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I – INTRODUCTION 

1. ABIOTIC REACTIONS IN BIOLOGICAL ENVIRONMENT 

From a chemical point of view, living organisms are probably the most fascinating systems that 

have ever existed. A massive amount of chemical and physical phenomena take place at the 

same time, in perfect coordination and balance, auto-regulated and mostly self-repaired. A 

system so intricate that apparently even the littlest perturbation could have the potential to 

trigger a cascade of unpredicted events and yet a system so highly buffered that proved to be 

able to sustain external stress without deadly consequences. A system whose secrets we have 

been trying to unravel and to reproduce since ever.  

Interacting with such a complex world by physical entities -like X-rays, UV light, magnetic field- 

and by introduction of chemicals has always been with the aim to either decode, study, 

reproduce and ameliorate it (biochemistry, chemical biology and all their sub subjects) or to 

rebalance it in case of malfunctions (medicinal chemistry, diagnosis and treatment of 

diseases). 

In almost all the cases, this is translated into the introduction of a xenobiotic (from the Greek: 

“xeno” = stranger, foreign) into a living organism. This foreign chemical would react with other 

more or less complex entities present in such a crowded environment, from the smallest 

species (protons, inorganic ions, metals, oxygen…) to the most complex and structured 

biomolecules (proteins, enzymes, cell organelles). 

Either way, the aim is to prepare xenobiotics which would possibly undergo or regulate a 

selected reaction, according to the final goal: for the chemical biologist it would be the labelling 

of a metabolite, a protein, an enzyme, a part of the cell or even the whole cell in order to gain 

information from it; for a medicinal chemist it could be the stimulation or the inhibition of a 

certain metabolic pathway; the activation in situ of an anticancer agent; the transformation of 

a undesired metabolite to another molecule more easily excreted from the body. Carrying out 

those reactions in a hyper-regulated and crowded environment is extremely challenging 

because the xenobiotic introduced must selectively react with its counterpart, without causing 

undesired side-reactions and adverse effects on the short and long term. 

Selectivity can be gained in different ways: i) by finding xenobiotic substrates which perfectly 

fit the biomolecule of interest, it is the case for example of enzymatic substrates, inhibitors, 
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antibody drug conjugates; ii) by exploiting extremely selective chemical reactions which are 

not performed by living systems. The second concept was introduced in 2003 by C. Bertozzi 

and grew exponentially since then. Biorthogonal reactions require the use of functionalities 

with no counterparts in vivo and are extremely selective, nontoxic (or presenting minimal 

toxicity) and highly efficient under physiological conditions.1,2 

Bioorthogonal applications typically proceed in two steps. First, the substrate (a biomolecule 

of interest, like a metabolite, an enzyme inhibitor, etc.) is modified with a bioorthogonal 

functional group and introduced into the cell. The modification must not alter the normal 

bioactivity of the target. Then a probe containing the complementary functional group is 

introduced to react and label the substrate.3 

Over the years, the concept of bioorthogonal chemistry has been broadened to a pool of 

applications, not limited to biomolecular tagging and modification in cellulo. 

The next frontier in chemical biology is to move toward completely abiotic reaction systems in 

which both the substrate, the promoter and the reaction itself are designed and prepared via 

organic synthesis (from the Greek: prefix “a” = “not”, “abiotic” = “not derived from living 

organisms”). The aim is to reproduce the selectivity and efficiency of biological processes -as 

in the case of bioorthogonal chemistry- while keeping the controllability in every single part. 

The introduction of an abiotic reaction trigger in a living system encounters many challenges 

about toxicity, loss of activity and substrate competition, especially in the case of metal 

catalysts. Only few studies aiming at in vivo applications of completely abiotic reaction systems 

have been able to demonstrate the concept in complex living organism (mice, zebrafish, etc.). 

One example of biorthogonal chemistry applied to abiotic system was published by Oneto et 

al. in 2016.4 The reaction is the well-known inverse-electron demand Diels-Alder (IEDDA) 

reaction between tetrazine and trans-cyclooctene (TCO). The xenobiotic substrate is a TCO 

modified anticancer drug (pro-drug) and the abiotic promoter (in this case the bioorthogonal 

counterpart of TCO) is a heterogeneous biocompatible hydrogel (alginate polymer) modified 

with tetrazine. The hydrogel is pre-implanted in a desired location (e.g. next to a tumoral 

tissue), assuring the concentration and activation of the pro-drug in the location of choice. The 

system was successfully tested in mice using the doxorubicin pro-drug, comparing their local 

drug activation system to classical chemotherapy. 

Another recent work, performed in our group, exploits the selectivity of strain-promoted 

alkyne-azide cycloaddition (SPAAC) for the inactivation and fast clearance of an anticoagulant 
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drug in mice.5 In this case the xenobiotic substrate is the anticoagulant agent Warfarin 

modified with an azide and the abiotic reagent is a clearing agent bearing a bicyclononyne 

motif (BCN-peg6-OH). The in vivo bioorthogonal reaction between the circulating drug and the 

BCN leads to the formation of an inactivated product which is cleared from the bloodstream. 

Bioorthogonal strategies rely also on the use of metals as abiotic catalysts for reactions in living 

systems, a fact which is not surprising given their great performances in classical organic 

chemistry.6 The efficiency and selectivity of Transition Metals (TM) as catalysts for new-to-

nature reactions is however counterbalanced by their cytotoxicity and deactivation in 

biological media.7 To overcome these issues, TM are used as homogeneous complexes, 

incorporated into nanoparticles or enclosed in resins and microspheres. To date only a few 

metal-catalysed abiotic reactions have been proven in complex living organism. The pioneer 

in such direction is probably the work presented by Bradley’s group in 2011 in which palladium 

nanoparticles trapped within polystyrene microspheres were proved to catalyse 

allylcarbamate cleavage and Suzuki-Miyaura cross-coupling in cells for the first time.8 As the 

author claim in the conclusion of their article “this investigation provides the basis for the 

customization of heterogeneous unnatural catalysis as tools for creative applications in 

chemical biology, pharmacology and, potentially, in medicine”. A prediction which proved to 

be correct given that since then many other examples of metal-catalysed reactions in cellulo 

were reported.9–11 However, only a few and very recent works were able to go over cell-based 

systems and reach the stage of in vivo proof of concept and application in mice or zebrafish. 

In 2014, Weiss et al. reported an abiotic palladium-catalysed system composed by a modified 

5-fluorouracil prodrug as xenobiotic substrate and palladium-functionalized polyethylene 

glycol-polystyrene resins as abiotic catalyst.12 The reaction is the activation of the 5-fluorouracil 

drug in the extracellular tumoral environment since the Pd-resin are bigger than cells 

(diameter = 150 µm) and are supposed to be implanted intratumorally. The authors were able 

to demonstrate the biocompatibility of such resins, as well as their activity toward carbamate 

cleavage, in zebrafish embryos. 

Very recently, Miller and co-workers investigated the biocompatibility, localization in mice and 

use for doxorubicin drug release of a nano-encapsulated palladium catalyst.13 Their system is 

composed by pro-doxorubicin (doxorubicin protected with allyloxycarbonyl “alloc” group as 

xenobiotic substrate and Pd-nanoparticles as abiotic promoter injected intravenously and 

uptaken by tumoral cells. 
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In the same year (2017), Tsubokura et al. presented a propargyl ester amidation reaction 

catalysed by gold within live mice.14 In this case the metal was linked to a glycoalbumin in order 

to achieve specific localization of the reaction. 

Those listed are examples of recent outstanding results obtained in the application of abiotic 

controllable bioorthogonal reactions in living systems. Some excellent reviews published very 

recently (2018) collect the most recent advances in the field.15–17 

The challenges encountered when researcher try to translate an abiotic reaction from in vitro 

to in vivo -which include toxicity of the catalyst (the metal itself, nanoparticles), uncontrolled 

localization, deactivation of the catalyst- pushed us to consider as abiotic promoter other than 

transition metals.  

Our objective is to define a system whose components are tailor-made (in order to get total 

controllability and possibility to modify according to needs) and whose performances are close 

to those of natural bioprocesses (high selectivity, efficiency and localization/compartment-

talization). Thus, we took inspiration directly from those bioprocesses whose performances 

we aim to reach, by identifying in Brönsted acid catalysis the model reaction for this project. 

As a matter of fact, almost every biological process is pH-dependent, from those in which H+ is 

a direct participant (e.g. reactions catalysed by acid hydrolase class of enzymes) to those in 

which there is no apparent role for H+ ion.18 

In the next section we define our project, objectives and main challenges regarding the design 

of a biological-inspired and totally abiotic reaction system which is conceived with the purpose 

of being applied in vivo.  
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2. DEFINITION OF THE PROJECT: OBJECTIVES AND MAIN CHALLENGES 

Herein we present the description of a completely abiotic system composed by i) a substrate 

and ii) a reaction promoter (i.e. a catalyst) which are dependent on each other. The whole 

system “substrate + promoter” is conceived to work in the biological environment without 

interfering with it, thus giving a high reaction selectivity and a precise localization. 

In the attempt to mimic the efficiency and selectivity of nature, we have investigated a way to 

trigger abiotic reactions which takes inspiration from biological processes: Brönsted acid 

catalysis. 

The concentration of protons in the biological system is finely regulated and changes in pH are 

the triggers of many natural processes. Proton concentration is not the same neither in every 

part of the body, nor in every compartment of the cell.19 The natural pH range is between 4.5 

and 7.4, with some exceptions like gastric fluids (pH=2). The normal cell and extracellular 

environment have a pH value of 7.4; late endosomes have pH values between 5.5 and 6.5; 

lysosomes present even lower values, from pH = 4.5 to pH = 5.5. Extracellular tumour 

environment has a pH slightly more acidic than normal (pH = 6.5) thanks to the hypoxia 

conditions. Given that, our approach is to conceive an acid catalysed reaction which is 

triggered outside this range, i.e. at pH less than 4, in order to avoid undesired triggering in the 

slightly acidic compartments of the cell. To make this approach possible we thus need to 

design an acidic micro-environment that will retain its acidity within the highly buffered 

biological surrounding. The main challenge consists in identifying a heterogeneous material 

that fulfils this requirement. To achieve this ambitious aim, we will delve into catalysts of 

different nature (hydrophobic, hydrophilic) and, if necessary, design and synthetize solid acidic 

catalysts with tailored features. 

Regarding the reaction to be performed, we opted for the hydrolysis of cyclic acetals. This 

reaction is acid catalysed, requires the presence of water and is a bond-breaking reaction 

which can find applications in strategies based on the release of a payload.  

Acetals’ properties include cleavability in mild conditions, solubility in aqueous solvents and 

low hydrophobicity. Acetal linkers have been used as cleavable linkers for applications in fields 

like drug development, proteomics, imaging and DNA sequencing.20–22 Thus, acetals have 

always been designed in order to have a precise hydrolysis rate, either to hydrolyse selectively 

in specific cell organelles (lysosomes and late endosomes) at pH around 5 either to be stable 

and serve as non-cleavable linkers. 
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In this work the structure-reactivity relationship of cyclic acetal linkers will be investigated in 

order to identify suitable substrates cleavable in different ranges of pH. We aim to design and 

synthetize acetals which falls into the following three categories: 

• Acetals cleavable at pH < 4. This class of acetals can be cleaved in a range of pH which 

matches that of the suited acidic catalyst. Such combination of acetal and catalyst 

would compose a good candidate for a xenobiotic reaction system which would not 

interfere with the natural biological processes. 

• Acetals cleavable between pH = 4 and pH = 5. This kind of acetals can be cleaved in the 

range of pH of lysosomes and late endosomes; thus, they would be excellent 

candidates for releasing strategies inside cells. 

• Non-cleavable acetals. Acetals which could be used as stable water-soluble component 

in non-cleavable linkers. 

The following figure resumes our objectives with the aid of a pH scale. The bands depicted 

corresponds to i) the natural pH ranges in cell and extracellular environment (first band), ii) 

the target pH activity for the heterogeneous acid catalyst suitable for in vivo catalysis (red band) 

and iii) the various pH ranges at which the abiotic acetals’ hydrolysis is triggered according to 

the desired applications (blue bands). 

Figure 1. Representation of the objectives pursued. The first band on the left represents the range of pH 

covered by cells and extracellular environment. The second red band represents the range of pH covered 

by the abiotic acid catalyst. The three blue bands on the right represent the pH ranges in which the 

hydrolysis of different abiotic acetal substrates is supposed to be triggered. Grey faded horizontal bands 

are used to shows the matching between the abiotic substrates and the corresponding hydrolysis 

promoters. 
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The figure shows the ideal pH range at which a catalyst suitable for in vivo applications would 

be active. Such value matches with the pH range in which the corresponding xenobiotic acetal 

substrate is hydrolysed. Both do not overlap with that of cell’s acidic compartments. On the 

other hand, the abiotic acetal designed to be hydrolysed in mild acidic conditions (pH > 4) 

matches the pH ranges of lysosomes and late endosomes, while the third kind of acetal 

substrate is extremely stable at low pH and does not have a corresponding trigger for its 

hydrolysis. 

The chemical nature of the acetals cleavable at pH < 4 has to be investigated in combination 

to that of its corresponding abiotic heterogeneous acid catalyst. The interaction between the 

acetal substrate, the catalyst and the aqueous media can be related to the hydrophobic or 

hydrophilic nature of both the catalyst and the acetal, without taking into account the binding 

to plasmatic proteins. 

Four possible combinations are examined: 

A. Hydrophobic acetal + hydrophobic catalyst: the catalyst has minimum exchange with 

the aqueous media. The acetal has much more affinity to the catalyst than to the 

solvent, so it is expected to adsorb into the solid catalyst, where the hydrolysis can 

occur thanks to its acidity. 

B. Hydrophilic acetal + hydrophobic catalyst: the acetal has affinity for the aqueous 

environment and therefore presents much less interaction with the catalyst. Thus, the 

hydrolysis is not expected to take place. 

C. Hydrophobic acetal + hydrophilic catalyst: in this case too, the lack of affinity between 

the substrate and the catalyst will likely result in the absence of acetal cleavage. 

D. Hydrophilic acetal + hydrophilic catalyst: the acetal, the catalyst and the aqueous 

media can exchange with each other. In this case the substrate can be adsorbed by 

the catalyst, hydrolysed because of its inner acidity and then the product can be 

released, thanks to the affinity with the aqueous solvent.  

Figure 2 shows the four described combinations of acetal substrate and acidic catalyst. The 

solid catalyst is represented as a spherical bead. The contour of the sphere is plain for the 

hydrophobic catalyst (to represent the lack of interactions with the solvent) and is dotted for 

the hydrophilic one (to represent the exchange with water). The substrate is symbolized by 

blue dots, while the product of the hydrolysis is represented by green dots. Dots are plain in 

case of hydrophobic chemicals and striped if hydrophilic. 
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Figure 2. Representation of the four possible scenarios given by the combination of the substrate and 

the solid catalyst. Hydrophobic catalyst is symbolized by a sphere with a plain contour, while the 

hydrophilic catalyst’s symbol has a dotted contour. The substrate and the product are represented as, 

respectively, blue and green dots. Dots are plain for the hydrophobic substrate and striped for the 

hydrophilic one. a) Hydrophobic substrate + hydrophobic catalysts; b) hydrophobic substrate + 

hydrophilic catalysts; c) hydrophilic substrate + hydrophobic catalyst and d) hydrophilic substrate + 

hydrophilic catalyst. 

Scenarios A and D in which the substrate and catalyst have matching features are more likely 

to carry out acetal hydrolysis. The two situations diverge in the interaction between the 

substrate and the catalyst. We hypothesized that in the first case the hydrophobic interaction 

leads to the irreversible adsorbance of the acetal into the solid catalyst. The lack of release of 

neither the substrate nor the products may seem a significant drawback. Actually, in the optic 

of setting up a first in vivo proof of concept, this is exactly what is needed. In order to prove 

that hydrolysis has been achieved in the living system, an adsorbent solid catalyst allows to: (i) 

concentrate the probe in one spot, making easier to detect the fluorescence of the product; 

(ii) affirm that the hydrolysis was achieved only thanks to the catalyst. 

In the second case the hydrophilic nature of both the substrate and the catalyst allows the 

product (= released payload) to stay in solution and interact with the biological environment, 

implementing its function(s). Given the higher degree of exchange between the catalyst and 

the aqueous solvent, finding a catalyst which can maintain its acidity in the buffered media 
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appears even more challenging than in previous case. In this matter, the expertise of Dr. Jean-

Michel Becht and Dr. Lavinia Balan, researchers at the Institute of Materials in Mulhouse (IS2M, 

“Institut de Science des Matériaux”, Université Haute Alsace), our partner for this doctoral 

project, is essential for the formulation and the production of solid polymer specifically 

tailored to meet all our requirements (biocompatibility, hydrophilicity and acidity). 

The first issue addressed in chapter II is the identification of the acetal and the modification of 

its chemical structure in order to tune its stability towards hydrolysis. Once hydrophobic and 

hydrophilic acetals cleavable in the desired range of pH far from the biological one (i.e. pH < 4) 

have been recognized, in chapter III the attention will be focused on identifying the 

corresponding hydrophobic and hydrophilic acid catalysts active in that range of pH. Then, 

experiments in vivo will be defined in detail in chapter IV and are expected to proof our 

hypothesis. 

Finally, the possible applications of this abiotic system based on acetal hydrolysis are 

addressed. As mentioned above, this bond-breaking reaction could be exploited by payload-

releasing techniques, if the payload presents a diol motif in its chemical structure. Since most 

of the currently used xenobiotics do not present a diol in their structure, we postulated that it 

is possible to modify the complex chemical structure of active molecules to insert a diol 

function without endangering their activity. In chapter V we broaden the scope from diol 

insertion to a pool of late-stage functionalization reactions of anticancer agents with the aim 

to find mild procedures which can be applied to a wide group of complex compounds to 

enhance their activity and performance. 
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I – INTRODUCTION 

1. RÉACTIONS ABIOTIQUES EN MILIEU BIOLOGIQUE 

D'un point de vue chimique, les organismes vivants sont probablement les systèmes les plus 

fascinants qui aient jamais existé. Une multitude de phénomènes chimiques et physiques se 

produisent simultanément, parfaitement coordonnés et équilibrés, auto-régulés et 

principalement réparés. Un système si complexe qu’apparemment même la plus petite 

perturbation pourrait potentiellement déclencher une cascade d’imprévus et pourtant un 

système si fortement amorti qu’il a été capable de supporter le stress extérieur sans 

conséquences mortelles. Un système dont nous essayons de dévoiler les secrets et de les 

reproduire depuis toujours. 

Interagir avec un monde aussi complexe par des entités physiques - rayons X, rayons UV, 

champs magnétiques - et par l'introduction de produits chimiques a toujours eu pour objectif 

de le décoder, de l'étudier, de le reproduire et de l'améliorer (biochimie, biologie chimique et 

tous leurs sous-sujets) ou de le rééquilibrer en cas de dysfonctionnements (chimie médicale, 

diagnostic et traitement des maladies). 

Dans presque tous les cas, cela se traduit par l'introduction d'un xénobiotique (du grec : “xeno” 

= étranger, étranger) dans un organisme vivant. Ce produit chimique étranger réagirait avec 

d'autres entités plus ou moins complexes présentes dans un environnement aussi encombré, 

des plus petites espèces (protons, ions inorganiques, métaux, oxygène…) aux biomolécules les 

plus complexes et structurées (protéines, enzymes, organites cellulaires). 

Quoi qu’il en soit, l’objectif est de préparer des xénobiotiques susceptibles de subir ou de 

réguler une réaction choisie, en fonction du but final: pour le biologiste chimiste, il s’agirait de 

marquer un métabolite, une protéine, une enzyme, une partie de la cellule ou même toute la 

cellule pour en tirer des informations; pour un chimiste spécialisé en médecine, il pourrait 

s'agir de la stimulation ou de l'inhibition d'une certaine voie métabolique; l'activation in situ 

d'un agent anticancéreux; la transformation d'un métabolite indésirable en une autre 

molécule plus facilement excrétée par l'organisme. Réaliser ces réactions dans un 

environnement hyper-régulé et surpeuplé est extrêmement difficile, car le xénobiotique 

introduit doit réagir de manière sélective avec son homologue, sans provoquer de réactions 

indésirables ni d’effets indésirables à court et à long terme. 
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La sélectivité peut être obtenue de différentes manières : i) en recherchant des substrats 

xénobiotiques parfaitement adaptés à la biomolécule d’intérêt, c’est le cas par exemple des 

substrats enzymatiques, des inhibiteurs, des anticorps conjugués ; ii) en exploitant des 

réactions chimiques extrêmement sélectives qui ne sont pas effectuées par des systèmes 

vivants. Le deuxième concept a été introduit en 2003 par C. Bertozzi et a connu une croissance 

exponentielle depuis. Les réactions biorthogonales nécessitent l'utilisation de fonctionnalités 

sans contrepartie in vivo et sont extrêmement sélectives, non toxiques (ou présentant une 

toxicité minimale) et hautement efficaces en conditions physiologiques.1,2 

Les applications bioorthogonales se déroulent généralement en deux étapes. Tout d'abord, le 

substrat (une biomolécule d'intérêt, comme un métabolite, un inhibiteur d'enzyme, etc.) est 

modifié avec un groupe fonctionnel bioorthogonal et introduit dans la cellule. La modification 

ne doit pas altérer la bioactivité normale de la cible. Ensuite, une sonde contenant le groupe 

fonctionnel complémentaire est introduite pour réagir et marquer le substrat.3 

Au fil des ans, le concept de chimie bioorthogonale a été élargi à un ensemble d’applications, 

qui ne se limite pas au marquage biomoléculaire et à la modification de la cellule. 

La prochaine frontière en biologie chimique consiste à adopter des systèmes de réaction 

complètement abiotiques dans lesquels le substrat, le promoteur et la réaction elle-même 

sont conçus et préparés via une synthèse organique (du grec : préfixe «a» = «non», 

«abiotique»). = "Non dérivé d'organismes vivants"). L’objectif est de reproduire la sélectivité et 

l’efficacité des processus biologiques - comme dans le cas de la chimie bioorthogonale - tout 

en préservant la contrôlabilité dans chaque partie. 

L'introduction d'un déclencheur de réaction abiotique dans un système vivant pose de 

nombreux problèmes de toxicité, de perte d'activité et de compétition du substrat, en 

particulier dans le cas des catalyseurs métalliques. Seules quelques études portant sur des 

applications in vivo de systèmes de réaction complètement abiotiques ont été en mesure de 

démontrer le concept dans un organisme vivant complexe (souris, poisson zèbre, etc.). 

Un exemple de chimie biorthogonale appliquée au système abiotique a été publié par Oneto 

et al. en 2016.4 La réaction est la réaction de Diels-Alder (IEDDA) à demande d'électrons 

inversée bien connue entre la tétrazine et le trans-cyclooctène (TCO). Le substrat xénobiotique 

est un médicament anticancéreux modifié par le TCO (précurseur du médicament) et le 

promoteur abiotique (dans ce cas le pendant bioorthogonal du TCO) est un hydrogel 

hétérogène biocompatible (polymère d’alginate) modifié avec de la tétrazine. L'hydrogel est 
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préimplanté à un emplacement souhaité (par exemple à proximité d'un tissu tumoral), en 

assurant la concentration et l'activation du pro-médicament à l'emplacement de choix. Le 

système a été testé avec succès chez des souris avec le pro-médicament de doxorubicine, en 

comparant leur système d’activation de médicament local à la chimiothérapie classique. 

Un autre travail récent, réalisé dans notre groupe, exploite la sélectivité de la cycloaddition 

d'alkyne-azide (SPAAC) promue par souche pour l'inactivation et la clairance rapide d'un 

anticoagulant chez la souris5. Dans ce cas, le substrat xénobiotique est l'agent anticoagulant 

modifié par la warfarine un azoture et le réactif abiotique est un agent de clarification portant 

un motif bicyclononyne (BCN-peg6-OH). La réaction bioorthogonale in vivo entre le 

médicament en circulation et le BCN conduit à la formation d'un produit inactivé qui est 

éliminé de la circulation sanguine. 

Les stratégies bioorthogonales reposent également sur l’utilisation de métaux comme 

catalyseurs abiotiques pour les réactions dans les systèmes vivants, ce qui n’est pas 

surprenant compte tenu de leurs excellentes performances en chimie organique classique.6 

L’efficacité et la sélectivité de Métaux des Transition (MT) en tant que catalyseurs de Les 

réactions de nature sont toutefois contrebalancées par leur cytotoxicité et leur désactivation 

dans les milieux biologiques.7 Pour surmonter ces problèmes, les MT sont utilisées sous forme 

de complexes homogènes, incorporés dans des nanoparticules ou enfermés dans des résines 

et des microsphères. À ce jour, seules quelques réactions abiotiques catalysées par des 

métaux ont été prouvées dans des organismes vivants complexes. Le pionnier dans cette 

direction est probablement le travail présenté par le groupe Bradley en 2011 dans lequel il a 

été prouvé que des nanoparticules de palladium piégées dans des microsphères de 

polystyrène catalysaient le clivage d'allylcarbamate et le couplage croisé de cellules de Suzuki-

Miyaura8. Comme le prétendent les auteurs dans la conclusion de leur article "cette enquête 

fournit la base pour la personnalisation de la catalyse non naturelle hétérogène en tant 

qu'outils pour des applications créatives en biologie chimique, en pharmacologie et, 

éventuellement, en médecine". Une prédiction qui s'est avérée correcte étant donné que 

depuis lors, de nombreux autres exemples de réactions catalysées par un métal chez les 

cellules ont été rapportés9–11. Cependant, seuls quelques travaux très récents ont pu passer 

en revue les systèmes à base de cellules et atteindre le stade de preuve de concept et 

application in vivo chez la souris ou le poisson zèbre. 
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En 2014, Weiss et al. ont rapporté un système abiotique catalysé par le palladium composé 

d'un promédicament modifié au 5-fluorouracile en tant que substrat xénobiotique et de 

résines de polyéthylène glycol-polystyrène fonctionnalisées au palladium en tant que 

catalyseur abiotique12. La réaction consiste en l'activation du médicament 5-fluorouracile dans 

l'environnement tumoral extracellulaire, car La résine de palladium est plus grosse que les 

cellules (diamètre = 150 µm) et est supposée être implantée par voie intratumorale. Les 

auteurs ont pu démontrer la biocompatibilité de telles résines ainsi que leur activité vis-à-vis 

du clivage des carbamates dans les embryons de poisson zèbre. 

Très récemment, Miller et ses collaborateurs ont étudié la biocompatibilité, la localisation chez 

la souris et l'utilisation de la doxorubicine dans la libération d'un catalyseur au palladium nano-

encapsulé.13. Leur système est composé de pro-doxorubicine (doxorubicine protégée par un 

groupe «ally» carbonylé «allô»), comme le xénobiotique et des nanoparticules de Pd en tant 

que promoteur abiotique injectés par voie intraveineuse et absorbés par les cellules 

tumorales. 

La même année (2017), Tsubokura et al. a présenté une réaction d’amidation d’ester de 

propargyle catalysée par de l’or chez des souris vivantes.14 Dans ce cas, le métal était lié à une 

glycoalbumine afin d’atteindre une localisation spécifique de la réaction. 

Celles-ci sont des exemples de résultats remarquables récents obtenus dans l'application de 

réactions bioorthogonales contrôlables abiotiques dans des systèmes vivants. Quelques 

excellentes critiques publiées très récemment (2018) rassemblent les dernières avancées dans 

le domaine15–17. 

Les difficultés rencontrées lorsque les chercheurs ont tenté de traduire une réaction abiotique 

d’in vitro à in vivo, notamment la toxicité du catalyseur (le métal lui-même, les nanoparticules), 

la localisation incontrôlée, la désactivation du catalyseur, nous ont incités à considérer le 

promoteur abiotique comme autre que les métaux de transition. 

Notre objectif est de définir un système dont les composants sont taillés sur mesure (afin 

d'obtenir une contrôlabilité totale et une possibilité de modification en fonction des besoins) 

et dont les performances sont proches de celles des bioprocédés naturels (sélectivité élevée, 

efficacité et localisation / compartimentation). Ainsi, nous nous sommes inspirés directement 

des bioprocédés dont nous souhaitons atteindre les performances, en identifiant dans la 

catalyse acide de Brönsted le modèle de réaction pour ce projet. En fait, presque tous les 

processus biologiques dépendent du pH, de ceux dans lesquels H + est un participant direct 
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(par exemple, des réactions catalysées par des enzymes de la classe des hydrolases acides) à 

ceux dans lesquels il n'y a aucun rôle apparent pour l'ion H+ .18 

Dans la section suivante, nous définissons notre projet, nos objectifs et les principaux défis en 

ce qui concerne la conception d’un système de réaction totalement abiotique d’inspiration 

biologique conçu pour être appliqué in vivo. 

  



 I – INTRODUCTION 
 

Elisabetta Tobaldi  20  

2. DEFINITION DU PROJET: OBJECTIFS ET PRINCIPAUX DEFIS 

Nous présentons ici la description d'un système complètement abiotique composé de i) un 

substrat et ii) d'un promoteur de réaction (c'est-à-dire un catalyseur) qui dépendent l'un de 

l'autre. L’ensemble du système «substrat + promoteur» est conçu pour fonctionner dans 

l’environnement biologique sans interférer avec celui-ci, donnant ainsi une sélectivité élevée à 

la réaction et une localisation précise. 

Dans le but d'imiter l'efficacité et la sélectivité de la nature, nous avons étudié un moyen de 

déclencher des réactions abiotiques inspirées des processus biologiques: la catalyse acide de 

Brönsted. 

La concentration de protons dans le système biologique est régulée avec précision et les 

changements de pH déclenchent de nombreux processus naturels. La concentration en 

protons n'est pas la même, ni dans toutes les parties du corps, ni dans tous les compartiments 

de la cellule.19 La plage de pH naturel est comprise entre 4,5 et 7,4, à quelques exceptions 

près comme les fluides gastriques (pH = 2). La cellule normale et l'environnement 

extracellulaire ont une valeur de pH de 7,4; les endosomes tardifs ont un pH compris entre 5,5 

et 6,5; Les lysosomes présentent des valeurs encore plus faibles, de pH = 4,5 à pH = 5,5. 

L'environnement tumoral extracellulaire a un pH légèrement plus acide que la normale (pH = 

6,5) en raison des conditions d'hypoxie. Compte tenu de cela, notre approche consiste à 

concevoir une réaction catalysée par un acide qui est déclenchée en dehors de cet intervalle, 

c'est-à-dire à un pH inférieur à 4, afin d'éviter un déclenchement indésirable dans les 

compartiments légèrement acides de la cellule. Pour rendre cette approche possible, nous 

devons donc concevoir un micro-environnement acide qui conservera son acidité dans 

l'environnement biologique fortement tamponné. Le principal défi consiste à identifier un 

matériau hétérogène répondant à cette exigence. Pour atteindre cet objectif ambitieux, nous 

allons nous intéresser à des catalyseurs de nature différente (hydrophobes, hydrophiles) et, si 

nécessaire, concevoir et synthétiser des catalyseurs acides solides dotés de caractéristiques 

adaptées. 

En ce qui concerne la réaction à effectuer, nous avons opté pour l'hydrolyse d'acétals 

cycliques. Cette réaction est catalysée par un acide, nécessite la présence d’eau et est une 

réaction de rupture de liaison qui peut trouver des applications dans les stratégies basées sur 

la libération d’une charge utile. 
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Les propriétés des acétals comprennent la clivabilité dans des conditions douces, la solubilité 

dans les solvants aqueux et une faible hydrophobicité. Les agents de liaison acétal ont été 

utilisés comme agents de liaison clivables pour des applications dans des domaines tels que 

le développement de médicaments, la protéomique, l'imagerie et le séquençage d'ADN20–22. 

Ainsi, les acétals ont toujours été conçus pour avoir un taux d'hydrolyse précis, soit pour 

s'hydrolyser sélectivement dans des organites cellulaires spécifiques (lysosomes et 

endosomes tardifs) à un pH voisin de 5 soit pour être stables et servir de lieurs non clivables. 

Dans ce travail, la relation structure-réactivité des lieurs acétal cycliques sera examinée afin 

d'identifier les substrats appropriés pouvant être clivés dans différentes gammes de pH. Notre 

objectif est de concevoir et de synthétiser des acétals qui appartiennent aux trois catégories 

suivantes : 

• Acétals pouvant être clivés à un pH <4. Cette classe d’acétals peut être clivée dans une plage 

de pH qui correspond à celle du catalyseur acide approprié. Une telle combinaison d'acétal et 

de catalyseur constituerait un bon candidat pour un système de réaction xénobiotique qui 

n'interférerait pas avec les processus biologiques naturels. 

• Acétals clivables entre pH = 4 et pH = 5. Ce type d’acétals peut être clivé dans la gamme de 

pH des lysosomes et des endosomes tardifs ; ainsi, ils seraient d'excellents candidats pour la 

libération de stratégies à l'intérieur de cellules. 

• Acétals non clivables. Acétals qui pourraient être utilisés comme composant hydrosoluble 

stable dans des lieurs non clivables. 

La figure suivante reprend nos objectifs à l'aide d'une échelle de pH. Les bandes représentées 

correspondent à i) les plages de pH naturel dans l'environnement cellulaire et extracellulaire 

(première bande), ii) l'activité de pH cible du catalyseur acide hétérogène approprié à la 

catalyse in vivo (bande rouge) et iii) les différentes plages de pH auxquelles l'hydrolyse des 

acétals abiotiques est déclenchée en fonction des applications souhaitées (bandes bleues). 
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Figure 1. Représentation des objectifs poursuivis. La première bande à gauche représente la plage de 

pH couverte par les cellules et l'environnement extracellulaire. La deuxième bande rouge représente la 

plage de pH couverte par le catalyseur acide abiotique. Les trois bandes bleues à droite représentent les 

plages de pH dans lesquelles l’hydrolyse de différents substrats abiotiques d’acétal est supposée être 

déclenchée. Des bandes horizontales estompées en gris sont utilisées pour montrer la correspondance 

entre les substrats abiotiques et les promoteurs d'hydrolyse correspondants. 

La figure montre la plage de pH idéale dans laquelle un catalyseur adapté aux applications in 

vivo serait actif. Cette valeur correspond à la plage de pH dans laquelle le substrat d'acétal 

xénobiotique correspondant est hydrolysé. Les deux ne se chevauchent pas avec celui des 

compartiments acides de la cellule. D'autre part, l'acétal abiotique conçu pour être hydrolysé 

dans des conditions acides douces (pH> 4) correspond aux plages de pH des lysosomes et des 

endosomes tardifs, tandis que le troisième type de substrat acétal est extrêmement stable à 

faible pH et n'a pas de valeur correspondante déclencheur pour son hydrolyse. 

La nature chimique des acétals pouvant être clivés à pH <4 doit être étudiée en association 

avec celle de son catalyseur acide hétérogène abiotique correspondant. L'interaction entre le 

substrat acétal, le catalyseur et le milieu aqueux peut être liée à la nature hydrophobe ou 

hydrophile du catalyseur et de l'acétal, sans prendre en compte la liaison aux protéines 

plasmatiques. 

Quatre combinaisons possibles sont examinées : 

A. Catalyseur acétal hydrophobe + hydrophobe : le catalyseur a un échange minimal avec le 

milieu aqueux. L'acétal a beaucoup plus d'affinité pour le catalyseur que pour le solvant, on 
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s'attend donc à ce qu'il s'adsorbe dans le catalyseur solide, où l'hydrolyse peut se produire 

grâce à son acidité. 

B. Acétal hydrophile + catalyseur hydrophobe : l’acétal a une affinité pour l’environnement 

aqueux et présente donc beaucoup moins d’interaction avec le catalyseur. Ainsi, l'hydrolyse 

ne devrait pas avoir lieu. 

C. Catalyseur acétal hydrophobe + hydrophile : dans ce cas également, l'absence d'affinité 

entre le substrat et le catalyseur entraînera probablement l'absence de clivage acétal. 

D. Acétal hydrophile + catalyseur hydrophile : l’acétal, le catalyseur et le milieu aqueux peuvent 

s’échanger. Dans ce cas, le substrat peut être adsorbé par le catalyseur, hydrolysé en raison 

de son acidité interne, puis le produit peut être libéré grâce à l'affinité avec le solvant aqueux. 

La figure 2 montre les quatre combinaisons décrites de substrat acétal et de catalyseur acide. 

Le catalyseur solide est représenté sous la forme d'une perle sphérique. Le contour de la 

sphère est simple pour le catalyseur hydrophobe (pour représenter l'absence d'interactions 

avec le solvant) et en pointillé pour celui hydrophile (pour représenter l'échange avec de l'eau). 

Le substrat est symbolisé par des points bleus, tandis que le produit de l'hydrolyse est 

représenté par des points verts. Les points sont lisses dans le cas de produits chimiques 

hydrophobes et rayés s'ils sont hydrophiles. 

Figure 2. Représentation des quatre scénarios possibles donnés par la combinaison du substrat et du 

catalyseur solide. Le catalyseur hydrophobe est symbolisé par une sphère avec un contour plat, tandis 
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que le symbole du catalyseur hydrophile a un contour en pointillé. Le substrat et le produit sont 

représentés respectivement par des points bleus et verts. Les points sont simples pour le substrat 

hydrophobe et rayés pour celui hydrophile. a) substrat hydrophobe + catalyseurs hydrophobes; b) 

substrat hydrophobe + catalyseurs hydrophiles; c) substrat hydrophile + catalyseur hydrophobe et d) 

substrat hydrophile + catalyseur hydrophile. 

Les scénarios A et D dans lesquels le substrat et le catalyseur ont des caractéristiques 

correspondantes sont plus susceptibles de réaliser une hydrolyse par l’acétal. Les deux 

situations divergent dans l'interaction entre le substrat et le catalyseur. Nous avons émis 

l’hypothèse que dans le premier cas, l’interaction hydrophobe conduit à l’adsorption 

irréversible de l’acétal dans le catalyseur solide. L'absence de libération ni du substrat ni des 

produits peut sembler un inconvénient important. En réalité, dans l'optique de la mise en place 

d'une première preuve de concept in vivo, c'est exactement ce dont nous avons besoin. Afin 

de prouver que l'hydrolyse a été réalisée dans le système vivant, un catalyseur solide 

adsorbant permet de : (i) concentrer la sonde en un point, facilitant ainsi la détection de la 

fluorescence du produit; (ii) affirmer que l'hydrolyse n'a été réalisée que grâce au catalyseur. 

Dans le second cas, la nature hydrophile du substrat et du catalyseur permet au produit (= 

charge utile libérée) de rester en solution et d’interagir avec l’environnement biologique, 

mettant en œuvre sa ou ses fonctions. Étant donné le degré d'échange plus élevé entre le 

catalyseur et le solvant aqueux, il est encore plus difficile de trouver un catalyseur qui puisse 

maintenir son acidité dans le milieu tamponné que dans le cas précédent. En la matière, 

l'expertise des Drs Jean-Michel Becht et Lavinia Balan, chercheurs de l'Institut des matériaux 

de Mulhouse (IS2M, Institut de la science des matériaux, Université de Haute Alsace), 

partenaire de ce projet doctoral, est essentiel pour la formulation et la production de 

polymères solides spécialement conçus pour répondre à toutes nos exigences 

(biocompatibilité, hydrophilie et acidité). 

La première question abordée au chapitre II concerne l’identification de l’acétal et la 

modification de sa structure chimique afin d’ajuster sa stabilité à l’hydrolyse. Une fois que les 

acétals hydrophobes et hydrophiles pouvant être clivés dans la plage de pH souhaitée, 

éloignée de la valeur biologique (pH <4), ont été reconnus, au chapitre III, l’attention sera 

concentrée sur l’identification des catalyseurs acides hydrophobes et hydrophiles 

correspondants actifs dans cette plage de pH. . Ensuite, les expériences in vivo seront définies 

en détail au chapitre IV et devraient prouver notre hypothèse. 
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Enfin, les applications possibles de ce système abiotique basé sur l'hydrolyse de l'acétal sont 

abordées. Comme mentionné ci-dessus, cette réaction de rupture de liaison pourrait être 

exploitée par des techniques de libération de charge utile, si la charge utile présente un motif 

diol dans sa structure chimique. Comme la plupart des xénobiotiques actuellement utilisés ne 

présentent pas de diol dans leur structure, nous avons postulé qu'il était possible de modifier 

la structure chimique complexe de molécules actives pour insérer une fonction de diol sans 

mettre en danger leur activité. Dans le chapitre V, nous étendons le champ d'application de 

l'insertion du diol à un ensemble de réactions de fonctionnalisation à un stade avancé d'agents 

anticancéreux dans le but de trouver des procédures modérées pouvant être appliquées à un 

large groupe de composés complexes afin d'améliorer leur activité et leurs performances. 
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II – IDENTIFICATION AND MODULATION OF THE ACETAL 

SUBSTRATE 

1. OBJECTIVES 

In this chapter we aim to identify a small group of acetal substrates with tuneable reactivity 

towards hydrolysis. 

1.1 LIST OF TARGETED ACETAL SUBSTRATES ACCORDING TO THEIR STABILITY 

The possible applications of cyclic acetals vary according to the range in which they can be 

cleaved and according to their hydrophobic or hydrophilic nature (Cf. Introduction, section 2, 

page 10): 

• pH < 4 – hydrophobic: substrate for abiotic hydrolysis catalysed by hydrophobic 

heterogeneous acid catalyst. 

• pH < 4 – hydrophilic: substrate for abiotic hydrolysis catalysed by hydrophilic 

heterogeneous acid catalyst. 

• 4 < pH < 6: candidate for hydrolysis inside the cell acidic compartments (lysosomes and 

late endosomes) 

• stable at pH < 1: exceptionally stable acetals which can find applications as the core of 

non-cleavable linkers for bioconjugation. 

Our objective is to modulate the chemical structure of cyclic acetals to encounter the cases 

listed above. Additionally, we aim to mimic as much as possible the in vitro and in vivo 

conditions when performing experiments with the aforesaid substrates. We addressed this 

issue in the following section. 

1.2 FRET PROBES AS TOOLS TO MONITOR HYDROLYSIS AT “IN VIVO-LIKE” CONCENTRATION OF 

SUBSTRATES 

As recently pointed out by Tamura and Hamachi,23 the difficulties in passing from bench 

standard chemistry to in vitro and in vivo chemistry are many. One substantial restriction is 

related to the substrates’ concentration: in classical bench procedures the concentration of 

the substrate is around 0.3 M while in vitro and more complex biological systems is of the order 
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of micro- and even nano-molar. Consequently, the monitoring of the reaction via the typical 

organic chemistry techniques is not possible, especially when in living systems. 

One way to circumvent the problem consists in the exploitation of fluorophores. These 

molecules emit photons if hit with the appropriate amount of energy to cause the excitation 

of electrons from the ground state to the excited singlet state.24 The efficiency of the process 

is given by the fluorescence quantum yield. A fluorescence signal is highly detectable even 

when emitted from a very low concentrated solution of the fluorophore. For this reason, many 

strategies for the detection of low amounts of compounds have been based on fluorescence.25  

In some cases, the fluorescence of those molecules can be “activated” and “deactivated” by a 

change in their chemical structure (usually it involves several conjugated double bonds). In 

other cases, they can be combined with a molecule able to adsorb their emission, as in FRET 

probes. 

FRET stands for Förster Resonance Energy Transfer, after the German physical chemist 

Theodor Förster for his understanding of the phenomenon in the 40s.26 A FRET molecule is 

composed by a donor (the fluorophore) chemically linked and in close proximity to an 

acceptor. The acceptor can be a fluorescent molecule (“dual-dye FRET”) or a non-fluorescent 

molecule (“quencher FRET”). If subjected to an excitation light beam, the donor adsorbs the 

energy by promoting an electron from the ground state energy S0 to the excited vibrational 

state S2. After vibrational relaxation (S2 → S1), the relaxation from S1 to S0 corresponds to the 

emission at a wavelength shorter than the excitation one. The emission is transferred to the 

acceptor which can undergo another fluorescence episode (in case of dual dye FRET) or not (in 

case of quencher FRET). In the first case there will be a fluorescence emission corresponding 

to the elision of the second fluorophore, while in the second case there will be no light 

emission. 27–29  

For an efficient energy transfer, donor/acceptor pairs require:30,31 

• spectral overlap of the emission spectra of the donor and absorption spectra of the 

acceptor; 

• high quantum yield of donor and high absorption coefficient of acceptor; 

• very close distance (1-10 nm) between donor and acceptor: the transfer is extremely 

dependent on distance (6th order); 

• matching orientations of the donor and acceptor dipole.  
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This principle can be successfully applied to monitor the acetal hydrolysis object of this work. 

As shown in Figure 3 when hydrolysis of the acetal occurs, the fluorophore and the quencher 

are taken apart and the Energy Transfer is cancelled. Thus, the hydrolysis is directly related to 

the appearance of a fluorescence signal. 

 

Figure 3. FRET principle applied on cyclic acetals. The acetal is the link between the donor (in fuchsia) 

and the acceptor (in violet). The exitation and relaxation are represented with Jablonski diagrams. When 

hydrolysis occurs, the donor and acceptor are no longer in close proximity and the energy transfer do 

not happen, allowing the detection of the donor fluoscence emission. 

For this project, 6-Carboxytetramethylrhodamine (TAMRA) was chosen as fluorophore. 

Wavelength of excitation and emission are respectively 550 and 580 nm. Thus, Black Hole 

Quencher–type 2 (BHQ-2) was chosen as counterpart, with an absorption maximum of 583 nm 

(Figure 4).32 The highly hydrophobic nature of BHQ-2 was also exploited to give to the acetal a 

sufficient degree of hydrophobicity to match that of the hydrophobic acid catalyst. 
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Figure 4. Chemical structure of the donor/acceptor pair chosen, TAMRA and BHQ-2. 

In conclusion, FRET probes are particularly suitable for this project because they will allow to: 

• quantify the hydrolysis by measuring the fluorescence emitted by TAMRA with the aid 

of a spectrofluorometer. This instrument can analyse very low concentrated samples, 

so allowing us to work with substrate’s concentration in the order of µM; 

• make a quick qualitative evaluation of the hydrolysis reaction by looking at the reaction 

vials under a UV lamp given that the hydrolysis is directly related with the appearance 

of fluorescence. This advantage will come to hand when the fluorescence cannot be 

quantified, like in case the substrate is adsorbed by the solid catalyst; 

• give the acetal a hydrophobic nature, thanks to the use of BHQ as quencher. 

Next sections are dedicated to the identification of the above-mentioned cyclic acetals: i) 

hydrophobic and hydrophilic acetals cleavable at pH < 4 (sections 2 and 3), such acetals will be 

used as substrates for the abiotic hydrolysis catalysed by heterogenous catalyst (Cf. Chapter 

3); ii) acetals cleavable at pH > 4 (section 4), eligible for applications as cleavable linkers is in 

bioconjugation, will be also tested for hydrolysis in vitro; iii) acetals stable at very low pH 

(section 5), eligible as hydrophilic non-cleavable linkers for bioconjugation, will also be 

investigated for structure-reactivity relationship. 
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2. IDENTIFICATION OF HYDROPHOBIC ACETAL CLEAVABLE AT PH < 4 

2.1 IDENTIFICATION OF ACETAL APN6 AS CANDIDATE FOR HYDROLYSIS AT PH < 4  

As mentioned above, the cyclic acetal is the chemical function identified as substrate for the 

hydrolysis. This bond breaking reaction can be exploited in biochemical applications in which 

a payload chemically linked to a carrier is meant to be released. The chemical structure of the 

acetal-containing linker has to permit the linkage between the payload and the carrier. A major 

class of linkers for bioconjugation are amine-to-thiol cross linkers in which two functions are 

designed to orthogonally react with amine and thiol functions present in the payload and 

carrier (often they are lysine and cysteine residues).33 

Our research group investigated over the years the preparation of new amine-to-thiol linkers, 

especially conceived for ADC (Antibody-Drug Conjugates), with a focus on the use of 

arylpropriolonitrile moieties for the selective linkage of cysteine residues.34 One of the linkers 

(named APN6, never published) contained also a 6-membered ring cyclic acetal, as shown in 

Figure 5. The code name APN6 is conceived as follow: “APN” stands for “arylpropriolonitrile”, 

“6” is referred to the size of the acetal ring. 

