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Resumé

Le travail de thèse présenté dans ce manuscrit s’inscrit dans le cadre général
des travaux visant à décrire et à modeliser les phénomènes impliqués dans
les microscopies à sonde locale, et plus spécifiquement la microscopie à effet
tunnel. L’effet tunnel est un phénomène quantique connu depuis la fin des
années 1920 [1–8]. Plusieurs étapes marquantes jalonnent le développement
des techniques de microscopie reposant sur cet effet. Au début des années 80,
ce fût l’exploitation de l’effet tunnel pour cartographier le courant passant
entre une surface et la pointe d’un microscope afin de caractériser struc-
turalement la surface des matériaux à l’échelle du nanomètre [9]. Puis fin
des années 80/début des années 90, ce fût la manipulation d’atomes et de
molécules au moyen de la pointe du microscope[10–14].

Enfin, une étape importante fût franchie fin des années 90, lorsque les
premières expériences utilisant le microscope à effet tunnel (STM) pour
mesurer les propriétés de transport électronique à travers des nanojonctions
moléculaires furent publiées[15, 16]. Cette étape est considérée par certains
scientifiques comme le point de départ de la nanoélectroniques moléculaire.
De nombreux progrès ont été réalisés depuis cette période, et à l’heure actuelle,
le degré de mâıtrise est tel qu’il est possible non seulement d’assembler des
atomes[17, 18] de mesurer les propiétés électriques et magnétiques de ces
assemblages à l’echelle nanométrique[19–23], d’en manipuler les propriétés de
transport électronique [24, 25] mais également d’exciter ces dispositifs afin de
les faire transiter d’un état vers un autre, ouvrant la voie au développement
de nouvelles méthodes de spectroscopie optique ayant une résolution spatiale
sub-nanométrique[26–40].

L’observation des spectres d’émission de lumière par des nanostructures
moléculaires excitées au moyen de la pointe d’un microsope à effet tun-
nel indique qu’outre les transitions habituelles observées avec des sources
d’excitation non locales telles que des lasers par exemple, on observe des
pics supplémentaires dont l’origine est encore aujourd’hui debattue. Enfin,
récemment, l’équipe de G.Schull à l’IPCMS a démontré expérimentalement
que le spectre de la lumière émise par la molécule lors de sa désexcitaion
variait selon la position de la pointe au dessus de la molécule, laissant en-
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trevoir la possibilité de cartographier les molécules dans leurs états excités
avec une résolution subnanometrique[41].

Cette thèse vise à développer un modèle rendant compte des principales
caractéristiques de l’émission de lumière par des nanojonctions moléculaires
excitées par un courant tunnel. Il s’agissait dans un premier temps d’identifier
les principaux phénomènes impliqués dans l’émission de lumière er d’en
quantifier l’importance. Puis dans un second temps il s’agissait d’étudier
l’impact de la nature locale de l’excitation de la molécule par le courant
tunnel circulant entre la pointe du microscope et le substrat supportant les
molécules.

Description de la démarche suivie.

Pour réaliser ces travaux, une démarche reposant sur la confrontation
directe des résultats de simulations numériques aux mesures expérimentales
est développé, mesures expérimentales réalisées pour certaines au sein de
l’IPCMS par l’equipe de G. Schull[42]. L’intérêt de cette démarche réside
dans le fait que les simulations numériques offrent un contrôle total a la
fois sur le positionnement des atomes dans le nanojonctions moléculaires et
sur les phénomènes physiques impliqués dans l’évolution des système via le
paramétrage des hamiltoniens utilisés dans les modèles. L’analyse compar-
ative des résultats des simulation numériques aux résultats expérimentaux
(spectre, cartographie) apparâıt ainsi comme un outil efficace pour identi-
fier les phénomènes physiques impliqués. La nécessité de la comparaison à
l’expérience impose toutefois des contraintes importantes.

Tout d’abord, bien que les nanojonctions moléculaires soient des systèmes
de taille nanométrique, le nombre d’atomes à prendre en considération
pour décrire le plus fidèlement possible la physique des systèmes considérés
expérimentalement est de l’ordre de quelques centaines à un millier d’atomes
(molécule, pointe et substrat). Devoir considérer un grand nombre d’atomes
en physique numérique n’est pas un problème en soit. Toutefois, en raison
de la nature des phénomènes impliqués (effet tunnel entre la pointe et le
substrat, excitation de la molécule), il est nécessaire d’avoir recours à des
méthodes de la physique quantique, coûteuses en terme de mémoire et de
temps de calcul lorsqu’il s’agit de réaliser des simulations numériques. En
effet, l’émission de la lumière par un matériau résulte d’une réorganisation
de la distribution des électrons dans le matériau permettant d’en abaisser
son énergie.

Aussi une part importante du travail présenté dans ce document a consisté
à determiner les distributions électroniques dans le nanojonctions moléculaires
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dans leur état fondamental et dans certains de leurs états excités, les spectres
d’emission étant ensuite calculés à partir des probabilités de transitions entre
ces différentes distributions électroniques.

Aussi, je me suis placé dans le cadre de la théorie de la fonctionelle
de densité (DFT) pour réaliser ces travaux. La DFT est probablement la
méthode la plus efficace à l’heure actuelle pour calculer la distribution des
électrons dans systènes proches de ceux considérés expérimentalement. En
effet les avancées technologiques en électronique et en microélectronique ces
dernières années permettent aujourd’hui de disposer d’ordinateurs ayant de
grandes quantités de mémoires vives. On peut ainsi manipuler des matrices
de très grande taille, et ainsi considérer des systèmes composés d’un grand
nombre d’électrons dans les simulations. Conjointement à ces évolutions
techniques, des progrès importants ont été réalisés dans le domaine des
méthodes numériques. Le concept de pseudopotentiel[43–47] en réduisant
le nombre d’électrons à prendre en compte dans le calculs, les techniques
de développement multipolaires en permettant d’accélérer les calculs des
intégrales multiples[48–50], ou bien des méthodes itératives de diagonalisation
de matrices[51–55] ont également contribué à étendre la taille des systèmes
étudiés.

Toutes ces avancées permettent dorénavant la confrontation directe des
dispositifs étudiés expérimentalement aux modélisations théoriques. Il s’agit
d’un atout considérable pour l’étude des nano-dispositifs, l’accès direct à des
informations telles que la répartition des niveaux d’énergie ou la distribu-
tion des électrons, également accessibles expérimentalement, fournissant des
éléments clefs à la compréhension de la physique régissant le comportement
de ces objets. L’excitation des molécules a été traitée dans le cadre de la
DFT dépendante du temps (TD-DFT)[56–58]. Le principe est de suivre
l’évolution de la distribution de charge dans la nanojonction moléculaire suite
à la perturbation due à l’excitation.

J’ai utilisé deux approches afin de réaliser ces simulations selon la nature
de l’information recherchée. La première consiste à traiter l’excitation dans
le cadre de la théorie des perturbations dépendantes du temps. Il s’agit donc
des cas où l’excitation est faible. Dans cette approche, la réponse linéaire du
système réel, δρ(r,ω), à un potentiel perturbatif (tel qu’un champ électrique
oscillant), peut être calculée comme la réponse d’un système sans interaction
à un potentiel effectif, δV eff (r,ω), dépendant de la perturbation[59]:

δρ(r,ω) =
∫
dr′χKS(r,r′;ω)δV eff (r,ω)
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La fonction de réponse χKS(r,r′;ω) peut être calculée à partir des orbitales
de Kohn-Sham occupées et virtuelles prises dans l’état fondamental du
système[60] et calculées au préalable pour le système pris dans son état
fondamental :

χKS(r,r′;ω) =
∑
n,m

(fm−fn)ψ
∗
n(r)ψm(r)ψ∗m(r′)ψn(r′)

(εm− εn)−ω+ iν

,

où fi est le nombre d’occupation de l’orbitale de Kohn-Sham i. Du point
de vue numérique, j’ai utilisé la formulation de Casida[161] afin de ramener le
problème à la résolution d’un système aux valeurs propres. N’étant intéressé
que par les transitions de plus basses énergies, seuls les états de Kohn-Sham
aux alentours du niveau de Fermi contribuent de manière significative aux
changements de distribution électroniques induits par la perturbation. J’ai
ainsi déterminé qu’en général, une centaine d’états de Kohn-Sham occupés
et virtuels suffisent pour décrire le système dans son état excité.

Toutefois la suceptibilité étant donnée par la somme de produit d’orbitales
de Kohn-Sham qui elles-mêmes sont des combinaisons linéaires de fonctions
de bases, les matrices à diagonaliser sont de très grande taille ce qui nécessite
d’avoir beaucoup de mémoire à disposition. A titre d’illustration, le calcul
des propriétés optiques dans le cadre de la réponse linéaire nécessite 114 Go
de mémoire pour une molécule de terthiophène (23 atomes) et 670 Go pour
une molécule d’oligothiophene (86 atomes). Aussi tous les résultats présentés
dans cette étude ont été obtenus grâce aux centres de calcul nationaux
(IDRIS, CINES). Nous avons utilisé l’algorithme itératif de Davidson-Liu[50]
pour procéder à la diagonalisation de la matrice de Casida. D’un point
de vue numérique, un aspect intéressant de la réponse linéaire est qu’elle
est rapide aussi c’est cette méthode que j’ai utilisée pour déterminer les
énergies des pics d’absorption de lumière. Par ailleurs, étant une méthode
perturbative, elle permet d’avoir accès assez facilement à la composition des
transitions optiques en fonction des états de Kohn-Sham des molécules dans
leur état fondamental ce qui facilite grandement l’interprétation physique
des résultats. En revanche la réponse linéaire ne permet pas d’avoir accès
à l’évolution temporelle de la perturbation à travers la molécule. Il s’agit
d’un aspect important du travail de thèse car il est raisonnable de penser
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que si le localisation de l’excitation locale a un impact important sur la
probabilité d’excitation de la molécule, il en est de même sur la manière dont
cette excitation locale va ensuite se propager à l’ensemble de la molécule.
Aussi, pour étudier la propagation de l’excitation locale de la perturbation
à travers la molécule, nous avons eu recours à une seconde approche de la
TD-DFT, dite “en temps réel”, qui repose sur la résolution des équations de
Kohn-Sham dépendantes du temps[61]:

(
−1

2∇
2 +VKS(r) +Vext(r, t)

)
ψ(r, t) = i

∂

∂t
ψKS(r, t)

.

Le principe est de propager au cours du temps les orbitales de Kohn-
Sham d’un système, initialement dans son état fondamental, soumis à une
perturbation Vext(r, t), telle que par exemple un champ électrique oscillant.
Les propriétés optiques sont déterminées partir de la transformée de Fourier
du moment dipolaire induit par la perturbation. La résolution des énergies
de transition déterminées selon cette méthode est d’autant plus fine que
l’intervalle de temps simulé est grand. Il s’agit d’un point important à avoir
à l’esprit. En effet, un fort couplage vibronique fait partie des hypothèses
envisagées pour expliquer la présence de pics supplémentaires dans les spectres
d’emission de lumière par des molécules excitées au moyen de la pointe d’un
microscope à effet tunnel.

Les niveaux vibrationnels dans les molécules que j’ai considéréesnous étant
espacés d’une cinquantaine de meV, j’ai établi qu’une résolution en énergie
des spectres optiques meilleure que 5 meV, soit un intervalle de simulation
supérieur à 50 fs, est nécessaire afin d’avoir des données suffisamment précises
pour être confrontées aux mesures expérimentales. Jai déterminé que le pas
typique d’intégration temporelle doit être de l’ordre de l’attosecondes, soit
50 000 pas d’intégration pour un intervalle de 50 fs. Un pas d’intégration
nécessitant environ 10 s de temps machine pour un système d’une centaine
d’atomes, de très longs intervalles de simulation, d’environ 150 heures/coeur,
ont été nécessaires pour réaliser ce type de calculs.

Organisation du manuscrit

Le manuscrit est organisé en cinq chap̂ıtres. Le premier est consacré à
la présentation du contexte scientifique dans lequel se situe le travail. Le
deuxième chap̂ıtre est consacré à la présentation des théories, des méthodes
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numériques et des codes utilisés pour réaliser ce travail. Les trois derniers
chap̂ıtres présentent les résultats obtenus. Chacun de ces trois chap̂ıtres est
dédié à examiner une hypothèse spécifique à l’origine des pics supplémentaires
dans les spectres d’électroluminescence des nanostructures moléculaires ex-
citées par le courant tunnel :

• L’effet de contrainte dans la molécule dans le troisième chap̂ıtre,

• L’effect de la nature locale de l’excitation dans the quatrième chap̂ıtre,

• La nature électronique de la source d’excitation locale dans le cinquième
chap̂ıtre.

Le chap̂ıtre III débute par une présentation de résultats concernant des
molécules à base de phthalocyanine, H2Pc, PdPc et ZnPc isolées. Chacune
des molécules a été optimisée structuralement par DFT et leurs spectres
optiques calculés par TD-DFT en réponse linéaire. Une analyse comparative
de la structure des trois molécules est présentée et les liens entre structure
et spectre optique sont discutés. L’intérêt de cette partie du travail est
de fournir un ensemble de structures et de spectres de référence qui sont
utilisés par la suite pour l’analyse des résultats concernant les structures
plus complexes modélisant les objets étudiés expérimentalement. La seconde
partie du chap̂ıtre III concerne les molécules adsorbées sur des substrats.
Expérimentalement, les mesures sont en générale déposées sur des substrats
de NaCl. Ces substrats permettent d’empécher l’exciton créé dans la molécule
par l’excitation tunnelle d’être ”évacué” via le substrat métallique, et ils
favorisent ainsi la fluorescence de la nanojonction moléculaire. Deux types
de nanojonctions ont été considérés dans les simulations : Un substrat de 2
monocouches de NaCl et un substrat d’une monocouche de NaCl reposant
sur trois monocouches d’or.

Le fait que les molécules considérées reposent à plat sur les substrats
implique de devoir considérer des substrats de surface d’au minimum 10 x
10 atomes, ce qui correspond à 200 atomes pour le substrat de NaCl et 400
atomes pour le substrat de NaCl/Au. Il a été choisi de faire des simulations
principalement avec le substrat de NaCl, plus petit, et donc moins coûteux
en ressources de calcul. Toutefois j’ai décidé de considérer quelques situations
avec le substrat NaCl/Au afin d’une part de détecter un potentiel effet
de contrainte induit par l’or sur la couche de NaCl sur le spectre optique
de la molécule de phthalocyanine et d’autre part de quantifier l’impact de
l’interface métal/NaCl sur l’excitation de la molécule.

Je présente également la construction de la couche de NaCl sur l’or dans
cette partie du manuscrit. En raison de la nature biatomique du substrat de
NaCl et de la symétrie de la molécule, j’ai considéré plusieurs configurations
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selon le positionnement du centre de la molécule par rapport au substrat et
selon l’angle entre les axes principaux de la molécule et ceux du substrat.
Le troisième chap̂ıtre se poursuit par une présentation des spectres optiques
associés à quelques unes de ces configurations. Le chap̂ıtre se termine par une
analyse comparative de ces spectres optiques et une discussion au sujet des
liens entre contraintes et déformations dans la molécule et spectres d’émission.

Dans le chap̂ıtre IV, je considère l’impact de la nature locale de l’excitation.
J’ai ainsi réalisé une série de simulations de la propagation d’une excitation
à travers la molécule. L’idée est de perturber localement la molécule au
moyen d’un champ électrique dont on contrôle la fréquence et l’extension
spatiale, puis de suivre l’évolution temporelle de la perturbation dans la
molécule. L’intérêt d’utiliser un champ électrique est qu’il est possible
de sonder plusieurs directions d’excitation via la polarisation. Le début
du quatrième chap̂ıtre est consacré à la présentation du protocole utilisé
ainsi qu’aux résultats obtenus les plus marquants. Chaque molécule a été
excitée localement, puis l’évolution temporelle des moments dipolaires de
transition a été calculée selon les axes principaux des molécules. Je présente
ensuite plusieurs analyses de résultats dont une concernant l’existence de
couplages entre les axes principaux de la molécule. Un exemple de ce type
de couplage est présenté. La dernière partie du chap̂ıtre est consacrée au
transfert d’énergie entre un système à deux molécules.

Le dernier chap̂ıtre est le plus exploratoire. Je présente le modèle que j’ai
développé afin de rendre compte des phénomènes impliqués lors du passage
d’un courant d’électrons tunnels à travers une molécule située entre la pointe
du microscope et une surface, et plus spécifiquement les excitations induites
dans la molécule par le passage de l’électron tunnel. Afin de modéliser la
source d’excitation, j’ai développé, dans le cadre théorique de la fonctionnelle
de densité dépendante du temps, une approche non perturbative qui consiste
à propager un paquet d’onde électronique, représentant l’électron tunnel, à
travers la jonction en résolvant les équations de Kohn-Sham dépendantes
du temps en temps reél. Les opérateurs laplacien impliqués dans le système
(équations de Kohn-Sham pour les orbitales de Kohn-Sham, équation de
Poisson pour le potentiel électrostatique associé à la distribution de charges
dans le système) sont approximés dans le cadre de la méthode des différences
finies à trois dimensions.

Les résultats présentés dans cette partie du manuscrit ont été obtenus avec
un pas de discrétisation spatiale de 0.15Å déduit de l’étude en convergence
de l’énergie totale. La résolution de l’équation aux valeurs propres issues des
équations de Kohn-Sham a été faite au moyen de l’algorithme de Davidson et
la résolution de l’équation de Poisson au moyen de l’algorithme du gradient



xx Resumé

conjugué. La fonctionnelle d’échange et corrélation a été décrite dans le cadre
de l’approximation de la densité locale, avec la paramétrisation de Perdew et
Zunger pour la corrélation[62].

L’évolution temporelle du système a été calculée dans le cadre de la
méthode de Crank et Nicolson[63] avec un pas d’intégration temporelle d’une
attoseconde. Afin d’empécher toute réflexion de l’électron tunnel à la surface
du substrat, un potentiel complexe a été utilisé pour absorber le paquet d’onde
une fois le substrat atteint. J’ai considéré une situation de départ construite
de telle sorte à ce qu’il n’y ait aucune interaction initiale entre le paquet
d’onde représentant l’électron tunnel et la molécule. J’ai ensuite réalisé
plusieurs séries de propagations pour différentes vitesses de propagation du
paquet d’onde, correspondant à différentes tensions pointe/échantillon. J’ai
porté une attention particulière au développement d’un protocol permettant
de limiter au maximum la dispersion du paquet d’onde au cours de la
propagation. C’est un point délicat sur lequel j’ai passé du temps car à la
différence des photons, la relation de dispersion parabolique des électrons
tunnels dans la jonction entraine que leurs vitesses de phase et de groupe
sont différentes se traduisant par une déformation du paquet d’onde au cours
de la propagation.

A l’heure actuelle, j’ai partiellement résolu le problème en introduisant un
potentiel harmonique 2D dans le plan du front d’onde électronique de sorte
à avoir une dispersion linéaire. J’ai vérifié que l’impact de ce potentiel sur la
molécule est négligeable. En revanche, concernant la dispersion longitudinale,
je n’ai pas encore trouvé de solution satisfaisante, permettant à la fois de
garder un paquet d’onde non déformé et sans impact sur la molécule. La
meilleure solution que j’ai trouvée pour l’instant est de considérer un chemin
de propagation le plus court possible compatible avec les exigences du système.
Les résultats indiquent qu’à mesure que l’électron tunnel se propage dans la
jonction, on observe l’apparition progressive d’une interaction entre l’électron
tunnel et la molécule se traduisant par une perturbation de la distribution des
électrons les plus externes de la molécule. J’ai identifié deux régimes dans le
comportements du nuage électronique de la molécule à l’approche du paquet
d’onde. Une forte répulsion du nuage électronique aux premiers temps de
la propagation que j’attribue à l’interaction Coulombienne ”classique” entre
la charge de l’électron tunnel et le nuage électronique des électrons de la
molécule.

Puis une atténuation de la répulsion que j’attribue à l’interaction d’échange
qui apparâıt en raison de l’indiscernabilité de l’électron tunnel avec les
électrons de la molécule lorsque le paquet d’onde est proche de la molécule.
J’ai ensuite étudié le comportement de ces deux régimes en fonction de la
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position de la pointe sur la molécule. J’ai identifié plusieurs comportements
différents qui semblent être liés à une modification des poids relatifs des
interactions d’échange et Coulombienne en fonction de l’environnement locale
où le paquet d’onde penètre dans la molécule.





Chapter 1

General introduction.

The project below describes the excitation phenomena observed on scanning
tunnel microscopy (STM). The tunnel effect is a quantum phenomena known
since late 1920’s [1–8]. Several milestones were reached on the development
of the microscopy techniques based on this effect. On early 80’s the tunnel
effect was used to map the current between a surface and the tip of the
microscope in order to characterize the material surfaces in nanometre scale[9].
In 1990’s the first experiments using the scanning tunnel microscopy were
devoted on the study of the electronic transport properties through the
molecular nanojunctions [15, 16] and are considered as the starting point of
the molecular nanoelectronic. Nowadays, it is possible to assemble atoms
and molecules using the tip of the STM[17, 18], measure the electromagnetic
properties of this assembles at nanoscale[19–23], the electronic transport
properties [24, 25] and the excitation of these devices from one state to
another, leading to the development of new optical spectroscopy methods
in a sub-nanometric spatial resolution [26–40]. Nevertheless, regarding the
optical spectra of molecular nanostructures excited by the tip of the STM,
we observe that there are additional transition peaks, whose origin is still
debated today due to the action non-local sources of excitation. Recently,
G. Schull’s team has demonstrated experimentally that the spectrum of the
light emitted by the molecule during its excitation varied according to the
position of the tip above the molecule, suggesting the possibility of mapping
molecules in their excited states with subnanometric resolution[41].

This manuscript is devoted to the development of a model to report
the main characteristics of the light emission by molecular nanojunctions
excited by a tunnel current. The first step is to identify the main phenomena
involved in the light emission and to quantify its importance. Secondly, the
study of the impact of the nature of a local excitation by the tunnel current
flowing between the tip and the substrate. A comparative analysis between
theory and experiment is an effective tool for identify and describe the

1



2 General introduction

physical phenomena involved. However, this comparison with experiments
imposes significant constraints. The molecular nanojunctions are described
in a nanoscale, the number of atoms to take in consideration to describe as
faithfully as possible the physics of the system is in the order of hundred to
a thousands atoms (molecule, tip and substrate). The lack of simulations
respect to experiments is the computational limitations in terms of resources
as computing time or memory needed to perform the simulation.

