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Introduction

A central problem in stable homotopy theory is to understand the homotopy groups
of the sphere spectrum localised at each prime p, π∗(S0

(p)). A powerful tool for
computing the latter is the Adams spectral sequence, whose E2-term is given by
Ext∗,∗Ap

(Fp,Fp), the extension groups over the Steenrod algebra Ap. However, this
method only allows one to compute π∗(S0

(p)) stem by stem. In the 60’s, Frank
Adams in his study of the image of J, [Ada66] showed the existence of an infinite
family of elements of π∗(S0) living in arbitrarily large stems. This was the first
periodic family discovered, known as the α-family, of the stable homotopy groups
of the sphere. Adam’s work and subsequent work by L. Smith, Toda and Miller-
Mahowald-Wilson and others motivated and marked the beginning of chromatic
homotopy theory.

In the 70’s, Ravenel published a series of conjectures which described the global
structure of the stable homotopy category. Most of the conjectures were then re-
solved by Hopkins and his collaborators. In fact, the chromatic point of view
offers a promising tool to analyse π∗(S0

(p)) in a systematic way by decomposing
it into smaller pieces. More precisely, let Ln and LK(n) denote the Bousfield lo-
calisations with respect to the nth Johnson-Wilson theory E(n) and nth-Morava
K-theory, respectively (here the prime p is implicit in the notation). We have the
chromatic convergence theorem.

Theorem 1 (Hopkins-Ravenel, [Rav92]). Let X be a p-local finite spectrum.

There is a tower

...→ LnX → Ln−1X → ...→ L0X ∼= LHQX,

such that X is homotopy equivalent to its homotopy limit.

Furthermore, the chromatic fracture square asserts that Ln can be inductively de-
termined from the Bousfield localisation LK(m) with respect to the mth Morava
K-theory for 0 ≤ m ≤ n, via the homotopy pull-back squares

1



Introduction 2

Theorem 2. [Rav92]. For any spectrum X and all positive integers n, the follow-

ing square is a homotopy pullback square

LnX //

��

LK(n)X

��
Ln−1X // Ln−1LK(n)X.

Therefore, in the chromatic approach to stable homotopy theory, it is crucial to
understand the K(n)-local homotopy category at all primes and all natural num-
bers n, referred to as the chromatic level. For this purpose, a general strategy is
to study the homotopy type of the K(n)-localisation of various finite spectra. A
central result of the theory is the work of Devinatz and Hopkins [DH04] which ex-
presses the K(n)-localisation of a finite spectrum X as the continuous homotopy
fixed point spectrum

LK(n)X = EhGn

n ∧X

where Gn is the extended Morava stabiliser group, which is profinite, and En is
the nth Morava E-theory, see Section 1 for more details. Moreover, for any closed
subgroup F of Gn, there is aK(n)-localEn-based spectral sequence or homotopy
fixed point spectral sequence converging to π∗(EhF

n ∧X), with the E2-term being
the continuous cohomology of F with coefficients in (En)∗(X):

H∗c(F, (En)∗(X)) =⇒ π∗(E
hF
n ∧X) (1)

The study of chromatic level one was a great success: the homotopy groups of
LK(1)S

0 have been completely computed at all primes and, at the prime 2, LK(1)S
0

detects essentially the image of J. Chromatic level two has also been thoroughly
investigated at odd primes. It started with the computation by Shimomura and his
collaborators of the L2 localisation of various finite spectra (see [SY95], [Shi97],
[Shi00], [SW02]). Later Goerss-Henn-Mahowald-Rezk in [GHMR05] proposed
a conceptual framework to organise the K(2)-local homotopy category at the
prime 3, in which the authors constructed a finite resolution of the K(2)-local
sphere using higher real K-theories. See [GHM04], [HKM13], [GH16] for fur-
ther investigations at n = 2 and p = 3 and [Beh12] for an exposition of L2S

0 at
p ≥ 5.

The situation of chromatic level two at the prime 2 turns out to be much more
complicated and we are only beginning to understand it better. Considerable ef-
fort has recently been made to understand the K(2)-local homotopy category at
the prime 2 by the community. In [BG18], Bobkova and Goerss established a
finite resolution of a spectrum related to the K(2)-local sphere at the prime 2
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analogous to that of [GHMR05], which realised an algebraic resolution of S1
2,

a certain closed subgroup of the second Morava stabiliser group, constructed by
Beaudry [Bea15]. Based on her own work, Beaudry carried out a computation of
H∗(S1

2, (E2)∗(V (0))), the E2-term of the spectral sequence associated to (1).

Motivated both by the limited state of the art and recent progress on the subject,
this thesis aims to push further our knowledge of the K(2)-local homotopy cate-
gory at the prime 2. One reason why the latter is hard to deal with lies largely in
the fact that the cohomological properties of the group G2 are much more compli-
cated at the prime 2. However, one exciting feature of chromatic level 2 is its close
relationship with the theory of elliptic curves and modular forms, see Section 1.
At chromatic level 2 and at the prime 2, we can choose the Morava E-theory to
be the Lubin-Tate theory associated to the formal group law of the elliptic curve
C : y2 + y = x3 over F4. We denote by EC and GC the corresponding Morava
E-theory and Morava stabiliser group. Then the K(2)-localisation of any finite
spectrum X can also be described as

LK(2)X ∼= EhGC

C ∧X.

One of the main tools used in this thesis is a certain finite resolution in the K(2)-
local homotopy category. Let S1

C be a closed subgroup of GC , G24 be the auto-
morphism group of C and C6 be a cyclic subgroup of order 6 of G24 (see Section
1 for details).

Theorem 3. [BG18] There exists the following resolution of E
hS1C
C in the K(2)-

local homotopy category at the prime 2

E
hS1C
C

δ0−→ E0
δ1−→ E1

δ2−→ E2
δ3−→ E3

where E0 = EhG24
C , E1 = E2 = EhC6

C and E3 = Σ48EhG24
C .

This resolution is commonly called the topological duality resolution. The spec-

trum E
hS1C
C is used to build the spectrum EhSC

C , where SC is the Morava stabiliser
group, via a certain cofiber sequence

EhSC
C → E

hS1C
C

1−π
−−→ E

hS1C
C ,

and EhSC
C only differs from LK(2)S

0 by the Galois action, i.e., there is a homotopy
equivalence

LK(2)S
0 ∼= (EhSC

C )hGal(F4/F2).

Thus this theorem offers a useful instrument to study the homotopy type ofLK(2)X
for finite spectra X at the prime 2. In particular, it produces a spectral sequence,
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known as the topological duality spectral sequence, abbreviated by TDSS, con-

verging to π∗(E
hS1C
C ∧X)

Ep,q1
∼= πq(Ep ∧X) =⇒ πq−p(E

hS1C
C ∧X). (2)

By now, it should be clear that judicious choices of finite spectra become impor-
tant. We refer to Section 1.7 for more information on the category of finite spectra.
The latter has a stratification whose strata consists of finite spectra of type n for
0 ≤ n ≤ ∞ and relevant for the study of the K(n)-local category are those of
type at most n because finite spectra of type greater than n are K(n)-acyclic. As
a general principle, the bigger the type of the spectrum, the harder the study of
its Morava K-theory localisation. Therefore, at chromatic level n, it is preferable
to start with the K(n)-localisation of certain type n complexes, then go down to
type 0 complexes, notably the sphere spectrum.

Main players in this thesis are finite spectra constructed by Davis and Mahowald
in [DM81]. Let A1 denote a class of finite spectra whose cohomology is iso-
morphic, as a module over the subalgebra A(1) generated by 〈Sq1, Sq2〉 of the
Steenrod algebra A, to A(1). As shown in [DM81], the class A1 contains four
different homotopy types of finite spectra of type 2 which are distinguished by
the structure of their mod-2 cohomology as modules over the Steenrod algebra.
They are successively denoted by A1[00], A1[01], A1[10], A1[11], see Defini-
tion 3.2.1. The spectra A1[01] and A1[10] are Spanier-Whitehead self-dual, i.e.,
D(A1[01]) ≃ Σ−6A1[01] and D(A1[10]) ≃ Σ−6A1[10] and the spectra A1[00] and
A1[11] are Spanier-Whitehead dual to each other, i.e., D(A1[00]) ≃ Σ−6A1[11]
(here D(−) denotes the function spectra F (−, S0)). By an abuse of language, we
write A1 to refer to any of these four spectra and refer to any of them as a version
of A1. In particular, we use this notation in the statement of results that are true
for all versions. We emphasis, however, that all results are a priori dependent on
the version of A1 and this is the case. The spectrum A1 is constructed via three
cofiber sequences starting from the sphere spectrum. First, let V (0) be the mod
2 Moore spectrum, i.e., the cofiber of multiplication by 2 on the sphere. Next let
Y be the cofiber of multiplication by η, the first Hopf element, on V (0). Davis
and Mahowald show that Y admits v1-self maps, v1 : Σ2Y → Y . Then A1 is the
cofiber of any of these v1-self maps of Y . We note also that even though Y ad-
mits eight v1-self maps, the associated cofibers only have four different homotopy
types.

One reason for working with A1 is the fact that it is the cofiber of a v1-self map
of periodicity 1, making a few computations simpler; this is in contrast with the
generalised Moore spectrum M(2, v41) which is the cofiber of a v1-self map of
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periodicity 4 on the Moore spectrum V (0). The second one is that a sufficient
understanding of the homotopy type of LK(2)A1 might allow us to determine the
Gross-Hopkins duality formula for theK(2)-local homotopy category at the prime
2. In fact, the spectrum A1 can be considered as an analog of the Toda-Smith
complex V (1) at the prime 3 and as demonstrated in [GH16], computations of
the homotopy groups of LK(2)V (1) allows one to characterise the Gross-Hopkins
formula for the K(2)-local homotopy category at the prime 3. The third reason
is that A1 is a "small" finite spectrum of type 2 having only eight cells with the
top cell being in dimension 6, hence it is reasonable to expect that a study of the
homotopy type of A1 gives us valuable information about the homotopy groups of
S0, at least about the v2-periodic families of S0. Let us expand this thought. The
authors of [BEM17] show that A1 admits a v322 -self map. Let [(v322 )−1]A1 denote
the associated telescope, i.e.,

[(v322 )−1]A1 = hocolim(A1 → Σ−192A1 → ...→ Σ−192kA1 → ...).

We note that the homotopy type of this telescope is independent on the choice
of v2-self map of A1 by Nilpotence and Periodicity Technology, see [Rav92].
Suppose that x ∈ πt([(v

32
2 )−1]A1) is a nontrivial element. This means that the

composite

St+192k → Σ192kA1

v32k2−−→ A1

is essential for k ∈ N. This gives rise to a nontrivial element of π∗S0 in one of the
stems {192k + t− i|0 ≤ i ≤ 6}.

Moreover, the K(2)-localisation of A1 might be used to detect nontrivial ele-
ments of the homotopy groups of [(v322 )−1]A1. In fact, the K(2)-localisation map
A1 → LK(2)A1 factors through [(v322 )−1]A1 → LK(2)A1. Ravenel’s Telescope
Conjecture predicts that the latter is a homotopy equivalence. As a key step to-
wards the study of π∗(LK(2)A1), as explained in the discussion following Theorem

3, we study in this thesis the Topological Duality spectral sequence for E
hS1C
C ∧A1.

We motivate, further, that the calculation of the TDSS forE
hS1C
C ∧A1 will be useful

to study the spectral sequence for Y , then that for V (0) and finally that for S0.

Results and summarise of the thesis

We summarise progress made in this thesis. Firstly, we compute the E1-term of

the TDSS for E
hS1C
C ∧ A1. More precisely, we compute completely the homotopy
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fixed point spectral sequences for F = G24, C6

H∗(F, (EC)∗(A1)) =⇒ π∗(E
hF
C ∧ A1). (3)

Here are qualitative versions of the results; see Theorem 5.3.19, 5.3.20 and Theo-
rem 7.2.4 for more precise statements.

There are classes

∆8 ∈ H0(G24, (EC)192), κ ∈ H4(G24, (EC)24), ν ∈ H1(G24, (EC)4),

such that

Theorem 4. As a module over the ring F4[∆
±8, κ, ν]/(νκ), the E∞-term of the

HFPSS for EhG24
C ∧ A1[01] and EhG24

C ∧ A1[10] is a direct sum of 46 explicitly

known cyclic modules.

Theorem 5. As a module over the ring F4[∆
±8, κ, ν]/(νκ), the E∞-term of the

HFPSS for EhG24
C ∧ A1[00] and EhG24

C ∧ A1[11] is a direct sum of 48 explicitly

known cyclic modules.

There are classes ∆2 ∈ H0(C6, (EC)48) and x17 ∈ H1(C6, (EC)18) such that

Theorem 6. As a module over the ring F4[∆
±2, x17], the E∞-term of the HFPSS

for EhC6
C ∧ A1 is a direct sum of eight explicitly known cyclic modules.

Secondly, we prove that the edge homomorphism of the TDSS is an epimorphism,
meaning that all differentials starting from the 0-line, consisting of π∗(E

hG24
C ∧A1),

are trivial.

Theorem 7. The induced homomorphism in homotopy of δ0 : E
hS1C
C ∧ A1 →

EhG24
C ∧ A1 is surjective.

Finally, we analyse the differentials d1 : E1,q
1 → E2,q

1 and d1 : E2,q
1 → E3,q

1 . We
prove that the latter is trivial and the former is potentially non-trivial only in two
stems.

Theorem 8. The induced homomorphism in homotopy of δ2 : EhC6
C ∧ A1 →

EhC6
C ∧ A1 is trivial except possibly on two families.

Theorem 9. The induced homomorphism in homotopy of δ3 : EhC6
C ∧ A1 →

Σ48EhG48
C ∧ A1 is trivial.
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The thesis consists of five chapters. Here is a brief summarise of the contents of
each chapter.

In Chapter I, we review some background and tools used in the computation of
the Topological Duality spectral sequence. In particular, we sketch a proof of the
relationship between topological modular forms with level structures and higher
real K-theories. We also give a generalisation of the Davis-Mahowald spectral
sequence which is an important tool to analyse the cohomology of various Hopf
algebras.

In Chapter II, we analyse in detail the homotopy fixed point spectral sequence
for EhG24

C ∧ A1. We emphasise that there are two different outcomes for the E∞-
term of the homotopy fixed point spectral sequence, depending on the version of
A1, see Theorem 5.3.19 and 5.3.20 and figures II.22 to II.29. As a main tool,
we apply the Davis-Mahowald spectral sequence to compute the E2-term of the
Adams spectral sequence for tmf ∧ A1. We discuss some differentials in the lat-
ter, from which we obtain necessary homotopical input to run the homotopy fixed
point spectral sequence.

In Chapter III, we compute the homotopy fixed point spectral sequence forEhC2
C ∧

X and EhC6
C ∧X for X = S0, V (0), Y and A1. It turns out, however, that the out-

come does not depend on the version of A1, see Theorem 7.2.3 and 7.2.4 and
Figure III.10. Firstly, we compute the latter for EhC2

C ∧ X and EhC6
C ∧ X for

X = S0, V (0), Y using the cofiber sequences defining these. Finally, we dis-
cuss A1: similarly to the case of EhG24

C ∧ A1, we need information coming from
tmf0(3) ∧ A1 in order to complete the calculation of the homotopy fixed point
spectral sequence.

In Chapter IV, we study the edge homomorphism of the topological duality spec-
tral sequence. We reduce to the study of the induced map in homotopy of the
tmf -Hurewicz map A1 → tmf ∧ A1. We prove that the latter is surjective for all
versions of A1, see Theorem 7.2.18 and 9.0.5.

In Chapter V, we analyse the induced homomorphisms in homotopy of the maps
δ2 and δ3 of the topological duality resolution. We start by analysing the mapping
spectra between various higher real K-theories. Based on this analysis, we de-
scribe the maps δ2 and δ3 and then the induced maps in homotopy, see Theorem
11.1.5 and 11.2.6.

Convention and Notation. Unless otherwise stated, all spectra are localised at
the prime 2. H∗(X) and H∗(X) denote the mod-2 cohomology and homology
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of the spectrum X , respectively. We also write A for the Steenrod algebra at the
prime 2. Given a Hopf algebra A over a field k and M a A-comodule, we will
often abbreviate Ext∗A(k,M) by Ext∗A(M). In general, we will write Cf for the
cofiber of a map f : X → Y except that we will write V (0) for the Moore spec-
trum which is the cofiber of the multiplication by 2 on the sphere. We reserve the
notation C2 for the cyclic group of order 2.

Résumé en français

L’un des problèmes centraux en théorie de l’homotopie stable est le calcul des
groupes d’homotopie des spectres finis, notamment ceux de la sphère S0. D’après
les travaux de Serre dans les années 1950, les groupes d’homotopie de la sphère
sont finiment engendrés. Par conséquent, il suffit de comprendre la localisation
des spectres en chaque nombre premier à la fois.

Le début de la théorie de l’homotopie chromatique a l’origine dans les travaux
d’Adams sur l’image de l’homomorphisme de J, qui constitue une première famille
infinie des éléments nontriviaux des groupes d’homotopie de la sphère; et puis de
Miller, Ravenel, Wilson qui en ont construit d’autres. Ces familles sont connues
sous le nom des familles périodiques. A l’issue de leurs travaux, Ravenel a publié
une série de conjectures qui décrivaient certaines structures globales de la caté-
gorie des spectres finis localisés au nombre premier p, par conséquent, prédisaient
des comportements de π∗(S0

(p)), les groupes d’homotopie de sphère localisée au
nombre premier p. Par la suite, la plupart de ces conjectures ont été démontrées
par Hopkins et ses collaborateurs dans les années 1980, posant des premiers jalons
pour cette approche chromatique. Nous en citons deux qui ont motivé cette thèse.
Notons Ln pour la localisation de Bousfield par rapport à la n-ième E-théorie
de Morava. On peut aisément démontrer qu’il existe une transformation naturelle
Ln → Ln−1 pour tout nombre naturel n. Le premier théorème est la convergence
chromatique qui dit que la sphère localisée en p peut être reconstruit comme une
limite homotopique de la localisation de Bousfield par rapport à des E-théories
de Morava.

Theorem 0.0.1 (Hopkins-Ravenel). Soit X un spectre fini p-local. L’application

naturelle X
∼=
−→ holim

n
LnX , induite par la transformation naturelle Ln → Ln−1,

est une équivalence homotopique.

Le deuxième théorème vise à décrire Ln de manière récurrente à partir des local-
isations par rapport aux K-théorie de Morava. Notons K(n) la n-ième K-théorie
de Morava.
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Theorem 0.0.2. Le carré commutatif suivant est une tirée-en-arrière homotopique

LnX //

��

Ln−1X

��
LK(n)X // Ln−1LK(n)X.

Au vu de ces résultats, les catégories des spectres K(n)-locaux sont considérées
comme les briques élémentaires qui constituent la catégorie des spectres. En par-
ticulier, une bonne compréhension des localisations LK(n)X pour différents nom-
bres naturels n permet d’avoir des informations subtantielles sur X lui-même. Il
est non moins important de souligner que l’étude de l’interaction entre les niveaux
chromatiques successifs constitue un pilier de la théorie d’homotopie chroma-
tique. Une conjecture prépondérante dans cette direction est celle de scission
chromatique qui prédit que l’application Ln−1S0

p → Ln−1LK(n)S
0
p au-dessus est

scindée injectivement. Il s’ensuit de cette conjecture, si vérifiée, de nombreuses
conséquences significatives qui décrivent de manière plus précise comment re-
constituer la catégorie des spectres finis à partir de ces K(n)-localisations.

Cette thèse s’intéresse à la catégorie des spectres K(2)-locaux au nombre pre-
mier 2, qui se situe à la pointe de la recherche actuelle. Il est nécessaire de
donner quelques justifications pour ce choix qui semble, de prime abord, très
spécifique. Tout d’abord, la théorie d’homotopie chromatique offre un program
prometteur pour analyser le type d’homotopie des spectres finis. Ainsi, il est judi-
cieux d’avoir de bons échantillons de calculs explicites pour tester les conjectures,
en formuler des nouvelles ainsi que pour acquérir des connaissances effectives. A
titre d’exemple, le premier niveau chromatique est très bien compris : les groupes
d’homotopie de LK(1)S

0
(p) sont explicitement calculés pour tous les nombres pre-

miers p et pour p = 2, les groupes d’homotopie de LK(1)S
0 détectent essen-

tiellement l’image de l’homomorphism J, c’est-à-dire, l’homomorphisme naturel
π∗(S

0
(2))→ π∗(LK(1)S

0
(2)) envoie les générateurs de l’image de J de manière non-

triviale dans le but. Au deuxième niveau chromatique, aux nombres premiers au
moins 5, le problème, quoique ne pas facile, demeure algébrique. En générale,
fixant un niveau chromatique n, plus le nombre premier sous-jacent est petit, plus
les phénomènes topologiques apparaissent, donc plus le problème est complexe.
Certes, la catégorie K(2)-locale au nombre premier 2 représente les complexités
caractéristiques des catégories K(n)-locaux, mais s’avère accessible aux calculs
explicites, ce qui est dû principalement à deux causes. La première est que plus
grand est le niveau chromatique, plus la complexité liée aux calculs augmente. La
deuxième est qu’il existe un lien propice entre la théorie des courbes elliptiques
et la catégorie K(2)-locale - ce qui sera précisé en dessous - permettant d’utiliser
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la géométrie des dernières pour faciliter des calculs. Ainsi, la complexité carac-
téristique et l’accessibilité font de la catégorie K(2)-locale au nombre premier
2 un endroit favorable pour tester les conjectures. Par exemple, Beaudry, Go-
erss et Henn a récemment démontré la conjecture de scission chromatique pour
n = p = 2. L’objectif premier de cette thèse est de réaliser certains calculs ex-
plicites, qui seront décrits dans la suite, visant à améliorer notre connaissance sur
les groupes d’homotopie de LK(2)S

0
(2).

Afin d’introduire plus précisément l’objet de cette thèse, nous introduisons quelques
notations.

Spectre de Lubin-Tate. D’une importance prépondérante dans l’analyse de la
catégorie K(n)-locale est la paire constituée du groupe de stabilisateur de Morava
Gn agissant sur l’E-théorie de Morava En. La dernière est construite à partir d’un
groupe formel de hauteur n défini sur un corps parfait de caractéristique p. Bien
que les choix différents du groupe formel conduise au même résultat final, cer-
tains choix sont plus avantageux que les autres en vue des calculs explicites. Pour
n = p = 2, c’est le groupe formel associé d’une courbe elliptique supersingulière.
Soit C la courbe elliptique d’équation de Weierstrass y2 + y = x3 définie sur la
corps F4. La complétion formelle de C à son origine est le groupe formel FC
de hauteur 2. Notons par SC le groupe d’automorphismes de FC , connu sous le
nom du groupe de stabilisateur de Morava. Puisque tous les automorphismes de
FC sont définis sur F4, SC admets une action du groupe de Galois de l’extension
de F4 sur F2, Gal. Notons par GC le produit semi-direct SC ⋊ Gal, appelé le
groupe de stabilisateur de Morava étendu. On rappelle que l’anneau de Lubin-
Tate de déformation universelle de FC est isomorphe à W(F4)[[u1]]. En utilisant
le théorème du functor exact de Landweber, on peut construire une théorie de
cohomologie généralisée EC telle que

π∗EC ∼= W(F4)[[u1]][u
±1]

avec |u1| = 0 and |u| = −2. De plus, EC admet une action à homotopie près du
groupe de stabilisateur de Morava étendu GC = SC ⋊Gal où Gal est le groupe de
Galois de l’extension de F4 sur F2 . La théorie d’obstruction de Goerss-Hopkins-
Miller affirme que cette action peut être rigidifiée en une action stricte, c’est-à-
dire, une action dans certaine catégorie de model des spectres.

Spectres de point fixe homotopique. En utilisant l’action de GC sur EC , Dev-
inatz et Hopkins a construit, pour tout sous-groupe fermé F de GC , le spectre de
point fixe homotopique continu EhF

C . Ils ont montré, entre autres, que

LK(2)S
0 ∼= EhGC

C .
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Notons par S1
C le noyau du déterminant réduit SC → Z2. Il est une conséquence

du travail de Devinatz-Hopkins qu’il y a une suite de cofibration

EhSC
C → E

hS1C
C → E

hS1C
C .

Par conséquent, une étude de E
hS1C
C est un premier pas crucial vers une meilleure

connaissance deLK(2)S
0. Un calcul direct des groupes d’homotopieE

hS1C
C s’avérant

complexe, la stratégie générale est d’analyser le produit smash de E
hS1C
C avec

des spectres finis, notamment des spectres de types 2, i.e., ceux dont la K(1)-
homologie est nul. En principe, ils sont tous utiles. Dans cette thèse, nous nous
intéressons aux spectres A1 construits par Davis et Mahowald.

Les spectres finis A1. Les spectres A1 sont construits via des suites de cofi-
bration successives. D’abord, soit V (0) le cofibre de la multiplication avec 2 sur
le spectre des sphères.

S0 ×2
−→ S0 → V (0). (4)

Ensuite, la composition S1 η
−→ S0 ι

−→ V (0) où η est un élément de Hopf et ι
inclusion de la cellule la plus basse dans V (0), s’étend en un morphism ΣV (0)→
V (0), dont le cofibre est appelé Y

ΣV (0)
×η
−→ V (0)→ Y. (5)

Le spectre Y est un spectre de type 1. Davis et Mahowald a montré qu’il admettait
un v1-self map : v1 : Σ2Y → Y dont le cofibre est noté par A1. En fait, il y a
8 choix différents pour v1, qui induisent quatre types d’homotopie différents pour
A1. Notons les par A1[00], A1[11], A1[01], A1[10]. Quand nous désignons ces
quatre spectres en même temps, nous utilisons la notation A1.

Le choix de travailler avec A1 mérite une justification. D’abord, les spectres A1

sont les plus petits spectres qui sont les cofibres d’une v1-self map de période 1,
ce qui rend les calculs plus maniables. Ensuite, les spectres A1 sont construits à
partir de trois cofibrations, donc sont proches de la sphère, ce qui signifie qu’il
est raisonnable de pouvoir obtenir des informations sur LK(2)S

0 à partir des ceux
sur LK(2)A1. Finalement, les spectres A1 ne possédant chacun que huit cellules,
le calcul de groupes d’homotopie de LK(2)A1 nous permet aisément d’obtenir des
informations sur les familles v2-périodiques des groupes d’homotopie de S0.

Bhattacharya, Egger, Mahowald ont démontré que A1 admets un (v2)
32-self map,

c’est-à-dire, une application de A1 à lui-même qui induit la multiplication par v322
en K(2)∗-homologie, la seconde K-théorie d’homologie de Morava.
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Résolution et suite spectrale de dualité. Un des outils puissants pour analyser

des groupes d’homotopie de E
hS1C
C sont des résolutions finies du dernier par des

spectres de K-théories réelles supérieures, c’est-à-dire, des spectres de point fixe
homotopique de EC par l’action des sous-groupes finis de GC . Cette philosophie
a émané des travaux de Goerss-Henn-Mahowald-Rezk qui ont construit une réso-
lution finie pour LK(2)S

0 au p = 3. Une telle résolution au p = 2 que nous allons
utiliser dans cette thèse est la résolution de dualité due à Bobkova-Goerss. Il existe
une suite de morphismes de spectres

E
hS1C
C → E0

δ1−→ E1
δ2−→ E2

δ3−→ E3 (6)

où E0 = EhG24
C , E3 ∼= Σ48EhG24

C , E1 = E2 = EhC6 qui peut être raffinée dans une
tour de fibrations. Cela résulte en une suite spectrale de dualité:

Ep,q1 = πq(Ep ∧ A1) =⇒ πq−p(E
hS1C ∧ A1). (7)

C’est une petite suite spectrale qui a quatre lignes, donc a trois différentiels d1,
deux différentiels d2 et un différentiel d3.

Le corps de cette thèse consiste en cinq chapitres. Dans le premier chapitre nous
révisons, entre autres, la suite spectrale de Davis-Mahowald en en donnant une
légère généralisation. Dans le deuxième et troisième chapitres, nous étudions les
suites spectrales de point fixe homotopique pour EhG24

C ∧ A1 et pour EhC6
C ∧ A1.

Cela constitue la page E1 de la suite spectrale de dualité. Dans le quatrième
chapitre, nous montrons que l’homomorphisme du bord de la suite spectrale de
dualité (7) est surjectif. Il s’ensuit que les différentiels d1, d2, d3 partant de la
ligne zéro sont triviaux. Finalement, dans le cinquième chapitre, nous analysons
les deux autres différentielles d1 de la suite spectrale de dualité en montrant que
le différentiel d1 : E2,p

1 → E3,p
1 est trivial et que d1 : E1,p

1 → E2,p
1 est trivial sauf

potentiellement sur deux familles.

Calcul du term E1 de la suite spectrale de dualité. Le calcul du term E1 con-
siste à déterminer les groupes d’homotopie du EhG24

C ∧ A1 et du EhC6
C ∧ A1. Un

outil prominent est la suite spectrale de point fixe homotopique:

Es,t2 = Hs(F,EtA1) =⇒ πt−s(E
hF ∧ A1)

où F = G24 ou C6. Si le calcul du term E2 de ces suites spectrales étant des
calculs de cohomologie des groupes finis est assez élémentaire, l’analyse des dif-
férentielles n’en est moins.



Introduction 13

La suite spectrale de point fixe homotopique pour EhG24
C ∧ A1. Cette suite

spectrale est celle de module sur la suite spectrale de point fixe homotopique pour
EhG24
C . La dernière a la propriété remarquable suivante. Il y une classe, appelée κ

de H4(G24, E24). Celle-ci possède trois propriétés suivantes. Premièrement, elle
est un cycle permanent. Deuxièmement, sa sixième puissance κ6 est le cible d’une
différentielle. Troisièmement, κ est une classe de périodicité cohomologique de
H∗(G24, E∗), ce qui implique que pour un spectre fini X , la multiplication par κ
induit un homomorphism Hs(G24, EtX)→ Hs+24(G24, Et+24X), qui est surjectif
si ∗ = 0 et bijectif si ∗ > 0. Cette propriété efforce que cette suite spectrale de
s’organise de manière suivante. Si x est un cycle permanent qui est κ-libre, alors
il existe un nombre naturel k au plus 6 et une class y tel que pour un r approprié,
on ait

dr(y) = κkx.

Cependant, pour localiser les cycles permanents et donc les cycles non-permanents,
il faudrait une connaissance préalable sur les groupes d’homotopie de EhG24

C ∧A1.
Cette connaissance est acquise en comparant EhG24

C ∧A1 avec le spectre connectif
des formes modulaires topologiques tmf . Il existe un morphisme de spectres en
anneau tmf → EhG24

C qui induit une équivalence Gal+ ∧ LK(2)tmf → EhG24
C .

Par conséquent, il y a une équivalence d’homotopie

Gal+ ∧ [v−322 ]tmf ∧ A1 → EhG24
C ∧ A1.

Ainsi, nous nous ramenons à étudier les groupes d’homotopie tmf ∧ A1 par la
suite spectrale d’Adams

Exts,tA(2)(F2,H∗A1) +3 π∗(tmf ∧ A1)

Puis en tirer des informations nécessaires pour analyser la suite spectrale de point
fixe homotopique pour EhG24

C ∧ A1.

Theorem 0.0.3. En tant que module sur l’algèbre F4[ν, κ, (∆
8)±1], la page E∞

de la suite spectrale de point fixe homotopique pour EhG24
C ∧ A1 est une somme

directe de 46 (respectivement 48) modules cycliques pour A1 = A1[01] et A1[10]
(respectivement A1 = A1[00] et A1[11]).

La suite spectrale de point fixe homotopique pour EhC6
C ∧A1. Cette suite spec-

trale est étudiée par de différents moyens. Tout d’abord, nous calculons complète-
ment la suite spectrale de point fixe homotopique pour EhC2 . En particulier, nous
identifions une class t ∈ H1(C2, E2) qui joue un rôle similaire à κ dans la suite
spectrale de point fixe homotopique pour EhG24

C . Plus précisément, t est un cycle
permanent; t est une classe de périodicité cohomologique et t7 est le but d’une
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différentielle d7. Cette propriété permet de calculer complètement la suite spec-
trale de point fixe homotopique pour EhC2 ∧V (0) et EhC2 ∧Y via les cofibrations
(III.5) et (III.12). Nous poursuivons cette approche pour étudier la suite spectrale
pour EhC2 ∧ A1. Cependant, nous ne pouvons en déduire qu’une partie des dif-
férentielles. Finalement, nous recourons à des formes modulaires topologiques
avec structure de niveau. A été construit un spectre en anneau tmf0(3) tel qu’il y
ait une équivalence d’homotopie

Gal+ ∧ [v−322 ](tmf0(3) ∧ A1) ∼= EhC6
C ∧ A1.

Nous analysons une partie de la suite spectrale d’Adams pour tmf0(3)∧A1, ce qui
nous permet d’obtenir des informations nécessaires sur les groupes d’homotopie
de EhC2 ∧ A1 pour déterminer le reste des différentielles.

Theorem 0.0.4. En tant que module sur l’algèbre F4[x17, (∆
2)±1], la page E∞ de

la suite spectrale de point fixe homotopique pour EhC6
C est une somme directe de

huit modules cycliques.

Différentielles de la suite spectrale de dualité. Une fois la page E1 calculée,
nous continuons avec l’analyse des différentielles. Dans la limite de cette thèse,
nous n’aborderons pas les différentielles d2 : E

1,q
2 → E3,q

2 entre la deuxième ligne
et quatrième ligne. Nous discutons dans la suite les autres différentielles.

L’homomorphism du bord. L’étude des différentielles qui partent de la ligne
la plus basse de la suite spectrale de dualité peut être ramenée à étudier la surjec-
tivité de l’homomorphisme de bord. Le dernier est celle induite en homotopie du
morphisme de restriction

E
hS1C
C ∧ A1 → EhG24

C ∧ A1

qui est induite par l’inclusion de sous-groupe G24 → S1
C . Celle-ci peut être

analysée en la comparant avec l’application A1 → tmf ∧ A1.

Proposition 0.0.5. Si l’application induite en homotopie de A1 → tmf ∧ A1 est

surjective, alors il en va de même pour E
hS1C
C ∧ A1 → EhG24

C ∧ A1

Ensuite, nous étudions la surjectivité de l’application π∗(A1) → π∗(tmf ∧ A1)
par le moyen des suites spectrales d’Adams. En effet, il y a une application de
suites spectrale d’Adams

Exts,tA (F2,H∗(A1))

��

+3 π∗(A1)

��
Exts,tA(2)(F2,H∗A1) +3 π∗(tmf ∧ A1)
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où l’homomorphisme des termes E2 est induit par l’inclusion de subalgebra de
Hopf A(2)→ A.

Dans un premier temps, nous montrons que l’homomorphism

Exts,tA (F2,H∗(A1))→ Exts,tA(2)(F2,H∗A1)

est surjectif. Dans un second temps, nous montrons que tous les cycles permanents
de la suite spectrale d’Adams pour tmf ∧ A1 se relèvent en un cycle permanent
de celle pour A1. Nous concluons que l’homomorphism induit en homotopie
π∗A1 → π∗(tmf ∧ A1) est surjectif for les modèles A1[00] et A1[11].

Theorem 0.0.6. L’homomorphisme de bord de la suite spectrale de dualité

π∗(E
hS1C
C ∧ A1)→ π∗(E

hG24
C ∧ A1)

est surjective.

Différentielles d1 : E1,p
1 → E2,p

1 . En clair, ces différentielles s’identifient avec
l’homomorphisme δ2 : π∗(E

hC6
C ∧ A1)→ π∗(E

hC6
C ∧ A1). La multiplication avec

un élément ∆2 ∈ π48(E
hC6
C ) induit un isomorphisme

π∗(E
hC6
C ∧ A1)→ π∗+48(E

hC6
C ∧ A1).

Nous démontrons que ces différentielles sont linéaires par rapport à ∆2, i.e.,

δ2(∆
2x) = ∆2δ2(x).

Nous réduisons à analyser le comportement de ces différentielles sur π∗(E
hC6
C ∧

A1) avec 0 ≤ ∗ < 48. Une analyse plus fine montre que ils ne peuvent être non-
triviaux que sur deux familles.

Différentielles d1 : E2,p
1 → E3,p

1 . Ces différentielles s’identifient avec un ho-
momorphisme δ3 : π∗E

hC6
C ∧ A1 → π∗−48(E

hG24
C ∧ A1). Nous montrons d’abord

que ce dernier est le composite des morphismes suivants π∗E
hC6
C ∧ A1

×∆−1

−−−→

π∗−48E
hC6
C ∧ A1

1−ψα
−−−→ π∗−48E

hC6
C ∧ A1

Tr
−→ π∗−48(E

hG24
C ∧ A1) où ψα désigne le

morphisme induit par l’élément α du G2 et Tr le transfert EhC6
C → EhG24

C . Delà,
nous déduisons que ces différentielles d1 sont triviaux.





Chapter I

Preliminaries

1 Recollection on chromatic homotopy theory

1.1 Transfer and Restriction

We discuss, in this section, the transfer and restriction maps between homo-
topy fixed point spectra. Let us denote by Sp the category of spectra, see for exam-
ple [Ada74] Chapter III. The objects of Sp are sequences of compactly generated
weak Hausdorff pointed topological spaces (Xi)i≥0, together with the structure
map ǫXi : ΣXi → Xi+1 which is pointed continuous map, for i ≥ 0, where ΣXi

is the reduced suspension of Xi. A morphism between X = (Xi, ǫ
X
i )i≥0 and Y =

(Yi, ǫ
Y
i )i≥0 consists of continuous maps fi : Xi → Yi such that fi+1◦ǫ

X
i = ǫYi ◦Σfi.

The k-th homotopy group of X is defined as πkX := colim
n

πk+n(Xn), in which

the transition maps are defined using the structure maps. Let ηXi : Xi → ΩXi+1

the adjoint of ǫXi . If ηXi is a weak equivalence for all i ≥ 0, then X is called a
Ω-spectrum. The category of spectra can be equipped with the stable model cat-
egory whose weak equivalences are stable equivalences, i.e., maps f : X → Y
such that πk(f) : πk(X)→ πk(Y ) is an isomorphism for all k ∈ Z, see for exam-
ple [BF78]. The fibrant objects are precisely Ω-spectra. Let Ho(Sp) denote the
stable homotopy category of spectra (with respect to the stable equivalences).

Let G be a finite group, which stays like so in this section. Denote by SpG the
category of functors G → Sp. In this thesis, we call SpG the category of (naive)
G-spectra. It is the category of spectra with a G-action and G-equivariant maps.
As a diagram category, SpG inherits a model structure category from Sp such that
the weak equivalences are G-equivariant maps X → Y whose induced map in
homotopy is an isomorphism.

17
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Induced and Coinduced functors. Let H is a subgroup of G. The restriction
functor ιGH : SpG → SpH has both a left adjoint and a right adjoint, namely, the
induced and coinduced functors, respectively. For X an H-(pointed) space, the
space G+ ∧H X , the quotient space of G+ ∧X by the relation (gh, x) ∼ (g, hx),
is a G-space with the obvious G-action given by the left multiplication on G and
FH(G+, X), the space ofH-map, is aG-space with theG-action given by the right
multiplication on G. Now if X is an H-spectrum, the induced functor G+ ∧H X
is defined by the formula

(G+ ∧H X)n = G+ ∧H Xn

and the coinduced functor FH(G+, X) by

FH(G+, X)n = FH(G+, Xn).

We have then that

SpG(G+ ∧H X, Y ) ∼= SpH(X, ιGHY ), (f 7→ (x 7→ f(1 ∧ x))) (I.1)

SpG(X,FH(G+, Y )) ∼= SpH(ιGHX, Y ), (f 7→ (x 7→ f(x)(1))) (I.2)

The H-map G+ → H+ given by the identity on H and sending the complement
G\H to the basepoint gives rise to a H-map G+ ∧H X → X , and so by the
adjunction (I.2) a G-map

ΘG
H : G+ ∧H X → FH(G+, X).

In formula, the later is given by
(
(g, x) 7→

(
k 7→

{
kgx if k ∈ Hg−1

∗ else

))

From this, it is straightforward to see that ΘG
H - or Θ for short, if the context is

clear - is a weak equivalence of G-spectra if |G/H| < +∞.

Homotopy fixed points and homotopy orbits. Let X be an object of SpG. Fix
a model of EG, a contractible space with a free G-action. Define the homotopy
fixed point spectrum of X with respect to G by

XhG = F (EG+, (X)f )
G,

where (X)f is a fibrant replacement of X and the homotopy orbit spectrum is

XhG = EG+ ∧G (X)c,
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where (X)c is a cofibrant replacement of X . Note that the fibrant and cofibrant
replacements can be made functorial and will be implicit in the sequel. The ho-
motopy fixed points and homotopy orbits descend to functors between homotopy
categories Ho(SpG) → HoSp. We denote by δG the diagonal functor, i.e., the
functor that sends a spectrum to a G-spectrum with trivial action. Then ()hG and
()hG are the left and right adjoint to δG, i.e.,

HoSpG(X, δGY ) ∼= HoSp(XhG, Y ) (I.3)

HoSpG(δGX, Y ) ∼= HoSp(X, Y hG). (I.4)

Transfer and restriction. Let H be a subgroup of G. If X is a H-spectrum, then
XhH is naturally isomorphic to FH(G+, X)hG by the following chain of isomor-
phisms.

XhH = F (EH+, X)H ∼= F (EG+, X)H
∼=
−→ FH(G+, F (EG+, X))G

∼= F (EG+, FH(G+, X))G = FH(G+, X)hG,

in which the first equivalence uses the natural H-map EH → EG, the second
uses the natural homeomorphism of spaces Y H ≃ FH(G+, Y )G and the last the
usual adjunction between smash products and function spaces. Let ΨG

H : XhH ≃
FH(G+, X)hG, or Ψ if the context makes it clear which groups are concerned,
denote this natural equivalence.

Let X be a G-spectrum. The transfer

TrGH : (ιGHX)hH → XhG

is constructed as the composite

(ιGHX)hH
Ψ
−→ FH(G+, ι

G
HX)hG

Θ−1

−−→ (G+ ∧H ι
G
HX)hG

ǫhG
−−→ XhG, (I.5)

where ǫ denotes the counit of the adjunction (I.1). Apply the restriction functor ιGH
to the co-unit of the adjunction (I.4), we get a map δHXhG → ιGHX in Ho(SpH).
The latter is adjoint, by the adjunction (I.4), to the restriction map

ResGH : XhG → (ιGHX)hH .

We will abbreviate the transfer and the restriction maps by Tr : XhH → XhG

and Res : XhG → XhH , respectively, wherever the context gives no place for
confusion.
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Lemma 1.1.1. Let X be a G-spectrum and H be a subgroup of G. If G/H+ ∧X
is equipped with the diagonal G-action, then there is a natural isomorphism of

G-spectra, usually called the shearing isomorphism,

tSh : G+ ∧H X
≃
−→ G/H+ ∧X,

given by (g, x) 7→ (gH, gx).

Remark 1.1.2. The notation tSh is for topological shearing isomorphism to dis-
tinguish with the algebraic shearing isomorphism to be defined in Section 3.2.

Proof. It is straightforward to check that the following is the well-defined inverse
of the given map

G/H+ ∧X → G+ ∧H X, (gH, x) 7→ (g, g−1x).

Lemma 1.1.3. Let X be a G-spectrum and H ≤ K be subgroups of G. Then the

following diagram is commutative

(G/H+ ∧X)hG // (G/K+ ∧X)hG

XhH

≃

OO

Tr // XhK ,

≃

OO

where the upper horizontal map is induced by the canonical G-map G/H →
G/K and the vertical equivalences are the composites (tSh)hG ◦ Θ−1 ◦ Ψ for

appropriate inclusions of subgroups.

Proof. By construction, Tr : XhH → XhK fits into the commutative diagram

XhH

Tr
��

(ΘK
H )−1◦ΨK

H // (K+ ∧H X)hK

ǫhKuu
XhK

By applying the naturality of (ΘG
K)
−1 ◦ΨG

K to the K-map ǫ : K+ ∧H X → X , we
obtain the commutative diagram

(K+ ∧H X)hK

ǫ
��

(ΘG
K)−1◦ΨG

K // (G+ ∧K ∧K+ ∧H X)hG

��
XhK

(ΘG
K)−1◦ΨG

K // (G+ ∧K X)hG.
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Using the evident isomorphism of G-map G+ ∧K ∧K+ ∧H X ≃ G+ ∧H X , we
see that the composite

XhH (ΘK
H )−1◦ΨK

H−−−−−−−→ (K+ ∧H X)hK
(ΘG

K)−1◦ΨG
K−−−−−−−→ (G+ ∧H X)hG

is homotopic to (ΘG
H)
−1◦ΨG

H . Thus we obtain the following commutative diagram

XhH

Tr
��

(ΘG
H)−1◦ΨG

H // (G+ ∧H X)hG

��
XhK

(ΘG
K)−1◦ΨG

K// (G+ ∧K X)hG.

Finally, by the definition of the shearing isomorphism, the right vertical map fits
into the commutative diagram

(G+ ∧H X)hG

��

tSh // (G/H+ ∧X)hG

��
(G+ ∧K X)hG tSh // (G/K+ ∧X)hG,

where the right vertical map is induced by the natural projection G/H → G/K,
from which the lemma follows.

1.2 Lubin-Tate theories

We recall some generalities on the deformation theory of formal group laws
and Goerss-Hopkins-Miller theory. Let FGL be the category whose objects are
pairs (k,Γ) where k is a perfect field of characteristic p and Γ is a formal group law
over k and morphisms between (k,Γ) and (k

′

,Γ
′

) are pairs (i, φ) where i : k
′

→ k

is a homomorphism of fields and φ : Γ
∼=
−→ i∗Γ

′

is a morphism of formal group
laws.

Let (k,Γ) ∈ FGL with Γ of height n. A deformation of (k,Γ) to a complete
local ring R with maximal ideal m is a pair (F, ι) where F is a formal group law
over R and ι : k → R/m is a map of fields such that p∗F = ι∗Γ with p the
canonical projection R → R/m. A ⋆-isomorphism φ between two deformations
to R is an isomorphism between the underlying formal group laws which reduces
to the identity over R/m, i.e, φ ∼= x mod (m). This defines a functor from the
category of complete local rings Ringc,l to small groupoids Groupoid

DefΓ : Ringc,l → Groupoid
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which associates to every complete local ring R the category of deformations
of (k,Γ) over R and ⋆-isomorphisms between them. By Lubin-Tate deformation
theory, DefΓ is co-representable, see [LT66]. That is, there exists a complete local
ring Ek,Γ, non-canonically isomorphic to W(k)[[u1, u2, ..., un−1]], such that

DefΓ(R) ∼= HomRingc,l
(Ek,Γ, R).

Here W(k) denotes the ring of Witt vectors on k. Over Ek,Γ lives a universal
deformation Γ̃ of Γ. Consider the graded ring Ek,Γ[u

±1] where |ui| = 0 for
1 ≤ i ≤ n − 1 and |u| = −2. Let MU be the cobordism spectrum. A Quillen’s
famous theorem asserts that the coefficient rings MU∗ of MU supports the uni-
versal group law. Thus, the formal group law u−1Γ̃(ux, uy) is classified by a map
of graded rings MU∗ → Ek,Γ[u

±1]. Define a functor from the category of pointed
spaces to that of graded abelian groups:

X 7→MU∗(X)⊗MU∗
Ek,Γ[u

±1].

