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Résumé en Français 

A. Introduction 

Le modèle standard de la physique des particules est un cadre théorique utilisé pour  

décrire les particules fondamentales constituant la matière ordinaire et les forces 

fondamentales. Les expériences de physique des hautes énergies (HEP) sont conçues 

pour rechercher des particules fondamentales via des collisions parmi une grande 

quantité de particules de haute énergie. Divers détecteurs sont équipés autour du point 

d’interaction pour détecter et enregistrer les informations relatives aux collisions. 

L'ILC (International Linear Collider) est un projet d'accélérateur linéaire de particules 

proposé pour les expériences HEP, en complément du LHC (Large Hadron Collider) au 

CERN. En raison de leur courte durée de vie, de l'ordre de plusieurs picosecondes, les 

quarks lourds doivent être reconnus par les trajectoires partant du vertex de la 

décroissance secondaire. Le détecteur de vertex (VTX) sera situé près du point 

d’interaction. 

Dans les expériences HEP, différents types de détecteurs à semi-conducteurs ont 

été utilisés pour la détection et la mesure de la position du passage des particules. Les 

capteurs à pixels CMOS (CPS) également appelés capteurs monolithiques à pixels 

actifs (MAPS) et proposés par des chercheurs de l'IPHC-Strasbourg (Institut 

Pluridisciplinaire Hubert Curien), intègrent sur un même substrat l'électronique pour la 

détection et la lecture des signaux. Les CPS constituent un condidali naturel pour 

l'équipement du VTX, car ils offrent un très bon compromis entre la granularité, le 

budget de matière, la tolérance au rayonnement et la vitesse de lecture. Ils ont été 

utilisés pour la jouvence du détecteur PiXeL (PXL) de l'expérience STAR au RHIC et 
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sont actuellement en phase de production pour la mise à jour de l'ITS (Inner Tracking 

System) de l'expérience ALICE-LHC. Comme le montre la figure 1, Le point 

d'interaction est entouré de deux détecteurs , (International Grand Detector (ILD) et 

Silicon Detector (SiD)), qui fonctionnent selon un schéma push-pull pour partager la 

même luminosité. 

 
Figure 1: International Grand Detector (ILD) et Silicon Detector (SiD). 

Dans le détecteur de vertex de l'ILC, la simulation Monte-Carlo montre qu'un 

nombre élevé d'impacts supplémentaires seront générés par des électrons résultant de 

processus liés au bruit de fond des faisceaux. Leur impulsion se trouve typiquement 

dans la gamme de 10-100 MeV/c, et est généralement à celle des particules issues 

d'événements associés à des processus physiques. 

Sous l'effet du champ magnétique dans le détecteur, les électrons provenant du 

bruit de fond, en raison de leur faible impulsion, traversent les détecteurs avec un grand 

angle d'incidence par rapport à la normale au plan des détecteurs. Les paires 

électrons-trous, environ ~80 e-h/µm, sont créées par le processus d'ionisation lorsque 

les particules chargées traversent la couche épitaxiale. Les électrons sont collectés par 

la diode de collection implantée dans chaque pixel. Les amas de pixels (clusters) 

générés par les électrons issus du bruit de fond présentent des formes plutôt allongés 

comme le montre la figure 2. En considérant les réseaux neuronaux artificiels (ANNs) 

qui ont été largement utilisés dans le domaine de la reconnaissance de motifs, notre 

groupe à l'IPHC a proposé d'explorer le concept d'un capteur à pixels CMOS avec des 

ANNs intégrés pour marquer et supprimer les pixels touchés (hits) générés par ces 

électrons. 
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Figure 2: Les formes de cluster générées par des particules du processus physique VS. 

l'arrière-plan de faisceau. 

Au cours de ma thèse de doctorat, je me suis concentré sur l'étude d'un capteur à 

pixels CMOS avec des ANNs intégrés portant sur les aspects suivants : 

I. L'implémentation de modules de prétraitement et d'un ANN dans un composant 

FPGA pour l'étude de faisabilité ; 

II. Un algorithme pour la recherche de clusters, qui fait partie des modules de 

prétraitement, a été proposé en vue d'être intégré dans la conception de l'ASIC 

(Application-Specific Integrated Circuit). 

B. Travail Doctoral 

1) L'implémentation dans un FPGA 

Pour concevoir le capteur à pixels CMOS avec des réseaux neuronaux artificiels 

intégrés, la première étape est l'étude de faisabilité qui consiste à comparer la mise en 

œuvre de l'ANN dans le FPGA à celui mise en œuvre dans un software. Les deux 

implémentations sont exploitées par une méthode offline, ce qui signifie que les 

données brutes utilisées sont acquises par un système indépendant. 

Le système d'acquisition de données brutes a été mis en place pour recueillir des 

données brutes à partir d'un capteur existant, MIMOSA 18, illuminé par une source β⁻ 

de 90Sr. Un support à 2 rotations est utilisé pour placer le CPS. Dans le cas où la source 

serait fixe, l'angle θ d'incidence des particules chargées peut être choisi en ajustant les 

angles entre le support et le plan de référence. 

Dans la procédure d'apprentissage effectuée par le logiciel appelé Toolkit for 

Multivariate Data Analysis (TMVA), une grande quantité de données brutes a été 

recueillie pour chaque angle θ d'incidence donné (10 au total) afin de former les poids 
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de l'ANN. 

Pour l'implémentation de l'ANN dans le FPGA, j'ai déterminé d'abord les entrées 

de l'ANN en utilisant des modules de prétraitement. Ensuite, j'ai implémenté ces 

modules de prétraitement et l'ANN dans une carte de développement NEXYS VIDEO 

FPGA en utilisant le langage de description matérielle. La procédure de test a été 

accomplie dans le FPGA. 500 trames de données brutes ont été échantillonnées pour 

chaque angle d'incidence donné afin de tester l'ANN. Les données brutes ont été 

introduites dans le FPGA puis traitées par CDS (Correlated Double Sampling) et des 

valeurs de pixel de 12 bits sont générées. 

a. Modules de prétraitement 

Les modules de prétraitement contiennent principalement la recherche de clusters 

et l'extraction de paramètres. Le module de recherche de clusters est utilisé pour trouver 

les pixels de départ et localiser les clusters dans la trame des valeurs de pixels. Les 

modules d'extraction de fonctionnalités sont utilisés pour produire des paramètres 

caractérisant un cluster. Quatre paramètres sont définis : la charge totale d'un cluster, la 

charge d'un pixel de départ, les écarts-types maximum et minimum. Le module MCA 

(Main Component Analysis) fait partie de l'extraction des fonctionnalités implémenté 

dans le FPGA et est utilisé pour calculer les écarts-types maximum et minimum.  

b. ANN 

 

Figure 3: L'ANN implémentée dans le FPGA. 

Ces quatre paramètres sont normalisés puis introduits dans l'ANN pour 

reconstruire l'angle d'incidence en fonction des poids de l'ANN. La structure de l'ANN 

est illustrée sur la figure 3. Elle se compose de la couche d'entrée, de la couche cachée 



Résumé en Français

XVII 

 

et de la couche de sortie. La couche d'entrée est composée de 4 neurones d'entrée et d'1 

neurone de biais. La couche cachée qui vient après celle d'entrée a 14 neurones de 

calcul et 1 neurone de biais. Le nombre de neurones de la couche cachée est déterminé 

par la procédure d'apprentissage dans le software, en prenant en compte un équilibre 

entre la complexité et les performances de la structure de l'ANN. La fonction 

d'activation utilisée dans l'ANN est une tangente hyperbolique. 

c. Résultats  

  

(a). La distribution de l'angle reconstruit θrec 

par le FPGA. 

(b). La différence entre la valeur moyenne des 

angles reconstitués ((((((((((((((((((((((((((((((((((((((((((((((((((((((((( ) et l'angle incident θinc. 

Figure 4: . Le résultat du test de 500 trames de données brutes dans chaque angle d'incidence 

donné. 

Dans la procédure de test, j'ai enregistré et analysé les angles d'incidence 

reconstruits. La figure 4(a) présente la distribution des angles reconstruits (θrec). Au 

fure et à mesure que l'angle d'incidence (θinc) augmente, le pourcentage d'angles 

reconstruits (θrec) entre 60 et 90 degrés augmente alors que le pourcentage d'angles 

reconstruits (θrec) entre 30 et 50 degrés diminue. Compte tenu de l'application 

spécifique du détecteur, la gamme d'angles reconstruits d'intérêt est comprise entre 50 à 

75 degrés. Tout d'abord, les formes de clusters générées par des particules d'angles 

d'incidence inférieurs à 50 degrés ne varient évidemment pas ou très peu. De plus, ces 

angles d'incidence peuvent être directement reconstruites à partir des informations des 

hits données par une échelle double-face (double-sided ladder). D'autre part, en raison 

de la limitation de la fenêtre 7×7, les entrées ANN extraites des clusters présentent des 

caractéristiques similaires si l'angle d'incidence est supérieur à 78 degrés. 

La figure 4(b) représente la différence « D », voir dans la formule (1), entre la 

valeur moyenne des angles reconstruits ( ) et l'angle d'incidence (θinc) ; notons que 
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les résultats reconstruits par le FPGA sont présentés en rouge et ceux reconstruits par le 

logiciel TMVA en bleu. On remarque que les angles reconstruits par les deux méthodes 

ont la même valeur moyenne, ce qui valide l'étude de faisabilité. Cependant, ils ne 

coïncident pas complètement en raison de la différence dans la précision des données 

entre le hardware et le software. 

 

De plus, les différences entre  et θinc, que ce soient pour le FPGA ou pour le 

TMVA, n'ont pas encore atteint un niveau de précision permettant de prédire l'angle 

d'incidence réel car la structure de l'ANN et la procédure de formation doivent encore 

être optimisées. Idéalement, la différence entre  et l'angle d'incidence (θinc) devrait 

se situer près de l'axe X (y=0). 

Même si l’ANN n’a pas permis une reconstruction très précise, comme indiqué, les 

résultats reconstruits présentent clairement la même tendance que la variété d'angles 

d'incidence. En outre, la preuve du principe que les particules laissent une "signature" 

qui dépend de l'angle d'incidence a été établie. 

2) Un algorithme sur l'ASIC pour la recherche de cluster: 

Le module de recherche de cluster implémenté dans le FPGA ne peut pas être 

transplanté directement dans la conception ASIC. En premier lieu, un grand nombre de 

mémoires serait nécessaire pour stocker une trame entière de valeurs de pixels; en 

second lieu, beaucoup de ressource calcul et de temps seraient nécessaires pour détecter 

les pixels voisins. J'ai proposé propose un algorithme pour la recherche de cluster qui 

peut être intégré dans le capteur à pixels CMOS et collecter des clusters en temps réel. 

a. Algorithm 

Au lieu de rechercher des pixels de départ dans une matrice pixel par pixel, 

l'algorithme recherche un pixel de départ en temps réel dans le processus de lecture de 

la valeur de pixel ligne par ligne. Le pixel de départ est admis en comparant les pixels 

situés au-dessus et en dessous de celui-ci et les pixels les plus grands situés dans les 

colonnes gauche et droite d'une certaine plage de fenêtres. La procédure de l’algorithme 

est illustrée à la figure 5. 
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Figure 5: La description de la procédure de l'algorithme. 

b. Simulation 

J'ai élaboré l'algorithme en code C et l'ai simulé. 500 trames de données brutes pour 

chaque angle d'incidence donné sont utilisées pour tester ces algorithmes. Le résultat 

montre que l'algorithme atteint le même niveau de comptage des clusters que les autres 

algorithmes, y compris celui implémenté dans le FPGA. 

c. Implémentation 

La mise en oeuvre de l'algorithme est basée sur une matrice à modulo 2N-colonnes. 

La figure 6 montre un exemple de deux modules de 32 colonnes (N=5). Les entrées de 

l'implémentation sont les sorties des 64 ADC de colonne. Le niveau 1 se compose de 32 

unités, chacune implémentant l'algorithme de recherche de cluster. Le niveau 2 a sept 

(pour la fenêtre de 7×7) multiplexeurs 32-1. Le nombre de multiplexeurs est déterminé 

par la taille de la fenêtre dans l'algorithme. 
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Figure 6: Structure de l'algorithme implémenté dans une matrice à 64 colonnes. 

J'ai implémenté la structure à 64 colonnes avec différents paramètres et effectué la 

synthèse de ces implémentations en ciblant la technologie CMOS TowerJazz 0,18 µm. 

Il n'y a pas de différence significative entre les implémentations dans une matrice à 

modulo de 16 colonnes (N=4), 32-colonnes (N=5) et 64 colonnes (N=6) en termes de 

surface occupée et de puissance dissipée. Toutefois, compte tenu de l'extraction des 

fonctionnalités et du module ANN qui suivent la mise en œuvre de la recherche de 

cluster, une surface occupée et une dissipation de puissances accrues sont nécessaires si 

le modulo de 16 colonnes est utilisé. Ces deux paramètres d'évaluation peuvent être 

diminués en utilisant la fenêtre de 5×5 au lieu de celle de 7×7. Ceux-ci pourraient 

encore être améliorés avec une horloge à basse fréquence ou un ADC de basse 

résolution. Si l'on choisit la technologie CMOS 65 nm, la densité d'intégration 

augmente impliquant une diminution de la surface occupée et de la puissance 

consommée. Si l'on utilise un substrat présentant une couche épitaxiale de haute 

résistivité, une fenêtre de cluster plus petite peut alors être utilisée car les formes de 

cluster générées par les particules sont réduites. 

C. R&D 

Sur la base des recherches de la thèse, le concept d'un capteur à pixels CMOS avec 

des ANNs intégrés sera étudié plus avant en mettent l'accent sursous les deux aspects 

suivants :  

Optimiser l'ANN pour améliorer la précision de reconstruction:  

L'architecture ANN doit être optimisée, telle que le nombre de neurones d'entrée. 

Plusieurs fonctionnalités peuvent être introduites pour présenter un cluster. L'ANN 

pourrait recevoir en entrée davantage de données brutes pour optimiser les poids afin 
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d'accroître la précision de la reconstruction. 

Développer des modules fonctionnels sur puce pour réaliser la conception 

matérielle complète 

Une solution pour diminuer la dissipation de puissance de cette conception sera 

d'optimiser le système de contrôle grâce à la technique dite de Power Gating qui permet 

de couper l'alimentation des modules non utilisés. Pour la couche épitaxiale à haute 

résistivité, la consommation d'énergie et les surfaces occupées du module seront 

réduites grâce à l'application d'une petite fenêtre en clusters (5×5). En plus, un 

algorithme sera proposé pour l'extraction des paramètres des clusters et intégré dans 

l'ASIC. 

Si la technologie CMOS 65 nm est utilisee à l'avenir, la surface occupée sera 

réduite car une densité de circuit plus élevée est fournie; une réduction significative de 

la consommation d'énergie pourra être obtenue en raison de la faible source de courant. 

La technologie d'intégration 3D pourrait également être appliquée pour intégrer des 

ANN dans le capteur àde pixels CMOS. La matrice de pixels et les modules de 

traitement numérique (recherche de cluster, extraction de caractéristiques et ANN) 

pourraient alors être séparés en différents niveaux. 
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Introduction 

High Energy Physics (HEP) experiments are established to extend and improve the 

understanding of the universe. In machines of HEP experiments, physics particles are 

accelerated and then taken into collisions. Various detectors equipped are used to record 

and measure the products of the collisions. The International Linear Collider (ILC) as a 

complementary experiment to the Large Hadron Collider (LHC) has been proposed. 

The current program of the ILC for a 125 GeV Higgs boson will be processed at a 

centre-of-mass energy of 250 GeV. The International Large Detector (ILD) and the 

Silicon Detector(SiD) are two detector concepts that will be installed around the 

interaction point and operated in a push-pull scheme to share the same luminosity.  

Vertex detectors are located at the most inner part of a detector to measure the primary 

interaction vertex and secondary vertices from decay particles under cooperation from 

other tracking detectors. The vertex detector of the ILD consists of a cylindrical 

concentric multi-layer structure to achieve an excellent spatial point resolution. On the 

vertex detector, a large number of hits will be generated by electrons coming from the 

beam background. These extra hits will increase the data flow and reduce the 

bandwidth of the system. The momentum of these electrons coming from the beam 

background typically lie in the range of 10-100 MeV/c, which is lower than that of 

particles coming from physics events. Due to the effect of multiple scattering, the 

reconstruction of tracks generated by low momentum particles is significantly 

degraded.  

In order to tag and remove the extra hits generated by background particles, this 

thesis aims to make contributions to the development of a CMOS pixel sensor with 

on-chip artificial neural networks.  
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Electron-hole pairs about ~80 e-h/µm are created by the ionization process when a 

charged particle passes through the epitaxial layer of CMOS pixel sensors. Because of 

diffusion, electrons generated are collected by two or more independent pixels that 

constitute a charge cluster which expresses hit information. Under the effect of the 

magnetic field in the detector, electrons from the beam background, owing to low 

momenta, will cross the vertex detector with a large incident angle. Clusters generated 

by these electrons (large incident angles) present rather elongated shapes. 

CMOS pixel sensors (CPS), also named Monolithic Active Pixel Sensors (MAPS) 

are monolithic devices that integrate signal sensing and readout electronics on the same 

substrate. They offer an attractive balance among granularity, material budget, radiation 

tolerance and readout speed. CMOS pixel sensors have been used in the PiXeL detector 

(PXL) upgrade of the STAR experiment at RHIC and now are being built for the 

upgrades of the Inner Tracking System (ITS) of the ALICE-LHC experiment. 

Artificial Neural Networks (ANNs) are computational modules that are inspired by 

the biological neural network. An ANN consists of processing units and connections 

between these units. It has been proved that ANNs are suitable for pattern recognition 

in a wide variety of field. 

In this thesis, we study the feasibility of integrating ANNs within CPS to 

reconstruct incident angles of particles. In addition, an algorithm for cluster search is 

proposed to integrate into the CPS for real-time preprocessing. 

The thesis is organized as follows, 

· In chapter 1, ILC physics processes and layout are introduced briefly. Then, 

major experimental conditions including beam structure and beam background 

are presented. ILD, especially the vertex detector part, is presented. Finally, 

due to challenges existing for multi-layer vertex detector targeting at low 

momentum particles, the motivation of a CMOS pixel sensor with on-chip 

artificial neural networks is provided. The trajectory of charged particles under 

the effect of the magnetic field is projected on both the transverse and parallel 

plane respectively and described. 

· In chapter 2, the pinciple of carriers generation and transport in semiconductors 

are introduced. Then, structures and bias modes of P-N junctions and 

Metal-Oxide-Semiconductors are expressed. Lastly, several types of silicon 

detectors are presented and compared. 

· In chapter 3, pattern recognition is introduced firstly. The biological and 
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artificial neuron structure and principle are explained. Then, a multi-layer 

perceptron structure is presented. Next, the feature extraction procedure and 

supervised learning procedure of ANN is outlined. ANN' applications in the 

HEP are presented. 

· In chapter 4, the feasibility study of the CMOS pixel sensor with on-chip ANNs, 

which is achieved by the off-line method, is described in detail. Firstly, a raw 

data acquisition system, including CMOS pixel sensor, 2 rotations support and 

readout china is illustrated. Then, the entire design implemented in a Field 

Programmable Gate Array (FPGA) development board is introduced in detail, 

including the cluster search module, the feature extraction module and the 

ANN structure. Lastly, the reconstruction results of incident angles by the ANN 

are compared and analysed. 

· In chapter 5, an on-chip algorithm for cluster search is proposed and presented. 

Firstly, the motivation for the algorithm is given. Secondly, the algorithm is 

illustrated in detail, including the principle description and detail step 

demonstration. Then, simulation results are presented. Next, the discussion of 

the algorithm is provided targeting at three cases of the cluster shape. Finally, 

the implementation of the algorithm is expressed and the synthesized result of 

the implementation is analysed. 

· In conclusions, the results obtained in this thesis are summarized. In the end, 

perspectives for the CPS integrated with ANNs are presented, including an 

in-pixel algortihm for cluster search and an structure for feature extraction. 
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1 International Linear Collider 

The ILC was proposed for the High Energy Physics (HEP) and encouraged by 

requirements on the precision measurement of the Higgs Boson. The International 

Linear Collider (ILC) is introduced briefly in the chapter, and the development 

motivation of a CMOS Pixel Sensor (CPS) with on-chip Artificial Neural Networks 

(ANNs) is also illustrated. Firstly, physics programs and the baseline of the ILC are 

presented. Secondly, ILC experimental conditions and the International Large Detector 

(ILD) are illustrated. The chapter ends with a description of the motivation for 

developing a CMOS pixel sensor with on-chip ANNs, that is tagging and removing hits 

generated by charged particles coming from the beam background based on the cluster 

shapes. 

1.1 ILC Project 

Everything in the universe is found to be made from fundamental particles. A lot of 

scientists are devoted to experimental and theoretical efforts, in order to explore the 

nature of fundamental particles. The Standard Model (SM) is a theoretical framework, 

which is proposed to explain the principle of fundamental particles constituents of 

ordinary matter and related forces (including electromagnetic, weak, and strong 

interactions, excepting the gravitational force). The current Standard Model was 

finalized in the early 1970s, which has explained almost all results of HEP experiments 

to date. For instance, the model has forecast the existence of quarks, the top quark, and 

the tau neutrino and been confirmed. The Standard Model has become established as a 
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well-tested physics theory [1][2]. 

HEP experiments are designed to research fundamental particles via collisions and 

conversion among a large amount of high-energy particles. In machines, two beams of 

particles are moved in opposite directions and accelerated, then brought into collisions 

at the interaction point. Various detectors are equipped around the interaction point to 

detect and record information of collisions [3][4]. 

In the past, a large number of high energy physics experiments and equipment have 

been designed and established by physicists [5]. In 2012, a particle with a mass of about 

125GeV was discovered by the ATLAS and CMS Collaborations at the Large Hadron 

Collider (LHC) which is located at Geneva Switzerland [6]. Many properties of the 

particle are in accordance with the postulated Higgs boson of the Standard Model. 

Details of the Higgs boson and the presence or not of other anticipated new particles 

need to be studied to complete the Standard Model framework. More precise 

measurements of the Higgs boson can be achieved by lepton colliders which provide 

the well-defined initial state of collisions and clean background level [7][8][9][10]. 

In 2001, a common conclusion was proposed by all three regional organizations 

(ACFA in Asia, HEPAP in North America, and ECFA in Europe) of the HEP field: The 

next major project in the HEP would be an electron-positron linear collider with a 

centre-of-mass energy of 500 GeV named International Linear Collider [11][12]. In 

autumn 2012, the Japanese high-energy physics community proposed to locate the ILC 

in Japan. In 2013, after the discovery of the Higgs boson, the Technical Design Report 

(TDR) for the ILC accelerator was published. The machine was designed to achieve a 

centre–of–mass energy of 500 GeV [13][14]. 

According to the recommendation from the Japan Association of High Energy 

Physicists (JAHEP) [15], the initial program of the ILC for a 125 GeV Higgs boson 

would be started with a centre-of-mass energy of 250 GeV [7]. The ILC project is 

divided into three phases, the preparation phase (2019/20-2022/2023), the construction 

phase (foreseen from 2023) and the commissioning phase (foreseen 2031-2032) [16]. 

1.1.1 Physics Programs of the ILC 

Major physics processes to be studied at various centre-of-mass energies (from 90 

GeV to 1000 GeV) in the ILC are shown in table 1-1, Standard Model reactions and 

physics goals are presented. 
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Table 1-1: Major physics processes to be studied by the ILC [17]. 

Energy Reaction Physics goal 

91 GeV e+e-  →  Z Ultra-precision electroweak 

160 GeV e+e-  →  WW Ultra-precision W mass 

250 GeV 

(Current) 

e+e-  →  Zh Precision Higgs couplings 

350-400 GeV 

(Upgrade) 

e+e-  →  t t  
Top quark mass and couplings 

e+e-  →  WW Precision W couplings 

e+e-  →  v v h 
Precision Higgs couplings 

500 GeV 

(Upgrade) 

e+e-  →  f f  
Precision search for Z’ 

e+e-  →  t t h 
Higgs coupling to top 

e+e-  →  Zhh Higgs self-coupling 

e+e-  →  x x  
Search for supersymmetry 

e+e-  →  AH, H+H- Search for extended Higgs states 

700-1000 GeV 

(Upgrade) 

e+e-  →  v v hh 
Higgs self-coupling 

e+e-  →  v v VV 
Composite Higgs sector 

e+e-  →  v v t t  
Composite Higgs and top 

e+e-  →  t t * 
Search for supersymmetry 

In the ILC, electrons and their antiparticles (positrons) are accelerated and collided 

at high energy. The physics process of the ILC at a centre-of-mass energy of 250 GeV is 

the reaction e+ e− → Zh. The current program of the ILC (250 GeV) will focus on 

high-precision and model-independent measurements of the Higgs boson coupling. In 

addition, it will search for direct new physics in exotic Higgs decays and in 

pair-production of weakly interacting particles, even exploration of beyond the 

Standard Model physics. 

In the future, the ILC will be upgraded for raising the centre-of-mass energy to 500 

GeV even 1 TeV. With the raising of the centre-of-mass energy, the ILC can be used to 

take precision studies of the top quark and measurement of the top Yukawa coupling, to 

determine the strength of the Higgs boson’s nonlinear self-interaction and to search for 

new particles. 
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1.1.2 ILC Layout 

 
Figure 1.1: Schematic layout of the ILC in the 250 GeV staged configuration [18]. 

The schematic layout of the ILC in the current 250 GeV configuration is shown in 

figure 1.1. It is composed of two linear accelerators that face each other, stretching 

approximately 20.5 kilometres in length. Main parts of the ILC system are expressed as 

[7]: 

1. Electrons (e-) and Positrons (e+) Sources. They are designed to produce 5 GeV 

beam pulses. 

