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Résumé de thèse

Codes circulaires dans l’évolution du code génétique

Le problème abordé dans cette thèse est de savoir comment retrouver, maintenir
et synchroniser la phase de lecture pendant la traduction des gènes en protéines.
L’approche développée relève des disciplines de l’informatique, de la combina-
toire et des biomathématiques. La traduction est le processus par lequel le ri-
bosome décode l’ARN messager (une séquence de nucléotides {A,C,G, T}) en
trinucléotides (mots de 3 nucléotides ou codons) pour créer une séquence d’acides
aminés constituant une protéine. L’ARN messager peut être décodé en trois phases
0, +1 et +2 mais uniquement la phase 0 (phase de lecture) initiée par un ”start”
codon (classiquement ATG) code les informations pour synthétiser les protéines.
Un code (ensemble de mots) avec la propriété de circularité permet de retrouver
la phase de lecture. Un code circulaire, nommé X, formé de 20 trinucléotides a été
découvert en 1996 par une analyse statistique des gènes de différentes espèces [1].
Un code circulaire est un code de blocs défini de la façon suivante: toute con-
caténation de mots d’un code écrit sur un cycle a une décomposition unique,
c’est-à-dire la décomposition en mots d’un code circulaire a une seule phase de lec-
ture. Les avantages des codes génétiques circulaires sont très intéressantes. Même
en l’absence d’un signal de départ (”start” codon), la phase de lecture peut être
identifiée. De plus, cette phase de lecture peut être automatiquement retrouvée
avec une fenêtre de quelques nucléotides et à une position quelconque dans la
séquence [24].

Le code circulaire X possède de fortes propriétés mathématiques. En par-
ticulier, X est (i) maximal, parce qu’il ne peut pas être contenu dans un code
circulaire de cardinalité supérieure; (ii) auto-complémentaire, puisque tout trin-
ucléotide dans X possède également son anticodon dans X; et (iii) C3, toutes les
permutations circulaires de X sont également des codes circulaires maximaux. Il
existe au total 216 codes circulaires maximaux, auto-complémentaires et C3 [1]
qui peuvent être divisés en 27 classes d’équivalence [20]. Les codes comma-free
(sans virgule) forment une variante plus restrictive des codes circulaires puisque
la phase de lecture est retrouvée immédiatement après la lecture d’un seul mot du
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code. Les codes comma-free et circulaires sont représentés par des graphes orientés
et étudiés avec la théorie des graphes [27]. Un tel graphe présente un arc orienté
entre tous les préfixes et suffixes des mots du code. Le graphe est défini de telle
sorte que lorsqu’il est acyclique alors le code associé est circulaire. La longueur du
plus long chemin dans ce graphe acyclique permet de classer les codes circulaires,
par exemple un code comma-free possède dans son graphe un plus long chemin de
longueur 2 au maximum.

La plupart des théories de l’évolution affirment que le code génétique moderne
possède des codes ancestraux. Les codes circulaires et comma-free pourraient être
impliqués dans l’évolution du code génétique [59, 1]. Certaines théories décrivent
également un code génétique primitif constitué non seulement de trinucléotides,
mais également de dinucléotides, de tétranucléotides ou des combinaisons de ceux-
ci [39, 3, 68, 75, 63, 78]. Un code génétique ancestral basé sur un alphabet différent
de {A,C,G, T} a été également proposé. Ces divers travaux nous ont conduit dans
cette thèse à généraliser l’étude combinatoire des codes circulaires à des mots de
longueur quelconque finie sur des alphabets finis quelconques [28, 22].

Contributions

La première partie de la thèse étudie les propriétés fondamentales des différentes
classes de codes circulaires d’un point de vue combinatoire, théorie des graphes et
biomathématiques. Dans la deuxième partie de la thèse, un logiciel de recherche
est développé permettant d’identifier des codes circulaires et leurs propriétés dans
le code génétique.

Propriétés des codes circulaires

Le premier chapitre de la thèse comporte deux parties. La première partie fait
référence à l’article publié [24] et étudie les propriétés combinatoires des 216 cir-
culaires maximaux, auto-complémentaires et C3. La deuxième partie analyse les
codes circulaires généraux (sans propriété combinatoire additionnelle). Les ques-
tions abordées dans ce chapitre sont le nombre minimum de nucléotides pour
retrouver la phase de lecture, les propriétés des codes auto-complémentaires et la
taille maximale des codes circulaires pour des longueurs quelconques de mots et
pour un alphabet quelconque.

De nouveaux résultats combinatoires sur les codes circulaires sont obtenus et
publiés. Un résultat concerne la détermination du nombre minimal de lettres
(nucléotides) d’un motif quelconque d’un code circulaire pour retrouver la phase
de lecture. Ce nombre a été obtenu à partir du plus long chemin dans le graphe
associé au code circulaire. Ainsi, il peut être utilisé comme une nouvelle pro-
priété des codes circulaires. Nous caractérisons également en détail tous les motifs
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associés aux plus longs chemins dans les graphes pour les codes circulaires auto-
complémentaires. Nous avons aussi réussi à classer tous les graphes associés aux
codes auto-complémentaires de taille au moins 18 vérifiant certaines conditions
C sur les sommets du graphe. Une construction combinatoire de codes non auto-
complémentaires de taille inférieure à 18 a été également identifié lorsque le graphe
associé satisfait aux conditions des codes auto-complémentaires. Cette construc-
tion a servi de contre-exemple pour la conjecture selon laquelle les conditions C
dans un graphe obligent le code représenté, quelle que soit sa taille, à être auto-
complémentaire. Il en résulte qu’un code d’une taille d’au moins 18 doit être
auto-complémentaire si le graphe associé présente les conditions C.

La deuxième partie de ce chapitre propose un nouvel algorithme, facilement
scriptable, pour calculer la taille maximale des codes circulaires pour toutes les
longueurs de mots et pour tous les alphabets. Nous présentons ensuite un modèle
mathématique permettant de transformer les codes circulaires en des codes cir-
culaires comportant des mots de longueurs différentes. Enfin, nous donnons une
méthode permettant de séparer les 60 trinucléotides (à l’exceptions des quatre
trinucléotides périodiques AAA, CCC, GGG et TTT) en quatre codes comma-free
(cf. également la proposition de [59]).

Codes circulaires de Tessera

Le deuxième chapitre présente les codes circulaires de Tessera. La plupart des
résultats ont été publiés dans l’article [28]. Les Tessera forment un sous-ensemble
des tétranucléotides conduisant à une propriété de symétrie dans le code génétique [40].
Le code de Tessera pourrait être une étape possible dans le processus d’évolution
du code génétique. Nous sommes intéressés à combiner la théorie du code Tessera
et la théorie du code circulaire.

Nous montrons que les codes circulaires de Tessera peuvent être divisés en
quatre classes d’équivalence. Les classes d’équivalence sont des orbites utilisant
un groupe de quatre transformations de symétrie bijective. Chaque classe est
représentée par une composante disjointe du graphe associé au code. Sur la base
de ce résultat combinatoire, un algorithme est développé pour construire tous les
codes de Tessera qui sont également circulaires. Plusieurs propriétés des codes de
Tessera circulaires sont également identifiées. Les propriétés les plus importantes
obtenues sont : (i) le graphe associé à un code auto-complémentaire est entièrement
caractérisé par l’utilisation de conditions identifiables; et (ii) le chemin le plus long
dans le graphe associé est soit de longueur 1, 2 ou 3. Nous présentons également
une version améliorée de l’algorithme pour construire en une fois tous les codes
pour chaque longueur de code possible. Une construction complète de tous les
codes de Tessera circulaires est obtenue en utilisant la théorie des groupes et des
méthodes avancées en théorie des graphes et combinatoire.
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La relation entre k-circularité et circularité des codes

Le troisième chapitre de la thèse fait référence à l’article publié [22]. Nous y
introduisons les codes k-circulaires (k étant un entier naturel), une nouvelle classe
de codes de blocs. Les codes k-circulaires appartiennent à la famille des codes
circulaires. Ils représentent une version faible des codes circulaires. Si un code
circulaire peut retrouver la phase de lecture pour chaque mot écrit sur un cercle,
un code k-circulaire nécessite une concaténation au maximum de k mots pour
retrouver la phase de lecture. Par conséquent, une concaténation de k + 1 mots
écrits sur un cercle pourrait être lue dans plusieurs phases (la phase de lecture
n’est pas unique). Ainsi, un code k-circulaire n’est pas nécessairement (k + 1)-
circulaire mais est toujours (k − 1)-circulaire. La classe des codes k-circulaires
contient des codes circulaires et des codes comma-free comme sous-classes pour
chaque k donné.

Pour déterminer si un code est circulaire, il faut vérifier si une concaténation de
mots infinis d’un code écrit sur un cycle ne peut être décomposée en mots du code
que dans une seule phase de lecture. En conséquence, un code est circulaire si et
seulement si le code est∞-circulaire. C’est a priori un problème indécidable. Pour
rendre ce problème décidable, nous avons identifié un nombre 0 < k(n, `) < ∞
de telle sorte qu’un code n’est circulaire que s’il est k(n, `)-circulaire, où n est
le cardinal de l’alphabet et ` est la longueur des mots du code. Nous montrons
également que la borne supérieure k(n, `) est stricte. Nous donnons également un
algorithme de construction d’un code (k(n, `)−1)-circulaire qui n’est pas circulaire
pour tous les `, n ∈ N.

Algorithmes et outils pour identifier les codes circulaires
dans les séquences

Le dernier chapitre de cette thèse présente de nouvelles applications bioinforma-
tiques en appliquant les résultats théoriques obtenus dans les chapitres précédents.
Il est divisé en deux sections principales. La première section présente le logiciel
de recherche GCATR et la deuxième section introduit de nouvelles méthodes pour
identifier des circulaires dans les séquences d’ADN.

Le logiciel GCATR (Genetic Code Analysis Toolkit R) est un logiciel de recherche
R qui comporte de nombreuses fonctionnalités pour analyser les codes circulaires.
Le noyau écrit en C++ le rend performant. L’enveloppe R permet une utilisa-
tion facile. La thèse donne un aperçu de l’architecture utilisée, des algorithmes
développés dans GCATR et des principales fonctionnalités de GCATR.

Dans la deuxième section, un algorithme hill-climbing est développé pour obtenir
de nouvelles preuves de l’existence des codes circulaires dans le codage génétique. Il
est appliqué sur un ensemble de gènes (CDS) choisi aléatoirement à partir d’espèces
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différentes. De manière étonnante, les résultats de l’algorithme hill-climbing mon-
trent que les codes obtenus sont toujours des codes k-circulaires voire circulaires.
De plus, ils ont une occurrence supérieure à la moyenne dans les gènes analysés,
un indice supplémentaire d’une fonction biologique des codes circulaires dans le
processus de codage des protéines.

Thesis abstract

The problem that this work addresses is how to retrieve, maintain and synchro-
nize the correct reading frame during the translation process. Translation is the
process by which the ribosome decodes the messenger RNA (mRNA a sequence
of nucleotides {A,C,G, T}) as codons (words of 3 nucleotides) to create a specific
amino acid chain that later folds into a protein. Unfortunately, the mRNA can
be decoded in three reading frames 0, +1 and +2. Yet, only frame 0 as correct
reading frame encodes the Information for the synthesis of proteins. Usually, the
correct reading frame is indicated by a start signal. First practical evidence of a
genetic model which is able to retrieve the correct reading frame is the so-called
X-code. The X-code is a set of 20 codons that was discovered by a statistical
analysis of genes of different species [1]. Concatenations of words of this code
appear preferentially in genes in frame 0. Such a concatenation is called a motif.
The proportion of the motifs found in genes compared to non-coding regions was
significantly high. Astonishingly, it turned out that the X-code is a circular code.
A circular code is a block code and defined so that a concatenation of words of
a code written on a cycle can only be decomposed in words of the code in one
reading frame. The advantages of circular genetic codes are incomparable: firstly,
even without any kind of start signal the correct reading frame can be ensured.
Secondly, the reading frame is automatically retrieved within a window of only a
few nucleotides [24].

The X-code also has strong mathematical properties. In detail, X is maximal
as it cannot be contained in a circular code of higher cardinality, self-complementary
since for any codon in X the responding anti codon is also in X and C3, i.e. all
circular permutations of X are also maximal circular codes. In total there are
216 different maximal, self-complementary and C3 codes. These 216 codes can be
divided into 27 equivalence classes. These classes of codes have been studied by
representing them by directed graphs and then applying deep graph theory [20].
Block codes which are closely related to the circular codes are the comma-free
codes. These codes are a more restrictive variant of circular codes in which the
reading frame is found immediately after only one word. Both kinds of codes can
be represented in a directed graph. Such a graph has a directed arc between all
prefixes and concatenated suffixes of all words of the represented code. The graph
is defined so that if it is acyclic, the represented code must be circular. Moreover,
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if the graph is acyclic and its longest path has a length of two at the most, the
code is even comma-free [27].

Circular codes are also supposed to play a role in an evolutionary context. Most
theories of evolution state that the modern genetic code has several ancestors. It
has been proposed that circular and comma-free codes could be a selection factor
that guides the search for these hypothetical ancestor code [59], [1]. Some of
these theories describe an evolutionary ancestor to the modern genetic code that
consisted not only of trinucleotides, but also of dinucleotides, tetranucleotides or
combinations of them (see [39, 3, 68, 63, 75, 78]). Even a hypothesized ancestor
code with a different alphabet has been proposed. This initiated the study of
circular codes in a more general context with words of arbitrary finite length
over general alphabets [28, 22] and relates the theory of circular codes to signal
processing and general information theory.

Contribution

The statistical evidence shows the existence of a circular code-related model in
RNA and DNA sequences. Thus, the foremost objective of this thesis is the ex-
pansion of the knowledge of circular codes. The first part of the thesis investigates
fundamental properties of the circular code family from a mathematical biology
perspective. In the second part a software package is developed, and the properties
are used in algorithms to refine the identification of such codes in the genetic code.

Properties of circular codes

The first chapter of the thesis contains two sections. The first section is referring
to the published article [24] and uses the codes which are elaborated by extracting
data from genes. Most results in this section describe the properties of the 216 max-
imal self-complementary C3 codes. The second section uses a more general focus
on circular codes. The issues in focus of this chapter is the minimum number of nu-
cleotides to ensure the correct reading frame, the properties of self-complementary
codes and the maximum size of circular codes of different word length ` and al-
phabet. One of the most important findings is the reading frame number. This
number indicates the minimum length (number of nucleotides) of a code motif to
ensure the correct reading frame. In addition, we have succeeded in deriving the
reading frame number from the longest path in the associated graph. Hence, it
can be used as an effortless calculable quality feature of codes. In more detail we
characterize all possible patterns of longest paths in self-complementary circular
codes. Furthermore, we were able to fully classify all graphs associated with a self-
complementary code of size at least 18 using recognizable conditions. We also dis-
covered a combinatorical construction of not self-complementary codes of size less
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than 18 where the associated graph satisfies the conditions of self-complementary
codes. This served as a counterexample for the conjecture that these conditions
in a graph force the represented code of any size to be self-complementary. The
result that a code with a size of at least 18 must be self-complementary if the
associated graph has the recognisable conditions is new and has not yet been pub-
lished. The second section of this chapter is also unpublished. This section starts
with an improved and easily scriptable algorithm to calculate the maximum size of
circular codes for all word lengths and alphabets. Next, it illustrates a mathemat-
ical model to transform circular codes into circular codes of different word length
and/or alphabet. A similar model could have had an influence on the evolution of
the hypothetical ancestor code. Finally, it also depicts a method to separate the
60 codons (excluding the four identity codons AAA, CCC, ...) in four so called
comma-free subsets. These can be used to support the proposal in [59].

Circular Tessera codes

The second chapter presents circular Tessera codes. Most results were published
in article [28]. The Tesserae are a subset of tetranucleotides. These specified
tetranucleotides have been developed to situate the symmetry as a code property
in the evolution of the genetic code. The model presented by Gonzalez, Giannerini
and Rosa [40] supports the theory that the Tessera code is one possible step in the
evolutionary process of the genetic code. Therefore, a combination of the Tessera
code theory and the circular code theory could be an evidence for each theory and
explain their role in RNA sequences.

In this thesis it is shown that circular Tessera codes can be divided into four
equivalence classes. The equivalence classes are orbits using a group of four bijec-
tive symmetry transformations. Each class is represented by a disjoint component
of the representing graph. Based on this discovery, an algorithm is presented that
constructs all possible circular Tessera codes. With this algorithm several prop-
erties of circular Tessera codes can be identified. The most important properties
that are obtained are (A) that the graph associated with a self-complementary
code is fully characterized by the use of recognizable conditions and (B) that the
longest path in an associated graph is either 1, 2 or 3. In this chapter we also show
a refined version of the algorithm, which allows to construct all codes exactly once
for every possible code length. This unpublished algorithm describes a full con-
struction of all circular Tessera codes using group theory and advanced methods
of graph theory and combinatorics.
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The relation between k-circularity and circularity of codes

The third chapter of the thesis refers to the published article [22]. There we
introduce the k-circular codes, a new class of block codes. k-circular codes belong
to the circular code family. Like the circular codes, such a code is a frame shift
error detecting code and consists exclusively of words of block length `. It is a
weakened version of the circular code. If a circular code can find the correct reading
frame in every word written on a circle, a k-circular code requires a concatenation
of a maximum of k words to reliably ensure the reading frame. Therefore, a
concatenation of k + 1 words written on a circle could be read in more than one
reading frame. Thus, a k-circular code does not have to be k + 1-circular but
must be k − 1-circular. The class of k-circular codes contains both circular and
comma-free codes as subclasses for every given k.

To say whether a code is circular, one needs to check if any concatenation of
infinite words of a code written on a cycle can only be decomposed in words of
the code in one reading frame. Consequently, a code is circular if, and only if it is
a ∞-circular code. This makes it an undecidable problem. To make this problem
decidable, we were able to identify a number 0 < k(n, `) < ∞, so that a code is
only circular if it is k(n, `)-circular, where n is the cardinal number of the alphabet
and ` is the word length of the code. We also show that the upper bound k(n, `)
is sharp. Hence, we demonstrate a construction algorithm for a k(n, `)−1-circular
code which is not circular for all `, n ∈ N. This proves the sharpness of k(n, `). In
conclusion, this tremendously reduces the combinatorial complexity to check if a
code is circular.

Algorithms and tools to identify codes in Sequences

The final chapter of this thesis presents practical applications of the theoretical
results obtained in the previous chapters and is entirely new. It is separated
into two main sections. The first section presents a software package GCATR,
which is an implementation of all important tools and methods that support the
investigation of theories in genetic data. The aim of the second section is to
introduce new methods for detecting error-detecting codes in DNA sequences.

The software GCATR (Genetic Code Analysis Toolkit R) is an R package which
includes all important functions to work with circular codes and their relatives.
The core is written in C++, which makes it highly performant. The R wrapper
further allows an easy usage. Even the development of parallel algorithms can be
achieved easily with the R native commands. The thesis gives a short overview of
the used architecture and the developed algorithms in GCATR. Finally, it sum-
marises the functionalities of the package.

In the second section, two methods to obtain new evidence of circular codes
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in genetic coding are introduced. The methods are theoretical models of a possi-
ble reading frame detection in the ribosome using a new approach different from
circular code theory. In order to optimise the retrieved code with respect to the
methods, a hillclimber algorithm is used. As data, a randomly generated sample
set of coding sequences (CDS) of different species is used. Surprisingly, the results
of the hillclimber indicate that the returned codes are always either k-circular or
even circular codes. Moreover, the codes obtained have a coverage above average
in the tested sequences - a hint to a possible role that they might play in the
protein coding process.

The thesis finally closes with a discussion of the reliability of the evidence of
circular codes in the evolutionary process of the genetic code.

Publications dans des revues internationales à comité
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Chapter 1

Introduction

”We understand biological phenomena only when we have invented ma-
chines with similar properties”
→ Maynard Smith, 1986

Almost 35 years later, Maynard Smith’s words continue to be an inspiration
for researchers worldwide. In the same spirit, this thesis focuses on the construc-
tion of parts of a machine to promote our understanding of the evolution of the
genetic information system. It is the general opinion among researchers working
on the evolution of the genetic code that such an efficient system cannot have
appeared spontaneously. It can be approximated that a cell contains 978 million
base pairs per picograms, i.e. 0.489 gigabyte of heritage information [16]. Such a
tight system must be perfectly organized. This leads to the assumption that an
error-correcting code evolved as a subcode inside in the genetic code during the
course of evolution. This new potential guidance factor of the evolution has already
led to landmark studies. Biomathematicians as well as computer scientists have
advanced the knowledge about such error-correcting codes and their appearance in
the genetic code. In this dissertation, we follow theories of error-correcting codes
in the evolution and find mathematical answer to important questions regarding
such codes, which had remained open so far. Before presenting the developed
components of a mathematical model that reconstructs the development of a hy-
pothetical block code based system, the introductory chapter provides an overview
of the biological motivation and mathematical tools used in the research on which
this thesis is based on.

This chapter is separated into two sections. The first Section 1.1 summarizes
the biological foundation of this thesis, i.e. the structure of cells, the process of
protein synthesis and the most plausible evolutionary theories currently considered
by scientists. The fundamental basics can be found in the book [49]. The second
Section 1.2 introduces codes as mathematical construct. After a general definition
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of codes, circular codes and their relatives are specified. In addition, methods from
group theory and graph theory are presented that are used to investigate circular
codes from a mathematical point of view. The chapter closes with the presen-
tation of the X-code, i.e. the link between code theory and genetic information
processing.

1.1 Biological motivation

The complexity of the mechanism behind the inheritance of genetic information
is an evolutionary masterpiece, which is continuously progressing. It is impossible
to determine the stage of development we are currently at. Even the process of
evolution up to the present day, the question of the origin of life is controversially
discussed. There is, however, consensus on the time life on earth began: About
4.2 billion years ago [4] the first cells were the origin of all life. Based on today’s
idea of evolution, it must be assumed that the cells have been vastly advancing
ever since. Thus, the first cells, the common ancestor of all life, must have had
very primitive and simple genetic information storage, whereas today’s cells have
the ability to store a tremendous amount of information. Presently, there are
three known forms of life: archaea, bacteria and eukaryotes. They are grouped
into two different types of cells: prokaryotic and eukaryotic cells. The prokaryotic
cell occurs in all living organisms under the domains archaeae and bacteria, while
all organisms grouped as eukaryotes, including human beings, have eukaryotic
cells. One representative of each cell type is illustrated in Figure 1.1. While the
prokaryotic cells have a cyclic DNA the eukaryotic cells have a non-cyclic DNA
organized in chromosomes. The chromosomes are separated from the rest of the
cell in the nucleus. In comparison, in prokaryotic cells, DNA is not separated from
the rest of the cell. Another difference between these two types of cells is that only
in the eukaryotic cell the mRNA is preprocessed before being sent to the ribosome.
Even though prokaryotic and eukaryotic cells differ in various aspects we will focus
on the similarities.
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Figure 1.1: A schematic representation of the process from transcription to trans-
lation. The human cell, which belongs to the eukaryotic cell type on the left side, is
compared with a bacterial cell, a representative of the prokaryotic cell type, on the
right side. (Picture taken from https://www.khanacademy.org/science/high-school-
biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-
central-dogma)

Both cell types have a DNA double helix. This basic element of genetic in-
formation storage is made of two strands winding around each other. Another
common feature is the messenger RNA (mRNA), which is the result of the process
called transcription. This mRNA transports the genetic information, gathered
from the DNA during the transcription, to the ribosome. The ribosome then
runs the translation. Translation is the process during which the ribosome de-
codes the mRNA to create a specific amino acid or polypeptide chain that later
folds into a protein. The pre-translation mRNA processing ignored, eukaryotic
and prokaryotic cells share the main aspects of the information processing system.
The complexity of such a system is impressive, especially acknowledging the fact
that it was developed in the process of evolution.Here it must be assumed that we
have not yet reached the evolutionary peak. In order to assess the potential future
cell structure, understanding past developments is key. Fortunately, we may be in
the position to reconstruct the past 4.2 billion years of evolution of the living cell.
This is due to the fact that there are two different types of cells in three different
domains of life to compare with each other, and we know that they must have
a common ancestor. Before going deeper into the foundations of the evolution
of life, it is necessary to understand the current knowledge of molecular biology
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about genetic information. 1

1.1.1 RNA and DNA

The ”double helix” has become known all over the world ever since James Wat-
son published his famous book ”The Double Helix: A Personal Account of the
Discovery of the Structure of DNA” in the year 1968. The double helix con-
sists of two polynucleotide chains that coil around each other. These chains con-
tain monomeric molecules (monomeric molecules can chain with other monomeric
molecules). These molecules are called nucleotides and are built from a sugar, a
phosphate group and, as an information-coding-unit, one of four nucleobases: ade-
nine (A), guanine (G), cytosine (C ) or thymine (T ). The two strands in the double
helix are connected by hydrogen bonds between so-called complementary nucle-
obases. Where A is complementary to T and C is the complement of G. These
same hydrogen bonds are also used during the process of transcription, when
the messenger RNA copies and transforms the information of the DNA. While
DNA consists of two strands, RNA is a single stranded structure of monomeric
molecules. Similar to DNA, the molecules in RNA are called nucleotides, with a
sugar-phosphate backbone and a nucleobase used as the information-coding-unit.
The nucleobases in RNA molecules are: adenine (A), guanine (G), cytosine (C )
or uracil (U ). The complementary mapping of the nucleobases needs to be slightly
updated when the RNA enters the picture. Then, A is complementary to U as
well as T. Both DNA and RNA sequences have two ends, one is called the 5’-end
and the other one is called the 3’-end. For the purposes of this Thesis it is only
important to know that the reading direction of the sequences is from the 5’-end
to the 3’-end. Figure 1.2 illustrates a comparison of RNA and DNA.

1The fundamental principles of biochemistry are taken from the book [49].
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Figure 1.2: This figure demonstrates the difference of the single stranded RNA and
DNA double helix. On the margins of the picture, the structures of the nucleobases are
presented. (Picture taken from https://teachmephysiology.com/biochemistry/protein-
synthesis/dna-transcription)

There are different types of RNA with different tasks. Among these types of
RNA, three are present in any living cells: tRNA, rRNA and mRNA. The tRNA
(transfer RNA) provides the amino acids for synthesizing proteins. The rRNA
is one of the central parts of the ribosome. The mRNA is constructed during
the process of transcription and transports the genetic information from the DNA
to the ribosome. During the transcription, one snippet of a DNA sequence is
prepared for the protein synthesis. This snippet is called a protein coding gene.
Such protein coding genes are sections in the DNA which hold the information to
construct proteins. These genes are the basic model of the genetic information.
After the mRNA is constructed from the protein coding genes, the information is
transported to the ribosomal protein factories. In the ribosomes, the translation
starts the protein synthesis. Table 1.1 summarizes the structure of DNA and RNA.
The next section explains the process of translation in more detail.
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DNA RNA
Sugar deoxyribose ribose
Bases Adenine (A) Adenine (A)

Thymine (T ) Uracil (U )
Guanine (G) Guanine (G)
Cytosine (C ) Cytosine (C )

Complementary A ↔ T A ↔ U
Base Pairs C ↔ G C ↔ G
Structure two strands, arranged

in a double helix
single strand

Function DNA replicates and
stores genetic informa-
tion.

Among other things,
the RNA transports ge-
netic information to ri-
bosomal protein facto-
ries.

Table 1.1: Short summery of the structure of DNA and RNA

1.1.2 Translation and protein synthesis

During the translation, the ribosome translates the mRNA into specific polypeptide
chains. These polypeptide chains then fold into proteins which regulate and control
the main purpose of the cell itself. In contrast to prokaryotic cells, eukaryotic cells
require the mRNA to be processed before being translated. This is called mRNA
processing.

Pre-translational mRNA processing

The mRNA which is the immediate result of the transcription is called pre-mRNA.
In eukaryiotic cells, this pre-mRNA needs to be processed before it can be trans-
lated by the ribosomes. The mechanism of mRNA processing is a composition of
three steps, all of which are needed to convert the pre-mRNA into mature mRNA.
The three steps include 5’ Capping, polyadenylation and splicing and is illustrated
in Figure 1.3.

5’ Capping Capping describes the addition of a cap to the 5’ end of mRNA. The
cap stabilizes the immature pre-mRNA and allows the ribosomes to recognize
the mature mRNA as such.

Polyadenylation To further stabilize the unstable pre-mRNA a poly(A) tail,
i.e. a tail consisting of numerous Adenosin bases, is added to the 3’ end of
mRNA.
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Splicing Slicing separates pre-mRNA into introns and extrons. Introns are non-
coding sequences which do not appear in the mature mRNA, while exons are
coding sequences which compose the mRNA. One pre-mRNA can code nu-
merous proteins by separate splicing processes in which different overlapping
extrons are used. (see Figure 1.3)

Figure 1.3: Summary of the mRNA processing in a eukaryotic cell. The figure illus-
trates the splicing process. (Picture taken from https://cdn.britannica.com/96/114896-
050-3F22219B/Genes-promoter-regions-production-introns-exons-gene.jpg sorce Ency-
clopædia Britannica, Inc.)

To build the polypeptide chain encoded in an mRNA, the ribosome reads the
mRNA with three nucleotides at a time. This combination of three nucleotides is
called a codon. The reading is implemented by docking suitable tRNA (transfer
RNA) anti-codons to the mRNA codons. An anti-codon consists of complementary
nucleotides in reversed order. Usually, tRNA is illustrated with three hairpin
loops, the D loop, the T loop and the anti-codon loop. Its actual 3D shape is best
described as a distinctive L-shape. Figure 1.4 presents an example of the codon
anti-codon pairing and shows the schematic illustration of a tRNA.
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Figure 1.4: A schematic illustration of the tRNA. Additionally, this figure shows how
codon (GAG) in the mRNA is paired with its anti-codon (CTC ) in the tRNA. (Picture
taken from https://rarediseases.info.nih.gov/GlossaryDescription/474/0)

The entire process is depicted in a simplified model in Figure 1.5. It also shows
the L-shape of the tRNA and the composition of the polypeptide chain.
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Figure 1.5: The translation process inside a cell: the ribosome uses the tRNA to com-
pose the polypeptide chain. (Picture taken from https://rarediseases.info.nih.

gov/files/glossary/english/translation_lg.jpg source: National Human Genome
Research Institute’s Talking Glossary of Genetic Terms)

The process of translation is bounded by a number of rules. These rules apply
to almost all living beings. Each translation is initiated by a starting signal. The
starting signal marks the position in the mRNA where the ribosome has to begin
with the encoding process. The most common start codon is ATG. The translation
ends with a so-called stop codon. In the standard genetic code (SGC), they are:
TAA, TAG and TGA. The SGC is a translation table used to translate codons
into amino acids. Even though there are 33 other coding tables besides the SGC,
they all differ only slightly from the SGC and have few other codon-to-amino acid
translations2. However, some of them do not contain a codon that exclusively
encodes for the stop signal. The standard genetic code will be described in more
detail in the following section.

2At the website: https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi all
translation tables are listed with their differences to the SGC.
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Standard genetic code (SGC)

Almost all living cells use the standard genetic code for the protein synthesis.
With the first discovery of the translation of the codon TTT in 1961 by Marshall
Nirenberg and Heinrich Matthaei, the encoding of the SGC was imminent [60]. In
1966, almost 5 years later, the entire SGC was encoded. The SGC is a set of rules
which serves as a translation table to map the 64 (43 = 64 all 3-letter words over
four nucleobases) codons to the 20 amino acids used in cells and a stop signal. A
list of all amino acids is provided in the Appendix in Figure II.1. The translation
is fully illustrated in Figure 1.6

Figure 1.6: The figure depicts all translation rules of the standard genetic code,
which specifies the 64 codons for the 20 amino acids. The translation is surjective,
meaning that the same amino acid can be encoded by more than one codon but is
encoded by at least one. In most cases, the bold codon ATG serves as start codon
and the bold codes TAA, TAG and TGA code as the stop signal. (Picture taken from
https://www.chegg.com/homework-help/questions-and-answers/standard-genetic-code-
shown-table-41-many-codons-amino-acids-allow-synonymous-mutations-th-q40769295)

One of the most significant features of the SGC is its degeneration. In this
context, degeneration denotes the fact that some amino acids are encoded by more
than one codon. For instance the amino acid Ala (Alanine) is encoded by GCT,
GCC, GCA and GCG. Similar to Ala, the amino acids Gly (Glycine), Pro (Proline),
Thr (Threonine) and Val (Valine) are encoded by four codons. Consequently, all
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of these amino acids have a degeneracy of four. A closer observation of the codons
coding for one of the four amino acids reveals that the first two bases are the
same for each of them. For example, all codons starting with the two bases GC
code for the amino acid Ala. This is a mechanism to improve the translation
error robustness. Hence, a point mutation of the last base has no influence on
the encoded amino acid. Table 1.2 lists all amino acids and their degeneration.
The last column of the table with the header Compressed shows the range of point
mutations for each amino acid which has no effect on the coding. 90% of the amino
acids are encoded by at least two codons. Three amino acids Arg (Arginine), Leu
(Leucine) and Ser (Serine) even have a degeneracy of six. It is impressive that none
of the redundant coding is wasted, in so far that for each codon that codes for an
amino acid with a degeneration greater than one there is at least one codon with
two common bases that codes for the same amino acid. The origin and purpose of
this property is one of the most controversially discussed questions in the evolution
of the genetic code, which will be outlined in the following subchapter.
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Amino acid &
Degeneracy

DNA codons Compressed

Arg 6 CGT, CGC, CGA, CGG;
AGA, AGG

CGN, AGR; or CGY, MGR

Leu 6 CTT, CTC, CTA, CTG;
TTA, TTG

CTN, TTR; or CTY, YTR

Ser 6 TCT, TCC, TCA, TCG;
AGT, AGC

TCN, AGY

Pro 4 CCT, CCC, CCA, CCG CCN
Ala 4 GCT, GCC, GCA, GCG GCN
Val 4 GTT, GTC, GTA, GTG GTN
Thr 4 ACT, ACC, ACA, ACG ACN
Gly 4 GGT, GGC, GGA, GGG GGN
Ile 3 ATT, ATC, ATA ATH
Asn 2 AAT, AAC AAY
Lys 2 AAA, AAG AAR
Asp 2 GAT, GAC GAY
Phe 2 TTT , TTC TTY
Cys 2 TGT, TGC TGY
Gin 2 CAA, CAG CAR
Glu 2 GAA, GAG GAR
Tyr 2 TAT, TAC TAY
His 2 CAT, CAC CAY
Met 1 ATG
Trp 1 TGG
START 1 ATG
STOP 3 TAA, TGA, TAG TRA, TAR

Table 1.2: The left column lists all 20 amino acids used for protein synthesizes and
their degeneracy. The middle column shows the DNA codes coding for the amino acid.
In the last column the possible compressions using the IUPAC notation are given. (The
compression column uses the following expressions form the IUPAC notation: H ∈
{A, T,C}), M ∈ {A,C}, N ∈ {A, T,C,G}, R ∈ {A,G} and Y ∈ {C, T}

1.1.3 Evolution of the genetic code

Almost every living organism uses the standard genetic code (SGC) to translate
64 codons into 20 amino acids and the stop signal. Despite the few exceptions of
the SGC, this observation offers considerable insights into evolution of the genetic
code. However, to date, all existing theories on the evolution of the genetic code
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are controversial. If we include the 33 divergent tables in relation to the SGC, we
can sketch the evolution as shown in Figure 1.7.

Figure 1.7: A schematic presentation of the microbiological evolution introduced in
[74]. The evolution line marks the important milestones of the evolution. Starting with
a primitive code which first evolved to the early genetic code and then to the LUCA
(last common ancestor code). After LUCA, the branches of evolution divide into the
forms of life we have today. (Picture taken from [74])

In the so-called common descent theories, which is currently assessed by the
academic community as the most plausible theory, it is postulated that all living
beings can be traced back to one common ancestor code [33]. The code in which
the branches of the evolutionary tree separate is referred to as LUCA (last com-
mon ancestor code), while a pre-LUCA genetic code is referred to as primitive
genetic code [74, 47]. The translation mechanisms of the ordinary cells from which
modern life arose are comparable to those of modern cells but far more primitive.
Nevertheless, the LUCA cells, which represented an important milestone in evolu-
tion, already had a complex protein synthesis system. It is the general consensus
of researchers that such a system as LUCA cannot arise spontaneously. Conse-
quently, it can be assumed that LUCA is just one of many steps in the evolution
of the genetic code.

