 25.3) determined by XPS. Similarly, 

melamine, that is supposed to adsorb on graphitic basal planes, has been used to protect graphene 

from the extensive oxidation caused by the exfoliation in sulfuric acid, achieving similar results (C/O 

= 26.17).114 Recently, also sodium halides (NaCl, NaBr and NaI) have been used as electrolyte for the 

exfoliation of graphite producing graphene sheets with C/O ratio of 16.7.115 Nevertheless, structural 

degradation, caused by the use of a large positive voltage and consequent vigorous gas 

development, remains a general issue for anodic exfoliated graphene as discussed in detail in 

chapter 4. 

The electrochemical approach in anodic conditions has been extended to other 2DMs as well. Similarly 

to graphene, MoS2 has been exfoliated in a two-electrode cell by applying a positive bias of 10 V 

between a Pt cathode and a crystal of MoS2 as anode, in a H2SO4 based electrolyte. 116 Later, MoS2 has 

been also exfoliated in sulphate ions and, employing similar anodic conditions, larger flakes and lower 

degree of oxidation have been observed.96  
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Figure 2. 10. Schematic illustration of the set-up (a) used for anodic electrochemical exfoliation of a MoS2 crystal 

(b) in Na2SO4 aqueous solution; product of the exfoliation process before (c) and after (d) purification and 

dispersion in NMP; (e) sketch of the mechanism of exfoliation. Reproduced from ref. 96. 

Using a similar set up also Bi2Se3 and Bi2Te2 have been exfoliated,117 while the anodic exfoliation of 

black phosphorous has been also observed in dilute sulfuric acid applying a voltage of +3 V for few 

hours, but no information about yield and thicknesses of the flakes are given. 

In conclusion, by exploring different operative conditions, it has been observed that the anodic 

electrochemical approach can be exceptionally effective in the exfoliation of graphene and other 

related materials. Although the production is a trade-off between yield and quality, the anodic 

exfoliation method ranks first in the large-scale production of high-quality graphene.  

 

2.2.2.2 Cathodic intercalation of cations  

By applying a negative voltage, it is possible to drive the intercalation of positive ions in solution within 

a layered crystal used as cathode in an electrolytic cell. The exfoliation in cathodic conditions is 

performed in organic solvents. Some of the solvents generally used are dimethyl sulfoxide (DMSO), 

acetonitrile, propylene carbonate (PC) and N-Methyl-2-pyrrolidone (NMP).  

Inspired by Li-intercalated compounds used in batteries since 1970, one of the first cation chosen for 

the intercalation of a graphite cathode has been lithium. Cathodic exfoliation in a 1 M LiCl-DMSO 

electrolyte produces graphene with flake sizes ranging from 1 to 20 μm and thickness lower than 5 

nm.118 LiClO4 in PC was used to exfoliate graphite applying -15±5 V but a post treatment by ultrasounds 

was necessary to achieve the exfoliation. 

In general, indeed, the cathodic process doesn’t lead to the effective exfoliation of the material, that 

can be achieved only in the presence of a further external stimulus e.g. given by ultra-sonication or 

chemical reactions. For example, by using lithium metal as anode and source of lithium ions in a 0.1 

M LiPF6 electrolyte, once Li+ is intercalated, the exfoliation is observed upon sonication in water where 

the formation of H2 releases enough energy to guarantee the separation of graphitic layers (Figure 2. 

11).119 This method has been extended to other 2DMs like MoS2, WS2, TiS2, TaS2, ZrS2.120 Other cation 
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species have been tested as well. It was observed, for example, that intercalation of tetra-alkyl-

ammonium cations with various alkyl chains yields few-layer graphene (2–5 layers) with good quality 

and low content of oxygen. 

 

Figure 2. 11. Mechanism of exfoliation driven by electrochemical intercalation of lithium ions. Reproduced from 

ref. 120. 

Generally, exfoliation in organic solvents preserves the structural quality of graphene. However, an 

additional sonication step is necessary to reach thorough exfoliation, with consequent fragmentation 

and higher thicknesses of the flakes.104 Therefore, for the production of graphene, the anodic approach 

has been for a long time preferred to the cathodic one because higher amount of graphene sheets can 

be produced in only one step, and their lateral sizes and thicknesses are not affected by the sonication. 

To overcome this problem, recently new strategies involving the multistep intercalation before with 

Li+ and then successively with TBA+ have been explored to maximize the cathode expansion, 

weakening even more the interaction between layers and favouring the following step of exfoliation 

induced by ultrasounds. 

Other solvents with low-boiling points, such as acetonitrile, have become popular alternatives. By 

electrochemical co-insertion of perchlorate anions and acetonitrile molecules, graphite was 

intercalated and partially expanded at a voltage of +5 V for 30 minutes. Then microwave irradiation 

was applied to complete the exfoliation process. Notably, 69% of the graphene flakes were bilayers 

and 28% of them were single layers with mean lateral dimensions of 1–2 μm.121 

On the other hand, the cathodic approach was preferred to the anodic one for the production of other 

2DMs beyond graphene, to avoid their extensive oxidation that has been widely demonstrated for 

graphene obtained in anodic conditions. However, it has been discovered that when Li+ intercalation 

is used for the production of MoS2, it compromises the structure of MoS2 that results rich in 1T 

phase.120, 122-123 A large number of intercalated Li+ ions lead to electron injection into the crystal that, 

when exceed a certain threshold, induces a phase transition from the semiconducting 2H phase to the 

metallic 1T phase, that is not desired in certain applications. To overcome such a limitation, the most 

recent discovery shows that replacing the small Li+ ions with larger quaternary ammonium ions limits 

the number of molecules that intercalate and thus the electron injections as well. 124 In this study MoS2 
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has been expanded by THA+ intercalation in acetonitrile in a two-electrode electrochemical cell and 

then sonicated in a mixture PVP/ DMF with PVP acting as stabilizer agent (Figure 2. 12).  

 

 

Figure 2. 12. a) Schematic representation of electrochemical intercalation mechanism of MoS2 with THAB; b) 

sketch of ink preparation and processing in large area film; c) photograph of MoS2 crystal before and after 

intercalation; d) schematic representation of the interlayer spacing expansion due to the intercalation process. 

Reported from ref. 124. 

In summary, layered structures can be exfoliated by means of the electrochemical approach when 

placed as anode or cathode of an electrolytic cell. The anodic exfoliation allows the highly efficient, 

one-step, production of thin layer sheets with a certain degree of oxidation. Contrarily, working in 

cathodic conditions would prevent the exfoliated material from the oxidation, leading to higher 

quality materials. However, the cathodic intercalation appears a less efficient process, that occurs 

mainly in organic solvents, being therefore less appealing for industrial application. There is, therefore, 

still need for improved conditions, including finding new electrolytes that can promote a more 

efficient exfoliation. Nevertheless, new strategies to overcome some of the initial limitations of this 

process are being developed. For example, the EE was believed being limited to the production of 

conductive materials. That is in part the reason why the exfoliation of semi conductive materials, like 

MoS2, is less efficient compared to graphite EE. However, recently it has been demonstrated that 

through the inclusion of a conducting additive, it is possible to exfoliate layered materials regardless 

their conductivity.125 

Despite some limitations, EE is a cost-effective strategy for the large-scale production of 2DMs that 

can find application in various fields, such as energy storage, catalysis, sensing etc. 

Finally, in the next section we report some of the practical applications of these materials, specifically 

referring to the possible uses of 2DMs produced by exfoliation in liquid media. 
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2.3 Attractive applications of liquid-phase exfoliated 2D materials 

Owing to their exceptional properties, 2DMs can find application in many fields including composites, 

sensors, electronics, energy and biomedicine, to name a few. 

Graphene that is the most studied among the 2DMs is an appealing material for the industries which 

produce composites, because of its conductivity, strength, light weight, thermal properties and surface 

area. Its strong and flexible nature combined with large surface area and high conductivity are ideal 

characteristics for sensing and for energy storage devices. For example, graphene, but recently other 

2DMs as well, demonstrated to be good candidates for gas sensing, pressure sensing and biological 

sensing. They might contribute thus to enhance our life quality, for example, allowing the fabrication 

of smart packaging that monitor the quality of our food. Moreover, sensing ability, combined with 

flexibility, could also be used in the next generation of wearable electronics to monitor our health e.g. 

glucose and cholesterol sensors. Strength and flexibility could also make possible the fabrication of 

flexible displays and bendable batteries. 

Having said that, developing methods to produce graphene and other 2DMs on large scale is urgently 

needed as the possibility of realizing the above-mentioned applications on real scale strictly depend 

on that. 

Methods like LPE, although need to be still improved to let access to the superlative properties of 

2DMs, give the concrete chance of introducing such materials in our daily life. Benefitting of their 

nanoscopic sizes, as well as mechanical and electrical properties, they allow the miniaturization and 

improvement of currently used devices making them lighter, flexible and stronger. Some practical 

examples involve the use of graphene in composites for aerospace applications, supercapacitors, or 

products like tennis rackets, ski, training shoes which are already commercially available; or as 

coatings, for example, to dissipate heat and ensure long-lasting performance to motorcycle helmets. 

LPE approaches are also extremely versatile since they allow to produce a wide variety of 2DMs holding 

many different properties. On this view, in function of a given final application, one can chose the 

more convenient 2D material that possess the properties needed to satisfy the technological request, 

and the proper LPE method that allow to achieve such characteristics.  

In this chapter we report on some of the numerous potential applications of 2DMs which can be made 

possible using 2D crystals exfoliated in liquid phase, and therefore can be considered potentially up-

scalable. Nowadays, for example, a still open challenge is the one to replace indium tin oxide (ITO) – 

that is the most used material as transparent electrode – with a cheaper, less brittle and stable material. 

In general, the electrodes are used to inject or extract charge carriers in electronic devices. Therefore, 

the requirements for good electrodes are high conductivity and low barrier height at the interface. The 

two figures of merit used for evaluating a material as transparent electrode are sheet resistance, 

expressed in Ω/square, and transmittance at 550 nm, expressed in percentage. ITO is the most used 

transparent electrode because of its high conductivity, around 10 Ω/square, and transmittance of 

90%.126-128 Graphene can be an alternative, since it is a thin and transparent conductor, chemically 

inert, environmentally stable and holds much better mechanical properties than ITO. Indeed, it has 

been demonstrated that CVD graphene possesses the right combination of high transmittance (90%) 

and high conductivity (30 Ω square-1) to be considered a good alternative to ITO. However, producing 

graphene by CVD can be costly and complex from the industrial point of view, hindering its practical 

application. On the contrary, the ability to process LPE graphene either on rigid and flexible 

substrates, in a costless way, makes it an interesting material for such application. Nevertheless, the 

deposition of LPE graphene in homogeneous and uniform large area thin films is a critical point 
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towards its use as transparent electrode. In the past years, many techniques such as spin-coating, 

spray-coating, dip-coating, ink-jet printing, etc. have been employed for the deposition of LPE 

materials, but many factors hinder the formation of thin and homogeneous films. Especially in the 

case of graphene produced by ultrasound-induced LPE, the use of high boiling point solvents doesn’t 

fit with the techniques mentioned above, including spin-coating or dip-coating. Moreover, the 

material produced is inhomogeneous in terms of thickness and size, that generally doesn’t exceed few 

hundreds of nanometers. These two last factors, in particular, force to perform multiple depositions 

to reach complete covering of the substrate, resulting in inhomogeneous and thick films that, although 

are conductive, don’t meet the criteria of transparency. On the contrary, EEG stands out for the 

capacity to form thin and large homogeneous films by vacuum filtration129, spray-coating130 or 

deposition at the interface with water (as proved in chapter 4). That may be ascribed to the higher 

content in thinner sheets (1-3 layers) and larger sizes of the sheets, that are usually on the order of 

micrometers, rather than to the used solvent, that is generally dimethylformamide (DMF, bp: 153 ˚C). 

Recently, EEG films have been produced by spray-coating with a transparency of 70% and 520 Ω 

square-1 resistance.131 Considering that most applications of transparent electrodes, e.g. smart windows, 

do not require very high conductivity, but a few hundreds of Ω square-1 are sufficient, EE and, more in 

general, LPE graphene can be considered a cheaper option of transparent electrode for such low-tech 

applications,80 while still being far from conductivity and transmittance necessary for photovoltaic 

devices or liquid crystals devices. 

Other applications that require high surface area and electrical conductivity can benefit of the use of 

2DMs. Graphene and other 2DMs can be used, for example, as conducting additive in battery 

electrodes to replace the conventionally used carbon black or carbon nanotubes. The high surface area 

to volume ratio, allow in fact to improve not only the electron transport but also the ion diffusion 

within the electrode of the electrochemical storage system. Moreover, the reduced dimensions can 

allow the use of mobile energy storage devices. In particular, EE, that lead to mass-production of 

thinner flakes, allows to produce potential materials for applications in energy-related fields (batteries, 

supercapacitors, fuel cells, solar cells etc.). Small amount of EEG has been added to carbon-coated 

LiFePO4 used as the cathode in Li-ion batteries leading to beneficial effects in terms of capacity 

enhancement and retention.132  Alternatively, EEG has been employed as electrodes for all-solid-state 

thin film supercapacitors or for producing aerogels for the same application. 133 

EEG has been used also as ultrathin transparent film with a high strain sensing capability for use as 

artificial electronic skin or in health monitoring,134 and as transparent and conductive continuous 

graphene circuits.135 

The ability to process 2DMs as uniform and large area thin films enable the scalable fabrication of 

thin-film transistors that can be included in more complex devices, such as logic gates and integrated 

circuits. Owing to the development of deposition methods like inkjet printing, for example, it is 

possible to prepare large area films based on 2DMs inks and that made possible the production of the 

first devices all made by 2DMs. For instance, a photodetector with graphene interdigitate electrodes 

and MoS2 channel has shown improved conductance compared to the dark conditions,136 and similar 

achievement are obtained for WS2, demonstrating that these systems are applicable as low cost 

photodetector.  

2DMs have shown applicability in the field of sensing, as gas sensors or bio sensors. While for ultrahigh 

sensitive sensors, to detect small signals, pristine 2D crystals are necessary (e.g. CVD), less demanding 

applications, like detection of analytes for food and environmental monitoring can exploit the 
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properties of LPE 2DMs.80 Sensing capacity towards different gases has been demonstrated for films 

prepared from rGO and  MoS2 inks.137 

For electronic applications, whereas graphene is not suitable due to its zero bandgap, e.g. for making 

switching devices, other 2DMs that show semiconducting properties, such as TMDs, BP etc. can be 

used. Single and multilayers MoS2 transistors  produced by ME or CVD exhibit outstanding 

performance such as high Ion/Ioff (107) and mobility of around 100 cm2. However, the integration of 

complex logic circuits necessitates the scalable fabrication of high performance thin-film transistors. 

That is challenging due to the low performance materials produced by LPE which have limited carrier 

mobility, low Ion/Ioff and poor film quality. An inkjet-printed MoS2 films have, for example, Ion/Ioff of 2 

and σ = 10-5 S m-1.72  

On the other hand, an improvement of such qualities would allow the successful creation of integrated 

circuits beyond the use of single or few transistors based on mechanically exfoliated and CVD 

produced materials. 
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CHAPTER 3. 
 

CHARACTERIZATION TECHNIQUES 

 

3.1 Optical microscopy (OM) 

Optical microscopy (OM) is a reliable technique that is commonly used in the field of 2DMs materials 

for estimate thickness and size of 2D flakes on large scale. When deposited on silicon oxide substrates, 

atomically thin layers, such as graphene or TMDs, can be rapidly identified by OM.138-139 This is made 

possible due to the optical contrast between a 2D nanosheet and the substrate.  

The contrast difference between the 2D nanosheet and the substrate can be simply obtained from the 

brightness profile of their colour images. By creating a calibration curve, where the values of contrast 

difference are reported for different layers numbers, it is possible determining the number of layers of 

a given flake, e.g. graphene, MoS2, WS2 and TeS2, with a certain accuracy.140 To this purpose, it is 

important to know that the contrast value depends on different parameters such as the thickness of 

SiO2, the intensity of illumination, exposure time and the wavelength of light.139 

 

Figure 3. 1. Optical microscopy (a) and AFM (c) images of mechanically exfoliated graphene few-layer flake. 

According to the calibration curve of this system, the values of contrast difference reported in (b) correspond to 

1 layer, 5-layer and 6-layer graphene sheets. They are, therefore, correlated with AFM height profiles (d). 

Reported from ref. 140. 

During this thesis OM was used to follow the experiments of exfoliation. Based on the different optical 

contrast between thinner and thicker flakes, it has been possible to qualitatively evaluate the degree 

of exfoliation. In alternative, this technique was used for controlling the quality of inks deposition on 

Si/SiO2 substrates. OM was chosen, indeed, for a having a rapid and preliminary insight into the 

samples on large scale, while avoiding time-consuming techniques like atomic force microscopy 

(AFM) for such screening tests. AFM was employed in a second step for the quantitative 

characterization of optimized samples. 
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3.2 Atomic force microscopy (AFM) 

The atomic force microscopy, which belongs to the family of scanning probe microscopies (SPM), was 

developed by G. Binnig et al, in 1986. 

This technique allows to investigate the surface topography of a sample and other physico-chemical 

properties, such as viscoelasticity. This information derives by the detections of the interacting forces 

between a sharp tip (radius < 10 nm), mounted at the end of a flexible cantilever, and the surface of 

the sample. These forces lead to the deflection of the cantilever during scanning the sample so that 

they can be recorded, providing a map of the surface’s sample and its properties. The advantage of 

AFM over the scanning tunneling microscopy (STM) is that it is not limited to the characterization of 

conductive samples but allow the study of semi-conducting or non-conducting samples as well. 

When the AFM tip approaches into proximity of the surface’s sample depending on the tip-sample 

distance both attractive and repulsive forces between the tip and the sample are generated. The 

deflection of the cantilever can be, in first approximation, attributed to a combination of vdW 

attractive forces and repulsive forces. The formers are more long range than the latter and scale with 

r-6. Contrary to the attractive forces, the repulsive forces are short distance forces (< 3 Å). This is the 

main reason why AFM can image the topography of a surface with a resolution below the nanometer 

in a non-invasive way. In particular, AFM provides lateral resolution ≤ 1 nm and vertical resolution ≤ 

0.1 nm. The dependence of such forces to the sample distance is described by using the Lennard-Jones 

potential (VLJ): 

VLJ (r) = 4 𝜀 [ [(
𝜎

𝑟
)

12
−  (

𝜎

𝑟
)

6
] 

where the first term of the equation describes the short-distance repulsion, the latter takes into 

account the long-range attractions caused by a dipole-dipole interaction (Figure 3. 2). In this equation 

𝜀 is the minimum potential energy, r is the distance between atoms and σ is their equilibrium distance 

at which the potential value is minimal.  

 

Figure 3. 2. Lennard-Jones potential model (solid line) is the sum of the attractive and repulsive potential 

(indicated with dotted and dashed lines, respectively). The regions for the different type of AFM measurements 

are indicated by different colors. 

While scanning, the tip will interact with the sample with forces down to 10-9 N-10-12 N which cause 

the deflection of the cantilever. Therefore, the tip will follow precisely the topography of the surface 

and the cantilever will respond to changes in the sample such as roughness of a film or presence of 

nanoscopic features on the substrate. The movement of the cantilever is read through a laser beam 
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that is focused by an optical system onto the reflective back side of the cantilever. Its reflection is 

detected at a four-section photodetector which allows to distinguish between the bending of the 

cantilever, due to attracting and repulsing forces, and the torsion, caused by lateral forces. For an 

accurate scan of the sample’s surfaces, AFM uses a scanner which controls the position of the tip in all 

the directions. The scanner is made of piezioelectric materials which have the properties of changing 

their sizes when exposed to an external electric field. The scanning systems consist of 3 scanning 

elements which control the tip movement in each three directions (x,yz). 

AFM can be operated in three different modes: contact mode, non-contact mode and intermittent 

contact mode. In contact mode the tip is in contact with the sample. The measure can be obtained 

operating in constant height or constant force mode. In constant height mode, the piezoelectric crystal 

is frozen along the z-axis, therefore while scanning the interaction force between the tip and the 

sample surface represents the dataset.  In constant force mode, a feedback loop controls the tip-sample 

distance in order to keep their interaction force constant. In order to do not damage soft samples, 

AFM can be used in non-contact mode, where the tip oscillates at a distance of 10-100 Å from the 

sample. This approach is less used due to the low lateral resolution. A good compromise is represented 

by the tapping mode. In this modality, a short and stiff cantilever is connected to an additional 

piezoelectric component that let it vibrate near its resonant frequency (typically 100-400 kHz). The 

tip approaches perpendicular toward the sample till it barely touches the surface. During the vibration 

the tip will experience both contact and non-contact regimes. Amplitude and frequency of the 

oscillation will vary with the interaction of the tip with the sample, defining the topographic image of 

the sample. Usually tapping mode is operated in constant frequency mode as the best performance 

are obtained at a frequency 5% below the resonance frequency of the tip. To this purpose, a feedback 

loop is used to move the tip when the frequency change as a result of the interaction tip-sample and 

to restore the fixed one. Imaging in tapping mode requires lower scan rate compared to contact mode 

and provide high spatial resolution, allowing to imaging features having thicknesses up to few µm. In 

tapping mode, it is possible recording the phase image simultaneously with the topographic one. The 

phase image is given by the shift of the phase of the cantilever’s oscillation caused by the attracting 

and repulsive forces between the tip and the sample when this latest is formed by two or more 

components of different nature. The phase image gives hence information on the viscoelastic 

properties and changes in chemical composition. Resolution and response are the same of the 

topographic image, but phase imaging can provide more detail in fine structures which are not clear 

when the topography is too rough. 

In this thesis AFM was employed for the characterization of graphene and MoS2 flakes produced by 

LPE approaches and deposited on flat substrates (chapters 4 and 5). AFM was used to quantitatively 

determine the dimensions of the flakes (thickness and lateral size) and to assess detailed information 

on the topography of flake’s surface. Moreover, AFM served to characterize graphene films in chapter 

4 and evaluate, although qualitatively, the degree of exfoliation in the presence of polymers and the 

quality of the deposition of polymer/graphene composites in chapter 6. 
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3.3 X-ray photoelectron spectroscopy (XPS) 

The X-ray photoelectron spectroscopy (XPS) is a technique commonly used to determine the 

elemental composition of a sample, as well as to obtain information on the chemical binding.  

XPS technique is based on the photoelectric effect. An incoming photon with energy hν, higher than 

the work function and up to 10 KeV, interacts with the core levels electrons, mainly through photon 

absorption process, and transfer them their energy. This energy transfer determines the consequent 

emission of photoelectrons from the core levels of the material (Figure 3. 3). The kinetic energy of the 

resultant photoelectrons, which are experimentally detected, is: 

(KE) = hν – BE – φ 

where hν is the photon energy (generally the AlKα = 1486.6 eV is the most common used X-ray source), 

BE is the binding energy of the electron in the atom and φ is the spectrometer work function. The 

binding energy of electron depends on the element from which the electron is emitted, more in 

particular from the orbital, and from the chemical environment of the atom as well. By measuring the 

kinetic energy Ekin of the collected electrons which reach the detector, it is possible to calculate the 

binding energy of the electrons and in this way to identify the different elements at the surface’s 

sample and their chemical state. As a result, a survey of the surface composition of the probed area 

will be obtained (as the one reported in Figure 4.6).  

 

Figure 3. 3. The fundamental principle of XPS: photoelectric effect and the Einstein law. 

Besides giving information on the type of atoms which form a determined molecular system, the study 

of ionization energy of inner electrons allows to obtain information on the charge density of an atom 

and on the oxidation state of the atom. More in general, XPS allows determining the structure and 

molecular binding through the determination of chemical shifts.  
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The binding energy for an electron in a given atom is sensitive to chemical environment of the atom. 

Any changes in the chemical environment of an atom determines indeed a spatial redistribution of the 

valence electrons. For instance, when an atom is bonded with another one having a different 

electronegativity, the electrons will be partially attracted by the more electronegative atom. This 

redistribution of the electrons results in a change in binding energy, as these electrons will leave the 

surface with a different energy. For example, if carbon is covalently bonded to oxygen as it was 

observed for EEG in chapter 4, its core electrons will be attracted by the oxygen atoms, exhibiting 

consequently a slightly shift to higher binding energy, compared for instance to the C1s of alkyl chains. 

Based on simple Coulomb consideration, the chemical shift can be correlated to the charge density of 

the considered atom as follows: 

ΔE = k qa +∑b qb /Rab + l 

where K and l are parameters which depend on the atom (carbon, nitrogen, etc.) and on the type of 

considered orbital (1s, 2p, 3d etc.), while qa is the charge density of the considered atom, qb the charge 

density of the neighboring atoms and Rab is the distance between the atom a and the vicinal atoms b. 

Consequently, XPS don’t allow only an elemental analysis but provides also information on the 

chemical groups which are present in the studied system. An example is reported in Figure 4. 7 where 

XPS has been used to identify the different oxygen functional groups present in the electrochemically 

exfoliated materials. 

This aspect is even more surprising if one thinks that this information comes from the surface of our 

material. XPS is indeed a surface sensitive technique due to the short mean free path of the 

photoelectrons in the material. The generated electrons can undergo inelastic scattering events which 

determine loss in their energy, while part of the electrons don’t have energy sufficient to leave the 

material due to the collision with other atoms of the solid. The mean free path of an electron before 

inelastic scattering changes with the kinetic energy of the electron following a parabolic trend as 

reported in Figure 3. 4. Therefore, despite X-ray can penetrate several hundreds of nanometers 

through the material, the emitted photoelectron only originates in the first few nanometers of the 

material. This features perfectly fit with the analysis of nanometer thick materials, such as 2DMs. 

 

Figure 3. 4. Universal curve of electron inelastic mean free path, λ, in function of KE (eV). 

The total angular momentum of an electron is given by the vector sum of orbital and spin angular 

momentums. An electron is therefore characterized by a quantum number J = |𝑙 ± 𝑠| where l and s are 

respectively orbital and spin angular momentum number. For l = 0 (s orbitals) levels are singlets. For 

l>0, p, d, and f levels give rise to doublets, because the unpaired electron left in an orbital can have its 
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spin and orbital angular momentum either parallel or antiparallel. Examples of singlets are reported 

in this thesis in Figure 4. 7 for C1s high resolution spectra of electrochemically exfoliated graphene, 

while doublets are displayed in Figure 4. 24 and Figure 5. 10 in Mo3d and S2p spectra. 

For some materials, such as the conjugated ones, including graphite and graphene, intrinsic energy 

loss process generates further bands in the XPS spectra such as the shake-up satellites. Shake-up peaks 

appear when photoelectron interacts with a valence electron and excite it (shake it up) to a higher-

energy level. The energy of the core electron is reduced, thereby the emitted photoelectron is shifted 

at higher binding energy than the core level position and gives a broad and low intense peak. In Figure 

4. 7 shake-up peaks in C1s spectra of graphite and EEG are indicated. 

During XPS analysis a local lack of electrons is created on the surface of the sample. When insulating 

samples are analyzed, they are not able to compensate this deficiency of electrons, leading to the so-

called charge effect. As a consequence, the whole spectrum is shifted toward higher binding energy. 

To overcome this problem, the analysis of insulating samples is performed with the flood gun active 

to generate a low energy unfocused electron beam that is necessary to compensate the charging of the 

sample. In addition, the spectra are calibrated, generally respect to the binding energy of the 

adventitious carbon. 

When photoelectrons leave the sample, they can scatter on the atoms. Electrons from deeper below 

the surface loose energy and are emitted with reduced KE (increased apparent BE). Electrons very deep 

in surface lose all energy and cannot escape. These inelastic collisions are responsible of the 

characteristic XPS background where the intensity of the background toward higher BE is always 

greater than at lower BE (“stepped” background). Therefore, the XPS background must always be 

subtracted from the spectra before their analysis. 