The formal group u−1Γ̃(ux, uy) satisfies the Landweber exact functor criterion,
see [Rez98]. By the Landweber exact functor theorem, the above functor is a
homology functor. Thus, it is represented by a ring spectrum E(k,Γ) with

(E(k,Γ))∗ ∼= W(k)[[u1, u2, ..., un−1]][u
±1].

The latter is known as a nth Morava E-theory or Lubin-Tate theory.

Example 1. Let (k,Γ) = (F2,Gm) where Gm is the multiplicative formal group
law, i.e, Gm(x, y) = x+ y+ xy. Then E(F2,Gm) ≃ KZ2, the 2-completed com-
plex K-theory and G(F2,Gm) = Z×2 , the unit of the 2-adic integers. Furthermore,
the action of G(F2,Gm) on E(F2,Gm)∗ coincides with Adams operations.

The construction that associates to a formal group law (k,Γ) the MoravaE-theory
E(k,Γ) defines a functor from FGL to Ho(Sp), the stable homotopy category.
Let us denote by G(k,Γ) the automorphism group of the pair (k,Γ). We note that
G(k,Γ) is a profinite group, see [Goe08], Section 7.2. By functoriality, the group
G(k,Γ) acts on E(k,Γ). This action is, however, defined only up to homotopy.
The Goerss-Hopkins-Miller obstruction theory lifts this action to structured ring
spectra.

Theorem 1.2.1. [GH04] The spectrum E(k,Γ) has an essentially unique struc-

ture of E∞-ring. Furthermore, G(k,Γ) acts on E(k,Γ) via E∞-ring maps.

1.3 Continuous homotopy fixed point spectra

Based on Theorem 1.2.1, Devinatz and Hopkins constructed a continuous ho-
motopy fixed point spectrum E(k,Γ)hK for any closed subgroup K of G(k,Γ).
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We point out that in the preprint [BBGS18], the authors give a pleasant expository
account of the Devinatz-Hopkins construction.

Movara modules. A Morava module is a complete E(k,Γ)∗-module M with
a twisted continuous G(k,Γ)-action, i.e., for g ∈ G, a ∈ E∗, m ∈M

g(am) = g(a)g(m).

Let us denote by EG the category whose objects are Morava modules and mor-
phisms are continuous maps of E(k,Γ)∗-modules which are G-equivariant. Typ-
ical examples of Morava modules are π∗LK(n)(E(k,Γ) ∧ X) for any spectrum
X , where the action of G(k,Γ) is induced by its action on the left hand factor of
E(k,Γ) ∧X .

Convention. Unless otherwise stated, smash products are taken in the K(n)-local
homotopy category, i.e., X ∧ Y := LK(n)(X ∧ Y ). Likewise, E(k,Γ)∗X means
π∗(LK(n)(E(k,Γ) ∧X)).

Theorem 1.3.1. [DH04] For any closed subgroup K of G(k,Γ), there is a homo-

topy fixed point spectrum E(k,Γ)hK . Furthermore, there is a spectral sequence

whose E2-term is the continuous cohomology group Hs
c(K,E(k,Γ)t) converging

to πt−sE(k,Γ)
hK , i.e.,

Hs
c(K,E(k,Γ)t) =⇒ πt−sE(k,Γ)

hK .

The group G(k,Γ) is a virtual p-adic Lie group, so are its closed subgroups. The
notion of continuous cohomology is very well treated in [Laz65], [SW00]. When
K is a finite subgroup, the construction of the continuous homotopy fixed point
spectrum coincides with the usual homotopy fixed point spectrum with respect to
the action of a finite group.

Example 2. Consider the case (k,Γ) = (F2,Gm). The group G(F2,Gm) ∼= Z×2
contains C2, the cyclic group of order 2 as a subgroup. Then, E(F2,Gm)

hC2 is
homotopy equivalent to KOZ2, the 2-completed real K-theory.

This example motivates the following definition.

Definition 1.3.2. (Higher real K-theory ) If G is a finite subgroup of G(k,Γ), the
homotopy fixed point spectrum E(k,Γ)hG is called a higher real K-theory.

Higher real K-theories play an important role due essentially to the two follow-
ing reasons. Firstly, they are more tractable in general than homotopy fixed point
spectra with respect to infinite closed subgroups of G(k,Γ). Secondly, it is be-
lieved (or at least hoped) that homotopy fixed point spectra with respect to infinite
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closed subgroups can be built from higher real K-theories via finite resolutions.

Suppose, from now on, that all automorphisms of Γ are defined over k, i.e., if
k denotes the algebraic closure of k, then

Aut(Γ) := Autk(Γ) = Autk(Γ). (I.6)

Under this assumption, Devinatz and Hopkins proved the following result:

Theorem 1.3.3. There is a homotopy equivalence

E(k,Γ)hG(k,Γ) ∼= LK(n)S
0.

This theorem is a central result of chromatic homotopy theory in the sense that it
provides new computational tools as well as conceptual interpretations ofLK(n)S

0.
It is important to note that this theorem is a topological incarnation of Morava’s
change of rings theorem, (see [Dev95]).

Theorem 1.3.4 (Morava’s change of rings). There is an isomorphism

Exts,tE(k,Γ)∗E(k,Γ)(E(k,Γ)∗, E(k,Γ)∗)
∼= Hs

c(G(k,Γ), E(k,Γ)t).

The left hand side of the above isomorphism is the E2-term of the K(n)-local
E(k,Γ)-based spectral sequence. We refer to the appendix A of [DH04] for a
discussion of this spectral sequence. We note that the E2-term of the latter can be
always expressed as Ext-groups in the category of comodules over the completed
Hopf algebroid (E(k,Γ)∗, E(k,Γ)∗E(k,Γ)). The assumption (I.6) allows us to
identify it with the continuous cohomology groups as in Theorem 1.3.4.

The computation of the homotopy fixed point spectral sequence is in general a
hard problem. Already the calculation of the E2-term is challenging. This is due
to the fact that, in general, the action of G(k,Γ) onE(k,Γ)∗ can only be computed
approximately and that G(k,Γ) is a cohomologically complicated group.

1.4 Topological modular forms

The main theme of this thesis is a computation in the K(2)-local homotopy
category at the prime 2. An astute choice of Morava E-theory or equivalently
a choice of formal group law of height 2 will make the calculation easier. Let
C be the supersingular elliptic curve over F4 given by the Weierstrass equation
y2 + y = x3. Denote by FC the formal completion of C at the origin. The latter is
a formal group law of height 2. Let us denote

EC = E(F4, FC) and GC = G(F4, FC).
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One can check that
AutF4(FC) = AutF2

(FC) =: SC .

Let Gal denote the Galois group of F4 over F2, i.e., Gal ∼= C2. There is a short
exact sequence

1→ SC → GC → Gal→ 1.

The image of SC in GC corresponds to the automorphisms of (F4, FC) fixing F4.
Since FC is defined over F2, Gal fixes FC , the above short exact sequence splits,
i.e., GC

∼= SC ⋊ Gal. The automorphism group of C has order 24 and these are
all defined over F4, more precisely,

Aut(C) = AutF4(C)
∼= SL2(Z/3) ∼= Q8 ⋊ C3 =: G24,

where Q8 is the quaternion group and C3 = 〈ω〉 is a cyclic group of order 3, see
[Sil09]. The groupQ8 has a representation 〈i, j|i4 = 1, i2 = j2, iji−1 = j−1〉. The
latter has 8 elements {1, i, j, k,−1,−i,−j,−k} where −1 denotes i2 = j2 = k2.
The group C3 acts on Q8 by permuting i, j and k := ij

ωiω2 = j, ωjω2 = k.

The elements ω and i correspond to the automorphisms ω(x, y) = (ζx, ζ2y) and
i(x, y) = (x+ 1, y + x+ ζ2), respectively, where ζ is a primitive third root of the
unity.

Since C is already defined over F2, Gal acts on Aut(C). Denote by G48 the
semi-direct product G24 ⋊Gal. Moreover, the automorphism group Aut(C) of C
maps injectively to SC , the automorphism group of FC , and G48 maps injectively
to GC . We view G24 and G48 as subgroups of SC and GC , respectively.

We see that C2 = 〈−1〉 ≤ Q8 is invariant under the action of C3, and so C6 :=
C2 × C3 is a subgroup of G24. As an automorphism of C, −1 is given by
(x, y) 7→ (x, y + 1). We see immediately that both C2 and C3 are invariant by
Gal, and hence G12 := C6 ⋊Gal is a subgroup of G48

The homotopy fixed point spectra EhG24
C and EhC6

C as well as EhG48
C and EhG12

C

will play a central role in this thesis, as already mentioned in the introduction.

The reasons for choosing the formal group law of the supersingular elliptic curve
C are two-fold. First, the geometric origin of G48 allows one to have an explicit
description of its action on π∗(EC), see [Bea17] for more details and further refer-
ences. Thus, it allows us to adequately compute the E2-term of various homotopy
fixed point spectral sequences. Second, this choice of the MoravaE-theory allows
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us to compare associated higher real K-theories with the spectrum of topological
modular forms and topological modular forms with level structures, hence provid-
ing us with more tools to understand the formers.

Next, we recall the construction of the spectrum of topological modular forms
(with level structures) and show their closed relationship with higher real K-
theories. LetM,M0(3) andM(3) be the moduli stack of elliptic curves, elliptic
curves with a level 3 structure and elliptic curves with a full level 3 structure over
Z(2). As functors of points on Z(2)-algebras, the latter are described as follows. If
R is a Z(2)-algebra, then

- M(spec(R)) is the groupoid of elliptic curves over spec(R) and isomor-
phisms between them.

- M0(3)(spec(R)) is the groupoid of pairs (E,H) consisting of an elliptic
curve E with a subgroup H of order 3 and isomorphisms between them.

-M(3)(spec(R)) is the groupoid of pairs (E, φ) consisting of an elliptic curve
E with an isomorphism of group schemes φ : Z/3 × Z/3 → E[3] over spec(R)
where E[3] is the subscheme of 3-torsion points of E and isomorphisms between
them.

Theorem 1.4.1 (Goerss-Hopkins-Miller, see [DFHH14]). There is an E∞-ring

spectra-valued sheaf Otop on the étale site Aff étM ofM such that

1. The sheafification of π0O
top is the structure sheaf ofM.

2. If E : spec(R) → M is an étale morphism, then Otop(spec(R)) is a

spectrum associated to the formal completion of E at its origin via the

Landweber exact functor theorem.

Remark 1.4.2. The spectra constructed by point 2. of the previous theorem are
called elliptic spectra. They are even periodic spectra R whose formal group
law on π0(R) is the completion of an elliptic curve. These are E(2)-local, see
[DFHH14], Chapter 6, Lemma 4.2.

LetG := GL2(Z/3) denote the automorphism group of the constant group scheme
Z/3 × Z/3 over Z(2). Then G acts on M(3) by precomposition with the level
structure. Also let G0(3) denote the subgroup of upper triangular matrices of
GL2(Z/3). The obvious forgetful functors give rise to finite étale morphisms of
stacks (because 3 is invertible in Z(2)):

M(3)→M0(3)→M. (I.7)

Thus, one can evaluate Otop atM,M0(3) andM(3). Define

TMF = Otop(M) := holim
U∈Aff ét

M

Otop(U),
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TMF0(3) = O
top(M0(3)) := holim

U∈Aff ét
M0(3)

Otop(U),

TMF (3) = Otop(M(3)) := holim
U∈Aff ét

M(3)

Otop(U).

Both morphisms of (I.7) are Galois covers. The Galois group of the composite
is isomorphic to G and that of the first morphism is isomorphic to G0(3). As a
consequence of the fact that Otop satisfies descent, one obtains that

TMF ∼= TMF (3)hG (I.8)

and
TMF0(3) ∼= TMF (3)hG0(3) (I.9)

It is known that M(3) is affine over the ring Z(2)[ζ] where ζ is a primitive third
root of unity, see [DR73], also [Sto14]. Furthermore, up to isomorphism, there
is a unique supersingular elliptic curve with a full level structure over F4. This
follows from the fact that there is a unique supersingular elliptic curve over F4 (up
to isomorphism) and that the automorphism group of the supersingular elliptic
curve C has order 48, which is equal to that of G, the automorphism group of
Z/3 × Z/3. In other words, the fiber of the morphism M(3) → M over the
supersingular locus of M is isomorphic to spec(F4), i.e., the following square is
a pullback of stacks

spec(F4) //

��

M(3)

��
spec(F4)//G48

//M

where the bottom is given by specifying a supersingular elliptic curve, for example
C. Therefore, by the construction of Otop, LK(2)O

top(M(3)) is the Lubin-Tate
theory associated to the paire (F4, FC), see [DFHH14], Chapter 12. This means
that there is a homotopy equivalence

LK(2)TMF (3)
∼=
−→ EC . (I.10)

Note thatG can be identified with Aut(C) = G48, such that the equivalence (I.10)
is equivariant with respect to the action ofG on the source and ofG48 on the target,
as follows. Suppose the the map spec(F4) → M(3) specifies the elliptic curve

C and a 3 level structure Z/3×2
Γ
−→ C. Then for any g ∈ G, there is a unique
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φ(g) ∈ G48 making the following diagram commute

Z/3×2 Γ // C

Z/3×2

g

OO

Γ // C.

φ(g)

OO

Via this identification φ, G0(3) is, up to a conjugation, equal to G12 in G48. Thus,
we have

Theorem 1.4.3. There are homotopy equivalences

LK(2)TMF ∼= EhG48
C (I.11)

and

LK(2)TMF0(3) ∼= EhG12
C . (I.12)

Proof. Since an elliptic spectrum is E(2)-local, TMF (3) is E(2)-local, being a
homotopy limit of E(2)-local spectra. Using equivalences (I.8), (I.9), (I.12) and
the fact that K(2)-localisation commutes with homotopy limit in the category of
E(2)-local spectra, we obtain that

LK(2)TMF ∼= LK(2)(TMF (3)hG) ∼= (LK(2)TMF (3))hG ∼= EhG48
C

and

LK(2)TMF0(3) ∼= LK(2)(TMF (3)hG0(3)) ∼= (LK(2)TMF (3))hG0(3) ∼= EhG12
C .

A connective model of TMF . In [DFHH14] a connective ring spectrum tmf
was constructed together with a map of ring spectra

tmf → TMF. (I.13)

There is an element ∆8 ∈ π192tmf such that the latter map extends to a homotopy
equivalence

[(∆8)−1]tmf
≃
−→ TMF, (I.14)

see [DFHH14], hence (I.13) induces a K(2)-local equivalence

LK(2)tmf
≃
−→ LK(2)TMF. (I.15)

An advantage of tmf is that the singular homology of tmf is explicitly known
as a module over the Steenrod algebra A (c.f Section 2 for a recollection on the
Steenrod algebra), hence the Adams spectral sequence gives a powerful tool to
understand its homotopy groups. The following had been known by Hopkins and
Mahowald and was shown by Mathew in [Mat16]:
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Theorem 1.4.4. There is an isomorphism of algebras over the Steenrod algebra:

H∗(tmf) ∼= A//A(2),

whereA(2) is the subalgebra ofA generated by Sq1, Sq2, Sq4. Equivalently, there

is an isomorphism of comodule algebras over the dual of Steenrod algebra A∗

H∗(tmf) ∼= A∗�A(2)∗F2,

where A(2)∗ is the dual of A(2).

A connective model of TMF0(3). Similarly, there is a connective ring spectrum
tmf0(3) constructed in [DM10], which enjoys the following properties. We refer
to [DM10] for details and proofs.

1. There exists a finite spectrum X such that tmf ∧X ∼= tmf0(3).
2. As a F2-vector space, H∗X is 10-dimensional with generators xi in dimen-

sion i for i = 0, 4, 6, 7, 8, 10, 11, 12, 13, 14, respectively. Let T denote the
sub-A-module

T = F2{xi|i = 4, 6, 7, 8, 10, 11, 12, 13, 14}.

The structure of module over A of T is determined by the Adem relations
and the following

Sq2x4 = x6, Sq
4x4 = x8, Sq

8x4 = x12, Sq
1x6 = x7,

Sq4x6 = x10, Sq
4x7 = x11, Sq

4x8 = x12,

Sq1x10 = x11, Sq
2x10 = x12, Sq

4x10 = x14,

Sq2x11 = x13, Sq
2x12 = x14, Sq

1x13 = x14.

The subspace F2{x0} is a direct factor of H∗X as an A(2)-module.
3. There is an element ∆2 ∈ π48(tmf0(3)) such that there is a homotopy

equivalence (Corollary 3.11 of [DM10] ):

[(∆2)−1]tmf0(3) ∼= TMF0(3). (I.16)

4. The spectrum tmf0(3) is a ring spectrum in the homotopy category of
spectra whose unit S0 → tmf ∧ X is the smash product of S0 → tmf ,
the unit of tmf and S0 → X , the inclusion of the bottom cell of X .

Remark 1.4.5. i) Although tmf0(3) is a ring spectrum, the equivalence (I.16)
was not shown to be an equivalence of ring spectra, but this does not matter
for our purposes.

ii) There is a more recent construction of tmf0(3) given by Hill and Lawson
in [HL16]. To the best of the author’s knowledge, it is not known if the two
constructions give the same spectrum. But this seems plausible because
they have the same homotopy groups.
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1.5 Action of the Morava stabiliser group

We recall that the group SC is the units of the endomorphism ring End(FC)
of FC . One has that

End(FC) ∼= W〈〈T 〉〉/(T 2 = −2, Tω = ω2T ),

where W := W(F4) ∼= Z2[ω]/(1 + ω + ω2), T corresponds to the endomorphism
T (x) = x2 and ω the isomorphism ω(x) = ζx, with ζ a primitive third root of
unity. The group SC has the following filtration by open subgroups

Fn/2SC = {γ ∈ SC |γ ∼= 1 modulo (T n)}

refining the 2-adic filtration of W×. As a module over W, End(FC) is free of
rank 2, hence every element of End(FC) can be written uniquely as a+ bT where
a, b ∈ W. Right multiplication of SC on End(FC) induces a 2-dimensional W-
representation of SC :

SC → GL2(W), a+ bT 7→

(
a b
−2bσ aσ

)
. (I.17)

Here aσ denotes the action of the Frobenius on a, i.e., if a = x + ωy where
x, y ∈ Z2, then aσ = x + ω2y. Post-composing the latter with the determinant
GL2(W) → W×, one obtains a homomorphism SC → W×, which, as can be
seen from (I.17), factors through SC → Z×2 . The latter is called the determinant
or the norm homomorphism. The following composite is called the reduced de-
terminant, in which the second map is the quotient of Z×2 by its finite subgroup
C2.

SC
det
−→ Z×2 → Z×2 /C2

∼= Z2 (I.18)

The kernel of the reduced determinant is denoted by S1
C . The reduced determinant

is a split surjection, i.e.,
SC ∼= S1

C ⋊ Z2.

Fix π ∈ SC , an element whose reduced determinant equals 3 which is a topolog-
ical generator of Z2, see [Bea17], 3.2. Thus, π provides a section of the reduced
determinant.

Finite subgroups of SC . We have discussed some finite subgroups of SC which
are G24, C6 and C2. Another one which will play a role is the conjugate of G24

by π: define G
′

24 to be πG24π
−1. While SC has a unique conjugacy class of maxi-

mal finite subgroup isomorphic toG24, S1
C has two, isomorphic toG24 and toG

′

24.

Action of SC on (EC)∗. The geometric origin of G24 was used to explicitly de-
scribe its action on (EC)∗ see ([Bea17], 2.4). We record these formulae here for
later reference.
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Theorem 1.5.1. Let v1 := u−1u1 ∈ (EC)2 and ω, i, j, k generators ofG24 defined

in Section 1.4 The action of G24 on W(F4)[[u1]][u
±1] is given by

ω(u−1) = ζ2u−1 ω(v1) = v1

i(u−1) =
−u−1 + v1
ζ2 − ζ

i(v1) =
v1 + 2u−1

ζ2 − ζ

j(u−1) =
−u−1 + ζ2v1

ζ2 − ζ
j(v1) =

v1 + 2ζ2u−1

ζ2 − ζ

k(u−1) =
−u−1 + ζv1
ζ2 − ζ

k(v1) =
v1 + 2ζu−1

ζ2 − ζ

In particular, one can check that the element ∆ := u−12(u31− 1) ∈ (EC)24 is G24-
invariant. For our purposes, we need to know a sufficiently good approximation
of the action of SC on ∆. Each element γ ∈ SC can be written uniquely as

γ =
∞∑

i=0

aiT
i

where the ai are solutions to the equation x4 − x = 0. By [Bea17], there are
functions t0, t1 : SC → (EC)0 such that

γ(u1) = t0(γ)u1 +
2t1(γ)

3t0(γ)
,

γ(u) = t0(γ)u.

By ([Bea17], Prop. 6.3.9, Prop. 6.3.10), if γ ∈ F2/2SC then

t0(γ) ≡ 1 + 2a2 + (a2 + a22)u
3
1 modulo (4, 2u1, u

4
1), (I.19)

t1(γ) ≡ a22u1 modulo (2, u31). (I.20)

Therefore, we have:

Lemma 1.5.2. For all γ ∈ SC ,

γ(∆) ≡ ∆ modulo (4, 2u1, u
4
1).

Proof. Equations (I.19) and (I.20) imply that, if γ ∈ F2/2SC , then

γ(u) ≡ (1 + 2a2 + (a2 + a22)u
3
1)u modulo (4, 2u1, u

4
1),

γ(u1) ≡ u1 modulo (4, 2u1, u
4
1).
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It follows that

γ(∆) ≡ 27[1 + 2a2 + (a2 + a22)u
3
1]
−12u−12(u31 − 1) modulo(4, 2u1, u

4
1)

≡ 27u−12(u31 − 1) = ∆ modulo(4, 2u1, u
4
1).

Next, consider γ ∈ SC . Notice that

G24/(G24 ∩ F1/2SC) ∼= SC/F1/2SC

and that
(F1/2SC ∩G24)/(G24 ∩ F2/2SC) ∼= F1/2SC/F2/2SC .

As a consequence, if γ ∈ SC , then there exists g ∈ G24 such that γg ∈ F2/2SC ,
and so

γ(∆) = γgg−1(∆) = γg(∆) ≡ ∆ modulo(4, 2u1, u
4
1).

where the second equality is because ∆ is G24-invariant.

1.6 Topological finite resolutions

Finite resolutions in the sense of [Hen07] have proved to be key tools for
K(2)-local calculations at p = 2 and p = 3, see [HKM13], [GHMR15], [GH16],
[BGH17], where finite resolutions are used in an essential way. Let us begin by
recalling the definition from [Hen07]:

Definition 1.6.1. Let X be a spectrum and

X0
d1−→ X1 −→ ...

dn−→ Xn (I.21)

be a complex of maps, i.e., sequence of maps with

di+1 ◦ di ≃ 0, ∀ 1 ≤ i ≤ n− 1.

This complex is said to be a finite resolution for X , with X on the bottom, if
there is also a map d0 : X := X−1 → X0 satisfying the condition that each di is

decomposed as Xi−1
k2i−1
−−−→ Ci

k2i−→ Xi such that

i. Ci
k2i−→ Xi

k2i+1
−−−→ Ci+1 is a cofibration

ii. k−1 and k2n are equivalences.
Dually, this complex is a resolution forX , withX on the top, if there is also a map
dn+1 : Xn → Xn+1 := X satisfying the condition that each di is decomposed as

Xi−1
k2i−1
−−−→ Ci

k2i−→ Xi such that

i. Ci
k2i−→ Xi

k2i+1
−−−→ Ci+1 is a cofibration

ii. k1 and k2n+2 are equivalences.
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Remark 1.6.2. If the sequence (I.21) is a resolution for X , with X on the bottom,
it can be refined to a tower of cofibrations with X on the bottom

X

d0
��

Σ−1C1
oo

Σ−1k2
��

Σ−2C2
oo

Σ−2k4
��

...oo Σ−nCnoo

∼= Σ−nk2n
��

X0 Σ−1X1 Σ−2X2 Σ−nXn

If it is a resolution for X , with X on the top, it can be refined to a tower of
cofibrations, with X on the top

X // ΣCn // Σ2Cn−1 // ... // ΣnC1

Xn

dn

OO

Σ1Xn−1

k2n−1

OO

Σ2Xn−2

Σ2k2n−3

OO

ΣnX0.

∼=Σnk1

OO

Applied to the K(n)-local homotopy category, one wants to resolve the K(n)-
local sphere and homotopy fixed point spectra of E with respect to closed sub-
group of G by higher real K-theories. The typical example is the case n = 1 and
p = 2. Recall from Example 2 that, in this case, E(F2,Gm)

hC2 ≃ KOZ2. Then
due to Adams-Baird [Bou79] and Ravenel [Rav84], there is a cofiber sequence:

LK(1)S
0 → E(F2,Gm)

hC2 → E(F2,Gm)
hC2 .

At height 2 and prime 2, the construction of a finite resolution, known as the
topological duality resolution, plays an important role in recent progress towards
understanding the K(2)-local category at the prime 2; for example, in the chro-
matic splitting conjecture, see [BGH17]. Now we review the construction of the

topological duality resolution for E
hS1C
C .

Topological duality resolution for E
hS12
C . The construction of the topological du-

ality resolution starts from an algebraic version. In [Bea17], Beaudry established
a resolution of the trivial Z2[[S

1
2]]-module Z2 by permutation modules. There is

an exact sequence of Z2[[S
1
2]]-modules.

Z2
ǫ
←− Z2[[S

1
2/G24]]

∂1←− Z2[[S
1
2/C6]]

∂2←− Z2[[S
1
2/C6]]

∂3←− Z2[[S
1
2/G

′

24]]← 0
(I.22)

where ǫ is the augmentation sending each coset of S1
2/G24 to 1. The other maps

are given by
• ∂1 = 1− α
• ∂2 = 1 + α modulo (2, (IS1

C)
2)

• ∂3 = π(1 + i+ j + k)(1− α−1)π−1,
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where α is a certain element of S1
C whose determinant is equal to −1 and S1

C =
S1
C ∩ F1/2SC .

Remark 1.6.3. Rigorously speaking, the maps ∂i are induced by multiplication by
the respective elements of Z2[[S

1
2]] given above. While the formulae of ∂1 and

∂3 are explicitly given, an explicit formula for ∂2 is only known modulo an ideal
of Z2[[S

1
2]], see Chapter V for more details. Beaudry also worked out a better

approximation of ∂2, but the formula above suffices for our work.

By tensoring this resolution with Z2[[G2]] ⊗Z2[[S12]]
−, one obtains a resolution of

the Z2[[G2]]-module Z2[[G2/S
1
2]]

0← Z2[[G2/S
1
2]]

ǫ
←− Z2[[G2/G24]]

∂1←− Z2[[G2/C6]]
∂2←− Z2[[G2/C6]]

∂3←− Z2[[G2/G24]]← 0

The last term is replaced by Z2[[G2/G24]] using the isomorphism of G2-modules

induced by the multiplication with π−1: Z2[[G2/G24]]
π−1

−−→ Z2[[G2/G
′

24]], and so
∂3 becomes (1 7→ (1 + i+ j + k)(1− α−1)π−1). The authors of [BG18] showed
that this resolution can be topologically realized as a resolution of EhS12 .

Theorem 1.6.4. The following is a resolution of EhS12

E
hS12
C

δ0−→ EhG24
C

δ1−→ EhC6
C

δ2−→ EhC6
C

δ3−→ Σ48EhG24 (I.23)

where the maps δ0, δ1, δ2 are the lifts of ǫ, ∂1, ∂2, respectively.

We note that the topological duality resolution was first announced in [Hen07],
where the last spectrum in the resolution was not identified. Bobkova and Goerss
in [BG18] identified the last spectrum.

Remark 1.6.5. In Chapter V, we explain what is meant by saying that δ0, δ1, δ2 are
the lifts of ǫ, ∂1, ∂2, respectively and analyse in more details these maps as well as
δ3.

1.7 Finite spectra

We recollect here some materials on finite spectra which are used in this thesis.
These materials can be found in [Rav92] or in [HS99]. Recall that the coefficient
rings of, K(n), the nth Morava K-theory at the prime p, is isomorphic to

K(n)∗ ∼= Fpn [v
±1
n ]

where |vn| = 2pn − 2. Let FH(p) denote the category of p-local finite spectra.
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Definition 1.7.1. Let p be a prime number. For any non-negative integer n, let
K(n) be the nth Morava K-theory at p. A p-local finite spectrum X has type n
if K(n)∗(X) is nontrivial and K(m)∗(X) = 0 for m ≤ n. A contractible finite
spectrum has type∞.

Remark 1.7.2. In fact, to see that X is of type n, it is sufficient to check that
K(n)∗(X) is nontrivial and K(n− 1)∗(X) = 0 because K(m)∗(X) = 0 implies
that K(m− 1)∗(X) = 0, see [Rav84].

Definition 1.7.3. Let X be a finite spectrum. A self map f : ΣlX → X of X
is said to be a vn-self map if K(n)∗(f) is given by multiplication by vkn for some
integer k and K(m)∗(f) is trivial for m 6= n. In this case, f is denoted by vkn and
k is called the periodicity of the vn-self map.

Remark 1.7.4. It is clear from the definitions that the cofiber of a vn-self map is a
finite spectra of type n+ 1.

Definition 1.7.5. A full subcategory C of FP(p) is thick if the three following
conditions are satisfied

(i) An object which is homotopy equivalent to an object of C is in C.
(ii) If two out of three spectra in the cofibration X → Y → Z are in C, then

the third is also in C.
(iii) If X ∨ Y is in C, then both X and Y are in C.

Let Cn denote the full subcategory of finite spectra of type at least n, so that

C0 ⊇ C1 ⊇ C2 ⊇ ... ⊇ C∞.

It is proved by Steve Mitchell in [Mit85] that each of these inclusions is proper. In
[HS98], the authors show that a type n finite spectrum admits vn-self maps and
that if C is a thick subcategory of FH(p), then C = Cn for some 0 ≤ n ≤ ∞.

Typical examples of finite spectra of type n are generalised Moore spectra. They
are constructed by successively taking the cofiber of vn-self maps starting from
the sphere spectrum. More precisely, we have the following cofibrations

S0 pi0
−→ S0 →M(pi0),

Σ2i1(p−1)M(pi0)
v
i1
1−→M(pi0)→M(pi0 , vi11 ),

...

Σ2in−1(pn−1−1)M(pi0)
v
in−1
n−1
−−−→M(pi0)→M(pi0 , vi11 , ..., v

in−1

n−1 ),
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where vikk is an appropriate vk-self map of M(pi0 , vi11 , ..., v
ik−1

k−1 ). Thus, for an

appropriate n-tuple of integers (i0, i1, ..., in−1), the spectrum M(pi0 , vi11 , ..., v
in−1

n−1 )
constructed as above is called a generalised Moore spectrum. It is of practical
importance to be able to construct generalised Moore spectra with the integers
i0, i1, ..., in−1 as small as possible.

Example 3. (1) If n = 1, then M(pi0) exists for all positive integers i0. When
i0 = 1, M(p), also denoted by V (0), is usually called the Moore spectrum.

(2) If n = 2 and p is odd, then there is a v1-self map v1 : Σ2p−2M(p)→M(p)
and M(p, v1) is also denoted by V (1) and called the Toda-Smith complex.
In constrast, when p = 2, the least exponent of a v1-self map on V (0) is 4,
i.e., there is a v1-self map v41 : Σ8V (0)→ V (0).

Fix a positive integer n. In [HS99], the authors construct, using results of Hopkins
and Smith, a sequence of ideals J(i) of Z(p)[v1, v2, ..., vn−1] for i ≥ 0 and the
associated generalised Moore spectrum M(J(i)) such that

1. J(i+ 1) ⊂ J(i) and ∩
i
J(i) = 0.

2. There are maps of spectra M(J(i + 1)) → M(J(i)) such that for any
K(n)-local spectrum Y , there is a homotopy equivalence

Y ≃ holim
i

Y ∧M(J(i)).

Such a tower of generalised Moore spectra is called a cofinal tower.

1.8 Gross-Hopkins duality

This notion of duality is a version of the Brown-Comenetz duality for the
K(n)-local homotopy category. It was introduced by Gross and Hopkins in [HG94].
We will need to compute the Gross-Hopkins dual of some spectra in Chapter III,
as an important step in the computation of a related homotopy fixed point spec-
tral sequence. Brown-Comenetz duality was introduced in the 1970’s to study the
duality phenomena of spaces [BC74]. Because Q/Z is an injective abelian group,
the functor

X 7→ HomAb(π0X,Q/Z)

is cohomological, so is represented by a spectrum, denoted by IQ/Z. The Brown-
Comenetz dual of a spectrum X is defined to be the function spectrum from X to
IQ/Z

IQ/ZX := F (X, IQ/Z),

so that
π∗(IQ/ZX) ∼= HomAb(π−∗X,Q/Z).
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Through the lens of chromatic stable homotopy theory, the spectrum IQ/Z can be
approximated by the Gross-Hopkins dual (see [HG94]). Fix a prime number p
and a chromatic height n. For each n ≥ 1, there is a natural transformation Ln →
Ln−1. The fiber MnX of LnX → Ln−1X is referred to as the nth monochromatic
layer. The Gross-Hopkins dual of X is defined to be the Brown-Comenetz dual of
MnX , i.e.,

InX := F (MnX, IQ/Z).

We abbreviate InS0 by In. Work of Gross-Hopkins [HG94] relates this duality
to the Grothendieck-Serre duality on the Lubin-Tate space of the universal defor-
mation of a height n formal group law. As a result, there exists a spectrum Pn
representing an element in the exotic Picard group of SpK(n) such that

In ∼= Σn2−nPn ∧ S
0〈det〉

where S0〈det〉 is the determinant sphere, see [BBGS18] for a construction of the
latter. It is then of particular importance to determine, or at least characterise, the
homotopy type of Pn.

2 The Davis-Mahowald spectral sequence

We introduce a generalisation of the Davis-Mahowald spectral sequence, which
is an useful tool, in this thesis, for analysing Ext-groups over various Hopf alge-
bras. Initially, this spectral sequence was used by Davis and Mahowald in [DM82]
to compute Ext-groups over the subalgebra A(2) of the Steenrod algebra.

2.1 Construction of the Davis-Mahowald spectral sequence

Let k be a field of characteristic 2. We will later specialise to the case k = F2,
the field of two elements. Let (A,∆, µ, ǫ, η, χ) be a commutative Hopf algebra
over k with ∆, µ, ǫ, η, χ being coproduct, product, counit, unit, the conjugation,
respectively.

Definition 2.1.1. Let E be the graded exterior algebra on a finite dimensional k-
vector space V with all elements of V having degree 1. An A-comodule algebra
structure on E is called almost graded if the natural embedding k ⊕ V → E is a
map of A-comodules.

This definition is motivated by the following examples which are of main interest
in this thesis. Recall that the Steenrod algebra A is generated by the Steenrod
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squares Sqi for i ≥ 0, subject to the Adem relations

SqaSqb =

⌊a
2
⌋∑

i=0

(
b− i− 1

a− 2i

)
Sqa+b−iSqi

for all a, b > 0 and a < 2b. Let A∗ denote the dual of the Steenrod algebra. In
[Mil58], Milnor determines the Hopf algebra structure ofA∗. As a graded algebra,
A∗ = F2[ξi|i ≥ 1] where ξi is in degree |ξi| = 2i − 1. The coproduct is given by
the formula

∆(ξk) =
k∑

i=0

ξ2
k−i

i ⊗ ξk−i,

where ξ0 = 1. Let us denote by ζi the conjugate ζi of ξi. Then we have

∆(ζk) =
∑

i+j=k

ζi ⊗ ζ2
i

j . (I.24)

An Hopf ideal of a Hopf algebra A is an ideal I such that ∆(I) ⊂ I ⊗A+A⊗ I .
If I is a Hopf ideal of A, then A/I inherits a structure of Hopf algebra from A
such that the natural projection A→ A/I is a map of Hopf algebras.

Example 4. Let A(n)∗ be the quotient of A∗ by the Hopf ideal In generated by
(ζ2

n+1

1 , ζ2
n

2 , ..., ζ2n+1, ζn+2, ...). As an algebra,

A(n)∗ = F2[ζ1, ζ2, ..., ζn+1]/(ζ
2n+1

1 , ζ2
n

2 , ..., ζ2n+1).

It is dual to the subalgebra A(n) = 〈Sq1, Sq2, ..., Sq2
n

〉 of the Steenrod algebra
A. The canonical projection π : A(n)∗ → A(n − 1)∗ induced by the inclusion
In ⊂ In−1 of Hopf ideals is a map of Hopf algebras, hence induces on A(n)∗ a
structure of right A(n− 1)∗-comodule algebra:

(id⊗ π)∆ : A(n)∗ → A(n)∗ ⊗A(n)∗ → A(n)∗ ⊗A(n− 1)∗.

An easy computation shows that the group of primitives A(n)∗�A(n−1)∗F2 of this
coaction is given by

A(n)∗�A(n−1)∗F2 = E(ζ2
n

1 , ζ2
n−1

2 , ..., ζn+1)

which is abstractly isomorphic toEn = E(x1, ..., xn+1) where xi stands for ζ2
n+1−i

i .
Here and elsewhere in this paper, E(X) denotes the exterior algebra on the k-
vector space spanned by the set X . We see that the algebra E(x1, x2, ..., xn+1)
inherits a left A(n)∗-comodule algebra structure from A(n)∗, namely,

∆(xk) =
k∑

i=0

ζ2
n+1−k

i ⊗ xk−i, 1 ≤ k ≤ n+ 1



Chapter I. Preliminaries 39

where x0 = 1 by convention. This means that En is an almost graded A(n)∗-
comodule.

Example 5. Let B(n)∗ be the quotient of A∗ by the Hopf ideal Jn generated by
(ζ2

n

1 , ζ2
n

2 , ζ2
n−1

3 , ..., ζ2n+1, ζn+2, ...), so that

B(n)∗ = F2[ζ1, ζ2, ..., ζn+1]/(ζ
2n

1 , ζ2
n

2 , ζ2
n−1

3 , ..., ζ2n+1).

Similarly to Example 4, the projection B(n)∗ → A(n− 1)∗ induced by the inclu-
sion of Hopf ideals Jn ⊂ In−1 defines a structure of right A(n − 1)∗-comodule
algebra on B(n)∗. A calculation shows that

B(n)∗�A(n−1)∗F2 = E(ζ2
n−1

2 , ζ2
n−2

3 , ..., ζn+1),

which is abstractly isomorphic to Fn := E(x2, ..., xn+1). The notation is chosen
to be coherent with that of Example 4. We see that Fn inherits a structure of left
B(n)∗- comodule algebra from that of B(n)∗, namely,

∆(xk) =
k∑

i=0,i 6=1

ζ2
n+1−k

i ⊗ xk−i, 2 ≤ k ≤ n+ 1

where x0 = 1. Thus, Fn is a almost graded B(n)∗-comodule.

Let E be an almost graded A-comodule exterior algebra on a finite dimensional
k-vector space V . We will construct an A-comodule polynomial algebra, called
the Koszul dual of E as follows. Let P be the graded polynomial algebra of V
with all elements of V having degree 1. Let us denote by Ei and Pi the subspace
of elements of homogeneous degree i for i ≥ 0 of E and P , respectively. Let

us also denote by E≤i the direct sum
j=i⊕
j=0

Ej . Notice that P1 sits in a short exact

sequence:
0→ k → k ⊕ E1

p
−→ P1 → 0. (I.25)

The embedding k → k⊕E1 is clearly a map of leftA-comodules. Thus P1 admits
a (unique) structure of left A-comodule such that p : k ⊕ E1 → P1 is a map of
A-comodules.

Lemma 2.1.2. If P⊗n1 is equipped with the usual structure of A-comodule of a

tensor product. Then Pn admits a unique structure of A-comodule making the

multiplication P⊗n1 → Pn a map of A-comodules.

Proof. This map is surjective and its kernel is spanned by elements of the form
y1⊗ ...⊗ yn− yσ(1)⊗ ...⊗ yσ(n)∗ where σ is a permutation of the set {1, 2, ..., n}.
Then, since A is commutative, we see that the kernel is stable under the coaction
of A. The lemma follows.
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This lemma shows that P =
⊕
i≥0

Pi admits a left A-comodule algebra structure.

Now, let us define a cochain complex, called the Koszul complex,

(E ⊗ P, d) (I.26)

with
i) (E ⊗ P )−1 = k

ii) (E ⊗ P )m = E ⊗ Pm for m ≥ 0
iii) d : k = (E ⊗ P )−1 → E = (E ⊗ P )0 being the unit of E

iv) d(
n∏
j=1

xij ⊗ z) =
n∑
t=1

∏
j 6=t

xij ⊗ p(xit)z where xij ∈ E1, z ∈ Pm and p is the

projection of (I.25).

Remark 2.1.3. In other words, d : E≤n ⊗ Pm → E≤n−1 ⊗ Pm+1 is the unique
homomorphism making the following diagram commute

E⊗n≤1 ⊗ P≤m

(
∑

σ
(Id⊗(n−1)⊗p)◦σ)⊗Id

//

µ⊗Id

��

E
⊗(n−1)
≤1 ⊗ P1 ⊗ Pm

µ⊗µ

��
E≤n ⊗ Pm

d // E≤n−1 ⊗ Pm+1,

(I.27)

where in the upper horizontal map, the sum is taken over all cyclic permutations
on n factors of E1 in the tensor product E⊗n1 and p is the restriction on E1 of the
map of (I.25).

Proposition 2.1.4. The complex (E⊗P, d) is an exact sequence of A-comodules.

Furthermore, (E ⊗ P, d) has a structure of differential graded algebra induced

from the algebra structure of E and P .

Proof. Let x1, ..., xn be a basis of E1. As a cochain complex over k, (E ⊗ P, d)
is isomorphic to the tensor product of (E(xi) ⊗ k[yi], di) where yi = p(xi) for
1 ≤ i ≤ n. Here, each (E(xi) ⊗ k[yi], di) is defined in the same manner as
(E ⊗ P, d) is. It is not hard to see that the cochain complex (E(xi)⊗ k[yi], di) is
exact. Hence, (E ⊗ P, d) is exact by the Künneth theorem. This proves the first
part.

Let us check that d is a map of A-comodules. In the diagram (I.27), the two verti-
cal maps are ones of A-comodules because E and P are A-comodule algebras. In
addition, they are surjective. It remains to check that the upper horizontal map is a

map ofA-comodules. Or equivalently, each mapE⊗n≤1
(Id⊗(n−1)⊗p)◦σ
−−−−−−−−−→ E

⊗(n−1)
≤1 ⊗P1

is a map of A-comodules where σ is a cyclic permutation on n elements. This is
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true because σ is a map of A-comodules as A is commutative and p is a map of
A-comodules by definition. The second part follows.

Finally, it is straightforward from the formula of d in (I.26.iv) that d satisfies the
Leibniz rule.

This lemma allows us to construct a spectral sequence of algebras converging to
ExtsA(k) see ([Rav86], Theorem A1.3.2).

Proposition 2.1.5. (1) There is a spectral sequence of algebras converging to

ExtsA(k) :

Es,t1 = ExtsA(k,E ⊗ Pt) +3 Exts+tA (k, k) . (I.28)

(2) IfM is aA-comodule, then there is a spectral sequence converging to ExtsA(M)

Es,t1 = ExtsA(k, E ⊗ Pt ⊗M) +3 Exts+tA (k,M).

Furthermore, this spectral sequence is a spectral sequence of modules over that of

(I.28).

Terminology. We will call these spectral sequences the Davis-Mahowald spectral
sequences or DMSS for short, associated to the almost graded A-module algebra
E. The first grading s of the En-term is referred to as the cohomological grading
or degree and the second grading t is referred to as the Davis-Mahowald grading
or degree (or DM grading or degree for short).

In view of carrying out explicit computations of products in Ext∗A(k) and the ac-
tion of Ext∗A(k) on Ext∗A(M), we recall a double complex from which the above
spectral sequence is derived.

For each t ≥ 0, let (Cs(A,E ⊗ Pt), dv)s≥0 be the cobar complex whose coho-
mology is Ext∗A(E ⊗ Pt), i.e.,

Cs(A,E ⊗ Pt) = A⊗s ⊗ E ⊗ Pt

and dv : A⊗s ⊗ E ⊗ Pt → A⊗s+1 ⊗ E ⊗ Pt is given by

dv(a1⊗...⊗as⊗m) = 1⊗a1⊗...⊗as⊗m+
s∑

i=1

a1⊗...⊗ai−1⊗∆(ai)⊗...⊗as⊗m

+ a1 ⊗ ...⊗ as ⊗∆(m),

where ai ∈ A for 1 ≤ i ≤ s and m ∈ E ⊗ Pt.
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Notation. We will shorten m1 ⊗ ...⊗ms ∈M1 ⊗ ...Ms by [m1|...|ms].

By an abuse of notation, we will denote by dv the differentials in the cobar com-
plexes associated to E ⊗ Pt for different t. The fact that d : E ⊗ Pt → E ⊗ Pt+1

is a map of A-comodules implies that the maps dh = Id⊗s ⊗ d : Cs(A,E ⊗
Pt) → Cs(A,E ⊗ Pt+1) assemble to give a map of cochain complexes dh :
(Cs(A,E⊗Pt), dv)s≥0 → (Cs(A,E⊗Pt+1), dv)s≥0. Finally, it is easily seen that
the maps of cochain complexes assemble to form a double complex (Cs(A,E ⊗
Pt), dv, dh)s,t≥0

E
dh //

dv
��

E ⊗ P1
dh //

dv
��

E ⊗ P2
dh //

dv
��

E ⊗ P3
dh //

dv
��

...

A⊗ E
dh //

dv
��

A⊗ E ⊗ P1
dh //

dv
��

A⊗ E ⊗ P2
dh //

dv
��

A⊗ E ⊗ P3
dh //

dv
��

...

A⊗2 ⊗ E
dh //

dv

��

A⊗2 ⊗ E ⊗ P1
dh //

dv

��

A⊗2 ⊗ E ⊗ P2
dh //

dv

��

A⊗2 ⊗ E ⊗ P3
dh //

dv

��

...

... ... ... ... ...

We can see that the spectral sequence associated to the horizontal filtration has
E1-term isomorphic to (As⊗k, dv)s≥0 which identifies with the cobar complex of
the trivial A-comodule k. Thus this spectral sequence degenerates at the E2-term
and the E∞ = E2-term identifies with ExtsA(k). Since there are no possible ex-
tension problems, the cohomology of the total complex is isomorphic to ExtsA(k).
Now, the spectral sequence associated to the vertical filtration has E1-term iso-
morphic to ExtsA(E ⊗ Pt). This spectral sequence is exactly the one appearing in
Proposition 2.1.5.

Remark 2.1.6. The differential d1 : Ext0A(E ⊗ Pt) → Ext0A(E ⊗ Pt+1) is the
restriction of the derivation d in (I.26) on the A-primitives of E ⊗ Pt.

