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Andrés SARRAZOLA ALZATE

LOCALISATION DE REPRÉSENTATIONS LOCALEMENT ANALYTIQUES ADMISSIBLES

Résumé :

Soit G un schéma en groupes réductif, connexe et déployé sur l’anneau d’entiers d’une extension finie L du corps de
nombres p-adiques ℚp. Un théorème important dans la théorie des groupes c’est le théorème de localisation, ce qui a été
démontré par A. Beilinson et J. Berstein, et par J.L. Brylinsky et M. Kashiwara. Il s’agit d’un résultat deD-affinité pour la
variété de drapeauxXL du groupe algébrique GL (la fibre générique de G). En caractéristique mixte un progrès important
se trouve dans les travaux de C. Huyghe et T. Schmidt. Ils donnent une réponse partielle en considérant des caractères
algébriques. Les premières quatre chapitres de cette thèse sont consacrés à étendre cette correspondance (le théorème de
localisation arithmétique) pour des caractères arbitraires.
Dans les chapitres cinq et six, nous traiterons l’objectif principal de cette thèse qui concerne les représentations localement
analytiques. Nous montrerons que si � est un caractère algébrique, tel que �+� est de plus dominant et régulier (� en étant
le caractère de Weyl), alors la catégorie des représentations admissibles localement analytiques du groupe L-analytique
G ∶= G(L), à caractère central �, c’est équivalente à la catégorie des D(�)-modules arithmétiques coadmissibles G-
équivariants sur la famille des modèles formels de la variété de drapeaux rigide de G.

Mots-clés : D-modules arithmétiques, localisation, représentations localement analytiques admissibles, variétés de dra-
peaux, modèles formels, D(�)-modules arithmétiques coadmissibles G-équivariants.

Summary:

Let G be a split connected, reductive group scheme over the ring of integers o of a finite extension L of the field of p-
adic numbers ℚp. An important theorem in group theory is the localization theorem, demonstrated by A. Beilinson and
J. Berstein, and by J.L. Brylinsky and M. Kashiwara. This is a result about the D-affinity of the flag variety XL of the
algebraic group GL (the generic fiber of G). In mixed characteristic an important progress is found in the work of C.
Huyghe and T. Schmidt. They give a partial answer by considering algebraic characters. The first four chapters of this
thesis are dedicated to extending this correspondence (the arithmetic localization theorem) for arbitrary characters.
In chapters five and six, we will treat the principal objective of this thesis, which concerns admissible locally analytic
representations. We will show that if � is an algebraic character, such that � + � is furthermore dominant and regular
(� being the Weyl character), then the category of admissible locally analytic representations of the locally L-analytic
group G ∶= G(L), with central character �, it is equivalent to the category of coadmissible G-equivariant arithmetic
D(�)-modules over the family of formal models of the rigid flag variety of G.

Keywords: ArithmeticD-modules, localization, admissible locally analytic representations, flag varieties, formal models,
coadmissible G-equivariant arithmetic D(�)-modules.
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Introduction

Version en Français
Un résultat important dans la théorie des représentations est le théorème de Beilinson-Bernstein [3]. Rappelons brièvement
son énoncé : Soit G un groupe algébrique complexe semi-simple et gℂ ∶= Lie(G) son algèbre de Lie. Soit tℂ ⊆ gℂ une
sous-algèbre de Cartan et z ⊆ U (gℂ) le centre de l’algèbre enveloppante de gℂ. Pour chaque caractère � ∈ t∗ℂ ∶=
Homℂ(t,ℂ) on note m� ⊆ z l’idéal maximal correspondant, qui est induit via l’homomorphisme d’Harish-Chandra [22,
Theorem 7.4.5]. On définit U� ∶= U (gℂ)∕m�. Le théorème affirme que si X est la variété de drapeaux de G et DX,�
le faisceau des opérateurs différentiels �-tordus (cf. [3, Théorème principal]), alors on a une équivalence de catégories
Modqc(DX,�) ≃ Mod(U�) à condition que � soit un caractère dominant et régulier (2.5.3). Ici Modqc(DX,�) est la catégorie
desDX,�-modules qui sontOX-quasi-cohérents. De plus, dans cette équivalence de catégories, lesDX,�-modules qui sont
cohérents correspondent aux U�-modules qui sont de type fini.

Le théorème de Beilinson-Bernstein a été démontré indépendamment par A. Beilinson et J. Bernstein dans [3], et par
J-L. Brylinski et M. Kashiwara dans [17]. Il a été un outil important dans la preuve de la conjecture de la multiplicité de
Kazhdan-Lusztig [42]. En caractéristique mixte, un progrès important se trouve dans les travaux de C. Huyghe [34, 35] et
Huyghe-Schmidt [39]. Dans ce cas, si o est l’anneau des entiers d’une extension finieL du corps des nombres p-adiquesℚp
et G est un groupe réductif, connexe et déployé sur o, alors ils utilisent des opérateurs différentiels arithmétiques introduits
par P. Berthelot dans [6] pour montrer une version arithmétique du théorème de Beilinson-Bernstein pour la variété de
drapeaux formelle sur o. Dans ce contexte, les sections globales de ces opérateurs sont canoniquement isomorphes à une
version cristalline de l’algèbre de distribution classique Dist(G) du schéma en groupes G (cf. [39, Théorème 3.2.3 (i)] et
[38, Proposition 5.3.1]).

Avant de présenter les objets construits et les résultats montrés dans ce travail, nous remarquons tout au long de ce travail,
si e est l’indice de ramification de L, alors e ≤ p − 1 (pour plus des détails sur cette condition technique le lecteur est
invité à regarder l’exemple 1.1.1 et la proposition 5.3.1 de [38]). Soit B ⊆ G un sous-groupe de Borel et T ⊆ B un tore
maximal et déployé de G. Nous noterons X ∶= G∕B le schéma de drapeaux associé à G. Notre but sera d’introduire des
faisceaux des opérateurs différentielles tordus1 sur le o-schéma de drapeaux formel X et nous montrerons un équivalent
arithmétique du théorème de Beilinson-Bernstein, introduit dans le premier paragraphe. Ici le «twist» est fait par rapport
à un morphisme d’algèbres � ∶ Dist(T ) → o, où Dist(T ) est l’algèbre de distribution au sens de [21]. Ces faisceaux sont
notés D†

X,�. En particulier, il existe une base S de X constituée d’ouverts affines, tels que pour chaque U ∈ S nous avons

D†
X,�|U ≃ D†

U .

En d’autres termes, localement nous retrouvons le faisceau des opérateurs différentiels introduits par P. Berthelot 2. Pour
calculer ses sections globales, nous utiliserons la description de Dist(G), donnée par Huyghe-Schmidt dans [38], comme
une limite inductive des o-algèbres noethériennes Dist(G) = lim

←←←←←←←←←←→m∈ℕ
D(m)(G), telle que pour tout m ∈ ℕ nous avons

1Parfois on utilisera son équivalent en anglais «twist».
2Cette propriété clarifie pourquoi ils sont appelés «tordus».
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D(m)(G) ⊗o L = U (Lie(G) ⊗o L), l’algèbre enveloppante de gL ∶= Lie(G) ⊗o L. En particulier, chaque caractère � ∶
Dist(T )→ o induit, via produit tensoriel avec L et l’homomorphisme d’Harish-Chandra, un caractère central �� ∶ z → L.
Notons D̂(m)(G)� la complétion p-adique de la réduction centrale D(m)(G)∕(D(m)(G) ∩ Ker(��+�)) et D†(G)� la limite
inductive du système D̂(m)(G)�⊗o L→ D̂(m′)(G)�⊗o L. Avant d’énoncer notre premier résultat, considérons le décalage
suivant. Tout d’abord, la représentation adjointe [40, I, 7.18] induit une structure de T -module sur g ∶= Lie(G) telle que
g se décompose de la forme :

g = Lie(T )⊕
⨁

�∈Λ
g� .

Ici Λ ⊆ X(T ) représente les racines de G par rapport à T . Nous choisissons un système positif des racines Λ+ ⊆ Λ et nous
considérons le caractère de Weyl � ∶= 1

2
∑

�∈Λ+ �. Dans le chapitre 4 nous montrerons le théorème suivant (théorème
4.2.1).

Théorème 1. Soit � ∶ Dist(T )→ o un caractère de l’algèbre de distribution Dist(T ) tel que �+� ∈ t∗L ∶= (Lie(T )⊗oL)∗3

est un caractère dominant et régulier de tL ∶= Lie(T ) ⊗o L. Le foncteur sections globales induit une équivalence de
catégories entre la catégorie des D†

X,�-modules cohérents et la catégories des D†(G)�-modules de présentation finie.

Comme nous expliquerons dans la suite, le théorème est basé sur une version plus fine pour les faisceaux (des opérateurs
différentiels tordus de niveau m) D̂ (m)

X,�,ℚ. Comme dans le cas classique, le foncteur inverse est déterminé par le foncteur
de localisation

L oc†X,�(∙) ∶= D†
X,� ⊗D†(G)� (∙)

avec une définition complètement analogue pour chaque m ∈ ℕ.

Le chapitre 1 à pour but de fixer quelques constructions arithmétiques (elles sont introduites dans [6], [34] et [38]). Dans
le chapitre 2 nous construisons notre faisceau des opérateurs différentiels tordus de niveau m sur le schéma de drapeaux
formel X sur o. Pour cela, nous notons t ∶= Lie(T ) l’algèbre de Lie du tore T et tL ∶= t⊗o L. Ce sont des sous-algèbres
de Cartan respectives de g et de gL. SoitN le radical unipotent du groupe de Borel B et considérons les o-schémas lisses et
séparés X̃ ∶= G∕N etX ∶= G∕B (l’espace affine basique et le schéma de drapeaux). La projection canonique � ∶ X̃ → X
est un T -torseur localement trivial pour la topologie de Zariski de X et, comme dans [12], nous considérons l’algèbre
enveloppante de niveau m du torseur comme le sous-faisceau des T -invariants de �∗D

(m)
X̃

:

D̃(m) ∶=
(

�∗D
(m)
X̃

)T
.

Comme nous l’expliquerons, c’est un faisceau de D(m)(T )-modules qui localement, sur un ouvert affine U ⊂ X qui
trivialise le torseur, peut être décrit comme le produit tensoriel D(m)

X |U ⊗o D(m)(T ). D’autre part, si � ∶ Dist(T ) → o est
un morphisme de o-algèbres (qu’on appellera un caractère de Dist(T )) alors, grâce aux propriétés juste annoncées, nous
définirons un faisceau d’opérateurs différentiels arithmétiques tordus sur X par

D(m)
X,� ∶= D̃(m) ⊗D(m)(T ) o. (1)

Ceci définit un modèle entier du faisceau des opérateurs différentiels tordusD� sur la variété de drapeauxXL ∶= X×Spec(o)
Spec(L). Dans la dernière partie du chapitre 2 nous allons explorer quelques propriétés de finitude de la cohomologie des
D(m)
X,�-modules cohérents. Un cas important est le cas où �+ � ∈ t∗L est un caractère dominant et régulier de tL. Sous cette

hypothèse, les groupes de cohomologie de toutD(m)
X,�-module cohérent sont à p-torsion bornée, ce qui est un résultat central

dans ce travail. Dans le chapitre 3 nous considérerons la complétion p-adique de (1) que nous désignerons par D̂ (m)
X,�, et

3Nous notons également par � le caractère de l’algèbre de Lie Lie(T ) induit par (2.26)
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nous étudierons ses propriétés cohomologiques lorsque le caractère � + � ∈ t∗L est dominant et régulier. Finalement, le
chapitre 4 est consacré à l’étude du passage à la limite inductive

D†
X,� ∶= lim

←←←←←←←←←←→
m∈ℕ

D̂ (m)
X,�,ℚ, D̂ (m)

X,�,ℚ ∶= D̂ (m)
X,� ⊗o L.

et à démontrer un théorème de Beilinson-Berstein pour les D†
X,�-modules arithmétiques (Theorem 4.2.1).

Les travaux développés par C. Huyghe dans [35] et par D. Patel, T. Schmidt et M. Strauch dans [49], [50] et [36] montrent
que le théorème arithmétique de Beilinson-Bernstein est un outil important dans le théorème de localisation suivant [36,
Theorem 5.3.8] : si X note le schéma de drapeaux formel du groupe G, alors le théorème fournit une équivalence de
catégories entre la catégorie des représentations admissibles localement analytiques de G ∶= G(L) (à caractère trivial !)
et la catégorie desD-modules arithmétiques coadmissiblesG-équivariants (sur la famille des modèles formels de la variété
de drapeaux rigide de G). Notre motivation a été d’étudier ce théorème de localisation dans le cas tordu. Pour cela, dans le
chapitre 5, nous introduirons un faisceau d’opérateurs différentiels D†

X,k,� avec un niveau de congruence k ∈ ℕ (définition
5.20). Moralement, nous suivrons la philosophie décrite dans [36] pour introduire un faisceau d’opérateurs différentiels
sur chaque éclatement admissible de X. Plus précisément, si pr ∶ Y → X est un éclatement admissible de X et k >> 04,
alors

D†
Y,k,� ∶= pr∗D†

X,k,� = OY ⊗pr−1OX
pr−1D†

X,k,� (2)

est un faisceau des anneaux sur Y. Dans ce travail nous considérerons le cas algébrique, c’est-à-dire, � ∈ Hom(T ,Gm).
Dans cette situation, � induit un faisceau inversible L (�) sur Y et D†

Y,k,� devient le faisceau des opérateurs différentiels
qui agissent sur L (�). À partir de maintenant nous noterons ce faisceau D†

Y,k(�) pour tenir compte de l’action sur L (�),
et nous supposerons que �+ � ∈ t∗L est un caractère dominant et régulier de tL. Dans le chapitre 6 6.2 nous démontrerons
que le foncteur pr∗ induit une équivalence de catégories entre la catégorie des D†

Y,k(�)-modules cohérents et la catégorie
des D†

X,k(�)-modules cohérents. De plus, nous avons pr∗D
†
Y,k(�) = D†

X,k(�), ce qui implique notamment que

H0(Y,D†
Y,k(�)) = H

0(X,D†
X,k(�)) = D

†(G(k))�.

Ici, G(k) est le k-ième sous-groupe de congruence de G. En particulierH0(Y, ∙) = H0(X, ∙) ◦ pr∗ est un foncteur exact et
nous avons le théorème suivant.

Théorème 2. Soit pr ∶ Y → X un éclatement admissible. Supposons que � ∈ Hom(T ,Gm) est un caractère algébrique tel
que �+� ∈ t∗L est un caractère dominant et régulier de tL. Le foncteurH0(Y, ∙) induit une équivalence entre les catégories
des D†

Y,k(�)-modules cohérents et des D†(G(k))�-modules de présentation finie.

Comme dans le théorème précédent, le foncteur inverse est déterminé par le foncteur de localisation suivant :

L oc†Y,k(�)(∙) ∶= D†
Y,k(�)⊗D†(G(k))� (∙).

Décrivons maintenant les outils les plus importants dans notre théorème de localisation. Du côté algébrique, nous sup-
poserons d’abord que G0 = G(o) et queD(G0, L) est l’algèbre de distribution du groupe analytique compact G0. Le point
clé sera de construire une structure d’algèbre de Fréchet-Stein faible sur D(G0, L) (au sens de [25, Definition 1.2.6]) qui
nous permettra de localiser les D(G0, L)-modules coadmissibles (par rapport à cette structure d’algèbre de Fréchet-Stein
faible). Pour cela, nous commençons par remarquer que d’après les travaux de Huyghe-Schmidt dans [39] nous pouvons
identifier l’algèbre D†(G(k))� avec la réduction centrale Dan(G(k)◦)� de l’algèbre des distributions Dan(G(k)◦) (au sens

4Cette condition technique est clarifiée dans la proposition 6.1.2
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d’Emerton [25]) du groupe rigide analytique G(k)◦ («the wide open rigid-analytic k-th congruence subgroup» décrit dans
la sous-section 6.4.2). On a donc un isomorphisme

D†(G(k))�
≃
←←←←←←←→ Dan(G(k)◦)�.

De plus, d’après les travaux de Huyghe-Patel-Schmidt-Strauch dans [36], si Ccts(G0, L)G(k)◦−an est l’espace des vecteurs lo-
calementG(k)◦-analytiques de l’espace des fonctions continues à valeurs dansL etD(G(k)◦, G0) ∶= (Ccts(G0, L)G(k)◦−an)′b
est son dual fort, alors nous avons un isomorphisme

D(G0, L)
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℕ

D(G(k)◦, G0)

qui définit une structure d’algèbre de Fréchet-Stein faible sur D(G0, L), telle que

D(G(k)◦, G0) =
⨁

g∈G0∕Gk

Dan(G(k)◦)�g . (3)

Ici Gk ∶= G(k)(o) est un sous-groupe normal de G0, la somme directe décrit un ensemble de représentants de la classe de
Gk dans G0 et �g est la distribution de Dirac supportée dans g. Nous noterons CG0,� la catégorie des D(G0, L)-modules
coadmissibles à caractère central � (D(G0, L)�-modules coadmissibles, où D(G0, L)� est la réduction centrale).

Or, du côté géométrique, nous considérerons pr ∶ Y → X un éclatement admissible G0-équivariant tel que le faisceau
L (�) est muni d’une G0-action qui nous permet de définir une G0-action à gauche Tg ∶ D†

Y,k(�) → (�g)∗D
†
Y,k(�) sur

D†
Y,k(�)

5, au sens que pour chaque g, ℎ ∈ G0 nous avons la propriété de cocycle Tℎg = (�g)∗Tℎ ◦ Tg . Nous dirons
donc qu’un D†

Y,k(�)-module cohérent M est fortement G0-équivariant s’il existe une famille ('g)g∈G0 d’isomorphismes
'g ∶ M → (�g)∗M de faisceaux de L-espaces vectoriels, qui satisfont les propriétés suivantes (conditions (†)) :

∙ Pour tout g, ℎ ∈ G0, nous avons (�g)∗'ℎ ◦ 'g = 'ℎg .

∙ Si U ⊆ Y est sous-ensemble ouvert, P ∈ D†
Y,k(�)(U ) et m ∈ M (U ) alors 'g(P ∙ m) = Tg(P ) ∙ 'g(m).

∙ 6 Pour tout g ∈ Gk+1 l’application 'g ∶ M → (�g)∗M est égale à la multiplication par �g ∈ Dan(G(k))�.

Un morphisme entre deux D†
Y,k(�)-modules fortement G0-équivariants (M , ('M

g )g∈G0 ) et (N , ('N
g )g∈G0 ) est un mor-

phisme  ∶ M → N qui est D†
Y,k(�)-linéaire et tel que, pour tout g ∈ G0, on a 'N

g ◦  = (�g)∗ ◦ 'M
g . Notons

Coh(D†
Y,k(�), G0) la catégorie des D†

Y,k(�)-modules cohérents qui sont fortement G0-équivariants. Nous avons le résultat
suivant 7 :

Théorème 3. Soit � ∈ Hom(T ,Gm) un caractère algébrique tel que � + � ∈ t∗L est un caractère dominant et régulier de
tL. Les foncteurs L oc†Y,k(�) etH

0(Y, ∙) induisent des équivalences des catégories entre les catégories desD(G(k)◦, G0)-
modules de présentation finie (à caractère central �) et Coh(D†

Y,k(�), G0).

Toujours du côté géométrique, considérons l’ensemble FX des couples (Y, k) tels que Y est un éclatement admissible de
X et k ≥ kY, où

kY ∶= min
I

min{k ∈ ℕ | $k ∈ I }

et I est un faisceau d’idéaux de OX, tel que Y ≃ V (I ). Cet ensemble est ordonné par la relation (Y′, k′) ⪰ (Y, k)
si et seulement si Y′ est un éclatement admissible de Y et k′ ≥ k. Comme il est montré dans [36] le groupe G0-agit

5Ici g ∈ G0 et �g ∶ Y → Y est le morphisme induit par G0-équivariance
6Nous identifions iciH0(Y,D†

Y,k(�)) avec D
an(G(k)◦)� et nous utilisons le lemme 6.3.3 pour donner un sens à cette condition.

7Nous utilisons la relation (3) pour donner du sens à l’affirmation du théorème.
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sur FX et cette action respecte le niveau de congruence. C’est-à-dire, pour tout couple (Y, k) ∈ FX il existe un couple
(Y.g, kY.g) ∈ FX muni d’un isomorphisme �g ∶ Y → Y.g et tel que kY = kY.g . Nous dirons donc qu’une famille
M ∶= (MY,k)(Y,k)∈FX

des D†
Y,k(�)-modules cohérentes est un D(�)-module coadmissibleG0-équivariant sur FX si pour

tout g ∈ G0, avec morphisme �g ∶ Y → Y.g, il existe un isomorphisme

'g ∶ MY.g,k → (�g)∗MY,k

qui satisfait les conditions (†) et tel que, si (Y′, k′) ⪰ (Y, k) avec � ∶ Y′ → Y, alors il existe un morphisme de transition
�∗MY′,k′ → MY,k, qui satisfait des conditions de transitivité évidentes. De plus, un morphisme M → N entre deux tels
modules est un morphisme MY,k → NY,k de D†

Y,k(�)-modules qui est compatible avec les structures supplémentaires.

Nous noterons cette catégorie CG0X,� et pour chaque objet M ∈ CG0X,�, nous considérerons la limite projective

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈FX

H0(Y,MY,k)

au sens des groupes abéliens.

Or, soitM un D(G0, L)�-module coadmissible et V ∶= M ′
b sa représentation localement analytique associée. L’espace

des vecteurs G(k)◦-analytiques VG(k)◦−an ⊆ V est stable sous l’action de G0 et son dual Mk ∶= (VG(k)◦−an)′ est un
D(G(k)◦, G0)-module de présentation finie. Dans cette situation, le théorème 3 produit un D†

Y,k(�)-module cohérent

L oc†Y,k(�)(Mk) ∶= D†
Y,k(�)⊗Dan(G(k)◦)� Mk

pour chaque élément (Y, k) ∈ FX. Nous noterons cette famille

L ocG0� (M) ∶=
(

L oc†Y,k(�)(Mk)
)

(Y,k)∈FX

.

Théorème 4. Soit � ∈ Hom(T ,Gm) un caractère algébrique tel que �+ � ∈ t∗L est un caractère dominant et régulier de tL.
Les foncteurs L ocG0� (∙) et Γ(∙) induisent des équivalences des catégories entre la catégorie CG0,� (desD(G0, L)�-modules
coadmissibles) et la catégorie CG0X,�.

Finalement, la dernière partie de ce travail est consacrée à l’étude de la catégorie des D(G,L)�-modules coadmissibles,
où G ∶= G(L)8. Pour cela, nous considérerons l’immeuble de Bruhat-Tits B de G ([18] et [19]). Il s’agit d’un complexe
simplicial équipé d’une action de G. Pour tout sommet spécial v ∈ B, la théorie de Bruhat et Tits associe un groupe
réductif Gv dont fibre générique est canoniquement isomorphe à G ×Spec(o) Spec(L). Soit Xv le schéma de drapeaux
de Gv, et Xv sa complétée formelle le long de sa fibre spéciale. Nous considérons l’ensemble F composé des triples
(Yv, k, v) tels que v est un sommet spécial, Yv → Xv est un éclatement admissible de Xv et k ≥ kYv . D’après (6.6.2)
F est muni d’une relation d’ordre partiel. De plus, pour chaque sommet spécial v ∈ B, chaque élément g ∈ G induit
un isomorphisme �vg ∶ Xv → Xvg , tel que si (�vg)

♮ ∶ OXvg → (�vg)∗OXv est le comorphisme et � ∶ Yv → Xv est un
éclatement admissible le long de V (I ), alors l’éclatement au long de V ((�vg)

−1(�vg)∗I ) produit un schémaYvg muni d’un
isomorphisme �vg ∶ Yv → Yvg , tel que kYv = kYvg et pour tout g, ℎ ∈ G nous avons �vgℎ ◦ �vg = �

v
gℎ.

UnD(�)-module arithmétique coadmissibleG-équivariant surF , est une famille (M(Yv,k,v))(Yv,k,v)∈F deD†
Yv,k

(�)-modules
cohérents satisfaisant la condition (†) plus certaines propriétés de compatibilité (définition 6.6.4) permettant de former la

8Ici G0 est un sous-goupe (maximal) compact de G. Cette propriété de compacité permet de définir la structure d’algèbre de Fréchet-Stein faible
remarquée avant.
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limite projective suivante :

Γ(M ) ∶= lim
←←←←←←←←←←←

(Yv,k,v)∈F
H0(Yv,M(Yv,k,v)).

Cette dernière, comme nous le montrerons, porte une structure de D(G,L)�-module coadmissible. D’autre part, étant
donné unD(G,L)�-module coadmissibleM , on considère V :=M ′

b son dual continu, qui est une représentation localement
analytique de G. Soit ensuite Mv,k l’espace dual du sous-espace VGv(k)◦−an ⊆ V des vecteurs Gv(k)◦-analytiques. Pour
tout (Yv, k, v) ∈ F , nous avons le D†

Yv,k
(�)-module cohérent

L oc†Yv,k(�)(Mv,k) = D†
Yv,k

(�)⊗Dan(Gv(k)◦)� Mv,k.

On note cette famille L ocG� (M). Nous montrerons le résultat suivant (théorème 6.6.6) :

Théorème 5. Soit � ∈ Hom(T ,Gm) un caractère algébrique tel que � + � ∈ t∗L est un caractère dominant et régulier de
tL. Les foncteurs L ocG� (∙) et Γ(∙) donnent des équivalences quasi-inverses entre les catégories des D(G,L)�-modules
coadmissibles et des D(�)- modules arithmétiques coadmissibles G-équivariants.

La dernière tâche a consisté à étudier la limite projective

X∞ ∶= lim
←←←←←←←←←←←

(Yv,k,v)
Yv.

Il s’agit de l’espace de Zariski-Riemann associé à la variété de drapeau rigideXrig. On peut aussi former la limite projective
D(�) des faisceaux D†

Y,k(�) qui est un faisceau des opérateurs G-équivariants des anneaux p-adiquement complètes sur
X∞. De même, si (M(Yv,k,v))(Yv,k,v)∈F est unD(�)-module arithmétique coadmissibleG-équivariant, alors on peut former
la limite projective M∞. La donnée M(Yv,k,v)∈F ⇝ M∞ induit un foncteur fidèle de la catégorie des D(�)- modules
arithmétiques coadmissibles G-équivariants sur F vers la catégorie des D(�)-modules G-équivariants sur X∞ (théorème
6.6.8).



Introduction

English version

An important result in representation theory is the so-called Beilinson-Bernstein theorem [3]. Let us briefly recall its
statement. Let G be a semi-simple complex algebraic group and gℂ ∶= Lie(G) its Lie algebra. Let tℂ ⊆ gℂ be a Cartan
subalgebra and z ⊆ U (gℂ) the center of the universal enveloping algebra of gℂ. For each character � ∈ t∗ℂ ∶= Homℂ(t,ℂ)
we denote bym� ⊆ z the corresponding maximal ideal, which is induced via the homomorphism of Harish-Chandra [22,
Theorem 7.4.5]. We define U� ∶= U (gℂ)∕m�. The theorem states that ifX is the flag variety ofG andDX,� is the sheaf of
�-twisted differential operators [3, 2. Main theorem], then we have an equivalence of categoriesModqc(DX,�) ≃ Mod(U�),
provided that � is a dominant and regular character of tℂ (2.5.3). Here Modqc(DX,�) is the category ofDX,�-modules that
are OX-quasi-coherent. In addition, in this equivalence of categories, coherent DX,�-modules correspond to the U�-
modules that are of the finite type.

The Beilinson-Bernstein theorem was independently demonstrated by A. Beilinson and J. Bernstein in [3], and by J-L.
Brylinski and M. Kashiwara in [17]. It has been an important tool in proving Kazhdan-Lusztig’s multiplicity conjecture
[42]. In mixed characteristic, an important progress can be found in the work of C. Huyghe [34, 35] and Huyghe-Schmidt
[39]. In this situation, if o is the ring of integers of a finite extension L of the field of p-adic numbers ℚp and G is a split
conneccted, redactive group scheme over o, then they use the arithmetic differential operators introduced by P. Berthelot in
[6] to show an arithmetic version of the Beilinson-Bernstein theorem for the formal flag o-scheme X. In this context, the
global sections of these operators are canonically isomorphic to a crystalline version of the classical distribution algebra
Dist(G) of the group scheme G (cf. [39, Theorem 3.2.3 (i)] and [38, Proposal 5.3.1]).

Before presenting the objects built and the results shown in this work, we remark for the reader that troughout this work,
if e denotes the index of ramification of L, then e ≤ p − 1 (for more details about this technical condition the reader is
invited to look at the example 1.1.1 and the proposition 5.3.1 of [38]). Let us take B ⊆ G a Borel subgroup and T ⊆ B
a split maximal torus of G. We will denote by X ∶= G∕B the flag scheme associated to G. Our major goal will be to
introduce sheaves of twisted differential operators on the formal flag o-schemeX and we will show an arithmetic equivalent
of the Beilinson-Bernstein theorem, introduced in the first paragraph. Here the twist is made in relation to a morphism of
o-algebras � ∶ Dist(T )→ o, where Dist(T ) is the sense of [21]. These sheaves are denoted by D†

X,�. In particular, there is
a base S of X made up of open affine subsets, such that for each U ∈ S we have

D†
X,�|U ≃ D†

U .

In other words, locally we find the sheaf of differential operators introduced by P. Berthelot 9. To calculate its global
sections, we will use the description of Dist(G), given by Huyghe-Schmidt in [38], as an inductive limit of noetherian
o-algebras Dist(G) = lim

←←←←←←←←←←→m∈ℕ
D(m)(G), such that for every m ∈ ℕ we haveD(m)(G)⊗o L = U (Lie(G)⊗o L), the universal

enveloping algebra of gL ∶= Lie(G) ⊗o L. In particular, each character � ∶ Dist(T ) → o induces, via tensor product

9This property clarifies why they are called "twisted".
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with L and the Harish-Chandra homomorphism, a central character �� ∶ z → L. We denote by D̂(m)(G)� the p-adic
completion of the central reduction D(m)(G)∕(D(m)(G) ∩ Ker(��+�)) and by D†(G)� the inductive limit of the system
D̂(m)(G)� ⊗o L → D̂(m′)(G)� ⊗o L. Before stating our first result, let us consider the following shift. First, the adjoint
representation [40, I, 7.18] induces a T -module structure on g ∶= Lie(G) such that g breaks down as follows

g = Lie(T )⊕
⨁

�∈Λ
g� .

Here Λ ⊆ X(T ) represents the roots of G respect to T . We choose a positive root system Λ+ ⊆ Λ and we consider the
Weyl character � ∶= 1

2
∑

�∈Λ+ �. In chapter 4 we will show the following theorem (theorem 4.2.1).

Theorem 1. Let � ∶ Dist(T ) → o be a character of the distribution algebra Dist(T ), such that � + � ∈ t∗L ∶= (Lie(T )⊗o
L)∗10 is a dominant and regular character of tL ∶= Lie(T )⊗o L. The global sections functor induces an equivalence of
categories between the category of coherent D†

X,� modules and the category of finitely presented D†(G)�-modules.

As we will explain later, the theorem is based on a finer version for the sheaves ( of twisted differential operators of level
m) D̂ (m)

X,�,ℚ. As in the classic case, the inverse functor is determined by the localization functor

L oc†X,�(∙) ∶= D†
X,� ⊗D†(G)� (∙)

with a completely similar definition for each m ∈ ℕ.

Chapter 1 is dedicated to fixing some arithmetic constructions (they are introduced in [6], [34] and [38]). In Chapter 2 we
construct our sheaf of twisted differential operators of levelm on the formal flag o-schemeX. To do this, we will denote by
t ∶= Lie(T ) the Lie algebra of the torus T and by tL ∶= t⊗oL. These are Cartan subalgebras of g and gL, respectively. Let
us consider N the unipotent radical of the Borel subgroup B and consider the smooth and separated o-schems X̃ ∶= G∕N
and X ∶= G∕B (the basic affine space and the flag scheme). The canonical projection � ∶ X̃ → X is a locally trivial
T -torsor for the Zariski topology of X. As in [12], we will consider the enveloping algebra of level m of the torsor as the
subsheaf of T -invariants of �∗D

(m)
X̃

:

D̃(m) ∶=
(

�∗D
(m)
X̃

)T
.

As we will explain, it is a sheaf of D(m)(T )-modules which locally, over an open affine subset U ⊂ X that trivializes the
torsor, can be described as the tensor product D(m)

X |U ⊗o D(m)(T ). On the other hand, if � ∶ Dist(T ) → o is a morphism
of o-algebras (which we will call a character of Dist(T )) then, thanks to the properties just announced, in section 2.5 we
define a sheaf of twisted arithmetic differential operators on X by

D(m)
X,� ∶= D̃(m) ⊗D(m)(T ) o. (4)

This defines an integer model of the sheaf of twisted differential operatorsD� on the flag varietyXL ∶= X×Spec(o)Spec(L).
The final part of chapter 2 is consecrated to exploring some finite properties of the cohomology of coherentD(m)

X,�-modules.
An important case is the one where � + � ∈ t∗L is a dominant and regular character of tL. Under this assumption, the
cohomology groups of any coherent D(m)

X,�-module are of bounded p-torsion, which is a central result in this work. In
chapter 3 we will consider the p-adic completion of (4) which we will denote by D̂ (m)

X,�, and we will study its cohomological
properties when the character � + � ∈ t∗L is dominant and regular. Finally, chapter 4 is dedicated to the study of the
inductive limit

D†
X,� ∶= lim

←←←←←←←←←←→
m∈ℕ

D̂ (m)
X,�,ℚ, D̂ (m)

X,�,ℚ ∶= D̂ (m)
X,� ⊗o L.

10We also denote by � the character of the Lie algebra Lie(T ) induced by (2.26)
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and to demonstrate a Beilinson-Berstein theorem for arithmetic D†
X,�-modules (Theorem 4.2.1).

The work developed by C. Huyghe in [35] and by D. Patel, T. Schmidt and M. Strauch in [49], [50] and [36] shows that
the arithmetic Beilinson-Bernstein theorem is an important tool in the following location theorem [36, Theorem 5.3.8]:
if X denotes the formal flag scheme of the group G, then the theorem provides an equivalence of categories between
the category of admissible locally analytic representations of G ∶= G(L) (with trivial character!) and the category of
admissible G-equivariant arithmetic D-modules (on the family of formal models of the rigid flag variety). Our motivation
was to study this localization theorem in the twisted case. To do this, in Chapter 5, we will introduce a set of differential
operators D†

X,k,� with a congruence level k ∈ ℕ (definition 5.20). Morally, we will follow the philosophy described in
[36] to introduce a sheaf of differential operators on each admissible blow-up of X. More specifically, if pr ∶ Y → X is
an admissible blow-up of X and k >> 011, then

D†
Y,k,� ∶= pr∗D†

X,k,� = OY ⊗pr−1OX
pr−1D†

X,k,� (5)

is a sheaf of rings onY. In this work we will consider the algebraic case, i.e., � ∈ Hom(T ,Gm). In this situation, � induces
an invertible sheaf L (�) on Y and D†

Y,k,� becomes the sheaf of differential operators acting on L (�). From now on, we
will denote this sheaf byD†

Y,k(�) to take into account the action onL (�), and we will assume that �+� ∈ t∗L is a dominant
and regular character of tL. In chapter 6 we will demonstrate that the functor pr∗ induces an equivalence of categories
between the category of coherent D†

Y,k(�)-modules and the category of coherent D†
X,k(�)-modules. In addition, we have

pr∗D
†
Y,k(�) = D†

X,k(�), which implies that

H0(Y,D†
Y,k(�)) = H

0(X,D†
X,k(�)) = D

†(G(k))�.

Here, G(k) is the k-th congruence subgroup of G. In particularH0(Y, ∙) = H0(X, ∙) ◦ pr∗ is an exact functor and we have
the following theorem.

Theorem 2. Let pr ∶ Y → X be an admissible blow-up. Suppose that � ∈ Hom(T ,Gm) is an algebraic character such
that �+ � ∈ t∗L is a dominant and regular character of tL. TheH0(Y, ∙) induces an equivalence between the categories of
coherent D†

Y,k(�)-modules and finitely presented D†(G(k))�-modules.

As in the previous theorem, the inverse functor is determined by the localization functor

L oc†Y,k(�)(∙) ∶= D†
Y,k(�)⊗D†(G(k))� (∙).

Let us now describe the most important tools in our localization theorem. On the algebraic side, we will first assume
that G0 = G(o) and that D(G0, L) is the distribution algebra of the compact analytic group G0. The key point will be
to build a structure of weak Fréchet-Stein algebra on D(G0, L) (in the sense of [25, Definition 1.2.6]) that will allow us
to localize the coadmissible D(G0, L)-modules (relative to this weak Fréchet-Stein structure). To do this, we start by
remarking that according to the work developped by Huyghe-Schmidt in [39], we can identify the algebraD†(G(k))� with
the central reductionDan(G(k)◦)� of the algebra of analytic distributionsDan(G(k)◦) (in the sense of Emerton [25]) of the
rigid analytic group G(k)◦ (the wide open rigid-analytic k-th congruence subgroup described in subsection 6.4.2). So we
have an isomorphism

D†(G(k))�
≃
←←←←←←←→ Dan(G(k)◦)�.

Moreover, according to the work developped by Huyghe-Patel-Schmidt-Strauch in [36], if Ccts(G0, L)G(k)◦−an is the vector
space of locally analytic vectors of the space of continuousL-valued functions, andD(G(k)◦, G0) ∶= (Ccts(G0, L)G(k)◦−an)′b

11This technical condition is clarified in the proposition 6.1.2
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is its strong dual, then we have an isomorphism

D(G0, L)
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℕ

D(G(k)◦, G0)

which defines a structure on D(G0, L) of weak Fréchet-Stein algebra, such that

D(G(k)◦, G0) =
⨁

g∈G0∕Gk

Dan(G(k)◦)�g . (6)

HereGk ∶= G(k)(o) is a normal subgroup ofG0, the direct sum runs through a set of representatives of the cosets ofGk in
G0 and �g is the Dirac distribution supported in g. We will denote by CG0,� the category of coadmssibleD(G0, L)-modules
with central character � (coadmissible D(G0, L)�-modules, where D(G0, L)� denotes the central reduction).

Now, on the geometric side, wewill consider pr ∶ Y → X aG0-equivariant admssible blow-up such that the invertible sheaf
L (�) is equipped with a G0-action that allows us to define a left G0-action Tg ∶ D†

Y,k(�) → (�g)∗D
†
Y,k(�) on D†

Y,k(�)
12,

in the sense that for every g, ℎ ∈ G0 we have the cocycle condition Tℎg = (�g)∗Tℎ ◦ Tg . So, we will say that a coherent
D†

Y,k(�)-module M is strongly G0-equivariant if there is a family ('g)g∈G0 of isomorphisms 'g ∶ M → (�g)∗M of
sheaves of L-vector spaces, which satisfy the following properties (conditions (†)) :

∙ For every g, ℎ ∈ G0 we have (�g)∗'ℎ ◦ 'g = 'ℎg .

∙ If U ⊆ Y is an open subset, P ∈ D†
Y,k(�)(U ) and m ∈ M (U ) then 'g(P ∙ m) = Tg(P ) ∙ 'g(m).

∙ 13 For any g ∈ Gk+1 the application 'g ∶ M → (�g)∗M is equal to the multiplication by �g ∈ Dan(G(k))�.

A morphism between two strongly G0-equivariant D
†
Y,k(�)-modules (M , ('M

g )g∈G0 ) and (N , ('N
g )g∈G0 ) is a morphism

 ∶ M → N which is D†
Y,k(�)-linear and such that, for every g ∈ G0, we have '

N
g ◦  = (�g)∗ ◦ 'M

g . We denote by
Coh(D†

Y,k(�), G0) the category of strongly G0-equivariant D
†
Y,k(�)-modules. We have the following result 14

Theorem 3. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular character of
tL. The functors L oc†Y,k(�) andH

0(Y, ∙) induce equivalences between the categories of finitely presentedD(G(k)◦, G0)-
modules (with central character �) and Coh(D†

Y,k(�), G0).

Still on the geometric side, let us consider the set FX of couples (Y, k) such that Y is an admissible blow-up of X and
k ≥ kY, where

kY ∶= min
I

min{k ∈ ℕ | $k ∈ I }

and I is an ideal subsheaf of OX, such that Y ≃ V (I ). This set is ordered by the relationship (Y′, k′) ⪰ (Y, k) if and
only ifY′ is an admissible blow-up ofY and k′ ≥ k. As shown in [36] the groupG0 acts onFX and this action respects the
congruence level. This means that for every couple (Y, k) ∈ FX there is a couple (Y.g, kY.g) ∈ FX with an isomorphism
�g ∶ Y → Y.g and such that kY = kY.g . So we will say that a family M ∶= (MY,k)(Y,k)∈FX

of coherent D†
Y,k(�)-modules

is a coadmissible G0-equivariant D(�)-module on FX if for any g ∈ G0, with morphism �g ∶ Y → Y.g, there is an
isomorphism

' ∶ MY.g,k → (�g)∗MY

12Here g ∈ G0 and �g ∶ Y → Y is the morphism induced by G0-equivariance.
13We identify hereH0(Y,D†

Y,k(�)) with D
an(G(k)◦)� and we use lemma 6.3.3 to give sense to this condition.

14We use the relationship (6) to give a sense to the assertion of the theorem.



CONTENTS 21

that satisfies the conditions (†) and such that, if (Y′, k′) ⪰ (Y, k) with � ∶ Y′ → Y, then there is a transition morphism
�∗MY′,k′ → MY,k which satisfies obvious transitivity conditions. Moreover, a morphism M → N between two such a
modules is a morphism MY,k → NY,k of D†

Y,k(�)-modules which is compatible with the additional structures. We will

note this category CG0X,� and for every M ∈ CG0X,�, we will consider the projective limit

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈FX

H0(Y,MY,k)

in the sense of the Abelian groups

Now, letM be a coadmissible D(G0, L)�-module and V ∶=M ′
b its associated locally analytic representation. The vector

space of G(k)◦-analytic vectors VG(k)◦−an ⊆ V is stable under the action of G0 and its dualMk ∶= (VG(k)◦−an)′ is a finitely
presented D(G(k)◦, G0)-module. In this situation, theorem 3 produces a coherent D†

Y,k(�)-module

L oc†Y,k(�)(Mk) ∶= D†
Y,k(�)⊗Dan(G(k)◦)� Mk

for each element (Y, k) ∈ FX. We will note this family

L ocG0� (M) ∶=
(

L oc†Y,k(�)(Mk)
)

(Y,k)∈FX

.

Theorem 4. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular character
of tL. The functors L ocG0� (∙) and Γ(∙) induce equivalences of categories between the category CG0,� (of coadmissible
D(G0, L)�-modules) and the category CG0X,�.

Finally, the last part of this work is devoted to the study of coadmissible D(G,L)�-modules, where G ∶= G(L)15. To
do this, we will consider the Bruhat-Tits building B of G ([18] and [19]). It is a simplicial complex equipped with a
G-action. For any special vertex v ∈ B, the theory of Bruhat and Tits associates a reductive group Gv whose generic fiber
is canonically isomorphic to G ×Spec(o) Spec(L). Let Xv be the flag scheme of Gv, and Xv its formal completion along its
special fiber. We consider the setF composed of triples (Yv, k, v) such that v is a special vertex,Yv → Xv is an admissible
blow-up of Xv and k ≥ kYv . According to (6.6.2) F is partially ordered. In addition, for each special vertex v ∈ B, each
element g ∈ G induces an isomorphism �vg ∶ Xv → Xvg , such that if (�vg)

♮ ∶ OXvg → (�vg)∗OXv is the comorphism map
and � ∶ Yv → Xv is an admissible blow-up along V (I ), then the (admissible) blow-up along V ((�vg)

−1(�vg)∗I ) produces
aYvg scheme with an isomorphism �vg ∶ Yv → Yvg , such that kYv = kYvg and for every g, ℎ ∈ G we have �vgℎ ◦ �vg = �

v
gℎ.

A coadmissibleG-equivariant arithmeticD(�)-module onF , consists of a family (M(Yv,k,v))(Yv,k,v)∈F of coherentD†
Yv,k

(�)-
modules satisfying the condition (†) plus some compatibility properties (definition 6.6.4) that allow us to form the projec-
tive limit

Γ(M ) ∶= lim
←←←←←←←←←←←

(Yv,k,v)∈F
H0(Yv,M(Yv,k,v)).

Which, as we will show, has a structure of coadmissible D(G,L)�-module. On the other hand, given a coadmissible
D(G,L)�-moduleM , we consider V ∶=M ′

b its continuous dual, which is a locally analytic representation of G. Then let
Mv,k be the dual space of the subspace VGv(k)◦−an ⊆ V of Gv(k)◦-analytic vectors. For every (Yv, k, v) ∈ F , we have a
coherent D†

Yv,k
(�)-module

L oc†Yv,k(�)(Mv,k) = D†
Yv,k

(�)⊗Dan(Gv(k)◦)� Mv,k.

15Here G0 is a (maximal) compact subgroup of G. This compactness property allows to define the structure of weak Fréchet-Stein algebra.
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We note this family L ocG� (M). We will show the following result (theorem 6.6.6).

Theorem 5. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular character of
tL. The functors L ocG� (∙) and Γ(∙) give an equivalence between the categories of coadmissible D(G,L)�-modules and
coadmissible G-equivariant arithmetic D(�)-modules.

The last task was to study the projective limit

X∞ ∶= lim
←←←←←←←←←←←

(Yv,k,v)
Yv.

This is the Zariski-Riemann space associated to the rigid flag variety Xrig. We can also form the projective limit D(�) of
the sheaves D†

Y,k(�) which is a sheaf of G-equivariant differential operators on X∞. Similarly, if (M(Yv,k,v))(Yv,k,v)∈F is a
coadmissibleG-equivariant arithmetic D(�)-module, then we can form the projection limit M∞. The data M(Yv,k,v)∈F ⇝

M∞ induces a faithful functor from the category of coadmissible G-equivariant arithmetic D(�)-modules on F to the
category of G-equivariant D(�)-modules on X∞ (theorem 6.6.8).