In contrast to the common knowledge at that time, in 1968, Crick published [11]
the frozen accident theory which states that the genetic code was generated by
chance and has remained frozen ever since. According to this theory, a change in
the code would be harmful to its functionality and its conservation would have to
be the aim of nature. Based on this scenario, Crick added the theory that the early
code system is based on RNA only. However, this has been refuted by the fact
that RNA cannot carry out these tasks [6]. New approaches as in the article [8, 65]
adopted Crick’s theory of an RNA based code system and state that: ”A molecular
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replicator with two components –RNA and peptide – overcomes these problems
and may be a better fit.” [65].

Apart from the frozen accident theory, other theories claim to explain the origin
of the genetic code. The most common ones are: the stereochemical theory [64, 79],
the adaptive theory [76, 35] and the coevolution theory [77]. These theories are
briefly outlined in the following paragraphs.

The stereochemical theory claims that there is a stereochemical attraction be-
tween codons or rather anti-codons and their assigned amino acids [64, 79]. In com-
parison to this theory, the coevolution theory focuses on the idea that the amino
acids advanced biosynthetically from a set of precursor amino acids. This set of
precursor amino acids goes back to Crick’s article [11] and was according to the
theory initially coded while the rest evolved through biosynthetic pathways [77]. A
characterization of the precursor amino acids by Higgs in the article [44] suggests
that the amino acids Gly, Ala, Asp, Glu and Val were the first amino acids in the
polypeptide coding. These precursor amino acids consist exclusively of the amino
acids encoded by a code with a leading base G. In Higgs hypercritical evolution,
the code evolved from a four column code where all codons in one column encode
for the same amino acid: NUN = Val, NCN = Ala, NAN = Asp and/or Glu, and
NGN = Gly.

The adaptive theory is derived from the degeneracy of the SGC. It postulates
that evolution aimed to obtain a code that minimizes errors through mutations [76,
35]. According to the article [61], the standard code is the result of a partial
optimization of a random code for robustness against translation errors. The
authors interpret their results as such that the compromise between the increasing
robustness against translation errors and the extension of the coding table could
be the reason for the code not being fully optimized. They also found that the
evolution of the code can, thus, be represented as a combination of adaptation and
frozen accident.

Although all four models attempt to explain the evolution of the genetic code
from different perspectives, it is likely that they all play a crucial role in the
evolution of the genetic code. A rather less controversial theory is that life based
on LUCA dates back 650 million years. This is due to the identification of 6331
groups of genes common to all living creatures. Hence, e.g. 55% of human protein-
coding genes belong to gene groups that were present in the hypothetical first
animals [73, 62].

1.2 Code theory

The degeneracy of the SGC (standard genetic code) is the foundation of the adap-
tive theory. In addition to this feature, which guarantees a certain robustness
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against mutation errors during translation, the theory of the existence of a block
code in genetic sequences was inspired by Watson and Crick when they published
their article in 1957 [12]. This new branch of mathematical biology elaborates on
the idea that a block code, i.e. codes consisting of words of a fixed length over an
arbitrarily finite alphabet, assists the ribosome to avoid reading errors. In their
work, Watson and Crick suggest that a comma-free code would ensure reading in
the correct frame, i.e. a code which can be read only in the correct frame without
a separating symbol like a comma or white space.

Figure 1.8: A brief illustration of the three reading-frames in the genetic code. The
green reading-frame is the correct one.

This idea was further enhanced by the discovery of Golomb et al. in 1958
that a comma-free code over an alphabet of four letters with a word length of
three has a maximum size of 20 elements [36] which is exactly the number of
amino acids used for the protein synthesis. Although these facts supported the
comma-free hypothesis, the codon TTT which was excluded from the comma-free
codes was found in coding sequences in 1961, thus, disproving the hypothesis [60].
Even if the comma-free codes do not correspond to the modern SGC anymore,
they could be a step in the evolutionary process+[59]. This hypothetical model is
supported by new evidence of a circular code: a weakened version of comma-free
codes which might still have influence on the translation process [1, 56, 50, 51, 70,
54]. In the subsequent section, the mathematical basics of block codes with a main
focus on circular codes and comma-free codes are summarized. Additionally, new
mathematical methods from graph theory and group theory to work with these
block codes are presented3.

3The fundamental principles of the word theory and the coding theory are taken from the
book [5].
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1.2.1 Definitions and notations

The following section summarizes the mathematical definitions and notations used
in this thesis. In addition to this section, we provide a list of the most important
notations and operators at the end of the thesis.

The notation X ⊂ Σ` defines a code X which is a subset of the set of all `-letter
words over the alphabet Σ. We define Σ to be an alphabet of cardinality of at
least 2. The cardinality |Σ| of Σ is denoted as n := |Σ|. For the set of all finite
words with letters in Σ, we use the standard word-theory notation Σ∗.The Set Σ∗

also includes the empty word denoted as ε. The set of all finite words with letters
in Σ without the empty word ε is denoted as Σ+. Hence, Σ` ⊂ Σ+ ⊂ Σ∗ for any
finite ` ∈ N.

Example 0.1. Let Σ = {0, 1} be the binary alphabet and ` = 3. Hence, Σ` are all
binary 3-letter words.

Σ` = {000, 001, 010, 011, 100, 101, 110, 111}

Let us assume that X = {000, 111}, then it follows that X ⊂ Σ`

Most codes in this thesis will be codes over the genetic alphabet, which has
cardinality four. We set B := {A, T,G,C}. The complementary mapping of the
nitrogenous bases is denoted as the mapping function c(·):

c(T ) := A; c(C) := G and vice versa

We define the function c(·) so that for any code X = {w1, w2, . . . , wx} of size
x ∈ N the following holds: c(X ) := {c(w1), c(w2), . . . , c(wx)}. For the reversing
permutation of a word w = b1 . . . b` we use the following notation:

←−−−−
b1 . . . b` := b` . . . b1

As above the reversing permutation is defined so that:
←−
X := {←−w1,

←−w2, . . . ,
←−wx}.

Another permutation used in this thesis is the circular permutation. Let w =
b1 . . . b` ∈ Σ` be a word for some ` ∈ N. Then for every j ∈ {0, . . . , ` − 1}, the
circular j-permutation (denoted as αj(w)) of w is the word bj+1 . . . b`b1 . . . bj.

αj(w) := bj+1 . . . b`b1 . . . bj

(In particular, the circular 0-permutation of w is w itself.) A word w′ is a
circular permutation of w if w′ is the circular j-permutation of w for some j ∈
{0, . . . , `− 1}.

We denote αj(w) as the circular j-permutation of the word w. αj(·) is defined
so that for a code X = {w1, . . . , wx} of size x the following holds: αj(X ) =
{αj(w1), . . . , αj(wx)}
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Next, we briefly explain the Cartesian product. Let A = {00, 11} and B =
{01, 10} be simple binary codes of size two. Then A×B := {0010, 0001, 1110, 1101}
is a new set of words, where each word is a concatenation of a and b, where a ∈ A
and b ∈ B. To denote the x-ary Cartesian power of a code X , we use the word
theory standard X x, i.e. X x is the Cartesian product of X × X × · · · × X .

Finally, we introduce the principles of group theory. A group is a tuple (G, ◦)
where G is a set and ◦ is a binary operator. If a tuple (G, ◦) is qualified as a group,
then the following must hold:

• For any a, b ∈ G the combination a ◦ b ∈ G.

• There must be an identity element e ∈ G so that for each a ∈ G it follows
that e ◦ a = a ◦ e = a.

• For any a ∈ G the inverse a−1 ◦ b ∈ G so that a ◦ a−1 = e.

• The group must be associativity, i.e. for any a, b, c ∈ G, (a◦b)◦c = a◦ (b◦c)

More specific definitions will be introduced in the subsequent sections. In the
next section, we introduce the natural properties of codes.

1.2.2 What is a code?

The Cambridge dictionary explains a code in the following words:

”a system of words, letters, or signs used to represent a message in
secret form, or a system of numbers, letters, or signals used to represent
something in a shorter or more convenient form”
→ [66]

In more mathematical terms, a code is a set of (code)words so that if an
arbitrary message is coded by these (code)words it must be uniquely decodable into
the original message. Different codes for different problems have been developed
over the time. Some codes have the purpose to hide the coded message, others serve
as an adapter between two receivers. Famous representatives of these codes are
the Enigma, an encryption device which was used during World War II [48], and
computer languages that translate human-readable code into binary commands
that can be executed (i.e. are understood) by machines. Another domain of
codes was developed to maintain and secure the integrity of a message for the
receiver. These error-detecting codes are the key tool of this thesis. This thesis
aims to bring forward using codes as tool to understanding and thereby, possibly
explaining the error robustness in the genetic translation. Definition 1 introduces
a formal mathematical definition of codes.
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Definition 1. Let Σ be a finite alphabet and X ⊆ Σ` for some ` ∈ N.

• For w ∈ Σ∗, an X -decomposition of w is a word w1 · · ·wr ∈ X r with r ∈ N
such that w = w1 · w2 · · ·wr.

• A set X ⊆ Σ∗ is a code if each word w ∈ X j has a single X -decomposition
for any j ≥ 2 ∈ N.

• For an integer ` ≥ 2, an `-letter code is a block code contained in Σ`.

The following section introduces circular codes. These error-detecting codes
belong to the block codes and allow to retrieve the correct reading-frame in a
message. Three examples of a code and two non-codes are given below.

Example 1.1. Let X2 = {10, 01, 1101} be a set of binary words. All sequence of
composed words in X2 are uniquely decodable. Hence, X2 is code.

Example 1.2. Let X1 = {10, 01, 1001} be a set of binary words. Then, the se-
quence 1001 = 10 · 01 is not uniquely decodable. Hence, X1 is not a code

Example 1.3. Let L ⊂ {A − Z, a − z}+ be the English language and X3 ⊂ L so
that X3 = {counter, clock, wise}. If L was a code then X 3

3 ∩ L = ∅. Yet, the word
counterclockwise is in X 3

3 and L. Therefore X3 is a code, but L is not4.

1.2.3 Circular codes

Error-correction codes like circular codes belong to the block code family. Although
not all circular codes are block codes, we use them exclusively as such. Block codes
are codes which encode data in blocks or words of equal length. This is similar
to the process of RNA translation. This leads to assume that block codes play a
role in the translation process of trinucleotides. Another argument supporting this
hypothesis relates to the main feature of circular codes: the frameshift retrieval.
A frameshift describes a reading error of a sequence where you slide from one
reading-frame (see Figure 1.8) to another reading-frame, e.g. by skipping a letter.
It addresses an open question of the processing of genetic information. Before
presenting the biological application of circular codes, we define these codes and
explain how they operate in the following.

A circular code is defined so that any concatenation of words of the code written
on a cycle can only be decomposed into words of the code in one reading-frame.
Let X = {TGA,GGT,GCC} ⊂ B3 be a trinucleotide circular code. Since X is

4This is discussed controversially in academia because it can be argued that white space
separation is part of the composition process of languages. Therefore, language can be considered
a code.
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circular, any concatenation of the three words can only be decomposed into these
three words in one reading-frame. To demonstrate this, the Figure 1.9 illustrates
the decomposition of the sequence TGAGGTGCC written on a cycle. While the
three words in the 0 frame are in the code X , the words in the +1 frame and the
words in the +2 frame are not in X .

Readingframe:
TGA·GGT·GCC

+1 Frame:
GAG·GTG·CCT +2 Frame: AGG·TGC·CTG

Figure 1.9: An illustration of the three reading-frames of the sequence TGA · GGT ·
GCC.

The next example presents a sequence of words in the trinucleotide code X =
{TGA,CGC,GCG} ⊂ B3, which is a non-circular code. The proof is illustrated
in Figure 1.10. It is shown that the sequence GCGCGC written on a cycle is
decomposed in all three frames into words of X .

Readingframe: GCG·CGC +1 Frame: CGC·GCG +2 Frame: GCG·CGC

Figure 1.10: An illustration of the three reading-frames of the sequence GCG·CGC.
All three frames are decomposed into the same words.
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In the following, we provide a formal definition of the circular codes. This
definition uses the X -decomposition definition which is defined in Definition 1 of
a code.

Definition 2. Let X ⊆ Σ` be an `-letter code.

• Let m be a positive integer and let w1 . . . wm ∈ Xm. A circular X -decomposition
of the concatenation w := w1 · · ·wm is an X -decomposition of a circular per-
mutation of αj(w) for some j ∈ {1, . . . ,m− 1}.

• The code X is circular if for every m ∈ N and every word w := w1 . . . wm ∈
Xm, the w admits a unique circular X -decomposition.

Next, we proceed with the definition of circular permutation classes. These
definitions use the group theory which was introduced in section 1.2.1.

Permutation groups

Let us first denote the symmetry group (S`, ◦) where ` is a positive integer. This
symmetry group S` acts on the indices of the `-letter words from Σ`. The group
(S`, ◦) is endowed with the group operation of composition. The set of permuta-
tions is formally defined as:

S` := {g : (1, 2, . . . , `)→ (1, 2, . . . , `) : g is bijective}
Each g ∈ S` is predefined and permutes the letters in an `-letter word. For

instance, let ` = 3, then

S3 := {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.
If, for instance the permutation g = (3, 2, 1) ∈ S3 acts on a word b1b2b3 ∈ Σ3,

it follows that g(b1b2b3) = b3b2b1.
One important subgroup A` of S` is called the circular permutations group

A` ⊂ S`. It is defined as follows. Let Σ` be a set of all `-letter words under an
alphabet Σ. Further, we denote (A`, ◦) to be the circular permutations group.
Where

A` := {α0 := (1, 2, . . . , `), α1 := (2, . . . , `, 1), . . . , α`−1 := (`, 1, 2, . . . , `− 1)}

and ◦ denotes the composition of permutations. Be α0(·) the identity element.
Then, A` is a group acting on Σ`:

α : A` × Σ` → Σ`

Next we formally define the circular permutations classes by the means of A`.
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Definition 3. Let ` be a positive integer and Σ` ⊂ S` be a set of all words under
an alphabet Σ. All words in Σ` can be separated into so-called circular permutation
classes by the means of A`. We define a circular permutation class as an orbit of
A` acting on a word w ∈ Σ`.

A` · w := {α(w) | α ∈ A`}

The maximum size of an orbit, and therefore a circular permutation class, is equal
to the cardinality of A` which is `. Hence, we donate a circular permutation class
that has ` members as a complete circular permutation class. The other circular
permutation classes are denoted as incomplete circular permutation classes.

Next, we provide an example for Definition 3. In Example 3.1 we demonstrate
one circular permutation class of a 3-letter word over an arbitrary alphabet.

Example 3.1. Let b1b2b3 ∈ Σ3 be a 3-letter word over an alphabet Σ, and (A3, ◦)
is a group where A` := {α0, α1, α2}. Then the circular permutation class of b1b2b3

is defined as:

{b1b2b3, b2b3b1, b3b1b2} = {α(b1b2b3) | α ∈ A`}

The set of trinucleotide words can be classified into 20 complete circular per-
mutation classes and four incomplete circular permutation classes. Next, we list
all complete circular trinucleotide permutation classes:

{AAC, ACA, CAA}, {AAG, AGA, GAA}, {AAT, ATA, TAA}, {ACC, CCA,
CAC}, {ACG, CGA, GAC}, {ACT, CTA, TAC}, {AGC, GCA, CAG}, {AGG,
GGA, GAG}, {AGT, GTA, TAG}, {ATC, TCA, CAT}, {ATG, TGA, GAT},
{ATT, TTA, TAT}, {CCG, CGC, GCC}, {CCT, CTC, TCC}, {CGG, GGC,

GCG}, {CGT, GTC, TCG}, {CTG, TGC, GCT}, {CTT, TTC, TCT}, {GGT,
GTG, TGG}, {GTT, TTG, TGT}.

and all trinucleotide incomplete circular permutation classes:

{AAA}, {TTT},{CCC},{GGG}.

Every word w in an incomplete circular permutation class is characterized by
the condition that there must be at least one α ∈ A` so that α(w) = w. Thus, if
a code contains such a word, it cannot be circular.

Figure 1.11 shows how the circular trinucleotide code retrieves the reading-
frame in an RNA sequence.
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Frame 0: ATG … G G T A A T T A C G A G T A C A C C … TAA
Frame 1: ATG … G G T A A T T A C G A G T A C A C C … TAA
Frame 2: ATG … G G T A A T T A C G A G T A C A C C … TAA

Figure 1.11: Readingframe retrieval in genes with a trinucleotide circular code X =
{AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC,
GGC, GGT, GTA, GTC, GTT, TAC, TTC} identified in genes. A frameshift is detected
after no more than 15 nucleotides. The codons underlined in blue belong to X . The
trinucleotides underlined in red do not belong to X .

A circular code excludes all incomplete circular permutation classes (see 3). In
the domain of trinucleotide codes, theses are the so called identity codons: {AAA,
CCC, GGG, TTT}. If a code is circular, it also follows that it contains no more
than one word from each complete circular permutation class. It has also been
shown that the number of complete circular permutation classes under an arbitrary
alphabet Σ with a word length of ` is equal to the maximum size of a circular code
under Σ` [23]. Thus, the maximum size of a trinucleotide code is 20.

1.2.4 Comma-free codes

Although Crick’s suggestion that the genetic code consists of a comma-free code [12]
has been disproved, these codes still play a role in hypothetical evolutionary theo-
ries such as those presented in Section 1.1.3. Like the circular code, the comma-free
codes belong to the block codes. The comma-free codes are a more restrictive ver-
sion of the circular codes. A code is called comma-free if any concatenation of
words contain only words of the code in one reading-frame. Such codes immedi-
ately detect a reading-frameshift. Definition 4 illustrates a formal notation of the
comma-free codes.

Definition 4. Let X ⊆ Σ` be an `-letter code. X is comma-free if

X 2 ∩ (Σ+ ×X × Σ+) = ∅

Example 4.1 shows a non comma-free code.

Example 4.1. Let L ⊂ {A − Z, a − z}+ be the English language and X ⊂ L so
that X = {spanking, kinglike, timespan}. Then the sequence timespankinglike
∈ X 2 shows that X and thus L cannot be comma-free. The circular 5-permutation
of the sequence timespankinglike reveals the word ”spanking”, which is also a
word in X .

timespan, kinglike or time,spanking,like

Hence, it does not meet the definition of comma-free codes.
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The next Example 4.2 illustrates an improved comma-free version of the code
in Example 4.1.

Example 4.2. Let L ⊂ {A − Z, a − z}+ be the English language and X ⊂ L so
that X = {spanking, gniklike, timespan}. This small adaptation of Example 4.1
converts X into a comma-free code.

Figure 1.12 illustrates how a comma-free trinucleotide code retrieves the reading-
frame in an RNA sequence.

Frame 0: ATG … A G A C G A T T A G C C T C A A C A … TAA
Frame 1: ATG … A G A C G A T T A G C C T C A A C A … TAA
Frame 2: ATG … A G A C G A T T A G C C T C A A C A … TAA

Figure 1.12: Readingframe retrieval in genes with the comma-free code X = {ACA,
AGA, CGA, GCC, TCA, TTA}. A frameshift is detected immediately, after no more
than three nucleotides. The trinucleotides (words of length 3) underlined in blue belong
to X , the trinucleotides underlined in red do not belong to X .

1.2.5 Additional properties of codes

Circular codes and comma-free codes can satisfy additional properties. These
properties are: (1) maximal as the code cannot be contained in a circular/comma-
free code of higher cardinality, (2) self-complementary, since for any codon in the
code, the associated anti-codon is also in the code and (3) Cn, i.e. all circular
permutations of the code are also circular codes. Another property which only
relates to comma-free codes are the so called (4) strong comma-free codes. These
codes are defined so that any prefix of a word in such a code cannot be the suffix
of a word in the code and vice versa.

Definition 5. Let X ⊂ Σ` be a circular or even comma-free code over an arbitrary
alphabet Σ with a word length `. The code is called maximal if |X | is equal to the
number of complete circular permutation classes in Σ` [23].

A trinucleotide circular code is defined maximal if it contains 20 codons. Defi-
nition 6 presents the definition of a self-complementary code.

Definition 6. Let X ⊂ B∗ be a code over the alphabet of nitrogenous bases. If X
is a self-complementary code, then, for any word w ∈ X , it contains the associated
anti-word c(←−w ) ∈ X . The anti-word of a word is the reversed complementary word
c(←−w ). Hence, X is self-complementary if:

X = c(
←−
X )
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Example 6.1. Let X = {ACG,CGT, TTC,GAA} be a trinucleotide code. Then

the code X is self-complementary, since c(
←−−−
ACG) = CGT and c(

←−−−
TTC) = GAA.

Hence,

X = {c(
←−−−
CGT ), c(

←−−−
ACG), c(

←−−−
GAA), c(

←−−−
TTC)}.

A maximal code of size 20 can even be self-complementary or C3. Let us
introduce C` property next.

Definition 7. Let X ⊂ Σ` be a circular or even comma-free code over an arbitrary
alphabet Σ with a word length `. The code is called C` if all circular permutations
of X are, again, circular codes. The code X is a C` code if and only if all codes
αj(X ) for any j ∈ {0, . . . , `− 1} are circular codes.

Compared to a C3 code, a strong comma-free code cannot contain 20 codons.
Such a code is considered maximal if it contains 9 codons [26]. This supports the
theory that the increasing robustness against translation errors, and the extension
of the coding table could be the reason for the code not being fully optimized [61].

Definition 8. Let X ⊆ Σ` be an `-letter code. X is strong comma-free if:

(X 2 ∩ (Σ+ ×X )) ∪ (X 2 ∩ (X × Σ+)) = ∅

1.2.6 Representing graph

Recently, a new graph-theoretical approach to the study of circular codes (see
definition 9) was introduced [27]. An original approach to 2-letter words [2] was
first generalized for the genetic alphabet [27] and later extended to words with
any letter over any finite alphabet [25]. The approach uses a directed graph, i.e.
a set of vertices or nodes connected by edges or arcs. In a directed graph, these
edges or arcs are directed, i.e. they only go from one vertex to another and not
back. The graph is constructed so that an `-letter code is circular if and only if the
corresponding graph is acyclic. This breakthrough allows to reduce the problem
of deciding whether a code is circular or not to the problem of whether a graph is
acyclic or not. In the following, we define the graph to be associated with a code.

Definition 9. Let ` ∈ N, and let X ⊆ Σ` be an finite `-letter block code. A G(X ) =
(V (X ), E(X )) is defined with a set of vertices V (X ) and a set of ARCS E(X ).
Let us define the graph G associated with a code X .

• V (X ) := {b1 · · · bi, bi+1 · · · b` : b1 · · · b` ∈ X for every i ∈ {1, ..., `− 1}}

• E(X ) := {w1 → w2 : w1 · w2 ∈ X and (w1, w2) ∈ V (X )}
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The graph G(X ) is the graph associated with X . For each i ∈ {1, . . . , `}, the
vertices of G(X ) that correspond with words of length i are referred to as i-nodes.

Example 9.1. Let X = {ACC, GAG, CCG} be a a circular trinucleotide code.
Then Figure 1.13 shows the graph G(X ) associated with X .

AC

CC

GA

AG

CG

A

C

G

Figure 1.13: G(X ) associated with the code X = {ACC, GAG, CCG}

In the article [27] some important theorems related to a graph and the associ-
ated code were illustrated. These theorems extend the means to recognize proper-
ties of a code by the associated graph. The following theorems, that were already
put forward earlier are also explained below in Theorem 1.2.1, Theorem 1.2.2 and
Theorem 1.2.3 which follow subsequently.

Theorem 1.2.1. (Theorem 2.6, [27]). Given a trinucleotide code X ∈ B3 , the
following statements are equivalent:

1. X is circular;

2. G(X ) is acyclic.

Theorem 1.2.1 introduces one of the major breakthroughs in the research of
circular codes. Before Theorem 1.2.1, in order to conclude whether a code is
circular, one needed to check if any concatenation of infinite words of a code
written on a cycle can only be decomposed in words of the code in one reading-
frame. Consequently, this makes it an undecidable problem. With the discovery
of this theorem 1.2.1, this problem became decidable.

Theorem 1.2.2. (Theorem 2.11, [27]). Let ` be a positive integer and X ∈ Σ`

be a `-letter code over an arbitrary alphabet, then the following statements are
equivalent:
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1. X is comma-free;

2. The length of the longest path in G(X ) is 2 at the most.

Theorem 1.2.2 and Theorem 1.2.3 facilitated the definition of a code as comma-
free or even strong comma-free.

Theorem 1.2.3. (Theorem 2.7, [27]). Let ` be a positive integer and X ∈ Σ`

be a `-letter code over an arbitrary alphabet. Then the following statements are
equivalent:

1. X is strong comma-free;

2. The length of the longest path in G(X ) is 1 at the most.

Representing graph components

For each edge e in G(X ), there is i ∈ {1, . . . , ` − 1}, so that e goes from a i-node
to a (`− i)-node. For each i ∈ {1, . . . , b`/2c}, the i-component of G(X ) is defined
to be the subgraph of G(X ) induced by the set of j-nodes for j ∈ {i, `− i}.

Definition 10. Any representing G(X ) of a circular code X is a set of b `
2
c disjoint

graph components. Let us assume that X ⊆ Σ` is a finite block code, and G(X ) is
the representing graph of X . This definition denotes C1(X ) . . . Cb `

2
c(X ) as the b `

2
c

components of G(X ) so that:

G(X ) =

i≤b `
2
c⋃

i=1

Ci(X )

The definition of a graph i-components Ci(X ) for all i ∈ {1, . . . , b `
2
c} associated

with a code demands that every node in Ci(X ) must be a j-node in G(X ) with
j ∈ {i, `− i}. A Ci(X ) = (Vi(X ), Ei(X )) is defined with a set of vertices Vi(X ) ⊆
V (X ) and a set of arcs Ei(X ) ⊆ E(X ). The following definition is similar to the
previous definition of G, but the sets of arcs and vertices are reduced to a fixed
i ∈ {1, 2, ..., , b `

2
c}:

• Vi(X ) := {b1 . . . bi, bi+1 . . . b` : b1b2b3 . . . b` ∈ X}

• Ei(X ) := {b1 . . . bi → bi+1 . . . b` : b1b2 . . . b` ∈ X}

Example 10.1. Let us assume that X = {ACCA,CAGT} is a circular tetranu-
cleotide code.
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By definition, X is 4-letter code. Hence, G(X ) can be separated into two disjoint
graph components. These graph components are the C1(X ) and the C2(X ).

CCA

ACC

CAG

A

C

T

AGT

Figure 1.14: C1(X ) of the represent-
ing graph G(X ) of the code X =
{ACCA,CAGT}

AC

CA

GT

Figure 1.15: C2(X ) of the represent-
ing graph G(X ) of the code X =
{ACCA,CAGT}

Figure 1.14 & 1.15: Show the two disjoint components C1(X ) and C2(X ) of G(X ).

1.2.7 Symmetry group over the elements of the alphabet

In addition to the symmetry group S` presented above, we need to introduce
another group SΣ. This group acts on the elements in the alphabet Σ.

SΣ := {π : Σ→ Σ : π is bijective}

Similar to (S`, ◦), the group (SΣ, ◦) is endowed with the usual group operation
of composition. Let us recall that n := |A|. The set SΣ has n! elements and is the
same for any word length ` ∈ N.

We now draw the attention to group SB acting on the elements of the genetic
alphabet B, in particular, on a subgroup L of SB which was presented in the arti-
cles [19, 20]. The group L is isomorphic to a Dihedral group, and each element in
L maintains the codon-anti-codon relationship and all circular related properties
in the target. The group (L, ◦) is formally defined as:

L := {π : B→ B : π is bijective}

Let us list the mappings in L. We will use the standard notation to define the
mappings. For instance, the mapping πATCG : (A, T, C,G) → (T,C,G,A) maps
πATCG(A) = T , πATCG(T ) = C, πATCG(C) = G and πATCG(G) = A. The first four
mappings are named after their chemical characters. Note that they are invariant
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in terms of the chemical properties of nucleotides [37].
Identity :

I (or id) : (A, T, C,G)→ (A, T, C,G);

Strong/Weak (SW) or complementary mapping:

SW (or c) : (A, T, C,G)→ (T,A,G,C);

Pyrimidine/Purine (YR0) mapping:

YR (or p) : (A, T, C,G)→ (G,C, T,A);

Keto/Amino (KM) mapping:

KM (or r) : (A, T, C,G)→ (C,G,A, T ).

πCG mapping:
πCG : (A, T, C,G)→ (A, T,G,C).

πAT mapping:
πAT : (A, T, C,G)→ (T,A,C,G).

πACTG mapping:
πACTG : (A, T, C,G)→ (C,G, T,A).

πAGTC mapping:
πAGTC : (A, T, C,G)→ (G,C,A, T ).

It has been observed that there are exactly 216 maximal self-complementary
C3 codes over the genetic alphabet [1, 58]. By the means of the group L, these 216
codes can be classified into 27 equivalence classes [20] where each class represents
an orbit of a code under the group. In anticipation of the following section 1.2.8,
we would like to mention that there is one distinct code among the 216 codes in
genetic sequences. This code is called the X-code [1] and will be described in more
detail in section 1.2.8.

1.2.8 Block codes in DNA and RNA

While the theory that the entire modern genetic code is a comma-free code has
been refuted, this does not prove that there are no comma-free codes in the genetic
code at all. Some trinucleotide comma-free codes have been statistically traced in
genes. This led to the hypothesis that comma-free codes may apply in a primitive
translation machinery. The three leading theories are based on the three comma-
free codes: RRY, RNY and GNC [45, 69, 11]. The first one is the RRY code:

RRY = {AAC, AAT, AGC, AGT, GAC, GAT, GGC, GGT}

Page 45



CHAPTER 1. INTRODUCTION

which encodes for four amino acids: Asn, Asp, Gly and Ser. The RRY code is a
subset of the RNY code:

RNY = {AAC, AAT, AGC, AGT, GAC, GAT, GGC, GGT, ACC, ACT, ATC,
ATT, GCC, GCT, GTC, GTT}

which extends the four amino acids encoded by RRY to a set of eight amino acids:
Ala, Asn, Asp, Gly, Ile, Ser, Thr and Val. The third comma-free code is the GNC
code which is also a subset of the RNY code.

GNC = {GAC, GGC, GCC, GTC}

The GNC code encodes for the amino acids: Ala, Asp, Gly and Val

At this point, we would like to make a short excursion to the evolution theory.
If we have a closer look at the amino acids encoded by RRY, RNY and GNC it
can be seen that they almost fit to Higgs’ suggested precursor amino acids Gly,
Ala, Asp, Glu and Val [44]. Such a concordance of facts suggests that both the
coevolution theory and the adaptive theory had an influence on the evolution of
the genetic code.

A recently developed theory based on statistically elaborated evidence indicates
the existence of a circular code in the genetic model. In 1996, Arquès and Michel
were able to identify a set of 20 codons. This set falls under the definition of a
code and is called X-code. The X-code was discovered by a statistical analysis of
genes of bacteria, archaea, eukaryotes, plasmids and viruses. [1].

X = {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG,
GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}

α1(X) = {ACA, ATA, CCA, TCA, TTA, AGC, TCC, TGC, AAG, ACG, AGG,
ATG, CCG, GCG, GTG, TAG, TCG, TTG, ACT, TCT}

α2(X) = {CAA, TAA, CAC, CAT, TAT, GCA, CCT, GCT, AGA, CGA, GGA,
TGA, CGC, CGG, TGG, AGT, CGT, TGT, CTA, CTT}

Concatenations of words of this X-code preferentially appear in genes in the
0-frame [70, 18], while α1(X) preferentially appears in the +1 frame and α2(X)
in the +2 frame. A concatenation of words of one code without separation in one
frame is called a motif (see Definition 11). The proportion of the motifs found in
genes compared to non-coding regions was significantly higher [55]. Astonishingly,
the X-code has proven to be a circular self-complementary C3 code [1, 51, 70].
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Definition 11. Let x and ` be positive integers, w = w1 · · ·wx ∈ Σ+ be a non-
empty sequence over the alphabet Σ and X ⊆ Σ` a `-letter block code over the same
alphabet. A motif is a concatenated set of words in w

w1 · · ·wk · · ·wk+j · · ·wx where k, j > 1 ∈ N
so that wk, . . . , wk+j ∈ X implies that wk · · ·wk+j is a motif of X or a X -motif.

1.3 Summary of Chapter 1

In this chapter the basic principles on which this work is based are summarized.
Both, the mathematical and biological aspects focus on the synthesis of proteins
in cells. There are two different cell types, the prokaryotic and the eukaryotic
cells. The prokaryotic cells are found in organisms of the domains of archaea and
bacteria whereas the eukaryotic cells in organisms of the domain of eukaryotes.
In both cell types, hereditary information is stored in DNA. Simplified, DNA is a
nucleotide based sequence. Each nucleotide stands for one of four bases: adenine
(A), guanine (G), cytosine (C ) or thymine (T ). The information stored in DNA
is used for the synthesis of proteins. For this purpose a duplicate of parts of the
heritage information stored in DNA is created, called tRNA. However, it is not an
exact copy. While DNA consists of two strands of nucleotides, tRNA only consists
of a single strand of nucleotides. Additionally, in tRNA, the base uracil (U ) is
used instead of thymine (T ). After the pre-translation process (only in eukaryotic
cells) the tRNA is translated by the ribosome into a polypeptide chains (chain of
amino acids). These chains fold into proteins which regulate and control the main
purpose of the cell itself. The translation as well as the copying of the DNA is
based on a system of complementary mapping denoted as function c(·). Where:

c(A) := T (or U) and c(C) := G and vice versa.

During the translation in the ribosome, three tRNA bases are considered to be
one word. Such a word consisting of three bases is called codon and is translated
via a translation table into one of the 20 corresponding amino acids or a stop
signal. Most living organisms use the same translation table, the standard genetic
code (SGC) (see figure 1.6). Numerous hypotheses claim that the SGC evolved
from a primitive genetic code via the last common ancestor code (LUCA), making
it the most robust against translation errors.

Such a hypothetical evolutionary approach would correspond with the use of
a block code derived from code theory as an error correction mechanism in trans-
lation. Evidence of such a block code in form of the so called X-code has been
found in coding sequences of different species. This X-code is one of 216 max-
imal circular self-complementary C3 codes. Specifically, the X-code is maximal,
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with a size of 20 codons, which cannot be contained in a circular code of higher
cardinality. Furthermore, it is self-complementary, since for any codon in the X-
code the responding anti codon is also in the X-code. Finally, it is C3, i.e. all
circular permutations of the X-code are also maximal circular codes[1]. A circular
code is defined so that any concatenation of words of the code written on a cycle
can only be decomposed into words of the code in one reading-frame. Another
approach uses comma-free codes. These codes are more restrictive than circular
codes and detect a frameshift error immediately. The three leading theories on
comma-free codes in genes are based on the three comma-free codes: RRY, RNY
and GNC [45, 69, 11].

Furthermore, new mathematical results of the investigation of circular codes are
presented. These results provide new research tools from graph theory and group
theory. Let us recall the in this thesis two most frequently used tools: Firstly, is a
directed graph which can be associated to a circular code. Such a graph is defined
as:

Definition (copy of Definition 9). Let ` ∈ N, and let X ⊆ Σ` be an finite `-letter
block code. A G(X ) = (V (X ), E(X )) is defined with a set of vertices V (X ) and a
set of arcs E(X ). Let us define the graph G associated with a code X .

• V (X ) := {N1 . . . Ni, Ni+1 . . . N` : N1 . . . N` ∈ X for every i ∈ {1, ..., b `
2
c}}

• E(X ) := {w1 → w2 : w1ẇ2 ∈ X and (w1, w2) ∈ V (X )}

The graph G(X ) is the graph associated with X . For each i ∈ {1, . . . , `}, the
vertices of G(X ) that correspond with words of length i are referred to as i-nodes.

Secondly, the circular equivalence classes. These classes are defined as an orbit
under a group of all circular permutation.

Definition (copy of Definition 3). Let (A`, ◦) be a group. Where A` := {α0, . . . , α`−1}
and ◦ denotes the composition of mappings. Be α0(·) the identity element. Then,
A` is a group acting on Σ`:

α : A` × Σ` → Σ`

All words in Σ` can be separated into so-called circular permutation classes by the
means of A`. We define a circular permutation class as an orbit of A` acting on
a word w ∈ Σ`.

A` · w = {α · w | α ∈ A`}
The maximum size of an orbit, and therefore a circular permutation class, is equal
to the cardinality of A` which is `. Hence, we donate a circular permutation class
that has ` members as a complete circular permutation class. The other circular
permutation classes are denoted as incomplete circular permutation classes.
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Properties of circular codes

The previous chapter illustrates the structure of circular codes (see section 1.2.3)
as block codes and introduces the X-code (see section 1.2.8) which was the first
verification of such codes in genetic sequences. The introduction presents clear
evidence pointing to an important role of the X-code in protein synthesis. Since
the X-code also belongs to the class of maximal self-complementary circular codes,
the foremost objective of this chapter is the expansion of knowledge of the class of
self-complementary circular codes and the class of maximal circular codes.