The main components of an XPS spectrometer are the X-ray source and an electron energy analyzer. 

Usually in XPS systems the X-rays are obtained by the bombardment with high energy electrons (tens 

KeV) of an Al or Mg anticathode which generate the correspondent Kα of 1487 eV and 1284 eV, 

respectively. The X-ray beam is focused on the sample from which photoelectrons are emitted. These 

photoelectrons are then collected by a system of lens and focused on the analyzer, where they are 

separated according to their kinetic energy. Finally, they are registered in the detector. For a precise 

measurement of the kinetic energies of extracted electrons, they need to reach the energy analyzer 

without energy loss by the collision with air or other gaseous species. For such reason, the XPS 

measurements are performed under ultra-high vacuum (~10-9 mBar in the main chamber). In the 

instrument available in Nanochemistry laboratory that was used for the XPS analysis reported in this 

thesis, the high vacuum is ensured by turbomolecular pumps which allow a gradual decrease of the 

pressure between two independent chambers: the antechamber, where the sample is inserted and 

parked till an optimal pressure of  ~ 10-7 mBar is reached, and the the analysis chamber, where the 

sample is afterward moved for the analysis that is carried out at a pressure of 10-9 mBar.  

While this technique is generally employed for the analysis of metals, molecular systems and polymers, 

in the last years XPS has been extensively used for the analysis of 2DMs as well. Nevertheless, the 

difficulties encountered in the attempt of extending this technique to 2DMs, which differ from 

traditional molecular systems, are not few. The major challenges regard the quantitative analysis of 

these systems by XPS, as discussed below. 

In this thesis XPS was used as a powerful tool for evaluating the quality of the materials produced by 

exfoliation in liquid media, that are graphene and MoS2. 
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Ideally, XPS spectrum of graphite and graphene present only one peak at a binding energy around 284 

eV that is related to sp2 carbon atoms. However, based on the method of preparation, XPS spectra 

have shown additional peaks. In particular, when exfoliated in liquid media, XPS spectra of graphene 

can exhibit, in the region of C1s, extra peaks at higher binding energies related either to the presence 

of solvent traces141 or oxygen functionalities formed during the process of exfoliation, i.e. hydroxyl and 

epoxide groups at about 285-286 eV, as well as carbonyl at 288.5 eV and carboxyl 289 eV moieties.27 

Therefore, XPS can be a necessary tool for evaluating the possible reactions occurring during the 

exfoliation process and the quality of the resulting material.  

By integrating the area of C1s and O1s peaks, the ratio between carbon and oxygen content in the 

sample can be determined. This could be a method to quantify the number of oxygen functionalities 

which are chemically bonded to the carbon and to determine, in this way, the chemical structure of 

the material produced. This is usually done in a very simple way, that is calculating the ratio between 

carbon and oxygen peaks from Survey spectrum (Figure 4. 6). However, this method doesn’t give a 

precise measure of the degree of functionalization of graphene. Indeed, the values of C/O extracted 

from the Survey spectrum give an indication of the total content of oxygen and carbon in the analysed 

samples. In this regard, it is worth to note that carbon is always present in XPS spectra, even when 

analysing samples don’t contain carbon as element. In these cases, the detected carbon is adventitious 

carbon. Similarly, the oxygen detected in the sample can be due to contaminations or solvent traces, 

as the material is produced in liquid media. Therefore, the analysis of high-resolution carbon spectra 

is more appropriate as it gives information on the oxygen, or other atoms, directly bond with carbon 

via chemical bonding. In this way, the contribute of species which are simply physiosorbed on the 

material are not taken into account in the quantification.  

To quantify the functionalities present in graphene samples from the high resolution C1s spectrum, or 

equivalently from O1s spectrum, these peaks must be deconvoluted in their relative components. As 

XPS technique has been only recently applied to these 2DMs, the literature present on this topic is 

rather scarce. Due to its complexity, the deconvolution of the XPS peaks is often avoided and high 

resolution XPS spectra are generally used only qualitatively. Indeed, in absence of a standard metrics 

for the deconvolution and the quantitative analysis for graphene-based systems, it become quite 

worthless to provide C/O ratios which cannot be compared with those reported in other works due to 

different fitting procedure. For these reasons, in this thesis, the C/O ratios are determined by Survey 

spectra, in agreement with related publications. However, the XPS spectra reported in this work were 

accurately deconvoluted, and the C/O ratios values calculated by deconvoluted spectra were in good 

accordance with C/O determined from XPS Survey, proving the absence of contaminations in the 

samples analysed.  

XPS technique has demonstrated to providing useful information on MoS2 as well. XPS permits indeed 

to determine and quantify the eventual oxidation of the material, through the appearance of additional 

peaks related to higher oxidation states. Furthermore, it allows to reveal the presence of other defects 

in the material such as vacancies,142 edges,143 etc. and to discriminate among the different MoS2 

polymorphs.144-145 

For example, XPS technique allowed to determine the presence of sulfur vacancies in mechanically 

exfoliated FL MoS2.142 As reported in Figure 3. 5a, XPS Mo3d spectra exhibit different components 

which have been attributed to the intrinsic MoS2, indicated as i-MoS2 (doublet located at 232.3 and 

229.1 eV), and sulfur vacancies indicated as v-MoS2 (peaks at 231.8 and 228.8 eV). Moreover, the 

presence of peaks at higher binding energy indicate the presence of oxidized material (MoO3). In this 

work, the area of the components associated with v-MoS2 increases after a thermal annealing process 
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(T>200 C) demonstrating the presence of sulfur vacancies, further confirmed by calculating the ratio 

S/Mo from XPS spectra.  

 

 

Figure 3. 5. a) XPS Mo3d spectra of mechanically exfoliated MoS2 showing an additional doublet at lower binding 

energy (in blue) attributed to the presence of vacancies (v-MoS2). The intensity of this additional doublet 

increases after thermal annealing (spectrum below) indicating the formation of further sulfur vacancies; b) fitted 

XPS S2p spectra of MoS2 nanosheets collected by filtration of dispersions with different mean flake lengths. 

While the doublet in red is the characteristic XPS signal of MoS2, the additional doublet at higher binding energy 

(in blue) is attributed to edge S. Reproduced from refs 142-143. 

In the case of LPE MoS2, XPS can allow to quantify the edges of the nanosheets. Figure 3. 5b shows 

the appearance of an additional doublet in the sulfur spectra which increases in intensity with 

decreasing of the lateral sizes of the flakes, demonstrating thus to be related with the edge’s density.  

An example of XPS quantification of 2H and 1T phases in MoS2 is shown in this thesis, in chapter 4. 

 

3.4 Raman spectroscopy  

In this paragraph, there will be discussed some information useful to reading the following chapters 

(chapters 4 and 5) regarding the analysis of graphene and MoS2 by means of Raman spectroscopy. 

Raman spectroscopy is another indispensable technique for the characterization of graphene and 

related materials. Indeed, it is widely employed to assess the quality and structural integrity of the 

exfoliated materials, as well as the number of layers of the nanosheets.  Additionally, it can give many 

other information regarding the effects of doping, strain, temperature, perturbations such as electric 

and magnetic fields, etc.146 Moreover, the great advantage of Raman technique is that this information 

is obtained through a fast and non-destructive analysis, although its interpretation is often not so 

simple. 
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Raman spectroscopy is a technique based on interaction of the light with the chemical bonds of a 

material and on the analysis of the inelastically scattered light from the medium. Usually, in a Raman 

experiment the shift in energy between the incident and inelastically scattered light is measured. This 

technique is normally used for the analysis of molecules but since 2006, when it was reported the first 

Raman characterization of graphene from Ferrari et al147, it has been extended to the analysis of 2DMs 

as well. Every peak in a Raman spectrum corresponds to the vibrational frequency of a bond of the 

analyzed system. Raman spectroscopy is, hence, a very sensitive technique, even to small differences 

in structure. For this reason, by Raman spectroscopy it is also possible to discriminate the different 

allotropes of carbon, e.g. diamond, graphite and graphene, which differ only in the orientation of the 

C-C bonds. Indeed, while diamond is characterized by only one peak, graphite and graphene Raman 

spectra exhibit two main peaks at 1580 cm-1 and 2680 cm-1 which are commonly indicated as G and 

2D peaks. G peak is associated to the relative motions of sp2 carbon atoms, therefore is a characteristic 

peak of both graphene and graphite. This peak was observed for the first time for the analysis of 

graphitic materials and for that reason it takes this name. The G mode of graphite has E2g symmetry 

and involves in-plane bond-stretching vibration of pairs of Csp2 atoms.148 D peak is also called “defect 

band” because correlated to the presence of defects in the material. In fact, this peak corresponds to a 

breathing mode of the sp2 carbon rings which symmetry is forbidden for Raman selection rules in 

pristine graphite and graphene, while only becomes active in the presence of disorder (Figure 3. 6). 

This band is present only if the sp2 conjugation is interrupted by interstitial defects, vacancies, 

including flake edges. Finally, the 2D band is the second order of the D band. However, it derives from 

a vibrational process which involves two phonons and it doesn’t need to be activated as the D band. 

Therefore, it is always present also in the absence of the D band. 

 

Figure 3. 6. Vibration modes associated with G and 2D peaks of graphene: a) E2g G mode of sp2 rings, b) A1g D 

breathing mode in rings. Reproduced from 148. 

The G peak can give an information on the thickness of the material as its position changes from bulk 

to mono and bilayers.149 However the position of the peak can be also affected by other factors, such 

as doping or strain, therefore must be carefully interpreted. In graphite and pristine graphene Raman 

spectra the D band is very weak. Figure 3. 7 shows the D band at the edge of graphite and single-layer 

graphene. While D peak in pristine graphene is a single sharp peak, the D band in graphite consist of 

two peaks, named D1 and D2. 
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Figure 3. 7. D peak at the edge of graphite and single layer graphene. While the graphene D peak is a single 

sharp peak, the one of graphite is a band which consist of two peaks, named D1 and D2. 

When D band is intense, it indicates that there are many defects in the material. For that reason, the 

ratio of the intensities ID/IG can be used to characterize the level of disorder in graphene. This ratio 

follows two different behavior in function of the amount of disorder.  In the regime of low defect 

density, ID/IG ratio increases with the defects because a higher density of defects generates a more 

elastic scattering. However, once ID/IG ratio reaches a certain value, that correspond to the beginning 

of the regime of high defect density, this ratio will begin to decrease. This behavior is described in the 

plot in  

Figure 3. 8a, from which it is also possible to extract the distance of defects (La) known the ratio ID/IG, 

following the Tuinstra and Koenig equation:148 

I(D)/I(G) = C(λ)/La 

Where C (515.5 nm) ~ 44 Å. 

In the same work, Ferrari et al. report a three-stage model for the interpretation of Raman spectra of 

disordered carbon systems which defines the amorphization trajectory from graphite to a ~100% sp3 

system. This model can be useful to evaluate the quality of the graphene produced by exfoliation and 

the eventual presence of amorphous carbon. The three stages involve the transition from graphite to 

nanocrystalline graphite (stage 1), from nanocrystalline graphite to amorphous carbon (stage 2) and 

from amorphous carbon, containing rather small content of C-C sp3, to 100% sp3 systems. The 

evolution of G peak and ID/IG ratio among the three phases is reported in  

Figure 3. 8b. In particular, in stage 1, or passing from graphite to nanocrystalline graphite, the G peak 

moves from 1581 to 1600 cm-1, and the I(D)/I(G) increase following the Tuinstra and Koenig equation. 

The shift of the G peak occurs concomitantly with the appearance of D’ peak, which is thus indications 

of presence of defects. Graphene is considered being in the stage of nanoscrystalline graphite, 

indicated in Figure 3. 8b. 
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Figure 3. 8. a) Transition between the two regimes of low and high defect density and relation between ID/IG 

and defect distance (La), as reported in ref. 148 b) Variation of G position and amorphization along the 

amorphization trajectory. 

In 2006 Ferrari et al. reported also the evolution in the shape of the 2D band with the thickness, 

indicating that 2D band can give precious indications on the thickness of the flakes. It was shown that 

while graphite has an asymmetric 2D peak which can be fitted with two components 2D1 and 2D2, in 

graphene this band can be fitted with only one sharp peak.150 In few layers graphene, because of the 

interactions between layers, the spectrum change compared with monolayer graphene, and in 

particular the 2D band that is a sharp single intense peak in monolayer graphene, start to split in an 

increased number of vibrational modes. Figure 3. 9a shows the 2D band of a bilayer which can be 

deconvoluted in 4 Laurentian components corresponding to the four vibrational modes of a bilayer: 

2D1B, 2D1A, 2D2A, 2D2B. The deconvolution of 2D peak can thus give information on the number of 

layers and, in principle, being considered as a measure of the degree of exfoliation as the ratio of 

intensities I2D/ IG is.147 An increase of the number of layers determine indeed a significant decrease of 

the peak at lower frequency, 2D1B, but for more than 5 layers, the 2D shape become indistinguishable 

from bulk graphite one (Figure 3. 9b). Therefore, Raman spectroscopy can clearly distinguish a single 

layer from a few-layer graphene flakes that feature a maximum of 5 layers.150 However, it is important 

to mention that such quantitative measurements have been carried out only on mechanically 

exfoliated single nanosheets. In the case of graphene exfoliated in liquid media, typically the Raman 

spectrum is only qualitatively interpreted, while flake thickness (i.e. mean number of layers) is not 

extracted from the spectrum.151 This is reasonable if thinking to the high polydispersity of the material 

produced and its relatively bulky nature. 

Generally, indeed, the thickness distributions ofLPE graphene or MoS2 flakes are centred at higher 

values than 5 layers. Therefore, they appear overall as bulk materials to the Raman analysis. 

Additionally, the small sizes (few nanometers) of the thinner flakes make challenging reproducing the 

above reported experiments which were performed on micrometer-size mechanically exfoliated single 

and few-graphene. Furthermore, due to the small size, LPE nanosheets generally appear rather 

defective.  
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Only recently, some reports have shown that it is possible to assess to the average number of flakes in 

LPE graphene. The method reported by Sarro et al.152 is still a more qualitative approach that allow to 

distinguish FLG sheets from bulky graphite in function of the 2D peak shape. They report indeed that, 

differently from ME graphene, the 2D band in LPE graphene can be never fit with a single Lorentzian 

but is generally composed of two Lorentzian components I2D1 and I2D2. When I2D1 > I2D2 the film 

can be considered composed by FLG sheets and not by bulky material. 

 

 

Figure 3. 9. a) 2D band in a bi-layer graphene deconvoluted in its four components at 514 and 633 nm. 

Reproduced from 150; b) variation in the 2D band shape with the number of layers for 514 nm excitation. 

A new metric151 has been instead developed recently for materials exfoliated in liquid media and allow 

to estimate the exact average number of layers from the ratio I2D/IG. The authors report that correctly 

fit the 2D band of LPE graphene can be challenging because the samples are composed by nanosheets 

with different thickness distribution. Therefore, they assess that the simplest method is probably 

considering the intensity of 2D peak. They propose a metric for the determination of number of layers 

which consider the ratio of intensities between 2D band and G band: 

〈𝑁〉 = 1.04𝑀1
−2.32 

t valid for N < 10 layers, with M1 = I2D/IG. 

In conclusion, the quantification of the number of layers by Raman spectroscopy for what regard the 

materials exfoliated in liquid media is still objected of study. The adaptability of the proposed models 

to materials exfoliated with other approaches, that differs from the UILPE, still need to be proved. 

Consequently, in this thesis we simply qualitatively interpreted Raman spectra although some 

considerations were done regarding the presence of defects in EEG, based on the above. 

Raman spectrum of single-layer MoS2 is characterized by two peaks which are the first-order Raman 

modes associated with in-plane E1
2g (385 cm−1) and out of plane A1

g (405 cm−1) vibrations.153 In bulk 

MoS2 these modes are located at 382 and 407 cm-1 respectively, and also their full widths at half 

maximum are smaller than in monolayer, where the phonon confinement in ultra-thin structure 

determine broader peaks.119 When the thickness of MoS2 decreases respect to the bulk the frequency 
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of E2g up-shifts while the A1g downshifts till the difference between the two bands is 19 cm-1 for 

monolayer MoS2; while from monolayer and bilayer there is a difference in frequency of 3 cm-1. 

Consequently, the difference between the frequency of E2g and A1g modes can be used to determine 

the number of layers in a thin MoS2 sheet. As it was said for graphene, the position of these peaks can 

be influenced by many factors. Therefore, this measure is not always accurate and need to be 

supported by other complementary techniques. Moreover, in MoS2, intensity and width do not depend 

on the number of layers.154  

 

 

Figure 3. 10. a) Comparison among Raman spectra of graphite and graphene materials produced with different 

methods: chemical vapor deposition (CVD), liquid-phase exfoliation (LPE) and mechanically exfoliated 

graphene (ME), each spectra is determined as the average of 100 spectra captured on areas of 100 × 100 μm2; b) 

magnification on the 2D band which show the difference in the 2D band of graphite and few-layer graphene 

produced by LPE, whose 2D peak can be fitted by 2 components: 2D1 and 2D2, with 2D1>2D2. Reported from ref. 

151. 

Hence, similarly to the case of graphene, Raman spectroscopy can be used as fast and non-destructive 

method for discriminating among mono- and few-layer MoS2 nanosheets. Figure 3. 11 shows the 

dependence of the frequencies of these two bands on the number of layers. 

Recently, Raman spectroscopy has been considered a reliable technique to quantify defects in single-

layer MoS2. Many strategies have been indeed developed for introduce defects on monolayer MoS2, 

since they can be beneficial for tailoring MoS2 properties, e.g. introducing doping, enhancing the 

photoluminescence, improving its reactivity etc. Mignuzzi, for instance, demonstrated that the 

controlled introduction of structural defects by ion bombardament determines the appearance of 

characteristic features in the Raman spectrum of single layer MoS2, demonstrating viability of Raman 

spectroscopy in the determination of structural disorder. In particular, upon increasing of defect 

density a broadening of the two main components, E’ and A1’ (as indicated for monolayer MoS2) is 

observed and is accompanied by a shift in the position of the two peaks. In particular, when the 

distance between defects decrease the E’ peak downshifts while A1’ upshift and the FWHM of both 

bands increase. By DFT calculation, this evolution has been attributed to phonon confinement. 

Moreover, the introduction of disorder activates new Raman scattering peaks in the region between 
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140 and 420 cm-1. These modes involve phonons at the edge of the Brillouin zone, which may be 

activated in the presence of defects satisfying the Raman selection rule. In close proximity of the first-

order peaks, for instance, appear a defect-induced peak at ∼357 cm−1 that was assigned to the TO 

branch at the M point. 

 

Figure 3. 11. a) Raman spectra of MoS2 bulk and nanosheets with different number of layers (L); b) frequency of 

the two modes E2g and A1g and their frequency difference as a function of the number of layers. Reproduced from 

ref. 155. 

Finally, Raman spectroscopy allows also to distinguish between the MoS2 polymorphs, 1T and 2H. As 

reported by Calandra, the 1T phase is dynamically unstable and undergoes a phase transition towards 

the most stable 1T’ structure composed of separated zig-zag chains. The Raman spectra of 1T’ phase 

display a more complex Raman spectrum. It is richer in active peaks than the 2H phase due to its 

reduced symmetry. While the 2H MoS2 spectra show only the two modes E2g and A1g, the Raman 

spectra of 1T phase miss the E2g peak, but shows five additional peaks. The principal of these 

components are J1, J2 and J3 which were already detected in 1986, but interpreted more recently by 

Calandra.156 The broadest, generally at 227 cm-1, is so called J2 peak. This mode is related to the 

contraction of the distance between the two zig-zag chains to recover the 1H structure. At 156 cm-1 

appears the so called J1 peak which is related to an antiphase out-of-plane shift of each line of Mo 

atoms inside the zig-zag chain and an in-plane shearing mode of one stripe of an atom with respect to 

the other inside a chain. The J3 mode at 333 cm-1 tends to break each zig-zag chain in two stripes with 

an out-of-plane component. The mode at 412 cm-1 is the same A1g mode that appears is 1H polytype. 

This work also points out the key role of adsorbates or vacancies which can stabilize the 1T metallic 

structure.  

According to these and other studies, Raman spectroscopy can be a considered a reliable technique to 

determine the content of defects in MoS2, similarly to graphene. Therefore, in this thesis Raman 

spectroscopy has been used to assess the quality of the materials produced by exfoliation in liquid 

media. 
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CHAPTER 4. 
 

PRODUCTION OF 2D MATERIALS IN LIQUID MEDIA: FROM 

ULTRASOUND-ASSISTED TO ELECTROCHEMICAL 

EXFOLIATION1 

 

The main focus on this chapter is to cast light onto structure and electrical properties of 

electrochemically exfoliated graphene (EEG) and molybdenum (IV) disulfide (MoS2). The chapter 

begins by outlining the most recent discoveries which had tremendous impact on the development of 

electrochemical exfoliation (EE) approach for the production of 2D materials. Later, the focus is given 

on the anodic EE of graphite, that is one of the most promising methods for the mass production of 

graphene. EE holds in fact the unique advantage compared to other liquid-phase exfoliation (LPE) 

methods of producing large quantities of high-quality graphene in a short time.  

Recent works suggest that EEG possesses properties that are markedly different from graphene and 

graphene oxide (both in its pristine and reduced forms). However, an in-depth understanding on the 

structure-properties relationship of this material is still lacking. While initial efforts in this field have 

been dedicated to finding better conditions (e.g. combination of electrolyte and applied voltage, 

electrodes working distance, etc.) to control the EE of graphite,27, 102, 113 this chapter aims at providing 

insights into the modulation of the structure and properties of this material. Such a control can be 

instrumental when tailoring the properties of the material for its specific future applications. By 

pursuing this challenge, a control over the process and obtained material can be achieved only by 

unravelling the mechanism that underpin electrochemical exfoliation. Ultimately, this will lead to an 

improvement of the process towards the production of high-quality graphene.  

In this work, a graphite foil is electrochemically exfoliated in an aqueous electrolyte. We report a 

comprehensive physico-chemical characterization of EEG, combined with an investigation on the 

electronic properties of this material carried out both at the single flake level and on the EEG based 

films. Additionally, we employed for the first time microwave irradiation to reduce the oxygen content 

in EEG and demonstrate that the oxygen functionalities are not the bottleneck for charge transport in 

EEG, which is rather hindered by the presence of structural defects within the basal plane. Finally, the 

electrochemical method has been extended to MoS2, that has been exfoliated as consequence of the 

electrochemical intercalation of DMSO-solvated lithium-ions. Similarly, the structural ad electrical 

characterization of the as produced material has been exploited in order to investigate its quality. 

 

 

                                                      
1 Large part of the work displayed within this chapter have been published: a) Eredia, M.; Bertolazzi, S.; Leydecher, T; El 

Garah, M.; Janica, I.; Melinte, G.; Ersen, O; Ciesielski, A.; Samorì, P. Morphology and Electronic Properties of 

Electrochemically Exfoliated Graphene. J. Phys Chem Lett 2017, 8, 3347-3355; b) El Garah, M.; Bertolazzi, S.; Ippolito, S.; 

Eredia, M. Janica, I; Melinte, G. Ersen, O.;  Marletta, G.; Ciesielski. A. Samorì, P. MoS2 nanosheets via electrochemical lithium-

ion intercalation under ambient conditions. FlatChem 2018, 9, 33–39. 
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4.1 Introduction 

In the recent years, 2D materials (2DMs) have gathered a great interest because of their unique 

physical and chemical properties which may render them key components in disruptive technologies. 

Different bottom-up and top-down procedures have been developed and optimized in order to 

generate monolayer thick sheets with different chemical composition and structure. Interestingly, it 

has been noticed that the physicochemical properties of 2DMs closely depend on the method 

employed for their production and processing.  

The most outstanding properties that are generally reported for graphene and other 2DMs have been 

discovered mainly by investigating mechanically exfoliated nanosheets e.g. produced by Scotch-tape 

exfoliation. Scotch-tape method is the approach used by K. Novoselov and A. Geim to exfoliate 

graphite.11 Through this approach, which relies on the use of simple adhesive tape, a layered crystal 

can be surprisingly exfoliated into pristine monolayers in a relatively small number of cleaving 

attempts - despite the fact that, for example, a typical crystal of graphite contains about 106 layers of 

carbon atoms.157 Due to its simplicity, this method is still preferred  when the exfoliation is done from 

bulk naturally occurring crystals as in the cases of graphite, MoS2, etc. Moreover, it is the only method 

that allows isolation of defect free 2DMs’ nanosheets. Clearly, the ease with which monolayers rather 

than few-layers sheets are obtained by mechanical exfoliation (ME) depends on the strength of 

interlayer interactions. In some cases, as for example for PtSe2, producing single layers is much more 

complicated than in the case of graphite.158 However, even in the case of graphite exfoliation, the 

probability to obtain monolayers is rather low and uncontrollable. Therefore, this approach cannot be 

employed to produce 2DMs at large scale. Yet, it remains appropriate for fundamental studies aimed 

at unveiling the physical and chemical properties of new 2DMs. 

In the last years, many efforts have been devoted to the development of new strategies that maximize 

the yield and the quality of 2D nanosheets, reducing costs and processing times. As a result, an 

outbreak of synthetic approaches has been proposed in the last decade. Only 4 years after the 

demonstration of the Scotch-tape approach, Coleman and colleagues reported a ground-breaking 

method for the production of 2DMs in a liquid media. The liquid phase exfoliation (LPE), contrary to 

other approaches e.g. Scotch-tape method and chemical bottom-up synthesis, is potentially enabling 

the transition from theoretical and laboratory experiments to real application of 2DMs, because of its 

potential up-scalability. Such a breakthrough enabled graphene not being any longer “only a single 

flake on a silicon chip”, but also an ink that can be brought out from the laboratories and tested in 

innovative applications to address societal needs.  

LPE exploits ultrasonic energy to fragment layered crystals both in their lengths and thickness. 

Therefore, the exfoliation into thin layers is always accompanied by the reduction of the particles’ 

lateral dimensions as well. The exfoliation occurs in a solvent properly chosen to interact with the 

material and balance the inter-sheet attractive forces. In this way, the material is kept in suspension. 

In particular, it has been demonstrated that ideal solvents to exfoliate 2DMs are those having a similar 

surface energy to the one of the exfoliated 2DMs’ sheets.159 This implies that the exfoliation occurs 

only in a limited number of solvents, most of which exhibit high boiling point and are toxic, e.g. NMP 

and DMF, that are commonly used for exfoliating graphite. The use of surfactants or stabilizing agents 

which help to match the surface tensions of exfoliated particles to those of the liquid medium, thereby 

stabilizing the dispersion, has partially solved this problem allowing the use of greener solvents like 

water or ethanol.88 Such  approach is also known as  molecule-assisted LPE. Organic molecules are 

properly selected for interacting non-covalently with the material, resulting in a clear enhancement of 

the exfoliation efficiency and a better stability of 2DMs in dispersions with increased concentration.16 
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Despite these expedients, the yield of exfoliation is moderately low, compared to the expectations of 

mass production. Moreover, extensive sonication times, coupled with time-consuming procedures of 

purification and flakes size selection, are necessary to obtain the desired dispersions of mono- and 

few- layers nanosheets.66 The concentration of final dispersions following post-exfoliation treatments 

is clearly even lower; without considering that get rid of stabilizers is challenging, if not impossible, 

and causes the re-aggregation of the flakes.  

