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Figure 1. Plants are exposed to a variety of biotic and abiotic stresses. Among
several abiotic stresses which can affect the plant, we can mention the most studied that
are drought, salinity, light or extreme temperatures. Biotic stresses, on their part, include
living organisms such as insects, nematodes, viruses, herbivores or bacteria.

viruses
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I. Interactions between plants and micro-organisms 

 

1. Generalities 

Since plants are sessile organisms, they are constantly exposed to the environment 

during their whole lifecycle. Thus, both in nature and under culture conditions, they are 

in contact with multiple organisms and they are exposed to a wide range of abiotic or 

biotic stresses that can lead to serious damages (Figure 1). Basically, a situation is 

considered as a stress as soon as it is leading to physiological changes in the 

organism, accompanied by growth inhibition and/or cellular damages for instance. 

Abiotic stresses are the consequence of some environmental conditions as for 

example salinity, drought, light or extreme temperatures (Mittler, 2006; Tardieu and 

Tuberosa, 2010). Plants are also subject to biotic stresses that are caused by other 

organisms like insects, nematodes, viruses, herbivores or bacteria (Atkinson and 

Urwin, 2012). In addition, plants are often exposed to several stressful conditions 

simultaneously. This combination of stresses induces a unique response that is 

specific to the situation, because the effects of biotic and abiotic stresses are additional 

(Fujita et al., 2006; Suzuki et al., 2014). Thus, plants interactions with their environment 

are complex and involve multiple factors. 

Interactions between plants and their environment are not necessarily harmful. 

Plants interact with other organisms among which pollinators ensure their 

reproduction, or organisms such as fungi or bacteria that are able to provide them 

some nutrients from environments in which they are not capable to assume a direct 

uptake, for instance. These interactions are beneficial, and sometimes even crucial for 

the host plant. During my thesis, I focused my work on the interactions between plants 

and bacteria. 

 

2. Localization of micro-organisms interacting with the host plant 

Plants interact with a wide range of micro-organisms during their whole lifecycle. 

These micro-organisms interacting with the different parts of the plant (roots, leaves or 



Figure 2. Acquisition of the plant microbiota from soil. Microbiota composition of the
underground parts of the plant is highly affected by the secretion of root exudates. The
exclusion process is split into different steps. First, in the rhizosphere, there is gradient
of root exudates that only allows some bacteria to reach the plant vicinity. Then, in the
rhizoplane, bacteria should be able to form biofilms and compete in the presence of high
amounts of nutrients. The last step of exclusion is the selection of bacteria from the
rhizoplane which can colonize the root endosphere and escape the plant immune
system. Adapted from Heijden and Schlaeppi, 2015.

Root exudates

Microbial diversity

Soil Rhizosphere
Rhizoplane Root 

endosphere

2

Plant
immune system
3

1
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flowers for instance) constitute its microbiota. The term “symbiosis” is also commonly 

employed to describe a relationship between different organisms, including plants and 

bacteria (de Bary,1879). Micro-organisms that are localized at the surface of the plant 

are called epiphytes. In contrast, some of them colonize the internal plant tissues, in 

which case we talk about endophytes, a term coined by Anton de Bary in 1886 (Porras-

Alfaro and Bayman, 2011). Moreover, there is a wide variety of micro-organisms in the 

surrounding soil, as well as in the atmosphere, around the host. In this symbiose 

vicinity, molecules can be exchanged between micro-organisms and the plant. 

The underground parts of the plant are constituted by the roots themselves, the 

rhizoplane which is the surface of the roots, and the rhizosphere which is the root-

surrounding soil influenced by root exudates, as defined for the first time in 1904 by 

Hiltner (Hartmann et al., 2008; van der Heijden and Schlaeppi, 2015). First of all, the 

plant genotype and the soil type are important for the establishment of bacterial 

communities (Edwards et al., 2015; van der Heijden and Schlaeppi, 2015). The soil 

type is influenced by root exudates that are composed of a mixture of organic 

compounds secreted by the plant. Thus, roots highly influence the rhizosphere by 

impacting the soil structure, but also the pH or the oxygen availability and by providing 

an energy source and carbon-rich exudates to the surrounding micro-organisms. Each 

of the compartments that are the rhizosphere, the rhizoplane and the roots, is colonized 

by a common or specific microbial community, under the influence of this root exudates 

gradient (Figure 2) (van der Heijden and Schlaeppi, 2015). This leads to a first step of 

exclusion that occurs in the rhizosphere. Then, there is a second step of exclusion in 

the rhizoplane, where there is a selection of bacteria capable to form biofilms and 

compete in the presence of high amounts of nutrients. The last step of exclusion is the 

selection of bacteria from the rhizoplane that are capable to colonize the root 

endosphere and to evade the recognition by the plant immune system. 

In a few numbers, taking in account this selection, the rhizosphere of the model 

plant Arabidopsis thaliana (A. thaliana) is colonized by around 106 to 109 bacteria.g-1 

(Spaepen et al., 2009). They are essentially coming from the soil in which we can find 

the same proportion (Whitman et al., 1998). In the root endosphere, there are 104 to 

108 bacteria.g-1 also coming from the soil and influenced by the root exudates secreted 

by the plant as previously mentioned (van der Heijden and Schlaeppi, 2015; 

Vandenkoornhuyse et al., 2015; Whitman et al., 1998). This strong connection 



Figure 3. Bacterial titers composing the plant microbiota. Number of bacteria in the
phyllosphere (Lindow and Brandl, 2003), atmosphere (Fahlgren et al., 2010),
rhizosphere (Spaepen et al., 2009), root and soil (Whitman et al., 1998) are indicated as
approximations. Open arrows indicate bacterial sources for the phyllosphere microbiota,
and solid arrows represent bacterial sources for the root microbiota. Adapted from
Bulgarelli et al., 2013.

Phyllosphere
~106-107 bacteria.cm-2

Root endosphere
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Rhizosphere
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between the soil bacterial communities and those associated with the roots of  

A. thaliana has been highlighted by several studies (Bulgarelli et al., 2012; Lundberg 

et al., 2012; Schlaeppi et al., 2014). In contrast, the aboveground part of the plant, 

called the phyllosphere, contains 106 to 107 bacteria.cm-2 (Lindow and Brandl, 2003), 

among which some come from the atmosphere, that contains itself 101 to  

105 bacteria.m-3 (Fahlgren et al., 2010), or other sources like the soil or the interacting 

macro-organisms for example (Figure 3). The microbiota so formed may be composed 

of a huge variety of bacteria that can have diverse repercussions on the host plant. 

 

3. Different types of plant-bacteria interactions 

Interactions between plants and bacteria have an effect on each partner. Micro-

organisms can be neutral, beneficial, or sometimes pathogenic for their host  

(Figure 4). We talk about symbiosis if there is a relationship between different 

organisms of different species (de Bary,1879). This interaction allows each one to 

complete its lifecycle by providing nutrients or promoting growth, defense or resistance 

to stress, for instance (Lugtenberg and Kamilova, 2009; Yang et al., 2008). In the case 

of mutualism, the interaction is beneficial for both organisms. Commensalism, for its 

part, describes an interaction in which one organism benefits from the situation without 

affecting the other one, neither positively, nor negatively. Finally, parasitism is a 

particular relationship in which one organism takes advantage of the interaction to the 

detriment of the other (Bulgarelli et al., 2013). The interaction between a unique 

bacteria and its host is variable depending on the presence of other bacteria entering 

in competition or not, for instance. Thus, the plant and its communities are governed 

by a complex set of different kinds of interactions involving hundreds of micro-

organisms. 

 

4. Plant-pathogen interactions 

Plant pathogenic micro-organisms are classified in three main categories according 

to their lifestyle. The two most common categories are the necrotrophs and the 

biotrophs, but some pathogens behave as both biotrophs and necrotrophs, depending 



Figure 4. Possible effects of micro-organisms interacting with plants. Most of the
micro-organisms composing the plant microbiota are defined as neutral for the host
plant, since no beneficial nor harmful effect has been demonstrated yet. Some others
can be pathogenic and induce plant diseases. Finally, there are several beneficial
micro-organisms that lead to protection against pathogens or better tolerance to stress
for instance, but they can also favorize growth and development or nutrient availability.

Diseases
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on the conditions and the stage of their lifecycle, giving rise to a third category called 

hemibiotrophs (Glazebrook, 2005). Biotrophic pathogens need a living host to 

complete their lifecycle since they feed on living tissues. Necrotrophic pathogens, for 

their part, directly kill the infected tissues to retrieve nutrients from dead or dying cells. 

Finally, hemibiotrophic pathogens are a mix between the two previous categories, as 

they first act as biotrophic organisms to multiply in the host, and then as nectrotrophic 

ones in order to kill the plant to retrieve everything they need to proliferate (Pieterse et 

al., 2009). A well-known hemibiotroph is the phytopathogen Pseudomonas syringae 

(P. syringae), that is described in detail below. 

Pathogens can enter in the apoplast, which is the intercellular space, through 

wounds or natural opening like stomata in leaves, for instance. Or they can indirectly 

affect the interior of the plant via the secretion and injection of some compounds that 

are harmful for the plant. In some particular situation, bacteria like Xylella fastidiosa 

can enter into the xylem, a water transport network of vessels, which allows it to escape 

the plant recognition and to cause diseases in plants of economic interest such as 

grapevine (Bucci, 2018; Cella et al., 2018). 

 

4.1. The plant immune system 

The ability of plants to defend themselves against pathogens is one of the key 

factors determining their fitness. Plants have evolved diverse mechanisms to prevent 

damages caused by harmful organisms. There is a perpetual struggle between plants 

and bacteria, because plants can recognize pathogens through different mechanisms; 

while pathogens developed strategies to counteract plants defenses by secretion of 

effectors (Dodds and Rathjen, 2010). Finally, there is a co-evolution between pathogen 

strategies to attack plants and plant defenses. 

 

4.1.1. Constitutive barriers against pathogens 

Plants first defense mechanisms are independent of the pathogen, and they are 

based on the plant constitutive physical barriers which are the cuticle, the wax or pecto-

cellulosic walls, but also the stomatal closure (Chisholm et al., 2006). Other actors of 



Figure 5. Transmission electron microscope image of Pseudomonas syringae pv.
tomato DC3000. PstDC3000 produces polar flagella (15 nm in diameter) and a few Hrp
pili (8 nm in diameter). The flagella and Hrp pili are indicated with arrows. Flagella
enable bacteria to swim toward or away from specific chemical stimuli. Hrp pili are
involved in type III secretion of avirulence and virulence proteins. Extracted from
Katagiri et al., 2002.

Figure 6. Disease symptoms in Arabidopsis thaliana Col-0 leaves following the
infection by Pseudomonas syringae pv. tomato DC3000. (A) Leaves indicated with
red arrows were syringe-infiltrated with 105 cfu. mL-1 of PstDC3000. Picture was taken 6
days post infection. (B) A close-up of an infected leaf clearly shows the chlorotic lesion
due to the pathogen.

A
B
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this first line of defense are some anti-microbial compounds such as flavonoids for 

example (Cowan, 1999; Cushnie and Lamb, 2005, 2011) that can be excreted and 

which are efficient against a wide range of bacteria (Jones and Dangl, 2001). These 

barriers may stop the establishment of the infection. However, sometimes bacteria 

manage to overcome these constitutive defenses. Thus, plants have evolved 

strategies to detect them and activate their immune system in order to resist the attack 

(Chisholm et al., 2006; Jones and Dangl, 2006). A good system to study the plant 

defense is the Arabidopsis thaliana/Pseudomonas syringae system (Tsuda et al., 

2008). This model of interaction is sometimes unappreciated because there is no 

naturally occurring infection of A. thaliana by P. syringae in nature, and we have to 

employ artificial inoculation methods in the laboratory, which are not exactly 

representative of a natural infection (Katagiri et al., 2002). However, this is a good 

model for understanding the plant immune system and it allows a comparative study 

of the sensitivity of two plants to the same pathogen, in the same conditions. 

 

4.1.2. Pseudomonas syringae, a model pathogen 

The gamma Proteobacteria P. syringae is probably one of the most studied bacteria 

in the context of plant-microbe interactions (Baltrus et al., 2017). It is a Gram-negative 

bacteria, rod-shaped and with a polar flagella (Figure 5) (Hirano and Upper, 2000; 

Katagiri et al., 2002). P. syringae is considered as a hemibiotroph. It is first an epiphyte 

present in the phyllosphere before entering quickly in the plant through natural 

openings such as stomata on leaves. Afterward, it becomes an endophyte localized in 

the apoplast which is the intercellular space, capable to infect plant tissues (Hirano and 

Upper, 2000). 

There are 255 strains of P. syringae (Lifemap, NCBI), that have evolved to interact 

with a wide range of plants. The specialization within the species led each one to 

interact preferentially with a specific host (Hirano and Upper, 2000), leading to a 

classification in pathovars. Pseudomonas syringae pv. tomato DC3000 (PstDC3000) 

is a pathovar responsible for bacterial speck of tomato, which is at the origin of its 

name. Since it is also virulent against the model plant A. thaliana, this phytopathogen 

is widely used in laboratory (Lewis et al., 2015; Whalen et al., 1991). PstDC3000 enters 



Figure 7. Zigzag model representation of the plant immune system. In phase 1,
plants recognize pathogen/microbial-associated molecular patterns (PAMPs/MAMPs)
via their PRRs (in blue) to trigger PAMP-triggered immunity (PTI). In phase 2, some
pathogens are able to counteract the PTI by secreting effectors (Avr) (in yellow),
resulting in effector-triggered susceptibility (ETS). In phase 3, an effector is recognized
by an NB-LRR protein encoded by a Resistance gene (R) (in yellow), resulting in
effector-triggered immunity (ETI). The ETI is an amplified PTI that reaches a threshold
allowing the induction of hypersensitive response (HR). In phase 4, pathogens have
evolved to produce new effectors (in red) allowing to suppress ETI. In phase 5, plants
have in turn evolved to fight pathogens and allow ETI again thanks to new NB-LRR
proteins (in red). Adapted from Jones and Dangl, 2006.
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the plant leaves and then multiplies in the apoplast. After multiplication, we can observe 

symptoms on the infected leaves that are characterized by “water-soaked” patches 

only 2 days post infection. The patches look like necrotic lesions after 3 days post 

infection and the surrounding tissue becomes chlorotic (Figure 6). These symptoms 

that are characteristic of speck disease are clearly visible on A. thaliana (Cuppels, 

1986; Katagiri et al., 2002; Melotto et al., 2006). 

The complete genome sequence of PstDC3000 was obtained in 2003 and is about 

6.5 megabases. It contains a circular chromosome and two plasmids, encoding a total 

of 5 763 genes. Among them, genes encoding type III secretion system (T3SS) actively 

participate in the pathogenicity of the bacteria; and a total of 298 genes were identified 

as implicated in its virulence (Buell et al., 2003). Interestingly, loss-of-function 

mutations in the T3SS abrogates the disease formation, demonstrating that effectors 

injection into the cells is necessary for P. syringae pathogenesis (Collmer et al., 2000). 

 

4.2. The zigzag model of the plant immunity 

The current view of the plant immune system is usually represented as a zigzag 

model (Jones and Dangl, 2006) showing the perpetual confrontation between plants 

and pathogens that can be compared to an armament race. The evolution of the plant 

defense mechanisms and pathogen attack mechanisms can be split into 5 steps 

described below (Figure 7). It is important to remember that these different phases 

appeared during evolution to improve the persistence of each organism.  

 

4.2.1. Phase 1: recognition of pathogens inducing the PTI 

Following the infection by pathogens, plant resistance is driven by two distinct 

perception mechanisms (Jones and Dangl, 2006). These perception mechanisms can 

act together to induce the plant resistance. Both are based on the recognition of 

pathogen motifs or effectors by plant receptors, and they lead to two different levels of 

defense. The first level is the pathogenic associated molecular patterns (PAMP)-

triggered immunity (PTI), and the second one is the effector triggered immunity (ETI) 

mentioned below.  



Figure 8. Simplified schematic representation of the plant immune system. (a)
Upon pathogen attack, pathogen-associated molecular patterns (PAMPs) activate
pattern-recognition receptors (PRRs) in the host, resulting in a downstream signaling
cascade that leads to PAMP-triggered immunity (PTI). (b) Virulent pathogens have
acquired effectors (purple stars) that suppress PTI, resulting in effector-triggered
susceptibility (ETS). (c) In turn, some resistant plants have acquired resistance (R)
proteins that recognize these specific effectors, resulting in a secondary immune
response called effector-triggered immunity (ETI). Extracted from Pieterse et al., 2009.
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Pathogen motifs that can be recognized by plants correspond to some conserved 

bacterial components, referred as pathogenic associated molecular patterns (PAMPs). 

These patterns are also referred as microbial associated molecular patterns (MAMPs) 

because they are present not only in pathogenic but also in non-pathogenic microbes. 

These molecular signatures, such as flagellin, lipopolysaccharide (LPS), peptidoglycan 

or elongation factor Tu (EF-Tu) for instance, are recognized as non-self by 

transmembrane pattern recognition receptors (PRRs) found at the surface of the host 

cells (Jones and Dangl, 2006; Nürnberger and Lipka, 2005). Cell-surface receptors can 

also recognize damage associated molecular patterns (DAMPs) representing altered-

self molecules, resulting from damages caused by microbes (Boller and Felix, 2009).  

A good example of recognition mechanism is the recognition of the flagellin, the 

major component of the bacterial flagellum. This protein contains a conserved peptide 

of 22 amino acids (flg22), that is recognized as a MAMP by leucine-rich repeat (LRR) 

domains of the plant PRR FLAGELLIN-SENSING 2 (FLS2) (Boller and He, 2009). This 

small peptide is sufficient for the plant to induce many cellular responses, among which 

the induction of the expression of more than 1 000 genes in A. thaliana (Jones and 

Dangl, 2006). Interestingly, the same flagellin recognition mechanism occurs in 

animals thanks to the Toll-like receptor TLR5 (Boller and Felix, 2009) which recognizes 

another domain of flagellin. We can also mention another well-known PRR of  

A. thaliana, EF-Tu receptor (EFR), that recognizes a peptide of 18 amino acids (elf18) 

of the pathogen elongation factor Tu (EF-Tu) which is one of the most abundant protein 

in bacterial cells (Abramovitch et al., 2006). FLS2 and EFR activation both trigger the 

association with LRR (leucine rich repeat) kinase BAK1 (BRI1-ASSOCIATED 

RECEPTOR KINASE1), which then participates in the subsequent signal initiation. 

The pathogen recognition initiates the basal immunity of the plant, referred as 

PAMP-triggered immunity (PTI) (Cunnac et al., 2009). PTI is efficient against non-

adapted pathogens, those that did not evolve in such a way to resist to the plant 

defenses (Figure 8, A). This response exhibits similarities with the innate immunity in 

animals and can also be called non-host resistance (Jones and Dangl, 2006; 

Nürnberger and Lipka, 2005). 

The first detectable modification following the pathogen detection is the 

modification of ion channel activities leading to ions fluxes across the plasma 

membrane. This is accompanied by the oxidative burst characterized by the production 
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of reactive oxygen species (ROS) such as superoxide (O2-) for instance (Mcdowell and 

Dangl, 2000; Scheel, 1998). These ROS can act as antimicrobial compounds at high 

concentrations, or signal molecules at low concentrations. But PTI is also 

characterized by the quick induction of defense responses such as callose and lignin 

deposition to reinforce the cell membrane; activation of mitogen-activated protein 

kinases (MAPKs) cascades for the signal transduction after pathogen recognition; and 

expression of a broad range of defense-related genes (Boller and Felix, 2009; 

Deslandes and Rivas, 2012; Tsuda et al., 2008). 

Moreover, A. thaliana is also known to produce molecules called phytoalexins such 

as camalexin, which represent an additional defense pathway (Thomma et al., 2001). 

Camalexin has a direct toxicity against a wide range of pathogens by disrupting the 

integrity of bacterial membranes (Glawischnig, 2007; Nawrath and Métraux, 1999). 

Phytoalexins deficient A. thaliana mutant, pad3-1 that are impaired in the synthesis of 

camalexin, are more susceptible to infection by the necrotrophic fungus Alternaria 

brassicicola, even if they do not show increased susceptibility to other pathogens such 

as P. syringae (Glazebrook and Ausubel, 1994; Thomma et al., 1999). However,  

A. thaliana affected in pad1 and pad2 are more susceptible to P. syringae. Thus, 

phytoalexins themselves could be required for the limitation of the pathogen growth, or 

the precursor of phytoalexins could also have antimicrobial activities, for instance 

(Glazebrook and Ausubel, 1994). 

In addition, other molecules may be indirectly involved in the plant response to 

pathogens. For instance, it has been shown that in Nicotiana benthamiana, 

phytosterols are probably implicated in resistance against some pathogens such as  

P. syringae or Xanthomonas campestri. Actually, a deficit in phytosterols leads to an 

increased nutrient efflux into the apoplast, allowing pathogens to grow easily (Wang et 

al., 2012a). Sterol biosynthesis in A. thaliana is also important for the plant immunity 

against some pathogens, as there is an increased amount of stigmasterol resulting 

from β-sitosterol conversion upon inoculation with non-host pathogen (Griebel and 

Zeier, 2010; Wang et al., 2012a). 
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4.2.2. Phase 2: pathogen effectors leading to ETS 

During evolution, well-adapted pathogens such as P. syringae have developed 

strategies to overcome the plant defense mechanisms (Figure 7). To successfully 

colonize the plant, PstDC3000 has evolved a wide variety of virulent effectors, also 

called elicitors, able to antagonize the PTI, resulting in enhanced virulence called 

effector triggered susceptibility (ETS) (Figure 8, B) (Deslandes and Rivas, 2012; 

Jones and Dangl, 2006).  

Pathogen effectors promote pathogenicity thanks to diverse enzymatic activities. 

Some effectors are cell wall degrading enzymes, or small molecules such as toxins 

that are produced and secreted by bacteria to overcome the immune responses. Some 

bacteria also produce exopolysaccharides (EPS) in order to mask their PAMPs to 

escape the plant immune system. The most effective strategy for bacteria to deliver 

effectors into the plant cell is their injection via T3SS (Abramovitch et al., 2006), giving 

rise to another name, type III effectors (Chang et al., 2005; Lewis et al., 2015; Petnicki-

Ocwieja et al., 2002). Once they are in the cells, effectors can contribute to pathogen 

virulence, bacterial multiplication and the development of disease symptoms (Guo et 

al., 2009; Staskawicz et al., 2001). Thus, pathogen effectors provide a beneficial 

environment for bacteria to complete their lifecycle. Every strain of pathogenic bacteria 

can deliver 15-30 effectors into host cells, increasing possibilities to bypass the plant 

defense (Jones and Dangl, 2006). For example, PstDC3000 possesses 37 T3SS 

effectors (Xin et al., 2018), among which a subset of 8 effectors is sufficient to confer 

nearly full virulence to the bacteria (Cunnac et al., 2009; Wei et al., 2015). To deepen 

about T3SS, they are encoded by hypersensitive response and pathogenicity (hrp) and 

hrp conserved (hrc) genes; and effector proteins are encoded by Hrp outer protein 

(hop) genes or avirulence genes (avr) (Collmer et al., 2000; Nomura et al., 2005). 

These hrp/hrc genes are responsible for the HR response in nonhost or resistant plants 

that are able to recognize them, but they are also required for pathogenesis in 

susceptible plants (Cunnac et al., 2009). Indeed, PstDC3000 hrp mutants do not 

multiply or cause disease in A. thaliana, which confirms the essential role of these 

genes in the pathogen successful attack (Hauck et al., 2003). 

Among PstDC3000 effectors or avirulence proteins, AvrPto is one of the best-

studied protein acting at the beginning of the infection by interfering with callose 



Figure 9. Gene-for-gene concept introduced by Flor in 1971. The interaction
between a pathogen avirulent (Avr) gene product and a host resistant (R) gene product
leads to an incompatible interaction, the plant is able to recognize the pathogen and is
resistant (in blue). If the same pathogen avirulent (Avr) gene product interacts with a
host susceptible (r) product, or if the pathogen is virulent, carrying avr gene product, the
pathogen is able to escape the plant immune defense, the interaction is compatible,
leading to plant disease (in red).
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deposition in the plant cell wall to suppress basal defense in a salicylic acid-

independent manner (Collmer et al., 2000; Hauck et al., 2003; Nomura et al., 2005). 

Thus, if this effector triggers resistance in plants carrying the protein Pto and the 

associated resistance protein Prf, it promotes infection in susceptible plants. Basically, 

AvrPto acts upstream of the MAPK cascade to inhibit the establishment of the PTI 

(Xiang et al., 2008). This effector is capable to interact with FLS2/BAK1 and EFR, two 

well-known PRRs of plants which recognize bacterial flagellar peptide flg22 and EF-Tu 

peptide elf18, respectively, normally leading to the activation of the plant defense 

(Chisholm et al., 2006; Deslandes and Rivas, 2012; Xiang et al., 2008). 

 

4.2.3. Phase 3: evolution of the plant defense leading to the ETI 

Pressure from pathogens effectors led plants to develop a second line of defense 

during evolution if PTI is not sufficient to resist against pathogens attack. This defense 

mechanism called effector triggered immunity (ETI) is able to counteract ETS (Figures 
7 and 8, C). This response formerly called R-gene based resistance (Boller and Felix, 

2009) is highly specific, and has similarities with the adaptative immunity in animals. 

ETI mechanism involves the interaction between pathogen effectors and the products 

of the plant specific disease resistance R-genes. Most of these R-genes code for NB-

LRR proteins, because of characteristic nucleotide binding (NB) and leucine rich repeat 

domain (LRR) (Jones and Dangl, 2006). This concept is also known as the gene-for-

gene concept (Figure 9) (Flor, 1971; Glazebrook, 2005). There are about 125 R-genes 

in A. thaliana Columbia-0 (Col-0) ecotype that can be involved in the pathogen 

recognition (Jones and Dangl, 2006). Pathogens carrying avirulence genes (Avr) that 

are recognized by the host plant carrying resistance R-gene and therefore fail to induce 

disease are called avirulent pathogens, and the interaction is incompatible 

(Glazebrook, 2005). Thanks to this gene-for-gene recognition, the ETI will stop the 

avirulent pathogen growth (Chisholm et al., 2006; Jones and Dangl, 2006; Mcdowell 

and Dangl, 2000). 

PTI and ETI are responsible of the same kind of response by the plant, but this 

response is qualitatively stronger and accelerated in the case of ETI. ETI induces the 

resistance and usually, the response is strong enough to reach a threshold inducing 
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the Hypersensitive Response (HR), characterized by programmed cell death at the 

infection site (Greenberg and Yao, 2004; Jones and Dangl, 2006). This cell death 

allows to limit the access of the pathogen to water and nutrients necessary for its 

growth (Glazebrook, 2005). As for the PTI, MAPK cascades are essential in the 

transmission of the pathogen recognition signal to the plant cell to activate the defense 

mechanisms (Abramovitch et al., 2006; Asai et al., 2002; Pedley and Martin, 2005). 

 

4.2.4. Perpetual co-evolution of plants defense and pathogens effectors 

In response to the ETI, the evolution led some virulent pathogens to acquire 

additional effectors or to diversify the ones they already had to escape the plant 

defense and suppress the ETI, leading to a new phase of ETS (Figure 7). These 

effectors could have enzymatic activities modifying or degrading targets in signaling 

pathways, such as phosphatase activity against MAPKs for instance (Abramovitch et 

al., 2006; Pedley and Martin, 2005). At this stage, pathogens are well adapted and the 

plant developed specific responses to defend. As for the first occurrence of ETS, 

effectors are commonly injected inside the host cells via T3SS. 

Successful pathogens that managed to evade the plant detection in turn led the 

host plant to evolve in order to respond back by selection for novel R-genes that should 

be able to recognize other effectors, so that ETI can be triggered a second time to 

definitely eliminate the pathogen (Figure 7). 

In this model, we can clearly understand that there is a coevolution between plants 

and pathogens, that led plants to develop defenses against pathogens, which then 

developed ways to bypass these defenses, leading plants to react back and so on. The 

final outcome of this battle depends on the abilities of each interactant to fight against 

the other, which are defined by their genetic features. 

 

4.3. Systemic defenses of the plant 

Once the pathogen is recognized by the plant at the infection site thanks to the 

mechanisms explained above, systemic defenses are deployed quickly to protect other 



Figure 10. Structures of salicylic acid (SA), jasmonic acid (JA) and ethylene (ET).
These three hormones are the main ones acting as signaling molecules in the plant
defense regulation. SA (A) is mainly implicated in the defense against biotrophic
pathogens, while JA (B) and ET (C) are mainly involved in the response against
necrotrophic pathogens. Structures from PubChem.
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parts of the plant (Mcdowell and Dangl, 2000). It only takes few minutes to activate 

local plant defense responses, and systemic defense responses in distant tissues are 

activated within hours. Nonetheless these responses are resource-intensive, and they 

cause some collateral damages on host tissues. Thus, plants must limit these 

responses to the proper place and time (Mcdowell and Dangl, 2000).  

Activation of the plant defenses rely on a complex regulatory network of hormones 

dependently to the kind of pathogen attacking the plant (Jones and Dangl, 2006; 

Pieterse et al., 2012). Basically, three main hormones act as signaling molecules in 

plants to regulate their defense against pathogens: salicylic acid (SA), jasmonic acid 

(JA) and ethylene (ET) (Figure 10). Globally, there is a balance between SA, which is 

efficient against many biotrophs, on one hand, and JA and ET that rather promote 

defense against necrotrophic pathogens, on the other hand (Glazebrook, 2005; 

Thomma et al., 2001). The wound response efficient against herbivores is also 

regulated by the JA signaling pathway (Pieterse et al., 2009). These hormones are 

involved in the establishment of induced resistance in local and distant tissues of the 

plant. 

The outcome of these signaling pathways is the effectiveness of the plant defense 

against a broad range of pathogens and its preparation to further infection (Ton et al., 

2002). The induced disease resistance is manifested by a less effective disease and a 

restriction of the colonization by the pathogen, in comparison to plants that are not in 

this state of induced resistance that we can qualify as a “primed” state. 

 

4.3.1. Salicylic acid: implication in Systemic Acquired Resistance (SAR) 

SA is mainly active against biotrophic and hemibiotrophic pathogens such as 

PstDC3000. It is first a local and then a systemic signal transported via the plant 

phloem to distant uninfected tissues. This hormone is a key regulator of pathogen-

induced systemic acquired resistance (SAR) (Uknes et al., 1992). SAR could also be 

activated when the plant is attacked by fungi or viruses, not only bacteria.  

Following the pathogen detection, some genes implicated in SA biosynthesis and 

others implicated in the regulation of its biosynthesis are activated in order to allow the 

hormone accumulation. Signaling downstream of SA is mainly under the control of the 
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regulatory protein NON-EXPRESSOR OF PR GENES1 (NPR1), a transcriptional 

coactivator of some defense-related genes such as PATHOGENESIS RELATED 1 

(PR-1) (Figure 11) (Kunkel and Brooks, 2002; Pieterse et al., 2012). Moreover, WRKY 

transcription factors play an important role in the regulation of SA-dependent 

responses. For instance, in A. thaliana, WRKY70 induces the expression of SA-

responsive PR genes and concomitantly suppresses the expression of JA-responsive 

marker gene PLANT DEFENSIN1.2 (PDF1.2) (Koornneef and Pieterse, 2008). For 

activation of SAR in distant tissues, a long-distance signaling cascade is essential. 

This requires the lipid-transfer protein DEFECTIVE IN INDUCED RESISTANCE1 

(DIR1) that acts as a chaperone for the mobile SAR signal (Maldonado et al., 2002). 

Methyl ester of SA (MeSA) is one of the long-distance mobile signals involved in the 

establishment of SAR in distant tissues. 

SA potentiates many plant defense responses and induces the activation of some 

pathogenesis-related genes (PR genes) expression also classified as effector genes, 

even in tissues distant from the infection site, allowing the protection of the plant, 

notably from further infection (Glazebrook, 2005). Some PR genes implicated in SAR 

encode pathogenesis-related proteins such as glucanases, chitinases, or enzymes 

involved in the biosynthesis of phytoalexins (Scheel, 1998). These proteins can be 

found directly in the apoplast, in such a way that they can come in contact with the 

pathogen during the infection process (Hammerschmidt, 1999; Van Loon, 1997). In A. 

thaliana, some of these PR genes such as PR-1, PR-2 and PR-5 that encode 

antimicrobial proteins are SAR marker genes (Nawrath and Métraux, 1999; Thomma 

et al., 2001; Uknes et al., 1992). PR-2 is a β-1,3-glucanases, and PR-5 is a thaumatin-

like protein implicated in the mechanism of defense, while the mode of action of PR-1 

remains poorly understood. PR-1 and PR-5 are often strongly induced and they seem 

to affect the plant cell membranes (Van Loon, 1997). PR-2 and PR-5 genes can also 

be induced by an SA-independent pathway, independently from PR-1, highlighting 

their importance in the plant immune response (Thomma et al., 2001). Contrary to the 

induction of phytoalexins or cell wall rigidification by callose deposition that are local 

reactions, accumulation of pathogenesis-related proteins extends into non-inoculated 

parts of the plant that, upon challenge, exhibit acquired resistance (Van Loon, 1997). 

 



Figure 11. Model of the SA, and JA/ET signaling pathways in Arabidopsis thaliana.
Following the pathogen detection, SA, JA and ET pathways could be activated
depending on the upstream signal. (A) The SA pathway is activated upon detection of a
(hemi)biotrophic pathogen. SA biosynthesis requires the activation of SID2 (SA
INDUCTION DEFICIENT2) and EDS5 (ENHANCED DISEASE SUSCEPTIBILITY5) and
is controlled by EDS1, EDS4 and PAD4 (PHYTOALEXIN DEFICIENT4). The SA-
degrading enzyme salicylate hydroxylase (NahG) exerts a retro-control on the SA
biosynthesis. SA leads to the activation of NPR1 (NON-EXPRESSOR OF PR
GENES1), which is directly implicated in the activation of some defense-related genes
such as PR-1. Moreover, WRKY70 transcription factor induces the expression of SA-
responsive PR genes and concomitantly suppresses the expression of JA-responsive
marker gene PLANT DEFENSIN1.2 (PDF1.2) (Koornneef and Pieterse, 2008). (B) In
contrast, following the detection of necrotrophic pathogens, JA is synthetized thanks to
FATTY ACID DESATURASE3/7/8 (FAD3/7/8), and is then perceived by CORONATINE
INSENSITIVE1 (COI1) that acts in proteolysis, and JASMONIC ACID RESISTANT1
(JAR1) that can form JA-Isoleucine, the active form of JA. This leads to the activation of
defense effectors, including PDF1.2 and THIONIN2.1 (THI2.1). CONSTITUTIVE
EXPRESSOR OF THIONIN1 (CET1) and CET3 act as negative regulators of JA
biosynthesis, exerting a last level of JA regulation. ET biosynthesis leads to the
activation of ETHYLENE INSENSITIVE2 (EIN2) upstream of the induced defenses
characterized by PDF1.2 and THI2.1. There is a connection between both pathways,
leading to a regulation of one by another. Positive regulatory interactions between these
signaling pathways are indicated by green arrows, antagonistic interactions by red lines.
Adapted from Kunkel et al., 2002.
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4.3.2. Jasmonic acid and Ethylene: implication in a SA-independent 
resistance 

In addition to the response based on SA for (hemi)-biotrophic pathogens, 

necrotrophic pathogens such as Botrytis cinerea and insects or wounding, for their 

part, induce a response based on the combination of JA and ET in the plant. In  

A. thaliana, the detection of necrotrophic pathogens is followed by the biosynthesis of 

JA which leads to the formation of conjugates between JA and several amino acids, 

including isoleucine (Ile) to form JA-Ile, the active form of JA. This leads to the 

activation of defense effectors, including PLANT DEFENSIN1.2 (PDF1.2) and 

THIONIN2.1 (THI2.1), which are also under the control of ET. In response to 

necrotrophs, A. thaliana also induces the biosynthesis of ET, followed by the activation 

of ETHYLENE INSENSITIVE2 (EIN2) upstream of the induced defenses characterized 

by the below mentioned PDF1.2 and THI2.1 (Figure 11) (Glazebrook, 2005; Kunkel 

and Brooks, 2002). 

 

4.3.3. Interconnection between both pathways 

It is important to mention that SA and JA/ET defense pathways are considered as 

mutually antagonistic, giving rise to the apparition of new mechanisms evolved by 

bacteria to exploit this to overcome SA-mediated defense (Kunkel and Brooks, 2002). 

This is part of the armament race previously mentioned. Some pathogens such as  

P. syringae belongs to pathogens taking advantage from this balance. Indeed, this 

pathogen synthetizes coronatine, a non-host-specific phytotoxin that is not essential 

for pathogenicity but enhances virulence and symptoms development (Bender et al., 

1996; Hauck et al., 2003). This molecule exhibits structural similarity with jasmonic 

acid-isoleucine (JA-Ile), the active form of JA, supporting the idea that the toxin acts 

as a molecular mimic of JA-Ile. More precisely, the coronafacic acid moiety of 

coronatine is structurally and functionally analogous to JA, which is produced by the 

plant in response to stress; and the coronamic acid moiety is derived from isoleucine 

(Bender et al., 1996). Thus, coronatine activates the JA signaling response which 

inhibits the SA-mediated host response normally active against biotrophs, because of 

the balance between the two pathways. In addition, coronatine has been shown to 
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prevent stomatal closure usually induced by the plant after the pathogen detection, and 

thus facilitates bacterial entry into the leaves (Melotto et al., 2006). 

Interestingly, basal resistance against PstDC3000 was found to be affected in both 

NahG plants expressing the bacterial salicylate hydroxylase (nahG) gene (SA signaling 

pathway) and in JA- and ET-response mutants (Pieterse et al. 1998), suggesting that 

activation of both the SA-dependent pathway and the JA/ET-dependent pathway may 

act together to enhance the plant protection thanks to the systemic resistance (Ton et 

al., 2002). Thus, these responses are compatible and additive (van Wees et al., 2000). 

Coronatine and T3SS effectors also induce numerous ABA-responsive genes in  

A. thaliana, suggesting that diverse mechanisms of defense are solicited to fight 

against PstDC3000 (Thilmony et al., 2006). Nevertheless, genes contributing to the 

defense against PstDC3000 appear to be mainly involved in the SA-dependent 

signaling pathway. This is validated by the fact that plants carrying the NahG transgene 

responsible for SA degradation are more affected by PstDC3000 infection (Katagiri et 

al., 2002; Thomma et al., 2001). 

