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Résumé

Introduction

Les polymères sont de larges molécules faites de la répétition de petites sous-unités ap-

pelées monomères [1–6]. Le nombre d´unités répétées N par chaine définit le degré de

polymérisation d´un polymère. Si N n´est pas très grand, il est communément référé sous

l´appellation oligomère. Tous les systèmes polymériques synthétiques ou d´origines na-

turelles sont constitués de plusieurs chaines de polymère M , de même nature chimique mais

avec une certaine variabilité de longueur de chaine et de masse moléculaire. La longueur,

la masse moléculaire, la nature chimique et la morphologie des différentes unités induisent

la structure et les propriétés mécaniques du matériau finalement formé.

Les matériaux polymères doivent souvent être capable d´être mis en forme sous forme

de couches minces de différentes épaisseurs, en fonction de leurs applications et de leurs

finalités. En fonction de l´épaisseur H, les couches minces sont connues pour présenter

de grandes différences par rapport à leur température de transition vitreuse Tg [2, 7–49],

particulièrement à l´échelle nanoscopique [15–21].

Mettre en forme un matériau polymère sous forme de couche mince demande à ce qu´il

subisse différents régimes de températures ou même un procédé de trempe, soit en milieu

confiné, soit sous la forme d´un film autoportant, en fonction du procédé de fabrication mise

en œuvre. Les films minces autoportants de polymère exhibent de nombreuses propriétés

physiques intéressantes, particulièrement quand elles sont couplées à la température ou à la

topologie des polymères (linéaires, brosses, réticulés, etc.) [50]. Sous l’action d’une trempe,

les liquides complexes vitrifiables comme les polymères ne montrent que de faibles évolutions

structurales, mais l’évolution de leurs propriétés physiques[1–6] est bien plus prononcée.

Ceci donne lieu à un débat intéressant sur les phénomènes physiques intervenants dans les
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polymères vitreux. Le terme de dynamique vitreuse, qui englobe la dynamique des systèmes

extrêmement lents observée dans les systèmes désordonnés autour de leur température Tg,

n´est pas complétement compris[7–9, 15, 19, 22, 47, 49, 51–56]. C’est pour ces raisons que

qu’il est important de caractériser ces phénomènes aussi bien expérimentalement que par le

biais de la simulation numérique. Malgré l’importance technologique de ce type de système,

de nombreuses propriétés mécaniques ou rhéologiques n’ont pas été étudiées en détails pour

les couches minces de polymères [49].

Le but de cette thèse a été de simuler numériquement les couches minces de polymères

et d’identifier leurs propriétés mécaniques ou rhéologiques de manières globales et locales.

Le moyen principal utilisé dans cette étude est la méthode numérique de simulation de

dynamique moléculaire (DM) [57, 58]. De manière simplifiée, les simulations de dynamique

moléculaire fonctionnent en résolvant les équations du mouvement pour un système de par-

ticules qui interagissent au travers d´un potentiel bien défini. Notre modèle de représen-

tation de polymères est bien connu[59–61] et référencé sous l´appellation coarse-grained

bead-spring model [62]. Nous avons simulé les films mince autoportant (Fig. 0-1(a)) pour

différentes épaisseurs en utilisant le logiciel de dynamique moléculaire LAMMPS (Large-

scale Atomic Molecular Massively Parallel Simulator) [58].

Résultats

Une des propriétés les plus basique des polymères qui puisse être mesurée expérimentale-

ment et numériquement est la caractérisation de leur température de transition vitreuse

Tg. En mesurant l´épaisseur des couches minces (ou de manière équivalente leur vol-

ume car dans notre cas L est une constante pour l´ensemble de nos couches minces) en

fonction de la température, nous permet via une expérience de dilatométrie d´observer

le point d´inflexion au croisement des deux régimes linéaire pour le liquide et le solide

amorphe. Ce point d´inflexion est généralement considéré comme correspondant à une

pseudo-thermodynamique Tg et peut-être facilement calculé pour nos modèles de couches

minces comme illustré dans la Fig. 0-1(b). Un point important, présenté dans l´inclusion,

une dépendance linéaire de 1/H en fonction de Tg a aussi été observée. De nombreuses

propriétés intensives A calculées pour nos couches minces ont aussi montré une dépen-

dance linéaire en fonction de 1/H. Ce comportement est attendu pour les chaînes cour-
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Figure 0-1: (a) Le protocole pour nos simulations implique un film mince de polymère
auto-porté composé de M = 768 chaines avec chaque chaine de longueur N = 16, elles
sont placées dans une boite de simulation tridimensionnel périodique dont la dimension
latéral est fixé à L. L’épaisseur du film H est définie selon l’axe z en utilisant la méthode
du "Gibbs dividing surface construction". (b) La température de transition vitreuse Tg

peut être obtenue par dilatométrie, une méthode où un échantillon est refroidi à vitesse
constante et où on mesure continuellement sa densité, cherchant à observer une rupture de
pente associée à une transition. La dépendance linéaire de Tg en fonction de 1/H pour nos
films est présentée dans le médaillon.

tes de polymères ( car leur rayon de giration RG ≪ H) en considérant une description

phénoménologique simple utilisant la superposition linéaire

A ≈ 1

H
[A0 (H −W ) +As W ] = A0

[

1− (1−As/A0)W

H

]

d´un terme de volume A0 avec un poids H −W ≈ H et un terme de surface As avec un

poids proportionnel à la largeur de la surface W ≪ H. De manière plus générale, A peut

être écrit comme une moyenne (possiblement avec des poids non-triviaux [47]) en fonction

d´une dépendance selon z de la contribution A(z) [30, 37, 43, 47].

L´affirmation de le correction en 1/H dans l´équation précédente à l´avantage de se

baser sur une explication simple et transparente. Ceci peut être vu comme la contribution

principale à une expansion plus générale en 1/H. Mon Travail se focalise principalement

sur une propriété mécanique importante des polymères, le module de relaxation du stress de

cisaillement G
(

t
)

. Expérimentalement, G
(

t
)

est mesuré, hors équilibre, par une expérience

de réponse stresse-cisaillement. En restant dans les limites de la réponse linéaire et en

utilisant les méthodes classiques d´analyse statistique [63–68] il est possible de calculer

ix
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numériquement G
(

t
)

à partir de nos simulations numériques. Nous avons aussi calculé une

dépendance générale du module de relaxation du stress de cisaillement G
(

t
)

en fonction du

temps d´échantillonnage ∆t, appelé µ(∆t) en utilisant la formule de fluctuation du stress,

µ(∆t) ≡ µA − µF(∆t).

De plus, comme observé dans la figure Fig. 0-2, la relation stationnaire,

µ(∆t) =
2

∆t2

∫ ∆t

0
dt

∫ t

0
dt′ G(t′)

tient pour nos couches minces à toutes les températures [66–68], ce qui implique que les

valeurs attendues pour µ(∆t) et G(t) sont numériquement équivalents. En étant une dérivée

seconde sur G(t), µ(∆t) agit une comme une fonction de lissage avec de bien meilleures

propriétés statistiques que G(t) (i.e. δµ ≪ δG). Le paragraphe suivant discutera des

observations clés de notre travail.

1) La fonction de réponse G
(

t
)

et le module de stresse généralisé µ(∆t): Nous

avons calculé la valeur moyenne de la fonction de relaxation du stresse de cisaillement G
(

t
)

x



(Fig. 0-3(a)) et la moyenne du module de stresse généralisé µ(∆t) pour une large gamme de

températures et d´épaisseurs de couches minces [63–70] en utilisant la formule de fluctuation

du stresse. En utilisant le principe de superposition temps-température, Time Temperature

Superposition (TTS) [1], nous avons aussi démontré une loi d´échelle valide de type TTS

pour µ(∆t) (Fig. 0-3(b)). En utilisant des facteurs de déplacement horizontaux utilisés pour

obtenir la loi d´échelle TTS, nous avons estimé la viscosité de cisaillement η et le temps de

relaxation relatif alpha pour l´ensembles des couches minces. En accord avec de nombreux

résultats expérimentaux qui ont été publiés [7–10, 12, 13, 27–33, 35, 36, 39–41, 45, 47–

49], nous avons montré que de nombreuses propriétés intensives de nos couches minces,

dépendent linéairement comme l´inverse de l´épaisseur de la couche 1/H. Ceci indique

qu´il y a une superposition linéaire des propriétés de volume et de surface [56, 71], ceci

peut être résolu par une analyse effectué plan par plan de ces propriétés dans l´épaisseur

de la couche mince.

2) Transformation numérique de G
(

t
)

: Le module de relaxation du cisaillement G
(

t
)

a été transformé [1, 5, 72, 73] en des composants de stockage G′(ω) et de perte G′′(ω) du

module dynamique G⋆(ω) en utilisant des techniques classiques. A partir des asymptotes

à basse fréquence de G′(ω) et G′′(ω), comme présenté dans la figure 0-4(b), nous obtenons

pour les températures les plus hautes la viscosité de cisaillement η et l´état stationnaire

du fluage J0
e . Ceci donne une nouvelle voie pour mesurer le temps de relaxation alpha

τα,1 = J0
e η. Ceci a été utilisé pour fixer la valeur absolue de l´échelle de temps de la

relaxation terminale τα(T ) obtenue par le moyen de la renormalisation TTS. Le temps de

croisement τ×(λ = 3) obtenu à partir du premier croisement de λG′(ω) et G′′(ω) donne

une voie plus directe et numériquement solide (La statistique étant meilleur au valeur

intermédiaire -ω) pour l´estimation de τα au dessus de Tg.

Comme montré dans la figure. 0-4(a), nous avons de manière additionnelle vérifié

l´équivalence entre la viscosité de cisaillementη obtenu par plusieurs méthodes de calcul

indépendantes – relation de Green-Kubo, relation de Einstein-Helfand, Superposition TTS

et l´asymptote de G′′(ω) à faible valeur de ω – pour le film1. Nous avons aussi vérifié que

pour nos couches minces le comportement de type Vogel-Fulcher-Tammann (VFT) était

maintenu.

Finalement nous avons effectué un transformation direct [5, 73] de G
(

t
)

pour obtenir le

xi
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Figure 0-3: (a) Module de relaxation du stresse G
(

t
)

en utilisant une représentation semi-
logarithmique. Aucune indication d’un saut singulier respectivement à la température n’a
été observé. G(t) croît continuellement en fonction de la décroissance de T . Pour certaines
températures au dessus de Tg le module de relaxation est approximativement représenté
par G(t) = a− b log(t) comme indiqué pour T = 0.45 (la ligne pleine). (b) Méthode TTS
pour y = µ(∆t)/µp en fonction de x = ∆t/τα(T ) avec µp le plateau du module et τα(T ) le
temps de relaxation indiqué dans le médaillon. Nous imposons τα(T = 0.55) pour obtenir
l’échelle de temps absolue. Les deux asymptotes de la fonction y = f(x) pour x ≪ 1 et
x ≫ 1 sont indiquées par les lignes hachurées et pleines. Nous avons une superposition des
temps de relaxation terminaux τα vs x = Tg/T pour tous nos températures.

fluage J
(

t
)

, qui a été ensuite comparé avec le fluage mesuré dans l´expérience d´expansion

de micro-bulles [19]. Il a été montré que notre modèle est en agrément avec les résultats

expérimentaux obtenus dans le régime du domaine vitreux. Dans le régime du fluide, nos

chaines courtes de notre modèle sont bien sur incapable de révéler un plateau caoutchouteux.

3) Module local de cisaillement dans le formalisme de fluctuation du stresse:

Basé sur l´hypothèse simple d´un modèle à deux couches [56, 71], il suggère une couche

pseudo-liquide au niveau l´interface libre des couches minces [74], nous avons calculé le

module local de cisaillement µ(z) pour notre couche mince la plus épaisse. En nous focal-

isant sur la distribution en fonction de la position en z, dont la contribution est supposée

linéairement additive à la somme des propriétés de nos couches minces, nous avons vérifié

par nos résultats que cette assomption est valide. En accord avec d´autres résultats de

travaux expérimentaux et numériques [24, 43, 56, 75, 76], nous avons observé une décrois-

sance du module de cisaillement à la surface de nos couches minces (représenté par les

flèches de la Fig. 0-5). Il semble aussi que l´épaisseur de l´interface souple, croit en fonc-
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Figure 0-4: Viscosité de cisaillement η pour le film1 pour différentes températures T : (a)
Comparaison de η obtenu par les méthodes de la relation de Einstein-Helfand (EH), la
renormalisation TTS, la relation de Green-Kubo (GK) et pour la limite des faibles valeurs de
-ω pour G′′(ω). Le données sont exprimées en fonction de vs, l´inverse de la température en
utilisant une représentation semi-logarithmique. La ligne pleine indique un fit de type Vogel-
Fulcher-Tammann. (b) G′(ω) et G′′(ω) obtenus en utilisant une transformation numérique
de G

(

t
)

- pour T = 0.55 et pour le film1, quand η ≈ 141, J0
e ≈ 18.5 et τα,1 ≈ 2604. La

fréquence de croisement ω×(λ) = 1/τ×(λ) pour les ratios λ = 1, λ = 2, et λ = 3 sont
indiqués par les lignes pointillées verticales. Noté que ω×(λ = 3) correspond précisément à
la fréquence de croisement 1/τα,1 des deux asymptotes pour les valeurs faibles de -ω pour
G′(ω) et G′′(ω).
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du module de cisaillement pour le film1
et deux températures. Quand µ(z) disparait dans la limite liquide ( cercles ouverts), il
devient constant en dessous de Tg avec un plateau dans la phase de volume au milieu des
couches minces (ligne horizontale pointillée) prise en sandwich entre 2 couches plus flexibles
marquées par les flèches.

tion de T . Le point principal qui émerge de ces résultats est l´évidence que la dépendance

linéaire en 1/H des propriétés globales des couches minces vient de la contribution résolut

en z et supporte le modèle en deux couches [56, 71].

4) Fluctuations d´ensemble de la function de réponse et du module de cisaille-

ment: Notre fonction de réponse linéaire G
(

t
)

ou de manière équivalente µ est caractérisée

par de forte fluctuations, particulièrement aux alentours de Tg. Comme montré dans la

Fig. 0-6(a), δµ(T ) ≪ δG(T ) tiennent et ils sont non-monotones avec les importantes vari-

ations juste en dessous de Tg. Pour des températures pas trop faibles ce comportement

peut être compris en assumant que les séries temporelles du stresse instantané de cisaille-

ment τ̂ sont stationnaires, gaussiennes et ergodiques. Comme les systèmes deviennent

non-ergodique à basse température, ceci conduit à un comportement qualitativement dif-

férent où δµ(∆t) devient constant, δµ(∆t) → ∆ne, même pour des temps d´échantillonnage

importants ∆t [69, 70, 77]. Nous observons que δµ ≈ δµG devient large pour ∆t correspon-

dant aux temps de relaxation τα où G
(

t
)

varie fortement (Fig. 0-6(b)). Il est aussi clair

que δµ et δµG diffèrent dans la limite non-ergodique pour les faibles températures.
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Figure 0-6: (a) Le module généralisé du stresse de cisaillement µ, la fonction de réponse du
stresse de cisaillement G et les déviations standard correspondantes δµ et δG prisent à t =
∆t = ∆tmax = 105 comme fonctions de T . Les deux inégalités observées G ≤ µ et δG ≫ δµ
sont toutes les deux des conséquences de la relation de stationnarité. Les barres d´erreurs
correspondantes δµ/

√
Nc − 1 et δG/

√
Nc − 1 ne sont pas présentées. (b) Dépendance en T

pour des différents ∆t avec deux types de fluctuations du module de cisaillement µ: δµGauss

(symboles ouverts) et δµF,tot (symboles pleins). Bien que δµGauss ≈ δµF,tot pour les petites
valeurs de ∆t et l’ensembles des T , elles diffèrent toutes les deux pour les températures
inférieures à Tg et pour les valeurs élevées de ∆t.

Conclusion

Nous avons réussi à démontrer que de nombreuses propriétés mécaniques et rhéologiques

peuvent être estimées numériquement pour les couches minces de polymères linéaires, tel

que le module de relaxation du cisaillement G
(

t
)

la viscosité dynamique η grâce au formal-

isme de la réponse linéaire des fluctuations du stresse.

De manière additionnelle, Nous avons montré qu´il existe une dépendance linéaire en

fonction de 1/H pour de nombreuses propriétés suggérant que les effets de surface jouent

un rôle important. L´analyse résolue en couche de µ montre que le module est plus faible à

l´interface en comparaison du centre des couches minces. Cette soft interface clarifie pour

nous les nombreuses dépendance en 1/H observées dans nos travaux. Nous avons aussi

défini l´échelle pour le relatif temps de relaxation alpha τα obtenu à partir de l´approche

TTS de µ(∆t). De plus, nous avons comparé nos résultats avec les travaux expérimentaux

de Ref. [19] et noté que la correspondance ne vaut que pour le régime vitreux. Finale-

ment, nous avons caractérisé les fluctuation de notre fonction de réponse linéaire G
(

t
)

dans des termes généraux en assumant un processus gaussien stationnaire (à l´équilibre)
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et stochastique. Nous ne sommes pas au courant de travaux systématiques expérimen-

taux ou numériques de caractérisation de la réponse step-strain δG ou δµ, spécialement

pour les liquides vitrifiables ou les solides amorphes. Nos affirmations que δG/G ou δµ/µ

doivent généralement devenir larges (de l´ordre de l´unité) pour des temps où G
(

t
)

décroit

fortement, peut être source d´erreurs pour la compréhension des propriétés mécaniques et

rhéologiques des vrai matériaux macroscopiques. Du point de vu théorique il est actuelle-

ment mal définis comment généraliser les relations de fluctuation-dissipation connectant la

moyenne de la réponse linéaire hors équilibre à la moyenne de la relaxation à l´équilibre

pour décrire les fluctuations entre différents échantillons.

Perspectives

Il y a différentes pistes qui peuvent être poursuivis comme continuation de nos travaux. Tout

d’abord, des simulations numériques avec N ≫ Ne peuvent être réalisées. Les processus

dynamiques discutés dans ce manuscrits de thèse sont supposés se comporter de manières

proches aux résultats expérimentaux [19] pour les valeurs larges de N . Le ralentissement

induit de la relaxation par l´enchevêtrement va nous confirmer si la présence d´un plateau

caoutchouteux pour la réponse de fluage J
(

t
)

. D´autres structures de polymères peuvent

être explorées [50] et réagir de manières différentes à nos polymères linéaires.

Des simulations hors-équilibres peuvent être réalisées où un cisaillement infinitésimale

est appliqué dans le plan xy pour mesurer G
(

t
)

ou quand un stresse constant et infinitési-

male est appliqué selon x et y pour mesurer la réponse bi-axial D
(

t
)

comme dans les

protocoles expérimentaux.

Dans nos simulations, nous nous sommes focalisés aussi sur les variations de ∆t and T

tout en gardant les autres paramètres comme le nombre de particules dans notre système

n = N × M ≈ V constants. La plupart des propriétés discutées dans ce manuscrit µA,

µF, µ or h(t) sont définies comme des propriétés intensives, et leurs valeurs moyennes ne

doivent pas essentiellement dépendre de la taille du système modélisé n ou de son volume V .

Cet aspect doit être vérifié pour nos couches minces. De plus, des études récentes conduits

dans notre groupe de recherche sur les déviations standards des propriétés précédemment

mentionnées ont montré une dépendance non triviale à la taille du système pour les systèmes

non-ergodiques [69, 70, 77], et ceci doit être vérifié.
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Chapter 1

Introduction

1.1 Polus meros

We know that polymers are macromolecules [1–6] composed of small repetitive sub-units,

called monomers [6]. The number of repeating units N per chain defines the degree of

polymerization of the polymer. If N is not very large, it is also quite common to refer to it

as an oligomer. All systems of synthetic and naturally occurring polymers are composed of

several polymer chains M of the same chemical type with variable lengths and molecular

weights. The length, molecular weight, chemical nature, and the morphology of the units

impart specific structure and mechanical property to the material that is finally formed.

Polymers also demonstrate characteristically different properties based on whether we

are above/below their glass transition temperature (Tg) [7–9, 15, 22, 47, 49, 51–54]. Above

Tg, they are unstable melts, which means a low modulus ; whereas below Tg, they form

amorphous (glassy) solids, with a finite modulus. Polymers can be made into films of

varying thicknesses. Based on the thickness H, they are known to show characteristically

different Tg [2, 7–49]. This effect is especially dramatic in the nanometric scale [15–21].

Distinguishing the temperature and thickness dependencies of polymer films are therefore

of interest. For instance, in the processing of polymers to manufacture LEGO bricks,

it is crucial to know how and when a thick/thin extrudate flows/freezes, before being

injection molded into their final forms. The central theme of this thesis is thus to investigate

mechanical and rheological properties of freestanding polymer films using general theoretical

arguments and molecular dynamics (MD) simulations [57, 78].
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In the following section we will summarize relevant advancements in measuring mechan-

ical properties of polymer films over the past couple of decades. We will then briefly discuss

our approach (Sec. 1.3) and summarize a few of our central findings in Sec. 1.4. Finally, in

Sec. 1.5, we will provide an outline of this thesis.

1.2 Status quo

A general understanding is that the large surface to volume ratio of polymer films [51]

impart attractive structural and dynamical properties in comparison to the bulk polymer

– therefore finding its use in varied applications. The case of lab-on-a-chip (microfluidics)

technology which has global health implications [79–81] is a great example that illustrates

the need to study thin polymer films. Polystyrene (PS), polycarbonate (PC), and poly-

methyl methacrylate (PMMA) are some common thermoplastics that are used in this do-

main. These microelectromechanical chips are constantly undergoing miniaturization (with

nanoscale features) to add various functionalities to the end product [19, 82–84]. Polymers,

being a vital component in this technology, specifically in their thin-film geometry, has been

a topic of discussion ever since. This interest is mainly due to the anomalous properties

exhibited by such a geometry [2, 7–16, 19–49]. Firstly, there is no clear consensus on the

thickness (H) dependence of the Tg for thin polymer films. Secondly, based on whether

the film is freestanding or supported, the H-dependence seems to vary. Finally, the type

of measurement used to determine Tg also seem to give different results. It is important

to understand Tg better as it dictates the processability, performance and properties of the

final product. For these reasons, the glass transition emerges as one of the most interesting

problems of our times.

As stated previously, the overall physics of the polymer changes near the glass transition

temperature. It is a common approach to study the viscoelasticity (or mechanical response)

to characterize the Tg [31, 85]. Some of the well-known experimental techniques1 that have

been employed to understand the viscoelasticity of polymer films are as follows:

• nanobubble inflation method that measures the biaxial stretching [1] of a bubble

formed by ultra thin polymer films by applying constant pressure through nanopores

to calculate the biaxial creep compliance [17–19];

1Please note that the limitations of some of these methods are described elsewhere [49, 53, 54].
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• spontaneous particle embedment method, where a submicron particle is embedded

into the thin film, the viscoelastic nature of the film allows for embedment of the

particle with time. Using the JKR (Johnson, Kendall, and Roberts) model [86], the

force on the particle is related to the work of adhesion, and is used to calculate the

modulus of the surface [87, 88];

• film dewetting method, where the surface energy difference between film and sup-

porting liquid causes the film to uniformly shrink (homothetic deformation), while

the thickness remains uniform. Creep compliance is then directly measured after

verifying that the strain is linear with the surface tension induced stress [23];

• AFM based nanoindentation method, where the indentation probe is brought in con-

tact with the free surface of the film to determine the elastic moduli [89];

• analyzing the wrinkling pattern (number, length of wrinkles, contact angle and bend-

ing modulus) formed on a free floating film placed on the water surface by the water

droplet (of varying volumes in µl) on the film surface also gives a measure of the

modulus [90].

While these methods do not point to a unique conclusion, reported trends from the extensive

viscoelastic characterization of polymer films are that:

• below 100nm, for freestanding and supported PS films, Tg is seen to decrease with

1/H. Note that this effect is not universal and that it will depend on the material

and its interaction with the substrate;

• experiments performed on glassy (T ≪ Tg) PS films tells that there exists a 3− 4nm

soft layer at the surface of the film, where a reduction of Tg in comparison to the

center of the film is seen;

• supported films show an enhanced surface stiffness (up to 200%) at the free interface

in comparison to the bulk.

From the vast number of experimental and numerical studies, it has been possible to under-

stand the above effects to a certain extent [7–10, 12, 13, 27–33, 35, 36, 39–41, 45, 47, 48]:
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• the dramatic depression in Tg for freestanding films implies that there is an increased

mobility of chains at the free interfaces. The magnitude of decrease in Tg is reduced

for supported films (in comparison to freestanding films) due to strong interactions

with the substrate [17–19, 53, 56, 91];

• the increased mobility at the interface causes a reduction in the surface modulus,

creating a liquid–like surface [56], and vice versa [43, 88];

• the low energy of activation (measured via lateral force microscopy) at the surface

increases the mobility of the chains at the surface [92]; Globally, the energy barriers

in freestanding films is lower than in bulk polymers [91, 93].

• there exists a heterogeneity in the dynamics of aggregates creating a mobility gradient

within the film [75, 93, 94]. These cooperatively rearranging regions (CRR) diffuse

from the surface into the bulk, coupling the relaxation at the mobile surface to the

bulk of the film. Below Tg, slow–dynamics aggregates dominate contributing to the

macroscopic viscosity and above Tg the segmental diffusion is dominated by fast–

dynamics aggregates [31, 85].

Results from neutron scattering, that probed the mean square displacement of supported

thin films, showed that there is a retarded mobility of chains at the free interface, compared

to the bulk [52]. An decreased mobility means an increase in Tg and mechanical stiffness,

which goes against our understanding of dynamics of the free surface. Whereas, the direct

measurement of Tg using fluorescence methods [22] has proven otherwise. In general, most

experimental studies on freestanding thin films unanimously agree that there is a reduction

in Tg with reducing thickness [49, 53, 54]. However, only a small number of numerical

studies exist at present focusing on the mechanical properties of freestanding films [38,

41–44, 46, 48]. Attempting to fill this gap, we focus on the characterization of various

mechanical and rheological properties of freestanding polymer films.