2. Damping Ring (DR). There are two oval DRs housing in a common tunnel, 

operating at a beam energy of 5 GeV. Each oval DR has 3.2 km circumference. 

They are used to accept electron and positron beams with large emittances and 

produce the low-emittance beams, to dampen the incoming beam jitter to 

provide highly stable beams and to delay bunches from the source. 

3. Main Linac. Two main linacs are used to accelerate beams from 5 GeV to the 

maximum 125 GeV. Each main linac is comprised of two parts. The first part is 

a two-stage bunch compressor system. Beams are accelerated to 15 GeV in the 

second stage and the bunch length is reduced from 6 mm to 0.33 mm. The 

second part following the two-stage bunch compressor is the main linac which 

is about 6 km.  

4. Ring To Main Linac (RTML). It is the connection part between the DR and the 

entrance of the main linac. It is used to transport of the beams from the DR to 

upstream ends of the main linac, collimate the beam halo generated in the DR. 

5. Beam Delivery System (BDS). Two BDSs are used to transport and focus 

beams from two main linacs to the interaction point, then take beams into 
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collisions. Each BDS is 2254 m long from the end of the main linac to the 

interaction point.  

1.2 ILC Experimental Conditions 

Major experimental conditions of the ILC are introduced in the section, including 

the beam structure and the beam background. Experimental conditions determine some 

requirements for design of the detector. 

1.2.1 Beam Structure 

 

Figure 1.2: Beam structure of the ILC. 

As presented in figure 1.2, the beam structure of the ILC is composed of trains at a 

frequency of 5 Hz (5 trains/second). Each train maintains about 727 µs constituted by 

1312 bunches. A bunch is separated from the other by ~554 ns. Between two trains 

there is a period of ~199 ms named beamless time [7][13]. 

The beam structure is related to the design of detectors in the ILC. Average power 

consumption of detectors can be reduced by switching off during beamless time which 

occupies about 99% period. The known interval between every two bunches and trains 

makes a possible to achieve detectors without triggers. The read-out strategy and 

sequence are can be implemented between two bunches or after a train [19]. 

1.2.2 Beam Background 

Beamstrahlung is the most important background in the ILC which is created via 

the bunch interacting with the electromagnetic field of another bunch. In the approach 

procedure of electron and positron bunches which have strong electric fields, as the 
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small size of bunches indicates that they possess a very high space charge. As shown in 

figure 1.3, under the effect of the electromagnetic field of bunches, two beams from 

opposite directions do not point to each other directly, while towards the centre of the 

oncoming bunch, which is named the pinch effect. Beamstrahlung photons are 

generated by the beam-beam interaction to radiate the energy [20][21]. 

Electron-positron pairs with low momenta are released around the interaction point by 

beamstrahlung photons, which makes a major contribution to the machine-induced 

background [22][23]. 

 

Figure 1.3: Illustration of the pinch effect and generation of beamstrahlung photons in bunch 

collisions. 

Low momentum electrons and positrons produced by beamstrahlung photons hit 

on detectors and make an influence on physics measurements. Momenta of these 

particles typical lie in the range of 10-100 MeV/c [19]. These background particles are 

from the interaction region, forward region and even the detector region.  

1.3 International Large Detector 

High precision detectors will be equipped in the ILC to provide excellent vertexing 

and tracking capabilities. Two concepts of detectors, the Silicon Detector (SiD) and the 

ILD, are developed. The two detectors are swapped into the interaction point within the 

scheme named "push-pull", to achieve the sharing of the luminosity [17][24], as shown 

in figure 1.4. 
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Figure 1.4: Two detectors and the "push-pull" mode [25]. 

The ILD is designed as a multi-purpose detector concept, which has been 

optimised on the respect of precision. As shown in figure 1.5, the concept schematic is 

composed of a vertex detector, a hybrid main tracking system, including a silicon 

tracking part and a Time Projection Chamber (TPC), a calorimeter system and the outer 

detector including a muon system and a coil and yoke system. 

 

Figure 1.5: Quadrant view of the ILD detector concept. Dimensions are in mm [26]. 

1.3.1 Vertex Detector 

The vertex detector is used to measure primary interaction vertices and secondary 

vertices from decay particles. It is located in the most inner layer around the interaction 

point of the ILD. For the physics program of the ILC, the vertex detector will play 

important role on flavour tagging, displaced vertex charge determination and tracking 

capability for the low momentum particles that cannot reach the main tracking system. 

The vertex detector is designed based on the ILC experimental conditions and some 

physics constraints (spatial resolution and material budget, etc.) 

Impact Parameter Resolution 
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The performance of spatial resolution can be presented by the impact parameter 

resolution, which is written as [19] 

!" = !#$%&'()*+,+!-. ++= /, 01 × sin23 4 +5+++1+++++++++++++++++++++++++++67 8 79 
where  

p   is the particle momentum. 

θ  is the polar angle with respect to the beam axis. 

As shown in figure 1.6(a), when a charged particle traverses the vertex detector 

including two layers of detectors (Detector 1 and Detector 2), the reconstructed track 

has a discrepancy with the real track (!#$%&'()*). !#$%&'()* is related to the detector 

geometry (R1 and R2) and the spatial resolution (σ1 and σ2, +:7 =
;(<>?+@(#&ℎ+AB+C>$#><+">#>&#A$+DED3 ). As shown in formula (1-2), !#$%&'()* achieves the best 

precision with small values of radii and spatial resolutions. 

!#$%&'()* = / = FDGD,F3G3F3HFD I+++++++++++++++++++++++++++++++++++ 67 8 J9  

  

(a) (b) 

Figure 1.6: Impact parameter resolution (a) Finite single point resolution (b) Multiple 

scattering. 

As shown in figure 1.6(b), for a single detector, when a charged particle traverses 

the detector, the particle undergoes small-angle deflections (θMS). !-. is the error of 

the impact parameter due to the multiple scattering effect. Parameter b depends on the 

distance of the first detector to the interaction point and the material budget (x/X0), 

 

1 K,L = MK3 N L3 
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where X0 is the radiation length of the scattering medium.  

0 = O7 × 7PIQ+6RST9 × U KVW × X7 N WIWPY ln Z KVW[\++++++++++++67 8 P9 
Some examples of parameter a and b in formula (1-1) for other experiments are 

shown in table 1-2. Parameter a and b are set as ≤ 5 (µm) and ≤ 10 (µm‧GeV) for the 

ILD. 

Table 1-2: Parameter a and b for detectors. 

 a (µm) b (µm‧GeV) 

LEP 25 70 

SLD 8 33 

LHC 12 70 

RHIC-II 13 19 

ILD ≤5 ≤10 

The impact parameter resolution of ILD (a=5 µm and b=10 µm‧GeV) is simulated 

according to the formula (1-1). As shown in figure 1.7, the polar angle (θ) is fixed (30, 

60, 90 degrees), the impact parameter resolution increases as the momentum of the 

charged particle decreases. The track generated by a low momentum charged particle 

will make larger deflection than that by a high momentum charged particle. 

 

Figure 1.7: Impact parameter resolution as a function of the particle momentum. 

Requirements 

In order to meet experimental conditions and the impact parameter resolution of 

the ILC, requirements for the ILD are as follows: 
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Ø Read-out time ~2-9 µs 

Ø Spatial resolution: <= 3 μm (corresponding to a pitch of ~17 µm); 

Ø Material budget: O(0.15% X0/layer); 

Ø A first layer located at a radius of ~1.6 cm; 

Ø Occupancy: ~ 5 part/cm2/BX. 

Ø Radiation hardness: O(100kRad) and O(1×1011neq(1Mev)) /year (layer 1). 

Ø Power dispation: ~50 mW / cm2. 

Geometries 

 
Figure 1.8: Vertex detector scheme of the ILD. 

The vertex detector scheme (figure 1.8) of the ILD consists of three double-sided 

ladders which are equipped by CMOS pixel sensors on both sides (~ 2 mm apart) [27]. 

Radii of thee ladders range from 16 mm to 60 mm, Z position ranges from 62.5 mm to 

125 mm, as presented in table 1-3. Six pieces of position information of a charged 

particle which traverses the detector are recorded and measured.  

Table 1-3: Parameters of the design composed of three layers of double-sided ladders [26]. 

Barrel layer Rlayer (mm) Z (mm) 

Ladder 1 
Layer1 16 62.5 

Layer2 18 62.5 

Ladder 2 
Layer3 37 125 

Layer4 39 125 

Ladder 3 
Layer5 58 125 

Layer6 60 125 
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1.3.2 Silicon Tracking Part 

The silicon tracking part is a complement component of the main tracking system 

for the track reconstruction capability. It is made up of four components to measure 

particles’ momenta, including the Silicon Inner Tracker (SIT), the Silicon External 

Tracker (SET), the Forward Tracking Detector (FTD) and the Endcap Tracking 

Detector (ETD). 

 

Figure 1.9: ILD schemes of the silicon tracking system. 

As shown in figure 1.9, the SIT and the SET are barrel components. The SIT is 

positioned between the vertex detector and the TPC, and constituted by 2 double layers 

of CMOS pixels sensors. The SET is located between the TPC and the Electromagnetic 

CALorimeter (ECAL, see figure 1.5), it is composed of 2 layers of silicon strip 

detectors. The FTD consists of 7 tracking disks that are positioned between the beam 

pipe and the TPC, the first two disks which are closed to the vertex detector are pixel 

detectors and the other five disks are silicon strip detectors. The ETD is located 

between the TPC end plate and the ECAL, providing a precise point for tracks that go 

into the endcap [26][28]. 

1.3.3 Time Projection Chamber 

The Time Projection Chamber (TPC) is a central component of the main tracking 

system. It is about 4.6 m in length, from 33 cm to 180 cm in radii. The TPC is optimised 

for 3-dimensional point resolution (better than 100 µm in rφ, and about 1 mm in Z) 

which provides large accuracy for the reconstruction. For charged particles with 

momenta above 100 MeV, the tracking efficiency up to nearly 100% simulated 

realistically with full backgrounds. The TPC providing particle identification 
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capabilities by the specific energy loss (dE/dx). 

1.3.4 Calorimeter System 

Calorimeters are used to measure the energy of a particle. In the particle flow 

approach, all particles in an event are reconstructed individually. The calorimeter 

system for ILD consists of a nearly cylindrical barrel calorimeter and two large end cap 

calorimeters. Each calorimeter is composed of the ECAL and the Hadronic 

CALorimeter (HCAL), which is designed to identify photons and neutral hadrons 

respectively and measure their energy. 

1.3.5 Muon System 

The muon system is used to identify muons in the ILD by some measurement 

stations outside the solenoid coil. It is implemented by square tiles of 30×30 mm2 and a 

thickness of 10 mm, with the Silicon PhotoMultiplier (SiPM) readout. 

1.3.6 Coil and Yoke System 

A large volume superconduction coil surrounding calorimeters is used to supply 

the magnetic field for a nominal 3.5 T and maximum 4 T solenoidal central field. The 

iron yoke surrounding the coil is used to identify muons and catch tails of hadronic 

showers. It returns the flux of the magnetic and reduces the outside stray fields. 

1.4 Motivation 

There are a large amount of hits generated by charged particles coming from the 

beam background (low momentum). Our group in the IPHC proposed to integrate the 

Artificial Neural Network into CMOS pixel sensor to tag and remove hits generated by 

these particles. The motivation of the concept is described in the section. 

1.4.1 Challenges for Track Reconstruction 

For the ILC program at the centre-of-mass energy of 250 GeV, data rate 
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requirement for the vertex detector is ~3 Gbits/s with the safety factor of 3, which is 

~30%-50% data flow of the total system. A large fraction of the data flow is related to 

hits generated by particles coming from the beam background. As simulation result 

shown in figure 1.10, 104 hits are generated on the layer 1 of the vertex detector by 

particles with momenta of 10 MeV/c. Particles from the beam background have typical 

lower momenta (~10-100 MeV/c) [19] than particles coming from the physics process. 

 

Figure 1.10: Beam background features simulation [29]. 

Track reconstruction for low-momentum particles is challenging. Due to the 

multiple scattering effect, particles with low momenta make obvious deflections when 

they are traversing a layer of the detector leading to the failure of reconstruction. In 

figure 1.11, hits and tracks of different momentum particles in a 6-layer detector are 

presented and compared. Firstly, these deflections formed by low momentum particles 

produce many segments of different layers, which cannot be merged. Secondly, low 

momentum particles creating large deflections on the track may hit only one layer of 

the detector (just a single hit), resulting in the lack of information for reconstruction. 

 
Figure 1.11: Schematic diagram of tracks generated by particles, one is created by a particle 

with high momentum (blue) and others are created by particles with low momenta. 
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1.4.2 Trajectory of Charged Particles 

In detectors of the ILC, under the effect of the magnetic field, charged particles 

move along the helix trajectory. The helix trajectory is shown in figure 1.12. Vertex 

represents the vertex detector of the ILD, z presents the beam direction, the momentum 

(P) of the particle is decomposed into the transverse momentum (PT) and the 

momentum along the Z-axis (PZ). 

 
Figure 1.12: Helix trajectory of charged particles under the effect of the magnetic field. 

The trajectory is projected on both the transverse and parallel plane respectively to 

illustrate and analyse. 

Trajectory Projected on Transverse Plane 

As indicated in figure 1.13, the trajectory of an electron (e-) is projected on the 

transverse plane (plane xy) and presents a circle movement. The electron hits on the 

vertex detector and the incident angle projected is named θT. 

 

Figure 1.13: Trajectory projection of a charged particle on the transverse plane. 

The centripetal force of the electron is supplied by the Lorentz force: 
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]^_ = `a^3O 5++++++++++++++++++++++++++++++++++++++++++++++++67 8 b9 
Where 

v  is the speed of the electron. 

B is the magnetic field perpendicular to the direction of the electron, measured in 

Tesla. 

q  is the electron charge. 

m  is the rest mass of the electron. 

γ  is a constant value. 

R  is the radius of the trajectory measured in meter. 

According to formula (1-4), the momentum of the electron in the magnetic field is 

expressed as  

c = `a^ = ]_O+5 Zdefghj+km‧
ah [I++++++++++++++++++++++++++67 8 o9 

Applying unit conversion to the formula (1-5), the transverse momentum is 

cp q WIP × _rtu × Orau5+++vdefgh w xSTy z++5+++++++++++++++++++++++67 8 Q9 
According to formula (1-6), the minimum transverse momentum required for an 

electron to arrive at different layers is as follows (without the influence of energy loss 

and scattering in the trajectory and B = 3.5 T): 

Table 1-4: Minimum transverse momentum of a particle to arrive different layers (Rlayer is the 

radius of the vertex detector and R is the radius of the particle trajectory).  

Layer Rlayer(mm) R(mm) PT(MeV/c) 

1 16 8 8.4 

2 18 9 9.5 

3 37 19.5 19.5 

4 39 19.5 20.5 

5 58 29 30.5 

6 60 30 31.5 

In figure 1.13, incident angle 4p . is the angle between the tangent line at the hit 

point and the normal line of the vertex detector, calculated as 
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4p = {J 8 /|y}h vO?%~>$DJ × O z = {J 8 /|y}h vWIP × _ × O?%~>$DJ × cp z5+++++++67 8 �9 
where 

Rlayer1  is the radius of the first layer vertex detector, which is 16mm [26]. 

According to formula (1-7), θT as a function of the transverse momentum is plotted 

in figure 1.14. θT decreases as the transverse momentum of the particle increases. 

Particles from the beam background (typical 10-100 MeV/c) [19] possess larger 

incident angles than particles from the physics event due to low momenta. 

 

Figure 1.14: Incident angle θT as a function of the particle transverse momentum (PT). 

Trajectory Projected on Parallel Plane 

In figure 1.15, the trajectory of the electron projected on a parallel plane, where 

Z-axis represents the beam line, Vertex layer 1 presents the location of the ladder 1 

whose |Z| is 62.5 mm [26], be is the angle between the trajectory and Z-axis,  

4� = �����n vO?%~>$DK z5++++++++++++++++++++++++++++++++67 8 Y9 
where 

x is the distance along the Z-axis from the interaction point to the hit location. 
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Figure 1.15: Trajectory projection of a charged particle on the parallel plane. 

Minimum angle be that can generate a hit on the vertex detector is 14.36 degrees, 

calculated as 

4��() = �����n vO?%~>$D��� z = �����n v 7QQJIoz = 7bIPQ+6�Sm9I++++++++67 8 �9 
1.4.3 Principle for Particle Recognition 

Considering the artificial neural network successfully applied in many fields of 

pattern recognition, our group in the IPHC proposed a CMOS pixel sensor with 

artificial neural networks to identify and remove hits generated by particles from the 

beam background for reducing the bandwidth (maximum rate of data transfer) of the 

data stream and improving tracking capability. 

 
Figure 1.16: Schematic diagram of an incident angle on the vertex detector. 

As shown in figure 1.16, angle θb and θT is the projection of the incident angle (θ) 

on two planes respectively. Under the situation that θb has a fixed value, the incident 

angle (θ) increases as the particle transverse momentum decreases (PT). Particles from 

the beam background (typical lower momenta) possess larger incident angles into the 

vertex detector than those of particles from physics events. 
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Figure 1.17: Cluster shapes generated by particles from the physics process and particles from 

the beam background. 

When a charged particle passing through the epitaxial layer of the CPS vertex 

detector, electron-hole pairs are created by the ionization process about typical ~80 

e-h/µm. Electrons are collected by the diode in each pixel. If the hit is at nearby the 

border of pixels, electrons would be collected by two or more independent pixels. 

These independent pixels constitute a charge cluster which expresses hit information. 

Especially with the decrease in the size of the pixel geometry, the charge-sharing effect 

becomes more obvious and important [30][31][32]. In figure 1.17, the larger incident 

angle of a background particle leads to producing an elongated cluster shape. The 

difference in clusters generated by the two particles makes it possible to tag and remove 

hits generated by background particles using artificial neural networks. 

1.5 Summary 

The ILC project and the motivation of a CMOS pixel sensor with on-chip artificial 

neural networks are introduced in the chapter. In the ILC, a large amount of hits are 

generated by particles coming from the beam background which have low momenta. 

Due to the multiple scattering, tracks make large deflections for these particles, leading 

to the failure on the track reconstruction. Our group propose a CPS with on-chip ANNs 

to tag and remove hits generated by these particles. Under the effect of the magnetic 

field, particles with low momenta produce large incident angles on the vertex detector 

and create elongated cluster shapes. An ANN is implemented to reconstruct the 

incident angle and tag the hit.  

The principle and technology of semiconductor detector will be introduced in the 

next chapter.  
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2 Semiconductor Detectors 

In the early 1980s, with the development of High Energy Physics (HEP), the 

lifetime of particles that needed to be measured reduced to the picosecond range. 

Bubble chambers and emulsions cannot catch up with the demand on the processing 

rate of a large amount of data; gas detectors cannot achieve the requirement on the 

spatial resolution. In 1983, semiconductor (silicon strip) detectors were used in the 

CERN's NA11/NA32 experiment for the first time. Semiconductor detectors measured 

the lifetime of particles and ultimately completed the identification and tagging of 

heavy quarks. Nowadays, semiconductor detectors are widely used in HEP experiments 

[1][2][3][4]. 

 

Figure 2.1: Typical semiconductor detector system. 

A typical semiconductor detector system is shown in figure 2.1. Electron-hole pairs 

are created by the ionizing radiation effect between incident particles and the detector 

material. Detector is used to convert the energy deposited to an electrical signal. 

Amplifier is used to amplify the electrical signal. Filter is used to improve the 

signal-to-noise ratio of the system, then the electrical signal is digitized by 

Analog-to-Digital Converter (ADC). 

Silicon detectors have following important advantages. 
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Ø Low ionization energy 

Average 3.6 eV energy is needed to generate one electron-hole pair in 

silicon detectors. 30 eV energy is needed for gas detectors to generate one 

electron-ion pair.  

Ø High density  

Due to the high density of silicon material, the number of electron-hole 

pairs are large. For a Minimum Ionizing Particle (MIP), the number of 

ionized electron-hole pairs is about 80 e-/um, the average energy loss is about 

300 eV/µm (3.6 eV/e-h). 

Ø Fast signal speed 

Compared with liquid or gas detectors, silicon detectors process the 

electrical signal fast. 

Basic properties and types of semiconductor detectors (Si detector) are described in 

the chapter. Firstly, generation and transportation of carriers in semiconductor detectors 

are described. Then, basic components of semiconductor detectors, the P-N junction 

and the MOS structure, are introduced. Finally, various kinds of semiconductor 

detectors are given and compared. 

2.1 Carriers Generation 

In this section, the generation of carriers is described based on two types of 

particles: photons and charged particles. 

2.1.1 Carriers Generated by Photons  

An incident photon is absorbed or scattered when it passes through semiconductor 

detectors. The energy loss of the incident photon is produced since the physical process 

including the Photoelectric effect, the Compton effect and the Electron-Positron pair 

production. Contributions of different physical processes depend on the photon energy 

and the material.  

As illustrated in figure 2.2, if the energy loss of the photon is greater or equal to the 

energy of the band gap (EG), an electron will be lifted to the conduction band and a hole 

will be left in the valence band. If the energy loss is less than the energy of the band gap 
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(EG), it is possible that the photon would be absorbed since local states in the band gap 

due to lattice imperfections exist [5]. 

 

Figure 2.2: Generation of electrons and holes by absorption of photons, the energy loss= 

Eg, >Eg, and < Eg [5]. 

2.1.2 Carriers Generation by Charged Particles 

A charged particle passes through semiconductor detectors, due to the ionization 

effect, electron-hole pairs will be created around the track. The average energy of the 

charged particle used to create an electron-hole pair is 3.6 eV which is about three times 

larger than the band gap of 1.1 eV. The average energy loss of the charged particle can 

be calculated as the Bethe-Bloch formula (2-1): 

8���K = b{��|>3a>y3�3 ���3 �7J �e Ja>y3�3`3t�%<�3 8 �3 8 7J�6`9�I+++++6J 8 79 
In formula (2-1), NA is the Avogadro’s number (6.0221415×1023mol-1), re is the 

classical electron radius, me is the electron mass, c is the velocity of light, z is the charge 

of the incident particle. Z is the atomic number of the absorber. Tmax is the maximum 

kinetic energy that can be imparted to a free electron in a single collision, I is the mean 

excitation energy, β is the relativistic boost and the γ is the Lorentz factor. The term δ is 

a density correction. The unit of results is MeV g−1cm2 [6][7]. 
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2.2 Carriers Transport 

In semiconductor detectors, currents are generated by the movement of free 

carriers. Two types of currents are introduced to describe the transportation of free 

carriers in the semiconductor: The drift current and the diffusion current. 

2.2.1 Drift 

The drift current is formed due to an external electric field applied to 

semiconductor detectors. Free carriers (electrons and holes) are forced by the electric 

field in different directions.  

�)"$(B# = ]e�)�+I+++++++++++++++++++++++++++++++++++++++++++6J 8 J9 
�@"$(B# = ]1�@�+I++++++++++++++++++++++++++++++++++++++++++++6J 8 P9!

The density of the electron and hole drift current (A/cm2) is expressed as formula 

(2-2) and (2-3), respectively: p and n are the number of holes and electrons per cubic 

centimetre; q is the elementary charge (1.602×10−19 C); µn and µp are the mobility of 

electrons and holes, with the unit of cm2/V‧s; E is the electric field with the unit of V/cm. 

The total density of the drift current is: 

�"$(B# = ]e�)� N ]1�@�+I++++++++++++++++++++++++++++++6J 8 b9 
2.2.2 Diffusion 

The diffusion current is formed thanks to the variation of the carrier concentration. 

Free carriers move from the high concentration region to the low concentration region 

when there is a difference between concentration gradients of the two regions. The 

density of the diffusion current (A/cm2) is expressed in formula (2-5) and (2-6), 

respectively: Dp and Dn are diffusion coefficients for holes and electrons; p and n are 

the number of holes and electrons per cubic centimetre; q is the elementary charge. 

�)"(BB = +++]�) �e�K I++++++++++++++++++++++++++++++++++++++++++++6J 8 o9 
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�@"(BB = 8]�@ �1�K I+++++++++++++++++++++++++++++++++++++++++++6J 8 Q9 
The total density of the diffusion current is: 

�"(BB = ]�) �e�K +8 ]�@ �1�K ++++++++++++++++++++++++++++++++++6J 8 �9 
2.3 P-N Junction 

  

(a)  (b)  

Figure 2.3: P-N junction (a) Depletion region (b) Energy band diagram. 

P-N junctions are basic structures of semiconductor electronics. A P-N junction 

(figure 2.3 (a)) is produced by joining together the N-type and P-type semiconductor. 

The principle of the P-N junction is described as follows: Firstly, free electrons in 

the N-type side diffuse to the P-type side and overcome the junction. Then, the free 

electrons recombine with holes nearby the junction in the P-type side. Donor ions left in 

the N-type side are positively charged and acceptor ions left in the P-type side are 

negatively charged. As a result, a built-in electric field pointing from N-type to P-type 

is created. The built-in electric field rejects the diffusion of carriers and keeps the 

dynamic equilibrium of the concentration.  

No free charge carriers can rest in the region located around the junction between 

two sides, which is named the depletion region. According to the energy band 

schematic shown in figure 2.3 (b), it implies that extra energy is needed to transport an 

electron to overcome the depletion region. 

The state of the P-N junction will be changed if the extra bias is applied. States 

under the forward bias and the reverse bias are described. The drift current in the P-N 

junction is not changed with the variety of the bias voltage as the number of minority 

charge carriers is limited [8][9]. 
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2.3.1 Forward Bias 

  

(a) (b) 

Figure 2.4: P-N junction under forward bias (a) Depletion region (b) Energy band diagram. 