Chapter 1

Arithmetic definitions

In this chapter we will describe the arithmetic objects on which the definitions and constructions of our work are based.
We will give their functorial constructions and we will enunciate their most remarkable properties. For a more detailed
approach, the reader is invited to take a look to the references [47], [34], [38] and [6].

1.1 Partial divided power structures of level m
Let p ∈ ℤ be a prime number. In this subsection ℤ(p) denotes the localization of ℤ with respect to the prime ideal (p).
We start recalling the following definition [8, Definition 3.1].

Definition 1.1.1. Let A be a commutative ring and I ⊂ A an ideal. By a structure of divided powers on I we mean a
collection of maps i ∶ I → A for all integers i ≥ 0, such that

(i) For all x ∈ I , 0(x) = 1, 1(x) = x and i(x) ∈ I if i ≥ 2.

(ii) For x, y ∈ I and k ≥ 1 we have k(x + y) =
∑

i+j=k i(x)j(y).

(iii) For a ∈ A and x ∈ I we have k(ax) = akk(x).

(iv) For x ∈ I we have i(x)j(x) = ((i, j))i+j(x), where ((i, j)) ∶= (i + j)!(i!)−1(j!)−1.

(v) We have p(q(x)) = Cp,qpq(x), where Cp,q ∶= (pq)!(p!)−1(q!)−p.

Throughout this work we will use the terminology: "(I, ) is a PD-ideal", "(A, I, ) is a PD-ring" and " is a PD-structure
on I". Moreover, we say that � ∶ (A, I, ) → (B, J , �) is a PD-homomorphism if � ∶ A → B is a homorphism of rings
such that �(I) ⊂ J and �k◦�|I = �◦k, for every k ≥ 0.

Example 1.1.1. [8, Section 3, Examples 3.2 (3)] Let o be a discrete valuation ring of unequal characteristic (0, p) and
uniformizing parameter$. Let us write p = u$e, with u a unit of o and e a positive integer (called the absolute ramification
index of o). Then k(x) ∶= xk∕k! defines a PD-structure on ($) if and only if e ≤ p − 1. In particular, we dispose of
PD-structure on (p) ⊂ ℤ(p). We let x[k] ∶= k(x) and we denote by ((p), [ ]) this PD-ideal.

Let us fix a positive integer m ∈ ℤ. For the next terminology we will always suppose that (A, I, ) is a ℤ(p)-PD-algebra
whose PD-structure is compatible (in the sense of [6, subsection 1.2]) with the PD-structure induced by ((p), [ ]) (we recall
to the reader that the PD-structure ((p), [ ]) always extends to a PD-structure on any ℤ(p)-algebra [8, proposition 3.15] ).

Definition 1.1.2. Let m be a positive integer. Let A be a ℤ(p)-algebra and I ⊂ A an ideal. We call a m-PD-structure on
I a PD-ideal (J , ) ⊂ A such that I (pm) + pI ⊂ J , where I (pm) is the ideal generated by the powers xpm with x ∈ I .

23
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We will say that (I, J , ) is a m-PD-ideal of A. Moreover, we say that � ∶ (A, I, J , ) → (A′, I ′, J ′,  ′) is a m-PD-
morphism if � ∶ A → A′ is a ring morphism such that �(I) ⊂ I ′, and such that � ∶ (A, J , ) → (A′, J ′,  ′) is a
PD-morphism.
For every k ∈ ℕ we denote by k = pmq + r the Euclidean division of k by pm, and for every x ∈ I we define x{k}(m) ∶=
xr(q(xp

m )). We remark for the reader that the relation q!q(x) = xq (which is an easy consequence of (i) and (iv) of
definition 1.1.1) implies that q!x{k}(m) = xk.
On the other side, the m-PD-structure (I, J , ) allows us to define an increasing filtration (I{n})n∈ℕ on the ring A called
the m-PD-filtration. This is the finer filtration, which satisfies these following properties [7, 1.3]:

(i) I{0} = A, I{1} = I .

(ii) For every n ≥ 1, x ∈ I{n} and k ≥ 0 we have x{k} ∈ I{kn}.

(iii) For every n ≥ 0, (J + pA) ∩ I{n} is a PD-subideal of (J + pA).

Proposition 1.1.3. [8, proposition 1.4.1] Let us suppose thatR is aℤ(p)-algebra endowed with a m-PD-structure (a, b, �).
Let A be a R-algebra and I ⊂ A an ideal. There exists an R-algebra P(m)(I), an ideal I ⊂ P(m)(I) endowed with a m-
PD-structure (Ĩ , [ ]) compatible with (b, �), and a ring homomorphism � ∶ A → P(m)(I) such that �(I) ⊂ I . Moreover,
(P(m)(I), I, Ĩ , [ ], �) satisfies the following universal property: for every R-homomorphism f ∶ A → A′ sending I to an
ideal I ′ which is endowed with a m-PD-structure (J ′,  ′) compatible with (b, �), there exists a unique m-PD-morphism
g ∶ (P(m)(I), I, Ĩ , [ ])→ (A′, I ′, J ′,  ′) such that g◦� = f .

Definition 1.1.4. Under the hypothesis of the preceding proposition, we call the R-algebra P(m)(I), endowed with the
m-PD-ideal (Ī , Ĩ , [ ]), the m-PD-envelope of (A, I).

Finally, if we endow P n(m)(I) ∶= P(m)(I)∕I
{n+1}

with the quotient m-PD-structure [6, 1.3.4] we have

Corollary 1.1.5. [6, Corollary 1.4.2] Under the hypothesis of the preceding proposition, there exists anR- algebra P n(m)(I)

endowed with a m-PD-structure (I, Ĩ , [ ]) compatible with (b, �) and such that I
{n+1}

= 0. Moreover, there exists an R-
homomorphism �n ∶ A → P n(m)(I) such that �(I) ⊂ I , and universal for the R-homomorphisms A → (A′, I ′, J ′,  ′)
sending I into a m-PD-ideal I ′ compatible with (b, �) and such that I ′{n+1} = 0.

1.2 Arithmetic differential operators

Let us suppose that o is endowed with the m-PD-structure (a, b, [ ]) defined in example 1.1.1. LetX be a smooth o-scheme
and I ⊂ OX a quasi-coherent ideal. The presheaves (defined over a basis of affine open subsets of X)

U ⊆ X → P(m)(Γ(U, I)) and U ⊆ X → P n(m)(Γ(U, I))

are sheaves of quasi-coherentOX-modules which we denote by P(m)(I) and Pn
(m)(I), respectively. In a completely analo-

gous way, we can define a canonical ideal I of P(m)(I), a sub-PD-ideal (Ĩ , [ ]) ⊂ Ī , and the sequence of ideals (Ī{n})n∈ℕ
defining the m-PD-filtration. Those are also quasi-coherent sheaves on X [6, subsection 1.4].
Now, let us consider the diagonal embedding Δ ∶ X → X ×o X and let W ⊂ X ×o X be an open subset such that

X ⊂ W is a closed subset defined by a quasi-coherent sheaf I ⊂ OW . For every n ∈ ℕ, the algebra Pn
X,(m) ∶= Pn

(m)(I) is
quasi-coherent and its support is contained in X. In particular, it is independent of the open subsetW [6, 2.1]. Moreover,
by proposition 1.1.3 the projections p1, p2 ∶ X×oX → X induce two morphisms d1, d2 ∶ OX → Pn

X,(m) endowing P
n
X,(m)

of a left and a right structure of OX-algebra, respectively.
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Definition 1.2.1. Let m, n be positive integers. The sheaf of differential operators of level m and order less or equal to n
on X is defined by

D(m)
X,n ∶= H omOX

(Pn
X,(m),OX).

If n ≤ n′ corollary 1.1.5 gives us a canonical surjection Pn′
X,(m) → Pn

X,(m) which induces the injection D(m)
X,n → D(m)

X,n′ and
the sheaf of differential operators of level m is defined by

D(m)
X ∶=

⋃

n∈ℕ
D(m)
X,n.

We remark for the reader that by definitionD(m)
X is endowed with a natural filtration called the order filtration, and like the

sheaves Pn
X,(m), the sheaves D

(m)
X,n are endowed with two natural structures ofOX-modules. Moreover, the sheaf D(m)

X acts

on OX : if P ∈ D(m)
X,n, then this action is given by the composition OX

d1
←←←←←←←←←←→ Pn

X,(m)
P
←←←←←←←←→ OX .

Finally, let us give a local description of D(m)
X,n. Let U be a smooth open affine subset of X endowed with a family of local

coordinates x1, . . . , xN . Let dx1, . . . , dxN be a basis of ΩX(U ) and )x1 , . . . , )xN a basis of TX(U ) (as usual, TX
and ΩX denote the tangent and cotangent sheaf on X, respectively). Let k ∈ ℕN . Let us denote by |k| =

∑N
i=1 ki and

)[ki]i = )xi∕ki! for every 1 ≤ i ≤ N . Then, using multi-index notation, we have )[k] =
∏N

i=1 )
[ki]
i and )<k> = qk!)[k]. In

this case, the sheaf D(m)
X,n has the following description on U

D(m)
X,n(U ) =

⎧

⎪

⎨

⎪

⎩

∑

|k|≤n
ak)

<k>
| ak ∈ OX(U ) and k ∈ ℕN

⎫

⎪

⎬

⎪

⎭

. (1.1)

1.3 Symmetric algebra of finite level

In this subsection we will focus on introducing the constructions in [34]. Let X be an o-scheme, L a locally free module
of finite rank on X, SX(L) the symmetric algebra associated to L and I the ideal of homogeneous elements of degree 1.
Using the notation of the first section we define

ΓX,(m)(L) ∶= PSX (L),(m)(I) and ΓnX,(m)(L) ∶= ΓX,(m)(L)∕Ī
{n+1}. (1.2)

Those algebras are graded [34, Proposition 1.3.3], and if �1, ..., �N is a local basis of L, we have

ΓnX,(m)(L) =
⨁

|l|≤n
OX�

{l}.

As before �{l} =
∏N

i=1 �
{li}
i and qi!�

{li}
i = �li . We define by duality

Sym(m)(L) ∶=
⋃

k∈ℕ
H omOX

(

ΓkX,(m),OX

)

,

By [34, Propositions 1.3.1, 1.3.3 and 1.3.6] we know that Sym(m)(L) = ⊕n∈ℕSym(m)
n (L) is a commutative graded algebra

with noetherian sections over any open affine subset. Moreover, locally over a basis �1, ..., �N we have the following
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description

Sym(m)
n (L) =

⨁

|l|=n
OX�

<l>, where
li
qi!
�<li>i = �lii .

Remark 1.3.1. By [47, A.10] we have that Sym(0)(L) is the symmetric algebra of L, which justifies the terminology.

We end this subsection by remarking the following results from [35]. Let I be the kernel of the comorphism Δ♯ of the
diagonal embeddingΔ ∶ X → X×Spec(o)X. In [34, Proposition 1.3.7.3] Huyghe shows that the graded algebra associated
to the m-PD-adic filtration of PX,(m) it is identified with the graded m-PD-algebra ΓX,(m)(I∕I2) = ΓX,(m)(Ω1X). More
exactly, we dispose of a canonical morphism of OX-algebras

SX(ΩX)→ gr∙PX,(m)

which extends, via universal property of the divided power, to a morphism ΓnX,(m)(Ω
1
X)

≃
←←←←←←←→ gr∙(Pn

X,(m)). By definition, it
induces a graded morphism

Sym(m)(TX)
≃
←←←←←←←→ gr∙D

(m)
X (1.3)

which is in fact an isomorphism of OX-algebras.

1.4 Arithmetic distribution algebra of finite level

As in the introduction, let us consider G a split connected reductive group scheme over o and m ∈ ℕ fixed. We propose
to give a description of the algebra of (arithmetic) distributions of level m introduced in [38]. Let I denote the kernel
of the surjective morphism of o-algebras �G ∶ o[G] → o, given by the identity element of G. We know that I∕I2 is a
free o = o[G]∕I-module of finite rank. Let t1, . . . , tl ∈ I such that modulo I2, these elements form a basis of I∕I2.
The m-divided power enveloping of (I, o[G]) (proposition 1.1.3) denoted by P(m)(G), is a free o-module with basis the
elements t{k} = t{k1}1 . . . t{kl}l , where qi!t

{ki}
i = tkii , for every ki = p

mqi + ri and 0 ≤ ri < pm [6, 1.3.5.2]. These algebras
are endowed with a decreasing filtration by ideals I{n} (subsection 1.1), such that I{n} = ⊕

|k|≥no t{k}. The quotients
P n(m)(G) ∶= P(m)(G)∕I{n+1} are therefore o-modules generated by the elements t{k} with |k| ≤ n. Moreover, there exists
an isomorphism of o-modules

P n(m)(G) ≃
⨁

|k|≤n
o t{k}.

Corollary 1.1.5 gives us for any two integers n, n′ such that n ≤ n′ a canonical surjection �n′,n ∶ P n′(m)(G) → P n(m)(G).
Moreover, for every m′ ≥ m, the universal property of the divided powers gives us a unique morphism of filtered o-
algebras  m,m′ ∶ P(m′)(G) → P(m)(G) which induces a homomorphism of o-algebras  nm,m′ ∶ P

n
(m′)(G) → P n(m)(G). The

module of distributions of level m and order n is D(m)n (G) ∶= Hom(P n(m)(G), o). The algebra of distributions of level m is

D(m)(G) ∶= lim
←←←←←←←←←←→
n
D(m)n (G),

where the limit is formed respect to the maps Homo(�n
′,n, o). The multiplication is defined as follows. By universal

property (Corollary 1.1.5) there exists a canonical application �n,n′ ∶ P n+n′(m) (G)→ P n(m)G)⊗oP n
′

(m)(G). If (u, v) ∈ D
(m)
n (G)×
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D(m)n′ (G), we define u.v as the composition

u.v ∶ P n+n
′

(m) (G)
�n,n′

←←←←←←←←←←←←←←←←←→ P n(m)(G)⊗o P
n′
(m)(G)

u⊗v
←←←←←←←←←←←←←←←←←→ o.

Let us denote by g ∶= Homo(I∕I2, o) the Lie algebra of G. This is a free o-module with basis �1, . . . , �l defined as the
dual basis of the elements t1, . . . , tl. Moreover, if for every multi-index k ∈ ℕl, |k| ≤ n, we denote by �<k> the dual of
the element t{k} ∈ P n(m)(G), then D

(m)
n (G) is a free o-module of finite rank with a basis given by the elements �<k> with

|k| ≤ n [38, proposition 4.1.6].

Remark 1.4.1. 1 Let A be an o-algebra and E a free A-module of finite rank with base (x1, ..., xN ). Let (y1, ..., yN ) be the
dual base of E∨ ∶= HomA(E,A). As in the preceding subsection, let S(E∨) be the symmetric algebra and I(E∨) the aug-
mentation ideal. Let Γ(m)(E∨) be the m-PD-envelope of (S(E∨), I(E∨)). As usual we put Γn(m)(E

∨) ∶= Γ(m)(E∨)∕I
{n+1}

.

These are free A-modules with base y{k1}1 ... y{kN}N with
∑

ki ≤ n [35, 1.1.2]. Let {x<k>}
|k|≤n be the dual base of

HomA(Γn(m)(E
∨), A). We define

Sym(m)(E) ∶=
⋃

n∈ℕ
HomA

(

Γn(m)(E
∨), A

)

.

This is a free A-module with a base given by all the x<k>. Moreover, it also has a structure of algebra defined as follows.
By [35, Proposition 1.3.1] there exists an application Δn,n′ ∶ Γn+n

′

(m) (E
∨)→ Γn(m)(E

∨)⊗A Γn
′

(m)(E
∨), which allows to define

the product of u ∈ HomA(Γn(m)(E
∨), A) and v ∈ HomA(Γn

′

(m)(E
∨), A) by the composition

u.v ∶ Γn+n
′

(m) (E
∨)

Δn,n′
←←←←←←←←←←←←←←←←←←←→ Γn(m)(E

∨)⊗A Γn
′

(m)(E
∨)

u⊗v
←←←←←←←←←←←←←←←←←→ A.

This maps endows Sym(m)(E) of a structure of a graded noetherian A-algebra [35, Propositions 1.3.1, 1.3.3 and 1.3.6].

We have the following important properties [38, Proposition 4.1.15].

Proposition 1.4.2. (i) There exists a canonical isomorphism of graded o-algebras gr∙(D(m)(G)) ≃ Sym(m)(g).

(ii) The o-algebras gr∙(D(m)(G)) and D(m)(G) are noetherian.

1.5 Integral models
In this section we will assume that X is a smooth o-scheme endowed with a right G-action.

Definition 1.5.1. Let A be an L-algebra (resp. a sheaf of L-algebras). We say that an o-subalgebra A0 (resp. a subsheaf
of o-algebras) is an integral model of A if A0 ⊗o L = A.

Remark 1.5.2. Let us recall that throughout this paper g denotes the Lie algebra of a split connected reductive group
o-scheme G and U (g) its universal enveloping algebra. As we have remarked in the introduction, if gL denotes the L-Lie
algebra of the algebraic group GL = G ×Spec(o) Spec(L) and U (gL) its universal enveloping algebra, then U (g) is an
integral model of U (gL). Moreover, the algebra of distributions of level m, introduced in the preceding subsection, is also
an integral model of U (gL) [38, subsection 4.1]. This latest example will be specially important in this work.

1This remark exemplifies the local situation when X = Spec(A) with A a ℤp-algebra [35, Subsection 1.3.1].
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Proposition 1.5.3. The right G-action induces a canonical homomorphism of filtered o-algebras

Φ(m) ∶ D(m)(G)→ H0(X,D(m)
X ).

Proof. The reader can find the proof of this proposition in [38, Proposition 4.4.1 (ii)], we will briefly discuss the construc-
tion of Φ(m). The central idea in the construction is that if � ∶ X ×o G → X denotes the action, then the comorphism
�♮ ∶ OX → OX ⊗o o[G] induces a morphism

�(n)m ∶ Pn
X,(m) → OX ⊗o P

n
(m)(G)

for every n ∈ ℕ. Those applications are compatible when varying n. Let u ∈ D(m)n (G) we define Φ(m)(u) by

Φ(m)(u) ∶ Pn
X,(m)

�(n)m
←←←←←←←←←←←←←←→ OX ⊗o P

n
(m)(G)

id⊗u
←←←←←←←←←←←←←←←←←←←←→ OX .

Again, those applications are compatible when varying n and we get the morphism of the proposition.

Remark 1.5.4. (i) If X is endowed with a left G-action, then it turns out that Φ(m) is an anti-homomorphism.

(ii) In [38, Theorem 4.4.8.3] Huyghe and Schmidt have shown that if X = G and we consider the right (resp. left)
regular action, then the morphism of the preceding proposition is in fact a canonical filtered isomorphism (resp. an
anti-isomorphism) between D(m)(G) and H0(G,D(m)

G )G, the o-submodule of (left) G-invariant global sections (cf.
definition 2.2.7). This isomorphism induces a bijection between D(m)n (G) and H0(G,D(m)

G,n)
G, and it is compatible

when varying m.

We will denote by

Φ(m)X ∶ OX ⊗D(m)(G)→ D(m)
X

the morphism of sheaves (of o-modules) defined by: if U ⊂ X is an open subset and f ∈ OX(U ), u ∈ D(m)(G), then

Φ(m)X,U (f ⊗ u) ∶= f (Φ(m)(u)|U ).

Let us define A(m)
X = OX ⊗o D(m)(G), and let us remark that we can endow this sheaf with the skew ring multiplication

coming from the action of D(m)(G) on OX via the morphism Φ(m)X . This is

(f ⊗ u) ⋅ (g ⊗ v) ∶= fΦ(m)X (u)g ⊗ v + fg ⊗ uv. (1.4)

This multiplication defines overA(m)
X a structure of a sheaf of associative o-algebras, such that it becomes an integral model

of the sheaf of L-algebras U◦ ∶= OXL ⊗L U (gL). To see this, let us recall how the multiplicative structure of the sheaf
U◦ is defined (cf. [49, subsection 5.1] or [44, section 2]).

Differentiating the right action of GL on XL we get a morphism of Lie algebras

� ∶ gL → H0(XL, TXL ). (1.5)

This implies that gL acts on OXL by derivations and we can endow U◦ with the skew ring multiplication

(f ⊗ �)(g ⊗ � ) = f�(�)g ⊗ � + fg ⊗ �� (1.6)

for � ∈ gL, � ∈ U (gL) and f, g ∈ OXL . With this product the sheaf U◦ becomes a sheaf of associative algebras [44,
Section 2, page 11].
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Remark 1.5.5. As in (1.4) we can define a morphism (called the operator-representation)

ΨXL ∶ OXL ⊗L U (gL)→ DXL

of sheaves (of L-algebras) by the rule

ΨXL (f ⊗ �) ∶= f �(�),

where f ∈ OXL (is a local section) and � ∈ gL. We get the following commutative diagram

D(m)(G) H0(X,D(m)
X )

U (gL) H0(XL,DXL ).

Φ(m)

ΨXL

Given thatD(m)(G) is an integral model of the universal enveloping algebra U (gL), then by (1.4) and (1.6) we can conclude
that A(m)

X is also a sheaf of associative o-algebras being a subsheaf of U◦.

Proposition 1.5.6. [38, Corollary 4.4.6]

(i) The sheaf A(m)
X is a locally free OX-module.

(ii) There exists a unique structure over A(m)
X of filtered OX-ring, compatible with the structure of algebra of D(m)(G).

Moreover, there is a canonical isomorphism of graded OX-algebras gr(A
(m)
X ) = OX ⊗o Sym(m)(g).

(iii) The sheaf A(m)
X (resp. gr(A(m)

X )) is a coherent sheaf of OX-rings (resp. a coherent sheaf of OX-algebras), with
noetherian sections over open affine subsets of X.
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Chapter 2

Integral twisted arithmetic differential
operators

In [35] Huyghe introduced sheaves of twisted differential operators on the smooth formal flag o-schemeX, which depends
of an algebraic character of t. The objective of this chapter is to use the ideas of Borho-Brylinski in [11] to introduce
(integral) twisted differential operators associated to an arbitrary character of t. In the next chapter we will discuss their
properties when we pass to the formal completion.

2.1 Torsors

Let us suppose that T is a smooth affine algebraic group over owith Lie algebra denoted by t, and that X̃ andX are smooth
separated schemes over o, such that X̃ is endowed with a right T -action � ∶ X̃ ×Spec(o) T → X̃. We will also assume that
T acts trivially on X. 1

We say that a morphism � ∶ X̃ → X is a T -torsor for the Zariski topology, if � is a faithfully flat morphism such that the
diagram

X̃ ×Spec(o) T X̃

X̃ X

�

p1 �

�

is commutative and the map (induced by the previous diagram)

X̃ ×Spec(o) T → X̃ ×X X̃; (x, ℎ) → (x, xℎ) (2.1)

is an isomorphism.

Let U ⊂ X be an affine open subset and pr1 ∶ U ×Spec(o) T → U the first projection. We say that U trivializes the torsor �

if there is a T -equivariant isomorphism �U ∶ U ×Spec(o) T
≃
←←←←←←←→ �−1(U ), where T acts on U ×Spec(o) T by right translations

on the second factor, and such that

1For example if T ⊂ B and X = G∕B is the flag variety.

31
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U ×Spec(o) T �−1(U )

U

�U

pr1 �|�−1(U )

pr1 = �|�−1(U ) ◦ �U . (2.2)

Remark 2.1.1. As X is separated, the set S of open affine subschemes U of X that trivialises the torsor and such that
OX(U ) is a finitely generated o-algebra, it is stable under intersections. Moreover, if U ∈ S and W is an open affine
subscheme of U , thenW ∈ S .

Definition 2.1.2. We say that � is locally trivially for the Zariski topology if X can be covered by opens in S .

Notation. Let � ∶ X̃ → X be a locally trivial T -torsor. In what follows, we will always denote by S the basis for the
Zariski topology on X consisting of open affine subschemes that trivializes the torsor.

Lemma 2.1.3. Let � ∶ X̃ → X be a locally trivial T -torsor and letM be a quasi-coherentOX̃-module. Then R
1�∗M = 0.

Proof. We recall for the reader that R1�∗M is the sheaf associated to the presheaf [30, chapter III, prop. 8.1]

U ⊆ X → H1(�−1(U ),M).

As � is locally trivial, the set S of affine open subsets of X that trivialises the torsor is a base for the Zariski topology of
X. Moreover, if U ∈ S then by definition �−1(U ) is an affine open subset of X̃ and given that M is a quasi-coherent
OX̃-module, we can conclude thatH1(�−1(U ),M) = 0.

2.2 T -equivariant sheaves and sheaves of T -invariant sections
Throughout this section, we will keep the notation of the preceding section and we will denote by X̃ a smooth and separated
o-scheme endowed with a right T -action � ∶ X̃ ×Spec(o) T → X̃. Let us denote by m ∶ T ×Spec(o) T → T the group law of
T and by

p1 ∶ X̃ ×Spec(o) T → X̃ and p1,2 ∶ X̃ ×Spec(o) T ×Spec(o) T → X̃ ×Spec(o) T

the respective projections. We will also denote by

f1, f2, f3 ∶ X̃ ×Spec(o) T ×Spec(o) T → X̃

the morphisms defined by f1(x, t1, t2) = x, f2(x, t1, t2) = xt1 and f3(x, t1, t2) = xt1t2. Following [46, chapter 0, section
3], we say that a sheaf M of OX̃-modules is T -equivariant if there exists an isomorphism

p∗1M
Ψ
←←←←←←←←→ �∗M (2.3)

such that the following diagram is commutative (cocycle condition [32, (9.10.10)])

(idX̃ × m)
∗p∗1M = f ∗1M = p∗1,2p

∗
1M p∗1,2�

∗M = f ∗2M = (� × idT )∗p∗1M

(idX̃ × m)
∗�∗M = f ∗3M = (� × idT )∗�∗M.

(idX̃×m)
∗Ψ

p∗1,2Ψ

(�×idT )∗Ψ (2.4)
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From now on, we will say that a couple (M,Ψ) is a T -equivariant quasi-coherent OX̃-module, if M is a quasi-coherent
OX̃-module endowed with an isomorphism Ψ ∶ p∗1M → �∗M making commutative the diagram (2.4).

We will need the following lemmas. First of all, we recall for the reader that the category of T -equivariant quasi-coherent
OX̃-modules is an abelian category [31, Lemma 2.17]. In particular it is complete and cocomplete.

Lemma 2.2.1. LetM be an OX̃-module filtered by a family (Mn)n∈ℕ of T -equivariant OX̃-modules such that the inclu-
sions Mn → Mn+1 are T -equivariant. Then M is also T -equivariant.

Proof. The exactness of the functors �∗ and p∗1 allows us to conclude that �∗(M) and p∗1(M) are endowed with canon-
ical filtrations (�∗(Mn))n∈ℕ and (p∗1(M))n∈ℕ, respectively. Since the components of this filtration have compatible T -
equivariant structures, we can conclude that M is also T -equivariant via a filtered isomorphism.

On the other hand, since the category of T -equivariant quasi-coherent OX̃-modules is an abelian category, the cokernel
of a T -equivariant morphism M → N between two T -equivariant quasi-coherent OX̃-modules is again a T -equivariant
quasi-coherent OX̃-module. As we will demonstrate below, we can give an independent proof of this result. We will use
the following lemma in subsection 5.1.1.

Lemma 2.2.2. Let (M,Φ1) and (N ,Φ2) be T -equivariant quasi-coherent OX̃-modules. Let L be a quasi-coherent OX̃-
module such that

0 → M
�
←←←←←←←→ N

 
←←←←←←←←→ L → 0

is an exact sequence and � is a T -equivariant morphism. Then L is also T -equivariant.

Proof. To define the right vertical morphism, we consider a basis A of X̃ consisting of affine open subsets, which can be
assumed stable under intersections because X̃ is separated. We have the following commutative diagram

0 p∗1M p∗1N p∗1L 0

0 �∗M �∗N �∗L 0

p∗1�

Φ1

p∗1 

Φ2
�∗� �∗ 

Let us fixU ∈ A . To soft the notation we will assume thatM(�) ∶= �∗(M)(U ×oT ) (resp. N(�) ∶= �∗(N )(U ×oT ) and
L(�) ∶= �∗(L)(U ×o T )) andM(p1) ∶ p∗1(M)(U ×o T ) (resp. N(p1) ∶= p∗1(N )(U ×o T ) and L(p1) ∶= p∗1(L)(U ×o T )).
Also, we will suppose that �1 ∶= p∗1(�)(U ×o T ) (resp.  1 ∶= p∗1( )(U ×o T )), �2 ∶= �∗(�)(U ×o T ) (resp.  2 ∶=
�∗( )(U ×o T )), Φ1,U ∶= Φ1(U ×o T ) and Φ2,U ∶= Φ2(U ×o T ). In such a way that we have the following commutative
diagram

0 M(p1) N(p1) L(p1) 0

0 M(�) N(�) L(�) 0

�1

Φ1,U

 1

Φ2,U
�2  2

Let x ∈ L(p1). By surjectivity of  1 we can find y1 ∈ N(p1) such that  1(y1) = x. We define then ΦU (x) ∶=
 2(Φ2,U (y1)) ∈ L(�). Let us see that ΦU is well-defined, this means that it does not depend of the choice of y1 ∈ N(p1).
Let y2 ∈ N(p1) such that 1(y2) = x. Wewant to seeΦU (x) ∶=  2(Φ2,U (y1)) =  2(Φ2,U (y2)). Let y ∶= y1−y2 ∈ N(p1).
By definition y ∈ Ker( 1) = Im(�1) and we can find z ∈ M(p1) such that �1(z) = y. Let z′ = Φ1,U (z) ∈ M(�). By
commutative of the diagram we have

�2(z′) = �2(Φ1,U (z)) = Φ2,U (�1(z)) = Φ2,U (y) = Φ2,U (y1) − Φ2,U (y2)
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and therefore

0 =  2(�2(z′)) =  2(Φ2,U (y1)) −  2(Φ2,U (y2)) = ΦU (x) −  2(Φ2,U (y2)).

Moreover it is straightforward to see thatΦU is in fact a morphism ofOX̃×oT (U ×o T )-modules, which by the well-known
five lemma becomes an isomorphism. From the preceding reasoning, and the quasi-coherence of the sheaves involved we
get an isomorphism Φ̃U ∶ p∗1(N )|U×T → �∗(L)|U×T of sheaves of OU×T -modules, for every U ∈ A .
To complete the construction of the right vertical isomorphism we need to globalize the preceding reasoning. This means
that if we chose U, V ∈ A then we have Φ̃U |U∩V = Φ̃V |U∩V . As A is stable under intersections we can construct, in
the same way as before, an isomorphism Φ̃U∩V over U ∩ V . Let us see that Φ̃U |U∩V = Φ̃U∩V (the reader can fallow the
same reasoning to proof that Φ̃V |U∩V = Φ̃U∩V ). We consider the following cube

p∗1(N )(U ×o T ) p∗1(L)(U ×o T )

p∗1(N )(U ∩ V ×o T ) p∗1(L)(U ∩ V ×o T )

�∗(N )(U ×o T ) �∗(L)(U ×o T )

�∗(N )(U ∩ V ×o T ) �∗(L)(U ∩ V ×o T )

res

p∗1( )(U×T )

Φ2(U×T )

res
ΦU

p∗1( )(U∩V ×T )

Φ2(U∩V )

res

�∗( )(U×T )

res
�∗( )(U∩V ×T )

ΦU∩V

Except for the right lateral face, all the other faces form, by construction or hypothesis, commutative diagrams which
implies that also the right lateral face forms a commutative diagram. This shows that Φ̃U |U∩V = Φ̃U∩V . We have
constructed an isomorphism Φ ∶ p∗1(L) → �∗(L) of quasi-coherent OX̃×oT -modules. Let us show that Φ defines a
T -equivariant structure. To do that we consider the following diagram

(idX̃ × m)
∗p∗1N (� × idT )∗p∗1N

(idX̃ × m)
∗�∗N = (� × idT )∗�∗N (idX̃ × m)

∗p∗1L (� × idT )∗p∗1L

(idX̃ × m)
∗�∗L = (� × idT )∗�∗L

(idX̃×m)
∗p∗1 

p∗1,2Φ

(idX̃×m)
∗Φ (�×idT )∗Φ

The triangle on the top is commutative and by functoriality the lateral faces of the prism are also commutative. Its is
straightforward to show from this that

(idX̃ × m)
∗Φ ◦ (idX̃ × m)

∗p∗1 = (� × idT )
∗Φ ◦ p∗1,2Ψ ◦ (idX̃ × m)

∗p∗1 ,

and as (idX̃ × m)
∗p∗1 is surjective we can conclude that the triangle on the bottom is also commutative. Therefore Φ

defines a T -equivariant structure for L.

Lemma 2.2.3. Let (L,Ψ) be a T -equivariant locally freeOX̃-module of finite rank. Then its dualL∨ is also T -equivariant.
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Proof. Given that L is a locally free sheaf of finite rank, we dispose of two canonical and functorial isomorphisms

�∗L∨
≃
←←←←←←←→ H omOX̃×oT

(�∗L,OX̃×oT
) and p∗1L

∨ ≃
←←←←←←←→ H omOX̃×oT

(p∗1L,OX̃×oT
)

This implies that (Ψ−1)∨, the dual of Ψ−1, defines the T -equivariant structure on L∨.

Lemma 2.2.4. Let (L,Φ) and (L′,Φ′) be two T -invariant quasi-coherentOX̃-modules, thenL⊗OX̃
L′ is a T -equivariant

quasi-coherent OX̃-module.

Proof. The functorial isomorphisms

p∗1(L⊗OX̃
L′)

≃
←←←←←←←→ p∗1(L)⊗OX̃×T

p∗1(L
′) and �∗(L⊗OX̃

L′)
≃
←←←←←←←→ �∗(L)⊗OX̃×T

�∗(L′)

tell us that Φ⊗Φ′ defines a T -equivariant structure on L⊗OX̃
L′.

2.2.5. Equivariant sheaves of p-adic complete OX-modules. We recall for the reader that we have denoted by X̃i =
X̃ ×Spec(o) Spec(o∕$i+1) the reduction module $i+1. Under the preceding hypothesis, the scheme X̃i is endowed with a
right action of the (o∕$i+1)-group scheme Ti ∶= T ×Spec(o)Spec(o∕$i+1). If X̃ denote the completion of X̃ along it special
fiber, then we will denote by i ∶ Xi → X and �i ∶ X̃i ×Spec(o∕$i+1) Ti → X̃i+1 ×Spec(o∕$i+2) Ti+1 the closed embeddings,
and by �i ∶ X̃i ×Spec(o∕$i+1) Ti → X̃i the induced action. Let T denote the formal completion of T along its special fiber.

Definition 2.2.6. Let E be a sheaf of complete OX̃-modules for the p-adic topology. We will say that E is T-equivariant,
if for every i ∈ ℕ, the sheaf Ei ∶= ∗i (E ) is a Ti-equivariant OX̃i

-module, and the following diagram is commutative

p∗1,i(Ei) �∗i (Ei)

�∗i p1,i+1(Ei+1) �∗i �
∗
i+1(Ei+1).

Φi

≃ ≃

�∗i (Φi+1)

Let (M,Ψ) be a T -equivariant OX̃-module. By the Künneth formula [28, Theorem 6.7.8] we have a canonical isomor-
phism

H0(X̃ ×o T , p∗1M) ≃ H0(X̃,M)⊗o o[T ]

which composing with the application

H0(X̃,M) ←→ H0(X̃ ×o T , �∗M)
H0(Ψ)
←←←←←←←←←←←←←←←←←←←←←←←←←→ H0(X̃ ×o T , p∗1M)

(the first application is induced via the canonical map M → �∗�∗M) gives us a morphism

Δ ∶ H0(X̃,M)→ H0(X̃,M)⊗o o[T ],

defining a structure of T -comodule onH0(X̃,M). The co-module relations are given by the cocycle condition [46, chapter
0, definition 1.6].

Definition 2.2.7. The T -invariant elements of H0(X̃,M) are the elements P ∈ H0(X̃,M) such that Δ(P ) = P ⊗ 1.
This subspace will be denoted byH0(X̃,M)T .

Now, let us suppose that X̃ can be covered by a family S̃ of affine open subsets, which are stable under finite intersection
and invariant under the right action of T . This means that for every Ũ ∈ S̃ the morphism �, inducing the right T -action on
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X̃, induces a right T -action �̃ ∶= �|Ũ×oT ∶ Ũ ×o T → Ũ on Ũ . By pulling back Ψ under the inclusion Ũ ×o T → X̃ ×o T
we get an isomorphism Ψ|Ũ ∶ �̃∗MŨ → p∗1MŨ which satisfies the respective cocycle condition (2.4), and, as before, we
obtain a comodule map

ΔŨ ∶ Γ(Ũ ,M)→ Γ(Ũ ,M)⊗o o[T ].

As in definition 2.2.7, we can define the o-submodule of T -invariant sections on Ũ by

Γ(Ũ ,M)T ∶=
{

P ∈ Γ(Ũ ,M)| ΔŨ (P ) = P ⊗ 1
}

. (2.5)

Finally, let us suppose thatM is also quasi-coherent. By [30, Chapter II, Corollary 5.5] on every affine open subset Ũ ∈ S̃
we can define a subsheaf

(

M|Ũ
)T ∶= ̃Γ(Ũ ,M)T ⊂ ̃Γ(Ũ ,M) =M|Ũ .

By definition, and giving that S̃ was supposed to be stable under finite intersections, the preceding sheaves glue together
to a subsheaf (M)T ⊂ M which does not depend of the covering S̃ . We sum up the preceding construction in the next
definition.

Definition 2.2.8. Let X̃ be a smooth separated o-scheme endowed with a right T -action, and covered by a family of affine
open subsets S̃ stable under finite intersections and the T -action. For every T -equivariant quasi-coherent OX̃-module
M, the subsheaf (M)T is called the subsheaf of T -invariant sections of M.

As in section 2.1, let us suppose thatX is another smooth and separated o-scheme, such that � ∶ X̃ → X is a locally trivial
T -torsor. We recall for the reader that this means that � is a faithfully flat morphism, such that the diagram

X̃ ×Spec(o) T X̃

X̃ X

�

p1 �

�

is cartesian (cf. (2.1)), and there exists a covering S of X, consisting of affine open subsets that trivializes � (cf. (2.2)).

As an an application of the preceding construction let us point out that if � ∶ X̃ → X is a locally trivial T -torsor, then
we actually dispose of a subsheaf of T -invariant sections of the direct image sheaf �∗M, with M a T -equivariant quasi-
coherent OX̃-module. In fact, if S denotes the collection of all affine open subsets that trivialises the torsor �, then for
every U ∈ S we know that �−1(U ) is stable under the right T -action and, as in (2.5), we can define

(

(�∗M)(U )
)T ∶=

(

M(�−1(U ))
)T ⊂M(�−1(U )). (2.6)

As X̃ is noetherian �∗M is quasi-coherent and therefore from (2.6) we have a subsheaf

(

(�∗M)|U
)T ∶= ̃(

(�∗M)(U )
)T ⊂ ̃(

�∗M
)

(U ) =
(

�∗M
)

|U .

Since S is stable under finite intersections, those sheaves glue together to define a subsheaf

(

�∗M
)T ⊂ �∗M. (2.7)

For the rest of this subsection we will always suppose that � ∶ X̃ → X is a locally trivial T -torsor.

Lemma 2.2.9. The morphism � ∶ X̃ → X induces an isomorphism �♮ ∶ OX →
(

�∗OX̃
)T .
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Proof. As this is a local problem, we can take U ∈ S and suppose that � ∶ �−1(U ) = U ×Spec(o) T → U is the first
projection. Since rational cohomology commutes with direct limits [40, Part I, Lemma 4.17] and OX(U ) is a direct limit
of free o-modules, we can conclude that

(

�∗OX̃
)T (U ) =

(

OX(U )⊗o o[T ]
)T = OX(U ).

2.3 Relative enveloping algebras of finite level
Let us fix a positive integer m ∈ ℤ. As in the preceding subsections X̃ and X will denote smooth separated o-schemes,
and T a smooth affine commutative algebraic group over o. We will also assume that � ∶ X̃ → X is a locally trivial T -
torsor. We start this subsection recalling the construction of the T -equivariant structures of the sheaf of level m differential
operators D(m)

X̃
(cf. [38, Proposition 3.4.1]).

Let p1 ∶ X̃ ×Spec(o) T → X̃ and p2 ∶ X̃ ×Spec(o) T → T be the projections. For every n ∈ ℕ the universal property of the
m-PD-envelopes (proposition 1.1.5) gives us two canonical morphisms

dnp1 ∶ p∗1P
n
X̃,(m)

→ Pn
X̃×Spec(o)T ,(m)

and dnp2 ∶ p∗2P
n
T ,(m) → Pn

X̃×Spec(o)T ,(m)
.

Let J be the m-PD-ideal of the m-PD-algebra Pn
T ,(m). We have a canonical m-PD-morphism

s ∶ Pn
X̃×Spec(o)T ,(m)

→ Pn
X̃×Spec(o)T ,(m)

∕p∗2J

and � ∶= s◦dnp1 is a m-PD-isomorphism. Then we dispose of a canonical section of dnp1, named qn1 ∶= �
−1◦s [38, (14)].

On the other hand, by functionality, we obtain a morphism dn� ∶ �∗Pn
X̃,(m)

→ Pn
X̃×oT ,(m)

and the T -equivariant structure
for Pn

X̃
is defined by Φn ∶= qn1◦d

n� [38, Proposition 3.4.1]. Definition 1.2.1 and lemme 2.2.3 allow us to conclude that

for every n ∈ ℕ the sheaf D(m)
X̃,n

is T -equivariant and the inclusions D(m)
X̃,n

→ D(m)
X̃,n+1

are T -equivariant morphisms. In
particular, by lemma 2.2.1, the sheaf of level m differential operators is T -equivariant.

Remark 2.3.1. (Notation as at the end of subsection 1.3) Following the preceding lines of reasoning we can also show
that, for every n ∈ ℕ, there exists a m-PD-morphism

q
′n
1 ∶ Γ

n
X̃×T ,(m) → p∗1Γ

n
X̃,(m)

.

which is a section of the canonical m-PD-morphism p∗1Γ
n
X̃,(m)

→ Γn
X̃×T ,(m)

induced by p1 [38, Subsection 2.2.2]. Let

Γn(�) ∶ �∗Γn
X̃,(m)

→ Γn
X̃×T ,(m)

be the canonical m-PD-morphism induced by �. Then Φ′n ∶= q′n1 ◦Γ
n(�) is a T -equivariant

structure for Γn
X̃,(m)

. As before, this implies that Sym(m)(TX̃) is T -equivariant.

Remark 2.3.2. Although it is well-known that the tangent sheaf TX̃ is a T -equivariant quasi-coherent sheaf, we point out
to the reader that this can be proven using the preceding discussion. In fact as P0

X̃,(m)
= OX̃ and P1

X̃,(m)
= OX̃⊕Ω

1
X̃
[38,

Subsection 2.2.3 (18)], we can apply the lemma 2.2.2 to the sequence

0 → OX̃ → OX̃ ⊕Ω1
X̃
→ Ω1

X̃
→ 0

and lemma 2.2.3 gives us the T -equivariance of TX̃ . In particular, we dispose of the sheaves (TT )T and (�∗TX̃)T .

Let us recall the following discussion from [1, 4.4]. Let us suppose U ∈ S and � ∈ TX̃(�−1(U ))T . This assumption in
particular implies that � is a T -invariant vector field on �−1(U ) and therefore a T -invariant endomorphism ofOX̃(�

−1(U )).
Hence it preserves OX(�−1(U ))T and by lemma 2.2.9 it induces a vector field �(�) ∈ TX(U ). We get then a map of
OX-modules

� ∶
(

�∗TX̃
)T

→ TX .
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On the other hand, differentiating the right T -action on X̃ we obtain an o-linear Lie homomorphism t → TX̃ , which
induces a map of OX-modules

t⊗o OX →
(

�∗TX̃
)T .

We get a complex of OX-modules

t⊗o OX →
(

�∗TX̃
)T �

←←←←←←→ TX

which is functorial in X̃ [1, subsection 4.4].

Lemma 2.3.3. 2 If � ∶ X̃ → X is a locally trivial T -torsor, then the preceding complex is in fact a short exact sequence

0 → t⊗o OX →
(

�∗TX̃
)T �

←←←←←←→ TX → 0.

Before starting the proof we recall for the reader the following relations, which come from the T -equivariant structure of
TT [12, Lemma 2 ]

H0(T , TT ) = o[T ]⊗o t and H0(T , TT )T = t. (2.8)

Moreover, by [30, Section II, exercise 8.3] we also dispose of the local description

TU×oT =
(

TU ⊗o OT
)

⊕
(

OU ⊗o TT
)

. (2.9)

Proof of lemma 2.3.3. As the sheaves in the sequence are quasi-coherent it is enough to check exactness over an affine
open subset U ∈ S . First of all, since TX(U ) is a locally free OX(U )-module and OX(U ) is a flat o-algebra, we can
conclude that TX(U ) is an inductive limit of free o-modules. Therefore

(TX(U )⊗o o[T ])T = TX(U )⊗o (o[T ])T = TX(U ).

This relation, together with (2.8) and (2.9), allow us to conclude that

TX̃(�
−1(U ))T = TX(U )⊕

(

OX(U )⊗o t
)

. (2.10)

Remark 2.3.4. The preceding lemma shows that
(

�∗TX̃
)T is a locally free OX-modules of finite rank. In particular,

Sym(m)((�∗TX̃)T ) is well-defined.

Definition 2.3.5. Let � ∶ X̃ → X be a locally trivial T -torsor. Following [12, page 180] we define the level m relative
enveloping algebra of the torsor to be the sheaf of T -invariants of �∗D

(m)
X̃

:

D̃(m) ∶=
(

�∗D
(m)
X̃

)T
.