1.3 Our approach

Using MD simulation [57, 78] of a coarse-grained bead-spring model [58, 95] we have in-

vestigated the total shear response function G
(

t
)

and shear moduli µ of our freestanding
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Figure 1-1: We study free-standing polymer films with M = 768 oligomer chains of length
N = 16 monomers confined in periodic boxes with L being the imposed lateral box size in
both x and y directions. The film thickness H ∼ 1/L2 (to leading order) is operationally
defined using the Gibbs dividing surface [57] as shown in Sec. 4.2.

polymer films to understand their H-dependent behavior. In Fig. 1-1, we present our simu-

lation setup. We note that our films are suspended parallel to the xy plane in the simulation

box. To prepare films of varying thicknesses we do not directly vary H, but rather impose

a lateral box width L in both x and y directions. The thickness at the glass transition

temperature, H(T = Tg) = Hg, of our films varies from film1 (thickest, H = 21.3 LJ units)

to film4 (thinnest, H = 4.8 LJ units). More details on film preparation and film properties

are given in Sec. 3.4. The thermodynamic equilibrium shear modulus µ is the long-time

limit of the shear-stress relaxation modulus G
(

t
)

, i.e. the ratio of the measured shear stress

τ(t) and the imposed (infinitesimal) simple shear strain γ. We remind that µ = 0 for simple

or complex liquids T ≫ Tg. Following the pioneering work of Barrat et al. [64] and related

studies on elastic properties [63–67, 95–102], we determine the shear modulus µ by means

of the stress-fluctuation formula

µ ≡ µA − µF (1.1)

as described in detail in Appendix B. Here, µA stands for the “affine shear modulus" (Ap-

pendix B.1) and µF for the (rescaled) variance of the shear stresses.
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Figure 1-2: Shear modulus µ as calculated by means of Eq. 1.1. µ(T ) decays continuously
in all cases considered. Main panel: Data obtained at a sampling time ∆t = 104 for three-
dimensional bulks (stars) and films of different H. The thickness at Tg (Hg) of our films
varies from film1 (thickest H = 21.3 LJ units) to film4 (thinnest H = 4.8 LJ units). See
Table 3.1 for static properties of these films. Inset: µ(T ) for film1 comparing different
sampling times ∆t.

1.4 Some key findings from our study

Summarizing our key findings we present µ(T ) in Fig. 1-2 for different systems (main panel)

and sampling times ∆t (inset). Primarily, we observe that, for the same ∆t, µ(T ) decays

continuously from the glassy limit to the liquid limit, for all our films (and the 3D bulk

system studied in Ref. [103]). In addition, it is seen that µ reduces for low-T as the film

gets thinner, which implies the existence of a soft surface. As H reduces, the (low) surface

contribution of µ dominates, which in effect reduces the global µ of the film. As in the

previous work carried out in our group [63, 65–67, 99–101], we find that µ depends on the

sampling time ∆t for our films. The ∆t-dependence of the generalized shear modulus µ(∆t)

can be traced back to the stationarity relation

µ(∆t) =
2

∆t2

∫ ∆t

0
dt

∫ t

0
dt′ G(t′) (1.2)

as discussed in more detail in Sec. 2.3 and Sec. 2.4.2. Being a second integral over G(t),

µ(∆t) is a convenient smoothing function with much better statistical properties than G(t).
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This point will be further discussed in Sec. 2.4.2 and Sec. 7.2. As emphasized in the inset

of Fig. 1-2, the effect of sampling time is more pronounced for intermediate temperatures,

especially around Tg. The stationarity relation Eq. 1.2 holds for all temperatures, i.e. the

expectation values of µ(∆t) and G(t) are numerically equivalent.

As we shall see in Ch. 7, this is not the case for their standard deviations δµ and δG for

which δµ(T ) ≪ δG(T ) holds. δµ(T ) and δG(T ) are seen to be non-monotonic with strong

peaks slightly below Tg. For not too low temperatures this behavior can be understood by

assuming that the time series of instantaneous shear stresses τ̂ are stationary, Gaussian and

ergodic stochastic processes. Since the systems become non-ergodic at low temperatures,

this leads to a qualitatively different behavior where δµ(∆t) becomes constant, δµ(∆t) →
∆ne, even for large sampling times ∆t.

The numerical transformation of our response function G
(

t
)

(cf. Appendix D) to the

creep compliance J
(

t
)

will allow a comparison with the nanobubble inflation experiment

[19]. It will be shown in Ch. 5 that our model agrees with the experimental findings only

in the glassy regime, whereas in the liquid regime our oligomer chains understandably do

not reveal a rubbery plateau.

Following the two-layer model phenomenology observed in experiments [49, 56], sug-

gesting a liquid–like layer at the free interface of films [74], we calculated the local shear

modulus of our systems. Focusing on local z-distributions, which are linear-additive contri-

butions of the total film properties, we verify that this assumption is indeed valid. Many

intensive properties A, such as Tg, µA or µF, are thus seen to depend linearly on the inverse

film thickness H. This is expected for small chains (having a gyration radius RG ≪ H)

assuming as the simplest phenomenological description the linear superposition

A ≈ 1

H
[A0 (H −W ) +As W ] = A0

[

1− (1−As/A0)W

H

]

(1.3)

of a bulk term A0 with a weight H − W ≈ H and a surface term As with a weight

proportional to the surface width W ≪ H. Even more generally, A may be written as

an average (possibly non-trivially weighted [47]) over z-dependent contributions A(z) as

done, e.g., for the Tg [30, 37, 47] or the storage and loss moduli G′(ω) and G′′(ω) [43].

The claimed 1/H-correction, Eq. 1.3, has merely the advantage to be based on a simple

and transparent idea. It may be seen as the leading contribution of a more general 1/H-

7



Figure 1-3: The central theme of this thesis revolves around freestanding thin polymer films
in the glassy and liquid limits. We perform numerical simulations to compare our results
qualitatively and quantitatively with the literature and study anomalous effects that have
been reported around Tg.

expansion. We remind that other H-dependencies have been suggested [27, 29, 30, 74] and

fitted with some success [35–37, 39].

1.5 Thesis outline

The goal of my thesis is to simulate freestanding thin polymer films and to identify their

mechanical and rheological properties both globally and locally, and to also describe the

fluctuations of some of these properties. As sketched in Fig. 1-3 the central aspects my

thesis tries to highlight are

• to study the shear-stress relaxation modulus G
(

t
)

and the generalized shear modulus

µ(∆t) of thin freestanding polymer films (Ch. 4);

• to determine their shear viscosity, complex modulus and the shear compliance (Ch. 5)
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using numerical transformation methods (Appendix D);

• to measure the local, layer-resolved modulus µ(z) of our films using the stress-fluctuation

formalism so as to explain the H-dependence of µ(∆t) and η (Ch. 6);

• to understand the observed strong fluctuations of the linear response function G
(

t
)

and µ. This will be done by first considering quite generally the fluctuations of

variances of stochastic Gaussian processes (Sec. 2.5) and by testing then some of

these relations for our films (Ch. 7).

The remainder of the thesis is structured as follows: Chapter 2 introduces general

theoretical considerations of sampling time dependent properties. We discuss in turn various

concepts and relations related to the stationarity of stochastic processes (Sec. 2.3), to the

linear response of thermalized systems to external perturbations (Sec. 2.4.1), to Gaussian

fluctuations of ergodic stochastic processes (Sec. 2.5), to effects caused by an (effective) non-

ergodicity of the process (Sec. 2.6) and, finally, to the scaling of various properties with

the system size (Sec. 2.7). Chapter 3 presents the algorithmic and computational details.

We define the simulation model in Sec. 3.2 and Sec. 3.3 and specify then in Sec. 3.4 and

Sec. 3.6 the film preparation (quench protocol) and the data processing methods that we

employed. The Irwing-Kirkwood scheme for measuring layer-resolved properties is outlined

in Sec. 3.7. Chapter 4 discusses global properties for our films, including a successful time-

temperature superposition (TTS) for all our films. This enables us to estimate the shear

viscosities η and gives a relative scale for the terminal α-relaxation time τα. Chapter 5

focuses on the storage and loss moduli G′(ω) and G′′(ω) and the creep compliance J
(

t
)

for film1. The latter property is compared to experimental results reported in Ref. [19].

Using the complex modulus at high temperatures we shall obtain an absolute scale for the

terminal relaxation time (Sec. 5.3). Chapter 6 describes a layer-resolved analysis method

to calculate the local shear modulus µ(z) for film1, which will help us understand the

local linear-additive contributions to global properties and the H-dependence of the films.

Chapter 7 extends the work on shear stress fluctuations and describes systematically the

standard deviation of the variance of shear stresses by assuming a stationary Gaussian

process. We conclude and present future perspectives in Ch. 8. Appendices A, B, C and D

appearing at the end of the manuscript bring together relevant supporting elements of this

thesis. Appendix A gives further details on ergodic Gaussian processes (Secs. A.1-A.3) and

9



non-ergodic stochastic processes (Secs. A.4-A.7). Appendix B reminds the definitions of

the instantaneous shear stress τ̂ and the instantaneous affine shear modulus µ̂A (Sec. B.1)

and gives a demonstration of the stress-fluctuation formula Eq. 1.1 (Sec. B.2). Viscoelastic

properties of the discrete Rouse model for polymer chains are reminded in Appendix C.

The numerical transformations between various rheological linear response functions are

described in Appendix D.
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Chapter 2

General theoretical considerations

2.1 Introduction

In this chapter, we will introduce general theoretical concepts (Sec. 2.2 to Sec. 2.7) that are

useful for the analysis of the time-series of stationary Gaussian processes. In Sec. 2.8, we

will translate these concepts and notations into specific forms useful for the characterization

of shear-stress fluctuations in liquids and amorphous solids. Most of these developments

are adapted from our accepted article in Ref. [69]. Based on the recent work carried out

in our group focusing on stress fluctuations [63, 65–68, 77, 95, 98–102, 104] we give here a

systematic and uncluttered overview of three general points of relevance for a large variety

of problems in condensed matter [1, 3, 4, 6, 105–107], material modeling [108, 109] and in

computational physics [57, 110].

Let us consider a general stochastic dynamical variable x(t). Ensembles of discrete time

series x = {xi = x(ti), i = 1, . . . , I} are sampled with the data sequence taken at equally

spaced times ti = iδt from t1 = δt up to the "sampling time" ∆t = tI = Iδt. We focus on

the empirical variance [111]

v[x] ≡ 1

I

I
∑

i=1

x2i −
1

I2

[ I
∑

i,j=1

xixj

]2

(2.1)

and its ensemble average v = 〈v[x]〉 and standard deviation δv.2 We assume that x(t) is

a stationary stochastic process respecting the time-translational invariance [112]. Our first

2The empirical variance is defined here without the usual "Bessel correction" [111]. Eq. 2.1 is the formal
definition of v[x] which coincides with the genuine variance of x(t) only in the limit ∆t ∝ I → ∞.
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point is that the expectation value v for sampling times ∆t smaller than the terminal relax-

ation time τα is not necessarily constant. As demonstrated in Sec. 2.3 this is a consequence

of the "stationarity relation" [65, 67, 68, 77, 99, 101, 113]

v =
2

I2

I−1
∑

i=1

(I − i) hi with hi−j =
1

2

〈

(xi − xj)
2
〉

(2.2)

being the autocorrelation function (ACF) characterizing the mean-square displacements

(MSDs) of the data entries xi. Hence, v generally depends on I or ∆t and this is especially

relevant if the ACF hi = h(ti) increases strongly for t ≈ ∆t.

Our second point concerns the standard deviation δv of v[x]. It has been observed

for shear-stress fluctuations [65, 67, 68, 77, 101] that δv may become rather large and of

the order of the mean value v if h(t) varies strongly for t ≈ ∆t, i.e. the mean behavior

standard experimental or theoretical work focuses on [1, 3, 4, 106, 108] gets masked by

strong fluctuations. As derived in Sec. 2.5.3, this can be simply understood assuming a

stationary Gaussian stochastic process [77] showing that δv = δvG[h] with δvG[h] being a

functional of the MSD h defined by

δv2G[h] ≡
1

2I4

I
∑

i,j,k,l=1

g2ijkl and gijkl ≡ (hi−j + hk−l)− (hi−l + hj−k). (2.3)

We discuss numerically more convenient representations of Eq. 2.3 in Appendix A.1. By

analyzing the functional δvG[h] it will be seen (Appendix A.2 and Appendix A.3) that while

δv(∆t) must remain small for h(t ≈ ∆t) ≈ constant, δv(∆t) becomes generally large if ∆t

is similar to the characteristic time of an efficient relaxation pathway corresponding to a

strong change of h(t) for t ≈ ∆t.

Our third key point emphasizes one limitation of Eq. 2.3 which hinges on the ergodicity

of the stochastic process. If the system is (strictly or in practice) non-ergodic, i.e. if inde-

pendently created trajectories c are restricted to different meta-basins of the generalized

phase space, this implies as shown in Sec. 2.6 and Appendix A.5 that

δv(∆t) → ∆ne = constant for τα ≫ ∆t ≫ τne ≫ τb. (2.4)

τb denotes here the typical relaxation time of the meta-basins, τne a crossover time properly

12



defined in Sec. 2.6 and Appendix A.6 and ∆ne the static standard deviation of the quenched

variances vc of the configurations c. Equation 2.4 implies that in this limit δv(∆t) must

differ from δvG(∆t) ∝ 1/
√
∆t. Fortunately, in the common case where the observables x(t)

average over many, more or less decoupled microstates, δv → δvG[h] even for non-ergodic

systems in the macroscopic limit as argued in Sec. 2.7. Simple test functions f(t) are used

to demonstrate δvG[f ] in Appendix A.3. The definitions of the instantaneous shear stress

and the corresponding Born-Lamé coefficient are given in Appendix B.1.

2.2 Different types of averages considered

Various functionals O[x] of x can be computed, for instance the moments

mαβ [x] ≡
(

1

I

I
∑

i=1

xαi

)β

(2.5)

with α = 1, 2, 3, 4 and β = 1, 2. The empirical variance of the time series x is then given

by v[x] = m21[x]−m12[x]. Obviously, v[x] = 0 for I = 1. Functionals with a discrete time

lag s (with s = 0, . . . , I − 1) can be considered such as the "gliding average" [57]

cgs [x] ≡
1

I − s

I−s
∑

i=1

cs,i with cs,i = xi+sxi (2.6)

and similarly

hgs [x] ≡
1

I − s

I−s
∑

i=1

hs,i with hs,i =
1

2
(xi+s − xi)

2 =
x2i + x2i+s

2
− cs,i. (2.7)

Note that cg0[x] = m21[x] and hg0[x] = 0. Averages over a given time series are often called

here “t-averages". Since the functionals O[x] are obtained in general from correlated data

entries, ensemble averages 〈. . .〉 of fluctuation-type functionals may depend on the sampling

time ∆t. This is not the case for “simple averages" [57, 100, 101] for which the ensemble

average over independent trajectories and the t-average commute. For instance, we have

mα1 ≡ 〈mα1[x]〉 =
〈

1

I

I
∑

i=1

xαi

〉

=
1

I

I
∑

i=1

〈xαi 〉 ∝ ∆t0 (2.8)
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since the ensemble average 〈xαi 〉 is ∆t-independent. Interestingly, the commutation of both

averaging-operators is not possible for mαβ with β 6= 1. An argument ∆t often marks in

this thesis a property being not a simple average.

2.3 Stationarity

We suppose that the time series is taken from a stationary stochastic process whose uncondi-

tional joint probability distribution does not change when shifted in time [112]. Correlation

functions such as 〈xixj〉 thus only depend on the difference s = |i−j| of the discrete indices

i and j. We thus define

cs = 〈cgs [x]〉 and hs = c0 − cs = 〈hgs [x]〉 (2.9)

with 0 ≤ s < I in terms of the gliding averages cgs [x] and hgs [x] defined in Sec. 2.2. Note

that both cs and hs are simple averages, i.e. their expectation values do not depend on

the sampling time ∆t of the time series [101, 113]. Due to the assumed stationarity, the

variance v = 〈v[x]〉 becomes [57, 65–68, 77, 99, 101, 110, 113]

v(I) =
1

I

I
∑

i=1

〈

x2i
〉

−
(

1

I2

I
∑

i=1

〈

x2i
〉

+
2

I2

I−1
∑

k=1

(I − k) 〈xk+1x1〉
)

= c0 (1− I−1)− 2

I2

I−1
∑

k=1

(I − k)ck =
2

I2

I−1
∑

i=1

(I − i) hi (2.10)

which demonstrates the stated Eq. 2.2. In the last step we used hs = c0 − cs and

2

I2

I−1
∑

k=1

(I − k) = 1− 1/I. (2.11)

Albeit the mentioned ∆t-dependence is well known [57, 110] it is emphasized here for

systematic reasons and since ∆t-effects for such fluctuations are rarely checked [63, 95]. We

also remind that in the continuum limit for large I = ∆t/δt, Eq. 2.10 reads

v(∆t) =
2

∆t2

∫ ∆t

0
dt (∆t− t) h(t) (2.12)
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with h(t) being the continuum limit of hs. This result may be restated equivalently using

the inverse relation h(t) = [v(t)t2/2]′′ with a prime denoting a derivative with respect to

time [65, 77]. Using that m21 is a simple average Eq. 2.12 implies that

m12(∆t) = m21 −
2

∆t2

∫ ∆t

0
dt (∆t− t) h(t). (2.13)

The ensemble averages v(∆t) and m12(∆t) thus depend in general on the sampling time

∆t. However, the ∆t-dependence disappears, if h(t) becomes constant. For instance, this

is the case, if h(t) plateaus in an intermediate, sufficiently large, time window, i.e. h(t) ≈
hp = c(0)− cp with hp and cp being constants. We then have

v(∆t) ≈ hp = c(0)− cp = constant,

m12(∆t) ≈ m21 − hp = cp = constant. (2.14)

Equation 2.14 also holds, if c(t) tends to a constant for times much longer than the terminal

relaxation time τα of the system. Then, cp in Eq. 2.14 is replaced by the long-time limit

c∞ = limt→∞ c(t) = lim∆t→∞
m12(∆t).

2.4 Linear response

2.4.1 Linear response function R(t)

The functions h(t) and c(t) can be related to the linear response to an external perturbation

conjugate to x(t). Let R(t) denote the linear response function of the system to a weak

external perturbation that is instantaneously switched on at t = 0 and held constant for

t > 0. By virtue of the fluctuation-dissipation theorem one can show that [3, 99, 101, 105]

R(t) = RA − h(t) = (RA − c(0)) + c(t) (2.15)

with RA = R(0) being a constant characterizing the initial response of the system after

the external perturbation is applied.3 For elastic properties, this constant is given by a

Born-Lamé affine modulus (Appendix B.1). R(t) is a simple average just as h(t) and c(t).

3Equation (2.15) holds if the perturbation is a “deformation" (thermodynamical extensive variable). In
the case of an externally applied “force" (thermodynamical intensive variable) it becomes R(t) = h(t) [3].
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2.4.2 Generalized dynamical modulus M(∆t)

It is of importance that Eq. 2.12 can be rewritten in terms of R(t) as

M(∆t) ≡ RA − v(∆t) =
2

∆t2

∫ ∆t

0
dt (∆t− t)R(t) (2.16)

with M(∆t) being the generalized dynamical modulus [101]. The corresponding equation

for the (generalized) shear modulus M = µ and the shear relaxation function R(t) = G(t)

was highlighted in the Introduction, Eq. 1.2. Although the generalized modulus does in

general depend on ∆t, it becomes constant

M(∆t) → R∞ ≡ RA − c(0) + c∞ for ∆t/τα → ∞. (2.17)

The corresponding stress-fluctuation formula for the shear modulus, Eq. B.7, is derived

in Appendix B.2. Being a second integral over R(t) = [M(t)t2/2]′′, M(∆t) is a natural

smoothing function statistically better behaved than R(t) and containing in general infor-

mation about both the reversibly stored energy and the dissipation processes.

2.4.3 Green-Kubo and Einstein relations

In statistical mechanics Eq. 2.10 and Eq. 2.16 are closely related to the equivalence of the

Green-Kubo and the Einstein relations for transport coefficients [57, 65, 68, 105, 110]. This

is seen by rewriting Eq. 2.16 as

η(t) ≡
∫ t

0
ds (R(s)−R∞) =

d

dt
[(M(t)−R∞) t2/2]. (2.18)

If the integral η(t) converges to a constant η for t ≫ τα, this implies the Einstein relation

(M(t)−R∞)t2 → 2ηt for t ≫ τα. (2.19)

We denote η without an argument for the t-independent long time limit of η(t). Since the

statistics quite generally deteriorates for large t, it is for numerical reasons useful to trace

and analyze η(t) or (M(t)−R∞)t for the determination of η. This is shown in Sec. 5.2 for

the Green-Kubo relation. The Einstein relation Eq. 2.19 will be applied in Sec. 4.8 for the
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diffusion constant D and in Sec. 4.5 for the shear viscosity η. Since M(t) is an integral over

R(t), the Einstein relation is generally numerically better behaved than the Green-Kubo

relation, however, on the downside it also converges more slowly to η [57].

2.4.4 Reciprocal space properties

Since we characterize a stationary process it is natural to describe the linear response

function R(t) in reciprocal frequency (ω) space. Importantly, the components of the Fourier

transform R⋆(ω) = R′(ω) + iR′′(ω) of R(t) may directly be measured in an oscillatory

experiment varying the associated extensive variable (strain). These components are quite

generally given by [1, 4, 6]

R′(ω)−R∞ =

∫

∞

0
d(ωt) cos(ωt) (R(t)−R∞) and (2.20)

R′′(ω) =

∫

∞

0
d(ωt) sin(ωt) (R(t)−R∞). (2.21)

For (visco)elastic response functions R′(ω) is called the “storage modulus" and R′′(ω) the

“loss modulus". We shall use these definitions in Ch. 5, Appendix C and Appendix D. Note

for later convenience that R′(ω) becomes constant, R′(ω) → RA, in the high-ω limit while

R′′(ω) must vanish inversely with ω [104].4 Quite generally, R′(ω) ∝ ω2 and R′′(ω) ∝ ω in

the low-ω limit, i.e. for ω smaller than the inverse of the largest relaxation time τα. Using

standard notations [1] we write

R′(ω)/ω2 → J0
e η

2 and R′′(ω)/ω → η for ωτα → 0 (2.22)

with η being the transport coefficient already seen in Eq. 2.18 and J0
e the “steady-state

creep compliance".

2.4.5 Terminal relaxation time τα

We have used above the “terminal relaxation time" τα of the stochastic process without

giving an operational definition. Various definitions are stated in the literature [105, 106],

especially in the standard textbooks on rheology and complex fluids [1, 4, 6]. While all

these definitions are equivalent from the scaling point view [2], they may not be equally

4For elastic or viscoelastic properties RA is thus often called “high frequency modulus".
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useful in experimental or computational studies. Several of these definitions consider ratios

of the moments mk ≡
∫

∞

0 dt tk (R(t)−R∞), e.g.,

τα,0 ≡
m0

RA
=

η

RA
, τα,1 ≡

m1

m0
= J0

e η or τα,2 ≡
m2

m1
=

m2

J0
e η

2
(2.23)

where we have used that η = m0 and J0
e = m1/η

2. One problem of these definitions is

that the long-time limit R∞ must be known to high precision.5 Even more importantly, in

numerical studies the statistics for R(t) strongly deteriorates for large t. The numerically

most convenient definition τα,0 unfortunately uses RA = R(t = 0) which is experimentally

often not available and, moreover, corresponds to microscopic physics which has little to

do with the long-time relaxation processes one wishes to characterize.6 The determination

of moments mk with k > 1 becomes quite generally very demanding and is in practice

often impossible. We thus focus below on τα,1 = J0
e η. Interestingly, the low-ω asymptotes

of R′(ω) and R′′(ω), Eq. 2.22, cross at ω = 1/τα,1. This suggests to characterize both in

experiments as in numerical studies the terminal relaxation time by [1, 6]

τ×(λ) ≡ 1/ω×(λ) with λ ≡ tan(δ) =
R′′(ω×)

R′(ω×)
with λ ≈ 1 (2.24)

using the (first) crossing of λR′(ω) and R′′(ω). Due to the generic flattening of both R′(ω)

and R′′(ω) for frequencies around the terminal relaxation time, it is normally best to chose

a value slightly above unity, e.g., λ = 2, to obtain one characterization of the terminal

relaxation time.7 This is illustrated in Appendix C for the Rouse model. We compare

τα,1 = m1/m0 and τ× in Ch. 5 for our numerical film data and in Appendix C for the

Rouse model.8

5Fortunately, R∞ ≡ 0 by symmetry for the shear-stress relaxation function R(t) = G(t) this thesis
focuses on.

6RA is thus often replaced by an intermediate plateau value of R(t).
7For too low λ-values τ×(λ) ≪ τα characterizes local relaxation processes.
8We note for completeness that very often τα is also estimated roughly as the time where R(t) − R∞

has decayed to a given fraction of the signal at short times. This is used in Ref. [70] for the computation
of the basin relaxation time τb for non-ergodic stochastic processes.
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Figure 2-1: Illustration of properties discussed in Sec. 2.4.1 using a two-modes version of
Eq. 2.25 with amplitudes R∞ = 1, H1 = 6, H2 = 3, i.e. R(0) = RA = R∞ +H1 +H2 = 10,
and relaxation times τ1 = 1 and τ2 = 100000. h(t) and c(t) are given by Eq. 2.15, where we
have additionally set c∞ = 0, and M(∆t) and v(∆t) by means of Eqs. 2.16 and 2.28. The
two solid horizontal lines mark the intermediate pseudo-plateau for τ1 ≪ t ≪ τ2. v(∆t)
and M(∆t) are seen to converge much slower to the respective plateau values than the
corresponding response functions h(t) and R(t).

2.4.6 Generalized Maxwell model

Response functions are often fitted using the generalized Maxwell model9

R(t) = R∞ +

pmax
∑

p=1

Hp exp(−t/τp) (2.25)

with Hp and τp being, respectively, the amplitude and the relaxation time of the mode

p [1, 4, 6]. Note that R(0) = R∞ +
∑pmax

p=1 Hp and limt→∞R(t) = R∞. Commonly, one

considers logarithmic time scales for R(u) with u ∝ log(t) and the modes are distributed

logarithmically in time [1]. As summarized in Appendix C, an important example of a

generalized Maxwell model is given by the Rouse model for the polymer dynamics of un-

entangled and non-interacting chains in the melt [1, 3–6]. Being of relevance for Ch. 5 and

9Equation 2.25 will be used in Sec. 5.3 and Appendix D to decompose R(t) = G(t) into modes.
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Appendix D we also remind that [1, 6]

R′(ω) =

pmax
∑

p=1

Hp
(τpω)

2

1 + (τpω)2
and R′′(ω) =

pmax
∑

p=1

Hp
τpω

1 + (τpω)2
. (2.26)

Using the notations of Eq. 2.22 we obtain [1]

η =

pmax
∑

p=1

Hpτp and J0
e =

pmax
∑

p=1

Hpτp
2/ η2 (2.27)

which in turn determines the terminal relaxation time τα,1 = J0
e η. Coming back to Eq. 2.16

the generalized modulus can be rewritten as [101]

M(∆t) = R∞ +

pmax
∑

p=1

Hp gDebye(∆t/τp) with gDebye(x) =
2

x2
[exp(−x)− 1 + x] (2.28)

being the “Debye function" well known in polymer science [3, 6]. Fig. 2-1 presents both

R(t) and M(∆t) for a generalized Maxwell model with two modes with τ1 ≪ τ2. The upper

solid horizontal line indicates an intermediate pseudo-plateau, Eq. 2.14. Note also that

h(t) ≈ v(∆t) ≈ RA − R∞ for t ≈ ∆t ≫ τ2. Since v(∆t) and M(∆t) are second integrals

over h(t) and R(t), they converge much slower to the respective intermediate or terminal

plateau values. (h(t) being a monotonically increasing function implies h(t) > v(t) and

R(t) < M(t).) As shown by Fig. 2-1, the determination of a plateau value by means of

Eq. 2.12 or Eq. 2.16 may thus be tedious [63, 99, 101].

