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The epidemic of physical inactivity 

 A lifestyle unsuited to human physiology 

     Humans, for most of their history, evolved to fit conditions in which sources of energy 

were scarce and foraging required considerable physical efforts [1]. Nevertheless, in a 

process known as the physical activity transition, modern humans progressively adopted 

a physiologically less suitable sedentary lifestyle [2]. The Neolithic Revolution (about 

10,000 years ago), which transformed human economy from foraging to agriculture, 

induced a first massive sedentarization [3]. However, for most people, farming still 

required intense physical labor, which could have been even greater than before [4]. 

More recently, developed societies have become less and less dependent on physical 

labor for survival. With the Industrial Revolution beginning in the late 18th century in 

England and spreading throughout the Western world, machines have been 

progressively replacing human labor, resulting in a decrease in occupational physical 

activity [5]. More recently, technological advances introduced home appliances, such as 

washers and vacuum cleaners, which induced a further reduction in physical activity 

associated with household chores [6]. Likewise, the popularization of private motorized 

vehicles has further reduced physical activity required for travelling [2]. Despite a 

marginal emergence of leisure physical activity (for instance, American women reported 

engaging in leisure physical activity 1.1 hr/week in 1965 and 2.3 hr/week in 2010), active 

time saved with automation is still massively reallocated to inactive leisure, such as 

television watching [7]. Thus, humanity has embarked on a transition from a condition 

in which the ability to achieve high levels of physical was paramount for its survival to a 

condition in which physical activity is almost engineered out of all domains of life.  

Whilst technology in developed societies made most of the physical labor needed in 

everyday life unnecessary, food became more and more accessible to the individual 

living in economically developed societies. The human body, through its metabolic 

mechanisms, has evolved to remain functional in situations of high energy expenditure 

and low food intake, but it is not adapted to situations of high food intake and low levels 
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of activity. This situation favors positive energy balance, and hence unhealthy weight, 

and increased risks of physiological disorders, resulting in widespread morbidity at the 

population level [8].  

These trends have been observed in the past half century in the Western world and, 

more recently, in large developing countries adopting this way of life, such as China, 

India and Brazil [6]. Thus, increasingly larger parts of humanity access a life condition 

in which practically no physical activity is needed in everyday life. As this very sedentary 

lifestyle spread out in low/medium economy countries, the burden of health conditions 

associated with physical inactivity is growing. Physical inactivity has become a major 

public health concern, and decision makers have developed various strategies to deal 

with it.  

 

Figure 1:  The physical activity transition 

 Physical inactivity as a major cause of mortality  

Physical inactivity i.e. activity level insufficient to meet the present recommendations  

(Scientific Report - 2018 Physical Activity Guidelines) has been recognized as one of the 

leading major causes of mortality over the last decade. It is associated with coronary 

heart disease, with an adjusted Risk Ratio (RR) of 1.16, type 2 diabetes (RR = 1.20), breast 
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cancer (RR = 1.33 for women), colon cancer (RR = 1.32) and all-cause mortality (RR = 1.28) 

[10]. Worldwide, out of 57 million deaths in 2008, 5.3 million are caused by inactivity, 

resulting in a loss of 0.69 years of life expectancy at birth. Although this comparison has 

been criticized because of methodological issues, physical inactivity is thought to 

represent the same health burden for humanity as smoking [10]. Compared to inactive 

individuals, meeting the recommended levels of physical activity was found to result in 

about four years gain in life expectancy at age 30 years [11].  

The prevalence of physical activity greatly varies across countries, and so do the health 

consequences of it. For instance, according to age-adjusted estimates of World Health 

Organization for 2016, prevalence of insufficient physical activity among adults (18+ 

years) was 36.8 % in high-income countries, 26.0% in middle-income countries, and 

16.2% in low-income countries (Global Health Observatory data repository). These 

figures rely on self-reported measures of activity, which were shown to be significantly 

higher than those obtained using objective measures. For instance, a 2008 study showed 

that while 65% of Americans reported meeting recommended the activity guidelines, 

only 5% were found to meet them when using objective methods of activity assessment 

[12]. We observe the same cross-regional disparities when estimating loss of life 

expectancy, which ranges from 0.41 years in Southeast Asia and 0.95 in the Eastern 

Mediterranean countries (see map in Figure 2). 

This pandemic of physical inactivity comes with an important economic burden, both 

indirect (productivity loss) and direct cost (healthcare). According to ‘conservative 

estimates’, the annual cost of physical inactivity amounted to $ 53.8 billion (international 

$, i.e. adjusted for purchase power differences) in 2013, of which 9.7 billion being paid by 

households [13]. According to another study, the annual per capita cost (both direct and 

indirect) of physical inactivity in North America ranged from $150 to $420 [14].  
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Figure 2: Gain in life expectancy at birth by country if physical inactivity were eliminated (Lee et al. 2012)  

Physical inactivity as public health challenge  

Thus, we can see that physical inactivity represents a considerable challenge for our 

health systems and economies. As the physical activity transition sweeps through the 

developing economies, the epidemic affects a growing number of people, and becomes 

one of the main challenges of the public health research of the 21st century. 

Addressing the issue of physical inactivity, from the point of view of a researcher in 

public health, represents a twofold challenge. The first challenge consists in improving 

our understanding of the effects of different types of physical activity on various health 

outcomes, in order to refine the recommendations to the population, and for each 

individual. Thus, we must ask ourselves the following questions: 

-  What are the physical activities that are relevant for health and how do 

they affect health? (Chapters I and II) 

As it is often the case in the medical field, research on physical activity comprises an 

epidemiological and a physiological facet. The first, at a larger scale, looks for specific 

patterns of physical activity and links them to health variables in the population. The 

second aspect aims at testing the existence of the observed associations in the 

epidemiologic and observational studies in controlled intervention settings and at 

understanding their underlying mechanisms.  This thesis does not address the 
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physiological question but will touch upon it incidentally, insofar as it is relevant for the 

epidemiological research design. 

Addressing these questions using empirical research presupposes an ability to measure 

physical activity accurately. Consequently, we need to deal with this additional 

technological challenge by investigating the best way to measure activity in 

experimental settings.  

- How can we measure different aspects of physical activity in observational 

studies? (Chapter III) 

 

The second main challenge consists in looking for ways to promote compliance with 

these recommendations in the population. There exist psychological, cultural, social and 

environmental determinants of physical activity. By understanding the ways by which 

they determine physical activity, we can offer better strategies to encourage physical 

activity in the population. As it is often the case with human behavior, comprehending 

the entire system of determinants of physical activity is a daunting task; however, we 

can aim at understanding the effects of some major factors of the urban built 

environment on the physical activity of those exposed to them, with a particular 

emphasis on the public transportation infrastructure 

- Can we identify characteristics of the built environment that affect 

physical activity? How do these characteristics affect the different aspects 

of physical activity? (Chapters IV and V) 

 

Objectives and organization of the present thesis 

The present thesis aims to address the main public health challenges posed by the 

physical activity epidemic, and it is divided in three main parts. After an introduction, 

the first part aims at shedding more light on the complex relationships between different 

aspects of physical activity and key health outcomes (Chapter I and II). The second part 

proposes an innovative methodology to measure physical activity in real-life 
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experiments by means of accelerometers (Chapter III). The third part identifies possible 

fields of intervention for promoting physical activity by investigating the causal link 

between various characteristics of the built environment and physical activity (Chapter 

IV and V). The thesis concludes with discussing the findings and perspectives for future 

research.  
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The aim of this introduction is to go over the concepts and terms that are used in this 

thesis, to position the research done within the existing state of knowledge, and to 

highlight gaps of knowledge that are important to address. Its structure reflects the 

layout of the thesis. The first section will address the different aspects of physical 

activity, in a broad sense, and their relationship with health. The second section 

discusses different methods for measuring physical activity and introduces 

methodological elements in physical activity recognition by means of body-mounted 

sensors (accelerometers and gyroscopes), which are the main tool used to objectively 

assess human physical activity in large epidemiological surveys. The third section will 

discuss, from a public health perspective, the main challenges in measuring the effect or 

the relationship between urban built environments and physical activity. The 

introduction concludes by briefly summarizing the ideas developed so far and by linking 

them, as objectives, to the chapters of the thesis. 

Physical activity: New paradigms 

Physical inactivity, as a health hazard, is not limited to the lack of physical exercise. 

Numerous studies, which I will discuss below, showed that sedentary behaviors could 

represent a hazard distinct from the lack of moderate or intense physical activity. In 

addition, recent findings suggest that the segmentation patterns of a given amount of 

activity time could also be relevant for health. This section discusses the concept of 

sedentary behaviors, their definition and their relationship to health. Likewise, evidence 

to the effects of activity segmentation are reviewed, and some conceptual and 

methodological challenges are addressed.  

Definition of the terms of physical activity 

This section uses a variety of terms referring to different types and aspects of physical 

activity. Here, I explain the terms used in this section, based on, unless otherwise 

specified, the definitions of the Advisory Committee Report of the 2018 Physical Activity 

Guideline.  



 
Physical activity: New paradigms 
 

19 
 

Physical activity refers to “bodily movement produced by skeletal muscles that results 

in energy expenditure”. Physical activity can be categorized by its intensity.  The most 

common way to quantify intensity is by using units of Metabolic Equivalents of Tasks 

(MET), one unit representing the energy expenditure while sitting at rest. For instance, 

walking at a 5 km/h requires about 3.3 METs.  It is common to divide physical activity 

into four categories, based on intensity:  

- vigorous-intensity activity, for 6 METs or higher (e.g. walking very fast, 

running, aerobic classes),  

- moderate-intensity activity, for energy expenditure between 3 METs and 6 

METs (e.g. walking at 5 km/h, vacuuming),  

- light-intensity activity for energy expenditure between 1.6 and 3 METs (e.g. 

slow walking for leisure, cooking, standing while scanning groceries as a cashier).       

- In the past, energy expenditure of 1.5 METs or less was often referred to as 

sedentary behavior or sedentary activity, but it is now accepted that sedentary 

behavior refers to energy expenditure of 1.5 METs or lower while sitting, lying or 

reclining. In this thesis, I therefore refer to low energy expenditure (≤1.5METs) in 

any body position, including standing as low-energy activities.  As the fraction 

of time spent performing vigorous-intensity activity is very small, it is common 

in the literature to aggregate moderate- and vigorous-intensity activities into one 

category called moderate-to-vigorous physical activity (MVPA). 

Derived from measures of physical activity by accelerometers, a count is recorded when 

the body motion observed exceeds a certain threshold fixed by the manufacturer of the 

device or the researcher. The number of counts over a period is a proxy to the energy 

expenditure during this period.  

To refer to any of these activities or behaviors, I use the term physical behavior. The 

literature refers to the time proportion devoted to a certain physical behavior as 

volume. I refer to the distribution of the total time volume under consideration 

amongst the different behaviors as the time budget of physical behaviors.  

The categories of behaviors presented here are often used in the literature, but it is 

needless to point out that any possible categorization of human behaviors that the 
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scientist deems as relevant is possible. A very simple categorization would be 

active/inactive, while a very detailed one could comprise lying prone, lying supine, 

sitting, walking at different paces, jumping, bicycling etc.  

 The emergence of the sedentary behavior paradigm and  

There is a broad consensus about the health benefits of regular MVPA and the health 

risks of the lack thereof [10, 15]. The findings of the very large body of evidence as to 

these effects are regularly summarized and translated into largely accepted practical 

guidelines to the population (e.g. 2018 Physical Activity Guidelines for Americans). 

However, there is need for distinction between the effects of different physical 

behaviors. While traditional research focused on MVPA, newer research, starting in the 

2000’s, stated that low-energy activity and too much sitting (as distinct from the lack of 

MVPA) could represent an independent risk factor with its own physiological 

mechanisms [1, 16, 17]. Based on evidence from large surveys, Healy and colleagues 

showed that total volumes of low-energy activities,  as measured by a body-mounted 

accelerometer (here less than 100 “counts” per minute) was detrimentally associated 

with various metabolic risk biomarkers, independent of levels of MVPA, sex and 

adiposity [17, 18]. Likewise, Koster et al. found that large volumes of low-energy activities 

associated with higher mortality levels [19]. In 2007, the physical activity 

recommendation for adults from the American College of Sports Medicine and the 

American Heart Rate Association was updated, highlighting that the recommended 

MVPA levels had to come in addition to routine light-intensity tasks, such as casual 

walking and household chores [20]. In other terms, periods of physical inactivity should 

be avoided by remaining slightly active all along the day, as much as possible. 

While these studies investigated the effects of low-energy activities (no matter the body 

posture), other investigated the effects (or correlations) of a more specific behavior, the 

sedentary behavior, on different health outcomes. The importance of posture allocation 

was clearly illustrated in an early study by Levine and colleagues, which showed that 

posture time allocation between quiet sitting and standing, measured by an 

inclinometer, was different across obese and lean groups, thus proposing an explanation 

to inter-individual variation in obesity [21]. Another study showed attenuated blood 
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glucose excursions following an afternoon of standing at work compared to sitting at 

work [22]. Using iso-temporal substitution analysis on large amount of data in free-living 

conditions, Healy and colleagues showed that replacing sitting volume with standing 

volume was associated with lower fasting plasma glucose and triglycerides levels and 

higher high-density lipoproteins (HDL) concentrations [23]. From a physiological point 

of view, this definition accounts for the varying levels of isometric muscle contraction 

required for maintaining different postures in a motionless state. However, it should be 

noted that, in a recent study, the energy expenditure associated with maintenance of 

standing was found to be, on average, marginal compared with maintenance of sitting 

posture [24]. Likewise, some standing activities do not exceed 1.5 MET in the 

Compendium of Physical Activity, thus being undistinguishable from quiet sitting, as far 

as energy expenditure is considered [25]. Thus, the beneficial effects of standing versus 

sitting, insofar as they are real, may be independent of the energy balance and rather be 

related to contraction of muscles involved in weight bearing.  

Thus, although MVPA volumes are still viewed as a chief determinant of health, the 

focus of research has recently shifted from MVPA to the avoidance of low-energy 

behavior. In the new paradigm, a healthy physical behavior should not only comprise 

sufficiently large volumes of MVPA, but also a reallocation of time from low-energy 

behaviors or sedentary behaviors) to light-intensity activity (or at least to quiet 

standing). As Maher and colleagues stated it, when considering sedentary behavior, 

light-intensity physical activity and MVPA, and keeping MVPA constant, saying that 

volumes of sedentary behaviors must be reduced is equivalent to saying the volume of 

light-intensity physical activity must be increased [26]. In fact, light-intensity physical 

activity has recently started to trigger scientific interest as a component of the time 

budget of physical behaviors [27]. Consequently, the concept of sedentary behavior can 

be meaningful only when considering the entire time budget (Figure 3) and the 

interdependency between its components, or when considering the segmentation 

patterns of the sedentary time. Both concepts are developed in the following sections.  
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 Discrimination between different sedentary behaviors 

Before discussing the ideas behind the concepts of time budgets and segmentation 

patterns, an important issue needs to be pointed out. Investigating sedentary behavior 

as a stand-alone behavior allowed an important advance in our understanding of the 

etiology of various diseases. However, sedentary behaviors are regarded in the literature 

as a single component. An interesting question would be to discriminate further 

between different sedentary behaviors. Notably, lying and sitting are distinct behaviors 

considered as sedentary, but the literature hardly addresses the question as to whether 

their effect on specific health outcomes is different. One of the objectives of Chapter I 

will be to break down sedentary behavior into two smaller components – sitting and 

lying – and investigate their separate relationships with some key health outcomes.  

 

Figure 3: Daily time spent in different physical behaviors as measured in a population of adults in the region of 
Paris, France [28] 

 

The idea of a time budget of behaviors 

The previous paragraphs emphasized the importance of accounting for the volumes of 

different types of behaviors when investigating the relationship between physical 

activity and health. Yet, the importance of a behavior volume is always related to the 

volumes of other behaviors. Increasing the volume of one behavior comes at the 

10%

51%

27%

4%
8%

Lying Sitting Standing LIPA MVPA
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expenses of one or several other behaviors, since all volumes always add up to the total 

time under study. Thus, rather than talking about the relevance of the volume of such 

or such behavior, one should view the set of behaviors under study as a whole, that is as 

a composition or budget. The challenge and the necessity of such an approach becomes 

clear within the analytical framework of linear regression models, which are the 

common way to analyze relations (causal or not) between variables in epidemiological 

studies. Estimating the effect of each volume by adding all volume components to the 

model as regressors is impossible, since these are linearly dependent (i.e. perfectly 

collinear).  Analyzing each volume in a separate linear regression model is possible but 

also problematic, since the effect associated with a volume can actually be attributed to 

another volume absent from the model (i.e. the error is correlated with the regressor). 

For instance, integrating sedentary time alone might results in an effect estimate on a 

health outcome that is due to the absence of light-intensity physical activity time, as one 

comes often at the expense of the other. Hence, to deal with the compositional character 

of volumes in an analytical framework, two methods have been proposed in the 

literature: iso-temporal substitution and compositional analysis.  

Iso-temporal substitution analysis consists in estimating the effect of a component Sb in 

a budget (volume devoted to a behavior b) by integrating all other components S�̅� (any 

volume devoted to a behavior other than b) as regressors into the regression model.  Sb 

being the complementary part, it is implicitly present in the model. The coefficient for 

every term S�̅� in the model corresponds to the effect of substituting a time unit of Sb by 

a unit of S�̅� on the response variable of interest [29]. Compositional analysis, instead of 

considering every volume as a data-point in the real domain, views the different volumes 

as a vector belonging to the compositional simplex, known as the Aitchison simplex (see 

Figure 4). It maps the vector in the simplex to the real domain by applying an 

appropriate transformation (e.g. the isometric log-ratio transformation in [30]) in order 

to integrate it as a predictor to the regression model, and converts the coefficient back 

to the compositional domain. Thus, changes in the health outcome can be predicted for 

any change in volume composition [31].   
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Figure 4: Representation of a 2-D simplex in the real 3-D space. All three-part compositions (x1, x2, x3) lie on the 
triangle (simplex), because of the constraint of adding up to 1. Points C, D, and E are therefore possible compositions, 
but not A and B. Compositional analysis acknowledges the constrained sample space of the compositions (and thus their 
interdependency). In contrast, in classical regression models view each part belongs to the unconstrained real space.   

Iso-temporal substitution and compositional approaches are both addressing the 

methodological problems raised by the compositional character of behavior volumes. 

Using compositional regression is arguably more appropriate from a mathematical 

perspective, as it respects the mathematical properties of compositional data [31]. 

Nevertheless, iso-temporal substitution analysis is often preferred in the literature, 

because its coefficients are easily interpretable, and the analytical framework remains 

closer to the classical regression analysis with which most researchers are familiar.  

In this thesis, we adopt a compositional approach in our analysis, accounting for the 

interdependency between the components of the time budget. Answering the question 

“Is there an effect of volume of sedentary behaviors on health that is not the effect of a 

reduction of other behaviors (e.g. light-intensity physical activity or MVPA)?” is clearly 

a logical fallacy, as all volumes are parts of the same whole. Instead, we ask the questions: 

“How does a specific time budget affect a certain health outcome?”  or “How does 

reallocating time from a behavior A to a behavior B affect a certain health outcome?”. 

Analyses are done using both methods introduced here, in order to have both a better 

understanding of the phenomena observed and a better comparability with other 

studies.  
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The importance of behavior segmentation for health 

In the previous section, we introduced the relevance of a refined typology of physical 

behaviors in health research. As said above, a physical behavior refers to an ensemble of 

particular movements and postures of the body performed at a certain time. For 

practical reasons, observational studies consider behavior as discrete over time; a 

behavior is imputed to short time intervals, whose length typically span from 0.1 second 

to one minute. Thus, an epoch is the base time unit for which the researcher has a 

defined behavior. Whichever interval length is chosen, research mentioned above 

considers solely the volume associated with a certain behavior over a certain period, 

such as a day or a week. In other words, each time interval is viewed as independent 

from the preceding and following ones and contributes equally to the total volume. 

Although this approach based exclusively on volumes is easy to use, it does not 

necessarily reflect the underlying physiological processes. Indeed, the physiological 

significance of a behavior at a certain time most likely depends on the behaviors 

performed before and after it. To take a trivial example, a 1-minute interval of MVPA is 

arguably not the same when following 60 intervals of rest than when following 60 

intervals of MVPA. Thus, as we will see, researchers are also interested, in addition to 

volume, in the accumulation patterns (or segmentation patterns) of a behavior over time 

and its relationship with health outcomes.  

Regarding MVPA, the idea that segmentation patterns are relevant for health has long 

existed in the physical activity guidelines. Until 2006, physical activity guidelines 

recommended performing exercise in continuous bouts1 of at least 20 or 30 minutes [20, 

32]. However, using objective accelerometer measurement of physical activity, Ekelund 

et al. investigated whether performing the same MVPA volume in continuous bouts (of 

at least 5 or 10 minutes) had a specific impact on different metabolic health variables 

[33].  Results could not verify the hypothesis of an effect of period length on adiposity 

and risk factors associated with metabolic syndrome. Jefferis and colleagues reached the 

 
1 Bouts, as a central notion in segmentation analysis, will be presented later. A separate discussion found in the 
annex to this thesis elaborates in detail on this widely used yet poorly defined measure. At this stage, it is 
sufficient to say that a sedentary bout is a period in which the most frequent observed activities were sedentary.   
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same conclusion studying a sample of 1009 British men [34]. Large-scale data from 

American and Canadian surveys yielded conflicting results. Some studies suggested that 

sporadic MVPA was beneficial for health, but MVPA performed in bouts of 10 minutes 

or longer had an additional value [32, 35, 36]. Other studies suggested that any second 

of MVPA had the same effect [37, 38]. Some of the discrepancy in the evidence could be 

attributed to different methodological approaches [34]. As we will see, methodological 

considerations in measuring segmentation have a considerable impact on the 

conclusions inferred from the data. Nevertheless, the 2018 Physical Activity Guidelines 

for Americans omits the recommendation to perform MVPA bouts in long bouts and 

mentions only total activity volumes over the week (Scientific Report - 2018 Physical 

Activity Guidelines). Thus, it seems that a large part of the scientific community agrees 

as to the fact that individuals can meet the recommended MVPA following any pattern 

of accumulation of their choice. 

The concept of segmentation was also applied to sedentary behaviors. Healy and 

colleagues popularized the idea that breaking up total sedentary time into many short 

periods in everyday life could be beneficial for health [39]. Using real-life data, they 

found that, independent of the total time spent in sedentary behaviors and MVPA, the 

number of interruptions of sedentary behavior (mean = 600/week, standard deviation 

(SD) = 155/week) was positively associated with adiposity, and negatively with fasting 

plasma triglycerides and plasma glucose levels 2 hours after a meal (an index of glucose 

control). The effect magnitude for both variables was between 0.16 and 0.18 SD for one 

SD increase in the number of interruptions.  

Several experimental studies in controlled settings found that interrupting sitting time 

with light-intensity physical activity periods significantly reduced postprandial glucose 

and insulin levels in both lean and overweight/obese adults [40–43]. For instance, 

Dunstan and colleagues measured the 5-hour incremental area under the curve (i.e. 

integrated levels over time relative to the base level) for plasma glucose and insulin after 

an oral dose of carbohydrate in overweight/obese male and female adults in three 

conditions in a crossover design study: (a) uninterrupted sitting, (b) sitting with 2-

minute interruptions of light-intensity activity every 20 minutes, (c) sitting with 2-

minute interruptions of moderate-intensity activity every 20 minutes.  Breaking up 



 
Physical activity: New paradigms 
 

27 
 

sedentary behaviors with frequent light and moderate active bouts respectively reduced 

glucose area under the curve by 24.1% and 29.6% compared to the sedentary control 

condition. Post-prandial insulin concentration was reduced by 23% following both the 

light and moderate breaks. The effect of breaking up prolonged sitting time with 

standing breaks is still unclear. While a study could not elicit a reduction in postprandial 

glycaemia in non-obese of both sexes with standing breaks [44], another one on obese 

adults of both sexes observed a 11.1% reduction in post-prandial glycemia when 

alternating 30-minutes periods of sitting and standing, but no effect on serum insulin 

and triglycerides [45].  

Results on segmentation of sedentary behavior raise questions as to the relevance of 

sedentary volume itself. Results presented in the previous sections on volumes 

concluded that avoidance of sedentary behaviors through increase in light-intensity was 

beneficial for health. However, in light of the findings on segmentation, can we say that 

volume of SB matters at all? Contrarily, can we say that segmentation matters at all 

provided that SB volume is reduced to smaller volume? And if both volume and 

segmentation matter, what is the effect magnitude of each? 

To elucidate this question, research must systematically consider both volume and 

segmentation. Yet, on one hand, the major controlled studies focusing on segmentation 

mentioned above have deliberately maintained fixed sedentary volumes across groups 

with different segmentation patterns in order to isolate the effect of segmentation [40–

43]. On the other hand, the empirical strong negative correlation between sedentary 

volume and segmentation (active people tend to exhibit both strong segmentation 

patterns and small volumes of sedentary behavior) can make it hard to accurately 

measure both effects [23]. Thus, to date, there is still a lack of clear evidence from 

heterogeneous populations on the share of each of these dimensions on key health 

variables.  

With volume and segmentation being relevant for key health variables, analyses must 

integrate measures of both dimensions into their models in order to assess their distinct 

effects clearly. How can we quantify and characterize segmentation patterns 

independently from behavior volumes? The following section addresses this issue.  
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 How to measure segmentation? 

Previously, several studies emphasizing the importance of segmentation of physical 

behavior for health were cited. However, measuring segmentation can be tricky. A study 

comparing cross-sectional associations between sedentary bouts and various health 

indicators showed how different measures of segmentation used by different authors, 

which I will expose below, could yield different results [46]. As pointed out by Tremblay 

and colleagues., the lack of consensus on the complex derivation procedures of temporal 

segmentation patterns in sedentary behaviors was reported by researchers as one of the 

main obstacles to progress in the field of sedentary behavior research [47].  

Counting breaks and transitions 

The simplest way to measure segmentation of sedentary time is by counting the number 

of breaks. Of course, as the number of breaks is usually correlated to the total sedentary 

time, the break count should be standardized by the total sedentary time, yielding a 

relative measure such as breaks per sedentary hour. The influential study by Healy and 

colleagues. used number of breaks as a fragmentation measure but did not standardize 

it by sedentary time [39], hence causing potential bias to the estimated effects.  

However, the major shortcoming of break count as measure of fragmentation, even 

when standardized, lies in the fact that it ignores the duration of breaks and of the 

episodes between the breaks. Let us think of a person who performs one hour of 

sedentary behavior and one hour of light-intensity physical activity. In scenario (a) the 

individual alternates periods of 10 minutes of each behavior. In scenario (b), he/she 

alternates 2-minute episodes of each five times and performs then 50 minutes of 

sedentary behavior and 50 minutes of light-intensity physical activity (Figure 5).  In these 

two cases, the person has the same volume of SB and light-intensity physical activity (an 

hour of each), and the same number of breaks (6 breaks). However, one could easily 

argue that the two cases reflect two different physiological realities: in scenario (a) there 

exists no prolonged sedentary bout (>10 minutes), and so, the physiological mechanisms 

associated with sedentary behavior may not be ‘switched on’, while we do observe 50 

minutes of continuous sedentary behavior in scenario (b). The importance of duration 
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is all the more obvious considering that most of the evidence to segmentation concludes 

specifically that prolonged sedentary episodes represent a health hazard [39–41]. 

 

 

Figure 5: Two scenarios of successive episodes of sedentary behavior (black) and light-intensity physical 
activity (white). The same volumes follow different segmentation patterns.  

Breaks from behavior are in themselves transitions from a behavior/state to another. 

Considering sedentary behavior, any break from this behavior is a transition between 

sedentary behavior and another behavior, e.g. to standing, light-intensity physical 

activity or MVPA. Whereas breaks ignore the behavior to which the subject is changing, 

transitions account for both the origin behavior and the target behavior. As the number 

and variety of behavioral categories increase, accounting for the target behavior is 

important. Transitioning from sitting to quiet standing has not necessarily the same 

physiological significance than the transition to light-intensity physical activity. 

Counting all possible transitions can prove useful in phenotyping an activity profile. 

When we divide all possible transitions from a state to another by the total number of 

transitions, we obtain a Markov matrix for the observed probabilities of transitioning 

from a state to another. However, the number of transitions can bear a physiological 

meaning, independent from the individual’s segmentation profile, as it points to the 

total muscular force needed to transition between different behaviors over the 

monitoring time. Here again, we see the importance of controlling for volumes of all 

behaviors when performing segmentation analysis.  

In short, breaks and more generally transitions are an interesting and important metrics 

for physical activity profiling. However, since they ignore the duration of the behavior 
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episodes and the breaks, they are insufficient to capture the effects of segmentation 

patterns in a satisfactory manner; in fact, by definition, duration is an essential aspect of 

segmentation. 

Capturing distribution of bout lengths 

     In order to account not only for the number of breaks but also for the duration of the 

behavior episodes and the duration of breaks between them, the concept of bout is 

largely used in the literature [47]. There is no consensus on the definition of a bout and 

its parameters, and, although it heavily affects the conclusions drawn from observational 

data, it is still largely overlooked in the literature [47–49]. To be as general as possible, 

all definitions agree on the following: a bout of behavior is a period of a certain minimum 

length during which no or only negligible interruptions (typically smaller than one or 

two minutes) by other behaviors is observed. Hence, identifying bouts is equivalent to 

looking at the behavior sequence at hand in a lower resolution, considering relatively 

long, roughly homogenous periods of behavior. Considering behavior bouts instead of 

considering any behavior episode is already a first step in segmentation analysis: we 

retain long, nearly homogenous behavior sequences, while discarding episodes that are 

too segmented or too short to be of any relevance.  

The bout detection algorithm outputs a set of valid bouts, of a minimum but variable 

length, for the behavior under consideration. For instance, for a minimum bout length 

of 5 minutes, we can have a set of bouts with lengths (in minutes) {5, 8, 5, 20, 110,..}. The 

lengths of these bouts are the information that is exploited in order to characterize the 

segmentation profile of an individual over a certain period of time. This section discusses 

different metrics mentioned in the literature; they correspond to different approaches 

to segmentation and their relevance for health strongly depends on the parameters of 

the algorithm used to detect the bouts.  

A first approach consists in considering the time spent in bouts as the only ‘valid’ time 

of the behavior in question, while sequences that do not belong to a bout are disregarded 

as incidental. Consequently, tenants of this approach will look at the sum of bout 

durations as the only valid behavior time [50]. This approach was implicitly adopted by 

major works on the importance of segmentation of MVPA, e.g. [32, 35].  For instance, 
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under the assumption that sedentary behavior affects a given health outcome only after 

a minimum duration (i.e. the minimum bout length), we are interested in the total 

duration of the sedentary behavior time performed in any bout, while excluding 

sedentary behavior performed in brief episodes. In the same line of reasoning, when 

looking into the volume of a behavior, the ratio between total time (performed in any 

episode) and total time spent in bouts can be an interesting segmentation index: a high 

ratio points to high level of segmentation, meaning that larger parts of the behavior time 

is performed in long episodes. 

A second approach focuses on the empirical distribution of bout durations and on 

metrics that can capture the shape of this distribution. In this approach, the distribution 

of the durations reflects the segmentation profile of an individual and therefore might 

contain meaningful physiological information in it [51]. Let us consider the example 

plotted in Figure 5 and suppose that we set our minimum bout length to be of one 

minute. In scenario (a) six activity bouts of 10 minutes are interrupted five times by 

inactivity bouts of 10 minutes. In scenario (b) six activity episodes are also interrupted 

by five inactivity episodes, but the distributions of these episodes differ. We have the 

same number of breaks/transitions, the same total time of bouts, but different bout 

distributions. Insofar as one long sedentary bout together with five small bouts reflects 

a different physiological reality that six bouts of the same intermediate length, this 

difference is captured by properly characterizing the empirical distribution of the bout 

lengths. To re-emphasize the importance of bout parameters in segmentation profiling, 

it should be noted that setting our minimum bout length to five minutes would result 

in yet another picture: scenario (a) would contain six valid bouts adding up to one hour, 

but (b) would contain only one bout with a total duration of 50 minutes.    

Empirical observations show that the distributions of bout durations roughly follow a 

power law (𝑝(𝑥) = 𝑎 ⋅ 𝑥−𝛼, where x is the bout duration, p(x) is the density and a a 

constant). Simply put, there are few long bouts for many short ones. Thus, Chastin and 

Granat proposed to estimate the exponent of the power law to quantify segmentation: a 

high α points to a high level of fragmentation, i.e. the volume is accumulated through 

many short episodes. Likewise, they proposed the Gini index, originally measuring 
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economic inequality, as segmentation index: when the Gini index is high, the volume is 

made in a few bouts, pointing to low segmentation and vice-versa (see Figure 6).  

     

 

Figure 6: Succession of periods of active and inactive time (blue and white) over 3600 epochs (upper part) and the 
corresponding cumulative active time by no. of periods (lower part) in two scenarios (left and right) drawn from different 
distributions of activity durations. In both scenarios, the total active time is equal, but in the right-hand side activity is 
less segmented, with fewer, longer activity periods than in the left-hand side. The blue curve is called the Lorentz curve; 
the closer this curve to the diagonal black curve (right-hand side compared to left-hand side), the more even the 
distribution, the more segmented the activity time. The Gini index is equal to A/(A+B); a low value (right) points to 
stronger segmentation and a high value (left) to a weaker segmentation. 

There exists no consensus on how to extract information regarding segmentation 

patterns from bouts and literature is scarce on this topic. Whereas the first approach 

exposed here uses bouts to quantify which of the behavior is performed in prolonged 

periods, another looks at bouts to quantify to what extent the behavior is performed in 

prolonged periods. The first approach, by discarding short, sporadic periods of behavior 

can overlook an important constituent of an activity profile, while the second approach, 

looking at sufficiently small bouts, is able to capture a more general picture. Yet, 

properly characterizing a distribution with meaningful, interpretable metrics is a 

challenge that has not been properly addressed in the field yet. Despite the 

consequences that choices concerning segmentation measurement have on the 

conclusions drawn from activity data, only a few studies discussed this issue [46, 52].  
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Unlike Alternburg and Chinepaw, who suggest harmonizing methods of bout analysis 

for better transparence [50], I think that such a harmonization needs to be preceded by 

a discussion on the definition of the bout, the health outcome under study and the way 

that the metric chosen is thought to model it. Different parameters of the bout detection 

algorithm result in different distributions of bout durations and consequently call for 

different bout analysis strategies. Likewise, each research questions requires specific 

methods. Standard guidelines regarding bout analysis are important to improve 

comparability, but they need to emerge from a systematic discussion of the strategic 

choices made by the authors. To this day, apart from a few articles pointing to the 

discrepancies in methods of bout analysis and their potential effect on epidemiological 

results, such a systematic discussion is still missing.  

Bouts are important for segmentation analysis as they retain significant behavior 

episodes only. In fact, when we ignore micro-sequences, we obtain the greater picture 

of the activity profile over the day. However, micro-sequences that cannot be captured 

in bouts can have a relevance for health as well. Thus, characterizing the distribution of 

sequences of any length in the same way as we do for bouts can reveal new aspects that 

should not be ignored. Nevertheless, approaches to segmentation based on bout analysis 

only have dominated the literature so far,   

In this thesis, I chose a small bout length (1 minute) in order to limit information loss; 

choosing longer bouts (e.g. 10 or 20 minutes) would have discarded many micro bouts 

(<2 minutes or <4 minutes) that may be of relevance. In addition to bouts, the 

distribution of sequences of any length (even micro-sequences, e.g. 1 or 5 seconds) is 

investigated. With this approach, I highlight both the greater lines of daily activity over 

the day with bout analysis, while keeping in mind small bursts of behavior. 

Summary 

Apart from the volume of MVPA, this first part of the introduction discussed two aspects 

of activity that need to be considered: volumes of physical inactivity/sedentary behavior, 

which have drawn much attention in addition to the traditional emphasis on volume of 

MVPA, and the segmentation patterns of these two volumes. First, I emphasized the 
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importance of investigating the effects of different volumes (sedentary behaviors, 

standing, light-intensity physical activity, MVPA…) as different part of the same time 

budget (i.e. components of a composition). The distinction between sitting and lying 

should also be developed and their distinct effects investigated. Second, I explained that 

the segmentation pattern and the volume of a behavior are to be modeled as two distinct 

effects. In addition, different approaches to segmentation were discussed. Despite 

abundant literature on the question of physical behaviors and health, it is still unclear 

whether there are two independent effects of volume and segmentation of physical 

inactivity/sedentary behavior (Scientific Report - 2018 Physical Activity Guidelines). To 

clarify this question, studies need to discuss and integrate metrics of segmentation and 

volume systematically into their models.  Moreover, it is not clear whether quiet 

standing, as opposed to sedentary behavior, is beneficial to health as segmenting 

behavior or as volume.  
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 Detecting physical behavior with accelerometers 

In order to understand the effects of the various aspects of physical behaviors on health, 

as discussed in the previous section, researchers need to set up experiments and study 

protocols in which physical behaviors can be measured. Epidemiological studies 

focusing on free-life conditions have long relied on questionnaires to assess physical 

activity levels [12]. Although very practical for its low cost and easy implementation, this 

method was criticized because subjects are known to be inaccurate in their reports 

regarding volumes of activity [12, 53]. It is needless to emphasize that this recall bias is 

probably even more severe when investigating the exact patterns of segmentation and 

time budgets including refined categories of behaviors (e.g. standing or sitting), whose 

importance was addressed in the previous section. As these dimensions of physical 

activity gained importance in the scientific scene, the need for a precise, continuous 

monitoring tool becomes more acute.  

In the late two decades, an increasing number of studies relied on accelerometer devices 

mounted on the subject’s body to assess physical activity. One of the early and most 

notorious study was the 2003-2006 NHANES study, which aimed to estimate physical 

activity habits of Americans and collected accelerometer data from nearly 15000 

individuals aged six years and older [54]. Following the NHANES study, accelerometers 

gained popularity, their price and size reduced, and they are considered today a standard 

tool for physical activity assessment in epidemiological studies  [55, 56]. In this section, 

I will introduce the core topics of physical behavior detection with accelerometer. I will 

discuss technical specifications of accelerometers, the challenges in signal analysis and 

models for recognition of human activity using these devices. Chapter III of this thesis 

will report the results of my detection algorithm on empirical data and will further 

discuss some of the major challenges in this field.  

 Accelerometer: working principles 

Accelerometers are sensors that measure proper acceleration and, consequently, when 

attached to another body, the acceleration of this body. The accelerometers contain the 
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piezoelectric materials (such as crystals or certain ceramics) or micro-machined 

microelectromechanical systems (MEMS), which produce electricity in response to 

mechanical stress along a certain axis. The electricity produced is measured by the 

device at a certain rate and converted to data bytes (the output) corresponding to the 

acceleration magnitude. These data are stored in the device’s memory and can be 

accessed at a subsequent stage by the user.  

 

Figure 7: Tri-axial accelerometer sensors mounted on different parts of the body. The three axes (sometimes 
called longitudinal, sagittal and transversal) are shown for the device on the man’s chest.  

The acceleration is typically read in m/s2 or in acceleration due to gravity, g (≈9.81 m/s2). 

Accelerometers measure the acceleration due to Earth’s gravity, and hence will read 1 g 

(or -1 g, depending on the convention used) along an axis when they are at rest on a 

surface, perpendicular to the ground, and 0 g when parallel to the ground. When the 

sensor is in movement, the accelerometer will add the corresponding acceleration to the 

acceleration due to Earth’s gravity. 

Accelerometers have three important specifications that need to be considered. First, 

the amplitude of acceleration that can be read differ across devices, and typically goes 

from ±2 g in the simple devices to ±16g in the performing ones. When this range is too 

small, the device might not be able to record peak accelerations associated with extreme 

activities. Second, devices measures acceleration at discrete time points, typically 

varying between 30 and 100 Hz. In order to capture all information of human motion, 

the sampling frequency must be at least twice as high as the highest frequency found in 

the data (Nyquist-Shannon sampling theorem). For instance, if the frequency of human 

movements does not exceed 15 Hz, we would ideally need to sample acceleration at 30 
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Hz.   Regarding these two specifications, recommendations suggest an ideal range of ±12 

g when the sensor is mounted at the ankle, i.e. where acceleration is strongest, and a 

much smaller range when mounted on the upper body or the head (±4 g or ±5 g) [57]. 

However, good results can be obtained even when the amplitude is suboptimal [58]. 

Regarding sampling frequency, Bouten and colleagues recommend at least 20 or 30 Hz 

[57]; in fact, most of the information concerning human locomotion is contained in 

frequencies up to 10 Hz [59]. Third, the number of axes used varies across devices; early 

commercial accelerometers used in health sciences had one axis, but more recent 

devices read acceleration along two or even three orthogonal axes [60]. A higher number 

of orthogonal axes allows a better estimation of the device’s orientation and the 

direction of the motion relative to a reference frame (Figure 8). Three-axis 

accelerometers have progressively become standard in in the beginning of the 2010’s, as 

they allow a significantly better detection of the orientation and motion in space [61].  