2.2 Naturality of the Davis-Mahowald spectral sequence

We notice that the above construction is natural in pairs (A,E) where A is a
commutative Hopf algebra and E is an almost graded leftA-comodule exterior al-
gebra. This allows us to compare Davis-Mahowald spectral sequences associated
to different pairs (A,E). We will make use of this property to reduce computa-
tions in a crucial way. Let us first define morphisms between such pairs.

Definition 2.2.1. Let (A,E) and (B,F ) be such that A and B are commutative
Hopf algebras, E and F are almost graded exterior comodule algebras over A and
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B, respectively. A morphism between (A,E) and (B,F ) consists of f1 : A→ B
and f2 : E → F where f1 is a map of Hopf algebras and f2 is a map of B-
comodule graded algebras with the B-comodule structure on E being induced
from f1.

Remark 2.2.2. The map f2 : E → F is determined by a map of B-comodules
k ⊕ E1 → k ⊕ F1.

Proposition 2.2.3. A morphism between (A,E) and (B,F ) induces a map be-

tween the associated Davis-Mahowald spectral sequences.

Proof. Let P and Q be the Koszul dual of E and F , respectively. The map of
B-comodule algebras f2 : E → F induces a map of graded B-comodule algebras
P → Q such that the following diagram is commutative

k ⊕ E1
p //

f2
��

P1

��
k ⊕ F1

p // Q1.

Then one can check that the induced map E ⊗ P → F ⊗ Q is a map of Koszul
complexes. Therefore one obtains a map of double complexes (A⊗s⊗E ⊗Pt)→
(B⊗s ⊗ F ⊗Qt), hence a map of spectral sequences.

Remark 2.2.4. Although we have only treated the ungraded situation so far, the
construction carries over verbatim to the graded one. More precisely, suppose that
A and E are graded algebras. We refer to this grading as the internal degree. We
require that the structural maps in the A-comodule structure of E to preserve the
internal degree. Then we see that the Koszul dual P of E is also internally graded
and the Koszul complex is a graded cochain complex with respect to the internal
degree. It follows that the associated DMSS is tri-graded with the third grading
associated to the internal grading and the differentials preserve the internal degree.

We continue with Example 4 and 5.

Example 6. Recall that En is an almost graded A(n)∗-comodule. Let Rn denote
the Koszul dual of En. In particular, it follows from Proposition 2.1.5 that for any
graded left A(n)∗-comodule M , the DMSS converging to Ext∗,∗A(n)∗

(F2,M) has
E1-term isomorphic to

Es,t,σ1
∼= Exts,tA(n)∗

(En ⊗Rσ
n ⊗M),

where s is the cohomological grading, t is the internal grading and σ is the Davis-
Mahowald grading. The change-of-rings isomorphism tells us that

Exts,tA(n)∗
(En ⊗Rσ

n ⊗M) ∼= Exts,tA(n−1)∗
(Rσ

n ⊗M),
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see [Rav84], Appendix A1.3.13 for the change-of-rings isomorphism. That means
that the problem of computing Exts,tA(n)∗

(−) can be reduced to two steps: first com-

puting Exts,tA(n−1)∗
(−), then studying the corresponding Davis-Mahowald spectral

sequence. We will demonstrate the efficiency of this method by carrying out ex-
plicit computations in the case n = 2 and some relevant M .

Example 7. Recall that Fn is an almost graded B(n)∗-comodule. Let Sn denote
the Koszul dual of Fn. The DMSS is the spectral sequence of algebras

Es,t,σ1 = Exts,tB(n)∗
(Fn ⊗ Sσn) +3 Exts+σ,tB(n)∗

(F2) .

By the change-of-rings theorem, the E1-term is isomorphic to Exts,tA(n−1)∗
(Sσn),

because Fn = B(n)∗�A(n−1)∗F2. Moreover, for any graded left B(n)∗-comodule
M , the DMSS for Exts+σ,tB(n)∗

(F2) is a spectral sequence of modules over the above
spectral sequence

Exts,tB(n)∗
(Fn ⊗ Sσn ⊗M) ∼= Exts,tA(n−1)∗

(Sσn ⊗M) +3 Exts+σ,tB(n)∗
(F2) .

Comparison of DMSS. There is a morphism between (A(n)∗, En) and (B(n)∗, Fn)
given by the two projections

A(n)∗ → B(n)∗; ζi 7→ ζi

En → Fn; x1 7→ 0, xi 7→ xi for i ≥ 2.

This induces a map of spectral sequences

Exts,tA(n)∗
(En ⊗Rσ

n ⊗M)

��

// Exts,tB(n)∗
(Fn ⊗ Sσn ⊗M)

��

Exts+σ,tA(n)∗
(M) // Exts+σ,tB(n)∗

(M).

As was mentioned earlier, this comparison allows us to transfer some computa-
tions in the former SS to the latter which are simpler because all modules involved
in the latter are smaller. This observation will be made concrete in Section 3.
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Homotopy groups of E
hG24
C ∧ A1

In this chapter we give a detailed computation of the homotopy fixed point
spectral sequence - which is abbreviated by HFPSS, for EhG24

C ∧ A1. One of the
key step to this end is a comparison between tmf ∧ A1 and EhG24

C ∧ A1. In fact,
we prove that there is a homotopy equivalence (Theorem 5.1.1):

(∆8)−1tmf ∧ A1
∼= (EhG24

C )hGal(F4/F2) ∧ A1

where ∆8 is the periodicity generator of π∗tmf . Thus we first analyse the homo-
topy groups of tmf ∧ A1, then invert ∆8 to get information about the homotopy
groups of EhG24

C ∧A1. The homotopy groups of tmf ∧A1 are accessible through
the classical Adams spectral sequence - which is also abbreviated by ASS,

Exts,tA(2)∗
(H∗(A1)) =⇒ πt−s(tmf ∧ A1).

We notice that in [BEM17], Batacharya, Egger, Mahowald briefly discussed this
Adams spectral sequence. Our approach is however different and contains more
details - we give an explicit description of the E2-term of the Adams spectral
sequence using the Davis-Mahowald spectral sequence and determine some dif-
ferentials (compare [BEM17]).

In Section 3, we recollect certain information of the Davis-Mahowald spectral se-
quence for theA(2)-comodule F2. Then we come to discuss the Davis-Mahowald
spectral sequence for A1 and obtain the E2-term of the Adams spectral sequence.
We compute two products one of which is exotic, i.e., the one that is not be de-
tected by a product in the E∞-term of the Davis-Mahowald spectral sequence.
These products allow us to determine some differentials in the Adams spectral
sequence for A1. In Section 4, we discuss some differentials in the later and then
extract some suitable information about π∗(tmf ∧ A1). In Section 5, we finally
study the homotopy fixed point spectral sequence for EhG24

C ∧ A1.

45
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3 The Davis-Mahowald spectral sequence for theA(2)∗-

comodule A1

The goal of this section is to describe the structure of Ext∗,∗A(2)∗
(A1) as a mod-

ule over Ext∗,∗A(2)∗
(F2) for different A(2)∗-comodules A1 that will be recalled in

Subsection 3.2. To achieve a part of this goal, we will study the DMSS

Exts,tA(2)∗
(E2 ⊗ Sσ2 ⊗ A1) +3 Exts+σ,tA(2)∗

(A1)

as a spectral sequence of modules over the spectral sequence of algebras

Exts,tA(2)∗
(E2 ⊗ Sσ2 ) +3 Exts+σ,tA(2)∗

(F2).

We obtain then the structure of Ext∗,∗A(2)∗
(A1) as a graded abelian group and a

partial action of Ext∗,∗A(2)∗
(F2) on it. However, there is an important action of an

element of Ext∗,∗A(2)∗
(F2) on some elements of Ext∗,∗A(2)∗

(A1) that cannot be seen
at the E1-term of the DMSS. One way of understanding these exotic products is
to carry out computations at the level of double complexes: find representatives
of the cohomological classes in question in the double complexes from which the
DMSS is derived and carry out products at that level. It turns out that a brute-force
attack is messy. Instead, computations are simplified drastically by comparing the
DMSS associated to (A(2)∗, E2) to that of (B(2)∗, F2):

Exts,tA(2)∗
(En ⊗Rσ

2 ⊗ A1)

��

// Exts,tB(2)∗
(Fn ⊗ Sσ2 ⊗ (1))

��

Exts+σ,tA(2)∗
(A1) // Exts+σ,tB(2)∗

(A1).

3.1 Recollections on the Davis-Mahowald spectral sequence for

the A(2)∗-comodule F2

To fix notation, we recollect some information relevant for our purposes. This ma-
terial was originally treated in [DM82] and reviewed in unpublished course notes
of Rognes [Rog12]. As we will specialise to the case n = 2, we will simplify the
notation by writingR,Rσ, S, Sσ forR2, R

σ
2 , S2, S

σ
2 from Example 4 and 5, respec-

tively.
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Recall that R is a homogenous graded polynomial algebra on three generators,
say y1, y2, y3 and Rσ is its subspace of homogeneous elements of degree σ for
σ ≥ 0. Let us first explicitly give the coaction ofA(2)∗ on R = F2[y1, y2, y3] with
|y1| = 4, |y2| = 6, |y3| = 7. From Example 6, we have

∆(y1) = 1⊗ y1

∆(y2) = ξ21 ⊗ y1 + 1⊗ y2

∆(y3) = ζ2 ⊗ y1 + ξ1 ⊗ y2 + 1⊗ y3.

By the change-of-rings theorem, the E1-term of the DMSS for Ext∗,∗A(2)∗
(F2) is

isomorphic to Exts,tA(1)∗
(
⊕
σ≥0

Rσ). The coaction of A(1)∗ on R1 is induced from

that of A(2)∗ and hence is given by

∆(y1) = 1⊗ y1

∆(y2) = ξ21 ⊗ y1 + 1⊗ y2

∆(y3) = ζ2 ⊗ y1 + ξ1 ⊗ y2 + 1⊗ y3.

In particular, y1, y22, y
4
3 are A(1)∗-primitives of R. Let R

′

σ denote the A(1)∗-
subcomodule {yi1y

j
2y
k
3 ∈ Rσ|k ≤ 3} of Rσ.

Lemma 3.1.1. As an A(1)∗-comodule, Rσ can be decomposed as

Rσ
∼=

⊕

i≡σ(mod4),i≤σ

R
′

i ⊗ F2{y
σ−i
3 }.

Therefore, ⊕

σ≥0

Rσ = (
⊕

σ≥0

R
′

σ)⊗ F2[y
4
3].

Proof. If one views F2{y
σ−i
3 } as a subvector space of Rσ−i, then the product of R

produces an isomorphism of vector spaces
⊕

i≡σ(mod4),i≤σ

R
′

i ⊗ F2{y
σ−i
3 }

∼=
−→ Rσ.

Since y43 is a A(1)∗-primitive of Rσ, this map is also a map of A(1)∗-comodules.
The lemma follows.

Let us denote Ext∗,∗A(1)∗
(R

′

σ) by Gσ, so that

Ext∗,∗A(1)∗
(R) ∼= (

⊕

σ≥0

Gσ)⊗ F2[v
4
2],
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where v42 ∈ Ext0,24A(1)∗
(R4) represented by y43 ∈ R4. Determining the full multi-

plicative structure of Ext∗,∗A(1)∗
(R) is quite involved. Instead, we will work modulo

(v42). This will suffice for us to obtain a set of algebra generators of Ext∗,∗A(1)∗
(R).

More precisely, since the product R
′

σ ⊗ R
′

τ → Rσ+τ factorises through R
′

σ+τ ⊕
(Rσ+τ−4 ⊗ F2{y

4
3}), we obtain a map

Gσ ⊗Gτ → Gσ+τ ⊕ (Gσ+τ−4 ⊗ F2{v
4
2}).

We will analyse the map Gσ ⊗Gτ → Gσ+τ which is the composite

Gσ ⊗Gτ → Gσ+τ ⊕ (Gσ+τ−4 ⊗ F2{v
4
2})→ Gσ+τ

where the second map is the projection on the first factor.

In what follows, we compute Gi for i ≥ 0 as modules over G0. For this, we
decompose R

′

i into smaller pieces, compute the Ext groups over A(1)∗ of these
pieces, then determine Gi via long exact sequences. Next, we study the pairings

Gσ ⊗Gτ → Gσ+τ ,

which allows us to determine a set of algebra generators of the E1-term. Finally,
we compute d1-differentials on this set of algebra generators. We do not intend
to describe completely the Ext∗,∗A(2)∗

(F2) but only a subalgebra in which we are
interested.

Since y1 is primitive, multiplication by y1 induces injections of A(1)∗-comodules

Σ4R
′

σ → R
′

σ+1.

Lemma 3.1.2. There are short exact sequences of A(1)∗-comodules

(a)

0→ H∗(Σ
12Cη)→ R

′

2 → Σ8(A(1)∗�A(0)∗F2)→ 0

where η : S1 → S0 is the Hopf map and the map H∗(Σ
12Cη)→ R

′

2 sends

the generators of H12(Σ
12Cη) and H14(Σ

12Cη) to y22 and y23 , respectively.

(b)

0→ Σ4R
′

1 → R
′

2 → Σ12V3 → 0

where V3 denotes H∗(S
0 ∪2 e

1 ∪η e
2).

Proof. For part (a), the map Σ12H∗(Cη) → R
′

2 described in the statement of
the Lemma 3.1.2 is a map of A(1)∗-comodules. Its quotient is isomorphic to
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F2{y
2
1, y1y2, y1y3, y2y3} with the A(1)∗-comodule structure given by

∆(y2y3) = 1⊗ y2y3 + ξ21 ⊗ y1y3 + ξ2 ⊗ y1y2 + ζ2ξ
2
1 ⊗ y21

∆(y1y3) = 1⊗ y1y3 + ξ1 ⊗ y1y2 + ζ2 ⊗ y21
∆(y1y2) = 1⊗ y1y2 + ξ21 ⊗ y21
∆(y21) = 1⊗ y21.

We can check that this module is isomorphic to Σ8(A(1)∗�A(0)∗F2) as A(1)∗-
comodules.

For part (b), the quotient of R
′

2 by Σ4R
′

1 is isomorphic to F2{y
2
2, y2y3, y

2
3} with

A(1)∗-comodule structure given by

∆(y22) = 1⊗ y22
∆(y2y3) = ξ1 ⊗ y22 + 1⊗ y2y3

∆(y23) = ξ21 ⊗ y22 + 1⊗ y23.

One can check that this quotient is isomorphic to Σ12V3.

Lemma 3.1.3. For every σ ≥ 3, there is a short exact sequence ofA(1)∗-comodules

0→ Σ4R
′

σ−1

×y1
−−→ R

′

σ → Σ6σV4 → 0

where V4 denotes H∗(V (0) ∧ Cη).

Remark 3.1.4. The spectrum V (0) ∧ Cη is homotopy equivalent to Y , introduced
in the Introduction (c.f Section 3.2 for a presentation of H∗(Y ).)

Proof. The quotient ofR
′

σ by Σ4R
′

σ−1 is isomorphic to F2{y
σ
2 , y

σ−1
2 y3, y

σ−2
2 y23, y

σ−3
2 y33}

with A(1)∗-comodule structure given by

∆(yσ2 ) = 1⊗ yσ2
∆(yσ−12 y3) = ξ1 ⊗ yσ2 + 1⊗ yσ−12 y3

∆(yσ−22 y23) = ξ21 ⊗ yσ2 + 1⊗ yσ−22 y23
∆(yσ−32 y33) = ξ31 ⊗ yσ2 + ξ21 ⊗ yσ−12 y3 + ξ1 ⊗ yσ−22 y23 + 1⊗ yσ−32 y33.

It can be easily seen that this quotient is isomorphic to Σ6σV4.

Next we describe the Ext groups of someA(1)∗-comodules as basic steps towards
computing Gσ. These calculations are elementary and classical.
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0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5

h0 h1

v
v41

Figure II.1 – Ext∗,∗A(1)∗
(F2,F2) in the range 0 ≤ t− s ≤ 8.

Proposition 3.1.5. There are classes h0 ∈ Ext1,1, h1 ∈ Ext1,2, v ∈ Ext3,7,

v41 ∈ Ext4,12 such that there is an isomorphism of algebras

G0 := Exts,tA(1)∗
(F2) ∼= F2[h0, h1, v, v

4
1]/(h

3
1, h0h1, h1v, v

2 − h20v
4
1).

See for example ([Rav86], Theorem 3.1.25).

Lemma 3.1.6. As a module over Exts,tA(1)∗
(F2),

(1) Exts,tA(1)∗
(H∗(V (0))) is generated by h0 ∈ Ext0,0, h1 ∈ Ext1,3 with the

following relations h0h
0 = vh0 = vh1 = 0 and h21.h

0 = h0h
1.

(2) Exts,tA(1)∗
(H∗(Cη)) is generated by {hi ∈ Exti,3i| 0 ≤ i ≤ 3} with h1h

i =

0, vh0 = h0h
2, vh1 = h0h

3.

(3) Exts,tA(1)∗
(H∗(S

0 ∪2 e
1 ∪η e

2)) is generated by h0 ∈ Ext0,0, h1 ∈ Ext1,3,

a1 ∈ Ext1,3, h2 ∈ Ext2,6, h3 ∈ Ext3,9 with h0h
0 = h1h

0 = h1h
1 =

h0a
1 = va1 = h1h

2 = vh2 = h1h
3 = vh3 = 0 and h0h

2 = h21a
1.

(4) Exts,tA(1)∗
(H∗(Y )) is generated by {hi| 0 ≤ i ≤ 3} with h0h

i = h1h
i =

vhi = 0.

See [Rav86], Theorem 3.1.27 for (1) and (4). The calculations for (2) and (3) are
also elementary, so that we omit the detail.

Remark 3.1.7. We use the same notation hi for i = 0, 1, 2, 3 to denote certain
generators of the above groups. This abuse of notation is justified by the fact that
these generators have close relationships which are described in the next lemma.
The context will clarify the use of the notation.

Consider cell inclusions V (0) → Y and S0 ∪2 e
1 ∪η e

2 → Y . The induced
homomorphisms in Ext over A(1)∗ are described as follows.

Lemma 3.1.8. (i)The homomorphism Ext∗,∗A(1)∗
(H∗(V (0))) → Ext∗,∗A(1)∗

(H∗(Y ))

sends the classes h0 and h1 to the non-trivial classes of the same name.
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0
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3

h0
h1

Figure II.2 – Exts,tA(1)∗
(H∗(V (0))) in

the range 0 ≤ t− s ≤ 4.
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h3

Figure II.3 – Exts,tA(1)∗
(H∗(Cη)) in the

range 0 ≤ t− s ≤ 6.
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Figure II.4 – Exts,tA(1)∗
(H∗(S

0∪2 e
1∪η

e2)) in the range 0 ≤ t− s ≤ 6.

0 1 2 3 4 5 6

0
1
2
3
4

h0
h1

h2
h3

Figure II.5 – Exts,tA(1)∗
(H∗(Y )) in the

range 0 ≤ t− s ≤ 6.

(ii) The homomorphism Ext∗,∗A(1)∗
(H∗(S

0 ∪2 e
1 ∪η e

2))→ Ext∗,∗A(1)∗
(H∗(Y )) sends

the classes h0, h1, h2, h3 to the non-trivial classes of the same name.

Proof. For part (i), consider the short exact sequence of A(1)∗-comodules

0→ H∗(V (0))→ H∗(Y )→ H∗(Σ
2V (0))→ 0

For degree reasons, the classes h0 and h1 of Ext∗,∗A(1)∗
(H∗(V (0))) do not belong to

the image of the connecting homomorphism

Exts−1,tA(1)∗
(H∗(Σ

2V (0)))→ Exts,tA(1)∗
(H∗(V (0))).

Therefore, they are sent to nontrivial classes of the same name in Ext∗,∗A(1)∗
(H∗(Y )).

For part (ii), consider the short exact sequence of A(1)∗-comodules

0→ H∗(S
0 ∪2 e

1 ∪η e
2)→ H∗(Y )→ Σ3F2 → 0

and the resulting long exact sequence

Exts−1,tA(1)∗
(H∗(Σ

3F2))
∂
−→ Exts,tA(1)∗

(H∗(S
0 ∪2 e

1 ∪η e
2))→ Exts,tA(1)∗

(H∗(Y )).
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For degree reasons, the classes h0, h2, h3 of Exts,tA(1)∗
(H∗(S

0 ∪2 e
1 ∪η e

2)) are not
in the image of the connecting homomorphism, and thus are sent to h0, h2, h3

in Ext∗,∗A(1)∗
(H∗(Y ), respectively. Next, for degree reasons, the classes h0h1 and

h1a
1 are sent to 0 ∈ Ext∗,∗A(1)∗

(H∗(Y )). The only way for this to happen is that

the connecting homomorphism sends Σ31 ∈ Ext0,3A(1)∗
(F2,H∗(Σ

3F2)) to the sum
h1 + a1. It follows that h1 is not in the image of the connecting homomorphism,
and therefore is sent to h1 ∈ Ext1,3A(1)∗

(H∗(Y ))

Lemma 3.1.9. H∗(Y ) has a structure of aA(1)∗-comodule algebra. The resulting

structure on Ext∗,∗A(1)∗
(H∗(Y )) is that of a polynomial algebra.

Proof. It is not hard to see that H∗(Y ) is isomorphic to A(1)∗�E(1)∗F2 as A(1)∗-
comodules, where E(1)∗ is the Hopf quotient ofA(1)∗ by the Hopf ideal (ζ1), i.e.,
E(1)∗ ∼= F2[ζ2]/(ζ

2
2 ). In particular, H∗(Y ) has the structure of anA(1)∗-comodule

algebra. As a consequence, Ext∗,∗A(1)∗
(H∗(Y )) is an algebra and is furthermore

isomorphic to Ext∗,∗E(1)∗
(F2) by the change-of-rings isomorphism. It is well-known

that the latter is a polynomial algebra on one variable.

We now compute Gσ = Exts,tA(1)∗
(R

′

σ). We denote by αs,t,σ the non-trivial class

of Exts,s+tA(1)∗
(R

′

σ) whenever there is a unique such one.

Proposition 3.1.10. As a module over G0, G1 = Ext∗,∗A(1)∗
(R

′

1) is generated by

α0,4,1 ∈ Ext0,4A(1)∗
(R

′

1) and α1,8,1 ∈ Ext1,9A(1)∗
(R

′

1) with the relations h1α0,4,1 = 0

and vα0,4,1 = h20α1,8,1.

Proof. Consider the short exact sequence of A(1)∗-comodules

0→ Σ4F2 → R
′

1 → Σ6H∗(V (0))→ 0.

The connecting homomorphism

∂ : Exts,t−6A(1)∗
(V (0))→ Exts+1,t−4

A(1)∗
(F2)

of the resulting long exact sequence sends h0 to h1 and h1 to 0. The latter follows
from degree reasons and the former from the following map of short exact se-
quences ofA(1)∗-comodules and the naturality of the connecting homomorphism

0 // Σ4F2
// R1

// Σ6H∗(V (0)) // 0

0 // Σ4F2
//

OO

H∗(Σ
4Cη) //

OO

Σ6F2
//

OO

0.
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5

Figure II.6 –G1 - The red part is the contribution of Ext∗,∗A(1)∗
(Σ4F2) and the black

part from Ext∗,∗A(1)∗
(Σ6H∗(V (0))).

It follows that G1 is v41-periodic on the following generators (Figure II.6)

What remains to be established is the multiplication by h0 on the generator of bide-
gree (s, t− s) = (2, 8). This is done by a similar consideration of the connecting
homomorphism associated to the short exact sequence of A(1)∗-comodules

0→ H∗(Σ
4Cη)→ R

′

1 → Σ7F2 → 0.

Proposition 3.1.11. As a module over G0, Ext
∗,∗
A(1)∗

(R
′

2) = G2 is generated by

αs,t,2 ∈ Exts,s+t where (s, t) ∈ {(0, 8), (0, 12), (1, 14), (2, 16), (3, 18)} with

h1αs,t,2 = 0, vα0,8,2 = h30α0,12,2

vα0,12,2 = h0α2,16,2, vα1,14,2 = h0α3,18,2.

Proof. The short exact sequence in part (a) of Lemma 3.1.2 gives rise to the long
exact sequence

→ Exts,t−12A(1)∗
(H∗(Cη))→ Exts,tA(1)∗

(R
′

2)→ Exts,t−8A(0)∗
(F2)→ Exts+1,t−12

A(1)∗
(H∗(Cη))→

Combining that Exts,tA(0)∗
(F2) ∼= F2[h0] and the description of Exts,tA(1)∗

(H∗(Cη)),
we see that the connecting homomorphism is trivial for degree reasons.
What remains is to establish the v41-multiplication on the class α0,8,2 of bidegree
(0, 8). Consider the long exact sequence associated to the short exact sequence in
part (b) of Lemma 3.1.2

Exts−1,tA(1)∗
(Σ12V3)

∂
−→ Exts,tA(1)∗

(Σ4R
′

1)→ Exts,tA(1)∗
(R

′

2). (II.1)
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Figure II.7 – G2 - The black part is the contribution of Exts,tA(0)∗
(F2,F2) and the

red one of Exts,tA(1)∗
(H∗(Cη))

8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5

Figure II.8 – G2 -The red part is the contribution of G1 and the black one of
Ext∗,∗A(1)∗

(V3).

One can check that the class Σ4α0,4,1 ∈ Exts,tA(1)∗
(Σ4R

′

1) is not in the image of ∂,

and so is sent to α0,8,2 ∈ Exts,tA(1)∗
(R

′

2). For degree reasons, we see that v41Σ
4α0,4,1

is not in the image of ∂, thus v41α0,8,2 is nontrivial inG2. This completes the proof.

Remark 3.1.12. We can make a complete calculation of the connecting homomor-
phism of (II.1), which results to the chart Figure-II.8.

Lemma 3.1.13. As a module over G0, Ext
∗,∗
A(1)∗

(R
′

3) = G3 is generated by αs,t,3
of Exts,s+t where (s, t) ∈ {(0, 12), (0, 16), (0, 18), (1, 20), (2, 22), (3, 24)} with

h1αs,t,3 = 0, vα0,12,3 = h30α0,16,3, vα0,16,3 = h20α1,20,3, vα0,18,3 = h0α2,22,3,

vα1,20,3 = h0α3,24,3.

Proof. The short exact sequence in Lemma 3.1.3 gives the long exact sequence

→ Exts,tA(1)∗
(Σ4R

′

2)→ Exts,tA(1)∗
(R

′

3)→ Exts,tA(1)∗
(Σ18V4)→ Exts+1,t

A(1)∗
(Σ4R

′

2)→
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For degree reasons, the connecting homomorphism is trivial, hence we obtain the
additive structure of G3 as in Figure II.11. We need to establish the non-trivial
h0-multiplication on the generators {αs,18+2s,3| s ≥ 0}. Taking the v41-periodicity
into account, we reduce to show this property for the generators of

α0,18,3, α1,20,3, α2,22,3, α3,24,3.

12 13 14 15 16 17 18 19 20 21 22 23 24 25

0
1
2
3
4
5

Figure II.9 – G3 - The red part is the contribution of G2 and the black one of
Exts,tA(1)∗

(Σ18V4).

For this, we can check that there are the following short exact sequences:

0→ Σ18H∗(Cη)→ R3 → R3/Σ
18H∗(Cη)→ 0

and
0→ Σ4R2 → R3/Σ

18H∗(Cη)→ Σ19H∗(Cη)→ 0

where, as a subA(1)∗-comodule ofR3, Σ18H∗(Cη) is equal to F2{y1y
2
3+y

3
2, y2y

2
3}

and the map Σ4R2 → R3/Σ
18Cη is the composite Σ4R2

×y1
−−→ R3 → R3/Σ

18H∗(Cη).
As a consequence, Ext∗,∗A(1)∗

(R3/Σ
18H∗(Cη)) sits in a long exact sequence

Exts−1,tA(1)∗
(Σ19H∗(Cη))

∂
−→ Exts,tA(1)∗

(Σ4R2)→ Exts,tA(1)∗
(R3/Σ

18H∗(Cη))→ .

Since ∂ is G0-linear, one only needs to compute ∂ on the two generators of
Ext0,19A(1)∗

(Σ19H∗(Cη)) and Ext1,21A(1)∗
(F2,Σ

19H∗(Cη)). Direct computations show
that ∂ act non-trivially on these classes. It follows that ∂ is a monomorphism and
so Exts,tA(1)∗

(R3/Σ
18H∗(Cη)) is v1-free on the generators depicted in Figure II.10.

It follows immediately from the exact sequence

0→ Σ18H∗(Cη)→ R3 → R3/Σ
18H∗(Cη)→ 0

that Ext∗,∗A(1)∗
(R3) is as depicted in Figure II.11. In particular, missing h0-extensions

are established.
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Figure II.10 – Exts,tA(1)∗
(R3/Σ

18H∗(Cη)).
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Figure II.11 – G3 -The red part is the contribution of Exts,tA(1)∗
(R3/Σ

18H∗(Cη))

and the black one of Exts,tA(1)∗
(Σ18H∗(Cη)).

Theorem 3.1.14. As a module over G0, we have

(a) For every σ ≥ 2, Ext∗,∗A(1)∗
(R

′

σ) = Gσ is generated by αs,t,σ ∈ Exts,t+sA(1)∗
(R

′

σ)

where (s, t) ∈ {(0, 4σ), (0, 2j + 4σ)|2 ≤ j ≤ σ, (j, 6σ + 2j)|1 ≤ j ≤ 3}
with h1αs,t,σ = 0.

(b) For all pairs of triples (s1, t1, σ1) and (s2, t2, σ2) with σ1 ≥ 1 and σ2 ≥
1 except for (2, 9, 1) and (3, 10, 1), (2, 9, 1) and (2, 9, 1), (3, 10, 1) and

(3, 10, 1)we have that

αs1,t1,σ1αs2,t2,σ2 = αs1+s2,t1+t2,σ1+σ2 .

Proof. (a) The statement for σ = 2 is Lemma 3.1.11. Let us prove the claim for
σ ≥ 3 by induction. The base case is Lemma 3.1.13.

Suppose the claim is true for some σ ≥ 3. The long exact sequence associated to
the short exact sequence in Lemma 3.1.3 reads

→ Exts,tA(1)∗
(R

′

σ+1)→ Exts,tA(1)∗
(Σ6σ+6V4)→ Exts+1,t

A(1)∗
(Σ4R

′

σ)→ .
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4σ 4σ + 4 4σ + 6 6σ

Figure II.12 – Gσ for σ ≥ 2

Combining the additive structure of Exts,tA(1)∗
(Σ4R

′

σ) and that

Exts,tA(1)∗
(Σ6σ+6V4) ∼= Σ6σ+6F2[v1],

we obtain the additive structure of Gσ+1 as described in the lemma because the
connecting homomorphism vanishes for degree reasons. To establish the non-
trivial h0-multiplication on the generators {αs,2s+6σ+6,σ+1| s ≥ 0}, we use the
following identities

(i) Gσ+1 ∋ α0,4,1αs,2s+6t,σ 6= 0 ∀σ ≥ 1
(ii) α1,8,1αs,2s+6σ−6,σ−1 = αs+1,2s+6σ+2,σ ∀σ ≥ 2
(iii) α0,12,2αs,2s+6σ−6,σ−1 = αs,2s+6σ+6,σ+1 ∀σ ≥ 3.

These identities are the content of part (b). For the sake of the presentation, we
postpone the proof to (b); this is legitimate because, as we will see, the proof of (b)
only uses the additive structure of G′σs. Let us show how these identities allow us
to conclude the proof of (a). Indeed, the classes αs,2s+6σ−6,σ−1 exist (non-trivial)
for all σ ≥ 3 and s ≥ 0. Therefore, we have that, for all σ ≥ 3,

h0αs,2s+6σ+6,σ+1 = h0α0,12,2αs,2s+6σ−6,σ−1 (multiplying both sides of (iii) by h0)

= α0,4,1α1,8,1αs,2s+6σ−6,σ−1 (because of (i))

= α0,4,1αs+1,2s+2+6σ,σ (because of (ii))

6= 0 (because of (i)).

(b) For every σ, τ ≥ 1, there is a commutative diagram of A(1)∗-comodules
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R
′

σ ⊗R
′

τ

��

µ //

��

Rσ+τ
// R

′

σ+τ

��
H∗(Σ

6σXσ)⊗ H∗(Σ
6τXτ )

��

µ // H∗(Σ
6σ+6τXσ+τ )

��
H∗(Σ

6σY )⊗ H∗(Σ
6τY )

µ // H∗(Σ
6σ+6τY )

.

Let us explain the maps in this diagram. The spectrum Xσ is V (0), S0 ∪2 e
1 ∪η e

2

or Y if σ = 1, 2 or σ > 2 respectively; and in each case the map R
′

σ → H∗(Xσ) is
the projection appearing in the proof of Lemma 3.1.10, Lemma 3.1.2 or Lemma
3.1.3, respectively. The other vertical arrows are the inclusions of Xσ into Y.
The bottom horizontal arrow is the multiplication on H∗(Y ), described in Lemma
3.1.9, and the middle one is induced by the latter. The second upper arrow is the
projection on the factor R

′

σ+τ of the decomposition in Lemma 3.1.1.

The induced homomorphisms in Ext over A(1)∗ of all vertical arrows are studied
in the proof of Lemmas 3.1.8, 3.1.10, 3.1.11 and Theorem 3.1.14, according to
which the classes αs,t,σ, where σ ≥ 1 and (s, t, σ) /∈ {(2, 9, 1), (3, 10, 1)}, are
sent non-trivially in a unique way to Exts,tA(1)∗

(H∗(Y )), hence their products are
non-trivial by Lemma 3.1.9. This proves (b).

Remark 3.1.15. Let us summarise what has been done so far. First, Lemma 3.1.1
implies that

Ext∗,∗A(1)∗
(R) ∼= (

⊕

i≥0

Gi)⊗ F2[v
4
2]

where v42 ∈ Ext4,28(F2, R4) represented by y43 . Next, Lemma 3.1.14 describes
completely the products between Gi’s modulo the ideal generated by (v42). It is
then straightforward to verify that Ext∗,∗A(1)∗

(R) is generated by the classes of

h0, h1, v, v
4
1, α0,4,1, α1,8,1, α0,12,2, α1,14,2, α3,18,2, α0,18,3, v

4
2. (II.2)

Let us describe the subalgebra of primitives.

Corollary 3.1.16. There is the following isomorphism of graded algebras

Ext0,∗A(1)∗
(R) ∼= F2[α0,4,1, α0,12,2, v

4
2, α0,18,3]/(α

2
0,18,3 = α3

0,12,2 + α2
0,4,1v

4
2).

Proof. The F2-algebra Ext0,∗A(1)∗
(F2, R) is naturally identified with a subalgebra

ofR = F2[y1, y2, y3]. Through this identification, α0,4,1, α0,12,2, v
4
2, α0,18,3 identify
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with y1, y22, y
4
3, y

3
2+y1y

2
3 , respectively. Thus F2[α0,4,1, α0,12,2, v

4
2, α0,18,3]/(α

2
0,18,3 =

α3
0,12,2+α

2
0,4,1v

4
2) is isomorphic to the subalgebra of Ext0,∗A(1)∗

(F2, R) generated by
α0,4,1, α0,12,2, v

4
2, α0,18,3. On the other hand, it follows from Remark (3.1.15) that

α0,4,1, α0,12,2, v
4
2, α0,18,3 generate the whole subalgebra of primitives of Ext∗,∗A(1)∗

(R).
This concludes the proof of the lemma.

The differentials d1. Since the DMSS for F2 is a spectral sequence of algebras,
all d1-differentials can be determined on the set of algebra generators of (II.2).

Proposition 3.1.17. The d1-differential is multiplicative and on generators, it is

given as follows:

1) d1(h0) = 0
2) d1(h1) = 0
3) d1(α0,4,1) = 0
4) d1(α1,14,2) = 0
5) d1(α0,18,3) = 0
6) d1(v

4
1) = 0

7) d1(α0,12,2) = α3
0,4,1

8) d1(α1,8,1) = h0α
2
0,4,1

9) d1(v) = h30α0,4,1

10) d1(α3,18,2) = h30α0,18,3

11) d1(v
4
2) = α0,4,1α

2
0,12,2.

Proof. 1), 2), 4) For degree reasons, there is no room for a non-trivial d1-
differential on h0, h1, α1,14,2

3) It is easy to see that Ext1,4A(2)∗
(F2,F2) is non-trivial and that α0,4,1 is

the only class in the E1-term that can contribute to it. Therefore α0,4,1 is a
permanent cycle.

5) We see that h0α0,18,3 = α0,4,1α1,14,2. By the Leibniz rule, h0d1(α0,18,3) =
0. As h0 acts injectively on G3, it follows that d1(α0,18,3) = 0.

6) Since h20v
4
1 = v2, h20d1(v

4
1) = 0. This follows because d1(v41) takes

values in Ext4,8A(1)∗
(F2, R

′

1) on which h0 acts injectively.

7) We have that α0,12,2 is represented by theA(2)-primitive [1|y22]+[x1|y
2
1] ∈

E⊗R2. By Remark 2.1.6, d1(α0,12,2) is represented by d([1|y22]+[x1|y
2
1]) =

[1|y31] ∈ E ⊗R3, hence is equal to α3
0,4,1.

8) Because α0,4,1α1,8,1 = h0α0,12,2, the Leibniz rule implies that

α0,12,2d1(α1,8,1) = h0d1(α0,12,2) = h0α
3
0,4,1.
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That α0,4,1 acts injectively on the E1-term implies that d1(α1,8,1) = h0α
2
0,4,1˙

9) The relation α0,4,1v = h20α1,8,1 implies that

α0,4,1d1(v) = h20d1(α1,8,1) = h30α
2
0,4,1

As α0,4,1 acts injectively on the E1-term, we obtain that d1(v) = h30α0,4,1.

10) The relation vα1,14,2 = h0α3,18,2 shows that

h0d1(α3,18,2) = α1,14,2d1(v) = α1,14,2h
3
0α0,4,1 = h40α0,18,3

Therefore, d1(α3,18,2) = h30α0,18,3.

11) We check that v42 is represented by the A(2)-primitive [1|y43] + [x1|y
4
2]

in E ⊗ R4. By Remark 2.1.6, d1(v42) is represented by [1|y1y
4
2], hence is

equal to α0,4,1α
2
0,12,2.

It turns out that the DMSS collapses at the E2-term because there is no room for
higher differentials. In particular, the classes α1,14,2, α0,4,1, α

2
0,12,2, v

8
2, α0,18,3 sur-

vive the spectral sequence converging to elements of Ext∗,∗A(2)∗
(F2,F2) in appropri-

ate bidegrees. Following [DFHH14], those elements are denoted by α, h2, g, w2, β,
respectively. Furthermore, h2, g, w2, β generate a subalgebra of Ext∗,∗A(2)∗

(F2,F2)

isomorphic to F2[h2, g, w2, β]/(h
3
2, h2g, β

4 − g3). The relation β4 = g3 is a con-
sequence of a d1-differential. In effect, the relation α2

0,18,3 = α3
0,12,2 + α2

0,4,1v
4
2

implies the relation β4 − g3 − h42w2 = 0 in Ext∗,∗A(2)∗
(F2). But α4

0,4,1v
8
2 gets hit by

the differential

d1(v
8
2α0,4,1α0,12,2) = v82α0,4,1d1(α0,12,2) = v82α

4
0,4,1.

Thus the relation β4 = g3 + h42w2 becomes β4 = g3.

3.2 The Davis-Mahowald spectral sequence for A1

The A(2)∗-comodule structure of A1. In [DM81], Davis and Mahowald con-
structed four type 2 finite spectra whose mod 2 cohomology are isomorphic to
a free module of rank one over the subalgebra A(1) = 〈Sq1, Sq2〉 of the Steen-
rod algebra A. Let us review the construction of these spectra and their module
structure over the subalgebra A(2) = 〈Sq1, Sq2, Sq4〉 of A. Recall that Y is
V (0)∧Cη. The A-module structure of H∗(Y ) is depicted in Figure II.13. An ele-
ment of Ext1,3A(1)(H

∗(Y ),H∗(Y )) can be represented by anA(1)-module M sitting
in a short exact sequence of A(1)-modules

0→ H∗(Σ3Y )→M → H∗(Y )→ 0.
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0 21 3

Figure II.13 – Diagram of H∗(Y ): the straight lines represent Sq1 and the curved
lines represent Sq2, the numbers represent the degree of the cell.

It can be checked that M must be isomorphic either to H∗(Σ3Y ) ⊕ H∗(Y ) or to
A(1) as an A(1)-module. This means that

Ext1,3A(1)(H
∗(Y ),H∗(Y )) ∼= F2. (II.3)

The A(1)-module structure of A(1) is depicted in Figure II.14. One can ask

0 1

2 3
3 4

65

Figure II.14 – Diagram of A(1).

whether A(1) admits a structure of A(2)-module. If such a structure exists, then
according to the Adem relations Sq2Sq1Sq2 = Sq4Sq1 + Sq1Sq4, there must be
a nontrivial action of Sq4 on the nontrivial class of degree 1. It is straightforward
to verify that the latter is the only constraint to put an A(2)-module structure on
A(1). There are also possibilities for Sq4 to act nontrivially on the classes of de-
gree 0 and 2. These give in total four different A(2)-module structures on A1. In
other words, the inclusion of Hopf algebras A(1) →֒ A(2) induces a surjective
homomorphism

Ext1,3A(2)(H
∗(Y ),H∗(Y ))→ Ext1,3A(1)(H

∗(Y ),H∗(Y ))

whose kernel contains 4 element. Therefore,

Ext1,3A(2)(H
∗(Y ),H∗(Y )) ∼= F⊕32 .

Next, one observes that restriction along A(2) ⊂ A induces an isomorphism

Ext1,3A (H∗(Y ),H∗(Y )) ∼= Ext1,3A(2)(H
∗(Y ),H∗(Y )),

because for any A-module M sitting in a short exact sequence

0→ H∗(Σ3Y )→M → H∗(Y )→ 0
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there can not be any non-trivial Sqk for k ≥ 8 on M . It is proved in [DM81] that
the four classes of Ext1,3A (H∗(Y ),H∗(Y )) that are sent to the unique non-trivial
class of Ext1,3A(1)(H

∗(Y ),H∗(Y )) are permanent cycles in the Adams spectral se-
quence and converge to four v1- self-maps of Y , i.e., the maps Σ2Y → Y inducing
isomorphisms in K(1)-homology theory. As a consequence, the cofibers of these
v1-self-maps realise the four differentA-module structures onA(1). We will write
A1 to refer to any of these four finite spectra. Following [BEM17], we make the
following definition.

Definition 3.2.1. We define by A1[i, j], i, j ∈ {0, 1} the version of A1 having the
non-trivial Sq4 on the generator of degree 0 respectively 2 if and only if i = 1
respectively j = 1.

As a F2-vector spaces,

H∗(A1[ij]) ∼= F2{a0, a1, a2, a3, a3, a4, a5, a6}, (II.4)

where a0, a1, a2, a4, a5, a6 are duals to the generators of degree 0, 1, 2, 4, 5, 6 of
H∗(A1[ij]), respectively and a3, a3 are duals to the images of the generator of
degree 0 by Sq3, Sq3 + Sq2Sq1, respectively. From now on, we also denote by
A1[ij] the mod 2 homology of A1[ij] and A1 the mod 2 homology of A1. By
taking duals to the action of A(2) on H∗(A1[ij]), we obtain

Proposition 3.2.2. The left coaction of A(2)∗ on A1[ij] is given by

∆(a1) = [1|a1] + [ξ1|a0]
∆(a2) = [1|a2] + [ξ21 |a2]
∆(a3) = [1|a3] + [ξ1|a2] + [ξ21 |a1] + [ξ31 |a0]
∆(a3) = [1|a3] + [ξ21 |a1] + [ξ2|a0]
∆(a4) = [1|a4] + [ξ1|a3] + [ξ21 |a2] + [ξ31 |a1] + [ξ2|a1] + [ξ2ξ1|a0] + αi,j[ξ

4
1 |a0]

∆(a5) = [1|a5] + [ξ21 |a3] + [ξ21 |a3] + [ξ2|a2] + [ξ41 |a1] + [ξ2ξ
2
1 |a0]

∆(a6) = [1|a6] + [ξ1|a5] + [ξ21 |a4] + [ξ31 |a3] + [ξ31 |a3] + [ξ2|a3] + [ξ2ξ1|a2] +
βi,j[ξ

4
1 |a2] + [ξ2ξ

2
1 |a1] + [ξ51 |a1] + γi,j[ξ

6
1 |a0] + [ξ2ξ

3
1 |a0] + λi,j[ξ

2
2 |a0], where

αi,j =

{
0 if (i, j) ∈ {(0, 0), (0, 1)}

1 if (i, j) ∈ {(1, 0), (1, 1)}

βi,j =

{
0 if (i, j) ∈ {(0, 0), (1, 0)}

1 if (i, j) ∈ {(0, 1), (1, 1)}

γi,j = 1 + αi,j

and

λi,j = αi,j + βi,j
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Proof. The proof is a straightforward translation from A(2)-module structure to
A(2)∗-comodule structure using the formula of the duals of the Milnor basis in
[Mil58].

DMSS for A1. In what follows, we will apply in many places the shearing ho-
momorphism to find primitives representing certain cohomology classes„ see
[ABP69], Theorem 3.1. It is useful to recall it here. In general, let C be a Hopf
algebra with conjugation χ and B be Hopf-algebra quotient of C. Given a C-
comodule M , consider the composite

C ⊗M
id⊗∆
−−−→ C ⊗ C ⊗M

id⊗χ⊗id
−−−−−→ C ⊗ C ⊗M

µ⊗id
−−−→ C ⊗M.

When restricting to C�BM , this composite factors through (C�Bk)⊗M induc-
ing the shearing isomorphism of C-comodules

Sh : C�BM → (C�Bk)⊗M,

where C coacts on C�BM via the left factor and on (C�Bk) ⊗M diagonally.
Combined with the change-of-rings isomorphism, we have the following isomor-
phisms:

Ext∗B(k,M) ∼= Ext∗C(k, C�BM) ∼= Ext∗C(k, (C�Bk)⊗M).

In particular, via these isomorphisms, a class x ∈ Ext0B(k,M) is sent to Sh(1⊗x).

Proposition 3.2.3. The E1-term of the Davis-Mahowald spectral sequence con-

verging to Exts,tA(2)∗
(A1) is given by

Es,σ,∗1
∼=

{
0 if s > 0
Rσ if s = 0.

As a module over F2[α0,4,1, α0,12,2, v
4
2](⊂ Ext∗,∗A(1)∗

(R)), E∗,∗,∗1 is free of rank eight

on the following generators of

1, y3, y
2
3, y

3
3, y2, y2y3, y2y

2
3, y2y

3
3. (II.5)

Proof. In effect, Es,σ,t1 is equal to Exts,tA(1)∗
(Rσ ⊗ A1) by definition. The coaction

of A(1)∗ on Rσ ⊗ A1 is the usual diagonal coaction on tensor products. In ad-
dition, A1 is isomorphic to A(1)∗ as A(1)∗-comodules. By the change-of-rings
isomorphism, we obtain that

Exts,tA(1)∗
(Rσ ⊗ A1) ∼= Exts,tF2

(Rσ) ∼= Rσ. (II.6)
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The first part of the proposition follows.