2.5 Gaussian stochastic processes

2.5.1 Gaussian variables

Let us consider a Gaussian variable y of variance σ2. Since
〈

(y − 〈y〉)4
〉

= 3σ4 we have

〈

z2
〉

− 〈z〉2 = 2σ4 for z = (y − 〈y〉)2, (2.29)

i.e. the variance of the variance z of y is twice the squared variance of y. We assume now

that the time series x is a Gaussian process [112]. (The main physical reason why this

assumption holds for many systems is discussed in Sec. 2.7.) The mean m11[x] is thus a
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Gaussian variable and Eq. 2.29 holds for y = m11[x]. Assuming that 〈y〉 = m11 = 0 by

symmetry or by shifting of the data and using that mα1[x]
β = mαβ [x] this implies [77]

δm2
12 = m14 −m2

12 = 2(δm2
11)

2 = 2m2
12, (2.30)

i.e. the variance δm2
12(∆t) is given by m12(∆t).

2.5.2 δh2 for Gaussian processes

Let us next discuss the typical fluctuations of the ACFs cs and hs defined in Sec. 2.3. There

are two meaningful ways to define the variances. One may characterize the fluctuations of

cgs [x] and hgs [x] by

δcgs
2
=

〈

cgs [x]
2
〉

− 〈cgs [x]〉2 and δhgs
2
=

〈

hgs [x]
2
〉

− 〈hgs [x]〉2 . (2.31)

This allows to get the variances and the error bars for the numerical most accurate way

to compute cs and hs. The trouble with this definition is that, since the gliding averages

are preformed first and since the data entries xi are correlated in time, Eq. 2.31 depends

on these correlations in an intricate way.10 This may mask the fact that the data have a

Gaussian distribution. A second way to characterize the fluctuations is to measure in a first

step cs,i and hs,i (Sec. 2.2), to take then the ensemble averages

δc2s,i =
〈

c2s,i
〉

− 〈cs,i〉2 and δh2s,i =
〈

h2s,i
〉

− 〈hs,i〉2 (2.32)

and only as the last step (last loop) to take the arithmetic average over all I − s possible

indices i

δc2s =
1

I − s

I−s
∑

i=1

δc2s,i, δh2s =
1

I − s

I−s
∑

i=1

δh2s,i. (2.33)

Assuming x to be Gaussian, y = (xi+s − xi)/
√
2 is a Gaussian variable of zero mean.

According to Eq. 2.29 this implies the important relation

δh2s =
〈

y4
〉

−
〈

y2
〉2

= 2
〈

y2
〉2

= 2h2s. (2.34)

10The variances increase with s since the number of data entries decreases linearly with s.
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In a similar way we find: δc2s = c20+ c2s. We shall put Eq. 2.34 to the test in Sec. 7.3 for our

polymer films. For the fluctuations of Rs = RA−hs with RA being constant Eq. 2.34 yields

in turn δR2
s = 2h2s. The latter relation may even hold if RA is not strictly constant. This

is relevant for the fluctuations of the shear-stress relaxation function G(t) and the shear

modulus µ(∆t) considered in Ch. 7.

2.5.3 δvG for Gaussian processes

We turn now to the derivation of Eq. 2.3 for the variance δv2 ≡
〈

v[x]2
〉

− 〈v[x]〉2. Using

Eq. 2.1 this may be written as

δv2 = T2 + T4 − T3 with (2.35)

T2 ≡ δm2
21 =

〈

m21[x]
2
〉

− 〈m21[x]〉2 =
1

I2

∑

ij

〈

x2ix
2
j

〉

− 1

I2

∑

ij

〈

x2i
〉 〈

x2j
〉

T4 ≡ δm2
12 =

〈

m12[x]
2
〉

− 〈m12[x]〉2 =
1

I4

∑

ijkl

〈xixjxkxl〉 −
1

I4

∑

ijkl

〈xixj〉 〈xkxl〉

T3 ≡ 2 cov(m21,m12) ≡ 2 (〈m21[x]m12[x]〉 − 〈m21[x]〉 〈m12[x]〉)

=
2

I3

∑

ikl

〈

x2ixkxl
〉

− 2

I3

∑

kl

〈

x2i
〉

〈xkxl〉

where the sums run over all I data entries. As we have assumed that the stochastic process

is stationary and Gaussian, Wick’s theorem must hold [3, 112]:

〈xixjxkxl〉 = 〈xixj〉 〈xkxl〉+ 〈xixk〉 〈xjxl〉+ 〈xixl〉 〈xjxk〉 . (2.36)

Setting in addition ci−j = 〈xixj〉 the three terms in Eq. 2.35 can be rewritten as

T2(∆t) =
2

I2

∑

ij

〈xixj〉2 =
2

I2

∑

ij

c2i−j (2.37)

T4(∆t) =
2

I4





∑

ij

〈xixj〉





2

=
2

I4





∑

ij

ci−j





2

(2.38)

T3(∆t) =
4

I3

∑

s

∑

i

〈xixs〉
∑

j

〈xjxs〉 =
4

I3

∑

s,i,j

ci−scj−s. (2.39)
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Note that T4 = δm2
12 = 2m2

12 in agreement with Eq. 2.30. Importantly, Eqs. 2.35, 2.37,

2.38, 2.39 are equivalent to the more compact formula [77],

δv2G =
1

2I4

∑

i,j,k,l

g2ijkl with gijkl = (ci−j + ck−l)− (ci−l + cj−k) (2.40)

which looks already rather similar as Eq. 2.3. That this holds can be verified by straight-

forward expansion of Eq. 2.40. Note that the squared terms c2i−j + . . . with two different

indices contribute to T2, the terms ci−jck−l + . . . with four different indices to T4 and the

terms ci−jci−l + . . . with three different indices to T3. (Numerically convenient reformula-

tions of T2, T3, and T4 are given in Appendix A.1.) With a and b being real constants it

follows directly from Eq. 2.40 that

δvG[a] = 0 and δvG[b(f − a)] = |b| δvG[f ] (2.41)

for any function f(t). Specifically, δvG[c] = δvG[h]. This demonstrates finally that Eq. 2.3

is equivalent to Eq. 2.40 and, hence, to Eqs. 2.35, 2.37, 2.38, 2.39. It may also be useful

to replace c(t) by c(t)− c∞ or — for thermodynamic equilibrium systems — by the linear

response function R(t), Eq. 2.15. See Appendix A.2 for some general properties of δvG[f ]

and Appendix A.3 for the behavior of δvG[f ] for various test functions f(t).

2.6 Non-ergodic stochastic processes

Our key relation Eq. 2.3 and its various reformulations may obviously fail if one of the stated

or implicit assumptions does not apply for the particular ensemble of time series. For in-

stance, strong non-Gaussian contributions may be present in a specific time or frequency

range leading to the failure of Wick’s theorem, Eq. 2.36. We will address here an important

assumption not yet explicitly stated. In fact it was assumed that the stochastic process

under consideration is ergodic, i.e. all independently created trajectories, called here con-

figurations, are able to explore given enough time the complete (generalized) phase space.

The averages which appear in Wick’s theorem, Eq. 2.36, can thus be either obtained by

averaging over independent configurations c or by averaging over subsets of one extremely

long trajectory. To see that this condition matters let us consider a strictly non-ergodic
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system where the configurations c are trapped in subspaces of the total phase space (since

the terminal relaxation time τα of the system diverges). If t and ∆t exceed the typical

relaxation time τb of these basins, h(t) and v(∆t) must become constant. As shown in Ap-

pendix A.5 and Appendix A.6, δvG ∝ 1/
√
∆t for ∆t ≫ τb. At variance to this δv → ∆ne

becomes constant with,

∆2
ne ≡ var(vc) =

1

Nc

Nc
∑

c=1

v2c −
(

1

Nc

Nc
∑

c=1

vc

)2

(2.42)

being the variance of the Nc quenched variances vc = lim∆t→∞
v[xc] of the independent

configurations. Obviously, ∆ne vanishes for identical vc. This holds indeed for ergodic

systems for ∆t ≫ τα with the finite terminal relaxation time τα replacing τb, but in general

not for non-ergodic systems. On the other side, for small ∆t the non-ergodicity constraint

should not matter much and one expects δv ≈ δvG to approximately hold. Interpolating

between both ∆t-limits a useful approximation for non-ergodic systems may be written as,

δv2(∆t) ≈ δv2G(∆t) + ∆2
ne for τb ≪ ∆t ≪ τ (2.43)

motivated by the idea that δv2 is the sum of two variances describing the independent

fluctuations within each configuration and between the different configurations. Moreover,

Eq. 2.43 suggests the operational definition,

δvG(∆t
!
= τne) = ∆ne (2.44)

identifying τne as the crossover time between both limits. Quite generally, τne ≫ τb holds.

As shown in the Appendix A.6, to understand the discrepancy between δv and δvG for

(strictly) non-ergodic systems it is necessary to introduce an extended ensemble of time

series xck where for each of the Nc independent configurations c one samples Nk time series

k. Obviously, the time series k of the same configuration c are correlated (being all confined

into the same basin) and k-averaged expectation values and variances may then depend on

the configuration c. It thus becomes relevant in which order c-averages over configurations c

and k-averages over time series k of a given configuration c are performed. Three variances
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of v[xck] must be distinguished. The total variance

δv2tot = δv2int + δv2ext (2.45)

and its two contributions δv2int, the typical internal variance within each meta-basin, and

δv2ext, characterizing the dispersion between the different basins. Importantly, if the tra-

jectory of each confined configuration c remains essentially Gaussian, Wick’s theorem can

be applied to δvint as before (see Appendix A.6). This implies δvint ≈ δvG according to

Eq. A.32. Moreover, since δvext(∆t) ≈ ∆ne for τb ≪ ∆t ≪ τα, this leads finally to Eq. 2.43.

Variances due to independent physical causes are naturally additive. We remind that the

variance of the blackbody radiation is thus the sum of a variance describing the Rayleigh-

Jeans part of the spectrum (wave aspect) and of a variance describing the Wien part

(discrete particle aspect) [114]. Interestingly, as in the blackbody radiation analogy the two

contributions δvint (internal fluctuations within each basin) and δvext (fluctuations between

the different basins) to δvtot have also in general different statistics. This is manifested by

their different system size dependencies as will be shown now.

2.7 Microscopic variables and system-size effects

Due to the central limit theorem [112] the stochastic process of many systems is to a good

approximation Gaussian since the data entries xi are averages over Nm ≫ 1 microscopic

contributions xim. These contributions are often not known or accessible. Specifically, we

shall consider in this thesis the instantaneous shear stress τ̂i =
∫

dr τ̂i,r/V being the volume

average over the local shear stress τ̂i,r. For such intensive field averages Nm corresponds to

the number of local volume elements dV computed, i.e. Nm ≈ V/dV . Albeit these micro-

scopic contributions xim may be correlated, i.e. they may not all fluctuate independently,

the fluctuations of the xi commonly decrease with increasing Nm. Since v ∝ 1/Nm for

uncorrelated variables xim, it is often useful to incorporate this reference in the definition

of the data entries by rescaling xi ⇒
√
Nmxi. Summarizing the scaling for the trivial case

of perfectly uncorrelated variables xim we thus have

v ∝ h ∝ δvG ∝ N0
m and ∆ne ∝ 1/Nγext

m with γext = 1/2 (2.46)
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if the microscopic states are subject to an uncorrelated quenched random field. That this

holds is shown in Appendix A.7. Due to Eq. 2.3 the Nm-independence of δvG is implied

by the Nm-independence of h. Equation 2.46 also holds for fluctuating density fields with

a finite V -independent correlation length ξ for sufficiently large systems (V ≫ ξd). In this

case Nm in Eq. 2.46 is simply replaced by the number of independent subvolumes V/ξd. A

smaller exponent γext < 1/2 is expected for long-range and scale-free spatial correlations.

The important point here is that ∆ne must decrease with the system size if γext > 0 and

thus δv → δvG for Nm → ∞ according to Eq. 2.43.

2.8 Shear-stress fluctuations

The notions and results presented in this chapter should be useful for the analysis of general

time series x. We apply them in the following to the shear-stress fluctuations in film systems

using the more common notations in the literature [1, 3, 6, 63, 65–67, 77, 101, 105]. The

entries xi of the time series thus correspond to
√
βV τ̂ with β = 1/T being the inverse

temperature (setting Boltzmann’s constant kB to unity), V the volume of the system and τ̂

to the instantaneous shear stress measured at a time iδt. The relevant Born-Lamé coefficient

RA is now called µA and its instantaneous value µ̂A. The definitions of τ̂ and µ̂A are detailed

in Appendix B.1. The ensemble-averaged time-averaged variance v(∆t) becomes the shear-

stress fluctuation, the overbar denoting the t-average over time series:

v(∆t) → µF(∆t) ≡ µ0 − µ1(∆t) with (2.47)

m21 → µ0 ≡ βV
〈

τ̂2
〉

and (2.48)

m12(∆t) → µ1(∆t) ≡ βV
〈

τ̂
2
〉

. (2.49)

The linear response function R(t) and the modulus M(∆t) are written now as [65–67, 77,

101]

R(t) → G(t) = µA − h(t) = (µA − c(0)) + c(t) (2.50)

M(∆t) → µ(∆t) = µA − µF(∆t) = (µA − µ0) + µ1(∆t) (2.51)
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with the single averages c(0) = µ0 and µA = G(0) = µ(0). Eq. 2.50 is the fluctuation

dissipation relation [3] for the shear-stress relaxation after an infinitesimal change of the

shear strain, Eq. 2.51 the corresponding relation for the shear modulus (Appendix B.2).

The additional assumption µA = µ0 implies

G(t) = c(t) and µ(∆t) = µ1(∆t). (2.52)

Unfortunately, while µA = µ0 = c(0) holds indeed under liquid equilibrium conditions,11

this may become incorrect in general [63, 101]. Eq. 2.50 and Eq. 2.51 must thus be used

in the more general case.

As discussed in Sec. 2.6 and Appendix A.5, three different types of standard deviations

will be distinguished in Ch. 7:

• δvtot → δµF,tot by lumping all Nc ×Nk time series together (Eq. A.24);

• δvint → δµF,int by “c-averaging" the “k-averaged variances" δµ2
F,c (Eq. A.25);

• δvG → δµF,G according to Eqs. 2.35, A.1, A.2, A.3 using the measured correlation

function h(t) or, equivalently, c(t) or G(t).

Rephrasing the general relation Eq. 2.43 for shear-stress fluctuations we shall verify numer-

ically that,

δµF,int = δµF,G and δµF,tot ≈
√

δµ2
F,int +∆2

ne (2.53)

where the non-ergodicity parameter ∆ne ≥ 0 characterizes the dispersion of vc → µF,c for

different configurations c (cf. Appendix A.6). As we will see in Ch. 7, δµF,int ∼ 1/
√
∆t

vanishes rapidly with ∆t. Therefore, we may determine ∆ne from the ∆t-independent

plateau of δµF,tot in this limit.

11µ = µA −µ0 +µ1 must vanish for liquids, µ ≈ 0, and since µ1 ≈ 0 by symmetry, this implies µA ≈ µ0.
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Chapter 3

Computational model and some

technical details

3.1 Introduction

The preceding chapter has summarized useful general theoretical relations. These relations

can of course be tested computationally once we identify a suitable computational model

system. The primary computational tool that we use in our study is molecular dynamics

(MD) simulations [57, 58]. Molecular dynamics works by solving classical equations of

motion for a system of particles that interact with a well defined potential. One of the

most modern programs that can perform this job using task parallelism is the Large-scale

Atomic Molecular Massively Parallel Simulator, also known as LAMMPS [58]. We describe

in this chapter the specific features of our polymer model (Sec. 3.3), the configuration

ensembles used (Sec. 3.4), the quench protocol (Sec. 3.5) and the data handling (Sec. 3.6).

How the layer-resolved film properties discussed in Ch. 6 are computed is shown in Sec. 3.7.

3.2 Lennard-Jones particles

As in a huge number of similar numerical studies of coarse-grained model systems [36, 37,

40, 47, 63–70, 93, 95, 98, 102, 104, 115–119] we use the 12 − 6 Lennard-Jones (LJ) pair

potential [57, 78]

uLJ(r) = ǫLJ
(

(σLJ/r)
12 − (σLJ/r)

6
)

(3.1)
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to characterize the monomers of our polymer chains.12 Here, r is the distance between the

interacting beads, σLJ and ǫLJ are the characteristic LJ distance and energy units. Please

note that the LJ potential is usually truncated for computational efficiency at rcut = 2.3 ≈
2rmin, with rmin = 21/6 being the potential minimum, and shifted to make it continuous:

uLJ(r) ⇒ uLJ,trunc(r) = uLJ(r)− uLJ(rcut) for r ≤ rcut. (3.2)

Unfortunately, the truncated and shifted potential is not continuous with respect to its first

derivative.13 Therefore, impulsive truncation corrections are required for the determination

of the affine shear modulus µA (Appendix B.1) [63, 78, 98].14 All quantities reported are

in LJ units, i.e. the parameters of the LJ potential are set to unity, ǫLJ = 1, σLJ = 1,

m = 1, and kB = 1. It is implied that they are also non-dimensional (denoted with a star

superscript ⋆), for instance the reduced distance r⋆ = r/σLJ, the reduced time t⋆ = t/τLJ

with τLJ = (mσ2
LJ/ǫLJ)

1/2 and the reduced temperature T ⋆ = T/(ǫLJ/kB). In the following,

we will drop the star in order to simplify the notation.

3.3 Coarse-grained polymer chains

As already mentioned in Ch. 1, we are primarily interested in freestanding polymer films.

Computationally it is not trivial to simulate an all-atom polymer model to prepare such

films. We thus work with a variant of a widely-used coarse-grained bead-spring model

[58, 62]. In this model variant the interaction potential between permanently bonded neigh-

boring monomers of the chain is a spring potential:

ubond(r) =
kbond
2

(r − lbond)
2. (3.3)

Here, r is the distance between the permanently connected beads, kbond = 1110 the spring

constant, and lbond = 0.967 the bond length. All inter -chain monomers interact via the

12-6 LJ potential [57] defined in Eq. 3.1. All intra-chain monomers that are not connected

12Naturally, LJ beads are of interest for an enormously large class of models in statistical mechanics
far beyond the polymer model they are used for in the present thesis. In fact, our group recently studied
[69, 70] a glass former composed of polydisperse LJ beads to verify many properties discussed in Ch. 2.

13This is problem is nicely resolved in Procaccia’s work [118].
14The additive correction ∆µA due to this truncation effect can be estimated using the methods developed

in Ref. [98] as ∆µA ≈ −0.2. Temperature effects are negligible.
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Figure 3-1: Intra-chain monomers that are not connected by permanent bonds interact
via the 12-6 LJ potential but with a weight specified in LAMMPS [58]. By doing so, the
interaction to the nearest bead in the same chain is turned off (as it is handled by Eq. 3.3)

permanently also interact via the same potential but with a weight15 (cf. Fig. 3-1) us-

ing the special_bonds lj 0 1 1 command in LAMMPS [58]. These model parameters

make the chains flexible in nature. This coarse-grained model was not only chosen due to

its simplicity, but also due to its good correspondence (mapping) to experimental results

[59–61]. Moreover, the present model has been used in several other recent publications of

the Strasbourg polymer theory and simulation group (ETSP-ICS) [36, 37, 61, 65–70, 95].

Importantly, the model parameters are chosen such that the crossing of chains is in prac-

tice impossible in our model. Hence, reptational chain dynamics [2, 3, 6] would become

important for long chains with N ≫ Ne. However, since the entanglement length Ne ≈ 100

[62, 120–122] is much larger than the chain length N = 16 used in the present study, Rouse-

type dynamics (Appendix C) [6] is observed at high temperatures. All results presented

in this thesis have been obtained by means of MD simulation performed using LAMMPS

[58]. We use a velocity-Verlet scheme [57] with a time step δtMD = 0.005. Temperature is

imposed by means of the Nosé-Hoover algorithm also provided by LAMMPS.

3.4 Film and bulk ensembles

In Fig. 1-1 we showed the general setup of our free-standing polymer films. As visualized

from an actual simulation, the snapshot Fig. 3-2 shows a film suspended parallel in the

(x, y)-plane of a simulation box with lateral box size Lx = Ly = L. To prepare16 films

15These weights are set to unity, except for the nearest bead in the same chain. The nearest bead
interaction weight is set to zero, as this interaction is already handled by the bond (spring) potential.

16All of the LAMMPS input scripts used to simulate our freestanding films can be found in the following
University of Strasbourg (GitLab) code repository (project visibility – internal): https://git.unistra.

fr/thatgeeman/nvtf
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Figure 3-2: Our films consists of M = 768 coarse-grained polymer chains of length N = 16.
The visualization on the left is obtained using VMD [123] for film4 with L = 49 (Sec. 3.4).
The illustration on the right shows the essence of coarse-graining for a single chain where
chemical details are deemed irrelevant.

of varying thicknesses we do not directly vary the film thickness H, but rather impose

the lateral box size L. We simulate ensembles with either L = 23.5 (film1 ), L = 37.1

(film2 ), L = 42 (film3 ) or L = 49 (film4 ). The smallest L corresponds to our thickest

film, film1, which will be the main subject of discussion in Chs. 5-7 of this thesis. For our

polymer model, we prepare a system with M = 768 chains of length N = 16 (with uniform

dispersity), i.e. a total of n = 12288 beads (monomers) in a periodic box. Please note that

ensemble averages over Nc = 120 independently quenched configurations are performed for

film1, much more than the Nc = 10 configurations considered for all other ensembles.

As shown in Fig. 3-2 the vertical box size Lz is chosen sufficiently large (Lz ≫ H) to

avoid any interaction in this direction arising from the periodic boundary conditions. The

instantaneous stress tensor [57] thus vanishes rigorously outside the films. While this implies

for all z-planes within the films that the average vertical normal stress σzz(z) must vanish

[34], some of the (average) tangential normal stresses σxx(z) and σyy(z) must be finite. The

surface tension Γ [34, 57] would otherwise vanish and the films become unstable. Note that

Γ is of order unity for temperatures close to the glass transition as indicated in Table 3.1.
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System L Nc Tg H µA µF µ RG Re H/RG ρ0 Γ

3D bulk - 10 0.395 - 93.3 84.6 8.7 1.9 4.6 - - -
film1 23.5 120 0.371 21.3 93.9 85.6 8.3 1.9 4.6 11.3 1.045 0.89
film2 37.1 10 0.334 8.5 94.2 86.1 8.1 1.9 4.6 4.5 1.054 1.58
film3 42 10 0.318 6.6 94.3 86.5 7.8 1.9 4.6 3.5 1.057 1.57
film4 49 10 0.290 4.8 94.9 87.4 7.5 1.8 4.4 2.6 1.063 1.61

Table 3.1: Some properties at the glass transition for the bulk and for films of different
lateral box sizes L ensemble-averaged over Nc independent configurations: glass transition
temperature Tg, film thickness H, affine shear modulus µA, shear-stress fluctuation µF,
shear modulus µ according to Eq. 1.1, radius of gyration RG and end-to-end distance Re

[3, 6], ratio H/RG, the plateau density ρ0 and the surface tension Γ discussed in Sec. 6.4.
The bulk results have been obtained at a pressure P = 0 using cubic periodic boxes. As
emphasized in Sec. 4.4, µF and µ have been obtained for a sampling time ∆t = 104.

Details on the surface tension are given in Sec. 6.4. As clarified in Appendix B.1 for µA, it is

thus generally not appropriate to neglect the surface tension contribution to the Born-Lamé

coefficients of thermodynamically stable films [44].

For comparison we also look at three-dimensional (3D) bulk systems with same chain

length N and chain number M . These bulk systems have been computed in the NPT-

ensemble using cubic periodic boxes and imposing an average pressure P = 0.17 The

ensembles used for bulk and film systems are in-effect similar, but not exactly identical as

it would have been the case by imposing a vanishing normal stress σzz in the z-direction

at a constant linear box length L in x- and y-directions. Fortunately, as will be shown in

Ch. 4, this difference appears irrelevant since the film data properly extrapolate to the bulk

data if plotted as a function of 1/H, i.e. the bulk data corresponds formally to the limit

1/H → 0. Table 3.1 summarizes some static properties and relevant information regarding

all ensembles taken at the glass transition temperature Tg.

3.5 Quench protocol

Starting with an equilibrated three-dimensional polymer melt at P = 0 and T = 0.7

simulated in a cubic simulation box with Lx = Ly = Lz the vertical box dimension Lz is

strongly increased leading to a thin polymer film suspended in the (x, y)-plane. This film

17These systems have been prepared by Ivan Kriuchevskyi during his PhD at the Strasbourg polymer
theory and simulation group (ETSP-ICS) [65–67, 103].
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observable depending on the temperature T and the quench protocol.

with L = 23.5 (film1 ) was equilibrated at T = 0.7. Starting from this configuration film2,

film3 and film4 were created by gently increasing the lateral box dimension to, respectively,

L = Lx = Ly = 37.1, 42.0 and 49.0. All four films were again thoroughly equilibrated at

T = 0.7. We thus generate Nc = 120 independent configurations for film1 and Nc = 10

independent configurations for film2, film3 and film4 (Table 3.1). We then quench each

of the independent configurations at a fixed lateral box size L, i.e. at an imposed film

area A = L2, using a constant cooling rate, T (t) = 0.7 − 2 × 10−5t. See Fig. 3-3 for an

illustration. Note that Lz is always sufficiently large to be irrelevant for all films. While we

impose the total box volume L2Lz and the film area A = L2, the film volume V = L2H is

a freely fluctuating observable which needs to be determined as discussed in Sec. 4.2. From

each cooling run, configurations at several temperatures18 (from T = 0.55 → 0.05, with

0.05 spacing) are picked and stored. Imposing then a constant temperature, each stored

configuration is tempered (∆ttemp = 105) and then sampled (∆tmax = ∆t = 105). The

quench and production protocols are the same for all films and 3D bulk systems.