 

4.3.4. Other molecules implicated in the plant systemic resistance 

Finally, the classical view of two main signaling pathways requires revisions 

because additional plant hormones may have an impact on the balance between these 

two hormones signaling pathways (Jones and Dangl, 2006). Recently, abscisic acid 

(ABA), auxins, gibberellins, brassinosteroids and cytokinins have emerged as other 

keys implicated in plant signaling (Kumar, 2014; Pieterse et al., 2012). Particularly, 

ABA is known for its role in abiotic stress tolerance for a long time, but recent evidences 

show that it also has a role in biotic stress tolerance (Asselbergh et al., 2008; Ton et 

al., 2009). Indeed, it seems that the role of ABA is not clearly established since this 

molecule can act as a positive or a negative regulator of disease resistance to both 

necrotrophic or biotrophic pathogens by interfering with signaling pathways implicated 

in biotic stress resistance (Asselbergh et al., 2008). A wide range of mechanisms 

underlying the role of this hormone in biotic stress have been suggested, considering 

the interaction with SA- and JA/ET- pathways, suppression of ROS, induction of 

stomatal closure or stimulation of callose deposition, for instance. Actually, SA or JA/Et 
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Figure 12. Schematic representation of the holobiont concept. The holobiont
concept has been popularized by Rosenberg and Zilber-Rosenberg in 2007 and
consists in considering the host and its associated microbiota as an additional
organismal level in addition to the ones previously considered independently.
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hormonal signalization mainly depend on the nature of the pathogen lifecycle, while 

ABA induction rather depends on the timing of recognition, the activity of effectors, or 

the plant tissue which is affected (Ton et al., 2009). 

 

5. Interactions with non-pathogenic micro-organisms 

Interactions with pathogenic micro-organisms previously developed are not the 

more common interactions between plants and micro-organisms. Actually, we should 

take in consideration mutualist micro-organisms that form a community naturally 

interacting with the plant. 

 

5.1. The holobiont concept 

For a long time, we were used to consider the plant as a single fully-fledged and 

autonomous organism. In reality, plants are directly and indirectly interacting with 

millions of micro-organisms both inside and outside their tissues that we did not 

consider at first sight. These micro-organisms may play a role on the plant physiology 

and health. That is why plants can no longer be considered as standalone entities and 

researchers tend to have a more holistic vision nowadays, considering the plant per se 

and its microbiota collectively as an entity, an additional organismal level compared to 

the ones previously considered independently (Vandenkoornhuyse et al., 2015).  

We refer to this additional organismal level as the “holobiont”, a term that was first 

proposed by Lynn Margulis in 1991 to describe a host and a single symbiont together 

as a biological entity (Simon et al., 2019). The notion was further extended to the 

description of a host and all the micro-organisms interacting with it (Figure 12). It is 

also extended to the “hologenome” concept introduced by Ilana Zilber-Rosenberg and 

Eugene Rosenberg in 2007, represented by the host and microbes genomes 

(Rosenberg and Zilber-Rosenberg, 2018; Rosenberg et al., 2007). The hologenome 

concept is based on 4 basic principles according to Rosenberg and Zilber-Rosenberg. 

The first principle is that all hosts (animals and plants) harbor complex microbiota and 

are thus considered as holobionts that function generally as a distinct entity. The 

second principle consists in the consideration of the entire holobiont as a huge distinct 
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unit among which different partner have specific roles allowing the ensemble to live on 

earth. Interestingly, the third principle proposes that a fraction of the microbiome 

genome is considered to be transmitted together with the host genome to the next 

generation to propagate properties of this holobiont. For instance, even if a large part 

of the root endosphere microbiota is considered to be reestablished when the plant 

germinates (van der Heijden and Schlaeppi, 2015), it has been shown that there is a 

vertical transmission of some bacteria via the seeds in some plant species, among 

which grass species (Barret et al., 2015; Vannier et al., 2018). Finally, the fourth 

principle of the hologenome assumes that there is a role of the microbiome in the 

adaptation and evolution of the holobiont (Rosenberg and Zilber-Rosenberg, 2018). 

Bacteria from the microbiota are not just associated with their host by chance, but they 

are required for the plant to grow and survive in different ecosystems (Hardoim et al., 

2008).  

 

5.2. Techniques for the study of plant-bacteria interactions 

The emergence of the holobiont concept led researchers to study interactions 

between plants and their associated communities, first by the identification of the 

bacteria that form the microbiota and then by the study of their effect on plants. 

 

5.2.1. Identification of the bacterial communities interacting with plants 

Thanks to the development of the environmental microbial and genomic 

approaches last decades (Guttman et al., 2014), a precise inventory of the bacterial 

communities interacting with many plants including A. thaliana (Bai et al., 2015; 

Bodenhausen et al., 2013; Bulgarelli et al., 2012; Horton et al., 2014; Lundberg et al., 

2012; Schlaeppi et al., 2014), Nicotiana tabacum (Saleem et al., 2016; Santhanam et 

al., 2014) or Hordeum vulgare (Bulgarelli et al., 2015) has been done. These analyses 

are possible nowadays thanks to culture-independent community profiling methods 

coupled with metagenomic studies, avoiding the bias induced by non-cultivable 

bacteria (Guttman et al., 2014). The basis for making an inventory of the communities 

interacting with a host is commonly the amplification and sequencing of a part of the 
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gene coding the 16S rRNA which is distinctive to each bacteria (Bai et al., 2015; 

Bulgarelli et al., 2012, 2015; Lundberg et al., 2012; Saleem et al., 2016; Santhanam et 

al., 2014; Schlaeppi et al., 2014). 

Lundberg et al. showed that the soil type and the compartment of the plant are the 

main drivers of diversity between microbiotas (Lundberg et al., 2012). The main source 

of bacteria considered as the “start inoculum” of the A. thaliana root microbiota is the 

soil, which harbors a huge diversity of bacteria; while the start inoculum of the leaf 

microbiota is probably more variable, with bacteria coming from the atmosphere, 

insects, or soil. However, despite this diversity that can be introduced by environmental 

conditions, it has been shown that there is also an extensive taxonomic overlap 

between the microbiota of the leaves and the one of the roots (Bai et al., 2015). In  

A. thaliana, the inventory of the microbiota of plants coming from different soils and at 

different developmental stages highlighted the existence of a core microbiota that is 

stable enough to remain the same independently of the soil, ecotype, or developmental 

stage (Bai et al., 2015; Bulgarelli et al., 2012, 2015; Lundberg et al., 2012; Saleem et 

al., 2016; Santhanam et al., 2014; Schlaeppi et al., 2014). More generally, the study of 

microbiotas interacting with A. thaliana, but also Nicotiana tabacum and Hordeum 

vulgare has highlighted the co-occurrence of four main bacterial phyla that are always 

found in the associated communities: Actinobacteria, Bacteroidetes, Firmicutes and 

Proteobacteria (Bai et al., 2015). 

 

5.2.2. Investigation of the effect of some bacteria on the plant phenotype 
and fitness 

Once the interacting communities are identified, it is interesting to study their impact 

on the plant. For that purpose, Bai et al. created synthetic communities (SynComs) by 

isolating the majority of bacterial species constantly detectable by metabarcoding. It is 

important to notice that the plant-associated microbiota contains a relatively high 

cultivable fraction of bacteria (up to 85% of the culture-independent communities), 

allowing the creation of these SynComs (Bai et al., 2015; Bodenhausen et al., 2013; 

Burch et al., 2016). Synthetic communities constitute a great tool to assess the 

potential of a microbiota to colonize a host plant in a gnotobiotic system, meaning a 
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sterile system inoculated with a specific strain or community. Actually, it is challenging 

to determine which bacteria or combinations of bacteria are responsible of an effect on 

the plant phenotype and fitness. Thus, such resources together with the reproducibility 

of a gnotobiotic system will allow further studies on bacterial communities 

establishment and functions in laboratory conditions (Herrera Paredes et al., 2018). 

Such systems are already used in few laboratories, allowing the inoculation of a unique 

bacteria or synthetic communities to germ-free plants under controlled culture 

conditions. It is possible to use microboxes or plates containing solid medium allowing 

the plant growth for up to one month (Herrera Paredes et al., 2018; Innerebner et al., 

2011). Another kind of system was developed to keep wheatgrass (Agropyron 

cristatum cv. CDII) in health for at least 70 days. In this case, plants were grown in 

sterile quartz sand within flow-through glass columns (Henry et al., 2006).  

Different parameters can be assessed following the inoculation of bacteria in such 

systems. For instance, the effect of some bacteria on the host plant in stress conditions 

such as phosphate starvation has been analyzed. Herrera Paredes et al. thus 

demonstrated that it is possible to influence phosphate accumulation in the plant shoot 

in a controlled manner (Herrera Paredes et al., 2018). They demonstrated that it is 

possible to establish a link between the microbiota composition and the host 

phenotype, highlighting the utility of axenic culture systems for plant-bacteria 

interactions studies. 

 

5.3. Beneficial bacteria associated with plants 

The study of the interactions between plants and bacteria still gains some interest 

since there is an increasing need to optimize crop culture sustainability and productivity 

thanks to new methods such as bacterial inoculants (Finkel et al., 2017; Keven Vessey, 

2003; Schütz et al., 2018). Indeed, the human population and the food needs are 

growing even faster, while the different kinds of stresses mentioned at the beginning 

of the introduction have harmful consequences on crop cultures worldwide. This 

disturbing situation forces humans to find solutions to improve agricultural conditions 

in order to protect plant cultures and reduce crop losses (Piasecka et al., 2019; Suzuki 

et al., 2014; Wang et al., 2003). In an agricultural context in which the aim is to reduce 
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the use of pesticides and chemical fertilizers, researchers are increasingly thinking 

about an alternative solution which is the utilization of bacteria that have beneficial, 

promoting growth effects on the plant, the so-called plant growth promoting bacteria 

(PGPB). The aim is to use the potential of microbial inoculants as biofertilizers, plant 

strengtheners, phytostimulators or biopesticides, depending on their mode of action 

and their impact on the plant. 

Some PGPB are found in the rhizosphere and are named plant growth promoting 

rhizobacteria (PGPR). Relationships between PGPB and their host plant can be 

considered on different levels of complexity. In rhizospheric relationships, the PGPB 

remains outside of the plant, they bind on root or seed surface. In endophytic 

relationships that are less known, PGPB enter the tissues inside the plant, or the 

apoplast, and in the case of nitrogen fixation, some are intracellular. Finally, 

phyllospheric PGBP binds to leaf or stem surface (Glick, 2014; Keven Vessey, 2003). 

The positive effect of PGPB can be direct, by promoting the plant growth in absence 

of pathogens; but in can also be indirect, by protecting the plant against pathogens 

(Lugtenberg and Kamilova, 2009). 

The use of PGPB that have powerful capacities to help the plant to grow and resist 

pathogens and their manipulation as biofertilizers or biocontrol agents is actually a 

really old concept, already used 300 before Christ. Even if bacteria were not already 

described at this time, the mixing of different soils, and thus different microbiotas, was 

a way to remedy troubles of culture (Keven Vessey, 2003). PGPB have already been 

used for years as single strain inoculants, but now some laboratories tend to innovate 

new biocontrol strategies involving microbial communities or strain mixtures (Dessaux 

et al., 2016). Indeed, the first commercialized bioinoculant was patented in 1896 (Finkel 

et al., 2017) and there are currently more than 190 products classified as “microbial 

inoculants” according to the Organic Materials Review Institute (OMRI). This number 

is increasing every year, showing a growing interest in the use of bioinoculants 

worldwide, with a market growth rate of 10% per year, because of its environmental 

friendly character (Berg, 2009; Schütz et al., 2018). Interestingly, biofertilizers showed 

an increased efficiency in dry climates, where it is typically more difficult for the plant 

to survive as it has been shown with a diminution of productivity of the cultures of up 

to 30% (Rubin et al., 2017; Schütz et al., 2018). This is in accordance with the stress 

gradient hypothesis which suggests that inter-specific interactions shifts from 
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competitive to facilitative under increasing abiotic stress (Bertness and Callaway, 

1994). Interestingly, some new research projects also tend to focus on how to 

manipulate the microbiota to reduce postharvest food loss instead of increase food 

production in order to ensure food supply (Buchholz et al., 2018). Nowadays, the 

advantage is that we are capable to study more in details the microbiota thanks to 

laboratory technologies, allowing deciphering more precisely which bacteria have plant 

growth promoting skills or protective traits. 

 

5.3.1. Direct beneficial effects on the plant  

First of all, PGPB can have direct effects on the plant by promoting nutrient 

availability for instance, including improved solubilization of phosphorus or iron, or 

nitrogen fixation. Some other PGPB can modulate the plant growth via production of 

hormones and/or inhibition of the synthesis of the plants ones (Belimov et al., 2015; 

Dessaux et al., 2016; Olanrewaju et al., 2017).  

The most studied PGPR are nitrogen-fixing (N2-fixing) bacteria such as Rhizobium, 

Bradyrhizobium or Frankia. Nitrogen is a nutriment essential for the growth of all living 

organisms. However, a large amount of nitrogen is gaseous, a form in which it is not 

suitable for plant assimilation. Nitrogen-fixing bacteria form nodules on roots of 

leguminous plants, where they convert atmospheric nitrogen (N2) into ammonia (NH3) 

or amino acids, a source of nitrogen that can be assessed by the host plant. This is 

possible thanks to the synthesis of a nitrogenase (Glick, 2012; Olanrewaju et al., 2017; 

van Rhijn and Vanderleyden, 1995). Moreover, there are bacteria with positive effects 

on the plant root growth and morphology that are also crucial for the uptake of a variety 

of nutrients in the soil (Keven Vessey, 2003). 

Interestingly, some PGPR are also capable to synthetize hormones analogous to 

plant hormones like auxins, gibberellins and cytokinins, and thus affect plant growth 

and development (Hardoim et al., 2008). For instance, the main auxin phytohormone, 

indole-3-acetic acid (IAA), is synthetized by several bacteria, among which some 

nitrogen fixators (Spaepen et al., 2007). In plants, this hormone is implicated in diverse 

processes including cell enlargement and division, tissue differentiation, and 

responses to light. By producing IAA, PGPR have the capacity to enhance root 
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proliferation, like Azospirillum brasilense or Pseudomonas putida do. This increased 

root system enhances nutrients uptakes and root exudation, which in turn increases 

the colonization by bacteria from the soil (Bashan et al., 2004; Dobbelaere et al., 1999). 

Some PGPB such as Pseudomonas putida synthetize 1-aminocyclopropane-1-

carboxylate (ACC) deaminase to modulate the plant ethylene levels. Actually, ACC is 

the precursor of ethylene, a phytohormone implicated in the modulation of plant growth 

and development, and in the response to a wide range of stresses as previously 

mentioned in the introduction. Regarding the plant response to stressful conditions, 

ethylene levels increase leading to a situation called “stress ethylene”. This is 

characterized by two peaks of ethylene synthesis. The first one consumes the existing 

pool of ACC in stressed tissues. The second ethylene peak which is much important 

occurs following the synthesis of additional ACC by the plant in response to stress and 

has generally consequences on the plant growth and health. ACC deaminase of PGPB 

leads to the cleavage of ACC into ammonia and α-ketobutyrate, and thus decreases 

plant ethylene levels. This activity can prevent damages caused by high levels of 

ethylene in the plant (Glick, 2014) and could lead to plant growth modulation. 

More recently, it has been shown that some bacteria are able to synthetize other 

molecules that can have an impact on the plant. For example, Microbacterium imperial 

Rz19M10, Kocuria erythromyxa Rt5M10 and Terribacillus saccharophilus Rt17M10 

are able to induce the biosynthesis of secondary metabolites like terpenes in Vitis 

vinifera cv. Malbec. This terpenes biosynthesis results in the increment of antioxidant 

capacity of the tissues and a better resistance to pathogens such as Botrytis cinerea 

(Salomon et al., 2016), highlighting their implication in the plant health. 

 

5.3.2. Indirect beneficial effects on the plant  

Indirect effects of PGPB that are also valuable for the plant are due to a competition 

between bacteria. Some PBPB can act as biocontrol agents by the production of 

antibacterial, antifungal or nematicide compounds, allowing a first line of defense 

against pathogens. 

The main mechanism used by PGPB to act against pathogens is the production of 

antibiotic compounds. In this case, some bacteria such as certain Pseudomonas 
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strains possess a biocontrol activity by producing well-characterized antibiotics such 

as phenazines or pyrrolnitrin, for instance (Haas and Keel, 2003). This is also the case 

of Streptomyces spp. or Bacillus spp. (Haas and Keel, 2003). Some others produce 

lytic enzymes such as β-1,3 glucanases or proteases that are efficient against a range 

of pathogenic fungi including Botrytis cinerea (Glick, 2012). 

In recent studies, experiments on bacteria interacting with A. thaliana led to the 

observation that some strains such as Sphingomonas melonis sp. Fr1 confer 

protection against the phytopathogen PstDC3000 (Innerebner et al., 2011; Vogel et al., 

2016). The metabolic profiles of axenic leaves or leaves inoculated with Sphingomonas 

melonis sp. FR1, Methylobacterium extorquens PA1 or PstDC3000 have also been 

studied. This revealed that Sphingomonas melonis sp. Fr1 occupied a niche that 

overlaps the one of PstDC3000, potentially leading to a competition for nutrients. This 

could at least partially explain the protective effect of Sphingomonas melonis sp. Fr1 

against PstDC3000 (Ryffel et al., 2016). 

Additionally, PGPB can stimulate the plant defense machinery by induction of the 

induced systemic resistance (ISR) (Dessaux et al., 2016; Glick, 2012; Olanrewaju et 

al., 2017). In this situation, bacteria interacting with the roots are perceived like elicitors 

and activate the synthesis of secondary metabolites and pathogen related proteins by 

the plant (Heil, 2002; Salomon et al., 2016). This process induces in the plant a state 

of enhanced defensive capacity to resist future pathogen attacks. A wide variety of 

root-associated mutualist bacteria, including Pseudomonas, Bacillus, Trichoderma and 

mycorrhiza species prime the plant immune system without activating costly defenses 

(Glick, 2012; van Loon et al., 1998; Pieterse et al., 2014). ISR has initially been 

demonstrated in plants colonized by Pseudomonas fluorescens strain WCS417r that 

was shown to protect the plant against the fungal pathogen Fusarium oxysporum. This 

induced resistance was initially thought to be SAR, but it was not correlated with 

accumulation of PR proteins that are characteristic of SAR (Hammerschmidt, 1999; 

Hoffland et al., 1995; Van Peer and Schippers, 1992). Moreover, transgenic NahG  

A. thaliana that do not accumulate SA exhibit an enhanced protection against 

PstDC3000 mediated by Pseudomonas fluorescens WCS417r, supporting that ISR is 

mediated by a SA-independent signalization pathway (Pieterse et al., 1996, 2000). 

This defense mechanism involves JA and ET signaling to induce the plant defenses 

since A. thaliana mutants impaired in JA (jar1 for instance) and ET (etr1 for instance) 
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were shown to be defective in ISR induced by Pseudomonas fluorescens WCS417r 

(Pieterse et al., 1998; Thomma et al., 2001). ISR is based on an enhanced sensitivity 

to JA/ET rather than on an increased biosynthesis (Pieterse et al., 2000, 2014). As 

another example, Pseudomonas fluorescens S97 is able to limit the infection of bean 

after inoculation to the seeds, in comparison to non-inoculated seeds (Alström, 1991). 

Same observations have been made for other PGPR and other plant species (Pieterse 

et al., 2014 for review). 

Basically, ISR is first induced at a local level and requires MYB72 transcription 

factor gene, which has been identified as one of the significantly induced genes in  

A. thaliana following its colonization by the PGPR Pseudomonas fluorescens 

WSC417r (Verhagen et al., 2004). ISR is then extended to a systemic level and 

requires NPR1 which is also involved in SAR as co-activator of some defense proteins, 

indicating that it differentially regulates defense responses in accordance with the 

signals that are perceived by the plant, but its functions remain poorly understood 

(Pieterse et al., 1998). NPR1 co-activates some transcription factors that give the plant 

the capacity to react in an accelerated defense response upon perception of 

pathogens. Among them, AP2/ERF are notably abundant and implicated in the 

regulation of JA and ET dependent defenses. In addition, MYC2 is a key transcriptional 

regulator of JA-dependent defenses since mutants impaired in MYC2 are unable to 

mediate ISR (Memelink, 2009). Together, these signaling events lead to the priming of 

callose and activation of JA/ET-dependent defense genes characteristic of the ISR 

such as VSP (VEGETATIVE STORAGE PROTEIN), PDF1.2 and HEL (HEVEIN-LIKE 

PROTEIN) (Verhagen et al., 2004; van Wees et al., 1999). 

 

5.4. How does the plant select the microbiota? 

Since plants have a complex immune system, they must be able to recognize the 

beneficial micro-organisms from the pathogenic ones in order to deal with them rather 

than killing them. For instance, A. thaliana can presumably discriminate non-

pathogenic micro-organisms from the pathogenic ones, allowing a variable response 

depending on the impact of the bacteria on the plant (Finkel et al., 2017; Zamioudis 

and Pieterse, 2012). 
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 Interactions between plants and beneficial bacteria are partially allowed by the 

bacteria themselves. It seems that they have evolved the ability to escape the plant 

defense mechanisms by modifying their MAMP epitope, or inhibiting the biosynthesis 

of their MAMP-containing molecules, for instance (Hacquard et al., 2017). Plant-

associated bacteria such as Xanthomonas species, for which there is no sequence 

information for flagellin, one of the best-known MAMP, do not induce rapid defense 

response in tomato cells, for example (Felix et al., 1999). In some other situations, 

commensal bacteria like Pseudomonas protegens Pf-5 produce elevated levels of 

cyclic-di-GMP (bis-(3'-5')-cyclic di-guanosine monophosphate) which inhibits the 

flagellin synthesis. Hence, it helps the bacteria to evade the recognition by FLS2 and 

thus, the plant defense mechanisms (Pfeilmeier et al., 2016). 

Sometimes, some members of the plant microbiota still activate the first line of the 

plant immunity, which is the PTI. But this is actually needed for the protective activity 

mediated by commensals. For instance, Methylobacterium extorquens PA1 does not 

induce a significant transcriptional response from A. thaliana, while Sphingomonas 

melonis sp. FR1 activates the expression of genes that are implicated in the defense 

against pathogens and thus confers resistance against the pathogen PstDC3000 

(Innerebner et al., 2011; Vogel et al., 2016). In contrast, the protection against the 

pathogen conferred by this protective strain is clearly reduced in the pattern-

recognition co-receptor mutant bak1/bkk1, in which the formation of some PRR 

complexes is impaired (Roux et al., 2011; Vogel et al., 2016). This indicates that the 

PTI is necessary for the protective activity conferred by commensal bacteria such as 

Sphingomonas melonis sp. Fr1. This may be considered as a mechanism of defense 

priming in which the plant is in a state of ISR (Finkel et al., 2017). 

The accommodation of the associated microbiota is also affected by the exchange 

of some molecules between plant and bacteria. This is particularly well documented in 

the case of nitrogen fixation. Medicago sativa L. seeds and roots release molecules 

such as flavonoids that are implicated in the selection of Rhizobium meliloti. Actually, 

many flavonoids notably induce nodulation genes in Rhizobium meliloti (Hartwig et al., 

1991). We can also mention isoprenoids as molecules presumably impacting the 

relationship between plants and their microbiota. As detailed in the following part of the 

introduction, like plants, bacteria are able to synthetize isoprenoids that may have an 

impact on their interaction with the plant. Among these isoprenoids, bacteria have the 
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ability to synthetize hopanoids that resemble sterols of plants, and they are found in 

diverse bacteria where they play a similar role (Belin et al., 2018; Kannenberg and 

Poralla, 1999). Interestingly, Bradyrhizobium, a symbiont of Aeschynomene legumes 

synthetizes LPS in which lipid A is bearing a hopanoid. This hopanoid attached to the 

lipid A appears to be important for the stability and rigidity of the outer membrane, but 

also for the resistance to some stressful conditions and the survival of the bacteria in 

the host plant (Silipo et al., 2014). Thus, bacterial isoprenoids may have a role in the 

interactions with the plant (Belin et al., 2018). Caryolanes are another kind of 

isoprenoids that can be produced by bacteria, especially Streptomyces sp. 

JMRC:ST027706 which is an endophyte of the mangrove plant Bruguiera gymnorrhiza. 

These caryolanes may be important for the interaction and communication with the 

host plant (Ding et al., 2015).  

In the laboratory, we decided to study the role of isoprenoids in the interactions 

between plants and bacteria. 

 

 

II. Isoprenoid diversity and functions 

 

1. Generalities about isoprenoids 

Isoprenoids, also called terpenoids, represent a large class of molecules that are 

essential for all living organisms, from animals to algae, including plants and bacteria. 

The term terpenoid originates from the word turpentine (“terpentin” in German), since 

some of the first terpenoids described were isolated from turpentine. Isoprenoids are 

known as the group of metabolites that are functionally and structurally the most 

diverse, with more than 55 000 metabolites identified among all living organisms, and 

they reach their greatest structural and functional diversity in plants (Thulasiram et al., 

2007). Plant isoprenoids play a role in a wide variety of essential biological processes 

such as respiration (ubiquinones), photosynthesis (chlorophylls and carotenoids), or 

cell division or elongation (sterols). Because of their essential nature, they are 

categorized into what is commonly called primary metabolism. However, they are also 



Figure 13. Five-carbon units at the basis of all isoprenoid biosynthesis. Isoprene
units are derived from (A) isopentenyl diphosphate (IPP) or its isomer (B) dimethylallyl
diphosphate (DMAPP). Structures from PubChem.

A B
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implicated in secondary metabolism by helping the organism to adapt to the 

environment and interact with other organisms. For instance, some isoprenoids 

participate in the plant defense against pathogens (phytoalexins) and they are also 

essential to attract pollinators and seed-dispersing animals (carotenes) (Singh and 

Sharma, 2015). In short, they are recognized for their diverse biological activities and 

properties, leading humans to exploit them since ancient time, and more recently in 

industry and agriculture, for the production of drugs, flavors, pigments or fragrances 

(Bohlmann and Keeling, 2008). As all living organisms, bacteria need isoprenoids and 

they are capable to synthetize them, even if they exhibit a lower diversity than in other 

organisms (Rohmer, 2007). These molecules are essential for the growth and the 

development of bacteria. Indeed, they play a crucial role in cell wall and membrane 

biosynthesis (hopanoids and bactoprenol), but also in electron transport (ubiquinone 

and menaquinone), or light energy to chemical energy conversion (chlorophylls, 

bacteriochlorophylls, carotenoids and rhodopsins) and some other processes like 

protein synthesis (isopentenyl tRNA) (Pérez-Gil and Rodríguez-Concepción, 2013; 

Rodríguez-Concepción and Boronat, 2012). 

All isoprenoids are derived from a same structural basis which is a five-carbon unit 

called isopentenyl diphosphate (IPP), or its isomer dimethylallyl diphosphate (DMAPP) 

(Figure 13). The structure of isoprenoids leads to their classification and nomenclature 

described by the International Union of Pure and Applied Chemistry (IUPAC). They are 

classified according to their number of isoprene units: C10 are monoterpenes  

(e.g. menthol), C15 are sesquiterpenes (e.g. geosmin), C20 are diterpenes (e.g. side 

chain of chlorophylls), C30 are triterpenes (e.g. squalene), C40 are tetraterpenes  

(e.g. carotenoids), C5n are polyterpenes. Based on these possibilities of assemblage, 

there are a huge variety of isoprenoids known today that assume a wide range of 

functions. 

 

2. Overview of isoprenoid functions  

2.1. A great example of universal compounds: sterols 

A well-known example of isoprenoid that is common to mammals, fungi and plants 

but also bacteria, and which is classified both as a primary and a secondary metabolite 



Figure 14. Structures of some plant sterols. Sterols lead to the formation of diverse
molecules of diverse functions in all living organisms, including plants. β-sitosterol (A),
stigmasterol (B) and campesterol (C) are the major membrane sterols of higher plants.
They are all derived from squalene (D). Structures from PubChem.
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Figure 15. Structure of hopane, a bacterial sterol. Hopane is a membrane lipid
synthetized in bacteria which is implicated in the membrane fluidity and stability.
Structure from PubChem.
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is sterol. Indeed, sterols are considered as primary metabolites since they are essential 

membrane constituents, as in the case of cholesterol in animals or ergosterol in fungi. 

But they are also referred as secondary metabolites since they are precursors for the 

production of other molecules such as the brassinosteroid hormones in plants (Clouse, 

2011), or estradiol, progesterone and testosterone implicated in mammalian 

development and reproduction, for instance. 

Even if sterols, and more generally isoprenoids, are essential in diverse 

physiological processes, some organisms are not capable to synthetize them. For 

instance, some invertebrate organisms such as Caenorhabditis elegans need 

cholesterol for their growth and development, despite their inability to synthetize it. That 

is why they need an external uptake in order to synthetize ecdysteroids, molecules 

implicated in larval development and reproduction (Wollam and Antebi, 2011). 

In plants, sterols are essential since they are inserted in phospholipid bilayers 

forming plant membranes. We can mention β-sitosterol (Figure 14, A), stigmasterol 

(Figure 14, B) and campesterol (Figure 14, C) that are the major membrane sterol in 

higher plants (Valitova et al., 2016). They are all derived from the same precursor 

which is squalene (Figure 14,D). They regulate the membrane fluidity and 

permeability, by interaction with fatty acyl chains of phospholipids and proteins. 

Moreover, they can also participate in the control of some metabolic processes that 

happen at the membrane location, notably in the cell proliferation process (Hartmann, 

1998). Plant sterols exhibit a huge complexity and diversity, with more than 200 

compounds (Hartmann, 1998). 

Finally, to continue with the example of molecules derived from sterols, we can 

mention that bacteria produce hopanoids (Figure 15) to assume the same role as 

membrane lipids in the regulation of membrane fluidity and stability (Belin et al., 2018; 

Kannenberg and Poralla, 1999; Sáenz et al., 2015). 

 

2.2. Chlorophylls and carotenoids 

In land plants, photosynthesis is a key mechanism allowing the conversion of light 

energy into chemical energy necessary for plant activities. This mechanism occurring 

mainly in leaves, in chloroplasts, requires chlorophylls such as chlorophyll A  



Figure 16. Structure of isoprenoids implicated in the photosynthesis. The phytol
chain of chlorophyll A (A) and β-carotene (B) are implicated in photosynthesis.
Structures from PubChem.

A B
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(Figure 16, A) and carotenoids like β-carotene (Figure 16, B). Basically, chlorophylls 

are essential pigments for all phototrophic organisms, allowing them to absorb blue 

and red light, while carotenoids absorb only blue light and are implicated in 

photoprotection by avoiding the formation of reactive oxygen species (Blankenship, 

2010; Johnson, 2016). This is a great example of isoprenoid function that is required 

for the plants to live. 

 

2.3. Hormones 

Five of the major plant hormones are derived from isoprenoids: brassinosteroids 

cytokinins, gibberellins, abscisic acid (ABA) and strigolactones. All of these hormones 

play a role in the regulation of the plant growth (Santner et al., 2009), but they also 

participate in the regulation of other aspects of the plant life, such as responses to 

stresses.  

Brassinosteroids are involved in plant growth regulation, cell division and 

elongation. They also act in some other plant life processes such as seed germination, 

flowering time, maturation, resistance to stress and senescence (Bajguz, 2007). 

 Cytokinins are able to promote plant cell division, they are implicated in seed 

germination, leaf senescence, but they also play a role in the formation of nitrogen-

fixing nodules in plant-microbe interactions and participate in the plant defense 

(Albrecht and Argueso, 2017; Frugier et al., 2008; Santner et al., 2009). 

 Gibberellins were first isolated from a fungal rice pathogen, Gibberella fujikuroi 

because of the resulting excessive stem elongation. More than a hundred gibberellins 

were already identified from plants and are implicated in diverse plant growth and 

development processes like seed germination, organ elongation, leaf expansion and 

flowering time (Yamaguchi, 2008).  

Abscisic acid exhibits a dual role in the development of the seeds. In early 

development, ABA prevents seed abortion and promotes embryo growth, while later, 

it promotes seed maturation. This molecule is necessary to induce seed dormancy 

during late embryogenesis and to maintain it during imbibition. Moreover, ABA is also 

implicated in drought response and in response to other stresses as mentioned in the 



Figure 17. Simplified isoprenoid biosynthesis pathways in Arabidopsis thaliana.
The mevalonate (MVA) pathway occurs in the cytosol and requires the 3-hydroxyl-3-
methylglutaryl CoA reductase (HMGR) as a key enzyme to obtain mevalonate. The 2-C-
methyl-D-erythritol 4-phosphate (MEP) pathway occurs specifically in plastids and
requires the 1-deoxy-D-xylulose 5 phosphate synthase (DXS) as a key enzyme to form
1-deoxy-D-xylulose 5 phosphate (DXP). Both biosynthesis pathways lead to the
formation of isopentenyl diphosphate (IPP), or its isoform dimethylallyl diphosphate
(DMAPP), precursors of all isoprenoids. Full arrows indicate single steps, and dashed
arrows indicate multiple steps. G3P: glyceraldehyde 3-phosphate; MEcPP: 2-C-methyl-
D-erythritol 2,4-cyclodiphosphate; GGPP: geranylgeranyl diphosphate. Adapted from
Claire Villette’s thesis.

Cytosol

Acetyl-CoA

Acetoacetyl-CoA

HMG-CoA

Mevalonate

IPP

Sterols

Brassinosteroids

DMAPP

HMGR

MVA pathway MEP pathway

Plastids

GGPP

Pyruvate + G3P 

DXP

MEP

MecPP

Chlorophylls

Carotenoids

Gibberellins

ABA

IPP DMAPP

DXS

th
yl

ak
oi

ds



 37 

paragraph 4.3.4 in the first part of the introduction (Nambara and Marion-Poll, 2005; 

Santner et al., 2009). 

For their part, strigolactones seem to be involved in shoot branching inhibition, like 

auxins. They were previously identified as communication chemicals found in root 

exudates, implicated in interactions with parasitic weeds and symbiotic arbuscular 

mycorrhizal fungi (Umehara et al., 2008). They may have additional functions by 

inducing seed germination.  

 

2.4. Other functions  

Among the huge diversity of isoprenoids, some of them have been valorized by 

humans for pharmacological or economic reasons. We can mention menthol, for 

instance, which is a monoterpenoid produced from peppermint and used in medicine, 

particularly as a local anesthetic. Artemisinin is a sesquiterpenoid coming from annual 

wormwood, Artemisia annua L. that is employed as an anti-malarial drug and which is 

efficient against parasitic protozoa (Loo et al., 2017). Another unavoidable example is 

paclitaxel, or Taxol, a diterpenoid-derived anti-cancer drug coming from the bark of the 

Pacific yew tree, Taxus brevifolia (Bohlmann and Keeling, 2008). 

 

3. Biosynthesis of IPP and DMAPP, precursors of all isoprenoids 

3.1. Two biosynthesis pathways for IPP and DMAPP 

To synthetize IPP and DMAPP that are the 2 precursors required for the 

biosynthesis of all isoprenoids, two distinct biosynthesis pathways are known. Animals, 

fungi or archaea synthetize their isoprenoids via the mevalonate (MVA) pathway, while 

algae exhibit the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Higher plants 

exhibit the particularity to use these two pathways to synthetize IPP and DMAPP 

(Figure 17). Indeed, they maintained the “classical” eukaryotic MVA pathway that 

occurs in the cytosol, and acquired the later described “alternative” MEP pathway 

occurring in plastids (Rohmer, 1999, 2007). Concerning bacteria, most of them 

synthetize isoprenoids only via the MEP pathway. However, some bacteria, including 



Figure 18. The mevalonate (MVA) biosynthesis pathway and A. thaliana hmg1-1
mutant. (A) The MVA pathway occurs in the cytosol and leads to the formation of
isopentenyl diphosphate (IPP) who can be isomerized in dimethylallyl diphosphate
(DMAPP). Full arrows indicate single steps, dashed arrows indicate multiple steps.
AACT: acetyl-coA C-acetyltransferase; HMGS: 3-hydroxy-3-methylglutaryl-CoA
synthase; HMG-CoA: 3-hydroxy-3-methylglutaryl-CoA; HMGR: 3-hydroxy-3-
methylglutaryl-CoA reductase; MVK: mevalonate kinase; PMVK: phosphomevalonate
kinase; MDC: mevalonate diphosphate decarboxylase; IPP: isopentenyl diphosphate;
DMAPP: dimethylallyl diphosphate; IDI: isopentenyl diphosphate:dimethylallyl
diphosphate isomerase. FDS: farnesyl diphosphate synthase; FPP: farnesyl
diphosphate. (B) hmg1-1 is affected in the MVA pathway by a mutation in the HMGR1
gene. The plant is characterized by a dwarf phenotype (pictures by Claire Villette,
adapted from Heintz et al., 2012).
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Borrelia burgdorferi and Staphylococcus aureus use the MVA pathway instead of the 

MEP pathway. Some exceptions such as Listeria monocytogenes and some 

Streptomyces have been confirmed to possess the two full pathways. For instance, 

some Streptomyces strains have the capacity to use the additional MVA pathway, 

particularly to synthetize antibiotics and other secondary metabolites. Finally, few 

bacteria including parasitic Rickettsia for instance, lack these biosynthesis pathways, 

probably because they are obligatory intracellular parasites and obtain their 

isoprenoids from their host (Kuzuyama and Seto, 2003; Pérez-Gil and Rodríguez-

Concepción, 2013). 

We can notice that multiple studies using inhibitors of one of the biosynthesis 

pathways, mutants, or labelled precursors in feeding experiments highlighted that 

some exchanges of IPP and other prenyl diphosphates are possible between the two 

biosynthesis pathways, and thus between the cytosol and plastids (Flores-Pérez et al., 

2010; Hemmerlin et al., 2003; Pulido et al., 2012). However, these exchanges 

represent only small amounts that cannot allow the complete compensation of one 

pathway by the other (Pulido et al., 2012; Rodríguez-Concepción and Boronat, 2015). 

Moreover, the process of exchange between the different compartments it is not fully 

understood (Flores-Pérez et al., 2010). 