Processing raw accelerometer data 

Windowing 

Simply put, the objective of algorithms for activity detection is to apply a function to the 

accelerometer signal that outputs the corresponding activity behavior. Since human 

movements are performed in lower frequencies than the sampling frequency, we need 

to group raw signals in relatively long ‘windows’ in order to be able to translate them 

accurately to human activity. A first, common approach bins the signal into sliding 

windows of the same length. As the window length increases, patterns specific to certain 

behaviors emerges more clearly and discrimination between behaviors becomes easier. 

On the one hand, long windows help detect low-frequency behaviors. In addition, when 

we have high-frequency behaviors that do not manifest themselves in a clear way, long 

windows, by containing several samples of this repetitive behavior, increase our 

confidence in identifying them correctly. On the other hand, longer windows result in a 

lower resolution, as a single behavior is assigned to a long time laps, and therefore may 

not be adapted to short sporadic behaviors. Thus, window lengths typically vary between 

1 and 10 seconds across studies (although much longer windows do exist), and the 
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accuracy of activity recognition was shown to depend on both window length and the 

specific behavior to be detected [62, 63]. In some studies, the sliding windows overlap 

to a certain extent (e.g. to 50%) [58], in order to make sure that entire patterns are 

detected and not split up over two separate windows. 

The necessary trade-off between window length and resolution has led researchers to 

look for other segmenting methods. Some researchers have recommended that the 

window length be determined dynamically, either by external signals (e.g. when the GPS 

points to a dislocation) or by features of the accelerometer signal itself [62, 64]. Despite 

its advantage, dynamic windowing is less frequent in the literature, as it requires 

complex, uncertain algorithms or external input. 

The segmentation discussed here should not be confused with behavior segmentation 

discussed in the first section. Behavior segmentation relates to the patterns by which 

humans distribute their behavior over time and bears a physiological significance per se. 

Here, segmentation merely relates to a technique of signal analysis necessary in order to 

recognize the human behavior performed.   

 Posture and motion intensity 

As explained above, the accelerometer readings consist of two components: the static 

acceleration and the dynamic acceleration. The dynamic acceleration corresponds to the 

intensity of body movements, and the static acceleration to the orientation relative to 

gravity. Several approaches exist for separating the dynamic acceleration from the total 

acceleration. Van Hees estimates motion intensity by taking the Euclidian norm of the 

signals and subtracting 1 g due to gravity(√𝑎1
2 + 𝑎2

2 + 𝑎3
2 − 1). The same author suggests 

that a high-pass filter applied to the signal (e.g. Butterworth filter) can improve motion 

measurement, given that typical human motion is performed at a higher frequency than 

0.2 Hz [65]. Others proposed motion metrics based on the standard deviation of the 

signal over the epoch [66]. Likewise, the mean of the signal or a low-pass filtering applied 

axis-wise can isolate the gravity component; once this component is given, simple 

trigonometric formulae can yield the inclination angle of the body relative to gravity.  
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Most epidemiological studies conducted on physical activity used activPAL or ActiGraph 

devices [61]. These devices yield ‘activity counts’, which represent another method of 

measuring motion intensity over a certain epoch (typically 1 to 60 seconds). This method 

is proprietary to the manufacturer [67], although Brønd and colleagues succeeded in 

estimating it [68]. Because of the immense popularity of the devices, activity counts have 

become a standard measure of activity intensity that has occupied much of the 

discussion in the field so far. These counts were criticized for being opaque and lacking 

straightforward meaning; in addition, they are not equivalent across devices [66]. The 

ubiquitous use of the counts has led to a confusion among researchers and to a 

dependency to manufacturers using it. Therefore, it seems that research should focus 

away from counts and use clear, interpretable metrics computable from the raw data. 

This basic processing of the data provides the experimenter with measures of motion 

intensity, which can be used as such or converted to energy expenditure using well-

known formulae [61] as well as with measures of inclination, or body postures. Using 

cut-points, basic behavioral categories can be created out of these measures (e.g. 

inactivity, very light intensity light-intensity and moderate-to-vigorous behavior, 

depending on a measure of motion intensity, or standing or sitting, depending on leg 

inclination). As researchers aim to use refined categories of behavior, they will need to 

extract complex features from the raw data, which will be fed into advanced algorithms 

for behavior classification. The next section briefly presents these features. 

Time and Frequency domain features 

Over a certain window, features of the signal can be computed in the time domain and 

the frequency domain [58]. Signal data are recorded in the time domain, with each data 

point corresponding to the acceleration along a certain axis at a certain time. With the 

Fourier transform, this time series can be described as the sum of a series of sinusoidal 

waves of different frequencies. Depending on the nature of the signal, each wave will 

have a certain amplitude. Thus, each time series, belonging to time domain, can be 

transformed into a series of amplitudes in the frequency domain, representing how 

much of each frequency is found in the signal. 
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Features computed in the time domain, i.e. on the original series, aggregate information 

about acceleration values over time.  They are typically the mean, the standard deviation, 

different quantiles, correlation between signals, etc. For instance, a high standard 

deviation is due to strong oscillation over the time window, hence pointing to a 

movement of the sensor. Features computed in the frequency domain aggregate 

information about the periodicity of the acceleration values. They are typically the 

maximum amplitude (which is the strongest frequency in the signal), entropy 

(measuring the disorder, i.e. how clear the periodicity in the signal is), the total energy 

(i.e. the sum of all squared amplitudes), etc. 

The Fourier transform provides information about frequencies for the signal of the 

whole signal, but not about where in time a certain frequency is to be found. Yet, 

reducing window size for more time precision results in loss of information about lower 

frequencies. To cope with this limitation, a few studies succeeded in extracting features 

from a wavelet transform of the data [69, 70]. A wavelet transform yields a 

representation of the frequency amplitudes in time, which enables a better identification 

of the time at which an activity, corresponding to a certain frequency level, is performed.  

Creating an algorithm for behavior detection 

In the previous section, we have seen how raw data is processed to create complex 

features, aiming at capturing the information contained in a certain window/epoch. 

Once these features are ready, they will be fed into algorithms that will decide, based on 

the information extracted from the acceleration, what is (the likeliest) physical behavior 

associated with it (Figure 9).  

Relatively simple algorithms for classification can be created by human intelligence. As 

explained above, we can, for instance, detect movement and inclination of the body 

using formulae, and impute simple behaviors using this information. However, as the 

behaviors of interest become more complex, machine learning models represent a very 

popular and performant alternative [71, 72]. 
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Figure 8: Example of raw accelerometer signal (hip, sagittal axis) for different behaviors.  (A) Lying, (B) Standing, 
(C) Vacuuming, (D) Sweeping, (E) Walking, (F) Rope jumping. Models aim to classify behaviors based on the difference 
in the patterns of the signals (Image from [73]).  

Machine learning models learn in an unsupervised or supervised way [74]. In our case, 

unsupervised learning means that the machine will creates its own categories of physical 

behavior by looking for the most meaningful classification strategy based on the data 

given. Supervised learning, on the contrary, requires a learning set, in which both the 

statistical features and the target observed behaviors (‘labels’) are given. In a training 

phase, the machine will look for a classification strategy -- based on the features -- that 

best matches the given observed behaviors. Once the training is done, the optimized 

strategy will be used to classify features, this time without knowing the real behaviors. 

A few attempts were made to use unsupervised learning for physical activity detection 

with accelerometer data [75, 76], but they remain an exception, mainly because 

investigators aim to obtain pre-defined, well-known categories of physical behavior for 

their subjects. Thus, supervised learning in human activity recognition has become very 

popular in the field and has yielded excellent results, as far as the internal validity is 

concerned [61, 71]. 

Human activity recognition using supervised machine learning can be divided into two 

main approaches. The first, more common and traditional, relies on handcrafted 

features extracted from the raw signal, such as those introduced in the previous section 

(mean, variance, max. amplitude of the Fourier transform…). Classification models (e.g. 
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decision tree, support vector machine, naïve Bayes classifier…), are trained to predict the 

correct behavior for a sequence of the signal using the features extracted from the signal 

[77] (Figure 10). The second approach relies on artificial neural networks (in a method 

referred to as deep learning) using the raw signal itself.  The signal is fed directly into 

the neural networks, whose successive layers of neurons are trained to detect meaningful 

features of the data, eventually allowing for a classification of the signal sequences by 

behaviors [78](Figure 11).  

 

Figure 9: A classification model based on handcrafted feature extraction. Each observation belongs to one of three 
classes (here physical behaviors), marked with different shapes and colors. Based on two features defined and computed 
by the researcher (feature 0 and feature 1 - e.g. the mean and the median of the signal over the window), a good 
classification model draws decision boundaries that separate the plane into decision areas corresponding to each class 
(Adapted from [79])  

Whereas in the first approach models based on handcrafted features rely on a priori 

domain knowledge of the data to create features, deep learning models have the 

advantage of being able to detect features that the researcher has not thought of. In 

addition, features crafted by humans are usually simpler than features created by a deep 

network of neurons [80]. As researchers aim to discriminate between similar behaviors, 

they must think of increasingly complex features and in such a large number that the 

time needed for computation and training grows exponentially, resulting in thousands 

of features which must be fed into the classification models [81]. Feature selection among 

those initially computed can speed up training process and improve classification 

accuracy, but designing a good selection algorithm represents a considerable challenge 

in itself [74] 
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Figure 10:  Illustration of a neural network: The signal x is put in the first layer and transformed through the 
successive layers. By adjusting the weights W iteratively, the model is trained to detect automatically the features of the 
signal that allow a correct classification into one of the classes y in the output layer. 

 

Despite these advantages, there are two main downsides to deep learning in this context. 

First, neural networks are complex and difficult to tune, and the reported results of the 

best system typically do not include details about the strenuous selection process of the 

model [82]. Second, the very fact that features detected by neural networks are so 

complex makes these models very specific and less generalizable to similar but not 

identical tasks. For instance, Awais and colleagues highlighted the discrepancy between 

the contexts in which learning data is generated – controlled or semi-controlled 

laboratory structure – and real-life conditions [71]. Whereas in conventional models 

based on handcrafted features the human intelligence can ponder whether features with 

high discriminative power used in the model are generalizable, it is much less the case 

in the opaque models created in deep learning approaches. In chapter II, we propose a 

hybrid model combining conventional feature extraction and deep learning methods. 

The model unites the advantages of the two approaches and represents a performant 

alternative to pre-exiting models while remaining very simple and versatile.   

Number and placement of the devices on the body 

To detect human physical activities, accelerometers have been placed at different 

locations on the body, typically one or several of the following: ankle, thigh, hip, lower 

back, chest, upper arm and wrist [83]. One can expect that the classification accuracy      
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depend on the number of devices employed and their location, and that a specific 

activity could be better recognized when the device is placed on specific part of the body 

[84]. In addition, an important factor to consider is the subjects’ comfort, both physical 

and social, as it can affect their level of compliance with the wear time directives [85]. 

As the following two examples illustrate it, the optimal choice of placement and number 

of accelerometers to be used depends on the target behavior and the detection model 

chosen. Cleland and colleagues compared the accuracy of the best classifier into 

relatively basic categories (lying, sitting, standing, walking, running, stairs up and stairs 

down) for all possible combinations of number and locations (left ankle, left thigh, hip, 

lower back, chest and left wrist) [83]. For a single accelerometer, classification was best 

when the device was placed at the hip (97.81%) and worst at the ankle and wrist (95.63% 

and 95.88%). Interestingly, for two and more devices, the difference across combinations 

of locations was slight and insignificant. Moreover, from two devices up, adding a device 

did not improve accuracy significantly (and even slightly decreased it from three up [83]. 

Zdravevski and colleagues looked at a wider array of activities including, on top of the 

activities used by Clealand and colleagues, rope jumping, vacuuming, sweeping, dish 

washing, as well as bicycling at 50W and 100W resistance [81]. Accelerometers and 

gyroscopes were placed at the ankle, wrist, chest and the hip. Chest was the best (89.1%) 

at predicting activities when taking a single location. The best combination of two 

locations was ankle+wrist and chest+wrist (91.8%). For three locations, 

ankle+wrist+chest (93.4%) was best. With the four devices, the accuracy dropped to 

93.0%. Moreover, the same study showed that different combinations predict best with 

different machine learning models. 

In summary, the choice of the number and placement of accelerometers should account 

for the specific set of activities under consideration and practical aspects for the wearer 

[86]. In general, the marginal gain in accuracy decreases beyond two or three locations, 

and the impact of placement choice becomes less decisive as the number of devices 

increase. 
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Conclusion 

This section has shown that accelerometers represented a widespread, very good trade-

off between accuracy and feasibility of physical behavior monitoring in patients. In the 

choice of devices, technical specifications such as amplitude and sampling frequency can 

be relevant, but most modern commercial sensors for health research are good in that 

respect. More important is the choice concerning placement and number of devices. 

Detecting behaviors using raw acceleration signals should be encouraged over opaque 

proprietary metrics. While traditional outcomes such as motion intensity are 

straightforward, for complex behaviors, judicious choices are to be made regarding raw 

data processing techniques (windowing, feature extraction) and the statistical      

classification model. Chapter III takes up this challenge and proposes a simple and 

performant classification model of human behaviors based on raw inertial data. 
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The impact of built environment on physical activity 

The previous sections have dealt with physical behaviors, how to measure them and 

what their health effects can be. Yet, what can be said about the determinants of physical 

behaviors? Many studies pointed to many determinants of physical activity. Multiple 

biological, environmental and behavioral factors were mentioned in the literature: 

season and weather [87], psychology [88], various life course events [89], age, sex, 

education, employment or health condition [52]. My thesis focuses specifically on the 

effects of characteristics of the built and social environments in cities. This section 

introduces key findings and some of the main challenges in investigating the effect of 

urban built and social environment on physical behavior, both at a theoretical and 

practical level.  

Urban environment: an intervention space to fight physical inactivity 

epidemic 

     Changing the built environment, especially in cities, is one of the best-studied 

strategies to fight against the pandemic of physical inactivity [14, 90, 91]. Urban 

populations are usually much less active than their rural counterparts, and mass 

urbanization in developing countries plays a key role in the spread of the pandemic [92–

94]. As populations move to cities, their physical environment changes radically, 

potentially affecting their opportunities to engage in physical activity. Aspects of the 

urban landscapes such as traffic, greenspaces or even aesthetics can play a role in the 

level of physical activity [93, 95]. Therefore, integrating programs aiming at promoting 

physically active lifestyles into the priorities of urban planning is a health public concern 

of the first order.  

The literature assessing the effects of variables of the urban environment on physical 

activity levels is abundant. Below I will briefly give an overview of the environmental 

factors known to be associated with physical activity. The features mentioned here 

should not be regarded as exhaustive; whether a variable can be considered as a feature 

of the urban environment can sometimes be a matter of debate, and many attributes of 
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the environment appear in different categories depending on the author. My aim here 

is only to illustrate the importance and the nature of the impact of some characteristics 

of the urban environment on physical activity of those exposed to them.  

Studies often distinguish between utilitarian (or transportation) physical activity, and 

recreational (or leisure) physical activity (e.g. [93]). Environmental features can 

positively affect utilitarian physical activity levels through choice of active means of 

transportation (i.e. transports using only physical activity for locomotion, e.g. walking 

or bicycling instead of driving), as they affect the choice to engage in physical activity 

during leisure time. Special attention should be paid to public transportation. Although 

not active, it differs in several ways from passive means transportation such as car 

driving, as we will see. 

Before introducing the main findings of the literature, it should be emphasized that the 

literature often distinguishes between children, adolescents, adults and older adults 

regarding the effects of certain environmental characteristics on activity [93]. In fact, 

different ages have different ways of life, which interacts with environment in different 

ways. My thesis focuses on adults and older adults, and evidence presented here refers 

to these age groups.  

The main environmental attributes found to affect, or at least to correlate with, physical 

activity are the following:  

● Walkability: Defined as a composite measure of residential density, street 

connectivity and a various land-use mix [96], this characteristic was found to be 

a strong correlate of adults’ total levels of physical activity [97, 98] and in 

particular with older adults’ walking [99, 100].  

● Active transports infrastructure: More sidewalks, bicycle lanes and traffic free 

areas were reported to affect utilitarian walking [91, 97]. 

● Access to destinations: Areas comprising numerous destinations such as shops, 

services, cultural locations etc. were shown to be associated with walking in older 

adults [99], and overall walking in adults of all ages [95]. Expectedly, evidence 

was particularly strong for utilitarian walking [91, 101], but newer evidence points 

to a similar correlation with recreational walking in older adults [100].  
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● Aesthetics: Aesthetically pleasing streetscape (beautiful architecture, green- and 

waterways, absence of litter and vandalism…) was shown to be associated with 

both recreational and utilitarian walking [93, 97, 99, 100].  

● Parks, open spaces and fitness facilities: Proximity to these locations was shown 

to encourage recreational and planned physical activity [91]. 

● Safety: Perceived safety from crime was shown to be strongly correlated with 

walking, especially for older adults; it is supposed that perceived crimes is a 

barrier for older people to get out of their homes [97]. 

● Proximity to public transportation: There exists some evidence to the effect of 

better access to public transportation on utilitarian [97, 102, 103] and leisure 

walking [100]. 

Evidence about the effect of environment on physical activity should meet, at least 

ideally, the criteria of objectivity and causality. By objectivity, I mean an objective 

assessment of one’s built environment and physical activity. By causality, I mean the 

ability to determine the direction of the relationship between environment and 

physical activity, as we will see later. Yet, when examining the studies reviewed here 

(which are themselves reviews of dozens of studies), we see that only a little minority 

meet the criteria. In fact, designing a study that is based on objective evidence and 

allowing causal inference represents a major challenge. In the rest of this section, I 

will discuss the challenges associated with a robust study design and will introduce 

some of the recent advances in the field.  

Study design 

All studies investigating the relationship between environment and physical behavior 

rely on the assumption that individuals are exposed to environmental stimuli that might 

affect, or not, their behavior. In order to measure this exposure, one must locate 

individuals and assess the stimulus under consideration in this location. Along with the 

exposure, i.e. the explanatory variable, one must measure physical behavior, i.e. the 

outcome variable, and link between them both.  

Localizing study subjects for measuring their exposure  
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Measuring environmental exposure starts by determining the location in which the 

study subjects are. Most past research used individuals’ homes as a proxy to their 

localization, and most evidence to the effect of environment on physical activity was 

cumulated based on this proxy. As individuals are mobile over the day and spend most 

of their time outside of the home area, this method has been criticized for its inability 

to capture individuals’ true exposure to environmental attributes [104, 105]. A practical 

and cheap solution consisted in asking individuals to report their activity spaces over 

the study period, using a web mapping tool [106]. For precise and reliable results, a few 

studies equipped individuals with Global Positioning System (GPS) in order to record 

their momentary localization and linking it to physical activity, thus investigating 

people’s “spatial energetics” [107].  

Environmental measures 

Naturally, localizing subjects is not enough to assess exposure to environments that 

promote physical activity, and the researcher must compute the level of exposure in this 

localization by using geographic data regarding the environmental attribute of interest. 

Especially when localization is momentary, such spatial analysis can be complex. Thus, 

researchers typically use sophisticated Geographic Information System (GIS) tools 

allowing them to merge layers of information regarding individuals’ positioning in space 

and environmental data [108]. 

An additional step in building a model consists in choosing a judicious method of 

aggregation of environmental variables around the location. First, one needs to 

determine the area around the localization that is to be considered in the model. Most 

studies define the area using administrative boundaries (such as census units), but these 

areas do not necessarily correspond to the real exposure experienced by the subject [97]. 

Other studies use buffers drawn around the spot of interest. This area is usually referred 

to as “buffer” in the literature [109]. This size of the area depends, of course, on the nature 

of the environmental attribute(s) studied. The shape of the area needs to be carefully 

chosen as well. As a matter of practicality, researchers tend to search for an 

environmental attribute within a certain radius of Euclidian distance around a location 

point. However, this method relies on a very strong assumption as to individuals’ 
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perception of their environment; especially in urban landscapes, a radius of Euclidian 

distance fails to reflect accurately the field of influence on individuals’ behavior. For 

measuring exposure to shops or parks, for example, a Manhattan distance (“city block 

distance”), taking into account the layout of the grid street, is arguably more 

appropriate. Sometimes, a large highway can block the access to attributes that are 

spatially very close to the individual’s location. To address this issue, Chaix and 

colleagues asked subjects to draw the boundaries on a web-based application [110]. Thus, 

they had an accurate representation of the subjective exposure area. This approach can 

be criticized for its lack of objectivity – the subjective activity space is perhaps influenced 

by the attributes themselves – and is applicable only when looking at a fixed location, 

typically individuals’ homes, but remains appealing for directly addressing the thorny 

question of exposure spaces.  

A second choice that the researcher needs to make, once the exposure area is defined, 

pertains to the function of aggregation of the attributes of interest in the area. To cite a 

few examples, researchers can choose an indicator function (we label an area as 1 or 0 

depending on whether the number or quantity of attribute exceeds a certain threshold), 

an average function, a sum function etc. As for the question of the buffer parameters, 

one should remember that the choices of the aggregation function depends, beyond 

issues of practicality, on many factors, such as the attribute under consideration, the 

location’s topography, whether a fixed location or a trajectory is studied, etc. (see Figure 

7).   

Thus, beyond issues concerning data sources of GIS, the parameters chosen for spatial 

analysis  - buffer size and shape, aggregation function etc. - is a delicate issue that 

researchers need to discuss and justify [109, 111]. As objective assessment of exposure to 

environmental attributes develops, more awareness of the consequences of the 

parameter choice in exposure measurement will prevent the great discrepancies in 

evidence that we have witnessed in the field so far. 
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Figure 11: Map of green areas: When assessing exposure to green areas around an individual’s home, choices concerning 
the exposure area yield different values. If we measure the fraction of the green area in the exposure zone, different 
radiuses for the buffer (based here on Euclidian distance) will yield very different values. Likewise, a measurement based 
on administrative boundaries (here the limits of the neighborhood) will yield yet another value. If we are only interested 
in the presence/absence of green areas, the smaller buffer zone does not contain any, while the larger ones and the 
neighborhood do.  

Physical activity measures  

The previous section has discussed challenges in measuring exposure to environmental 

factors. In order to link it to physical activity, the researcher must be able to possess 

reliable and accurate data on the physical activity performed and to be able to attribute 

variation in the observed activity to the environment. Direct observation of physical 

activity in free-life conditions is practically impossible. Consequently, some studies have 

equipped their subjects with activity monitors (usually accelerometers) to measure their 

physical activity levels in time in an objective manner [95]. Yet, despite a growing 

number of studies using objective measures of physical activity, the body of evidence 

about the effects of environment on physical activity is largely made up of studies relying 

on individuals’ self-reports [97]. As explained above, self-reports regarding physical 

activity suffer from a considerable bias which makes it difficult to draw meaningful 

epidemiological conclusions [54].  
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The problem is even more acute when investigating the effects of environment on 

postures or accumulation patterns of physical behaviors, as it is reasonable to assume 

that the recall bias is even more important when it comes to reporting these variables. 

As explained above, physical behaviors are complex and multidimensional: beyond 

levels of MVPA, postures such as sedentary behaviors are also relevant for health. 

Likewise, segmentation was shown to influence health that is independent from the total 

volume. In fact, to the best of our knowledge, no study investigated the relationship 

between environmental attributes and body postures or segmentation patterns so far. 

Assessing the effect of environment on physical activity requires identifying consistent 

patterns between measures of individuals’ environment and their physical activity. To 

do so, one needs to define a common statistical time unit of both variables. The immense 

majority of research focus on exposure to environmental variables around a single fixed 

location, such as the home or workplace, and aggregate physical activity over long 

periods, such as days or the entire monitoring periods (e.g. [93, 97, 99–101]). In contrast, 

a few studies looked at individuals’ physical activity over very short epochs (one second 

to one minute) and linked them to the immediate environment to which the individuals 

were exposed in order to obtain high-resolution evidence to the relationship between 

the two [112, 113].  

This tempting design, referred to as the “contemporaneous design” in this thesis,  was 

applied a few times, such as in a study on the influence of exposure to greenspace on 

MVPA in children [113], which used 10-second periods as statistical units. This approach 

was later criticized for its inability to address causality, as I will explain below. Another 

approach, developed by Chaix and colleagues, exploited the same high resolution to 

chop up these observations into meaningful spatio-temporal life-segments [114]. These 

life-segments could be, for instance, activity places (shopping malls, home etc.) or 

journeys (going from home to work). Looking at life-segments allows the researcher to 

answer very specific questions about the relationship between environment and physical 

activity in a specific context, and to some extent, to circumvent causality issues, as 

explained below.  
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The problem of causality in cross-sectional studies 

Epidemiological studies ideally identify causal relationships between risk factors and 

health. In the case of environmental epidemiology of physical activity, cross-sectional 

relationships observed between environmental attributes and physical activity, two 

causal self-selection mechanisms can compromise inference.  

A first mechanism, well documented in the literature, is known as the neighborhood self-

selection bias. When a cross-sectional relationship is found between an environmental 

attribute around an individual’s residence and her/his physical activity level, one can 

argue that not the attribute caused the high activity level, but the individual chose to 

establish residency in this area precisely because she/he was prone to perform a high 

level of activity [95]. The most common solution to this bias is to design a longitudinal 

study, in which individuals’ physical activity is analyzed as a function of the time-

changing environments to which they are exposed. Another similar solution is quasi-

experiments, in which the subjects’ physical activity is measured shortly before and after 

a sudden significant change in an environmental attribute. For instance, Brown and 

colleagues measured the effect of a light-rail in Salt Lake City, Utah, by measuring 

residents’ physical activity shortly before and after the construction [102]. However, 

designing a longitudinal study or finding a quasi-experiment is difficult, and such 

studies are very rare. As an example, in a recent review about environment and physical 

activity in older adults, 94 articles were cross-sectional, five longitudinal and one quasi-

experimental [97].  

In many articles, neighborhood self-selection is addressed by controlling for the 

reported motivation in choosing the neighborhood in the first place [95]. In addition, 

contemporaneous designs linking between momentary exposure and physical activity 

represent a promising solution to this problem: one can limit the frame of analysis to 

places in which self-selection is not likely to happen, such as to life-segments that are 

remote from the subjects’ residential neighborhood.  

A second self-selection mechanism, less discussed in the literature, is the momentary (or 

daily) self-selection bias. This bias occurs in contemporaneous designs, when a 



INTRODUCTION 

54 
 

correlation between exposure and activity is observed. One can argue that the change in 

activity observed is not due to the exposure to the environmental attribute, but rather 

to the person’s self-selection of a specific place based on their personal preference for 

physical activity [115]. Here again, the concept of life-segments presented above proves 

useful, as it enables an analysis on a selection of places in which such a selection is not 

likely to occur (for example in places to which one does not choose to go, such as 

workplace). This technique is used and developed in chapter IV.  

Conclusion  

Environmental interventions, especially in urban contexts, can represent a good way to 

promote an active lifestyle. To do so, epidemiological studies are needed to investigate 

the effects of variations in environmental attributes on residents’ physical behavior using 

objective measurements. However, there are several designing challenges: extracting 

GIS features and aggregating them in space, aggregating data in time and circumventing 

causality issues inherent to cross-sectional designs. Especially informative are studies 

linking exposure to environmental features by location tracking and their 

contemporaneous physical activity. In this framework, slicing meaningful life-segments 

in time and space is a promising idea, since it can reveal new effects of specific 

environments to physical activity and isolate contexts in which the causal direction is 

unambiguous. Using objective measurements of physical behaviors (including postures) 

and location within the paradigm of life-segment analysis, chapter IV estimates the 

causal effects of various attributes of the urban environment on physical behaviors.  
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Thesis objectives 

In this introduction, we have seen how the theoretical frameworks of physical activity 

epidemiology have evolved over the past decades. From a framework in which planned 

continuous bouts of moderate/vigorous physical activity were viewed as the only 

relevant factors, more recent studies hint to the potential relevance of any kind of activity 

of any duration, all along the day. From these new insights, it follows a scientific need 

for a conceptual and methodological toolbox capable of dealing with nuanced categories 

of activities and complex patterns of activity accumulation over time. Likewise, for 

empirical studies, we need new material monitoring devices capable of accurately 

recording large arrays of activity in real time. As we shift towards this new paradigm, 

upstream research investigating the environmental causes of physical activity must 

account for continuous exposure to different environments and study their effect on 

different types of activity, all along the day.  

The present thesis positions itself in this new paradigm by undertaking a comprehensive 

study of physical activity in free-life conditions, its causes and effects, accounting for a 

large spectrum of activities, in all places and at all times of the day. To do so, I carried 

out an extensive analysis of data from the Paris RECORD epidemiological cohort, 

comprising medical information as well as location and physical activity records in more 

than 150 individuals.  To accomplish this task, I contributed to the development of new 

conceptual and methodological tools fitting into this framework. More concretely, the 

location tracks of individuals of the RECORD cohort was combined with geographical 

information in order to assess continuously the exposure levels to characteristics of the 

urban environment. Exposure to the environment was then linked to a detailed 

nomenclature of their contemporaneous physical activities. These were in turn linked 

to medical records, thus aiming at uncovering the entire pathway leading from 

environment to health through physical activity.  

This project was organized around three main research questions: I. How are physical 

behaviors related to health? II. How can we improve measurement of physical 

behaviors? III. How does the urban built environment affect residents’ physical 
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behaviors? Answering these questions yielded the five chapters of this thesis, as 

illustrated in Figure 12.  

 

Figure 12: Organization of the chapters in the thesis. 

Following a logical flow, this thesis could have been organized by presenting my work 

in investigating the environmental effects on physical activity first, and then on the 

effects of physical activity on health. For two reasons, this thesis is organized the 

opposite way, starting with the effects of physical activity on health and ending with the 

effects of environment on physical activity. The first reason is didactic:  the innovation 

of the section on environment and physical activity, as well as some concepts used in it, 

will be better understood by introducing the challenges of research on physical activity 

and health in the first place. The second reason relates to the history and the natural 

development of the discipline: epidemiological research started by focusing on the 

health hazards caused by high levels of physical inactivity in the population; it is only 

when this problem had been established that researchers, motivated by a need for 

intervention, began to study its causes in the environment in an extensive manner. 

 

The detailed layout of this thesis is as follows:  
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Chapter I investigates the relationships between various aspects of physical behaviors on 

health variables using observational data in free-living conditions from the RECORD 

epidemiological study. It innovates in the following domains. (i) It distinguishes 

between lying and sitting, two behaviors that are studied together as “sedentary 

behaviors” in past literature, and standing, an in-between category whose relationship 

with health in free-living conditions remains uncertain.  (ii) It disentangles the effects 

of volume and segmentation by integrating advanced metrics of both. (iii) It considers 

different volumes – components of the behavioral time budget – as compositions, thus 

accounting for the interdependency between components of the budget of physical 

behaviors.  

Chapter II presents the results of an interventional study conducted in Denver, 

Colorado, USA, in which participants were asked to integrate episodes of physical 

activity into their daily routines, following different segmentation patterns. This study 

brings new insights into the following issues. (i) It assesses the ability to implement an 

interventional program based on different schemes of sedentary behavior segmentation. 

(iii) It investigates the effects of different segmentation patterns on subjects’ well-being, 

fatigue, vigor and index of metabolic health (glucose and insulin levels).   

Chapter III is a methodological intermission about derivation of physical behaviors from 

accelerometer signals. It follows from the need to assess nuanced categories of behavior 

in observational studies, as stated in the first part. It proposes a new algorithm aiming 

to detect a very detailed nomenclature of physical behaviors from accelerometer data.  

The algorithm combines several state-of-the-art techniques and outperforms algorithms 

proposed by previous studies in accuracy and computational efficiency. 

Chapter IV examines effects of various attributes of the urban environment on mobility 

and physical behaviors. It proposes a pioneering framework with the following 

innovations. (i) It combines a high-resolution, contemporaneous design linking 

objective measurements of environmental attributes and physical activity. (ii) It 

investigates environmental effects on unseen categories of behaviors: sedentary 

behavior, standing and MVPA. (iii) It circumvents issues of causality bias by adopting a 

life-segment approach.  
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Chapter V builds on results from chapter IV suggesting that an efficient infrastructure 

of public transports is a key variable in the link between urban environment and physical 

activity. With the RECORD study, it investigates the passengers’ time budget of physical 

behaviors by transportation mode (public transports, car…) using the same design as in 

the previous chapter. It is one of the very few studies to address this question, and it 

represents a precious source of information for estimating the effects that urban 

planning policies concerning transportation can have on residents’ physical behaviors. 
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CHAPTER I  

Associations between physical behavior 

and various health outcomes 
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Chapitre I : Associations entre l’activité physique et des 

indices de santé (résumé français)  

De nombreuses études ont démontré les relations existant entre l’activité physique et 

diverses variables de santé. Il a été démontré qu’une activité physique insuffisante 

entraînait un risque accru de maladies cardiovasculaires, diabète de type II, ainsi que les 

cancers du côlon et du sein. Des études plus récentes ont avancé que, pour un volume 

total d’activité physique d’intensité modérée-à-vigoureuse constant, un large volume de 

temps sédentaire représenterait un risque supplémentaire pour la santé cardio-

vasculaire. Enfin, ces dernières années ont vu émerger une littérature importante sur 

l’effet de la segmentation temporelle des comportements physiques sur la santé. D’une 

part, le postulat selon lequel le volume d’activité physique modérée-à-vigoureuse 

recommandée devait être accumulée en périodes plus ou moins longues (par exemple 10 

ou 20 minutes) a été récemment remis en question, certains auteurs arguant que ce 

volume recommandé pouvait être effectué aussi bien en séquences longues que courtes. 

D’autre part, ce sont précisément les périodes prolongées de comportements sédentaires 

Vocabulaire technique utilisé 
 

Activité physique d’intensité modéré à vigoureuse : Activité physique nécessitant une dépense 
énergétique de 3 MET (3 fois le métabolisme basal) ou plus, par exemple : marcher à 5 km/h ou 
plus, passer l’aspirateur.   

Comportement sédentaire : Activité physique quasi nulle, nécessitant une dépense énergétique 
de 1,5 MET ou moins tout en ayant une posture assise ou couchée. Dans la littérature 
traditionnelle, il est cependant usuel de considérer les activités effectuées debout au repos 
comme des activités sédentaires. 

Comportement physique : Manière du corps de se mouvoir (activité) et de se positionner dans 
l’espace (posture), par exemple : marcher, sauter, être assis, être allongé. 

Volume d’activité ou volume de comportement : Le temps total passé à effectuer un 
comportement physique sur la période étudiée (typiquement plusieurs jours).   

Budget-temps des comportements physiques : L’ensemble des volumes des comportements, dont 
la somme est égale au temps total de la période étudiée. 
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qui ont été mises en cause dans les études, indépendamment du budget-temps des 

comportements physiques. En supposant que le volume d’activité modérée-à-vigoureuse 

soit suffisant, et que le temps sédentaire soit suffisamment segmenté, il n’est en effet pas 

certain que le volume de temps sédentaire ait des effets nocifs sur la santé. 

La plupart des études réalisées en milieu de vie libre sur les activités sédentaires et leur 

lien avec la santé souffrent de plusieurs limites. Premièrement, la distinction entre divers 

comportements à faible dépense énergétique, à savoir les activités réalisées debout, assis 

ou couché, n’a pas été suffisamment étudiée jusqu’à présent. Deuxièmement, les effets 

des comportements sont le plus souvent étudiés séparément les uns des autres, alors que 

c’est l’ensemble des comportements qui doit être considéré comme un budget-temps 

(c’est-à-dire une composition), où le volume d’un comportement est nécessairement 

alloué sur le budget aux dépens d’un autre. Troisièmement, la segmentation temporelle 

des comportements a été étudiée de façon peu systématique. En mesurant une relation 

entre un comportement et la santé, la plupart des études ne séparent pas clairement la 

part due à son volume temporel total et à la façon dont celui-ci est segmenté. Par ailleurs, 

en agrégeant les comportements physiques sur des pas de temps relativement long (par 

exemple une minute), les grandes études ont ignoré les micro-séquences de 

comportement, bien que celles-ci puissent avoir un effet important sur la santé. 

Pour remédier à ces lacunes, nous avons entrepris d’analyser, de façon transversale, des 

données de l’étude de cohorte RECORD effectuée en région parisienne. Dans le cadre de 

cette étude, 154 adultes en bonne santé (64% d’hommes, âgés de 34 à 83 ans) ont porté 

des accéléromètres sur le torse et la cuisse pendant une semaine, dans des conditions de 

vie libre. Grâce à l’accélération enregistrée tout le long de la journée, nous avons pu 

dériver les comportements physiques des sujets à une résolution d’une seconde et établir 

un profil d’activité détaillé et représentatif de leur vie quotidienne. Cette résolution nous 

a permis de dresser un portrait non seulement du budget-temps des comportements 

physiques (temps passé couché, assis, debout, effectuant des activités d’intensité légère 

ou modérée-à-vigoureuse) mais aussi de la façon dont ces volumes de temps ont été 

cumulés sur la journée. Dans la mesure où ces profils d’activité reflétaient les habitudes 

comportementales des sujets, il nous a semblé intéressant de les mettre en relation avec 

diverses mesures physiologiques collectées au début de l’étude. Les deux dimensions du 
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comportement, le volume et la segmentation, ont été donc intégrées dans nos modèles 

d’analyse, qui ont également respecté le caractère compositionnel des budget-temps 

(c’est-à-dire de la codépendance des composantes du budget).  

Au-delà des relations bien connues entre l’activité modéré-à-vigoureuse et la santé, 

notre analyse a pu mettre en évidence des relations moins connues entre les budgets-

temps à haute composante « debout au repos » et un meilleur profil lipidique : 

concentration sanguine en triglycérides plus faible, concentration plus haute de 

lipoprotéines de haute densité (HDL). Ainsi, nos modèles d’analyse suggèrent que les 

profils où une grande partie du temps « assis » est remplacé par du temps passé « debout 

au repos » bénéficiaient d’un bilan lipidique tout aussi bon que les profils 

majoritairement sédentaires à niveau d’activité physique modérée-à-vigoureuse 

satisfaisant. De plus, nos modèles ont montré une corrélation importante entre les 

mesures d’adiposité (indice de masse corporelle et tour de taille) et les individus qui 

remplaçaient le temps passé généralement assis par du temps passé couché.   

Les relations entre la segmentation des différents comportements et les mesures de 

santé sont ressorties moins clairement. Nous avons constaté qu’à budget-temps 

constant, un volume sédentaire fragmenté en nombreuses micro-séquences était associé 

à une glycémie plus faible. D’autre part, une accumulation du temps non-sédentaire 

(debout ou actif) par de nombreuses micro-séquences était associée à un indice de masse 

corporelle plus élevé. Enfin, aucune corrélation entre les modes de segmentation de 

l’activité modérée-à-vigoureuse et nos indices de santé n’a pu être observée. 

Notre étude souffre de limites évidentes. D’abord, sa conception transversale nous 

interdit toute inférence causale. De plus, la puissance statistique relativement faible de 

l’étude ne nous permet pas de déterminer de façon catégorique que l’absence de 

corrélation dans notre échantillon reflète une réalité physiologique et n’est pas due à la 

petite taille de nos effectifs. Enfin, certaines relations observées entre la segmentation 

des comportements sédentaires et des indices de santé semblent complexes et 

nécessiteraient une investigation plus approfondie pour être tout à fait élucidées.   

Malgré ces limites, cette étude reste innovatrice sur plusieurs plans. A partir 

d’observations en conditions de vie réelle, elle démontre que certaines allocations du 
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budget-temps postural pouvaient partiellement compenser un manque d’activité 

physique d’intensité modérée-à-vigoureuse. De plus, elle met en avant l’importance 

cardinale d’une prise en compte des micro-séquences dans l’étude des relations entre 

segmentation du comportement et la santé. Nous suggérons que de nouvelles études 

continuent à développer les approches analytiques proposées en les appliquant à des 

jeux de données plus grands, de préférence dans le cadre d’un suivi longitudinal.   



Associations between physical behavior and various health outcomes 

64 
 

Article 

Associations of Sensor-Derived Physical Behavior with 
Metabolic Health: A Compositional Analysis in the 
Record Multisensor Study 
Isaac Debache 1,*, Audrey Bergouignan 1,2, Basile Chaix 3, Emiel M Sneekes 4, Frédérique Thomas 5 and 
Cédric Sueur 1,2 

1 Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 Centre National de la Recherche Scientifique 
(CNRS), Université de Strasbourg, 67000 Strasbourg, France; audrey.bergouignan@iphc.cnrs.fr; (A.B.); 
cedric.sueur@iphc.cnrs.fr (C.S.) 

2 Division of Endocrinology, Metabolism, and Diabetes and Anschutz Health and Wellness Center, School of 
Medicine, University of Colorado, Aurora, CO 80045, USA 

3 INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, Nemesis 
team, F75012 Paris, France; basile.chaix@iplesp.upmc.fr 

4 Department of Rehabilitation Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; 
e.sneekes@erasmusmc.nl 

5 Preventive and Clinical Investigation Center, 75116 Paris, France; Thomas@ipc.asso.fr 
* Correspondence: isaac.debache@iphc.cnrs.fr; Tel.: +33 3 88 10 6931 

 

Abstract 

Previous studies about the effects of physical activity and sedentary behaviors on health 
rarely recorded the exact body postures and movements, although they might be of 
metabolic relevance. Moreover, few studies treated the time budget of behaviors as 
compositions and little was done to characterize the distribution of durations of 
behavior sequences in relation with health. Data from the RECORD (Residential 
Environment and CORonary heart Disease) study of two combined VitaMove 
accelerometers worn at the trunk and upper leg for a week by 154 male and female 
adults (age = 50.6 ± 9.6 years, BMI = 25.8 ± 3.9 kg/m²) were analyzed. Using both iso-
temporal substitution and compositional analysis, we examined associations between 
five physical behaviors (lying, sitting, standing, low physical activity, moderate-to-
vigorous activity) and seven health outcomes (fasting serum glucose, low- and high-
density lipoprotein, and triglycerides levels, body mass index, and waist 
circumference). After adjustment for confounding variables, total standing time was 
positively associated with better lipid profile, and lying during the day with adiposity. 
No significant association was observed between breaking up moderate-to-vigorous 
physical activity and health. This study highlights the importance of refined categories 
of postures in research on physical activity and health, as well as the necessity for new 
tools to characterize the distribution of behavior sequence durations, considering both 
bouts and micro-sequences. 