In figure 2.4 (a), a forward bias is applied to the P-N junction, which means that the 

P-type side is connected to a positive voltage and the N-type side is connected to a 

negative voltage. The negative voltage pushes free electrons in the N-type side move to 

the depletion region and recombine with holes, leading to the depletion region thinner 

and the built-in electric field weakened. In figure 2.4 (b), the barrier of the depletion 

region decreases, and the energy required to transport an electron reduces under the 

forward bias. 

2.3.2 Reverse Bias 

  
(a) (b) 

Figure 2.5: P-N junction under reverse bias (a) Depletion region (b) Energy band diagram. 

In figure 2.5 (a), a reverse bias is applied to the P-N junction. Electrons nearby the 

junction are attracted by the positive voltage applied to the N-type side, move away 

from the depletion region, leading to the depletion region wider and the built-in electric 

field strengthened. In figure 2.5 (b), the barrier of the depletion region is increased 
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under reversed bias and the energy used to transport electrons from the N-type side to 

the P-type side becomes large. 

2.4 Metal-Oxide-Semiconductor 

 
Figure 2.6: N-type Metal-Oxide-Semiconductor structure. 

The Metal-Oxide-Semiconductor (MOS) diode is a basic structure used in the 

semiconductor device. It is composed of three layers, an oxide layer, a metal layer 

called gate (G) and a P-type or N-type semiconductor layer named substrate or body (B). 

An N-type channel MOS structure is shown in figure 2.6. Heavily doped polysilicon 

layers are often used instead of gate metal. Typically, voltages are applied to the gate 

(VG) and body contact (VB).  

 

Figure 2.7: An n-type MOS under accumulation, depletion and inversion conditions [10]. 

Three bias modes (accumulation, depletion and inversion, see figure 2.7) and 

corresponding capacitance of the MOS diode are varied with the bias voltage applied to 

the gate and the body (VGB). VFB is the flat band voltage which makes the energy band 

of the semiconductor side present horizontally. The flat band indicates that there is no 

charge present in the oxide or at the oxide-semiconductor interface. In traditional 

MOSFET models, VT is defined as the gate voltage that will drive the channel under the 

gate into strong charge inversion cases [11]. 



Chapter 2: Semiconductor Detectors 

30 

 

Accumulation 

In the case of accumulation, the voltage applied to the gate and body contact is less 

than the flatband voltage (VGB < VFB). Carrier densities change accordingly in its 

surface region. Negative and positive charges are induced in the gate and the body, 

respectively. Holes are accumulated under the oxide-semiconductor interface. 

Depletion 

In the case of depletion, the voltage applied to the gate and body contact is larger 

than the flat band voltage and less than the threshold voltage (VFB < VGB < VT). Positive 

charges are produced at the interface between the metal gate and the oxide. Holes in the 

body are repelled and a depletion region is created.  

Inversion 

In the case of inversion, the voltage applied to the gate and substrate contact is 

larger than the threshold voltage (VT < VGB). With the voltage VGB increases, negative 

charges created at the interface become more and the depletion region is wider, leading 

to the surface of semiconductor inverts to N-type, an inversion layer is formed.  

2.5 Silicon Detector Types 

With the development of physics and the improvement for various HEP 

experiments, several types of silicon detectors have been proposed and established. 

Including strip detectors, Charged Coupled Devices (CCDs), hybrid pixel detectors, 

DEPleted Field Effect Transistor (DEPFET) detectors and Monolithic Active Pixel 

Sensors (MAPS) are introduced. 

2.5.1 Strip Detector 

With the introduction of the planar process proposed by Krammer in 1980 to 

replace the technology of surface barrier, high-quality silicon detectors that have 

extremely low reverse currents can be implemented [12]. Thanks to the technology of 

photolithography, requirements on resolution and rate can be achieved by dividing the 

sensor into segments. Single-sided and double-sided strip detectors are described. 
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Single-sided strip detector 

  

(a) (b) 

Figure 2.8: Single-sided strip detector (a) DC coupled strip detector (b) AC coupled strip 

detector [13]. 

The single-sided strip detector shown in figure 2.8 is composed of strips shaped 

P+-implantation. Electron-hole pairs will be created when a charged particle goes 

through the N-type silicon depletion zone. The single-sided strip detector can measure 

the position on one coordinate. 

As shown in figure 2.8 (a), a charge sensitive amplifier connected directly (DC 

coupling) to strip is used to read out and process the signal. But it is difficult to use an 

amplifier that can achieve such a wide range of input current since the input current 

contains a part of leakage current which is larger than the signal current. The leakage 

current depends on the applied bias voltage and radiation damage [14]. In figure 2.8 (b), 

a capacitor is used to filter the digital current signal component from the input current 

(AC coupling) which is also known as capacitive coupling. The capacitor is generated 

by deposition of SiO2 between the p+-implantation strip and aluminium strip. The 

capacitance depends on oxide thickness and strip width [15].  

Double-sided strip sensor 

In order to achieve the measurement of two-dimensional positions, additional 

strips are applied to the backside, which is called a double-sided strip detector. As 

shown in figure 2.9, on the backside of detectors, N-strips are connected with the 

amplifiers of the read-out structure and orthogonal to P-strips on the front side. 

In 1990, double-sided silicon strip detectors were first used in the ALEPH silicon 

vertex detector [16]. 
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Figure 2.9: Operation principle of a double-sided strip detector [17]. 

2.5.2 CCD 

CCDs are built in a pixel array structure based on blocks of MOS capacitors. As 

shown in figure 2.10, each pixel is subdivided into three parts by gate elements. 

Positive voltages are applied to gates to generate potential wells in the substrate. 

Electrons created by incident particles are stored in potential wells, which is illustrated 

as a collection of grey. The charge is transferred along each column from pixel to pixel 

to the read-out node via controlling voltages of gates. 

 

Figure 2.10: Timing diagram of voltage schemes to transport charge through a three-phase 

CCD. 

The timing diagram to transport charges through a three-phase CCD system is 

shown in figure 2.10. Three gates in each pixel are controlled by the clock signal P1, P2 
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and P3, respectively. All pulsed of three clock signals have a duty cycle of 50% and 

their mutual phase shift is 120 degree. At t(0), signal P1 and P3 are held low while 

signal P2 is held high. A potential well is created under the gate controlled by P2 of 

pixel 1. At t(1), signal P3 is lifted to the high level to make the charge transport from the 

gate to the next one [18][19]. 

CCD structures were first used in the vertex detector of the NA32 experiment in 

1983, and then 96 two-dimensional CCDs with a total of 307 Mpixel were used in the 

SLD’s upgraded vertex detector [20]. 

2.5.3 Hybrid Pixel Sensor 

Gaalema proposed a readout chip that can be used with the Ge PIN array to 

perform X-ray inspection, which is the first demonstration of the concept of a hybrid 

detector [21][22]. A schematic diagram of a single pixel of a hybrid detector is shown in 

figure 2.11, where a sensor part is connected to a readout electronics part by using the 

bump-bonding process. In the sensor part, electrons and holes are separated by a bias 

voltage applied to electrodes. Charge signals are converted and processed in the 

read-out electronic part. The material and manufacturing processes of the two parts can 

be optimized separately targeting at different applications [23].  

 

Figure 2.11: A simplified schematic diagram of a single pixel in a hybrid silicon detector, it is 

composed of a sensor part and a readout electronics part [24]. 

In 1992, hybrid detectors were first successfully tested in the heavy-ion experiment 

WA94 [25]. Four experiments installed on the Large Hadron Collider (LHC) collider 

from 1998 to 2006 were equipped with hybrid pixel detectors [26]. 
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2.5.4 DEPFET Sensor 

  

Figure 2.12: Schematic layout of the DEPFET [27]. 

DEPFET structures were proposed in 1980 by J.Kemmer and G.Lutz [28]. The 

schematic layout of a DEPFET is shown in figure 2.12. A Field Effect Transistor (FET) 

is integrated on the N-type depleted silicon bulk. There is a deep N-doping region under 

the FET gate named the internal or the second gate. Electrons generated by incident 

particles are collected by the internal gate. Modulation of the transistor channel current 

is generated as the potential of the internal gate varies. A positive voltage pulse is 

applied to the clear gate to reset electrons [3][27][29].  

Vertex detectors in the BELLE II being installed will contain two layers of highly 

granular DEPFET Pixel Detector (PXD) [2]. The requirement of spatial resolution is 15 

μm, the PXD will have pixel sizes of 50×50 μm2 (Layer 1) and 50×75 μm2 (Layer 2) in 

order to achieve the resolution.  

2.5.5 Monolithic Active Pixel Sensor  

In 2000, researchers of the LEPSI and IReS proposed a Monolithic Active Pixel 

Sensor (MPAS) for charged particle tracking and imaging [30]. The MAPS structure 

integrates signal sensing and readout electronics on the same substrate. They offer an 

attractive balance among granularity, material budget, radiation tolerance and readout 

speed [31]. 

Sensor diode 

A schematic of the first-generation of MAPS structure is shown in figure 2.13. A 

photodiode is formed by the P-N junction generated between the N-well and the 

epitaxial layer (P-type). Doping levels of P-well (P+ type) and P-substrate (P++ type) 
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are higher than the epitaxial layer (P- type), leading to the generation of two potential 

barriers. A potential barrier is located at the boundary region between the epitaxial layer 

and the P-well. The other potential barrier is located at the boundary region between the 

epitaxial layer and the P-substrate. 

 
Figure 2.13: Schematic of the first-generation MAPS structure. 

A charged particle traverses the MAPS detector, the energy released by the particle 

are converted and typically ~80 electron-hole pairs are generated per micron. Electrons 

created in the epitaxial layer diffuse thermally and gather at the N-well collection 

electrode. Due to the high level of the P-type doping, more of electrons generated in the 

substrate are recombined, just few electrons can drift to the epitaxial layer and be 

collected by the collection electrode. 

 
Figure 2.14: Schematic of the second-generation MAPS structure. 

In the first-generation MAPS structure, only NMOS transistor can be used in a 

pixel. An N-well which is used to host PMOS transistor would compete for charge 

collection with N-well/P-epi diodes. In order to avoid this situation, a deep P-well in the 

P-substrate is proposed to shield the N-well from the epitaxial layer or substrate in the 

second-generation structure, as shown in figure 2.14. The deep P-well prevents the 

N-well from collecting electrons, therefore allowing the use of full complementary 

CMOS in the pixel [30][32][33]. 

In pixelated detectors, the electrons diffusion leads to the charge can be shared by 

two or more pixels. Especially for smaller pixel size detectors, the effect of charge 
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sharing will be more prominent. 

Read-out circuit 

A typical in-pixel readout circuit for MAPS structures is shown in figure 2.15, 

which is composed of three transistors. M1 is controlled by the signal RESET to reset 

the sensing diode. M2 connected to the sensing diode is an input transistor of a source 

follower. M3 is controlled by the signal ROW_SEL to select the row of pixel to output. 

 

Figure 2.15: Typical in-pixel readout circuit [30]. 

The MAPS structure was first used in the vertex detector upgrade of the STAR 

(Solenoidal Tracker at RHIC) experiment at RHIC (Relativistic Heavy Ion Collider). 

The ALPIDE used in the ALICE experiment is a monolithic pixel sensor will be 

fabricated in the 180 nm CMOS imaging sensor process of TowerJazz. It achieves 

detection efficiency above 99%, the power consumption less than 40 mW/cm2, a spatial 

resolution of around 5 µm. These features all have met even exceeded requirements of 

the ALICE experiment, even after neutron irradiation to 1.7×1013 1 MeV neq/cm2 [34]. 

2.5.6 Conclusions 

Single-sided strip detector measures 1 coordinate, while Double-sided strip 

detector could give a 2-dimensional position of a particle track. However, the 

measurement will be ambiguous, Ghost hits, if more than one particle hits the strip.  

Due to the complicated manufacturing procedures, the expensive cost is needed for the 

Double-sided strip detector [35]. A limitation for CCD is low readout speed which 

depends on the size of the pixel matrix. The charge has to be transferred for long 

distances in columns of pixels before reaching the readout line. The Charge Transfer 

Efficiency (CTE) is used to measure the quality of the charge transported from one 
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pixel to another, which should be close to 1. CCD is sensitivity to radiation damage, 

which makes the charge transfer efficiency degradation. The hybrid pixel sensor 

provides low detector capacitance, low leakage current and large signal-to-noise ratio. 

Due to a large number of readout channels, large power consumption and expensive 

cost are needed [36]. The DEPFET provides an excellent low noise performance which 

can achieve a good spatial resolution and a fast readout speed [37]. The DEPFET 

detector is not used in a hadron collider since its performance can be destroyed by 

additional charges from the radiation damage [6]. Functions of the sensor and amplifier 

are combined in the detector. The MAPS structure is manufactured using standard 

CMOS technology, leading to some attractive features including low cost, low material 

budget, simple readout architecture, high spatial resolution, etc. And the technology 

makes it possible to integrate more processing module into circuit. Our concept is to 

integrate the ANN into a CMOS pixel sensor to reconstruct the incident angle and tag 

the hits generated by particles from the beam background. 

Table 2-1: Advantages and disadvantages of these detector technologies [6]. 

Technology Advantages Disadvantages 

Strip detector 
Large area possible 

Fast speed 
Expensive cost 

CCD 

Industry standard 

High spatial resolution 

Integrated amplification 

Slow speed 

Not radiation hard 

Large power consumption 

Need different voltages 

Hybrid pixel 

low detector capacitance 

low leakage current 

large signal-to-noise ratio 

Large channel number 

large power consumption 

Expensive cost 

DEPFET 

Integrated amplification 

Low power consumption 

Low noise 

Fast readout speed 

Only small devices 

Not radiation hard 

High power at CLEAR 

No industry standard 

MAPS 

Standard IC process 

Integrated amplification 

Low noise 

Low power 

High spatial resolution 

Only small devices 
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2.6 Summary 

Basic properties and types of semiconductor detectors (Si detector) are described 

in the chapter. Generation and transportation of carriers are described. Basic 

components, the P-N junction and the MOS structure, also introduced. Typical silicon 

detectors used for HEP experiments are introduced and compared. Artificial neural 

networks will be introduced briefly in the next chapter. 
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3 Artificial Neural Networks for Pattern 

Recognition 

Artificial Neural Networks (ANNs) are computational modules that are inspired by 

the biological neural network [1]. ANNs, consisting of processing units and 

connections (weights) between these units, have been proved to be universal 

approximators for a domain of boolean function by the logical calculus [2]. ANNs used 

nowadays are evaluated and developed on the basis of the computational model 

introduced by Warren McCulloch and Walter Pitts in 1943 [3] and have been used in a 

wide variety of field for pattern recognation successfully, including finance, weather, 

control, medicine, physics, etc [4][5][6][7]. 

My thesis propose to integrate ANNs into a CMOS pixel sensor for tagging and 

removing hits generated by particles from the beam background. In this chapter, firstly, 

the basic principle of artificial neurons are introduced; Next, the Multi-Layer 

Perceptron (MLP) which is employed in the thesis, is described; Then, ANN supervised 

learning modes and the Back Propagation (BP) algorithm are illustrated. Finally, ANN 

applications in the field of high energy physics (HEP) are reviewed briefly. 

3.1 Pattern Recognition 

Human beings can perform some tasks such as reading hand-written digits, 

recognizing traffic signals, etc. Decision processes made by human beings are related to 

the identification of patterns in the brain. Pattern recognition is an attempt to grasp the 



Chapter 3: Artificial Neural Networks for Pattern Recognition  

44 

 

mechanism of decision-making processes and build machines that can perform 

decisions like human beings [8][9]. 

“Pattern recognition is about assigning labels to objects. Objects are 

described by a set of measurements called also attributes or features” [10] 

When a charged particle passes a CMOS pixel sensor, electrons generated are 

collected by several pixels. These pixel values constitute a cluster which presents hit 

information of the charged particle. As shown in the figure 3.1, each cluster shape is 

represented in a 5×5 pixels matrix. Due to the charged particle from the beam 

background have lower momentum than the particle from the physics event, resulting 

to generating an elongated cluster shape. We proposed to regress the incident angle of 

each cluster by the artificial neural network and then tag and remove hits generated by 

charged particles from the beam background. 

  

(a) (b) 

Figure 3.1: Examples of cluster shapes (a) Cluster shape generated by charged particles from 

the physics event (b) Cluster shape generated by charged a charged particle from the beam 

background. 

Procedures of pattern recognition are divided into two phases: training and test. As 

for the example shown in figure 3.1, in the training phase, training datasets consisting 

of lots of cluster shapes and their corresponding incident angles are used to train 

parameters (weights) of the machine. Inputted cluster shapes are classed in advance and 

their incident angles are known. In the test phase, incident angles are recognized based 

on inputted cluster shapes and the weights of the artificial neural network. 

In general, pattern recognition is separated into two categories (classification and 

regression) according to tasks: In classification tasks, inputs of the machine are 

assigned to discrete classes and outputs represent labels of discrete classes. In 
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regression tasks, outputs are values of continuous variables [11]. 

3.2 Biological and Artificial Neuron 

In human brains, biological neural networks which perform decision-making 

processes consist of basic components of the biological neuron. Inspired by the 

biological neuron, artificial neuron models are proposed and developed as the basic unit 

of the ANN. Principles of biological neurons and artificial neurons are introduced in the 

section. 

3.2.1 Biological Neurons 

A human brain has an average of ~100 billion biological neurons that emerge a 

wide variety of shapes and sizes in different parts. Biological neurons are 

interconnected by synapses. For instance, the pyramidal cell is one of the most common 

types of cortical neurons, which can receive 10000 or more synapses [12]. 

 

Figure 3.2: Connections between two biological neurons. 

Two biological neurons are shown in figure 3.2. Every biological neuron is a single 

processing unit. A biological neuron consists of a cell body (soma), an axon and 

dendrites. The cell body contains a nucleus which is used to control the cell activity. 

Dendrites are used to carry impulse signals generated by other neurons into the cell 

body and the axon is used to take impulse signals out from the cell body [12]. The 

synapse between the dendrite and an axon terminal of another neuron is used to 

converts the electrical signal into a chemical signal, release a neurotransmitter. 

The process of the signal generated and transported in a biological neuron as 
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follows: Firstly, neurotransmitters released by previous neurons diffuse across the 

synapse. Then, in the receiver neuron, according to the neurotransmitters, input impulse 

signals are generated and transmitted to the cell body. The receiver neuron will be 

activated if the sum of impulse signals exceeds a threshold. Finally, an output impulse 

signal is generated in the cell body and transmitted to the axon. The input impulse 

signals can be inhibitory or exciting by neurotransmitters depending on the type of a 

synapse. Synapses have the function to learn from activities that they have participated 

since their effectiveness is adjusted by impulse signals transported in cell bodies 

[13][14]. 

3.2.2 Artificial Neuron 

Artificial neurons, basic components of ANNs, are designed and developed 

inspired by the biological neuron. According to the constitution and function, three 

elements of an artificial neuron model are identified as follows: 

1. Weights. For a biological neural network, two neurons are connected by a 

synapse which can be trained by activities. For an artificial neuron, the effect of 

a synapse is embodied by the weight between two neurons.  

2. A summing junction. For a biological neuron, input impulse signals are 

summed up and compared with the threshold. For an artificial neuron, inputs 

are weighted and then added together in a summing junction. 

3. An activation function. For a biological neuron, a threshold function is used to 

determine the neuron is activated or not. For an artificial neuron, including 

threshold or other nonlinear functions can be used as activation functions. 

 

Figure 3.3: Computational model of artificial neurons. 
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A computational model of artificial neurons is shown in figure 3.3, where x1, x2…. 

xn are inputs, x0 is a fixed bias input. w0, w1……wn are corresponding weights. The 

value of the summing junction (v) is calculated as 

^ =�K( × �( N K� ×��)
(�D +I+++++++++++++++++++++++++++++6P 8 79 

Then, the value of the summing junction (v) is fed into the activation function 

(φ(x)), y is the output of the artificial neuron, expressed as 

L = �6^9+I+++++++++++++++++++++++++++++++++++++++++++++++++6P 8 J9 
3.2.3 Activation Function 

Activation functions �6K9 determine the output of an artificial neuron. In the 

section, two types of activation functions for artificial neuron models are described. 

Threshold activation function 

The threshold activation function is presented in formula (3-3). If the input is 

nonnegative, the output of the activation function is 1, otherwise, the output is 0.  

�6K9 = �7+++++++++++++f�+++K � WW+++++++++++++f�+++K   W¡+++++++++++++++++++++++++++++++++6P 8 P9 

 

Figure 3.4: McCulloch-Pitts model of an artificial neuron. 

The artificial neuron employed with the threshold activation function is named 

McCulloch-Pitts model which was proposed in 1943 by McCulloch and Pitts. As 

shown in figure 3.4, where X1, X2 …Xn are inputs, y is the output, w1, w2 …wn are 

corresponding weights to inputs, φ(x) is the threshold activation function, u presents a 

certain threshold. The output of the McCulloch-Pitts model is expressed as 
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L = � ���( × V()
(�D 8 d�I+++++++++++++++++++++++++++6P 8 b9 

The certain threshold (u) can be thought of as the product of the fixed bias input and its 

weight (X0×W0, see figure 3.3). 

Sigmoid Activation Function 

Sigmoid functions represent a category of activation functions whose shapes are 

letter "S" (see figure 3.5). They are most commonly used for nonlinear tasks and 

present a balance between linear and nonlinear behaviour [14]. Common sigmoid 

functions contain Uni-polar sigmoid, Bi-polar sigmoid and Tanh. Expressions of these 

sigmoid activation functions are shown in formula (3-5), (3-6) and (3-7) [15]. 

 

Figure 3.5: Sigmoid activation functions. 

· Uni-Polar Sigmoid Function 

�6K9 = 77 N SH< +5+++++K ¢ 68£5£9+5++++�6K9 ¢ 6W579I++++++++6P 8 o9 
· Bipolar Sigmoid Function 

�6K9 = 7 8 SH<7 N SH< +5+++++K ¢ 68£5£95+++�6K9 ¢ 687579I++++++++6P 8 Q9 
· Hyperbolic Tangent Function (Tanh) 

�6K9 = ��n¤6K9 = S< 8 SH<S< N SH< + 5 K ¢ 68£5£9+5 �6K9 ¢ 687579I+++6P 8 �9 
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3.3 Types of Artificial Neural Networks  

The ANN is viewed as a computing system composed of many interconnected 

artificial neurons. In 1994, Simon Haykin provided a definition of a neural network 

which was adapted from Aleksander and Morton (1990): [8][14][16] 

“A neural network is a massively parallel distributed processor made up of 

simple processing units that has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two 

respects: 

1. Knowledge is acquired by the network from its environment through a 

learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to 

store the acquired knowledge.” 

According to connection architectures, ANNs can be grouped into two categories: 

Feedforward networks and Feedback networks, as shown in figure 3.6. 

In the feedforward network, the signal flow is in the direction from input neurons 

to output neurons. The output of feedforward networks is independent of previous 

network states, which means that there is no signal loop and output is produced only 

based on inputs. Typical examples of feedforward networks contain the Single Layer 

Perceptron, the Multi-Layer Perceptron (MLP) and the Radial Basis Function Nets. 

  
Figure 3.6: Taxonomy of feedforward and feedback network architectures [13]. 
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In the feedback network, the output of one neuron is connected with inputs of 

neurons of previous layers. The output of feedback networks is produced based on 

inputs and the previous network state [17]. Typical examples of the feedback network 

contain Hopfield networks, Kohonen’s SOM, ART model [13]. 

3.3.1 Multi-Layer Perceptron (MLP) 

The Multi-Layer Perceptron (MLP) has been employed in a variety of applications, 

which is commonly composed of an input layer, an output layer and some hidden layers. 

The architectures of a typical MLP with a single hidden layer are presented in figure 3.7. 

A MLP structure was used in my thesis for reconstructing incident angles of charged 

particles. Neurons of the input layer take features extracted from an object into the 

system. Main calculation processes are accomplished in the hidden layer which is 

composed of artificial neurons. The weight between every two neurons in different 

layers are supplied according to the learning rule of the neural network [18][19]. The 

result of the output neuron indicates a class label (classification tasks) of the object or 

an accurate value (regression tasks). 

 

Figure 3.7: Connection architectures of Multi-Layer Perceptron. 

An output (¥)) of the MLP is calculated as shown in formula (3-8). In a hidden 

neuron, weighted inputs including the input bias connection (W0i
I×X0) are summed up, 

then fed into an activation function module. In an output neuron, outputs of all hidden 

neurons are weighed, then only summed up [20] or then fed into an activation function. 

It can be found that there is no activation function achieved for output neurons in the 

formula. 
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¥) =�¦�()§ × �¨�6�©(ª ×�
©�� V©«¬'

(�� +5+++++++++++++++++++++++++6P 8 Y9 
where �©(ª  is the weight connecting input neuron j to hidden neuron i. 

�()§  is the weight connecting hidden neuron i to output neuron n. 

3.4 Feature Extraction 

Feature extraction is one of preprocessing procedures for the ANN. In the issues of 

artificial neural networks, feature extraction makes important role in the regression or 

classification of data with a high dimension. In general, input variables of the artificial 

neural network have some correlations, the feature extraction make reduction on the 

dimensionality of inputs via producing a set of features. Simultaneously, these features 

should keep enough characteristics of input variables for the regression or classification 

problems [21][22]. 

We proposed to regress the incident angle of a charged particle by the MLP. As 

shown in figure 3.1, a cluster is composed by 5×5 pixels. If there is no procedure of 

feature extraction, values of the matrix (5×5 pixels) need to be fed into the artificial 

neural network as inputs. 

In order to reduce the computational complication and to improve the 

generalization ability of classifiers, feature extraction is implemented in our design. 