For the second part, the action of Exts,tA(1)∗
(R) on Es,t,σ1

Exts,tA(1)∗
(R)⊗ Exts

′,t′

A(1)∗
(R⊗ A1) // Exts+s

′,t+t′

A(1)∗
(R⊗ A1)

is induced by the multiplication on R:

R⊗ (R⊗ A1)→ R⊗ A1.

Now let r ∈ Ext0,∗A(1)∗
(R) ⊂ R and s ∈ R ∼= Ext0,∗A(1)∗

(R ⊗ A1). By applying
the shearing isomorphism, the class s is represented by a unique element of the
form s ⊗ a0 +

∑
si ⊗ ai ∈ R ⊗ A1 where the ai are in positive degrees. The

action of r on s is then represented by rs ⊗ a0 +
∑
rsi ⊗ ai which represents

rs ∈ R ∼= Ext0,∗A(1)∗
(R ⊗ A1) via (II.6). In other words, the action of Ext0,∗A(1)∗

(R)

on Ext0,∗A(1)∗
(R ⊗ A1) is given by the multiplication of the polynomial algebra

R. The proof follows from the fact that F2[α0,4,1, α0,12,2, v
4
2] is identified with the

subalgebra of R generated by y1, y22, y
4
3 .

Let us analyse the differentials in this spectral sequence. As the dr-differentials
decrease s-filtration by r − 1, i.e., dr : Es,σ,tr → Es−r+1,σ+r,t

r and Es,σ,t1 = 0 if
s > 0, the spectral sequence collapses at the E2-term and there are no extension
problems. Therefore,

E0,σ,t
2

∼= Extσ,tA(2)∗
(A1).

We now turn our attention to the d1-differentials. As all elements of the E1-term
are in Ext0,∗A(1)∗

(R ⊗ A1), we can apply the remark after Proposition 2.1.5. We
have determined the d1-differential on the classes α0,4,1, α0,12,2, v

4
2 in Proposition

3.1.17. By the Leibniz rule, it remains to determine the d1-differential on the
classes of (II.5).

Proposition 3.2.4. There are the following d1-differentials

1) d1(1) = 0,
2) d1(y2) = 0,
3) d1(y3) = 0,
4) d1(y2y3) = 0,
5) d1(y2y

2
3) = 0,

6) d1(y2y
3
3) = 0,

7) d1(y
2
3) = α2

0,4,1y2,
8) d1(y

3
3) = α2

0,4,1y2y3.
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Proof. Parts 1− 4 follow from the sparseness of the E1-term.

5) The only nontrivial d1-differential that y2y23 can support is

d1(y2y
2
3) = α2

0,4,1α0,12,21.

However,
d1(α

2
0,4,1α0,12,2) = α2

0,4,1d1(α0,12,2) = α5
0,4,11 6= 0.

This means that α2
0,4,1α0,12,2 is not a d1-cycle, and so cannot be hit by a d1-

differential. Therefore, y2y23 is a d1-cycle.

6) Similarly, a nontrivial d1-differential on y2y33 would be

d1(y2y
3
3) = α2

0,4,1α0,12,2y3.

However,
d1(α

2
0,4,1α0,12,2y3) = α5

0,4,1y3 6= 0

by the Leibniz rule. Thus, y2y33 is a d1-cycle.

7-8) It suffices to prove that ν2y2 = 0 and ν2y2y3 = 0 in Ext∗,∗A(2)∗
(A1) because the

differentials in part 7) and 8) are the only possibilities for the latter to occur. We
will proceed using juggling formulas for Massey products, see [Rav86], Section
4 of Appendix A1. In effect, the classes 1 and y3 being permanent cycles by part
1) and part 3), they converge to classes in Ext0,0A(2)∗

(A1) and Ext1,6A(2)∗
(A1), respec-

tively. By sparseness even at the level of the E1-term of the DMSS, η1 = ηy3 = 0.
Hence the Massey product 〈ν, η, yi3〉 with i ∈ {0, 1} can be formed. We have that

ν2yi3 = 〈η, ν, η〉y
i
3 = η〈ν, η, yi3〉.

By sparseness of the DMSS, α2
0,4,1y

i
3 survives the DMSS and so ν2yi3 6= 0. It

follows that 〈ν, η, yi3〉 is nontrivial and must be equal to y2yi3. The fact that ν3 =
0 ∈ Ext3,12A(2)∗

(F2) allows us to do the following juggling

ν2y2y
i
3 = ν2〈ν, η, yi3〉 = 〈ν

2, ν, η〉yi3.

However, the Massey product 〈ν2, ν, η〉 lives in the group Ext3,14A(2)∗
(F2), which

vanishes by Theorem 3.1.14. This concludes the proof of parts 7) and 8).

E2-term of the Adams SS. We describe Ext∗,∗A(2)∗
(A1) as a module over

F2[h2, g, v
8
2]/(h

3
2, h2g) ⊂ Ext∗,∗A(2)∗

(F2).

We recall that g is represented by α2
0,12,2 in the DMSS for F2 We will denote by

e[s, t] where s, t ∈ N the unique non-trivial class belonging to Exts,s+tA(2)∗
(A1).
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Proposition 3.2.5. As a module over F2[h2, g, v
8
2]/(h

3
2, h2g), Ext

∗,∗
A(2)∗

(A1) is a di-

rect sum of cyclic modules generated by the following elements

e[0,0] e[1,5] e[1,6] e[2,11]

1 y2 y3 y2y3
(0) (h22) (0) (h22)

e[3,15] e[3,17] e[4,21] e[4,23]

y32 + y1y
2
3 y2y

2
3 y1y

3
3 + y32y3 y2y

3
3

(h22) (0) (h22) (0)

e[6,30] e[6,32] e[7,36] e[7,38]

y62 + y21y
4
3 y42y

2
3 + y1y2y

4
3 y62y3 + y21y

5
3 y42y

3
3 + y1y2y

5
3

(h2) (h2) (h2) (h2)

e[8,42] e[9,47] e[9,48] e[10,53]

y62y
2
3 + y21y

6
3 + y1y

3
2y

4
3 y72y

2
3 + y21y2y

6
3 y62y

3
3 + y21y

7
3 + y1y

3
2y

5
3 y72y

3
3 + y21y2y

7
3

(h2) (h2) (h2) (h2)

The second row in the table indicates a representative in the DMSS and the third

row the annihilator ideal of the corresponding generator.

Proof. As a corollary of Proposition 3.2.3, the E1-term of the DMSS for A1 is
isomorphic to a free module of rank 32 over F2[h2, g, v

8
2]. In particular, these 32

generators are h2-free. It turns out that one can choose these 32-generators in
such a way that there are exactly 16 h2-free towers that truncate 16 others by d1-
differentials. The question is how one can identify these 16 d1-cycles. For this,
we compute the d1-differentials on the following 32 generators of the E1-term:
{yi2y

j
3|0 ≤ i ≤ 3, 0 ≤ j ≤ 7}. Some of them are d1-cycles, for example y2, y3.

Whereas, some of them are not d1-cycle at first, but become so after adding a
multiple of h2, for example α0,12,2y2 + h2y

2
3 = y32 + y1y

2
3 . This procedure is

straightforward but lengthy, so we omit details here. It can be checked that the
generators listed in the table are d1-cycles. Finally, since g and v82 are d1-cycles,
Proposition 3.2.5 follows.

3.3 Two products

Now we turn our attention to the product between α ∈ Ext3,15A(2)∗
(F2) and e[4, 23] ∈

Ext4,27A(2)∗
(A1). This product is not detected in the DMSS because α has σ-filtration

1 in the DMSS whereas all non-trivial groups in the E∞-term of the DMSS
converging to Ext∗,∗A(2)∗

(A1) are in σ-filtration 0. Therefore, we need first to
find a representative of α in the total cochain complex of the double complex
A(2)⊗∗∗ ⊗ E2 ⊗ R and that of e[4, 23] in A(2)⊗∗∗ ⊗ E2 ⊗ R ⊗ A1, then take the
product at the level of cochain complexes and finally check if this product is a
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coboundary. It is tedious to carry out this procedure because any representative
of e[4, 23] contains many terms, and so it is not easy to check if the product is
a coboundary. In the sequel, we will express elements of A(2)⊗∗∗ ⊗ E2 ⊗ R∗,
B(2)⊗∗∗ ⊗E2⊗R∗) andA(2)⊗∗∗ ⊗E2⊗R∗⊗A1, B(2)⊗∗∗ ⊗E2⊗R∗⊗A1 in terms
of the obvious monomial basis formed by the tensor products of the monomial
basis of A(2)∗, E2, R∗, B(2)∗, F2, S∗ and the one of A1 given in (II.4). We recall
from Section 2 that there is a map of pairs (A(2)∗, E2)→ (B(2)∗, F2) given by

A(2)∗ = F2[ζ1, ζ2, ζ3]/(ζ
8
1 , ζ

4
2 , ζ

2
3 )→ B(2)∗ = F2[ζ1, ζ2, ζ3]/(ζ

4
1 , ζ

4
2 , ζ

2
3 )

ζi 7→ ζi i ∈ {1, 2, 3}

E2 = E(x1, x2, x3)→ F2 = E(x2, x3)

x1 7→ 0, x2 7→ x2, x2 7→ x2.

The induced map on their Koszul duals is

R = F2[y1, y2, y3]→ S = F2[y2, y3]

y1 7→ 0, y2 7→ y2, y3 7→ y3.

By an abuse of notation, we will denote by p these projection maps. The context
will make it clear which map is referred to.

The following two lemmas simplify computations.

Lemma 3.3.1. The product of α and e[4, 23] is equal either to 0 or to ge[3, 15].

Proof. This is trivial because ge[3, 15] is the only non-trivial class in the appro-
priate bidegree.

Lemma 3.3.2. The map p∗ = Ext7,42A(2)∗
(A1) → Ext7,42B(2)∗

(A1) induced by the

projection A(2)∗ → B(2)∗ sends ge[3, 15] to a non-trivial element.

Proof. The projection A(2)∗ → B(2)∗ induces a morphism of the DMSSs. The
morphism of the E1-terms reads

Exts,tA(2)∗
(E2 ⊗R⊗ A1)→ Exts,tB(2)∗

(F2 ⊗ S ⊗ A1).

By the change-of-rings isomorphism, this morphism identifies with the projection
p : R→ S, which is surjective. The class ge[3, 15] is detected by y42(y

3
2 + y1y

2
3) ∈

R7, which maps to y72 ∈ S7 via p. By naturality, y72 is a permanent cycle in
the target DMSS. The only class in the E1-term which can support a differential
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hitting y72 is y63 . The class y63 admits v42y
2
3 as a lift in the source DMSS. We have

that

d1(v
4
2y

2
3) = d1(v

4
2)y

2
3+v

4
2d1(y

2
3) = (α0,4,1α

2
0,12,2)y

2
3+v

4
2(α

2
0,4,1y2) = y1y

4
2y

2
3+y

4
3y

2
1y2.

This uses the Leibniz rule, Proposition 3.1.17 part 11), Proposition 3.2.4 part 7).
By naturality, the d1-differential in the target DMSS is equal to p(y1y42y

2
3+y

4
3y1y2),

which is equal to 0. Therefore, the image of ge[3, 15] is non-trivial.

Lemma 3.3.3. The product of α and e[4, 23] is non-trivial, hence equal to ge[3, 15]
if and only if the product of p∗(α) and p∗(e[4, 23]) is non-trivial.

Proof. The map p : A(2)∗ → B(2)∗ induces the commutative diagram

Ext3,15A(2)∗
(F2)⊗ Ext4,27A(2)∗

(A1)

p∗

��

// Ext7,42A(2)∗
(A1)

p∗

��

Ext3,15B(2)∗
(F2)⊗ Ext4,27B(2)∗

(A1) // Ext7,42B(2)∗
(A1),

where the horizontal maps are the respective multiplications. The result follows
from the fact that p∗(ge[3, 15]) is non-trivial by Lemma 3.3.2.

In view of Lemma 3.3.3, let us compute the product of p∗(α) and p∗(e[4, 23]).

Lemma 3.3.4. In the total cochain complexes ofB(2)⊗∗∗ ⊗F2⊗S and ofB(2)⊗∗∗ ⊗
F2 ⊗ S ⊗ A1, respectively :

i) p∗(α) is represented by [ξ2|1|y
2
2] + [ξ31 |1|y

2
2] + [ξ1|1|y

2
3] ∈ B(2)⊗F2⊗S

2;

ii) p∗(e[4, 23]) is represented by [1|y2y
3
3|a0]+[1|y22y

2
3|a1]+[1|y32y3|a2]+[1|y42|a3] ∈

F2 ⊗ S4 ⊗ A1.

Proof. A direct computation shows that these elements are cocycles of the total
differentials, which are not coboundaries. One way to prove that they represent
the right classes is to prove that they lift to cocycles in the total cochain complexes
of A(2)⊗∗∗ ⊗ E2 ⊗R and of A(2)⊗∗∗ ⊗ E2 ⊗R⊗ A1, respectively.

It is easy to check that [ξ2|1|y22] + [ξ31 |1|y
2
2] + [ξ1|1|y

2
3] + [ξ2|x1|y

2
1] + [ξ31 |x1|y

2
1] +

[ξ1|x2|y
2
1] + [1|y21y3] ∈ (A(2)∗ ⊗ E2 ⊗ R2) ⊕ (E2 ⊗ R3) is a cocycle in the total

complex and is a lift of [ξ2|1|y21] + [ξ31 |1|y
2
1] + [ξ1|1|y

2
2].

For the other element, instead of finding a lift it suffices to show that p∗ induces

an isomorphism Ext4,27A(2)∗
(A1)

∼=
−→ Ext4,27B(2)∗

(A1), so that both are isomorphic to



Chapter II. Homotopy groups of EhG24
C ∧ A1 69

F2. This can be proved by a similar argument to that used in the proof of Lemma
3.3.2. In effect, the non-trivial class of Ext4,27A(2)∗

(A1) is detected by y2y33 in the
DMSS. Via p∗, the latter is sent to y2y33 which is the unique non-trivial element of
the E1-term of the target DMSS in the appropriate tridegree. For degree reasons,
y2y

3
3 is not hit by any differential. Therefore, y2y33 survives the target DMSS and

it follows that Ext4,27A(2)∗
(A1)

∼=
−→ Ext4,27B(2)∗

(A1) ∼= F2.

Set M = [ξ2|1|y
2
2] + [ξ31 |1|y

2
2] + [ξ1|1|y

2
3] and N = [1|y2y

3
3|a0] + [1|y22y

2
3|a1] +

[1|y32y3|a2] + [1|y42|a3]. We need to show that MN , which is a (dv + dh)-cocycle,
represents a non-trivial class in Ext7,42B(2)∗

(A1). We see that MN is an element
in B(2)∗ ⊗ F2 ⊗ S6 ⊗ A1 and dv(MN) = 0. This means that MN represents
a class in Ext1,42B(2)∗

(F2 ⊗ S6 ⊗ A1). However, the latter group is trivial because
by the change-of-rings theorem, Ext∗,∗B(2)∗

(F2, F2 ⊗ S ⊗ A1) is isomorphic to S
which is concentrated only in cohomological degree 0. There must be an element
P ∈ F2 ⊗ S6 ⊗ A1 such that dv(P ) = MN , and so dh(P ) represents the same
class in Ext7,42B(2)∗

(F2, A1) as MN does.

We recall the values of λi,j as introduced in Proposition 3.2.2: λ1,0 = λ0,1 = 1
and λ0,0 = λ1,1 = 0.

Lemma 3.3.5. If we write P in the obvious monomial basis ofB(2)⊗F2⊗S
6⊗A1,

P = λi,j[1|x2|y
6
2|a0] + ...,

where λi,j is as in Proposition 3.2.2, i.e., λ1,0 = λ0,1 = 1 whereas λ0,0 = λ1,1 = 0.

Proof. The product MN contains the term [ξ2|1|y
6
2|a3]. One can check that P must

contain the term [1|y62|a6], so that dv(P ) contains the term [ξ2|1|y
6
2|a3]. Using the

formula for the coaction of A(2)∗ on a6, one sees that dv(P ) contains the term
λi,j[ξ

2
2 |1|y

6
2|a0], which is not a term of MN . In order to compensate this term, P

must contain the term λi,j[1|x2|y
6
2|a0].

Lemma 3.3.6. A (dh + dv)-cycle in F2 ⊗ S
7 ⊗A1 gives rise to a non-trivial class

in Ext7,42B(2)∗
(A1) if and only if it contains the term [1|y72|a0].

Proof. It is shown in the proof of Lemma 3.3.2 that

Ext7,42B(2)∗
(A1) ∼= F2

and that this group arises from

Ext0,42B(2)(F2 ⊗ S7 ⊗ A1) ∼= F2{y
7
2} ⊂ S7.
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Therefore, by the shearing homomorphism, the only element in F2⊗S
7⊗A1 that

represents the non-trivial class of Ext7,42B(2)∗
(A1) must contain the term [1|y72|a0].

Proposition 3.3.7. The product αe[4, 23] is equal to λi,jge[3, 15].

Proof. αe[4, 23] is non-trivial if and only if dh(P ) represents a non-trivial class
in Ext7,42B(2)∗

(A1). Lemma 3.3.5 shows that dh(P ) contains the term λi,j[1|y
7
1|a0].

Hence, Lemma 3.3.6 concludes the proof.

The product between β ∈ Ext3,18A(2)∗
(F2) and e[3, 15] ∈ Ext3,18A(2)∗

(A1) is easier
because both have σ-filtration 0 in the Davis-Mahowald spectral sequence.

Proposition 3.3.8. βe[3, 15] = e[6, 30].

Proof. The class β is represented by y32 + y1y
2
3 in R3 and e[3, 15] is represented

by [y32 + y1y
2
3|a0] in R3 ⊗A1, both in the E1-term of the respective DMSS. So the

product βe[3, 15] is represented by [y62 + y21y
4
3|a0] in the E1-term of the DMSS,

which represents e[6, 30] by Proposition 3.2.5.

4 Partial study of the Adams spectral sequence for

tmf ∧ A1

In this section, we establish some differentials as well as some structures of the
ASS for A1. These are essential bits of information allowing us to run the homo-
topy fixed point spectral sequence in the next section.

Recall that the ASS for tmf ∧A1 which has E2-term isomorphic to Ext∗,∗A(2)∗
(A1)

is a spectral sequence of modules over that for tmf , whose E2-term is isomorphic
to Ext∗,∗A(2)∗

(F2). We first recollect some known properties of the ASS for tmf ,
see [DFHH14], Chapter 13.

Theorem 4.0.1. (i) The class g ∈ Ext4,24A(2)∗
(F2) is a permanent cycle detect-

ing the image of κ ∈ π20(S
0) via the Hurewicz map S0 → tmf .

ii) There is the following d2-differential in the Adams spectral sequence for

tmf
d2(w2) = gβα.

(iii) There is the following d3-differential in the Adams spectral sequence for

tmf
d3(w

2
2(v

4
2η)) = g6.

(iv) The class ∆8 := w4
2 survives the Adams spectral sequence.
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Proposition 4.0.2. In the ASS for tmf ∧ A1, there exists λ ∈ F2 such that the

following statements are equivalent:

i) d2(w2e[4, 23]) = λg2e[6, 30],
ii) d2(w2e[9, 48]) = λg4e[3, 15],
iii) d2(w2e[10, 53]) = λg5e[0, 0],
iv) d2(w2e[7, 38]) = λg4e[1, 5].

Proof. We will prove that i) ⇒ ii) ⇒ iii) ⇒ iv) ⇒ i). The charts of Figures
(II.16) and (II.17) will make the proof easier to follow. First, we observe that all of
the classes e[4, 23], e[7, 38], e[9, 48], e[10, 53] are permanent cycles, by sparseness.

i) ⇒ ii) Suppose d2(w2e[4, 23]) = g2e[6, 30]. Then d2(g
2w2e[4, 23]) =

g4e[6, 30] by g-linearity. It follows that there is no room for a non-trivial dif-
ferential on w2

2e[3, 15]. In order words, w2
2e[3, 15] is a permanent cycle. Because

of part iii) of Theorem 4.0.1, a gk-multiple of w2
2e[3, 15] must be hit by a dif-

ferential for some k less than 7. One can check that the only possibility is that
d2(w

3
2e[9, 48]) = g4w2

2e[3, 15]. Since w2
2 is a d2-cycle in the ASS for tmf , this

differential implies that d2(w2e[9, 48]) = g4e[3, 15].
ii) ⇒ iii) Suppose d2(w2e[9, 48]) = g4e[3, 15]. Then the class w2

2e[0, 0] is
a permanent cycle, by sparseness. Again, a gk-multiple of w2

2e[0, 0] for some k
smaller than 7 must be hit by a differential. Inspection shows that the classes
w3

2e[10, 53] and w4
2e[1, 5] are the only ones that have the appropriate bidegree to

support such a differential. However, w4
2e[1, 5] is a permanent cycle, because

w4
2 and e[1, 5] are permanent cycles in their respective ASS. Thus, we have that

d2(w2e[10, 53]) = g5e[0, 0].
iii ⇒ iv) Suppose d2(w2e[10, 53]) = g5e[0, 0]. Then the class w2

2e[1, 5] is
a permanent cycle, as there is no room for a non-trivial differential on it. Then
gkw2

2e[1, 5] must be hit by a differential for some k less than 7. Inspection shows
that the only possibility is that d2(w3

2e[7, 38]) = g4w2
2e[1, 5]. As w2

2 is a d2-cycle,
it follows that d2(w2e[7, 38]) = g4e[1, 5].

iv) ⇒ i) Suppose d2(w2e[7, 38]) = g4e[1, 5]. By g-linearity, we get that
d2(gw2e[7, 38]) = g5e[1, 5]. It follows by sparseness thatw2

2e[6, 30] is a permanent
cycle. Then the class gkw2

2e[6, 30] is hit by a differential for some k less than 7.
Inspection shows that the only possibility is that d2(w3

2e[4, 23]) = g2w2
2e[6, 30].

Therefore, d2(w2e[4, 23]) = g2e[6, 30] by w2
2-linearity.

Theorem 4.0.3. In the Adams spectral sequence for tmf ∧ A1[ij], there are the

following differential d2:

i) d2(w2e[4, 23]) = λi,jg
2e[6, 30],

ii) d2(w2e[9, 48]) = λi,jg
4e[3, 15],

iii) d2(w2e[10, 53]) = λi,jg
5e[0, 0],

iv) d2(w2e[7, 38]) = λi,jg
4e[1, 5].
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Proof. By the Leibniz rule and part (ii) of Theorem 4.0.1,

d2(w2e[4, 23]) = d2(w2)e[4, 23] = gβαe[4, 23] = λi,jg
2e[6, 30],

where the last equality follows from Proposition 3.3.7 and Proposition 3.3.8. Thus,
the theorem follows from Proposition 4.0.2.

Proposition 4.0.4. There are the following d3-differentials in the Adams spectral

sequence for tmf ∧ A1

d3(w
2
2e[10, 53]) = g5e[9, 48]

d3(w
3
2e[1, 5]) = g5w2e[0, 0].

148 149 150 151 152

25

26

27

28

29

30

gw2e[6, 32]

g5we[0, 0]

g5e[9, 48]

w3e[1, 5]

w2e[10, 53]

g4we[4, 21]

w3e[1, 6]

ν2w3e[0, 0]

g3we[8, 42]

g6e[6, 30]

g2w2e[3, 15]

g4we[4, 23]

g7we[2, 11]

νw3e[1, 5]

gw2e[7, 36]

g6e[6, 32]

Figure II.15 – The Adams spectral sequence in the range 148 ≤ t− s ≤ 152

Proof. We can check from the chart that e[9, 48] and we[0, 0] are permanent cy-
cles. Then gle[9, 48] and gkwe[0, 0] must be targets of some differentials for some
l and k less than 7. Inspection of the E2-term shows that either

d2(w
2
2e[10, 53]) = g5we[0, 0] and d4(w

3
2e[1, 5]) = g5e[9, 48]

or
d3(w

2
2e[10, 53]) = g5e[9, 48] and d3(w

3
2e[1, 5]) = g5w2e[0, 0].
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However, the former possibility is ruled out because of the Leibniz rule:

d2(w
2
2e[10, 53]) = d2(w

2
2)e[10, 53] = 2w2d2(w2)e[10, 53] = 0,

where the first equality follows from the fact that e[10, 53] is a permanent cycle,
by spareness.

Corollary 4.0.5. The Toda bracket 〈g5, e[9, 48], ν〉 can be formed and contains
only elements which are divisible by g.

For references on Toda bracket, see [Tod62], [Koc90].

Proof. In the E4-term of the ASS, the Massey product 〈g5, e[9, 48], ν〉 has coho-
mological filtration 27 and is equal to zero with zero indeterminacy. On the other
hand the corresponding Toda bracket can be formed with indeterminacy contain-
ing only multiples of g. We can check that all conditions of Moss’s convergence
theorem [Mos70] are met. This implies that the Toda bracket 〈g5, e[9, 48], ν〉 con-
tains an element detected in filtration 27 by 0, thus is a multiple of g. Therefore,
this Toda bracket contains only multiples of g.

Finally, we need to have control of the action of the class ∆8 = w4
2 ∈ Ext32,224A(2)∗

(F2)

on the E∞-term of the ASS for tmf ∧A1. This will allow us to compare π∗(tmf ∧
A1) with π∗(E

hG24
C ∧A1) (see Corollary 5.1.3) and hence to discuss higher differ-

entials in the HFPSS for EhG24
C ∧ A1.

Proposition 4.0.6. The class w4
2 acts freely on the E∞-term of the ASS for tmf ∧

A1. As a consequence, the element ∆8 ∈ π192(tmf) acts freely on the homotopy

groups of tmf ∧ A1.

Proof. Using the description of the E2-term of the ASS for tmf ∧A1 in Theorem
3.2.5 and an elementary bidegree inspection, we can see that, if a class y is in an
appropriate bidegree to support a differential hitting a class of the form w4

2x for
some class x, then y is divisible by w4

2. Knowing that w4
2 is a permanent cycle

in the ASS for tmf , we conclude that, if a class x survives the Er-term, then the
multiple of x by all powers ofw4

2 also survive that term. Therefore, the Proposition
follows by induction.

Proposition 4.0.7. For every element x ∈ π∗(tmf ∧ A1), the element ∆8x is

divisible by κ (resp. ν) if and only if x is divisible by κ (resp. ν).

Proof. The argument is similar to that used in the proof of Proposition 4.0.6. A
bidegree inspection shows that, if a class y ∈ Ext∗,∗A(2)∗

(A1) is in an appropriate
bidegree whose (exotic) product with g (resp. ν) might detect ∆8x, then y is
divisible by w4

2. We conclude the proof by using the fact that the class w4
2 acts

freely on the ASS for tmf ∧ A1, by Proposition 4.0.6.
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Figure II.16 – Adams spectral sequence for A1 in the range 0 ≤ t− s ≤ 48

48 52 56 60 64 68 72 76 80 84 88 92 96 100
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we[4, 23]

g2e[6, 30]

g4e[1, 5]

we[7, 38]

g3e[6, 30]

gwe[4, 23]

g4e[3, 15]

w2

we[9, 48]

g5

w2e[1, 5]

we[10 53]

Figure II.17 – Adams spectral sequence for A1 in the range 48 ≤ t − s ≤ 101. The arrows in bold are differentials for the
models A1[10] and A1[01] and the dashed arrows for the models A1[00] and A1[11]
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5 The homotopy fixed point spectral sequence for

EhG24
C ∧ A1

5.1 Preliminaries and recollection on cohomology of G24

We recall the action of G24 on (EC)∗ from Theorem 1.5.1. The action of G24 on
W(F4)[[u1]][u

±1] is given by

ω(u−1) = ζ2u−1 ω(v1) = v1

i(u−1) =
−u−1 + v1
ζ2 − ζ

i(v1) =
v1 + 2u−1

ζ2 − ζ

j(u−1) =
−u−1 + ζ2v1

ζ2 − ζ
j(v1) =

v1 + 2ζ2u−1

ζ2 − ζ

k(u−1) =
−u−1 + ζv1
ζ2 − ζ

k(v1) =
v1 + 2ζu−1

ζ2 − ζ
.

Equations I.11 and I.14 give us a way to get access to the homotopy groups of
EhG24
C ∧ A1.

Theorem 5.1.1. There is a homotopy equivalence

[(∆8)−1]tmf ∧ A1 ≃ (EhG24
C )hGal ∧ A1,

where Gal denotes the Galois group Gal(F4/F2).

Proof. We have

[(∆8)−1]tmf ∧ A1 ≃ TMF ∧ A1 (Equation I.14)

≃ L2(TMF ) ∧ A1 (TMF is E(2)-local)

≃ L2(TMF ∧ A1) (L2 is smashing)

≃ LK(2)(TMF ) ∧ A1

≃ (EhG24
C )hGal(F4/F2) ∧ A1 (Equation I.11).

The fourth equivalence is Lemma 7.2 of [HS99] applied to the K(2)-localisation
and A1, which is finite spectrum of type 2.

Corollary 5.1.2. There is a homotopy equivalence

Gal+ ∧ [(∆8)−1]tmf ∧ A1 ≃ EhG24
C ∧ A1.

Therefore,

W(F4)⊗Z2 (∆
8)−1(π∗(tmf ∧ A1)) ∼= π∗(E

hG24
C ∧ A1).
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Proof. This is a consequence of Theorem 5.1.1 and Lemma 1.37 of [BG18].

Let us denote by

Θ : W(F4)⊗Z2 π∗(tmf ∧ A1)→ π∗(E
hG24
C ∧ A1), (II.7)

given by pre-composing the isomorphism of Corollary 5.1.2 with the natural ho-
momorphism π∗(tmf ∧ A1)→ π∗([(∆

8)−1]tmf ∧ A1).

Corollary 5.1.3. The homomorphism Θ is injective. Moreover, it remains injec-
tive after quotienting out by the ideal of π∗(S0) generated by (κ, ν).

Proof. This follows from Theorem 5.1.1, Proposition 4.0.6 and Proposition 4.0.7.

We continue to recollect some necessary information about the HFPSS converging
to π∗(E

hG24
C ):

Hs(G24, (EC)t) =⇒ πt−s(E
hG24
C ). (II.8)

The elements η ∈ π1(S
0), ν ∈ π3(S

0), κ ∈ π20(S
0) are sent non-trivially to ele-

ments of the same name in π∗(E
hG24
C ) via the Hurewicz map S0 → EhG24

C . As the
latter factors through the unit map of tmf , the element κ6 = 0 in π∗(E

hG24
C )

because κ6 = 0 in π∗(tmf) (see [Bau08]). These elements are detected by
η ∈ H1(G24, (EC)2), ν ∈ H1(G24, (EC)4), κ ∈ H4(G24, (EC)24), respectively.
Furthermore, there is a class ∆ ∈ H0(G24, (EC)24) such that ∆8 is a permanent
cycle detecting the periodicity of EhG24

C .

The HFPSS for EhG24
C ∧ A1 is a spectral sequence of modules over that of (II.8):

Hs(G24, (EC)tA1) =⇒ πt−s(E
hG24
C ∧ A1). (II.9)

In Section 5.2, we will compute H∗(G24, (EC)∗A1) as a module over a certain
subalgebra of H∗(G24, (EC)∗). Let π : (EC)∗ → F4[u

±1] be the quotient of (EC)∗
by the maximal ideal (2, u1). As the ideal (2, u1) is preserved by the action of
SC , the ring F4[u

±1] inherits an action of SC , and so of its subgroup G24. We
need the computation of the ring structure of H∗(G24,F4[u

±1]), which is due to
Hans-Werner Henn, see [Bea17], Appendix A.

Proposition 5.1.4. There are classes z ∈ H4(G24,F4[u
±1]0), a ∈ H1(G24,F4[u

±1]2),
b ∈ H1(G24,F4[u

±1]4), v2 ∈ H0(G24, (F4[u
±1])6) such that there is an isomor-

phism of graded algebras

H∗(G24,F4[u
±1]) ∼= F4[v

±1
2 , z, a, b]/(ab, b3 = v2a

3).

Proposition 5.1.5. The homomorphism of graded algebras

H∗(G24, EC∗)→ H∗(G24,F4[u
±1])

induced by the projection (EC)∗ → F4[u
±1] sends η to a, ν to b, κ to v42z, and ∆

to v42 .
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5.2 On the cohomology groups H∗(G24, (EC)∗(A1))

We first determine (EC)∗(A1) using the cofiber sequences through which A1 are
defined. The cofiber sequence ΣS0 η

−→ S0 → Cη gives rise to a short exact
sequence of EC-homology

0→ (EC)∗ → (EC)∗(Cη)→ (EC)∗(S
2)→ 0,

since (EC)∗ is concentrated in even degrees. Hence, as an (EC)∗-module

(EC)∗(Cη) ∼= W(F4)[[u1]][u
±1]{e0, e2},

where e0 is the image of 1 ∈ (EC)0 and e2 is a lift of Σ21 ∈ (EC)2(S
2). Next, the

long exact sequence in EC-homology associated to Cη
2
−→ Cη → Y is the short

exact sequence

0→ (EC)∗(Cη)
×2
−→ (EC)∗(Cη)→ (EC)∗(Y )→ 0

since multiplication by 2 on (EC)∗(Cη) ∼= W(F4)[[u1]][u
±1]{e0, e2} is injective.

Therefore
(EC)∗(Y ) ∼= F4[[u1]][u

±1]{e0, e2}.

Now A1 is the cofiber of some v1-self map of Y : Σ2Y
v1−→ Y → A1. The follow-

ing lemma describe the induced homomorphism in EC-homology of these v1-self
maps.

Lemma 5.2.1. The homomorphism (EC)∗(v1) is given by multiplication by u1u
−1.

Therefore,

(EC)∗(A1) ∼= F4[u
±1]{e0, e2}.

Proof. Let K(1) be the first Morava K-theory at the prime 2 such that K(1)∗ ∼=
F2[v

±1
1 ] where |v1| = 2 and BP be the Brown-Peterson spectrum at the prime 2.

There is a map of ring spectraBP → K(1) that classifies the complex orientation
of K(1). Recall that the coefficient ring of BP is given by

BP∗ ∼= Z(2)[v1, v2, ...],

where |vi| = 2(2i−1), see [Ada74], Part II. The induced homomorphism of coef-
ficient rings sends v1 to v1. The map BP → K(1) gives rise to the commutative
diagram

BP∗(Σ
2Y )

BP∗(v1) //

��

BP∗(Y )

��
K(1)∗(Σ

2Y )
K(1)∗(v1) // K(1)∗(Y )
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By definition, a v1-self-map of Y induces in K(1)-homology multiplication by
v1. The above diagram forces, then for degree reasons, that BP∗(v1) is given by
multiplication by v1 ∈ BP2. Now, let c : BP → EC be the map of ring spectra
that classifies the 2-typification of the formal group law of EC . One can show
that the 2-series of the latter has leading term u1u

−1x2 modulo (2), see [Bea17],
Proposition 6.1.1. This implies that the induced homomorphism c∗ : BP∗ →
(EC)∗ sends v1 to u1u

−1 modulo 2. By naturality, (EC)∗(v1) is also given by
multiplication by u1u−1.

We now describe the action of G24 on (EC)∗(A1). For any 2-local finite spectrum
X , the map c, introduced in the proof of Lemma 5.2.1, induces a map of ANSS

Exts,tBP∗BP
(BP∗, BP∗X) //

��

Exts,t(EC)∗EC
((EC)∗, (EC)∗X)

��
πt−s(X) // πt−s(LK(2)X)

where (EC)∗EC stands for π∗(LK(2)(EC ∧ EC)). By Morava’s change-of-ring
theorem (see [Dev95]), one has

Exts,t(EC)∗EC
((EC)∗, (EC)∗) ∼= Hs

c(GC , (EC)t).

Now the map c induces a map of short exact sequences

0 // BP∗
×2 //

c∗

��

BP∗ //

c∗

��

BP∗/(2) //

c∗
��

0

0 // EC∗
×2 // EC∗ // EC∗/(2) // 0.

Therefore, we obtain the commutative diagram

Ext0,∗BP∗BP
(BP∗, BP∗/2)

c∗

��

δBP // Ext1,∗BP∗BP
(BP∗, BP∗)

c∗

��
H0
c(GC , EC∗/2)

δEC // H1
c(GC , EC∗),

where δBP and δEC
denote the respective connecting homomorphisms. By [Rav86],

Theorem 4.3.6, one has that

Ext0,2BP∗BP
(BP∗, BP∗/2) = Z(2){v1} and δBP (v1) = η ∈ Ext1,2BP∗BP

(BP∗, BP∗),

where η is a permanent cycle representing the Hopf element η ∈ π1(S
0). By

naturality, δEC
(v1) = c∗(η). Therefore, as a cocycle in Mapc(GC , (EC)2), c∗(η)

is given by

GC → (EC)2, g 7→
g(v1)− v1

2
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On the other hand, let us consider the short exact sequence

0→ EC∗ → EC∗(Cη)→ EC∗(S
2)→ 0

representing the class c∗(η), so that the connecting homomorphism sends Σ21 to
c∗(η). Thus, if e2 is a lift of Σ21 in EC∗(Cη), then c∗(η) is represented by the
cocycle

GC → (EC)2, g 7→ g(e2)− e2.

This implies that one can modify e2 so that

g(v1)− v1
2

= g(e2)− e2 ∀ g ∈ GC .

With this choice of e2, we see that EC∗(Cη) = EC∗{e0, e2} and the action of GC

on e2 is given by the formula

g(e2) = e2 +
g(v1)− v1

2
e0 (II.10)

Note that when determining (EC)∗(A1), we did not specify any lift e2 of Σ21.
From now on, we will fix e2 such that the formula of (II.10) holds.

Proposition 5.2.2. As an (EC)∗-module, (EC)∗(A1) is isomorphic to F4[u
±1]{e0, e2}

and the action of G24 is given by

ω(u−1) = ζ2u−1, ω(e0) = e0, ω(e2) = e2

i(u−1) = u−1, i(e0) = e0, i(e2) = e2 + u−1e0

j(u−1) = u−1, j(e0) = e0, j(e2) = e2 + ζ2u−1e0

k(u−1) = u−1, k(e0) = e0, k(e2) = e2 + ζu−1e0

Proof. The first part of the statement is the content of Lemma 5.2.1. The second
part follows from the action of G24 on v1 given in Theorem 1.5.1 and the formula
(II.10).

Corollary 5.2.3. EC∗(A1) sits in a non-split short exact sequence of G24-modules

0→ F4[u
±1]{e0} → EC∗(A1)→ F4[u

±1]{e2} → 0. (II.11)

Proof. This is immediate in view of the explicite description of the action of G24

on (EC)∗A1.

The cohomology group H∗(G24,F4[u
±1]{ei}) i ∈ {0, 2} is free of rank one as a

module over H∗(G24,F4[u
±1]). For i ∈ {0, 2}, we choose the generators e[0, i] ∈

H0(G24, (F4[u
±1]{ei})i) of these modules.
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Corollary 5.2.4. The connecting homomorphism induced from the short exact
sequence (II.11) in Corollary 5.2.3

H∗(G24,F4[u
±1]{e2})

δ
−→ H∗+1(G24,F4[u

±1]{e0})

is H∗(G24,F4[u
±1])-linear and sends e[0, 2] to ae[0, 0] up to a unit of F4, where,

as a reminder, a ∈ H1(G24, (F4[u
±1])2).

Proof. That δ is H∗(G24,F4[u
±1])-linear is a well-known property of the connect-

ing homomorphism (See [Bro82], V.3). Next, since the short exact sequence in
Corollary 5.2.3 does not split, the connecting homomorphism δ sends e[2, 0] to a
non-trivial class and hence to ae[0, 0] up to a unit of F4.

Using the description of H∗(G24,F4[u
±1]) and the long exact sequence associated

to the short exact sequence of Corollary 5.2.3, we obtain the following description
of H∗(G24, (EC)∗(A1)):

Proposition 5.2.5. As a module over H∗(G24,F4[u
±]), there is an isomorphism

H∗(G24, (EC)∗(A1)) = F4[v
±1
2 , z, a, b]/(a, b3){e[0, 0], e[1, 5]}

where e[0, 0] ∈ H0(G24, (EC)0(A1)) and e[1, 5] ∈ H1(G24, (EC)6(A1)).

−4 0 4 8 12 16 20 24
0
1
2
3
4

Figure II.18 – Hs(G24, (EC)t(A1)) depicted in the coordinate (s, t-s))

The above proposition also gives the action of H∗(G24, (EC)∗) on H∗(G24, (EC)∗A1).
In effect, the action ofEC∗ onEC∗(A1) factors though F4[u

±1] viaEC∗
π
−→ F4[u

±1].
As a consequence, the action of H∗(G24, EC∗) on H∗(G24, EC∗(A1)) factors through
the induced homomorphism in cohomology of G24. In particular, il follows from
Proposition 5.1.5 that the classes ∆, κ, ν act on H∗(G24, EC∗(A1)) as v42, v

4
2z, b do,

respectively. Because ∆, κ, ν are classes of the E2-term of the HFPSS for EhG24
C ,

we will describe the HFPSS for EhG24
C ∧ A1 in terms of the latter. We use the

notation e[s, t] to denote the unique non-trivial class, up to a non-zero element of
F4, of Es,s+tr . Thus, Proposition 5.2.5 can be rewritten as follows. As a module
over F4[∆

±1, κ, ν]/(ν3), H∗(G24, (EC)∗A1) is free on the following classes:

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[0, 12], e[1, 17], e[0, 18], e[1, 23].
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5.3 Differentials of the homotopy fixed point spectral sequence

for EhG24

C ∧ A1

The HFPSS for EhG24
C ∧A1 has the following features. The spectrum EC ∧A1

is a G24-EC-module in the sense that EC ∧A1 is an EC-module and the structure
maps are G24-equivariant. This guarantees that the HFPSS for EhG24

C ∧ A1 is a
module over that for EhG24

C . In particular, all differentials are κ-linear. This ele-
ment plays a central role here: the groupG24 is a group with periodic cohomology
(see [Bro82], Chapter VI) and κ ∈ H4(G24, (EC)∗) is a cohomological periodicity
class. These features induce more structure on the HFPSS.

Definition 5.3.1. Let R be a ring spectrum and G be a finite group acting on R
by maps of ring spectra. The pair (G,R) is said to be regular if G is a group
with periodic cohomology and there exists a cohomological periodicity class u ∈
H∗(G,R∗) which is a permanent cycle in the HFPSS for RhG.

Lemma 5.3.2. Let (G,R) be a regular pair as in Definition 5.3.1 and X be a G-

R spectrum. Suppose u ∈ Hk(G,R∗) is a cohomological periodicity class which

is a permanent cycle in the HFPSS for RhG. Then the Er-term of the HFPSS for

XhG has the following properties:

(i) All classes of cohomological filtration at least k are divisible by u;

(ii) All classes of cohomological filtration at least r are u-free.

Proof. We will prove by induction on r that the Er-term of the HFPSS for XhG

has the properties (i) and (ii). The E2-term is isomorphic to H∗(G, π∗(X)).
We recall that the natural map from the cohomology to the Tate cohomology
ι : Hs(G, πtX)→ Ĥs(G, πt(X)) is an epimorphism and is an isomorphism when
s > 0, see [Bro82], Chapter VI. Because G has periodic cohomology, we have

Ĥs(G, πtX) ∼= Ĥs(G, πtX)[u−1],

which means that the group Ĥs(G, πtX) is u-free and is divisible by u. Since
ι : Hs(G, πtX) → Ĥs(G, πt(X)) is an isomorphism when s > 0, all classes of
positive cohomological degree of Hs(G, πtX) are u-free.

Now suppose x is a class of Hs(G, πtX) with s ≥ k. Then the class u−1ι(x) ∈
Ĥs−k(G, πtX) has a pre-image y ∈ Hs−k(G, πtX) (because s− k ≥ 0), i.e.

ι(y) = u−1ι(x).

This implies that
ι(uy) = uι(y) = ι(x),

and thus since s > 0,
uy = x.
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Thus, the E2-term has the properties (i) and (ii). Suppose that the Er-term satis-
fies (i) and (ii). Let [x] ∈ Er+1 be a non-trivial class represented by x ∈ Er. Sup-
pose that x has its cohomological filtration s ≥ k. By the induction hypothesis,
there exists y ∈ Es−k,∗r such that uy = x. We show that y is a dr-cycle. Because
x is a dr-cycle, we have by u-linearity that udr(y) = dr(uy) = dr(x) = 0. How-
ever, the cohomological filtration of dr(y) is at least r, and so it is u-free by the
induction hypothesis, and so dr(y) = 0. Therefore, [x] is divisible by u.

Now we prove that Er+1 has the property (ii). Suppose that [x] is u-torsion and
has its cohomological filtration at least r + 1. Without loss of generality, we can
assume that u[x] = 0. Then there exists y ∈ Er such that dr(y) = ux. The coho-
mological filtration of y is at least to r + 1 + k − r = k + 1, hence y is divisible
by u, i.e., there exists z ∈ Er such that uz = y, and then by u-linearity,

udr(z) = dr(uz) = dr(y) = ux.

However, dr(z)− x has cohomolgical filtration at least r+1, it must be u-free by
hypothesis (ii), hence is equal to zero, i.e., [x] is trivial in Er+1.

We conclude that the Er+1-term satisfies (i) and (ii), thus finishing the proof
by induction.

Corollary 5.3.3. Let (G,R) be a regular pair and X be a G-R spectrum. Suppose
u ∈ Hk(G,R∗) is a cohomological periodicity class which is a permanent cycle
in the HFPSS for RhG. Then we have, in the HFPSS for XhG,

1. At the Er-term, u-torsion classes are permanent cycles.
2. Any u-free tower is truncated by at most one other u-free tower by the same

differential. More precisely, if x is a class of cohomological filtration less
than k, then there exists at most one class y of cohomological filtration
less than k such that there exists an unique integer l and a unique integer r
such that dr(umy) = um+lx for all non-negative integers m. Moreover, all
classes uix for i ∈ {0, 1, ...,m− 1} survive the spectral sequence.

3. Suppose some power of u is hit by a differential in the HFPSS for RhG.
Then any u-free tower consisting of permanent cycles is truncated by a
unique u-free tower. Moreover, the HFPSS has a horizontal vanishing line.

4. Every element of π∗(XhG) that is detected in filtration at least k is divisible
by u where u is an element of π∗(RhG) detected by u.

Remark 5.3.4. This situation turns out to be abundant once the group in question
is a group with periodic cohomology. For example, all finite subgroups of GC

have these properties.
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We return to the HFPSS for EhG24
C ∧ A1. We will call the set {κlx|l ∈ N} as-

sociated to a class x in some page of the HFPSS the κ-family of that class. We
note that all classes of Es,t2 with t − s odd are trivial, so that all differentials of
length even are trivial, i.e., we have that Er = Er+1 if r is even; this is called
the checkerboard phenomenon. The following proposition gives us the horizontal
vanishing line of the HFPSS for EhG24

C ∧ A1.