Keywords: sitting; standing; low physical activity; moderate-to-vigorous physical activity; blood 
lipids; glucose; HDL; compositional analysis; iso-temporal substitution 
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Introduction 

Physical inactivity has been recognized as a major health hazard for several decades 

[1–3]. More recently, research highlighted prolonged sedentary behavior (SB) as a risk 

factor for developing coronary heart diseases, obesity, diabetes [4–7], and some cancers 

[8,9]. This risk factor is thought to operate independently from the level of physical 

activity (PA) and through different metabolic mechanisms [10,11]. Strictly defined, SB 

refer to sitting or reclining postures with low energy expenditure (<1.5 metabolic 

equivalent) [5,12,13]. However, most objective evidence to their adverse effects on health 

were obtained using a looser definition of SB, based on the sole movement intensity and 

without distinguishing between quiet standing, sitting and lying. As a consequence, the 

extent to which the risks associated with SB are distinct from physical inactivity in a 

narrow sense is still being debated [13,14]. Even among the studies that explicitly 

distinguished between standing and sitting time, for example with regard to glucose or 

lipid profile [15,16], only a few investigated the associations between postural behavior 

and metabolic outcomes in natural, free-living conditions [17,18]. Moreover, the 

distinction between lying and sitting cannot be properly addressed, even with newer 

thigh-worn devices such as ActivPal®. The study presented here uses a double 

accelerometer, worn on the subjects’ trunk and thigh, which allows for a precise 

derivation of body postures and movements. 

Independent of the total time spent in MVPA (Moderate to Vigorous Physical 

Activity) and SB, shorter SB bouts are thought to have a positive effect on cardio-

metabolic biomarkers [17,19–21]. Yet, although the patterns by which a given SB time is 

partitioned into sequences of varying durations is relevant for health, most past studies 

used very simple indices to characterize partitioning patterns, such as the median or the 

mean bout duration. In the present study, we tested more sophisticated partitioning 

indices: beside the median bout duration, we used the Gini index of the sequence length 

distribution [19], and the ratio of behavior time spent in bouts to the total behavior time 

(spent in bouts or not). By a behavior bout, we mean a sequence of significant duration, 

e.g., 1 minute, during which the dominant observed activity is the activity of interest. 

Unlike most past studies, we examined the relationship between partitioning patterns 
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and health not only for SB, but also for other behaviors, such as standing or MVPA. In 

addition, we did not focus exclusively on bouts, but also on sporadic behavior sequences 

and their distribution. 

The associations between the total time volumes spent in each behavior (sitting, 

standing, MVPA etc.) and a certain health outcome are often estimated in separate 

models. Whether expressed as time or as proportions, the different behaviors add up to 

a constant (the total time studied or to 1), and are therefore to be regarded as a time 

budget with relative and codependent parts: a growing volume of one part always comes 

at the expense of another. Ignoring this sum constraint often leads to erroneous 

estimates and interpretations [22–24]. Some studies have acknowledged this issue and 

used iso-temporal substitution techniques [25, 26]. These models estimate the effect of 

time reallocation from one part to another on the outcome variable, while all other parts 

remain constant. However, others argue that these models still fail at treating these data 

as proportions, which constitute a sample space, known as the Aitchison simplex, with 

its own mathematical properties and methods of analysis [24,27,28]. As Biddle and 

colleagues did in a recent article [18], we address this issue by using both iso-temporal 

models and methods of compositional analysis. 

By using precise categories of physical activities and postures, a thorough approach 

to duration distribution of activity sequences and appropriate techniques for analyzing 

time compositions, this study proposes a novel, comprehensive framework for 

examining the associations between time spent in different physical behaviors, their 

daily patterns and key health outcomes. 

 

Material and Methods 

Study Subjects 

The present study uses data from the MultiSensor sub-study [29] of the RECORD 

(Residential Environment and CORonary heart Disease) Cohort study. From February 

2007 to March 2008, individuals that came to four of the IPC (Investigation Préventive 
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et Clinique) Medical Centers for a free medical examination offered by the French 

National Insurance System for Employees were invited to enter the RECORD study. 

Eligibility criteria were age 30–79 years, residence at baseline in 10 districts of Paris (out 

of 20) and 111 other municipalities of the Ile-de-France region and sufficient cognitive 

and linguistic abilities. During the second wave of the RECORD Study (September 2013 

to June 2015), after completing their medical checkups, participants were systematically 

invited to enter the RECORD MultiSensor Study whenever monitoring devices were 

available. In this study, 154 participants (97 men and 57 women), aged 34–83 years, 

accepted to carry a GPS receiver and the two combined accelerometers placed at the 

trunk and on the lower limb. The study protocol was approved by the French Data 

Protection Authority (Decision No. DR-2013-568 on 2/12/2013). All participants signed a 

written informed consent form. 

Anthropological and Biological Data 

During the screening visit, participants underwent a medical examination including 

anthropological measurements and a blood draw in a fasting state. Details about 

collection of anthropological and biological data can be found elsewhere [30]. 

Anthropological measurements were made by trained nurses at the medical centers. WC 

(Waist Circumference) was measured using an inelastic tape placed midway between 

the lower ribs and the iliac crest, on the mid-axillary line. In this study, we used the 

following outcomes: serum glucose concentration, plasma triglyceride, high- and low-

density lipoprotein (HDL and LDL), as well as body mass index (BMI) and waist 

circumference (WC). 

Physical Activities and Postures 

Physical activities and postures were derived from two tri-axial Vitamove Research-

V1000® (Vitabase v2.0 B5, Temec Instruments, Herleen, The Netherlands) 

accelerometers. Participants were requested to wear one at the trunk and the other on 

the right upper leg during wake time for seven days, as they carried out usual daily 

activities in free-living conditions (except for water-based activities). In addition, they 
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wore a small GPS device and kept a log of the places they visited and the wearing times 

of the devices. We invalidated days with less than ten hours of wear time, and subjects 

with less than four valid days out of seven [31]. Twenty-two subjects out of 154 did not 

meet these criteria. 

The base software of the sensors, VitaScore®, has a large nomenclature of physical 

activities and postures. To simplify the analysis, we combined them into five categories: 

lying (trunk in horizontal or nearly horizontal position), sitting (trunk upright or nearly 

upright), standing, light physical activity (LPA, including slow movements) and 

moderate-to-vigorous physical activity (MVPA, including walking, running, biking etc.). 

To identify bouts, we used a modified version of the function guideline.bouts from 

the R-package activpalProcessing [32]. The minimum length of the bouts was set to 60 

seconds and the threshold for the proportion of the behavior of interest was kept at 0.8 

(see Figure 1). For the sake of simplicity, we did not analyze partitioning patterns for 

each behavior, but on three broader categories: SB (including lying and sitting), non-

sedentary behaviors (NSB) including standing, LPA and MVPA, and MVPA only. 

 
Figure 1. A random sedentary-behavior chart over an hour (based on the empirical distribution of sequence 
duration). In the inner circle, non-sedentary time is colored in yellow and sedentary time in blue. The outer circle 
represents, for the same data, the time that is regarded as non-sedentary bout is in red, and as sedentary bouts in blue. 
This study takes into account both bouts and sporadic sequences, although the latter is disregarded by traditional 
methodology. Here, 7.6 minutes were spent in NSB (yellow), and 3.4 in a NSB bout (red). The ratio time in bouts to total 
time is of 0.42.  
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Other Data 

Individuals that joined the study answered a questionnaire regarding socio-

demographics, dietary and health habits, from which we used data about age, 

educational level and annual total income. As nutrition is thought to be correlated with 

both sedentary time and health [33], we also added to the models information regarding 

nutritional and health habits. These variables are described in details in Table C1 in 

Appendix C. A discussion about the validity of the questionnaire is to be found in 

another paper devoted to the RECORD study [34]. 

Data Processing 

BMI and triglycerides data were log transformed in the models. The information 

about nutrition and health habits was reduced and expressed as the first two dimensions 

of a principal component analysis performed over the array of all relevant variables in 

the questionnaire mentioned above. They appear in the tables as “nutritional index”. 

Statistical Analysis 

The following three models, run with individuals as statistical units, addressed the 

two questions at hand: the relationship between the behavior time budget and health 

(the first two models below), and the relationship between the behavior partitioning 

patterns and health for a given behavior time budget (third model below). In all models, 

sex, age, annual income, education, and the two nutritional indices were added as 

control variables. BMI was added as control variable in all the models, except in those 

whose response variable was BMI or waist circumference. 

• Iso-temporal substitution models: they estimate the change in the health 

outcome variable associated with time reallocation (in proportion) from a 

behavior to another, while all other behavior time volumes remain constant. 

Thus, the models preserve the compositional structure of the data. 

• Compositional models: they are identical to the familiar linear regression models, 

but before including them as regressors in the models, the compositions are 
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transformed from coordinates in the Aitchison simplex for composition 𝑆𝐷 to the 

coordinates in the real space 𝑅𝐷−1 (here, we chose the isometric log ratio (ilr) 

transformation [35]). Once the coefficients for the compositions are estimated by 

the models, they are back-transformed to the Aitchison simplex. The 

independent variable (here, the health variable) is fitted in the same way as in a 

traditional linear model, but using the Aitchison geometry for compositions [22] 

(i.e., by taking the Aitchison inner product of the compositional vector and the 

corresponding coefficient vector, see Appendix A). Thus, we can estimate our 

health response variable for any composition, or the change in the response 

variable following any change in a composition, while operating in the 

appropriate mathematical framework for these data. To illustrate the change in a 

health outcome associated with a change in a time budget, we created four 

hypothetical profiles, which represent archetypes of physical activity patterns, 

and compared the predicted health outcomes for these profiles against the 

average profile. The four profiles are ‘couch potato’—a time budget with a strong 

component of lying/reclining postures (lie = 30%, sit = 50%, stand = 10%, LPA = 

5%, MVPA = 5%); ‘office worker’—strong component of sitting (lie = 5%, sit = 

70%, stand = 10%, LPA = 5%, MVPA = 10%); ‘doorman’—strong component of 

standing (lie = 5%, sit = 15%, stand = 70%, LPA = 5%, MVPA = 5%); active—strong 

component of MVPA (lie = 5%, sit = 40%, stand = 30%, LPA = 5%, MVPA = 20%). 

We implemented the models using the R-package compositions [36] and the 

handbook by van den Boogaart and Tolosana-Delgado [23]. 

• Linear models for behavior partitioning: these are traditional linear models, 

which estimate the change in the health outcome associated with the change in 

a partitioning index. We did not calculate the indices for each behavior, but 

rather for three broader categories of behaviors (SB, non-SB, and MVPA). To 

make sure that the association of behavior partitioning with health is 

independent of the behavior time volumes, we added the behavior time budget 

(expressed as ilr) to the model as control variable. As partitioning indices, we use 

the median length of the behaviors bouts, the ratio of the behavior time in bouts 

to the total behavior time (spent in bouts or not, see Figure 1), and the Gini index 

of the total time distribution of sequences of different durations (see Figure 2). 
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All analyses were performed using the R statistical system (version 3.3.2) [37]. 

Statistical significance was set at 0.05. 

 
Figure 2. Random non-sedentary sequence durations (sub-figures (a), (c), (e)) and their corresponding Lorenz 
curves, i.e. the total time accumulation by sequence duration (sub-figures (b), (d), (f)), for three different ranges of the 
Gini index: low (G<0.75; sub-figures (a) and (b)), medium (0.85>G>0.82; sub-figures (c) and (d)) and high (G>0.9; sub 
figures (e) and (f)). The durations are randomly drawn from the empirical distributions observed in our population and 
they add up to the same total time. The Gini index increases as contributions of sequences to the total time are less even 
(top to bottom). It represents the area between the diagonal and the Lorenz curve (right-hand column) divided by the 
whole area under the diagonal. 

Results 

Anthropological, Demographics and Biological Characteristics of the 

Participants 

The final population was made up of 131 subjects, 64% of them men, aged 50.5 ± 9.6 

(arithmetic mean ± standard deviation) years. We removed twenty-two participants for 
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insufficient wear time and one for incomplete biological data. Participants were, in 

average, slightly overweight with a BMI of 25.8 ± 3.9 kg/m2. Seventy-six of the 

participants were overweight (BMI > 25 kg/m2) but only 16 were obese (BMI > 30 kg/m2). 

The others were in normal ranges (20 kg/m² < BMI < 25kg/m²). Three participants had 

metabolic syndrome, as defined by the International Diabetes Foundation [38]. In 

average, the other health variables examined were in normal ranges. The socio-

economic status of the participants was, however, somewhat higher than the French 

average [39]. 

Daily Pattern of Physical Activity and Sedentary Behaviors 

The mean daily wear time was 14.34 ± 2.08 hours. On average, our population spent 

8.04% ± 3.30% of their wake time in MVPA, 3.58% ± 1.40% in LPA, 27.13% ± 9.61% in 

quiet standing, 51.57% ± 12.08% sitting and 9.68% ± 9.60% lying. Lying time was subject 

to high inter-individual variability, with values ranging from 0% to 53.63%. The closed 

geometric mean (which is usually preferred over the arithmetic mean for compositions 

[23]) was (lie = 5.64%, sit = 54.72%, stand = 27.94%, LPA = 3.64%, MVPA = 8.01%). The 

covariance matrix, accounting for co-dependencies between the parts of the 

composition, is shown in Table B1 in Appendix B. 

With regard to partitioning patterns, the median bout duration was of 1.8 ± 0.66, 

4.37 ± 1.59 and 6.58 ± 2.72 minutes, for MVPA, NSB and SB, respectively. Although not 

necessarily related to the median length, the Gini index also points to different 

partitioning patterns for SB and NSB time than for MVPA, the former being accumulated 

through fewer, longer sequences (0.8 ± 0.06, 0.83 ± 0.05, and 0.6 ± 0.09, respectively). 

While the largest share of SB and NSB time was spent in bouts longer than 1 minute 

(0.98 ± 0.02 and 0.96 ± 0.03), the share was much smaller and more variable for MVPA 

(0.53 ± 0.15). 

Detailed descriptive statistics of the physical behaviors and the related indices used 

in this study are shown in Table 1 and for health and potentially confounding variables 

in Table 2.  
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Table 1. The top section of the table shows the arithmetic mean, standard deviation (SD), minimum and maximum for 
the time proportion devoted to each physical behavior (n = 131). The bottom sections show the same statistics for various 
partitioning indices of sedentary time (SB, i.e., lying or sitting), non-sedentary time (NSB, i.e., standing, Light Physical 
Activity (LPA), Moderate to Vigorous Physical Activity (MVPA)), and MVPA time. 

Descriptive statistics of physical activity and postures Mean SD Min Max 

PHYSCIAL ACTIVTIES & POSTURES 
(time proportions) 

    

Lying 0.0968 0.0960 0.0002 0.5363 
Sitting 0.5157 0.1208 0.2275 0.7544 

Standing 0.2713 0.0961 0.0925 0.6570 
LPA 0.0358 0.0140 0.0109 0.0950 

MVPA 0.0804 0.0330 0.0168 0.1798 
PARTITIONING INDICES 

(sedentary)     

Median length (minutes) 6.58 2.72 1.73 15.43 
Gini  0.7990 0.0608 0.6703 0.9368 

Ratio (bouts/total) 0.9770 0.0196 0.8574 0.9958 
PARTITIONING INDICES 

(non-sedentary)     

Median length (minutes) 4.37 1.59 1.52 10.90 
Gini  0.8367 0.0502 0.7224 0.9365 

Ratio (bouts/total) 0.9613 0.0336 0.7788 0.9964 
PARTITIONING INDICES 

(MVPA)     

Median length (minutes) 1.80 0.66 1.00 5.18 
Gini index 0.5954 0.0948 0.3301 0.8159 

Ratio (bouts/total) 0.5280 0.1541 0.0797 0.8828 
Table 2. Arithmetical mean, standard deviation, minimum and maximum values of the health and control co-variables 
(n = 131). 

Descriptive Statistics of health and control variables Mean SD Min Max 

Glucose (mg/dL) 96 9 75 123 
LDL (mg/dL) 160 38 82 252 
HDL (mg/dL) 53 13 25 98 

Triglycerides (mg/dL) 109 54 40 306 
BMI (kg/m²) 25.77 3.89 16.03 37.56 

Waist Circumference (cm) 87.34 12.17 57.00 116.00 
Sex (0 = female) 0.64    

Age (years) 50.55 9.57 34.00 83.00 
Education (categorical) 5.66 2.16 0.00 9.00 

Income (categorical) 6.66 2.71 0.00 9.00 
Nutritional index 1 0.00 1.55 -3.94 3.08 
Nutritional index 2 0.00 1.37 -3.19 4.62 
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Associations between Behaviors and Health Outcomes 

The following section presents the results of our models by health variable. Tables 

3–5 include full results of the iso-temporal, compositional and partitioning models, 

respectively. Table 4 also includes the differences (or ratios) in the health values between 

an average time budget and the four hypothetical time budgets mentioned above. 

Blood Glucose Concentration 

No significant association was observed between the time volume of any behavior 

and blood glucose concentration. However, for a given behavioral time budget, 

partitioning patterns of both SB and NSB time were correlated with glucose level (Table 

5). The Gini index was inversely correlated with glucose concentration: glucose level 

tended to be higher when short and long sedentary sequences contributed to the total 

time in an equal manner. For example, an increase of 0.1 in the Gini index (see Figure 2) 

was associated with a decrease of 3.0 mg/dL in glucose concentration. This counter-

intuitive result was confirmed by the negative correlation with the ratio (sedentary time 

in bouts/total sedentary time): as the share of sedentary time spent in bouts decreased, 

the glucose level increased. A shift from a ratio of 0.9707 (1st quartile) to 0.9892 (3rd 

quartile) was associated with a decrease of 1.3 mg/dL in glucose level. Although the 

quadratic term for the ratio was significant, the relation was always negative in the 

observed range of the ratio values. 

NSB (mostly standing) partitioning patterns also correlated with glucose 

concentration. The relation between the median bout durations of NSB and glucose was 

U-shaped, with a minimum median length reached at around 6 minutes. A median bout 

duration of 3 or 9 minutes was associated with −3.7 mg/dL and −3.3 mg/dL blood glucose, 

respectively. 
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Table 3. Estimated coefficient of linear iso-temporal substitution models. The coefficients are the estimated change in y 
due to reallocation of a time unit from one state (column) to another (row). Here, a unit represents the whole time 
budget. Hence, a reallocation of 1% (0.01) of the total time from sitting to standing, is associated with a change in fasting 
high density lipoprotein concentration (HDL) of 23.93 × (0.01) ≈ 0.24 mg/dL. Levels of p-values: † <0.1; * <0.05; ** <0.01; 
*** <0.001. 

Results of iso-temporal substitution models (coefficients and 95% confidence intervals) 
Health 

outcome Behavior lie sit stand LPA 

G
LU

C
O

SE
 

(m
g/

dL
) 

sit 
−1.67  

[−19.71; 16.37] 
   

stand 
−9.76  

[−33.16; 13.63] 
−8.09  

[−27.34; 11.15] 
  

LPA 
61.27  

[−81.08; 203.62] 
62.94 

[−78.69; 204.57] 
71.03  

[−80.05; 222.12] 
 

MVPA 
−18.55  

[−74.84; 37.74] 
−16.88  

[−73.26; 39.5] 
−8.79  

[−66.32; 48.74] 
−79.82  

[−254.1; 94.45] 

LD
L 

(m
g/

dL
) 

sit 
−60.66 

[−134.8; 13.48] 
   

stand 
−41.59 

[−138.16; 54.98] 
19.07 

[−60.75; 98.89] 
  

LPA 
136.35  

[−453.69; 726.4] 
197.02 

[−390.29; 784.32] 
177.95  

[−448.61; 804.5] 
 

MVPA 
−251.97 *  

[−484.86; −19.08] 
−191.31 

[−425.06; 42.45] 
−210.38 †  

[−448.89; 28.14] 
−388.32  

[−1111.13; 334.48] 

H
D

L 
(m

g/
dL

) 

sit 
−5.07  

[−27.36; 17.22] 
   

stand 18.87  
[−10.17; 47.9] 

23.93 * 
[−0.07; 47.94] 

  

LPA 
−83.91  

[−261.32; 93.5] 
−78.84  

[−255.43; 97.75] 
−102.77 

[−291.17; 85.62] 
 

MVPA 
32.1  

[−37.92; 102.13] 
37.17  

[−33.11; 107.46] 
13.24 

[−58.48; 84.95] 
116.01 

[−101.32; 333.34] 

lo
g 

TR
IG

LY
C

ER
ID

ES
 

(m
g/

dL
) 

sit 
−0.58  

[−1.35; 0.19] 
   

stand 
−1.33 **  

[−2.33; −0.32] 
−0.74 † 

[−1.58; 0.09] 
  

LPA 
3  

[−3.14; 9.15] 
3.59  

[−2.53; 9.7] 
4.33  

[−2.2; 10.86] 
 

MVPA 
−4 ***  

[−6.43; −1.57] 
−3.42 **  

[−5.85; −0.98] 
−2.67 *  

[−5.16; −0.19] 
−7 †  

[−14.53; 0.53] 

lo
g 

BM
I 

(k
g/

m
²) 

  

sit 
−0.45 ***  

[−0.7; −0.2] 
   

stand 
−0.33 †  

[−0.67; 0.01] 
0.13  

[−0.16; 0.41] 
  

LPA 
−1.04  

[−3.13; 1.05] 
−0.59  

[−2.68; 1.5] 
−0.71  

[−2.94; 1.51] 
 

MVPA 
−0.32  

[−1.15; 0.51] 
0.13  

[−0.7; 0.97] 
0.01  

[−0.84; 0.86] 
0.72  

[−1.85; 3.3] 

W
A

IS
T 

C
IR

C
U

M
FE

R
EN

C
E 

(c
m

) 

sit 
−33.53 ***  

[−49.18; −17.87] 
   

stand 
−34.28 ***  

[−55.5; −13.06] 
−0.75 

[−18.39; 16.88] 
  

LPA 
−6  

[−136.1; 124.11] 
27.53 

[−102.5; 157.56] 
28.28 

[−110.33; 166.89] 
 

MVPA 
−55.69 * 

[−107.27; −4.1] 
−22.16  

[−74.12; 29.79] 
−21.41  

[−74.38; 31.56] 
−49.69  

[−209.93; 110.54] 
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Table 4. The top section of the table shows the estimated coefficient vectors �̂� of compositional linear models. If x is the 
composition of behavior times, and z a vector of co-variables, the predicted outcome Y for individual i will be: 𝑌𝑖 = 𝛼 +
‹𝛽, 𝑥𝑖›𝐴 + ‹𝛾, 𝑧𝑖› + 𝜖𝑖. The middle section of the table shows the normalized coefficient vectors, representing the 
direction along which a composition must be perturbed in order to achieve the largest effect |�̂�| on �̂�. The bottom section 
of the table show the change in 𝑌associated with four scenarios of departure from the mean composition. The change is 

expressed as a difference 𝑌𝑖 − 𝑌𝑀 or as ratio
𝑌𝑖

𝑌𝑀
. 

Results of compositional models 

COEFFICIENT VECTORS 𝛽 

 Glucose LDL HDL Log Trigl. Log BMI 
Waist 

Circum. 
lie  0.3547 0.0198 0.0094 0.209 0.2053 0.748 
sit 0.2318 0.0001 0.0008 0.23 0.1948 0.0563 

stand 0.0361 0.0051 0.7822 0.1814 0.2002 0.0305 
LPA 0.3041 0.975 0.0075 0.2188 0.1968 0.14 

MVPA 0.0732 <0.0001 0.2001 0.1608 0.203 0.0253 
p-value of the model  0.5326 0.2033 0.1858 0.0097 0.0208 0.0006 

NORMALIZED COEFFICIENT VECTORS 
lie  0.2854 0.2347 0.1521 0.2183 0.3327 0.3924 
sit 0.2305 0.1721 0.0975 0.3025 0.0987 0.1542 

stand 0.0906 0.2167 0.3394 0.1347 0.1855 0.1236 
LPA 0.2642 0.296 0.1461 0.2551 0.1253 0.2143 

MVPA 0.1293 0.0805 0.265 0.0895 0.2578 0.1155 
Vector norm |𝛽| 1.99 16.82 5.51 0.29 0.04 2.77 

PREDICTED VALUES compared to mean composition 
Composition (%) 

[lie, sit, stand, LPA, MVPA] 
Diff. Diff. Diff. Ratio Ratio Diff. 

[30,50,10,5,5]: ‘couch potato’ 3.21 13.81 −6.25 1.35 1.03 5.46 
[5,70,10,5,10]: ‘office worker’ 1.36 −3.67 −4.22 1.12 0.99 0.58 

[5,15,70,5,5]: ‘doorman’ −1.35 12.38 6.35 0.86 1.02 0.07 
[5,40,30,5,20]: ‘active’ −0.82 −9.79 2.96 0.8 1.01 −1.16 
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Table 5. Coefficients and 95% confidence intervals of linear regression models of various partitioning indices against 
health variables. The top section refers to sedentary bouts (lying or sitting). The middle section refers to non-sedentary 
behaviors (standing, Light Physical Activity (LPA) or Moderate to Vigorous Physical Activity (MVPA)). The bottom 
section refers to MVPA. Quadratic terms are reported when they significantly improve the model. Levels of p-values: † 
<0.1; * <0.05; ** <0.01; *** <0.001. 

Results of partitioning models (coefficients and 95% confidence intervals) 

Index Glucose LDL HDL log 
Triglycerides log BMI Waist 

circumf. 
SEDENTARY BEHAVIORS 

Median (min.) 
−0.41  

[−1.1; 0.28] 
−0.98  

[−3.88; 1.92] 
−0.51  

[−1.37; 0.36] 
0  

[−0.03; 0.03] 
0  

[−0.01; 0.01] 
−0.12  

[−0.77; 0.53] 

Gini 
−29.8 *  

[−56.73; −2.87] 
52.19  

[−61.82; 166.21] 
−6.82  

[−40.93; 27.3] 
0.13  

[−1.07; 1.34] 
−0.16  

[−0.57; 0.25] 
−11.2  

[−36.87; 14.46] 

Ratio 
−3944.26 *  
[−7423.65; 
−464.88] 

24.26  
[−424.35; 
472.86] 

28.55  
[−105.22; 
162.33] 

0.79  
[−3.94; 5.53] 

1.45 †  
[−0.12; 3.03] 

26.26  
[−72.96; 
125.49] 

Ratio² 
2047.4 *  

[195.41; 3899.39] 
     

NON-SEDENTARY BEHAVIORS 

Median (min.) 
−4.75 * 

[−9.31; −0.19] 
2.31 

[−3.07; 7.68] 
−1.61 * 

[−3.19; −0.02] 
0.02 

[−0.04; 0.08] 
0.02 ** [0.01; 0.04] 

0.83 
[−0.34; 1.99] 

Median² 
(min.) 

0.39 * 
[0.01; 0.77] 

     

Gini 
13.31 

[−20.3; 46.93] 
123.44 † 

[−15.92; 262.81] 
8.68 

[−33.42; 50.77] 
1.13 

[−0.34; 2.61] 
0.67 *** [0.21; 

1.14] 
25.05 † 

[−4.61; 54.7] 

Ratio 
−46.65 

[−107.6; 14.3] 

−33.56  
[−291.17; 
224.06] 

−63.7 † 
[−139.72; 12.31] 

0.61 
[−2.11; 3.32] 

0.28 
[−0.64; 1.21] 

−2.76 
[−60.41; 54.9] 

MVPA 

Median (min.) 
−0.03  

[−2.52; 2.46] 
2.29 

[−8.12; 12.69] 
−0.14 

[−3.25; 2.97] 
−0.03 

[−0.14; 0.08] 
−0.01 

[−0.05; 0.02] 
−1.79 

[−4.09; 0.52] 

Gini  
−1 

[−21.87; 19.86] 
18.45 

[−68.83; 105.73] 
9.6 

[−16.41; 35.6] 
−0.38 

[−1.3; 0.54] 
−0.12 

[−0.44; 0.19] 
−8.47 

[−27.91; 10.96] 

Ratio 
−1.09 

[−13.77; 11.6] 
13.5 

[−39.56; 66.57] 
3.82 

[−12.02; 19.65] 
−0.2 

[−0.76; 0.35] 
−0.05 

[−0.24; 0.14] 
−2.35 

[−14.22; 9.52] 

 

Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), and 

Triglycerides 

Time volumes of MVPA, but also to quiet standing, were clearly associated with 

triglycerides level, both in the iso-temporal and compositional models (Tables 3 and 4), 

and HDL in the iso-temporal model. In this model, reallocation of 1% of the time budget 

from sitting to standing was associated with an estimated increase in HDL level of 0.2 

mg/dL (Table 3). The compositional model for triglycerides concentration confirmed 

the importance of standing and MVPA (Table 4). The predicted triglycerides 

concentration for a hypothetical profile ‘doorman’ dominated by standing was 14% lower 

than that predicted for the average time budget, while the predicted concentration for 

the profile “active” was 20% lower than for the average profile. 
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The models including partitioning indices suggest (Table 5) that, independently 

from the time budget, longer bouts of NSB were associated with lower HDL: an increase 

of three minutes in the median NSB bout durations was associated with a decrease of 

4.8 mg/dL of HDL. 

Body Mass Index and Waist Circumference 

Only lying time was significantly associated with WC. In the iso-temporal model, 

reallocating 1% of the total time from lying to sitting, standing, or MVPA was associated 

with a decrease in WC of 0.34, 0.34 and 0.57 cm, respectively (Table 3). These results are 

supported by the corresponding compositional model (Table 4). Lying time was clearly 

associated with higher BMI (reallocating 1% of the total time from lying to standing 

associated with a decrease of 0.5% in BMI). Interestingly, neither BMI nor WC were 

associated with MVPA. 

For a fixed time budget, the models suggest that longer median NSB bouts are 

associated with a strong increase in BMI, but not WC: an increase of 3 minute in the 

median length is associated with 6.2% increase in BMI. The model including the Gini 

index also points to a relationship between NSB partitioning patterns and BMI: as NSB 

time is accumulated through a smaller number of longer episodes, BMI increases. 

 

Discussion 

Distinguishing between a number of body postures such as standing, sitting and 

lying, alters our understanding of the relationship between physical activity and health. 

The beneficial effect of MVPA on the lipid profile has already been well established [40], 

and we also found positive associations of MVPA time with LDL and triglycerides levels. 

However, quiet standing, which was often classified as a sedentary behavior [20], was 

shown here to have similar positive associations with lipid profile (HDL and triglycerides 

levels). Our models suggest that persons standing during the day (such as the ‘doorman’ 

in Table 4) have a lower triglycerides level than the average, sedentary individuals. 
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Hence, increasing standing time proportion (e.g., at work) should be studied as a 

practical alternative to long periods of MVPA. In fact, our finding regarding the 

importance of standing is supportive of a few other studies, some of which were designed 

as interventions in the workplace [15,17]. The muscle activation required for posture 

maintenance, which is more important in standing than sitting[41, 42], could explain, at 

least partly, the beneficial association between standing time and lipid profile. Although 

both standing time was associated with a better lipid profile, it was not associated with 

glucose level. This can be explained by the lack of concentric muscle activation in 

standing, and a relatively low glucose uptake involved with Glucose Transporter type 4 

(GLUT-4) translocation [43]. Likewise, the distinction between lying and sitting, which 

is made possible by the trunk sensor, reveals that lying diverges from sitting in the 

nature of its associations with BMI and WC in a slightly overweight population. 

Reallocation of time from lying to all other behaviors, including sitting, was significantly 

associated with a decrease in WC. This may also be related to a difference in energy 

expenditure between sitting and lying positions. More generally, the results suggest that, 

for some health-related aspects, physical activity should be regarded as a gradient in the 

following order: lying-sitting-standing-MVPA. 

Results of the models accounting for the partitioning patterns of behavior time 

volumes shed light on several associations between physical postures/activities and 

health. Surprisingly, a certain pattern of partitioning of SB time, namely the existence of 

a large number of very short sequences of SB beside long sequences (expressed as a high 

Gini index and a relatively low ratio of bouts to total time) positively associated with 

fasting plasma glucose concentration. Moreover, glucose concentration was lowest in 

the population exhibiting a balance between short and long episodes in the 

accumulation of NSB time. To our knowledge, two studies found a negative correlation 

between blood glucose concentration and breaking up of SB: Carlson et al. [44] and 

Bellettiere et al. [17]. The former used a hip-worn accelerometer with the count per 

minute method, which cannot accurately distinguish between sitting and standing and 

does not account for sporadic behavior sequences, and the latter did not adjust for total 

sitting time. In fact, by looking only at bouts of SB, past studies overlooked sporadic 

sequences of SB, which should be regarded as interruptions in NSB behaviors (i.e., higher 
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levels of physical activity). Many short sequences of SB very likely indicate that the 

subject does not perform long sequences of NSB, which could easily explain the higher 

glucose level. 

In the same way, the NSB median bout duration was negatively associated with 

glucose level, up to a certain point. However, the U-shape relationship between NSB 

median bout duration and glucose suggests that several factors are at play. In fact, we 

found a positive association between the median duration of NSB bouts and BMI, as well 

as a negative one with HDL. These results supports the hypotheses proposed by Miles-

Chan and Dulloo, according to which it is the efforts associated with frequent transitions 

between standing and sedentary postures that have a beneficial effect on these variables 

[41]. These hypotheses might also explain the U-shape observed for glucose level: 

prolonged standing and PA bouts might be beneficial for health, but shorter bouts points 

to a higher number of transitions from SB to NSB. 

No significant association between health and partitioning patterns of MVPA time. 

This supports recent similar evidence observed in older British men [45] and is in 

accordance with the second 2018 US guidelines on physical activity, which removed the 

recommendation to perform MVPA in bouts of minimum 10 minutes duration [46]. In 

other words, any sequence of MVPA matters, regardless of its duration. However, it 

should be noted that the lack of correlation observed here might be due to the fact that 

our population did not suffer from severe weight issues. 

Overall, compositional models agreed with iso-temporal substitution models. 

Besides being mathematically appropriate, the former allows a response fitting for any 

time budget while the latter estimate the response associated with time reallocation 

from a single part to another. Yet, the interpretation of the compositional models 

remains less straightforward. In addition, the model provides a significance level for the 

whole model, but not for each component [24]. We believe that combining both types 

of models can improve our understanding of the complex relationship between the 

behavioral time budget and health, and that further elaboration of these procedures of 

analysis should be a focus of future research. 

A main limitation of this study is the impossibility to infer cause-and-effect 

relationships. In fact, causal links are often counterintuitive. For example, Ekelund et al. 

showed that it is adiposity that affects the volume of sedentary behaviors, and not 
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inversely [47]. In addition, the relatively small sample size did not allow for investigation 

of possible effects of interactions with sex or age. Finally, we report results for a healthy 

population, which might not be extrapolated to other populations, such as those 

suffering from severe obesity, diabetes or other conditions. 

 

Conclusion 

By distinguishing physical activity and postures, the present study unmasked 

associations between standing time and lying time with key clinical outcomes, 

indicating that components other than MVPA play a key role in health. It also showed 

that the duration of MVPA bouts had no influence on health outcomes. These 

observations support the newly released U.S. physical activity guidelines that 

recommend to “Sit Less and Move More” and emphasized the importance of moving all 

along the day without necessarily trying to attain a specific duration bout of MVPA. 

Results also suggest that the relationships between fragmentation of SB/NSB and health 

are more complex than previously assumed and needs to be further investigated. In 

particular, very short behavior sequences, which have been overlooked in past studies, 

should be taken into consideration. Future research should focus on innovative ways to 

link patterns of behavior partitioning to health, use a refined categorization of behaviors 

and look for ways to implement the new resulting guidelines in the population. 
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Appendix A: 
A few explanations about operations in the Aitchison simplex 

• Closure C: 

𝐶(𝒂) =
𝒂

𝟏𝒕  ⋅ 𝒂 
 

• Perturbation ⊕: 
𝒂 ⊕ 𝒃 = 𝐶[𝑎1 ⋅ 𝑏1, … , 𝑎𝐷 ⋅ 𝑏𝐷] , 

where D is the length of the vector. 
• Aitchison’s inner product ⟨𝐚, 𝐛⟩𝐴: 

⟨𝐚, 𝐛⟩𝐴 =
1

2𝐷
 ∑ ∑

ln 𝑎𝑖 
ln 𝑎𝑗

𝐷

𝑗=1

𝐷

𝑖=1

 
ln 𝑏𝑖 
ln 𝑏𝑗

 

Appendix B: 
Descriptive statistics using a compositional approach 
Compositional Mean: 
[Lie = 0.05645, Sit = 0.5472, Stand = 0.2794, LPA = 0.0364, MVPA = 0.0805] 
Covariance Matrix: 
 

Table B1. Covariance matrix of the budget time of lying, sitting, standing, light physical activity and moderate-to-
vigorous activity in the population. 

Behavior Lie Sit Stand LPA MVPA 
Lie 1.3334 −0.3297 −0.3355 −0.3016 −0.3666 
Sit −0.3297 0.2170 0.0380 0.0208 0.0539 

Stand −0.3355 0.0380 0.1636 0.0865 0.0475 
LPA −0.3016 0.0208 0.0865 0.1265 0.0678 

MVPA −0.3666 0.0539 0.0475 0.0678 0.1974 
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Appendix C: 

Table C1. Potentially confounding variables controlled for in the models. 

Name of 
variable 

Type of variable Value 

Education Continuous 

0 = No diploma 
1 = Certificat d’études primaire (completion primary 
school) 
2 = Brevet élémentaire ou équivalent (completion of four 
first year of secondary education) 
3 = Certificat d’aptitude professionnelle/Brevet d’études 
professionnelles (completion of 6 years of secondary 
vocational education) 
4 = Baccalauréat professionnel (completion of vocational 
secondary cycle) 
5 = Baccalauréat general (completion of general secondary 
cycle) 
6 = Bac + 2 (completion of two years of higher education) 
7 = Bac + 3 or Bac + 4 (Bachelor’s degree) 
8 = Bac + 5 or doctorat (Master’s degree or higher) 

Income (Total 
net revenues of 
household) 

Continuous 

0 ≤ 500 € 
1 = 500–1000 € 
2 = 1000–1500 € 
3 = 1500–2000 € 
4 = 2000–3000 € 
5 = 3000–4000 € 
6 = 4000–5000 € 
7 = 5000–6000 € 
8 = 6000–7000 € 
9 ≥ 7000 € 

Nutritional 
habits 

The first two dimensions of a 
principal component analysis 
including all variables were 
used as continuous variables.  

Intake of olive oil, vegetables, fruits, juice, meat, dairy 
products, desserts, sodas, wine, legume, fish, pizza, lean 
meat, nuts, commercial desserts; preference of olive oil 
over other oils; whether usually eats between meals 
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CHAPTER II 

Implementation of physical activity 

episodes in people’s daily life, following 

different segmentation schemes: 

consequences and feasibility 
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Chapitre II: Implémentation de périodes d’activité 

physique dans la vie quotidienne suivant différents 

régimes de segmentation : études des conséquences et de 

faisabilité (résumé français) 

 

Dans le chapitre précédent, nous avons étudié l’importance de divers aspects du 

comportement physique (la posture et l’activité, leur volume et leur segmentation) sur 

la santé. Malgré les conséquences sur la santé, le niveau d’activité moyen dans de 

nombreux pays, surtout dans le monde économiquement développé, reste bien en deçà 

des recommandations formulées par les spécialistes de la santé. Ce chapitre porte sur 

une expérience d’implémentation de deux programmes d’activité physique, suivant 

chacun un régime de segmentation différent, dans la vie quotidienne de personnes 

essentiellement sédentaires et en surpoids. Le but de l’étude était d’estimer le niveau 

d’adhérence des sujets en fonction du programme, déterminer leurs impressions des 

programmes d’activité physique et enfin d’analyser les conséquences sur des mesures 

clef de santé métabolique (index de la sensibilité à l’insuline). 