The preceding sheaf is endowed with a canonical filtration

Fild
(

D̃(m)
)

=
(

�∗D
(m)
X̃,d

)T
, (d ∈ ℕ). (2.11)

2The reasoning is as in [1, Lemma 4.4].



2.3. RELATIVE ENVELOPING ALGEBRAS OF FINITE LEVEL 39

Proposition 2.3.6. For any U ∈ S there exists an isomorphism of sheaves of filtered o-algebras

D̃(m)
|U

≃
←←←←←←←→ D(m)

X |U ⊗o D
(m)(T ).

Before starting the proof of the proposition let us consider the following facts. Let n ∈ ℕ fix and i ≤ n. For the next few
lines we will suppose that X and Z are smooth o-schemes and that Y = X ×Spec(o) Z. Let p1 and p2 be the projections.
By following [38] we have defined in page 37 two canonical applications

qi1 ∶ P
i
Y ,(m) → p∗1P

i
X,(m) and qn−12 ∶ Pn−i

Y ,(m) → p∗2P
n−i
Z,(m).

Locally, if (t1, ..., tN ) and (t′1, ..., t
′
N ′ ) are coordinated systems on X and Z, respectively, then we obtain a coordinated

system on Y by putting (p∗1(t1), ..., p
∗
1(tN ), p

∗
2(t

′
1), ..., p

∗
2(t

′
N ′ ). We have

P i
Y ,(m) ≃

⨁

|l1|+|l2|≤i
OY p

∗
1(�

{l1})p∗2(�
′{l2}) (�i ∶= 1⊗ ti − ti ⊗ 1 and �′i ∶= 1⊗ t′1 − t

′
i ⊗ 1).

In this case [38, subsection 2.2.2]

qi1
⎛

⎜

⎜

⎝

∑

l1,l2

al1,l2p
∗
1(�

{l1})p∗2(�
′{l2})

⎞

⎟

⎟

⎠

=
∑

l1

al1,0p
∗
1(�

{l1})

(with a similar description for qn−i2 ) and we have an isomorphism

Pn
Y ,(m)

≃
←←←←←←←→

⨁

0≤i≤n
p∗1P

i
X,(m) ⊗OY

p∗2P
n−i
Z,(m). (2.12)

Moreover, since P i
X,(m) and Pn−i

Z,(m) are locally free O-modules of finite rank, taking duals in (2.12) we get a canonical
isomorphism

D(m)
Y ,n

≃
←←←←←←←→

⨁

0≤i≤n
p∗1D

(m)
X,i ⊗∞Y

p∗2D
(m)
Z,n−i (2.13)

Proof of proposition 2.3.6. LetU ∈ S and let �−1(U ) ≃ U×Spec(o)T be a trivialization of � overU . We have the following
isomorphisms of filtered o-algebras

(

�∗D
(m)
X̃

)T
(U ) = D(m)

X̃
(�−1(U ))T ≃ D(m)

U×T (U × T )T ≃ D(m)
X (U )⊗o H

0(T ,D(m)
T )T ≃ D(m)

X (U )⊗o D
(m)(T ),

where the first isomorphism follows from the fact that U trivializes the T -torsor �, the second isomorphism becomes from
(2.13) and the Kunneth formula [28, Theorem 6.7.8]), and the third isomorphism is given by (ii) in remark 1.5.4. Since
the previous isomorphisms are compatible with restrictions to open affine subsets contained in U , we obtain the desired
isomorphism of sheaves of filtered o-algebras.

The inclusions (�∗D
(m)
X̃,d
)T ⊂ �∗D

(m)
X̃,d

induce a graded monomorphism gr∙(D̃(m)) → gr∙(�∗D
(m)
X̃
).

Proposition 2.3.7. If � ∶ X̃ → X is a locally trivial T -torsor, then there exists a canonical and graded isomorphism

Sym(m)
(

(

�∗TX̃
)T
) ≃
←←←←←←←→ gr∙

(

D̃(m)
)

.

Proof. We will divide the proof into two cases. We will first consider the case m = 0 and then we will generalize for all
m ∈ ℤ>0.
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Case 1. Let us suppose that m = 0. By the remark given after the proposition 1.2.2 in [34] we know that if L is a locally
free OX̃-module of finite rank then Sym(0)(L) = S(L) is the symmetric algebra of L. By (1.3), which is true for every
m ∈ ℕ (cf. [34, Proposition 1.3.7.3]), we have a canonical isomorphism of graded OX̃-algebras

S(TX̃)
≃
←←←←←←←→ gr∙

(

D(0)
X̃

)

.

Applying the direct image functor �∗ to the preceding isomorphism and then taking T -invariants sections (both functors
being exact by lemma 2.1.3 and the fact that T is diagonalisable [40, Part I, Lemma 4.3 (b)]) we get an isomorphism

(

�∗S
(

TX̃
))T ≃

←←←←←←←→ gr∙
(

(

�∗D
(0)
X̃

)T
)

.

We remark for the reader that the left-hand side of the previous isomorphism is well defined by remark 2.3.1. To complete
the proof of the first case, we need to show that (�∗ S(TX̃))T = S

(

(�∗TX̃)T
)

. To do that, we start by considering the
canonical map of OX-modules

(

�∗TX̃
)T

→
(

�∗S
(

TX̃
))T

which induces, by universal property of S(∙), a canonical morphism of graded OX-algebras

S
(

(

�∗TX̃
)T
) '
←←←←←←←→

(

�∗S
(

TX̃
))T .

Let us see that ' is indeed an isomorphism. Let us take U ∈ S . We have a commutative diagram

Ũ ∶= �−1(U ) U ×o T

U

≃

� p1

which tells us that (cf. [30, Section II, exercise 8.3])

TŨ = �
∗TU ⊕ p∗2TT = �

∗TU ⊕
(

OŨ ⊗o t
)

. (2.14)

By (2.10), we have

S
(

(

�∗TX̃
)T
)

(U ) = S
(

(

�∗TX̃(U )
)T
)

= S
(

TU (U )⊕
(

OU (U )⊗o t
))

.

On the other hand, by (2.14) we have the following relation

S(TŨ ) = S
(

�∗TU
)

⊗OŨ
S
(

OŨ ⊗o t
)

= �∗S
(

TU
)

⊗OŨ
S
(

OŨ ⊗o t
)

(2.15)

which implies, by the projection formula [30, Chapter II, section 5, exercise 5.1 (d)] that

�∗S(TŨ ) = �∗
(

�∗S
(

TU
)

⊗OŨ
S
(

OŨ ⊗o t
)

)

= S
(

TU
)

⊗OU
�∗S

(

OŨ ⊗o t
)

. (2.16)

Taking T -invariants and sections on U we get

(

�∗S(TŨ )
)T (U ) = S

(

TU (U )
)

⊗OU (U ) S(OU (U )⊗o t).



2.3. RELATIVE ENVELOPING ALGEBRAS OF FINITE LEVEL 41

Summing up, we have the following commutative diagram

S
(

(

�∗TX̃
)T
)

(U )
(

�∗S(TX̃)
)T (U )

S
(

TU (U )⊕
(

OU (U )⊗o t
))

S
(

TU (U )
)

⊗OU (U ) S(OU (U )⊗o t)

'U

≃ ≃

≃

which ends the proof of the first case because S is a base for the Zariski topology of X.

Case 2. Let us suppose now that m ∈ ℤ>0. Exactly as we have done at the beginning of case 1, applying �∗ to the
isomorphism (1.3) and then taking T -invariant sections, we get a canonical isomorphism of graded OX-algebras

(

�∗Sym(m) (TX̃
))T ≃

←←←←←←←→ gr∙
(

(

�∗D
(m)
X̃

)T
)

.

We want to see that the map ', built in case 1, induces an isomorphism

Sym(m)
(

(

�∗TX̃
)T
)

≃
(

�∗Sym(m) (TX̃
))T .

To do that, we take U ∈ S and we begin by noticing that analogously to case 1 the relation (2.10) gives us

Sym(m)
(

(

�∗TX̃
)T
)

(U ) = Sym(m) (TU (U )⊕
(

OU (U )⊗o t
))

. (2.17)

Moreover, the relation (2.10) and [34, Proposition 1.3.5] give us

Sym(m) (TŨ
)

= Sym(m) (�∗TU
)

⊗OŨ
Sym(m) (OŨ ⊗o t

)

which, following the same arguments that in (2.15) and (2.16), implies that

(

�∗Sym(m) (TX̃
))T (U ) = Sym(m) (TU (U )

)

⊗OU (U ) Sym
(m) (OU (U )⊗o t

)

. (2.18)

Again, by [34, Proposition 1.3.5], we have that (2.17) and (2.18) are canonically isomorphic, so in order to globalize this
map, which we denote by '(m)U , we need to check that the following diagram is commutative

Sym(m) (TU (U )⊕
(

OU (U )⊗o t
))

S
(

TU (U )⊕
(

OU (U )⊗o t
))

⊗o L

Sym(m) (TU (U )
)

⊗OU (U ) Sym
(m) (OU (U )⊗o t

)

S
(

TU (U )
)

⊗OU (U ) S
(

OU (U )⊗o t
)

⊗o L.

'(m)U 'U⊗o1L

Shrinking U if necessary, we can suppose that U is endowed with a set of local coordinates x1, ..., xN , in such a way
that if TU (U ) is generated as OU (U )-module by the derivations )x1 , ..., )xN , and if �1, ..., �l denotes an o-basis of t,
then Sym(m) (TU (U )⊕

(

OU (U )⊗o t
))

is generated (as OU (U )-module) by all the elements of the form )<k> ⋅ �<v> 3.
In particular,

'(m)U

(

)<k> ⋅ �<v>
)

= 'U ⊗o 1L
(

)<k> ⋅ �<v>
)

=
k!
qk!

v!
qv!

)k ⊗L �
v.

which shows that the preceding diagram is commutative. This ends the proof of the proposition.

3Here we use the multi-index notation introduced in sections 1.2 and 1.4.



42 CHAPTER 2. INTEGRAL TWISTED ARITHMETIC DIFFERENTIAL OPERATORS

2.4 Affine algebraic groups and homogeneous spaces

Let us suppose that G is a split connected reductive group scheme over o and T is a split maximal torus in G. As we know,
the Lie algebra g = Lie(G) is a T -module via the adjoint representation [40, I, 7.18] and the decomposition into weight
spaces has the form

Lie(G) = Lie(T )⊕
⨁

�∈Λ
(Lie(G))� .

Here Λ is the subset of X(T ) = Hom(T ,Gm) of non-zero weights of Lie(G), this means the roots of G with respect to T .
For each � ∈ Λ there exists a homomorphism x� ∶ Ga → G satisfying

t x�(a) t−1 = x�(�(t) a), (2.19)

for any o-algebra A and all t ∈ T (A), and such that the tangent map dx� ∶ Lie(Ga) → (Lie(G))� is an isomorphism [40,
II, 1.2]. This homomorphism defines a functor A → x�(Ga(A)) (A being an o-algebra) which is a closed subgroup of G
and it is denoted by U� . By definition we have Lie(U�) = (Lie(G))� and by (2.19) it is clear the T normalises U� .
Now, let us choose a positive system Λ+ ⊂ Λ. It is known that Λ+ and −Λ+ are unipotent and closed subsets of Λ4 [40, II,
1.7]. Let N be the closed subgroup of G generated by all U� with � ∈ Λ+. As we have remarked T normalises N. We set

B = N⋊ T (2.20)

a Borel subgroup of G. With this terminology N is called the unipotent radical of B. We put

X̃ ∶= G∕N, X ∶= G∕B

for the corresponding quotients (the basic affine space and the flag scheme of G [1, subsection 4.7]). As o is a discret
valuation ring these are smooth and separated schemes over o [1, Lemma 4.7 (a)].

Remark 2.4.1. For technical reasons (cf. Proposition 1.5.3) in this work we will suppose that the groupG, and the schemes
X̃ and X are endowed with the right regular G-action. This means that for any o-algebra A and g0, g ∈ G(A) we have

g0 ∙ g = g−1g0, g0 N(A) ∙ g = g−1g0 N(A) and g0 B(A) ∙ g = g−1g0 B(A).

Under this actions, the canonical projections G → X̃ and G → X are clearly G-equivariant.

Now, as T normalises N we have NT = TN and therefore

(gN(A)).t ⊂ gT (A)N(A),

for any o-algebra A, g ∈ G(A) and t ∈ T (A). This defines a right T -action on X̃ which clearly commutes with the right
regular G-action (cf. Remark 2.4.1). Moreover, this right T -action makes the canonical projection � ∶ X̃ → X a T -torsor
for the Zariski topology ofX. To see this we recall first that from (2.20) the abstract Cartan groupH ∶= B∕N is canonical
isomorphic to T . Let us consider the covering of X given by the open subschemes Uw, w ∈ W ∶= NG(T )∕T (the Weyl
group) where

Uw ∶= image of wNB

under the canonical projection G → X. For every w ∈ W we can find a morphism �w ∶ Uw → G splitting the projection
4Λ+ ∩ (−Λ+) = ∅ and (ℕ� + ℕ�) ∩ Λ ⊂ Λ+ for any �, � ∈ Λ+.
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map G → X. These maps gives a map �w ∶ Uw → X̃ such that �◦�w = idUw . The map (u, bN) → �w(u)bN is the

required T -invariant isomorphism Uw × T
≃
←←←←←←←→ Uw × H

≃
←←←←←←←→ �−1(Uw). Now we can apply [45, Chaper III, Proposition 4.1

(b)]. As in definition 2.1.2 we denote by S the set of all affine open subsets of X that trivialise the torsor �. This forms a
base for the Zariski topology of X.

2.5 Relative enveloping algebras of finite level on homogeneous spaces

In this section we adopt the notation of the preceding section. In particular, we recall for the reader that the set S , of
all affine open subsets of X that trivialise the torsor � forms a base for the Zariski topology of X. Let us recall that by
proposition 1.5.3 and remark 2.4.1 the right regular G-action on X̃ (introduced in remark 2.4.1) induces a homomorphism
Φ(m) ∶ D(m)(G)→ H0

(

X̃,D(m)
X̃

)

which equals the operator-representation (notation in section 1.5 (remark 1.5.5))

 X̃ ∶ U (gL)→ H0
(

X̃L,DX̃

)

if we tensor with L (DX̃L
denotes the usual sheaf of differential operators on X̃L). Let us consider the base change

TL ∶= T ×o Spec(L). We know by [40, Part I, 2.10 (3)] that

H0
(

X̃L,DX̃L

)TL
= H0

(

X̃,D(m)
X̃

)T
⊗o L. (2.21)

Given that the right regularG-action on X̃ commutes with the right action of the torus T , the vector fields by which gL acts
on X̃L must be invariant under the TL-action [11, Lemma 4.5]. This means that the operator-representation  X̃ satisfies

 X̃(gL) ⊂ H
0(X̃L,DX̃L

)TL .

The relation (2.21) tells us that for every x ∈ D(m)(G) there exists k(x) ∈ ℕ (a natural number that depends of x) such that

$k(x)Φ(m)(x) ⊂ H0(X̃,D(m)
X̃
)T .

Since the T -action onH0(X̃,D(m)
X̃
) is o-linear, for every o-algebra A and every t ∈ T (A) we have

$k(x)Φ(m)(x) = t.
(

$k(x)Φ(m)(x)
)

= $k(x) (t.Φ(m)(x)
)

. (2.22)

Since X̃ is a smooth o-scheme, the local description (1.1) tells us that the sheaf D(m)
X̃

is $-torsion free. In particular,
H0(X̃,D(m)

X̃
) is also$-torsion free and therefore, from (2.22), we have that Φ(m) induces the filtered morphism

Φ(m) ∶ D(m)(G)→ H0
(

X̃,D(m)
X̃

)T
= H0

(

X, �∗D
(m)
X̃

)T
.

From the preceding reasoning we have an OX-morphism of sheaves of filtered o-algebras

Φ(m)X ∶ A(m)
X → D̃(m). (2.23)

The sheaf A(m)
X ∶= OX ⊗o D(m)(G) of associative o-algebras has been introduced in the subsection 2.5. We recall for the

reader that this is an integral model of the sheaf U◦ ∶= OXL ⊗L U (gL).
To twist the sheaves D̃(m) introduced in section 2.3 (definition 2.3.5), we consider the classical distribution algebra as in
[21, Chapter II, 4.6.1]. To define it, we suppose that " ∶ Spec(o) → T is the identity of T and we take J ∶= {f ∈
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o[T ]| f (") = 0}. Then o[T ] = o⊕ J . We put

Distn(T ) ∶=
(

o[T ]∕J n+1
)∗ = Homo(o[T ]∕J n+1, o) ⊂ o[T ]∗

the space of distributions of order n, and then Dist(T ) ∶= lim
←←←←←←←←←←→n∈ℕ

Distn(T ). Moreover, if ΔT ∶ o[T ] → o[T ] ⊗o o[T ]
denotes the comorphism associated to the multiplication of T , "T ∶ o[T ] → o is the counit associated to the identity
element and i∗T ∶ o[T ]→ o[T ] is the coinverse (these maps defining a structure of Hopf algebra on o[T ]), then the product

uv ∶ o[T ]
ΔT
←←←←←←←←←←←←→ o[T ]⊗o o[T ]

u⊗v
←←←←←←←←←←←←←←←←←→ o u, v ∈ o[T ]∗

defines a structure of algebra on o[T ]∗ and Dist(T ) is a subalgebra with Distn(T ).Distm(T ) ⊂ Distm+n(T ) [40, Part I, 7.7].
Furthermore, Distn(T ) ≃ o⊕ (J∕J n+1)∗.

Proposition 2.5.1. [38, Subsection 4.1]

(i) The applications Homo( m,m′ , o) ∶ D(m)(T ) → D(m′)(T ), with  m,m′ as in subsection 1.4, induce an isomorphism
of filtered o-algebras lim

←←←←←←←←←←→m∈ℕ
D(m)(T )

≃
←←←←←←←→ Dist(T ).

(ii) The distribution algebra Dist(T ) is an integral model of U (tL), this means that Dist(T )⊗o L = U (tL).

Example 2.5.1. Let us suppose that T = Gm = Spec(o[T , T −1]). In this case J is generated by T − 1 and the residue
classes of 1, T −1, ..., (T −1)n form a basis of o[T ]∕J n+1. Let �n ∈ Dist(T ) such that �n((T −1)i) = �n,i (the Kronecker
delta). By [40, Part I, 7.8] all �n with n ∈ ℕ form a basis of Dist(T ) and they satisfy the relation

n!�n = �1(�1 − 1)...(�1 − n + 1). (2.24)

Therefore Dist(T )⊗o L = L[�1]. Since t = (J∕J 2)∗ we can conclude that Dist(T )⊗o L = U (tL).

The preceding proposition in particular implies that every morphism of o-algebras � ∶ Dist(T ) → o induces for every
m ∈ ℕ a morphism of o-algebras �(m) ∶ D(m)(T )→ o.

2.5.2. Let us clarify the mysterious characters � ∶ Dist(T ) → o. Let us suppose first that L = ℚp and that T = Gm =
Spec(ℤp[T , T −1]). By the preceding example we know that the set of distributions {�n}n∈ℕ, where �n((T − 1)i) = 0 if
i < n and �n((T − 1)n) = 1, is a basis for Dist(T ). Moreover, Dist(T )⊗ℤp ℚp = ℚp[�1]. Now, let us take � ∈ t∗, which
induces a morphism of algebras � ∶ U (t)→ ℤp. Taking the tensor product with ℚp and using the canonical isomorphism
Dist(T )ℚp ≃ U (tℚp ) we obtain a character � ∶ Dist(T ) → ℚp (of course, here we assume Dist(T ) ⊂ Dist(T )ℚp ). To see
that its image is contained in ℤp, we need to check that �(�n) ∈ ℤp. By (2.24) we have

�(�n) = �
((

�1
n

))

=
(

�(�1)
n

)

∈ ℤp.

Where we have used the fact that the binomial coefficients extend to functions from ℤp to ℤp and the fact that �1 ∈ t. In
the case of an arbitrary split maximal torus T = Gm ×Spec(ℤp) ... ×Spec(ℤp) Gm (n-times), the reader can follow the same
reasoning using the canonical isomorphism Dist(T ) = Dist(Gm)⊗ℤp ... ⊗ℤp Dist(Gm) (n-times) [40, Part I, 7.9 (3)]. We
have therefore, in the case L = ℚp, a correspondence between the characters of t (the Lie algebra of a split maximal
torus T ⊂ G) and the characters of the distribution algebra studied in this text. Moreover, we have an isomorphism of
ℤp-modules

Homℤp−mods
(

t,ℤp
) ≃
←←←←←←←→ Homℤp−alg

(

Dist(T ),ℤp
)

. (2.25)
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Now, let us take a finite extension L|ℚp and let us suppose that T is a split maximal torus of G (and therefore a group
scheme over o). Let T ′ be a split model of T over ℤp. If t′ denotes the ℤp-Lie algebra of T ′, then the relation (2.25) gives
us an isomorphism of o-modules

Homo−mods

(

t′ ⊗ℤp o, o
) ≃
←←←←←←←→ Homo−alg

(

Dist
(

T ′ ×Spec(ℤp) Spec(o)
)

, o
)

= Homo−alg (Dist(T ), o) , (2.26)

and we can conclude that we also have the stated correspondence for finite extensions of ℚp.

2.5.3. Let us consider the positive system Λ+ ⊂ Λ ⊂ X(T ) (X(T ) the group of algebraic characters) associated to the
Borel subgroup scheme B ⊂ G defined in the preceding subsection. The Weyl subgroupW = NG(T )∕T acts naturally on
the space t∗L ∶= HomL(tL, L), and via differentiation d ∶ X(T ) → t∗ we may view X(T ) as a subgroup of t∗ in such a
way that X∗(T )⊗o L = t∗L. Let � =

1
2
∑

�∈Λ+ � be the so-called Weyl vector. Let �̌ be a coroot of � ∈ Λ viewed as an
element of tL. An arbitrary weight � ∈ t∗L is called dominant if �(�̌) ≥ 0 for all � ∈ Λ+. The weight � is called regular if
its stabilizer under theW -action is trivial.

NOTATION: In the sequel we will refer to a character � ∈ t∗L as an L-linear application induced, via base change, by a
character � ∶ Dist(T )→ o of the distribution algebra of the torus T .

We recall for the reader that D(m)(T ) is also an integral model of the universal enveloping algebra U (tL).

Definition 2.5.4. We say that a morphism of o-algebras � ∶ Dist(T )→ o is a character of the distribution algebraDist(T ).
We say that a character � ∶ Dist(T ) → o is a dominant and regular character if the L-linear map induced by tensoring
with L is a dominant and regular character of tL.

Let � ∶ Dist(T ) → o be a character of the distribution algebra of T . For every m ∈ ℕ we denote by o�(m) the ring o
considered as a D(m)(T )-module via �(m).

The reader can easily verify the following elementary lemma.

Lemma 2.5.5. Let A be an L-algebra and A0 ⊂ A an o-subalgebra such that A0 ⊗o L = A. If Z(A) denotes the center
of A (resp. Z(A0) denotes the center of A0), then Z(A) = Z(A0)⊗o L.

Let us consider DX̃L the usual sheaf of differential operators [29, 47] on X̃L ∶= X̃ ×Spec(o) Spec(L) (resp. XL ∶=
X ×Spec(o) Spec(L) and TL = T ×Spec(o) Spec(L)). By [40, Part I, 2.10 (3)] we have

H0
(

XL, (� ×o idL)∗DX̃L

)TL
= H0(X̃L,DX̃L )

TL = H0(X̃,D(m)
X̃
)T ⊗o L. (2.27)

On the other hand, we know by 1.5.3 that the right T -action on X̃ induces a canonical morphism of filtered o-algebras

Φ(m)T ∶ D(m)(T )→ H0(X̃,D(m)
X̃
)

and by [4, page 7]Φ(m)T ⊗oL factors through the center ofH0(XL, (�×o idL)∗DX̃L )
TL . By (2.27) and the preceding lemma

we have the following morphism

D(m)(T ) → U (tL)
Φ(m)T ⊗oL
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Z

(

H0(X̃,D(m)
X̃
)T
)

⊗o L

(we recall for the reader that tL ∶= Lie(T )⊗o L and that D(m)(T )⊗o L = U (tL), for every m ∈ ℕ). Following the same
lines of reasoning that in page 43 we can conclude that Φ(m)T induce a morphism of filtered o-algebras

Φ(m)T ∶ D(m)(T )→ H0(X,Z(D̃(m))). (2.28)
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Here Z(D̃(m)) is the center of D̃(m) and its filtration is the one induced by (2.11). We have the following definition.

Definition 2.5.6. Let �(m) ∶ D(m)(T )→ o be an integral character. We define the sheaf of levelm integral twisted arithmetic
differential operators D(m)

X,� on the flag scheme X by

D(m)
X,� ∶= D̃(m) ⊗D(m)(T ) o�(m) .

Remark 2.5.7. For every m ∈ ℕ, the sheaf D(m)
X,� has clearly a ring structure coming from the ring structure of D̃(m).

Moreover, by (2.28) we know that Ker(�(m))D̃(m) is a two-sided ideal of D̃(m) and we have a canonical isomorphism of
sheaves of rings

D(m)
X,� = D̃(m)

/

Ker(�(m))D̃(m).

Tensor product filtration. LetA be a filtered sheaf of commutative rings on a topological space Y [10, A: III. 2]. LetM
and N be filtered A-modules [10, A: III. 2.5]. The sheaf of A-modules M ⊗A N carries a natural filtration called the
tensor product filtration and it is defined as follows. Let n ∈ ℕ fix. For every U ⊂ Y we let Fn(M(U )⊗A(U ) N (U )) be
the abelian subgroup ofM(U )⊗A(U )N (U ) generated by elements of type x⊗y with x ∈Ml(U ), y ∈ Ns(U ), and such
that l + s ≤ n. This process defines a presheaf on Y and we let Fn(M⊗A N ) be its sheafification. The sheaf M⊗A N
becomes therefore a filtered sheaf of A-modules

F0(M⊗A N ) ⊆ ... ⊆ Fn(M⊗A N ) ⊆ ... ⊆M⊗A N .

Moreover, for every open subset U ⊂ Y we have a canonical map

gr∙ (M(U ))⊗gr∙(A(U )) gr∙ (N (U ))→ gr∙(M(U )⊗A(U ) N (U ))

by putting x(l)⊗y(s) → (x⊗y)l+s, where x ∈ FlM(U )−Fl−1M(U ), y ∈ FsN (U )−Fs−1N (U ) and x(l) ∶= x+Fl−1M(U ),
y(s) ∶= y + Fs−1N (U ). Furthermore, these morphisms are compatible under restrictions and therefore, by the universal
property of the sheafification, we get a morphism of graded sheaves

gr∙(M)⊗gr∙(A) gr∙(N )→ gr∙
(

M⊗A N
)

.

Taking stalks, we finally see that the previous morphism is surjective by [33, Section I, 6.13].

If we endow o�(m) with the trivial filtration as a D(m)(T )-module, this means 0 =∶ F−1o�(m) and Fio�(m) ∶= o�(m) for all
(i ≥ 0), then using (2.11) we can view D(m)

X,� as a sheaf of filtered o-algebras, equipped with the tensor product filtration.

Proposition 2.5.8. Let U ∈ S . Then D(m)
X,�|U is isomorphic to D(m)

X |U as a sheaf of filtered o-algebras.

Proof. Let us recall that by proposition 2.3.6 for every U ∈ S we have an isomorphism of filtered o-algebras

D̃(m)
|U

≃
←←←←←←←→ D(m)

X |U ⊗o D
(m)(T )

which induces an isomorphism D(m)
X,�|U

≃
←←←←←←←→ D(m)

X |U of filtered o-algebras.

Remark 2.5.9. This proposition justifies the name of "twisted arithmetic differential operators".

Let us recall that, as X is a smooth o-scheme, the sheaf of Berthelot’s differential operators D(m)
X is a sheaf of OX-rings

with noetherian sections over all open affine subsets of X [6, corollary 2.2.5]. As � is locally trivial, the family S forms
a base for the Zariski topology of X and therefore the preceding proposition implies the following meaningful result (cf.
[37, Proposition 2.2.2 (iii)]).
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Proposition 2.5.10. The sheaf D(m)
X,� is a sheaf of OX-rings with noetherian sections over all open affine subsets of X.

Proof. Let U ⊆ X be an affine open subset. Let us denote by D� ∶= D(m)
X,�|U , D� ∶= Γ(U,D�) and R ∶= Γ(U,OX). Let

U = ∪1≤l≤sUl be a finite cover of U by open Ul ∈ S . Since by propositions 2.3.6 and 2.5.8 the sheaf D� is an inductive
limit of coherent OU -modules, we have

D� = OU ⊗R D�,

and D� is a flat D�-module. Moreover, the preceding proposition tells us that D�(Ul) is noetherian for each l. Let (Ji) be
an increasing sequence of (left) ideals of D�, and let us consider

Ji = D� ⊗D� Ji = OU ⊗R Ji

which is an increasing sequence of sheaves of (left) ideals ofD� by flatness ofD� overD�. By noetherianess, the increasing
sequence of ideals Γ(Ul,Ji) of Γ(Ul,D�) is stationary. Furthermore, given that Ji is an inductive limit of finite type R-
modules, Ji is an inductive limit of coherent OU -modules, thus for every 1 ≤ l ≤ s we have

Ji|Ul = OUl ⊗Γ(Ul ,OU ) Γ(Ul,Ji),

which implies that for each 1 ≤ l ≤ s there exists k(l) ∈ ℕ such that Ji|Ul = Jk(l)|Ul , for every i ≥ k(l). Therefore,
if k ∶= max{k(l) ∈ ℕ‖ 1 ≤ l ≤ s}, we have that Ji = Jk and Ji = Jk, for every i ≥ k, and thus both sequence are
stationary. This ends the proof of the proposition.

Definition 2.5.11. We will denote by

D̂ (m)
X,� ∶= lim←←←←←←←←←←←

j
D(m)
X,�∕p

j+1D(m)
X,� (2.29)

the p-adic completion of D(m)
X,� and we consider it as a sheaf on X. Following the notation given at the beginning of this

work, the sheaf D̂ (m)
X,�,ℚ will denote our sheaf of level m twisted arithmetic differential operators on the formal flag scheme

X.

Proposition 2.5.12. (i) There exists a basis B of the topology of X, consisting of open affine subsets, such that for
every U ∈ B the ring D̂ (m)

X,�(U) is twosided noetherian.

(ii) The sheaf of rings D̂ (m)
X,�,ℚ is coherent.

Proof. To show (i) we can take an open affine subset U ∈ S and to consider U its formal completion along the special
fiber. We have

H0(U, D̂ (m)
X,�) =

̂H0(U,D(m)
X,�) =

̂H0(U,D(m)
X ) = H0(U, D̂ (m)

X )

The first and third isomorphisms are given by [26, (0I , 3.2.6)] and the second one arises from the preceding proposition.
As we have have remarked the ring H0(U, D̂ (m)

X ) is twosided noetherian. Therefore, we can take B as the set of affine
open subsets of X contained in the p-adic completion of an affine open subset U ∈ S . This proves (i). By [6, proposition
3.3.4] we can conclude that (ii) is an immediately consequence of (i) because H0(U, D̂ (m)

X,�,ℚ) = H0(U, D̂X,�) ⊗o L [6,
(3.4.0.1)].

Using the morphism Φ(m)X defined in (2.23) and the canonical projection from D̃(m) onto D(m)
X,� we can define a canonical

map

Φ(m)X,� ∶ A
(m)
X → D(m)

X,�. (2.30)
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We recall for the reader that if U ∈ S then

Sym(m)
(

(

�∗TX̃
)T
)

(U ) = Sym(m) (TX(U )
)

⊗o Sym(m)(t). (2.31)

Proposition 2.5.13. (i) There exists a canonical isomorphism Sym(m)(TX) ≃ gr∙(D
(m)
X,�).

(ii) The canonical morphism Φ(m)X,� is surjective.

(iii) The sheaf D(m)
X,� is a coherent A(m)

X -module.

Proof. In the preceding section we have constructed a canonical morphism

gr∙
(

D̃(m)
)

⊗gr∙(D(m)(T )) gr∙(o�(m) )→ gr∙
(

D(m)
X,�

)

.

By proposition 2.3.7 we know that gr∙(D̃(m)) ≃ Sym(m)((�∗TX̃)T ). Moreover, by definition, we know that gr∙(o�(m) ) = o
as a gr∙(D(m)(T )) (= Sym(m)(t) proposition 1.4.2)-module. We obtain a morphism of sheaves of graded o-algebras

Sym(m)
(

(�∗TX̃)
T )⊗Sym(m)(t) o → gr∙

(

D(m)
X,�

)

(the structure of Sym(m)(t)-module is guaranteed by (2.31)). Using the short exact sequence 0 → O ⊗o t →
(

�∗TX̃
)T �

←←←←←←→

TX → 0 of lemma 2.3.3 we see that

Sym(m)((�∗TX̃)
T )⊗Sym(m)(t) o

Sym(m)(�)⊗1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Sym(m)(TX)

is an isomorphism and we get a canonical morphism of o-algebras

' ∶ Sym(m)(TX)→ gr∙
(

D(m)
X,�

)

.

By proposition 2.5.8, we have a commutative diagram for any U ∈ S

Sym(m) (TX(U )
)

gr∙
(

D(m)
X,�(U )

)

gr∙
(

D(m)
X (U )

)

,

'U

here the left diagonal arrow is given by (1.3). As S is a basis for the Zariski topology of X we can conclude that ' is an
isomorphism.

For the second claim we can calculate gr∙(Φ
(m)
X,�). By the first part of the proof and proposition 1.5.6 this morphism is

identified with

OX ⊗o Sym
(m)(g)→ Sym(m)(TX)

which is surjective by [35, Proposition 1.6.1]. Finally, item (iii) follows from (ii) and proposition 1.5.6.

Remark 2.5.14. (a) By constructionD(m)
X,�,ℚ = D� is the sheaf of usual twisted differential operators on the flag variety

XL [12, page 170].

(b) Let us recall that the right regular action of G on X induces a natural map Φ� ∶ U (gL) → H0(XL,D�). This
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implies that if Φ(m)� denotes the canonical map induced by Φ(m)X,� by taking global sections, then Φ
(m)
� ⊗L = Φ� [12,

Page 170 and 186].

The relation given in (2.26) tells us that, as in the classical case (see for example [2] or [11]), the sheaf D̃(m) ∶=
(

�∗D
(m)
X̃

)T

can be regarded as a family of twisted differential operators on X parametrized by t∗ ∶= Hom(t, o).

2.6 Finiteness properties

Let � ∶ Dist(T ) → o be a character. In this section we start the study of the cohomological properties of coherent
D(m)
X,�-modules. We follow the arguments of [35] to show a technical important finiteness property about the p-torsion of

the cohomology groups of coherent D(m)
X,�-modules, when the character � + � ∈ t∗L is dominant and regular (proposition

2.6.4). To start with, let us recall the twist by the sheaf O(1). As X is a projective o-scheme, there exists a very ample
invertible sheafO(1) onX [30, chapter II, remark 5.16.1]. Therefore, for any arbitraryOX-module E we can consider the
twist

E (r) ∶= E ⊗OX
O(r),

where r ∈ ℤ and O(r) means the r-th tensor product of O(1) with itself. We recall to the reader that there exists r0 ∈ ℤ,
depending of O(1), such that for every k ∈ ℤ>0 and for every s ≥ r0,Hk(X,O(s)) = 0 [30, chapter II, theorem 5.2 (b)].

We start the results of this section with the following proposition which states three important properties of coherent
A(m)
X -modules [38, proposition A.2.6.1]. This is a key result in this work. Let E be a coherent A(m)

X -module.

Proposition 2.6.1. (i) H0(X,A(m)
X ) = D(m)(G) is a noetherian o-algebra.

(ii) There exists a surjection of A(m)
X -modules

(

A(m)
X (−r)

)⊕a
→ E → 0 for suitable r ∈ ℤ and a ∈ ℕ.

(iii) For any k ≥ 0 the groupHk(X, E ) is a finitely generated D(m)(G)-module.

Inspired in proposition 2.5.13, in a first time we will be concentrated on coherentA(m)
X -modules. The next two results will

play an important role when we consider formal completions.

Lemma 2.6.2. For every coherent A(m)
X -module E , there exists r = r(E ) ∈ ℤ such thatHk(X, E (s)) = 0 for every s ≥ r.

Proof. Let us fix r0 ∈ ℤ such thatHk(X,O(s)) = 0 for every k > 0 and s ≥ r0. We have,

Hk(X,A(m)
X (s)) = Hk(X,O(s))⊗o D

(m)(G) = 0.

Now, by the second part of proposition 2.6.1 there exist a0 ∈ ℕ and s0 ∈ ℤ together with an epimorphism ofA(m)
X -modules

E0 ∶=
(

A(m)
X (s0)

)⊕a0
→ E → 0.

If r ≥ r0 − s0 we see that

Hk(X, E0(r)) = Hk(X,O(r + s0))⊕a0 ⊗o D
(m)(G) = 0.

We can now end the proof using a classical inductive argument as follows. Let E1 be the kernel of the epimorphism
E0 → E → 0 and let us consider the statement (ai): for every coherent A(m)

X -module F , there exists ri(F ) ∈ ℤ such
that for all r ≥ ri(F ) and all i ≤ k one has Hk(X,F ) = 0. For i ≥ dim(X) the statement follows from Grothendieck’s
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vanishing theorem [30, chapter III, theorem 2.7]. Now, let us suppose that (ai+1) holds. Taking r ≥ max{r0−s0, ri+1(E1)}
and regarding the long exact sequence in cohomology we have

0 = H i(X, E0(r)) → H i(X, E (r))→ H i+1(X, E1(r)) = 0.

So we can take as ri(E ) any of those r which are larger than the max{r0 − s0, ri+1(E1)} to obtain the statement (ai). The
statement (a1) shows the proposition.

Lemma 2.6.3. For every coherentD(m)
X,�-module E , there exist r = r(E ) ∈ ℤ, a natural number a ∈ ℕ and an epimorphism

of D(m)
X,�-modules

(

D(m)
X,�(−r)

)⊕a
→ E → 0.

Proof. Using the epimorphism in proposition 2.5.13 we can suppose that E is also a coherent A(m)
X -module. In this case,

by the second part of proposition 2.6.1, there exist r = r(E ) ∈ ℤ, a natural number a ∈ ℕ and an epimorphism of
A(m)
X -modules

(

A(m)
X (−r)

)⊕a
→ E → 0.

Taking the tensor product with D(m)
X,� we get the desired epimorphism of D(m)

X,�-modules

(

D(m)
X,�(−r)

)⊕a
≃ D(m)

X,� ⊗A(m)
X

(

A(m)
X (−r)

)⊕a
→ D(m)

X,� ⊗A(m)
X

E ≃ E → 0.

We recall for the reader that the distribution algebra of level m, which has been denoted by D(m)(G) in subsection 1.4,
is a filtered noetherian o-algebra. Moreover � ∈ t∗L is an L-linear application induced, via base change, by a character
� ∶ Dist(T )→ o of the distribution algebra of the torus T .

Proposition 2.6.4. Let us suppose that � + � ∈ t∗L is a dominant and regular character (cf. 2.5.3).

(i) Let us fix r ∈ ℤ. For every positive integer k ∈ ℤ>0, the cohomology groupHk(X,D(m)
X,�(r)) has bounded p-torsion.

(ii) For every coherent D(m)
X,�-module E , the cohomology groupH

k(X, E ) has bounded p-torsion for all k > 0.

Proof. To show (i), we recall that D(m)
X,�,ℚ = D� is the usual sheaf of twisted differential operators on the flag variety

XL (remark 2.5.14). As D(m)
X,�,ℚ(r) is a coherent D�-module, the classical Beilinson-Bernstein theorem [3] allows us to

conclude that Hk(X,D(m)
X,�(r)) ⊗o L = 0 for every positive integer k ∈ ℤ>0. This in particular implies that the sheaf

D(m)
X,�(r) has p-torsion cohomology groupsHk(X,D(m)

X,�(r)), for every k > 0 and r ∈ ℤ.
Now, by proposition 2.5.13, we know that D(m)

X,�(r) is in particular a coherent A(m)
X -module and hence, by the third part

of proposition 2.6.1 we get that for every k ≥ 0 the cohomology groups Hk(X,D(m)
X,�(r)) are finitely generated D(m)(G)-

modules. Consequently, of finite p-torsion for every integer 0 < k ≤ dim(X) and r ∈ ℤ.
To show (ii) we may use before lemma 2.6.3 to obtain a surjective morphism of D(m)

X,�-modules

C0 ∶=
(

D(m)
X,�(−r)

)⊕a �
←←←←←←→ E → 0

for suitable r ∈ ℤ and a ∈ ℕ. As in lemma 2.6.2, we will follow an inductive argument to end the proof. For every i > 0
we consider the statement (ai): if E is a coherent D(m)

X,�-module, there exists a positive integer ri = ri(E ) ∈ ℤ>0 such
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that for every i ≤ k the cohomology group Hk(X, E ) is annihilated by pri . For i ≥ dim(X) the statement follows from
Grothendieck’s vanishing theorem [30, chapter III theorem 2.7]. Now, let us suppose that (ai+1) holds and let us denote by
C1 the kernel of the morphism �. This is a coherent D(m)

X,�-module by [6, proposition 3.1.3 (i)]. The long exact sequence
in cohomology gives us the short exact sequence

H i(X, C0)
�
←←←←←←→ H i(X, E )

�
←←←←←←→ H i+1(X, C1). (2.32)

Let c ∈ ℕ such that pc annihilates the image of � (of finite p-torsion by (i)) and, according to (ai+1), let us take ri+1(C1) ∈ ℤ
such that pri+1(C1) annihilates the image of �. So we may take ri(E ) ∶= max{ri+1(E ), c + ri+1(C1)} to obtain the statement
(ai). In particular (a1) proves the proposition.
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Chapter 3

Passing to formal completions

We recall for the reader thatX ∶= G∕B denotes the flag o-scheme of G and X its completion along its special fiber. From
now on, we consider � ∶ Dist(T ) → o a character of Dist(T ) such that � + � ∈ t∗L

1 is a dominant and regular character of
tL (we point out to the reader that � induces via tensor product with L a character of tL (2.5.3)). We have introduced the
following sheaves of p-adically complete o-algebras on the formal p-adic completion X of X

D̂ (m)
X,� ∶= lim←←←←←←←←←←←

j
D(m)
X,�∕p

j+1D(m)
X,�.

The sheaf D̂ (m)
X,�,ℚ is our sheaf of level m twisted arithmetic differential operators on the smooth formal flag scheme X.

3.1 Cohomological properties

Our objective in this subsection is to prove an analogue of proposition 2.6.4 for coherent D̂ (m)
X,�-modules and to conclude

thatH0(X, ∙) is an exact functor over the category of coherent D̂ (m)
X,�,ℚ-modules.

Proposition 3.1.1. Let E be a coherent D(m)
X,�-module and Ê ∶= lim

←←←←←←←←←←←j
E∕pj+1E its p-adic completion, which we consider

as a sheaf on X.

(i) For all j ≥ 0 one hasH j(X, Ê ) = lim
←←←←←←←←←←←k

H j(X, E∕pk+1E ).

(ii) For all j > 0 one hasH j(X, Ê ) = H j(X, E ).

(iii) The global section functorH0(X, ∙) satisfiesH0(X, Ê ) = lim
←←←←←←←←←←←k

H0(X, E )∕pk+1H0(X, E ).

Proof. The arguments exhibit in this proof follow word for word the arguments given in [34, Proposition 3.2] and we do
not claim any originality here. Let Et denote the torsion subpresheaf of E . This is, for any open subset U ⊆ X we have
E (U )t ∶= E (U )tor, where the right-hand side denotes the group of torsion elements of E (U ). As X is a noetherian space,
this is indeed a sheaf and furthermore a D(m)

X,�-submodule of E . Because the sheaf D(m)
X,� has noetherian rings of sections

over open affine subsets of X (proposition 2.5.10), the submodule Et is a coherent D
(m)
X,�-module. This submodule is thus

generated by a coherent OX-module which is annihilated by a power pc of p, and so is Et. The quotient G ∶= E∕Et is
again a coherent D(m)

X,�-module and therefore we can assume, after possibly replacing c by a larger number, that pcEt = 0
and pcH j(X, E ) = pcH j(X,G) = 0 , for all j > 0.

1We abuse of the notation and we denote again by � the character of tL specified by (2.26).

53
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Let k, l be integers which are great or equal to c and let �l ∶ G → E be the map induced by multiplication by pl+. We have
the following exact sequence

0 → G
�l
←←←←←←←←→ E → El → 0

where El ∶= E∕pl+1E . Now, let us consider the complex

0 G E El+k 0

0 G E El 0

�l+k

pk id
�l

(3.1)

which induces a morphism of long exact sequences

H j(X,G) H j(X, E ) H j(X, El+k) H j+1(X,G)

H j(X,G) H j(X, E ) H j(X, El) H j(X,G).

Hj (�l+k)

pk

�l+k

id �l+k,l pk

Hj (�l) �l �l

(3.2)

Given that k ≥ c the right-hand vertical map is zero, and hence �l ◦ �l+k,l = 0, which implies, by exactness, that
im(�l+k,l) ⊆ im(�l). Since �l+k ◦ �l+k,l = �l we find that im(�l+k,l) = im(�l) for all k ≥ c. In consequence, the projective
system (H j(X, Ek))k, with transition maps given by �k′,k with k′ ≥ k, satisfies the Mittag-Leffler conditions for any j ≥ 0.
Furthermore, the transition maps of the system (Ek)k are clearly surjective and if U ⊂ X is an affine open subset, then
H j(U, Ek) = 0 for j > 0, because Ek is in particular a quasi-coherent OX-module. Hence, the exact sequence

0 → El
pk
←←←←←←←←←←→ El+k → Ek → 0

stays exact after taking sections over U , and therefore the projective system (H0(U, Ek))k satisfies the Mittag-Leffler
conditions. The preceding lines imply that we are under the hypothesis of [28, Chapter 0, 13.3.1], which implies that for
all j ≥ 0

H j(X, Ê ) = lim
←←←←←←←←←←←
k
H j(X, E∕pk+1E ).