The feature extraction procedure is applied to the original input variables, which 

reduces inputs by selecting and combing some original variables. The feature 

extraction procedure is considered as a mapping process from the n-dimensional space 

to a lower-dimension feature space [9][11][23]. Some features of a cluster shape are 

extracted to represent hit information. As shown in figure 3.8, the same feature 

extraction procedure is implemented in both the training and the test phase. The feature 

extraction process, including zooming, shaping, etc, reduces the complexity of input 

variables and speeds up the computation process of the system. It has been approved 

that the feature-based pattern recognition system operates much faster than a 

pixel-based system [24]. 
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Figure 3.8: Training and test phase [25]. 

Principal component analysis (PCA), or Main Component Analysis (MCA), is a 

statistical method for feature extraction which has been used in various applications. It 

converts a set of possibly correlated variables into a set of linearly uncorrelated 

variables (principal components) by an orthogonal transformation. The targets of PCA 

are to extract the most important information from correlated variables, compress the 

size of the data set [26]. The principal components are linear combinations of variables 

with maximal variance. It means to find the “main axis” of the cluster shape. Projection 

on the principal axis explains more of the variance of the data than projection on any 

other axis [27]. 

3.5 ANN Supervised Learning 

The ANN classifies labels or calculates values based on input variables and 

weights. There are two approaches to train weights of an ANN: supervised and 

unsupervised. And the supervised learning is employed in our design to train the ANN. 

Supervised learning means that the ANN is trained with a "teacher". In the training 

dataset, input vectors and outputs (class labels or target results) of the ANN all are 

specified. The learning method is implemented for setting the weights of the artificial 

neural network. The errors of all artificial neurons are minimized continuously by 

iteration until the accuracy of output neurons are acceptable. 

In the forward phase, initial weights between every two neurons are chosen 

randomly at the beginning of the training process. The signal is forward propagated 

from input neurons to output neurons. Inputs are fed into the ANN and the actual output 

is calculated based on initial weights. 

In the backward phase, the error between the actual output and the specified target 

result is calculated. The weight is adjusted to generate a closer error between the 
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desired and the actual output for the next iteration. 

This training procedure is finished until the ANN achieve an acceptable accuracy 

of actual outputs for a given input set. The supervised learning procedure is used in our 

design by software. The weights of the MLP will be settle down if the incident angle 

reconstructed by the MLP is acceptable compared with the real incident angle.  

Training datasets should be large and enough to contain all the cluster information 

to train weights of the artificial neural network. The feature extraction module is used to 

choose and extract enough features of a cluster to represent hit information. In our 

design, features of each cluster are determined and optimized according to the training 

procedure implemented in the software [9][14][28]. 

3.5.1 BP Algorithm 

For the approach of supervised learning, the Back-Propagation (BP) algorithm is 

the most efficient learning algorithm for the backward phase to minimize errors of all 

artificial neurons in the MLP due to its simplicity. 

The mechanism of the BP algorithm was presented by P. Werbos in his Ph.D. thesis 

to make a learning algorithm for a network [29]. The term “back propagation” was 

developed after 1985 and popularized by a book entitled Parallel Distributed 

Processing [30][31][32]. 

The BP algorithm applied in the MLP performs as follows: 

1. An MLP structure is designed, and weights are initialized; 

2. A set of training example inputs are chosen and fed into the MLP; 

3. The example inputs are propagated in the forward phase and obtained the 

actual output; 

4. The error between specified target result and the actual output is calculated 

according to an error function, and then propagated in the backward phase layer 

by layer;  

5. The gradient of the error function with respect to the weight is calculated. 

Weights are adjusted to minimize the overall error signal; 

6. Above steps are repeated according to different example inputs to update 

weights until the error signal is satisfactorily small [33][34]. 

In the training procedure, gradient descent is used to optimize weights to minimize 
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the error function. Weights are adjusted iteratively by operating in many times to the 

training dataset. Weights are updated as the formula: 

�6g9 = �6g 8 79 N ­�6g9+5+++++++++++++++++++++++++++++++++++6P 8 �9 
where 

t  is one iteration in the training process. 

w  is the weight to be updated. 

Weights are updated to find a local minimum result by applying correction ­�6g9 
to �6g9. The correction is proportional to the negative of the gradient of the error 

function at the current point, it is calculated as follows: 

­�6g9 = 8® ¯°6e9¯�6e9++5++++++++++++++++++++++++++++++ 6P 8 7W9 
where °6e9 is the error function between the specified target result and the actual output. �6e9  is the weight to be updated. ® is the learning rate parameter of the back-propagation algorithm. It represents 

the size of the steps taken and the minus signal in the formula means gradient 

descent in the weight space.  

The error signal between the specified target result and the actual output of neuron 

j is calculated as 

S©6e9 = �©6e9 8 L©6e9+5++++++++++++++++++++++++++++++++++6P 8 779 
where �©6e9 is the specified target result of the neuron j for the training example number n. L©6e9 is the actual output of the neuron j for the training example number n. 

The error function of neuron j is expressed as 

°©6e9 = 7J S©36e9I+++++++++++++++++++++++++++++++++++++++++6P 8 7J9 
The error function of the whole ANN is calculated as 



Chapter 3: Artificial Neural Networks for Pattern Recognition  

55 

 

°6e9 = 7J�S©36e9©¢± +5+++++++++++++++++++++++++++++++++++++++ 6P 8 7P9 
where 

C is the collection of all neurons in the output layer. 

In the back phase for adjusting the network, the correction ­�6g9 presents the 

variety that will be applied on weights based on the error function. ­�6g9 of neuron j 

is calculated depending on the location of a neuron, divided into the output neuron and 

in the hidden neuron  

Neuron j in the output layer 

Corresponding connections of the output neuron j updated are shown in figure 3.9, 

where X0(n) is the input from the previous layer, dj(n) is the specified target result of the 

neuron, φ(x) is the activation function, vj(n) is the value of the summing junction. For 

the output neuron j, the specified target result is supplied by the training dataset. 

 
Figure 3.9: Signal-flow graph of output neuron j. 

Value of the summing junction vj(n) in the neuron j is produced as 

©̂6e9 =��(©6e9 × K(6e9�
(�� +5+++++++++++++++++++++++++++++ 6P 8 7b9 

where 

m  is the number of inputs of neuron j. �(©6e9 is the weight between neuron i and neuron j. �(�6e9 is the weight of the bias 

neuron in the previous layer. 

The actual output value of the neuron j is calculated as  
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L©6e9 = �© Z ©̂6e9[++5++++++++++++++++++++++++++++++++++++++ 6P 8 7o9 
where �j  is the activation function of the neuron j.  

The back-propagation algorithm is used to minimize the error function °6e9 (see 

formula (3-13)). The gradient of the error function for weight is expressed as  

¯°6e9¯�(©6e9 = ¯°6e9¯S©6e9 ¯S©6e9¯L©6e9 ¯L©6e9¯ ©̂6e9 ¯ ©̂6e9¯�(©6e9 = 8S©6e9�(² Z ©̂6e9[ K(6e9+5+++6P 8 7Q9 
The correction ­�(©6e9 applied to �(©6e9 is expressed as 

­�(©6e9 = 8® ¯°6e9¯�(©6e9 = ®S©6e9�(² Z ©̂6e9[ K(6e9++I++++++++++++++++++6P 8 7�9 
Neuron j in the hidden layer 

 
Figure 3.10: Signal-flow graph of hidden neuron j. 

Corresponding connections of the hidden neuron j updated are shown in figure 

3.10. Where X0(n) is the input from the previous layer, dk(n) is the specified target result 

of the output neuron k, f(x) and φ(x) are activation functions for the hidden neuron and 

the output neuron respectively, mj(n) and Vj(n) are values of summing junctions in the 

hidden neuron and the output neuron respectively. For the hidden neuron, there is no 

specified target result, the error signal can be calculated recursively. 

According to the definition of correction ­�6g9, it is calculated for the neuron j in 

the hidden layer as 

­�(©6e9 = 8® ¯°6e9¯�(©6e9 = 8® ¯°6e9¯a©6e9 ¯a©6e9¯d©6e9 ¯d©6e9¯�(©6e9+5++++++++6P 8 7Y9 
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where 

¯a©6e9¯d©6e9 = �©² Zd©6e9[I+++++++++++++++++++++++++++++++ 6P 8 7�9 
¯d©6e9¯�(©6e9 = K(6e9I+++++++++++++++++++++++++++++++++++++++++++6P 8 JW9 

¯°6e9¯a©6e9 = ¯°6e9¯S'6e9 ¯S'6e9¯a©6e9 =�S'6e9 ¯S'6e9¯^'6e9'
¯^'6e9¯a©6e9I+++++++++6P 8 J79 

The specified target result of neuron k is provided as dk(n). The error signal of the 

output neuron is calculated as 

S'6e9 = �'6e9 8 L'6e9 = �'6e9 8 �'³^'6e9´I+++++++++++++6P 8 JJ9 
¯S'6e9¯^'6e9 = 8�(²³^'6e9´I+++++++++++++++++++++++++++++++6P 8 JP9 

^'6e9 for the output neuron k is calculated as 

^'6e9 = +��©'6e9 × a©6e95#
©�� ++++++++++++++++++++++++++++ 6P 8 Jb9 

where 

t  is the number of inputs of output neuron k . �©'6e9 is the weight between hidden neuron j and output neuron t. ��'6e9 is the 

weight of the bias neuron in the hidden layer. 

¯^'6e9¯a©6e9 = �©'6e9I++++++++++++++++++++++++++++++++++++++++6P 8 Jo9 
3.6 ANN in HEP 

ANNs were introduced in the field of HEP by B. Denby in 1988 [35], then they 

have been used for the physics study including finding tracks, data analysis and 

triggering applications, which widely used is the MLP based on the back-propagation 

algorithm [36]. 
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Carsten Peterson proposed in the publication [37] that in the next generation of 

accelerators, very high multiplicity events need to be processed at an extremely rapid 

rate even after a low-level trigger. An ANN algorithm for finding tracks in high energy 

physics experiments was presented. Considering the development prospects of Very 

Large Scale Integration VLSI), the author proposed to solve problems of particle 

trajectory search via the hardware implementation of the ANN structure. 

In the offline data analysis, ANNs have been used for track and vertex 

reconstruction, particle identification and discrimination calorimeter energy estimation 

and jet tagging. An MLP neural network was the first used by a group from the 

DELPHI collaboration to classify decays of the Z into c, b, and s quarks. The MLP 

structure was composed of 19 input neurons, 25 hidden neurons and 3 output neurons 

that were used to encode the three classes of decays. Successful applications have 

prompted ANNs to play a role in the remaining three Large Electron-Positron (LEP) 

experiments [38][39]. In the Tevatron experiment, feedforward neural networks were 

used to measure the top quark mass or search leptoquarks. In the BaBar experiment, 

they were used to extract the result about the decay of B mesons [36][40][41]. 

The typical multilevel HEP trigger system is used to reject background events and 

obtain rare interesting events. The basic coincidence circuit is the component of a 

typical trigger system, which is similar to the Hopfield model of biological neurons. As 

shown in figure 3.11, a voltage divider circuit composed of four resistances converts 

the voltages from the four inputs voltage into a current I, and the current is converted to 

a voltage and presented. In the comparator, if the voltage (VC) is above a threshold (Vth), 

a voltage level is expressed at the output of the unit. The weights of an ANN can be 

coded by the four resistor values (R1-R4) in the voltage divider circuit [36]. 

 
Figure 3.11: Basic coincidence electric circuit. 

A commercial analog neural network chip named ETANN was tested by the group 

from the Fermilab. Track parameters of charged particles traversing a drift chamber 
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were found by the chip in real-time. The chamber was a prototype of the muon chamber 

for the D0 detector. There were 3 TVC voltages and 3 pad latch voltage as inputs, and 

64 hidden neurons and 64 output neurons in the ANN structure. Since the limitation 

from the number of available neurons of the chip, track parameters obtained were not 

very efficient. However, it was not used in the actual physics experiment [42].  

The experiments H1 in Hadron-Electron Ring Accelerator (HERA) was used to 

study the momentum distribution of constituents within the proton and measure the 

coupling strength of the gluon to the different quarks. A 4-level trigger system was used 

in order to reduce the high rate to about 100 Hz, in where the level-2 trigger was 

accomplished with a hardware ANN which was composed of 3 layers. The output of the 

neural network was used to separate physics events from the background. It was the 

first neural network trigger in a running HEP experiment [43]. 

In 2007, E.Won used a Xilinx SPARTAN XC3S4000 FPGA chip to implement an 

ANN structure [44], studied and discussed the feasibility for pattern recognition in the 

first-level trigger circuit. The 3-layer MLP structure contains 5 input neurons, 6 hidden 

neurons, and 1 output neuron. The ANN was trained completely on the software. 

Parameters, including the weight and threshold, are obtained. The ANN integrated with 

the FPGA hardware was tested. Due to a certain gap between the data width and the 

software, the accuracy of the recognition results of the ANN declined to some extent. 

However, the authors verified the possibility of applying the structure of the ANN to 

the trigger decision circuit of the first level. In the Belle experiment, the researchers 

applied ANN technology to the upgraded first-level full-trigger system [45][46]. 

3.7 Challenges for ANN Implementation 

In our design, ANNs will be integrated into the hardware of a CPS for tagging and 

removing hits generated by particles from beam background. Challenges exist for 

implementing ANN into ASIC by digital circuit process. 

Data precision. It is one important index for hardware implementation. For 

instance, low precision on weights means the design owes advantages on the power 

consumption, occupied surface and operation speed; high precision of weights leads to 

a highly reliable output by the final implementation. The final implementation is the 

result of a balance between performance and resource cost [47]. 
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Mathematic unit. In the hardware implementation, mathematical units need to be 

achieved to perform complex calculation, including in feature extraction modules and 

activation function modules. For example, the sigmoid activation function needs 

complex mathematical units’ implementation. Look-up-Table (LUT) method can be 

used in the hardware to present the mathematical unit, which means the low precision 

and long operation time. Or the mathematical method is alternative, which means 

approximates the nonlinear function by a combination of some linear functions. 

Inevitably, large power consumption and occupied surfaces are needed for 

implementing enough linear functions to reach a high-level precision. Mathematic unit 

implementations are a trade-off between power consumption, area and performance 

[48][49]. 

Learning procedure. Weights of the ANN can be trained by the off-chip or on-chip. 

By the off-chip method, weights are trained in the software and then transplanted into 

the hardware. The method can perform the training procedure fast and accurately. 

However, ANN structures and weights implemented in the hardware are fixed. By the 

on-chip method, the training procedure is processed by the hardware, which may result 

in low weight precision and large power consumption. However, compared to fixed 

weights generated by the off-chip solution, weights trained by on-chip can improve the 

real-time of the design [50]. 

3.8 Summary 

In this chapter, relevant basic contents of ANNs are introduced, including the 

artificial neuron module and multi-layer perceptron structure. The feature extraction 

module is explained. Then the ANN supervised learning and back-propagation 

algorithm is illustrated. The ANN used in the high energy physics experiment is 

reviewed. The chapter is end up with the discussion of the challenges for ANN 

implementation in the ASIC. 

In the next chapter, the ANN implementation in a FPGA device will be presented, 

the reconstructed results will be compared and analysed. 
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4 FPGA Implementation of ANN for 

Reconstructing Incident Angles 

In order to tag and remove hits induced by charged particles coming from the beam 

background, our group in IPHC proposed to integrate Artificial Neural Networks 

(ANNs) into a CMOS Pixel Sensor (CPS). Background particles possess low momenta, 

leading to the generation of large incident angles and elongated cluster shapes. Incident 

angles can be used for identifying particles and reconstructing tracking. Due to the 

design of the prototype chip requires a lot of time and resources, ANNs were 

implemented in a Field Programmable Gate Array (FPGA) device to reconstruct 

incident angles for the feasibility study. An offline methodology was employed for 

gathering raw data and training weights, as shown in figure 4.1. 

 

Figure 4.1: Main procedures of the offline methodology. The training and the test process in 

TMVA have been accomplished by my colleague Luis alejandro PEREZ PEREZ  

· An independent raw data acquisition system was established to collect raw 

data of a CPS under different incident angles.  

· The Toolkit for Multivariate Data Analysis (TMVA) [1] was used to train 
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and test the ANN structure. This part has been accomplished with my 

colleague Luis alejandro PEREZ PEREZ. 

· A FPGA device was used to implement the ANN and all preprocessing 

modules. The ANN implementation was tested and analysed. 

The feasibility study is described in the chapter. Firstly, the raw data acquisition 

system is illustrated; Next, the FPGA implementation of the ANN and preprocessing 

modules are described and explained in detail; Finally, test results of the ANN 

implementation are shown, incident angles reconstructed are compared with the results 

reconstructed by the ANN implemented in the TMVA and analysed. 

4.1 Raw Data Acquisition System 

The raw data acquisition system is used to collect raw data (training datasets and 

test datasets) and corresponding incident angles supplied to the training process and the 

test process. Cluster information is extracted from each frame of raw data.  

1. In the training process. According to the supervised learning, features 

extracted from clusters and specified target results (corresponding incident 

angles) are fed into the ANN to train weights. 

2. In the test process. Features are fed into the ANN to reconstruct an incident 

angle based on weights. 

 

Figure 4.2: Schematic diagram of the raw data acquisition system. 
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The data acquisition system supports a CPS to expose under the radiation of a β⁻ 

source 90Sr. Cluster information will be produced if charged particles hit on the CPS. 

The schematic diagram and main components of the system are shown in figure 4.2. 

Ø A dark chamber (box) was used to supply the dark environment to prevent 

the light influence from the surrounding. 

Ø A CMOS pixel sensor (MIMOSA 18) was bonded on the device test board 

(see section 4.1.1). 

Ø A 2 rotations support was employed to tune angles between the CPS and the 

reference plane (see section 4.1.2). 

Ø A readout chain was used to transmit data and signals. Raw analog data is 

read out from the CPS, converted to digital data and transferred to PC (see 

section 4.1.3). 

Ø A source support was used to place the β⁻ source 90Sr. 

4.1.1 CMOS Pixel Sensor 

MIMOSA18 is a CMOS pixel sensor fabricated in the AMS 0.35 µm OPTO 

process with a standard epitaxial layer thickness of 14 µm (~ 10 – 15 Ω·cm). The total 

charge of a hit is related to the thickness of the epitaxial layer, about ~80 e-h pair/µm 

can be generated by charged particles. The standard epitaxial layer results in the typical 

total charge of O(1000e-) [2].  

 
 

(a) (b) 

Figure 4.3: CMOS pixel sensor MIMOSA 18 (a) Layout of MIMOSA 18 (b) The pixel structure 

of the MIMOSA18 [3]. 

As shown in figure 4.3(a), a MIMOSA 18 sensor consists of 4 submatrices 

(A0~A3). Each submatrix contains 256×256 pixels with a pitch of 10 µm and provides 
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an active area of 5×5 mm². One submatrix of the sensor is activated in the raw data 

acquisition system. 

A pixel architecture used in MIMOSA 18 is illustrated in figure 4.3(b). It is 

composed of 2 transistors and 2 diodes. An N-well diode (D1) is used to collect the 

charges created in the epitaxial layer. The size of the collecting diode is 4.4×3.4 µm2. 

The other diode (D2) which is under forwarding bias is used to supply the voltage bias. 

One transistor (M1) of a source follower is connected to the charge collecting N-well 

diode, the other transistor (M2) is controlled by the signal “select” [3]. 

4.1.2 2 Rotations Support 

A 2 rotations support was employed to place the MIMOSA 18. In the case that the 

source 90Sr is fixed, incident angles of charged particles are tuned by adjusting two 

angles (α, β) between the CMOS pixel sensor and the reference plane. 

In the section, the principle of the 2 rotations support is explained to show the 

correlation between the incident angle (θ) and angles (α, β). In addition, detailed 

settings of the 2 rotations support are given. 

Principles 

 

Figure 4.4: Schematic of the 2 rotations support. 

The schematic of the 2 rotations support is shown in figure 4.4, where “source” 

means the position of the 90Sr, point “A” indicates the centre of the source, point “A’” 
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indicates the emitted location of a charged particle from the source. 

Three coordinate systems in figure 4.4 are described as: “X1Y1Z1” presents the 

reference coordinate system. Coordinate system “X2Y2Z2” fixed at point “O1” is 

formed by rotating “X1Y1Z1” α degrees around Y1-axis. Coordinate system “X3Y3Z3” 

fixed at point “O2” is formed by rotating “X2Y2Z2” β degrees around X2-axis.  

Plane “X3Y3” represents the location of the CMOS pixel sensor. Point “M” on 

plane “X3Y3” means a hit point on the CMOS pixel sensor, vector �²Rµµµµµµµµ¶ is the trajectory 

vector of the incident particle, “θ” is the incident angle of a charged particle, “φ” is the 

angle between the positive direction of X3-axis and the projected vector of �²Rµµµµµµµµ¶ on 

plane “X3Y3”. 

Ø Expression of an incident angle 

Assuming a vector in coordinate system “X1Y1Z1” can be present as KDµµµ¶ N LDµµµµ¶ N �Dµµµ¶. 
According to the relation of these coordinate system, the vector presentation in other 

coordinate systems can be converted as follows: 

· Convert from “X1Y1Z1” coordinate system to “X3Y3Z3”: 

¨K2µµµµ¶L2µµµµ¶�2µµµ¶« = ¨ y}h6·9 +++++++++++++++++W+++++++++++++++++ 8 hfe6·9hfe6·9 hfe6�9++++++y}h6�9++++++++y}h6·9 hfe6�9hfe6·9 y}h6�9 ++++8 hfe6�9+++++y}h6·9 y}h6�9«¨
KDµµµ¶LDµµµµ¶�Dµµµ¶«I+++6b 8 79 

· Convert from “X3Y3Z3” coordinate system to “X1Y1Z1”: 

¨KDµµµ¶LDµµµµ¶�Dµµµ¶« = ¨ y}h6·9++++hfe6·9 hfe6�9++++hfe6·9 y}h6�9W+++++++++++++ y}h6�9++++++++++++8 hfe6�98 hfe6·9+++hfe6�9 y}h6·9+++y}h6·9 y}h6�9«¨
K2µµµµ¶L2µµµµ¶�2µµµ¶«I++++++++6b 8 J9 

The incident angle “θ” and angle “φ” can be calculated as 

y}h4 = ¸�²R¹2µµµµµµµµµµµµ¶¸¸�²Rµµµµµµµµ¶¸ 5+++++++++++++++++++++++++++++++++++++++++++++++++6b 8 P9 
y}h� = ¸�²R<2µµµµµµµµµµµµ¶¸U¸�²R<2µµµµµµµµµµµµ¶¸ × ¸�²R<2µµµµµµµµµµµµ¶¸ N ¸�²R~2µµµµµµµµµµµµ¶¸ × ¸�²R~2µµµµµµµµµµµµ¶¸+5+++++++++6b 8 b9 

where  �²R¹2µµµµµµµµµµµµ¶  is the vector projected by vector �²Rµµµµµµµµ¶ on plane “X3Y3”.  �²R<2µµµµµµµµµµµµ¶  is the vector projected by vector �²Rµµµµµµµµ¶ on plane “Y3Z3”. 
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�²R~2µµµµµµµµµµµµ¶  is the vector projected by vector �²Rµµµµµµµµ¶ on plane “X3Z3”. 

Ø Expression of º²»µµµµµµµµ¶ and º²»¼½µµµµµµµµµµµµ¶ 
The unit vector of vector �²Rµµµµµµµµ¶ in coordinate system “X1Y1Z1” is expressed as 

�¶ = 6hfe6!9 y}h6`9++hfe6!9 hfe6`9++8 y}h6!99¨KDµµµ¶LDµµµµ¶�Dµµµ¶« = 6/++++0++++y9 ¨KDµµµ¶LDµµµµ¶�Dµµµ¶«5+++6b 8 o9 
where  

σ  is the angle between �²Rµµµµµµµµ¶ and the negative direction of Z1-axis. 

γ  is the angle between �²Rµµµµµµµµ¶ and the positive direction of X1-axis.  

�²Rµµµµµµµµ¶ is presented as  

�²Rµµµµµµµµ¶ = 6/g++++0g++++yg9 ¨KDµµµ¶LDµµµµ¶�Dµµµ¶«+5++++++++++++++++++++++++++++++6b 8 Q9 
where 

t is the flight time of the charged particle from the emission point “A’” to the hit 

point “M” on the CMOS pixel sensor. 

The expression of �²Rµµµµµµµµ¶ in the coordinate system “X3Y3Z3” is derived from the 

formula (4-1) and presented as 

�²Rµµµµµµµµ¶ = 6K2µµµµ¶+++L2µµµµ¶+++�2µµµ¶9 ¨ /gy}h6·9 8 yghfe6·9/ghfe6·9hfe6�9+N +0gy}h6�9 +N ygy}h6·9hfe6�9/ghfe6·9y}h6�9 +8 +0ghfe6�9 +N +ygy}h6·9y}h6�9« I 6b 8 �9 
The projected vector of �²Rµµµµµµµµ¶ on plane “X3Y3” is expressed as 

�²R¹2µµµµµµµµµµµµ¶ = 6K2µµµµ¶+++L2µµµµ¶+++�2µµµ¶9+� WW/ghfe6·9y}h6�9 8 0ghfe6�9 N ygy}h6·9y}h6�9�I++6b 8 Y9 
 

Ø Expression of fly time (t)  

Vector R¾2µµµµµµµµµ¶ on plane “X3Y3”, and it is passed by the normal vector �2µµµµ¶. The two 

vectors are perpendicular to each other. They are written as  
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R¾2µµµµµµµµµ¶ × �2µµµµ¶ = W+I+++++++++++++++++++++++++++++++++++++++++++++6b 8 �9 
According to formula (4-1), �2µµµ¶ is written as 

�2µµµ¶ = ³hfe6·9y}h6�9 +++8 hfe6�9++++y}h6·9y}h6�9´¨KDµµµ¶LDµµµµ¶�Dµµµ¶«+5+++++++++++++6b 8 7W9 
Vector R¾2µµµµµµµµµ¶ is calculated as follows:  

¾D¾2µµµµµµµµµµ¶ = ¾D¾3µµµµµµµµµµ¶ N ¾3¾2µµµµµµµµµµ¶ = �DLDµµµµ¶ N �3K3µµµµ¶ = 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9¨ �3y}h6·9�D8�3hfe6·9«5+++++6b 8 779 
where  

O3  is the projected position of the central point “A” on plane “X3Y3”.  

d1  is the distance between point “O1” and point “O2”. 

d2  is the distance between point “O2” and “O3”. 