In the first section of this chapter 2.1, we investigate self-complementary codes.
For this investigation, we will apply deep graph theory based on graphs associated
with a code (see section 1.2.6). First, we link the minimum size of a code motif
needed to ensure the correct reading-frame with the length and structure of the
longest paths in the graphs associated with the self-complementary circular code.
Subsequently, we formulate conditions to fully classify self-complementarity in
graphs associated with a circular self-complementary code of size at least 18. Most
results presented in this section have already been published in an article [24].

The second section, 2.2, examines the entire circular code family from a more
general point of view. To investigate the full potential of circular codes and their
role as hypothetical ancestor codes, this section focuses on circular codes over
arbitrary finite alphabets and/or arbitrary word lengths.. As another relevant
group of block codes, the comma-free codes are also examined more closely as a
”selection factor that guides the search for

...

hypothetical ancestor codes”[59].
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2.1 Self-complementary circular codes in coding

theory

Reading the amino acids encoded in the mRNA in the normal reading-frame is
essential for protein synthesis. Due to the start codons in the mRNA we can
assume that the process starts the reading in the correct reading-frame. It is
often proposed that there was or still is a mechanisms to maintain this reading-
frame [1, 59]. These proposals often refer to two types of codes: The comma-free
codes [11] and the circular codes. In this section we work on the circular codes.
Such codes are capable of synchronizing, maintaining and retrieving the normal
reading-frame. As mentioned in the introduction, the X-code has been identified
as a representative of the circular codes in genes of bacteria, archaeae, eukaryotes,
plasmids and viruses [1, 17]. It has not yet been possible to explain how theX-code
is applied in the genome because it appears as individual motifs (see Definition 11)
in the sequences. The motivation of this section is to get a deeper understanding
of the motifs of the X-code.

Since the X-code is one of the 216 maximal self-complementary C3 codes (see
section 1.2.7), the X-code must have the identical characteristics as the codes of
this subclassses of circular codes. It therefore led to a closer observation of the
216 codes. The data obtained guided the theorems and their corresponding proofs
presented in this section. The focus lies on the coding theoretical properties of
the self-complementary maximal codes X ⊂ B3 with a word length of ` = 3
over a fixed alphabet B = {A,C,G, T} of cardinality n = 4. These codes have
been studied by representing them through directed graphs and then applying
deep graph theory. The results in the subsequent sections will elaborate on the
number of nucleotides in a sequence required for frameshift recognition, and the
full classification of graphs associated with self-complementary code.

Most results in this section are published in the article ”Self-complementary
circular codes in coding theory”[24].

2.1.1 Frameshift robustness on self-complementary C3 codes

Let X ⊂ B3 be a strong comma-free trinucleotide code. Since X is strong comma-
free, all sequences b1 . . . bi of words b1b2b3, . . . , bi−2bi−1bi ∈ X can be described as
frameshift robust. Recalling the strong comma-free definition, this is because nei-
ther b2b3b4 nor b3b4b5 can be in X . However, let us assume that X is a circular
code and not strong comma-free. For each sequence b1 . . . bi of concatenated words
b1b2b3, . . . , bi−2bi−1bi ∈ X written on a circle, a frameshift error cannot occur unde-
tected. Nonetheless, an undetected frameshift error can occur in the same linearly
written sequence if the motif of a code is not long enough. The minimum length
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needed for a motif to avoid undetected frameshift errors does not only depend
on the construction of the code, but also on the concatenated words used for the
motif. This section introduces a classification of codes based on the weakest link
in a code, i.e. the number of nucleotides in a motif needed to detect a frameshift
for any code motif.

Observation 2.1.1. Let j be a positive integer and X ⊂ B3 be a trinucleotide
circular code. Any sequence ws = w1w2 · · ·wj ∈ X j of words w1, w2, . . . , wj ∈ X
written in a circle have only one circular X -decomposition in the correct reading-
frame. However, the same sequence can be decomposed into the same number of
words of X in two frames if ws is considered a motif contained in a longer sequence.

To prove the Observation 2.1.1 we reconstruct the observed scenario in Con-
struction method 2.1.1. It shows that the prefix, i.e. the nucleotides directly
before a motif, and the suffix, i.e. the nucleotides directly after a motif, have an
influence on the error detection mechanism of circular codes. In the constructed
case used in the proof, the code motif in the correct reading-frame has the same
length (number of nucleotides) as the motif in the +1 reading-frame.

Construction method 2.1.1. Let m be a positive integer and X ⊂ B3 be a
trinucleotide circular code and ws := b1 · · · bi · · · bi+j · · · bm ∈ Bm a sequence where
i ∈ {(3n) + 1 : n ∈ N}, j ∈ {(3n) − 1 : n ∈ N+} and i + j < m. Let us further
assume that the words

bibi+1bi+2, . . . , bi+j−2bi+j−1bi+j ∈ X

are a motif of X in the correct reading-frame. Without loss of generality, we
assume j = 5, from which follows that w1 := bibi+1bi+2 and w2 := bi+3bi+4bi+5,
with reference to the construction w1, w2 ∈ X . However, the codon

bi+1bi+2bi+3, bi+4bi+5bi+6 ∈ B3

can be in X without losing circularity. This case forces that

b2 . . . bi+1bi+2bi+3bi+4bi+5bi+6 . . . bm

is a valid X motif in the +1 frame with the same length as the X motif in the
normal frame.

This paragraph refers to the results of the paper ”Self-complementary circular
codes in coding theory” [24]. Considering the previous observation, it is evident
that the prefix and suffix of a code motif are important factors for the reliability
of the code motif. To specify the correct notation of a code motif in each frame,
we define the X -frame, dp and ds in Definition 12.
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Definition 12. Let X ⊂ B3 be a trinucleotide code and x ≥ 3 be an integer so
that b1 . . . bx ∈ Bx a sequence of nucleotides. The sequence b1 . . . bx is constructed
so that it can be divided into 3 elements:

b1 . . . bx = dpc1 . . . clds

where x ≥ 3, l = x − (|dp| + |ds|) , cici+1ci+2 ∈ X for i = 1, 4, 7, ..., l − 2 is a X
motif, dp ∈ {ε, b1, b1b2} and de ∈ {ε, bx−1bx, bx} , ε being the empty word.

According to Definition 12, the prefix dp and the suffix ds of the sequence do
not need to be a prefix or suffix of a codon in X . Only the central part, denoted as
c1 . . . cl, consists of words from cici+1ci+2 ∈ X for i = 1, 4, 7, ..., l − 2. As Fimmel
et al. state, ”[t]his approach contrasts the notion of unambiguous words defined
in [50] and makes the notion of X -frame and later on reading-frame applicable to
arbitrary sequences, i.e., not entirely consisting of trinucleotides from X .” [24]

With this definition of X -frames, it is possible to associate the weak point like
the one depicted in Observation 2.1.1, with a path in the associated G(X ) graph.
These path-related graph properties are defined in Definition 13.

Definition 13. Let X ⊂ B3 be a trinucleotide circular code and G(X ) be its
associated graph. Let p : v1 → · · · → vn be a path in G(X ), where each vi is either
a 1-node of a 2-node for i = 1. . . . , n. Then the arrow length la(p) is defined as
n− 1. Furthermore, with lmax(X ) we define the maximum arrow length of a path,
i.e. the length of a longest path, in the associated graphic G(X ).

• the arrow-length la(p) is defined as la(p) = n− 1;

• the length of a longest path, in the associated graph G(X ) is defined as
lmax(X ).

• the word associated with p is defined as w(p) = v1 . . . vn, the concatenation
of the labels of p;

• the word length lw(p) is defined as |w(p)|, the length of the word associated
with p.

While most X -frames cannot be decomposed into words of the same code in
more than one reading-frame, there are rare scenarios where this happens, leading
to overlaps. Such a case of overlapping X -frames is the weak point of the circular
codes described in Observation 2.1.1.

Observation 2.1.2. Let X ⊂ B3 be a trinucleotide circular code and and x ≥ 4
be an integer so that b1 · · · bx ∈ Bx a sequence of nucleotides. If we assume that
b1 · · · bx has 2 different possible X -frames
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b1 · · · bx = dpc1 · · · clds = d′pc
′
1 · · · c′md′s so that dp 6= d′p

with ci, c
′
i ∈ X and dp, ds, d

′
p, d
′
s ∈ {ε} ∪B2 ∪B, then, there exists a path in

G(X ) associated with the overlapping sequences c1 · · · cl and c′1 · · · c′m. The word
associated with this path (see Definition 13 above) covers exactly the smallest sub-
sequence of b1 · · · bn that contains both c1 · · · cl and c′1 · · · c′m.

To avoid overlapping X -frames as in Observation 2.1.2, the sequences must
be constructed in such a way that they are not associated with a path in G(X ).
Once the concatenation of words in a code is equal to the concatenation of labels
of a path associated with the code, the X -frame overlaps. This can generally be
avoided by defining an upper bound.

Definition 14. Let X ⊂ B3 be a trinucleotide circular code. We define the
reading-frame number nX of X as

nX := min{n ∈ N| for all sequences of nucleotides b1 . . . bn

there is at most one possible X -frame for b1 . . . bn}

This upper bound can be derived from the longest path of a graph. Suppose
X ⊂ B3 is a circular code. Then, the reading-frame number nX is considered
valid, if:

nX ≤ 2 · lmax(X ) + 3

The following Theorem 2.1.1 proves this dependence. The proof of the theorem
can be found in article [24].

Theorem 2.1.1. (Theorem 5.9, [24]) Let X ⊂ B3 be a trinucleotide circular
code and G(X ) its associated graph. Then, the reading-frame number nX satisfies
nX ≤ 2 · lmax(X ) + 3.

Applied theory of the reading-frame number

The definition of the reading-frame number allows for the classification of trin-
ucleotide circular codes with respect to the associated nX . Let us recall that
nX ≤ 2 · lmax(X ) + 3 which demonstrates that the reading-frame number depends
on the longest path of a code lmax(X ).

Let G(X ) be a graph associated with the circular code X . Recalling theo-
rem 1.2.1, G(X ) must be acyclic. However, the maximum path length is not
limited. Exceptions are comma-free codes (Theorem 1.2.2), where lmax(X ) = 2,
and strong comma-free codes (Theorem 1.2.3), where lmax(X ) = 1.
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Code size |X|
lmax 2 4 6 8 10 12 14 16 18 20

1 12 8 0 0 0 0 0 0 0 0
2 16 202 556 642 396 152 36 4 0 0
3 0 16 152 336 280 80 0 0 0 0
4 0 108 1344 5808 12048 14032 9800 4116 964 96
5 0 0 0 0 0 0 0 0 0 0
6 0 0 68 684 2352 3896 3568 1872 532 64
7 0 0 0 0 0 0 0 0 0 0
8 0 0 56 824 4024 9104 10920 7248 2536 368

Total 28 334 2176 8294 19100 27264 24324 13240 4032 528

Table 2.1: Growth function of self-complementary circular codes X of even cardinality
a = 2, 4, . . . , 20 as a function of the longest path length lmax(X ) = 1, ..., 8 in their
associated graph G(X )

Table 2.1 illustrates the number of self-complementary circular codes X of
different size |X | depending on the length of a longest path lmax(X ). The brute
force results show that lmax(X ) ≤ 8. The following Theorem 2.1.2 explains this
issue and fully characterises the possible values of lmax(X ) for non-maximum and
maximum self-complementary circular codes.

Theorem 2.1.2. (Theorem 4.2, [24]) Let X ⊂ B3 be a trinucleotide circular code.
The following statements about the maximal path length lmax(X ) of a path are true:

1. 1 ≤ lmax(X ) ≤ 8;

2. If X is self-complementary, then lmax(X ) ∈ {1, 2, 3, 4, 6, 8}, i.e., lmax(X ) =
5, 7 are excluded;

3. If X is maximal and self-complementary, then lmax(X ) ∈ {4, 6, 8}, i.e., in
addition to (2), lmax(X ) = 1, 2, 3 are impossible.

Proof. The proof is structured into the three statements from Theorem 2.1.2.

Claim (1) It is immediate since for lmax(X ) ≥ 9 in a graph G(X ) associated
with a circular code, there is a path containing at least five vertices labeled
by nucleotides. Note that with the construction of G(X ), the labels of the
vertices alternate between nucleotides and dinucleotides. Nonetheless, there
are only four different bases in the alphabet B, hence two of the vertices
must have the same label which yields a cycle in G(X ), in contradiction to
circularity. Thus, 1 ≤ lmax(X ) ≤ 8.

Claim (2) Let X be a self-complementary circular code.
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(i) Assume that lmax(X ) ≥ 4 is odd. By construction of G(X ), any path
in G(X ) starts with either a nucleotide or a dinucleotide. Moreover, the
vertices of the path alternate between nucleotides and dinucleotides. Thus,
if lmax(X ) is odd, then the longest path in G(X ) must either be of the form

(I) b1 → a1 → b2 → a2 → · · · → dn−1 → ln → dn

starting with a nucleotide b1 and ending with a dinucleotide dn, or

(II) a1 → b1 → a2 → b2 → · · · → ln−1 → dn → ln

starting with a dinucleotide a1 and ending with a nucleotide ln. In fact, the
following argument shows that both cases hold. Assume, without loss of gen-
erality, that the longest path is of the first form (I). By self-complementarity,
we then obtain a complementary and reversed path

(III)
←−−−
c(dn)→ c(ln)→

←−−−−
c(dn−1)→ · · · →

←−−
c(a2)→ c(b2)→

←−−
c(a1)→ c(b1).

Since in (I) we have assumed that lmax(X ) ≥ 4, at least three nucleotides,
b1, b2, b3, · · · , appear. By circularity of the code X , all these nucleotides
have to be different. Otherwise, the path would contain a cycle. Similarly,
path (III) has at least three different nucleotides c(ln), c(ln−1), c(ln−2), · · · .
However, there are only four nucleotides in the alphabet B, hence, there
must be i, j ≤ n such that li = c(lj). Seeing that path (I) starts with a
nucleotide and path (III) starts with a dinucleotide, the two paths

(I ′) b1 → a1 → b2 → a2 → · · · → di−1 → li

(III ′)
←−−−
c(dn)→ c(ln)→

←−−−−
c(dn−1)→ · · · →

←−−
c(dj)→ c(lj)

must have different lengths. Without loss of generality, assume that (III ′)
is the longer path. Yet, then the path

←−−−
c(dn)→ c(ln)→

←−−−−
c(dn−1)→ · · · →

←−−
c(dj)→ c(lj) = li → di → · · · → dn−1 → ln → dn

has a length greater than lmax(X ) - which is a contradiction.

(ii) The following Examples 14.1, 14.2 and 14.3 show that lmax(X ) = 1, 2, 3
exist for self-complementary circular codes that are not maximal.

Claim (3) Let X be a maximal self-complementary circular code.

(i) If lmax(X ) ≤ 2 is true, then X is comma-free. However, there are no
self-complementary comma-free codes of size 20 (Table 7 in Michel et al.,
2008). Thus, according to the claim (2), lmax(X ) ∈ {3, 4, 6, 8}.
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(ii) Assume now that lmax(X ) = 3. By maximality and circularity, X must
contain exactly one element in each equivalence class {b1b2b3, b2b3b1, b3b1b2}
for every trinucleotide b1b2b3. Hence, X must contain one trinucleotide from
{AAT , ATA, TAA} and one complementary trinucleotide from {ATT , TTA,
TAT}. It is apparent that each combination yields a path of the form A→
a1 → T or T → a1 → A for some dinucleotide a1. Similarly, we get a path of
the form C → a2 → G or G → a2 → C for some dinucleotide a2. Without
loss of generality, assume that A → a1 → T and C → a2 → G are paths
in G(X ). Clearly, the four trinucleotides Aa1, a1T,Ca2, a2G are all different.
Hence, X ′ = X\{Aa1, a1T,Ca2, a2G} has 16 elements. Assume that there
is a trinucleotide dC ∈ X ′, d being a dinucleotide, then also Gc(d) ∈ X ′ by
self-complementarity. Consequently, we get a path d→ C → a2 → G→ c(d)
of length four - which is, again, a contradiction.

Similarly, we cannot have trinucleotides of the form dA, Td,Gd ∈ X ′. So,
no trinucleotide in X ′ starts with T or G and no trinucleotide ends with C
or A. Hence, X ′ ⊆ S = {N1N2N3 | N2 ∈ B, N1 ∈ {A,C}, N3 ∈ {G, T}}.
Clearly, | S |= 16. However, the four trinucleotides Aa1, a1T,Ca2, a2G are
also in S, but excluded from X ′, so | X ′ |≤ 12 - a contradiction.

Example 14.1. The code X1 = {TGA, TCA} of size two is a self-complementary
circular code with the longest path length lmax(X1) = 1, e.g. TC → A, T → GA,
etc. (Figure 2.1).

GA T CA

TG A TC

Figure 2.1: Graph G(X1) of the self-complementary circular code X1 = {TGA, TCA}
of size two with the longest path length lmax(X1) = 1.

Example 14.2. The code X2 = {TGC, GCA, CTC, GAG} of size four is a
self-complementary circular (even comma-free) code with the longest path length
lmax(X2) = 2, e.g. T → GC → A, GA→ G→ AG, GA→ G→ CA, etc. (Figure
2.2).
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T GC A

GA G

CA

AG

CT

TG

C TC

Figure 2.2: Graph G(X2) of the self-complementary circular code X2 = {TGC, GCA,
CTC, GAG} of size four with the longest path length lmax(X2) = 2.

Example 14.3. The code X3 = {TTG, TGG, GTC, GAC, CCA, CAA} of size
six is a self-complementary circular code with the longest path length lmax(X3) = 3,
e.g. T → TG→ G→ TC, GT → C → CA→ A, etc. (Figure 2.3).

TT

TC

GG

T

G

TG

AC

GT

GA

AA

C

A

CA

CC

Figure 2.3: Graph G(X3) of the self-complementary circular code X3 = {TTG, TGG,
GTC, GAC, CCA, CAA} of size six with the longest path length lmax(X3) = 3.

As established in Theorem 2.1.2, if X ⊂ B3 is a maximal self-complementary
circular code, then lmax(X ) ∈ {4, 6, 8}. In Theorem 2.1.3, this characterisation is
refined for maximal self-complementary circular codes.

Theorem 2.1.3. (Theorem 4.7, [24]) Let X ⊂ B3 be a maximal self-complementary
trinucleotide circular code. Then the following statements hold:

1. If lmax(X ) = 4, then the longest paths are of the form

a1 → b1 → a2 → b2 → a3

2. If lmax(X ) = 6, then the longest paths are of the form

b1 → a1 → b2 → a2 → b3 → a3 → b4
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3. If lmax(X ) = 8, then the longest paths are of the form

a1 → b1 → a2 → · · · → a4 → b4 → a5

where bi ∈ B are 1-nodes and ai ∈ B2 are 2-nodes for any i ∈ N.

Proof. Claim (1): Let lmax(X ) = 4 and assume that b1 → a1 → b2 → a2 → b3 is
the longest path in G(X ). Since the path is maximal, there is no trinucleotide of
the form db1 and no trinucleotide of the form b3d in X . Each self-complementary
maximal circular code must contain the codons b1c(b1b1) and b1b1c(b1).1 It follows
that c(b3) = b1 and a1, a2 ∈ {b2, c(b2)}2. Note that all the nucleotides b1, b2, b3

must be different by circularity. Thus, we have four possibilities for a1, a2, namely
b2b2, b2c(b2), c(b2)b2 and c(b2)c(b2). As b2b2b2 6∈ X by circularity, we have the
following options for the two trinucleotides: a1b2 ∈ X and b2a2 ∈ X .

a1b2 : b2c(b2)b2 c(b2)b2b2 c(b2)c(b2)b2;

b2a2 : b2b2c(b2) b2c(b2)b2 b2c(b2)c(b2).

If a1b2 or b2a2 equal b2c(b2)b2, then self-complementarity yields c(b2)b2c(b2) ∈ X
and the word c(b2)b2c(b2)b2c(b2)b2 contradicts circularity. Excluding the combina-
tions c(b2)b2b2, b2b2c(b2) and c(b2)c(b2)b2, b2c(b2)c(b2), because the trinucleotides
are obviously circular permutations of each other, only two combinations remain:
c(b2)b2b2, b2c(b2)c(b2) and c(b2)c(b2)b2, b2b2c(b2). Yet, in this case, self-complementarity
also yields a contradiction to circularity, since e.g. the complementary trinucleotide
of c(b2)c(b2)b2 is in the same equivalence class as b2b2c(b2).

Claim (2): Let lmax(X ) = 6 and assume that a1 → b1 → a2 → b2 → a3 →
b3 → a4 is the longest path in G(X ). By self-complementarity, there is the reversed
complemented path

←−−
c(a4)→ c(b3)→

←−−
c(a3)→ c(b2)→

←−−
c(a2)→ c(b1)→

←−−
c(a1).

Here, the central nucleotides b2 and c(b2) of the two paths are either the pair A
and T or C and G. Therefore, it suffices to show that there are paths A→ d→ T
or T → d→ A and C → d→ G or G→ d→ C in G(X ), since then we will obtain
a path of length eight combining the two paths, e.g.

a1 → b1 → a2 → b2 → d→ c(b2)→
←−−
c(a2)→ c(b1)→

←−−
c(a1)

contradicting lmax(X ) = 6. However, by maximality, the code X must contain ex-
actly one trinucleotide of the class {ATT, TTA, TAT} and its complementary trin-
ucleotide, as well as exactly one trinucleotide from the class {GCC,CCG,CGC}

1The combination c(b1)b1c(b1) and b1c(b1)b1 is not circular and a maximal circular code must
contain one codon of each circular permutation class.
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and its complementary trinucleotide. It is easily verifiable that in each case we
obtain either a path of the form A → d → T or T → d → A and C → d → G or
G→ d→ C. For example, if ATT ∈ X , then also AAT ∈ X and we get the path
A→ AT → T in G(X ).

Claim (3): Let lmax(X ) = 8 and assume that b1 → a1 → b2 → a2 → b3 →
a3 → b4 → a4 → b5 is the longest path in G(X ). Then, evidently, two out of the
five nucleotides b1, b2, b3, b4, b5 must be equal, which yields a cycle in G(X ), and
contradicting the circularity of X .

With Theorem 2.1.3 the classification of the different path patterns is com-
pleted. An application of these patterns is proposed in Theorem 2.1.4.

Theorem 2.1.4. (Theorem 5.11, [24]) Let X ⊂ B3 be a maximal self-complementary
trinucleotide circular code and G(X ) its associated graph. Let p = pmax(X ) be a
path of maximal arrow-length (and, hence, word-length) in G(X ) and let lw(p) be
its word-length. Then, the following statements about the reading-frame number
nX are true:

1. nX = lw(p) + 2, if p = a1 → b1 → · · · → bk or p = b1 → a1 → · · · → ak;

2. nX = lw(p) + 1, if p = a1 → b1 → · · · → ak;

3. nX = lw(p) + 3, if p = b1 → a1 → · · · → bk,

where bi are 1-nodes and ai are 2-nodes for any i.

Proof. See Appendix proof II.1.

2.1.2 Consequences of section 2.1.1

Theorem 2.1.3 and Theorem 2.1.4 offer the possibility to classify trinucleotide
maximal self-complementary circular codes by their longest path lengths. If we
add the Theorem 2.1.2 we can conclude that there must be three equivalence
classes. These classes are called X4, X6 and X8. Where the index i ∈ {4, 6, 8} of
the class name Xi indicates the length of the longest path. The obtained results
demonstrate that a X4 code has a reading-frame number of nX = 9, a X6 code has
a reading-frame number of nX = 12 and a X8 code has a reading-frame number of
nX = 15

Non-self-complementary circular codes of any size less than 21 can be classified
in the classes X1, X2, X3, X4, X5, X6, X7 and X8. Yet, not for all of these classes
the reading-frame number can uniquly be predicted. The classes X1, X3, X5, X7

and X8 have a unambiguous reading-frame number. See Theorem 2.1.3 Claim 3,
a X8 has always a reading-frame number of nX = 15. The odd classes X1 to X7
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have also a unambiguous reading-frame number (see Theorem 2.1.4 Claim 2). The
reading-frame numbers are nX = 5 for X1, nX = 8 for X3, nX = 11 for X5 and
nX = 14 for X7. The codes in the classes X2, X4 and X6 have ambiguous reading-
frame numbers (see Theorem 2.1.4 Claim 1 & 3). The reading-frame numbers are
nX ∈ {6, 7} for X2, nX ∈ {9, 10} for X4 and nX ∈ {12, 13} for X6.

This means that a X2 code is comma-free and a X1 code is even strong comma-
free (see Theorem 1.2.2 and Theorem 1.2.3). In the final Chapter 6 an evolution
hypothesis is presented in section 6.1, which combines the results of this sec-
tion 2.1.1 and the results presented in the following Chapters 3-5. Another pos-
sible use case can be found in the section ”Application: Reading frame of the
maximal C3 self-complementary circular code X identified in genes” of the article
”Self-complementary circular codes in coding theory”2 [24].

2.1.3 Self-complementarity as a graph property

The two strands of DNA are bounded by hydrogen bonds between complemen-
tary bases. Hence, the nucleotide code on the one strand is the reversed com-
plement of the nucleotide code on the other strand. A block code that can be
applied to both DNA strands is therefore a self-complementary code. While self-
complementarity is an important biological property, a graph G(X ) associated
with a self-complementary code X is not able to represent this property as sim-
ply as circularity. Still, we were able to fully classify all graphs associated with
a self-complementary code of a size of at least 18 with the use of recognizable
conditions. Proposition 2.1.2 introduces the graph conditions that can indicate
self-complementarity. After outlining this property, counterexamples of circular
codes of size |X | ≤ 17 are constructed. The graphs associated with these codes
satisfy the conditions, but the codes are non-self-complementary. On the con-
trary, the concluding Theorem 2.1.5 proves that the property must apply to all
self-complementary circular codes of size |X | ≥ 18. All results except for Theo-
rem 2.1.5 have been published in [24]. However, the Theorem 2.1.5 is unpublished.

Proposition 2.1.2. Let X ⊆ B3 be a self-complementary trinucleotide code and
G(X ) = (V (X ), E(X )) the graph associated to X . Then

1. V (X ) =
←−−−−−
c(V (X )), i.e. for each nucleotide l ∈ V (X ) its complementary nu-

cleotide c(l) ∈ V (X ) and for each dinucleotide d ∈ V (X ) its complementary

reversed dinucleotide
←−−
c(d) ∈ V (X );

2As co-author of the article [24], I had no influence on the chapter ”Application: Reading
frame of the maximal C3 self-complementary circular code X identified in genes” and therefore
decided not to include it in this work.
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2. d+(v) = d−(
←−−
c(v)) for any vertex v ∈ V (X ).

Where d+(·) is denoted as the in-degree and d−(·) is denoted as the out-degree of
a vertex in V (X ).

Proof. Condition (1): Let b1b2b3 ∈ X . Since X is self-complementary, we have
c(b3)c(b2)c(b1) ∈ X . Thus, according to the definition of G(X ), b1, b3, c(b1), c(b3)
∈ V (X ) and b1b2, b2b3, c(b3)c(b2), c(b2)c(b1) ∈ V (X ). Hence, Condition (1) holds.

Condition (2): [b1, b2b3], [b1b2, b3] ∈ E(X ) is equivalent to [c(b3)c(b2), c(b1)],
[c(b3), c(b2)c(b1)] ∈ E(X ). Hence, Condition (2) holds.

Below, we construct a code that is non-self-complementary, but the associated
graph G(X ) satisfies the conditions (1) and (2) of Proposition 2.1.2.

Construction method 2.1.3. Start with a trinucleotide b1b2b3 and then choose
a subsequent trinucleotide that starts with the complementary of the dinucleotide
b2b3, but does not end with the complement of b1. Continue this process until you
choose a word which ends with the complementary of the dinucleotide b1b2, but does
not start with the complement of b3. While the code constructed this way will satisfy
the two conditions (1) and (2) of Proposition 2.1.2, it is non-self-complementary.

The following is a basic example of Construction Method 2.1.3.

Example 14.4. The code X = {CAC,GAG,CTG,GTC} is non-self-complementary
since, for example, it does not contain the complementary trinucleotide GTG of
CAC. Yet, it is apparent that its associated graph satisfies the two conditions (1)
and (2) from Proposition 2.1.2. The code X is comma-free and has been constructed
using the preceding construction Method 2.1.3: CAC  GTC  GAG CTG.

However, Method 2.1.3 does not yield non-self-complementary codes of a size
larger than eight, such that the associated graphs satisfy the two conditions (1)
and (2) of Proposition 2.1.2.

Construction method 2.1.4. To construct non-self-complementary codes that
are larger than size eight and satisfy the two conditions (1), (2) of Proposition 2.1.2,
the codes constructed by Method 2.1.3 can be combined.

Using Method 2.1.4, Example 15.1 below shows that there are in fact codes
of size 20, such that their associated graphs satisfy the two conditions (1) and
(2) of Proposition 2.1.2, which are non-self-complementary, even strong non-self-
complementary, and non-circular.

Definition 15. A code X is strong non-self-complementary if for any trinucleotide

w ∈ X , the complementary trinucleotide
←−−
c(w) /∈ X .
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Example 15.1. The code X of size 20

X = {AAT, ACA, AGT, ATC, CAC, CCG, CGA, CTG, GAA, GAG, GCA,
GGC, GTC, GTT, TAC, TCC, TCT, TGA, TGG, TTA}

is strong non-self-complementary and non-circular, but its graph G(X ) satisfies
the two conditions (1) and (2) of Proposition 2.1.2. Figure 2.4 displays the graph
G(X ) associated with X .

A

T

C

G

AA

AT

AC

CA

AG

GT

TT

TA

TC

CC

CG

GA

CT

TG

GC

GG

Figure 2.4: Graph G(X ) of the strong non-self-complementary and non-circular code
X = {AAT, ACA, AGT, ATC, CAC, CCG, CGA, CTG, GAA, GAG, GCA, GGC,
GTC, GTT, TAC, TCC, TCT, TGA, TGG, TTA} of size 20 satisfying the two condi-
tions (1) and (2) of Proposition 2.1.2.

The following Lemma 2.1.1 demonstrates how non-self-complementary circular
codes of a size ≤ 16 can be constructed effortlessly with the help of an associated
graph G(X ) that satisfies conditions (1) and (2) of Proposition 2.1.2.

Lemma 2.1.1. Let X1,X2 ⊆ B3 with X1 ∩X2 = ∅ be trinucleotide codes such that
their associated graphs G(X1) and G(X2) satisfy the two conditions (1) and (2) of
Proposition 2.1.2. Then the following statements hold:

1. The graph G(X c
1 ) where X c

1 := B3 \ X1 satisfies both conditions (1) and (2);

2. The graph G(Z) where Z := X1 ∪ X2 satisfies both conditions (1) and (2).
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Proof. Let X1,X2 ⊆ B3 with X1∩X2 = ∅ be codes such that their associated graphs
G(X1) and G(X2) satisfy the two conditions (1) and (2) of Proposition 2.1.2.

Claim (1) It follows from the fact that graph G(B3) satisfies the two conditions
(1) and (2) of Proposition 2.1.2, and3

G(B3) = G(X1) ∪ G(X c
1 ) and E(X1) ∩ E(X c

1 ) = ∅.

Claim (2) Condition (1) of Proposition 2.1.2 is true, since V (Z) = V (X1)∪V (X2).
Let us show that Condition (2) of Proposition 2.1.2 holds as well. As X1 ∩
X2 = ∅, it follows that E(X1) ∩ E(X2) = ∅. Two cases are considered: (i) If

v /∈ V (X1)∩V (X2), then also
←−−
c(v) /∈ V (X1)∩V (X2). Furthermore, Condition

(2) of Proposition 2.1.2 is satisfied, because it holds in G(X1) or G(X2); (ii) if

v ∈ V (X1)∩V (X2), then also
←−−
c(v) ∈ V (X1)∩V (X2). Additionally, Condition

(2) of Proposition 2.1.2 is satisfied also, since in- and out-degrees which are
equal in G(X1) and G(X2), respectively, are added.

Observation and data evaluation have indicated that Theorem 2.1.5 is true.
However, the actual proof is not yet published and illustrates why Theorem 2.1.5
must be true.

Theorem 2.1.5. (Theorem 3.13, [24]) Let X ⊆ B3 be a trinucleotide circular
code of a size of at least 18. Then, X is self-complementary if, and only if,

1. | X | is even, i.e. | X |= 18 or | X |= 20 (and hence maximal);

2. V (X ) =
←−−−−−
c(V (X ));

3. d+(v) = d−(
←−−
c(v)) for any vertex v ∈ V (X ).

The upcoming proof shows that Theorem 2.1.5 is true. The line of argument is
structured as following: If a trinucleotide code X is non-self-complementary, but
is nevertheless associated with a graph G(X ) that satisfies the conditions (1), (2)
and (3), the code has a strong non-self-complementary subcode. The proof shows
that the circular permutation classes of the complements of the subcode can not
be in X . The code X would be either self-complementary or non-circular. Hence,
it contradicts the Theorem.

3Recall that the union G1 ∪ G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is defined as
G = (V1 ∪ V2, E1 ∪ E2).
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Proof. Be X ⊂ B3 circular code of size 18. The corresponding graph G(X ) fulfills
the Conditions (2) and (3) of the Theorem 2.1.2 but X is non-self-complementary.
Recalling the construction of such a code, we can say that if we remove all com-
plementary pairs from the code, the remainder must still satisfy conditions (2)
and (3) of the Theorem 2.1.2. Thus, a set X ∗ constructed as in construction 2.1.3
must be a subset of X ∗ ⊂ X . Construction 2.1.3 requires that 4 ≤ |X ∗| ≤ 8.
Consequently, it can be said that:

• for each w ∈ X ∗ it follows that
←−−
c(w) /∈ X

• |X ∗| ≥ |(α1(
←−−−
c(X ∗)) ∪ α2(

←−−−
c(X ∗)) ∩ X | ≥ |X ∗| − 2

Let Y = α1(
←−−−
c(X ∗)) ∪ α2(

←−−−
c(X ∗) be the subset of X , which contains all codons

of the circular permutation classes of
←−−−
c(X ∗), excluding the complements

←−−−
c(X ∗).

Claim (1): We claim that |Y ∩ X ∗| < |X ∗| − 2. Let us assume that |Y ∩ X ∗| ≥
|X ∗| − 2. Let {ba, bb, bc, bd} = B, where bc = c(bd) and ba = c(bb). One can
say that for all b1b2b3 ∈ X ∗ it follows that b2 ∈ {ba, bb}. We denote

Q1 = {b1b2b3 : b1, b2, b3 ∈ B ∧ b2 ∈ {ba, bb} ∧ b1b2b3 6= b2b3b1}

Hence, |Q1| = 30 and X ∗ ⊂ Q1. Let us denote Q2 as

Q2 = {b1b2b3 : b1b2b3 ∈ Q1 ∧ b1 ∈ {ba, bb} ∨ b3 ∈ {ba, bb}

It can be said that |Y ∩ X ∗| ⊂ Q2 and |Q2| = 22. Further, we denote three
additional subsets:

QXY Y = {b1b2b3 : b1b2b3 ∈ Q1 ∧ b1 ∈ {ba, bb}∨̇b3 ∈ {ba, bb}

QY Y Y = {b1b2b3 : b1b2b3 ∈ Q1 ∧ b1 ∈ {ba, bb} ∧ b3 ∈ {ba, bb}

QXYX = {b1b2b3 : b1b2b3 ∈ Q1 ∧ b1 ∈ {bc, bd} ∧ b3 ∈ {bc, bd}

The sets |QXYX | = 8, |QY Y Y | = 6, and |QY Y Y | = 16 are listed in Table 2.3 &
Table 2.2. Since QY Y Y consists of two circular permutation classes, it follows
that |Y ∩X ∗∩QY Y Y | ∈ {0, 2}. More precisely, if |Y ∩X ∗∩QY Y Y | = 2, then
|X ∗ ∩QY Y Y | = 2.

We claim (i) that if |X ∗ ∩ QY Y Y | = 2, then |X ∗| ≥ 6, and (ii) that if
|X ∗ ∩QXYX | = 0, then |Y ∩ X ∗ ∩QXY Y | = 0.

To claim (i) let {b1b2b3, b4b5b6} = X ∗∩QY Y Y , where bi ∈ {ba, bb} for i = 1, . . . , 6
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(a) if b2 = b5, it follows that c(b3b2)X, c(b6b5)X, Xc(b2b1) and Xc(b5b4) ∈ X ∗,
where X can be substituted with bc or bd.

(b) if b2 6= b5, it follows that b1b2 6= c(b5b6) and b2b3 6= c(b5b4). Hence, c(b3b2)X, c(b6b5)X,
Xc(b2b1) and Xc(b5b4) ∈ X ∗, where X can be substituted with bc or bd.