We have proved the first assertion. For the second assertion we may consider the diagram (3.2) and the fact thatH j(�l) = 0
for j > 0 and l ≥ 0. In consequence, �l is an isomorphism onto its image for these j and l. Therefore, the projective limit
of the system (H j(X, Ek))k is equal to H j(X, E ) when j > 0. This property together with (i) gives us (ii). Finally, to
verify (i) we take two integers l, k ≥ c. We consider the short exact sequence

0 → Et → E
pl+1
←←←←←←←←←←←←←←←←→ El → 0

which splits into two exact sequences

0 → Et → E
�
←←←←←←→ G → 0 and 0 → G

�l
←←←←←←←←→ E → El → 0

inducing long exact sequences in cohomology

0 → H (X, Et)→ H0(X, E )
�
←←←←←←→ H0(X,G)→ H1(X, Et)

0→ H0(X,G)
�l
←←←←←←←←→ H0(X, E )→ H0(X, El)→ H1(X,G).
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From the second exact sequence and the morphism of exact sequences (3.1) we obtain the following morphism of exact
sequences

0 H0(X, Et) H0(X, E ) H0(X, El+k) H0(X,G)

0 H0(X, Et) H0(X, E ) H0(X, El) H0(X,G).

�l+k

pk

�l+k

id �l+k,l pk

�l �l �l

(3.3)

Given that �l ◦ � = pl+1, we get a canonical surjection

l ∶ H0(X, E )
/

pl+1H0(X, E )→ H0(X, E )
/

�l
(

H0(X,G)
)

.

These morphisms form a morphism of projective systems. Now, as �l is injective, we have a canonical isomorphism

ker(l) = �l
(

H0(X,G)
) /

pl+1H (X, E )
= �l

(

H0(X,G)
) /

�l
(

�
(

H0(X, E )
))

≃ H0(X,G)
/

�
(

H0(X, E )
)

= coker(H0(u)),

and coker(H0(u)) embeds intoH1(X,G) which is annihilated by pc . Moreover, the morphism of exact sequences

0 Et E E El+k 0

0 Et E E El+k 0

pk

pl+k+1

pk id

pl+1

induces a morphism of short exact sequences

0 coker(H0(�)) H0(X, E )
/

pl+k+1H0(X, E ) H0(X, E )
/

�l+k
(

H0(X,G)
)

0

0 coker(H0(�)) H0(X, E )
/

pl+1H0(X, E ) H0(X, E )
/

�l
(

H0(X,G)
)

0.

pk

Thus, the projective limit lim
←←←←←←←←←←←l

ker(l) vanishes and the system (l)l induces an isomorphism

lim
←←←←←←←←←←←
l
H0(X, E )

/

pl+1H0(X, E )
/

�l
(

H0(X,G)
)

.

Looking at (3.3), we can conclude that right-hand side is canonically isomorphic to lim
←←←←←←←←←←←l

H0(X, El) = H0(X, Ê ), by the
first assertion.

The next proposition is a natural result from lemmas 2.6.2 and 2.6.3. Except for some technical details, the proof is exactly
the same that in [36, proposition 4.2.2].

Proposition 3.1.2. Let E be a coherent D̂ (m)
X,�-module.

(i) There exists r2 = r2(E ) ∈ ℤ such that, for all r ≥ r2 there is a ∈ ℤ and an epimorphism of D̂ (m)
X,�-modules

(

D̂ (m)
X,�(−r)

)⊕a
→ E → 0.
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(ii) There exists r3 = r3(E ) ∈ ℤ such that, for all r ≥ r3 we haveH i(X,E (r)) = 0, for all i > 0.

Proof. We start the proof of the part (i) by remarking that the torsion subsheaf Et of E is a coherent D̂ (m)
X,�-module. As X

is quasi-compact, there exists c ∈ ℕ such that pcEt = 0. Defining G ∶= E ∕Et, G0 ∶= G ∕Gt and Ej ∶= E ∕pj+1E , we have
for every j ≥ c an exact sequence

0 → G0
pj+1
←←←←←←←←←←←←←←←←←→ Ej+1 → Ej → 0.

ViewingX as a closed subset ofX and denoting by  this topological embedding, we can suppose that  ∗G0 is a coherent
D(m)
X,�-module via the canonical isomorphism of sheaves of rings D(m)

X,�∕pD
(m)
X,� ≃  ∗

(

D̂ (m)
X,�∕pD̂

(m)
X,�

)

(similarly, we can

consider Ec as a coherent D
(m)
X,�-module). By using the fact G0 is also a coherent A(m)

X -module, lemma 2.6.2 gives us an
integers r′2(G0) such that the canonical maps

H0(X,Ej+1(r′))→ H0(X,Ej(r′)) (3.4)

are surjective for r′ ≥ r′2(G0) and j ≥ c. Moreover, lemma 2.6.3 gives another integer r′3(Ec) such that, for every r
′′ ≥ r′3(Ec)

there exists a ∈ ℕ and a surjection

� ∶
(

D(m)
X,�∕p

cD(m)
X,�

)⊕a
→ Ec(r′′)→ 0.

Let us fix r ≥ r2 ∶= max{r′2(Ec), r
′
3(G0)} and let e1, ..., es be the standard basis of the domain of �. We use (3.4) to lift

each �(el), 1 ≤ l ≤ s, to an element of

lim
←←←←←←←←←←←
j
H0(X,Ej(r)) ≃ H0(X, Ê (r)),

by the first assertion of the preceding proposition. By [6, 3.2.3 (v)] we have Ê (r) = Êa(r) and Ê = E , and therefore we
have a morphism

(

D̂ (m)
X,�

)a
→ E (r)→ 0,

which is surjective because, modulo pc , it is a surjective morphism of sheaves coming from coherent D(m)
X,�-modules by

redaction modulo pc . To show the part (ii), we remark that if we fix r0 ∈ ℤ such that Hk(X,O(r)) = 0 for every k > 0
and r ≥ r0, exactly as we have done in lemma 2.6.2, then via the second part of proposition 3.1.2 we also have that
Hk(X, D̂ (m)

X,�(r)) = 0 and the rest of the proof can be deduced exactly as in the proof of lemma 2.6.2.

Corollary 3.1.3. Let E be a coherent D̂ (m)
X,�-module. There exists c = c(E ) ∈ ℕ such that for all k > 0 the cohomology

groupHk(X,E ) is annihilated by pc .

Proof. Let r ∈ ℤ. By the first assertion of proposition 3.1.1 we have for k > 0

Hk(X, D̂ (m)
X,�(−r)) ≃ H

k(X,D(m)
X,�(−r))

which is annihilated by a finite power of p, by part (i) of proposition 2.6.4. The proof now proceeds by descending induction
exactly as we have done in the proof of part (ii) of proposition 2.6.4.

Now, we want to extend the part (i) of the preceding proposition to the sheaves D̂ (m)
X,�,ℚ. To do that, we need to show that

the category of coherent D̂ (m)
X,�,ℚ-modules admits integral models (definition 1.5.1).
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Let Coh(D̂ (m)
X,�) be the category of coherent D̂ (m)

X,�-modules and let Coh(D̂ (m)
X,�)ℚ be the category of coherent D̂ (m)

X,�-modules
up to isogeny. This means that Coh(D̂ (m)

X,�)ℚ has the same class of objects as Coh(D̂ (m)
X,�) and, for any two objects M and

N in Coh(D̂ (m)
X,�)ℚ one has

HomCoh(D̂(m)
X,�)ℚ

(M,N ) = HomCoh(D̂(m)
X,�)
(M,N )⊗o L.

Proposition 3.1.4. The functorM → M⊗oL induces an equivalence of categories betweenCoh(D̂ (m)
X,�)ℚ andCoh(D̂ (m)

X,�,ℚ).

Proof. By definition, the sheaf D̂ (m)
X,�,ℚ satisfies [6, conditions 3.4.1] and therefore [6, proposition 3.4.5] allows to conclude

the proposition.

The proof of the next theorem follows exactly the same lines than in [36, theorem 4.2.8]. We will reproduce the proof
because it is a central result for our goal.

Theorem 3.1.5. Let E be a coherent D̂ (m)
X,�,ℚ-module.

(i) There is r(E ) ∈ ℤ such that, for every r ≥ r(E ) there exist a ∈ ℕ and an epimorphism of D̂ (m)
X,�,ℚ-modules

(

D̂ (m)
X,�,ℚ(−r)

)⊕a
→ E → 0.

(ii) For all i > 0 one hasH i(X,E ) = 0.

Proof. By the preceding proposition, there exists a coherent D̂ (m)
X,�-module F such that F ⊗o L ≃ E . Using the first part

of proposition 3.1.2 we can find r(F ) ∈ ℤ, such that for all r ≥ r(F ) there exist a ∈ ℕ and a surjection

(

D̂ (m)
X,�(−r)

)⊕a
→ F → 0.

Tensoring with L we get the desired surjection onto E . Furthermore, asX is a noetherian space, the corollary 3.1.3 allows
us to conclude that

H i(X,E ) = H i(X,F )⊗o L = 0

for every k > 0 [6, (3.4.0.1)].

3.2 Calculation of global sections
We recall for the reader that throughout this chapter � ∶ Dist(T )→ o denotes a character of the distribution algebra Dist(T )
such that � + � ∈ t∗L

2 is a dominant and regular character of tL (cf. (2.26)). In this subsection we propose to calculate
the global sections of the sheaf D̂ (m)

X,�,ℚ. Inspired in the arguments exhibited in [39], we will need the following lemma (cf.
[39, lemma 3.3]) whose conclusion is an essential tool for our goal.

Lemma 3.2.1. LetA be a noetherian o-algebra,M ,N twoA-modules of finite type,  ∶M → N anA-lineal application
and  ̂ ∶ M̂ → N̂ the morphism obtained after p-adic completion. If  ⊗o 1 ∶ M ⊗o L → N ⊗o L is an isomorphism,
then  ̂ ⊗o 1 ∶ M̂ ⊗o L→ N̂ ⊗o L is an isomorphism as well.

Proof. Let K be the kernel (resp. the cokernel) of  . Since the $-adic completion is an exact functor over the finitely
generated A-modules [6, 3.2.3 (ii)], the $-completion K̂ is the kernel (resp. the cokernel) of  ̂ . But K̂ = K because K
is of$-torsion, and therefore K̂ ⊗o L = K ⊗o L = 0.

2� ∶= 1
2
∑

�∈Λ∗ �, cf. (2.5.3).
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Let us identify the universal enveloping algebra U (tL) of the Cartan subalgebra tL with the symmetric algebra S(tL), and
let Z(gL) denote the center of the universal enveloping algebra U (gL) of gL. The classical Harish-Chandra isomorphism
Z(gL) ≃ S(tL)W (the subalgebra of Weyl invariants) [22, theorem 7.4.5], allows us to define for every linear form � ∈ t∗L
a central character [22, 7.4.6]

�� ∶ Z(gL)→ L

which induces the central reduction U (gL)� ∶= U (gL) ⊗Z(gL),��+� L. If Ker(��+�)o ∶= D(m)(G) ∩ Ker(��+�), we can
consider the central redaction

D(m)(G)� ∶= D(m)(G)∕D(m)(G)Ker(��+�)o

and its p-adic completion D̂(m)(G)�. It is clear that D(m)(G)� is an integral model of U (gL)�.

Theorem 3.2.2. The homomorphism of o-algebras Φ(m)� ∶ D(m)(G) → H0(X,D(m)
X,�), defined by taking global sections in

(2.30), induces an isomorphism of o-algebras

D̂(m)(G)� ⊗o L
≃
←←←←←←←→ H0

(

X, D̂ (m)
X,�,ℚ

)

.

Proof. The key of the proof of the theorem is the following commutative diagram, which is an immediate consequence of
remark 2.5.14

D(m)(G) H0(X,D(m)
X,�)

D(m)(G)⊗o L H0(X,D(m)
X,�)⊗o L

U (gL) H0(XL,D�).

Φ(m)�

Φ(m)� ⊗1

≃ ≃

Φ�

By the classical Beilinson-Bernsein theorem [3] and the preceding commutative diagram, we have thatΦ(m)� factors through

the morphism Φ
(m)
� ∶ D(m)(G)� → H0(X,D(m)

X,�) which becomes an isomorphism after tensoring with L. The preceding

lemma implies therefore that Φ
(m)
� gives rise to an isomorphism

D̂(m)(G)� ⊗o L
≃
←←←←←←←→

̂H0(X,D(m)
X,�)⊗o L,

and proposition 3.1.1 together with the fact that X is in particular a noetherian topological space end the proof of the
theorem.

3.3 The localization functor

In this section we will introduce the localization functor. For this, we will first fix the following notation which will make
more pleasant the reading of the proof of our principal theorem. We will consider

D̂(m)X,�,ℚ ∶= H
0
(

X, D̂ (m)
X,�,ℚ

)

.
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Now, let E be a finitely generated D̂(m)X,�,ℚ-module. We define L oc(m)X,�(E) as the associated sheaf to the presheaf on X
defined by

U ⊆ X → D̂ (m)
X,�,ℚ(U)⊗D̂(m)X,�,ℚ

E.

It is clear that L oc(m)X,� is a functor from the category of finitely generated D̂(m)X,�,ℚ-modules to the category of coherent
D̂ (m)

X,�,ℚ-modules.

3.4 The arithmetic Beilinson-Bernstein theorem
We are finally ready to prove one of themain results of this work. To start with, wewill enunciate the following proposition.
3

Proposition 3.4.1. Let E be a coherent D̂ (m)
X,�,ℚ-module. Then E is generated by its global sections as D̂ (m)

X,�,ℚ-module.

Furthermore, every coherent D̂ (m)
X,�,ℚ-module admits a resolution by finite free D̂ (m)

X,�,ℚ-modules.

Proof. By theorem 3.1.5 we know that E is a quotient of a module
(

D̂ (m)
X,�,ℚ(−r)

)a
for some r ∈ ℤ and some a ∈ ℕ.

We can therefore assume that E =
(

D̂ (m)
X,�,ℚ(−r)

)

for some r ∈ ℤ. Let F ∶= H0(X,D(m)
X,�(−r)), a finitely generated

D(m)(G)-module by proposition 2.6.1. Let us consider the linear map of D(m)
X,�-modules equal to the composite

D(m)
X,� ⊗D(m)(G) F → D(m)

X,� ⊗H0(X,D(m)
X,�)

F → D(m)
X,�(−r) (3.5)

where the first map is the surjection induced by themapΦ(m)� of theorem 3.2.2. LetF be the cokernel of the composite map.
SinceD(m)(G) is noetherian, the source of this map is a coherentD(m)

X,�-module and so is F . Moreover, this module is of p-
torsion becauseD(m)

X,�(−r)⊗oL is generated by its global sections [3]. Now, let us take a linear surjection
(

D(m)(G)
)⊕a

→

F . By tensoring with D(m)
X,� we obtain the exact sequence of coherent modules

(

D(m)
X,�

)⊕a
→ D(m)

X,�(−r)→ F → 0.

Passing to p-adic completions (which is exact in our situation [30, chapter II, proposition 9.1]) and inverting p yields the
linear surjection.

Theorem 3.4.2. Let us suppose that � ∶ Dist(T ) → o is a character of Dist(T ) such that � + � ∈ t∗L is a dominant
and regular character of tL. The functors L oc(m)X,� andH

0(X, ∙) are quasi-inverse equivalence of categories between the

abelian categories of finitely generated D̂(m)X,�,ℚ-modules and coherent D̂ (m)
X,�,ℚ-modules.

Proof. Let us takeE a finite generated D̂(m)X,�,ℚ-module and E a coherent D̂ (m)
X,�,ℚ-module. There exist canonical morphisms

E → H0(X,L oc(m)X,�(E)) and L oc(m)X,�(H
0(X,E )) → E . Moreover, given that E is a finitely generated D̂(m)X,�,ℚ-module,

the third part of both propositions 2.6.1 and 3.1.1 allow us to find a resolution of

E ∶
(

D̂(m)X,�,ℚ

)⊕b
→

(

D̂(m)X,�,ℚ

)⊕a
→ E → 0

Therefore, by the preceding proposition, we get an exact sequence

(

D̂ (m)
X,�,ℚ

)⊕b
→

(

D̂ (m)
X,�,ℚ

)⊕a
→ L oc(m)X,�(E)→ 0.

3This proof is exactly as in [36, proposition 4.3.1].
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From this resolution we derived the following diagram of short exact sequences

(D̂(m)X,�,ℚ)
⊕b (D̂(m)X,�,ℚ)

⊕a E 0

(D̂(m)X,�,ℚ)
⊕b (D̂(m)X,�,ℚ)

⊕a H0(X,ℒoc(m)X,�(E)) 0.

By the preceding proposition, we know that the first two arrows are in fact isomorphisms thus, the canonical map E →

H0(X,L oc(m)X,�(E)) is an isomorphism as well. To see that the another canonical morphism is an isomorphism, the reader
can follow a completely analogous reasoning (we recall for the reader that theorem 3.1.5 tells us thatH0(X, ∙) is an exact
functor, over the category of coherent D̂ (m)

X,�,ℚ-modules).

Finally, let us show that the functor L oc(m)X,� is fully and faithful. It is enough to show that it is faithful. Let  ∶ E → F be
an injective morphism between two finitely generated D̂(m)X,�,ℚ-modules and let K be the coherent D̂ (m)

X,�,ℚ-module which
is the kernel of the morphism L oc(m)X,�( ). By the preceding proposition, we know that H0(X,K ) is the kernel of the
applicationH0(X,L oc(m)X,�( )) which is zero. But K is generated by global sections and therefore K = 0.

Given that any equivalence between abelian categories is exact, theorems 3.2.2 and 3.4.2 clearly imply

Theorem 3.4.3. (Principal theorem) Let us suppose that � ∶ Dist(T ) → o is a character of Dist(T ) such that � + � ∈ t∗L
is a dominant and regular character of tL.

(i) The functors L oc(m)X,� and H0(X, ∙) are quasi-inverse equivalence of categories between the abelian categories of

finitely generated (left) D̂(m)(G)� ⊗o L-modules and coherent D̂ (m)
X,�,ℚ-modules.

(ii) The functor L oc(m)X,� is an exact functor.



Chapter 4

The sheaves D†
X,�

In this chapter we will study the problem of passing to the inductive limit when m varies. Let us recall that � ∶ X̃ ∶=
G∕N → X ∶= G∕B is a locally trivial T -torsor (subsection 2.4). For every couple of positive integers m ≤ m′ there exists
a canonical homomorphism of sheaves of filtered rings [6, (2.2.1.5)]

�m′,m ∶ D
(m)
X̃

→ D(m′)
X̃

. (4.1)

Let us fix a character � ∶ Dist(T )→ o. As we have remarked for m ≤ m′ we have a commutative diagram

D(m)(T )

o.

D(m′)(T )

�(m)

�(m′)
(4.2)

Moreover, by [6, (1.4.7.1)] we dispose of a canonical morphism Pn
X̃,(m′)

→ Pn
X̃,(m)

.

In section 3.3 we have defined a T -equivariant structure Φn(m) ∶ p∗1P
n
X̃,n

→ �∗Pn
X̃,n

on Pn
X̃,n

(w recall for the reader
that � denotes the right action of T on X̃ and p1 is the first projection). By universal property of Pn

X̃,(m)
the preceding

T -equivariant structures fit into a commutative diagram

p∗1P
n
X̃,(m′)

�∗Pn
X̃,(m′)

p∗1P
n
X̃,(m)

�∗P (m)
X̃,(m)

.

Φn
(m′)

Φn(m)

(4.3)

This implies that the morphisms Pn
X̃,(m′)

→ Pn
X̃,(m)

are T -equivariant and therefore by lemma 2.2.1 and lemma 2.2.3, we

can conclude that the canonical maps in (4.1) are T -equivariant. In this way, we dispose of morphisms D̃(m) → D̃(m′). The
diagram (4.2) implies that we also have maps D(m)

X,� → D(m′)
X,� and therefore an inductive system

̂�∗(�m′,m)T ∶ D̂ (m)
X,� → D̂ (m′)

X,� . (4.4)
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Definition 4.0.1. We will denote by D†
X,� the limit of the inductive system (4.4), tensored with L

D†
X,� ∶=

(

lim
←←←←←←←←←←→
m

D̂ (m)
X,�

)

⊗o L.

4.1 The localization functor L oc†X,�
As in the subsection 4.3 let us denote by D†X,� ∶= H0(X,D†

X,�). In a completely analogous way as we have done in the
subsection referred above, we define the localization functorL oc†X,� from the category of finitely presentedD†X,�-modules
to the category of coherentD†

X,�-modules. This is, ifE denotes a finitely presentedD†X,�-module, thenL oc†X,�(E) denotes
the associated sheaf to the presheaf on X defined by

U ⊆ X → D†
X,� ⊗D†X,�

E.

It is clear that L oc†X,� is a functor from the category of finitely presented D†X,�-modules to the category of coherent D†
X,�-

modules.

4.2 The arithmetic Beilinson-Bernstein theorem for the sheaves D†
X,�

In this subsection we will concentrate our efforts to show the following Beilinson-Bernstein theorem for the sheaf of rings
D†

X,�. To do that, we will fix throughout this section a character � ∶ Dist(T ) → o of the distribution algebra Dist(T ) such
that � + � ∈ t∗L is a dominant and regular character of tL. We want to show

Theorem 4.2.1. Let us suppose that � ∶ Dist(T ) → o is a character of Dist(T ) such that � + � ∈ t∗L is a dominant and
regular character of tL.

(i) The functors L oc†X,� and H0(X, ∙) are quasi-inverse equivalence of categories between the abelian categories of
finitely presented (left) D†X,�-modules and coherent D

†
X,�-modules.

(ii) The functor L oc†X,� is an exact functor.

To do this, we recall the following facts.

Remark 4.2.2. (i) Let us recall that in remark 1.5.4 we have stated that D(m)(T ) is isomorphic to the subspace of T -
invariants H0(T ,D(m)

T )T . The isomorphism is in fact induced by the the action of T on itself by right translations
[38, theorem 4.4.8.3] and is compatible withm variable. This means that ifQm andQ′m denotes those isomorphisms
for m ≤ m′, then we have a commutative diagram

D(m)(T ) H0(T ,D(m)
T )T

D(m′)(T ) H0(T ,D(m′)
T )T

Qm

�m′ ,m (m′ ,m)T

Qm′

where the morphisms �m′,m are obtained by dualizing the canonical morphisms  m′,m in subsection 1.4 and the
morphisms m′,m are defined in (4.1).

(ii) Again by remark 1.5.4 the isomorphism of proposition 2.5.8 are compatible for varying m.

Let us recall the following proposition.
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Proposition 4.2.3. [6, Proposition 3.6.1] Let Y be a topological space, and {Dπ}i∈J be a filtered inductive system of
coherent sheaves of rings on Y , such that for any i ≤ j the morphisms Di → Dj are flat. Then the sheaf D† ∶= lim

←←←←←←←←←←→i∈J
Di

is a coherent sheaf of rings.

Proposition 4.2.4. The sheaf of rings D†
X,� is coherent.

Proof. The previous proposition tells us that we only need to show that the morphisms ̂�∗(�m′,m)T ℚ are flats. As this is a
local property we can take U ∈ S and to verify this property over the formal completionU. In this case, remark 4.2.2 and
the argument used in the proof of the first part of proposition 2.5.12 give us, by functoriality, the following commutative
diagram

D̂ (m)
X,�,ℚ(U) D̂ (m′)

X,�,ℚ(U)

D̂ (m)
Xℚ(U) D̂ (m′)

X,Q
(U)

̂�∗(�m′ ,m)T ℚ(U)

≃ ≃

�̂m′ ,m,ℚ(U)

The flatness theorem [6, theorem 3.5.3] states that the lower morphism is flat and so is the morphism on the top.

Notation: From now on we suppose that � ∶ Dist(T ) → o induces a dominant and regular character of tL, under the
correspondence (2.26).

Lemma 4.2.5. For every coherent D†
X,�-module E there exist m ≥ 0, a coherent D̂ (m)

X,�,ℚ-module Em and an isomorphism
of D†

X,�-modules

� ∶ D†
X,� ⊗D̂

(m)
X,�,ℚ

Em
≃
←←←←←←←→ E .

Moreover, if (m′,Em′ , �′) is another such triple, then there exist l ≥ max{m,m′} and an isomorphism of D̂ (l)
X,�,ℚ-modules

�l ∶ D̂ (l)
X,�,ℚ ⊗D̂

(m)
X,�,ℚ

Em
≃
←←←←←←←→ D̂ (l)

X,�,ℚ ⊗D̂
(m′)
X,�,ℚ

Em′

such that �′◦
(

id
D†

X,�
⊗ �l

)

= �.

Proof. This is [6, proposition 3.6.2 (ii)]. We remark that X is quasi-compact and separated, and the sheaf D̂ (m)
X,�,ℚ satisfies

the conditions in [6, 3.4.1].

Proposition 4.2.6. Let E be a coherent D†
X,�-module.

(i) There exists an integer r(E ) such that, for all r ≥ r(E ) there is a ∈ ℕ and an epimorphism of D†
X,�-modules

(

D†
X,�(−r)

)⊕a
→ E → 0.

(ii) For all i > 0 one hasH i(XE ) = 0.

Proof. 1 Let E be a coherent D†
X,�-module. The preceding proposition tells us that there exist m ∈ ℕ, a coherent D̂ (m)

X,�,ℚ-

1This is exactly as in [36, theorem 4.2.8]
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module Em and an isomorphism of D†
X,�-modules

� ∶ D†
X,� ⊗D̂

(m)
X,�,Q

Em
≃
←←←←←←←→ E .

Now we use theorem 3.1.5 for Em and we get the desired surjection in (i) after tensoring with D†
X,�. To show (ii) we use

the fact that, as X is a noetherian topological space, cohomology commutes with direct limites and

E = D†
X,� ⊗D̂

(m)
X,�,ℚ

Em = lim←←←←←←←←←←→
l≥m

D̂ (l)
X,�,ℚ ⊗D̂

(m)
X,�,ℚ

Em.

Being Em a coherent D (m)
X,�,ℚ-module we can conclude that D̂ (l)

X,�,ℚ⊗D̂
(m)
X,�,ℚ

Em is a coherent D (l)
X,�,ℚ-module for every l ≥ m.

Then for every i > 0

H i(X,E ) = lim
←←←←←←←←←←→
l≥m

H i
(

X, D̂ (l)
X,�,ℚ ⊗D̂

(m)
X,�,ℚ

Em

)

= 0,

by part (i) and theorem 3.1.5.

Proposition 4.2.7. Let E be a coherent D†
X,�-module. Then E is generated by its global sections as D†

X,�-module. More-
over, E has a resolution by finite free D†

X,�-modules andH
0(X,E ) is a D†X,�-module of finite presentation.

Proof. 2 Theorem 3.1.5 gives us a coherent D̂ (m)
X,�,ℚ-module Em such that E ≃ D̂†

X,� ⊗D̂
(m)
X,�,ℚ

Em. Moreover, Em has a

resolution by finite free D̂ (m)
X,�,ℚ-modules ( proposition 3.4.1). Both results clearly imply the first and the second part of

the lemma. The final part of the lemma is therefore a consequence of the first part and the acyclicity of the the functor
H0(X, ∙).

Proof of theorem 4.2.1. All in all, we can follow the same arguments of [35, corollary 2.3.7]. We start by taking (D†X,�)
⊕a →

(D†X,�)
⊕b → E → 0 a finitely presented D†X,�-module. By localizing and applying the global sections functor, we obtain a

commutative diagram

(D†X,�)
⊕a (D†X,�)

⊕b E 0

(D†X,�)
⊕a (D†X,�)

⊕b H0(X,ℒoc†X,�(E)) 0.

which tells us that E → H0(X,L oc†X,�(E)) is an isomorphism. To show that if E is coherent D†
X,�-module then the

canonical morphism D†
X,� ⊗D†X,�

H0(X,E ) → E is an isomorphism the reader can follow the same argument as before.
As we have remarked, the second assertion follows because any equivalence between abelian categories is exact.

Calculation of global sections

Let us recall that in the subsection 4.2 we have used the fact that associated to the linear form � ∈ t∗L there exists a central
character �� ∶ Z(gL) → L, where Z(gL) denotes the center of the universal enveloping algebra U (gL). In this case, if
Ker(��+�)o ∶= D(m)(G) ∩ Ker(��), we can consider the central redaction

D(m)(G)� ∶= D(m)(G)∕D(m)(G)Ker(��+�)o
2This is exactly as in [34, theorem 5.1]
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and its p-adic completion D̂(m)(G)�. Following the notation introduced in subsection 3.1 we haveD(m)(G)�⊗oL = U (gL)�.
We have shown that there exists a canonical isomorphism of o-algebras

D̂(m)(G)� ⊗o L
≃
←←←←←←←→ H0

(

X, D̂ (m)
X,�,ℚ

)

.

Taking inductive limits we can conclude that if

D†(G)� ∶= lim←←←←←←←←←←→
m
D̂(m)(G)� ⊗o L,

then we also have a canonical isomorphism of o-algebras

D†(G)�
≃
←←←←←←←→ H0(X,D†

X,�).

Theorem 4.2.1 and the preceding calculation complete the Beilinson-Bernstein correspondence. We end this chapter with
the following remark.

In [35] and [39] C. Huyghe and T. Schmidt studied the algebraic case. This means that � is induced via derivation by a
character � ∈ Hom(T ,Gm). In this setting, the consider arithmetic differential operators acting on the line bundle L(�)
induced by � (cf. section 5.5). Let us denote those sheaves by D̂ (m)

X,ℚ(�) and the inductive limit by D†
X(�). They have

showed analogous results to theorem 4.2.1, if � + � ∈ t∗L is a dominant and regular character of tL ([39, Theorem 3.2.5]
and [35, Theorem 3.1]). This in particular implies that if �′ ∶ Dist(T ) → o is the character of the distribution algebra
Dist(T ) induced via the correspondence (2.26), then

H0
(

X,D†
X(�)

)

= D†(G)� = H0
(

X,D†
X,�′

)

.

For �′ + � = � + � ∈ t∗L dominant and regular.3 Therefore, we have the following equivalence of categories

{

Coherent D†
X(�) −modules

} H0(X,∙)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

{

Finitely presented D†(G)� −modules
}

L oc†
X,�′

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
{

Coherent D†
X,�′ −modules

}

.

3By construction, if we tensor with L the characters � and �′, then they induces the same character of tL, cf. (2.26).
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Chapter 5

Arithmetic differential operators with
congruence levels

In this chapter we will introduce congruence levels to the constructions given in the preceding chapters. This means,
deformations of our (integral) twisted differential operators. This notion will be a fundamental tool to define differential
operators on an admissible blow-up of the flag o-scheme X. We also point out to the reader that we could have started
this work by considering differential operators with congruences levels because, as we will explain later, the case "k = 0"
naturally recovers all our preceding definitions. We have decided to treat this case apart because this is already ameaningful
constructions which generalizes [35] and [39]. Many of the results in this chapter are analogues to the results obtained in
our previous work and their proofs follow the same lines of reasoning. In all these cases we will refer to the respective
analogue.

5.1 Congruence levels

In this section we retake the notations of sections 2.1 and 2.4. This means that X̃ and X will denote smooth separated
schemes over o, such that X̃ is endowed with a right T -action � ∶ X̃ ×Spec(o) T → X̃. We will also denote by � ∶ X̃ → X
a locally trivial T -torsor for the Zariski topology and by S the set of open affine subschemes U of X that trivialises the
torsor (Remark 2.1.1).

Finally, as usual, we will denote by D(m)
X̃

(resp. by D(m)
X ) the usual sheaf of level m differential operators on X̃ (resp. on

X). As we have remarked in the first chapter, those sheaves come equipped with a filtration

OX̃ ⊆ D(m)
X̃,1

⊆ ... ⊆ D(m)
X̃,d

⊆ ... ⊆ D(m)
X̃
,

with D(m)
X̃,d

the sheaf of level m differential operators of order less or equal than d.

5.1.1 Associated Rees rings
1 Let A be a sheaf of o-algebras endowed with a positive filtration (FdA)d∈ℕ and such that o ⊂ F0A. The sheaf A gives
rise to a subsheaf of graded rings R(A) of the polynomial algebra A[t] over A. This is defined by

R(A) ∶=
⨁

i∈ℕ
FiA ⋅ ti,

1This digression can be found before the proof of [36, Proposition 3.3.7].
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its associated Rees ring. This subsheaf comes equipped with a filtration by the sheaves of subgroups

Rd(A) ∶=
d

⨁

i=0
FiA ⋅ ti ⊆ R(A).

Specializing R(A) in an element � ∈ o we get a sheaf of filtered subrings A� of A. More exactly, A� equals the image
under the homomorphism of sheaves of rings �� ∶ R(A) → A, sending t → �, and it is equipped with the filtration
induced by A. Moreover, if the sheaf of graded rings gr(A), associated to the filtration (FdA)d∈ℕ, is flat over o, then2

FdA� =
d
∑

i=0
�iFiA. (5.1)

If  ∶ A → B is a morphism of positive filtered o-algebras (with o ⊆ F0A and o ⊆ F0B), then the commutative diagram

R(A) R(B)

A B

ad td → (ad )td

�� ��
 

gives us a filtered morphism of rings  � ∶ A� → B�. This in particular implies that for � ∈ o fixed, the preceding process
is functorial.

Remark 5.1.1. The previous digression is well-known for rings. In this setting we have results completely analogues to
the ones presented so far ([43, Chapter 12, section 6]). We will use these results in the next sections.

Finally, under the hypothesis (5.1), if we endow Ker(��) with the filtration induced by R(A), then for every d ∈ ℤ>0 we
have FdKer(��) = (t − �)Rd−1(A). To see this, we take a local section p(t) =

∑d
i=0 ait

i ∈ FdKer(��) and a polynomial
q(t) =

∑d−1
j=0 bj t

j such that p(t) = (t − �)q(t) + c, with c ∈ A. As 0 = p(�) = c, we conclude that

p(t) = (t − �)q(t) =
d−1
∑

i=0
bj t

j+1 −
d−1
∑

j=0
�bj t

j .

The previous relation implies for example that a0 = −�b0 and therefore b0 ∈ F0A. Furthermore, an inductive argument
allows us to conclude that bj ∈ FjA for every 0 ≤ j ≤ d − 1. In other words q(t) ∈ Rd−1(A).
The short exact sequence

0 → Ker(��)→ Rd(A)
��
←←←←←←←←←←←→ FdA� → 0

implies that Fd(A�) = Rd(A)∕(t − �)Rd−1(A) for every d ∈ ℤ>0. Of course, by (5.1), we have F0(A�) = F0(A).

The following lemma is completely formal.

Lemma 5.1.2. Let f ∶ Y → Z be a morphism of schemes and let A be a sheaf of algebras on Z. Then there exists a
canonical isomorphism of sheaf of algebras on Y

f ∗(A[t])
≃
←←←←←←←→ f ∗(A)[t], 1⊗

(

∑

ait
i
)

→
∑

(1⊗ ai)ti.

Let p1 ∶ X̃ ×Spec(o) T → X̃ denote the first projection. Let us retake the notations in 5.1.1 and let us also assume that
(A,Φ) is a T -equivariant quasi-coherent OX̃-module ((2.3) and (2.4)) via a filtered isomorphism Φ. By lemma 5.1.2 and

2This is [36, Claim 3.3.10.].
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the T -equivariant structure of A we have a canonical isomorphism

Φ0 ∶ p∗1 (A[t])
≃
←←←←←←←→ �∗ (A[t]) ; 1⊗

(

∑

ait
i
)

→ 1⊗
(

∑

Φ(ai)ti
)

, (5.2)

which defines a T -equivariant structure on A[t]. Moreover, the positive filtration
(

FdA
)

d∈ℕ of A induces two positive
filtrations

(

p∗1(FdA[t])
)

d∈ℕ and
(

�∗(FdA[t])
)

d∈ℕ, over p
∗
1(A[t]) and �

∗(A[t]), respectively. Those filtrations make ofΦ0
a filtered isomorphism, and therefore it induces T -quivariant structures over the Rees ring R(A), the ideal (t − �)R(A),
and the subgroups Rd(A) and (t − �)Rd−1(A).

5.1.2 Congruence subgroups

Let us denote by Fq ∶= o∕($) the quotient field of o. We start this subsection by recalling the following notion.

5.1.3. Dilatations In the following digression we will suppose that Z = Spec(A) is an affine o-scheme of finite type. Let
us recall the following definition [60, Definition 2.1].

Definition 5.1.4. Let ZL ∶= Z ×Spec(o) Spec(L) = Spec(A ⊗o L) be the generic fiber. We say that an o-scheme Z0 =
Spec(B), such that B ⊆ A ⊗o L is an o-subalgebra of finite type, is a model of ZL if B[$−1] = A ⊗o L. A model Z0 is
smooth if Z0 → Spec(o) is smooth.

Let us recall the construction of the dilatation of a closed subscheme Z0 of the special fiber ZFq = Z ×Spec(o) Spec(Fq)
[15, Chapter 3, Section 3.2]. Let J ⊆ A be the proper ideal of A defining Z0. As A is noetherian, we can suppose that
J is generated by finitely many elements f0 = $, f1, ..., fn of A. We define the dilation of Z0 as the affine A-scheme
Z($) ∶= Spec(A($)), where

A($) ∶= A
[

f1
$
, ...,

fn
$

]

∶=
(

A
[

T1, ..., Tn
] /

(f1 −$T1, ..., fn −$Tn)
) /

($-torsion).

In particular, we see that Z($) is always flat over o, it is a model of the generic fiber ZL [59, Proposition 1.1] and we have
a canonical morphism

Z($) → Z. (5.3)

As before, let G be a split, connected and reductive group scheme over o. We denote by GL ∶= G ×Spec(o) Spec(L) the
generic fiber of G and by GFq ∶= G×Spec(o) Spec(Fq) the special fiber of G. For every k ∈ ℕ, there exists a smooth model
G(k) such that Lie(G(k)) = $kg. In fact, we takeG(0) ∶= G and we constructG(1) as the dilatation of the trivial subgroup
of GFq on G. By the preceding construction, this is a smooth model of GL. Moreover, if we write o[G] = o[f1, ..., fn] with
fi(e) = 0 for every 1 ≤ i ≤ n (e being the identity element), then (fi mod $)1≤i≤n is the ideal of the trivial subgroup of
GFq . By construction

G(1) = Spec
(

o
[

f1
$
, ...,

fn
$

])

.

This in particular implies that Lie(G(1)) = $g.

We can now construct G(k) inductively as follows. As before, we put G(0) = G, and G(k + 1) equals the dilatation of the
trivial subgroup of G(k)Fq . For every k ∈ ℕ the o-group scheme G(k) is again smooth, its Lie algebra is $kg and it is a
smooth model of GL. We also point out to the reader that, by (5.3), we have for every k ∈ ℕ a canonical morphism

G(k + 1) → G(k). (5.4)
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5.1.5. Arithmetic distribution algebras of finite level.

Let us start this digression by recalling the following two facts from [38]. LetN ∈ ℕ. Let Ga = Spec(o[t]) be the additive
group o-scheme and let us consider the group GNa endowed with coordinates t1, ..., tN . If f1, ..., fN denotes a base of
Lie(GNa ), then using the notations introduced in section 1.4 we have the following relation. For every multi-index k ∈ ℕN

we have [38, Proposition 4.1.11]

k!
qk!

f<k> = fk. (5.5)

On the other side, let us consider the multiplicative group o-scheme Gm = Spec(o[t, t−1]) and let us take the group GNm . If
ℎ1, ..., ℎN denotes a base of Lie(GNm ), then using the preceding notation, we have the following relation [38, (50)]

ℎ<k> = qk!
(

ℎ
k

)

. (5.6)

Now, let us recall that in this work B ⊆ G denotes a Borel subgroup of the split connected reductive group o-scheme
G, that T ⊆ B denotes a split maximal torus of G and N ⊆ B the unipotent radical of B (Section 2.4). Let N be the
opposite unipotent radical.3 By [38, Proposition 4.1.11, (ii)] the open immersion N ×Spec(o) T ×Spec(o) N → G induces an
isomorphism of filtered o-modules

D(m)(G)
≃
←←←←←←←→ D(m)(N)⊗o D

(m)(T )⊗o D
(m)(N).

By construction (section 2.4), there existN1, N2 ∈ ℕ such thatN andN are isomorphic toGN1a and by definition T ≃ GN2m .
Moreover, if we fix basis elements (fi)1≤i≤N1 , (ℎj)1≤j≤N2 and (el)1≤l≤N1 of the o-Lie algebras n, t and n, respectively,
then by (5.5) and (5.6) we can conclude that D(m)(G) equals the o-subalgebra of U (gL) generated as an o-module by the
elements

qv!
f v

v!
qv′ !

(

ℎ
v′

)

qv′′ !
ev′′

v′′!
. (5.7)

This relation implies that D(m)(G(k)) equals the o-subalgebra of U (gL) generated as an o-module by the elements

qv!$k|v|
f v

v!
qv′ !$k|v′|

(

ℎ
v′

)

qv′′ !$k|v′′| e
v′′

v′′!
. (5.8)

An element of the preceding form has order d = |v|+ |v|′ + |v|′′, and the o-span of elements of order less or equal that d
forms an o-submodule D(m)d (G(k)) ⊆ D(m)(G(k)). In this way D(m)(G(k)) becomes a filtered o-algebra. This construction
also tells us that

D(m)(G(0))$k = D(m)(G(k)). (5.9)

5.1.3 Level m relative enveloping algebras of congruence level k

Now, let k be a non-negative integer called a congruence level [37, Subsection 2.1]. By using the order filtration (D(m)
X̃
)d∈ℕ

of the sheafD(m)
X̃

, we can define the sheaf of arithmetic differential operators of congruence level k,D(m,k)
X̃

, as the subsheaf

3In the notation of section 2.4 N is the closed subgroup of G generated by all U� with � ∈ −Λ+.
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of D(m)
X̃

given by the specialization of R(D(m)
X̃
) in$k ∈ o. This means

D(m,k)
X̃

∶=
∑

d∈ℕ
$kdD(m)

X̃,d
.

By (1.3) and [34, Proposition 1.3.4.2] we can also conclude that, if (D(m,k)
X̃,d

)d∈ℕ denotes the order filtration induced by

D(m)
X̃

, then

D(m,k)
X̃,d

=
d
∑

i=0
$kiD(m)

X̃,i
.

In local coordinates we can describe the sheaf D(m,k)
X̃

in the following way. Let U ⊆ X̃ be an open affine subset endowed
with coordinates x1, ..., xN . Let dx1, ..., dxN be a basis of ΩX̃(U ) and )x1 , ..., )xN the dual basis of TX̃(U ). By using the
notation in section 1.2, one has the following description [37, Subsection 2.1]

D(m,k)
X̃

(U ) =
{ <∞

∑

v
$k|v|av)

<v>
| av ∈ OX̃(U )

}

.

Of course, we have analogue definitions on X.

On the other hand, using the short exact sequence

0→ (t −$k)R(D(m)
X̃
)→ R(D(m)

X̃
)→ R(D(m)

X̃
)∕(t −$k)R(D(m)

X̃
)
�$k= D(m,k)

X̃
→ 0, (5.10)

and the fact that all the terms in the sequence are quasi-coherent OX̃-modules, we can use proposition 2.2.2 and the final
commentary of subsection 5.1.1 to get the following result.

Proposition 5.1.6. For every non-negative integer k, the sheaf of arithmetic differential operators of congruence level k,
D(m,k)
X̃

, is a T -equivariant quasi-coherent OX̃-module.

Remark 5.1.7. If X̃ is also equipped with a right G-action, then we can use the preceding reasoning to show that the
sheaf D(m,k)

X̃
is a G-equivariant quasi-coherent OX̃-module.

Furthermore, for every d ∈ ℤ>0 the short exact sequence

0→ (t −$k)Rd−1(D
(m)
X̃
)→ Rd(D

(m)
X̃
)→ Rd(D

(m)
X̃
)∕(t −$k)Rd−1(D

(m)
X̃
)
�$k= D(m,k)

X̃,d
→ 0

and again the final commentary in subsection 5.1.1 Imply that every term in the filtration (D(m,k)
X̃,d

)d∈ℕ (beingD(m,k)
X̃,0

= OX̃)
is a T -equivariant coherent OX̃-module.

Definition 5.1.8. Let � ∶ X̃ → X be a locally trivial T -torsor. Following 2.3.5 we define the level m relative enveloping
algebra of congruence level k of the torsor to be the sheaf of T -invariants of �∗D

(m,k)
X̃

:

D̃(m,k) ∶=
(

�∗D
(m,k)
X̃

)T
.

The preceding sheaf is endowed with a canonical filtration

Fd
(

D̃(m,k)
)

∶=
(

�∗D
(m,k)
X̃,d

)T
, (d ∈ ℕ).
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Proposition 5.1.9. For any U ∈ S there exists an isomorphism of sheaves of filtered o-algebras

D̃(m,k)
|U

≃
←←←←←←←→ D(m,k)

X |U ⊗o D
(m)(T (k)).

Proof. Let U ∈ S . We recall for the reader that this means that there is a T -invariant isomorphism �−1(U )
�
←←←←←←→ U ×o T

such that the diagram

�−1(U ) U ×o T

U

�

� p1

is commutative. We apply the same reasoning that in proposition 2.1.2 to get

D̃(m,k)(U ) = D(m,k)
X̃

(�−1(U ))T

≃
(

D(m,k)
X (U )⊗o D

(m,k)
T (T )

)T

= D(m,k)
X (U )⊗o

((

D(m)
T (T )

)

$k

)T

≃ D(m,k)
X (U )⊗o

(

(

D(m)
T (T )

)T
)

$k

≃ D(m,k)
X (U )⊗o

(

D(m)(T )
)

$k

≃ D(m,k)
X (U )⊗o D

(m)(T (k)).

The first equality is by definition. By (2.13) the isomorphisms in proposition 2.1.2 preserves the subsheaves D(m,k)
X and

D(m,k)
T which gives the first isomorphism. The second equality is again by definition. The second isomorphism is just the

fact $k ∈ o and the T -action is o-linear. The last two isomorphisms are given by the first assertion in remark 1.5.4 and
(5.9), respectively.