 

Figure 5. Chemical structure of amino-to-thiol acetal linker model APN6. 

APN6 is composed by a central 6-membered ring substituted acetal. Substitutions in position 

2 and 5 of the acetal are the moieties for the linkage to, respectively, the thiol and the amino 

functions. The chemical linkage to amino and thiol groups is shown in Figure 6. 

 

Figure 6. Conjugation to natural amines and thiols of activated linker APN6. 
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2.1.1 FRET probe of APN6 

As mentioned above, FRET probe will be used to address the stability of the acetals towards 

hydrolysis. In this case, the FRET probe of APN6, named F-APN6, was already synthetized and 

ready to be tested. As previously stated, TAMRA and BHQ-2 were used as fluorophore and 

quencher respectively. Their chemical structure, however, doesn’t present any grip for the 

bonding to the APN6 linker. Hence, both TAMRA and BHQ-2 has been modified to allow the 

conjugation to the acetal linker. A primary amine function was added to TAMRA exploiting the 

carboxylic acid not involved in the fluorescence emission. BHQ-2 was equipped with a thiol 

function exploiting -also here- the carboxylic acid, which is not involved in its quenching 

properties. The following figure summarize the synthesis of F-APN6, performed in our 

laboratory by Dr. Igor Dovgan. 

Figure 7. Modification of TAMRA and BHQ-2 and conjugation to APN6 to obtain the corresponding FRET 

probe F-APN6. 
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2.2.2 Profile of APN6 stability towards hydrolysis at different pH 

The FRET probe F-APN6 was tested for stability in different acidic conditions. Aqueous 

solutions at different pH were prepared, as well as 40µM solutions in DMSO of i) the FRET 

probe F-APN6, ii) TAMRA-NH2 and BHQ-2-SH, as comparison. Note that from now on in the 

text TAMRA-NH2 and BHQ-2-SH will be mentioned just as TAMRA and BHQ, unless otherwise 

specified. 

The 40µM solution were diluted in the appropriate acidic solution to a final concentration of 

1µM, three aliquots of each solution were placed in a 96-well plate and analysed with a 

spectrofluorometer. The fluorescence was monitored for 15 hours at 23°C (temperature of the 

room); measurements were taken every 3 minutes. Since the fluorescence of TAMRA is 

dependent on the pH, each value of fluorescence measured for the FRET probes was 

normalized to the corresponding value measured for the solution of TAMRA and BHQ in the 

same buffer. Results are shown in Figure 8. 

Figure 8. Hydrolysis profiles of acetal F-APN6 in different concentration of proton at 23°C. 

Acetal APN6 shows a good degree hydrolysis only at pH < 1 (1M HCl aq. solution), while at  

pH = 1 (0.1 M HCl aq. solution) only 10% of hydrolysis is reached after 15 hours at 23°C. It is 

remarkably stable in all the other tested conditions. 

Unfortunately, with the provided spectrophotometer it was not possible to set the 

temperature of the 96-well plate. Therefore, the hydrolysis was profiled manually at 37 °C also. 

The 1 µM solutions were agitated at a constant temperature of 37 °C, aliquots were taken and 

analysed every hour for 6 hours. Figure 16 shows a comparison between hydrolysis of F-APN6 
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at 23°C and 37 °C. As expected, at pH < 1, the hydrolysis was faster thanks to the increased 

temperature, while at pH = 2 -as well as at pH = 5- the hydrolysis did not occur, confirming the 

extraordinary stability of this acetal at high proton concentration. 

Figure 9. Hydrolysis profiles of acetal F-APN6 in three different acidic solutions; comparison between 

23°C and 37 °C. 

Despite the remarkable stability of acetal APN6 at physiological pH, this acetal might be not 

enough reactive in the pH range activity which is envisaged for the abiotic solid acid catalyst 

(cf. Figure 1, page 11). For this reason, the chemical structure of APN6 was further improved 

to reach a higher degree of reactivity towards hydrolysis (at least at pH > 2), while maintaining 

stability at physiological pH. 
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2.2 IDENTIFICATION OF APNM5 AS SECOND CANDIDATE FOR HYDROLYSIS AT PH < 4 

2.2.1 Design of APNM5 to reach hydrolysis at pH < 4 and pH > 2 

In 2016, our group described the influence of slight structural modifications on pH-sensitive 

linkers35. According to this work, 5-membered cyclic acetals are more prone to hydrolysis than 

6-membered cyclic acetals. Also, modification to the aryl substituent can improve the 

hydrolysis rate: the work of Jacques et al. suggests that a methoxy in para and/or ortho position 

accelerates the hydrolysis, with a bigger effect exerted by the substitution in para than in ortho. 

In this case the para position was already occupied by the propiolonitrile moiety, only ortho 

positions were available. Conveniently, it seems that the substitution in ortho position brings 

about a better hydrolysis selectivity: at physiological pH (pH = 7.4) the hydrolysis is much 

slower with the methoxy in ortho than in para. This makes the addition of the methoxy 

substituent an important added value to meet the target’s criteria. 

Thus, the central acetal core of compound APN6 was modified as follow (Figure 10): 

• the acetal ring was shrunk by one carbon atom to a 5-membered ring; 

• a methoxy was added to the phenyl in ortho position with respect to the acetal. 

The new cyclic acetal was named APNM5, were M indicates the presence of a methoxy, while 

APN and 5 are referred respectively to the arylpropiolonitrile function and the size of the ring, 

as it was for APN6. Next section describes in detail the synthetic plan for its synthesis. 

Figure 10. New amino-to-thiol linker model APNM5, designed to be more prone to hydrolysis than its 

parent APN6. “APN” stands for “arylpropriolonitrile”, “M” indicates the presence of a methoxy substituent 

and “5” accounts for the size of the acetal ring. 

2.2.2 Synthesis of acetal APNM5 

A short synthetic strategy for the synthesis of compound APNM6 is illustrated in Figure 11. 

Starting from benzoic acid 1, the iodine atom is exploited to insert the propiolonitrile moiety, 

while the acid is -in a first moment- protected and then reduced to aldehyde. 

The obtained aldehyde is then condensed with the suited vicinal diol (1,2 diol). 
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Figure 11. First outline of the synthetic pathway for compound APNM5. 

As reported in literature, the arylpropiolonitrile motif can be synthetized starting from an aryl 

iodide or bromide in three ways, resumed in Scheme 1. 

Scheme 1. Generic scheme of the three possible synthetic pathways for the preparation of 

arylpropiolonitrile compounds. 

The first pathway consists of two steps:36 

I. a Sonogashira coupling between the aryl halide and propargylic alcohol yielding the 

aryl propargylic alcohol; 

II. a domino one-pot reaction involving three subsequent transformations (Scheme 2): 

i. oxidation of the primary α,β-unsaturated alcohol to aldehyde by manganese 

oxide; 

ii. formation of the imine by condensation between the aldehyde and ammonia; 

iii. final oxidation of imine to nitrile operated by manganese oxide. 
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Scheme 2. Formation of arylpropriolonitrile from aryl propargylic alcohol in a one-pot domino reaction 

involving three transformations. Manganese oxide is used for the two oxidations, ammonia is used for 

the imine formation and magnesium sulphate is used as drying agent. 

The second pathway consists of three steps:37 

I. a Sonogashira coupling between the halo-benzene and ethynyltrimethylsilane; 

II. the deprotection of the alkyne thanks in presence of fluoride anions (TBAF), yielding 

the substituted ethynylbenzene; 

III. copper-catalysed reaction of ethynylbenzene with cyanogen iodide (ICN) to obtain the 

arylpropiolonitrile. Tetramethylpiperidine (TMP) is used as a sterically hindered base. 

According to Okamoto et al.37 the reaction involves the noncatalyzed formation of 

alkynyl iodides followed by copper-catalysed cyanation of the iodide. 

Over the years, many similar strategies for the cyanation of terminal alkyne have been 

investigated. They involve the use of a metal cyanide (MCN, M = Cu, K, Na) as cyanation agent 

in combination with a copper catalyst.38 These approaches, as well as the one involved in the 

above-described pathway #2, require the use of highly toxic cyanation agents. For this reason, 

Rong and co-workers recently described a copper‐catalysed direct cyanation of the terminal 

alkyne with the non-toxic azobisisoamylonitrile (AMBN) as cyanation agent in presence of 

copper catalyst and oxygen.39 

Hence, pathway #3 is preferred over pathway #2, however pathway #1 was first tried -given 

its apparent simplicity- starting from commercially available 4-iodo-2-methoxybenzoic acid 1 

(Scheme 3). 
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Scheme 3. First attempt of APN synthesis: i) esterification on the benzoic acid, followed by ii) a 

Sonogashira coupling to give compound 3 (isolated); iii) domino one-pot reaction to obtain the 

intermediate 4 (not successful). 

The carboxylic acid is protected by esterification with methanol with a good 87% yield. Then 

the Sonogashira coupling with propargylic alcohol proceeded smoothly affording the desired 

compound 3 with 84% yield.  

The last step for the formation of the arylpropriolonitrile -the domino one-pot reaction- 

revealed to be very tricky. After two unsuccessful attempts, in which only traces of the 

arylpropriolonitrile 4 were obtained within 72 hours, the one-pot reaction was carried out 

stepwise. Instead of mixing all the reagents together, they were added progressively, after the 

complete conversion of the intermediary products was confirmed by LC/MS and/or TLC 

(Scheme 4). 

Scheme 4. Step-by-step formation of arylpropriolonitrile 4. The reaction proceeds well till the formation 

of the imine, while the last oxidation does not occur. 



 II – IDENTIFICATION AND MODULATION OF THE ACETAL SUBSTRATE 
 

Elisabetta Tobaldi  39  

Since the aim was to reveal which one of the three subsequent transformation was responsible 

for the failure of the reaction, it was not necessary to try to isolate the intermediates. We thus 

analysed crude reactions to reveal the formation of the desired intermediate. The three steps 

were analysed as follow: 

I. Oxidation of primary alcohol 3 to aldehyde 5. Reagents: propargylic alcohol 3 (1 eq.), 

manganese oxide (MnO2, 10 eq.), magnesium sulphate (MgSO4, 10 eq.). The oxidation 

was followed by LC-MS and TLC, after 30 minutes the reaction was complete. 

II. Imine 6 formation. Reagents added to the mixture: NH3 (saturated solution in iso-

proprylalcohol, 2 M, freshly prepared by bubbling NH3 into IPA). The imine formation 

and the disappearance of the starting aldehyde were monitored with TLC (ninhydrin 

staining). TLC revealed complete imine formation within 30 minutes after the addition 

of ammonia. 

III. Oxidation of imine 6 to nitrile 4. Reagents added to the mixture: manganese oxide 

(MnO2, 10 eq.), magnesium sulphate (MgSO4, 10 eq.). Formation of the product was 

not observed, even after a few days. 

The final oxidation is the problematic step in the one-pot reaction. Another attempt was done 

by changing the substrate for the formation of the propiolonitrile motif, trying to address the 

ineffectiveness of the imine oxidation by modifying the chemical structure of the starting 

material. The two steps of the synthetic strategy (Cf. Figure 11, page 36) were inversed: first 

the cyclic acetal was formed and then the propiolonitrile. In other words, in the first strategy 

the substrate for the APN synthesis was iodobenzene with an electron withdrawing 

substituent in para (the methyl ester), while in this second attempt, the electron withdrawing 

effect is weakened by the presence of an acetal in para position. The new synthetic pathway is 

shown in Scheme 5. 
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Scheme 5. Second strategy for the synthesis of APNM5. 

Carboxylic acid 1 was reduced to primary alcohol and re-oxidized to aldehyde 7 with very good 

89% yield (over three steps). Purification of the intermediary products was not required. The 

following step is the condensation between the aldehyde and the diol (butyl 2,3-dihydroxy 

propanoate) carried out under classical acidic conditions with p-toluenesulfonic acid in toluene 

(28% yield). Water is removed as azeotrope of toluene thanks to a Dean-Stark apparatus. 

Once the acetal had been obtained, the Sonogashira coupling between the iodobenzene 8 and 

propargylic alcohol could be performed, yielding compound 9 in 73% yield. The one-pot 

domino reaction for the oxidation of the alcohol to nitrile was carried out. Unfortunately, also 

in this case, no product was detected, even after three days. 

At this point it was decided to change strategies and try the third pathway (Cf. Scheme 1, page 

36) which consist in the cyanation of a terminal alkyne with AMBN. According to Rong et al. 

substrates bearing electron‐withdrawing groups on the benzene rings tend to achieve the 

reaction in much higher yields than those with electron‐donating substituent.39 Thus, the 

starting material for the new strategy was the 4-iodo-2-methoxybenzoic acid 1.  

Scheme 6 shows the complete successful synthesis of APNM5. 
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Scheme 6. Complete synthesis of target compound APNM5. 

First step is the protection of the carboxylic acid motif by esterification in two steps. 4-iodo-2-

methoxybenzoic acid 1 was transformed into its reactive derivative 4-iodo-2-methoxybenzoyl 

chloride. The following nucleophilic substitution with potassium tert-butoxide gave the 

corresponding tert-butoxy ester in 71% yield (over the two steps). 

The Sonogashira coupling with protected ethynyl (ethynyltrimethylsilane) was carried out in 

classical conditions in presence of a strong base (triethylamine, TEA) and catalytic amount of 

copper iodide and palladium (II) complex. Compound 12 was isolated in excellent 94% yield. 

Then, the trimethyl silane protection was removed with tetrabutylammonium fluoride to yield 

the terminal alkyne 13 quantitatively. 

Cyanation of the terminal alkyne was achieved with a moderate 48% yield applying the 

procedure of Rong et al.:39 to the solution of the substrate in acetonitrile AMBN and copper 

nitrate were added, the reaction mixture was stirred at 80°C for 6h. The presence of oxygen -

required for the reaction- was ensured by performing the reaction in normal atmosphere. 
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The obtained arylpropiolonitrile ester 14 was then deprotected with TFA (>99% yield) and the 

carboxylic acid 15 was reduced to aldehyde 16 using the same strategy described for the 

previous synthetic strategy. 

The condensation step between the aldehyde and the diol is usually carried out in the 

presence of para-toluenesulfonic acid in toluene at reflux. Unwanted water is removed from 

the reaction mixture as an azeotrope of toluene (b.p. of toluene-water azeotrope = 84°C), 

thanks to a Dean-Stark apparatus. With this substrate however (compound 1), we observed 

that the condensation could proceed simply by concentrating the solution under vacuum. 

Consequently, the aldehyde and the diol are dissolved in ethyl acetate, para-toluenesulfonic 

acid is added and the reaction mixture is concentrated till dryness on a rotary evaporator. This 

system allowed to carry out the reaction without the Dean-Stark apparatus and avoiding the 

high temperature required to reflux toluene (110,6°C). Cyclic acetal 10 was obtained in 73% 

yield, which was a great improvement from the 29% yield obtained previously in classical 

conditions with compound 7 as substrate (Cf. Scheme 5). 

Interestingly, the temperature of the water bath plays a role in the outcome of the reaction. 

Indeed, the condensation reaction yields a total of four stereoisomers of the cyclic acetal -cis, 

trans and their enantiomers- with respect to the substituents on the acetal ring, as shown in 

the following figure. 

 

Figure 12. Chemical structures of the four possible isomers of the cyclic acetal G8 and APNM5: two cis 

isomers and two trans isomers with respect to the acetal ring substituents in positions 2 and 4. 

If the reaction is carried out in a bath at 25°C the ratio between cis and trans isomers is 1:1, 

while if the temperature is raised the major isomer would be the thermodynamic product. A 

condensation reaction was carried out with a bath at 40°C and led to the almost exclusive 

formation of the trans isomer. When possible, the cis and trans isomers were isolated just for 

characterization purposes.  
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The last step is the hydrolysis of the ester with sodium hydroxide. It required special attentions 

since the propiolonitrile motif is sensible to nucleophilic attack by the hydroxyl anion. 

Temperature must be kept at 0°C and the solution must be neutralized as soon as the reaction 

is complete. Final compound APNM5 was isolated in 69% yield after preparative HPLC 

purification. 

About the arylpropiolonitrile compounds, it is noteworthy that their detection by LC-MS is 

quite difficult. They absorb quite well at 254 nm but they are not detected by the mass 

analyser, i.e. they are not -or weakly- ionizable by electrospray ionization (ESI), at least by the 

one currently in use in our laboratory (cf. Experimental procedures, section 1.2, page 162). 

Thus, in each reaction involving an APN compound, to be sure that the product was formed 

and that the APN function was still intact, a little sample treatment was necessary before 

running the LC-MS analysis. Being the arylpropiolonitrile motif conceived to react with thiols, 

cysteine was added to the sample for the LC-MS and the conjugation was allowed to occur 

before the analysis. The new derivative product is very well ionizable and its presence confirms 

the presence of the APN motif. An example of such analysis is shown in Figure 13. 
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Figure 13. a) Generic reaction between cysteine and arylpropiolonitriles, the change in molecular mass 

is indicated. b) LC chromatogram of a sample of APNM5 with c) the MS extract of the main peak. d) LC 

chromatogram of a sample of APNM5 treated with cysteine and e) the MS extract of the corresponding 

peak with the expected m/z value well visible. 

Once the new amine-to-thiol acetal linker APNM5 was obtained, the corresponding FRET 

probe was synthetized. 

2.2.3 Synthesis and purification of FRET probe of acetal APNM5 

For the synthesis of the acetal FRET probe, the carboxylic acid and the arylpropiolonitrile 

functions were exploited to link TAMRA and BHQ respectively. TAMRA-NH2 and BHQ-2-SH 

were used in a one-pot sequential coupling, as shown in Scheme 7. 
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Scheme 7. Synthesis of the FRET probe F-APNM5 of acetal amino-to-thiol linker APNM5. 

2-Bromo-1-ethyl-pyridinium tetrafluoroborate (BEP) was used to activate in situ the carboxylic 

acid (step 1) and to allow the following insertion of TAMRA-NH2 through nucleophilic acyl 

substitution (step 2).40 The final step is the thiol conjugation to APN, for which only the 

presence of BHQ-2-SH is necessary. The yield of 29% over the three steps is calculated after 

the purification with preparative HPLC. 

Attention must be paid during purification. Indeed, a first attempt of purification with 

preparative HPLC was done with a usual mobile aqueous phase with 0,05% content of 

trifluoracetic acid (TFA). The acidity of the mobile phase causes a partial hydrolysis of the acetal 

during the run, resulting in a sample of FRET already hydrolysed at 10%. Changing the mobile 

phase to a neutral aqueous solution with 0,025% of ammonium formate (HCOONH4) allowed 

to overcome this problem, even if longer time was needed to get rid of the ammonium formate 

salt in the final sample. Figure 14 shows the chromatograms of the two obtained samples. 
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Figure 14. Chromatograms of the preparative HPLC outcome when using a) an acidic mobile phase and 

b) a neutral mobile phase. All the chemical species are detected by HR/MS and shown in the figure. 

2.2.4 Profile of F-APNM5 stability towards hydrolysis at different pH 

The FRET probe F-APNM5 was tested for stability in different acidic conditions. Solutions at 

different pH were prepared, as well as 40µM solutions in DMSO of: i) the FRET probe F-APNM5 

and ii) TAMRA-NH2 and BHQ-2-SH, as comparison. 

The 40µM solution were diluted in the appropriate acidic solution to a final concentration of 

1µM, three aliquots of each solution were placed in a 96-well plate and analysed with a 

spectrofluorometer. The fluorescence was monitored for 15 hours at 23°C (temperature of the 

room); measurements were taken every 3 minutes. Since the fluorescence of TAMRA is 

dependent on the pH, each value of fluorescence measured for the FRET probes was 

normalized to the corresponding value measured for the solution of TAMRA and BHQ in the 

same buffer. Hydrolysis profile of F-APNM5 is shown in Figure 15 and is compared to the one 

of F-APN6 previously obtained.  

a)

b)
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Figure 15. Hydrolysis profiles of acetals F-APN6 and F-APNM5 in different concentration of proton at 

23°C. 

As predicted, the acetal APNM5 is more prone to hydrolysis, while maintaining its stability at 

pH ≥ 4. As previously done with F-APN6, also in this case the FRET probes was analysed 

manually at 37 °C. The 1 µM solutions were agitated at a constant temperature of 37 °C, 

aliquots were taken and analysed every hour for 6 hours. Figure 16 shows a comparison 

between hydrolysis of F-APN6 and F-APNM5 at 23°C and 37 °C. As expected, acetal APNM5 is 

faster hydrolysed at higher temperature in acidic media but remains very stable at pH = 5. 

The results obtained confirmed that acetal F-APNM5 was a much better candidate as abiotic 

substrate for the hydrolysis catalysed by a heterogeneous acidic catalyst. It is stable at 

physiological pH and is cleavable in the expected range of pH anticipated for the active solid 

catalyst. 
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Figure 16. Hydrolysis profiles of acetals F-APN6 and F-APNM5 in three different acidic solution; 

comparison between 23°C and 37 °C. 

Having found a promising cyclic acetal cleavable at pH < 4 with a hydrophobic nature, F-

APNM5’s chemical structure was modified to increase its hydrophilicity, in order make it 

compatible with hydrophilic heterogeneous catalysts for the abiotic acid-catalysed hydrolysis 

(cf. Introduction, Figure 1, page 11). 

Next section will describe the design and synthesis of the hydrophilic equivalent of F-APNM5. 
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3. IDENTIFICATION OF HYDROPHILIC ACETAL CLEAVABLE AT PH < 4 

3.1 DESIGN AND SYNTHESIS OF PEGAM5: THE HYDROPHILIC EQUIVALENT OF F-APNM5 

3.1.1 Design of PEGAM5 

As defined above, acetal F-APNM5 showed to be stable in physiological pH and hydrolysable 

at pH < 4. Hence, its acetal core APNM5 was used as base to design a hydrophilic equivalent. 

The new cyclic acetal bears a triazole -in place of the propiolonitrile motif- and a short PEG-4 

chain which makes the molecule much more hydrophilic than F-APNM5. Its chemical structure 

is shown in Figure 17a and it is named PEGAM5. The code name is composed by: “PEG”, 

because of the presence of a PEG-4; “M” for methoxy and “5” for the acetal ring size. The 

calculated LogP value correspond to 0.22, in contrast with the LogP value estimated for the 

hydrophobic FRET acetal (Figure 17b). 

Figure 17. a) Structure of PEGAM5, the hydrophilic version of acetal model APNM5, and calculated LogP 

value; b) comparison with FRET acetal F-APNM5 structure and estimated LogP value. 

3.1.2 Evaluation of Huckel charges on the new acetal model 

Changing the aryl substituent at position 4 from a propiolonitrile to a triazole could affect the 

stability of the acetal towards hydrolysis. This issue was addressed by calculating Huckel 

charges for the two aryl model compounds and comparing the values obtained on the 

aromatic carbons close to the substituent. As additional comparison, Huckel charges were also 

calculated for two benzene with an electron-donating group and an electron-withdrawing 

group as substituent. 
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A strong EDG or EWG substituent, like respectively a silane and a fluorine, causes the charge 

on the adjacent aromatic carbon atom to raise or decrease by an absolute value of around 0.3, 

while both the thio-acrylonitrile (APN conjugated to a thiol) and the triazole substituents have 

a weak electron-withdrawing effect which raise the charge of the adjacent aromatic carbon to 

respectively 0.059 and 0.064 (Figure 18). 

 

Figure 18. Calculation of Huckel charges on carbons 1, 2 and 6 of the aromatic ring in four model 

compounds; positive charges are enlightened in green, negative charges are in orange. Calculations were 

made with ChemDraw® 3D software. a) Model compound 17 for APN-acetals conjugated to BHQ-2-SH. 

This model applied to FRET probes F-APN6 and F-APNM5. b) Model compound 18 for triazole-aryl 

compounds. This model applies to acetal PEGAM5 and to FRET probes F-A2M5 and F-A2M6 (describe 

later in section 4 of this chapter, page 53). As comparison, Huckel charges were calculated also for c) 

trimethyl(phenyl)silane (19) and d) fluorobenzene (20) to give a comparison of charge values on the 

aromatic carbons close to respectively an electron-donating group and an electron-withdrawing group. 

Thus, passing from APN-acetals to triazole-aryl acetals should not affect the charge distribution 

on the aromatic ring in a remarkable way. We thus hypothesised that the stability of the cyclic 

acetal towards hydrolysis will be only very slightly affected. 

3.1.3 Synthesis of PEGAM5 

The synthesis of PEGAM5 is presented in Scheme 8. Starting from compound 13, previously 

synthetized as intermediate in the synthesis of APNM5, the first steps involves the reduction 

of the protected acid to a primary alcohol and the subsequent partial oxidation to aldehyde, 
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following the same strategy previously used for APNM5 (Cf. Scheme 6, page 41). Aldehyde 21 

was obtained with an overall 60% yield. 

Condensation between the aldehyde 21 and the diol 23 (butyl 2,3-dihydroxypropanoate) is 

carried out in ethyl acetate at reduced pressure, following the procedure previously described, 

with a good 87% yield. Cyclic acetal 24 was obtained as a 1:1 mixture of cis and trans isomers. 

Scheme 8. Synthesis of PEGAM5. 

Then the obtained terminal alkyne 24 undergoes a click reaction with PEG-azide 25, carried out 

in classical copper-catalysed alkyne-azide cycloaddition (CuAAC) conditions in presence of 

catalytic amount of copper sulphate and sodium ascorbate in tert-butanol/water mixture. The 

triazole 26 was obtained in 60% yield (calculated by LC-MS). The final step consists in the 

hydrolysis of the butyl ester with lithium hydroxide. Final compound PEGAM5 was obtained in 

quantitative yield and purified with preparative HPLC, paying attention to the pH of the 

aqueous mobile phase which -as previously mentioned- must be neutral to prevent the 
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hydrolysis of the acetal in the column. HR-ESI-MS analysis of the isolated product revealed an 

isomeric ratio of 1:0.74 (Figure 19). 

Figure 19. HR-ESI-MS chromatogram of isolated PEGAM5. The two peaks correspond to the two 

stereoisomers obtained. 

Having found both the hydrophobic and hydrophilic acetals cleavable at pH < 4, the reactivity  

of APNM5 was further investigated in order to obtain acetals more prone to hydrolysis. 

Indeed, we anticipated that maintaining a pH < 2 in the heterogeneous catalyst in a 

surrounding media buffered at pH = 7.4 will be very challenging. Thus, a more labile acetal 

could increase our chance of success. 

In the next section we described the design and the synthesis of two brand-new cleavable 

cyclic acetals, as well as the synthesis of the corresponding FRET probes, the tests for 

hydrolysis in acidic solutions, plasma and in vitro.  
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4. IDENTIFICATION OF ACETAL CLEAVABLE AT PH > 4 

4.1 DESIGN AND SYNTHESIS OF ACETAL CLEAVABLE AT PH > 4 AND STABLE AT PH > 6 

4.1.1 Design of acetal A2M5 and A2M6 

Two brand-new cyclic acetals were designed on the model of compound APNM5. Given the 

proved influence of the methoxy substituent in ortho position, a second methoxy was added 

in the ortho’ position in order to weaken even further the acetal stability in acidic conditions. 

Moreover, the difference in the ring-size was also introduced as a variable to test towards acid 

stability. We expected that the 5-membered cyclic acetal would be more prone to hydrolysis 

than the 6-membered one, as previous studies suggested.35 Regarding the propiolonitrile 

motif, it was substituted by a terminal alkyne, which can undergo copper-catalysed 

cycloaddition with an azide, generating a triazole. Figure 20 shows the chemical structure of 

the two new targets A2M5 and A2M6. Code names are conceived as follow: A = aryl; 2M = two 

methoxy substituents; 5 or 6 = size of the acetal ring. 

Figure 20. New cyclic acetal linker models A2M5 and A2M6. 

4.1.2 Synthesis of A2M5 and A2M6 

Inspired by the work on acetal linker APNM5, we decide to apply the same synthetic strategy. 

Starting from commercially available 4-bromo-2,6-dimethoxybenzaldehyde 27, the synthesis 

of the acetals was straightforward and achieved in four steps (Scheme 9): 

I. Sonogashira coupling with protected ethyne; 

II. removal of trimethylsilyl ether protection in basic conditions; 

III. condensation with the proper diol; 

IV. hydrolysis of ester. 
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Scheme 9. Synthesis of compounds A2M5 and A2M6. 

The protected terminal alkyne 28 was obtained from starting iodo-benzaldehyde 27 through 

a Sonogashira coupling in good 87% yield. Given the presence of the aldehyde, the 

deprotection of the terminal alkyne was carried out in basic condition with 84% yield, instead 

of using fluoride anion (TBAF), which would lead to the formation of propargylic alcohol, as 

described in literature by Chintareddy et al.41 

The condensation reaction between aldehyde 29 and the diol (23 or 30) afforded the acetal in 

50% yield (calculated by LC-MS). The work-up of this reaction was the trickiest part of the whole 

synthesis. The classic work-up implies a phase extraction but the presence of a large amount 

of water and the p-toluenesulfonic acid caused the complete hydrolysis of the newly formed 

acetal. Consequently, the extraction was replaced with a fast purification on a silica pad of the 

reaction mixture to get rid of the acid, followed by a chromatographic column. Even though 

the initial yield was around 50%, the product fractions obtained from the chromatographic 

purification contained an important amount of the initial aldehyde. At a first moment, this was 

imputed to a bad separation since the Rf values of the starting material and of the product are 

very similar. After two more purification it was clear that the acidity of the silica itself was 

responsible for hydrolysis of the acetal. Final yields for acetals 31 and 32 were of 21% and 22% 

respectively. The NMR characterization revealed the presence of starting materials (< 5%). 
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The final step was the ester hydrolysis with lithium hydroxide. The reaction gave the final 

products A2M5 and A2M6 in quantitative yield. Given their instability in acidic conditions, the 

final purification was done by preparative HPLC, using a neutral mobile aqueous phase (0.025 

mM content of ammonium formate). HR-ESI-MS analysis showed that the two products were 

successfully isolated (Figure 21). 

Figure 21. HR-ESI-MS chromatograms of isolated compound A2M5 (a) and A2M6 (b). 

4.1.3 Synthesis of FRET probes F-A2M5 and F-A2M6 

FRET probes of the two new acetals were synthetized in order to address their stability towards 

hydrolysis in different proton concentrations and their cleavability in cell. Scheme 10 shows 

their synthesis. In this case, the quencher BHQ-2 was modified via the addition of an azide 

moiety, in order to subsequently perform a copper-catalysed alkyne-azide cycloaddition 

(CuAAC) between the latter and the terminal alkyne of the acetals, resulting in the creation of 

a 1,4-disubstituted triazole.  

a)

b)
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Scheme 10. Synthesis of FRET probes F-A2M5 and F-A2M6. 

The click reaction was carried out in classical conditions, in presence of copper sulphate 

(CuSO4) and sodium ascorbate, until complete conversion was reached (LC-MS analysis). The 

work-up was a fast phase extraction in water/DCM to get rid of the copper and the ascorbate 

salts. 

The obtained mixture was used without any further purification for the second step: the amide 

formation. The activation of the carboxylic acid with BEP (2-Bromo-1-ethyl-pyridinium 

tetrafluoroborate) was followed by nucleophilic substitution by TAMRA-NH2. 

Overall the reaction proceeded well and the yield over the two steps was almost quantitative, 

according to LC-MS analysis. Unfortunately, the final yields obtained after the purification with 

preparative HPLC are 36% and 53% for F-A2M5 and F-A2M6 respectively, despite the use of a 

neutral aqueous phase for the HPLC purification. The two FRET probes were however isolated 

with an excellent degree of purity, as confirmed by the HR-ESI-MS chromatograms (Figure 22). 
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Figure 22. HR-ESI-MS chromatograms of isolated compound F-A2M5 (a) and F-A2M6 (b). 

4.2 PROFILE OF F-A2M5 AND F-A2M6 STABILITY TOWARDS HYDROLYSIS AT DIFFERENT PH 

FRET probes F-A2M5 and F-A2M6 were tested for stability with the same method used for F-

APN6 and F-APNM5. Results are shown in Figure 23. 

Figure 23. Hydrolysis profiles of acetals F-A2M5 and F-A2M6 in different aqueous solutions in plasma at 

23°C. 

Both probes have similar profiles. Hydrolysis at pH < 1 was achieved immediately, at pH = 2 

maximum hydrolysis was reached within 3 hours. With increasing pH, the rates decreased, as 

expected. At pH = 5 hydrolysis was very slow, while at physiological pH = 7.4 and in plasma, 

both the acetals showed stability. Regarding the comparison between the profiles of the two 

acetals, they are very similar: it seems that the size of the ring does not make a significant 

contribution to the hydrolysis rate. As a reminder, it was expected that the 5-membered ring 

acetal would hydrolyse faster than the 6-membered one. Apparently, the increase in hydrolysis 

rate with respect to acetals F-APN6 and F-APNM5 is to impute mainly to the introduction of a 

second methoxy in ortho position. 
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The hydrolysis profiles of the new acetals F-A2M5 and F-A2M6 match the target. They are 

stable at the pH of cells and extracellular environment and are cleaved in the range of pH of 

the more acidic compartments of the cell (Cf. Figure 1, page 11). Thus, they could represent a 

competitive alternative to the already existing cleavable linkers. For this reason, their 

cleavability in cells was evaluated. 

4.3 IN VITRO EVALUATION OF F-A2M5 AND F-A2M6 CLEAVABILITY IN CELLS 

Cell culture and flow cytometry experiments were performed by Dr. Fabien Thoreau. 

F-A2M5 and F-A2M6 are incubated with five cell lines (Table 1, next page). After 1.5 hour 

incubation at 37 °C, solution was removed, cells were washed with PBS, trypsinized (5 min, 37 

°C) and resuspended in PBS. Fluorescence was assessed through flow cytometry and was 

compared to the one of two other FRET probes: 

• F-amide, in which the fluorophore TAMRA-NH2 and the quencher BHQ-2 are 

connected through an amide bond; 

• F-Val-Cit, in which the fluorophore and the quencher are linked via Val-Cit (valine and 

citrulline), a cleavable linker currently used in the FDA approved antitumoral ADC 

brentuximab vedotin (trade name: Adcetris®).42,43 

Chemical structure of the two FRET probes are showed in the following figure. 

Figure 24. Chemical structure of FRET probes F-Val-Cit and F-amide. 
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Cell line Description 

BNL CL.2 Mouse healthy liver cell line 

LS174 Human Dukes' type B, colorectal adenocarcinoma cell line 

HUH7 Human well differentiated hepatocyte derived cellular carcinoma cell line 

MDA-MB-231 Human breast adenocarcinoma, derived from metastatic site: pleural effusion 

SKBR3 Human breast adenocarcinoma, derived from metastatic site: pleural effusion 

Table 1. Cell lines tested for the acetal cleavage. 

All the tests are conducted in triplicates. The values of fluorescence obtained have been 

subtracted of the values obtained from the control (cells incubated just in the media) of the 

corresponding cell line. Results are shown in Figure 25 and are represented as fluorescence 

intensity (bars, left scale) and as ratio between the fluorescence given by the acetals (F-A2M5 

and F-A2M6) and that given by F-Val-Cit (squared dots, right scale) for each cell line. This gives 

a better understanding of the relative stability of the acetals on the different cell lines with 

respect to the Val-Cit cleavable linker. 

Figure 25. Cell viability of F-amide, F-Val-Cit, F-A2M5 and F-A2M6 on five cell lines. Two set of data are 

showed: plain bars indicate the value of fluorescence calculated trough flow cytometry (scale on the left); 

dots represent the relative cleavability of the new two acetals F-A2M5 and F-A2M6 with respect to the 

cleavable probe F-Val-Cit (scale on the right). All values are subtracted of the corresponding values 

obtained from the control (cells incubated only in presence of the media). 
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For cell lines BNL CL.2, LS174 and HUH7, the fluorescence observed for F-A2M5 and F-A2M6 

is from 2 to 5 times higher than that measured for F-Val-Cit, with the 6-memebered cyclic 

acetal F-A2M6 showing faster hydrolysis over its 5-membered ring analogue. This trend is 

inversed for the two breast cancer cell lines MDA-MB-231 and SKBR3: F-A2M5 is more prone 

to hydrolysis than F-A2M6. With SKBR3 cell line, the ratio between the fluorescence measured 

for the acetals and for the Val-Cit linker is greater than with the other cell lines. Fluorescence 

from F-A2M6 hydrolysis is 14 times higher, while fluorescence from F-A2M5 hydrolysis is 20.3 

times higher. 

Overall, both the acetals show better cleavability in vitro than F-amide and F-Val-Cit, 

confirming that the cyclic acetals A2M5 and A2M6 are good candidates as cleavable motifs for 

payload-release bioapplications.  
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5. IDENTIFICATION OF ACETAL STABLE TOWARDS HYDROLYSIS AT 

VERY LOW PH 

5.1 INTRODUCTION 

The biochemical characteristics of hetero-bifunctional cross-linker used in bioconjugates are 

of essential importance to the desired features of the final adduct. These include stability in 

biological media, chemical and biological reactivity, cleavability in defined conditions and 

solubility.33 In a work previously conducted in our group, we introduced a new amine-to-thiol 

acetal linker -maleimidomethyl dioxane (MD, Figure 27b, page 62)- as an alternative to 

classical maleimide conjugation, with increased hydrophilicity and remarkable stability in very 

acidic solutions.44 Hence, such cyclic acetal linker falls into the class of non-cleavable amine-

to-thiol linker with the advantage of improved solubility due to the presence of two oxygen 

atoms. 

Inspired by the significant qualities showed by MD linker, we investigated the generality of 

cyclic acetal amine-to-thiol linkers containing maleimide as bioconjugation site for thiol 

linkage. Results of this investigation were published in 2017 in Organic and Biomolecular 

Chemistry journal.45 

5.1.1 Maleimide group in bioconjugation 

The maleimide group is one of the most used chemoselective moieties for bioconjugation 

because it reacts quickly and selectively with a sulfhydryl group through Michael addition 

forming a thioether. Maleimide is thus present in many amino-to-thiol heterobifunctional 

coupling agents, such as succinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate 

(SMCC). 

Maleimide-containing reagents are used for numerous applications, from the preparation of 

hapten-carrier conjugates,46–48 protein nanoparticles,49 or antibody-nanoparticle conjugates,50 

to the advanced and growing field of antibody-drug conjugates (ADCs).51,52 For instance, SMCC 

is used in Kadcyla®, an antibody-drug conjugate currently used in the treatment of metastatic 

breast cancer.53 The resulting thiosuccinimidyl linkage is however not without drawbacks, 

especially concerning the tendency of maleimide-based ADC to lose their drug during 

prolonged circulation.54–56 
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Indeed, it is now well known that the maleimide-thiol adduct is prone to retro-Michael 

reactions and exchanges with other thiol-bearing molecules57 present in biological media such 

as albumin, reduced glutathione and free cysteine,54 leading to the premature release of the 

payload. In competition with this process, the succinimidyl ring can undergo a favourable ring-

opening hydrolysis,58 leading to a linear structure59 which does not undergo further thiol 

exchange (Figure 26), thus enhancing the stability and the pharmacological properties of 

ADCs.60,61 

Figure 26. Illustration of the two reaction pathways of the ADC containing the thiosuccinimidyl linkage. 

In human plasma, the ADC can undergo either thiol exchange with thiol-bearing biomolecules (human 

serum albumin for example in the figure), or succinimidyl ring-opening, which precludes thiol exchange. 

5.1.2 SMCC vs MD amine-to-thiol heterobifunctional linkers 

Probably the most famous amine-to-thiol linker, 4-(N-maleimidomethyl)-cyclohexane-1-

carboxylate (MCC) is composed by a central cyclohexane ring with two substituents in para 

position, the first is an activated acid for linkage to amines, the second is a maleimide ring for 

linkage to thiols (Figure 27a). 

The previously presented 2-(maleimidomethyl)-1,3-dioxane (MD) has two oxygen atoms which 

substitute carbons 1 and 3 in the central ring, thus giving an acetal function (Figure 27b). 

Figure 27. Molecular structure of MCC and MD and relative LogP values. 
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MD is a potent alternative to the classical MCC linker. The two intra-cyclic oxygen atoms 

increase the hydrophilicity of both the heterobifunctional coupling reagent and its resulting 

conjugates, circumventing potential problems related to the poor water solubility of MCC-

based bioconjugates, like aggregation and precipitation. Moreover, the succinimidyl ring in 

MD-based conjugates underwent fast self-stabilization via ring-opening hydrolysis.44 

Interestingly, despite the presence of an acetal moiety, MD linker was remarkably stable in 

aqueous media even at pH < 1, thus maintaining all the desired characteristics of a non-

cleavable linker. This feature, combined with the high solubility in aqueous media and the 

stability resulting from the succinimidyl ring-opening, makes the maleimide dioxane an 

excellent heterobifunctional reagent for the building of stable amine-to-thiol bioconjugates. 

In this section we wanted to investigate these surprising phenomena (acidic stability/auto-

catalysed ring-opening) and decipher what, in terms of chemical structure, influences the 

peculiar reactivity of the maleimide dioxane motif. 

5.2 STRUCTURAL INVESTIGATION OF MALEIMIDE-ACETAL LINKERS FOR ACID AND SERUM 

STABILITY 

5.2.1 Design and synthesis of MD linker analogues 

New analogues of MD linker were designed and synthetized. They differ in ring size (5 and 6 

membered cyclic acetals) and carbon-chain length (1 and 2 aliphatic carbons). Chemical 

structures are pictured in Table 2 and their synthesis is resumed in Scheme 11. Code-names 

are assigned to all the linkers, including the original MD. For the sake of clarity and easy 

comparison with its analogues, from this point MD will be named “MIA6-1”, where “MI” stands 

for “maleimide”, “A” for “acetal”, “6” for the ring size and “1” for the carbon-chain length. 
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Table 2. Chemical structures of MD and three new amine-to-thiol cross-linkers based on MD. Code 

names are given on the following base: “MI” for “maleimide”, “A” for “acetal”, “5” or “6” for the ring size 

and “1” or “2” for the carbon-chain length. So MD will be named also “MIA6-1” to help the reader quickly 

identifying its structural composition. 

Scheme 11. Synthesis of MIA linkers. 

Syntheses of compounds 34a,b were achieved in two steps:  

I. a nucleophilic ring-opening reaction of maleic anhydride with amines 33a,b;  

II. a cyclisation reaction in the presence of acetic anhydride and sodium acetate. 

Noteworthily, the second step was the most challenging and required to be performed at 90°C. 

Under these conditions, the cyclisation reactions had to be carefully monitored since 
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prolonged reaction time led to decomposition. Compounds 34a and 34b were obtained in 41% 

and 47% yield respectively. 

Then, the key step of the synthetic procedure was the condensation between the synthons 34 

and 23 or 30, which was carried out in refluxing toluene in the presence of a catalytic amount 

of para-toluenesulfonic acid. The two acetals 34a and 34b were used in different combinations 

with the diols 23 and 30 to obtain four different linkers 35a-d in moderate to good yields (68-

96%).  

Finally, the saponification of esters 35a-d with LiOH in THF/H2O gave the corresponding 

carboxylates but hydrolysed the maleimide ring concomitantly. Thus, a second cyclisation 

reaction under the conditions previously described was necessary to reform the maleimide 

ring and deliver the final products in 37-79% yield.  

It is worth mentioning that the syntheses of linkers MIA5-1 and MIA5-2 took less steps 

compared to those of linkers MIA6-1 and MIA6-2 as diol 30 was prepared in one step, while 

23 was prepared in four (Cf. Experimental Procedures, section 1.7, page 194). As for the cyclic 

linkers previously described, the final compounds were obtained as an almost equimolar 

mixtures of cis and trans diastereomers. 

5.2.2 Synthesis of FRET probes of MIA linkers 

For each linker, Fluorescence Resonance Energy Transfer (FRET) probes were prepared. As a 

reminder, FRET strategy allows to address the stability of the dioxo-ring and to study the 

maleimide ring-opening and the thiol-exchange processes by means of detecting and 

measuring the generation of fluorescence. Indeed, cleavage of the linkage between the two 

moieties (i.e. via acetal hydrolysis, complete hydrolysis of the succinimidyl ring, or thiol 

exchange of BHQ-2-SH) leads to the appearance of a strong fluorescence signal. 

Their synthesis was achieved via a one-pot three-step procedure consisting of the in-situ 

activation of the acid with disuccinimidyl carbonate (DSC) followed by coupling with the 

fluorophore TAMRA-NH2 and subsequent reaction with the quencher BHQ-2-SH (Scheme 12). 

All the reactions were carried out on a 2.5 mg scale. Successive transformations were 

controlled by LC-MS and the final products purified by preparative HPLC with good overall 

yield (55-76%) of the isolated product. Stock solutions were then prepared in DMSO-d6 and 

the concentrations were determined by 1H-ERETIC NMR.  
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Scheme 12. One-pot three-step synthesis of the FRET probes. 

5.3.3 Profile of MIAs stability towards acetal hydrolysis at various pH. 

With these versatile tools in hand, the stability of the FRET probes (1 µM) in different buffers 

(PBS, TRIS) at various pH (5.0 - 9.0), as well as in HCl solutions (1 M and 0.01 M in water) was 

tested. The fluorescence was monitored for 15 hours at 25 °C and was normalized against that 

of a 1 µM solution of an equimolar mixture of TAMRA and BHQ recorded under the same 

conditions. The FRET probe of MCC (F-MCC), bearing the same quencher and fluorophore, was 

used as a control in order to address the appearance of fluorescence as the result of the acetal 

ring hydrolysis. 

Results show that in a pH range from 2 to 9, including biological conditions, the fluorescence 

did not exceed 10% (See Experimental Procedure, section 2.2, page 217), proving the stability 

of the linkers despite the presence of an acetal moiety. Only under strong acidic conditions 

significant acetal hydrolysis could be observed (1 M aq. HCl, Figure 28).  

It is notable that in such non-physiological conditions, it was possible to discriminate between 

the different linkers and reveal a pattern for the acetal relative stability. The stability of the 

probes increases following the order:  

F-MIA6-1 > F-MIA5-1 > F-MIA6-2 > F-MIA5-2 
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Figure 28. Stability essay in 1 M HCl aqueous solution (pH<1). 

Under the experiment conditions (1 µM solution of acetal in 1 M HCl aq.), and given that the 

concentration of one of the reactants (H+) is 106 times greater than the other (acetal), the 

reaction follows a pseudo-first order kinetic, with the following rate constants:  

• F-MIA5-2 k5-2 = 4,61*10-6 s−1 

• F-MIA6-2 k6-2 = 2,28*10-6 s−1 

• F-MIA5-1 k5-1 = 1,59*10-6 s−1 

• F-MIA6-1 k6-1 = 3,80*10-7 s−1 

• F-MCC  kMCC = 3,06*10-7 s−1 

The two probes with five-membered rings proved to be slightly less stable than the six-

membered ones, while increasing the distance between maleimide and acetal resulted also in 

decreased stability in both series. 

These experimental results appear to be consistent with several studies on stereo-electronic 

effects on acetal hydrolysis and may serve as a basis for explanation. First, it has been reported 

that acetal hydrolysis rate is decreased by increased steric hindrance from the substituents62 

and by the presence of electron-withdrawing substituent.63,64 In this case, the acetal ring in 

MIA5-1 and MIA6-1 seems more hindered because of the maleimidomethyl substituent, thus 

accounting for the decrease in reactivity. In addition, the electron-withdrawing maleimide 

residue is closer to the acetal in MIA5-1 and MIA6-1 than in MIA5-2 and MIA6-2. These factors 

may account for the observed hydrolysis-rate trend.  