Until recently, liquid phase exfoliation (LPE) was synonymous of sonication-based exfoliation. Today, 

the number of synthetic approaches has enormously grown, and this acronym has been extended to 

all the approaches which operate in liquid media including ultra-sonication,14, 25 shear-mixing17, 160 and 

micro-fluidization.18 Shear exfoliation (SE) is carried out in rotor stator mixers, or even in household 

kitchen blenders, where rotating blades generate turbulent shear throughout the liquid.160 

Consequently, while the exfoliation induced by ultrasounds primarily exploits the phenomenon of 

cavitation (see Chapter 2), SE is a shear-force dominated method. This method benefits thus of less 

fragmentation, respect to ultrasound-induced LPE (UILPE), being mainly limited to milling by the 

rotor. Though, shear exfoliation requires longer processing times to yield the same concentration 

obtained by UILPE. If one considers that the UILPE is already a process that last hours, shear mixing 

process can need also 24h to reach the same concentration. On the other hand, SE allows the 

processing of larger volumes that make it a scalable process.66 In both shear mixing and ultrasonication 

based processes, the exfoliation is mainly localized around the probe or in the gap between rotor and 

stator, respectively, implying an efficient exfoliation only in that region.161 This limit is overcome with 

microfluidization technique where the high shear rate (10-6 s-1) is applied to the whole fluid, that is 

forced to pass through a microchannel, undergoing to high pressure (> 200 MPa). Moreover, 

microfluidization can be performed in continuous, resulting therefore highly scalable.18 Although this 

continuous process determines a yield by weight of few layer graphene that is almost 100%, only 4% 

of these layers are <4nm.18 All the above-mentioned techniques have thus their own pros and cons 

and, more interestingly, it has been observed that their performances strictly depend on the material. 

For instance, while UILPE and SE methods result relatively comparable for what regard the exfoliation 

of graphite, when SE is used to produce thin layer transition metal dichalcogenides (TMDs) its 

performance are way lower than UILPE as it leads to rather low concentrations (µg l-1 in <24h).66 

In view of the LPE’s limitation for 2DMs production, a major step forward consisted in the use of EE 

to produce graphene from graphite bulk precursors.28 EE can occur either under anodic or cathodic 

conditions (see section 2.2.2).26 In anodic conditions, an applied voltage drives the anionic 

intercalation into graphite electrode. Intercalation together with the formation of gas species lead to 

the expansion and exfoliation of the material. This method allows the production of large quantities 

of graphene in a short time. In particular, while UILPE makes it possible to produce dispersions with 

the maximum concentration of 1 mg ml-1,162 it requires long (up to 1000 hours) sonication processes 

and multi-step post treatments, the EE allows to generate 1-10 mg ml-1 dispersions in the time scale 

spanning from minutes to a few hours. Even more surprisingly, our experiments prove that the 

exfoliation already happen in the first few seconds of the process. However, differently from UILPE, 

EE performed in anodic conditions generally may result in oxidized graphene flakes. For that reason, 

many research groups have proposed the EE method as an alternative to classical Hummers and 

Staudenmaier’ to produce graphene oxide (GO). In other words, EEG has been often labelled as a GO-

like material.163-168 On the other hand, contradicting reports have appeared in the last few years17. These 

works consider the electrochemical process as a new route to the mass production of defect-free 

graphene.  
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In fact, the oxidation of graphene sheets is unavoidable during the anodic EE, and it depends on many 

factors, such as exfoliation time, electrolyte, electrodes distance, etc. Although EE in non-aqueous 

electrolytes prevents the extensive oxidation of graphitic material which occurs in anodic conditions, 

cathodic EE of graphite is not as efficient as the anodic process. Generally, cathodic EE is a two-step 

process where positive ions are electrochemically intercalated into graphite electrode, while the 

effective exfoliation occurs upon sonication. In this case, the intercalation process  causes the 

expansion of the material only, being therefore limited compared to the combined effect of 

intercalation and gas development that characterize the anodic process and leads the complete 

exfoliation of the material. Time-consuming further steps of ultrasonication are necessary to promote 

the effective exfoliation of the graphite cathode into graphene. Consequently, materials exfoliated in 

cathodic conditions have the same characteristics of materials exfoliated by ultrasounds, i.e. limited 

lateral sizes of the flakes (in the range of hundreds of nm)169 and lower yields in thin layers in respect 

to the anodic approach. Because of this reason, current research endeavours are focused on the anodic 

exfoliation of graphite, which, on the contrary, allows the one-step production of single- and few-

layered graphene sheets in high quantities.  

While the production of high quantity of defect-free graphene sheets via wet methods attracts the 

attention of both industrial and academic sectors,170 alongside the degree of oxidation, little is known 

about the physico-chemical properties of EEG sheets, such as the nature of the defects and electronic 

properties of the material. It has been shown recently that devices based on the thin EEG film possess 

a maximum hole mobility of ca. 100 cm2V−1s−1, whereas single-layer (SL) EEG gives a hole mobility of 

ca. 300 cm2V−1s−1 and a sheet resistance of 2 kΩ sq-1,171 being comparable to that of undoped CVD-

grown graphene (1 kΩ sq−1).172 Such low mobility (if compared to pristine graphene)11, 173 has been 

attributed to the inter-flakes boundaries, which are bottlenecks for charge transport, and to the 

presence of the oxygen functionalities in the structure of the flakes, the latter acting as electronic traps.  

Here we show that the EE of graphite foil under the most commonly employed anodic conditions,28, 

92, 100, 112, 163-164, 171, 174-175 i.e. using ammonium sulfate as electrolyte, not only causes the oxidation of the 

graphitic material, but also results in the structural degradation of the sheets. Structural and 

compositional characterization of the produced material corroborated with the investigation on the 

electronic properties of both SL flakes and films provide unambiguous evidence that the electrical 

characteristics of EEG are not hindered by the amount of oxygen functionalities, which can be nearly 

completely removed upon microwave (MW) irradiation but are rather limited by the presence of 

structural defects.  

We also investigated the electrochemical production of other 2DMs, e.g. MoS2. In this case, to avoid 

the oxidation of the material and the formation of extensive structural defects, as demonstrated in the 

previous work, we developed an electrochemical approach in cathodic conditions for the exfoliation 

of MoS2 via lithium-ion intercalation in dimethyl sulfoxide (DMSO). Unlike the conventional 

intercalation methods based on dangerous organolithium compounds, our approach leads to the 

possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the 

semiconducting 2H phase (~60%), as estimated by X-ray photoelectron spectroscopy (XPS). We 

further show that the electrical characteristics of field-effect transistors (FETs) based on this material 

can be significantly improved through a combination of thermal annealing (150 °C) under vacuum 

conditions (5×10-8 mbar) and upon exposure to vapor of short-chain alkanethiols, suggesting that a 

good deal of defects in our electrochemically exfoliated MoS2 (EEMoS2) consists in sulphur vacancies. 

The following sections of this chapter are dedicated to the experimental work. 
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Section 4.2.1 describe setup and conditions used for the EE of a graphite foil and a MoS2 crystal. 

Moreover, it reports the procedure to obtain large area EEG film. The other sections provide a 

description of samples preparation and operative conditions for morphological, chemical (section 

4.2.2) and electrical (section 4.2.3) characterization of the exfoliated materials. Finally, section 4.3 

presents and discusses the findings of this research. 

 

4.2 Materials and methods 

4.2.1 Electrochemical exfoliation and film preparation 

In this subchapter, the production of EEG under anodic conditions by using a simple electrolytic cell, 

as depicted in Figure 4. 1, is described. The electrolytic cell was built by employing a few basic 

components such as a platinum wire as cathode and a graphite foil as anode immersed in an 

electrolytic solution. In this work we used (NH4)2SO4 as electrolyte that was solubilized in water at a 

concentration of 0.1 M.  

The exfoliation of graphite foil (cathode) occurs as immediate consequence of the applied voltage 

between the two electrodes placed at a distance of around 2 cm. By means of ISO-TECH IPS-603 DC 

power supply, we applied a voltage of +15 V which generate a starting current of ca. 0.4 A. The 

produced powder was collected by vacuum filtration on PTFE membranes (pore’s diameter of 5 μm) 

and, after several rinsing steps needed to remove salt residuals, it was dispersed in dimethylformamide 

(DMF) by mild sonication for 20 minutes. Such dispersion was kept decanting for 48 h to promote the 

sedimentation of un-exfoliated material.  

 
Figure 4. 1. Schematic representation of the procedure to prepare a stable dispersion of graphene though 

electrochemical exfoliation of a graphite foil, followed by purification step and dispersion of graphene flakes in 

dimethylformamide (DMF).  

EEG films were prepared by starting from a pristine and stable dispersion of EEG in DMF. The 

preparation of thin and uniform films is extremely challenging. While techniques like spin-coating, 

even after subsequent depositions or varying the concentration of EEG dispersion, typically lead to 

inhomogeneous coverage of the substrate; drop-casting or dip-coating do not allow controlling the 
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thickness and uniformity of the film. On the contrary, continuous films were obtained by employing 

the following protocol. Few drops of EEG dispersion were gently spread on water surface. Once re-

organized at the interface, thin flakes form a uniform greyish film floating onto the sub-phase. The 

transfer was done by dipping a SiO2 substrate at 45 degrees in order to withdraw the film formed at 

the liquid-air interface. This process can be easily up-scaled enlarging the dimensions of water bath 

and consequently increasing the amount of loaded dispersion. Additionally, the process is not 

substrate dependant and can be extended to any kind of substrates (rigid or flexible), with any shape. 

For MoS2 exfoliation, a crystal of MoS2 (7 × 4 mm, 1 mm thick) and a Pt wire were used as working and 

counter electrodes, respectively. Some works on the lithium-ion electrochemical methods reports 

optimal potential around 4─5 V in DMSO, mixtures of dimethyl carbonate and ethylene carbonate or 

other electrolytes.176-177 Here, by using a two electrodes cell and applying a potential of -5 V, the 

expansion and intercalation process of MoS2 bulk crystal occurred in about 45 minutes using a 1 M 

solution of LiCl in DMSO as electrolyte and source of Li-ions. Then, the intercalated material was 

washed several times with acetone, filtrated and finally sonicated for 25 minutes in a mixture DI H2O 

/ethanol (70:30%). The dispersion was centrifuged at 4500 rpm for 30 minutes, in order to separate 

the thick unexfoliated materials, and then the supernatant was collected and used for the preparation 

of the samples.  

 

4.2.2 Physico-chemical characterization  

The physico-chemical characterization of EEG and EEMoS2 has been performed by means of various 

microscopic and spectroscopic techniques. Samples for the characterization of EEG by means of 

optical microscopy (OM), Raman spectroscopy and atomic force microscopy (AFM) were prepared by 

spin-coating a graphene dispersion at a concentration of 1 mg ml-1 in DMF onto SiO2 substrates. For 

these analyses indeed the presence of isolated flakes is preferred to overlapped ones or aggregates. 

However, in some cases, it is also necessary having a considerable number of flakes which are only few 

nanometres far apart, and still not overlapped, especially in the case of AFM for the purpose of a 

statistical study. Therefore, the deposition method was optimized varying the parameters of spin-

coating, while verifying from time to time the quality of the deposition by OM. All the substrates were 

cleaned by subsequent ultrasonication in acetone and isopropyl alcohol (30 minutes each), in order 

to wash off the protective photoresist layer, and then dried under nitrogen flow. Afterward, the 

substrates were treated by UV-O3 for 5 minutes followed by 25 minutes of exhaust. 

 A fast and preliminary investigation of the quality of the exfoliation was attained by OM, which allows 

quick determination of the presence of single- and few-layer thick graphene flakes deposited on the 

SiO2 substrate, as a result of optical contrast with respect to empty substrate.139 OM images were 

recorded with an Olympus BX51 set-up. Subsequently, an in-depth morphological characterization of 

the exfoliated material has been performed by AFM, which was the technique offering the best lateral 

resolution available during my experimental work. AFM imaging was carried out using a Veeco 

Dimension 3100 atomic force microscope operating on a Nanoscope IV control unit under ambient 

condition, the only one accessible when I performed these experiments. Yet, better resolution could 

be obtained by multimode AFM which with a small scanner allows to reach scan sizes even smaller 

than 1 µm x 1 µm. Topography and phase images were acquired simultaneously operating in tapping 

mode, by using antimony (n) doped silicon cantilever.  

AFM was used to perform statistical studies of flake size and thickness. In these cases, AFM images 

were generally acquired at scan sizes of 15 µm x 15 µm. While, to determine thickness and surface 
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coverage of the EEG films, 30 µm x 30 µm or 50 µm x 50 µm AFM images were analysed. In particular, 

for evaluating the thickness of the film, it was measured the average height step between film and bare 

substrate at the edges of the film. The procedure used for the film preparation, indeed, leaves a small 

part of substrate uncovered by EEG flakes, that is the area where the substrate is supported by the 

tweezers during the transfer (see Figure 4. 17). This part of the sample is exploited for the 

determination of film thickness, similarly to the common procedure of scratching a polymer film to 

determine its thickness. The surface coverage was determined by image processing, creating a mask, 

using Gwyddion software, that is adjusted in order to mark all the flakes excluding the substrate, and 

vice versa, using a threshold grain detection algorithm. The ratio between the two selected areas gives 

an idea of the film surface coverage. To perform these analyses, the image was necessarily treated, with 

the main objective to level the flat base.  

The number of layers per sheet was also determined with a high precision by using high-resolution 

transmission electron microscopy (HR-TEM), in the framework of a collaboration with Professor 

Ovidiu Ersen at the Institute of Physics and Chemistry of Materials in Strasbourg (IPCMS). Samples 

for HR-TEM analysis were prepared by drop-casting on a lacey carbon-coated copper grid, followed 

by solvent evaporation. HR-TEM micrographs were taken on a FEI Tecnai F20 TEM equipped with a 

Schottky emitter and operated at 120-200 keV. The number of graphene layers was estimated from 

the number of (0,0,2) diffraction fringes at the edge of folded graphene sheets.  

XPS was employed to determine the quality of EEG in terms of oxidation degree. To quantitatively 

compare samples prepared in different conditions and, more in general, EEG with graphitic starting 

material, the ratio between carbon and oxygen content was calculated from XPS survey. Then, a 

particular attention was paid to the high-resolution spectra of C1s that give an information on the 

amount of oxygen directly bond to carbon in our carbon-based material. In this regard, to avoid the 

presence of components related to solvent when C1s high-resolution spectra are analysed, the material 

was characterized in form of powder, after drying it for 48 hours in desiccator. Film deposited on 

native silicon wafers were analysed by XPS as well.  

All XPS spectra for MoS2 analysis have been referenced to C1s adventitious carbon at 284.8 eV, and 

the peak fitting was performed with constraints on the full width half maximum (FWHM) and the 

peak-area ratio of the spin-orbit components.  

XPS analysis were carried out with a Thermo Scientific K-Alpha X-ray photoelectron spectrometer 

equipped with an aluminium X-ray source (energy 1.4866 keV) and working at pressure of 10-8-10-9 

mbar in the main chamber. X-ray spot size was settled at 400 μm. Survey spectra were recorded as 

result of 10 scans with a pass energy of 200.00 eV and a step size of 1 eV; high-resolution spectra are 

average of 10 scans with a pass energy of 50.00 eV and a step size of 0.1 eV.   

Raman spectra were acquired at room temperature by a Renishaw microscope equipped with a 532 

nm laser, using a 100x objective (numerical aperture NA = 0.85) that provide a beam spot size of ~700 

nm; laser power of 1%. The silicon peak at 520.3 cm-1 was took as reference for wavenumber calibration. 

MoS2 dispersion was transferred in a 10 mm path length quartz cuvette and analyzed by means of UV-

vis-IR absorption spectroscopy using a Jasco V670.  
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4.2.3 Electrical characterization 

Devices fabrication and electrical characterization of EEG material, both on film and at single flake 

level, have been carried out in close collaboration with two coleagues of Nanochemistry laboratory, 

Dr. T. Leydecker and Dr. S. Bertolazzi, respectively. In the two cases, FETs devices have been fabricated 

using two different configurations. Top-contact bottom gate FETs based on EEG film were fabricated 

depositing EEG film on silicon substrates with a 90 (or 230) nm silicon oxide layer and evaporating 

gold electrodes (70 nm thick) on top of graphene film by shadow mask method; while multiterminal 

back-gated FETs based on single flake were fabricated using standard e-beam lithography, metal 

deposition (3/40 nm of Ti/Au) and lift-off. In the latter case, indeed, the use of e-beam lithography is 

necessary to build the device on the single micrometer-size flake. When shadow mask was used, 

devices with different channel length (120, 100, 80, 60 μm) between source and drain electrodes and 

W=10,000 μm (oxide thickness = 90 nm) were tested. Four-probe measurements were possible in the 

case of multiterminal devices, in order to remove the contribution of the contact resistance and access 

to graphene sheet conductivity. 

FETs transistors and electrical properties of MoS2 single-sheet have been investigated by Dr. S. 

Bertolazzi. In this case, back-gated FETs were fabricated on thermally-oxidized heavily n-doped silicon 

substrates (ρSi ≈ 0.001 Ω cm, tox ≈ 290 nm) by means of e-beam nanolithography, thermal evaporation 

of Au (90 nm) and lift-off. All the electrical measurements were carried out under inert atmosphere 

(N2-filled glovebox).  

 

4.3 Results 

The application of a positive voltage > 10 V (see operative conditions in section 4.2.1), causes a dramatic 

expansion of the graphitic working electrode that is accompanied by the fast detachment of the 

material (Figure 4. 2). 

 

Figure 4. 2. Setup used for the electrochemical exfoliation of a graphite foil in (NH4)2SO4 aqueous electrolyte. 

The photographs show the vigorous development of gases bubbles at the electrodes after few seconds from the 

application of a positive voltage (left) and the detachment of exfoliated material after three minutes of 

electrolysis (right).  

During the electrolysis, the area of the graphite electrode, is being reduced determining a variation of 

the current intensity passing between the electrodes. Noteworthy, a prolonged electrolysis in aqueous 
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solution affects the oxidation degree of the produced material as observed by following the C/O ratio 

determined by XPS as a function of the electrolysis duration (Figure 4. 3). In particular, an electrolysis 

process lasting 1 and 60 min results in a C/O ratio of 8 and 4, respectively. These preliminary studies 

have driven the choice of focusing the following work on EEG sample with the highest C/O ratio (C/O 

= 8), i.e. the material collected after 1 minute of electrolysis.  

A multiscale characterization of the produced EE graphene has been carried out using a set of 

complementary techniques. AFM and HR-TEM, for example, have been used to evaluate the efficiency 

of the exfoliation expressed in terms of thin layers. AFM allows to quantify the thickness of the flakes 

and indirectly dating back to the number of layers, being known the thickness of a single layer. AFM 

images show large single-layer graphene (SLG) and few-layer graphene (FLG) sheets (Figure 4. 4). 

Moreover, in a number of cases, folded or wrinkled sheets are also monitored, being commonly 

observed in solution processed samples. AFM and HR-TEM analyses (Figure 4. 4 and Figure 4. 5) 

have revealed a considerable fraction of folded SLG sheets with lateral sizes > 1 μm, as typically 

observed for graphene produced via EE.28, 92, 171 

 

Figure 4. 3.XPS analysis: plot of C/O ratio in function of time of electrolysis. 

The thickness distribution (see Figure 4. 4b), as quantified by AFM and HRTEM, reveals a discrepancy 

which is a consequence of the intrinsic nature of the measurements. While in the case of HR-TEM the 

number of layers (N) is counted by analysing the folded edges,43 AFM enables the estimation of N by 

measuring the height of the deposited flakes from topographical profiles and dividing it by the graphite 

interlayer distance. Moreover, it is worth noting that the estimation of the height of a SLG via AFM 

depends on the substrate and on the experimental conditions such as relative humidity, presence of 

adsorbed solvent and magnitude of the force applied by the tip to the sample. For example, on SiO2, a 

SLG can show an apparent height of ca. 1 nm,178 while on mica it amounts ca. 0.4 nm.179 Here, the N is 

estimated by assuming that the apparent thickness of the thinnest graphene sheet observed on our 

AFM images is amounting to 0.8 nm. Interestingly, all the flakes analysed with AFM are less than 3.2 

nm thick; therefore, the thickest flakes are considered to be four-layer thick. Both analyses, i.e. AFM 

and HR-TEM, show that EEG is mostly composed by SLG and bi-layer graphene sheets. As shown by 

AFM in Figure 4. 4a,c and by TEM in Figure 4. 5a,b, EEG samples are composed by micrometer sized 

flakes. Remarkably, among the LPE methods, EE stands out for the significant larger lateral dimensions 

of the flakes compared to UILPE or SE graphene whose sizes are typically in the order of few hundreds 

of nanometers.15, 18, 180 On the contrary, EEG flakes approach the micrometer lateral dimension of 

Scotch-tape graphene, with average lateral sizes generally of few microns that can also sporadically 
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reach several tens of micrometres as have been reported.27 However, differently from Scotch tape 

method, EE approach allow to produce large quantities of graphene in only one step, that can even 

last 1 minute only. The micrometer sizes of EEG thin flakes, combined with their high concentration, 

may offer positive implications on the production of large-area thin film, as discussed later in this 

chapter. The yield of thin sheets which are produced by EE is higher than UILPE and easier accessible. 

Stable EE dispersions of thin layers have usually concentrations that span between 1 to 10 g L-1 in 

suitable solvents like DMF, and without the use of surfactants or stabilizers. Contrarily, pristine 

graphene obtained from prolonged UILPE or shear mixer in NMP or DMF usually has low 

concentration (< 1 mg ml-1), while higher concentrations can be achieved only in the presence of 

stabilizers.18, 143, 151 However, if one consider dispersions of SLG, the concentrations are even lower 

(about 0.01 g l-1)181, while dispersions of FLG can reach concentration of 0.1 g l-1 in NMP or 0.2 g l-1 in 

water, in the presence of surfactants.71, 182  

 

Figure 4. 4. Statistical thickness and flake size analysis for electrochemically exfoliated graphene, together with 

a statistical study of structural defects caused by the electrochemical process. (a) Topographical AFM image of 

flakes produced by electrochemical exfoliation of graphite and deposited on SiO2 substrates by spin-coating from 

DMF dispersions; (b) distribution of the number of layers per sheet determined by AFM cross-sectional analysis 

(in blue) and HR-TEM (in red); (c) distribution of flakes lateral size determined by AFM; (d) AFM topographic 

and phase-contrast images showing structural defects on a representative SLG flake; (e) density of the structural 

defects plotted in function of the number of defective flakes. 
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In addition, EE inks can be produced easily and in short time. The exfoliation itself occurs already in 

the first seconds after the voltage is applied, as proved by a predominance of mono- and bilayers in 

the sample obtained after 60 seconds of electrolysis (Figure 4. 4). In our procedure, after the 

exfoliation, only 20 minutes of sonication in a standard lab sonicator are enough to disperse the 

material in its solvent. Finally, the decantation of the solution is sufficient to promote the precipitation 

of un-exfoliated material and thick flakes, without needs of time-consuming subsequent cycles of 

centrifugation. A final dispersion is, thus, prepared in less than 1 hour and it will be stable for several 

weeks. 

In this work, AFM was also employed to gain in-depth insight into the surface morphology of EEG 

flakes. High magnification imaging revealed that the surface of the flakes is damaged and nanoscopic 

holes are observed (Figure 4. 4d). The density of those defects was estimated by automatic pixel 

counting. Such analysis shows that the defective area of the flakes ranges from 4 to 30% (Figure 4. 

4e), yet, it does not exceed 10% for the majority of the flakes (67%). Several attempts to visualize such 

structural defects by HR-TEM were done, yet the imaging is hindered by a contamination with 

physisorbed carbonaceous material, which after exposure to TEM electron beam converts into 

amorphous carbon.  

 

Figure 4. 5. High-resolution transmission spectroscopy of electrochemically exfoliated graphene flakes. (a) low-

magnification TEM image of EEG thin flakes, (b, c) high-magnification TEM images of EEG flake edges showing 

the presence of monolayers; (d) example of punctual defects shown by HR-TEM image.  

According with AFM imaging, in fact, most of the EEG flakes appear damaged and characterized by 

rough surfaces. That can be interpreted as the result of a non-uniform disintegration of the outer 

sheets due to the complicated interplay of water electrolysis, anionic intercalation, and gas evolution 
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that can induce cracks and nanoscopic defects on the material. Therefore, we believe that the main 

source of carbon contamination is represented by the remaining shreds of the external graphene layer 

of an EEG sheet, which are transformed in amorphous carbon under the influence of the electron 

beam. On the other hand, besides the nanoscopic defects observed by AFM, the HR-TEM analysis 

highlights the presence of point defects (Figure 4. 5d). The mechanical pressure caused by gas 

bubbling (O2 and SO2) in between graphite layers during the electrolysis is considered being the most 

important factor leading simultaneously to the fragmentation and exfoliation of the material. At the 

unusual electrochemical conditions employed, the development of gas is so violent that causes also 

the spreading of the graphitic material from the anode, even before the complete exfoliation, which in 

fact is well reflected in the heterogeneity over the thickness and sizes of the produced material (Figure 

4. 4b,c). 

 

Figure 4. 6. XPS survey spectrum of a) pristine graphite foil and b) EEG with C/O = 8. 

Compositional characterization of the material was carried out by X-ray photoelectron spectroscopy 

(XPS). Firstly, the starting material, i.e. the graphite foil, was analyzed, and considered as standard, 

aiming to follow how the chemical composition of the material evolves during electrochemical 

exfoliation. Survey spectra show the rise in intensity of the oxygen peak already after 60 seconds of 

electrolysis (Figure 4. 6). To know if this amount of oxygen interests the produced material, XPS high-

resolution spectra have been considered. Figure 4. 7a displays a comparison between C1s spectra of 

the starting material and EEG. As previously reported,183 the high-resolution C1s spectrum of the 

starting material (Figure 4. 7b), displays an asymmetric peak centered at 284.48 eV and a broad 

“shake-up’’ peak related to the π to π* transition, at ca. 290.9 eV. No components related to the 

oxidation of the starting material are observed, as confirmed by the low atomic percentage of oxygen 

(0.58 %) given from the survey spectra (Figure 4. 6a). After the exfoliation, the C1s spectrum of EEG 

powder (Figure 4. 7c) reveals, besides the main peak centered at 284.45 eV, a second component at 

higher binding energy, which indicates the oxidation of the material during the EE. Its deconvolution 

allows identification of four additional components typically attributed to oxygen-containing groups, 

i.e. hydroxyl (285.47 eV) and epoxide (286.68 eV) groups, as well as carbonyl (288.22 eV) and carboxyl 

(289.08 eV) moieties.184-185 To fit the sp2 component, the same parameters (FWHM and asymmetry 

parameters) extrapolated from the fitting of pristine graphite have been used. This method is meant 

to take into account the asymmetry of C1s sp2 peak, instead of employing the gaussian-based 

approaches conventionally used in fitting XPS spectra. In such a way, better accuracy in quantifying 

C1s contributions from graphitic carbons (sp2), defects (sp3 carbon) and functional groups can be 

achieved, as it was recently demonstrated using a similar approach.186  
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Figure 4. 7. XPS characterization of electrochemically exfoliated graphene (EEG) in comparison with pristine 

graphite, graphene oxide (GO) and EEG after microwave irradiation (MW-EEG): (a) overlapped high resolution 

carbon spectra; (b) C1s spectrum of graphite; (c-e) C1s curve fitting of EEG, GO and MW-EEG, respectively. 

Even though the electrochemical process, under anodic conditions, unavoidably oxidizes the material, 

the level of oxidation is much lower if compared with the oxidation degree of GO. Here, for 

comparison, a water dispersion of GO, purchased from Graphenea, was dried in a vacuum oven at ca. 

30 ˚C; the collected powder was characterized by XPS in the same conditions of EEG powder. (Figure 

4. 7d). Moreover, the content of oxygen, and consequently the C/O ratio, determined by XPS for EEG, 

is comparable with the results of elemental microanalyses (see Table 4.1).  

 

Table 4. 1 Microanalyses of EEG samples: nitrogen, carbon and hydrogen atomic percent. 