To claim (ii) Let |Y ∩ X ∗ ∩ QXY Y | = 2 and {b1b2b3, b4b5b6} = Y ∩ X ∗ ∩ QXY Y .
Without loss of generality, we may assume that b1, b2, b4, b5 ∈ {ba, bb} and
b3, b6 ∈ {bc, bd}. Consequently, b1, b2 = c(b4b5) and b3 = c(b6). This leaves
only one code pattern:

{bababc, bbbbbd, bbbaba, babbbb, bdbbba, bcbabb} = X ∗

An example of this code can be found in Example 15.2. In this case, X ∗
is non-circular. Therefore, X is non-circular, which is a contradiction. The
claims (i) and (ii) prove that |Y ∩X ∗| ≤ |X ∗|− 4. Thus, it proves claim (1).

Claim (2): Let G(Y ∗) be the associate graph to Y ∗ ⊂ Y , so that |Y ∩ Y ∗| ≥
|X ∗| − 2 and G(Y ∗) satisfies the Condition (2) and (3) of the Theorem 2.1.5.
As Y ∗ cannot be self-complementary, it must match Construction 2.1.3. Con-
sequently, |X ∗| ≥ |Y ∗| ≥ 4.

(a) Q1∩Y ∗ = ∅ and X ∗ ⊂ Q1. It must be true that X ∗∩
←−−−
c(Y ∗) = ∅ and α1(QXYX)∪

α2(QXYX) = SW (QXY Y ). If G(X ∗) is acyclic and satisfies condition (2) and
(3) of Theorem 2.1.5, it follows that |X ∗∩QXYX | ∈ 0, 1, 4. Otherwise, G(X∗)
is cyclic or does not satisfy Condition (2) and (3) of Theorem 2.1.5. This is
due to the fact that, if bcbabb ∈ X ∗, it follows that babbbc /∈ X ∗ and babbbc /∈
X ∗. Hence, for the two vertices with the labels bc and bd d

+(bc) 6= d−(bd).
Therefore, without loss of generality, it can be said that there is only one
possible construction of X ∗ and Y ∗ so that |Y ∩ Y ∗| ≥ |X ∗| − 2:

X ∗ = {bababc, bbbbbc, bbbaba, babbbb, bdbbba, bdbabb}

Y ∗ = {babdba, bbbdbb bbbcba, babcbb}

An example of this code X ∗ ∪ Y ∗ is given in Example 15.3. The associated
graphs G(X ∗) and G(Y ∗) are both acyclic and both satisfy Condition (2) and
(3) of Theorem 2.1.5. Yet, G(X ∗∪Y ∗) is acyclic and therefore a contradiction.

(b) Y ∗ ⊂ Q1 and X ∗ ⊂ Q1. It is obvious that X ∗ ∩
←−−−
c(Y ∗) = ∅. Furthermore, it

is clear that |(Y ∗ ∪ X ∗) ∩QXYX | ≤ 2. Hence, without loss of generality, we
can say that:

{bababc, bbbbbd, bbbaba, babbbb, bdbbba, bcbabb} ⊂ X ∗ ∪ Y ∗
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as in claim (1)− (ii), this leads to a contradiction, because X ∗ ∪ Y ∗ is non-
circular.

Claim (3): Let Y ∗1 ∪ · · · ∪ Y ∗k ⊂ X ∗ so that |Y ∩ (Y ∗1 ∪ · · · ∪ Y ∗n )| ≥ |X ∗| − 2 and
the associated graphs G(Y ∗i ), where i ∈ {1, . . . , k} satisfy the Condition (2)
and (3) of Theorem 2.1.5. This structure must be a contradiction. For proof
see claim (2)-(b).

Table 2.2: Set Q1, where all codons have a weak middle base. Put b2 ∈ {A, T} for all
b1b2b3 ∈ Q1. QXYX is in the two left columns; QXY Y is in the four middle columns;
QY Y Y is in the two right columns;

CAC GTG CAA TTG GTT AAC AAA TTT
CTC GAG CTT AAG GAA TTC ATA TAT
CTG CAG CAT ATG GAT ATC AAT ATT
GAC GTC CTA TAG GTA TAC TAA TTA

Table 2.3: Set Q1, where all codons have a strong middle base. Put b2 ∈ {G,C} for
all b1b2b3 ∈ Q1. QXYX is in the two left columns; QXY Y is in the four middle columns;
QY Y Y is in the two right columns;

ACA TGT ACC GGT TGG CCA CCC GGG
AGA TCT AGG CCT TCC GGA CGC GCG
AGT ACT ACG CGT TCG CGA CCG CGG
TCA TGA AGC GCT TGC GCA GCC GGC

The following examples are constructed to illustrate the patterns used in the
proof of Theorem 2.1.5.

Example 15.2. A code X ∗ of size six so that it fits the pattern

X ∗ = {bababc, bbbbbd, bbbaba, babbbb, bdbbba, bcbabb}

X ∗ = {AAG,ATT,CAT,GTA, TAA, TTC}

is strong non-self-complementary and non-circular, but its graph G(X ∗) satisfies
the Conditions (1) and (2) of Proposition 2.1.2. Figure 2.5 displays the graph
G(X ) associated to X .
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AA

AG

TC

TT

C

T

G

A GT

TA

CA

AT

Figure 2.5: Graph G(X ∗) of the strong non-self-complementary and non-circular code
X ∗ = {AAG ,ATT, CAT, GTA, TAA, TTC} of size six satisfies the two conditions (1)
and (2) of Proposition 2.1.2

Example 15.3. A code X = X ∗ ∪ Y ∗ of size ten, so that it fits the pattern

X ∗ = {bababc, bbbbbc, bbbaba, babbbb, bdbbba, bdbabb}

Y ∗ = {babdba, bbbdbb bbbcba, babcbb}

X = {AAG,ACA,AGT,ATT,CAT,CTA, TAA, TCT, TGA, TTG}

is strong non-self-complementary and non-circular, but its graph G(X ∗) satisfies
the two Conditions (1) and (2) of Proposition 2.1.2. Figure 2.6 displays the graph
G(X ) associated with X .

AA

AG

AC

CA

GT

AT

T

A

G

C

TT

CT

TA

TC

TG

GA

Figure 2.6: Graph G(X ) of the strong non-self-complementary and non-circular code
X = {AAG, ACA, AGT, ATT, CAT, CTA, TAA, TCT, TGA, TTG} of size ten satisfies
the two conditions (1) and (2) of Proposition 2.1.2
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In the subsequent section the focus moves to a more general perspective. The
targets of investigation are Circular `-letter codes over arbitrary alphabets Σ and
comma-free codes.

2.2 Properties of circular codes in general

Most theories on the evolution of the genetic code can be grouped into one of four
theory groups. In the introduction, we introduced these four theories [46, 47]. Let
us briefly summarize them: The frozen accident theory, which assumes that the
code has remained frozen since its origin; the stereochemical theory, based on stere-
ochemical relationships between amino acids and specific (anti-)codons [64, 79]; the
adaptive theory, proposing that the genetic code was designed to be maximally ro-
bust [76, 35]; and the coevolution theory of the genetic code, relating its evolution
to amino acid biosynthetic pathways [77].

If we assume that circular codes were an influencing factor in evolution, it is
important to create a hypothetical model of this process. From a biomathematical
point of view, this means that we need to have improvable features as fitness values
in such an evolutionary mode. To develop such features, we can use constraints
of the adaptive theory as guidance. Two easily identifiable features under these
constraints are the maximum size and the frameshift robustness of a code. In
many respects, these characteristics contradict each other. For instance, a circular
trinucleotide code has a maximal size of 20. Whereby the maximal size of the
more restrictive strong comma-free trinucleotide codes is only 9, see [26]. To
investigate these correlations, we fully characterise the maximal size of circular
codes in section 2.2.1. Subsequently, in section 2.2.2, we present a separation of
any maximal circular trinucleotide code into four equally sized comma-free codes
as a hypothetical reversed development of the evolution. Lastly, section 2.2.3
delineates a mapping from circular codes over a finite alphabet onto binary codes.
This method is presented as an apparatus to use methods from communication
engineering, to investigate other features of circular codes in sequences.

2.2.1 Maximal size of circular codes

In the introduction section 1.1.3, some of the most important models on the evo-
lution of the genetic code have been outlined. One of them, the adaptive theory
suggesting that the genetic code was designed to be maximally robust [76, 35].
The evolution proposed in this theory focuses on minimizing the effects of errors
in transcription and translation. Therefore, on the one hand, the code must have
enhanced the robustness against the incorrect reading of a codon and the resulting
incorporation of the wrong amino acid. On the other hand, the interest of evolu-
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tion must have been to maintain or rather increase the capacity of the information
processing system. If we apply this theoretical model to circular codes, however,
the maximum size of such a code becomes a very essential factor in the search
for hypothetical codes ancestral to the standard genetic code. Especially when
we consider that it has been suggested that a code before LUCA could be based
on dinucleotides or tetranucleotides [47]. The Examples 15.4, 15.5, 15.6 illustrate
maximum codes of different word lengths.

Example 15.4. This example presents a maximal circular tetranucleotide code
Xtetra ⊂ B4. The maximal size of a circular tetranucleotide code is 60.

Xtetra = {AAAC, AAAG, AAAT, AACC, AACG, AACT, AAGC, AAGG,
AAGT, AATC, AATG, AATT, ACAG, ACAT, ACCC, ACCG, ACCT, ACGC,
ACGG, ACGT, ACTC, ACTG, ACTT, AGAT, AGCC, AGCG, AGCT, AGGC,
AGGG, AGGT, AGTC, AGTG, AGTT, ATCC, ATCG, ATCT, ATGC, ATGG,
ATGT, ATTC, ATTG, ATTT, CCCG, CCCT, CCGG, CCGT, CCTG, CCTT,

CGCT, CGGG, CGGT, CGTG, CGTT, CTGG, CTGT, CTTG, CTTT,
GGGT, GGTT, GTTT}

Example 15.5. This example presents a maximal circular trinucleotide code Xtri ⊂
B3. The maximal size of a circular trinucleotide code is 20.

Xtri = {AAC, AAG, AAT, ACC, ACG, ACT, AGC, AGG, AGT, ATC, ATG,
ATT, CCG, CCT, CGG, CGT, CTG, CTT, GGT, GTT}

Example 15.6. This example presents a maximal circular dinucleotide code Xdi ⊂
B2. The maximal size of a circular dinucleotide code is 6.

Xdi = {AC, AG, AT, CG, CT, GT}
In order to use the circular codes as a selection factor to promote the search

for these hypothetical ancestor codes, it is vital to generally characterize the be-
havior of these codes by adjusting the word length or cardinality of the alphabet.
Thus, it is relevant to be able to explain the advantages and disadvantages of such
adjustments in circular codes. This poses the following two questions:

• How does genetic information processing benefit from a circular code with
increased word length?

• How does genetic information processing benefit from a circular code with
an extended alphabet?

Before we answer these question we introduce an optimized algorithm to cal-
culate the maximum size of a circular code. The obtained algorithm is faster and
easier to program as the origin function to calculate the maximum size of a circular
code. This facilitated working with these codes and allowed for characterizing the
behavior of the maximality in terms of circular codes.
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Optimization of the algorithm to calculate growth of maximality

The aim of this section is to optimize the algorithm to calculate the maximum
size of circular codes. As mentioned above, this improved algorithm can be im-
plemented easily and facilitate the research in this subject. The maximum size of
a circular code depends on the word length ` and the cardinality of the alphabet
n = |Σ|. The expression for calculating the maximum size of a circular code is
based on the Möbius function µ(n), a multiplicative function in number theory.
This function has values {-1,0,1} that depend on the number of prime factors of
the input n. Before we show the definition of the Möbius function, we need to
define ω(x). Let x be a positive integer, then ω(x) is the number of prime factors
of x. Next, we define the Möbius function:

µ(n) =

{
(−1)k if n is a square-free positive integer. k = ω(n),

0 if n has a squared prime factor

Definition 16. The different means of factorizing a number n ∈ N are denoted
as follows:

.

Set Explanation Example
Pn The set of prime factors of n. Includ-

ing n in case n is prime.
If n = 12→ Pn = {3, 2}
If n = 5→ Pn = {5}

F−n The set of all factors of n, excluding
n.

If n = 12→ F−n = {6, 4, 3, 2, 1}

Fn The set of all factors of n, including
n.

If n = 12
→ Fn = {12, 6, 4, 3, 2, 1}

We define ω(n) as integer: ω(n) = |Pn|

The expression to find the maximal size of a circular code for a given tuple
{`, n} uses the Möbius function. This function M(n, `) subtracts the number of
words in so-called incomplete circular permutation classes from the number of all
words of length ` over a alphabet Σ with n = |Σ| and then divides the result by `.
Example 16.1 demonstrates this with the calculation for dinucletide codes.

Example 16.1. Let Kc, Ki be sets, so that Kc lists all dinucletide complete circular
equivalence classes:

Kc = {AC,CA}, {AG,GA}, {AT, TA}, {CG,GC}, {CT, TC}, {GT, TG}.

and Ki lists all dinucletide incomplete circular equivalence classes:

Ki = {AA}, {CC}, {GG}, {TT}
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To calculate the maximal size of a dinucletide code where ` = 2 and n = |{A,C,G, T}| =
4, one has to subtract the number of words in all incomplete circular equivalence
classes, denoted as ki

ki =
∑
K∈Ki

|K| = 4

from the number of all words 42 = 16 and then divide it by ` = 2.

|Kc| =
n` − ki
`

=
42 − 4

2
= 6

Therefore, the result of M(n, `) is the number of complete circular permuta-
tion classes. In the article [23] it is proven that the number of complete circular
permutation classes with a word length ` over an alphabet Σ is always equal the
maximal size of circular code with a word length ` over Σ. Hence, there must exist
a circular code over Σ with any word length `, which contains one word from each
complete circular permutation class. (See Examples 15.4, 15.5, 15.6)

M(n, `) =
∑
f∈F`

µ(f)
n

`
f

`
(2.1)

By definition, the Möbius function requires the number of all prime factors
of a number. The complexity of this function (2.1) is O(`2). By changing the
function, the complexity can be improved. Assuming that ` is a prime number,
in this case it is trivial to set up the equation, since there are only two terms
with the Möbius function as coefficient which is µ(1)

`
· n` and µ(`)

`
· n. . We simply

say that M(n, `) = n`−n
`

and ω(`) = 1. Recalling the definition of ω(`), it can
be said that if ω(`) > 1, it follows that ` is not a prime number and vice versa.
Therefore, it holds true that if ` is not a prime number, as in the trivial case,
then P` = {p1, p2, . . . , pω(`)} is the set of all prime factors of `. If we recall the
definition of the Möbius function, we can say that the exponents ai of the factors

pi in ` =
ω(n)∏
i=1

pi
ai can be ignored, as only the factors in F`, where all ai = 1, have an

influence on the result of M(n, `). Evidently, the highest order in the polynomial
n` is always positive, since µ(1) = 1. This allows the function to be expressed as

M(n, `) = n`+z(n,`)
`

as in Definition 17.

Definition 17. Let M(n, `) = n`+z(n,`)
`

be the equation to calculate the maximal
size of a circular code X under an alphabet Σ with a word length `, so that n = |Σ|.
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z(n, `) =
∑

p1∈P`
(−n

`
p1 −

∑
p2∈P`\{p1}(−

n
`

p1p2

2
−
∑

p3∈P`\{p1,p2}(−
n

`
p1p2p3

3
−

. . . −
∑

pω(`)∈{pω(`)}−
n

`
p1p2...pω(`)

ω(`)!
)))

This new notation in Definition 17 allows for the reduction reducing the com-
plexity to 2o(`). The improvement is mainly achieved by ceasing the use of the
Möbius function. Hence, it is no longer necessary to find and count all prime fac-
tors of all (not only prime) factors of `. The Pseudocode 1 below shows an efficient
way to implement the new notation of the maximal size function.

Pseudocode 1. Function to calculate the maximal size of circular codes. The
function uFactors used in the code is defined as a function that returns a unique
set P of the prime factors of ` so that 1, ` /∈ P .

Require: `, n ∈ N ≥ 2
function maxSize(n, `)

P ← uFactors(`)
E ← {1}
CO ← {−1}
res← n`

for p ∈ P do
for idx ∈ 1 . . . |E| do

e← E(idx) · p
co← CO(idx) · −1
E.add(e)
CO.add(co)

res← res+ co · n `
e

end for
end for
return result

`

end function

Example Procedure
Assume Σ = {0, 1, 2}, n = |Σ| = 3 and ` = 6
P` ← {2, 3}
E ← {1}
CO ← {1}
res← 36 →729

for p = 2
for e = 1 · 2, co = 1 · −1
E ← E ∪ {e} →{1, 2}
CO ← CO ∪ {co} →{1,−1}
res← 729 + co · 33 →702

for p = 3
for e = 1 · 3, co = 1 · −1
E ← E ∪ {e} →{1, 2, 3}
CO ← CO ∪ {co} →{1,−1,−1}
res← 702 + co · 32 →693

for e = 2 · 3, co = −1 · −1
E ← E ∪ {e} →{1, 2, 3, 6}
CO ← CO∪{co} →{1,−1,−1, 1}
res← 693 + co · 31 →696

return 696
6

→116

If we examine the maximum sizes of the Examples 15.4, 15.5, 15.6 more closely,
the values seem to increase in an exponential curve in relation to the word length.
By itself, this would be an indicator that word length has increased in the course
of evolution. However, there are other features than the word length to consider
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as factors of evolution. For instance, a maximal circular tetranucleotide code uses
6000/44 ≈ 23.4% of all possible words while the maximal circular dinucleotide
code uses 600/42 = 37.5%. In the subsequent section, we refine the feature by
relating the percentage of use to the circular classes.

Expression to calculate the number of all circular permutation classes

In this section, we introduce an equation L(n, `) to calculate all circular permu-
tation classes, not just the complete ones. This value can be used to explain the
plausibility of a word length used in the evolution process. After introducing this
function, Table 2.4 displays the growth of the maximal length of a code in compar-
ison to the results of L(n, `). The equation to obtain all circular classes for a given
tuple of {`, n} is slightly more complex than M(n, `). The polynomial M(n, `) only
returns the number of complete permutation classes. A polynomial containing as
well the incomplete permutation classes must be basically an extension of M(n, `).

Proposition 2.2.1. The polynomial L(n, `) returns the number of all permutation
classes for {`, n}. It is defined as:

L(n, `) =
∑
f∈F`

(λfn
`
f )

Where the coefficients λf for f ∈ F` are defined as:

λf =
1

`

∑
i∈Ff

µ(i)
f

i

Proof. The result of M(n, `) is defined as the number of complete classes with
respect to n and `. Therefore, the polynomial L(n, `) is M(n, `) with the addition
of the number of all incomplete classes. The number of incomplete classes, on the
other hand, is equal to the number of complete classes of all factors of `, including
the number 1 but excluding `. The set of factors is called F−` . Thus, L(n, `) can
be defined as follows:

L(n, `) =
∑
f∈F`

M(n, f)

The set of the polynomials summed in L(n, `) is called Ln,`

Ln,` = {M(n, f) : f ∈ F−` }

so that
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L(n, `) = M(n, `) +
∑

m∈Ln,`

m

Each coefficient of the proposed equation must combine all coefficients of the
polynomials in Ln,`. The interaction is only relevant for those that contain a non-
zero term with the same degree. The coefficients of each of the polynomials are 1,
divided by the corresponding word length, in this case called i.

Assume M(n, i1) has a non-zero term nx and is one of the polynomials in Ln,`.
This leads to two conclusions: (i) x, i1 ∈ F−` and x ∈ Fi1 and (ii) the term in
M(n, i1) appears as 1

i1
µ( i1

x
)nx. Consequently, the coefficient 1

i1
µ( i1

x
) must be taken

into account in the coefficient λf of the term nx in L(n, `).
Hence, i2 ∈ Ff , so that i1

x
= i2. In addition, for each i1 ∈ Ff there exists

exactly one M(n, `
f1

) ∈ Ln,`, which has a non-zero coefficient of the term nx. This

ensures that µ(i2) in λf is equal to µ( i1
x

) in M(n, i1). Furthermore, by the value

of f one can say: `
x

= f and thus f
i2·` = 1

i1
.

This shows that for every M(n, ij) that has a non-zero term of degree x, there
is exactly one equal element in λf that is the coefficient of the term nx in L(n, `).
This applies in both directions. Each element of the sum of each coefficient λf
appears exactly once in a coefficient of the term of equal degree in one of the
polynomials in Ln,`.

Table 2.4: This table displays the growth of the maximal length of a code in comparison
to the results of L(n, `). The entries contain the values for dinucleotide, trinucleotide,
and tetranucleotide codes. The last column indicates the percentage use of a maximum
code of all circular permutation classes.

|Σ| ` L(|Σ|, `) M(|Σ|, `) %
4 2 10 6 60%
4 3 24 20 ≈ 83%
4 4 60 70 ≈ 85%

Let us assume that the C3 property is somehow important for the frameshift
retrieval in the translation process. In a C3 code, the circular 1-permutation as well
as the circular 2-permutation of the code are again a circular code. Which means,
if the code is maximal, all except for the words in incomplete classes are involved.
Then, the absolute percentage of all words used in a maximal codes is of secondary
importance. This implies that the values introduced in Table 2.4 are a better fitting
value to measure the advantages of codes with increasing word lengths. The values
show that the step between dinucleotide codes and trinucleotide words is more than
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20%, while the step between trinucleotide codes and tetranucleotide codes is less
than 3%.

Behavior of circular codes with increasing word length

It is true that the maximum size of circular codes increases exponentially as the
word length increases. However, under restrictions, the growth of maximum size
in terms of word length is not homogeneously exponential. The maximum size of
a code depends on the factors of `, denoted as F` (see also Section 2.2.1).

Proposition 2.2.2. For all n ≥ 2 ∈ N and ` ≥ 2 ∈ N, the following must hold
true:

n` − n(b `
2
c+1)

`
< M(n, `) ≤ n` − n

`

Proof. We claim that:

(i) The non-zero term with the highest degree in z(n, `) (see Definition 17) has
a negative coefficient,

(ii) z(n, `) (see Definition 17) is always negative and z(n, `) ≤ −n,

(iii) −n(b `
2
c+1) < z(n, `).

Summarizing claims (i), (ii) and (iii), we can say that

−n(b `
2
c+1) < z(n, `) ≤ −n

Claim (i) We claim that the term with the highest degree in z(n, `) (see Defini-
tion 17) has a negative coefficient. Thus, z(n, `) is negative. Suppose that
P` is a set of all prime factors of `. P` is defined so that 1, ` /∈ P`. Let us
assume that pl is the lowest prime factor of P`. With respect to the M(n, `)

in section 2.2.1, it can be said that n
`
p1 is negative and `

p1
is the degree of

z(n, `).

Claim (ii) z(n, `) is always negative and equal or less than −n. Since the term
with the highest degree has a negative coefficient, we can formulate the
following expression:

n
`
p1 >

∑
i∈F`\{1,p1}

n
`
i

Both sides of the expression have the factor n, which allows for simplifying
it:

n · x > n · y with x, y ∈ N
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which follows that
x− 1 ≥ y

This shows that z(n, `) is always equal or less than −n.

Claim (iii) With reference to claim (i), we can say that the degree of the poly-
nomial z(n, `) is `

2
at most. Moreover, if 2 is not a factor of `, it follows

that the degree of the polynomial z(n, `) is `
3

at most or, more generally, the

degree of the polynomial is ≤ `
2
. Therefore, n(b `

2
c+1) >

b `
2
c∑

i=1

ni, which forces

that the following holds:

n(b `
2
c+1) > |z(n, `)| > n and z(n, `) < 0

In conclusion, it proves that:

n` − n(b `
2
c+1)

`
<
n` + z(n, `)

`
≤ n` − n

`

Hence, it proves Proposition 2.2.2.

In Proposition 2.2.3, we demonstrate that M(n, `) is monotonously increasing
in respect to the word length `.

Proposition 2.2.3. If n and ` are integers, both are at least 2. Then, the function
value M(n, `) < M(n, `+ 1).

Proof. Let us assume that ` is prime. Therefore, M(n, `+ 1) ' n(`+1)−n(b `+1
2 c+1)

`+1
. In

section 2.2.1, the value z(n, `) (see Definition 17) is introduced. It is obvious that

it says that n(b `
2
c+1) > |z(n, `)| ≥ n. It follows that in the polynomial M(n, `+ 1),

the coefficient of the term of degree ` is zero. Therefore, we can say that the
proposition must be true if the following is true:

n(`+1) − n(b `+1
2
c+1)

`+ 1
− n` − n

`
≥ 0

Since ` ≥ 2, it follows that this is true if

`(n(`+1) − n(b `+1
2
c+1))− (`+ 1)(n` − n) ≥ 0

n` +
`+ 1

`
− n(`−1) − nb

`+1
2
c − n(`−1)

`
≥ 0
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It applies that for ` ≥ 2 one can say `− 1 ≥ b `+1
2
c . Thus:

n` +
`+ 1

`
− 2n(`−1) − n(`−1)

`
> 0

and further simplified

(n− 1)n(`−1)

2
− n(`−1)

`
> 0

Which proves that

M(n, `+ 1)−M(n, `) > 0

Figure 2.7: The graph shows the exponentially growing values of M(4, `). The blue

circles mark the values for M(4, `). The upper limit mmax := 4`−4b
`
2+1c

` is represented

by the red line, while the lower limit mmin := 4`−4
` is represented by the blue line.The

graphic displays the values for a range of values from 1 to 20 for `.

Figure 2.7 shows the growth of the maximal size of codes over an alphabet Σ
with a cardinality of 4. Without loss of generality, we can adapt this to any alpha-
bet with a cardinality of greater or equal 2. This becomes more understandable if
we include Figure 2.8.
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Figure 2.8: These plots depict the absolute and relative difference between M(4, `)
and its boundaries. The exponentially growing values must be always between their
boundaries. It shows that M(4, `) is always closer to its lower bound 4`−4

` than to its

upper bound 4`−4b
`
2+1c

` . Furthermore, it illustrates that the relative error η is close to
zero.

Figure 2.7 and Figure 2.8 complete the characterization of the maximal size
of circular codes. Figure 2.8 shows that the relative distance to the lower bound
can be almost neglected. Therefore, it can be approximated that the first partial
derivative of M(n, `) in respect to the word length ` is:

∂M(n, `)

∂`
(n, `) ≈ n(−1+`)log(n)

Despite the fixed cardinality of the alphabet used in the graphics, ∂M(n,`)
∂`

shows
that the graphics and the results can be considered as generally valid.

2.2.2 Comma-free separation of the trinucleotide permu-
tation classes

Existing theories of hypothetical ancestor genetic codes state that there was a code,
which was non-degenerate and comma-free. One of the most famous theories has
been proposed by Shepherd [72], Clarke [10], Crick et al. [13]. Their theory is based
on the so-called RNY code (R = purine (G or A); Y = pyrimidine (T = C); and N
= (A,C,G,T)). A code following their theory would have had 16 triplets encoding
only 8 amino acids. In 1990, Neveln [59] suggested that if such synchronizable codes
had an influence on the development of the hypothetical ancestor code, such codes
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could be used as a guideline in the search for a primitive genetic codes. We took
up the idea of the article that comma-free codes can support the search for these
hypothetical ancestor codes and obtained results that can support the research
as a theoretical basis. In our approach, a reverse-engineering of the evolution,
we present a method to separate all maximal circular codes into four equally size
comma-free subsets.

To separate maximal circular codes into four comma-free subsets, this subsec-
tion presents a method for separating the 20 circular trinucleotide permutation
classes into four equally sized sets. These subsets will be called comma-free sub-
sets S1-S4. A code X ⊂ Si containing only words from one of the four comma-free
subsets is either comma-free or not even circular.

Definition 18. Let S1,S2,S3,S4 ⊂ B3 be equally sized sets of codons, so that:

Si ∩ Sj = ∅ with i, j ∈ {1, 2, 3, 4}, i 6= j

and

i≤4⋃
i=1

Si = B3 \ {AAA, TTT,CCC,GGG}

Each set Si is defined so that for a maximal trinucleotide circular code X ⊂ B3,
the subset:

X S = X ∩ Si for i ∈ {1, 2, 4, 4}

must be comma-free and |X S| = 5.
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S1 S2

CTG GTC GAG CAC ATA GAC CAG GTG CTC TAT
GCT CGT AGG ACC TAA ACG AGC TGG TCC ATT

TGC TCG GGA CCA AAT CGA GCA GGT CCT TTA
TGA AGT ACA TCT CGC ACT TCA TGT AGA GCG
ATG TAG CAA CTT GCC TAC ATC GTT GAA CGG
GAT GTA AAC TTC CCG CTA CAT TTG AAG GGC

S3 S4

SW

KM KM

SW

Table 2.5: S1-S4, the four comma-free subsets of B3. A code X ⊂ B3 and X ⊂ Si,
where i ∈ {1, . . . , 4} is either comma-free or not even circular. Each subset Si contains
five circular permutation classes. So, if X ⊂ Si is comma-free, |X | ≤ 5 follows. The
transformations I, SW,KM,Y R ∈ L (Y R = KM ◦ SW ) map the four subsets to each
other. The green colored codons are the codons in the RNY code.

This also proves that any maximal circular code can always be separated into
four comma-free codes of size five. Let us assume, X ∗ ⊂ B3 is a trinucleotide
maximal circular code. And X = X ∗ ∩ Si, where i ∈ {1, . . . , 4} is a subset of
one of the four comma-free subsets. Therefore, X must be comma-free. Next, we
introduce the construction of the four comma-free-subset.

Observation 2.2.1. The four subsets in Table 2.5 separate the RNY code into
four complementary subcodes of size four.

{GAT,AGT,AAC,GCC} ↔ {ATC,ACT,GTT,GGC}

and

{GCT,GTC,ACC,AAT} ↔ {AGC,GAC,GGT,ATT}

The observation 2.2.1 presents evidence that the RNY code appears in the
Table 2.5. Astonishingly the appearance of the RNY is in four equally sized
complementary sets.

Construction method 2.2.4. Recall the graph property of a graph G(X ) =
(V (X ), E(X )) in association with a comma-free code. The longest path in G(X ) is
lmax(X ) = 2. To guarantee that lmax(X ) ≤ 2, it is sufficient to guarantee that for
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dinucleotide vertices v ∈ V (X ) ∩B2, the degree d(v) = 1. Hence, if lmax(X ) 6= 1,
the longest path in G(X ) is in the form of:

p : a1 → n1 → a2

The four comma-free subsets S1-S4 in Table 2.5 are structured so that the fol-
lowing applies to all codons in the same subset:

b1b2b3 ∈ Si it follows that b1b2b4, b4b1b2 /∈ Si where b3 6= b4

Note that each subset contains five complete circular permutation classes. To sat-
isfy this condition, we reduce the permutation classes to a set of dinucleotides. Let
H = {b1b2b3, b2b3b1, b3b1b2} be a circular permutation class. Then, this permuta-
tion class can be transformed with a transformation T (·) into a set of the codons
dinucleotide prefixes and suffixes T (H) = Ḣ = {b1b2, b2b3, b3b1}.

For all H1, H2 ⊂ Si it follows that T (H1) ∩ T (H2) = ∅

The comma-free subsets S1-S4 can easily be constructed under the above condition.
The actual construction is now trivial.

2.2.3 Mapping functions

The focus of this last subsection of the chapter lies on the construction of a model
which allows for a binary representation of a circular code over an arbitrary al-
phabet. To the best of our knowledge, the results obtained cannot be readily
associated with biological research. This mapping is developed as an adapter to
research methods from information technology. Possible applications are methods
like a binomial distribution to determine if a sequence is random. Another promis-
ing branch of research are artificial neural networks to detect patterns in binary
sequences.

When a code is mapped from a source Σ alphabet to a binary target Σ2 =
{0.1}, it is necessary to preserve the relevant properties with respect to the theory
of circular code. The properties mentioned are: Circularity, comma-free, self-
complementary and C`. The following section first introduces an algorithm that
ignores the maximum size of the original code. A second approach shows the
possible mappings where the maximum size was taken into account. However, this
limits the amount of possible mappings.

We will denote Xb as the binary representative, Σ2 is denoted as the binary
alphabet and `∗ is the word length of Xb.
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Definition 19. Let Xo ⊂ Σ` be a `-letter code over an alphabet Σ and Xb ⊂ Σ`∗
2

its binary representation. Then, the mapping function t:

t : Σ` → Σ`∗
2

is defined so that for Xb = t(Xo) the following must hold:

• Xb is circular if Xo and vice versa

• Xb is comma-free if Xo and vice versa

• Xb is self-complementary if Xo and vice versa

• Xb is C` if Xo and vice versa

Except for the self-complementarity of the listed properties in Definition 19,
all of them are naturally defined and can easily be adapted to any alphabet. To
obtain the self-complementarity of the code Xo, a complementary mapping of the
letters of the alphabet Σ2 is required. Since there is no natural complementary
mapping in the binary alphabet, it must be created beforehand. For the binary
case, this can be easily achieved, since there is only one logical option: c(1) = 0
and c(0) = 1.

Theorem 2.2.1. Let ` ≥ 2 be an integer and Xo ⊂ Σ` be a `-letter code over
an alphabet Σ. Then, the mapping function t(·) conserves the properties listed in
Definition 19 if we find a mapping function to map the letters in the alphabet to
an binary code denoted as Xw:

ta : Σ→ Xw

so that Xw = ta(Σ) ⊂ Σ
`∗/`
2 is a comma-free self-complementary binary (`∗/`)-letter

code. Additionally, Xw must be comma-free in every circular permutation of Xw.

Proof. Let Xo ⊂ Σ` be a code and Xb = t(Xo) its binary representative. We define
Xw = ta(Σ) as a binary code representing the alphabet Σ.

Circular The definition of a circular code says that any concatenation of words
written on a cycle can only be decomposed into words in one reading-frame.
To prove that Theorem 2.2.1 is true, we simply refer to this definition. If
words can only be decomposed into words within one reading-frame, it must
also be true for tuple of words in Xw.

Comma-free If Xw is comma-free, this means that any concatenation of words
in Xw is frameshift robust. It is easy to see that it must be true for tuples
of Xw.
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self-complementary If Xw is self-complementing, it is self-evident that Xb is
self-complementing when Xo is.

C` We would like to refer to the point Comma-free in this proof. Since Xw is
defined as comma-free code in every circular permutation Xw, we can use
the same argument.

Construction method 2.2.5. Let us first reuse the notation from above. Let
Xo ⊂ Σ` be a `-letter code and Xb = t(Xo) its `∗-letter binary representative. We
define Xw = ta(Σ) as a (`∗/`)-letter binary code representing the alphabet Σ.

We start with the construction of Xw. In a first step, a correct word length `∗
of of the binary representative Xb needs to be determined. For this construction
algorithm, the `∗ must be chosen as the alphabet length of the source code Xo plus
1 times the word length `

`∗ = ` · (|Σ|+ 1)

To construct Xw, the letters in Σ must be arranged in linear order. The posi-
tions of the complementary letters need to be inverse. Suppose A, B ∈ Σ being
letters in Σ and A is the complement of B. Consequently, the position of B in
the linear order equals 1 + ` minus the position of A in the order. In the genetic
context we can arrange the order of the letters in eight different ways as follows:
(1) A < C < G < T ; (2) T < C < G < A; (3) A < G < C < T ; (4)
T < G < C < A; (5) C < A < T < G; (6) C < T < A < G; (7) G < A < T < C
or (8) G < T < A < C
Each linear order leads to a different mapping result.

If we then construct Xw, we will build the words letter by letter in the predefined
order. We start with a word that has a leading 1, followed by multiple 0. For each
subsequent word, we replace the first 0 with a 1. This ensures that Xb has all the
required properties. See the Example 19.1 for B

Example 19.1. Let X ∗ be a trinucleotide C3 code:

X ∗ = {AAC, AAG, AAT, ACC, ACG, ACT, AGC, AGG, AGT, ATC, ATG,
ATT, CCG, CCT, CGG, CGT, CTG, CTT, GGT, GTT}

Let ta : Σ → Xw be the mapping function so that Xw ⊂ Σ5
2. The linear order

used for ta(·) is A < C < G < T . It can be defined as:

A → 10000
C → 11000
G → 11100
T → 11110
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Which follows that Xw = {10000, 11000, 11100, 11110}. Consequently, t(X ∗) is
a binary C15 code:

t(X ∗) = {100001000011000, 100001000011100, 100001000011110,
100001100011000, 100001100011100, 100001100011110, 100001110011000,
100001110011100, 100001110011110, 100001111011000, 100001111011100,
100001111011110, 110001100011100, 110001100011110, 110001110011100,
110001110011110, 110001111011100, 110001111011110, 111001110011110,

111001111011110}

The Example 19.1 shows the mapping algorithm of a genetic code into a bi-
nary code. For reasons of readability, we will try to use the genetic alphabet in
subsequent chapters.