 

3.2. The MVA biosynthesis pathway 

3.2.1. Description of the biosynthesis pathway 

The mevalonate (MVA) pathway (Figure 18, A) allows the synthesis of cytosolic 

and mitochondrial precursors, thanks to enzymes found in the endoplasmic reticulum, 

the peroxisome and the cytosol (Lange et al., 2002). This pathway starts with the 

condensation of two molecules of acetyl-coenzyme A (acetyl-CoA) by acetyl-CoA  

C-acetyltransferase (AACT) to form acetoacetyl-CoA. Acetoacetyl-CoA is then 

converted to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by 3-hydroxy-3-

methylglutaryl-CoA synthase (HMGS). The conversion of HMG-CoA to mevalonate 

(MVA) is a key step in this pathway and this reduction is done by the 3-hydroxy-3-

methylglutaryl-CoA reductase (HMGR). A double mutant for HGM1 and HMG2 genes 

in Arabidopsis thaliana is lethal (Suzuki et al., 2009), indicating the essential role of 



Figure 19. The methyl-D-erythritol 4-phosphate (MEP) biosynthesis pathway and
A. thaliana chs5 mutant. The MEP pathway occurs in plastids and leads to the
formation of isopentenyl diphosphate (IPP) who can be isomerized in dimethylallyl
diphosphate (DMAPP). G3P: D-glyceraldehyde 3-phosphate; DXS: 1-deoxy-D-xylulose
5-phosphate synthase; DXP: 1-deoxy-D-xylulose 5-phosphate; DXR: 1-deoxy-D-
xylulose 5-phosphate reductoisomerase; MEP: methyl-D-erythritol 4-phosphate; MCT:
MEP cytidyltransferase; CDP-ME: 4-(cytidine 5’-diphospho)-2-C-methylerythritol; CMK:
4-(cytidine 5’-diphospho)-2-Cmethylerythritol kinase; CDP-MEP: 2-phospho-4-(cytidine
5-diphospho)- 2-C-methyl-D-erythritol; MDS: 2-C-methylerythritol-2,4-cyclodiphosphate
synthase; MEcPP: 2-C-methylerythritol 2,4-cyclodiphosphate; HDS: 4-hydroxy-3-
methylbut-2-enyl diphosphate synthase; HMBPP: 4-hydroxy-3-methylbut-2-
enyldiphosphate; HDR: 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; IPP:
isopentenyl diphosphate; DMAPP: dimethylallyl diphosphate. (B) chs5 is affected in the
MEP pathway by a mutation in the DXS1 gene. The plant is characterized by a chlorotic
phenotype.
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these enzyme. Then, two successive phosphorylation reactions are catalyzed by 

mevalonate kinase (MVK) and phosphomevalonate kinase (PMVK) to obtain 

respectively 5-phosphomevalonate and then 5-diphosphomevalonate. The final 

obtention of isopentenyl diphosphate (IPP) is catalyzed by a mevalonate diphosphate 

decarboxylase (MDC). IPP can be further isomerized in dimethylallyl diphosphate 

(DMAPP) thanks to an isopentenyl diphosphate:dimethylallyl diphosphate isomerase 

(IDI). Afterward, a subsequent addition of IPP leads to more specialized branches of 

the isoprenoid biosynthesis. An addition of two IPPs on a DMAPP leads to the 

formation of farnesyl diphosphate (FPP) by a farnesyl diphosphate synthase (FDS). 

Two molecules of FPP can condense together by squalene synthase (SQS) to form 

squalene (Figure 14, D), which is the precursor of sterols that are major constituent of 

membranes, but also brassinosteroids that are implicated in cellular elongation and 

protection against some abiotic stresses. 

 

3.2.2. hmg1-1 mutant 

In A. thaliana, the simple mutant hmg1-1 is viable and exhibits a growth delay 

characterized by its small size compared to the wild-type, as well as a low seed 

production associated with a reduced size of the siliques (Suzuki et al., 2004)  

(Figure 18, B). This mutant is carrying a T-DNA insertion in the first exon of the gene 

coding for the 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1, 

At1g76490). The HMG1 gene expression is very low in hmg1-1 mutants, leading to a 

defect in plant growth and fertility, associated with a decrease of metabolites 

downstream of the MVA pathway (Heintz et al., 2012; Suzuki et al., 2004).  

 

3.3. The MEP biosynthesis pathway 

3.3.1. Description of the biosynthesis pathway 

In addition to the MVA pathway, there is a more recently discovered pathway for 

isoprenoid biosynthesis which is called the non-mevalonate pathway, or the methyl-D-

erythritol 4-phosphate (MEP) pathway (Figure 19, A), which allows the synthesis of 
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plastidial isoprenoids. It starts with the condensation of pyruvate and D-glyceraldehyde 

3-phosphate (G3P), catalyzed by a 1-deoxy-D-xylulose 5-phosphate synthase (DXS), 

to form 1-deoxy-D-xylulose 5-phosphate (DXP). DXP is then reduced to methyl-D-

erythritol 4-phosphate (MEP) by a 1-deoxy-D-xylulose 5-phosphate reductoisomerase 

(DXR). These steps are key steps in the formation of IPP and DMAPP in the MEP 

pathway. Afterward, MEP is then converted to 4-(cytidine 5’-diphospho)-2-C-

methylerythritol (CDP-ME) by conjugation with cytidine diphosphate by a MEP 

cytidyltransferase (MCT), and further phosphorylated by 4-(cytidine 5’-diphospho)-2-

Cmethylerythritol kinase (CMK), a member of the same family of metabolite kinases 

as MVK and PMVK from the MVA pathway. This allows the production of 2-phospho-

4-(cytidine 5-diphospho)- 2-C-methyl-D-erythritol (CDP-MEP), which is then converted 

to 2-C-methylerythritol 2,4-cyclodiphosphate (MEcPP) by 2-C-methylerythritol-2,4-

cyclodiphosphate synthase (MDS). The two final steps of this pathway to form 

isoprenoid precursors are catalyzed by 4-hydroxy-3-methylbut-2-enyl diphosphate 

synthase (HDS) and reductase (HDR) (Lange et al., 2002; Phillips et al., 2008) to form 

respectively 4-hydroxy-3-methylbut-2-enyldiphosphate (HMBPP) and a mixture of IPP 

and DMAPP. This pathway leads to the formation of isoprenoids such as chlorophylls 

and carotenoids implicated in the photosynthesis, or hormones like gibberellins or 

abscisic acid that is involved in the plant defense. Because of the essential character 

of many isoprenoids synthetized by this route for plant development and survival, the 

complete blockage of any step of this MEP pathway is lethal 

 

3.3.2. chs5 mutant 

In A. thaliana, the chs5 mutant on which I focused during my thesis can grow but is 

characterized by an albino phenotype due to the halt of chloroplasts development at 

early stages (Phillips et al., 2008). This mutant was originally isolated from a genetic 

screen for chilling sensitive mutants that display a normal wild-type phenotype at 22°C 

and a chlorotic phenotype at lower temperatures (15°C) (Hugly and Somerville, 1992; 

Schneider et al., 1995; Wright et al., 2014). The chs5 mutant presents a missense 

mutation in the exon 8 of the gene coding for the 1-deoxy-D-xylulose 5-phosphate 

synthase (DXS1, At4g15560). This change of GAC to AAC results in the modification 

of an aspartic acid (D) to an asparagine (N) residue at position 627 (D627N) of the 
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encoded protein. This mutation is responsible for a chlorotic phenotype (Figure 19, B) 

due to a defect in plastidial 1-deoxy-D-xylulose 5-phosphate (DXP) biosynthesis (Araki 

et al., 2000; Wright et al., 2014).  

 

4. Could the microbiota play a role in the plant isoprenoid biosynthesis?  

Over the past ten years, some studies started to highlight a correlation between the 

plant isoprenoid status and the microbiota associated with some plants. The microbiota 

may have an impact on the plant isoprenoid biosynthesis, and indirectly on the plant 

mechanisms of defense, conferring a real advantage in the field. 

For instance, Vetiveria zizanioides (L.) Nash, a grass cultivated for its essential oil 

production in its roots, exhibits differences of isoprenoid production depending on its 

associated microbiota. Actually, some of its associated bacteria are able to metabolize 

sesquiterpenes present in the oil and release compounds typically found in commercial 

Vetiver oils; but some bacteria are also capable to induce gene expression of a 

sesquiterpene synthase. This suggests that some bacteria from the Vetiver microbiota 

may play a crucial role in essential oil biosynthesis, opening some possibilities to 

control the Vetiver essential oil composition (Del Giudice et al., 2008). 

Same kind of observations was done more recently on other plants. The grapevine 

Vitis vinifera L. cv. Malbec exhibits an increased production of some isoprenoids such 

as α-pinene when inoculated with some specific bacteria. Particularly, inoculation with 

PGPR such as Microbacterium imperial RZ19M10, Kocuria erythromyxa Rt5M10 and 

Terribacillus saccharophilus Rt17M10 previously isolated from grapevine roots and 

rhizosphere stimulates plant growth and biosynthesis of secondary metabolites playing 

a role in plant defense (Salomon et al., 2016).  

Such differences of isoprenoid status in plants were also observed in flowers and 

leaves of Sambucus nigra depending on the presence or absence of microbial 

communities. Following the elimination of bacteria from the microbiota, a decrease in 

the concentration of some compounds has been observed, among which isoprenoids 

that play a key role in pollination, suggesting once again an impact of the plant 

microbiota on the isoprenoid biosynthesis (Gargallo-Garriga et al., 2016; Peñuelas et 

al., 2015). 
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Finally, bacterial endophytes of Withania somnifera, also called Indian ginseng, 

enhanced the withanolide content of the plants by modulating its biosynthesis in leaves 

and roots. Withanolides are terpenoids of pharmaceutical interest (potential 

neurological, immunological and anti-stress agent). Thus, the use of bacteria in the 

control of isoprenoid biosynthesis could be a great tool (Pandey et al., 2018).  

 

 

III. Objectives of the thesis 

 

Since a plant and its associated microbiota tend to be considered as a single entity 

referred as the holobiont, it becomes consistent to study the interactions between 

these organisms instead of studying each one independently. Few studies have 

previously suggested that isoprenoids may be important for the interactions between 

plants and micro-organism. Some others revealed that the microbiota may influence 

the plant isoprenoid biosynthesis. 

My thesis project focused on the interactions between the model plant A. thaliana 

and bacteria in the context of isoprenoid biosynthesis. My thesis objectives could be 

defined by two main axes:  

- Are plant isoprenoids implicated in plant-bacteria interactions in general? And 

are they implicated in the particular plant-pathogens interactions? 

- Do some bacteria whose presence in the plant microbiota is dependent on the 

isoprenoid content have an impact on the plant physiology and resistance 

against pathogens? 

 

To answer the first question and thus investigate the role of plant isoprenoids in the 

interaction between the plant and its microbiota, the first step was to establish an 

inventory of the communities interacting with wild-type A. thaliana and mutants affected 

in isoprenoid biosynthesis. This has been done for Col-0 and chs5 mutant which was 

described in paragraph II.3.2.2, on one hand, and WS2 and hmg1-1 mutant which was 

described in paragraph II.3.3.2, on another hand, in order to study both biosynthesis 
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pathways. Furthermore, in nature, plants are also subject to different stresses among 

which pathogens enter in consideration. In order to determine if isoprenoids may play 

a role in the protection of the plant against pathogenic bacteria, a comparison of the 

holoxenic wild-type and mutant plants susceptibility to PstDC3000, a well-known 

phytopathogen, has been done. The work made on these two main axes is synthetized 

in the first chapter of my thesis. 

The second question of my project was intended to elucidate whether some 

bacteria from the microbiota whose presence was influenced by the isoprenoid status 

of the plant may have an impact on the plant physiology and resistance against 

pathogens. For that purpose, the strategy was to isolate bacteria interacting with A. 

thaliana phyllosphere, roots or rhizosphere, but also bacteria present in the soil, to 

create a strain collection. Then, their 16S rRNA gene sequence would be compared 

with those of the communities interacting with wild-type and mutants. Hence, some 

bacteria from our strain collection that are differentially abundant between wild-type 

and mutants could be inoculated to axenic plants in order to determine their effect on 

the plant physiology, and susceptibility to PstDC3000. Results relative to that question 

are presented in the second chapter of my thesis. 
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Chapter 1 
Do isoprenoids influence the interactions between plants 

and micro-organisms?  
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I. Introduction 

 

The first axis of my thesis consisted in investigating whether isoprenoids may 

influence the interactions between plants and micro-organisms. This problematic could 

be studied at two different levels: do isoprenoids impact plant-bacteria interactions in 

general? Do they also play a role in the specific interaction of the plant with pathogens? 

To answer these questions, we worked with A. thaliana wild-types and mutants 

affected in both isoprenoid biosynthesis pathways. As a reminder, chs5 mutant is 

altered in the biosynthesis of isoprenoids that require the plastidial 2-C-methyl-D-

erythritol 4-phosphate (MEP) pathway, while hmg1-1 mutant is altered in the cytosolic 

mevalonate (MVA) isoprenoid biosynthesis pathway. 

To decipher whether plant isoprenoids may influence the interactions between 

plants and bacteria in general, an inventory of the communities interacting with wild-

types and mutants was performed. This has been proceeded for the microbiota of  

Col-0 and chs5 on one hand, and WS2 and hmg1-1 on the other hand and should 

allow us to determine if isoprenoids from one biosynthesis pathway or the other may 

play a role in the establishment of the plant associated microbiota. 

Furthermore, plants are not only interacting with their naturally associated 

microbiota in the environment. They are also exposed to a wide range of stresses such 

as pathogens. Therefore, once we had a look on the impact of isoprenoids on the 

naturally associated communities, it seemed interesting to determine if they could also 

play a role in the interactions with pathogenic micro-organisms. As stated before, 

Pseudomonas syringae pv. tomato DC3000 (PstDC3000) has been widely used to 

study the interactions between plants and pathogens, and notably to establish the 

model of the plant immunity (Jones and Dangl, 2006). We considered that it could be 

a great tool to study the sensitivity of wild-types and mutants, and hence to determine 

if isoprenoids may play a role in the plant interactions with pathogens.  

I first optimized the infection protocol, and I particularly tried to find an easy and 

quick way to proceed bacterial numerations. I compared the effects of slightly variable 

quantity of pathogen inoculated to the plants in three experiments. I also tried to setup 

a method to quantify the size and the severity of the lesions caused by PstDC3000, 
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however, given the difficulty to delimit these lesions, I finally focused on the pathogen 

numerations. For that purpose, I first used different culture media, and I tried to find an 

alternative to the plating process by using PstDC3000 GFPuv or PstDC3000 lux strains 

that were supposed to be easily detectable by a microplate reader. Finally, the optimal 

conditions for the infection experiments in our laboratory were the use of the classic 

PstDC3000 strain with a needle-less syringe infiltration, followed 6 days later by plating 

of the grinded leaves extracts at different dilutions. I performed a last infection 

experiment on a large batch of plants in order to accumulate material for pathogen 

quantification on the one hand, and for key genes and metabolites analyses on the 

other hand. I decided to plate 20 µL droplets on NYGB medium supplemented with 

rifampicin to reduce the number of plates needed and the time of manipulation. Key 

metabolite analyses and pathogen quantification were proceeded 6 days post infection 

(6 dpi). Expression of defense key genes called pathogenesis related (PR) genes, 

known to be induced upon infection by (hemi)-biotrophic pathogens such as 

PstDC3000 (Thomma et al., 2001), was monitored by RT-qPCR at 1 dpi, 3 dpi and  

6 dpi. 

This first chapter describes the optimization of the infection protocol by the use of 

different pathogen detection methods, and some complementary data obtained for 

these infection experiments are exposed. Finally, the work related to the inventory of 

the communities that naturally interact with wild-types and mutants, as well as the study 

of the plant interaction with PstDC3000 are synthesized in a publication (Groh et al., in 

writing) that will be submitted soon.  

 

 

II. Optimization and preliminary results 

 

1. Test of different techniques for infection measurements 

In the laboratory, since the beginning of the project, we proceeded several infection 

experiments on wild-type and mutants in order to accumulate data to proceed robust 

statistics. However, since we changed our proteose peptone supplier (Sigma-Aldrich 



Figure 20. Test of correlation between fluorescence intensity and numerations of
PstDC3000 GFPuv. Fluorescence intensity was measured with FLUOstar Omega
spectrometer (BMG Labtech). Leaves were grinded in KB medium (A), or in PBS 1X (B)
before measurements. Fluorescence intensity measurements were compared with the
classic numeration experiments after plating.
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instead of Difco), we encountered troubles using KB+r medium for PstDC3000 culture. 

Moreover, the classic method of numerations by serial dilutions and plating is time-

consuming and requires lots of plates. Therefore, we tried to find an alternative 

approach. 

 

1.1. PstDC3000 GFPuv strain 

In order to optimize the infection experiments and to facilitate quantification of the 

pathogen after infection, we tried to use a PstDC3000 GFPuv strain (Wang et al., 

2007). We transformed a PstDC3000 strain with pDSK-GFPuv. This plasmid is a stable 

and broad-host-range vector that encodes the green fluorescent protein variant GFPuv 

under the control of the constitutive promoter psbA and an efficient ribosome binding 

site (RBS), allowing a strong expression in bacteria. Thus, the GFP could provide the 

capacity to quantify and follow the bacteria through the process of infection, 

colonization, multiplication and movement in the infected plants. This strain should 

have allowed us to directly measure the fluorescence intensity without needing to plate 

the samples on solid medium and further numerate the colony forming units after two 

days of incubation at 28°C. I infected plants with PstDC3000 GFPuv, and I collected 

the infected leaf discs at 6 dpi. The first time, I grinded leaf discs in KB medium as it is 

done in the usual protocol preceding plating on agar medium, but I did not manage to 

obtain a correlation between the fluorescence intensity and the numerations  

(Figure 20, A). Thus, I tried to grind leaf discs in phosphate buffered saline (PBS) in 

attempt to eliminate an eventual background noise, but once again, I did not obtain a 

correlation between the fluorescence intensity and the numerations (Figure 20, B). 

Regardless of the medium used for leaves grinding, the determination index R2 clearly 

indicates that there is no correlation between the fluorescence intensity and the 

numerations on agar medium. Moreover, samples that did not contain the GFPuv strain 

also exhibited fluorescence, indicating the presence of a background signal, whether 

using KB medium or PBS. 

 



Figure 21. Test of correlation between luminescence intensity and numerations of
PstDC3000 lux. Luminescence intensity was measured with FLUOstar Omega
spectrometer (BMG Labtech). Luminescence intensity measurements were compared
with the classic numeration experiments after plating.
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Table 1. Average size and number of leaves of Arabidopsis thaliana Col-0 and
chs5 before infection by PstDC3000. Infection experiments 1. 2 and 3 were
conducted independently in different culture conditions and at different times, on plants
that are approximately the same growing stage.

Col-0 chs5

rosette diameter number of leaves rosette diameter number of leaves

Exp 1 7.2 cm 19 6.8 cm 18

Exp 2 8.1 cm 18.9 7.2 cm 18.1

Exp 3 7.6 cm 20.4 6.6 cm 19.1
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1.2. PstDC3000 lux strain 

Since the PstDC3000 GFPuv strain did not allow us to optimize our infection 

experiments, we tried to use a luminescent strain PstDC3000 lux (Fan et al., 2007). 

This strain is bioluminescent thanks to the insertion of the luxCDABE operon from 

Photorhabdus luminescens into its chromosome, under the control of a constitutive 

promoter. As for the GFPuv strain, the lux strain was designed for direct quantification 

of the bacterial growth without serial dilutions and plating on agar medium. I tried to 

measure the luminescence both on leaf discs and on grinded material. However, as 

for the GFPuv strain, I was not able to find ant correlation between the luminescence 

and the pathogen numerations (Figure 21). Nevertheless, this method is commonly 

used in the laboratory of Pr. Julia Vorholt who provided us the strain (Vogel et al., 

2012). Since we do not use the same device for the luminescence detection, we 

suppose that we are not in the adapted conditions for the use of this method to 

quantitatively measure the luminescence. Thus, I decided to proceed the further 

infection experiments with the classic PstDC3000 strain and to proceed numerations 

by plating several dilutions of the grinded leaves extract. 

 

1.3. Plating method for numerations 

Since serial dilutions and plating steps on agar medium are necessary, I tried to 

find a way to use less agar plates and to count more easily and quickly the bacteria 

after 2 days of incubation at 28°C. Thus, I decided to plate 3 spots of 20 µL for each of 

the appropriate dilution on one plate per plant, as recommended in a previous paper 

(Liu et al., 2015). I took care to plate each spot of each dilution far enough, so they do 

not overlap, on plates that were dried overnight at room temperature. Moreover, it was 

important to count colonies early enough, before they overgrow, in order to avoid 

possible overlaps. It generally corresponded to 5 to 70 colonies per spot, at a maximum 

of 48h after incubation at 28°C. This method was used for the last infection experiment 

proceeded in the laboratory. 

 



Figure 23. Visible lesions on infected leaves of Col-0 and chs5 at 6dpi. Pictures
were taken 6 days following the infection by PstDC3000. Col-0 infected leaves (A) were
less drastically affected than chs5 infected leaves (B). We often saw that lesions on
chs5 were necrotic-like only 4dpi while it took more time on Col-0 (6dpi).

Infected Col-0

A

Infected chs5

B

Figure 22. Pathogen quantification upon infection of Arabidopsis thaliana by
Pseudomonas syringae pv. tomato DC3000. Pathogen numerations by plating were
done for both Col-0 and chs5 at 6dpi (A) First Infection was proceeded in summer 2017.
N=8 for Col-0 and N=10 for chs5. There is an increased sensitivity of chs5 compared to
Col-0. (**P < 0.05 Student’s t test). (B) Infection 2 was proceeded in winter 2018-2019.
N=12. Despite more variability between the samples. there is also an increased
sensitivity of chs5 compared to Col-0. (*P < 0.1 Student’s t test). (C) Last infection was
proceeded in spring 2019. N=12. There is an increased sensitivity of chs5 compared to
Col-0. (***P < 0.01 Student’s t test).

**

A B * C ***
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2. Infection of Arabidopsis thaliana Col-0 and chs5 by Pseudomonas syringae 
pv. tomato DC3000  

The draft paper presented below refers to the first infection experiment that I made 

in the laboratory, in the same batch of plants as those used for the inventory of the 

communities. I repeated the infection experiments independently, in different culture 

chambers but in the same conditions. I always highlighted a more or less important 

difference of sensitivity between Col-0 and chs5, which led me, in the last experiment, 

to deepen these results. Thus, I performed the infection on enough plants to analyze 

gene expression and some key metabolites in addition to the pathogen quantification, 

as exposed in the paper below. I paid attention to infect plants that were approximately 

the same size and the same number of leaves for each experiment, as indicated in the 

table 1. Pathogen quantifications from experiment 1 are shown in figure 22, A, and in 

the paper. They were obtained by the classic plating method corresponding to one 

dilution per plate, in duplicates. Those from experiment 2 are shown in figure 22, B, 

and were obtained by the same method. Results from our last experiment (experiment 

3) are shown in figure 22, C and in the paper. The pathogen numerations for this last 

experiment were proceeded using the droplets method mentioned in the paragraph 

II.1.3. chs5 mutants have always been shown to be more sensitive to PstDC3000 than 

Col-0 since there is 10-fold (experiment 1 and 2) to 100-fold (experiment 3) more 

pathogen in the mutant leaves than in the wild-type leaves. Moreover, it was difficult to 

quantify the importance of the lesions on the infected leaves, but we also saw that the 

chs5 leaves often appeared to be more affected than those of Col-0 (Figure 23). The 

chlorotic lesions appeared already 2 days post infection, but the necrotic-like 

phenotype appeared after 4 days in the mutant, which was quicker than in the wild-

type for which the lesions were necrotic-like only 6 days post infection. 

The bacterial titer of the infection suspension for experiment 1 was  

2,59 x 105 ufc.mL-1, for experiment 2 it was 1,87 x 105 ufc.mL-1, and for experiment 3, 

the pathogen titer was lower with 3.84 x 104 ufc.mL-1. This difference of concentration 

between the infection suspensions does not explain the higher pathogen quantification 

in experiment 3. However, for this last experiment, we cultivated PstDC3000 in NYGB 

supplemented with rifampicin (NYGB+r) instead of KB supplemented with rifampicin 

(KB+r) as we did for experiments 1 and 2. We chose this option since we encountered 
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difficulties of bacterial growth in KB medium after we changed our peptone supplier. 

There could be an impact of the culture medium on the bacteria physiology, involving 

a more or less significant multiplication efficiency for instance. But there is also a higher 

amount of pathogen counted in experiment 2 compared to experiment 1, despite a 

similar concentration of the infection suspension. Thus, we can suppose that the 

pathogen does not multiply the same way depending on the growth culture chambers, 

even if the culture conditions are the same. In addition, in the last experiment, we 

plated 20 µL droplets compared to the usual method consisting in plating 100µL per 

plate, which can also induce a bias in the numerations. 

 

 

III. Manuscript 

 

To be submitted before the thesis defense. 
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Microbiota profiling and analysis of pathogen infection in Arabidopsis thaliana reveals the 

influence of isoprenoids upon root and leaf colonization by specific bacteria 

Chloé Groh, Sandrine Koechler, Stéfanie Graindorge, Hubert Schaller and Florence Arsène-

Ploetze 

 

Summary 

Isoprenoids, also called terpenoids, are an important class of metabolites involved in cellular 

division, photosynthesis, respiration or immune response. Recent studies suggest a possible role 

of these metabolites in plant-microbe interactions. In this study, we analyzed the implication of 

isoprenoids in the selection of the microbiota by Arabidopsis thaliana. Two mutants exhibiting 

a deficiency in the production of isoprenoids were studied. The chs-5 mutant carries a weak 

allele of the gene encoding the enzyme DXS1 (1-deoxy-D-xylulose 5-phosphate synthase), a 

key component of the plastidial MEP (Methylerythritol phosphate) pathway. The hmg1-1 

mutant carries a knock-out allele of the gene encoding the enzyme HMGR1 (3-hydroxy-3-

methylglutaryl-coenzyme A reductase), an important enzyme of the cytosolic MVA 

(Mevalonate) pathway. The community structures associated with WT or mutants were globally 

similar but the relative abundance of some OTUs (Operational taxonomic units) were 

significantly different, suggesting a possible implication of isoprenoids in the selection of a 

fraction of the associated microbiota. In addition, we demonstrated that plants affected in the 

MEP biosynthesis pathway were more susceptible to the phytopathogen Pseudomonas syringae 

pv. tomato DC3000 than WT. Taken together, these results suggest an implication of 

isoprenoids in the interaction of the plant with specific bacteria. 

Keywords: Arabidopsis thaliana, isoprenoids, microbiota profiling, plant-bacteria 

interactions, Pseudomonas syringae pv. tomato DC3000. 

 

Introduction 

Plants serve as host to different microorganisms which interact with their host and/or with 

each other (Hassani et al., 2018; Uroz et al., 2019). Plants and their associated microorganisms 
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in nature, called phytobiome, can be considered as meta-organisms or holobionts (Berg et al., 

2014; Bulgarelli et al., 2013; Lebeis, 2015; Simon et al., 2019; Vandenkoornhuyse et al., 2015). 

Thanks to the recent development of the environmental microbial and genomic approaches, a 

precise inventory of the bacterial communities interacting with Arabidopsis thaliana has been 

done, and many bacteria associated with this plants have been isolated (Bai et al., 2015; 

Guttman et al., 2014; Lundberg et al., 2012; Schlaeppi et al., 2014). A large part of this bacterial 

community is found in the soil in the vicinity of roots, in the rhizosphere, on the surface 

(epiphytes) or within (endophytes) the plant roots or aerial part (stems, flowers, leaves, called 

phyllosphere) (Bulgarelli et al., 2013; Gaiero et al., 2013; Hardoim et al., 2015; Lebeis, 2015; 

Vorholt, 2012). Recent studies aim to decipher the role of such microorganisms on the plant 

fitness (Bulgarelli et al., 2013; Lebeis, 2015; Vandenkoornhuyse et al., 2015). The microbial 

community associated to plants may have positive impact by promoting growth, nutrient 

acquisition, defense against abiotic and biotic stresses (Bulgarelli et al., 2013; Gaiero et al., 

2013; Hardoim et al., 2015; Müller et al., 2016; Vacheron et al., 2013; Vogel et al., 2012). 

Some of these microorganisms play an important role to prevent plant colonization by 

pathogens. Indeed, during their whole lifecycle, plants are confronted to a wide range of 

stresses, among which pathogen attacks (Hahlbrock et al., 2003). Pseudomonas syringae pv. 

tomato DC3000 (PstDC3000) is probably one of the most studied bacteria in the context of 

plant-microbe interactions (Baltrus et al., 2017; Katagiri et al., 2002). Notably, this bacterium 

has played an important role in the establishment of the zigzag model of plant immunity (Dangl 

et al., 2013; Jones and Dangl, 2006). PstDC3000 is a Gram-negative rod-shaped bacteria 

responsible for bacterial speck of tomato (Katagiri et al., 2002). This hemi-biotrophic pathogen 

uses stomata or wounds to enter the plant leaves, where it multiplies in the apoplast. After 

multiplication, necrotic-like lesions surrounded by chlorotic halos are visible on the infected 

leaves. PstDC3000 is also virulent against A. thaliana, which makes its use common in 

laboratories (Baltrus et al., 2017; Katagiri et al., 2002). Basically, infection by hemi-biotrophic 

pathogens such as PstDC3000 often leads to the induction of systemic acquired resistance 

(SAR). In this mechanism, the phytohormone salicylic acid plays a key role by activating the 

plant defense (Katagiri et al., 2002; Thomma et al., 2001). Indeed, salicylic acid notably 

potentiates the activation of the plants pathogenesis-related (PR) genes, that act against the 

pathogen effectors. In A. thaliana, some of these PR genes, PR-1, PR-2 and PR-5 are SAR 

marker genes and thus, they are induced upon infection PstDC3000 (Nawrath and Métraux, 

1999; Thomma et al., 2001). 
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One of the most interesting question in plant-bacteria interaction field is to decipher how 

the plant could distinguish between pathogenic, commensal or mutualistic micro-organisms 

(Bulgarelli et al., 2013). Several recent studies suggest that the plant immune system, plant 

hormones or secondary metabolites such as flavonoids may play a role in the selection of 

specific microorganisms by the plant (Cotton et al., 2019; Hu et al., 2018; Jones et al., 2019; 

Lebeis, 2015; Voges et al., 2019). Interestingly, few studies suggest that isoprenoids could play 

a role in bacterial selection by plants (Burdon et al., 2018; Wang et al., 2012a; Zahid et al., 

2017). Isoprenoids, also called terpenoids, are an important class of metabolites with more than 

50 000 different molecules already identified in living organisms (Thulasiram et al., 2007). 

These metabolites are involved in diverse biological processes in plants such as membrane 

function or growth (sterols, brassinosteroids, gibberellins), photosynthesis (chlorophylls and 

carotenoids), respiration (ubiquinones), or stress response (abscisic acid) (Rodríguez-

Concepción and Boronat, 2015; Singh and Sharma, 2015). Some isoprenoids have specific non 

fundamental functions and are considered as “specialized” metabolites (previously called 

“secondary” metabolites). For example, they could play a role in pollinators attraction or in 

protection against herbivores and pathogens (Rodríguez-Concepción and Boronat, 2015; 

Yazaki et al., 2017). These compounds are synthetized from two precursors: isopentenyl 

diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, two pathways are 

required for the biosynthesis of these precursors. The mevalonate pathway (MVA) occurs in 

the cytosol and implicates several enzymes among which the 3-hydroxyl-3-methylglutaryl CoA 

reductase (HMGR). The 2-C-methyl-D-erythritol 4-phosphate pathway (MEP) occurs in 

plastids and requires the 1-deoxy-D-xylulose 5 phosphate synthase (DXS). Both pathways lead 

to the formation of IPP or DMAPP (Figure 1). It was demonstrated that one pathway could not 

compensate the defect of the other one (Rodríguez-Concepción and Boronat, 2015). 

The aim of our work was to study the implication of isoprenoids in the selection of the 

microbiota by A. thaliana. For that purpose, two mutants affected in the biosynthesis of IPP and 

DMAPP were chosen. The first mutant, chs5, (chilling sensitive 5, Col-0 genetic background), 

carries a missense mutation of the gene encoding the enzyme DXS1 (1-deoxy-D-xylulose 5-

phosphate synthase 1), changing an aspartic acid (D) to an asparagine (N) residue at position 

627 (D627N) in this key component of the plastidial MEP pathway (Araki et al., 2000; 

Schneider et al., 1995; Wright et al., 2014). This mutation causes a chlorotic phenotype due to 

a decrease of plastidial isoprenoid biosynthesis (Suzuki et al., 2004; Wright et al., 2014). The 

second mutant, hmg1-1, carries a T-DNA insertion in the first exon of the gene encoding the 
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enzyme HMGR1 (3-hydroxy-3-methylglutaryl-coenzyme A reductase), a key enzyme of the 

MVA pathway (Heintz et al., 2012; Suzuki et al., 2004). Because of a decrease in HMG1 gene 

expression in this mutant as compared to the WT, the hmg1-1 mutant showed a decrease of 

isoprenoids content downstream of squalene, sterols and terpenoids and therefore a defect in 

growth and fertility (Heintz et al., 2012; Suzuki et al., 2004). To test if isoprenoids are involved 

in plant-pathogens interactions, we compared the infection capacity of PstDC3000 in mutants 

and WT plants. In parallel, to decipher if the plant isoprenoids are involved in the plant-

microbiota interactions in general, the communities interacting with the WT and the mutants 

were compared using a 16S rRNA gene sequencing-based approach. The community structures 

associated with WT or mutants were globally similar but the relative abundance of some OTUs 

(Operational Taxonomic Units) were significantly different, suggesting a possible implication 

of isoprenoids in the selection of a fraction of the associated microbiota. 

 

Material and Methods 

Plant material and growth conditions  

A. thaliana wild-type ecotype Colombia (Col-0) or Wassilewskija (WS2) or derived 

mutants chs5 (Col-0 genetic background), carrying a point mutation in the gene encoding the 

1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) (Araki et al., 2000; Schneider et al., 1995; 

Wright et al., 2014), and hmg1-1 (WS2 genetic background) carrying a transposon insertion in 

the gene encoding the 3-hydroxy-3-méthylglutarylcoenzyme A reductase 1 (HMGR1) (Heintz 

et al., 2012; Suzuki et al., 2004) were grown in soil, in growing chambers, for 6 weeks under 

12-h photoperiod (6 Lumilux tubes T5, Osram) and temperatures were set at 21°C during the 

light phase and 18°C during the dark phase. Relative humidity was set to 75%, and light level 

was set at 250 μE. All the seeds were kept at -20°C for 48h before sowing.  

Microbiota profiling  

After 6 to 8 weeks, A. thaliana plants were extracted from soil, shaken, and roots were 

shortly washed in sterile distilled water to remove soil (Supplementary figure 1). Plants were 

cut in order to separate phyllosphere and roots/rhizosphere. Rhizosphere was separated from 

roots by scrapping using a sterile scrapor. The inner root or leaf tissues and surface were not 

discriminated, and we refer these samples as “root” and “phyllosphere” microbiota, 
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respectively. Samples were crushed using a mortar and pestle and frozen at -20°C until DNA 

extraction. DNA was extracted from frozen rhizosphere (0.25 g), on one hand, or from powder 

obtained from phyllosphere and roots (50 mg) on the other hand, using the PowerSoil DNA 

Isolation Kit and PlantDNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA), 

respectively, according to the manufacturer’s instructions. The DNA concentration and quality 

were estimated by measuring the OD at 260nm and 280nm.  

Libraries were constructed according the 16S Metagenomic Sequencing Library 

Preparation protocol (Illumina Part # 15044223 Rev. B) except some modifications mentioned 

below. Briefly, 16S RNA encoding gene were amplified in duplicate from the extracted DNA 

using the primer listed in supplementary table 1 that target the bacterial/archaeal 16 S rRNA 

gene variable region 5-6. Primers (Supplementary figure 2, Supplementary table 1) used for 

this first PCR were composed of (from 5’ to 3’ ends): 1)- the Illumina overhang sequence 

(containing Read 1 and Read 2 specific sequences) described in the Illumina 16S protocol, 2)- 

two 16S V5-V6 gene-specific sequences 3)- a 0 to 7pb heterogeneity spacer to increase the 

nucleotide diversity for sequencing, as described in Fadrosh et al. (Fadrosh et al., 2014). This 

first amplification (PCR1, 25 µl) was performed by mixing 25 ng genomic DNA, the KAPA 

HiFi HotStart ReadyMix PCR Kit (12.5 µl) (Kapabiosystems, Boston, United States) and 

primers (5µl at 1 µM) and using the following program: initial denaturation at 95 °C for 3 min; 

25 cycles of 95 °C for 30 sec, 55 °C for 30 sec and 72 °C for 30 sec; final elongation at 72°C 

for 5 min. PCR products were analyzed on 1% agarose gel to verify the success of amplification 

and duplicate amplified samples were pooled and purified using AMPure XP beads (Agencourt, 

Beckman-Coulter). The quantity and quality of the amplicons were controlled with the 

Bioanalyzer (Agilent). A second amplification (PCR2) was performed using the Nextera XT 

primers (Illumina) containing the full-length P5 and P7 sequences. Amplicons were purified 

using AMPure XP beads (Agencourt, Beckman-Coulter). Their size was controlled with the 

Bioanalyzer (Agilent). These libraries were normalized, pooled together and 5% PhiX v3 

(Illumina) was added. Sequencing was performed as paired end of 300 base pairs reads (2X300) 

on a Miseq platform. 

The bioinformatics processing was performed using the FROG pipeline under Galaxy 

environments (Escudié et al., 2018). Shortly, it included a pre-processing of the sequencing 

read data with “FLASH” (suppress PCR duplicates, too long or too short reads). The quality 

sequences were clustered to Operational Taxonomic Units (OTUs, >97% sequence similarity, 
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minimal coverage of 5 sequences) with “Swarm”. Chimeric OTU sequences were removed 

using “VSEARCH”. Filtering was performed to keep sequences present at least in 3 samples 

and suppress contaminants (phiX). Taxonomic assignments were done using multi-affiliation 

output with the Silva, Midas and Greengenes databases.  