Let us recall that the tangent sheaf TX̃ is a T -equivariant coherentOX̃-module (remark 2.3.2) and therefore we can consider
the subsheaf $k (�∗TX̃

)T of the sheaf of invariant sections
(

�∗TX̃
)T . If U ∈ S , then applying the same reasoning as in

2.3.3 we have

$k (�∗TX̃
)T (U ) = $kTX̃

(

�−1(U )
)T = $kTX(U )⊕

(

OX(U )⊗o $
kt
)

.

Here t = Lie(T ). As X is smooth, the preceding relation implies that $k (�∗TX̃
)T is a locally free OX-module of finite

rank, and therefore we can consider the level m symmetric algebra Sym(m)
(

$k (�∗TX̃
)T
)

. Moreover, for U ∈ S , we
have

Sym(m)
(

$k (�∗TX̃
)T
)

(U ) = Sym(m)($kTX(U ))⊗o Sym
(m)($kt). (5.11)

The proof of the following proposition follows word for word the arguments given in the proof of proposition 2.3.7.

Proposition 5.1.10. If � ∶ X̃ → X is a locally trivial T -torsor, then there exists a canonical and graded isomorphism

Sym(m)
(

$k (�∗TX̃
)T
) ≃
←←←←←←←→ gr∙

(

D̃(m,k)
)

.
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5.2 Relative enveloping algebras with congruence level on homogeneous spaces
We recall for the reader that in this work G denotes a split connected reductive group scheme over o, B ⊆ G is a Borel
subgroup, T ⊆ B is a split maximal Torus of G and N ⊆ B is the unipotent radical subgroup of B. We have also denoted
by X̃ = G∕N, the basic affine space, and by X ∶= G∕B, the flag o-scheme. Those are smooth and separated schemes
over o (section 2.4). As we have remarked X̃ is endowed with right commutating (G, T )-actions (resp. X is endowed with
right commutating (G, T )-actions, being trivial the right T -action). We also recall that � ∶ X̃ → X denotes the canonical
projection, which is a locally trivial T -torsor (Subsection 2.4).

Let us consider the morphism given by proposition 1.5.3

Φ(m) ∶ D(m)(G(0))→ H0(X̃,D(m)
X̃
).

We recall for the reader that this comes from functoriality from the right G-action on X̃. This map induces a morphism
between the associated constant sheaves of filtered o-algebras

D(m)(G(0)) → H0(X̃,D(m)
X̃
).

By composing with the canonical map of sheaves H0(X̃,D(m)
X̃
) → D(m)

X̃
, we get a homomorphism of sheaves of filtered

o-algebras D(m)(G(0)) → D(m)
X̃

. Specialising in $k ∈ o gives rise, by functoriality, to a filtered morphism of sheaves of
filtered o-algebras

D(m)(G(0))
$k →

(

D(m)
X̃

)

$k
.

By (5.9) we have that D(m)(G(0))$k = D(m)(G(k)) as filtered subrings of U (gL). We thus obtain a morphism

D(m)(G(k))→ D(m,k)
X̃

, (5.12)

which induces a homomorphism of filtered o-algebras

Φ(m,k) ∶ D(m)(G(k))→ H0(X̃,D(m,k)
X̃

)

Now, if X̃L ∶= X̃ ×Spec(o) Spec(L) , then given that D(m,k)
X̃

|X̃L
= DX̃L

is the usual sheaf of differential operators on X̃L,
we can apply the same reasoning that in section 2.5 to show that Φ(m,k) factors through the homomorphism of filtered
o-algebras

Φ(m,k) ∶ D(m)(G(k))→ H0
(

X̃,D(m,k)
X̃

)T
= H0

(

X, �∗D
(m,k)
X

)T
. (5.13)

Let us putA(m,k)
X ∶= OX⊗oD(m)(G(k)), and we equip this sheaf with the skew ring multiplication coming from the action

of D(m)(G(k)) on OX via Φ(m,k) (we recall that, by lemma 2.2.9, we have an action of D̃(m,k) on (�∗OX̃)
T = OX). The

map Φ(m,k) induces a unique OX-linear map

Φ(m,k)X ∶ A(m,k)
X → D̃(m,k)

which is also a morphism of sheaves of filtered o-algebras (the filtration on A(m,k)
X is given by proposition 1.5.6).

Let � ∶ Dist(T ) → o be a character of the distribution algebra (2.5.2) and for every level m ∈ ℕ, let us also denote
by � ∶ D(m)(T ) → o the induced character of D(m)(T ). As before, we endow o with the trivial filtration (0 = F−1o
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and Fio�(m) = o for all i ≥ 0) and we consider it as a filtered D(m)(T )-module via �. By remark 5.1.1 and the fact that
D(m)(T )$k = D(m)(T (k)), (5.9), we have a character � ∶ D(m)(T (k))→ o. 4

As in (45) we have

H0
(

XL, (� ×o idL)∗DX̃L

)TL
= H0

(

X̃L,DX̃L

)TL
= H0

(

X̃,D(m,k)
X̃

)T
⊗o L.

By proposition 1.5.3 and the same reasoning that we have given at the beginning of this section, the right T -action on X̃
induces a canonical morphism of filtered o-algebras Φ(m,k)T ∶ D(m)(T (k)) → H0(X̃,D(m,k)

X̃
) and exactly as in page 45, we

can show that Φ(m,k)T factors through a morphism

Φ(m,k)T ∶ D(m)(T )→ Z
(

H0
(

X, �∗D
(m,k)
X̃

)T
)

= H0
(

X,Z
(

D̃(m,k)
))

.

Here Z(D̃(m,k)) denotes the center of D̃(m,k). We have the following definition.

Definition 5.2.1. Let � ∶ D(m)(T (k)) → o be a character of the distribution algebra D(m)(T (k)). We define the sheaf of
level m integral twisted arithmetic differential operators with congruence level k, D(m,k)

X,� , on the flag scheme X by

D(m,k)
X,� ∶= D̃(m,k) ⊗D(m)(T (k)) o.

By 5.1.9 we have the following result.

Proposition 5.2.2. Let U ∈ S . Then D(m,k)
X,� |U is isomorphic to D(m,k)

X |U as a sheaf of filtered o-algebras.

By using the preceding result, we can conclude as in proposition 2.5.8.

Proposition 5.2.3. The sheaf D(m,k)
X,� is a sheaf of OX-rings with noetherian sections over all open affine subsets of X.

Definition 5.2.4. We will denote by

D̂ (m,k)
X,� ∶= lim

←←←←←←←←←←←
j
D(m,k)
X,� ∕p

j+1D(m,k)
X,�

the p-adic completion of D(m,k)
X,� and we consider it as a sheaf on X. Following the notation given at the beginning of this

work, the sheaf D̂ (m,k)
X,�,ℚ will denote our sheaf of level m twisted differential operators with congruence level k on the formal

flag scheme X.

Using proposition 5.2.2, we can conclude, as in proposition 2.5.12, that

Proposition 5.2.5. (i) There exists a basis B of the topology ofX, consisting of open affine subsets, such that for every
U ∈ B the ring D̂ (m,k)

X,� (U) is twosided notherian.

(ii) The sheaf of rings D̂ (m,k)
X,�,ℚ is coherent.

Using the morphism Φ(m,k)X and the canonical projection from D̃(m,k) onto D(m,k)
X,� we can define a canonical map

Φ(m,k)X,� ∶ A(m,k)
X → D(m,k)

X,� . (5.14)

The same reasoning given in proposition 2.5.13 shows the following result.
4We have abused of the notation and we have called all this maps �. The reasons is that by 2.5.2 all these maps induce the same character of tL.
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Proposition 5.2.6. (i) There exists a canonical isomorphism Sym(m)($kTX) ≃ gr∙(D
(m,k)
X,� ).

(ii) The canonical morphism Φ(m,k)X,� is surjective.

(iii) The sheaf D(m,k)
X,� is a coherent A(m,k)

X -module.

Notation: From now on, we will fix again a character � ∶ Dist(T ) → o of the distribution algebra Dist(T ), such that
� + � ∈ t∗L is a dominant and regular character of the Lie algebra tL (cf. 2.5.3). By abuse of notation we will denote by
� ∶ D(m)(T (k))→ o the character induced by specialising in the parameter t = $k.

By construction, we know that D(m,k)
X,� |XL = D� is the usual sheaf of twisted differential operators on the flag variety XL.

The preceding proposition and the same arguments given in proposition 2.6.4 give us the following result

Proposition 5.2.7. Let us suppose that � ∶ Dist(T ) → o is a character of the distribution algebra Dist(T ), such that
� + � ∈ t∗L is a dominant and regular character of tL.

(i) Let us fix r ∈ ℤ. For every positive integer l ∈ ℤ>0, the cohomology groupH l(X,D(m,k)
X,� (r)) has bounded p-torsion.

(ii) For every coherent D(m,k)
X,� -module E , the cohomology groupH l(X, E ) has bounded p-torsion for all l > 0.

5.2.1 Passing to formal completions and cohomological properties

Let E be a coherent D̂ (m,k)
X,� -module. By applying the same result as in proposition 3.1.2 we can find r1(E ) ∈ ℤ such that,

for all r ≥ r1(E ) there is a ∈ ℤ and an epimorphism of D̂ (m,k)
X,� -modules

(

D̂ (m,k)
X,� (−r)

)⊕a
→ E → 0. (5.15)

Moreover, there exists r2(E ) ∈ ℤ such that, for all r ≥ r2(E ) we have

H l(X,E (r)) = 0 for all l > 0.

The same inductive argument exhibited in the second part of proposition 2.6.4 and (5.15) give us (cf. corollary 3.1.3)

Corollary 5.2.8. Let E be a coherent D̂ (m,k)
X,� -module. There exists c = c(E ) ∈ ℕ such that for all l > 0 the cohomology

groupH l(X,E ) is annihilated by pc .

Let us fix a coherent D̂ (m,k)
X,�,ℚ-module F . By definition, the sheaf D̂ (m,k)

X,�,ℚ satisfies [6, Conditions 3.4.1] and therefore by [6,
Proposition 3.4.5] we can find a coherent D̂ (m,k)

X,� -module E such that F = E ⊗o L. This relation and (5.15) allow us to
find r(F ) ∈ ℤ such that, for every r ≥ r(F ) there exist a ∈ ℕ and an epimorphism of D̂ (m,k)

X,�,ℚ-modules

(

D̂ (m,k)
X,�,ℚ(−r)

)⊕a
→ F → 0. (5.16)

Moreover, corollary 5.2.8 implies that

H l(X,F ) = H l(X,E ⊗o L) = H l(X,E )⊗o L = 0 for all l > 0. (5.17)

5.2.2 Calculation of global sections

Let �� ∶ Z(gL) → L be the central character induced by � ∈ t∗ via base change and the classical Harish-Chandra
isomorphism (section 3.2). As before, we denote by Ker(��+�)o ∶= D(m)(G(k)) ∩ Ker(��+�), and we consider the central
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redaction

D(m)(G(k))� ∶= D(m)(G(k))∕D(m)(G(k))Ker(��+�)o,

which is clearly an integral model of U (gL)� ∶= U (gL)⊗Z(gL),��+� L. Let D̂
(m)(G(k))� be the p-adic completion.

Let us considerΦ(m,k)� ∶ D(m)(G(k))→ H0(X,D(m,k)
X,� ) defined by taking global sections in (5.14). This morphism induces,

by construction, the following commutative diagram

D(m)(G(k)) H0
(

X,D(m,k)
X,�

)

U (gL) H0 (XL,D�
)

.

Φ(m,k)�

Φ�

As before, by the classical Beilinson-Bernstein theorem [3] and the preceding commutative diagram, we have that Φ(m,k)�

factors through a morphism Φ
(m,k)
� ∶ D(m)(G(k))� → H0(X,D(m,k)

X,� ) which becomes an isomorphism after tensoring with

L. Then lemma 3.2.1 implies that Φ
(m,k)
� gives rise to an isomorphism

D̂(m)(G(k))� ⊗o L
≃
←←←←←←←→

̂
H0

(

X,D(m,k)
X,�

)

⊗o L.

Proposition 3.1.1 together with the fact that X is in particular a noetherian topological space gives us

D̂(m)(G(k))� ⊗o L
≃
←←←←←←←→ H0

(

X, D̂ (m,k)
X,�,ℚ

)

. (5.18)

5.2.3 The arithmetic Beilinson-Bernstein theorem with congruence level

5.2.9. Let E be a finitely generated D̂(m)(G(k))�,ℚ ∶= D̂(m)(G(k))�⊗oL-module. As in section 4.1 we define L oc(m,k)X,� (E)
as the associated sheaf to the presheaf on X defined by

U ⊆ X → D̂ (m,k)
X,�,ℚ(U)⊗D̂(m)(G(k))�,ℚ

E.

It is clear that L oc(m,k)X,� is a functor from the category of finitely generated D̂(m)(G(k))�,ℚ-modules to the category of

coherent D̂ (m,k)
X,�,ℚ-modules.

Following the same lines of reasoning in theorem 3.4.2 we have

Theorem 5.2.10. Let us suppose that � ∶ Dist(T ) → o is a character of the distribution algebra Dist(T ), such that
� + � ∈ t∗L is a dominant and regular character of tL.

(i) The functors L oc(m,k)X,� andH0(X, ∙) are quasi-inverse equivalences of categories between the abelian categories of

finitely generated D̂(m)(G(k))�,ℚ-modules and coherent D̂
(m,k)
X,�,ℚ-modules.

(ii) The functor L oc(m,k)X,� is an exact functor.

5.3 The sheaves D†
X,k�

Thorough this section we will suppose that � ∶ Dist(T ) → o induces, under the correspondence (2.26), a dominant
and regular character of tL. We recall for the reader that the induced character of D(m)(T (k)) will also be denoted by
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o. We will study the problem of passing to the inductive limit when m varies. First of all, let us recall that the canonical
morphismD(m)

X̃
→ D(m+1)

X̃
is T -equivariant (5.36) and by construction, the inducedmap between the Rees ringsR(D(m)

X̃
)→

R(D(m+1)
X̃

) is T -equivariant. We have the following diagram

p∗1
(

R
(

D(m)
X̃

))

p∗1
(

D(m,k)
X̃

)

p∗1
(

R
(

D(m+1)
X̃

))

p∗1
(

D(m+1,k)
X̃

)

�∗
(

R
(

D(m)
X̃

))

�∗
(

D(m,k)
X̃

)

�∗
(

(R
(

D(m+1)
X̃

))

�∗
(

D(m+1,k)
X̃

)

Except for the right lateral face, the other faces of the cube form commutative diagrams either by T -equivariance of the
mapR(D(m)

X̃
)→ R(D(m+1)

X̃
) or by functoriality on the commutative diagram (which comes from the exact sequence (5.10))

R
(

D(m)
X̃

)

D(m,k)
X̃

R
(

D(m+1)
X̃

)

D(m+1,k)
X̃

,

but, by construction (cf. proposition 5.1.6), this forces the commutativity on right lateral face, which means that the
canonical map D(m,k)

X̃
→ D(m,k)

X̃
is also T -equivariant. We dispose therefore of a morphism D̃(m,k) → D̃(m+1,k). The

commutativity of the diagram

D(m)(T (k))

o

D(m+1)(T (k))

�

�

implies that we also have maps D(m,k)
X,� → D(m+1,k)

X,� and in consequence an inductive system

D̂ (m,k)
X,� → D̂ (m+1,k)

X,� . (5.19)

Definition 5.3.1. We will denote by D†
X,k,� the limit of the inductive system (5.19), tensored with L

D†
X,k,� ∶=

(

lim
←←←←←←←←←←→
m

D̂ (m,k)
X,�

)

⊗o L. (5.20)

Let E be a coherent D†
X,k�-module. As in lemma 4.2.5 we can find m ≥ 0, a coherent D̂ (m,k)

X,�,ℚ-module Em and an isomor-
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phism of D†
X,k,�-modules

D†
X,k,� ⊗D̂

(m,k)
X,�,ℚ

Em
≃
←←←←←←←→ E .

Using this isomorphism and (5.16) we can conclude that there exists r(E ) ∈ ℤ, such that for all r ≥ r(E ) there is a ∈ ℕ
and an epimorphism of D†

X,k,�-modules

(

D†
X,k,�(−r)

)⊕a
→ E → 0.

Moreover, by (5.17) we have for every i > 0

H i(X,E ) = lim
←←←←←←←←←←→
l≥m

H i
(

X, D̂ (l,k)
X,�,ℚ ⊗D̂

(m,k)
X,�,ℚ

Em

)

= 0.

Let D†(G(k))� ∶= lim←←←←←←←←←←→m∈ℕ
D̂(m)(G(k))� ⊗o L. By (5.18) and using the same reasoning that in theorem 4.2.1 we have

Theorem 5.3.2. Let us suppose that � ∶ Dist(T )→ o is a character of the distribution algebra Dist(T ), such that �+� ∈ t∗L
is a dominant and regular character of tL.

(i) The functors L oc†X,k,� andH
0(X, ∙) are quasi-inverse equivalence of categories between the abelian categories of

coherent (left) D†
X,k,�-modules and finitely presented D

†(G(k))�-modules.

(ii) The functor L oc†X,k,� is an exact functor.

5.4 Linearization of group actions
Let us start with the following definition from [30, Chapter II, exercise 5.18] (cf. [16, Definition 3.1.1]).

Definition 5.4.1. Let Y be an o-scheme. A (geometric) line bundle over Y is a scheme L together with a morphism
� ∶ L → Y such that Y admits an open covering (Ui)i∈I satisfying the following two conditions:

(i) For any i ∈ I there exists an isomorphism  i ∶ �−1(Ui)
≃
←←←←←←←→ A1Ui .

(ii) For any i, j ∈ I and for any open affine subset V = Spec(A[x]) ⊆ Ui ∩ Ui the automorphism �ij ∶  j◦ −1i |V ∶
A1V → A1V of A1V is given by a linear automorphism �♮ij of A[x]. This means, �♮ij(a) = a for any a ∈ A, and

�♮ij(x) = aijx for a suitable aij ∈ A.

In the preceding definition, the scheme L is obtained by glueing the trivial line bundles p1,i ∶ Ui ×A1o → Ui via the linear
transition functions (aij). Thus, each fibre Lx is a line, in the sense that it has a canonical structure of a 1-dimensional
affine space.

Definition 5.4.2. Given a line bundle � ∶ L → Y and a morphism � ∶ Y ′ → Y , the pull-back �∗(L) is the fiber product
L ×Y Y ′ equipped with its projection to Y ′.

Now, let � ∶ L → Y be a line bundle over Y , then a section of � over an open subset U ⊂ Y is a morphism s ∶ U → L
such that �◦s = idU . Moreover the presheaf L defined by

U ⊆ Y → {s ∶ U → L | s is a section over U}

is a sheaf called the sheaf of sections of the line bundle L. This is an invertible sheaf (i.e., a locally free sheaf of rank 1).
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On the other hand, if E is a locally free sheaf of rank 1 on Y and we let

V(E ) ∶= Spec
Y

(

SymOY
(E )

)

be the line bundle over Y associated to E [27, 1.7.8], then we have a one-to-one correspondence between isomorphism
classes of locally free sheaves of rank 1 on Y and isomorphic classes of (geometric) line bundles over Y [30, Chapter II,
Exercises 5.1 (a) and 5.18 (d)]

{Isomorphism classes of locally free sheaves of rank 1} ↔ {Isomorphic classes of line bundles}
E → V(E∨)
L ↤ L

(5.21)

Let � ∶ L → Y be a line bundle over Y , let L be its sheaf of sections and � ∶ Y ′ → Y a morphism of schemes. Let
us calculate the sheaf of sections of the pull-back line bundle �∗(L) ∶= L ×Y Y ′ → Y ′. First of all, under the previous
correspondence we have L = V(L∨). Therefore by [27, Proposition 1.7.11 (iv)] there exists canonical isomorphisms

�∗(L) = �∗(V(L∨)) = V(�∗(L∨)) = V((�∗(L))∨),

where the third isomorphism is just the fact that L is free of finite rank. Again, by the preceding correspondence we can
conclude that the sheaf of sections L�∗(L) equals ((�∗(L))∨)∨ = �∗(L).

We end this digression about line bundles by pointing out to the reader that if � ∶ L → Y is a line bundle over Y and
�1, �2 ∶ Y ′ → Y are two morphisms from a scheme Y ′ to Y such that �∗1(L) ≃ �

∗
2(L), then �

∗
1(L) ≃ �

∗
2(L).

Let us suppose now that Y is endowed with a right G-action, this means that we have a morphism � ∶ Y ×Spec(o) G → Y .
In particular, for every g ∈ G(o) we dispose of a translation morphism

�g ∶ Y = Y ×Spec(o) Spec(o)
idY ×g
←←←←←←←←←←←←←←←←←←←←←←←→ Y ×Spec(o) G

�
←←←←←←→ Y

In the next lines we will study (geometric) line bundles which are endowed with a right G-action.

Definition 5.4.3. Let � ∶ L → Y be a line bundle. A G-Linearization of L is a right G-action � ∶ L ×Spec(o) G → L
satisfying the following two conditions:

(i) The diagram

L ×Spec(o) G L

Y ×Spec(o) G Y

�

�×idG �

�

(ii) The action on the fibers is linear. This means that for every x ∈ Y and g ∈ G(o), the morphism on the fibers
Lx → Lx⋅g , induced by the commutative diagram

L L

Y Y ,

�g

� �
�g

is o-linear.
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Let g ∈ G(o) and let us suppose that Ψ ∶ �∗(L)→ p∗1(L) is a morphism of line bundles over Y ×Spec(o) G. Let us consider
the translation morphism

�g ∶ Y = Y ×Spec(o) Spec(o)
idY ×g
←←←←←←←←←←←←←←←←←←←←←←←→ Y ×Spec(o) G

�
←←←←←←→ Y .

We have the relations (idY ×g)∗�∗(L) = �∗g(L) and (idY ×g)
∗p∗1(L) = L. So every morphism of line bundlesΨ ∶ �∗(L)→

p∗1(L) induces morphisms Ψg ∶ �∗g(L) → L for all g ∈ G(o). The following reasoning can be found in [23, Page 104] or
[16, Lemma 3.2.4].

Proposition 5.4.4. Let � ∶ L → Y be a line bundle over Y endowed with a G-linearization � ∶ L ×Spec(o) G → L. Then
there exists an isomorphism

Ψ ∶ �∗(L)→ p∗1(L)

of line bundles over L ×Spec(o) G, such that Ψgℎ = Ψg◦�∗g(Ψℎ) for all g, ℎ ∈ G(o).

Proof. By definition of linearization we have the following commutative diagram

L ×Spec(o) G

�∗(L) Y ×Spec(o) G

L Y .

�×idG

�

 
p2

p1 �

�

By universal property there exists a unique morphism of line bundles  ∶ p∗1(L) → �∗(L), which is linear on the fibers
since so is �. Let g ∈ G(o). To see that  is an isomorphism we can use the correspondence (5.21). In this case, if x ∈ Y ,
g ∈ G and  (x,g) ∶ Lx → Lxg denotes the respective morphism between the stalks, then  (x,g) is an isomorphism being
 (xg,g−1) the inverse.

Let g, ℎ ∈ G(o). Applying (idX × g)∗ to  we get the morphism  g ∶ L → �∗g(L) and given that � is a right action
(�ℎ ◦ �g = �gℎ), it fits into the following commutative diagram

L �∗g(L)

�∗g�
∗
ℎ(L) = �

∗
gℎ(L).

 g

 gℎ �∗g( ℎ)

Moreover, since  g ∶ L → �∗g(L) is an isomorphism for every g ∈ G(o) (the fiber over x ∈ Y coincides with  (x,g)) then
we can consider the morphism Ψg ∶=  −1g ∶ �∗g(L)→ L which coincides with the fibers of the morphism

Ψ ∶=  −1 ∶ �∗(L)→ p∗1(L).

By construction, these morphism satisfy the cocycle condition of the proposition. This means that for every g, ℎ ∈ G(o),
we have

Ψgℎ = Ψg ◦ �∗g(Ψℎ).
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Remark 5.4.5. Let � ∶ L → Y be a line bundle endowed with a G-linearization. Let L be the sheaf of section of L.
The morphism of the preceding proposition induces in a canonical way an isomorphism Φ ∶ �∗(L)

≃
←←←←←←←→ p∗1(L), and the

cocycle condition forΨ implies thatΦmakes commutative the diagram (2.4) (to see the discussion at the beginning of [38,
Subsection 3.2]).

Let us suppose now that X ∶= G∕B is again the smooth flag o-scheme. Let us recall that by (2.19) we have a canonical
isomorphism T ≃ B∕N. This in particular implies that every algebraic character � ∈ Hom(T ,Gm) induces a character of
the Borel subgroup � ∶ B → Gm. Let us consider the locally free action of B on the trivial fiber bundle G× o over G given
by

b.(g, u) ∶= (gb−1, �(b)u); (g ∈ G, b ∈ B, u ∈ o).

We denote by L(�) ∶= B⟍(G × o) the quotient space obtained by this action.
Let � ∶ G → X be the canonical projection. Since the map G × o → X, (g, u) → �(x) is constant on B-orbits, it induces
a morphism �� ∶ L(�) → X. Moreover, given that � is locally trivial [40, Part II, 1.10 (2)] �� ∶ L(�) → X defines a line
bundle over X [40, Part I, 5.16]. Furthermore, the right G-action on G × o given by

(g0, u) ∙ g → (g−1g0, u) (g ∈ G, (g0, u) ∈ G × o)

induces a right action on L(�) for which L(�) turns out to be aG-linearized line bundle onX. By the preceding remark, the
sheaf of sections L(�) of the line bundle L(�) is a G-equivariant invertible sheaf. In fact, we can give a local description
of the sheaf L(�). If U ⊆ X is an affine open subset, then [40, Part I, 5.8 (2) and 5.15 (1)]

L(�)(U ) =
(

o� ⊗o o[�−1(U )]
)B .

Here o� = o is viewed as a B-module and the B-action is given by the action on o via � and the operation on o[�−1U ]
derived from the action on �−1(U ) ⊆ G.

5.5 Arithmetic differential operators acting on a line bundle
We start this section by recalling to the reader that the sheaf D(m)

X is endowed with a left and a right structure of OX-
module. These structures come from the canonical morphisms of rings d1, d2 ∶ OX → Pn

X,(m), which are induced by
universal property (proposition 1.1.3) and the projections p1, p2 ∶ X ×Spec(o) X → X. We have the following definition.

Definition 5.5.1. Let � ∈ Hom(T ,Gm) be an algebraic character. For every congruence level k ∈ ℕ, we define the sheaf
of level m arithmetic differential operators acting on the line bundle L(�), by

D(m,k)
X (�) ∶= L(�)⊗OX

D(m,k)
X ⊗OX

L(�)∨.

The multiplicative structure of the sheafD(m,k)
X (�) is defined as follows. If �∨, �∨ ∈ L(�)∨, P ,Q ∈ D(m,k)

X and �, � ∈ L(�)
then

� ⊗ P ⊗ �∨ ∙ � ⊗ Q⊗ �∨ = � ⊗ P
⟨

�∨, �
⟩

Q⊗ �∨. (5.22)

Moreover, the action of D(m,k)
X (�) on L(�) is given by

(

t ⊗ P ⊗ t∨
)

∙ s ∶=
(

P ∙ < t∨, s >
)

t (s, t ∈ L(�) and t∨ ∈ L(�)∨).

Remark 5.5.2. Given that the locally free OX-modules of rank one L(�)∨ and L(�) are in particular flat, the sheaf
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D(m,k)
X (�) is filtered by the order of twisted differential operators. This is, the subsheaf D(m,k)

X,d of D(m,k)
X , of differential

operators of order less that d, induces a subsheaf of twisted differential operators of order less than d defined by

D(m,k)
X,d (�) ∶= L(�)⊗OX

D(m,k)
X,d ⊗OX

L(�)∨,

and given than the tensor product preserves inductive limits, we obtain

D(m,k)
X (�) = lim

←←←←←←←←←←→
d

D(m,k)
X,d (�).

Moreover, the exact sequence

0→ D(m,k)
X,d−1 → D(m,k)

X,d → D(m,k)
X,d ∕D

(m,k)
X,d−1 → 0

induces the exact sequence

0→ D(m,k)
X,d−1(�)→ D(m,k)

X,d (�)→ L(�)⊗OX
D(m,k)
X,d ∕D

(m,k)
X,d−1 ⊗OX

L(�)∨ → 0

which tells us that

gr
(

D(m,k)
X (�)

)

≃ L(�)⊗OX
gr

(

D(m,k)
X

)

⊗OX
L(�)∨ ≃ gr

(

D(m,k)
X

)

.

The second isomorphism is defined by � ⊗ P ⊗ �∨ → �∨(�)P . This is well defined because gr
(

D(m,k)
X

)

is in particular
a commutative ring.

Proposition 5.5.3. There exists a canonical isomorphism of graded sheaves of algebras

gr∙
(

D(m,k)
X (�)

) ≃
←←←←←←←→ Sym(m)($kTX).

Proof. By (1.3), and the fact that D(m,k)
X and $kTX are locally free sheaves (and therefore free $-torsion) we have the

following short exact sequence

0→ D(m,k)
X,d−1 → D(m,k)

X,d → Sym(m)
d

(

$kTX
)

→ 0,

which gives us the isomorphisms

Sym(m) ($kTX
)

≃ gr∙
(

D(m,k)
X

)

≃ gr∙
(

D(m,k)
X (�)

)

.

Proposition 5.5.4. Let � ∈ Hom(T ,Gm) be an algebraic character. For every congruence level k ∈ ℕ, the sheafD(m,k)
X (�)

is a G-equivariant quasi-coherent OX-module.

Proof. The proposition is an immediately consequence of remarks 5.1.7, 5.4.5 and proposition 2.2.4.

5.5.5. Sheaf of differential operators.

Let us briefly recall the construction of the sheaf of differential operators over the smooth o-scheme X [29, 16.8.4].5 If I
is the ideal of the diagonal embeddingX → X ×oX, we denote by Pn

X ∶= OX×oX∕I
n+1 the sheaf of principal parts. We

5This construction is in fact more general and is made for an arbitrary smooth o-scheme.
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put

DX ∶=
⋃

n∈ℕ
H omOX

(

Pn
X ,OX

)

.

The reader can take a look to [29, 16.8.10] to check that DX is in fact a sheaf of rings. What will be important for us is
the following local description. As before, let us suppose that U ⊂ X is an affine open subset endowed with coordinates
x1, ..., xM . Let )x1 , ..., )xM be the dual base of the sheaf of derivations, and for every 1 ≤ i ≤M and l ∈ ℕ we denote by
)[l]xi ∈ DX(U ) the differential operator defined by l!)

[l]
xi = )

l
xi
. Finally, using multi-index notation, for l = (l1, ...lM ) ∈ ℕM ,

we put )[l] =
∏M

i=1 )
[li]
xi . One has the following description [29, 16.11.2.2]

DX(U ) =

⎧

⎪

⎨

⎪

⎩

<∞
∑

l
al)

[l]
| al ∈ OX(U )

⎫

⎪

⎬

⎪

⎭

.

Furthermore, if p2 ∶ X ×o X → X denotes the second projection, then we have a canonical map d2 ∶ OX → Pn
X which

induces a structure of (left) DX-module on OX . This is given by

OX
d2
←←←←←←←←←←→ Pn

X
P
←←←←←←←←→ OX (P ∈ DX).

Finally, by [6, Proposition 1.4.5] we dispose of canonical morphisms Pn
X → Pn

X,(m), from the sheaf of principal parts to
the sheaf of level m divided powers. Taking duals we get OX-linear homomorphisms D(m)

X,n → DX and passing to the
inductive limit we get a canonical morphism of filtered rings [6, (2.2.1.5)]

D(m)
X → DX . (5.23)

In particular, by construction, we have a canonical homomorphism of filtered rings

D(m,k)
X → DX . (5.24)

Let L (�) be the formal$-adic completion of the sheaf of section L(�) of the fiber bundle L(�). We regard this sheaf as
an invertible sheaf on OX. As before, we will consider the following sheaves of$-complete algebras

D̂ (m,k)
X ∶= lim

←←←←←←←←←←←
j∈ℕ

D(m,k)
X ∕$j+1D(m,k)

X , D†
X,k ∶=

(

lim
←←←←←←←←←←→
m∈ℕ

D (m,k)
X

)

⊗o L and D̂X ∶= lim←←←←←←←←←←←
j∈ℕ

DX∕$j+1DX , (5.25)

Let U ⊂ X be an affine open subset of X endowed with local coordinates x1, ..., xM and let U be the formal completion
of U along the special fiber UFq . By using multi-index notation, every section P ∈ D̂ (m,k)

X (U ) (resp. P ∈ D̂X(U )) can be
written in a unique way [6, (2.4.1.2)]

P =
∞
∑

v
$k|v|av)

<v> (resp. P =
∞
∑

v
av)

[v]) (5.26)

where the sequence (ak) ∈ Γ(U ,OX) tends to 0 for the$-topology. Furthermore, if | ∙ | is a Banach norm on the affinoid
algebra OX,ℚ [6, 2.4.2] then by [37, Subsection 2.1] we have

D†
X,k(U ) =

{ ∞
∑

v
$k|v|av)

[v]
| av ∈ OX,ℚ(U ), and ∃C > 0, � < 1 | |av| < C�

|v|

}

.
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The sheaves (5.25) define the twists

D̂ (m,k)
X (�) ∶= L (�)⊗OX

D̂ (m,k)
X ⊗OX

L (�)∨ and D̂X ∶= L (�)⊗OX
D̂X ⊗OX

L (�)∨,

and we can define

D†
X,k(�) ∶= L (�)ℚ ⊗OX,ℚ

D†
X,k ⊗OX,ℚ

L (�)∨ℚ.

Remark 5.5.6. The preceding sheaves can also be defined as the $-completion of the sheaf of arithmetic differential
operators acting on the line bundle L(�). This means that

D†
X,k(�) = lim

←←←←←←←←←←→
m∈ℕ

(

lim
←←←←←←←←←←←
j∈ℕ

D(m,k)
X (�)∕$j+1D(m,k)

X (�)

)

⊗o L.

We will use this isomorphism in the next subsection.

Remark 5.5.7. IfU ⊆ X is an open affine subset ofX, then proposition 5.5.3 tells us that the graded algebra gr∙
(

D(m,k)
X (�)(U )

)

is isomorphic to Sym(m)
(

$kTX(U )
)

which is known to be noetherian (subsection 1.3). Therefore, the sheaf D(m,k)
X (�) has

noetherian section over all open affine subset. By using the same reasoning that in lemma 2.5.12 we can conclude that the
sheaf D̂ (m,k)

X,ℚ (�) is coherent.

5.5.1 Local description

We have the following local description for the sheaves D(m,k)
X (�).

Lemma 5.5.8. There exists a covering B of X by affine open subsets such that, over every open subset U ∈ B the rings
D(m,k)
U (�) and D(m,k)

U are isomorphic.

Proof. Let’s first recall the following relations from [6]. First of all, for v = v′ + v′′, with v′, v′′ ∈ ℕ, let v = pmq + r,
v′ = pmq′ + r′ and v′′ = pmq′′ + r′′ be the euclidean division of v, v′ and v′′ by pm. We define the modified binomial
coefficients [6, 1.1.2.1]

{

v
v′

}

∶=
q!

q′!q′′!
.

For multi-indexes v, v′, v′′ ∈ ℕM such that v = v′ + v′′ we can define v! =
∏M

i=1 vi! and

{

v
v′

}

∶=
q!

q′!q′′!
.

Finally, if U ⊂ X is an affine open subset endowed with local coordinates x1, ..., xM , for every v ∈ ℕM and f ∈ OX(U )
we have the following relation [6, proposition 2.2.4, iv]

)<v>f =
∑

v′+v′′=v

{

v
v′

}

)<v
′>(f ))<v

′′> ∈ D(m,0)
U = D(m)

U .

Now, let’s take an affine covering B of X such that for every U ∈ B, U is endowed with local coordinates and there
exists a local section � ∈ L(�)(U ) such that L(�)|U = �OU and L (�)∨|U = �∨OU , where �∨ denotes the dual element
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associated to �. Let’s show that

D(m,k)
U (�) =

⨁

v
$k|v|OU� ⊗ )<v> ⊗ �∨. (5.27)

It is enough to show that for every v ∈ ℕM and f, g ∈ OU the section � ⊗ $k|v|f)<v> ⊗ g�∨ belongs to the right side
of (5.27). In fact, from the first part of the proof

�⊗$k|v|f)<v> ⊗ g�∨

= � ⊗$k|v|f)<v>g ⊗ �∨

= � ⊗$k|v|f
∑

v′+v′′=v

{

v
v′

}

)<v
′>(g))<v

′′> ⊗ �∨

=
∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>(g)� ⊗ )<v

′′> ⊗ �∨.

Let’s define � ∶ D(m,k)
U (�)→ D(m,k)

U by �
(

$k|v|f� ⊗ )<v> ⊗ �∨
)

= $k|v|f)<v> and let’s see that � is a homomorphism
of rings (the multiplication on the left is given by (5.22)). By (5.27), the elements in D(m,k)

U (�) are linear combinations of
the terms $k|v|f� ⊗ )<v> ⊗ �∨ and therefore, it is enough to show that � preserves the multiplicative structure over the
elements of this form. So, let’s take v, u ∈ ℕ and f, g ∈ OU . On the one hand

�($k|v|f� ⊗ )<v> ⊗ �∨ ∙$k|u|g� ⊗ )<u> ⊗ �∨)

= �($k|v|f� ⊗ )<v>$k|u|g)<u> ⊗ �∨)

= �
⎛

⎜

⎜

⎝

∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>($k|u|g)� ⊗ )<v

′′>)<u> ⊗ �∨
⎞

⎟

⎟

⎠

=
∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>($k|u|g))<v

′′>)<u>,

and on the other hand

�($k|v|f� ⊗ )<v> ⊗ �∨) ∙ �($k|u|g� ⊗ )<u> ⊗ �∨)

= $k|v|f)<v> ∙$k|u|g)<u>

=
∑

v′+v′′=v
$k|v|f

{

v
v′

}

)<v
′>($k|u|g))<v

′′>)<u>.

Both equations show that � is a ring homomorphism.
Finally, a reasoning completely analogous shows that the morphism �−1 ∶ D(m,k)

U → D(m,k)
U (�) defined by

�−1($k|v|f)<v>) = $k|v|f� ⊗ )<v> ⊗ �∨

is also a homomorphism of rings and �◦�−1 = �−1◦� = id. This ends the proof of the lemma.

By [37, Proposition 2.2.11] the morphisms of sheaves D̂ (m,k)
X,ℚ are left and right flat. Using this fact and the same arguments

given in proposition 4.2.4 we can conclude the following result.

Proposition 5.5.9. The sheaf of rings D†
X,k(�) is coherent.

Remark 5.5.10. The cohomological properties of the sheaves D (m,0)
X,ℚ (�) and D†

X,0(�) have been studied in [35] and [39].
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By definition D(m,k)
X (�)|XL = L(�L) ⊗OXL

DXL ⊗OXL
L(�L)∨, where �L ∶= � ⊗o 1L. Then in order to apply the

arguments of Huyghe-Schmidt in [35] and [39], as we have done in section 5.1.3, we need to find an explicitly description
of gr∙(D

(m,k)
X (�)) and a canonical epimorphism of filtered o algebras A(m,k)

X → D(m,k)
X (�) as in (5.12).

Proposition 5.5.11. There exists a canonical homomorphism of filtered o-algebras

Φ(m,k) ∶ D(m)(G(k)) → H0
(

X,D(m,k)
X (�)

)

.

Proof. By proposition 1.5.3, there exists a morphism of sheaves of filtered o-algebras

A(m,0)
X → D(m,0)

X (�). (5.28)

Let’s first show that after specialising in$k the Rees ring associated to the twisted order filtration ofD(m,0)
X0,�

we getD(m,k)
X (�).

To do that, we consider D(m,0)
X filtered by the order of differential operators and we define the following homomorphisms

of OX-modules

L(�)⊗OX
R
(

D(m,0)
X

)

⊗OX
L(�)∨ R

(

D(m,0)
X (�)

)

,
�

�−1
(5.29)

by

�

(

� ⊗
∑

i
Pit

i ⊗ �∨
)

=
∑

i
(� ⊗ Pi ⊗ �∨)ti

with ord(Pi) = i for every i in the sum, and

�−1
(

∑

j
(�j ⊗ Pj ⊗ �∨j )t

j

)

=
∑

j
�j ⊗ Pj t

j ⊗ �∨j

with ord(Pj) = j for every j. It’s clear that �◦�−1 = �−1◦� = id and therefore (5.29) is an isomorphism of OX-modules.
We remark that an easy calculation shows that (5.29) is in fact an isomorphism of rings.
Let’s denote by �1 ∶ R

(

D(m,0)
X (�)

)

→ D(m,k)
X (�); t → $k and by �2 ∶ R

(

D(m,0)
X

)

→ D(m,k)
X ; t → $k, and let’s consider

the following diagrams

L(�)⊗OX
R
(

D(m,0)
X

)

⊗OX
L(�)∨ R

(

D(m,0)
X (�)

)

D(m,k)
X (�)

idL(�)⊗�2⊗idL(�)∨

�

�−1

�1

It is straightforward to check that both diagrams are commutative and given that � and �−1 are isomorphisms we can
conclude that

(

D(m,0)
X0

(�)
)

$k
= Im(�1) = Im(idL(�) ⊗ �2 ⊗ idL(�)∨ )

= L(�)⊗OX
Im(�2)⊗OX

L(�)∨

= L(�)⊗OX

(

D(m,0)
X

)

$k
⊗OX

L(�)∨

= D(m,k)
X (�).
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On the other hand, taking the natural filtration of A(m,0)
X we have

R
(

A(m,0)
X

)

= OX ⊗o R
(

D(m)(G(0))
)

and therefore (A(m,0)
X )$k = A(m,k)

X . The above two calculations tell us that passing to the Rees rings and specialising in
$k the map (5.28), we get a homomorphism of filtered sheaves of o-algebras

Φ(m,k)X ∶ A(m,k)
X → D(m,k)

X (�). (5.30)

Taking global sections we obtain the morphism Φ(m,k)(�) of the proposition.

We recall that the right G-action on X (cf. remark 2.4.1) induces a canonical application

OX ⊗o g → TX (5.31)

which is surjective by [35, Subsection 1.6]. By using proposition 5.5.3 and the fact that gr(A(m,k)
X ) = OX ⊗o Sym(m)(g)

imply that Φ(m,k)X is also a surjective morphism.

By using the preceding proposition we can apply the arguments in [39, Subsection 3.2.4] (exactly as we have done in
sections 3.2 and 5.2.2) to obtain

Proposition 5.5.12. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular
character of tL. Then

H0
(

X, D̂ (m,k)
X,ℚ (�)

)

= D̂(m)(G(k))� ⊗o L and H0
(

X,D†
X(�)

)

= D†(G(k))�

Remark 5.5.13. The preceding proposition implies that the operators introduced in this section and the ones introduced
in the preceding section have the same global sections if � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗

is a dominant and regular character of the Lie algebra t∗L.

By replying the same lines of reasoning given in section 5.3 we can define the localization functors Loc†X,k(�) and
Loc(m,k)X,k (�) in the setting of this section and we have the following central result.

Theorem 5.5.14. Let � ∈ Hom(T ,Gm) be an algebraic character which induces, via derivation, a dominant and regular
character of the L-Lie algebra tL.

(i) The functors L oc(m,k)X (�) and H0(X, ∙) (res. L oc†X,k(�) and H
0(X, ∙)) are quasi-inverse equivalence between the

abelian categories of finitely generated D̂(m)(G(k))� ⊗o L and coherent D̂ (m,k)
X,ℚ (�)-modules (resp. finitely presented

D†(G(k))�-modules and coherent D
†
X,k(�)).

(ii) The functor L oc(m,k)X (�) (resp. L oc†X,k(�)) is an exact functor.

Remark 5.5.15. Let � ∈ Hom(T ,Gm) be an algebraic character and let �′ ∶ Dist(T ) → o be the character of the
distribution algebra Dist(T ), induced by � under the correspondence (2.26). For every k ∈ ℕ, we have built surjective
canonical morphisms of filtered o-algebras ((5.14) and (5.30))

Φ(m,k)X ∶ A(m,k)
X → D(m,k)

X (�) and Φ(m,k)X,�′ ∶ A
(m,k)
X → D(m,k)

X,�′ .

As before, we can conclude that

{

Coh. D†
X,k(�) − modules

} H0(X,∙)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

{

Finitely presented D†(G(k))� − modules
}

L oc†
X,k,�′

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
{

Coh. D†
X,k,�′ − modules

}

.
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5.6 Group actions

We start this section with the following notation (cf. 2.2.5).

We recall thatG acts on the right on the flag o-schemeX = G∕B. Let us denote by � ∶ X×Spec(o)G → X this action. As in
2.2.5, letXi ∶= X×Spec(o)Spec(o∕$i+1). The schemeXi is endowed with a rightGi-action �i ∶ Xi×Spec(o∕$i+1)Gi → Xi.
Let us denote by i ∶ Xi → X and �i ∶ Xi ×Spec(o∕$i+1) Gi → Xi+1 ×Spec(o∕$i+2) Gi+1 the closed embeddings. Let G
denote the formal completion of G along its special fiber GFq .

For every i ∈ ℕ let L(�)i ∶= ∗i (L(�)). By remark 5.4.5 the sheaf L(�) is endowed with a G-equivariant structure
Φ ∶ p∗1(L(�))

≃
←←←←←←←→ �∗(L(�)) such that

p∗1,i(L(�)i) �∗i (L(�)i)

�∗i p1,i+1(L(�)i+1) �∗i �
∗
i+1(L(�)i+1).

Φi

≃ ≃

�∗i (Φi+1)

is a commutative diagram. This implies that L (�) = lim
←←←←←←←←←←←i∈ℕ

∗i (L(�)) is a G-equivariant line bundle over X.