The emission of light by a molecule is the result of a reorganisation of the
electron distribution in it. The determination of the electronic distribution
of the ground state and excited state of a system is the fundamental key
to understand the excitation (absorption) mechanism. Also, the emission
spectra can be calculate from the probabilities of transitions between these
different electronic distributions. In terms of methods used to this task,
Density functional theory is, probably, the most efficient method to study
the electronic structure of a system. The exponential grow in the last 30
decades of this method gives an idea of the popularity and versatility of this
technique due to the relatively low computational cost in comparison with
traditional methods as Hartree-Fock or Möller-Plesset. However, there is still
some limitation of this technique, such as, the description of intermolecular
interactions as van der Waals forces (dispersion). The consequence of this
limitation is the accuracy of the functional used in this approach and to solve
it there is a continuous development of functional trying to include terms on
them in order to improve their accuracy. The recent technological advances
in electronics allow computers with large amounts of RAM making possible
the manipulation of very large matrices, and thus consider systems with a
large number of electrons in the simulations.

Time Dependent Density Functional Theory method is commonly used
to investigate the properties and dynamics of a system in presence of a
time-dependent potential, such as electric or magnetic fields. The principle of
this approach is to follow the evolution of the charge distribution and extract
features like excitation energies, frequency-dependent response properties and
photoabsorption spectra. This method is an extension of the DFT in which
the time dependence is included. Moreover, the linear-response theory and
the real-time propagation theory are two complementary techniques inside the
TD-DFT approach. From the numerical point of view, linear response theory
approach reduce the problem to a eigenvalue system. On the other hand,
with the linear-response theory is not possible to track the evolution of a
perturbation through the molecule. To study the propagation of perturbation
the real-time time-dependent theory is a good choice. The basis of this theory
is the propagation (in time) of the ground state Kohn-Sham orbitals due to
the interaction with a perturbation. The optical properties obtained with this
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approach are determined from the Fourier transform of the dipolar moment
induced by the perturbation. The manuscript is divided in four chapters.
The first chapter is devoted to the introduction of the ab-initio approaches
used in the research. A review of the density functional theory and time
dependent density functional theory is given. The last three chapters are
devoted to the discussion of the results obtained in this project. Each of
these chapters are dedicated to study a specific hypothesis at the origin of the
additional peaks in the spectra of electroluminescence of molecules excited
by the tunnel current:

• Constraint effect on the molecule chapter three.

• Local excitation effect in chapter four.

• The electronic nature of the local source in chapter five.

Chapter 3 is focused on the optical properties of the phthalocyanine
and metal-phthalocyanine molecules. The first step of all simulations is the
geometry optimization of the molecules by using DFT and the parametrization
of the optical spectra computed in the framework of the linear response theory.
The aim of this study is to provide a set of reference spectra used to the
analysis of the structures used on the STM experiment. The second part of
the chapter is devoted to the study of the molecules adsorbed on a surface of
NaCl used on the experiments. The NaCl avoid the quenching deactivation
of the molecules with the metallic surface in which the NaCl is supported.
Two types of NaCl substrate were consider on the study, one layer of NaCl
supported on three layers of gold and a NaCl bilayer.

Chapter 4 is devoted to the study of the impact of the nature of the
excitation. To do this task, the real-time time-dependent theory was used.
This method allows the user the study of the change in the dipolar moment due
to the action of a perturbation. Several hypothesis were carried out, the first
step is the study of the action of a global perturbation acting on the studied
molecules. Secondly, in order to understand the action of a local perturbation
mediated by the tip in the STM experiment, we developed a model describing
the local action of the perturbation. This model was possible to achieve due
to the fact that the software used for this proposal allows the user define
a scalar potential. In this way, the treatment of this scalar potential as a
Gaussian function was employed in the local perturbation analysis. The last
section is devoted to the study of the energy transfer phenomena between
chromophores and it was focused on the understanding of the excitation
mechanism of a molecule induced by the action of a perturbation onto a
second one by a dipolar-dipolar interaction.
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Chapter 5 is devoted to the development of a model describing the
specific action of the tunnel current. The model postulated on this chapter
takes into account the phenomena involved of a tunnel current between
the molecule located between the tip of the STM and the surface. The
development takes into account the real nature of the tunnel current treating
it as a source of electrons instead to consider it as a photon. To do this
task, a wavepacket is propagated through the junction behind the framework
of a non perturbative real-time time-dependent density functional theory
approach. The Laplacian operators involved in the system were discretized
in terms of the finite difference method.



Chapter 2

DFT and Time-dependent
DFT.

The fundamental equation to describe the electronic structure of a system
was postulated by Erwin Schrödinger in 1926 [64] elucidating the temporal
evolution of a particle.

i}
∂

∂t
|Ψ(r, t)〉= Ĥ |Ψ(r, t)〉 (2.1)

Where i is the imaginary unit, } is the reduced Planck constant (} = h
2π ),

Ψ the wave function of the quantum system, t the time and Ĥ is the non-
relativistic Hamiltonian operator. Who is defined as:

Ĥ =
[
−}2

2m ∇
2 +V (r, t)

]
, (2.2)

when a single particle is subjected to a potential, V (r, t), such an electric
field and where ∇2 is the Laplacian operator and m is the mass of the
particle. The time-dependent Schrödinger equation described above can be
described as a stationary states (no dependence on time). Stationary states
are described also by a simple form of the Schrödinger equation called the
time independent Schrödinger equation:

ĤΨ(r) = EΨ(r), (2.3)

where E is the eigenvalue of the Hamiltonian and is the energy level of
the system.
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[
−}2

2m ∇
2 +V (r)

]
Ψ(r) = EΨ(r) (2.4)

The form of the total Hamiltonian for a many-body system can be written
as:

Ĥ = T̂n+ T̂e+ V̂nn+ V̂ee+ V̂en (2.5)

The two first terms are the kinetic energy operators for nuclei and elec-
trons, respectively. The third and fourth terms are the repulsive electrostatic
potential for nuclei-nuclei and electron-electron interactions respectively. The
last term of the equation is the attractive electrostatic potential between
nuclei-electron. The Hamiltonian can be fully described as:

Ĥ =−
Np∑
α

1
2∇

2
α−

ne∑
i

1
2∇

2
i + 1

2

Np∑
α

Np∑
β 6=α

ZαZβ

|~Rα− ~Rβ|

+1
2

ne∑
i

ne∑
j 6=i

1
|~ri−~rj |

−
ne∑
i

Np∑
α

Zα

|~ri− ~Rα|

(2.6)

In practice, only the Hydrogen atom can be solved exactly and it is a
consequence of a many body particle system. For all other cases approx-
imations are required. The first approximation is the Born-Oppenheimer
approximation.

2.1 Born-Oppenheimer approximation.

The Born-Oppenheimer approximation was postulated in 1927 [65] and
consists on the splitting of the nuclear and electron wavefunction taking into
account the difference of mass between them. This mass difference make the
nuclei have a moment of inertia greater than the electrons (approx. 1836
times more). As a consequence, we can assume that the electrons evolve in a
potential created by the nuclei which have a fix configuration. In other words,
the nuclear kinetic energy can be neglected and its potential is constant.
So, the total Hamiltonian in equation 2.6 can be expressed as a sum of the
electronic and nuclear Hamiltonian, and also, the total wavefunction can be
expressed as a product of both, electronic and nuclear wavefunctions:
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ĤT = Ĥe+ ĤN

ΨT (~r, ~R) = Ψe(~r; ~R)Ψn(~R)
(2.7)

The eigenvalue system for electrons can be, now described as:

Ĥe(~r; ~R) = Ψe(~r; ~R) = U(~R)Ψe(~r; ~R)
Ĥe = T̂e+ V̂ee+ V̂eN

(2.8)

Both, electronic wavefunction (Ψe(~r; ~R)) and the total electronic energy
(U(~R)) have a parametric dependence with respect to the nuclear coordinates.
It means, that a change in the nuclear coordinates change the result of
solving the electronic Schrödinger equation, but the nuclear coordinates are
not involved as a variable in the resolution of Eq. 2.8.

For a given nuclear configuration, the term V̂nn is a constant, the presence
or the absence of this term in Eq. 2.8 does not have any effect on the
electronic wavefunction. Although, it affects on the electronic energy. The
eigenvalue U(~R) is called as total electronic energy (and also as nuclear
potential) because it is the sum of the pure electronic energy (Ee(~R)) and
the electrostatic nuclear repulsive potential (V̂nn). Consequently, the nuclear
Schrödinger equation can be written as:

[T̂n+U(~R)]Ψn(~R) = ETΨn(~R) (2.9)

Where ET is the total energy of the system and the total wavefunction
is given by Eq. 2.7. To obtain the total energy of the system, first the
electronic equation has to be solved to obtain the total electronic energy
U(~R) and the second step, with the calculated value, consist to solve the
nuclear Schrödinger equation 2.9 (in this case, U(~R) acts as a potential
energy function).

2.2 Density Functional Theory

Density Functional Theory is one of the most successful approach to calculate
the electronic structure of atoms, molecules and solids. It was in 1964 that
Hohenberg and Kohn [66] described a theory where the main variable was
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the density of the system. Also they discovered that to fully describe a
stationary electronic state, it was sufficient to know its ground state density.
The density is a very convenient variable because it is a physical variable
with a intuitive interpretation. It can be measured by X-Ray scattering [67]
and high-energy electrons [68, 69].

The fundamental principle of the DFT is that any property of the system
of many interacting particles can be expressed as a functional of the ground
state density. Hohenberg and Kohn establish a variational principle in terms
of the density showing that the total energy can be written as a functional of
the density which minimum, the exact ground state of the system, is reached
at the exact density. With this postulate they were able to finish the previous
work done by Thomas [70], Fermi [71, 72] and others authors that had been
trying, a mathematical definition of the total Energy as a explicit functional
of the density of the system,

E0 = E[ρ0(~r)]. (2.10)

The Hohenberg and Kohn theory is based on three postulates:

• The electronic density of an interacting system of electrons uniquely
determines the external potential V (~r) and all observables of the system.

• The ground state energy of the system can be obtained by minimizing
the total energy in terms of the density.

• There exists a universal functional F [ρ], who is the same for all systems
with the same particle-particle interaction, such that the total energy
can be written in the form:

E[ρ] = F [ρ] +
∫
dr3ρ(r)V (r) (2.11)

2.2.1 Kohn-Sham equations

In 1965, Kohn-Sham [73] used an auxiliary non-interacting system to evaluate
the density of the interacting system. This approach reduce the problem in
a system of N-monoelectronic equations. In other words, the electrons obey
a one-particle Schrödinger equation with an effective external potential VKS
which is a functional of the electronic density.
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The monoelectronic Kohn-Sham operator can be defined as the sum of the
kinetic energy operator and the effective external potential for non-interacting
system:

ĤKS =−1
2∇

2
i + V̂eff (~r). (2.12)

The ground state density can be calculated as a sum over the N lowest
occupied Kohn-Sham states,

ρ(~r) =
N∑
i

|ψi(~r)|2, (2.13)

Where N is the total number of electrons and the external effective
potential can be describes as:

Veff (~r) = V̂ext(~r) + V̂H(~r) + V̂xc(~r). (2.14)

Vext(~r) =−
N∑
i

Zi

|~r− ~Ri|
,

VH(~r) =
∫
d~r

ρ(~r)
|~r−~r′|

,

Vxc = ∂Exc[ρ(~r)]
∂ρ(~r) .

(2.15)

The first term is the external potential, which in general is the Coulomb
interaction between electrons and nuclei. The second term is the Hartree
term which is the classical part of the electron-electron interaction and the
last term is the exchange-correlation potential. Kohn and Sham also proposed
a simple approximation to Vxc using the local density approximation (LDA).

Using the Eq. 2.11 it is possible to define the exchange and correlation
energy:

F [ρ] = T̂ [ρ] +EH +Exc[ρ]. (2.16)
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The total energy of the system in atomic units can be written as the
contribution of the different terms as:

ET [ρ] = T [ρ] +EH [ρ] +Eext[ρ] +Exc[ρ], (2.17)

Where T [ρ] is the energy associated to the kinetic operator, EH [ρ] is the
Hartree interaction, Eext[ρ] is the energy associated to the external potential
and the last term is the exchange-correlation energy. At this point, all terms
related to the total energy can be evaluated except the exchange-correlation
term. In the next section, a method to compute this energy will be described
using different approaches.

2.2.2 Exchange-Correlation functionals

The Exc term contains the exchange term which is a result of the antisym-
metric property of the wavefunction, the Coulombian electronic repulsive
correlation term and the self-interaction correction term due to the indistin-
guishable principle for electrons. However, this term is unknown and needs
to be approximated at some point to be computed. If this term could be com-
puted without any approximation, we could have a exact functional making
able the exact computation of the electronic structure. The scientific commu-
nity has been focused in the development of an accurate exchange-correlation
functional. For this task, different methods had been developed, the local
density approximation (LDA), the generalized gradient approximations and
the meta-GGA functional.

Local Density approximation

It was the first approximation developed by Kohn and Sham in 1965, and
it describes the energy per particle of the homogeneous electron gas with a
constant density ρ (εxc(ρ)):

ELDAxc =
∫
d3rρ(~r)εxc(ρ(~r)). (2.18)

The LDA functional as the PZ [74] or PW [75] are local, the potential
energy at the point r only depends on the density at the same point. Consid-
ering this approximation one would expect good results only for systems with
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slowly variation on the density, but, in fact, it yields remarkably good results
even for highly inhomogeneous systems like atoms or small molecules. This
type of functional does not allow to correct the effects of self interaction and
describes in a wrong way certain properties such as the insulator and semi-
conductors gaps, the intramolecular bond energies which are overestimated,
the bond distances and the cohesion of solids are underestimated.

Generalized Gradient approximation and meta-GGA

The general gradient approximation (GGA) is more complex than LDA. The
general form of a GGA is:

EGGAxc =
∫
d3rf(ρ(~r,∇ρ(~r))). (2.19)

Besides the local density dependency, the function f also depends on the
density gradient. Thus, it is possible to referred to the GGA as a semi-local
approximation. In contrast with LDA where εxc(ρ) is unique and known to
very good accuracy, the function f is uniquely defined in the limit where
the dimensionless density gradient approaches to zero for a inhomogeneous
gas. In this limit, f can be expressed as a response function of an uniform
electron gas.

In practice, the GGA functional treat separately the exchange and corre-
lation terms. This formulation can be based in a semi-empirical procedure,
giving good results for small molecules but less good results for the sys-
tems where the electrons are delocalized as metals. The most common used
functional can be the BLYP [76, 77], PW91 [78] and PBE [79] among others.

Recently, a new class of functional called meta-GGA [80] has been pro-
posed. The difference of this functional respect to the normal GGA is the
addition of a new variable, the kinetic energy density:

τ(~r) = 1
2

occ∑
i

|∇φi(~r)|2, (2.20)

and the energy functional expression can be written as:

EMGGA
xc =

∫
d3~rg(ρ(~r),∇ρ(~r), τ(~r)). (2.21)
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This new function g is determined in the same way as in the GGA. τ allows
to improve the results obtained using the traditional GGAs functional and
has a dependence on the Kohn-Sham orbitals. By virtue of the Hohenberg-
Kohn theorem, a functional of the density which proves that EMGGA

xc is still
a density functional, although its functional dependence on the density is
implicit. Some meta-GGA functional are TPSS [81] and M06-L [82] among
others.

Hybrid functional

Hybrid functional are the result to mix the non-local Hartree-Fock exchange
with LDA or GGA exchange. The first method was proposed by Becke
[83]. A hybrid exchange-correlation functional is usually build up as a linear
combination of the exact HF exchange functional. One of the most used
hybrid functional is the B3LYP [84, 85]:

EB3LY P
xc = ELDAx +a0(EHFx −ELDAx ) +ax(EGGAx −ELDAx )

+ELDAc +ac(EGGAc −ELDAc )
(2.22)

Where a0=0.20, ax=0.72 and ac=0.81.

EGGAx and The EGGAc are the generalized gradient approximations for the
Becke88 exchange functional [76] and the correlation functional of Lee, Yang
and Parr [77] for B3LYP, and the ELDAc is the VWN LDA to the correlation
functional [86]. The B3LYP functional uses three fitted parameters which
control the contribution of the different components. The hybrid functional
are more accurate than the LDA and GGA functional.

2.3 Time-Dependent Density functional Theory.

The DFT is very useful to deal with systems where a static external potential
interact with the system and is described by the time-independent Schrödinger
equation. Nevertheless, when we want to study the interaction between an
external electromagnetic field (e.g. laser field) and a solid or a molecule,
it falls out of this theory. This systems should be described using the
time-dependent Schrödinger equation using the Time-Dependent Density
Functional Theory which is an extension of the ground-state DFT.
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In 1984 Runge and Gross [56] proved the Hohenberg-Kohn theorem and
a Kohn-Sham scheme for the time-dependent case. First of all, it is useful to
describe the time-dependent Hamiltonian operator before to go beyond the
Runge and Gross theorem. We start from the time dependent Schrödinger
equation:

i}
∂

∂t
Ψ(~r, t) = Ĥ(~r, t)Ψ(~r, t). (2.23)

Ĥ is the Hamiltonian operator for a system of N -electrons interacting
with a time-dependent potential and ~r=(r1, ...., rn) are the spatial coordinates
of the N electrons. The Hamiltonian, as in the independent-time case, can
be decomposed into:

Ĥ(~r, t) = T̂ (~r) + V̂ext(~r, t) + Û(~r, t) (2.24)

T̂ (~r) =−
∑
i

∇2
i

2 (2.25)

V̂ext(~r, t) =
∑
i

vext(~ri, t) (2.26)

Û(~r) =
∑
i<j

1
|ri− rj |

(2.27)

The first term of Eq. 2.24 is the kinetic energy of the electrons, while V̂ext
is the time-dependent external potential under the electrons evolve, assumed
constant for t < t0, and the last term is the electron-electron interaction.

The expression for the external potential is written as a sum of one body
term. In the case where the electromagnetic field applied is a laser beam,
within the dipole approximation, the electrons feel the potential:

vext(~r, t) = Ef(t)sin(ωt)~rα, (2.28)

Where α, ω and E are the polarization, the frequency and the amplitude
of the laser respectively. The envelope function f (t) describes the temporal
shape of the laser pulse. The probability to find at time t an electron at ~r is:
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ρ(~r, t) =
n∑
i

|φi(~r, t)|2. (2.29)

The density is normalized at all times to the total number of electrons N.

2.4 The Runge-Gross theorem

The Runge-Gross theorem proves that there is a one-to-one correspondence
between the time-dependent external potential, Vext(~r, t) and the electron
density, ρ(~r, t) for a many body system evolving from an initial state which is,
in general, the ground state of the system. If we know the electronic density
of the system (e.g. the ground state electronic density), it is possible to get
the external potential of the system. This potential can be introduced in
the time-dependent Schrödinger equation and it can be solved obtaining the
time-dependent many-body wavefunction. This non-trivial statement implies
that if the only available information of the system is the electron density, it
is possible to obtain the external potential produced by this density. From
this statement, the electronic density determines all the properties of the
quantum system.

The proof of the one-to-one correspondence is based on considering the
quantum-mechanical equation of motion for the current-density. This proof
requires the potentials Vext(~r, t) to be time-analytical around the initial time.
In this way being able to expand it in a Taylor-series in t around t=0, for a
finite time interval:

Vext(~r, t) =
∞∑
k=0

1
k!vext,k(~r)t

k. (2.30)

The densities ρ(~r, t) and ρ′(~r, t) evolving from a common initial state
under the influence of the Vext(~r, t) and V ′ext(~r, t) potentials are different if
the potentials differ in more than a purely time-dependent function.

Vext(~r, t) 6= V ′ext(~r, t) + c(t). (2.31)

Such time-dependent constant c(t) does not change the physic, if that
potentials differs only in the c(t) constant, then the resulting wavefunctions
differ only by a time-dependent phase factor giving the same density. At
time t= t0:
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|Ψ(t0)〉= |Ψ′(t0)〉 ≡ |Ψ0〉 , (2.32)

ρ(~r, t0) = ρ′(~r, t0)≡ ρ0(~r), (2.33)

j(~r, t0) = j′(~r, t0)≡ jρ0(~r). (2.34)

Making use of the motion equations for the density-current, it can be
demonstrated that this current-densities only differ if the potentials Vext and
V ′ext differ in more than a time-dependent constant.

j(~r, t) = 〈Ψ(t)| ĵ(~r) |Ψ(t)〉 , (2.35)

j′(~r, t) = 〈Ψ′(t)| ĵ(~r) |Ψ′(t)〉 , (2.36)

ĵ(~r) = 1
2i

N∑
i

[∇iδ(~r−~ri) + δ(~r−~ri)∇i]. (2.37)

Since Ψ and Ψ′ evolve from the same initial state:

Ψ(t= 0) = Ψ′(t= 0) = Ψ0, (2.38)

and

∂

∂t

[
ĵ(~r, t)− ĵ′(~r, t)

] ∣∣∣∣∣
t=0

=−i〈Ψ0|
[
ĵ(~r), Ĥ(0)− Ĥ ′(0)

]
|Ψ0〉

= ρ0(~r)∇
[
Vext(~r,0)−V ′ext(~r,0)

]
.

(2.39)

It can be concluded by saying that at an infinitesimal time of the initial
time:
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j(~r, t) 6= j′(~r, t). (2.40)

The second proof of the theorem consists in verifying the previous theorem
using the continuity equation. The potentials is expanded in a Taylor-series
for t= t0 around the initial time t0 [87, 88]

∂ρ(~r, t)
∂t

=−∇j(~r, t). (2.41)

Considering this results, the time-dependent densities determine the po-
tential up to a purely time-dependent constant. Therefore, the wavefunction
is determined up to a purely time-dependent phase:

Ψ(t) = e−iα(t)Ψ[ρ,Ψ0](t). (2.42)

The expected value of any Hermitian operator Â(t) is uniquely a functional
of the density and the initial state analogous to the time-independent case.