OTUs classified as mitochondrial or Cyanobacteria/chloroplasts sequences were removed. 

Data from WT and mutants were compared using the Phyloseq pipeline (McMurdie and 

Holmes, 2013). 

Infection of A. thaliana by Pseudomonas syringae pv. tomato DC3000 

The phytopathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000) was grown 

on solid King' B (KB) medium (20 g.L-1 proteose peptone (Conda); 1.5 g.L-1 K2HPO4 (Merck); 

15 g.L-1 glycerol (VWR); 1.5 g.L-1 MgSO4.7H2O (Merck); 15 g.L-1 agar (Sigma-Aldrich)), 

supplemented with 50 µg.mL-1 rifampicin (Sigma) (KB+r), at 28°C for 2 days. Bacteria were 

transferred onto liquid KB+r medium and grown with shaking at 28°C until exponential 

growing phase. The bacterial culture was centrifuged at 2500 g for 10 min to recover bacteria. 

They were washed twice and resuspended in 10 mM MgCl2. OD600nm was adjusted to obtain 1 

x 105 colony forming units per milliliter (cfu.mL-1). Using a needle-less syringe, 10 leaves of 

each plant were pressure infiltrated with either 1 x 105 cfu.mL-1 of PstDC3000, or mock 

infiltrated with sterile 10 mM MgCl2 (Merck) (adapted from Katagiri et al., 2002). For each 

genotype, infiltrated leaves from 12 infected plants that were distributed in 2 independent boxes 

and 2 mock-treated plants of A. thaliana were harvested 6 days post infection (dpi). For each 

plant, 10 leaf discs were crushed in KB+r. After serial dilutions, samples were plated onto KB+r 

agar plates and incubated at 28°C for 2 days and numerated.  

Quantitative PCR analyses of PR-1, PR-2 and PR-5 expression 

Infiltrated leaves from 9 infected plants and 9 mock-treated plants of Col-0 and chs5 were 

harvested before infection by PstDC3000 and at 1, 3 and 6 dpi, and grouped in bulks of 3 plants 

per condition. Plant material was crushed in liquid nitrogen and stored at -80°C until 

extractions. 1 mL of TRIzol reagent (Molecular Research Center) was added to approximately 

60 mg of grinded material in 2 mL tubes containing glass beads before grinding 2 x 30 sec with 

Precellys®. Samples were kept at room temperature for 5 min before adding 200 µL of 

chloroform (Sigma-Aldrich) and 15 sec agitation. Samples were kept at room temperature for 
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2 min 30 before centrifugation at 4°C, 12 000 g for 15 min. 400 µL of supernatant were collected 

and 333 µL of isopropanol (Sigma-Aldrich) were added to the supernatant. Samples were kept 

at room temperature for 10 min before centrifugation at 4°C, 12 000 g for 20 min. The 

supernatant was poured off and 1 mL of 80% ethanol (Sigma-Aldrich) was added to the 

samples. Samples were centrifuged at 4°C, 12 000 g for 5 min and the supernatant was poured 

off. 1 mL of 100% ethanol was added to the samples before centrifugation at 4°C, 12 000 g for 

5 min and elimination of the supernatant. Pellets were air-dried before addition of 50 µL of 

milli-Q H2O and incubation at 4°C for 30 min. Samples were then vortexed and incubated at 

50°C for 5 min, twice. RNAs were finally stored at -20°C until reverse transcription. A DNAse 

treatment was carried out on the RNAs before reverse transcription. For that, 1 µg of RNA was 

resuspended in H2O supplemented with 10 µL of DNAse mix: 0.1 µL RNAse OUT (Promega); 

6 µL H2O; 2 µL DNAse 10X buffer (Promega); 2 µL DNAse (Promega). The mix was 

incubated at 37°C for 45 min. Then the reaction was stopped by addition of 1 µL of Stop DNAse 

(EGTA, 20 mM, Promega) and incubation at 65°C for 10 min. After 5 min of incubation on ice, 

samples were supplemented with 20 µL of RT mix: 6 µL H2O; 8 µL 5X SuperScript IV buffer 

(Invitrogen), 2 µL 0.1 M DTT (Invitrogen); 2 µL 10 mM dNTPs (ThermoFisher Scientific); 2 

µL 40 µM smart-Oligo-dT (ThermoFisher Scientific), and 0.5 µL of 200 µg.µL-1 SuperScript 

IV (Invitrogen). Samples were incubated at 50°C for 10 min and at 80°C for 10 min. cDNAs 

were diluted by addition of 40 µL H2O. Real-time PCR was performed on 10 ng of cDNA. The 

reaction mix contained 1 µL of cDNA, 5 µL of SYBR® Green (Roche), 2 µL of H2O, and the 

couple of primers (2.5 µM) for each gene. Primers used for the qPCR are listed in 

supplementary table 1. The housekeeping genes ACT2 (At3g18780) and GADPH (At1g13440) 

(Czechowski et al., 2005) were used as internal references and their constitutive expression was 

tested on the studied material. Primers targeting PR-1 (Atg14160.1), PR-2 (Atg57260.1) and 

PR-5 (Atg75040.1) encoding genes were designed using the LightCycler Probe Design 

software 2.0 (Roche). PCR amplification, melting curve analysis was performed using these 

primers to verify the amplification of a single PCR product. Real-time PCR was performed on 

a LightCycler® 480 II instrument (Roche) with the following program: 95°C for 5 min; 45 

cycles split in 95°C for 10 sec, 60°C for 15 sec and 72°C for 15 sec; and a temperature gradient 

from 55°C to 95°C in 1 min. The relative amount of cDNA corresponding to the transcript level 

in the sample was calculated using the 2-ΔΔCt (Pfaffl, 2001). The target gene expression level 

was normalized against internal reference genes, averaged over triplicate determinations, and 

shown as a relative value. The induction (or repression) factor of the target gene at the TX time 
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was calculated with respect to a starting biological condition T0 set at 1. Technical triplicates 

were performed for each sample.  

Extraction and quantification of chlorophylls and carotenoids, total sterols, sterol esters and 

fatty acids from plant tissues 

The plant material hitherto stored at -80°C was crushed in freshly prepared 80% acetone 

(Sigma Aldrich) in water (v/v). Samples were incubated in the dark at 4°C for 24 h. After 

incubation, 200 μL of the supernatant were transferred to a 96 well microplate (96 Well ELISA 

Microplates, PS, U-bottom, MICROLON®, Greiner Bio-one). For each sample, 3 wells were 

prepared for measurement. Optical density was measured for each well at 470 nm, 646 nm and 

663 nm on FLUOstar Omega spectrometer (BMG Labtech). The concentration of chlorophylls 

and carotenoids in the samples was determined with the equations given by (Lichtenthaler and 

Buschmann, 2001), with ca: concentration of chlorophyll a; cb: concentration of chlorophyll b; 

c(x+c): concentration of xanthophylls and carotenes. 

ca (μg.mL-1) = 12.25 A663.2 – 2.79 A646.8 

cb (μg.mL-1) = 21.50 A646.8 – 5.10 A663.2 

c(x+c) (μg.mL-1) = (1000 A470 – 1.82 ca – 85.02 cb)/198 

To extract total sterols, sterol esters and fatty acids, acetone was evaporated from the 

remaining 2.8 mL samples (1 h at 65°C), and samples were lyophilized. 3 mL of 6% KOH in 

methanol (Carlo Erba) was added to the lyophilized material to proceed saponification at 70°C 

for 2 h. After addition of 1.5 mL milliQ H2O, 1.5 mL n-hexane (Roth) was added samples were 

mixed and centrifuged 5 min at 2500 g. The hexane upper phase was transferred in new tubes. 

This extraction was performed 3 times on the same samples and the 3 hexane phases were 

pooled and evaporated (at least 10 min at 70°C). Acetylation was then performed on the dried 

residue with 100 μL of toluene (Carlo Erba), 50 μL of acetic anhydride (Fluka) and 30 μL of 

pyridine (Fluka) in a glass vial at 70°C for 1 h. After evaporation at 70°C for 30 min, samples 

were resuspended in 300 µL n-hexane (Roth). To identify sterols, plant extracts were analyzed 

by gas chromatography (GC instrument, Agilent 6890) coupled to mass spectrometry (MS 

analyzer, Agilent 5973) using a HP-5MS column (5% PhenylMethyl Siloxane, 30 m x 250 μm 

x 0,25 μm, Agilent J&W). 2 μL of sample were injected. The helium flux was 1 mL.min-1. The 

column temperature was hold at 60°C for 1 min, heated to 200°C with a gradient of 30°C per 
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min, and then reaching a maximum of 300°C with a gradient of 2°C per min, for a total run 

time of 56,33 min for each sample. The separated molecules were ionized by electronic impact 

at 70 eV. The identification of each species was made by the detection of specific daughter ions 

obtained after ionization and using the database. 

 

Results 

The WT microbiota changed during growth in the tested conditions 

In a first set of experiments, we wanted to evaluate if the community changed during the 

growth of plants. We chose two stages, the “rosette” and the “siliques” stages in WT Col-0 and 

WS2 ecotypes (Supplementary figure 1). The Supplementary figure 3 shows that 

Proteobacteria, Actinobacteria and Bacteroidetes were dominant phyla at both stages in the 

two ecotypes. Second, β-diversity analysis revealed that, at both stages, the composition of the 

microbiota of the phyllosphere was significantly different from that in the roots and rhizosphere, 

which were more closed together (Supplementary Figure 4). Finally, clustering and principal 

coordinate analyses (CoAP =MDS) (supplementary figure 4) revealed that the composition of 

the communities at both stages were significantly different. In particular, we observed that 

Bacteroidetes were more abundant in the two ecotypes at the silique stage (9.2 and 12.2% in 

Col-0 and WS2, respectively) as compared to rosette stage (5.7 and 4.2 %). Moreover, 

Actinobacteria were more abundant in WS2 at the rosette stage (18.9 and 14.1%) than at the 

siliques stage. Thus, these observations revealed that the community changed during plant 

growth in both ecotypes.  

Mutations in isoprenoid pathways did not affect the global composition of the bacterial 

community associated to A. thaliana.  

We had to choose one stage to compare the community in WT and mutants. The phenotype 

of the hmg1-1 is observable at the “siliques” stage. At this stage, the stem size of hmg1-1 plants 

is reduced and smaller siliques are observed as compared to the WT (Suzuki et al., 2004). The 

chlorotic phenotype of the chs5 mutant is mainly observed at early growth stage when the 

rosette is less than 7 cm bright and when plants are grown in cold conditions (Araki et al., 2000). 

In these conditions where mutants’ phenotypes are visible, bias due to difference of size and 

number of leaves may influence the comparison of the communities between WT and mutants. 
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Because hmg1-1 has a smaller size at the “siliques” stage, we decided to compare WT and 

mutant microbiota at the early “rosette” stage. Because of the cold-sensitive phenotype of the 

chs5 mutant, plants were grown at 21°C during the light phase and 18°C during the dark phase, 

and the sampling was performed with plants having a diameter higher than 7 cm. In these 

conditions, WT and mutants had similar shapes (Figure 1).  

First, we observed that the relative abundances of the different phyla were similar in the 

three replicates in each condition, showing that our sampling conditions were relevant 

(Supplementary Figure 5). Second, the rarefaction curves revealed that the number of sequences 

was important enough to visualize most of the diversity (Supplementary figure 6). The 

community at the phyla level was similar in both Col-0 and WS2 ecotypes (Supplementary 

figure 5A). However, only 16% of the OTUs were found in both wild types (Supplementary 

figure 5B), showing that, in our tested conditions, both ecotypes shared a core microbiota but 

had also specific OTUs interacting with them. Third, in all plant genotypes, α- and β-diversity 

indexes revealed that microbiota richness and structures in phyllosphere were globally different 

from the rhizospheric or the root microbiota, which were more closed together (Figure 2 and 

Supplementary figure 7 and 8).  

Finally, we compared each mutant with its corresponding WT. The α-diversity index shows 

that WT and mutants’ microbiota had globally similar richness and were therefore comparable 

in each compartment (Supplementary figure 7). More interestingly, the β-diversity analysis 

revealed that the microbiota composition was less different between WT and mutant than when 

the compartment communities were compared (Figure 3 and supplementary figure 8). These 

global analyses revealed that the mutations did not globally affect the community composition 

or richness. Nevertheless, some specific species may be impacted by the mutations. Therefore, 

we further looked for OTUs that were significantly more or less abundant in mutant as 

compared to the WT. 

Comparison of OTUs abundance revealed that mutation impacted a fraction of the 

microbiota 

First, we compared the relative abundance of each OTU in Col-0 and chs5. The relative 

abundance of 94, 224, and 108 OTUs was significantly different (ANOVA, p<0.01) in chs5 as 

compared to Col-0, in the phyllosphere, rhizosphere and roots, respectively (Figure 3 and 

Supplementary Table 2). We observed a majority of Proteobacteria, Actinobacteria and 
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Bacteroidetes as for the total microbiota (Figure 3). Interestingly, we observed that in the 

phyllosphere, the percentage of Actinobacteria and Saccharibacteria was higher and the 

percentage of Proteobacteria was lower, in the variable OTUs as compared to the total 

microbiota. In the roots, the percentage of Proteobacteria was higher in the variable OTUs as 

compared to the total microbiota, whereas no global differences were observed in the 

rhizosphere. Among these OTUs which are variable in chs5 as compared to Col-0, we found a 

higher percentage of Streptomyces (13.8, 9.3 and 6.7 % in the phyllosphere, the roots and the 

rhizosphere, respectively) as compared to the total microbiota (2.3, 1.9 and 1.9 % in the 

phyllosphere, the roots and the rhizosphere, respectively). In addition, in the rhizosphere we 

found 8.9 % of Rhizobium in the variable community, higher than what observed in the total 

community (1.6%). These observations suggest that colonization of the plants by Rhizobium in 

the rhizosphere, and Streptomyces in all compartments were affected in chs5 mutant. 

Second, we compared the relative abundance of each OTU in WS2 and in hmg1-1 in each 

compartment. The relative abundance of 76, 291, and 121 OTUs was significantly different 

(ANOVA, p<0.01) in hmg1-1 as compared to WS2, in the phyllosphere, rhizosphere and roots, 

respectively (Figure 3 and Supplementary Table 3). Interestingly, we observed that in the 

phyllosphere, the percentage of Actinobacteria was higher and the percentage of Proteobacteria 

was lower, in the variable OTUs as compared to the total microbiota (Figure 3). In the roots, 

the percentage of Proteobacteria was higher in the variable OTUs as compared to the total 

microbiota, whereas, in the rhizosphere, the percentage of Bacteroidetes was higher in the 

variable OTUs as compared to the total microbiota. Among the OTUs which are more abundant 

in the WS2 than in hmg1-1, we found a large majority of Streptomyces (13.1, 7.4 and 7.2 % in 

the phyllosphere, the roots and the rhizosphere, respectively) as compared to the total 

microbiota (3, 2.8 and 2.9 % in the phyllosphere, the roots and the rhizosphere, respectively). 

In the rhizosphere we found 7.2 % of Rhizobium in the variable community, higher than what 

observed in the total community (1.3%). These suggest that colonization of the plants by 

Rhizobium in the rhizosphere, and Streptomyces in all compartments were affected in hmg1-1 

mutant. 

Third, we compared data obtained in both analyses. We found OTUs whose abundance was 

different in Col-0 versus chs5 comparison, but not in WS2 versus hmg1-1 analysis, and vice 

versa (Figure 3, Supplementary Data 4 and 5). For example, among these OTUs whose 

abundance was higher in Col-0 than in chs5, in phyllosphere or roots, we found some 
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Actinobacteria (Kribella, Streptomyces), Chloroflexi, Planctomycetes (Schlesneria), 

Saccharibacteria, and one OTU affiliated to Sphingomonas. This OTU was not found to be 

differently abundant in the phyllosphere nor roots in the comparison WS2 versus hmg1-1. We 

compared the 16S rRNA sequence to genbank and found 100% identity with Sphingomonas 

wittichii, a bacterium which was shown to degrade plant hormone indole 3-acetic acid (IAA) 

(Leveau and Gerards, 2008). Finally, we observed that the relative abundance of 23, 56, and 17 

OTUs was significantly different (ANOVA, p<0.01) in both analyses, in the phyllosphere, 

rhizosphere and roots, respectively (Figure 3). Among these OTUs, 24 were more abundant in 

the mutants as compared to their respective WT, with a majority of Proteobacteria (11 OTUs) 

and Actinobacteria (9 OTUs among which 4 Streptomyces) (Table 1). On the other hand, 14 

OTUs were more abundant in the WT as compared to mutants, with a majority of 

Actinobacteria (7 OTUs among which 4 Streptomyces) and Proteobacteria (5 OTUs) (Table 

2). The abundance of these OTUs is therefore influenced by both mutations in the MVA and in 

the MEP pathways (Figure 1). All these results revealed that the colonization of some specific 

OTUs was impacted by either the mutation in the MEP or the MVA pathways. Interestingly, 

the colonization by Rhizobium in the rhizosphere, and Streptomyces in all compartments, and 

the colonization of 38 OTUs is impacted whatever the isoprenoids pathway affected. Next we 

wondered if the difference of abundance of some of these specific OTUs may impact other 

plant-bacteria interaction, as for example the interactions with pathogens.  

The chs5 mutant is more sensitive than the WT to P. syringae DC3000 infection 

To test the capacity of chs5 and hmg1-1 mutants to interact with pathogens, PstDC3000, 

was used to infect leaves. It is important to notice that this experiment was performed with the 

same set of plants than the 16S barcoding experiments. Quantification was performed 6 days 

post infection (6dpi). We obtained no significant difference of pathogen development between 

the hmg1-1 mutant altered in the MVA pathway and the WS2 wild-type (Figure 4A). In 

contrast, a significant increase of the pathogen colonization was observed in the chs5 mutant 

affected in the MEP pathway, compared to the Col-0 wild-type (Figure 4B). Thus, an alteration 

of the MEP but not the MVA pathway leads to an increased colonization by the pathogen.  

We repeated this experiment with other chs5 and Col-0 plants grown in the same conditions 

but at an earlier growth stage (rosette diameter <7cm), when the chlorotic phenotype of chs5 

was still visible. In these conditions, the chlorophylls contents were slightly reduced in this 

mutant as compared to the WT (Supplementary figure 9). Indeed, Chlorophyll a abundance is 
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1.3-fold higher in Col-0 compared to chs5; chlorophyll b is 1.5-fold more abundant in Col-0 

than chs5; and the abundance of carotenoids is unaffected by the mutation. In this case, we 

observed that 10-fold more pathogens colonized the chs5 plants as compared to the wild-type. 

To elucidate whether this difference of sensitivity between Col-0 and chs5 originated from a 

defect in plant immune response, we investigated the expression level of some key genes known 

as SAR markers (Supplementary figure 9). Pathogenesis-related (PR) genes PR-1, PR-2 and 

PR-5 are usually induced upon infection by (hemi)-biotrophic pathogens such as PstDC3000 

(Thomma et al., 2001). These SAR marker genes were particularly induced 3dpi and decreased 

at 6 dpi. No significant difference was observed for PR-1 at 1, 3 or 6 dpi; for PR-2 at 1 and 3 

dpi, and for PR-5 at 1 or 6dpi. A slight difference was observed for PR-5 expression at 3 dpi, 

(1.8-fold higher in Col-0 than in chs5), and for PR-2 at 6 dpi (1.6-fold higher in Col-0 than in 

chs5). However, these differences were minor and could not explain the difference in pathogen 

colonization in these tested conditions. Finally, it has been previously shown that the content 

of stigmasterol, an isoprenoid synthetized via the MVA pathway, increased upon PstDC3000 

infection (Griebel and Zeier, 2010). An analysis of the stigmasterol content was therefore 

performed (Supplementary figure 9). As previously observed, there is a 7.5-fold increase of 

stigmasterol in infected compared to non-infected Col-0 (mock-infiltrated) and a 5-fold increase 

in infected compared to non-infected chs5 (mock-infiltrated), suggesting that the mutant can 

synthetize stigmasterol after infection, in the tested conditions. 6 days after infection, the 

amount of stigmasterol quantified by GC-MS is not significantly different between Col-0 and 

chs5. All these results suggest that a decrease of the MEP pathway efficiency, but not of the 

MVA pathway efficiency, led to a better colonization by PstDC3000. This better pathogen 

colonization could not be explained by a defect in the expression of PR-1, PR-2 and PR-5 genes, 

nor by a defect in stigmasterol synthesis.  

 

Discussion 

In this work, to decipher if isoprenoids were involved in plant-bacteria interactions, we used 

two complementary approaches. We compared the interaction of WT and mutants affected in 

isoprenoids biosynthesis with a model pathogen, PstDC3000. In parallel, we compared the 

microbiota associated with WT or mutants using a 16S sRNA gene sequencing approach. These 

approaches allowed us to show that both hmg1-1 and chs5 mutants were impaired in association 
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with some specific bacteria, and the chs5 but not the hmg1-1 mutant was more colonized and 

thus more susceptible to infection by PstDC3000 than WT. 

We made several control to verify that our 16S rRNA gene sequencing approach was 

relevant. First, in a preliminary experiment, we tested the effect of the growth stage on the 

phenotype or on the microbiota composition. The community changed during plant growth in 

both ecotypes. Such changes were previously observed (Chaparro et al., 2014; Lundberg et al., 

2012). In these previous studies, the authors demonstrated that even if a core microbiota was 

characterized at different stages of the plant development, a subset of microbes associated with 

plants varies at different stages of the development. Second, according to the preliminary study, 

we chose a similar growth stage for all the experiments, in order to prevent bias due to 

differences of plants size. Indeed, our study was performed on plants having similar shapes. We 

grew hmg1-1 in conditions were the phenotype was not visible. The chlorotic phenotype that is 

characteristic of chs5 when the plant grows at cold temperature or at early stages was poorly or 

not visible in our culture conditions (21°C/18°C) either (Araki et al., 2000; Hugly and 

Somerville, 1992; Schneider et al., 1995). When the chlorotic phenotype was slightly observed, 

only a slight decrease of chlorophylls and carotenoids contents in this mutant was observed 

(Supplementary figure 9). Nevertheless, in such conditions, we were able to observe differences 

in the interaction of specific OTUs with chs5 and hmg1-1 mutants as compared to WT, and 

with the pathogen PstDC3000 in the case of chs5. Third, our results agreed with several 

previous analyses on bacterial microbiota of A. thaliana. Indeed, at both stages, in all plant 

genotypes, α- and β-diversity indexes revealed that microbiota richness and structures in 

phyllosphere were globally different from the rhizospheric or the root microbiota, which were 

more closed together. Such observations were previously made by others (Bai et al., 2015; 

Lundberg et al., 2012; Schlaeppi et al., 2014). Moreover, Proteobacteria, Actinobacteria and 

Bacteroidetes were dominant phyla at both growth stages, in the two ecotypes, as previously 

described (Bai et al., 2015; Lundberg et al., 2012; Schlaeppi et al., 2014). However, only 16% 

of the OTUs were found in both wild-type, showing that, in our tested conditions, both ecotypes 

shared a core microbiota but had also specific OTUs interacting with them, as previously 

observed (Bai et al., 2015; Lundberg et al., 2012; Schlaeppi et al., 2014). 

Using this 16S rRNA-based approach, we demonstrated that the mutations did not globally 

affect the community composition or richness. Nevertheless, colonization of some specific 

OTUs was impacted by either the mutation in the MEP or in the MVA pathways. Interestingly, 
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the colonization of 38 OTUs, among which Rhizobium in the rhizosphere, and Streptomyces in 

all compartments, was impacted whatever the isoprenoid biosynthesis pathway affected. Plants 

isoprenoids may therefore be required for these OTUs to colonize the plants. Interestingly, 

among the OTUs which are more abundant in the WT than in mutants, we found a large majority 

of Streptomyces as compared to the total microbiota, in the phyllosphere, the roots and the 

rhizosphere. These observations suggest that Streptomyces are selected directly or indirectly via 

isoprenoids. These bacteria are known to produce a large number of secondary metabolites and 

among them, isoprenoids (Kuzuyama, 2017). Plants isoprenoids may be attractant for these 

bacteria. On the other hand, bacterial isoprenoids may be interesting for the plant as precursors 

for their own biosynthesis.  

Changes in the microbiota composition may impact the fitness of the plants since the chs5 

mutant is more colonized by the pathogen than the WT. This could not be explained only by a 

decrease of PR genes expression nor stigmasterol production. In contrast, the hmg1-1 mutant 

was not affected. This suggests an implication of isoprenoids synthetized via the MEP pathway 

but not those synthetized through the MVA pathway, in the plant defense against pathogens. 

This implication could be direct, via an effect of isoprenoids themselves on the pathogen, or 

indirect, via the implication of specific members of the microbiota. Some bacteria may play a 

role to promote pathogen colonization and be more abundant in the mutant than in the WT. 

Others may play a role to prevent pathogen colonization and be more abundant in the WT than 

in the mutant. Both mutants were differently impaired in pathogen colonization, we therefore 

hypothesized that members of the microbiota may play a role to protect plants against 

PstDC3000, and their selection may require isoprenoids synthetized via the MEP pathway. We 

tried to identify such bacteria, by looking for OTUs whose abundance was higher in Col-0 than 

in chs5, but whose abundance was not changed in hmg1-1 compared to WS2. Several of these 

OTUs had a 16S rRNA gene sequences sharing more than 99% identity with Actinobacteria 

(Kribbella, Pseudonocardia, Streptomyces), Sphingomonas, known to produce antimicrobial 

molecules or to have biocontrol effect (Innerebner et al., 2011; Liu et al., 2019; Shan et al., 

2018). For example, Sphingomonas spp. were shown to prevent Pst DC3000 colonization in A. 

thaliana (Innerebner et al., 2011). Several Streptomyces were shown to display antagonisms 

against plant pathogens (Dias et al., 2017; Newitt et al., 2019; Olanrewaju and Babalola, 2019; 

Suárez-Moreno et al., 2019) or have been found in disease-suppressive soil (Cordovez et al., 

2015). For example, it was shown that Streptomyces sp. EN27 induces defense pathways in A. 

thaliana (Conn et al., 2008). Remarkably, these bacteria were found in the phyllosphere, where 
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PstDC3000 was infecting the plant. These OTUs may therefore play a role to prevent pathogen 

colonization in Col-0, but may be present in a too low abundance in chs5 to prevent pathogen 

colonization, leading to a better colonization of PstDC3000 in this mutant. Such hypothesis 

could be tested in the next future by isolating such bacteria and testing their effect on plants in 

vitro as previously done by other laboratories (Vogel et al., 2012; Vorholt et al., 2017). 
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IV. Discussion 

 

In this chapter, I presented few technical points since I tried to optimize the infection 

experiments. I wish to notice that the model interaction between A. thaliana and  

P. syringae is sometimes considered as artefactual because there is no naturally 

occurring infection of A. thaliana by this pathogen, and we have to employ artificial 

inoculation methods in the laboratory, which are not exactly representative of a natural 

infection (Katagiri et al., 2002). However, this is a good model for comparative study of 

the sensitivity of different plants to the same pathogen, in the same conditions. There 

are lots of protocols commonly used for A. thaliana infection by PstDC3000, but the 

needle-less syringe infection is reliable since we can control the pathogen repartition 

on selected leaves. I tried to quantify the pathogen thanks to fluorescence or 

luminescence measurements, but I did not obtain any correlation between the 

measurements and the pathogen numerations after plating. This lack of correlation 

could be due to the device that we use in the institute for the measurements, since we 

encountered difficulties with both methods, for which detection was made on the same 

device. Thus, I decided to proceed bacterial quantification with the usual plating 

method. Nevertheless, for the last infection experiment, I managed to reduce the 

manipulation steps by plating droplets corresponding to different dilutions of the 

grinded leaves on the same plate, which also facilitates the numeration since less 

colonies need to be counted. However, since this method only requires 20 µL spots, 

the numeration is also less precise than with the classic plating method. This could 

explain the increased difference of sensitivity observed between Col-0 and chs5 in the 

last infection experiment. In addition, the size of the plants (rosette diameter and 

number of leaves) and their phenotype were slightly different between the repeated 

experiments, as the growing chambers used for their culture. Thus, lots of factors 

should be taken into account and could be responsible for the slight variability between 

the different experiments.  

Nevertheless, I always observed that chs5 mutants impaired in the plastidial MEP 

pathway were more sensitive to the PstDC3000 than Col-0. In contrast, hmg1-1 

mutants impaired in the cytosolic MVA pathway were not. Thus, isoprenoids from the 

MEP pathway appear to be important for the plant interaction with PstDC3000. It still 
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remains to determine if isoprenoids are directly or indirectly implicated in the plant 

resistance to pathogens. These molecules could have a direct effect on the plant 

resistance to pathogens since chs5 mutants are altered in the formation of chloroplastic 

isoprenoids. This biosynthesis pathway is at the origin of phytohormones like abscisic 

acid (ABA) and cytokinins which may play a role in the defense against pathogens, 

additionally to the well-studied salicylic acid, jasmonic acid and ethylene (Albrecht and 

Argueso, 2017; Asselbergh et al., 2008; Ton et al., 2009). But isoprenoids could also 

have an indirect effect on the plant resistance to pathogens, since we highlighted a 

difference of communities interacting with Col-0 and chs5. We can speculate that some 

bacteria from the microbiota could play a role in the interactions with pathogens. Some 

micro-organisms are less abundant in chs5 which is more sensitive to the pathogen 

and could potentially play a role in the plant protection. Some others are more 

abundant in chs5. It is possible that these ones affect the plant health allowing the 

pathogen to infect the plant more easily, for instance. 

In the paper, we showed that despite the existence of a core microbiota, that was 

also stated in previous studies (Bai et al., 2015; Bodenhausen et al., 2013; Bulgarelli 

et al., 2012, 2015; Lundberg et al., 2012; Schlaeppi et al., 2014), there are bacteria 

that are significantly more abundant in wild-types or in mutants. The presence of these 

bacteria in the microbiota may be influenced by the isoprenoid content of the plant, 

which suggests that isoprenoids may play a role in the interactions between plants and 

micro-organisms in general. These bacteria differentially abundant between Col-0 and 

chs5 could be implicated in the difference of sensitivity between the two plants, as 

mentioned above.  

Furthermore, I tried to obtain an additional control for our experiments. The idea 

was to work with chs5 mutants that integrated an exogenous DXS1 gene and thus 

compensate their isoprenoid deficit. This would be a great tool to test whether the 

difference of the sensitivity between Col-0 and chs5 really is the consequence of a 

deficit in isoprenoid biosynthesis. If it is the case, such a line should exhibit the same 

sensitivity as Col-0, or they should be even less sensitive to PstDC3000. For that 

purpose, in the laboratory, A. thaliana Col-0 line overexpressing the DXS1 under the 

control of a 35S promotor (35S:DXS1OE) was crossed with chs5 mutant line which is 

mutated in the DXS1 enzyme. F1 hybrids resulting from this crossing were self-

fertilized to obtain the F2 generation. I sowed 132 seeds from the F2 generation, and 
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I followed their phenotype before genotyping the plants. I was looking for plants 

exhibiting a wild-type phenotype characterized by green leaves, but with the dxs1 

mutation of the chs5 mutant. I only managed to obtain heterozygous (DXS1/dxs1) that 

integrated the overexpressor, but no homozygous. Thus, I sowed 192 seeds obtained 

from one heterozygous plant that integrated the overexpressor. After genotyping the 

descendants, I still did not obtain any homozygous dxs1/dxs1 that integrated the 

overexpressor. Nevertheless, I think that such a line could be really useful to deepen 

the observations made in this chapter. 
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Chapter 2 
Do some specific bacteria influence the plant health and 

resistance to pathogens? 
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I. Introduction 

 

The previous chapter of my thesis presented the inventory of the communities 

interacting with wild-type and mutants of A. thaliana altered in isoprenoid biosynthesis. 

We highlighted that, despite the existence of a core microbiota, specific operational 

taxonomic units (OTUs) were significantly more abundant in wild-types or in mutants. 

Additionally, chs5 plants, altered in the biosynthesis of isoprenoids via the MEP 

pathway have been shown to exhibit a higher sensitivity to the phytopathogen 

PstDC3000 than Col-0. Together, these results indicate that isoprenoids may influence 

the interactions between plants and micro-organisms. 

This led us to wonder if some bacteria that are more abundant in wild-type or in 

mutants, whose presence is favored or not by plant isoprenoids, are able to impact the 

plant health and its resistance to pathogens. To answer this question, we had to test 

the effect of these strains on the plant, and thus to have them available. We managed 

to build a strain collection of 230 bacteria isolated from A. thaliana and the soil. Among 

them, I had to determine which ones could be interesting. Thus, I sequenced their 16S 

rRNA gene and compared it to the ones of the variable OTUs highlighted in the first 

chapter of my thesis. We were particularly interested in bacteria that are differentially 

abundant between Col-0 and chs5 since these two plants exhibit a difference of 

sensitivity to PstDC3000 in holoxenic conditions, as showed in the previous chapter. 

Few strains that we isolated exhibit 100% of sequence identity with the variable OTUs, 

which led me to suppose that they could be the same bacteria, or phylogenetically 

close to bacteria whose abundance varies. Thereafter, I inoculated some of these 

strains to plants under controlled conditions in order to determine whether they 

influence the plant health or resistance to pathogens. Inoculations were proceeded in 

gnotoxenic culture in vitro to determine the impact of the tested strains in absence of 

the naturally associated microbiota. I also inoculated one of them in vivo, in holoxenic 

conditions, to determine its effect in the presence of the plant microbiota. 

The present chapter is a synthesis of the work that I made in the isolation of bacteria 

and the in-depth study of five of them that were potentially more abundant in wild-type 

or in mutants.  



W
S2

Leaves
MYX 42
MM + MeOH 7
Total 49

Phyllosphere

MYX 7
MM + MeOH 1
GYM 5
Total 13

Roots

YEM 9
M408 9
TYG 7
TWYE 3
GYM 6
Total 34

Rhizosphere GYM 4
Total 4

Total 100

C
ol

-0

Leaves
MYX 6
MM + MeOH 6
Total 12

Phyllosphere

MYX 12
MM + MeOH 3
Streptomyces 
medium 13
Actinomycete 
medium 31
Total 59

Roots

YEM 6
M408 10
TYG 7
TWYE 4
Streptomyces 
medium 9
Total 36

Seeds
LB 1
Total 1

Total 108
Soil

LB 12
TWYE 10
Total 22

Table 2. Quantity of isolated strains obtained for each isolation method. Isolated
strains were obtained upon selection of colonies based on their morphologic features.
Most of the isolated strains were finally able to grow on LB medium. 100 strains were
isolated from WS2; 108 strains were isolated from Col-0; 22 strains were isolated from
the soil.

58%33%

10%

Phyllopshere
Roots/rhizosphere
Soil

Figure 24. Proportions of isolated strains coming from the phyllosphere, the
underground parts of the plant and the soil. We consider the number of strains from
the phyllosphere as the number of strains isolated from either the leaves alone or the
whole phyllosphere. The roots and the rhizosphere form together the underground parts
of the plant. Bacteria isolated from the soil are considered separately.
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II. Results 

 

1. Isolation and taxonomic affiliation of 230 strains 

We isolated 230 strains from the different parts of wild-type Col-0 and WS2 

(phyllosphere, roots, rhizosphere, seeds), and from the soil used in the institute for 

their culture. These strains were affiliated at the genus level and five of them were 

studied more in details. I selected them based on their partial 16S rRNA gene 

sequence identity with variable OTUs highlighted in the inventory of the communities 

exposed in chapter 1. 

 

1.1. Strain collection 

For the isolation of the strains from the plant, we decided to separate the 

aboveground parts of the plant (leaves or whole phyllosphere) from the roots and the 

rhizosphere that are the underground parts of the plant. We used different culture 

media depending of the plant material, based on a previous publication (Bai et al., 

2015). We first plated the grinded plant material at different concentrations. We 

subsequently tried to mainly select colonies that were morphologically different from 

each other in terms of size, color, shape or aspect, to isolate them. Among the 230 

strains that we isolated in the laboratory, 100 were isolated from A. thaliana WS2, 108 

from Col-0, and 22 from the soil, as indicated in the table 2. The proportions of strains 

isolated from the aboveground parts of the plant, the underground parts of the plant, 

and the soil, are represented in figure 24. More than half of the strains that we isolated 

originated from the phyllosphere, and less from the rhizosphere and the soil. 

 

1.2. Taxonomic study of the isolated strains 

The first step following the isolation of these strains was their identification. 

Taxonomy allows to find a taxon corresponding to a strain based on similarities criteria. 

One criteria commonly used in taxonomy and that could be rapidly observed is the 16S 



Figure 25. Composition of our strain collection. Strains were affiliated by 16S rRNA
gene sequencing and comparison with the SILVA database. NA: non attributed.
(A) Relative abundance of each phylum within our strain library. Proteobacteria are
divided in 3.5% of Alphaproteobacteria, 1.7% of Betaproteobacteria and 22.2% of
Gamma-proteobacteria. (B) Isolated strains were affiliated at the genus level. (C) Genus
that are present in lower amounts in the “Others” category in (B) are given in this table.
(D) Taxonomic distribution of our strains in the phyllosphere, the rhizosphere and the
soil.

Bacterial genus Number of 
strains

Glutamicibacter 9
Flavobacterium 5
Exiguobacterium 4
Stenotrophomonas 3
Shinella 3
Curtobacterium 3
Rhizobium 3
Chryseobacterium 3
Brevundimonas 2
Erwinia 2
Paracoccus 2
Gordonia 2
Paenibacillus 2
Acinetobacter 2
Burkholderia 2
Pseudoclavibacter 1
Lelliottia 1
Pseudonocardia 1
Homoserinibacter 1
Mesorhizobium 1
Providencia 1
Janibacter 1
Achromobacter 1
Enterobacter 1
Cellulomonas 1
Chitinophaga 1
Rhanella 1
Comamonas 1
Agromyces 1

CA Library of 230 isolated strains

B

55

38

3217
15

12

Others

Pseudomonas

Bacillus

Microbacterium

Staphylococcus

NA

Rhodococcus

23.9%

16.5%13.9%
6.5%

7.4%

5.2%

D



 94 

rRNA gene sequence. It could allow to find to which genus belongs each strain. 

Another criteria that can be assessed is the analysis of the fatty acid methyl esters 

(FAME). 