Proposition 5.3.5. The HFPSS for EhG24
C ∧ A1 has a horizontal vanishing line of

height 23, i.e., Es,t24 = 0 if s > 23. As a consequence, it collapses at the E24-term.

Proof. As κ6 = 0 in π∗(E
hG24
C ), the class κ6 must be hit by a differential which

is of length at most 23. This is because κ6 has cohomological filtration 24 and
all even differentials are trivial. Hence κ6 is trivial in the E24-term of the HFPSS
for EhG24

C . Next, because the E24-term of the HFPSS for EhG24
C ∧ A1 is a module

over that for EhG24
C , the class κ6 acts trivially on the E24-term of the HFPSS for

EhG24
C ∧ A1. Since all classes which are not a multiple of κ have cohomological

filtration at most 3, the HFPSS has the horizontal vanishing line of height 23.

Proposition 5.3.6. The following classes are permanent cycles

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[1, 15], e[1, 17], e[1, 21], e[1, 23].

Proof. Firstly, the class e[0, 0] is a permanent cycle because it detects the inclusion
S0 → A1 into the bottom cell of A1. Next, we recapitulate, in the following table,
the associated graded object with respect to the induced Adams filtration on the
groups π∗(tmf ∧ A1)/(κ) in the following stems.

Dim 6 15 17 21 23
Value F2 ⊕ F2 F2 F2 F2 F2 ⊕ F2

By Corollary 5.1.3, the groups π∗(E
hG24
C ∧A1)/(κ) in these dimensions must have

order twice as big as the respective groups. Inspection in the E2-term of the HF-
PSS through dimensions from 0 to 23 and in cohomological filtration less than 4
show that the classes e[0, 6], e[1, 15], e[1, 21], e[1, 23] are permanent cycles.

Note that the groups π0(tmf ∧ A1) and π6(tmf ∧ A1) are annihilated by η. This
means that e[0, 0] and e[0, 6] detects two elements which are annihilated by η. It
follows that the Toda brackets 〈ν, η, e[0, 0]〉 and 〈ν, η, e[0, 6]〉 can be formed. By
juggling,

η〈ν, η, e[0, 0]〉 = 〈η, ν, η〉e[0, 0] = ν2e[0, 0]

and
η〈ν, η, e[0, 6]〉 = 〈η, ν, η〉e[0, 6] = ν2e[0, 6].
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Observe that ν2e[0, 0] and ν2e[0, 6] are nontrivial and are detected in cohomolog-
ical filtration 2. Consequently, both 〈ν, η, e[0, 0]〉 and 〈ν, η, e[0, 6]〉 are nontrivial
and are represented by classes in cohomological filtration at most 1. Therefore
e[1, 5] and e[1, 11] are permanent cycles.

The unique nontrivial element of π11(tmf∧A1)/(κ) is annihilated by ν2. This im-
plies that the class ν2e[1, 11] is the target of some differential. Since π17(E

hG24
C ∧

A1)/(κ) has order at least equal to 4, the class e[1, 17] must be a permanent cycle
representing the only element in dimension 17 of π∗(E

hG24
C ∧ A1)/(κ).

d3 − differentials

Proposition 5.3.7. As a module over F4[∆
±1, κ, ν]/(ν3), the term E2 = E3 is free

on the generators

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[0, 12], e[1, 17], e[0, 18], e[1, 23]. (II.12)

Proposition 5.3.8. The d3-differential in the HFPSS for EhG24
C ∧ A1 is trivial on

all of the generators of (II.12) with the exception of

i) d3(e[0, 12]) = ν2e[1, 5]
ii) d3(e[0, 18]) = ν2e[1, 11].

Proof. That e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[1, 17], e[1, 23] are d3-cycles follows
from Proposition 5.3.6. For the two other classes, the proof of Proposition 5.3.6
implies that the elements Θ(e[1, 5]) and Θ(e[2, 11]) are detected by e[1, 5] and
e[1, 11], respectively. Moreover, the elements e[1, 5] and e[2, 11] are annihilated
by ν2 in π∗(tmf ∧ A1). It follows that, in the HFPSS, the classes ν2e[1, 5] and
ν2e[1, 11] must be hit by some differentials. The only possibilities are d3(e[0, 12]) =
ν2e[1, 5] and d3(e[0, 18]) = ν2e[1, 11].

0 4 8 12 16 20 24
0
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4

Figure II.19 – Differentials d3

Corollary 5.3.9. As a module over F4[∆
±1, κ, ν]/(ν3), the term E4 = E5 is a

direct sum of cyclic modules generated by the classes

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[1, 15], e[1, 17], e[1, 21], e[1, 23] (II.13)
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with the relations

ν2e[1, 5] = ν2e[1, 11] = ν2e[1, 15] = ν2e[1, 21] = 0. (II.14)

Proof. This is straightforward from Proposition 5.3.8 and from the fact that ∆, κ, ν
are d3-cycles in the HFPSS for EhG24

C .

d5-differentials. We need the d5-differential, in the HFPSS for EhG24
C , d5(∆) = κν

(see [Bau08], Section 8.3).

24 28 32 36 40 44 48 52
0
1
2
3
4
5
6
7
8

Figure II.20 – Differentials d5

Proposition 5.3.10. The E6 = E7-term is a module over F4[(∆
8)±1, κ, ν]/(κν)

and, as such, E6 = E7 is a direct sum of cyclic modules generated by the following

classes for i ∈ 0, 2, 4, 6 with the respective annihilator ideal:

generator ∆ie[0, 0] ∆ie[1, 5] ∆ie[0, 6] ∆ie[1, 11]
ideal (ν3) (ν2) (ν3) (ν2)
generator ∆ie[1, 15] ∆ie[1, 17] ∆ie[1, 21] ∆ie[1, 23]
ideal (ν2) (ν3) (ν2) (ν3)
generator ∆ie[2, 30] ∆ie[2, 32] ∆ie[2, 36] ∆ie[2, 38]
ideal (ν) (ν) (ν) (ν)
generator ∆ie[2, 42] ∆ie[3, 47] ∆ie[2, 48] ∆ie[3, 53]
ideal (ν) (ν) (ν) (ν).

Proof. The classes ∆8, κ, ν acts on the HFPSS for EhG24
C ∧ A1, since they are

permanent cycles in the HFPSS for EhG24
C . Notice that, if x is a class in the E5-

term, then d5(∆2kx) = ∆2kd5(x) ∀k ∈ Z. This says in particular that the E6-term
is ∆2-periodic. Next, if x is a d5-cycle and is annihilated by νi, then d5(∆x) =
κνx and d5(∆ν

i−1x) = 0. Together with the fact that all of the generators of
(II.13) are permanent cycles (Proposition 5.3.6), it is straightforward to verify
that the classes together with their annihilation ideal given in the statement of the
Proposition generate the E6-term as a module over F4[(∆

8)±1, κ, ν]/(κν).
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Remark 5.3.11. Since ∆8 is a permanent cycle in the HFPSS for EhG24
C , the HF-

PSS for EhG24
C ∧A1 is linear with respect to ∆8. Note that all κ-free generators in

the E7-term are of the form (∆8)kx where k ∈ Z and x is one of the generators
listed in Proposition 5.3.10. Then, by Corollary 5.3.3, these free κ-families pair
up so that each non-permanent κ-family truncates one and only one permanent
κ-family. By ∆8-linearity, among these 64 generators, only half of them are per-
manent cycles and the others support a differential. It reduces the problem into
two steps: first identify all permanent κ-families, then identify by which κ-family
they are truncated.

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

2

4

Figure II.21 – The E7-term for s ≤ 3 and t− s ≤ 54

Proposition 5.3.12. The generators

e[2, 30], e[2, 32], e[2, 36], e[2, 38], e[2, 42], e[3, 47], e[2, 48], e[3, 53]

are permanent cycles.

Proof. We give the proof for e[2, 30] and the other generators are proven in a sim-
ilar manner. In the E6-term, the Massey product 〈κ, ν, ν2e[0, 0]〉 can be formed.
Since d5(∆) = κν and ν3e[0, 0] = 0 ∈ E5, we see that

e[2, 30] = ∆ν2e[0, 0] ∈ 〈κ, ν, ν2e[0, 0]〉.

The indeterminacy consists of κE−2,86 + E0,26
6 ν2e[0, 0], where E−2,86 is in the E6-

term of the HFPSS for EhG24
C ∧A1 and E0,26

6 for EhG24
C . The latter are zero groups,

hence the indeterminacy is zero. Thus,

〈κ, ν, ν2e[0, 0]〉 = e[2, 30].

At the level of the homotopy groups of π∗(E
hG24
C ∧ A1) one can form the corre-

sponding Toda bracket 〈κ, ν, ν2e[0, 0]〉 because νκ = 0 in π∗(E
hG24
C ) and inspec-

tion in π∗(tmf ∧ A1) tells us that ν3e[0, 0] = 0. Furthermore, all hypotheses of
Moss’s convergence theorem are verified. Therefore, e[2, 30] is a permanent cycle
representing the Toda bracket 〈e[0, 0], ν3, κ〉. For the sake of completeness, we
record the Toda bracket expressions for the other elements

〈κ, ν, νe[1, 5]〉 = e[2, 32], 〈κ, ν, ν2e[0, 6]〉 = e[2, 36],



Chapter II. Homotopy groups of EhG24
C ∧ A1 87

〈κ, ν, νe[1, 11]〉 = e[2, 38], 〈κ, ν, νe[1, 15]〉 = e[2, 42],

〈κ, ν, ν2e[1, 17]〉 = e[3, 47], 〈κ, ν, νe[1, 21]〉 = e[2, 48],

〈κ, ν, ν2e[2, 23]〉 = e[3, 53].

We have already identified 16 out of 32 permanent cycles. The next 16 ones are not
the same for different versions ofA1. The difference reflects the different behavior
of the d2-differential in the ASS for different models ofA1 (see Proposition 4.0.3).

Proposition 5.3.13. In the HFPSS for all four versions of A1, the following 12
generators are permanent cycles :

∆2e[0, 0],∆2e[1, 5],∆2e[0, 6],∆2e[1, 11],∆2e[1, 15],∆2e[1, 17]

∆2e[1, 21],∆2e[2, 30],∆2e[2, 32],∆2e[2, 36], ,∆2e[2, 42],∆2e[3, 47].

The remaining four permanent cycles for A1[00] and A1[11] are

∆2e[1, 23],∆2e[2, 38],∆2e[2, 48],∆2e[3, 53],

whereas the remaining four permanent cycles for A1[10] and A1[01] are

∆4e[1, 15],∆4e[0, 0],∆4e[1, 5],∆4e[2, 30].

Proof. The graded associated object of the groups π∗(tmf ∧ A1)/(κ, ν), with
respect to the Adams filtration, in the following stems are given in the following
table:

Stem 48 53 54 59 63 65 69 78 80 84 90 95
Value F2 ⊕ F2 F2 ⊕ F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2

In view of Corollary 5.1.3 and Corollary 5.3.3, inspection in the E7-term shows
that the following 12 classes are permanent cycles in the HFPSS for all four ver-
sions of A1.

∆2e[0, 0],∆2e[1, 5],∆2e[0, 6],∆2e[1, 11],∆2e[1, 15],∆2e[1, 17],

∆2e[1, 21],∆2e[2, 30],∆2e[2, 32],∆2e[2, 36], ,∆2e[2, 42],∆2e[3, 47].

Next, in the ASS for tmf ∧ A1[00] and tmf ∧ A1[11], there are no non-trivial
differentials before stem 96, by sparseness and Theorem 4.0.3. Inspection in the
E2-term then shows that

π71(tmf ∧ A1[00])/(κ, ν) = π71(tmf ∧ A1[11])/(κ, ν) ∼= F2
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and
π86(tmf ∧ A1[00])/(κ, ν) = π86(tmf ∧ A1[11])/(κ, ν) ∼= F2

It follows that the classes ∆2e[1, 23] and ∆2e[2, 38] are permanent cycles in the
HFPSS for EhG24

C ∧ A1[00] and EhG24
C ∧ A1[11].

On the other hand, in the ASS for tmf ∧A1[10] and tmf ∧A1[01], Lemma 4.0.3
and g-linearity imply that d2(g2w2e[4, 23]) = g4e[6, 30] and d2(g2w2e[7, 38]) =
g6e[1, 5]. Hence, w2

2e[3, 15] and w2
2e[6, 30] survive to the E∞-term, by sparseness.

It then follows that ∆4e[1, 15] and ∆4e[2, 30] are permanent cycles in the HFPSS
for A1[10] and A1[01].

For A1[00] and A1[11], the classes w2e[9, 48] and w2e[10, 53] do not support dif-
ferentials, by Lemma 4.0.3, hence persist to the E∞-term, by sparseness. They are
also not divisible neither by κ nor by ν. Lastly, both w2e[9, 48] and w2e[10, 53]
are annihilated by ν. The only classes in the HFPSS that match those properties
are ∆2e[2, 48] and ∆2e[3, 53], respectively. Thus, the latter are the last two of the
32 permanent cycles in the HFPSS for A1[00] and A1[11].

For A1[10] and A1[01], the classes w2e[9, 48] and w2e[10, 53] support nontriv-
ial d2 differentials. Thus w2

2e[0, 0] and w2
2e[1, 5] survive to the E∞-term. For

degree reasons, both w2
2e[0, 0] and w2

2e[1, 5] are not divisible either by κ or by
ν, and moreover their multiples by ν are not divisible by κ. In the HFPSS for
EhG24
C ∧ A1[10] and EhG24

C ∧ A1[10], ∆4e[0, 0] and ∆4e[1, 5] are the only classes
verifying the respective properties, hence are permanent cycles.

Having determined all permanent κ-families, we consider differentials. We recall,
from Remark 5.3.11, that each permanent κ-family is truncated by one and only
one non-permanent κ-family. We can proceed as follows: take a permanent cycle,
say x; then locate all non-permanent classes that can support a differential killing
κnx for some n ≤ 6. Precisely, one of the following situations will happen:

1) There is no ambiguity: i.e., there is only one generator that can support a
differential killing κnx for some n ≤ 6, so this differential occurs.

2) There are two generators that can support a differential killing multiples of
x by different powers of κ. In order to decide, we inspect the κ-exponent of x
using the ASS.

3) There are two generators that can support a differential killing the multiple
of x by the same power of κ. In this case, inspection on the κ-exponent of x does
not help. We will treat each of the particularity case by case. Some Toda brackets
will be involved to resolve these cases.
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A permanent cycle is said to be of type 1, 2, 3 respectively if its κ-family is as
in the situation 1, 2, 3 above respectively. The HFPSS for different versions of A1

do not behave in the same manner. It turns out the HFPSS for the versions A1[10]
and A1[01] behave in the same way and A1[00] and A1[11] in the same way. We
will treat the HFPSS forA1[10] andA1[01] in detail and then point out the changes
needed for A1[00] and A1[11].

Differentials (continued) for A1[01] and A1[10]. The reader is invited to fol-
low the discussion of the differentials using Figures (II.22) to (II.25) below.

The d9-differentials

Proposition 5.3.14. There are the following d9-differentials:

(1) d9(∆
2e[1, 23]) = κ2e[2, 30]

(2) d9(∆
6e[1, 23]) = κ2∆4e[2, 30].

Proof. The classes e[2, 30] and ∆4e[2, 30] are of type 1 and the only possibilities
are d9(∆2e[1, 23]) = κ2e[2, 30] and d9(∆6e[1, 23]) = κ2∆4e[2, 30], respectively.

The d15-differentials

Proposition 5.3.15. There are the following d15-differentials:

(1) d15(∆
2e[2, 38]) = κ4e[1, 5]

(2) d15(∆
2e[2, 48]) = κ4e[1, 15]

(3) d15(∆
6e[2, 38]) = κ4∆4e[1, 5]

(4) d15(∆
6e[2, 48]) = κ4∆4e[1, 15].

Proof. It is readily checked from the chart that all e[1, 5], e[1, 15], ∆4e[1, 5],
∆4e[1, 15] are of type 1 and their κ-family is truncated as indicated in the propo-
sition.

The d17-differentials

Proposition 5.3.16. There are the following d17-differentials:

(1) d17(∆
2e[3, 53]) = κ5e[0, 0]

(2) d17(∆
4e[0, 6]) = κ4e[1, 21]

(3) d17(∆
4e[1, 17]) = κ4e[2, 32]

(4) d17(∆
4e[1, 21]) = κ4e[2, 36]

(5) d17(∆
4e[2, 32]) = κ4e[3, 47]

(6) d17(∆
6e[0, 6]) = κ4∆2e[1, 21]

(7) d17(∆
6e[1, 17]) = κ4∆2e[2, 32]

(8) d17(∆
6e[1, 21]) = κ4∆2e[2, 36]

(9) d17(∆
6e[2, 32]) = κ4∆2e[3, 47]
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(10) d17(∆
6e[3, 53]) = κ5∆4e[0, 0]

(11) d17(∆
4e[1, 23]) = κ4e[2, 38]

(12) d17(∆
4e[2, 38]) = κ4e[3, 53]

(13) d17(∆
6e[0, 0]) = κ4∆2e[1, 15]

(14) d17(∆
6e[1, 15]) = κ4∆2e[2, 30].

Proof. (1)-(10) All of the generators of

e[0, 0], e[1, 21], e[2, 32], e[2, 36], e[3, 47]

∆2e[1, 21],∆2e[2, 32],∆2e[2, 36],∆2e[3, 47],∆4e[0, 0]

are of type 1.
(11) e[2, 38] is of type 2. The differentials that can truncate its κ-family are

d17(∆
4e[1, 23]) = κ4e[2, 38] and d25(∆6e[1, 15]) = κ6e[2, 38]. The latter

can not happen because the spectral sequence collapses at the E24-term.
Therefore, one must have that d17(∆4e[1, 23]) = κ4e[2, 38].

(12) e[3, 53] is of type 2. Its κ-family can be truncated by d17(∆4e[2, 38]) =
κ4e[3, 53] or d25(∆6e[2, 30]) = κ6e[3, 53]. As above, there can not be
any d25-differential in the spectral sequence. Hence, one must have that
d17(∆

4e[2, 38]) = κ4e[3, 53].
(13) ∆2e[1, 15] is of type 3. In its κ-family, only κ4∆2e[1, 15] can be a tar-

get of differentials, d17(∆6e[0, 0]) = κ4∆2e[1, 15] and d15(∆4e[2, 48]) =
κ4∆2e[1, 15]. However, if d15(∆4e[2, 48]) = κ4∆2e[1, 15] then the only
class that can truncate the κ-family of e[1, 23] is ∆6e[0, 0] and by a d25-
differential: d25(∆

6e[0, 0]) = κ6e[1, 23]. This contradicts the fact that
the spectral sequence collapses at the E24-term. Thus, one must have that
d17(∆

6e[0, 0]) = κ4∆2e[1, 15].
(14) ∆2e[2, 30] is of type 2. Its κ-family can be truncated by a d9-differential

on ∆4e[1, 23] or by a d17-differential on ∆6e[1, 15]. However, the former
possibility can not occur because of part (11). Therefore, d17(∆6e[1, 15]) =
κ4∆2e[2, 30].

The d19-differentials

Proposition 5.3.17. There are the following d19-differentials:

(1) d19(∆
4e[1, 11]) = κ5e[0, 6]

(2) d19(∆
4e[3, 47]) = κ5e[2, 42]

(3) d19(∆
6e[1, 11]) = κ5∆2e[0, 6]

(4) d19(∆
6e[3, 47]) = κ5∆2e[2, 42]

(5) d19(∆
6e[1, 5]) = κ5∆2e[0, 0]

(6) d19(∆
4e[3, 53]) = κ5e[2, 48].
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Proof. (1)-(4) All of the classes

e[0, 6], e[2, 42],∆2e[0, 6],∆2e[2, 42]

are of type 1.
(5) The class ∆2e[0, 0] is of type 3 and its κ-family can be truncated either by

d17(∆
4e[3, 53]) = κ5∆2e[0, 0] or by d19(∆6e[1, 5]) = κ5∆2e[0, 0]. Sup-

pose d17(∆4e[3, 53]) = κ5∆2e[0, 0]. This would leave us with the differ-
ential d21(∆6e[1, 5]) = κ5e[2, 48]. It would imply the Massey product in
the E22-term

〈κ5, e[2, 48], ν〉 = ν∆6e[1, 5]

with zero indeterminacy in the E22-term. All conditions of Moss’s con-
vergence theorem are met, the Toda bracket 〈κ5, e[2, 48], ν〉 could then be
formed and would contain an element represented by ν∆6e[1, 5]. This con-
tradicts Corollary 4.0.5. This contradiction proves that

d19(∆
6e[1, 5]) = κ5∆2e[0, 0].

(6) The class e[2, 48] is of type 2 and its κ-family is truncated either by d19(∆4e[3, 53]) =
κ5e[2, 48] or by d21(∆6e[1, 5]) = κ5e[2, 48]. However, part (5) of Proposi-
tion 5.3.17 rules out the latter.

The d23-differentials

Proposition 5.3.18. There are the following d23-differentials:

(1) d23(∆
4e[2, 36]) = κ6e[1, 11]

(2) d23(∆
4e[2, 42]) = κ6e[1, 17]

(3) d23(∆
4e[2, 48]) = κ6e[1, 23]

(4) d23(∆
6e[2, 36]) = κ6∆2e[1, 11]

(5) d23(∆
6e[2, 42]) = κ6∆2e[1, 17]

(6) d23(∆
6e[2, 30]) = κ6∆2e[1, 5].

Proof. (1)-(5) All of the classes

e[1, 11], e[1, 17], e[1, 23],∆2e[1, 11],∆2e[1, 17]

are of type 1.
(6) The class ∆2e[1, 5] is of type 2. The two possibilities are d15(∆4e[2, 38]) =

κ4∆2e[1, 5] and d23(∆
6e[2, 30]) = κ6∆2e[1, 5]. However, part (12) of

Proposition 5.3.16 rules out the former because the class ∆4e[2, 38] must
pair up with the class e[3, 38], by a d17-differential d17(∆4e[2, 38]) =
κ4e[3, 53].
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The above differentials from d9 to d23, together with the κ- and ∆8-linearity ex-
haust all differentials. In the statement of Theorem 5.3.19 and 5.3.20, we write
et−s for the permanent cycle e[s, t − s] in bidegree (s, t) listed in Proposition
5.3.10, for the sake of presentation.

Theorem 5.3.19. As a module over F4[∆
±8, κ, ν]/(κν), the E∞-term of the HF-

PSS for EhG24
C ∧A1 for A1 = A1[10] and A1[01] is a direct sum of cyclic modules

generated by the following elements and with the respective annihilator ideal:

(0, 0) (1, 5) (0, 6) (1, 11) (1, 15) (1, 17) (1, 21) (1, 23)
e[0, 0] e[1, 5] e[0, 6] e[1, 11] e[1, 15] e[1, 17] e[1, 21] e[1, 23]
(κ5, ν3) (κ4, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 30) (2, 32) (2, 36) (2, 38) (2, 42) (3, 47) (2, 48) (3, 53)
e[2, 30] e[2, 32] e[2, 36] e[2, 38] e[2, 42] e[3, 47] e[2, 48] e[3, 53]
(κ2, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(0, 0) (1, 5) (0, 6) (1, 11) (1, 15) (1, 17) (1, 21) (1, 23)
e0 e5 e6 e11 e15 e17 e21 e23
(κ5, ν3) (κ4, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 30) (2, 32) (2, 36) (2, 38) (2, 42) (3, 47) (2, 48) (3, 53)
e30 e32 e36 e38 e42 e47 e48 e53
(κ2, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(0, 48) (1, 53) (0, 54) (1, 59) (1, 63) (1, 65) (1, 69) (2, 74)
∆2e0 ∆2e5 ∆2e6 ∆2e11 ∆2e15 ∆2e17 ∆2e21 ∆2νe23
(κ5, ν3) (κ6, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ, ν2)

(2, 78) (2, 80) (2, 84) (2, 90) (3, 95) (0, 96) (1, 101)
∆2e30 ∆2e32 ∆2e36 ∆2e42 ∆2e47 ∆4e0 ∆4e5
(κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν3) (κ4, ν2)

(1, 105) (2, 110) (1, 111) (2, 116) (2, 120) (2, 122) (2, 126)
∆4νe6 ∆4νe11 ∆4e15 ∆4νe17 ∆4νe21 ∆4νe23 (∆4e30)
(κ, ν2) (κ, ν) (κ4, ν2) (κ, ν2) (κ, ν) (κ, ν2) (κ2, ν)

(1, 147) (2, 152) (1, 153) (2, 158) (2, 162) (2, 164) (2, 168) (2, 170)
∆6νe0 ∆6νe5 ∆6νe6 ∆6νe11 ∆6νe15 ∆6νe17 ∆6νe21 ∆6νe23
(κ, ν2) (κ, ν) (κ, ν2) (κ, ν) (κ, ν) (κ, ν2) (κ, ν) (κ, ν2).

The case of A1[00] and A1[11]. The analysis of the HFPSS for A1[00] and A1[11]
can be done in the same manner as that for A1[10] and A1[01]. All differentials are
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identical except for 8 ones involving 16 of the generators of Proposition 5.3.10.
We will be content to point out all modifications, see Figures from II.26 to II.29.

d17(∆
4e[1, 15]) = κ4e[2, 30] instead of d9(∆

2e[1, 23]) = κ2e[2, 30],

d17(∆
6e[1, 23]) = κ4∆2e[2, 38] instead of d9(∆

6e[1, 23]) = κ2∆4e[2, 30],

d17(∆
4e[0, 0]) = κ4e[1, 15] instead of d15(∆

2e[2, 48]) = κ4e[1, 15],

d17(∆
6e[2, 38]) = κ4∆2e[3, 53] instead of d15(∆

6e[2, 38]) = κ4∆2e[1, 5],

d19(∆
4e[1, 5]) = κ5e[0, 0] instead of d17(∆

2e[3, 53]) = κ5e[0, 0],

d19(∆
6e[3, 53]) = κ5∆2e[2, 48] instead of d17(∆

6e[3, 53]) = κ5∆4e[0, 0],

d23(∆
6e[2, 48]) = κ6∆2e[1, 23] instead of d15(∆

6e[2, 48]) = κ4∆4e[1, 15],

d23(∆
4e[2, 30]) = κ6e[1, 5] instead of d15(∆

2e[2, 38]) = κ4e[1, 5].

Theorem 5.3.20. As a module over F4[∆
±8, κ, ν]/(κν), the E∞-term of the HF-

PSS for EhG24
C ∧A1 for A1 = A1[00] and A1[11] is a direct sum of cyclic modules

generated by the following elements and with the respective annihilator ideals:

(0, 0) (1, 5) (0, 6) (1, 11) (1, 15) (1, 17) (1, 21) (1, 23)
e0 e5 e6 e11 e15 e17 e21 e23
(κ5, ν3) (κ6, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 30) (2, 32) (2, 36) (2, 38) (2, 42) (3, 47) (2, 48) (3, 53)
e30 e32 e36 e38 e42 e47 e48 e53
(κ4, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(0, 48) (1, 53) (0, 54) (1, 59) (1, 63) (1, 65) (1, 69) (1, 71)
∆2e0 ∆2e5 ∆2e6 ∆2e11 ∆2e15 ∆2e17 ∆2e21 ∆2e23
(κ5, ν3) (κ6, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 78) (2, 80) (2, 84) (2, 86) (2, 90) (3, 95) (2, 96) (3, 101)
∆2e30 ∆2e32 ∆2e36 ∆2e38 ∆2e42 ∆2e47 ∆2e48 ∆2e53
(κ4, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(1, 99) (2, 104) (1, 105) (2, 110) (2, 114) (2, 116) (2, 120) (2, 122)
∆4νe0 ∆4νe5 ∆4νe6 ∆4νe11 ∆4νe15 ∆4νe17 ∆4νe21 ∆4νe23
(κ, ν2) (κ, ν) (κ, ν2) (κ, ν) (κ, ν) (κ, ν2) (κ, ν) (κ, ν2)

(1, 147) (2, 152) (1, 153) (2, 158) (2, 162) (2, 164) (2, 168) (2, 170)
∆6νe0 ∆6νe5 ∆6νe6 ∆6νe11 ∆6νe15 ∆6νe17 ∆6νe21 ∆6νe23
(κ, ν2) (κ, ν) (κ, ν2) (κ, ν) (κ, ν) (κ, ν2) (κ, ν) (κ, ν2).
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Remark 5.3.21. We emphasise that the relations given in Theorem 5.3.19 and
5.3.20 are only the relations in the E∞-term. In fact, we can see by sparseness
that, the annihilator exponents of κ are still true in π∗(E

hG24
C ∧ A1). Whereas,

there are exotic extensions by ν, i.e., multiplications by ν that are not detected
in the E∞-term. These can be determined by two different methods: by using
the Tate spectral sequence as in [BO16], Section 2.3 or by computing the Gross-
Hopkins dual of EhG24

C ∧ A1; however, we do not discuss this point here.

Using the structure of the E∞-term, we can read off the action of the ideal (κ, ν)
on π∗(E

hG24
C ∧ A1). From this, we obtain the following Corollary.

Corollary 5.3.22. We have
a) The map

Θ
′

: W(F4)⊗Z2 πk(tmf ∧ A1)/(κ, ν)→ πk(E
hG24
C ∧ A1)/(κ, ν),

induced by Θ in II.7, is an isomorphism for k ≥ 0, independent of the version of
A1.

b) The map

Θ : W(F4)⊗Z2 πk(tmf ∧ A1)→ πk(E
hG24
C ∧ A1)

is also an isomorphism for k ≥ 0, independent of the version of A1.

Proof. For part a), Corollary 5.1.3 asserts that Θ
′

is injective. To show that the lat-
ter is surjective, it suffices to show that its source and target have the same order.
The order of the target can be seen from Theorem 5.3.19 and 5.3.20; in particular,
it has order 0 or 4 in all stems, except for the stems 48 and 53 modulo 192, in
which it has order 8. The remaining part of the proof is an inspection of the ASS
for tmf ∧ A1, together with the fact that Θ is injective, by Corollary 5.1.3, and
is linear with respect to κ and ν, to show that W(F4) ⊗Z2 π∗(tmf ∧ A1) has the
same order as of π∗(E

hG24
C ∧ A1), in non-negative stems. Because of the depen-

dance of the structure of π∗(E
hG24
C ∧ A1) on the version of A1, we consider them

separately: we only give a detailed treatment for A1[00] and A1[11] and claim that
the treatment for A1[01] and A1[10] is completely similar. For the remaining part
of the proof, A1 will be A1[00] or A1[11].

By sparseness and part (i) of Theorem 4.0.3, all classes wl2e[i, j] for l = 0, 1
and e[i, j], the classes in the table of Proposition 3.2.5 survive to the E∞-term of
the ASS for tmf ∧A1. Moreover, for degree reasons, these classes must converge
to non-trivial elements of π∗(tmf ∧ A1)/(κ, ν) in the appropriate stems. There-
fore, W(F4) ⊗Z2 π∗(tmf ∧ A1)/(κ, ν) has the same order as of π∗(E

hG24
C ∧ A1)

up to stem 96 and in stem 101.
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All of the classes

w2
2e[0, 0], w

2
2e[1, 5], w

2
2e[1, 6], w

2
2e[2, 11],

w2
2e[3, 15], w

2
2e[3, 17], w

2
2e[4, 21], w

2
2e[4, 23]

are d2-cycles in the ASS and the d3-differentials on them can only hit g-multiple
classes. Thus, by ν-linearity and the fact that gν = 0 in Ext5,28A(2)∗

(F2), the classes

νw2
2e[0, 0], νw

2
2e[1, 5], νw

2
2e[1, 6], νw

2
2e[2, 11],

νw2
2e[3, 15], νw

2
2e[3, 17], νw

2
2e[4, 21], νw

2
2e[4, 23]

are d3-cycles and hence survive to the E∞-term, by sparseness. As above, these
classes must converge to non-trivial elements of π∗(tmf ∧ A1)/(κ, ν) in the ap-
propriate stems. It follows that W⊗Z2 π∗(tmf ∧A1)/(κ, ν) has the same order as
of π∗(E

hG24
C ∧ A1) for stems from 96 to 144.

Consider the classes

νw3
2e[0, 0], νw

3
2e[1, 5], νw

3
2e[1, 6], νw

3
2e[2, 11],

νw3
2e[3, 15], νw

3
2e[3, 17], νw

3
2e[4, 21], νw

3
2e[4, 23]. (II.15)

As above, these classes survive to the E4-term of the ASS for tmf ∧ A1. By
sparseness, νw3

2e[4, 23] survives to the E∞-term and converges to a non-trivial
element of π170(tmf ∧ A1)/(κ, ν). By sparseness, the other classes can only
support d4-differentials hitting the classes

g7e[1, 6], g7e[2, 11], g6e[6, 32], g7e[3, 17], g7e[4, 21], g7e[4, 23], g6e[9, 47],

respectively. However, the class gke[i, j] for (i, j) ∈ {(1, 6), (2, 11), (6, 32), (3, 17),
(4, 21), (4, 23), (9, 47)} is killed by a differential for a certain integer k less than 7,
hence g7e[i, j] for (i, j) ∈ {(1, 6), (2, 11), (6, 32), (3, 17), (4, 21), (4, 23), (9, 47)}
is killed by a differential on a certain g-multiple class. This means that

νw3
2e[0, 0], νw

3
2e[1, 5], νw

3
2e[2, 11], νw

3
2e[3, 15], νw

3
2e[3, 17]

survive to the E∞-term, hence, as above, to non-trivial elements of π∗(tmf ∧
A1)/(κ, ν). Next, the map Θ sends e[6, 32] and e[9, 47] to e[2, 32] and e[3, 47],
respectively. The latter are both annihilated by κ4, so that g4e[6, 32] and g4e[9, 47]
are hit by certain differentials in the ASS, hence g6e[6, 32] and g6e[9, 47] are
hit by differentials supported on g-multiple classes. As above, this implies that
νw3

2e[1, 6] and νw3
2e[4, 23] survive to non-trivial elements of π∗(tmf∧A1)/(κ, ν).
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In total, we have proved that all classes of II.15 converge to non-trivial elements
of π∗(tmf ∧ A1)/(κ, ν); as a consequence, W(F4)⊗Z2 π∗(tmf ∧ A1)/(κ, ν) has
the same order as of π∗(E

hG24
C ∧ A1)/(κ, ν) in stems from 144 to 192.

Together with the fact that π∗(E
hG24
C ∧ A1)/(κ, ν) is ∆8-periodic, we conclude

that Θ
′

is a surjection, hence is an isomorphism.

For part b), there is a commutative diagram

W(F4)⊗Z2 π∗(tmf ∧ A1)
Θ //

��

π∗(E
hG24
C ∧ A1)

��

W(F4)⊗Z2 π∗(tmf ∧ A1)/(κ, ν)
Θ

′

// π∗(E
hG24
C ∧ A1)/(κ, ν).

Part b) then follows from part a) and the fact that π∗(tmf ∧A1) is bounded below.
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The Figures (II.22) to (II.25) represent the HFPSS for EhG24
C ∧ A1[10] and EhG24

C ∧ A1[01] from the E7-term on. Each
black dot • represents a class generating a group F4 which survives to the E∞-term. Each circle ◦ represent a class which
either is hit by a differential or supports a differential higher than d5. We only represent the differentials on generators listed
in Proposition 5.3.10 but not those generated by κ-linearity.
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Figure II.22 – HFPSS for A1[10] and A1[01] from E7-term with 0 ≤ t− s ≤ 48
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Figure II.23 – HFPSS for A1[10] andA1[01] from E7-term with 48 ≤ t− s ≤ 96
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Figure II.24 – HFPSS for A1[10] andA1[01] from E7-term with 96 ≤ t− s ≤ 144
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Figure II.25 – HFPSS for A1[10] and A1[01] from E7-term with 144 ≤ t− s ≤ 197
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The Figures (II.26) to (II.29) represent the HFPSS for EhG24
C ∧ A1[00] and EhG24

C ∧ A1[11] from the E7-term on. Each
black dot • represents a class generating a group F4 which survives to the E∞-term. Each circle ◦ represent a class which
either is hit by a differential or supports a differential higher than d5. We only represent the differentials on generators listed
in Proposition 5.3.10 but not those generated by κ-linearity.
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Figure II.26 – HFPSS for A1[00] and A1[11] from E7-term with 0 ≤ t− s ≤ 48
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Figure II.27 – HFPSS for A1[00] andA1[11] from E7-term with 48 ≤ t− s ≤ 96
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Figure II.28 – HFPSS for A1[00] andA1[11] from E7-term with 96 ≤ t− s ≤ 144
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Figure II.29 – HFPSS for A1[00] and A1[11] from E7-term with 144 ≤ t− s ≤ 197



Chapter III

Homotopy groups of E
hC6
C ∧ A1

In this chapter, we will compute the HFPSS for EhC2
C and EhC6

C smashed with
S0, V (0), Y and A1. Although, our main objective (to which a large part of this
chapter is devoted) is the HFPSS for EhC2

C ∧A1 and EhC6
C ∧A1, the calculation for

the other spectra will give some input for computing the latter and will serve for
future reference. The calculations for the group C6 can be deduced immediately
from those for C2 by taking C3-fixed points. To be more precise, since EhC6

C ≃
(EhC2

C )hC3 , the group C3 acts on the HFPSS for C2. Since C3 has order prime to 2,
the C3-fixed points of the HFPSS for C2 is isomorphic to the HFPSS for C6. For
this reason, we will mainly present a calculation for C2 and indicate the C3-action
on the spectral sequences. We give the final result (i.e., the E∞-term for the group
C6) in charts.

6 The homotopy fixed point spectral sequences for

EhC6
C , EhC6

C ∧ V (0), EhC6
C ∧ Y

6.1 The homotopy fixed point spectral sequence for EhC6

C

Recall that C6 = C2 × C3 = 〈−1〉 × 〈ω〉 is a subgroup of G24. The action of
C6 on (EC)∗ ∼= W[[u1]][u

±1] is then deduced from Theorem 1.5.1, hence is given
by

(−1)u = −u, (−1)u1 = u1,

ω(u) = ζu, ω(u1) = ζu1.

The computation of the ring of group cohomology H∗(C2, (EC)∗) is elementary.

105
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Lemma 6.1.1. a) There is a class t ∈ H1(C2, (EC)2) and an isomorphism of

W-algebras

H∗(C2, (EC)∗) ∼= W[[u1]][u
±2, t]/(2t).

b) The class t ∈ H1(C2, (EC)2) can be represented by the cocyle

t : C2 → (EC)2 = W[[u1]]{u
−1}, 1 7→ 0,−1 7→ u−1.

c) The action of C3 on H∗(C2,W[[u1]][u
±1]) is given by

ω(u1) = ζu1, ω(u−2) = ζu−2, ω(t) = ζ2t.

Proof. a) We have that W[[u1]][u
±1] ∼= Z2[u

±1]⊗Z2W[[u1]] as C2-modules. Thus,
we have

H∗(C2,W[[u1]][u
±1]) ∼= H∗(C2,Z2[u

±1])⊗Z2 W[[u1]]

as W[[u1]] has a trivial C2-action and it is flat over Z2. By an elementary calcula-
tion, we have

H∗(C2,Z2[u
±1]) ∼= Z2[u

±2, χ]/(2χ)⊕ Z2[u
±2, χ]/(2){t}

as modules over Z2[u
±2, χ]/(2χ), where χ ∈ H2(C2,Z2) is the cohomological

periodicity class of C2 and t ∈ H1(C2,Z2{u
−1}). To obtain the multiplicative

structure of H∗(C2,Z2[u
±1]), it remains to prove that t2 = χu−2.

Consider the following exact sequence of Z2[u
±1][C2]-modules

0→ Z2[u
±1]

×2
−→ Z2[u

±1]
p
−→ F2[u

±1]→ 0, (III.1)

where C2 acts on F2[u
±1] trivially. First, there is an isomorphism of algebras

H∗(C2,F2[u
±1]) ∼= F2[u

±1, χ̃],

where χ̃ is the unique nontrivial class of H1(C2,F2). The sequence (III.1) induces
a long exact sequence of H∗(C2,Z2[u

±1])-modules:

H∗(C2,Z2[u
±1])

×2
−→ H∗(C2,Z2[u

±1])
p∗
−→ H∗(C2,F2[u

±1])
δ
−→ H∗+1(C2,Z2[u

±1]).

Since u−2 and t are not divisible by 2,

p∗(u
−2) = u−2 and p∗(t) = χ̃u−1. (III.2)

It follows that
p∗(t)u

−1 = χ̃u−1u−1 = u−2χ̃. (III.3)
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Similarly, since H1(C2,Z2) = H0(C2,Z2{u
−1}) = 0,

δ(χ̃) = χ and δ(u−1) = t. (III.4)

It follows that

u−2χ = u−2δ(χ̃) = δ(u−2χ̃) = δ(p∗(t)u
−1) = tδ(u−1) = t2,

where the second and the fourth equalities use the fact that δ is H∗(C2,Z2[u
±1])-

linear.

b) It is straightforward to show that the cocycleC2 → Z2{u
−1}, 1 7→ 0,−1 7→ u−1

represents the unique non-trivial class t ∈ H1(C2,Z2{u
−1}).

Part c) follows from the action of C3 on (EC)∗ and the cocycle representation
of t.

Consider the cofiber sequence

S0 ×2
−→ S0 ι

−→ V (0). (III.5)

It induces a short exact sequence of (EC)∗[C2]-modules

0→ (EC)∗
×2
−→ (EC)∗

ι∗−→ (EC)∗/2→ 0 (III.6)

By Equation (III.4), the connecting homomorphism

δ : Hs(C2, (EC)∗/2)→ Hs+1(C2, (EC)∗)

sends u−1 ∈ H0(C2, (EC)2/2) to t, i.e.,

δ(u−1) = t. (III.7)

Furthermore, δ is a map of H∗(C2, (EC)∗)-modules. Let us denote by v1 the class
u1u

−1 ∈ (EC)2/2. It follows that

δ(v1) = δ(u1u
−1) = u1δ(u

−1) = u1t, (III.8)

δ(v31) = δ(u31u
−2u−1) = u31u

−2δ(u−1) = u31u
−2t. (III.9)

The above equations use the fact that u1, u−2 ∈ H0(C2, (EC)∗). We will also need
the following:

Lemma 6.1.2. The induced map in homotopy of the unit S0 → EhC2
C sends ν to a

nontrivial element detected in filtration at most 3 of the HFPSS for EhC2
C .
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Proof. Consider the restriction and the transfer EhG24
C

Res
−−→ EhC2

C

Tr
−→ EhG24

C . The
maps Res and Tr induce on the E2-term of the HFPSS the usual restriction and
transfer for cohomology of groups. Algebraically, Tr∗ send 1 ∈ H0(C2, (EC)0)
to |G24/C2| = 12 ∈ H0(G24, E0). Thus, in homotopy groups Tr∗ sends 1 ∈
π0(E

hC2
C ) to an element detected by 12. Moreover, we know that π0(E

hG24
C ) is non-

torsion. This can be deduced from the fact the knowledge of π∗(tmf) [Bau08] and
that LK(2)tmf ≃ (EhG24

C )Gal. Thus π0(E
hG24
C ) is concentrated in the filtration 0

of the HFPSS, see Proposition 10.0.7. This means that the composite Tr∗ ◦Res∗ :
π0(E

hG24
C ) → π0(E

hG24
C ) sends the unit to 12 times of the unit. Together with the

fact that the restriction and the transfer are maps of EhG24
C -modules, we conclude

that Tr ◦Res ≃ 12Id. As a consequence,

Tr∗(Res∗(ν)) = 12ν = η3 ∈ π3(E
hG24
C ),

the last equation holds in π3(S
0). Finally, η3 is non-trivial and is detected in

filtration 3 of the HFPSS forEhG24
C . This is because η is detected in filtration 1 (see

the discussion succeeding Corollary 5.1.3) and η3 is not hit by a differential d3,
fact that can be deduced from the structure of H∗(G48, (EC)∗) and the differential
d3 given in Lemma 2.21 of [BG18]. Therefore, Res∗(ν) ∈ π3(E

hC2
C ) is detected

in a filtration at most 3.

Now we discuss the differentials of the HFPSS for EhC6
C . We note here that by

the checkerboard phenomenon, all even differentials are trivial.

Proposition 6.1.3. a) In the HFPSS for EhC2
C , the classes u1, t, u

−4 are d3-cycles.

The differentials d3 are determined by the multiplicative structure and the follow-

ing d3-differential:

d3(u
−2) = u1t

3.

b) As a module over W[[u1]][u
±4, t]/(2t),

E5
∼= W[[u1]][u

−4, t]/(2t, u1t
3){1} ⊕W[[u1]][u

−4, t]/(t){2u−2}.

There is no d5-differential; hence E5 = E7. c) The class t3 survives to the E∞-term

detecting ν.

Proof. a) To deduce the d3-differential on u−2, we compare the ANSS for S0
(2)

with the HFSS for EhC2
C ; there are maps of spectral sequences of rings induced

by the map of ring spectra BP → EC classifying the 2-typification of the formal
group law of EC :

Exts,tBP∗BP
(BP∗, BP∗)

��

// Hs(G, Et) //

��

Hs(C2, (EC)t)

��

πt−sS
0
(2)

// πt−sLK(2)S
0 // EhC2

C .
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Recall that the connecting homomorphism

δ : Ext0,∗BP∗BP
(BP∗/2)→ Ext1,∗BP∗BP

(BP∗)

sends v1 and v31 to the Greek letter elements η = α1 and α3, respectively. See
[Rav86]. The ring homomorphism BP∗ → (EC)∗ sends v1 to u1u

−1 modulo
2, see [Bea17], Proposition 6.1.1. By the naturality of the connecting homo-
morphism, the map Exts,tBP∗BP

(BP∗) → Hs(C2, (EC)t) of the above spectral se-
quence sends η to u1t and α3 to u31u

−2t, by Equation (III.8) and (III.9). In par-
ticular, u1t is a permanent cycle in the HFPSS for EhC2

C . We also write η for
u1t ∈ H1(C2, (EC)2). In the Adams-Novikov spectral sequence, there is a d3-
differential

d3(α3) = η4.

By naturality, it induces the following d3-differential in the HFPSS for EhC2
C :

d3(u
3
1u
−2t) = u41t

4 = u21ηu1t
3.

On the other hand, the class u21 is a d3-cycle because d3(u21) = 2u1d3(u1) and
d3(u1) is annihilated by 2, as it lives in a positive cohomology group of C2. Then,
by the Leibniz rule, we have that

d3(u
2
1ηu

−2) = u21ηd3(u
−2).

Because multiplication by u21η is injective on Es≥1,∗3 , which denotes the groups of
filtration at least 1, we obtain that

d3(u
−2) = u1t

3. (III.10)

Now we show that t3 is a permanent cycle detecting the image of ν via the unit
S0 → EhC2

C . By Lemma 6.1.2, ν is non-trivial in π3(E
hC2
C ) and is detected in

filtration at most 3. At stem t− s = 3 of the E2-term, all groups of filtration less
than 3 are trivial. Therefore, ν is detected by a class of H3(C2, (EC)6), which has
the form pt3 + qu1t

3 where p, q ∈ W[[u21]]. Using the d3-differential (III.10) and
the fact that u21 is a d3-cycle as proved above, we deduce that

d3(qu
−2) = qu1t

3.