A[ρ,Ψ0](t) = 〈Ψ[ρ,Ψ0] (t)|Â(t) |Ψ[ρ,Ψ0] (t)〉 (2.43)

In the time-independent case, we cannot used directly a variational
principle as in the time-independent case but the problem can be solved using
the quantum-mechanical action to convert the solution of the Schrödinger
equation into a variational problem:

A[Ψ] =
∫ t1

t0
〈Ψ(t)| i ∂

∂t
− Ĥ(t) |Ψ(t)〉 . (2.44)

The true time-dependent density is the one which makes the action
stationary

δA[Ψ]
δ 〈Ψ(t)| = 0. (2.45)

Runge and Gross, to prove their theorem, started with the action of Eq.
2.43 but they found that the response functions obtained are not casual [89, 90]
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and to derive the variational equation two independent boundary conditions
must be imposed δΨ(t0)=δΨ(t1)=0. In TD-DFT this two conditions are
not independent because the value of the density at t1 is determined by the
value at t0 [91]. In 1998, van Leeuwen [92] solved this problems using the
Keldysh [93] formalism for the causality problem and the second was solved
by introducing a new action functional that does not contain explicitly the
time derivative ∂/∂t:

A[ρ] =−iln〈Ψ(t0| Û(τf , τi) |Ψ(t0〉+
∫ τ1

τ0
dτ
dt

dτ

∫
d3rρ(~r,τ)vext(~r,τ). (2.46)

Where τ is the Keldysh pseudo-time and Û is the evolution operator of
the system

Û(τf , τi) = T̂cexp

[
−i
∫ τi→τf

C
dtĤ(τ)

]
. (2.47)

T̂c denotes ordering in τ . The causality problem is solved, the response
functions calculated are symmetric in Keldysh pseudo-time and casual when
converted in real time.

2.5 Time dependent Kohn-Sham equations.

The extension of the Kohn-Sham equation into the time-dependent density
functional theory is a trivial task after the development of the Runge and
Gross theorem explained in the previous section. The first step is to build
the auxiliary system of non-interacting electrons. The Kohn-Sham time-
dependent equation is written as:

i
∂

∂t
Ψi(~r, t) = ĤKS(~r, t)Ψi(~r, t). (2.48)

The Kohn-Sham Hamiltonian is defined as:

ĤKS(~r, t) =−∇
2

2 +VKS [ρ](~r, t). (2.49)
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The existence of a potential VKS [ρ](~r, t) yields the density of the inter-
acting system:

ρ(~r, t) =
N∑
i

|φi(~r, t)|2. (2.50)

The time-independent effective potential, Vks(~r, t) can be defined as:

VKS [ρ](~r, t) = Vext(~r, t) +
∫
d3r

ρ(~r′, t)
|~r−~r′|

+Vxc[ρ](~r, t). (2.51)

Vext is the external potential that the electrons feel, the second term is the
Hartree potential and takes into account the classical electrostatic interaction
between electrons. Vxc[ρ](~r, t) is the exchange-correlation potential, including
all non-trivial many body effects:

Vxc(~r, t) = δAxc[ρ]
δρ(~r,τ)

∣∣∣∣∣
ρ=ρ(~r,t)

. (2.52)

Axc can be defined as:

A[ρ] =AKS [ρ]−Axc[ρ]− 1
2

∫ τ1

τ0
dτ
dt

dτ

∫
d3~r

∫
d3~r′

ρ(~r,τ)ρ(~r′, τ)
|~r−~r′|

, (2.53)

where AKS [ρ] is the Kohn-Sham functional written in Eq. 2.46.

2.6 Exchange-Correlation potentials.

The development of time-dependent functional is still in early work, on the
other way round to the normal DFT where a huge number of approximations
are already done. In TD-DFT the simplest and common approximation is the
adiabatic local density approximation (ALDA). In the limit of an external
potential which varies slowly in time is reduced to:

Axc =
∫ τ1

τ0
Exc[ρ]dt. (2.54)
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Exc is the exchange-correlation functional of the time-independent Kohn-
Sham theory. This exchange-correlation functional is evaluated at each time
from the density ρ(~r, t). The adiabatic approximation is a local approximation
in time:

Vxc[ρ](~r, t) = δAxc[ρ]
δρ(~r, t)

∼= ṽxc[ρ](~r)|ρ=ρ(~r,t), (2.55)

Where ṽxc is a exchange-correlation functional of the DFT ground-state.
Using this assumption, the ALDA functional keep the same problems as the
LDA approximation, i. e., the same incorrect asymptotic behaviour as the
LDA potentials. It is important to note that Vxc is a functional of density
over the time and space while ṽxc is a functional of density over only the
space, the time being fixed.

2.7 Linear Response theory

In the time-dependent density functional theory the goal is to find the
response of the density due to an external electromagnetic field with respect
to the time to obtain the linear absorption spectra of a molecule using a weak
field to solve the time-dependent Kohn-Sham equations. The linear response
time-dependent theory correspond to the response of a initially stationary
state due to a perturbation switched on at t=0. The total potential is given
by:

vext(~r, t) = vext,0(~r) + δvext(~r, t). (2.56)

A Taylor series can be used to express the response of any observable
(normally the density) related to δvext. Linear response is concerned with the
first order-term (ρ1(~r, t)) of the Taylor expansion. The change of density due
to a perturbation of the system by a small change of the external potential
can be estimated from the dynamical susceptibility linear response function
χ(~r,~r′, t) as:

δρ(~r,ω) =
∫
d3r′χ(~r,~r′,ω)vext(~r′,ω), (2.57)

with
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χ(~rt,~r′t′) =−iω(t− t′)〈Ψ0| [ρ̂H0(~r, t), ρ̂H0(~r, t)] |Ψ0〉 , (2.58)

Where n̂H0 = eiH0tn̂e−iH0t and ω(t− t′) is the step function ensuring that
the response function is properly casual and ρ̂(~r) is the density operator:

ρ̂(~r) =
∑
i

δ(~r−~ri). (2.59)

By inserting the completeness relation
∑
i |Ψi〉〈Ψi|= 1 and by performing

a Fourier transform with respect to t− t′, we get the Lehmann representation
for the density response function:

χ(~r,~r′,ω) = lim
η→0+

∑
i

[〈Ψ0| ρ̂(~r) |Ψi〉〈Ψi| ρ̂(~r′) |Ψ0〉
ω− (Ei−E0) + iη

−〈Ψ0| ρ̂(~r′) |Ψi〉〈Ψi| ρ̂(~r) |Ψ0〉
ω+ (Ei−E0) + iη

] (2.60)

In the case of a non-interacting system the previous equation can be quite
simplified:

χ(~r,~r′,ω) =
∞∑
jk

(fk−fj)
φj(~r)φ∗j (~r′)φk(~r′)φ∗k(~r)
ω− (εj− εk) + iη

(2.61)

Where fk is the occupation of the state k. This equation involves the
excitation of a single particle from an occupied state to an unoccupied state.
The time-dependent exchange and correlation kernel, fxc, to obtain the true
electron density-response form the KS system can be written as:

fxc[ρgs](~r,~r′, t− t′) = δvxc[ρ](~r, t)
δρ(~r′, t)

∣∣∣∣∣
ρ=ρgs

. (2.62)

For a given δvext the first order change in the time-dependent Kohn-Sham
potential is an exact representation of the density response of the interacting
system [59, 94–97]:
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δvks(~r, t) = δvext(~r, t) +
∫
d3r′

ρ1(~r′, t)
|~r−~r′|

+
∫
d3t′

∫
d3r′fxc[ρgs](~rt,~r′t′)ρ1(~r′t′).

(2.63)

Following Casida’s work, Eq. 2.61 can be transformed into a matrix
representation:

(
L K
K∗ L∗

)(
X
Y

)
= ω

(
−1 0
0 1

)(
X
Y

)
.

The Casida equation yields the exact excitation energies of any many-
body system. The exact Kohn-Sham ground state of the system must be
calculated. All occupied and unoccupied Kohn-Sham orbitals and energy
eigenvalues are needed including the continuum states. Also, the exact
frequency-dependent exchange-correlation Kernel is required. Since the
elements of the matrices A and B depend on the frequency, an iterative
scheme is required. In practice, none of these requirements can be satisfied
exactly. Setting the coupling-matrix elements to zero, the Casida equation
simply reproduces the Kohn-Sham excitation energies as eigenvalues.

2.8 Real Time density functional theory.

The linear response quantities for the time-dependent Kohn-Sham equations,
which contains the response of the system to all orders, by adding a perturbing
field to the Kohn-Sham potential and propagating it in time was proposed
by Yabana and Bertsch [98–100]. The wavefunction of the ground state has
been changed and then propagated for some time:

φ(~r,δt) = eiκxjφ(~r), (2.64)

where κ is a small momentum in the direction xj to the electrons. The
dynamic polarizability α(ω) is essentially the Fourier transform of the dipole
moment of the system.

αij(ω) =−1
κ

∫
dt

∫
d3rxiδρ(~r, t)e−iωt (2.65)



22 Real Time density functional theory.

2.8.1 Propagators in real time density functional theory.

The propagators are Green functions, the solution of a differential equation,
giving the probability amplitude for a particle to travel from one place
to another in a given time. The traveller particle can be real or virtual,
and the Feynman diagrams is essentially the representation of the particle
propagators of virtual particles between nodes. Formally the solution of the
time-dependent Schrödinger equation with a time independent Hamiltonian
is simply:

φ(t) = e−itĤφ0. (2.66)

φ(t) is computed from φ0 in an interval [0,t] and this option is not
convenient. To solve this problem it needs to break the interval [0,t] into
smaller intervals. The time propagator can be written as:

Û(t,0) =
N−1∏
i=0

Û(ti+ δti, ti), (2.67)

by using the property Û(t1, t2) = Û(t1, t3)Û(t3, t2) and the fact that t0=0,
ti+1 = ti and tn = t. Splitting in small intervals has a double goal:

• the time-dependent Hamiltonian is smoothed

• and the norm of the argument of the exponential is reduced by increasing
lineally the norm with ∆t.

With this convenience reasons, there is a natural limit to the maximum
size of ∆t. From a numerical point of view, the propagation algorithm should
be stable and accurate. The propagator is stable below ∆tmax if ∆t < ∆tmax
and n > 0 where Ûn(t+ ∆t, t) is uniformly bounded. If the algorithm is
unitary, it is also contractive and hence stable. A contractive algorithm
reduce the norm as a consequence the error will grow smaller.

Unfortunately, the evaluation of the exponential with the well known
methods arise to a computational limitation due to the matrix order (less
than a few thousands). An alternative is the use of a iterative method that
yield directly to exp(Â)v. These methods have a much better scaling with the
order of the matrix. The most famous technique is the polynomial expansion
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where the exponential of a matrix Â is defined by the Taylor expansion
approximation the exponential as:

taylork[Â,v] =
k∑

n=0

1
n!Â

nv. (2.68)

For a given k, the method is of order k and requires k matrix-vector
operations. The truncation of this series at a given k breaks the unitary of
the exponential. A Kyrlov subspace projection κmÂ,v for a given operator
Â and vector v is defined as:

κm[Â,v] = kyrl[v,Âv, Â2v, ..., Âm−1v]. (2.69)

The dimension of κmÂ,v may be smaller than m if v does not have
non-null components of at least m distinct eigenvectors of Â. This projection
is solved with the Lanczos procedure generating recursively and orthogonal
base as:

ÂV̂m = V̂mĤm+hm+1,mvm+1e
T
m, (2.70)

where V̂m=[v1,...,vm], Ĥm is an mx, symmetric tridiagonal matrix and ei
is the i-nth unit vector. The method consist to approximate any function
and specifically the exponential:

lanczosk[Â,v] = V̂kexp(Ĥk)e1. (2.71)

Accurate values are obtained for relatively small values of k. The Krylov
subspace projection is an order k method that requires k matrix-vector
operations.

After the description of the approximations used to the exponential we now
analyse the approximation of the evolution operator. Most methods require
the knowledge of ψ(τ) and Ĥ(τ) for 0≤ τ ≤, and also the Hamiltonian at
some points in time between t≤ τ ≤ t+∆t. The Hamiltonian can be obtained
by extrapolation, propagating ψ to get ψ(t+∆t), from ψ(t+∆t) to obtain
Ĥ(t+∆t). One of the most common methods is the exponential midpoint
rule which consists in approximating the propagator by the exponential
calculated at time t+ ∆t/2:
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ÛEM (t+ ∆t, t) = exp[−i∆tĤ(t+ ∆t/2)]. (2.72)

The exponential is obtained exactly and Ĥ(t+ ∆t/2), which is obtained
self-consistently, is unitary and time reversible. This method also requires
small time steps to be stable. The term time reversible means that propagat-
ing backwards ∆t/2 starting from ψ(t+∆t) or propagating forwards starting
from ψ(t) should lead to the same result. The simplest approximation to the
propagator leads to the condition:

exp

(
+i∆t2 Ĥ(t+ ∆t)

)
ψ(t+ ∆t) = exp

(
−i∆t2 Ĥ(t)

)
ψ(t). (2.73)

The expression can be rewritten in terms of the propagator expression as:

Û(t+ ∆t, t) = exp

(
−i∆t2 Ĥ(t+ ∆t)

)
×exp

(
−i∆t2 Ĥt

)
. (2.74)

The exponential mid-point rule combined with the Lanczos exponen-
tial approximation gives a very accurate algorithm to represent the time
propagator for a wide range of systems.

2.9 Conclusions

In this chapter I give a brief introduction of the theoretical background used
in this work. The Density functional theory and the Time-Dependent density
functional theory are explained. Density functional theory was selected due
to the fact that it is one of the most successful approach to calculate the
electronic structure of a determinate system. It is based on the Hohenberg and
Kohn theory with the electronic density as the main variable to fully describe
the ground state of the system. This methodology provides information about
the electronic structure of the system allowing to describe its behaviour from
a theoretical point of view. The time dependence is included in the extended
version of the DFT. The Time Dependent Density functional theory was
described by Runge and Gross with the one-to-one correspondence theorem
between the time dependent external potential and the electron density. This
method using the density as a variable are becoming more and more, growing
exponentially the number of papers peer year.
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The goal of our study is to understand the behaviour of a molecule
subjected to an external potential (tunnel current from a STM experiment).
To do this task, the TD-DFT under two different approaches like the linear
response theory and the real time TDDFT is used. The real time-TDDFT
shows the evolution of the density in contact with an external electromagnetic
field during the time. The wavefunction is propagated in real space for
some time obtaining a variation of the dipolar moment of the molecule.
The Fourier transform of the dipolar moment variation is essentially the
dynamic polarizability of the system. This physical variable gives us the
photoabsorption spectra of the molecule. With the photoabsorption spectra
we are able to describe the excitation (or emission) mechanism of the molecules
perturbed by a electromagnetic field.





Chapter 3

Optical properties of
phthalocyanine molecule and
derivates.

Phthalocyanines were discovered in 1907 by Braun & Tchemiac [101] when
they were investigating the reaction between the phthaloamide and acetic
anhydrid. As a result of the reaction, traces of a blue compound were obtained.
The meaning of phthalocyanine come from the Greek terms naptha (rock oil)
and cyanine (dark blue) and was described for first time in 1933 by Linsteadi
[102–106] and Robertson [107–110]. In 1949, copper phthalocyanine polymers
were synthesized for first time by Ciba [111]. Ciba’s report describes a black
pigment from the reaction of 4,4’-dicyanobenzophenon-3,3’-dicarboxyl acid
with cupric chloride and ammonium molybdate as catalyst. Moskalev and
Kirin reported the preparation of a rare earth metal phthalocyanine [112,
113] in 1960’s.

The discover of phthalocyanine and derivates have been a great advance
in the field of the pigment industry. Phthalocyanines have acquired great
importance as coloring pigments for their high power of pigmentation, the
brightness, its high light fastness, the moderate cost of production (manu-
facturing), high thermal stability and blue-green pigmentation in a region
of the visible spectrum have caused the phthalocyanines to become, since
1934 and continuing to the present day, the object of intensive worldwide
investigations, particularly with respect to applications in the field of color.
In addition, phthalocyanines are exploited commercially from optical data
storage, catalysis and photoconductors. Therefore, phthalocyanines are used
as materials for non-linear optics, liquid crystals, ordered thin films, photo-
dynamic cancer therapy, molecular semiconductors, components of highly
conducting charge-transfer salts , photovoltaic devices, fuel cells, and sensors
[114–118].

27
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Photophysical properties of phthalocyanines are stronger correlated by
the metallic atom nature located at the center of the ring [119–121]. Metallo-
phthalocyanines with diamagnetic metals as Zn+2, Al3 and Ga3 give high
quantum fields for the generation of triplet states. Zn and Al phthalocyanines
increase the phototoxicity of the molecule in biological systems [122]. Zinc-
phthalocyanine, for example, when excited by visible light in the range of 650
nm, induces photodynamic damage to cellular and perinuclear membranes,
causing lysis and a necrotic or apoptotic response that can lead to tumor cell
death [123–125]. The implementation of phthalocyanine as photosensitizers
agents in cancer treatments is growing due to the excellent photophysical
and photobiological properties of the compound and also due to the minimal
side effects [126–128].

Phthalocyanine comprises one of the most studied classes of functional or-
ganic materials. Commonly, phthalocyanines are associated with porphyrins
due to the similarities between both structures. Phthalocyanines have four
isoindol rings linked by nitrogen atoms. In the other hand, porphyrins are
composed by four pyrrol rings linked by carbon atoms. It is a large planar
aromatic macrocyclic with a empirical formula C32H18N8 composed by four
isoindole units linked by nitrogen atoms with a ring system consisting of
18-π electrons giving a chromophore nature (Fig. 3.1). The coordination
chemistry of the phthalocyanine is a huge field of study. The extensive delo-
calization of the π-electrons give to the molecule useful properties, lending
itself to applications in dyes and pigments. Metal complexed derived from
XPc (X=metal) where the two Hydrogens in the center of the molecule have
been replaced by metals from every group of the periodic table present a
D4h symmetry group and are valuable in catalysis, organic solar cells and
photodynamic therapy [129–131].

Figure 3.1: Phthalocyanine structure represented as sticks.
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The hyperconjugation along the π-system leads to a bigger absorption
wavelength band than porphyrins. The purity and dark blue color of phthalo-
cyanines arise from an isolated band (Q-band) in the far-red of the visible
spectrum of light around 670 nm and second band (B band) near 340 nm.
The Q band arises from the doubly degenerated transition due to the LUMO
degeneracy. The free-metal phthalocyanine presents a D2h symmetry, and as
a consequence, all states are non-degenerated. However, free-metal phthalo-
cyanines strongly absorb light between 600 and 700 nm, thus these materials
are blue or green [132–134]. Substitution can shift the absorption towards
longer wavelengths, changing color from pure blue to green to colorless (when
the absorption is in the near infrared). The π-orbital conjugation have a
profound effect on the orbital structure of the phthalocyanine chromophore.
This bathochromic shift is showed on the lowest-energy absorption band
(Q-band) in the visible region of the spectrum and a strong enhancement
of its intensity. There are many derivatives of the parent phthalocyanine,
where either carbon atoms of the macrocycle are exchanged for nitrogen
atoms or the peripheral hydrogen atoms are substituted by functional groups
like halogens, hydroxyl, amine, alkyl, aryl, thiol, alkoxy and nitrosyl groups.
These modifications allow for the tuning of the electrochemical properties of
the molecule such as absorption and emission wavelengths and conductance
[135].

3.1 Parametrical optimization

Octopus [136] software is an ab-initio code developed in the framework of the
finite difference method. The finite difference method is one of the simplest
and of the oldest methods to solve differential equations. The principle of
the method is to solve ordinary differential equations by approximating the
laplacian operator by replacing the derivate in equations using differential
quotients. Consider an analytical function f(x) and its representation on a
uniform grid with constant grid spacing h. The values fi=f(xi) correspond
to the function evaluated at the grid point xi. The main concept is related
to the definition of the derivate of a smooth function f at a point x ∈ R:

f ′(x) = lim
h→0

f(x+h)−f(x)
h

. (3.1)

The grid spacing should be sufficiently small to get a good approximation.
By using a Taylor expansion up to second order one can express the value of
the analytical function in terms of the neighbours to both sides:
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f ′′(x) = f(x−1)−2f(x) +f(x+ 1)
h2 , (3.2)

by using a 3-point centered scheme for the second-order derivate. The
problem can be written in the matrix form as:



c(x1) 0 . . . . . . 0

0 c(x2) . . . . . .
...

... . . . . . . . . . ...

... . . . . . . c(xn−1) 0
0 . . . . . . 0 c(xn)




f(x1)
f(x2)

...
f(xn−1)
f(xn)

=


f(x1 + α

h2 )
f(x2)

...
f(xn−1)
f(xn+ β

h2 )

 .

Using this matrix description it is easy to rewrite the Laplacian and
obtain the eigenvalues and eigenvectors by diagonalizing the matrix using
different methods as Davidson [50] or conjugated gradient [137].

3.1.1 Spacing parametrization.

The distance between the points of the mesh is defined by the spacing between
them. The optimal values used in the finite difference method are between
0.12 Å and 0.20 Å. It should be noted that as much smaller the value of the
spacing is, better is the accuracy of the simulation. In contrast, the number
of points of the grid is larger when a small value of spacing is used. It implies
longer computational time and more memory requirement. The objective is
thus to determine the value of the spacing which offers the best compromise
between computational time and accuracy of the simulation. In order to
determinate the properly spacing values, the total energy of the system is
taken into account.

The total energy of the system is an important quantity because it is used
to determine when a structure is optimized during a structural relaxation.
The total energy convergence is shown in Fig.3.2 and the converged values
for the molecules of study are in the range of 0.14-0.16 Å. The selected value
for the ground state simulations is 0.16 Å. A smallest value can be used but
the simulation time increases due to a higher number of points chosen in the
mesh distribution. Fig. 3.3 display the evolution of the lowest excitation
energies, the oscillator strength and the dipolar moment transition versus
the spacing.
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En
er

gy
(e

V
)

Total energy (PdPc)

(b)

0.1 0.15 0.2 0.25 0.3

−7,520

−7,500

−7,480

−7,460

−7,440

−7,420

spacing (Å)
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Figure 3.2: Total energy evolution as a function of the spacing between two
neighbours of the mesh. a) ZnPc, b) PdPc and c) H2Pc.
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Tr
an

sit
io

n
di

po
le

m
om

en
t

(Å
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Figure 3.3: Evolution of the excitation energies (a,b,c), the oscillator strength
(d,e,f) and the dipolar moment transitions (g,h,i) in the x, y and z directions
as a functions of the spacing between two points of the mesh with a radius
of 4.5 Å.
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As in the case of the total energy parametrization as a function of the
spacing, a convergence is shown when the distance between points also
decreases. The oscillator strength, the dipolar moment transition and the
excitation energies show a similar behaviour and a value of 0.14 Å for the
spacing should be selected for the time-dependent simulations.

3.1.2 Radius parametrization.

The second variable to be parametrized in Octopus software is the Radius.
It is defined as the radius of the simulation box and takes into account the
number of points needed to build it. In other words, this parameter is used to
restrict the number of points where the wavefunction is computed. It implies
a reduction in the size of the matrices involved to solve the system. The
radius also determine the size and shape of the simulation box. In Octopus
it can be built as spherical, cylindrical or parallelepiped shape. This box is
divided in intervals and as much number of points are taken into account
more precise can be the simulation ruled by the spacing.