 

1.2.1. 16S rRNA gene sequencing 

The conserved regions of the 16S rRNA gene allow to hybridize universal primers 

for its amplification, independently of the organism, in order to amplify variable regions 

present in the gene. These variable regions enable to distinguish between different 

strains up the genus level. I amplified the entire 16S rRNA gene in order to sequence 

it and to affiliate our isolated strains to one genus by comparison of this sequence to 

the SILVA database. I chose this database since it is the same as the one allowing to 

identify the OTUs highlighted in the first chapter of my thesis. 

As indicated in the figure 25, A, the most important phylum represented in our 

collection is the Firmicutes, followed by Actinobacteria and Proteobacteria. 17 strains 

are still unknown since we did not manage to properly extract their DNA or to sequence 

their 16S rRNA gene. We isolated a majority of Bacillus, Pseudomonas and 

Microbacterium, some Staphylococcus and Rhodococcus, and a wide variety of other 

bacteria in small amounts (0.2% to 2.6%) as shown in figure 25, B. A summary table 

of the number of bacteria that we isolated per genus in the “others” category from the 

figure 25, B is given in figure 25, C. 

Finally, we can compare the proportions of each phylum in our library between each 

compartment of isolation that are the phyllosphere, the rhizosphere, and the soil as 

presented in figure 25, D. I wish to notice that I regrouped the bacteria isolated from 

the different parts of the phyllosphere (whole phyllosphere, leaves, stems, flowers) in 

one category, and I regrouped the bacteria from the roots and from the rhizosphere in 

a second category. 

 

 

 



Comparison with variable OTUs

Isolated strain SILVA affiliation Sequence
similarity OTU Compartment of 

the OTU
More abundant 

in

6H_MYX_WS2_F1C2 Curtobacterium
100% 1_2351 Phyllosphere chs5

99.76% 2_1240 Phyllosphere chs5

5H_YEM_WS2_4-2 Curtobacterium
100% 1_2351 Phyllosphere chs5

100% 2_1240 Phyllosphere chs5

2C_M408_WS2_Rc5 Curtobacterium
100% 1_2351 Phyllosphere chs5

100% 2_1240 Phyllosphere chs5

10A_TYG_WS2_4-3 Pseudomonas

100% 2_51 Roots chs5

99.77% 1_65 Phyllosphere chs5

99.77% 1_65 Roots chs5

2D_MYX_Col0_Phyllo_C5 Pseudomonas

100% 1_85 Phyllosphere chs5

100% 1_85 Roots chs5

100% 2_89 Phyllosphere chs5

100% 2_89 Roots chs5

99.1% 1_626 Roots chs5

5B_MYX_WS2_F6C3 Microbacterium 100% 1_303 Phyllosphere Col-0

Ced_4_2 Microbacterium 100% 1_303 Phyllosphere Col-0

Ced_B1 Rhizobium
100% 3_657 Phyllosphere chs5

100% 3_657 Rhizosphere chs5

Ced_5 Pseudomonas

100% 1_65 Phyllosphere chs5

100% 1_65 Roots chs5

100% 1_1049 Roots chs5

100% 2_51 Roots chs5

9G_MYX_WS2_F5C3 Pseudomonas
100% 2_51 Roots chs5

99.77% 1_65 Phyllosphere chs5

YEM_WS2_Rc3p Rhizobium 100% 3_657 Phyllosphere chs5

Table 3. Isolated strains exhibiting 100% of 16S rDNA sequence identity with
OTUs differentially abundant between Col-0 and chs5. 16S rRNA gene sequence of
our strains were compared to the partial 16S rRNA gene sequence of each variable
OTU highlighted by the inventory of the communities. With 100% of sequence identity,
the following strains are close to the varying OTUs. OTUs from the first, second, or third
inventory of the communities are indicated by the number 1, 2 or 3, respectively, in the
OTU name. Strains that we studied more in details are surrounded in red.
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1.2.2. Comparison of the 16S rRNA gene sequences of our strains with 
those of the OTUs varying between wild-type and mutants 

I compared the 16S rRNA gene sequences of our strains with those of the variable 

OTUs from the communities highlighted in the first chapter of my thesis (table 3). This 

inventory of the communities has been made three times for Col-0 and chs5, in 

conditions that were slightly different (same culture conditions but different growth 

chambers, leading to slight variations in the plant size). I performed a first comparison 

at the beginning of my thesis, with the sequences of the strains already isolated and 

those of the varying OTUs obtained in the first two test experiments comparing Col-0 

and chs5 communities available at this time. I only retained sequences that exhibit 

100% of identity between the isolated strains and the variable OTUs to prevent to 

choose strains that are not belonging to the same species. The objective was to 

increase our probability to work with a strain that is phylogenetically close to the varying 

OTUs, in such a way that they could even correspond to the concerned OTU, or to a 

bacteria belonging to the same species. I selected 5 strains of interest that are 

surrounded in red in table 3. Later, during my thesis, I also compared the 16S rRNA 

gene sequence of all our strains to those obtained in the third inventory experiment of 

the communities interacting with Col-0 and chs5 made in the lab. The results are also 

presented in the table 3. I also did it for the inventory of WS2 and hmg1-1 communities 

(Supplemental table S1). These last data correspond the those exposed in the 

chapter 1. It allowed me to highlight some other bacteria that could be phylogenetically 

close to the varying OTUs. 

 

 

 

 

 

 

 

 



Figure 26. Phylogenetic trees of the studied strains. Phylogenetic trees were made
after comparison of the 16S rRNA gene sequences of the isolated strains with the NCBI
database. Trees were constructed on phylogeny.fr. Isolated strains are surrounded in
red. (A) 10A_TYG_WS2_4-3 and 2D_MYX_Col0_PhylloC5 are phylogenetically close to
Pseudomonas composti and Pseudomonas multiresinivorans, respectively. (B)
6H_MYX_WS2_F1C2 and 5H_YEM_WS2_4-2 are phylogenetically close to
Curtobacterium pusilum. (C) MYX_WS2_F6C3 is phylogenetically close to
Microbacterium ginsengiterrae.

A

B

C
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1.2.3. Phylogenetic inference 

To go further in the identification and eventually to affiliate our strains to known 

species, I also compared their 16S rRNA gene sequence with other phylogenetically 

close species. For this, I built phylogenetic trees to find the closest parent of the 

selected strains. I compared the 16S rRNA gene sequence of our strains with the NCBI  

database by BLAST (Basic Local Alignment Search Tool). This allowed me to find 

which bacteria of the database exhibit the highest sequence identity with our ones and 

to construct phylogenetic trees (Figure 26). The strains 10A_TYG_WS2_4-3 and 

2D_MYX_Col0_PhylloC5 are phylogenetically close to Pseudomonas composti and 

Pseudomonas multiresinivorans or nitroreducens, respectively. These two isolated 

strains only exhibit 95.73% of 16S rRNA gene sequence identity, indicating that they 

are not the same species. This explains why they are found on different branches on 

the phylogram. The strains 6H_MYX_WS2_F1C2 and 5H_YEM_WS2_4-2 for their 

part are both phylogenetically close to Curtobacterium pusillum. Thus, I compared the 

16S rRNA gene sequence of these two isolated strains and noticed that they were 

exhibiting 100% of identity. However, on LB medium, 6H_MYX_WS2_F1C2 formed 

small yellow and glossy colonies, while 5H_YEM_WS2_4-2 formed medium whitish 

glossy colonies. This suggests that they potentially have different capacities and 

impact on the plant. Finally, MYX_WS2_F6C3 is phylogenetically close to 

Microbacterium ginsengiterrae, Microbacterium panaciterrae and Microbacterium 

tumbae. 

 

1.2.4. Fatty acid methyl esters (FAME) analyses 

To go further in the identification of the 5 strains of interest indicated in the table 3, 

I analyzed their fatty acid methyl esters (FAME) profiles. More than 300 fatty acids can 

be found in bacteria, giving rise to unique profile from one species to another. The 

wealth of information contained in these compounds is both in the qualitative 

differences (usually at the genus level) and quantitative differences (commonly at the 

species level). 

 



Pseudomonas genus (Heipieper and de Bont, 1994; Heipieper et al., 1992)

16:0 16:1 
trans 16:1 cis 17cyclo 18:0 18:1 

trans 18:1 cis 19cyclo Degree of 
Saturation

trans/cis 
ratio

Major FA Traces – 2% Major FA Traces –
2%

10A_TYG_WS2_4-3

25.8% 8.4% 16.1% 0.0% 1.4% 4.8% 43.5% 0.0% 37% 0.22

2D_MYX_Col0_Phyllo_C5

35.9% 9.0% 22.0% 0.1% 0.7% 3.2% 28.9% 0.1% 58% 0.24

Curtobacterium genus (Kim et al., 2008; Suzuki and Komagata, 1983)

14:0 15:0 iso 15:0 
anteiso 16:0 iso 16:0 17:0 

anteiso 18:0 18:1 cis Δ9 Anteiso/iso 
ratio

Traces – 4% Major FA Traces –
3%

6H_MYX_WS2_F1C2

0.0% 2.2% 41.1% 6.1% 8.5% 40.2% 1.9% 0.0% 9.76

5H_YEM_WS2_4-2 

0.0% 2.6% 35.8% 6.1% 2.6% 46.0% 2.4% 4.5% 9.44

Microbacterium genus (Gorshkova et al., 2016; Yan et al., 2017; Zhu et al., 2019)

14:0 15:0 iso 15:0 
anteiso 16:0 iso 16:0 17:0 

anteiso 18:0 18:1 cis Δ9 Anteiso/iso 
ratio

Traces 3-9% Major FA Traces –
4% Major FA Traces –

2.5%

5B_MYX_WS2_F6C3

0.0% 17.3% 33.0% 20.4% 4.1% 24.2% 0.9% 0.1% 1.52

Table 4. Fatty acid methyl esters (FAME) analyses by GC/FID. Fatty acids (FA)
content was studied by gas chromatography coupled with flame ionization detector
(GC/FID). The major FA mentioned in the literature for each genus are indicated before
the results of the analyses proceeded on our strains. 14:0 is miristic acid; 16:0 is
palmitic acid; 16:1 cis is palmitoleic acid; 16:1 trans is palmitelaidic acid; 18:0 is stearic
acid; 18:1 cis is cis-vaccenic acid; 18:1 trans is trans-vaccenic acid; 17cyclo and
19cyclo are cyclopropane FA.
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This work has been made in Leipzig, in collaboration with Dr. Hermann Heipieper. 

Results from the analyses are shown in table 4. Based on the affiliations made by 16S 

rRNA gene sequencing, I searched data from the literature concerning Pseudomonas, 

Curtobacterium and Microbacterium strains. Our data confirm that our strains 

10A_TYG_WS2_4-3 and 2D_MYX_Col0_PhylloC5 have a fatty acids composition 

similar to the Pseudomonas genus, with major fatty acids that are C16:0, C16:1 cis, 

C16:1 trans and C18:1 cis (Heipieper and de Bont, 1994; Heipieper et al., 1992). The 

strains 6H_MYX_WS2_F1C2 and 5H_YEM_WS2_4-2 have a fatty acids composition 

similar to the Curtobacterium genus with major fatty acids that are C15:0 anteiso, 

C17:0 anteiso, C16:0 iso and C16:0 (Kim et al., 2008; Suzuki and Komagata, 1983). 

Finally, the strain 5B_MYX_WS2_F6C3 has a fatty acids composition similar to the 

Microbacterium genus with majors fatty acids that are C15:0 anteiso, C17:0 anteiso 

and C16:0 iso (Gorshkova et al., 2016; Yan et al., 2017; Zhu et al., 2019). 

Together, the 16S rRNA gene sequencing and the FAME analyses allowed to 

affiliate our strains to the previously mentioned genus. To simplify their further studies, 

I referred to 10A_TYG_WS2_4-3 as Pseudomonas sp. 10A, 2D_MYX_Col0_PhylloC5 

as Pseudomonas sp. 2D, 6H_MYX_WS2_F1C2 as Curtobacterium sp. 6H, 

5H_YEM_WS2_4-2 as Curtobacterium sp. 5H, and 5B_MYX_WS2_F6C3 as 

Microbacterium sp. 5B. 

 

2. In-depth study of some isolated strains 

First, I wondered if the 5 isolated strains mentioned above that could correspond to 

OTUs that are differentially abundant between Col-0 and chs5 could be affected by 

plant isoprenoids. For this, I tested the effect of few isoprenoids found in A. thaliana on 

their bacterial growth. Then, I studied these strains to determine if they have an effect 

on the plant health and resistance to pathogens. 

 

 



Table 5. Growing test in mineral medium supplemented with succinate or limonene.
Bacteria were cultivated for ~48h at 28°C. An arbitrary scale is given by the colors with light
blue as the minimal growth and dark blue as the highest growth, since OD600nm
measurements were not reliable due to the formation of bacterial aggregates.

Bacterial growth

Mineral media 
supplemented with

Succinate 
4 g.L-1

Limonene
100 mg.L-1

Limonene 
250 mg.L-1

Limonene 
500 mg.L-1

Curtobacterium sp. 6H

Curtobacterium sp. 5H

Pseudomonas sp. 10A

Pseudomonas sp. 2D

Microbacterium sp. 5B

+++

+

Growth 
estimation

Figure 27. Culture of Curtobacterium sp. 5H in mineral medium + 4 g.L-1 succinate.
Bacteria form aggregates which prevent the reliable measurement of the OD600nm.
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2.1. Impact of isoprenoids on the bacterial growth  

I first tested bacterial growth in liquid mineral medium containing succinate as a 

classic source of carbon, or limonene, an isoprenoid found in A. thaliana, at different 

concentrations. Despite their capacity to grow in the presence of limonene, strains 

formed aggregates. This was already the case for strains grown in mineral medium 

supplemented with succinate as we can see in figure 27. Since it prevents us to 

reliably measure the OD600nm, and thus to properly quantify the bacterial growth, I tried 

to arbitrary quantify the growth of each strain based on the turbidity of the media and 

the quantity and size of aggregates. Results are shown in table 5. In short, each 

studied strain was able to grow in the mineral medium supplemented with limonene, 

but at high concentration, this isoprenoid impacted their growth. 
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No carbon source

Succinate 4 g.L-1

Limonene 

100 mg.L-1

250 mg.L-1

500 mg.L-1

β-caryophyllene

100 mg.L-1

250 mg.L-1

500 mg.L-1

Farnesol

100 mg.L-1

250 mg.L-1

500 mg.L-1

Myrcene

100 mg.L-1

250 mg.L-1

500 mg.L-1

α-pinene

100 mg.L-1

250 mg.L-1

500 mg.L-1

β-ocimene

100 mg.L-1

250 mg.L-1

500 mg.L-1

α-humulene

100 mg.L-1

250 mg.L-1

500 mg.L-1

(-)-linalool

100 mg.L-1

250 mg.L-1

500 mg.L-1

Geraniol

100 mg.L-1

250 mg.L-1

500 mg.L-1

Thujopsene
100 mg.L-1

250 mg.L-1

+++

-

Growth 
estimation

Table 6 Growing test on mineral medium supplemented with isoprenoids.
Isoprenoids were used as a carbon source. Escherichia coli Rosetta™ was used as a
control. An arbitrary scale is given by the colors with white as the absence of growth
and dark blue as the highest growth (strains grew well independently of the isoprenoid
concentration).
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I focused particularly on one isolated strain, Curtobacterium sp. 5H, that was 

particularly interesting for us, as explained in following paragraph II.2.2. For that strain, 

I also tested other isoprenoids as a carbon source in liquid mineral medium (geraniol, 

α-pinene, β-ocimene, farnesol, β-caryophyllene or α-humulene) and observations were 

the same in these conditions, the strain formed aggregates. Thus, I decided to test the 

growth of Curtobacterium sp. 5H and its phylogenetically close Curtobacterium sp. 6H 

on solid mineral medium containing isoprenoids as carbon source to avoid the 

quantification troubles. Escherichia coli Rosetta™ was used as a control since it is a 

bacteria that was not isolated from plants, but which is common in mammals. The aim 

was to see if this strain reacts like the ones isolated from plants to the different 

isoprenoids. The plated dilutions did not allow to count single colonies. However, this 

allowed us to confirm the capacity of the strains to grow on mineral medium 

supplemented with different isoprenoids, as shown in table 6. First of all, none of the 

tested strains was able to grow on mineral medium missing a carbon source, and they 

all grew well on mineral medium supplemented with succinate. Compared to E. coli, 

both Curtobacterium sp. 5H and Curtobacterium sp. 6H grew better on mineral media 

containing limonene, α-pinene, β-ocimene, geraniol, and particularly (-)-linalool at high 

concentrations. However, their growth was inhibited in the presence of high amounts 

of farnesol, compared to E. coli that grew well on this media, independently of the 

farnesol concentration. Finally, the tested bacteria isolated from plants were able to 

use plant isoprenoids to grow. 

 

 

 

 

 

 

 



+ Curtobacterium sp. 5H
+ PstDC3000

Col-0 chs5

+ Curtobacterium sp. 5H

+ PstDC3000

B. Curtobacterium sp. 5H

Infection day 21
(4.64 x 105 cfu.mL-1)
Pictures day 35

A. Microbacterium sp. 5B Col-0 chs5

+ Microbacterium sp. 5B

+ PstDC3000

+ Microbacterium sp. 5B
+ PstDC3000

Infection day 21
(8.0 x 105 cfu.mL-1)
Pictures day 38

Figure 28. In vitro study of the impact of Microbacterium sp. 5B and
Curtobacterium sp. 5H on Col-0 and chs5 fitness and resistance to PstDC3000.
Microbacterium sp. 5B (A) and Curtobacterium sp. 5H (B) are shown as example of
strains with no effect and potential protective traits, respectively. Strains were inoculated
to Col-0 and chs5 sterile seeds. Spray-infection by PstDC3000 was proceeded after 3
weeks of growth. Pictures were taken by Cédric Jacob.
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2.2. In vitro study of the effect of the strains on A. thaliana 

The 5 strains previously mentioned were tested for their effect on Col-0 and chs5 

in vitro. The aim was to determine if these strains have an impact on the plant health 

and resistance to pathogens. For that purpose, sterile seeds of Col-0 and chs5 were 

sown on solid MS medium allowing their culture in axenic conditions. Strains were 

inoculated on seeds, and after 21 days of growth, plants were infected or not with 

PstDC3000. A preliminary experiment was conducted in the laboratory on several 

bacteria, among which Curtobacterium sp. 5H and Microbacterium sp. 5B shown in 

figure 28. The other strains of interest, Curtobacterium sp. 6H, Pseudomonas sp. 10A 

and Pseudomonas sp. 2D were also studied for their effect on Col-0 and chs5. Results 

are represented in the table 7. 

In these experiments, we observed that plants inoculated with Microbacterium sp. 

5B exhibit the same fitness as the non-inoculated ones, suggesting that the strain has 

neither negative effect, nor positive effect on Col-0 or chs5 health. They also exhibit 

the same symptoms upon infection, whether or not they were seed-inoculated by 

Microbacterium sp. 5B, indicating that the strain does not induce any protective effect 

on the plants (Figure 28, A). As summarized in the table 7, Pseudomonas sp. 10A 

and Pseudomonas sp. 2D both exhibited a negative effect on the plant health 

characterized by a severe decrease in the size of the plants. Pseudomonas sp. 10A 

also induced more severe symptoms upon infection by PstDC3000. Pseudomonas sp. 

2D, for its part, did not impact the severity of the infection by PstDC3000. In contrast, 

we observed that Curtobacterium sp. 5H induced a decrease in the size of the plants, 

but they did not exhibit lesions or other symptoms characteristic of pathogenic strains. 

In addition, we observed a potential protective effect of Curtobacterium sp. 5H upon 

infection by PstDC3000 since plants that were inoculated before infection did not 

exhibit symptoms, compared to the plants that were not inoculated before infection. 

Indeed, the plants inoculated with Curtobacterium sp. 5H, and particularly chs5, 

exhibited the no particular phenotype compared to non-infected plants (Figure 28, B). 

Finally, Curtobacterium sp. 6H, which is phylogenetically close to Curtobacterium  

sp. 5H, also induced a slight decrease of the size of the plants, and potential protective 

traits upon infection by the pathogen. However, this effect is less obvious compared to 

Curtobacterium sp. 5H. 



Effect on the plant 
fitness

Effect on the protection 
against PstDC3000

Col-0 chs5 Col-0 chs5

Pseudomonas sp. 10A

Pseudomonas sp. 2D

Curtobacterium sp. 5H

Curtobacterium sp. 6H

Microbacterium sp. 5B

Table 7. Summary of the in vitro study of the impact of each strain of interest on
Col-0 and chs5 fitness and resistance to PstDC3000. Strains were inoculated to
Col-0 and chs5 sterile seeds. Spray-infection by PstDC3000 was proceeded after 3
weeks of growth. The effect of each strain is indicated by colors: blue characterizes a
positive effect, red a negative effect, and white the absence of effect.

Table 8. Comparison of the sterilization protocols for A. thaliana seeds. A
comparison of two sterilization protocols of the seeds has been made. The protocol
number 1 is the one usually employed for my experiments: 2 minutes in 70% ethanol, a
washing step of 1 minute in H2O, 5 minutes in commercial bleach supplemented with
0.1% Tween 20, and 8 washing steps in sterile H2O. The protocol number 2 is the one
used for preliminary experiments: 1 minute in 70% ethanol, 5 minutes in a sterilization
solution containing 4% of commercial bleach and 0.1% SDS, and 3 washing steps in
sterile H2O. Sterilized seeds were placed in different bacterial culture media or yeast
culture media to test the sterilization efficiency.

Sterilization 1 Sterilization 2

Germination efficiency 39% 38%

Contamination on solid MS medium - +

Bacterial growth in 
liquid culture medium

LB - +

NYGB - +

GYM - +

YPD - +

+

0

-

Effect
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I noticed however that the sterilization protocol previously used for this experiment 

was less stringent that the one that I usually employ in the laboratory. The usual 

protocol for seed sterilization (further referred as sterilization 1) requires a bath in 

ethanol followed by a bath in commercial bleach containing 4% sodium hypochlorite. 

In contrast, the previous sterilization method (further referred as sterilization 2)  

consists in a bath in ethanol followed by a bath in H2O containing 4% of commercial 

bleach. Thus, it is possible that some micro-organisms remain on the seeds and could 

impact the effect of the tested strains. I decided to compare the efficiency of these two 

methods of sterilization. This comparison is summarized in table 8. There is no 

difference of seed germination efficiency following the sterilization. However, there was 

a fungal contamination on solid MS medium after the sterilization 2, and some micro-

organisms were able to grow in different liquid culture media. Thus, the sterilization 2 

protocol employed in the screening of the strains effect on A. thaliana was probably 

not completely efficient, suggesting that the observed effects could potentially result 

from interactions with other remaining micro-organisms. 

I decided to test the effect of Curtobacterium sp. 5H, on seeds sterilized with the 

most stringent protocol of sterilization (sterilization 1). I obtained supplementary 

controls thanks to Pr. Julia Vorholt who provided me with two strains previously 

characterized in her laboratory: Methylobacterium extorquens PA1 which have no 

effect on disease development upon infection by PstDC3000, and Sphingomonas 

melonis sp. FR1, that have been shown to exhibit protective traits against PstDC3000 

(Innerebner et al., 2011; Vogel et al., 2012). Moreover, I decided to proceed infection 

by pipette-inoculation, according to another protocol from her laboratory (Innerebner 

et al., 2011) because the spray we used for the preliminary experiments delivers  

800 µL each time, which is much more than the pathogen supposed to be delivered 

(100 µL for 8 plants). I could have adapted the pathogen concentration, but I also 

noticed that the spray-infection did not allow a homogenous distribution. Indeed, since 

the plants are relatively close, each spray affected several plants. In addition, we 

though that the spray was too powerful, inducing mechanical stresses on the 

seedlings. In the new experiments, I observed slight protective traits of Sphingomonas 

melonis sp. Fr1 and the absence of effect of Methylobacterium extorquens PA1. 

However, I did not observe significant differences of sensitivity whether the plants were 

inoculated or not with Curtobacterium sp. 5H before infection by PstDC3000. 



Figure 29. In vivo study of Curtobacterium sp. 5H effect on Col-0 and chs5 fitness.
(A) For seed inoculation, Col-0 and chs5 seeds were immerged in a bath of
Curtobacterium sp. 5H at a final concentration of 0.5 x 108 cfu.mL-1 for 15 minutes
before sowing, or mock-treated with 10 mM MgCl2. They are in a good shape, but their
size is reduced compared to mock-treated plants. Pictures were taken after 6 weeks of
culture. (B) 2 weeks-old Col-0 and chs5 were inoculated with 5 mL of Curtobacterium
sp. 5H at a final concentration of 1 x 108 cfu.mL-1, or mock-treated with 10 mM MgCl2.
Pictures were taken after 6 weeks of culture before infection by PstDC3000. Inoculated
Col-0 are smaller than the non-inoculated ones but all plants appear healthy.

chs5

+ Curtobacterium sp. 5H

Col-0

Mock

A

chs5

+ Curtobacterium sp. 5H

Col-0

Mock

B
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Nevertheless, I observed that plants inoculated were slightly smaller than the non-

inoculated ones, suggesting that Curtobacterium sp. 5H partially inhibits the plant 

growth (Supplemental figure S1). 

Finally, to get to the bottom of it, since we observed variable effects of 

Curtobacterium sp. 5H upon infection by pstDC3000, I decided to proceed inhibition 

tests between these two strains. The aim was to determine if Curtobacterium sp. 5H 

could directly impact the plant resistance by secreting antimicrobial molecules for 

instance. I did not observe direct inhibition of one strain by the other. 

 

2.3. Effect of Curtobacterium sp. 5H in vivo  

I supposed that the protective traits of Curtobacterium sp. 5H observed with the 

protocol of sterilization 2 but not repetitively observed with the protocol of sterilization 

1, could result from interactions with other bacteria. Thus, I decided to test the 

inoculation of Curtobacterium sp. 5H on holoxenic plants, in pots. I first tested an 

inoculation method based on seed-coating, by putting the seeds in a bath of 

Curtobacterium sp. 5H. As we can see in figure 29, A, plants that were seed-

inoculated exhibit a growth delay compared to the mock inoculated ones, indicating 

that Curtobacterium sp. 5H could alter their growth, as we already observed in vitro. 

With such a growth delay, it was complicated to perform syringe infection experiments 

to test the plants resistance to PstDC3000.  

In a second time, I decided to try another protocol based on a previous study of 

soybean (Park et al., 2017). I inoculated 5 mL of Curtobacterium sp. 5H suspension 

directly in the soil of 3-weeks old plants that were approximately the same size. In 

figure 29, B, we can see that after 6 weeks of culture, Col-0 plants inoculated with 

Curtobacterium sp. 5H exhibited a slight growth delay compared to the mock-treated, 

while chs5 did not exhibit major differences whether they were inoculated or not. Thus, 

Curtobacterium sp. 5H may have an impact on the plant growth, at least on Col-0 in 

holoxenic conditions. I infected 5 plants previously inoculated with Curtobacterium  

sp. 5H or not to determine the effect of the strain against PstDC3000 in holoxenic 

conditions. I did not observe major differences between inoculated or non-inoculated 
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Col-0 or chs5 (Supplemental figure S2), suggesting that Curtobacterium sp. 5H has 

no protective capacities. 

Altogether, our experiments revealed that Curtobacterium sp. 5H slightly inhibits 

the plant growth and had finally no obvious protective effect against PstDC3000. 

 

 

III. Discussion 

 

The main outcome of this part of my work is undoubtedly the constitution of a strain 

collection composed of 230 bacteria isolated from A. thaliana and the soil. Since we 

selected the strains to keep based on morphological criteria, we probably missed lots 

of micro-organisms that look like the ones we chose, but that are not the same. For the 

same reason, it is probable that we isolated similar strains thanks to different media. 

By consequence, our strain collection is not necessary representative of the natural 

microbiota. This has been shown by comparison with the inventory of the communities 

proceeded in the laboratory. This is also confirmed by previous studies which 

highlighted a large predominance of Proteobacteria, followed by Actinobacteria and 

Bacteroidetes, and much less Firmicutes (Bai et al., 2015; Bodenhausen et al., 2013; 

Bulgarelli et al., 2012; Horton et al., 2014; Lundberg et al., 2012; Schlaeppi et al., 

2014). This is not surprising since we only isolated a fraction of the bacteria compared 

to the cultivable part of the microbiota (Bai et al., 2015). However, the proportions of 

each phylum from our strain collection between the different plants compartments only 

exhibit slight variations. We showed that Proteobacteria are more abundant in the 

isolated strains coming from the rhizosphere than those isolated from the phyllosphere, 

which is consistent with the distribution observed in the natural microbiota, as indicated 

in the first chapter of my thesis. Actinobacteria, are more represented in the isolated 

strains coming from the soil, and from the phyllosphere as compared to those isolated 

from the rhizopshere in which they are less abundant. This is also in accordance with 

the phylum distribution observed in the natural communities. 



>99% 16S rRNA gene sequence identity between our strains and strains from Bai et al.
Affiliated genus 
from our collection

Lab Schulze-Lefert
Leaves collection

Lab. Schulze-Lefert
Roots collection

Lab Schulze-Lefert
Soil collection

Microbacterium 6 21
Exiguobacterium 1
Rhanella 1
Pseudomonas 3
Stenotrophomonas 1
Janibacter 1 1
Staphylococcus 1
Bacillus 53 45 (100%)
Rhizobium 2
Pseudomonas 1

Table 9. Comparison of the 16S rRNA gene sequence of the strains from our
collection with the collection of Pr. Schulze-Lefert. Sequences of the strains from
our collection were compared to those of the strains from collections of the laboratory of
Pr. Schulze-Lefert (Bai et al.) (accession number PRJNA297956, PRJNA297942 and
PRJNA298127 for leaf, root and soil collections, respectively). Only strains with >99% of
sequence identity are considered in this table. The precise comparison of each isolated
strain from our collection with those from Pr. Schulze-Lefert’s collection is given in
supplemental table S2.
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Other strains collections already exist in laboratories studying the interactions 

between plants and micro-organisms. In comparison to our collection, the one of the 

laboratory of the Pr. Schulze-Lefert (Köln, Germany) is more substantial, with 433 

strains. I compared the 16S rRNA gene sequence of our strains to this collection and 

found some phylogenetically close strains with almost 100% of sequence identity 

(Table 9 and supplemental table 3). 45 Bacillus within our collection exhibit 100% of 

16S rRNA gene sequence similarity with bacteria from their roots collection. Other 

strains exhibit a high sequence identity, among which Microbacterium, Pseudomonas, 

and Rhizobium. In other words, it is possible that we have an overlap between our 

collections, but most of our isolated strains do not exhibit high similarity. This is 

probably partially due to the soil used for the plant culture since it is known that the soil 

type is important for the establishment of bacterial communities (Edwards et al., 2015; 

van der Heijden and Schlaeppi, 2015). 

During my thesis, I studied more in details 5 strains from our collection. These 

candidates exhibit 100% of 16S rRNA gene sequence similarity with OTUs 

differentially abundant between Col-0 and chs5. Among them, I showed in the 

paragraph II.1.2.3 that 5H_YEM_WS2_4-2 (Curtobacterium sp. 5H) and 

6H_MYX_WS2_F1C2 (Curtobacterium sp. 6H) had the same 16S rRNA gene 

sequence. However, they exhibit a different phenotype when cultivated on LB medium. 

Thus, the 16S rRNA gene sequence alone could allow us to differentiate between 

genus, but it is not precise enough to affiliate a strain at the species level. It seems that 

the two Curtobacterium that we isolated are not the same, thus, they potentially have 

different capacities. To determine the relativeness of these strains, it could be useful 

to proceed multilocus sequence typing (MLST) by sequencing other housekeeping 

genes such as gyrB or rpoB for instance (Stackebrandt et al., 2007). We should also 

be careful about the links we consider between our strains and the varying OTUs, since 

we cannot be sure that they are the same strains only on the base of the 16S rRNA 

gene sequence. I tried to use another identification method based on mass 

spectrometry analyses, since each bacteria exhibits a specific metabolic profile that 

can be compared to its identity card. However, to achieve this, the studied bacteria 

should already exist in the database, which is not the case for bacteria isolated from 

plants. 
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Once I affiliated our 5 strains of interest, I wondered if they needed isoprenoids to 

accommodate, or on the contrary, if isoprenoids could be toxic for them. Then, I tested 

their effect on A. thaliana.  

Microbacterium sp. 5B was phylogenetically close to Microbacterium panaciterrae, 

Microbacterium tumbae and Microbacterium ginsengiterrae as shown in the paragraph 

II.1.2.3. We showed that Microbacterium sp. 5B was able to grow in mineral medium 

containing limonene, despite increased difficulties in the presence of high 

concentrations. It would have been interesting to test its growth on media containing 

other isoprenoids as carbon source to determine if they could favorize its growth, since 

this strain is potentially more abundant in Col-0 compared to chs5. Following 

inoculation on A. thaliana, we showed that Microbacterium sp. 5B did not impact the 

plant health or its resistance against PstDC3000. Since no positive or negative effects 

of Microbacterium strains were reported in the literature, it is not surprising. 

Pseudomonas sp. 2D, for its part, was phylogenetically close to Pseudomonas 

multiresinivorans, which could be considered as a synonym of Pseudomonas 

nitroreducens based on genetic and biochemichal similarities (Lang et al., 2007). Thus, 

it is not surprising that our strain was also close to Pseudomonas nitroreducens strains. 

It was interesting to test the effect of our Pseudomonas sp. 2D since Pseudomonas 

nitroreducens strain IHB B 13561 is considered as a PGPR by enhancing the growth 

of A. thaliana, and also Lactuca sativa, by stimulating the cell development and nitrate 

absorption (Trinh et al., 2018). However, Pseudomonas sp. 2D negatively affected the 

plants since it inhibited their growth and amplified the symptoms following the infection 

by PstDC3000. Pseudomonas sp. 10A, was shown to be relatively close to 

Pseudomonas composti. No effects of that species were previously reported. As for 

the other Pseudomonas that we tested, Pseudomonas sp. 10A affected the plant 

development. However, no effect was observed upon infection by PstDC3000. 

Pseudomonas sp. 2D and Pseudomonas sp. 10A grew easily in mineral medium 

containing limonene as a carbon source, but high concentrations appeared to be toxic 

for them. 

Concerning Curtobacterium sp. 5H and Curtobacterium sp. 6H, both were 

phylogenetically close to Curtobacterium pusillum, Curtobacterium ammoniigenes and 

Curtobacterium flaccumfaciens. Only few effects of some of these strains are reported 

in the literature. For instance, Curtobacterium flaccumfaciens has been shown to 



Figure 30. Hydroponic culture system. We optimized an axenic culture system where
plants are grown in hydroponic conditions until the formation of siliques. Sterilized seeds
are deposited on Eppendorf tubes containing Hoagland’s medium + 0,6% agar in home-
made nurseries containing liquid Hoagland’s medium. After 1 month of growth, plants
are transferred into closed big boxes containing the same medium, still under sterile
conditions. Plant health is not affected by the culture conditions in liquid medium.

A
B
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exhibit plant growth promoting effects on barley (Cardinale et al., 2015). 

Curtobacterium flaccumfaciens strain ME1 exhibited antagonistic effects against 

pathogens such as P. syringae (Horuz and Aysan, 2018). However, others are 

considered as pathogenic, such as Curtobacterium flaccumfaciens pv. flaccumfaciens 

that causes disease in soybean (Sammer and Reiher, 2012). I first observed that 

Curtobacterium sp. 5H and Curtobacterium sp. 6H were probably able to use few 

isoprenoids as a source of carbon to grow. This is not surprising since bacteria also 

need isoprenoids, and could be able to use the ones synthetized by their host 

(Kuzuyama and Seto, 2003; Pérez-Gil and Rodríguez-Concepción, 2013). However, 

we showed that Curtobacterium sp. 5H and Curtobacterium sp. 6H had difficulties to 

grow when the concentration in geraniol or farnesol were too high. Since the 

physiological concentrations of isoprenoids in A. thaliana are poorly documented, it is 

difficult to conclude about their implication in the bacterial growth. However, we can 

estimate that high concentrations of isoprenoids may be toxic for bacteria. The effect 

of Curtobacterium sp. 5H on A. thaliana was highly variable. After preliminary 

experiments, I made the choice to focus on this strain for its potential protective trait 

upon infection by PstDC3000. I showed that this effect is not observable when the 

sterilization protocol was more stringent. This suggests that the potential protective 

traits of Curtobacterium sp. 5H could result from interactions with other micro-

organisms. However, we always observed that the strain slightly inhibits the plant 

growth. Thus, it is difficult to conclude about the effect of the strain on the plant 

resistance to pathogens, but it is clear that it has a negative effect on the plant 

development. Since strains belonging to the Curtobacterium genus can be beneficial 

for plants while others are pathogenic, Curtobacterium sp. 5H requires further 

experiments to determine its impact on the plant. 

From a technical point of view, different systems can be used for the study of plant-

bacteria interactions, among which the in vitro culture used during my work is probably 

the most common. However, I observed a high variability of the effects following the 

inoculation of the isolated strains. Plants could be stressed by the different steps of 

manipulation, notably the transplantation after 2 weeks of growth, followed by the 

infection only one week later. To go further, other plant growth systems could be useful. 

During my thesis, I optimized a hydroponic system of culture (Figure 30) in order to 

process experiments in axenic conditions on plants that could grow until the formation 
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of the siliques, and not only on rosettes as it was possible on in vitro plates. This could 

also allow us to test the effect of the strains on bigger plants and to test the plant 

resistance against PstDC3000. This would help us to understand if the difference of 

sensitivity observed between Col-0 and chs5 in the chapter 1 requires the plant 

microbiota or not. To this day, the system is operational, but we are still encountering 

difficulties to obtain plants that are homogenous enough, since we can only grow 12 

plants per system. Nevertheless, with several systems in parallel, it will be possible to 

compare different conditions on bigger batches of plants. 