L’étude a été menée sur 22 adultes (19-45 ans, 10 hommes et 12 femmes) de la région de 

Denver au Colorado (USA) souffrant de surpoids ou d’obésité modérée (indice de masse 

corporelle 27-33 kg/m2), ayant une profession sédentaire et ne satisfaisant pas les 

niveaux d’activité physique recommandés. Les individus participant à l’étude ont dû 

suivre trois programmes d’activité physique, d’une durée de trois jours chacun: 1) SED : 

les individus mènent leur vie sédentaire habituelle, en évitant des séances d’exercice 

structurées ; 2) MICRO : les individus doivent effectuer, pendant 9 heures consécutives 

de la journée, des séances d’activité physique modérée (marche rapide) de 5 

minutes toutes les heures et maintenir leur mode de vie sédentaire pendant le reste de 

la journée; 3) ONE : les individus doivent effectuer une séquence d’activité physique 



 
Chapitre II: Implémentation de périodes d’activité physique dans la vie quotidienne suivant différents 
régimes de segmentation : études des conséquences et de faisabilité (résumé français) 
 

87 
 

modérée (marche rapide) de 45 minutes en une seule fois et maintenir leur mode de vie 

sédentaire pendant le reste de la journée. Au matin du 4ème jour, la concentration 

sanguine (à jeun) en glucose et en insuline a été mesurée. Sur cette 4ème journée, une 

auto-évaluation subjective du niveau de fatigue et de vigueur a également été collectée 

auprès des sujets. Les individus ont porté un accéléromètre à la taille et un inclinomètre 

sur la cuisse durant les trois programmes, afin d’observer le niveau d’adhérence aux 

instructions et les changements de l’activité physique journalière.  

Les résultats ont montré que, par rapport à la condition de contrôle SED, le volume 

d’activité physique modérée-à-vigoureuse total mesuré par l’accéléromètre a augmenté 

aussi bien dans le programme ONE (+40.2 et +36.0 minutes en moyenne selon que le 

jour était ouvré ou pas) que dans le programme MICRO (+23.4 et +21.6 minutes, 

respectivement). Bien que les programmes d’activité n’aient pas induit une baisse de la 

glycémie à jeun, la concentration d’insuline a baissé dans ONE et MICRO. La différence 

entre ces deux conditions, quant à elle, était quasiment nulle. Les jours ouvrés, le niveau 

de vigueur perçu était significativement plus élevé dans ONE et MICRO que dans SED. 

Quant à la fatigue perçue, les jours ouvrés, elle était plus élevée dans ONE que dans 

MICRO. 

Au niveau de l’adhérence, nos résultats montrent clairement que l’implémentation d’une 

seule longue séquence d’activité physique dans la vie quotidienne résultait en un niveau 

est plus facile que l’implémentation du même volume réparti en courtes séquences. 

Alors que le volume d’activité prévu était le même, le volume effectué était presque deux 

fois plus important dans ONE que dans MICRO. Cependant, le niveau de fatigue 

légèrement plus élevé dans ONE que dans MICRO (les jours ouvrés) pourrait signifier 

que la condition ONE exige une endurance plus importance et qu’elle serait donc plus 

difficile à implémenter au long terme.  

Nos résultats suggèrent que les instructions sont mieux suivies sur le lieu de travail les 

jours ouvrés que lorsque les individus restent chez eux le weekend. Ce type 

d’intervention devrait donc être privilégié dans le cadre du travail.  
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Concernant les conséquences de santé, le fait que, dans les deux programmes actifs, la 

concentration en insuline a baissé alors que la glycémie est restée constante indique que 

l’activité physique augmenterait la sensibilité à l’insuline. L’effet de segmentation n’a pas 

pu être établi dans cette étude, puisque les mesures de santé ne diffèrent pas entre ONE 

et MICRO. Cependant, il faut tenir compte du fait que la baisse de la concentration 

d’insuline a été pratiquement la même dans les deux conditions alors que le volume 

d’activité était nettement plus élevé dans ONE que MICRO.  

Il convient de souligner que la période d’expérimentation de chaque programme a été 

relativement courte (3 jours). En effet, une période plus longue aurait permis de mesurer 

l’endurance dans l’effort et donner une meilleure idée de la faisabilité d’une 

implémentation de programme d’activité comme solution permanente au problème de 

santé publique que représente l’inactivité physique. De plus, le fait que les sujets savaient 

que leur activité était enregistrée sur l’accéléromètre pourrait donner une estimation 

biaisée de l’effet qu’aurait un tel programme sans monitoring par accéléromètre. 

Malgré son faible effectif, cette étude ouvre des perspectives intéressantes sur les 

possibilités de combattre la pandémie de l’inactivité physique à travers des séquences 

d’activité structurées, en particulier dans le milieu du travail. De plus, les résultats 

encourageants sur l’effet de tels programmes sur le moral des participants indiquent que 

la perte de temps pourrait être au moins partiellement compensée par un bien-être et 

une productivité accrue au travail.    
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Abstract 

Office workers are vulnerable to the adverse health effects of sedentary behavior (i.e. 
sitting time). Increasing physical activity and preventing time spent sitting is an 
occupational health priority. This randomized crossover design study compared the 
short-term (3-days) effects of hourly interruptions of sedentary time with 5-min 
micrrobouts of activity for 9 hours (MICRO) to a sedentary control condition (SED) 
and a duration-matched continuous single bout of physical activity (45-min/d, ONE) 
condition on inclinometer-derived sitting-time on work and non-work days in 
sedentary overweight/obese adults. Differences in sitting/lying, standing, stepping, 
number of sit/stand transitions, time spent in moderate and vigorous activity (MVPA), 
energy expenditure, self-perceived vigor and fatigue, and insulin sensitivity were also 
examined. Twenty-two participants (10M/12F; 31.7 ± 1.3 year old BMI 30.4 ± 0.5 kg/m2) 
completed all conditions. No between-condition effects were observed in sitting-time 
and sit/stand transitions. Both interventions increased daily steps, MVPA and energy 
expenditure with increases being greater in ONE than MICRO. Feelings of vigor and 
fasting insulin sensitivity were also improved. Participants reported less fatigue with 
MICRO than SED and ONE. Both interventions increase physical activity and energy 
expenditure in occupational and leisure-time contexts. The sustainability of these 
effects over the long term and on health outcomes will need to be tested in future 
studies. 
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Introduction  

Sedentary behavior, i.e. sitting time, has been associated with adverse health 

outcomes including body mass index, cardio-metabolic outcomes, mental health and 

premature mortality [1–9] and has emerged as an important public health concern [10]. 

In addition to total daily sitting time, prolonged unbroken sitting time has been 

negatively associated with cardiometabolic health biomarkers [11,12]. 

Over the past few decades, advances in technology and computer-based tasks have 

increased time spent sitting at the workplace [13]. It has been found that office-based 

employees spend 66% of their total work time sitting with 25% of total sitting time in 

bouts longer than 55 minutes [14]. These changes in the workplace have been associated 

with reduced daily occupational energy expenditure.  Since the 1960s, in the USA and 

the UK, population levels of occupational physical activity have declined by more than 

30% [15]. Facing this developing public health challenge, the World Health Organization 

has recently published new guidelines for employers to promote healthier occupational 

environments [16]. Among the four major components of the guidelines, limiting 

prolonged sitting and increasing physical activity is one of them. While guidelines exist, 

they still need to be translated into practical strategies that can be implemented on a 

large scale. In this context, there has been increasing interest in understanding the 

efficacy of a broad range of interventions targeting sedentary behavior in the workplace.  

A growing number of studies have examined environmental changes in the 

occupational setting to reduce sitting time such as active workstations and include sit-

to-stand desks, treadmill desks and seated active workstations utilizing portable pedal 

machines [17–19]. These interventions have shown mixed results. While individual sit-

to-stand desk interventions have not been shown to decrease sedentary time [20], 

interventions with multi-level components targeting the individual but also the social 

and built environment showed that stand-up desk options reduce sitting and increase 

standing time [21]. However, no effect on stepping time was observed. A personalized 

consultation with weekly emails that aimed to reduce prolonged sitting time did not 

decrease total daily sedentary time but reduced the occurrence of sedentary bouts of 

more than 30 min [22,23]. Another study using hourly computer screen prompts and 
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text messages to break up sitting decreased total time spent sitting and increased the 

number of daily steps, but failed at increasing the number of sit-to-stand transitions [10]. 

Another goal of these interventions is to increase energy expenditure. The 

implementation of treadmill desks and seated active workstations can reduce daily 

sitting time, increase time spent in physical activity [24,25] and almost triple the energy 

expenditure of that measured while sitting. For example, walking at 1.8 km/h can induce 

an expenditure above 0.41 MJ/h, which could beneficially impact energy balance if 

sustained for several hours per day [26,27]. However, long-term adherence to these 

interventions (12 months) are poor [24,25], treadmill desks are costly and present a safety 

hazard. Therefore, a cost effective, easy to implement intervention that can reduce total 

time spent sitting, prevent prolonged sitting bouts as well as increase time spent active 

and energy expenditure is still needed. Implementing frequent short bursts of walking 

could fulfill these requirements.  

Such interventions have already been tested in the laboratory setting. Past studies 

showed beneficial effects of frequent interruptions of sitting time with short bouts of 

activity varying in mode, frequency, duration and intensity on metabolic, cognitive and 

hemodynamic outcomes [28–39]. Regardless of adiposity, sex and age frequent 

interruptions of sedentary actives with walking breaks have been associated with 

attenuated postprandial plasma glucose and insulin concentrations in obese and type 2 

diabetic adults [31–40]. We have shown that interrupting sedentary behavior with short 

bursts of treadmill walking increases self-perceived feelings of energy, vigor and mood 

and decreases feelings of fatigue throughout the day in normal weight adults [0]. The 

effect of such an intervention on the profile of physical activity and energy expenditure 

in free-living conditions is unknown. 

While the workplace has been identified as a priority setting for addressing 

sedentary behaviors, it may be important to target sedentary behaviors in other contexts 

such as on non-working days. Non-working days also comprise a large portion of a 

working adult’s week and have also been associated with a large amount of time 

attributed to sedentary activities [40]. Because workers who spend more time in 

sedentary pursuits during work hours do not compensate by being more active in non-

working periods [20], there is a need to test interventions that aim at reducing time 
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spent sedentary both during work days and non-work days outside of the controlled 

laboratory environment.  

Based on the data generated by the past intervention studies conducted in the 

laboratory setting and the real-world, we hypothesized that an intervention aimed at 

breaking up sedentary time with short bouts of activity could attenuate time spent 

sitting, increase daily physical activity and energy expenditure, and positively impact 

metabolic health and well-being in office workers. The purpose of this study was to test 

the feasibility to implement such an intervention over a short period of time (3-days) in 

the daily life of overweight sedentary male and female adults during work days and non-

work days. To test whether the effects on time spent sitting, time spent physically active 

and energy expenditure were due to the frequent interruptions of sedentary time with 

short bouts of activity or to the total time spent active, we used a three arm cross-over 

randomized design. Frequent interruptions of sedentary time with short bouts of 

physical activity were compared to a duration-matched single continuous bout of 

physical activity, and a sedentary control condition. Further, we compared the effect of 

the interventions on self-perceived vigor and fatigue and an index of insulin sensitivity. 

Finally, we assessed how difficult it was for participants to implement these 

interventions in their daily life on work days and non-work days.    

 

Methods 

Participants 

This study was approved by the Colorado Multiple Institutional Review Board 

(COMIRB) and was in accordance with the Declaration of Helsinki (COMIRB# 14-0429). 

Eligible participants were between 19-45 years old with an occupation that requires 

sitting time, had a body mass index (BMI) between 27–33 kg/m2, were weight stable for 

at least 3 months, insulin sensitive (fasting plasma insulin concentration below 25 

µIU/mL), and self-reporting > 6hrs/day of occupational sitting. All women enrolled in 

the study were pre-menopausal and could use birth control medications. Exclusion 
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criteria included clinically diagnosed diabetes, taking glucose- and/or lipid-lowering 

medications, dyslipidemia, smoking, or meeting the American College of Sports 

Medicine (ACSM) physical activity recommendations (>150 min/week MVPA). 

Participants were recruited between October 2014 and October 2016 from newspaper 

advertisements, public announcements, and flyers in the Denver and Aurora areas in 

Colorado, USA. Participants were randomized to one of three possible trial-condition 

orders using balanced blocks separately prepared for male and female participants. The 

study statistician (Z.P.) prepared the computer-generated randomization lists and 

sealed envelopes for randomization [41].  

Study Design 

Eligible volunteers completed three separate 3-day trial phases under free-living 

conditions. The study phases were separated by a 28-day wash out period and women 

were all studied in the follicular phase of their menstrual cycle. All the study related 

visits were conducted at the Clinical and Translational Research Center of University of 

Colorado (CTRC). The three trial conditions were administered in random order: 

Sedentary (SED): Free-living subjects maintained their usual levels of daily activity 

during the three days of measurement and were asked to refrain from structured 

exercise. 

Sedentary + 1 continuous bout of activity (ONE): During the 3-days of measurement, 

subjects were asked to perform 45-min of moderate-intensity walking once per day and 

maintain their usual sedentary lifestyle the rest of the day. 

Sedentary + microbouts of activity (MICRO): During the 3-days of measurement, 

participants were asked to perform a 5-min bout of moderate-intensity walking bout 

each hour for 9 consecutive hours throughout the day and maintain their usual 

sedentary lifestyle the rest of the time. 

For both interventions, the intensity of the activity was defined during the screening 

visit. On each day of measurement, participants were asked to complete a diary log and 

record the time the participant went to sleep and woke up from sleep, the time the bouts 

of physical activity were performed and if it was a work day or not.  
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Screening Visit 

Subjects were screened, consented and underwent a review of medical history and 

physical examination and a blood draw to verify fasting plasma insulin concentrations 

for eligibility. Resting Metabolic Rate (RMR) was measured by indirect calorimetry for 

30 minutes in the fasted state, under resting conditions and at thermoneutrality. Body 

composition including fat-free mass (FFM) and fat mass (FM) was measured by dual 

energy X-ray absorptiometry (DXA, Hologic Delphi-W, Bedford, MA, USA). The short 

version of the International Physical Activity Questionnaire (IPAQ) was completed to 

assess habitual physical activity and time spent sitting [42]. Subjects then performed an 

incremental exercise test on a treadmill (increments of 0.3 miles/hr every 2-min) to 

determine a walking pace that was then prescribed for ONE and MICRO conditions. For 

each exercise level, subjects rated their perceived effort on a Borg scale from 0 (very 

light) to 20 (maximal exertion). The aim was to identify the walking speed that subjects 

associated with a perceived exertion level of 13 (somewhat hard). Subjects were 

instructed to walk at this pace for each bout of activity during the intervention. 

Measurement of Time Spent Sitting/Lying, Standing, Stepping and 

Daily Steps 

Time spent sitting/lying, standing, stepping and daily steps were quantified using 

an ActivPAL™ triaxial accelerometer/inclinometer (PAL Technologies Ltd, Glasgow, 

Scotland) during the three days of measurement in each condition. Participants were 

instructed to wear the monitor at all times. The device was worn midline on the anterior 

aspect of the thigh and wrapped with a nitrile sleeve, allowing for 24 hr measurement. 

The monitor produces a signal related to thigh inclination and is a valid and reliable 

measurement tool for determining posture and motion during activities of daily living 

[43]. When the monitor is oriented horizontally, it classifies the activity as sitting/lying. 

Vertical positioning of the monitor is classified as standing. Step cadence and number 

of steps were recorded by the monitor when a participant was walking. 

The ActivPAL™ has been validated for use in adults to distinguish between 

sitting/lying, standing, and stepping activities [44–47]. Data event files from the 
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ActivPAL™ were used to quantify sitting/lying, standing, and stepping time. In these 

files, the ActivPAL™ records each time an activity changes and the time that the activity 

changed. Sitting/lying, standing, and stepping time were calculated by summing the 

duration of each event and the number of breaks from sitting time were quantified as a 

transition from sitting/lying to either standing or stepping. Sitting bouts lasting longer 

than 30-min and 60-min were also used to test the effect of the conditions on the sitting 

bout length. A customized R program (www.r-project.org) was used to convert the event 

data file to a second-by-second data file to estimate additional metrics of sedentary 

behaviors and time spent sitting/lying, standing, stepping. The following metrics of 

sedentary behaviors were computed over 24 hr: total sedentary time (total time spent in 

sitting/lying events), total breaks in sedentary time (number of times a sitting/lying 

event was followed by a standing or stepping event), and time (minutes/day) in 

sedentary bouts ≥30 and ≥60-minutes. The same outcomes were also reported as 

percentage of waking time. Because sleep time was removed, we assumed that 

sitting/lying time mainly corresponded to sitting time during waking hours. The R 

package (PAactivPAL) is available for researchers to generate these metrics [47]. 

Measurement of Physical Activity Intensity, Activity Energy 

Expenditure and Physical Activity Level 

Activity energy expenditure (AEE) and time spent in different activity intensities 

were determined using the ActiGraph GT3X tri-axial accelerometer (ActiGraph, 

Pensacola, FL, USA). Participants were instructed to wear the accelerometer during 

wake time by attaching it to their right hip directly above their right knee using an elastic 

belt that was provided. A sampling rate of 30-Hz was used. After each of the 3-day study 

conditions, data were downloaded using the Actilife 6.13 software provided by the 

manufacturer and AEE per minute (J/kg/min) was estimated using the ‘Freedson vector 

magnitude combination model’ [49,50]. Total energy expenditure (MJ/d) was calculated 

as (AEE + RMR) / 0.9, where RMR was resting metabolic rate (MJ/d). Physical activity 

level (PAL) was calculated as the ratio between TEE over measured RMR. Cut-points of 

<1.5 and <3 METs and >3METs (metabolic equivalents) were used for very light intensity 

activity, light intensity activity and moderate-to-very vigorous activity, respectively. 
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Minute-data during waking hours were summed to obtain data per day. Although 

sedentary behavior has been defined as activities with an energy expenditure below 1.5 

METs while in a sitting, reclining or lying posture [50], activities with METs <1.5 were 

referred to as very light intensity activity in our study. By only measuring energy 

expenditure without recognition of the concomitant posture, we are including activities 

such as standing that are not sedentary activities. By choosing the term “very light 

intensity activity” we are more conservative and avoiding any misinterpretation.  

Perception of the Challenges Associated with the Conditions, Self-

Perceived Vigor and Fatigue 

At the end of each intervention or control day participants filled out online 100 mm 

visual analog scales (VAS) designed to capture their perception of the study condition 

[51]. The VAS addressed the following question “Please indicate on the scale how 

challenging you found the day.” The anchors for this question were “Extremely Easy” and 

“Extremely Challenging.” Immediately after the first survey, participants then completed 

an online modified version of the Perception of Mood survey (POMs) to assess changes 

in feelings of vigor and fatigue [52]. Only the POMs-Fatigue (POMs-F; n = 7 items) and 

the POMs-Vigor (POMs-V; n = 8 items) subscales were used for analysis. 

Plasma Metabolic Outcomes 

The morning after each 3-day trial, the participants reported to the CTRC for a 

fasting blood collection which was analyzed for glucose and insulin. Whole blood was 

added to a preservative (3.6 mg EDTA plus 2.4 mg glutathione in distilled water). Insulin 

concentrations were measured using a standard double antibody radioimmunoassay 

(EMD Millipore, St. Charles, MO, USA). Serum glucose concentrations were determined 

using the hexokinase method (Wako Diagnostics, Mountain View, CA, USA). These 

analyses were performed on the Beckman Coulter AU480 Chemistry Analyzer (Brea, CA, 

USA).  
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Statistical Analysis 

Based on the diary log information, data were recorded on 43, 47 and 43 work days 

while in SED, ONE and MICRO conditions, respectively. Consequently, 23, 19 and 23 

study days were non-work days when participants were in SED, ONE and MICRO 

conditions, respectively. The analysis of the working status effect (work day versus non-

work day) was a posteriori analysis. This is why the number of work days and non-work 

days are unbalanced across the three conditions and the work status. 

If there was more than one measure assessed at different days per condition and 

work status, the mean value of the repeated measures served as outcome in the model. 

Linear mixed models were used to test differences in the two activity monitor outcomes, 

self-perceived challenge, vigor and fatigue, with sequence, period, condition (SED, 

MICRO and ONE), work status (work day vs non-work day) and condition-by-work 

status interaction as fixed effects and subjects as random effect with a compound 

symmetry covariance. Contrasts were used, under this model, to test for the between 

work status difference under each condition, the between condition differences 

separately on workdays and non-work days and the between work status difference with 

respect to the between condition difference. No correction for multiple comparisons was 

applied. Fasting plasma insulin and glucose concentrations measured on the morning of 

day 4 were also analyzed using linear mixed model but work status was not considered. 

Indeed, within the three days prior to the blood draw, days could have been randomly 

spent at work or not, it was therefore impossible to know if the interaction between the 

condition and the work status had any influence on index of insulin sensitivity. Data are 

expressed as mean ± SD, unless otherwise stated. All statistical analyses were performed 

with SAS 9.4 (SAS Institute, Cary, NC, USA).  
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Results 

Subjects’ Characteristics and Compliance with the Interventions 

Subjects’ characteristics are displayed on Table 1. On average over the 3-days of 

intervention, participants performed 97.6 ± 0.0% and 98.4 ± 0.1% of the prescribed 

physical activity bouts in MICRO and ONE, respectively. High levels of compliance with 

both interventions was attained despite reporting that performing the physical activity 

interventions was more challenging than spending a day being sedentary (Intervention 

effect: p = 0.007; Figure 1). While participants reported that MICRO was challenging to 

perform on work days (p = 0.004 vs. SED), ONE was perceived to be more challenging 

to comply with on non-work days compared to both SED (p = 0.05) and MICRO (p = 

0.04).  

Table 1. Study participant’s anthropological characteristics and habitual sitting time. 

Parameters Males Females All 
n 10 12 22 

Age (year) 31.5 ± 7.4 32.0 ± 6.1 31.8 ± 6.6 

BMI (kg/m2) 28.8 ± 2.9 31.7 ± 1.8 30.5 ± 2.7 

FM (kg) 24.6 ± 4.3 *** 36.0 ± 4.7 30.9 ± 7.3 

FFM (kg) 63.1 ± 9.9 *** 49.9 ± 5.0 56.0 ± 10.1 

FM (%) 28.1 ± 2.4 *** 41.8 ± 2.4 35.6 ± 7.4 

Self-reported sitting time (h/d) 9.0 ± 3.2 10.6 ± 1.1 9.5 ± 4.1 

Data are presented as mean ± SD. p < 0.0001 vs. Female. n, number of subjects; BMI, body mass index; FFM, 
fat-free mass; FM, fat mass; Self-reported sitting time was estimated from the IPAQ, international physical 
activity questionnaire.  
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Figure 1. Visual analog scale representing the perception of the challenges associated with the conditions. At 
the end of each intervention or control day participants filled out online 100 mm visual analog scales (VAS) designed to 
capture their perception of the study condition. The VAS addressed the following question “Please indicate on the scale 
how challenging you found the day.” The anchors for this question were “Extremely Easy” and “Extremely Challenging.” 
SED, indicates the sedentary condition; ONE, indicates the one-bout intervention; MICRO, indicates the microbouts 
intervention. * p < 0.05, ** p < 0.01 vs. sedentary control. 

 

Effect of the Physical Activity Interventions on Time Spent 

Sitting/Lying, Standing and Stepping 

Time spent sitting/lying, standing and stepping over 24 hr is reported in Table 2. 

One ActivPAL™ was lost and two were defective, we are therefore reporting data 

obtained in 19 subjects. Both MICRO (11. 4 ± 4.7 vs. 9.2 ± 3.4%, p = 0.009) and ONE (13.9 

± 3.5% vs. 9.2 ± 3.4%, p < 0.0001) increased the percentage of waking time spent stepping 

compared to SED on work days but not on non-work days. This resulted in 0.4 ± 0.1 hour 

more spent stepping in ONE than in MICRO (p = 0.01). As a result, the number of daily 

steps increased from 7125 ± 2554 to 12,257 ± 3145 in ONE (p < 0.0001) and 10,036 ± 4262 

in MICRO (p = 0.0002) on work days; participants took more steps when performing 

ONE than MICRO (p = 0.005). Both ONE (+2967 ± 456, p = 0.005) and MICRO (+2841 ± 

552, p = 0.02) led to a greater number of daily steps compared to SED on non-working 

days. However, time spent sitting and standing, the average duration of the sedentary 

bouts and the number of transitions from the sitting to standing position (index of 

breaking up prolonged sitting) were not significantly different across conditions and 

days (p > 0.05 for all). Surprisingly, the sitting bouts of more than 30 minutes tended to 
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occur more often in MICRO than in both SED (p = 0.057) and ONE (p = 0.051) when in 

leisure contexts 

Table 2. Time spent sitting/lying, standing and stepping over 24hr and as percent of wake time. 

Physical Activity 

Outcomes 
SED ONE MICRO 

  Non-work day Work Non-work day Work Non-work day Work 

Sitting/lying (hr/d) 9.8 ± 2.0 10.6 ± 2.3 9.6 ± 1.9 10.2 ± 2.4 9.6 ± 2.5 10.5 ± 2.2 

Standing (hr/d) 3.5 ± 1.8 3.4 ± 1.8 3.0 ± 1.8 3.4 ± 1.5 3.6 ± 2.1 3.2 ± 1.9 

Stepping (hr/d) 1.4 ± 0.5 1.4 ± 0.5 1.7 ± 0.4 2.1 ± 0.5 *** 1.7 ± 0.4 1.7 ± 0.7 **δ 

Sitting (% waking time) 66.6 ± 14.2 68.4 ± 13.5 67.2 ± 12.7 64.5 ± 10.4 64.0 ± 15.3 67.8 ± 14.1 

Standing (% waking 

time) 
23.9 ± 12.3 22.3 ± 11.6 20.7 ± 11.9 21.4 ±8.8 24.0 ± 14.5 20.7 ± 12.6 

Stepping (% waking 

time) 
9.4 ± 3.6 9.2 ±3.4 11.9 ± 2.4 13.9 ± 3.5 *** 11.9 ± 2.9 11.4 ± 4.7 **δ 

Sit-to-stand transitions (#) 48.8 ± 15.1 47.2 ± 17.7 42.5 ± 13.6 50.1 ± 22.3 46.1 ± 12.4 50.7 ± 21.3 

Sitting bouts > 30-min (#) 5.6 ± 1.7 6.2 ± 2.2 5.5 ± 1.7 6.1 ± 1.7 6.7 ± 2.7 *δ 7.4 ± 2.7 

Sitting bouts > 60-min (#) 3.1 ± 1.4 3.1 ± 1.5 2.6 ± 1.1 3.1 ± 1.6 2.3 ± 1.6 2.8 ± 2.0 

Step count (#) 6409 ± 2843 7125 ± 2554 9376 ± 2387 ** 12,257 ± 3149 *** 9250 ± 2291 * 10,036 ± 4262 **δδ 

Data are presented as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.0001 compared to SED control within 
the same location. δ p < 0.05, δδ p < 0.01 different from ONE within same location. Sitting/lying (hr/d), 
number of hours per day spent siting; Standing (hr/d), number of hours per day spent standing; Stepping 
(hr/d), number of hours per day spent standing; Sitting (% waking time), percent of waking hours spent 
sitting; Standing (% waking time), percent of waking hours spent sitting; Stepping (% waking time), 
percent of waking hours spent stepping; Sitting bouts >30-min, number of sitting bouts lasting at least 30 
minutes; Sitting bouts >60-min, number of sitting bouts lasting at least 60 minutes; Sit-to-stand 
transitions, number of times a participant rose from a seated position; Step Count (#), is the number of 
steps taken per day.  
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Effect of the Physical Activity Interventions on Time Spent in Very-

Light, Light, Moderate and Vigorous Intensity Physical Activity 

 

Time spent in very-light, light, MVPA during waking hours is shown in Figure 2. 

One ActiGraph GT3X was lost; data are reported for 21 subjects.  

 

Figure 2: Waking time per day performing very light, light and moderate-to-vigorous intensity physical 
activity. Accelerometry data collected from ActiGraph GT3X tri-axial accelerometer are displayed by location (work or 
non-work day) and by physical activity intensity. V. light, very light intensity physical activity; MVPA, moderate-to-very 
vigorous intensity physical activity; SED, sedentary condition; ONE, one-bout intervention; MICRO, microbouts 
intervention. * p < 0.05, ** p < 0.01, *** p < 0.0001 vs. sedentary control condition. 

On work days, waking time spent in very light intensity activities tended to be lower 

in ONE compared to SED (12.5 ± 1.3 vs 13.5 ± 1.1 h/d, p = 0.055), but not different between 

MICRO and SED or ONE. Light intensity activities were not different across conditions 

(p > 0.05 for all). On non-work days, MICRO significantly reduced time spent in light 

intensity activities compared to SED (1.5 ± 0.5 vs. 1.9 ± 0.8 h/d, p = 0.040), but was 

associated with more time spent in very light intensity activities than ONE (13.7 ± 0.5 vs. 

11.5 ± 0.5 h/d, p = 0.002). Both MICRO (work day: +23.4 ± 6.6 min, non-work day: +21.6 

± 8.4 min) and ONE (work day: +40.2 ± 6.6, non-work day: +36.0 ± 9.0 min) significantly 

increased time spent in MVPA compared to SED on both non-work and work days (p < 

0.01 for all). On work days, MVPA was even greater in ONE than in MICRO (p = 0.02). 
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Effect of the Physical Activity Interventions on 24hr Activity Energy 

Expenditure and Physical Activity Level 

Changes in MVPA induced by the physical activity interventions translated into 

parallel changes in AEE (Figure 3). Both MICRO and ONE significantly increased AEE 

compared to SED on both work and non-work days (p < 0.05 for all). Physical activity 

level (PAL) was significantly lower in SED compared to ONE on non-work days (SED: 

1.46 ± 0.04, ONE: 1.62 ± 0.04, p = 0.004) and compared to both ONE and MICRO on work 

days (SED: 1.43 ± 0.03, ONE: 1.65 ± 0.03, p < 0.001, MICRO: 1.55 ± 0.03, p = 0.003). PAL 

was further higher in ONE than in MICRO on work days (p = 0.008).  

 
Figure 3. Activity energy expenditure. The activity energy expenditure (MJ/d) estimated from ActiGraph GT3X tri-
axial accelerometer is displayed by location (work or non-work day). SED, sedentary condition; ONE, one-bout 
intervention; MICRO, microbouts intervention. * p < 0.05, ** p < 0.01, *** p < 0.0001 vs. sedentary control condition. 

Effect of the Physical Activity Interventions on Self-Perceived Vigor 

and Fatigue 

No significant differences in self-perceived vigor were noted across conditions on 

non-work days (p > 0.05 for all, Figure 4). On working days, participants reported a 

greater level of self-perceived vigor at the end of the day in both MICRO (386.7 ± 27.9, p 

= 0.01) and ONE (403.4 ± 28.1, p = 0.002) compared to SED (314.1 ± 28.0). They further 

reported feeling less fatigue on work days after a day performing MICRO than after a 

day performing ONE (−119.7 ± 52.5, p = 0.03). On non-work days, they tended to feel less 
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fatigue on MICRO compared to both SED (-128.9 ± 65.6, p = 0.054) and ONE (−124.5 ± 

67.3, p = 0.069).  

 
Figure 4. Self-perceived fatigue and vigor. At the end of each study day participants rated their self-perceived feeling 
of fatigue and vigor (arbitrary unit). SED, sedentary condition; ONE, one-bout intervention; MICRO, microbouts 
intervention. * p < 0.05, ** p < 0.01 vs. sedentary control condition. 

Effect of the Physical Activity Interventions on Index of Insulin 

Sensitivity 

On the morning of day 4, fasting insulin and glucose concentrations were measured 

(Table 3). MICRO and ONE significantly decreased fasting insulin concentration by 

37.3% (p = 0.03) and 43.6% (p = 0.02) respectively compared to SED. Fasting glucose 

concentrations remained unchanged. As a result, insulin:glucose ratio, an index of 

insulin sensitivity, was reduced by both MICRO (p = 0.03) and ONE (p = 0.02) compared 

to SED, suggesting an improvement in insulin sensitivity. No differences were observed 

between the two active conditions.  
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Table 3. Fasting plasma glucose and insulin concentrations. 

Parameters SED ONE MICRO 
Fasting glucose (mg/dL) 90.1 ± 7.3 88.4 ± 7.7 88.7 ± 10.6 

Fasting insulin (uI/mL) 10.8 ± 8.9 6.1 ± 3.0 * 6.7 ± 6.1 * 
I/G 0.121 ± 0.101 0.069 ± 0.341 * 0.075 ± 0.063 * 

Data are presented as the mean ± SD. * p < 0.05 compared to SED control. I/G, insulin/glucose ratio. 

Discussion 

In this randomized feasibility study, we showed that sedentary, physically inactive, 

overweight/obese individuals were able to implement physical activity interventions 

consisting either of frequent bouts of activity or one continuous bout, the latter being 

more commonly promulgated by public health promotion initiatives and healthcare 

providers. Overall these two physical activity interventions had similar effects. Both 

interventions increased daily steps, MVPA, AEE and PAL on both working and non-

working days compared to the sedentary control. These increases were more 

pronounced with a daily single bout of physical activity as compared to microbouts. The 

greater physical activity and energy expenditure were further associated with higher self-

perceived feelings of vigor at the end of the day and improved fasting insulin sensitivity. 

Microbouts of activity were also associated with lower feelings of fatigue at the end of 

the day both on work days and non-work days. Neither of the interventions decreased 

time spent sitting or standing, the number of breaks from the sitting position and the 

average duration of a sitting bout.  

Because office employees are vulnerable to the adverse health effects of prolonged 

sitting, an increasing number of interventions have targeted the work environment [53]. 

Strategies that promote body movements, such as passive pedaling or treadmill desks 

have been shown to increase physical activity and energy expenditure and to some 

extent reduce time spent sitting [18–20,25–27]. However, they are relatively expensive, 

can be a safety hazard and may be impractical to implement on a large scale. Therefore, 

we proposed that an intervention involving frequent short bouts of brisk walking could 

be an inexpensive, safe, easy to implement physical activity promotion intervention. 
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Contrary to our hypothesis, microbouts of activity spread out across the day did not 

reduce the number or duration of sitting bouts and did not increase the number of 

transitions from the sitting position to standing or stepping. This may be because asking 

individuals to break-up prolonged sitting nine times a day, every hour for nine 

consecutive hours to perform 5-min of walking is not a sufficient stimulus. In support of 

this interpretation, a recent study used hourly computer screen prompts or text 

messages to break up sitting. Sitting time was broken up with 7 minutes of walking to 

accumulate 30–60 minutes of walking per day. Additionally, there was an additional 

6000 step count goal. This intervention was 7 days measured in overweight/obese and 

resulted in a decrease in total sitting time by 1.85 h/d on average [110]. Despite the 

frequency of activity being more frequent (every 30–60 min), this study also failed to 

show an increase in the number of sedentary breaks (sit-to-stand transitions) [10]. In our 

study, the number of sitting bouts longer than 30-min was even greater when 

participants were asked to perform microbouts of activity compared to single bouts on 

non-work days. This suggests that people tend to stay seated until they have to stand up 

and be active. Therefore, future studies may need to test specific interventions that 

primarily target breaks from sitting in addition to sitting time, daily steps or bouts of 

physical activity. 

The American College of Sports Medicine, the American Heart Association and the 

American Diabetes Association recommend that adults perform at least 150-300 min/wk 

(21.4–42.8 min/day) of MVPA to maintain and promote cardiovascular health and 

insulin sensitivity [54]. Implementing frequent short bouts of 5-min brisk walking across 

the day in our study led to a significant 22.5–min/day increase in MVPA on average. In 

addition, the microbouts intervention produced an increase in AEE of 0.54 MJ/d (129 

kcal/d) on non-working days and 0.78 MJ/d (187 kcal/d) on work days. It has been 

proposed that a very small energy gap – the difference between energy intake and energy 

expenditure –plays a role in weight gain [55]. A difference of 100 kcal/day at the 

population level could theoretically prevent weight gain in 90% of the U.S. adult 

population. Consequently, the increase in AEE along with the suppressive effect on 

appetite previously reported with microbouts of activity (at least in normal-weight 

individuals) [27,30] may help mitigate weight gain. Implementing microbouts of activity 

at work could be a viable strategy, among other strategies, to slow down weight gain. In 
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addition, large prospective cohort studies of diverse populations have shown that an 

AEE of approximately 4.18 MJ/wk (1000 kcal/wk) is associated with lower rates of 

cardiovascular disease and premature mortality [54]. It would therefore be important to 

study the effect of this intervention over the long-term and verify whether a 1000 kcal/wk 

energy expenditure could be reached. Finally, our feasibility study showed that three 

days of microbouts of activity performed in daily life improves insulin sensitivity, which 

adds to the increasing body of data collected in the laboratory settings on the beneficial 

effect of frequent interruptions of prolonged sitting on insulin action [30–40,56]. This is 

the first study to show that an intervention using small bouts of activity promotes 

overweight-obese sedentary adults to comply with the current physical activity 

guidelines, at least in the short term. As a result, this strategy may have positive effects 

on body weight control and cardiometabolic health. However, we need to acknowledge 

that the single bout intervention we tested in the same subjects induced greater 

increases in MVPA (40 min/work day) and AEE 1.41 MJ/work day (+337 kcal/work day). 

The subjects thus attained a PAL of 1.65 that is characteristic of people who are 

moderately active. Future studies are needed to test the long-term effects of the 

microbouts of activity versus single bout of activity on the daily pattern of physical 

activity and energy balance regulation (appetite, energy intake, energy expenditure). 

The long-term goal will be to test this type of intervention in the public on a large 

scale. The modern occupational environment promotes increased sedentary time [57], 

and has therefore been identified as an ideal environment to target sedentary behaviors. 

This is even more important because adults who spend more time sedentary at work do 

not compensate by being more active during non-working periods [58]. Interestingly, 

we showed that the beneficial effects of the microbouts intervention on physical activity 

and self-perceived fatigue were observed on both work and non-work days. This means 

that if implemented in occupational contexts this intervention, if sustained on 

weekends, could also increase physical activity on non-work days. A limitation is that 

instead of shifting time from very light to MVPA intensity activities as observed with the 

single bout of activity, the microbouts of activity increased MVPA in detriment of light 

intensity activity on non-work days. Another potential issue for future implementation 

of such intervention is the fact that participants reported the microbouts of activity to 
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be more challenging to perform at work. But in our study, participants were the only 

employees performing these activities at their workplace. If the environment was 

designed to support breaking up sitting, participants may find this approach less 

challenging. It is well known that socio-ecological approaches acting on both the micro 

environment (individual) and macro environment (socio-professional environment, 

office layout, alternative work stations, active vs sitting meetings, etc.) are key when 

aiming to implement new interventions that change behavior for a sustained period of 

time. Developing strategies to self-motivate individuals in adopting this new behavior is 

also crucial [59]. The fact that our overweight/obese participants perceived less fatigue 

at the end of a workday performing the microbouts than a single continuous bout of 

activity, as we previously reported in normal weight individuals, could be used to 

encourage employers to incorporate microbouts of activity into the daily routines of 

their office employees [0]. Additionally, strategies aiming to reduce time spent sitting 

have not been shown to affect productivity or cognitive functions [28–30]. Most likely, a 

combination of the two interventions to target both occupational and non-work time 

may be the best approach. It could also provide individuals with different tools to choose 

from according to their mood that day at the office or outside the office. 

Several limitations need to be acknowledged. The main limitation is that the study 

was conducted over 3-days and so conclusions about whether the weekly level of 

recommended MVPA could be reached and sustained for longer time periods cannot be 

made. The comparison between work days and non-work days was not a priori powered 

and led to an unbalanced number of days spent in the two different settings. Because 

participant’s knew their physical activity was being tracked by two physical activity 

monitors there could have been an effect of increased activity [61]. Indeed Clemes et 

al. showed that wearing activity monitors for three days induces a spike in physical 

activity levels that regresses back to the mean after 7-days [60]. However, other studies 

have shown no evidence of reactivity to physical activity monitors [61,62]. In addition, 

the cross-over design may have limited the reactivity effect to the monitors. Another 

strength was that the pattern of physical activities was assessed using two 

complementary activity monitors, one specifically designed to detect changes in sitting 

and the other one designed to determine time spent in activities of different intensities 

and the associated energy expenditure. Finally, this feasibility study testing a novel 
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lifestyle intervention to prevent sedentary behavior was conducted in overweight/obese, 

sedentary, physically inactive adults, which represent a high-risk group for metabolic 

diseases.  

Conclusions 

This feasibility study showed in overweight/obese physically inactive sedentary 

adults that regardless of the terms of the intervention, promoting physical activity led 

to an increase in physical activity and energy expenditure, and improved insulin 

sensitivity and vigor. However, none reduced total daily sitting time or the length of 

sitting bouts. This suggests that more efforts are needed in the workplace to increase 

physical activity along with a concomitant reduction in the number and duration of 

sitting bouts. It may be that frequent prompts to rise from sitting in combination with 

encouragements for either microbouts or single bouts of activity may represent the best 

overall strategy. This will need to be tested as part of a multicomponent intervention at 

the organizational, environmental and individual levels. Therefore, the overall public 

health message should communicate that any increase in physical activity can be 

beneficial when performed consistently over time.   
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Chapitre III: Dériver l’activité physique à partir 

d’accéléromètres (résumé français) 

 

Les études épidémiologiques visant à estimer les effets du comportement physique, 

mesuré objectivement, sur la santé s’appuient principalement sur des accéléromètres 

portés au corps. Cet outil représente une solution fiable et peu coûteuse et, grâce à sa 

petite taille, occasionne un inconfort relativement léger. L’utilisation de l’accéléromètrie 

en épidémiologie s’est beaucoup répandue grâce à des études à grande échelle aux Etats-

Unis (les différentes vagues de la National Health And Nutrition Survey, notamment).  