T im e  (h o u rs )

F
lu

o
r
e

s
c

e
n

c
e

 (
%

)

0 5 1 0 1 5

0

1 0

2 0

3 0

4 0

5 0

F -M IA 5 -1

F -M IA 5 -2

F -M IA 6 -1

F -M IA 6 -2

F -M C C



 II – IDENTIFICATION AND MODULATION OF THE ACETAL SUBSTRATE 
 

Elisabetta Tobaldi  68  

Regarding the size of the dioxo-ring, it is already known that a 5-membered cyclic acetal is 

more prone to hydrolysis than a 6-membered one,35,65 which is confirmed by our experimental 

results: MIA5-2 and MIA5-1 are hydrolysed faster than MIA6-2 and MIA6-1 respectively.  

These two factors are both in accordance with the obtained experimental trend. Thus, the 

original linker MIA6-1 (previously presented as MD)44 proved to be the most stable under 

acidic conditions, even though all four probes showed to be equally stable under physiological 

conditions. 

5.3.4 Profile of succinimide ring-opening in PBS 

Attention was then focused on the succinimide part which, through auto-catalysed ring-

opening, prevents the thiol-exchange process, contributing in this way to the overall stability 

of the probe. 

In order to measure the relative abundance of the closed and opened succinimidyl forms, 50 

µM solutions of FRET probes in PBS buffer (pH 7.4, 10% DMSO) were prepared and incubated 

at 37 °C. Aliquots were taken at various time points and were analysed by LC-MS. Comparison 

of the peak-area of the probe itself (of mass [M]) with the peak-area of the opened molecule 

(of mass [M+18]) enabled calculation of the transformation rate. In this way, ring-opening 

profiles for all the probes were determined, by plotting values of opened form percentage 

against time (Figure 29). 

Figure 29. Ring-opening rate of the succinimidyl ring in PBS for the four probes (50 µM solution). 
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The reaction follows a pseudo-first order kinetics, rate constants of all the probes were 

calculated: 

• F-MIA5-1 k5-1 = 7,29*10-5 s−1 

• F-MIA6-1 k6-1 = 3,43*10-5 s−1 

• F-MIA5-2 k5-2 = 1,53*10-5 s−1 

• F-MIA6-2 k6-2 = 6,81*10-6 s−1 

Interestingly, probes F-MIA6-1 and F-MIA5-1 with a methylene spacer are hydrolysed much 

faster than the corresponding probes F-MIA6-2 and F-MIA5-2 bearing an ethylene spacer. 

Consequently, for the desired ring opening, the one-carbon spacer is preferable to the two-

carbon spacer. 

Addressing the effect of the ring size in both series, 5-membered rings proved to have faster 

ring opening reactions than their corresponding 6-membered analogues: F-MIA5-1 > F-MIA6-

1 and F-MIA5-2 > F-MIA6-2. 

The data obtained clearly indicate that both the distance be-tween the dioxane ring and the 

succinimide and the ring size are crucial for the rate of the ring-opening reaction in aqueous 

media. According to these data, MIA5-1 appears potentially superior to the original MIA6-1. 

5.3.5 Profile of succinimide ring-opening in plasma. 

In order to validate this result under relevant physiological conditions the ring-opening rate 

was measured in human plasma at 37 °C. As in previous experiments, the F-MCC probe served 

as a comparison point. Aliquots were taken at appropriate intervals of time, proteins were 

precipitated with acetonitrile, the resulting solutions were centrifuged and the supernatants 

were analysed as described above for PBS solutions. The results are plotted as the ring-

opening percentage versus time (Figure 30). 

Interestingly, the process seems to be slower in human plasma than in PBS solution. Again, 

the probes with one-carbon spacer are more prone to hydrolytic succinimide ring opening 

than their homologues.  
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Figure 30. Ring-opening rate of the succinimidyl ring in plasma for the four probes and for F-MCC (1 µM 

solution). 

As proven by Fontaine and co-workers in 201558 in a study on the effects of the N-substituent 

on the succinimidyl ring opening rate, if the substituent is an electron-withdrawing group, the 

reaction is faster. Moreover, the closer the group is to the maleimide, the faster is the reaction. 

On the other hand, variation of the ring size had less impact on the kinetics even though the 

overall ranking of the probe was the same in PBS and plasma: 

F-MIA5-1 > F-MIA6-1 > F-MIA5-2 > F-MIA6-2 

It is important to consider that, during the protein precipitation prior to LC-MS analysis, the 

probe undergoing thiol exchange with albumin also precipitated and was therefore not 

detected. As proven by thiol-exchange experiment (Figure 32, next section), within the 

timeframe of our experiment, the thiol exchange was less than 15% and the qualitative 

information coming from the experiment about the structure-reactivity relationship is still 

valid and confirms the results obtained in PBS. 

5.3.6 Assessment of thiol exchange with HSA in plasma. 

The fastest self-hydrolysable probe F-MIA5-1 was pre-incubated in PBS until a complete ring 

opening could be observed. This pre-hydrolysed probe HF-MIA5-1 was incubated along with 

its non-hydrolysed equivalent F-MIA5-1 in plasma (50 µM) at 37 °C. Fluorescence of HSA-

(MIA5-1)-TAMRA could be detected upon thiol exchange between proteins (mainly HSA) and 

BHQ (Figure 32a). Aliquots were taken every day over a period of one week and were analysed 

by SDS-PAGE (Figure 31b). The fluorescence intensity of the HSA bands was measured and 

converted to a percentage of thiol exchange (Figure 31c). 
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For probe HF-MIA5-1 no fluorescence was detected, while for the native probes F-MIA5-1, the 

fluorescence of the HSA band gradually increased over time. The appearance of fluorescence 

in case of F-MIA5-1 and the lack of it in HF-MIA5-1 account for complete inhibition of the thiol 

exchange process thanks to maleimide ring opening.  

Along with this predicted result, even the non pre-hydrolysed native probe F-MIA5-1 

hydrolyses in situ fast enough to give only 12% of thiol exchange after 24 hours and to stop at 

<30% of exchange in 7 days. 

 

Figure 31. a) Illustration of thiol-exchange reaction with human serum albumin (HSA). b) HSA bands 

revealed by Coomassie Blue staining of gel with HF-MIA5-1 probe and fluorescence of HSA bands on gel 

with HF-MIA5-1 and F-MIA5-1 probes (for a complete illustration, see Experimental Procedures, section 

2.4, page 208). c) Analysis of fluorescence intensity reported as percentage of thiol exchange. 

5.3 CONCLUSION: OVERVIEW OF MALEIMIDE-ACETAL LINKERS’ STRUCTURE-REACTIVITY 

RELATIONSHIP 

In conclusion, from this study an improved linker emerged: 2-(maleimidomethyl)-1,3-

dioxolane (MIA5-1) linker is somewhat more efficient for self-stabilizing than MIA6-1 (or MD), 

the amine-to-thiol linker that we originally presented.  It showed a faster hydrolysis in human 

plasma, which is the most wanted feature in maleimide-bearing linkers, while keeping all the 

improved characteristics of MD and being easier to synthetize. Figure 32 summarise the 
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information obtained from the investigation on maleimide-acetal linkers’ chemical structure: 

i) the presence of a cyclic acetal instead of a cyclohexyl increases the hydrophilicity of the linker 

itself and of its adduct; ii) the acetal ring size and the distance between the acetal and the 

maleimide is correlated to the stability in acidic media, with the most stable acetal being the 

one with a 6-member cycle and the maleimide just one aliphatic carbon apart from the acetal; 

iii) the succinimide opening rate is higher when acetal is closer to the maleimide. 

Figure 32. Summary of the investigation on maleimide-acetal linkers for hydrophilicity and stability in 

acidic media -towards acetal hydrolysis- and in serum towards thiol exchange. 
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6. CONCLUSION 

As stated in the introduction of this thesis (chapter I.2, page 6), we aim to define a reaction 

setup for the acid-catalysed hydrolysis of cyclic acetals which is abiotic in every part: the cyclic 

acetal substrate and the acidic heterogeneous catalyst. 

In this chapter we investigated the reactivity of different cyclic acetals towards hydrolysis. Our 

objective was to identy a little group of cyclic acetals hydrolisable at different pH ranges and 

with a different chemical nature (hydrophobic or hydrophilic) to match the nature of the abiotic 

catalyst. 

Our investigation led to the identification of nine cyclic acetals. Their structure, reactivity, 

nature and envisaged applications are listed in the following table. 

     

Acetal Structure 
Hydrolysis 

pH range Nature Applications 

F-A2M5 

 

pH < 6 
Hydrophobic 

LogP > 5 

Cleavable linkers for 

bioconjugation 

techniques 

F-A2M6 

 

F-APNM5 

 

pH < 4 

Hydrophobic 

LogP > 5 

Match with an abiotic 

hydrophobic acid 

catalyst 

PEGAM5 

 

Hydrophilic 

LogP = 0.22 

Match with an abiotic 

hydrophilic acid 

catalyst 

F-APN6 
 

pH < 1 
Hydrophobic 

LogP > 5 

Match with an abiotic 

extremely acidic 

hydrophobic catalyst 

MIAs  

(4 acetals) 
 

Stable 

Hydrophilic 

-1.21 < LogP 

< - 0.78 

Stable amine-to-thiol 

linkers for 

bioconjugation 

Table 3. Synopsis of the cyclic acetals investigated. The table includes: denomination; chemical structure 

(acetal and significant motifs are enlightened in red, fuchsia sphere represents the fluorophore TAMRA 

and violet spheres represents BHQ-2 quencher); pH in which hydrolysis occurs; hydrophobic or 

hydrophilic nature of the acetal (with calculated and estimated LogP values) and the contemplated 

applications. 
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The followig figure depicts all the acetals and the pH range in which they are cleaved in 

comparison to the objectives describes in the introduction (Cf. Figure 1, page 11). With some 

neglectible differences, all the objectives described have been successfully achieved. 

Figure 33. Representation of the objectives pursued and achieved. The first band on the left represent 

the range of pH covered by cells and extracellular environment. The second red band in the centre 

represents the range of pH covered by the abiotic acid catalyst. The three striped blue bands on the right 

represent the pH ranges in which the hydrolysis of different abiotic acetal substrates is supposed to be 

triggered. Plain blue bands represent the pH ranges in which the hydrolysis of the identified acetals 

actually occurs, with the corresponding chemical structures. Grey faded horizontal bands are used to 

shows the matching between the pH activity ranges of xenobiotic substrates and the corresponding 

hydrolysis promoters. 

In the next chapter, we will inquire into the abiotic hydrolysis trigger, by identifying two kind 

of heterogeneous catalysts that could maintain an acidic environment in the buffered fluids: 

one hydrophobic (to combine with the hydrophobic F-APN6  and/or F-APNM5) and one 

hydrophilic (to combine with the hydrophilic PEGAM5). 
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III – IDENTIFICATION OF THE BIOCOMPATIBLE ACID 

CATALYST 

1. INTRODUCTION 

1.1 OBJECTIVES 

After describing the synthesis of acetals showing a panel of acido-lability profiles, we will now 

discuss the constraints and modalities linked to the development of a heterogeneous acidic 

catalyst which can maintain acidic activity in a highly buffered environment. 

To reach this goal, we screened a pool of acidic catalysts for the hydrolysis of the cyclic acetal 

stable at physiological pH (F-APN6, F-APNM5 and PEGAM5) in close-to-in vivo reaction 

conditions, in order to mimic as much as possible the biological environment. As mentioned 

above when introducing the advantages of the use of FRET probes (Cf. chapter II.1.2, page 27) 

carrying out a chemical reaction in conditions which are far from classical synthetic chemistry 

presents many limitations. Concentration of the substrate must be very low, in the order of 

macro-molar, i.e. close to possible plasmatic concentration obtained after injection in mice. 

Likewise, temperature is fixed to 37 °C, as the normal body temperature and there is no 

possibility to change parameters like solvent (biofluids), pressure (1 atm) and atmosphere 

(reactions requiring absence of oxygen and/or water are banned). These limitations are likely 

to affect the efficiency of many acidic catalysts known to work very effectively for the acetal 

hydrolysis. 

Given the constraints arising from the reaction setup, we did not restrict our investigation to 

solid Brönsted acid catalysts. We took into consideration acid catalysts falling into the following 

categories: 

• Homogeneous catalysts. Homogeneous catalysts of different nature (Brönsted acids, 

Lewis acids) were tested. In case some of them revealed to be able to hydrolyse the 

acetal in the above-mentioned conditions, the following step would be to chemically 

bind, immobilise or disperse them into a support. For example, grafting, co-

polymerization, absorption and other techniques can be used to make, in other words, 

an heterogenous version of the homogeneous catalyst. 
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• Heterogeneous catalysts. Heterogeneous catalysis, by definition, includes all the cases 

where the catalyst and the substrate are in different phases. In this case the catalysts 

are in solid form, whereas the substrate is in solvated liquid phase, thus the catalysts 

is referred both as “heterogeneous” and as just “solid”. The catalysis takes place at the 

surface between the solution and the solid material.66 This class can be divided intwo 

subcategories: 

o Hydrophobic catalysts, in which the solid matrix has a hydrophobic nature (it 

would adsorb hydrophobic substrates). This kind of catalysts can be combined 

with the hydrophobic acetals F-APN6 and F-APNM5. 

o Hydrophilic catalysts, in which the solid matrix has a hydrophilic nature. Solid 

catalysts belonging to this class can exchange with the aqueous biofluids used 

as solvent. Such interaction presents two consequences: the first is that -if 

paired with an hydrophilic substrate like PEGAM5- both substrate and 

products can diffuse in and out from the polymer matrix; the second is that 

also ionic exchange can occur between the cations present in the solvent and 

the protons of the acidic functions supported by the solid, causing an 

acidification of the biological media and a decrease of the catalyst’s activity. To 

address the obstacle presented by hydrophilic solid catalysts, we turned to our 

collaborators Dr. Becht and Dr. Balan at the Institute of Material Science 

(Institut de Sciences des Matériaux, IS2M, Université Haute-Alsace, Mulhouse). 

Thanks to their expertise, we could explore the development of a hydrophilic 

solid catalyst specifically tailored to meet the needs of this project (acidity kept 

in buffered media and ability to hydrolyse the acetals and release the 

products). 

In view of all the variables and limitations herein described, the catalyst’s screening requires a 

precise setup and meticulous planning, which is described in the following section. 

1.2 SETUP OF THE CATALYST’S SCREENING 

Before starting the actual screening, three points required optimization. 

I. The positive and comparison control. In the previous tests for the stability in different 

acidic solutions, an equimolar solution of TAMRA and BHQ was used as positive 

control, as a measure of a 100% hydrolysis value. In the screenings, there will be a 
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comparison control in addition. It is an equimolar solution of the reaction substrate 

(FRET probe) in the presence of a homogeneous strong acid catalyst. The catalyst must 

be soluble in both aqueous and organic solvents, not interfere with the detection of 

fluorescence, be easily handled and hydrolyse the acetal within one to three hours. It 

will be used as comparison of 100% efficiency for the acidic catalysts screened (section 

1.2.1) 

II. The solvent. Solvent plays a major role in the outcome of the reaction, especially when 

dealing with the solubility of hydrophobic acetal substrates in aqueous media. For this 

reason, the first series of screenings was done in organic protic non-anhydrous solvent 

(methanol) and then we moved stepwise to the use of biofluids (plasma) as solvent. 

Intermediate steps include first the use of water as solvent and then in phosphate-

buffered saline (PBS) solution (isotonic with biological systems) and finally in plasma 

(much more complex media, closer to the in vivo condition). To facilitate the solubility 

of the substrate in aqueous solvents water and PBS, a co-solvent (5% of the total 

reaction volume) was selected (section 1.2.2). Regarding the solubility in plasma, this 

rich medium can solubilize hydrophobic acetals at low concentration without any 

further support. 

III. Experiment conditions. Standard concentration of the starting material and of the 

catalyst, volume of the solutions, preparation of aliquots and method of control will be 

carefully set up (sections 1.2.4 and 1.2.5). 

1.2.1 Definition of camphor sulfonic acid as positive control 

Figure 34. Chemical structure of camphor sulfonic acid (CSA). 

Camphor sulfonic acid (CSA, Figure 34) was chosen as catalyst of comparison for complete 

hydrolysis after a given time. It is a strong organic acid, soluble in both the solvents of choice 

for the screening (methanol and water). Since it is a homogeneous catalyst the reaction course 

can be checked by measuring the fluorescence of the solution. 
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A screening of various CSA concentrations was performed in order to find the amount to be 

used as comparison. Reactions were carried out at 37 °C in methanol, under mechanical 

agitation in plastic Eppendorf tubes, in a volume of 0.3 mL and with a FRET probe (F-APN6) 

concentration equal to 10 µM. CSA amount is given both as molar concentration and as 

number of equivalents with respect to the FRET probe. Indeed, when solid catalysts are used, 

the molar concentration cannot be used to describe their quantity, while the number of acidic 

sites can be calculated and related to the weight and composition of the solid. Thus, it appears 

an interesting information to define CSA concentration also as number of equivalents with 

respect to the substrate, although this may seem unusual. 

At given time, aliquots of 30 µL were taken, diluted ten times with water and analysed with a 

spectrofluorometer (final concentration of the probe = 1 µM). The fluorescence values 

obtained were compared to those on an equimolar solution of TAMRA and BHQ treated the 

same way. Figure 35 shows the CSA concentration dependence on the hydrolysis of F-APN6. 

With a CSA concentration of 0.1 M (10K equivalents), the hydrolysis is almost immediate, while 

at 10 mM, almost 50% of hydrolysis is reached after three hours. This last may be too slow to 

serve as comparison, while the in the first case is way too fast. For this reason, a 50 mM CSA 

solution (5K equivalents), was chosen as the one to relate to. 

Figure 35. Graph of the hydrolysis of F-APN6 in MeOH in the presence of different amount of camphor 

sulfonic acid. 

1.2.2 Identification of the co-solvent for tests in aqueous media 

As mentioned in the first section of this chapter, the hydrophobicity of the FRET probes is likely 

to cause solubility problems even at 10 µM concentration. To avoid such issue, the presence 

of a co-solvent is required for tests in water and in PBS. The test of possible co-solvents was 
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done using CSA (50 mM) as acid promoter. Reactions were carried out using F-APNM5 as 

substrate (10 µM) in different combinations of water/5% co-solvent, at 37 °C for one hour. At 

this point, aliquots were taken, diluted ten times and the emission of fluorescence was 

measured. Hydrolysis was calculated by comparing the fluorescence given by the reaction 

mixtures to that of an equimolar solution of TAMRA and BHQ treated the same way. 

Results are shown in Table 4. In the first line the percentage of hydrolysis of F-APNM5 in 

methanol (37 °C, 1h) is given as comparison (75%). 

    

Solvent: MeOH Hydrolysis (%) 75% 

 
Solvent: ultrapure water  

Co-solvent: Hydrolysis (%) Co-solvent: Hydrolysis (%) 

DMSO (5%) 40 CDX(2) (5wt%) 40 

MeOH (5%) 45 CDX (10wt%) 33 

BSA(1) (5wt%) 25 CDX (5%wt) + PBS (5%) 33 

(1) BSA = Bovine Serum Albumine 
(2) CDX = β-Cyclodextrin 

Table 4. Screening of possible co-solvents. Percentage of hydrolysis is calculated from fluorescence 

measured after 1h at 37 °C and normalised to the fluorescence given by an equimolar solution of TAMRA 

and BHQ treated in the same conditions. 

Organic co-solvents DMSO and MeOH showed 40% and 45% hydrolysis respectively. Bovine 

serum albumin was less performant (25% hydrolysis), while β-cyclodextrin used in different 

percentage showed hydrolysis between 33% and 40%. As expected, the yield was much lower 

than that obtained in 100% organic solvent methanol (75%). However, MeOH was chosen as 

co-solvent since it showed the higher degree of hydrolysis and it modifies only marginally the 

reaction medium. 

1.2.3 Setup of catalyst’s screening general conditions 

Once a control catalyst was found and tested and the best mixture water/co-solvent was 

chosen, the following points regarding the set-up of the acid catalysts screening were 

addressed. 

• Concentration of the FRET probe and reaction volume. A concentration of 10 µM of 

the FRET probe was chosen. This concentration allows to easily prepare the 1 µM 

aliquot sample for the spectrophotometer with a dilution of ten times. Moreover, the 
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reaction solution is sufficiently coloured so that appearance of fluorescence can be 

spotted by human eye if the sample is put under UV light. The concentration stock 

solutions of FRET probe in DMSO is between 1 and 2 mM, thereby -with a dilution of 

around 100 times- the final DMSO content in the reaction mixture is less than 2%. The 

volume of the reaction used for the previous test of CSA (0.3 mL) was enough to have 

good manipulation of the reaction vials so it was kept all along the screening. 

• Concentration of the catalyst. As previously mentioned, the concentration of the acid 

was chosen according to the profile obtained testing different concentration on the 

comparison control CSA. For homogeneous catalysts such as CSA, the concentration is 

50 mM. For solid catalysts, this amount corresponds to 5000 equivalents of protons, 

the amount of catalyst will be calculated with respect to the distribution of active acidic 

sites. Sometimes it was not possible to know the exact composition of the 

heterogeneous catalyst and so an amount of 10 mg was used. 

• Reaction monitoring (homogeneous catalysts). The reaction conditions are applied on 

the positive control (10 µM solution of TAMRA and BHQ), on the comparison control 

(10 µM FRET probe and 0.05 M CSA) and on the catalysts subjected to screening (10 µM 

FRET probe and 5000 eq. of catalyst). Aliquots of 35 µL were taken from all the samples 

and diluted ten times with water. 300 µL of the obtained solutions were transferred to 

a 96-well plate (two replicates of 150 µL each) and fluorescence was measured with a 

spectrofluorometer. Obtained values are normalized to the fluorescence of the 

positive control and the efficiency of the catalysts is compared to the one of CSA. 

• Reaction monitoring (heterogeneous catalysts). There are three possible scenarios 

when using heterogeneous catalysts, which impact the monitoring procedures. They 

will be described in the following paragraph. 

1.2.4 Heterogeneous catalysts: reaction monitoring 

As anticipated, the screening revealed that many solid catalysts are adsorbent: they act by 

sorption of the hydrophobic substrate in a non-specific way, without releasing it.67 As a 

consequence, there can be three possible case scenario when an heterogeneous catalyst is 

tested. Each scenario requires a different approach for the monitoring of the reaction. 

• In the first case, the catalyst is not adsorbent and both the FRET probe and the eventual 

products remain in solution. The hydrolysis could be checked with a 
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spectrofluorometer as in the case of homogeneous catalysts, but the presence of solid 

particles should be considered in the preparation of the sample for 

spectrophotometer. Hence, the aliquots can be either filtrated and then diluted, either 

centrifugated and the supernatant is taken and diluted. 

• In the second case, the catalyst adsorbs completely the probe without releasing it. 

Given the variety of catalysts tested, from powders to gels, from clays to polymeric 

beads, from transparent to coloured, the monitoring of the reaction was qualitative. 

The reaction vial was put under a UV source and the eventual fluorescence of the 

polymer given by the hydrolysed FRET-acetal was evaluated by comparison with the 

fluorescence emitted by the same catalyst soaked with an equimolar amount of 

TAMRA and BHQ. This qualitative method was accurate enough for the screenings. 

Once one or more catalysts were selected, an effort was put to find a quantitative or 

semi-quantitative way to analyse the efficiency of the catalysts (section 2.5, page 96). 

• The third case is a mix of the previous two: the catalyst adsorbs only partially the probe. 

In this case, both the monitoring methods are applied and reaction outcomes are 

interpreted accordingly. 

Once every aspect of the catalyst’s screening was analysed, we proceed with the identification 

of a hydrophobic and a hydrophilic solid catalysts which fulfil our requirements. Section 2 of 

this chapter describes the route which led to the identification of a heterogeneous catalyst 

with a hydrophobic matrix, while section 3 is dedicated to the development of the hydrophilic 

solid catalyst in collaboration with the Institute of Material Science. Ultimately, in section 4 we 

dealt with a more accurate investigation of the core acidity of the selected catalysts.  
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2. IDENTIFICATION OF A HYDROPHOBIC HETEROGENEOUS ACID 

CATALYST 

The first three sections of this chapter are devoted to the screening of homogenous and 

heterogeneous catalysts (both commercial and synthetized in laboratory). For a 

comprehensive table of all the catalyst screened, see Appendix A (page 247). The following 

sections focus on i) the adsorbing properties of selected catalysts; ii) the efforts to quantify 

the hydrolysis in adsorbent solid catalysts; iii) the deeper investigation of the selected catalyst 

(pre-treatment and different forms); iv) the test of the selected hydrophobic catalyst with the 

hydrophilic acetal PEGAM5. 

2.1 SCREENING OF HOMOGENEOUS CATALYSTS 

The first homogeneous catalysts were tested in the early stage of the project only with the 

parent acetal probe F-APN6 (Table 5, entries 1-11), while the latter where tested also with F-

APNM5 (Table 5, entries 12-15). Their performance was compared to that of CSA in the chosen 

solvents (Table 5, entries 0a, 0b). Reactions were conducted in the conditions settled 

previously. As a reminder: [substrate] = 10 µM, [catalyst] = 0.05 M, T = 37 °C, V = 0.3 mL, solvent 

= methanol or water+5%MeOH or PBS+5%MeOH or plasma. Hydrolysis was monitored by 

measuring the fluorescence of the solution. 

Table 5 (next page) shows the results obtained after 3 hours. For the sake of clarity and fast 

visualization of such an amount of data, the results are presented in a simple way. As 

elucidated in Figure 36a, the symbol used in the table is the graphical depiction of three 

separate information: (i) the degree of hydrolysis at 3 hours (colour of the sphere), (ii) the 

interaction of the FRET probe with the catalyst (shape of the sphere), (iii) the pH value of the 

aqueous solutions after addition of the catalyst, measured with pH paper (colour of the vertical 

bar). 

The starting pH values are: pH ≈ 6,5 for ultrapure water and pH = 7,4 for PBS and plasma. Ionic 

exchange with the catalyst can modify the proton initial concentration. Indeed, an acidification 

of the reaction media was expected for all the tested homogeneous strong acid catalysts. 

Ideally, the perfect catalyst would be represented by the symbols in Figure 36b. Beside the 

kind of interaction with the probe, we look for a catalyst that hydrolyses the acetal (green 

sphere = good hydrolysis) without affecting the pH of the solvent (green bar: neutral pH).  
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Figure 36. a) Legend of the symbol used to describe the efficiency of a catalyst, its interaction with the 

FRET probe and with the proton concentration of the solvent. b) Representation of the wanted reaction 

outcome. 

Entry Catalyst FRET probe 

Solvent 

MeOH Water PBS Plasma 

0a 
CSA 

F-APN6 
 

   

0b F-APNM5 
 

   

1 AlCl3 F-APN6 
 

X X X 

2 CeCl3/NaI F-APN6 
 

X X X 

3 CAN(1) F-APN6 
 

X X X 

4 CuCl2 F-APN6 
 

X X X 

5 FeBr3 F-APN6 
 

X X X 

6 FeCl3 F-APN6 
 

X X X 

7 ZnBr2 F-APN6 
 

X X X 

8 Zn(OTf)3 F-APN6 
 

X X X 

9 Sc(OTf)3 F-APN6 
 

X X X 

10 In(OTf)3 F-APN6 
 

X X X 

11 Yt(OTf)3 F-APN6 
 

X X X 

12 
PAASA(2) 

F-APN6 
 

  

X 

13 F-APNM5 
 

  

X 

14 
PAcMA(3) 

F-APN6 
 

X X X 

15 F-APNM5 
 

 

X X 

(1) CAN = Cerium Ammonium Nitrate;  
(2) PAASA = Poly(2-acrylamido-2-methyl-1-propanesulfonic acid); 
(3) PAcMA = Poly(acrylic acid-co-maleic acid) 

Table 5. Screening of homogeneous acidic catalysts. Reactions were monitored after 3 hours. pH value 

is determined with a universal indicator a few minutes after the addition of the catalyst, there are no 

changes in pH after 3 hours. “X” is for “not tested”. 

Shape: interaction 
with the catalyst

Color: hydrolysis 

Bar color: pH of the solvent 
after catalyst addition

Acidic pHNeutral pH

- Non-adsorbent solid catalyst
- Homogeneous catalyst

- Adsorbent solid catalyst

No hydrolysis

Week hydrolysis (<25%)

Good/very good hydrolysis

a) b)
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Comparison control homogeneous acid CSA (entries 0a, 0b) showed very good hydrolysis in 

methanol for both the acetals F-APN6 and F-APNM5, as previously observed (section 1.2.1 of 

this chapter). Clearly, when the solvent was shifted to aqueous (water, PBS) the proton 

concentration was affected (acidic pH, red bar), the performance though was not the same for 

the two substrates, only F-APNM5 was hydrolysed in such conditions. Evidently, proton 

concentration was not enough high for the more stable F-APN6. When CSA is used in plasma 

it causes the precipitation of the protein content, which lowered also the hydrolysis yield of F-

APNM5, the acetal is probably trapped in the precipitate. 

Regarding all the Lewis acid tested (entries 1-11), none of them showed hydrolysis when the 

reaction was carried in organic solvent methanol, thus their investigation was stopped at this 

stage. 

PAASA (entries 12-13), a commercial linear soluble polymer bearing sulfonic acid as active 

moiety (Figure 37a) showed a very good degree of hydrolysis, slightly better than that of CSA. 

Eventually, it was chosen as acidic motif to be supported on a solid material. Design, synthesis 

and results are presented and discussed on the sections dedicated to the screening of 

synthesised heterogeneous catalysts (Section 2.2.5, page 91) and to the hydrophilic catalysts 

(Section 3, page 116). 

PAcMA (entries 14-15) is a commercial soluble linear polymer bearing acrylic and maleic acid 

functions (Figure 37b). This weak organic acid was able to hydrolyse the acetal F-APNM5 only 

partially. When tested in water, it did not alter the pH of the water solution, unfortunately in 

this case hydrolysis was not achieved as well. 

Figure 37. Chemical structure of a) PAASA and b) PAcMA linear polymers. 

In conclusion, we identified PAASA as acid to be supported on a solid material and, given the 

poor results obtained with almost all the homogeneous catalysts, we decide to focus on 

heterogeneous solid catalysts. 
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2.2 SCREENING OF HETEROGENEOUS CATALYSTS 

Reactions were conducted in the conditions settled previously. As a reminder: [substrate] = 10 

µM, [catalyst] = 0.05 M, T = 37 °C, V = 0.3 mL, solvent = methanol or water+5%MeOH or 

PBS+5%MeOH or plasma. Hydrolysis was monitored according to the interaction of the solid 

solvent with the substrate, as described previously in section 1.2.4. 

2.2.1 Screening of commercial catalysts 

A variety of commercial solid acid catalysts were screened, starting from some well-known 

ionic exchange resins and clays. Some solid Lewis acids were tested, as well as perfluorinated 

resin Nafion NR50 (acidic function: sulfonic acid, Figure 38a) and poly(2-acrylamido-2-methyl-

1-propanesulfonic acid-co-acrylonitrile) (PAASAcAN, Figure 38b). 

Figure 38. Chemical structure of heterogeneous catalysts a) Nafion NR50 and b) PAASAcAN. 

To recall the possible monitoring methods (cf. section 1.2.4, page 71), at this stage of the 

project the fluorescence emitted by the solid is qualitatively evaluated by comparing it with 

the fluorescence emitted by the same solid catalyst soaked with an equal amount of TAMRA 

and BHQ. Thus, for the colour code here used (cf. Figure 36a), a plain green circle means that 

the fluorescence observed under the UV lamp is comparable to that of the positive control, 

while a plain yellow circle stands for a level of fluorescence much lower than that of the positive 

control but still well detectable by human eye. 
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Entry Catalyst FRET probe 

Solvent 

MeOH Water PBS Plasma 

16 
Amberlyst A-15 

F-APN6 
 

  

X 

17 F-APNM5 
 

   

18 Amberlyte  

CG-50 

F-APN6 
 

X X X 

19 F-APNM5 
 

X X X 

20 Dowex 

50WX8-200 

F-APN6 
 

X X X 

21 F-APNM5 
 

  

X 

22 Montmorillonite 

KSF 

F-APN6 
 

X X X 

23 F-APNM5 
 

X X X 

24 Montmorillonite 

K10 

F-APN6 
 

X X X 

25 F-APNM5 
 

X X X 

26 Ti(IV) silicate F-APN6 
 

X X X 

27 Nb2O5 F-APN6 
 

X X X 

28 
Nafion NR-50 

F-APN6 
 

  

X 

29 F-APNM5 
 

   

30 
PAASAcAN(1) 

F-APN6 
 

 

X X 

31 F-APNM5 
 

  

X 

(1) PAASAcAN = Poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) 

 

Table 6. Screening of commercial heterogeneous catalysts. “X” stands for “not tested”. 

Heterogeneous catalysts Amberlyte, Montmorillonite KSF, Montmorillonite K10, Titanium(VI) 

silicalite and Niobium Oxide (Table 6, entries 18, 19, 22-27) do not trigger hydrolysis in the 

applied conditions. Dowex 50WX8-200 (entries 20, 21) and PAASAcAN (entries 30, 31) have 

somewhat good results in methanol, especially with the F-APNM5 substrate but they are not 

strong enough in aqueous solvents.  

Amberlyst A15 (entries 16, 17) and Nafion NR50 (entries 28, 29) have similar profiles. They 

show very good hydrolysis in methanol as well as in water and PBS: fluorescence of the solid 

is comparable to that of the corresponding positive control for both catalysts. Regarding the 

value of pH in solution, it was observed that Nafion NR50 and Amberlyst A-15 do not change 

the pH of ultrapure water, while buffered PBS and plasma solutions were acidified. We 
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theorized that the sulfonic acid motifs undergo cationic exchange with the metal cations 

present in solution, generating a sulfonate motif and releasing H+ in solution (Figure 39). 

Figure 39. Representation of the cationic exchange between the proton of the sulfonic acid and metal 

ion present in the buffered solutions. 

This could explain the observed acidification of PBS and plasma and the precipitation of the 

protein content observed in plasma. We also hypothesized that the massive precipitation of 

proteins in plasma obstructs the progress of hydrolysis by preventing the acetal to come in 

contact with the catalyst. According to our hypothesis, the absence of metal ions in ultrapure 

water (“mQ water”) prevents the cationic exchange, resulting in unchanged proton 

concentration in solution. This applies to all the heterogeneous catalysts herein tested.  

The results obtained till this point suggest that the sulfonic acid (present in CSA, PAASA, 

PAAcMA, Amberlyst A-15 and Nafion NR50) is the most efficient acid among those tested, but 

in order to be useful it is important to find a way to avoid acidification of the buffered media. 

This work will be described in section 2.6 (page 104). In the next three paragraphs we describe 

the screening of synthetic catalysts. We divided the paragraphs according to the nature and 

origin of the catalysts. 

2.2.2 Screening of synthetic catalysts: modified silica 

Many examples of easily-prepared supported acids are present in literature, since the use of 

heterogenous catalysts in organic synthesis has many advantages in terms of sustainability.68 

They include examples of adsorption of the acid into a porous material, functionalization 

through weak bonding (hydrogen bond, Wan der Waals interactions), strong ionic interactions 

and covalent bonding. The last category is the finest for this project since the release of the 

active species in salt solutions (PBS and plasma) must be avoided. 

PBS or plasma

Nafion NR50
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Among the described synthetic supported acids, four procedures have been selected. All of 

them are functionalization of silica (SiO2) achieved in one step. The acids are both Brönsted 

and Lewis acids: phosphomolybdic acid (H3PMo12O40, PMA),69 sulfuric acid (H2SO4),70,71 

perchloric acid (HClO4)72–74 and boron trifluoride (BF3).75 Their preparation is described in 

chapter VI (Experimental procedures, section 1.8.1, page 209). 

The following table shows the results obtained with FRET probe F-APN6 as substrate; the 

screening was performed before the completion of F-APNM5 synthesis. 

 

Entry Catalyst  

Solvent 

MeOH Water PBS Plasma 

0a CSA  
 

   

32 PMA/SiO2 fresh(1) 
 

X X X 

33 HClO4/SiO2 fresh(1) 
 

X X X 

34 

BF3/SiO2 

fresh(1) 
 

X X X 

35 washed(2) 
 

X X X 

36 washing sol. (3) 
 

X X X 

37 

H2SO4/SiO2 

fresh(1) 
 

X X X 

38 washed(2) 
 

X X X 

39 washing sol. (3) 
 

X X X 

(1) “fresh” = the catalyst is used without any treatment after its synthesis; 
(2) “washed” = the catalyst is washed in methanol/water mixture 9:1 for 1 hour, separated from the 

washing solution, let to dry and tested; 
(3) “washing sol.” = the FRET probe is added to the washing solution recovered from the above-

mentioned washing; 

 

Table 7. Screening of functionalized silica with FRET probe F-APN6. PMA/SiO2 (entry 34) and H2SO4/SiO2 

(entry 37) gave a good level of hydrolysis, unfortunately this was due to leaking of the acid from the 

support material, as proved by the results obtained after catalyst’s washing (entries 35, 36, 38, 39). “X” is 

for “not tested”. 

PMA/SiO2 and HClO4/SiO2 did not work in methanol (entries 32-33), while BF3/SiO2 and 

H2SO4/SiO2 showed very good hydrolysis in the same solvent, 48% and 83% respectively at t = 

4 hours (green circle, entries 34, 37). For those two, it was investigated if the hydrolysis came 

from the acidity of the catalyst itself or if it was due to a leak of the acid from the support. The 

catalysts were washed with a 9:1 methanol/water mixture (“washing solution”) for 1 hour, 

separated from the washing solution, let to dry and tested again in methanol to see if their 
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performance didn’t change after washing (entries 36, 39). Also, the recovered washing 

solutions were tested in the presence of the substrate only, in order to see if they were 

acidified by interaction with the supported acid (entries 35, 38). The washed supported silica 

showed less hydrolytic activity than the original catalyst (cf. entries 35 vs 34, 38 vs 37), while 

the washing solution were clearly enough acidified during the washing treatment to deliver 

the hydrolysis of the acetal: 23% and 60% after 4 hours for BF3/SiO2 and H2SO4/SiO2 washing 

solutions respectively (entries 36, 39). 

Such acidification could be due to i) cationic exchange with the washing solution or ii) release 

of the acid caused by an incomplete reaction with silica. At this point of the screening we 

decided to not investigate the nature of such phenomenon and we pursued with the test of 

other synthetic catalysts. 

2.2.3 Screening of synthetic catalysts from IS2M 

As previously mentioned, the collaboration with Dr. Jean-Michel Becht from the Institute of 

Materials in Mulhouse (IS2M, Université Haute-Alsace) allowed us to test three acid supported 

catalysts of different nature prepared in the groups of Dr. Camelia Ghimbeu (HASG-400-ox 

and Lignine-400) and Prof. Jocelyne Brendle (ALA014, Table 8). 

  

Catalyst Description 

HASG-400-ox Obtained by oxidation treatment of HASG-400 (porous commercial graphite) 

using concentrated nitric acid (HNO3) at 60°C for 1 hour, then at 100°C for 30 

minutes.76 

Lignine-400 Lignin alkali (low sulphonate content) was pre-carbonized at 400 ° C for 1 h 

under Argon. Heating at low temperature (400 ° C) ensures the decomposition 

of lignin to obtain a carbon rich in oxygen and sulfur compounds. 

ALA014 Information not available. Aspect: white powder. 

Table 8. Heterogeneous catalysts provided by Dr. Becht (IS2M, Université Haute-Alsace, Mulhouse). 

Results of the screening are shown in Table 9. As comparison, also the commercial HASG-400 

was tested. All the catalysts are adsorbent and unfortunately almost all of them were not able 

to trigger the hydrolysis of both F-APN6 and F-APNM5 acetals. Only ALA014 showed some 

hydrolysis when the reaction was carried out in methanol with the less stable F-APNM5. 
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Unfortunately, no fluorescence was detected when the reaction was performed in aqueous 

solvents (water and PBS); the pH of the solution was maintained neutral. 

Entry Catalyst FRET probe 

Solvent 

MeOH Water PBS Plasma 

0a 
CSA 

F-APN6 
 

   

0b F-APNM5 
 

   

40 
HASG-400 

F-APN6 
 

X X X 

41 F-APNM5 
 

X X X 

42 
HASG-400-ox 

F-APN6 
 

X X X 

43 F-APNM5 
 

X X X 

44 
ALA014 

F-APN6 
 

X X X 

45 F-APNM5 
 

  

X 

46 

47 
Lignine 400 

F-APN6 
 

X X X 

F-APNM5 
 

X X X 
 

Table 9. Screening of synthetic acid catalysts provided by IS2M. 

2.2.4 Screening of synthetic catalysts: modified Merrifield resin 

Inspired by the good results obtained with Amberlyst A-15, a polystyrene cross-linked polymer 

functionalized with aryl sulfonic acids, we used Merrifield resin as base for functionalization. 

MR is a polystyrene cross-linked with 4-vinylbenzyl chloride, probably the most frequently 

employed resin in  solid-phase synthesis.77,78 

The functionalization was performed by Dr. Sébastien Dautrey in our laboratory, it is described 

in the experimental section (section 1.8.2, page 209) and illustrated in Figure 40. 

Figure 40. Representation of the modification of Merrifield resin. MR = Merrifield resin; MR-acid = 

Merrifield resin functionalized with acid. 
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The acid chosen are: sulfuric acid (H2SO4, Figure 41a), phosphoric acid (H3PO4, Figure 41b), 

citric acid Figure 41c) and the two linear sulfonic acid polymers PAASA and PAASAcAN (Figure 

41d). The first three are ionically bounded through one of the acidic protons, while the other(s) 

is let free for the hydrolysis of the acetal. PAASA and PAASAcAN linear polymers are supposed 

to be ionically bounded to the resin through some of the sulfonic acid moieties, leaving a major 

part of them free to interact with the acetal substrate. The following table shows the results 

obtained by testing them in methanol and water. 

Figure 41. Chemical structures of Merrifield resin modified with a) H2SO4, b) H3PO4, c) citric acid, d) 

PAASA and PAASAcAN. 

Entry Catalyst FRET probe 

Solvent 

MeOH Water PBS Plasma 

0a 
CSA 

F-APN6 
 

   

0b F-APNM5 
 

   

48 
MR-PAASA(1) 

F-APN6 
 

 

X X 

49 F-APNM5 
 

 

X X 

50 
MR-PAASAcAN(2) 

F-APN6 
 

 

X X 

51 F-APNM5 
 

 

X X 

52 
MR-H3PO4 

F-APN6 
 

 

X X 

53 F-APNM5 
 

 

X X 

54 
MR-H2SO4 

F-APN6 
 

 

X X 

55 F-APNM5 
 

 

X X 

56 
MR-Citric Acid 

F-APN6 
 

 

X X 

57 F-APNM5 
 

 

X X 

MR = Merrifield resin; (1) PAASA = Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) 
(2) PAASAcAN = Poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) 

Table 10. Screening of modified Merrifield resins. 
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None of the modified resins worked, even if it is worthy to mention that MR-PAASA promoted 

some degree of hydrolysis in methanol with F-APNM5 as substrate (entry 49), confirming than 

sulfonic acids are the most performing acidic agents for the hydrolysis of these cyclic acetals. 

2.3 SCREENING’S RESULTS: SYNOPSIS 

Table 11 gathers the homogeneous and heterogeneous catalysts among those screened that 

showed promising activity in both the aqueous solvents (water+5%MeOH and PBS+5%MeOH). 

Interestingly, they all have in common the sulfonic acid as acidic function. 

   
 

Entry Catalyst FRET probe 

Solvent 

MeOH Water PBS Plasma 

0a 
CSA 

F-APN6 
 

   

0b F-APNM5 
 

   

12 
PAASA 

F-APN6 
 

  

X 

13 F-APNM5 
 

  

X 

16 
Amberlyst A-15 

F-APN6 
 

  

X 

17 F-APNM5 
 

   

28 

29 
Nafion NR50 

F-APN6 
 

  

X 

F-APNM5 
 

   

 

Table 11. Recall of the acidic catalysts who showed good hydrolysis in water and PBS. 

The soluble linear polymer PAASA showed a similar outcome to CSA. They both discriminated 

between the cleavability of the two substrates tested, with F-APNM5 being hydrolysed, while 

F-APN6 remained intact.  

Amberlyst A-15 and Nafion NR50 showed a good degree of hydrolysis for both the acetals. As 

a reminder, the hydrolysis is related to the fluorescence emission. In the case of Nafion NR50 

and Amberlyst A-15, the fluorescence emitted by the solid is comparable to that emitted by 

the corresponding catalyst soaked with an equimolar amount of TAMRA and BHQ. 

All the catalysts listed in Table 11 presented the same drawback when tested in buffered PBS 

and plasma: they caused acidification of the media, which we supposed was due to cationic 

exchange (cf. paragraph 2.2.1, page 85). 
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We addressed this issue in different ways according to the nature of the catalyst. The 

homogeneous ones could be bind to a solid support (cf. Merrifield resins described above and 

section 3.2.1, page 117), while the heterogeneous ones were object or further studies, exposed 

in the following sections. 

• Section 2.4 will focus on the investigation of the adsorbance rate of Nafion NR50 and 

Amberlyst A-15, in order to identify the catalyst with faster adsorption. 

• Section 2.5 will investigate three different approaches for the quantification of the 

fluorescence. Indeed, at this point of our work, we wanted to find a method to quantify 

the degree of hydrolysis more precise than the qualitative check of fluorescence 

appearance under UV lamp. 

• In section 2.6 we addressed the Nafion cationic exchange in solution which cause the 

pH of PBS and plasma to lower (cf. section 2.2.1, page 85). This is probably the most 

important investigation described in this chapter because it addresses the main 

challenge arising from this project, related to the preservation of the catalyst acidity in 

buffered media. 

• Sections 2.7 and 2.8 are dedicated to the investigation of other commercially available 

forms of Nafion and on the test with the hydrophilic probe PEGAM5, respectively. 

2.4. INVESTIGATION OF THE ADSORBANCE RATE OF NAFION NR50 AND AMBERLYST A-15 

As explained in the introduction (chapter I.2, page 10) for a first in vivo proof of concept it is 

essential to be able to detect the fluorescence of the probe coming from the acid abiotic 

material. For this reason, the rate of substrate adsorbance of Nafion NR50 and Amberlyst A-

15 was compared. 

Table 12 shows the chemical structures of the two ion-exchanging resins and compares some 

characteristics such as surface area, pore volume and capacity.79 
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  Amberlyst A-15 Nafion NR50 

Structure 

 

PS + 20% DVB  

Surface area 0.35 m2/g 0.02 m2/g 

Pore volume 4.8 mL/g non porous 

Capacity 120 meq(H+)/g 0.9 meq(H+)/g 

PS = polystyrene; DVB = divinylbenzene 

Table 12. Comparison between Amberlyst A-15 and Nafion NR50. 

To quantify the adsorption, a 10 µm solution of FRET-acetal probe F-APNM5 and an equimolar 

solution of TAMRA and BHQ (0.3 mL) were treated with 1 bead of the catalyst at 37 °C. The 

coloured solutions allowed to follow the adsorbance phenomenon in real time: the solution 

turned from violet to transparent and the transparent Nafion NR50 beads became coloured. 

The solution of TAMRA and BHQ allowed to quantify the adsorption by measuring the 

fluorescence of the solution, which decreased over time, as the chemicals were adsorbed. At 

given times, aliquots of the solutions were taken, diluted with water (final concentration: 1 µM) 

and analysed at the spectrophotometer. The fluorescence emission was related to that of a 1 

µM solution of TAMRA and BHQ in the same solvent, in order to obtain values as percentage 

of the initial quantity (Figure 42a). Pictures of the reaction vials were taken before the catalyst 

addition, at t = 2 minutes and at t = 3 hours under artificial light and at t = 3 hours under UV 

light (Figure 42b). 
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Figure 42. a) Adsorption profiles of Nafion NR50 and Amberlyst A-15 by means of fluorescence emitted 

by TAMRA remained in solution. b) Pictures of the samples taken at t = 0, t = 2 minutes and t = 3 hours 

under artificial light and at t = 3 hours under UV light (using a laboratory UV lamp). The vials are identified 

by coloured dots. Blue and light blue dots identify Amberlyst A15 samples, red and orange dots identify 

Nafion NR50 samples. 