To finish, since I selected few strains of interest rapidly after the beginning of my 

thesis, I did not work on bacteria that could correspond to varying OTUs of the last 

inventory of Col-0 and chs5 communities. This last inventory was made in the 

appropriate culture conditions in the institute and could better help us to understand 

which bacteria could be responsible for the difference of sensitivity between Col-0 and 

chs5 observed in the first chapter. Thus, other strains mentioned in the table 3 deserve 

further studies to determine their impact on the plant fitness and resistance to 

pathogens. 
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In nature, plants interact with a huge variety of micro-organisms. The study of these 

interactions is a field that has been gaining interest since few decades. This 

enthusiasm is partially related to the fact that certain bacteria exhibit beneficial traits 

for the host plant, such as plant growth promotion, tolerance to stresses, or defense 

against pathogens (Lugtenberg and Kamilova, 2009; Schlaeppi and Bulgarelli, 2015; 

Yang et al., 2008). Indeed, it is suggested that the holobiont which is composed of the 

plant and its associated microbiota is potentially more capable to deal with stresses 

than the plant itself (Jones et al., 2019).  

Researchers often focus on how bacteria from the microbiota impact the plant 

health, but less on how the plant may influence the selection of its microbiota (Jones 

et al., 2019). This is probably due to the focus on how to optimize crop cultures in 

modern agriculture, in terms of sustainability and productivity (Finkel et al., 2017; 

Keven Vessey, 2003; Schütz et al., 2018), but also in the reduction of postharvest food 

loss (Buchholz et al., 2018). The utilization of bacteria that have plant protective effects 

against pathogens, or plant growth promoting effects, is described as a great 

alternative to the use of pesticides and chemical fertilizers. Thus, the comprehension 

of the mechanisms that govern the interactions between plants and bacteria is a key 

milestone to take advantage of the microbiota and represent one of the most interesting 

questions about plant-bacteria interactions (Bulgarelli et al., 2013; Jones et al., 2019). 

It is already known that interactions between plants and bacteria are influenced by 

the plant environment, the soil type, the plant genotype but also root exudates, which 

contain organic acids, amino acids, vitamins and sterols for instance (Bulgarelli et al., 

2013; Edwards et al., 2015; Hartmann et al., 2008; van der Heijden and Schlaeppi, 

2015; Mendes et al., 2013). In this environment, the presence of some molecules is 

implicated in the accommodation of the microbiota. A well-known example of 

molecules implicated in the recruitment of bacteria from the soil is flavonoids that can 

be sensed by Rhizobium (Hartwig et al., 1991; Phillips and Tsai, 1992). These 

molecules are also known for their antimicrobial, antifungal and antiviral activities, 

which participate in the microbiota selection (Cushnie and Lamb, 2005, 2011). Thus, 

we wondered if isoprenoids, another class of metabolites studied in our laboratory, 

may also influence plant-bacteria interactions. Previous studies highlighted the impact 

of specific bacteria of the microbiota on the production of plants isoprenoids (Gargallo-

Garriga et al., 2016; Del Giudice et al., 2008; Pandey et al., 2018; Salomon et al., 
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2016). However, less is known about the importance of isoprenoids on these 

interactions, but it was shown that plants deficient in phytosterols, a class of isoprenic 

lipids, are more easily colonized by pathogens (Wang et al., 2012b). In the same vein, 

it has been shown that holaphyllamine is a steroid capable to trigger defense response 

in A. thaliana (Zahid et al., 2017). 

During the last three years, we have tackled the question of whether isoprenoids 

are involved in plant-bacteria interactions. For that purpose, we chose to work with  

A. thaliana lines that were altered in the biosynthesis of isoprenoids precursors, IPP 

and DMAPP. We showed that the plant isoprenoid status may have an impact on the 

establishment of the microbiota, on one hand, and on the resistance to pathogens, on 

another hand. To go further in the understanding of the process involved in the 

difference of sensitivity observed between Col-0 and chs5 mutant altered in the 

production of plastidial isoprenoid precursors (MEP pathway), we built a strain 

collection by isolation of bacteria interacting with A. thaliana. This collection contains 

strains that could be phylogenetically close to OTUs that were differentially abundant 

between Col-0 and chs5. We tested the impact of isoprenoids on five candidate strains, 

and the impact of these strains on the plant health and resistance to PstDC3000. 

Notably, I showed that Pseudomonas sp. 10A and 2D, and Curtobacterium sp. 5H and 

6H had a negative impact on the plant growth, while Microbacterium sp. 5B had no 

effect. I was particularly interested in the study of one strain, Curtobacterium sp. 5H, 

that had variable effects on the plant resistance against PstDC3000. Finally, I will 

discuss the output of my experimental work and I will present some perspectives that 

deserve attention for future studies.  

 

 

I. Isoprenoids may be involved in the interactions between plants and 
bacteria from their microbiota 

 

The first chapter of my thesis was partly devoted to the study of bacteria interacting 

with A. thaliana, considering the metabolic status of the plants. We showed that 

isoprenoids may be important for the establishment of the plant microbiota. We 
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confirmed that despite the presence of a core microbiota, which is consistent with 

previous studies (Bai et al., 2015; Bulgarelli et al., 2012, 2015; Lundberg et al., 2012; 

Schlaeppi et al., 2014), some specific OTUs were significantly more abundant in wild-

types or in isoprenoid deficient mutants. 

First of all, we showed that the composition of the microbiota was globally different 

between the phyllosphere, on one hand, and the roots and rhizosphere, on another 

hand, which were closer from each other. Such observations are in accordance with 

previous studies (Bai et al., 2015; Lundberg et al., 2012; Schlaeppi et al., 2014). This 

is not surprising since the establishment of the microbiota colonizing the underground 

parts of the plant is mainly controlled by the root exudates and the soil composition 

(Edwards et al., 2015; van der Heijden and Schlaeppi, 2015). In contrast, the 

microbiota colonizing the aboveground parts of the plants is governed by the 

atmosphere and interacting macro-organisms, for instance (Fahlgren et al., 2010), but 

also by molecules emitted by the plant such as volatile organic compounds (VOCs) 

(Bitas et al., 2013). Even if a deficit in isoprenoid precursors biosynthesis did not affect 

the global community composition or richness, some specific species were apparently 

impacted by the plant isoprenoid status. It was notably the case of Rhizobium, 

Streptomyces and a Sphingomonas strains. This should be considered since previous 

data from the literature showed the impact of strains closely related to these OTUs, as 

described below. 

Rhizobium were shown to be more abundant in both mutants compared to wild-

type A. thaliana. These bacteria are well-known plant growth promoting rhizobacteria 

(van Rhijn and Vanderleyden, 1995). Thus, the variable OTUs corresponding to 

Rhizobium genus could impact the plant health, and potentially its resistance against 

pathogens. However, as we demonstrated a higher sensitivity of chs5 to PstDC3000 

compared to Col-0, the considered OTUs should not be involved in the plant resistance 

against this pathogen, at least in holoxenic conditions. In our strain collection, we 

managed to isolate Rhizobium strains, among which few are phylogenetically close to 

OTUs that are more abundant in chs5 than in Col-0. However, they are also found to 

be phylogenetically close to OTUs that are more abundant in hmg1-1 compared to 

WS2. Thus, they are probably not implicated in the difference of sensitivity observed 

between Col-0 and chs5. Nevertheless, it could be interesting to determine their impact 
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on A. thaliana, independently from the natural microbiota, in gnotoxenic conditions, as 

proceeded for the five strains of interest studied during my thesis. 

Few Streptomyces, for their part, were shown to be more abundant in Col-0 

compared to chs5, and they were not found to be differentially abundant between WS2 

and hmg1-1. This is particularly interesting regarding the difference of sensitivity 

between Col-0 and chs5 to PstDC3000, and not between WS2 and hmg1-1. 

Streptomyces genus includes species considered as PGPR by production of 

siderophores or ACC deaminase, solubilization of phosphate, or production of volatile 

organic compounds (Dias et al., 2017); and they are known to be a great source for 

the production of bioactive secondary metabolites and antibiotics (Kuzuyama and 

Seto, 2003; Pérez-Gil and Rodríguez-Concepción, 2013). Moreover, plant growth 

promoting bacteria are often able to stimulate the plant defense machinery by inducing 

the systemic resistance (ISR) (Conn et al., 2008; Dessaux et al., 2016; Glick, 2012; 

Olanrewaju et al., 2017). It is notably the case of strains phylogenetically close to 

Streptomyces rochei, that induces ISR in tomato, against Fusarium oxysporum f. sp. 

Lycopersici race 3 (FOL) additionally to its PGP effects on the roots length and weight 

(Abbasi et al., 2019). Other Streptomyces are known to possess prenyltransferases 

allowing the prenylation of molecules such as naphterpin conferring them antioxidant, 

antimicrobial or anti-inflammatory activities (Kuzuyama et al., 2005). Thus, we can 

speculate that they can be useful for the plant and impact its health and capacities to 

defend against pathogens. 

A Sphingomonas strain was also shown to be more abundant in Col-0 compared 

to chs5, and not differentially abundant between WS2 and hgm1-1. This strain is 

phylogenetically close to Sphingomonas wittichii, a bacteria shown to degrade indole 

3-acetic acid (IAA) (Leveau and Gerards, 2008). In plants, this hormone is implicated 

in diverse processes including cell enlargement and division, tissue differentiation, and 

responses to light. Thus, bacteria producing IAA have the capacity to enhance root 

proliferation. An increased root system enhances nutrients uptakes and root exudation, 

which in turn increases the colonization by bacteria from the soil (Bashan et al., 2004; 

Dobbelaere et al., 1999). In addition, a previous study highlighted that the inoculation 

of another Sphingomonas strain, Sphingomonas melonis sp. Fr1, on A. thaliana 

provides protective traits against PstDC3000 (Innerebner et al., 2011; Vogel et al., 
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2012). Since there is a Sphingomonas which is more abundant in Col-0 than in chs5, 

this strain could be implicated in the observed difference of sensitivity to PstDC3000. 

The question of how isoprenoids may influence the establishment of bacterial 

communities remains open. Isoprenoids may be used by some bacteria as nutrients 

and may be toxic for others. This could be assessed by using mineral media 

supplemented with isoprenoids, as described in the second chapter of my thesis. 

Another method could be the use of A. thaliana Col-0 or chs5 extracts in mineral media, 

to determine if the bacteria differentially abundant between Col-0 and chs5 

preferentially grow on one or another medium. Some bacteria are able to metabolize 

isoprenoids (de Carvalho et al., 2005; Seubert and W., 1960; Soares-Castro et al., 

2017), such as Pseudomonas sp. strain M1 which is capable to oxidize β-myrcene into 

myrcene-8-ol (Soares-Castro et al., 2017). Thus, it could be interesting to perform 

stable isotope probing (SIP) using 13C-labelled isoprenoids to determine the capacity 

of a strain to use it. It is also possible that isoprenoids act as signal molecules or 

chemo-attractants, like flavonoids. Finally, isoprenoids could also impact the 

establishment of the plant microbiota by defense mechanisms, since abscisic acid or 

cytokinins are implicated in the plant defense (Jones and Dangl, 2006; Pieterse et al., 

2012), or by direct antimicrobial activities (Brigham et al., 1999; Yazaki et al., 2017). 

Since we studied mutants altered in the formation of isoprenoids precursors, we 

don’t know which isoprenoids may be involved in the establishment of the microbiota, 

or in the interactions with pathogens. It would be interesting to work with mutants 

altered downstream in the isoprenoid biosynthesis pathways to determine more 

precisely which isoprenoids could be implicated in these observations. 

 

 

II. Isoprenoids may be involved in plant-pathogen interactions 

 

I was particularly interested in the interactions of wild-type and isoprenoid mutant 

plants with the phytopathogen PstDC3000. In the first chapter of my thesis, I have 

shown that there was no difference of sensitivity to the pathogen between WS2 and 
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hmg1-1 altered in the MVA pathway. However, chs5 mutants altered in the plastidial 

MEP pathway were significantly more sensitive to the pathogen than Col-0. These 

results suggest that isoprenoids synthetized via the MEP pathway are important for the 

plant resistance to PstDC3000. This difference of sensitivity could be directly related 

to the isoprenoid status, or indirectly, via the interaction with other bacteria from the 

microbiota interacting with wild-type and mutants. 

To test whether the observations are related to the mutation of the DXS1 

responsible for the deficit in isoprenoids precursors, it would be interesting to obtain 

chs5 plant lines that are mutated in the DXS1 gene required in the MEP pathway, but 

rescued by the expression of the enzyme. I tried to obtain dxs1/dxs1 A. thaliana (chs5 

homozygous mutant) that integrated a 35S:DXS1OE to rescue the plant isoprenoid 

status. Following the infection by PstDC3000, these plants should exhibit a sensitivity 

comparable to that of Col-0, or they could be even less affected by the pathogen since 

there is an overexpression of the DXS1 gene. This should also allow to determine if 

the establishment of the communities is impacted by the activity of this enzyme and its 

effect on the isoprenoid status. Three possibilities then arise: the microbiota could be 

similar to that of Col-0 since the plant is rescued for the isoprenoid biosynthesis; the 

microbiota could be similar to that of chs5 since they are the same genotype; or it could 

be different from the one of the two others. Moreover, to determine if the observations 

are really the consequence of the isoprenoid deficit in chs5 mutant, it could be 

interesting to chemically block the MEP biosynthesis pathway. For that, ketoclomazone 

could be used as an inhibitor of the DXS, or fosmidomycin as an inhibitor of the DXR 

enzyme (Phillips et al., 2008). In such conditions, plants should be more affected by 

PstDC3000 than the non-treated ones, as it was the case for chs5. Such controls would 

allow to determine if there is potentially another mutation in chs5 which could impact 

the interactions between plants and micro-organisms. 

It is important to consider that the MEP pathway leads to the synthesis of 

phytohormones that are known to be implicated in the plant defense: abscisic acid, 

gibberellins, or cytokinins. Since it is known that there is a complex network activating 

the plant defense (Jones and Dangl, 2006; Pieterse et al., 2012), we can speculate 

that plants deficient in the synthesis of these hormones are probably affected in the 

plant resistance against pathogens, including hemibiotrophic pathogens. Indeed, it has 

already been demonstrated that PstDC3000 induces ABA and abiotic response genes 
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in A. thaliana, in addition to the main hormone salicylic acid (Thilmony et al., 2006). 

Moreover, cytokinins are known to play a role in the plant defense against biotrophic 

pathogens (Albrecht and Argueso, 2017). This has been suggested few years ago 

since the application of high concentrations of cytokinins to tobacco cell cultures 

induces the expression of defense genes and stress genes (Schäfer et al., 2000). Plant 

cytokinins have been shown to promote the resistance of A. thaliana against 

PstDC3000 (Choi et al., 2010). They modulate the salicylic acid signaling in order to 

increase the plant resistance against the pathogen. It has been confirmed by studies 

made on A. thaliana, with application of cytokinins before infection by a biotrophic 

oomycete, Hyaloperonospora arabidopsidis that led to a decreased susceptibility of 

the plants (Argueso et al., 2012). However, cytokinins are also synthetized via the MVA 

pathway since the inhibition of the HMGR induces a decrease in cytokinin content 

(Suzuki et al., 2004). If these molecules were responsible, alone, for the difference of 

sensitivity to PstDC3000, hmg1-1 mutants should also be more sensitive to the 

pathogen than WS2. 

Moreover, it is possible that some bacteria from the microbiota interacting with  

Col-0 before infection induce plant enhanced defensive capacity, or “priming”, 

characteristic of the ISR. This defense priming state to resist further attacks by 

pathogens is independent of the SAR and the accumulation of PR proteins 

(Hammerschmidt, 1999; Hoffland et al., 1995; Van Peer and Schippers, 1992; Pieterse 

et al., 1996, 2000). ISR is controlled by jasmonic acid and ethylene hormones and also 

requires ABA which acts as a signal to enhance callose deposition (Pieterse et al., 

2014). Since we did not observe major difference of expression of PR genes that could 

explain the difference of sensitivity between Col-0 and chs5, we suggested that SAR 

is not affected in chs5 mutants. However, we did not study the other immune 

responses, thus it could be interesting to quantify phytohormones in order to determine 

if there is a priming state due to the ISR in Col-0 compared to chs5.  

Different defense signaling pathways could be activated depending on the 

pathogen which attacks the plant. Thus, the sensitivity of A. thaliana wild-types and 

mutants should be further investigated by infecting plants with other pathogens, like 

the necrotrophic fungus Botrytis cinerea, for instance. This pathogen mainly activates 

the plant defense through the JA signaling pathway, contrary to PstDC3000 who 

preferentially activates the SA signaling pathway (Glazebrook, 2005; Pieterse et al., 
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2009). Such experiments could determine if isoprenoids specifically impact the 

interactions leading to the activation of SA signaling pathway, or also those activating 

the JA signaling pathway. 

 

 

III. Some specific bacteria from the microbiota could influence the plant 
growth and resistance to pathogens 

 

To go further in the study of how isoprenoids impact the interactions with micro-

organisms, and how bacteria from the microbiota may influence the plant health and 

resistance to pathogens, it was necessary to isolate bacteria. Among the 230 strains 

from our strain collection, we focused on those that were phylogenetically close to 

OTUs that are differentially abundant between wild-type and mutants, and particularly 

Col-0 and chs5. Even if our strain collection only represents a small amount of the 

cultivable part of the plant microbiota(Bai et al., 2015), it contains bacteria that could 

be interesting to study independently, or in synthetic communities. 

To select the candidate bacteria for further experimentations, we decided to 

compare their 16S rRNA gene sequence with the ones of the OTUs differentially 

abundant between Col-0 and chs5. I wish to notice that most of the time, the genus 

affiliations made for our strains are in accordance with those of the varying clusters for 

every strain presented in my thesis. When the genus of a variable OTU was not 

affiliated due to the short length of the sequence (500 bp compared to 1500 bp for the 

isolated strains), the phylum affiliation still correlated with the isolated strains. This 

gives credibility to the taxonomic affiliations and allowed me to select some strains to 

test their effect on the plant fitness and resistance to pathogens. Among the strains 

phylogenetically close to variable OTUs, most of them were more abundant in chs5 

compared to Col-0, suggesting that they would rather negatively impact the plant than 

positively if they are implicated in the difference of sensitivity to plants against 

PstDC3000. It is possible that they affect the plant health, helping the pathogen to 

infect chs5. Among the tested strains, some belongs to Curtobacterium and 

Pseudomonas genus, which are known to be composed of both PGPB and pathogenic 
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strains (Cardinale et al., 2015; Horuz and Aysan, 2018; Passera et al., 2019; Sammer 

and Reiher, 2012). Only 2 strains from our collection are closely related to OTUs which 

are more abundant in Col-0: Microbacterium sp. 5B which had no effect on the plant, 

and another strain phylogenetically close to Microbacterium. It should be interesting to 

test this candidate for potential protective traits that could be implicated in the 

difference of sensitivity, despite the absence of description of such effects in the 

literature. Other strains from our collection should have been tested for their impact on 

A. thaliana, even if they were not closely related to variable OTUs. For example, the 

previously mentioned Rhizobium, but also Bacillus or Pseudomonas are known PGPB 

(Bloemberg and Lugtenberg, 2001; Soltani et al., 2010; Sturz and Nowak, 2000). 

Finally, it is important to consider that the effect of a strain could be different depending 

of the presence of this strain in a community or alone. It could be interesting to inoculate 

a synthetic community to A. thaliana instead of a unique strain in order to determine its 

effect on the plant. Moreover, strains such as our Curtobacterium sp. 5H that exhibited 

variable effects on plants potentially require additional analyses to determine if they 

have different beneficial traits. They could be tested for their capacity to solubilize 

phosphate, nitrate or iron, to produce siderophores, or ACC deaminase, for instance 

(Beneduzi et al., 2012). 

Even if conditions are simplified in comparison to the natural environmental 

conditions, gnotobiotic systems in which sterile plants are grown such as the one we 

used for our experiments can help to determine the impact of some bacteria or 

communities on plants. However, the beneficial effect of a strain or a community on 

the host are often specific of the plant species and cultivar (Rodriguez et al., 2019). 

Thus, we must be careful about the generalization of the observations made in the 

laboratory. It is possible to test the effect of strains of interest on other plants than  

A. thaliana in order to determine if this effect is similar or not, notably on plants of 

agronomical interest. In addition, the strains could be tested on older plants, in other 

culture systems such as our hydroponic culture system mentioned in the chapter 2, to 

determine if their effect needs them to be established for a long time or not. 

To become a tool in agriculture for instance, a specific strain exhibiting promoting 

traits in the laboratory needs to be operative in the field, meaning that a plant growth 

promoting bacteria needs to invade the plant and persist in the nature, with the natural 

microbiota interacting with the host and the variable environmental conditions (Finkel 
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et al., 2017). A first step to go further could be to voluntary stress the plants in culture 

conditions (humidity, drought, temperatures, UV, touching…). Then, field experiments 

by inoculation on seeds or directly on plants cultivated outside would be the better 

solution to determine the effect of bacteria in natural conditions. 

To close the loop, a last point that would deserve our attention is the impact of the 

inoculated bacteria on the plant isoprenoid status. We showed that plant isoprenoids 

influence the interactions with micro-organisms, but we don’t know what is the impact 

of the differentially abundant OTUs on the plant metabolic profile. The goal would be 

to determine if they could influence the production of isoprenoids by the plant, as 

observed in previous studies on the Vetiver (Del Giudice et al., 2008) and Vitis vinifera 

L. cv. Malbec (Salomon et al., 2016). This could be assessed by quantification of some 

key metabolites such as chlorophylls and carotenoids, as proceeded for non-

inoculated plants in the paper presented in the first chapter of my thesis. In addition, 

non-targeted metabolomics approach could be used to study the impact of a strain on 

both isoprenoids and other metabolites. If bacterial strains or communities influence 

the production of isoprenoids by the plant, it is then possible that they indirectly impact 

the plant resistance against pathogens. 
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I. Materials 

 

1. Plant material 

Arabidopsis thaliana (A. thaliana) lines used during my thesis were called Col-0 

VIL, chs5 VIL, WS2 VIL and hmg1-1 VIL since their genome was entirely sequenced 

for the purpose of Next Generation Sequencing (NGS) project started by Dr. Claire 

Villette during her thesis. Lines were maintained by self-fertilization to ensure a 

constant use of the same genetic backgrounds. 

 

1.1. Arabidopsis thaliana Wassilewskija (WS2) ecotype 

Seeds of the wild-type A. thaliana ecotype Wassilewskiia (WS2) were obtained by 

the laboratory from Prof. Toshiya Muranaka (Osaka University, Japan).  

 

1.2. hmg1-1 mutant (WS2 genetic background) 

Seeds of the hmg1-1 mutant in the WS2 genetic background were also obtained 

by the laboratory from Prof. Toshiya Muranaka (Osaka University, Japan). In the hmg1-

1 line, the first exon of the gene coding for the 3-hydroxy-3-methylglutaryl coenzyme A 

reductase 1 (HMG1, At1g76490) is carrying a T-DNA insertion. This mutant line was 

originally screened by PCR-based genetics (A. thaliana T-DNA insertional mutant 

facility of Madison University, Wisconsin, USA). This mutant is characterized by a very 

low expression of the HMG1 gene, leading to a defect in plant growth and fertility, 

associated with a decrease of metabolites downstream of the MVA biosynthesis 

pathway (Heintz et al., 2012; Suzuki et al., 2004).  

 



Table 10. Bacterial culture media. The different media used for bacterial isolation and
further cultivation are listed here.

LB (Luria Bertani) medium
(Sigma-Aldrich)

Tryptone 10 g.L-1

Yeast extract 5 g.L-1

NaCl 5 g.L-1

(Agar) 12 g.L-1

King’s medium B (KB)
Proteose peptone 
(Difco or Conda)

20 g.L-1

K2HPO4 1.5 g.L-1

Glycerol 15 g.L-1

MgSO4.7H2O 1.5 g.L-1

(Agar) 15 g.L-1

NYGB medium
Proteose peptone 5 g.L-1

Yeast extract 3 g.L-1

Glycerol 20 g.L-1

(Agar) 15 g.L-1

Nutrient broth (NB) medium
D(+)-glucose 1 g.L-1

Proteose peptone 15 g.L-1

NaCl 6 g.L-1

Yeast extract 3 g.L-1

(Agar) 15 g.L-1

pH 7.5
Actinomycete Isolation Agar Medium 

(Sigma-Aldrich)
Asparagine 0.1 g.L-1

K2HPO4 0.5 g.L-1

FeSO4 1 mg.L-1

MgSO4 0.1 g.L-1

Sodium caseinate 2 g.L-1

C3H5NaO2 4 g.L-1

Agar 15 g.L-1

pH 8.1
Streptomyces medium (Sigma-Aldrich)

NA
MYX medium

Na2-glutamate 5 g.L-1

Yeast extract 1 g.L-1

MgSO4.7H2O 1 g.L-1

D-glucose 2 g.L-1

(Agar) 20 g.L-1

pH 7.0

Mineral medium (MM)
NaHPO4.2H2O 7 g.L-1

KH2PO4 2.8 g.L-1

NaCl 0.5 g.L-1

NH4Cl 1 g.L-1

MgSO4.7H2O 100 mg.L-1

FeSO4.7H2O 10 mg.L-1

MnSO4.H2O 5 mg.L-1

ZnCl2 6.4 mg.L-1

CaCl2.6H2O 1 mg.L-1

BaCl2 0.6 mg.L-1

CoSO4.7H2O 0.36 mg.L-1

CuSO4.5H2O 0.36 mg.L-1

H3BO3 6.5 mg.L-1

EDTA 10 mg.L-1

HCl 37%
Carbon source Usually 4 g.L-1

(Agar) 15 g.L-1

Tryptone Yeast extract Glucose (TYG) 
medium

Tryptone 1 g.L-1

Yeast extract 1 g.L-1

D-glucose 0.5 g.L-1

KCl 6.34 g.L-1

NaCl 1.2 g.L-1

MgSO4.7H2O 0.25 g.L-1

K2HPO4 0.13 g.L-1

CaCl2.2H2O 0.22 g.L-1

K2SO4 0.17 g.L-1

Na2SO4 2.4 g.L-1

NaHCO3 0.5 g.L-1

Na2CO3 0.09 g.L-1

Fe EDTA 0.07 g.L-1

(Agar) 20 g.L-1

pH 7.0
M408 medium

Yeast extract 1 g.L-1

Mannitol 10 g.L-1

K2HPO4 0.5 g.L-1

MgSO4.7H2O 0.2 g.L-1

NaCl 0.1 g.L-1

(Agar) 20 g.L-1

pH : 7.0
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1.3. Arabidopsis thaliana Columbia-0 (Col-0) ecotype 

Seeds of the wild-type A. thaliana ecotype Columbia-0 (Col-0) were obtained by 

initial order to the ABRC stock center (Arabidopsis Biological Resource Center, 

http://abrc.osu.edu/). 

 

1.4. chs5 mutant (Col-0 genetic background) 

Seeds of chilling-sensitive 5 (chs5) mutant in the Col-0 genetic background were 

obtained by the laboratory from Dr. Koh Iba (Kyushu University, Japan). The chs5 line 

was originally isolated from a genetic screen for chilling sensitive mutants. These 

mutants display a normal wild-type phenotype at 22°C and a chlorotic phenotype at 

lower temperatures (15°C) (Hugly and Somerville, 1992; Schneider et al., 1995). In the 

chs5 line, the exon 8 of the gene coding for the 1-deoxy-D-xylulose 5-phosphate 

synthase (DXS1, At4g15560) is carrying a missense mutation (GAC to AAC) 

responsible for the change of an aspartic acid (D) to an asparagine (N) residue at 

position 627 (D627N) in the encoded protein. chs5 mutant is characterized by a 

chlorotic phenotype due to a defect in plastidial 1-deoxy-D-xylulose 5-phosphate (DXP) 

biosynthesis (Araki et al., 2000). 

 

2. Bacterial strains 

Bacterial media used for culture and isolation of the strains during my thesis are listed 

in table 10. 

 

2.1. Pseudomonas syringae pv. tomato DC3000 

2.1.1. PstDC3000 

 Pseudomonas syringae pv. tomato DC3000 (PstDC3000) strain was used for 

infection experiments in vivo and in vitro, but also in hydroponic culture systems. The 

strain was obtained from Dr. Isabelle Caldelari (IBMC, Strasbourg, France). 



R2A medium
Casein acid 
hydrolysate

0.5 g.L-1

Yeast extract 0.5 g.L-1

Proteose peptone 0.5 g.L-1

Dextrose 0.5 g.L-1

Starch 0.5 g.L-1

Dipotassium
phosphate

0.3 g.L-1

Magnesium sulfate 0.024 g.L-1

Sodium pyruvate 0.3 g.L-1

(Agar) 15 g.L-1

pH 7.2
GYM medium

Malt extract 10 g.L-1

Yeast extract 4 g.L-1

Glucose 4 g.L-1

CaCO3 4 g.L-1

(Agar) 12 g.L-1

pH 7.2
Tap Water Yeast Extract (TWYE) medium
Yeast extract 0.25 g.L-1

K2HPO4 0.5 g.L-1

(Agar) 18 g.L-1

pH 7.0

Minimal Medium + methanol (MM + 
MeOH) medium

NH4Cl 1.62 g.L-1

MgSO4.7H2O 0.2 g.L-1

K2HPO4 2.4 g.L-1

NaH2PO4.2H2O 1.1 g.L-1

Methanol 5 ml.L-1

Na2EDTA.2H2O 15 mg.L-1

FeSO4.7H2O 3.0 mg.L-1

ZnSO4.7H2O 4.5 mg.L-1

CoCl2.6H2O 3.0 mg.L-1

MnCl2 0.64 mg.L-1

H3BO3 1.0 mg.L-1

Na2MoO4.2H2O 0.4 mg.L-1

CuSO4.5H2O 0.3 mg.L-1

CaCl2.2H2O 3.0 mg.L-1

(Agar) 15 g.L-1

pH 7.1
Yeast Extract Mannitol (YEM) medium

Yeast extract 0.5 g.L-1

Mannitol 5 g.L-1

K2HPO4 0.5 g.L-1

MgSO4.7H2O 0.2 g.L-1

NaCl 0.1 g.L-1

(Agar) 20 g.L-1

pH 7.0

Figure 31. Schematic diagram of the plasmid pDSK-GFPuv. This plasmid can
express the green fluorescent protein variant GFPuv at high levels under the
constitutive chloroplast promoter psbA (PpsbA) and a ribosomal biding site (RBS) from
T7 gene10. Extracted from Wang et al., 2007
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PstDC3000 was cultivated on KB medium supplemented with 50 µg.mL-1 rifampicin 

(Sigma), or on NYGB medium supplemented with 50 µg.mL-1 rifampicin (Sigma) at 

28°C. 

 

2.1.2. PstDC3000 GFPuv 

PstDC3000 GFPuv strain was tested for infection experiments. The plasmid pDSK-

GFPuv (Figure 31) (Wang et al., 2007) was obtained from Dr. Jiangqi Wen (Noble 

Research Institute, Ardmore, USA) . The transformation protocol is described above, 

in paragraph II.3.10.1. PstDC3000 GFPuv was cultivated on KB medium 

supplemented with 100 µg.mL-1 rifampicin (Sigma) and 50 µg.mL-1 kanamycin (Sigma) 

at 28°C. 

 

2.1.3. PstDC3000 lux 

PstDC3000 lux strain (Fan et al., 2007) was also tested for infection experiments. 

The strain was obtained from the laboratory of Chris Lamb (John Innes Centre, 

Norwich, UK) thanks to Pr. Julia Vorholt (ETH, Zurich, Switzerland). PstDC3000 lux 

was cultivated on KB medium supplemented with 50 µg.mL-1 rifampicin (Sigma) and 

25 µg.mL-1 kanamycin (Sigma), at 28°C. 

 

2.1.4. Sphingomonas melonis sp. FR1 and Methylobacterium extorquens 
PA1 

Sphingomonas melonis sp. FR1 and Methylobacterium extorquens PA1 were 

provided by Pr. Julia Vorholt (ETH, Zurich). Sphingomonas melonis sp. FR1 was used 

as a control for its protective effect against PstDC3000 in vitro and Methylobacterium 

extorquens PA1 for its absence of effect against PstDC3000 in vitro (Innerebner et al., 

2011). Methylobacterium extorquens PA1 was cultivated in mineral medium with 0.5% 

succinate as the carbon source at 28°C, and Sphingomonas melonis sp. Fr1 was 

cultivated in NB medium at 28°C. 
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2.1.5. Other strains 

All the other bacterial strains used during my thesis were isolated in the laboratory 

as described in paragraphs II.4.1 to II.4.3. thanks to the different media listed in  

table 10. 

 

 

II. Methods 

 

3. Plant culture in soil for seed production 

All lines of A. thaliana were cultivated in 7 cm diameter pots in soil (LAT-Terra 

Standard Pikiererde, Hawita). Before sowing, seeds were kept at -20°C for 48 hours. 

WS2 and hmg1-1 lines were cultivated in a 12-hour light regime under fluorescent light 

(6 Lumilux tubes T5, Osram) and 12-hour dark regime. Temperatures were set at 21°C 

during the light phase and 18°C during the dark phase. Col-0 and chs5 lines were 

cultivated in a 16-hour light regime under fluorescent light (6 Lumilux tubes T5, Osram) 

and 8-hour dark regime. Temperatures were set at 16°C during the light phase and 

13°C during the dark phase. 

 

4. Protocols related to the inventory of the communities 

4.1. Plant culture in soil for community inventory 

Col-0, chs5, WS2 and hmg1-1 were cultivated in 7 cm diameter pots in soil (LAT-

Terra Standard Pikiererde, Hawita) and grown under 12-hour light regime under 

fluorescent light (6 Lumilux tubes T5, Osram) and 12-hour dark regime, until the 

formation of rosettes of an average size of 7 cm diameter. Temperatures were set at 

21°C during the light phase and 18°C during the dark phase.  



Table 11. Primers used for 16S rRNA gene amplification and qPCR reactions for
the inventory of the communities.

Name of the primer Sequence reference
16S RNA amplicon

799F 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACMG
GATTAGATACCCKG-3′ 

Bulgarelli et al., 
Bodenhausen et 
al., Schlaeppi et al.

799F1 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAACMG
GATTAGATACCCKG-3′ This work

799F2 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTAACM
GGATTAGATACCCKG-3′ This work

799F3 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGAAAC
MGGATTAGATACCCKG-3′ This work

799F4 5’ –TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGAA
ACMGGATTAGATACCCKG- 3’ This work

799F5 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCGAA
ACMGGATTAGATACCCKG- 3’ This work

799F6 5’ –TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTG
GAACMGGATTAGATACCCKG- 3’ This work

799F7 5’ –TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGT
GGAACMGGATTAGATACCCKG- 3’ This work

1193R 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGTC
ATCCCCACCTTCC-3′

Bulgarelli et al., 
Bodenhausen et 
al., Schlaeppi et al.

1193R1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGT
CATCCCCACCTTCC-3’ This work

1193R2 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTACG
TCATCCCCACCTTCC-3’ This work

1193R3 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGAAC
GTCATCCCCACCTTCC-3’ This work

1193R4 5’ –GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGA
ACGTCATCCCCACCTTCC- 3’ This work

1193R5 5’ –GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCG
AACGTCATCCCCACCTTCC- 3’ This work

1193R6 5’ –GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAGT
GGACGTCATCCCCACCTTCC- 3’ This work

1193R7 5’ –GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTG
TGGACGTCATCCCCACCTTCC- 3’ This work

Table 12. PCR program for 16S rRNA gene amplification for the inventory of the
communities. DNA amplification was performed on a Mastercycler ep Gradient S
(Eppendorf) using GoTaq polymerase (Promega).

Initial denaturation 3 min 95°C

25
 c

yc
le

s Denaturation 30 sec 95°C

Priming 30 sec 55°C

Elongation 30 sec 72°C

Final elongation 5 min 72°C
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4.2. Microbiota profiling 

After 6 to 8 weeks, A. thaliana plants were extracted from soil, shaken, and roots 

were shortly washed in sterile distilled water to remove soil. Plant were cut in such a 

way to separate phyllosphere and roots/rhizosphere. Rhizosphere was separated from 

the roots by scrapping using a sterile scrapor. The inner root or leaf tissues and their 

surface were not discriminated and were referred as “root” and “phyllosphere” 

microbiota, respectively. Samples were crushed using a mortar and pestle and frozen 

at -20°C until DNA extraction. DNA was extracted from frozen rhizosphere (0.25 g), on 

one hand, or from powder obtained from phyllosphere and roots (50 mg) on the other 

hand using the PowerSoil DNA Isolation Kit and the PlantDNA Isolation kit (MO BIO 

Laboratories, Inc., Carlsbad, CA, USA), respectively, according to the manufacturer’s 

instructions. The DNA concentration and quality were estimated by measuring the OD 

at 260 nm and 280 nm on a Nanodrop spectrophotometer (ThermoFisher Scientific). 

Libraries were constructed according the 16S Metagenomic Sequencing Library 

Preparation protocol (Illumina Part # 15044223 Rev. B) except some modifications 

mentioned below. Briefly, 16S RNA encoding gene were amplified in duplicate from 

the extracted DNA using the primer listed in table 11 that target the bacterial/archaeal 

16 S rRNA gene variable region 5-6. The primers used for this first PCR were 

composed of (from 5’ to 3’ ends): 1) the Illumina overhang sequence (containing Read 

1 and Read 2 specific sequences) described in the Illumina 16S protocol, 2) two 16S 

V5-V6 gene-specific sequences,  3) a 0 to 7pb heterogeneity spacer to increase the 

nucleotide diversity for sequencing, as described in Fadrosh et al. (Fadrosh et al., 

2014). This first amplification (PCR1, 25 µl) was performed by mixing 25 ng genomic 

DNA, the KAPA HiFi HotStart ReadyMix PCR Kit (12.5 µl) (Kapabiosystems, Boston, 

United States) and primers (5 µl at 1 µM) and using the program indicated in table 12. 

PCR products were analyzed on 1% agarose gel to verify the success of amplification 

and duplicate amplified samples were pooled and purified using AMPure XP beads 

(Agencourt, Beckman-Coulter). The quantity and quality of these amplicons were 

controlled with the Bioanalyzer (Agilent). A second amplification (PCR2) was 

performed using the Nextera XT primers (Illumina) containing the full-length P5 and P7 

sequences. Amplicons were purified using AMPure XP beads (Agencourt, Beckman-

Coulter). Their size was controlled with the Bioanalyzer (Agilent). These libraries were 
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normalized, pooled together and 5% PhiX v3 (Illumina) was added. Sequencing was 

performed as paired end of 300 base pairs reads (2x300) on a Miseq platform. 