 

 

XPS interpretation of EEG chemical composition was further supported by ATR-FTIR and 

thermogravimetric analysis (TGA) (Figure 4. 8a and Figure 4. 8b), which corroborates the presence 

of oxygen functional groups although to a lesser amount compared to graphene oxide (GO). In Figure 

4. 8a, ATR-FTIR spectra of EEG and MW-EEG (introduced later in this chapter) were compared with 

GO. The bands associated to oxygen functional groups, which are clearly distinguishable in GO (in 

black), have a very low intensity and they are barely perceptible, or totally absent, in EEG samples (in 

red). In particular, the band at 1610 cm-1 related to the C=C stretching, skeletal vibrations from 

 % N % C % H 

EEG 0.20 82.38 1.08 
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unoxidized graphitic domains, is clearly evident in EEG, while almost undetected are the band at 

3000-3500 cm-1 (O-H stretching vibrations from hydroxyl or carboxyl groups) and the commonly 

narrower bands at about 1720 cm-1 (C=O stretching vibrations from carbonyl and carboxyl groups); in 

the range of 1300–1450 cm-1 slightly appears a broad band related O-H bending vibrations from 

hydroxyl groups and C–OH stretching. The same occurs for the signals related to epoxy groups, at 

1260 cm-1 (breathing vibrations from epoxy groups) and 1070 cm-1 (C–O stretching in ethers or 

epoxides).100 

 

Figure 4. 8. ATR-FTIR and thermogravimetric analysis, a comparison between electrochemically exfoliated 

graphene and graphene oxide: (a) ATR-FTIR spectra of graphene oxide (GO), electrochemical exfoliated 

graphene (EEG) and EEG after treatment with microwave at 1000 W for 10 seconds (MW-EEG); (b) TGA spectra 

of EEG and GO. 

Nearly the same spectrum was recorded after treatment with microwave at 1000 W for 10 seconds (in 

blue), proving that annealing treatment doesn’t remove completely the oxygen functional groups but, 

as it is clearer by XPS (Figure 4. 7a), the amount of oxygen is markedly decreased. TGA was performed 

in the range from 25 and 900 °C, under nitrogen, in dynamic modality (heating rate of 10 °C/min). 

Once again, the thermogravimetric curve of EEG was compared with GO one (Figure 4. 8b). Both 

samples start to lose weight already below 100 °C due to the evaporation of loosely bound and 

absorbed water and gas molecules.187 In GO samples, the weight loss (around 8%) at about 100 °C is 

attributed to the evaporation of residual water, while the major weight loss occurred at around 150 °C 

and it can be related to oxygen groups that easily are removed as CO2 and CO. The EEG shows similar 

characteristics but with consistent lower total weight loss of 6% compared to GO (residue of 43.75% 

at 500 °C), which translates in a smaller amount of oxygen functional groups in good accordance with 

IR and XPS analysis. 

Raman spectroscopy was used to characterize the quality of the EEG. The dispersions were spin-coated 

on SiO2 substrates and the solvent was slowly evaporated at room temperature. Raman spectra (Figure 

4. 9a) show a disordered material as indicated by the presence of a defective peak higher than the G-

peak and a very low intense and broad 2D band, providing evidence for a reduction of the size of the 

in-plane sp2 domains subsequently to the anodic process. In particular, ID/IG ratio of EEG (c.a. 1.5) lies 

in the transition region between stage 1 and 2 following the classification of disorder defined by Ferrari 

and Robertson (described in paragraph 3.4), in which a mean distance between two defects is being 

estimated as Ld ~ 2-4 nm and consist of a low sp3 species content (<15%).188 
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Figure 4. 9. Representative Raman spectra of EEG in the region between 1100 and 3200 cm-1, including D, G and 

2D bands. a) EEG flake with ID/IG ~ 2; b) EEG flake having ID/IG ~ 0.5. 

The position of G peak at 1593 cm-1 further proves the defective nature of EEG, which, in agreement 

with previous reports,188-189 can be defined as nanocristalline graphite. Moreover, an apparent shoulder 

of the G peak, known as D’ peak, can be clearly distinguished, indicating a moderate defect 

concentration.190 Nevertheless, besides the defective flakes, few high-quality FLG sheets, with ID/IG of 

0.5, were also observed (Figure 4. 9b). Figure 4. 10 shows that the ratio between ID and IG peaks do 

not change significantly within the same flake, as demonstrated analysing six point of the same flake, 

three in the inner part of the flake and other three on its edges. This experiment has allowed to 

conclude that degree of defects in EEG doesn’t interest only the edges of the flake, but in plane defects 

are present as well.  

 

Figure 4. 10. Raman characterization of EEG in different points of the same flake: a) optical image of the analysed 

flake, few microns large. The red spots indicate the points were Raman laser was spotted. b) Raman spectra in 

the region between 1100 and 1800 cm-1. P1, P2, P3 are three points on the EEG flake plane; P4, P5, P6 are points 

at the edges of the flake. 

By exploiting the large size of EEG flakes, it was possible to investigate on the electrical characteristics 

at single-flake level, similarly to the studies performed on mechanically exfoliated 2DMs by adhesive 

tape. Conversely, this is not common for other LPE materials, where the nanometer sizes of the flakes 

and their polydispersity in terms of thickness don’t promote these studies. In this case, EEG flakes 

were deposited on SiO2 substrates (ρSi ≈ 0.001 L cm, tox = 290 nm) by spin-coating a 1 mg ml-1 
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dispersion in DMF and were further characterized via a combination of OM and AFM (Figure 4. 11). 

SiO2/Si substrates with well-defined thicknesses of the oxidized layer offers a high optical contrast for 

the visualization of 2D crystals, which greatly facilitates the evaluation of exfoliation’s quality. In 

Figure 4. 11a, for example, is reported the optical micrograph of an EEG sample, deposited on 90 nm 

SiO2/Si substrate, where it is possible to discriminate between thin layers that appear light violet, and 

that are barely distinguishable from the substrate when are monolayers, and thicker ones that are dark 

violet or blueish. Once an effective exfoliation and a proper sample preparation are demonstrated 

using an optical microscope, AFM is used to measure flake’s thickness. 

 

Figure 4. 11. Thin graphene flakes produced by electrochemical exfoliation. a) Optical micrograph of EEG flakes 

deposited on Si/SiO2 (90 nm) substrate by spin-coating; b) Representative AFM image of two overlapped EEG 

flakes with a thickness of 1.2 nm each, and lateral sizes of 3.5 µm and 2.4 µm. AFM z-scale bar: 40 nm. 

Once, individuate a thin isolated flake, multi-terminal back-gated field-effect transistors (FETs) were 

fabricated using e-beam lithography with polymethyl methacrylate (PMMA) resists, metal deposition 

(3/40 nm of Ti/Au) and lift off in acetone. The four-probe measurement configuration was employed 

to remove the contribution of the contact resistance and access the intrinsic sheet resistivity of EEG, 

which is found to span within the range 15-30 kΩ sq-1.  

 

Figure 4. 12. Field-effect transistors based on EEG single sheet: (a-b) Example of FET fabricated on a EEG flake 

individuated by optical microscopy and characterized by AFM (b). The analyzed flake is a tri-layer, being thick 

2.3 nm as measured by AFM. 
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To minimize the influence of environmental adsorbates, such as O2 and H2O, all the measurements 

are carried under inert atmosphere (N2-filled glovebox). Moreover, a vacuum annealing step (p ~ 5x10-

8 mbar, T ~60 °C) is performed to desorb solvent traces, as well as O2 and H2O, which are known to be 

detrimental electron-acceptor traps ─ and thus reduce the level of hole doping within the material. 

Upon annealing, the behaviour of the EEG FETs changes from unipolar (p-type) to ambipolar, as in 

the case of mechanically exfoliated or CVD-grown graphene devices. A well-defined charge-neutrality 

point can be identified in the transfer characteristics acquired after vacuum annealing (Figure 4. 13c, 

inset) at Vg values of ~ 4 V.  

 

Figure 4. 13. Electrical transport measurements on individual EEG flakes. (a) Schematics and (b) optical 

micrograph of the multiterminal back-gated FETs used for electrical characterization. The scale bar in (b) 

amounts to 5 μm. (c) Drain-source current (Ids) vs. gate voltage (Vg) transfer characteristics of an EEG FET 

acquired before (blue) and after (red) high-vacuum annealing at ~60 °C. The curve is plotted also in the inset 

(magnified y-scale) to show the occurrence of the charge neutrality point (VCNP) at ~4 V. (d) Histogram of the 

field-effect mobility for holes (h+) and electrons (e-), as measured in the two- and four-terminal measurement 

configuration. 

To the best of our knowledge, this is the first observation of ambipolar transport in EEG nanosheets, 

which proves that the level of oxidation in our EEG is considerably lower than in the case of graphene 

oxide (GO). However, at this stage, the electron and hole mobilities (1-10 cm2V-1s-1) appear to be 

dominated by a high degree of structural defects, as elucidated in the following of the manuscript. The 

field-effect mobilities – measured in both two- and four-terminal configuration – are reported in the 

histogram in Figure 4. 13d. On average, the two-terminal measurements provide mobility values 30-
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40% lower than the four-terminal counterpart, indicating a non-negligible contribution of the contact 

resistance due to injection barriers at the metal/EEG interface. Upon annealing, the hole field-effect 

mobility drops by ~50%. We suggest two plausible mechanisms behind such charge-transport 

degradation, namely the thermally-activated expansion of structural defects191 and the remarkable 

decrease in hole density. The effect of high-vacuum annealing process on single flakes of EEG has been 

investigated via a combination of AFM and Raman spectroscopy, as shown in Figure 4. 14. Though we 

could not identify significant changes (e.g. peeling or tearing) at the micrometre scale in the 

morphology of the flakes (Figure 4. 14, panel a and b), we observed a significant increase of structural 

disorder upon annealing by means of Raman spectroscopy (Figure 4. 14, panel c). The Raman spectra 

acquired before and after the annealing step ─ with the laser beam positioned onto the same region 

of the flake (red circle in Figure 4. 14) ─ are displayed in Figure 4. 14c, in blue and red respectively. 

They exhibit different ID/IG and ID’/IG ratios. In particular, the ID/IG ratio is higher after thermal 

annealing, indicating an increase of disorder at the nanometre scale. 

 

 

Figure 4. 14. Effect of thermal annealing on EEG single flake: AFM images of the flakes analysed by Raman before 

(a) and after (b) vacuum annealing; c) Raman spectra before (in blue) and after (in red) annealing treatment. 

The drop in the hole field-effect mobility can be also ascribed to the remarkable decrease in hole 

density upon high-vacuum annealing. In the case of defective graphene sheets, the dependence of the 

mobility/conductivity on the charge-carrier density has been previously investigated.192 The 

remarkable non-linearity observed in the transfer characteristics of our EEG-based FETs ─ see Figure 

4. 15─ can be ascribed to the presence of electronic defect states, which degrade the charge transport 

in the low charge-density regime.  

It can be seen that the hole mobility ─ as obtained by the linear extrapolation of the Ids vs Vg curve ─ 

increases significantly with the increasing effective gate voltage │Vg - Vds│, or equivalently with 

increasing hole/electron density. In our experiments, graphene is heavily p-doped before annealing 

and the charge transport is evaluated in the high hole-density regime. On the other hand, after 

annealing the hole doping is considerably lower and the mobility is extracted at smaller values (low 

hole-density regime), where it is more severely affected by the defects.  
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Figure 4. 15. Representative transfer characteristic of as-annealed EEG-based FETs at low drain-source voltage 

Vds. The field-effect mobility µFE increases considerably with increasing effective gate voltage │Vg-Vds│. For 

instance, the mobility extracted in region 1 can be up to ten times larger than the mobility extracted near the 

charge neutrality point VCNP (region 3).  

Turning now to EEG films, we briefly summarize their preparation, discussed in detail in section 4.2.1, 

and we report here the results of their characterization. Graphene films were prepared by depositing 

a few drops of EEG dispersion in DMF into a water-containing beaker. Once re-organized at the 

interface, EEG flakes form a uniform greyish film floating onto the sub-phase, which was transferred 

onto the solid substrate. This method makes it possible to avoid time consuming and laborious 

purification steps, as a consequence of the EEG tendency to form a film at the water/air interface, 

leaving heavier particles, i.e. unexfoliated graphitic material diffusing in the sub-phase together with 

DMF. In this way, extensive formation of aggregates typical for other deposition methods such as drop-

casting, dip-coating, spin-coating is avoided. By this method atomic level thin flakes can uniformly 

adhere to other materials having any shape, as shown in Figure 4. 16 which display EEG film deposited 

both on rigid silicon substrate and on flexible PET. Furthermore, the thickness of such films can be 

modulated as a function of the amount of loaded solution.  

 

 
Figure 4. 16. Photographs of EEF film deposited on solid (SiO2/Si) and flexible (PET) substrates. 

Morphology and homogeneity of the films on Si/SiO2 were investigated by OM and AFM, as reported 

in section 4.2.1. Closely packed EEG sheets form large-area films having average thickness of about 3 

nm and surface coverage above 80% (Figure 4. 17). 

Gold source and drain electrodes were then evaporated on the top of the film. The Ids current is plotted 

as a function of the applied gate potential Vg and the resulting transfer curves are fitted in order to 

extract the mobility values in the linear regime. Unlike what is observed in the case of single flake 
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measurements, the electrical performance of films recorded before and after thermal annealing result 

being almost identical, displaying mobilities of 3.4 cm2 V-1 s-1 and 4 cm2 V-1 s-1, respectively. Electrical 

characterization also reveals a large shift in threshold voltage: the Dirac point is now at very high 

positive gate bias, even after annealing. This strong p-doping of the EEG film can be ascribed to the 

effect of trapped adsorbates (oxygen and solvent) between overlapped flakes, which cannot be easily 

desorbed and hamper the emergence of ambipolar transport. 

 

 
Figure 4. 17. Morphological characterization of EEG film: a) optical micrograph which show the formation of a 

homogeneous film made of few-layer EEG sheets with the presence of some thicker particles by optical contrast 

respect to the bare substrate on the right of the OM image; b) 30 µm x 30 µm AFM image of EEG film that 

allowed to determine an average film thickness of 3 nm by measuring the height step between film and bare 

substrate. AFM z-scale: 30 nm. 

A percolation path for charges among adjacent flakes guarantees the conductivity of our film and 

proves the high-quality overlapping among sheets observed by microscopies. More importantly, EEG 

films show similar mobility values to those of the single flake. Therefore, albeit the observed mobilities 

remain below state of the art, our approach offers the exciting possibility of producing large-area 

graphene performing as an ideal large monolayer. 

Recently, microwave (MW) irradiation has been introduced as powerful technique to reduce graphene 

oxide achieving high-quality graphene.193 Typically, (electro)chemical and thermal reduction of GO 

results in a highly defective and still oxidized material,194-197 known as reduced graphene oxide (rGO), 

due to the difficulty of removing stable epoxy and carbonyl groups.198 On the contrary, microwave 

treatments, based on a rapid and localized heating of the sample, causes the desorption of oxygen 

functional groups as well as the reordering of the carbon atoms within the graphene basal plane, 

leading to defect- and oxygen-free graphene.193 Consequently, electronic mobility values rise from 1 

cm2V-1s-1, reported for rGO,199-200 to 1000 cm2V-1s-1 after MW irradiation.193 Here, for the first time, this 

approach was exploited to lower the degree of oxidation on EEG and studying the effect on its 

electronic properties. While a preliminary thermal annealing is necessary to increase the conductivity 

of GO, so that it can absorb microwaves, this step was unnecessary in the case of EEG powder, which 

is successfully reduced upon a few seconds of microwaves irradiation with a conventional microwave 

oven (Figure 4. 7a, green curve). 
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As evident from the XPS survey spectra, the overall percentage of oxygen decreases from 12% to 7%. 

In particular, the C1s spectrum of EEG powder (Figure 4. 7e) shows a nearly total reduction of epoxy 

and carbonyl groups to hydroxyl ones, as evidenced by the increase in –OH peak intensity. The shake-

up satellite peak observed at 290.59 eV in MW-EEG spectrum indicates that the conjugation of the 

system is preserved and eventually restored as well. Moreover, the global shift of peak-maxima back 

to lower binding energy after MW irradiation points out the increment of the conducting nature of 

the material. We verified that the approach reported in literature193 effectively reduces both EEG 

powder (Figure 4. 7e) and EEG films on silicon dioxide substrates (Figure 4. 19). 

 

 
Figure 4. 18. Electrical characterization of FETs based on EEG films. (a) AFM image of an EEG film (scale bar: 

45 nm); (b) sketch and photograph of the device fabrication on graphene films by gold evaporation using the 

shadow-mask approach; (c) representative transfer curves before and after annealing at 60 °C for 12 h in nitrogen 

atmosphere. (Vds = 200 mV) 
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Figure 4. 19. Effect of MW irradiation on the XPS spectra of EEG powder and films. XPS high-resolution C1s 

spectra of (a) EEG powder before and after 10s, 60s and 300s of microwave irradiation at 1 kW; (b) EEG film 

before (blue) and after (red) MW treatment (P = 1 kW, t = 1 min). X-ray beam spot ≈ 400 µm. 

Surprisingly, when MW treatment is performed on EEG films, no noticeable changes in electrical 

performances were observed (Figure 4. 20d and Table 4. 2). We point out here that due to technical 

limitations we could not perform the same type of investigation in the case of EEG single-flake FETs 

before and after MW irradiation. In fact, a device composed by metallic pads, leads and contacts to 

the 2D flake cannot be safely exposed to 1 kW MW radiation within a household oven. The large 

amount of heat developed during the MW exposure unavoidably damages the metallic lines ─ smallest 

features of ca. 200 nm (inner voltage probes) ─ and ultimately leads to the failure of the device.  

While the results of electrical measurements can be well explained by the Raman spectra on the films 

of EEG before and after MW treatments, which appear very similar (Figure 4. 20c), the C1s region of 

the XPS spectra shows that the MW treatment is accompanied by a lowering of the peak at ca. 286 eV 

which is associated to oxygen-containing groups (Figure 4. 20b). Although the combination of 

thermal annealing and microwave irradiation of GO is known to be beneficial to the healing of point 

defects,193 our nanometer sized structural defects cannot be recovered in the same way upon MW. As 

a result, MW-irradiation is not effective in improving the electronic properties of EEG, which are at 

this stage limited by the presence of structural defects. 
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Figure 4. 20. Characterization of EEG films before (in black) and after (in red) microwave irradiation: (a) 

Representative optical microscopy image; (b) XPS C1s spectra with a zoom in the spectral region between 288 

and 285 nm; (c) Raman and (d) transfer curves of EEG films before and after MW treatment. 

Table 4. 2 Mobility values of EEG film before and after microwave treatment. 

 Mobility / cm2V-1s-1 

Pristine film 2.83 

After MW treatment 2.82 

 

To conclude this part, we reported an overview of the electrical performances of FETs based on 

different neat graphene as active layer (Table 4. 3). Among the several methods for graphene 

production, the scotch-tape approach provides the best quality of graphene in terms of purity, defect 

densities, electronic and optical properties. The charge carrier mobility can be as high as 105 cm-2s-1V-

1 at room temperature. For this reason, such technique is still very popular for laboratory research, but 

it is clearly not suitable for practical applications. Techniques such as CVD and epitaxial growth on 

SiC allow for producing wafer-scale graphene, but the manufacturing process is expensive and requires 

complex procedures; however, devices based on such large-area materials do not offer the same high 

performances as the mechanically-exfoliated graphene. On the other hand, LPE is low-cost and up-

scalable, and therefore is attracting a great deal of attention. The structural and electronic quality of 
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ultrasound-induced LPE graphene is significantly lower than that produced by epitaxy or CVD, and 

typical mobilities range between 0.1 and 1 cm-2s-1V-1 in the case of devices based on graphene films 

obtained via UILPE and deposition by solution processing methods. 

 
Table 4. 3 Comparison of the electrical performances of FETs based on different neat graphenes as active layer. 

Graphene types 
 Conduction 

type 

FE mobility 

(cm2V-1s-1) 
Ref. 

Scotch tape Single flake ambipolar 104-105 11, 201 

CVD Film ambipolar 103-105 202-205 

Epitaxy 
Film  n-type 

ambipolar 
104  206  

Liquid-phase exfoliated 

(LPE) via ultrasonication 
Film 

p-type 

ambipolar 
0.1-1 191, 207 

Electrochemically 

exfoliated (EE) 

Single flake p-type 102 21 

Film + single 

flake ambipolar 1-10 This work 

 
    

 

As compared to UILPE approaches, EE exfoliation enables the production of large quantities of 

graphene in relatively short time without further degrading the electrical properties. Previous reports 

on EEG showed promising results.21 However, the exfoliated flakes and the films presented a high level 

of p-type doping and the charge neutrality point was not observed in the FETs’ transfer characteristics. 

The EEG produced in this work has electrical characteristic superior to that of graphene sheets 

obtained via UILPE; in addition, it displays a clear ambipolar behaviour, which was not reported before 

in the literature. The unique properties of EEG and the high efficiency of the EE of a graphite foil into 

thin graphene layers have triggered our interest towards the exfoliation of other layered materials 

using a similar approach. TMDs, for example, similarly to graphene, are characterized by strong in-

plane covalent bonds and weak vdW interactions between adjacent layers. The latest can be weakened 

by applying external stimuli allowing the exfoliation of the material. Moreover, single-layer nanosheets 

of TMDs possess different properties from those of their bulk counterparts. For these reasons, recently, 

many approaches are being explored to exfoliate TMDs into single- or few-layer thick sheets, such as 

mechanical exfoliation 208, sonication and dispersion in liquid media209-213 and electrolysis96, 214-215.  

Herein, we extended the knowledge acquired from the EE of graphite to another prototypical 2D 

material, i.e. molybdenum disulfide (MoS2). Among the TMDs, MoS2 is the most investigated material 

due to its abundance in nature and its extensive use as a lubricant.216-217 Being the most studied, after 

graphene, it was considered in this study a good choice for investigating a new process like the EE. 
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Moreover, being a semiconductor, 2D MoS2 appears a very attractive material for electronics 

applications, as complementary to graphene, that on the contrary has a zero band-gap. 

While for the exfoliation of graphite the anodic process in aqueous solutions is the most widely used 

due to the higher efficiency compared to the cathodic one,  for the exfoliation of other layered 

materials, the most universally used methods are those based on Li intercalation in organic solvents.102 

Usually lithium is intercalated in the layered material forming the intercalated compounds (e.g. 

LixMoS2). The latest are then sonicated in water or ethanol where lithium react generating H2 gas, that 

promotes the exfoliation of the material in thin nanosheets. Intercalating lithium and, thus, working 

in cathodic conditions, we want to avoid the oxidation we observed in the anodic exfoliation of 

graphite.  

The electrochemical exfoliation of a bulk MoS2 crystal typically leads to the formation of flakes with 

two distinct crystal structures, i.e. the semiconducting (2H) and metallic (1T) phases. 218 More 

specifically, chemical exfoliation via lithium-ion intercalation leads to the formation of electron-rich 

sheets, characterized by a large fraction ─ between 60 and 70% ─ of 1T (or distorted 1T′) polytype. 219 

In order to obtain single-phase semiconducting flakes the use of post-exfoliation processes, such as 

thermal annealing, 220 laser irradiation 212 and microwaves treatments221 is required. Exploiting the 

electrochemical intercalation process, Ejigu and co-workers 176 recently reported the exfoliation of a 

MoS2 pellet by using lithium perchlorate (LiClO4) dissolved in a mixture of ethylene carbonate (EC) 

and dimethyl carbonate (DMC): the experiments were carried out under inert atmosphere (N2), lasted 

for ca. 2 hours and resulted in a percentage of semiconducting 2H phase around 40%. 

In our laboratory, we developed a fast (<1 hour) electrochemical exfoliation of MoS2 via lithium-ion 

intercalation, by using a solution of lithium chloride (LiCl) in DMSO, where lithium salt is used as 

source of lithium ions. The use of DMSO leads to the formation of Li+-DMSO adducts that can 

penetrate in between MoS2 layers and increasing the interlayer spacing. Its effect is proven by the large 

expansion of MoS2 crystal after the intercalation process (Figure 4. 21). Unlike the conventional 

intercalation methods based on dangerous organolithium compounds,222-224  our approach leads to 

the possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the 

semiconducting 2H phase (~60%), as estimated by XPS.225  

Figure 4. 22 displays scanning transmission electron microscopy (STEM) images of the exfoliated 

MoS2 nanosheets. To give an estimation of the size and the thickness of resulted nanosheets, we 

performed STEM and HR-TEM statistical studies on 150 and 60 flakes produced by different batches, 

respectively. The analysis showed the presence of a large amount of mono-, bi- and tri-layer thick MoS2 

flakes with an average lateral size of ~0.8 m. HR-TEM images (Figure 4. 22 d-g) reveal the co-

existence of two crystal phases within individual MoS2 nanosheets, i.e. 1T (highlighted in yellow) and 

2H (highlighted in blue), with characteristic diffraction patterns (Figure 4. 22f and h, respectively). 
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Figure 4. 21. Experimental setup used for the preparation of MoS2 nanosheets via DMSO-solvated lithium-ions 

intercalation. The photographs were taken (a) before, and (b) after the intercalation process, which induces a 

significant expansion of the bulk MoS2 crystal.  

 

 

Figure 4. 22. (a) STEM image of MoS2 nanosheets exfoliated via lithium-ion intercalation in DMSO and 

deposited onto a holey carbon grid. (b) Thickness distribution obtained from STEM measurements on 60 

different nanoflakes. (c) Lateral-size distribution based on data from 150 different nanoflakes. (d) HR-TEM 

image showing the presence of two distinct crystalline phases. (e) Zoom-in image of the 1T region marked in 

yellow and (f) its corresponding diffraction pattern. (g) Zoom-in image of the 2H region marked in blue and (h) 

its corresponding diffraction pattern. 
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UV-Vis absorption spectroscopy ( 

Figure 4. 23) shows the presence of two peaks at  ≈ 672 nm and ≈ 612 nm that can be attributed to 

the A and B excitons, respectively, corresponding to optical transitions occurring at the Κ point of the 

Brillouin zone210.  

 
 

Figure 4. 23. UV-Vis absorption spectrum of MoS2 nanosheets dispersed a mixture of H2O (70%) and ethanol 

(30%). The inset shows a magnified view of the spectrum in the region of the A and B exciton peaks. 

XPS measurements were performed on both pristine and exfoliated material. Figure 4. 24 compares 

the Mo 3d and S2p high-resolution XPS spectra of the MoS2 bulk crystal used as starting material with 

those of the exfoliated flakes. In the case of pristine MoS2, the Mo 3d spectrum (Figure 4. 24a) shows 

the characteristic doublet of the semiconducting 2H phase at 229.4 eV and 232.5 eV, corresponding 

to Mo4+ 3d5/2 and Mo4+ 3d3/2 spin-orbit components. The S 2p spectrum is also splitted in the two 

components related to S 2p3/2 and S 2p1/2 spin orbits and appear at 162.2 eV and 163.4 eV, respectively 

(Figure 4. 24b). On the other hand, after exfoliation, the Mo 3d spectrum (Figure 4. 24c) displays an 

additional doublet ─ located at lower binding energies (ΔEb ≈ 1 eV) ─ that can be assigned to the 

metallic 1T phase.226-228 The S 2p spectrum (Figure 4. 24d) also presents broader peaks that can be 

fitted by to two pairs of doublets, i.e. those of the 2H phase at higher binding energy (green) and those 

relative to 1T phase at lower binding energy (light blue). By peak fitting of Mo 3d and S 2p high 

resolution spectra, we estimated the relative content of 1T and 2H phases, that is 40% and 60% 

respectively. We have estimated the S/Mo stoichiometric ratio through fitting and integration of high-

resolution XPS spectra acquired in the regions of the Mo 3d and S 2p peaks. After background 

correction, the data were fitted with Gaussian-Lorentzian bell functions by making use of the Thermo 

Avantage software to obtain the area A of the peaks. The ratio between A(S 2p) and A(Mo 3d) was 

normalized to 2 in the case of the unexfoliated bulk material, where it was assumed for simplicity that 

the density of sulfur vacancies in the source is negligible. The same normalization factor was then used 

in the case of the MoS2 nanosheets prepared via lithium intercalation in DMSO. Upon exfoliation, the 

stoichiometric ratio was found to decrease from 2 to ≈ 1.94, revealing a non-negligible generation of 

sulfur vacancies. By XPS quantification, we can conclude that our approach enables the preparation of 

nanosheets that are preferentially semiconducting, whereas previous works based on chemical or 

electrochemical exfoliation have shown the formation of metallic nanosheets with 1T content 



 

70 

 

exceeding 60%. The change from 2H to 1T upon intercalation is commonly associated to a strong 

electron transfer from the lithium atoms to MoS2
229-230. In our case, the presence of DMSO molecules 

coordinating the Li ions 231 could presumably mitigate the intercalation step and consequently such 

electron-transfer process, thereby limiting the conversion to the metallic 1T phase.  