18The temperature at a given time during the cooling run is known from the cooling rate. In addition, the
log file produced during the cooling run provides the instantaneous temperature fixed by the thermostat,
allowing for comparison.
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3.6 Data sampling and processing

Instantaneous observables xi (for instance, stresses σ̂αβ) are sampled every 10δtMD with

δtMD = 0.005 being the time increment of the velocity-Verlet scheme used. This corresponds

to a data file with entries every δt = 0.05 step. Whereas LAMMPS trajectory files with

particle coordinates are written every 105 × δtMD timestep (δttrj = 500 LJ timestep). An

additional set of configurations Nc = 10 for film1 was prepared using 500× δtMD timestep

(δttrj = 2.5 LJ timestep), so as to improve the resolution of our findings19 in Ch. 6 for

layer-resolved properties (Sec. 3.7.) Of central importance are the excess contributions

of instantaneous shear stress τ̂ and the instantaneous affine shear modulus µ̂A defined in

Appendix B.1.20 As discussed in Sec. 2.2 and Sec. 2.8, the stored time-series x = {xi, i =
1, . . . I} for each Nc configuration c are used to compute various t-averages. By averaging

over the Nc independent configurations, we obtain then ensemble averages or “c-averages”.

In addition to this we need to compute for Ch. 7 “k-averages" and “k-variances" over

Nk time series xck of each configuration c as described in detail in Appendix A.4 and

Appendix A.5. Since we want to investigate the dependence of various properties on the

sampling time ∆t we probe for each ∆tmax-trajectory Nk equally spaced subintervals k of

length ∆t ≤ ∆tmax with I = ∆t/δt entries. It is inessential for all properties discussed in the

present work whether these subintervals do partially overlap or do not. Since overlapping

subintervals probe similar information it is, however, numerically not efficient to pack them

too densely. We use generally Nk = ∆tmax/∆t, i.e. Nk and ∆t are thus coupled and the

accuracy is better for small ∆t. Essentially, the same data averaging procedure is used for

the bulk systems the only difference being that we average finally in addition over the three

equivalent shear planes.

3.7 Calculation of layer resolved properties

We shall investigate in Ch. 6 the local z-distributions of many properties such as the dis-

tributions ρ̂(z) of the number density ρ̂ (Sec. 6.2), ê(z) of the energy density ê (Sec. 6.3),

19Layer-resolved analysis of dynamic properties requires access to the instantaneous particle positions,
i.e. δttrj → δt ideally.

20All intensive properties are to be re-normalized using the effective film volume V = L2H with H being
the film thickness defined in Sec. 4.2. This is an essential step for freestanding films as LAMMPS computes
all intensive properties with respect to the simulation box volume V = L2Lz instead.
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σ̂αβ(z) of the stresses σαβ (Sec. 6.4), µ̂A(z) of the affine shear modulus µ̂A (Sec. 6.5) and

µF(z) of the stress fluctuation term µF (Sec. 6.6). All these distributions are computed

following the Irving-Kirkwood convention [34, 57, 78]:

• The ideal contributions for each bin are due to the particles located in the bin.

• The excess contributions due to the bonded and non-bonded pair potentials are dis-

tributed equally with a weight 1/nij to the nij = |zbi − zbj |/δzb + 1 bins containing

the line that connects a particle i at zi, located in a bin at zbi, with a particle j at

zj , located in a bin at zbj .

It is useful to write the Irving-Kirkwood convention compactly in terms of two normalized

weighting functions. With zb and zi being, respectively, the z-coordinates of a bin and a

particle the weighting function wid(zb; zi) of the ideal contributions is given by

Vb wid(zb; zi) =







1 if |zb − zi| < δzb/2

0 otherwise.
(3.4)

The weighting function wex(zb; zi, zj) used for the excess contributions is defined by

Vbwex(zb; zi, zj) =



















0 if max(zbi, zbj) < zb

0 if min(zbi, zbj) > zb

1/nij otherwise.

(3.5)

Note that the two weighting functions are normalized as

Vb

nb
∑

b=1

wid(zb; zi) = 1 (3.6)

Vb

nb
∑

b=1

wex(zb; zi, zj) = 1 (3.7)

with nb being the number of bins (slabs). The implementation used for the calculation of

σαβ(z) and µF

(

z
)

is available on GitLab.21 Note that by using these normalized weighting

functions the distributions are the linear-additive contributions to the total film properties

21The following University of Strasbourg (GitLab) repository (project visibility – internal) contains the
code for this method: https://git.unistra.fr/thatgeeman/elastic_layered
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following the (exact) sum rule

â
!
=

δzb
H

nb
∑

b=1

â(zb) ≈
1

H

∫

dz â(z) (3.8)

with â being the (instantaneous) total intensive film property and â(zb) its contribution in

bin b. Note also that using this convention the total film property â has the same dimension

as its z-distribution â(z).
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Chapter 4

Total properties of polymer films

4.1 Introduction

We now discuss some global static and dynamical properties of our free-standing films.

The outline of this chapter is as follows: In Sec. 4.2, we characterize the film thickness H

and identify the pseudo-thermodynamic glass transition temperature Tg. In Sec. 4.3 and

Sec. 4.4, we discuss the (generalized) shear modulus µ as a function of temperature T and

sampling time ∆t. In Sec. 4.5, we use the Einstein relation to obtain the shear viscosity η

for T ≫ Tg, which is then used to obtain a relative scale for the terminal relaxation time

τα. The TTS scaling of µ is presented in Sec. 4.6. In Sec. 4.7, we present the response

function G
(

t
)

and use the same shift parameters as for µ to obtain a TTS scaling. The

total monomer mean-square displacements (MSD) will be discussed in Sec. 4.8. A summary

is given in Sec. 4.9.

4.2 Film thickness and glass transition temperature

A central (geometric) parameter describing our films is its thickness H (cf. Fig. 1-1). We

determine H using a Gibbs dividing surface construction [36, 39, 124]. With ρ0 ≡ ρ(z ≈ 0)

being the midplane density of the density profile ρ(z), this implies

H ≡ n/ρ0L
2 with n = NM (4.1)
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Figure 4-1: Film thickness and glass transition temperature. Top inset: Number density
profile ρ(z) for T = 0.50 with z = 0 corresponding to the center of mass of each film. The
midplane density ρ0 ≈ 1 is indicated by the dashed horizontal line. Main panel: H as
a function of temperature T for film1. The glass transition temperature Tg and the film
thickness Hg at the transition (bold dashed lines) are operationally defined by the intercept
of the linear extrapolations of the glass (dashed line) and liquid (solid line) limits. Left
inset: Tg as a function of 1/Hg confirming the linear superposition, Eq. 1.3.

being the number of monomers. As seen for one example in the top inset of Fig. 4-1, ρ(z)

is always uniform and smooth around the midplane in agreement with the data presented

in previous studies [41].22 The plateau density ρ0 can thus be fitted to high precision and,

hence, also H. Since ρ0 is always very close to unity, varying only little with L, Eq. 4.1

implies that (to leading order) H ∼ 1/L2 changes strongly with L. We present in the main

panel of Fig. 4-1 the film thickness as a function of temperature. As emphasized by the

dashed and the solid lines, H decreases monotonically upon cooling with the two linear

branches fitting reasonably the glass (dashed line) and the liquid (solid line) limits. The

intercept (horizontal and vertical dashed lines) of both asymptotes allows to define the

pseudo-thermodynamic Tg and the film thickness Hg at the transition (given in Table 3.1)

[36, 41, 47]. (See Ref. [65] for bulk systems.)

As expected from a wealth of literature [8–10, 12, 13, 35–37, 39, 41, 45], Tg increases

with H. More precisely, as seen in the left inset of Fig. 4-1, Tg extrapolates linearly with the

22The shape of the density profile is discussed in more detail in Sec. 6.2.
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(µA − µ0) + µ1 as functions of T focusing on data obtained for film1 and ∆t = 104. Inset:
Double-logarithmic representation of µ0/µA − 1 vs T .

inverse film thickness to the thick-film limit. The value Tg = 0.395 indicated at 1/Hg = 0

stems from our bulk simulations.) This is consistent with the linear superposition, Eq. 1.3,

of a thickness-independent bulk glass transition temperature Tg0 and an effective surface

temperature Tgs.
23 The negative sign of the correction implies Tgs < Tg0, i.e. surface

relaxation processes are faster than processes around the film midplane. This finding is

also consistent with the higher monomer mobilities observed at the film surfaces in previous

studies [7, 24, 26, 36, 39, 48]. We emphasize finally that many more data points covering

a much broader range of orders of magnitude in 1/H are required to find or to rule out

numerically higher orders of a systematic 1/H-expansion of Tg.

4.3 Stress-fluctuation formula at fixed sampling time

Instantaneous values of the shear stress τ̂ and of the affine shear modulus µ̂A have been

computed as described in Appendix B.1. The time and ensemble averaged affine shear

modulus µA ≡ 〈µ̂A〉 is presented in the main panel of Fig. 4-2 as a function of temperature

using half-logarithmic coordinates. The averaged shear stress τ ≡ 〈τ̂〉 is not indicated since

it vanishes rapidly due to symmetry with increasing ensemble size Nc and sampling time

23As we shall demonstrate in Sec. 5.5 the linear superposition is also seen for real experimental data.
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∆t. As seen from Fig. 4-2, this is not the case for the moments (with β = 1
kBT

being

the inverse temperature) describing the non-affine contributions to the stress-fluctuation

formula for the shear modulus (Appendix B.2)

µ0 ≡ βV
〈

τ̂2
〉

, µ1 ≡ βV
〈

τ̂
2
〉

and µF ≡ µ0 − µ1. (4.2)

Note that µF, µ0 and µA depend only weakly on T and are all similar on the logarithmic

scale used in Fig. 4-2. As stressed by Eq. 2.52 and footnote 11, µA = µ0 for an equilibrium

liquid. Frozen-in out-of-equilibrium stresses are observed upon cooling below Tg as made

manifest by the dramatic increase of the dimensionless ratio µ0/µA− 1. The β-prefactor of

µ0, Eq. 4.2, implies that due to the frozen stresses,

µ0/µA − 1 ∼ 1/T for T ≪ Tg (4.3)

to leading order. This is consistent with the data presented in the inset of Fig. 4-2. Similar

behavior has been reported for 3D polymer bulks [65].

Using a linear representation, the main panel of Fig. 4-3 presents µA(T ) for all ensembles.

This shows (more clearly than Fig. 4-2) that µA decreases continuously with temperature

with two (approximately) linear branches in the glass and the liquid regimes as indicate by
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the two lines. While µA barely depends on H in the glass limit (suggesting a weak surface

contribution µAs), it increases with H in the liquid limit. As demonstrated in the inset, µA

decreases in fact linearly with 1/H in agreement with Eq. 1.3. More details regarding the

local characterization of µA are given in Sec. 6.5.

Using again a linear representation, µF(T ) is presented in the main panel of Fig. 4-

4. Upon cooling it increases linearly, goes through a well-defined peak located around Tg

and drops then rapidly albeit continuously. It becomes constant for T ≪ Tg when the

shear stresses get quenched. Since µA ≈ µF at high temperatures, the same linear 1/H-

dependencies are naturally observed as shown in the right inset of Fig. 4-4 for T = 0.50. At

variance to this, µF increases linearly with 1/H at low temperatures as seen for T = 0.10 in

the left inset, i.e. the non-affine contributions are the largest for our thinnest films. Both

linear 1/H-relations for µF are consistent with Eq. 1.3. The negative sign of the correction

for large T suggests that the bulk value µF0 in the middle of the films must exceed the

value µFs at the surfaces while the opposite behavior occurs in the low-T limit. The shapes

of the z-distribution µF in both temperature limits will be discussed in Sec. 6.6.

As already highlighted in the Introduction (main panel of Fig. 1-2) the shear modulus

µ = µA − µF(∆t) depends on the film thickness just as its affine (Fig. 4-3) and non-affine

(Fig. 4-4) contributions. As can also be seen there, µ(T ) decays continuously in all cases
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comparing different ensembles.

considered and no indication of a jump singularity is observed [125–129]. In the high-T

limit, µ vanishes µ ≈ 0. In the low-T limit, the shear modulus becomes finite as expected.

For our thinner films, as a consequence of reduced Tg and associated increase in mobility, µ

vanishes for a wider range of temperatures. As shown in the main panel of Fig. 4-5, the shear

moduli µ for films of different thickness can be brought to collapse on the H-independent

mastercurves. (All data for the same fixed ∆t.) The horizontal axis is rescaled with the

reduced temperature T/Tg using the apparent glass transition temperature Tg defined in

Sec. 4.2. The values µg ≡ µ(Tg) used to make the vertical axes dimensionless are indicated

in Table 3.1 and plotted in the inset of Fig. 4-5. Consistently with the linear superposition

relation, Eq. 1.3, µg is a linear function of 1/Hg. Similar scaling plots could be given for

the contributions µA(T ), µ0(T ), µ1(T ) and µF(T ).

4.4 Effective time-translational invariance

All data presented in the previous section have been obtained for one sampling time

∆t = 104. We turn now to the characterization of the ∆t-effects observed for µ in the

inset of Fig. 1-2. Focusing on one temperature (T = 0.30) in the glass limit, we compare in
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Fig. 4-6 the ∆t-dependencies of µA, µ0, µ1, µF and µ. As expected from Eq. 2.8, the simple

averages µA and µ0 are found to be strictly ∆t-independent. Importantly, time and ensem-

ble averages do not commute for µ1 since 0 = βV 〈τ̂〉2 < βV 〈τ̂2〉 ≡ µ1(∆t), i.e. µ1 is not a

simple average, but a fluctuation. As seen in Fig. 4-6, µ1(∆t) decays in fact monotonically

and, as a consequence, µF(∆t) = µ0 − µ1(∆t) increases and µ(∆t) = (µA − µ0) + µ1(∆t)

decreases monotonically. Interestingly, as indicated by the thin solid line, the stationarity

relation Eq. 1.2 holds, i.e. µ(∆t) can be traced back from the independently determined

shear-stress relaxation modulus G
(

t
)

discussed below. (The visible minor differences are

due to numerical difficulties related to the finite time step and the inaccurate integration of

the strongly oscillatory G
(

t
)

at short times.) Since µA and µ0 are ∆t-independent simple

averages, one can rewrite Eq. 1.2 to also describe µ1(∆t) and µF(∆t). This is indicated by

the two dashed lines. Note that Eq. 1.2 has been shown to hold for all temperatures and

ensembles. The observed ∆t-dependence of the shear modulus µ is thus not due to aging

effects, but arises naturally from the effective time translational invariance of our systems.

This does, of course, not mean that no aging occurs in our glassy systems, but just that

this is irrelevant for the time scales and the properties considered here. We shall now use

the decay of µ(∆t) ≈ µ1(∆t) for large T and ∆t to characterize the shear viscosity η(T ).

45



10
0

10
1

10
2

10
3

10
4

10
5

10
6

∆t

10
-3

10
-2

10
-1

10
0

10
1

µ

0.10
0.20
0.30
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.50
0.55

0 0.05 0.1 0.15 0.2

1/H
50

100

150

η

T=0.55

film1

2η/∆t

µ≅µ
p

160 (1-4/H)

Figure 4-7: Double-logarithmic representation of µ(∆t) for a broad range of temperatures
T focusing on film1. µ(∆t;T ) decreases continuously with both ∆t and T . A pseudo-elastic
plateau is observed in the solid limit with µ ≈ µp ≈ 15.5 (horizontal dashed line). The
1/∆t-decay in the liquid limit (bold solid line) is expected from the Einstein-Helfand (EH)
relation, Eq. 4.5. Inset: Shear viscosity η(1/H) for T = 0.55. The values are used in Sec. 4.6
to define a relative scale for τα(T ). The line presents a linear fit according to Eq. 1.3.

4.5 Plateau modulus µp and shear viscosity η

In the main panel of Fig. 4-7, we see that µ decreases monotonically with ∆t for a broad

range of temperatures (double-logarithmic representation). As already pointed out above

(Fig. 1-2), it also decreases continuously with T and no indication of a jump singularity

is observed. We emphasize that the same qualitative behavior is found for all systems we

have investigated. (Similar plots have been obtained for glass-forming colloids in 2D [63]

and for 3D polymers [65].) As one expects, the ∆t-dependence of µ becomes extremely

weak in the solid limit, i.e. a plateau (shoulder) µ(∆t) ≈ µp = const appears for a broad

∆t-window. Since the plateau value µp depends somewhat on T and on the ∆t-window

fitted, it is convenient for the dimensionless scaling plots presented in the next two sections

to define µp(H) ≡ µ(T = 0.10,∆t = 104, H). The value for film1 is indicated by the

horizontal dashed line. As may be seen from the inset of Fig. 4-5,

µp(H) ≈ 16.1 (1− 0.65/H) ≈ 1.85µg(H) (4.4)
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in agreement with Eq. 1.3. As emphasized by the bold solid line in the main panel of

Fig. 4-7, µ(∆t) decreases inversely with ∆t in the high-T limit. This is expected from the

Einstein or “Einstein-Helfand" (EH) relation, Eq. 2.19, which may be rewritten as

µ(∆t) → 2η/∆t for ∆t ≫ τα (4.5)

with η being the shear viscosity and τα the terminal shear stress relaxation time [57, 65].

A technical point must be mentioned here. We remind that µA = µ0 in the liquid limit

implies µ(∆t) = µ1(∆t). Since the impulsive corrections needed for the calculation of µA

(cf. Sec. 3.2) and, hence, of µ are not sufficiently precise for the logarithmic scale used here,

it is for numerically reasons best to simply replace µ by µ1 to avoid an artificial curvature of

the data for large ∆t. Using the EH relation it is then possible to fit η(T ) above T ≈ 0.50.

For smaller temperatures this method only allows the estimation of lower bounds. As

shown in the inset of Fig. 4-7 for T = 0.55, the shear viscosity decreases systematically

for thinner films and the linear superposition relation (solid line) describes reasonably all

available data. We now show how η(T ) may be extrapolated to much smaller temperatures

by means of the “time-temperature-superposition" (TTS) scaling of µ(∆t).

4.6 Time-temperature superposition of µ(∆t)

The TTS scaling of µ(∆t) is presented in the main panel of Fig. 4-8 using dimensionless

coordinates and a double-logarithmic representation. Data for a broad range of temper-

atures are given for film1 (open symbols) while we focus for clarity on one temperature

(T = 0.35) for the other films (filled symbols) and the 3D bulk ensembles (stars). A good

data collapse is achieved by plotting the rescaled shear modulus y = µ(∆t)/µp as a function

of the reduced sampling time x = ∆t/τα using the relaxation time τα(T ) indicated in the

inset. The scaling function y = f(x) is given by f(x) → const ≈ 1 for x ≪ 1 (dashed

horizontal line) and by f(x) → 2/x for x ≫ 1 (bold solid line) for consistency with the EH

relation. The vertical axis is made dimensionless using the plateau modulus µp introduced

in Sec. 4.5. Please note that since according to Eq. 4.4 the H-dependence of µp is rather

small on the logarithmic scales we are interested in, a similar good data collapse may also

be achieved by simply setting µp = 1. Much more important is the rescaling of the hori-
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We impose τα(T = 0.55) according to Eq. 4.6 to have an arbitrary time scale. The two
asymptotics of the scaling function y = f(x) for x ≪ 1 and x ≫ 1 are indicated by dashed
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of terminal relaxation time τα vs x = Tg/T for all our ensembles. Arrhenius behavior (bold
solid line) is observed around the glass transition (x ≈ 1).

zontal axis by means of the terminal relaxation time τα(T,H) which depends strongly on

both temperature and film thickness. Note that the strong H-dependence is masked by the

rescaling of the horizontal axis using x = Tg(H)/T in the inset of Fig. 4-8.

Some remarks are in order to explain how the scaling plot was achieved. We have in

fact followed in a first step the standard prescription [1, 6] fitting the relative dimensionless

factors aT and bT for the horizontal and vertical rescaling of µ(∆t, T ) for temperatures

T close to certain reference temperatures T0. As one may expect [1], bT can safely be

set to unity for the entire temperature range we are interested in. In turn this justifies

the temperature independent factor µp used to rescale the vertical axis. Naturally, merely

tuning aT = τα(T )/τα(T0) only sets the relative scale of τα(T ). In order to fix the missing

prefactor we impose,

τα(T ) = c η(T )/µp(H) with c = 1 for T = T0 = 0.55 (4.6)

using the shear viscosity η determined in the high-T limit by means of Eq. 4.5. Due to the
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somewhat arbitrary constant c/µp the strongest curvature of the rescaled shear modulus

y(x) coincides with x ≈ 1. (Using instead c ≈ 100 the crossover to the EH decay would

occur at about x ≈ 1.) Consistency of µ(∆t) = µpf(x) ≈ µpτα/∆t for x ≫ 1 and the EH

relation, Eq. 4.5, implies interestingly that Eq. 4.6 must hold for all temperatures. In other

words, the relaxation time τα(T ), shown in the inset of Fig. 4-8, and the shear viscosity

η(T ) are equivalent up to a trivial prefactor. We emphasize that the stated proportionality

hinges on the observation that bT ≈ 1. As shown in the inset, a remarkable scaling collapse

is achieved by plotting τα or η as a function of x = Tg/T . Especially, this implies that

τα(T ≈ Tg) = c η(T ≈ Tg)/µp(H) ≈ 105 (4.7)

for all our ensembles as shown by the horizontal and vertical dashed lines. In other words,

the dilatometric criterion (Sec. 4.2) and the rheological criterion, fixing a characteristic

viscosity for defining Tg [1], are numerically consistent on the logarithmic scales considered

here. Anticipating better statistics and longer production runs (improving thus the precision

of the TTS scaling), this suggests that Eq. 4.7 may be used in the future to define Tg. We

finally note that an Arrhenius behavior τα ∼ exp(45x) is observed for x ≈ 1 (bold solid

line) and that for x ≪ 1 a Vogel-Fulcher-Tammann (VFT) behavior holds (cf. Sec. 5.2) as

expected [1].

4.7 Shear-stress relaxation modulus G
(

t
)

While the (shear strain) creep compliance J(t) [1] of polymer films has been obtained

experimentally (by means of a biaxial strain experiment using effectively the reasonable

approximation of a time-independent Poisson ratio ν near 1/2) [15, 19, 20, 23], this seems

not to be the case for the shear-stress relaxation modulus G
(

t
)

. This could in principle

be done by suddenly tilting the frame on which a free-standing film is suspended and

by measuring the shear stress τ(t) needed to keep constant the tilt angle γ. The direct

numerical computation of G
(

t
)

by means of an out-of-equilibrium simulation tilting the

simulation box in a similar manner, is a feasible procedure in principle as shown in Ref. [43].

However, for general technical reasons [57] this procedure remains tedious.24 Fortunately,

24Being limited to the high-frequency limit, it is difficult to get G
(

t
)

by Fourier transformation of the
storage and loss moduli G′(ω) and G′′(ω) [1] obtained by applying an oscillatory simple shear [43].
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Figure 4-9: Unscaled stress relaxation modulus G
(

t
)

for film1 using half-logarithmic coor-
dinates. G(t) increases continuously with decreasing T . For some temperatures above Tg

and for very low T ≪ Tg a logarithmic creep G(t) = a − b log(t) is observed (thin solid
lines). We shall come back to this logarithmic creep behavior in Sec. 7.4.

G
(

t
)

can be computed using the stored time-series of τ̂ and µ̂A by means of the appropriate

linear-response fluctuation-dissipation relation G(t) = µA − h(t), Eq. 2.50. Note that

G(t = 0) = µA as it should if an affine strain is applied at t = 0.

Focusing on our thickest films and using a half-logarithmic representation, Fig. 4-9

presents G
(

t
)

for all temperatures T ≤ 0.45. Please note that albeit we ensemble-average

over Nc independent configurations it was necessary for the clarity of the presentation to

use in addition gliding averages over the total production runs, i.e. the statistics becomes

worse for t → ∆tmax = 105, and, in addition, to strongly bin the data logarithmically.

Without this strong averaging the data would appear too noisy for temperatures around

Tg. (See Sec. 7.2 for a discussion of the standard deviation δG(t) of G
(

t
)

.) However, it

is clearly seen that G
(

t
)

increases continuously with decreasing T without any indication

of the suggested jump-singularity [125–129]. This is consistent with the continuous decay

of the storage modulus G′(ω = const, T ) as a function of temperature T shown in Fig. 6

of Ref. [43]. Similar continuous behavior has also been reported for the Young modulus of

polymer films [44].

Using a similar double-logarithmic representation as in Fig. 4-8, we demonstrate in

Fig. 4-10 that a successful TTS scaling can be achieved for G
(

t
)

just as for µ(∆t). While
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t
)

/µp as a function of reduced time
x = t/τα using the same relaxation times as in Fig. 4-8. The two indicated power laws (bold
and dash-dotted lines) are given for comparison. Unfortunately, our production runs are
too short to reveal the expected final exponential cut-off even for the highest temperatures.

several temperatures are again indicated for film1, only one temperature is indicated for

the other ensembles.The effective power law −1 seen for x ≈ 1 (solid line) can of course

not correspond to the asymptotic long-time behavior since the viscosity η and the terminal

relaxation τα = τα,1 given according to Eq. 2.23 by the moments [1]

m0 ≡
∫

∞

0
dt G

(

t
)

= η and m1 ≡
∫

∞

0
dt t G

(

t
)

= J0
e η

2 = τα,1η (4.8)

must then diverge. We remind that the Rouse behavior (Appendix C) corresponds to a cut-

off with y(x) ≈ exp(−x)/
√
x [3, 6] for which all moments of G

(

t
)

converge. Basically, due

to the inaccessible final cut-off it is impossible for any temperature T ≤ 0.55 to determine

η and τα merely by integrating G
(

t
)

as in Eq. 4.8. Due to this reason we proceeded

here using the EH relation and the TTS scaling to estimate η and τα.25 The unfortunate

intermediate effective power-law slope −1 is mainly due to the shortness of our chains as

seen in Appendix C for the Rouse model of short chains (Fig. C-1a). Additionally, the local

glassy dynamics and the polymer dynamics are clearly not separated. Longer production

runs are warranted to clarify this issue.

25As shown in Sec. 5.2 to obtain the shear viscosity η from the Green-Kubo (GK) relation one needs to
investigate the time dependent viscosity η(t), Eq. 2.18.
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4.8 Monomer mean square displacement

Up to now we have only considered static and quasi-static properties and the response

function G(t). It was shown that that thinner films appear to be softer in agreement with

a two layer model with (more) fluid surfaces and a more rigid bulk in the center of the

films. We verify now whether this idea also holds for a simple straightforward dynamical

property, the monomer mean-square displacement (MSD) averaged over all monomers of

the film [3, 6]. As shown in Fig. 4-11 we focus on the MSD gx(t) along the x-axis of the

films. As can be seen by the dashed lines in the main panel for film1, gx(t) systematically

decreases upon lowering the temperature. While for high temperatures gx(t) → 2Dt in

the large time limit for t ≫ τα, a plateau (shoulder) appears below T ≈ 0.30 when the

monomers get confined within “local cages" [106]. That we are able to easily extract the

diffusion constant D in the free-diffusion limit for high temperatures is shown by the solid

line for T = 0.55.26 As shown in the inset of Fig. 4-11 for one temperature (T = 0.55)

we have compared the diffusion coefficients of the different films. Using linear coordinates

26Naturally, the determination of D becomes increasingly difficult if one approaches the glass transition,
but an upper bound for D can still be estimated.
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we trace D(T ) as a function of the inverse film thickness H(T ). In agreement with other

findings presented in this chapter, especially the relaxation time τα(T ) and the viscosity

η(T ), it is seen that the the general linear superposition assumption, Eq. 1.3, again holds

as emphasized by the solid line.