The bioinformatics processing was performed using the FROGS pipeline under 

Galaxy environments (Escudié et al., 2018). Shortly, it included a pre-processing of the 

sequencing read data with “FLASH” (suppress PCR duplicates, too long or too short 

reads). Then the quality sequences were clustered to operational taxonomic units 

(OTUs, >97% sequence similarity, minimal coverage of 5 sequences) with “Swarm”. 

Chimeric OTU sequences were removed using “VSEARCH”. Filtering was performed 

to keep sequences present in at least X samples and suppress contaminants (phiX). 

Taxonomic assignments were done using multi-affiliation output with the Silva, Midas 

and Greengenes databases.  

OTUs classified as mitochondrial or Cyanobacteria/chloroplasts sequences were 

removed. Data from WT and mutant were compared using the Phyloseq pipeline 

(McMurdie and Holmes, 2013). 

 

5. Protocols related to the infection experiments by the phytopathogen 
PstDC3000 

5.1. Plant culture in soil for infection by PstDC3000 experiments 

For infection experiments, A. thaliana Col-0, chs5, WS2 and hmg1-1 were 

cultivated in 7 cm diameter pots in soil (LAT-Terra Standard Pikiererde, Hawita) in 

growing chambers for about 6 weeks in the same conditions as for the inventory of the 

communities, under 12-hour photoperiod (6 Lumilux tubes T5, Osram). Temperatures 

were set at 21°C during the light phase and 18°C during the dark phase. The trays 

containing the pots were randomly rearranged every week to avoid plant growth 

heterogeneity. Particular attention was devoted to the use of plants that exhibit a similar 

size and number of leaves for each independent experiment. 
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5.2. Infection by PstDC3000  

For the infection experiments proceeded at the end of my thesis, NYGB medium 

replaced the KB medium usually used for PstDC3000 culture since we encountered 

difficulties to grow the strain on KB medium after changing peptone supplier (Sigma-

Aldrich instead of Difco). 

The phytopathogen Pst DC3000 was streaked out from a -80°C glycerol stock onto 

a plate of KB medium or NYGB medium supplemented with 50 µg.mL-1 of rifampicin 

(Sigma) (KB+r or NYGB+r, respectively) and grown at 28°C for 2 days. Bacteria were 

transferred onto a liquid KB+r or NYGB+r culture and grown with shaking at 28°C until 

exponential growing phase. The culture was centrifuged at 2500 g for 10 minutes to 

pellet the bacteria. The supernatant was poured off and the bacteria were washed in 

10 mM MgCl2 twice. The pellet was resuspended in 10 mM MgCl2 and the OD600nm was 

adjusted to obtain 1 x 105 colony forming units per milliliter (cfu.mL-1). Using a needle-

less syringe, 10 leaves of each plant were pressure infiltrated with either  

1 x 105 cfu.mL-1 of Pst DC3000, or mock infiltrated with sterile 10 mM MgCl2  (adapted 

from Katagiri et al., 2002). Suspension of infection was serial diluted and plated on 

KB+r or NYGB+r for numerations after 2 days of incubation at 28°C. 

 

5.3. Bacterial growth assays  

Leaf discs from 10 infiltrated leaves were harvested at 6 days post infection (dpi) 

and grinded in 1 mL of KB+r or NYGB+r. After serial dilutions in physiological H2O, 

samples were plated onto LB+r or NYGB+r agar plates and incubated at 28°C for 2 

days until numerations. For each condition, numeration of the colonies was proceeded, 

and the pathogen titer was determined thanks to the following formula: 

𝑁 =
∑ 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝑣 × (𝑛1 + 0.1 × 𝑛2 + 0.01 × 𝑛3)  × 
1

𝑑1
 

N: Number of cfu.mL-1 ; ∑ colonies: total number of colonies counted for all the 

dilutions; v: volume plated; n1: number of plates considered for the first dilution; n2: 

number of plates considered for the second dilution; n3: number of plates considered 

for the third dilution; d1: first dilution considered. 
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Statistical analyses of the growth assays were proceeded with R software. Results 

were compared by Student t-test after verification of normality by Shapiro-Wilk test and 

the variance equality by Fisher test. 

 

5.4. Total RNA extraction 

For the last infection experiment, we decided to analyze the expression of some 

SAR marker genes. Infiltrated leaves from 9 infected plants and 9 mock-treated plants 

of A. thaliana Col-0 and chs5 were harvested before infection by PstDC3000 and at 1, 

3 and 6 dpi, and grouped in bulks of 3 plants per condition. Plant material was grinded 

in liquid nitrogen and stored at -80°C until extractions. 

1 mL of TRIzol reagent (Molecular Research Center) was added to approximately 

60 mg of grinded material in 2 mL tubes containing glass beads before grinding  

2 x 30 seconds with Precellys®. Samples were kept at room temperature for 5 minutes 

before adding 200 µL of chloroform (Sigma-Aldrich) and 15 seconds agitation. 

Samples were kept at room temperature for 2 minutes and 30 seconds before 

centrifugation at 4°C, 12 000 g for 15 minutes. 400 µL of supernatant were collected 

and 333 µL of isopropanol (Sigma-Aldrich) were added to the supernatant. Samples 

were kept at room temperature for 10 minutes before centrifugation at 4°C, 12 000 g 

for 20 minutes. The supernatant was poured off and 1 mL of 80% ethanol (Sigma-

Aldrich) was added to the samples. Samples were centrifuged at 4°C, 12 000 g for  

5 minutes and the supernatant was poured off. 1 mL of 100% ethanol was added to 

the samples before centrifugation at 4°C, 12 000 g for 5 minutes and elimination of the 

supernatant. Pellets were air-dried before addition of 50 µL of milliQ H2O and 

incubation at 4°C for 30 minutes. Samples were then vortexed and incubated at 50°C 

for 5 minutes, twice. RNAs were finally stored at -20°C until reverse transcription.  

 

5.5. Reverse transcription (RT) 

A DNAse treatment was carried out on the RNAs before reverse transcription. For 

that, 1 µg of RNA was resuspended in H2O supplemented with 10 µL of DNAse mix: 

0.1 µL RNAse OUT (Promega); 6 µL H2O; 2 µL DNAse 10X buffer (Promega); 2 µL 



Table 13. Primers used for qPCR on Arabidopsis thaliana SAR marker genes.
Primers for the amplification of target genes were designed on LightCycler Probe
Design Software 2.0 (Roche Life Science). Primers for the amplification of reference
genes were available on the sequencing platform from the IBMP.

Gene Sequence (5’→3’) Type

ACT2 
(At3g18780)

Forward CTTGCACCAAGCAGCATGAA
Reference

Reverse CCGATCCAGACACTGTACTTCCTT

GADPH 
(At1g13440) 

Forward TTGGTGACAACAG<GTCAAGCA
Reference

Reverse AAACTTGTCGCTCAATGCAATC

PR1 
(At2g14160.1)

Forward GGTCACTACACTCAAGTTGTTT
Target

Reverse GTTCCACCATTGTTACACCTC

PR2 
(At3g57260.1)

Forward TGACACCACCACTGATACG
Target

Reverse CTCTTATACTCATCCCTGAACCT

PR5 
(At1g75040.1)

Forward CTGACCTCAACGCGGCTTGC
Target

Reverse GGCGTCAGGGCAAGCGTTCT

Table 14. qPCR program for SAR marker genes expression analyses. DNA
amplification was performed on a LightCycler® 480 II Instrument (Roche) using a
SYBR® green mix (Roche).

Initial denaturation 5 min 95°C

45
 c

yc
le

s Denaturation 10 sec 95°C

Priming 15 sec 60°C

Elongation 15 sec 72°C

Temperature gradient 1 min 55°C to 95°C
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DNAse (Promega). The mix was incubated at 37°C for 45 minutes. Then the reaction 

was stopped by addition of 1 µL of Stop DNAse (EGTA, 20 mM, Promega) and 

incubation at 65°C for 10 minutes. After 5 minutes incubation on ice, samples were 

supplemented with 20 µL of RT mix: 6 µL H2O; 8 µL 5X SuperScript IV buffer 

(Invitrogen), 2 µL 0.1 M DTT (Invitrogen); 2 µL 10 mM dNTPs (ThermoFisher 

Scientific); 2 µL 40 µM smart-Oligo-dT (ThermoFisher Scientific), and 0.5 µL of  

200 µg.µL-1 SuperScript IV (Invitrogen). Samples were incubated at 50°C for  

10 minutes and at 80°C for 10 minutes. cDNAs were diluted by addition of 40 µL H2O. 

 

5.6. Quantitative PCR (qPCR) analyses 

The reaction mix contained 1 µL of cDNA, 5 µL of SYBR® Green (Roche), 2 µL of 

H2O, and the couple of primers (2.5 µM) for each gene. Primers for the amplification of 

target genes were designed with LightCycler Probe Design software 2.0 (Roche). 

Primers used for the qPCR are listed in table 13. Real-time PCR was performed on a 

LightCycler® 480 II instrument (Roche) following the program indicated in table 14. 

The relative amount of cDNA corresponding to the transcript level in the sample 

was calculated using the 2-ΔΔCt (Pfaffl, 2001). The expression level of a gene of interest 

is normalized with respect to the expression values of the two reference genes, listed 

in table 13 and chosen for their stable expression in the studied material. The induction 

(or repression) factor of the target gene at the TX time can be calculated with respect 

to a starting biological condition T0 set at 1. Technical triplicates were performed for 

each sample. 

 

5.7. Extraction of chlorophylls and carotenoids 

The plant material hitherto stored at -80°C was grinded in freshly prepared 80% 

acetone (Sigma Aldrich) in water (v/v). Samples were incubated in the dark at 4°C for 

24 h. After incubation, 200 µL of the supernatant were transferred to a 96-well 

microplate (96 Well ELISA Microplates, PS, U-bottom, MICROLON®, Greiner Bio-

one). For each sample, 3 wells were prepared for measurement. Optical density was 

measured for each well at 470 nm, 646 nm and 663 nm on FLUOstar Omega 
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spectrometer (BMG Labtech). Concentrations of chlorophylls and carotenoids in the 

samples were determined with the equations given by Lichtenthaler and Buschmann 

(Lichtenthaler and Buschmann, 2001), with ca: concentration of chlorophyll a;  

cb: concentration of chlorophyll b; c(x+c): concentration of xanthophylls and carotenes. 

ca (μg/mL) = 12.25 A663.2 – 2.79 A646.8 

cb (μg/mL) = 21.50 A646.8 – 5.10 A663.2 

c(x+c) (μg/mL) = (1000 A470 – 1.82 ca – 85.02 cb)/198 

After measurements, acetone was evaporated at 65°C for 1 hour, and samples 

were lyophilized for further experiments. 

 

5.8. Extraction of total sterols, sterol esters and fatty acids from plant tissues 

3 mL of 6% KOH in methanol (Carlo Erba) were added to the lyophilized material 

to proceed saponification at 70°C for 2 h. After addition of 1.5 mL milliQ H2O, 1.5 mL 

of n-hexane (Roth) were added and samples were mixed and centrifuged at 2500 g for 

5 minutes. The hexane upper phase was transferred in new tubes. This extraction was 

performed 3 times for each sample and the 3 hexane phases were pooled and 

evaporated at 70°C for at least 10 minutes. Acetylation was then performed on the 

dried residue with 100 μL of toluene (Carlo Erba), 50 μL of acetic anhydride (Fluka) 

and 30 μL of pyridine (Fluka) in a glass vial at 70°C for 1 hour. After evaporation at 

70°C for 30 minutes, samples were resuspended in 300 µL n-hexane (Roth). 

 

5.9. Sterols analyses by gas chromatography coupled to mass spectrometry 
(GC-MS) 

To identify sterols, plant extracts were analyzed by gas chromatography (GC 

instrument, Agilent 6890) coupled to mass spectrometry (MS analyzer, Agilent 5973) 

using a HP-5MS column (5% PhenylMethyl Siloxane, 30 m x 250 μm x 0,25 μm, Agilent 

J&W). 2 μL of sample were injected. The helium flux was 1 mL.min-1. The column 

temperature was hold at 60°C for 1 minute, heated to 200°C with a gradient of 30°C 

per minute, and then reaching a maximum of 300°C with a gradient of 2°C per minute, 

for a total run time of 56.33 minutes for each sample. The separated molecules were 
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ionized by electronic impact at 70 eV. The identification of each species was made by 

the detection of specific daughter ions obtained after ionization using the NIST 

database. 

 

5.10. Infection by variant of PstDC3000 

5.10.1. Preparation of the PstDC3000 GFPuv strain 

Preparation of calcium chloride competent Escherichia coli (E. coli) cells 

5 mL of  LB medium were inoculated with E. coli cells and grown at 37°C overnight. 

100 mL of LB were then inoculated with 1 mL of the preculture and grown at 37°C for 

3 hours. Cells were put on ice for 10 minutes and the following step were done at 4°C. 

Cells were centrifuged at 3500 g for 3 minutes and the supernatant was discarded 

before resuspension in 10 mL of cold 0.1 M CaCl2. Cells were incubated on ice for  

20 minutes and centrifuged at 3500 g for 3 minutes. The supernatant was discarded, 

and cells were resuspended in 5 mL of cold 0.1 M CaCl2, 15% glycerol, before being 

divided in 100 µL aliquots. Aliquots are stored at -80°C. 

 

E. coli heat shock transformation 

100 µL of competent E. coli cells were transformed with 600 ng of plasmid pDSK-

GFPuv. After 30 minutes incubation on ice, the heat shock was performed at 42°C for 

2 minutes, and the cells were put back on ice. 900 µL of LB medium were added to the 

tubes before incubation at 37°C for 30 minutes. 100 µL were plated on LB 

supplemented with 100 µg.mL-1 kanamycin and incubated overnight at 37°C. 

 

Transfer of the pDSK-GFPuv from E. coli to PstDC3000 by conjugation 

15 mL of  LB medium supplemented with 100 µg.mL-1 kanamycin were inoculated 

with the donor, E. coli containing pDSK-GFPuv and grown at 37°C overnight. 15 mL of 

LB medium supplemented with 100 µg.mL-1 kanamycin were inoculated with the 

helper, E. coli DH5α containing pRK2013 and grown at 37°C overnight. 15 mL of KB 
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medium supplemented with 50 µg.mL-1 rifampicin were inoculated with the receiver, 

PstDC3000. Cultures were centrifuged and resuspended in the appropriate media.  

0.5 mL of helper culture were added to the donor culture and resuspended gently.  

2 drops spots of donor plus helper culture were plated on LB medium and dried.  

2 drops spots of receiver culture were added to the previous spots of donor and dried. 

Plates were incubated at 37°C overnight. 1 mL of sterile physiological water was added 

on the plate to recover the maximum of bacteria with a pipette. 100 µL of the recovered 

liquid was plated on KB medium supplemented with 50 µg.mL-1 rifampicin and  

100 µg.mL-1 kanamycin and incubated at 28°C overnight. Liquid culture in KB medium 

supplemented with 50 µg.mL-1 rifampicin and 100 µg.mL-1 kanamycin was inoculated 

with a colony and incubated at 28°C overnight. A glycerol stock was done and stored 

at -80°C. 

 

Verification of the plasmid integration in PstDC3000 

Extraction of the plasmid integrated in PstDC3000 was proceeded thanks to the kit 

NucleoSpin® Plasmid (Macherey-Nagel) following the supplier’s recommendations. An 

enzymatic digestion of pDSK-GFPuv has been proceeded using FastDigest Eco RI 

(ThermoFisher scientific). The mix contained 2 µL of FastDigest buffer (ThermoFisher 

Scientific), 5 µL of DNA, 12 µL of H2O, and 1 µL of Eco RI (ThermoFisher Scientific), 

and incubated at 37°C for 10 minutes. Digested fragment was analyzed on 1.5% 

agarose gel in 1X TAE. 

 

5.10.2. Infection by PstDC3000 GFPuv or PstDC3000 lux 

The protocol of infection was the same as described for the classic PstDC3000 

strain in paragraph II.3.2., except for the culture media. PstDC3000 GFPuv was 

cultivated on KB medium supplemented with 100 µg.mL-1 rifampicin and 50 µg.mL-1 

kanamycin, at 28°C. PstDC3000 lux was cultivated on KB medium supplemented with 

50 µg.mL-1 rifampicin and 25 µg.mL-1 kanamycin, at 28°C. 
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5.10.3. Detection of PstDC3000 GFPuv fluorescence 

Infected leaves were grinded in KB+r or in PBS 1X (140 mM NaCl; 2.7 mM KCl;  

10 mM Na2HPO4; 1.8 mM KH2PO4; pH 7.4). The fluorescence of each sample was 

quantified using a FLUOstar Omega spectrometer (BMG Labtech) with a black 96-well 

microplate (96 well cell culture microplate, PS, F-bottom, CELLSTAR®, Greiner Bio-

one) containing 200 µL of sample. The excitation filter was 485 nm and the emission 

filter 520 nm. 

 

5.10.4. Detection of PstDC3000 lux luminescence 

Infected leaves were grinded in KB+r. The luminescence of each samples was 

quantified using a FLUOstar Omega spectrometer (BMG Labtech) with a white 96-well 

microplate (96 well microplate, PS, F-bottom, Nunc®, ThermoFisher Scientific) 

containing 200 μL of sample. 

 

6. Protocols relative to bacteria isolation 

6.1. Isolation of bacteria from the plant (Bai et al., 2015) 

Wild-type Col-0 or WS-2 A. thaliana were cultivated in in 7 cm diameter pots in soil 

(LAT-Terra Standard Pikiererde, Hawita) until the end of their lifecycle in a 12-hour 

light regime under fluorescent light (6 Lumilux tubes T5, Osram) and 12-hour dark 

regime. Temperature were set at 21°C during the light phase and 18°C during the dark 

phase. Plants were removed from the soil, and the excess of soil was removed by 

manual agitation. Roots were washed in sterile physiological H2O and the residual soil 

was eliminated using a sterile rake. Roots were then washed twice in sterile PBS for 

20 minutes, and grinding was proceeded using 3 mm diameter beads and Disruptor 

Genie (Scientific Industries) at 1500 g for 2 minutes. Samples were plated on different 

media whose composition is given in table 10: TYG, YEM, TWYE and M408. For the 

phyllosphere, 6 leaves were grinded in PBS using a Potter, and the rest of the 

phyllosphere was grinded using a mortar and a pestle under sterile conditions. 
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Samples were plated on different media whose composition is given in table 10: MYX, 

MM + MeOH. Plates were incubated at 28°C until the apparition of colonies (2 days to 

2 weeks). Colonies were isolated by successive subculturing. Isolated bacteria were 

then cultivated in the corresponding liquid media until their exponential growing phase 

to create a glycerol stock for their conservation at -80°C. 

 

6.2. Isolation of bacteria from the soil 

5 g of soil were mixed with PBS supplemented with 0.02% Silwet-77, or with 50X 

basal salts solution (23.2 mM Na2SO4; 170.3 mM (NH4)2SO4; 33.5 mM KCl; 101.4 mM  

MgSO4.7H2O; 18.4 mM KH2PO4; 3 mM Ca(NO3)2.4H2O) in a total volume of 50 mL. 

Samples were kept under agitation at 4°C overnight. After 10 minutes of decantation, 

7.5 mL of supernatant were added in new tubes containing 17.5 mL Nycodenz®, at the 

surface of the liquid. Tubes were centrifuged at 10 000 g for 2 hours. The upper phase 

containing the bacterial cells was transferred in a new tube before addition of 2 

volumes of PBS + Silwet-77 or basal salt solution. Samples were then centrifuged at 

4°C, 10 000 g for 15 minutes. After centrifugation, the supernatant was poured off and 

the pellets were resuspended in 1 mL of physiological H2O and transferred in 

Eppendorf tubes. Serial dilutions were made and plated on TWYE medium (Table 10) 

and LB medium for incubation at 28°C. Colonies were isolated by successive 

subculturing. Isolated bacteria were then cultivated in the corresponding liquid media 

until their exponential growing phase to make a glycerol stock for their conservation at 

-80°C. 

 

6.3. Isolation of bacteria from the seeds (Truyens et al., 2013) 

Seeds were sterilized in 0.1% sodium hypochlorite supplemented with 0.1% Tween 

80 (Sigma-Aldrich) for 1 minute. Seeds were then washed in sterile distilled H2O. 

Surface sterility was checked by incubation of the last washing solution on 869 

(Mergeay et al., 1985) solid medium (10 g.L-1 tryptone; 5 g.L-1 yeast extract; 5 g.L-1 

NaCl; 1 g.L-1 D-Glucose; 0.345 g.L-1 CaCl2.2H2O (pH 7)). Sterile seeds were then 



Table 15. PCR program for the amplification of the 16S rRNA gene of the isolated
strains. DNA amplification was performed on a Mastercycler ep Gradient S (Eppendorf)
using Phusion polymerase (ThermoFisher Scientific).

Initial denaturation 30 sec 98°C

32
 c

yc
le

s Denaturation 10 sec 98°C

Priming 15 sec 55°C

Elongation 1 min 30 72°C

Final elongation 5 min 72°C
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grinded in a sterile mortar after adding 500 µL of 10 mM MgSO4. Dilutions from 0 to 

10-2 were plated on 1/10 869 medium in distilled H2O and incubated for 1 week at 30°C. 

 

6.4. Identification of the isolated bacteria 

Extraction of total genomic DNA (gDNA) 

3 mL of overnight culture was centrifuged at 13 000 g for 2 minutes before 

elimination of the supernatant. gDNA from pellets was extracted using “Wizard® 

Genomic DNA Purification Kit” (Promega), following the supplier’s recommendations 

mentioned in the “Isolating genomic DNA from Gram positive and Gram negative 

bacteria” protocol. Once the gDNA extracted, it was resuspended in 50 µL of milliQ 

H2O and the DNA concentration and quality were estimated by measuring the OD at 

260 nm and 280 nm on a Nanodrop spectrophotometer (ThermoFisher Scientific). 

 

16S rRNA gene amplification by PCR 

Polymerase chain reaction (PCR) was performed for 16S rRNA gene amplification 

in order to identify isolated bacteria. 16S rRNA gene was amplified using the following 

primers: 27f (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492r (5'-TACGGYTACCTTG 

TTACGACTT-3'). PCR was performed using Phusion High Fidelity DNA polymerase 

(ThermoFisher Scientific). For each reaction, the mix was composed of 150 ng of 

matrix DNA, 0.5 µM of each primer, 200 µM of each dNTP, 1X of Phusion HF Buffer, 

1 U of Phusion polymerase, H2O up to 50 µL. PCR amplification was performed on a 

Mastercycler ep Gradient S (Eppendorf), in the conditions indicated in table 15.  

 

PCR fragments purification 

Purification of the amplified fragments was proceeded using homemade purification 

beads following the AMpure XP (Agencourt) recommendations. 

To prepare the home-made purification beads, Sera-mag SpeedBeads (Sigma-

Aldrich) were vortexed and before the transfer of 1 mL to a 1.5 mL tube. The tube was 

placed on a magnetic rack for 2 minutes and the supernatant was poured off. To clean 

the beads, 1 mL of TE (10 mM Tris-HCl pH 7.5; 1 mM EDTA) was added to resuspend 
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the beads by pipetting and the tube was placed on a magnetic rack for 2 minutes before 

elimination of the supernatant. This step was repeated a second time. Beads were 

resuspended in 1 mL of TE and kept at room temperature until the next step. In a  

50 mL Falcon tube, 9 g of PEG-8000, 2.92 g of NaCl, 500 µL of 1 M Tris-HCl and  

100 µM of 0.5 M EDTA were added, and the volume was adjusted to 48 mL with 

nuclease free H2O. The solution was mixed until it become clear, and 25 µL of Tween 

20 (Sigma-Aldrich) were added to the tube. Then, beads were resuspended in TE by 

pipetting before they were transferred in the Falcon tube containing the 48 mL of 

solution. The volume was adjusted to 50 mL by addition of nuclease free H2O. After 

homogenization, the volume was distributed in aliquots that were stored at 4°C in the 

dark. 

 

PCR fragments analyses 

Amplified PCR fragments were analyzed on 1.5% agarose gel in 1X TAE, using a 

6X loading Dye Solution (Fermentas) and a MassRuler DNA ladder mix (ThermoFisher 

Scientific) as a size marker. DNA was stained with ethidium bromide (BET) and 

revealed on a UV transilluminator. 

Amplified fragments were then sequenced at the IBMP sequencing platform by the 

Sanger method. For a total recovery of the 16S rDNA sequence, the following primers 

were used: 27f (5'-AGAGTTTGATCMTGGCTCAG-3'), 1193r (5’- ACGTCATCCCCAC 

CTTCC-3’), and 1492r (5'-TACGGYTACCTTGTTACGACTT-3'). Assembly of the 

sequences was proceeded using “CAP3 sequence assembly program” 

(http://doua.prabi.fr/software/cap3 (Huang and Madan, 1999)). Taxonomic affiliations 

were proceeded by comparison of the 16S rRNA gene sequence with the Silva 

database (https://www.arb-silva.de/ (Pruesse et al., 2012)). Sequences were also 

compared with the NCBI database by BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

and phylogenetic trees have been made for some strains using phylogeny.fr 

(http://www.phylogeny.fr/simple_phylogeny.cgi (Dereeper et al., 2008)). 
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6.5. Comparison of the 16S rRNA gene sequences of the varying clusters with 
those of the strains from our collection 

To determine which bacteria from our strain collection could be interesting for 

further studies, 16S rRNA gene sequences of the isolated strains were compared to 

16S rRNA gene sequences of clusters whose abundance was variable between wild-

type and mutants. An alignment of the sequences was made for each compartment in 

MUSCLE (https://www.ebi.ac.uk/Tools/msa/muscle/ (Edgar, 2004)). A matrix 

exhibiting the percentage of similarity between the sequences was obtained and 

analyzed in Excel. A selection of the sequences showing more than 99% of similarity 

was made to guide the choice of the strains to test, with a particular attention for strains 

with 100% of sequence identity. 

 

7. Protocols related to the study of 5 selected strains 

7.1. Fatty acids analyses by GC/FID 

Fatty acids extraction 

Bacterial fatty acids were analyzed by gas chromatography coupled to flame 

ionization detection (GC/FID). For that purpose, extraction of the membrane lipids was 

proceeded (Bligh and Dyer, 1959; Morrison and Smith, 1964). Bacteria were cultivated 

in 20 mL of LB medium until the end of their exponential growing phase. They were 

pelleted and resuspended in 0.5 mL H2O; before addition of 1 mL methanol and 2 mL 

chloroform. Samples were shaken for 3 minutes before addition of 0.5 mL H2O and an 

additional shaking for 30 seconds. Samples were centrifuged for  

10 minutes at 1 000 g. the chloroform phase (lower liquid phase) was transferred in a 

glass vial and the liquid was removed under N2-gasstream. 0.6 mL BF3 in methanol 

were added to the dry sample to methylate the fatty acids to fatty acid methyl esters 

(FAME). Samples were incubated at 80°C for 15 minutes before addition of 0.3 mL 

H2O and 0.5 mL hexane and shaking for 1 minute. The hexane phase (upper phase) 

was transferred to a new vial for GC analyses.  
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FAME analyses 

The FAME were analyzed by gas chromatography coupled to a flame ionization 

detector (GC instrument, Agilent 6890N) using a CP-SIL 88 column (50 m x 250 µm  

x 0.25 µm, Agilent). 2 μL of sample were injected. The helium flux was 1 mL.min-1. The 

column temperature was hold at 40°C for 2 minutes, followed by an increase of 8°C 

per minute up to 220°C, with a final hold at 220°C for 10 minutes. The peak areas were 

used to determine the relative amounts of each fatty acid. The degree of saturation of 

membrane fatty acids was defined as the ratio of saturated C16:0 and C18:0 to 

unsaturated C16:1 and C18:1 fatty acids. The trans/cis ratio of unsaturated fatty acids 

was defined as the ratio between the amounts of the two trans unsaturated fatty acids 

(16:1 trans, 18:1 trans) and the two cis unsaturated fatty acids (16:1 cis, 18:1 cis). 

 

7.2. Growth on mineral medium supplemented with isoprenoids 

Strains of interest were tested for their capacity to use isoprenoids as carbon source 

to grow in liquid or on solid mineral medium (table 10) supplemented with different 

isoprenoids as a carbon source, at different concentrations: 100 mg.L-1, 250 mg.L-1 

and 500 mg.L-1. As a vitamin supply, 200 mg.L-1 of yeast extract were added to the 

medium. Isoprenoids tested were obtained from Dr. Nicolas Navrot (IBMP) and were 

the following: geraniol (Fluka), α-pinene (Sigma-Aldrich), β-ocimene (Fluka), farnesol 

(Fluka), (-)-linalool (Fluka), β-caryophyllene (not commercial), limonene (not 

commercial), α-humulene (not commercial), myrcene (not commercial) and thujopsen 

(not commercial). 

Each testes strain was first grown in the appropriate culture medium until the 

exponential growing phase. The culture was centrifuged at 2500 g for 10 minutes and 

the supernatant was poured off. The pellet was washed with sterile 10 mM MgCl2 and 

centrifuged at 2500 g for 10 minutes. The supernatant was poured off and the pellet 

was resuspended in sterile 10 mM MgCl2 before adjusting the OD600nm to 0.5. Serial 

dilutions were made in sterile 10 mM MgCl2 until 10-4. For each bacteria, a 5 µL drop 

was deposited on each medium. 

 



Figure 32. Pipeline of the in vitro experiments. Curtobacterium sp. 5H is given as an
example of inoculated strain. Microscopy image was taken by Mathieu Erhardt (IBMP;
microscopy platform). After 48h of stratification, seeds were pipette-inoculated with the
strain of interest (OD600nm 0.5). Infection was proceeded on 3-weeks old plants. Plants
were observed day by day until the apparition of symptoms following the infection by
PstDC3000.

Seeds sowing on MS medium

4°C in the dark
48h

Curtobacterium sp. 5H

Inoculation 
strain of interest

5 µL (OD600nm 0.5)
Or MgCl2 (mock)

21 days

Infection 
PstDC3000

10 µL (1. 105 cfu.mL-1)
Or MgCl2 (mock)
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7.3. Inoculation of isolated strains and infection on plants cultivated in 
gnotoxenic conditions 

The global protocol relative to the in vitro inoculation experiments is schematized 

in figure 32. 

MS medium: 4.3 g.L-1 Murashige & Skoog Medium M0221 (Duchefa Biochemie); 

10 g.L-1 sucrose (Euromedex); 100 mg.L-1 myo-inositol (Duchefa Biochemie);  

1 mg.L-1 thiamine HCl (Duchefa); 0.5 mg.L-1 pyridoxine HCl (Duchefa); 0.5 mg.L-1 

nicotinic acid (Duchefa); 7 g.L-1 agar (Sigma); pH 5.8. 

 

7.3.1. In vitro culture conditions 

Autoclaved MS medium was poured in culture boxes. A. thaliana seeds were 

surface sterilized by treating them with 70% ethanol for 2 minutes before a washing 

step in sterile milliQ H20 for 1 minute. The supernatant was removed, and the seeds 

were treated with a commercial sodium hypochlorite solution (4%) supplemented with 

0.1% Tween 20 (Sigma-Aldrich) for 5 minutes. Seeds were washed 8 times with sterile 

milliQ H2O. Then, they were placed on the surface of MS medium. Plates were placed 

at 4°C for 48h in the dark. Then, plants were cultivated in Sanyo MLR-351H incubator 

with a regime of 16-hour light (160 µmol photon.s-1.m-2) at 18°C and 8-hour light  

(100 µmol photon.s-1.m-2) at 16°C. Or they were cultivated in a culture chamber with a 

16-hour light regime under fluorescent light (4 Lumilux tubes T8, Osram) and 8-hour 

dark regime, with temperatures set at 20.5°C during the light phase and 17°C during 

the dark phase. After 2 weeks of culture, plants of similar sizes were transplanted onto 

new plates. 

 

7.3.2. Inoculation of the strains of interest 

Each strain of interest was cultivated in the appropriate culture media at 28°C until 

the exponential growing phase. The culture was centrifuged at 2500 g for 10 minutes 

and the supernatant was poured off. The pellet was washed in sterile 10 mM MgCl2 

and centrifuged at 2500 g for 10 minutes. The supernatant was poured off and the 



Ca(NO3)2.4H2O 4,03.10-3 mol.L-1

NH4H2PO4 5,22.10-4 mol.L-1

KNO3 6,04.10-3 mol.L-1

MgSO4.7H2O 1,99.10-3 mol.L-1

NaOH 1,25.10-4 mol.L-1

EDTA 8,92.10-5 mol.L-1

FeSO4.7H2O 8,96.10-5 mol.L-1

H3BO3 9,68.10-6 mol.L-1

MnCl2.4H2O 2,03.10-6 mol.L-1

ZnSO4.7H2O 3,14.10-7 mol.L-1

CuSO4.5H2O 2,10.10-7 mol.L-1

MoO3 1,39.10-7 mol.L-1

CoCl2 8,59.10-8 mol.L-1

Table 16. Composition of the Hoagland medium for hydroponic culture.
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pellet was resuspended in sterile 10 mM MgCl2. For seed inoculation, the bacterial 

suspension OD600nm was adjusted to 0.5 and 5 µL were pipette inoculated on each 

seed after 48 hours at 4°C in the dark. Mock were inoculated with 5 µL of sterile 10 

mM MgCl2. For seedling inoculation on 2-weeks old plants, OD600nm was adjusted to 

0.02 and 5 µL were pipette inoculated on each plant. Mock were inoculated with 5 µL 

of sterile 10 mM MgCl2. 

 

7.3.3. Infection by PstDC3000 

3-weeks old plants were infected by PstDC3000. PstDC3000 was cultivated in the 

appropriate culture media at 28°C until the exponential growing phase. The culture 

was centrifuged at 2500 g for 10 minutes and the supernatant was poured off. The 

pellet was washed in sterile 10 mM MgCl2 and centrifuged at 2500 g for 10 minutes, 

twice. The pellet was resuspended in sterile 10 mM MgCl2 and the OD600nm was 

adjusted to obtain 1 x 105 cfu.mL-1. For preliminary experiments, 800 µL of PstDC3000 

were sprayed to each plant. For further experiments, 10 µL of the infection suspension 

were pipette inoculated on the plants to allow a more uniform distribution. Mock were 

inoculated with 10 µL of sterile 10 mM MgCl2. 

 

7.3.4. Optimized hydroponic culture conditions 

A hydroponic culture system was optimized in the laboratory in order to cultivate 

sterile plants until formation of the siliques. 

For that purpose, A. thaliana seeds were surface sterilized by treating them with 

70% ethanol for 2 minutes before a washing step in sterile milliQ H20 for 1 minute. The 

supernatant was poured off, and the seeds were treated with a commercial bleach 

solution containing 4% sodium hypochlorite (Lacroix) supplemented with 0.1% Tween 

20 (Sigma-Aldrich) for 5 minutes. Seeds were washed 8 times with sterile milliQ H2O. 

A reusable autoclavable pipette tips box was used to create a nursery for the plants. 

0.6 mL Eppendorf® tubes were cut at the basis to let the roots join the liquid medium 

and put inside this sterile box. They were filled with Hoagland medium (Table 16) 
supplemented with 0.6% agar and the box was filled with liquid Hoagland medium. 
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Sterile seeds were deposited on the surface of the solid medium using sterile 

toothpicks. The box was placed in a culture chamber with a 16-hour light regime at 

20.5°C and a 8-hour dark regime at 17°C. Big boxes covered by glass containers were 

used to grow plants in hydroponic culture conditions after sterilization using 

commercial sodium hypochlorite solution (4%), followed by a wash with ethanol 70% 

under sterile conditions. Glass containers contain a hole that was recovered with sterile 

breathable self-adhesive films (Starlab) to allow gas exchange by avoiding 

contamination. After approximately 4 weeks in the nursery until the roots have reached 

the liquid culture medium, Eppendorf® tubes containing the plants were transferred in 

these bigger boxes containing Hoagland medium, using sterile tweezers. The system 

was closed with micropore and put back in the culture chamber. Sterility was checked 

by the presence of a LB plate in the system, and plating of 100 µL of Hoagland medium 

on LB plates for incubation at 28°C. 

The inoculation of Curtobacterium sp. 5H was proceeded according to the protocol 

described in paragraph II.5.3.2. on 2-weeks old plants, except that 10 µL were pipette 

inoculated instead of 5 µL. 

 

7.3.5. Comparison of two seeds sterilization methods for axenic 
experiments 

The sterilization protocol usually employed for seed sterilization in my experiments 

requires a first washing step in 70% ethanol for 2 minutes, followed by a washing step 

in sterile milliQ H2O for 1 minute. Then, seeds were washed in a commercial bleach 

solution containing 4% sodium hypochlorite (Lacroix) supplemented with 0.01% of 

Tween 20 (Sigma-Aldrich) for 5 minutes, before 8 washing steps in sterile milliQ H2O. 

Seeds were air-dried in a sterile environment on sterile Whatman paper.  

The second sterilization protocol requires a first washing step in 70% ethanol for  

1 minute, followed by a washing step in a sterilization solution containing 4% of 

commercial bleach supplemented with 0.1% SDS for 5 minutes, before 3 washing 

steps in sterile milliQ H2O. Seeds were air-dried in a sterile environment on sterile 

Whatman paper. 



 149 

Sterilization efficiency was assessed by placing seeds on MS solid medium and in 

different liquid culture media: LB, NYGB and GYM whose composition is given in  

table 10, and YPD (10 g.L-1 yeast extract; 20 g.L-1 proteose peptone; 20 g.L-1  

D(+)-glucose) before incubation at 28°C and 37°C. 

 

7.4. Inoculation of Curtobacterium sp. 5H and infection on plants in holoxenic 
conditions 

7.4.1. In vivo culture conditions 

Before sowing, Col-0 and chs5 seeds were kept at -20°C for 48 hours. Plants were 

cultivated in 7 cm diameter pots in soil (LAT-Terra Standard Pikiererde, Hawita). The 

culture conditions for in vivo inoculation and further pathogen infection experiments 

were the same as mentioned in paragraph II.3.1 and II.3.2. Plants were cultivated in 

small greenhouses to avoid bacterial propagation to non-inoculated plants. For both 

methods of inoculation, plants were transplanted after 2 weeks of culture. 