Mapping with maximal size Most tuples of an alphabet Σ and a word length
` have a different maximum size. Only few tuples get the same result from the
equation M(n, `). Therefore, only a brute force algorithm was able to recognize
the possible combinations.

# M(|Σ|, `) |Σ| `
2 4

1 3
3 2
2 5

2 6
4 2
2 7

3 18
3 4
2 13

4 630
36 2
8 5

5 6552
27 3

Table 2.6: The table lists all possible combinations |Σ| and ` with the same maximum
size. The brute force algorithm checked all values of |Σ| = 1, . . . , 50 and ` = 1, . . . , 50.

As Table 2.6 reveals, the possible combinations are limited. More disappoint-
ingly, no relationship to an evolutionary model of the genetic code could be found.
Yet, this is only to the best knowledge of the author. If there are models that can
be linked to these numbers, we hope that a reader will recognize this and be able
to apply this table.
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2.3 Summary of Chapter 2

In summary, a (genetic) circular code can be fully classified by the means of its
associated graphs. We have shown that for a circular code X ⊂ B3, the path
length of the longest path lmax(X ) must satisfy the following conditions:

1. 1 ≤ lmax(X ) ≤ 8;

2. If X is self-complementary, then lmax(X ) ∈ {1, 2, 3, 4, 6, 8}, i.e., lmax(X ) =
5, 7 are excluded;

3. If X is maximal and self-complementary, then lmax(X ) ∈ {4, 6, 8}, i.e., in
addition to (2), lmax(X ) = 1, 2, 3 are impossible.

These conditions are refined for maximal circular codes by the three statements
below:

1. If lmax(X ) = 4, then the longest paths are of the form

a1 → b1 → a2 → b2 → a3

2. If lmax(X ) = 6, then the longest paths are of the form

b1 → a1 → b2 → a2 → b3 → a3 → b4

3. If lmax(X ) = 8, then the longest paths are of the form

a1 → b1 → a2 → · · · → a4 → b4 → a5

In this chapter we introduced the the reading-frame number nX . This number
indicates how many nucleotides are needed in a sequence to retrieve the read-
ing frame. In Theorem 2.1.4, we formulated statements about the reading-frame
number nX . These statements are:

1. nX = lw(p) + 2, if p = a1 → b1 → · · · → bk or p = b1 → a1 → · · · → ak;

2. nX = lw(p) + 1, if p = a1 → b1 → · · · → ak;

3. nX = lw(p) + 3, if p = b1 → a1 → · · · → bk,

where the nucleotide bi ∈ B and the dinucleotide ai ∈ B2 for any i. In the
Section 2.1.2 we introduced a classification of the codes based on their longest
path in the graph they are associated with. Table 2.7 lists all classes and the
reading-frame numbers associated with the classes.
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Longest path classes: X1 X2 X3 X4 X5 X6 X7 X8

Readingframe number nX : 5 6,7 8 9,10 11 12,13 14 15

Table 2.7: The reading-frame number nX for the 8 classes of circular trinucleotide
codes.

Furthermore, we were able to fully classify all graphs associated with a self-
complementary code of a size of at least 18 using recognizable conditions. These
conditions are formalized in the Theorem 2.1.5:

1. | X | is even, i.e. | X |= 18 or | X |= 20 (and hence maximal);

2. V (X ) =
←−−−−−
c(V (X ));

3. d+(v) = d−(
←−−
c(v)) for any vertex v ∈ V (X ).

Five main objectives have been achieved in the second section 2.2 of this chap-
ter. Firstly, an advanced algorithm to calculate the maximal size of circular codes
was presented. This improved algorithm is easy to script and has improved perfor-
mance in terms of its input. Subsequently, an expression to calculate all circular
permutation classes for an arbitrary finite alphabet and an arbitrary word length
has been introduced:

L(n, `) =
∑
f∈F`

(λfn
`
f )

Where the coefficients λf for f ∈ F` are defined as:

λf =
1

`

∑
i∈Ff

µ(i)
f

i

Thirdly, a full characterization of the maximal size of circular codes was given.
The introduced approximated first partial derivative of M in respect of ` is

∂M(n, `)

∂`
≈ n(−1+`)log(n)

This was followed by a mapping function as a potential machine to replicate
an evolutionary process. Table 2.6 displays feasible evolutionary transformations
without loss of circular properties. Finally, the chapter concluded with a separation
of the 20 circular permutation classes into four comma-free subsets, which proves
that any maximal circular code can be separated into four comma-free codes of
size five.
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Chapter 3

Tessera circular codes

This chapter continues the examination of a potential ancestor code. The model
used for the research depicted in this chapter is that of the so called Tessera
code. When they first introduced this model, Gonzalez, Giannerini and Rosa [40]
pointed out that the degeneration in amino acid coding has often been neglected
in comprehensive evolutionary theories. Yet, there has also been some important
research on this topic in the second half of the last century. In particular, the
model by Yury Borisovich Rumer from 1966 [67], which was taken up by Fimmel
and Strüngmann [31], was the first to show that the occurrence of degeneration as a
repercussion of symmetry cannot be ignored. In the work of Gonzalez, Giannerini
and Rosa a new possible evolutionary step in amino acid coding was introduced.
Their idea states that degeneration is based on the principles of symmetry. Such
a behavior can often be observed in nature. One of the best-known examples the
field of quantum mechanics, where we can say that quantum degeneration is a
consequence of symmetry. Hence, it is only logical to apply this model to the
degeneration of the genetic code.

The first section 3.1 of this chapter introduces the structure and main principles
of the Tessera codes. In the following chapter 3.2, we specify the behavior of
Tessera codes under the constraints of the circular code theory. The sections 3.3
and 3.4 put two construction methods of circular Tessera codes forward. Both, the
method in section 3.3 as well as the one in section 3.4 can construct all maximal
Tessera codes. As a refined version of the method in chapter 3.3, the method in
chapter 3.4 can also construct comma-free codes and circular codes of any size.
Both methods conclude with properties of circular Tessera codes derived from the
constructed codes.
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3.1 Introduction of Tesserae

Existing theories describe an evolutionary ancestor to the modern genetic code
that consisted not only of trinucleotides but also of dinucleotides, tetranucleotides
or combinations of them (see [39, 3, 68, 63, 75, 78]). Among others, there are
theories that propose the so-called Tessera codes, an especially selected subset of
tetranucleotides, for the role of an ancestor code. Figure 3.1 shows a hypothetical
evolutionary timeline including the Tessera codes. In this hypothetical model the
Tessera codes appear as a link between the primitive genetic codes and the early
genetic code.

Figure 3.1: A model of the evolution of the genetic code according to the proposal of
Gonzalez, Giannerini and Rosa. Each node in the evolution line represents an important
milestone. The footer line shows the evolution of the word length `.(Image taken from
[40])

As mentioned above, the Tessera code was developed to situate symmetry as
the reason for degeneration in the evolution of the genetic code. The evidence
presented in article [40] illustrates that the Tessera code is one possible step of
the evolutionary process of the genetic code. Therefore, a combination of Tessera
code theory and circular code theory could mutually reinforce each other and
also provide a hypothetical description of their roles in RNA and DNA sequences.
This work serves as a guideline to identify the detection of circular Tessera codes
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in prehistoric RNA/DNA sequences, thus providing a theoretical basis.

T ESS ⊂ B4

The formal definition of Tesserae uses a Klein-four-group (V , ◦). In section 1.2.7
a group (L, ◦) has already been introduced [21]. This group is defined as V ⊂ L.
While all transformations in L maintain the codon-anticodon relationship, the
subset V can additionally be interpreted geometrically as a symmetry group of a
square. V = {I, SW, Y R,KM} in detail:
Identity:

I (or id) : (A, T, C,G)→ (A, T, C,G);

Strong/Weak (SW) or complementary transformation:

SW (or c) : (A, T, C,G)→ (T,A,G,C);

Pyrimidine/Purine (YR) transformation:

YR (or p) : (A, T, C,G)→ (G,C, T,A);

and Keto/Amino (KM) transformation:

KM (or r) : (A, T, C,G)→ (C,G,A, T ).

These four transformations are invariant with respect to the chemical properties
of nucleotides[38]. Figure 3.2 shows the geometric structure of the group (V , ◦).
As for (L, ◦), ◦ is the associative operator and V ⊂ L is a set of transformations,
so that V contains a neutral element I and the inverted π−1 = π for all π ∈ V .
Accordingly, all transformations in V are of order two. As visualized in Figure 3.2,
V is commutative.

T

G C

A

KM KM
YR

SW

SW

Figure 3.2: Graphical representation of the primeval base symmetries. KM is repre-
sented by red, YR by green and SW by blue colored lines
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The following list shows three properties of V . All of these properties can easily
be traced using Figure 3.2. These properties are:

π1 ◦ π1 = I for all π1 ∈ V

π1 ◦ π2 = π3 for all π1 6= π2 6= π3 ∈ V \ I

π1(b) 6= b for all π1 ∈ V \ I and b ∈ B

In conclusion, these properties show that (V , ◦) is an isomorphism to a so called
Klein-four group.

Definition 20. There are 64 Tessera words w ∈ T ESS. All of them are tetranu-
cleotides (four letter words) T ESS ⊂ B4. Each word is in form of:

w = b1b2π(b1b2) ∈ T ESS with π ∈ V and b1b2 ∈ B2

1

The T ESS can be classified as a code because each concatenation of w ∈ T ESS
has a unique decomposition over T ESS. The following table lists all Tesserae:

Table 3.1: A table of all Tesserae with the generating transformation

Dinucleotide I SW Y R KM
AA AAAA AATT AAGG AACC
CC CCCC CCGG CCTT CCAA
GG GGGG GGCC GGAA GGTT
TT TTTT TTAA TTCC TTGG
AC ACAC ACTG ACGT ACCA
AG AGAG AGTC AGGA AGCT
AT ATAT ATTA ATGC ATCG
CA CACA CAGT CATG CAAC
CG CGCG CGGC CGTA CGAT
CT CTCT CTGA CTTC CTAG
GA GAGA GACT GAAG GATC
GC GCGC GCCG GCAT GCTA
GT GTGT GTCA GTAC GTTG
TA TATA TAAT TACG TAGC
TC TCTC TCAG TCCA TCGA
TG TGTG TGAC TGCA TGGT

1Detailed information on the symmetrical properties of the construction of Tesserae can be
found in the article [40] by Gonzalez, Giannerini and Rosa.
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As can be seen in Table 3.1, there are 64 Tesserae. Consequently, each of
the 64 trinucleotides b1b2b3 ∈ B3 can be uniquely extended to a valid Tessera
tess(b1b2b3) = b1b2b3b4 by determining two unique transformations π1.π2 ∈ V such
that b1 = π1(b2) and b1 = π2(b3). This indicates that the Tessera code T ESS is 1-
error-correcting. It was shown in [32] that T ESS can be obtained as a linear code
from B3 as well as by the so-called Plotkin construction from B2 [32]. In [39] the
idea of symmetric primeval adapter molecules was utilized to propose an ancient
model of tRNA adapters that explains the reading mechanism and degeneracy
distribution of the Tesserae. These molecules were able to recognize the normal
reading-frame in the coding strand in the 3’-5’ direction, in the complementary
strand in the 3’-5’ direction, in the coding strand in the reverse 5’-3’ direction and
in the complementary strand in the reverse 5’-3’ direction. From the structure
of the Tesserae, it is evident that self-complementary Tesserae exist, e.g. ACGT.
This served as an argument in [40], which states that the Tessera code allows a
degeneracy 2 and 4 only. Maintaining the degeneracy, an algorithm was suggested
in [40] for passing from the Tessera code back to the (mitochondrial) genetic code
in the following way: We assign a letter in the genetic alphabet via I ↔ A, SW
↔ T, KM ↔ C and YR ↔ G to each of the transformations from V and then
perform the algorithm displayed in Figure 3.3.

b1 b2 b3 b4

π1
π2

Tessera

codon x1 x2 x3

Figure 3.3: Schematic representation of the mapping function cod(·) from the Tessera
b1b2b3b4 onto the codon x1x2x3.

For instance, the Tessera ACGT will be mapped onto the codon CTT =
cod(ACGT ), since KM(A) = C and SW (C) = G. However, note that the two
mappings tess(·) and cod(·) are not inverse to each other.

3.2 Circular Tessera codes

As both the Tessera code theory and the circular code theory promote the study of
the hypothetical ancestor codes, this chapter will give a theoretical guidance for the
combined investigation of these two theories. In contrast to the 20 complete trin-
ucleotide circular permutation classes, there are only twelve complete Tessera cir-
cular permutation classes, each containing four elements. Four incomplete Tessera
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classes contain one element {AAAA}, {CCCC}, {GGGG}, {TTTT}, and six
classes with two elements each are structured like this: {ACAC,CACA}. Ta-
ble 3.2 shows all complete equivalence classes of the Tesserae.

Table 3.2: : List of complete equivalence classes. Self-complementary Tesserae are in
bold.

Tessera Shift 1 Shift 2 Shift 3 Class number
AATT ATTA TTAA TAAT CC1

AAGG AGGA GGAA GAAG CC2

AACC ACCA CCAA CAAC CC3

CCGG CGGC GGCC GCCG CC4

CCTT CTTC TTCC TCCT CC5

TTGG TGGT GGTT GTTG CC6

AGCT GCTA CTAG TAGC CC7

TGCA GCAT CATG ATGC CC8

GTAC TACG ACGT CGTA CC9

AGTC GTCA TCAG CAGT CC10

TCGA CGAT GATC ATCG CC11

ACTG CTGA TGAC GACT CC12

In the following, the set of 48 Tesserae in Table 3.2 will be called T E ⊂ T ESS.
Recalling the argument used for the construction of the equation M(|Σ|, `) (see
Section 2.2.1), the maximal size of a code is equal to the number of complete
circular permutation classes. Hence, the maximal size of a circular Tessera code
is 12. Note, that M(4, 4) = 60 (for all tetranucleotide), whereby the maximal size
of a circular Tessera code is only 12 [28].

Definition 21. The set of 48 Tesserae T E of the twelve complete Tessera circular
permutation classes in Table 3.2 will be denoted as

T E ⊂ T ESS

Definition 22. A circular Tessera code is called maximal if it contains exactly
twelve words.

The calculations below use the representation of the codes as a graph, in partic-
ular, the components of the graphs associated with Tessera codes. Recalling the
graph component construction, a Tessera code must have two components: the
1-component C1(·) and the 2-component C2(·). The 1-component contains only 1-
nodes and 3-nodes, while the 2-component contains all 2-nodes (see Definition 10).
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Proposition 3.2.1. Let X be a Tessera code. Then the following holds:

(i) The maximal length of a cycle in the 1-component C1(X ) is 2

(ii) The maximal length of a path in the 1-component C1(X ) that does not contain
a cycle is also 2;

(iii) The maximal length of a cycle in 2-component C2(X ) is 4. In particular, the
maximal length of a path that does not contain a cycle is 3.

Proof. Let X be a Tessera code. We first prove (i) by showing that any path in
C1(X ) of length 2 which starts with an 1-node must contain a cycle. Hence, assume
that C1(X ) contains a path of length 2, e.g.

b1 b2b3b4 b5 b1 b2b3b4=

Figure 3.4: A path from nucleotide to nucleotide in a C1(X ). It follows that X is a
non-circular Tessera code

According to Figure 3.4, one can say that b1b2b3b4 and b2b3b4b5 are valid
Tesserae in X . By the definition of Tesserae, there is a transformation π ∈ V
such that π(b2) = b4 and π(b3) = b1. However, the definition also implies that
π(b3) = b5 and so b1 = b5. This confirms that α1(b1b2b3b4) = b2b3b4b1 ∈ X and,
consequently, that Figure 3.4 must be true.

Next, we prove (ii) by showing that a path of length 2 in C1(X ) may not
contain a cycle if it starts with a trinucleotide. Assume that C1(X) contains a
path of length 2 that begins with a 3-node, e.g.

b1b2b3 b4 b5b6b7

Figure 3.5: A path from trinucleotide to trinucleotide in a C1(X ).

According to Figure 3.5 one can say that b1b2b3b4 and b4b5b6b7 are valid Tesserae
in X . As in claim (i) the path can be circular if α3(b1b2b3b4) = b4b5b6b7 ∈ X . Nev-
ertheless, b1b2π1(b1b2) and b4b5π2(b6b7) where π1 6= π2 ∈ V are also valid Tesserae.
Hence, the path is not cyclic.

Claims (i) and (ii), however, show that the path of length 3 in C1(X ) must be
cyclic.

We now prove (iii) by showing that any path of length 4 in C2(X ) contains a
cycle. Assume that C2(X ) contains a path of length 4, e.g.
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b1b2 b3b4 b5b6 b7b8 b9b10

Figure 3.6: Let X ⊂ T E be a Tessera code and C2(X ) the 2-component in the associated
graph. According to this figure, the Tesserae b1b2b3b4, b3b4b5b6, b5b6b7b8 and b7b8b9b10

must be in X . The figure illustrates the resulting path of size four in C2(X ).

By definition of G(X ), there are permutations π1, π2, π3, π4 ∈ V such that

π1(b1b2) = b3b4, π2(b3b4) = b5b6, π3(b5b6) = b7b8, π4(b7b8) = b9b10

If one of the πi is the identity, we obtain a cycle of length 1 (a loop). Thus,
all πi are different from the identity. If π1 = π2, then b1b2 = b5b6, since π2

1 = I.
Thus, this presents us with a cycle of length 2. Consequently, π1 6= π2 and similarly
π2 6= π3, π3 6= π4. If π1 6= π3, then the group structure of V implies that π1◦π2 = π3

and so b7b8 = b1b2. Hence, we obtain a cycle of length 3. Finally, if π1 = π3, then
similar arguments to those listed above show that we get a cycle of length 3 or π2

= π4 holds. Now,

π4(π3(π2(π1(b1b2)))) = π2(π1(π2(π1(b1b2)))) = b9b10

,
but V is commutative, and all elements in V are of order 2. Hence,

b9b10 = π2(π1(π2(π1(b1b2)))) = b1b2.

Consequently, the path itself is a cycle of length 4. As a corollary, we obtain
an important theorem. 2

Proposition 3.2.1 can be interpreted so that Tessera codes favor circularity.
Short paths in the representing graphs equal small reading-frame numbers. In the
following section, we construct circular and comma-free Tessera codes in order to
identify characteristic properties of such codes.

3.3 Construction of circular Tessera codes

This section proposes a method to construct all circular Tessere codes. The first
part of the construction method, which is also published in the paper [28], focuses
on a general construction of circular Tessera codes. The second part depicted in

2Note, that part (ii) was also obtained in a bachelor thesis [9] with a much more technical
proof.
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the subsequent chapter 3.4 is unpublished and refines this construction. Based on
the refined algorithm, a combinatorial calculation is introduced. This allows to
calculate the exact number of codes with certain properties.

3.3.1 Construction using equivalence classes of dinucleotides

The construction of all maximum circular Tessera codes, which is introduced in
this chapter, is achieved by following three main steps. First, the 16 possible
dinucleotides are divided into four equivalence classes of size four by the means of
the Klein-four-group V . Secondly, for each of the four equivalence classes obtained,
we define a tournament, i.e. a directional graph the distinctive features of four
vertices representing each dinucleotide. We use these tournaments to construct
non-circular codes of length 24 with an acyclic 2-component C2. Finally, in a
third step, we construct maximal circular Tessera codes from the codes obtained
in the previous step. The last section of this chapter is dedicated to the properties
obtained from the constructed codes.

Step 1: As was already proven, the graph 1-component C1(X ), which is associ-
ated with a circular Tessera code X ⊂ T E , either has no path greater than 2 or
X is non-circular. More precisely, if C1(T E) is acyclic, the code T E must contain
two Tesserae from the same circular permutation class. Considering this, the con-
struction of a maximal circular Tessera code can nearly be reduced to the problem
of constructing a valid and acyclic C2(X ) that represents a valid Tessera code T E .

In these first two steps, we will show how to construct these acyclic maximal
C2. The codes associated with the C2 allow to derive all maximum circular Tessera
codes. To start the construction of the C2, the 16 dinucleotides B2 must be divided
into four equivalence classes of four dinucleotides. We refer to them as:

BI ∪BSW ∪BY R ∪BKM = B2

Each of these equivalence classes is defined as an orbit of the dinucleotides
w ∈ B2 under the transformations in V . The orbit of an element w is denoted as
V · w:

V · w = {g · w | g ∈ V}

When V acts on B2, we get four orbits of size four. Each orbit represents an
equivalence class. It can be observed that for all dinucleotides b1b2 in the same
equivalence class, a transformation π ∈ V maps the first nucleotide onto the second
b1 = π(b2). Table 3.3 below shows the four equivalence classes.
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BI BSW BY R BKM

AA AT AC AG
TT TA TG TC
CC CG CA CT
GG GC GT GA

Table 3.3: Each column shows one of the four equivalence classes of dinucleotides. For
each class, the same transformation applied to the first nucleotide of each dinucleotide
also yields the second. The column headings are the names of the equivalence classes.
The header index is the unique transformation used to map the first nucleotide of a
dinucleotide onto the second nucleotide.

Proposition 3.3.1. Each Tessera b1b2b3b4 can be uniquely mapped to a tuple
(b1, β, γ) where b1 ∈ B and β, γ ∈ V.

Proof.

β ∈ V , γ ∈ V \ I, b1 ∈ {A, T,G,C}

b1b2b3b4 = b1b2γ(b1b2) and b1 = β(b2)

follows that:

b2 = β(b1) & b3 = γ(b1) & b4 = (β ◦ γ)(b1)

Proposition 3.3.1 presents a proof that π1(b1) = π1(b2) and π1(b3) = π1(b4) for
any Tessera b1b2b3b4 ∈ T E and π1 ∈ V . The following Proposition 3.3.2 uses these
circumstances.

Proposition 3.3.2. For each Tessera b1b2b3b4 the two dinucleotides b1b2 and b3b4

belong to the same equivalence class.

Proof. Each Tessera can be displayed as:

b1b2 = π1(b3b4) with π1 ∈ V .

According to Proposition 3.3.1, this entails that:

b1π2(b2)↔ b3π2(b4) with π2 ∈ V

This simply shows that b1b2 and b3b4 belong to the same equivalence class of
table 3.3.
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Definition 23. Hence, all 48 circular Tesserae T E can be separated into four
subsets of size 12:

T E = T EI ∪ T ESW ∪ T EY R ∪ T EKM

according to the equivalence classes.

T Eβ = {D1D2 ∈ B4|D1, D2 ∈ Bβ} where β ∈ V3

Therefore, each Tessera code X must be decomposable into four code fragments
with respect to the four Tessera subsets. These code fragments are called XI , XSW ,
XY R and XKM . In Definition 24, the fragments are correctly defined:

Definition 24. Let’s assume X ⊂ T E is a circular Tessera code. Then X =
XI ∪ XSW ∪ XY R ∪ XKM with:

XI ⊆ T EI

XSW ⊆ T ESW

XKM ⊆ T EKM

XY R ⊆ T EY R

It follows that each C2 associated with the Tessera code must be divisible into
four disjoint components. Each of these components only consists of nodes repre-
senting the dinucleotides of only one of the equivalence classes listed in Table 3.3.

In graph theory, a tournament is defined as a directed graph so that the follow-
ing holds: Every complete directed acyclic graph must be a tournament. Figure 3.7
shows such a tournament. The number of edges in a tournament is

(
n
2

)
, where n

is the number of vertices of the graph. Thus, if X∗ ∈ {XI ,XSW ,XY R,XKM} and if
C2(X∗) is acyclic, then C2(X∗) has at most

(
4
2

)
= 6 edges. Furthermore, it can be

summarized that for each circular Tessera code, X can be decomposed as follows:

X = XI ∪ XSW ∪ XY R ∪ XKM

where |XI | ≤ 6, |XSW | ≤ 6, |XY R| ≤ 6, |XKM | ≤ 6

3Let’s assume b1, b2, b3, b4 ∈ {A, T,C,G} so that b1b2b3b4 is a Tessera. D1 and D2 are denoted
as the two dinucleotide elements. (D1 = b1b2 and D2 = b3b4)

Page 97



CHAPTER 3. TESSERA CIRCULAR CODES

Step 2: Construction of codes assigned to a maximal acyclic C2(X ′). Based on
the fact that each Tessera code can be decomposed into the four fragments, it is
possible to construct four maximal (size of six) circular fragments Xi, XSW , XY R
and XKM as circular Tessera codes to obtain a code X ′ of length 24. To ensure
that C2(X ′) is an acyclic code, each fragment must be represented by an acyclic C2.
Fortunately, it can be said that if each fragment has an acyclic C2, then C2(X ′) must
also follow. This must be true, since the C2 components in a graph representing
the fragments are disjointed. So far, we can say that X ′ must be structured like
this:

X ′ = XI ∪ XSW ∪ XY R ∪ XKM with |X ′| = 24

and
|XI | = |XSW | = |XY R| = |XKM | = 6

The C2(X ′) is nothing other than the composition of the four disjoint compo-
nents. Hence, C2(X ′) must be acyclic if each component is acyclic. Since a circular
Tessera code has a size of 12 at the most, G(X ′) must not be acyclic. Therefore,
C1(X ′) must not be acyclic. Yet, for this step it can be ignored that the C1(X ′) will
be cyclic, since the design goal is to obtain an acyclic C2(X ′). As shown above, it is
sufficient that C2(XI), C2(XSW ), C2(XY R) and C2(XKM) are acyclic to ensure that
C2(X ′) is acyclic. Thus, each component must be an isomorphism to the graph in
Figure 3.7. As mentioned above, a complete directed acyclic graph must be a so
called tournament.

D3 D1

D2

D4

Figure 3.7: A tournament with four vertices.

Construction of a tournament: To construct such an isomorphism, one
of the numbers 1, 2, 3, or 4 can be assigned to the vertices representing the
dinucleotides and add directional edges from each vertex to the vertices with a
higher number. This leads to 4! possible assignments per subgraph. Consequently,
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there are a total of (4!)4 = 331776 Tessera codes of size 24 with an acyclic C2. The
representatives of these codes will be called X ′.

Step 3: The following step uses the 331776 Tessera codes to construct all possible
maximal circular Tessera codes. The C2 is already acyclic for all these codes.
Hence, it is necessary to focus on the C1. It has been shown that each cyclic
path in C1 must be associated with two Tesserae from the same permutation class.
Thus, since there are twelve complete circular permutation classes, it follows that
each C1 representing one of the constructed Tessera codes has at least twelve cyclic
paths of length 2. The subsequent section explains the nature of these cyclic paths
and illustrates how they can be removed. In order to do this, the structure of the
subsets of T E must first be explained in detail.

Proposition 3.3.3. Let T Eβ, T Eγ ∈ {T EI , T ESW , T EY R, T EKM} be two subsets
of T E and β, γ ∈ V. Then the following must hold:

(i) The set of the circular 2-permutation of all words in T Eβ is again
T Eβ.

T Eβ = α2(T Eβ)

(ii) The set of the circular 1-permutation of all words in T Eβ is the set
of the circular 3-permutation of all words in T Eβ and vice versa.

α3(T Eβ) = α1(T Eβ) and α1(T Eβ) = α3(T Eβ)

(iii) The set of the circular 1-permutation of all words in T Eβ◦γ and
T E (β) have an intersection of four words.

|T Eγ ∩ α1(T E (β◦γ))| = 4

Proof. First, we prove claim (i). Let b1b2b3b4 ∈ T Eβ be a Tessera and β ∈ V .
Assertion (i) can be proven rather easily because for every b1b2b3b4 ∈ T Eβ it
follows that b1b2, b3b4 ∈ Bβ. This must be true. Consequently, b3b4b1b2 ∈ T Eβ .

Next, we prove claim (ii). If (i) is true, (ii) follows. This can be confirmed
with the associative behavior of the circular permutation (α1 ◦ α2)(·) = α3(·) and
(α3 ◦ α2)(·) = α1(·).

Finally, we prove claim (iii). Let b1b2, γ(b1b2) ∈ Bβ be two dinucleotides in the
same equivalence class where β ∈ V and γ ∈ V \ I. The claim requires that each
circular 1-permutation of α1(b1b2γ(b1b2)) = b2γ(b1b2)b1 is in T E (β◦γ). This must
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be true, since b2(β ◦ γ)(b1) and b1(β ◦ γ)(b2) ∈ B(β◦γ). Hence, there are exactly
four Tessera in form of Dγ(D) ∈ T Eβ for all D ∈ Bβ. It follows that only these
four Tesserae in T Eβ have their circular 1-permutation in T E (β◦γ).

The structure outlined in Propostion 3.3.3 implies that the twelve Tesserae in
each of the four subsets can be classified in three groups of four Tessera. Each
group consists of two Tesserae and their circular 2-permutations. These groups
are united by the fact that all 1-permutations and 3-permutations are in the same
different subsets.

Proposition 3.3.4. Let X ′ be one of the codes of size 24. For any Tessera w ∈ X ′,
either α1(w) or α3(w) is in X ′.

Proof. Therefore, let us assume the following:

β, ε ∈ V , γ ∈ V \ I, ε = β ◦ γ, b1 ∈ {A, T,G,C}

so that:
Bβ,Bε ∈ {BI ,BSW ,BY R,BKM} and Bβ 6= Bε

with:
b2 = β(b1), b3 = γ(b1) = ε(b2), b4 = ε(b1)

w1 = b1b2b3b4 = b1b2γ(b1b2)

which shows that:

w1 = b1b2b3b4 and α2(w1) = b3b4b1b2 → b1b2, b3b4 ∈ Bβ

α3(w1) = b4b1b2b3 and α1(w1) = b2b3b4b1 → b2b3, b4b1 ∈ Bε

The two words w1 and α2(w1) are represented by two directed edges between
b1b2 and b3b4 in the C2(T Eβ). Hence, only one of them can be in X ′. Thus:

|X ′ ∩ T Eγ ∩ α1(T E ε)| = 2

The two other words of the same permutation class α1(w1) and α3(w1) are
represented by the two directed edges between b2b3 and b4b1 in the C2(T E ε). Fig-
ures 3.9-3.12 illustrate these dependencies. If this is applied to the constructed
Tessera codes of size 24, it can be said that every word in such a code X ′ has a
circular equivalent within the same code X ′.

Assuming w ∈ X ′, it follows that α1(w) ∈ X ′ ∨̇α3(w) ∈ X ′

This must be true because, for one, every tournament is completed. Conse-
quently, for each Tessera in w ∈ T E ′ at least one of the two w ∈ X ′ or α2(T ) ∈ X ′.
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Additionally, each tournament is acyclic. Thus, no more than one of the two
w ∈ X ′ or α2(w) ∈ X ′. The same must apply to the so-called circular equiva-
lence words α1(w) and α3(w). It needs to be noted, however, that they must be
represented in a tournament other than w and α2(w).

From the proof given above, it can be seen that:

|X ′ ∩ α1(X ′)| = |X ′ ∩ α3(X ′)| = 12

and

|α2(X ′) ∩ X ′| = 0

To ensure that the codes are circular, one of each circular equivalent pairs must be
removed. This must be done for all twelve circular equivalent word pairs in such
a code X ′. It follows that any of the 331776 codes can be used to construct 212

circular codes. Some of the codes can be constructed more than once. Thus, the
total amount of 212 × (4!)4 = 1358954496 constructed maximum circular Tessera
codes contains all maximum circular Tessera codes at least once. Nevertheless,
some codes appear more than once.

3.3.2 Properties of maximal circular Tessera codes

In this section, properties of maximal circular Tessera codes are listed. All proper-
ties in this section are based on the construction of Tessera codes in section 3.3.1.

Proposition 3.3.5. Let us assume that X is a circular Tessera code. The longest
path in G(X ) can be 3 at most (see Proposition 3.2.1). To refine this suggestion,
there can be no more than four of these paths with a length of 3.

Proof. The longest path in a tournament with four vertices is 3 at most. A circular
Tessera code has four disjoint components in the C2(X ). Each of these components
can be extended to a tournament and can therefore only have a path of length 3.
The longest path in the C1(X ) is 2 at most and can therefore be ignored. This
proves the proposal.

The next observation is based on the trinucleotide codes resolving from the
mapping function cod(·) [40] for passing from the Tessera code back to the (mito-
chondrial) genetic code. Let us recall cod(·) by displaying it in Figure 3.3.
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b1 b2 b3 b4

π1
π2

Tessera

codon x1 x2 x3

Copy of Figure 3.3 Schematic representation of the mapping function cod(·) from a
Tessera b1b2b3b4 onto the codon x1x2x3.

Let us set the assignment of the letters in the genetic alphabet to each of the
transformations from V : I ↔ A, SW ↔ T, KM ↔ C and YR ↔ G.

Observation 3.3.1. Let β ∈ V and T Ebeta ⊂ T E be one of the subsets defined
in Definition 23. By applying the mapping function cod(·) to any circular code
Xβ ⊂ T Eβ we obtain a trinucleotide code X = cod(Xβ). The obtained codes of
all possible Xβ are comma-free codes. Additionally, each trinucleotide code X =
cod(Xβ) is also comma-free for any circular j-permutation of X .

This observation is used in section 6.1 as one element for a hypothesis of the
evolution.

Self-complementary

This paragraph presents the characteristics concerning the class of self-complementarity
circular Tessera codes.

Proposition 3.3.6. Let X ⊂ T E be a self-complementary circular Tessera code.
Then X ∩ T ESW = ∅.

Proof. In short: ∀w ∈ T ESW →
←−−
c(w) = α2(w). This fact is made evident by the

following word construction:

γ ∈ V \ I, b1 ∈ {A, T,G,C}

w = b1SW (b1)γ(b1)(γ ◦ SW )(b1) = b1b2b3b4 → w ∈ T ESW
←−−
c(w) = SW (b4b3b2b1) = γ(b1)(γ ◦ SW )(b1)b1SW (b1) = α2(w)

The proof of Proposal 3.3.6 demonstrates that a self-complementary circular
Tessera code X consists only of three fragments:

X = XI ∪ XY R ∪ XKM

where |XI | ≤ 6, |XY R| ≤ 6, |XKM | ≤ 6
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Proposition 3.3.7. Let X ⊂ T E be a self-complementary circular Tessera code
and Xβ a fragment of X . Then, for all w ∈ α1(Xβ) ∩ T ESW , it follows that
←−−
c(w) = w.

Proof. Let X ⊂ T E be a self-complementary circular Tessera code and w =
b1b2b3b4 ∈ X . Further, assume that β, γ ∈ V , so that SW = γ ◦ β with b1β(b1) =
b1b2 = γ(b3b4)(see Figures 3.9-3.12, where these words are represented by the blue

edges). For all of them, it can be said that
←−−
c(w) = w. This is proven in detail as

follows:

β ∈ V \ I, γ = SW ◦ β, b1 ∈ {A, T,G,C}

w = b1β(b1)γ(b1)SW (b1) = b1b2b3b4 → α1(w), α3(w) ∈ T ESW
←−−
c(w) = (SW ◦ SW )(b1)(SW ◦ γ)(b1)(SW ◦ β)(b1)SW (b1) = b1b2b3b4

This proves that for all w ∈ α1(Xβ) ∪ T ESW , it follows that
←−−
c(w) = w.

Proposition 3.3.7 shows that self-complementary circular Tessera codes can
have an odd size, which is impossible for self-complementary circular trinucleotide
codes.

Proposition 3.3.8. A single tournament representing one of the equivalence classes
(table 3.3) is self-complementary only if the numbers 1, 2, 3 and 4 (paragraph Con-
struct a Tournament) are assigned to the dinucleotides in such a way that 1 is
complementary to 4 and 2 is complementary to 3.

Example 24.1. As an example, we use the class BKM . In this class, one pos-
sible self-complementary assignment would be: 1 → CT , 4 → AG, 2 → TC and
3 → GA. The code XKM = {CTAG, CTTC, CTGA, TCAG, TCGA, GAAG}
represented by the tournament is self-complementary.

Proof. This can be explained by using the graph property of self-complementary
codes. The property states that each vertex v in the graph of self-complementary
codes must have the same incoming degree as the outgoing degree of the comple-
mentary vertex c(←−v ) (see Proposition 2.1.2) and vice versa:

d+(c(←−v )) = d−(v)

In a tournament, this can only be true for the vertices assigned to 1 and 4 as
well as for the vertices assigned to 2 and 3.
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The following is a property of G(X ), which was discovered in the study of
maximum circular codes of codons (RNA triplets) and has already been depicted in
section 2.1.5. Suppose Y ⊂ Σ3 is such a maximum circular code. These conditions
address the vertices V (Y ) ∈ G(Y ) associated with Y . Thus, condition (1) and (2)
of Theorem 3.3.1 apply to all vertices V but only if Y is self-complementary.