The normal values of the radius are in the range 3.5-6.5 Å and it corre-
sponds with the pseudopotential domain for atoms. As the same procedure
followed with the spacing parametrization, the total energy of the system
is plotted versus the value of the radius Fig. 3.4, The selected value for
the ground state simulations is 4.5 Å. A larger value can be used but the
simulation time increases due to a construction of a bigger simulation box.
As the case of the spacing, it is translated into a bigger number of points to
take into account during the simulation.
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Figure 3.4: Total energy evolution as a function of the radius. a) ZnPc b)
PdPc and (c) H2Pc.

For Fig. 3.5 a spacing of 0.14 Å was chosen. The convergence of the
parameters implies the use of a radius bigger than 5.0 Å for the TD-DFT



Parametrical optimization 33

simulations and a radius bigger than 6.0 Å requires an important amount
of memory. It is related to the size of the simulation box as bigger is it the
number of points to describe increase as described above.
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En
er

gy
(e

V
)

Optical transition (PdPc)

(b)

4 4.5 5 5.5 6 6.5
2.1

2.12

2.14

2.16

2.18

Radius (Å)
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O
sc

ill
at

or
st

re
ng

th
(1

/e
V

)

Optical transition (H2Pc)

(i)

Figure 3.5: Evolution of the excitation energies (a,b,c), oscillator strength
(d,e,f) and the dipolar moment transitions (g,h,i) in the directions x, y and
z as a function of the radius. Note that the molecule is located in the xy
plane and the z axis perpendicular to it.

3.1.3 Geometry optimization of H2Pc, ZnPc and PdPc

The geometry optimization of phthalocyanine molecules is the starting point
to compute the optical spectra. Consequently, the excitation mechanism
of the molecule could be explained looking on the main transitions of the
molecule. The Kohn-Sham equations, as well as the Poisson equation used
to compute the Hartree potential, were discretized using finite difference. In
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the framework of the finite difference method, the Kohn-Sham orbitals, the
electronic density and the potentials are represented by their values over an
array of points distributed in real space. The Laplacians of the computed
quantities at each grid point were approximated by a sum over the values
of these quantities at neighbouring points multiplied by a weight depending
on the required precision [138]. A conjugated gradient (CG) scheme was
used as eigensolver to get the lowest eigenvalues and eigenvectors of the
Kohn-Sham equations and as the method for solving the Poisson equation.
The exchange and correlations terms were described using the local density
approximation in terms of the Perdew and Zunger parametrization [62] for
the electron-electron interactions. The ion-valence electron interactions were
modeled by replacing the ionic cores by norm-conserving pseudopotentials
[44].

A damped dynamics was used to perform the structural optimization
of the system. The atoms were moved according to Newton’s equation by
using the FIRE algorithm [139] with a velocity Verlet scheme as molecular
dynamic integrator [140]. The structural optimization were carried out until
the minimum force acting on each atom was weaker than 10−3 a.u. The
selected values for the structural relaxation for spacing is 0.16 Å and 4.5 Å for
radius for all molecules. The description of the bonds, angles and dihedrals
for H2Pc are shown in Table 3.1 taking into account the atom labels like in
Fig 3.6. The optimize geometry of H2Pc has a D2h symmetry composed with
a C2 rotational axis perpendicular to the plane which contains the molecule.
Also two C2 axis are perpendicular to the main axis, one axis cross the
molecule through the Hydrogens H17 and H18 and the second one through
the nitrogen atoms N2 and N6. The molecule also contains 3 symmetry
planes. The main one is the plane which contains the molecule and the other
two planes are perpendicular to the main one. The three planes contain
the 3 C2 axis present in the molecule. The D2h symmetry simplifies the
description of the bonds, angles, and dihedral angles of the molecules due to
the equivalent positions.

All the parameters are in a good agreement with the experimental values
[141]. The C-N bonds in the pyrrol ring match with the experimental value of
1.37 Å. The imine bond C-N has a value of 1.32 Å meanwhile the experimental
values are 1.28 Å (C=N) and 1.46 angstrom (C-N), the value obtained is a
mean value between single and double bond due to the hyperconjugation
present in the molecule along the π system. The C-H bonds are in the normal
range (1.09 Å) as well as the C-C bonds in the pyrrol and the benzene ring.
The dihedral angles confirm the planarity of the molecule and the angles are
also in a normal range.
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Figure 3.6: Asymmetric unit of phthalocyanine.

Bond distance (Å) Angles (◦) Dihedral angles
C-H 1.09 C-C-H (b.r.) 120 C-C (b.r.) 0
N-H 1.03 C-C-C (b.r.) 118-121 C-C-C-N (p.r) 0

C-N (p.r.) 1.37 C-C-C (p.r.) 105-107 N-C-N-C 180
C-N 1.32 C-N-C (N-C-N) 127 C-C-C-N (p.r) 0

C-C (b.r) 1.38-1.40 C-N-C (p.r.) 108-113
C-C (p.r) 1.45-1.46 C-N-H 123

Table 3.1: Structural parameters obtained in the geometry optimization of
H2Pc.
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In table 3.2 the bonds, angles and dihedral angles for ZnPc are shown
and labeled as in Fig. 3.7. The ZnPc molecule has a D4h symmetry due to
the Zn central atom. The molecule contains a C4 axis perpendicular to the
plane in which the molecule is contained, four C2 axis are perpendicular to
the main axis. The first one goes through the Nitrogen atoms N2 and N6,
the second through N1 and N5, the third through N4 and N8, the fourth
through N3 and N7. Therefore, the molecule has 5 planes, the main plane is
the one which contains the molecule, the other four planes are perpendicular
to the main one and contains the four C2 axis perpendicular to the C4.

Figure 3.7: Asymmetric unit of ZnPc.

Bond distance (Å) Angles (◦) Dihedral angles
C-H 1.1 N-Zn-N 90 C-C-C-C (b.r.) 0
N-Zn 1.93 C-C-C (b.r.) 118-121 C-C-C-N (p.r) 0

C-N (p.r.) 1.39 C-C-C (p.r.) 106 N-C-N-C 180
C-N 1.33 N-C-N 127 C-C-C-N (p.r) 0

C-C (b.r) 1.39-1.40 C-N-C (p.r.) 107 N-C-N-Zn 0
C-C (p.r) 1.46 C-N-C 122

Table 3.2: Structural parameters obtained in the geometry optimization of
ZnPc. b.r= benzene ring and p.r= pyrrol ring
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The same comments given for H2Pc with the imine bonds (C-N and
N=C are 1.33 Å) can be given to ZnPc. In this case the hyperconjugation
is bigger due to a higher symmetry in the system. The C-H bonds and
H-C-H (or H-C-C) angles are in a normal range as the same of C-N bonds
and C-N-C angles in the pyrrol ring. The molecular is planar verified by
the dihedral angles which are 0◦ or 180◦. The N-Zn distance of 1.93 Å is a
bit underestimated in comparison with experimental values in which give a
average distance of 1.98-2.12 Å depending on the complex of study [142–144].

The PdPc molecule present a D4h symmetry and has the same spatial
configuration as the ZnPc molecule with a C4 axis as the main one and four
C2 perpendicular to it, five planes containing all the rotational axis. In table
3.3 the bonds, angles and dihedral angles are shown. In Fig. 3.8 the atoms
with labels are presented. The overall bonds and angles are in the normal
range. However, due to the strong hyperconjugation in the molecule along
the π system, the imine bonds for C-N=C system is between a single and
double bond (1.33 Å while C-N is 1.46 Å and C=N is 1.28 Å). The N-Pd
bond is in the normal range 2.02 Å, depending of the complex formed the
range for this distance is between 1.94-2.13 Å [145, 146].

Figure 3.8: Asymmetric unit of PdPc.
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Bond distance (Å) Angles (◦) Dihedral angles
C-H 1.1 N-Pd-N 90 C-C-C-C (b.r.) 0
N-Pd 2.02 C-C-C (b.r.) 118-121 C-C-C-N (p.r) 0

C-N (p.r.) 1.38 C-C-C (p.r.) 107 N-C-N-C 180
C-N 1.33 N-C-N 127 C-C-C-N (p.r) 0

C-C (b.r) 1.39-1.40 C-N-C (p.r.) 107 N-C-N-Pd 0
C-C (p.r) 1.46 C-N-C 127

Table 3.3: Structural parameters obtained in the geometry optimization of
PdPc.

3.1.4 Frontier orbitals study.

After the molecular optimization, the next step is the understanding of the
behaviour of the Kohn-Sham orbitals for the three compounds. For this task,
the study of the HOMO, LUMO, HOMO -1 and LUMO +1 has been done.
The HOMO orbitals are associated to the capacity that the molecule has
to lose electrons and the LUMO the capacity of accept electrons and the
different behaviour of the central atom plays an important role on it.

In table 3.4 the energies of the Kohn-Sham orbitals is shown. The gap
between HOMO-LUMO for the three different molecules is calculated. The
molecule with the biggest gap is PdPc molecule (-1.508 eV) then ZnPc (-1.384
eV) and with the lowest gap is H2Pc (-1.360 eV). In terms of excitation the
H2Pc has more probability to be excited at low energies than the other two
molecules due to the lowest energy gap between HOMO and LUMO.

H2Pc ZnPc PdPc
HOMO -1 -6.382 -6.336 -6.176

HOMO -5.248 -5.158 -5.295
LUMO -3.888 -3.774 -3.787

LUMO +1 -3.831 -3.774 -3.787

Table 3.4: Energy of the Kohn-Sham orbitals for the different molecules of
study.
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In Fig. 3.9 - 3.11 is shown the plot of the HOMO-1, HOMO, LUMO and
LUMO+1 for the three molecules. The HOMO for the three molecules is the
same, and is delocalized on all the atoms presents in the π environment. An
explanation for this behaviour is the high hyperconjugation present in the
molecule, Zn and Pd atoms not having a big contribution because they are
not involved in the aromatic π-system.

The LUMO and LUMO+1 are the same for all molecules, also they are
symmetric. For ZnPc and PdPc this can be explained with the degeneration
of the Kohn-Sham orbitals. A similar can be done for the H2Pc, the difference
of 0.05 eV can be taken into account as a small difference, and the high
hyperconjugation plays an important role making this difference not big
enough to have any difference with respect to the other molecules. The
HOMO-1 for H2Pc and ZnPc has a similar behaviour, but for the Pd shows
that it has a big contribution on it changing the shape of the molecular
orbital.

a) b)

c) d)

Figure 3.9: Frontier Orbitals of H2Pc.
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a) b)

c) d)

Figure 3.10: Frontier Orbitals of ZnPc.

a) b)

c) d)

Figure 3.11: Frontier Orbitals of PdPc.
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3.2 Absorption of the molecules on a metallic sur-
face.

Experimental observation of light emission spectra by molecular nanostruc-
tures excited by the tip of a STM indicates, that in addition to the usual
transitions observed with non-local excitation sources (e.g. laser) some ad-
ditional peaks are observed. One of the ideas defended in this study is
that some of the peaks are related to the local nature of the tunnel current.
Therefore, it is possible to obtain information at the subnanometric scale by
analyzing these specific peaks. However, the difficulty of the approach lies on
the cohabitation of multiple different phenomena that can induce additional
peaks in the optical spectra of the molecules.

In first place, the identification of the phenomena which induce the
observation of these additional peaks has to be clarified. There is three
possible phenomena that can generate different excitation peaks from those
usually observed in gas phase with a laser as a excitation source. One of
them is related to the elastic stress generated by the fact that the molecules
are not isolated as when they are in gas phase but lye on substrates which
may induce elastic deformations inside the molecules.

The study of this effects was carried out via the adsorption of phathalo-
cyanine molecule on an NaCl substrate (Fig. 3.12). The NaCl surface was
modeled as a mesh of 4x4 slabs along xy plane. A geometrical constraint on
the atoms on the lower layers was applied. The Brillouin integration at the
Γ point was used for the discretization of the Brillouin zone. The size of the
mesh considered is big enough to ensure a good precision in the simulation.
The adsorption energy (EMPc/NaCl

ad ) is described as a function of the total
energy of the system (EMPc/NaCl

T ), the isolated molecule (EMPc
T ) and NaCl

(ENaClT ):

E
MPc/NaCl
ad = E

MPc/NaCl
T − (EMPc

T −ENaClT ) (3.3)

Depending on the sign, EMPc/NaCl
ad represents the lose or gain of energy

from the adsorption of the phthalocyanine on the NaCl surface. A negative
value indicates a favorable adsorption on it. The position of the center of
mass of the molecule was considered to be on top of an atom of chlorine
and also on top of an sodium atom. Also, the determination of the barrier
migration of the molecule on the surface can be considered on other positions
by constraining the position in (x,y) of the metallic atom (Zn, Pd). For
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each of this positions, the adsorption energy was computed for different
angles (θ). It should be noted that during the simulation, no constraint
was applied to the atoms of the molecule. The molecules can rotate during
the optimization. The angle θ is just imposed in the initial coordinates.
Whatever the configuration considered, a variation greater than 2◦ never
was observed in the rotation angle of the relaxed molecule with respect to
the initial rotation angle. Five different types of molecules were considered,
CuPc, H2Pc, MnPc,PdPc and ZnPc. For two of them (ZnPd and PdPc), we
considered as a charged system.

[1
10

]

[11̄0]

θ

Figure 3.12: Geometry of the calculations. Angle θ is defined as the angle
between the principal axis of the molecule and the [110] atomic direction of
the NaCl substrate.

Several observations can be extracted from the examination of the ad-
sorption energies as a function of the orientation of the molecule on NaCl
(Fig. 3.13). Firstly, the chemical nature of the most stable adsorption site
depends on the chemical nature of the metal. The ZnPc and MnPc on top
of a chlorine atom is more stable than on the sodium. In the other hand,
PdPc and H2Pc are more stables on top of a sodium atom. For CuPc, the
difference between both adsorption sites is around +0.70 meV less stable in
chlorine site and is in good agreement with the experimental results obtained
by Ullmann et al [147]. In Fig. 3.14 the minimal adsorption energies for
considered molecules is shown. The sodium adsorption place is independent
of the atom nature located in the center of the phthalocyanine since the
energy only varies by 70 meV switching from ZnPc to PdPc. On the other
hand, the variation is much greater when the chlorine site is consider for the
adsorption. In this case a variation around 1.2 eV is obtained switching from
PdPc to MnPc.
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Figure 3.13: Adsorption energies of MPc/NaCl for charged and neutral
molecules on the surface with different orientations and different ’on-top’
adsorption sites; M=Zn, Pd. Figures with grey background correspond to
configurations which are not observed experimentally.
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(a) (b) (c) (d)

Figure 3.15: Total electronic density contribution of the HOMO for PdPc
(isosurface 2×10−5) adsorbed onto a sodium atom. ((a) Top view, (b) the
point of view from the observer on a chlorine atom.

The contribution of the charge density to the HOMO of the PdPc molecule
is shown in Fig. 3.15. A clear assumption can be made, whatever the site of
adsorption, there is a delocalization of the HOMO from the molecule onto the
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chlorine atoms on the surface. The delocalization is much important when
the PdPc is adsorbed on sodium site (Fig. 3.15 a-b) than when is adsorbed
on a chlorine site (Fig. 3.15 c-d). Therefore, the adsorption of PdPc is ensure
via the interaction between the nitrogen, carbon and hydrogen atoms of the
molecule with the chlorine atoms on the surface. In contrast, interactions
with sodium atoms do not seem (or a few) to be involved in the adsorption.
The deformation analysis of the molecule for different angles and for the
two adsorption sites does not show significant changes. Besides, the optical
spectra were computed within the framework of the linear response theory.
It should be noted that the calculation of the optical spectra was not done on
the whole system but only on the optimized symmetry. As for deformations,
any marked differences were found between different conformations (angles
and adsorption sites). The appearance of additional excitation peaks from a
structural origin is unlikely to happen.

3.3 Effect of a constraint in a phthalocyanine molecule.

Benjamin Doppagne et al. [42] were able to describe a tautomerization process
of the free phthalocyanine (H2Pc) with a scanning tunneling microscope
experiment combined with fluorescence spectroscopy [148–151] deposited
on a NaCl-covered Ag(111) sample. STM-induced fluorescence (STM-F)
spectra exhibit duplicate features that can be assigned to the emission of
the two molecular tautomers (Fig. 3.17). In Fig. 3.16 the experimental and
DFT calculated images of the HOMO and LUMO of H2Pc are shown. A
good description of the HOMO and LUMO can be done from a theoretical
point of view. A differential conductance (dI/dV) spectrum recorded on
H2Pc molecule reveals the energy position of the highest occupied and lowest
unoccupied molecular orbitals (EHOMO ≈ -2.5 eV and ELUMO ≈ 0.55 eV).

This assignment was confirmed by STM images recorded at the energies
of the two spectral contributions. The LUMO may exhibit two similar
twofold symmetry patterns, rotated by 90◦, which can be assigned to the
two different tautomers. The HOMO, however, always reveals the same
fourfold symmetry image. However, to explain the tautomerization process,
the molecule is perturbed locally in three different regions (Fig. 3.17-e) giving
different STM-F spectra (Fig. 3.17-f). The spectrum for the perturbation
in the position 1 shows an intense peak at 1.80 eV, a weaker peak at 1.92
eV and a series of very weak vibronic features on the low energy side of the
main peaks. The peaks at 1.80 eV and 1.92 eV can be assigned to the two
first optical transitions of H2Pc molecule named Qx and Qy, respectively.
Qx and Qy correspond to transition dipole moments oriented along and
perpendicularly, respectively, to the two inner hydrogen atoms of H2Pc. The
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spectrum acquired on the same molecule in position 3 (Fig. 1f) shows a very
similar spectral structure, but with a 20 meV shift of the Qx peak to higher
energies.

Eventually, the spectrum for position 2 acquired in-between two ben-
zopyrrole units of the H2Pc molecule shows that this shift results from a
duplication of the main spectral feature. The presence or absence of dupli-
cate features in the spectra results from minute changes in the environment
of the H2Pc molecules caused by their adsorption on different sites of the
NaCl/Ag(111) Moiré pattern [152].

Figure 3.16: a) Chemical structure of H2Pc used in DFT calculations. b)
homo and c) LUMO computed in DFT and d) e) experimental STM images
(3x3 nm2, I=10 pA)

The STM-F spectra acquired perturbing in different regions of the
molecule has revealed different energy gap between the Qx1−Qx2 peaks.
The effect can be illustrated using the Fig. 3.18. Three characteristic STM-F
spectra have been acquired on the three H2Pc molecules labelled type 1,
2 and 3. Type 1 molecule exhibits nearly no splitting, while the spectra
labelled type 2 and 3 show clear a duplication of the Qx contribution, with a
small (type 2) or a large (type 3) separation.
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Figure 3.17: STM-F spectroscopy of individual H2Pc molecules. a) Sketch
of the STM-induced emission experiment. b) Ball-and-stick model of the
free-base phthalocyanine and zoom on the central part of the molecule to
highlight the structure of the two tautomers. c) dI/dV spectrum acquired on
a single H2Pc adsorbed on three layers of NaCl on Ag(111). d) and e) STM
images (3 x 3 nm2 , I = 10 pA) acquired at V = 0.55 V (d) and V = -2.5 V
(e). Two patterns tilted by 90◦ from each other can be observed in the image
of a same molecule recorded at V = 0.55 V (d) and correspond to the two
tautomers. f) STM-F spectra acquired (V = -2.5 V, I = 100 pA, acquisition
time t = 120 s) for the STM tip located at the positions identified in e.

A clearly assumption is that the differences comes from the adsorption
site of the different molecules. With the image in Fig. 3.18-c it is possible
to determine the adsorption site of the H2Pc molecules with atomic-scale
precision. Independently of the H2Pc type, the molecules are absorbed on Na
top sites with the H2Pc axis oriented along [100] and [010] directions of the
NaCl (001) layer [153] suggesting that the adsorption site is not responsible
for the different types of STM-F spectra reported in Fig. 3.18-a.

To emit at different energies, the two tautomers, which are otherwise
equivalent, must experience slightly different environments [154, 155]. This
is confirmed by the substantially different Qx-Qy gaps of the two tautomers.
This assumption can be supported by time-dependent density functional
theory for an artificial compression (tension) of 5% (10%) of the molecule
size along the Qx axis (Qy axis).
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Figure 3.18: STM-F spectra acquired at V = -2.5 V, I = 200 pA, acquisition
time t = 300 s for the three different H2Pc molecules. STM images (20 x
14.2 nm 2 , V = -2.5 V) of the three type of H2Pc molecules with (b) a silver
terminated tip and (c) a CO terminated tip. The blue lines in (c) are aligned
with chlorine atomic rows.

The structural relaxation calculations were carried out using the same
procedure as in Section 3.1.3. Two strain directions for the molecule were
computed Fig. 3.19. Strained molecules were obtained from the relaxed
configuration by applying a strain tensor, ε, in the required directions:

Figure 3.19: Scheme of the strained directions considered. The circles indicate
the constraint atoms during the structural relaxation calculations.

ω =

εxx 0 0
0 εyy 0
0 0 εzz

 .
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In the geometry optimization some atoms of the molecule are constrained
in order to preserve the strain direction. Theoretical optical spectra of the
H2Pc molecule for different strain configurations were computed by resorting
to Peterliska’s formalism for compute the neutral excitations in finite systems
[59]. This scheme provides a way to access to the electronic density response
to an external potential required to compute the optical spectra. the full
interacting linear density response is given by

ρ(r,ω) =
∫
dr′χks(r,r′,ω)Vks(r′ω). (3.4)

The excitation energies as well as the couples of occupied/virtual ground
state Kohn-Sham orbitals involved in the transitions can be determined as
solution of the non-Hermitian eigenvalues problem (Section 2.7):

(
L K
K∗ L∗

)(
X
Y

)
= ω

(
−1 0
0 1

)(
X
Y

)
.

93 occupied states and 100 virtual states where used in the TD-DFT
simulation, with a gap of 5 eV between the HUMO and the LUMO. Also five
molecular configurations were computed and the optical characteristics are
displayed in Table-3.5 and Fig. 3.20.

Transition
Configuration Qx Qy δQ(meV)

Energy(eV) Oscillator stength Energy(eV) Oscillator stength
εxx=εyy=1.00(free) 2.10 0.26 2.18 0.36 80
εxx=0.95,εyy=1.00 2.10 0.26 2.18 0.36 80
εxx=1.00,εyy=0.95 2.13 0.29 2.17 0.31 40
εxx=1.10,εyy=1.00 2.03 0.29 2.06 0.33 30
εxx=1.00,εyy=1.10 2.03 0.19 2.12 0.39 90

Table 3.5: Energy transitions according to the strain of H2Pc. ∆Q=EQy -EQx .