As we have done in proposition 5.4.4 (cf. [38, 3.3.2]), for every g ∈ G(o) = G(o) there exists an isomorphism

�g ∶ X
idX×g
←←←←←←←←←←←←←←←←←←←←←←←←→ X ×Spec(o) X

�
←←←←←←→ X.

This morphism and the G-equivariant structure of L (�) induces an OX-linear isomorphism Φg ∶ L (�) → (�g)∗(L (�))
verifying the cocycle condition

Φℎg = (�g)∗(Φℎ) ◦ Φg and (g, ℎ ∈ G(o)). (5.32)

Now, as X is locally noetherian its ideal of$-torsion is locally annihilated by a power of$ . By (5.26), for every m ≤ m′

the morphisms D̂ (m,k)
X,ℚ → D̂ (m′,k)

X,ℚ , induced by functoriality on the canonical morphisms D(m)
X → D(m′)

X , are injective as
well as the morphism D̂ (m,k)

X,ℚ → D̂X induced by (5.24) and we get the injections ([6, 2.4.1.5])

D̂ (0,k)
X,ℚ → D̂ (1,k)

X,ℚ → ... → D̂ (m,k)
X,ℚ → ... → D†

X,k → D̂X,ℚ. (5.33)

On the other hand by passing to the projective limit, the sheaf D̂X acts on OX,ℚ (resp. OX ⊆ OX,ℚ) and therefore
D̂X,ℚ(�) ∶= L (�)ℚ⊗OX,ℚ

D̂X,ℚ⊗OX,ℚ
L (�)∨ℚ acts on the line bundle L (�)ℚ (resp. the line bundle L (�) ⊂ L (�)ℚ) by

(

s ⊗ P ⊗ s∨
)

∙ t ∶= P ∙
⟨

s∨, t
⟩

s (P ∈ D̂X,ℚ, s, t ∈ L (�)ℚ and s∨ ∈ L (�)∨ℚ). (5.34)

By lemma 5.5.8 and (5.33) we can conclude that D†
X,k(�) ⊆ D̂X,ℚ(�) and therefore the line bundle L (�)ℚ is also a (left)

D†
X,k(�)-module (resp. L (�) ⊆ L (�)ℚ). In particular, we have an induced G(o)-action on the sheaf D†

X,k(�)

Tg ∶ D†
X,k(�)→ (�g)∗D

†
X,k(�), P → Φg ◦ P ◦ (Φg)−1. (5.35)
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Locally, if U ⊆ X and P ∈ D†
X,k(�)(U ) then Tg(U )(P ) is given by the following commutative diagram

L (�)(U .g−1) L (�)(U .g−1)

L (�)(U ) L (�)(U ).

Tg, U (P )

Φ−1g, U
P

Φg, U

The cocycle condition (5.32) tells that the diagram

L (�)(U .(ℎg)−1) = L (�)(U .g−1ℎ−1) L (�)(U .g−1ℎ−1)

L (�)(U .g−1) L (U .g−1)

L (�)(U ) L (�)(U )

Tgℎ, (U (P )

Φ−1
ℎ, U .g−1

= (�g)∗Φ−1ℎ, U

Φ−1g, U

Φℎ, U .g−1 = (�g)∗Φℎ, U

P

Φg, U

(5.36)

is commutative and we get the relation

Tℎg =
(

�g
)

∗ Tℎ ◦ Tg (g, ℎ ∈ G0). (5.37)
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Chapter 6

Twisted differential operators on formal
model of flag varieties

Through out this chapter X = G∕B will denote the smooth flag o-scheme and � ∈ Hom(T ,Gm) will always denote an
algebraic character. As before, we will denote be L(�) the (algebraic) line bundle on X induced by �. In this chapter
we will generalize the construction given in [36] by introducing sheaves of twisted differential operators on an admissible
blow-up of the smooth formal flag o-scheme X. The reader will figure out that some reasoning are inspired in the results
of Huyghe-Patel-Strauch-Schmidt in [36].

6.1 Differential operators on admissible blow-ups

We start with the following definition.

Definition 6.1.1. Let I ⊆ OX be a coherent ideal sheaf. We say that a blow-up pr ∶ Y → X along the closed subset
V (I) is admissible if there is k ∈ ℕ such that$kOX ⊆ I .

Let us fix I ⊆ OX an open ideal and pr ∶ Y → X an admissible blow-up along V (I). We point out to the reader that I is
not uniquely determined by the space Y . In the sequel we will denote by

kY ∶= min
I

min{k ∈ ℕ | $k ∈ I},

where the first minimum runs over all open ideal sheaves I such that the blow-up along V (I) is isomorphic to Y .

Now, as I is an open ideal sheaf, the blow-up induces a canonical isomorphism YL ≃ XL between the generic fibers.
Moreover, as $ is invertible on XL, we have D(m,k)

X |XL = DX|XL = DXL , the usual sheaf of (algebraic) differential

operators onXL. Therefore pr−1
(

D(m,k)
X

)

|YL = DYL . In particular,OYL has a natural structure of (left) pr
−1

(

D(m,k)
X

)

|YL -
module. The idea is to find those congruence levels k ∈ ℕ such that the preceding structure extends to a module structure
on OY over pr−1

(

D(m,k)
X

)

. Let us denote by

D(m,k)
Y ∶= pr∗

(

D(m,k)
X

)

= OY ⊗pr−1OX
pr−1D(m,k)

X . (6.1)

The problem to find those congruence levels was studied in [36] and [37]. In fact, we have the following condition [36,
Corollary 2.1.18].

Proposition 6.1.2. Let k ≥ kY . The sheaf D
(m,k)
Y is a sheaf of rings on Y . Moreover, it is locally free over OY .

91
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Explicitly, if )1, )2 are both local sections of pr−1
(

D(m,k)
X

)

, and if f1, f2 are local sections of OY , then

(f1 ⊗ )1) ∙ (f2 ⊗ )2) = f1)1(f2)⊗ )2 + f1f2 ⊗ )1)2.

We have all the ingredients that allow us to construct the desired sheaves over Y , this is, to extend the sheaves of rings
defined in the preceding chapter to an admissible blow-up of X. Let k ≥ kY fix. Let us first recall that taking arbitrary
sections P ,Q ∈ D(m,k)

X , s, t ∈ L(�) and s∨, t∨ ∈ L(�)∨ (the last two not necessarily the duals of s and t) over an arbitrary
open subset U ⊂ X, the multiplicative structure of the sheaf D(m,k)

X (�) is defined by (cf. (5.22))

s ⊗ P ⊗ s∨ ∙ t ⊗ Q⊗ t∨ = s ⊗ P
⟨

s∨, t
⟩

Q⊗ t∨.

Now, if pr∶ Y → X denotes the projection, we put

D(m,k)
Y (�) ∶= pr∗

(

D(m,k)
X (�)

)

.

By the adjointness property of pr∗ and pr∗ we have a canonical isomorphism of OX-modules

pr∗ℋ omOY
(pr∗E ,F ) ≃ ℋ omOX

(E , pr∗F )

where E is an OX-module and F is an OY -module. In particular, we have the following isomorphism

Hom
(

pr∗D(m,k)
X ⊗OY

pr∗L(�)∨,F
)

= Hom
(

pr∗
(

D(m,k)
X ⊗OX

L(�)∨
)

,F
)

,

which tells us that pr∗D(m,k)
X ⊗OY

pr∗L(�)∨ and pr∗
(

D(m,k)
X ⊗OX

L(�)∨
)

are canonically isomorphic. By applying once
again the preceding reasoning we get

D(m,k)
Y (�) = pr∗L(�)⊗OY

pr∗D(m,k)
X ⊗OY

pr∗L(�)∨.

In consequence, the preceding isomorphism and proposition 6.1.2 allow us to endow the sheaf of OY -modules D(m,k)
Y (�)

with a multiplicative structure for every k ≥ kY . On local sections we have

s ⊗ P ⊗ s∨ ∙ t ⊗ Q⊗ t∨ = s ⊗ P
⟨

s∨, t
⟩

Q⊗ t∨,

where s, t ∈ pr∗L(�), s∨, t∨ ∈ pr∗L(�)∨ and P ,Q ∈ D(m,k)
Y .

Let Y be the completion of Y along its special fiber YFq = Y ×Spec(o) Spec(o∕$).

6.1.3. In this work we will only consider formal blow-ups Y arising from the formal completion along the special fiber of
an admissible blow-up Y → X (cf. proposition 6.3.1 below). Under this assumption we will identify ky = kY.

Definition 6.1.4. Let pr ∶ Y → X be an admissible blow-up of the flag variety X and let k ≥ kY . The sheaves

D̂ (m,k)
Y,ℚ (�) ∶=

(

lim
←←←←←←←←←←←
i∈ℕ

D(m,k)
Y (�)∕$i+1D(m,k)

Y (�)

)

⊗o L and D†
Y,k(�) ∶= lim

←←←←←←←←←←→
m∈ℕ

D̂ (m,k)
Y,ℚ (�).

are called sheaves of twisted arithmetic differential operators on Y.

Proposition 6.1.5. (i) The sheaves D(m,k)
Y (�) are filtered by the order of twisted differential operators and there is a

canonical isomorphism of graded sheaves of algebras

gr
(

D(m,k)
Y (�)

)

≃ Sym(m)
(

$kpr∗TX
)

,
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where k ≥ kY .

(ii) There is a basis for the topology of Y , consisting of affine open subsets, such that for any open subset U ∈ Y in this
basis, the ring D(m,k)

Y (�) (U ) is noetherian. In particular, the sheaf of rings D(m,k)
Y (�) is coherent.

(iii) The sheaf D̂ (m,k)
Y,ℚ (�) is coherent.

Proof. We have an exact sequence of OX-modules

0 → D(m,k)
X,d−1 → D(m,k)

X,d → Sym(m)
d

(

$kTX
)

→ 0.

Taking the tensor product with L(�) and L(�)∨ on the left and on the right, respectively, and applying pr∗ we obtain the
exact sequence (since Sym(m)

d ($kTX) is a locally free OX-module of finite rank)

0 → D(m,k)
Y ,d−1(�)→ D(m,k)

Y ,d (�)→ pr∗L(�)⊗OY
Sym(m)

d
(

$kpr∗TX
)

⊗OY
pr∗L(�)∨ → 0,

which implies (i) because

pr∗L(�)⊗OY
Sym(m) ($kpr∗TX

)

⊗OY
pr∗L(�)∨ ≃ Sym(m) ($kpr∗TX

)

by commutativity of the symmetric algebra.

Let U ⊆ X be an affine open subset endowed with local coordinates x1, ..., xM and such that L(�)|U = sOU for some
s ∈ L(�)(U ). Then, by lemma 5.5.8 we have the following local description for D(m,k)

Y (�) on V = pr−1(U )

D(m,k)
X (�)(V ) =

{<∞
∑

v
$k|v|av)⟨

v⟩
| v = (v1, ..., vM ) ∈ ℕM and av ∈ OY (V )

}

.

By (i), the graded algebra gr∙
(

D(m,k)
Y (�)(V )

)

is isomorphic to Sym(m) ($kpr∗TX(V )
)

which is known to be noetherian
[34, Proposition 1.3.6]. Therefore, taking as a basis the set of affine open subsets of Y that are contained in some pr−1(U )
we get (ii). We also remark that, as D(m,k)

Y (�) is OY -quasi-coherent, and by (ii) in the actual proposition, it has noetherian
sections over the affine open subsets of Y (cf. [37, Proposition 2.2.2 (iii)]), it is certainly a sheaf of coherent rings [6,
proposition 3.1.3]. Finally, by definition, we see that D̂ (m,k)

Y (�) satisfies the conditions (a) and (b) of 3.3.3 in [6] and hence
[6, Proposition 3.3.4] gives us (iii).

Let us briefly study the problem of passing to the inductive limit when m varies.

Let U ⊂ X such that D(m,k)
X (�)|U ≃ D(m,k)

X |U and let us take V ⊆ Y an affine open subset such that V ⊆ pr−1(U ). We
have the commutative diagram

V Y

U X,

iV

pr pr
iU

which implies that D(m,k)
Y (�)|V ≃ D(m,k)

Y |V , as sheaves of rings. In particular, if V denotes the formal p-adic completion
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along the special fiber VFq we have the commutative diagram (cf. proposition 2.5.12)

D̂ (m,k)
Y,ℚ (�)(V) D̂ (m+1,k)

Y,ℚ (�)(V)

D̂ (m,k)
Y,ℚ (V) D̂ (m+1,k)

Y,ℚ (V).

≃ ≃ (6.2)

Given that the morphism of sheaves D̂ (m,k)
Y,ℚ → D̂ (m+1,k)

Y,ℚ is left and right flat [37, Proposition 2.2.11], the preceding diagram

allows us to conclude that the morphism D̂ (m,k)
Y,ℚ (�) → D̂ (m+1,k)

Y,ℚ (�) is also left and right flat. By proposition 4.2.3 we have
the following result.

Proposition 6.1.6. The sheaf of rings D†
Y,k(�) is coherent.

As we will explain later, there exists a canonical morphism of sheaves of filtered o-algebras1

A(m,k)
Y ∶= OY ⊗o D

(m)(G(k)) → D(m,k)
Y (�)

which allows to conclude the following proposition exactly as we have done in the proof of proposition 3.4.1 (cf. [36,
Proposition 4.3.1]).

Proposition 6.1.7. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular
character of tL.

(i) Let E be a coherent D̂ (m,k)
Y,ℚ (�)-module. Then E is generated by its global sections as D̂ (m,k)

Y,ℚ (�)-module. Furthermore,

E has a resolution by finite free D̂ (m,k)
Y,ℚ (�)-modules.

(ii) Let E be a coherent D†
Y,k(�)-module. Then E is generated by its global sections as D†

Y,k(�)-module. Furthermore,

E has a resolution by finite free D†
Y,k(�)-modules.

6.2 An Invariance theorem for admissible blow-ups

Let pr ∶ Y → X be an admissible blow-up along a closed subset V(I ) defined by an open ideal sheaf I ⊆ OX. Using
(6.1.3), we can suppose that Y is obtained as the formal completion of an admissible blow-up Y → X (we will abuse of
the notation and we will denote again by pr ∶ Y → X the canonical morphism of this (algebraic) blow-up) along a closed
subset V(I) defined by an open ideal sheaf I ⊆ OX , such that I is the restriction of the formal p-adic completion of I .
Let us denote by Yi ∶= Y ×Spec(o) Spec(o∕$i+1) the redaction module $i+1 and by i ∶ Yi → Y the canonical closed
embedding. In [37] the authors have studied the cohomological properties of the sheaves

D̂ (m,k)
Y,ℚ ∶= lim

←←←←←←←←←←←
i∈ℕ

∗i D
(m,k)
Y ⊗o L and D†

Y,k ∶= lim
←←←←←←←←←←→
m∈ℕ

D̂ (m,k)
Y,ℚ .

Let us consider the commutative diagram

Yi Xi

Y X.

pri

i i
pr

1We construct this morphism in (6.39). The arguments given there are independent and we won’t introduce a circular argument.
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Here pri ∶ Yi → Xi denotes the redaction of the morphism pr module $i+1. We put L (�)∨ ∶= lim
←←←←←←←←←←←i

∗i pr
∗L(�)∨ and

L (�) ∶= lim
←←←←←←←←←←←i

∗i pr
∗L(�). By using the preceding commutative diagram we have

∗i D
(m,k)
Y (�) = ∗i

(

pr∗L(�)⊗OY
D(m,k)
Y ⊗OY

pr∗L(�)∨
)

= ∗i
(

pr∗L(�)
)

⊗OYi
∗i D

(m,k)
Y ⊗OYi

∗i
(

pr∗L(�)∨
)

.

Taking the projective limit we get the following description of the sheaves D̂ (m,k)
Y,ℚ (�)

D̂ (m,k)
Y,ℚ (�) = L (�)

ℚ
⊗OY,ℚ

D̂ (m,k)
Y,ℚ ⊗OY,ℚ

L (�)∨
ℚ
,

and by taking the inductive limit we get the characterization

D†
Y,k(�) = L (�)

ℚ
⊗OY,ℚ

D†
Y,k ⊗OY,ℚ

L (�)∨
ℚ
. (6.3)

As in the preceding chapter, the sheaf L (�)
ℚ
is endowed with the following (left) D†

Y,k(�)-action

(

t ⊗ P ⊗ t∨
)

∙ s ∶=
(

P ∙ < t∨, s >
)

t (s, t ∈ L (�) and t∨ ∈ L (�)∨).

We end this first discussion by remarking that the relation pr∗i ◦ ∗i = ∗i ◦ pr∗, which comes from the preceding
commutative diagram, implies that

D†
Y,k(�) = pr∗D†

X,k(�). (6.4)

Let us suppose that � ∶ Y ′ → Y is a morphism of admissible blow-ups (abusing of the notation, we will also denote by
� ∶ Y′ → Y the respective morphism of formal admissible blow-ups in the sense of [13, Part II, chapter 8, section 8.2,
definition 3]). This means that we have a commutative diagram

Y ′ Y

X.

pr′
�

pr resp.
Y′ Y

X.

pr′

�

pr

Let k ≥ {kY ′ , kY }. Let us denote by D(m,k)
X,i (�) ∶= D(m,k)

X (�)∕pi+1D(m,k)
Y (�) (we will use the same notations over Y ′i and

Yi) and by �i ∶ Y ′i → Yi the redaction module$i+1. The preceding commutative diagram implies that

D(m,k)
Y ′,i (�) = (pr

′
i)
∗D(m,k)

Xi
(�) = �∗i D

(m,k)
Yi

(�). (6.5)

In this way, she sheaf D(m,k)
Y ′,i (�) can be endowed with a structure of right �−1i D(m,k)

Yi
(�)-module. Passing to the projective

limit, the sheaf D̂ (m,k)
Y′ (�) is a sheaf of right �−1D̂ (m,k)

Y (�)-modules. So, passing to the inductive limit over m we can
conclude that D†

Y′,k(�) is a right �
−1D†

Y,k(�)-module. For a D†
Y,k(�)-module E , we define

�!E ∶= D†
Y′,k(�)⊗�−1D†

Y,k(�)
�−1E ,

with analogous definitions for D̂ (m,k)
X,ℚ (�). We will need the following lemma whose proof can be found in [37, Lemma

2.3.5].

Lemma 6.2.1. There existsN ∈ ℕ such that
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(i) For all i ≥ 0, the kernel and the cokernel of the canonical map OYi → �i∗OY ′i
is killed by$N .

(ii) For all i ≥ 0, for all j ≥ 1,$NRj�i∗OY ′i
= 0.

We have the following theorem whose proof follows word for word the reasoning given in [37, Theorem 2.3.4].

Theorem 6.2.2. Let � ∶ Y ′ → Y be a morphism over X of admissible blow-ups. Let k ≥ max{kY ′ , kY }.

(i) If E is a coherent D†
Y′,k(�), then Rj�∗E = 0 for every j > 0. Moreover, �∗D

†
Y′,k(�) = D†

Y,k(�), so �∗ induces an

exact functor between coherent modules over D†
Y′,k(�) and D†

Y,k(�), respectively.

(ii) The formation �! is an exact functor from the category of coherent D†
Y,k(�)-modules to the category of coherent

D†
Y′,k(�)-modules.

(iii) The functors �∗ and �! are quasi-inverse equivalences between the categories of coherent D†
Y′,k(�)-modules and

coherent D†
Y,k(�)-modules.

We remark for the reader that this theorem has an equivalent version for the sheaves D̂ (m,k)
Y,ℚ (�) and D̂ (m,k)

Y′,ℚ (�).

Proof. The question being local on Y we can suppose that Y is affine. Let us first assume that E = D†
Y′,k(�). Since R

j�∗
commutes with inductive limits, we can even restrain our attention on the sheaves D̂ (m,k)

Y,ℚ (�). By [58, Lemma 20.32.4]

R lim
←←←←←←←←←←←i

D(m,k)
Y ′i

(�) = lim
←←←←←←←←←←←i

D(m,k)
Y ′i

(�), and we have

R�∗D̂
(m,k)
Y′ (�) ≃ R�∗R lim←←←←←←←←←←←

i∈ℕ
D(m,k)
Y ′i

(�) ≃ R lim
←←←←←←←←←←←
i∈ℕ

R�i ∗D
(m,k)
Y ′i

(�),

the last isomorphism is [58, Lemma 20.32.2]. By the projection formula, there is a canonical isomorphism

R�i∗D
(m,k)
Y ′i

(�) ≃ R�i∗OY ′i
⊗OYi

D(m,k)
Yi

(�)

and the canonical map OYi → R�i∗OY ′i
induces a canonical map of complexes

ℎ ∶ D(m,k)
Yi

(�)→
(

R�i∗D
(m,k)
Y ′i

(�)
)

.

By applying R lim
←←←←←←←←←←←i∈ℕ

to ℎ, we get also a canonical map D̂ (m,k)
Y (�) → R�∗D̂

(m,k)
Y′ (�). Moreover, for every j ≥ 0 and for

every i ∈ ℕ, we have

Rj�∗D
(m,k)
Y ′i

(�) ≃ Rj�i ∗OY ′i
⊗OYi

D(m,k)
Yi

(�),

which implies by the preceding lemma that the kernel and cokernel of ℎ are annihilated by $N , as well as the projective
systems (Rj�i ∗D

(m,k)
Y ′i

(�)) if j ≥ 1. Let C ∶= (Ci) be the cone of ℎ, then we have the exact sequence of projective systems
of sheaves

0 → (H−1(Ci)) → (D(m,k)
Yi

(�))→ (�i ∗D
(m,k)
Y ′i

(�))→ (H0(Ci)) → 0,

and for all j ≥ 1

(Rj�i ∗D
(m,k)
Yi

(�)) ≃ (Hj(Ci)).
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In particular the cohomology of C is annihilated by$N so by [37, Lemma 2.3.3] we obtain a quasi-isomorphism

D̂ (m,k)
Y,ℚ (�)→ R�∗D̂

(m,k)
Y′,ℚ (�).

By passing to the cohomology sheaves we get the second part of (i) for the sheaf D̂ (m,k)
Y′,ℚ (�) and hence for the sheafD

†
Y′,k(�).

To handle with the second part let us consider the following assertion for every j ≥ 1. Let aj : for any coherent D†
Y′,k(�)-

module E and for all l ≥ j, Rl�∗E = 0. The assertion is true for j = dim(Y) + 1. Let us suppose that aj+1 is true and
let us take a coherent D†

Y′,k(�)-module E . By proposition 6.1.7 there exists b ∈ ℕ and a short exact sequence of coherent
D†

Y′,k(�)-modules

0 → F →
(

D†
Y′,k(�)

)⊕b
→ E → 0.

Since Rj�∗D
†
Y′,k(�) = 0, the long exact sequence for �∗ gives us

Rj�∗E ≃ Rj+1�∗F ,

which is 0 by induction hypothesis. This ends the proof of (i).
Let us show (ii) for the sheavesD†

Y,k(�). The case for the sheaves D̂ (m,k)
Y,ℚ (�) being equal. Given that �!D†

Y,k(�) = D†
Y′,k(�),

and since the tensor product is right exact, we can conclude that �! preserves coherence.
Now, we have a morphism �−1E → �!E sending m → 1 ⊗ m. This maps induces the morphism E → �∗�!E . To
show that this is an isomorphism is a local question on Y. If V ⊆ Y is the formal completion of an affine open subset
V ⊆ pr−1(U ), and U ⊆ X is an affine open subset such that D(m,k)

X (�)|U ≃ D(m,k)
X |U (lemma 5.5.8), then by (6.2) and [37,

Corollary 2.2.15] we can conclude that the previous map is in fact an isomorphism over V. Finally, if F is a coherent
D†

Y′,k(�)-module, then we have the map �!�∗F → F , sending P ⊗m → Pm. To see that this is an isomorphism we can
use the preceding reasoning.

Let us recall that if � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and regular character of
tL, then by proposition 5.5.12 we have

H0
(

X,D†
X,k(�)

)

= D†(G(k))�.

The previous theorem implies

Corollary 6.2.3. Let � ∈ Hom(T ,Gm) be an algebraic character such that �+� ∈ t∗L is a dominant and regular character
of tL. In the situation of the preceding theorem we have

H0
(

Y,D†
Y,k(�)

)

= H0
(

X,D†
X,k(�)

)

= D†(G(k))� = H0
(

Y′,D†
Y′,k(�)

)

.

Theorem 6.2.4. Let pr∶ Y → X be an admissible blow-up. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character
such that � + � ∈ t∗L is a dominant and regular character of tL.

(i) For any coherent D†
Y,k(�)-module E and for all q > 0 one hasHq(Y,E ) = 0.

(ii) The functor H0(Y, ∙) is an equivalence between the category of coherent D†
Y,k(�)-modules and the category of

finitely presented D†(G(k))�-modules.

The same statement holds for coherent modules over D̂ (m,k)
Y,ℚ (�).

Proof. The first part of the theorem follows from the fact thatH0(Y, ∙) = H0(X, ∙) ◦ �∗. Now we only have to apply the
preceding theorem and theorem 5.5.14.
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Let us denote by Loc†Y,k(�) the exact functor defined by the composition

Finitely presented D†(G(k))� −modules
L oc†X,�
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Coherent D†

X,k(�) −modules
�!
←←←←←←←←←→ CoherentD†

Y,k(�) −modules.

Let us compute this functor. To do that, we may fix a finitely presented D†(G(k))�-module E. Then

�!
(

L oc†X,�(E)
)

= D†
Y,k(�)⊗�−1D†

X,k(�)
�−1D†

X,k(�)⊗D†(G(k))� E = L oc†Y,�(E).

Now, to show that

H0
(

Y, �!
(

L oc†X,�(E)
))

= H0
(

Y,D†
Y,k(�)⊗D†(G(k))� E

)

= E,

we can take a resolution

(

D†(G(k))�
)⊕b

→
(

D†(G(k))�
)⊕a

→ E → 0,

to get the following diagram

(

D†(G(k))�
)⊕b (

D†(G(k))�
)⊕a E 0

(

D†(G(k))�
)⊕b (

D†(G(k))�
)⊕a H0

(

Y,D†
Y,k(�)⊗D†(G(k))� E

)

0.

where the sequence on the top is clearly exact. By definition L oc†Y,k(�)(∙) is an exact functor and by (i) the global section
functor H0(Y, ∙) is also exact. This shows that the sequence at the bottom is also exact and we end the proof of the
theorem.

In the sequel we will denote by G0 the compact locally L-analytic group G0 ∶= G(o).

6.3 Group actions on Blow-ups
We start this section with the following proposition whose proof is given in [36, Proposition 2.2.9].

Proposition 6.3.1. Let Y → X be an admissible blow-up, obtained by blowing up an open ideal sheaf I ⊆ OX. Then
there is an open ideal sheaf I ⊆ OX such that I is the restriction to X of the$-adic completion of I , and Y is therefore
the completion of the blow-up Y of I along its special fiber.

Let G be the formal completion of the group o-scheme G, along its special fiber GFp ∶= G ×Spec(o) Spec(o∕$). Let us
denote by � ∶ X ×Spf(o) G → X the induced right G-action on the formal flag o-scheme X (cf. section 5.6). For every
g ∈ G(o) = G0 we have an automorphism �g of X given by

�g ∶ X = X ×Spf(o) Spf(o)
idX×g
←←←←←←←←←←←←←←←←←←←←←←←←→ X ×Spf(o) G

�
←←←←←←→ X.

As G acts on the right, we have the following relation

(

�g
)

∗

(

�♮ℎ
)

◦�♮g = �
♮
ℎg (g, ℎ ∈ G0). (6.6)

Here �♮g ∶ OX → (�g)∗OX denotes the comorphism of �g .
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LetH ⊆ G0 be an open subgroup. We say that an open ideal sheaf I ⊆ OX isH-stable if for all g ∈ H the comorphism
�♮g maps I ⊆ OX into (�g)∗I ⊆ (�g)∗OX. In this case �♮g induces a morphism of sheaves of graded rings

⨁

d∈ℕ
I d →

(

�g
)

∗

(

⨁

d∈ℕ
I d

)

on X. This morphism of sheaves induces an automorphism of the blow-up Y = Proj
(

⊕d∈ℕI d), let us say �g by abuse
of notation, and the action of H on X lifts to a right action of H on Y, in the sense that for every g, ℎ ∈ G0 the relation
(6.6) is verified and we have a commutative diagram

Y Y

X X.

�g

pr pr
�g

(6.7)

Definition 6.3.2. Let H ⊆ G0 be an open subgroup and pr ∶ Y → X and admissible blow-up defined by an open ideal
subsheaf I ⊂ OX. We say that Y isH-equivariant if I isH-stable.

We will need the following result in the next sections. The reader can find its proof in [36, Lemma 5.2.3].

Lemma 6.3.3. Let pr ∶ Y → X be an admissible blow-up, and let us assume that k ≥ kY = kY (this notation is justified
by proposition 6.3.1). Then Y is Gk = G(k)(o)-equivariant and the induced action of every g ∈ Gk+1 on the special fiber
of Y is the identity. Therefore, Gk+1 acts trivially on the underlying topological space of Y.

Let us recall that in the preceding chapter we have defined a G0-action on L (�). This means, for every g ∈ G0 we have
an isomorphism Φg ∶ L (�) → (�g)∗L (�) satisfying the cocycle condition Φℎg = (�g)∗Φℎ ◦ Φg , for every g, ℎ ∈ G0.
Let us consider the isomorphism (�g)∗L (�)→ L (�) given by adjonction on Φg . Let us suppose thatH ⊆ G0 is an open
subgroup and that pr ∶ Y → X is an H-equivariant admissible blow-up. Pulling back the isomorphism (�g)∗L (�) →
L (�), via (pr)∗, and using the preceding commutative diagram we get pr∗(�g)∗L (�) = (�g)∗pr∗L (�) = (�g)∗L (�)
(notation given at the beginning of the preceding section). By adjontion we get the map

Rg ∶ L (�)
≃
←←←←←←←→

(

�g
)

∗ L (�)

which satisfies, by functoriality, the cocycle condition

Rℎg =
(

�g
)

∗Rℎ ◦ Rg (g, ℎ ∈ H). (6.8)

As in (5.35) we can define (from now on we will work on admissible blow-ups of Y so we will use the same notation)

Tg ∶ D†
Y,k(�) →

(

�g
)

∗ D†
Y,k(�)

P → Rg ◦ P ◦ R−1g .
(6.9)

Locally, if U ⊆ Y is an open subset and P ∈ D†
Y,k(�)(U ) then Tg U (P ) is given by the following diagram

L (�)(U .g−1) L (�)(U .g−1)

L (�)(U ) L (�)(U ).

Tg U (P )

R−1g U Rg U

P

,
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and exactly as we have done in (5.36) we can conclude that

Tℎg =
(

�g
)

∗ Tℎ ◦ Tg ,

for every g, ℎ ∈ H .

6.4 Complete distribution algebras and locally analytic representations

6.4.1 Locally analytic representations and locally analytic distributions

Let us recall that in this work L denotes a finite extension ofℚp. In particular, L is a nonarchimedian spherically complete
field in the sense that for any decreasing sequence of closed balls B1 ⊇ B2 ⊇ ... inL, the intersection ∩n∈ℕBn is nonempty.
We thus assume throughout this section that the so-called coefficient-field, over which the topological vector will be
defined, is equal to our base field L.

Let V be an L-vector space. Let us start by recalling that a latticeM in V is an o-submodule satisfying: for any vector
v ∈ V there exists a nonzero scalar a ∈ L× such that av ∈ M . This means that the natural map L ⊗o M → V sending
a ⊗ v → av, is a bijection.

In what follows, we will be always considering the category of Hausdorff locally convex topologicalL-vector spaces. This
means, the category of L-vector spaces V , endowed with a family of (nonempty) lattices (Mj)j∈J , which satisfies

(l1) for any j ∈ J and any a ∈ L× there exists k ∈ J such thatMk ⊂ aMj .

(l2) If i, j ∈ J , then there exists k ∈ J such thatMk ⊆ Mj ∩Mi.

These conditions imply that the sets v +Mj , with v ∈ V and j ∈ J , form a basis of a topology on V, which is called the
locally convex topology on V (defined by the family (Mj)j∈J ).

Definition 6.4.1. Let V be a Hausdorff locally convex topological L-vector space. We say that V is a BH-space if it
admits a complete metric defined by a norm, such that this induces a locally convex topology finer that its given topology.

In the preceding definition, if the metric topology equals the given locally convex topology, we say that V is a Fréchet
space. Furthermore, ifW is another locally convex L-vector space, then a continuous linear map between two Hausdorff
locally convex topological L-vector spaces f ∶ V → W is called a BH-map, if there exists an L-Banach space U such
that f admits a factorization of the form V → U → W .
On the other hand, the continuous map f ∶ V → W is called compact if there is an open latticeM ⊆ V such that f (M)
is compact.

Definition 6.4.2. A locally convex vector space V is called of compact type if it is the locally convex inductive limit of a
sequence

V1 → ...→ Vk
jk
←←←←←←←←←→ Vk+1 → ...

of L-Banach spaces with injective and compact transition maps (the topology on the inductive limit is the finest locally
convex topology such that all the natural maps Vk → V are continuous [55, Chapter I, section 5 E.]).

We can define now an important class of topological L-algebras ([24, Definition 1.6] or [52, Section 3]).

Definition 6.4.3. Let A be a topological L-algebra. We say that A is a Fréchet-Stein algebra if there exists a sequence
(Ak)k∈ℕ of Notherian Banach L-algebras satisfying the following conditions.
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(i) We can find an isomorphism

A
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℕ

Ak,

with flat transition maps Ak+1 → Ak.

(ii) The maps A → Ak have dense image.

If V is locally convex L-vector space, then we say that V is a nuclear Fréchet space over L if there exists a sequence
(Vk)k∈ℕ of Banach spaces , such that

V
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℕ

Vk

and the transition maps are compact (the right side is equipped with the projective limit topology [55, Chapter I, section 5
D]). We have [54, Theorem 1.3]

Proposition 6.4.4. Passing to strong duals yields an anti-equivalence of categories between the category of spaces of
compact type and the category of nuclear Fréchet spaces.

We say that a locally convex L-vector space V is hereditarily complete if any quotient of V is complete. In this work we
will use the following weaker version of the preceding definition.

Definition 6.4.5. Let A be a locally convex topological L-algebra. We say that A is a weak Fréchet-Stein L-algebra if
there exists a sequence (Ak)k∈ℕ of locally convex L-algebras satisfying the following properties.

(i) For every k ∈ ℕ the L-algebra Ak is hereditarily complete.

(ii) For each k ∈ ℕ there exists an L-algebra homomorphism Ak+1 → Ak, which is a BH-map.

(iii) An isomorphism of locally convex topological L-algebras

A
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℕ

Ak.

It is possible to show that any two weak Fréchet-Stein structures on A are equivalent [25, Proposition 1.2.7].

Definition 6.4.6. Let A be a weak Fréchet-Stein algebra, and let A
≃
←←←←←←←→ lim

←←←←←←←←←←←k∈ℕ
Ak be a choice of a weak Fréchet-Stein

structure on A. IfM is a locally convex topological A-module, we say thatM is coadmissible (with respect to the given
weak Fréchet-Stein structure on A) if there exists a sequence (Mk)k∈ℕ satisfying the following conditions.

(i) For every k ∈ ℕ,Mk is a finitely generated locally convex topological Ak-module.

(ii) An isomorphism of topological Ak-modules Ak⊗̂Ak+1Mk+1
≃
←←←←←←←→ Mk (the tensor product is understood in the sense

of [25, Lemma 1.2.3]).

(iii) An isomorphism of topological A-modulesM
≃
←←←←←←←→ lim

←←←←←←←←←←←k∈ℕ
Mk.

∙ IfM
≃
←←←←←←←→ lim

←←←←←←←←←←←k∈ℕ
Mk is a coadmissible A-module, we will say that (Mk)k∈ℕ is an (Ak)k∈ℕ-sequence.

Remark 6.4.7. Let A be a locally convex topological L-algebra.

(i) A Fréchet-Stein structure on A is a weak Fréchet-Stein structure A
≃
←←←←←←←→ lim

←←←←←←←←←←←k∈ℕ
Ak on A, such that for each n ≥ 1, the

algebra Ak is noetherian L-Banach algebra, and the transition maps Ak+1 → Ak are flat.
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(ii) 2 Let us suppose that A
≃
←←←←←←←→ lim

←←←←←←←←←←←k∈ℕ
Ak is a Fréchet-Stein structure on A. If M

≃
←←←←←←←→ lim

←←←←←←←←←←←k∈ℕ
Mk is a coadmissible

A-module, where (Mk)k∈ℕ is an (Ak)k∈ℕ-sequence, then everyMk is a Hausdorff quotient of Arkk , for some rk ≥ 0,
and hence an Ak-Banach module. By [14, Proposition 3.7.3 (6)] the natural map

Ak ⊗Ak+1 Mk+1 →Mk → Ak⊗̂Ak=1Mk+1 →Mk

is an isomorphism (this notation is introduced before the definition 6.4.11). Thus the notion of coadmissiblity for
topological A-modules as defined before coincides with that defined in [52, Second definition of section 3].

Let X be an affinoid rigid analytic space over L. We will denote by Can(X, L) ∶= O(X) the Tate L-algebra of L-valued
rigid analytic functions on X. This is an Banach L-algebra [13, Part I, chapter 3, section 3.1, proposition 5].

Example 6.4.1. Let r ∈ |L×| and a ∈ Ld be a fixed point. Let us consider the closed ball of radius r,

Br(a) ∶=
{

x ∈ Ld | |x − a| ≤ r
}

.

This can be identified as the set of L-points of a rigid analytic ball Br, and therefore the algebra of all L-valued rigid
analytic functions on Br(a) is the Tate algebra

O(Br) ∶=
{

f (x) =
∑

i
ci(x − a)i | ci ∈ L and lim

|i|→∞
|ci|r

|i| = 0

}

.

This is a Banach L-algebra if we endow it with the norm

|f | ∶= max
i

|ci|r
|i|.

Here i ∈ ℕd is a multi-index and (x − a)i ∶= (x1 − a1)i1 ...(xd − ad)id .

6.4.8. Let M be a Hausforff space

A chart for M is an open subset Ui ⊆M together with a homeomorphism

'i ∶ Ui → Bri ⊂ L
di (6.10)

where Bri is a closed ball. We say that two charts (Ui, 'i) and (Uj , 'j) (with Ui ∩ Uj ≠ ∅) are compatible if both maps

'j(Ui ∩ Uj)
'i◦'−1j
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 'j(Ui ∩ Uj) and 'i(Ui ∩ Uj)

'j◦'−1i
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 'i(Ui ∩ Uj)

are given by a collection of convergent power series (locally L-analytic functions). We have:

(i) [56, II, section 7, lemma 7.1] Let (Ui, 'i) and (Uj , 'j) be two compatible charts, such that Ui ∩Uj ≠ ∅. Then using
the same notation given in (6.10), we have that di = dj .

We will say that a collection of compatible charts A =
{

(Uj , 'j)
}

j∈J is an atlas for M if M ∶ ∪j∈JUj . Two atlas A1
and A2 are called equivalent if A1 ∪ A2 is again an atlas ofM . The atlas A1 will be called maximal if any equivalent
atlas B satisfies B ⊂ A1.

(ii) [56, II, Section 7, remark 7.2] The equivalence of atlases is an equivalence relation. Every equivalence class contains
exactly one maximal atlas.

2This is as in [25, Page 26].
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We will say that an atlas A is of dimension d, if the charts of A have dimension d.

Definition 6.4.9. A locally L-analytic manifold (M,A) (or simply M) is a Hausdorff topological space M equipped
with a maximal atlas A. The manifold is called d-dimensional if the atlas A is d-dimensional.

A function f ∶M → L is called locally L-analytic if f◦'−1i ∈ O(Bri ) for any chart (Ui, 'i, Bri ).

Lemma 6.4.10. [57, 8.6] Any locally L-analytic manifold is strictly paracompact.

Let V andW be Hausdorff locally convex topological L-vector spaces. IfM ⊆ V andN ⊆ W are lattices of V andW ,
respectively, thenM⊗oN is a lattice of V ⊗LW . The family of all latticesM⊗oN satisfies the conditions (l1) and (l2)
and defines a locally convex topology on the tensor project V ⊗L W , which is called the projective tensor topology. We
will denote by V ⊗̂LW its Hausdorff completion [55, Chapter I, section 7, proposition 7.5].

Definition 6.4.11. IfX is an affinoid rigid analytic space overL, and ifW is anL-Banach space thenwewrite Can(X,W ) ∶=
Can(X, L)⊗̂LW , for the space ofW -valued rigid analytic functions on X.

In fact, if X is a closed ball centered at zero and || ∙ || denotes the norm ofW then

Can(X,W ) =

{

∑

i
aix

i
| ai ∈ W and lim

|i|→∞
||ai||r

|i| = 0.

}

.

LetM be a locally L-analytic manifold and V a locally convex L-vector space. We say that a function f ∶ M → V is
locally analytic if for each point x ∈ M there is a chart (Mi, 'i, Bri ) containing x, a Banach space Wi equipped with a
continuous L-linear map  i ∶ Wi → V and a rigid analytic function fi ∈ Can(Bri ,Wi) such that f |Mi

=  i ◦ fi ◦ 'i.
We let Can(M,V ) denote the space of locally analytic L-valued functions onM . We have therefore an isomorphism

Can(M,V )
≃
←←←←←←←→ lim

←←←←←←←←←←→
(Mi,'i,Wi)

∏

i∈I
Can(Mi,Wi).

We have the following result [53, Proposition 10.3].

Proposition 6.4.12. ifM is compact and V is of compact type, then Can(M,V ) is again of compact type.

Let us suppose that V is a compact type convex L-vetor space and let G0 be a compact locally L-analytic group (or any
compact open subgroup of a locally L-analytic group). By the preceding proposition the space Can(G0, V ) of V -valued
locally L-analytic functions on G0 is a compact type convex L-vector space, and hence its strong dual is a nuclear Fréchet
space by proposition 6.4.4. The space of V-valued locally analytic distributions is denoted by 3

D(G0, V ) ∶=
(

Can(G0, V )
)′
b .

In particular, if V = L then any element g ∈ G0 gives rise to a Dirac delta function �g supported at g. This is defined by
�g(f ) ∶= f (g). In this way, if L[G0] denotes the group ring of G0 over L, we obtain an embedding L[G0] → D(G0, L)
whose image is dense [54, Lemma 3.1]. This implies that the L-algebra structure on L[G0] extends, in a unique way, to a
topological L-algebra structure on D(G0, L).

Definition 6.4.13. A locally convex L-vector space V is called barrelled if every closed lattice in V is open.

Examples of barrelled spaces are Fréchet spaces and vector spaces of compact type.
We can finally give one of the central definitions in this work.

3As in [53] the subscript indicates the dual endowed with its strong topology.
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Definition 6.4.14. Let V be a locally convex barrelled L-vector space, equipped with an action of G0 by continuous
L-linear automorphisms. We say that V is a locally analytic representation of G0 if for any v ∈ V , the orbit map

ov ∶ G0 → V
g → g ⋅ v,

lies in Can(G0, L).

In order to relate locally analytic representation with modules over the ring of locally analytic distributions we need to
introduce the exponential map. More exactly, the tangent space g ∶= Te(G0) to the identity of the locally analytic group
G0 has a structure of Lie algebra [56, Corollary 13.13]. The Campbell-Baker-Hausdorff formula converges p-adically in a
neighborhood U of zero in g, defining an analytic map [56, Corollary 18.19]

exp ∶ U → G0.

In particular, to each � ∈ g we can associate a linear continuous form

f →∶= d
dt
f (exp(t�))|t=0 (f ∈ D(G0, L)),

which induces a morphism of rings

U (g)→ D(G0, L). (6.11)

Now, if V is a locally analytic representation of G0, then V has a structure of D(G0, L)-module [54, Section 3]. For
example, if g ∈ G0 and �g is the Dirac distribution supported at g, we have �g ∙ v = gv. We have the following result [54,
Proposition 3.2]

Proposition 6.4.15. The map (g, v) → g ∙ v is separately continuous. This structure extends the action of U (g) on V and
any continuous linear G0-map between locally analytic G0-representations gives rise to a D(G0, L)-morphism.

Let us denote by Repanc (G0) the category of locally analytic G0- representations on L-vector spaces of compact type with
continuous linearG0-maps and byMFr

L (G0) the category of continuousD(G0, L)-modules on nuclear Fréchet spaces with
continuous D(G0, L)-module maps.

Definition 6.4.16. An admissible G0- representation over L is a locally analytic G0-representation on an L-vector space
of compact type V such that the strong dual V ′b is a coadmissibleD(G0, L)-module (cf. (6.13)) equipped with its canonical
topology.

Let us denote by Repadm(G0) the category of all admissibleG0-representations with continuous linearG0-maps and by CG0
the full subcategory of Mod(D(G0, L)) consisting of coadmissible modules. We have the following commutative diagram
of functors ([54, Corollary 3.4] and [53, Theorem 20.1])

Repanc (G0) MFr
L (G0)

Repadm(G0) CG0 .

≃

≃

(6.12)

The horizontal maps are the anti-equivalences of categories defined by V → V ′b and the structure of D(G0, L)-module on
V ′b is given by

(� ∙ m)(v) ∶= �
(

g → m(g−1 ∙ v)
)

(� ∈ D(G0, L), m ∈ V ′b and v ∈ V ). (6.13)
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Finally, let us explain the concept of locally analytic vectors in an admissible representation. Let us suppose that G is
a locally L-analytic group and H ⊆ G is a compact open subgroup which is a chart. As we have seen, this means that
H = ℍ(L) with ℍ a rigid analytic closed ball. Let us take now an L-vector space V endowed with a continuous G-action.
We put

Vℍ−an ∶=
{

v ∈ V | ov ∶ H → V ∈ Can(ℍ, V )
}

.

Let us suppose for the moment that G is a rigid analytic group defined over L, which admits an admissible cover

G =
⋃

n∈ℤ>0

Gn

where (Gn)n∈ℤ>0 is a decreasing sequence of admissible affiinoid open subgroups of G. We write G ∶= G(L) and Gn ∶=
Gn(L) for every n ∈ ℤ>0. We also assume that Gn is Zariski dense in Gn for each n ∈ ℤ>0, and thus G is Zariski dense in
G. In this case, we define 4

VG−an ∶=
⋃

n∈ℤ>0

VGn−an.