This means that pt3 is a nontrivial permanent cycle detecting ν in the E∞-term.
In particular,

0 = d3(pt
3) = pd3(t

3),

which implies that d3(t3) = 0 because multiplication by p 6= 0 is injective in the
positive cohomology groups. This implies that t is a d3-cycle. In effect, since t2

is a d3-cycle for the same reason as u21 is a d3-cycle, we obtain that

0 = d3(t
3) = t2d3(t).
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The claim follows as multiplication by t is injective in positive filtration.

Similarly, since η = u1t is a permanent cycle, we have that

0 = d3(u1t) = td3(u1),

which implies that
d3(u1) = 0, (III.11)

because multiplication by t induces an injective map on positive cohomology
groups.

Finally, (III.10) and (III.11) imply that, for any non-negative integer k, d3(uk1u
−2) =

uk+1
1 t3, which induces that E3,6

∞ ≤ F4{t
3}. Since ν ∈ π3(E

hC2
C ) must be detected

in E3,6
∞ , we conclude that t3 survives to the E∞-term, detecting ν.

b) The module structure of the E5-term follows immediately from the differen-
tials d3. By sparseness, the next possible non-trivial differentials are d7.

c) This is proved in part a).

Proposition 6.1.4. a) In the HFPSS for EhC2
C , the classes u1, t, 2u

−2, u−8 are d7-
cycles. There is the following d7 differential:

d7(u
−4) = t7.

The other d7-differentials follows from the multiplicative structure and the Leibniz

rule.

b) As a module over the algebra W[[u1]][u
±8, t]/(t7, 2t), the E8-term is generated

by 1, 2u−2, 2u−4, u1u
−4, 2u−6 with the following relations

t7 = t(2u−2) = t(2u−4) = t3(u1u
−4) = t(2u−6) = 0,

2(u1u
−4) = u1(2u

−4).

The spectral sequence collapses at the E8-term and Es,t8 = 0 if s ≥ 8.

c) The pair (C2, EC) is a regular pair.

Proof. We prove that t is a d7-cycle. In effect, t2 is a d7-cycle because

d7(t
2) = 2td7(t) = 0.
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Because t3 is a permanent cycle by Proposition 6.1.3 part c), implies that

0 = d7(t
3) = d7(t

2t) = t2d7(t).

It follows that d7(t) = 0, because multiplication by t induces an injective map on
Es≥3,∗7 . Similarly, since u1t is a permanent cycle, we have that

0 = d7(u1t) = td7(u1).

It follows that u1 is a d7-cycle by the same reason as above.

Next, by the structure of the E7-term described in Proposition 6.1.3, all classes
of Es≥7,∗7 is t-free. Since 2u−2 is t-torsion, 2u−2 is a d7-cycle.

Now because ν4 = 0 ∈ π∗(S
0
(2)), t

12 detecting ν4 by must be hit by a differential.
Inspection shows that the only possibility is that

d7(u
−4t5) = t12.

Because t is a d7-cycle and t acts injectively on Es≥3,∗7 , the last equation implies
that

d7(u
−4) = t7.

b) The structure of the E8-term follows easily from the description of the d7-
differentials. By sparseness, the spectral sequence collapses at the E8-term.

c) By 6.1.1, t is a cohomological periodicity class for H∗(C2, (EC)∗) and by part
a) and b), t is a permanent cycle in the HFPSS for EhC2

C .
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Figure III.1 – E∞-term of the HFPSS for EhC2
C . A square � represents a copy of

W[[u1]], a black square the ideal (2, u1) of W[[u1]], a circled black dot a copy of
F4[[u1]], and a black dot a copy of F4. A line represents a multiplication by t.
The E∞-term is 16-periodic by multiplication by u−8.d
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Figure III.2 – E∞-term of the HFPSS for EhC6
C . A square � represents a copy of W[[u31]], a black square represents a copy

of the ideal (2, u31) of W[[u31]], a circled black dot a copy of F4[[u
3
1]] and a black dot a copy of F4. A curved line represents

multiplication by ν, a straight line multiplication by η. The E∞-term is 48-periodic by multiplication by ∆2.

The E∞-term of the HFPSS for EhC6
C is deduced from that for EhC2

C by taking C3-fixed points; the action of C3 is on
the E∞-term of the HFPSS for EhC2

C is induced from the action on the E2-term given in Lemma 6.1.1 Part c). The class
u−8t ∈ E1,18

∞ detects an element without ambiguity of π17(E
hC6
C ). We write x17 for this element. We emphasise that the class

x17 plays a role of a cohomological periodicity class which is a permanent cycle for the regular pair (C6, EC). The elements
η et ν are represented by u1t and t3, respectively. The element κ ∈ π20(E

hG24
C ) has order 8. A similar argument as in the

proof of Lemma 6.1.2 shows that Res(κ) is nontrivial in π20E
hC6
C and hence is detected in E4,24

∞ . The class ∆2 := u−24

detects the periodicity element of π∗(E
hC6
C ). From the multiplicative structure of π∗(E

hC2
C ), we have the following relations

in π∗(E
hC6
C )

x717 = 0, νx17 = κ, x317 = ∆2ν.
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In what follows, we describe the HFPSS for EhC2
C ∧V (0), EhC2

C ∧Y or EhC2
C ∧

A1. These spectral sequences are modules over that for EhC2
C . By Proposition

6.1.4, (C2, (EC)C) is a regular pair. Since the cohomological periodicity class t
verifies that t7 = 0, we have (see Corollary 5.3.3):

Proposition 6.1.5. Let M be a C2 − EC-module spectrum. Then, in the HFPSS

for MhC2 , we have that

a) At the Er-term,

1. All classes having positive cohomological filtration are divisible by t.
2. All classes having cohomological filtration greater than r are t-free.

3. All t-torsion classes are permanent cycles

b) The spectral sequence collapses at the E8-term and Es,t∞ = 0 if s ≥ 7.

6.2 The homotopy fixed point spectral sequence forEhC6

C ∧V (0)

Lemma 6.2.1. a) There is a class t ∈ H1(C2,F4[[u1]]{u
−1}) such that there is an

isomorphism of algebras

H∗(C2, (EC)∗/2) ∼= F4[[u1]][u
±1, t].

b) The map of algebras

ι∗ : H
∗(C2, (EC)∗)→ H∗(C2, (EC)∗/2)

induced by the inclusion of the bottom cell ι : S0 → V (0) sends u1 to u1, u
−2 to

u−2 and t to t. As a module over H∗(C2, (EC)∗), H
∗(C2, (EC)∗/2) is generated by

e0 := 1 and u−1e0.

c) The action of C3 on H∗(C2,F4[[u1]][u
±1]) is given by

ω(u1) = ζu1, ω(u−1) = ζ2u−1, ω(t) = ζ2t.

Proof. a) The map ι : S0 → V (0) induces, inEC-homology, the mod-2 projection
(EC)∗ → (EC)∗/2. It follows that C2 acts trivially on (EC)∗V (0) = F4[[u1]][u

±1]
by maps of F4-algebras. Thus by an elementary cohomology group calculation,
we have

H∗(C2, (EC)∗/2) ∼= H∗(C2,F4)⊗ F4[[u1]][u
±1] ∼= F4[[u1]][u

±1, t]

as F4-algebras with t the nontrivial class of H1(C2,F4{u
−1}).

b) The map ι∗ : (EC)∗ → (EC)∗/2 is a map of C2-algebras. It is immediate to see
that the map of invariants H0(C2, (EC)∗) → H0(C2, (EC)∗/2) sends u1 and u−2
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to classes of the same name. It remains to see that the map H1(C2,W{u
−1}) →

H1(C2,F4{u
−1}) sends t to t. This is Equation (III.2) in the proof of Lemma 6.1.1.

c) This follows from part c) of Lemma 6.1.1 and part b) above.

Proposition 6.2.2. In the HFPSS for EhC2
C ∧ V (0),

a) The classes e0 and u−1e0 are permanent cycles.

b) All d3-differentials are determined by the Leibniz rule and the following

differentials

d3(u
−2e0) = u1t

3e0, d3(u
−3e0) = u1t

3u−1e0.

c) The E4 = E7-term of the HFPSS for EhC2
C ∧ V (0) is isomorphic to

E4 = E7
∼= F4[[u1]][u

±4, t]/(u1t
3){e0} ⊕ F4[[u1]][u

±4, t]/(u1t
3){u−1e0}

with an evident structure of module over the sub-algebra W[[u1]][u
±4, t] of

the E4 = E7-term of the HFPSS for EhC2
C .

Proof. a) By part b) of Lemma 6.2.1, the map ι∗ sends 1 to e0, so that e0 is a
permanent cycle, by naturality.

Next, by Equation (III.7), the connecting homomorphism

δ : H0(C2, (EC)2/2) ∼= F4[[u1]]{u
−1e0} → H1(C2, (EC)2) ∼= F4[[u1]]{t}

is an isomorphism of W[[u1]]-modules sending u−1e0 to t. Since t is a non-trivial
permanent cycle detecting an element of order 2 in π1(E

hC2
C ), u−1e0 must also

be a permanent cycle in the HFPSS for EhC2
C ∧ V (0) by virtue of the Geometric

Boundary Lemma (Proposition A.10 of [DH04]) applied to the cofiber sequence
(III.5).

b) In the HFPSS for EhC2
C , there is a d3-differential, by Proposition 6.1.3,

d3(u
−2) = u1t

3.

By Part a) and the Leibniz rule, for k = 0,−1

d3(u
−2(uke0)) = u1t

3uke0.

The others d3-differentials are generated by t- and u−4-linearity.

c) The structure of the E4-term of the HFPSS for EhC2
C ∧ V (0) follows easily

from the d3-differentials (see Figure III.3, III.4). There is no d5-differential be-
cause, on one hand the d5-differentials are u1, u−4, t-linear, on the other hand, e0
and u−1e0 are permanent cycles.
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Proposition 6.2.3. In the HFPSS for EhC2
C ∧ V (0),

a) The differentials d7 is W[[u1]][u
±8, t]-linear and is determined by

d7(u
−4e0) = t7e0, d7(u

−4u−1e0) = t7u−1e0.

b) As a module over the sub-algebra W[[u1]][u
±8, t]/(t7, 2t) of the E8-term of the

HFPSS for EhC2
C , the E8 = E∞-term is generated by the following classes, with

the corresponding annihilation ideal:

Gen e0 u−1e0 u1u
−4e0 u1u

−5e0
Anni. Ideal (2, u1t

3) (2, u1t
3) (2, t3) (2, t3)

c) There are the following exotic extensions by 2, in the sense that they are not

detected in the E∞-term:

2(u−1e0) = u1t
2e0, 2(u1u

−5e0) = u21t
2u−4e0.

Proof. a) In the HFPSS for EhC2
C , there is a d7-differential

d7(u
−4) = t7.

The Leibniz rule and the fact that e0 and u−1e0 are permanent cycles implies that,
for k = 0,−1,

d7(u
−4(uke0)) = t7uke0.

b) The module structure of the E8 = E∞-term follows from a), see Figure
III.5.

c) We can see from the E∞-term that 2e0 = 0. Recall that there is a Toda
bracket 〈2, η, 2〉 = η2 in π∗S0. By juggling, we have that

η2e0 = 〈2, η, 2〉e0 = 2〈η, 2, e0〉.

Because η2e0 6= 0, 〈η, 2, e0〉 is non-trivial and admits a non-trivial multiplica-
tion by 2. What is more, 〈η, 2, e0〉 is C3-invariant, and so must be detected by
u1u

−1e0 = v1e0 up to an invertible element of F4[[u
3
1]]. It follows that 2u−1e0 =

u1t
2e0 because u1 acts injectively on E2,4

∞ .Multiplying the last equation by u1u−4 ∈
π8E

hC2
C , we obtain the second equality of c).
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Figure III.3 – The E2-term of the HFPSS for EhC2
C ∧ V (0) and d3-differentials. A

circled black dot represents a copy of F4[[u1]].
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Figure III.4 – The E4 = E7-term of the HFPSS for EhC2
C ∧ V (0) and d7-

differentials. A circled black dot represents a copy of F4[[u1]], a black dot a copy
of F4.
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Figure III.5 – The E8-term of the HFPSS for EhC2
C ∧ V (0). A circled black dot

represents a copy of F4[[u1]], a black dot a copy of F4, a vertical line represents
extension by 2 and a line of slope 1 multiplication by t.
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Figure III.6 – E∞-term of the HFPSS forEhC6
C ∧V (0). A circled black dot represents a copy of F4[[u

3
1]] and a black dot a copy

of F4. A curved line represents multiplication by ν and a line of slope 1 multiplication by η, a vertical line multiplication
with 2. The E∞-term is 48-periodic by multiplication by ∆2
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6.3 The homotopy fixed point spectral sequence for EhC6

C ∧ Y

The cofibration

ΣV (0)
η
−→ V (0)

ι
−→ Y

p
−→ Σ2V (0) (III.12)

induces a short exact sequence of (EC)∗/2[C2]-modules:

0→ (EC)∗/2→ (EC)∗(Y )→ (EC)∗−2/2→ 0,

because (EC)∗/2 is concentrated in even degrees. The associated connecting ho-
momorphism δ : Hs(C2, (EC)∗/2) → Hs+1(C2, (EC)∗+2/2) is Hs(C2, (EC)∗/2)-
linear.

Lemma 6.3.1. a) δ sends e0 ∈ H0(C2, (EC)0/2) to η ∈ H1(C2, (EC)2/2).
b) There is an isomorphism of H∗(C2, (EC)∗/2)-modules

H∗(C2, (EC)∗(Y )) ∼= F4[[u1]][u
±1, t]/(u1t){e0}.

c) The induced map on H∗(C2, (EC)∗(Y )) by a v1-self map of Y is injective

on H0(C2, (EC)∗Y ) and is trivial on Hs(C2, (EC)∗Y ) when s > 0.
d) The action of C3 on H∗(C2, (EC)∗Y ) is given by

ω(e0) = e0, ω(u1) = ζu1, ω(u−1) = ζ2u−1, ω(t) = ζ2t.

Proof. Consider the evident map of cofiber sequences

ΣS0 η //

Σι
��

S0 //

ι

��

Cη //

��

Σ2S0

��
ΣV (0)

η // V (0) // Y // Σ2V (0)

which induces a map of short exact sequences of C2-(EC)∗-modules

0 // (EC)∗ //

��

(EC)∗(Cη) //

��

E∗−2 //

��

0

0 // (EC)∗V (0) // (EC)∗Y // (EC)∗−2V (0) // 0.

By the naturality of the connecting homomorphism, we obtain a commutative
diagram

H0(C2, (EC)0)

ι∗
��

∂ // H1(C2, (EC)2)

ι∗
��

H0(C2, (EC)0(V (0))) ∂ // H1(C2, (EC)2V (0)).
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The upper connecting homomorphism sends 1 to η, because the induced map on
H∗(C2,−) of (EC)∗ → (EC)∗(Cη) sends η to 0, because of the fact that η = 0 ∈
π1(Cη). Since the map ι∗ : H∗(C2, (EC)∗)→ H∗(C2, (EC)∗(V (0))) sends 1 to e0
and η to ηe0, part a) follows.

Part b) is an immediate consequence of part a) together with the fact that δ is
a map of H∗(C2, (EC)∗/2)-modules. In effect, the connecting homomorphism is
injective, there is an isomorphism of H∗(C2, (EC)∗/2)-modules

coker(Hs−1(C2, (EC)t−2/2)
η
−→ Hs(C2, (EC)t/2)) ∼= Hs(C2, (EC)tY ).

c) By Lemma 5.2.1, a v1-self map of Y induces onEC-homology (EC)∗(Σ
2Y )→

(EC)∗Y multiplication by v1 ∈ (EC)∗/2 and it is also a map of C2 − (EC)∗-
modules. It follows that the induced map on H∗(C2, (EC)∗Y ) of a v1-self map
is given by multiplication by v1 ∈ H0(C2, (EC)2/2) via the H∗(C2, (EC)2/2)-
module structure of H∗(C2, (EC)∗Y ). Part c) now follows from the part b) and
relation v1t = ηu−1e0 in H∗(C2, (EC)∗/2).

d) This follows from part c) of Lemma 6.2.1 and part b) of Lemma 6.3.1.

Remark 6.3.2. We see that Hs(C6, (EC)tY ) = 0 if t − s is odd, hence all even
differentials are trivial.

Proposition 6.3.3. a) There are no d3- and d5-differentials in the HFPSS. As a

module over the subalgebra W[[u1]][u
±8, t] of the E7-term of the HFPSS for EhC2

C ,

the E7-term is isomorphic to

E7
∼= F4[[u1]][u

±8, t]/(u1t){e0, u
−1e0, u

−2e0, u
−3e0, u

−8e0, u
−5e0, u

−6e0, u
−7e0}.

b) The classes e0, u
−1e0, u

−2e0, u
−3e0 are permanent cycles.

c) The d7-differentials are linear with respect to W[[u1]][u
±8, t] and are deter-

mined by

d7(u
−4e0) = t7e0, d7(u

−5e0) = t7u−1e0,

d7(u
−6e0) = t7u−2e0, d7(u

−7e0) = t7u−3e0.

d) There are the following exotic multiplications by η:

ηu−2e0 = t5e0, ηu
−3e0 = t5u−1e0.

Proof. a) As a module over W[[u1]][u
±4, t], the E3-term is generated by uke0

for k = −3,−2,−1, 0. Since the d3-differentials are C3-equivariant, the d3-
differentials on uke0 for k = −3,−2,−1, 0 are trivial in view of the C3-action
on the E2-term. Since the d3-differentials are W[[u1]][u

±4, t]-linear, we conclude
that the differentials d3 are trivial. By the same reason, the differentials d5 are
trivial.
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Part b). The map ι∗ : H0(C2, (EC)∗V (0)) → H0(C2, (EC)∗Y ) sends e0 and
u−1e0 to the classes of the same name. By naturality, e0 and u−1e0 are permanent
cycles.

The cofibration (III.12) gives rise to an exact sequence

π∗−1(E
hC2
C ∧ V (0)

×η
−→ π∗(E

hC2
C ∧ V (0))

ι∗−→ π20(E
hC2
C ∧ Y ).

This means that ηe0 = η(u−1e0) = 0 in π∗(E
hC2
C ∧ Y ). We can form the Toda

brackets 〈ν, η, uke0〉 for k = 0,−1. By juggling,

η〈ν, η, uke0〉 = 〈η, ν, η〉u
ke0 = ν2uke0.

Since the differentials d3 and d5 are trivial, the classes t6uke0 for k = 0,−1 sur-
vive to the E∞-term, and so ν2uke0 are nontrivial. It follows that 〈ν, η, uke0〉
is non-trivial and is divisible by η. The structure of the E2-term forces that
〈ν, η, uke0〉 is represented by tuk−2e0. It means that tu−2e0 and tu−3e0, hence
u−2e0 and u−3e0 are permanent cycles.

For part c), the fact that t7 = 0 and that uke0 for k = 0,−1,−2,−3 are
permanent cycles force the indicated differentials d7.

Part d) follows from the proof of part b).
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Figure III.7 – HFPSS for EhC2
C ∧ Y . A circled black dot represents a copy of

F4[[u1]], a black dot a copy of F4.
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Figure III.8 – E∞-term of the HFPSS for EhC6
C ∧ Y . A circled black dot represents a copy of F4[[u

3
1]] and a black dot a copy

of F4. A curved line represents multiplication by ν and a straight line multiplication by η. The E∞-term is 48-periodic by
multiplication by ∆2.
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7 The homotopy fixed point spectral sequence for

EhC6
C ∧ A1

Before starting to compute the HFPSS, we outline the main points in the argu-
ments. After computing the E2-term, we compare EhC2

C ∧ A1 with EhC2
C ∧ Y via

the cofiber sequence
Σ2Y

v1−→ Y
ι
−→ A1

p
−→ Σ3Y (III.13)

and EhC2
C ∧A1 with EhG24

C ∧A1 via the restriction map EhG24
C ∧A1 → EhC2

C ∧A1

to deduce some differentials. Next, a comparison of EhC6
C ∧A1 with a connective

model tmf0(3) ∧ A1 allows us to deduce more differentials. Finally, by using the
Gross-Hopkins dual of EhC6

C ∧ A1, we deduce the rest of the differentials.

We begin with a calculation of the Gross-Hopkins dual of EhC6
C and so of EhC6

C ∧
A1. Note that in [HLS18], the authors computed the Gross-Hopkins dual of EhC2

n

for all heights n at the prime p = 2, and the Gross-Hopkins dual of EhC6
2 can be

deduced from there. A calculation at height n = 2 is, however, elementary and
instructive. We give here a complete proof with a quite different point of view.

7.1 The Gross-Hopkins dual of EhC6

C

We start with some generalities. We will denote by E the Morava E-theory
associated to a height n formal group law, by I() the Gross-Hopkins dual functor
In(−) and Î the Gross-Hopkins dual of the K(n)-local sphere. Let G be a finite
subgroup of the Morava stabiliser group. Then the norm map (E)hG → (E)hG is
a homotopy equivalence 1. It follows that

I(EhG) ∼= F (EhG, Î) ∼= F ((E)hG, Î) ∼= F (E, Î)hG ∼= (IE)hG.

The spectrum IE is aG-E-module. Applying theG-homotopy fixed point functor
to IE, we equip (IE)hG with a structure of module over EhG. We will charac-
terise (IE)hG using the HFPSS. First, we need to compute the Morava module of
(IE)hG. To this end, we will use the following lemma, see [DH04], Section 5 or
[BBGS18], Proposition 2.1.

Lemma 7.1.1. LetW • be a cosimplicial spectrum. Suppose there exists an integer

N and a finite spectrum V of type 0 so that, for all spectra Z, the Bousfield-Kan

1. This fact is equivalent to that the Tate construction EtG vanishes, which follows from the
fact that the HFPSS for EhG has a horizontal vanishing line.
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spectral sequence

πsπtF (Z, V ∧W
•)⇒ πt−sF (Z, holim(V ∧W •)) (III.14)

has a horizontal vanishing line at s = N at the E∞-page. Then for any spectrum

A and F there is a natural equivalence

LF (A ∧ holimW •)→ holim(LF (A ∧W
•)).

We have the following proposition whose proof is similar to that of Proposition
2.2 of [BBGS18].

Proposition 7.1.2. There is an isomorphism of Morava modules

(E)∗(F (E, Î)
hG) ∼= Mapc(G/G,E∗−n〈det〉),

where E∗〈det〉 = E∗(S
0〈det〉).

Proof. We will first show that the natural map

E ∧ F (E, Î)hG → (E ∧ F (E, Î))hG (III.15)

is a homotopy equivalence. We apply the previous lemma to A = E, F = K(n)
and

W • = F (G×•, F (E, I))

so that holimW • = F (E, I)hG. The E2-term of the spectral sequence (III.14) is
isomorphic to Hs(G,F (E, Î)t(DV ∧ Z)). By a construction of Jeff Smith, see
[Rav92], there exists a finite spectrum Y of type 0 such that E∗(V ) is free as a
E∗[F ]-module for all cyclic subgroups F of G. As a consequence, there exists an
integer s0 such that Hs(G,E∗V ) = 0 for s ≥ s0. By the Gross-Hopkins theorem,

F (E, Î) ∼= Σ−nE ∧ S0〈det〉. (III.16)

as G-spectra in the homotopy category of spectra (where n is the chromatic height),
see [HG94] or [Str00]. It follows that

F (E, Î)t(DV ∧ Z) ∼= Et−n(DV ∧ Z)〈det〉 ∼= E∗(V )⊗E∗
Et−n(Z)〈det〉

as G-modules, where the last equivalence is because E∗V is free over E∗. It then
follows that Hs(G,F (E, Î)t(DV ∧Z)) = 0 for s ≥ s0. Therefore, the map (III.15)
is an homotopy equivalence.

Now we calculate the homotopy groups of (E ∧ F (E, Î))hG using the ho-
motopy fixed point spectral sequence. This spectral sequence has E2-term natu-
rally isomorphic to Hs(G, (E)∗(F (E, Î)). By the equivalence (III.16), the latter
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is isomorphic to Hs(G, (E)∗+n(E〈det〉). So the spectral sequence collapses at the
E2-term and we obtain an isomorphism of Morava modules

(E)∗(F (E, Î)
hG) ∼= Mapc(G/G, π∗(Σ

−nE〈det〉)).

In the statement of the following proposition, we use that fact that π∗IE is
of free of rank 1 over E∗, which is a direct consequence of the Gross-Hopkins
formula III.16.

Proposition 7.1.3. Suppose there exists x ∈ πk(IE)
G ⊂ πkIE which generates

π∗IE as an E∗-module and which is a permanent cycle in the HFPSS for (IE)hG.

Then there is a homotopy equivalence of EhG-modules ΣkEhG → (IE)hG.

Proof. The element x ∈ πk(IE) extends to a map ofE-modules f1 : ΣkE → IE.
By the assumption, x detects an element of πk(IEhG), which extends to a map
of EhG-modules f2 : ΣkEhG → (IE)hG. In this case, there is a commutative
diagram

ΣkEhG

ΣkRes
��

f2 // (IE)hG

Res
��

ΣkE
f1 // IE.

The induced map in homotopy of f1 is given by multiplication with x, i.e.,

(f1)∗ : π∗−kE → π∗(IE), a 7→ ax.

Then we claim that the induced map in Morava modules of f1 is given by 2

E∗(f1) : Map(G, E∗−k)→ Map(G, (IE)∗), (e 7→ (g 7→ e(g)g(x))).

The restrictions induce injections E∗(Res) : Map(G/G,M) → Map(G,M) in-
duced by the projection G→ G/G with M = E∗ or (IE)∗. It follows that E∗(f2)
is given by

E∗(f2) : Map(G/G,E∗−k)→ Map(G/G, (IE)∗), (e 7→ (gG 7→ e(gG)g(x))).

Since x generates π∗(IE) as a E∗-module, (f1)∗ is an isomorphism. It follows
immediately that E∗(f2) is an isomorphism. Therefore, f2 is an homotopy equiv-
alence.

2. We postpone the proof of this claim to Lemma 11.2.2, in which we only need to identify IE

with Σ−nE by the Gross-Hopkins formula.
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Let us turn back to the case of n = p = 2.

Theorem 7.1.4. 1) There is an integer k ≡ −2 mod 12 which is uniquely deter-

mined modulo 48 such that ΣkEhC6
C

∼= IEhC6
C is a homotopy equivalence.

2) The integer k in part 1) is equal to 22 modulo 48.

Proof. The HFPSS for (IEC)hC6 is one of modules over that for EhC6
C . The E2-

term of the HFPSS for (IE)hC6 is isomorphic to Es,t2 = Hs(C6, (EC)t+2), with
an obvious structure of module over H∗(C6, (EC)∗). In particular, the former is
free of rank one over the latter. Let us denote by ι ∈ E0,−2

2 = H0(C6, (EC)0) a
generator of the E2-term of the HFPSS for (IEC)hC6 . We will show that there is
an integer l such that u−6lι is a permanent cycle.

In the HFPSS for EhC6
C there is a d3-differential, by Proposition 6.1.3,:

d3(u
−6) = u−4d3(u

−2) = u−4u1t
3.

A d3-differential on ι is of the form

d3(ι) = t3u2u1pι

with p ∈ F4[[u
3
1]]. Then, by the Leibniz rule,

d3(u
−6ι) = u−4u1t

3ι+ u−4t3u1pι = u−4u1t
3(1 + p)ι.

It follows that

0 = d3(u
−4u1t

3(1 + p)ι) = u−4u1(1 + p)t3d3(ι) = u−2t3u21(1 + p)pι.

Therefore, (1 + p)p = 0, which implies that either p = 0 or 1 + p = 0. It means
that either ι or u−6ι is a d3-cycle. As a consequence, the E4-term of the HFPSS for
(IE)hC6 is free of rank one over that for EhC6

C , generated by u−6mι where m = 0
or m = 1. By sparseness, there are no non-trivial d5-differentials.

Next, in the HFPSS for EhC6
C , there is a d7-differential

d7(u
−12) = u−8t7.

If u−6mι is not a d7-cycle then, by a similar argument for proving that u−6mι is a
d3-cycle, we see that u−12−6mι is a d7-cycle. The spectral sequence collapses at
the E7-term. We conclude that there is an integer l such that u−6lι is a permanent
cycle detecting a homotopy equivalence Σ12l−2EhC6

C
∼= IEhC6

C .
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2) Choose A1 be one of the Spanier-Whitehead self-dual versions of A1, i.e.,
DA1 ≃ Σ−6A1. We have that

I(EhC6
C ∧ A1) ∼= I(EhC6

C ) ∧DA1
∼= Σ12l−2EhC6

C ∧ Σ−6A1
∼= Σ12l−8EhC6

C ∧ A1.

As a consequence,

πk(E
hC6
C ∧ A1) ∼= π8−12l−k(E

hC6
C ∧ A1). (III.17)

Using the long exact sequence associated to the cofibration (III.13)

πk−2(E
hC6
C ∧ A1)

v1−→ πk(E
hC6
C ∧ Y ))→ πk(E

hC6
C ∧ A1)→

→ πk−3(E
hC6
C ∧ Y )

v1−→ πk−1(E
hC6
C ∧ A1)

and Proposition 6.3.3 (see Figure III.8), we check that

π2(E
hC6
C ∧ A1) ∼= 0,

π6(E
hC6
C ∧ A1) ∼= F4 ⊕ F4 ou W/4,

π18(E
hC6
C ∧ A1) = F4,

π42(E
hC6
C ∧ A1) = F4.

This information together with Equation (III.17) rules out the possibility for l =
0, 1, 3 mod 4. Therefore, l = 2 mod 4 and

Σ22EhC6
C

∼= IEhC6
C .

7.2 The homotopy fixed point spectral sequence for EhC6

C ∧ A1

Lemma 7.2.1. We have

a) There are classes

e0 ∈ H0(C2, (EC)0A1), e2 ∈ H0(C2, (EC)2A1)

such that there is an isomorphism of F4[u
±1, t]-modules

H∗(C2, (EC)∗A1) ∼= F4[u
±1, t]{e0, e2}.

b) The action of C3 on H∗(C2, (EC)∗(A1)) is induced by

ω(e0) = e0, ω(e2) = e2, ω(u−1) = ζ2u−1, ω(t) = ζ2t.
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Proof. We have that
(EC)∗A1

∼= F4[u
±1]{e0, e2}

on which C2 acts trivially (see Proposition 5.2.2). The cohomology group calcu-
lation of H∗(C2, (EC)∗A1) is now elementary.

For the study of the differentials, we next describe the induced maps of spectral
sequences associated to the cofiber sequence

Σ2Y
v1−→ Y

ι
−→ A1. (III.18)

By Lemma 5.2.1, v1 induces an injective map in EC-homology. Thus, (III.18)
gives rise to an exact sequence of (EC)∗/2[C2]-modules

0→ (EC)∗Σ
2Y → (EC)∗Y → (EC)∗A1 → 0.

The associated long exact sequence reads

Hs(C2, (EC)∗Σ
2Y )

v1−→ Hs(C2, (EC)∗Y )
ι∗−→ Hs(C2, (EC)∗A1)

δ
−→ Hs+1(C2, (EC)∗Σ

2Y ).

By the description of the action of v1 on H∗(C2, (EC)∗Y ) in Lemma 6.3.1, we see
that ι∗ is a map of F4[u

±1, t]-modules sending e0 to e0 and δ sending e2 to ute0.

Lemma 7.2.2. In the HFPSS for EhC2
C ∧ A1,

a) The differentials d3 are trivial.

b) The classes {uke0|k ∈ Z} are d5-cycles.

c) The classes e0, u
−1e0, u

−2e0, u
−3e0 are permanent cycles.

d) The class u−1e2 is a permanent cycle.

Proof. Part a) The differentials d3 are eliminated by C3-equivariance as in the
proof of part a) of Proposition 6.3.3.

Part b) follows from the naturality of the induced map of spectral sequences
by ι of (III.18).

Part c) follows by the same reason as in Part b).
For Part d), we see that the connecting homomorphism δ sends u−1e2 to

te0 ∈ H1(C2, (EC)2Y ). The class te0 detects an element of π1(E
hC2
C ∧ Y ) ∼=

π4(Σ
3EhC2

C ∧ Y ) that is annihilated by v1, because v1-multiplication is trivial in
the E2-term in filtration s > 0 and the only element in higher filtration in π3(Y )
is the C3-invariant class t3e0, while v1te0 can only be C3-invariant if it is triv-
ial. Thus, u−1e2 must be a permanent cycle by the Geometric Boundary Lemma
(Proposition A.10 of [DH04])
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Now neither the naturality nor the C3-equivariance can rule out a non-trivial dif-
ferential d5 on the classes uke2 for k ≡ 0, 1, 2 mod (4). In fact, we are going to
prove that the latter support a non-trivial differential d5. We state the final result
here

Theorem 7.2.3. In the HFPSS for EhC2
C ∧ A1, we have

a) The differentials d5 are W[u±4, t]-linear and are determined by the follow-

ing

d5(u
ke2) = t5uk+2e0 for k ≡ 0, 1, 2 mod (4).

b) The differentials d7 are W[u±8, t]-linear and are determined by the follow-

ing

d7(u
−7+8ke0) = t7u−3+8ke0, d7(u

−5+8ke2) = t7u−1+8ke2.

c) The spectral sequence collapses at the E8-term and there is an isomorphism

of F4[u
±8, t]-modules

E∗,∗8
∼= F4[u

±8, t]/t5{e0, u
−1e0, u

−2e0, u
−4e0, u

−5e0, u
−6e0}

⊕F4[u
±8, t]/(t7){u−3e0, u

−1e2}.

By taking C3-fixed points, we obtain the E∞-term of the HFPSS for EhC6
C ∧ A1.

Theorem 7.2.4. As a module over F4[∆
±2, x17], the E∞-term of the HFPSS for

EhC6
C ∧ A1 is isomorphic to

E∗,∗∞
∼= F4[∆

±2, x17]/(x
5
17){e0, u

−6e0, u
−9e0, u

−12e0, u
−18e0, u

−21e0}.

⊕F4[∆
±2, x17]/(x

7
17){u

−3e0, u
−9e2}.

We prove this theorem in Proposition 7.2.6, 7.2.7, 7.2.15 and 7.2.16.

Remark 7.2.5. We are going to settle the d7-differentials before all. There is,
however, no harm at all. In view of Proposition 6.1.5, we know that a permanent
t-free tower is truncated by one and only one t-free tower. So, if a t-free tower
involves in some differential, then none of the classes of that tower involves in any
other differentials.

Proposition 7.2.6. There are the following differentials d7

d7(u
−7+8ke0) = t7u−3+8ke0, d7(u

−5+8ke2) = t7u−1+8ke2.

Proof. By part d) of Lemma 7.2.2, the class u−1e2 is a permanent cycle. More-
over, the class t5u−1e2 cannot be a target of any differential, by C3-equivariance.
This forces that t7u−1e2 is hit by the differential d7:

d7(u
−5e2) = t7u−1e2.
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This differential implies in particular that u−5e2 is a d5-cycle. Furthermore, u−6e0
is also a d5-cycle by part b) of Lemma 7.2.2. Thus, the group H0(C2, (EC)12A1)
consists only of d5-cycles, and so there is no differential d5 hitting the class
t5u−3e0, and so by naturality t7u−3e0 is hit by the differential d7:

d7(u
−7e0) = t7u−3e0.

Finally, we deduce the other differentials d7 by W[u±8, t]-linearity.

Proposition 7.2.7. There are d5 differentials

d5(u
−3+4ke2) = t5u−1+4ke0.

Proof. Let u−3e0 denote (by an abuse of language) an element of π6(E
hC2
C ∧ A1)

detected by u−3e0 ∈ H0(C2, (EC)6A1). The map

ι∗ : π6(E
hC2
C ) ∧ Y → π6(E

hC2
C ∧ A1)

sends u−3e0 to u−3e0 up to an element detected in filtration at least 2, i.e.,

ι∗(u
−3e0) = u−3e0 + t2a

for some a ∈ π4((EC)
hC6 ∧ A1). By Part e) of Proposition 6.3.3, η(u−3e0) =

t5(u−1e0). It follows that

ι∗(t
5u−1e0) = ι∗(ηu

−3e0) = ηu−3e0

because ηt2 = 0 ∈ π∗(E
hC2
C ). Consider the restriction map Res : EhG24

C ∧ A1 →
EhC2
C ∧ A1. We see that the induced map in cohomology H0(G24, E6A1) →

H0(C2, (EC)6A1) sends e6 to u−3e0. Thus, in homotopy

Res∗(e6) = u−3e0 + t2b

for some b ∈ π4(E
hC2
C ∧A1). In π∗(E

hG24
C ∧A1), we have that ηe6 = 0. It follows

that ηu−3e0 = 0, because ηt2 = 0 in π∗(E
hC2
C ). Together with

ι∗(t
5u−1e0) = ηu−3e0

we conclude that ι∗(t5u−1e0) = 0. It forces that, in the HFPSS for EhC2
C ∧ A1,

there is a d5-differential hitting t5u−1e0. By naturality, the source of the latter
cannot be u−4e0. As a consequence,

d5(u
−3e2) = t5u−1e0,

and so, by the Leibniz rule and the fact that u−4 is a d5-cycle in the HFPSS for
EhC2
C , we obtain that

d5(u
−3+8ke2) = t5u−1+8ke0.
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To determine the rest of the differentials d5, we need some extra information
about the homotopy groups of EhC6

C ∧ A1. For this we will use the connective
model tmf0(3) of TMF0(3) introduced Section 1.4. We recall that there exists a
finite spectrum X such that tmf0(3) ≃ tmf ∧ X . As a A(2)-module, H∗X ∼=
F2 ⊕ T where the A(2)-module structure of T is given in Section 1.4.

Lemma 7.2.8. a) The ring homomorphism

Ext∗,∗A∗
(F2)→ Ext∗,∗A∗

(H∗(tmf0(3)))

induced by the unit of tmf0(3) sends g ∈ Ext4,24A∗
(F2) to a nontrivial class that we

also call g.

b) The image in π20(tmf0(3)) of the element κ ∈ π20(S
0) via the unit S0 →

tmf0(3), denoted also by κ, satisfies that

κ2 = 0 ∈ π40(tmf0(3)).

Proof. a) The unit S0 → tmf0(3) of tmf0(3) factors through the unit of tmf .
Therefore the map

Ext4,24A∗
(F2)→ Ext4,24A∗

(H∗(tmf0(3)))

factors through

Ext4,24A∗
(F2)→ Ext4,24A∗

(H∗(tmf))→ Ext4,24A∗
(H∗(tmf0(3))).

By the change-of-rings theorem, the second map is identified with

Ext4,24A(2)∗
(F2)→ Ext4,24A(2)∗

(H∗(X)).

By the A(2)-module structure of H∗(X), the latter is a split injection. As a con-
sequence, the class g ∈ Ext4,24A(2)∗

(F2) is sent non-trivially to Ext4,24A(2)∗
(H∗(X)).

Because g ∈ Ext4,24A(2)∗
(F2) lifts to Ext4,24A∗

(F2), we are done.
b) By the description of the homotopy groups of tmf0(3) in Theorem 2.12

of [DM10], there is a unique non-trivial element of finite order in π20(tmf0(3)).
Furthermore, this element is nilpotent of exponent 2. Thus because κ ∈ π20S0 has
finite order, if its image in π20(tmf0(3)) is non-trivial, then it must be of exponent
2.

Lemma 7.2.9. There is a homotopy equivalence

[(∆2)−1](tmf0(3) ∧ A1) ∼= (EhC6
C )hGal ∧ A1.
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Proof.

[(∆2)−1](tmf0(3) ∧ A1) ∼= TMF0(3) ∧ A1 (Equation I.16)
∼= L2(TMF0(3)) ∧ A1 (TMF0(3) is E(2)− local)
∼= LK(2)TMF0(3) ∧ A1(A1 is of type 2)

∼= (EhC6
C )hGal ∧ A1 (Equation I.12)

Let us denote by f the following composite

tmf0(3) ∧ A1 → (∆2)−1tmf0(3) ∧ A1

∼=
−→ (EhC6

C )hGal ∧ A1 → EhC6
C ∧ A1.

By Proposition 6.3.3, we inspect that the group π5(E
hC6
C ∧ Y ) ∼= F4 detected by

tu−2e0 ∈ E1,6
∞ . The induced map at the E2-term of the HFPSS of ι : Y → A1

sends tu−2e0 to the class of the same name which must be a non-trivial permanent
cycle, as it lives in filtration 1. So the induced map in homotopy π5(E

hC6
C ∧ Y ) ∼=

F4 → π5(E
hC6
C ∧ A1) is injective. We will write e5 for the nontrivial element of

π5((E
hC6
C )hGal∧Y ) ∼= F2 as well as its image via π5((E

hC6
C )hGal∧Y )→ π5(E

hC6
C ∧

Y ) and via the composite π5((E
hC6
C )hGal∧Y )→ π5(E

hC6
C ∧Y )→ π5(E

hC6
C ∧A1).

In what follows, we will prove that κe5 = 0 ∈ π25(E
hC6
C ∧ A1).

Some elements of π∗(tmf0(3) ∧ A1). Consider the Adams spectral sequence

Exts,tA(2)(H∗(X ∧ A1)) =⇒ πt−s(tmf0(3) ∧ A1).

The E2-term splits as

Exts,tA(2)(H∗(X ∧ A1)) ∼= Exts,tA(2)(H∗(A1)⊕ Exts,tA(2)(T ⊗ H∗(A1)).

Then we see immediately that the classes

e[0, 0] ∈ Ext0,0A(2)(H∗(A1)), e[1, 5] ∈ Ext1,6A(2)(H∗(A1))

are sent to non-trivial permanent cycles in the ASS for tmf0(3)∧A1. By an abuse
of language, we also write e[0, 0] and e[1, 5] for the elements of π∗(tmf0(3)∧A1)
to which e[0, 0] and e[1, 5] converge, respectively (by sparseness of the E2-term,
there is no ambiguity to define e[0, 0] and e[1, 5]).

Lemma 7.2.10. In π∗(tmf ∧ A1), we have that

e[1, 5] = 〈ν, η, e[0, 0]〉.
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Proof. In π∗(tmf ∧ A1), we have that ηe[0, 0] = 0 hence, by juggling

ν2e[0, 0] = 〈η, ν, η〉e[0, 0] = η〈ν, η, e[0, 0]〉.

Since ν2e[0, 0] 6= 0, we have that 〈ν, η, e[0, 0]〉 = e[1, 5]. As a consequence, in
π∗(tmf0(3) ∧ A1), we have that

e[1, 5] = ι∗(e[1, 5]) ∈ 〈ν, η, ι∗(e[0, 0])〉 = 〈ν, η, e[0, 0]〉.

Moreover, the ambiguity of 〈ν, η, e[0, 0]〉 is equal to π5(S0)e[0, 0]+νπ2(tmf0(3)∧
A1), which is equal to zero 3. We conclude that, in π∗(tmf0(3) ∧ A1), the Toda
bracket 〈ν, η, e[0, 0]〉 is equal to e[1, 5].

To prove Lemma 7.2.11 and Proposition 7.2.14, we need some knowledge on
the structure of Ext∗,∗A(2)∗

(H∗(X ∧ A1)), the E2-term of ASS for tmf0(3) ∧ A1.
This is purely algebraic and, in principle, can be shown by hand. However, a by-
hand computation should not be so easy because the A(2)-module structure of
H∗(X) is not simple. To overcome this difficulty, we use the Bruner’s software,
which is built to compute the Ext-group over subalgebras of the Steenrod algebra.
This program takes as input theA(2) respectivelyA-module structure of a module
M and outputs the groups Exts,tA(2)(M) respectively Exts,tA (M), up to a required

stem. It can also give the action of classes of Exts,tA(2)(F2) respectively Exts,tA (F2)

on classes of Exts,tA(2)(M) respectively Exts,tA (M). We refer to the Appendix of
[BEM17] for an explanation on the use of this software.

Lemma 7.2.11. The image of e[0, 0] ∈ π0(tmf0(3) ∧ A1) by f∗ is nontrivial in

π0(E
hC6
C ∧ A1). The latter is detected by e0 ∈ H0(C6, (EC)0).

Proof. We need to prove that v8l2 e[0, 0] survives to the E∞-term of the Adams
spectral sequence for tmf0(3) ∧A1 for all non-negative integer l; then by Lemma
7.2.9, f∗(e[0, 0]) must be non-trivial. We prove in fact that there is no potential
source for any differential hitting v8l2 e[0, 0]. Suppose that x is a class in the E2-
term of the ASS that can support a differential hitting v8l2 e[0, 0].

The Davis-Mahowald spectral sequence for Ext∗,∗A(2)(H∗(X ∧ A1)) has the form

F2[y1, y2, y3]⊗ H∗(X) =⇒ Ext∗,∗A(2)(H∗(X ∧ A1)).

Then x can be represented by a sum Σ yi1y
j
2y
k
3a where a ∈ H∗(X). We see that

i, j, k and the degree |a| of a must satisfy that

i+ j + k ≤ 8l − 2, 3i+ 5j + 6k + |a| = 48l + 1

3. This is because π5(S
0) = 0 and π2(tmf0(3) ∧ A1) = 0. The latter is because Es,s+2

2 = 0,
which can be seen from the splitting of the E2-term of the ASS
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The only solutions to these equations are (i, j, k, a) = (0, 1, 8l−3, x14), (0, 0, 8l−
2, x13) (here x13, x14 ∈ H∗(X) are duals of the corresponding cohomology classes
as introduced in the preliminaries). It means that x is of the form v

8(l−1)
2 y where

y ∈ Ext6,55A (H∗(tmf0(3) ∧A1)). However, a calculation by the Bruner’s software
shows that the group Ext6,55A (H∗(tmf0(3) ∧ A1)) is trivial.

For the second statement, by using the long exact sequence associated to the
cofiber sequence (III.18), we see that π0(E

hC6
C ∧A1) is isomorphic to F4 detected

by e0 ∈ H0(C6, (EC)∗). Since f∗(e[0, 0]) is non-trivial, it must be detected by
e0.

Lemma 7.2.12. a) The group π5(E
hC6
C ∧ A1) is isomorphic to F4 and is detected

by the class tu−2e0 in the HFPSS.

b) None of the non-trivial elements of π5(E
hC6
C ∧ A1) is divisible by ν.

Proof. a) The cofiber sequence (III.18) induces the following exact sequence

π3(E
hC6
C ∧ Y )

v1−→ π5(E
hC6
C ∧ Y )→ π5(E

hC6
C ∧ A1)→ π2(E

hC6
C ∧ Y ).

It is straightforward from Figure (III.8) and Part c) of Lemma 6.3.1 to show that
multiplication by v1 is injective on π2(E

hC6
C ∧ Y ) and that π5(E

hC6
C ∧ Y ) ∼=

F4{tu
−2e0} is not in the image of v1. Then it follows from the above exact se-

quence that
π5(E

hC6
C ∧ A1) ∼= π5(E

hC6
C ∧ Y ) ∼= F4.