Depending on the strain applied on the molecule, different behaviours
are observed compared to the free configuration. A reduction of the ∆Q gap
when a tension is applied along the Qx axis or a compression along the Qy
one. When a compression is applied an increase of the gap is observed along
Qx or a tension along the Qy one. This behaviour is similar to the evolution
of ∆Q gap reported in the experiment carried out in Benjamin Doppagne et
al. [42] between the unstrained tautomer 2 and tautomer 1 (Fig-3.21.)
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Figure 3.20: Energy transition diagram according the strain of H2Pc

Figure 3.21: Highly resolved fluorescence mapping of a single H2Pc molecule.
a, STM-F spectrum (V = -2.5 V, I = 100 pA, acquisition time t = 180
s) acquired at the position marked by a white disk in the current image
(2.5x2.5 nm2 , V = -2.5 V) in the inset. b–k, The chemical structure of
tautomers 1 (b) and 2 (c) from the associated HRFMs (d–g) (2.5x2.5 nm2,
acquired simultaneously with the current map in a, acquisition time t = 50 s
pixel−1 , 30x30 pixels), and from their related simulated maps for the main
contributions (Qx1, Qx2, Qy1 and Qy2) (h–k) identified in a. Photon energy
integration intervals were 1.798 < hν < 1.811 eV (d), 1.972 < hν < 1.981 eV
(e), 1.824 < hν < 1.832 eV (f) and 1.923 < hν < 1.941 eV (g).
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The emission of two tautomers is confirmed by the different ∆Q gaps of
he two tautomers. This gap is larger for tautomer 1 than for tautomer 2. It
can be easily explained due to the different dipolar moment of the tautomers.
This coupling results in an increased (attenuated) emission intensity for the
tip localized at the extremities (center) of the molecular dipoles. In our
case, the extreme spatial localization of the field is responsible for the close
to atomic-scale spatial resolution in the fluorescence maps. The excellent
agreement between experimental and theoretical maps suggests that two
series of Qx and Qy contributions correspond to the two tautomers of the
H2Pc molecules.

3.4 (LR)TD-DFT optical spectra for H2Pc, ZnPc
and PdPc

The electronic transitions are computed under the framework of the Time
Dependent-Density Functional Theory (TD-DFT). Octopus code perform
the time-propagation of electron orbitals and also the linear-response theory
(Casida’s method). In this section a discussion of the optical spectra computed
under the Casida’s approach. Which yields quantum mechanically under the
plasmonic response [156–160].

In linear response regime, it is often formulated in frequency space [57, 59,
161] in terms of the Casida matrix expressed in the Kohn-Sham electron-hole
space. Casida’s formulation allows calculations of the excitation energies
of a finite system. Normally, this method is the fastest one. The Casida’s
equation is a pseudo-eigenvalue problem written in the basis of particle-hole
states. Indeed, a set of occupied and unoccupied orbitals has to be computed.
The transition dipolar moment are computed using the dipolar moment along
x, y and z direction:

< x >=<Ψ0|x|Ψex >

< y >=<Ψ0|y|Ψex >

< z >=<Ψ0|z|Ψex >

(3.5)

where Ψ0 is ground state wavefunction and Ψex the wavefunction of a
given excited state. An other important physical variable is the oscillator
strength given as the average over the three directions:

fex = 2me

3}2 ωex|<Ψ0|r|Ψex > |2. (3.6)
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The optical spectrum can be given as the strength function:

S(ω) =
∑
ex

fexδ(ω−ωex). (3.7)

The calculations are commonly performed by diagonalizing the Casida
matrix directly or by solving the equivalent problem with different iterative
subspace algorithms [58, 162–164]. The Casida approach directly enables a
decomposition of the electronic excitations into the underlying Kohn-Sham
electron-hole transitions and the results are often limited to absorption
spectra or the analysis of induced densities or fields.

The goal of this section is the analysis of the optical response of the H2Pc,
ZnPc and PdPc molecules. These characteristic conjugated molecules have
a well-defined π−π∗ transitions that exhibit a systematic red-shift as the
extent of the conjugated π-system increase [165].

3.4.1 Virtual states convergence.

A previous test before the computation of the photoabsorption spectra shall
be done as spacing and radius parametrization. The simple single orbital
excitation structure (transition from an occupied orbital to one virtual
orbital), which is characteristic for the exact Kohn–Sham orbitals and which
is of great importance for the correct interpretation of the nature of the
excited states. In Fig.3.22 is shown the evolution of the number of virtual
states as a function of the lowest energy levels. As in the case of radius,
depending of the molecule, different behaviour is obtained.

The convergence with respect to excitation energy indicates that a number
of states higher than 70 seems converged for ZnPc and H2Pc but not for
PdPc. However, independently of the molecule, for the dipolar moment
transition and oscillator strength seems converged at 70 virtual states. In
terms of the optical transitions a spacing of 0.14 Å and a radius of 5.0 Å is
enough. On the other hand, at least 70 virtual states should be taken into
account to perform the Casida’s approach to obtain the photoabsorption
spectra.
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Figure 3.22: Evolution of the excitation energy as a function of the virtual
states behind the Casida’s approach. The results were obtained with a radius
of 6.5 Å and a spacing of 0.14 Å.

3.4.2 Photoabsorption spectra in the Casida’s approach.

The calculated photoabsorption spectra of the molecules are shown in Fig.
3.23. In Tables A.1, A.2 A.3 the Kohn-Sham decomposition of these exci-
tations is shown as described by the components of the normalized Casida
eigenvectors normalized to 1 for each excitation (

∑
F 2 = 1). The response of

each of the molecules is dominated by a set of transitions,the predominant
being the HOMO-LUMO for all molecules. In the case of H2Pc this exci-
tation shows two peaks, the Qx and Qy which appears at 2.05 eV and 2.14
eV, respectively. ZnPc fundamental transition is located at 2.09 eV. This
excitation is degenerated due to the degeneracy of the LUMO. Table A.2
indicates that the transitions have the same casida eigenvector value and
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are from the orbital 93 (HOMO), the orbitals 94 and 95 (LUMO) being the
orbitals which compose the LUMO. Therefore, the same situation is shown
for the PdPc molecule, the HOMO-LUMO transitions involving the orbitals
97 (HOMO) and 98-99 (LUMO). The excitation energy in this case is 2.19
eV. This excitation have others contributions of different transitions but they
much less predominant than the HOMO-LUMO with a Casida eigenvector
close to the unity due to the normalization. A fully description of the spectra
is done in Appendix-A
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Figure 3.23: Photo-absorption spectra of a) H2Pc, b) ZnPc, c) PdPc and d)
comparison of all the spectra.

The energy comparison of the optical transitions computed theoretically
indicates a good agreement with the experimental results. The order H2Pc
< ZnPc < PdPc is the same in both cases. On the other hand, from a
qualitative point of view this agreement shows a difference around 200 to 300
meV in energy. A higher value is obtained with the linear response method
(Table 3.6).
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Exp. Calcul Shift (Calc.-Exp.)
4 PdPc QPd 1.925 (∆exp

3−4 = 3 meV) 2.169 (∆calc
3−4 = 26 meV) +244 meV

3 H2Pc Qy 1.922 (∆exp
2−3 = 23 meV) 2.143 (∆calc

2−3 = 53 meV) + 221 meV
2 ZnPc QZn 1.899 (∆exp

1−2 = 89 meV) 2.090 (∆calc
1−2 = 23 meV) +191 meV

1 H2Pc Qx 1.810 2.067 +257 meV

Table 3.6: Energies of the optical transitions in MPc.

A review on the bibliography of the excitation energies measured for
the ZnPc molecule under different conditions indicate values between 1.85
and 1.95 eV (Table 3.7). The calculations, carried out according to several
different methods, indicate values lying rather around 2.0 to 2.10 eV, in
accordance with the values we have determined.

Experimental conditions Excitation energy (eV) Oscillator strength
Exp. in THF 1.86[166]

Exp. gas 1.88[167] 0.40[168]
Exp. in Ar matrix 1.89[169]

Exp. in DMSO 1.85[170]
Exp. in gas-phase supersonic jet 1.95[171]

Functional Excitation (eV) Oscillator strength
M11 1.88[166]
M06 2.02[172]

CAM-B3LYP 2.04[172]
BHLYP 2.06[172]
B3LYP 2.08[173], 2.09[166, 172]

BHandHLYP 2.10[173]
LDA-PZ 2.103 (This work) 0.355 (This work)

GGA-PBE0 2.12[166, 173], 2.13[166]

Table 3.7: Excitation energies of ZnPc.

3.5 Conclusions.

In this chapter the parametrization study was carried out. The principal
simulation parameters were optimized, the optimal spacing for the ground
state simulations is 0.16 Å for all molecules and 4.5 Å for the radius. With this
parameters a geometry optimization was made to obtain the initial molecular
configuration. The results are in good agreement with the experimental
values. Also the study of the frontier orbitals was carried out in order to
obtain the theoretical values to understand the behaviour of the Kohn-Sham
orbitals. This study reveals a degeneracy on the LUMO for ZnPc and PdPc
meanwhile for the H2Pc a single orbital is obtained. The phenomena of a
“extra” peaks in the optical spectra was taken into account in the study of
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the absorption of the molecules in a metallic surface on NaCl. A mesh of 4 ×
4 slabs of NaCl was considered and also a deeply study of the disposition of
the molecule onto the surface. The observations that can be extracted, from
the examination of the adsorption energy due to the angle of the molecule
with respect to the surface, are that ZnPc molecule is more stable on the
chlorine atoms than on sodium atoms. On the other hand, the PdPc and
H2Pc are more stable on sodium atoms than on chlorine atoms.

The constraint applied on the molecule reveals a energy change in the
Qx and Qy transitions. With this energy changes we are able to justify from
the linear response theory the tautomerization process that happens when
the H2Pc molecule is locally perturbed for the STM tip. The last section of
the chapter is devoted to the theoretical study behind the linear response
theory of the photoabsorption spectra for the molecules of study. The results
obtained reveal a energy shift between theory and experiment around 200-300
meV. This error is considered as acceptable between theory and experiment.
The convergence of the total energy respect to the number of virtual states
considered in the simulations reveals that at least 70 virtual states should
be considered in the simulation to a full convergence of the optical spectra.
However, the limitation of the computational resources in terms of RAM
memory and simulation time has to be taken into account.



Chapter 4

Real-Time Time-Dependent
Density Functional Theory
study.

The real-time propagation formulation [98, 174] is computationally efficient
[175, 176]. A natural way to carry out a Kohn-Sham decomposition is to con-
sider the full time-dependent Kohn-Sham density matrix in the Kohn-Sham
electron-hole space [177, 178]. Other possibilities are to fit the Kohn-Sham
transitions densities to induce densities [179], to consider time-dependent
transition coefficients [180–182] or to analyze occupational numbers [183–
185]. The analysis of the Kohn-Sham transition coefficients relies on the
linear-response TDDFT approach, and a complementary information can be
obtained from the analyses of the contributions [186–188].

The photoabsorption spectra for finite systems is computed using the
photoabsorption cross section, which is proportional to the imaginary part
of the dynamic polarizability (Eq. 2.61).

σ(ω) = 4πω
c

1
3=
∑
γ

−
∫
d3r

∫
d3r′rγ

∑
σσ

χσσ(r,r′,ω)r′γ , , (4.1)

where c denotes the speed of light and γ=x,y,z. The function χ is also
called the linear response function of the system. It measures the change of
the density when the system is perturbed by an infinitesimal change Eq. 4.2
of the external potential:

δρσ(r,ω) =
∑
σ′

∫
d3r′χσσ′(r,r′,ω)δVextσ′(r′ω). (4.2)
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The procedure of the photoabsorption spectrum calculation consists in the
application a perturbation of the form δVextσ(r, t) =−κ0rνδ(t) on the ground
state Kohn-Sham wavefunction (φjσ(r)) of the system. The amplitude κ0
should be small in order to keep the response of the linear system. The
perturbation applied excites all frequencies of the system with equal weight.
At t=0 the Kohn-Sham orbitals are defined as:

φjσ(r, t= 0) = eiκ0rγφj,σ(r). (4.3)

These orbitals are further propagated for a finite system and the dynamical
polarizability can be obtained from:

αγ(ω) =− 1
κ0

∫
d3rrγδρ(r,ω). (4.4)

The photoabsorption spectra is obtained from the Fast Fourier transform
of the dynamical polarizability. Several experimental techniques can be used
to extract the optical spectra of nanostructures, such as near-field optical
microscopy, photoelectron microscopy, scanning tunnelling microscopy or
photoluminescence. In this chapter, a detailed description of the photoab-
sorption spectra computed in real-time time-dependent density functional
is given. The first section is focused in the molecule under the action of an
electric field, which perturbs the molecule along x,y,z. In the second section
a scalar potential was used as local source of excitation over the molecules
along x,y,z. The third section is devoted to the study of the energy transfer
able to excitate a second molecule. It should be noticed that the accuracy in
reproducing transitions of intermediate energy is known to be deteriorated,
due to the wrong asymptotic behaviour of the LDA exchange-correlation
potential. For this reason, the analysis is focused on the lowest energy peaks
of the photoabsorption spectra.
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4.1 Photoabsorption spectra of the molecules.

The real space propagation under the TD-DFT approach gives information
to obtain a clear physical image of the wavefunction, which is not possible
to obtain when the wavefunctions are expanded in terms of explicit basis
sets. The optical spectra in the framework of the explicit time-propagation
technique [98, 100] implemented in Octopus code will be discussed in this
section.

A regular real-space grid was chosen under the LDA approximation using
the Perdew-Zunger functional to describe the exchange-correlation effects.
The electron-ion interaction is described with the Troullier-Martins non-
relativistic non-local norm-conserving pseudopotentials [44]. To calculate non-
linear optical properties of the molecules of study, the optimised geometries
obtained in Section-3.1.3 were used.

The evolution of the system under the influence of a laser field behind
the dipole approximation requires a parametrization. The most important
parameters to be set are the time step and the maximum of steps of the
simulation. The first parameter set was ∆t and the second was the number
of iterations. In this simulation the propagation length is t= 0.5/eV and the
time step length is dt = 0.002/eV. The total simulation time is given by t

∆t
and is 400/eV making 200.000 the total number of steps for all molecules. In
absence of perturbation the total energy of the system should be constant
and it is a method to check that the time step chosen is a reasonable one.
The approximation of the propagator used is the exponential midpoint rule
which is one of the most simplest methods. This approach preserves the
reversal symmetry and is defined as:

UEM (tδt, t) = exp(−iδtHt,δt/2). (4.5)

The exponential of the Hamiltonian (a core part of the full algorithm
used to approximate the evolution operator) is computed using the Lanczos
method [189]. The time-dependent external perturbation applied on the
system in the form f(x,y,z)cos(ωt+φ(t))g(t), where f(x,y,z) is defined by a
electric field, ω = 3eV. The amplitude of the envelope function, g(t), is A=1
eV/Å. The type of time dependent function, f(x,y,z), used in this study is
the tdf-cosinoidal variable defined as:

f(t) = F0cos

(
π

2
t−2τ0− t0

τ0

)
. (4.6)

If |t− t0| τ0, then f(t)=0.



60 Photoabsorption spectra of the molecules.

From the value of δρ(r,ω) it is possible to calculate the induced dipole
moment through the dynamical polarizability. The light absorption can be
viewed as a dissipation process induced by the electronic excitation. As a
consequence, the infinitesimal change in the density leads to an imaginary
part and by applying the Fermi’s Golden rule the photoabsorption cross
section is obtained. Therefore, another widely used quantity is the strength
function S(ω), which is connected to α(ω) by:

S(ω) = 2m
}2

∑
n

δ(ω−ωn)| 〈ρ|Q̂ |ρ0〉 |2 = 2m=α(ω)
π}2 . (4.7)

In real-time propagation, the expected value is simply expressed in the
Schrödinger equation using the electronic wavefunction Ψ(t) on the system
at time t. As a consequence of the time dependence of the propagator, the
electronic density has to be interpolated for ∆t self consistently but there is an
ongoing debate whether the additional computational cost worth the gained
precision of the simulation [190, 191]. Also the matrix exponents needed
for the propagation have to be approximated as well by series expansions or
subspace algorithms. This errors can be decreased by the efficiency method
of the propagator. In the same way as the functional development in DFT,
the development of a precise and low cost computational propagator is under
study [192, 193].

4.1.1 H2Pc photoabsorption spectra.

The photoabsorption spectra was obtained by the propagation of the pertur-
bation along x, y and z in three independent runs. Using the post-production
subroutine oct-propagation spectrum implemented in octopus the cross-
section-tensor is obtained. In Fig. 4.1 the dipolar moment variation and the
Fourier transform of the dipolar moment for H2Pc is shown.
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Figure 4.1: On the top is the dipolar moment variation due to the perturbation
applied and on the bottom the photoabsorption spectra is shown for H2Pc.
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The plot on the top is the dipolar moment variation for the simulation run
of 200.000 steps with a time step of 0.002 1/eV and a total simulation time
of 400 1/eV. The Fast Fourier Transform of the dipolar moment variation
gives the photoabsorption cross section spectra in a real time propagation
simulation with a post-production spectrum energy step of 0.0001 eV. Con-
sidering the fundamental transition and comparing it with the experimental
spectra (Fig. 4.2), we observe that the Qx is split in two bands at 1.93 and
1.96 eV, with respect to the experimental spectra, and that the Qy band
appears at 2.00 eV. There is a energy shift about 0.15 eV for the Qx band
and 0.1 eV for the Qy.
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Figure 4.2: On the top, the comparison between the experimental spectra
and the spectra obtained with (RT)-TDDFT approach. At the bottom, the
theoretical spectra of the fundamental transition comparing the cross-section-
tensor spectra with the cross-section-vector along x and y with a energy
resolution of 0.0001 eV.
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From RT-TDDFT the splitting observed in the Qx band for H2Pc is
a consequence of the action of the perturbation of the system along each
spatial direction. There is a shift in the Qx band depending on the direction
of the perturbation (Fig. 3.16). When the molecule is perturbed along x
only the Qx band appears. Meanwhile the perturbation along y the Qx and
Qy are obtained. The explanation for this phenomena can be described as
the different environment the molecule has due to the D2h symmetry, the
inner Hydrogens are contained in the x-axis, it means when the perturbation
is along that direction the main component of the dipolar moment is along
x direction. In the other hand, when the molecule is perturbed along y the
action on the two inner Hydrogens perpendicular to the perturbation applied
makes the global dipolar moment have a x component on it. The consequence
of the action of the perturbation on them when it is propagated along y
direction is a shift in energy on the Qx band. To Conclude, a reduction of
the gap ∆Q is observed along y-axis, and comparing it with the experiment,
this behaviour is a consequence of the different components of the dipolar
moment.

A comparison between the (LR)-TDDFT and (RT)-TDDFT photoab-
sorption spectra is shown in Fig. 4.3. The generation of the harmonics of
the dipolar moment generate more peaks than expected in linear response
approach. Despite of it, both methods are in good agreement with respect
to the experimental results. The experimental Q band is located at 1.82 eV,
meanwhile for RT-TDDFT is located at 1.93 eV and at 2.1 eV for LR-TDDFT
method. In the other hand, the experimental B band is located at 3.73 eV,
3.73 for RT-TDDFT and 4.02 eV for LR-TDDFT [194].
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Figure 4.3: Comparison between real time and linear response time dependent
density functional theory for the main transitions.
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4.1.2 ZnPc and PdPc photoabsorption spectra.

The photoabsorption spectra of ZnPc and PdPc were obtained in the same
way as in the previous section. A total simulation time of 400 1/eV, time
step of 0.002 eV, mesh spacing of 0.15 Å and a radius of 4.5 Å. The dipolar
moments along x and y are equivalents in this case due to the symmetry.
In addition, the simulation of the photoabsorption spectra was carried out
taking into account the three directions to ensure this fact. In Fig. 4.4 the
variation for the dipolar moment and the photoabsorption spectra are shown.
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Figure 4.4: On the top is the dipolar moment variation due to the perturbation
applied and on the bottom the photoabsorption spectra is shown for ZnPc.

The fundamental transition is located at 1.91 eV and it is close to
the optical spectra obtained from the STM experiment (Fig. 4.5). The
theoretical spectra is in good agreement whit a shift of 0.01 eV respecting the
experimental spectra. The experimental ZnPc spectra is located at 1.899 eV.
This main transition corresponds to degenerated transitions associated to
dipoles oriented along the main molecular axes. The experiments associate
the spectroscopic behaviour of the fundamental transition to the adsorption
site of the ZnPc on top of Cl atoms. As a consequence there is a slight lifting
of the degeneracy. From a theoretical point of view this degeneracy lift is
related to the dipolar moment variation and not due to the position of the
molecule on the NaCl surface. Also, a comparison between RT-TDFT and
LR-TDDFT can be done in the same way as above(Fig. 4.6). The comparison
between spectra shows a gap of 0.20 eV in energy. The B band is observed
at 3.77 eV and 4.05 eV for RT-TDDFT and LR-TDDFT, respectively. In
addition, both methods are in good agreement with the experimental spectra.
The LR-TDDFT has a shift in energy about 0.20 eV.
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Figure 4.5: Theoretical spectra of the fundamental transition comparing with
the experimental values for ZnPc with a energy resolution of 0.0001 eV.
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Figure 4.6: Spectra comparison of ZnPc between real time and linear response
time dependent density functional theory for the main transitions.
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Palladium phthalocyanine photoabsorption cross section spectra (Fig.
4.7) was computed in the x, y and z. As in the case of the ZnPc molecule, the
dipolar moment propagation along x and y is equivalent due to the symmetry
of the molecule. A total time of 400 1/eV and a time step of 0.002 1/eV was
considered to compute the dipolar moment variation.
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Figure 4.7: On the top is the dipolar moment variation due to the perturbation
applied and on the bottom the photoabsorption spectra is shown for PdPc.

The degenerated fundamental transition for PdPc is located at 2.01 eV
and the B band at 3.48 eV which is in agreement with the experimental results
[195]. The fundamental transition obtained from the STM experimental
transition is located at 1.92 eV. A shift of 100 meV is obtained between
both methods. It can be considered in good agreement between theory and
experiment due to the different techniques used to obtained the absorption
spectra. Comparing with LR-TDDFT method (Fig. 4.9) it is possible to
visualize a shift of energy around 0.1 eV between them for the Q and B band.
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Figure 4.8: Photoabsorption comparison between theory and experiment for
PdPc.
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Figure 4.9: Spectra comparison of PdPc between real time and linear response
time dependent density functional theory for the main transitions.