Theorem 3.3.1. This theorem applies the same conditions as in Theorem 2.1.5
to circular Tessera codes. Let X ⊂ T E be a circular Tessera code. Then X is
self-complementary if and only if

1. V (X ) =
←−−−−−
c(V (X ))

2. d+(v) = d−(
←−−
c(v)) for all vertices v ∈ V V (X )

Proof. The obligatory existence of condition (1) and (2) of Theorem 3.3.1 in a
graph representing a self-complementary circular Tessera code can be proven in
the two components C1 and C2. For Tessera codes, the conditions fit even better
because they are not bound to the size of the code.

C1(X ) Let us assume that X ⊂ T E is a non-self-complementary circular Tessera
code, and G(X ) fulfills the conditions. Any word b1b2b3b4 ∈ X appears in C1

as b1 → b2b3b4. In order to satisfy the conditions, c(b4b3b2)→ b5 must be in
C1. Since each word in X is a Tessera, and therefore c(b4b3b2)b5 is a Tessera,
it follows that c(b1) = b5. These results show that the conditions are only
true if X is a self-complementary code. Thus, this is a contradiction.

C2(X ) These conditions must also apply to any C2(X ) that represents a circular
self-complementary Tessera code X ⊂ T E . The method to prove this is
the Pigeonhole principle. The proof shows that condition (1) and (2) of
Theorem 3.3.1 must be true for each tournament, which can then easily be
extended to the entire graph. Consequently, it is only necessary to prove this
for a C2 of a single fragment of a circular Tessera code.

Assume that Xγ ⊂ T Eγ is a non-self-complementary circular Tessera code,
and C2(Xγ) satisfies condition (1) and (2) of Theorem 3.3.1. If d+(v) =

d−(
←−−
c(v)), it follows that C2(T Eγ) cannot be a tournament (see Proposi-

tion 3.3.8). Thus, |Xγ| <6. Since all the words in the form of b1b2

←−−−−
c(b1b2)

are self-complementary, none of them have any influence on this proof and
can be ignored. Even though XSW does not contain a word of this form,
it can be said that |Xγ| is even. Therefore, |Xγ| ∈ {2, 4}. Considering all
of the above, the C2(Xγ) must be regular. In the case of |Xγ| = 4, it must
be 2-regular. In the case of |Xγ| = 2, it must be 1-regular. The number
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of options of a 1-regular graph with two edges requires that the represented
code is self-complementary and therefore contradictory.

D3 D1

D2

D4

Figure 3.8: 2-regular C2(Xγ). The only 2-regular acyclic graph with four vertices which
can satisfy conditions (1) and (2) of Theorem 3.3.1 where no complementary vertices are
connected.

A directed acyclic 2-regular graph as in Figure 3.8 only satisfies condition

(2) of Theorem 3.3.1: d+(v) = d−(
←−−
c(v)) if D2 =

←−−−
c(D4) and D1 =

←−−−
c(D3).

Thus, this must also represent a self-complementary code and is therefore a
contradiction. This proves that C2(T Eγ) is either non-self-complementary or
satisfies condition (1) and (2) of Theorem 3.3.1.
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AA GG

CC

TT

A
B

C

D

E

F

Figure 3.9: The BI

AT GC

CG

TA

G
H

C

D

I

J

Figure 3.10: The BSW

TG GT

CA

AC

E
F

K

L

H

G

Figure 3.11: The BY R

TC CT

GA

AG

B
A

L

K

I

J

Figure 3.12: The BKM

Figure 3.9-3.12: The four undirected graphs represent the four equivalence classes.
Each edge represents two Tessera words. The edge labels (letters: A-L) connect the
circular equivalent words. For better orientation, the color of the edges corresponds
with the colors of the nodes of the circular equivalent words.

3.4 Refined construction of circular and comma-

free Tessera codes

The number 212×(4!)4 = 1358954496 presented in section 3.3.1 was a first attempt
to calculate the the exact number of maximum circular Tessera codes. Even though
the number includes all maximum circular Tessera codes, as mentioned above,
some codes appear more than once. This section outlines an algorithm that uses
characteristics of codes to determine how often each maximum circular Tessera
code occurs in this number. The result of this algorithm allows to calculate the
exact number of different circular Tessera codes of any size from one to twelve.

The number 1358954496 results from the idea that the (4!)4 codes of size 24 are
each converted to 212 circular codes. Suppose that X ′ is a representative of these
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(4!)4 constructed codes. 212 indicates the twelve circular equivalence relationships
within each code. As mentioned above, there are 212 different ways to select a w
from each circular pair of relationships in X ′. Additionally, it is obvious that all
212 circular codes that resolve from this method are different. However, suppose
that Y ′ is another code from the (4!)4 Tessera codes. Y ′ could be used to construct
circular codes that are similar to the circular codes constructed from X ′. In the
worst case, X ′ and Y ′ differ in one word only. In such a case, 211 of the codes
constructed from X ′ and Y ′ are the same.

To refine the construction so that each code is constructed only once, the new
algorithm is based on two categories of features. One of these is called the fragment
distribution, the other the circular permutation distribution. The fragment distri-
bution refers to the different options available to distribute the Tesserae in a code to
the code fragments introduced in Definition 24. The circular permutation distribu-
tion refers to the 4! construction of the four tournaments (see paragraph Construct
a Tournament).

3.4.1 Fragment distribution

The fragment distribution refers to the distributions of the Tesserae in a code
X ⊂ T E into the four code fragments XI , XSW , XY R and XKM . The originally
constructed codes X ′ in section 3.3.1 have six Tesserae in each fragment:

|XI | = |XSW | = |XY R| = |XKM | = 6 for all (4!)4 codes X ′

The circular code X can only have twelve Tesserae at the most. All possible
distributions are listed in Table 3.4

Table 3.4: A list of all possible distributions of circular codes into the code fragments
XI , XSW , XY R and XKM . Each section in the table shows all fragments of codes of a
certain code size. The distributions listed range from a code of size four to size twelve,
which is the maximum.
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code size Distributions

6

6 0 0 0
5 1 0 0
4 2 0 0
4 1 1 0
3 3 0 0
3 2 1 0
3 1 1 1
2 2 2 0
2 2 1 1

7

6 1 0 0
5 2 0 0
5 1 1 0
4 3 0 0
4 2 1 0
4 1 1 1
3 3 1 0
3 2 2 0
3 2 1 1
2 2 2 1

10

6 4 0 0
6 3 1 0
6 2 2 0
6 2 1 1
5 5 0 0
5 4 1 0
5 3 2 0
5 3 1 1
5 2 2 1
4 4 2 0
4 4 1 1
4 3 3 0
4 3 2 1
4 2 2 2
3 3 3 1
3 3 2 2

code size Distributions

5

5 0 0 0
4 1 0 0
3 2 0 0
3 1 1 0
2 2 1 0
2 1 1 1

8

6 2 0 0
6 1 1 0
5 3 0 0
5 2 1 0
5 1 1 1
4 4 0 0
4 3 1 0
4 2 2 0
4 2 1 1
3 3 2 0
3 3 1 1
3 2 2 1
2 2 2 2

11

6 4 1 0
6 3 2 0
6 3 1 1
6 2 2 1
5 5 1 0
5 4 2 0
5 4 1 1
5 3 3 0
5 3 2 1
5 2 2 2
4 4 3 0
4 4 2 1
4 3 3 1
4 3 2 2
3 3 3 2

code size Distributions

4

4 0 0 0
3 1 0 0
2 2 0 0
2 1 1 0
1 1 1 1

9

6 3 0 0
6 2 1 0
6 1 1 1
5 4 0 0
5 3 1 0
5 2 2 0
5 2 1 1
4 4 1 0
4 3 2 0
4 3 1 1
4 2 2 1
3 3 3 0
3 3 2 1
3 2 2 2

12

6 4 2 0
6 4 1 1
6 3 3 0
6 3 2 1
6 2 2 2
5 5 2 0
5 5 1 1
5 4 3 0
5 4 2 1
5 3 3 1
5 3 2 2
4 4 4 0
4 4 3 1
4 4 2 2
4 3 3 2
3 3 3 3
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The distributions are bound by four rules. First, the highest number must be
≤ 6. Secondly, the sum must be equal to the code size. Thirdly, if one of the
fragments in one of the distributions is 6, it follows that all other fragments are 4
at the most. Finally, if one of the fragments is 5, it follows that all other fragments
are 5 or less. This is due to the circular relationships between the fragments shown
in Proposition 3.3.3.

The following pseudocode algorithm provides all possible distributions for the
circular Tessera codes with a code size called l. The values returned are in numer-
ical order:

Pseudocode 2. Require: 12 ≥ l ∈ N ≥ 1
function Distributions(l:int)

distributions : list < list >← []
upperBound : int← min(10, l)
for a ∈ 1 . . .min(6, l) do

for b ∈ d(l − a)/3e . . .min(upperBound− a, a)) do
for c ∈ d(l − a− b)/2e . . .min(upperBound− a− b, b)) do

distributions.add([a, b, c, l − a− b− c])
end for

end for
end for
return distributions

end function

This paragraph explains the algorithm line by line. The explanation starts with
the assignment of distributions and ends with line 6: distributions.add([a, b, c, l−
a− b− c]).

1. allocates an empty agile list of lists to ”distributions”.

2. allocates an integer to ”upperBound. The value is the minimum of 10 and
l. The number 10 results from the fact that all fragments are in two circular
relations to each other. This means that in any combination of X1,X2 ∈ {XI ,
XSW , XY R, XKM}, it follows that |X1 ∪ X2| ≤ 10 if the code is circular.

3. a for loop from 1 to the minimum of 6 and l. The loop counter variable is
called ”a”. The minimum value is 1, since the number 0 would not terminate.
”a” is the first fragment and can therefore not be higher than 6.

4. a for loop from d(l − a)/3e to the minimum of upperBound− a and a. The
loop-counter variable is the second fragment and is denoted as ”b”. The
minimum value is d(l − a)/3e. Consequently, the sum of all fragments must
be l. It follows that b ≤ l − a. However, the rest can be divided into three
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fragments, which gives the lowest possible number for ”b ≤ d(l − a)/3e” .
The upper bound of the for loop upperBound − a or a is derived from the
definition of ”upperBound” (see line 2).

5. a for loop from d(l − a− b)/2e to the minimum of upperBound− a− b and
b. The loop counter variable is the third fragment and is called ”c”. The
minimum value is d(l − a − b)/2e. Consequently, the sum of all fragments
must be l. c ≤ l − a− b follows. However, the rest can be divided into two
fragments, which gives the lowest possible number for ”c ≤ d(l− a− b)/2e”.
The upper limit of the for-loop upperBound − a − b or b results from the
definition of ”upperBound”. (see line 2).

6. assembles the distribution and adds it to ”distributions”. The first fragment
is ”a”, second fragment ”b”, third fragment ”c”, and the last fragment, which
is the rest, is l − a− b− c.

3.4.2 Circular permutation distribution (CPD)

The CPD refers to the selection of Tesserae within each fragment of a code. In
Proposal 3.3.3, it is revealed that a circular fragment can contain six of twelve
possible Tesserae. It also presents evidence that these six can be classified by
their circular 1-permutations and circular 3-permutations into three classes of two.
We define the CPD as the different ways to distribute the Tesserae in a circular
fragment to the classes, i.e. each class includes the two Tesserae that have their
circular 1-permutations and circular 3-permutations in the same other fragment.
In Definition 25, we define the classes in these fragments. The classes are labeled
as Ai, Bi and Ci for a fragment Xi.

Definition 25. Suppose B1, B2, B3 and B4 are the four equivalence classes
shown in Table 3.3:

{B1,B2,B3,B4} := {BI ,BSW ,BKW ,BY R}

and X1, X2, X3 and X4 are the four fragments associated with the four equiva-
lence classes. We use the index 1 − 4 as an implied order. The exact mapping is
irrelevant:

T E i := {D1D2 : D1, D2 ∈ Bi} for all i ∈ {1, 2, 3, 4}

where D1, D2, D3 and D4 are denoted as the four dinucleotides in Bi:

Bi := {D1, D2, D3, D4}
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Let D1, D2, D3, D4 ∈ B1 and A1 ∪B1 ∪ C1 := T E1

Class Circular relationship
A1 = {D1D2, D3D4, D2D1, D4D3} α1(A1) = α3(A1) := T E2 ∩ A2

B1 = {D1D3, D2D4, D3D1, D4D2} α1(B1) = α3(B1) := T E3 ∩ A3

C1 = {D1D4, D2D3, D4D1, D3D2} α1(C1) = α3(C1) := T E4 ∩ A4

Let D1, D2, D3, D4 ∈ B2 and A2 ∪B2 ∪ C2 := T E2

Class Circular relationship
A2 = {D1D2, D3D4, D2D1, D4D3} α1(A2) = α3(A2) := T E1 ∩ A1

B2 = {D1D3, D2D4, D3D1, D4D2} α1(B2) = α3(B2) := T E3 ∩B3

C2 = {D1D4, D2D3, D4D1, D3D2} α1(C2) = α3(C2) := T E4 ∩B4

Let D1, D2, D3, D4 ∈ B3 and A3 ∪B3 ∪ C3 := T E3

Class Circular relationship
A3 = {D1D2, D3D4, D2D1, D4D3} α1(A3) = α3(A3) := T E1 ∩B1

B3 = {D1D3, D2D4, D3D1, D4D2} α1(B3) = α3(B3) := T E2 ∩B2

C3 = {D1D4, D2D3, D4D1, D3D2} α1(C3) = α3(C3) := T E4 ∩ C4

Let D1, D2, D3, D4 ∈ B4 and A4 ∪B4 ∪ C4 := T E4

Class Circular relationship
A4 = {D1D2, D3D4, D2D1, D4D3} α1(A4) = α3(A4) := T E1 ∩ C1

B4 = {D1D3, D2D4, D3D1, D4D2} α1(B4) = α3(B4) := T E2 ∩ C2

C4 = {D1D4, D2D3, D4D1, D3D2} α1(C4) = α3(C4) := T E3 ∩ C3

Table 3.5: The classification of the Tesserae in a fragment Xi. Each set Ai, Bi, Ci can
only contain a maximum of two out of four Tesserae for them to be circular.

As revealed in Table 3.5, each class in a fragment has a counterpart in another
fragment e.g. the counterpart of A1 ∈ T E1 is A2 ∈ T E2 and vice versa. It is
evident that A1 contains four Tesserae originating form two circular permutation
classes, and A2 contains the other four Tesserae from to the same two circular
permutation classes. Hence, if we assume that X ⊂ T E is a circular Tessera code
and Z = X ∩ (A1 ∪ A2), then |Z| ≤ 2 must follow.

Let us explain the consequences of Definition 25 using an example without
loss of generality. Let X ⊂ T E be a circular Tessera code and X = X1 ∪ X2 ∪
X3 ∪ X4 is the fragmented representation of X . Assume that w1, w2 ∈ X1 ∩ A1 ∪
X . Considering that X2 is the fragment containing all 1-permutations and 3-
permutations of the Tesserae in A1, then, with respect to Table 3.5, it follows that
|X2| ≤ 4, more precisely, class A2 = ∅ of the fragment X2. This occurrence can be
used to construct a tabular representation of any circular Tessera code.
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|X1| |A1| |B1| |C1|
|A2| |X2| |B2| |C2|
|A3| |B3| |X3| |C3|
|A4| |B4| |C4| |X4|

Table 3.6: This table T (X ) represents any circular Tessera code X ⊂ T E . X =
X1∪X2∪X3∪X4 are the four fragments. Ai, Bi, Ci are the three classes of each fragment
Xi in regard to Table 3.5. Let Tr,c be the value in the table at row r and column
c. Then, the Tesserae represented at a position Tr,c are the circular relatives of the
Tesserae represented in Tc,r. Hence, 0 ≤ Tr,c + Tc,r ≤ 2, with r, c ∈ {1, 2, 3, 4} and r 6= c

The tables are called representing tables of a Tessera code T (T E). From now
on X1 to X4 are used as placeholders for the four fragments XI , XSW , XKM and
XY R. In relation to a table T (X ), X1 to X4 are also used as row references.

Definition 26. Any circular Tessera code can be represented in such a table. A
table T representing a circular Tessera code X must be bound to the following
conditions:

1. |Xi| ≤ 6

2. |Xi| = |Ai|+ |Bi|+ |Ci|

3. 0 ≤ |Ai| ≤ 2 & 0 ≤ |Bi| ≤ 2 & 0 ≤ |Ci| ≤ 2

4. R =


|A2| |A3| |A4|
|A1| |B3| |B4|
|B1| |B2| |C4|
|C1| |C2| |C3|

 +


|A1| |B1| |C1|
|A2| |B2| |C2|
|A3| |B3| |C3|
|A4| |B4| |C4|

 so that ∀λ ∈ R : 0 ≤ λ ≤ 2

Each table which is built according to the pattern of Table 3.6 represents at
least one circular Tessera code. This applies to all tables, but only as long as the
listed conditions in Definition 26 are satisfied.4

Example 26.1. Let us assume that X = {AACC, AAGG, AATT, GGCC, GGTT,
CCTT, TAGC, TACG, CGAT, ATGC, TGAC, GTCA}

XI ={AACC, AAGG, AATT, GGCC, GGTT, CCTT}
XSW ={TAGC, TACG, CGAT, ATGC}
XY R ={TGAC, GTCA}
XKM =∅

4The algorithm that compiles all possible CPD for all fragment distributions is too extensive
to be explained here. The algorithm is implemented in GCATR and can be found in the Github
reposetory: https://github.com/StarmanMartin/GCATR
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The fragment distribution in this example is chosen as: X1 = XI , X2 = XSW ,
X3 = XY R and X4 = XKM . Hence, the values in the tables are: 6 = |X1|, 4 =
|X2|,2 = |X3| and 0 = |X4|

6 2 2 2
0 4 2 2
0 0 2 2
0 0 0 0

Table 3.7: Among others, this table T (X ) represents the following code X =
{AACC, AAGG, AATT, GGCC, GGTT, CCTT, TAGC, TACG, CGAT, ATGC,
TGAC, GTCA}. X1 = XI , X2 = XSW , X3 = XY R and X4 = XKM .

3.4.3 The exact number of circular Tessera codes

An approach derived from combinatorics is used to calculate the exact number of
codes. We first introduce the basics of probability theory on which the calculation
of the exact number of Tessera codes is based. Each table T can represent no
more than (4!)5 codes. This number results from the 4! different ways to allocate
the four fragments XI , XSW , XKM to the table rows X1 − X4 and the 4! different
structures of the four tournaments.

Definition 27. Let us designate every single combination of fragment allocation
and tournament structure as one of (4!)5 parameter sets θ ∈ Θ of a table. Each
element in the parameter sets θ is a tuple

θ := (θo, θi)

where θo stands for the fragment allocation, and θi is denoted as one of the
(4!)4 tournament structures.

Definition 27 introduces the parameter tuples θ := (θo, θi). To reconstruct a
code from a table T one needs to apply the correct θ to the table.

X = θ · T

Definition 28. Let the tuple (Ω,Pr) be a probability space. Ω is a set called sam-
ple set, and Pr is a function which we call probability function. The function is
defined so that 0 ≤ Pr(X ) ≤ 1 for all X ∈ Ω and

∑
X∈Ω

Pr(X ) = 1

In this case, we refer to Ω as a set of all circular Tessera codes X represented
by a table. Thus, Pr(X ) = 1

|Ω| is valid. Pr(X ) is the probability that an arbitrarily
chosen parameter tuple θ ∈ Θ applied on a table constructs the code X .
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The probability Pr(X ) for a code can be separated into the so-called inner
probability and the so-called outer probability. The inner probability refers to the
CPD and the (4!)4 different combinations of the tournaments. The outer probability
refers to the fragment distributions. The first part of this section explains the outer
probability Pro(X ) , which depends on θo. The second part of this section refers
to the inner probability denoted as Pri(X ), which depends on θi.

The outer probability is a number Pro(X ) which indicates how likely it is to
obtain a code X when we apply an arbitrary parameter θo (ignoring θi) to a table
T (X ) which represents the code X . Hence, the focus is on a certain assignment
of the rows designated as X1 to X4 to the four different code fragments.

{X1,X2,X3,X4} → {XI ,XSW ,XKW ,XY R}

There are 4! different ways to assign X1 to X4 to the four fragments. In the
case of example 26.1, the assignment is X1 = XI , X2 = XSW , X3 = XY R and
X4 = XKM . In this particular case, the probability is Pro(X ) = 1

4!
× 1. This is

due to the fact that two different assignments of the fragments cannot represent
the same code. Therefore, the distribution in example 26.1 has 4! codes (times
the result of Pri(X )). In the theoretical case that two rows of a table can be
exchanged without affecting the table, Pro(X ) = 1

4!
× 2.

In order to generalize this assumption, let us consider the 4! mappings from X1

to X4 as row transformations of a table T associated with the code X , which can
be seen in Table 3.8. Suppose G is a transformation group with all possible row
transformations of cardinality 4!:

All actions in G are defined on a set of all tables Ml. Ml is a set of all tables
T , which represent all codes of one code size l so that:

ϕ : G×Ml →Ml

This function satisfies all the action group axioms. A stabilizer subgroup Gs of G
with respect to T is defined as:

Gs = {g ∈ G | g · T = T }.

Let us assume that Gs is a stabilizer subgroup with respect to T . Generally,
it can be said that Pro(X ) is equal to 1

4!
times the cardinality of Gs.
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|X1| |A1| |B1| |C1|
|A2| |X2| |B2| |C2|
|A3| |B3| |X3| |C3|
|A4| |B4| |C4| |X4|

(X1, X2, X3, X4)
−→

(X3, X2, X1, X4)

|X3| |A3| |B3| |C3|
|B2| |X2| |A2| |C2|
|A1| |B1| |X1| |C1|
|C4| |B4| |A4| |X4|

Table 3.8: The tables show an example of a row transformation. The transformation
g : (X1, X2, X3, X4) → (X3, X2, X1, X4) ∈ G swaps rows 1 and 3 of a table T . The
transformation g is one of 4! transformations into G.

In conclusion, there are 4! different θo to chose from. Hence, Pro(X )× 4! of all
θo construct the same code when applied to a table. Since the probability of each
code represented by the same table is the same Pr(X ) = 1

|Ω| , it follows that a table

T can construct Pro(X )−1 different codes .
List II.2 in the Appendix depicts all T for all codes with the maximum length.

The probability Pro(X ) is fixed for any table and can be used to calculate the num-
ber of comma-free codes or the codes of a certain path length in the 2-component
C2 of a graph associated with a code. In all these calculations, the value Pro is
bound to a T and remains the same.

The inner probability is a number Pri(X ) which indicates how likely it is to
obtain a code X when we apply an arbitrary parameter θi (with a preselected
and fixed θo in the tuples θ = (θo, θi)) to a table T (X ) which represents the
code X . The fragment distribution θo is considered as fixed for this calculation.
Each 2-component assigned to a code fragment Xj can be extended in 4! different
tournaments. The total number of Pri is therefore be considered to be a product of
the probability of each row: Pri(X ) := Pr∗i(1)(X )×Pr∗i(2)(X )×Pr∗i(3)(X )×Pr∗i(4)(X ).
Consequently, there are 4! different θi per row to chose from. Thus, Pri(X )× (4!)4

of all θi construct the same code when applied to a table. Pri(X )−1 × Pro(X )−1

different codes are represented by the table.
However, to simplify the calculation, Pri(X ) can be divided into two parts so

that Pri = Prfac × Prri. Prfac is a value that depends on the interaction of all
rows, wheras Prri refers almost only to the single row.

Definition 29.
Pri(X ) := Prfac(X )× Prri(X )

with
Prri(X ) := Pri(1)(X )× Pri(2)(X )× Pri(3)(X )× Pri(4)(X )

and

Prfac(X ) :=

(
r≤4∏
r=1

c≤4∏
c=1

{
Tr,cmod(2)× 2

1
1+T c,r if r 6= c

1 if r = c

)−1
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Prfac is a factor that has been isolated to simplify the calculation of Prri. Each
row probability Pri(r) is defined so that the fact shown in Figure 3.13, which shows
that every 1 in T stands for four Tesserae that have an influence on the number of
possible Tesserae in another row, can be ignored. Instead, each 1 represents only
one of two Tesserae. Therefore, each row can be treated separately. To compensate
for this, Prfac is the factor which is 1 divided by 2 powers to the number of 1’s.
However, each pair of 1’s in Tr,c = Tc,r appears only once in the exponent.

A

w1 w3

w5

w7

α2

α2

α1 α1

α1α1

α3 α3

α3α3

B

w2 w4

w6

w8

α2

α2

α1 α1

α1α1

α3 α3

α3α3

Figure 3.13: Let us assume that w1, w2, w3, w4 ∈ A1 (green vertices) and
w5, w6, w7, w8 ∈ A2 (red vertices) where Tc,r = |A1| and Tr,c = |A2|. These two graphs
simply depict the relations of the circular equivalence classes within a representing table
T . The graph shows that if Tc,r = Tr,c = 1, only one of the Tesserae in Figure A and
one in Figure B can be in a code if the represented Tessera code is circular.

The complex Definition 29 of Prfac would be unnecessary for tables which repre-
sent only maximal circular Tessera codes of size twelve. Because in a T (X ), which
represents a maximal circular code X , it follows that if Tr,c = 1, then Tc,r = 1.
However, if the code is not maximal, this condition need not be true.

Prri(X ) is the product of the probabilities that an arbitrarily θi applied to
each row in T (X ) will reconstruct a fragment Xj in X . Let X ⊂ T E be a circular
Tessera code and X1 ∪ X2 ∪ X3 ∪ X4 := X its fragmented representation. Then:

Pri(j)(Xj) = Pri(j)(X ) for j ∈ {1, 2, 3, 4}

and

Prri(X ) =

j≤4∏
j=1

Pri(j)(Xj)

There are ten different patterns for the CPD (see Section 3.4.2). Since the
introduction of Prfac, the order of the values does not matter anymore. Therefore,
each line can be reduced to the values of |A|, |B| and |C|. This is called a row

Page 116



CHAPTER 3. TESSERA CIRCULAR CODES

pattern and is written as the three values |A|, |B| and |C|. For simplicity, they
are written in a numerically ordered string. In Definition 30, we define all values
for all row patterns. The subsequent section reveals the origin of these numbers.

Definition 30. Let |A||B||C| be a row pattern of a table T in row j ∈ {1, 2, 3, 4}
and Xj the fragment represented in this row. Then the following list defines the
results of Pri(j)(Xj):

• Row pattern 222 → Pri(j)(Xj) := 1
4!

• Row pattern 122 → Pri(j)(Xj) := 4
4!×3

= 1
18

• Row pattern 022 → Pri(j)(Xj) := 12
4!×7

= 1
14

• Row pattern 112 → Pri(j)(Xj) := 2
4!

= 1
12

• Row pattern 012 → Pri(j)(Xj) := 3
4!

= 1
8

• Row pattern 111 → Special case (see Table 3.9):
If T contains:
≤ 2 rows of the pattern 111 → Pri(j)(Xj) := 7−1

3 rows of the pattern 111 → Pri(j)(Xj) :=
(

3
√

350
)−1

4 rows of the pattern 111 → Pri(j)(Xj) :=
(

4
√

2400
)−1

• Row pattern 011 → Pri(j)(Xj) := 6
4!

= 1
4

• Row pattern 002 → Pri(j)(Xj) := 6
4!

= 1
4

• Row pattern 001 → Pri(j)(Xj) := 12
4!

= 1
2

• Row pattern 000 → Pri(j)(Xj) := 24
4!

= 1

Each value associated with an |A||B||C| pattern refers to the set of different
Tessera code fragments that can be represented by the pattern. The calculation of
the numbers assigned to the row pattern is outlined in the subsequent paragraphs.
To summarize the calculation, we first construct all non-isomorphic undirected
graphs that match the row pattern. Later, we will provide proof that this is
always 1 unless the pattern is 111. We continue by counting the number of different
directed graphs that are created by a simple transformation from undirected edges
to directed edges. Before we dive deeper into the explanation, we introduce the
injective transformation to map a directed graph onto an undirected one.
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Definition 31. Definition of an injective transformation ϕ(·). Be M the domain
of directed acyclic graphs and N the domain of undirected unlabeled graphs. Let ϕ
be an injective transformation ϕ : M → N so that a directed graph G = (E, V ) ∈M
is mapped onto a ϕ(G) → Ġ = (Ė, V̇ ) ∈ N . The transformation ϕ(·) maps each
a → b ∈ E to an undirected edge a − b ∈ Ė. Additionally, the transformation
anonymizes all v ∈ V by removing the label.

To construct all undirected unlabeled graphs which can be transformed into
directed graphs that match the row pattern, we simply prove that there is only
one undirected unlabeled graph for each row pattern (unless the row pattern is
|A||B||C| = 111). We can then use the transformation ϕ(·) in Definition 31 and
transform one arbitrary directed graph (which can easily be constructed) into the
undirected one.

Lemma 3.4.1. Let X be a Tessera code and Xj = X ∩ T E j with j ∈ {1, 2, 3, 4}.
We assume that Xj = Aj ∪Bj ∪Cj so that the line pattern |Aj||Bj||Cj| 6= 111. We
suggest that for all possible C2(Xj) the results of the transformations ϕ(C2(Xj)) are
isomorphic.

Proof. Let us consider the components of the C2(Xj) separately: C2(Aj), C2(Bj)
and C2(Cj). Let D ∈ {Aj, Bj, Cj}. If |D| ∈ {0, 2}, ϕ(C2(D)) always has the same
result for any D. In these cases, ϕ(C2(D)) has to be an isomorphism to the graph
in Figure 3.14 if |D| = 0 without the green edges and if |D| = 2 with the green
edges. This also proves that for all row patterns where |A|, |B|, |C| ∈ {0, 2}, all
ϕ(C2(A ∪B ∪ C)) are isomorphisms to each other.

Hence, only row patterns which have at least one value of 1 can be represented
in two different C2 so that their transformation ϕ(C2) result would not be iso-
morphic. Yet, as Figure 3.15 shows, if only one value of |A|, |B| or |C| is 1, all
ϕ(C2) must be isomorphic. The same is true when exactly two values of |A|, |B|
or |C| are 1. In that case, Figure 3.16 shows that all ϕ(C2) must be isomorphic.
This proves that for all row patterns |A||B||C| 6= 111, all ϕ(C2(A ∪ B ∪ C))) are
isomorphisms to each other.
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Figure 3.14: ϕ(C2(Xj))
if |A||B||C| = 00X with
X ∈ {0, 2}. The green
edges represent the value
of X

Figure 3.15: ϕ(C2(Xj)) if
|A||B||C| = 1X1X2 with
X1, X2 ∈ {0, 2}. The
green edges represent the
value of X1, and the grey
edges represent the value
of X2

Figure 3.16: ϕ(C2(Xj))
if |A||B||C| = 11X with
X ∈ {0, 2}. The green
edges represent the value
of X

Lemma 3.4.2. Let X be a Tessera code and Xj = X ∩ T E j with j ∈ {1, 2, 3, 4}.
We assume that Xj = Aj ∪ Bj ∪ Cj so that the row pattern |Aj||Bj||Cj| = 111.
We propose that for all possible C2(Xj), the transformation ϕ(C2(Xj)) has two non-
isomorphic results.

Proof. In Figure 3.17 and Figure 3.18, it can be seen that the row pattern 111
can be mapped onto non-isomorphic undirected graphs. It is obvious that the two
graphs in Figure 3.17 and Figure 3.18 are the only two non-isomorphic possible
results of ϕ(C2(Xj)).

Figure 3.17: ϕ(C2(Xj)) if
|A||B||C| = 111

Figure 3.18: ϕ(C2(Xj)) if
|A||B||C| = 111

For any row pattern |A||B||C| 6= 111, all possible circular fragments Xi have one
isomorphic ϕ(C2(Xi)) for all possible C2(Xi). To calculate the number of possible
codes which are represented by the row pattern, one can now transform ϕ(C2(Xi))
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back into directed graphs as shown in Figure 3.19. The number of possible di-
rected acyclic graphs indicates the number of the 4! different tournaments that are
actually representing different codes.

Example 31.1. Let |A||B||C| = 002 be a row pattern. Figure 3.19 shows that the
graph ϕ(C2(Xj)) can be used to construct four different directed graphs. Thus, this
row pattern represents four different code fragments.

D1 D2

D3

D4

D1 D2

D3

D4

D1 D2

D3

D4

D1 D2

D3

D4

Figure 3.19: Transformation from ϕ(C2(Xj)) into all possible C2(Xj) for |A||B||C| =
002

Using the example in Figure 3.19, one can now calculate Pri(j)(X ) for a row
j ∈ {1, 2, 3, 4}. Let us assume that T is a table which represents a Tessera code.
Referring to the example in Figure 3.19, we assume that the row pattern of row j
is 002. ϕ(C2(Xj)) can be transformed into 4 different C2(Xj) Hence, the number of
different codes is four. In total, there are 4! different θi to construct the tourna-
ments. Therefore, the chance that one of the 4! different θi · T leads to the correct
2-component representing X is calculated as follows:

Pri(j)(X ) =
4

4!
=

1

4
see Definition 30

A row in a table T which has a pattern 111 has to be handled differently.
The 2-component satisfying the row pattern 111 can be mapped onto one of two
non-isomorphic undirected unlabeled graphs. We will call one of them Y as in
Figure 3.17 and the other one Z as in Figure 3.18. While Z represents eight codes,
Y only represents six codes. Therefore, it can be said that if the pattern 111
appears once in a table T , this row in T represents 6+8

2
= 7 codes. Consequently,

it can be said that Pri(j)(Xj) = 7−1. In all the other cases, where T has more than
one row with a 111 pattern, Table 3.9 explains the values.
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#rows with row
pattern 111

Possible combinations of Y & Z

Y or Z
1

Pri(j)(X ) := 6+8
2

−1
= 1

7

Y Y , ZZ, ZY or Y Z

2
Pri(j)(X ) :=

(√
82+62+8×6×2

4

)−1

= 1
7

Y Y Y , ZZZ, Y Y Z or ZZY
3

Pri(j)(X ) :=
(

3

√
1
4

(63 + 83 + 8× 62 + 6× 82)
)−1

= 1
3√350

Y Y Y Z or ZZZY
4

Pri(j)(X ) :=
(

4

√
1
2

(8× 63 + 6× 83)
)−1

= 1
4√2400

Table 3.9: This table shows the interactions of multiple rows with a row pattern 111.
The possible combinations of code fragments which are mapped onto Y (Figure 3.17) and
Z (Figure 3.18) demand the number of codes represented by a table.

For a better understanding of Table 3.9, we will disclose the origin of the
figures of row two. Let T be a table with two rows of the row pattern 111 so that
j1, j2 ∈ {1, 2, 3, 4}, j1 6= j2 and |Aj1||Bj1||Cj1| = |Aj2||Bj2||Cj2 | = 111 be the tow
row pattern in the rows j1 and j2 in the table T . A ϕ(C2(Xj2)) which satisfies the
row pattern 111 can either be isomorphic to Y , which can be transformed into
six acyclic C2(Xj2) or to Z, which can be transformed into eight acyclic C2(X2).
In short, Y represents six codes, and Z represents eight codes. For the rows j1

and j2, the possible combinations of Y & Z are Y Y , ZZ, ZY or Y Z. Hence, two
rows can either be Y Y := 62 codes, XX := 82 codes or XY := 6× 8 codes. Since
each table can only have one of the combinations at once, we combine the values
as follows: 82+62+8×6×2

4
. The result of this equation is the result of the product of

Pri(j1)(Xj1)× Pri(j2)(Xj2). Consequently,

Pri(j1)(X ) = Pri(j2)(X ) =

(√
82 + 62 + 8× 6× 2

4

)−1

=
1

7

Observation 3.4.1. Based on observations, a specialty are the tables in which all
four rows are of the row pattern 111. In this case, the possible combinations of Y &
Z are only Y Y Y Z or ZZZY . The combinations Y ZZZ, ZY ZZ, ZZY Z, ZY Y Y ,
Y ZY Y ,Y Y ZY ,Y ZY Z,ZY ZY , Y ZZY , ZY Y Z, Y Y ZZ, ZZY Y , Y Y Y Y and
ZZZZ always lead to to non-circular codes X associated with cyclic C1(X ).

Observation 3.4.2. Based on observations, a specialty are the tables in which
three rows are of the row pattern 111. In this case, the possible combinations of Y
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& Z are only Y Y Y , ZZZ, Y Y Z or ZZY . The combinations Y ZZ, ZY Z, ZY Y
and ZY Z always lead to non-circular codes X associated with cyclic C1(X ).