According to the profile obtained and the real-time monitoring of the coloured solutions, 

Nafion NR50 completely adsorb the FRET probe, TAMRA and BHQ in less than 1.5 hours, while 

Amberlyst A15 do not show complete adsorption even after 3 hours. 

Pictures taken under artificial and UV light at t = 3 hours revealed that: 

• BLUE DOT. Solution of TAMRA and BHQ in presence of Amberlyst A-15 is still coloured 

and fluorescent: the adsorption was not complete; 

• LIGHT BLUE DOT. Solution of F-APNM5 in presence of Amberlyst A-15 is still coloured 

(the adsorption was not complete) and little fluorescence is emitted by the bead (the 

part of FRET acetal adsorbed is hydrolysed); 

• RED DOT. Solution of TAMRA and BHQ in presence of Nafion is clear, the bead is 

coloured and fluorescent: all the TAMRA and BHQ were adsorbed; 
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• ORANGE DOT. Solution of F-APNM5 in presence of Nafion NR50 is transparent and the 

bead is coloured and fluorescent: the acetal was completely adsorbed and hydrolysed 

inside the bead. 

Given the results obtained, Nafion NR50 was the catalyst of choice and it was object of further 

investigations listed above (cf. page 93). In particular, in the next section we investigate three 

methods for the quantification of hydrolysis in solid adsorbent catalysts, with a focus on 

Nafion NR50. Note that from now on in the text, Nafion NR50 will also be referred simply as 

Nafion, and Amberlyst A-15 as Amberlyst, unless otherwise specified. 

2.5 APPROACHES TOWARDS THE QUANTIFICATION OF HYDROLYSIS IN SOLID ADSORBENT 

CATALYSTS 

During the screening, given the variety of catalyst’s forms and nature, the hydrolysis was 

qualitatively assessed trough the spotting of fluorescence under UV light. The pictures showed 

in the previous paragraph (Figure 42b) are an example of what we observed when analysing 

the catalysts under UV lamp. This method revealed to be fast and accurate enough to 

distinguish among a total of 60 reactions involving adsorbent heterogenous catalysts (see 

Appendix A for a comprehensive table of all the catalysts’ screening, page 247). At this stage, 

being the investigation focused only on Nafion, it would be suitable to develop a method for 

the quantification of the hydrolysis in solid Nafion beads. A total of three approaches were 

studied and they are presented in the following sections. 

2.5.1 First quantitative hydrolysis evaluation method: wash out of reaction prodcts 

A first attempt to quantify the yield of the reaction was to try to extract the products of the 

hydrolysis from the polymer at a given time. Their release in solution would allow the 

quantification trough fluorescence measurement.  

Two beads of the polymer were added to a 10 µM solution of the FRET probe F-APNM5 and of 

the mixture TAMRA+BHQ in methanol. The reaction vials were left at 37 °C under mechanical 

agitation for 3 hours. Within this time the bead turned fluorescent, as in the previous 

experiment. Then the beads were separated from the solvent and put in a 1 mL mixture 1:1 of 

DMSO and HCl (3 M aq.) under agitation at room temperature. This mixture allowed the slow 

release of the chemicals in solution, the colour of the solvent turned to light violet and emits 

fluorescence. After 24 hours, an aliquot of the solvent mixture was taken, diluted and  analysed 
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at the spectrophotometer. Values obtained are related to those of an equimolar mixture of 

TAMRA and BHQ in the same solvent mixture. 

The two percentage values obtained indicate how much of TAMRA-NH2 and TAMRA-NHCO-

diol (product of the hydrolysis) was released within 24 hours. Assuming that the non-specific 

interaction between the polymer and the two forms of TAMRA is almost the same, the amount 

of the two chemicals in solution can be compared to determine the yield of the reaction, 

according to the following equation: 

𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝐻𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠 (%) =
% 𝑜𝑓 𝑻𝑨𝑴𝑹𝑨 − 𝑵𝑯𝑪𝑶 − 𝒅𝒊𝒐𝒍 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑏𝑒𝑎𝑑

% 𝑜𝑓 𝑻𝑨𝑴𝑹𝑨 − 𝑵𝑯𝟐 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑏𝑒𝑎𝑑
∗ 100 

This method was tested on commercial Nafion NR50 and Amberlyst 15. Figure 43 shows 

picture taken under UV light at t = 0 and t = 5 h of the release process. Fluorescence was 

measured after 24 hours and the percentages of the chemical released are reported on 

Table 13. 

Figure 43. Pictures of Nafion NR50 and Amberlyst A15 in the releasing solvent mixture at t = 0 (under 

artificial light) and at t = 5 hours (under artificial and UV light). Vials are identified by coloured dots 

according to the legend. 

  

Legend
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A-15 (F-APNM5)NR50 (F-APNM5)
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Entry Catalyst Probe(s) Release (%) Ratio 

1 
Amberlyst A15 

TAMRA+BHQ 21,64 
0,987 

2 F-APNM5 21,36 

3 
Nafion NR50 

TAMRA+BHQ 34,84 
1,57 

4 F-APNM5 54,69 

Table 13. Fluorescence values measured after 24 hours are reported as percentage of the positive 

control (equimolar solution of TAMRA and BHQ in 1 mL of the releasing solvent mixture. Ratio between 

the values of TAMRA+BHQ and F-APNM5 are reported. 

TAMRA-NH2 and TAMRA-NHCO-diol are released from Amberlyst almost at the same rate 

(~21% of releasing after 24 hours in DMSO/HCl). 35% of TAMRA-NH2 was extracted from 

Nafion after the same time, while TAMRA-NHCO-diol released was 55% (1.57 times more than 

TAMRA-NH2). These discordant values suggested that our hypothesis about the similar rate of 

extraction between the two chemicals was probably incorrect. According to the ratio between 

the fluorescence values (= 1.57) TAMRA-NHCO-diol is released faster than TAMRA-NH2. 

Therefore, a comparison between the amount of TAMRA-NH2 released and the amount of 

TAMRA-NHCO-diol released under the same conditions cannot be used to quantify the 

hydrolysis. Moreover, this approach takes too much time and requires removing the bead 

from plasma at a given time, so the reaction can’t be monitored over a period with multiple 

checks. 

Consequently, it was endeavored to establish the quantification of hydrolysis by resorting to 

imaging techniques, which would allow a simpler monitoring of the reaction. 

2.5.2 Second quantitative hydrolysis evaluation method: imaging with UV 

transilluminator 

UV transilluminators are used in life-science laboratories to spot proteins and nucleic acids in 

agarose and polyacrylamide gels stained with a fluorescent dye after electrophoresis. The UV 

transilluminator works by emitting high levels of UV radiation generated by a lamp through 

the viewing surface. An image is registered which can be analysed with a software to quantify 

the intensity of fluorescence spots. 

Our hypothesis is that if the fluorescence intensity of each bead is proportional to the amount 

of TARMA soaked in, it would be possible to build a calibration curve in function of the 

fluorophore concentration. The calibration curve shall be used to extrapolate the yield of the 
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hydrolysis when analysing the Nafion beads used in the reaction with the UV transilluminator 

under the same conditions. 

Several Nafion beads were soaked with 0.3 mL solutions of TAMRA and BHQ at different 

concentration, ranging from 1 µM to 10 µM (Table 14). The bead soaked with 0.3 mL of 10 µM 

TAMRA+BHQ will emit a fluorescence signal corresponding to a theoretical conversion of 

100%, while the bead soaked with the 2.5 µM solution represents a reaction yield of 25%. 

    

Entry Volume [TAMRA+BHQ] Theoretical conversion 

1 0.3 mL // 0% 

2 0.3 mL 1 µM 10% 

3 0.3 mL 2.5 µM 25% 

4 0.3 mL 5 µM 50% 

5 0.3 mL 7.5 µM 75% 

6 0.3 mL 10 µM 100% 

Table 14. List of solutions used to build the calibration curve. For each solution, a Nafion bead was added 

and let to soak all the TAMRA and BHQ (37 °C, agitation, 15 minutes), then analysed. 

The beads were placed on the viewing surface of the transilluminator and several snapshot 

were taken. An example in shown in Figure 44. The fluorescence intensity for each bead is 

measured with a specific software. 

Figure 44. Sample of images taken at the UV transilluminator. Beads are identified by the corresponding 

percentage of conversion. Colour is modified according to the intensity (red = high intensity, blue = low 

intensity). 

0%

25%

75%
50%

100%
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Beads not soaked (0% theoretical conversion) show a little autofluorescence. Beads soaked 

with TAMRA and BHQ (from 25% to 100% theoretical conversion) show increasing emission 

intensity, as expected. 

Various variables were considered when analysing the beads with the transilluminator: 

• Change in intensity within beads.  Nafion beads are not identical one to another. The 

fluorescence intensity for each concentration was measured in triplicates (3 different 

beads). 

• Change in intensity within the bead’s rotation. Since the Nafion beads are not perfectly 

spherical, each bead was analysed in 3 different orientations (the change in intensity 

is indeed very small). 

• Change in intensity within the bead’s position in the viewing surface. Unfortunately, the UV 

radiation emitted is not uniform through the viewing surface of the transilluminator. 

Thus, each probe was photographed in 8 different fixed spots in the trans-illuminated 

surface. Unlike previous cases, here the difference between the intensities for each 

position is remarkable. By using the same fixed spots for each bead, the differences in 

intensity caused by this variable are reduced to the minimum. 

• Change in intensity within time. All the images are taken on the same day within one 

hour to eliminate variations in the lamp emission due to its usage. 

Hence, each point on the calibration curve is the result of the analysis of 72 images. The 

obtained calibration curve is reported in the following figure. 

Figure 45. Calibration curve built with the aid of UV transilluminator. 
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It can be observed that: 

• The curve does not intersect at the origin: a small degree of auto-fluorescence is 

observed for untreated Nafion beads. 

• Even with all the above described efforts to reduce the external errors to the minimum, 

the values of standard deviation for the point corresponding to 75% conversion is way 

to high to consider the calibration curve statistically valid. 

• The calibration curve is not linear after the point corresponding to 50% of conversion 

but it seems to tend to a plateau. This can be attributed to appearance of FRET effect 

due to the increased spatial proximity of BHQ to TAMRA and of two molecules of 

TAMRA.80 

Overall, the first calibration curve obtained with this method is quite good, especially in the 

first part (0% to 50% conversion) which is the range of conversion in which most of the reaction 

outcome would fall. It is, though, susceptible of major improvements, especially regarding the 

values of standard deviation. 

However, this method relies too much on the power of the UV lamp of the transilluminator 

which varies with time. A new calibration curve should be built each time a Nafion bead from 

a reaction has to be analysed. For this reason, we abandoned this method and we turned to a 

more reliable instrument for bioimaging: a Confocal Laser Scanning Microscope. 

2.5.3 Third quantitative hydrolysis evaluation method: imaging with Confocal 

Microscope 

Confocal laser scanning microscopy (CLSM), often shorten as “confocal microscopy”, is an 

optical imaging technique for capturing multiple two-dimensional images at different depths 

in a sample, enabling the reconstruction of three-dimensional structures of the analysed 

object.81,82 Figure 46 illustrates the kind of images that are expected from the scanning of the 

bead at various depths (along z dimension). The objective used applies a 20X magnification, so 

-given the bead’s dimension (diameter ≈ 3 mm)- it is not possible to catch the bead in its 

entirety. The images obtained are just a part of a circle, as represented in the figure. Moreover, 

given the dimension of the solid beads (diameter = ~3 mm, that is ~150 times bigger than a 

mammalian HeLa cell) the confocal microscope cannot record the core of the solid, so we take 

into consideration that information about the core of the catalyst is not available. 
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Figure 46. Confocal laser scanning microscopy applied on Nafion beads. The microscope records images 

of the bead by scanning it at different depths (z dimension). The grey area represent the external part of 

the bead, the core is not scanned by the microscope because of the bead dimension. 

Confocal microscopy is widely used to image cells in biology, but its applications are not limited 

to that.83,84 Here it was used to take images of the Nafion beads soaked with increasing 

concentration of TAMRA+BHQ to build a calibration curve, as in the previous section. A laser 

emitting at 561 nm was used as source if the excitation wavelength and the recording channel 

was set at 58010 nm (570-590). 

In this case, it is very important to fix the photomultiplier intensity (PMI), since the intensity 

emission will be directly related to the amount of TAMRA. The main trouble given by such 

approach is that emission intensities can be recorded on a scale going from 0 (= no emission) 

to a maximum. Above the maximum the signal is saturated. Nafion beads soaked with an 

amount of TAMRA corresponding to 10% of yield will require a certain PMI to see fluorescence; 

this PMI must be applied to all the beads of the calibration. Images of beads with an increasing 

amount of TAMRA will have more and more saturated areas, which will alter the real intensity 

values. Figure 47 shows some of the images obtained. They are coloured according to an 

intensity scale which allows to easily spot the areas which are saturated (in yellow). 

Figure 47. Images of Nafion beads soaked with solutions of TAMRA and BHQ at different concentrations. 

The colour code applied highlights the saturated areas. 
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As expected, images of beads corresponding to 50% and 100% conversion present expanding 

saturated areas. In these cases, ratiometric approaches are usually preferred: a second probe 

emitting at a wavelength different from that of TAMRA should be soaked in the polymer as 

standard and the two emission intensities should be compared. Even if more precise, this 

ratiometric approach would require stopping the reaction and soaking the Nafion bead with 

another chemical in order to quantify the hydrolysis. The introduction of another probe would 

impede to continue the reaction after monitoring the first time. For this reason, a ratiometric 

approach was not investigated. 

2.5.4 Conclusion on quantitative hydrolysis evaluation methods 

We investigated three different methods for the quantification of hydrolysis in solid catalyst. 

First method is based on the release of the hydrolysis product TAMRA-NHCO-diol from the 

solid catalyst into a solution of DMSO/HCl aq. 3M. This method requires very long time for the 

probe to be released (more than 24 hours), the risk of alteration of the results is very high. 

Second method is based on the measure of the fluorescence emitted by the beads with a UV 

transilluminator. The use of this instrument requires the construction of a new calibration 

curve at each analysis. 

Third method involves measuring the fluorescence with confocal microscope. Limitations 

arose from signal saturation would require applying a ratiometric approach which does not fit 

with the possibility of monitoring the reaction multiple times. 

In conclusion, a method for the quantification of hydrolysis conversion happening inside a 

solid material was not found. Nevertheless, the confocal microscope was still used to confirm 

the presence of fluorescence since it is more reliable than the UV lamp, given that the 

excitation laser and the emission channel are specific for TAMRA. 

In the next section we investigate the cationic exchange of Nafion beads in buffered solutions 

and we address the issue of media acidification. 
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2.6 INVESTIGATION OF NAFION NR50 ACIDIFICATION OF BUFFERED MEDIA 

As we previously observed, commercial Nafion acidifies the buffered PBS and plasma solutions 

(cf. section 2.2.1, page 85). Hence, to be considered as candidate for the abiotic hydrolysis in 

biological media, the acidification of the buffered environment must be avoided. 

We previously speculate that such acidification is due to the cationic exchange with metal ions 

present in the media. We report again Figure 39 as a recall. 

Figure 39. Representation of the cationic exchange between the proton of the sulfonic acid and metal 

ion present in the buffered solutions. 

Herein we hypothesize that a smoother cationic exchange pre-treatment could be used to 

neutralize the sulfonic acid moieties of the external layers of the beads, while keeping 

untouched the inner ones. In this way, the FRET probe adsorbed into the bead can still be 

hydrolysed while the cationic exchange with the buffered media is reduced to the minimum. 

A first attempt was done by pre-treating Nafion beads in plasma. A bead was left at 37 °C in 

plasma for enough time to cause the precipitation of the proteins and reach the equilibrium. 

Then the bead was removed from the solution and put in 0.3 mL of fresh plasma, the acetal F-

APNM5 was added (10 µM) and the vial was left at 37 °C for 24 hours. With this pre-treatment 

the reaction media maintained its normal pH (7.4) and no precipitation was observed but the 

Nafion revealed to be completely neutralized since no fluorescence was observed. 

So, we envisaged to pre-treat the beads by washing them with sodium salt solutions, with the 

hope that only surface sulfonic acid motif will exchange protons (H+) for cations (Na+). 

In Figure 48 we illustrate the three cases that will be encountered by applying a washing pre-

treatment. 

PBS or plasma

Nafion NR50
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Figure 48. Representation of possible scenarios of acetal hydrolysis triggered by three different Nafion 

beads: a) commercial or not washed enough, b) partially neutralized (ideal-washing) and c) almost 

completely neutralized (over-washing). 

The washing pre-treatment has to be adjusted to find the balance between the complete 

neutralization of the catalyst (Figure 48c) -whose hydrolytic activity is lowered too much- and 

not enough neutralization (Figure 48a) which, despite showing high hydrolytic activity, leads 

to acidification of plasma. We hope to find the conditions to reach the ideal case illustrated in 

Figure 48b in which a partial neutralization of the acid functions prevents acidification of the 

media while not impeding to trigger the hydrolysis. 

To this end, Nafion beads where washed with different dilutions of i) a saturated sodium 

chloride solution: [NaCl] = 6,57 M; or ii) a PBS solution of composition: [NaCl] = 137 mM, [KCl] 

= 2,7 mM, [Na2HPO4] = 10 mM, [KH2PO4] = 1,8 mM. Dilutions of the mentioned salt solutions 

allowed to have a range of NaCl concentration from 6,57 M to 6,57 µM. 

Three different methods are employed (Figure 49, cf. Experimental procedures, section 3.3.1, 

page 224): 

A. beads were added to 30 mL of the washing solution and let under magnetic stirring at 

room temperature for 18 hours; 

B. 100 mL of the washing solution was used to flush the Nafion beads (1 minute); 

C. the beads were continuously washed in flow at a rate of 4,5 mL/min for a chosen 

amount of time. 
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Figure 49. Schematic representation of the three different methods employed for the pre-treatment of 

Nafion beads. 

The substrate used for the screening was F-APNM5, applying the usual reaction conditions: 

[substrate] = 10 µM; solvent: 0.3 mL; 37 °C. As for the previous screenings, the data are shown 

in a ready-to-catch form, explained in detail in the following figures, along with the ideal 

outcome. 

Figure 50. a) Legend of the symbols used to represent the pH of the reaction media and the hydrolysis 

(= fluorescence) at given times. b) Symbol of the ideal reaction outcome. c) Examples of fluorescence 

emission level detected under UV lamp related to the corresponding symbol. 

The bar colour indicates the pH of the media measured at reaction time t = 3 hours. Starting 

pH of PBS and plasma is 7.4 (dark green bar), while the pH of mQ water (measured with pH 

paper) was around 5. The shift of pH value in solution from the starting one is the most 

important parameter here since we look for a pre-treatment conditions which does not affect 

the proton concentration and, at the same time, maintains the catalyst’s hydrolytic activity. The 
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hydrolysis of F-APNM5 is checked after 3 hours and 24 hours and is depicted by the two 

spheres on the right (first one for t = 3 h, second for t = 24 h). White dotted sphere represents 

the absence of fluorescence, while a fuchsia dotted sphere represents the appearance of 

fluorescence in different degrees according to the size and colour intensity (Figure 50a). 

Pictures of some Nafion beads having different levels of fluorescence emission are showed in 

Figure 50c and related to the corresponding symbol. Ideally the catalyst shows good 

fluorescence within three hours (Figure 50b), but also catalysts showing low fluorescence are 

well accepted if they do not alter the pH of the solvent. 

The following table groups the various pre-treatment tested according to the method used for 

the pre-washing and are organized as follow: 

• Columns on the left give information about the washing solution (water, PBS, NaCl sat.) 

and the dilution of the latter expressed as concentration of NaCl. Ex.: entry 8, Nafion 

beads are washed with a PBS solution diluted 100 times: actual concentration of NaCl 

is 1.37 mM. 

• Columns on the right give information about the outcome of the hydrolysis reaction in 

different solvents (three columns: water, PBS, plasma). 

 

Method A 

 
Washing 

Solution 

 Reaction Solvent 

Entry Dilution - [NaCl] Water PBS Plasma 

1 Water // - // 
  

X 

2 

NaCl sat. 

// - 6.57 M 
  

X 

3 100 - 65.7 mM 
  

X 

4 10K - 657 µM 
  

X 

5 1M - 6.57 µM 
  

X 

6 

PBS 

// - 137 mM 
   

7 10 - 13.7 mM 
   

8 100 - 1.37 mM 
   

9 1K - 137 µM 
   

10 10K - 13.7 µM 
   

Table 15. Screening of washing procedures of Nafion – Method A. Fluorescence of the bead is checked 

under UV light at t = 3h, 24h. pH is checked with pH paper at t = 3h. “X” is for “not tested”.  
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Method B 

 
Washing 

Solution 

 Reaction Solvent 

Entry Dilution - [NaCl] Water PBS Plasma 

11 Water // - // 
  

X 

12 

NaCl sat. 

// - 6.57 M 
  

X 

13 100 - 65.7 mM 
  

X 

14 10K - 657 µM 
  

X 

15 1M - 6.57 µM 
  

X 

Table 16. Screening of washing procedures of Nafion – Method B. Fluorescence of the bead is checked 

under UV light at t = 3h, 24h. pH is checked with pH paper at t = 3h. “X” is for “not tested”. 

Overall, for reactions in water, the proton concentration is not changed too much and the 

acetal is always hydrolysed inside the solid catalyst in good yield. This is not surprising, since 

the absence of ions in ultrapure water prevents the cationic exchange. So, only results in PBS 

and plasma must be taken into consideration since they represent better the biological 

conditions. 

Some quite good results have been obtained with method A: 

• unchanged neutral pH was obtained in PBS when the concentration of NaCl was higher 

than 50 mM (entries 2, 3, 6); 

• in plasma a concentration equal to 13.7 mM was sufficient to maintain a pH around 6-

7 (entry 7). Despite the pH being neutral, ion concentration of 137 mM and above 

(entries 2 and 6) neutralize the catalysts too much. Consequently, no fluorescence was 

observed. For entries 3 and 7, with a pH in solution around 6-7, a little fluorescence is 

spotted in PBS and plasma respectively. 

Method B does not insure enough neutralization of the acidic catalysts (pH in PBS always 

turned very acidic). 
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Method C (Washing Solution: PBS) 

   Reaction Solvent 

Entry Dilution - [NaCl] Minutes Water PBS Plasma 

16 

// - 137 mM 

5 
  

X 

17 15 
   

18 30 
   

19 60 
   

20 

10 – 13,7 mM 

15 X 
  

21 30 X 
  

22 45 X 
  

23 75 X 
  

24 90 X 
 

 

25 120 X 
 

 

Table 17. Screening of washing procedures of Nafion – Method C. Fluorescence of the bead is checked 

under UV light at t = 3h, 24h. pH is checked with pH paper at t = 3h. “X” is for “not tested”. 

The third method allows to modulate the degree of ionic exchange in a more controllable way 

by modifying the time of washing and by constantly renewing the washing solution (washing 

in flow). In this case, the washing solutions assayed where i) PBS solution not diluted ([NaCl] = 

137 mM) and ii) PBS solution diluted ten times ([NaCl] = 13.7 mM). Washing time went from 5 

to 90 minutes (this information is given in the left part of the table). On the right part of the 

table, the outcome of the hydrolysis reaction with the corresponding pre-treated beads is 

depicted as before. 

Results in water (first column in the right part of the table) are the same obtained with the 

previously used washing methods: pH of ultrapure water is constant and the hydrolysis takes 

place. As mentioned above, PBS and plasma constitute a much real portrait of biological 

conditions. 

When PBS is used as solvent (second column in the right part of the table), its ionic strength 

always causes cationic exchange with the catalyst, resulting in the increase of proton 

concentration. The only exception is represented by the catalysts washed with a non diluted 

PBS solution for 60 minutes (entry 19). This pre-washing, though, neutralizes too much the 

solid catalyst, since no fluorescence is detected after 24 hours. 



 III – IDENTIFICATION OF THE BIOCOMPATIBLE ACID CATALYST 
 

Elisabetta Tobaldi  110  

When beads washed with PBS solution are used as catalyst in plasma (third column in the right 

part of the table), the cationic exchange is mitigated passing from beads washed for 15 

minutes (entry 17, pH ~5) to beads washed for 60 minutes (entry 19, pH = 7.4). Such a stepwise 

variation was not observed when PBS was the solvent. Unfortunately, a little fluorescence was 

detected at t = 24 hours only when the pH of plasma was almost neutral (entry 18, 30 minutes 

washing, pH = 6-7). Fluorescence of Nafion was also detected for washing time = 15 minutes, 

but the change in pH was still not acceptable (entry 17, pH ~5). 

Washing with a PBS solution diluted ten times ([NaCl] = 13.7 mM, entries 20-25) allows to finely 

tune the cationic exchange in plasma. Passing from a 15-minutes pre-washing to a 120-

minutes one results in a cationic exchange of the beads with plasma inversely proportional to 

the washing time. For 15-minutes washed beads, the final pH in plasma was around 3-4, 

fluorescence was spotted (entry 20); for 30-minutes and 45-minutes washed beads, pH of 

plasma was ~5 and hydrolysis occurred also in this case (entries 21-22); for 75-minutes washed 

Nafion beads, the pH was more close to the natural one (pH = 6-7, entry 23) and fluorescence 

was observed, even if it was less than in the previous case. With beads washed for 90 minutes, 

the pH of plasma stayed neutral: the neutralization given by the washing was enough to not 

disturb the buffered biofluid but not too much to prevent hydrolysis, since a little fluorescence 

is observed within three hours. Finally, beads washed for 120 minutes did not affect the pH of 

plasma but fluorescence was not spotted after 24 hours, probably the acidic functions of the 

beads were neutralized too much. Figure 51 shows a selection of photos of the beads taken 

under UV light at t = 3 hours, 6 hours and 24 hours.  
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Figure 51. Photos of Nafion beads used in the hydrolysis of acetal F-APNM5 (cf. Table 17, entries 20-24). 

Nafion beads are pre-washed with a PBS solution diluted 10 times for different amount of time (Method 

C). Pictures are taken under a UV lamp at given reaction times. 

The Nafion bead pre-washed for 90 minutes (named “Nafion-90” from now) and treated with 

F-APNM5 in plasma for 24 hours was also analysed at the confocal laser scanning microscope 

and compared to a bead pre-washed for 120 minutes (“Nafion-120”) and treated the same 

way. The intensity of fluorescence of TAMRA detected at the confocal microscope is measured 

thanks to a software for image treatment (ImageJ®) and can be directly correlated to the 

hydrolysis (Figure 52). 

We expected Nafion-90 to show a higher degree of hydrolysis (i.e. higher fluorescence 

emission) than Nafion-120 since the prolonged washing time was supposed to cause a higher 

neutralization of the acidic sulfonic functions of the catalyst. 

Figure 52. a) Nafion-120 and b) Nafion-90 analysed at confocal microscope after 24 hours reaction with 

F-APNM5 in plasma. c) Fluorescence intensity of the whole images measured with ImageJ®. 
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Images obtained confirmed our theory about the higher neutralization of the catalyst reached 

after 120 minutes of pre-washing. 

Regarding the washing pre-treatment, other variables were tested: 

• Reactivated beads: Beads which were completely neutralized by cationic exchange were 

reactivated by a further cationic exchange (beads were put in a 3 M HCl solution and 

stirred for 1 to 3 hours). These “re-activated” beads were washed with the optimized 

method and tested in plasma. Results in terms of hydrolysis and pH values of the 

media are similar to those obtained with the pre-washed Nafion. This shows that the 

cationic exchange is not irreversible. 

• Pre-equilibration in plasma: Pre-treated beads were let to equilibrate in plasma at 37 °C 

prior to the addition of the FRET substrate. Equilibration time was ranging from 20 

minutes to 3 hours. In all the cases, the Nafion bead was still working. 

See Appendix B for a comprehensive table of all the washing tests (page 251). 

In conclusion, Nafion-90 has all the searched characteristics: hydrophobicity and hydrolytic 

activity towards hydrophobic acetal substrate F-APNM5 in buffered media, without affecting 

the proton concentration of biofluids. The main constraint relative to the use of acidic solid 

catalyst in buffered media has been successfully addressed. 

At this point we took into consideration the bead’s dimension. The 3 mm diameter beads had 

many advantages, including easy-handling, transparency and the possibility to detect 

fluorescence by human eye. It is also true that it may be too big for in vivo tests and applications 

in mice of average weight ~30 g. For this reason, other forms of Nafion were taken into 

consideration, as described in the following section. 
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2.7 INVESTIGATION OF OTHER COMMERCIAL FORMS OF NAFION NR-50 

Table 18 gathers other types of Nafion, either commercial or derivates of Nafion NR50. Indeed, 

it is possible to chop the “big” beads into three or four pieces with a less regular spherical 

shape but with an average diameter of around one millimetre. Except for Nafion SAC-13, the 

other types were purchased (entries 2-4) or made (entry 1). 

    

Entry Denomination Dimensions Notes 

1 Nafion NR50 CH d = ~1 mm Nafion beads manually chopped 

2 POWDion™ 40-60 mesh (1) Transparent/white colour 

3 POWDion™ sol. 40-60 mesh (1) Soluble in MeOH, brown colour 

4 POWDion™ sol. 200 mesh (2) Soluble in MeOH, brown colour 

5 Nafion SAC-13 Nanoparticles 10-20% polymer on amorphous silica (3) 

(1) 40-60 mesh = 420-250 µM in diameter; (2) 200 mesh = 74 µM in diameter 
(3) Not commercially available at the time of this work 

Table 18. Different types of acidic resin Nafion. 

Regarding Nafion NR50 CH, Nafion NR50 beads commercially available (d = ~3mm, weight = 

~40 mg) are manually chopped into 4 pieces of diameter ~1 mm and weight ~10 mg. 

Tests are conducted with these other forms of Nafion in plasma and are resumed in the 

following table. Washing pre-treatments are conducted using method C (washing in flow) and 

PBS diluted 10 times as washing solution. Results are visualized with the help of the symbol-

code used previously (Figure 50, page 106). 

 

Entry Catalyst Quantity Pre-treatment 

Hydrolysis in 

Plasma 

1 

Nafion NR50 CH 1 bead 

// 
 

2 45 min. washing 
 

3 75 min. washing 
 

4 
POWDion™ 2.5 mg 

// 
 

5 20 min. washing 
 

6 POWDion™ sol. (40-60 mesh) 2.5 mg // 
 

7 POWDion™ sol. (200 mesh) 2.5 mg // 
 

Table 19. Hydrolysis of FRET acetal F-APNM5 in plasma carried out by different forms of Nafion. 

Conditions: [substrate] = 10 µM, T = 37 °C, V = 0.3 mL, t = 24 hours. pH is measured at t = 3 h (pH paper). 
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The chopped Nafion beads show less acidification of plasma (pH ~5) as well as less hydrolysis 

than original Nafion (entry 1). When pre-washed for 45 minutes, the proton concentration of 

plasma remains unaltered, but fluorescence is observed only after 24 hours (entry 2), a result 

comparable to that of Nafion-90 (Table 17, entry 24). A pre-washing of 75 minutes resulted in 

the complete neutralization of the bead (entry 3). Commercial POWDion™ shows the 

appearance of some fluorescence but acidifies the media (entry 4). A pre-washing of 20 

minutes neutralizes the acidity of the catalyst (entry 5). The two soluble POWDion™ (40-60 and 

200 mesh) did not show any fluorescence, as well as any induced increasing of the proton 

concentration in plasma. 

The results obtained suggested that the washing procedure should be optimized for each type 

of catalyst. At this point we decided to prioritize our research into gain insight on how the 

acidity of the solid catalysts changes with the pre-treatment. This aspect will be deeply 

investigated on section 4 of this chapter, after a second hydrophilic catalyst has been identified 

(section 3). 

Meanwhile, since in the definition of the objectives of this project, we theorized that a 

hydrophobic adsorbent acid catalyst would have not shown hydrolytic activity towards an 

hydrophilic substrate because of the lack of interactions due to their different nature, in the 

next section we addressed our statement by testing Nafion with the hydrophilic acetal 

substrate PEGAM5. 

2.8 INVESTIGATION OF NAFION NR50 ACTIVITY IN COMBINATION WITH HYDROPHILIC ACETAL 

PEGAM5 

As a reminder, PEGAM5 (introduce in chapter II.3.1, page 49) is the hydrophilic version of acetal 

F-APNM5. In this case we cannot exploit the FRET effect to monitor the hydrolysis via 

fluorescence appearance, thus the reaction has to be monitored via LC-MS. 

Two calibration curves were built for PEGAM5 and its hydrolysis product 36 (Figure 53a). 

Solutions of the two compounds at different concentrations were prepared in plasma and kept 

under agitation at 37 °C for one hour, in order to reproduce the reaction conditions as 

accurately as possible. Then, they were analysed with LC-MS and the values of peak area were 

plotted as function of the concentration (Figure 53b). 

PEGAM5 was then tested for hydrolysis with Nafion beads. A pre-treated bead was put in 0,3 

mL plasma and PEGAM5 was added (final concentration in plasma: 0,28 mM). A control 
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solution was prepared, it contained only the substrate and it is supposed to always have a 

constant concentration of starting material PEGAM5 (SM) and the absence of hydrolysis 

product 36 (P). Aliquots of the reaction mixtures were taken, treated with acetonitrile to cause 

protein precipitation and centrifugated. The supernatant is analysed with LC-MS at given 

times; the amount of starting material (SM) and product (P) was extrapolated from the 

calibration curves and reported in percentage (Figure 53c).  

Figure 53. a) Hydrolysis reaction of PEGAM5. Of the two products, only the aldehyde is visible at the LC-

MS, the diol does not adsorbe at 254 nm. b) Calibration curves for the starting material (SM) and the 

product (P). c) Hydrolysis reaction of PEGAM5 catalyzed by pre-treated Nafion and control (Ctrl). 

Over three hours, the amount of starting material did not decrease and no product was 

detected at LC-MS. As expected, the reaction did not take place because the substrate is not 

adsorbed by the Nafion bead and remains in solution. 

In conclusion to this first part about the identification of a hydrophobic heterogeneous 

catalyst, Nafion NR50 has been identified among all the catalysts screened. Upon pre-

treatment with a washing solution (13.7 mM content of NaCl, continuous flow washing, rate: 

4.15 mL/min, t = 90 min) it shows all the wanted characteristics: hydrolytic activity in biofluid 

without affecting the highly buffered surroundings. Its acidity will be further investigated in 

section 4 of this chapter (page 126). Now we describe the identification of a hydrophilic 

heterogeneous catalyst with the same performances in buffered media. 
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3. IDENTIFICATION OF A HYDROPHILIC HETEROGENEOUS ACID 

CATALYST 

As a reminder, in this chapter we aim to identify two kind of heterogeneous acidic catalyst 

(hydrophobic and hydrophilic). In section 2 we explored among a pool of catalysts of different 

nature to find a hydrophobic catalyst able to hydrolyse the hydrophobic substrate in a 

buffered aqueous environment. In this section our objective is to identify a hydrophilic solid 

catalyst to pair to a hydrophilic substrate. 

With respect to the previous case, a major constraint is represented by the affinity between 

the hydrophilic catalyst’s backbone and the aqueous solvent of the reaction. We hypothesized 

that their interaction is more significant than in case of the hydrophobic catalyst so it could 

cause a faster and uncontrollable cationic exchange between the acid motifs and the buffered 

media, resulting in the neutralization of the catalyst. 

We addressed this issue by trying two approaches: i) the encapsulation of an organic sulfonic 

acid into a hydrophilic matrix; ii) the co-polymerization of the sulfonic acid monomer with a 

hydrophilic monomer. For both the strategies, the sulfonic acid moiety was chosen according 

to the outcome of the screening of homogeneous catalysts (Section 2.1, page 82). 

To test the catalysts, we used the same conditions as before: 10 µM concentration of the 

substrate, 0.3 mL of reaction volume, normal body temperature (37 °C) and plasma as solvent. 

The acetal substrate used in a first place was F-APNM5. Even if the hydrophobic nature of the 

FRET probe could slow down the hydrolysis rate because of the diminished interaction with 

the hydrophilic catalyst, we chose it because of the great advantage given by the FRET effect: 

the possibility to i) work at very low close-to-in vivo concentration and ii) monitor the reaction 

by measuring the fluorescence. Moreover, iii) the violet-coloured solution allows to easily 

asset if the polymer has adsorbent capacity or not. 

Eventually, we tested the catalyst also with the less stable acetals F-A2M5 and F-A2M6 and 

with the hydrophilic acetal PEGAM5. For the latter we used a higher concentration (0.28 mM 

instead of 10 µM) and we checked the progression of hydrolysis by LC-MS. 
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3.1 ENCAPSULATION OF PAASA INTO ALGINATE BEADS 

Among all the acids tested, PAASA (Poly(2-acrylamido-2-methyl-1-propanesulfonic acid)), a 

linear polymer soluble in water, was by far the best candidate for encapsulation, even better 

than CSA used as 100% comparison. 

Alginate is a naturally occurring linear polysaccharide extracted from brown algae, it can be 

crosslinked by the addition of divalent cations (such as calcium) in aqueous solution to form a 

hydrogel which is biocompatible, biodegradable and non-toxic. Moreover, during the gelation 

process biomacromolecules and even cells can be incorporated in the matrix, making the 

alginate gels a great tool for a variety of bio applications.85,86 Following the reported procedure, 

calcium alginate gel beads incorporating the linear sulfonic polymer PAASA were produced 

(~2 mm diameter).87 Different amount of beads (from 1 up to 10) were tested in plasma for the 

hydrolysis of F-APNM5 (10 µM) at 37 °C for at least 24 hours. After 24 hours no fluorescence 

was detected and it was observed that the alginate beads fused one to another to create a 

unique big sphere. The experiments were repeated, each time the beads’ fusion was observed. 

We decided to abandon this strategy and we preferred to design a hydrophilic solid catalyst 

which could meet our needs (next section). 

3.2 DESIGN AND TEST OF A TAILORED HYDROPHILIC HETEROGENOUS CATALYST 

Thanks to the collaboration with Dr. Lavinia Balan and her group at the Institute of Material 

Science (IS2M) of Mulhouse, a tailored acid solid catalyst has been conceived. The polymer is 

formulated to meet the following requirements: 

I. non-toxicity; 

II. affinity with protic solvents (hydrophilic scaffold) 

III. compatibility with plasma; 

IV. presence of a sulfonic motif; 

V. possibility to modulate the number of acidic sites. 

The first three points were addressed by identifying polyethylene glycol (PEG) as the main 

component of the new solid acid catalyst. PEG has been known for its low toxicity and it has 

been widely used in pharmaceutical applications, as well as in cosmetology.88–90 The second 

component of the polymer was identified in linear polymer PAASA for the motivation 

explained above. 
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The formulation of the new polymer can be done using two forms of the acid: 

A. PAASA. In this case the linear polymer will be mixed with the PEG monomer and 

imprisoned in the matrix during the polymerization. 

B. 2-acrylamido-2-methyl-1-propanesulfonic acid (AASA), monomer of PAASA. The 

monomer can be co-polymerized with PEG-acrylate monomer, that is be covalently 

bonded to the matrix. 

 Figure 54 shows the two processes of polymerization by photoionization, as well as pictures 

of the obtained films. The thickness of the films was set to 100 µM. 

 Figure 54. a) Synthesis and photo of PEG-PAASA film: polymerization of PEG-acrylate with encapsulation 

of PAASA within the matrix. b) Synthesis and photo of the co-polymer PEG-AASA. 

The amount of the sulfonic acid in the polymer and co-polymer can be modulated. A screening 

of the composition is described in the next paragraph. 

3.2.1 Formulation of PEG-acid polymer composition 

Different formulations of PEG-PAASA and PEG-AASA provide by Dr. Balan were tested in 

plasma with F-APNM5 (10 µM, V = 0.3 mL, T = 37 °C). The percentage of PAASA and AASA varied 

from 1wt% to 30wt%. The amount of catalyst tested was of 80 mg or 40 mg, corresponding, 

respectively, to a whole sample or half a sample of the films provided (thickness: 100 µM, 

surface area = ~6 cm2). The polymers were provided on a glass support, each film was 

detached from the support by wetting it with 3 mL of plasma. This procedure was indeed a 

b)

a)
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pre-washing of the catalyst. In some case the polymer detached spontaneously from the 

support, so the pre-washing was not performed. 

In the definition of this project, we supposed that a hydrophilic catalyst (such as PEG-based 

polymers here tested) would not have a significant interaction with hydrophobic substrates 

(such as F-APNM5). Thus, we expect longer reaction times than those observed with Nafion. 

Moreover, during the tests, we observed that the F-APNM5 substrate is not irreversibly 

adsorbed by the PEG-based catalysts, so the reaction can be monitored by measuring the 

fluorescence of an aliquot and the degree of hydrolysis can be calculated by relating the 

fluorescence to an equimolar solution of TAMRA and BHQ (positive control) treated at 37 °C 

for an equal amount of time. Results are shown in Table 20. 

       

Entry  Polymer [Acid] Quantity Pre-Washing pH (24h) Yield (t = 7 d) 

1 

PEG-PAASA 

1% 80 mg No 7,5 // 

2 10% 80 mg Yes 7,5 4.5% 

3 10% 80 mg Yes 6 10% 

4 20% 80 mg Yes 7,5 19% 

5 20% 40 mg Yes 7,5 9.7% 

6 

PEG-AASA 

10% 40 mg No 7,5 // 

7 20% 80 mg No 4,5/5 30% 

8 20% 80 mg Yes 7,5 33% 

9 30% 80 mg Yes 1,5 // 

10 30% 40 mg Yes 3 // 

Table 20. Test of the different compositions of PEG-PAASA and PEG-AASA. The composition giving the 

highest yield is enlightened in red. pH of the solution is measured after 24 hours with pH paper. 

As expected, the hydrolysis rate was slower than with the hydrophobic Nafion. Fluorescence 

was detected after few days. PEG-PAASA with only 1% content in acid didn’t show any 

fluorescence after a week (entry 1), when the percentage of PAASA was increased to 10%, the 

highest hydrolysis observed was of 4.5% and 10% (entries 2, 3). The highest yield (19% 

hydrolysis) was achieved with a PAASA content equal to 20% (entry 4). Using half of the amount 

lowered this value to 9.7% (entry 5). 
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PEG-AASA co-polymer with a content in acid of 10% did not hydrolysed the acetal in 7 days 

(entry 6), while doubling the percentage of AASA in the formulation allowed to get a 30-33% 

hydrolysis (entries 7, 8), a better result than that obtained with PEG-PAASA. 

Given this promising result, the acid content was increased to 30%. Unfortunately, it caused 

acidification of the solvent followed by a massive protein precipitation in plasma and so 

invalidation of acetal hydrolysis (entries 9, 10). 

Overall, despite the long reaction time, the tests with F-APNM5 allowed to discriminate 

between the different formulations and to identify PEG-AASA-20% as the one which gave the 

highest hydrolysis. 

Moreover, tests conducted with PEG-AASA-20% revealed also that pre-washing in plasma is 

essential for the maintenance of the buffer. Indeed, without the pre-washing the polymer 

lowered the pH of plasma to 4.5-5 (entry 7), while it did not affect the buffer if previously 

treated (entry 8). Regarding the quantity and the form of catalyst used, 80 mg is too much for 

tests in such a small volume of solvent (0.3 mL). Thus, the following experiments with PEG-

AASA-20% in form of film were conducted with a lower quantity of catalyst (20 mg, cf. 

paragraph 3.2.3 below). 

Having identified the right formulation, the researchers of the group of Dr. Lavinia Balan at 

IS2M synthetized PEG-AASA-20% in form of little beads of diameter = ~0.5 mm. 

The process is much longer than that used to produce the glass supported films (cf. 

experimental procedures, section 1.8.5, page 211), thus a limited number of beads was 

provided for first tests, which are described in the next paragraph. 

3.2.2 Tests of PEG-AASA-20% beads with F-APNM5 

Acetal F-APNM5 was tested with different quantities of PEG-AASA beads. For the reasons 

explained above, the amount of catalyst used was much lower (0.5 – 5 mg) compared to 

previous tests. Reactions were carried out and monitored in the same conditions described 

above, results are reported in the following table. 
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Entry  Polymer [Acid] Quantity Pre-Washing pH (24h) Yield (t = 7 d) 

1 
PEG-AASA 

beads 

20% 0.5 mg No 7,5 2.5% 

2 20% 1.5 mg No 5 9.5% 

3 20% 5 mg Yes 7 2.0% (t=3days) 

Table 21. Test of different amount of PEG-AASA-20% in form of beads with acetal F-APNM5. pH of the 

solution is measured after 24 hours with pH paper. 

Using 0.5 mg of catalyst (corresponding to 3 beads) hydrolysis was not observed within a week 

(2.5% at t = 7 days, entry 1). Less than 10% of hydrolysis was observed when using 3 mg of 

catalyst (corresponding to 9 beads, entry 2). For these two experiments the beads were used 

as provided, without any washing. We observed that 1.5 mg of catalyst was enough to lower 

the pH of plasma to 5 (entry 2). The lowered pH probably cause the 9.5% hydrolysis of FRET in 

solution observed after 7 days. 

Hence, 5 mg of catalyst were pre-washed by using 1 mL of plasma as washing solution (r.t., 

few seconds of vial manual agitation, washing plasma is then replaced by 0.3 mL of fresh 

plasma). The pre-washing proved to be effective in terms of preservation of the buffered 

media but at t = 3 days hydrolysis was basically not observed (2%, entry 3). 

Probably this amount of catalyst is not enough or the catalyst acidity is not enough strong for 

the substrate used. To answer to this uncertainty we tested PEG-AASA-20% in form of film (20 

mg) and in form of beads (5 mg) with the less stable acetals F-A2M5 and F-A2M6. 

3.2.3 Tests of PEG-AASA-20% co-polymer with F-A2M5 and F-A2M6 

F-A2M5 and F-A2M6 were tested with PEG-AASA-20% in form of film and in form of beads. 

According to the values of pH of plasma reported above (Table 20, entries 7; Table 21, entry 

2), both the catalysts were pre-washed to avoid acidification of plasma. A suspension of the 

co-polymer and plasma (1 mL) is manually agitated at room temperature for 15 seconds 

(precipitation of protein was not observed, pH of plasma was ~5). Then plasma is removed, 0.3 

mL of fresh plasma are added, followed by the acetal (10 µM). Reaction vials were put at 37 °C 

under mechanical agitation (750 rpm). At given times aliquots were taken, diluted ten times 

and the fluorescence emitted was measured with a spectrophotometer. 

Obtained values are related to those of an equimolar solution of TAMRA and BHQ in plasma 

in the presence of the same amount of catalyst kept at 37 °C under mechanical agitation for 

the same amount of time (positive control). 
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The following table displays the results obtained with F-A2M5 and F-A2M6 after 3 days in 

comparison with those obtained with the more stable F-APNM5. 

          

 Hydrolysis (t = 3 days) 

Catalyst Form Quantity pH of plasma(2) F-APNM5 F-A2M5 F-A2M6 

PEG-AASA-20% (1) film 20 mg 6 7.8% 63.2% 65.3% 

PEG-AASA-20% (1) bead 5 mg 7.5 2.0% 11.3% 10.3% 

(1) the catalyst is pre-treated with a “fast washing” 

(2) pH is measured with pH paper at t = 1 day 

Table 22. Test of PEG-AASA-20% in form of film and beads with the cleavable hydrophobic probes F-

A2M5 and F-A2M6. Results obtained with the more stable F-APNM5 are listed as comparison.  

After 3 days in presence of 20 mg of PEG-AASA-20% (film) only 7.8% of F-APNM5 hydrolysis 

was reached, while the more cleavable F-A2M5 and F-A2M6 showed a major improvement (by 

a factor of ~8), with a hydrolysis of 63% and 65% respectively. pH of plasma was equal to 6 

after one day. An improvement by a factor of ~5.4 was also observed with PEG-AASA-20% in 

form of beads (5 mg) when passing from F-APNM5 (2% hydrolysis) to F-A2M5 and F-A2M6 

(11.3% and 10.3% of hydrolysis). 