¾2�µµµµµµµ¶ = + 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9 � WW� N �3hfe6·9�5+++++++++++++++++++++++++++++++++ 6b 8 7J9 
¾D�µµµµµµµ¶ = ¾D¾3µµµµµµµµµµ¶ N ¾3¾2µµµµµµµµµµ¶ N ¾2�µµµµµµµ¶ = ¾D¾2µµµµµµµµµµ¶ N ¾2�µµµµµµµ¶ = 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9 ��3y}h6·9�D� � 5 6b 8 7P9 

where 

D  is the distance of normal vector from point “ A ” to the plane “ X1Y1 ”.  

Position of “O3” projected by point “A” on plane “X3Y3” varies with the angle α 

and β. However, considering “D” is large enough, the variety of d2 can make little 

difference in ¾2�µµµµµµµ¶.  

��¿µµµµµµ¶ = 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9 �Ày}h6�9Àhfe6�9W �5+++++++++++++++++++++++++++++++ 6b 8 7b9 
¾D�²µµµµµµµµµ¶ = ¾D�µµµµµµµ¶ N ��²µµµµµµµ¶ = 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9 ��3 y}h6·9 N Ày}h6�9�D N Àhfe6�9� �5++++++++++6b 8 7o9 

where 
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δ  is the angle between the vector ��²µµµµµµµ¶ and the X1-axis.   

ρ  is the radius of the source.  

¾DRµµµµµµµµ¶ = ¾D�²µµµµµµµµµ¶ N �²Rµµµµµµµµ¶ = 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9 ��3 y}h6·9 N Ày}h6�9 N /g�D N Àhfe6�9 N 0g� N yg �I+++++++6b 8 7Q9 
R¾2µµµµµµµµµ¶ = ¾D¾2µµµµµµµµµµ¶ 8 ¾DRµµµµµµµµ¶ = 6KDµµµ¶+++LDµµµµ¶+++�Dµµµ¶9 ¨ 86/g N Ày}h6�99860g N Àhfe6�9986�3hfe6·9 N � N yg9«I++++++6b 8 7�9 

where a, b and c in the formula is  

+++++++++++++++++Á/ = hfe6�9y}h6`90 = hfe6�9hfe6`9y = 8y}h6�9+ ÂI+++++++++++++++++++++++++++++++++++++ 6b 8 7Y9 
The flight time t of particles is expressed as  

g = 8 ³�3y}h6!9 N Ày}h6�9´hfe6·9y}h6�98 Àhfe6�9hfe6�9 N �y}h6·9y}h6�9hfe6!9 �Ãs6`9 hfe6·9y}h6�98 hfe6!9hfe6`9hfe6�98 y}h6!9y}h6·9y}h6�9I 6b 8 7�9 
Correlations between incident angle θ and angles α and β are shown in figure 4.5, 

which is the simulation result based on the formula (4-3). According to the result, the 

incident angle θ of raw data required can be fixed according to the angles (α, β). 

 

Figure 4.5: Simulation result of the correlation between incident angle φ, θ and α, β. 
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Setting 

For training datasets and test datasets, 10 different incident angles were chosen to 

collect raw data. Detailed information of 10 incident angles (θ) is shown in Table 4-1, 

including angle φ presenting the angle between the main axis of a cluster and the 

X-axis. 

Table 4-1: The setting of the angle θ, φ, and α, β. 

θ (deg) φ(deg) α (deg) β (deg) 

0 0 0 0 

15 136 -10 -10 

30 90 0 -30 

44 120 -20 -40 

50 90 0 -50 

56 127 -30 -50 

62 113 -20 -60 

64 124 -30 -60 

71 111 -20 -70 

73 127 -30 -70 

In the training process, a large amount of raw data was acquired for each given 

incident angle θ. In the test process, 500 frames of raw data were acquired for each 

given incident angle θ. 

4.1.3 Readout Chain 

 

Figure 4.6: Schematic diagram of the MIMOSA 18 readout chain [4]. 

The readout chain of the raw data acquisition system is shown in figure 4.6, which 

presents the transmission of raw data and control signals between PC and the 

MIMOSA18. 

The MIMOSA18 (“MAPS”) was mounted on a device test board which is used to 
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provide the power supply, mechanical support and transmit control signals, such as the 

clock, the reset, from an auxiliary board. 

An auxiliary board is used to transmit analog data from the device test board to an 

imager board. In order to reduce the data attenuation due to long-distance transportation, 

the single-end signal from the device test board is amplified and converted to 

differential forms on the auxiliary board. Then, the differential signal is sent to the 

imager board via coaxial cables. In addition, the analog signal is sampled from the 

auxiliary board and monitored on an oscilloscope. 

On the imager board, analog data from the auxiliary board is digited to 12-bit and 

then sent to the disk of Windows PC through an ethernet link. The imager board is set 

up in and powered by a VME crate [4][5][6]. 

In the process of raw data acquisition, the device test board equipped with the 

MIMOSA 18 chip is placed in a dark chamber. The noise level is 2.2 ADC units, which 

is the average output of the chip in the dark chamber without irradiation of source 90Sr. 

4.2 Implementations in the FPGA 

 

Figure 4.7: FPGA development board (Nexys Video Artix-7 FPGA) used in our study. 

A NEXYS VIDEO FPGA development board was used to implement the ANN and 

preprocessing modules, as shown in figure 4.7. The development board has a Xilinx 

Artix-7 XC7A200T FPGA chip [7], high-speed USB interfaces, Bank RAMs, DSP 

modules and other resources.  

An 8-bit micro USB interface (see "INTERFACE") was activated to read raw data 

into the FPGA board and write back reconstructed information to PC frame by frame. A 
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piece of reconstructed information contains cluster information (pixel charges and their 

relative positions in a cluster window) and the corresponding incident angle θrec 

reconstructed by the ANN.  

Raw data read in the FPGA device is processed by Correlated Double Sampling 

(CDS) firstly of all, generating pixel charges. Two switches (see "SWITCH") on the 

board are called to supply alternative options on the data width of pixel charges. In my 

implementation, the two switches are set as “00” for data width is original 12-bit. 

  

 

Figure 4.8: Main procedures and timing in the FPGA device. 

Main procedures and timing of raw data processed in the FPGA device are shown 

in figure 4.8: 

1. Reading one frame of raw data from PC:  

256×256 pixels of 32-bit raw data are fed into the FPGA device and 

processed the CDS pixel by pixel. 256×256 pixels of 12-bit pixel charges 

are generated. 

2. Cluster search:  

Searching clusters in a frame of pixel charges. If there is a seed pixel 

in this frame, neighbour pixel charges of the seed pixel are collected and 

next step is started; otherwise, there is no cluster in the frame and the 

procedure jumps to the last step write reconstructed results of this frame 

back to PC.  

3. Data format conversion: 
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Due to the exiting of IP core in the design suit of vivado, in order to 

simplify the implementation procedure in the FPGA, the integer is 

converted into floating point for the main calculation in the subsequent 

procedure. 

4. Feature extraction: 

Four features are extracted to present the cluster. The maximum and 

the minimum standard deviation of a cluster are calculated in the module 

named Main Component Analysis (MCA). Total charges of the cluster and 

the seed pixel charge are calculated within the process of cluster search. 

5. Norm input: 

The four features are normalized respectively and then fed into the 

ANN. 

6. ANN: 

An incident angle is reconstructed based on four normalized features 

of the cluster and weights fitted in the training process. 

7. DeNorm output: 

The output of the ANN is denormalized which is the reverse process 

of the normalization. 

8. Write results back: 

Reconstructed information (relative positions, pixel charges and the 

corresponding reconstructed angle θrec) in a frame is written back to PC. 

4.2.1 Interface to Read in Raw Data 

Each frame of raw data is stored in binary files by the fixed format, including some 

configuration contents (head part and end part). Raw data is extracted from the frame 

and transferred to the FPGA device through the 8-bit micro USB interface. The frame 

format of the file and the process of data reception in the FPGA are described in this 

section. 

Format of Raw Data 

A frame of raw data (256×256 pixels) is composed of three parts as shown in figure 

4.9, including the head part, the body part and the end part. 

Ø The head part: It is used to indicate the start of the frame. The head part is 
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composed of 112 bytes binary data. The number of the frame (“Num fr”) is 

recorded two times from 5th byte to 12th byte as shown in figure 4.9.  

Ø The body part: It is the main content of the frame. The body part contains 

256×256 pixels of 32-bit raw data. Only the body part is extracted and 

transported to the FPGA device. 32-bit raw data of each pixel are expressed 

in three parts, including two 12 bits data and an 8-bit extra data. Two 12 bits 

of raw data are two samples of one pixel, respectively, which are supplied 

to the CDS module.  

Ø The end part: It is used to indicate the end of a frame. The end part is 

expressed in a fixed number (4 bytes). The first byte is (EF)hex, the second 

byte is (CD)hex, the third byte is (AB)hex, the last byte is (89)hex.  

 
Figure 4.9: Frame format stored in a binary file (256×256 pixels). 

The principle of body part extraction is described as follows: 

1. The head part is searched and verified in a binary file; 

2. Then next 256×256×4 bytes raw data are read out and written into a memory of 

PC.  

3. Reading out the following 4 bytes, if they are the same with the end part, it 

means that raw data in the memory is a complete body part and will be 

transferred to the FPGA; otherwise, the memory is reset and the next head part 

is searched in the binary file. 

Through the frame format design (the head part and the end part), the integrity and 
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the accuracy of raw data transmitted to the FPGA are guaranteed. 

Data Reception in the FPGA 

The timing waveform to read raw data of one pixel is illustrated in figure 4.10. 

Relevant signals are described as follows: 

Ø Prog_oen: It is an output signal of the FPGA chip and used to control the micro 

USB interface to receive data. Signal “Prog_oen” needs to be active (low-level 

voltage) one clock cycle before signal “prog_rdn” pulled down when raw data 

starts to be transferred. 

Ø Prog_rdn: It is an output signal of the FPGA chip and used to control the micro 

USB interface to receive data. Raw data will be received only when signal 

“Prog_oen” and signal “Prog_rdn” are both enabled (low-level voltage). 

Ø Prog_clko: A 60 MHz clock signal supplied by the micro USB interface chip. 

This 60 MHz clock is used as the system clock in our design. 

Ø Prog_d: It is an 8-bit data bus to transport data between PC to the FPGA device. 

In figure 4.10, raw data of the pixel shown is (ABCDEF00)hex, the period for 

receiving is 6 clock cycles. 

1st clock cycle: Reading in the first 8-bit raw data in a register. 

2nd clock cycle: Reading in the second 8-bit raw data in a register. 

3rd clock cycle: Reading in the third 8-bit raw data in a register. 

4th clock cycle: CDS operation. The CMOS pixel sensor MIMOSA18 output 

integration signals and reset signals, respectively. The two signals are voltages of the 

same sampling node at different time. In the CDS module, which is achieved in the 

FPGA device, the offset signal of the pixel charge is removed by subtracting the reset 

signal from the integration signals. In the case of the negative number (close to number 

zero) occurring by the subtraction, extra modules are needed to convert and unify the 

format of the integer value. In order to reduce the complications of the implementation, 

the pixel charge is limited in positive number as expressed  

ÄiÅÆl+�¤��ÇÆ = �È�7 8 È�J�I++++++++++++++++++++++++++++6b 8 JW9++ 
The first three 8-bit raw data are two 12-bit pixel charges of Fr1 and Fr2. For the 

example of the pixel shown in figure 4.10, where Fr1 is (DAB)hex, and Fr2 is (EFC) hex. 
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The pixel charge equalling to (151)hex is stored in a memory of the FPGA chip. 

5th clock cycle: The resolution of the pixel charge is adjusted. There is a 2-bit 

switch that can set the resolution of the pixel charge at 4-bit, 5-bit, 8-bits and 12-bit. In 

our application, the switch [1:0] is set “00” which means the resolution is 12-bit, it is 

equal to the original resolution of a pixel. 

6th clock cycle: Reading in the last 8-bit raw data of the pixel. 

 
Figure 4.10: Timing waveform to read in raw data of an example from PC to the FPGA device. 

4.2.2 Cluster Search 

The cluster search process is used to find out clusters in the matrix of pixel charges 

(12-bit). The algorithm for cluster search is described and the simulation result is 

illustrated. 

Algorithm for Cluster Search 

Incident angles are reconstructed based on features of each cluster, including the 

cluster shape and the charge distribution. The performance of the algorithm for cluster 

search directly determines the reliability of reconstruction results. Parameters of the 

algorithm are presented as follows: 

Ø Noise threshold: It is set to 5 ADC units. The output of the CMOS pixel 

without irradiation of source is about 2.2 ADC units due to the background 

and some electoral noises. The threshold is set above 2×2.2 ADC to filter 

the pixel charge affected by the background. A cluster is formed by some 

adjacent fired pixels. If the output amplitude of a pixel is higher than the 

noise threshold, it is defined as a fired pixel [8].  

Ø Seed pixel: It has the largest charge in a cluster and exceeds the seed 
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threshold. It is used to fix the initial pixel of a cluster and locate the 

neighbour pixels. In the algorithm, a seed pixel is located at the central 

position of a 7×7 cluster window, its relative coordinate is (3, 3).  

Ø Seed threshold: It is set to equal to 12 ADC units. Seed pixels have the 

largest charge in a cluster, the threshold is set above 5×2.2 ADC. 

Ø Cluster window: It is a 7×7 pixels matrix which is used to limit the 

maximum area of a cluster.  

 

Figure 4.11: Incident angles of charged particles. 

As shown in figure 4.11, the maximum incident angle that can be 

reconstructed depends on the size of the cluster window. It is calculated as  

g/e4�%< = eda × 1fgyÉS1f +5+++++++++++++++++++++++++++ 6b 8 J79 
where 

pitch  is the pixel pitch of the CMOS pixel sensor (10 µm). 

epi    is the thickness of the epitaxial layer (14 µm).  

num   is the number of pixels in the horizontal or vertical direction of 

the cluster window. It equals 7 for the 7×7 cluster window. 

According to formula (4-21), the largest value of the reconstructed 

angle θrec is 78.6 degrees. For a 5×5 cluster window, θrec is 74.35 degrees. 

According to the setting of the raw data acquisition system, the maximum 

incident angle is 73 degrees. Considering the deviation of incident angles 

that can be generated during the acquisition process, the 7×7 cluster 

window is chosen in the feasibility study. It means that a cluster shape 

which is larger than 7×7 cluster window will be recognized as two or more 

clusters.  
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Steps of the algorithm for cluster search in the FPGA device are shown in figure 

4.12 and described as follows: 

  

Figure 4.12: Algorithm for cluster search implemented in the FPGA device. 

1. Reading a 256×256 matrix of pixel charges   

Read in a 256×256 matrix of 12-bit pixel charges from the interface register and 

store in the memory of the FPGA.  

2. Adding 0 around the matrix  

To collect a complete cluster, neighbour pixels around a seed pixel need to be 

checked. Charges of neighbour pixels are extracted from the matrix according to their 

addresses. If the seed pixel is located at the boundary column, addresses of neighbour 

pixels on some directions are illegal. In order to avoid the illegal address, four 

exceptional options need to be set for the seed pixel located at boundary columns (left, 

right, top and bottom) to stop the algorithm on the direction. 

Number 0 is added around the matrix to reduce the complexity of the algorithm on 

the boundary column. For instance, a seed pixel is located at the left boundary column. 
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If the algorithm checks its neighbour pixels on the left, their pixel charges are zero 

which means these neighbour pixels are not fired pixels. The algorithm will stop 

searching in this direction. 

3. Searching the largest pixel charge in the matrix  

A “max_value” register is implemented to store the charge and the position of the 

pixel that has the largest charge of the matrix. The matrix is scanned pixel by pixel and 

compared with the “max_value” register. The register value is updated if it is fewer than 

the charge of the scanned pixel. The largest one is recorded in the “max_value” register 

after scanning a frame of pixel charges. 

4. Comparing the maximum pixel charge with the seed threshold 

If the “max_value” register is larger than the seed threshold, the pixel stored in the 

register is recognized as a seed pixel. The algorithm jumps to the follow-up step. 

Otherwise, it means that all pixel charges in the matrix are fewer than the seed 

threshold and there is no more seed pixel in the matrix. The process for cluster search in 

this matrix is accomplished, then rewinds to step 1 and waits for the next 256×256 

matrix of the pixel charge. 

5. Storing seed pixel information and erasing it from the matrix 

The charge and relative position (3, 3) of the seed pixel are stored in two register 

arrays (a charge register array and a relative position array) respectively. The relative 

position is used to guarantee that the neighbour pixel is located within the 7×7 cluster 

window. The pixel position of seed pixel recorded in the “max_value” register is used 

to locate neighbour pixels in the matrix.  

The seed pixel charge is erased from the matrix to prevent this seed pixel from 

being counted repeatedly.  

6. Checking 8 neighbour pixels around the central pixel 

 

Figure 4.13: Steps of searching neighbour pixels around seed pixel. 

8 pixels around the central pixel in a 3×3 window are checked pixel by pixel in a 

certain sequence (see figure 4.13). The seed pixel is the first central pixel for a cluster 

each time. A pointer is defined to mark the current central pixel in the charge register 

array. Charges and relative positions of all fired pixels in the 8 pixels are recorded in the 
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two register arrays respectively. Then the algorithm leaps to step 7. 

Steps to check one neighbour pixel are described in step 6.1, 6.2, 6.3. 

6.1 Checking the relative position of the neighbour pixel 

If the relative position of the neighbour pixel both on X-axis and Y-axis 

are in the range of [0, 6], it means that the neighbour pixel is located 

within the area of the 7×7 cluster window. The algorithm continues to 

the next step.  

Otherwise, the neighbour pixel is out of the cluster window and it is not 

a part of the cluster. The algorithm returns to step 6 to calculate the 

relative position of the next neighbour pixel. 

6.2 Checking the charge of the neighbour pixel 

If the neighbour pixel charge is larger than the noise threshold, it is a 

fired pixel. The algorithm continues to the next step. 

Otherwise, the neighbour pixel is not a fired pixel. The algorithm 

returns to step 6 to calculate the relative position of the next neighbour 

pixel. 

6.3 Storing neighbour pixel information and erasing it from the 

matrix. 

The pixel charge and the relative position of the neighbour pixel are 

stored in the two register arrays respectively. Then erase the charge of 

the neighbour pixel from the matrix to prevent it from being counted 

repeatedly. 

7. Checking the charge register array  

It is used to check whether the search process for the cluster is accomplished. After 

8 neighbour pixels are scanned, the current central pixel pointer is moved to the next 

register of the charge register array. If the register is not empty, it means that there is a 

fired pixel in the 8 neighbour pixels which is chosen as the next central pixel. Then the 

algorithm returns to step 6 to check 8 neighbour pixels around the new central pixel. 

If the register is empty, it means that all fired pixels adjacent to the seed pixel have 

been recorded and the algorithm stops for this seed pixel. Pixel charges and relative 

positions stored in the two register arrays are transferred to an output bank RAM. Then 

the two register arrays are reset. The algorithm leaps to step 3 to find the next seed pixel 

in the matrix. 
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Simulation Results  

Besides the algorithm with the 7×7 cluster window described before, the algorithm 

without cluster window and the algorithm with the 5×5 cluster window are all achieved 

by C code. 500 frames of raw data for each given incident angle (Table 4.1) are taken to 

test these algorithms. Test results are shown in figure 4.14, where cluster counts are the 

number of clusters found for each given incident angle.  

 

Figure 4.14: Cluster counts found by algorithms with different cluster windows. 

The algorithm without cluster window means that there is no limitation for the size 

of a cluster. A cluster is identified only based on the connectivity between fired pixels 

and the seed pixel. For instance, a cluster shape that presents an elongated strip shape, 

even if more than 7 pixels, is defined as one cluster. Cluster counts found by the 

algorithm are the least among the three algorithms. 

For the algorithm with a cluster window, the size limitation of a cluster is 

considered in addition to the connectivity of fired pixels and the seed pixel. The 

algorithm with the 5×5 cluster window limits the size of a cluster within 5×5 pixels. 

Cluster counts found by this algorithm are the most among the three algorithms. 

As shown in the test result, cluster counts found by the algorithm with the 7×7 

cluster window make a balance between the other two algorithms.  
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Figure 4.15: Cluster counts of an elongated cluster found by the three algorithms. 

Comparing with clusters identified by the algorithm without cluster window, the 

limitation on the size of a cluster can divide one large cluster into two or more clusters. 

And with the decrease in the size of the cluster window, more clusters are recognized. 

For example, there is an elongated cluster which is composed of 8 pixels as shown in 

figure 4.15. 3 clusters are identified by the algorithm with the 5×5 cluster window, 2 

clusters are recognized by the 7×7 cluster window, however, only one cluster is 

recorded by the algorithm without a cluster window. 

As shown in figure 4.14, the number of elongated clusters increases as the incident 

angle increases, leading to the gap on cluster counts by the three algorithms expands. 

Taking account in the common cluster size and incident angles, the algorithm with the 

7×7 cluster window is implemented in the FPGA device. 

 

Figure 4.16: Simulation of cluster counts and effective surface. 

In the raw data acquisition system, the incident angle is altered by tuned the angle 

between the MIMOSA 18 and the reference plane. The effective surface of the chip 

means the size of chip projected on the flat reference plane. The effective detection 

surface of MIMOSA 18 has some variation for different incident angles (see formula 
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4-22), resulting in a change in the number of incident particles that can be collected. 

The cluster count presents the same trend as the effective surface decreases. However, 

the sharp increase of cluster counts occurs in figure 4.16, as marked point A at incident 

angle θinc = 50 degrees. Firstly, because of the reflection of the support below the chip, 

one particle may re-entrance the sensor again to generate extra clusters. Secondly, due 

to components around the chip, angle α make the larger influence on the cluster counts 

than angle β. 

S��Sygf^S+hd|�/ySyÉf1+hd|�/yS = y}h6·9 × y}h6�9I++++++++++++++++++++++6b 8 JJ9 
4.2.3 Data Format Conversion 

In units following the cluster search module, operands are in the floating-point 

format, such as trigonometric function values supplied for feature extraction, and 

weights of the ANN. The 12-bit integer of the pixel charge has to be converted to the 

floating-point format to ensure a consistent data format. The floating-point 

conversation may lead some reduction on the data accuracy. However, firstly, 

convenience of implementation. conversion IP cores are existed which can be used for 

converting the integer into floating-point. Secondly, the feasibility study try to provide 

the proof of the principle that tag particles according to the incident angle based on the 

ANN has been established. 

Single-precision floating-point format (binary 32) is one format of the IEEE 754 

standard, which is a binary number format standard used in many hardware 

floating-point units [9][10]. 

 
Figure 4.17: Format of Single-precision floating-point [10]. 

As shown in figure 4.17, the value expressed in the single-precision floating-point 

format can be calculated as 

^/�dS = 6879Ê × J6>HD3Ë9 × 67 N h19 ++++++++++++++++++++++++++++++++6b 8 JP9 
where  
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h6hfme9 = 02D+I+++++++++++++++++++++++++++++++++++++++++++++++++++++6b 8 Jb9 
S6SK1}eSeg9 = �³0( × J(H32´2�

(�32 I++++++++++++++++++++++++++++++ 6b 8 Jo9 
h16Ìfmef�fy/e�+1|Syfhf}e9 =�³0( × J(H32´+I33

(�� ++++++++++++++6b 8 JQ9 
An Intellectual Property (IP) core is called in the FPGA device to convert the 12-bit 

integer pixel charge to IEEE 754 single-precision floating-point format. 

4.2.4 Feature Extraction 

Clusters have various expressions on the shape and the charge distribution, 

depending on different incident angles of charged particles. In order to achieve accurate 

incident angle reconstruction as much as possible, and taking into account the 

complexity of the artificial neural network structure, four features of a cluster are 

chosen and fed into the ANN structure, that is total charges of fired pixels (Totchar), the 

charge of the seed pixel (SeedChar), the maximum and the minimum standard 

deviation (MaxStd and MinStd) of the cluster. 

Total Charges of Fired Pixels  

Totchar is the sum of all fired pixel charges of a cluster which is related to the 

incident angle. It is determined by the distance of an incident particle in the epitaxial 

layer. The larger the incident angle of a charged particle, the longer it moves in the 

epitaxial layer and the more pixels are affected. 

The average energy loss of charged particles when they pass through matter is 

described by the Bethe-Bloch formula (see chapter 1). Fluctuations of the energy loss in 

a thin absorber are described by Landau in 1944 [11]. The number of electron-hole 

pairs is related to the energy loss (Δ) in the matter. In figure 4.18, energy loss 

distributions for 500 MeV pions incident on thin a silicon detector is presented, where 

f(x, Δ) represents the distribution probability of the energy loss (Δ) when an incident 

particle traverses a layer of matter with thickness x. As fluctuations of the energy loss in 

a thin layer are large, the incident angle is not absolutely proportional to the total charge 

of a cluster. Incident angles cannot be reconstructed only based on the total charge. 
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Figure 4.18: Stopping power for positive muons in cupper Straggling functions in silicon for 

500MeV pions, normalized to unity at the most probable value Δp/x [12]. 

The Charge of the Seed Pixel  

SeedChar is the pixel charge of the seed pixel of a cluster. It represents the largest 

number of electrons attracted in the epitaxial layer by a collection diode. The feature is 

related to the incident angle. 