Example 31.2. Let X ⊂ T E be a circular Tessera code of size 3 and T (X ) the
representing table:

1 1 0 0
1 1 0 0
|0 0 1 1
0 0 0 0

Table 3.10: Example of a code X of length 3. X1 = X2 = X3 = 1 and X4 = 0.
Pro(X ) = 2

4! , Prfac(X ) = 1
4 , Pri(1)(X ) = Pri(2)(X ) = Pri(3)(X ) = 12

4! and Pri(4)(X ) = 1.
Hence, the probability that an arbitrarily chosen θ applied to T (X ) constructs X is
Pr(X ) = 1

4 ×
1
12 × (1

2)3 = 1
384

Comma-free codes The algorithm can be adapted to comma-free codes. There-
fore, all but the values of Prri(X ) are the same. Hence, we denote the inner
probability of comma-free codes as:

Prrcfi(X ) = Prfac(X )×
∏

j∈{1,2,3,4}

Prcfi(j)

so that probability Prcf (X ) of a comma-free code X that an arbitrarily chosen
parameter tuple θ ∈ Θ applied to a table T (X ) representing X constructs the
comma-free code X .

Prcf (X ) = Prrcfi(X )× Pro(X )

Definition 32. Let |A||B||C| be a row pattern of a table T in row j ∈ {1, 2, 3, 4}
and Xj the fragment represented in this row. Then, the following list defines the
results of Prcfi(j)(Xj):

• Row pattern 222 → Prcfi(j)(Xj) := 0

• Row pattern 122 → Prcfi(j)(Xj) := 1
6

• Row pattern 022 → Prcfi(j)(Xj) := 1
8

• Row pattern 112 → Prcfi(j)(Xj) := 1
6

• Row pattern 012 → Prcfi(j)(Xj) := 1
6
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• Row pattern 111 → Special case (see Table 3.9):
If T contains:
≤ 2 rows of the pattern 111 → Prcfi(j)(Xj) := 7−1

3 rows of the pattern 111 → Prcfi(j)(Xj) :=
(

3
√

350
)−1

4 rows of the pattern 111 → Prcfi(j)(Xj) :=
(

4
√

2400
)−1

• Row pattern 011 → Prcfi(j)(Xj) := 1
6

• Row pattern 002 → Prcfi(j)(Xj) := 1
4

• Row pattern 001 → Prcfi(j)(Xj) := 1
2

• Row pattern 000 → Prcfi(j)(Xj) := 1

To identify the number of possible comma-free codes represented by the row
pattern, one can transform ϕ(C2(Xj)) back into directed graphs as shown above
and in Figure 3.19. The number of possible directed acyclic graphs with a path
length of 2 at most indicates how many of the 4! tournaments are actually different
comma-free codes represented by the row pattern.

The number of Tessera codes

The number of codes represented by a table T can now be calculated by calculating
Pr(X )−1 for one represented code of T :

Pr(X )−1 = |
⋃
θ∈Θ

θ · T |

There are (4!)5 parameter tuples θ := (θi, θo) in the parameter sets Θ. 4!4

represents the combination of the different tournaments denoted as θi. The last
factor 4! is the distribution of the four fragments to the four rows denoted as θo.
Hence, a table can represent (4!)5 at the most. If the maximal value is multiplied
by the probability Pr(X ), we obtain the actual amount of parameter tuples which
construct the same code X when applied to table θ · T . Consequently, Pr(X )−1

must be the number of all codes which can be represented by the same table T .
In Table 3.11, all numbers of codes for the codes of size one to twelve (maximum

size of a circular Tessera code) are listed. The algorithm presented in this chapter
was used to calculate the numbers for the circular codes and the comma-free codes.
However, the numbers for the 1-circular codes, C4 codes and self-complementary
circular codes were calculated by a brute force algorithm. Surprisingly, the highest
number of codes for 1-circular codes, circular codes and C4 codes is ten, whereby
the highest number of codes for self-complementary circular codes and comma-free
codes is nine. The investigation into this characteristic is still open, and it cannot
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yet be explained. It is also important to note that the ratio of circular codes
to self-complementary circular codes decreases steadily with the increasing size
of the codes. Where 25% of size one circular codes are self-complementary, only
0.01651288% of size twelve circular codes are self-complementary. This suggests
that an observation of a maximal self-complementary Tessera code in a genetic
context would be a very strong evidence for the existence of circular Tessera codes.

Table 3.11: List of the number of circular codes and comma-free codes of different
length. * The numbers in these columns were calculated by a brute force algorithm.

length
1-Circular
codes*

Circular
codes

C4 codes*
Comma-
free codes

self comp.
circular*

1 48 48 48 48 12
2 1056 1056 1056 1056 72
3 14080 14048 14016 13952 304
4 126720 125544 124368 122376 996
5 811008 791952 773088 745584 2580
6 3784704 3606048 3433584 3214272 5408
7 12976128 11908800 10922112 9816960 9264
8 32440320 28230456 24577404 20952504 12708
9 57671680 46720800 37987120 30297824 13696
10 69206016 51111024 38129856 28015728 11232
11 50331648 33113472 22240992 14790144 6144
12 16777216 9592512 5685408 3351232 1584

The effortless and quick construction of maximal Tessera codes led to the obser-
vation that maximal circular Tessera codes have a potential link to comma-free and
circular trinucleotide codes. For this observation, we used the mapping function
cod(·) introduced in Figure 3.3 (see [40]).

Observation 3.4.3. By applying the mapping function cod(·) to convert Tesserae
to codons, we were able to observe that 103024 of the 9592512 maximal circular
Tessera codes are mapped onto a circular trinucleotide code, i.e. with a probability
of 0.0107 and 1264 are mapped onto a comma-free trinucleotide code, i.e. with a
probability of ≈ 10−4. 168 of the 1584 maximal self-complmentary circular Tessera
codes are mapped onto a circular trinucleotide code, i.e. with a probability of 0.106.
This is almost exactly ten times higher than the probability of the 9592512 maximal
circular Tessera codes.

We would like to point out one special self-complementary Tessera code before
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we end this chapter.

XT = {AACC, GGTT, GGCC, AATT, AGTC, GACT, GATC, AGCT}

The trinucleotide code which is the result of the mapping function X = cod(XT ) is
X := {GTT, ATT, GCT, ACT, GTC, ATC, GCC, ACC}. Both, the trinucleotide
code X and Tessera code XT are strong comma-free. Additionally, is the code X
a subset of the RNY code and the complementary reversed code of the RRY code
(see section 1.2.8 for RNY & RRY; [69, 11]).

3.5 Summary of Chapter 3

In sum, one can say that both circular code theory and Tessera code theory are
not in conflict with each other. Rather, it seems as if the two theories favor one
another. Let us first summarize some results concerning the foundation of circular
Tessera codes. Firstly, there are exactly 48 of the 64 Tesserae grouped in twelve
complete circular permutation classes. Hence, a circular Tessera code is called
maximum if it contains exactly twelve words. Furthermore, the statements in
Theorem 3.2.1 hold for any circular Tessera code X ⊂ T E :

(i) The maximal length of a cycle in C1(X ) is 2.

(ii) The maximal length of a path that does not contain a cycle is also 2.

(iii) The maximal length of a cycle in C2(X ) is 4. In particular, the maximal
length of a path that does not contain a cycle is 3.

Recalling the definition of the reading-frame number (see Theorem 2.1.4), the
shorter the length of the longest path length in a graph associated with a code, the
higher the reliability regarding frameshift robustness. Note that the adaptation
of the reading-frame number to Tessera codes is still open. Additionally, each
circular Tessera code can be separated into four fragments by the means of V . Let
X ⊂ T E be a circular Tessera code, then the following holds:

X = XI ∪ XSW ∪ XY R ∪ XKM
where |XI | ≤ 6, |XSW | ≤ 6, |XY R| ≤ 6, |XKM | ≤ 6

By applying the mapping function cod(·) (see Figure 3.3) on each possible
circular fragment Xβ ∈ {XI ,XSW ,XY R,XKM} of each circular Tessera code, it
was proven that X = cod(Xβ) is always a comma-free code. Furthermore, α1(X )
and α2(X ) are also comma-free codes. In section 3.3.2, the classification of graphs
associated with self-complementary trinucleotide codes defined in Theorem 2.1.5 is

Page 125



CHAPTER 3. TESSERA CIRCULAR CODES

adapted to graphs associated with self-complementary Tessera codes. It is proven
that if X ⊂ T E is a circular Tessera code, X is self-complementary. This, however,
only holds true if

1. V =
←−−
c(V )

2. d+(v) = d−(
←−−
c(v)) for all vertices v ∈ V

It should be noted that the two conditions mentioned above fit even better with the
Tessera codes than with the trinucleotide codes. While the conditions only apply
to trinucleotide codes of size 18 to 20, they apply to all circular Tessera codes. In
addition to the properties, this chapter introduces two construction methods of
circular Tessera codes. Both the method in section 3.3 and the one in section 3.4
can be used to construct all maximal circular Tessera codes. The method in
section 3.4 can also be used to construct comma-free codes and circular codes of
any size. Furthermore, this method was used to count all circular Tessera codes.
In Table 3.11, the resulting numbers are listed. In addition, the mapping function
cod(·) was used to shown that 103024 of the 9592512 maximal circular Tessera
codes are mapped onto a circular trinucleotide code and 1264 of the 9592512 onto
a comma-free trinucleotide code .

One final feature that was obtained from the construction is a tabular rep-
resentation of the circular Tessera codes. All tables associated with all maximal
circular Tessera codes are listed in Appendix II.2. Section 6.1 introduces a hy-
pothesis of the evolution which includes Tessera codes. The final chapter 6 offers
a hypothetical evolutionary scenario which includes Tessera codes in section 6.1.
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Chapter 4

The relation between k-circularity
and circularity of codes

This chapter, which refers to the published article [22], introduces a new class of
block codes: the k-circular codes. k-circular codes belong to the circular code
family. As a weakened version of the circular code, such a k-circular code is a
frameshift error detecting code and consists exclusively of words of word length
`. In the sections of this chapter, we will first define k-circularity for arbitrary
word lengths over arbitrary finite alphabets in section 4.1, before presenting the
graph characterization of k-circularity in section 4.2. In section 4.3, the question
of when k-circularity implies circularity will be posed and answered. Additionally,
in section 4.3.1 the sharpness of these borders is verified . This theorem, the so
called Sharpness Theorem, will then be proven in the subsequent chapter. Finally,
Chapter 4 closes with the biological consequences of k-circularity in section 4.4.

4.1 Introduction and definition of k-circularity

If a circular code can find the correct reading-frame in every word written on
a circle, a k-circular code requires a concatenation of a maximum of k words to
reliably ensure the reading-frame. Therefore, a concatenation of k+1 words written
on a circle could be read in more than one reading-frame. Thus, a k-circular code
does not have to be k+1-circular but must be k−1-circular. The class of k-circular
codes contains both circular and comma-free codes as subclasses for every given k.
Hence, the definition of circular codes can be refined by their relation to k-circular
codes. Let us first recall the definition of the X -decomposition in the first bullet
point in Definition 33. Subsequently, Definition 33 depicts the formal definition of
the k-circular codes, thus refining the definition of the circular codes.

Definition 33. Let X ⊆ Σ` be an `-letter code.
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• For w ∈ Σ∗, an X -decomposition of w is a word w1 · · ·wr ∈ X r with r ∈ N
such that w = w1 · w2 · · ·wr.

• Let m be a positive integer and let b1 · · · bm ∈ Xm. A circular X -decomposition
of the concatenation w := b1 · · · bm is an X -decomposition of a circular per-
mutation of αj(w) for some j ∈ {1, . . . ,m− 1}.

• Let k be a positive integer. The code X is k-circular if for every m ∈
{1, . . . , k} and every m-words w1, . . . , wm of words in X , the concatena-
tion w1 · · ·wm admits a unique circular X -decomposition.

• The code X is circular if it is k-circular for all k ∈ N.

• We define k(X ) to be ∞ if X is circular and the least integer r such that X
is not r-circular otherwise.

4.2 Graph characterization of k-circularity

Directed cyclic paths in the graph associated with a code are of vast importance
(see Definition 9) in the research of circular codes. A cyclic graph forces the code
associated with this graph to be a non-circular code. In the case of k-circular codes,
the restrictions are not as stringent (see Definition 33). Hence, while studying the
k-circular codes, these cyclic paths began to move into focus. As a result of the
examination of cyclic paths, we were able to make the following observations.

GAT

A

CGT

C

GTC

G

TGA

T

ATA

TCGACG

GTG

Figure 4.1: The 2-component C2(X ) of the tetranucleotide code X = {CGTC, GTCG,
GTGA, TGAT, GATA, ACGT}. The cyclic path cannot be extended, since all available
1-nodes are already included.
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Observation 4.2.1. Given two integers ` and n, both at least 2, let X be an `-
letter code over an alphabet Σ of cardinality n. Most observations can be traced in
Figure 4.1.

1. For every j ∈ {1, . . . , b`/2c}, the j-component of G(X ) contains no more
than nj + n`−j vertices if j 6= `/2 and no more than n`/2 otherwise.

2. If ` is odd, G(X ) contains no directed cycle of odd length.

3. If ` is even, every directed cycle of odd length in G(X ) is contained in
the (`/2)-component.

4. Suppose that G(X ) contains a directed cycle of length t and let j ∈ {1, . . . , b`/2c}
such that this cycle is contained in the j-component. Then,

t ≤

{
2nj if j 6= `

2
,

n`/2 if j = `
2
.

In article [27], the k-circularity of dinucleotide codes was first characterized in
terms of graphs:

• a dinucleotide code is 1-circular but not 2-circular if and only if its associated
graph contains a Hamiltonian cycle of length 4;

• a dinucleotide code is 2-circular but not 3-circular if and only if its associated
graph contains an oriented cycle of length 3 and has no Hamiltonian cycle;
and

• a dinucleotide 3-circular code is circular.

These observations led to Theorem 4.2.1. This theorem is a natural gener-
alization of the approach from article [27]. For this generalization the following
notations must be defined:

Definition 34. If X is a code, then:

go(X ) denotes the respective lengths of the shortest directed cycles of odd length.
We define go(X ) :=∞ if no cycles of odd length exist in G(X ),

ge(X ) denotes the respective lengths of the shortest directed cycles of even length.
We define ge(X ) :=∞ if no cycles of even length exist in G(X ),

Thus, if the code X is non-circular, one of these numbers must be finite.
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Theorem 4.2.1. (Theorem 3.3, [22]) Let Σ be a finite alphabet, ` an integer
greater than 1 and X ⊆ Σ` an `-letter code over Σ. Then the code X is k-circular
and not (k + 1)-circular if and only if

k = min

{
go(X ),

ge(X )

2

}
− 1 <∞.

Proof. First, suppose that w1 · · ·wr is a directed cycle in G(X ). If r is even,
the word w1 · · ·wr admits two different circular X -decompositions into r/2 words
from X , namely

w1w2| . . . |wr−1wr and w2w3| . . . |wr−2wr−1|wrw1.

It follows that X is not 1
2
ge(X )-circular. If r is odd, then the word w1 · · ·wrw1 · · ·wr

admits two different circular X -decompositions into r words from X , namely

w1w2| . . . |wr−2wr−1|wrw1|w2w3| . . . |wr−1wr and

w2w3| . . . |wr−1wr|w1w2| . . . |wr−2wr−1|wrw1.

It follows that X is not go(X )-circular.

Conversely, suppose that both w and its circular j-permutation admit a circular
X -decomposition where j ∈ {1, . . . , `− 1}. By setting ar+1 := a1, the word w can
be written a1b1| . . . |arbr such that |ai| = j, |bi| = ` − j, and aibi, biai+1 ∈ X for
each i ∈ {1, . . . , r}. It follows from Definition 9 that

W := a1 → b1 → . . .→ ar → br → a1

is a closed walk in G(X ). Consequently, W either contains a directed cycle of even
length, which then must be of length |V (W )| = 2r at most or W decomposes into
an even number of directed odd cycles, one of them thus having length r at the
most. Consequently, if X is not r-circular, then ge(X ) ≤ 2r or go(X ) ≤ r.

We would like to remark that the results from [27] are consistent with the
statement of Theorem 4.2.1 above.

• If X is a 2-letter code that is 1-circular but not 2-circular, then G(X ) contains
cycles of lengths 3 and 4, and, indeed, 1 = min

{
3, 4

2

}
− 1.

• If X is a 2-letter code that is 2-circular but not 3-circular, then G(X ) contains
a cycle of length 3 and no cycle of even length, and, indeed, 2 = min{3,∞}−
1.
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In conclusion, in Observation 4.2.1, a cycle in G(X ) is bound by the cardinal-
ity n of the alphabet and the word length `. Additionally, Theorem 4.2.1 points
out that a k-circular but non-circular code is represented by a cyclic graph. In
combination, these two facts imply that there must be a k-circularity depending
on n and ` so that k+1-circularity is no longer possible. Simplified, there must be
a value k = k(n, `) so that k+1-circularity implies circularity. In the following sec-
tion, we will introduce our most important theorems, which completely determine
this barrier.

4.3 When does k-circularity imply circularity?

To determine whether a code is circular, one needs to verify if any concatenation
of infinite words of a code written on a cycle can only be decomposed in words of
the code in one reading-frame. Consequently, a code is circular if and only if it is a
∞-circular code (see Definition 33). This causes it to be an undecidable problem.
To convert this problem into a decidable one, it is necessary to identify a number
0 < k(n, `) < ∞ so that a code is only circular if it is k(n, `)-circular where n is
the cardinal number of the alphabet and ` is the word length of the code. Hence,
the issue in focus of this section is the identification of an integer k(n, `) so that
k(n, `)-circular is equally circular. We first would like to mention that the cases
where n or ` is 1 are trivial, with Theorem 4.3.1 providing a full answer to this
question. Subsequently, Theorem 4.3.2 demonstrates that the boundary of k(n, `)
is sharp.

Theorem 4.3.1. (Theorem 4.1, [22]) Let both ` and n be integers of at least 2.
Let Σ be an alphabet with |Σ| = n and X ⊆ Σ` an `-letter code over Σ. Set

k(n, `) :=


n

`−1
2 if ` is odd,

n`/2 if ` is even and n is odd,

n`/2 − 1 if ` is even and n is even.

Then, the code X is circular if and only if it is k(n, `)-circular.

Proof. One direction is trivial: if X is circular, then X is r-circular for every
integer r, and hence, for k(n, `).

Conversely, let X be an `-letter code that is r-circular but not (r+ 1)-circular.
According to Theorem 4.2.1, the graph G(X ) contains a cycle of (even) length 2(r+
1), or r is even and G(X ) contains a cycle of (odd) length r + 1.

(i) If ` is odd, then Observation 4.2.1 yields that go(X ) = ∞. Therefore, in
this case, r + 1 = 1

2
ge(X ) < go(X ). Because ` is odd, Observation 4.2.1 implies

that
ge(X ) ≤ max

{
2nj : 1 ≤ j ≤ (`− 1)/2

}
= 2n

`−1
2 .
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Consequently, r + 1 ≤ n(`−1)/2 and hence, r ≤ k(n, `)− 1.
(ii) Assume now that ` is even. Note that if r+ 1 = 1

2
ge(X ), then according to

Observation 4.2.1,

r + 1 ≤ max

{
1

2
· n`/2, n`/2−1

}
≤ n`/2 − 1.

Further suppose that r+1 = go(X ) < 1
2
ge(X ). Observation 4.2.1 implies that go(X ) ≤

n`/2, with equality only if n is odd, since go(X ) is odd. Therefore,

r ≤

{
n`/2 − 1 if n is odd (and ` is even),

n`/2 − 2 if n is even (and ` is even).

We established that whenever

r ≥


n

`−1
2 if ` is odd,

n`/2 if ` is even and n is odd,

n`/2 − 1 if ` is even and n is even,

every `-letter code over an alphabet of cardinality n that is r-circular must be
circular. This concludes the proof.

We further apply Theorem 4.3.1 to the case of a binary alphabet, i.e. with n =
2, and obtain the following statement:

Observation 4.3.1. (Corollary 4.3, [22]) Let Σ = {0, 1} and ` be an integer
greater than 1. A binary `-letter code X ⊆ Σ` is circular if and only if X is

1. 2
`−1
2 -circular if ` is odd; or

2. (2
`
2 − 1)-circular if ` is even.

Including the proof of Theorem 4.3.1, let us note that it implies the following
results with dinucleotide and trinucleotide circular codes over the genetic alphabet,
which were previously cited [29, 30]:

Observation 4.3.2. (Corollary 4.2, [22])

1. A trinucleotide code X ⊆ B3 is circular if and only if X is 4-circular.

2. A dinucleotide code X ⊆ B2 is circular if and only if X is 3-circular.

Proof.
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(1) In this case, n = 4 and ` = 3. Hence, according to Theorem 4.3.1, the

code X is circular if and only if it is 4
3−1
2 = 41 = 4-circular.

(2) In this case, n = 4 and ` = 2. Hence, according to Theorem 4.3.1, the code X
is circular if and only if it is (4

2
2 − 1) = 3-circular.

Subsequently, we present codes that are (k(n, `)− 1)-circular but non-circular
for some specific values of n and `. In the subsequent section 4.3.1 the remaining
question of whether or not the bounds given in the Theorem 4.3.1 are sharp is
answered.

Example 34.1. The following examples originate from the constructions presented
in Section 4.3.1. These examples are minimal (k(n, `)− 1)-circular. Additionally,
they are minimal regarding to Theorem 4.2.1 as we will explain at the beginning of
section 4.3.1.

1. Let n = 2 and ` = 3. Every 2-circular 3-letter code is circular and there are
1- but not 2-circular 3-letter codes:

X(2,3) = {010, 101}

2. Let n = 2 and ` = 4. Every 3-circular 4-letter code is circular and there are
2- but not 3-circular 4-letter codes over {0, 1}:

X(2,4) = {0001, 0111, 1100}

3. Let n = 2 and ` = 5. Every 4-circular 5-letter code is circular and there are
3- but not 4-circular 5-letter codes:

X(2,5) = {00100, 01110, 10001, 11011}

4. Let n = 2 and ` = 7. Every 8-circular 7-letter code is circular and there are
7- but not 8-circular 8-letter codes:

X(2,7) = {0001000, 0010010, 0101100, 0111110, 1000001, 1011011, 1100101,
1110111}

5. Let n = 3 and ` = 4. Every 9-circular 4-letter code is circular and there are
8- but not 9-circular 4-letter codes over {0, 1, 2}:

X(3,4) = {0001, 0102, 0210, 1011, 1120, 2021, 2122, 2200}
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6. Let n = 4 and ` = 3 (that is, trinucleotides over the genetic alphabet). Every
4-circular 3-letter code is circular and there are 3- but not 4-circular 3-letter
code over B:

X(4,3) = {AGC, ATT, CAA, CTG, GCC, GAT, TCA, TGG}

7. Let n = 4 and ` = 4 (that is, tetranucleotides over the genetic alphabet).
Every 15-circular 4-letter code is circular and there are 14- but not 15-circular
4-letter codes over B:

X(4,4) = {AAAC, ACAG, AGAT, ATCA, CACC, CCCG, CGCT, CTGA,
GAGC, GCGG, GGGT, GTTA, TATC, TCTG, TGAA}

4.3.1 Proof of the sharpness of Theorem 4.3.1

This section provides evidence that the boundaries established in theorem 4.3.1
are sharp. We prove this by constructing a code for an arbitrary alphabet Σ and a
word length ` > 2 ∈ N which is k(n, `)− 1-circular but not circular where n = |Σ|.
Thus, it can be said that k(n, `)− 1 is the smallest integer so that a code X ⊆ Σ`

which is k(n, `)− 1-circular does not need to be circular. The obtained results in
Theorem 4.2.1 illustrate that a graph associated with a k(n, `) − 1-circular code
must contain a cycle that has a length of k(n, `) if k(n, `) is odd and a length
of 2× k(n, `) otherwise. Therefore, we construct a code with a unique cycle of the
required length so that it guarantees that such a code is (k(n, `)−1)-circular but not
circular. We divide the demonstration into three cases: if ` is even (Lemma 4.3.1)
and if ` is odd (Lemma 4.3.2). The case that ` is odd is again divided into two
cases: if ` is odd and n = 2 (Lemma I.1) and finally, if ` is odd and n ≥ 3
(Lemma I.2). The proofs of Lemmas I.1 and I.2 are quite long and complex and
therefore not included in this Thesis. They can be found in article [22](Lemma I.1
and I.2). However, there are new mathematical tools for the analysis of codes that
may be able to identify additional properties in the genetic code in the future. Let
us give the main idea of the constructions.

Theorem 4.3.2. (Theorem 4.4, [22]) Given two integers n and ` both at least 2.
Let Σ be an alphabet with |Σ| = n and X ⊆ Σ` an `-letter code over Σ. Then, k(n, `)
is the least integer r such that every code X ⊆ Σ` that is r-circular is circular.

We begin with the case in which ` is even.

Lemma 4.3.1. (Lemma 5.1, [22]) If n and ` are integers both at least 2 and ` is
even, then there is an `-letter code over Σ that is (k(n, `) − 1)-circular. Yet, this
`-letter code over Σ is non-circular when k(n, `) := n`/2 if n is odd and k(n, `) :=
n`/2 − 1 if n is even.
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Figure 4.2: The graph G(X(2,4)) associated with the binary 4-letter code X(2,4) =
{0001, 1100, 0111}.

Proof. Note that k(n, `) is always odd in this setting. The situation in which n =
2 = ` is trivial: every code is 0-circular, and the code {00} is not 1-circular.

We now assume that (n, `) 6= (2, 2). We construct an `-letter code X (n, `)
over Σn such that G(X (n, `)) contains a unique cycle, which is of odd length k(n, `).
It thus follows that X (n, `) is (k(n, `) − 1)-circular but not k(n, `)-circular by
Theorem 4.2.1. The code is constructed by using n-adic representations of numbers
below n`/2 (see Equation (4.1)).

First, we rule out a boundary case: if n = 2 and ` = 4, then one directly
verifies that X(2,4) := {0001, 1100, 0111} is 2-circular but not 3-circular. Indeed,
the associated graph G(X(2,4)), depicted in Figure 4.2, contains a unique directed
cycle, which has length 3.

From now on, we assume that (n, `) 6= (2, 4) so that n ≥ 3 or ` ≥ 6. Given a
length i ≤ `/2 and an integer x < ni, we define (x)i to be the word of length i
over the alphabet Σn representing x written in basis n. For example, if n = 3,
then (8)4 = 0022. If w = (x)i, we also write x = JwK. To improve readability, we
use Y and Z to refer to n− 2 and n− 1, respectively, when writing words in Σ∗n.

Let X (n, `) be defined as

X (n, `) :=
{

(x)`/2 · (x+ 1)`/2 : x ∈ Zk(n,`)

}
(4.1)

where the addition is in Zk(n,`). Note that |X | = k(n, `). For instance, if n = 2
and ` = 6, then k(n, `) = n`/2 − 1 = 7, and

X(2,6) = {000001, 001010, 010011, 011100, 100101, 101110, 110000}.

We assert that the graph G(X (n, `)) associated with X (n, `) has a unique cy-
cle of odd length k(n, `). It then follows from Theorem 4.2.1 that the `-letter
code X (n, `) is (k(n, `)− 1)-circular but not k(n, `)-circular.

We begin by proving a useful assertion on the code X−(n, `) defined as

X−(n, `) :=
{

(x)`/2 · (x+ 1)`/2 : x ∈ Zk(n,`) \ {k(n, `)− 1}
}
.
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A. The graph G− := G(X−(n, `)) is acyclic. Moreover, for every i ∈ { 1, . . . , `/2− 1 },
every directed path of length 2 in G− with a middle (` − i)-node begins at the i-
node Zi and ends at the i-node 0i. In particular, all out-neighbours of 0i in G−

have an out-degree of 0, and all in-neighbours of Zi in G− have an in-degree of 0.

Proof. For each i ∈ {1, . . . , `/2}, let Ci be the i-component of G−. Note that C`/2
is a path of length k(n, `)−1 for x ∈ Zk(n,`), traversing all nodes (x)`/2 in increasing
order. It follows that C`/2 is acyclic. We now fix i ∈ {1, . . . , `/2 − 1} and focus
our attention on the component Ci, which has no odd cycle. Let y = y1 · y2 · y3 be
an (` − i)-node of G where |y1| = |y3| = `/2 − i and |y2| = i. Let us prove that
if G− contains two nodes x and x′ such that x→ y → x′, then x = Zi and x′ = 0i.

1. By the definition of G−, if there is an arc from a node x to y, then x is an
i-node, and it holds in Zk(n,`) that

Jy2 · y3K = Jx · y1K + 1.

There are two possible cases:

(a) y2 = x and Jy3K = Jy1K + 1; or

(b) Jy2K = JxK + 1, y1 = Z`/2−i and y3 = 0`/2−i.

Note that y1 6= y3 in both cases.

2. On the other hand, if there is an arc from y to a node x′, then x′ is an i-node,
and it holds in Zk(n,`) that

Jy3 · x′K = Jy1 · y2K + 1.

Again, there are two possible cases:

(a) y3 = y1 and Jx′K = Jy2K + 1; or

(b) Jy3K = Jy1K + 1, y2 = Zi and x′ = 0i.

Let us assume that y has both an ingoing arc x → y and an outgoing arc y →
x′ where it might be that x = x′. Because of the arc x → y, we know that
y1 6= y3. Thus, case 2a is impossible, and we consequently must fall into case 2b.
Therefore, x′ = 0i, Jy3K = Jy1K + 1, and we infer that the arc x → y fell into
case 1a, so x = y2 = Zi. This proves the “moreover” part of the assertion. It
directly follows that 0i does not belong to a directed cycle in Ci, and consequently
no (`−i)-node belongs to a directed cycle in Ci. Because all arcs in Ci are between
an i-node and an (` − i)-node, we deduce that Ci is acyclic, thereby concluding
the proof of (A).
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We now show that G(X ) contains exactly one cycle which spans its whole com-
ponent C`/2. The code X is obtained from X− by adding the word Z`/2−1Y 0`/2 if n
is even or the word Z`/20`/2 if n is odd. Let us see how G(X ) is obtained from G−.
As mentioned earlier, the `/2-component of G− is a path of length n`/2−1 travers-
ing all nodes (x)`/2 for x ∈ Zk(n,`) in increasing order. Because the `/2-component

of G(X ) is obtained from that of G− by adding an arc from (k(n, `)−1)`/2 to (0)`/2,
we precisely obtain a cycle of length k(n, `). For each i ∈ {1, . . . , `/2 − 1}, the
component Ci is obtained from the i-component of G− by adding an arc outgoing
from the i-node Zi and an arc ingoing to the i-node 0i. This does not create a cycle
of a length of at least 4, since G− contains no directed path from 0i to Zi. The only
cycles that might be created are therefore of length 2, and there are two possible
ones. The first possibility is to create a cycle containing precisely the i-node 0i

and either the (`− i)-node Z`/2−1Y 0`/2−i if n is even or the (`− i)-node Z`/20`/2−i

if n is odd. If this cycle is created, then{q
Zi−1Y 0`/2−i

y
=

q
0iZ`/2−iy + 1 if n is even,

q
Zi0`/2−i

y
=

q
0iZ`/2−iy + 1 if n is odd.

This is possible only if i = 1 and either Y = 1 and n is even or Z = 1 and n is
odd. However, the parity of n is the same as that of Y = n− 2 and different from
that of Z = n− 1. Therefore, this first possible cycle is not created.

The other possible cycle is the one containing the i-node Zi and either the
(`− i)-node Z`/2−i−1Y 0`/2 if n is even or the (`− i)-node Z`/2−i0`/2 if n is odd. If
this cycle is created, then{q

0`/2−iZi
y

=
q
Z`/2−i−1Y 0i

y
+ 1 if n is even,

q
0`/2−iZi

y
=

q
Z`/2−i0i

y
+ 1 if n is odd.

If n is odd, then the equality implies that i = `/2, which is not the case. If n is
even, then the equality implies that `/2 − i = 1 and Y = 0, i.e. n = 2. It would
follow that J01iK = J0i+1K + 1, implying i = 1 and hence ` = 4. However, this is
not the case as we assumed that (n, `) 6= (2, 4).

This completes the proof of Lemma 4.3.1.

We now proceed with the case in which ` is odd. The entire proof is divided
into two cases depicted in detail in Appendix I. of the article [22] (Lemma I.1 and
I.2). Here we only present a sketch of the proof to illustrate its strategy and main
steps.

Lemma 4.3.2. (Lemma 5.2, [22]) Let n and ` be integers both at least 2 and
assume that ` is odd. There is an `-letter code over Σn that is (n(`−1)/2 − 1)-
circular but non-circular.
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Sketch of proof. Let us first deal with the case in which ` is odd and n = 2. We
have to show that there is an `-letter code over Σn that is (2(`−1)/2 − 1)-circular

but non-circular. Let us fix k := k(2, `) = 2
`−1
2 . The aim is to construct a binary

code X so that its graph G(X ) contains a unique cycle of length 2k. Let s := `−3
2

,
S ⊆ {0, 1}s be a subset of binary words of length s and set

XS := {a · y · a · y · a : a ∈ {0, 1}, y ∈ S}∪{a · y · a · y · a : a ∈ {0, 1}, y ∈ {0, 1}s \ S}

where for a binary word w, the complement of w is the word w obtained from w
by complementing each of its letters. It will be shown in Lemma I.1 (Appendix
I. in article [22]) that all but one of the components of G(X ) are acyclic if S ⊆
01{0, 1}s−2, and that there is a choice for such a set S so that the remaining
component consists of exactly one cycle. This solves the binary case.
The case in which ` is odd and n > 2 is more delicate. As before, one sets s := `−3

2

and k := n
`−1
2 . In Lemma I.2 (Appendix I. in article [22]), we shall define a

mapping ϕ from Σs
n to the family of 3-letter codes over Σn with very specific

properties so that the associated code

Xϕ := {a · y · b · y · c : y ∈ Σs
n and abc ∈ ϕ(y)}

satisfies our requirements. All details for the construction of ϕ can be found in
Lemma I.2 (Appendix I. in article [22]), but we would like to notice that in
the binary case, we have ϕ(y) = {010, 101} if y /∈ S and ϕ(y) = {000, 111}
otherwise.

With 4.3.1 and 4.3.2 we conclude the proof of our Theorem 4.3.2.

4.4 Biological consequences

Evidence such as the X-code indicates that circular codes and all related block
codes can play a hypothetical role in the evolutionary development of the standard
genetic code (SGC). However, neither the three comma-free codes RRY, RNY and
GNC [45, 69, 11] nor the X-code encodes all 20 amino acids. In fact, there are
12, 964, 440 maximum circular codes under the genetic alphabet and none of them
encodes 20 or 19 amino acids with SGC. Only ten maximum circular codes encode
18 amino acids with SGC (see [57]). Furthermore, it is noticeable that among the
320 = 3, 486, 784, 401 maximal 1-circular codes only 52 encode for all 20 amino
acids, i.e. with a very small probability of approximately 10−8, (see the list given
in Appendix II.3 or [52]*Table 2 where they were called bijective genetic codes
without permuted trinucleotides WPTBGC before the k-circular code theory was
developed in this thesis). This supports the assumption that due to the expansion
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of the code in evolution, the circular codes were replaced by k-circular codes. It
has already been verified [29] that these 52 maximum 1-circular codes cannot be 2-
circular. In addition, the following construction based on graph theory underlines
once more the outstanding role of this class of 52 maximum 1-circular codes. This
offers a theoretical framework for the previous calculation results [52].

In the following lemma, we will proceed with the proof of the existence of the
52 maximal 1-circular codes that encode all 20 amino acids. Before we introduce
the lemma, however, we need to provide the basics of bipartite graphs. A bipartite
graph is a graph G = (V,E) such that the set of vertices V is the disjoint union of
two sets A and B such that any edge in e ∈ E is of the form e = (a, b) for some
a ∈ A and b ∈ B. Hence, no edge connects two vertices from A or two vertices
from B. A perfect matching of G is a subset M ⊆ E, such that the edges of M
form a bijection between the sets A and B. A perfect matching can thus only exist
if A and B have the same cardinality.

Lemma 4.4.1. (Lemma 6.1, [22]) There are exactly 52 maximal 1-circular codes
that encode all 20 amino acids.