4.9 Major results

As suggested from a large number of experimental and computational studies, many (inten-

sive) properties, such as Tg, µ or gx(t), were shown to depend linearly on the inverse film

thickness H [68]. This agrees with the two-layer model [49, 56] assumption that we made in

the Introduction, Eq. 1.3. Building up on our methods applied to 3D polymer melts [65, 66],

we observed that µ(T ) decays continuously for our free standing films. As emphasized in

Sec. 4.3, µ systematically depends on ∆t, i.e. larger ∆t implies a sharper glass transition

at smaller temperatures. In addition it is seen in the main panel of Fig. 1-2 that µ becomes

finite at lower temperatures for thinner films. The sampling time ∆t dependence of µ can

be traced back to the stationarity relation in Eq. 1.2 [57, 66]. We demonstrated in Sec. 4.6

that time translational invariance is applicable for general viscoelastic fluids and that it fits

our model systems perfectly. Using the accurate TTS scaling of µ (Fig. 4-8) we are able

to estimate η(T ) ∼ τα(T ) for an even broader temperature range down to around Tg. The

TTS scaling of G
(

t
)

is then possible (Fig. 4-10) using the same rescaling parameters.
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Chapter 5

Various rheological properties and

comparison to experiments

5.1 Introduction

Assuming linear response, we calculated in Ch. 4 µ(∆t) and G
(

t
)

for our polymer films.

Using these quantities and the TTS scaling, we obtained for T > Tg(H) the absolute

values of the shear viscosity η(T,H) and the relative scale of the terminal relaxation time

τα(T,H). As shown in Fig. 4-10 the problem with the latter quantity is that our G
(

t
)

-

data does not allow, even for the highest temperatures, its direct determination using the

moments mk of G(t) for k ≥ 1 according to Eq. 2.23 [1, 6]. In Sec. 5.2 we discuss first

the shear viscosity η comparing values obtained by different techniques. We turn then in

Sec. 5.3 to the calculation of the storage and loss moduli G′(ω) and G′′(ω). An attempt is

made to estimate the steady-state creep compliance J0
e in the high temperature limit and

thus using τα,1 = J0
e η to give an absolute scale for the relaxation time τα. In addition, we

compare our data with real experiments. This is done for the glass transition temperature

Tg(H) in Sec. 5.5 and for the creep compliance J(t) in Sec. 5.6. A summary is given in

Sec. 5.7.
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Figure 5-1: Shear viscosity η for film1 for different temperatures T : (a) Comparison of η
obtained by means of the EH relation, the TTS scaling, the GK relation and the low-ω
limit of G′′(ω). The data is plotted vs the inverse temperature using a half-logarithmic
representation. The line indicates a Vogel-Fulcher-Tammann fit according to Eq. 5.2. (b)
Dynamic shear viscosity η(t) calculated using Eq. 5.1 for film1 (Tg = 0.37). We compare
the results obtained for two sampling runs, t = 106 (open symbols) and t = 107 (filled
symbols). A reasonable estimate of η (dashed lines) can only be obtained for large T .

5.2 Shear viscosity

The shear viscosity η measures the resistance of a viscoelastic fluid to an imposed shear

rate γ̇ [1, 4, 6]. Panel (a) of Fig. 5-1 presents a summary of the shear viscosities obtained

by different methods for film1. Importantly, a good agreement between all methods is

observed, down to around the glass transition temperature Tg. The data obtained using

the EH relation and the TTS scaling have already been discussed in, respectively, Sec. 4.5

and Sec. 4.6. As expected [1, 4, 6], the TTS scaling allows a reliable estimation of η over

a much broader range of temperatures than all other methods. We also include viscosities

obtained using the GK relation, Eq. 2.18, and from the low-frequency limit of the loss

modulus G′′(ω) ≈ ηω described in more detail below in Sec. 5.3.27 The use of the GK

relation is illustrated in panel (b) of Fig. 5-1 where we plot the “dynamical viscosity"

η(t) ≡ mk=0(t) ≡
∫ t

0
ds G(s) ≈

∫ t

0
ds c(s) (5.1)

27Appendix D.3 demonstrates this method for the Rouse model [1, 6].
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Figure 5-2: Scaling of η focusing on data obtained from the TTS of µ(∆t) for all films
and the bulk system: (a) Vogel-Fulcher-Tammann (VFT) fits (continuous lines) for η as a
function of T . (b) Scaling of η as a function of x = Tg/T .

for a broad range of temperatures. As already stated in Sec. 2.4.3, the GK method, using a

first integral over G
(

t
)

is expected to have poorer statistics than the EH method, computed

by means of a second integral over G
(

t
)

, Eq. 2.19. For sufficiently long times t ≫ τα, the

dynamical viscosity η(t) must reach a plateau value, the viscosity η, as indicated by the

dashed horizontal lines for the higher temperatures. These values are included in panel (a).

Since the relaxation function G
(

t
)

becomes increasingly constant, G
(

t
)

≈ µp, for T → Tg,

one naturally observes a linear increase with η(t) ≈ µpt in this limit.

We analyze now in Fig. 5-2 the scaling of η focusing on the data obtained using the

TTS scaling. Using half-logarithmic coordinates panel (a) presents η as a function of the

(unscaled) temperature T and panel (b) as a function of the reduced inverse temperature

x = Tg/T . The thin solid lines in panel (a) and panel (b) demonstrate that our film data

are consistent with the Vogel-Fulcher-Tammann (VFT) law [1]

η(T,H) = η∞ · exp
(

B

T − T∞(H)

)

(5.2)

in the high temperature limit with T∞(H) being the Vogel temperature [1].28 Consistently

with the inset of Fig. 4-8, the data presented in panel (b) scales and an Arrhenius behavior

28We have fitted for T∞(H) with the WLF scaling approach using several reference temperatures T0.
The fit values of T∞(H) are, as expected, slightly smaller than Tg [1] and scale again according the linear-
superposition relation Eq. 1.3.
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Figure 5-3: G′(ω) and G′′(ω) obtained using the FFT and SMD methods from the G
(

t
)

-
data for two high temperatures for film1 : (a) T = 0.55 where η ≈ 141, J0

e ≈ 18.5 and
τα,1 ≈ 2604 and (b) T = 0.45 where η ≈ 986, J0

e ≈ 4 and τα,1 ≈ 3944. The crossing
frequencies ω×(λ) = 1/τ×(λ) for the ratios λ = 1, λ = 2, and λ = 3 are indicated by dashed
vertical lines. Note that ω×(λ = 3) corresponds nicely to the crossing frequency 1/τα,1 of
the two low-ω asymptotes for G′(ω) and G′′(ω) for all temperatures T ≫ Tg.

with η ∼ exp(45x) is observed for x ≈ 1 (bold solid line).

5.3 Complex modulus of polymer films

In this section, we perform the numerical transformation [1, 130, 131] of G
(

t
)

calculated for

film1 to the corresponding complex modulus G⋆(ω) = G′(ω)+ iG′′(ω) by means of Eq. 2.20

and Eq. 2.21. This can be done using the Spectral Mode Decomposition (SMD) method

[1] and the Fast Fourier Transformation (FFT) [111]. Details and analytical tests for these

methods are provided in Appendix D.2 and Appendix D.3. In the following, we use the

notations G′
1(ω) and G′′

1(ω) for FFT and G′
2(ω) and G′′

2(ω) for SMD.

We focus on the high temperature limit well above the glass transition. G′(ω) and G′′(ω)

are shown in Fig. 5-3 for film1 T = 0.55 and T = 0.45. As discussed in Appendix D.3, FFT

data is only available in a frequency window between 2π/∆t (marked by the left vertical

dotted lines) and the Nyquist critical frequency ωc = π/δt (marked by the vertical dotted

lines on the right-hand sides of both panels) while the SMD method allows (with some

care) the extrapolation to a broader frequency regime. In agreement with Appendix C

and Appendix D.3 three main frequency regimes can be distinguished. We focus here on
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the low-ω limit29 where the SMD data exhibit the expected asymptotic behavior, Eq. 2.22,

emphasized by dashed lines for G′(ω) and by solid lines for G′′(ω). (Much larger production

times are required to show this limit directly with the FFT method.) As noted in the caption

of Fig. 5-3, viscosities η may be obtained from the linear ω-dependence of G′′(ω). These

values, also indicated in Fig. 5-1, compare well with η from other methods. Using these η

we determine in turn the steady-state creep compliances J0
e from the limit G′(ω) → J0

e η
2ω2.

(The latter limit is less reliable since G′(ω) ≪ G′′(ω) in this regime.) Importantly, using

η and J0
e this implies the indicated terminal relaxation times τα,1 = J0

e η corresponding to

the crossing of the two low-ω asymptotes (Sec. 2.4.5). We thus obtain by setting

τα
!
= τα,1 for T = 0.55 (5.3)

for the highest temperature with the most reliable data an absolute scale for the terminal

relaxation times τα(T ) obtained in Sec. 4.6 from the directly measured viscosities and the

TTS scaling. This finally fixes the coefficient c introduced in Eq. 4.6 as

c = J0
e (T = 0.55) µp(H) ≈ 286. (5.4)

Unfortunately, J0
e is not very precise even for T = 0.55 due to the extrapolation of G′(ω)

with the SMD method. It would thus be nice to have an independent means to characterize

the terminal relaxation time for other temperatures using the more restricted FFT data

for ω ≫ 2π/∆t without using the asymptotic low-ω behavior. As shown by the dashed

vertical lines in Fig. 5-3 we attempt this by determining the crossover frequency ω×(λ) as

defined by Eq. 2.24 marking the (first) crossing of λG′(ω) and G′′(ω). We use the values

λ = 1, 2 and 3. As can be seen this corresponds to frequencies ω×(λ) where similar values

of G′(ω) and G′′(ω) have be obtained with both methods to a reasonably good precision.

As can be seen ω×(λ) = 1/τ×(λ) systematically decreases with increasing λ. As discussed

in Appendix C ω×(λ = 2) ≈ 1/τα,1 for the Rouse model. This suggests to use a λ larger

unity. Consistently, we find empirically that τ×(λ ≈ 3) ≈ τα,1 for the highest temperatures.

Moreover, after rescaling with the constant c of Eq. 5.4 the terminal relaxation times τα

29In addition there is an intermediate frequency regime where G′(ω) and G′′(ω) are similar and a high-
frequency regime corresponding to times smaller that the local monomer relaxation time where G′(ω)
becomes constant and G′′(ω) ∝ 1/ω for the SMD method and where the FFT method becomes inaccurate.
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obtained by means of the TTS scaling, Fig. 4-8, we obtain that τ×(λ = 3) ≈ τα holds for

all temperatures above the glass transition (not shown). Albeit the value λ = 3 may be

specific for our numerical system, we believe that this procedure might be generally useful.

5.4 Comparison with the nanobubble inflation method

Experimentally, only a few methods have attempted to directly measure the creep compli-

ance of freestanding polymer films [19, 132]. Of particular interest is the novel nanobubble

inflation method developed by O’Connell and McKenna [19] for the measurement of vis-

coelastic properties of freestanding polymer films and associated developments [15, 132].

In brief, the nanobubble inflation experiment characterizes thin films that are subjected to

constant pressure from below via nanometer sized perforations, causing the formation and

growth of bubbles that creep with time. Using interferometry [132] or near-contact AFM

method [19], measurements of the bubble profile as a function of time are taken. The bi-

axial compliance D
(

t
)

of the material is then calculated by measuring the time-dependent

strain as a function of constant stress. In this method, the radius of curvature of the bubble

changes as it grows, and the stress acting on the bubble is not kept a constant. The above

experiment is interesting for us since it characterizes the mechanical properties of freestand-

ing polystyrene (PS) thin films. Furthermore, our bead-spring model has historically shown

good correspondence with experimental studies of PS films [53, 60, 61].

Interestingly, a different protocol for analyzing the data was developed in Ref. [19].

From the set of creep compliance curves measured at different temperatures and a given

thickness, a TTS mastercurve can be obtained along with its horizontal shift factors aT.

These shift factors can be fit to a VFT (or equivalently WLF) law. The change in Tg of

a film from the Tg of the bulk, ∆Tg = Tg − Tg
B, can be calculated as the shift in the

VFT curves from that of the thickest sample.30 This can be repeated for all thicknesses

to get ∆Tg as a function of film thickness [19]. This study also matches with our finding

concerning the reduction in Tg with decreasing H [11, 16, 18, 19, 76, 133].
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Figure 5-4: Collapse of Tg/T
B
g vs h0/H comparing our simulation data (circles) with exper-

imental data from Ref. [19] (O’Connell 2008) and Ref. [18] (O’Connell 2006). The simula-
tion data for H and Tg are summarized in Table 3.1. h0 is a system-dependent length scale
needed to collapse the data. We have set h0 = 1.28 for our simulations and h0 = 7.2nm
(O’Connell 2006) and h0 = 6.4nm (O’Connell 2008) for the experimental systems. The
solid line indicates Eq. 1.3. The experimental data were kindly provided by C. Roth.

5.5 Glass transition temperature Tg(H) revisited

In Fig. 5-4, we compare the glass transition temperature obtained for our freestanding

films with the data reported in Refs. [18, 19]. We plot here the reduced glass transition

temperature y = Tg/T
B
g as a function of the rescaled inverse film thickness x = h0/H. This

confirms that both the experimental and the numerical data follow the relation [36, 71, 74]

y = Tg/T
B
g = 1− h0/H = 1− x (5.5)

implied by the two-layer model, Eq. 1.3. The system-depending length h0 allows to collapse

all data onto y = 1−x (solid line). Specifically, we fitted h0 = 1.28 for the numerical data,

h0 = 7.2nm for the experimental data of Ref. [18] and h0 = 6.5 nm for the data from

Ref. [19]. Note that the thinnest PS film (11nm) studied in Ref. [19] is similar in thickness

to our thickest film (film1, Hg = 21.3 LJ units) when converted to physical units. We have

made here the following choices for an approximate conversion from LJ to physical units

30The thickest sample (H = 112nm) is assumed to show bulk behavior in this case.
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T = 0.55 is observed in the long time limit. As seen from the open triangles the same
steady-state creep compliance J0

e ≈ 4 for T = 0.45 is obtained as in Sec. 5.3.

[25]: σLJ = 5·10−10m, ǫLJ/kB = 450K, and τLJ = 2·10−12s, we get for our film1, a thickness

of ≈ 10.65nm.

5.6 Creep compliance of polymer films

The creep compliance for our films can be obtained via two routes: (short route) Direct

application of the HH transformation to G
(

t
)

(Sec. D.4) and (long route) conversion of the

complex modulus obtained by FFT/SMD to the complex compliance (J ′(ω) and J ′′(ω) in

Eq. C.7) and then calculating the J
(

t
)

[1]. In Fig. 5-5, we compare the two approaches. It

can be seen that there is good correspondence between the two methods especially in the

high-T limit. In this limit, J
(

t
)

reaches flow without any sign of rubbery plateau. The

terminal slope corresponds to the shear viscosity η = 130 calculated from the EH relation

for T = 0.55 verifies the validity of both methods. The steady-state creep compliance

J0
e ≈ 4 for T = 0.45 is observed yet again by taking the limiting value of J

(

t
)

− t/η [1] with

η = 986 (open triangles). This is in agreement with the result from panel (b) of Fig. 5-3.

The more direct HH method is able to calculate the J
(

t
)

for low-T as well. In addition,

it also captures the short-time dynamics corresponding to the crossover from microscopic
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figure. (d) Scaling plot for all films obtained by setting the horizontal axis x = T/Tg.

dynamics to glassy plateau.

From the time series of J
(

t
)

, we can extract for two arbitrarily chosen times, t =

5× 104 and t = 105, the creep compliance as a function of temperature and film thickness

(Fig. 5-6(a-b)). The resulting plots can be interpreted by assuming a simple Maxwell

model, J
(

t
)

= Jg + t/η. Here, it is readily seen that the elastic and viscous parts are

additive. We also verified in Fig. 5-5 for high-T that our data corresponds to the long

time behavior J
(

t
)

→ t/η predicted by the Maxwell model. In Fig. 5-6(a-b), for low-T ,

the creep compliance is very small, and of the order Jg ≈ 1/µp(H). Due to high viscosity,

1/η(H) term is negligible relative to 1/µp(H) in this limit. In the (liquid) high-T limit,

the reverse scenario occurs 1/η(H) ≫ 1/µp(H). It is also clear from Fig. 5-6(c) that there
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is a H-dependency for our J(t) seen to increase with the inverse thickness 1/H. This is

consistent with the H-dependence of our viscosities, Sec. 5.2, and experimental studies

[17–19, 53, 56, 91]. The creep compliances for all our films can also be brought to scale by

setting x = T/Tg as shown in Fig. 5-6(d).

We will be focusing solely on the J
(

t
)

calculated from the HH method for our experimen-

tal comparisons. As a reminder, the experiment mentioned in Sec. 5.4 measures the bi-axial

compliance, D
(

t
)

, of a freestanding PS film. For comparison with the experiment, we have

to convert our J
(

t
)

to D
(

t
)

by applying the constitutive equations of linear elasticity. By

assuming a Poisson ratio ν = 0.5 for isotropic systems, we have D
(

t
)

= J
(

t
)

/6 [134]. By

setting x = t/τα, we obtain the scaling of D
(

t
)

for all T > 0.32 as shown in Fig. 5-7. We also

see that a good approximation of the glass-like compliance Dg ≈ Jg/6 ≈ 1/6µp ≈ 0.0115

is obtained for very short times. We then shift the D
(

t
)

reported in Ref. [19] on top our

curves using shift factors (x, y) = (6.184 ·10−8, 2.256 ·108). We are able to demonstrate that

in the glassy regime (short times), the simulation and experiments superimpose perfectly.

As for the viscoelastic regime (intermediate-long time limit), it is seen that they diverge

as our films do not exhibit any rubbery plateau. Instead, our films reach the flow regime
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(for high-T ). The missing plateau can be attributed to the absence of chain entanglements,

which can greatly affect the polymer dynamics [62, 121, 122]. Unfortunately for us the

chain length of N = 16 is too short to observe this phenomenon N ≪ N e ≈ 100.

5.7 Major results

We compared in Sec. 5.2 the shear viscosities η calculated using different methods and

demonstrated that these data are consistent with the Vogel-Fulcher-Tammann (VFT) law.

We presented in Sec. 5.3 the storage and loss moduli G′(ω) and G′′(ω) from which we ob-

tained η and J0
e and thus τα,1 = J0

e η in the high temperature limit. This allowed us to

determine an absolute scale for the terminal relaxation time τα, Eq. 5.3. We suggested that

the crossing time τ×(λ ≈ 3) may be a numerically interesting alternative for the determi-

nation of τα. Rheological properties of freestanding films have been widely studied through

experiments and it was of significance for us to compare the experimental results with our

computational experiments. As shown in Fig. 5-4 the experimental and the computational

data for the glass transition temperatures Tg(H) can be collapsed on one mastercurve con-

sistent with the linear superposition, Eq. 1.3. We transformed in Sec. 5.6 G
(

t
)

to J
(

t
)

and

compared these J
(

t
)

-data with the shifted experimental data obtained from Ref. [19]. As

expected for our too short chains (N ≪ Ne) no rubbery plateau is observed for our data.
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Chapter 6

Layer resolved film properties

6.1 Introduction

We have seen in the previous chapters that our films follow an experimentally validated

trend of decrease in the apparent glass transition temperature Tg with decreasing H [11,

16, 56, 76, 133]. Although this behavior is not universal [15, 17, 18, 135], it has been

proposed that the H-dependence may arise from the presence of a liquid-like (soft) surface

[15, 19, 22, 56, 76]. Layer models assuming the coexistence of interfacial layers and an inner

layer with distinct mobilities are an often invoked interpretation for the relaxation of general

confined glass-forming liquids [9, 13, 14, 24, 26]. Experimental techniques focusing on the

characterization of Tg at different depths within freestanding PS films using florescence have

provided enough evidence on the reduction of Tg at the free interface (and as a function of

H) [22, 76, 136]. Moreover, many other intensive properties, such as µA, µF and thus µ,

have been seen in Ch. 4 to depend nontrivially on H. To understand these findings we have

to take a closer look at the (linear-additive) local contributions of µA

(

z
)

, µF

(

z
)

and µ(z).

This will allow us to verify the presence of bulk values µA0 = µA(z ≈ 0), µF0 = µF(z ≈ 0)

and µ0 = µ(z ≈ 0) in the middle of the film which are to leading order independent of

H as implied by the linear superposition relation, Eq. 1.3. In this chapter, we will first

describe simple layer resolved properties (density in Sec. 6.2, energies in Sec. 6.3, stresses in

Sec. 6.4). We will then discuss the distributions µA

(

z
)

and µF

(

z
)

in Sec. 6.5 and Sec. 6.6

that contribute to the (linear-additive) local shear-stress modulus µ(z) (Sec. 6.7). We

summarize our results in Sec. 6.8.
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Figure 6-1: (a) Density profile ρ(z) for film1 at T = 0.50. The film thickness H ≡
NM/ρ0L

2 may be obtained from the midplane density ρ0 (horizontal dashed line). Similar
values are obtained by fitting the mean-field prediction given by the solid line [124]. (b)
Interface width W (T ) for different L.

6.2 Density profile ρ(z)

We have already touched upon the density profile ρ(z) for the characterization of H in

Sec. 4.2. The ensemble and time averaged number density distribution is given by ρ(z) =
〈

ρ̂(z)
〉

with ρ̂(z) =
∑N

i=1wid(z; zi) being the instantaneous distribution using the weighting

function wid(z; zi) defined in Sec. 3.7, Eq. 3.4. The density profile for film1 at T = 0.50 in

the liquid limit is shown in Fig. 6-1(a). z = 0 corresponds to the center of mass of our films.

As emphasized by the dashed horizontal line the midplane number density ρ0 ≡ ρ(z ≈ 0)

can be fitted to high precision and we can, thus, determine the film thickness H using Eq. 4.1

[68]. The interface width W shown in Fig. 6-1(b) is obtained by fitting the ρ(z)-data at

the two surfaces with the mean-field prediction [124]

ρ(z) =
ρ0
2

(

1− erf

( |2z −H|
W

))

(6.1)

which is indicated by the solid line in Fig. 6-1(a). W decreases weakly upon cooling be-

coming roughly constant in the low-T limit. The small value of W is a consequence of the

large surface tension Γ of order unity (Sec. 6.4).

The midplane number density ρ0 is shown in Fig. 6-2 for all our films. Albeit ρ0 increases

slightly upon cooling, still being ≈ 1 which implies H ∼ 1/L2 to leading order. While this
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Figure 6-2: Midplane density ρ0(T ) for all our films. While ρ0 does not depend on H in
the liquid limit, it decreases with increasing H in the glassy limit. This allows to determine
the glass transition temperature Tg and the midplane density ρ0g ∼ 1/Hg at the glass
transition. Inset: Scaling of ρ0/ρ0g vs T/Tg using ρ0g and Tg as indicated in Table 3.1.

also holds to higher order in the liquid regime, i.e. ρ0 is strictly H-independent, ρ0 is seen to

decrease with increasing H in the glass limit. Apparently, the thicker films do not manage

to get as compact as the thinner films for T ≪ Tg. As discussed in Ch. 4, this may be used

to define the quasi-thermodynamic glass transition temperature Tg, the midplane number

density ρ0g and film thickness Hg at the transition from the intercept of the linear glass

and liquid asymptotes. The values for Tg, Hg and ρ0g are given in Table 3.1. This allows

to collapse the midplane densities ρ0(T ) of all films as shown in the inset of Fig. 6-2.

6.3 Energy profile e(z)

We compute the energy contribution ê(z) to the total instantaneous energy ê using the

weighting functions wid(z; zi) and wex(z; zi, zj) defined in Sec. 3.7. The time and ensemble

averaged energy distribution e(z) is presented in Fig. 6-3(a) comparing films of two lateral

box sizes (film1 and film2 ) for two temperatures (T = 0.55 and T = 0.20). The midplane

energy density e0 ≡ e(z ≈ 0) is seen to be H-independent above Tg. A better representation

of the midplane energy density e0 (open symbols) is shown in Fig. 6-3(b), plotted as a

function of T for all our films. The global energy density e (filled symbols) is also given
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Figure 6-3: (a) In-plane energy profiles e(z) for film1 (lines) and film2 (symbols) for two
selected temperatures T = 0.55 and T = 0.20. The midplane energy e0 is seen to be H-
independent for T ≫ Tg. (b) Midplane energy density e0 and global energy density e vs T
for our films as indicated. Inset: e brought to scale by setting x = T/Tg and y = e/eg.

in the same plot. Note that e0 < e and that both e0 and e decrease upon cooling. It is

also seen that e0 is H-independent above Tg and only weakly H-dependent in the glassy

limit. This higher order effect is expected in the glassy regime where ρ0 weakly depends

on H. The average energy density e decreases more strongly with increasing H. This can

be attributed to the broad bulk regime (more negative) for thicker films. For thinner films,

the interface contribution (less negative) dominates the bulk contribution. By focusing on

the filled symbols in Fig. 6-3(b), it becomes clear that as the film shrinks, the spread of the

values of e is reduced. This is also readily seen from Fig. 6-3(a).

6.4 Normal tangential stresses

Following the Irving-Kirkwood convention, Sec. 3.7, we also computed the layer-resolved

distribution σ̂αβ(z) of the total instantaneous stress tensor σ̂αβ taking into account both the

ideal and the excess stress contributions. We remind that the Irving-Kirkwood convention

implies the linear sum rule (Eq. 3.8)

σ̂αβ =
δzb
H

nb
∑

b=1

σ̂αβ(zb) (6.2)
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Figure 6-4: The total tangential stress σt(z) ≡ (σxx(z)+σyy(z))/2 for various temperatures
for (a) film1 and (b) film3. σt(z) is always bimodal with maxima at the free interfaces of
the film. While the midplane tangential stress σt0 ≡ σt(z ≈ 0) vanishes above the glass
transition, it becomes finite for temperatures below Tg. This must be taken into account
for the determination of the surface tension.

for all instantaneous stress tensor components. The average off-diagonal elements of the

stress tensor, such as the shear stress σxy(z), all vanish by symmetry. Since the vertical box

size Lz is sufficiently large that all components of the stress tensor σαβ(z) [57] strictly vanish

outside the films, the average vertical normal stress σzz(z) must also vanish for all z-planes

[34]. At variance to this, the average tangential normal stresses σxx(z) and σyy(z) may

be finite.31 Since the x- and the y-directions are equivalent we consider here the average

tangential stress σt ≡ (σxx + σyy)/2 and its distribution σt(z) ≡ (σxx(z) + σyy(z))/2.