Furthermore, the induced map in the E2-term of ι : EhC6
C ∧Y → EhC6

C ∧A1 sends
the class tu−2e0 to a class of the same name. Therefore, tu−2e0 is a permanent
cycle in the HFPSS for EhC6

C ∧ A1 and survives to the E∞-term, since it is in too
low a filtration to be hit by a differential.

b) This is because tu−2e0 is in filtration 1 and ν is detected in filtration 3 in the
HFPSS for EhC6

C .

Lemma 7.2.13. The image of e5 ∈ π5(tmf0(3)∧A1) by f∗ is equal to e5 (up to a

scalar of F×4 ).

Proof. The element e[1, 5] ∈ π5(tmf0(3) ∧ A1) is equal to the Toda bracket
〈ν, η, e[0, 0]〉, as explained before Lemma 7.2.11. It follows that

f∗(e[1, 5]) ∈ 〈ν, η, f∗(e[0, 0])〉 = 〈ν, η, e0〉.

It suffices to show that 〈ν, η, e0〉 ⊂ π5(E
hC6
C ∧ A1) contains only e5.

In π∗(E
hC6
C ∧ Y ), we have that 〈ν, η, e0〉 does not contain zero and is detected

by tu−2e0. By the proof Lemma 7.2.12, ι : π5(E
hC6
C ∧ Y ) → π5(E

hC6
C ∧ A1)
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sends tu−2e0 to e5. Thus 〈ν, η, e0〉 contains the unique nontrivial element (up to a
non-zero scalar of F4) of π5(E

hC6
C ∧ A1).

The ambiguity of the Toda bracket 〈ν, η, e0〉 lives in π5(S0)e0+νπ2(E
hC6
C ∧A1)

which is equal to zero because none of the nontrivial elements of π5(E
hC6
C ∧ A1)

is divisible by ν. We conclude that f∗(e[1, 5]) must be equal to e5.

Proposition 7.2.14. The element κe[1, 5] = 0 ∈ π25(tmf0(3) ∧ A1).

Proof. Since κ2e[1, 5] = 0 ∈ π45(tmf0(3) ∧ A1), the class g2e5 ∈ Ext9,54A(2)

must be hit by a differential. The Ext-group calculation by Bruner’s software
shows by sparseness that the only possibility is given by a differential d2 on the
group Ext7,53A(2)(H∗(X ∧ A1)). The latter is generated by two classes 76 and 77. 4

By a calculation of Ext∗,∗A(2)∗
(H∗(X ∧ A1)) by the Bruner’s software, the class

76 is a ν-multiple, whereas 77 is not. The Bruner’s software also tells us that
Ext9,54A(2)(H

∗(X ∧A1)) ∼= F2{g
2e[1, 5]} and that g2e[1, 5] is not divisible by ν. We

must have then that

d2(76) = 0, d2(77) = g2e[1, 5].

We can also check by Bruner’s software that 76 + 77 is divisible by g, i.e., there is
a class a ∈ Ext3,29A(2)(H

∗(X ∧A1)) such that ga = 76 +77. By the Leibniz rule, we

obtain that d2(a) = ge[1, 5]. Since the groups Exts,25+sA(2) (tmf0(3) ∧ A1) = 0 for
s ≥ 6, we conclude that κe[1, 5] = 0 ∈ π25(tmf0(3) ∧ A1).

Proposition 7.2.15. There are the following d5-differentials in the HFPSS for

EhC2
C ∧ A1

d5(u
−4+4ke2) = u−2+4kt5e0.

Proof. The map f∗ : π∗(tmf0(3) ∧ A1) → π∗(E
hC6
C ∧ A1) is a map of π∗S0-

modules; in particular it is κ-linear. Therefore, by Lemma 7.2.13 and Proposition
7.2.14, we have

κe5 = 0 ∈ π25(E
hC6
C ∧ A1) ⊂ π25(E

hC2
C ∧ A1).

This means that the class u−10t5e0 = (t4u−8)(tu−2e0) is hit by a differential d5.
By naturality, the source of this differential cannot be u−13e0. This forces that
there is a differential d5:

d5(u
−12e2) = u−10t5e0

or, equivalently, by the Leibniz rule and that u−4 is a d5-cycle,

d5(u
−4e2) = u−2t5e0, d5(u

−8e2) = u−6t5e0.

4. These are names given by Bruner’s software the lower script indicates the order of the class
in the respective filtration.
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Proposition 7.2.16. There are the following differentials d5

d5(u
−2+4ke2) = t5u4ke0.

Proof. To deduce these d5-differentials, we use the Gross-Hopkins dual ofEhC2
C ∧

A1. By Theorem 7.1.4, we know that

I2(E
hC6
C ∧ A1) ∼= Σ22(EhC6

C ∧DA1).

It follows that

π6(E
hC6
C ∧ A1) ∼= Hom(π−6(E

hC6
C ∧ A1),Q/Z) ∼= π−6(E

hC6
C ∧ A1)

∼= π−28(E
hC6
C ∧DA1) ∼= π20(E

hC6
C ∧DA1).

Using the known differentials in the HFPSS forEhC2
C ∧A1, we obtain by inspection

that
(π20(E

hC2
C ∧DA1))

C3 ∼= F4 ⊕ F4 or W/4

for all versions of A1. In the HFPSS for EhC2
C ∧ A1, there are at least two non-

trivial C3-invariant permanent cycles in stem 6, namely u−3e0 and t2u−1e2. Thus,
t6e0 cannot survive to the E∞-term; otherwise π6(E

hC2
C ∧A1) would be too big as

a set. This forces the differential d5:

d5(u
−2e2) = t5e0

and, as u−4 is a d5-cycle in the HFPSS for EhC2
C ,

d5(u
−2+4ke2) = t5u4ke0.

Propositions 7.2.6, 7.2.7, 7.2.15, 7.2.16 together determine all differentials in
the HFPSS for EhC6

C ∧ A1, see Figures III.9 and III.10.

Next, we come to study some exotic extensions in the E∞-term.

Proposition 7.2.17. In the E∞-term of the HFPSS for EhC6
C ∧ A1, we have

a) There can only be exotic extension by 2 in stems 12 and 20.

b) There are only the following exotic extensions by η

ηx17u
3e0 = ν2u−3e0, ηu−21e0 = νx217u

−3e0,

ηu−9e2 = νu−9e0, ηx17u
−9e2 = νx17u

−9e0 6= 0. 5

5. Recall that x17 ∈ π17(E
hC6

C , ) is detected by u−8t, see the discussion following Figure III.2.
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Proof. For part a), we just notice that if an element of π∗(E
hC2
C ∧A1) admits a lift

to π∗(E
hC2
C ∧ Y ) then so does twice that element. This remark together with an

examination of the origin of the classes in the E∞-term (meaning that if it lifts to
π∗(E

hC2
C ∧ Y ) or it maps nontrivially to π∗(E

hC2
C ∧ Σ3Y )) rules out all potential

exotic extension by 2, except for those in stems 12 and 20.
For part b). We see that any element detected by e6 is annihilated by η. Using

the Toda bracket 〈η, ν, η〉 = ν2 and juggling, we have

ν2e6 = 〈η, ν, η〉e6 = η〈ν, η, e6〉.

Since ν2e6 6= 0, it must be divisible by η. Inspection shows that the only possibil-
ity is that 〈ν, η, e6〉 = x17∆

−2u−21e0 and that

ηx17∆
−2u−21e0 = ν2u−3e0. (III.19)

As ν2u−3e0 = x317ν∆
−2u−3e0, Equation (III.19) implies that

x17(ηu
−21e0 − x217νu

−3e0) = 0.

Since multiplication by x17 is injective on π43(E
hC6
C ∧ A1), we obtain that

ηu−21e0 = νx217u
−3e0. (III.20)

We see from the E∞-term that ν2u−9e2 is non-trivial and is not divisible by η,
by sparseness. This forces, by the Toda bracket 〈η, ν, η〉 = ν2, that u−9e2 has a
non-trivial multiple by η. The only possibility is that

ηu−9e2 = νu−9e0. (III.21)

Multiplying Equation (III.21) with x17, we obtain that

ηx17u
−9e2 = νx17u

−9e0 6= 0. (III.22)
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Figure III.9 – The E2-term of the HFPSS for EhC2
C ∧ A1 and the differentials d5 and d7. A black dot represents a copy of F4

and straight line a multiplication with t.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849

0
1
2
3
4
5
6
7

∆2

Figure III.10 – E∞-term of the HFPSS for EhC6
C ∧ A1. A black dot represents a copy of F4. A curved line represents

multiplication by ν, a straight line multiplication by η. The E∞-term is 48-periodic by multiplication by ∆2.





Chapter IV

Surjectivity of the edge
homomorphism

In this chapter, we will prove the following theorem

Theorem 7.2.18. The edge homomorphism of the topological duality spectral se-

quence

π∗(E
hS1C
C ∧ A1)→ π∗(E

hG24
C ∧ A1)

is surjective. Therefore, all differentials starting from the 0-line of the topological

duality spectral sequence are trivial.

To this end, we study the induced map in homotopy of the Hurewicz map H :
A1 → tmf ∧A1 and prove that the later is surjective for all versions of A1. Let us
see first how this allows us to deduce that the edge homomorphism of the TDSS
is surjective.

The spectrum tmf ∧ A1 supports at least two types of v2-self maps: one comes
from the periodicity of tmf and the other from a v2-self map of A1. The element
∆8 ∈ π192tmf extends to a map of tmf -modules Σ192tmf → tmf . Smashing
with A1 gives rise to a map of tmf -modules ∆8 : Σ192tmf ∧ A1 → tmf ∧ A1.
By [BEM17], A1 admits a v322 -self map v322 : Σ192A1 → A1, and smashing it
with tmf gives rise to a map of tmf -modules v322 : Σ192tmf ∧ A1 → tmf ∧ A1.
A priori, ∆8 and v322 are not homotopic. However, ∆8 and v322 induce the same
localisation - there is a natural homotopy equivalence

[(v322 )−1](tmf ∧ A1)
≃
−→ [(∆8)−1](tmf ∧ A1). (IV.1)

In effect, this follows from the following lemma

141
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Lemma 7.2.19. There is an positive integer k such that

(∆8)k = (v322 )k ∈ π192kFtmf (tmf ∧ A1, tmf ∧ A1),

where Ftmf (−,−) denotes the function spectrum in the homotopy category of

tmf -modules.

Proof. It suffices to prove that some power of ∆8 and v322 are the same in the ring

π∗Ftmf (tmf ∧ A1, tmf ∧ A1) ∼= π∗(tmf ∧ A1 ∧DA1).

Because the map W⊗Z2 π∗(tmf ∧A1)→ π∗(E
hG24
C ∧A1) is an isomorphism for

∗ ≥ 0 by Corollary 5.3.22 and linear with respect to ∆8, multiplication by ∆8 on
π∗(tmf ∧ A1) induces an isomorphism π∗(tmf ∧ A1) → π∗+192(tmf ∧ A1) for
∗ ≥ 0, because π∗(E

hG24
C ∧ A1) is ∆8-periodic. It follows that multiplication by

∆8 induces an isomorphism:

π∗(tmf ∧ A1 ∧DA1)→ π∗+192(tmf ∧ A1 ∧DA1) for ∗ ≥ 0. (IV.2)

By the construction in [BEM17], a v322 -self map of A1 is detected, in the E2-
term of the ASS for A1 ∧ DA1, by a class that is sent to a class detecting ∆8 in
the ASS for tmf ∧ A1 ∧ DA1. It means that the difference ∆8 − v322 is detected
in a filtration greater than 32, the Adams filtration of ∆8 and of v322 . Together
with the isomorphism (IV.2), the difference ∆8 − v322 is equal to ∆8x for some
element x ∈ π0(tmf ∧A1 ∧DA1) detected in a positive filtration of the ASS. As
a consequence, x is nilpotent, as the ASS for tmf ∧A1∧DA1 has a vanishing line
parallel to that for tmf ∧A1. Furthermore, ∆8 − v322 has finite order and ∆8 is in
the center of π∗(tmf ∧A1 ∧DA1). Therefore, by using the binomial formula, we
see that (∆8 + v322 −∆8)2

k

is equal to (∆8)2
k

for k large enough.

The equivalence (IV.1) fits into the following commutative diagram:

[(v322 )−1](tmf ∧ A1)

))

≃ // [(∆8)−1](tmf ∧ A1)

uu
LK(2)(tmf ∧ A1),

where the unlabeled maps are natural maps from the respective telescope to the
K(2)-localisation of tmf ∧ A1. Moreover, the equivalences (I.14) and (I.15) im-
plies that the natural map [(∆8)−1](tmf ∧A1)→ LK(2)(tmf ∧A1) is a homotopy
equivalence. Thus, the map

[(v322 )−1](tmf ∧ A1)→ LK(2)(tmf ∧ A1)
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is a homotopy equivalence. If the Hurewicz map A1
H
−→ tmf ∧ A1 induces a

surjective map in homotopy groups, the same is true for its telescope localisation

[(v322 )−1]A1 → [(v322 )−1](tmf ∧ A1).

Using the commutative diagram

[(v322 )−1]A1

[(v322 )−1]H
//

��

[(v322 )−1](tmf ∧ A1)

∼=
��

LK(2)A1

LK(2)H // LK(2)(tmf ∧ A1),

we obtain that the induced map in homotopy groups of the K(2)-localisation of
the Hurewicz map is also a surjection. Finally, by the equivalences (I.15) and
I.11, the canonical map LK(2)tmf → EhG48

C is a homotopy equivalence, hence,
by smashing the latter with A1 and pre-composing with LK(2)H , the canonical
map

LK(2)A1 → EhG48
C ∧ A1 (IV.3)

induces a surjection in homotopy. By applying Lemma 1.37 of [BG18], there are
homotopy equivalences

Gal+ ∧ LK(2)S
0 ≃ EhSC

C

and
Gal+ ∧ E

h(G24⋊Gal)
C ≃ EhG24

C ,

which fit into a commutative diagram

Gal+ ∧ LK(2)S
0

≃
��

// Gal+ ∧ E
hG48
C

≃
��

EhSC
C

// EhG24
C ,

where the lower horizontal map is induced by the inclusion of subgroup. By
smashing this diagram with A1, we obtain that the map EhSC

C ∧A1 → EhG24
C ∧A1

induces a surjection in homotopy. Since the latter factors through E
hS1C
C ∧ A1 →

EhG24
C ∧A1, asG24 is a subgroup of S1

C , the edge homomorphism π∗(E
hS1C
C ∧A1)→

π∗(E
hG24
C ∧ A1) is also a surjection.
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Now we explain the strategy to study the induced map in homotopy of the tmf -
Hurewicz ofA1. Let (κ, ν) be the ideal of π∗(S0

(2)) generated by κ and ν. Consider
the following commutative diagram

π∗(A1)
H∗ //

��

π∗(tmf ∧ A1)

��
π∗(A1)/(κ, ν) // π∗(tmf ∧ A1)/(κ, ν).

We see that the upper horizontal map is surjective if and only if the lower is sur-
jective. In fact, this is an easy consequence of π∗(A1) being bounded below.
To prove that the lower map is surjective we can proceed as follows. For all
x ∈ π∗(tmf ∧ A1)/(κ, ν), first, lift x to an element x ∈ π∗(tmf ∧ A1), then,
find a class that detects x in the ASS for tmf ∧A1 and finally, show that class lifts
to a permanent cycle in the ASS for A1.

The first and the second steps are rather straightforward. It follows from the proof
of Corollary 5.3.22, that we can identify a set of generators of π∗(tmf∧A1)/(κ, ν)
as a W[∆8]-module. We give in Table (IV.1) and Table (IV.2), a list of generators
of the non self-dual versions A1[00] and A1[11] and in Table (IV.3) and Table
(IV.4), a list of generators of the self-dual versions A1[01] and A1[10]. This dis-
tinction is because the proof that they lift to permanent cycles in the ASS forA1 are
different, see Proposition 9.0.6, 9.0.9, 9.0.10. We denote byM , N , P , Q the set of
generators listed in Table (IV.1), Table (IV.2), Table (IV.3), Table (IV.4), respec-
tively. In these tables, the pairs of integers indicate the bidegree (t − s, s) of the
corresponding generators and we switch to the notation et−s instead of e[s, t − s]
to denote a generator in bidegree (t− s, s).

(0, 0) (5, 1) (6, 1) (11, 2) (15, 3) (17, 3) (21, 4) (23, 4)
e0 e5 e6 e11 e15 e17 e21 e23
(30, 6) (32, 6) (36, 7) (38, 7) (42, 8) (47, 9) (48, 9) (53, 10)
e30 e32 e36 e38 e42 e47 e48 e53
(48, 8) (53, 9) (54, 9) (59, 10) (63, 11) (65, 11) (69, 12) (71, 12)
w2e0 w2e5 w2e6 w2e11 w2e15 w2e17 w2e21 w2e23
(78, 14) (80, 14) (84, 15) (86, 15) (90, 16) (95, 17) (96, 17) (101, 18)
w2e30 w2e32 w2e36 w2e38 w2e42 w2e47 w2e48 w2e53

Table IV.1 – List M. Generators of π∗(tmf ∧A1)/(κ, ν) as F2[∆
8]-module for the

non-self dual versions A1[00] and A1[11].
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(99, 17) (104, 18) (105, 18) (110, 19) (114, 20) (116, 20)
νw2

2e0 νw2
2e5 νw2

2e6 νw2
2e11 νw2

2e15 νw2
2e17

(120, 21) (122, 21) (147, 25) (152, 26) (153, 26)
νw2

2e21 νw2
2e23 νw3

2e0 νw3
2e5 νw3

2e6
(158, 27) (162, 28) (164, 28) (168, 29) (170, 29)
νw3

2e11 νw3
2e15 νw3

2e17 νw3
2e21 νw3

2e23

Table IV.2 – List N. Generators of π∗(tmf ∧A1)/(κ, ν) as F2[∆
8]-module for the

non-self dual versions A1[00] and A1[11].

(0, 0) (5, 1) (6, 1) (11, 2) (15, 3) (17, 3) (21, 4) (23, 4)
e0 e5 e6 e11 e15 e17 e21 e23
(30, 6) (32, 6) (36, 7) (38, 7) (42, 8) (47, 9) (48, 9)
e30 e32 e36 e38 e42 e47 e48
(48, 8) (53, 10) (53, 9) (54, 9) (59, 10) (63, 11) (65, 11)
w2e0 e53 w2e5 w2e6 w2e11 w2e15 w2e17
(69, 12) (74, 13) (78, 14) (80, 14) (84, 15) (90, 16) (95, 17)
w2e21 νw2e23 w2e30 w2e32 w2e36 w2e42 w2e47

Table IV.3 – List P. Generators of π∗(tmf ∧ A1)/(κ, ν) as F2[∆
8]-module for the

self dual versions A1[01] and A1[10].

(96, 16) (101, 17) (105, 18) (110, 19) (111, 19) (116, 20)
w2

2e0 w2
2e5 νw2

2e6 νw2
2e11 w2

2e15 νw2
2e17

(120, 21) (122, 21) (126, 22) (147, 25) (152, 26) (153, 26)
νw2

2e21 νw2
2e23 w2

2e30 νw3
2e0 νw3

2e5 νw3
2e6

(158, 27) (162, 28) (164, 28) (168, 29) (170, 29)
νw3

2e11 νw3
2e15 νw3

2e17 νw3
2e21 νw3

2e23

Table IV.4 – List Q. Generators of π∗(tmf ∧A1)/(κ, ν) as F2[∆
8]-module for the

self dual versions A1[01] and A1[10].

In the next part of this Chapter, we proceed to prove that all classes in the above
tables lift to permanent cycles in the Adams SS for A1. There are two main steps
to this end. In the first place, we show that the induced map on the E2-terms of
the Hurewicz map

H∗ : Ext
∗,∗
A∗
(H∗A1)→ Ext∗,∗A(2)∗

(H∗A1)
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is surjective. This implies, in particular, that the classes in M ∪ N (respectively
P ∪ Q) lift to the E2-term of the ASS for A1. In the second place, we show that
the Ext∗,∗A∗

(H∗A1) has a certain structure (see Theorem 9.0.1) that allows us to rule
out non-trivial differentials on lifts of the classes in M ∪N (respectively P ∪Q)
in the ASS for A1.

8 The algebraic tmf -Hurewicz homomorphism

Theorem 8.0.1. (Vanishing line) For n ≥ 0 or n = ∞, Exts,tA(n)∗
(H∗A1) has

vanishing line t− s < f(s), where f(s) = 5s− 4 if s ≤ 6 and f(s) = 5s if s > 6,

i.e.,

Exts,tA(n)∗
(H∗A1) = 0 if t− s < f(s).

Proof. The statement for n = 0, 1 follows from the fact that H∗A1 is A(0)∗-
and A(1)∗-cofree. The statement for n = 2 follows from the explicit struc-
ture of Exts,tA(2)∗

(H∗A1) computed in Chapter II. Now suppose n ≥ 3. Set Γ =

A(n)∗�A(2)∗F2: Γ is an A(n)-comodule algebra. The unit F2 → A(n)∗�A(2)∗F2

is a map of Γ-comodules; denote by Γ the quotient of the latter; so that we have
the short exact sequence

0→ Γ⊗r → Γ⊗r+1 → Γ⊗r ⊗ Γ→ 0,

for r ≥ 0. Slicing these together, we get a long exact sequence ofA(n)∗-comodules

0→ F2 → Γ→ Γ⊗ Γ→ ...→ Γ⊗ Γ
⊗r
→ ...

which gives rise to a spectral sequence converging to Ext∗,∗A(n)∗
(H∗A1) with E1-

term isomorphic to Ext∗,∗A(n)∗
(Γ⊗ Γ

⊗r
⊗ H∗A1):

Es,t,r1 = Exts,tA(n)∗
(Γ⊗ Γ

⊗r
⊗ H∗A1) =⇒ Exts+r,tA(n)∗

(F2,H∗A1). (IV.4)

By the change-of-rings isomorphism,

Exts,tA(n)∗
(Γ⊗ Γ

⊗r
⊗ H∗A1) ∼= Exts,tA(2)∗

(Γ
⊗r
⊗ H∗A1).

We see that Γ
⊗r

is (8r − 1)-connected because Γ is 7-connected. Together with
the fact that

Exts,tA(2)∗
(H∗A1) = 0

if t− s < f(s), we obtain that

Exts,tA(2)∗
(Γ
⊗r
⊗ H∗A1) = 0

if t− s < f(s) + 8r or equivalently if t− (s+ r) < f(s+ r) + 2r. We can now
conclude by using the spectral sequence (IV.4).
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Theorem 8.0.2. (Approximation Theorem) Let m ≥ n be two non-negative inte-

gers or m =∞, the restriction homomorphism

Exts,tA(m)∗
(H∗A1)→ Exts,tA(n)∗

(H∗A1)

is an isomorphism if t − s < f(s − 1) + 2n+1 − 1 and is an epimorphism if

t− s < f(s) + 2n+1, where A(∞)∗ := A and f(s) is as in Theorem 8.0.1.

Proof. Pose Γ = A(m)∗�A(n)∗F2 and Γ = coker(F2 → Γ). The restriction
homomorphism is the composite

Exts,tA(m)∗
(H∗A1)→ Exts,tA(m)∗

(Γ⊗ H∗A1) ∼= Exts,tA(n)∗
(H∗A1)

where the first map is induced by the unit F2 → Γ and the second is the change-of-
rings isomorphism. The short exact sequence of A(m)∗-comodules F2 → Γ→ Γ
gives rise to a long exact sequence

Exts−1,tA(m)∗
(Γ⊗ H∗A1)→ Exts,tA(m)∗

(H∗A1)→ Exts,tA(n)∗
(H∗A1)

→ Exts,tA(m)∗
(Γ⊗ H∗A1)

Because Γ is 2n+1-connected and Exts,tA(m)∗
(F2,H∗A1) has the vanishing line t −

s < f(s),
Exts,tA(m)∗

(Γ⊗ H∗A1) = 0

if t − s < f(s) + 2n+1, hence the surjectivity of the respective restriction homo-
morphism; and

Exts−1,tA(m)∗
(Γ⊗ H∗A1) = Exts,tA(m)∗

(Γ⊗ H∗A1) = 0

if t − s < f(s − 1) + 2n+1 − 1, hence the bijectivity of the respective restriction
homomorphism.

Corollary 8.0.3. The restriction map Exts,tA∗
(H∗A1)→ Exts,tA(2)∗

(H∗A1) is an epi-
morphism if t− s < 5s+ 8 and is an isomorphism if t− s < 5s+ 2

Theorem 8.0.4. The restriction map Ext∗,∗A∗
(H∗(A1)) → Ext∗,∗A(2)∗

(H∗(A1)) is an

epimorphism.

Proof. The restriction map Ext∗,∗A∗
(H∗(A1)) → Ext∗,∗A(2)∗

(H∗(A1)) is a map of
modules over Ext∗,∗A∗

(H∗(A1 ∧ DA1)); This module structure comes from the
fact that A1 is a module over the ring spectrum A1 ∧ DA1. It is proved in
[BEM17], Corollary 3.8 that the class v82 ∈ Exts,tA(2)∗

(H∗(A1 ∧ DA1)) lifts to

Exts,tA∗
(H∗(A1 ∧DA1)). In particular, the restriction is a map of modules over the
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sub-algebraR generated by g, ν, v82 . We know by Proposition 3.2.5 that the classes
ei where

i ∈ {0, 5, 6, 11, 15, 17, 21, 23, 30, 32, 36, 38, 42, 47, 48, 53}

are generators of Ext∗,∗A(2)∗
(H∗(A1) as a module over R. These classes live in the

region {t − s < 5s + 8}, and hence lift to Ext∗,∗A∗
(H∗(A1) by the Approximation

Theorem 8.0.2.

This theorem shows that all the classes of M ∪ N (respectively P ∪ Q) lift to
Ext∗,∗A∗

(H∗(A1)). In the next section, we prove that the latter lift to permanent
cycles.

9 The topological tmf -Hurewicz homomorphism

The key step is the following observation on the structure of the Ext∗,∗A∗
(H∗(A1)).

Theorem 9.0.1. The group Ext∗,∗A∗
(H∗(A1)) has the following properties

(i) All classes of Exts,tA∗
(H∗A1) in the region

F = {s ≥ 18, 5s ≤ t− s ≤ 5s+ 6} ∪ {s ≥ 27, 5s ≤ t− s ≤ 5s+ 14}

are g-free and are divisible by g.

(ii) Any class x of Exts,tA∗
(H∗A1) in the region

D = {s ≥ 21, 5s ≤ t− s ≤ 5s+ 12} ∪ {s ≥ 30, 5s ≤ t− s ≤ 5s+ 20}

is weakly g-divisible, i.e., there is a class y and a non-negative integer n
such that gn+1y = gnx.

Because the classes involved in the statement of this theorem live in the region
where there is an isomorphism Exts,tA∗

(H∗(A1)) ∼= Exts,tA(4)∗
(H∗(A1)) by the Ap-

proximation Theorem, it suffices to prove that Ext∗,∗A(4)∗
(H∗A1) has the required

properties. We prove a stronger statement:

Theorem 9.0.2. The group Ext∗,∗A(4)∗
(H∗(A1)) has the following properties

(i) All classes in the region

S1 = {20 ≤ s ≤ 27, 5s ≤ t−s ≤ 7s−40}∪{s ≥ 27, 5s ≤ t−s ≤ 5s+14}

are g-free and are divisible by g. All classes in the region

S2 = {27 ≤ s ≤ 30, 5s+ 14 ≤ t− s ≤ 7s− 40}∪

{s ≥ 30, 5s+ 14 ≤ t− s ≤ 5s+ 20},

are weakly divisible by g.
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(ii) All classes in the region

T1 = {15 ≤ s ≤ 18, 5s ≤ t−s ≤ 7s−30}∪{s ≥ 18, 5s ≤ t−s ≤ 5s+6}

are g-free and are divisible by g. All classes in the region

T2 = {18 ≤ s ≤ 21, 5s+ 6 ≤ t− s ≤ 7s− 30}∪

{s ≥ 21, 5s+ 6 ≤ t− s ≤ 5s+ 12},

are weakly divisible by g.

s = 20

s = 30

s = 27

t−
s =

5s

t− s
= 7s−

40

Figure IV.1 – The region in red is associated to S1 or R1, the blue to S2 or R2.

Before proving this theorem, let us explain the strategy of the proof. Observe that
there is a sequence of extensions of commutative Hopf algebras

Bi+1�Bi
F2 → Bi+1 → Bi for 0 ≤ i ≤ 8

in which each Bi+1�Bi
F2 is isomorphic to an exterior algebra Λ(hi) on one gen-

erator hi of degree at least 8 and B0 = A(2)∗, B9 = A(4)∗. We can then deduce
information on Ext∗,∗A(4)∗

(H∗A1) from Ext∗,∗A(2)∗
(H∗A1) by a sequence of Davis-

Mahowald spectral sequences

Es,t,σ1 = ⊕
σ≥0

Ext
s,t−|hi|σ
Bi

(H∗A1 ⊗ F2{h
σ
i }) =⇒ Exts+σ,tBi+1

(H∗A1).

By the calculation of Ext∗,∗A(2)∗
(H∗A1), we see that the classes in the region S1 and

S2 of the latter have the desired properties. Using this as the base case, we prove
by induction that each Exts+σ,tBi+1

(H∗A1) has the desired properties. To this end,
we first prove, by induction again, that each term of the Davis-Mahowald spectral
sequence has similar properties in the appropriate regions and then make sure
that extensions cannot prevent the target of the spectral sequence from having the
desired properties, where the fact that the degree of each hi is at least 8 becomes
crucial.
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Proof. We have that

A(4)∗ = F2[ζ1, ζ2, ζ3, ζ4, ζ5]/(ζ
32
1 , ζ

16
2 , ζ

8
3 , ζ

4
4 , ζ

2
5 )

A(2)∗ = F2[ζ1, ζ2, ζ3]/(ζ
8
1 , ζ

4
2 , ζ

2
3 ).

From this, we can construct a sequence of maps of commutative Hopf algebras
(Bi+1 → Bi) with 0 ≤ i ≤ 9, B0 = A(2)∗ and B9 = A(4)∗ such that for
each i, Bi+1�Bi

F2 = Λ(hi) is an exterior algebra on one generator hi of de-
gree at least 8. Informally, we start with B0 = A(2)∗ and successively "add"
ζ4, ζ

2
3 , ζ

4
2 , ζ

8
1 , ζ5, ζ

2
4 , ζ

4
3 , ζ

8
2 , ζ

16
1 . For example,B1 = F2[ζ1, ζ2, ζ3, ζ4]/(ζ

8
1 , ζ

4
2 , ζ

2
3 , ζ

2
4 ).

We will prove by induction on i that Ext∗,∗Bi
(F2,H∗A1) has the property (i). The

proof of (ii) works similarly, see Remark 9.0.3. First, we can directly check that

Ext∗,∗B0
(H∗A1) = Ext∗,∗A(2)∗

(H∗A1)

verifies (i), by inspecting its structure as shown in Proposition 3.2.5 of Chapter
II. Suppose that Ext∗,∗Bi

(H∗A1) verifies the properties (i). Consider the Davis-
Mahowald spectral sequence

Es,t,σ1 = ⊕
σ≥0

Exts,tBi
(H∗A1 ⊗ F2{h

σ
i }) =⇒ Exts+σ,tBi+1

(H∗A1) (IV.5)

and the differential dr goes from Es,t,σ
r to Es−r+1,t,σ+r

r . Since hi is a Bi-primitive,
we have that

Es,t,σ1 = ⊕
σ≥0

Exts,t−dσBi
(H∗A1)⊗ F2{h

σ
i }

where d = |hi|. We will prove by induction on r ≥ 1 that each Es,t,σr -term of the
Davis-Mahowald SS (IV.5) has the following properties

(a) All classes in the region

R1 = {20 ≤ s+ σ ≤ 27, 5(s+ σ) ≤ t− s− σ ≤ 7(s+ σ)− 40}

∪{s+ σ ≥ 27, 5(s+ σ) ≤ t− s− σ ≤ 5(s+ σ) + 14}

are g-free and are divisible by g.
(b) All classes in the region

R2 = {27 ≤ s+ σ ≤ 30, 5(s+ σ) + 14 ≤ t− s− σ ≤ 7(s+ σ)− 40}

∪{s+ σ ≥ 30, 5(s+ σ) + 14 ≤ t− s− σ ≤ 5(s+ σ) + 20}

are weakly divisible by g.
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A similar proof as of Theorem 8.0.1 show that Exts,tBi
(H∗A1) has the same vanish-

ing line, and so

Es,t,σ1 = 0 if s+σ > 6, t−(s+σ) < 5(s+σ) or s+σ ≤ 6, t−(s+σ) < 5(s+σ)−4.
(IV.6)

The Es,t,σ1 -term is spanned by classes x ⊗ hσi with x ∈ Exts,t−dσBi
(H∗A1). For

degree reasons (d = |hi| ≥ 8) and Equation (IV.6), a non-trivial class x⊗ hσi lies
in R1 and R2 only if x lies in S1 and S1 ∪ S2, respectively. Then together with the
induction hypothesis, it is straightforward to see that the E1-term of the spectral
sequence (IV.5) has the properties (a) and (b). Suppose that the Er-term of (IV.5)
has those properties. Let x ∈ Es,t,σr represent a class [x] of Es,t,σr+1 .

Step 1. Suppose [x] lives in R1 and [x] is g-torsion. Because R1 is stable
by multiplication by g, we can assume that g[x] = 0. Then there exists y ∈
Es+4+r−1,t+24,σ−r
r such that dr(y) = gx. We see that y belongs to the region

R1 ∪ R2. By the induction hypothesis, y is weakly divisible by g, i.e., there is a z
and an integer n such that gn+1z = gny. It follows that

gn+1dr(z) = dr(g
n+1z) = dr(g

ny) = gndr(y) = gngx = gn+1x.

However, dr(z)−x lies inR1 which consists only of g-free classes, hence dr(z) =
x, and so [x] = 0. Therefore, all classes in R1 of Er+1 are g-free.

Step 2. Suppose [x] lies in R1. By the induction hypothesis, there exists
y ∈ Es−4,t−24,σr such that gy = x. We claim that y is a dr-cycle. We have that

gdr(y) = dr(gy) = dr(x) = 0.

Moreover dr(y) ∈ Es−r−3,t−24,σ+r
r living in R1, hence is g-free. We conclude that

dr(y) = 0. Thus, [x] is divisible by g.
Step 1 and Step 2 show that the Er+1-term has the property (a).
Step 3. Now suppose that [x] belongs to the region R2. Then x is weakly

divisible by g, i.e., there is a class z ∈ Es−4,t−24,σr and an integer n such that
gn+1z = gnx. We claim that z is a dr-cycle. Since x is a dr-cycle, we have

gn+1dr(z) = dr(g
n+1z) = dr(g

nx) = gndr(x) = 0.

Moreover, dr(z) ∈ Es−4−r+1,t−24,σ+r
r which belongs to R1, hence dr(z) is g-free,

and so dr(z) = 0. Therefore, we obtain that gn+1[z] = gn[x], hence the Er+1-term
has the property (b).

Step 4. It is now straightforward to see that the E∞-term also has the proper-
ties (a) and (b). To finish the proof, we will show that the target of the spectral
sequence (IV.5) has the property (i). Let

... ⊂ Fσ ⊂ Fσ−1 ⊂ ... ⊂ F1 ⊂ F0 = Ext∗,∗Bi+1
(F2,H∗A1)
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be the filtration of Ext∗,∗Bi+1
(H∗A1) associated to the Davis-Mahowald spectral se-

quence. A class belongs to Fσ only if it is represented in the E1-term by a class of
the form x⊗hσi where x ∈ Exts,tBi

(H∗A1) - here t−s ≥ 5s−4 because of Equation
IV.6. Such a class has bidegree (s+ σ, t+ dσ), and so has the topological degree
t−s+(d−1)σ. Because d ≥ 8, the latter exceeds 5(s+σ)+20 for σ sufficiently
large. However, any class in S1∪S2 has bidegree (t, s) satisfying t− s ≤ 5s+20.
This means that there is an integer m such that all classes of S1 ∪ S2 belongs to
F0\Fm ∪ {0}. From this, it is straightforward to verify that the properties (a) and
(b) of the E∞-term implies the property (i) of Ext∗,∗Bi+1

(F2,H∗A1).

Remark 9.0.3. The proof of (i) uses a double induction. What makes both base
cases work is the fact that Exts,tA(2)∗

(H∗A1) has the required properties and that the

slope of each hi is lower than 1
7

which is exactly the slope of the lower line limiting
the region in question. What makes the inductive step work is self-explained by
the choice of the regions: relevant classes lie in the relevant regions. What makes
the target of the DMSS have the required properties is that the slope of hi is lower
then the slope of the vanishing line. The regions T1 and T2 are chosen to have all
of these features, hence the proof of (ii) is similar to that of (i).

We need the following property of the E2-term of the Adams spectral sequence for
S0, which necessitates a calculation of the Ext group up to stem 43, see [Tan70],
Theorem 4.42.

Lemma 9.0.4. The class ν is annihilated by g2, so is g-torsion in the E2-term of

the ASS for S0.

Theorem 9.0.5. The induced map in homotopy of the Hurewicz mapA1 → tmf ∧
A1 is surjective.

Proof. The mapH∗ : π∗(A1)→ π∗(tmf∧A1) is a map of π∗(A1∧DA1)-modules.
In particular, it is a map of modules over the subalgebra R of π∗(A1 ∧ A1) gen-
erated by ν, κ,∆8. Therefore, we only need to prove that a set of generator of
π∗(tmf ∧ A1) as a R-module belongs to the image of H .

Because of Theorem 8.0.4, we can choose a lift of classes ofM∪N to Ext∗,∗A (H∗A1)
such that classes which are divisible by ν lift to classes which are divisible by ν.
We fix such a choice of lifting and call them also M and N , respectively. Let us
prove that all classes of M ∪N (respectively, P ∪Q) are permanent cycles in the
ASS for A1; then they must survive to the E∞-term because their images in the
ASS for tmf ∧A1 do. By comparing the bidegree of the classes ofM ∪N and the
vanishing line of the E2-term, we see that the differentials on classes of M ∪N of
length greater than 4 are trivial. The theorem now follows from Proposition 9.0.6,
9.0.9, 9.0.10 below.



Chapter IV. Surjectivity of the edge homomorphism 153

Proposition 9.0.6. All classes in M of A1[00] and A1[11] and in P of A1[01] and

A1[10] are permanent cycles in the respective ASS.

Proof. Inspection of bidegrees together with the Vanishing Line theorem 8.0.1
show that there can only be nontrivial differentials d2 on classes of M (respec-
tively P ) and moreover these differentials hit the region where there is an isomor-
phism between Ext∗,∗A∗

(H∗(A1)) and Ext∗,∗A(2)∗
(H∗(A1)). However, all classes of

M (respectively P ) are permanent cycles in the ASS for tmf ∧ A1. Therefore,
the differentials d2 on the classes in M (respectively P ) in the ASS for A1 are
trivial.

Lemma 9.0.7. a) The target groups for d3 on classes in N are g-free. More

precisely, Es,t3 is g-free if

(s, t) ∈ F3 := {s ≥ 23, 5s ≤ t− s ≤ 5s+ 1} ∪ {s ≥ 28, 5s ≤ t− s ≤ 5s+ 9}.

b) Suppose s ≥ 30 and t − s ≤ 5s + 20 and let s ∈ Es,t3 . Then x is weakly

divisible by g, i.e., there exists an integer n and a class y ∈ Es−4,t−24
3 such that

gn+1y = gnx.

Proof. a) The differential d2-arriving in gEs,t2 with (s, t) ∈ F3 starts in Es
′,t′

2 with

(s′, t′) = (s+ 2, t+ 23), i.e., (t′ − s′) = t− s+ 21.

Then we have

s′ ≥ 25, 5s′ = 5s+ 10 ≤ t− s+ 10 ≤ 5s+ 11 = 5s′ + 1

respectively,

s′ ≥ 30, 5s′ = 5s+ 10 ≤ t− s+ 10 ≤ 5s+ 19 = 5s′ + 9.

So (s′, t′) belongs to

{s′ ≥ 25, 5s′+11 ≤ t′−s′ ≤ 5s′+12}∪{s′ ≥ 30, 5s′+11 ≤ t′−s′ ≤ 5s′+20}.

In this region, Theorem 9.0.1 guarantees that all classes are weakly divisible by
g and this implies that Es,t3 is g-free if (s, t) ∈ F3. In effect, suppose x is a class
which lies in F3 and which is g-torsion. The region F3 is stable by multiplication
by g, so we can assume that gx = 0. Let a be a representative of x. Then there
exists b ∈ E2 such that d2(b) = ga. By the argument above, we know that a
is weakly divisible by g, i.e., there exists an integer n ≥ 0 and a class c at the
E2-term such that gna = gn+1c. Then we have

gn+1d2(c) = d2(g
n+1c) = d2(g

nb) = gnd2(b) = gnga = gn+1a.
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However, F3 belongs to the region which is g-free at the E2-term, hence d2(c) = a,
which means that x = 0 at the E3-term.

b) We represent x by a d2-cycle a. By part (ii) of Theorem 9.0.1, there exists
b ∈ Es−4,t−242 and an integer n such that gna = gn+1b. It is enough to show that b
is a d2-cycle. We first note that, since a is a d2-cycle, we have

gn+1d2(b) = d2(g
n+1b) = d2(g

na) = 0.

Therefore it is enough to show that d2(b) is g-free. In fact, d2(b) is a class in Es
′,t′

2

with s′ = s− 2 and

t′ − s′ = t− s− 19 ≤ 5s+ 20− 19 = 5(s− 2) + 11 = 5s′ + 11,

so it is g-free by Theorem 9.0.1 part (ii)

Lemma 9.0.8. The target groups for the differential d4 on classes in N are g-free.

More precisely, Es,t4 is g-free if

(s, t) ∈ F4 := {s ≥ 29, 5s ≤ t− s ≤ 5s+ 4}

Proof. The differential d3 arriving in gEs,t3 with (s, t) ∈ F4 starts in Es′,t′

3 with

s′ = s+ 1, t′ − s′ = t− s+ 21.

Then we have
s′ ≥ 30, 5s′ + 16 ≤ t′ − s′ ≤ 5s′ + 20.

By Lemma 9.0.7, all classes in such bidegrees are weakly divisible by g and this
implies that Es,t4 is g-free if (s, t) ∈ F4. In effect, suppose x is a class which lies
in F4 and which is g-torsion. Because F4 is stable by multiplication by g, we can
assume that gx = 0. Let a ∈ Es,t3 be a representative of x. Then there exists
b ∈ E3 such that d3(b) = ga. By the argument above, b is weakly divisible by g,
i.e., there is an non-negative integer n and a class c ∈ E3 such that gn+1c = gnb.
Then we have

gn+1d3(c) = d3(g
n+1c) = d3(g

nb) = gnd3(b) = gnga = gn+1a.

However, F4 belongs to the region where g acts freely at the E3-term by Lemma
9.0.7 part (i), hence d3(c) = a and so x = 0 at the E4-term.

Proposition 9.0.9. The differentials d2, d3, d4 on the classes in N for A1[00] and

A1[11] are trivial.
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Proof. All classes of N are divisible by ν, so are g-torsion in the E2-term, hence
are g-torsion at all terms. It is then enough to show that the target groups of
differentials d2, d3, d4 on the classes in N are g-free at the E2, E3, E4-terms,
respectively. In effect, the target groups for the differential d2 on the classes in N
lie in the region

{s ≥ 19, 5s ≤ t− s ≤ 5s+ 6} ∪ {s ≥ 27, 5s ≤ t− s ≤ 5s+ 14}

consisting only of g-free classes, by Theorem 9.0.1(i). Next, a potential nontrivial
differential d3 or d4 on the classes in N has its target in the region F3 or F4,
respectively, which is g-free by Lemma 9.0.7 or Lemma 9.0.8, respectively.

Proposition 9.0.10. The differentials d2, d3, d4 on the classes in Q for A1[10] and

A1[01] are trivial.

Proof. In this proof, A1 denotes the self dual versions A1[10] and A1[01]. The
same argument as in the proof of Proposition 9.0.9 shows that the differentials d2,
d3, d4 on the classes in N which are divisible by ν are trivial. Consider the four
other classes in N

w2
2e0, w

2
2e5, w

2
2e15, w

2
2e30. (IV.7)

These classes are g-free at the E2-term. However, their g-multiple towers are
truncated by differentials d2 in the ASS for tmf ∧ A1. In effect, since w2

2 is a
d2-cycle in the ASS for tmf , the Leibniz rule and Theorem 4.0.3 show that

d2(w
3
2e53) = g5w2

2e0, d2(w
3
2e38) = g4w2

2e5,

d2(w
3
2e48) = g4w2

2e15, d2(w
3
2e23) = g2w2

2e30.

It follows that the differentials d2 on the classes of (IV.7) are g-torsion. Moreover,
the differentials d2 on the latter arrive in Es,t2 with s ≥ 18, 5s ≤ t − s ≤ 5s + 6
which is g-free by Theorem 9.0.1. Thus, the classes of IV.7 are d2-cycles and be-
come g-torsions in the E3-term.

The differentials d3 on the classes of (IV.7) arrive in Es,t3 with s ≥ 19, t− s = 5s.
For these bidegrees, there is an isomorphism at the E2-term of the ASS for A1 and
that for tmf ∧ A1; in particular, the respective Ext-groups are isomorphic to F2.
However, in the ASS for tmf ∧ A1, the latter are hit by differentials d2. Because
of Theorem 8.0.4 and the naturality of the ASS, Es,t3 = 0 for s ≥ 19, t − s = 5s
in the ASS for A1. Thus, the differentials d3 on the classes of (IV.7) are trivial.

Finally, the differential d4 on the classes of (IV.7) land above the vanishing line,
hence are trivial.
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Remark 9.0.11. To illustrate the proof of Proposition 9.0.10, we give some exam-
ples and more details.

a) First, a differential d3 or d4 on the first five classes in N listed in Table 2 has
target living above the vanishing line, so it is trivial.

b) The other classes in N might support non-trivial differentials d3. For example,
a differential d3 on the class νw2

2e17 arrives in Es,t3 with s = 23, t− s = 115 = 5s;
the latter group is g-free by Lemma 9.0.7. The worst case is the class νw3

2e23 on
which a differential d3 lives in Es,t3 with s = 32, t − s = 169 = 5s + 9, which is
g-free by Lemma 9.0.7.

c) Only the last eight classes in N as listed in Table 2 might support non-trivial
differentials d4. These classes lie in Es,t4 with s ≥ 25, 5s ≤ t− s ≤ 5s+25. Then
d4 on these arrives in Es

′,t′

4 with s′ = s+ 4 and t′ = t+ 3, and so

s′ ≥ 29, 5s′ ≤ t′ − s′ ≤ 5s′ + 4.

This region consists only of g-free classes by Lemma 9.0.8



Chapter V

The differentials d1 of the
topological duality spectral sequence

Before starting the final Chapter, we recapitulate what has been shown. We
study, in Chapter II and III, the E1-term of the TDSS for A1, which consists of

E0,∗
1
∼= π∗(E

hG24
C ∧ A1),

E1,∗
1 = E2,∗

1
∼= π∗(E

hC6
C ∧ A1),

E3,∗
1
∼= π∗(Σ

48EhG24
C ∧ A1).