Malgré sa popularité, il n’existe pas de consensus quant aux méthodes permettant de 

transformer le signal d’accélération en mesure de l’activité physique. Certes, un savoir-

faire propre au domaine de l’épidémiologie de l’activité physique s’est développé avec la 

démocratisation de cet outil dans les années 2000 et au début des années 2010. Mais ce 

savoir-faire répondait aux besoins définis par les paradigmes de l’époque, axé sur la 

l’activité physique modérée-à-vigoureuse, et sur des spécifications techniques des 

appareils dépassés aujourd’hui : accéléromètre uniaxial, une capacité de stockage de 

données limitée et une voluminosité de l’appareil exigeant un port à la taille.  De plus, 

l’utilisation massive d’appareils de type ActiGraph estimant l’intensité du mouvement à 

travers un système de counts (méthode d’agrégation opaque du signal d’accélération sur 

des périodes plus ou moins longues) a entravé le développement d’une accéléromètrie 

propre à l’épidémiologie de l’activité, alors que l’importance de l’étude d’une 

nomenclature d’activités détaillée à haute résolution temporelle était progressivement 

mise en avant dans la littérature.  

Pourtant, une littérature abondante sur l’accélérométrie, majoritairement indépendante 

du monde de l’épidémiologie, a pris son essor avec la popularisation d’applications, 

basées sur le signal accélérométrique, développées pour smartphones et smartwatches. 

Des méthodes d’apprentissage artificiel (machine learning) sont largement utilisées et se 

sont avérées très précises dans leur capacité à prédire le comportement physique à partir 
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du signal.  Cependant, ces méthodes demandent des compétences en science des 

données qui dépassent celles que possèdent la plupart des épidémiologistes.  Surtout, 

l’hyper-paramétrage est tellement chronophage, et le coût en calcul informatique est tel, 

que ces solutions, malgré leur excellente performance, restent peu applicables et 

généralisables aux problèmes posés par l’épidémiologie de l’activité physique. Le but de 

notre étude a été donc de créer un algorithme à la fois performant et simple, rapide et 

robuste afin de dériver un large éventail de comportements à partir d’accéléromètres 

posés au corps. 

L’apprentissage artificiel, permettant d’attribuer à des séquences de signaux 

d’accélération des classes de comportements prédéfinis (apprentissage supervisé), 

nécessite un jeu de donnés annotées comportant à la fois les signaux et leur 

comportements correspondants. En apprenant sur des exemples annotés, le modèle est 

entrainé à associer un signal d’entrée à un comportement, pour être finalement capable 

de prédire pour chaque signal un comportement inconnu. Pour entraîner notre 

algorithme, nous avons choisi le jeu de données DaLiAc (daily life activities), comportant 

des signaux d’accéléromètres et de gyromètres portés au corps (poignet, poitrine, taille 

et cheville) de 19 individus alors qu’ils réalisaient une série de 13 activités : 1) être couché 

au repos, 2) être assis au repos, 3) être debout au repos, 4) faire la vaisselle, 5) passer le 

balai, 6) passer l’aspirateur, 7) marcher, 8) monter les escaliers, 9) descendre les 

escaliers, 10) courir, 11) faire du vélo à une résistance de 50 Watt, 12) faire du vélo à une 

résistance de 100 Watt, 13) sauter à la corde. Ce jeu de données public ayant été souvent 

testé dans d’autres études, il nous a également permis de comparer notre algorithme à 

d’autres algorithmes récents. 

Notre algorithme propose un traitement relativement simple des signaux. Un filtre 

passe-bas et passe-haut est appliqué au signal d’accélération, séparant ainsi 

l’accélération dynamique et celle due à la gravité. Chaque signal d’accélération est donc 

divisé en deux signaux indépendants, en plus du signal original, qui est conservé lui 

aussi. On applique une transformée de Fourier aux trois signaux, passant du domaine 

temporel au domaine fréquentiel. Une série de variables est calculée dans ces deux 

domaines (moyenne, écart-type, maximum, minimum, entropie des amplitudes 

fréquentielles etc.). Celles-ci sont fournies aux modèles qui apprennent à les associer aux 
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classes de comportements.  La classification s’opère dans un système hiérarchique : à un 

premier niveau, un modèle de classement général affecte chaque échantillon du signal à 

une méta-classe regroupant plusieurs comportements détaillés semblables. A un second 

niveau, un autre modèle « spécialisé « dans une méta-classe attribue un comportement 

détaillé à cet échantillon parmi ceux présents dans la méta-classe. 

En utilisant les signaux filtrés, un système de classification hiérarchique et un petit 

nombre de variables à haut degré d’information, notre algorithme, basé sur une 

classification par régression logistique, surclasse les algorithmes présentés 

précédemment en termes de précision et de coût en calcul informatique. L’algorithme 

est simple et robuste, et a nécessité aucun hyper-paramétrage ou sélection de variable.  

Notre étude teste l’algorithme proposé sur l’ensemble des 15 combinaisons d’appareils à 

partir des quatre avec lesquels les données ont été collectées 

(poignet+poitrine+taille+cheville, poignet+poitrine+taille, poignet+poitrine+cheville,…, 

poignet, poitrine, taille, cheville). Nous montrons qu’en conservant deux appareils au 

poignet et à la cheville, la précision du classement ne diminue quasiment pas par rapport 

à un classement basé sur l’ensemble des appareils (96,8% au lieu de 97,3 %). De même, 

en retirant les signaux de gyromètres, la précision baisse également de 0,5% seulement. 

Enfin, nous montrons qu’un modèle de régression logistique, malgré sa simplicité, reste 

plus performant que d’autres modèles : réseau de neurones à convolution, machine à 

vecteurs de support, gradient boosting et la méthode des k voisins les plus proches.  

Malgré ces excellents résultats, il faut souligner que les données ont été collectées dans 

des conditions semi-contrôlées de laboratoire et se prêtent donc bien à l’apprentissage 

automatique. Des données moins « propres » pourraient accuser un taux de classements 

corrects plus bas. De même, notre méthode se base sur un fenêtrage des données à 5 

secondes, alors que des données prises sur le vif pourraient demander un fenêtrage plus 

court compte tenu des changements rapides de comportement. En effet, appliquant des 

fenêtres d’une seconde (ce qui semble plus adapté aux conditions de vie réelles), la 

précision moyenne du modèle baisse de 2,9%. De plus, la dépense énergétique ne peut 

être estimée avec cet algorithme qu’en faisant correspondre les comportements prédits 

à des valeurs de dépense énergétique moyennes correspondantes, connues par ailleurs. 

Les variations en dépense énergétique au sein d’une activité dues à des intensités 
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variables (par exemple différentes vitesses au sein de la catégorie « marche »), ne sont 

donc pas directement prises en charge par l’algorithme.  

Malgré ces limites, notre algorithme reste, relativement aux autres, plus performant, 

polyvalent et étonnement simple. Il démontre que des solutions simples basées sur une 

compréhension profonde du problème peuvent mener à de meilleurs résultats que des 

méthodes ultra-performantes mais peu adaptées. Cet algorithme, nous le croyons, sera 

un nouveau point de départ pour de nouveaux modèles développés sur des données 

plus réalistes, comportant éventuellement dans le futur des informations détaillées sur 

la dépense énergétique.    
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Abstract 

This article proposes a new machine learning algorithm for classification of human 
activities by means of accelerometer and gyroscope signals. Based on a novel hierarchical 
system of logistic regression classifiers and a relatively small set of features extracted 
from the filtered signals, the proposed algorithm outperformed previous work with a 
mean accuracy of 97.3% on the Daily Life Activity dataset. The algorithm represents also 
a significant improvement in terms of computational costs and required no feature 
selection and hyper-parameter tuning. The algorithm stilled showed a robust 
performance (96.8% mean accuracy) with only two devices (ankle and wrist) out of the 
four (chest, wrist, hip and ankle). The present work shows that low-complexity models 
can compete with heavy, inefficient models in classification of advanced activities when 
designed with a careful inspection of the data.     
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Introduction 

Activity monitoring with wearable sensors has various scientific, medical and 

industrial applications, such as physical activity epidemiology [1], fall detection in the 

elderly population [2] or for smartwatch applications [3]. Among the existing sensors, 

accelerometers are regularly used for activity monitoring mainly because of their 

relatively high accuracy, low price and small size [4], [5].  To improve measurement 

reliability, accelerometers in activity monitoring are sometimes coupled with gyroscopes 

(measuring angular velocity), for instance in the smartphone [6]. Methods for human 

activity recognition (HAR) using wearable motion sensors were thoroughly investigated 

and reported in the scientific literature, and many studies demonstrated their ability to 

predict activity with a high level of accuracy [7], [8].  

Existing HAR methods usually rely on supervised machine learning models to 

map between motion signals and activities. All methods rely on the assumption that 

different physical activities are reflected by different, characteristic signals and that it 

should be possible to discriminate between activities with appropriate, meaningful 

features extracted from the signal [8], [9]. HAR models can be divided into two main 

families: classical machine learning models and neural networks (often referred to as 

deep learning models) [10]. In the classical approach, activities are discriminated by 

means of handcrafted features extracted from segments of the signal in the time and 

frequency domains (e.g. mean, standard deviation or maximum frequency) [8], [9]. Such 

features have proven useful in discriminating activities in various models, such as tree-

based models, support vector machines (SVM), logistic regression, k-nearest-neighbours 

(KNN), Naïve Bayes Classifier or hidden Markov models (HMM) [7], [9]. In contrast, 
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neural networks can be fed directly with the raw signal and are automatically tuned in 

order to detect discriminative features [10], [11]. Neural networks have been proposed in 

different variants, such as convolutional neural networks (CNN) and recurrent networks 

[11].  

The automatic feature detection of deep learning models makes them capable of 

detecting very complex, highly discriminative features and patterns in the data [10]. CNN 

drawing upon advances in computer vision have recently proved powerful in HAR and 

outperformed classical machine learning models (e.g. [12], [13]). Although very 

performant, deep learning models are very long to train and finding an optimal 

architecture for the task at hand is most often a tedious process [11]. The effectiveness of 

automatic feature learning comes thus at a high computational price, which makes it 

often more efficient to rely on human domain knowledge for feature extraction [10]. 

Furthermore, the long process of model selection makes the final model hardly 

generalizable to similar but different tasks [11], [14]. 

Classical supervised machine learning methods, in contrast, are easier to train 

but their shallow learning can makes them less performant in difficult classification 

tasks [10].  To make up for this deficiencies, researchers using classical model must 

handcraft a very large number of increasingly complex features, sometimes amounting 

to several thousand [8], [15]. As too many features can impair the performance of the 

models and makes training computationally impractical, researchers must engage in a 

process of feature selection in order to form a small subset of highly informative features, 

which are subsequently fed into the classification models [16]. This process of feature 

selection can be in itself complex [15] resulting in computationally expensive, inefficient 

and sometimes unclear classification algorithms.  
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Several studies demonstrated the usefulness of a hierarchical classification 

system for HAR in increasing accuracy while maintaining the algorithm reasonably 

simple [17]–[19]. This system consists in assigning precise target classes to samples in 

two steps. In a first step, a base classifier discriminates between meta-classes regrouping 

several similar target classes. In a second step, classifiers specific to each meta-class 

discriminate between the final target classes. With a strong base-level classifier, such 

systems can manually prevent potential misclassification [18] and combine different 

classifiers for different tasks, each ‘specializing’ in a different problem solving task [17].  

Finally, a hierarchical system provides an interesting insight into the performance of the 

algorithm solving a basic classification, which can represent an objective per se.  

The goal of this article is to propose a high-performance, fast and yet simple 

algorithm for HAR based on a careful inspection of the signal and a smart use of 

classification methods.  We rely on a novel hierarchical system and a relatively small set 

of highly-informative features extracted from the filtered signals.  We test our approach 

on the public Daily Living Activity (DaLiAc) dataset presented below [17]. 

Materials and Methods 

The DaLiAc dataset 

The DaLiAc (Daily Living Activity) dataset consists of the signals of accelerometers and 

gyroscopes placed on the chest, wrist, hip and ankle of nineteen adults performing 

thirteen daily activities in semi-controlled conditions. The activities includes a wide 

range of simple and complex activities:  lying, sitting, standing, dish washing, vacuum 
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cleaning, sweeping, walking, running, ascending stairs, descending stairs, bicycling with 

a resistance of 50 Watts, bicycling with a resistance of 100 Watts and rope jumping. 

Details about the subjects and the experimental designs can be found in [17].  

Processing 

Acceleration signals are known to be composed of a dynamic component 

(acceleration of the body) and a gravitational one. As a consequence, some authors 

suggested to apply a low-pass filter to the acceleration signal in order to isolate the 

gravitational component and infer the inclination of the device in space [8], [20]. Using 

a Butterworth filter (1st  order, with a threshold of 2 Hz), we separated the accelerometer 

signals into dynamic and gravitational components (AC and DC components, 

respectively). Unlike the widespread approach, we treated raw acceleration, AC and DC 

components as three separate signals all along the feature extraction process. AC and 

DC components reflect two different aspects of physical activity, orientation and 

motion, and as such should be treated as two independent signals. For instance, 

periodicity metrics extracted for the signals can be different, but equally interesting, 

when looking at orientation and motion over time. Thus, we ended up, for each sensor, 

with the following time-series: three total acceleration signals (along each axis), three 

AC, three DC and three gyroscope signals. All signals were down-sampled to 51.2 Hz (we 

sampled every 4th datapoint from the original data) and normalized.  

All signals were segmented along the time axis into windows of 5 seconds with a 

50% overlap, as done by other authors [21], in order to make evaluation comparable with 

other algorithms tested on the same data [12]. 
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Feature extraction 

For each window, the following statistics were computed:  

For the signal x in the time-domain, by window of length N : 

- Mean, standard deviation, skewness and kurtosis; 

- The following percentiles: [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]; 

- Range :  max(x) – min(x) ; 

- RMS: √1
𝑁

∑ 𝑥2𝑁
𝑖=1    

- Zero-crossing: The number of times the signal crossed the mean.    

In the frequency domain:  

For all windows, we applied a Fourier transformation to the mean-subtracted signal 𝑥′ =

𝑥 − 𝑥 to obtain the amplitudes {X’k} for the frequencies 𝑘 ∈ [0 , + 𝑁
2

− 1]. The following 

features were computed for all Fourier transformed series:   

- Energy: 𝐸 =  ∑ |𝑋′𝑘|2
𝑘 , 

- Entropy: for the spectral density  𝑃𝑘 = |𝑋′𝑘|
∑ |𝑋′𝑘|𝑘

,  𝐻 =  − 1

log2
𝑁
2

∑ 𝑃𝑘 ⋅ log2 𝑃𝑘 𝑘 , 

- Centroid: The sum of the frequencies k associated with the transform {X’k}, 

weighted by the spectral densities:  𝐶 =  ∑  𝑘 ⋅ 𝑃𝑘𝑘  

- Bandwidth: The weighted mean absolute distance from the centroid ∑ |𝑓𝑘 − 𝐶|𝑘 ⋅

𝑃𝑘. 

- Maximum frequency:  𝑓𝑎𝑟𝑔𝑚𝑎𝑥 ({𝑿𝒌
′ }) 
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Classification 

Classification was done using a two-level hierarchical system illustrated in Figure 

1. For all classification tasks in the system, the following classifiers were tested: logistic 

regression (with a L2 regularization and a penalty coefficient equal to one); KNN with 

k=5; gradient boosting (500 estimators, selecting 10 features at a time) and SVM. For 

additional comparability, a convolutional network was also tested (architecture in 

Figure 2) taking as input the four signals (AC, DC, accelerometer and gyroscope) and 

their Fourier transform. Classification was done using all 15 possible combinations of 

device locations on the subjects’ body (e.g. ankle, ankle+chest, ankle+chest+wrist,…). 

We used Python’s Scikit-learn[22] and Tensorflow [23] libraries for the analysis 

and, unless otherwise specified, their default parameters.  

Evaluation method 

In order to evaluate the performance of the proposed models, a leave-one-subject-

out procedure is followed: models are tested against data from one subject after being 

trained on all the rest, for each subject of the 19 subjects in the dataset. This procedure 

was adopted by the first study on the dataset and followed by six subsequent studies (see 

Table 1), as it reduces bias in the accuracy estimator [17]. Models are tested against data 

from subjects they have never seen, hence hinting to their generalizability.  

For all models, we report the mean and standard deviation of the accuracy (rate of 

correctly classified samples) for the 19 leave-one subject-out rounds. To present a 

complete picture, for models based on the four devices, we also present the confusion 
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matrix, and the f-score, which is the harmonic mean of precision (true positives/ (true 

positives + false positives)) and recall (true positives/ (true positives + false negatives)).  

Results 

For the five classification models (logistic regression, gradient boosting, KNN, SVM 

and CNN), accuracy is reported for each combination of devices and for each task in the 

hierarchical system in Table 1. Overall classification accuracy was highest for logistic 

regression (based on data of all four devices) with 97.30% accuracy, followed by gradient 

boosting (all devices) with 96.94%, SVM (all devices) with 96.84%, CNN (three devices 

at ankle, chest and wrist) with 95.42%, and KNN (three devices at ankle, chest and wrist) 

with 91.82%. However, when looking at sub-tasks in the hierarchical classification 

system, gradient boosting is very slightly better than logistic regression in the base-level 

classification (99.23% vs. 99.21%). GB outperformed logistic regression also in 

distinguishing between standing and washing dishes (97.40% vs. 97.06%) and between 

walking, ascending and descending stairs (99.08% vs. 98.72%). When we combined the 

best classifiers for all sub-tasks, overall mean accuracy rose by 0.04%. As this 

improvement remains very marginal, we refer to the system based exclusively on logistic 

regression as the best algorithm. The confusion matrix for the final classification with 

logistic regression is shown in Table 2.  
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Discussion 

The proposed hierarchical system based on logistic regression classifiers, with 97.30% 

mean accuracy, represents the best option among those examined here. Compared with 

previous algorithms tested on the DaLiAc data set (summarized in Table 3), the 

proposed algorithm  represents a threefold improvement.  First, our algorithm relies on 

logistic regression, one of the simplest and most robust tools in machine learning. 

Unlike other algorithms, the simplicity of our model permitted to reach a very high 

accuracy, without preliminary hyper-parameter optimization and feature selection. In 

fact, hyper-parameter optimization of classifiers and feature selection can be a daunting, 

time-consuming task, and was shown to lead to over-fitting and poor generalization [24]. 

Second, despite its simplicity, the proposed algorithm performs better than major works 

tested against the DaLiAc dataset (97.30% versus 96.40% using CNN) (see Table 3). 

Third, the training of the models themselves is significantly shorter with logistic 

regression compared to other popular learning algorithms. Using Google Colab (with 

GPU accelerator) and the parameters mentioned above, training and predicting data 

following the leave-one-out procedure (i.e. 19 times) lasted 4.5 minutes with logistic 

regression and KNN, 7.2 minutes for SVM, 10.7 minutes for gradient boosting, and over 

an hour for CNN. The entire preprocessing phase for the 19 subjects (over 6 hours of 

observations in total) took only 1.2 minutes.  

HAR classification algorithms involve many steps and authors do not always 

specify all the decisions that they made during data processing before reaching the 

results.  Consequently, it is difficult to fully explain how our algorithm outperformed 

previous algorithms using classical machine learning classifiers (Table 3) by nearly 3.9%.  



 
Discussion 
 

125 
 

We undertook a few steps to identify the innovations that made our algorithm more 

accurate. First, running our algorithm with a flat classification system instead of the 

hierarchical system proposed here resulted in 1.81% decrease in mean accuracy. Second, 

with extracting feature performed on the acceleration signal only, without including the 

AC and DC components as we did, the difference in accuracy rose to 2.63%. The 

additional 1.27% difference with the two best-performing algorithms using classical 

methods by Chen [25] and by Zdravevsky [15] can be attributed to a good trade-off 

between the number of features and their informativeness. In fact, the former study 

omitted very important features (no frequency domain features were extracted), while 

the latter may have had too many of them (4871 before selection). For a better 

transparency and comparability with other works, the Python script of our model is 

attached in the Annex. 

Despite this promising improvement, a few caveats need to be highlighted. First, 

very large epidemiological studies interested in physical activity (e.g. the NHANES in 

the USA) equip their study subjects with accelerometers that are not coupled with 

gyroscopes [26]. Algorithms evaluated against the DaLiAc data, however, draw upon 

both.  In our algorithm, leaving out gyroscope data resulted in a decrease of 0.5% in 

mean accuracy. A second issue is related to the nature of our data.  HAR algorithms are 

tested against clean data of activities performed in a characteristic manner as part of a 

relatively structured protocol. Realistic data, however, can contain less characteristic 

activities (e.g. slouching, walking a single step…), which represent a greater challenge to 

classify. In addition, people in real conditions tend to switch rapidly between activities. 

Consequently, windows of five seconds are probably too long to capture a single activity. 

A possible solution would be to view sets of activities that are performed together (e.g. 



Deriving physical activity with wearable accelerometers 

126 
 

standing and walking around) as activities per se. Another solution is to consider smaller 

windows, for instance of one second. Smaller windows are known to be less good when 

aiming to capture cyclical activities [21] and can result in a decrease in total accuracy 

and longer training. In fact, running our algorithm on 1-second windows resulted in a 

drop of 2.9% and lasted almost 5 times as long as with the 5-second windows commonly 

used. Limiting this loss in accuracy by applying dynamic windowing methods [21], [27] 

is an interesting direction for future development. To that extent, very recent attempts 

to create benchmark activity datasets simulating real conditions [28] are an important 

development in the field and new algorithms should preferably be assessed using these 

data.   

The high accuracy reached with our algorithm does not mean that logistic 

regression is best classifier for the task at hand. A better choice of the hyper-parameters 

of the powerful SVM, GB or CNN models could have resulted in better results. Our point 

is to emphasize that a simple approach based on domain knowledge can results in a fast, 

robust and performant model, and that issues of generalisability and tedious processes 

of model selection must be acknowledged in the evaluation of a new algorithm.  

Last, equipping study subjects in free-leaving conditions with four accelerometers 

as in the DaLiAc dataset can be costly and cause physical and social discomfort to the 

subjects. In this study, comparing accuracy with different combinations of devices 

yielded important insights into this matter. Our analysis shows that classification 

accuracy using only two devices at the ankle and the wrist was practically as good as 

with the four devices (99.08% accuracy in the basic classification and 96.81% overall 

accuracy).  
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Conclusion 

In this paper, we propose a novel algorithm for HAR from motion signals 

(accelerometers and gyroscopes), which significantly improves upon previous work in 

terms of computational expenses, inferential robustness and classification accuracy. 

Using a hierarchical classification system with logistic regression, and a relatively small 

set of features extracted not only from the acceleration signal, but also from low-pass 

filtered and high-pass filtered signals, proved highly useful in solving the classification 

task at hand. From a practical perspective, we showed that two devices placed at the 

wrist and the ankles result in an accuracy that is practically as good as with two 

additional accelerometers on the chest and the hip, and that using the method proposed 

here, the additional information brought by the gyroscope was marginal.  

Future research should focus on data that better simulate real life conditions, with 

their swift transitions between activities and less characteristic behaviours. New, simple 

models should be developed to better adapt to these conditions, while relying, as much 

as possible, on domain knowledge.  
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Tables 

Table 1: Overview of previous algorithms tested against the DaLiAc dataset using a leave-one-subject-out validation procedure 

 

Authors Year Classifiers 

Mean 
accuracy 
score (%) Remark 

Leutheuser et al. [17] 2013 
SVM, AdaBoost, KNN, 
SVM 89.6 Reference paper 

Chen et al. [25]  2016 SVM 93.43  

Nazabal et al. [29] 2016 HMM 95.8 
Merged the two 
bicycle activities 

Zdravevski et al. [15] 2017 SVM 93.4  
Hur et al. [12] 2018 CNN 96.4  
Jurca et al. [30] 2018 LSTM 87.16  
Huynh-The et al. [13] 2019 CNN 95.7  
Proposed algorithm 2020 Logistic Regression 97.30%  
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Table 2: Mean and standard deviation of accuracy (for 19 leave-one-subject-out rounds) of the different classifiers involved in the hierarchical system by model tested. Results in bold 
indicate best combination of devices (highest mean accuracy and lowest standard deviation).  

MODEL I : SUPPORT VECTOR MACHINE  
base stand clean walk bike overall 

  mean sd mean sd mean sd mean sd mean sd mean sd 
Device location  
ankle 0.9847 0.0127 0.8449 0.0843 0.7692 0.1165 0.9872 0.0076 0.9245 0.0600 0.9240 0.0274 
chest 0.9711 0.0213 0.9275 0.0769 0.8331 0.1145 0.9640 0.0252 0.9092 0.0577 0.9339 0.0330 
hip 0.9743 0.0339 0.9343 0.0735 0.7890 0.1045 0.9469 0.0571 0.8422 0.1334 0.9098 0.0525 
wrist 0.9441 0.0341 0.8715 0.1045 0.8570 0.0678 0.9015 0.0659 0.8271 0.0955 0.8895 0.0467 
ankle|chest 0.9883 0.0125 0.9575 0.0550 0.8928 0.0995 0.9867 0.0139 0.9423 0.0579 0.9617 0.0225 
ankle|hip 0.9898 0.0076 0.9389 0.0792 0.8337 0.0941 0.9841 0.0165 0.9331 0.0675 0.9488 0.0268 
ankle|wrist 0.9893 0.0087 0.9578 0.0499 0.9155 0.0650 0.9797 0.0117 0.9191 0.0665 0.9582 0.0184 
chest|hip 0.9843 0.0127 0.9576 0.0535 0.8668 0.0882 0.9700 0.0247 0.9224 0.0817 0.9486 0.0267 
chest|wrist 0.9799 0.0180 0.9607 0.0550 0.9213 0.0577 0.9532 0.0372 0.9111 0.0667 0.9476 0.0296 
hip|wrist 0.9846 0.0116 0.9595 0.0413 0.9059 0.0521 0.9502 0.0367 0.8876 0.0835 0.9426 0.0227 
ankle|chest|hip 0.9908 0.0103 0.9671 0.0484 0.8981 0.0925 0.9830 0.0193 0.9495 0.0625 0.9648 0.0227 
ankle|chest|wrist 0.9889 0.0118 0.9644 0.0579 0.9391 0.0668 0.9792 0.0160 0.9376 0.0761 0.9650 0.0227 
ankle|hip|wrist 0.9911 0.0091 0.9575 0.0365 0.9268 0.0616 0.9778 0.0165 0.9338 0.0623 0.9623 0.0166 
chest|hip|wrist 0.9861 0.0124 0.9694 0.0499 0.9248 0.0576 0.9617 0.0296 0.9273 0.0771 0.9567 0.0249 
ankle|chest|hip|wrist 0.9911 0.0106 0.9716 0.0496 0.9397 0.0671 0.9790 0.0180 0.9456 0.0713 0.9684 0.0219 
Best combination 0.9911 0.0076 0.9716 0.0365 0.9397 0.0521 0.9872 0.0076 0.9495 0.0577 0.9684 0.0166 

MODEL II : CONVOLUTION NEURAL NETWORK 
 base stand clean walk bike overall 
 mean sd mean sd mean sd mean sd mean sd mean sd 

ankle 0.9876 0.0101 0.8949 0.0498 0.8504 0.1174 0.9764 0.0187 0.8919 0.0703 0.9334 0.0291 
chest 0.9714 0.0308 0.8752 0.1679 0.8484 0.1206 0.9611 0.0390 0.9085 0.0554 0.9258 0.0400 
hip 0.9201 0.1040 0.7603 0.1307 0.7199 0.1658 0.8944 0.0900 0.8325 0.1090 0.8409 0.0923 
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wrist 0.9395 0.0504 0.8452 0.1503 0.8583 0.1071 0.8518 0.1114 0.8538 0.1061 0.8718 0.0632 
ankle|chest 0.9872 0.0099 0.9259 0.1390 0.9162 0.0777 0.9773 0.0298 0.9141 0.0616 0.9532 0.0220 
ankle|hip 0.9846 0.0150 0.8870 0.1064 0.8497 0.1104 0.9695 0.0374 0.9182 0.0680 0.9365 0.0290 
ankle|wrist 0.9880 0.0211 0.9650 0.0640 0.9214 0.0757 0.9684 0.0632 0.9074 0.0660 0.9541 0.0283 
chest|hip 0.9722 0.0212 0.8657 0.1782 0.8484 0.0994 0.9576 0.0477 0.9088 0.0657 0.9227 0.0313 
chest|wrist 0.9817 0.0152 0.9079 0.1331 0.9210 0.0775 0.9526 0.0548 0.9002 0.0711 0.9401 0.0358 
hip|wrist 0.9531 0.0595 0.8566 0.1650 0.8887 0.0858 0.9471 0.0507 0.8679 0.0793 0.9082 0.0518 
ankle|chest|hip 0.9793 0.0174 0.8635 0.1837 0.8642 0.0977 0.9799 0.0220 0.9170 0.0577 0.9375 0.0370 
ankle|chest|wrist 0.9896 0.0093 0.9425 0.0811 0.9364 0.0607 0.9668 0.0703 0.9070 0.0819 0.9542 0.0220 
ankle|hip|wrist 0.9797 0.0258 0.9369 0.0796 0.8838 0.1199 0.9733 0.0479 0.9259 0.0811 0.9479 0.0312 
chest|hip|wrist 0.9831 0.0156 0.9251 0.0739 0.9213 0.0632 0.9435 0.0832 0.8879 0.0704 0.9372 0.0310 
ankle|chest|hip|wrist 0.9787 0.0282 0.9148 0.1024 0.9080 0.1023 0.9771 0.0168 0.9137 0.0885 0.9465 0.0313 
Best Combination 0.9896 0.0093 0.9650 0.0498 0.9364 0.0607 0.9799 0.0168 0.9259 0.0577 0.9542 0.0220 

MODEL III : K NEAREST NEIGHBORS  
base stand clean walk bike overall 

  mean sd mean sd mean sd mean sd mean sd mean sd 

 Device location   
ankle 0.9726 0.0158 0.6211 0.0920 0.6782 0.1218 0.9761 0.0157 0.7480 0.1036 0.8343 0.0344 
chest 0.9344 0.0357 0.8697 0.0932 0.6988 0.1163 0.9561 0.0279 0.6792 0.1264 0.8534 0.0493 
hip 0.9455 0.0402 0.8257 0.1262 0.6878 0.1169 0.9221 0.0481 0.6728 0.1243 0.8344 0.0553 
wrist 0.8940 0.0536 0.8510 0.1139 0.6572 0.1581 0.8123 0.0909 0.6180 0.1269 0.7842 0.0712 
ankle|chest 0.9828 0.0160 0.9196 0.0766 0.7981 0.0876 0.9873 0.0085 0.8042 0.0851 0.9150 0.0255 
ankle|hip 0.9802 0.0138 0.8077 0.1098 0.7298 0.1155 0.9763 0.0163 0.7174 0.0953 0.8683 0.0320 
ankle|wrist 0.9808 0.0128 0.9164 0.0748 0.7861 0.0882 0.9737 0.0213 0.7478 0.1303 0.8981 0.0327 
chest|hip 0.9588 0.0333 0.9127 0.0768 0.7542 0.1117 0.9614 0.0301 0.7268 0.1248 0.8813 0.0516 
chest|wrist 0.9592 0.0244 0.9205 0.0759 0.8281 0.0940 0.9280 0.0435 0.7574 0.0979 0.8920 0.0326 
hip|wrist 0.9511 0.0358 0.9014 0.0797 0.7805 0.1403 0.9236 0.0561 0.6343 0.1482 0.8562 0.0548 
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MODEL IV : GRADIENT BOOSTING 
 base stand clean walk bike overall 
  mean sd mean sd mean sd mean sd mean sd mean sd 

ankle 0.9650 0.0373 0.7377 0.1573 0.7629 0.1254 0.9778 0.0179 0.9101 0.0851 0.8927 0.0431 
chest 0.9729 0.0246 0.9249 0.0974 0.8497 0.1243 0.9779 0.0198 0.8990 0.0773 0.9364 0.0344 
hip 0.9666 0.0505 0.9212 0.0936 0.7744 0.1431 0.9523 0.0706 0.8431 0.1827 0.9076 0.0646 
wrist 0.9331 0.0519 0.8641 0.0905 0.8375 0.0822 0.9016 0.0788 0.7928 0.1126 0.8718 0.0624 
ankle|chest 0.9832 0.0243 0.9483 0.0836 0.8812 0.0938 0.9897 0.0078 0.9278 0.0805 0.9537 0.0334 
ankle|hip 0.9901 0.0071 0.9185 0.1102 0.8432 0.0886 0.9847 0.0146 0.9143 0.0765 0.9442 0.0305 
ankle|wrist 0.9779 0.0274 0.9330 0.0956 0.8612 0.0976 0.9820 0.0183 0.9263 0.0701 0.9451 0.0323 
chest|hip 0.9774 0.0369 0.9608 0.0542 0.8546 0.1131 0.9673 0.0753 0.9229 0.0622 0.9444 0.0448 
chest|wrist 0.9816 0.0219 0.9494 0.0749 0.9084 0.0780 0.9773 0.0174 0.9056 0.0679 0.9518 0.0272 
hip|wrist 0.9774 0.0235 0.9485 0.0757 0.8934 0.0653 0.9745 0.0177 0.8608 0.1066 0.9359 0.0309 
ankle|chest|hip 0.9923 0.0073 0.9712 0.0381 0.8846 0.0912 0.9908 0.0063 0.9329 0.0753 0.9639 0.0231 
ankle|chest|wrist 0.9846 0.0191 0.9657 0.0626 0.9210 0.0698 0.9893 0.0090 0.9408 0.0584 0.9647 0.0242 
ankle|hip|wrist 0.9913 0.0057 0.9691 0.0373 0.9213 0.0487 0.9867 0.0125 0.9134 0.0807 0.9626 0.0184 
chest|hip|wrist 0.9846 0.0161 0.9708 0.0525 0.9096 0.0745 0.9818 0.0117 0.9258 0.0546 0.9595 0.0196 
ankle|chest|hip|wrist 0.9922 0.0064 0.9740 0.0313 0.9292 0.0660 0.9891 0.0093 0.9336 0.0662 0.9694 0.0188 
Best combination 0.9923 0.0057 0.9740 0.0313 0.9292 0.0487 0.9908 0.0063 0.9408 0.0546 0.9694 0.0188 

MODEL V : LOGISTIC REGRESSION  
base stand clean walk bike overall 

  mean sd mean sd mean sd mean sd mean sd mean sd 

ankle|chest|hip 0.9803 0.0172 0.8990 0.0875 0.8048 0.1024 0.9779 0.0169 0.7801 0.0754 0.9047 0.0296 
ankle|chest|wrist 0.9840 0.0137 0.9280 0.0876 0.8642 0.0633 0.9799 0.0173 0.7787 0.1136 0.9182 0.0233 
ankle|hip|wrist 0.9828 0.0132 0.9183 0.0792 0.8392 0.0850 0.9726 0.0196 0.7454 0.1140 0.9056 0.0301 
chest|hip|wrist 0.9659 0.0287 0.9359 0.0777 0.8246 0.0983 0.9443 0.0402 0.7396 0.1212 0.8952 0.0428 
ankle|chest|hip|wrist 0.9839 0.0148 0.9336 0.0742 0.8566 0.0792 0.9775 0.0140 0.7807 0.0973 0.9179 0.0249 
Best combination 0.9840 0.0128 0.9336 0.0742 0.8642 0.0633 0.9873 0.0085 0.8042 0.0754 0.9182 0.0233 
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ankle 0.9828 0.0130 0.7977 0.0951 0.7939 0.0992 0.9814 0.0099 0.9333 0.0532 0.9199 0.0261 
chest 0.9708 0.0232 0.9415 0.0693 0.8224 0.0933 0.9633 0.0397 0.8704 0.0670 0.9258 0.0288 
hip 0.9714 0.0269 0.9257 0.0566 0.7393 0.0931 0.9548 0.0424 0.8048 0.1286 0.8939 0.0438 
wrist 0.9243 0.0421 0.8547 0.1250 0.8289 0.1035 0.8865 0.0626 0.8155 0.0738 0.8673 0.0489 
ankle|chest 0.9875 0.0130 0.9575 0.0566 0.8825 0.0740 0.9872 0.0209 0.9348 0.0716 0.9586 0.0228 
ankle|hip 0.9886 0.0104 0.9298 0.0608 0.8048 0.1022 0.9848 0.0182 0.9305 0.0707 0.9435 0.0265 
ankle|wrist 0.9908 0.0069 0.9631 0.0415 0.9212 0.0522 0.9803 0.0203 0.9528 0.0493 0.9681 0.0135 
chest|hip 0.9805 0.0172 0.9428 0.0660 0.8403 0.0861 0.9802 0.0192 0.9090 0.1002 0.9431 0.0310 
chest|wrist 0.9831 0.0141 0.9643 0.0516 0.9336 0.0487 0.9630 0.0339 0.9135 0.0507 0.9546 0.0185 
hip|wrist 0.9841 0.0179 0.9653 0.0305 0.9038 0.0592 0.9625 0.0274 0.8885 0.0665 0.9449 0.0295 
ankle|chest|hip 0.9888 0.0127 0.9532 0.0625 0.8775 0.0811 0.9848 0.0158 0.9472 0.0734 0.9606 0.0239 
ankle|chest|wrist 0.9913 0.0096 0.9706 0.0515 0.9444 0.0555 0.9854 0.0143 0.9429 0.0723 0.9706 0.0199 
ankle|hip|wrist 0.9921 0.0073 0.9685 0.0354 0.9267 0.0453 0.9828 0.0138 0.9426 0.0505 0.9683 0.0153 
chest|hip|wrist 0.9881 0.0136 0.9648 0.0593 0.9330 0.0458 0.9753 0.0240 0.9268 0.0875 0.9626 0.0241 
ankle|chest|hip|wrist 0.9916 0.0103 0.9669 0.0582 0.9421 0.0475 0.9845 0.0159 0.9547 0.0719 0.9730 0.0198 
Best combination 0.9921 0.0069 0.9706 0.0354 0.9444 0.0453 0.9872 0.0099 0.9547 0.0493 0.9730 0.0135 
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Table 3: Confusion matrix for the aggregated confusion matrices calculated for all leave-one-subject-out rounds. Class-specific precision, recall and f-score (β=1) are reported for each 
class. 

O
bs

er
ve

d 
Predicted 

 
sit lie stand wash vacuum sweep walk Stairs-

up 
Stairs-
down 

run bike 
50W 

bike 
100W 

jump 

sit 430 0 17 3 0 0 0 0 0 0 0 0 0 
lie 1 455 0 0 0 0 0 0 0 0 0 0 0 

stand 2 0 442 8 0 0 1 0 0 0 0 0 0 
wash 0 0 2 924 7 4 0 0 0 0 0 0 0 

vacuum 0 0 0 7 422 25 0 0 0 0 0 0 0 
sweep 0 0 6 4 23 704 4 2 0 0 0 0 0 
walk 0 0 3 1 4 5 2010 11 6 1 0 0 0 

stairsup 0 0 0 0 0 1 6 312 1 0 0 0 0 
stairsdown 0 0 0 0 0 0 5 2 266 0 0 0 0 

run 0 0 0 0 0 0 0 0 0 910 1 0 0 
bike 50W 0 0 0 0 0 0 0 0 0 0 877 46 0 

bike 100W 0 0 0 0 0 0 0 0 0 0 37 883 2 
jump 0 0 0 0 0 0 0 0 0 0 0 0 243 

 precision 0.99307 1.00000 0.94043 0.97571 0.92544 0.95264 0.99210 0.95413 0.97436 0.99890 0.95847 0.95048 0.99184 
recall 0.95556 0.99781 0.97572 0.98613 0.92952 0.94751 0.98481 0.97500 0.97436 0.99890 0.95016 0.95770 1.00000 

f_score 0.97395 0.99890 0.95775 0.98089 0.92747 0.95007 0.98844 0.96445 0.97436 0.99890 0.95430 0.95408 0.99590 
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Figures 

 
Figure 1: Illustration of our hierarchical classification system 

 

 
Figure 2: The Convolution Neural Network tested here. Except for the output, all layers were activation with the RELU 
function.  
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Chapitre IV: Effets de l’environnement urbain sur 

l’activité physique (résumé français) 

Dans les chapitres précédents, nous avons abordé la question du lien entre l’activité 

physique et la santé et de l’utilisation d’accéléromètres déployés sur une population afin 

de mesurer son niveau d’activité physique en conditions de vie libres. Le caractère 

pratiquement continu du monitoring par accéléromètre devient particulièrement utile 

lorsque ces mesures d’activité physique à haute résolution temporelle sont croisées avec 

des informations sur des stimuli concomitants auxquels les individus sont exposés. Un 

tel croisement d’information permet d’identifier, en aval, des facteurs déterminants de 

l’activité physique et, dans la mesure où ces facteurs sont modifiables, d’élaborer des 

plans d’action visant à encourager l’activité physique et améliorer indirectement l’état 

de santé dans la population. 