These results suggest that the nature of the substrate plays a major role in the catalyst’s 

performance. Consequently, we tested PEG-AASA-20% catalyst with acetal PEGAM5, a 

hydrophilic substrate with higher affinity to the PEG-based catalyst than the FRET probes 

previously tested. 

3.2.4 Tests of PEG-AASA-20% beads with PEGAM5 

PEGAM5 was introduced as the hydrophilic alternative to FRET probe F-APNM5 and was 

unsuccessfully tested with Nafion NR50 beads (cf. section 2.8, page 114). In this case, the 

hydrophilic nature of PEG-AASA and the hydrophilicity of PEGAM5 constitute a promising 

combination for abiotic acetal hydrolysis, according to our initial hypothesis. 

PEG-AASA-20% beads (5 or 10 mg) were pre-washed with plasma in three different ways: 

A. Fast washing. A suspension of beads and plasma (1 mL) is manually agitated at room 

temperature for 15 seconds. Then plasma is removed. 

B. 10 minutes washing. A suspension of beads and plasma (1 mL) is agitated at 37 °C  

(750 rpm) for 10 minutes. Then plasma is removed. 
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C. 30 minutes washing. A suspension of beads and plasma (1 mL) is agitated at 37 °C  

(750 rpm) for 30 minutes. Then plasma is removed. 

After the pre-washing, 0.3 mL of fresh plasma and PEGAM5 were added (substrate 

concentration: 0.28 mM). Reaction vials were put at 37 °C under mechanical agitation (750 

rpm). Negative control solution contains only the substrate and it is supposed to always have 

a constant concentration of starting material PEGAM5 (SM) and the absence of hydrolysis 

product 36 (P). Tested conditions are resumed in Table 23. 

    

Entry Name Catalyst quantity Pre-washing 

1 Negative Ctrl // // 

2 Fast – 5mg 5 mg Fast, r.t. 

3 10min – 5mg 5 mg 10 min, 37 °C 

4 30min – 5mg 5 mg 30 min, 37 °C 

5 Fast – 10mg 10 mg Fast, r.t. 

Table 23. Reaction condition for PEGAM5 hydrolysis carried out by PEG-AASA beads. 

The negative control consists in 0.28 mM solution of PEGAM5 in plasma. It is expected that the 

amount of PEGAM5 remains constant over the days and, more important, that the product is 

not formed in the absence of the catalyst. 

Aliquots of the reaction mixtures were taken at given times, treated with acetonitrile to cause 

protein precipitation and centrifugated. The supernatant is analysed with LC-MS; the amount 

of starting material (SM) and product (P) was extrapolated from the calibration curves and 

reported in percentage in the following graphs (Figure 55). pH of plasma after addition of 

catalysts is neutral in all the cases. 
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Figure 55. a) Hydrolysis reaction of PEGAM5 (SM) gives aldehyde 36 (P) and diol 37 as products. b) 

Calibration curves for the starting material (SM) and the aldehyde product (P) of the reaction in plasma. 

c) Negative control: no auto-hydrolysis is detected over 7 days. d) Acetal hydrolysis with PEG-AASA beads 

in different conditions. 

The negative control showed no formation of the product over 7 days (Figure 55c). When 5 

mg of beads are subjected to a “fast washing”, almost complete hydrolysis is reached after 7 

days (78%), while with the “10 minutes washing” only 20% of hydrolysis is observed within 7 

days. If the catalyst is washed for 30 minutes, any product is detected in the same timeframe. 
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When the amount of catalyst is doubled (10 mg) and subjected to the fast washing, complete 

hydrolysis is reached within 4 days and almost 50% of hydrolysis was reached within the first 

hours. 

From the reaction profiles it can be deduced that: 

• the washing procedure has a great impact on the catalyst’s performances. The “30 

minutes washing” procedure causes complete neutralization of the catalyst. 

• as expected, PEGAM5 works better as substrate than the hydrophobic FRET acetals. 

3.3 CONCLUSION ON THE IDENTIFICATION OF THE HYDROPHILIC HETEROGENEOUS ACID 

CATALYST 

Thanks to the expertise of Dr. Lavinia Balan (IS2M) we were able to design a tailored PEG-based 

polymer crosslinked with a sulfonic acid of our choice (AASA, monomer of PAASA) which 

showed hydrolytic activity in early screenings. 

We identified the formulation of PEG-AASA-20% as the one with the right amount of acid to 

avoid acidification of the buffered media while showing hydrolytic activity. Such polymer was 

produced in form of glass-supported films or beads. The latter are preferred because of much 

easier handling.  

Thus, PEG-AASA-20% beads were tested with PEGAM5, the hydrophilic acetal specifically 

designed to be paired with a hydrophilic catalyst. Complete hydrolysis and no change of 

plasmatic pH was observed within 4 days when 10 mg of the catalyst are pre-treated with a 

“fast washing”. This first results are very promising and there is probably some margin of 

improvement about the reaction time.  

At this point of the project, we focused our attention on gaining insight on the inner acidity of 

the catalysts selected till now. Such investigation is described in the next section.  
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4. INVESTIGATION OF CATALYSTS INNER ACIDITY 

In this section we aim to investigate the modification in the acidity of the hydrophobic solid 

catalyst Nafion and of the hydrophilic PEG-AASA operated by the washing procedures. Our aim 

is to make a comparison between pre-treated and non-treated catalysts as well as to 

demonstrate that the pre-washed catalysts Nafion-90 and PEG-AASA-20% are actually 

preserving their activity. 

First (section 4.1) we addressed the matter in a qualitative way with the aid of a pH universal 

indicator. Later (section 4.2) we exploited the confocal laser scanning microscope in 

combination with a pH-sensitive ratiometric probe. 

4.1 QUALITATIVE INVESTIGATION OF ACIDITY WITH PH UNIVERSAL INDICATOR 

Nafion beads (commercial Nafion NR50 and pre-washed Nafion-90) are put in a PBS solution 

of a universal pH indicator. Colour varies from red for acidic pH to violet/blue for basic pH, 

passing by green for neutral pH, thus the PBS solution is coloured in green (pH = 7.4). The 

beads adsorb part the pH indicator resulting in the colouring of the bead. The colour of the 

PBS solution changes according to the degree of cationic exchange with the probe and it will 

shift to red if the Nafion bead acidifies the buffer. Pictures of the solutions are taken in a time 

frame of 5 minutes and are shown in Figure 56. The solutions obtained at t = 5 minutes are 

representative of the equilibrium and after storage at room temperature for several months 

they look unchanged. 

Figure 56. A fast, qualitative proof of Nafion's acidity in buffered media. a) Commercial Nafion in a PBS 

solution. The cationic exchange kills the buffer within minutes. b) Washed Nafion in a PBS solution. The 

buffer is manteined while the bead keeps its acidity (light red coulour). The solution remains the same 

even after months. 

Commercial Nafion Pre-treated Nafion

t = 0 t = 0 t = 5 mint = 5 min

a) b)
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As expected, acidic commercial Nafion NR50 (red bead) acidify the PBS solution, which quickly 

turns from green to red. Nafion-90 (which showed catalytic activity in plasma, cf. Table 17, 

entry24) does not affect significantly the pH of the buffer (the solution is still green) while the 

dark orange colour of the adsorbed pH indicator demonstrates that a good part of the sulfonic 

acid moieties is preserved. 

With these results in hand, we decided to move forward and to try to determine the inner 

acidity of the Nafion beads in a quantitative way. The next section will describe the 

investigation of beads’ acidity through a combination of confocal laser scanning microscopy 

and ratiometric imaging with a pH-sensitive probe. 

4.2 QUANTITATIVE DETERMINATION OF ACIDITY WITH CONFOCAL MICROSCOPE 

4.2.1 Identification of ratiometric probe for confocal microscope 

As a reminder, confocal laser scanning microscopy is an optical imaging technique for 

capturing multiple two-dimensional images at different depths in a sample. The following 

image resume the kind of image we expect to obtain by analysing Nafion beads. 

Figure 46. Confocal laser scanning microscopy applied on Nafion beads. The microscope records images 

of the bead by scanning it at different depths (z dimension). Given the bead’s dimension it is possible to 

take image of only a portion. 

To quantify the inner acidity, we coupled the confocal microscope technique with a ratiometric 

fluorescence strategy. Ratiometric fluorescence is the method where the ratio between the 

emission intensities at two (or more) wavelengths is related to the change of a parameter. 

Typically, a fluorescent probe specifically sensitive to an environmental parameter such as ion 
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concentration, pH, viscosity, polarity is used.91,92 Usually the fluorescence excitation spectra of 

the mentioned probe has two peaks, the intensity of which changes as the probe reacts to 

changes in the parameter, like pH in our case. Many ratiometric pH-sensitive fluorescent 

probes have been designed for pH detection in living system, but they are mostly sensitive in 

a range of pH slightly acidic, not far from the biological one (3 < pH < 8).93–95  

In 2017, Tong et al. introduced a ratiometric pH-sensitive fluorescent probe called DDXC which 

changes its fluorescence properties in the range of acidic pH (1< pH <5) thanks to the keto-

enol tautomerization (Figure 57).96 DDXC’s most important characteristic is that it can be used  

with confocal microscopy. Indeed, this powerful instrument uses laser sources of fixed 

wavelength, including  = 405 nm which fits perfectly with the excitation wavelength of the 

ratiometric probe ( = 400 nm). 

Figure 57. DDXC probe keto-enol tautomerization, with excitation and emission wavelengths. 

DDXC was easily synthetized in two steps and its spectra in aqueous solutions at different pH 

were recorded using a UV spectrofluorometer. With increasing pH, the emission at 580 nm 

decreases as that at 512 nm increases Figure 58a. The ratio between the two maxima 

(512/580) was calculated and plotted against pH, resulting in a curve which can be used to 

calculate the value of pH by extrapolation. As described by Tong et al. the Em512/Em580 ratio 

changes only in a range of acidic pH. At pH > 5 all the DDXC is converted in his enol form 

(Figure 58b). Figure 58c shows pictures of the different solution under artificial and UV light. 
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Figure 58. a) Emission spectra recorded with a UV spectrophotometer at excitation wavelength of 400 

nm. The arrows indicate the change in relation to the pH. b) The ratio between the emission at 512 nm 

and at 580 nm are plotted in function of the pH. The graph can be used to determine the pH of a solution 

by extrapolation. c) DDXC probe dissolved in aqueous solution of pH = 1; 3; 5; 7.4. Picture are taken 

under artificial and UV light to show the change in colour related to the proton concentration.  

To use the obtained graph as calibration curve for the extrapolation of the pH value, it has to 

be reproduced with the same instrument which will be used to analyse the solid Nafion beads, 

i.e. the confocal microscope. Drops of DDXC solutions at various acidic pH were analysed with 

confocal microscope, using the 405 mm laser and recording images at the two emission 

wavelengths (51210 and 58010). For each drop of DDXC solution, two digital images are 

obtained. The first one (512 nm) is coloured in green and its intensity will decrease with 

increasing pH, while the second (580 nm) is coloured in red and its intensity will increase with 

pH (Cf. Figure 58). The two images can be merged with a dedicated software to give a 

superimposed image whose colour will vary from greenish (low pH) to reddish (high pH). 

Figure 59 shows the settings of the laser and the collection channels on the confocal 

microscope as well as the image of the drops obtained with the merging of the two channels. 
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Figure 59. Above: confocal microscope settings for excitation (laser at 405 nm) and emission (two 

channels at 51210 and 58010). Below: merged images of DDXC solutions' drop from acidic pH < 1 (on 

the left end) to pH = 5 (on the right end). 

A dedicated ImageJ software plug-in, especially conceived at the University of Strasbourg by 

Romain Vauchelles, allows us to process the obtained images. In each point the ratio between 

the intensity of the emission at 512 nm and at 580 nm is calculated and the obtained value is 

related to the colour of the said point. We set the images colouring to a rainbow scale going 

from purple (ratio = 0, pH = 5) to red (ratio = 2, pH <1). Figure 60a shows the same images 

presented above (Figure 59) processed with the software, the rainbow scale indicates the 

value of the ratio em512/em580 in function of the colours. 

Moreover, it is possible to quantify the distribution of each value of ratio in the picture. The 

incidence of a certain value of ratio can be plotted in a graph, resulting in a representation of 

the ratio distribution. Figure 60b cumulates the ratio distribution curves of all the analysed 

images in one graph. For each curve, the ratio value corresponding to the maximum of the 

curve is representative of the pH at which the image was taken. The values of ratio obtained 

from all the maxima in the picture are plotted against the corresponding pH to obtain a curve 

of pH vs ratio, as it was done for the spectra recorded at the spectrofluorometer. The two 

obtained curves match perfectly one with each other (Figure 60c). 

Regarding the rainbow scale, for the sake of clarity, we will use from this point a scale which 

correlates the colour directly with the pH value (Figure 60d). 

pH = <1                        1                       2                        3                      4                          5

512±10 580±10405
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Figure 60. a) Processed images of DDXC solutions' drops. The colour is in function of the ratio between 

the intensities of fluorescence recorded at 512 nm and 580 nm. b) Graph of the population of each image 

according to the value of the ratio. The value of ratio corresponding to the maximum incidence is 

attributed at the corresponding value of pH, allowing to build the calibration curve. c) Calibration curve 

obtained with the confocal microscope, compared to the one obtained with the spectrophotometer (Cf. 

Figure 58). d) Colour scale in function of the ratio Em512/Em580 and of the corresponding pH values. 

Once the calibration curve has been acquired, the imaging of Nafion beads and PEG-AASA co-

polymer can follow. 

4.2.2 Determination of acidity of Nafion 

Nafion beads are soaked with the ratiometric pH-sensitive probe DDXC (in aqueous solution) 

and are analysed at the confocal microscope. The images obtained are processed with the 

software for ratiometric analysis and, depending on the degree of neutralization of the acidic 

sites, we expected them to fall into the casuistry illustrated in Figure 61. Nafion-90, which gave 

the best combination of fluorescence and buffer preservation in plasma (Table 17, entry 24, 

page 109) is meant to have an increasing proton concentration from the external layers to the 

inner part (Figure 61, case c). 
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Figure 61. Confocal microscopy images of Nafion soaked with DDXC expected with a) commercial 

untreated acidic Nafion, b) neutralized Nafion and c) partially deactivated Nafion-90 keeping inner 

acidity. pH colour scale is the same derivate from the processed images of DDXC at different pHs (Cf. 

Figure 60). 

Non-treated commercial Nafion beads and beads washed in flow with a PBS solution for 

different amount of time (Table 17, page 109) are soaked with 0.5 mL of a 0.5 mM DDXC 

solution in ultrapure water. Images are taken at the confocal microscope with the same 

excitation/emission setting used to build the calibration curve. Two images are recorded for 

each bead at a given depth, one for each emission channel. Then they are processed with the 

ratiometric software to give an image coloured according to the ratio between the two 

emission intensities (em512/em580). Processed images are reported in the following figures. 

Figure 62. Ratiometric images of commercial Nafion NR50. Colour code is represented both as in 

function of the ratio and of the pH. 
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Figure 63. Ratiometric images of Nafion NR50 washed for 30, 60, and 90 minutes. Colour code is 

represented both as in function of the ratio and of the pH. 
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Figure 64. Ratiometric images of Nafion NR50 washed for 120 minutes. Colour code is represented both 

as in function of the ratio and of the pH. 

Intensity of all the above images were plotted in function of the ratio, resulting in the graph 

showed below (Figure 65). The value of ratio corresponding to the maxima is correlated to the 

value of pH, according to the ratiometric curve previously built (Table 24). 

Figure 65. Graph of the ratio intensities of different Nafion beads. The maxima correspond to a value of 

ratio which is directly correlated to the proton concentration (Cf. Figure 60). 
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Ratio vs pH graph Entry Nafion Ratio(max) pH 
 

1 Commercial 2.4 <0.5 
2 30 minutes 2.1 ~0.5 
3 60 minutes 1.65 ~1.9 
4 90 minutes 1.5 ~2.1 
5 120 minutes 0.95 ~2.7 

Table 24. Acidity of solid catalyst Nafion NR50 according to the ratiometric analysis. 

According to the pH values extrapolated from the ratio vs pH curve, the acidity of Nafion 

decreases with the increase of the pre-washing time. In particular, Nafion-90 presents a pH of 

~2.1 and, as we observed during the screenings, it is able to preserve its acidity (and hydrolytic 

activity) in plasma. 

Ratiometric analysis with DDXC and confocal microscope was also conducted on other 

commercially available forms of Nafion. The following figures show a selection of the 

processed ratiometric images and the corresponding ratio distribution. 

Figure 66. Nafion NR50 - CH and POWDion™ 40-60 mesh soaked with DDXC and analysed at confocal 

microscope; the graph shows the ratiometric distribution and extrapolated pH values. 
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Figure 67. POWDion™ 40-60 mesh SOL. and POWDion™ 200 mesh SOL. soaked with DDXC and analysed at 

confocal microscope; ratiometric distribution and extrapolated pH values. 

Nafion chopped beads (Nafion NR50 CH) and POWDion™ 40-60 mesh are very acidic, as 

confirmed by the results obtained when tested with acetal F-APNM5 in plasma (cf. Table 19, 
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hydrolysis was observed in 24 hours. This may be imputed to the different formulation of the 

two polymers -with respect to Nafion NR50- which makes them soluble in organic solvents. 

Information about the chemical composition and synthetic procedures is not provided by the 
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Figure 68. Ratiometric images, ratio distribution and extrapolated pH value for PEG-AASA beads not 

washed (first two images) and quickly washed in plasma (last two images). 
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Figure 69. Ratiometric images, ratio distribution and extrapolated pH value for PEG-AASA beads washed 

in plasma for 30 minutes. 

The ratiometric analysis reveal that even a short contact with a buffered solution can 

significantly affect the acidity of the PEG-based co-polymer, probably because of its porosity 

and affinity with the biofluid. 

In the next section we related the calculated pH of Nafion and PEG-AASA beads to the degree 
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5. CORRELATION BETWEEN OBSERVED HYDROLYTIC ACTIVITY AND 

CALCULATED ACIDITY OF NAFION NR50 AND PEG-AASA-20% WITH 

DIFFERENT ACETAL SUBSTRATES 

The acidity of the solid catalysts calculated trough ratiometric analysis should match the 

results obtained in terms of hydrolysis with acetal substrates of different nature. 

According to our premises exposed in the early definition of the project, the hydrophobic or 

hydrophilic nature of the heterogeneous catalyst is responsible to the delivery of different 

degree of hydrolysis according to the nature of the acetal used as substrate. As a reminder, 

here we report again Figure 2. 

Figure 2. Representation of the four possible scenarios given by the combination of the substrate and 

the solid catalyst. Hydrophobic catalyst is symbolized by a sphere with a plain contour, while the 

hydrophilic catalyst’s symbol has a dotted contour. The substrate and the product are represented as, 

respectively, blue and green dots. Dots are plain for the hydrophobic substrate and striped for the 

hydrophilic one.  a) Hydrophobic substrate + hydrophobic catalysts; b) hydrophobic substrate + 

hydrophilic catalysts; c) hydrophilic substrate + hydrophobic catalyst and d) hydrophilic substrate + 

hydrophilic catalyst. 

We speculated that scenarios a) and d) in which the substrate and catalyst have matching 

natures are more likely to carry out acetal hydrolysis, unlike cases b) and c) in which the lack 

of affinity between the catalysts and the substrate would give a negative outcome. 
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In the following table we collected all the results obtained in plasma with the two selected 

catalysts Nafion NR50 and PEG-AASA-20% in combination with acetal substrates cleavable at 

pH < 4 (F-APM5 and PEGAM5). We took into consideration only the type of catalyst which, 

thanks to the right washing pre-treatment, do not lower the proton concentration in plasma 

more than 1.5 unit: 

• “Nafion-90”. Nafion NR50 beads washed with a PBS solution ([NaCl] = 13.7 mM) in 

continuous flow for 90 minutes; 

• “PEG-AASA-20%”. PEG-AASA co-polymer with a 20% content of the acid, pre-washed for 

few seconds with plasma (“fast washing”). 

      

Entry Catalyst Substrate pH of 

plasma(1) 

Time Hydrolysis 

1 Nafion-90 F-APNM5 7.5 24 hours Low fluorescence 

detected in beads(2) 

2 Nafion-90 PEGAM5 7.5 7 days 0%(3) 

3 PEG-AASA-20% (film-20 mg) F-APNM5 6 3 days 7.8%(4) 

4 PEG-AASA-20% (bead-5 mg) F-APNM5 7.5 3 days 2.0%(4) 

5 PEG-AASA-20% (bead-5 mg) PEGAM5 7.5 7 days 78%(3) 

6 PEG-AASA-20% (bead-10 mg) PEGAM5 7.5 4 days 94%(3) 

(1) pH of plasma measured with pH paper after catalyst addition 

(2) Fluorescence of TAMRA detected under UV lamp and with confocal microscope (ex561/em580) 

(3) Calculated by LC-MS peak area of the product 

(4) Fluorescence of TAMRA measured with spectrophotometer (ex550/em580) 

Table 25. Condensed collection of results obtained by treating acetals F-APNM5 and PEGAM5 in plasma 

with heterogeneous catalysts Nafion-90 and PEG-AASA-20% (in form of film and beads). Entries in which 

the hydrophobic or hydrophilic nature of the substrate and the catalyst matches are enlightened in grey. 

Nafion-90 catalyse the hydrolysis of the hydrophobic FRET acetal F-APNM5 (fluorescence due 

to the TAMRA product is detected after 24 hours, entry 1), while when the hydrophilic PEGAM5 

is used, the solid catalyst does not adsorb the acetal, so no hydrolysis is observed over 7 days 

(entry 2). 

PEG-AASA-20% in form of film and beads do not catalyse the hydrolysis of F-APNM5 with an 

appreciable rate: less than 10% hydrolysis is reached after a week (entries 3, 4). On the 

contrary, the affinity with the hydrophilic PEGAM5 cause an increment of hydrolysis rate such 
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that 78% of hydrolysis is observed after 7 days (entry 5) and 94% is observed after 4 days if the 

quantity of the catalyst is raised to 10 mg (entry 6). 

Overall, the two catalyst-substrate couples of similar nature (highlighted in grey on the table) 

revealed to be more performing than the others. These results confirm our hypothesis about 

the importance of the interaction between the substrate and the solid catalyst in the hydrolysis 

rate. 

Such catalyst-substrate couples are depicted in the following figure according to the range of 

pH in which the catalyst is active and the substrate is hydrolysable. pH values for the catalysts 

are those obtained by the ratiometric analysis, while pH values of the substrate are in 

accordance with the profile obtained in different acidic solution (cf. Figure 33, page 74) 

Figure 70. a) biological pH values; b) pH ranges of hydrolytic activity of commercial and pre-treated 

Nafion NR50 related to the pH range of F-APNM5 cleavability; c) pH ranges of hydrolytic activity of PEG-

AASA-20% washed and not-washed related to the pH range of PEGAM5 cleavability. 

In conclusion we can positively affirm that we meet our objective. We defined two different 

systems for a bond-breaking reaction in biological environment. Both the systems involve the 

use of an abiotic heterogeneous acid catalyst and a xenobiotic substrate of matching nature 
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(hydrophobic or hydrophilic). Both the acidic catalysts work in biofluid (plasma) without 

affecting the highly buffered media. Both the substrates are not cleaved in the normal 

biological environment, since the pH of extracellular fluid and of cell organelles is not enough 

low to trigger the hydrolysis. Indeed, we can think of the heterogeneous catalysts as some 

extremely acidic organelles which can maintain a high proton concentration inside them, 

selectively hydrolyse the substrate and -in case of PEG-AASA- release the product. 

At this point of the project we defined the first in vivo proof of concept in mice, which will be 

described on the next chapter.  
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IV – TOWARDS IN VIVO PROOF OF CONCEPT 

1. OBJECTIVES 

In the work described previously we responded to some issues pertinent to the transposition 

of a chemical reaction from the bench to close-to-biological conditions. In our tests we used a 

concentration of the substrate in the order of micromolar (when possible) and we optimized 

the hydrolysis in a complex and rich biofluid (plasma). 

In this chapter we aim to proceed one step further and apply our abiotic hydrolysis system in 

vivo. Such experiments are carried in a much more complex biological system in which factors 

like the multi-molecular crowding, the distribution and excretion of the xenobiotic substrate 

and its pharmacokinetic play a major role. 

Our objective here is to get a first indication that acetal hydrolysis -triggered in a range of pH 

lower than the biological one- can be carried out in vivo, thanks to an heterogenous 

biocompatible acidic catalyst able to maintain inner high proton concentration in a buffered 

environment. 

To this end, we planned a proof of concept in mice, in collaboration with Dr. Wojciech Krezel 

and Joanna Sobska (IGBMC, Illkirch), described in the following section.  
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2. IN VIVO PROOF OF CONCEPT SETUP 

2.1 CHOICE OF CATALYST AND SUBSTRATE 

In the previous work we identified two catalyst-substrate couples that proved to work in 

plasma: 

• Nafion-90 and hydrophobic FRET probe F-APNM5. The catalyst is in form of beads of ~3 

mm diameter and adsorbs the FRET probe. The acetal substrate is hydrophobic and 

allows to monitor the hydrolysis through the fluorescence emission given by the 

TAMRA product. 

• PEG-AASA-20% and hydrophilic PEGAM5. The catalyst is produced in form of beads or 

film and is not adsorbent. The acetal substrate is hydrophilic and its hydrolysis cannot 

be detected via imaging techniques. 

For the first application and proof of concept in vivo we chose the first system because i) the 

adsorbent catalyst allows to concentrate the substrate in one spot, so the appearance of 

fluorescence inside the catalyst can be related only to the hydrolysis operated by the catalyst; 

ii) the FRET substrate should allow to monitor the hydrolysis by appearance of a fluorescence  

signal located within the beads. 

In the next section, the setup of the in vivo experiment will be described in detail and the major 

constraint coming from the use of Nafion and F-APNM5 will be addressed. 

2.2 IN VIVO PROOF OF CONCEPT: CHALLENGES AND PLANNING 

2.2.1 Constraint relative to the use of Nafion beads 

The relatively big dimension of Nafion beads constitute a constraint that has to be taken into 

consideration in the experiment planning. We decided to implant the Nafion beads (d = ~3 

mm) under the skin of the mice. This arose a major challenge: since the acetal substrate will 

be injected in the blood stream, the vascularization of the bead must be insured. Hence, before 

implantation, Nafion beads were pre-washed for 90 minutes in flow (following the procedure 

previously described, cf. section 2.6, page 104) and then soaked with human Fibroblast Growth 

Factor, which promotes endothelial cell proliferation and the physical organization of 

endothelial cells into tube-like structures. It thus promotes angiogenesis, the growth of new 

blood vessels from the pre-existing vasculature.97 
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After implantation, we will wait for the angiogenesis to occur, at which point the mice is ready 

for injection of the substrate (cf. section 2.2.4 on experiment planning). 

The soaked bead to be implanted (called “Nafion-hFGF”) was tested to check that it still triggers 

the acetal hydrolysis (cf. paragraph 2.2.3, below in this page). 

2.2.2 Constraint relative to the use of F-APNM5 

Despite the great advantage that the use of FRET probes gives in terms of the monitoring of 

the hydrolysis, its hydrophobicity constitutes a major constraint in the formulation of the 

solution for injections in mice. Indeed, a solution of concentration from 10 to 30 mM has to be 

used to reach a plasmatic concentration high enough to allow the hydrolysis to be detected. 

At such concentration F-APNM5 is not soluble neither in water nor PBS, nor in a mixture of 

DMSO/water with a percentage of DMSO tolerated by the living organism (up to 50% if only 

one IV injection is given). 

We addressed this issue to Dr. François Daubeuf (UMR7200, Université de Strasbourg), expert 

in formulations for in vivo experiments. He suggested that one possibility would be to exploit 

the hydrophobicity of the BHQ extremity of the molecule and the charged TAMRA extremity 

to create micelles in which the charged TAMRA is in contact with the aqueous solution and the 

hydrophobic BHQ is in the inside of the micelle. To help the formation of micelle, F-APNM5 

was solubilized in a PBS solution with 10wt% content of Kolliphor® EL, also known as 

Cremophor®. Kolliphor® is a derivative of castor oil and it is commonly used to emulsify and 

solubilize oils and other water-insoluble substances. Thanks to this emulsifying agent, it was 

possible to obtain a 10 mM solution of F-APNM5 ready to be injected intravenously. Such 

formulation should still enable the acidic catalysis to occur (cf. next paragraph). 

2.2.3 Test of Nafion-hFGF beads with F-APNM5 from Kolliphor® solution 

Nafion bead soaked with hFGF were tested for hydrolysis in plasma in presence of F-APNM5 

from the stock solution in PBS-10wt%Kolliphor®, using the procedure previously described for 

the catalyst screening ([F-APNM5] = 10 µM, V = 0.3 mL, T = 37 °C, t = 24h, agitation at 750 rpm). 

At t = 24 hours, the bead was taken and analysed at the confocal microscope. The image of 

fluorescence emission obtained was compared to that obtained with a Nafion-90 (not soaked 

with hFGF) bead tested with F-APNM5 from the stock solution in DMSO (Figure 71). 
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Figure 71. a) Nafion-hFGF and b) Nafion-90 analysed at confocal microscope after 24 hours reaction with 

F-APNM5 in plasma. c) Fluorescence intensity of the whole images measured with ImageJ®. 

The fluorescence distribution measured with ImageJ® software reveals that fluorescence 

emission of Nafion-hFGF bead is comparable to that of the Nafion-90 bead. Hence, it can be 

deducted that the soaking of the bead with human Fibroblast Growth Factor does not affect 

the outcome of the hydrolysis. Also, the presence of the emulsifying agent seems to not affect 

the reactivity of the acetal. In conclusion, both the catalyst and the acetal solution prepared 

for the in vivo experiment maintain the same activity observed previously. 

In the next section we describe the setup of the in vivo proof of concept. 

2.2.4 In vivo experiments planning 

To prove our concept, we planned a series of experiments listed in Table 26 and below, with 

the description of the expected outcome. 

1. Catalyst alone. First, we need to confirm the vascularization of the implanted bead on 

mice. We expect also to confirm its biocompatibility. 

2. F-APNM5 alone. Then we need to follow the pharmacokinetic of the probe. We check if 

hydrolysis can be induced in vivo in the absence of the trigger by monitoring the 

appearance of fluorescence. After some time, we expect to observe fluorescence 

emission in the liver and kidneys, where the acetal may accumulate, as part of the usual 

metabolism of xenobiotics. 

3. Catalyst in presence of acetal F-APNM5. Then we can test our system catalyst + probe. 

We expect that the acetal is adsorbed by the solid catalyst which triggers its hydrolysis, 

resulting in the emission of fluorescence from the bead. 

4. TAMRA-NHCO-diol alone. In this case the starting acetal F-APNM5 is pre-hydrolysed 

into the diol (linked to TAMRA, named TAMRA-NHCO-diol) and the aldehyde (linked to 

BHQ-2, named BHQ-2-aldehyde). A solution of TAMRA-NHCO-diol is injected in a 
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mouse with Nafion-hFGF implanted. We want to follow the pharmacokinetic of the 

hydrolysis product through imaging of the fluorescence emitted. We expect to see 

accumulation on liver and kidney.  

5. Catalyst in presence of TAMRA-NHCO-diol. We want to follow the pharmacokinetic of the 

product of hydrolysis (TAMRA-NHCO-diol) -in presence of the implanted catalyst- by 

imaging the fluorescence emitted by TAMRA. We expect that a part of the product is 

adsorbed by the catalyst and the rest is metabolized as any xenobiotic (accumulation 

on liver and kidney is expected). 

    

Entry Nafion-hFGF F-APNM5 TAMRA-NHCO-diol 

1 X   

2  X  

3   X 

4 X X  

5 X  X 

Table 26. List of the planned experiments. Each entry line corresponds to one kind of experiment (to be 

reproduced in triplicates) and displays if the catalyst is implanted (marked with X) and which chemical is 

injected into the mice (marked with X). 

A comparison between experiment #4 (Nafion-hFGF + F-APNM5) and experiment #1 (F-

APNM5 alone) should prove that the appearance of fluorescence in the implanted bead is to 

impute only to the activity of the solid catalyst, therefore proving our concept. 

The experiment’s procedures were planned as follow: 

I. Preparation of the catalyst, the acetal and TAMRA-diol. Nafion-hFGF is prepared right 

before the implantation in mice (cf. Experimental Procedures, section 5.3, page 218). 

F-APNM5 and TAMRA-NHCO-diol solutions in PBS-10wt%Kolliphor® can be prepared 

before and stored at -20°C. 

II. Implantation of beads in mice. If required by the experiment (cf. Table 26), Nafion-hFGF 

is implanted under the skin of the mouse. After the formation of new blood vessels 

(angiogenesis) around the bead occurs, we can proceed with the next step. 

III. Intravenous injection. According to the type pf experiment performed, 60 µL of a 10 mM 

solution of F-APNM5 or TAMRA-diol are injected intravenously. 
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IV. Live Imaging. After 24 hours, the mouse is monitored for fluorescence emission, using 

excitation and emission wavelengths of TAMRA (ex: 550/em: 580). One day should be 

enough to spot some fluorescence. If this is not the case, a second IV injection (60 µL) 

is performed and the mouse is controlled every 24 hours for some days. 

Our system is ready to be tested in vivo, but presently authorization for animal experiments is 

pending. 
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3. CONCLUSION 

The in vivo proof of concept was planned in detail. Beads were prepared for implantation and 

tested to control that their hydrolytic activity was not decreased by the presence of hFGF 

adsorbed. A formulation of the hydrophobic acetal substrate F-APNM5 was found and a 

solution ready to be injected was prepared. A series of different experiments to confirm our 

premises was listed, as well as all the steps of the experiments were described. 

Unfortunately, within the time of this doctoral project, it was not possible to start with the 

implantation of the beads in mice, thus the proof of concept in vivo will be performed after the 

presentation of this thesis.   
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V – LATE STAGE FUNCTIONALIZATION OF ANTICANCER 

AGENTS 

In this chapter we address the possible applications of this abiotic system based on acetal 

hydrolysis. As mentioned in the introduction, this bond-breaking reaction could be exploited 

by payload-releasing techniques, if the payload presents a diol motif in its chemical structure. 

Since most of the currently used xenobiotics do not present a diol in their structure, we 

postulated that it is possible to modify the complex chemical structure of active molecules to 

insert a diol function without endangering their activity. In this chapter we broaden the scope 

from diol insertion to a pool of late-stage functionalization reactions of anticancer agents with 

the aim to find mild procedures which can be applied to a wide group of complex compounds 

to enhance their activity and performance. 

 

1. INTRODUCTION 

A part of the never-ending search of more powerful anticancer agents is usually done 

investigating how a little modification in the structure of a lead-compound can increase (or 

decrease) its activity.98,99 These new molecules are often obtained by de novo synthesis (time 

and money consuming)100,101 or by natural compound screening.102,103 Such high-risk 

approaches are known to meet many failures at all stage of development. Late stage 

functionalization of anticancer agents is an alternative strategy which lead to patentable and 

highly active anticancer drugs with a higher success rate.104–107 

Exploiting the newest chemo-selective and mild procedures for the late stage functionalization 

of complex compounds, it will be tried to modify the structure of readily available FDA-

approved (often out of patent) anticancer drugs in order to empower their activity. Using these 

novel chemical transformations, it may be possible to obtain novel chemical structures that 

could not have been obtained using classical approaches. Some of these novel structures may 

present improved biological activity and safety profile while not subjected to patents 

limitations. 
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2. PROJECT PLANNING 

2.1 SELECTION OF PROCEDURES 

The first step of this project consists of a deep and detailed bibliographic research about late 

stage functionalization and C-H activation techniques and procedures suitable for being 

applied to complex anticancer drugs. 

To be more specific, scrutinized procedures are either slight modifications of the molecule’s 

structure –such as isomerization, oxidation, reduction, rearrangements-108,109 and addition of 

functions –such as halogenation,110–113 azidation,114–116 amination,117 trifluoromethylation,118–

122 trifluorothiomethylation,123,124 cyanation,125 amidation126- in order to obtain a better activity 

or to exploit the newly introduced function for bioconjugation. 

A first set of selected procedures contains those who meet the following qualities: 

• “simple”, that is involving the use of up to maximum three reactants and avoiding 

complex work up;  

• “direct”, in other words: protection and deprotection steps of reactive moieties (mainly 

hydroxyl and amine groups) must be avoided; 

• selective and tolerant so that can be used on molecules containing many reactive sites 

(i.e. double bonds, hydroxyl groups, primary amines and others); 

• mild conditions: harsh conditions, such as high reaction temperature, must be avoided 

because of the delicacy of complex substrates. Also reaction will be carried out on a 

scale of 0.2 – 0.5 mg and with cytotoxic substrates, thus complex reaction set ups be 

better avoided. 

In the last decades, more and more researches worked in the field of LSF and direct C-H 

activation, producing a huge amount of publications to scrutinize in order to find the more 

promising reactions.127–131 
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2.2 REACTION CONDITIONS 

Because expensive and highly cytotoxic molecules will be used as reaction substrates, it is not 

possible to work in the classical organic chemistry bench set-up. The protocol for the handling 

of cytotoxic material must be employed. Cytotoxic substrates can be handled only in a 

dedicated fume hood where reaction solutions can be prepared in vials which must be sealed 

before moving out from the hood. Therefore, normal reaction procedures cannot be applied. 

These includes, but it is not limited to: bubbling inert gas into the reaction mixture once the 

vial is sealed, refluxing solvents, creating dry and/or inert atmosphere before adding the 

substrate, adding other reagents after the vial is sealed.  

Moreover, it will be used a very low amount of starting material in each reaction vial (0.2 – 0.5 

mg) in order to permit to run systematic campaign on more than 20 reaction conditions. As a 

consequence, reactions will be monitored by HPLC/MS. Each product will be purified using an 

HPLC instrumentation specific for cytotoxic compounds. 

2.3 EXPERIMENTAL PLANNING 

A plan will be applied as follow: 

I. Test the stability of the molecules in a panel of temperatures and solvents (including 

but not limited to the one selected for screening) in order to determine for each 

molecule which are the temperature limits and the forbidden solvents. 

II. Carry out the screening campaign in all the selected procedures on a micro-scale  

(0.2 – 0.5 mg, 20 - 50 µL reaction volumes), controlling the reactions through HPLC-MS. 

III. Evaluation of the reaction outcomes. In other words, seek for a reaction procedure 

which cause the appearance -in the HPLC-MS chromatogram- of new peak(s) at > 30%, 

in a mixture containing no more than three peaks > 10%. Peak of the target compound 

should of course be associated to a mass value in the range that would be expected 

for a modified drug. 

IV. In such a case -in which we obtain a sharp and clean peak in the LC, with an interesting 

molecular weight- the synthesis will be scaled up a bit (2 – 5 mg of substrate) in order 

to isolate enough compound to run preliminary biological assays.  

V. Ideally, the cytotoxicity assay shows a better activity with respect to the original drug, 

so the following step would be the structure determination of the new compound. 
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VI. Once the molecular structure and the cytotoxicity profiles are obtained, the new 

molecule could be used to run complementary biological assay and/or use it as 

payload in the preparation of model ADC. This will require a scale up of the reaction to 

10 - 20 mg in the first place. 

VII. The best drugs will be benchmarked with the parent compound on in vivo model to 

compare ADME profile, TMD, therapeutic windows. Possibly if the parent drug is 

subject to resistance phenomenon by receptor mutation, assay on resistant tumour 

model will be performed. 

Since such new anticancer candidates are engineered from a scaffold that is already in clinic, 

the chance to come up with a favourable ADME profile and toxicity profile are likely increased 

by comparison with classical natural compound screening. These new drugs known 

mechanism of action and improved toxicity might trigger renewed interest especially if being 

used as payload in targeted therapy (for which highly active compound are of paramount 

interest). 

2.4 SELECTION OF ANTICANCER AGENTS AS SUBSTRATES 

As already said, substrates will be anticancer drugs already approved by the Food and Drug 

Administration, currently clinically used in human patients and whose activity is well known. A 

complete list of all the approved drugs was drawn up and two little groups of five and three 

compounds were selected. 

The first group, selected for method validation purpose, consists of molecules that are 

relatively cheap (less than 10€ per mg) and with a chemical structure that has a good number 

of functionalization sites. The first screening of all the selected procedures will be done on this 

group of model drugs.  

The second group consists of more expensive drugs (often more complex molecules) which 

are not practical for wide screening. Only the procedures that will give the best results with 

the first group will be performed on this second group. If the selected procedures show 

promising results also with the second group of drugs, then a quite larger number of 

compounds will be bought, functionalized and tested. 

Here the list of the selected anticancer drugs: the possible sites of functionalization are 

enlightened in red color, except for the inactivated C-H sites (for direct C-H activation) and 

other interesting hydrogen atoms (i.e. allylic H, acidic H, aromatic H). 
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FIRST GROUP MOLECULES 

ABIRATERONE132,133 

Figure 72. Chemical strucutre of Abiraterone. 

Brand names: Zytiga®, Abiratas®, Abretone®, Abirapro®; approved in 2011. 

Abiraterone is mainly used for treatment of metastatic castration-resistant prostate cancer in 

combination with Prednisone. It blocks the biosynthesis of androgens by inhibiting the 

CYP17A1 enzyme. It has only one secondary hydroxyl group, two double bonds and a pyridine 

moiety. 

 

OCTEOTRIDE134,135 

Figure 73. Chemical structure of Octeotride. 

Brand name: Sandostatin®; approved in 1998. 

Octeotride is an analog of natural somatostatine (growth hormone-inhibiting hormone) with a 

longer half-life. It is used for the treatment of growth hormone producing tumors, such as 

acromegaly and gigantism, and for pituitary tumors. 

Concerning our project, Octeotride will be the model molecule for the peptide drugs, it has 

primary and secondary alcohols, primary and secondary amines and three aromatic moieties 

(two benzyl and one indole). 
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It presents a diol (enlightened by the blu circle) suitable for the condensation with an 

appropriate aldehyde to give a 6-membered acetal ring with tunable stability in acidic media, 

according to the chosen aldehyde. 

 

PACLITAXEL136–138 

Figure 74. Chemical structure of Paclitaxel.  

Brand names: Taxol®, Abraxane®; approved in 1998. 

Paclitaxel is used to treat ovarian, breast, lung, pancreatic and other cancers. Its mechanism 

of action involves interference with the normal breakdown of microtubules during cell division, 

thus progression of mitosis is blocked. 

Paclitaxel has three phenyl rings to be functionalized, as well as three hydroxyl groups and a 

double bond. 

 

TOPOTECAN139,140 

Figure 75. Chemical structure of Topotecan. 

Brand name: Hycamtin®; first approval in 1996. 

It is used for treatment of ovarian cancer, lung cancer and other cancers. Topotecan activity 

consists in the inhibition of DNA topoisomerase I, leading to DNA damage. Besides two 

hydroxyl groups, Topotecan has a big conjugated part which includes two fused aromatic rings 

and a ketone conjugated to two double bonds. 
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VINBLATSINE141,142 

Figure 76. Chemical structure of Vinblastine. 

Brand names: Velban®, Velsar®; approved in 1961. 

Vinblastine is a mitotic inhibitor and its mechanism of action is the same as paclitaxel. It has a 

double bond, two not oxidable alcohols, a substituted phenyl and an indole. 

SECOND GROUP MOLECULES 

LEUPRORELIN143 

Figure 77. Chemical structure of Leuprorelin 

Brand name: Lupron®, Viadur®, Eligard®; approved in 1996. 

It is a potent gonadotropin-releasing hormone (GnRH) analog with a better affinity for the 

GnRH receptor and a longer half-life than the natural GnRH. Leuprorelin is currently used to 

treat prostate cancer and other diseases. This peptide has a phenolic moiety, as well as a 

primary alcohol, an indol, a guanidine and an imidazole ring. 
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SALINOMYCIN144–146 

Figure 78. Chemical structure of Salinomycin. 

Salinomycin is an antimicrobial drug in the first place and it functions as a ionophore. It has 

shown interesting anticancer activity on its own and in combination with other drugs 

(synergistic activity), but the mechanism of action is still unknown. It has only a double bond, 

a free acidic moiety and three different alcohols: a secondary, a tertiary and an allylic one. 

 

TEMSIROLIMUS147,148 

Figure 79. Chemical structure of Temsirolimus. 

Brand name: Toricel®; approved in 2007.  

Temsirolimus is an ester analog of natural rapamycin with antifungal, antitumor, and 

immunosuppressive activities. It inhibits the mTOR kinase activity leading to cell cycle arrest. 

It has four hydroxyl groups (two primary, one allylic and one emiketalic), an isolated double 

bond and three conjugated double bonds. It also presents a diol suitable for the formation of 

a cyclic acetal (blue circle).  
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3. PRELIMINARY RESULTS 

3.1 ISOMERIZATION OF PACLITAXEL 

While trying a late stage metal-free azidation on Paclitaxel,115 an isomer of the drug was 

obtained and the procedure was repeated on a bigger scale (20 mg). Proton NMR and high-

resolution mass analyses of Paclitaxel and its isomer are shown below (Cf. also Experimental 

Procedures, section 1.9, page 213). 

   
 

Chemical Formula Exact Mass Compound HR-MS Analysis 

C47H51NO14 853.33096 
Paclitaxel 853.33135 

Paclitaxel isomer 853.32930 

Table 27. HR-MS Analysis outcome of Paclitaxel and obtained Paclitaxel isomer. 

Figure 80. NMR spectra of Paclitaxel (in green) and its isomer (in red), with an interesting region 

enlightened (ppm 3,4 - 4,35). 

Paclitaxel

Paclitaxel isomer
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In first assay, cytotoxicity was found to be very similar: IC50 = 80 nM, compared to 40 nM of 

native paclitaxel, enough to continue the investigation and determine the structure of the 

isomer. Eventually, thanks to Dr. Jean-Marc Nuzillard (CNRS, Reims) it was found that the 

isomer obtained was the well-know 7-epi-paclitaxel (Figure 81), resulting from epimerization 

in acetonitrile/water mixture.149–151 The IC50 value found for the isomer corroborates the 

structure-activity relationship study of paclitaxel and its modifications.136 

Figure 81. Chemical structure of 7-epi-paclitaxel. 

Despite this not exciting result, it was assumed that the exposure to a solvent, combined with 

high temperature, could cause interesting changes in the structure of a complex molecule, like 

isomerization in the case of paclitaxel. These may also include rearrangement, solvent 

addition, oxidation, reduction and others depending on the solvent used. 

3.2 STABILITY TESTS FOR SOLVENTS AND TEMPERATURES 

Cytotoxic drugs of the first group (Abiraterone, Octeotride, Paclitaxel, Topotecan and 

Vinblastine) were solubilized in different solvents at increasing temperatures to: 

D. check their stability in the solvent-temperature conditions which will be used for the 

functionalization (i.e. if a drug is not stable under certain conditions required for a 

certain procedure, the drug will not be tested); 

E. find out if the exposure to a certain solvent and temperature is sufficient to promote 

chemical transformation, as speculated above. 

Solvents are chosen according to those required by the selected procedures: water, methanol 

(MeOH), pyridine (py), dimethyl sulfoxide (DMSO). Temperatures varies from room 

temperature (~23°C) to 110°C. Solutions were kept at the chosen temperature for one hour 

and then LC-MS was run (Figure 82 and Figure 83). 
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Figure 82. Selection of chromatograms of cytotoxic drugs. Vinblastine in DMSO shows degradation with 

increasing temperature, so procedures in DMSO at >70°C are discouraged. Abiraterone in the same 

solvent is stable even at 120°C.  
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Figure 83. Selection of chromatograms of cytotoxic drugs. The appearance of new interesting peaks is 

observed with Topotecan in both water and DMSO: profile changes remarkably with increasing 

temperature. For all the obtained chromatograms, see Appendix C, page 261)  
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4. CONCLUSION ON LATE STAGE FUNCTIONALIZATION 

An exhaustive bibliographic research for the newest and mildest procedures for the 

modification and/or functionalization of complex molecules has been done (updated to April 

2016), as well as a meticulous planification for the late stage functionalization of anticancer 

agents. 