 

 

 

 

 

Figure 4. 24. (a, b) High-resolution XPS spectra of (a) Mo 3d and (b) S 2p regions acquired from unexfoliated 

MoS2 crystals. The relatively small peak at 235.7 eV (Mo6+ state) reveals the presence of a low level of oxidation 

in the unexfoliated material. (c, d) High-resolution XPS spectra of the (c) Mo 3d and (d) S 2p regions acquired 

from MoS2 nanosheets prepared via lithium-ion intercalation in DMSO. The deconvolution of the Mo 3d (c) 

and S 2p (d) displays the peaks related to 1T (light blue) and 2H (green) phases. The oxidation level is not 

modified by the intercalation/exfoliation process. All the peak positions were corrected according to the C 1s 

signal at 284.8 eV. 
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Table 4. 4 Areas under the curve of the 1T and 2H peaks obtained from the deconvolution of the high-resolution 

XPS spectra shown in Figure 4. 24 c,d. The values reported in the table have been used to calculate the fraction 

of 1T and 2H phases in the exfoliated MoS2 nanosheets. 

 

 

 

 

 

 

 

 

 

 

MoS2 nanosheets were further investigated by means of Raman spectroscopy. Figure 4. 25 a portrays 

the Raman spectra of a MoS2 flake obtained by DMSO-solvated lithium-ion intercalation process 

(blue) and by mechanically exfoliation (red). The former exhibits three additional peaks located at 

~157 cm-1, ~227 cm-1 and ~331 cm-1, which can be ascribed to the J1, J2 and J3 modes of 1T′ crystal phase, 

respectively. The A1g and E1
2g modes maintain a similar frequency and relative intensity in the two 

spectra indicating that both polytypes coexist in our electrochemically exfoliated MoS2 nanosheets 

within a lateral scale of ~0.7 µm (laser-beam diameter), in agreement with the results of TEM and XPS 

investigations. On the other hand, the peaks separation is estimated being ~21.8 cm-1 which confirms 

the formation of an average thickness about two-three monolayers. Noteworthy, the peak at ~227 cm-

1 can be also ascribed to the longitudinal acoustic phonons (LA) at the M point in the Brillouin that 

are active only in the presence of defects, as discussed in detail by Mignuzzi and co-workers. The 

quality of the MoS2 nanosheets can be assessed by calculating the ratio between the intensities of the 

LA(M) and A1g modes 214. If we assume for simplicity that the peak at ~227 cm-1 arises exclusively from 

LA(M) acoustic vibrations, we can extract I(LA(M))/I(A1g) values within the range 0.1-0.3, which 

correspond to an average inter-defect distance LD of 1-2 nm. The strong contribution of defects in the 

Raman spectra of electrochemically intercalated MoS2 can be also evaluated by the line shapes of the 

A1g and E1
2g modes (Figure 4. 25b), which present shoulder peaks at ~378 cm-1 and ~410 cm-1, 

corresponding to defect-activated LO(M) and ZO(M) phonon modes, respectively.232  

 

 

 

Peak 

Mo 3d S 2p 

1T 2H 1T 2H 

A 57117.73 - 25374.73  

B 39373.77 - 13120.61  

C - 82471.36 - 30889.76 

D - 57869.16 - 22190.02 

1T% 

(A+B)/(A+B+C+D) 
~40 (60% of 2H) ~42 (58% of 2H) 
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Figure 4. 25. (a) Raman spectra of MoS2 nanosheets exfoliated by DMSO-solvated lithium-ion intercalation 

(blue, bilayer) and scotch-tape technique (red, monolayer). The peak (i) can be also attributed to the defect-

activated LA(M) mode at ~227 cm-1, whereas the peak (ii) ─ present in both spectra ─ corresponds to the 2TA(X) 

Raman mode of the SiO2/Si substrate. (b) Raman spectrum of a bilayer MoS2 flake obtained via DMSO-solvated 

lithium-ion intercalation in the spectral region of the E1
2g and A1g modes. The fitting was carried out with the 

method presented in ref. 233  for defective MoS2 sheets. 

Similarly to the previous work, the electrical properties of the exfoliated material were investigated 

through the fabrication and characterization of back-gated FETs based on individual MoS2 nanoflakes 

(2-4 layers thick) by means of electron-beam nanolithography. As-fabricated devices displayed 

unipolar semiconducting behavior (n-type), similar to that of semiconducting MoS2 nanosheets 

obtained by scotch-tape method.  Field-effect mobility was estimated µFE ≤ 10-3 cm2 V-1 s-1 with Ion/Ioff ≤ 

10. EE MoS2 performances appeared thus limited by the 1T/2H polymorphism and defects (e.g. sulfur 

vacancies) induced during the intercalation/exfoliation process. Interestingly, in this work Dr. S. 

Bertolazzi, demonstrated  a significant enhancement of the electrical performances achieved through 

a combination of vacuum annealing (150 °C) and sulfur-vacancy healing with vapors of short-chain 

alkanethiols, a technique that has been recently developed in our laboratory for healing sulfur 

vacancies generated by low-energy ion irradiation.234 Such approach allows the increasing of µFE up to 

2×10-2 cm2 V-1 s-1 and enables Ion/Ioff ratio ≈ 100, 225 suggesting that sulfur vacancies are an abundant 

type of defects in nanosheets exfoliated via DMSO-solvated lithium-ion intercalation.  

Moreover, it is worth noting that the figures of merit of our devices are comparable with those reported 

in the literature for UILPE nanosheets and their network films.214, 235-236 However, they remain still 

much lower than those of mechanically-exfoliated MoS2 flakes,237-241 indicating that other forms of 

disorder ─ as discussed above ─ are responsible for the degradation of the charge-transport properties 

in the nanosheets obtained via lithium-ion intercalation in DMSO. Similarly, to what observed for 

graphene obtained by electrochemical exfoliation, the large discrepancy between the aforementioned 

µFE and Ion/Ioff values and those of state-of-the-art devices − based on high-quality MoS2 nanosheets 

obtained by mechanical exfoliation via scotch tape peeling − highlights the presence of a more 

complex/detrimental disorder, which requires to be minimized towards practical (opto-)electronic 

applications. These results pave the way towards the fast preparation ─ under ambient conditions ─ 

of semiconducting MoS2 nanosheets, suitable for application in low cost (opto)electronic devices. 
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Moreover, it casts the basis for more comprehensive studies of the effects of exfoliation-induced 

disorder on the charge-transport properties of ultrathin MoS2 FETs. 

 

 

 

Figure 4. 26. Fabrication and characterization of FETs based on exfoliated MoS2 nanosheets. (a,b) Optical 

micrographs of a bilayer MoS2 flake deposited on a SiO2/Si substrate before (a) and after (b) the fabrication of 

the source and drain contacts (Au, 90 nm). The heavily-doped silicon substrate is used as the back gate. (c) 

Transfer curves of the FET device shown in (b) acquired at different stages under inert atmosphere (N2-filled 

glovebox). The drain-source bias voltage Vds was set at 4 V. The curve obtained after butanethiol treatment 

(green) is reported in semi-log scale in the inset and displays Ion/Ioff current ratio up to 102. Reproduced from ref. 
225. 

 

4.4 Conclusions 

In summary, in this chapter we first investigated the correlation between structure and electrical 

characteristics in electrochemically-exfoliated graphene.  

Stable dispersions of graphene were prepared by means of the electrochemical approach using 

ammonium sulphate as electrolyte. We demonstrated the versatility of EEG towards different uses, 

that is uncommon for other materials such as UILPE graphene or graphene oxide. In EE process it is 

possible to obtain a broad range of oxidation levels by simply tuning the parameters of the process, 

such as the time of electrolysis, as it was proved by XPS.  

We have carried out a multiscale characterization of the physico-chemical properties of EEG, in order 

to cast light onto the factors that influence the charge-carrier transport in this material. Taking 

advantages of the micrometer size of graphene flakes, multi-terminal FETs based on single flakes were 

fabricated allowing measuring mobilities of 1-10 cm2V-1s-1 at the single flake level. Such mobilities 

turned out to be very similar to those measured on continuous EEG films. EEG results thus an 
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attracting alternative material for transparent electrodes. In the past years, GO has been used for this 

purpose due to the relative ease with which uniform thin film can be deposited from solution. 

However, to obtain a conductive film, reduction and/or surface modification are necessary. On the 

contrary, EE combined with the method of deposition reported in paragraph 5.2, give rise to 

conductive film. This approach offer thus the possibility of avoiding harsh synthesis of graphene oxide 

followed by unavoidable reducing process, while giving a conductive material with similar properties 

than rGO film in one simple step. Moreover, in most cases GO reduction (chemical, thermal or 

microwave- induced) can be detrimental for the other components of a more complex system. This 

problem can be avoided using EEG that can be deposited on any other material without changing its 

properties.    

Interestingly, we have reported for the first time the emergence of the n-conductivity in EEG upon 

thermal annealing, leading to an ambipolar transport, which may be of interest for the development 

of logic circuits. We have also showed that MW treatments can be successfully exploited on EEG in 

order to lower the oxygen content, enabling to demonstrate that charge transport within EEG is mostly 

hindered by structural defects rather than by oxygen containing defects. The presence of structural 

defects that is here shown for the first time, has to be reconducted to the unconventional 

electrochemical conditions generally used to achieve the exfoliation. The intensive oxygen and 

hydrogen evolution during the anodic process when a high voltage is applied, creates defects which 

unavoidably affects the properties of the material, and at the same time make difficult to control the 

process of EE. Providing new insight on the structure and properties of EEG, we aim to drive further 

studies towards the optimization of EE process, that is at present the most promising method for the 

production of large quantities of graphene. These studies should focus on improving the structural 

quality of the material, allowing thus better electrical characteristics. On the other hand, shedding 

light on the nanoscopic properties of the as produced material can open the route to other applications 

which exploit structured graphene surfaces and porous, as for example membranes, energy storage, 

catalysis, sensors etc. 

Finally, we have presented a facile and low-cost approach to exfoliate MoS2 crystals under ambient 

conditions via DMSO-solvated lithium-ion intercalation. Our method allows producing single-, bi- 

and tri-layer thick nanosheets of MoS2 with an average lateral size of ~0.8 µm. HR-TEM, XPS and 

Raman spectroscopy revealed the presence of a large amount of semiconducting 2H phase (~60%). 

The electronic properties of single flakes were investigated through the fabrication and 

characterization of back-gated field-effect transistors (FETs), which displayed unipolar 

semiconducting behavior (n-type), in line with the observation of a predominant 2H phase within the 

exfoliated flakes. We succeeded in improving the electronic properties of our FETs through a 

combination of vacuum annealing and defect healing with short linear thiolated molecules, resulting 

in µFE values up to 2×10-2 cm2V-1s-1 and Ion/Ioff ≈ 100. Such findings cast the basis for future 

investigations on the influence of exfoliation-induced disorder on the charge transport properties. The 

approach we developed paves the ways towards the fast preparation ─ under ambient conditions ─ of 

semiconducting MoS2 nanosheets. 

Overall, we discovered that many factors and limitation must be taken into account when the 

electrochemical process is extended to other 2DMs different from graphene, e.g. the structural 

deformation affecting MoS2 when intercalated with Li-ions; the capacity of the material to support 

strong anodic or cathodic conditions without undergoing to decomposition; the stability of the 

material under ambient conditions;  the nature of the electrode that need to be conductive, and so 

forth. These factors make the electrochemical process more challenging. Nevertheless, 
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electrochemical approach holds a great potential for the fast and low-cost preparation of 2DMs at large 

scale, that is encouraging further endeavours to overcome such challenges. 
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CHAPTER 5. 
 

MoS2 NANOSHEETS FOR CHEMICAL SENSING 

In the previous chapter, the electrochemical exfoliation of graphene has been investigated with a 

particular focus on the relationship between structure and properties of the exfoliated material. 

Furthermore, the electrochemical method towards MoS2 nanosheets fabrication has been introduced. 

These studies showed that the electrochemical exfoliation approach is a promising method to produce 

2D materials (2DMs) with controlled sizes and defects including mechanical and chemical defects, 

e.g. oxygen functionalities and sulfur vacancies. Such defects act as reactive sites for interactions at 

the covalent and non-covalent level with molecules. The latter, due to their reversible nature and 

selectivity, are ideally suited for sensing. By relying on the reversibility and the strength of non-

covalent interactions, a sensor can respond quickly to environmental changes and recover fast (e.g. 

real-time monitoring). Moreover, it can interact with the analyte multiple times, ensuring the 

repeatability of the process.  

Previously, we have shown that electrochemically exfoliated MoS2 features some structural defects, 

which compromise its electrical characteristics when compared to mechanically exfoliated MoS2. Yet, 

the presence of defects is not necessarily detrimental for all applications. Our studies have indicated 

that a large part of these defects can be assign to the presence of sulfur vacancies, as proved by 

improved electrical performances through butanethiol vapors treatment. Recently, the presence of 

such kind of defects, e.g. vacancies in the basal planes and at the edges of MoS2 nanosheets, has been 

considered beneficial as it allows improving the chemical sensitivity (e.g. towards NO2 and EtOH 

molecules)242 and chemical reactivity of the material (e.g. with thiol molecules),243-245 compared to the 

pristine crystals that are considered being rather chemically inert.246 Such findings have inspired the 

following work which relies on exploring the use of MoS2 exfoliated in liquid media as active material 

for gas sensing. 

 

5.1 Introduction 

Chemical sensing is a topical field of science as it is expected to provide a key contribution to the 

improvement of people’s quality of life by offering concrete solutions towards, environmental247 and 

biohealth monitoring (as early diagnostics and continuous monitoring of diseases),248 food safety,249-

250 etc. In particular, having a good control over the humidity in the environment is the key for 

ensuring a good quality of the air in living and working places, besides being essential for many 

industrial processes. 

Recently, 2DMs have been considered potentially ideal materials for gas sensing due to the fact that 

almost all the atoms of the material are exposed to the environment and can interact with the analyte 

of choice. In other words, the potential of 2DMs as sensors is mainly due to their highest surface-to-

volume ratio that allows to maximize the effective detection of the analyte such as, for instance, the 

detection of variations of humidity in the environment. Moreover, owing to flexibility and 

transparency of 2DMs, these sensors could be integrated on wearable or bendable devices, or simply 

their dimensions could be reduced, making the sensors minimal and invisible.  
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In order to use a material in gas sensors, besides the requirements of sensitivity to the selected analyte, 

fast response and reversibility of the process, the device based on it should give a certain output which 

allows read-out the occurred detection. 

When pristine graphene is tested as humidity sensor, for example, the absorption of water molecules 

can generate a variation in its electrical resistance, via doping. However, this change in resistance is 

usually rather small due to the absence of a sufficient amount of active sites for the interaction with 

the analyte and its very high starting electrical conductivity, thereby hampering the use of graphene 

as humidity sensor because of the low sensitivity. On the contrary, graphene oxide and reduced 

graphene oxide exhibit higher performances due to their different chemical structure. Water 

molecules can indeed interact with functional groups present in GO determining a change in its 

conductivity, but they can also chemically adsorb on the material and limit the reversibility of the 

process that can take longer to recover the initial resistance. An alternative to these 2DMs can be 

represented by transition metal dichalcogenide (TMDs) due to their high surface-to-volume ratio, 

adjustable and direct bandgaps and availability of reactive sites for redox reactions.137 Usually, the 

dominant mechanism behind the observed sensing characteristics is a charge-transfer mechanism. For 

example, when n-type MoS2 monolayers are exposed to electron-acceptor gases like O2, H2O, NO, NO2 

and CO2, electrons are transferred from MoS2 to the gas molecules determining a decrease of the 

carrier density within MoS2 and a consequent increase of the resistance. In the case of monolayers 

which features direct bandgap, changes in the photoluminescence are observed as well. These and 

other studies have been performed on mechanically exfoliated MoS2 (ME MoS2), which is unsuited to 

practical applications because cannot be produced on a large scale. 

One possibility for the use of MoS2 for gas sensing applications could rely on generation of sulphur 

vacancies by electrochemical exfoliation of MoS2 – as demonstrated in chapter 4 – and investigating 

their effect on the sensitivity of this material towards humidity. However, from our previous studies, 

we learned that, although the electrochemical exfoliation in cathodic conditions makes it possible to 

produce MoS2 without oxidizing the exfoliated material, this occurs at the cost of much lower 

efficiency of the process compared to anodic exfoliation. Furthermore, MoS2 crystals employed as an 

electrode in the electrochemical approach are very expensive, and therefore formation of a material to 

be employed in sensing application via this approach would not be acceptable for economic reasons. 

In light of this, we have decided to produce the sensing material starting from MoS2 powder, which is 

accessible at a low cost in large quantities. 

In general, many different types of defects can be found on the edges and in the plane of exfoliated 

MoS2 nanosheets. The most abundant are vacancies which include single sulfur vacancies, double 

sulfur vacancies, a vacancy of Mo atoms bonded with three sulfur atoms in one plane, molybdenum 

occupying a sulfur vacancies or a pair of S atoms occupying a Mo position. 251 Among them, single 

sulfur vacancies have the lowest energy of formation (~2eV).252-253 Because sulfur atoms on the basal 

plane are strongly bonded, the formation of a vacancy is easier at the edges of a layer where the 

coordination is incomplete and the sulfur is chemically labile.254 Due to the low energy of their 

formation, sulfur vacancies at the edges can be particularly favoured during the exfoliation processes 

as the material undergo mechanical stress and fragmentation.143 The S and Mo atoms around the 

vacancies will consequently present dangling bonds, making the material richer in reactive sites at the 

edges.255 The reactivity of defects has been extensively studied for hydrogen evolution reaction (HER). 

Experimental and theoretical studies proved that the active sites for HER lie along the edges of MoS2 

nanosheets, and in particular are associated with edge sulfurs,256-257 that can absorb H2, while the basal 

plane are catalytically inert. Moreover, it has been proved that in MoS2 the edges are metallic and 

chemically active in contrast with the semiconducting and inert basal plane.257-258 Therefore, 
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numerous studies have been based on the reduction of nanosheets sizes to increase the number of 

unsaturated sulfur edge sites and consequently the number of catalytically active sites.259-263 More 

generally, it has been demonstrated that MoS2 and other TMDs can interact via dipole-dipole, 

electrostatic and vdW interactions with (charged) molecules, enhancing the occurrence of adsorption 

events. Theoretical studies, for example, support the existence of weak vdW interactions between non-

polar gas molecules (CO2 and CH4) and monolayer MoS2 containing vacancies, that shows a response 

to these gases, contrarily to pristine MoS2.264 The introduction of defects can allow new and tuneable 

properties, opening the door to novel properties that cannot be found on pristine 2DMs, such as 

enhanced electron transfer rate and electrochemical activity as it was proved for graphene.137 

Therefore, defects might play a key role in gas sensing as well. Generating defects can improve the 

selectivity and overall performance of sensors as a result of the increase in the strength of the 

interactions. In particular, the presence of uncoordinated atoms at the edges of MoS2 and the high 

density of electrons can enhance the interaction with the gas molecules. Indeed, through DFT 

calculation it can be seen that, in the presence of defects, the adsorption energy and the amount of 

charge transfer are larger. Consequently much more significant is the change in the electrical response 

caused by the strong interaction between orbitals of gas molecules and those of 2D systems.265-266 The 

MoS2 edges containing undercoordinated S or Mo atoms are therefore expected to interact strongly 

with adsorbates. 

In this chapter, we take advantage of the liquid-phase exfoliation approaches of MoS2 to produce a 

large amount of material at low cost that can be explored in gas sensing. The material produced as 

dispersion can be also processed on rigid and/or flexible substrates. In such a way, the properties of 

MoS2 as gas sensor could be exploited on large-area flexible devices, allowing practical and innovative 

applications. Moreover, we show that the presence of edges defects formed during the processes of 

liquid-phase exfoliation can be the cause of an enhanced sensitivity of the material to gases. 

Noteworthy, some studies performed on mechanically exfoliated (ME) MoS2 flakes having different 

thickness (from 1 to 5 layers) have shown that 5-layers thick sheets exhibit higher and more stable 

response toward gases (e.g. NO,23 NO2 and NH3
267) than mono- and bi-layers, which on the contrary 

always give unstable signals. Based on these results, we evaluated that the material produced via 

ultrasound induced exfoliation in solution could result in good gases sensing performances since 

solution based processes usually allow formation of nanosheets with a mean thickness of about 10 

layers.66, 268 We took advantage from the versatility of the liquid-phase exfoliation, which offers to 

choose among various methods such as ultrasonication, electrochemical exfoliation, shear mixing, 

etc., yielding 2DMs with different size and defect nature, which could be most suitable in view of the 

specific application. For our preliminary studies, we considered appropriate the use of the 

ultrasonication as it is a well-established approach and low-cost. 

Indeed, for the applications in gas sensing, it is more important to reach the homogeneity of the active 

material on the large area, in order to bridge two electrodes and having an electrical read-out, rather 

than having a high content in monolayers or pristine 2DMs.  

Noteworthy, although some works claim that ultrasound-induced LPE makes it posible to produce 

defect-free 2DMs, there are some works that highlight the formation of defects on the basal plane of 

2D flakes as a result of cavitation process (see sub chapter 2.2.1). Moreover, the materials produced by 

ultrasonication features very small particles sizes due to the fragmentation process that occur 

concomitantly with the exfoliation (see Chapter 2). Smaller particles sizes imply a high content of 

edges, that are known for their high chemical reactivity and extensively studied for their catalytic 
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properties, as discussed above. For these reasons, ultrasound-induced LPE material can potentially be 

an ideal platform for sensing applications. 

Some research groups have explored the possibility of using liquid-phase exfoliated MoS2 as gas sensor. 

They used various techniques, with a deferent level of complexity, for the production of the sensing 

material, such as combination of grinding and sonication of the bulk material269 or lithium 

intercalation.270 Methods as drop casting or inkjet printing are used for the deposition of the material. 

These systems have been used as active materials to detect different gases, including NH3, NO2, H2, 

humidity. However, the sensitivity of such devices is rather low. For such reasons, chemical 

functionalization of MoS2 nanosheets with molecules that interact better with the analyte has been 

taken into account as a way for enhancing LPE MoS2 sensitivity.244 

In this work, we produced the sensing material by ultrasound-induced LPE of MoS2 powder in 

isopropanol. The material has been characterized with different microscopic and spectroscopic 

techniques, and then deposited in form of thin film by a stamp-transfer approach on a silicon 

substrate. MoS2 films were exploited for fabricating chemiresistors, that are commonly used as devices 

for gas-sensing bacuse of their ease of fabrication and operation, low cost and low power consumption. 

In a chemiresistor, the adsorption of molecules on the active material induce a change on its electrical 

resistance and by measuring this resistance the analyte can be detected. Herein, we reported thus the 

sensing behavior of MoS2 films towards humidity for chemiresistor devices. We demonstrated that 

MoS2 nanosheets produced by ultrasound-induced LPE can be processed in large area thin films which 

exhibit remarkable sensitivity towards humidity. We found that MoS2 film sensors show different 

sensing behaviour towards various gases (small molecules). While the presence of humidity generates 

an increase of the current (positive response), the other molecules (O2, CO2, acetone, chloroform, 

ethanol and methanol) generate a decrease of the current (negative response) with a sensitivity that 

depends on the specific molecule. Such difference in the sensing behaviour toward different analytes 

might be indicative of the different nature of the interactions between MoS2 and the analyte, as well 

as, of a different mechanism of sensing (e.g. sensing to humidity with respect with other molecules). 

The following section describes the procedure used to prepare MoS2-based sensors. All steps, from the 

preparation of MoS2 thin sheets to the fabrication of the devices were performed in our laboratory and 

are summarized in Figure 5. 1. Section 5.3 discuss the main findings of this study and the main 

conclusions are summarized at the end of this chapter. 

 

5.2 Materials and methods 

5.2.1 Production of MoS2 by UILPE 

MoS2 nanosheets were produced by ultrasound-induced liquid-phase exfoliation of MoS2 powder 

(Sigma Aldrich, flake size > 6 µm) in 2-propanol, IPA (step 1 in Figure 5. 1).  

MoS2 dispersion (20 mg/mL) was sonicated for 5 hours using a cup horn sonicator. The sonication 

was operated at 60% amplitude and the system was pulsed 6 seconds on/ 2 seconds off to reduce 

overheating of the machine and samples. 

An initial step of sonication (1 hour) was needed in order to remove impurities present in the MoS2 

powder, according with previous reports.268 After a centrifugation step at 5000 rpm the supernatant 

was indeed thrown away. The precipitate was dispersed again in fresh solvent (IPA), the dispersion 
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was degassed (5-10 vacuum/nitrogen cycles) using a Schlenk line and then sonicated in the same 

conditions for other 4 hours. Finally, the dispersion was centrifuged at 1500 rpm for 60 minutes in 

order to precipitate the un-exfoliated material (step 2) and the supernatant dispersion was used, 

without further treatments, for characterization and devices preparation.  

Exfoliation of MoS2 powder in IPA, followed by centrifugation step, leads to a stable yellowish 

dispersion shown in Figure 5. 3a. 

 

5.2.2 Morphological characterization by atomic force microscopy 

The as prepared dispersion was deposited by spin-coating (acceleration: 1000 rpm s-1; spin rate: 800 

rpm for 60 seconds) on SiO2/Si n++ for AFM characterization. Thickness and lateral size of the flakes 

were measured over 500 particles selected and marked by a mask created by Gwyddion software. 

Flakes thickness was then converted in number of layers. On this regard, generally the apparent 

thickness of a MoS2 monolayer is determined through step height analysis and evaluated being in the 

range of 1.5-1.9 nm.143, 271 However, other reports show also thickness of  0.9-1.3 nm for MoS2 

monolayer.96 Here we want to avoid considering values reported in literature that can be affected by 

different operational conditions, different used solvents and/or use of surfactants, whose contribute 

is only roughly estimated. Therefore, we decided to determinate the number of layers considering the 

thickness of a monolayer MoS2 as equal to 0.615 nm, being its theoretical thickness, although the 

obtained values for the number of layers will be overestimated. One should bear in mind, indeed, that 

the apparent thickness of liquid-exfoliated nanosheets measured by AFM is typically larger than the 

theoretical thickness of the nanosheets due to adsorbed/intercalated water or solvent molecules. 