Maximum Standard Deviation (Minimum Standard Deviation) 

As shown in figure 4.19, the particle hit on the CPS with an incident angle θ and 

generate a cluster, the angle between the main axis of the cluster and the X-axis is angle 

φ. MaxStd is the standard deviation along the main axis of the cluster, and MinStd is 

calculated along the vertical direction of the main axis. These two features are affected 

by the incident angle and reflect the shape and charge distribution of a cluster. An 

individual unit named Main Component Analysis (MCA) is designed to calculated 

MaxStd and MinStd. 

 
 

Figure 4.19: The main axis of a cluster. 

Ø The variance of a cluster along X-axis and Y-axis 
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For a random variable K which is discrete with probability mass function kD Í1D5 k3 Í 135 ÎÎ 5 k( Í 1( . pi is the probability of ki. The variance of the random 

variable K can be calculated as 

T/|6Ï9 =�1(6k( 8 �93 = 6�1(k(39 8 �3)
(�D +5+++++++++��1()

D = 7�5++++++++++6b 8 J�9)
(�D  

where  

µ  is the expected value of the random variable k, it is presented as  

� = +�1(k(+)
(�D I+++++++++++++++++++++++++++++++++++++++++ 6b 8 JY9 

In a cluster, positions of fired pixels are discrete with probability mass function KD Í ÐÑÐÒ 5 K3 Í ÐÓÐÒ 5 ÎÎ 5 K( Í ÐÔÐÒ. Qi is the pixel charge of fired pixel i Qt is the total 

pixel charge of all fired pixels in the cluster. The variance of the cluster along X-axis 

can be calculated as 

T/|6V9 = ÕV3Ö 8 ÕVÖ3 =�vK(3 × Ø(Ø#z
)
(�D 8 ��K( × Ø(Ø#

)
(�D �3 5�Ø(Ø#

)
(�� = 75 6b 8 J�9 

where 

ÕV3Ö = �K(3 × Ø()
(�D Ø#Ù I+++++++++++++++++++++++++++++++++++++++ 6b 8 PW9 

ÕVÖ = � =�K( × Ø()
(�D Ø#Ù I+++++++++++++++++++++++++++++++++++++ 6b 8 P79!

The variance of the cluster along Y-axis is expressed as 

T/|6¥9 = Õ¥3Ö 8 Õ¥Ö3 =�vL(3 × Ø(Ø#z
)
(�D 8 ��L( × Ø(Ø#

)
(�D �3 5�Ø(Ø#

)
(�� = 7I+++6b 8 PJ9 

where 

n is the number of fired pixels in a cluster. 

xi is the distance along X-axis between the position of the fired pixel i the original 
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point.  

yi is the distance along Y-axis between the position of the fired pixel i the original 

point.  

xi and yi are calculated as  

ÚK( = ³K@AÊ(#(A) N WIo´ × 1fgyÉ<L( = ³L@AÊ(#(A) N WIo´ × 1fgyÉ~Û+5++++++++++++++++++++++++ 6b 8 PP9!
where 

xposition  is the relative position of a pixel in the 7×7 cluster window along X-axis.  

yposition is the relative position of a pixel in the 7×7 cluster window along Y-axis. 

0.5  is the half-pixel between the original point and the centre of the first pixel.  

pitchx is the distance between two neighbour pixels along the X-axis, it is 10 µm for 

CMOS pixel sensor MIMOSA 18. 

pitchy  is the distance between two neighbour pixels along the Y-axis, it is 10 µm for 

CMOS pixel sensor MIMOSA 18.  

As shown in figure 4.20, xi and yi of a point “M” can be calculated in the following 

way. The relative position of point “M” in the cluster window (xposition, yposition) is (3,1). 

The distance (xi) along X-axis between the position of the pixel to the original point is 

35 µm, yi is 15 µm along Y-axis  

 

Figure 4.20: Position of a fired pixel in a cluster. 

Ø Maximum and minimum standard deviation of a cluster 

As shown in figure 4.21, the vector ¾Rµµµµµµ¶ in reference coordinate system can be 

obtained as 



Chapter 4: FPGA Implementation of ANN for Reconstructing Incident Angles  

91 

 

¾Rµµµµµµ¶ = K × K¶ N L × L¶+ +++++++++++++++++++++++++++++++++++++++6b 8 Pb9  

where x and y are positions of point “M” in the reference coordinate system 

respectively. 

The vector ¾Rµµµµµµ¶ can be presented as   

¾Rµµµµµµ¶ = K² × K²µµµ¶ N L² × L²µµµ¶+5+++++++++++++++++++++++++++++++++++++++++6b 8 Po9 
where the K²µµµ¶ and L²µµµ¶+ are axes of a new coordinate system which is formed by rotating 

α degrees from the reference coordinate system. x’ and y’ are positions of point “M” 

point along X’-axis and Y’-axis in the new coordinate system, respectively. 

 
Figure 4.21: Correlation between two coordinate systems. 

The position of point M in the new coordinate system can be presented as 

� K² = K × y}h6·9 N L × hfe6·9L² = 8K × hfe6·9 N L × y}h6·9¡+I+++++++++++++++++++++++++++ 6b 8 PQ9 
The variance of the cluster along the X’-axis and Y’-axis can be presented as 

T/|6V²9 = + ÕV²3Ö 8 ÕV²Ö3+5+++++++++++++++++++++++++++++++++++++++6b 8 P�9 T/|6¥²9 = Õ¥²3Ö 8 Õ¥²Ö3+5++++++++++++++++++++++++++++++++++++++++6b 8 PY9 
where 

ÕV²Ö = Ü 6K(² × Ø(9)(�D Ø# = y}h6·9 × ÕVÖ N hfe6·9 × Õ¥ÖI+++++++++++++++++++++++++++++++++++++++6b 8 P�9 
ÕV²3Ö = Ü ³K(²3 × Ø(´)(�D Ø# = y}h36·9 ÕV3Ö N hfe36·9Õ¥3Ö N hfe6J·9 ÕV¥ÖI+++++6b 8 bW9 
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Õ¥²Ö = Ü 6L(² × Ø(9)(�D Ø# = 8hfe6·9 × ÕVÖ N y}h6·9 × Õ¥Ö++I++++++++++++++++++++++++++++++++++6b 8 b79 
Õ¥²3Ö = Ü ³L(²3 × Ø(´)(�D Ø# = hfe36·9 ÕV3Ö N y}h36·9Õ¥3Ö 8 hfe6J·9 ÕV¥ÖI++++6b 8 bJ9 

Variances of the cluster along X’-axis and Y’-axis are functions about angle α, 

which can be described as  

T/|6V²9 = + ÕV²3Ö 8 ÕV²Ö3 = �<Ý6·9 = J y}h6·9 hfe6·9 6ÕV¥Ö 8 ÕVÖÕ¥Ö9 N y}h36·9 × T/|6V9 N hfe36·9 × T/|6¥9+5 6b 8 bP9 
T/|6¥²9 = + Õ¥²3Ö 8 Õ¥²Ö3 = �~Ý6·9 = J y}h6·9 hfe6·9 6ÕVÖÕ¥Ö 8 ÕV¥Ö9 N hfe36·9 × T/|6V9 N y}h36·9 × T/|6¥9+I 6b 8 bb9 

β is the angle that generates the maximum variance and indicates the main axis of 

the cluster. β is presented as 

�<Ý6�9 = Þ�Å³�<Ý6·9´+I++++++++++++++++++++++++++++++++ 6b 8 bo9 
Consider the resource in the hardware, it is challenging to calculate the exact angle 

β and main axis of the cluster. The lookup table method is a competitive candidate for 

finding the maximum or minimum value, especially for the complex calculation.  

For the MCA achieved by C code in the training process, angle β can be calculated 

by the inverse trigonometric function. In our design implemented in the FPGA device, 

the value of trigonometric functions is stored in a lookup table, the maximum variance 

is found by sweeping angles α ([0,180 degrees]) in a step of 10 degrees. The lookup 

table with a step of 10 degrees reduces the accuracy of features and make a little 

influence on the reconstruction result. 

MaxStd and MinStd are generated as  

R/KÌg� = M�<Ý6ß9+++I+++++++++++++++++++++++++++++++++6b 8 bQ9 
RfeÌg� = U�~Ý6ß9+++I+++++++++++++++++++++++++++++++++6b 8 b�9 
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4.2.5 Normalized Features 

Data normalization is a fundamental preprocessing step for data mining and 

machine learning [13]. It is used to remove biases among dimensions of the data vectors, 

make every feature have the same weight level, and avoid large difference among 

feature values. In addition, the range of the data needs to match the activation function 

used in the ANN. The output range of the activation function is [-1, 1]. The function for 

feature values normalization is expressed as 

afe6K(9 à K( à a/K6K(9+5+++++++++++++++++++++++++++++++++++++6b 8 bY9 
87 à K( 8Þin6K(9a/K6K(9 8 afe6K(9 × J 8 7 à 75++++++++++++++++++++++++6b 8 b�9 

where  

xi   is the input feature i,  

min(xi) is the minimum value of the input feature supplied by the training procedure. 

max(xi) is the maximum value of the input feature supplied by the training procedure. 

4.2.6 ANN Implementation 

A typical one hidden layer Multi-Layer Perceptron (MLP) is implemented in the 

FPGA device to reconstruct incident angles.  

MLP Structure 

The MLP structure contains three layers (input layer, hidden layer and output layer), 

as shown in figure 4.22. 

 

Figure 4.22: Structure of the artificial neural network. 
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Input layer contains four input neurons and one bias neuron. Input neurons are used 

to take four normalization features (Norm_SeedChar, Norm_TotChar, Norm_MaxStd 

and Norm_MinStd) extracted from each cluster into the network. The value of the bias 

neuron in the input layer is 1, which is used to shift the activation function. 

In the hidden layer, there are 14 hidden neurons and one bias neuron. The number 

of hidden neurons is determined by the training procedure in the TMVA. It is an 

optimization result that takes into account resources and reconstruction efficiency. The 

bias value in the hidden layer is 1. As shown in figure 4.22, there are two steps to 

calculate the output of a hidden neuron: 

1st step: Calculating values of summing junctions.  

Input neurons including the bias neuron, are multiplied with 

corresponding weights, then add all the results together. The process is 

written as  

�( =�K' × �'('�á
D N 0D × ��D(+5++++++++++++++++++++++++++++++++6b 8 oW9 

where 

Ai  is the result of the summing junction of hidden neuron i.  

xk  is the feature of input neuron k.  

wki  is the weight between input neuron k and hidden neuron i.  

b1  is the bias neuron in the input layer, it is set as 1. 

wb1i is the weight between the bias neuron in the input layer and 

hidden neuron i. 

2nd step: Calculating outputs of hidden neurons.  

Results of summing junctions are processed by an activation function. 

The procedure and the activation function (hyperbolic tangent function) are 

written as  

L( = �6�(9+5++++++++++++++++++++++++++++++++++++++++++++++++++6b 8 o79 �6K9 = ��n¤6K9 = S< 8 KH<S< N SH< +5+++++++++++++++++++++++++++++ 6b 8 oJ9 
where 

yi  is the value of hidden neuron i.  

f(x) is the activation funciton. The output range of the hyperbolic 

tangent function is [-1,1] [14]. 
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The output layer composed of one output neuron gives the reconstructed result. 

Values of all hidden neurons, including the bias neuron in the hidden layer, are 

multiplied with the corresponding weights; and then added together. In our design, 

there is no activation function for the output neuron. The process is expressed as 

L$>Êâ?# =+ � L( × �((�Dá
D N 03 ×��3+5+++++++++++++++++++++6b 8 oP9 

where 

yresult is the output of the output neuron. 

yi  is the output of hidden neuron i.  

wi is the weight between hidden neuron i and the output neuron. 

b2  is the bias neuron in the hidden layer. It is set as 1.  

wb2 is the weight between the bias neuron in the hidden layer and the output 

neuron. 

The MLP structure contains a total of 21 neurons and 85 weights. All weights of 

the network are supplied by the training procedure performed by the TMVA. 

Circuit implementation 

The circuit implementation of the MLP structure is shown in figure 4.23. IP cores 

and hardware resources in the FPGA device are used. Description of main modules and 

signals are as follows:  

 

Figure 4.23: Digital circuit of the artificial neural network. 

Ø Sys_clk: It is the 60MHz system clock supplied by the Micro-USB 

interface chip. 

Ø ROM1: It is a memory module. ROM1 is used to store 14×5 weights 
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between input neurons and hidden neurons. Weights are output from the 

ROM1 according to the address supplied by an address signal. Weights 

between 5 input neurons and 1 hidden neuron are output each time.  

Ø Multiplier array: It is composed of 5 floating-point multiplier IP cores. 

Input neurons are multiplied corresponding weights in this module. It is 

controlled by the enabled signal and the system clock. 

Ø Sum_1: It is an adder. The sum_1 module is used to add 5 results of the 

multiplier array together. The result of one summing junction is calculated 

each time in the module. 

Ø f(x): It is the activation function module which is implemented by some 

complex mathematic IP cores, including exponent units, sum units and 

subtractor units. 

Ø Register array: It is composed of 15 registers. The register array is used to 

store the values of neurons in the hidden layer, including 14 hidden neurons 

and the bias neuron. 

Ø ROM2: It is a memory module. ROM2 is used to store 15 weights between 

hidden neurons and the output neuron. One weight is output from the 

ROM2 each time according to an address signal. 

Ø Multiplier_output: It is a floating-point multiplier IP core. 

Multiplier_output is used to multiply the output of a hidden neuron by its 

weight between it and the output neuron. 

Ø Sum_2: It is an adder. Sum_2 is used to add 15 outputs of the 

multiplier_output unit together. 

4.2.7 DeNormalized Module 

The output result from the network needs to be translated into an incident angle. 

DeNormalized module is used to accomplish the inverse process of the normalization 

step. It is expressed as  

87 à e}|a¥$>Êâ?# à 7++++++++++++++++++++++++++++++++++++++6b 8 ob9 
¥$>Êâ?# = e}|a¥$>Êâ?# N 7J 6¥$>Êâ?#�%< 8 ¥$>âÊ?#�()9 N ¥$>Êâ?#�()++++6b 8 oo9 

where 
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normYresult  is the value of the output neuron. 

Yresult   is the degrees of the incident angle after translation.  

Yresultmax  is the maximum degree of the incident angle (73 degrees). 

Yresultmin   is the minimum degrees of the incident angle (0 degrees). 

4.2.8 Interface to Output 

Reconstructed information, containing cluster information (relative position and 

pixel charge) and the reconstructed incident angle, is transported from the FPGA device 

through the 8-bit micro USB interface to PC. The format of reconstructed information 

and the transmission timing sequence are described, respectively. 

Format of reconstructed information 

The software developed on Windows receives and extracts the reconstructed data 

according to the format. An example of the reconstructed information format is shown 

in figure 4.24. It is composed of 4 parts. 

  

Figure 4.24: Reconstructed information format of a cluster. 

Ø Cluster information: It shows parameters of fired pixels that constitute the 

cluster. Each fired pixel is expressed in 24-bit binary data, including the 

pixel charge (16-bit) and the relative position (8-bit). 

Ø Flag position 1: The number of fired pixels in each cluster is uncertain, a 

flag is set to indicate the end of cluster information. Flag position 1 is 

composed of 16 bits of data, expressing as (FFFF)hex. 

Ø The incident angle of a cluster: It is the incident angle reconstruct by the 

ANN. It is expressed in the format of single-precision floating-point and 

composed of 32-bit data. 
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Ø Flag position 2: It is used to indicate the end of a piece of reconstructed 

information. It is composed of 24-bit data, expressing as (F0F0F0)hex. 

Transmission timing sequence 

In the FPGA device, a 24-bit bank memory is used to store reconstructed 

information of one frame. The transmission timing sequence of one memory cell from 

the FPGA to PC is shown in figure 4.25. Signals are illustrated as follows:   

Ø Prog_wrn: It is an output signal of the FPGA chip and used to control the 

process of reconstructed information transmission from the micro USB 

interface to PC, which will begin when the signal is low-level voltage. 

Ø MEM_en: It is an output signal of the FPGA chip and used to control the 

output memory. Address of the memory cell will be locked and the data in a 

memory cell will be prepared when MEM_en is low-level voltage. 

Ø Prog_clko: It is the 60 MHz clock and supplied by the micro USB interface 

chip. 

Ø Prog_d: It is an 8-bit data signal to transport data from the FPGA device to 

PC. 

 
Figure 4.25: Timing of transporting the output result of one memory cell. 

As shown in figure 4.25, 7 clock cycles are needed to transfer data of one output 

memory cell (3-byte).   

1st clock cycle: Signal MEM_en is enabled to locate the address of the output 

memory cell, indicating the start of reading out one memory cell result. 

2nd - 4th clock cycle: Three clock cycles are used to prepare the data of the output 

memory cell. 

5th clock cycle: The signal prog_wrn is enabled and the signal prog_d starts to 

output the first byte data. The second byte and the third byte data is output continually 
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in the 6th and 7th clock cycle.  

4.3 Test results 

Reconstructed results are stored in PC as binary files. Cluster information and 

reconstructed incident angles are extracted and converted as the text file by the software 

designed based on Windows PC. Figure 4.26 shows reconstructed results of a frame of 

raw data which was taken under the incident angle of 15 degrees. 

The content of the reconstructed result is shown in figure 4.26 (a). The blue part is 

cluster information. The charge (“charge”) and the relative position (“position”) of a 

fired pixel are presented in each line. “IEEE 754 result” is the original expression of the 

reconstructed angle in the format of single-precision floating-point. “Float result” is the 

degree of the incident angle converted from the “IEEE 754 result” by the software.  

The reconstructed incident angles of the two clusters are 43.75 degrees and 36.41 

degrees, respectively. These two clusters shapes and reconstructed results have been 

validated by results reconstructed by the ANN implemented in the TMVA. 

 

 

(b) 

 

(a) (c) 

Figure 4.26: Reconstructed results of a frame of raw data (a) The content of reconstructed 

results (b) First cluster shape (c) Second cluster shape. 
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4.3.1 Analysis and Discussion 

500 frames of raw data for each given incident angle were collected to test the 

ANN implemented in the FPGA device. The raw data was also fed into the ANN 

implemented in the TMVA to produce and provide the reference result. 

 

Figure 4.27: Difference between the mean value of reconstructed angles and the incident 

angle. 

The difference between the mean value of reconstructed angles 4$>&ããããã  and the 

incident angle θinc (see formula (4-56)) is shown in figure 4.27, where the reconstructed 

angle generated by the ANN implemented in the FPGA is expressed in red and 

generated by the ANN implemented in the TMVA is plotted in blue. 

4$>&ããããã 8 4()& = 7e�64$>&(9 8 4()&)
(�D +5++++++++++++++++++++++++6b 8 oQ9 

where 

n is the cluster counts of 500 frames for a given incident angle θinc. 4$>&(  is the reconstructed angle of cluster i. 

It can be found that angles reconstructed by two methodologies basically have the 

same mean value, which indicates that the ANN implemented in the software has been 

transplanted into the FPGA device. However, they are not identical and the result from 

the FPGA device present high-level value on the standard deviation. It is contributed by 

various reasons. For example, the data accuracy in the intermediate procedure of the 

FPGA device is not matched with the software. For the MCA module of the FPGA 

device, considering the resource and timing, the maximum standard deviation is 



Chapter 4: FPGA Implementation of ANN for Reconstructing Incident Angles  

101 

 

searched by rotating the angle φ at a step of 10 degrees, while in the TMVA, a relatively 

accurate value can be calculated by complex mathematical functions. 

However, the difference between 4$>&ããããã and θinc both for the FPGA and for the 

TMVA have not yet reached a precise level to make it possible to predict the real 

incident angle. Ideally, the difference between 4$>&ããããã and the incident angle θinc should 

float near the X-axis (y=0). Firstly, the ANN structure needs to be trained by more raw 

data to optimize the number of hidden neurons. Then, four features used in the thesis 

may not be enough to present cluster information related to the incident angle. For 

example, replenishing a feature of the pixel number in the main axis. Finally, structures 

of the CPS can be optimized, such as the pixel pitch. With the decrease of the pixel 

pitch, the pixel density and resolution will be improved, differences among clusters 

generated particles with different incident angles will be easier and reconstructed 

results will be more accurate. 

 

Figure 4.28: Distribution of reconstructed angles θrec versus incident angles θinc. 

The distribution of reconstructed angles θrec by the ANN implemented in the FPGA 

device is shown in figure 4.28. As the incident angle θinc increases, the percentage of 

reconstructed angles θrec between 60 to 90 degrees increases and the percentage of 

reconstructed angles θrec between 30 to 50 degrees decreases.  

The range of effective reconstructed angles that we concern is from 50 to 75 

degrees. Firstly, cluster shapes generated by particles with incident angles below 50 

degrees do not vary obviously. In addition, these incident angles can be directly 

reconstructed from hits information of a double-sided ladder [15]. On the other hand, 

due to the limitation of the 7×7 window, the ANN inputs extracted from the cluster 

exhibits similar features if the incident angle is above 78 degrees. 
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The percentage of large reconstructed angles increases and the percentage of small 

reconstructed angles decreases, as the incident angle increases. The variation of 

reconstructed angles has the same trend as that of incident angles. Before the 

optimization, the ANN cannot achieve reconstructing every high-precise incident angle, 

while significantly different distributions can be found in the figure. 

4.4 Summary 

The feasibility study for CMOS pixel sensors with on-chip artificial neuron 

networks was validated by an offline methodology.  

An independent raw data acquisition system was established for hit information 

collection under different incident angles (total 10 incident angles). 500 frames were 

sampled for each given incident angle to test the performance of the ANN implemented 

in the FPGA device. 

A FPGA development board was employed for the implementation of the 

preprocessing modules and the ANN. Main modules implemented in the FPGA device 

were described in detail. These modules will be improved for achieving into a CMOS 

pixel sensor. For example, the floating-point leads to some loss on data accuracy, the 

algorithm for cluster search implemented in the FPGA device occupy large resource 

and low efficiency, the feature extraction module can be achieved by some operators.  

Reconstructed results by the FPGA device have been validated by result 

reconstructed by the ANN implemented in the TMVA. The feasibility study 

implemented in the FPGA provides the proof of the principle that tag particles 

according to the incident angle based on the ANN has been established. Even though 

the ANN did not achieve high-precise reconstruction as shown, reconstructed results 

present obvious same trend as the variety of incident angles. With the optimization of 

the ANN structure and more training processes, the performance of the ANN will be 

improved. Meanwhile, the decrease of the pixel pitch in fabrication will make the gap 

of the clusters generated by particles with different incident angles expand, leading to 

the precision improvement of the ANN. 
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5 An On-chip Algorithm for Cluster 

Search 

A CMOS pixel sensor with on-chip artificial neural networks (ANN) was proposed 

to tag and remove hits generated by particles coming from the beam background. As a 

part of the preprocessing module, implementation of cluster search is used to locate and 

collect cluster information. In order to meet requirements of the Application-Specific 

Integrated Circuit (ASIC) design, an on-chip algorithm for cluster search is proposed 

and analysed in the chapter. 

Firstly, the motivation of the algorithm is expressed, the principle and detail steps 

of the algorithm are presented. Then, the algorithm extended for 256 columns is 

achieved by C code and simulated. Next, the algorithm is discussed for three examples 

of special cluster cases. Finally, the implementation of the algorithm is illustrated and 

analysed, power consumption and the occupied surface of the implementation are 

simulated. 

5.1 Motivation 

In the design of the CMOS pixel sensor with on-chip artificial neural networks, 

the module for cluster search is used to find out and collect cluster information from a 

frame of pixel charges. Then each piece of cluster information is fed into the module 

of feature extraction. 

The module for cluster search implemented in the FPGA has been validated by 
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comparing to the design implemented in the Toolkit for Multivariate Data Analysis 

(TMVA). However, it is unacceptable to transplant the implementation in the FPGA 

device directly to the ASIC design. The main reasons are as follows: 

1. Large storage resource 

In the FPGA device, an entire frame of pixel charges has to be stored 

to seek the maximum pixel charge. For a frame of pixel charge from the 

MIMOSA 18, which means a 256×256 pixels array employing a 12-bit 

ADC for charge quantization, the required memory volume is 

256×256×12 bits (7.86×105 bits). 

2. Data processing period  

Ø Slow: In order to locate a seed pixel, all pixels are scanned and 

compared one by one to find out the maximum one, which means 

at least 256×256 clock cycles are required. The total processing 

period is proportional to the size of the pixel matrix. 

Ø Uncertain: Just one seed pixel can be located for each time of 

scanning. However, the number of seed pixels in a frame is 

uncertain. The total processing period is related to the number of 

seed pixels in each frame. 

Some algorithms for cluster search have been proposed and implemented based 

on FPGA device [1][2]. These algorithms can check the connective among pixels of a 

cluster, but it means low speed (process pixel by pixel). Considering requirements of 

the ASIC design, including power consumption, size and real-time performance, I 

proposed an on-chip algorithm for cluster search which can process pixel values in 

parallel. 

5.2 Algorithm for Cluster Search 

The algorithm is implemented following the column-level ADC in each column. 

Pixel charges are fed into the implementation row by row, then cluster information is 

located and collected. The scale of the implementation for cluster search is determined 
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according to the column number of the pixel matrix. For example, 256 same 

implementations of the algorithm need to be established for a 256-column CMOS 

pixel sensor. 

In section 5.2.1, the principle of the algorithm is illustrated. In section 5.2.2, the 

algorithm is extended to 7 columns and detail steps of the algorithm is demonstrated 

based on an example of a 7×7 cluster. 