A first test for stability in different solvents at increasing temperature has been carried out. At 

this point the project was paused and it will be likely resumed soon (Cf. next chapter) 

The late stage functionalization of anticancer agents as tool for the discovery of new improved 

drugs, as conceived herein, has all the features to be successful and to bring to the 

identification of at least one new molecule with improved anticancer activity and interest in 

the field of antibody-drug conjugates.  
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VI. CONCLUSIONS AND PERSPECTIVES 

The project presented in this thesis concern acid-catalysed abiotic reactions in biological 

system. Our aim was to design and test in mice an abiotic system for in vivo applications 

composed by i) a xenobiotic cyclic acetal substrate stable in biological conditions and cleavable 

at abiotic acidic pH, ii) a corresponding biocompatible heterogeneous acid catalyst active in a 

buffered media. 

We started from the design of the cleavable cyclic acetal substrate with the objective to define 

an acetal model which, by slight modifications of its structure, shows tuneable reactivity 

towards acid catalysed hydrolysis. Moreover, we wanted also to present one hydrophobic and 

one hydrophilic acetals with the same core and acido-lability profile in order to use them to 

explore different combination with hydrophobic and hydrophilic heterogeneous catalysts. 

Keeping in mind that we were going to perform reactions in biologically relevant conditions, 

we identified FRET probes as the hydrophobic substrate which would allow us to monitor the 

formation of the product in low concentrated solutions. 

Thus, we identified a total of nine 5- and 6-membered cyclic acetals showing a panel of acido-

lability, from very stable acetals (to be employed as non-cleavable linkers) to acetals cleavable 

at pH > 4.5 in cells (to be employed as cleavable linkers). Acetals named F-APNM5 and PEGAM5 

were found to be stable in the physiological pH range and hydrolysable at pH < 4, they are 

hydrophobic and hydrophilic, respectively, and were thus identified as the substrates for the 

abiotic reaction system. 

The most challenging and ambitious part of this project was the search for a heterogeneous 

acid catalyst which was able to maintain its acidity confined in a micro-environment and to not 

affecting the buffered pH of biological media. We wanted to identify two catalyst of different 

nature: i) a hydrophobic catalyst, which would have been paired with the hydrophobic FRET 

acetal substrate F-APNM5; ii) a hydrophilic catalyst, which would have been paired with the 

hydrophilic acetal PEGAM5. 

In the first case we identified Nafion NR50 as the hydrophobic catalyst and we developed a 

washing pre-treatment consisting in a partial neutralization of the sulfonic acid functions by 

cationic exchange. This pre-washing allowed to mitigate the acidity of the resin without 

however totally inhibiting its hydrolytic activity. We demonstrated that “Nafion-90” (pre-treated 

Nafion NR50) in plasma was able to adsorb the FRET probe and catalyse the hydrolysis without 
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changing the pH of plasma. A confocal microscopy analysis using pH-sensitive ratiometric 

probe confirmed that the washing pre-treatment affects the inner acidity of the catalyst. 

Regarding the hydrophilic catalyst, Dr. Becht and Dr. Balan of the Institute of Materials of 

Mulhouse, collaborated with us in the design and production of a tailored PEG-based polymer 

cross-linked with a sulfonic acid of our choice. We tested different formulations and forms and 

we found that a 20 wt.% content of AASA was the right balance between a too high content of 

acid (that would acidify the biofluid) and not enough acidic content to promote the reaction. 

Preliminary results were promising and we could work on the further optimization of the 

catalyst performances. Unfortunately, at the time of this thesis, the collaboration with Dr. 

Balan was interrupted. We hope that we will have the possibility to work again for the 

improvement of the catalyst. 

Regarding the first in vivo proof of concept of our system, we planned the experiments, 

prepared both the catalyst and the FRET substrate and we were ready to start the experiment. 

Regrettably, the authorization to perform surgery on mice (i.e. the implantation of Nafion-90 

beads) is currently pending. However, with the in vivo experiment being already planned, we 

will perform it as soon as we get all the permissions. 

Finally, we thought also about possible applications in cancer therapy. Since the reaction 

catalysed is a bond breaking reaction, the acetal model could be applied to anticancer drugs 

presenting a suitable diol in their chemical structure. By condensation with the proper 

aldehyde, we could generate a pro-drug which could be selectively cleaved by our catalyst. The 

latter would be implanted on a chosen site, i.e. next to tumoral tissue. 

Toward this goal, at the beginning of this thesis project we laid the foundations for a systematic 

late stage functionalization of anticancer agents, during which we selected two anticancer 

drugs with a diol function exploitable for the condensation with the suitable aldehyde. This 

project was, in fact, stopped at its very beginning because it consisted in the repetitive 

screening of late-stage functionalization procedures and we thought that is was not suited as 

PhD project. 

We condensed the results obtained by this research and envisaged applications in the next 

figure.  
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VI. CONCLUSIONS ET PERSPECTIVES 

Le projet présenté dans cette thèse concerne les réactions abiotiques catalysées par un acide 

dans les systèmes biologiques. Notre objectif était de concevoir et de tester chez la souris un 

système abiotique pour applications in vivo composé de i) un substrat acétal cyclique 

xénobiotique stable dans des conditions biologiques et clivable à pH acide abiotique, ii) un 

catalyseur acide hétérogène correspondant biocompatible, actif dans un milieu tamponné. 

Nous avons commencé par la conception du substrat acétal cyclique clivable dans le but de 

définir un modèle acétal qui, par de légères modifications de sa structure, montre une 

réactivité ajustable à l'hydrolyse catalysée par un acide. De plus, nous voulions également 

présenter un acétal hydrophobe et un acétal hydrophile ayant le même noyau et le même 

profil d’acidolabilité afin de les utiliser pour explorer différentes combinaisons avec des 

catalyseurs hétérogènes hydrophobes et hydrophiles. 

Gardant à l'esprit que nous allions effectuer des réactions dans des conditions biologiquement 

pertinentes, nous avons identifié les sondes FRET comme substrat hydrophobe, ce qui nous 

permettrait de surveiller la formation du produit dans des solutions faiblement concentrées. 

Ainsi, nous avons identifié un total de neuf acétals cycliques à 5 et 6 chaînons présentant un 

panel d'acidolabilité, allant d'acétals très stables (à utiliser comme agents de liaison non 

clivables) à des acétals clivables à un pH> 4,5 dans les cellules (à éliminer). utilisés comme 

agents de liaison clivables). Les acétals nommés F-APNM5 et PEGAM5 se sont révélés stables 

dans la gamme de pH physiologique et hydrolysables à pH <4, ils sont hydrophobes et 

hydrophiles, respectivement, et ont donc été identifiés comme les substrats du système de 

réaction abiotique. 

La partie la plus difficile et ambitieuse de ce projet a été la recherche d’un catalyseur acide 

hétérogène capable de maintenir son acidité confinée dans un micro-environnement et de ne 

pas affecter le pH tamponné des milieux biologiques. Nous voulions identifier deux 

catalyseurs de nature différente : i) un catalyseur hydrophobe, qui aurait été couplé avec le 

substrat d'acétal hydrophobe FRET F-APNM5; ii) un catalyseur hydrophile, qui aurait été couplé 

avec l'acétal hydrophile PEGAM5. 

Dans le premier cas, nous avons identifié le Nafion NR50 comme catalyseur hydrophobe et 

nous avons mis au point un prétraitement de lavage consistant en une neutralisation partielle 

des fonctions acide sulfonique par échange cationique. Ce prélavage a permis d'atténuer 
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l'acidité de la résine sans toutefois inhiber totalement son activité hydrolytique. Nous avons 

démontré que «Nafion-90» (Nafion NR50 prétraité) dans le plasma était capable d'adsorber la 

sonde FRET et de catalyser l'hydrolyse sans modifier le pH du plasma. Une analyse par 

microscopie confocale utilisant une sonde ratiométrique sensible au pH a confirmé que le 

prétraitement de lavage affecte l'acidité interne du catalyseur. 

En ce qui concerne le catalyseur hydrophile, MM. Becht et Balan de l’Institut des matériaux de 

Mulhouse ont collaboré avec nous à la conception et à la production d’un polymère sur mesure 

à base de PEG réticulé avec un acide sulfonique de notre choix. Nous avons testé différentes 

formulations et formes et nous avons constaté qu'une teneur de 20% en poids d'AASA 

constituait le bon équilibre entre une teneur trop élevée en acide (qui acidifierait le biofluide) 

et une teneur en acide insuffisante pour favoriser la réaction. Les résultats préliminaires 

étaient prometteurs et nous pourrions travailler sur l'optimisation ultérieure des 

performances du catalyseur. Malheureusement, au moment de cette thèse, la collaboration 

avec le Dr. Balan a été interrompue. Nous espérons que nous aurons la possibilité de travailler 

à nouveau pour l’amélioration du catalyseur. 

En ce qui concerne la première preuve de concept in vivo de notre système, nous avons 

planifié les expériences, préparé le catalyseur et le substrat de FRET, et nous étions prêts à 

commencer l'expérience. Malheureusement, l'autorisation de procéder à une intervention 

chirurgicale sur des souris (c'est-à-dire l'implantation de billes de Nafion-90) est en attente. 

Cependant, l'expérience in vivo étant déjà planifiée, nous la réaliserons dès que toutes les 

autorisations seront obtenues. 

Enfin, nous avons également réfléchi aux applications possibles du traitement du cancer. 

Comme la réaction catalysée est une réaction de rupture de liaison, le modèle acétal pourrait 

être appliqué à des médicaments anticancéreux présentant un diol approprié dans leur 

structure chimique. Par condensation avec l'aldéhyde approprié, nous pourrions générer un 

pro-médicament pouvant être clivé sélectivement par notre catalyseur. Ce dernier serait 

implanté sur un site choisi, c’est-à-dire à côté du tissu tumoral. 

Dans ce but, nous avons, au début de ce projet de thèse, jeté les bases d’une fonctionnalisation 

systématique des agents anticancéreux à un stade avancé, au cours de laquelle nous avons 

sélectionné deux médicaments anticancéreux ayant une fonction diol exploitable pour la 

condensation avec l’aldéhyde approprié. En fait, ce projet a été arrêté à ses débuts, car il 
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consistait en un filtrage répétitif des procédures de fonctionnalisation en phase finale et nous 

avons pensé que ce n’était pas un projet de thèse. 

Nous avons condensé les résultats obtenus par cette recherche et les applications envisagées 

dans la figure 84 (page 167).  
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1. CHEMICAL SYNTHESES 

1.1 GENERAL EXPERIMENTAL PROCEDURES 

Unless otherwise indicated, reactions were carried out under an atmosphere of argon in 

flame-dried glassware with magnetic stirring. Air and/or moisture-sensitive liquids were 

transferred via syringe. When required, solutions were degassed by bubbling of argon through 

a needle. Organic solutions were concentrated by rotary evaporation at 25-60 °C at 15-30 torr. 

Analytical thin layer chromatography (TLC) was performed using plates cut from glass sheets 

(silica gel 60F-254 from Merck). Visualization was achieved under a 254 or 365 nm UV light and 

by immersion in an appropriate revelation solution. Column chromatography was carried out 

as “Flash Chromatography” using silica gel G-25 (40-63 µm) from Macherey-Nagel and using a 

mixture cyclohexane-ethyl acetate in a gradient from 100% cyclohexane to 100% ethyl acetate, 

unless otherwise specified. 

Reactions with cytotoxic substrates were carried out using standard protocol for cytotoxic 

material handling, monitored with LC-MS and purified by preparative HPLC.  

1.2 MATERIALS AND METHODS 

All reagents were obtained from commercial sources and used without any further 

purifications. Anhydrous solvents used in experiments were obtained from Sigma-Aldrich or 

Alfa Aesar. Cytotoxic drugs were purchased from Selleckchem and used without further 

purification. 

LC-MS analyses were performed on a Water alliance 2695 Separation Module coupled with a 

Waters 2487 Dual  Absorbance Detector and a Waters Acquity QDa Detector (ESI ionization). 

Water/ACN (containing 0.05% TFA) was used as eluent system. The gradient applied was 5% to 

95% ACN in 5 minutes and 2 minutes of re-equilibration. Detection was done at 254 nm and 

210 nm. 

1H and 13C NMR spectra were recorded respectively at 400 MHz and 100 MHz with a Bruker 

400 spectrometer at 23 °C. Chemical shifts are reported in parts per million (δ) and calibrated 

using residual non-deuterated solvent. Data are represented as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = 

broad or a combination of the above), coupling constant (J, Hz) and integration.  

High resolution mass spectra were obtained using an Agilent Q-TOF (time of flight) 6520. Low 

resolution mass spectra were obtained using an Agilent MSD 1200 SL (ESI/APCI) with a Agilent 

HPLC1200 SL and a Waters Acquity QDa (ESI) with a Waters Alliance 2695 HPLC. 

Preparative HPLC procedures were performed on semi-preparative HPLC Shimadzu Auto-

injector SIL-10A (pump: Shimadzu LC-8A, UV-Vis detector: Shimadzu SPD-10A, collector: 

Shimadzu fraction collector FRC-10A) using a Sunfire C18 (150 mm × 19 mm i.d., 5 μm, Waters) 

at a flow of 17 mL/min.  1 mL of sample was injected and water/ACN (containing 0.05% TFA or 
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0.025 mM ammonium formate) was used as eluent system, unless otherwise specified. The 

gradient applied was 5% to 95% ACN in 40 minutes and 10 minutes of re-equilibration. 

Detection was done at 550 nm for TAMRA derivatives. 

1.3 SYNTHESIS OF APN6 AND APNM5 

1.3.1 APN6 

APNM6 was synthetized by Dr. Igor Dovgan. 

1H NMR (400 MHz, MeOD-d4, δ ppm): 7.55 - 7.67 (m, J = 8.3 Hz, 2 H), 7.41 - 7.52 (m, J = 8.3 Hz, 

2 H), 5.42 (s, 1 H), 4.32 (dd, J = 11.8, 4.8 Hz, 2 H), 3.92 (t, J = 11.5 Hz, 2 H), 2.87 - 3.07 ppm  

(m, 1 H). 

13C NMR (101 MHz, MeOD-d4, δ ppm): 171.5, 142.3, 133.1, 126.6, 117.4, 104.6, 99.8, 82.4, 67.8, 

61.9, 39.8. 
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1.3.2 First attempts of APNM5 synthesis 

Scheme EP 1. Failed attempts of synthesis of APNM5.  
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methyl 4-iodo-2-methoxybenzoate, 2 

A 25 mL two-necked round bottom flask equipped with nitrogen inlet adapter was charged 

with 4-Iodo-2-methoxybenzoic acid 1 (1 eq., 200 mg, 0.719 mmol) in MeOH (5 mL) to give a 

colourless solution. The reaction mixture was cooled at about 0 °C for about 20 min. Thionyl 

chloride (3 eq., 256 mg, 156 μL, 2.16 mmol) was added slowly via syringe. The resulting solution 

was allowed to stir at r.t. for about 18 h. 

The mixture was concentrated and re-dissolved in EtOAc (20 mL). The solution was washed 

with saturated NaHCO3 solution (1 x 20 mL) and saturated NaCl solution (1 x 20 mL). The 

organic phase was dried over MgSO4, filtered and concentrated to give a brown oil. Purification 

through a short silica column gave compound 2 (183 mg, 0.627 mmol, 87%) as a yellow oil. 
1H NMR (400 MHz, CDCl3, δ ppm): 7.50 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.31 (s, 1H), 

3.89 (s, 3H), 3.87 (s, 3H). 
13C NMR (101 MHz, CDCl3, δ ppm): 166.10, 159.26, 132.78, 129.57, 121.65, 119.62, 99.97, 56.33, 

52.14. 

 

methyl 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxybenzoate, 3 

Methyl 4-iodo-2-methoxybenzoate 2 (1 eq., 210 mg, 0.719 mmol) and 2-propyn-1-ol (2 eq., 80.6 

mg, 85 μL, 1.44 mmol) were dissolved in a 1:1 amount of THF and TEA (6 mL in total). The 

solution was degassed and purged with argon. Dichlorobis (triphenylphosphine) palladium 

(0.01 eq., 5.05 mg, 0.00719 mmol) and CuI (0.02 eq., 2.74 mg, 0.0144 mmol) were added and 

the solution was degassed again. The reaction mixture was stirred at 25°C under argon for 14 

hours.  

Then the mixture was diluted with DCM, washed with sat. NH4Cl, and deionized water. The 

organic phase was dried over MgSO4, filtered and concentrated under reduced pressure to 

give methyl 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxybenzoate (133 mg, 0.604 mmol, 84%) as an 

orange solid. 
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1H NMR (400 MHz, CDCl3, δ ppm): 7.97 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 85.3 Hz, 1H), 7.26 (s, 1H), 

4.74 (s, 2H), 4.13 (s, 3H), 4.12 (s, 3H). 
13C NMR (101 MHz, CDCl3, δ ppm): 166.13, 158.85, 131.73, 127.70, 123.44, 120.10, 115.10, 

89.62, 84.93, 56.11, 52.15, 51.59. 

 

methyl 4-(cyanoethynyl)-2-methoxybenzoate, 4 

To the solution of methyl 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxybenzoate (1 eq., 120 mg, 

0.545 mmol) in THF (15 mL) was added MgSO4 (30 eq., 1967 mg, 16.3 mmol), NH3 (1.05 eq., 2 

M in isopropanol, 0.286 mL, 0.572 mmol) and MnO2 (30 eq., 1421 mg, 16.3 mmol) . After stirring 

the mixture at 25°C for 48 hours, TLC (EtOAc/Cy : 1/9) showed only traces of the starting 

compound, the intermediary imine as main compound and no traces of the product. 

 

4-iodo-2-methoxybenzaldehyde, 7 

I) Thionyl chloride (10 eq., 2010 mg, 1.225 mL, 16.9 mmol) was added to a solution of 4-Iodo-

2-methoxybenzoic acid 1 (1 eq., 470 mg, 1.69 mmol) in DCM (10 mL). The mixture was refluxed 

for 2 hours and the completeness of reaction was controlled by TLC. 

Residual SOCl2 and DCM were evaporated, 4-iodo-2-methoxybenzoyl chloride was obtained as 

a crude brown oil and was used in the next step without further purification. If needed to be 

stored, special precaution should be taken to avoid moisture. 

II) A solution of 4-iodo-2-methoxybenzoyl chloride (1 eq., 500 mg, 1.69 mmol) in THF (25 mL) 

was cooled to -78°C. Lithium tri-tert-butoxyaluminum hydride (2 eq., 1 M in THF, 3.37 mL, 3.37 

mmol) was added dropwise in 10 minutes. The solution was stirred for another 5 minutes, 

then saturated NaHCO3 (20 mL) was added. The obtained reaction mixture was left stirring for 

several minutes to let all aluminiuim salt to precipitate and organic phase was decanted. The 

aqueous phase was extracted with Et2O. United organic phases were washed with saturated 
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NaHCO3 and brine, dried over MgSO4 and evaporated to give (4-iodo-2-

methoxyphenyl)methanol as crude product. 

III) The crude product was resolubilized in DCM, then MnO2 (10 eq., 1466 mg, 16.9 mmol) and 

MgSO4 (10 eq., 2029 mg, 16.9 mmol) were subsequently added. The obtained reaction mixture 

was left stirring overnight at room temperature, then filtered through celite (washed 

thoroughly with three portions of DCM), evaporated and purified by flash chromatography to 

give 4-iodo-2-methoxybenzaldehyde (393 mg, 1.50 mmol, 89 %) as a white solid. 
1H NMR (400 MHz, CDCl3, δ ppm): 10.40 (s, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 

7.36 (s, 1H), 3.93 (s, 3H). 

13C NMR (101 MHz, CDCl3, δ ppm): 189.07, 161.46, 130.33, 129.52, 124.33, 121.37, 103.37, 

56.01. 

 

butyl 2,3-dihydroxypropanoate, 23 

A solution of picolinic acid (0.018 eq., 18 mM, 15.6 mL) in acetone and a solution of manganese 

(II) acetate (0.003 eq., 3 mM, 15.6 mL) in acetone were added subsequently to a solution of 

butyl acrylate (1 eq., 2 g, 15.6 mmol) in acetone (50 mL) at r.t. Then a solution of sodium acetate 

(0.03 eq., 0.6 M, 0.78 mL) in water was added to the reaction mixture and the temperature was 

lowered to 0 °C. 3.54 mL of 30% aqueous solution of H2O2 (2 eq., 31.2 mmol) was added using 

a syringe pump at a rate of 0.5 mL/h. The resulting mixture was stirred for 16 h allowing the 

temperature to raise to r.t. After the reaction was complete, the mixture was poured in 

saturated aqueous solution of NaHCO3, the aqueous layer was extracted with DCM, the 

combined organic layers were dried over Na2SO4 and the solvent was evaporated under 

reduced pressure. The residue was filtrated on a silica pad using cyclohexane to remove the 

remaining starting material and then using ethyl acetate to obtain 23 as a dense transparent-

white liquid in 71% yield. 

1H NMR (400MHz, CDCl3, δ ppm): 4.25 (t, J = 3.4 Hz, 1H), 4.20 (t, J = 6.7 Hz, 2H), 3.85 (ddd, J = 

15.6, 11.7, 3.5 Hz, 2H), 3.58 (br. s., 1H), 2.78 (br. s., 1H), 1.70 – 1.56 (m, 2H), 1.45 – 1.31 (m, 2H), 

0.92 (t, J = 7.4 Hz, 3H).  
13C NMR (100MHz, CDCl3, δ ppm): 173.13, 71.72, 65.93, 64.14, 30.53, 19.00, 13.62. 

HR-ESI-MS C7H14O4 162.08921 found 162.08853 
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butyl 2-(4-iodo-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate, 8 

To a mixture of butyl 2,3-dihydroxypropanoate 23 (1 eq., 92.8 mg, 0.572 mmol) and 4-iodo-2-

methoxybenzaldehyde (1 eq., 150 mg, 0.572 mmol) in toluene (5.72 mL), p-toluenesulfonic acid 

monohydrate (0.1 eq., 10.9 mg, 0.0572 mmol) was added. The mixture was refluxed overnight, 

water was removed as azeotrope with toluene. 

Solvent was evaporated under reduced pressure and the residue was re-dissolved in EtOAc, 

washed with a saturated solution of NaHCO3 and brine. The organic phase was dried over 

Na2SO4, evaporated and the residue purified by flash chromatography (EtOAc/cyclohexane 

1:9) to give butyl 2-(4-iodo-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate (65 mg, 0.16 mmol, 

27.95 %) as clear liquid in a 1:1 mixture of cis and trans isomers. 100 mg of starting material 

(iodo-2-methoxy benzaldehyde) were recovered. 

A portion of cis and trans isomers were separated for the NMR characterization. 

 

(trans) 

butyl (2S,4R)-2-(4-iodo-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate  

+ enantiomer (2R, 4S) 
1H NMR (400 MHz, CDCl3, δ ppm): 7.39 (d, J = 8.6 Hz, 1H), 7.36 (s, 1H), 7.30 (d, J = 8.1 Hz, 1H), 

6.34 (s, 1H), 4.80 (t, J = 6.4 Hz, 1H), 4.43 (t, J = 7.9 Hz, 1H), 4.26 (t, J = 6.6 Hz, 2H), 4.11 (dd, J = 8.0, 

5.9 Hz, 1H), 3.89 (s, 3H), 1.76 – 1.68 (m, 2H), 1.51 – 1.39 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). 

 

(cis) 

butyl (2S,4S)-2-(4-iodo-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate  

+ enantiomer (2R, 4R) 
1H NMR (400 MHz, CDCl3, δ ppm): 7.59 (d, J = 8.1 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.26 (s, 1H), 

6.26 (s, 1H), 4.73 (dd, J = 7.4, 3.4 Hz, 1H), 4.39 (dd, J = 8.7, 3.4 Hz, 1H), 4.28 (t, J = 8.2 Hz, 1H), 4.24 

– 4.18 (m, 2H), 3.89 (s, 3H), 1.68 (dt, J = 14.6, 7.2 Hz, 2H), 1.40 (dt, J = 14.8, 7.4 Hz, 2H), 0.98 (t, J = 

7.6 Hz, 3H). 
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butyl 2-(4-(3-hydroxyprop-1-yn-1-yl)-2-methoxyphenyl)-1,3-dioxolane-4- 

carboxylate, 9 

Butyl 2-(4-iodo-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate 8 (1 eq., 60 mg, 0.148 mmol) 

and 2-propyn-1-ol (2 eq., 16.54 mg, 17.4 µL, 0.296 mmol) were dissolved in a 1:1 amount of 

THF and TEA. The solution was degassed and purged with argon. Dichlorobis 

(triphenylphosphine) palladium (0.01 eq., 1.12 mg, 0.0016 mmol) and CuI (0.02 eq., 0.61 mg, 

0.0032 mmol) were added and the solution was degassed again. The reaction mixture was 

stirred at 25°C under argon for 14 hours.  

Then the mixture was diluted with DCM, washed with sat. NH4Cl, and deionized water. The 

organic phase was dried over MgSO4, filtered and concentrated under reduced pressure to 

give methyl 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxybenzoate 9 (36 mg, 0.108 mmol, 73%) in a 

1:1 mixture of cis and trans isomers, as a colourless liquid. 
1H NMR (400 MHz, CDCl3, δ ppm): 7.75 (d, J = 7.8 Hz, 1H, trans), 7.45 (d, J = 7.8 Hz, 1H, cis), 7.07 

(d, J = 8.0 Hz, 1H, cis), 7.04 (d, J = 8.4 Hz, 1H, trans), 6.95 (s, 2H, cis + trans), 6.32 (s, 1H, trans), 

6.23 (s, 1H, cis), 4.76 (t, J = 6.4 Hz, 1H, trans), 4.68 (dd, J = 7.5, 3.4 Hz, 1H, cis), 4.49 (m, 1H, cis), 

4.47 (s, 4H, cis + trans), 4.39 (t, J = 7.9 Hz, 1H, trans), 4.34 (dd, J = 8.7, 3.4 Hz, 1H, cis), 4.27 – 4.14 

(m, 4H, cis + trans), 4.06 (dd, J = 8.0, 6.0 Hz, 1H, trans), 3.82 (s, 3H, trans), 3.82 (s, 3H, cis), 1.71 – 

1.57 (m, 4H, cis + trans), 1.40 – 1.31 (m, 4H, cis + trans), 0.92 (m, 6H, cis + trans). 

 

butyl 2-(4-(cyanoethynyl)-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate, 10 

To the solution of butyl 2-(4-(3-hydroxyprop-1-yn-1-yl)-2-methoxyphenyl)-1,3-dioxolane-4-

carboxylate 9 (1 eq., 36 mg, 0.107 mmol) in THF was added MgSO4 (30 eq., 386.4 mg, 3.21 

mmol), NH3 (1.05 eq., 2 M in isopropanol, 56.5 µL, 0.113 mmol) and MnO2 (30 eq., 279 mg, 3.21 

mmol). After stirring the mixture at 25 °C for 24 hours, TLC analysis (EtOAc/Cy : 1/9) showed 

only traces of the product. MgSO4, MnO2 and NH3 were added (15, 15 and 1 eq. respectively) 

and the reaction mixture was stirred for 24 hours without any improvement. 
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1.3.2 Final strategy for APNM5 synthesis 

Scheme EP 2. Synthesis of APNM5. Final strategy. 

tert-butyl 4-iodo-2-methoxybenzoate, 11 

I) Thionyl chloride (10 eq., 4.07 g, 2.48 mL, 34.17 mmol) was added to a solution of 4-Iodo-2-

methoxybenzoic acid (1 eq., 950 mg, 3.417 mmol) in DCM. The mixture was refluxed for 2 hours 

and the completeness of reaction was controlled by TLC. Residual SOCl2 and DCM were 

evaporated, of 4-iodo-2-methoxybenzoyl chloride was obtained as a crude brown oil (1g) and 

was used in the next step without further purification. If needed to be store, special precaution 

was taken to avoid moisture. 

II) The crude was dissolved in THF and cooled down to 0 °C. A 0.6 mM solution of potassium 

tert-butoxide (1.1 eq., 422 mg, 3.76 mmol) in dry THF was added dropwise. The temperature 
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was not allowed to raise over 5 °C. The reaction mixture was stirred for one hour and then the 

excess of potassium tert-butoxide was carefully quenched with water. The solution was 

concentrated, and the product was extracted with diethyl ether. The organic phase was 

washed with 5% aqueous solution of NaOH and brine, dried over Na2SO4, evaporated and the 

residue purified by flash chromatography to give tert-butyl 4-iodo-2-methoxybenzoate (762 

mg, 67%) as a yellowish solid. 

1H NMR (400 MHz, CDCl3, δ ppm): 7.42 (d, J = 8.1 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 5.1 

Hz, 1H), 3.88 (s, 3H), 1.57 (s, 10H). 
13C NMR (101 MHz, CDCl3, δ ppm): 164.78, 159.28, 132.52, 129.41, 121.65, 99.03, 81.42, 56.30, 

28.25. 

 

tert-butyl 2-methoxy-4-((trimethylsilyl)ethynyl)benzoate, 12 

Tert-butyl 4-iodo-2-methoxybenzoate 11 (1 eq., 762 mg, 2.28 mmol) and ethynyltrimethylsilane 

(1.1 eq., 190.45 mg, 2.51 mmol) were dissolved in a 1:1 amount of THF and TEA. The solution 

was degassed and purged with argon. Dichlorobis (triphenylphosphine) palladium (0.025 eq., 

40.13 mg, 0.057 mmol) and CuI (0.05 eq., 21.7 mg, 0.114 mmol) were added and the solution 

was degassed again. The reaction mixture was stirred at 25 °C under argon for 14 hours.  

Then the mixture was diluted with DCM, washed with sat. NH4Cl, and brine. The organic phase 

was dried over Na2SO4, filtered and concentrated under reduced pressure. Flash 

chromatography purification gave  tert-butyl 2-methoxy-4-((trimethyl silyl)ethynyl)benzoate 12 

(650 mg, 2.13 mmol, 94%) as an orange oil. 

1H NMR (400 MHz, CDCl3, δ ppm): 7.66 (d, J = 7.8 Hz, 1H), 7.08 – 6.98 (m, J = 9.7, 1.6 Hz, 2H), 

3.89 (s, 3H), 1.57 (s, 9H), 0.26 (s, 9H). 
13C NMR (101 MHz, CDCl3, δ ppm): 164.92, 158.96, 131.49, 127.69, 123.83, 122.07, 115.51, 

104.37, 96.66, 81.43, 56.21, 28.40, 0.03. 
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tert-butyl 4-ethynyl-2-methoxybenzoate, 13 

Tetrabutylammonium fluoride (1.1 eq., 1M solution in THF, 2.35 mL, 2.347 mmol) was added 

to a solution of tert-butyl 2-methoxy-4-((trimethylsilyl)ethynyl)benzoate 11 (1 eq., 642 mg, 2.108 

mmol) in dry THF at 0 °C. The reaction mixture was let to stir for 5 minutes after then saturated 

aqueous NH4Cl and water were added (2X volume of THF). The product was extracted with 

EtOAc and washed with brine. The organic phase was dried over Na2SO4, filtered and 

concentrated under reduced pressure. Purification by flash chromatography gave tert-butyl 4-

ethynyl-2-methoxybenzoate (490 mg, quant. yield) as a yellowish oil. 

1H NMR (400 MHz, CDCl3, δ ppm): 7.67 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 9.4 Hz, 1H), 7.06 (s, 1H), 

3.89 (s, 3H), 3.17 (s, 1H), 1.58 (s, 9H). 
13C NMR (101 MHz, CDCl3, δ ppm): 164.75, 158.77, 131.37, 126.44, 123.85, 122.49, 115.59, 

82.99, 81.40, 79.01, 56.09, 28.26. 

 

tert-butyl 4-(cyanoethynyl)-2-methoxybenzoate, 14 

tert-butyl 4-ethynyl-2-methoxybenzoate 13 (1 eq., 489 mg, 2.108 mmol), 2,2′-Azobis(2-methyl 

butyronitrile) (AMBN, 2 eq., 810 mg, 4.217 mmol) and copper(II) nitrate trihydrate (0.2 eq., 102 

mg, 0.422 mmol) were dissolved in acetonitrile. The temperature was raised to 80°C and air 

supply was ensured. The colour of the solution went from yellow to dark green. The 

disappearance of starting material was checked by LC-MS and the presence of the product was 

confirmed by treatment of a sample with cysteine. After 6 hours, the solvent was evaporated, 

water was added and the product was extracted with ethyl acetate. The organic phase was 

dried over Na2SO4, filtered and concentrated under reduced pressure. Purification by flash 

chromatography gave tert-butyl 4-(cyanoethynyl)-2-methoxybenzoate 14 (260 mg, 1.01 mmol, 

48%) as a transparent oil. 
1H NMR (400 MHz, CDCl3, δ ppm): 7.69 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 7.9 Hz, 1H), 7.14 (s, 1H), 

3.91 (s, 3H), 1.58 (s, 9H). 
13C NMR (101 MHz, CDCl3, δ ppm): 164.28, 158.50, 131.47, 125.29, 121.24, 120.75, 116.35, 

105.17, 82.21, 81.89, 64.18, 56.26, 28.21. 
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4-(cyanoethynyl)-2-methoxybenzoic acid, 15 

Trifluoroacetic acid (TFA, 3 mL) was added to a solution of tert-butyl 4-(cyanoethynyl)-2-

methoxybenzoate 14 (247 mg, 0.96 mmol) in dichloromethane. The solution was stirred at 

room temperature for three hours. The reaction was checked with TLC and the presence of 

the product was confirmed by treatment of a sample with cysteine followed by LC-MS analysis. 

TFA in excess and solvent were evaporated and the crude product was purified by flash 

chromatography. 4-(cyanoethynyl)-2-methoxybenzoic acid 15 was obtained as a colourless 

liquid (192 mg, quant. yield). 

1H NMR (400 MHz, MeOD-d4, δ ppm): 7.71 (d, J = 7.7 Hz, 1H), 7.35 (s, 1H), 7.25 (d, J = 7.7 Hz, 

1H), 3.82 (s, 3H). 
13C NMR (101 MHz, MeOD-d4, δ ppm): 158.57, 131.43, 125.13, 121.60, 116.51, 104.37, 81.44, 

62.77, 55.44. 

 

3-(4-formyl-3-methoxyphenyl)propiolonitrile, 16 

I) Thionyl chloride (10 eq., 384.27 mg, 0.23 mL, 3.23 mmol) was added to a solution of 4-

(cyanoethynyl)-2-methoxybenzoic acid 15 (1 eq., 65 mg, 0.323 mmol) in DCM. The mixture was 

refluxed for 2 hours and the completeness of reaction was controlled by TLC. 

Residual SOCl2 and DCM were evaporated, crude intermediary product 4-(cyanoethynyl)-2-

methoxybenzoyl chloride was obtained as a brown oil and was used in the next step without 

further purification. If needed to be store, special precaution was taken to avoid moisture. 

II) A solution of 4-(cyanoethynyl)-2-methoxybenzoyl chloride (crude, 1 eq., 71 mg, 0.323 mmol) 

in THF was cooled to -78 °C. Lithium tri-tert-butoxyaluminum hydride (2 eq., 1 M in THF, 646 

µL, 0.646 mmol) was added dropwise in 10 minutes. The solution was stirred for another 5 

minutes, then saturated NaHCO3 was added. The obtained reaction mixture was left stirring 

for several minutes (to let all aluminium salt to precipitate), organic phase was decanted. Et2O 
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was added to the reaction mixture, then decanted. United organic phases were washed with 

sat NaHCO3 and brine, dried over MgSO4 and evaporated to give 3-(4-(hydroxymethyl)-3-

methoxyphenyl) propiolonitrile as crude product. 

III) The crude 3-(4-(hydroxymethyl)-3-methoxyphenyl) propiolonitrile (1 eq., 55 mg, 0.294 

mmol) was resolubilized in DCM, then MnO2 (10 eq., 256 mg, 2.94 mmol) and MgSO4 (10 eq., 

354 mg, 2.94 mmol) were subsequently added. The obtained reaction mixture was left stirring 

overnight at room temperature, then filtered through celite, washed thoroughly with three 

portions of DCM. The solvent was evaporated and the crude material was purified by flash 

chromatography to give 3-(4-formyl-3-methoxyphenyl)propiolonitrile 16 (46,5 mg, 0.251 mmol, 

85 %) as a white solid. 
1H NMR (400 MHz, CDCl3, δ ppm): 7.85 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.21 (s, 1H), 

3.97 (s, 1H). 

 

butyl 2-(4-(cyanoethynyl)-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate, 10 

3-(4-formyl-3-methoxyphenyl)propiolonitrile (1 eq., 46.5 mg, 0.251 mmol) and butyl 2,3-

dihydroxypropanoate (1 eq., 40.7 mg, 0.251 mmol) were dissolved in EtOAc and concentrated 

using rotary evaporator in bath conditioned at room temperature. The 

dissolving/concentration steps were repeated 3 times. The reaction was monitored by LC-MS. 

After third evaporation the peak of aldehyde completely disappeared and there were two close 

peaks of cis and trans product (1:1). Increase of bath temperature (up to 40°C) leads to 

production of only a trans-isomer. Then EtOAc was added and the solution was washed with 

NaHCO3, H2O, dried over MgSO4 and concentrated in vacuo. Silica gel flash chromatography 

was performed (Cyclohexane/EtOAc) to give butyl 2-[4-(2-cyanoethynyl)-2-methoxyphenyl]-

1,3-dioxolane-4-carboxylate (60 mg, 0.182 mmol, 72.6 %) as a mixture of cis and trans isomers 

(white solid). A portion of cis and trans isomers were separated for the NMR characterization. 

(trans) 

butyl (2R,4S)-2-(4-(cyanoethynyl)-2-methoxyphenyl)-1,3-dioxolane-4- 

carboxylate 

+ enantiomer (2S, 4R) 
1H NMR (400 MHz, CDCl3, δ ppm): 7.57 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 10.9 Hz, 1H), 7.09 (s, 1H), 

6.33 (s, 1H), 4.77 (t, J = 6.4 Hz, 1H), 4.39 (t, J = 7.9 Hz, 1H), 4.22 (t, J = 6.5 Hz, 2H), 4.12 – 4.06 (m, 

1H), 3.88 (s, 3H), 1.71 – 1.63 (m, 2H), 1.45 – 1.37 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 
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13C NMR (101 MHz, CDCl3, δ ppm): 170.88, 157.68, 129.25, 127.66, 126.06, 119.48, 115.01, 

105.32, 99.91, 82.55, 74.21, 68.32, 65.49, 55.99, 30.59, 19.06, 13.67. 

(cis) 

butyl (2R,4R)-2-(4-(cyanoethynyl)-2-methoxyphenyl)-1,3-dioxolane-4- 

carboxylate 

+ enantiomer (2S, 4S) 

1H NMR (400 MHz, CDCl3, δ ppm): 7.89 (d, J = 7.9 Hz, 1H), 7.27 (d, J = 8.1 Hz, 1H), 7.08 (s, 1H), 

6.24 (s, 1H), 4.70 (dd, J = 7.3, 3.4 Hz, 1H), 4.35 (dd, J = 8.7, 3.3 Hz, 1H), 4.25 (t, J = 8.2 Hz, 1H), 4.22 

– 4.14 (m, 2H), 3.88 (s, 3H), 1.66 – 1.58 (m, 2H), 1.35 (dt, J = 15.2, 7.5 Hz, 2H), 0.92 (t, J = 7.4 Hz, 

3H). 
13C NMR (101 MHz, CDCl3, δ ppm): 170.69, 157.64, 129.22, 128.55, 126.22, 119.42, 114.80, 

105.34, 100.13, 82.66, 74.07, 69.26, 65.47, 63.29, 55.94, 30.56, 19.04, 13.64. 

 

2-(4-(cyanoethynyl)-2-methoxyphenyl)-1,3-dioxolane-4-carboxylic acid, APNM5 

butyl 2-[4-(2-cyanoethynyl)-2-methoxyphenyl]-1,3-dioxolane-4-carboxylate (1 eq., 30 mg, 

0.0911 mmol) was dissolved in THF and cooled down to 0 °C. Then lithium hydroxide (3 eq., 

0.5 M in water, 0.547 mL, 0.273 mmol) was added. The reaction was let to stir at 0 °C until 

completeness (checked by TLC). The reaction was carefully neutralized with aqueous HCl (1M), 

THF was evaporated and the product was extracted with EtOAc. The organic phase was dried 

over MgSO4 and concentrated under vaccum. Purification of the crude product by preparative 

HPLC gave 2-(4-(cyanoethynyl)-2-methoxyphenyl)-1,3-dioxolane-4-carboxylic acid APNM5 

(17.5 mg, 0.064 mmol, 70.31%) as a 1:1 mixture of cis and trans isomers (white solid). 
1H NMR (400 MHz, CDCl3, δ ppm): 7.67 (d, J = 7.98 Hz, 1H, cis), 7.54 (d, J = 7.9 Hz, 1H, trans), 

7.30 – 7.22 (m, 2H, cis + trans), 7.12 (s, 1H, cis), 7.07 (s, 1H, trans), 6.29 (s, 1H, trans), 6.12 (s, 1H, 

cis), 4.79 (t, J = 6.5 Hz, 1H, trans), 4.76 – 4.70 (m, 1H, cis), 4.48 – 4.40 (m, 2H, cis + trans), 4.28 (t, J 

= 8.5 Hz, 1H, cis), 4.15 – 4.09 (m, 1H, trans), 3.90 (s, 3H, cis), 3.87 (s, 3H, trans). 

13C NMR (101 MHz, CDCl3, δ ppm): 175.05, 174.12, 157.63, 157.60, 128.96, 128.78, 127.87, 

127.54, 126.40, 126.10, 120.08, 119.72, 115.28, 115.10, 105.26, 105.24, 101.58, 100.23, 82.37, 

82.25, 73.77, 73.54, 69.38, 68.18, 63.64, 63.52, 56.08, 56.07. 

HR-ESI-MS C14H11NO5 273.06372 found 273.06364  



 VIII. EXPERIMENTAL PROCEDURES 
 

Elisabetta Tobaldi  187  

Figure EP 1. HPLC chromatogram of APNM5. 

1.4 SYNTHESIS OF A2M5 AND A2M6 

Scheme EP 3. Synthesis of compounds A2M5 and A2M6.  
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2,6-dimethoxy-4-((trimethylsilyl)ethynyl)benzaldehyde, 28 

Compound 28 was synthetized starting from 4-bromo-2,6-dimethoxybenzaldehyde 27 

following the same Sonogashira coupling procedure used for the synthesis of compound 12. 

Yield: 76-87% 
1H NMR (400 MHz, CDCl3, δ ppm): 10.45 (s, 1H), 6.66 (s, 2H), 3.90 (s, 6H), 0.27 (s, 9H). 
13C NMR (101 MHz, CDCl3, δ ppm): 188.98, 161.99, 130.38, 114.67, 107.73, 104.28, 98.28, 56.41, 

1.22. 

HR-ESI-MS C14H18O3Si 262.1025 found 262.1023 

 

4-ethynyl-2,6-dimethoxybenzaldehyde, 29 

2,6-dimethoxy-4-((trimethylsilyl)ethynyl)benzaldehyde (1 eq., 301 mg, 1.15 mmol) and K2CO3 

(0.1 eq., 15.86 mg, 0.11 mmol) were dissolved in MeOH. The reaction was stirred at room 

temperature for 3 h, and the solvent was removed under vacuum. The solid was redissolved 

in DCM and was washed with aqueous NaHCO3 three times. The organic layer was dried over 

Na2SO4 and evaporated under vacuum. Purification by flash chromatography afforded 4-

ethynyl-2,6-dimethoxybenzaldehyde (183.72 mg, 0.97 mmol, 84.2%)  as a white solid. 

1H NMR (400 MHz, CDCl3, δ ppm): 10.46 (s, 1H), 6.70 (s, 2H), 3.90 (s, 6H), 3.25 (s, 1H). 
13C NMR (101 MHz, CDCl3, δ ppm): 187.72, 160.78, 128.10, 113.73, 106.71, 81.90, 79.11, 55.20. 

 

butyl 2-(4-ethynyl-2,6-dimethoxyphenyl)-1,3-dioxolane-4-carboxylate, 31 
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Compound 31 was synthetized following the same procedure used for compound 10. After 

two purification a mixture 1:0.3 of trans and cis isomers was obtained.  

Yield: 21%, colourless oil 

1H NMR (400 MHz, CDCl3, δ ppm): 6.71 (s, 1H, trans), 6.69 (s, 1H, cis), 6.67 (s, 1H, trans), 6.66 (s, 

1H, cis), 4.81 – 4.76 (m, 1H, trans), 4.66 (dd, J = 7.5, 5.7 Hz, 1H, cis), 4.50 – 4.44 (m, 1H, trans), 

4.40 (dd, J = 7.7, 5.7 Hz, 1H, cis), 4.26 – 4.22 (m, 1H, cis), 4.20 (t, J = 6.8 Hz, 4H, cis + trans), 4.01 

(dd, J = 7.9, 6.1 Hz, 1H, trans), 3.80 (s, 6H, trans), 3.76 (s, 6H, cis), 3.093 (s, 1H, trans), 3.088 (s, 1H, 

cis), 1.70 – 1.60 (m, 4H, cis + trans), 1.46 – 1.34 (m, 4H, cis + trans), 0.97 – 0.91 (m, 6H, cis + trans). 
13C NMR (101 MHz, CDCl3, δ ppm): 170.26, 168.69, 158.56, 158.41, 128.86, 127.08, 123.55, 

123.48, 113.00, 112.50, 107.25, 98.92, 82.54, 82.49, 76.64, 76.58, 73.97, 73.93, 67.93, 66.89, 

64.22, 64.15, 55.12, 54.96, 29.62, 29.56, 18.07, 18.00, 12.68, 12.62. 

HR-ESI-MS C18H22O6 334.1416 found 334.1411 

 

methyl 2-(4-ethynyl-2,6-dimethoxyphenyl)-1,3-dioxane-5-carboxylate, 32 

Compound 32 was synthetized following the same procedure used for compound 10. After 

two purification a mixture 1:0.45 of trans and cis isomers was obtained. 

Yield: 22%, colourless oil 
1H NMR (400 MHz, CDCl3, δ ppm): 6.69 (s, 2H, trans), 6.65 (s, 2H, cis), 6.10 (s, 1H, cis), 6.02 (s, 

1H, trans), 4.74 (dd, J = 11.8, 1.5 Hz, 2H, cis), 4.49 – 4.42 (m, 2H, trans), 4.07 – 4.02 (m, 2H, cis), 

3.99 – 3.91 (m, 2H, trans), 3.87 (s, 3H, cis), 3.84 (s, 6H, trans), 3.80 (s, 3H, trans), 3.70 (s, 6H, cis) 

3.27 – 3.18 (m, 2H, cis + trans), 3.08 (s, 1H, trans), 3.06 (s, 1H, cis). 

HR-ESI-MS C16H18O6 306.1103 found 306.1105 

 

2-(4-ethynyl-2,6-dimethoxyphenyl)-1,3-dioxolane-4-carboxylic acid, A2M5 
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Compound A2M5 was synthetized from 31 following the same procedure used for compound 

APNM5. After purification by preparative HPLC a mixture 1:0.3 of trans and cis isomers was 

obtained. 

Yield: >99% (LC-MS), white solid. 
1H NMR (400 MHz, DMSO, δ ppm): 6.72 (s, 2H, trans), 6.69 (s, 2H, cis), 5.92 (s, 1H, cis), 5.82 (s, 

1H, trans), 4.39 (d, J = 10.9 Hz, 2H, cis), 4.20 (dd, J = 11.2, 4.2 Hz, 2H, trans), 3.92 – 3.86 (m, 1H, 

trans), 3.75 (s, 6H, trans), 3.72 (s, 6H, cis). Some peaks were covered by peak of ammonium formate 

used in the mobile phase of the HPLC. 