L’environnement bâti, surtout dans les villes, comme facteur déterminant de l’activité 

physique des riverains a beaucoup été étudié en santé publique. Ainsi, le lien entre de 

nombreux attributs de l’environnement et le niveau d’activité physique a été démontré 

dans la littérature. Par exemple, de nombreuses études ont montré que la présence 

d’espaces verts ou une forte densité de destinations (magasins, monuments, lieux de 

loisirs) d’un certain quartier encourageaient la marche chez les riverains. Malgré de très 

nombreuses études réalisées au cours des dernières décennies, les progrès 

technologiques et méthodologiques récents ont ouvert la voie à de nouvelles 

perspectives, qui seront abordés dans cette étude.    

Les études traditionnelles sur le lien entre l’environnement et l’activité physique, par 

manque de moyens techniques et informatiques, se sont principalement concentrées 

sur l’étude de l’environnement autour d’un point d’ancrage dans la vie des sujets étudiés, 

notamment le domicile ou le lieu de travail. Ces études s’intéressaient donc, pour 

reprendre notre exemple, aux espaces verts autour du domicile et à leur lien avec 

l’activité physique cumulée sur la journée. Or, les individus pouvant être mobiles tout 

le long de la journée, ces études ignoraient où cette activité physique observée était 
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effectuée et ne pouvaient établir des liens directs entre l’environnement et l’activité. De 

plus le caractère transversal de la plus grande partie des études ne permettait aucune 

conclusion pertinente sur la causalité du lien observé. Bien au contraire : autant que 

l’environnement affecte l’intention d’être actif (je me promène parce que la rue est 

pleine de verdure), l’intention d’être actif influence le choix de l’environnement (je veux 

me promener donc je vais dans la rue pleine de verdure). Enfin, jusqu’à présent, les 

études précédentes ont étudié des mesures d’activité très sommaires ; l’influence de 

l’environnement sur l’allocation posturale a été pratiquement ignorée. 

Notre étude utilise les données RECORD présentées au chapitre II. En plus des 

accéléromètres, les individus suivis ont été équipés d’un appareil GPS permettant de les 

localiser en continu. Ainsi, nous avons pu modéliser l’activité physique en fonction de 

la position concomitante de l’individu dans l’espace. En croisant les données de 

localisation avec des sources d’information géographiques provenant des recensements 

et d’agences de l’aménagement du territoire, nous avons pu obtenir une image claire de 

l’exposition continue de l’individu à divers attributs de l’environnement urbain et de 

son activité physique concomitante. Pour remédier au problème de l’inférence causale, 

nous nous sommes limités à l’analyse de « tranches de vie » spatio-temporelles dans 

lesquelles l’individu n’a très probablement pas le choix du lieu dans lequel il se trouve, 

mais il a le choix de l’activité physique qu’il va effectuer. Notamment, dans les trajets 

domicile-travail, l’individu ne choisit pas l’endroit où il se trouve (on peut dire que ce 

trajet lui est quasiment imposé) mais il a le choix entre divers moyens de transports, ou 

une combinaison de ceux-ci, qui vont déterminer la composition de son budget-temps 

d’activité durant le trajet. A un trajet effectué en voiture correspondra un budget-temps 

avec une composante sédentaire très élevée (à moins que l’individu combine de la 

marche avec le déplacement en voiture), alors qu’un trajet effectué à bicyclette ou à pied 

aura une composante d’activité modérée-à-vigoureuse élevée. Suite aux résultats 

présentés au chapitre I, qui ont mis en évidence les bienfaits du temps passé debout, la 

posture « debout » est distinguée des postures « assis » ou « couchés ».  

Quatre caractéristiques de l’environnement urbain ont été étudiées : le niveau de 

verdure (arbres, espaces verts), la densité de destinations (magasins, monuments, cafés, 

restaurants, lieux de divertissement, services publics…), le niveau socio-économique 
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moyen (proportion de la population ayant atteint un niveau d’éducation post-bac), et 

l’efficacité des transports en commun (ratio du temps de trajet en transports en 

commun contre le temps en véhicule motorisé privé). Le niveau d’exposition aux 

attributs d’intérêt a été mesuré tout le long du chemin le plus court reliant le lieu de 

travail et le domicile, en agrégeant les mesures obtenues (proportion d’espaces vert, 

densité de destination moyenne, niveau d’éducation moyen) dans une zone tampon 

d’un rayon de 200 mètres alentour.  

Sur les quatre variables environnementales étudiées, nous avons constaté que trois 

variables influençaient l’activité pendant les trajets de façon significative. Sur un trajet 

plus « vert », le temps actif était plus important. De même, jusqu’à un certain niveau, le 

niveau d’éducation moyenne aux alentours du chemin parcouru influençait 

positivement le volume d’activité physique modérée-à-vigoureuse. Enfin, plus les 

transports en commun reliaient le lieu de travail et le domicile rapidement (par rapport 

à un véhicule motorisé privé), plus la composante « debout » et « activité physique 

modéré à vigoureuse » était importante.  

Ces résultats indiquent que des attributs esthétiques de l’environnement urbain (niveau 

de verdure) ou sociaux (niveau d’éducation) peuvent affecter des choix portant sur le 

niveau d’activité physique sur des trajets utilitaires. Alors que nos résultats sur l’effet de 

la verdure peuvent s’expliquer simplement par le fait que les individus favorisent les 

transports actifs lorsque le trajet est plus agréable, le niveau socio-économique est 

probablement une variable proxy qui en cache d’autres. Des études en sciences sociales 

ont montré que les attributs de l’environnement urbains bénéfiques à la santé étaient 

mal répartis dans l’espace – plutôt dans les quartiers riches que les quartiers pauvres –

créant ainsi une injustice environnementale envers les classes défavorisées. Enfin, une 

bonne infrastructure des transports en commun peut également augmenter l’activité 

physique et réduire le comportement sédentaire. Le chapitre V de cette thèse examine 

plus avant la répartition des activités physiques en fonction du mode de transports 

choisi. 

Malgré son cadre limité, cette étude illustre de façon claire comment, à l’ère des big 

data, des sources de données complexes peuvent être exploitées pour ouvrir de 

nouvelles perspectives. Dans cette étude, nous avons combiné des données de 
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géolocalisation, d’accélérométrie et des systèmes d’informations géographiques afin de 

surmonter les limites d’inférence statistique existantes et mettre en évidence l’effet 

immédiat de l’environnement sur le comportement physique précis de ceux qui y sont 

exposés.   
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Abstract 

Assessing the effects of social and built environments on physical activity is important 
for promoting healthy life style in cities. Yet, very few studies use objective localization 
and measures of physical activity while considering causality. In addition, the effect of 
environment on body postures, albeit of physiological importance, is rarely addressed. 
Using mixed models for compositional data on sensor-derived data, we estimated the 
effects of greenery, destination density, neighborhood average educational level and 
public transports efficiency along 692 home-work journeys made by 121 healthy adult 
patients (80 men, 41 women). Higher levels of greenery, average education and public 
transports time efficiency in the areas crossed during commutes were found to reduce 
contemporaneous sedentary behaviors and increase physical activity.  These causal, 
observed relationships suggest that deciders should consider greening, as well as 
increasing environmental justice and public transports efficiency, as an effective way to 
fight the pandemic of sedentary behaviors.  

Keywords  

Built environment, urban environment, environmental factors, greenery, destination 
density, public transport, socio-economic status, education, GPS, accelerometer.  
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Introduction 

Because of its well-known effects on reducing health hazards, such as cardio-vascular 

diseases, diabetes, cancer and depression, physical activity (PA) is widely promoted by 

public health policies [1, 2]. Despite these efforts, the prevalence of physical inactivity 

has not declined over the last decade, while the time spent in sedentary behaviors (SB, 

i.e. sitting or reclining with an energy expenditure below 1.5 METs [3]) increased [4].  As 

a potential field of intervention, research has studied various features of social and 

physical environment and their link to PA. To date, there is some evidence to the 

positive effect of environmental features, such as the presence of green spaces and 

paths, population and destination density, access to transit and walkability on both 

leisure PA and active transports [5–7].  The goal of the present study is to bring novel 

evidence to the relationship between four features of the physical environments 

(greenery level, destination density, average neighborhood education and access of the 

public transportation network) and PA. The literature addressing these issues is 

abundant, however, the present study innovates by proposing a new study design a) 

using objective, contemporaneous measures of environmental features and physical 

activity, b) aiming at causal inference c) and distinguishing between objective measures 

PA and SB,  i.e. between body motion and body posture.   

A contemporaneous design 

The largest part of the evidence as to the effect of environment on PA was obtained by 

linking environmental attributes of a fixed location, such as the subjects’ home or 

workplace, and PA levels aggregated over a certain period (e.g. a day). However, newer 

research has argued that, individuals being mobile over the day, their PA at a certain 

moment should be regarded as a function of their contemporaneous exposure to 

environment [8–10]. Following recent studies, we implemented this design (hereafter 

‘contemporaneous design’) by using environmental features of subjects’ GPS-derived 

locations and their simultaneous accelerometer-derived PA performed at the same time 
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[11, 12]. With this method, the simultaneousness of the exposure and the PA yields 

accurate, valid estimates of the associations between the two. 

Selection biases and causal inference 

Studies on the association between environment and PA are subject to two well-

identified methodological biases. The residential self-selection bias refers to the 

preference of individuals inclined to engage in PA for neighborhoods favorable to PA. 

This self-selection makes it difficult to determine the causal direction of any observed 

relationship between residential environment and PA [5]. The instantaneous selective 

mobility bias refers to the fact that as much as locations can affect the intention to 

perform PA, the intention to perform PA can affect the choice of locations to which one 

goes [13–16]. Despite the growing number of studies with a contemporaneous design, 

the selective mobility bias has rarely been addressed in previous studies.  

To address the residential self-selection bias, we took into account subjects’ reported 

motivation in choosing their residential neighborhood.  Furthermore, to address the 

selective mobility bias, we have limited our frame of analysis to the sole utilitarian 

journeys between home and workplace. As individuals arguably do not have any latitude 

in the choice of their work location over the study period (given that their workplace is 

likely determined before the 7-day observation period), these home-work journeys can 

be regarded as free of instantaneous selective mobility bias. Thus, the present study 

proposes a research strategy that acknowledges the advantage of a contemporaneous 

design while minimizing biases that compromise causal inference. In addition, since 

home-work journeys are a necessary activity, making up a considerable share of the 

wake time in the active population, they represent an interesting opportunity to achieve 

the daily PA recommended by physicians.  

Physical activity and body postures 

Past studies using objective measurements focused only on PA (typically walking or 

cycling), but not on SB (reclining/sitting postures). Yet, with the new findings regarding 

the deleterious effects of prolonged SB [17–20], the focus of research has shifted towards 
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a refined definition of physical activity, including not only the body motion, but its 

postures [21, 22]. In the present study, we investigate the effect on environment on both 

PA and SB, by using different categories of physical behaviors, such as sitting/reclining, 

standing, or walking.  

Environmental outcome studied 

In a literature  review, Kondo [23] identified 12 articles using objective localization and 

PA that found a positive association between exposure to greenery and 

contemporaneous levels of moderate-to-vigorous PA. Yet, as we pointed out, the 

validity of such studies is compromised by selective mobility bias [10]. Notwithstanding 

this limitation, we rely on these findings to posit that this observed human preference 

for green environments when engaging in PA should result in more active commuting 

along routes featuring greenery.   

Likewise, accessibility to destinations required for daily living, such as shops, is as a 

factor promoting healthy behaviors, including walking for transports [24]. Yet, among 

extant evidence [25–28], causal evidence to contemporaneous effects is still missing. 

Here, we hypothesized that high destination density represents a rich, stimulating 

environment, which encourages active commuting [10].  

It has been alleged that the spatial distributions of health-related environmental 

features was unequal across neighborhoods of different socio-demographics [29]. 

Among the few addressing the neighborhood socio-economic status (SES) as a potential 

determinant of PA [30], a study by Riva et al. [31] showed an increase in utilitarian 

walking in high education neighborhood, independent of individual SES. Here, we rely 

on the theory of environmental justice to posit that work-home routes crossing high 

SES neighborhoods, as captured by the residents’ average areal educational attainment, 

would feature more PA and less SB. 

All in all, better access to public transit system is thought to have a positive impact on 

PA levels, as travelling public transports typically implies more walking episodes than 

travelling with a private car [32–34]. Thus, we hypothesized that greater incentives of 

commuting with public transports, such as better access and higher time efficiency, 
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would also be associated with more PA and less SB over the journey. SB is of particular 

interest here, as public transports often require commuters to be standing.    

There is no doubt that environment affects PA through the choice of transportation 

mode. For our population, the associations between environment and transportation 

mode, as well as between transportation mode and physical activity, will investigated in 

a separate study. The goal is the present study is to assess and quantify the direct effect 

of environmental features on objective physical activity, derived from accelerometers 

worn by participants. Thus, we will address the question of transportation mode as 

linking mechanism between only incidentally.  

Material and Methods 

Population  

The present study uses data collected in the RECORD (Residential Environment and 

COronary heart Disease) study, which investigated spatial disparities in health. From 

February 2007 to March 2008, individuals that came to one of the four IPC 

(Investigation Préventive et Clinique) Medical Centers for a free medical examination 

offered by the French National Insurance System for Employees were invited to enter 

the RECORD study. Eligibility criteria were age 30-79 years and residence in ten given 

districts of Paris (out of 20) or in 111 other municipalities of the Ile-de-France region, as 

well as sufficient cognitive and linguistic abilities to comply with the instructions. 

During the second wave of the study (between September 2013 and June 2015), former 

and newly recruited participants underwent a medical examination, after which they 

were invited to enter the RECORD MultiSensor ancillary study whenever sensors were 

available. In this study, they were asked to wear body-mounted sensors, including a pair 

of accelerometers and a GPS tracker. Participants in this ancillary study were instructed 

to wear the sensors for 7 consecutive days, as they carried out their usual activities in 

free-living conditions, and to keep a logbook with the places that they were visiting and 

the transportation modes used in journeys between those places. In addition, they were 
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requested to answer a questionnaire regarding their health and dietary habits, 

neighborhood, demographics and SES. The study protocol was approved by the French 

Data Protection Authority (Decision No. DR-2013-568 on 2/12/2013).  

Physical behaviors during travel 

Direct measures of PA and SB were derived from the data of two tri-axial Vitamove 

Research-V1000® devices, worn at the right upper leg and on the chest during wake time 

(except for water-based activities). We regrouped the behavioral categories provided by 

the software into three broader categories: sedentary behaviors (lying or sitting, SB), 

standing still and light movements (ST) and physical activity (walking, running and 

bicycling, PA).   

Journeys 

The environmental attributes of the journey were calculated along the shortest route 

(walking) between subjects’ homes and workplaces, which was determined using 

GoogleMaps. The shortest route was preferred over the actual route taken by 

participants, as any observed correlation between the features of the latter and PA is 

likely to suffer from selective mobility bias [23]. In fact, the actual route taken by 

individuals is also a function of their preferred commute mode, and therefore 

endogenous to our research question. In contrast, assuming that individuals generally 

prefer the shortest route for their commute, and that this preference is at least partly 

independent of the individual’s a priori preferences for commute modes, our hypotheses 

as to the effects of environment on PA levels could be verified along the shortest route.  

 Journeys that included any stop (for example stopping at shops or at friends’ house) 

were not included in the analysis. Likewise, we removed journeys that included 

segments outside of Ile-de-France (region of Paris). The final dataset included 692 

journeys recorded for 121 participants.  

Measures of environmental attributes 
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Greenery index 

We used two methods to measure greenery level. First, we sampled a set of equidistant 

points (each 200 meters) along the shortest routes and calculated the mean of the 

shortest distances between the points and the network of green paths. This variable 

represents the opportunity cost, in terms of distance covered, of using the green 

network. Second, we calculated the proportion of green spaces for a buffer zone of 100m 

radius around the shortest routes, representing a proxy for the direct proximity to 

greenery during the journey, as illustrated in Figure 1. Greenery level best predicts health 

when measured in a radius of 1-2 km around individuals’ homes [36], but we argue that 

the area around the route that may affect the traveler’s behavior is much smaller. We 

calculated these measures using the 2008 open data of the Ile-de-France Institute for 

Urbanism [37].  

 
Figure 13 : Examples of the shortest route (walking) of a work-home journey in the North of Paris and the 
neighboring Aubervilliers. The green ratio is ratio of the green areas intersecting with the buffer along the route to the 
total buffer area. The distance to the network of green roads is the average of the distances between the points sample 
along the route. 

Destination density 
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Destination density was calculated as the number of destinations per km2, including 

public services, shops, entertainment facilities etc., in a buffer zone of 100m radius 

around the shortest routes (French National Institute for Statistics and Economic 

Studies INSEE, 2011 [38]).  

Education 

To estimate the SES of the areas crossed by the participants, we created buffers of 

100m radius around the shortest route for the journey. In each buffer, the educational 

attainment of the population was defined as the share of people aged 20 and over 

holding a university degree (INSEE 2010 census [39]).  

Accessibility to and time cost of public transportation 

Two methods were used to estimate the incentive to use public transports. For the 

residence and workplace, the Euclidian distance to the nearest station belonging to the 

bus, metro, tramway or railway networks (Île-de-France Mobilités, 2012 [40]) was 

calculated, and the larger distance of the two was defined as the accessibility variable. 

The time cost variable was defined as the ratio of the travel time using public transports 

to the travel time using a car, as estimated by GoogleMaps.  

Explanatory covariables 

A number of potentially confounding factors known to influence physical activity have 

been measured. At the journey level, the length (in km) of the shortest route was taken 

into account as it probably plays a role in the choice of the travel mode. At the individual 

level, we considered sex, age, being in couple, having children under 14 years at home, 

household income (by tertiles) and individual educational attainment (No higher 

education, undergraduate, graduate). To control for neighborhood selection bias, we 

accounted for the answers given by the participants in the questionnaires regarding 

neighborhood selection [15]. Participants were asked to score, on a scale varying from 

‘not at all’ to ‘very much’ (coded 0-3), how important the greenery level, presence of 

shopping facilities, SES and accessibility of public transports were in the choice of 

neighborhood to which they moved.   
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Statistical analysis 

The goal of the analysis was to estimate the effect of exposure to environmental route 

attributes on the time budget of physical behaviour during the journey. Thus, the 

physical behaviors were regarded as compositional data adding up to 1, where each of 

the three parts corresponds to the share of the time spent in sedentary postures, 

standing, and PA. Compositions add up to a constant sum and are hence 

interdependent and constrained between 0 and 1. To model compositions of physical 

behaviors (𝒚 = [𝑦𝑆𝐵, 𝑦𝑆𝑇, 𝑦𝑃𝐴]) as dependent variables explained by environmental 

measures, we applied the additive log ratio (alr) transformation to the data [41], taking 

sedentary time as reference  :  

𝒚′ = [0, ln 𝑦𝑆𝑇
𝑦𝑆𝐵

, ln 𝑦𝑃𝐴
𝑦𝑆𝐵

]. 

With this linear transformation, the log-ratios can take any real value and be modelled 

using usual tools of statistical analysis, while preserving their relative nature. 

When a part of the composition was zero, we added an epsilon (0.01) and divided all the 

parts by the sum, to avoid infinite values when applying the alr transformation. The two 

log-ratios 𝑦𝑠𝑡
′̂  , 𝑦𝑃𝐴

′̂   were modelled as linear functions of the environmental and social 

factors and co-variables, using mixed linear regression with patients as random 

intercepts. The predicted log-ratio vector 𝒚′̂ could be then back-transformed to predict 

a composition �̂� for any set of values of environmental features.  

The environmental factors (greenery ratio, distance to greenery, destination density, 

average areal education, time cost of public transports and distance to the nearest 

station) were included with the following co-variables: age, sex, being in couple, having 

children at home, individual educational level, income level, length of route, squared 

length, importance of variable of interest in neighborhood selection. A squared term 

was added for route length as we assumed that it has a non-linear effect on the 

probability to be active.  In all models, average areal education was included as a proxy 

for the SES of the areas crossed, as we suspected it to be a confounding variable 

correlated with both the outcome and the explanatory variable of interest.  As we had 

no reason to assume the relationship between the environmental factors and physical 
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behaviors were linear, we tested a squared term and retain it in the models if it 

significantly improved the model (p-value<0.05 for a Chi-squared test).  

All analyses were run using R [42], with libraries ‘rgeos’ [43] ‘sf’ and ‘sp’ [44] for spatial 

analysis and ‘lme4’ for mixed models [45].  

  

Results 

Description of journeys  

The average length of the 692 journeys (shortest route) was 9.8±8.5 km (mean ± 

standard deviation), and the average duration 31.6±19.3 minutes. On average, 

participants spent 47% ± 36% of the travel time in SB (typically sitting or reclining), 25% 

± 26% standing or performing light body movements (ST), and 27% ± 27% performing 

PA (typically walking and bicycling). Full descriptive statistics of all variables used in 

the models are shown in Table 1.   

Entirely active travels (N=112) were on average composed of large shares of PA (65% ± 

29%), some ST (28% ± 25%), and very little SB (7% ± 19%); in journeys including public 

transports (N=307), compositions of physical behaviors were more balanced (PA: 32% ± 

18%, ST: 28% ± 21%, SB: 40% ± 26%). Other journeys (N=273), i.e. those made with a 

private motorized vehicle, were mostly sedentary (PA: 6% ± 11%, ST: 22% ± 29%, SB: 73% 

± 31%). The compositions of physical behaviors over the journeys by the commute mode 

are shown in a ternary plot (Figure 2) and in Table 2 (including the center and 

covariance matrix [150]). 
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Figure 2: Distribution of compositions of behaviors over the journeys. Colors indicate the commute mode: active 
- all the journey was made using physically active commute mean (typically walking or bicycling); public transports - 
public transports were used at least partly during the journey, other - otherwise, typically commuting by car. 

Model results 

Results of the models are presented as ratios ST/SB or PA/SB (followed by the 95%-

confidence interval in square brackets) throughout this section, and in Table 3 and 

Figure 3. As ratios are less intuitive, we added the predicted compositions for the range 

of values taken by the variables of interest. These are reported in Table 4 and illustrated 

in Figure 4. 

Greenery   

Green ratio along the shortest route significantly predicted the composition of physical 

behaviors over the journey. A 0.01 increase in green ratio led to a 11% [+2%, +22%] 

increase in the ST/SB ratio, and a 13% [3%, 23%] increase in PA/SB. By comparison, the 

green ratio for the journeys was typically bound between 0.01 and 0.07 (1st and 9th 

deciles). Regarding the average distance from the green road network,  1 SD increase in 
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(+198m) led to a decrease in ST/SB and PA/SB ratios by respectively -19% [-37%, +5%] 

and -20% [-37%, +5%]. The predicted decrease for this variable was, however, not 

statistically significant.    

Destination density 

Our hypothesis regarding the effect of destination density on behavior could not be 

clearly verified by our data. Models predicted a practically unchanged ST/SB ratio (-4% 

[-33%, +37%]) and a positive, but statistically insignificant rise in PA/SB ratio (+18% [-

17%, 70%]) for a 1 SD increase in destination density (+695 destinations per km2). 

 
Figure 3: Model coeffcients for the effects of environmental variables on the composition ratios standing/SB and 
PA/SB. For example, the predicted average effect of a 1%-increase in green ratio on the PA/SB ratio is 1.13 [1.03-1.23]. * : 
p-value < 0.05; ** : p.value < 0.01. 
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Average areal education  

Among the variables of interests tested, average areal education (share of residents 

holding a university degree) along the shortest route was the only variable to have a 

significant non-linear effect on behavior. At baseline, an additional 1% in the areal 

education score multiplies the ST/SB ratio by a coefficient of 1.18 [1.01, 1.37], and the 

PA/ST ratio by 1.26 [1.08, 1.46]. These coefficients are modified by negative quadratic 

coefficients (exp(-0.0015x2) and exp(-0.0022x2)), respectively. This points out to an 

inverted U-shaped effect of areal education on ST and PA, reaching its maximum 

around the mean score (52%). As the distribution of the educational score is right-

skewed (1st decile = 30%, 9th decile = 62%), the positive marginal effect on ST and PA for 

low levels of areal education is larger than the negative marginal effect for high levels. 

The relation between the variables is illustrated in Figure 4.  

Public transports efficiency 

Maximum distance to a public transports was not found to have an important effect on 

behavior during journeys. The effects of an increase of 1 SD in distance (70m) were not 

statistically significant, and amounted to -5% [-27%, 23%] and +16% [-10%, 50%] for the 

ST/SB and PA/SB ratios, respectively. However, the public transit to car time cost had a 

positive effect on SB. One SD increase in the time cost (+80% travel duration using 

public transports compared to car) had an estimated effect of -20% [-36%, +0%] on the 

ST/SB ratio and –26% [-40%, -8%] on the PA/SB ratio.  
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Figure 4: Composition of physical behaviors predicted by the models for various values of the variables of interest 
while all covariables take their mean values. The circles, from the smallest to the biggest, represent the predicted 
compositions for the lowest to the highest value in the population. 

Discussion 

Interpretation of findings 

 In this study, we investigated the effects of environmental attributes of home-work 

routes on physical behaviors during the journeys in urban adults. It yielded three 

important insights. First, high proportions of green area along the route increase the 

share of time spent in non-sedentary behaviors (standing or being physically active). 

Second, higher time cost of public transport compared to private car results in lower 

shares of time spent in standing and PA. The fact is all the more interesting as it remains 

when individual income and education were controlled for, suggesting that the use of 

public transports may be more a choice than a need. Third, the residents’ level of 
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education along the route positively affects standing and PA in low education areas, but 

the effect is reversed (although somewhat weaker) in areas with high areal education 

score.  

Our findings about the positive effects of greenery on PA agree with previous work on 

this topic [23]. However, to our knowledge, they are the first to assess this effect in a 

causal, contemporaneous design with sensor-derived data. This effect was better 

captured considering all green spaces intersecting the buffers around the routes than 

when considering only green paths. This hints to a sensitivity to greenery present in a 

broader area (100m), rather than to the sole immediate surroundings.   

Time cost of public transportation was significantly associated with active behaviors, in 

accordance with previous literature [32–34]. Distance to public transport station, 

however, did not predict any behavior significantly. It should be noted that, for our 

population, 90% of the trips started and ended within a 255m radius around a station, 

meaning that the distance to the station is unlikely to play a major role in the choice of 

commute mode. In addition, distance to station might have conflicting effects, as it is 

an incentive to use car and reduce activity, but it increases activity when actually 

walking to station.  

Areal education, up to a certain level, had a negative effect on SB and a positive one on 

PA, independent of personal SES, safety and other environmental variables tested here. 

This finding concurs with the findings for an adult, urban French Canadian population 

[31].  It is plausible that areal education is a proxy for an ensemble of environmental 

features, both social and physical, which favor physical activity. However, it is difficult 

to understand why this relation is inverted in the highest quantiles of areal education. 

Although the mechanisms of this observed relationship remain uncertain, this finding 

clearly points to lower incentives to active commuting in low-SES areas in the Paris 

region. It suggests that future studies will need to investigate the role neighborhood SES 

in the relationship between environment and PA.   

Our hypothesis regarding the positive effect of destination density on activity, 

supported by several extant studies [25–28], could not be verified. A plausible 

explanation is that our study omits journeys including stops that are not travel-related. 
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Yet, destination-rich routes can be an incentive to walk or bicycle because they offer 

good opportunities to visit places, such as shops, along the way. In fact, considering all 

sorts of travels in the same population, Chaix et al. found a positive association between 

destination density and activity [35]. Interestingly, the models suggest that people who 

report giving importance to the presence of shops in their neighborhood are much 

likelier to be non-sedentary in journeys. 

The present article investigated the effect of environment on both PA and SB. 

Interestingly, the effect magnitudes on ST and PA in all significant models were close 

to each other (although slightly higher for the latter). Thus, the decrease in SB was made 

up by nearly equally proportionate increases in ST and PA. Insofar as this finding is 

generalizable to the study of physical behaviors during commuting, it suggests that 

there is no need to use these refined categories of physical behaviors, and that classical 

measures of body motions are sufficient.  

Strengths and limitations 

By looking at the home-to-work and work-to-home journeys, the present study 

addressed the major issues that undermined causal inference in most past studies. More 

than assessing the co-occurrence of environmental features and physical activity, it 

aimed at determining the causal effects of environment on physical behavior, using 

precise, sensor-derived data. In addition, this study is one of the very few to address the 

question of posture during commuting using objective measurements of body posture. 

Yet, the issue of neighborhood selection is not fully addressed in this study: we still do 

not know whether a specific workplace was chosen by an individual because it fitted 

her/his preferred commute mode.  Thus, it would have been better to ask participants 

whether the agreement level between the environment around their workplace and 

their preferred commute mode played a role in the choice of a workplace, as we did for 

the choice of the residence. However, we argue that such considerations are very 

unlikely to be critical in the choice of a workplace, especially after we controlled for 

factors related the choice of residence.   
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In this study, the shortest path was determined using GoogleMaps. With the Google 

Maps API, it was impossible to calculate itineraries back at the time of the study. We 

therefore had to assume that changes that occurred in the topography and traffic 

infrastructures of the Paris region over the last 4-6 years did not greatly alter the routes 

taken by individuals and that, if it was the case, that it would not substantially affect the 

levels of exposure to our variables of interest. The same caveat needs to be emphasized 

with regard to our environmental variables, which were calculated using databases that 

were a few years old at the time of the study.  

Conclusion 

Using an innovative design oriented towards causal inference and objective, precise 

measures, this study generated new insights bridging issues of urban planning and 

public health. Individual variables and journey length being equal, individuals were less 

likely to be sedentary during journeys across areas featuring more greenery. Likewise, 

they were less likely to be sedentary during journeys that could be made with time-

efficient public transports. Results also pointed to important disparities in the levels of 

PA across neighborhood SES, with the highest level of PA achieved when the routes for 

commute crossed middle-to-high SES neighborhoods. We conclude that, prioritizing 

greenery and a time-efficient public transportation networks are urban planning steps 

that can effectively help fight the pandemic of physical inactivity and sedentary 

behavior, and that attention should be paid to equal access to environmental features 

promoting PA. Future research should build upon the framework proposed here, both 

qualitatively and quantitatively, by examining other environmental attributes, and with 

datasets large enough to improve statistical inference.  
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Tables 

 

Table 1: Descriptive statistics of variables in the study 
 Quantiles  

0% 10% 50% 90% 100% Mean Standard 
deviation 

No. of 
journeys 

No. of participants 

Personal 
variables 

age (years) 0 49 60 69 82 59 8 692 121 
sex (male=1)      0.66  692 121 
couple      0.71  692 121 
Children<14 yo      0.45  692 121 
income category 1 1 2 3 3 1.83 0.86 692 121 
educational category 1 1 3 3 3 2.27 0.91 692 121 
Safety in nghb. 1 2 2 3 3 2.30 0.59 692 121 

Importance of 
variable in choice 
of neighborhood 

greenery 0 0 2 3 3 2.06 1.00 692 121 
shops 0 1 2 3 3 2.24 0.86 692 121 
SES 0 0 2 3 3 1.50 0.97 692 121 
Public  transports 0 0 3 3 3 2.26 1.07 692 121 

Trip attributes Length (km) 0.56 1.69 7.38 21.11 51.20 9.84 8.49 692 121 
actual length (km) 0.04 1.20 7.64 23.33 64.34 10.66 9.95 692 121 
Duration (min) 4.00 12.04 27.85 52.91 243.00 31.61 19.34 692 121 
green ratio 0 0.0095 0.0336 0.0715 0.1389 0.0382 0.0274 692 121 
green distance (m) 42 137 341 606 1919 360 198 692 121 
destination density (km-2) 4 155 487 1854 4476 777 695 692 121 
mean areal education 0.1785 0.2958 0.5149 0.6189 0.7026 0.4854 0.1261 692 121 
transp. proximity (m) 31 91 152 255 532 162 70 692 121 
trans. time cost 0.81 1.26 1.84 2.89 7.51 2.01 0.80 676 120 

Composiiton of 
physical 
behaviors 

sedentary 0 0 0.4988 0.9456 1 0.474 0.3572 692 121 
standing 0 0.0258 0.1654 0.6291 1 0.2554 0.252 692 121 
PA 0 0 0.1957 0.7244 1 0.2705 0.2718 692 121 

Commute mode active      0.16  692 121 
public transportation      0.53  580 107 

Table 1 : Descriptive statistics of the variables used in this study 
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Table 2: Descriptive statistics of compositions of physical behaviors over the journeys 
ALL JOURNEYS 

  Sedentary behavior Standing/light movements Physical activity 
Average (Center)  0.5310 0.2103 0.2587 
Variation matrix Sedentary behavior 1.6440   

Standing/light movements -0.7257 0.7814  
Physical activity -0.9183 -0.0557 0.9740 

ACTIVE JOURNEYS 
Average (Center)  0.1440 0.2217 0.6343 
Variation matrix Sedentary behavior 0.9000   

Standing/light movements -0.2816 0.5534  
Physical activity -0.6184 -0.2718 0.8902 

PUBLIC TRANSPORTS JOURNEYS 
Average (Center)  0.4345 0.2354 0.3301 
Variation matrix Sedentary behavior 0.8418   

Standing/light movements -0.5967 0.6954  
Physical activity -0.2451 -0.0987 0.3438 

OTHER JOURNEYS 
Average (Center)  0.7817 0.1247 0.0936 
Variation matrix Sedentary behavior 1.0379   

Standing/light movements -0.7038 0.8705  
Physical activity -0.3341 -0.1667 0.5008 

Table 2 : Descriptive statistics of compositions of physical behaviors over the journeys of different types. The center (compositional mean) is defined as 𝐶[𝑒𝑥𝑝 (1
𝑁

∑ 𝑙𝑛 𝑥𝑖)]𝑖 , where C[.] is 

the closure operator dividing the parts by their sum. The variation matrix is defined as 𝑣𝑎𝑟 (𝑙𝑛 𝑥𝑖

𝑥𝑗
). These are preferred to the arithmetic mean and variance because of the constrained 

character of a composition [36].   
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Table 3: Model coefficients [95% confidence intervals] 
Variable of interest Green ratio (%) Distance from green (z-score) Destination density (z-score)  

Standing  PA Standing  PA Standing  PA 
Intercept 0.0043 

[0.0001, 0.1574] 
0.0008 

[0, 0.0298] 
0.0075 

[0.0002, 0.2553] 
0.0015 

[0, 0.052] 
0.0016 

[0, 0.0545] 
0.0004 

[0, 0.0127] 
Variable of interest 1.1125 

[1.016, 1.2181] 
1.1292 

[1.0324, 1.235] 
0.8104 

[0.6253, 1.0503] 
0.8092 

[0.6265, 1.0452] 
0.9597 

[0.6739, 1.3666] 
1.1853 

 [0.8265, 1.6998] 
Squared variable of 
interest 

      

Reported importance of 
var. of interest 

0.9986 
[0.6966, 1.4316] 

0.9006 
[0.6181, 1.3122] 

0.9968 
[0.6974, 1.4247] 

0.9042 
[0.6203, 1.3182] 

1.7746 
[1.1905, 2.6453] 

1.7151 
[1.124, 2.617] 

Age (years) 0.9484 
[0.655, 1.3733] 

1.0357 
[0.7033, 1.5252] 

0.954 
[0.6605, 1.3777] 

1.0452 
[0.709, 1.5408] 

1.0046 
[0.7025, 1.4367] 

1.1001 
[0.7526, 1.6081] 

Sex (1 = male) 0.6786 
[0.3143, 1.4651] 

0.7731 
[0.3461, 1.7266] 

0.7113 
[0.3317, 1.5252] 

0.8203 
[0.367, 1.8336] 

0.8703 
[0.4155, 1.8229] 

1.0549 
[0.4822, 2.308] 

Income category = 2 0.5835 
[0.2361, 1.4421] 

0.5413 
[0.2105, 1.3921] 

0.5806 
[0.2366, 1.4245] 

0.5411 
[0.21, 1.3939] 

0.6637 
[0.2709, 1.6256] 

0.6705 
[0.2601, 1.7288] 

Income category = 3 0.6806 
[0.26, 1.7814] 

0.6083 
[0.2227, 1.6615] 

0.7201 
[0.2779, 1.8656] 

0.6509 
[0.2384, 1.7769] 

0.8683 
[0.3329, 2.2645] 

0.8712 
[0.316, 2.4023] 

Education category = 2 2.1851 
[0.6586, 7.2498] 

2.9633 
[0.8465, 10.3738] 

2.5532 
[0.7724, 8.4397] 

3.4898 
[0.9892, 12.3114] 

1.934 
[0.5952, 6.2841] 

2.4559 
[0.705, 8.556] 

Education category = 3 1.2159 
[0.5198, 2.8442] 

1.698 
[0.6987, 4.1267] 

1.2674 
[0.5461, 2.941] 

1.7772 
[0.7309, 4.3213] 

1.2471 
[0.5461, 2.848] 

1.7323 
[0.722, 4.1564] 

Couple (1 = yes) 0.7915 
[0.3346, 1.8724] 

0.5818 
[0.2366, 1.431] 

0.8215 
[0.3501, 1.9278] 

0.6074 
[0.2468, 1.4947] 

0.7326 
[0.3171, 1.6928] 

0.5682 
[0.234, 1.3798] 

Children <14 at home (1 
= yes) 

1.5211 
[0.6845, 3.3804] 

1.9074 
[0.8277, 4.3955] 

1.4945 
[0.6774, 3.297] 

1.8633 
[0.808, 4.2969] 

1.2129 
[0.5604, 2.6251] 

1.4405 
[0.635, 3.2679] 

Mean areal education 
(%) 

1.2138 
[1.0421, 1.4138] 

1.2926 
[1.1115, 1.5032] 

1.2005 
[1.0318, 1.3968] 

1.2765 
[1.0977, 1.4844] 

1.2158 
[1.0471, 1.4116] 

1.2895 
[1.1107, 1.497] 

Squared mean areal 
education (%) 

0.9981 
[0.9964, 0.9998] 

0.9975 
[0.9958, 0.9991] 

0.9982 
[0.9966, 0.9999] 

0.9976 
[0.9959, 0.9993] 

0.9981 
[0.9964, 0.9997] 

0.9974 
[0.9957, 0.999] 

Length (km) 0.2441 
[0.1659, 0.3592] 

0.1247 
[0.085, 0.1828] 

0.2473 
[0.1683, 0.3634] 

0.1249 
[0.0851, 0.1835] 

0.2444 
[0.166, 0.36] 

0.1293 
[0.0878, 0.1905] 

Squared length (km) 1.3434 
[1.2008, 1.5031] 

1.5524 
[1.3918, 1.7315] 

1.3563 
[1.208, 1.5228] 

1.5688 
[1.4005, 1.7572] 

1.327 
[1.1864, 1.4842] 

1.5194 
[1.3618, 1.6954] 

Table 3 : Exponentiated coefficients (β) of mixed linear regressions modelling the relationship between personal and environmental variables and the log ratios ST/SB and PA/SB. After 
a change of one unit in the independent variable, the ratio is estimated as β times the ratio before the change.  
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Table 3: Model coefficients [95% confidence intervals] - continued 

Variable of interest Mean areal education (%) Maximum distance to station (z-score) Time cost of public transports (z-score) 

 Standing PA Standing PA Standing PA 

Intercept 0.0169 
[0.0006, 0.5095] 

0.003 
[0.0004, 0.0889] 

0.0055 
[0.0002, 0.1667] 

0.004 
[0, 0.0137] 

0.0068 
[0.0002, 0.1991] 

0.007 
[0, 0.02] 

Variable of interest 1.1775 
[1.0127, 1.3692] 

1.2561 
[1.0816, 1.4588] 

0.9501 
[0.732, 1.2331] 

1.1605 
[0.8977, 1.5003] 

0.8034 
[0.6423, 1.0048] 

0.7407 
[0.5952, 0.9218] 

Squared variable of interest 0.9985 
[0.9968, 1.0001] 

0.9978 
[0.9961, 0.9994] 

    

Reported importance of var. 
of interest 

0.7417 
[0.5201, 1.0576] 

0.6586 
[0.4545, 0.9543] 

1.278  
[0.9136, 1.7878] 

1.5187 
[1.0684, 2.1589] 

1.2792 
[0.9146, 1.7891] 

1.4618 
[1.0308, 2.073] 

Age (years) 1.0331 
[0.7132, 1.4964] 

1.1448 
[0.7771, 1.6866] 

0.9756 
[0.6762, 1.4078] 

1.0407 
[0.7088, 1.5279] 

0.9609 
[0.6685, 1.3812] 

1.0341 
[0.7086, 1.509] 

Sex (1 = male) 0.6408 
[0.3039, 1.3512] 

0.7545 
[0.3464, 1.6431] 

0.7305 
[0.346, 1.5424] 

0.975 
[0.4463, 2.1299] 

0.7805 
[0.3729, 1.6335] 

0.9885 
[0.4585, 2.1312] 

Income category = 2 0.5801 
[0.2354, 1.4296] 

0.5305 
[0.207, 1.3595] 

0.6384 
[0.2566, 1.5882] 

0.6682 
[0.258, 1.7305] 

0.6832 
[0.2769, 1.6858] 

0.66 
[0.2581, 1.6878] 

Income category = 3 0.6569 
[0.2507, 1.7217] 

0.574 
[0.2099, 1.57] 

0.7729 
[0.2923, 2.0434] 

0.8268 
[0.2996, 2.282] 

0.7828 
[0.3006, 2.0385] 

0.7781 
[0.2876, 2.105] 

Education category = 2 2.4498 
[0.7408, 8.101] 

3.4081 
[0.9775, 11.8816] 

2.124 
[0.6412, 7.0355] 

2.808 
[0.8021, 9.8297] 

2.0265 
[0.6176, 6.6494] 

2.609 
[0.7578, 8.9824] 

Education category = 3 1.3773 
[0.5873, 3.2303] 

1.9984 
[0.8204, 4.8677] 

1.1966 
[0.5086, 2.8149] 

1.4951 
[0.6111, 3.6582] 

1.1646 
[0.5008, 2.7081] 

1.5734 
[0.6537, 3.7875] 

Couple (1 = yes) 0.8862 
[0.3751, 2.0935] 

0.6897 
[0.281, 1.693] 

0.8467 
[0.3586, 1.9993] 

0.605 
[0.2463, 1.4861] 

0.8384 
[0.3576, 1.9652] 

0.6097 
[0.2513, 1.4791] 

Children <14 at home 1.5052 
[0.6922, 3.2732] 

1.7936 
[0.7965, 4.0392] 

1.3093 
[0.5906, 2.9027] 

1.4441 
[0.6271, 3.3256] 

1.2709 
[0.5765, 2.8016] 

1.3977 
[0.6133, 3.1855] 

Mean areal education (%) 
  

1.1897 
[1.0233, 1.3831] 

1.2774 
[1.1, 1.4833] 

1.1818 
[1.0181, 1.3718] 

1.2751 
[1.0989, 1.4795] 

Squared mean areal 
education (%) 

  
0.9983 

[0.9967, 1] 
0.9976 

[0.996, 0.9993] 
0.9983 

[0.9967, 1] 
0.9975 

[0.9959, 0.9991] 
Length (km) 0.2517 

[0.1724, 0.3676] 
0.1255 

[0.0862, 0.1829] 
0.2588 

[0.1766, 0.3794] 
0.126 

[0.0861, 0.1843] 
0.2401 

[0.1626, 0.3546] 
0.1227 

[0.0831, 0.1811] 
Squared length (km) 1.3212 

[1.1827, 1.4759] 
1.5313 

[1.3747, 1.7056] 
1.321 

[1.1815, 1.477] 
1.5152 

[1.3595, 1.6888] 
1.399 

[1.2023, 1.6279] 
1.5636 

[1.3478, 1.814] 
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Table 4 : Predicted compositions  

 Green ratio Destination density Areal education Public transports time cost 

Percentile  
of variable 
of interest  

Sedentaty Stand PA Sedentaty Stand PA Sedentaty Stand PA Sedentaty Stand PA 

0 53.03 25.86 21.11 42.49 33.98 23.53 86.6 9.14 4.26 33.98 32.25 33.77 
10 49.09 27.77 23.14 41.73 32.5 25.77 78.15 13.95 7.89 39.04 30.82 30.14 
20 45.17 29.63 25.2 40.86 30.99 28.15 68.45 18.99 12.56 44.32 29.1 26.58 
30 41.3 31.42 27.28 39.88 29.46 30.66 59.12 23.42 17.46 49.7 27.14 23.16 
40 37.54 33.11 29.35 38.81 27.91 33.28 51.53 26.78 21.69 55.06 25.01 19.93 
50 33.92 34.69 31.39 37.63 26.36 36.01 46.36 29.04 24.61 60.28 22.77 16.95 
60 30.47 36.14 33.39 36.37 24.81 38.82 43.73 30.34 25.93 65.25 20.5 14.25 
70 27.23 37.45 35.32 35.03 23.27 41.71 43.63 30.8 25.57 69.88 18.26 11.86 
80 24.21 38.61 37.18 33.61 21.74 44.65 46.02 30.37 23.61 74.12 16.11 9.77 
90 21.42 39.62 38.95 32.14 20.24 47.62 50.9 28.86 20.25 77.93 14.09 7.98 
100 18.88 40.49 40.63 30.61 18.78 50.61 58.13 26.01 15.87 81.31 12.23 6.47 

Table 4 : Predicted compositions of physical behaviors for various levels of our variables of interest, all other variables taking their mean values otherwise. 
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Chapitre V: Le comportement physique selon le mode de 

transport utilisé (résumé français) 

Dans le chapitre précédent, nous avons montré que diverses caractéristiques de 

l’environnement urbain pouvaient influencer les comportements physiques de ceux qui 

s’y trouvaient. Entre autres caractéristiques, nous avons étudié l’infrastructure des 

transports en communs et son effet sur le budget des comportements physiques adoptés 

lors des déplacements. Ce chapitre vise à mieux comprendre cet effet en explorant de 

façon systématique les budgets-temps lors des déplacements en fonction du mode de 

transports choisi.  