Statistical analysis of the flake dimensions was performed by measuring the longest axis of the flake 

that was defined as the flake length and considered a measure of the flake lateral dimension, according 

with the literature of the field.86 Here the length of the flake was named “Dmax” and expressed in 

nanometers. MoS2 nanosheets were characterized by high-resolution transmission electron 

microscopy (HR-TEM) in the collaboration with the group of Prof. Ovidiu Ersen (University of 

Strasbourg). The samples were characterized by Raman spectroscopy using the Renishaw microscope 

available in Nanochemistry laboratory that is equipped with a 532 nm laser. The silicon peak at 520.3 

cm-1 was took as reference for wavenumber calibration. 

 

5.2.3 Chemical and structural composition  

The samples for XPS characterization were prepared by collecting the material in form of thick films 

by vacuum filtration on a PTFE membrane. Once the sample was dried, it was analyzed directly on the 

filter. We found this approach way easier and faster than drop casting to produce thick and 

homogeneous films on silicon substrate. Moreover, it ensures the removal of the majority of solvent 

by vacuum filtration. The XPS analysis was carried out using the XPS machine available at the 

Nanochemistry lab and in the same condition as described in the previous works. After background 

subtraction, the Mo3d and S2p peaks were deconvoluted using constrains on the relative intensity 

ratio of the doublets and the full width half maximum (FWHM). 
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5.2.4 Fabrication of MoS2 based thin film sensors and electrical 

characterization 

Thin film chemiresistor sensors were prepared by vacuum filtration of 3 mL MoS2 dispersion to form 

a film on the filtration membrane (step 3 in Figure 5. 1). This film was then transferred on a SiO2/Si 

n++ substrate using a custom-made press to allow the filter-substrate stamping of the film (step 4 in 

Figure 5. 1). The thickness of the films was controlled by the volume of filtered dispersion and it 

measure about 1.5 µm as determined by profilometer. 

To fabricate a chemiresistor based on this film, 50 nm of gold were thermally evaporated on the film 

(Plassys ME300B) through a shadow mask to form interdigitated gold electrodes (L = 80 µm, W = 1 

cm). 

Morphology of the films was investigated by Scanning Electron Microscopy (SEM) using a Quanta FEG 

250 (FEI). Images were recorded on conductive samples prepared by filter-substrate stamping (see 

section 0) on SiO2/Si n++ substrates. The microscope was operated in high vacuum using 3 nm 

electron spot size and 10 kV acceleration voltage. 

 

Figure 5. 1. Sketch describing the preparation of MoS2-based gas sensors. Each step of the procedure is 

enumerated as following: 1. exfoliation of MoS2 flakes by cup-horn sonicator; 2. purification by centrifuge to 

remove un-exfoliated particles; 3. filtration of PTFE membranes for film preparation; 4. film deposition onto 

Si++/SiO2 chips by filter-substrate stamp transfer; 5. sensor fabrication by gold electrodes evaporation trough 

shadow mask approach.  



 

83 

 

The humidity was controlled with the help of aqueous solution saturated in lithium chloride or sodium 

chloride, allowing to reach around 14% and 75% of relative humidity (RH), respectively, in a sealed 

chamber containing a commercial humidity sensor (Sensirion SHT31 sensor). The devices were 

electrically connected to a Keithley 2636B sourcemeter with the help of copper and indium wires (E = 

4 V cm-1). The measurement in low level of humidity was done in a glovebox filled with nitrogen. 

Vapour of small organic molecules were produced by moderately heating a sealed beacker containing 

the solvent and connected to a nitrogen line in order to propel the vapour onto the sample. 

The response of the sensor is plotted according to the ratio between the difference of resistance in the 

presence and absence of gas molecules and the original resistance value of the sensor, through 

calibration curves. The sensitivity is defined as the magnitude of current changes in presence of 

different concentrations of gas molecules. 

 

Figure 5. 2. Sketch of the sealed chamber in controlled atmosphere where the electrical measurements on MoS2-

based devices were performed at various levels of humidity generated by saturated salt solution. 

 

5.3  Results 

One of the parameters that can affect the sensitivity of MoS2 based sensors is the number of reactive 

sites that are known to reside to the flake edges.272  

As aforementioned, recent works showed that MoS2 in the vicinity of the edges or grain boundaries 

exhibits distinct properties from the central regions.143, 273 Moreover, it was reported that the edge sites 

of MoS2 show much higher catalytic activity compared to the basal plane which is attributed to the 

different local stoichiometry. Consequently, also the gas adsorption behaviour of MoS2 has been 

considered significantly affected by edge sites. A possible explanation has been attributed to the high 

d-orbitals electrons density at the edges that can enhance the interaction with the gas molecules, as 

demonstrated by a higher adsorption of gas molecules onto edge sites of vertically aligned MoS2 

compared to basal plane. DFT calculation confirm that the binding energies near the edges sites of 

MoS2 are much stronger than those on the of the basal plane.242 Reducing the sizes of MoS2 particles 

could be a strategy for increasing the ratio between edge sites and basal planes, thereby increasing the 

number of active sites for the interaction with gas molecules.274   
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Among the methods of exfoliation in liquid media which have been discussed throughout this thesis, 

e.g. electrochemical exfoliation, shear mixing, ultrasonication, etc., this latest is known for yielding 

high fragmentation of the flakes together with the exfoliation of the material, as a result of cavitation 

phenomenon. Furthermore, the fragmentation can be, eventually, further promoted by modulating 

the parameters of exfoliation, e.g. increasing the number of hours of sonication.14, 17 

For this reason, in order to produce an edges-rich material, in this work MoS2 powder has been 

exfoliated by ultrasonication approach.  

The choice of the medium of exfoliation is based on previous reports of MoS2 liquid phase exfoliation. 

Among the liquid media which have been proposed such as NMP,86 mixture ethanol/ water275 or water 

with surfactants143, 276 we have chosen to perform the exfoliation in isopropanol following a well-

established procedure.277 This choice has been primarily driven by the relatively low boiling point of 

the solvent that ensure its easy removal, being therefore ideal for devices preparation. On the contrary, 

it is difficult to remove surfactants from the nanosheets surface which can be potentially detrimental 

for the resulting properties of the system. On the other hand, the use of solvents like NMP, although 

probably it leads to a slightly higher degree of exfoliation, was avoided for its toxicity and because the 

high boiling point of this solvent would have required additional annealing processes. 

To maximize the fragmentation of the flakes, the exfoliation has been carried out at a relatively high 

power (350 W) for 6 hours in a cup-horn sonicator that ensure a homogeneous ultrasounds exposure 

(see section 5.2.1). The final dispersion, after centrifugation, were very stable for at least few months. 

They appear tending to yellowish green colour (Figure 5. 3a) that suggests partial absorption in the 

visible range and is an indication of the semiconducting behaviour of the nanosheets (2H-MoS2), in 

contrast with the black colour of 1T-MoS2 which indicates complete and featureless absorption in the 

visible range and metallic nature of the nanosheets.123, 268  

 

Figure 5. 3. a) Photograph of a typical dispersion of MoS2 in isopropanol prepared by UILPE and purified by 

centrifugation to remove unexfoliated particles; b) representative AFM image of MoS2 flakes produced by UILPE 

in IPA and deposited on Si/SiO2 by spin-coating. 

Figure 5. 3b shows the typical AFM image of exfoliated MoS2 which displays nanosheets having various 

size and thickness, with a large number of tiny particles. The statistical analysis, performed on over 

500 flakes, revealed the formation of MoS2 flakes with lateral sizes on the order of hundreds of 

nanometers, including a high content of small particles with diameter below 50 nm (see inset inFigure 

5. 4). 



 

85 

 

 

Figure 5. 4. Statistical distribution of flakes lateral sizes expressed as Dmax (=the maximum dimension of the 

grain in the horizontal plane). The inset (highlighted with a dashed blue line shows a detail of the distribution 

in the range between 10 and 200 nm. 

 

Figure 5. 5. a) (Left) Representative AFM image of MoS2 exfoliated by UILPE in IPA and deposited on Si n++/SiO2 

by spin-coating. (Right) A zoomed-in AFM of the region indicated in red; b) statistical distribution of thickness 

after conversion of AFM height to number of layers, considering the monolayer thickness equal to 0.9 nm. c) 

height profiles of the nanosheets indicated in (b).  
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The distribution of flakes thickness is also rather broad as shown in AFM images reported in figures 

Figure 5. 3b and Figure 5. 5a. The statistical study on the flake thickness determined by AFM - here 

expressed as number of layers per sheet - indicated that a large part of the flake’s population (~54%) 

has a thickness ranging from 3 to 10 layers per sheet, in agreement with previous reports (Figure 5. 

5b). Some representative height profiles are reported in Figure 5. 5c to let visualize typical flake 

thicknesses (~10 and 14 nm).  

The high polydispersity of the samples was confirmed by other characterization techniques, such as 

scanning transmission electron microscopy (STEM) and high-resolution transmission electron 

microscopy (HR-TEM).  

 

Figure 5. 6. STEM images of MoS2 nanosheets deposited from a MoS2 dispersion in IPA by drop-casting on a 

lacey carbon-coated copper grid. 

STEM images (Figure 5. 6) show, indeed, a different contrast in the samples, with alternating dark 

defined areas, which can be qualitatively ascribed to thick MoS2 sheets or overlapped/aggregated 

flakes, and lighter regions which indicate the presence of thinner nanosheets. Accordingly, HR-TEM 

allowed to visualize both thin sheets (Figure 5. 7a) and thicker ones, which are composed by more 

than five layers as it is possible counting from the edge of bended flakes (Figure 5. 7b). A study at 

higher magnification by means of HR-TEM has allowed also to observe the coexistence of 2H and 1T 

phases within the same flake, as reported in Figure 5. 8. Ultrasound-induced LPE is not known to 

generate the transition between 2H and 1T phase, that we instead observed in the case of the 

electrochemical exfoliation of MoS2 via Li-ions intercalation (discussed in chapter 4). We indeed 

believe that the presence of 1T phase, proved by HR-TEM, can originate from the starting material. 

Such hypothesis was confirmed by the following characterization (e.g. XPS and Raman spectroscopy). 

 

Figure 5. 7. Representative HR-TEM images of MoS2 folded nanosheets representing a) thin layer flakes and b) 

thicker ones (number of layers > 5).  
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Figure 5. 8. Representative HR-TEM image (a) showing the coexistence of 2H- and 1T- phases within the same 

MoS2 flake, which zoom-in are reported in (b) and (c) respectively together with the selected area electron 

diffraction of the two regions. 

The exfoliated material has been further characterized by Raman spectroscopy and X-ray 

photoelectron spectroscopy. The representative Raman spectrum reported in Figure 5. 7 shows the 

characteristic modes of 2H phase, A1g and E1
2g. 

 

 

Figure 5. 9. Characteristic Raman spectrum of MoS2 exfoliated by ultrasounds. 

 

XPS analysis corroborates the semiconducting nature of the produced MoS2, revealing the 

characteristic signals of the 2H phase. High resolution spectrum of Mo 3d shows a doublet peak 

relative to Mo4+ 3d5/2 and Mo4+ 3d3/2 at binding energy of 229.1 eV and 232.3 eV (Figure 5. 10a) and 

sulphur spectrum features the two components S 2p3/2 and S 2p1/2 at 161.9 eV and 163.2 eV (Figure 5. 

10b).  
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Figure 5. 10. High-resolution XPS Mo 3d (a) and S2p (b) spectra for MoS2 exfoliated by ultrasound induced 

liquid phase exfoliation. The spectra were deconvoluted to display the components relative to 2H-MoS2. Binding 

energies: 229.1 eV (Mo4+ 3d5/2) and 232.3 eV (Mo4+ 3d3/2),;  161.9 eV (S 2p3/2 )and 163.2 eV (S 2p1/2) 

Indeed, the XPS spectrum of exfoliated MoS2 appears similar to the spectra obtained from the XPS 

analysis of bulk MoS2 (Figure 5. 11), indicating that the exfoliation process doesn’t affect the overall 

chemical structure of the material. Moreover, according to the literature and the deconvolution of XPS 

spectra of exfoliated MoS2 (Figure 5. 10), the sonication approach doesn’t generate significant 

formation of sulphur vacancies confirming that the dominant source of defects are the edges generated 

during the sonication process. In conclusion, both Raman and XPS analysis do not evidence the 

presence of significant amount of 1T phase, indicating that overall the material exhibits a 

semiconducting behaviour. Such findings indicate that the 1T-phase regions revealed by HR-TEM are 

most likely due to the starting material rather than being induced massively during the exfoliation 

process. 

The as prepared MoS2 nanosheets were tested as gas-sensing material. In order to fabricate a 

chemiresistor to detect changes in the nearby environment, e.g. changes in the relative humidity, the 

sensing material has to bridge the gap between the interdigitated electrodes, ensuring the electrical 

contact. Therefore, a certain uniformity of the material on large area needs to be reached. This is 

known to be a key issue for materials prepared by ultrasonication, whom deposition in form of thin 

film, ideally atomically thick, is rather challenging. Techniques which are commonly used for thin film 

preparation, like spin-coating, not allow the formation of large uniform films of LPE materials. Drop-

casting, instead, lack of reproducibility and do not ensure the uniformity of the deposited material. 

We developed here a deposition technique which consists of the formation of a film by vacuum 

filtration of a nanosheets dispersion and consequent transfer of the film on a solid substrate by means 

of a press. The resulting films appear uniform both at macroscopic and nanoscopic scale, as observed 

from SEM imaging (Figure 5. 12a), even though, at this stage, film homogeneity was limited by the 

porosity of the filter membrane, which led to the formation of some stripe pattern.  
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Figure 5. 11. XPS comparison between exfoliated MoS2 and bulk MoS2: high-resolution XPS a) Mo 3d and b) S 

2p spectra. 

Once evaporated gold electrodes on top of the film, the material was tested as humidity sensor. Pulses 

of humid air were sent on the sample and the electrical response of MoS2 over time was recorded while 

applying a constant bias of 5V.  

Figure 5. 12b shows the result of two typical pulses of humid air sent on the exfoliated material, in 

ambient conditions (around 45% RH). This simple experiment allowed to demonstrate that LPE MoS2 

exhibits unprecedented sensitivity to humidity, as evidenced by a significant change in current when 

short pulses of humid air are sent on the sample’s surface. Moreover, the response time of the devices 

to humidity is extremely fast, taking place in ~ 100 ms, and the process is fully reversible, allowing the 

recovery of the initial current in about 600 ms (Figure 5. 13a).  

The sensors were calibrated by recording the evolution of the current at different relative humidity. 

To this purpose, the electrical measurements were performed in a controlled atmosphere, at constant 

temperature, within a sealed chamber while increasing RH from 0% to 80% (as shown in Figure 5. 2). 

A commercially available humidity sensor was used as reference to control the relative humidity inside 

the chamber. The response of the sensor was indicated as ratio G/G0% RH where G is the conductance 

value in the presence of humidity and G0% RH is the conductance value at 0% RH. The calibration curve 

allowed to follow and quantify the dependence of the conductance on the relative humidity. When 

the environmental humidity changes from 0% RH to 80% RH a current variation of 7 orders of 

magnitude  is measured, proving the exceptional sensitivity of the material produced in respect to the 

state of the art (Figure 5. 13b). 

In a similar work in which MoS2 powder is exfoliated at different sonication power and then tested as 

humidity sensor, Zhang et al., show that the maximum changes in resistance have been observed at 

RH value of about 60%, where the resistance values changed by a factor of 3. Similarly, a response of 

few units, at 80% RH, has been reported both before and after functionalization of MoS2 obtained via 

Li-intercalation with butyl lithium.270 
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Figure 5. 12 a) SEM images of the gas-sensing chemiresistor based on LPE MoS2 deposited on Si n++/SiO2 

substrate and interdigitated gold electrodes deposited onto the film by shadow mask approach. SEM image show 

that the sensing material uniformly cover the whole centimetre-scale substrates; b) typical pulses of humid air 

sent on humidity sensors based on MoS2 exfoliated by sonication at ~45 %RH. 

 

Figure 5. 13 a) Response time of the device for one humidity pulse; b) calibration curve of humidity sensor based 

on MoS2 exfoliated by sonication. 

Compared to previously reported LPE MoS2-based sensors, our sensor devices exhibit hence 

remarkably higher sensitivity. In particular, as shown in the calibration curve (Figure 5. 13b), the 

response of our devices is on the order of 103 and 106 at 60% and 80% RH, respectively, demonstrating 

the potential of 2DMs as gas sensors. 

This excellent sensitivity is attributed to the large surface area of the material when exfoliated and to 

the smaller sizes of the MoS2 flakes, which implies a higher density of reactive edges sites and dangling 

bonds which can play a key role on the sensing of gas molecules. In their work, Zhang et el., indeed, 

demonstrated a correlation between the response of the sensors and the sizes of the nanosheets 
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obtained at different sonication power. In their optimized conditions, e.g. sonication at high ultrasonic 

power (550W), they reached an average size of the nanosheets of about 100 nm.  

The distribution of MoS2 nanosheets produced with our approach is instead centred below 50 nm and 

most of the particles have lateral sizes in the range of 20-30 nm (Figure 5. 4). The reduced sizes, 

although obtained working at a lower sonication power (350 W), are due to a prolonged sonication 

process which lasted 6 hours in or case. On the contrary, in the mentioned work, the material is 

exfoliated for 1-hour only. Moreover, many other parameters can play a role in such different findings, 

including different sonicator and medium of exfoliation. Besides increasing edge density, it has been 

demonstrated that introducing the metallic 1T phase enhance the catalytic properties of MoS2.278-279 

Therefore, we believe that the presence of 1T phase detected by HR-TEM (Figure 5. 8c) in our 

ultrasound-induced LPE MoS2 can be considered another factor determining the high sensitivity of 

the material toward water molecules. Another aspect that could play a key role in the different 

performances with respect to those reported in Zhang’s work is the thickness of MoS2 films. Recent 

studies demonstrate that the catalytic performances of MoS2 electrodes can be optimized by 

maximizing the electrode thickness till a value of 5 µm, at which is reached the saturation.280 Similarly, 

a homogeneous deposition of the sensing material in µm-thick film through stamp-transfer can result 

in a higher sensitivity to gases molecules than films produced by drop-casting, which performance are 

discussed above. Alongside the reduced dimensions of the as prepared MoS2 nanosheets and the 

morphology of the films, another possible explanation of the high sensitivity of our MoS2-sensors can 

be attributed to the employed conditions of exfoliation. The exfoliation of MoS2 powder was carried 

out under controlled atmosphere in order to prevent the oxidation of the material.  In particular we 

aimed to avoid the passivation of sulfur vacancies - thermodynamically favoured due to the oxygen 

isoelectronic nature281 – during the prolonged exfoliation process. Consequently, a higher density of 

available (not oxidized) reactive sites could explain the high affinity of MoS2 films for water molecules, 

determining a strong change in the electronic properties of the material. Control experiments in which 

the exfoliation of MoS2 is performed in air might confirm such hypothesis and contribute to unveil the 

mechanism of sensing of these devices. The latter is indeed still unclear. The presence of humid air 

determines an increasing of the current, contrary to past works which show the increase of the 

resistance of the film when water molecules are absorbed on the surface’s sample. This opposite 

response allows us to hypothesize the occurrence of alternative sensing mechanisms. According with 

theoretical study,263 the interaction of small inorganic molecules such as H2 and O2 with MoS2 defects 

can lead to molecular dissociation. In particular, the molecular dissociation of O2 is originated from 

the interaction of the metallic dangling bonds of MoS2 defects associated to Mo atoms and the 

electronegative oxygen atoms. These molecules are highly attracted to metallic defects (Mo atoms 

occupying S vacancies) leading an increase of the adsorption energy that suggest that the molecules 

will be trapped in the defects. 

Such theoretical model was not successfully applicable to water molecules suggesting that a higher 

barrier need to be overcome to have the same dissociative effects. In our system water molecules  can 

be similarly trapped due to the porosity of the edge-rich MoS2 films and the application of an external 

electric field can provide the energy required for the efficient dissociation of water molecules which 

would explain the positive change in the current, and at the same time the fully reversible process of 

humidity sensing as shown in Figures 5.11b and 5.12a,b. Such hypothesis needs confirmation, which is 

beyond the scope of this thesis, but it was partially supported by studies on the selectivity to other 

small molecules. 

The selectivity of MoS2 based sensor devices was valuated in the presence of vapour of various small 

molecules such as oxygen, carbon dioxide, acetone, chloroform, ethanol and methanol. Figure 5. 14 
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shows the normalized sensor response (G/G0) measured for different cycles absorption/desorption of 

the indicated gas molecules.  

 

Figure 5. 14. Electrical response of LPE MoS2 based sensors exposed to short pulses of various gases. In this 

graph each cycle corresponds to an event of absorption and desorption of gas molecules. 

Here G0 and G represent the baseline resistance of the sensor and the change in resistance upon 

exposure to the different gas molecules. Since this measurement was done in ambient conditions, it is 

worth point out that while the G0 of the small molecules were measured in absence of molecule, the 

G0 for humidity is measured at approximately 45% RH. MoS2 devices appear sensitive to all the tested 

gases (Figure 5.13). Yet, different changes in the conductance of the MoS2 films were recorded upon 

exposure to different gases. Besides humidity which gives the most significant response, we can 

distinguish two different classes of molecules respect to which MoS2 exhibits different sensitivity. In 

particular, our measurements reveal a higher sensitivity toward acetone, chloroform and ethanol than 

to CO2, O2 and methanol. This different behaviour may be indicative of different molecular 

interactions between MoS2 and the analyte and, therefore, could be useful in the comprehension of the 

mechanism of sensing in our MoS2 devices. However, these measurements have been done under 

ambient conditions, so with a certain humidity as said before. Consequently, we cannot exclude that 

by sending pulses of other gas and small organic molecules (the latter been propelled by nitrogen gas), 

we are changing (and most probably decreasing) the relative humidity close to the device. This would 

affect the electrical response of the sensor, leading to a reduction of the conductivity. In any cases, this 

suggest that our MoS2-based sensor has a strong response to humidity. In essence, such experiments 

allowed us to conclude that our MoS2 can be considered a good candidate for humidity sensor 

featuring a high and selective sensitivity towards humidity. Finally, interestingly, the device responds 

with a decrease of the conductance when vapours of small molecules approach the sample's surface, 

while only humidity lead to a positive response (increase of G). This result gives also a strong indication 

in view of propose a possible sensing mechanism, because it show that the origin of the sensing 

behaviour in our MoS2 devices has to be attributed to different chemical interactions and possible 

reactions which occur in the presence of water rather that other molecules.  
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5.4 Conclusions 

In summary, in this chapter we have shown that MoS2 produced via exfoliation in liquid media can be 

conveniently introduced as active material in gas sensors. We have fabricated MoS2 nanosheets using 

a simple method based on ultrasound-induced exfoliation approach which was tailored to obtain large 

quantities of nanometer sizes nanosheets, including particles with lateral sizes < 50 nm. Thin films 

were prepared from pure MoS2 inks (without surfactants or additives) by a facile dry-transfer approach 

and used to develop large area chemiresistor sensors for gases detection. The MoS2-based sensors 

exhibited a very high sensitivity (> 106 at 80%RH) towards humidity, high response speed (~100 ms) 

and fully reversibility. 

The results obtained in this work exceed the state of the art of MoS2 gas sensors measured in two-

terminal configuration, whom practical use is mainly limited by the low sensitivity. Recently, a great 

deal of effort has been devoted to the functionalization of MoS2 and other 2DMs with molecules which 

can interact better with the analyte determining an improvement of their sensitivity. From the best of 

our knowledge, our devices based on pure exfoliated MoS2 have reached unprecedented sensitivity, 

even higher than functionalized MoS2, where changes in resistance of few units are generally recorded. 

Here, MoS2 nanosheets-based sensors have displayed a good sensitivity to other small molecules (O2, 

acetone, chloroform and ethanol than to CO2, O2 and methanol) as well. The different response of the 

sensors has proved the selectivity of MoS2 devices towards different gases. 

 Further investigations are needed to understand the mechanism of our MoS2 based sensors which can 

differ from the generally reported sensing mechanisms. For instance, measuring the device in FET 

geometry would provide information on the doping of MoS2 and allow to extract relevant parameter 

if measured in different humidity environment, such as changes in carrier density. A comparison with 

controlled dimensions flakes would allow demonstrating the edges effects on the gas sensing 

mechanism, which have been supposed the major cause of the high sensitivity of our devices. Finally, 

a natural progression of this work, as discussed at the beginning of this chapter, is to investigate on 

the sensing properties of electrochemically exfoliated MoS2 where the significant presence of sulphur 

vacancies can further support our preliminary results. 

In conclusion, in this chapter we have proved that MoS2 prepared by solution processes can be 

successfully employed as highly sensitive material for the detection of humidity. The possibility of 

having the sensing material in form of a cost-effective ink paves the way to the fabrication of light and 

flexible sensing devices.  
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CHAPTER 6. 
 

MERGING 2D MATERIALS WITH MACROMOLECULAR 

SYSTEMS: TOWARDS MULTIFUNCTIONAL DEVICES2 

 

The great success of graphene and the others 2D materials (2DMs) is due primarily to their intrinsic 

properties including outstanding electrical, thermal and optical characteristics. Although exceptional, 

these properties cannot be modulated on demand, as it would be required for the integration of 2DMs 

in complex multifunctional devices. On the contrary, molecular systems stand out for their versatility. 

Their structure and properties can be modified and tuned by chemical functionalization, and that has 

determined their introduction in many technological fields, e.g. biomedicine and organic electronics. 

Merging these two worlds, i.e. the one of 2DMs with that of molecular materials, represents a 

promising approach for tuning the properties of 2DMs and/or improving their processability. 

Introducing new functionalities on 2D systems would allow the design of novel multifunctional 

systems. Moreover, both the constituents of a multicomponent system, 2D material/ molecular 

material, might take advantage of their mutual properties. 

The ideal and simpler condition to mastering the chemical approach and take full advantage of the 

combination of 2DMs with functional molecular systems would be having both materials dispersed in 

a liquid medium. Furthermore, in order for this process to be viable for practical applications, large 

quantities of the starting materials must be available.  

The approaches of exfoliation in liquid phase, that has been introduced in chapters 2 and 5, including 

ultrasound-induced liquid-phase exfoliation, electrochemical exfoliation, shear exfoliation and the 

more recent microfluidizzation, not only allow the large production of 2DMs, but they also offer the 

opportunity of exploit the solution chemistry. Among them, ultrasound-induced LPE is the most 

established and versatile because can be carried out under a variety of different environmental 

conditions.78, 282 Yet, the material produced by ultrasonication features still several drawbacks that 

hinder most of the forecasted applications. As we have already discussed in chapter 5, the yield of 

exfoliation in the sonication process, in particular, the number of monolayers present in dispersion, is 

rather low, so that the formation of continuous large area of monolayers flakes produced by UILPE 

has been never reported. More generally, the deposition of UILPE materials in thin homogeneous films 

has always represented one of the major challenges in this field, both because of the low 

concentrations and the large size polydispersity of the nanosheets. Moreover, the electrical 

performance of UILPE materials is modest.283-284 

For the UILPE of graphite into graphene, the use of molecules that non-covalently interact with 

graphene has been largely explored to overcome some of these issues. In particular, as discussed in 

chapter 2.1, molecule-assisted LPE approach involves the use of ad-hoc molecular systems for 

                                                      
2 Large part of the work presented within this chapter have been published: T. Leydecker, M. Eredia, F. Liscio, S. Milita, G. 

Melinte, O. Ersen, M. Sommer, A. Ciesielski, P. Samorì, Graphene exfoliation in the presence of semiconducting polymers 

for improved film homogeneity and electrical performances, Carbon, 2018, 130, 495–502.  

Dr. T. Leydecker and M. Eredia contributed equally to this work. 
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enhancing the performance of ultrasound-induced LPE process. These molecules act as stabilizing 

agents and allow to obtain higher concentrations of graphene in dispersion.As the unique purpose of 

the molecule-assisted exfoliation is the one of enhancing the exfoliation, often, molecules chosen by 

design were expected not to affect the structure and quality of graphene, being non-functional small 

molecules like alkanes. 