HR-ESI-MS C14H14O6 278.0790 found 278.0782 

 

2-(4-ethynyl-2,6-dimethoxyphenyl)-1,3-dioxane-5-carboxylic acid, A2M6 

Compound A2M6 was synthetized from 32 following the same procedure used for compound 

APNM5. After purification by preparative HPLC a mixture 1:0.45 of trans and cis isomers was 

obtained. 

Yield: >99% (LC-MS), white solid 
1H NMR (400 MHz, DMSO, δ ppm): 6.75 (s, 2H, cis + trans), 6.46 (s, 1H, trans), 6.32 (s, 1H, cis), 

4.55 (t, J = 6.0 Hz, 1H, trans), 4.49 (d, J = 6.8 Hz, 1H, cis), 4.23 (t, J = 7.1 Hz, 1H, trans), 4.03 (d, J = 

6.9 Hz, 1H, cis), 3.87 – 3.82 (m, 2H, cis + trans), 3.77 (s, 6H, trans), 3.73 (s, 6H, cis). Peaks (cis and 

trans) corresponding to the proton of the terminal alkyne were covered by peak of ammonium 

formate used in the mobile phase of the HPLC. 

HR-ESI-MS C15H16O6 292.0947 found 292.0933 
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1.5 SYNTHESIS OF PEGAM5 

Scheme EP 4. Synthesis of PEGAM5. 

4-ethynyl-2-methoxybenzaldehyde, 21 

Compound 21 was synthetized following the same procedures used for compound 16, Final 

yield: 60%. 
1H NMR (400 MHz, CDCl3, δ ppm): 10.44 (d, J = 0.8 Hz, 1H), 7.78 (dd, J = 7.9, 0.4 Hz, 1H), 7.15 

(dt, J = 7.9, 1.1 Hz, 1H), 7.10 (d, J = 1.3 Hz, 1H), 3.94 (s, 3H), 3.28 (s, 1H). 
13C NMR (101 MHz, CDCl3, δ ppm):188.00, 160.27, 128.41, 127.48, 123.90, 123.54, 114.20, 

81.81, 79.65, 76.31, 54.78, 0.00. 

HR-ESI-MS C10H8O2 160.0524 found 160.0522 

 

butyl 2-(4-ethynyl-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate, 24 
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Compound 24 was obtained with the same condensation procedure used for compound 10. 

butyl 2-(4-ethynyl-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate was obtained as a 1:1 

mixture of cis and trans isomers, a colourless oil. Yield: 87%. 

(trans) 

butyl (2R,4S)-2-(4-ethynyl-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate 

+ enantiomer (2S, 4R) 

1H NMR (400 MHz, CDCl3, δ ppm): 7.48 (d, J = 7.9 Hz, 1H), 7.12 (dd, J = 7.8, 1.4 Hz, 1H), 7.01 (d, 

J = 1.4 Hz, 1H), 6.34 (s, 1H), 4.77 (dd, J = 7.3, 5.6 Hz, 1H), 4.40 (dd, J = 8.4, 7.4 Hz, 1H), 4.22 (td, J = 

6.7, 1.9 Hz, 2H), 4.08 (dd, J = 8.4, 5.6 Hz, 1H), 3.86 (s, 3H), 3.10 (s, 1H), 1.74 – 1.61 (m, 2H), 1.48 – 

1.34 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 
13C NMR (101 MHz, CDCl3, δ ppm): 170.11, 156.46, 126.04, 124.73, 123.48, 123.26, 113.29, 

99.39, 82.39, 76.64, 73.13, 67.22, 64.37, 54.76, 29.58, 18.04, 12.64. 
(cis) 

butyl (2R,4R)-2-(4-ethynyl-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate 

+ enantiomer (2S, 4S) 

1H NMR (400 MHz, CDCl3, δ ppm): 7.78 (d, J = 7.9 Hz, 1H), 7.15 (dd, J = 7.9, 1.4 Hz, 1H), 7.01 (d, 

J = 1.4 Hz, 1H), 6.25 (s, 1H), 4.69 (dd, J = 7.6, 3.7 Hz, 1H), 4.36 (dd, J = 8.7, 3.6 Hz, 1H), 4.27 – 4.22 

(m, 1H), 4.22 – 4.14 (m, 2H), 3.86 (s, 3H), 3.10 (s, 1H), 1.70 – 1.58 (m, 2H), 1.45 – 1.30 (m, 2H), 

0.93 (t, J = 7.4 Hz, 3H). 
13C NMR (101 MHz, CDCl3, δ ppm): 170.86, 157.44, 127.85, 125.62, 124.68, 124.24, 114.08, 

100.54, 83.49, 77.55, 74.04, 69.11, 65.38, 55.73, 30.55, 19.03, 13.63. 

HR-ESI-MS C17H20O5 304.1311 found 304.1296 

 

butyl 2-(4-(1-(2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4- 

yl)-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate, 26 

2-{2-[2-(2-azidoethoxy)ethoxy]ethoxy}ethan-1-ol (3 eq., 122 mg, 0.556 mmol) and butyl 2-(4-

ethynyl-2-methoxyphenyl)-1,3-dioxolane-4-carboxylate (1 eq., 56 mg, 0.184 mmol) were 

suspended in 0.5 mL of a 1:1 water/tert-butanol mixture. Freshly prepared solution of sodium 

ascorbate (0.3 eq., 0.1 M in water, 556 µL, 0.0556 mmol) was added, followed by CuSO4·5H2O 

(0.03 eq., 0.1 M in water, 55.6 µL, 0.00556 mmol). The suspension was stirred vigorously 

overnight, and checked by LC-MS. The maximum conversion reached was 60%, after then the 

product of the side reaction (acetal hydrolysis promoted by copper as Lewis acid) started to 

appear. The reaction was stopped and the product is extracted with diethyl ether. The organic 

phase was dried over Na2SO4, concentrated at low pressure to give crude butyl 2-(4-(1-(2-(2-(2-
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(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-2-methoxyphenyl)-1,3-dioxolane-

4-carboxylate as a colourless oil (mixture of cis and trans isomers). The obtained product was 

used in the next step without any further purification. 

 

(2R,4S)-2-(4-(1-(2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-2-

ethoxyphenyl)-1,3-dioxolane-4-carboxylic acid, and enantiomer (2S,4R),  

PEGAM5 

Compound PEGAM5 (1 eq., 96 mg, 0.18 mmol) was dissolved in THF and cooled down to 0 °C. 

Then lithium hydroxide (3 eq., 1 M in water, 550 µL, 0.55 mmol) was added. The reaction was 

let to stir at 0 °C until completeness (checked by LC-MS: quantitative yield). The reaction was 

carefully neutralized with aqueous HCl (1M), THF was evaporated and the product was 

extracted with EtOAc. The organic phase was dried over MgSO4 and concentrated under 

vacuum. Purification by preparative HPLC gave PEGAM5 (68 mg, 0.142 mmol, 79.3%, trans 

isomer) as colourless liquid. 
1H NMR (400 MHz, DMSO, δ ppm): 8.62 (s, 1H), 7.49 (dd, J = 4.6, 3.3 Hz, 2H), 7.44 (dd, J = 7.9, 

1.3 Hz, 1H), 6.14 (s, 1H), 4.58 (t, J = 5.2 Hz, 2H), 4.32 (t, J = 6.7 Hz, 1H), 4.20 (t, J = 7.5 Hz, 1H), 3.90 

– 3.86 (m, 5H), 3.82 – 3.76 (m, 1H), 3.56 – 3.54 (m, 2H), 3.51 – 3.48 (m, 2H), 3.48 – 3.43 (m, 6H), 

3.36 (t, J = 5.1 Hz, 2H). 
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1.6 SYNTHESIS OF MIAS 

1.6.1 Synthesis of linker MIA5-1 

Scheme EP 5. Synthesis of linker MIA5-1. 

1-(2,2-diethoxyethyl)-1H-pyrrole-2,5-dione, 33a 

Molecule 33a was synthesized according to the reported procedures.44 

butyl 2-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)-1,3-dioxolane-4- 

carboxylate, 35a 

A solution of 33a (1 eq., 677 mg, 3.18 mmol) and 23 (1 eq., 515 mg, 3.18 mmol) in toluene (50 

mL) containing a catalytic amount of p-toluensulfonic acid monohydrate (0.2 eq., 120 mg, 0.635 

mmol) was refluxed for 2 h. Ethanol was removed as azeotrope of toluene (b.p. of azeotrope: 

76.7°C) and the reaction was monitored by TLC. After disappearing of the starting material, 

toluene was evaporated at reduced pressure, the residue was redissolved in ethyl acetate and 

washed with a saturated solution of NaHCO3 and brine. The organic phase was dried over 

Na2SO4 and the solvent was evaporated. The crude product was purified by flash 

chromatography (cyclohexane, then cyclohexane to EtOAc), yielding the wanted product 35a 
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in 54% yield and ethyl 2-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)-1,3-dioxolane-4-

carboxylate as by-product (21%), which will be used as well for the following step. 

butyl 2-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)-1,3-dioxolane-4- 

carboxylate, mixture of cis- and trans- isomers.  
1H NMR (400MHz, CDCl3, δ ppm): 6.73 (s, 4H, cis + trans), 5.35 (t, J = 4.5 Hz, 1H, trans), 5.23 (t, J 

= 3.6 Hz, 1H, cis), 4.66 – 4.59 (m, 1H, trans), 4.54 (dd, J = 7.2, 4.0 Hz, 1H, cis), 4.27 (t, J = 7.9 Hz, 

1H, trans), 4.22 – 4.19 (m, 1H, cis), 4.15 (q, J = 13.4, 6.7 Hz, 4H, cis + trans), 4.08 (t, J = 8.1 Hz, 1H, 

cis), 3.95 (dd, J = 8.3, 5.3 Hz, 1H, trans), 3.87 (d, J = 4.2 Hz, 2H, cis), 3.74 (d, J = 4.4 Hz, 2H, trans), 

1.68 – 1.58 (m, 4H, cis + trans), 1.37 (dp, J = 14.3, 7.2 Hz, 4H, cis + trans), 0.93 (td, J = 7.2, 3.5 Hz, 

6H, cis + trans). 
13C NMR (100MHz, CDCl3, δ ppm): 170.54, 170.34, 170.19, 134.26, 134.22, 102.68, 101.96, 

74.05, 73.96, 68.64, 68.00, 65.44, 39.70, 39.54, 30.53, 19.02, 13.66, 13.63. 

HR-ESI-MS C13H17NO6 283.10559 found 283.10564 

 

ethyl 2-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)-1,3-dioxolane-4- 

carboxylate, mixture of cis- and trans- isomers. 
1H NMR (400MHz, CDCl3, δ ppm): 6.74 (s, 4H, cis + trans), 5.36 (t, J = 4.6 Hz, 1H, trans), 5.25 – 

5.21 (m, 1H, cis), 4.62 (dd, J = 7.2, 5.3 Hz, 1H, trans), 4.54 (dd, J = 7.5, 3.9 Hz, 1H, cis), 4.27 (dd, J = 

8.4, 7.4 Hz, 1H, trans), 4.20 (ddt, J = 7.2, 4.6, 2.4 Hz, 4H, cis + trans), 4.16 (dd, J = 8.2, 4.2 Hz, 1H, 

cis), 4.07 (dd, J = 8.8, 7.5 Hz, 1H, cis), 3.95 (dd, J = 8.5, 5.3 Hz, 1H, trans), 3.87 (dd, J = 3.7, 3.0 Hz, 

2H, cis), 3.74 (d, J = 4.6 Hz, 2H, trans), 1.28 (td, J = 7.1, 2.8 Hz, 6H, cis + trans).  

13C NMR (100MHz, CDCl3, δ ppm): 170.45, 170.35, 170.27, 170.20, 134.27, 134.23, 102.67, 

101.97, 74.02, 73.95, 68.64, 67.97, 61.61, 61.58, 39.68, 39.52, 14.14, 14.13. 

HR-ESI-MS C11H13NO6 255.07429 found 255.07428 

 

2-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)-1,3-dioxolane-4-carboxylic acid, MIA5-1  

A solution of LiOH (14 eq., 219 mg, 9.16 mmol) in water (7 mL) was poured to a solution of 

ethyl 2-[(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl]-1,3-dioxolane-4-carboxylate (1 eq., 167 

mg, 0.654 mmol) and 4a (2.61 eq., 483 mg, 1.71 mmol) in THF (10 mL) and the reaction mixture 

was stirred for 30 minutes at r.t.. Completion of the reaction was checked by TLC, then EtOAc 

was added and the mixture was acidified with aqueous 3M solution of HCl to pH 2. The 

aqueous phase was extracted with EtOAc and the combined organic layers were washed with 

water and with brine, dried over Na2SO4 and concentrated to give the intermediate product 

used in the next step without further purification. 
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The intermediate product 2-{[(2Z)-3-carboxyprop-2-enamido]methyl}-1,3-dioxolane-4-

carboxylic acid (1 eq., 165 mg, 0.673 mmol) was treated with sodium acetate (2.4 eq., 132 mg, 

1.62 mmol) in acetic anhydride (10 mL). The mixture was stirred for 15 min at r.t. and then for 

2 h at 80 °C. The acetic anhydride was evaporated under reduced pressure and 5 mL of water 

were added. The mixture was stirred for 30 min at r.t. and then extracted with ethyl acetate. 

The solvent was evaporated and the resulting crude material was purified by preparative HPLC 

to afford 5a as a light-yellow oil in 37% overall yield (mixture of cis- and trans-isomers). 
1H NMR (400MHz, MeOH-d4, δ ppm): 6.87 (s, 2H, trans), 6.85 (s, 2H, cis), 5.29 (s, 1H, trans), 

5.20 (s, 1H, cis), 4.66 (t, J = 5.4 Hz, 1H, trans), 4.57 (bs, 1H, cis), 4.29 (t, J = 7.8 Hz, 1H, trans), 4.16 

(bs, 1H, cis), 4.11 (t, J = 8.2 Hz, 1H, cis), 4.01 – 3.94 (m, 1H, trans), 3.78 (t, J = 12.7 Hz, 2H, cis), 3.70 

(d, J = 2.7 Hz, 2H, trans).  
13C NMR (100MHz, MeOH-d4, δ ppm): 170.77, 170.63, 134.13, 102.47, 101.70, 73.66, 68.23, 

67.59, 39.27, 39.14. 

HR-ESI-MS C9H9NO6 227.04299 found 227.04251 

1.6.2 Synthesis of linker MIA5-2 

Scheme EP 6. Synthesis of linker MIA5-2. 

 

1-(3,3-diethoxypropyl)-1H-pyrrole-2,5-dione, 34b 

Maleic anhydride (1 eq., 3.31 g, 33.7 mmol) was dissolved in acetone (23.2 mL) and 1-amino-

3,3-diethoxypropane (1 eq., 4.97 g, 5.46 mL, 33.7 mmol) was added at 0 °C. The mixture was 

stirred for five minutes, then the solvent was evaporated to afford a crude residue. The residue 

was dissolved in acetic anhydride (6.8 mL) and sodium acetate (1.2 eq., 200 mg, 2.45 mmol) 

was added. The reaction mixture was warmed up to 90 °C and stirred for 2 h. (N.B. prolonging 

the reaction time leads to product decomposition). The reaction mixture was then filtrated 
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with toluene and the solvent was evaporated. The obtained dark brown liquid was purified by 

flash chromatography (cyclohexane, then cyclohexane to EtOAc), to give product 34b as a 

yellow liquid in overall yield of 47%. 

1H NMR (400MHz, CDCl3, δ ppm): 6.68 (s, 2H), 4.50 (t, J = 5.4 Hz, 1H), 3.60 (q, J = 6.7 Hz, 4H), 

3.52 – 3.40 (m, 2H), 1.90 (q, J = 6.4 Hz, 2H), 1.17 (t, J = 7.0 Hz, 6H).  
13C NMR (100MHz, CDCl3, δ ppm): 169.69, 133.13, 100.03, 60.25, 33.10, 31.34, 14.30. 

HR-ESI-MS C11H17NO4 227.11576 found 227.11531 

 

butyl 2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxolane-4- 

carboxylate, 35c 

A solution of 34b (1 eq., 271 mg, 1.19 mmol) and 23 (1 eq., 193 mg, 1.19 mmol) in toluene (3.97 

mL) containing a catalytic amount of p-toluensulfonic acid monohydrate (0.2 eq., 45.4 mg, 

0.238 mmol) was refluxed for 2 h. Ethanol was removed as azeotrope of toluene (b.p. of 

azeotrope: 76.7°C) and the reaction was monitored by TLC. After disappearing of the starting 

material, toluene was evaporated at reduced pressure. The residue was dissolved in ethyl 

acetate and washed with a saturated solution of NaHCO3 and brine. The organic phase was 

dried over Na2SO4 and the solvent was evaporated. The crude product was purified by flash 

chromatography (cyclohexane, then cyclohexane to EtOAc) to afford 35c in 51% yield and ethyl 

2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxolane-4-carboxylate as by-product 

(45%), which will be used as well for the following step. 

 

butyl 2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxolane-4- 

carboxylate, mixture of cis- and trans-isomers.  

1H NMR (400MHz, CDCl3, δ ppm): 6.67 (s, 4H, cis + trans), 5.12 (t, J = 3.7 Hz, 1H, trans), 5.05 (t, J 

= 4.5 Hz, 1H, cis), 4.56 (t, J = 6.9 Hz, 1H, trans), 4.51 (dd, J = 7.6, 3.5 Hz, 1H, cis), 4.28 (t, J = 8.0 Hz, 

1H, trans), 4.16 (t, J = 6.6 Hz, 4H, cis + trans + 1H, cis), 4.02 (t, J = 8.1 Hz, 1H, cis), 3.87 – 3.79 (m, 

1H, trans), 3.77 – 3.66 (m, J = 19.1, 6.7 Hz, 4H, cis + trans), 2.15 – 1.99 (m, 4H, cis + trans), 1.69 – 

1.59 (m, 4H, cis + trans), 1.38 (dt, J = 14.9, 7.6 Hz, 4H, cis + trans), 0.93 (t, J = 7.3 Hz, 6H, cis + 

trans). 

13C NMR (100MHz, CDCl3, δ ppm): 171.17, 170.63, 134.17, 134.15, 104.58, 103.90, 73.85, 73.78, 

68.66, 68.13, 65.35, 65.29, 33.03, 32.48, 32.32, 31.44, 30.57, 30.55, 19.04, 13.65. 

HR-ESI-MS C14H19NO6 297.12124 found 297.12116 
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ethyl 2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxolane-4- 

carboxylate, mixture of cis- and trans-isomers. 
1H NMR (400MHz, CDCl3, δ ppm):  6.67 (s, 4H, cis + trans), 5.11 (t, J = 3.7 Hz, 1H, trans), 5.04 (t, 

J = 4.3 Hz, 1H, cis), 4.56 – 4.52 (m, 1H, trans), 4.50 (dd, J = 7.5, 3.6 Hz, 1H, cis), 4.30 – 4.24 (m, 1H, 

trans), 4.21 (dd, J = 14.4, 7.3 Hz, 4H, cis + trans), 4.18 – 4.13 (m, 1H, cis), 4.01 (t, J = 8.1 Hz, 1H, 

cis), 3.85 – 3.79 (m, 1H, trans), 3.73 (dt, J = 6.7, 2.0 Hz, 2H, cis), 3.69 (t, J = 6.7 Hz, 2H, trans), 2.15 

– 1.98 (m, 4H, cis + trans), 1.28 (t, J = 7.1 Hz, 6H, cis + trans). 
13C NMR (100MHz, CDCl3, δ ppm): 171.08, 170.65, 170.58, 134.15, 104.58, 103.89, 73.83, 73.74, 

68.63, 68.09, 61.49, 61.44, 33.00, 32.47, 32.27, 31.43, 14.17, 14.13. 

HR-ESI-MS C12H15NO6 269.08994 found 269.08979 

 

2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxolane-4-carboxylic acid, MIA5-2 

A solution of LiOH (2.5 eq., 50.7 mg, 0.0355 mL, 2.12 mmol) in water (1.41 mL) was poured to 

a solution of 35c and ethyl 2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxolane-4-

carboxylate (in total 252 mg, 1 eq.) in THF (1.41 mL) and the reaction mixture was stirred at r.t. 

for 30 minutes. Completion of the reaction was checked by TLC, then EtOAc was added and 

the mixture was acidified with aqueous 3M solution of HCl to pH 2. The aqueous phase was 

extracted with EtOAc and the combined organic layers were washed with water and with brine, 

dried over Na2SO4 and concentrated to give the intermediate product used in the next step 

without further purification.  

2-{2-[(2Z)-3-carboxyprop-2-enamido]ethyl}-1,3-dioxolane-4-carboxylic acid (1 eq., 130 mg, 

0.502 mmol) was dissolved in acetic anhydride (6.78 mL) and sodium acetate (2.4 eq., 98.7 mg, 

1.2 mmol) was added. The reaction mixture was stirred at 90 °C for 2 h and controlled by TLC. 

Acetic anhydride was evaporated under reduced pressure and 5 mL of water was added to the 

residue. The mixture was stirred at r.t. for 30 min and then extracted with ethyl acetate. After 

solvent evaporation the resulting crude material was purified by preparative HPLC to afford 

MIA5-2 as a light-yellow oil in 54% overall yield (mixture of cis and trans-isomers). 
1H NMR (400MHz, MeOD-d4, δ ppm): 6.81 (s, 4H, cis + trans), 5.08 (s, 1H, trans), 5.02 (s, 1H, 

cis), 4.57 (t, J = 7.6 Hz, 1H, trans), 4.53 (d, J = 3.8 Hz, 1H, cis), 4.30 (t, J = 8.0 Hz, 1H, trans), 4.15 (d, 

J = 8.0 Hz, 1H, cis), 4.06 (t, J = 8.1 Hz, 1H, cis), 3.84 (t, J = 7.2 Hz, 1H, trans), 3.77 – 3.63 (m, 4H, cis 

+ trans), 2.09 – 1.96 (m, 4H, cis + trans).  

13C NMR (100MHz, MeOD-d4, δ ppm): 173.26, 172.74, 171.07, 134.08, 134.05, 104.26, 103.62, 

73.36, 68.22, 67.80, 32.50, 32.00, 31.81, 31.08. 

HR-ESI-MS C10H11NO6 241.05864 found 241.05785 
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1.6.3 Synthesis of linker MIA6-1 

Scheme EP 7. Synthesis of linker MIA6-1. 

The linker MIA6-1 was synthesized according to the reported procedures.44  

 

1.6.4 Synthesis of linker MIA6-2 

Scheme EP 8.Synthesis of linker MIA6-2. 

methyl 3-hydroxy-2-(hydroxymethyl)propanoate, 30 

Molecule 30 was synthetized according to the reported procedures.44  



 VIII. EXPERIMENTAL PROCEDURES 
 

Elisabetta Tobaldi  200  

methyl 2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxane-5- 

carboxylate, 35d 

A solution of 34b (1 eq., 500 mg, 2.2 mmol) and 30 (0.895 eq., 264 mg, 1.97 mmol) in toluene 

(7.33 mL) containing catalytic amount of p-toluensulfonic acid monohydrate (0.2 eq., 83.7 mg, 

0.44 mmol) was refluxed for 2 h. Ethanol was removed as azeotrope of toluene (b.p. of 

azeotrope: 76.7°C). After the reaction was complete, toluene was evaporated and the residue 

was dissolved in EtOAc and washed with a saturated solution of NaHCO3 and with brine. The 

organic phase was dried over Na2SO4, filtrated and the solvent was evaporated at reduced 

pressure. The crude product was purified by flash chromatography (cyclohexane, then 

cyclohexane to EtOAc) to give 35d (362 mg, 1.34 mmol, 68 %) as a yellow liquid (mixture of cis 

and trans-isomers). 

1H NMR (400MHz, CDCl3, δ ppm): 6.67 (d, J = 3.6 Hz, 2H, cis + trans), 4.59 – 4.51 (m, 1H, cis), 

4.49 (t, J = 4.7 Hz, 1H, trans), 4.24 (dd, J = 11.6, 4.6 Hz, 2H, trans), 3.84 (d, J = 10.3 Hz, 1H, cis), 3.79 

(s, 1H, cis), 3.74 – 3.67 (m, 2H, trans), 3.68 – 3.57 (m, 5H, cis + trans), 3.03 – 2.88 (m, 1H, trans), 

2.27 (s, 1H, cis), 1.94 – 1.82 (m, 2H, cis + trans). 
13C NMR (100MHz, CDCl3, δ ppm): 170.68, 170.24, 134.16, 134.13, 100.87, 100.15, 67.50, 66.83, 

52.35, 51.83, 39.90, 39.77, 33.37, 33.20, 33.16, 33.08. 

HR-ESI-MS C12H15NO6 269.08994 found 269.09001 

 

2-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-1,3-dioxane-5-carboxylic acid, MIA6-2 

Using the similar procedure as for MIA5-1, the linker MIA6-2 was synthesized as a light-yellow 

oil in 79% overall yield (mixture of cis and trans-isomers). 

1H NMR (400MHz, MeOD-d4, δ ppm): 6.75 (s, 2H, trans), 6.74 (s, 2H, cis), 4.57 (t, J = 5.0 Hz, 1H, 

cis), 4.48 (t, J = 4.8 Hz, 1H, trans), 4.41 (d, J = 10.7 Hz, 2H, cis), 4.17 (dd, J = 11.8, 4.8 Hz, 2H, trans), 

3.87 – 3.81 (m, 2H, cis), 3.67 (t, J = 11.6 Hz, 2H, trans), 3.56 (dt, J = 13.9, 6.9 Hz, 4H, cis + trans), 
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2.90 – 2.81 (m, 1H, trans), 2.32 – 2.29 (m, 1H, cis), 1.80 (d, J = 4.9 Hz, 2H, trans), 1.76 (td, J = 6.9, 

5.0 Hz, 2H, cis). 
13C NMR (100MHz, MeOD-d4, δ ppm): 171.07, 134.06, 134.03, 100.59, 100.03, 67.38, 66.63, 

39.66, 39.04, 33.01, 32.66, 32.60. 

HR-ESI-MS C11H13NO6 255.07429 found 255.071341 

1.7 SYNTHESIS OF FRET PROBES 

1.7.1 General procedures for synthesis of FRET probes 

Procedure A 

Starting acid (1 eq., 0.1 M in dry DMSO) was added to a solution of BEP (1 eq., 0.1 M in dry 

DMSO) and DIPEA (5 eq.) and stirred for few minutes, then TAMRA-NH2 (0.95 eq., 0.1 M in dry 

DMSO) was added. The mixture was stirred for 15 minutes. Amide coupling was monitored by 

LC-MS. BHQ-2-SH (1.1 eq., 0.007 M in dry DMSO) was added to the mixture and let to stir until 

reaction was complete (monitored by LC-MS). 

The reaction mixture was then purified by preparative HPLC to give the product as a violet 

solid. The aqueous mobile phase used in the purification was neutral and contained 

ammonium formate (0.025 mM). 

 

Procedure B 

A solution of CuSO4 (1 M, 1 eq.), tris(benzyltriazolylmethyl)amine (TBTA, 1 M, 2 eq.) and sodium 

ascorbate (1 M, 5 eq.) in water was prepared and added to a solution of the starting acid (1 

eq.) and BHQ-2-N3 (1.2 eq.) in DMF. The mixture was let to stir at room temperature until 

cycloaddition was complete (LC-MS check). The product was then quickly extracted with DCM 

to get rid of the copper and the ascorbate salts. The organic phase was concentrated under 

vacuum and the BHQ-ACID adduct was redissolved in DMF. BEP (1.2 eq.), TAMRA-NH2 (1.1 eq.) 

and DIPEA (1.1 eq.) were added and the solution was stirred at r.t. for 15 min. Reaction was 

monitored by LC-MS. The reaction mixture was then purified by preparative HPLC to give the 

product as a violet solid. The aqueous mobile phase used in the purification was neutral and 

contained ammonium formate (0.025 mM). 

 

Procedure C 

Solutions of starting acid (1 eq., 10 mg/mL in dry DMSO) and DIPEA (1 eq., 0.1 M in dry ACN) 

were mixed under argon at room temperature, after few minutes N,N′-disuccinimidyl 

carbonate (1.2 eq.) was added and the reaction mixture was stirred for 1 hour. Then TAMRA-

NH2 (1.05 eq., 0.1 M in dry ACN) was added and the reaction was let to stir, the formation of 

TAMRA adduct was checked with LC-MS. If after 1 hour, no product was detected, 5 eq. of 

DIPEA were added (to neutralize TFA molecules coming from HPLC purification of TAMRA-

NH2). When the intermediary product was formed, BHQ-2-SH (1 eq., 0.025 M in dry DMSO) and 

DIPEA (5 eq., 0.1 M in dry ACN) were added and let to stir until formation of the product was 
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detected with LC-MS. The reaction mixture was then purified by preparative HPLC to give the 

product as a violet solid. 

 

1.7.2 F-APN6 

4-((3-((2r,5r)-2-(4-(2-cyano-1-((2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-

nitrophenyl)diazenyl)phenyl)diazenyl)phenyl)(methyl)amino)butanamido)ethyl)thio)vi

nyl)phenyl)-1,3-dioxane-5-carboxamido)propyl)carbamoyl)-2-(6-(dimethylamino)-3-

(dimethyliminio)-3H-xanthen-9-yl)benzoate 

and enantiomer 

F-APN6 was provided by Dr. Igor Dovgan, HR-ESI-MS chromatogram is shown below. 

HR-ESI-MS C69H70N12O12S 1290.49569 found 1290.49306 

 

Figure EP 2. HR-ESI-MS chromatogram of F-APN6. 
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1.7.3 F-APNM5 

4-((3-(2-(4-(2-cyano-1-((2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-

nitrophenyl)diazenyl)phenyl)diazenyl)phenyl)(methyl)amino)butanamido)ethyl)thio)vi

nyl)-2-methoxyphenyl)-1,3-dioxolane-4-carboxamido)propyl)carbamoyl)-2-(6-

(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)benzoate 

 

Procedure A, Yield 29%  

1H NMR (400 MHz, DMSO-d6, δ ppm): 8.83 (d, J = 6.9 Hz, 1H), 8.46 (d, J = 1.8 Hz, 1H), 8.45 – 

8.42 (m, 1H), 8.23 (dd, J = 7.9, 1.6 Hz, 1H), 8.12 – 8.04 (m, 2H), 8.01 (dt, J = 11.0, 5.6 Hz, 1H), 7.89 

(t, J = 6.0 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.79 – 7.75 (m, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.45 (s, 1H), 

7.39 (d, J = 1.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.22 – 7.14 (m, 2H), 6.86 (dd, J = 9.2, 6.9 Hz, 2H), 

6.54 – 6.44 (m, 5H), 6.12 (d, J = 2.8 Hz, 1H), 6.11 (s, 1H), 4.68 (t, J = 6.5 Hz, 1H), 4.61 (dd, J = 7.6, 

4.7 Hz, 1H), 4.31 (t, J = 7.8 Hz, 1H), 4.18 (dd, J = 13.0, 5.0 Hz, 1H), 4.16 – 4.11 (m, 1H), 4.01 (s, 3H), 

3.95 (s, 3H), 3.89 (s, 3H), 3.35 (s, 12H), 3.24 (q, J = 6.5 Hz, 2H), 3.16 (dt, J = 13.6, 6.7 Hz, 3H), 3.04 

(d, J = 7.2 Hz, 3H), 2.94 (s, 9H), 2.79 (t, J = 6.7 Hz, 2H), 2.13 (q, J = 7.4 Hz, 2H), 1.77 (q, J = 7.7 Hz, 

2H), 1.73 – 1.67 (m, 2H), 1.24 (s, 1H). 

HR-ESI-MS C69H70N12O13S 1306.4906 found 1306.48834 
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1.7.4 F-A2M5 

4-((3-(2-(4-(1-(2-(2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-

nitrophenyl)diazenyl)phenyl)diazenyl)phenyl)(methyl)amino)butanamido)ethoxy)ethyl

)-1H-1,2,3-triazol-4-yl)-2,6-dimethoxyphenyl)-1,3-dioxolane-4-

carboxamido)propyl)carbamoyl)-2-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-

9-yl)benzoate 

 

Procedure B, Yield >99% (LC-MS) 
1H NMR (400 MHz, DMSO-d6, δ ppm): 8.83 (d, J = 6.9 Hz, 1H), 8.46 (d, J = 1.8 Hz, 1H), 8.44 (s, J 

= 2.1 Hz, 1H), 8.23 (dd, J = 7.9, 1.6 Hz, 1H), 8.09 – 8.05 (m, 2H), 8.01 (dt, J = 11.0, 5.6 Hz, 1H), 7.89 

(t, J = 6.0 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.45 (s, 1H), 

7.39 (d, J = 1.8 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.20 – 7.15 (m, 2H), 6.86 (dd, J = 9.2, 6.9 Hz, 2H), 

6.49 (ddd, J = 11.4, 10.6, 5.7 Hz, 5H), 6.12 (d, J = 2.8 Hz, 1H), 6.11 (s, 1H), 4.68 (t, J = 6.5 Hz, 1H), 

4.61 (dd, J = 7.6, 4.7 Hz, 1H), 4.31 (t, J = 7.8 Hz, 1H), 4.19 (t, J = 8.0 Hz, 1H), 4.15 (dd, J = 8.2, 4.8 

Hz, 1H), 4.01 (s, 3H), 3.95 (s, 3H), 3.89 (s, 3H), 3.35 (s, 12H), 3.24 (dd, J = 12.8, 6.5 Hz, 1H), 3.16 

(dt, J = 13.5, 6.6 Hz, 2H), 3.04 (d, J = 7.2 Hz, 2H), 2.94 (s, 6H), 2.79 (t, J = 6.7 Hz, 3H), 2.13 (q, J = 7.4 

Hz, 2H), 1.81 – 1.74 (m, 1H), 1.71 (dd, J = 12.8, 6.3 Hz, 1H), 1.24 (s, 1H). 

HR-ESI-MS C71H76N14O15 1364.5615 found 1364.5584 
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1.7.5 F-A2M6 

4-((3-(2-(4-(1-(2-(2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-

nitrophenyl)diazenyl)phenyl)diazenyl)phenyl)(methyl)amino)butanamido)ethoxy)ethyl

)-1H-1,2,3-triazol-4-yl)-2,6-dimethoxyphenyl)-1,3-dioxane-5-

carboxamido)propyl)carbamoyl)-2-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-

9-yl)benzoate 

 

Procedure B, Yield >99% (LC-MS)  

1H NMR (400 MHz, DMSO-d6, δ ppm): 8.83 (s, 1H), 8.46 (t, J = 2.3 Hz, 1H), 8.45 – 8.43 (m, 2H), 

8.23 (dd, J = 7.9, 1.6 Hz, 1H), 8.09 – 8.05 (m, 2H), 8.01 (dt, J = 11.0, 5.6 Hz, 1H), 7.89 (t, J = 6.0 Hz, 

1H), 7.84 – 7.76 (m, 2H), 7.56 (d, J = 8.2 Hz, 1H), 7.45 (s, 1H), 7.39 (d, J = 1.8 Hz, 1H), 7.33 (d, J = 

8.0 Hz, 1H), 7.21 – 7.15 (m, 2H), 6.86 (dd, J = 9.2, 6.9 Hz, 2H), 6.49 (ddd, J = 11.4, 10.6, 5.7 Hz, 5H), 

6.12 (d, J = 2.8 Hz, 1H), 6.11 (s, 1H), 4.68 (t, J = 6.5 Hz, 1H), 4.61 (dd, J = 7.6, 4.7 Hz, 1H), 4.31 (t, J 

= 7.8 Hz, 1H), 4.19 (t, J = 8.0 Hz, 1H), 4.17 – 4.11 (m, 1H), 4.01 (s, 3H), 3.95 (s, 3H), 3.89 (s, 3H), 

3.35 (s, 12H), 3.24 (dd, J = 12.8, 6.5 Hz, 2H), 3.16 (dt, J = 13.5, 6.6 Hz, 3H), 3.04 (d, J = 7.2 Hz, 2H), 

2.94 (s, 6H), 2.79 (t, J = 6.7 Hz, 2H), 2.13 (q, J = 7.4 Hz, 2H), 1.81 – 1.74 (m, 2H), 1.71 (dd, J = 12.8, 

6.3 Hz, 2H), 1.24 (s, 1H). 

HR-ESI-MS C72H78N14O15 1378.5771 found 1378.5746 
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1.7.6 F-MIA5-1 

4-((3-(2-((3-((2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-

nitrophenyl)diazenyl)phenyl)diazenyl)phenyl) (methyl)amino)butanamido)ethyl)thio)-

2,5-dioxopyrrolidin-1-yl)methyl)-1,3-dioxolane-4-carbo-xamido)propyl)carbamoyl)-2-(6-

(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)benzoate 

 

Procedure C, Yield 55%  

1H NMR (400 MHz, DMSO-d6, δ ppm): 8.78 (s, 1H), 8.44 (d, J = 8.1 Hz, 2H), 8.27 (d, J = 17.9 Hz, 

2H), 8.06 (d, J = 7.7 Hz, 3H), 7.92 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 26.4 Hz, 2H), 7.02 (s, 

3H), 6.96 – 6.82 (m, 4H), 5.28 (s, 1H), 5.07 (t, 1H), 4.51 – 4.40 (m, 2H), 4.18 – 4.11 (m, 2H), 4.11 – 

4.02 (m, 3H), 3.99 (s, 3H), 3.93 (s, 3H), 3.24 (s, 12H), 3.06 (s, 3H), 2.17 (s, 2H), 1.86 – 1.77 (m, 1H), 

1.77 – 1.62 (m, 1H), 1.29 – 1.21 (m, 1H).  

HR-ESI-MS C64H68N12O14S 1260.46987 found 1260.4714 

1.7.7 F-MIA5-2 

4-((3-(2-(2-(3-((2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-nitrophenyl)diazenyl)phenyl) 

diazenyl)phe-nyl)(methyl)amino)butanamido)ethyl)thio)-2,5-dioxopyrrolidin-1-

yl)ethyl)-1,3-dioxolane-4-car-boxamido)propyl)carbamoyl)-2-(6-(dimethylamino)-3-

(dimethyliminio)-3H-xanthen-9-yl) benzoate 
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Procedure C, Yield: 63%  
1H NMR (400 MHz, DMSO-d6, δ ppm): 8.77 (s, 1H), 8.44 (d, J = 8.8 Hz, 2H), 8.25 (t, J = 12.4 Hz, 

2H), 8.06 (d, J = 8.8 Hz, 2H), 7.91 (s, 1H), 7.80 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 26.2 Hz, 2H), 7.02 (s, 

3H), 6.95 – 6.83 (m, 3H), 4.92 (d, J = 12.3 Hz, 1H), 4.46 – 4.33 (m, 1H), 4.23 – 4.16 (m, 1H), 3.99 (s, 

3H), 3.93 (s, 3H), 3.69 – 3.62 (m, 1H), 3.24 (s, 12H), 3.17 (d, J = 6.7 Hz, 3H), 3.06 (s, 3H), 2.93 – 

2.80 (m, 1H), 2.77 – 2.70 (m, 1H), 2.16 (t, J = 7.1 Hz, 2H), 1.96 – 1.87 (m, J = 22.0 Hz, 1H), 1.86 – 

1.75 (m, 2H), 1.74 – 1.62 (m, 2H), 1.24 (s, 2H).  

HR-ESI-MS C65H70N12O14S, 1274.48552; found 1274.48542. 

1.7.8 F-MIA6-1 

4-((3-(2-((3-((2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-nitrophenyl)diazenyl)phenyl) 

diazenyl)phe-nyl)(methyl)amino)butanamido)ethyl)thio)-2,5-dioxopyrrolidin-1-

yl)methyl)-1,3-dioxane-5-car-boxamido)propyl)carbamoyl)-2-(6-(dimethylamino)-3-

(dimethyliminio)-3H-xanthen-9-yl) benzoate 

 

Procedure C, Yield: 76%  

1H NMR (400MHz, DMSO-d6, δ ppm): 8.81 (t, J=5.3 Hz, 1 H), 8.43 (d, J=8.8 Hz, 2 H), 8.29 - 8.33 

(m, 1 H), 8.24 - 8.29 (m, 1 H), 8.00 - 8.12 (m, 3 H), 7.95 (s, 1 H), 7.80 (d, J=9.0 Hz, 2 H), 7.72 (t, J=5.4 

Hz, 1 H), 7.42 (s, 1 H), 7.36 (s, 1 H), 7.03 (s, 4 H), 6.91 (s, 2 H), 6.87 (d, J=9.0 Hz, 2 H), 4.75 (t, J=5.1 

Hz, 1 H), 4.29 (d, J=11.5 Hz, 2 H), 4.02 - 4.07 (m, 1 H), 3.99 (s, 3 H), 3.94 (s, 3 H), 3.81-3.84 (m, 2H), 

3.44 - 3.51 (m, 4 H), 3.30 - 3.36 (m, 4 H), 3.24 (s, 12H), 3.20 (d, J=8.3 Hz, 2 H), 3.07 (s, 3 H), 2.84 

(dt, J=13.0, 6.4 Hz, 1 H), 2.71 (dt, J=13.2, 6.7 Hz, 1 H), 2.55-2.57 (m, 2H), 2.34 (br.s, 1H), 2.18 (d, 

J=5.5 Hz, 2 H), 1.76 - 1.86 (m, 2 H), 1.66 - 1.76 (m, 2 H)  

HR-ESI-MS: C65H70N12O14S, 1274.48552; found 1274.48491. 
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1.7.9 F-MIA6-2 

4-((3-(2-(2-(3-((2-(4-((4-((E)-(2,5-dimethoxy-4-((E)-(4-nitrophenyl)diazenyl)phenyl) 

diazenyl)phe-nyl)(methyl)amino)butanamido)ethyl)thio)-2,5-dioxopyrrolidin-1-

yl)ethyl)-1,3-dioxane-5-carbo-xamido)propyl)carbamoyl)-2-(6-(dimethylamino)-3-

(dimethyliminio)-3H-xanthen-9-yl)benzoate 

 

Procedure C, Yield: 71%  
1H NMR (400MHz, DMSO-d6, δ ppm): 8.75 (s, 2H), 8.44 (d, J = 8.7 Hz, 2H), 8.27 (d, J = 15.6 Hz, 

2H), 8.06 (d, J = 8.4 Hz, 3H), 7.91 (s, 1H), 7.80 (d, J = 9.1 Hz, 2H), 7.64 (s, 1H), 7.39 (d, J = 26.4 Hz, 

2H), 7.02 (s, 3H), 6.94 – 6.83 (m, 4H), 4.56 (s, 1H), 4.47 (s, 1H), 4.28 (d, J = 11.7 Hz, 2H), 3.99 (s, 

4H), 3.93 (s, 3H), 3.80 (d, J = 10.4 Hz, 2H), 3.63 (t, J = 11.0 Hz, 1H), 3.24 (s, 9H), 3.07 (s, 4H), 2.86 

(dd, J = 13.2, 6.7 Hz, 2H), 2.72 (dd, J = 13.3, 6.4 Hz, 2H), 2.21 – 2.12 (m, 3H), 1.80 (s, 3H), 1.68 (s, 

5H), 1.24 (s, 1H).  

HR-ESI-MS C66H72N12O14S, 1288.50117; found 1288.49841 
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1.8 SYNTHESIS OF SUPPORTED ACIDS AND SOLID CATALISTS 

1.8.1 Silica supported acids 

Silica supported acids were synthetized according to procedures present in literature. 

   

Catalyst Preparation References 

PMA/SiO2 PMA (H3PMo12O40, 229 mg) was added to a slurry solution of silica (2 g) 

in MeOH (40 mL) and stirred for 6 hours at room temperature, after 

which MeOH was evaporated under vacuum. 

Kumar 

(2008)69 

H2SO4/SiO2 100 mL two neck RBF was charged with 10 g of silica and equipped with 

a dropping funnel and a way out for HCl (to a flask filled with water). The 

dropping funnel was charged with 3 mL of ClSO3H, which was dropped 

to the stirring silica. The mixture was let to stir for 3 hours. 

Mirjalili 

(2002)70 

Mirjalili 

(2004)71 

HClO4/SiO2 To a suspension of silica gel (3 g, 230–400 mesh) in Et2O (10 mL), was 

added HClO4 (125 mg, 1.25 mmol, 178 µL of a 70% aq. solution of HClO4) 

and the mixture was stirred magnetically for 30 min at room 

temperature. The Et2O was removed under reduced pressure (rotary 

evaporator) and the residue heated at 100 °C for 72 h under vacuum to 

afford HClO4–SiO2 (0.42 mmol/g) as a free-flowing powder. 

Agarwal 

(2005)72 

Agnihotri 

(2006)73 

Kumar 

(2007)74 

BF3/SiO2 A mixture of BF3.OEt2 (8.4 mmol) and silica gel (1 g) in MeOH (10 mL) was 

prepared and stirred for 1 h at room temperature. The generated 

suspension was then filtered and dried at ambient temperature for 6 h, 

after which it was stored in a dry and covered container at room 

temperature. 

Khan 

(2016)75 

Table EP 1. Syntheses of silica supported acids. 

1.8.2 Modified Merrifield resins 

Scheme EP 9. Modification of Merrifield resin. 

Merrifield resin was modified with five different acids as illustrated in Scheme EP 9. No more 

information is available. 
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1.8.3 Catalysts provided by Dr. Camelia Ghimbeu (IS2M) 

HASG-400 

HASG-400 is a porous commercial graphite from Timcal. 

HASG-400-ox 

HASG-400-ox was obtained by oxidation treatment of HASG-400 using concentrated nitric acid 

(HNO3). The carbon and acid mixture was heated under reflux at 60 °C for 1 h, then 

temperature was raised to 100 °C for 30 min. This treatment with nitric acid is well known in 

the carbon field for introducing oxygen groups of acidic surfaces.76 

Lignine-400 

Lignin alkali (Lignin Kraft) low sulphonate content (from Aldrich) was pre-carbonized at 400 °C 

for 1 h under argon using a heating rate of 5 K/min. This lignin has about 4 wt.% of sulphur in 

its structure. Heating at 400° C ensures the decomposition of lignin (see TGA figure below) to 

obtain a carbon rich in oxygen and sulphur compounds.  

(Camélia Matei Ghimbeu et al., Valorizing low cost and renewable lignin as hard carbon for Na-

ion batteries: impact of lignin grade, Submitted article, Carbon, 2019) 

 

                                      

Figure EP 3. Thermogravimetric analysis (TGA) of Lignine-400. 

1.8.4 PAASA encapsulated in alginate beads 

Alginate macrobeads containing PAASA were prepared according to reported procedure.87 

A solution of alginate (15 wt. %) and PAASA (0.1 wt.%, considering the original commercially 

available 15 wt.% solution in water) is dripped into a stirred aqueous solution of 0.1 M calcium 

chloride at room temperature. After formation, the beads were left for curing in the CaCl2 

solution for 24 hours in order to allow optimal cross-linking of the alginate chains by the 
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calcium ions. Then the beads were separated by vacuum filtration and washed with Milli-Q 

water.  

1.8.5 PEG-PAASA and PEG-AASA provided by Dr. Lavinia Balan (IS2M) 

The following figure and described procedure are the only information in our possess at this 

moment about the preparation of PEG-based polymers provided by Dr. Lavinia Balan (IS2M, 

Université Haute-Alsace). 

Figure EP 4. a) Synthesis and photo of PEG-PAASA film: polymerization of PEG-acrylate with 

encapsulation of PAASA within the matrix. b) Synthesis and photo of the co-polymer PEG-AASA. 

A solution of PEG-acrylate, acid (PAASA or AASA in different wt. %) and a photoinitiator was 

stirred for one hour at room temperature to ensure homogeneous mixing of all the 

components. Few drops of the solution were spread on a glass support to create film of a 

defined thickness (100 µM) or small drops were deposited on a highly hydrophobic surface in 

order to create small spheres. The solutions were subjected to a UV source and photo-

polymerization was monitored by FT-IR analysis until disappearance of the characteristic peaks 

of the alkenyl C=C stretching (1680-1620 cm-1). 

No more details about the synthesis are available. 