Le temps passé en déplacement, quel que soit le mode de transport, représente en 

moyenne une fraction importante de la journée (1h45 dans notre population RECORD). 

Ce temps peut donc être considéré comme une ressource potentielle de premier ordre 

pour la réalisation du temps d’activité physique recommandé pour la santé. L’intérêt 

scientifique pour ce sujet n’est donc pas nouveau, mais cette étude, par la précision des 

méthodes employées, innove par rapport aux quelques études réalisées précédemment.  

Étudier empiriquement les budgets-temps comportementaux dans une population en 

fonction du mode de transports présuppose une connaissance du comportement 

physique des individus en continu ainsi que le mode et le temps précis des transports 

qu’ils empruntent. D’une part, s’appuyer sur des données déclaratives concernant le 

comportement physique et le temps de transports peut être problématique, puisque ces 

données souffrent souvent d’un biais de mémoire. D’autre part, les rares études ayant 

collecté à la fois des données de localisation et d’activité physique se sont montrées peu 

précises dans la prédiction du moyen de transport utilisé par les individus monitorés. 

En revanche, notre étude, toujours avec les mêmes sujets RECORD présentés plus haut, 

a croisé les données de localisation (capteur GPS) et d’activité (accéléromètre) avec un 

journal de bord tenu par les sujets de l’étude contenant des informations sur les moyens 

de transports utilisés. Il en résulte un aperçu détaillé et fiable des déplacements des 

individus tout le long de la journée. Ces données ont été vérifiées manuellement et, en 
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cas de doute, les sujets ont été contactés pour préciser des déplacements qui semblaient 

incertains. Ce degré de précision nous a permis de diviser les déplacements, quand cela 

était applicable, en plusieurs étapes effectuées avec des modes de transports différents 

et d’obtenir non seulement une estimation précise des budgets-temps pour des 

catégories de transports « pures », mais aussi une vue d’ensemble sur les déplacements 

consistants d’étapes réalisées avec des modes de transports différents et séparées par 

des « stations » (arrêt de bus, parking…), pour lesquelles aucun déplacement n’est 

enregistré.  

Nous avons classé les déplacements en quatre catégories : marche uniquement, autres 

transports actifs (bicyclette, trottinette…), transports en commun et véhicule privé. Une 

cinquième catégorie « mixte » désignait un déplacement comportant deux étapes de 

catégories différentes autres que la marche.  Ainsi, notre analyse contient des données 

d’activité physique pour 4683 déplacements réalisés en 7692 étapes. En contrôlant 

l’autocorrélation temporelle entre les étapes successives et en standardisant par la durée 

des déplacements, nous avons constaté que, par rapport à 10 minutes de déplacement 

en véhicule privé, le déplacement à pied entraînait une baisse de 5,26 minutes du temps 

sédentaire, et une hausse de 4,83 minutes du temps d’activité modérée-à-vigoureuse. 

Les valeurs obtenues pour les autres transports actifs étaient quasiment identiques à 

celles obtenues pour la marche. Les transports en commun, quant à eux, entraînaient 

une baisse de 3,10 minutes du temps sédentaire et une hausse de 2,44 minutes d’activité 

modérée-à-vigoureuse par jour comparé à l’utilisation d’un véhicule personnel 

motorisé.  

Une comparaison entre véhicule privé et des transports actifs, surtout sur en ville, doit 

tenir compte du fait que même en véhicule privé, il existe toujours une composante 

d’activité correspondant au temps de marche entre l’endroit où la voiture est garée et la 

destination, et que mêmes dans les déplacements actifs, des temps d’arrêt peuvent 

survenir (par exemple arrêt au feu, repos sur un banc). Il n’est donc pas surprenant de 

constater que, sur 10 minutes, les transports actifs accusaient un gain de moins de 5 

minutes en termes d’activité modérée-à-vigoureuse. Avec environ 2,5 minutes d’activité 

modérée-à-vigoureuse, les transports en commun s’avèrent, quant à eux, un moyen 
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également intéressant de réduire l’inactivité physique sur la journée, surtout en tenant 

compte du fait que les déplacements en transports en commun sont souvent assez longs.  

L’étude présentée dans ce chapitre illustre et complète le chapitre précédent. Dans le 

chapitre précédent, nous avons montré qu’une bonne infrastructure des transports en 

commun, de manière générale, encourageait l’activité au niveau de la population. Les 

résultats de ce chapitre nous montrent que l’utilisation des transports en commun 

entraînait une hausse importante de l’activité physique sur l’ensemble du déplacement. 

De ces deux chapitres, on peut conclure que, dans des conditions similaires à celles de 

l’étude, une infrastructure de transports efficace augmente la probabilité d’utiliser ce 

mode de transports et donc le temps d’activité physique et le temps non-sédentaire.  

Cette étude, à cause de son petit effectif, n’est certainement pas tout à fait représentative 

du très grand nombre de formes de transports et de leurs combinaisons qu’on pourra 

trouver dans une mégapole comme la région parisienne. De même, les résultats 

observés en région parisienne ne sont pas forcément généralisables à des villes plus 

petites et à des modèles d’urbanismes différents. Malgré ces limites et comparant ce qui 

est comparable, cette étude indique qu’un réseau de transports en commun rapide et 

efficace peut représenter un moyen efficace de lutter contre la pandémie de l’inactivité 

physique.   
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Abstract 

The study explored the physical activity and sedentary behaviour related to transport 
activity, to support public health and transport policies aiming to encourage people to 
reach daily recommendation of physical activity. In 2013-2015, the RECORD MultiSensor 
study collected data from 155 participants using two accelerometers worn on the thigh 
and trunk of participants and Global Positioning System (GPS) receivers complemented 
with a GPS-based mobility survey. Relationships between transport modes and the 
durations and partition patterns of physical behaviors were established at the trip stage 
(n=7692) and trip levels (n=4683) using multilevel linear models with a random effect 
at the individual level and taking into account temporal autocorrelation. Participants 
travelled for a median of 1 hour 45 minutes per day. Trip stages and trips involving 
walking, other active modes, or public transport were associated with a lower sitting 
duration and a higher MVPA duration than those with a personal motorized vehicle. 
Using public transport was associated with a lower number of transitions between 
sedentary behaviors and non-sedentary behaviors but with a larger number of 
transitions between non-sedentary behaviors and moderate to vigorous physical activity 
than relying on a private motorized vehicle. Our study is the first to assess the 
association of transport mode used with physical activity and sedentary behaviors 
captured with thigh- and trunk-worn accelerometers at both the trip stage and trip 
levels. Our results demonstrate that in addition to active transport modes, encouraging 
people to use public transport increases physical activity and reduces sedentary time. 
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Introduction 

A report from the United Kingdom reported that lack of physical activity is ranked as 

the 4th leading cause of mortality (1). Similarly, a surveillance article concluded that the 

level of physical activity is low throughout the world, where only about 69% of adults 

meet the recommended physical activity level (2). Apart from physical activity itself, 

studies have highlighted that prolonged sedentary behaviour is associated with the risk 

of diabetes, obesity, and some cancers (3–5).  

 

Active transport, as a component of physical activity, has positive health effects (6). 

Adults have been shown to be active when they are travelling back and forth to work, 

and particularly in trips made with public transport (7). However, measuring physical 

activity in trips is particularly challenging. For example, a study used Global Positioning 

System (GPS) receivers, movement sensors, and heart rate monitoring for measuring 

the physical activity in a limited number of trips, only home–work trips, and therefore 

had a limited generalizability (8). Many studies that used GPS receiver, accelerometers, 

and advanced algorithm to predict transport mode (9,10) have not verified the predicted 

transport mode with participants, which likely results in prediction error in their data. 

On the opposite, our study validated transport modes trip by trip with all the 

participants involved in the study through phone calls to participants (mobility survey) 

(7,11). 

 

Another pitfall of previous research is that studies have often aggregated the 

information on physical behaviors into daily averages of physical activity or have 

aggregated information into overall indicators of energy expenditure or percentage of 

cumulative time spent in physical behaviors (e.g., sitting, standing, walking, etc.). 

However, such analyses ignore the continuous sequence physical behaviors performed 

by individuals over the day, which are known from sensors, e.g., at the minute level (12). 

Our study, using two accelerometers worn on the participant’s trunk and thigh, 

attempted to accurately measure the body postures and movements per second, which 

can be thereafter summed up over any interval of time (12). Relatedly, a secondary aim 
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of our paper was to compare hip-worn accelerometers and combined thigh-trunk 

accelerometers in their ability to assess physical behaviors such as sitting or standing at 

the trip and trip stage levels.  

 

Several studies investigated patterns of physical activity at the trip level; nevertheless, 

they did not accurately classify the transport modes used in trips (13–15). In order to fill 

this gap, our study aimed to establish profiles of physical behaviors, in terms of duration, 

of partition (12,16), and of number of transitions between categories of behaviors, by 

type of transport mode used. Partition in our study, as opposed to the cumulative time 

of a behavior, relates to the number and lengths of continuous periods over which the 

behavior is detected. Contrary to studies that only examined sedentary behaviour (SB) 

(16,17), partition profiles in our study encompass other behaviors such as non-sedentary 

behaviour (NSB) and moderate to vigorous physical activity (MVPA).  

 

Overall, the objective of our study was to analyze the relationships between transport 

mode and the duration and partition profile of physical behaviors, at both the trip stage 

and trip levels, using linear mixed models. 

Methods 

Population 

The data used come from the RECORD MultiSensor Study (18), of the Record Cohort 

(19). From February 2007 to March 2008, 7290 participants were recruited without a 

priori sampling during preventive health cheakups conducted in four sites of the Centre 

d’Investigations Préventives et Cliniques (IPC) funded by the National Insurance System 

for Employees and Salaried Workers. People had to be 30 to 79 year old, had to live in 

10 districts (out of 20) of Paris and 111 other municipalities of the Ile-de-France region, 

and had to be free of cognitive and linguistic disabilities to be eligible for the study. In 

2011–2015, these participants as well as new participants from the IPC medical center 

were invited to take part in the second wave of the RECORD Study. From September 
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2013 to June 2015, participants from the second wave of RECORD were invited to the 

RECORD MultiSensor Study whenever sensor devices were available (i.e., brought back 

by previous participants). The study has been approved by the French Data Protection 

Authority (Decision No. DR-2013-568 on 2/12/2013).  

 

Among the 286 final participants to the RECORD Multisensor Study, 157 were included 

in the substudy where they had to carry a BT-Q1000XT GPS receiver, a wGT3X+ waist-

worn accelerometer, and two combined accelerometers at the trunk and thigh 

(VitaMove, Temec Instruments, The Netherlands) over a period of 7 days. For 2 

participants, the trunk and thigh accelerometers did not function properly; these 

participants were excluded from the analysis, leaving 155 participants for the analyses. 

Out of 8085 stages of trips made by these 155 participants, 393 (4.9%) were not included 

due to a failure of the VitaMove devices or because these devices were not worn. 

Therefore, 7692 trip stages from 4683 trips were included in our analysis.  

Classification of trip stages and trips 

Trip stages are portions of trips with a unique mode. Within a trip, two trip stages are 

necessarily separated by an episode of transfer between the two assigned to a punctual 

location, which also count as a trip stage. 

 

The data extracted from the BT-Q1000XT GPS receiver were pre-processed after the 7-

day data collection in order to identify the visited places as well as the start and end 

times of each trip stage, defined as a segment of a trip using a unique transport mode 

(20). Using a web mapping application, these data were then consolidated during a 

phone mobility survey with the participants, producing in the end a detailed timetable 

covering the 7-day observation period (see Web Appendix 1 for details). This timetable 

consisted of a time-stamped list of the visited places and trip stages between them. 

 

Each trip comprises one or several trip stages. In trips with several stages, the whole trip 

also includes the transfer time between several trip stages. Our crude classification of 

trip stages was as follows: entirely walked, biking/rollers/skateboard (other active 
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modes); public transport; privately owned vehicles; and other non-local trips involving 

long-distance trains and planes. Our detailed classification of modes further 

distinguished driving own personal vehicle from travelling through a private vehicle as 

a passenger (including taxi); and subdivided public transport into (i) bus/coach, (ii) 

metro, (iii) suburban train including RER (trains travelling within Paris and suburban 

cities), standard suburban trains, and TER (trains for joining Paris to suburbs or nearby 

regions), and (iv) trams. 

 

At the trip level, trips were classified into the same categories. Trips that comprised two 

or more non-walking modes were assigned to a separate multi-mode trip category. 

 

Additionnally, each trip or trip stage was coded as on a weekday vs. weekend day and 

performed in Spring or Summer vs. Automn or Winter. 

Processing of accelerometer data 

The VitaScore software was used to process the VitaMove trunk and thigh 

accelerometer data, and classify each second into 5 groups: sitting, lying, standing, light 

physical activity (LPA, including slow walking), and moderate-to-vigorous physical 

activity (MVPA).  

 

ActiLife 6.11.9 was used to process the waist-worn accelerometer data. The standard 

inclinometer data indicated the number of seconds of sitting, lying, and standing for 

each of the 5-second epochs. For comparing the VitaMove posure data to the Actigraph 

inclinometer data, the VitaMove standing, LPA, and MVPA were considered as 

standing. 

 

For each trip or each trip stage, we calculated the cumulated duration in each physical 

behavior. We also calculated a version of these variables standardized per units of 10 

minutes of trip or trip stage. 
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For a simplified partition analysis based on the VitaMove data, physical behaviours were 

categorized those into 3 broad groups: SB (combining lying and sitting), NSB (including 

standing and LPA), and MVPA. Identifying uninterrupted segments of SB, NSB, and 

MVPA within each trip / trip stage, we determined the median length of such segments 

separately for SB, NSB, and MVPA within each trip and trip stage. This indicator was 

standardized per 1 minute of trip or trip stage. We also calculated the number of 

transitions between SB and NSB, NSB and MVPA, and SB and MVPA within each trip 

and each trip stage. The latter partition indicator was standardized per units of 10 

minutes of trip / trip stage. 

Statistical Analysis 

Unstandardized and standardized durations of physical behaviors and partition 

indicators were tabulated by transport modes at the trip and trip stage levels. 

Relationships between transport modes and unstandardized and standardized 

durations of physical behaviors were estimated separately at the trip level and trip stage 

level (one observation per trip and trip stage) using multilevel linear models with a 

random effect at the individual level. Time autocorrelation was also accounted for, using 

an AR(1) continuous autoregressive structure.  

 

As discussed previously, confounding by individual characteristics is unlikely for the 

relationship of interest (7). Weekday/weekend day and season of the trip were 

associated with durations of certain physical behaviors, but not with durations 

standardized by 10 minutes of travel time. Therefore, they were only introduced in 

models for unstandardized outcomes.  

 

We also estimated multilevel models with interaction terms between transport mode 

and weekdays/weekend days and/or between transport mode and season. Since the 

ranking of transport modes was similar in the models with only one or with the two 

interaction terms, we used the models with a single interaction term for plotting the 

predicted durations of physical behaviors by weekday/weekend day and season. Models 

with two interaction terms are reported in Web Appendix 2.  
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In order to compare the associations between transport modes and the duration of 

physical behaviors as estimated from waist-worn accelerometrers (Actigraph) and 

trunk- and thigh-worn accelerometers (VitaMove), we re-estimated the regression 

models among 4008 trips and 6901 trip stages (154 participants) with information for 

both sensors. 

 

All statistical analyses were conducted using R software (version 3.4.4) and R Studio 

(version 1.1.463) (21). 

Results 

Sample description 

The 155 participants had an average age of 50 years (range: 34–82 years). Among them, 

98 were males. Fifty-five of them were from Paris, 30 lived in the close suburb, and 69 

in the far suburb. Thirty-eight participants had no formal education or primary 

education or lower secondary education; 33 had a higher secondary education or lower 

tertiary education; 30 had an intermediate tertiary education; and 54 participants had 

an upper tertiary education. Among participants, 122 had a stable job, 4 had fixed-term 

contracts, and 4 participants were unemployed.  

Descriptive information on trips  

The median follow up time of participants in our study was 7 days (interdecile range: 5–

7 days). Participants had a median number of trips per day of 5 (interdecile range: 3–7), 

corresponding to a median number of trip stages per day of 8 (interdecile range: 4–13). 

Participants were travelling (as opposed to being at a place) for a median of 1 hour 45 

minutes per day (interdecile range: 56 minutes – 3 hours 2 minutes). Following Web 

Appendix 3, the most frequently used mode of transport was walking, corresponding to 

53.8% of trip stages 39.6% of trips, followed by private motorized vehicles, 
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corresponding to 23.1% (19.9% as a driver and 3.2% as a passenger) of trip stages and 

39.6% (31.8% as a driver and 4.5% as a passenger) of trips. 

Association between transport mode and physical activity 

In models for both unstandardized and standardized outcomes (Tables 1 and 2), not 

only trips or trip stages by walking or with other active modes but also (although to a 

lesser extent) those with public transport were associated with a lower sitting time than 

when using a personal motorized vehicle. In the models with standardized outcomes 

(Table 2), the coefficient showing that there was less sitting time in public transport was 

stronger in the model at the trip level than at the trip stage level (as opposed to public 

transport trip stages, public transport trips also include the walking episodes). This is 

not the case in the models with unstandardized outcomes (Table 1) that are difficult to 

interpret due to the fact that trips and trip stages with different modes have different 

durations. 

 

Regarding MVPA, when durations of trips and trip stages were accounted for 

(standardized outcome, Table 2, third and fourth columns), trips and trip stages by 

walking, other active modes, and as expected to a lesser extent with public transport 

were all associated with more minutes of MVPA than those with a personal motorized 

vehicle. The coefficient showing more minutes of MVPA associated with public 

transport was stronger in the model at the trip level (Table 2, column 4) than in the 

model at the trip stage level (column 3), as public transport trips also include typically 

include walked trip stages. 

 

Figure 1 reports average durations of sitting and MVPA in a trip by transport modes 

(predicted from separate models with an interaction of transport modes with either the 

weekend / weekday variable or the season variable, with unstandardized outcome). 

MVPA duration in a trip was higher during weekends than on weekdays in trips with all 

modes, although the difference was particularly sharp only for multi-modes trips (this 

finding is based, however, on 9 and 52 multi-mode trips on the weekend and on 

weekdays, respectively, and is attributable to the fact that these weekend trips had an 
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average duration of 188 minutes vs. 81 minutes for the weekday trips). Regarding the 

interaction with seasons, spring or summer was associated with a longer duration of 

MVPA per trip for all transport modes (except perhaps multi-mode trips), with a non-

overlapping confidence intervals only for trips with other active modes. 

Partition profile: transition rates 

As shown in Table 3, transport modes differ in the number of transitions among SB, 

NSB, and MVPA. For example, both at the trip stage and trip level, using public 

transport was related to a lower number of transitions between SB and NSB (or the other 

way round) than driving or being the passenger of a private motorized vehicle, but it 

was related to a larger number of transitions between NSB and MVPA. Walking or 

relying on other active modes had the largest number of transitions from NSB to MVPA. 

Compared to other two types of transitions, those between SB and MVPA were 

particularly rare.  

 

Statistics on the length of uninterrupted episodes of physical behaviors (SB, NSB, and 

MVPA within trips and trip stages are reported in Web Appendix 4.  

Comparison of waist-worn to and thigh- and trunk-worn 

accelerometers 

Considering time periods with both waist-worn and thigh- and trunk-worn 

accelerometers, the standing duration per individual per eight hours of device wear time 

had a median of 290.4 minutes (interdecile range: 123.6, 434.1) when assessed with the 

thigh- and trunk-worn accelerometers, as compared to 271.6 minutes (interdecile range: 

138.3, 388.5) when assessed with the single waist-worn accelerometer. The 

corresponding figures for sitting time were 183.8 minutes (interdecile range: 42.1, 352.2) 

and 208.6 minutes (interdecile range: 92.9, 330.0). 

 

Table 4 shows that the contrast in sitting duration between using a personal motorized 

vehicle and the other modes (public transport, walking, and other active modes) was 
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substantially overestimated by the waist-worn accelerometer compared to the the 

thigh- and trunk-worn accelerometers, in both duration-unstandardized and 

standardized models (trip stage model). The corresponding models at the trip level are 

reported in Web Appendix 5. 

Discussion 

Strengths and limitations compared to previous literature 

Regarding strength of our approach, this paper is one of the few published studies to 

explore the association of transport mode with physical activity at the trip level using 

objective sensor-based measures measured outcomes (7,22). And it is the first to 

conduct such a detailed analysis with two complementary body-worn accelerometers 

that permit a more accurate assessment of body posture, including sitting. Two 

accelero-sensors placed on the trunk and thigh that provide information on the 

orientation of the body compared to the gravitation field are useful to infer body 

posture. 

 

Another strength of this paper is that it performed this analysis comparatively at the 

trip stage level and trip level. Investigating the relationship between transport mode 

and physical behaviors is of interest both at the trip stage level, for a description of each 

transport mode, and at the trip level, to investigate how the different non-walking 

modes generate walking and physical activity. Previous studies did not reach this level 

of precision, for example those which modeled the relationship between transport mode 

and physical activity at the individual level rather than trip stage and trip levels (23). A 

study that analyzed trip-level information used self-reported rather than accelerometer-

derived physical activity, which makes the findings less trustworthy (24). Another study 

investigated the association between transport mode and physical activity using a linear 

mixed model (7); however, trip level data but not trip stage level data were considered 

and temporal autocorrelation was not taken into account, which is important when 

analyzing repeated observations (25). To overcome these limitations, we collected trip 



 
Discussion 
 

177 
 

data at the trip stage level, and timestamps were available for all transitions between 

modes within trips over 7 days, and had been pre-identified with algorithms and then 

verified on the phone with participants. 

 

Regarding limitations, first, the recruitment of participants was not at random 

(convenience sample). Beyond non-randonmess, findings from a small sample of 155 

participants cannot be generalized to the complex transport habits of a population of 

more than 24 million inhabitants (Paris and close and far suburbs). For instance, if the 

odds of participating in the study were lower for those public transport users living in 

municipalities far from recruitment area, then longer public transport trip stages would 

be underrepresented in the study. Since a larger segment of a public transport trip is 

related to walking when the trip is short than when the trip is long, such a hypothetical 

recruitment bias would influence the comparison of physical activity between private 

motorized vehicle trips and public transport trips. Second, the estimated time of 

physical behaviors assigned to transport modes was based on the accelerometer wear 

time. If specific trips in terms of physical behaviors were more frequently excluded due 

to nonwear of the accelerometer, then it would bias our comparisons. 

Interpretation of findings 

Trips and trip stages by walking or other active modes, but also (although to a lesser 

extent) with public transport, were associated with longer walking durations and 

shorter sitting durations than trips based on a personal motorized vehicle, and these 

findings hold whether sitting or MVPA time were standardized or not by trip or trip 

stage durations. This finding supports previous studies quantifying the physical activity 

gains of biking (26,27) and walking (7). Regarding public transport, our findings are in 

accordance with previous research; for example, it has been found that public transport 

users had 24.3 minutes of physical activity per day while travelling, which is a substantial 

portion of recommended physical activity levels in  

guidelines (28). The health benefits gained from the physical activity associated with 

the use of public transport have been investigated in previous literature (23). 
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In our study, in models with standardized outcomes, the coefficient showing that 

there was less sitting time in public transport and the coefficient showing more 

minutes of MVPA with public transport were stronger in the models at the trip level 

than at the trip stage level. This is because, in addition to the potential active 

movements within public transport vehicles, trips also typically include walked trip 

stages to and from public transport stations (7). Thus our study comparing analyses at 

the trip level and trip stage level was useful to distinguish between these two sources 

of physical activity. Walked distances to and from public transport stations may thus 

help people achieve physical activity recommendations, especially people who do not 

have time for other kinds of physical activity (23,28). However, it is critical to keep in 

mind that it may not be possible for everyone to increase their level of physical activity 

by transport mode, due to various types of health, environmental, or time constraints. 

It should also be emphasized that the physical activity gains from choosing public 

transport instead of a private motorized vehicle as a transport mode is likely to differ 

from one city to the other, because of variations in the configuration of transport 

systems and travel habits of people. 

Conclusion 

In conclusion, our study is the first to assess the relationship between various transport 

modes and physical behaviors based on GPS, mobility survey, and waist, thigh, and 

trunk accelerometer data,  with a comparative analysis at the trip stage and trip levels. 

This pioneering approach allowed us to accurately measure differences in physical 

behaviors between transport modes.  

 

Even if future research will have to rely on larger and more representative study samples 

to yield more generalizable findings, our study shows that promoting walking and 

biking but also public transport in daily routines may have a significant impact at the 

population level in terms of increasing the share of people reaching the physical activity 

recommandation. 
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1 

Tables 

Table 1. Association between transport mode used and physical behaviors (trip stage level n =7692, trip level n = 4683, N = 155 participants)a, 
unstandardized outcome 

 Sitting duration in minutes MVPA duration in minutes 

Transport mode Trip stage level  

 β (95%CI)   

Trip level 

β (95%CI)  

Trip stage level  

β (95%CI)  

Trip level 

β (95%CI)  

Detailed classification 

Private motorized (driver) Ref. Ref. Ref. Ref. 

Private motorized 

(passenger) 

-2.19 (-3.70, -0.68) -1.26 (-4.19, 1.67) -1.25 (-2.06, -0.44) 1.39 (-0.01, 2.78) 

Bus/coach -10.69 (-11.8, -9.58) -6.13 (-9.62, -2.64) 1.29 (0.76, 1.82) 7.88 (6.17, 9.60) 

Metro -10.55 (-11.51, -9.59) -3.73 (-6.28, -1.18) 0.93 (0.46, 1.41) 10.92 (9.68, 12.16) 

Tram -10.61 (-12.63, -8.59) -10.1 (-17.12, -3.08) -0.09 (-1.03, 0.84) 8.48 (5.09, 11.87) 

Suburban train -5.99 (-7.19, -4.79) -2.38 (-6.55, 1.79) -0.21 (-0.81, 0.38) 17.15 (15.18, 19.13) 

Biking and other active -13.66 (-15.16, -12.16) -13.26 (-16.46, -10.06) 5.58 (4.81, 6.36) 6.96 (5.48, 8.44) 

Entirely walking -14.04 (-14.74, -13.34) -15.26 (-16.8, -13.72) 2.04 (1.67, 2.40) 4.39 (3.67, 5.12) 

Multi-mode NA 12.42 (9.92, 14.92) NA 15.31 (14.09, 16.53) 

Otherb 3.13 (0.48, 5.78) 1.26 (-4.06, 6.58) 2.52 (0.91, 4.13) 3.00 (0.58, 5.41) 

Crude classification 

Private motorized Ref. Ref. Ref. Ref. 

Public transport -9.27 (-10.06, -8.48) -1.10 (-2.95, 0.75) 1.02 (0.62, 1.42) 11.54 (10.65, 12.43) 

Other active mode -13.36 (-14.85, -11.87) -13.12 (-16.3, -9.94) 5.82 (5.06, 6.58) 6.80 (5.32, 8.28) 

Entirely walking -13.62 (-14.27, -12.97) -15.29 (-16.74, -13.84) 2.27 (1.93, 2.61) 4.14 (3.45, 4.83) 

Multi-mode NA 24.58 (19.97, 29.19) NA 20.90 (18.58, 23.22) 

Otherb 3.48 (0.84, 6.12) 1.23 (-4.1, 6.56) 2.74 (1.13, 4.35) 2.79 (0.36, 5.22) 

CI: Confidence interval, MVPA: Moderate to vigorous physical activity, NA: Not applicable at the trip stage level. 
aThe multilevel linear models included a random effect at the individual level. The crude and the detailed transport mode variables 

were introduced in separate models. The models were adjusted for day of week and season, and took account of temporal 

autocorrelation. 
bLong-distance train and plane.  
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Table 2. Association between transport mode used and physical behaviors (trip stage level n = 7692, trip level n = 4683, N = 155 participants)a, 
standardized outcome 

 Sitting time per 10 minutes of trip (minutes) MVPA  time per 10 minutes of trip (minutes) 

Transport mode  Trip stage level  

β (95%CI)  

Trip level 

β (95%CI)  

Trip stage level  

β (95%CI)  

Trip level 

β (95%CI)  

Detailed classification 

Private motorized (driver) Ref. Ref. Ref. Ref. 

Private motorized 

(passenger) 

-0.59 (-1.03, -0.15) -1.17 (-1.60, -0.74) 0.26 (-0.14, 0.67) 0.45 (0.08, 0.82) 

Bus/coach -2.79 (-3.20, -2.38) -3.57 (-4.10, -3.04) 0.54 (0.15, 0.92) 1.88 (1.42, 2.33) 

Metro -2.88 (-3.20, -2.56) -3.43 (-3.82, -3.04) 1.54 (1.25, 1.83) 2.95 (2.63, 3.27) 

Tram -3.37 (-4.16, -2.58) -3.54 (-4.59, -2.49) 0.22 (-0.53, 0.96) 2.98 (2.06, 3.9) 

Suburban train -1.67 (-2.06, -1.28) -3.83 (-4.44, -3.22) 0.54 (0.19, 0.9) 3.25 (2.72, 3.78) 

Biking and other active -5.58 (-6.04, -5.12) -5.67 (-6.14, -5.20) 3.96 (3.53, 4.38) 4.04 (3.69, 4.4) 

Entirely walking -5.37 (-5.59, -5.15) -5.40 (-5.63, -5.17) 4.78 (4.59, 4.98) 4.89 (4.71, 5.06) 

Multi-mode NA -2.89 (-3.27, -2.51) NA 1.73 (1.41, 2.06) 

Otherb -2.00 (-2.67, -1.33) -1.83 (-2.58, -1.08) 1.18 (0.57, 1.78) 1.08 (0.53, 1.63) 

Crude classification 

Private motorized Ref. Ref. Ref. Ref. 

Public transport -2.46 (-2.71, -2.21) -3.10 (-3.38, -2.82) 0.96 (0.73, 1.19) 2.44 (2.22, 2.66) 

Other active mode -5.49 (-5.95, -5.03) -5.47 (-5.93, -5.01) 3.91 (3.49, 4.33) 3.99 (3.63, 4.35) 

Entirely walking -5.26 (-5.46, -5.06) -5.17 (-5.39, -4.95) 4.73 (4.55, 4.91) 4.83 (4.66, 5.00) 

Multi-mode NA -2.88 (-3.59, -2.17) NA 1.25 (0.60, 1.90) 

Otherb -1.89 (-2.55, -1.23) -1.63 (-2.38, -0.88) 1.11 (0.51, 1.71) 1.02 (0.47, 1.57) 

CI: Confidence interval, MVPA: Moderate to vigorous physical activity, NA: Not applicable at the trip stage level. 
aThe multilevel linear models included a random effect at the individual level. The crude and the detailed transport mode variables were 

introduced in separate models. The models were adjusted for day of week and season, and took account of temporal autocorrelation. 
bLong-distance train and plane. 
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Table 3. Number of transitions between physical behaviors (SB, NSB, and MVPA) standardized by 10 minutes of trip, by transport mode, at the trip stage and trip levels: median 
(10th and 90th percentiles) 

 Trip stage level  Trip level 

Transport mode 

SB and NSB 

transitions 

NSB and MVPA  

transitions 

SB and MVPA  

transitions  

SB and NSB  

transitions 

NSB and MVPA 

transitions 

SB and MVPA 

transitions 

Detailed classification       

Private motorized (driver) 3.07 (0.00, 14.58) 0.61 (0.00, 6.41) 0.00 (0.00, 1.15) 2.95 (0.00, 13.73) 1.25 (0.00, 6.79) 0.00 (0.00, 1.16) 

Private motorized (passenger) 3.25 (0.00, 14.42) 0.76 (0.00, 6.00) 0.00 (0.00, 0.00) 2.69 (0.00, 12.64) 1.24 (0.00, 8.09) 0.00 (0.00, 0.50) 

Bus/coach 1.54 (0.00, 10.83) 1.35 (0.00, 7.72) 0.00 (0.00, 0.44) 1.23 (0.00, 6.23) 4.00 (1.38, 8.12) 0.00 (0.00, 0.45) 

Metro 0.51 (0.00, 4.72) 2.73 (0.00, 12.61) 0.00 (0.00, 1.25) 0.81 (0.00, 3.13) 4.73 (2.23, 9.23) 0.00 (0.00, 0.78) 

Tram 0.00 (0.00, 4.03) 1.27 (0.00, 4.4) 0.00 (0.00, 0.00) 0.45 (0.00, 2.60) 3.73 (0.00, 7.51) 0.00 (0.00, 0.33) 

Suburban train 0.53 (0.00, 3.90) 1.69 (0.00, 7.85) 0.00 (0.00, 0.83) 0.64 (0.00, 2.21) 4.84 (2.04, 8.48) 0.00 (0.00, 0.71) 

Biking and other active 1.48 (0.00, 9.99) 8.00 (1.41, 16.47) 0.30 (0.00, 5.33) 1.30 (0.00, 8.48) 7.96 (1.95, 16.15) 0.45 (0.00, 4.80) 

Entirely walking 0.00 (0.00, 3.33) 5.03 (0.00, 16.56) 0.00 (0.00, 0.00) 0.00 (0.00, 2.88) 5.28 (0.00, 15.32) 0.00 (0.00, 0.00) 

Multi-mode NA NA NA 1.15 (0.05, 4.27) 4.00 (1.99, 7.02) 0.21 (0.00, 0.81) 

Othera 1.20 (0.00, 5.99) 1.25 (0.00, 14.08) 0.00 (0.00, 2.01) 1.23 (0.00, 6.99) 5.08 (0.00, 16.52) 0.32 (0.00, 3.44) 

Kruskal wallis test (p-value) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Crude classification       

Private motorized 3.07 (0.00, 14.48) 0.64 (0.00, 6.38) 0.00 (0.00, 1.07) 2.86 (0.00, 13.57) 1.24 (0.00, 6.96) 0.00 (0.00, 1.08) 

Public transport 0.53 (0.00, 6.32) 2.13 (0.00, 9.96) 0.00 (0.00, 0.95) 0.93 (0.00, 3.81) 4.42 (2.08, 8.32) 0.00 (0.00, 0.69) 

Other active mode 1.48 (0.00, 9.99) 8.00 (1.41, 16.47) 0.3 (0.00, 5.33) 1.30 (0.00, 8.48) 7.96 (1.95, 16.15) 0.45 (0.00, 4.80) 

Entirely walking 0.00 (0.00, 3.33) 5.03 (0.00, 16.56) 0.00 (0.00, 0.00) 0.00 (0.00, 2.88) 5.28 (0.00, 15.32) 0.00 (0.00, 0.00) 

Multi-mode NA NA NA 1.75 (0.43, 10.1) 3.62 (1.63, 7.47) 0.15 (0.00, 1.32) 

Othera 1.20 (0.00, 5.99) 1.25 (0.00, 14.08) 0.00 (0.00, 2.01) 1.23 (0.00, 6.99) 5.08 (0.00, 16.52) 0.32 (0.00, 3.44) 

Kruskal wallis test (p-value) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

RECORD MultiSensor Study, 155 participants, 7692 trip stages and 4683 trips 

SB: Sedentary behaviour, NSB: Non-sedentary behaviour, MVPA: Moderate to vigorous physical activity,  NA: Not applicable at the trip stage level. 
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aLong distance train and plane. 
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Table 4. Association between transport mode and sitting duration, comparing a waist-worn accelerometer with two thigh- and trunk-worn 
accelerometers (analyzed at the trip stage level, n = 6901, N = 154 participants)a 

Transport mode  Sitting duration, waist-

worn accelerometer 

(minutes) 

β (95%CI) 

Sitting duration, thigh- 

and trunk-worn 

accelerometers 

(minutes) 

β (95%CI) 

Sitting duration per 10 

minutes of trip stage, 

waist-worn 

accelerometer 

(minutes) 

β (95%CI) 

Sitting duration per 10 

minutes of trip stage, 

thigh- and trunk-

worn accelerometers 

(minutes) 

β (95%CI) 

Detailed classification    

Private motorized (driver) Ref. Ref. Ref. Ref. 

Private motorized (passenger) -1.45 (-2.83, -0.07) 2.58 (1.26, 3.90) -0.42 (-0.89, 0.05) 0.89 (0.41, 1.37) 

Bus/coach -10.27 (-11.27, -9.27) -5.79 (-6.8, -4.78) -3.12 (-3.54, -2.70) -0.49 (-0.92, -0.06) 

Metro -9.96 (-10.82, -9.10) -7.2 (-8.05, -6.35) -3.13 (-3.45, -2.81) -1.44 (-1.77, -1.11) 

Tram -10.13 (-11.93, -8.33) -5.80 (-7.65, -3.95) -3.59 (-4.38, -2.80) -0.33 (-1.14, 0.48) 

Suburban train -6.18 (-7.27, -5.09) -3.7 (-4.78, -2.62) -2.10 (-2.50, -1.70) -0.50 (-0.91, -0.09) 

Biking and other active -13.73 (-15.05, -12.41) -5.9 (-7.18, -4.62) -6 (-6.48, -5.52) -1.09 (-1.58, -0.60) 

Entirely walking -13.67 (-14.31, -13.03) -10.88 (-11.49, -10.27) -5.67 (-5.9, -5.44) -4.06 (-4.29, -3.83) 

Otherb 15.69 (12.34, 19.04) 5.89 (2.86, 8.92) 1.3 (0.31, 2.29) -2.96 (-3.96, -1.96) 

Crude classification     

Private motorized Ref. Ref. Ref. Ref. 