5.2.1 Algorithm for One Column 

Seed pixel selection is the first step for cluster search. For the algorithm proposed 

in this chapter, a seed pixel is defined as that it has the largest charge in a cluster 

window and is located in the centre of the cluster window (7×7 pixels). The principle 

to locate a seed pixel is : 

1. If the charge of a pixel is not fewer than the charge of 3 pixels located above 

(see a1, a2, a3 in figure 5.1) and below (see b1, b2, b3) of it, respectively, it 

is a column seed pixel. 

2. If the column seed pixel is not fewer than all the maximum pixel charge of 

columns located on the left (L1, L2, L3) and right (R1, R2, R3), respectively, 

it is a seed pixel.  

 
Figure 5.1: Definition of a seed pixel in a cluster. 

The flowchart of the algorithm implemented in one column is shown in figure 5.2, 

where the cluster window is set as 7×7 pixels. 
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Figure 5.2: Flowchart of the algorithm proposed. 

1. Filtering fired pixels by the noise threshold. 

The process is implemented in module U0. A pixel charge, which has been 

processed by CDS, is read from the column-level ADC. If the pixel charge is larger 

than the noise threshold, it will be stored in a charge register as a fired pixel. 

Otherwise, the pixel charge will be dropped. The noise threshold provided by the raw 

data acquisition system is 5 ADC units, which corresponds to approximately twice the 

average noise of MIMOSA 18. 

2. Finding a column seed pixel. 

Pixel charges processed by the U0 are fed into U1 and stored in U2. U1 is 

composed of a max_value register which recorded the largest pixel charge in the last 7 

pixels. U2 is a shift register array composed of 7 registers. Pixel charges stored in U2 

are shifted row by row. The number of shift registers is determined by the size of the 

window. U3 is a comparator to compare the data [3] of U2 to the max_value register. 
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Figure 5.3: Comparison between the data [3] and the max_value register. 

A column seed pixel is captured as follows:  

1  Recording the largest pixel charge. The process is implemented in 

module U1. Register max_value is initialized as a seed threshold and 

updated when a larger pixel charge is fed into, in order to filter fake seed 

pixels.  

2  Finding the column seed pixel. The process is implemented in 

module U3. In U2, the charge of the pixel in the middle position of 7 pixels 

of a column is stored in data [3] (from data [0] to data [6]). In U3, Data [3] 

is compared with the max_value register (see figure 5.3). Data [3] is 

asserted as a column seed pixel if it is equal to the max_value register, 

further of the algorithm is operated determine whether there is a seed pixel; 

otherwise, there is no seed pixel. 

3. Finding a seed pixel.  

 

Figure 5.4: Comparison between the column seed pixel and the neighbour max_value 

registers. 
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In U4, the column seed pixel is compared with 3 max_value registers that are 

located on the left (L1, L2, L3) and right (R1, R2, R3), respectively (see figure 5.4). If 

its charge is larger than all 3 max_value registers in column L1, L2, L3 and not fewer 

than all 3 max_value registers in column R1, R2, R3, the column seed pixel is a seed 

pixel. A 7×7 cluster of centred on seed pixel is found. The max_value registers (blue 

boxes in figure 5.4) and the shift register arrays of the 7 columns are reset. 

5.2.2 Steps for a Cluster 

In the section, the algorithm for 1 column is extended to 7 columns and illustrated 

step by step through processing an example of a 7×7 cluster.  

 

Figure 5.5: Information of an example cluster. 

An example of a 7×7 cluster is shown in figure 5.5. The seed pixel remarked as 

the yellow has 55 ADC units and is located at the relative position of (3, 3). The 

cluster is fed into the algorithm from bottom to top row by row. 

Detailed steps to find a cluster are shown in figure 5.6, where the noise threshold 

is set as 5 ADC units, and seed threshold is set as 12 ADC units. Pixel charges (12 bits) 

from column-ADCs are filtered by the noise threshold and then stored in "Charge 

register".  

In figure 5.6, the max_value register of each column is presented as a blue box. It 

is used to store the maximum pixel charge of the shift register array of each column. 

The initial value of each max_value register is seed threshold (12 ADC units). It is 

updated according to the pixel charge reading from the charge register. The red 

number in the blue box means the max_value register has been updated.  

In figure 5.6, 7 columns of shift register arrays are used to receive and store pixel 

charges from charge registers. A red number in data [3] of the shift register arrays 

means there is a column seed pixel, which has the same value as the max_value 
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register. The green number in the central position of the shift register arrays indicates 

a seed pixel. 

 

Figure 5.6: Processing steps of the example cluster. 

Detailed steps of this algorithm for 7 columns are as follows: 

Step 1, max_value registers are reset as the seed threshold, charge registers and 

shift register arrays are reset as 0. Pixel charges at the bottom row of the cluster are 

read in the module as the first row.    

Step 2, charge registers are updated by comparing pixel charges of the first row 
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with the noise threshold. Just one charge register is updated as 6 ADC units and other 

pixel charges of the first row are fewer than the noise threshold.  

Step 3, max_value registers and the first row of the shift register arrays are 

updated according to charge registers. Max_value registers do not be updated since all 

values are fewer than the initial value of max_value registers (12 ADC units). Then 

charge registers are updated by pixel charges of the second row. 

Step 4, values stored in shift register arrays are shifted from top to bottom and the 

top row is filled by values of charge registers. Values of max_value registers are not 

varied. Then charge registers are updated by pixel charges of the third row. 

Step 5, max_value registers of column [2], column [3] and column [5] are 

updated as 20 ADC units, 14 ADC units, 15 ADC units, respectively. In max_value 

registers (see blue boxes in figure 5.6), the number marked in red indicates that it has 

been updated. 

Step 7, in shift register arrays, the pixel charge stored in data [3] of column [1] is 

recognized as a column seed pixel and marked in red. The pixel charge is equal to the 

max_value register. But it cannot be a seed pixel since it is not larger than 3 

max_value registers of its left columns (L3, L2, L1). 

Step 8, two column seed pixels are found in column [2] and column [5] and 

marked as red in shift register arrays. For the column seed pixel in column [2], its 

value (20 ADC units) is fewer than the max_value register (55 ADC units) of column 

R1 (column [3]), so it cannot be a seed pixel. It is the same explanation that the 

column seed pixel with 15 ADC units in column [5] is not a seed pixel. 

Step 9, the pixel stored in data [3] of the column [3] marked in green indicates 

that it is a seed pixel. It is a column seed pixel as it is equal to the max_value register, 

and it is a seed pixel since it has the largest value compared with a total of 6 

max_value registers of the left and right columns (L1-L3, R1-R3). 

5.2.3 Supplementary Explanation 

Two issues of the algorithm are explained in detail, charges of column seed pixels 

and two "seed pixels" in one cluster. 

1. Charges of column seed pixels 

As shown in step 7 of figure 5.6, data [3] of column [1] (12 ADC units) is a 

column seed pixel but it is not larger than the seed threshold (12 ADC units), and it is 
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not a seed pixel. In order to explain the correlation between the column seed pixel 

charge and the seed threshold clearly, three situations are presented and analysed. 

Ø Column seed pixel charge < seed threshold (12 ADC units).  

Impossible. A column seed pixel means that data [3] is equal to the 

max_value register. The minimum value of the max_value register is the 

seed threshold (12 ADC units). 

Ø Column seed pixel charge = seed threshold (12 ADC units). 

If the pixel charge stored in data [3] is 12 ADC and the max_value 

register keeps the initial value (12 ADC units). The pixel stored in data [3] 

is defined as a column seed pixel since it is equal to the max_value 

register. 

However, it cannot be a seed pixel. The column seed pixel is defined 

as a seed pixel only if it is larger than all 3 max_value registers of left 

columns and not fewer than all 3 max_value registers in right columns. 

The minimum value of these six registers is 12 ADC units. The column 

seed pixel cannot be a seed pixel.  

As shown in step 7 of figure 5.6, the pixel stored in data [3] of 

column [1] is recognized as a column seed pixel but not a seed pixel. 

Ø  Data [3] > 12 ADC units. 

If the pixel charge stored in data [3] is equal to the max_value 

register, it is defined as a column seed pixel. 

Meanwhile, if it is larger than all 3 max_value registers of left 

columns and not fewer than all 3 max_value registers of right columns, it 

is a seed pixel. 

2. Two "seed pixels" 

A seed pixel has the largest pixel charge compared with other pixels around it in 

the 7×7 cluster window. A pixel that has the same value as the seed pixel is allowed to 

be located in the first quadrant of a coordinate axis which is centred on the seed pixel. 

The case is shown and explained in two aspects according to the location of the pixel. 
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Ø The pixel located above (a1, a2, a3) the seed pixel. 

  

Figure 5.7: Two "seed pixels" in the same column, pixel A is the seed pixel, pixel B is a part of 

the cluster. 

As shown in figure 5.7, an example of a 7×7 cluster has a seed pixel 

with 55 ADC unit. A pixel (pixel_B) located above the seed pixel has the 

same pixel charge. 

The cluster is read in row by row from the bottom to the top. The 

pixel_A which is read in the algorithm firstly will be identified as a seed 

pixel, and the pixel_B read later will be recognized as part of the cluster. 

The seed pixel is determined according to the reading sequence if two or 

more pixels have the same value with the seed pixel in the column. 

Ø The pixel located on the right (R1, R2, R3) of the seed pixel.  

  

Figure 5.8: Two "seed pixels" in the same row, pixel A is the seed pixel, pixel B is a part of the 

cluster. 

As shown in figure 5.8, an example of a 7×7 cluster has a seed pixel 
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with 55 ADC units. A pixel (pixel_B) located in the right has the same 

pixel charge.  

According to the original definition of a seed pixel, it has to be larger 

than all 6 max_value registers of the left and right columns (L1-L3, 

R1-R3). There is no seed pixel in this 7×7 cluster window since the charge 

of pixel_A is not larger than the max_value register of column [5] which 

is also equal to 55 ADC units, the cluster would be lost by the definition. 

It is same for the pixel_B. 

In order to prevent missing some clusters, the definition of the seed 

pixel is optimised and expressed in module U4 of the algorithm. A seed 

pixel is larger than 3 max_value registers of left columns (L1, L2, L3) and 

not fewer than 3 max_value registers in right columns (R1, R2, R3). 

According to the definition in the algorithm, pixel_A in the column [3] 

recognized as a seed pixel as it is not fewer than the pixel_B. Pixel_B in 

the column [5] cannot be recognized as a seed pixel since it is not larger 

than the pixel_A. 

5.3 Simulation Results 

In order to analyse the performance of the algorithm proposed in the chapter, the 

algorithm was extended for a 256-column input and achieved by the C code.  

As described in chapter 4, 500 frames of raw data for each given incident angle 

(total 10 angles) were collected and preprocessed to test the ANN implemented in the 

FPGA. Matrices of pixel charges are also used to test the algorithm proposed in the 

chapter. Each frame of pixel charges is 256×256 pixels.  

In the section, algorithms with different cluster windows, seed thresholds are 

simulated, and they are compared with the algorithm implemented in the FPGA device. 

The cluster count means the number of clusters found in 500 frames of pixel charges for 

a given incident angle 

5.3.1 Cluster Windows 

A cluster window is used to limit the maximum area of a cluster. It is necessary 
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for the algorithm proposed to define a seed pixel and collect cluster information. A 

seed pixel has the largest pixel charge in a cluster window instead of the whole 

256×256 pixels matrix. 

By the algorithm proposed, the range of incident angles that can be detected is 

proportional with the size of a cluster window. As shown in figure 4.11 and formula 

(4-21), the maximum incident angle that can be detected is 78.6 degrees by the 7×7 

cluster window. The sharp increase at incident angle θinc = 50 degrees has been 

explained in figure 4.16. 

 

Figure 5.9: Simulation results of cluster counts found by algorithms proposed in this chapter 

with different cluster windows (7×7 and 5×5 cluster window). 

Cluster counts found by algorithms with different cluster windows are shown in 

figure 5.9. It can be observed that cluster counts defined by different cluster windows 

(5×5 and 7×7 cluster window) [3][4] have the same variety trend. Cluster counts 

found by the two algorithms decrease as the incident angle θinc increases.  

Cluster counts found by different cluster windows do not differ significantly for 

the incident angle θinc less than 55 degrees. As the incident angle θinc increases, more 

and more clusters owning elongated shapes appear. Some of the clusters between 5×5 

pixels and 7×7 pixels are recognized by the 5×5 cluster window as two or more 

clusters. As shown in figure 5.9, the gap between the cluster counts of the two 

algorithms is expanded for a large incident angle. 
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Figure 5.10: Simulation results of the percentage of lost cluster counts between algorithms 

with the 7×7 and the 5×5 cluster window. 

In figure 5.10, the percentage of the gap between the cluster counts of the two 

algorithms is shown. There is just about 2% difference between cluster counts for the 

incident angle θinc less than 44 degrees. The percentage starts to increase significantly 

for the incident angle θinc larger than 50 degrees, even reaching 10% at 73 degrees.  

The algorithm with the 5×5 cluster window needs less power consumption and 

hardware resources than the algorithm with the 7×7 cluster window. For instance, 

only 5 registers are needed to consist of one column of the shift register array. 

The 7×7 cluster window used in the algorithm is chosen according to parameters 

of the CMOS pixel sensor (MIMOSA 18, ~10-15 Ω·cm). The algorithm with the 

small window means the reduction on the occupied surface and power consumption. 

It is possible for the implementation of the algorithm with the small cluster window 

with the development of CMOS technology. It is improved in aspects as following: 

Ø Increase the resistivity of the epitaxial layer. Increase the resistivity of the 

epitaxial layer. Electrons generated can be more concentrated in the high 

resistivity epitaxial layer (MIMOSA 26, ~400 Ω·cm) [5]. 

Ø Expand the pitch of sensors. A larger pitch means that fewer pixels are 

needed to cover a given area. 

5.3.2 Seed Thresholds 

The seed threshold limits the minimum charge of a seed pixel. The number of 
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clusters is directly affected by the seed threshold. Seed thresholds of the algorithm are 

set at different levels to simulate. 

 

Figure 5.11: Simulation results of cluster counts by algorithms with different seed thresholds. 

In figure 5.11, cluster counts found by algorithms with different seed thresholds 

(2.4×noise threshold, 3×noise threshold, 4×noise threshold and 5×noise threshold) are 

presented, respectively. As the reference result, cluster counts found by the algorithm 

implemented in the FPGA (seed threshold = 2.4×noise threshold) is shown. Cluster 

counts by different seed thresholds have the same decrease trend with increasing the 

incident angle. It can be observed that, as the seed threshold increases, cluster counts 

decrease. Cluster counts have the most obvious decrease when the seed threshold 

increase from 2.4×noise threshold units to 3×noise threshold units. 

5.3.3 Algorithm in the FPGA VS. Algorithm Proposed 

The algorithm for cluster search implemented in the FPGA device has been 

validated by the design implemented in the TMVA. Main steps of the algorithm with 

the 7×7 cluster window are as follows: 

1. Scanning pixel charges of a 256×256 matrix, finding out a seed pixel which 

has the maximum charge, and storing in a register array; 

2. Erasing the seed pixel charge from the matrix;  

3. Checking 8 neighbour pixels around the seed pixel in a 3×3 cluster window. 

Find fired pixels from the 8 neighbour pixels, store their relative positions and 



Chapter 5: An On-chip Algorithm for Cluster Search 

119 

 

pixel charges in a register array; 

4. Erasing these fired pixel charges from the matrix;  

5. Repeating step 3-4 around pixels stored in the register array until there is no 

new pixel or the search area exceeds the 7×7 cluster window2; 

6. Outputting this cluster information and reset the register array;  

7. Finding the next seed pixel in the 256×256 matrix, or read in the next matrix 

of pixel charges if there is no seed pixel. 

As shown in figure 5.12, cluster counts by the algorithm proposed and the 

algorithm implemented in the FPGA device (with 7×7 cluster window and without 

cluster window) for each given incident angle are simulated. The algorithm without 

the cluster window means no limitation on the cluster size, the cluster is defined just 

by the connectivity between fired pixels and the seed pixel. 

 

Figure 5.12: Simulation results of cluster counts found by the algorithm proposed VS. 

implemented in the FPGA device. 

Cluster counts by these algorithms have the same trend. Due to the influence of 

the size change of the effective detection surface, cluster counts decrease as the 

incident angle increases.  

There is no significant difference among cluster counts obtained by the three 

 

2 . For the algorithm without the cluster window, this step will stop only when there is no new 

pixel stored in the register array. 
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algorithms for the incident angle less than 55 degrees. As the incident angle θinc 

increases, especially larger than 55 degrees, cluster counts have a significant 

difference between the two algorithms implemented in the FPGA device. The number 

of clusters owning elongated shape increases with the growth of incident angle θinc. 

An elongated cluster defined by the algorithm without the cluster window will be 

recognized as two or more clusters by an algorithm with a 7×7 cluster window. 

As shown in figure 5.12, the algorithm proposed reaches the same level of cluster 

counts as the other two algorithms. The algorithm proposed limits the cluster in a 7×7 

area, leading to that its cluster counts are larger than those found by the algorithm 

without the cluster window. The algorithm proposed has no modules to check 

neighbour pixels of a seed pixel, leading to missing separated clusters located in one 

cluster window. These issues are discussed detailly in the next section. 

5.4 Discussion 

In order to make a deep understanding of the algorithm proposed and explain the 

difference between the algorithm proposed and the algorithm implemented in the 

FPGA further, these algorithms are discussed for three examples of special cluster cases, 

including large clusters, separated parts located in a cluster window and overlap parts of 

two clusters. 

5.4.1 Large Clusters 

Compared with the algorithm with the 7×7 cluster window implemented in the 

FPGA device, the algorithm proposed can reduce the possibility that one large cluster 

is recognized as two or more clusters. 
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Figure 5.13: Example of a large cluster in a matrix of 7×9 pixels. 

As an example of a large cluster (larger than the 7×7 cluster window) shown in 

figure 5.13, seed pixel of the cluster has 99 ADC units. The pixel in column [0] with 

25 ADC units and the pixel in column [8] with 30 ADC units are parts of the cluster. 

By the algorithm in the FPGA device without the cluster window, one cluster 

which is composed of the seed pixel and other fired pixels in the 7×9 matrix is found.  

By the algorithm in the FPGA device with the 7×7 cluster window, three clusters 

are found. One cluster is composed of the largest seed pixel (99 ADC units) and other 

fired pixels within the red line. One cluster is composed of a single seed pixel (25 

ADC units) in column [0] and the last cluster is composed of a single seed pixel (30 

ADC units) in column [8]. In the processing of the algorithm, the largest seed pixel is 

found first, and the first cluster is outputted and erased, resulting in that pixels located 

in column [0] and column [8] are also defined as seed pixels, respectively. 

By the algorithm with the 7×7 cluster window proposed in the chapter, only one 

cluster is found in the matrix. The cluster is composed of a seed pixel (99 ADC units) 

and other fired pixels in the 7×7 cluster window (within the red line). In the 

processing of the algorithm, a seed pixel is defined by comparing a column seed pixel 

with total 6 max_value registers of left (L1, L2, L3) and right columns (R1, R2, R3), 

respectively. In figure 5.13, the column seed pixel in column [0] is not the maximum 

one compared with 3 max_value registers in right columns, and the column seed pixel 

in column [8] is not the maximum one compared with 3 max_value registers of left 

columns. The two column seed pixels are not defined as seed pixels.  
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5.4.2 Separated Parts 

Due to no extra design to check connectivity among pixels, the algorithm 

proposed recognizes separated parts located in one cluster window as one cluster, 

leading to the reduction on cluster counts. 

 
Figure 5.14: Example of separated parts in a matrix of 7×7 pixels. 

An example of separated parts located in a 7×7 cluster window is shown in figure 

5.14. In general, the example will be recognized as two clusters. One cluster 

composed of three pixels on the left top corner of this matrix. The other cluster is 

composed of a seed pixel (55 ADC units) and other fired pixels. 

The two clusters will be found by two algorithms (without the cluster window 

and with a 7×7 cluster window) implemented in the FPGA device. The connectivity 

between fired pixels and the seed pixel as one of the conditions is taken into account 

to define a cluster. 

By the algorithm proposed, only one cluster is found. The cluster contains a seed 

pixel (55 ADC units) and other all fired pixels in the matrix (including 3 pixels on the 

left top corner). Considering hardware resources and operation time of the algorithm, 

the design for detecting connectivity is dropped. 

In fact, it is uncertain about the attribution of these three pixels located on the left 

top corner. They are recognized as an individual cluster since they are separated from 

the seed pixel. On the other hand, they are recognized as a part of the cluster if one or 

some blue pixels in the matrix have charges exceeding the noise threshold. 
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5.4.3 Overlap Parts 

Due to the limitation of resources and the complexity of conditions, both the 

algorithm proposed and the algorithm implemented in the FPGA have no effective 

reaction on the parts overlapped by two cluster. 

 

Figure 5.15: Example of overlap parts in a matrix of 8×7 pixels. 

An example of the overlap part of two clusters is shown in figure 5.15. There are 

two seed pixels (55 ADC units and 44 ADC units) in the matrix of 8×7 pixels.  

By the algorithm in the FPGA device without the cluster window, one cluster is 

found in the 8×7 matrix. The cluster is composed of a seed pixel (55 ADC units) and 

the other fired pixels, including the pixel marked with red (44 ADC units).  

By the algorithm in the FPGA device with the 7×7 cluster window, two clusters 

are found. One cluster is composed of a seed pixel (55 ADC units) and other fired 

pixels. The other cluster is composed of a single pixel with 44 ADC units. 

Two clusters are found by the algorithm proposed in the chapter. One cluster is 

composed of a seed pixel (55 ADC units) and the other fired pixels in the matrix 

(within the red line). The other cluster is a single seed pixel marked by red (44 ADC 

units). All pixels located between two seed pixels belong to the first cluster. In the 

algorithm proposed, only 7 rows of pixel charges are stored in the shift register array, 

the pixel located out of the size cannot be taken into account. In addition, the search 

result is related to the reading sequence, it makes totally different results if pixel 

charges are read from top to bottom of the matrix. 

For the 7×7 cluster window, charges of these pixels located between these two 
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seed pixels should be allocated into two clusters based on values of the two seed 

pixels. However, it means additional hardware resources and power consumption to 

store more pixel charges and allocate overlap parts into two or more clusters. 

Considering the balance between the possibility and hardware resources, this situation 

would not be taken into account. 

5.5 Algorithm Implementation 

In the section, firstly, the implementation of the 64-column algorithm achieved by 

Hardware Description Language (HDL) is described. Next, Operation timing of the 

signals and data is illustrated. Then, the implementation of a 256-column algorithm 

achieved by C language is described and tested. Finally, the power consumption and 

occupied surface of the 64-column implementation are synthesized targeted at the 

TowerJazz 0.18 µm process. 

5.5.1 Implementation of the 64-column Algorithm 

The implementation of the algorithm proposed is based on modules of the 

2N-column matrix. An example structure of two 32-column (N=5) modules 

implemented for a 64-column input is shown in figure 5.16. Pixel charges are read in 

from 64 column-level ADCs row by row and then fed to the two 32-column modules. 

Each 32-column module has two levels (level 1 and level 2). 
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Figure 5.16: Schematic of the algorithm implemented in 64 columns. 

Implementation of level 1 

Level 1 consists of 32 cluster search units, each of which is the implementation of 
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the algorithm for cluster search proposed in the chapter. The pixel charge from a 

column-level ADC is fed into the unit and a signal named "seed_pixel_en" is outputted. 

A high-level pulse of one clock cycle will be generated on its signal "seed_pixel_en" if 

a seed pixel is found in the column. 

 

Figure 5.17: Implementation of the cluster search unit. 

The implementation circuit of the cluster search unit is shown in figure 5.17. The 

input of the unit is the pixel charge. The noise threshold and the seed threshold are fixed 

in registers. The output of the unit is the signal “seed_pixel_en”. 

The pixel charge is filtered by the noise threshold in U0, then inputted to U1 and 

U2. U2 is a register array that is used to store 7 consecutive pixel charges of a column. 

U1 is used to record the maximum pixel charge stored in U2. 

In U3, the maximum pixel charge stored in U1 is compared with data [3] of U2. A 

column seed pixel is found if the maximum pixel charge is equal to data [3], then a 

pulse of one clock cycle will be generated on the signal "column_seed_pixel". 

In U4_0, 3 max_value registers (“right_1_neighbour_value”, 

“right_2_neighbour_value” and “right_3_neighbour_value”) of right columns are 

inputted and compared with the max_value register of this column. 3 comparison 

results are outputted to U4_1. 3 comparison results (“left_1_neighbour_result”, 

“left_2_neighbour_result” and “left_3_neighbour_result”) between 3 max_value 

registers of left columns and the max_value register of this column are inputted. “AND” 

operation is applied among the six comparison results in module U4_1. The result of 

“AND” operation is equal to 1 if the max_value register of this column is larger than 3 

max_value registers of the left columns and not fewer than 3 max_value registers of 
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right columns. Then a pulse of one clock cycle would be generated on the signal 

“row_max”. 

If a pulse signal is simultaneously generated on the signal "row_max" and the 

signal "column_seed_pixel", a pulse of one clock cycle will be created on the signal 

“seed_pixel_en”, which means that the seed pixel is found. 

Implementation of level 2 

In theory, one module to collect 7×7 cluster information is required for each 

column, which means a total of 32 modules are needed following level 1. In order to 

reduce power consumption and the occupied surface, and considering the hit density in 

a matrix [6], an extra multiplexer array is implemented between the level 1 and 

collection modules resulting in that just one module for cluster collection is needed for 

32 columns. As shown in figure 5.16, level 2 is a multiplexer array which is composed 

of seven (for the 7×7 cluster window) units of the 32-1 multiplexer. The 32-1 

multiplexer at middle position is used to detect the seed pixel and collect pixel charges 

of the middle column of a cluster, and other 6 multiplexers are used to choose and 

collect pixel charges of left and right columns of the seed pixel (L1-L3, R1-R3). 