 

7.4.2. Inoculation of Curtobacterium sp. 5H 

Curtobacterium sp. 5H was cultivated in LB at 28°C until the exponential growing 

phase. The culture was centrifuged at 2500 g for 10 minutes and the supernatant was 

poured off. The pellet was washed in sterile 10 mM MgCl2 and centrifuged at 2500 g 

for 10 minutes. The supernatant was poured off and the pellet was resuspended in 

sterile 10 mM MgCl2. For seed inoculation, OD600nm was adjusted to 0.5 and seeds 

were immersed in the bacterial suspension for 15 minutes. Then, tubes were 

centrifuged, and the supernatant was poured off. Seeds were resuspended in 1 mL of 

sterile H2O before sowing. For seedling inoculation on 2-weeks old plants, OD600nm 

was adjusted to 1 and 5 mL of suspension were dispensed to each pot containing one 

plant. For both inoculation methods, mock treated plants were inoculated with the same 

quantity of sterile 10mM MgCl2. 
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7.4.3. Infection by PstDC3000 

6-weeks old plants were infected by PstDC3000. PstDC3000 was cultivated in 

NYGB+r at 28°C until the exponential growing phase. The culture was centrifuged at 

2500 g for 10 minutes and the supernatant was poured off. The pellet was washed in 

sterile 10 mM MgCl2 and centrifuged at 2500 g for 10 minutes, twice. The pellet was 

resuspended in sterile 10 mM MgCl2 and the OD600nm was adjusted to obtain  

1 x 105 cfu.mL-1. 10 leaves of each plant were syringe infiltrated. Mock were syringe 

infiltrated with sterile 10 mM MgCl2. Bacterial growth assays were proceeded as 

explained in paragraph II.3.3. 

 

8. Protocols related to the screening of DXS1 overexpressors 

8.1. Plant culture conditions 

Col-0 and chs5 lines were cultivated in 7 cm diameter pots in soil (LAT-Terra 

Standard Pikiererde, Hawita). They were cultivated in a 16-hour light regime under 

fluorescent tubes (6 Lumilux tubes T5, Osram) and 8-hour dark regime. Temperatures 

were set at 16°C during the light phase and 13°C during the dark phase. 

 

8.2. gDNA extraction from leaves 

Edwards buffer: 200 mM Tris-HCl pH 7.5; 250 mM NaCl; 25 mM EDTA; 0.5% SDS. 

Leaf discs of approximately 0.5 cm diameter were collected and placed in the wells 

of a 96-well plate containing metal beads. The plate was placed in liquid nitrogen and 

the samples were grinded with TissueLyser II (Qiagen), at 30 Hz for 1 minute, twice. 

The plate was kept at room temperature for 5 minutes. 300 µL of Edwards buffer were 

added to each well and the plate was inverted twice and kept on ice for the extraction. 

The plate was centrifuged at 16 000 g for 10 minutes at 4°C. 100 µL of supernatant 

was added to a new 96-well plate containing 80 µL of isopropanol. The plate was 

inverted twice and kept 5 minutes at room temperature before centrifugation at  

16 000 g for 15 minutes at 4°C. The supernatant was removed, and the pellets were 



Table 17. PCR and HRM program for DXS1 genotyping. DNA amplification and HRM
were performed on a LightCycler® 480 II instrument (Roche) a Mastercycler ep
Gradient S (Eppendorf) using GoTaq polymerase (Promega).

Initial denaturation 2 min 95°C

x 
45

 
cy

cl
es Denaturation 10 sec 95°C

Annealing/extension 30 sec 60°C

H
R

M
 m

el
tin

g
cu

rv
e

Heteroduplex
formation

30 sec 95°C

1 min 60°C

High resolution
melting + plate read

10 sec 65°C

0.02°C per second until
95°C

Table 18. PCR program for 35S::DXS1OE genotyping. DNA amplification was
performed on a Mastercycler ep Gradient S (Eppendorf) using GoTaq polymerase
(Promega).

Initial denaturation 1 min 96°C

35
 c

yc
le

s Denaturation 20 sec 96°C

Priming 20 sec 50°C

Elongation 45 sec 72°C

Final elongation 1 min 72°C
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washed with 70% ethanol. Samples were centrifuged for 15 minutes at 4°C and the 

supernatant was removed. The plate was air dried before resuspension of the pellets 

in 60 µL of H2O. 

 

8.3. Genotyping of DXS1 by HRM  

Genotyping of DXS1 was proceeded by HRM on the extracted DNA using the 

following primers: CHS5-fw (5’-TAACTGTAGCGGATGCACG-3’) and CHS5-rv  

(5’-GCTAAGCTGCGAATGAGAGg-3’). For each reaction, the mix was composed of  

5 µL of Precision Melt Supermix (Bio-rad), 1 µL of 2 µM primers, and 4 µL of gDNA. 

The precision Melt Supermix (Bio-rad) contains hot-start iTaq™ DNA polymerase, 

dNTPs, MgCl2, EvaGreen Dye, enhancers and stabilizers in a proprietary formulation 

optimized by Bio-rad for HRM applications. PCR and HRM were performed on 

LightCycler® 480 II instrument (Roche) with the program described in table 17.  

Melting curves were analyzed on https://www.dna.utah.edu/ua/uanalyze.html. 

 

8.4. PCR on 35S:DXS1OE 

Plants exhibiting a wild-type phenotype despite the presence of the dxs1 mutation 

were controlled for the integration of the 35S:DXS1OE using the following primers: 

P35Sf (5’-CAATCCCACTATCCTTCGC-3’) and cDNA DXS1r (5’-GGCTTCATAAGCC 

TGTCCTG-3’). PCR was performed using GoTaq polymerase (Promega). For each 

reaction, the mix was composed of 2 µL of 5X GoTaq green buffer (Promega), 0.6 µL 

of 25 mM MgCl2, 0.2 µL of 10 mM dNTPs, 0.1 µL of GoTaq polymerase (Promega), 

0.5 µL of 10 µM forward primer, 0.5 µL of 10 µM reverse primer, 0.5 µL of DNA matrix, 

and H2O up to 10 µL. PCR amplification was performed on a Mastercycler ep Gradient 

S (Eppendorf), in the conditions indicated in table 18. 
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9. Observation of Curtobacterium sp. 5H by electron microscopy 

Curtobacterium sp. 5H was cultivated until the exponential growing phase. Mathieu 

Erhardt (Microscopy platform, IBMP) proceeded the fixation of the bacteria in 

glutaraldehyde 2% or 2.5% + phosphate buffer (Sorensen), pH 7.4 for 1 hour. The 

sample was washed in phosphate buffer (Sorensen) for 15 minutes, 3 times. Post-

fixation of the sample was proceeded in 1% osmium tetroxide (OSO4) in 0.1 M 

phosphate buffer (Sorensen) for 1 hour. The sample was washed in H2O for  

10 minutes, three times. Dehydration was proceeded in a series of alcohol baths  

(50%, 70%, 95% ethanol) 15 minutes each, and 3 baths of 30 minutes in 100% ethanol. 

Then, sample was placed in a bath of 100% ethanol + Hexamethyldisilazane (HMDS), 

50:50, for 15 minutes. Bacteria were placed on a glass slide before a final bath in 100% 

HDMS was proceeded until evaporation overnight (desiccation). Sample became 

conductor under electron beam. Glass slide was attached with carbon tape on the 

sample part of the Scanning electron microscope (SEM) and objects were metallized 

under argon atmosphere, with deposition of a gold/palladium layer of few nanometers 

thick (20 mA, 240 seconds). Sample was observed on a Zeiss Sigma VP300 SEM 

under a tension of 15 kV. 
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Résumé du travail de thèse en français 
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I. Introduction 

Les isoprénoïdes, aussi appelés terpénoïdes, constituent une importante classe de 

plus de 55 000 molécules que l’on retrouve chez tous les organismes vivants, y 

compris en grande diversité dans le monde végétal (Thulasiram et al., 2007). Chez les 

plantes, ces molécules sont impliquées dans des processus biologiques essentiels tels 

que la photosynthèse, la croissance, la respiration ou encore la réponse immunitaire. 

Afin de synthétiser cette grande variété de molécules, deux précurseurs sont 

requis. Il s’agit de l’isopentenyl diphosphate (IPP) et du diméthylallyl pyrophosphate 

(DMAPP). Deux voies de biosynthèse permettant d’obtenir ces précurseurs sont 

connues à ce jour. Les animaux, les champignons et les archaea synthétisent leurs 

isoprénoïdes via la voie du mévalonate (MVA), tandis que les algues possèdent la voie 

du 2-C-méthyl-D-rythritol 4-phosphate (MEP). Les plantes supérieures, quant à elles, 

ont la particularité d’utiliser les deux voies de biosynthèse pour former l’IPP et le 

DMAPP. Elles ont en effet maintenu la voie du MVA considérée comme « classique » 

chez les eucaryotes, qui permet la synthèse des isoprénoïdes dans le cytoplasme ; et 

elles ont acquis plus tardivement la voie dite « alternative » du MEP qui permet leur 

biosynthèse dans les plastes (Rohmer, 1999, 2007). Les bactéries, pour leur part, 

synthétisent principalement leurs isoprénoïdes via la voie du MEP, mais certaines 

d’entre elles utilisent plutôt la voie du MVA, et parfois même les deux. Enfin, quelques 

exceptions ne possèdent aucune des voies de biosynthèse, probablement car il s’agit 

de parasites intracellulaires obligatoires qui peuvent donc obtenir leurs isoprénoïdes 

grâce à leur hôte (Kuzuyama and Seto, 2003; Pérez-Gil and Rodríguez-Concepción, 

2013). 

Au cours de ma thèse, j’ai travaillé sur la plante modèle Arabidopsis thaliana, qui 

possède les deux voies de biosynthèse des isoprénoïdes. Afin d’étudier de plus près 

l’impact de l’une ou l’autre de ces voies sur les interactions entre plantes et bactéries, 

j’ai travaillé sur des mutants affectés dans la voie du MEP ou du MVA. Le mutant chs5 

(fond génétique Col-0) qui présente un phénotype chlorotique est affecté au niveau 

d’une enzyme clé de la voie du MEP. En effet, il porte une mutation ponctuelle dans le 

gène codant la 1-désoxy-D-xylulose 5-phosphate synthase 1 (DXS1) nécessaire à la 

formation du MEP. Le mutant hmg1-1 (fond génétique WS2) qui lui se caractérise par 

une diminution de croissance de la plante et du remplissage des siliques est affecté 
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au niveau d’une enzyme clé de la voie du MVA. L’allèle hmg1-1 du gène codant la 3-

hydroxy-3-méthylglutaryl-coenzyme A réductase 1 (HMGR1) nécessaire à la formation 

du MVA est porteur d’une insertion de T-DNA invalidante chez ce mutant. Dans les 

deux cas, il en résulte un déficit partiel de formation de l’IPP et du DMAPP, précurseurs 

nécessaires à la biosynthèse de tous les isoprénoïdes. 

De récentes études ont suggéré que des isoprénoïdes bactériens (Silipo et al., 

2014) ou végétaux (Wang et al., 2012) peuvent avoir un effet sur les interactions entre 

les plantes et les bactéries. D’autre part, certaines études ont mis en avant l’influence 

des interactions plantes-bactéries sur la régulation de la biosynthèse d’isoprénoïdes 

végétaux (Gargallo-Garriga et al., 2016; Del Giudice et al., 2008; Pandey et al., 2018; 

Salomon et al., 2016).  

Ceci nous conduit à mon projet de thèse qui avait pour objectif d’étudier les 

interactions entre plantes et bactéries dans le contexte de la biosynthèse des 

isoprénoïdes chez A. thaliana. Mon projet pouvait se diviser en deux questions 

principales, déterminant mes objectifs de thèse : 

- Les isoprénoïdes végétaux ont-ils une importance dans la sélection du 

microbiote associé à la plante ? Ont-ils aussi un effet sur les interactions entre 

plantes et pathogènes ?  

- Est-ce que certaines bactéries du microbiote dont la présence dépend du statut 

isoprénique de la plante ont un impact sur la physiologie de la plante et sa 

résistance aux pathogènes ? 

 

La première étape pour déterminer si les isoprénoïdes influencent les interactions 

entre plantes et bactéries impliquait d’établir un inventaire des communautés 

associées aux plantes sauvages et mutantes, altérées dans les voies de biosynthèse 

des isoprénoïdes. Le but était de déterminer si certaines bactéries sont 

différentiellement abondantes dépendamment du statut isoprénique de la plante. 

D’autre part, puisque les plantes sont soumises à de nombreux stress, incluant des 

interactions avec des pathogènes, j’ai également étudié l’impact des isoprénoïdes sur 

la colonisation de la plante par un pathogène bien connu, Pseudomonas syringae pv. 

tomato DC3000 (PstDC3000). 
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Le second volet de ma thèse était consacré à l’étude de l’impact de certaines 

bactéries du microbiote dont la présence semble corrélée au statut isoprénique de la 

plante sur la physiologie de celle-ci et sa résistance aux pathogènes. Pour ce faire, 

nous avons d’abord isolé des bactéries interagissant avec A. thaliana pour créer une 

collection de souches. J’ai ensuite affilié ces souches à des genres connus, et comparé 

la séquence de leur gène codant l’ARNr 16S à celles des bactéries dont l’abondance 

varie entre les plantes sauvages et mutantes. J’ai pu mettre en évidence une proximité 

phylogénétique entre certaines souches isolées et certaines bactéries dont 

l’abondance varie. Ceci m’a conduite à tester l’effet de ces souches en particulier sur 

A. thaliana, ainsi que l’effet d’isoprénoïdes végétaux sur ces souches. 

 

 

II. Etude de l’impact des isoprénoïdes dans la sélection du microbiote associé 
à la plante et dans sa colonisation par des pathogènes 

 

Le premier volet de ma thèse consistait à déterminer l’impact des isoprénoïdes sur 

la colonisation de la plante par les bactéries en général, mais aussi sur les interactions 

de la plante avec des micro-organismes pathogènes. 

 

1. Inventaire des communautés interagissant avec les plantes sauvages et 
mutantes affectées dans les voies de biosynthèse des isoprénoïdes  

Un inventaire des communautés interagissant avec les plantes sauvages (Col-0 et 

WS2) et mutantes (chs5 et hmg1-1) a été effectué au laboratoire afin de déterminer si 

les isoprénoïdes végétaux peuvent influencer la mise en place du microbiote de la 

plante. Cet inventaire a été réalisé par une approche « barcoding » basée sur 

l’amplification puis le séquençage d’une portion du gène codant l’ARNr 16S bactérien 

par Illumina.  

L’inventaire ainsi réalisé nous a permis de confirmer l’existence d’un microbiote 

considéré comme un noyau commun indépendamment de l’écotype, et du génotype 
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de la plante, comme mentionné dans de précédentes études. (Bai et al., 2015; 

Bodenhausen et al., 2013; Bulgarelli et al., 2012, 2015; Lundberg et al., 2012; 

Schlaeppi et al., 2014). Ce microbiote est composé en grande majorité de 

Proteobacteria, ainsi que d’une part importante d’Actinobacteria et de Bacteroidetes, 

et une faible proportion de Firmicutes. Ensemble, ces trois phyla représentent plus de 

80% du microbiote de la plante. Ces données correspondent aux proportions 

généralement retrouvées dans les précédentes études mentionnées ci-dessus.  

Cependant, nous avons aussi pu mettre en évidence une différence significative 

d’abondance de certaines OTUs (Operational Taxonomic Units) spécifiques entre les 

plantes Col-0 et chs5 ainsi qu’entre les plantes WS2 et hmg1-1, telles que des 

Actinobacteria, Streptomyces, ou Proteobacteria, par exemple. Cette différence de 

communautés suggère une potentielle implication des isoprénoïdes dans la mise en 

place du microbiote. Ainsi, la présence de certaines bactéries en particulier pourrait 

nécessiter les isoprénoïdes végétaux, de mêmes que ces derniers pourraient être 

toxiques pour d’autres micro-organismes.  

Il est intéressant de noter que parmi les bactéries plus abondantes chez Col-0 que 

chez chs5, on retrouve des genres intéressants tels que des Streptomyces ou des 

Rhizobium. Les Rhizobium sont notamment connus pour leurs effets bénéfiques sur 

les plantes, on peut donc les considérer comme PGPB (Plant Growth Promoting 

Bacteria) (van Rhijn and Vanderleyden, 1995). Les Streptomyces incluent également 

des souches PGP, notamment par leur capacité à solubiliser le phosphate pour la 

plante, à produire des sidérophores, des antibiotiques, ou encore à induire la 

résistance systémique (ISR) de la plante (Abbasi et al., 2019; Dias et al., 2017; 

Kuzuyama and Seto, 2003; Pérez-Gil and Rodríguez-Concepción, 2013), la préparant 

à de futures attaques pathogènes. On peut donc supposer que la forte abondance de 

telles souches chez les plantes sauvages peut leur conférer des avantages, comme 

leur permettre une meilleure résistance aux pathogènes par exemple. 
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2. Etude de la sensibilité des plantes au phytopathogène Pseudomonas 

syringae pv. tomato DC3000 

Comme mentionné ci-dessus, nous avons mis en évidence une possible 

implication des isoprénoïdes dans la sélection des bactéries associées aux hôtes de 

manière générale. Le microbiote étant important pour la santé de la plante et sa 

résistance aux pathogènes, nous nous sommes demandé si les isoprénoïdes peuvent 

également avoir un effet sur la résistance des plantes aux pathogènes. Ma stratégie a 

été de comparer la sensibilité des plantes Col-0 et chs5, mais aussi WS2 et hmg1-1 

au phytopathogène Pseudomonas syringae pv. tomato DC3000 en conditions 

holoxéniques, c’est-à-dire en présence du microbiote naturellement associé à chaque 

plante. Ce pathogène a notamment participé à la mise en place du modèle en 

« zigzag » du système immunitaire végétal (Jones and Dangl, 2006). 

Les plantes WS2 et hmg1-1 ne présentaient pas de différence de sensibilité 

majeure suite à l’infection par PstDC3000, ce qui suggère que les isoprénoïdes 

synthétisés par la voie du MVA ne sont pas impliqués dans les mécanismes de 

défense de la plante contre ce pathogène. En revanche, j’ai pu mettre en évidence une 

sensibilité significativement plus importante des plantes chs5 affectées dans la 

biosynthèse des isoprénoïdes plastidiaux (MEP) par rapport aux plantes sauvages, ce 

qui se caractérise par des lésions et une colonisation par le pathogène plus 

importantes. Afin d’étudier si cette différence de sensibilité se reflétait au niveau de la 

réponse immunitaire de la plante, j’ai analysé l’expression des gènes de défense 

PR-1, PR-2 et PR-5 (Pathogenesis-Related Genes) d’A. thaliana à différents temps 

post-infection. Leur expression est connue pour être induite en réponse à l’infection 

par P. syringae. J’ai ainsi pu observer par RT-qPCR une augmentation de l’expression 

de ces gènes, en particulier à 3 jours post-infection, où la réponse semble être la plus 

forte. On constate globalement une expression plus faible de ces gènes chez la plante 

mutante par rapport à la plante sauvage, mais cette faible diminution ne suffit 

probablement pas à expliquer à elle seule la différence de sensibilité entre Col-0 et 

chs5. J’ai donc voulu déterminer si cette différence de sensibilité se reflétait aussi au 

niveau métabolique en quantifiant notamment l’accumulation du stigmastérol, un 

isoprénoïde dont l’accumulation est décrite comme étant corrélée à l’infection par 

PstDC3000 selon une précédente étude (Griebel and Zeier, 2010). J’ai en effet pu 

observer une accumulation plus importante du stigmastérol chez les plantes infectées 
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par rapport aux plantes témoins. Cependant, je n’ai pas noté de différence majeure 

d’accumulation de ce composé entre Col-0 et chs5. Ainsi, la différence de sensibilité 

observée ne résulte pas non plus d’une différence d’accumulation du stigmastérol. 

Ensemble, ces résultats suggèrent un rôle des isoprénoïdes synthétisés par la voie 

du MEP dans les mécanismes de défense de la plante. Cet effet peut être direct, 

puisque certains isoprénoïdes sont connus pour être impliqués dans les mécanismes 

de défense de la plante, tels que l’acide abscissique ou les cytokinines qui sont 

synthétisées via la voie du MEP. Il est maintenant connu que les mécanismes de 

défense de la plante impliquent différentes hormones en plus des voies hormonales 

classiques de l’acide salicylique et de l’acide jasmonique et éthylène (Jones and 

Dangl, 2006; Kumar, 2014; Pieterse et al., 2012). Mais les isoprénoïdes peuvent aussi 

avoir un effet indirect sur la sensibilité de la plante, via la sélection du microbiote 

associé, puisque nous avons mis en évidence une différence de communautés entre 

les plantes sauvages et mutantes. En effet, au sein du microbiote des plantes Col-0, 

certaines bactéries en particulier pourraient avoir un effet protecteur en entrant en 

compétition avec le pathogène ou en sécrétant des composés antimicrobiens, par 

exemple, tout comme elles pourraient induire un état de « priming » des défenses de 

la plante par le mécanisme de la résistance systémique induite (Dessaux et al., 2016; 

Glick, 2012; Olanrewaju et al., 2017). D’autres bactéries interagissant avec chs5 

pourraient au contraire affecter la plante et ainsi favoriser l’infection par le pathogène. 

J’ai donc voulu tester l’effet de certaines bactéries isolées dans un second volet de ma 

thèse. 

 

 

III. Etude de l’impact de bactéries isolées sur la physiologie et les défenses de 
la plante contre les pathogènes 

Afin de déterminer l’effet du microbiote de la plante sur son état physiologique et 

sa sensibilité à l’infection par des pathogènes, j’ai décidé d’étudier dans un second 

volet de ma thèse l’impact de certaines bactéries isolées au laboratoire sur les plantes 

sauvages et mutantes.  
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1. Etablissement d’une collection de 230 souches isolées au laboratoire 

Avec l’aide d’étudiants en stage au laboratoire, nous sommes parvenus à isoler 

230 bactéries du microbiote d’A. thaliana à partir de différents compartiments 

(phyllosphère, racines, rhizosphère ou graines) de plantes sauvages Col-0 ou WS2, 

mais aussi à partir du terreau utilisé pour la culture de ces plantes. J’ai ainsi pu 

constituer une collection de souches dont l’effet peut être testé en conditions 

contrôlées. J’ai par la suite identifié le genre de ces bactéries sur base de la séquence 

du gène codant leur ARNr 16S obtenue par séquençage Sanger. Au sein de notre 

collection, on retrouve une majorité de Firmicutes, une grande proportion 

d’Actinobacteria et de Proteobacteria. Ainsi, notre collection n’est pas représentative 

de la composition du microbiote naturel en termes de proportions de chaque phylum. 

En effet, comme décrit précédemment, l’inventaire des communautés mettait en 

évidence une forte majorité de Proteobacteria, un quart d’Actinobacteria et un quart 

de Bacteroidetes et peu de Firmicutes. Ceci peut notamment s’expliquer par le fait que 

notre collection représente seulement une faible proportion des souches qui pourraient 

être cultivées en laboratoire (Bai et al., 2015) puisque nous nous sommes basés sur 

des critères morphologiques pour la sélection des souches à isoler. Cependant, de 

manière intéressante, notre collection contient des souches qui correspondent 

potentiellement à des bactéries dont l’abondance varie entre plantes sauvages et 

mutantes.  

 

2. Comparaison des isolats aux OTUs différentiellement abondantes entre 
plantes sauvages et mutantes 

J’ai procédé à une comparaison de la séquence du gène codant l’ARNr 16S de 

chacun de nos isolats aux séquences partielles des OTUs différentiellement 

abondantes entre les plantes sauvages et mutantes. Je me suis particulièrement 

intéressée aux OTUs dont l’abondance variait entre Col-0 et chs5, puisque ces plantes 

présentaient une différence de sensibilité significative suite à l’infection par 

PstDC3000. Il est important de noter que plusieurs analyses des communautés ont 

été réalisées au cours de ces trois années de thèse. Au début de ma thèse, je 

disposais déjà des deux premières analyses, et d’une collection de souches plus 
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réduite que notre collection actuelle. J’ai donc effectué cette comparaison de 

séquences une première fois, ce qui m’a permis de mettre en évidence des souches 

qui pourraient correspondre (100% d’identité entre les séquences) à des bactéries 

dont l’abondance varie dépendamment du génotype de la plante. Leur présence serait 

donc potentiellement dépendante du statut isoprénique de la plante, et ce sont 

notamment ces souches qui pourraient en partie expliquer la différence de sensibilité 

au pathogène. Les isolats qui ressortent de cette étude comparative entre Col-0 et 

chs5 sont ceux sur lesquels nous avons décidé de nous focaliser par la suite. Parmi 

eux, deux bactéries du genre Pseudomonas, deux Curtobacterium, et une 

Microbacterium ont retenu notre attention. Une comparaison plus récente entre les 

isolats de notre collection et les OTUs dont l’abondance varie entre plantes sauvages 

et mutantes a permis de mettre en évidence d’autres souches candidates, dont une 

Rhizobium. 

 J’ai décidé de caractériser ces cinq souches candidates plus finement. J’ai 

notamment procédé à des affiliations phylogénétiques, par comparaison des 

séquences du gène codant l’ARNr 16S aux séquences présentes dans la base de 

données du NCBI. A partir des séquences présentant la plus grande identité, j’ai pu 

établir des arbres phylogénétiques afin de mettre en évidence les plus proches parents 

de ces souches. Ceci m’a notamment permis de rechercher dans la littérature les effets 

positifs ou négatifs de bactéries du genre Pseudomonas, Curtobacterium et 

Microbacterium proches de nos souches. Aucun effet notable de bactéries du genre 

Microbacterium n’est reporté dans la littérature. En revanche, une précédente étude a 

montré des effets bénéfiques de Pseudomonas nitroreducens sur la croissance d’A. 

thaliana et Lactuca sativa, ce qui nous permet de la considérer comme PGPB (Trinh 

et al., 2018). Concernant Curtobacterium, certaines Curtobacterium flaccumfaciens 

sont connues pour être des PGPB (Cardinale et al., 2015; Horuz and Aysan, 2018), 

tandis que d’autres sont connues comme pathogènes (Sammer and Reiher, 2012). Il 

semblait donc intéressant de tester les effets de ces différentes souches sur A. 

thaliana. 

De plus, chaque bactérie présentant un profil d’acides gras qui lui est propre, une 

analyse des acides gras est couramment utilisée pour affilier des souches à un genre 

précis. J’ai donc procédé à des analyses de spectrométrie de masse par GC/FID 

(Chromatographie gazeuse couplée à un détecteur à ionisation de flamme) afin 
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d’étudier les profils d’acides gras de chacune de ces souches, ce qui m’a permis de 

confirmer leurs affiliations préalablement réalisées par séquençage du gène codant 

l’ARNr 16S. 

 

3. Etude approfondie de cinq isolats 

3.1. Impact des isoprénoïdes sur la croissance des souches 

J’ai voulu déterminer si ces souches candidates étaient capables d’utiliser des 

isoprénoïdes pour assurer leur développement, ou si au contraire, certains 

isoprénoïdes pouvaient être toxiques pour elles, expliquant ainsi leurs différences 

d’abondance entre plantes sauvages et mutantes. J’ai donc procédé à des tests de 

croissance en présence d’isoprénoïdes comme unique source de carbone. Dans un 

premier temps, une culture en milieu liquide a permis de mettre en évidence que les 

souches testées sont capables d’utiliser le limonène comme source de carbone mais 

que ce composé, en fortes concentrations, inhibe partiellement la croissance des 

bactéries. De plus, les conditions de croissances testées conduisaient les bactéries à 

former des agrégats qui rendaient difficile la mesure fiable de la DO600nm permettant 

de quantifier la croissance bactérienne. Par la suite, j’ai donc décider de procéder à 

des tests de croissance sur milieu solide contenant des isoprénoïdes (limonène, β-

caryophyllène, farnésol, myrcène, α-pinène, β-ocimène, α-humulène, (-)-linalool, 

géraniol et thujopsène). J’ai en particulier étudié la croissance des deux 

Curtobacterium précédemment citées. Ces souches sont capables d’utiliser tous les 

isoprénoïdes testés comme source de carbone pour assurer leur développement, 

même si cela ne correspond pas à leurs conditions optimales de croissance. Il 

semblerait même que certains isoprénoïdes tels que le farnésol ou le géraniol puissent 

être toxiques pour ces souches, puisqu’elles se développent moins facilement en leur 

présence à fortes concentrations. Ceci suggère une fois de plus un impact des 

isoprénoïdes sur les interactions entre plantes et bactéries. 
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4. Impact des souches sur le phénotype des plantes et leur résistance à P. 

syringae 

Enfin, j’ai voulu étudier l’impact de ces cinq souches sur le phénotype et la 

croissance des plantes ainsi que sur leur résistance à l’infection par P. syringae. Pour 

ce faire, j’ai travaillé sur des plantes cultivées en conditions gnotoxéniques, c’est-à-

dire stérilement avec inoculation d’une souche en particulier, d’une part, et en 

conditions holoxéniques, c’est-à-dire en présence de leur microbiote naturel, d’autre 

part. 

En conditions gnotoxéniques, des plantes Col-0 et chs5 ont été inoculées ou non 

par les souches d’intérêt, puis infectées par P. syringae. Nous n’avons pas observé 

d’effet de Microbacterium sp. 5B sur le développement de la plante ni sur sa résistance 

au pathogène. Pseudomonas sp. 10A et Pseudomonas sp. 2D, en revanche, affectent 

le développement de la plante. Pseudomonas sp. 10A a également un effet sur la 

résistance de la plante au pathogène, puisqu’elle amplifie les effets de l’infection. 

Enfin, Curtobacterium sp. 5H et Curtobacterium sp. 6H impactent légèrement le 

développement des plantes qui sont de taille réduite, mais elles semblent avoir un effet 

antagoniste plus ou moins important vis-à-vis du pathogène. Plus en détail, les 

résultats de ces tests ont attiré notre attention sur Curtobacterium sp. 5H, qui 

présentait un potentiel effet protecteur.  Cependant, dépendamment de la stringence 

de la méthode de stérilisation utilisée, les effets observés n’étaient pas toujours les 

mêmes. En effet, avec l’utilisation d’une stérilisation plus poussée, nous n’avons plus 

observé ces traits protecteurs. Il en ressort que la souche induit systématiquement un 

retard de croissance des plantes inoculées, et variablement des traits protecteurs 

contre P. syringae. Nous avons supposé que l’effet protecteur de cette souche pouvait 

résulter de son interaction avec d’autres micro-organismes encore présents après une 

stérilisation incomplète.  

Ceci m’a conduite à tester l’inoculation de Curtobacterium sp. 5H à des plantes 

sauvages et mutantes cultivées en conditions holoxéniques. Ainsi, je souhaitais 

déterminer si l’effet de cette souche pouvait être la conséquence de son interaction 

avec d’autres bactéries, et dans ce cas précis, avec le microbiote naturel. Les plantes 

inoculées étaient légèrement plus petites que les plantes non inoculées mais on 

n’observait pas de différence majeure de sensibilité au pathogène en conditions 
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holoxéniques. Le potentiel effet protecteur de cette souche est peut-être dépendant de 

la dose inoculée ainsi que des interactions avec un faible nombre de micro-organismes 

du microbiote, ou encore des conditions de cultures. Il est important de noter que lors 

des expériences in vitro, les plantes sont soumises à différentes étapes qui peuvent 

les stresser (inoculation, repiquage des plantes sur de nouvelles boîtes, infection), ce 

qui peut également avoir un impact sur celles-ci.  

 

5. Systèmes d’étude 

Au cours de ma thèse, j’ai optimisé un autre système de culture des plantes en 

conditions gnotoxéniques permettant leur culture jusqu’à la formation des siliques. Il 

s’agit d’un système de culture en hydroponie, dans lequel les plantes sont cultivées 

dans des tubes contenant un milieu gélosé permettant à leurs racines de les traverser 

et d’atteindre un milieu nutritif liquide nécessaire à leur croissance. Le système est 

opérationnel et chaque système permet la culture de 12 plantes simultanément. Il s’agit 

d’une bonne alternative au système in vitro sur milieu gélosé utilisé précédemment, 

qui semblait être difficile à maîtriser pour répéter les premières observations.  

Ce système de culture en hydroponie permet de tester l’impact de souches en 

particulier sur des plantes plus grandes que ce qui était possible par l’usage des boîtes 

de culture in vitro précédemment utilisées. De même, il est possible d’étudier la 

sensibilité des plantes axéniques au pathogènes P. syringae afin de déterminer si la 

différence de sensibilité observée résulte du statut isoprénique de la plante lui-même, 

ou du microbiote normalement associé. 

 

 

IV. Conclusions et perspectives 

 

Les travaux effectués au cours de ma thèse suggèrent une implication des 

isoprénoïdes dans la mise en place des communautés bactériennes interagissant avec 

les plantes, ainsi que dans la résistance à un pathogène biotrophe. On peut donc 
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suggérer une implication des isoprénoïdes dans les interactions plantes-bactéries. Les 

communautés interagissant avec WS2 et hmg1-1 sont elles aussi variables, mais les 

plantes mutantes ne présentent pas de différence de sensibilité par rapport aux 

sauvages. Ceci suggère l’implication plus spécifique d’isoprénoïdes synthétisés par la 

voie du MEP dans la défense au pathogène, directement ou indirectement. Il serait 

intéressant de tester la sensibilité des plantes sauvages et mutantes à un autre 

pathogène, tel que le champignon nécrotrophe Botrytis cinerea. En effet, les voies de 

défense activées par la plante suite à l’infection par un pathogène (hémi)-biotrophe tel 

que PstDC3000 impliquent principalement l’acide salicylique ; tandis que l’infection par 

un pathogène nécrotrophe induit principalement les voies de l’acide jasmonique et de 

l’éthylène. Cependant, il est désormais accepté que les mécanismes de défense de la 

plante impliquent également d’autres hormones, telles que l’acide abscissique ou les 

cytokinines, synthétisées via la voie du MEP (Jones and Dangl, 2006; Pieterse et al., 

2012). L’impact de ces molécules peut être différent dépendamment du type de 

pathogène qui interagit avec la plante. Les isoprénoïdes sont donc potentiellement 

capables d’influencer les interactions plantes-pathogènes à différentes échelles. 

Dans le but d’étudier plus en détails le rôle des isoprénoïdes dans la résistance au 

pathogène entre les plantes Col-0 et chs5, j’ai essayé d’obtenir une plante mutante 

chs5 chez laquelle le gène codant pour l’enzyme DXS1 serait exprimé sous contrôle 

d’un promoteur fort constitutif. Au laboratoire, des lignées d’A. thaliana portant ce gène 

sous promoteur fort ont été croisées avec des plantes chs5. Jusqu’à présent, j’ai pu 

obtenir des lignées hétérozygotes (dxs1/DXS1) ayant intégré le sur-expresseur, mais 

aucune lignée homozygote (dxs1/dxs1). L’obtention de telles lignées permettrait de 

vérifier que la surexpression de l’enzyme 1-désoxy-D-xylulose 5-phosphate synthase 

1 restaure une meilleure résistance au pathogène chez le mutant, similaire ou peut-

être même plus importante que chez Col-0, confirmant une implication des 

isoprénoïdes dans la différence de sensibilité aux pathogènes. 

Enfin, d’autres bactéries de notre collection de souches pourraient être testées 

pour leur effet sur A. thaliana. Notamment, les Rhizobium présentant 100% d’identité 

de séquence du gène codant l’ARNr 16S avec des OTUs dont l’abondance varie entre 

les plantes sauvages et mutantes, pourraient être de bons candidats puisque ce genre 

bactérien est connu pour ses capacités promotrices, comme mentionné plus haut. 



 166 

D’autres bactéries dont la séquence du gène codant l’ARNr 16S est différente de celle 

des OTUs variables pourraient également être de bons candidats.  
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Chloé GROH 

 
Deciphering the interactions between plants 

and bacteria in the context of isoprenoid 
biosynthesis in Arabidopsis thaliana 

 

 

Les isoprénoïdes constituent une importante classe de molécules que l'on retrouve chez tous 
les organismes vivants. Chez les plantes, ils sont impliqués dans divers processus biologiques 
tels que la photosynthèse, la respiration ou la division cellulaire. Le but de ma thèse était de 
déterminer si ces molécules pouvaient être impliquées dans les interactions entre plantes et 
bactéries. J'ai comparé les interactions plantes-bactéries chez des plantes Arabidopsis thaliana 
sauvages et mutées dans chacune des deux voies de biosynthèse des isoprénoïdes existant 
chez les plantes supérieures. Un inventaire des communautés constituant le microbiote de ces 
plantes nous a permis de démontrer que malgré l’existence d’un microbiote commun, 
l’abondance de certaines bactéries varie entre plantes sauvages et mutantes. De plus, nous 
avons montré que les plantes affectées dans la voie de biosynthèse plastidiale, dite du 
méthylérythritol phosphate (MEP), sont plus sensibles que les plantes sauvages à l’infection par 
Pseudomonas syringae. D’autre part, nous avons isolé au laboratoire 230 souches 
interagissant avec A. thaliana, parmi lesquelles certaines ont été testées pour déterminer leur 
effet sur le phénotype et la résistance des plantes à P. syringae. Ensemble, les résultats 
obtenus suggèrent que les isoprénoïdes jouent un rôle dans les interactions entre les plantes et 
certaines bactéries du microbiote. 

Mots-clés : Arabidopsis thaliana, interactions plantes-bactéries, isoprénoïdes, microbiote, 
Pseudomonas syringae. 

 

Isoprenoids are a large class of molecules found in all living organisms. In plants, they are 
implicated in diverse biological processes such as photosynthesis, respiration or cell division. 
The aim of my thesis was to decipher if they could be involved in the interactions between 
plants and bacteria. Therefore, I compared plant-bacteria interactions in Arabidopsis thaliana 
wild-type and mutants altered in the two isoprenoid biosynthesis pathways occurring in higher 
plants. An inventory of the communities interacting with these plants highlighted that despite the 
existence of a core microbiota, some bacteria are differently abundant between wild-types and 
mutants. Moreover, plants affected in the plastidial biosynthesis pathway, referred as the 
methylerythritol phosphate (MEP) pathway, have been shown to be more affected by 
Pseudomonas syringae than wild-types. In addition, in the laboratory, we isolated 230 strains 
from A. thaliana, among which some of them were tested for their impact on the plant health 
and resistance to P. syringae. Together, these results suggest that isoprenoids may play a role 
in the interactions between plants and some bacteria from the microbiota. 

Keywords: Arabidopsis thaliana, isoprenoids, microbiota, plant-bacteria interactions, 
Pseudomonas syringae. 