1.9 SYNTHESIS OF DDXC 

Scheme EP 10. Synthesis of DDXC. 

b)

a)
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2-bromocyclohex-1-ene-1-carbaldehyde, 39 

Compound 39 was synthetized according to the reported procedure.152 A solution of dry DMF 

(5 eq., 1.83 g, 1.93 mL, 25 mmol) in anhydrous chloroform was cooled to 0 °C in the ice-bath. 

PBr3 (2 eq., 2.71 g, 0.94 mL, 10 mmol) was added dropwise over a period of 10 minutes. The 

resulting white suspension was warmed to room temperature and stirred for additional 30 

min. A solution of cyclohexanone (1 eq., 0.49 g, 0.518 mL, 5 mmol) in chloroform was added 

drop-wise and stirred for 12 h at room temperature. The reaction mixture was then poured in 

ice water. Solid sodium bicarbonate was carefully added to neutralize the acids and the 

mixture was extracted three times with chloroform. The organic part was then washed with 

cold water, dried with sodium sulphate and evaporated. Purification of the residue was done 

by column chromatography (EtOAc/cyclohexane 5/95), obtaining 2-bromocyclohex-1-ene-1-

carbaldehyde (452 mg, 2.39 mmol, 47.82 %) as a colourless liquid. 
1H NMR (400 MHz, CDCl3, δ ppm): 10.02 (s, 1H), 2.74 (tt, J = 6.2, 2.3 Hz, 2H), 2.28 (ddd, J = 8.3, 

6.0, 2.3 Hz, 2H), 1.80 – 1.72 (m, 2H), 1.72 – 1.64 (m, 2H). 
13C NMR (101 MHz, CDCl3, δ ppm): 193.72, 143.56, 135.31, 38.85, 25.02, 24.29, 21.12. 

 

6-(diethylamino)-2,3-dihydro-1H-xanthene-4-carbaldehyde, DDXC 

Cs2CO3 (3 eq., 861 mg, 2.64 mmol) and 2-bromocyclohex-1-ene-1-carbaldehyde (1.2 eq., 200 

mg, 1.06 mmol) were added to a solution of 4-(diethylamino)-2-hydroxybenzaldehyde (1 eq., 

170 mg, 0.882 mmol) in DMF. The reaction mixture was stirred at r.t. overnight. 

The mixture was filtered through a pad of silica gel and the filtrate was concentrated under 

reduced pressure. the residue was re-dissolved in DCM (20 mL), washed with water (2x10 mL), 

dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. Purification of the 

residue by chromatography afforded 6-(diethylamino)-2,3-dihydro-1H-xanthene-4-

carbaldehyde (124 mg, 0.441 mmol, 50 %) as an orange solid. 
1H NMR (400 MHz, CDCl3, δ ppm): 10.27 (s, 1H), 6.98 (dd, J = 8.6, 4.9 Hz, 1H), 6.61 (s, 1H), 6.40 

(dd, J = 8.6, 2.5 Hz, 1H), 6.35 (d, J = 2.4 Hz, 1H), 3.38 (q, J = 7.1 Hz, 4H), 2.56 – 2.50 (m, 1H), 2.44 

(t, J = 6.1 Hz, 1H), 1.73 – 1.65 (m, 1H), 1.19 (t, J = 7.1 Hz, 6H). 
13C NMR (101 MHz, CDCl3, δ ppm): 187.13, 162.04, 154.21, 149.64, 128.13, 127.61, 123.17, 

111.39, 110.32, 107.81, 97.23, 44.63, 29.88, 21.67, 20.72, 12.63. 
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1.10 ISOMERIZATION OF PACLITAXEL 

Scheme EP 11. Epimerization at C7 of Paclitaxel. 

1.10.1 Azidation attempt on micro scale 

The late stage metal-free azidation of paclitaxel was carried out applying the protocol 

described in literature115 to the cytotoxic protocol and microscale conditions. 

Solutions of reagents were prepared as follow: 

- paclitaxel, 50 mM in acetonitrile (CITOTOXIC PROTOCOL) 

- p-toluensulfonyl azide, 500 mM in acetonitrile 

- sodium bicarbonate, 500 mM in water 

- potassium persulfate, 167 mM in water 

In a glass vial were added, in order: 

- 12.75 µL of the azide solution (1.5 eq. 1.26 mg) 

- 8.5 µL of bicarbonate solution (1 eq., 0.36 mg) 

- 76.5 µL of persulfate solution (3 eq., 3.45 mg) 

- 29.75 µL of acetonitrile (in order to have a 3/2 mixture ACN/water) 

- 85 µL of paclitaxel solution (1 eq., 3.63 mg); final concentration of paclitaxel: 20 mM. 

The vial was sealed and fluxed with Argon for a few minutes. Temperature was set to 85°C and 

the reaction mixture was left to stir for 4 hours. Reaction was monitored by LC-MS, a new peak 

was detected with the same m/z of the starting material and a similar retention time. There 

was no sign of a possible paclitaxel-azide adduct. 

The reaction was repeated on a small scale without the azide source and at room temperature, 

obtaining the same chromatographic profile. 

1.10.2 Paclitaxel isomerization on 20 mg scale 

Solutions of reagents were prepared as follow: 

- paclitaxel, 50 mM in acetonitrile (CYTOTOXIC PROTOCOL) 

- sodium bicarbonate, 0.5 M in water 

- potassium persulfate, 0.1M in water 

In a glass vial were added, in order: 
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- 46.9 µL of bicarbonate solution (1 eq., 1.97 mg in water) 

- 702.5 µL of persulfate solution (3 eq., 18.99 mg in water) 

- 655.5 µL of acetonitrile (in order to have a 3/2 mixture ACN/water) 

- 468 µL of paclitaxel solution (1 eq., 20 mg); final concentration of paclitaxel: 12 mM. 

The vial was sealed and fluxed with argon for a few minutes and the reaction mixture was left 

to stir for 4 hours at room temperature. Reaction was monitored by LC-MS and the product 

was purified by preparative HPLC. 

 

Paclitaxel 

(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-

phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-

3,4,4a,5,6,9,10,11,12,12a-decahydro-1H-7,11-methanocyclodeca [3,4]benzo[1,2-b]oxete -

6,12b(2aH)-diyl diacetate 
1H NMR (400MHz, DMSO-d6, δ ppm): 8.85 (d, J = 8.6 Hz, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.82 (d, J 

= 7.1 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.5 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.3 

Hz, 2H), 7.36 – 7.30 (m, 4H), 7.15 (dt, J = 11.4, 4.3 Hz, 1H), 6.23 (s, 1H), 6.12 (d, J = 7.6 Hz, 1H), 

5.83 (t, J = 8.9 Hz, 1H), 5.35 (dd, J = 7.7, 3.3 Hz, 2H), 4.86 (t, J = 6.6 Hz, 2H), 4.64 (s, 1H), 4.52 (t, J = 

7.6 Hz, 1H), 4.09 – 4.00 (m, 1H), 3.95 (dd, J = 15.0, 8.2 Hz, 2H), 3.55 (d, J = 7.1 Hz, 1H), 2.31 – 2.20 

(m, 1H), 2.16 (s, 3H), 2.05 (s, 3H), 1.83 (dd, J = 15.1, 9.3 Hz, 1H), 1.72 (s, 3H), 1.65 (dd, J = 15.6, 9.2 

Hz, 1H), 1.57 (t, J = 13.0 Hz, 1H), 1.44 (s, 3H), 0.96 (s, 3H), 0.95 (s, 3H). 

HR-ESI-MS C47H51NO14, 853,33096; found 853.33135 

Figure EP 5. HR-MS chromatogram of Paclitaxel. 
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7-epi-paclitaxel 

(2aR,4R,4aS,6R,9S,11S,12S,12aR,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-

phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-

3,4,4a,5,6,9,10,11,12,12a-decahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxete-

6,12b(2aH)-diyl diacetate 
1H NMR (400MHz, DMSO-d6, δ ppm): 8.81 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 7.3 Hz, 2H), 7.82 (d, J 

= 7.2 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.5 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.4 

Hz, 2H), 7.33 (dd, J = 8.5, 5.5 Hz, 4H), 7.15 (td, J = 5.9, 2.8 Hz, 1H), 6.56 (s, 1H), 6.06 (d, J = 7.5 Hz, 

1H), 5.83 (t, J = 8.8 Hz, 1H), 5.43 (d, J = 7.5 Hz, 1H), 5.37 (t, J = 8.0 Hz, 1H), 4.93 (dd, J = 9.2, 3.4 Hz, 

1H), 4.89 (d, J = 9.2 Hz, 1H), 4.68 (s, 1H), 4.55 (t, J = 6.8 Hz, 1H), 4.21 (d, J = 8.3 Hz, 1H), 4.07 (d, J 

= 8.3 Hz, 1H), 3.67 (d, J = 7.4 Hz, 1H), 3.42 (dd, J = 9.2, 3.1 Hz, 1H), 2.27 (d, J = 7.4 Hz, 3H), 2.14 

(dd, J = 14.8, 9.6 Hz, 1H), 2.05 (s, 3H), 2.03 – 1.99 (m, 1H), 1.94 (dd, J = 15.3, 9.3 Hz, 1H), 1.70 (dd, 

J = 15.3, 8.7 Hz, 1H), 1.61 (s, 3H), 1.43 (s, 3H), 0.95 (s, 3H), 0.92 (s, 3H). 

HR-ESI-MS C47H51NO14, 853,33096; found 853.32930 

Figure EP 6. HR-MS chromatogram of 7-epi-paclitaxel. 
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2. STABILITY OF FRET PROBES IN AQUEOUS MEDIA 

2.1 MATERIALS AND METHODS 

Aqueous buffers were prepared following Table EP 2., pH was measured with a pH-meter. 

 

Calculated pH Measured pH Composition 

0 <0.7 1 M solution of HCl 

1 1.19 0.1 M solution of HCl 

2 2.00 0.01 M solution of HCl 

3 3.03 30 mL of KH phthalate std + 10 mL of 0,1 M HCl 

4 4.12 KH phthalate (std solution for pH-meter) 

5 5.03 0.78 mL of Na2HPO4 0,1 M + 39.4 mL of NaH2PO4 

7.4 7.32 31 mL of Na2HPO4 0,1 M + 9 mL of NaH2PO4 

9 9.03 0.485 g of TRIS base in 15 mL of miliQ water, pH adjusted to 9 

with 1 M solution of HCl and then diluted with miliQ water to 

40 mL 

Table EP 2. Preparation of buffer solutions for the stability tests. 

Fluorescence measurements were done using 96-well plates black Nunclon Delta Surface from 

Thermo Scientific and a fluorometer Perkin Elmer VictorX2 2030 Multilabel Reader or a 2-

Monochromators multidetection reader for microplates SAFAS Xenius XML. 

2.2 STABILITY TESTS IN AQUEOUS BUFFERS 

2.2.1 FRET probes F-APN6, F-APNM5, F-A2M5, F-A2M6 

Working solutions (40 µM in DMSO) of FRET probes F-APN6, F-APNM5, F-A2M5 and F-A2M6 

were prepared. 25 μL of each working solution was added to 975 μL of aqueous media (final 

concentration 1 µM), vortexed and distributed onto 96-well plates (in triplicates). The 

instrument temperature could not be set (SAFAS Xenius XML); however, the temperature of 

the room was maintained constant (23°C). Excitation/emission wavelengths were set to those 

for TAMRA (550/580 nm). The fluorescence was measured every 3 minutes for 15 hours and 

normalized to the fluorescence of a solution of TAMRA-NH2 (1 μM) and BHQ-2-SH (1 μM) in the 

corresponding media (2.5 % DMSO, positive control) recorded in the same conditions. For 

stability test at pH < 1 the fluorescence of MCC-FRET probe was monitored in parallel. The 

obtained results are shown in Figure EP 7. 
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Figure EP 7. Profile of FRET probes F-APN6, F-APNM5, F-A2M5 and F-A2M6 stability at different pH. 

2.2.2 FRET probes F-MIA5-1, F-MIA5-2, F-MIA6-1, F-MIA6-2 

Working solutions (40 µM in DMSO) of FRET probes F-MIA5-1, F-MIA5-2, F-MIA6-1 and F-MIA6-

2 were prepared. 25 μL of each working solution was added to 975 μL of aqueous media (final 

concentration 1 µM), vortexed and distributed onto 96-well plates (in triplicates). The 

instrument temperature was set to 25°C and excitation/emission wavelengths were set to 

those for TAMRA (550/580 nm). The fluorescence was measured every 3 minutes for 15 hours 

and normalized to the fluorescence of a solution of TAMRA-NH2 (1 μM) and BHQ-2-SH (1 μM) 

in the corresponding media (2.5% DMSO, positive control) recorded under the same 

conditions. For stability test at pH < 1 the fluorescence of MCC-FRET probe was monitored in 

parallel. The obtained results are shown in Figure EP 8. 
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Figure EP 8. Profile of FRET probes F-MIA5-1, F-MIA5-2, F-MIA6-1 and F-MIA6-2 stability at different pH. 

2.2.3 FRET probes F-APN6 and F-APNM5 at 37 °C 

The working solutions (40 µM in DMSO) of F-APN6, F-APNM5 and TAMRA+BHQ (positive 

control) were diluted with the aqueous media to obtain 5 mL of 1 µM concentration solutions. 

The solutions were agitated at 37 °C, 600 µL aliquots were taken each hour for 6 hours and 

distributed on a 96-well plate (triplicates of 200 µL each).  The fluorescence was measured 

(ex550/em580) and normalized to the fluorescence of the positive control. 

2.3 RATE OF SUCCINIMIDE RING-OPENING 

2.3.1 Rate of succinimide ring-opening in PBS buffer 

The solution (2 mL) of each FRET probes probes F-MIA5-1, F-MIA5-2, F-MIA6-1 and F-MIA6-2 

(50 μM, final concentration) in PBS 1x buffer (pH 7.4, DMSO 10%) was incubated at 37 ˚C. After 

certain intervals of time the aliquots (100 µL) were taken, diluted with 100 µL of acetonitrile 

and then were analysed by LC-MS. The conversion was calculated as the peak-area under 

hydrolyzed product (M+18) divided by the total peak-area. 

2.3.2 Rate of succinimide ring-opening in human plasma 

The solution (2 mL) of each FRET probe F-MIA5-1, F-MIA5-2, F-MIA6-1 and F-MIA6-2 (1 μM, 

final concentration) in human plasma (DMSO 10%) was incubated at 37 ˚C. After certain 
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intervals of time 100 μL aliquots were taken and mixed with 100 μL of acetonitrile, allowing 

the precipitation of proteins, the resulting mixture was centrifuged and the supernatant was 

analysed by LC-MS. The conversion was calculated as the area under opened product divided 

by the total area. 

Human plasma was supplied by Etablissement Français du Sang (EFS Strasbourg).  
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2.4 STABILITY OF F-MIA5-1 AND HF-MIA5-1 IN PLASMA 

Procedure 

1) Preparation of probe HF-MIA5-1. 5 µL of 10 mM stock solution of FRET probe P(5-1) was 

added to 15 µL of PBS 1x buffer (pH 7.4) and 13.5 µL of DMSO in a vial for LC-MS (final 

concentration 0.5 mM). The resulting solution was incubated at 37 °C and analysed by LC-MS 

until 100% hydrolysis was achieved. 

2) Preparation of probe F-MIA5-1. Aliquots from 10 mM stock solutions of FRET probe P(5-1) 

was diluted to reach the final concentration of 0.5 mM (PBS/DMSO 1:1). 

3) Incubation in human plasma. For every 0.5 mM solution of probes, 10 µL were taken and 

added to 90 µL of human plasma (final concentration of probes: 50 µM), the resulting solutions 

were incubated at 37 °C. Each day aliquots of 2 µL were taken, diluted 100 times with water 

and stocked at -20 °C.  

4) SDS-PAGE analysis Non-reducing SDS-PAGE was performed on 12% Mini-PROTEAN® TGX™ 

Gel (Bio-Rad ref 4561044) following standard lab procedures. For each solution of samples 

(including neat plasma diluted 10 times with water and a 0,1 mg/mL solution of antibody-

TAMRA conjugate (standard control, with average degree of conjugation of 0,86) 24 µL of 

aliquot was taken and mixed with 8 µL of 4x non-reducing Laemmli SDS sample buffer (ref 

J63615, Alfa Aesar). The samples were heated at 95 °C for 5 minutes and loaded into the gel 

well (10 µL). The gel was run at constant voltage (200 V) for 40 min using TRIS 0.25 M - Glycine 

1.92 M - SDS 1% as a running buffer. Fluorescence was measured on GeneGenius bio-imaging 

system (Syngene) and then normalized to standard control prior to staining with Coomassie 

Blue (Figure EP 9). 

 

Figure EP 9. HSA bands revealed by Coomassie Blue staining of gel with HF-MIA5-1 probe and 

fluorescence of HSA bands on gel with HF-MIA5-1 and F-MIA5-1 probes.  
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3. SCREENING OF CATALYSTS AND HYDROLYSIS TESTS 

3.1 MATERIALS AND METHODS 

Catalysts were obtained from commercial sources and used without any further treatment or 

synthetized in the laboratory according to procedures described above or received from Dr. 

Jean-Michel Becht and Dr. Lavinia Balan from IS2M (Université Haute-Alsace). 

Human plasma was supplied by Etablissement Français du Sang (EFS Strasbourg). 

Washing solutions were prepared as follow: 

- NaCl sat.: NaCl (for molecular biology, >99% purity) was dissolved in 1 L of ultrapure water 

until saturation. Dilutions of this stock solution were done using ultrapure water. 

- PBS: prepared from commercial tablets. One tablet dissolved in 200 mL of ultrapure water 

yields 0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, 

pH 7.4, at 25 °C. Dilutions of this stock solution were done using ultrapure water. 

Fluorescence measurements were done using 96-well plates black Nunclon Delta Surface from 

Thermo Scientific and a 2-Monochromators multidetection reader for microplates SAFAS 

Xenius XML. 

Leica TCS SPE Confocal Laser Scanning Microscope was used to collect images of the solids. 

Magnification: 20X; Laser: 561 nm; emission collection channel: 570-590; PMI is equally fixed 

within acquisitions of the same kind of solid. 

3.2 GENERAL SCREENING PROCEDURES 

3.2.1 Screening of CSA and homogeneous catalysts 

FRET probes were dissolved in a solution of the catalyst in the appropriate solvent. 

- Volume: 0.3 mL 

- FRET concentration: 10 µM (from a stock solution ~1 mM in DMSO) 

- Catalyst concentration: 50 mM 

The Eppendorf tubes were agitated at 750 rpm at 37 °C. At given time point, 35 µL of the 

solution was taken, diluted 10 times with 315 µL of water, vortexed and distributed onto 96-

well plates (two replicates of 150 µL each). If the solvent was plasma, the 35 µL aliquot was 

mixed with 315 µL of acetonitrile, allowing the precipitation of proteins, the resulting mixture 

was centrifuged and the supernatant was distributed onto 96-well plates (two replicates of 150 

µL each). 

Fluorescence was measured and related to that of the positive control. 

 

Positive control: 

Positive control was a 10 µM solution of TAMRA-NH2 and BHQ-2-SH in the appropriate solvent, 

put under agitation at 37 °C. At given time, a 35 µL aliquot was taken and treated according to 
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the solvent used (as described above). Fluorescence was measured and used as 100% 

hydrolysis value. 

 

Comparison control 

FRET probes (10 µM) in 0.3 mL of the appropriate solvent containing CSA (50 mM) were treated 

as described for the other samples and used as comparison for the evaluation of the 

hydrolysis. 

 

Negative control 

Negative control consisted in a 10 µM solution of the FRET probe in the appropriate solvent 

treated as described above and used to check that no auto-hydrolysis takes place within the 

timeframe of the experiment. 

 

CSA test was done the same way, using different concentration of the acid: 0.1 M, 10 mM, 1 

mM, 0.1 mM, 10 µM. 

3.2.2 Screening of heterogeneous catalysts 

- 10 mg of solid catalyst  

- or 1 bead (in case of Nafion NR50)  

- or the amount of solid catalyst corresponding to 5K equivalents of acidic protons  

were dispersed in 0.3 mL of the appropriate solvent and let to incubate for 5 minutes at 37 °C. 

Then the FRET probes were added (final concentration: 10 µM) and the mixture was let under 

mechanical agitation at 37 °C. At given time the reaction was monitored according to the type 

of catalyst as follow: 

- Non-adsorbent catalyst: Fluorescence was measured with a spectrophotometer as described 

for the screening of homogeneous catalysts. 

- Adsorbent catalysts: Fluorescence was evaluated by placing the plastic tube under a UV lamp 

and comparing the fluorescence to that emitted by the same solid catalyst soaked with an 

equimolar mixture of TAMRA and BHQ (positive control). 

Comparison and negative control were the same as for the screening of homogeneous 

catalysts. 

3.2.3 Screening of PEG-based catalysts 

PEG-PAASA (film) – PEG-AASA (film and beads) 

- PEG-PAASA and PEG-AASA in form of films were supplied by Dr. Lavinia Balan in a glass 

support. The polymer was detached from the support by wetting it with 3 mL of plasma. 

This procedure was indeed a pre-washing of the catalyst. In some case the polymer 

detached spontaneously from the support, so the pre-washing was not performed. 

- PEG-AASA beads were supplied by Dr. Lavinia Balan as free beads and stored in a glass 

container at r.t. When required, beads were pre-washed (cf. paragraph 3.3.2). 
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Defined amount of the detached film or of PEG-AASA beads were dispersed into 0.3 mL of 

plasma, the acetal substrate was added (10 µM in case of a FRET probe, 0.28 mM in case of 

PEGAM5) and the reaction vials were agitated (750 rpm) at 37 °C for a maximum of 7 days. 

Reaction monitoring was done at given times according to the nature of the substrate: 

For FRET: 35 µL of the solution were taken and mixed with 315 µL of acetonitrile, allowing the 

precipitation of proteins, the resulting mixture was centrifuged and the supernatant was 

distributed onto 96-well plates (two replicates of 150 µL each). Fluorescence was measured 

and related to that of the positive control (10 µM solution of TAMRA and BHQ in plasma). 

For PEGAM5: See following paragraph. 

3.2.4 PEGAM5’s hydrolysis monitoring 

Tests with PEGAM5 as substrate were done the same way as above, but the concentration of 

PEGAM5 was increased to 0.28 mM (5 µL of a 16.8 mM stock solution in DMSO were dissolved 

in 285 µL of plasma). At given times 10 µL aliquots were taken, mixed with 90 µL of acetonitrile, 

allowing the precipitation of proteins. The resulting mixture was centrifuged and the 

supernatant was analysed by LC-MS (fixed injection volume: 5 µL). Peak areas of the starting 

material and of the product are measured and percentage was extrapolated from the 

calibration curves built as follow. 

 

Calibration curve for PEGAM5 (Starting Material – SM) 

X µL of a stock solution of PEGAM5 in DMSO (16.8 mM) were added to (300 – X) µL of plasma. 

Three different solution were prepared, corresponding to different amount of PEGAM5 (cf. 

Table EP 3). The solutions were incubated at 37 °C for 1 hour, then 10 µL aliquots were taken, 

diluted in 90 µL of acetonitrile, allowing the precipitation of proteins. The resulting mixtures 

were centrifuged and the supernatant was analysed by LC-MS (fixed injection volume of 5 µL). 

The values of the peak area corresponding to PEGAM5 were plotted against the percentage. 

 

Percentage PEGAM5 stock sol. (µL) Plasma (µL) 

100% 5 295 

50% 2.5 297.5 

20% 1 299 

Table EP 3. Composition of the solutions for the calibration curve of PEGAM5. 

Calibration curve for 36 (Product of PEGAM5 hydrolysis – P) 

5 µL of 3 M HCl aq. solution was added to 10 µL of a 16.8 mM stock solution of PEGAM5 in 

DMSO. The solution was incubated at 37 °C for 1 hour, to insure complete acidic hydrolysis of 

PEGAM5. Then it was neutralized by adding 15 µL of a 1 M KOH aq. solution. 

The solution of hydrolysed PEGAM5 was used for the calibration curve of the hydrolysis 

product (aldehyde 36 – P) 
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X µL of the prepared solution were added to (300 – X) µL of plasma. Four different solution 

were prepared, corresponding to different amount of 36 (cf. Table EP 4). The solutions were 

incubated at 37 °C for 1 hour, then 10 µL aliquots were taken, diluted in 90 µL of acetonitrile, 

allowing the precipitation of proteins. The resulting mixtures were centrifuged and the 

supernatant was analysed by LC-MS (fixed injection volume of 5 µL). The values of the peak 

area corresponding to aldehyde 36 were plotted against the percentage. 

 

Percentage XX solution (µL) Plasma (µL) 

100% 15 285 

50% 7.5 292.5 

20% 3 297 

10% 1.5 298.5 

Table EP 4. Composition of the solutions for the calibration curve of XX. 

3.3 WASHING PRE-TREATMENT 

3.3.1 Washing pre-treatment for Nafion 

Method A 

20 commercial Nafion NR50 beads were put on a flask; 30 mL of the washing solution were 

added and let to stir at room temperature for 18 hours. Then the washing solution was 

decanted, the beads were let to dry and were stocked in at room temperature in a close glass 

container until use. 

 

Method B 

20 beads are put on a Buchner funnel and 100 mL of the washing solution was used to wash 

the beads. Total time: approximately 1 minute. Then the beads were let to dry and were 

stocked in at room temperature in a close glass container until use. 

 

Method C 

20 beads or 20 mg of POWDion (40-60 mesh) were put on a glass container with an entrance 

and a way out for the washing solution. The washing solution was pumped at a flow rate of 

4.15 mL/min by a peristaltic pump into the glass container, getting in contact with the catalyst, 

and out (Figure EP 10). At given times, the flow was stopped, the system was opened to take 

out part of the catalyst. Then the system was closed and the flow was started again to continue 

the washing (total time of the operation: maximum 1 minute). The beads were let to dry and 

were stocked in at room temperature in a close glass container until use. 
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Figure EP 10. Photo and scheme of the system used to wash the catalyst with method C. The washing 

solution is pumped at 4.15 mL/min to a closed glass container in which it gets in contact with the solid 

catalyst and then exit. 

3.3.2 Washing pre-treatment for PEG-AASA (beads) 

The amount of PEG-AASA beads required for the reaction was weighted and the washing was 

performed in the vial to be used for the reaction, following one of the procedure described 

below. 

 

Fast washing. 1 mL of plasma was added and the suspension was vigorously agitated at room 

temperature for 15 seconds. Then plasma was removed. 

10 minutes washing. 1 mL of plasma was added and the suspension was put at 37 °C under 

mechanical shaking (750 rpm) for 10 minutes. Then plasma was removed. 

30 minutes washing. 1 mL of plasma was added and the suspension was put at 37 °C under 

mechanical shaking (750 rpm) for 30 minutes. Then plasma was removed. 

3.4 NAFION NR50 AND AMBERLYST A-15 ADSORBANCE AND RELEASING RATE 

The following solutions were prepared: 

- 1 mL of TAMRA (10 µM) and BHQ (10 µM) in water 

- 0.8 mL of F-APNM5 (10 µM) in water 

Each solution was distributed in two vials (0.3 mL each). In one vial was added a bead of  

Nafion NR50 and in the other a bead of Amberlyst A-15. 0.3 mL of the TAMRA+BHQ solution 

was also kept as positive control. 

The 5 vials were agitated (750 rpm) at 37 °C. At given time point (t = 0 h, 1.5 h and 3 h) 35 µL of 

the solution was taken, diluted 10 times with 315 µL of water, vortexed and distributed onto 

96-well plates (two replicates of 150 µL each). Fluorescence was measured with SAFAS Xenius 

Nafion
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OUT

Washing
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STOCK

Peristultic
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XML spectrophotometer. Values were compared to those obtained from the fluorescence 

measurement of the positive control. 

After 3 hours, the beads were taken from the solution and put into 1 mL of 1:1 mixture of 

DMSO and HCl aq. (3 M). They were left at room temperature under agitation (750 rpm) for 24 

hours. Then, 100 µL of the solution was taken, diluted 3 times with 300 µL of water, vortexed 

and distributed onto 96-well plates (two replicates of 150 µL each). Fluorescence was 

measured with SAFAS Xenius XML spectrophotometer and compared to that of a 1 µM solution 

of TAMRA and BHQ in an equal composition of solvents (1:1:4 DMSO/3 M HCl aq./water). 

3.5 DETECTION OF HYDROLYSIS WITH UV TRANSILLUMINATOR AND CONFOCAL MICROSCOPE 

3.5.1 Preparation of Nafion beads for the calibration curve 

0.3 mL solutions of TAMRA and BHQ in water at different concentration were prepared, 

ranging from 1 µM to 10 µM (Table EP 5). For each solution, a Nafion bead was added and let 

to soak all the TAMRA and BHQ (37 °C, agitation, 15 minutes), then analysed. 

 

Entry Volume [TAMRA+BHQ] Theoretical conversion 

1 0.3 mL // 0% 

2 0.3 mL 1 µM 10% 

3 0.3 mL 2.5 µM 25% 

4 0.3 mL 5 µM 50% 

5 0.3 mL 7.5 µM 75% 

6 0.3 mL 10 µM 100% 

Table EP 5. List of solutions used to build the calibration curve. 

3.5.2 Fluorescence detection at UV transilluminator 

The beads were taken out from their solutions, dried and placed on defined positions on the 

viewing surface of the GeneGenius bio-imaging system (Syngene) transilluminator and several 

snapshot were taken. For each image taken, the positions of beads on the viewing surface 

were rotated clockwisely until each bead was analysed on each position. 

Also, for each position, at least two images were taken differing in the orientation of the bead. 

3.5.3 Fluorescence detection at confocal microscope 

The beads were taken out from their solutions, dried and analysed with the confocal 

microscope (cf. section 3.1, page 221). The photomultiplier intensity was set in order to allow 

to detect fluorescence on the bead soaked with the amount of TAMRA and BHQ corresponding 

to 10% of hydrolysis (Table EP 5, entry 2).  
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4. RATIOMETRIC ANALYSIS 

4.1 MATERIAL AND METHODS 

Ratiometric probe DDXC was synthetized as described previously in section 1.9 and stocked 

as a 0.5 M solution in DMSO. 

Leica TCS SPE Confocal Laser Scanning Microscope was used to collect images of the solids. 

Magnification: 20X; Laser: 405 nm; emission collection channels: 502-522 nm and 570-590; PMI 

is equally fixed for both collection channels and within acquisitions of the same kind of solid. 

It may vary from one kind of solid to the other according to the degree of emission. 

Images were edited with ImageJ® software, using a macro specifically conceived by Romain 

Vauchelles at the Faculty of Pharmacy of the University of Strasbourg for ratiometric analysis. 

4.2 PREPARATION OF THE SOLID CATALYSTS, IMAGE ACQUISITION AND EDITING 

Preparation of the solid catalysts 

Nafion 

Nafion NR50 beads (one per vial), Nafion NR50 CH beads (one per vial) were incubated in 0.5 

mL of a 0.5 mM solution of DDXC in water at 37 °C until complete adsorption of the probe 

(usually from 5 to 30 minutes). 

POWDion forms of Nafion (2 mg/vial) were incubated in 0.3 mL of a 0.5 mM solution of DDXC 

in water at 37 °C until complete adsorption of the probe (usually 30 minutes). 

 

PEG-AASA 

3 mg/vial of PEG-AASA beads were incubated in 0.5 mL of a 0.5 mM solution of DDXC in water 

at 37 °C until appreciable adsorption of the probe (usually 3 hours).  

 

Probe adsorption was checked either by looking at the colour of the solution (from light orange 

to colourless) and of the solid (from colourless to light orange), either by using a UV lamp to 

check fluorescence emission from the solid. 

 

Image acquisition and editing 

Images of soaked beads were taken at the Confocal Laser Scanning Microscope using the 

settings described above. For each bead, images were taken at different depths and in 

different points. The process has to be as fast as possible since exposition to the laser light 

affect the DDXC probe (emission is lowered when exposition time is increased). 

Images were edited with ImageJ software using a macro for ratiometric analysis.  
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5. IN VITRO AND IN VIVO EXPERIMENTS 

5.1 CELL VIABILITY WITH F-A2M5 AND F-A2M6 

This experiment was performed by Dr. Fabien Thoreau (CNRS, UMR7199) 

Cell Culture 

All cells were maintained in American Type Culture Collection recommended cell culture media 

and conditions, which are listed in Table A. Cells were all cultured at 37 °C in a humidified 

atmosphere containing 5% CO2. Corning® T25 or T75 were used. 

 

Cell line Description Source Culture 

BNL CL.2 Mouse normal liver cell line ATCC DMEM, 10% FBS, 

1% PS 

LS174 Human Dukes' type B, colorectal 

adenocarcinoma cell line 

ATCC MEM, 10% FBS, 1% 

PS 

HUH7 Human well differentiated  hepatocyte derived 

cellular carcinoma cell line 

ATCC DMEM, 10% FBS, 

1% PS 

MDA-MB-231 Human breast adenocarcinoma, 

derived from metastatic site: pleural effusion 

ATCC DMEM, 10% FBS, 

1% PS 

SKBR3 Human breast adenocarcinoma, 

derived from metastatic site: pleural effusion 

ATCC DMEM, 10% FBS, 

1% PS 

Table EP 6. Origin and characteristic of tested cell lines 

Flow cytometry  

Cells were plated in 48 well plates (Costar® 3548) on day 1 (100K cells per well for LS174, HUH7, 

MDA-MB-231 and SKBR3, 50K cells per well for BNL CL.2) and cultured until day 3 at 37 °C in a 

humidified atmosphere containing 5% CO2 (in the suited Media as noticed in table 1). A 

different plate was used for each cell line to avoid contamination.  

On day 3, media was removed and cells were incubated with 250 µL per well of a 1 µM solution 

of tested compound for 1.5 h at 37 °C (compound solutions were prepared freshly in MEM or 

DMEM media in accordance with the media used to culture the treated cells, cf. Table EP 6). 

Each seeded well of a plate was treated with a different compound solution expect one which 

was incubated with media (control condition of the corresponding cell line). 

After 1.5 h incubation, the compound solutions were removed from the wells and cells were 

rinsed with 300 µL PBS. After removing PBS, cells were trypsinized (80 µL of trypsine per well) 

for 5-7 min at 37 °C. 

After trypsinization, 500 mL of a PBS/DMEM (without phenol red) (5/5) was added in each well. 

Cells were flushed and transferred in tubes suited for flow cytometry (Falcon® 5mL). FACS 

studies were realised on a Fortessa cytometer (BD Biosciences®). 

All compounds have been tested on all cell lines several times: at least a biological triplicate in 

any case.   
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5.2 CELL VIABILITY WITH PACLITAXEL AND 7-EPI-PACLITAXEL 

This experiment was performed by Dr. Manon Ripoll (former CNRS, UMR7199) 

MTT assay after 48 h drug exposure on HeLa cell line. Results (each value is the media of three 

replicates) are shows in Figure EP 11. Unfortunately, no further information is available. 

Figure EP 11. Cell viability of Paclitaxel and 7-Epi-Paclitaxel. 

5.3 IN VIVO EXPERIMENT: SAMPLES PREPARATION 

Nafion NR50 pre-washed beads 

Nafion NR50 beads were pre-washed for 90 minutes in flow at a rate of 4.15 mL/min (washing 

method C, cf. section 3.3.1), then they were incubated with 100 µL of human Fibroblast Growth 

Factor (hFGF, 100 ng/µL) at 37 °C for 1 hour, according to the procedure reported by Paria et 

al.153 

 

F-APNM5 solution for injection in mice 

3 mg of F-APNM5 obtained by lyophilization (following preparative HPLC purification) were 

dissolved into 229 µL of a 10% solution of Kolliphor EL® in PBS. To help the solubilization, the 

solution was warmed up to 50 °C and used right after to run test with Nafion beads. 

The solution was then stored at -20°C. 

 

Nafion bead soaked with hFGF were tested for hydrolysis in plasma in presence of F-APNM5 

from the stock solution for injection in mice, using the procedure previously described for the 

catalyst screening (section 3.2.2, page 222). As comparison, a Nafion-90 (not soaked with hFGF) 

bead was tested with F-APNM5 from the stock solution in DMSO. After 24 hours reaction the 

bead was analysed at the confocal microscope.  
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6. LATE STAGE FUNCTIONALIZATION 

6.1 SOLVENTS AND TEMPERATURES STABILITY TESTS 

10 µL of 10 mM solutions of cytotoxic drug (Abiraterone, Octeotride Acetate, Paclitaxel, 

Topotecan*HCl and Vinblastine) in different solvents (water, pyridine, methanol and dimethyl 

sulfoxide) were let stir for one hour at a given temperature (r.t., 50°C, 80°C, 110°C). Total 

number of samples: 20. 

0.5 µL of each solution was taken, diluted 100 times with acetonitrile and analyzed at LC-MS. 

Chromatograms were compared to those of the drugs taken before the experiment. All 

chromatograms can be found on Appendix C (page 261). 
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APPENDIX 

A. CATALYSTS’ SCREENING 

A complete list of all the tests performed on catalysts, listed in alphabetical order according to 

the catalyst’s name. First table explains the information given in the table: “substrate” indicates 

the acetal substrate used; “case” indicate the nature of the catalyst; “pH” is the pH of the 

solution measured by pH paper; “hydrolysis” column gives information about the observed 

fluorescence at given time. 
 

Legend 

Case 

A homogeneous/soluble in the solvent 

B heterogeneous non-adsorbent 

C heterogeneous adsorbent 

pH 

// not measured 

N neutral 

A acidic 

Hydrolysis 

// not observed 

F+ hydrolysis observed by means of detection of 

fluorescence. F+ = low fluorescence  → F+++ = 

high fluorescence 

F++ 

F+++ 
 

Substrate Catalyst Case Solvent pH Hydrolysis 

F-APN6 ALA014 C MeOH // No 

F-APNM5 ALA014 C MeOH // F+ 

F-APNM5 ALA014 C Water N // 

F-APNM5 ALA014 C PBS N // 

F-APN6 AlCl3 A MeOH // // 

F-APN6 Amberlyst A15 C MeOH // F+++ 

F-APN6 Amberlyst A15 C Water N F+++ 

F-APN6 Amberlyst A15 C PBS A F+++ 

F-APNM5 Amberlyst A15 C MeOH // F+++ 

F-APNM5 Amberlyst A15 C Water N F+++ 

F-APNM5 Amberlyst A15 C PBS A F+++ 

F-APN6 Amberlyte CG-50 C MeOH // // 

F-APNM5 Amberlyte CG-50 C MeOH // // 

F-APN6 BF3/SiO2 (fresh) B MeOH // F++ 

F-APN6 BF3/SiO2 (washed) B MeOH // // 
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Continue… 

Substrate Catalyst Case Solvent pH Hydrolysis 

F-APN6 BF3/SiO2 (washing sol.) B MeOH // F+ 

F-APN6 CAN A MeOH // // 

F-APN6 CeCl3/NaI A MeOH // // 

F-APN6 CSA A MeOH // F+++ 

F-APN6 CSA A Water A // 

F-APN6 CSA A PBS A // 

F-APN6 CSA A Plasma A // 

F-APNM5 CSA A MeOH // F+++ 

F-APNM5 CSA A Water A F+++ 

F-APNM5 CSA A PBS A F+++ 

F-APNM5 CSA A Plasma A F+ 

F-APNM5 Dowex C MeOH // F+ 

F-APNM5 Dowex C Water N // 

F-APNM5 Dowex C PBS N // 

F-APN6 Dowex 50WX8-200 C MeOH // // 

F-APN6 FeBr3 A MeOH // // 

F-APN6 FeCl3 A MeOH // // 

F-APN6 H2SO4/SiO2 (fresh) B MeOH // F+++ 

F-APN6 H2SO4/SiO2 (washed) B MeOH // F+ 

F-APN6 H2SO4/SiO2 (washing sol.) B MeOH // F++ 

F-APN6 HClO4/SiO2 B MeOH // // 

F-APN6 HSA6 C MeOH // // 

F-APNM5 HSA6 C MeOH // // 

F-APN6 HSA6OX C MeOH // // 

F-APNM5 HSA6OX C MeOH // // 

F-APN6 In(OTf)3 A MeOH // // 

F-APN6 JH003 C MeOH // // 

F-APNM5 JH003 C MeOH // // 

F-APN6 Lignine 400 C MeOH // // 

F-APNM5 Lignine 400 C MeOH // // 

F-APN6 Montmorillonite K10 C MeOH // // 

F-APNM5 Montmorillonite K10 C MeOH // // 

Continue… 
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Substrate Catalyst Case Solvent pH Hydrolysis 

F-APN6 Montmorillonite KSF C MeOH // // 

F-APNM5 Montmorillonite KSF C MeOH // // 

F-APN6 MR-Citric Acid C MeOH // // 

F-APN6 MR-Citric Acid C Water N // 

F-APNM5 MR-Citric Acid C MeOH // // 

F-APNM5 MR-Citric Acid C Water N // 

F-APN6 MR-H2SO4 C MeOH // // 

F-APN6 MR-H2SO4 C Water N // 

F-APNM5 MR-H2SO4 C MeOH // // 

F-APNM5 MR-H2SO4 C Water N // 

F-APN6 MR-H3PO4 C MeOH // // 

F-APN6 MR-H3PO4 C Water N // 

F-APNM5 MR-H3PO4 C MeOH // // 

F-APNM5 MR-H3PO4 C Water N // 

F-APN6 MR-PAASA C MeOH // // 

F-APN6 MR-PAASA C Water N // 

F-APNM5 MR-PAASA C MeOH // F+ 

F-APNM5 MR-PAASA C Water N // 

F-APN6 MR-PAASAcAN C MeOH // // 

F-APN6 MR-PAASAcAN C Water N // 

F-APNM5 MR-PAASAcAN C MeOH // // 

F-APNM5 MR-PAASAcAN C Water N // 

F-APN6 Nafion NR-50 C MeOH // F+++ 

F-APN6 Nafion NR-50 C Water N F+++ 

F-APN6 Nafion NR-50 C PBS A F+++ 

F-APNM5 Nafion NR-50 C MeOH // F+++ 

F-APNM5 Nafion NR-50 C Water N F+++ 

F-APNM5 Nafion NR-50 C PBS A F+++ 

F-APNM5 Nafion NR-50 C Plasma A // 

F-APN6 Nb2O5 B MeOH // // 

F-APN6 PAASA A MeOH // F+++ 

F-APN6 PAASA A Water A // 

F-APN6 PAASA A PBS A // 

Continue… 
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Substrate Catalyst Case Solvent pH Hydrolysis 

F-APNM5 PAASA A MeOH // F+++ 

F-APNM5 PAASA A Water A F+++ 

F-APNM5 PAASA A PBS A F+++ 

F-APN6 PAASAcAN C MeOH // F+ 

F-APN6 PAASAcAN C Water N No 

F-APNM5 PAASAcAN C MeOH // F++ 

F-APNM5 PAASAcAN C Water N F+ 

F-APNM5 PAASAcAN C PBS N // 

F-APN6 PAcMA A MeOH // // 

F-APNM5 PAcMA A MeOH // F+ 

F-APNM5 PAcMA A Water N // 

F-APN6 PMA/SiO2 B MeOH // // 

F-APN6 Sc(OTf)3 A MeOH // // 

F-APN6 Ti(IV) silicate B MeOH // // 

F-APN6 Yt(OTf)3 A MeOH // // 

F-APN6 Zn(OTf)3 A MeOH // // 

F-APN6 ZnBr2 A MeOH // // 
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B. NAFION NR50’S WASHING PRE-TREATMENT SCREENING 

Complete list of all the tests performed on the washing pre-treatment. 

Explanation of all the given information is included in the following legend. 

The main table is ordered according to the method used (A – B – C), then to the washing 

solution and then to the dilution (increased). 

 

Legend 

Nafion NR50 
C = Commercial 

CR = Re-activated 

WASHING 

Method A, B or C 

Washing solvent 
Washing solvent: UP water (ultrapure water); PBS 1X; NaCl sat. 

(saturated solution of NaCl in ultrapure water). 

Details Details on the amount of washing solvent, time and rate. 

Dilution N times dilution of the washing solvent 

[NaCl] Concentration of NaCl 

Washing pH 

pH of the washing solvent after washing (measured with a pH 

meter) 

HYDROLYSIS 

w/ F-APNM5 

Solvent MeOH, Water, PBS or plasma 

Pre-equil. (min.) Pre-equilibration of the beads in plasma (minutes) 

Time 3h,  6h or 24h check for fluorescence 

pH (t=3h) pH of the solution at t=3h, checked with pH paper 

Fluo 
Fluorescence of the bead (=hydrolysis): // (no fluo); F+, F++, F+++ 

(from little to good fluorescence) 
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C. LATE STAGE FUNCTIONALIZATION: SOLVENT AND TEMPERATURE 

STABILITY TESTS 

LC-MS chromatograms obtained by the stability tests in different solvents at different 

temperatures. Drug names and temperatures are indicated on the up left side of each 

chromatogram. 
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Acid Catalysed Abiotic Reactions in 
Biological System: 

From Design to In Vivo Proof of Concept 

 

 

 

Titre en français 

Réactions abiotiques catalysées par un acide dans les systèmes biologiques : de 
la conception à la preuve de concept in vivo 

 

Résumé 

Cette thèse porte sur les réactions abiotiques catalysées par un acide dans les systèmes biologiques. Elles 
sont définis comme des systèmes réactionnels composés d'un substrat xénobiotique - un acétal cyclique dans 
ce travail - stable dans des conditions biologiques et clivable à un pH bas et d'un catalyseur acide hétérogène 
correspondant biocompatible. Le défi de cette approche est de maintenir le catalyseur actif dans un milieu 
biologique tamponné et toujours capable d'hydrolyser le substrat xénobiotique d'acétal et de maintenir le pH 
tamponné du système vivant dans son état d'origine. 
Dans la première partie de ce travail, nous nous concentrons sur le réglage précis des acétals cycliques. Nous 
identifions 4 structures acétales et montrons que les changements structurels conduisent à une réactivité 
différente dans différentes gammes de pH, chacune correspondant à des applications possibles in vivo, 
notamment des lieurs stables pour les conjugués anticorps-médicaments et des lieurs clivables dans des 
conditions physiologiques pour la bioconjugaison. 
La deuxième partie est axée sur le catalyseur biocompatible. Ici, nous identifions deux catalyseurs 
biocompatibles solides, ayant différents degrés d'hydrophobie et de propriétés d’adsorption : le copolymère 
Nafion NR-50 et le copolymère PEG-AASA. Nous démontrons qu’avec un traitement approprié, ils peuvent 
maintenir un pH interne inférieur à 4, hydrolyser le substrat et ne pas affecter le biofluide hautement tamponné 
utilisé comme solvant. 

Mots-clés : réactions abiotiques, hydrolyse abiotique de l'acétal, catalyseurs acides biocompatibles, pH 
extrême in vivo 

 

This thesis’ object is acid-catalysed abiotic reactions in biological systems. They are defined as reaction systems 

composed by a xenobiotic substrate – a cyclic acetal in this work - stable in biological conditions and cleavable 

at low pH and a corresponding biocompatible heterogeneous acid catalyst. The challenge of this approach is to 

keep the catalyst active in a buffered biological media and still capable of hydrolysing the xenobiotic acetal 

substrate and to maintain the buffered pH of the living system in its original state. 

In the first part of this work we focus on the fine-tuning of cyclic acetals. We identify 4 acetal structures and we 

show that structural changes lead to a different reactivity in different pH ranges, each corresponding to possible 

applications in vivo, including stable linkers for antibody drug conjugates and linkers cleavable in physiological 

conditions for bioconjugation. 

The second part is focused on the biocompatible catalyst. Herein we identify two solid biocompatible catalysts, 

with different degree of hydrophobicity and adsorbance properties: Nafion NR-50 and PEG-AASA co-polymer. 

We demonstrate that, upon proper treatment, they can maintain an inner pH < 4, hydrolyse the substrate and 

do not affect the highly buffered biofluid used as solvent. 

Keywords: abiotic reactions, abiotic acetal hydrolysis, biocompatible acid catalysts, extreme pH in vivo 