σt(z) is presented in Fig. 6-4 for film1 and film3 for several temperatures. (Unfortu-

nately, only Nc = 10 configurations are available for film3.) As for all our films studied,

σt(z) is seen to be bimodal with strong and sharp maxima at the film surfaces. Since for

liquids all average normal stress components must be equal [6, 137] and since σzz(z) = 0

everywhere, σt(z ≈ 0) vanishes rigorously for film1, film2 and film3 for high temperatures.

Interestingly, upon further decreasing the temperature below the glass transition σt(z) is

observed to become finite around z = 0. This makes manifest that the film center is no

longer a liquid. The bulk tangential stress σt0 for all our films are taken as the mean value

31This is possible due to the rigid constraint imposed by the periodic boundary conditions, i.e. the
simulation box balances the tensile tangential stresses along the films.
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Figure 6-5: Tangential stress σt0 at the film midplane (main panel) and surface tension
Γ ≡ (σt − σt0)H/2 (inset) as functions of x = T/Tg for all our films. The vertical axis of
the inset is made dimensionless using Γg ≡ Γ(T = Tg).

across a certain number of bins around the film midplane at z = 0. σt0 is presented in

the main panel of Fig. 6-5 as a function of the reduced temperature x = T/Tg. The finite

σt0-value is not a computational artifact but caused by the tendency of the film to reduce

its thickness H at a fixed lateral box length L. While at high temperature an initial finite

tension σt0 > 0 can relax by the vertical flow of the particles reducing H, this gets increas-

ingly difficult and ultimately impossible around and below Tg. The observed σt0 > 0 is

hence a direct consequence of the broken permutation symmetry, i.e. the neighborhood of

each particle becomes frozen [137].32 Please note also that σt0 does not rigorously vanish

for our thinnest films even for T ≫ Tg. As can be seen from the two examples given in

Fig. 6-4, this is due to the fact that as the films becomes thinner the surface peaks of σt(z)

increasingly overlap. The clear separation of surface and bulk behavior becomes spurious.

To make this point clear let us give an additional characterization of the surface width.

As shown in the inset of Fig. 6-6 we first determine the maximum σmax of the peak and

define then peak width Wt = z+ − z− with σt(z±) − σt0 = (σmax − σt0)/2, i.e. we take

the bulk normal stress σt0 as the reference and determine then the peak width at half

the (shifted) peak height. As presented in the main panel of Fig. 6-6, the peak width Wt

becomes narrower upon cooling and upon increasing the film thickness. It is roughly similar

32We have currently no explanation for the observed linear decay in the glass regime (dashed line).
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the determination of Wt for film1 and T = 0.55. σmax ≈ 1 and σt0 ≈ 0 in this case.

to the width W from the density profile, Fig. 6-1(b). Since the ratio H/2Wt is about 3 for

film4, the two-layer model should be used with care for these ultrathin films.

The normal tangential stress σt and its distribution σt(z) are, obviously, related to the

surface tension Γ. We remind that for a liquid film with σt0 = 0 [57, 78]:

2Γ = δzb
∑

i

σt(zi) = H σt. (6.3)

However, as noted above, σt0 ≈ 0 does not hold below the glass transition. Since there is

thus no true liquid phase in the film center, Eq. 6.3 cannot be used. Using a Gibbs dividing

plane construction, the total tangential stress σtH has now the two contributions σt0H and

Γ. The finite tangential midplane stress σt0 has to be subtracted [138] and we define33

2Γ ≡ (σt − σt0) H (6.4)

if the surface tension is computed through and below Tg. The surface tension Γ is presented

in the inset of Fig. 6-5. Interestingly, Γ(T ) is non-monotonic: it increases first upon cooling

in the liquid regime and decreases then in the glass regime. The vertical axis is made

dimensionless using Γg ≡ Γ(T = Tg) (cf. Table 3.1). The scaling attempt is not successful.

33See the general comment at the end of this section.
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Figure 6-7: Distribution µA

(

z
)

of the affine shear modulus µA for film1 and film2 for one
temperature in the liquid limit (T = 0.55) and one in the glass limit (T = 0.20). The
midplane plateau µA0(T ) is H-independent. As indicated by arrows, surface effects are
only strong in the liquid limit.

We finally note that since below Tg the particle positions are essentially frozen, the

free energy per area to reversibly create a surface and the tangential normal surface stress,

Eq. 6.4, becomes strain-dependent and may differ. Due to this well-known "Shuttleworth

effect" [57, 138–141] the notion "surface tension" used for the property Γ defined above by

Eq. 6.4, characterizing rather the “surface stress", may be misleading for our amorphous

films below Tg [138, 141], as in general for solids [139, 140].

6.5 Local affine shear modulus µA

(

z
)

As noted above, the average shear stress τ(z) ≡ σxy(z) vanishes by symmetry. According to

Eq. 3.8 and Appendix B.1 τ(z) is the linear-additive z-contribution to the first shear-strain

derivative τ of the system Hamiltonian. The corresponding second shear-strain derivative

µA and its distribution µA(z) do, however, not vanish. This is shown in Fig. 6-7 for film1

(circles) and film2 (triangles) focusing on one temperature in the liquid limit (T = 0.55)

and one deep in the glass (T = 0.20). Similar as for the midplane energy density e0, the

plateau value µA0 ≡ µA(z ≈ 0) is in leading order H-independent. The decay of µA

(

z
)

at

the surface is qualitatively different in both T -limits. It decreases smoothly in the liquid

limit as marked by the arrows. Since for thinner films the midplane plateau has a decreasing
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weight ∝ (H −W ), this implies that the average µA must decrease as

µA =
δzb
H

∑

b

µA(zb) ≈ µA0

(

1 +
µAs/µA0

H

)

(6.5)

where the fit parameter µAs characterizes the contributions from the film surfaces. This is

consistent with data presented in Fig. 4-3. Interestingly, µA

(

z
)

is seen in Fig. 6-7 to drop

suddenly in the glass regime. The surface contribution µAs is thus negligible. This explains

why µA(≈ µA0) was found to barely depend on H at low temperatures (Fig. 4-3).

6.6 Local shear-stress fluctuations µF

(

z
)

We turn now to the characterization of the shear-stress fluctuations. As already noted

above, the average shear stress τ(z) vanishes for all z. As may be seen from Fig. 6-8, this

is not the case for the higher moment

µF

(

z
)

≡ βV
〈

(τ̂(z)− τ̂(z)) (τ̂ − τ̂)
〉

(6.6)

characterizing the correlation of the local shear stress τ̂
(

z
)

and the total shear stress τ̂ .

Importantly, the total film volume V = HL2 is used as prefactor and not the slab volume

Vb = δzbL
2. The above definition is thus consistent with the linear sum rule, Eq. 3.8, i.e.

µF ≡ βV
〈

(τ̂ − τ̂)2
〉

=
δzb
H

∑

b

µF(zb). (6.7)

This is also consistent with the general stress-fluctuation formalism for the local contribu-

tions to the elastic moduli used in the literature [42, 97, 142, 143]. We emphasize that

µF

(

z
)

depends not only on τ̂
(

z
)

, but also on the total shear stress τ̂ . It is thus not a

completely local observable as it would have been the case using instead:

µloc
F

(

z
)

≡ βVb

〈

τ̂
(

z
)2 − τ̂

(

z
)2〉

. (6.8)

Importantly, the linear sum Eq. 6.7 does not hold for µloc
F

(

z
)

in general. However, it is

expected that µF

(

z
)

and µloc
F

(

z
)

become equivalent assuming that the stresses of different

z-planes decorrelate, i.e.,
〈

τ̂
(

z
)

τ̂(z′)
〉

∼ δz,z′ .

75



-10 -5 0 5 10

z

0

20

40

60

80

100

T=0.55 µ
F
(z)

T=0.20 µ
F
(z)

T=0.55 µ
F

loc
(z)

T=0.20 µ
F

loc
(z)

µ
F0

(T)

Figure 6-8: Distributions µF

(

z
)

and µloc
F

(

z
)

of the stress fluctuations. The midplane plateau
µF0 ≡ µF(z ≈ 0) is again to leading order H-independent. It decreases upon cooling. While
µF

(

z
)

is similar to µA

(

z
)

for all z in the high-T limit, it becomes bimodal for T ≪ Tg with
maxima at the free surfaces (arrows). The characterization of µloc

F

(

z
)

remains similar to
µF

(

z
)

and µA

(

z
)

around the interfaces, but in the bulk they differ (see footnote 35).

The linear-additive distribution µF

(

z
)

is presented in Fig. 6-8.34 Let us first consider the

high-T limit shown for T = 0.55. As one expects from the equality µA = µF of the overall

film averages, it is seen from the comparison of Fig. 6-7 and Fig. 6-8 that µA

(

z
)

= µF

(

z
)

holds for T ≫ Tg. This also explains why the same 1/H-correction has been obtained

for µA and µF.35 In the low-T limit, qualitatively different distributions are observed.

Upon cooling µF

(

z
)

decreases in the inner parts of the film while is remains similar to

µA

(

z
)

around the surfaces. The arrows in Fig. 6-8 point to the peaks at T = 0.20 near

the interface that were already seen for µA

(

z
)

. In addition, the distribution is somewhat

bimodal as seen in Fig. 6-8. The contribution from the surfaces is more important for thin

films, this explains why the overall µF increases for thinner films below Tg as shown in

Fig. 4-4.

34The presented data for film1 is shown for Nc = 10 with δttrj = 2.5. Whereas the data for film2 is
shown for Nc = 10 but with a lower sampling rate δttrj = 500. As a result noise grows into the data for
film2. For clarity the data for film2 was smoothed.

35 As a remark on µloc
F

(

z
)

, please note that µloc
F

(

z
)

remains similar to µA

(

z
)

≈ µF

(

z
)

around the interfaces

(|z| ≈ H/2) while we observed µloc
F

(

z
)

≪ µF

(

z
)

in the bulk of the film for all T (Fig. 6-8). In addition,

the local definition µloc
F

(

z
)

fails for our thinner films as the local stress-fluctuations of different z-slabs are
still correlated. Apparently, the shear stresses are correlated over a correlation length ξ with ξ ≫ δzb. This
questions the validity of a true "local" µloc

F

(

z
)

as in Eq. 6.8. Overall, µloc
F

(

z
)

will not predict a reasonable
µ(z) due to its peculiar nature. For this reason we focus on the linear-additive distribution µF

(

z
)

, Eq. 6.6.
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(

z
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of the shear modulus for film1 and two
temperatures. While µ(z) vanishes in the liquid limit (open circles), it becomes finite below
Tg with a plateau in the bulk phase in the middle of the films (dashed horizontal line)
sandwiched by the softer surface layers marked by the arrows.

6.7 Local shear modulus µ(z)

The shear modulus µ(z) ≡ µA

(

z
)

− µF

(

z
)

computed according the linear-additive local

stress-fluctuation formula is presented for two temperatures in Fig. 6-9 for film1. As one

expects, µ(z) ≈ 0 for all z in the liquid limit T = 0.55 (red dots). µ(z) becomes finite

below for T = 0.20 (blue dots in Fig. 6-9) with a broad maximum at the midplane. For

T = 0.20, the interface peaks seen in Fig. 6-7 and Fig. 6-8 cancel each other, leading

to the finite surface regime of several bead diameters emphasized by the arrows. µ(z) is

presented for additional temperatures in Fig. 6-10 for film1. Of prominence is the behavior

at T ≈ Tg = 0.37 (green dots), where, although noisy, the contribution to the global µ is seen

to come from the bulk of the film. Our results reveal that there is a transition from a high

modulus in the bulk to a low modulus at the surface. The reduction in the shear modulus

µ(z) in the surface region implies the existence of a soft, liquid-like interface, which has been

proposed in many experimental and theoretical studies [9, 19, 22, 43, 55, 76, 87, 144, 145].

From the layer analysis of film1, we confirm this effect for the first time using the local

stress-fluctuation formalism.
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Figure 6-10: The shear modulus µ(z) (dots), the affine term µA

(

z
)

(lines) and the fluc-
tuation term µF

(

z
)

(circles) computed for film1 according the z-linear stress-fluctuation
formula is presented for selected temperatures. Presented results are smoothed over a win-
dow = 5. The reduction in shear modulus µ(z) near the surface implies the existence of
a soft interface, which has been proposed in the literature. From our layer analysis, we
confirm this effect for film1 using the stress fluctuation formalism for the first time.

6.8 Major results

In this chapter we have investigated the z-distributions of various mechanical and rheological

properties such as the density ρ(z), the energy e(z) and the different components of the

stress tensor σαβ(z). We determined the surface tension Γ from the normal tangential stress

components (Sec. 6.4). We then focused on the affine shear-modulus µA

(

z
)

(Fig. 6-7), the

shear-stress fluctuations µF

(

z
)

(Fig. 6-8), and the shear modulus µ(z) = µA

(

z
)

− µF

(

z
)

(Fig. 6-9). While in the high-T limit µF

(

z
)

≈ µA

(

z
)

and µ(z) thus vanishes for all z, µ(z)

becomes finite around and below the glass transition. Most importantly, in agreement with

Eq. 1.3 and confirming the proposed two-layer model [9, 19, 22, 43, 55, 76, 87, 144, 145]

µ(z) is monomodal with a broad, essentially H-independent maximum in the bulk phase

of the films and surface layers of finite width Wt ≈ 1 where µ(z) continuously vanishes.
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Chapter 7

Ensemble fluctuations of shear stress

fluctuations

7.1 Introduction

In the previous chapters 4-6 we have numerically characterized important, experimentally

measurable properties of polymer thin films focusing on the average viscoelastic linear re-

sponse. In agreement with the related recent numerical findings on self-assembled transient

networks [101] and three-dimensional polymer melts [65–67] it was observed that the shear-

stress relaxation function G
(

t
)

and the (generalized) shear modulus µ strongly fluctuate and

this especially at temperatures around the glass transition temperature Tg. This prompted

the theoretical work outlined in Ch. 2 and in Appendix A. This work suggests that it may be

possible to describe the observed fluctuations assuming that the time series x of (rescaled)

shear stresses τ̂ used for calculating G
(

t
)

and µ are stationary Gaussian processes [69, 77].

As we have emphasized in Sec. 2.6, it is important to distinguish stochastic processes which

are ergodic from those which are effectively non-ergodic. The latter case should matter for

films at low temperatures T ≪ Tg. Taking advantage from the abundance of independently

prepared configurations Nc for film1, we test here some of the predictions presented in

Ch. 2. The presented chapter is adapted from our recent publications [69, 70] where, in

addition to polymer films, systems of self-assembled transient networks and polydisperse

LJ particles were studied.
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Figure 7-1: Shear modulus µ, shear relaxation modulus G and the corresponding standard
deviations δµ and δG taken at t = ∆t = ∆tmax = 105 as functions of T . The observed two
inequalities G ≤ µ and δG ≫ δµ are both consequences of the stationarity relation Eq. 1.2.
The corresponding error bars δµ/

√
Nc − 1 and δG/

√
Nc − 1 are not shown.

7.2 Standard deviations δG and δµ

As already pointed out in Ch. 4, the data for G
(

t
)

is quite noisy, especially around Tg,

and we had to use gliding averages and a strong logarithmic binning for the clarity of

the presentation. We now describe this qualitative observation in quantitative terms. In

Fig. 7-1 we compare µ and G and their respective standard deviations δµ and δG, Eq. A.24,

taken at the same constant time t = ∆t = ∆tmax = 105 and plotted as a function of the

temperature T . While we still average over the Nc independent configurations, we do not

use any gliding averaging or logarithmic binning. As we saw in Fig. 1-2, µ(T ) decreases

both continuously and smoothly with T . Albeit G(T ) decreases also continuously, it reveals

an erratic behavior for temperatures slightly below Tg (vertical dashed line). The inequality

G(T ) ≤ µ(T ) for all temperatures is expected from Eq. 1.2. More importantly, being the

second integral over G
(

t
)

, the shear modulus µ automatically filters off the high-frequency

noise. This explains the observed strong inequality δµ ≪ δG of the standard deviations. At

variance to µ and G, a striking non-monotonic behavior36 is observed for δµ and δG with

36This non-monotonic behavior and the similar findings for self-assembled networks [101] and 3D polymer
bulk systems [65, 66] prompted the interest in stationary Gaussian stochastic processes, Ch. 2.
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Figure 7-2: Direct test of the Gaussianity of the stochastic process, Eq. 2.34, for film1 and
∆t = t = 104. Main panel: Comparison of µA, µF, h and δh/

√
2 as a function of T . h ≈ µF

is non-monotonic with a maximum slightly below Tg. Since Eq. 2.34 holds, δh is also non-
monotonic. Inset: Absolute value of the non-Gaussianity parameter α2 as a function of T
demonstrating, |α2| ≪ 0.0007, the high accuracy of the Gaussian assumption.

maxima slightly below the glass transition temperature Tg. While δµ ≪ µ and δG ≪ G in

the solid limit, δµ > µ and δG > G at high and intermediate temperatures. Importantly,

the presented data is characterized by strong ensemble fluctuations with δµ/µ and δG/G

of order of unity, similar to what has been observed for 3D bulk systems [65, 66]. The

inequalities δµ ≪ δG and δµ/µ ≪ δG/G are the strongest slightly below Tg. Therefore, the

prediction of G(T ) or µ(T ) for T ≈ Tg becomes thus meaningless for a single configuration.

This suggests that numerical studies of the elastic shear strain response around the glass

transition should focus on µ rather than of G as δµ ≪ δG. As already noted at the end of

Sec. 2.5, we have verified that δG ≈ δh(t) and δµ ≈ δµF holds. This is expected since the

simple average µA barely fluctuates.

7.3 Standard deviation δh(t)

In order to explain the non-monotonic behavior of δG, Fig. 7-1, we address now the standard

deviation δh of the autocorrelation function h. As explained in Sec. 2.5 we expect δh2 = 2h2,

Eq. 2.34, for a Gaussian stochastic process. We compare in the main panel of Fig. 7-2
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Figure 7-3: Temperature dependence of δµF for free-standing films with open symbols
indicating δµF,G and filled symbols δµF,tot. While δµF,G ≈ δµF,tot for small ∆t and all T ,
both differ below Tg and the more the larger ∆t. The bold dashed line marks the limit
∆ne ≈ 1 for large sampling times ∆t and low temperatures T .

µA, µF, h and δh/
√
2 as a function of temperature focusing on film1 (L = 23.5) and on

∆t = t = 104. As can be seen the data for µF, h and δh/
√
2 collapse on one mastercurve

with strong maximum slightly below Tg. That µF ≈ h is a consequence of the stationarity

of the stochastic process, as summarized by Eq. 1.2 or Eq. 2.2, and the large time t = ∆t

considered. That h ≈ δh/
√
2 is a consequence of its Gaussianity. This latter point may

be better seen from the usual non-Gaussianity parameter α2 ≡ δh2/h2 − 1 presented in

the inset. Apparently, the deviations from the assumed Gaussianity are always negligible.

This shows that Gaussian processes are dominant for all T, even below the glass transition.

Obviously, this does not rule out very small sub-dominant non-Gaussian contributions.37

7.4 Standard deviation δµF

We characterize now the standard deviation δµF of µF. We begin by comparing in Fig. 7-3

the temperature dependence of δµF,tot, operationally defined by Eq. A.24, and the pre-

diction δµF,G[G(t)] for Gaussian ergodic processes, Eq. 2.3, computed using the measured

relaxation function G(t). The most important feature is here that within numerical pre-

cision δµF,tot ≈ δµF,G for all ∆t and T ≫ Tg, while both differ below Tg for large ∆t. It

37This could be investigated by considering higher order correlation functions and their variances.
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Figure 7-4: ∆t-dependence of δµF,G[G] (open symbols) for all indicated T and of δµF,tot

(filled symbols) for T = 0.55, 0.4, 0.2 and 0.05. The 1/
√
∆t-decay for small ∆t is shown by

the bold solid line, the plateau value ∆ne ≈ 1 of δµF,tot for small T and ∆t ≫ τne ≈ 800 by
the bold dashed line and δµF,G ≈ 1.55|b| (b = 1.4 for T = 0.4 and b = 0.11 for T = 0.05)
expected for logarithmic creep by thin horizontal lines.

can also be seen that the maximum of δµF,G(T ) becomes sharper and shifts to lower T

with increasing ∆t. While δµF,G decreases strongly on cooling for larger ∆t – this is not

observed for δµF,tot, being only weakly T -dependent. As marked by the bold dashed line,

δµF,tot → ∆ne ≈ 1 in this limit. Apparently, Eq. 2.3 for ergodic Gaussian processes breaks

down as expected from the more general relations Eq. 2.43 or Eq. 2.45.

An alternative representation of the same data is given in Fig. 7-4 focusing on the ∆t-

dependence of δµF,G and δµF,tot. δµF,tot ≈ δµF,G holds again for T above and around Tg.

Note also that δµF,tot ≈ δµF,G ∝ 1/
√
∆t (bold solid line) for all ∆t ≤ ∆tmax for the largest

temperature T = 0.55. Interestingly, T -dependent shoulders appear for T ≈ 0.4. This is

a consequence of the creep-like decay of G(t) in this regime which is approximately fitted

by G(t) ≈ a − b ln(t) as indicated in Fig. 4-9. According to Appendix A.3 (cf. Fig. A-3),

one expects a shoulder with δµF,G ≈ 1.55|b|. That this holds is seen by the upper thin

horizontal line using b = 1.4 for T = 0.4. In the low-T limit we see again that δµF,tot

becomes constant, δµF,tot ≈ ∆ne for ∆t ≫ τne ≈ 800, while δµF,G continues to decrease

with ∆t. The small deviations of δµF,G from the 1/
√
∆t-asymptote are caused by the

fact that G(t) does not become rigorously constant, G(t) → µp > 0, even for our lowest

83



10
-1

10
0

10
1

10
2

10
3

10
4

10
5

∆t

10
-1

10
0

10
1

10
2

µ
F

δµ
F,tot

δµ
F,int

δµ
F,G

(δµ
F,int

2
+∆

ne

2
)
1/2

film1, T=0.05

τ
ne

=800 b=0.11

30/∆t 1/2

∆
ne

=1.1

µ
F

≅ 83

creep

Figure 7-5: ∆t-dependence for µF, δµF,tot, δµF,int and δµF,G for film1 and the low tempera-
ture T = 0.05. The bold solid line indicates the expected 1/

√
∆t-decay δµF,int ≈ δµF,G, the

dashed solid line the non-ergodicity parameter ∆ne ≈ 1.1 and the vertical arrow the corre-
sponding crossover time τne ≈ 800. The thin horizontal line marks the shoulder expected
to matter for δµF,int ≈ δµF,G for much larger ∆t due the logarithmic creep of G

(

t
)

.

temperatures. As shown by the upper thin line in Fig. 4-9, G(t) is fitted by a logarithmic

creep. The amplitude b of the low-T creep is, however, too small to lead to a clear shoulder.

As seen by the lower thin solid line in Fig. 7-4 using b = 0.11 for T = 0.05 at least one

decade longer production runs are required to demonstrate the low-T creep for δµF,G.

Focusing on film1 and the lowest temperature T = 0.05 we compare µF, δµF,tot and

δµF,G and, in addition to this, also the internal standard deviation δµF,int characterizing

the average fluctuation within each meta-basin. In agreement with Eq. A.25 we compute

δµF,int by first computing the variance of µF[xck] over Nk time series of length ∆t of

a given configuration c and by taking in a second step the ensemble average over the

Nc configurations. As explained at the end of Sec. 3.6 Nk and ∆t are related by Nk =

∆tmax/∆t, i.e. the precision of δµF,int(∆t) decreases with ∆t. Only data for Nk > 2 are

shown. Importantly, it is seen that δµF,int ≈ δµF,G for all ∆t in agreement with Eq. A.32.

This confirms that the stochastic process within each basin is stationary and Gaussian. As

shown by the crosses, the shifting of δµF,int or δµF,G by the plateau value ∆ne according to

Eq. 2.53 leads to a reasonable approximation of δµF,tot.
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7.5 Major results

The relaxation function G
(

t
)

and the generalized shear modulus µ(∆t) are characterized

by strong fluctuations, especially around the Tg. We showed that these fluctuation can be

understood assuming stationary Gaussian stochastic processes [69, 70, 77]. Specifically,

• δh(t)2 ≈ 2h(t)2 holds to high precision as expected for Gaussian processes (Eq. 2.34);

• δµF,int ≈ δµF,G for all ∆t and T confirming Eq. A.32;

• δµF,tot ≈ δµF,G for low ∆t and not too small T showing that the non-monotonic

behavior of δµF,tot(T ) can be traced back to the behavior of h(T ).

• δµF,tot and δµF,G differ in the non-ergodic limit for low temperatures. For large ∆t,

δµF,tot becomes a constant ∆ne > 0 and δµF,G ∼ 1/
√
∆t (Eq. 2.44);

• deviations from the 1/
√
∆t-decay for δµF,G ≈ δµF,int are observed which are traced

back to the creep-like decay of G
(

t
)

as discussed in Appendix A.3.
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Chapter 8

Conclusion

8.1 Summary

In this PhD work, we numerically characterized various mechanical and rheological prop-

erties of freestanding polymer films of varying thicknesses H. This was done within linear

response without applying external perturbations using the internal (shear) stress fluctu-

ations of our systems. Specifically, we have focused on the average shear-stress relaxation

function G
(

t
)

and the average generalized modulus µ(∆t) and their respective standard de-

viations δG
(

t
)

and δµ(∆t). Interestingly, it was seen that G
(

t
)

and µ(∆t) increase continu-

ously with decreasing T for all H, without any indication of the suggested jump-singularity

[106, 125–129] but in perfect agreement with all published experimental [15, 19, 20] and

computational [43, 44] studies. We presented four main aspects concerning our films in this

thesis, highlighted previously in Fig. 1-3 and summarized in the following paragraphs.

Calculation of the response function G
(

t
)

and a generalized shear modulus µ(∆t):

Using the stress fluctuation formalism, we calculated the shear modulus for a wide range

of temperatures and thicknesses. Importantly, we noticed a clear 1/H-dependence for

these properties and related observables, such as the shear viscosity η. We also obtained a

successful TTS scaling and extracted from this, the τα and η for our films (Ch. 4). This

work is part of the published journal article in Ref. [68].

Numerical transformation of G
(

t
)

: We used numerical methods to obtain from G
(

t
)

the storage modulus G′(ω) and the loss modulus G′′(ω). We got for the highest temper-
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ature the shear viscosity η and steady-state creep compliance J0
e from the low-frequency

asymptotes, Eq. 2.22, of G′(ω) and G′′(ω). This determines the relaxation time τα,1 = J0
e η

for T = 0.55 which is used as a reference (scale) for the terminal relaxation time τα(T )

obtained by means of the TTS scaling. Interestingly, the crossing time τ×(λ = 3) ob-

tained from the first crossing of λG′(ω) and G′′(ω) gives a direct (without TTS scaling)

and numerically reliable estimate of τα above Tg (Sec. 5.3). We also performed a direct

transformation of G
(

t
)

to obtain the creep compliance J
(

t
)

. This allowed for a comparison

with the compliance measured in the nanobubble inflation experiment [19] (Ch. 5). We

also saw here a limitation of our model parameter N ≪ Ne and the associated absence of

a rubbery plateau.