4.2 Local perturbation applied onto the molecules.

In the previous section the molecules were perturbed using a laser as a
source of excitation. Nevertheless, for an accurate description of the STM
experiment, the molecule must be perturbed locally. For this task, and taking
into account the small lateral extension of the tunneling path between the
tip and the substrate, the excited domain is much smaller than a typical size
of the molecule leading to a spatial localization of the excitation. Currently,
Octopus software allows the user to define the nature of the excitation source.
Normally, the action of a electromagnetic field is defined as the action of
a laser onto the molecule along x, y and z. Hence to this fact, a Gaussian
function was selected to model the action of the perturbation. The use of a
Gaussian function was considered due to the capability to be tuned. Setting
the x0, y0, z0, the amplitude (A) and the variances (σx,σy and σz) in Eq.
4.8 the system can be perturbed locally.

F (x,y,z) =Aexp

(
−0.5

(
(x−x0)2

2σ2
x

+ (y−y0)2

2σ2
y

(z−z0)2

2σ2
z

))
(4.8)

The laser field is treated as a scalar potential described by a Gaussian
function define the type and an envelop modeling the time dependent external
perturbation (F (x,y,z)cos(ωt+φ(t))g(t)). g(t) is the envelope function and
φ(t) is the time dependent phase and ω is the frequency of the perturbation.
This scalar potential is described as an inhomogeneous electric field. The
inhomogeneity is the consequence of the local behaviour considered in the
study.
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4.2.1 Action of the local perturbation on H2Pc.

The evolution of the dipolar moment under a local perturbation were carried
out with the same parameters described for the global excitation. The
differences related to it is the parametrization of the local perturbation. The
amplitude is selected to 0.01 and the value of 1.0 for the variances Eq.4.8.
The position where the local perturbation is applied on H2Pc can be carried
out with two main positions located at the center of the benzene ring Fig.4.10.
H2Pc is perturbed in two positions due to the D2h symmetry of the molecule.
From an experimental point of view the perturbation can be applied in any
position of the molecule. However, for practical reasons the selected positions
were chosen with the aim to align the variation of the dipolar moment with
the x and y axis.

Figure 4.10: Positions where the local perturbation was applied onto the
molecule

In Fig.4.11, the coordinates of the perturbation applied in position 1
are (0,5.37,0). The variation of the dipolar moment corresponds, mainly,
with the y component of the dipolar moment containing C2 symmetry axis
perpendicular to the inner Hydrogen atoms of the molecule. In addition, the
x component of the dipolar moment is minimal. The contribution of this
component in this direction has almost no impact on the electronic density
distribution of the molecule. In the other hand, the contribution of the z
component has a great contribution to the global dipolar moment due to the
interaction of the perturbation applied with the π aromatic system of the
molecule.
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Figure 4.11: Local perturbation applied on H2Pc in the position one.

The charge density distribution along the z direction is bigger than along
x. Conversely, when the molecule is excited in the position 2 with coordinates
(5.37,0,0) an opposite result is obtained. In this case the contribution of the y
component to the dipolar moment is, practically, null. The main component
of the dipolar moment in this case is the contribution of the x component.
This component is aligned with a C2 symmetry axis which contains the two
inner hydrogen atoms.
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Figure 4.12: Local perturbation applied on H2Pc in the position two. On
top the dipolar moment variation and at the bottom the photoabsorption
spectra.

Comparing both spectra, it can be verified that depending on the position
where the perturbation has been applied there are discrepancies among them
Fig. 4.13. The main difference is the intensity of the transition at 3.45 eV.
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This transition is the characteristic phthalocyanine B band. the perturbation
along position 1 makes this band more intense, what could be translated into
a transition more favorable with respect to position 2 with less energy.
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Figure 4.13: Comparison of the action of a local perturbation depending the
position onto H2Pc.

Focusing on the fundamental transition (Fig. 4.14), it can be seen that
the results obtained are the same as in the case of global perturbation. In
this case, the perturbation on position 2 leads to a single band obtained
like the propagation of the dipole moment on the x direction of the global
perturbation. Conversely, when the local disturbance is applied on position 1
the two bands Qx and Qy are obtained along the y axis. The position of the
bands are located at the same energy as in the case of the global perturbation
(1.93, 1.96 and 2.02 eV respectively).
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Figure 4.14: Comparison of the fundamental transition due to the action of
a local perturbation depending on the position and the global perturbation
for H2Pc.

A third intermediate position between position 1 and position 2 has
been selected to check the impact of a local perturbation on the molecule
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considering the position where it is applied. The position selected is located
on a Nitrogen atom which makes the link between the rings (Fig. 4.15). In
contrast with the other positions, the action of this perturbation shows a
variation of the total dipole moment with notable contributions from the
components x and y.

Figure 4.15: Positions where the local perturbation was applied.

The total dipolar moment evolution and the cross section tensor spectra is
shown in Fig. 4.16. The result of the action of the local perturbation on this
position gives equivalent results as in the action of the global perturbation.
The resulting spectra can be considered as the sum of the two spectra of local
perturbation at 1 and 2 (Fig. 4.17). A strong interaction of the perturbation
along x and y with the electronic density is the consequence of this behaviour.
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Figure 4.16: Dipolar moment variation and photoabsorption spectra for the
local perturbation applied in position 3 on H2Pc.

The intensity of the bands for the three different positions is relatively
small in comparison with the global perturbation. The result of the action
of the local perturbation onto the position three shows three bands, two of
them at 1.94 eV and 1.96 eV which correspond with the degeneration of the
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Qx band. On the other hand, the Qy band is located at 2.02 eV. There is a
difference of 10 meV of difference in position two. Notably, the appearance
of two bands at 1.78 and 1.80 eV can be the result of the action of the local
perturbation onto the nitrogen atom.
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Figure 4.17: Spectra comparison for all the positions where the local pertur-
bation was applied.

4.2.2 Action of the local perturbation on ZnPc.

The Zinc metallo-phthalocyanine was perturbed in two different positions
Fig. 4.18. The main difference related to H2Pc is that in this case all the
rings of the molecule are identical by symmetry. So, the action behaviour of
the dipolar moment variation is equivalent, independently of the position of
the perturbation in any of the selected ring.. In Fig. 4.19 the time dependent
dipolar moment variation and the photoabsorption spectra are shown for
both positions.

Figure 4.18: Positions where the perturbation was applied ion ZnPc molecule.
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The simulation has been carried out with a spacing of 0.16 Å and a radius
of 4.5Å. The total simulation time is 400 1/eV and a time step of 0.002 eV.
The fundamental transition is located at 1.90 eV in the photoabsorption
spectra. The B band is located at 3.46 eV for both positions. This values
are in good agreement with the experimental spectra for the perturbation in
both positions Fig. 4.20. For both cases, a break of the degeneracy due to
the action of a local perturbation is shown. In the case of the perturbation
in the position 1 a split in the fundamental transition with respect to the
global perturbation is observed. This is a consequence of the action of the
local perturbation onto the molecule. In the case of the global perturbation
the molecule is perturbed simultaneously along the selected direction.
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Figure 4.19: Comparison between a local perturbation and global perturba-
tion for ZnPc.

The range of action for the local perturbation depends on the amplitude
selected in the gaussian function. If the modelization of the excitation source
excite a determined region of the space, as in this methodology, the D4h
symmetry the molecule had, when the simulation started, is broken due to
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the local interaction between the source and the density. The Qx band is
located at 1.93 eV and 1.87 eV for the position 1 and 2 respectively. A second
Qx band at 1.93 eV is observed for position 2. Also, the Qy bands are located
at 2.14 eV for position 1 and 2. In fact, the determination of this fact is very
interesting due to the nature of the excitation source. Therefore, in order
to describe in a rigorously way from a theoretical point of view the effects
caused by a local perturbation it is possible to describe this degeneracy break
as a consequence of the local action of it. As in the case of H2Pc, due to
the local action of the perturbation, the dipolar moment variation behaviour
depends on the position where the perturbation was selected to act.

1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5

E (eV)

-0,01

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

S
tr

en
g

h
t 

fu
n

ct
io

n
 (

1
/e

V
)

Global
position 1

position 2

Figure 4.20: Comparison between a local perturbation and global perturba-
tion for ZnPc.

4.2.3 Action of the local perturbation on PdPc.

For Palladium metallo-phthalocyanine, as ZnPc and H2Pc, the photoabsorp-
tion spectra was obtained by a total simulation time of 400 1/eV with a
time step of 0.002 eV. The spacing and radius values are 0.16 Å and 4.5 Å
respectively. To obtain the absorption spectrum, it has been considered, as
in the case of the Zn two spatial positions (Fig. 4.21). The position one is
located in one of the four equivalent aromatic rings and the second position
where the local perturbation was applied relies on one of the nitrogen atoms
which is the bridge between rings.
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Figure 4.21: Positions where the local perturbation was applied on PdPc
molecule.

In Fig. 4.22 the dipolar moment variation and the photoabsoption for
both spatial positions are shown.
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Figure 4.22: Dipolar moment variation and photoabsorption spectra for the
two positions where the perturbation was applied. On the top the position 1
is shown and on the bottom the position 2.
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In Fig. 4.23 the fundamental transition is plotted for the local perturba-
tion action in position 1, position 2 and comparing them with respect to the
global perturbation. The action of the local perturbation reveals a shift in
the fundamental transition for both cases. In position 1 the Qx is located at
2.03 eV and the Qy band at 2.20 eV. In the case of position 2, the Qx band
is located at 2.01 eV and the Qy band at 2.17 eV. Between both positions
there is an energy shift of 20 meV for the Qx band and 30 meV for the Qy.
Comparing the results described above with the experimental value there
is a shift of 100 meV for position 1 and 120 meV for position 2. The same
explanation can be made for the splitting of the fundamental transition for
PdPc like in the previous cases. The local action of the perturbation on the
D4h symmetry is broken becoming a D2h.
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Figure 4.23: Comparison between a local perturbation and global perturba-
tion for PdPc.

4.3 Energy transfer between molecules.

In this section the RT-TDDFT theory is used to investigate the energy transfer
phenomena between chromophores. It is based primarily on dipole-dipole
interactions occurring between high energy-gap chromophores to lower energy-
gap chromophores. The influence of parameters as exchange interactions
effects mediates energy transfer at short distances [196], delocalization of the
excitation over coherently coupled molecules involving vibronic coupling or
not [197, 198] or promoted energy transfer by the environmental medium[199,
200] can be tuned to improve the efficiency of the process. This resonant
transfer of energy between chromophores plays a crucial role enabling an
efficient and directional transport of solar energy between collection and
reaction centers.
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Recently, some experiments have shown that a scanning tunneling mi-
croscope (STM) operated at low temperature under ultra-high vacuum can
be used to probe the fluorescent properties of individual or interacting chro-
mophores with high spatial, spectral and temporal resolution. [25, 39, 41, 42,
201]. As an initial step the resonant transfer of energy efficiency between a
pair of chromophores in a STM junction depends on the spectral overlap, the
distance and the orientations between the transition dipole moments of the
donor and acceptor molecules. The STM can be used as a selective and local
source of excitation of molecular dipoles. Hyper resolved fluorescence mi-
croscopy maps [42] allows us to follow the energy transfer path from molecule
to molecule in real space, revealing a resonant energy transfer path in real
space between chromophores. The resonant transfer energy were carried out
in inhomogeneous media, and which play a decisive role in fastening the
energy transfer process in photosynthetic systems [199, 200].

The pioneering works of Zhang et al.[202] and Imada et al. [203] have
reported the emission of coherently coupled chromophores and resonant
energy transfer between a single donor and a single acceptor molecules. To
study this approach from a theoretical point of view, the systems H2Pc-ZnPc,
H2Pc-ZnPc and PdPc-ZnPc were considered. Resonant energy transfer
relying on the dipole-dipole interactions, are, in principle, impacted by the
angle between the donor and acceptor dipoles [204]. However, the energy
transfer is much less efficient when the dipoles are essentially parallel to each
other. This observation implies that one can selectively excite a given dipole
of a molecule by locating the perturbation on it. In addition, the molecular
disposition considered is the lock-key configuration. A local perturbation is
applied on the molecule with higher energy gap. A previous parametrization
of the spacing and radius was carried out as in the case of isolated molecules.
A regular grid was chosen under the LDA approximation describing the
exchange-correlation effects with the PZ functional. The core electrons
were described with the Troullier-Martins non-relativistic non-local norm-
conserving pseudopotentials. The evolution of the dipolar moment under
the influence of a local perturbation was computed with a total time of
400 1/eV and a time step of 0.002 eV an amplitude of 1 eV/Å and ω = 3
eV. the midpoint rule was selected as the propagator approximation. The
Lanzcos method was used to compute the exponential of the Hamiltonian.
The modeled local perturbation used is the same as in the previous section
with an amplitude of 0.01 and 1.0 for the variances.

4.3.1 H2Pc-ZnPc sytem

In the system H2Pc-ZnPc (Fig. 4.24) the local perturbation was applied
onto the ZnPc molecule. The selection of the spacing and radius value is
shown in Fig. 4.26. The properly values considered to run the RT-TDDFT
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simulations were 5.0Å for radius and 0.15 Å for spacing. In addition of the
comments done in the parametrization of the isolated molecules, a radius of
6.0 Å requires a big amount of computational resources. The radius value is
fully converged at 3.5 Å and the value of 5.0 Å was considered to be sure
that the accuracy of the simulation obtained is well defined. In the other
hand, a value of 0.15 Å ensures a good discretization mesh.

Figure 4.24: H2Pc-ZnPc molecular system used on the simulation

The photoabsorption spectra were computed using a local perturbation
acting in the lower-right benzene ring of the ZnPc molecule. The local
perturbation is applied onto this position considering that the high energy-
gap chromophore is the ZnPc molecule. The same procedure followed in
all RT-TDDFT simulations was carried out. The global dipolar moment
is computed along all spatial directions (x, y and z) the result of the FFT
transform of the dipolar moment variation gives the photoabsorption spectra
displayed on Fig. 4.25.
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Figure 4.25: Dipolar moment variation and photoabsorption spectra for the
system H2Pd-ZnPc
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Figure 4.26: Total energy evolution as a function of a) the radius between
two nodes of the mesh b) the spacing between two neighbours of the mesh.

The energy transfer can be described following the evolution of the dipolar
moment along the TD simulation run. To this task, the photoabsorption
spectra was plotted every 50 1/eV. The aim of this procedure is to follow
the evolution of the fundamental transition of the two molecules to describe
the energy transfer. The spectra for the total simulation time shows two
fundamental bands at 1.87 and 1.93 eV. The first band is the fundamental
transition for ZnPc and the second is the Qx band for H2Pc. The affirmation
of an energy transfer mechanism between the two molecules is corroborated
with the evolution of this peaks along the simulation time (Fig. 4.27).
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Figure 4.27: Fundamental transition evolution during the simulation time
plotted every 50 1/eV time steps
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The less energetic peak correspond to the ZnPc and the most energetic
corresponds to the H2Pc. The first plot corresponds to a simulation time of
200 1/eV. This start point has been selected due to the small intensity of
the peaks and for the spectra clearance. The tracking of the peaks shows a
evolution on the intensity, less energetic peaks (left peak) which corresponds
to the ZnPc is more intense than the most energetic peak (right peak) which
corresponds to the H2Pc until a simulation time of 300 1/eV when the H2Pc
becomes the most intense peak. Should be notice that the perturbation
applied in the upper-right benzene ring of ZnPc.

It means, apparently, that the ZnPc is excited. The distance of 1.5 nm
between molecules is close enough for the dipole-dipole interaction. This
dipole-dipole interaction makes possible the energy transfer between molecules
and exciting the H2Pc, which is a reasonable distance from the excitation
source. However, the total photoabsorption spectra shows a left intense peak
and a less intense right peak. This behaviour is explained due to the fact
that this spectra is plotted for all simulation time and is an ”average” of all
time interval spectra plotted in the figure.
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Figure 4.28: Proof of the local perturbation dissipation during the time.

Also, as the local perturbation was only applied for a short period of time
at the starting point of the simulation, the dissipation of the perturbation
can be probed (Fig. 4.29). The interval time of 350-400 1/eV shows an
intensity loss in the peaks and an energy shift in comparison with the other
interval time. Also it is corroborated that in the interval time of 300-350
1/eV, both peaks have the same intensity.
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Figure 4.29: On the top, STML spectra, I=300 pA, acquisition time t= 300
s. At the bottom the theoretical spectra obtained and compared with the
spectra obtained with a global perturbation for the isolated molecules.

The loss of intensity can be explained with the dissipation of the source
of excitation after a long simulation time which was applied at time zero for
a short period of time. In comparison with experimental results, the direct
excitation of the acceptor molecules are negligible. The spectra (Fig. 4.27)
displays peaks at the energy of both chromophores, attesting that part of
the energy of the donor is transmitted to the acceptor. This phenomena
has been described in terms of a resonant transfer energy process involving
dipole-dipole interactions [203]. The main difference is the switch on the
peaks. It is due to the shift in energy of the H2Pc spectra related to the
STM. Experimentally the effective resonant energy transfer can be defined
as RETeff = Ia/Id+ Ia, where Id and Ia are the emission intensities of the
donor and acceptor in the dimmer, respectively[205]. For the H2Pc-ZnPc
system RETeff = 0.68. This quantity is more efficient when the difference
in the gap energy between both chromophores is small. From RT-TDDFT
simulation the energy transfer between chromophores for the system H2Pc-
ZnPc has been probed. The dipole-dipole interaction between molecules can
be probed, but again the computation resources needed is the weak point.
For distance of 1.5 Å (the same as in experiment) between molecules was
computed using 25 cores and 600 processors with a RAM memory of 115 Gb
per core in the HSW24 partition of occigen batch from Centre Informatique
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National de l’Enseignement Supérieur (CINES). Increasing the distance
between molecules also, increase the number of points of the simulation, and
also increasing the amount of resources.

4.3.2 H2Pc-PdPc system

The system H2Pc-PdPc is perturbed in one of the rings of the Pd molecule
far from the free-metal phthalocyanine. The selection of this position was
considered because the PdPc has the high-energy gap (Fig. 4.30). The
parametrization of the spacing and radius are shown in Fig. 4.31, the
selected values are 0.15 Å for spacing and 5.0 Å for radius and the distance
between molecules is 1.5 nm. The photoabsorption spectra is computed
using the same parameters of all RT-TDDFT simulations carried out in this
manuscript (total simulation time 400 1/eV and 0.002 eV time step).

Figure 4.30: Molecular system used on the simulation
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Figure 4.31: Total energy evolution as a function of a) the radius between
two nodes of the mesh b) the spacing between two neighbours of the mesh.



82 Energy transfer between molecules.

The fundamental transitions of the two molecules are located at 1.93 eV
for H2Pc and 2.03 eV for PdPc molecule (Fig. 4.32).
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Figure 4.32: Dipolar moment variation on the top and photoabsorption
spectra at the bottom for H2Pc-PdPc system due to the action of a local
perturbation.

The evolution of the dipolar moment tracked in intervals of 50 1/eV are
plotted in Fig. 4.33.
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Figure 4.33: Photoabsorption spectra computed every 50 1/eV time step to
track the evolution of the fundamental transition.
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The plot on the top shows the evolution of the fundamental transition at
200 1/eV. With a simulation time of 100 1/eV the fundamental transition of
PdPc is observed in the next interval of time both fundamental transitions
are observed. After a simulation time of 200 1/eV the fundamental transition
of H2Pc becomes the more energetic transition, corroborating the energy
transfer between molecules. The plot on the bottom, shows the plots for the
interval time of 200 1/ev and 400 1/eV a increase on the intensity of the
fundamental transitions is shown. After a simulation time of 400 1/eV the
intensities are starting to decrease, it seems that the local perturbation is
starting to dissipate.

Comparing with experimental results from STM (Fig. 4.34), RT-TDDFT
displays peaks at the energy of the fundamental transitions of both molecules.
The energy transfer mechanism can be explained with a dipole-dipole interac-
tion between molecules. The distance between molecules in the RT-TDDFT
simulation is 1.5 nm. This distance is far enough to avoid the molecule
interactions and to ensure the dipole-dipole interaction. An energy shift
about 0.1 eV is shown for the theoretical spectra in comparison with the
experimental. Despite this energy shift, the energy transfer between the
high gap and the low energy gap chromophore achieved by theoretical and
experimental studies are in good agreement.
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Figure 4.34: On the top, STML spectra, I=300 pA, acquisition time t= 300
s. At the bottom the theoretical spectra obtained and compared with the
spectra obtained with a global perturbation.
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4.3.3 ZnPc-PdPc system

The system ZnPc-PdPc (Fig. 4.35) as in the case of H2Pc-PdPc the local
perturbation is applied on one aromatic ring far from the second molecule.
The PdPc is the chromophore with the highest energy gap of both molecules.

Figure 4.35: ZnPc-PdPc system scheme, the molecule at left is the PdPc
molecule where the perturbation was applied and at right the ZnPc molecule
with a distance of 1.5 nm between them.

The selected values of the spacing and radius are 0.15 Å and 5.0 Å
respectively (Fig 4.36).
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Figure 4.36: Total energy evolution as a function of a) the radius between
two nodes of the mesh b) the spacing between two neighbours of the mesh.
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The photoabsorption spectra was computed for a total simulation time
of 400 1/eV and a time step of 0.002 1/eV(fig, 4.37).
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Figure 4.37: Dipolar moment variation at the top and the photoabsorption
at the bottom for the ZnPc-PdPc system.

The fundamental transitions are located at 1.86 eV for ZnPc and 1.92
eV for PdPc. In Fig 4.38 the photoabsorption spectra is plotted every 50
1/eV time step. In that spectra is shown the evolution of the fundamental
transitions for both molecules. At time step of 200 1/eV the PdPc molecule is
excited. Therefore, as time progresses, it is clearly seen that the Zn molecule
begins to get excited. The ZnPc fundamental transition becomes the most
intense at a time step of 300 1/eV. Also at a time step of 350 1/eV confirms
the energy transfer between molecules because the ZnPc transition is the
most intense of both transitions.
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Figure 4.38: Variation of the fundamental transition for the ZnPc-PdPc
system plotted every 50 1/eV time step.
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In Fig 4.39 the global perturbation of the isolated molecules are plotted
with respect to the local perturbation applied onto the Zn-Pd system. There
is a difference of 5 meV for the fundamental transition of the Zn and a
difference of 9 meV in the case of PdPc. This energy shift can be explained
due to the dipole-dipole interaction between molecules. Comparing with the
experimental results also a difference of energy around 5 meV is obtained
for the ZnPc fundamental transition. In the case of PdPc this difference is
around 4 meV when the local perturbation is applied on the system. This
difference is lower than in the case of the global perturbation of the isolated
molecule.
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Figure 4.39: On the top, STML spectra, I=300 pA, acquisition time t= 300
s. At the bottom the theoretical spectra obtained and compared with the
spectra obtained with a global perturbation.