Inspired by the success of molecule-assisted LPE, we opted to exfoliate graphite in the presence of 

functional molecules that can both act as stabilizer agents and provide functionality to graphene and 

to the final multicomponent system. We decided to use organic semiconductors (OSCs) for exfoliating 

graphite, with the final aim to explore the use of graphene as active material for application in 

electronics.  

In this chapter we report on a novel approach of ultrasound-induced liquid-phase exfoliation of 

graphite powder, that involves the use of π-conjugated polymers, i.e. poly(3-hexylthiophene) (P3HT) 

or poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-

c]pyridine] (PCDTPT). This strategy allowed to produce hybrid systems graphene/semiconducting 

polymer in a one-step procedure. The polymers, acting as stabilizing agents of graphene flakes, have 

enabled the exfoliation and the production of homogeneous bi-component dispersions. The presence 

of the polymer has improved the uniformity of deposition and has allowed the formation by spin-

coating of thin films which were used to fabricate Field-Effect Transistors (FETs). Therefore, there are 

two primary objectives of this study:  i) to investigate the effect of ad hoc polymers on the exfoliation 

of graphite by ultrasonication, ii) to explore the potential of the proposed composites 

graphene/semiconducting polymer as active material in FETs.  

After an introduction that lay out the research background, this chapter is divided in two main 

sections. A section for materials and methods (section 6.2) describes the procedures used for 

producing few-layer graphene (FLG) by ultrasound-induced LPE in the presence and the absence 

(control experiments) of the two chosen semiconducting polymers (section 6.2.1); methods and 

techniques for film preparation (section 6.2.2) and their characterization (section 6.2.3 and 6.2.4) are 

reported as well. The last section reports the results of this research (section 6.3). 

 

6.1 Introduction  

The use of graphene as active material in electronic devices has been hindered by the lack of a bandgap. 

Yet, combining graphene with semiconducting polymers could allow to create new active layers for 

FETs with improved performances respect to traditional organic semiconductors (OSCs). Indeed, 

OSCs perform well but not flawlessly in terms of electrical performances, usually with a high Ion/Ioff 

but modest mobility. On the other hand, they have a different set of advantages, of which graphene 

could benefit greatly. Their physical properties can be tuned via chemical functionalization,285-286 they 

are compatible with low-cost solution processing techniques287-288 and can be deposited under 

advantageous conditions (low temperature and ambient pressure), thereby they are suitable for up-

scalable processes even on flexible supports.289 Because of these reasons, several attempts of 

combining these two types of materials have been reported in the literature.209, 290-296 Typically, they 

are based on multi-step procedures relying on the subsequent deposition of graphene and the 

polymeric semiconductor, exploiting different deposition techniques like spin-coating, ink-jet 

printing or thermal evaporation.71, 293-294 In particular, Torrisi and co-workers fabricated the active 

channel of a transistor by successive printing of graphene ink and poly[5,5′-bis(3-dodecyl-2-thienyl)-

2,2′-bithiophene (PQT-12), reaching high electrical performances (mobility of 100 cm²V-1s-1).71 These 
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approaches relied on the thermal annealing of the graphene film prior to the deposition of the OSC to 

remove the high boiling point solvent used for graphene exfoliation, and for fine-tuning of the 

graphene ionization energy before the OSC deposition by thermal annealing in air. Thus, this process 

of production is quite cumbersome, but, more importantly, the active channel consists of two separate 

layers, as graphene layer and polymer layer are deposited one on top of each other. Consequently, 

structural and electronic interactions between graphene and OSC can be limited due to the face-to-

face geometry of their interface.  

Aiming at achieving a greater electronic cross-talk between the two components, graphene and OSCs 

can be blended prior deposition in form of films.209, 295-296 Recently, for example, it has been 

demonstrated that UILPE graphene can be co-deposited with a polymeric semiconductor and used in 

thin-film transistors in order to boost the ambipolar character of the polymer.209 However, blending 

graphene with polymers can result in phase segregation between the two components209 that promote 

graphene random aggregation,290 and can lead to the lost in crystallinity of the semiconductor 

matrix.291  As a consequence, the deposition of the blend can be poorly controlled.292 An interesting 

alternative approach consists in exploiting the exfoliation of graphite in the presence of OSCs in order 

to promote the homogeneous blending of graphene and polymer. OSCs could, indeed, assist the 

exfoliation of graphite into graphene, as commonly demonstrated via molecule-assisted liquid–phase 

exfoliation, and act as a dispersion stabilizing agent (DSAs) 83, 297 to stabilize the graphene sheets 

within the polymer matrix.  

Although working with polymers allows to tune viscosity and concentration of the exfoliation medium, 

playing a role on the dispersion of layered crystals, their use to assist the liquid-phase exfoliation has 

not been extensively explored. The reasons are multiple, like the complexity of the system, or the low 

quality of the exfoliation that has been attributed to the bulky polymer that do not slip between the 

graphitic layers as well as small molecules.80 Moreover, certainly, the difficulty to get completely rid 

of the polymer once the material is exfoliated has limited the use of this process for the exfoliation of 

2DMs. In our strategy, instead, polymer present in dispersion will not need to be removed after the 

exfoliation, but rather it will be beneficial for charge transport properties of the final hybrid material. 

For achieving optimal performances, the polymer should be chosen in view of its structure, to be able 

to interact with graphitic basal planes, capacity to transport charges and energetic levels close to the 

work function of the graphene, i.e. around 5.0 eV.209 

Here we demonstrate that the addition of the two p-type semiconductors, i.e. P3HT and PCDTPT, 

during the process of ultrasound-induced LPE of graphite in 1,2-orthodichlorobenzene (o-DCB) results 

in the improved exfoliation towards the formation of a few-layer graphene (FLG) and allows to obtain 

homogeneous polymer/graphene hybrid systems. Moreover, the electrical characterization of 

graphene/PCDTPT hybrids, when integrated as active layer in bottom-contact bottom-gate FETs, 

revealed a 30-fold increase of the field-effect mobility if compared to pristine polymer samples.  

This result can be attributed to the unique combination of properties of few-layer graphene sheets and 

semiconducting polymers that has allowed to improve the charge-transport in the channel of the field-

effect transistor.  

Such findings represent a step forward towards the optimization of graphene exfoliation and 

processing into electronic devices. Furthermore, this work represents a new opportunity for improving 

the efficiency of existing technologies, like organic-based field-effect transistors, through the use of 

graphene. 
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6.2 Materials and methods 

The experiments of UILPE have been carried out by using graphite synthetic flakes, purchased by 

Sigma-Aldrich (Product No. 332461), as starting material for the production of graphene, together with 

two polymers, P3HT and PCDTPT. P3HT was synthetized in the group of M. Sommer at the “Institut 

für Makromolekulare Chemie” in Freiburg. Molecular weights, polydispersity and monomer weights 

of the two polymers are reported in Table 6. 1. 

Table 6. 1. Molecular weights, polydispersity and monomer weight of the polymers P(NDI2OD-T2), P3HT and 

PCDTPT. 

Material Molecular weight (kDa) Polydispersity Monomer weight (Da) 

P(NDI2OD-T2) 17 1.8 989.5 

P3HT 2.1 1.26 166.3 

PCDTPT 79 2.5 1520.5 

1,2-dichlorobenzene (o-DCB) anhydrous was employed as solvent for the exfoliation process and for solubilizing pure 

polymers as well. Criteria for selecting the solvent are discussed in detail in section 6.3. 

6.2.1 Experiments of ultrasound-induced liquid-phase exfoliation  

The exfoliation of graphite in the presence of polymers was carried out by adding a polymer solution 

(5 mg ml-1 in 1,2-dichlorobenzene (o-DCB) to graphite powder at a concentration of 50 mg ml-1. The 

dispersions were prepared in nitrogen atmosphere and exposed to ultrasounds (frequency of 5 Hz, 

power of 50 W) for 6 hours by means of a Cup-Horn sonicator (Qsonica: model #431C2). The sonicator 

was equipped with a recirculating chiller to keep the temperature of the bath constant at 45˚C during 

all the experiment.  

Control experiments were prepared by sonication of graphite in pure solvent (o-DCB) in the same 

operative conditions and keeping the same % w/V. The resulting graphene dispersions were not 

undergone centrifugation, as it is common practice, but they were used without purification, as done 

for graphene produced in the presence of polymers. 

 

Figure 6. 1 Schematic description of the process of graphite UILPE in the presence of polymers. The two insets 

in green report the photographs of the polymer solution and the final composite polymer/graphene. 
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6.2.2 Film fabrication  

Bottom-contact bottom-gate configuration transistors were purchased from IPMS Fraunhofer 

Institute. They consisted of on n++-Si substrates with 230 nm of thermally grown SiO2 as the gate 

dielectric (15 nF capacitance) and pre-patterned pairs of gold electrodes with interdigitated geometry 

as the source and drain. All solutions, composites and devices were prepared and measured under 

inert atmosphere (N2 filled glovebox) to avoid oxidative doping of the materials and ensure 

reproducibility of the experiments. In order to evaluate the impact of graphene on the performance of 

OSC polymers/graphene composites, a series of control experiments were designed. In particular, 

control samples, i.e. mono-component films consisting of neat polymer (either P3HT or PCDTPT) and 

graphene exfoliated in the absence of polymers, were prepared by spin-coating 150 µL 

solutions/dispersions in o-DCB at the concentration of 5 mg ml-1 and 50 mg ml-1, respectively. All the 

solutions were prepared using 1,2-dicholorobenzene as solvent. The samples were all fabricated by 

spin-coating at the same conditions of deposition: spin rate of 2500 rpm (acceleration 4000 rpm/s).  

 

6.2.3 Morphological and structural characterization 

Graphene, polymer and hybrid graphene/polymer films were characterized by optical microscopy 

(OM), using an Olympus BX51 optical microscope, and by Atomic Force Microscopy (AFM) with Veeco 

Dimension 3100 atomic force microscope operating on a Nanoscope IV control unit under ambient 

condition. Topographic AFM imaging was performed by operating in tapping-mode. AFM images were 

used to determine the roughness of such films. 

Graphene exfoliated with and without polymers have been deposited by drop-casting on TEM grids 

and characterized by High-Resolution Transmission Electron Microscopy (HR-TEM) in the group of 

Prof. O. Ersen at the “Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)”. 

Structural characterization has been performed by Dr. F. Liscio in the group of S. Milita (Istituto per 

la Microelettronica e Microsistemi (IMM) − CNR, Bologna), whom are greatly acknowledged for the 

deep and supportive structural investigation.  

All the thin films were characterized by specular scans using a SmartLab-Rigaku diffractometer 

equipped with a rotating anode (Cu Kα, λ = 1.54180 Å), followed by a parabolic mirror to collimate the 

incident beam, and a series of variable slits (placed before and after the sample position). Reflectivity 

oscillation were fitted until qz=0.2Å-1, making use of a single-layer model on top of the substrate within 

the Parratt formalism. Thickness and surface roughness of the films were extracted, together with 

density values. The vertical size of the crystallites was evaluated from the peak width using the 

Scherrer-formula. 

The 2D-GIWAXS (Grazing-incidence wide-angle X-ray scattering) images were recorded at the XRD1 

beamline of the Elettra synchrotron facility at Trieste (Italy) using a monochromatic beam with a 

wavelength of 1 Å. The incident angle of the X-ray beam, αi, was chosen 0.05°, 0.1° and 0.12°, in order 

to probe the crystal structure at different penetration depth (~10 nm, ~30, >30 nm). The diffraction 

patterns were recorded using a 2D camera (Pilatus detector) placed normal to the incident beam 

direction. 
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6.2.4 Electrical characterization 

Devices fabrication and their electrical characterization were performed in our lab. (Nanochemistry 

laboratory) by Dr. Tim Leydecker, whom I greatly acknowledge. 

The electrical performances of the graphene/polymer composites, as well as of the correspondent 

blank experiments, were studied as thin active films, deposited by spin-coating, in the channel of a 

bottom-contact bottom-gate FET (channel length L = 20 μm), supported on SiO2 (detailed description 

of the film preparation is reported in Section 6.2.2). OFET properties were evaluated under negative 

gate bias. Experimental data were analysed using the standard field-effect transistor equations. The 

field-effect mobility was determined in the linear regime from the slope of IGS versus VGS plots.  

The ionization energy value of graphene was measured by a Photoelectron Spectrometer, AC-2, by 

RKI Instruments working at ambient conditions. The analyzed films were realized following the same 

experimental procedure as employed in the realization of FET devices in order to ensure full 

consistency with the films that were electrically characterized. 

 

6.3  Results 

In this work we have focused our attention on two p-type organic semiconducting polymers, P3HT 

and PCDTPT, whose chemical structures are portrayed in Figure 6. 2.  

 

 
Figure 6. 2. Chemical structure of the two chosen p-type polymeric semiconductors: (a) P3HT and (b) PCDTPT.  

The choice of these polymers was firstly driven from their HOMO levels, 4.96 eV and 5.16 eV for P3HT 

and PCDTPT respectively (see Table 6. 2), being close to the work function of graphene, that is 4.94 

eV (Figure 6. 3) as determined by ambient UV photoelectron spectroscopy (See section 6.2.4). In this 

way, we wanted to ensure a good energy matching between the two materials, promoting the charge 

transport within the film. 

 

Table 6. 2. HOMO and LUMO energy levels of the conjugated polymers P3HT and PCDTPT. 

Material HOMO 
[eV] 

LUMO 
[eV] 

Band gap 
[eV] 

P3HT298 -4.96 -3.04 1.92 

PCDTPT299 -5.16 -3.70 1.46 

All reported values for polymers were obtained from cyclic voltammetry in the cited works.  

(a)                          (b)  
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Known that alkanes possess high affinity for the basal plane of graphene,83 we have chosen two 

polymers with alkyl chains, but that arrange themselves differently in the solid state. P3HT, that 

possesses alkyl side chains and high molecular planarity, is known to form crystalline domains that 

are responsible for high charge carrier mobilities,300 so that it is considered a prototypical p-type 

polymer semiconductor. On the other hand, PCDTPT, due to its limited planarity, is prone to form 

amorphous structures both at the nano- and meso-scale. Therefore, we suppose that, for regioregular 

P3HT, the polymer-polymer interaction/stacking into crystalline lamellae, caused by the strong π- π 

stacking between adjacent core moieties and interdigitation of hexyl side chains belonging to 

neighbouring molecules, is favoured over the interaction polymer-graphene flakes. On the other hand, 

amorphous structure of PCDTPT and its rigid backbone may be the key for achieving intimate 

interconnection between polymer and graphene. Moreover, the longer alkyl chains in PCDTPT, 

compared to P3HT, may result in a higher affinity for the basal plane of graphite/graphene.83, 301  

 

Figure 6. 3. Ambient photoelectron spectrometer measurements. Measurements 1, 2 and 3 represent different 

spots of the film in which the measurements were performed. The measured ionization energy is around 4.94 

eV for every sample. 

The exfoliation of graphite flakes in the presence of P3HT or PCDTPT was carried out by ultrasound-

induced liquid-phase exfoliation15 in 1,2-orthodichlorobenzene (o-DCB). Mixing of the polymers (5 mg 

ml-1) and graphite (50 mg ml-1) were sonicated for 6 hours using a Cup-Horn sonicator at a frequency 

of 5 Hz (power of 50 W). The choice of the solvent is based on its surface tension of 36.6 mJ m−2, 302 

that makes it a good candidate for the graphite exfoliation.303 Moreover, it is a good solvent for both 

P3HT304 and PCDTPT.305  

Known that the UILPE is generally a low-yield process of exfoliation, where a large part of the product 

is un-exfoliated material that fast precipitate at the bottom of the vial, we have chosen the initial 

graphite concentration accordingly. It is indeed known that a higher initial concentration of starting 

material will also give a higher concentration of exfoliated nanosheets.17, 66 Therefore, we have decided 

to use a high relative amount of graphite to ensure the formation of high graphene-content films and 

to maximize the impact of graphene in the electrical performances of the hybrid film. The exfoliation 

was performed in a cup-horn sonicator because such apparatus offers a more homogeneous ultrasound 

exposure and, unlike the conventional ultrasonic baths, allows operating at low frequency, thereby 

avoiding the extensive damaging of the materials during the exfoliation process. 
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The exfoliation of graphite flakes in the presence of polymers has enabled the production of 

homogeneous bi-component dispersions (see inset in Figure 6. 1) which, owing to the good solution 

processability of the polymers, were deposited in form of film. The films were prepared by spin-coating 

as this technique allows to have control over the thickness of the film and obtaining thin homogeneous 

films, contrary to other techniques like dip-coating, spray-coating or ink-jet printing. The electrical 

characteristics of the composites polymer/graphene were studied through bottom-contact bottom-

gate FETs based on the hybrid film as thin active layer. In order to assess the impact of graphene on 

the performance of OSC polymers a series of control experiments have been performed. In particular, 

control samples, i.e. mono-component films consisting of neat polymer (either P3HT or PCDTPT) and 

graphene (exfoliated in the absence of polymers) were prepared and characterized in the same fashion 

of the composites (see sections 6.2.1 for a detailed description of samples preparation and 

characterization).  

It is necessary to specify that in this work the term “graphene” will be employed in its broadest sense 

to refer to the control samples based on exfoliated graphite in absence of polymer. In parallel, more 

appropriate terms like multiple layer graphene (MLG) or few layer graphene (FLG), will be used when 

specifically describing the material produced in this work. 

Figure 6. 4a-f displays the morphology of these films as investigated by OM and AFM, while the 

obtained values of field-effect mobilities, Ion/Ioff ratios and Root-Mean-Square Roughness (RRMS) for 

such films are reported in Table 6. 3. 

 

Figure 6. 4. OM, topographical AFM and transfer curves of films produced from (a,d,g) dispersions of neat 

graphene exfoliated in 1,2-dichlorobenzene, (b,e,h) solutions of pure P3HT [L = 20 µm, VDS = -0.1 V], and (c,f,i) 

solutions of pure PCDTPT. Z-scales: (d) 72 nm; (e) 48 nm; (f) 8 nm. 
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Optical and AFM characterization have revealed a poor graphite exfoliation as evidenced by the 

presence of aggregates of multi-layer graphene (MLG) and large un-exfoliated graphitic particles that 

can reach tens of µm in lateral size (Figure 6. 4a). Such outcome can be in part ascribed to the mild 

exfoliation conditions employed for graphite exfoliation, according to the parameters used for not 

damaging the polymer during composites preparation. Moreover, it should be noted that, similarly to 

polymer/graphene composites, control samples based on graphene were not further purified to 

separate thin sheets from thicker ones. Typically, indeed, dispersions of single component 2DMs 

produced through ultrasound-induced LPE are never used directly (see chapter 2, section 2.2.1), but 

only after separation of the exfoliated flakes from the un-exfoliated material and upon size selection 

processes, e.g. by ultracentrifugation.170 Nevertheless, in this work, single or multiple steps of 

centrifugation were avoided to prevent the occurrence of phase separation between the two 

components in the case of polymer/graphene composites which have been produced by one step 

UILPE process. The presence of big aggregates and inhomogeneous deposition of graphene samples 

can be probably attributed also to other factors, including the high loading of starting material 

(graphite powder at a concentration of 50 mg ml-1) still coupled with a missed purification step, the 

employed deposition method, i.e. spin-coating, and the modest interaction of the material with the 

SiO2 substrate. On the contrary, both polymeric films appear smooth and homogeneous with a 

roughness of RRMS = 1-6 nm, as determined on AFM images sized 5×5 µm2 (Figure 6. 4b,c,e,f and Table 

6. 3). 

 

Table 6. 3. Summary of the electrical performances and Root-Mean-Square Roughness (RRMS) of the pristine and 

hybrid films. 

Material 
Filter pore 
size 

µ / cm2V-1s-1 Ion/Ioff RRMS / nm 

Graphene / / 1 14.5 

P3HT / 1 × 10-2 105 5.87 

PCDTPT / 4.2 × 10-3 106 1.05 

Graphene:P3HT / / 1 13.4 

Graphene:P3HT 5 µm 1 × 10-2 105 11.2 

Graphene:P3HT 0.45 µm 3 × 10-3 106 1.3 

Graphene:PCDTPT / 1.2 × 10-1 1.4 11.8 

Graphene:PCDTPT 5 µm 8 × 10-2 30 43.2 

Graphene:PCDTPT 0.45 µm 5 × 10-3 106 12.8 

All reported values were obtained from the transfer curves presented in Figure 6. 4, Figure 6. 5 and Figure 6. 

8. 

Figure 6. 4g-i report the electrical characterization performed on each type of mono-component film. 

Graphene sample exhibited electrical characteristics that lack of a semiconducting behavior. Such a 
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result can be ascribed to the presence of the graphite aggregates larger than the inter-electrodic 

channel as depicted in Figure 6. 4a. On the other hand, neat films of P3HT and PCDTPT revealed a 

semiconducting behavior when spin-coated on a SiO2 surface. In particular, the bottom-contact 

bottom-gate transistors exhibited p-type field-effect mobility around 10-2 and 4×10-3 cm²V-1s-1 for P3HT 

and PCDTPT respectively and Ion/Ioff exceeding 104 for both of them.  

Turning now to the hybrid materials, their dispersions, prepared as explained in section 6.2.1, were 

spin-coated without additional purification steps. In addition, to remove large unexfoliated particles 

or aggregates, while avoiding phase segregation, the dispersions were simply filtered with 

polytetrafluoroethylene filters with pore sizes of either 5 µm or 0.45 µm. 5 µm filter were used in order 

to keep in the dispersion only particles with a size just slightly smaller than the FETs channel length 

(20 µm). The 0.45 µm filter was selected to retain in the dispersion only the smallest graphene flakes. 

AFM height images of the films and transfer curves of the FETs are shown in Figure 6. 5 and in Figure 

6. 8. Similarly, also the dispersions of neat graphene, i.e. exfoliated in the absence of the polymers, 

have been filtered with 5 µm and 0.45 µm and characterized by optical microscopy, AFM (Figure 6. 

6) and by exploring their electrical properties.  

Interestingly, OM and AFM characterization showed that when the material is produced in the 

presence of P3HT (Figure 6. 5a,d), compared to the neat graphene sample (Figure 6. 4a,d), present a 

reduced number of large un-exfoliated particles that indicate a clear improvement of the exfoliation. 

Together with fragmented graphitic particles, AFM imaging (Figure 6. 5d) shows, indeed, the 

existence of flat and well-defined few-layered graphene flakes which offer a good coverage of the 

substrate thanks to the unifying presence of the polymer. However, the resulting films based on 

unfiltered graphene/P3HT system featured electrical characteristics which are similar to those of 

unfiltered graphene samples, i.e. they do not exhibit any semiconducting behavior (Figure 6. 5g). OM 

and AFM images confirm the assumption that graphene aggregates and un-exfoliated particles are 

large enough to bridge the electrodes, also in this case (Figure 6. 5a). Nevertheless, a slight 

improvement in the homogeneity of the film is observed (RRMS (graphene) = 14.5 nm; RRMS 

(graphene:P3HT) = 13.4 nm, as determined on AFM images sized 3×3 µm2), indicating that the bi-

component approach leads to a slightly more favorable deposition compared to the case of neat 

graphene.  
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Figure 6. 5 OM, topographical AFM and transfer curves of films produced from dispersions of graphene 

exfoliated in the presence of P3HT. (a,d,g) pristine solution, as well as after filtering using a pore-sized filter: 

(b,e,h) 5 µm, and (c,f,i) 0.45 µm. Z-scales: (d) 55 nm, (e) 78 nm, (f) 20 nm. 

Upon filtering through a 5 µm membrane, a very homogeneous film including a great amount of µm-

sized multi-layer graphene flakes located all over the sample (Figure 6. 5b,e) was observed, in contrast 

with a barely covered substrate obtained after filtration of the neat graphene sample. In this last case, 

where graphene particles are wide apart from each other (Figure 6. 6 a,b) it was found indeed that 

such films do not exhibit (semi-)conducting characteristics, due to the absence of a continuous 

percolation path for the charges to move from the source to the drain electrode. These results provide 

evidence for the difficulty of processing UILPE graphene solutions into homogeneous thin films.  

Although, homogeneous film P3HT/graphene were obtained after 5 µm filtration, AFM height images 

evidenced the absence of thin flakes while most of the graphitic particles are smaller than 1 µm. 

Consequently, the electrical performances of such films are not modified compared to a pristine P3HT 

films and mobility of 0.01 cm²V-1s-1 with Ion/Ioff of 105 are measured. Considering Ion/Ioff close to 1 and 

the high off-current observed previously in the graphitic material (Figure 6. 4g), the recovery of the 

electrical performances of P3HT (high Ion/Ioff, low off-current, Figure 6. 4h and Figure 6. 5h), indicates 

the absence of a continuous pathway of graphitic material in the channel of the transistor. When the 

dispersion P3HT/graphene was filtered using a 0.45 µm filter, a very homogeneous film was produced 

(Figure 6. 5c,f) but lower field-effect mobilities were measured (Figure 6. 5i; µ = 3 × 10-3 cm2V-1s-1, 

Ion/Ioff over 105). 
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Figure 6. 6. OM (a) and AFM (b) images of graphene exfoliated in o-DCB, in absence of organic semiconductors, 

deposited on SiO2 after filtering the dispersion through a filter with pores of 5 µm. The imaging of the sample 

upon filtration with 0.45 µm is not reported here as the substrate result naked. Z-scales: (b) 87.8 nm.  

To interpret such results and obtain further in-depth information on our systems, neat P3HT films 

and P3HT/graphene films, as prepared and after filtration, were characterized by X-ray diffraction in 

specular and grazing incidence geometries. These measurements revealed that both the solution 

filtering and the graphite introduction affect the morphology and the polymer aggregation inside the 

film, i.e. the crystalline order and orientation. The specular scans are reported in Figure 6. 7a; 

morphological parameters of the films (seeTable 6. 4) were extracted from the reflectivity (XRR) 

oscillations, observed in the region below q=0.2 Å-1. The surface roughness drastically increases when 

P3HT is blended with graphene flakes (except for the blend obtained filtering by 0.45 μm pores), so 

that oscillations are damped, and the numerical value cannot be extracted as observed by AFM images.  

In line with previous reports, P3HT aggregates in edge-on configuration on SiO2 surface, as indicated 

by the presence of the lamellar peak (100) at q = 0.37 Å-1 in the specular scan (Figure 6. 7), with spacing 

of 1.7 nm. Interestingly, this peak is clearly observed only for the un-filtered P3HT. The vertical 

crystalline size extracted from the peak width matches with the film thickness, pointing that P3HT is 

well-stacked through the film. This is confirmed by the invariance of the reflection when the film is 

probed at different penetration depths (Figure A I 1 and Figure A I 2).  

 

Figure 6. 7. (a) Specular scans, and (b) in-plane integrated intensities of GIWAXS images (Figure A I 1) of the 

P3HT and graphene:P3HT spin-coated films, shifted for clarity. Bragg peaks coming from graphene solution and 

substrate are labelled by stars and open circles, respectively. 
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The observation of multiple diffraction orders, i.e. (100), (200) and (300) reflections along the out-of-

plane direction in the 2D GIWAXS images (Figure A I 1 and Figure A I 2), points out the high 

crystalline order typical for this polymer. The introduction of graphene in the blend affects the 

orientation of the polymer aggregation. Indeed, for un-filtered and 5 µm filtered solution, the lamellar 

peaks appear along the in-plane direction and decrease along the out-of-plane direction, indicating 

the addition of P3HT in face-on orientation (likely lying on graphene’s surface).  