We describe the HFPSS for EhG24
C ∧ A1 and EhC6

C ∧ A1. From these results, E0,∗
1

and E3,∗
1 are 192-periodic and as modules over W(F4)[(∆

8)±1, κ, ν]/(κν), they
are generated by 48 respectively 46 elements for the versions A1[00] and A1[11]
respectively A1[01] and A1[10], while E1,∗

1 = E2,∗
1 are 48-periodic and as modules

over W(F4)[(∆
2)±1, x17], they are generated by seven elements. Then we show, in

Chapter IV, that the edge homomorphism of the TDSS is surjective, meaning that
there are no non-trivial differentials on the filtration 0 of the TDSS.

In this Chapter, we study the differentials d1 : E1,∗
1 → E2,∗

1 and d1 : E2,∗
1 → E3,∗

1 .
We start by describing the maps appearing in the topological duality resolution,
and from this study the induced maps in homotopy groups. In the first section, we
analyse the groups π0F (EhF , EhK) and give a description of a set of elements of
these groups. This description is general for all chromatic heights and all primes
p. Some of the material at the beginning of this subsection is well-known in the lit-
erature; we hereby want, however, to give more details on how the transition maps
of the homotopy limit in Proposition 10.0.4 are identified, compare [GHMR05],
Section 2, [Hen07], Section 1.3.3.1 or [BG18], Section 1.4. New results are The-
orem 10.0.8 and Proposition 10.0.14, where we observe that under some mild
condition, there is a lift s : Zp[[G/H]]K → π0F (E

hF , EhK) which is continuous

157
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with respect to appropriate topologies. Then in the following section, we use this
analysis to study maps in the topological duality resolution at n = p = 2 and the
induced maps in homotopy.

10 Mapping spectra

We work with a height n formal group law (Γ, k) such that

S(k,Γ) := Autk(Γ)
∼= Autk(Γ). (V.1)

To simplify the notation, we will denote by G and E the corresponding Morava
stabiliser group and MoravaE-theory. Assumption (V.1) implies (e.g. see [Hov04]):

Theorem 10.0.1. There is an isomorphism of Morava modules

π∗(E ∧ E) ∼= Mapc(G, E∗), (V.2)

where G acts diagonally on the right hand term. This isomorphism of Morva

modules is also G-equivariant where the action of G on π∗(E ∧ E) is induced by

the action on the right hand factor of E ∧ E and on Mapc(G, E∗) by the right

multiplication on G, i.e., (g.f)(h) = f(hg).

Let H be a closed subgroup of G. There exists a nested sequence of open sub-
groups (... ⊂ U2 ⊂ U1) of G such that ∩

i
Ui = H . For U an open subgroup of G,

Devinatz and Hopkins, in [DH04], construct the homotopy fixed point spectrum
EhU and then define

EhH := LK(n)hocolim
i

EhUi .

LetNG(H) denote the normaliser ofH andWG(H) := NG(H)/H the Weyl group
of H .

Theorem 10.0.2. [DH04] Let H be a closed subgroup of G. There is an isomor-

phism of Morava modules,

π∗(E ∧ E
hH) ∼= Mapc(G/H,E∗),

where G acts diagonally on the right hand term. This isomorphism is alsoWG(H)-
equivariant where the action of WG(H) on the left hand term is induced by its

residual action on EhH and on the right hand term by the right multiplication on

G/H , i.e., (g.f)(hH) = f(hgH).
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If U is an open subgroup of G, then the construction of [DH04] provides us with
a map

Act : G/U+ ∧ E
hU → E.

Together with the multiplication of E, we obtain the composite

E ∧G/U+ ∧ E
hU → E ∧ E → E

The adjoint of this map is a homotopy equivalence (see [GHMR05], Section 2)

E ∧G/U+

∼=
−→ F (EhU , E). (V.3)

The equivalence (V.3) is also G-equivariant with G acting diagonally on the left
hand side and on the second variable on the right hand side. IfK a finite subgroup
of G, one has

F (EhH , EhK) ∼= F (LK(n)hocolim
i

EhUi , EhK) ∼= holim
i

F (EhUi , E)hK . (V.4)

Transition maps. Let U1 ⊆ U2 be open subgroups of G. Let us denote by
ι : EhU2 → EhU1 the map induced by the inclusion of subgroups. Through the
natural equivalence (V.3), the map

ι∗ : F (EhU1 , E)→ F (EhU2 , E)

is identified with
p ∧ Id : G/U1+ ∧ E → G/U2+ ∧ E

where p : G/U1 → G/U2 is the evident projection. In other words, there is a
commutative diagram of G-spectra

E ∧G/U1+

p

��

∼= // F (EhU1 , E)

ι∗

��
E ∧G/U2+

∼= // F (EhU2 , E).

Taking homotopy fixed points with respect to a finite subgroup K, one gets a
commutative diagram:

(E ∧G/U1+)
hK

��

// F (EhU1 , E)hK

��
(E ∧G/U2+)

hK // F (EhU2+ , E)hK .
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As a K-set, G/Ui decomposes as
⊔

x∈K\G/Ui

K/Kx where K\G/Ui is the set of

double cosets and Kx = K ∩ xUix
−1, the stabiliser of the coset xUi. This decom-

position is explicitly given by the following formula
⊔

x∈K\G/Ui

K/Kx

∼=
−→ G/Ui

kKx 7→ kxUi.

Moreover, we see that as i varies, these decompositions fit together in the follow-
ing commutative diagram of K-sets

G/U1

∼= //

p1,2

��

⊔
x∈K\G/U1

K/Kx

��
G/U2

∼= //
⊔

y∈K\G/U2

K/Ky

(V.5)

where the right vertical map is given by the projection K/Kx → K/Ky induced
by the inclusion of subgroup Kx ⊆ Ky if y is the image of x by the evident
projection (K\G/U1 → K\G/U2, KxU1 7→ KxU2). The projection K/Kx →
K/Ky induces a obvious map of K-spectra E ∧ (K/Kx)+ → E ∧ (K/Ky)+.
These assemble to give a map

∨

x∈K\G/U1

(E ∧K/Kx+)
hK →

∨

y∈K\G/U2

(E ∧K/Ky+)
hK .

By the diagram (V.5), this map fits into a commutative diagram

(E ∧G/U1+)
hK

∼= //

��

∨
x∈K\G/U1

(E ∧K/Kx+)
hK

��
(E ∧G/U2+)

hK
∼= //

∨
y∈K\G/U2

(E ∧K/Ky+)
hK .

Notice that if Kx ⊆ Ky, then the map (E ∧ K/Kx+)
hK → (E ∧ K/Ky+)

hK is
naturally identified with the transfer trKy

Kx
: EhKx → EhKy , by Lemma 1.1.3. In

other words, there is a commutative diagram

EhKx

Tr
��

∼= // (E ∧ (K/Kx)+)
hK

��
EhKy

∼= // (E ∧ (K/Ky)+)
hK .
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Therefore, we obtain:

Lemma 10.0.3. Suppose that K is a finite subgroup of G and U1 ⊂ U2 are open

subgroups of G. There is a commutative diagram

F (EhU1 , EhK)
∼= //

ι∗

��

∨
x∈K\G/U1

EhKx

��
F (EhU2 , EhK)

∼= //
∨

y∈K\G/U2

EhKy ,

in which the right hand vertical map is induced by tr
Ky

Kx
: EhKx → EhKy if y is

the image of x by the evident projection K\G/U1 → K\G/U2.

Proposition 10.0.4. Let H be a closed subgroup and K be a finite subgroup of

G. Suppose that (Ui) is a decreasing sequence of open subgroups of G such that

∩
i
Ui = H . Then

F (EhH , EhK) = holim
i

∨

x∈K\G/Ui

EhKx,i

where Kx,i = K ∩ xUix
−1 and the transition maps in the holimit are described

as in Lemma 10.0.3.

The Hurewicz homomorphism. We introduce the following notations. Let T =
lim
←
Ti be a profinite set, A be abelian group and M be a spectrum. Define

A[[T ]] := lim
←

A[Ti],

M [[T ]] := holim
←

M ∧ (Ti)+.

For the rest of this section, H and K denote finite subgroups of G, unless other-
wise stated. Consider the E-Hurewicz homomorphism

h : π0F (E
hH , EhK)→ HomEG(E∗E

hH , E∗E
hK).

By Theorem 10.0.2, if G is a closed subgroup of G, then

E∗E
hG ∼= Mapc(G/G,E∗) ∼= Homc

E∗
(E∗[[G/G]], E∗).

So there is a homomorphism, see [GHMR05], Proposition 2.7,

E0[[G/H]]K ∼= HomEG(E∗[[G/K]], E∗[[G/H]])→ HomEG(E∗E
hH , E∗E

hK),



Chapter V. The differentials d1 of the topological duality spectral sequence 162

where EG denotes the category of Morava module (see Section 1.3), induced by
applying HomE∗

(−, E∗) to the first and the second variables of the left hand side.
This is an isomorphism which makes the following diagram commutative,

π0(E[[G/H]]hK)
∼= //

h
��

[EhH , EhK ]

h
��

(E0[[G/H]])K
∼= // HomEG(E∗E

hH , E∗E
hK),

where the upper horizontal isomorphism follows from Proposition 10.0.4 and the
equivalence F (EhH , EhK) ≃ F (EhH , E)hK .

In what follows, we analyse the image of the left hand Hurewicz homomorphism.
Notice that the group E0[[G/H]]K contains Zp[[G/H]]K as a subgroup. We de-
scribe the group Zp[[G/H]]K and E0[[G/H]]K as inverse limits. With (Ui) a
nested sequence of open subgroups of G satisfying ∩

i
Ui = H as before,

Zp[[G/H]]K ∼= lim
i

Zp[G/Ui]
K .

The transition map is simply induced by the projections Zp[G/Ui+1]
K → Zp[G/Ui]

K .
Using the diagram (V.5), the latter is identified as follows

Zp[G/Ui+1]
K

��

∼= //
∏

x∈K\G/Ui

Zp[K/Kx]
K

��
Zp[G/Ui]

K
∼= //

∏
y∈K\G/Ui+1

Zp[K/Ky]
K

where the right vertical map is induced by the obvious projection Zp[K/Kx]
K →

Zp[K/Ky]
K if y is the image of x by the map K\G/Ui+1 → K\G/Ui. Via

the natural isomorphism Zp[K/Kx]
K ∼= Zp and Zp[K/Ky]

K ∼= Zp, the map
Zp[K/Kx]

K → Zp[K/Ky]
K above is identified with multiplication by |Ky/Kx|,

i.e., there is a commutative diagram

Zp[K/Kx]
K

��

∼= // Zp

×|Ky/Kx|

��
Zp[K/Ky]

K
∼= // Zp.

To sum up, we have
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Lemma 10.0.5. LetH andK be finite subgroups of G. There is a an isomorphism

Zp[[G/H]]K ∼= lim
i

∏

x∈K\G/Ui

Zp,

where the transition map
∏

x∈K\G/Ui+1

Zp →
∏

y∈K\G/Ui

Zp is induced by multiplica-

tion by |Ky/Kx| from the copy of Zp at the coordinate x ∈ K\G/Ui+1 to the

copy of Zp at the coordinate y ∈ K\G/Ui if y is the image of x by the map

K\G/Ui+1 → K\G/Ui.

A similar argument shows that

Lemma 10.0.6. Let H and K be finite subgroups of G. There is an isomorphism

E0[[G/H]]K ∼= lim
i

∏

x∈K\G/Ui

EKx

0 ,

where the transition map
∏

x∈K\G/Ui+1

EKx

0 →
∏

y∈K\G/Ui

E
Ky

0 is induced by the trans-

fer EKx

0 → E
Ky

0 if y is the image of x by the map K\G/Ui+1 → K\G/Ui.

Proposition 10.0.7. Let F be a finite subgroup of G. The following statements

are equivalent:

1) The group π0(E
hF ) is torsion free.

2) The 0-stem of the E∞-term of the HFPSS for EhF is concentrated in the

0-filtration.

3) The edge homomorphism π0(E
hF ) → (E0)

F of the HFPSS for EhF is

injective.

Proof. It is clear that 2) is equivalent to 3). That 1) is equivalent to 2) is also
straightforward by noting that the HFPSS has a horizontal vanishing line, (see
Proposition 6.5 [HS99]) and that all groups living in positive filtration are torsion.

Theorem 10.0.8. Let H and K be finite subgroups of G. We have the following

(i) The subgroup Zp[[G/H]]K of E0[[G/H]]K belongs to the image of the

Hurewicz homomorphism.

(ii) Suppose that all subgroups of either H or of K verify the equivalent con-

ditions of Proposition 10.0.7. Then there is a canonical lift of Zp[[G/H]]K

to [EhH , EhK ].
Denote by s : Zp[[G/H]]K → [EhH , EhK ] this lift.
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(iii) Suppose H,K,L are finite subgroups of G such that either all subgroups

of K or all subgroups of H and of L verify the equivalent conditions of

Proposition 10.0.7. Then there is a commutative diagram

Zp[[G/H]]K ⊗ Zp[[G/K]]L //

s⊗s
��

Zp[[G/H]]L

s
��

π0(E[[G/H]]hK)⊗ π0(E[[G/K]]hL) // π0(E[[G/H]]hL)

where the horizontal arrows are compositions, using the identifications

Zp[[G/H]]K ∼= HomG(Zp[[G/K]],Zp[[G/H]]) and π0(E[[G/H]]hK) ∼=
HomEG(E∗[[G/K]], E∗[[G/H]]).

Proof. For part (i), by the naturality of the Hurewicz homomorphism, we see that
the following diagram is commutative

π0(E[[G/H]]hK)
∼= //

��

lim
i
π0(E[G/Ui]

hK) ∼= lim
i

∏
x∈K\G/Ui

π0E
hKx

��

(E0[[G/H]])K
∼= // lim

i
E0[G/Ui]

K ∼= lim
i

∏
x∈K\G/Ui

EKx

0

.

(V.6)
The upper horizontal map is an isomorphism due to the fact that lim1 of a system
of profinite abelian groups is trivial, see Theorem 3, Chapitre IV of [Gab62]. The
diagram (V.6) above factors through

π0(E[[G/H]]hK)
∼= //

����

lim
i

∏
x∈K\G/Ui

π0E
hKx

����
F0/F1

//
� _

��

lim
i

∏
x∈K\G/Ui

F0,x/F1,x

� _

��

(E0[[G/H]])K
∼= // lim

i

∏
x∈K\G/Ui

EKx

0 .

Here F0 and F1 denote the first two filtration groups in the filtration associated
to the HFPSS and all surjections are the projections to the 0-filtration of the E∞-
term of the respective HFPSS and the middle horizontal map is induced by the
naturality of the HFPSS. In particular, the transition maps of the middle inverse
limit are determined by those of the lower inverse limit, which are described in
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Lemma 10.0.6. As the upper and lower horizontal maps are isomorphisms, the
middle horizontal map is also an isomorphism.

For any finite subgroup H of G, Zp ⊂ E0 are H-invariants and, further, Zp con-
sist only of permanent cycles. The latter can be seen as follows. Since EhH

is K(n)-local, for (M(J(i)))i≥0 with J(i) = (pj1,i , ..., v
jn−1,i

n−1 ), a cofinal tower
of generalised Moore spectra of type n, there is a natural equivalence EhH ≃
holim EhH ∧M(J(i)), Section 1.7. Since EhH is a ring spectrum, the unit map
of EhH gives rise to the maps M(pj1,i)→ EhH ∧M(J(i)). By taking homotopy
limit of the latter, one obtain the map S0

p → EhH , where S0
p is the p-completed

sphere spectrum, extending the unit map S0 → EhH .

This means that the image of the Hurewicz homomorphism π0E
hH → EH

0 con-
tains Zp. In other words, the inclusion

∏
x∈K\G/Ui

Zp →֒
∏

x∈K\G/Ui

EKx

0 lifts to a

monomorphism

∏

x∈K\G/Ui

Zp →֒
∏

x∈K\G/Ui

F0,x/F0,x. (V.7)

These are compatible with the transition maps as i varies, because the inclusions∏
x∈K\G/Ui

Zp →֒
∏

x∈K\G/Ui

EKx

0 are compatible with the transition maps according

to the description of these in Lemma 10.0.5 and Lemma 10.0.6. By taking the
inverse limit over i, we obtain that the inclusion of Zp[[G/H]]K into E0[[G/H]]K

lifts to F0/F1.
For part (ii), let us first prove that there exists an open subgroup U of G

containing H such that, for all x ∈ G, there exists g ∈ G such that Kx ≤ K ∩
gHg−1. In fact, for all g ∈ G, there exists an open subgroup Ug of G, containing
H , such that K ∩ gUgg

−1 = K ∩ gHg−1. Then ∀x ∈ gUg, K ∩ xUgx
−1 =

K ∩ gUgg
−1 = K ∩ gHg−1. Because ∪

g∈G
gUg = G and G is compact, there exist

g1, ..., gn such that ∪
1≤m≤n

gmUgm = G. Set U = ∩
1≤i≤n

Ugi ; so that U is an open

subgroup of G. Then for all x ∈ G, there exists m such that x ∈ gmUm and so
Kx = K ∩ xUx−1 ⊂ K ∩ xUgix

−1 = K ∩ gmHg
−1
m .

We can suppose, if needed, that there exists i ≥ 0 such that Ui ⊂ U . This
means that, if i is large enough, then, for any x ∈ K\G/Ui, there exists g ∈ G

such that Kx ≤ K ∩ gHg−1. The assumption on H and K implies then that, Kx

satisfies the conditions of Proposition 10.0.7, hence the natural projection

∏

x∈K\G/Ui

π0(E
hKx) ։

∏

x∈K\G/Ui

F0,x/F1,x
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is an isomorphism. This implies that the map (V.7) lifts to
∏

x∈K\G/Ui

Zp →֒
∏

x∈K\G/Ui

π0E
hKx

and that the lifts are compatible with the transition maps as i varies . We can
conclude Part (ii) by taking the inverse limit of the above arrows.

For part (iii), consider the following diagram, where the horizontal maps are
the obvious compositions.

Zp[[G/H]]K ⊗ Zp[[G/K]]L //

s⊗s
��

Zp[[G/H]]L

s
��

π0(E[[G/H]]hK)⊗ π0(E[[G/K]]hL) //

H
��

π0(E[[G/H]]hL)

H
��

E0[[G/H]]K ⊗ E0[[G/K]]L // E0[[G/H]]L.

We see that the lower square is commutative, because of the naturality of the
Hurewicz homomorphism, and the outer square is commutative because the com-
position of the vertical maps are inclusion of respective groups. Therefore the
upper square is commutative, since the Hurewicz homomorphism is injective by
assumption.

Consider the case where H = K are finite subgroups of G. The residual
action of WG(K) on EhK gives rise to a map of Zp-modules

A : Zp[WG(K)] −→ [EhK , EhK ].

Moreover, Zp[WG(K)] can be canonically identified with a submodule of Zp[[G/K]]K ,
because if g ∈ NG(K), then the left coset gK ∈ G/K is fixed by K.

Proposition 10.0.9. Let K be a finite subgroup of G and suppose that all sub-

groups of K verify the equivalent conditions of Proposition (10.0.7). Then there

is a commutative diagram

Zp[WG(K)]
� _

��

A // [EhK , EhK ]

Zp[[G/K]]K .

s
77

Proof. Let gK ∈ WG(K) viewed also as an element of Zp[[G/K]]K . Tracing
through the construction of s, we see that the induced map in Morava modules of
s(gK) is given by

E∗(s(gK)) : Mapc(G/K,E∗)→ Mapc(G/K,E∗), f 7→ (f : hK 7→ f(hgK)).
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By Theorem 10.0.2, the latter is exactly the same as the induced map in Morava
modules of A(gK). Since the Hurewicz homomorphism is injective, we conclude
that A(gK) = s(gK).

Corollary 10.0.10. The lift by s of any element of WG(K) is a map of ring spec-
tra.

Proof. This is because the residual action of WG(K) on EhK is by maps of ring
spectra, according to [DH04].

We want to describe a subset of elements of π0F (EhH , EhK) which are in the
image of the lift s : Zp[[G/H]]K → [EhH , EhK ]. To this end, we need to discuss
topologies on [EhH , EhK ].

The natural topology. The group [X, Y ] can be equipped with the natural topol-
ogy. This is a linear topology whose basic open neighbourhood of 0 are Uf =
ker(f ∗ : [X, Y ] → [F, Y ]) with f running through maps from a small spectrum
F into X , see [HS99], Section 11 for more details. Let us recall the following:

Lemma 10.0.11. ([HS99], Lemma 11.5) If Y is such that [F, Y ] is finite for some

small spectrum F , then [X, Y ] is compact Hausdorff for anyK(n)-local spectrum

X .

Therefore, with the natural topology, [EhH , EhK ] is a compact Hausdorff topo-
logical group because π0(EhK ∧F ) is finite for any type n spectrum F . The latter
is due to the fact that π∗(E ∧ F ) is finite and the HFPSS for EhK ∧ F has a hori-
zontal vanishing line, see [HS99] Proposition 6.5.

The inverse limit topology. The isomorphism

[EhH , EhK ]
∼=
−→ lim

i
[EhUi , EhK ]

can be used to equip [EhH , EhK ] with the inverse limit topology in which each
term of the limit has the natural topology. It turns out that these two topologies
coincide.

Lemma 10.0.12. The natural topology and the inverse limit topology on [EhH , EhK ]
coincide.

Proof. It is equivalent to show that the isomorphism

[EhH , EhK ]
∼=
−→ lim

i
[EhUi , EhK ]
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is a homeomorphism where the source has the natural topology and the target
has the inverse limit topology. Note that the inverse limit topology is compact
Hausdorff because each of the terms in the inverse limit is compact Hausdorff
by Lemma 10.0.11. Since the homomorphism [EhH , EhK ] → [EhUi , EhK ] is
continuous for all i with respect to the natural topology, the map

[EhH , EhK ]→ lim
i

[EhUi , EhK ]

is a continuous bijection. Since both the source and the target are compact Haus-
dorff, this isomorphism is a homeomorphism.

Remark 10.0.13. By virtue of this lemma, we refer to either the natural topology
or the inverse limit topology as the topology of [EhH , EhK ].

Proposition 10.0.14. Let H and K be finite subgroups of G such that all sub-

groups of either H or K verify the equivalent conditions of Proposition 10.0.7.

Then the lift s : Zp[[G/H]]K → [EhH , EhK ] is continuous.

Proof. The natural topology on each [EhUi , EhK ] can be described as follows.
Firstly, the isomorphism

[EhUi , EhK ] ∼= π0(
∏

x∈K\G/Ui

EhKx)

is a homeomorphism with respect to the natural topology on both sides. This
is because π0F (EhUi , EhK) is homeomorphic to [EhUi , EhK ]. Moreover, for a
cofinal tower of generalised Moore spectra of type n, (M(pi1 , ..., v

in−1

n−1 )), there is
an isomorphism, by the fact that lim1 of a system of finite abelian groups is trivial,

π0
∏

x∈K\G/Ui

EhKx
∼=
−→ lim

j
π0(

∏

x∈K\G/Ui

EhKx ∧Mj). (V.8)

Since each π0(
∏

x∈K\G/Ui

EhKx ∧Mj) is finite and discrete (with respect to the nat-

ural topology), the inverse limit topology on the right hand side is compact Haus-
dorff. We see that this does not depend on the choice of the tower of generalised
Moore spectra. We refer to this topology as the In-adic topology or simply adic
topology. Now the same argument as in Lemma 10.0.12 shows that the isomor-
phism (V.8) is in fact a homeomorphism, meaning that the natural topology on
[EhUi , EhK ] coincides with its adic topology. Using the adic topology, we see
that, for each i, the lift

∏
x∈K\G/Ui

Zp →
∏

x∈K\G/Ui

π0E
hKx is continuous. Thus, the

lift s : Zp[[G/H]]K → [EhH , EhK ], being the inverse limit of continuous maps, is
also continuous.
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11 Differentials d1 in the topological duality spectral

sequence

Now, we specialize to the case n = p = 2 and will study the maps δ2 and δ3
in the topological duality resolution, as well as their induced maps in homotopy
groups.

11.1 The differential d1 : E
1,∗
1 → E2,∗

1

The differential d1 : E
2,∗
1 → E3,∗

1 is the induced map in homotopy of δ2 of the
topological duality resolution (I.23).

Lemma 11.1.1. An element φ belonging to the image of the homomorphism s :
Z2[[GC/C2]]

C2 → [EhC2
C , EhC2

C ] can be expressed as

φ = lim
i
φi

where φi =
∑
g∈Si

g with Si a finite subset of GC/C2.

Proof. Because C2 is a central subgroup of GC , Z2[[GC/C2]]
C2 = Z2[[GC/C2]].

Lemma 11.1.1 follows from Proposition 10.0.14 and the fact that every element
of Z2[[GC/C2]] can be written as lim

i
xi where xi =

∑
g∈Si

g with Si a finite subset

of GC/C2.

Lemma 11.1.2. There exists an element δ ∈ Im(s : Z2[[G/C2]]
C2 → [EhC2

C , EhC2
C ])

making the following diagram commutative

EhC6
C

Res
��

δ2 // EhC6
C

Res
��

EhC2
C

δ // EhC2
C

where δ2 is the middle map in the topological duality resolution and Res is the

restriction map.

Proof. Note that Res : EhC6
C → EhC2

C is the image by s of the evident projec-
tion Pr : Z2[[GC/C2]] → Z2[[GC/C6]] induced by gC2 7→ gC6. It induces the
map Pr∗ : Z2[[GC/C2]]

C2 → Z2[[GC/C6]]
C2 , obtained by post-composing an el-

ement of Z2[[GC/C2]]
C2 ∼= HomZ2[[G]](Z2[[GC/C2]],Z2[[GC/C2]]) with Pr. By

applying Theorem 10.0.8 Part (iii) to H = K = C2, L = C6 and noting that
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Res : EhC6
C → EhC2

C is the image by s of the evident projection Pr, there is a
commutative diagram

Z2[[GC/C2]]
C2

Pr∗
��

s // [EhC2
C , EhC2

C ]

Res∗

��

Z2[[GC/C6]]
C2 s // [EhC6

C , EhC2
C ].

By the construction of δ2, Res ◦ δ2 is in the image of the lift s : Z2[[GC/C6]]
C2 →

[EhC6
C , EhC2

C ]. Because C2 is central in GC , the left hand vertical map is sur-
jective. Therefore, there is an δ ∈ Im(s : Z2[[GC/C2]] = Z2[[GC/C2]]

C2 →
[EhC2

C , EhC2
C ]) making the diagram

EhC6
C

Res
��

δ2 // EhC6
C

Res
��

EhC2
C

δ // EhC2
C

commute, as required.

Theorem 11.1.3. The induced map in homotopy of δ2 : E
hC6
C ∧A1 → EhC6

C ∧A1

commutes with multiplication by ∆2.

Proof. Since the restriction EhC6
C ∧ A1 → EhC2

C ∧ A1 induces an injection in
homotopy groups, it suffices to prove that δ∗ : π∗(E

hC2
C ∧ A1) → π∗(E

hC2
C ∧ A1)

is ∆2-linear, i.e, if x ∈ π∗(E
hC2
C ∧ A1), then

δ∗(∆
2x) = ∆2δ∗(x).

According to Lemma 11.1.1, write δ = lim
i
φi where φi =

∑
g∈Si

g with Si a finite

subset of GC/C2. By [HS99], Corollary 11.2, for all k, the map

[EhC2
C ∧ A1, E

hC2
C ∧ A1]→ Hom(πk(E

hC2
C ∧ A1), πk(E

hC2
C ∧ A1))

is continuous where the target has the compact-open topology. Note that the target
of this map is discrete, hence we have

δ∗(∆
2x) = lim

i
(φi(∆

2x)) = lim
i

∑

g∈Si

g(∆2x)

= lim
i

∑

g∈Si

g(∆2)g(x).
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For any g ∈ GC ,
g(∆2) = ∆2 modulo(4, u81).

This equation holds in π∗(E
hC2
C ) because the edge homomorphism π48(E

hC2
C ) →

(E48)
C2 is injective. It follows that

g(∆2)g(x) = ∆2g(x)

since the identity of EhC2
C ∧ A1 is annihilated by (4, u81). Thus,

lim
i

∑

g∈Si

g(∆2)g(x) = lim
i

(∆2
∑

g∈Si

g(x))

= ∆2(lim
i

∑

g∈Si

g(x)) = ∆2δ∗(x).

Proposition 11.1.4. The induced map on the E∞-term of the HFPSS forEhC6
C ∧A1

of δ2 is trivial.

Proof. The map (δ2)∗ : H∗(C6, (EC)∗(A1)) → H∗(C6, (EC)∗(A1)) is identified
with the induced map in Ext∗Z2[[GC ]](−, (EC)∗(A1)) of the map

∂2 : Z2[[GC/C6]]→ Z2[[GC/C6]],

of the exact sequence (I.22). By the argument at the beginning of the proof of
Lemma 11.1.2, there is a map of GC-modules d : Z2[[GC/C2]] → Z2[[GC/C2]]
making the following diagram commutative

Z2[[GC/C2]]

Pr
��

d // Z2[[GC/C2]]

Pr
��

Z2[[GC/C6]]
∂2 // Z2[[GC/C6]],

where the vertical maps are the canonical projections. It induces the following
commutative diagram, by applying Ext∗Z2[[GC ]](−, (EC)∗(A1)) and the Shapiro’s
lemma,

H∗(C6, (EC)∗(A1))

Res
��

(∂2)∗ // H∗(C6, (EC)∗(A1))

Res
��

H∗(C2, (EC)∗(A1))
d∗ // H∗(C2, (EC)∗(A1)),

where (∂2)
∗ and d∗ are induced maps by ∂2 and d, respectively. Since the vertical

maps are injective, it is enough to show that d∗ is trivial. Let g be any element of
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GC . Since C2 is a central subgroup of GC , multiplication with g induces a GC-
map from Z2[[GC/C2]] to itself. If M is a GC-module, then the induced map in
cohomology g∗ : H∗(C2,M) → H∗(C2,M) is induced by the action of g on M .
It follows then that if a ∈ H∗(C2, E∗) and x ∈ H∗(C2, (EC)∗(A1)), then

g(ax) = g(a)g(x).

Now let g ∈ S1
C . It is straightforward to check, by using the cocycle representation

of t given in Lemma 6.1.1, that

g(t) = t mod (2, u1),

where t ∈ H1(C2, (EC)2) the cohomological periodicity class defined in Lemma
6.1.1. It follows that of x ∈ H∗(C2, (EC)∗(A1)), then

g(tx) = g(t)g(x) = tg(x). (V.9)

By Corollary 3.4.6 of [Bea15] ,

d = 1 + α modulo (2, (IS1
2)

2).

Using the formula (II.10) (action of GC on (EC)∗(A1)), we see that 1 + α and
(IS1

2)
2 act trivially on (EC)∗(A1) = H0(C2, (EC)∗(A1)). This means that d∗ acts

trivially on (EC)∗(A1) = H0(C2, (EC)∗(A1)). Furthermore, by Equation (V.9), d∗

is t-linear. Thus d∗ acts trivially on H∗(C2, (EC)∗(A1)) since t is a cohomological
periodicity class.

Theorem 11.1.5. The map (δ2)∗ : π∗(E
hC6
C ∧ A1)→ π∗(E

hC6
C ∧ A1) can only be

nontrivial on the elements ∆2ke12 et ∆2ke20.

Proof. By Proposition 11.1.4, (δ2)∗ can only be nontrivial in stems where ele-
ments are detected in different filtrations. In such stems, the image of an element
by (δ2)∗ is detected in a filtration higher than the filtration of that element. By
inspecting the E∞-term of the HFPSS for EhC6

C ∧ A1 (c.f Figure III.10), we see
that these stems are congruent to 6, 9, 12, 20, 23, 26, 40 modulo 48.

The cofibration (III.18) induces a map of exact sequences

π∗(E
hC6
C ∧ Y ) //

(δ2)∗
��

π∗(E
hC6
C ∧ A1) //

(δ2)∗
��

π∗(E
hC6
C ∧ Σ3Y )

(δ2)∗
��

π∗(E
hC6
C ∧ Y ) // π∗(E

hC6
C ∧ A1) // π∗(E

hC6
C ∧ Σ3Y )

It follows that if x ∈ π∗(E
hC6
C ∧ A1) lifts to π∗(E

hC6
C ∧ Y ), then (δ2)∗(x) is sent

trivially to π∗(E
hC6
C ∧ Σ3Y ). This observation rules out the possibility for a non-

trivial differential in stem 6, 9, 23, 26, 40 modulo 48.
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Remark 11.1.6. Using the fact that (δ2)∗ is ∆2-linear, we reduce to understanding
the image of e12 and e20 by (δ2)∗.

11.2 The differential d1 : E
2,∗
1 → E3,∗

1

The differential d1 : E
2,∗
1 → E3,∗

1 is the induced map in homotopy of δ3, which
is the last map in the topological duality resolution (I.23). The identification of δ3
is harder. Let us first introduce some notation. For any a ∈ EF

k , define

Ea : Map(G/F,E∗−k)→ Map(G/F,E∗)

by the formula: for all e ∈ Map(G/F,E∗−k) and g ∈ G/F ,

Ea(e)(g) = g(a)e(g) (V.10)

It is straightforward to see that Ea is a map of Morava modules. In particular,
because ∆2 is a G24-invariant of (EC)48 (see the remark succeeding Theorem
1.5.1), E∆2 : (EC)∗(Σ

48EhG24
C )→ (Ec)∗E

hG24
C is a map of Morava modules.

Proposition 11.2.1. The map δ3 of (I.23) satisfies that

(EC)∆2 ◦ (EC)∗(δ3) = ∂∗3 , (V.11)

in other words, there is a commutative diagram

(EC)∗E
hC6
C

∂∗3 //

E∗(δ3)

((

(EC)∗E
hG24
C

(EC)∗Σ
48EhG24

C

E∆2

66

Proof. For this we need to unwind the construction of the map δ3 in [BG18]. Let
us summarise it here. There is a K(2)-local spectrum Z together with a map ∂ :
EhC6
C → Z and an isomorphism of Morava modules φ : (EC)∗Z ∼= (EC)∗E

hG24
C

such that
φ ◦ E∗(∂) = ∂∗3 . (V.12)

Then, there is a homotopy equivalence f1 ∨ f2 : Σ48EhG48
C ∨Σ48EhG48

C → Z such
that f ∗i : E∗C [[GC/G24]]→ E∗−48C [[GC/G48]] is given by (1 7→ ωi∆2) for i = 1, 2
(see the proof of Theorem 5.8 of [BG18]). Here, one implicitly identifies E∗C(Z)
with Hom(EC)∗((EC)∗Z, (EC)∗)

∼= E∗CE
hG24
C . Using the Galois decomposition

EhG48
C ∨ EhG48

C

∼=
−→ EhG24

C , (V.13)
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one produces an equivalence f : Σ48EhG24
C → Z. Then put

δ3 = f−1 ◦ ∂.

The decomposition (V.13) has the feature that the induced map in E∗C(−) is given
by (E∗C [[GC/G24]] → E∗C [[GC/G48]] ⊕ E∗C [[GC/G48]], 1 7→ (ω, ω2)). It follows
immediately that the induced map inE∗C(−) of f is given by (1 7→ ∆2). By taking
the dual Hom(EC)∗(−, (EC)∗), we can check that the induced map in (EC)∗ of f
followed by φ is equal to (EC)∆2 , i.e.,

φ ◦ (EC)∗(f) = (EC)∆2 .

Together with the equation (V.12) and (EC)∗(δ3) = (EC)∗(f
−1) ◦ (EC)∗(∂), we

obtain that
(EC)∆2 ◦ (EC)∗(δ3) = ∂∗3 .

Lemma 11.2.2. Let F be a finite subgroup of G. Suppose that a ∈ EF
k is a

permanent cycle in the HFPSS that lifts to a map ΣkEhF → EhF which is, by an

abuse of notation, still denoted by a. Then E∗(a) = Ea.

Proof. Since E∗(a) and Ea are maps of E∗(EhF )-modules, we only need to check
this identity on a generator of E∗(ΣkEhF ). Let δΣk1 ∈ Map(G/F, π∗(Σ

kE)), the
constant map with value the element Σk1 ∈ πk(Σ

kE), be such a generator. This
function is the image of the k-fold suspension of the unit S0 → E ∧ EhF via

the identification Φ : E∗E
hF ∼= Mapc(G/F,E∗). The latter is sent to Sk

1∧a
−−→

E ∧ EhF by a. And through Φ, it gets identified to the map (G/F → E∗, g 7→
g(a)), which is equal to the image of δΣk1 by Ea. The conclusion of the lemma
follows.

Definition 11.2.3. Let I be an ideal of [EhC2
C , EhC2

C ] and X, Y be two spectra. We
say that f, g ∈ [X, Y ] are congruent modulo I , denoted by f ≡ g mod I , if there
exist elements ǫ, δ ∈ [EhC2

C , EhC2
C ] with ǫ ≡ δ mod I such that

f = sǫt and g = sδt

for certain t ∈ [X,EhC2
C ] and s ∈ [EhC2

C , Y ].

Proposition 11.2.4. The composite Σ48EhC6
C

π(∆2)
−−−→ EhC6

C

δ3−→ Σ48EhG24
C is homo-

topic to Σ48((1+ i+ j+ k)(1−α−1)π−1+(1+ i+ j+ k)α−1π−1 ◦ (1− π∆2

α(π∆2)
))

where the second term is the composite

EhC6
C

1− π∆2

α(π∆2)
−−−−−→ EhC6

C

(1+i+j+k)α−1π−1

−−−−−−−−−−−→ EhG24
C .
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As a consequence,

δ3 ≡ Σ48(trG24
C6
◦ (1− α−1) ◦ π−1) ◦∆−2 modulo (4, u81),

see Definition 11.2.3.

Proof. Since C6 satisfies the equivalent conditions of Proposition 10.0.7, follow-
ing from the computation of the HFPSS for EhC6

C in Section 6.1, the Hurewicz
homomorphism

[Σ48EhC6
C ,Σ48EhG24

C ]→ HomEG((EC)∗E
hC6
C , (EC)∗(E

hG24
C )

is injective. It is then enough to prove that the two maps in question induce the
same maps of Morava modules. Now we compute the induced map of Morava
modules of δ3 ◦ π(∆2) :

E∗(δ3◦π(∆
2)) : Homc(Z2[[G/C6]], (EC)∗−48)→ Homc(Z2[[G/G24]], (EC)∗−48).

For any e ∈ Map(G/C6, E∗−48) and g ∈ G/G24, we have that

E∗(δ3 ◦ π(∆
2))(e)(g)

= E−1∆2 ◦ ∂
∗
3 ◦ Eπ(∆2)(e)(g) (because of the equation (V.11) and Lemma 11.2.2)

= g(∆−2)(∂∗3 ◦ Eπ(∆2)(e)(g))

= g(∆−2)(Eπ(∆2)(e)(g(1 + i+ j + k)(1− α−1)π−1))

= g(∆−2)
( ∑

h∈G24/C6

ghπ−1π(∆2)e(ghπ−1)

−
∑

h∈G24/C6

ghα−1π−1π(∆2)e(ghα−1π−1)
)

= g(∆−2)
(
g(∆2)e(g(1 + i+ j + k)π−1)−

∑

h∈G24/C6

ghα−1(∆2)e(ghα−1π−1)
)

= e(g(1 + i+ j + k)(1− α−1)π−1)

−
∑

h∈G24/C6

ghα−1π−1(
π(∆2)

πα∆2
− 1)e(ghα−1π−1)

= ∂∗3(e)(g) + ((1 + i+ j + k)α−1π−1)∗ ◦ E
1−

π(∆2)

πα(∆2)

(e)(g)

Therefore,

E∗(δ3 ◦∆
−2) = ∂∗3 + ((1 + i+ j + k)α−1π−1)∗ ◦ E

1−
π(∆2)

πα(∆2)
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and the right hand side is exactly the E∗-homology of

Σ48
(
(1 + i+ j + k)(1− α−1)π−1 + (1 + i+ j + k)α−1π−1 ◦ (1−

π∆2

α(π∆2)
)
)
.

Thus,

δ3 ≡ Σ48((1− α−1) ◦ π−1 ◦ trG24
C6

) ◦ π(∆−2) modulo (8, 4u51, u
8
1)

≡ Σ48((1− α−1) ◦ π−1 ◦ trG24
C6

) ◦∆−2 modulo (8, 4u51, u
8
1)

The two reductions are because of the equations

1−
π∆2

α(π∆2)
≡ 0 modulo (4, 2u1, u

4
1)

2 ⊂ (8, 4u51, u
8
1)

and respectively
π(∆−2) ≡ ∆−2 modulo (8, 4u51, u

8
1),

which are in turn due to Lemma 1.5.2.

Lemma 11.2.5. The homomorphism

Res : H∗(G24, (EC)∗(A1))→ H∗(C6, (EC)∗(A1))

sends u−3ke5 to u−2−3kte0 for all k ∈ Z.

Proof. We show that Res(e5) = u−2te0. The class e5 is represented by the co-
cycle G24 → (EC)6A1, determined by i 7→ u−3e0 + u−2e2, ω 7→ 0, where e2 ∈
(EC)2(A1) introduced in Formula II.10. The restriction of the latter to C6 is deter-
mined by −1 7→ u−3e0, ω 7→ 0, which is not a coboundary, hence represents the
unique nontrivial class u−2te0 ∈ H1(C6, (EC)6(A1)), up to a factor of F×4 . Finally,
the restriction map is linear with respect to F4[u

±3] ⊂ H∗(G24,F4[u
±1]).

Theorem 11.2.6. The induced map in homotopy of δ3 : E
hC6
C ∧A1 → EhG24 ∧A1

is trivial.

Proof. Proposition 11.2.4 shows

(δ3 ∧ IdA1)∗ = (Σ48((1 + i+ j + k) ◦ (1− α−1) ◦ π−1) ◦∆−2 ∧ IdA1)∗.

Since multiplication by ∆−2 induces a bijection on π∗(E
hC6
C ∧A1), it is equivalent

to show that the composite

EhC6
C ∧ A1

π−1(1−α−1)
−−−−−−−→ EhC6

C ∧ A1
1+i+j+k
−−−−−→ EhG24

C ∧ A1
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induces a trivial map in homotopy.
We write e6, e12, e20 for any element of π∗(E

hC6
C ∧ A1) detected by u−3e0,

u−6e0, u
−9e2 ∈ H∗(C6, (EC)∗(A1)), respectively. By the same argument as in

the proof of Theorem 11.1.5, the map π−1 ◦ (1 − α−1) : π∗(E
hC6
C ∧ A1) →

π∗(E
hC6
C ∧ A1) can only be nontrivial on the elements ∆2ke12 and ∆2ke20 and

π−1 ◦ (1− α−1)(∆2ke12) = λ1ν
2∆2ke6

and
π−1 ◦ (1− α−1)(∆2ke20) = λ2ν∆

2kx17e0

for some λ1, λ2 ∈ F4.
Consider the map (1 + i + j + k) : EhC6

C ∧ A1 → EhG24 ∧ A1. Its induced
map in cohomology Hs(C6, (EC)tA1) → Hs(G24, (EC)t(A1)) is the cohomolog-
ical transfer. It is elementary to check that the restriction Hs(G24, (EC)tA1) →
Hs(C6, (EC)t(A1)) sends the classes ∆2ku−3e0 and ∆2ku−6e5 to the classes de-
tecting ∆2ku−3e0 and ∆2ku−6tu−2e0, respectively by Lemma 11.2.5. Since,

tr(res(∆2ku−3e0)) = 4∆2ku−3e0 = 0

and
tr(res(∆2ku−6e5)) = 4∆2ku−6e5 = 0,

the induced map in homotopy of (1 + i + j + k) must send ∆2ke6 and ∆2kx17e0
to elements detected in filtration at least 1 and 2 in the HFPSS for EhG24

C ∧ A1,
respectively. Then, the latter must be detected in filtration at least 4 by sparseness
in the E∞-term of the HFPSS for EhG24

C ∧A1, hence (1+ i+ j+k)∗(ν∆2ke6) and
(1 + i+ j + k)∗(∆

2kx17e0) are divisible by κ. Therefore,

(1 + i+ j + k)∗(ν
2∆2ke6) = ν(1 + i+ j + k)∗(ν∆

2ke6) = 0

and

(1 + i+ j + k)∗(ν∆
2kx17e0) = ν(1 + i+ j + k)∗(∆

2kx17e0) = 0

because νκ = 0 ∈ π∗(E
hG24
C ).

Remark 11.2.7. In order to complete the analysis of the TDSS for A1, it remains
to study

1. The differential d1 : E
1,p
1 → E2,p

1 for p = 12, 20, see Remark 11.1.6,
2. The differential d2 : E

1,p
2 → E3,p−1

2 for p ∈ Z.
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A priori, there are many p ∈ Z for which the differential d2 : E1,p
2 → E3,p−1

2

cannot be ruled out by sparseness. These differentials can be addressed by the

following approach that was suggested to me by Agnès Beaudry. Let EhG24
C

f
−→ F

be the cofiber of δ0 : E
hS1C
C → EhG24

C in the topological duality resolution I.23.

Since δ1 ◦ δ0 ≃ 0, the map δ1 factorises as EhG24
C

f
−→ F

g
−→ EhC6

C . The study of
the remaining differentials d1 and d2 is essentially equivalent to the study of the

surjectivity of the induced map in homotopy of F ∧ A1

g∧IdA1−−−−→ EhC6
C ∧ A1. For

this, we need to understand sufficiently well the map g. However, we do not study
this at all in the thesis.
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Let A1 be any spectrum in a class of finite spectra whose mod 2 cohomology is isomorphic to

a free module of rank one over the subalgebra A(1) of the Steenrod algebra. Let EC be the second

Morava-E theory associated to a universal deformation of the formal completion of the supersingular

elliptic curve (C) : y2+y = x3 defined over F4 and S
1

C
the kernel of the reduced determinant SC → Z2,

where SC is the Morava stabiliser group. As first steps towards understanding the homotopy type of

the K(2)-localisation of the 2-local sphere spectrum, we analyse, in this thesis, the topological duality

spectral sequence for E
hS1

C

C
∧ A1, constructed by Irina Bobkova and Paul Goerss. In particular, we

compute the E1-term of the latter and prove that its edge homomorphism is surjective.

Soit A1 un spectre dans une classe des spectres finis dont la cohomologie modulo 2 est isomorphe

à un module libre de rang un sur la sous-algèbre A(1) de l’algèbre de Steenrod. Soit EC la seconde

E-théorie de Morava associée à une déformation universelle de la complétion formelle de la courbe ellip-

tique supersingulière (C) : y2+y = x3 définie sur F4 et S1

C
le noyau du morphism de déterminant réduit

SC → Z2, où SC est le groupe des stabilisateurs de Morava. Dans la perspective de mieux comprendre

le type d’homotopie de la localisation en K(2) du spectre des sphères 2-local, nous analysons, dans

cette thèse, la suite spectrale de dualité topologique pour E
hS1

C

C
∧A1, construite par Irina Bobkova and

Paul Goerss. En particulier, nous calculons le term E1 de la dernière et montrons que son application

du bord est surjective.
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