From a experimental point of view the dipole-dipole interactions are
impacted by the angle between chromophores (Fig 4.40). Two positions are
perturbed (black dot and grey dot in the figure). The spectra reveal that the
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energy transfer is more efficient when the tip is located on top of the PdPc
dipole oriented towards the ZnPc acceptor (Fig 4.39) corresponding with the
situation where the donor and acceptor dipoles are colinear. By analyzing
the RETeff parameter it is also possible to affirm that the resonant energy
transfer is much less efficient when the dipoles are essentially parallel to each
other (Gray spectra).

Figure 4.40: STM image (5.1 x 3.2 nm2, V=-2.5 V for the ZnPc-PdPc system.

4.4 Conclusion

The results presented in this chapter are divided in three blocks correlated
between them. The real space propagation gives enough information to
obtain a clear physical image of the evolution of the wavefunction in real
time. The results are focused in the analysis of the lowest energy peaks. It
is due to the accuracy in reproducing transitions of intermediate energy in
which it is known to be deteriorated for the wrong asymptotic behaviour
of the LDA exchange-correlation potential. In the first part of the chapter,
the evolution of the dipolar moment in real time-time dependent density
functional theory is shown. Secondly, the action of a local perturbation in
a specific position of the molecules was carried out. Last but not least, the
study was devoted to the energy transfer between two chromophores.

The results obtained in the first block are the consequence of a perturba-
tion of the molecules along each spatial direction. The Fast fourier Transform
for the variation of the dipolar moment along each direction gives as a result
the photoabsoption spectra for the moleculeVs studied. The fundamental
transition study reveals a good concordance between experiment and theory.
A energy shift around 100 meV is obtained for H2Pc and PdPc molecules
and 20 meV for ZnPc. For H2Pc a decoupling in the fundamental Qx band
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is observed. It is due to the evolution of the dipolar moment along each
direction of the space and also the symmetry of the system. The dipolar
moment variation was carried out in three independent runs and merged to
obtain the full cross section tensor (the photoabsorption spectra).

The action of the local perturbation modeled as a Gaussian function is
described as an inhomogeneous electric field. The spectra obtained gives
us the opportunity to do a fully description of the excitation mechanism of
the molecule. A detailed behaviour depending on the position where the
perturbation was applied reveals the decoupling in the Qx band for H2Pc.
In the position 2 only the Qx band is obtained. Meanwhile the action of
the local perturbation in the position 1, a Qx and a Qy is obtained. An
intermediate position (position 3) reveals the same behaviour of the global
perturbation. On the other hand, the action of the perturbation on ZnPc
and PdPc reveals a symmetry break when it acts on the position 2. This
behaviour is also obtained for PdPc molecule.

The last part of the chapter was devoted to study the energy transfer
between two chromophores. Three systems were taken into account, H2Pc-
ZnPc, H2Pc-Pd and ZnPc-PdPc. The real time propagation simulations
reveals a energy transfer between the two molecules when the higher energy
level chromophore was locally perturbed. The track of the evolution of the
dipolar moment clearly shows this energy transfer due to the change on the
intensity of the fundamental transitions of the molecules of the considered
system. The RT-TDDFT methodology followed in this chapter is effective to
understand the behaviour of a molecule when it is perturbed for a excitation
source as a laser.



Chapter 5

Impact of the tunnel current
as source of excitation.

The work presented in the previous chapters indicates that, although we are
able to understand and to reproduce a large part of the structures of the
spectra of excitation of molecules by a tunnel current observed experimen-
tally, some of them are poorly modeled. We have identified several paths
of exploration for explain these disagreements. In the third chapter, the
structural effect were considered and the in fourth chapter I have discussed
the specific effects associated to the local excitation of the molecule by the
tip.

In the third chapter, we have shown that, although the optical spectra
is very sensitive to the constraint level applied on the molecule when it is
supported in surface of NaCl, the constraint applied is not enough to produce
visible effects on the photoabsorption spectra of the supported molecule with
respect to the photoabsorption spectra of the isolated molecule. In the fourth
chapter the local perturbation applied on the system has been made by a
laser field treated as a scalar potential in form of a Gaussian function (Eq.
5.1). This function describes the type and shape of time-dependent external
perturbation in the form F (x,y,z)cos(ωt+φ(t))g(t). F(x,y,z) is defined by a
field type (scalar potential), g(t) is defined by an envelope function and φ(t)
is the time-dependent phase. ω is the frequency of the pulse. This scalar
potential described an external field as an inhomogeneous electric field. This
inhomogeneity is the local perturbation applied.

F (~r, t) =Aexp

(
−
(

(x−x0)2

2σ2
x

+ (y−y0)2

2σ2
y

+ (z−z0)2

2σ2
z

))
(5.1)
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In the considered system the excitation source is a laser spot of just few
tenths of nanometers which is not the case in the tunnel junction considered
in this work. But from a theoretical point of view it is much simpler to
deal with an electric field as excitation source than to deal with an electron.
However, this approach has been very useful to get information about the
way a perturbation generated locally is propagated inside the molecule and
how it may be at the origin of ”secondary” excitations specific to location
of the ”primary” excitation. The evolution of the dipolar moment gives
a invaluable information to understand the effect on the excitation of the
molecule due to the action of a local perturbation. The results of its action
on the isolated molecules are in a good agreement with the experiment as
the same for the energy transfer.

In this chapter, the validity of the description of the perturbation used
to obtain the photoabsorption spectra is considered. From STM experiment,
the tunnel current effect plays an important role in the system of study. It
has two major impact on the excitation of a molecular nanojunction. First,
due to the small lateral extension of the tunneling path between the tip and
the substrate, the excited domain is much smaller than the typical size of the
molecule, leading to a spatial localization of the excitation. Secondly, the
electronic nature of the excitation source makes the mechanisms at the origin
of the excitation of the molecule by the tunnel electron current different
from those due to a photon. Hartree and exchange interactions are, for
example, specific to the electron and they can produce specific excitation.
This excitation can be used for collecting information which can be impossible
to get by using a laser as excitation source.

The scanning tunnel microscopy is a versatile technique and is an instru-
ment for imaging surfaces at the atomic level and is based on the concept
of quantum tunneling. When a conducting tip is brought very near to the
surface to be examined, a bias (voltage difference) applied between the tip
and the surface can allow electrons to tunnel through the vacuum between
them. The resulting tunneling current is a function of tip position, applied
voltage, and the local density of states (LDOS) of the sample[206]. The
information is acquired by monitoring the current as the tip’s position scans
across the surface, and is usually displayed in image form. STM can be
a challenging technique, as it requires extremely clean and stable surfaces,
sharp tips, an excellent vibration control and sophisticated electronics.
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5.1 Modelization of the tunnel current.

The excitation source commonly used is a laser. Laser light is created when
the electrons in atoms in special glasses, crystals or gases, absorb energy from
an electrical current, or another laser, are excited. This excited electrons come
back to the ground state through a deactivation process emitting photons.
The photons in turn travel around the space and excite the molecule. The
laser has a particular wavelength determined by the amount of energy released
excited electron drops to the ground state. Also, the laser is directional with
a very tight beam, the coherence of laser light make it stay focused for vast
distance.

In this section the development of a theory to describe the time evolution
of the tunnel current is presented. The tunnel excitation can be described as
a propagation (transmission) of the tunnel electron using a wavepacket from
the tip to the substrate (Fig 5.1)

Tunnel
electron wave

packet

Figure 5.1: Scheme of the local excitation of a phthalocyanine molecule by
tunnel electron wave packet supported in a surface.

The one-dimensional wavepacket, initially centered at some position z0
with a spread ∆z, is propagated. An integration of the time-dependent wave
equation governed by a time-dependent potential V(z) is required. This
wavepacket equation can be written as:
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ψj(~r, t) = P̂ψj,0(~r). (5.2)

The evolution operator P̂ is defined as:

P̂ = exp

(
− iĤt

}

)
. (5.3)

The excitation of the molecule comes from the interaction between the
excitation source with the electrons of the molecules. From a physical point
of view, the electronic density must be evaluated to understand the excitation
process. The changes on the electronic density, induced by the excitation
source, which will make it possible to identify the phenomena that may
explain the disagreements between theory and experiment. The dimension of
the studied system obey the laws of the quantum mechanics. It means that
only certain discrete electronic distributions in the system can be observed
due to the action of a perturbation.

The goal of this section is to establish a relationship between the changes
induced on the electronic density and the perturbation applied on the system.
When the molecule is subjected to a excitation source (V̂ (t)), |Ψ(t)〉 state will
evolve over the time according to the time-dependent Schrödinger equation:

(
Ĥ0 + V̂ (t)

)
|Ψ(t)〉= i}

∂ |Ψ(t)〉
∂,t

(5.4)

where Ĥ0 is the Hamiltonian without perturbation. In this work, two
types of excitation has been taken into account. Firstly, a electromagnetic
excitation generated by a laser light beam. Secondly, the tunnel current
excitation through the molecule located between the tip and the NaCl
surface where it is supported. In both cases, the perturbation generates a
displacement of negative charges (electrons) and positive charges (cores) in
the molecule. However, the different nature of the two excitations is the
source of differences in the excitation spectra. The objective in this chapter
is to present these differences.

The response of the molecule due to the action of the perturbation can
be estimated analysing the behaviour of the dipolar moment. The molecular
dipolar moment is the sum of a electronic and nuclear contribution:



Modelization of the tunnel current. 93

µmolecule(t) =−e
Ne∑
i=1
〈Ψ(t)|ri |Ψ(t)〉+e

Nn∑
I=1

ZIRI (t) , (5.5)

Where Ne and Nn are the total number of electrons and the total number
of nuclei respectively. The relative weight of these two contributions depends
on the excitation energy. The applied in scanning microscopy tunnel are
located in the infrared and visible domains, two domains where the dipole
moments electronic and nuclear are of the same order of magnitude[207].
Behind the linear response theory, the state |Ψ(t)〉 should be computed to
evaluate the dipolar moment[208]. The idea of the linear response theory
is to express the state of the perturbed system,|Ψ(t)〉 , as a function of the
stationary state, |Φi〉 , of the unperturbed system:

|Ψ(t)〉=
∑
i=0

ãi(t) |Φi〉 . (5.6)

In the approach I developed, the ground state of the unperturbed system,
|Φ0〉 is computed in the framework of the density functional theory. Therefore,
further on how the other stationary states of the unperturbed system are
determined. The temporal evolution of the perturbed system |Ψ(t)〉 is
governed by the time dependent Schrödinger equation:

(
Ĥ0 + V̂ (t)

)
|Ψ(t)〉= i}

∂|Ψ(t)〉
∂t

. (5.7)

Inserting the expression of the wave function in terms of linear response
theory (5.6) into the Scrödinger equation (5.7), a set of differential equations
of first order are obtained for each of the coefficients ãi(t):

i}
∑
i=0

dãi(t)
dt
|Φi〉=

∑
i=0

ãi(t)
(
Ei |Φi〉+ V̂ (t) |Φi〉

)
. (5.8)

Ei is the eigenvalue associated to the stationary state |Φi〉 of the unper-
turbed system:

Ĥ0 |Φi〉= Ei |Φi〉 , (5.9)
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Ĥ0 |Φi〉= Ei |Φi〉 . (5.10)

The expression in eq. 5.8 can be simplified if a change of notation is
made.

ãi(t) = e−iEit/}ai(t). (5.11)

The coefficients ak(t) are computed by a set of differential equations of
first order projecting the state |Φk〉:

dak(t)
dt

=− i
}
∑
i=0

ai(t)〈Φk| V̂ (t) |Φi〉e−i(Ei−Ek)t/}. (5.12)

The perturbation V̂ (t) represents the action of the light (laser) or the
tunnel electron between the tip and the sample on the electrons of the
molecule. To describe this fact the amplitude should be known, ε, the time
evolution (the function f(t)) and the action mode (v̂ operator):

V̂ (t) = εf(t)v̂, (5.13)

Laser as excitation source. In this case, the classical force F (r, t)
that will undergo an electron linked to the electric field, E(r, t), of
the light is:

F (r, t) =−qE(r, t). (5.14)

Where q is the electron charge. However, a uniform electric field
is polarized with the z axis ( direction êz), r, t = Ez(t)êz and the
associated classical potentials is:

V (r, t) = Ez(t)z. (5.15)

dak(t)
dt

=− i
}
∑
i=0

εai(t)f(t)〈Φk| v̂ |Φi〉e−i(Ei−Ek)t/}. (5.16)

The perturbations considered in this work are weak, so a development of
the coefficients ai(t) is a Taylor series around ε= 0 can be made:
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ai(t) = ai(t)|ε=0 + ∂ai(t)
∂ε

∣∣∣∣
ε=0

+ ε2

2
∂ai(t)
∂ε

∣∣∣∣
ε=0

+ · · · (5.17)

The coefficients of the development 5.17 are determined by inserting the
Taylor development in the equations 5.16 and identifying the terms in order
of magnitude. At order 0:

dak(t)
dt

∣∣∣∣
ε=0

= 0. (5.18)

The information on this equation implies that the coefficients at order 0
are time independent. In addition, considering the fundamental state and
the system in a initial time t=−∞, only the 0 order term is not null and
equal to 1:

ak ε= 0 = δk,0. (5.19)

The Taylor development at first order in time of the perturbed system is
described by the expression:

d

dt

∂ak(t)
∂ε

∣∣∣∣
ε=0

=− i
}
f(t)ei(Ek−E0)t/} 〈Φk| v̂ |Φ0〉 . (5.20)

At first order all coefficients of the development (ak(t)) are zero except
the coefficent a0(t)|ε=0 = 1

∂ak(t)
∂ε

∣∣∣∣
ε=0

=− i
}
〈Φk| v̂ |Φ0〉

∫ t

−∞
dτf(τ)ei(Ek−E0)τ/}. (5.21)

The perturbed state of first order in time is given by the expression:

|Ψ(t)〉=
∑
i=0

e−iEit/h̄
(
ai(t)|ε=0 +ε

∂ai(t)
∂ε

∣∣∣∣
ε=0

+ · · ·
)
|Φi〉 (5.22)

|Ψ(t)〉= e−iE0t/} |Φ0〉+
∑
i=0

e−iEit/}
(
ε
∂ai(t)
∂ε

∣∣∣∣
ε=0

+ · · ·
)
|Φi〉 (5.23)
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|Ψ(t)〉 ≈ e−iE0t/}
{
|Φ0〉−

i

h̄
ε
∑
i=0

e−i(Ei−E0)t/h̄ 〈Φi| v̂ |Φ0〉∫ t

−∞
dτf(τ)ei(Ei−E0)τ/h̄ |Φi〉

} (5.24)

|Ψ(t)〉 ≈ e−iE0t/}
{
|Φ0〉−

i

}
ε
∑
i=0
〈Φi| v̂ |Φ0〉∫ t

−∞
dτf(τ)e−i(Ei−E0)(t−τ)/} |Φi〉

} (5.25)

The second term of the right side on eq 5.25 gives the variation |δΦ0(t)〉
along the time of the unperturbed state |Φ0(t)〉 of the system, and is also
defined as:

|δΨ0(t)〉= |Ψ(t)〉−e−iE0t/} |Φ0〉=

− i
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉

∫ t

−∞
dτf(τ)e−i(Ei−E0)(t−τ)/} (5.26)

In order to extend the integral of the equation 5.26 from −∞ to +∞, the
Heaviside function (θ(t)) is introduced:

θ(t) =
{

0 if t < 0,
1 if t > 0, (5.27)

so that

|δΨ0(t)〉=− i
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉∫ +∞

−∞
dτf(τ)θ(t− τ)e−i(Ei−E0)(t−τ)/}

(5.28)

The variation of the perturbed state of the system along the time appears
as a product of two terms, a spatial term reflecting the coupling between
the stationary state |Φi〉 of the system induced by the perturbation. The
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second term is the temporal part which is the temporal convolution of the
perturbation by the kernel,

gi(t) = θ(t)e−i(Ei−E0)t/} (5.29)

Then, it is reduced to a convolution product of,

(f ∗gi)(t) =
∫ +∞

−∞
dτgi(t− τ)f(τ) (5.30)

The spatial part in equation 5.28 guarantees that only electronic distribu-
tions compatible with the nature of the quantum system are accessible. The
convolution product acts as a phase matching term between the perturbation
and the stationary states of the system. It guarantees that the perturbation
provides the energy needed for the excitation.

The convolution theorem stipulate the product of the two functions is
equal to the inverse Fourier transform of the product for the Fourier transform
of the two functions[209]:

(f ∗gi)(t) =
∫ +∞

−∞
dτgi(t− τ)f(τ) =

∫ ∞
−∞

F (ω)G(ω)e−iωtdt

=
∫ ∞
−∞

(f ∗gi)(ω)e−iωtdt
(5.31)

However, it should be noted that this theorem is only applied if the two
functions are summable over the interval [−∞,+∞]. It is obvious that this
condition is satisfied for the temporal part f(t) of the perturbation. On
the other hand, in the form explained above, this is not the case with the
convolution kernel which is the product of a Heaviside function by a complex
exponential. To make the convolution kernel compatible with the conditions
of application of the convolution theorem, a multiplication of the convolution
kernel by a function e−ηt, η being a positive real number. The convolution
kernel therefore tends towards zero when t→+∞, making the convolution
kernel summable.
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With these conditions:

G
(η)
i (ω) =

∫ +∞

−∞
dtθ(t)e−i(Ei−E0)t/}eiωte−ηt

= i

ω−ωi+ iη

(5.32)

F (ω) =
∫ +∞

−∞
dtf(t)eiωt (5.33)

(f ∗g(η)
i )(ω) = i

ω−ωi+ iη

∫ +∞

−∞
dtf(t)eiωt (5.34)

(f ∗g(η)
i )(ω) = i

ω−ωi+ iη
F (ω) (5.35)

With ωi = (Ei−E0)/}.

|δΨ0(t)〉=− i
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉∫ +∞

−∞
dτf(τ)θ(t− τ)e−iωi(t−τ)

(5.36)

|δΨ0(t)〉=− i
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉(f ∗gi)(t) (5.37)

|δΨ0(ω)〉=− i
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉(f ∗gi)(ω) (5.38)

|δΨ0(t)〉=
∫ +∞

−∞
dω |δΨ0(ω)〉e−iωt (5.39)

|δΨ0(t)〉=− i
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉

∫ +∞

−∞
dω(f ∗gi)(ω)e−iωt (5.40)
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|δΨ0(t)〉= 1
}
ε
∑
i=0
〈Φi| v̂ |Φ0〉 |Φi〉

∫ +∞

−∞
dω F (ω)

ω−ωi+ iη
e−iωt (5.41)

It should be noted that throughout the process, the wave function associ-
ated with the state of the system must be normalized.

|Ψ(t)〉 ≈ e−iE0t/} {|Φ0〉+ |δΨ0(t)〉} (5.42)

This implies that the variation of |δΨ0(t)〉 must be orthogonal (First
order) to the initial state of the system at the beginning of the process, i.e.
the stationary state |Ψ0〉 (〈Psi0| |δΨ0(t)〉= 0 implying 〈Ψ0| v̂ |Ψ0〉= 0). With
these conditions, the sum over the stationary states of the system is carried
out over i > 0:

|δΨ0(t)〉= 1
}
ε
∑
i>0
〈Φi| v̂ |Φ0〉 |Φi〉

∫ +∞

−∞
dω F (ω)

ω−ωi+ iη
e−iωt

|δΨ0(ω)〉= 1
}
ε
∑
i>0
〈Φi| v̂ |Φ0〉 |Φi〉

F (ω)
ω−ωi+ iη

(5.43)

At this point, it is convenient to take a look in the expressions Fig. 5.43
and notices which terms are known and which terms are unknown. The terms
F (ω) are the Fourier components of the temporal part of the perturbation.
This data is obtained from a system which is therefore known. It is the same
regarding the operator v̂ and the amplitude ε of the perturbation.

The states |Φi〉 and the associated energies (Ei) are given by the un-
perturbed system. That terms can be described adopting the Kohn-Sham
approach [73] which consists in the description of the system by a set of
non-interacting particles evolving in a common potential resulting from their
distribution in the system. Each of the particles obeys a single-particle
Schrödinger equation:

HKS |ϕi〉= εi |ϕi〉 (5.44)

The Hamiltonian described as a isolated pseudo-particle in a |ϕi〉 state
with a energy εi evolving in a potential VKS(r) which is composed by the
sum of three terms
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HKS =− }2

2m∇2 +vKS(r) (5.45)

vKS(r) = vext(r) +
∫

ρ(r′)
| r−r′ |

dr′+ δEXC [ρ]
δρ(r) (5.46)

Vext(r) is the external potential, for example due to the action of the
nuclei over the electrons of the molecule.

VH(r) is the Hartree potential which consider the Coulombian classical
interaction between the pseudo-particle and the electronic distribution ρ(r)
of the electrons in the system:

VH(r) =
∫

ρ(r′)
| r−r′ |

dr′ (5.47)

Vxc(r) is the exchange-correlation potential, which consider the N many-
body interactions ignored due to the choice of a set of pseudo-particles
non-interacting:

Vxc(r) = δEXC [ρ]
δρ(r) (5.48)

In the context of this approach, the Hamiltonian of the system therefore
does not include a term electron-electron interaction:

Ĥ0 =
N∑
i=1

{
− }2

2m∇2
i +vKS(ri)

}
(5.49)

Moreover, since electrons are fermions, they must obey the Pauli exclusion
principle. The eigenstates of the molecule can then be expressed as Slater’s
determinant [210]:

Φ(r1,r2, . . . ,rN ) = 1√
N !
SD [ϕ1(r1)ϕ2(r2) . . .ϕN (rN )] (5.50)

The total energy of the system, therefore, is the sum of all energies of
the occupied states of the pseudo-particles εi:
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Ej =
N∑
i=1

εi (5.51)

The density functional theory and the Hohenber-Kohn theorem [66] shows
that the |ϕj〉 states can be determined when the molecule is in the ground
state. It means that the |Φ0〉 and the energy E0 of the unperturbed system are
known. The state |Φ0〉 is the lowest energy state and the N mono-electronic
occupied states |ϕi〉 lowest in energy.

|Φ0〉 |Φ1〉 |Φ2〉

. . .

ε1

ε2

ε3

ε4

ε5

Figure 5.2: Excited states modelization. The ground state energy |Φ0〉
of the unperturbed system is E0 = 2(ε1 +ε2 +ε3). The state |Φ1〉 is E1 =
2(ε1 +ε2) +ε3 +ε4. The state |Φ2〉 is E1 = 2(ε1 +ε2 +ε4), . . .