Calculation of the local shear modulus from the stress fluctuation formalism:

We calculated the layer-resolved shear modulus µ(z) and related properties in Ch. 6. Con-

forming with various other experimental and computational studies [24, 43, 56, 75, 76], we

verified the presence of a soft film interface, manifested by the drop in shear modulus at

the surface (z ≈ H/2) relative to the center of the film. It was also seen that the width of

the soft surface region at the interface grows with T . In the high-T limit, µ(z) was seen

to vanish (µ(z) ≈ 0) as expected. The key results emerging from this provides compelling

evidence on the linear 1/H-dependency of global film properties, arising from the local

z-resolved contributions, and in support of the two-layer model [56].

Calculation of ensemble fluctuations of the response function and the shear

modulus: After observing that the fluctuations of G
(

t
)

were of the same order as that of

its means (especially around Tg), we tried to explain the origins and various contributions

of these fluctuations (Ch. 7). We found that δG
(

t
)

≈ δh(t) ≈
√
2h(t) and δµ ≈ δµF(∆t),

as the affine Born-Lamé contribution δµA ≈ 0. We also saw that a system in its internal

basin is characterized by Gaussian fluctuations δµF,G ≈ δµF,int. We also saw that the total

ensemble fluctuation δµF,tot and δµF,G differ in the non-ergodic limit for low-T . It was seen

that for large ∆t and low-T , δµF,tot becomes a constant ∆ne > 0 and δµF,G ∼ 1/
√
∆t.

The theoretical concepts developed in this regard (Ch. 2) should be useful in general and

applicable for a broad range of stationary Gaussian stochastic processes in many area of

condensed matter physics. This work was part of a collaborative, group-wide study which
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was recently published [69]. A followup article [70] focusing on the low-temperature non-

ergodic limit (as outlined in Sec. 2.6 and Sec. A.5-A.7) has also been published.

8.2 Perspectives

Our work on freestanding polymer films does not by any means provide a full picture. There

are certainly areas that can be improved and there are different avenues that one can still

pursue. A few of these can already be identified:

• Simulations with N ≫ Ne are necessary for multiple reasons. The dynamic pro-

cesses discussed here are expected to behave closer to experimental results reported

in Ref. [19] for a larger N , allowing for more comparisons. The entanglement assisted

slowdown in relaxation will also confirm for us the presence of a rubbery plateau for

the creep compliance J
(

t
)

.

• In this thesis, we imposed the lateral box width L in an equilibrium simulation to

indirectly measure the creep compliance (transformed from G
(

t
)

calculated using the

shear-stress fluctuation formalism). Another approach to do this would be to perform

89



an explicit out-of-equilibrium simulation where one applies a constant infinitesimal

strain in the xy plane to measure G
(

t
)

or a constant infinitesimal stress in both x

and y plane to measure the biaxial compliance D
(

t
)

as in experiments.

• It would be interesting to explore other polymer architectures. An experimental study

by the Drenckhan group (ICS, Strasbourg) showed that a commercially available comb

copolymer, DBP732 – made of a long silicon backbone (PDMS) and multiple PEG-

PPG branching sites, has the potential to form extremely stable free standing thin

films (10− 150nm) without the use of additional stabilizing agents [50]. The working

hypothesis was that this effect originated due to a stiff interface (contrary to the soft

interface formed by linear chains in this thesis). A preliminary attempt was made in

this direction during the course of my PhD, based on a coarse-grained bead-spring

model with N = 32 and varied branch-backbone interaction parameters, but we were

not able to observe the anticipated interface stiffness. Further work is required to

address the intricacies of this interesting phenomenon.

• In our simulations, we focused also on the variation of ∆t and T while keeping other

parameters such as the total number of particles in the system n = N×M ≈ V fixed.

Most properties discussed in this work µA, µF, µ or h(t) are defined as intensive

properties, and their mean values should not essentially depend on the system size

n or the volume V . This aspect has to be verified for our films. (Perhaps by taking

4×M and a corresponding increase in L → 2× L to maintain the film geometry.)

• In addition, a recent study conducted in our group on the standard deviations of

the above mentioned properties for other model systems – Transient self assembled

networks (TSANET) and 2D-polydispersed LJ beads (2DpLJ) – have emphasized

that there is a non-trivial system size dependency for non-ergodic systems [69, 70]. As

readily seen from Fig. 8-1, where we compare the system-size dependency for various

model systems, there is only a single data point corresponding to our freestanding film

system (film1 ). Therefore, it would be interesting to verify/understand how ∆ne(n)

behaves for our films. Our working hypothesis is that it will behave similar to the 3D

polymer glass system, shown in Fig. 8-1.

• As a final note, our claim that δG/G or δµ/µ must generally become large (of or-
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der unity) for times where G(t) strongly decays and that these ratios are, more-

over, system-size independent may in fact be misleading for the out-of-equilibrium

responses of real macroscopic materials. From the theoretical point of view it is an

interesting question how to generalize the fluctuation-dissipation relations, connecting

the average linear out-of-equilibrium response to the average equilibrium relaxation

[3, 101, 105], to describe the sample-to-sample fluctuations.
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Appendix A

More on time series of stationary

Gaussian stochastic processes

A.1 Reformulations of δvG[c]

Since for large I the sums over two, three or even four indices stated in Sec. 2.5.3 by

Eqs. 2.37-2.38 rapidly become numerically unfeasible, it is of importance that the three

terms T2, T4 and T3 of Eq. 2.35 can be simplified to single loops [77]. The first two terms

simply become

T2(∆t) =
2

I2

(

Ic20 + 2

I−1
∑

k=1

(I − k)c2k

)

(A.1)

T4(∆t) =
2

I4

(

Ic0 + 2

I−1
∑

k=1

(I − k)ck

)2

. (A.2)

Let us define the sum S(s, I) ≡
∑I

i=1 ci−s. Note that S(s, I) may be computed starting

from S(0, I) using the recursion relation S(s + 1, I) = S(s, I) + cs − cI−s. Using this the

calculation of

T3(∆t) =
4

I3

I
∑

s=1

S(s, I)2 =
8

I3

I/2
∑

s=1

S(s, I)2 (A.3)

becomes also of order O(I). Using the symmetry S(s, I) = S(I− s+1, I) we have assumed

in the last step that I is even. In the continuum limit for large I = ∆t/δt the three terms
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further simplify to

T2(∆t) =
4

∆t2

∫ ∆t

0
dt (∆t− t)c(t)2 (A.4)

T4(∆t) =
8

∆t4

(

∫ ∆t

0
dt (∆t− t)c(t)

)2

(A.5)

T3(∆t) =
8

∆t3

∫ ∆t/2

0
dt (η(t) + η(∆t− t))2 (A.6)

using η(t) ≡
∫ t
0 du c(u) for the last contribution.

A.2 Some general properties of δvG[c]

Assuming a constant ACF c(t) = a one obtains from either Eqs. 2.37, 2.38, 2.39 or using

the corresponding continuum relations that

2T2 = 2T4 = T3 = 4a2, (A.7)

i.e. δv2G = T2 + T4 − T3 must vanish in agreement with Eq. 2.41. This is of relevance

for very short sampling times ∆t where c(t) ≈ c(0) = c0 or if c(t) shows an intermediate

plateau extending over several order of magnitudes as is the case for our low-temperature

films, Ch. 4. The summand g2ijkl in Eq. 2.40 must remain small, if c(t) is not rigorously,

but only nearly constant. The typical summand g2 can be estimated by the typical slope

on logarithmic time scales [77]

g(∆t) ≈ c(∆t)− c(∆t/2) ≈ dc(t)/d log(t))|t≈∆t . (A.8)

One thus expects

δv2G[c] ≈
∑

ijkl

g2ijkl/I
4 ≈ g(∆t)2. (A.9)

For instance, c(t) may decrease for t ≪ τα as c(t) ≈ b exp(−(t/τα)
β) + c∞ with constants

β > 0. Equations A.8 and A.9 then lead to

δvG[c] ≈ |b|(∆t/τα)
β for ∆t ≪ τα. (A.10)
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In the opposite limit of very large ∆t ≫ τα, the leading scaling dependence is obtained by

replacing in Eqs. A.4-A.6 the upper integration bounds by τα and c(t) by a ≈ c(τα) − c∞

using Eq. 2.41. This implies

T2 ≈ a2 τα/∆t, T4 ≈ T3 ≈ a2 (τα/∆t)2. (A.11)

In other words, δv2G is dominated for ∆t/τα ≫ 1 by T2 = δm2
21, i.e. δvG ∝ 1/

√
∆t as

expected for ∆t/τα uncorrelated sub-intervals. Adding heuristically the short and the long

time behavior, Eq. A.9 and Eq. A.11, yields the phenomenological approximation,

δv2G[c] ≈ g(∆t)2 + (c(τα)− c∞)2 (τα/∆t) (A.12)

which is useful for processes with one main dominant relaxation process.

A.3 δvG[f ] for some simple test functions f(t)

Introduction

To illustrate some useful properties of the non-linear functional δvG[f ] we discuss now

several test functions f(t). Not all presented f belong to the space of legitimate ACFs c

or h of stationary stochastic processes. We remind [105, 106] that a legitimate ACF may

not change too strongly (especially not discontinuously) and must not violate the Wiener-

Khinchin theorem on the power spectrum of the signal stating that the Fourier transform

(FT) of c(t) is given by the squared FT of x(t). A general (necessary and sufficient) criterion

for a function f(t) to be a legitimate ACF38 is thus [105, 106]

f̂(ω) ≡
∫

∞

0
f(t) cos(ωt)dt ≥ 0 for any real ω. (A.13)

This ensures that f(0) ≥ |f(t)| ≥ 0 and f̂(ω = 0) =
∫

∞

0 dtf(t) ≥ 0. Taking advantage of

the affine transform Eq. 2.41 we often set without loss of generality f(0) = 1 and f(t) → 0

for t → ∞. If there is only one characteristic time it is also set to unity.

38According to Bochner’s theorem f̂(ω) ≥ 0 if and only if f(t) is a positive-definite function, i.e. all
eigenvalues of the matrix gi,j = f(ti − tj) are non-negative [106].
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Figure A-1: δvG[f ] vs. ∆t for the one-mode Maxwell model with H1 = τ1 = 1 (bold solid
line) revealing a maximum at ∆t ≈ 5 and a final decay δvG ≈

√

2/∆t. The other data refer
to the two-step relaxation model Eq. A.15 with H2 = 0.5. Also given is f(t) for τ2 = 10000
(solid line with circles). δvG[f ] becomes bimodal with increasing τ2/τ1 with a minimum
slightly below τ2 and a second separate maximum at ≈ 5τ2.

Maxwell model

One of the few cases where δvG[f ] can be calculated analytically is the Maxwell model

(Debye decay) f(t) = exp(−t). This model is especially of relevance for the self-assembled

network systems (TSANET) [101] investigated in Refs. [69, 70]. Since f̂(ω) = 1/(1+ω2) > 0

for all ω, f(t) is a legitimate ACF as expected. Note first that v(∆t) = 1− gDebye(∆t) with

gDebye(∆t) being the Debye function introduced in Sec. 2.4.6. The three contributions T2,

T4 and T3 to δv2G[f ] = T2 + T4 − T3 are:

T2 = 2gDebye(2∆t), T4 = 2gDebye(∆t)2, (A.14)

T3 =
4

∆t3
×

[

−e−2∆t + (2∆t+ 8)e−∆t + 4∆t− 7
]

Since gDebye(x) ≈ 2/x for large x we have δvG ≈
√

2/∆t for large ∆t. The analytical

solution for the Maxwell model is indicated by a bold solid line in Fig. A-1. This exact

result may be used for testing the numerical determination of δvG[f ] by means of Eqs. A.4,

A.5 and A.6.
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Generalized Maxwell model

We now discuss an example for systems with two relaxation processes similar to Fig. 2-1. Of

interest is the limit where f(t) develops an intermediate plateau f(t) ≈ fp for τ1 ≪ t ≪ τ2

with τ1 corresponding to a fast, local process and τ2 to a slow, collective relaxation. One

expects δvG(∆t) to become bimodal with a first maximum around τ1 followed by a 1/
√
∆t-

decay and a second maximum around τ2 followed by a second 1/
√
∆t-decay. The minimum

between both maxima should systematically become deeper with increasing plateau width.

We present in Fig. A-1 numerically obtained δvG[f ]-data assuming

f(t) = H1 exp(−t/τ1) +H2 exp(−t/τ2) (A.15)

with H1 = τ1 = 1 and H2 = 0.5 for the amplitude of the second mode. As for all generalized

Maxwell models we have f̂(ω) =
∑

pHpτp/(1 + (ωτp)
2) > 0, i.e. Eq. A.15 is a legitimate

ACF. We scan τ2 over several orders of magnitude as indicated in the figure. We indicate

f(t) for the longest second relaxation time, τ2 = 10000, at the top of the figure (solid line

with circles). For large τ2/τ1 one observes for δvG(∆t) two well separated maxima of same

shape but different amplitudes ∝ Hp. Note that the ratio of the two dashed horizontal lines

is H1/H2 = 2. The decay from both maxima is given by δvG ≈ Hp

√

2τp/∆t.

Stretched and compressed exponentials

Another natural generalization of the one-mode Maxwell model (β = 1) is seen in Fig. A-2

where we present δvG[f ] for f(t) = fβ(t) ≡ exp(−tβ). fβ(t) is a “stretched" exponential

for β < 1 and a “compressed" exponential for β > 1. It can be readily checked numerically

that Eq. A.13 only holds for β ≤ 2 but not for larger exponents β which do not correspond

to ACF of stationary stochastic processes. To see this let us just mention two cases. Since

f̂(ω) ∝ exp(−ω2/4) for β = 2, Eq. A.13 holds for the Gaussian model and it thus also does

for even more gently decreasing (less compressed) functions with β < 2. On the other side

fβ(t) becomes for β → ∞ equivalent to the cusp singularity fcusp(t) ≡ H(t) − H(t − 1).

(δvG[fcusp] can be readily calculated analytically and this exact formula is used in Fig. A-2.)

The cusp singularity is not a legitimate ACF since f̂ = sin(ω)/ω, i.e. Eq. A.13 does not

hold. As may be seen from the main panel, all δvG[fβ ] have a maximum between ∆t ≈ 4
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∆t for ∆t ≫ 1. Inset:

δvG/v|max vs. β. The vertical arrow marks the ratio ≈ 0.82 for β = 2, the horizontal line
the ratio ≈ 1.21 for β → ∞.

(large β) and ∆t ≈ 10 (small β). As expected from fβ(t) → fcusp(t) for β → ∞, it is seen

that δvG(β) becomes increasingly similar to the standard deviation of the cusp model (bold

solid line), i.e. the peaks become systematically higher, sharper and more lopsided with

increasing β. The power-law slopes β (thin solid lines) observed for ∆t ≪ 1 are expected

from Eq. A.10. All models decrease as δvG ≈
√

a/∆t for large ∆t in agreement with

Eq. A.11. The amplitude a of this ultimate decay is the largest for the cusp model (a = 4)

and the smallest for the Maxwell model (a = 2). The inset of Fig. A-2 shows the ratio

δvG/v|max taken at the maximum of δvG(∆t) for a broad range of the exponent β. This

shows a monotonic increase with β approaching from below the ratio ≈ 1.21 of the cusp

model (bold horizontal line). The ratio is ≈ 0.55 for the Maxwell model and ≈ 0.82 for the

Gaussian (vertical arrow). Importantly, the standard deviations thus become of the same

order as the average behavior for the most rapidly decaying legitimate ACFs with β ≤ 2.

Logarithmic creep

Logarithmically slow varying ACFs are expected for hopping processes in systems with a

broad distribution of barriers and are generally observed in glass-forming fluids [1, 105, 106].
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The general scaling relation Eq. A.9 suggests

δvG[f ] ≈ 1.55|b| if f(t) ≈ a− b ln(t) (A.16)

holds over a sufficiently broad intermediate time window. The indicated prefactor 1.55 is

needed for the discussion of δvG(∆t) in Ch. 7. Obviously, this value is not given by the

scaling relation but by numerically computing δvG[ln(t)] as shown by circles in Fig. A-3.

Due to the affinity relation Eq. 2.41, this result corresponds to an amplitude b = 1 and

does not depend on the shift constant a. Obviously, a legitimate ACF cannot diverge for

t → 0 and t → ∞ and f(t) = a− b ln(t) cannot hold in these limits for both mathematical

and physical grounds. To demonstrate that Eq. A.16 may hold for an intermediate time

window of a legitimate ACF we are thus free to use, e.g., a generalized Maxwell model,

Eq. 2.25, fitted (by inverse Laplace transformation [146]) to an intermediate logarithmic

creep. (As noted above, this yields directly a legitimate ACF.) More simply we may improve

f(t) = a−b ln(t) by adding suitable continuous cutoffs. As shown by the squares in Fig. A-3

we use

f(t) = H1e
−t/τ1 + a− b ln(t) (1− e−t/τ2) e−t/τ3 (A.17)
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with H1 = 10 and τ1 = 1 for the Maxwell model added to mimic the typical microscopic

relaxation and τ2 = 1 and τ3 = 1010 setting, respectively, the lower and the upper cutoff

of the logarithmic creep. (τ3 is irrelevant for the presented ∆t-range and the constant a is

arbitrary.) The strong Maxwell mode dominates δvG(∆t) below ∆t ≈ 103. Interestingly, as

marked by the left arrow deviations from the 1/
√
∆t-decay (dash-dotted line) expected for

the Maxwell mode are already seen at ∆t ≈ 102. After a broad crossover regime (about three

decades) a plateau (solid horizontal line) is observed confirming Eq. A.16. Importantly, the

latter model demonstrates how a rather small additional logarithmic creep may lead to

strong deviations from an expected 1/
√
∆t-decay.

A.4 Additional notations for non-ergodic systems

We give now additional details on non-ergodic stochastic processes which are relevant for

our films at low temperatures T ≪ Tg. This requires additional notations. The l-average

operator

E
lOlmn... ≡

1

Nl

Nl
∑

l=1

Olmn... ≡ Omn...(Nl) (A.18)

takes a property Olmn... depending possibly on several indices l,m, . . . and projects out the

specified index l, i.e. the generated property Omn...(Nl) does not depend any more on l, but

it may depend on the upper bound Nl as marked by the argument. The latter dependence

drops out for large Nl (formally Nl → ∞) if the sum converges. The l-variance operator

V
l is defined by

V
lOlmn... ≡

1

Nl

Nl
∑

l=1

(

Olmn... −E
lOlmn...

)2
. (A.19)

Introducing the power-law operator P
αO ≡ Oα, with the exponent α = 2 being here

the only relevant case, and using the standard commutator [A,B] ≡ AB − BA for two

operators A and B, the l-variance operator may also be written V
l = [El,P2].

A.5 Extended ensembles of time series xck

We remind that for ergodic systems [105, 106] one may either compute the averages EcO[xc]

and V
cO[xc] over independent configurations c or the averages EkO[xk] and V

kO[xk] over
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stochastic processes of different configurations c are permanently trapped in the meta-basins
marked by the thickest lines.

different time series k of one long trajectory and that

E
cO[xc] ≈ E

kO[xk] and V
cO[xc] ≈ V

kO[xk] (A.20)

holds for sufficiently large Nc and Nk. Let us focus now on strictly non-ergodic systems.

We characterize a time series xck by two discrete indices with 1 ≤ c ≤ Nc and 1 ≤ k ≤ Nk.

As shown in Fig. A-4, the index c stands for the configurations generated by completely

independent preparation histories for the system probed, the index k for subsets of length

Nt of a much larger trajectory generated for a fixed configuration c. Crucially,

Oc(∆t,Nk) ≡ E
kO[xck] and (A.21)

δO2
c (∆t,Nk) ≡ V

kO[xck] (A.22)

do depend in general not only on the sampling time ∆t of the time series and the number

Nk of time series probed but also on c — even for arbitrarily large Nt and Nk — since

each c-trajectory is confined in a basin. For sampling times ∆t ≫ τb larger than the

typical relaxation time τb of the basins the ∆t-dependence of Oc(∆t,Nk) must drop out and
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δOc(∆t,Nk) ∝ 1/
√

∆t/τb since we average over ∆t/τb independent subintervals. Moreover,

the Nk-dependence must disappear if the c-trajectory has completely explored the basin.

Assuming that after each measurement interval of length ∆t a spacer (tempering) step of

length ∆tspac follows, this will happen for trajectories of total length ∆tmax ≡ Nk × (∆t+

∆tspac) ≫ τb. Since [Ec,Ek] = 0 we may write quite generally,

E
c
E

k O[xck] = E
k
E

c O[xck] = E
l O[xl] = O, (A.23)

i.e. the two indices c and k can be lumped together to one index l. Averages of this type

also called simple averages, similar to the ones introduced in Sec. 2.2. We define now in

general terms the three variances already mentioned Sec. 2.6

δO2
tot ≡ V

lO[xl] ≡ [Ec
E

k,P2]O[xck] (A.24)

δO2
int ≡ E

cδO2
c = E

c
V

kO[xck] (A.25)

δO2
ext ≡ V

cOc = V
c
E

kO[xck]. (A.26)

Note that the total variance δO2
tot is a simple average, i.e. all time series xck can be lumped

together. Importantly, its expectation value for Nc → ∞ is strictly Nk-independent and

may be also computed by using only one time series for each configuration (Nk = 1). δO2
tot

is thus the standard commonly computed variance [65, 67–69, 77, 101, 118]. That δOint

and δOext are a quite different observables can be seen from the fact that Ec and E
k cannot

be interchanged (commuted) if Nk > 1. δOext only vanishes if all Oc are identical. Using

V
l = [Ec

E
k,P2] = E

c
E

k
P

2 −E
c
P

2
E

k +E
c
P

2
E

k −P
2
E

c
E

k = E
c
V

k +V
c
E

k (A.27)

the total variance δO2
tot can be decomposed as the sum of two independent variances

δO2
tot(∆t) = δO2

int(∆t,Nk) + δO2
ext(∆t,Nk) (A.28)

with δO2
int being the typical internal variance of the meta-basins and δO2

ext the dispersion

between the basins. Details of both contributions δOint and δOext depend on the properties

of the considered stochastic process x(t) and the preaverage O[x] considered. However, the

following fairly general statements can be made. While δOint and δOext depend in principle
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on Nk, this dependence must drop out for large Nk if ∆tmax ≫ τb as already noted above.

Note also that δOint → 0 and δOext → δOtot in the opposite limit for Nk → 1. Without

additional assumptions it is also clear that for ∆t ≫ τb one expects

δOint ∝ 1/
√

∆t/τb, δOext(∆t) → ∆ne = const (A.29)

with the non-ergodicity parameter ∆ne being defined by the finite large-∆t limit of δOext.

As already noted, the first limit is a consequence of the ∆t/τb uncorrelated subintervals for

each c-trajectory while the second limit is merely a consequence of the Oc(∆t) becoming

constant. Equation A.29 implies that δOtot must become

δOtot → δOext ≈ ∆ne for ∆t ≫ τne ≫ τb. (A.30)

Note that the crossover to the ∆ne-dominated regime occurs at an additional time scale

τne. Operationally, this non-ergodicity time τne may be defined as

δOint(∆t
!
= τne) = ∆ne. (A.31)

We note finally that the non-ergodicity parameter ∆ne does not dependent on Nk, being

equivalently the large-∆t limit of either δOext(∆t,Nk) or δOtot(∆t), the latter simple aver-

age being strictly Nk-independent (Nc → ∞). We show now that the definition Eq. A.31 of

the non-ergodicity time τne is consistent with the definition given in the main text Eq. 2.44.

A.6 Properties related to O[x] = v[x]

We shall focus from now on O[x] = v[x], Eq. 2.1. Eq. 2.45 follows directly from the more

general relation Eq. A.28. Assuming an ergodic Gaussian process we have expressed δv(∆t)

by the functional δvG[h] in terms of the ACF h, Eq. 2.40. We make now the additional

assumption that

after sufficient tempering the stochastic process of each configuration c in its

meta-basin is both stationary and Gaussian.

This implies that Eq. 2.40 may hold for each basin separately, i.e. δvc is given by δvG[hc]

expressed in terms of the corresponding ACF hc of the basin instead of its c-average h =
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E
chc. Unfortunately, hc is not known in general (at least not to sufficient accuracy), but

rather h. Since Eq. 2.40 corresponds to products of hc, it is a mean-field type approximation

to replace hc by its c-average h. Within the above physical assumption and the additional

technical approximation one thus expects after a final c-averaging

δvint(∆t) ≈ δvG[h] with h = E
chc (A.32)

to hold for all ∆t. Whether this approximation is good enough must be checked for each

case. Note that δvG does not depend on Nk while δvint may, i.e. Eq. A.32 only holds for

sufficiently large Nk. The asymptotic relations Eq. A.30 and Eq. A.32 suggest the simple

interpolation

δvtot(∆t) ≈
√

δv2G[h] + ∆2
ne (A.33)

already stated in the main text, Eq. 2.53, expressing that δvtot is essentially given by h(t)

plus an additional constant ∆ne.