Despite a change in morphology and in the orientation of the polymer aggregation, no change in 

electrical performances is observed (mobility of 0.01 cm2V-1s-1 and Ion/Ioff over 103 in both cases, Table 

6. 3) with respect to pristine P3HT. This could be due to the low number of graphitic particles upon 

filtering (Figure 6. 5e). When using a 0.45 µm-size filter the polymer appears being amorphous, as 

proven by the almost disappearance of lamellar peaks (Figure 6. 7, Figure A I 1,Figure A I 3), thereby 

explaining the lowering of the field-effect mobility. 

 

Table 6. 4. Parameters calculated from XRR and Bragg peaks fitting for P3HT/graphene composites 

Sample 
Thickness 

(nm) 

Density 

(g cm-3) 

Roughness 

(nm) 

Spacing 

(nm) 

Vertical 

coherence of 

lamellar stacking 

(nm) 

P3HT No filter 
12.25 ± 

0.07 
0.99 ± 0.01 1.60 ± 0.05 

1.687 ± 

0.005 
14.15 ± 0.08 

P3HT Filter 0.45 µm 
13.55 ± 

0.09 
1.03 ± 0.01 2.13 ± 0.06 - - 

Graphene:P3HT No 

filter 
- - - 

1.686 ± 

0.006 
10.08 ± 0.09 

Graphene:P3HT Filter 5 

µm 
- - - - - 

Graphene:P3HT Filter 

0.45 µm 

14.07 ± 

0.06 
1.18 ± 0.03 1.96 ± 0.05 - - 

 

Surprisingly, a different behavior is observed when graphite exfoliation is exfoliated in the presence of 

PCDTPT. PCDTPT/graphene composites and the respective films were prepared and characterized 

following the same procedures described for P3HT case. OM and AFM images as well as transfer curves 

are presented in Figure 6. 8. The presence of PCDTPT during the exfoliation of graphite determine 

the formation of homogeneous PCDTPT/graphene films as evidenced by both optical and AFM 

characterization. These films contains a relatively high concentration of exfoliated graphene flakes 

and they do not feature any large un-exfoliated particles or aggregates (Figure 6. 8a,d). Consequently, 

unlike previous cases of pure graphene (Figure 6. 4g) and hybrid graphene/P3HT (Figure 6. 5g), for 

graphene/PCDTPT hybrids the transfer curves do not feature high IDS current unaffected by VGS 

(Figure 6. 8g).  



 

108 

 

 

Figure 6. 8. OM, topographical AFM and transfer curves of films produced from dispersions of graphene 

exfoliated in the presence of PCDTPT. (a,d,g) pristine solution, as well as after filtering using a pore size of (b,e,h) 

5 µm, and (c,f,i) 0.45 µm. Z-scales: (d) 86 nm; (e) 358 nm, (f) 77 nm. 

These results are particularly remarkable since they indicate that PCDTPT promotes the exfoliation of 

graphite, forming a well-intermixed bi-component material that can be processed into homogeneous 

films. Unfortunately, the determination of the efficiency of the two processes, e.g. exfoliation in the 

presence of P3HT and PCDTPT, is hindered by the presence of the polymer and the high polydispersity 

of the samples, this latest accentuated by a missed proper flakes selection process. The presence of the 

polymer, that it is difficult to completely remove, precludes indeed the possibility to perform a 

statistical study of flakes thickness, for example, by means of AFM, that would allow to quantitatively 

discriminate the two samples in terms of yield of thin layers. Alternatively, the samples have been 

characterized by HR-TEM but this analysis didn’t show any differences among the samples due to their 

highly polydispersity (Figure 6. 9). However, a further proof of a more efficient exfoliation is given by 

the roughness of the film - RRMS (graphene:PCDTPT) = 11.8 nm - that is significantly lower compared 

to pristine graphene film - RRMS (graphene) = 14.5 nm - and graphene:P3HT- RRMS= 13.4 nm -  as 

determined on  3×3 µm2 and 2×2 µm2 AFM images.  

This difference in the quality of the exfoliation, as evidenced by OM and AFM imaging, can be ascribed 

to the different molecular structures of the two polymers. PCDTPT is indeed a more rigid polymer 

compared to P3HT, featuring also longer alkyl chains, that could explain its higher affinity for 

graphene. 
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Figure 6. 9. Transmission electron microscopy analysis of graphene prepared by Ultrasounds-Induced Liquid-

Phase Exfoliation of graphite powder in the presence or absence of conjugated polymers (P3HT, PCDTPT). a) 

TEM image of graphene nanosheets produced in o-DCB in absence of polymer; b) TEM image of an individual 

graphitic flake after exfoliation in the presence of P3HT; c) HR-TEM image of the edge of a multilayer graphene 

sheet produced in the presence of PCDTPT. 

Furthermore, the recorded transfer curves did not display the typical behavior of films containing big 

graphitic particles bridging the electrodes. On the contrary, the resulting transfer curve (Figure 6. 8g) 

is an addition of current issued from graphitic material and the tested polymer, implying that both 

materials play an important role in the charge carrier transport between the source and drain 

electrodes. The measured field-effect mobility of the hybrid films exceeded 0.1 cm²V-1s-1, being 30-fold 

greater than pure PCDTPT films.  

The structural characterization of these films, e.g. neat PCDTPT films and graphene/PCDTPT films as 

prepared and after filtration, by means of X-ray diffraction in specular and grazing incidence 

geometries, allowed to discover that the hybrid PCDTPT/graphene film is composed of two different 

populations of aggregates: one with edge-on configuration on silicon oxide and the other face-on on 

graphene surfaces. Indeed, the analysis of the pure PCDTPT film showed typical features, e.g. (100) 

and (010) reflections (the latter coming from the π-π stacking periodicity) appearing along the out-of-

plane and in-plane directions, respectively (Figure A I 7,Figure A I 8), revealing that the neat PCDTPT 

polymer aggregates with edge-on orientation. On the other side, with the introduction of graphene, 

the (100) and (200) lamellar peaks along the specular direction (Figure 6. 10, Figure A I 7, Figure A 

I 9, Figure A I 10) broadens, whereas they appear narrower along the in-plane direction, indicating 

the interaction between PDCTPT and graphene surface induces the polymer to self-organize in a face-

on configuration. 

This explains the electrical performance of such hybrids. In fact, while the Ion is mostly, yet not 

exclusively, dependent on the layer of semiconductor at the interface with the dielectric, the Ioff is 

mostly dependent on the bulk of the semiconducting film. Therefore, the observed transfer curve is a 

combination of charge transport at the interface (PCDTPT aggregated in edge-on configuration, high 

Ion/Ioff, low current) and charge transport in the bulk (PCDTPT aggregated in face-on configuration on 

graphene, high Ion and Ioff currents).  

While in P3HT/graphene hybrid, FLG was removed upon filtration (Figure 6. 5e), films produced from 

the filtered PCDTPT/graphene system still contained some FLG, demonstrating a stronger interaction 

of graphene with the polymer (Figure 6. 8e), that is further proved by similar roughness measured for 

all the film, except for the non-filtered one, where the high roughness is due to the presence of thick 
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sheets (Table 6. 5) Moreover, the absence of Bragg reflections on both specular scan and GIWAXS 

images (Figure 6. 10, Figure A I 7, Figure A I 9) after filtration of neat PCDTPT, combined with the 

fact that the film thickness does not change when the sample is prepared from filtered solution (Table 

6. 5).suggests that small aggregates are already formed in solution and successively transferred to the 

substrate surface. It could be that the filter removes the aggregates (e.g. resulting from the self-

aggregation of the longest polymers) and consequently the polymer self-organizes in amorphous phase 

once deposited on the surface.  

AFM images showed a lower concentration of graphene particles after filtering of the solution using a 

5 µm pore size filter. Consequently, the slight reduction in the mobility that is accompanied by a large 

decrease of the conductivity can be explained with the reduced amount of graphitic material within 

the film (Figure 6. 8e). On the other hand, filtration with 0.45 µm membranes lead to the presence 

of very few small graphene aggregates within a layer of PCDTPT that does not seem to play any role, 

so that the mobilities of such film result comparable to pure PCDTPT films.  

 

 

Figure 6. 10. (a)Specular scans and (b) in-plane integrated intensities of GIWAXS images (Figure A I 7) of the 

PCDTPT and graphene:PCDTPT spin-coated films, shifted for clarity. Bragg peaks coming from graphene 

solution are labelled by stars. 
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Table 6. 5 Parameters calculated from XRR and Bragg peaks fitting for PDCTPT/graphene composites 

Sample Thickness 

(nm) 

Density 

(g/cm3) 

Roughness 

(nm) 

Spacing 

(nm) 

Vertical 

coherence of 

lamellar 

stacking (nm)

  

PDCTPT No filter 22.21 ± 

0.10 

0.80 ± 

0.03 

1.54 ± 0.09 2.60± 0.01 13.2± 0.2 

PDCTPT Filter 0.45 µm 20.4 ± 0.1 0.58 ± 

0.04 

1.6 ± 0.1 - - 

Graphene:PDCTPT No filter - - - ~2.6 < 10 

Graphene:PDCTPT Filter 5 

µm 

7.6 ± 0.2 0.67 ± 

0.04 

1.8 ± 0.1 ~2.6 - 

      

Graphene:PDCTPT Filter 

0.45 µm 

13.91 ± 

0.03 

0.96 ± 

0.02 

1.39 ± 0.02 - - 

 

 

6.4  Conclusions 

The purpose of the present study is merging 2DMs with molecular systems to explore the possibility 

of modulating and/or improving 2DMs performances. In particular, in this work, graphene has been 

combined with organic semiconductors with the final aim of introducing the hybrid system 

graphene/OSCs as active material in electronics.  

A novel one-step procedure has been developed to produce graphene via ultrasound-induced liquid-

phase exfoliation directly within a suitably selected polymer matrix that is employed as exfoliation 

medium. Such approach turned out to be ideal for obtaining homogeneous bi-component 

graphene/polymer hybrid systems. Indeed, even if the exfoliation was performed in very mild 

conditions, strong interactions between graphitic material and the organic semiconductors have 

determined an improved exfoliation of the material compared to the exfoliation performed in o-DCB. 

As a consequence, the exfoliated material is homogeneously intermixed with the polymer, without 

meet with phase segregation. However, this study has shown that the selection of an adequate polymer 

is the key parameter for achieving a higher quality of the material, as proved by an improved 

exfoliation when graphene is produced in the presence of PCDTP, rather than P3HT.  

This strategy of merging graphene with ah-hoc macromolecular systems during the production phase 

has allowed of improving graphene processing as well. In particular, when graphene is produced in 

the presence of PCDTPT, it can be processed in uniform large area thin films simply by spin-coating. 

In these films graphene flakes homogeneously cover the whole substrate, while being embedded in 

the polymer matrix. In this way, it is overcome the general issue of obtaining non-uniform random 

depositions of graphene that generally are limited to small areas, and which are common when 
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attempting to produce thin films. GIWAXS data provided further evidence that FLG exfoliated in the 

presence of PCDTPT exhibits to good coverage once spin-coated, with homogeneous polymer 

aggregation along the film thickness. As a result of the homogeneous intermixing of the two 

components, higher electrical performance can be achieved as proved by a 30-fold improvement of 

the mobility when PCDTPT is combined with graphene and introduced as thin active layer in field-

effect transistors. These performances were obtained from unfiltered solutions, highlighting the role 

of aggregation at the solution stage of fabrication. On the other hand, the study of filtered dispersions 

demonstrated that it is possible to modulate the electrical performances of hybrid systems to achieve 

the desired trade-off between mobility and Ion/Ioff ratio, thereby giving proof of the high versatility 

of the developed approach.  Furthermore, investigation of the differences in aggregation between bulk 

and semiconductor/dielectric interface lead to better understanding of the electrical characteristics 

measured in hybrid graphene/polymer films.  

One source of weakness of this study was the use of mild experimental conditions. Further studies 

could be performed to assess the effect of a more powerful sonication on the considered system, aiming 

to achieve a better exfoliation, that although highly improved respect to the process in absence of the 

polymer, remain still poor, as evidenced by the presence of thick graphene sheets. Moreover, if 

necessary, an alternative purification procedure may be designed to maximize the number of thin 

graphene layers playing an active role on the hybrid systems. Despite its exploratory nature, this study 

is a gateway to optimization of graphene exfoliation and its deposition, and to the improvement of the 

performance of active layers in FETs, as it highlights the importance of combining 2DMs with adequate 

molecular systems for improving exfoliation and deposition of 2D systems, as well as for obtain new 

hybrid systems with improved electrical performance respect to the single components. 
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CHAPTER 7. 
 

GENERAL CONCLUSION AND OUTLOOK 

 

This PhD thesis has been focussed on the production of 2DMs (e.g. graphene and MoS2) by exfoliation 

in liquid media and explored their potential applications in the electronics field. Particular attention 

was paid to the ultrasound-induced and electrochemical exfoliation processes, which are respectively 

the most established methods of 2DMs’ exfoliation in liquid media and the most promising for their 

mass production. In each chapter, the morphology and structure of produced materials have been 

characterized. Field-effect transistors (FETs) and resistors were fabricated to reveal the electrical 

performances of individual sheets or films, highlighting their potential use in various fields including 

electronics and sensing. 

Since electrochemical exfoliation (EE) approach is just emerging in the community, the knowledge on 

involved mechanisms and properties of the electrochemically exfoliated materials are still limited. In 

the first experimental chapter of this thesis, we aimed at shedding light on structure and properties of 

graphene and MoS2 produced by means of electrochemical approach, in view of outlining their 

potential applications. To this purpose, a comprehensive structural characterization of the materials 

was combined with the study of their electrical characteristics.  

By means of X-ray photoelectron spectroscopy, we have demonstrated the versatility of the 

electrochemical approach with respect to other liquid-phase exfoliation methods. We showed indeed 

that, via electrochemical exfoliation, it is possible to produce graphene with different content of 

oxygen functionalities depending on the employed parameters. Although, in anodic conditions, the 

oxidation of the exfoliated material is unavoidable, we proved that electrochemical exfoliation can 

yield to the mass production of a material that largely differs in its structure and properties from 

graphene oxide. Furthermore, if necessary, a few-seconds microwave treatment can be employed. 

Upon such post-treatment, a large part of oxygen functionalities can be successfully removed, while 

keeping unaltered the properties of the material. Such findings, supported by a combination of 

structural and electrical characterization performed both at single flake level and on film, allowed to 

conclude that the electrical performances of electrochemically exfoliated graphene (EEG) – which 

exhibits field-effect mobilities of 1-10 cm2V-1s-1 – are hindered by the presence of structural defects in 

EEG basal plane, rather than by the content of oxygen. For the first time, in this work nanoscopic 

mechanical defects were revealed though morphological characterization of the flake’s surface by 

AFM, combined with structural information obtained by Raman spectroscopy (ID/IG ~ 1.5). Their 

formation has been attributed to the rather invasive nature of the process of exfoliation, which requires 

further optimization for yielding high-quality graphene. To allow the use of EEG material on large 

scale, we developed a very effective method for the production of large area thin films which exhibit 

very similar electrical characteristics to single flakes, demonstrating hence that the electrochemical 

approach, in combination with proper deposition methods, provides the opportunity for introducing 

graphene in low-cost flexible (opto-) electronic devices. Furthermore, the emergence of the n-

conductivity in EEG upon thermal annealing, reported here for the first time, lead to an ambipolar 

transport which may be of interest for the development of logic circuits.  
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To explore the versatility of the electrochemical approach towards the production of other 2DMs, 

while avoiding their oxidation, we have developed an alternative strategy for the exfoliation of MoS2 

which exploits the cathodic intercalation of positive ions. By using an electrolyte based on DMSO-

solvated lithium-ions, we proved the facile exfoliation of a MoS2 crystal in 1 to 3 layers nanosheets, 

featuring a higher amount of 2H-phase (~60%) compared to existing approaches, and with the further 

advantage of operating in ambient conditions. We succeeded in improving the electronic properties 

of FETs based on single flake EEMoS2 through a combination of vacuum annealing and defect healing 

with short linear thiolated molecules, reaching µFE values up to 2×10-2 cm2 V-1 s-1 and Ion/Ioff ≈ 100. 

Such findings, combined with XPS characterization, suggested that the electrochemical approach can 

induces in MoS2 the formation of sulfur vacancies. The electrochemical approach can be considered 

hence an effective exfoliation method and, at the same time, a simple and low-cost method for defect-

engineering of pristine MoS2 - compared to commonly used approaches such as ions bombardment, 

electron irradiation, thermal annealing, plasma treatments, etc. The presence of sulfur vacancies is 

considered a source of improved chemical reactivity of the material compared to pristine MoS2. This 

aspect could be conveniently exploited, for example, in the field of sensors. 

The introduction of 2DMs in the field of gas sensors can consent the miniaturization of sensing devices 

and could, in principle, even improve the sensitivity of such devices owing to their high surface area 

available for the absorption of environmental species. In the second experimental chapter (chapter 5) 

we preliminary explored the use of MoS2 nanosheets as sensor of humidity, by producing the material 

via ultrasonication. Chemiresistors based on homogeneous MoS2 thin films showed unprecedented 

sensitivity towards humidity, over 3 orders of magnitude higher than previous reports. Our devices 

exhibit a 7 orders of magnitude current change with relativity humidity varying from 0% to 80% RH. 

Their response to humid air is fully reversible and fast (~100 ms). Such high sensitivity was attributed 

to the reduced particle sizes (~50 nm), but could be also ascribed to other parameters, including the 

high homogeneity of the film within the channel as well as the thickness of the film. These results 

highlight the potential of liquid-phase exfoliated MoS2 as humidity sensor and demonstrate the 

feasibility of large area sensing devices based on 2DMs. 

With the aim of finding the keystone for modulating the physico-chemical properties of 2DMs, in 

chapter 6, we developed a strategy for successfully merging 2DMs with molecular systems, exploiting 

the liquid-phase exfoliation approach. By performing the ultrasonic exfoliation of graphite flakes 

directly within a semiconducting polymer matrix, e.g. P3HT and PCDTPT, homogeneous 

graphene/polymer composites were deposited in form of thin films (8-15 nm) for fabrication of field-

effect transistors. However, the choice of the polymer is crucial for having a strong interaction between 

the two components. A clear enhancement both of the graphite exfoliation and electrical performance 

of the final devices was observed in the case of PCDTPT composites, as demonstrated by a 30-fold 

improvement of the mobility measured for PCDTPT/graphene hybrid system compared to the pure 

polymer. We demonstrated hence that the liquid-phase exfoliation method can be successfully 

employed for “bridging” graphene with molecular systems leading to remarkable advantages such the 

better-quality 2D ink processing, as well as, the formation of new multicomponent systems for 

electronics that feature superior field-effect mobility compared to the bare organic semiconductor 

thanks to the presence of graphene. 

In conclusion, although some limitations need to be overcome to improve the quality of the exfoliated 

materials and fully benefitting of the extraordinary properties of 2DMs, liquid-phase exfoliation 

approaches offer a good trade-off between quality and quantity of produced material. This aspect, 

together with improved methods of processing from liquid-phase makes possible many of the foreseen 

application for graphene and other 2DMs.  
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Depending on the employed exfoliation method, the produced material can be more or less defective 

which is a critical factor for their introduction in devices in view of the chosen application.  Owing to 

this versatility, liquid-phase exfoliation approaches consent to cover a wide spectrum of applications. 

Electrochemical exfoliation succeeds, for instance, in producing large and atomically thin sheets ideal 

for low-cost flexible and transparent electronic devices. Moreover, at the same time, the gram-scale 

production of porous materials is offering great opportunities for energy related applications. On the 

other hand, ultrasonication approach results convenient for the production of composites as well as 

permit of obtaining high preforming materials for gas sensing. Further optimization of LPE methods 

in eco-friendly solvents will be the subject of future efforts in order to meet industrial demand and 

safety regulations. 

So far, a great attention has been given to the methods of exfoliation investigating on the effects of 

various operative conditions with the principal objective of achieving high efficiency of the processes 

(high yields of exfoliation in short time). Yet, the development of new systems based on 2DMs requires 

a detailed understanding of the properties of these new materials, supported by a morphological and 

electrical investigation of the materials, as reported in this work. This thesis aims to stimulate other 

work in this direction for a deep awareness of 2DMs and their potential. The processing of inks is a 

key parameter for the operation of devices, as well. On the basis of the findings achieved in this work, 

it appears clear that large area 2DMs is possible even using very simple methods, paving the way 

towards the simplification of deposition approaches and the integration of homogeneous and 

controlled film in working devices. 

Since the formation of structural defects is recognized as a bottleneck of the electrical performances 

in electrochemically exfoliated 2DMs, a still open challenge regards the comprehension of the 

mechanism of electrochemical exfoliation for the purpose of optimizing the process. Future studies, 

for example, should focus on the choice of electrolytes that promote an efficient exfoliation under 

conditions at which the formation of structural defects is not favored. On the other hand, the 

identification of structural defects in electrochemically exfoliated graphene opens the route to many 

different potential applications (e.g. selectively porous membranes for gases, salts or biomolecules). 

Moreover, demonstrating that it is possible to gain control over the functional groups in EEG, in the 

next future this aspect could be exploited to modulate the material’s properties and generating 

multicomponent systems through controlled chemical functionalization. The devolvement of 

strategies for the reliable functionalization of EEG would allow the chemical tunability of its properties 

for various application in electronics and composites, as well as could lead to the realization of 

selective and cost-effective sensors toward different analytes.  

Similarly, one of the main challenges for the next future is to gain control over vacancies in MoS2. 

Defects introduced during the exfoliation process could enhance the reactivity of MoS2 towards 

environmental species, thereby allowing its application in the field of gas sensing. This work aims 

hence to stimulate further work in this direction in order to lay out the future fate of electrochemically 

exfoliated materials. The effect of these defects on the sensing properties of MoS2 could be 

investigated, in comparison with our findings on sulfur vacancies-free MoS2 produced by sonication. 

Moreover, our approach could allow to demonstrate the feasibility of a controlled functionalization of 

MoS2 at the sulfur vacancies that, so far, has been studied on single flake devices or MoS2 produced by 

sonication, which don’t contain significant amount of vacancies. The functionalization with ad-hoc 

molecules could be exploited for different purposes as, for example, for improving sensitivity and 

selectivity of MoS2-based devices towards a specific analyte, paving the way to the introduction of 
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2DMs in the field of sensors, or to modulating its properties for applications in various fields of 

electronics.  

These strategies could involve a two-step process consisting in the control of defects during the 

exfoliation process and the subsequent modification of the material through functionalization in 

correspondence of such defects.  

More interestingly, in the next future, LPE approaches could become not only methods of exfoliation 

but also strategies for tuning the properties of 2DMs and producing multifunctional systems which 

can be applied in various fields in function of the conferred functionality. This will be possible 

exploiting both the ultrasonication approach, in the wake of our work on graphene/polymer 

composites, and electrochemically driving the functionalization/absorption of molecular systems on 

the material's surface during the electrochemical exfoliation. That would allow the simultaneous 

exfoliation and functionalization of the material in one-step process, towards the formation of 

homogeneous functional systems. 

Overall, this work shows that the production and processing of 2DMs in liquid media open up several 

opportunities for introducing 2D in several fields of applications, including electronics. In particular, 

inks based on 2DMs can be explored for printing on flexible supports to be introduced in low-cost 

flexible electronic devices, that would revolutionize the market in the next years. LPE inks could be 

integrated into wearable products or transparent surfaces which can, for instance, find application as 

low-cost sensors for measuring vital signs or to sensing environmental conditions, opening the door 

for lightweight and smart devices These innovative products will be made possible only by combining 

the extraordinary properties available in 2DMs with scalable and cost-effective production methods 

like LPEs. 
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APPENDIX I 
Structural characterization 

 

Figure A I 1. (a-e) GIWAXS images collected at the incident angle αi =0.1° and (f) their out-of-plane integrated 

intensities collected for the P3HT and graphene:P3HT spin-coated films. Bragg peaks coming from graphene 

solution are labelled by stars. 

 

Figure A I 2. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the no-filtered P3HT spin-coated film. 
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Figure A I 3. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the 0.45 μm-filter P3HT spin-coated film. 

 

Figure A I 4. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the no-filter graphene:P3HT spin-coated film. 

 

Figure A I 5. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the 5μm-filter graphene:P3HT spin-coated film. 
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Figure A I 6. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the 0.45 μm-filter graphene:P3HT spin-coated film. 

 

 

Figure A I 7. (a-e) GIWAXS images and (f) their out-of-plane integrated intensities collected with αi=0.1° for the 

PCDTPT and graphene:PCDTPT spin-coated films. 
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Figure A I 8. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the no-filtered PCDTPT spin-coated film. 

 

Figure A I 9. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the PCDTPT spin-coated film from the solution filtered by 0.45 μm millipore. 

 

 

Figure A I 10. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the graphene:PCDTPT spin-coated film. 
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Figure A I 11. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the graphene:PCDTPT spin-coated film from the solution filtered by the 5 μm millipore. 

 

Figure A I 12. (a) Out-of-plane and (b) in-plane integrated intensities of GIWAXS images collected at different 

incidence angles for the graphene:PCDTPT spin-coated film from the solution filtered by the 0.45 μm millipore. 
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2DM Two-dimensional material  

AFM Atomic force microscopy 
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CB Conduction band 

CNP Charge neutrality point 
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DI Deionized water 
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DMSO Dimethyl sulfoxide  

DSA Dispersion stabilizing agent 

EE Electrochemical exfoliation 

EEG Electrochemically exfoliated graphene 
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h-BN Hexagonal boron nitride  

HF Hydrogen fluoride 

HR-TEM High-resolution transmission electron microscopy  
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Résumé 

Cette thèse est consacrée à la production de matériaux 2D en phase liquide, en utilisant 
des approches pouvant permettre la production en masse de graphène et de matériaux 
apparentés. Notre objectif est de surmonter certains problèmes critiques pour le traitement 
et l'utilisation pratique des encres à base de matériaux 2D et de fournir une compréhension 
approfondie de la relation structure-propriétés dans ces matériaux, constituant des étapes 
obligatoires pour leurs applications futures. Cette thèse porte principalement sur l'UILPE et 
l'exfoliation électrochimique du graphène et du disulfure de molybdène (MoS2), qui ont été 
choisis comme matériaux prototypes à 2 dimensions. Les approches synthétiques sont 
combinées à une caractérisation physico-chimique des matériaux produits, à l'aide de 
techniques telles que l'AFM, la microscopie électronique, la spectroscopie XPS et Raman, 
ainsi qu'à une caractérisation électrique. Des applications dans le domaine de la détection 
et de l'électronique ont été explorées et ont permis de démontrer que des approches 
d'exfoliation en phase liquide pouvaient être utilisées pour obtenir un contrôle précis des 
propriétés des matériaux 2D ouvrant la voie à leur intégration en tant que matériaux actifs 
dans de nouveaux dispositifs multifonctionnels. 

 

Résumé en anglais 

This thesis is devoted to the production in liquid-phase of two-dimensional materials, by 
using approaches that may enable mass production of graphene and related materials. We 
aim to overcome some issues that are critical for the processing and practical use of 2D 
materials-inks and to provide a deep understanding of the structure-properties relationship 
in such materials being mandatory steps toward their future applications. This thesis mainly 
focuses on ultrasound-induced liquid-phase exfoliation and electrochemical exfoliation of 
graphene and molybdenum disulfide, which have been chosen as prototypical 2D materials. 
The synthetic approaches have been combined with a multiscale physico-chemical and 
electrical characterization of the produced materials, by employing techniques such as AFM, 
XPS and Raman spectroscopy. Applications in the field of sensing and electronics have 
been explored and allowed to demonstrate that liquid-phase exfoliation approaches can be 
conveniently employed to achieve a fine control on the properties of 2D materials paving the 
way to their integration as active materials in novel multifunctional devices. 

 

Keywords: Two-dimensional materials, liquid-phase exfoliation, electrochemical exfoliation, 
solution process, thin films, graphene composites, physico-chemical characterization.  