6.4.2 Complete arithmetic distribution algebras and distribution algebra of an analytic group

Let k ∈ ℕ be a natural number. Through this sectionG(k) will denote the formal group o-scheme defined by the formal p-
adic completion of the congruence group G(k) along its special fiber GFq (k) = G(k)×Spec(o) Spec(o∕$) (being G(0) = G).
As before, we will also denote by Gi(k) ∶= G(k) ×Spec(o) Spec(o∕$i+1) the redaction modulo $i+1. The morphisms
Gi+1(k) → Gi(k) induce a morphism D(m)(Gi+1(k)) → D(m)(Gi(k)) [39, Proposition 4.1.11]. By [39, Corollary 5.3.2] we
have

Lemma 6.4.17. Let e be the index of ramification of L over ℚp. If e < p − 1, then the ring D†(G(k)) is coherent.

By construction, the group o-scheme G(k) is topological of finite type. Let Ĝ◦ be the completion of G(k) along its unit
section Spf(o) → G(k). This is a group scheme over o, but not a formal o-scheme because$OĜ(k)◦ is not necessarily an
ideal of definition. Let us denote by G(k)◦ its associated rigid-analytic space in the sense of [5, (0.2.6)]. This is an analytic
group over L with Lie(G(k)◦) = gL, which is not affinoid in general. This can be built as follows. Let � be the closed
point of o and let t1, ..., tN be a sequence of regular generators for the unit section of G(k) such that o[G(k)] = o[t1, ..., tN ]
and o[G(k)] = o

{

t1, ..., tN
}

. We have that o[Ĝ◦] = o[[t1, ..., tN ]] and the space G(k)◦ is isomorphic to an open disk of
dimensionN . In fact, if

An ∶= o[[t1, ...tN ]]
{

T1, ..., TN
}/

(tn1 −$T1, ..., t
n
N −$TN ),

with o[[t1, ...tN ]]
{

T1, ..., TN
}

the p-adic completion of o[[t1, ...tN ]][T1, ..., TN ], then An in an o-algebra topologically of
finite type and therefore Bn ∶= An⊗oL is a Tate algebra [20, Lemma 7.1.2 (b)]. Moreover, for n′ ≥ nwe have a canonical
isomorphism

Bn′
{

T ′1 , ..., T
′
N
}/

(tn1 −$T
′
1 , ..., t

n
N −$T

′
N ) → Bn

T ′i → tni ∕$

identifying G(k)◦n ∶= Spm(Bn) with the special domain of G(k)◦n′ defined by the equations |ti(x)| ≤ |$|

1∕n (this means a
closed ball of radius rn = |$|

1∕n) [20, Lemma 7.1.2 (c)]. We define G(k)◦ as the rigide analytic space defined by glueing
the affinoid spaces (G(k)◦n)n∈ℤ>0 . By construction, the space G(k)◦ is the unit open ball. Furthermore, given that G(k)◦n′

4This is a consequence of the remark preceding the definition 2.1.18 in [25].
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is already a closed ball of radius |$|

1∕n′ we can conclude that the inclusion G(k)◦n → G(k)◦n+1 is relatively compact ([55,
Final example of section 16]) and the algebra of analytic functions on G(k)◦ is given by [25, definition 2.1.18]

Can(G(k)◦, L) ∶= O(G(k)◦) = lim
←←←←←←←←←←←
n∈ℤ>0

Bn.

By [25, Proposition 2.1.6] and [55, Page 107 and proposition 19.9] we have that O(G(k)◦) is a nuclear Fréchet algebra
over L (cf. [24, Example 1.7]).

Remark 6.4.18. By construction, ror any k′ ≥ k the canonical map G(k′) → G(k) induces an open embedding of rigid
analytic spaces G(k′)◦ → G(k)◦. In particular, G(k)◦ is a rigid analytic subgroup of G◦ for every k ∈ ℤ>0.

Definition 6.4.19. The strong continuous dual

Dan(G(k)◦) ∶= O(G(k)◦)′b

is called the analytic distribution algebra of the rigid analytic group G(k)◦.

By [55, Proposition 16.5], if (Bn)′b (the strong dual of the Banach algebra Bn) is endowed with the Banach topology ([55,
Remark 6.7]) we have a canonical topological isomorphism

⎛

⎜

⎜

⎝

lim
←←←←←←←←←←←
n∈ℤ>0

Bn
⎞

⎟

⎟

⎠

′

b

≃
←←←←←←←→ lim

←←←←←←←←←←→
n∈ℤ>0

(Bn)′b.

This means thatDan(G(k)◦) is a locally convex space which is in fact a topologicalL-algebra of compact type (proposition
6.4.4). This reference also gives us a canonical ring morphism � ∶ G(k)◦ → Dan(G(k)◦)×, where �g ∶= �(g) is a "Dirac
delta function" supported on g. Furthermore, to each � ∈ Lie(G(k)◦) we can associate a linear continuous form

f →
d
dt
f (exp(t�))|t=0

which induces a morphism of rings

U (Lie(G(k)◦))→ Dan(G(k)◦). (6.14)

We have the following result from [39, Proposition 5.2.1].

Proposition 6.4.20. The application U (Lie(G(k)◦))→ Dan(G(k)◦) induces a topological isomorphism of rings

D†(G(k))
≃
←←←←←←←→ Dan(G(k)◦).

Let � ∈ Hom(T ,Gm) be an algebraic character and �� ∶ Z(gL) → L the central character induced by � via the Harish-
Chandra isomorphism. We put

Dan(G(k)◦)� ∶= Dan(G(k)◦)
/

(Ker(��))Dan(G(k)◦).

So, if � ∈ Hom(T ,Gm) denotes an algebraic character we have an isomorphism

D†(G(k))�
≃
←←←←←←←→ Dan(G(k)◦)�. (6.15)

By proposition 5.5.12 we have
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Corollary 6.4.21. Now, let � ∈ Hom(T ,Gm) be an algebraic character such that � + � + t∗L is a dominant and regular
character of tL. Then

H0
(

X,D†
X,k(�)

)

= Dan(G(k)◦)�.

6.4.3 Locally analytic representations and coadmissible modules

Let us recall that G0 denotes the compact locally L-analytic group G0 = G(o). In subsection 6.4.1 we have introduced
the following notations. Let Can(G0, L) be the space of L-valued locally L-analytic functions on G0 and D(G0, L) the
continuous strong dual of Can(G0, L). Given that G0 is compact, this space carries a structure of nuclear Fréchet-Stein
algebra.

The following digression is an adapted version of the proof of [25, Proposition 5.3.1] to our work. First of all, let us recall
that G0 acts on the space Ccts(G0, L), of continuous L-valued functions, by the formula

(g ∙ f )(x) ∶= f (g−1x) (g, x ∈ G0, f ∈ Ccts(G0, L)).

Let us consider the sequence (G(k)◦)k∈ℤ>0 of �-affinoid rigid analytic open subgroups ofG◦5 (remark 6.4.18). We recall for
the reader that this notion was introduced in [25, Definition 2.1.17]. It states that ifX is a rigid analytic space over L, then
X is a �-affinoid if there exists an increasing sequence (Xn)n∈ℤ>0 of affinoid open subsets of X such that X = ∪n∈ℤ>0Xn
is an admissible covering.
By definition, for each k ∈ ℤ>0 there are continuous injections

Ccts(G0, L)G(k)◦−an → Ccts(G0, L)G(k+1)◦−an (6.16)

and

Ccts(G0, L)G(k)◦−an → Can(G0, L) (6.17)

The latter being compatible with the former. Passing to the inductive limit we get an isomorphism

lim
←←←←←←←←←←→
k∈ℤ>0

Ccts(G0, L)G(k)◦−an
≃
←←←←←←←→ Can(G0, L). (6.18)

As in [25, Proposition 5.3.1], for each k ∈ ℤ>0 we put

D(G(k)◦, G0) ∶=
(

Ccts(G0, L)G(k)◦−an
)′
b .

Given that Gk is compact, we can use [25, Proposition 3.4.11] to conclude that the restriction map induces

Ccts(G0, L)G(k)◦−an → Ccts(Gk, L)G(k)◦−an
≃
←←←←←←←→ Can(G(k)◦, L) = O(G(k)◦).

This yields a closed embedding Dan(G(k)◦) → D(G(k)◦, G0). The ring structure on Dan(G(k)◦) extends naturally to a
ring structure on D(G(k)◦, G0), such that

D(G(k)◦, G0) =
⨁

g∈G0∕Gk

Dan(G(k)◦)�g . (6.19)

5In fact, strictly �-affinoid, meaning that the transition maps G(k)◦n → G(k)◦n+1 are relative compact in the sense of [13, Part I, chapter 6 section 6.3,
definition 6].
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Dualizing the isomorphism (6.18) yields an isomorphism of topological L-algebras

D(G0, L)
≃
←←←←←←←→ lim

←←←←←←←←←←←
k∈ℤ>0

D(G(k)◦, G0). (6.20)

Let us show that this defines a weak Fréchet-Stein structure onD(G0, L). Each of the algebrasD(G(k)◦, G0) are of compact
type [25, Proposition 3.4.11] and the transition morphismsD(G(k+1)◦, G0)→ D(G(k)◦, G0) are compact [25, Proposition
2.1.16]. Finally, for each k ∈ ℤ>0 the map (6.18) is a continuous injection of reflexive spaces, therefore the dual map
D(G,L)→ D(G(k)◦, G0) has dense image. This proves that D(G0, L) is a weak Fréchet-Stein algebra.

Let V ∈ Repadm(G0) andM ∶= V ′b . By [25, Lemma 6.1.6] the subspace VG(k)◦−an ⊆ V is a nuclear Fréchet space and
therefore its strong dualMk ∶=

(

VG(k)◦−an
)′
b is a space of compact type and a finitely generated topologicalD(G(k)◦, G0)-

module by [25, Lemma 6.1.13]. By [25, Theorem 6.1.20] and the diagram (6.12) themoduleM is a coadmissibleD(G0, L)-
module relative to the weak Fréchet -Stein structure of D(G0, L) defined in the previous paragraph.

We have the following result from [36, Lemma 5.1.7].

Lemma 6.4.22. (i) The D(G(k)◦, G0)-moduleMk is finitely generated.

(ii) There are natural isomorphisms

D(G(k − 1)◦, G0)⊗D(G(k)◦,G0)Mk
≃
←←←←←←←→Mk−1.

(iii) The natural map D(G(k − 1)◦, G0)⊗D(G0,L)M →Mk is bijective.

Now, let � ∈ Hom(T ,Gm) be an algebraic character such that �+ �+ t∗L is a dominant and regular character of tL. Let us
recall that we have an isomorphism

Dan(G(k)◦)�
≃
←←←←←←←→ D†(G(k))�

≃
←←←←←←←→ lim

←←←←←←←←←←→
m∈ℕ

(

D̂(m)(G(k))�
)

⊗o L.

The preceding relation and the fact that the ring structure ofDan(G(k)◦) extends naturally to a ring structure onD(G(k)◦, G0)
allow us to consider the ring

D(G(k)◦, G0)� ∶= D(G(k)◦, G0)∕Ker(��)D(G(k)◦, G0).

From now on, we will denote CG0 the full subcategory of Mod(D(G0, L)) consisting of coadmissible modules, with respect
to the preceding weak Fréchet-Stein structure on D(G0, L).

Definition 6.4.23. Wedefine the category CG0,� of coadmissibleD(G0, L)-modules with central character � ∈ Hom(T ,Gm)
by

CG0,� ∶=Mod
(

D(G0, L)
/

Ker(��)D(G0, L)
)

∩ CG0 .

We point out that the preceding definition is completely legal because the centerZ(gL) of the universal enveloping algebra
U (gL) lies in the center of D(G0, L) [54, Proposition 3.7]. We also recall that the group Gk ∶= G(k)(o) is contained in
Dan(G(k)◦) as a set of Dirac distributions. For each g ∈ Gk we will write �g for the image of the Dirac distribution
supported at g in

H0
(

Y,D†
Y,k(�)

)

= Dan(G(k)◦)�

(cf. corollaries 6.2.3 and (6.15)). Inspired in [36, Definition 5.2.7] we have the following definition.
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Definition 6.4.24. LetH ⊂ G0 be an open subset and Y anH-equivariant admissible blow-up of X. Let us suppose that
k ≥ kY (notation as in 6.1.3). A strongly H-equivariant D†

Y,k(�)-module is a D†
Y,k(�)-module M together with a family

('g)g∈H of isomorphisms

'g ∶ M → (�g)∗M

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all g, ℎ ∈ H we have
(

�g
)

∗
(

'ℎ
)

◦'g = 'ℎg .

(ii) For all open subset U ⊂ Y, all P ∈ D†
Y,k(�)(U ), and all m ∈ M (U ) we have 'g(P ∙ m) = Tg(P ) ∙ 'g(m).

(iii) 6 For all g ∈ H ∩ Gk+1 the map 'g ∶ M →
(

�g
)

∗ M = M is equal to multiplication by �g ∈ H0
(

Y,D†
Y,k(�)

)

.

A morphism between two strongly H-equivariant D†
Y,k(�)-modules (M , ('M

g )g∈H ) and (N , ('N
g )g∈H ) is a D†

Y,k(�)
linear morphism  ∶ M → N such that for all g ∈ H , the following diagram is commutative

M N

(

�g
)

∗ M
(

�g
)

∗ N

 

'M
g 'N

g
(

�g
)

∗( )
'N
g ◦  = (�g)∗( ) ◦ 'M

g .

Commentary 1. Let M ∈ Coh
(

D†
Y,k(�), G0

)

. In what follows we will use the notation gm ∶= 'g, U (m) ∈ M (U .g−1),
for U ⊆ Y an open subset, g ∈ G0 and m ∈ M (U ). This notation is inspired in property (ii) of the previous definition. In
fact, if g, ℎ ∈ G0, then by (ii) we have ℎ(g m) = (ℎg) m.

We denote the category of stronglyH-equivariant coherent D†
Y,k(�)-modules by Coh

(

D†
Y,k(�), G0

)

.

Theorem 6.4.25. Let � ∈ Hom(T ,Gm) be an algebraic character such that � + � ∈ t∗L is a dominant and regular
character of tL. Let pr ∶ Y → X be a G0-equivariant admissible blow-up, and let k ≥ kY. The functors L oc†Y,k(�)
and H0(Y, ∙) induce quasi-inverse equivalences between the category of finitely presented D(G(k)◦, G0)�-modules and
Coh

(

D†
Y,k(�), G0

)

Before starting the proof, we recall for the reader that the functor L oc†Y,k(�) has been defined in the proof of theorem
6.2.4. An explicitly expression is given in (6.21) below.

Proof. If M ∈ Coh
(

D†
Y,k(�), G0

)

, then in particular M is a coherent D†
Y,k(�)-module. Since by theorem 6.2.4, corollary

6.2.3 and proposition 6.4.21 we have that H0(Y,M ) is a finitely presented Dan(G(k)◦)�-module, then by (6.19) we can
conclude thatH0(Y,M ) is a finitely presented D(G(k)◦,G0)�-module.

On the other hand, let us suppose thatM is a finitely presented D(G(k)◦,G0)�-module. By (6.19) we can consider

M ∶= L oc†Y,k(�)(M) = D†
Y,k(�)⊗Dan(G(k)◦)� M. (6.21)

For every g ∈ G0 we want to define an isomorphism of sheaves of L-vector spaces

'g ∶ M →
(

�g
)

∗ M

6This conditions makes sense because the elements g ∈ Gk+1 acts trivially on the underlying topological space of Y, cf. Lemma 6.3.3.
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satisfying the conditions (i), (ii) and (iii) in the preceding definition. As we have remarked, the Dirac distributions induce
an injective morphism fromG0 to the group of units ofD(G0, L), since by (6.20)M is in particular aG0-module, we have
an isomorphism

M →
(

(

�g
)

∗ D†
Y,k(�)

)

⊗Dan(G(k)◦)� M,

which on local sections is defined by 'g, U (P ⊗ m) ∶= Tg, U (P )⊗ gm. Here P ∈ D†
Y,k(�)(U ), U ⊆ Y is an open subset,

m ∈M and Tg is the isomorphism defined in (6.9).

One has an isomorphism

(

�g
)

∗ (M )
≃
←←←←←←←→

(

(

�g
)

∗ D†
Y,k(�)

)

⊗Dan(G(k)◦)� M.

Indeed, (�g)∗ is exact and so choosing a finite presentation of M as Dan(G(k)◦)�-module reduces to the case M =
Dan(G(k)◦)� which is trivially true. This implies that the preceding isomorphism extends to an isomorphism

'g ∶ M →
(

�g
)

∗ M .

Let g, ℎ ∈ G0, U ⊆ Y an open subset, P ,Q ∈ D†
Y,k(�)(U ) and m ∈M . Then

'ℎ, U .g−1
(

'g, U
)

(P ⊗ m) = 'ℎ, U .g−1 (Tg, U (P )⊗ g m)

= Tℎ, U .g−1 (Tg, U (P ))⊗ ℎg m

= Tℎg, U (P )⊗ (ℎg) m

= 'ℎg, U (P ⊗ m),

which verifies the first condition. Now, by definition Tg, U (PQ) = Tg, U (P )Tg, U (Q) and therefore 'g, U (PQ ⊗ m) =
Tg, U (P )'g, U (Q⊗m), which gives (ii). Finally, given that the delta distributions �g for g in the normal subgroup Gk+1 of
G0 are contained in Dan(G(k)◦) we have g.P ∶= Tg(P ) = �g P �g−1 , and therefore

'g, U (P ⊗ m) = g.P ⊗ g.m

= �gP�g−1�g ⊗ m

= �gP ⊗ m.

and condition (iii) follows.

Remark 6.4.26. If � ∈ Hom(T ,Gm) denotes the trivial character, then D†
X,k(�) = D†

X,k is the sheaf of arithmetic dif-
ferential operators introduced in [36]. Moreover, by construction, if pr ∶ Y → X denotes an H-equivariant admissible
blow-up, then D†

Y,k(�) = D†
Y,k and for every g ∈ H the isomorphism Tg equals the isomorphism Ad(g) defined in [36,

(5.2.6)].

Now, let us take � ∶ Y′ → Y a morphism of G0-equivariant admissible blow-ups of X (whose lifted actions we denote
by �Y′ and �Y), and let us suppose that k ≥ kY and k′ ≥ max{k′Y, k}. By (6.5) and theorem 6.2.2 we have an injective
morphism of sheaves

Ψ ∶ �∗D
†
Y′,k′ (�) = D†

Y,k′ (�) → D†
Y,k(�). (6.22)
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Moreover, if g ∈ G0 we have the commutative diagram

�∗D
†
Y′,k′ (�) = D†

Y,k′ (�) D†
Y,k(�)

�∗
(

�Y
′

g

)

∗
D†

Y′,k′ (�) =
(

�Yg
)

∗
D†

Y,k′ (�)
(

�Yg
)

∗
D†

Y,k(�)

Ψ

�∗T
Y′
g TY

g

(�Yg )∗(Ψ)

which implies that Ψ ∶ �∗D
†
Y′,k′ (�) = D†

Y,k′ (�) → D†
Y,k(�) is G0-equivariant, i.e. it satisfies

TY
g ◦ Ψ =

(

�Yg
)

∗
(Ψ) ◦ �∗

(

TY′
g

)

.

Now, let us suppose given two modules MY′ ∈ Coh
(

D†
Y′,k′ (�), G0

)

and MY ∈ Coh
(

D†
Y,k(�), G0

)

together with a
morphism

 ∶ �∗MY′ → MY

linear relative to Ψ ∶ �∗D
†
Y′,k′ (�) → D†

Y,k(�) and which is G0-equivariant, i.e. satisfying

�∗MY′ MY

�∗(�
Y′
g )∗MY = (�

Y
g )∗�∗MY′ (�Yg )∗MY.

 

�∗('
MY′
g ) '

MY
g

(�Yg )∗ 

'
MY
g ◦  =

(

�Yg
)

∗
 ◦ �∗

(

'
MY′
g

)

.

for all g ∈ G0. By using Ψ we obtain a morphism of D†
Y,k(�)-modules

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′ → MY.

Let us denote by K the submodule of D†
Y,k(�) ⊗�∗D

†
Y′ ,k′

(�) �∗MY′ locally generated by all the elements of the form

P�ℎ ⊗ m − P ⊗ (ℎ ∙ m), where ℎ ∈ Gk+1, m is a local section of �∗MY′ and P is a local section of D†
Y,k(�). As in [36,

Page 35] we will denote the quotient D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′
/

K by

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗MY′ . (6.23)

Let us see that this module lies in Coh
(

D†
Y,k(�), G0

)

. To do that let us first show that

(

�g
)

∗ D†
Y,k(�)⊗(�g)∗�∗D

†
Y′ ,k′

(�)
(

�g
)

∗ �∗MY′ =
(

�g
)

∗ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′ . (6.24)

As MY′ is a coherent D
†
Y′,k′ (�) we can find a finite presentation of MY′

(

DY′,k′ (�)
)⊕a

→ (D†
Y′,k′ (�))

⊕b → MY′ → 0
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which induces, by exactness of (�g)∗ and �∗, the exact sequence

(

(

�g
)

∗ D†
Y,k′ (�)

)⊕a
→

(

(

�g
)

∗ D†
Y,k′ (�)

)⊕b
→

(

�g
)

∗ �∗MY′ → 0.

By base change over the preceding exact sequence we obtain the following commutative diagram

(

(

�g
)

∗ D†
Y,k(�)

)⊕a (

(

�g
)

∗ D†
Y,k(�)

)⊕b
(

�g
)

∗ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�) �∗MY′ 0

(

(

�g
)

∗ D†
Y,k(�)

)⊕a (

(

�g
)

∗ D†
Y,k(�)

)⊕b
(

�g
)

∗ D†
Y,k(�)⊗(�g)∗�∗D

†
Y′ ,k′

(�)
(

�g
)

∗ �∗MY′ 0

id id

(of course, here we have used theorem 6.2.2 to identify �∗D
†
Y′,k′ (�) = D†

Y,k′ (�)). This shows (6.24) and therefore the
diagonal action

'g ∶ D†
Y,k(�)⊗∗�∗D

†
Y′ ,k′

(�) �∗MY′ →
(

�g
)

∗ D†
Y,k(�)⊗∗�∗D

†
Y′ ,k′

(�) �∗MY′

defined on simple tensor products by

g ∙ (P ⊗ m) ∶= g ∙ P ⊗ g ∙ m, (6.25)

for g ∈ G0, and P and m are local sections of D†
Y,k(�) and �∗MY′ , respectively (in order to soft the notation we use the

accord introduced in the commentary 1 after the definition 6.4.24). Now to see that (6.23) is a strongly G0-equivariant
D†

Y,k(�)-module, we only need to check that �g(K ) ⊂ K . This is, the diagonal actions fix the submodule K . We have

g ∙ (P�ℎ ⊗m − P ⊗ ℎ ∙ m) = g ∙ (P�ℎ)⊗ g ∙ m − g ∙ P ⊗ g ∙ (ℎ ∙ m)

= (g ∙ P )(g ∙ �ℎ)⊗ g ∙ m − g ∙ P ⊗ (gℎg−1) ∙ (g ∙ m)

= (g ∙ P )�gℎg−1 ⊗ g ∙ m − g ∙ P ⊗ (gℎg−1) ∙ (g ∙ m)

and Gk+1 is a normal subgroup we can conclude that gℎg−1 ∈ Gk+1 and G0 fix K . Moreover, since the target of
the preceding morphism is strongly G0-equivariant, this factors through the quotient and we thus obtain a morphism of
D†

Y,k(�)-modules

 ∶ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗MY′ → MY. (6.26)

By construction  ∈ Coh
(

D†
Y,k(�), G0

)

.

6.5 Admissible blow-ups and formal models
The following discussion is given in [36, 3.1.1 and 5.2.13]. Let us start by considering the generic fiber of the flag variety
XL ∶= X ×Spec(o) Spec(L) (the flag variety). For the rest of this work Xrig will denote the rigid-analytic space associated
via the GAGA functor to XL [13, Part I, chapter 5, section 5.4, Definition and proposition 3]. Any admissible formal
o-schemeY (in the sense of [13, Part II, chapter 7, section 7.4, Definitions 1 and 4]) whose associated rigid-analytic space
is isomorphic to Xrig will be called a formal model of Xrig. For any two formal models Y1 and Y2 there exists a third
formal model Y′ and admissible formal blow-up morphisms Y′ → Y1 and Y′ → Y2 [13, Part II, chapter 8, section 8.2,
remark 10].
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Now, let us denote by FX the set of admissible formal blow-ups Y → X. This set is ordered by Y′ ⪰ Y if the blow-up
morphism Y′ → X factors as the composition of a morphism Y′ → Y and the blow-up morphism Y → X. In this case,
the morphismY′ → Y is unique [13, Part II, chapter 8, section 8.2, proposition 9], and it is itself a blow-up morphism [41,
Chapter 8, section 8.1.3, proposition 1.12 (d) and theorem 1.24]. By [13, Part II, chapter 8, section 8.2, remark 10] the set
FX is directed and it is cofinal in the set of all formal models. Furthermore, any formal model Y of Xrig is dominated by
one which is aG0-equivariant admissible blow-up ofX [36, Proposition 5.2.14]. In particular, ifX∞ denotes the projective
limit of all formal models of Xrig, then

X∞ = lim
←←←←←←←←←←←
FX

Y.

We will be interested in the following directed subset of FX.

Definition 6.5.1. We denote by FX the set of pairs (Y, k), where Y ∈ FX and k ∈ ℕ satisfies k ≥ kY. This set is ordered
by (Y′, k′) ⪰ (Y, k) if and only if Y ⪰ Y and k′ ≥ k.

We will need the following auxiliary result. We will follow word for word the reasoning given in [36, Lemma 5.2.12]
when � ∈ Hom(T ,Gm) is equal to the trivial character. Our case is completely analogous.

Lemma 6.5.2. Let Y′, Y ∈ FX be G0-equivariant admissible blow-ups (definition 6.3.2). Suppose (Y′, k′) ⪰ (Y, k)
with canonical morphism � ∶ Y′ → Y over X and letM be a coherent D(G(k′)◦, G0)�-module with localization M =
L oc†Y′,k′ (�)(M) ∈ Coh

(

D†
Y′,k′ (�), G0

)

. Then there exists a canonical isomorphism in Coh
(

D†
Y,k(�), G0

)

given by

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗M

≃
←←←←←←←→ L oc†Y,k(�)

(

D(G(k)◦, G0)⊗D(G(k′)◦,G0)M
)

.

Proof. Let Σ be a system of representatives in Gk+1 for the cosets in Gk+1∕Gk′+1. By (6.19) we have a canonical map

Dan(G(k)◦)� → D(G(k)◦, G0)� (6.27)

which is compatible with variation in k. Now, let us take M a D(G(k′)◦, G0)�-module and let us consider the free
Dan(G(k)◦)�-module

Dan(G(k)◦)M×Σ
� ∶=

⨁

(m,ℎ)∈M×Σ
Dan(G(k)◦)� em,ℎ,

whose formation is functorial inM . In fact, ifM ′ is anotherD(G(k′)◦, G0)�and if f ∶M →M ′ is aD(G(k′)◦, G0)�-linear
map, then

Dan(G(k)◦)M×Σ
� → Dan(G(k)◦)M ′×Σ

�
em,ℎ → ef (m),ℎ

induces a linear map between the corresponding free modules. Me make the convention Dan(G(k)◦){0}×Σ� = {0} is the
trivial submodule of Dan(G(k)◦)M×Σ

� . Moreover, the free module Dan(G(k)◦)M×Σ
� comes with a linear map

fM ∶ Dan(G(k)◦)M×Σ
� → Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

⊕(m,ℎ)�m,ℎem,ℎ → (�m,ℎ�ℎ)⊗m − �m,ℎ ⊗ (�ℎ.m).

HereM is considered as aDan(G(k′)◦)�-module via the canonicalmap (6.27). Let us note that, sinceM is aD(G(k′)◦, G0)�-
module, and because Gk+1 is contained in D(G(k′)◦, G0)�, the expression �ℎ.m is defined for any ℎ ∈ Gk+1. If f ∶M →
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M ′ is a linear map of D(G(k′)◦, G0)�-modules, then we have a commutative diagram

Dan(G(k)◦)M×Σ
� Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

Dan(G(k)◦)M ′×Σ
� Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

′

fM

fM′

and we have a sequence of linear maps

Dan(G(k)◦)M×Σ
�

fM
←←←←←←←←←←←←←←→ Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

canM
←←←←←←←←←←←←←←←←←←←←←→ D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M → 0.

The final map being surjective by (6.27).

Claim 1. IfM is a finitely presented D(G(k′), G0)�-module, then the above sequence is exact.

Proof. Let us start by remarking that if �m,ℎ em,ℎ ∈ Dan(G(k)◦)M×Σ
� then

canM (fM (�m,ℎ em,ℎ)) = canM (�m,ℎ�ℎ ⊗m − �m,ℎ ⊗ �ℎm)

= �m,ℎ�ℎ ⊗m − �m,ℎ ⊗ �ℎm

= 0.

For the last equality we have used the fact that �ℎ ∈ D(G(k′), G0)�. Let us show now that ker(canM ) ⊆ im(fM ). Let us
take a finite presentation of the D(G(k′), G0)�-moduleM

Ma ∶=
(

D(G(k′), G0)�
)⊕a �

←←←←←←→Mb ∶=
(

D(G(k′), G0)�
)⊕b �

←←←←←←→M → 0

which, by functoriality, induces the following commutative diagram

0 0 0

Dan(G(k)◦)M×Σ
� Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M 0

Dan(G(k)◦)Ma×Σ
� Dan(G(k)◦)� ⊗Dan(G(k′)◦)� Ma D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� Ma 0

Dan(G(k)◦)Mb×Σ
� Dan(G(k)◦)� ⊗Dan(G(k′)◦)� Mb D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� Mb 0

The 3 × 3-lemma reduces us to the case of a finitely presented module of the form Ma ∶= D(G(k′)◦, G0)
⊕a
� , and since

we need to show that ker(canMa
) lies in the submodule generated by the images of the elements emi,ℎ for generators

m1, ..., ma ∈Ma and ℎ ∈ Σ we can even suppose that a = 1. In this case the claim follows from (6.19).

Claim 2. IfM is a finitely presentedD(G(k′)◦, G0)�-module and we letM ∶= Loc†Y′,k′ (�)(M), then the natural morphism

Loc†Y,k(�)(D(G(k)
◦, G0)� ⊗D(G(k′)◦,G0)� M)→ D†

Y,k(�)⊗�∗DY′ ,k′ (�) �∗M

is bijective.
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Proof. By theorem 6.2.2 the functor �∗ is an exact functor on coherent D
†
Y′,k′ -modules. Taking a finite presentation ofM

reduces to the caseM = D(G(k′)◦, G0)� which is clear.

Now, letM be a finitely presentedD(G(k′)◦, G0)�-module. Let m1, ..., ma be generators forM as aDan(G(k′)◦)�-module.
We have a sequence of Dan(G(k)◦)�-modules

⨁

(i,ℎ)
Dan(G(k)◦)� emi,ℎ

fa
←←←←←←←←←←→ Dan(G(k)◦)� ⊗Dan(G(k′)◦)� M

canM
←←←←←←←←←←←←←←←←←←←←←→ D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M → 0

where fa denotes the restriction of the map fM to the free submodule of Dan(G(k)◦)M×Σ
� generated by the finitely many

vectors emi,ℎ, with 1 ≤ i ≤ a and ℎ ∈ Σ. Since im(fa) = im(fM ) the sequence is exact by the first claim. Since it consists
of finitely presented Dan(G(k)◦)�-modules, we can apply the localisation functor Loc†Y,k(�) to it. As

Loc†Y,k(�)
(

⨁

(i,ℎ)
Dan(G(k)◦)� emi,ℎ

)

= D†
Y,k(�)⊗Dan(G(k)◦)�

⨁

(i,ℎ)
Dan(G(k)◦)� emi,ℎ = D†

Y,k(�)
⊕a|Σ|

the second claims gives us the exact sequence

D†
Y,k(�)

⊕a|Σ| → D†
Y,k(�)⊗�∗DY′ ,k′ (�) �∗M → L oc†Y,k(�)

(

D(G(k)◦, G0)� ⊗D(G(k′)◦,G0)� M
)

→ 0

emi,ℎ ⊗ P → (P�ℎ ⊗mi − P ⊗ �ℎm)

where M ∶= Loc†Y′,k′ (�)(M). The cokernel of the first map in this sequence equals by definition

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗M ,

whence an isomorphism

D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗M ≃ L oc†Y,k(�)

(

D(G(k)◦, G0)⊗D(G(k′)◦,G0)M
)

.

Now, let I be an open ideal sheaf onX, and let g ∈ G0. Then J ∶= (�♮g)−1((�g)∗(I )) is again an open ideal sheaf onX.
Let Y be the blow-up of I and Y.g the blow-up of J , with canonical morphism prg ∶ Y.g → X. We have the following
result from [36, lemma 5.2.16].

Lemma 6.5.3. There exists a morphism �g ∶ Y → Y.g such that the following diagram is commutative

Y Y.g

X X.

�g

pr prg
�g

Moreover, we have kY.g = kY and for any two elements g, ℎ ∈ G0, we have a canonical isomorphism (Y.g).ℎ ≃ Y.(gℎ),
and the morphism Y → Y.g → (Y.g).ℎ ≃ Y.(gℎ) is equal to �gℎ. This gives a right action of the group G0 on the family
FX.

Let pr ∶ Y → X be an admissible blow-up and let us denote by L (�) the invertible sheaf onY induced by pulling back the
invertible sheaf on X induced by the character �. This is L (�) ∶= pr∗L (�). Furthermore, for g ∈ G0 if �g ∶ Y → Y.g
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is the morphism given by the previous lemma and pr.g ∶ Y.g → X is the blow-up morphism, then we will denote

Lg(�) ∶= pr∗gL (�).

The notation being fixed, we prevent the reader that in order to simplify the notation, in the rest of this work we will avoid
to underline these sheaves if the context is clear and there is not risk to any confusion.

Let us recall that in section 5.6 we have built for any g ∈ G0 an OX-linear isomorphism Φg ∶ L (�) → (�g)∗L (�),
being �g ∶= � ◦ (idX × g) the translation morphism (� the right G-action on X). By pulling back this morphism
and using the commutative diagram in the previous lemma (�∗g ◦ pr∗g = pr∗ ◦ �∗g) we an OY-linear isomorphism
(�g)∗pr∗gL (�) → pr∗L (�). By adjointness and following the accord established in the previous paragraph, we get an
OY.g-liner morphism

Rg ∶ Lg(�)→ (�g)∗L (�).

By construction Rg satisfies the cocycle condition (6.8). This means that for every g, ℎ ∈ G0 we have

Rℎg = Lℎg(�)
Rg
←←←←←←←←←←←←→ (�g)∗Lℎ(�)

(�g)∗Rℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (�ℎg)∗L (�). (6.28)

In particular Rg is an isomorphism for every g ∈ G0.

Exactly as we have done in (6.9), and given that by construction D†
Y,k(�) acts on L (�) (resp. D†

Y.g,k(�) acts on Lg(�)),
we can build an isomorphism

Tg ∶ D†
Y.g,k(�) → (�g)∗D

†
Y,k(�)

P → Rg ◦ P ◦ R−1g .

Locally, if U ⊂ Y.g is an open subset and P ∈ D†
Y.g,k(�)(U ) then Tg U (P ) is defined by the following diagram

L (�)(U .g−1) L (�)(U .g−1)

Lg(U ) Lg(U )

Tg U (P )

R−1g, U
P

Rg, U

Exactly as we have done in (5.36) we get the following cocycle condition

Tℎg = (�g)∗Tℎ ◦ Tg (g, ℎ ∈ G0). (6.29)

From the previous lemma we get [36, Corollary 5.2.18]

Corollary 6.5.4. Let us suppose that (Y′, k′) ⪰ (Y, k) for Y, Y′ ∈ FX and let � ∶ Y′ → Y be the unique morphism over
X. Let g ∈ G0. Then (Y′.g, k′) ⪰ (Y.g, k) and if we denote by �.g ∶ Y′.g → Y.g the unique morphism over X, we have a
commutative diagram

Y′ Y′.g

Y Y.g.

�g

� �.g
�g

Based on [36, Definition 5.2.19] we have the following definition.
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Definition 6.5.5. A coadmissibleG0-equivariantD(�)-module onFX consists of a familyM ∶=
(

MY,k
)

(Y,k) of coherent

D†
Y,k(�)-modules MY,k for all (Y, k) ∈ FX, with the following properties:

(a) For any g ∈ G0 with morphism �g ∶ Y → Y.g, there exists an isomorphism

'g ∶ MY.g,k →
(

�g
)

∗ MY,k

of sheaves of L-vector spaces, satisfying the following properties:

(i) For all g, ℎ ∈ G0 we have (�g)∗('ℎ) ◦ 'g = 'ℎg .
(ii) For all open subset U ⊆ Y.g, all P ∈ D†

Y.g,k(�)(U ), and all m ∈ MY.g,k(U ) one has 'g(P ∙ m) = Tg, U (P ) ∙
'g, U (m).

(iii) 7 For all g ∈ Gk+1 the map 'g ∶ MY.g,k = MY,k → (�g)∗MY,k = MY,k is equal to multiplication by
�g ∈ H0(Y,D†

Y,k(�)
)

.

(b) Suppose Y,Y′ ∈ FX are both G0-equivariant, and assume further that (Y′, k′) ⪰ (Y, k), and that � ∶ Y′ → Y
is the unique morphism over X. We require the existence of a transition morphism  Y′,Y ∶ �∗MY′,k′ → MY,k,
linear relative to the canonical morphism Ψ ∶ �∗D

†
Y′,k′ (�) → D†

Y,k(�). By using the commutative diagram in the
preceding corollary, we required

(�.g)∗(�g)∗MY′,k′ = (�g)∗�∗MY′,k′ (�g)∗MY,k

(�.g)∗MY′.g,k′ MY.g,k

(�g)∗( Y′ ,Y)

 Y′ .g,Y.g

(�.g)∗'g 'g 'g ◦  Y′.g,Y.g = (�g)∗( Y′,Y) ◦ (�.g)∗('g).

The morphism induced by  Y′,Y

 Y′,Y ∶ D†
Y,k(�)⊗�∗D

†
Y′ ,k′

(�), Gk+1
�∗MY′ → MY (6.30)

is required to be an isomorphism of D†
Y,k(�)-modules. Additionally, the morphisms  Y′,Y are required to satisfy

the transitivity condition  Y′,Y ◦ �∗( Y′′,Y′ ) =  Y′′,Y for (Y′′, k′′) ⪰ (Y′, k′) ⪰ (Y, k) in FX. Moreover,  Y,Y =
idMY,k

.

A morphism M → N between such modules consists of morphisms MY,k → NY,k of D†
Y,k(�)-modules, making com-

mutative the following diagrams

MY.g,k (�g)∗MY,k

NY.g,k (�g)∗NY,k

�∗MY′,k′ MY,k

�∗NY′,k′ NY,k.

We denote the resulting category by CG0X,�.

Let us build now the bridge to the category CG0,� of coadmissible D(G0, L)�-modules. Given such a moduleM we have
its associated admissible locally analytic G0-representation V ∶=M ′

b together with its subspace of G(k)
◦-analytic vectors

VG(k)◦−an ⊆ V . As we have remarked, this is stable under the G0-action and its dual Mk ∶=
(

VG(k)◦−an
)′ is a finitely

presented D(G(k)◦, G0)�-module. In this situation we produce a coherent D†
Y,k(�)-module

L oc†Y,k(�)(Mk) = D†
Y,k(�)⊗Dan(G(k)◦)� Mk

7As is remarked in [36, Definition 5.2.19 (iii)], if g ∈ Gk+1, then Y.g = Y and g acts trivially on the underlying topological space |Y|.
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for any element (Y, k) ∈ FX. We will denote the resulting family by

L ocG0� (M) ∶=
(

L oc†Y,k(�)(Mk)
)

(Y,k)∈FX

.

On the other hand, let M be an arbitrary coadmissible G0-equivariant arithmetic D(�)-module on FX. The restriction
morphisms  Y′,Y ∶ �∗MY′,k′ → MY,k induce mapsH0 (Y′,MY′,k′

)

→ H0 (Y,MY,k
)

on global sections. We let

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈FX

H0 (Y,MY,k
)

.

The projective limit is taken in the sense of abelian groups. We have the following theorem. Except for some technical
details the proof follows word for word the reasoning given in [36, Theorem 5.2.23].

Theorem 6.5.6. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and
regular character of tL. The functors L ocG0� and Γ(∙) induce quasi-inverse equivalences between the categories CG0,� (of
coadmissible D(G0, L)�-modules) and C

G0
X,�.

Proof. Let us takeM ∈ CG0,� and M ∈ CG0X,�. As in [36, Proof of theorem 5.2.23] we will organise the proof in four steps.

Step 1. We have L ocG0� (M) ∈ CG0X,� and L ocG0� (M) is functorial inM .

Proof. Let us start by defining

'g ∶ L oc†Y.g,k(�)(Mk)→
(

�g
)

∗ L oc†Y,k(�)(Mk) (g ∈ G0)

satisfying (i), (ii) and (iii) in the preceding definition. We recall for the reader that

L oc†Y.g,k(�)(Mk) = D†
Y.g,k(�)⊗Dan(G(k)◦)� Mk.

Let '̃g ∶ Mk → Mk denote the map dual to the map VG(k)◦−an → VG(k)◦−an given by w → g−1w. By definition
'̃ℎ ◦ '̃g = '̃ℎg . Let U ⊆ Y.g be an open subset and P ∈ D†

Y.g,k(�)(U ), m ∈Mk. We define

'g, U (P ⊗ m) ∶= Tg, U (P )⊗ '̃g(m).

Given that (�g)∗ is exact we can choose a finite presentation ofMk as a Dan(G(k)◦)�-module to conclude that we have a
canonical isomorphism

(

�g
)

∗

(

L oc†Y,k(�)(Mk)
) ≃
←←←←←←←→

(

(

�g
)

∗ D†
Y,k(�)

)

⊗Dan(G(k)◦)� Mk.

This means that the above definition extends to a map

'g ∶ D†
Y.g,k(�)⊗Dan(G(k)◦)� Mk →

(

�g
)

∗

(

L oc†Y,k,�(Mk)
)

.

For the first condition we need to show that the following diagram is commutative

D†
Y.(ℎg),k(�)⊗Dan(G(k)◦)� Mk (�g)∗

(

D†
Y.ℎ,k(�)

)

⊗Dan(G(k)◦)� Mk

(�g)∗(�ℎ)∗
(

D†
Y,k(�)

)

⊗Dan(G(k)◦)� Mk.

'g

'ℎg
(�g)∗'ℎ
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Let U ⊆ Y.(ℎg) be an open subset, P ,Q ∈ D†
Y.(ℎg),k(�)(U ) and m ∈Mk. We have

'ℎ, U .g−1 ('g,U (P ⊗ m)) = 'ℎ, U .g−1 (Tg, U (P )⊗ '̃g(m))

= Tℎ, U .g−1 (Tg, U (P ))⊗ '̃ℎ('̃g(m))

= Tℎg, U (P )⊗ '̃ℎg(m)

= 'ℎg, U (P ⊗ m).

Which implies that the diagram is commutative, and therefore the condition (i) is satisfied. Second condition follows from

'g(Q ∙ P ⊗ m) = Tg, U (QP )⊗ '̃g(m) = Tg, U (Q)Tg, U (P )⊗ '̃g(m) = Tg, U (Q)'g, U (P ⊗ m).

Finally, condition (iii) follows from the fact that if g ∈ Gk+1 then '̃g(m) = �gm. Let us verify condition (b). We suppose
that Y′, Y are G0-equivariant and that (Y′, k) ⪰ (Y, k) with canonical morphism � ∶ Y′ → Y over X. As �∗ is exact we
have an isomorphism

�∗
(

L oc†Y′,k′ (�)(Mk′ )
) ≃
←←←←←←←→ �∗

(

D†
Y′,k′ (�)

)

⊗Dan(G(k)◦)� Mk′ .

(This is an argument already given in the text for the functor (�g)∗). On the other hand, we have remarked that G(k′)◦ ⊆
G(k)◦ and we have a map  ̃Y′,Y ∶ Mk′ → Mk obtained as the dual map of the natural inclusion VG(k)◦−an → VG(k′)◦−an.
Let U ⊆ Y be an open subset and P ∈ �∗D

†
Y′,k′ (�)(U ), m ∈Mk′ . We define

 Y′,Y(P ⊗ m) ∶= ΨY′,Y(P )⊗  ̃Y′,Y(m),

where Ψ is the canonical injection �∗D
†
Y′,k′ (�) → D†

Y,k(�). By using the preceding isomorphism we can conclude that
this morphisms extends naturally to a map

 Y′,Y ∶ �∗
(

L oc†Y′,k′ (�)(Mk′ )
)

→ L oc†Y,k(�)(Mk).

The cocycle condition translates into the diagram

(

�Yg
)

∗
�∗

(

L oc†Y′,k′ (�)(Mk′ )
)

= (�.g)∗
(

�Yg
)

∗

(

L oc†Y′,k′ (�)(Mk′ )
) (

�Yg
)

∗

(

L oc†Y,k(�)(Mk)
)

(�.g)∗
(

L oc†Y′.g,k′ (�(Mk′ )
)

L oc†Y.g,k(�)(Mk)

(

�Yg
)

∗
 Y′ ,Y

 Y′ ,Y

(�.g)∗'g 'g (6.31)

By construction, the diagrams

(�.g)∗
(

�Y
′

g

)

∗
D†

Y′,k′ (�) =
(

�Yg
)

∗
�∗D

†
Y′,k′ (�)

(

�Yg
)

∗
D†

Y,k(�)

(�g)∗D
†
Y′.g,k′ (�) D†

Y.g,k(�)

(�Yg )∗ΨY′ ,Y

(�.g)∗Tg
ΨY′ .g,Y.g

Tg

Mk′ Mk

Mk′ Mk

 ̃Y′ ,Y

'̃g '̃g
 ̃Y′ ,Y

(6.32)

are commutative and therefore (6.31) is also a commutative diagram. The transitivity properties are clear. Let us see that
the induced morphism  Y′,Y is in fact an isomorphism. As in [36, Page 42] the morphism  Y′,Y corresponds under the
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isomorphism of lemma 6.5.2 to the linear extension

D(G(k)◦, G0)⊗D(G(k′)◦,G0)Mk′ →Mk

of  ̃Y′,Y via functoriality of L oc†Y,k,�. By lemma 6.4.22 this linear extension is an isomorphism and hence, so is  Y′,Y.