A.7 System-size exponent γext for uncorrelated microstates

Let us focus on moments of time series x obtained for ∆t ≫ τb, i.e. the time dependence for

v and δvext becomes irrelevant and δvint = 0. Due to the non-ergodicity the c-dependence

remains relevant, however, and we compute ensemble averages 〈. . .〉c over all stochastic

variables

x = E
mxm =

1

Nm

Nm
∑

m=1

xm (A.34)

compatible with the non-ergodicity constraint of the configuration c considered. xm stands

for the contribution of the microstate m. Our task is to compute

v = E
cvc and ∆2

ne = V
cvc for vc ≡

〈

x2
〉

c
− 〈x〉2c . (A.35)

We assume that the microscopic states m are completely decorrelated but are characterized

by random properties specific and quenched for each given configuration c. We set vcm ≡
〈

x2m
〉

c
−〈xm〉2c for the (in general different) variances of the microscopic variables xm. Using
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the independence of the microstates yields

vc =
1

Nm
×

(

1

Nm

∑

m

vcm

)

(A.36)

V
cvc =

1

N3
m

×
(

1

Nm

∑

m

V
mvcm

)

(A.37)

where we have used that also the variances vcm are independent stochastic variables. Note

that the m−averages (brackets) do not depend on Nm for large Nm. Hence,

v = E
cvc ∝ 1/Nm and ∆ne ∝ 1/N3/2

m . (A.38)

Using in addition the rescaling xm ⇒
√
Nmxm of the stochastic variables mentioned in

Sec. 2.7 this confirms the stated exponent γext = 1/2 for uncorrelated microscopic variables

with quenched random properties.
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Appendix B

Shear strains, stresses and moduli

B.1 Shear stress and affine shear modulus

Let us consider a small simple shear strain [108] increment γ in the xy-plane as it would

be used to measure the shear-stress relaxation function G
(

t
)

by means of a direct out-

of-equilibrium simulation [57, 99, 104, 113]. Assuming that all particle positions r follow

an imposed “macroscopic" shear in an affine manner according to rx → rx + γ ry the

Hamiltonian Ĥ of a given configuration changes as [65, 67, 101, 104, 113]:

(Ĥ(γ)− Ĥ(γ = 0))/V ≈ τ̂ γ +
1

2
µ̂Aγ

2 for |γ| ≪ 1. (B.1)

The instantaneous shear stress τ̂ and the instantaneous Born-Lamé coefficient µ̂A are thus

defined as

τ̂ ≡ Ĥ ′(γ)/V |γ=0 and (B.2)

µ̂A ≡ Ĥ ′′(γ)/V |γ=0 = τ̂ ′(γ)|γ=0 (B.3)

where a prime denotes a functional derivative with respect to the affine small strain trans-

form. All properties considered here refer to the excess contributions due to the potential

part of the Hamiltonian, i.e. the ideal contributions are assumed to be integrated out. As-

suming a pairwise central conservative potential
∑

l u(rl) with rl being the distance between
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a pair of monomers l = (i, j) and j > i, one obtains the excess contributions [68, 104]:

τ̂ =
1

V

∑

l

rlu
′(rl) nlxnly and (B.4)

µ̂A =
1

V

∑

l

(

r2l u
′′(rl)− rlu

′(rl)
)

n2
lxn

2
ly +

1

V

∑

l

rlu
′(rl) (n

2
lx + n2

ly)/2 (B.5)

with nl = rl/rl being the normalized distance vector. Note that Eq. B.4 is strictly identical

to the corresponding off-diagonal term of the Kirkwood stress tensor [57, 78, 147]. We

remind that the instantaneous general Kirkwood excess stress tensor reads

σ̂αβ =
1

V

∑

l

rlu
′(rl) nlαnlβ (B.6)

with α and β denoting the spatial dimensions x, y, z. Note also that we have used a

symmetric representation for the last term of Eq. B.5 exchanging x and y for the affine

transform and averaging over the equivalent x and y directions. This last term automatically

takes into account the finite normal pressure of the system. Due to the finite surface tension

Γ of our free-standing films this term must be included. Similar relations are obtained for

the xz- and the yz-plane. For an isotropic three-dimensional system the averages of all

three affine shear moduli are finite and equal. See Refs. [77, 98] for the corresponding

expression of the ensemble average of µ̂A in terms of the pair correlation functions of the

bonded and the non-bonded interactions of the particles needed for our polymer chains (cf.

Ch. 3). We generally use µA = 〈µ̂A〉 for the ensemble average as in previous publications

[63, 65–68, 77, 95, 98–102, 104, 113]. µA corresponds to RA in Ch. 2.

B.2 Stress-fluctuation formula for the shear modulus µ

The affine shear modulus µA, being the second strain derivative of the Hamiltonian, is

obviously not the shear modulus µ which is the second derivative of the free energy A

[63, 95, 97, 117, 148]. We briefly remind here the demonstration of the stress fluctuation

formula

µ = µA − µF with µF ≡ βV
〈

δτ2
〉

= βV
(

〈

τ2
〉

− 〈τ〉2
)

(B.7)
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which is used throughout the thesis.39 Since for a plain shear strain at constant volume the

ideal free energy contribution does not change, i.e. is irrelevant for µ, we may focus on the

excess free energy contribution Fex(T, γ) = −kBT ln(Zex(γ)) due to the conservative inter-

action energy of the particles. The (excess) partition function Zex(0) of the unperturbed

system at γ = 0 is the Boltzmann-weighted sum over all states s of the system which are ac-

cessible within the measurement time t. The partition function Zex(γ) =
∑

s exp(−βĤ(γ))

of the sheared system is supposed to be the sum over the same states s, but with a dif-

ferent metric corresponding to the macroscopic strain which changes the total interaction

energy Ĥ(γ) of state s and, hence, the weight of the sheared configuration for the averages

computed. This is the central hypothesis made. Interestingly, it is not necessary to specify

explicitly the states of the unperturbed or perturbed system, e.g., it is irrelevant whether the

particles are distinguishable or not or whether they have a well-defined reference position

for defining a displacement field. We note that

∂ ln(Zex(γ))

∂γ
=

Z ′
ex(γ)

Zex(γ)
(B.8)

∂2 ln(Zex(γ))

∂γ2
=

Z ′′
ex(γ)

Zex(γ)
−

(

Z ′
ex(γ)

Zex(γ)

)2

(B.9)

for the derivatives of the free energy and

∂Zex(γ)

∂γ
= −

∑

s

βĤ ′(γ) e−βĤ(γ) (B.10)

∂2Zex(γ)

∂γ2
=

∑

s

(

βĤ ′(γ)
)2

e−βĤ(γ) −
∑

s

(

βĤ ′′(γ)
)

e−βĤ(γ) (B.11)

for the derivatives of the excess partition function where a prime denotes the derivative of

a function f(x) with respect to its argument x. Using Eq. B.10 and taking the limit γ → 0

one verifies that the average shear stress is indeed τ = 〈τ̂〉 with τ̂ as defined in Eq. B.2.

Note that the average taken is defined as

〈. . .〉 = 1

Zex(0)

∑

s

. . . e−βĤ(0) (B.12)

39This is a special case of the more general stress-fluctuation formalism for elastic moduli presented
elsewhere [78, 95, 109, 117, 148].
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using the weights of the unperturbed system. The shear stress thus measures the average

change of the total interaction energy Ĥ(γ) taken at γ = 0. The shear modulus µ is

obtained using in addition Eq. B.9 and Eq. B.11 and taking finally the γ → 0 limit. This

thus yields the stress fluctuation formula Eq. B.7 with µA being the excess contribution to

the affine shear modulus defined in Eq. B.5.

B.3 Discussion

We emphasize that the affine shear modulus µA corresponds to the change (second deriva-

tive) of the total energy which would be obtained if one actually strains affinely in a com-

puter simulation a given state s without allowing the particles to relax their position. As

shown for athermal (T → 0) amorphous bodies [115–117], the positions of the particles

of such a strained configuration will in general change slightly to minimize the interaction

energy relaxing thus the elastic moduli. This is also of relevance for thermalized solids

where the non-affine displacements of the particles are driven by the minimization of the

free energy. It is for this reason that the shear-stress fluctuation term µF ≥ 0 must occur in

Eq. B.7 correcting the overprediction. This point has been overlooked in the early literature

[149] and only appreciated much later [97, 115, 116, 148, 150] as discussed in Barrat’s re-

view [117]. Interestingly, as has been shown by Lutsko [150], µF and other similarly defined

stress fluctuations become temperature independent and may remain finite in the harmonic

ground state for T → 0. Probing the stress fluctuations in a low-temperature simulation

allows thus to determine the elastic moduli of athermal solids.
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Appendix C

Reminder of viscoelastic properties of

the Rouse model

C.1 Introduction

We summarize here some useful properties of the Rouse model for the dynamics of un-

entangled and non-interacting polymer chains in the melt [1, 3, 5, 6]. It is assumed in

this model that the static properties of a polymer chain can be represented by a Gaus-

sian chain of featureless beads connected by ideal springs [3]. The typical mean-squared

end-to-end distance Re
2 =

〈

(rN − r1)
2
〉

between the chain ends at r1 and rN is thus given

by Re = b(N − 1)1/2 with b being the typical spring (bond) length and N the number of

monomers of the chains (assumed to be monodisperse). In the Rouse model, the excluded

volume interaction and the hydrodynamic interaction are disregarded and the Brownian

motion (overdamped dynamics) of the beads with a constant monomer friction constant ζ

is assumed. The motion is described by a linear Langevin equation balancing the frictional

forces on each bead with the forces due the chain connectivity and the random Langevin

body forces acting independently on each bead [3]. Due to these N uncorrelated forces the

chain center of mass freely diffuses with a diffusion constant

D =
kBT

ζN
(C.1)

with kB being Boltzmann’s constant and T the temperature.
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Figure C-1: Various properties of the (discrete) Rouse model for kBT = ρ = b = τmon = 1:
(a) Shear-stress relaxation function G

(

t
)

for a broad range of chain lengths N . Also
indicated are the affine shear modulus µA (dashed horizontal line), Eq. C.3, the power
law Eq. C.14 for intermediate times (bold solid line), the Redner-des Cloizeaux formula
exp(−t/τ1)/

√
t for N = 1000 (thin solid line) and an effective power low 1/t for N = 16

(left thin solid line). (b) Storage modulus G′(ω) and loss modulus G′′(ω) for N = 16, 100
and 10000. The intermediate power law Eq. C.15 is indicated by a bold solid line, the large-
ω limits of G′(ω) and G′′(ω) by, respectively, a horizontal dashed line and a thin solid line
and the small-ω limits G′(ω) → J0

e η
2ω2 and G′′(ω) → ηω for N = 16 by, respectively, thin

dashed and thin solid lines. The vertical arrows mark 1/τα,1 and ω×(λ = 2) for N = 16. (c)
τpmax , τ1, η, J

0
e , τ×(λ = 1) and τ×(λ = 2) vs N . η and J0

e increase linearly with N (dash-
dotted lines). Note that τ1 ≈ τ×(λ = 2) ∝ N2 (solid line) while τ1 ≫ τ×(λ = 1) ∝ N2/3

(dashed line).
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C.2 Viscoelasticity of discrete Rouse model

Importantly, the Rouse model is a generalized Maxwell model, Eq. 2.25, with constant

amplitudes Hp = kBTρ/N for p > 0 and R∞ = 0. As in the main text, ρ denotes the

monomer number density and ρ/N the number density of the chains. The shear-stress

relaxation function thus reads [3]

G
(

t
)

=
kBTρ

N

pmax
∑

p=1

exp(−t/τp) (C.2)

with pmax = N − 1 being set by the chain length N .40 Note that the affine shear modulus

µA ≡ G(t = 0) = kBTρ
pmax

N
≈ kBTρ (C.3)

becomes rapidly an N -independent constant. µA is indicated by the horizontal dashed lines

in panel (a) and panel (b) of Fig. C-1 assuming kBT = ρ = 1 and N ≫ 1. We have yet to

specify the relaxation times τp of each mode p. It is convenient to define by

τmon =
b2/d

2π2
× ζ

kBT
=

b2/d

2π2
× 1

DN
(C.4)

the “monomer relaxation time" with d = 3 being the spatial dimension and using Eq. C.1

in the second step. All time scales are given in Fig. C-1 in units of τmon. We also define a

function cp = (x/ sin(x))2 with x = πp/2N which encapsulates the deviations of the discrete

Rouse model from the continuum Rouse model. As discussed in the standard textbooks

[4, 5] it can be demonstrated that

τp = τmon (N/p)2 × cp =
τ1
p2

× cp
cp=1

(C.5)

with τ1 = τmonN
2cp=1 for p = 1 being the largest (terminal) relaxation time of the discrete

Rouse model. Note also that

τp → τpmax =
b2

24
× ζ

kBT
× 1

sin2(π/2N)
for p → pmax = N − 1 and d = 3. (C.6)

40As the pressure P or the shear stress τ the shear-stress relaxation function thus has the dimension
[G

(

t
)

] = [kBT ][ρ] = energy/volume while the creep compliance J(t) has the dimension [J(t)] = 1/[G(t)].
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The stated Eqs. C.2, C.4 and C.5 completely determine (at least numerically) all viscoelastic

shear properties of the discrete Rouse model. We have indicated in panel (a) of Fig. C-1

the shear-relaxation function G
(

t
)

for several chain lengths N as a function of the reduced

time t/τmon. Panel (b) presents the storage modulus G′(ω) (open symbols) and the loss

modulus G′′(ω) (filled symbols) obtained using Eq. 2.20 and Eq. 2.21. It is then possible

to get the creep compliance J(t) from G′(ω) and G′′(ω) using [1]

J ′(ω) =
G′(ω)

G′(ω)2 +G′′(ω)2
and J ′′(ω) =

G′′(ω)

G′(ω)2 +G′′(ω)2
(C.7)

and by inverse Fourier transform back to J(t). See Appendix D.4 for the Hopkins Hamming

method allowing the direct transformation between G
(

t
)

and J
(

t
)

. According to Eq. 2.22

the shear viscosity η and steady-state creep compliance J0
e are given by

η = (kBTρ/N)

pmax
∑

p=1

τp and J0
e = (kBTρ/N)

pmax
∑

p=1

τp
2 / η2. (C.8)

τpmax , τ1, η and J0
e are shown in panel (c) of Fig. C-1 as functions of N .

C.3 Continuum limit for large N

We have stated the above relations for a discrete Rouse model of finite chain length N since

we are concerned in the main part of the thesis and in Appendix D with the description of

rather short chains (oligomers) of length N = 16. (For this reason N = 16 is indicated in

Fig. C-1.) It is useful, however, to summarize here also the corresponding relations for the

large-N limit which can be computed analytically. Since cp → 1 for x = πp/2N → 0 this

leads in leading order to

τp ≈ τmon(N/p)2 = τR/p
2 with τ1 ≈ τR ≡ τmonN

2 =
b2/d

2π2

ζ

kBT
N2 (C.9)

being the more familiar Rouse time increasing as N2 with the chain length [3, 6].41 As

may be seen from panel (c) of Fig. C-1 τ1 ≈ τmonN
2 (solid line) and τpmax ≈ τmonN

0 above

N ≈ 10, i.e. the effects of the correction factor cp are rapidly negligible. Also indicated is the

41Note the additional factor 1/2 of the Rouse modes of the generalized Maxwell model compared to the
corresponding rotational (diffusional) relaxation times [3].
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crossing time τ×(λ) determined numerically from Eq. 2.24 for λ ≡ tan(δ) ≡ G′′(ω)/G′(ω)

with λ = 1 (pluses) and λ = 2 (crosses). We emphasize the strong λ-dependence changing

even the asymptotic N -dependence with τ1 ≫ τ×(λ = 1) ∝ N2/3 (dashed line) while

τ1 ≈ τ×(λ = 2) ∝ N2 (solid line). This suggests that λ must be slightly larger than unity

to let τ×(λ) be a useful measure of the terminal relaxation time. Equation C.8 leads to [1]

η = S1kBTρτmon ×N and J0
e =

S2

S2
1

×N/kBTρ (C.10)

showing that the shear viscosity η and the steady-state creep compliance J0
e of the Rouse

model increase linearly with N . This is indicated in panel (c) of Fig. C-1 by the dash-dotted

lines. It is used here that the numerical coefficients S1 and S2 are given by

S1 ≡
pmax
∑

p=1

1/p2 → π2/6 ≈ 1.65 and S2 ≡
pmax
∑

p=1

1/p4 → π4/90 ≈ 1.08 (C.11)

for pmax → ∞. Note also that S2/S
2
1 → 0.4. According to Eq. 2.23 τα,1 is one often used

characterization of the terminal time. We thus have

τα,1 = J0
e η =

S2

S1
τR =

π2

15
τR. (C.12)

As can be seen from panel (b) this time corresponds to the frequency where the low-ω

asymptotes of G′(ω) and G′′(ω) cross. We note en passant that in agreement with the

general Stokes-Einstein relation [3] the product of viscosity and diffusion constant of the

Rouse model

ηD =
1

36

kBT

b
(ρb3) (C.13)

is proportional to the temperature and inversely proportional to a length, the local monomeric

scale b. As shown elsewhere [1, 3] we have

G
(

t
)

=

√
π

2
kBTρ (τmon/t)

1/2 for τR ≪ t ≪ τmon (C.14)
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as indicated by the bold solid line in panel (a). As may be see by Fourier transformation42

this corresponds to [1, 3]

G′(ω) = G′′(ω) =
π

2
√
2
kBTρ (τmonω)

1/2 for 1/τR ≪ ω ≪ 1/τmon. (C.15)

As can be seen from panel (b) this does indeed describe the behavior for large Rouse chains,

N ≫ 50, in the intermediate wave-vector regime.

C.4 Specific Rouse model for tests

We have summarized above some important viscoelastic features of the discrete Rouse model

of polymer dynamics. This is used in Appendix D to test and compare various methods

for the numerical transformation between the different viscoelastic functions. Arbitrarily,

we set b = kBT = ρ = 1 and τR = 104. We use the same chain length N = 16, i.e.

pmax = N − 1 = 15, as in our numerical simulations of polymer films. This implies

τmon ≈ 39.07 for the monomer relaxation time. η ≈ 988 for the shear viscosity, J0
e ≈ 6.9

for the steady-state creep compliance and G
(

t
)

≈ 5.5/
√
t for the intermediate time regime

(τmon ≪ t ≪ τR) and G′(ω) = G′′(ω) ≈ 6.9
√
ω for the intermediate frequency regime

(2π/τR ≪ ω ≪ 2π/τmon).

42We use here that
∫

∞

0
dt cos(ωt) t−1/2 =

∫

∞

0
dt sin(ωt) t−1/2 =

√

π/2ω.
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Appendix D

Numerical transformations between

linear response functions

D.1 Introduction

We describe here the methods employed for the numerical transformation of the directly

computed response function G
(

t
)

= µA − h(t) to other experimentally relevant rheological

linear response functions. Specifically, we compute the storage and loss moduli G′(ω) and

G′′(ω), as defined in Eq. 2.20 and Eq. 2.21 for general response functions, and the creep

compliance J(t) ≡ δγ(t)/δτ characterizing the shear-strain increment δγ(t) generated by a

shear stress δτ applied at t = 0 [1, 6]. These three response functions are discussed in Ch. 5

where we compare our results with real experiments. Many numerical methods have been

proposed to perform the conversions [1, 5]. As reminded in Sec. D.2 and Sec. D.3, G′(ω) and

G′′(ω) can be either obtained by direct Fast Fourier Transformation (FFT) [57, 111] or by

fitting G
(

t
)

to the Generalized Maxwell model, Eq. 2.25, and using then the transformation

Eq. 2.26. While it is possible to obtain J(t) from G′(ω) and G′′(ω) via Eq. C.7 [1], a direct

method (skipping the Fourier space) is given by the Hopkins-Hamming (HH) method [5, 73].

This is discussed in Sec. D.4 and Sec. D.5.
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D.2 Technical notes on FFT and SMD

The computationally straightforward method to obtain G′(ω) and G′′(ω) is to Fourier trans-

form G
(

t
)

using either a simple Discrete Fourier Transform, Filon’s method (being partic-

ularly important for high ω) [99, 111] or a Fast Fourier Transform for large G
(

t
)

-data sets

[72]. We made use of the Python’s SciPy library function scipy.fftpack.fft() which is

based on the Cooley-Tukey algorithm [57, 72, 111]. The Cooley-Tukey algorithm works

by exploiting the symmetries of the Discrete Fourier Transform. The obtained complex

components, with an exception to low-T cases, can be back-transformed to the original

time series by using either the CONTIN package [146] or the Python’s SciPy library func-

tion scipy.fftpack.ifft() performing the inverse Laplace transform. The SMD method

extracts information from a uniformly sampled time series of G
(

t
)

by fitting multiple ex-

ponentially decaying modes to the data set, Eq. 2.25. To avoid spurious oscillations at

low frequencies one should not use too many modes p. Compared to the (completely unbi-

ased) FFT method the SMD method has the advantage that by choosing the distribution

of modes, e.g. by insisting on τp as given by Eq. C.5 for the discrete Rouse model (Ap-

pendix C.2), or by logarithmically distributing the relaxation times [1], one effectively filters

the data. In our case this allows to smooth the data especially in the low-ω limit where the

statistical noise becomes large.

D.3 Comparison of FFT and SMD for the Rouse model

We have summarized in Appendix C.4 several useful predictions for an ideal Rouse model

with pmax = N−1 and N = 16. These predictions are indicated in Fig. D-1 by open circles.

The dashed lines show the asymptotic low-frequency behavior G′(ω) ≈ J0
e η

2ω2 and G′′(ω) ≈
ηω with the known values of the shear viscosity η and steady-state creep compliance J0

e . The

expected intermediate frequency regime (see Appendix C.4 and Eq. C.15) for 2π/τR ≪ ω ≪
2π/τmon is emphasized by a solid line. Interestingly, deviations are already visible about

a decade below the characteristic monomer frequency 2π/τmon. Note that in the high-

frequency limit the storage modulus G′(ω) must level off, G′(ω) → µA ≈ 1, to the “high-

frequency elastic modulus" µA, Eq. C.3, the loss modulus G′′(ω) is expected to strongly

decay as G′′(ω) ∝ 1/ω [104]. These predictions are compared with the numerical results
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Figure D-1: Comparison of storage and loss moduli G′(ω) and G′′(ω) of the ideal Rouse
model (Sec. 2.4.6) obtained either exactly (open circles) or by means of the FFT method
(triangles, labeled G′

1(ω) and G′′
1(ω)) and the SMD method (filled circles, labeled G′

2(ω)
and G′′

2(ω)). The vertical dotted lines mark the characteristic frequencies associated to the
total sampling time ∆t, the Rouse relaxation time τR, the local monomer relaxation time
τmon and the time increment δt. The dashed lines indicate the Rouse model prediction for
ω ≪ 2π/τR, Eq. C.10, the solid line the prediction for the intermediate ω-regime, Eq. C.15.

obtained by means of the FFT method and the SMD method. Both methods use G
(

t
)

-data

computed according to Eq. 2.25 (and parameters in Appendix C.4) with a time increment

δt = 0.5 and a total sampling time ∆t = 105. The numerical data obtained from the

SMD method (filled circles) are excellent in all frequency regimes. At variance to this the

FFT method is limited to a more restricted intermediate frequency range. Naturally, only

data above 2π/∆t can be obtained with this method and the Nyquist critical frequency

ωc = π/δt ≈ 6.2 [111] sets an upper frequency limit. Note that G′(ω) deviates for ω ≈ ωc

due to the well-known “aliasing" of the power spectrum outside of the frequency range

−ωc ≪ ω ≪ ωc [146]. Moreover, it is seen that the FFT method shows marked deviations

for G′′(ω) already around 2π/τmon from the expected 1/ω-decay. In summary, it is an

advantage of the SMD method that it allows the extrapolation to much lower and higher

frequencies.
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D.4 Hopkins-Hamming (HH) method

Using the Laplace transform L[f ] =
∫

∞

0 f(t) · exp−st dt we can state that quite gener-

ally for a viscoelastic fluid L[τ(t)] = s L[G
(

t
)

] L[γ(t)] and L[γ(t)] = s L[J
(

t
)

] L[τ(t)]

[1]. The shear relation function G
(

t
)

and the creep compliance J
(

t
)

are thus related by

L[G
(

t
)

] L[J
(

t
)

] = 1/s2 [1]. As demonstrated elsewhere [5, 131], the latter relation may

be represented by the convolution integral

∫ t

0
G(t− t′) J(t′) dt′ = t. (D.1)

A method for the numerical evaluation of this relation has been proposed by Hopkins and

Hamming [5, 73, 131] for linearly or log-spaced input relaxation function. Dividing J
(

t
)

to

many small, discrete n subintervals, the integral in Eq. D.1 is replaced by the sum

tn =
n

∑

i=1

J(ti−1/2)

∫ i

i−1
G(tn − t′) dt′. (D.2)

Here J(ti−1/2) is the mean value of J
(

t
)

between t and ti−1. Therefore we set ti−1/2 =

(ti+ ti−1)/2. From the definition dη(tn− t′) = G(tn− t′) dt′, we can substitute for G(tn− t′)

in Eq. D.2 to get

tn = −
n

∑

i=1

J(ti−1/2)[η(tn − ti)− η(tn − ti−1)]. (D.3)

Separating i = n terms from Eq. D.3, using the assumption η(0) = 0, and upon rearranging,

we obtain the recursive form for the discrete J
(

t
)

for n > 1 [5]

J(tn−1/2) =
tn +

∑n−1
i=1 J(ti−1/2)[η(tn − ti)− η(tn − ti−1)]

η(tn − tn−1)
. (D.4)

The initial condition n = 1 is given by

J(t1/2) =
2

G(0) +G(t1)
=

t1
η(t1)

. (D.5)

Here the dynamic viscosity η(t) for an arbitrary time in the range (t0, tn) can be calculated

by first integrating43 G
(

t
)

and using linear interpolation. Python’s SciPy library function

scipy.interpolate.interp1d() is a convenient tool for this purpose. A known drawback

43Trapezoidal rule was applied to numerically calculate the integral.
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Figure D-2: HH transformation of G
(

t
)

for the ideal Rouse model, Sec. 2.4.6 using the
values given in Sec. C.4. The backward transformation G1

(

t
)

obtained from J
(

t
)

and
1/J

(

t
)

are also shown for comparison. Note that G1

(

t
)

≈ G
(

t
)

. The asymptotic large-t
limit J

(

t
)

→ t/η is indicated by the thin solids line with η = 988.

of this method is that the calculated values of J
(

t
)

do not correspond to a specific time, but

are mean values within a chosen time interval. For this reason, this method is sensitive to

fluctuations in the data corresponding to those times. On the bright side, these fluctuations

does not grow in the subsequent stages of the recursion procedure [73].

D.5 Creep compliance for Rouse model

Traditionally a creep test is carried out by applying a constant infinitesimally small stress

at t ≥ 0 and observing then the strain response. With the advent of precision motors and

actuators, it is experimentally convenient to measure the creep compliance J
(

t
)

[15, 16, 19].

Without the need to perform additional simulations, we transform G
(

t
)

into J
(

t
)

using the

HH method described above. One important feature of HH is its backwards compatibility,

i.e. it is possible to convert a transformed J
(

t
)

back into G
(

t
)

. We use again as input signal

the relaxation function G
(

t
)

of the Rouse model described in Appendix C with parameters

given in Sec. C.4 and using an equidistant data set with δt = 0.5 and ∆t = 105. The results

are shown in Fig. D-2. This confirms the successful transformation of G
(

t
)

to J
(

t
)

and

back from J
(

t
)

to G1

(

t
)

≈ G
(

t
)

. The backward transformation of J
(

t
)

to G1

(

t
)

is delicate
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for times t below δt (corresponding to the above-mentioned Nyquist frequency ωc) due to

the interpolator function of η(t) used in the definition. In this limit the function tries to

(linearly) interpolate η(t) between η(t = 0) = 0 and the next point from the transformed

data. This roughly interpolated data point is then used in the back transformation which

propagates the error if multiple forward and backward transformations are performed. This

error can be avoided if the provided input data has an appropriate η(t = 0) condition

defined. (This is the case for our freestanding films.) On the other hand, this small-t error

does not propagate further into the recursion. This can be verified by looking at the large-t

asymptote J
(

t
)

→ t/η [1] using the known viscosity η = 988.
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