In level 2, 3 additional data buses are connected with the ground at the left side. 

They are used to supply pixel charges of 3 left columns if signal “seed_pixel_en” of 

column [0] is active. It is the same for other 3 additional data buses on the right side of 

the right multiplexer array.  

In level 2, 3 data buses at the right side are connected with data_bus_32, 

data_bus_33, and data_bus_34. They are used to supply pixel charges of 3 right 

columns if signal “seed_pixel_en” of column [31] is active. It is the same reason for 

connections between data_bus_29, data_bus_30, data_bus_31 and the right multiplexer 

array. 

The case that a boundary pixel is also taken into account in the design of level 1. 

These designs guarantee to collect complete pixel charges of a cluster if a seed pixel is 

located at the boundary column of the pixel charge matrix. 

5.5.2 Timing  

In level 2, signals “seed_pixel_en” of 32 columns are received and scanned from 

left to right. In the case that pulses are detected on more than one signal “seed_pixel_en” 
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at the same time, the pulse of the column which is scanned firstly is chosen as a seed 

pixel, and the other pulses are abandoned. 

In figure 5.18 shows an example of related signal waveforms when two seed pixels 

are found in the same row of 32 columns. "Column 4 input" and "Column 18 input" are 

pixel charges coming from column-level ADCs. Red numbers in these signals mean 

that there are two seed pixels in the two columns, one seed pixel charge is 40 ADC units 

and the other is 50 ADC units. Pulses on signals "Column 4 seed_pixel_en" and 

"Column 18 seed_pixel_en" mean that two seed pixels are found by level 1 at the same 

time. There are 4 clock cycles from pulses on signal "Column 4 input" to pulses on 

signal "Column 4 seed_pixel_en". The delay is used to search for seed pixels and 

generate pulses. Signals "Column output" is the output of a cluster search unit. The seed 

pixel in column [4] is chosen as a seed pixel. The seed pixel in column [18] is 

abandoned since the pulse on signal “seed_pixel_en” of column [4] is scanned firstly. A 

high-level pulse of 7 clock cycle is generated on signal “MUX_en” to read out cluster 

information when a pulse on the signal “seed_pixel_en” is detected.  

 

Figure 5.18: Timing of generating two seed pixels at one row. 

New pulses will be abandoned if they are generated within the 7 clock cycles active 

time of signal “MUX_en”. It means that new seed pixels cannot be collected if they are 

located within 6 rows away from the seed pixel which is outputted last time. The 

implementation of the multiplexer array affects the cluster count. It is simulated in the 

next section. 
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5.5.3 Simulation of the 256-column Implementation 

Implementation of the 64-column algorithm with the multiplexer array is extended 

to 256 columns and achieved by C code. 500 frames of pixel charges for each given 

angle are fed into to simulate the design. In addition to modules of the 32-column 

matrix shown in figure 5.16, modules of the 16-column matrix and the 64-column 

matrix are also implemented for comparison. Cluster counts found by different modules 

are shown in figure 5.19. The implementation proposed without multiplexer refers to an 

ideal situation. 

 

Figure 5.19: Simulation of cluster counts found by the algorithm with different modules. 

Due to the influence of the read-out sequence and the reset control, there is a 

difference in simulation results between implementations with multiplexers and 

without multiplexer (the ideal situation). As shown in figure 5.19, for the incident angle 

larger than 50 degrees, the difference is extended as the more elongated clusters are 

generated in the matrix. By the design without multiplexer, an elongated cluster will be 

divided into two or more clusters that all are collected, by the design with multiplexers, 

just one seed pixel is allowed in one row of 32 columns (or 64 columns). 

Cluster counts simulated decrease as the column number of inputs of a multiplexer 

module increases. As shown in figure 5.19, the cluster counts simulated with the 

module of the 64-column matrix is the least in simulation results. In fact, the 

implementation with modules of the 32-column matrix and the 7×7 cluster window 
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means that only one cluster can be collected in a pixel matrix of 10 rows by 32 columns. 

The implementation with modules of the 64-column matrix can collect one cluster in a 

pixel matrix of 10 rows by 64 columns. 

5.5.4 Synthesized Result of the 64-column Implementation 

The occupied surface and power consumption of the 64-column implementation 

(shown in figure 5.16) are synthesized using Cadence EDA tools targeted at the 

TowerJazz 0.18 µm process, as shown in Table 5-1. The column height (occupied 

surface) and the column power (power consumption) are average values. The column 

pitch is set to 50 µm. 

Table 5-1: Simulation results of the occupied surface and power consumption of the 64-column 

implementation. 

Window Multiplexer 

ADC 

bits  

Clock 

(MHz) 

Column 

height 

(µm) 

Column 

power 

(mW) 

7×7 16-1 

8 100 200.58 0.85 

8 200 200.15 1.83 

4 100 102.86 0.46 

4 200 103.39 0.88 

7×7 32-1 

8 100 197.81 0.86 

8 200 197.24 1.77 

4 100 101.08 0.43 

4 200 102.24 0.88 

5×5 32-1 

8 100 159.39 0.68 

8 200 159.2 1.45 

4 100 81.56 0.37 

4 200 82.92 0.71 

7×7 64-1 

8 100 196.83 0.87 

8 200 196.09 1.76 

4 100 101.26 0.43 

4 200 101.63 0.9 

As shown in Table 5-1. The occupied surface and power consumption can be 
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reduced if the 5×5 window is used instead of the 7×7 window. The trade-off between 

power consumption and search efficiency of the two designs, in addition, the 

comprehensiveness and accuracy of cluster information that is supplied to the MCA 

module, are considered in our design. 

Both the occupied surface and power consumption can be reduced obviously if a 

low-frequency clock or a low-resolution ADC is employed. Almost the occupied 

surface and power consumption are reduced to about 50% if the ADC resolution is 

changed from 8 bits to 4 bits. Power consumption can be reduced to half if a 100 MHz 

system clock is taken instead of 200MHz, but no obvious difference is observed in 

term of the occupied surface. 

In detail, the most power consumption of this design is devoted by shift register 

arrays, almost 50% in the design with the 7×7 cluster window. A shift register array 

needs to operate 7 times of data shifting per clock cycle. The design with the 5×5 

cluster window contributes less power consumption than that with the 7×7 cluster 

window since fewer shift registers are needed store pixel charges.  

There is no significant difference on the occupied surface (column height) and 

power consumption (column power) among implementations with modules of the 

16-column matrix, the 32-column matrix and the 64-column matrix. 

 
Figure 5.20: Schematic of MCA and ANN modules implemented for modules of the 32-column 

matrix. 

However, considering the feature extraction (MCA) module and ANN module 

following the design of cluster search, more occupied surface and power consumption 

are needed if modules of the 16-column matrix are used in the implementation. As 

shown in figure 5.20, for a 64-column implementation, two feature extraction 

modules and two ANN modules are used for the design with modules of the 
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32-column matrix. Only one feature extraction module and one ANN module are 

needed if modules of the 64-column matrix are used in the implementation. Four 

times the occupied surface and power consumption are needed for the feature 

extraction module and the ANN module if modules of the 16-column matrix are used.  

5.6 Summary 

The algorithm for cluster search implemented in the FPGA device is impossible 

to transplant to the ASIC design since a lot of memory resource and operation time 

are needed. An on-chip algorithm for cluster search is introduced which can find seed 

pixels and locate clusters in a cluster window in real-time. The algorithm with 

different cluster windows and different seed thresholds are achieved by C code and 

simulated. Cluster counts found by the algorithm is compared with those found by the 

algorithm implemented in the FPGA device and reach the same level of cluster counts 

as the algorithm in the FPGA.  

The algorithm can be integrated into the CMOS pixel sensor and executed in 

real-time. In the implementation of the algorithm, the multiplexer array is employed 

following the module of cluster search to reduce the power consumption and occupied 

surface of the MCA and ANN modules.  

In the term of implementation, power consumption can be reduced by optimizing 

the control system. The power gating technology can be used to shut off the current of 

modules that are not used. The modules will be activated only when a seed pixel is 

found, a majority part of power consumption would be reduced since there are a few 

seed pixels in one frame. 
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6 Conclusions and Perspectives 

Conclusions 

The International Linear Collider (ILC) is an e+/e- linear colliding experiment 

project that will allow studying extensively the Higgs Boson properties. It is foreseen to 

start commissioning phase about 2030. In order to meet high precision tagging 

requirements, especially for short lived particles, excellent vertexing system will be 

developed. One of the two detectors, the International Large Detector (ILD) will be 

equipped in the ILC. The vertex detector is located at the most inner layer to measure 

the primary interaction vertex and secondary vertices from decay particles under 

cooperation from other tracking detectors. For the last decade, CMOS pixel sensors, 

also named Monolithic Active Pixel Sensors (MAPS), proposed and extensively 

researched by the PICSEL group in IPHC, have been employed for charged particle 

tracking and imaging. 

In the vertex detector of the ILC, a large amount of extra hits will be generated by 

electrons coming from the beam background. Momenta of these background electrons 

typically lie in the range of 10-100 MeV/c, which is lower than particles coming from 

physics events. Due to the effect of multiple scattering, in the multi-layer structure of 

vertex detectors in the ILD, challenges are obviously presented for track reconstruction 

of low momentum particles. 

The thesis focused on the development of a CMOS pixel sensor with on-chip 

Artificial Neural Networks (ANNs) to tag and remove hits generated by background 

particles (typical low momenta). The existence of the magnetic field in the detector 
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leads to particles make helix paths. In addition, low momenta of particles lead to large 

incident angles with respect to the normal of the sensor planes. Considering the MAPS 

equipped in the vertex detector, when a charged particle traverses the epitaxial layer of 

the MAPS, electron-hole pairs are created by the ionization process (typical ~80 

e-h/µm). Electrons are collected by the collection diode of each pixel. Because of 

diffusion, electrons will be collected by several independent pixels. These independent 

pixels constitute a charge cluster which expresses hit information. Particles from beam 

background (typical low momenta) hit on the vertex detector, resulting in the 

generation of rather elongated cluster shapes.   

Artificial Neural Networks (ANNs) are computational modules that are inspired by 

biological neural networks. Our group proposed to integrate ANNs into the CMOS 

pixel sensor for reconstructing the incident angle based on each cluster.  

1. The implementation in a FPGA device. 

For the feasibility study, preprocessing modules and the ANN structure have been 

implemented in a FPGA development board and validated by the ANN implemented in 

the TMVA. Both implementations are operated in an offline method, which means that 

procedures of data acquisition and process are separated.  

A raw data acquisition system is established to collect raw data from an existing 

sensor MIMOSA 18, which is exposed under the illumination of β⁻ source 90Sr. Incident 

angles of raw data can be varied by adjusting the angle between the system and the 

reference plane. Raw data was collected for each given incident angle (total 10 incident 

angles) to train weights of the ANN by the TMVA.  

I implemented preprocessing modules and the ANN in a NEXYS VIDEO FPGA 

development board by Hardware Description Language (HDL). Raw data collected is 

fed into the FPGA device from PC frame by frame. In the FPGA, raw data per pixel 

(32-bit) is processed by the Correlated Double Sampling (CDS) to generate a 12-bit 

pixel charge. Preprocessing modules mainly contain cluster search and feature 

extraction. The cluster search module is used to find out seed pixels and locate clusters 

(7×7 pixels) in a frame of pixel charges based on each seed pixel. Feature extraction 

modules are used to produce features to represent a cluster. 

The ANN module implemented in the FPGA device is a Multi-Layer Perceptron 

(MLP) structure. The input layer is composed of four input neurons for taking the 

cluster features into the network and one bias neuron. The four characteristics that were 



Chapter 6: Conclusions and Perspectives  

 

137 

 

selected are the total charge of a cluster and the charge of the seed pixel, the maximum 

and minimum standard deviations of charge distribution projected on an axis. These 

four features are processed by normalization then fed into the ANN to reconstruct the 

incident angle based on weights of the ANN. The hidden layer following the input layer 

has 14 calculation neurons and 1 bias neuron. The activation function used in the ANN 

is hyperbolic tangent. 

In order to test the design implemented in the FPGA device, I have sampled 500 

frames of raw data for each given incident angle. The raw data was fed into both the 

ANN in the TMVA and implementation in the FPGA device. Reconstructed angles are 

recorded and analysed.  

Firstly, the feasibility study of transplanting the ANN design into hardware has 

been validated. Mean values of angles reconstructed by TMVA and FPGA basically are 

at the same level and show the same trend of the real incident angle. In addition, the 

distribution of angles reconstructed by the FPGA device (θrec) shows that as the incident 

angle of raw data increases, the proportion of large angles in the reconstruction results 

increase, while the proportion of small angles decreases. Reconstructed results present 

obvious same trend as the variety of incident angles and proof of the principle that tag 

particles according to the incident angle based on the ANN has been established. 

Meanwhile, mean values reconstructed by TMVA and FPGA are not completely 

coincident, because of the difference in the data precision for hardware and software. 

For example, in the Main Analysis Component (MCA) module which is used for 

calculation of the maximum and minimum standard deviation, the lookup table design 

is employed to provide values of the trigonometric function. Taking into account the 

power consumption and processing time, the lookup table is at a step of 10 degrees, 

while precision trigonometric values are supplied in the software.  

According to the distribution of reconstructed angle, designs both in the FPGA and 

the TMVA have not yet reached a precise level to predict the real incident angle, the 

ANN structure and the training procedure still need to be optimized. 

2. An on-chip algorithm for cluster search. 

The module for cluster search implemented in the FPGA device cannot be 

transplanted into the ASIC design directly. Firstly, a large number of memory resources 

are needed to store the entire one frame of pixel charges; secondly, lots of resources and 

time are needed to detect neighbour pixels. I propose an algorithm for cluster search. It 
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can be integrated into the CMOS pixel sensor and collect clusters in real-time. 

Instead of searching seed pixels in a matrix pixel by pixel, the algorithm seeks a 

seed pixel in real-time in the read-in process of pixel charges row by row. The seed 

pixel is admitted by comparing with pixels located above and below it and with largest 

pixels located in the left and right columns of a certain window range. 

I achieved the algorithm for 256-column by C code and simulated it. 500 frames of 

raw data for each given incident angle are used to test the algorithm. The simulation 

result shows that the algorithm reaches the same counting level as other algorithms 

including the algorithm implemented in the FPGA device. 

A unit of cluster search algorithm was designed according to the algorithm 

described, which was implemented in each column of input. Consider the power 

consumption and occupied surface of feature extraction and ANN modules following 

cluster search modules, the implementation of the algorithm for multi-columns was 

optimized. I achieved the implementation based on the modulo of 2N-column matrix, 

which means channels of feature extraction and ANN module are input-column/2N.  

I implemented the optimized design in a 64-column input and synthesis these 

implementations targeted at the TowerJazz 0.18 µm CMOS process. There is no 

significant difference among implementations with the modulo of 16-column (N=4), 

32-column (N=5) and 64-column (N=6) in term of the occupied surface and power 

consumption. However, considering the feature extraction and ANN module following 

the implementation of cluster search, more occupied surface and power consumption 

are needed if the modulo of 16-column is used. The occupied surface and power 

consumption can be reduced if the 5×5 window is used instead of the 7×7 window. Both 

the occupied surface and power consumption could be reduced obviously if a 

low-frequency clock or a low-resolution ADC is employed.  

The algorithm proposed can be integrated into the CMOS pixel sensor and 

executed on pixel charges row by row in real-time. Simulation results show that the 

algorithm achieves the consistent level on cluster counts with the algorithm for cluster 

search implemented in the FPGA. Meanwhile, the algorithm makes improvement on 

processing speed and reduction on the resource occupied. However, optimization and 

improvement on power consumption and the occupied surface of the implementation 

can be enhanced. 

Perspectives 
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On the basis of the research of the thesis, the concept of a CMOS pixel sensor with 

on-chip artificial neural networks will be further studied from the following two 

aspects: 

1. Optimize the ANN to improve reconstruction precision.  

The concept of CMOS pixel sensor with on-chip artificial neural networks is 

validated by the ANN implemented in the FPGA device. However, neither of the two 

reconstruction results can reach the exact prediction level, compared with real incident 

angles.  

More raw data will be acquired to retrained weights of the MLP structure used in 

the thesis in order to improve the reconstruction precision. 

The ANN architecture can be optimized. For example, taking into account the 

trade-off between performance and resource of the design, more input neurons can be 

introduced to present features of a cluster as complete as possible. Correspondingly, the 

number of hidden neurons will also be adjusted accordingly. Even variety activation 

functions and hidden layers can be employed and analysed. 

New High-Level Synthesis (HLS) tools will be employed for the implementation 

of the neural network. For example, the neural network structure is trained by 

TensorFlow in Python, the hardware implementation of the neural network is 

synthesized and optimized by Cadence Stratus HLS based on the module in Python. 

The tool increases the efficiency and reduces the complexity of the hardware 

implementation of a neural network. 

2. Develop on-chip functional modules to realize the entire hardware design. 

With respect to the implementation, some improvements can be carried out based 

on the fabrication process targeted in the thesis (0.18 µm).  

On the aspect of design. For the design of cluster search, the timing control can be 

optimized to increase efficiency. For example, the application of power gating 

technology can be used to reduce power consumption. For the module of feature 

extraction, the implementation of the FPGA device is achieved by some intellectual 

property mathematical function module, especially for the calculation of maximum and 

minimum standard deviation. In order to reduce power consumption and improve the 

operation speed, on-chip algorithms for feature extraction will be studied and 

developed to integrate into the CMOS pixel sensor.  

On the aspect of the material. The module of cluster search which is described in 
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chapter 5 is the first level preprocessing modules followed the column-ADC. Due to 

low resistivity of the epitaxial layer in the CPS (MIMOSA 18) which is used for raw 

data acquisition, large shapes of clusters are produced, and the 7×7 cluster window is 

employed. In CMOS pixel sensors equipped with the high resistivity epitaxial layer, 

cluster shapes generated by charged particles will be lessened to 5×5 even 3×3 cluster 

window, resulting in reduction on power consumption and occupied surfaces. 

With the application of advanced fabrication processes (65 nm even 28 nm), 

contributions will be made on the optimization and improvement of the hardware 

implementation of the entire design.  

A higher circuit density will be provided by the 65 nm fabrication process. The 

cluster search module and feature extraction module can be achieved in distributed 

units as integrated into pixels. The occupied surface of readout electronics will be 

optimized, and the processing speed will be improved. On the aspect of power 

consumption, the low power supply supported by the 65 nm fabrication process makes 

a reduction on power consumption of the design.  

Cluster search implementation 

Seed pixels are located by comparing pixels row by row by the algorithm described 

in chapter 5. However, by the advanced fabrication processes, comparators can be 

integrated into pixels to tag fired pixels and compare signals from neighbour pixels. All 

seed pixels and clusters in the pixel array will be extracted at the same time instead of 

row by row. Combining with the low hit density of charged particles on the pixel array, 

just comparators from a few pixels (fired pixels) are excited for cluster search, leading 

to reduction of power consumption. 

With the application of high resistivity material of the epitaxial layer, windows for 

cluster search reduce to 5×5 pixels. A seed pixel can be located as follows: 

1. Digital pixel charge processed by CDS of each pixel compares with the noise 

threshold to define all fired pixel; 

2. Comparators of all fired pixels are activated to compare with the seed threshold 

to pick out possible seed pixels; 

3. Comparators of these possible seed pixels are activated to compare with fired 

pixels in 8 neighbours;  

4. If the pixel charge of a possible seed pixel is not fewer than its 8 neighbour 

pixels, it is the seed pixel of the 3×3 cluster window, otherwise, it is a fake seed 

pixel. 
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Figure 6.1: Schematic diagram of a seed pixel in a 3×3 cluster window. A cluster is 

composed of one seed pixel (P0) and 4 fired pixels. Two possible seed pixels (P0 and P1) are 

compared with their 8 neighbours in the 3×3 cluster window. Due to charge of P1 is fewer than 

P0, just pixel P0 is defined as a seed pixel in the 3×3 cluster window. 

5. Release the seed pixel charge of the 3×3 cluster window into registers of fired 

pixels among its 8 neighbours to replace their charges and repeat step 4 for 

these fired pixels.  

6. If all these fired pixels (seed pixel charge) are not fewer than charges of 8 

neighbours around them, the seed pixel is upgraded as the seed pixel of a 5×5 

cluster window.  

 

Figure 6.2: Schematic diagram of a seed pixel in a 5×5 cluster window. Charges of the 3 

fired pixels in the 3×3 cluster window are replaced by seed pixel charge. Processed by step 4, 

charges of the fired pixels are larger than their neighbours, pixel P0 is extracted as the seed 

pixel in the 5×5 cluster window. 

The pixel implementation of the algorithm is shown in figure, 6.3, ADC and 

comparators achieved in each pixel are omitted. In step1 and 2, 1 comparator is needed 

for identification of the fired pixel (noise threshold) and the possible seed pixel (seed 

threshold), respectively. The result of the comparison with the seed threshold 
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determines whether a comparator to neighbours is activated. In step 3, other 

comparators are for comparison between the possible seed pixel and 8 neighbour pixels. 

The 8 comparison results are processed “and” operation. In step 4, the pixel charge is 

chosen by mux 9-1 module and sent into comparators. In step 5, mux 9-1 modules of 

neighbour fired pixels are used to receive the seed pixel charge and sent to 8 

comparators for step 6. The structure can be used for algorithms with different cluster 

window. For a 7×7 cluster window, just repeating the step 5 and 6 again. 

 

Figure 6.3: Schematic structure of a pixel for cluster search. 

Feature extraction implementation 

The MCA module implemented in the FPGA device is transplanted from the design 

in the software. However, MCA implementation which relies on trigonometric 

functions means low accuracy or large resource. For example, in software, the angle 

between the main axis of the cluster and the reference axis can be calculated. In the 

FPGA, a look-up table is implemented to find out the main axis of the cluster at a step 

of 10 degrees.  

 

Figure 6.4: Steps of on-chip feature extraction. 
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Inspired by the technology of edge detection used in the image processing, such as 

the Sobel operator and the Canny operator, some operators can be optimized and 

applied for feature extraction and then implemented in ASIC design. Due to the concise 

structure, less power consumption and calculation units are needed. 

As shown in figure 6.4, the implementation is processed based on each cluster. 

Firstly, four operators are flowed on a cluster (5×5) at a step of 1 pixel and make 

convolution, respectively. Four 3×3 submatrices are generated, then convolution 

processes are repeated on these submatrices. Finally, 16 values are created. The 

maximum and minimum value will be picked out to present features of a cluster. The 4 

operators represent the direction and pixel values are summed along the direction after 

convolution. In the process of convolution, pixels closed to the seed pixel are taken into 

more times which means the high weight of the pixel. The program of the algorithm 

with a step of 2 pixels is illustrated on an example of 7×7 pixels as shown in figure 6.5.  

 

Figure 6.5: Example of on-chip feature extraction. The convolution operation is processed 

between the four operators and a cluster at a step of 2 pixels. Four submatrices are created and 

presented in level 1. The convolution operation is processed again between the four operators 

and these submatrices at a step of 1 pixel. 16 values are produced in level 2. Convolution 

procedures of three values in submatrix in level 1 is shown. 

In addition, with the advanced fabrication processes, some complex artificial 

neural network structures can be attempted to implement, such as the Convolutional 

Neural Network (CNN). For the MLP structure used in chapter 4, four features 

extracted from a cluster (7×7 pixels) are fed into the network to present features of the 
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cluster. For the CNN, the cluster will be taken into the network as an image of 7×7 (or 

5×5) pixels. Convolution and pooling operation will be processed by different layers of 

the network. With the development of the fabrication process and the 3D integration 

technology, implementing CNN structures on hardware becomes a possibility. 

Furthermore, the training procedure which currently is accomplished in the 

software will be considered to migrate into the chip. The weight training and structure 

optimization will be processed on the chip, resulting in the CMOS pixel sensor with 

on-chip ANNs be portability and achieved in various structures according to the 

training dataset. 
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Résumé 

Dans le détecteur de vertex de l'ILC (International Linear Collider), un nombre élevé d'impacts 
supplémentaires seront générés par des électrons résultant de processus liés au bruit de fond des 
faisceaux. Leur impulsion se trouve typiquement est inférieure à celle des particules issues 
d'événements associés à des processus physiques. Notre groupe à l'IPHC a proposé d'explorer le 
concept d'un capteur à pixels CMOS avec des ANNs intégrés pour marquer et supprimer les pixels 
touchés (hits) générés par ces électrons. 

Au cours de ma thèse de doctorat, je me suis concentré sur l'étude d'un capteur à pixels CMOS 
avec des ANNs intégrés portant sur les aspects suivants: 

1. L'implémentation de modules de prétraitement et d'un ANN dans un composant FPGA pour 
l'étude de faisabilité; 

2. Un algorithme pour la recherche de clusters, qui fait partie des modules de prétraitement, a été 
proposé en vue d'être intégré dans la conception de l'ASIC. 

Mots-clés: Physique des Hautes Energies, Capteurs à Pixels CMOS, Réseaux Neuronaux 
Artificiels, FPGA, Recherche de Cluster 

 

 

Résumé en anglais 

In the vertex detector of the ILC (International Linear Collider), a large number of extra hits will be 
generated by electrons coming from the beam background. Momenta of these background electrons 
typically are lower than particles coming from physics events. Our group in IPHC has proposed the 
concept of a CMOS pixel sensor with on-chip ANNs to tag and remove hits generated by background 
particles. 

During my PhD thesis, I focused on the study of a CMOS pixel sensor with on-chip ANNs from the 
following aspects: 

1. The implementation of preprocessing modules and an ANN in an FPGA device for the feasibility 
study; 

2. An on-chip algorithm for cluster search which is a part of preprocessing modules has been 
proposed to integrate into the ASIC design. 

Keywords: High Energy Physics, CMOS Pixel Sensors, Artificial Neural Networks, FPGA, 
Cluster Search 

 