Also the other states |Φ0〉 which are obtained by swapping one or more
of these occupied states with empty states of higher energy (Fig. 5.2). The
mono-electronic states |ϕi〉 derived from the same Kohn-Sham Hamiltonian,
are orthogonal between them, which means that the stationary states of the
molecule |Φj〉 are also orthogonal to each other.

Whether a laser or the tunnel electron, the v̂ operator which describes
the perturbation acting on the electrons of the molecule is an operator which
acts on only one particle at a time,

v̂ =
N∑
i=1

vri (5.52)
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Therefore, the elements 〈Ψi| v̂ |Φ0〉 6= 0 in Eq. 5.43 are those for which
the states of the molecules |Φi〉 and |Φ0〉 do not differ only by a single
permutation,

〈Φi| v̂ |Φ0〉=
N∑
j=1
〈Φi|v(rj) |Φ0〉 (5.53)

In order to illustrate this, I consider a system with three electrons. In
this case we have:

Φ0(r1,r2,r3) = 1√
6

∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) ϕ1(r3)
ϕ2(r1) ϕ2(r2) ϕ2(r3)
ϕ3(r1) ϕ3(r2) ϕ3(r3)|

∣∣∣∣∣∣∣ (5.54)

Φ1(r1,r2,r3) = 1√
6

∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) ϕ1(r3)
ϕ2(r1) ϕ2(r2) ϕ2(r3)
ϕ4(r1) ϕ4(r2) ϕ4(r3)|

∣∣∣∣∣∣∣ (5.55)

Φ2(r1,r2,r3) = 1√
6

∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) ϕ1(r3)
ϕ5(r1) ϕ5(r2) ϕ5(r3)
ϕ4(r1) ϕ4(r2) ϕ4(r3)|

∣∣∣∣∣∣∣ (5.56)

〈ϕ1| v̂ |ϕ0〉=
3∑
j=1
〈ϕ1| v̂(rj) |ϕ0〉

〈ϕ1| v̂(r) |ϕ0〉= 〈ϕ1| v̂(r1) |ϕ0〉+ 〈ϕ1| v̂((r2) |ϕ0〉+ 〈ϕ1| v̂(r3) |ϕ0〉

(5.57)

After some maths the integral can be expressed as:

〈Φ1|v(r1) |Φ0〉= 1
3

∫
dr1Φ∗4v(r1)Φ3(r1) (5.58)

If instead to consider the state |Φ1〉, we consider the state |Φ2〉, there
are two possible permutations of mono-electronic states |ϕ2〉 → |ϕ5〉 and
|ϕ3〉 → |ϕ4〉. Instead of only the permutation |ϕ3〉 → |ϕ4〉 for the state |Φ1〉.
Then the two non-zero integrals

∫
dr2ϕ

∗
2(r2)ϕ2(r2) and

∫
dr3ϕ

∗
2(r3)ϕ2(r3)

become
∫

dr2ϕ
∗
2(r5)ϕ2(r2) and

∫
dr3ϕ

∗
5(r3)ϕ2(r3) which are null.
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The element 〈Φ1|v(r2) |Φ0〉 therefore implies an occupied monoelectronic
state and a monoelectronic state virtual from the point of view of the molecule
in its ground state. Furthermore, due to the indistinguishability of particles,
the elements 〈Φ1|v(r2) |Φ0〉 and 〈Φ1|v(r3) |Φ0〉 can be defined in the same
way as 〈Φ1|v(r1) |Φ0〉= 1

3
∫
dr1Φ∗4v(r1)Φ3(r1) so that can be written as the

double sum on the states of the molecules other than the ground state and
on the electrons of the molecule:

∑
j

〈Φj | v̂ |Φ0〉=
∑
j>0

N∑
i=1
〈Φi|v(rj) |Φ0〉 (5.59)

It is possible to write the sum over the occupied and virtual monoelectronic
states of the molecule:

∑
j

〈Φj | v̂ |Φ0〉=
∑
v∈occ

N∑
c∈virt

〈Φc|v(r) |Φv〉

∑
j

〈Φj | v̂ |Φ0〉=
∑
v∈occ

N∑
c∈virt

∫
drΦ∗c(r)v(r)Φv(r)

(5.60)

The goal is to stablish a relationship between the perturbation suffered
by the molecule ( laser or tunnel current) and the variation of the electronic
density. The electronic density of the system can be computed from the state
of the system and using the density operator, n̂(r), defined by Ullrich [211]
over all electrons on the system:

n̂(r) =
N∑
i=1

δ(r−ri) (5.61)

The electron density is an observable, and as such quantum mechanics
teaches us that a mean value when the system is in the state |Ψ(t)〉 is given
by the expression:

< n̂(r)>= n(r) = 〈Ψ(t)| n̂(r) |Ψ(t)〉 (5.62)

That is the content of eq 5.42 at first order:
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n(r)≈ 〈Φ0| n̂(r) |Φ0〉+ 〈Φ0| n̂(r) |δΦ0(t)〉+ 〈δΦ0(t)| n̂(r) |Φ0〉 (5.63)

The term 〈Φ0| n̂(r) |Φ0〉= n0(r) represent the electronic density without
perturbation, and the difference represents the change in the electronic
density of the system due to the action of the perturbation:

n(r)−n0(r) = 〈Φ0| n̂(r) |δΦ0(t)〉+ 〈δΦ0(t)| n̂(r) |Φ0〉= δn(r) (5.64)

〈Φ0| n̂(r) |δΦ0(t)〉= 1
}
ε
∑
i>0
〈Φi| v̂ |Φ0〉〈Φ0| n̂(r) |Φi〉∫

−∞
dω F (ω)

ω−ωi+ iη
e−iωt

(5.65)

5.2 Conclusions.

This chapter is the most exploratory in this study. The idea is to model a
local perturbation and how it is propagated inside de molecule. The starting
point of the hypothesis is to establish a relationship between the changes
induced on the electronic density by the perturbation. To this task, the
approach was developed under the linear response theory, working in the
Fourier space. The theory is in early work but we were able to obtain an
expression considering the changes in the electronic density of the system
due to the action of a local perturbation. As a perspective, the code under
development will teach us if the hypothesis we are postulating is the right
direction.



Conclusions and
perspectives.

In this study we reported a theoretical study of the optical properties of
three different molecules. The thesis is based in three chapters. Chapter
three is dedicated to the parametrization of the optical parameters. The
aim of this study is to provide a set of reference spectra. For this reason the
study of the molecules under a NaCl surface was taken into account. This
results reveals the preferential position of the molecules on the surface. H2Pc
and PdPc prefer to be on the top of a sodium atoms and ZnPc on the top of
a chlorine atom. Also, the constraint applied to the H2Pc give us the enough
information to justify the tautomerization process observed in the STM
experiment. This affirmation could be done thanks to the linear response-
time dependent density functional theory, which revealed the variation on
the fundamental transitions due to the constraint applied. The study of
the fundamental transitions obtained in the photoabsorption spectra behind
the real time propagation density functional theory reveals the behaviour
of the molecules under the action of a electromagnetic field. Furthermore,
the action of a local perturbation allows us to faithfully describe the energy
transfer between chromophores. It should be notice that all the simulations
carried out in the present work are in good agreement with the experimental
results. An error in the range of 100-300 meV were obtained, but considering
the theoretical approximations behind the approaches used for this proposal
are acceptable.

The last chapter is a purely theoretical chapter. The modelization of
the tunnel current is needed, due to the fact that the comparison with the
STM experiment was carried out along the study. A better comprehension
of the STM-F optical spectra leave us the duty of reproduce faithfully the
mechanism from a theoretical point of view. For this reason, the hypothesis
postulated in this work is to consider the time variation of the density due
to the action of a local perturbation, such a laser or the tunnel current as
a wavepacket. The lack of time and the code development, in which we
still working, make us to present only the theoretical formulation. The code
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is in early development, we are trying to build a time dependent density
functional theory from scratch and it takes a lot of effort.

The main perspective of this work is the theory development in early
steps. Considering the hypothesis described, a preliminary version of the
code will be released to proof them. Also, a more detailed study of the energy
transfer should be done. It can be made considering another positions to test
the fact of the efficiency on the resonant energy transfer mechanism obtained
experimentally. The evolution of the electronic density distribution will give
a visual picture of the action of a local perturbation on the molecules. It will
allows us to corroborate the propagation of the perturbation on the molecule
and also the dipole-dipole interaction from a theoretical point of view.



Appendix A

LR-TDDFT spectra of H2Pc,
ZnPc and PdPc.

A brief description of the fundamental excitation for all molecules was made
in chapter three. In this part I give a full description of each spectra. First,
consider the H2Pc molecule. The spectra of this molecule shows 9 main
excitations in the range of 2.14-15.487 eV. The excitation of 2.14 eV is the
main transition of the molecule between HOMO-LUMO. Qx band appear
at 2.05 eV. The third excitation appears at 3.23 eV and the predominant
transition is from the orbital 82 (HOMO-9) to the LUMO. The excitation
at 3.56 eV is contained by two main transitions, the first component is from
the orbital 82 (HOMO-11) to the orbital 94 (LUMO) with a value of 0.2813
for the Casida eigenvector and the other main component is the transition
from the orbital 80 (HOMO-13) to 95 (LUMO+1) with a value of 0.7237
for the Casida eigenvector. This transition is the characteristic B band in
phthalocyanines. The sixth excitation is the most intense of the spectra
and is a sum of two main transitions, from the orbital 88 (HOMO-5) to 95
(LUMO+1) and a transition between 93 (HOMO) and 94 (LUMO). The
excitation at 5.724 consists in a contribution of three main transitions and
the transition at 7.56 eV is composed by three transitions. However, the
transitions are becoming more and more energetic and depending of the
energy applied start to have less probability to happen.

Nevertheless, in the linear response spectra for H2Pc three more intense
excitations are observed at 8.294, 8.845 and 15.487. Also, this excitations do
not show a predominant component. In the case of the excitation at 8.294
eV a transition between 63-98 is obtained with a Casida eigenvector value
of 0.4868 and this transition can be considered the main one for this band
with a contribution of others. The same case is obtained with the other two
transitions, where the transitions do not have a main component, conversely,
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Molecule ω (eV) I(a.u.) i → a F2
i,ia

H2Pc

2.05 93-95 0.9012
2.143 37.383 93-94 0.9278
3.236 37.18 82-94 0.7475

3.563 49.122
82-94 0.0.2746
80-95 0.7237

4.028 164.276
93-94 0.2813
88-95 0.4829

5.724 86.068
65-94 0.444
84-97 0.340
88-101 0.465

7.567 89.307
77-102 0.5327
86-101 0.2350
86-100 0.2476

8.294 109.253

74-96 0.2560
84-96 0.1554
63-98 0.4868
82-101 0.3316
92-101 0.1008

8.845 46.030

45-95 0.1694
53-97 0.2860
57-100 0.3972
80-103 0.1844

15.487 150.198
27-97 0.2930
28-98 0.3160
31-101 0.3193

Table A.1: Casida analysis of the excitations of H2Pc.



109

these excitations are composed by a large contribution of different transitions
from orbitals lower in energy to the different virtual orbitals considered in
the simulation. As an example the excitation at 15.87 eV, which is the most
energetic, the transitions are from orbitals as 27-32 to the unoccupied orbitals
as the LUMO+3 to LUMO+10.

The spectra of ZnPc Fig A.2 is dominated by 11 excitations in a range
between 2.09-15.47 eV. The excitations are degenerated and the explanation
can be done visualizing the table.

Molecule ω (eV) I(a.u.) i → a F2
i,ia

ZnPc

2.09 40.94 93-94 / 93-95 0.9182
3.20 36.7 92-94 / 92-95 0.6685

4.02 159.48
82-94 0.4519
82-95 0.5118

4.70 71.21 83-99 / 83-100 0.5281

5.73 84.73
64-95 / 65-94 0.5505
78-97 / 77-97 0.1681

7.58 92.14

63-96 / 64-96 0.2316
80-101 / 80-102 0.1189
77-103 / 78-103 0.4094
84-103 / 85-103 0.1202

8.18 99.61
56-94 / 56-95 0.2741
62-99 / 62-100 0.3922
90-103 / 89-103 0.2689

8.78 44.4
63-98 / 64-98 0.1148
56-99 / 56-100 0.7205

9.00 42.92
56-100 / 56-99 0.4290
71-100 / 71-99 0.3078
80-102 / 80-101 0.2064

15.25 115.03
31-102 0.2620
33-103 0.2313

15.47 146.31

27-100 0.2090
31-102 0.2516
33-103 0.2231

Table A.2: Casida analysis of the excitations of ZnPc.



110

The degeneracy of the perturbations is related to the D4h symmetry of
the molecule that implies the degeneracy of the LUMO. Due to this, two
transitions are observed in the main excitation at 2.09 eV, in which two
transitions are shown with the same Casida eigenvector value and are from
the HOMO (93) to the two orbitals of the LUMO (94 and 95). The excitation
that appears at 3.20 eV is a transition from the orbital 92 (HOMO-1) to
the two orbitals of the LUMO. The most intense transition of the ZnPc
molecule is located at 4.02 eV. This transition is also degenerated but the
Casida eigenvector has different value for both transitions from the orbital
82 to the LUMO. It means that the weight of another transitions have more
influence in the excitation, in which the the transition from 82 to 94 is the
most important.

For the excitation at 4.70 eV the degeneracy still present with two
transitions with the same Casida eigenvector for both from the orbital 83 to
the degenerated orbital 99 and 100. The excitation at 5.73 eV is composed by
a set of 4 transitions being the transition from the orbital 64 to the LUMO
the main one with a Casida eigenvector value of 0.5505. The excitation at
7.5 eV is a set of transitions and the couple 77-103 / 78-103 has the highest
Casida eigenvector value (0.4094). A degenerated set of three transitions
are obtained in the excitation of 8.18 eV with a similar intensity as 7.58.
The transitions of this excitation are from the orbital 56 to the LUMO. A
transition from the orbital 62 to the degenerated orbital 99-100 with the
highest Casida eigenvector value is also observed.

The excitation of 8.78 eV is mainly composed for a transition between the
orbital 56 to the degenerated orbital 99-100. A close excitation to this one
appears at 9.0 eV composed for a double transition to the degenerated orbital
99-100 from the orbital 56 and 71. For the last two excitation, the degeneracy
is broken leading to transitions from non-degenerated to non-degenerated
orbitals. The excitation at 15.25 eV is mainly composed by two transitions
from orbitals lower in energy as the orbitals 31 and 33 to the orbitals 102
and 103 respectively. The last excitation of the ZnPc is the second most
intense of the spectra and is located at 15.47 eV and it is composed by three
transitions from the orbitals 27, 31 and 33 to 100, 102 and 103 non-occupied
orbitals respectively.
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The PdPc is the last to be described and is resumed in Table A.3. The
spectra is composed by 15 excitations. The lowest one is the transition from
the HOMO to the LUMO and it is located at 2.19 eV.

Molecule ω (eV) I(a.u.) i → a F2
i,ia

PdPc

2.16 39.69 97-98 / 97-99 0.9273
3.17 25.74 88-98 / 88-99 0.8942
3.61 26.77 84-98 / 84-99 0.7362
4.35 120.08 96-103 0.6694

5.23 79.82
81-101 / 82-101 0.5516
91-104 / 91-105 0.3171

5.76 73.38 77-100 / 78-100 0.8917

6.39 93.97
76-102 0.5310
89-106 0.3791

6.88 100.52
56-98 0.2608
64-101 0.4091

7.63 92.43
65-101 0.2940
66-104 0.3058

8.23 83.65
63-104 0.5481
68-107 0.1617

8.42 28.96
46-99 0.5306
47-100 0.3480

8.90 22.53
64-102 / 64-103 0.2949

56-104 0.4385
9.26 18.68 44-100 0.9162
15.18 100.32 19-99 0.7934
15.49 82.43 15-98 / 16-99 0.5456

Table A.3: Casida analysis of the excitations of PdPc.

The second excitation at 3.17 eV is mainly the transition from the orbital
88 to the degenerated LUMO with a Casida eigenvector value of 0.8942. The
excitation at 3.61 eV also is a transition to the LUMO from the orbital 84.
The excitation located at 4.35 eV is the most intense of the spectra and is
mainly composed by the transition from the orbital 96 to the unoccupied
orbital 103 with a 0.6694 Casida eigenvector value. The next excitation
in energy is composed by a double transition from the orbitals 81 and 82
to the orbital 101 and from the occupied orbital 91 to the degenerated
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unoccupied 104 and 105. The excitation at 5.76 eV is described by the
transition from degenerated occupied orbital 77 and 78 to the orbital 100.
The next excitation of the spectra is located at 6.39 eV and is composed by
two transition involving four non-degenerated orbitals as the occupied orbitals
76 and 89 to the unoccupied orbitals 102 and 106 respectively. The second
most intense excitation is at 6.88 eV composed mainly by two transitions.
The transition at 7.63 eV is composed by two main transitions from the
degenerated orbital 65/66 to the orbitals 101 and 104 respectively. There is
more transition involved on it but the Casida eigenvector values are around
0.05-0.1. That is the reason why such transitions are not taken into account.

The last six excitations to be described can be considered as energetic
excitations due to the amount of energy needed to obtain them due to the gap
between the orbitals involved in the transitions. The excitation at 8.23 eV is
composed by two transitions from the orbitals 63 and 68 to the unoccupied
orbitals 104 and 107 respectively. The excitation at 8.42 eV is one of the
less intense of the spectra as the transition at 8.90 eV and 9.26 eV. The first
one is composed by two main transitions from the orbitals 46 and 47 to the
orbitals 99 and 100. The second one is composed by a degenerated transition
from the occupied orbital 64 to the degenerated unoccupied orbital 102/103,
also there is a transition, with the biggest Casida eigenvector value from the
orbital 56 to the orbital 104. The last one is the less intense of the spectra
composed mainly by the transition from the orbital 44 to the orbital 100.
The last two excitations are the most energetic of the spectra and are located
at 15.18 eV and 15.49 eV respectively. The fist of them is the third most
intense excitation for the spectra and it is mainly composed by the transition
from the occupied orbital 19 to the 99. The last excitation of the spectra
is composed by a degenerated transition from the degenerated occupied
orbital 15/16 to the same unoccupied orbital as the previous excitation, the
unoccupied orbital 99.

The less energetic fundamental transition HOMO-LUMO is obtained in
the ZnPc molecule with a value of 2.09 eV with difference of 0.05 eV and
0.1 eV respect to H2Pc and PdPc respectively. Moreover, the next three
excitations around 3.15-4.0 eV are in good agreement between them. However,
there is a shift of 0.3 eV for the most intense excitation of all spectra for
the PdPc molecule in comparison with the excitation located at 4.02 eV for
H2Pc as well as ZnPc. All the transitions from occupied orbitals reach the
LUMO of the different molecules. In the case of H2Pc the LUMO+1 is also
involved in the excitations.

The ZnPc molecule shows a excitation more intense than the other
molecules located at 4.70 eV. In the same way the PdPc molecule shows a



113

excitation at 5.23 eV which is missing on the other spectra. For instance,
the excitation at 5.72 eV is present in all spectra. In the PdPc molecule is
mainly composed by one transition, although, a combination of transitions is
obtained for the other two molecules. A set of two intense excitations are
obtained in the PdPc spectra located at 6.39 and 6.88 eV. These excitations
also appear in the H2Pc and ZnPc but with a small intensity making them
negligible for the explanation. The difference of intensity in this bands could
be explained due to the fact that Pd has a high contribution in the orbitals
involved on the excitations. The excitations located in the range of 7.5-8.30
eV show a small shift of 0.1 eV. The main difference is the intensity of the
excitations around 8.20 eV being the H2Pc the most intense followed by the
ZnPc and the less intense is the PdPc excitation.

The H2Pc molecule shows a single band located at 8.84 eV but in the
case of ZnPc and PdPc is split in two transitions located at 8.78 and 9.00
eV for ZnPc molecule and 8.90 and 9.26 eV for the PdPc molecule. This
band splitting can be considered as an effect due to the metallic atoms in the
center of the molecule. Therefore, it can be a consequence of the different
symmetry of the molecules of study. The same splitting is obtained in the
most energetic excitation of the spectra, a single band is obtained for the
H2Pc molecule at 15.48 eV. For ZnPc the less intense is located at 15.25 eV
and the most intense at 15.47 eV. This band splitting has more significance
in PdPc molecule where the two bands can be clearly identified. After the
description and spectra comparison for all molecules the main conclusion
that can be extracted is big influence of the Palladium atom in the electronic
structure. This affirmation is done due to the fact of the obtention of three
bands which are missed in the other two spectra. Also the small role played
by the symmetry is shown in the split of some bands. In general, the linear
response behaviour is similar for all molecules of study.
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Rubén Soria Martínez

Modeling of local excitation processes in
molecular nanojunctions

Résumé

L’une des application les plus remarquables de l’effet tunnel est le microscope à effet tunnel (STM)
qui permet de cartographier spatialement et énergétiquement la répartition des électrons à la surface
des  matériaux  avec  une  résolution  nanométrique.  Des  avancées  récentes  permettent  en  outre
d’exploiter la pointe du STM comme une source d’excitation locale des matériaux.

Le travail  de  thèse présenté  dans ce  manuscrit  vise  à  décrire  et  à  modéliser  les  phénomènes
impliqués lors d’une telle excitation. Nous présentons une modélisation des spectres d’absorption de
molécule de phthalocyanine reposant sur des surfaces dans le cadre de la théorie de la fonctionnelle
de densité  dépendante  du temps (TD-DFT).  Nous montrons que l’analyse spectroscopique des
transitions entre l’état fondamental et les états excités de la molécule permet de caractériser son état
de contrainte.

Nous mettons également en évidence une variété de spectres d’excitation selon la localisation de
l’excitation de la molécule. Nous discutons la possibilité d’exploiter ce phénomène pour caractériser
les transports d’énergie inter-moléculaire.

Mots-clés : spectre d’excitation, STM, TD-DFT, phthalocyanine

Résumé en anglais

One of the most remarkable applications of the tunnel effect is the Scanning Tunneling Microscope
(STM), allowing to get the spatially and energetically map distribution of electrons on the surface of
materials with nanometric resolution. Recent advances make it possible to exploit the tip of the STM
as a source of local excitation of materials.

The work presented in this manuscript aims to describe and model the phenomena involved in such
excitation process. We present a modeling of the absorption spectra of phthalocyanine molecules
lying on surfaces within the framework of the time-dependent density functional theory (TD-DFT). We
show that spectroscopic analysis of the transitions between the ground state and the excited states
of the molecule allows to characterize the stress inside the molecule.

We also highlight a variety of excitation spectra depending on the location of the excitation of the
molecule. We discuss the possibility of exploiting this phenomenon to characterize inter-molecular
energy transport.

Keywords : excitation spectra, STM, TD-DFT, phthalocyanine
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