Public transport -9.04 (-9.75, -8.33) -6.49 (-7.18, -5.80) -2.82 (-3.08, -2.56) -1.12 (-1.39, -0.85) 

Other active mode -13.54 (-14.85, -12.23) -6.35 (-7.62, -5.08) -5.95 (-6.42, -5.48) -1.24 (-1.72, -0.76) 

Entirely walking -13.39 (-13.98, -12.8) -11.31 (-11.88, -10.74) -5.59 (-5.80, -5.38) -4.22 (-4.43, -4.01) 

Otherb 15.89 (12.55, 19.23) 5.50 (2.46, 8.54) 1.37 (0.39, 2.35) -3.10 (-4.10, -2.10) 

CI: Confidence interval. 
aThe multilevel linear models included a random effect at the individual level. The crude and the detailed transport mode variables were 

introduced in separate models. The models were adjusted for day of week and season, and took account of temporal autocorrelation. 
bLong-distance train and plane. 
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Physical Activity: New paradigms, new methods 

Over the last centuries, physical inactivity in the population has progressed hand in 

hand with technological development. Progresses in automation and the growth of the 

third activity sector have reduced overall levels of occupational physical activity [5]. 

Meanwhile, leisure became, to a large extent, screen-based and massive motorization 

has further reduced physical activity associated with mobility [2, 6, 7]. These trends are 

no longer restricted to the technologically developed Western world: with the rapid 

development of rising economies, they have been observed in increasingly larger 

fractions of the World’s population [6].  Thus, physical inactivity is now viewed as a 

galloping pandemic, which requires appropriate public health action by the policy 

makers at the local and global level.  

From the mid-20th century to these days, considerable advances were made in assessing 

and understanding the health hazards associated with inactivity. Recent paradigmatic 

shifts have heightened awareness to the fact that several of these hazards may be 

reduced by avoiding sedentary behaviors as much as possible and cumulating any short 

sequence of activity all along the day [9]. To the extent that this new paradigm is 

supported by empirical evidence, small behavioral changes can be undertaken all along 

the day and make a considerable difference. The determinants of physical activity need 

to be understood as any factor provoking even a small burst of activity or a change of 

posture in any context of the daily routine. Public health decisions must therefore focus 

not only on promotion of structured sessions of exercise, but on the multitude of factors 

that can impact physical behaviors in everyday life.  

Studying physical activity within this new paradigm requires new scientific tools and 

methods. In population studies, monitoring of physical activity is to be implemented 

using precise tools capable of measuring a large array of behaviors at a high time 

resolution. Likewise, upstream research about the environmental determinants of 

physical behaviors must consider continuous momentary exposure to environmental 

stimuli and link them to contemporaneous physical behaviors. As data collected 

becomes more complex, methods of analysis must evolve to treat them appropriately. 



 
Physical Activity: New paradigms, new methods 
 

187 
 

This implies new methods for deriving physical behavior from motion sensors, methods 

for capturing the complex patterns of activity segmentation and methods for treating 

behavioral time-budgets with multiple components. At the determinants level, this new 

complexity implies merging various geographical, spatial and temporal layers in a 

meaningful way.  

This thesis aimed to contribute to a better understanding of potential determinants of 

physical behaviors and associated health consequences within this new paradigm. We 

relied chiefly on the RECORD study cohort, a notable attempt to observe the detailed 

activity and mobility patterns of an urban French population of adults in their daily life. 

We have thus reached several new insights, which will be discussed in the three 

following sections, each devoted to one of the three main objectives of this thesis: (i) 

understanding the relationship between physical activity and health in order to help 

refine future physical activity recommendations, (ii) identifying ways to promote 

physical activity in the population, especially within the context of urban environment, 

(iii) improving measurement of physical activity in free-living conditions using 

accelerometers.  This discussion concludes with the key messages and directions for 

future research.   
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Physical activity and health 

We started by investigating, in chapters I and II, relationships between advanced 

measures of physical behaviors and health outcomes. The main innovations of our 

studies were the use of a relatively detailed nomenclatures of behaviors, the use of 

compositional methods, and a systematic approach to behavior segmentation.  

The importance of posture allocation The first important result in the study presented in 

chapter I was the associations between standing volume and lipid profile. Standing 

volume positively associated with plasma HDL and negatively with triglycerides level. 

With the compositional models, we were able to predict health outcomes for any time-

budget. Thus, we showed that budgets with sufficient time reallocation from sitting to 

standing (for instance comparing occupations requiring standing vs. sitting) could 

offset the detrimental associations observed in the absence of MVPA.  

Previous research summarized by Miles-Chan and Dulloo showed that quiet standing 

alone, in average, does not induce a considerable change in energy expenditure [24]. Do 

these associations between standing and lipid profile point to physiological mechanisms 

that influence metabolic health irrespective of energy expenditure? These authors 

suggest that this assumption is not necessary, given that standing time could be only a 

proxy for the number of sit-stand transitions, which increases energy expenditure 

overtime. Our data do not support this assumption because the relationship observed 

between standing and lipid variables persisted even when we controlled for 

segmentation patterns at resolution of one second, i.e. even when transitions were 

accounted for. 

Another possible explanation to the observed health consequences of standing that 

excludes the intervention of mechanisms that are independent from energy expenditure 

consists in assuming that the time recorded by the accelerometers as quiet standing 

actually comprises hidden energy expenditure. This can be many small vibrations of the 

body, frequent shifting of the body weight between the feet, etc., which can add up to 

an increased energy expenditure over the total standing time. An inspection of the 
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accelerometer records of our patients made this explanation implausible, as the motion 

intensity, if we view it as a proxy for energy expenditure, even when cumulated over 

relatively long periods of time, remains negligible compared to MVPA. Nevertheless, 

this open question clearly points to the fact that the field is missing a precise, universal 

system of behavior classification addressing such questions. Chapter III proposes a new 

classification model of physical behaviors based on accelerometers; although it does not 

address the issue of very light activity while standing still, the model shows that using 

advanced accelerometers and processing methods, extremely subtle behaviors could be 

identified at a high degree of accuracy. 

Our findings about the importance of standing volumes corroborates previous research 

by Healy and colleagues on Australian individuals in free-living conditions, and several 

other studies using an experimental design [23]. However, while Healy and colleagues 

used iso-temporal substitution to model the effects of replacing sitting with standing, 

we complemented our analysis with compositional models. These have been advocated 

by mathematicians [31] and have the advantage of considering the components of the 

compositions as a whole, allowing convenient predictions for different budgets that 

differ from each other with regard to several components. In addition, by controlling 

for segmentation at a high time resolution, our estimates reflect the “pure” associations 

of volume, irrespective of segmentation patterns. 

Sitting and lying are two behaviors that are typically classified in a single category of 

sedentary behavior in research. Our study distinguished between them and revealed a 

strong correlation with adiposity. Thus, we observed higher BMI and waist 

circumference values when sitting was replaced with lying. Here, having a pair of 

accelerometers placed on the subjects’ chest and thigh proved useful, since the former 

helped determine the inclination degree of the trunk. Evidence for associations between 

postural allocation and health outcomes based on a sensor placed on the trunk is very 

scarce, and, to my knowledge, the literature has not thoroughly discussed similar 

results. 
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Behavior segmentation and health 

Controlling for segmentation patterns proved useful in better understanding the 

correlations of health outcomes with volumes. However, segmentation patterns 

themselves also exhibited associations with health outcomes. Our study presented in 

chapter I run segmentation analysis on two types of behavior time-series. In one time-

series, we applied a bout detection algorithm at a 5-minute resolution to identify 

homogenized prolonged behavior periods while ignoring short interruptions. In 

another time-series, we kept the time-series unchanged at a 1-second resolution, in 

order to keep track of any micro-sequence of activity and interruption. Bout 

segmentation analysis yielded inconclusive results and could not be linked to previous 

literature. As I explain in the Annex, although reducing time resolution of the behavior 

series by using bouts follows a justified scientific rationale, its use in the literature is 

highly problematic, as results greatly vary depending on preliminary data processing 

and the parameters of the bout detection algorithm applied. Likewise, our study 

presented in chapter II, comparing two conditions in which the same activity volume 

was performed in one 45-minute bout versus nine 5-minute bouts, could not detect any 

significant difference in insulin and glucose level.  

Nevertheless, in chapter I, applying segmentation analysis on the unchanged behavior 

time series (i.e. at a 1-second time resolution) offered a valuable insight. Irrespective of 

volume, a high degree of partitioning of the total sedentary time associated with 

reduced fasting plasma glucose level.  This result is in line with other studies that 

observed a reduction of postprandial glycaemia following interruptions of sedentary 

behavior with standing or physical activity episodes [23], but it is new as far as fasting 

glycaemia is concerned. Moreover, whereas the major studies that identified 

associations or effects between segmentation of sedentary time and glycaemia 

considered only relatively long behavior bouts (1 minute or more), our study arrived to 

this result by considering the distribution of sequences of any duration, thus pointing 

to the relevance of segmentation at a high time resolution (i.e. including micro-

sequences and micro-breaks).  
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Whether there is an additional value to MVPA time when it is performed in long bouts 

(e.g. 10 or 20 minutes) is still a matter of debate in the literature [34]. Our results could 

not highlight any evidence for the alleged negative associations of MVPA segmentation 

with the health outcomes examined. Our findings are even more relevant considering 

that our approach rigorously separates volume and segmentation, and studies 

segmentation pattern both at different time resolutions.  To this extent, our results are 

in line with the cautious position adopted by the American Physical Activity Guidelines 

(2018), which removed the recommendation to perform MPVA in bouts.  

Limitations 

The main shortcoming of the study presented in chapter I is its cross-sectional design 

and our inability to draw conclusions about the causal link between physical behavior 

and health. Despite the keen interest of epidemiological research in the effect of various 

aspects of physical behavior on health, causal evidence gathered in free-living 

conditions is very scarce due to the difficulty in implementing longitudinal studies. The 

causality of the observed relationship between lying and adiposity is particularly 

questionable, since being prone to lying can be as well the consequence of body 

composition. Nevertheless, in this context, it is worth mentioning the small-scale study 

by Levine and colleagues [21], which showed that time spend sitting and standing varied 

across lean and obese groups both before and after supervised weight gain, suggesting 

that a preference for a certain posture could be biologically determined and rather the 

cause than the consequence of adiposity. This causal direction, however, needs to be 

confirmed by studies in larger sample sizes. 

Causality can be determined, of course, with strictly controlled experimental designs or 

longitudinal studies. Yet, they do not necessarily reflect the ‘chaotic’ character of 

unrestrained, free-living conditions. To this extent, longitudinal studies with activity 

monitoring, despite the challenge that they represent, are still necessary.   
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What can impact individuals’ physical behaviors? 

The relationships between aspects of the urban environment and physical activity have 

been thoroughly investigated in past literature [91, 97-100]. Our studies addressed these 

questions with a new, rigorous approach, aiming at causal inference. Relying on an 

analytical framework merging geographical information, personal logbooks, activity 

and location data, we were able to isolate spatio-temporal life-segments in individuals’ 

daily life that can be viewed as virtually free of the instantaneous selection bias. Thus, 

in chapter IV, we studied physical activity during commuting as function of the urban 

environment along the routes: as commuting is a necessary trip, it is very unlikely to 

suffer from biases compromising causal inference. Likewise, chapter V isolated all daily 

trips to study their distribution of physical behaviors. Thus, studies in this thesis 

benefited from the advantages of a high-resolution approach linking between 

momentary exposure and contemporaneous activity, while circumventing the self-

selection pitfall. 

Effects of urban attributes on physical activity 

Although limited in our frame of analysis, our approach yielded important results. A 

home-work route passing through greener or high-education areas positively affected 

the activity level performed during commutes and reduced sedentary time. Likewise, 

when this route was well connected by the public transportation network, overall 

activity increased, and sedentary time decreased.  These results are in line with some 

previous findings [93, 97, 99, 100, 102, 103], but our innovative design yield a unique 

insight into the mechanisms linking environment and activity. Previous research could 

usually not tell if one was active because of being in an environment favorable to activity 

or if one was in an environment because the wish to be active.  

The effect of greenery on activity level shows that an aesthetically pleasant environment 

can promote commutes by including more stages of active travelling. However, the 

interpretation of our findings regarding the effects of mean areal education on activity 

should probably not be taken at face value. Rather, they should be understood as a proxy 
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for a variety of activity-generating environmental characteristics that are not included 

in the models. These results remain important as they that low socio-economic areas 

suffer from a disadvantage in terms of activity-generating attributes. This disadvantage 

can be related to various attributes of the environment, such as different aesthetical 

aspects, pedestrian and cycling infrastructure, atmospheric or noise pollution, etc.  

Thus, when planning interventions aiming to create environments that are more 

friendly to active commuting, decision-makers should ensure a fair spatial distribution 

of such improvements.  

Our result about the effect of a better public transportation on activity can be better 

understood with the results presented in chapter V. In this chapter, we accurately 

quantify the distribution of physical behaviors for all trips as a function of the 

transportation used. We show that travelling with public transports significantly 

reduces sedentary time and increases activity compared to the use of a private 

motorized vehicles. Our approach is interesting insofar as it distinguishes between a 

trip as a whole, which can include several stages and stations between them, and a trip 

stage, which is realized in a continuous way without interruption or change of 

transportation mode. Considering trips as a whole shows that apart from the reduction 

of sedentary time associated with the use of public transports, such trips often include      

high-activity stages, which makes travelling with public transports a factor able to 

significantly increase overall daily activity level. Taking altogether data presented in 

chapter IV, we can infer that an efficient network of public transports represents a real 

incentive to use them and through the incremented activity that it implies compared to 

private motorized vehicles, it results in an overall significant increase in activity.  

Implementing physical activity programs in individuals’ daily life 

Last, an important action to ponder, although not central in this thesis, is activity 

programs implemented in individuals’ daily life. The study presented in chapter II 

reports the results of a three arms crossover intervention study in which sedentary and 

inactive adults with overweight were asked to perform daily for 3 days either nine 5-

minute brisk walking bouts every hour for 9 consecutive hours, or a single 45-minute 
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brisk walking bout. In the third trial, they were asked to maintain their habitual 

sedentary lifestyle for three days (control condition). 

Results showed that moderate-to-vigorous intensity activity was higher when 

participants asked to perform a single long bout than several short bouts of activity. 

However, adults with overweight self-reported to feel less tired at the end of the day 

when breaking up sedentary time with short, frequent bouts of activity than when being 

engaged in a long continuous bout of activity. This suggest that for sedentary, inactive 

people, implementing physical activity through short bouts of activity spread across the 

day may be a first step to bring movement back into their daily life, and prevent long 

sedentary periods, but that overall adherence levels are higher when subjects are 

solicited once (even for a longer period) over the day. 

Thus, although breaking up sedentary time is thought to have a beneficial effect on 

health that is independent from the total level of activity over the day, implementing 

one single long bout turned out to be a better solution, as far as volume is concerned. 

The right trade-off between a smaller total volume that implies multiple breaks a larger 

volume involving only one break hinges on the question whether sufficient volumes of 

MVPA can offset the detrimental effects of sedentary behaviors, which has recently been 

discussed in the literature [124] (we could not prove it clearly in chapter I at this 

resolution). This trade-off could explain the fact that despite unequal total volumes of 

activity observed in the two conditions, effects on glucose and insulin were similar. 

Future research in physiology could further investigate this trade-off between 

segmentation and volume and new epidemiological studies are needed to corroborate 

our findings in the longer term.  

Limitations 

Regarding the effects of urban attributes on physical attributes that we observed, a 

caveat needs to be added. Our study in chapter V confirms the very intuitive conception 

that, regarding total physical activity levels over the journey, the three main travelling 

modes are ranked as follows: active means (including walking, bicycling etc.), public 

transports and private motorized vehicles. Yet, it follows from this ranking that as much 

as an efficient public transportation system can incite people to use public transports 
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instead of cars, it can incite people to use public transports instead of active means, thus 

reducing overall activity level. Very recent events can testify to this phenomenon: 

following the strike in France during winter 2019-2020 and the drop in frequency of 

public transports, the use of active means (bicycles in particular) in Paris sharply rose 

[121], possibly resulting in an overall increase in activity. In addition, even for individuals 

that completely depend on public transportation, there is a threshold of improvement 

beyond which public transports are so efficient that physical activity levels during the 

journey starts to decrease. This is the case when time saved by improvement public 

transports is due to connections that are so close to the origin and the destination that 

the activity component in the time-budget of the journey starts shrinking. Thus, 

improvement of the public transportation system is beneficial only when it is an 

incentive to replace private motorized vehicles and when it reduces the travel time while 

maintaining the activity time over the travel duration constant. In practice, such a 

distinction is difficult to make in an empirical study and, in any case, it seems that the 

current condition of the transportation network is such that improved efficiency of 

public transports still generates a sizable increase in overall level of physical activity. 

We should also limit ourselves by concluding that our results should be applied with 

caution to contexts other than the region of Paris in normal times. This limitation 

applies more generally to our other findings regarding urban attributes. Urban aspects 

greatly vary among each other, as do the cultures of the cities’ residents. In addition, 

even within the region of Paris, our small sample size is not necessarily representative 

of all mobility patterns that could be observed in a population of several millions of 

inhabitants.  

Regarding our result about implementation of activity programs, although adherence 

level was overall satisfactory, the validity of the results is limited by the short duration 

(only three days) of the experiment and by the fact subjects were monitored. From a 

psychological perspective, it can be argued that adherence to the instruction could drop 

over longer period, and that the fact that subjects knew that they were monitored up-

biased estimated adherence levels without surveillance.   
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Deriving physical behaviors from accelerometer data 

 

Accelerometers are a widely used tool for physical activity monitoring in observational 

studies. It was used in all studies included in this thesis. As a central issue in physical 

activity epidemiology, chapter III presents a new algorithm for derivation of physical 

behaviors from raw data from body-mounted accelerometers.  

Recent developments 

Proprietary algorithms have played a central role in defining the key notions that would 

subsequently be used in the scientific discourse. Most notably, the very popular 

Actigraph accelerometers has introduced the notions of count and bout that would 

become determining in physical activity epidemiology, as explained in the Annex. 

Nevertheless, the literature highlighted the opaqueness of these algorithms, and the 

difficulties encountered when trying to compare results across devices and algorithms. 

In addition, as research evolves, new behaviors need to be defined and detected. As 

access to the devices’ raw acceleration data is becoming standard, research has oriented 

itself towards new, transparent behavior detection algorithms at a high time resolution.  

A new algorithm 

Chapter III presents a new classification algorithm of 13 detailed daily behaviors 

defined by the DaLiAc public dataset. It outperformed other algorithms tested against 

this dataset despite its speed and simplicity. We have shown that a careful feature 

extraction process combined with a hierarchical classification system based on an 

understanding of the tasks at hand can prove more useful than heavy, hard-to-tune 

models. 

Our algorithm relies on logistic regression models and a signal collected from four 

accelerometers placed at the chest, hip, wrist and ankle. Unlike previous evidence that 

showed that the optimal model can vary depending on the position of the device, our 

results show that, for all practical purposes, logistic regression was optimal or near-
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optimal across all combinations of device positions and all classification sub-tasks 

compared to other models. In addition, our results suggest that adding gyroscopes to 

accelerometers yielded only a marginal improvement.  

Thus, although the algorithm proposed in chapter III focused on the classification of a 

specific set of behaviors, the plasticity of the system employed is promising for other 

applications. For instance, future research questions might raise the need to investigate 

new behavior categories. For instance, algorithms could be trained to detect fidgeting, 

which is usually not captured in the current frameworks of activity detection, but can 

be of physiological significance. More generally, using linear regression, our model 

could be trained to estimate continuous energy expenditure, which was not addressed 

directly in this chapter. This limitation is discussed in the next section.  

Limitations 

Our algorithm classifies signal samples by assigning them to qualitative categories 

(walking, bicycling, lying, sitting etc.). Energy expenditure can thus be estimated by 

assigning a factor (i.e. number of METs) to each behavior. This approach contrasts with 

traditional approaches widely used in physical activity epidemiology, which focus on 

motion intensity as a proxy to energy expenditure and mainly on motion intensity [123]. 

By looking both at intensity and detecting complex patterns of the signal, our approach 

has the advantage of being able to detect different behaviors corresponding to different 

energy expenditures, but whose motion intensity was nearly similar: for instance, 

cycling at the same pace but with different resistance levels produces practically the 

same motion intensity, but some nearly imperceptible swinging of the of the body 

weight allow advanced algorithms to discriminate these activities with an accuracy of 

about 95%. However, energy expenditure can sometimes vary within a single category, 

such as ‘walking’. This category, which is detected based on a specific pattern of the 

signal, can comprise a continuum of energy expenditure levels, which are not captured 

using categorical classification.  

Thus, an additional step in the development of the discipline might consist in applying 

models that fully exploit the power of raw accelerometer signal, such as the one that we 
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present here, to accurately estimate continuous energy expenditure along with 

categorical behaviors.  This task, compared to the one we addressed here, is very likely 

less complex. The main challenge remains to create a public, labeled raw acceleration 

dataset with high variability in energy expenditure, which will make training of machine 

learning algorithms possible. 

Likewise, models should ideally be trained with and tested against datasets that 

simulate real-life behaviors. Algorithms are typically developed to optimize accuracy 

and computational time in classification of data representing ‘clean’ behaviors. 

However, their external validity remains limited due to the complex, chaotic character 

of real-life conditions. In these conditions, transitions between behaviors are swift and 

behaviors themselves are performed at various levels of intensity.  
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Conclusions 

Refining recommendations for activity guidelines 

Increasing the standing component at the expense of sedentary postures in the time-

budget is a strong correlate of healthy lipid profile. Likewise, large volumes of lying are 

associated with increased risks of adiposity. Regarding reducing some health hazards, 

there seems to be a gradient lying-sitting-standing, pointing to a physiology that is 

independent from energy expenditure.  

Using bouts, our studies could not highlight any clear pattern linking segmentation of 

any behavior to the health outcomes under study, however, taking micro-sequences of 

a few seconds into account, we could see that segmented sedentary volume is associated 

with lower fasting glycaemia. From a public health perspective, the importance of 

micro-interruptions of sedentary time should therefore be acknowledged and 

substitution of sitting with standing time encouraged (e.g. sit-stand desks), especially 

in office desk workers who are highly vulnerable to the adverse health effects of 

sedentary behaviors.  

Future research should strive to a consensual behavior classification encompassing 

detailed postures and activity categories. In particular, the classification should stem 

from the big research questions in the field, and not the opposite. A deeper investigation 

of segmentation patterns and their effect on health should be undertaken, considering 

segmentation at a high time resolution and letting go of preconceptions inherited from 

past methodology. Models should treat behavior volumes as compositions and include 

both metrics of volume and segmentation in order to assess their independent effects. 

Last, large sample sizes and longitudinal designs remain paramount to verify hypotheses 

with a strong statistical power and detect causal links.  
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How can we encourage physical activity and reduce sedentary behavior 

in the population? 

Greenery level and better efficiency were shown to reduce sedentary time and increase 

physical activity during travel. Considering the important time fraction spent travelling 

over the day, policy makers should therefore consider greening interventions and 

improvement of public transportation system as a way to help people achieve the 

recommended activity guidelines. Special attention should be paid to a fair distribution 

of activity-generating attributes of the urban environment over the city, as we observed 

spatial disparities in actual physical activity across areas of different socioeconomic 

levels.  

Future research should favor contemporaneous and objective study designs allowing 

causal inference, such as the one proposed here (i.e. looking at life-segments where 

selection biases are not likely to occur), while investigating new environmental 

attributes in a variety of societies and urban contexts.  

Regarding implementation of physical activity programs in individuals’ everyday life, 

our results suggest that it can increase overall activity level, and that, levels of 

compliance are higher when individuals are asked to perform one long bout than when 

asked to perform several smaller bouts. 

Future research should study implementation programs over longer periods and further 

investigate the trade-off between segmentation and volume from a theoretical and 

practical perspective.  

Improving measurement of physical behaviors 

Physical behavior monitoring should take advantage of raw data and advances in 

machine learning to derive wider spectra of behaviors, in accordance with the 

development of physical activity epidemiology, and to ensure better comparability and 

transparence. We proposed a simple and adaptable algorithm based on logistic 

regression, domain knowledge and a good understanding of the classification tasks at 

hand. This algorithm outperforms heavy and complex algorithms developed in the past. 
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Future research needs to focus on creating more realistic datasets and train models that 

are more adapted to these data. Recent advances in behavior detection algorithms could 

also be leveraged to improve prediction of energy expenditure using various, high-

resolution public datasets. 

  



DISCUSSION 
 

202 
 

Final words 

Around 1990, Mark Weiser formulated envisioned a future in which ubiquitous 

computing would transform people’s everyday reality [122]. Laptops, tablets, 

smartphones, sensors and smart home appliances have indeed invaded our existences 

ever since, gathering information that are analyzed and exploited with increasingly 

performant technologies. While this technological revolution is making our life easier, 

it is at the same time, part of the Physical Activity Transition, during which physical 

activity is gradually engineered out of humans’ life. Never in human history has 

everyday life demanded so little physical activity from us, and, despite improvements in 

health and life expectancy, never has the health burden associated with our sedentary 

lifestyle been so tangible as today.  

My thesis aimed at leveraging tools from this same ubiquitous computing revolution to 

contribute to the fight the pandemic physical inactivity. By means of wearable sensors 

and big data analytics, I have tried, together with my collaborators, to improve our state 

of knowledge on the causes and effects of physical inactivity. I hope that my modest 

contribution will help decision makers take actions that will make people’s life healthier 

and happier. 
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A fundamental concept in physical activity research 

Research on physical activity and its relationship with health traditionally distinguishes 

between activity volume, i.e. the total time devoted to an activity over the study time, 

and accumulation patterns, i.e. how activity episodes of different durations add up to 

the total activity time.  Traditional activity guidelines recommended accumulating a 

certain volume of moderate-to-physical activity (MVPA) in ‘bouts’ longer than 10, 20 or 

30 minutes [20, 32]. Whether these recommendations were justified is a matter of 

debate in the scientific community. Some studies suggested that moments of MVPA had 

an additional beneficial value for metabolic health when performed within bouts of 10 

minutes or longer [32, 35, 36] while others could not find evidence supporting this 

hypothesis [34, 37, 38, 116]. Nevertheless, the 2018 American Physical Activity Guidelines 

did not include any recommendation regarding accumulation patterns, stating only that 

a total of 150-300 minutes per of MVPA should be reached [9]. In contrast, accumulating 

sedentary time in long bouts was shown to have adverse effects on postprandial glucose 

and insulin levels [41–43, 117] and to positively correlate with fasting plasma triglycerides 

and adiposity measures [118].  

As we see, a bout is a widely used, fundamental notion in considering accumulation 

patterns. When looking at bouts of activity over the monitoring period under 

consideration, we do not merely sum activity time, but examine whether this time is 

accumulated in more or less continuous episodes rather than in brief sporadic bursts of 

activity. Nevertheless, activity bouts are not simply continuous episodes of activities. In 

fact, it is difficult to find long sequences of activity without the slightest interruption. 

Such short interruptions might conceal interesting information, but we might as well 

ignore them in order to look at the larger picture. Although bouts were not intentionally 

developed to have this essential research aspect, their centrality in analysis of activity 

accumulation is probably due to their ability to show to what extend the volume is 

accumulated in long, significant periods of activity, while discarding insignificant 

interruptions. Thus, although there exists no consensual definition, we can define a bout 

of activity x very broadly, based on the use of this term in previous work, as a period of 
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a minimum duration during which the observed activity is predominantly x. We say 

predominantly, because all definitions of bout agree that some sort of smoothing of the 

activity recorded is necessary in order to discard negligible interruptions.  

An approach based on Actigraph’s count number 

Bouts were a straightforward concept in the pioneering research that emerged with the 

2003-2006 NHANES study cohort. In this cohort, activity was assessed by means of an 

uni-axial Actigraph accelerometer, and motion intensity was recorded as number of 

“counts” per 60-second epochs [35]. What counts exactly are and mean is unclear and 

its derivation remains proprietary of the accelerometer manufacturer, but they can 

safely be understood as a measure of motion intensity over the epoch considered [67]. 

Within this technical frame, a behavior bout of n epochs was simply n consecutive 

epochs for which the number of counts recorded was above (when looking at moderate-

to-vigorous activity) or below (looking at resting or sedentary behavior) a cut-point. It 

is important to emphasize that count number per 60-second epoch, as an aggregate of 

activity over time, was a metric that already included a certain degree of smoothing. For 

instance, in most situation a sequence of 25 seconds walking, 10 seconds resting and 25 

seconds walking again would have had resulted in a count number per epoch that is 

above the threshold, and the entire epoch been viewed as one unit of activity. 

A further level of smoothing at the epoch level was also possible. When looking for 10-

minute or 20-minute bouts, some authors allowed for interruptions of one or a few 

epochs, while other recommended granting no ‘grace period’ [34, 46]. But, as we said, 

the aggregating of the continuous activity into epochs represented per se a first level of 

smoothing. At this point, it is important to point out that although the first NHANES 

study specified an epoch length of 60 seconds, Actigraph epochs can be set to various 

lengths [35]. Consequently, the debate on whether grace periods at the epoch level 

should be allowed must account for the preliminary smoothing resulting from the 

discretization of continuous into epochs of various lengths. For instance, setting the 

epoch length to five seconds without allowing any grace period at the epoch level makes 
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it very difficult to aggregate consecutive activity epochs into bouts, while it is much 

easier with 1- or 5-minute epochs.   

Bouts with the new generation of accelerometer 

monitoring: a general definition 

As accelerometer-based monitoring became more and more popular in research, 

comparability across devices and specifications (epoch length, cut-points, count 

derivation) became difficult and considerably hindered building up coherent evidence 

about health effects of different accumulation patterns [34]. With newer accelerometer 

devices allowing retrieval of raw acceleration data, derivation of activity for very short 

time units (e.g. 1 second) became possible [61]. However, derivation of activity at a high 

temporal resolution came at a cost: in most cases, the smoothing that used to be 

performed in the Actigraph activity derivation through the aggregation over epochs no 

longer existed. Hence, bout detection needed to be redefined.  

I start by presenting a broad definition, which I believe would be accepted by a broad 

majority of authors, and to which I refer as the simple definition. In order to define it in 

precise terms, some formalization is needed. Say we have a time-series 𝑋 =  {𝑥𝑡 ∶ 𝑡 ∈ 𝑇}, 

where, for a time unit t,  x takes a certain categorical value of a physical activity a from 

a set A containing all physical activities studied. Any series can be run-length encoded 

(rle) into in a series of tuples containing runs (sequences of the same values) l and their 

corresponding values a,  {(𝑙, 𝑎)𝑖}. For example, applying a run-length encode function 

to a time series X = {1,1,1,3,3,2,3,3}, we obtain 𝑟𝑙𝑒 (𝑋) =  Ψx =

 {(3, 1), (2,3), (1,2), (2,3)}. We can further define a function that extracts from the run-

length encoded time-series only those run lengths corresponding to a certain activity a, 

 Ψx(a). In our example, Ψx(1) = {3}, Ψx(2) = {1}, Ψx(3) = {2,2} and Ψx(4) = {}. 

When we are interested in activity detection for a particular activity, we binarize the  

time series X with regard to the activity of interest a, so that 𝑥𝑡 = 1 when the value a is 

observed and 𝑥t = 0 otherwise.  In its broadest sense, a bout of activity a can be any 
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series Y over a time span T’ extracted from a binary behavior time-series X, 𝑌 =

{𝑦𝑡; 𝑡 ∈ 𝑇′}, that fulfills the following conditions: 

I. The length of the bout in epochs is greater than a certain minimum bout 

length 𝑚. 

|𝑌| > 𝑚 

II. Y does not contain any sequence of a behavior other than that of interest 

that is longer than a certain tolerance time, expressed as a fraction β of the 

bout length m. For 𝑟𝑙𝑒(𝑌) =  Ψ𝑌:  

max(Ψ𝑌(0)) < 𝛽𝑚 

III. The sum of elements taking the behavior of interest is longer than a ‘purity’ 

threshold α, expressed as a fraction of the bout length: 

∑ 𝑦𝑡
𝑡∈𝑇

> 𝛼𝑚 

IV. The first and last element of Y must take the value 1.  

 

Bouts with activpalProcessing  

Of particular interest is the definition of bout as it appears from the bout detection 

algorithm of the R-package acitvpalProcessing by Lyden and Staudenmayer [119]. Recent 

ActivePAL accelerometers output detailed activity records for very short time units (0.1 

seconds), and have become increasingly popular [120]. The main innovation in this 

algorithm consists in the fact that the tolerance time is variable and depends on the 

neighboring sequences. To detect bouts, we take the binarized series with regard to the 

activity of interest, X. A bout is any time-series extracted from X, 𝑌 = {𝑦𝑡; 𝑡 ∈ 𝑇′}, for 

which:  

I. Any t in Y verifies:   

1
min(𝑚, 𝑡) ∑ 𝑦𝑖 > 𝛼𝑚

𝑡

i= min (1,𝑡−𝑚)
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II. All tuples (𝑙, 1)𝑖 followed by (𝑙, 0)𝑖+1 in Ψ𝑌(0) verify: 

min(𝑙𝑖 − 𝑙𝑖+1, 𝑚 − 𝑙𝑖+1)
min(𝑙𝑖 + 𝑙𝑖+1, 𝑚)

> 𝛼𝑚 

III. The length of the bout in epochs is greater than a certain minimum bout 

length 𝑚. 

|𝑌| > 𝑚 

 

Conditions are to be verified also for the time-series indexed in a reverse order, as short 

interruptions should be agglutinated to the bout not only when followed by long activity 

sequences, but also when preceding them. 

To summarize this definition in words, sequences of behaviors other than that of 

interest (null sequences) are agglutinated to neighboring sequences of the behavior of 

interest (positive sequences) if the null sequences do not represent a fraction (1 −  𝛼) of 

the neighboring positive sequences and if they do not create a m-long episode in which 

the behavior of interest represents less than a fraction α. If by agglutinating null 

sequences a sequence of sequences longer than m is formed, we call it a bout. In the R-

code, α equals 0.8, but the formulation was intended to be more general. 

It should be noted that, to the best of my knowledge, this algorithm was never 

formalized and published in a paper; the explanations provided here are based on my 

own analysis of the R-code found in the activpalProcessing package.  

How do different definitions of bouts compare to each 

other? 

We have seen three main definitions of activity bout: one based on the traditional count 

number inherited from the Actigraph accelerometers, a simple definition based on a 

purity threshold and maximum interruption time, and the definition by Lyden, in which 
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no interruption time exists, but null sequences are allowed into depending on 

neighboring sequences.  

Determining whether these operational definitions and their parameters result in 

significantly different metrics of physical activity phenotyping would require comparing 

them on a heterogenous real-life dataset. In addition, it would be interesting to show 

whether they can affect estimated relationships with various health outcomes. Such a 

comparison was undertaken in a few studies, but they only account for varying epoch 

lengths within Actigraph’s bout definition [46, 50]. Such an endeavor is beyond the 

scope of this short work.  

Here, I consider a toy example based on simulated ambulation, with alternating 

sequences of walking and quiet standing whose lengths are random values drawn from 

Poisson distributions with various mean parameters λ. In Figure 1, we see 3 panels 

corresponding to different random scenarios. The color boxes represent the time 

detected as walking bouts according to the different definitions. In black, we have the 

real walking time, recorded at a resolution of the base time unit t (say 1 second). In blue, 

we have the bouts as in the Actigraph definition with 100-t epoch length, that is, motion 

intensity is summed over fixed intervals (epochs) of 100 t and assigned walking/resting 

depending on whether the sum of motion intensity exceeds a threshold. Here, the 

threshold was determined such that an epoch is considered walking if it amounts to 

over 80% of the epoch. In red, we have bouts as defined by Lyden, with a 80% purity 

threshold. In green, we have the simple definition proposed in section 3, with a 80% 

purity threshold and 20% maximum interruption time. The minimum bout length was 

set to 100 t in all definitions. Thus, parameters were kept the same across definitions to 

ensure better comparability.  

Looking at Figure 1, a first noticeable fact is that many brief bursts of activity are not 

counted as bouts, which is the very purpose of working with bouts. Second, we notice 

that all Actigraph bouts (blue) are detected over fixed intervals, whereas they are 

dynamically detected in the two other algorithms.  

Comparing the different algorithms, we see a high variability in size, number and 

location of the bouts across the definitions. Between t=480 and t=750 in the upper panel, 
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we see that by the simple definition we detect one long bout, whereas Lyden detects 

two bouts, adding up to almost the same total time. The reason for this difference is 

that according to the simple definition, the criterion of purity is met for the entire bout 

(>0.8 of the bout is walking) and no interruption is longer than 20 (0.2 x min. bout 

length). However, according to Lyden, the interruption between t=600 and t=615 is too 

long compared to the neighboring walking sequences (520-599 and 616-698). Although 

the definition by Lyden seems stricter, we see that some regions in the middle and lower 

panels are detected by the Lyden definition but not when using the simple definition. 

This is because the Lyden definition fills up the remaining time needed to form a bout 

by agglutinating a short sequence of non-activity (even backward), while the simple 

definition proposed has the reasonable expectation that a bout must start with the 

activity under consideration. Compared to the other definitions, the Actigraph 

definition results in a much smaller number of bouts and shorter bout time. This is due 

the fact that the Actigraph definition has more difficulties finding bouts as it searches 

only over fixed intervals.   
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Figure 14 : Bout detection of walking activity according to the three definitions of bout studied here. Detailed 
explanation are found in the text.  

Conclusion 

In summary, bouts are low-resolution, homogenized sequences, which are assigned a 

single main behavior. Bout formation depends on the operational definition used and 

their parameters. A first inspection using a toy example showed a big variability in total 

time counted as bout, number and location of bouts over time. Despite the importance 

of these parameters for drawing conclusions, there is very little discussion in the 

literature about the bout detection definition used and the choice of parameters. 

Further work needs to investigate differences in a comprehensive manner, using real 

life data and preferably while examining consequences that they may have on assessing 

the relationships with health. In order to raise sensitivity to the methods of bout 

detection, and in order to enhance comparability across studies, a transparent, flexible 

definition accompanied by an algorithm could be a significant contribution to the 

epidemiology of inactivity. 
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Isaac DEBACHE
Relationships between Urban

Environment, Physical Activity,
and Health

Résumé
Cette thèse vise à éclairer les liens complexes entre l’activité physique, l’environnement urbain et la
santé. Elle propose des outils analytiques permettant une caractérisation détaillée de l’activité
physique au sens large (posture, intensité, fractionnement) et des outils algorithmiques pour la
dériver à partir de capteurs électroniques (accéléromètres, gyromètres) posés sur des patients en
conditions de vie libre.

Une fois la mesure et la caractérisation de l’activité physique établies, le lien entre ses différents
aspects et des indices de la santé métabolique sont explorés dans le cadre d’études conduites sur
des populations de patients dont les comportements physiques ont été monitorés en conditions de
vie libre. Les résultats indiquent que la réduction du temps d’inactivité par le cumul de “bouts”
d’activité d’intensité légère ou de posture verticale (debout) tout le long de la journée est importante
au maintien des individus en bonne santé, et ce indépendamment de la pratique régulière
d’exercices physiques d’intensité élevée, qui avait été l’objet principal des recherches précédentes.

A la lumière de ces conclusions, les liens causaux entre des caractéristiques de l’environnement
urbain (espaces verts, qualité du réseau de transport en commun) et la réduction du temps
d’inactivité sous étudiés sur une population équipée des accéléromètres et des récepteurs GPS en
conditions de vie libre. Les résultats suggèrent qu’un aménagement urbain approprié peut
effectivement réduire le temps inactif et les risques sanitaires qu’il implique.

Résumé en anglais
The present thesis aims at shedding light on the complex relationships between physical activité,
urban environment and health. It develops analytical tools for a detailed characterization of physical
activity in broad sense (posture, intensity, segmentation) and algorithms for deriving it from sensors
(accelerometers, gyroscopes) worn by monitored patients in free living conditions.

Once the measuring and characterization of physical activity have been established, the
relationships between its different aspects and markers of metabolic health are explored in a
population of patients, whose physical behavior has been monitored in free living conditions. Results
suggest that reducing inactivity time through the cumulation of bouts of light-intensity activity and
standing posture throughout the day is important for maintaining individuals in good health,
regardless of the level of regular high-intensity exercising, which had drawn most of the focus of past
research.

In light of these conclusions, the causal links between features of urban environment (greenness,
quality of public transportation) and reducing inactivity time are inferred from a monitored population
of patients equipped with accelerometers and GPS trackers in free living conditions. Results suggest
that an adapted urban design can effectively reduce the time spent in health-damaging physical
inactivity.