We conclude that L ocG0� (M) ∈ CG0X,�. Given a morphismM → N in CG0,�, we get, by definition, morphismsMk → Nk

for any k ∈ ℤ>0 compatible with '̃g and  ̃Y′,Y. By functoriality of L oc†Y,k(�), they give rise to linear maps

L oc†Y,k(�)(Mk)→ L oc†Y,k(�)(Nk)

which are compatible with the maps 'g and  Y′,Y.

Step 2. Γ(M ) is an object in CG0,�.

Proof. For k ∈ ℕ we choose (Y, k) ∈ FX and we put Nk ∶= H0(Y,M(Y,k)). By (6.26), lemma 6.5.2 and the fact that
M ∈ CG0X,� we get linear isomorphisms

D(G(k)◦, G0)⊗D(G(k′)◦,G0) Nk′ → Nk

for k′ ≥ k. This implies that themodulesNk form a
(

D(G(k)◦, G0)
)

k∈ℕ-sequence and the projective limit is a coadmissible
module.

Step 3. Γ ◦ L ocG0� (M) ≃M .

Proof. If V ∶=M ′
b, then we have by definition compatible isomorphisms

H0
(

Y,L ocG0� (M)(Y,k)
)

= H0
(

Y,L oc†Y,k(�)(Mk)
)

=
(

VG(k)◦−an
)′
b ,

which imply that the coadmissible modules Γ ◦ L ocG0� (M) andM have isomorphic
(

D(G(k)◦, G0)
)

k∈ℕ-sequences.

Step 4. L ocG0� ◦ Γ(M ) ≃ M .

Proof. Let N ∶= Γ(M ) and V ∶= N ′
b the corresponding admissible representation. Let N ∶= L ocG0� (N). According

to the lemma 6.4.22

Nk ∶= D(G(k)◦, G0)⊗D(G0,L) Nk′ → N

produces a
(

D(G(k)◦, G0)
)

k∈ℕ-sequence for the coadmissible moduleN which is isomorphic to its constituting sequence
(

H0(Y,MY,k)
)

(Y,k)∈FX
from step 2. Now let (Y, k) ∈ FX. We have the following isomorphisms

NY,k = L oc†Y,k(�)(Nk) ≃ L oc†Y,k(�)
(

H0(Y,MY,k)
)

≃ MY,�.

By Tg-linearity the action maps 'MY,k
g and 'NY,k

g , constructed in step 1, are the same. Similarly if (Y′, k′) ⪰ (Y, k) are
G0-equivariant then the transition maps  MY′ ,Y and  NY′ ,Y coincide, by ΨY′,Y-linearity. Hence N ≃ M in CG0X,�.

6.5.1 Coadmissible G0-equivariant D(�)-modules on the Zariski-Riemann space

Let us recall that X∞ denotes the projective limit of all formal models of Xrig (the rigid-analytic space associated by the
GAGA functor to the flag variety XL). The set FX of admissible formal blow-ups Y → X is ordered by setting Y′ ⪰ Y
if the blow-up morphism Y′ → X factors as Y′

�
←←←←←←←→ Y → X, with � a blow-up morphism. The set FX is directed in the
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sense that any two elements have a common upper bound, and it is cofinal in the set of all formal models. In particular,
X∞ = lim

←←←←←←←←←←←FX
Y. The space X∞ is also known as the Zariski-Riemann space [13, Part II, chapter 9, section 9.3]8. In

this subsection we indicate how to realize coadmissible G0-equivariant D(�)-modules on FX as sheaves on the Zariski-
Riemann space X∞. We start with the following proposition whose proof can be found in [36, Proposition 5.2.14].

Proposition 6.5.7. Any formal model Y of Xrig s dominated by one which is a G0-equivariant admissible blow-up of X.

Remark 6.5.8. As FX is cofinal in the set of all formal models, the preceding proposition tells us that the set of all G0-
equivariant admissible blow-ups of X is also cofinal in the set of all formal models of X. From now on, we will assume
that ifY ∈ FX, thenY also G0-equivariant, and we will denoted by �

Y
g ∶ Y → Y the morphism induced by every g ∈ G0.

For every Y ∈ FX we denote by sp Y ∶ X∞ → Y the canonical projection map. Let Y′ ⪰ Y with blow-up morphism
�′ ∶ Y′ → Y and g ∈ G0. Let us consider the following commutative diagram coming from the G0-equivariance of the
family FX

X∞ Y Y

Y′ Y′.

sp Y

sp Y′

�Yg

�Y
′

g

� �′

This diagram allows to define a continuous function

�g ∶ X∞ → X∞
(aY)Y∈FX

→ (�Yg (aY))Y∈FX
.

(6.33)

which defines a G0-action on the space X∞.

Let U ⊂ Y be an open subset and let us take V ∶= sp−1Y (U ) ⊂ X∞. Using the commutative diagram

X∞ Y

Y′

sp Y′

sp Y

�′

we see that

sp Y′ (V ) = sp Y′ (sp−1Y (U ))

= sp Y′ (sp−1Y′ (�
′−1(U )))

= �′−1(U ),

which implies that sp Y′ (V ) is an open subset of Y′. Now, let us suppose that Y′′
�′′
←←←←←←←←←←←←→ Y′

�′
←←←←←←←←←→ Y are morphisms over Y.

8In this reference this space is denoted by
⟨

X
⟩

, cf. [37, subsection 3.2].
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The commutative diagram

X∞ ⊇ V ∶= sp−1Y (U )

Y′

Y′′ Y ⊇ U

sp Y′′ sp Y

spY′

�′′ �′

implies that

�′′−1(sp Y′ (V )) = �′′−1(�′′(sp Y(V ))) = sp Y′′ (V ). (6.34)

In this situation, the morphism (6.22)

ΨY′′,Y′ ∶ �′′∗ D†
Y′′,k′′ (�)→ D†

Y′,k′ (�)

induces the ring homomorphism

D†
Y′′,k′′ (�)(sp Y′′ (V )) = �′′∗ D†

Y′′,k′′ (�)(sp Y′ (V ))
ΨY′′ ,Y′
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ D†

Y′,k′ (�)(sp Y′ (V ))

and we can form the projective limit as in [36, (5.2.25)]

D(�)(V ) ∶= lim
←←←←←←←←←←←

Y′→Y
D†

Y′,k′ (�)(sp Y′ (V )).

By definition, the open subsets of the form V ∶= sp−1Y (U ) form a basis for the topology of X∞ and D(�) is a presheaf on
this basis. The associated sheaf on X∞ to this presheaf will also be denoted by D(�).
Now, relation (6.34), and commutativity of the diagrams

Y′′ Y′′

Y′ Y′

�Y
′′

g

�′′ �′′
�Y

′
g

and the first one in (6.32) tells us that

D†
Y′′,k′′ (�)

(

sp Y′′ (V )
)

= �′′∗ D†
Y′′,k′′ (�)

(

sp Y′ (V )
)

D†
Y′,k′ (�)

(

sp Y′ (V )
)

D†
Y′′,k′′ (�)

(

(

�Y
′′

g

)−1
(

sp Y′′ (V )
)

)

=
(

�Y
′

g

)

∗
�′′∗ D†

Y′′,k′′ (�)
(

sp Y′ (V )
)

(

�Y
′

g

)

∗
D†

Y′,k′ (�)
(

sp Y′ (V )
)

Ψsp Y′ (V )

TY′′
g, sp Y′′ (V )

TY′
g, spY′ (V )

ΨspY′ (�
−1
g (V ))
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is also a commutative diagram. Let us identify

D(�)(V ) =

⎧

⎪

⎨

⎪

⎩

P ∶=
(

PY′,k′
)

(Y′,k′)∈FX
∈

∏

(Y′,k′)FX

D†
Y′,k′ (�)

(

sp Y′ (V )
)

| ΨY′′,Y′ (PY′′,k′′ ) = PY′,k′

⎫

⎪

⎬

⎪

⎭

and let us consider the sequence

g.P ∶=
(

TY′′
g, sp Y′′ (V )

(PY′′,k′′ )
)

(Y′′,k′′)∈FX

∈
∏

(Y′′,k′′)∈FX

D†
Y′′,k′′ (�)

(

(

�Y
′′

g

)−1
sp Y′′ (V )

)

.

Using the commutativity of the preceding diagram we see that

ΨspY′ (�−1g (V ))

(

TY′′

g, (�′′−1)(sp Y′ (V ))
(PY′′,k′′ )

)

= TY′
g, spY′ (V )

(

Ψsp Y′ (V )(PY′′,k′′ )
)

= TY′
g, spY′ (V )

(PY′,k′ )

and therefore, for g ∈ G0, the actions T
Y
g assemble to an action

Tg ∶ D(�)
≃
←←←←←←←→ (�g)∗D(�).

This action is on the left, in the sense that if g, ℎ ∈ G0 then

(�g)∗Tℎ ◦ Tg = Tℎg .

Let us suppose now that M = (MY,k) ∈ C
G0
X,�. We have the transition maps  Y′′,Y′ ∶ �′′∗ MY′′,k′′ → MY′,k′ which are

linear relative to the morphism (6.22). As before, we have the map

MY′′,k′′
(

sp Y′′ (V )
)

= �′′∗ MY′′,k′′
(

sp Y′ (V )
)

 sp Y′ (V )

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ MY′,k′
(

sp Y′ (V )
)

which allows us to define M∞ as the sheaf on X∞ associated to the presheaf

M∞(V ) ∶= lim
←←←←←←←←←←←

Y′→Y
MY′,k′

(

sp Y′ (V )
)

.

By definition, we have the following commutative diagram

MY′′,k′′
(

sp Y′′ (V )
)

= �′′∗ MY′′,k′′ (
(

sp Y′ (V )
)

MY′,k′
(

sp Y′ (V )
)

M †
Y′′,k′′

(

(

�Y
′′

g

)−1
(

sp Y′′ (V )
)

)

=
(

�Y
′

g

)

∗
�′′∗ MY′′,k′′

(

sp Y′ (V )
)

(

�Y
′

g

)

∗
MY′,k′

(

sp Y′ (V )
)

.

 sp Y′ (V )

'Y′′
g sp Y′′ (V )

'Y′
g, spY′ (V )

 spY′ (�
−1
g (V ))

Identifying

M∞(V ) =

⎧

⎪

⎨

⎪

⎩

m ∶=
(

mY′,k′
)

(Y′,k′)∈FX
∈

∏

(Y′,k′)FX

MY′,k′
(

sp Y′ (V )
)

|  Y′′,Y′ (mY′′,k′′ ) = mY′,k′

⎫

⎪

⎬

⎪

⎭
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we see as before that if

g.m ∶=
(

'Y′′
g, sp Y′′ (V )

(mY′′,k′′ )
)

(Y′′,k′′)∈FX

∈
∏

(Y′′,k′′)∈FX

MY′′,k′′

(

(

�Y
′′

g

)−1
sp Y′′ (V )

)

,

then the preceding commutative diagram implies that

 spY′ (�−1g (V ))

(

'Y′′

g, (�′′−1)(sp Y′ (V ))
(mY′′,k′′ )

)

= 'Y′
g, spY′ (V )

(

 sp Y′ (V )(mY′′,k′′ )
)

= 'Y′
g, spY′ (V )

(mY′,k′ ),

and therefore we get a family ('g)g∈G0 of isomorphisms

'g ∶ M∞ → (�g)∗M∞. (6.35)

of sheaves of L-vector spaces. By definition 6.5.5 we have that if g, ℎ ∈ G0 then 'ℎg = (�g)∗'ℎ ◦ 'g . Further-
more, under the preceding identifications, if P = (P Y′,k′ ) ∈ D(�)(V ) and m = (m Y′,k′ ) ∈ M∞(V ), then P .m =
(P Y′,k′ .m Y′,k′ )(Y′,k′)∈FX

and therefore

'g, V (P .m) =
(

'Y′
g, spY′ (V )

(P Y′,k′ .m Y′,k′ )
)

(Y′,k′)∈FX

=
(

TY′
g, spY′ (V )

(PY′,k′ ).'
Y′
g, spY′ (V )

(mY′,k′ )
)

(Y′,k′)∈FX

= Tg, V (P ).'g, V (m).

In particular, M∞ is an equivariant D(�)-module on the topologial G0-space X∞. Let us see that the formation of M∞ is
functorial. Let  ∶ M → N be a morphism in C

G0
X,�. Then, in particular we have the following commutative diagram

�′′∗ MY′′,k′′ MY′,k′

�∗NY,k NY,k.

 M
Y′′ ,Y′

�′′∗ (Y′′ ,k′′ ) Y′ ,k′

 N
Y′′ ,Y′

Let m = (mY,k)(Y,k)∈FX
∈ M∞(V ) and

s ∶=
(

Y′′,k′′ (mY′′,k′′ )
)

(Y′′,k′′)∈FX
∈

∏

(Y′′,k′′)∈FX

NY′′,k′′
(

sp Y′′ (V )
)

.

Commutativity in the preceding diagram implies that

 N
spY′′ (V )

(

sY′′,k′′
)

=  N
sp Y′′ (V )

(

spY′ (V )
(

mY′′,k′′
)

)

= spY′ (V )
(

 M
sp Y′ (V )

(mY′′,k′′ )
)

= spY′ (V )
(

mY′,k′
)

= sY′,k′ ,

therefore s ∈ N∞(V ) and  induces a morphism ∞ ∶ M∞ → N∞.This shows that the preceding construction is
functorial. The next proposition is the twisted analogue of [36, Proposition 5.2.29].
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Proposition 6.5.9. Let � ∈ Hom(T ,Gm) be an algebraic character which induces, via derivation, a dominant and regular
character of t∗L. The functor M ⇝ M∞ from the category C

G0
X,� to G0-equivariant D(�)-modules is a faithful functor.

Proof. We start the proof by remarking that sp Y(X∞) = Y for every Y ∈ FX. By remark 6.5.8, the global sections of
M∞ equal to

H0(X∞,M∞) = lim
←←←←←←←←←←←

(Y,k)∈FX

H0(Y,MY,k) = Γ(M ).

Now, let f, ℎM → N be two morphisms in C
G0
X,� such that f∞ = ℎ∞. By theorem 6.5.6, it suffices to verify Γ(f ) = Γ(ℎ)

which is clear sinceH0(X∞, f∞) = H0(X∞, ℎ∞).

If (∙)∞ denotes the previous functor, the we will denote by LocG0∞ (�) the composition of the functor LocG0� with (∙)∞, i.e.,

{Coadmissible D(G0, L)� −modules}
LocG0∞ (�)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {G0 − equivariant D(�) −modules}.

Since LocG0� is an equivalence of categories, the preceding proposition implies that LocG0∞ (�) is a faithful functor.

6.6 G-equivariant modules

Thorough this section we will denote by G = G(L) and by B the semi-simple Bruhat-Tits building of the p-adic group G
([18] et [19]). This is a simplicial complex endowed with a natural right G-action.

The purpose of this section is to extend the above results from G0-equivariant objects to objects equivariants for the whole
group G.

We start by fixing some notation.9 To each special vertex v ∈ B the Bruhat-Tits theory associates a connected reductive
group o-scheme Gv, whose generic fiber (Gv)L ∶= Gv ×Spec(o) Spec(L) is canonically isomorphic to GL. We denote
by Xv the smooth flag scheme of Gv whose generic fiber (Xv)L is canonically isomorphic to the flag variety XL. We
will distinguish the next constructions by adding the corresponding vertex to them. For instance, we will write Yv for
an (algebraic) admissible blow-up of the smooth model Xv, Gv,0 for the group of points Gv(o) and Gv,k for the group
of points Gv(k)(o). We will use the same conventions if we deal with formal completions. This means that we will
denote by Xv the smooth formal flag o-scheme obtained by formal completion of Xv along its special fiber (Xv)Fq ∶=
Xv ×Spec(o) Spec(o∕$). Moreover, Yv will always denote an admissible formal blow-up of Xv. We point out to the reader
that the blow-up morphism Yv → Xv will make part of the datum of Yv, and that even if for another special vertex v′ ≠ v
the formal o-scheme Yv is also a blow-up of the smooth formal model Xv′ , we will only consider it as a blow-up of Xv.
We will denote by Fv ∶= FXv , the set of all admissible formal blow-upsYv → Xv ofXv and by F v ∶ FXv

the respective
directed system of definition 6.5.1. By the preceding accord, the sets Fv and Fv′ are disjoint if v ≠ v′. Let

F ∶=
⨆

v
Fv

where v runs over all special vertices of B. We recall for the reader that X∞ is equal to the projective limit of all formal
models of Xrig.

Remark 6.6.1. The set F is partially ordered in the following way. We say thatYv′ ⪰ Yv if the projection sp Yv′ ∶ X∞ →

9This is exactly as in [36, 5.3.1].
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Yv′ factors through the projection sp Yv ∶ X∞ → Yv

X∞

Yv′ Yv.

sp Yv
sp Yv′

Definition 6.6.2. We will denote by F ∶=
⨆

v F v, where v runs over all the special vertices of B. This set is par-
tially ordered as follows. We say that (Yv′ , k′) ⪰ (Yv, k) if Yv′ ⪰ Yv and Lie(Gv′ (k′)) ⊂ Lie(Gv(k)) (or equivalent
$k′Lie(Gv′ ) ⊂ $kLie(Gv), cf. subsection 5.1.2) as lattices in gL.

For any special vertex v ∈ B, any element g ∈ G induces an isomorphism

�vg ∶ Xv → Xv.g .

The isomorphism induced by �vg on the generic fibers (Xv)L ≃ XL ≃ (Xv.g)L coincides with right translation by g on XL

�g ∶ XL = XL ×Spec(L) Spec(L)
idXL×g
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ XL ×Spec(L) Spec(GL)

�L
←←←←←←←←←←←→ XL.

where we have used G(L) = GL(L). Moreover, �vg induces a morphism Xv → Xv.g , which we denote again by �vg , and
which coincides with the right translation on Xv if g ∈ Gv,0 (of course in this case vg = v). Let (�vg)

♮ ∶ OXvg →

(�vg)∗OXv be the comorphism of �vg . If � ∶ Yv → Xv is an admissible blow-up of an ideal I ⊂ OXv , then blowing-up
((�vg)

♮)−1((�vg)∗I) produced a formal scheme Yvg (cf. lemma 6.5.3), together with an isomorphism �vg ∶ Yv → Yvg .
As in lemma 6.5.3 we have kYv = kYvg . For any g, ℎ ∈ G and any admissible formal blow-up Yv → Xv, we have
�vgℎ ◦ �vg = �vgℎ ∶ Yv → Yvgℎ. This gives a right G-action on the family F and on the projective limit X∞. Finally, if
Yv′ ⪰ Yv with morphism � ∶ Yv′ → Yv and g ∈ G, then Yv′g ⪰ Yvg , and we have the following commutative diagram
(cf. corollary 6.5.4)

Yv′ Yv

Yv′g Yvg .

�

�v′g �vg
�g

(6.36)

Now, over every special vertex v ∈ B the algebraic character � induces an invertible sheaf Lv(�) on Xv, such that for
every g ∈ G there exists an isomorphism

Rvg ∶ Lvg(�)→ (�vg)∗Lv(�),

satisfying the cocycle condition

Rvℎgℎg =
(

�vℎg
)

∗
Rvℎ ◦ R

vℎ
g (ℎ, g ∈ G). (6.37)

As usual, for every special vertex v ∈ B, we will denote by Lv(�) the p-adic completion of the sheaf Lv(�), which is
considered as an invertible sheaf on Xv. Let (Yv, k) ∈ F with blow-up morphism pr ∶ Yv → Xv. At the level of
differential operators, we will denote by D†

Yv,k
(�) the sheaf of arithmetic differential operators on Yv acting on the line

bundle Lv(�)10 we have the following important properties. Let g ∈ G. As in (6.9) the isomorphism (6.37) induces a left

10Here we abuse of the notation and we denote again by Lv(�) the invertible sheaf pr∗Lv(�) on Yv.
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action

T vg ∶ D†
Yvg ,k

(�)
≃
←←←←←←←→

(

�vg
)

∗
D†

Yv,k
(�)

P → Rvg P (R
v
g)
−1.

Now, we identify the global sections Γ(Yv,D
†
Yv,k

(�)) with Dan(Gv(k)◦)� and obtain the group homomorphism

Gv,k+1 → Γ
(

Yv,D
†
Yv,k

(�)
)×

g → �g

Where Gv,k+1 = Gv(k)◦(L) denotes the group of L-rational points (or o-points of Gv(k + 1)). We will follow the same
lines of reasoning given in [36, Proposition 5.3.2] to prove the following proposition.

Proposition 6.6.3. Suppose (Yv′ , k′) ⪰ (Yv, k) for pairs (Yv′ , k′), (Yv, k) ∈ F with morphism � ∶ Yv′ → Yv. There
exists a canonical morphism of sheaves of rings

Ψ ∶ �∗D
†
Yv′ ,k′

(�)→ D†
Yv,k

(�)

which is G-equivariant in the sense that for every g ∈ G the following diagram is commutative

(�.g)∗D
†
Yv′g ,k′

(�) D†
Yvg ,k

(�)

(�.g)∗(�v
′
g )∗D

†
Yv′ ,k′

(�) = (�vg)∗�∗D
†
Yv′ ,k′

(�) (�vg)∗D
†
Yv,k

(�).

Ψ

(�.g)∗(Tg) Tg
(�vg)∗(Ψ)

Proof. Let us denote by pr′ ∶ Yv′ → Xv′ and pr ∶ Yv → Xv the blow-ups morphisms, and let us put p̃r ∶= pr ◦ �. We
have the following commutative diagram

Yv′ Yv

Xv′ Xv.

pr′
p̃r

pr

�

Let us fixm ∈ ℕ. As in [36, Proposition 5.3.6] we show first the existence of a canonical morphism of sheaves of o-algebras

D(m,k)
Yv′

(�)→ p̃r∗D(m,k)
Xv

(�). (6.38)

Here Yv′ , Yv, Xv′ and Xv denote the o-scheme of finite type whose completions are Yv′ , Yv, Xv′ and Xv, respectively.
The morphisms between these schemes will be denoted by the same letters, for instance pr ∶ Yv → Xv. We recall for the
reader that the sheaf D(m,k′)

Yv′
(�) is filtered by locally free sheaves of finite rank

D(m,k′)
Yv′ ,d

(�) = pr′∗Lv′ (�)⊗OYv′
pr′∗D(m,k′)

Xv′ ,d
⊗OYv′

pr′∗Lv′ (�)∨

= pr′∗
(

D(m,k′)
Xv′ ,d

(�)
)

,

and therefore by the projection formula [30, Part II, Section 5, exercise 5.1 (d) ] and given that pr′∗OYv′ = OXv′ (cf. [36,
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Lemma 3.2.3]) we have for every d ∈ ℕ

pr′∗
(

D(m,k′)
Yv′ ,d

(�)
)

= pr′∗
(

OYv′ ⊗OYv′
pr′∗D(m,k′)

Xv′ ,d
(�)

)

= pr′∗(OYv′ )⊗OXv′
D(m,k′)
Xv′ ,d

(�)

= D(m,k′)
Xv′ ,d

(�),

which implies that

pr′∗
(

D(m,k′)
Yv′

(�)
)

= D(m,k′)
Xv′

(�)

because the direct image commutes with inductive limits on a noetherian space. By proposition 5.5.11 and the preceding
relation we have a canonical map of filtered o-algebras

D(m)(Gv′ (k′)) → H0
(

Xv′ ,D
(m,k′)
Xv′

(�)
)

= H0
(

Xv′ , pr′∗
(

D(m,k′)
Yv′

(�)
))

= H0
(

Yv′ ,D
(m,k′)
Yv′

(�)
)

,

in particular we get a morphism of sheaves of filtered o-algebras (this is exactly as we have done in (2.23))

Φ(m,k
′)

Yv′
∶ A(m,k′)

Yv′
∶= OYv′ ⊗o D

(m)(Gv′ (k′))→ D(m,k′)
Yv′

(�). (6.39)

Applying Sym(m)(∙) ◦ $k′pr′∗(∙) to the surjection (5.31) we obtain a surjection

OYv′ ⊗o Sym(m) (Lie(Gv′ (k′))
)

→ Sym(m)
(

$k′pr′∗ TXv′
)

which equals the associated graded morphism of (6.39) by proposition 6.1.5. Hence Φ(m,k
′)

Yv′
is surjective. On the other

hand, if we apply p̃r∗ to the surjection

Φ(m,k)Xv
∶ A(m,k)

Xv
= OXv ⊗o D

(m)(Gv(k))→ D(m,k)
Xv

(�)

we obtain the surjectionOYv′ ⊗oD(m)(Gv(k)) → p̃r∗D(m,k)
Xv

(�). Let us recall that (Yv′ , k′) ⪰ (Yv, k) implies, in particular,
that Lie(Gv′ (k′)) ⊆ Lie(Gv(k)) and therefore $k′Lie(Gv′ ) ⊂ $kLie(Gv). By (5.8), the preceding inclusion gives rise to
an injective ring homomorphism D(m)(Gv′ (k′)) → D(m)(Gv(k)). Let us see that the composition

OYv′ ⊗o D
(m)(Gv′ (k′)) → OYv′ ⊗o D

(m)(Gv(k))↠ p̃r∗D(m,k)
Xv

(�)

factors through D(m,k′)
Xv′

(�).

OYv′ ⊗o D(m)(Gv′ (k′)) p̃r∗D(m,k)
Xv

(�)

D(m,k′)
Yv′

(�).

Since by lemma 5.5.8 all those sheaves are $-torsion free, this can be checked after tensoring with L in which case we
have that D(m,k′)

Yv′
⊗o L ≃ p̃r∗D(m,k)

Xv
⊗o L is the (push-forward of the) sheaf of algebraic differential operators on the

generic fiber of Yv′ (cf. discussion given at the beginning of section 6.1). We thus get the canonical morphism of sheaves
(6.38). Passing to completions we get a canonical morphism D̂ (m,k′)

Yv′
(�) → p̃r∗D̂ (m,k)

Xv
(�). Taking inductive limit over all

m and inverting $ gives a canonical morphism D†
Yv′ ,k′

(�) → p̃r∗D†
Xv,k

(�). Now, let us consider the formal scheme Yv′



6.6. G-EQUIVARIANT MODULES 129

as a blow-up of Xv via p̃r. Then � becomes a morphism of formal schemes over Xv and we consider p̃r∗D†
Xv,k

(�) as the
sheaf of arithmetic differential operators with congruence level k defined on Yv′ via p̃r

∗. Using the invariance theorem
(theorem 6.2.2) we get �∗

(

p̃r∗D†
Xv,k

(�)
)

= D†
Yv,k

. Then applying �∗ to the morphism D†
Yv′ ,x′

(�) → p̃r∗D†
Xv,k

(�) gives
the morphism

Ψ ∶ �∗D
†
Yv′ ,k′

(�)→ D†
Yv,k

of the statement. As in [36, Proposition 5.3.8], making use of the maps Φ(m,k)Yv
, as above, the assertion about the G-

equivariance is reduced to some obvious functorial properties of the rings D(m)(Gv(k)).

Definition 6.6.4. A coadmissibleG-equivariant arithmeticD(�)-module onF consists of a familyM ∶= (MYv,k)(Yv,k)∈F
of coherent D†

Yv,k
(�)-modules with the following properties:

(a) For any special vertex v ∈ B and g ∈ G with isomorphism �vg ∶ Yv → Yvg , there exists an isomorphism

�vg ∶ MYvg ,k →
(

�vg
)

∗
MY,k

of sheaves of L-vector spaces, satisfying the following conditions:

(i) For all ℎ, g ∈ G we have 11

(�vℎg )∗�
v
ℎ ◦ �

vℎ
g = �vℎg .

(ii) For all open subsets U ⊆ Yvg , all P ∈ D†
Yvg ,k

(�)(U ), and all m ∈ MYvg ,k(U ) one has �vg,U (P .m) =
T vg,U (P ).�

v
g,U (m).

(iii) For all g ∈ Gk+1,v the map �vg ∶ MY,k → (�vg)∗MY,k = MY,k is equal to the multiplication by �g ∈
H0(Yv,D

†
Yv,k

(�)).

(b) For any two pairs (Yv′ , k′) ⪰ (Yv, k) in F with morphism � ∶ Yv′ → Yv there exists a transition morphism
 Yv′ ,Yv ∶ �∗MYv′ → MYv , linear relative to the canonical morphism Ψ ∶ �∗D

†
Yv′ ,k′

(�) → D†
Yv,k

(�) (in the
preceding proposition) and making commutative the following diagram

(�.g)∗MYv′g MYvg

(�vg)∗�∗MYv′ = (�.g)∗(�
v′
g )∗MYv′ (�vg)∗MYv

 Yv′g ,Yvg

(�.g)∗�v
′
g �vg

(�vg)∗ Yv′ ,Yv

�vg ◦  Yv′g ,Yvg = (�
v
g)∗ Yv′ ,Yv ◦ (�.g)∗�

v′
g (6.40)

for any g ∈ G (where we have use the relation (�vg)∗ ◦ �∗ = (�.g)∗ ◦ (�
v′
g )∗ coming from the commutative diagram

(6.36)). If v′ = v, and (Y′v, k
′) ⪰ (Yv, k) in F v, and if Y′v, Yv are Gv,0-equivariant, then we require additionally

that the morphism induced by  Y′v,Yv
(cf. (6.26))

 Y′v,Yv
∶ D†

Yv,k
(�)⊗�∗D

†
Y′v,k′

(�),Gv,k+1
�∗MY′v,k′

→ MYv,k (6.41)

is an isomorphism of D†
Yv,k

(�)-modules. As in theorem 6.5.6, the morphism  Yv′ ,Yv ∶ �∗MYv′ ,k′ → MYv,k are

11Here we use the fact the action of G on B is on the right and therefore (�vℎg )∗ ◦ (�
v
ℎ)∗ = (�

v
ℎg)x.
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required to satisfy the transitive condition

Yv′′ Yv′

Yv

�′

�′′ �

�∗ �′∗MYv′′ ,k′′ = �
′′
∗ MYv′′ ,k′′ MYv,k

�∗MY′
v′
,k′

 Yv′′ ,Yv

�∗ Yv′′ ,Yv′

 Yv′ ,Yv

 Yv′ ,Yv ◦ �∗( Yv′′ ,Yv′ ) =  Yv′′ ,Yv ,

whenever (Yv′′ , k′′) ⪰ (Yv′ , k′) ⪰ (Yv, k) in F . Moreover,  Yv,Yv = idMYv,k
.

A morphism M → N between two coadmissible G-equivariant arithmetic D(�)-modules consists in a family of mor-
phisms MY,k → NY,k of D†

Y,k(�)-modules, such that for any couple of special vertex v, v′ ∈ B we have the following
commutative diagrams

MYvg ,k (�vg)∗MY,k

NYvg ,k (�vg)∗NY,k

�∗MYv′ ,k′ MYv,k

�∗NYv′ ,k′ NYv,k.

We denote the resulting category by C F
G,�.

We recall for the reader thatD(G0, L) is a Fréchet-Stein algebra [52, Theorem 5.1]. Moreover, aD(G,L)-module is called
coadmissible if it is coadmissible as a D(H,L)-module for every compact open subgroupH ⊆ G (cf. remark 6.4.7 (ii)).
Given that for any two compact open subgroups H ⊆ H ′ ⊆ G the algebra D(H ′, L) is finitely generated free and hence
coadmissible as a D(H,L)-module, it follows from [52, Lemma 3.8] that the preceding condition needs to be tested only
for a single compact open subgroup H ⊆ G. This motivates the following definition where we will consider the weak
Freéchet-Stein structure of D(G0, L) defined in (6.20).

Definition 6.6.5. We say thatM is a coadmissble D(G,L)-module ifM is coadmissisble as a D(G0, L)-module.

Let us construct now the bridge to the category of coadmisible D(G,L)�-modules. Let M be such a coadmissible
D(G,L)�-module and let V ∶= M ′

b. We fix v ∈ B a special vertex. Let VGv(k)◦−an
12 be the subspace of Gv(k)◦-analytic

vectors and letMv,k be its continuous dual. For any (Yv, k) ∈ F we have a coherent D†
Yv,k

(�)-module

Loc†Yv,k(�)(Mv,k) = D†
Yv,k

(�)⊗Dan(Gv(k)◦)� Mv,k

and we can consider the family

LocG� (M) ∶=
(

Loc†Yv,k(�)(Mv,k)
)

(Yv,k)∈F
.

On the other hand, given an object M ∈ C F
G,�, we may consider the projective limit

Γ(M ) ∶= lim
←←←←←←←←←←←

(Y,k)∈F
H0(Y,MY,k)

with respect to the transition maps  Y′,Y. Here the projective limit is taken in the sens of abelian groups and over the
cofinal family of pairs (Yv, k) ∈ F with Gv,0-equivariant Yv , cf. remark 6.5.8.

12Here we use the fact that (Gv)L = GL.
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Theorem 6.6.6. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and
regular character of tL. (and therefore, a dominant and regular character on every special vertex of B). The functors
LocG� (∙) and Γ(∙) induce quasi-inverse equivalences between the category of coadmissible D(G,L)�-modules and C F

G,�.

The proof follows the same lines of reasoning given in [36, Theorem 5.3.12].

Proof. The proof is an extension of the the proof of theorem 6.5.6, taking into account the additional G-action. LetM be
a coadmissible D(G,L)�-module and let M ∈ C G

F ,�. The proof of the theorem follows the following steps.

Claim 1. One has LocG� (M) ∈ C F
G,� and Loc

G
� (∙) is functorial.

Proof. Let g ∈ G, v ∈ B a special vertex and �vg ∶ Yv → Yvg the respective isomorphism. For conditions (a) for
LocG� (M) we need the maps

� ∶ LocG� (M)Yv,k ∶= Loc†Yv,k(�)(Mv,k)→ (�vg)∗Loc
G
� (M)Yv,k

satisfying the properties (i), (ii) and (iii). Let �̃vg ∶Mvg,k →Mv,k denote the dual map to 13

VGv(k)◦−an → VGvg(k)◦−an
w → g−1w.

Let U ⊆ Yvg be an open subset and P ∈ D†
Yvg ,k

(�)(U ), m ∈Mvg,k. We define

�vg, U (P ⊗ m) ∶= T vg, U (P )⊗ �̃vg(m). (6.42)

Exactly as we have done in theorem 6.5.6, the family (�vg) satisfies the requirements (i), (ii) and (iii). Let us verify
now condition (b). Given (Yv′ , k′) ⪰ (Yv, k) in F , we have Gv′ (k′)◦ ⊆ Gv(k)◦ in Grig and we denote by  ̃Yv′ ,Yv ∶
Mv′,k′ → Mv,k the map dual to the natural inclusion VGv(k)◦−an ⊆ VGv′ (k′)◦−an. Let U ⊆ Yv′ be an open subset and
P ∈ �∗D

†
Yv′ ,k′

(�)(U ), m ∈Mv′,k′ . We then define 14

 Yv′ ,Yv (P ⊗ m) ∶= ΨYv′ ,Yv (P )⊗  ̃Yv′ ,Yv (m)

where ΨYv′ ,Yv ∶ �∗D
†
Yv′ ,k′

(�) → D†
Yv,k

(�) is the canonical morphism given by the preceding proposition. This definition
extends to a map

 Yv′ ,Yv ∶ �∗Loc
G
� (M)Yv′ ,k′ → LocG� (M)Yv,k

which satisfies all the required conditions. The functoriality of LocG� (∙) can be verified exactly as we have done for the
functor LocG0� (∙).

Claim 2. Γ(M ) is a coadmissible D(G,L)�-module.

Proof. We already know that Γ(M ) is a coadmissible D(Gv,0, L)�-module for any v (theorem 6.5.6). So it suffices to
exhibit a compatible G-action on Γ(M ). Let g ∈ G. The isomorphisms �vg ∶ MYvg ,k → (�vg)∗MY,k, which are compati-
bles with transitions maps, induce isomorphisms at the level of global sections (which we denote again by �vg to soft the
notation)

�vg ∶ H
0(Yvg,k,MYvg ,k)→ H0(YvMY,k).

13Here we use Gvg(k)◦ = g−1Gv(k)◦g in Grig.
14We avoid the subscript U in order to soft the notation.
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Let us identify

Γ(M ) = lim
←←←←←←←←←←←

(Yvg ,k)∈Fvg

H0(Yvg,k,MYvg ,k)

=

⎧

⎪

⎨

⎪

⎩

(

mYvg ,k

)

(Yvg ,k)∈Fvg

∈
∏

(Yvg ,k)∈Fvg

H0(Yvg,k,MYvg ,k) |  Y′vg ,Yvg
(mY′vg ,k

) = mYvg ,k

⎫

⎪

⎬

⎪

⎭

Where we have abused of the notation and we have denoted by  Y′vg ,Yvg
the morphism obtained by taking global sections

on the morphism  Y′vg ,Yvg
∶ (�.g)∗D

†
Y′vg ,k′

(�)→ D†
Yvg ,k

(�). For g ∈ G and m ∶= (mYvg ,k)(Yvg ,k)∈Fvg
∈ Γ(M ) we define

g.m ∶=
(

�vg(mYvg ,k)
)

(Yvg ,k)∈Fvg

∈
∏

(Yv,k)∈Fv

H0(Yv,MYv,k), g.m (Yv,k)∈Fv
∶= �vg(mYvg ,k) (6.43)

We want to see that g.m ∈ Γ(M ) = lim
←←←←←←←←←←←(Yv,k)∈Fv

H0(Yv,MYv,k) and that this assignment defines a leftG-action on Γ(M ).
Taking global sections on (6.40) we get the commutative diagram

H0(Y′vg ,MY′vg ,k′
) H0(Yvg ,MYv,k)

H0(Y′v,MY′v,k′
) H0(Yv,MYv,k)

 Y′vg ,Yvg

�vg �vg

 Y′v,Yv

which implies that

 Y′v,Yv
(g.m Y′v,k′

) =  Y′v,Yv
(�vg(mY′vg ,k′

))

= �vg( Y′vg ,Yvg
(mY′vg ,k′

))

= �vg(mYvg ,k)

= g.m Yv,k.

We obtain an isomorphism

Γ(M ) = lim
←←←←←←←←←←←
Fvg

H0(Yvg ,MYvg ,k)
g
←←←←←←→ lim

←←←←←←←←←←←
Fv

H0(Yv,MYv,k) = Γ(M ).

According to (i) in (a) we have the sequence

�vℎg ∶ H
0(Yvℎg ,MYvℎg ,k)

�vℎg
←←←←←←←←←←←←←←←→ H0(Yvℎ,MYvℎ,k)

�vℎ
←←←←←←←←←←←→ H0(Yv,MYv,k)

which tells us that ℎ.(g.m) = (ℎg).m, for ℎ, g ∈ G andm ∈ Γ(M ). This gives aG-action on Γ(M )which, by construction,
is compatible with its various D(Gv,0, L)-module structures.

Claim 3. Γ ◦ LocG� (M) ≃M .

Proof. By theorem 6.5.6 we know that this holds as a coadmissibleD(G0, L)�-module, so we need to identify theG-action
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on both sides. Let v be a special vertex. According to (6.42), the action

Γ ◦ LocG� (M) ≃ lim
←←←←←←←←←←←
k
Mvg,k → lim

←←←←←←←←←←←
v
Mv,k ≃ Γ ◦ LocG� (M)

of an element g ∈ G on Γ ◦ LocG� (M) is induced by �̃vg ∶Mvg,k →Mv,k. By dualizing

V =
⋃

k∈ℕ
VGvg(k)◦−an =

⋃

k∈ℕ
VGv(k)◦−an

we obtain the identification

M ≃ lim
←←←←←←←←←←←
k
Mvg,k ≃ lim←←←←←←←←←←←

k
Mv,k,

and therefore we get back the original action of g onM .

Claim 4. LocG� ◦ Γ(M ) ≃ M .

Proof. We know that LocG� (Γ(M ))Yv,k = MYv,k as D†
Yv,k

(�)-modules for any (Yv, k) ∈ F , cf. theorem 6.5.6. It remains
to verify that these isomorphisms are compatible with the maps �vg and  Yv′ ,Yv on both sides. To do that, let us see that
the maps �vg on the left-hand side are induced by the maps of the right-hand side. Given

�vg ∶ MYv,k → (�vg)∗MYv,k,

the corresponding map

�vg ∶ Loc
G
� (Γ(M ))Yvg ,k → (�vg)∗(Loc

G
� (Γ(M ))Yv,k)

equals the map

D†
Yvg ,k

(�)⊗Dan(Gvg(k)◦)� H
0
(

Yvg ,MYvg ,k

)

→ (�vg)∗
(

D†
Yv,k

(�)⊗Dan(Gv(k)◦)� H
0
(

Yv,MYv,k

))

given locally by T vg,Ygv ⊗ H0(Yvg , �vg), cf. (6.42). Let U ⊆ Yv be an open subset and P ∈ D†
Yv,k

(�)(U ), m ∈ Mv,k =

H0(Yvg ,MYvg ,k). The isomorphism LocG� (Γ(M ))Yv,k ≃ MYv,k are induced (locally) by P ⊗ m → P .(m|U ). Condition
(ii) tells us that these morphisms interchange the maps �vg , as desired. The compatibility with transitions maps  Yv′ ,Yv for
two models (Yv′ , k′) ⪰ (Y, k) in F is deduced in a entirely similar manner as we have done in theorem 6.5.6 and the fact
that  Yv′ ,Yv is linear relative to the canonical morphism Ψ ∶ �∗D

†
Yv′ ,k′

(�)→ D†
Yv,k

.

This ends the proof of the theorem.

As in the case of the group G0, we now indicate how objects from C F
G,� can be realized as honest G-equivariant sheaves

on the G-space X∞. The following discussion is an adaptation of the discussion given in [50, 5.4.3 and proposition 5.4.5]
to our case.

Proposition 6.6.7. The G0-equivariant structure of the sheaf D(�) extends to a G-equivariant structure.

Proof. Let g ∈ G and let v, v′ ∈ B be special vertexes. Let us suppose that (Yv′ , k′) ⪰ (Yv, k) in F . The isomorphism
�v′g ∶ Yv′ → Yv′g induces a ring isomorphism

T v
′

g ∶ D†
Yv′g ,k′

(�)→
(

�v
′

g

)

∗
D†

Yv′ ,k′
(�).
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On the other hand, and exactly as we have done in (6.33), the commutative diagram

X∞ Yv Yvg

Yv′ Yv′g .

sp Yv

sp Yv′

�vg

�v′g

� �.g

defines a continuous function

�g ∶ X∞ → X∞
(av) → (�vg(av)),

which fits into a commutative diagram

X∞ X∞

Yv′ Yv′g .

�g

prYv′
prYv′g

�v′g

In particular, if V ⊆ X∞ is an open subset of the V ∶= pr−1Yv (U ) with U ⊆ Yv an open subset. Then

(

�v
′

g

)−1 (
prYv′g (V )

)

= prYv′
(

�−1g (V )
)

and so the map T v′g induces the morphism

D†
Yv′g ,k′

(�)
(

prYv′g (V )
)

→ D†
Yv′ ,k′

(�)
(

prYv′
(

�−1g (V )
))

. (6.44)

Moreover, if (Yv′′ , k′′) ⪰ (Yv′ , k′) ⪰ (Yv, k) in F , and as before V ∶= pr−1Yv (U ) ⊆ X∞ with U ⊆ Yv an open subset, then
the commutative diagram

D†
Yv′′g ,k′′

(�)
(

prYv′′g (V )
)

D†
Yv′′ ,k′′

(�)
(

prYv′′
(

�−1g (V )
))

.

D†
Yv′g ,k′

(�)
(

prYv′g (V )
)

D†
Yv′ ,k′

(�)
(

prYv′
(

�−1g (V )
))

.

implies that if, by cofinality, we identify D(�)(V ) = lim
←←←←←←←←←←←(Yvg ,k)∈Fvg

D†
Yvg ,k

(�)
(

prYvg (V )
)

and we take projective limits in

(6.44), then we get a ring homomorphism

Tg,V ∶ D(�)(V )→ (�g)∗D(�)(V )

which implies that the sheaf D(�) is G-equivariant. Furthermore, from construction this G-quivariant structure extends
the G0-structure defined in (6.35).

Finally, let us recall the faithful functor

M ⇝ M∞

from coadmissible G0-equivariant arithmetic D(�)-modules on FX to G0-equivariant D(�)-modules onX∞. If M comes
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from a coadmissible G-equivariant D(�)-module on F , then M∞ is in fact G-equivariant (as in (6.35), this can be proved
by using the family of L-linear isomorphisms (�vg)g∈G. As in proposition 6.5.9, the preceding theorem gives us

Theorem 6.6.8. Let us suppose that � ∈ Hom(T ,Gm) is an algebraic character such that � + � ∈ t∗L is a dominant and
regular character of tL. The functor M ⇝ M∞ from the category C F

G,� to G-equivariant D(�)-modules on X∞ is a
faithful functor.

We summarize the main results of this work with the following commutative diagrams of functors (cf. [50, Theorem
5.4.10])

{

Coadmissible
D(G,L)� −modules

} {

Coadmissible G − equivariant
arithmetic D(�) −modules

}

{

Coadmissible
D(G0, L)� −modules

} {

Coadmissible G0 − equivariant
arithmetic D(�) −modules

}

LocG�
≃

LocG0�
≃

Here the left-hand vertical arrow is the restriction functor coming from the homomorphism

D(G0, L)� → D(G,L)�

and the right-hand vertical arrow is the forgetful functor.
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