Proof. We first need to recall some essential facts [29]. An equivalence class [c]
of some codon c ∈ B3 consists of c and its circular permutations, e.g. [ATC] =
{ATC, TCA,CAT}. The equivalence class is called complete if it contains three
elements, i.e. if c 6∈ {AAA,CCC,GGG, TTT}. It has been established [29] that
there are 20 complete equivalence classes D1, . . . , D20, each of which encodes three
different amino acids or two amino acids and the stop signal. Moreover, it has also
been shown [29] that each maximal 1-circular code encoding all 20 amino acids
must contain the following seven codons:

TGG,ATG, TTC,AAG,GAG,GAC,GGC,

which encode the following seven amino acids, respectively:

Trp, Met, Phe, Lys, Glu, Asp, Gly,

and belong to the complete equivalence classes D2, D8, D11, D15, D18, D19.
The basic idea of this proof is to construct the bipartite graph G = (V,E)

displayed in Figure 4.3 where V is the union of the two disjoint sets

D = {D1, D3, D4, D6, D7, D9, D10, D12, D13, D14, D16, D17, D20}

and

A = {Val, Tyr, Thr, Ser, Pro, Leu, Ile, His, Glu, Cys, Asp, Arg, Ala}.
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Moreover, the set of edges E consists of all pairs (Di, aa) such that there is a
codon in Di that encodes the amino acid aa. It can now be seen that the maximal
1-circular codes that encode all 20 amino acids are in bijective correspondence
with the perfect matchings of the constructed graph G. An application of estab-
lished algorithms for calculating perfect matchings of a graph, e.g. the Hungarian
algorithm, now yields the list of 52 perfect matchings of G. This completes the
proof.

D1

D3

D4

D6

D7

D9

D10

D12

D13

D14

D16

D17

D20

Ala

Arg

Asp

Cys

Glu

His

Ile

Leu

Pro

Ser

Thr

Tyr

Val

Figure 4.3: The bipartite graph G = (V,E) where V is composed of the 13 equivalence
classes in D = {D1, D3, D4, D6, D7, D9, D10, D12, D13, D14, D16, D17, D20} and the
13 amino acids in A = {Val, Tyr, Thr, Ser, Pro, Leu, Ile, His, Glu, Cys, Asp, Arg, Ala},
and E is the set of all pairs (Di, aa) such that there is a codon in Di that encodes the
amino acid aa.

While examining the k-circular codes, a new relation between the combina-
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torial hierarchy of circular codes and their probability measure of reading-frame
retrieval (or reading-frame code in [52]) within two successive codons was discov-
ered (Figure 4.4; for more details of the method see [52]). This reading-frame
retrieval measure ranges from 1/3 (one chance out of three to retrieve the reading-
frame among the three possible frames in genes) in random codes, e.g. B3, to 1
(the reading-frame is always retrieved) in strong comma-free codes and comma-
free codes. Remember that (i) the maximal size of strong comma-free codes can-
not exceed 9 trinucleotides, and there are only 8 codes belonging to this class.
Moreover, (ii) there are 408 maximal (size of 20 trinucleotides) comma-free codes.
The 12, 964, 440 maximal circular codes have reading-frame retrieval values in the
range [72.7, 100] (%), including the 216 maximal C3 self-complementary circular
codes in the range [77.2, 90.1] (%). The maximal C3 self-complementary circular
code X identified in genes (see section 1.2.8) has a RFC value equal to 81.3 (%).
Noticeably, the identified 52 maximal 1-circular codes have reading-frame retrieval
values in the range [62.2, 71.6] (%). Thus, their ability to retrieve the reading-frame
is weaker than that of the maximal circular code of the lowest reading-frame re-
trieval value [72.7] (%). On the other hand, the genetic code B3, which is non-
circular, has a reading-frame retrieval probability equal to 1/3, as do all random
codes (depicted in Figure 4.4). The 4 unitary codes {AAA}, {CCC}, {GGG}
and {TTT}, which are non-circular, are also random codes with a reading-frame
retrieval probability equal to 1/3. It is noteworthy that the loss of the reading-
frame in a sequence of such a unitary code does not cause the coding of an amino
acid different from the one coded in the reading-frame. In contrast,the 60 remain-
ing unitary codes which are circular and comma-free (48 strong comma-free). In
summary, the growing combinatorial hierarchy of k-circular trinucleotide codes is
associated with a decreasing probability hierarchy of reading frame coding reading-
frame retrieval.

The main property of circular codes, which has first been reported in 1996, is
the nucleotide window length for retrieving the reading-frame, e.g. 15 nucleotides
with the circular code X in genes. The relation identified above shows that,
from our point of view, the circular codes may retrieve the reading-frame in genes
according to two properties (property (i) is classic in coding theory, property (ii)
is a new proposition): (i) always retrieved, i.e. without error, using a nucleotide
window length but with a slow process; and (ii) retrieved with high frequencies,
i.e. not always as some errors may occur, within two successive codons, thus with
a fast process.
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Prob. (%) of
Reading Frame Coding
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Genetic code without the 3 stop codons34.5
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72.7

100

12
,9

64
,4

40
m

ax
im

al
ci

rc
u
la

r
co

d
es

co
d
in

g
at

m
os

t
18

am
in

o
ac

id
s

77.2

90.1

216 maximal C3 self-complementary circular codes
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8 strong comma-free codes (maximal size of 9 trinucleotides)
408 maximal comma-free codes

Figure 4.4: A probability hierarchy of reading-frame retrieval within two successive
codons with the circular (4-circular) trinucleotide codes and the 52 maximal 1-circular
trinucleotide codes coding the 20 amino acids (updated from [52]*Figure 1).

4.5 Summary of Chapter 4

Chapter 4 introduces the class of k-circular codes, a new class of block codes. A
k-circular code is defined as a code which requires a concatenation of a maximum
of k words written on a circle to reliably ensure the reading-frame. Consequently,
k + 1 words written on a circle could be read in more than one reading-frame.
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Therefore, we can extend the definition of k-circular codes by the fact that each
of these codes must also be a k − 1-circular code. It can further be seen that
a k-circular circle code can be a k + 1-circular circle code but does not have to
be. The class of k-circular codes contains both circular and comma-free codes as
subclasses for every given k.

The main Theorem 4.3.1 of the chapter presents the integer k(n, `) where n
is the cardinality of the alphabet, and ` is the word length of the code. This
number k(n, `) is the border so that a k(n, `)-circular code must be a circular
code. In Table 4.1, the border values k(n, `) for a dinucleotide, a trinucleotide and
a tetranucleotide are listed.

Dinucleotide Trinucleotide Tetranucleotide
k(4, 2) = 4 k(4, 3) = 4 k(4, 4) = 16

Table 4.1: The k(n, `) value for a dinucleotide, a trinucleotide and a tetranucleotide.
A k(n, `)-circular code must be a circular code. For all listed values n := |B| is four.
The value for ` is either 2, 3 or 4

Theorem 4.3.1 has been a major breakthrough. In combination with the Theo-
rem 4.3.2, the decision whether a code is circular or not is no longer decidable only
by representing the code in a graph, but also combinatorially in finite time. Before
this revelation, a code always had to be transformed into a graph to determine if
it is a circular code. With k(n, `), a verification of a finite combination can now
provide this result.

With the insights from Lemma 4.4.1, it can be proven that 52 of all 3, 486, 784, 401
1-circular codes encode all 20 amino acids. Using this knowledge, we were able
to identify the 1-circular codes as the only known block codes with a word length
` = 3 over the genetic alphabet to encode all 20 amino acids.

In the final section 4.4, the probability measure of reading-frame retrieval is
introduced. This value was originally introduced in [52] and can be used to compare
the reliability of block codes in respect to their reading-frame retrieval qualities.
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In this final chapter, the application of theoretical models will be outlined with the
aim of connecting the mathematical results from the above chapters with protein
synthesis. The methods applied in this chapter are intended to reveal possible
evidence for error-correcting codes in biological mRNA sequences. An additional
focus lies on the provision of assistance to existing model of the X-code. Recalling
the origin of the X-code, it was obtained by observing data from a massive anal-
ysis of the genetic information of different species. Such procedures, as they can
be found in+ [1], are complex and expensive. However, not only has the hardware
become more powerful over the years with increasing computing power, but the
algorithms for using these capacities have also become more sophisticated. Hence,
we would like to present a software tool and methods that promote the investi-
gation of theories such as those outlined in Chapter 2 and Chapter 4. The aim
is to offer theoretical models of a hypothetical reading-frame retrieval machinery
in genes. The presented results have only been obtained from coding sequences
(CDS) of the species listed in Table 5.1. The obtained results are promising,
but the empirical relevance of the values must be increased by more detailed and
specific tests done in the future.

In the first section 5.1, we introduce the R package GCATR. This project
is a further development of GCAT. GCAT was developed as a stand-alone tool
for the examination of circular codes in RNA and DNA sequences [42]. At the
beginning of GCATR, the tool was intended to be a copy of GCAT that can be
used in R. However, the tool has grown beyond the original version. It has not
only been extended by the algorithms developed in this work, but it also contains
new theories and features, such as the theory of conductivity of the genetic code
by P. B lażej, D. Kowalski, D. Mackiewicz, M. Wnetrzak, D. Aloqalaa and P.
Mackiewicz [7]. The outline of GCATR contains a short version of the manual
and gives insight into some architectural features [71].

Section 5.2 will proceed with demonstrating two different methods to finding
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evidence for error-correcting codes in genes. Both methods are theoretical models
of a possible reading-frame detection. While these methods are not directly related
to the circular codes, they describe a hypothetical way in which the ribosome
might be able to detect reading-frame errors. Although the proof of the actual
implementation of these methods in the ribosome is rather demanding, the results
of applying them to coding sequences (CDS) are intriguing.

The methods presented in section 5.2 will then be applied to RNA sequences
in section 5.3. The outcomes of the methods applied to CDSs will be listed in
section 5.2.1. In this context, ”to apply” indicates reviewing the coverage of codes
using the methods in sequences. More precisely, it indicates reviewing of the
coverage of the regions in a sequence where the codes can retrieve the correct
reading-frame. The results are optimized codes that have the highest possible
coverage based on the methods.

5.1 Development of the research software GCATR

for circular codes

GCATR is an open source R package available on Github. While it is still a beta
version, it has been downloaded by several users. The tool requires basic knowledge
of the computer language R, a so-called interpreted language. However, it is more
complex than that as R is an environment with a variety of statistical and graphical
techniques [34]. The subsequent chapter will outline the architecture of GCATR
with its significant features and its shortcomings.

5.1.1 Architecture of the GCATR

One of the shortcomings of R is the interpretation of the language at run-time.
While this allows R to be easily installed, learned, and executed, it also increases
the execution time. It can be argued that R is optimized for working with large
data. However, this has also been achieved by writing bottleneck algorithms in
C++. Thus, it was decided that the main business logic of GCATR will also be
written in C++. The layer architecture of the GCATR package is depicted in
Figure 5.1.
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GCAT

C++

BDA Seq. tools Graph tools Conductance

C++ ↔ R adapter

R Package

Figure 5.1: This layer diagram shows the layers of the GCATR package. The main
business logic in the bottom layer is written in C++. This layer was developed in five
packages: GCAT, BDA, Sequence tools, Graph tools and Conductance. An adapter layer,
using the package RCPP, allows access to the C++ classes from R. A final upper layer
assembles the C++ components and manages their public appearance.

Core architecture of GCATR

The design of the architecture of the GCATR C++ part uses the delegation pat-
tern. Figure 5.2 and Figure 5.3 offer a simplified overview of the implemented
architecture. The core of the package is the interface WordContainer. A Word-
Container is an object which contains words (tuples of letters) like a sequence or
a code. This interface WordContainer is implemented by several classes. Each of
these classes is equipped with a validation function, which is adapted to the spe-
cific needs of each class. For instance, for the function of the gene-related classes,
it verifies whether the codes consist only of nucleotides, while for the validation of
the Tessera code class, for example, it analyzes whether the words are all correct
Tesserae.
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Figure 5.2: Simplified version of the architecture of GCATR. The classes in the
namespace cas delegate property testing to the individual test classes. All test classes
extend the interface called Tester. The CircularCode class is only one of many classes
that extend the WordContainer interface. Other classes are TesseraCode, GenCircular-
Code, GenSequeunce, and MixedCircularCode.

The system has three different types of delegates: the tester, the modifier, and
the miner. The separation of these three types is due to the return value of the
executing function.

tester The delegates grouped as tester return a boolean value (True or False) when
executed. They test whether an object that inherits from WordContainer has
a certain property, e.g. circularity or freedom from commas.

modifier The group gathered as modifier has no return value when executed.
A modifier influences the code/sequence of the delegator, i.e. the Word-
Container is changed in some way. These changes can be, for example,
transformations or permutations.

miner A miner delegate returns an element. These elements are properties of the
code, e.g. the longest path or all cyclic paths in the graph associated with
the code. The elements are returned as void pointers (anonymous object)
and have to be cast into the expected object by the delegator.
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Figure 5.3: Simplified version of the architecture of GCATR. The classes in the
namespace cas delegate the modifications to the individual modifier classes. All modifier
classes extend the interface called Modifier.

Package GCAT

The stand-alone tool GCAT is written in Java and comes with a comprehensive
editor. It allows the user to enter sequences and codes into a user interface.
Even though the tool has a great user experience, it has some practical flaws.
Installation, for example, is an obstacle that prevents many users from using it.
Additionally, the necessary installation of Java is a problem not tolerated by many
users. Hence, the design of the new tool was developed to accommodate a large
group of users. As many researchers are already using R as a tool for data science,
it was a logical decision to restructure the project in R. Subsequently, we list
selected examples to illustrate the work with GCATR. The entire manual can be
found on the web page https://github.com/StarmanMartin/GCATR.

The first example returns the maximum number of words of the code X =
{ACG,CGT, TCC,CCA}, which can be written on a cycle and reliably be de-
composed in only one reading-frame into words of X . In this context, it is called
the k value (see chapter 4) of a code:

1 code_k_value(c("ACG", "CGT", "TCC", "CCA"))

R console output:

→ 1

The same results can be achieved with the following arguments:
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1 code_k_value("ACGCGTTCCCCA", 3)

2 code_k_value("ACG CGT TCC CCA")

R console output:

→ 1

→ 1

As the example outlines, all functions can be called in three different ways.
The code can either be passed to the function as an array, as a string separated
by white spaces or as a sequence with an additional word length parameter. A
factory class then decides whether the code is a code of codons, a Tessera code,
any other kind of RNA/DNA code or a non-genetic code.

Other functions, including code check if comma free, code check if cn circular,
code check if code and code check if circular, can be called with the same settings
of parameters. Additional functions referring to Chapter 3 have also been imple-
mented, namely codons to tessera and code check if tessera.

Another feature of the package allows for translating codons into amino acids.
The following translation tables are available in the tool:

• The Standard Code

• The Vertebrate Mitochondrial Code

• The Yeast Mitochondrial Code

• The Mold, Protozoan, and Coelenterate Mitochondrial Code, and the My-
coplasma/Spiroplasma Code

• The Invertebrate Mitochondrial Code

• The Ciliate, Dasycladacean, and Hexamita Nuclear Code

• The Echinoderm and Flatworm Mitochondrial Code

• The Euplotid Nuclear Code

• The Bacterial, Archaeal, and Plant Plastid Code

• The Alternative Yeast Nuclear Code

• The Ascidian Mitochondrial Code

• The Alternative Flatworm Mitochondrial Code

• The Chlorophycean Mitochondrial Code
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• The Trematode Mitochondrial Code

• The Scenedesmus Obliquus Mitochondrial Code

• The Thraustochytrium Mitochondrial Code

• The Pterobranchia Mitochondrial Code

• The Candidate Division SR1 and Gracilibacteria Code

• The Pachysolen Tannophilus Nuclear Code

• The Karyorelict Nuclear Code

• The Condylostoma Nuclear Code

• The Mesodinium Nuclear Code

• The Peritrich Nuclear Code

• The Blastocrithidia Nuclear Code

The list of all tables can be accessed by the function print all translation tables.
Each table is listed with an index. To obtain the actual codon amino acid map-
ping, the function genetic codes by name or genetic codes by index can be used as
depicted in the example below:

1 code <- genetic_codes_by_name("The Yeast Mitochondrial Code")

or

1 code <- genetic_codes_by_index (1)

Two functions are offered to translate a code into amino acids. The first one
translates the codons in the same order, while the second one lists a unique set of
the encoded amino acids.

1 code_get_all_amino_acids("ACG CAA CAG", idx_trans_table =2)

R console output:

→ "Thr" "Gln" "Gln"

1 code_get_amino_acids("ACG CAA CAG", idx_trans_table =2)
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R console output:

→ "Gln" "Thr"
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Package Binary dichotomic algorithm (BDA)

Figure 5.4: This figure (src.: [41]) is a summary of the workflow of the Binary di-
chotomic algorithms (BDAs). a) Displays one representative of the BDAs (Rummer-
class algorithm), b) is a classification of all codons by the means of three overlapping
BDAs, and c) lists all parameters for the three BDAs used.

Page 152



CHAPTER 5. CODES IN SEQUENCES

The BDAs were first introduced by Fimmel, Danielli, and
Strüngmann [19]. A BDA consists of two so-called ques-
tions Q1 = (b1, b2) and Q2 = (b3, b4) and two indices
i1, i2 ∈ {1, 2, 3} where i1 6= i2 as demonstrated in Fig-
ure 5.4 (c). A partition of a codon w = b1b2b3 ∈ B3 by
the means of the BDA is defined as follows (see Figure 5.4
(a)):

(A) if bi1 ∈ Q1, then
→ result is 0 if bi1 = b1 or 1 if bi1 = b2

(B) if bi1 /∈ Q1, then
→ result is 0 if bi2 ∈ Q2 or 1 if bi2 /∈ Q2

In GCATR, this was implemented as represented in the
flowchart in Figure 5.5.

1 library(GCATR)

2

3 bda <- start_bda()

4 add_rule(bda , 3, 2, "C", "A", "C", "G")

5 add_rule(bda , 3, 2, "G", "A", "C", "A")

6 add_rule(bda , 1, 3, "C", "G", "G", "A")

7 res <- run_bda_as_matrix(bda)

The output is a table of binary triplets representing all
trinucleotides. The values are the same as in the table
illustrated in Figure 5.4.

Figure 5.5: This
flowchart demonstrates
the process of executing
a BDA procedure in
GCATR

Package Sequence tools

The investigation of block codes in sequences is one of the major aspects of
GCATR. Basic information can be accessed easily , such as the used alphabet,
the number of all words in the sequence and even the actual number of times a
word occurs in the sequence. All of this is contained in the return value of the
function:

1 res <- seq_get_info("ACGCGAACG", 3)

R console output:

res$alphabet → "TCAG"

res$number of tuple → 2

res$tuple count → ACG : 2 CGA : 1
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A more complex function is the one called: find and analysis code in sequence.
Apart from other information, this function lists all motifs of a code in a sequence,
the position of the motifs in the sequence, the remaining parts which are not motifs
and the circular permutation of each word in the sequence in terms of the words
in the code.

1 seq <- "ACGTCGCGACGTACGACGTCGTACTCGATGCAAGATC"

2 res <- find_and_analysis_code_in_sequence(seq , "ACG TCG")

R console output:

res$word → "ACG" "TCG" "ACG" "ACG" "TCG" "TCG"

res$idx list → 0 3 12 15 18 24

res$rest → "CGACGTTACATGCAAGATC"

res$parts → """ACGTCG""CGACGT""ACGACGTCG""TAC""TCG""ATGCAAGATC"

res$longest match → 9

res$total match in percent → 48.64865

res$circular permutations → 1 1 3 3 1 1 1 0 1 0 0 0 0

Package Graph tools

A directed graph associated with a code is one of the most vital tools used for
the investigation of circular codes. Hence, the GCATR has implemented a wide
range of functions to work with such a graph. The graph displayed in Figure 5.6
is the result of the example shown below.

1 plot(code_factor_graph("ATT CAG CTG AAG TAC GGA ACG"))
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Figure 5.6: The directed graph associated with the code {ATT, CAG, CTG, AAG,
TAC, GGA, ACG}. The green edges mark the longest path in the graph.

The graph factory function uses the R igraph package https://igraph.org/

r/. In the graph, the longest paths are marked by green edges and all cycles are
marked by red edges. These features of an associated graph can also be displayed
separately with the functions: code factor cycle and code factor longest path.

In addition to these two functions, it is also possible to work with the longest
path or a cyclic path as sequences or vectors. This can be achieved with the
functions code get all cycles as vector and code get all longest path as vector.

Package Conductance

The article ”The structure of the genetic code as an optimal graph clustering prob-
lem” introduced the value of conductance for the first time[7]. The conductance
is a value which gives an intuition of the potential negative impact of a point
mutation of the protein syntheses. It has thus been promoted as an evolutionary
factor of the standard genetic code1. The functionality related to this model is
listed below:

• get average conductance of code returns the average conductance of a code

• get max conductance of code returns the minimal conductance of a code

1For more details see the article [7].
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• get min conductance of code returns the maximal conductance of a code

For more information about GCATR, visit the website https://github.com/
StarmanMartin/GCATR where you can find the source code and detailed informa-
tion about the functionality.

5.2 Methods

This section contains a listing of the CDS used to gain the results. Furthermore, it
explains the two theoretical models of a possible reading-frame detection that have
been mentioned in the introduction to this chapter. Subsequently, it introduces a
feature of motifs in sequences, which combines k-circularity (see chapter 4) and the
results related to the paths in a representing graph (see chapter 2). Afterwards,
this chapter guides you through an implementation of the so-called hillclimber
algorithm. We close this chapter with an explanation of a quality feature of codes
that serves as a measurable property to compare the results.

5.2.1 Coding Sequences (CDS)

The following section lists the used coding sequences. However, due to the fact
that the calculation time for this version had to be reduced, some algorithms only
used a scaled down version of the listed sequences. The set of sequence selection
was taken from [43] after consultation with the author Gumbel, M..

Species #CDS #Bases #Codons
Human 32554 55631471 18543823.6666667

C. elegans 33111 46925943 15641981
Yeast 5917 8899818 2966606
E. coli 5494 4762104 1587368

Herpes virus 118 174237 58079
SARS virus 11 29277 9759

Table 5.1: The used sequences contain the given number of bases and codons.

The coding sequences were downloaded from the resources depicted in the
sections below. All sequences use Thymine (T ) instead of Uracil (U ), even though
they represent RNA sequences.
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Human

DNA sequences were taken from the Consensus CDS (CCDS) project.
https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi

and downloaded from FTP server:
ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/

Yeast (Saccharomyces)

https://www.yeastgenome.org(https://www.yeastgenome.org

https://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna/

Worm (C. elegans)

https://www.ebi.ac.uk/ena/data/view/Taxon:Caenorhabditis%20elegans

Then ”Coding (Release)”:
https://www.ebi.ac.uk/ena/data/view/Taxon:6239&portal=coding_release

Download via “FASTA” link. File name is celegans.fasta.

Bacteria (E. coli)

http://bacteria.ensembl.org/Escherichia_coli/Info/Index

Then ”Download DNA sequence (FASTA)”.
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-44/fasta/bacteria_

91_collection/escherichia_coli/cds/

Viruses

https://www.ebi.ac.uk/genomes/virus.html

Two viruses were selected:

• Abalone herpesvirus Victoria/AUS/2009 or short ‘herpes’.
https://www.ebi.ac.uk/ena/data/view/Taxon:1241371

Then “Coding (Release)”:
https://www.ebi.ac.uk/ena/data/view/Taxon:1241371&portal=coding_

release

Download via “FASTA” link. File name is ena-herpes.fasta.

• Bat SARS coronavirus HKU3 or short ‘sars’.
https://www.ebi.ac.uk/ena/data/view/Taxon:442736

Then “Coding (Release)”:
https://www.ebi.ac.uk/ena/data/view/Taxon:442736&portal=coding_

release.
Download via “FASTA” link. File name is ena-sars.fasta.

Page 157

https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi
ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/
https://www.yeastgenome.org (https://www.yeastgenome.org
https://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna/
https://www.ebi.ac.uk/ena/data/view/Taxon:Caenorhabditis%20elegans
https://www.ebi.ac.uk/ena/data/view/Taxon:6239&portal=coding_release
http://bacteria.ensembl.org/Escherichia_coli/Info/Index
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-44/fasta/bacteria_91_collection/escherichia_coli/cds/
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-44/fasta/bacteria_91_collection/escherichia_coli/cds/
https://www.ebi.ac.uk/genomes/virus.html
https://www.ebi.ac.uk/ena/data/view/Taxon:1241371
https://www.ebi.ac.uk/ena/data/view/Taxon:1241371&portal=coding_release
https://www.ebi.ac.uk/ena/data/view/Taxon:1241371&portal=coding_release
https://www.ebi.ac.uk/ena/data/view/Taxon:442736
https://www.ebi.ac.uk/ena/data/view/Taxon:442736&portal=coding_release
https://www.ebi.ac.uk/ena/data/view/Taxon:442736&portal=coding_release


CHAPTER 5. CODES IN SEQUENCES

Scaled down sequence set

The scaled down sequence set includes ten sequences (if available) of each species.
These randomly selected sequences have a length of at least 160 nucleotides (if
available). All algorithms that are executed with this data are executed multiple
times on different, randomly generated, scaled down sequence sets. The results
are almost identical as the numbers differ only by an acceptable error ε. The error
of the percentage coverage of the different methods used is on average ε < 0.5%.
The set of coding sequences for the presented numbers in section 5.3 can be found
in the Appendix Section II.3.

5.2.2 Random codes and sequences

Random sequences as well as random codes are often valuable tools to verify
results. In the subsequent section, we often refer to such random codes and random
sequences. The random sequences used in this thesis are uniformly distributed.
Any sequence used in the experiments is actually a set of 100 generated sequences
of length 1500 nucleotides.

Definition 35. All random sequences are 100 randomly generated sequences each
of length 1500 nucleotides.

If a sequences is uniformly distributed, a random code is not. It is actually a
1-circular random code. Each code is a set of 20 codons, where each belongs to a
different complete circular permutation class (see Definition 3).

Definition 36. A 1-circular random code is a set of randomly selected codons
from each of the 20 complete circular permutation classes.

5.2.3 Reading-frame retrieval method 1

The first method outlined in this chapter analyzes whether the three words at
the same position in the three reading-frames are present in different circular
permutations of the same code X . Suppose w1 is the word in the normal reading-
frame, w2 is the word in the +1 reading-frame, and w3 is the word in the +2
reading-frame. Then, the reading-frame is confirmed if αi1(w1), αi2(w2), αi3(w3) ∈
X so that i1 6= i2 6= i3. Figure 5.7 gives an example.

Page 158



CHAPTER 5. CODES IN SEQUENCES

Figure 5.7: This figure gives an example of the first reading-frame retrieval method
based on the X-code. It shows that α1(TGT ) is in the X-code, α0(GTA) is also in
the X-code, and α2(TAT ) is in the X-code. Since all three words are different circular
permutations of words in the X-code, the reading-frame is confirmed

.

According to the method explained in Figure 5.7, we outline a pseudocode to
calculate the coverage of the method in a sequence.

Pseudocode 3. Require: X ⊂ B3, ` := 3 and seq ∈ B+

function ReadingFrameRetrievalMethod1(X , seq)
cp0 ← find and analysis code in sequence(seq,X )$circular permutations
cp1 ← find and analysis code in sequence(α1(seq),X )$circular permutations
cp2 ← find and analysis code in sequence(α2(seq),X )$circular permutations

wordsInSeq ← b |seq0|
`
c

res← 0
for wIdx ∈ 0 . . . wordsInSeq do

if IsUnique(cp0[wIdx], cp1[wIdx], cp2[wIdx]) then
res← res+ 1

end if
end for
return 100×res

wordsInSeq

end function
The code implements a function to calculate the coverage of a code in a sequence

under the restrictions of reading-frame retrieval method 1. In this pseudocode func-
tion, the GCATR function find and analysis code in sequence (see Section 5.1.1)
is used. The function αj(·) is denoted as the circular permutation function (see
Section 1.2.1). The return value of the function is the coverage in percent.

5.2.4 Reading-frame retrieval method 2

The second method examines for each position whether the word in the normal
reading-frame is in the code, whether the word at the same position in the +1
reading-frame is in the circular 1-permutation of the code and whether the word
at the same position in the +2 reading-frame is in the circular 2-permutation of
the code. Figure 5.8 gives an example of that.
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Figure 5.8: This figure gives an example of the reading-frame retrieval method 2
described above. This example uses the X-code. As can be seen, TGT is not in the
X-code and α1(GTA) is not in the 1-permutation of the X-code. Nevertheless, α2(TAT )
is contained in the X-code. Hence, the reading-frame is confirmed

.

Next, we outline a pseudocode 4 to implement reading-frame retrieval method
2? as described in Figure 5.7.

Pseudocode 4. Require: X ⊂ B3, ` := 3 and seq ∈ B+

function ReadingFrameRetrievalMethod1(X , seq)
cp0 ← find and analysis code in sequence(seq,X )$circular permutations
cp1 ← find and analysis code in sequence(α1(seq),X )$circular permutations
cp2 ← find and analysis code in sequence(α2(seq),X )$circular permutations

wordsInSeq ← b |seq0|
`
c

res← 0
for wIdx ∈ 0 . . . wordsInSeq do

if cp0[wIdx] = 1 or cp1[wIdx] = 2 or cp2[wIdx] = 3 then
res← res+ 1

end if
end for
return 100×res

wordsInSeq

end function
The Code implements a function for calculating the coverage of a code in a

sequence under the restrictions of reading-frame retrieval method 2. In this pseu-
docode function, the GCATR function find and analysis code in sequence (see Sec-
tion 5.1.1) is used. The function αj(·) is denoted as the circular permutation func-
tion (see Section 1.2.1). The return value of the function is the coverage in percent.

5.2.5 Pathless motifs in sequences

This section focuses on the elaboration of a comprehensive feature of code motifs
in sequences. We combine the theory of k-circular code (see chapter 4) with the
reading-frame results of the longest path theory (see chapter 2).

A k-circular code recognizes a frameshift for any sequence consisting of no
more than k words from the code written in one cycle. However, observation 2.1.2
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shows that a motif is robust to frameshifting if it is not equal to a word that is a
concatenation of the vertices of a path in the graph associated with the code (see
Definition 13). In this case, the length of the motif is irrelevant. These motifs
are called pathless motifs. We must mention that a word that is a concatenation
of the vertices of the path can be frameshift stable. This is the case if the path
cannot be extended by edges of the associated graph. The method we use to gain
results will ignore this fact. Consequently, the actual number of frameshift robust
motifs is presumably much higher than the featured results.

5.2.6 Code optimization with a hillclimber algorithm

The hillclimber algorithm was used to optimize the codes with respect to the
retrieval of reading-frames. In this section, this algorithm will be elaborated and
the way in which it was adapted for our needs will be outlined.

The hillclimber algorithm is a simple but powerful heuristic optimization method.
It is an analogy to a mountaineer who is trying to reach the summit in dense fog
and therefore steers the steps as steeply as possible uphill. When the only possible
steps left are going downwards, the hillclimber has reached a summit. In concor-
dance with the analogy, the hillclimber works according to the following principle:
You take a step in a random direction and after each step, the algorithm checks
if you are higher than before. If you are, the next iteration starts. If not, you
go back and repeat the previous step. The algorithm terminates when it is only
possible to go back down.

In order to adapt the code for our usage, we will use the coverage of reading-
frame retrieval method 1 and reading-frame retrieval method 2 as fitness values.

First, we will start the algorithm with randomly generated 1-circular codes (see
36). These codes are generated such that they contain a randomly selected codon
from each circular permutation class. In a subsequent step, we start the algorithm
with the X-code.

The algorithm selects a randomly chosen codon from the code and circularly
permutes it at random. Then, it checks whether the fitness has increased. If so,
the algorithm starts a new iteration step. If not, the previous step is undone and
a new iteration step starts. The algorithm terminates when all possible circular
permutations of all codons in the code do not further increase the fitness.

We decided to use this optimization algorithm for two reasons. First, it per-
fectly fits to an application with many variables and can therefore be easily adapted
to the environment. Secondly, to the best of our knowledge, this algorithm is close
to the evolutionary optimization process. This argument excludes all external
factors of evolution and concerns about the trial and error nature of evolution.
Summarized according to Darwin: ”Survival of the Fittest” [14].
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5.2.7 Code coverage of all reading-frames as quality fea-
ture

This section presents a quality feature inspired by the properties of the X-code.
First, we would like to recall the X-code discovered by Arquès and Michel [1].

{AAC,AAT,ACC,ATC,ATT,CAG,CTC,CTG,GAA,GAC,GAG,GAT,
GCC,GGC,GGT,GTA,GTC,GTT, TAC, TTC}

The X-code is a self-complementary C3 code, and it was found in sequences
of different species. It is a combination of the most common codons in the three
reading-frames. To identify the X-code, the most frequent codons in the normal
reading-frame are combined with the circular 2-permutation of the most frequent
codons in the +1 reading-frame and the circular 1-permutation of the most frequent
codons in the +2 reading-frame (see [1]).

As a reference value, we use the percentage of codons in the X-code in the
reduced set of sequences from section 5.2.1.

X-code in α1(X-code) in α2(X-code) in
Normal frame +1 frame +2 frame

41.3% 37.1% 37.7%

On average, the randomly generated 1-circular codes (see Definition 36) of
length 20 reveal the following values:

R code in α1(R) in α2(R) in
Normal frame +1 frame +2 rame
≈30.5% ≈30.5% ≈30.5%

The randomly generated codes are generated so that they contain a randomly
selected codon from each circular permutation class. The presented values are
calculated as an average of 50 random 1-circular codes. The range for all three
frames was 25% to 34%.

In the following subsections, we present the results of the two new reading-
frame retrieval methods.

5.3 Results

All results presented in this section are those of the algorithms illustrated in sec-
tion 5.2. These results will strengthen the theory of circular codes in genetic
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sequences. This section contains the outcome of the algorithms which (a) provide
new hypothetical methods in the ribosome to detect a reading-frame shift and (b)
present evidence for the significance of the X-code [1]. In the subsequent section,
various circular codes in sequences are discovered. As specified in sections 5.2.6,
we will use a hillclimber algorithm. Such an algorithm requires a fitness value to
indicate whether it has improved or not. Hence, we use the coverage of a code in
terms of the methods elaborated in section 5.2, i.e. the number of positions in the
sequence of the code from which the method was able to retrieve the reading-frame.

Before proceeding with the next section, we want to delineate the coverage
results of the X-code by applying method 1 (see section 5.2.3) and method 2 (see
section 5.2.4), first, to the reduced set of sequences from section 5.2.1, then to
randomly generated sequences (see Definition 35).

The results of the X-code and the reduced set of sequences from section 5.2.1:

Method 1 coverage: 51.0%

Method 2 coverage: 64.3%

Average results of the code and randomly generated sequences:

Method 1 coverage: ≈ 48%

Method 2 coverage: ≈ 52%

5.3.1 Hillclimber with the reading-frame retrieval method
1

In this section, we use the coverage of reading-frame retrieval method 1 (see Pseu-
docode 3) as fitness value for the hillclimber algorithm introduced in section 5.2.6.
As data, the reduced set of sequences from section 5.2.1 is used. We start the
algorithm with 100 1-circular random codes to avoid local minimums. The most
valuable result is:

XresR1 = {CAA, ATA, CAC, CAT, TTA, CAG, CTC, CTG, AAG, CGA, GAG,
ATG, CGC, CGG, GTG, TAG, CGT, TTG, CTA, CTT}

Method 1 coverage: 63.0%

The code XresR1 is a non-self-complementary C3 code. The longest path in the
associated graph is of length six. According to Theorem 2.1.4, the reading-frame
number is nX = 12. The code XresR1 encodes nine amino acids and the stop signal:
Arg, Gln, Glu, His, Ile, Leu, Lys, Met, Val and Stop. The coverage for method 2
is 49.8%.
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XresR1 code in α1(XresR1) in α2(XresR1) in
Normal frame +1 frame +2 frame

31.1% 32.2% 31.4%

Next, we start the algorithm with the X-code. Let us assume we are in the
middle of an evolutionary process where the X-code is a relevant factor for this
development. In the next step of this hypothetical process, we attempt to simulate
the future evolution. In this experiment, we assume that the evolution works
according to the hillclimber algorithm, i.e. based on a trial-and-error system. In
such a situation, we must assume that the correct course of development is heading
for the next local maximum. The result of the hillclimber with the X-code is:

XresX1 = {AAC, AAT, ACC, ATC, ATT, GCA, TCC, GCT, GAA, GAC, GGA,
GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}

Method 1 coverage: 62.1%

The code XresX1 is a C3 code. It is non-self-complementary. The longest path
in the associated graph is of length six. According to Theorem 2.1.4, the reading-
frame number is nX = 13. The code XresX1 encodes eleven amino acids: Ala, Asn,
Asp, Glu, Gly, Ile, Phe, Ser, Thr, Tyr and Val. The coverage for method 2 is
42.9%.

XresX1 code in α1(XresX1) in α2(XresX1) in
Normal frame +1 frame +2 frame

21.7% 23.9% 23.0%

5.3.2 Hillclimber with the reading-frame retrieval method
2

Now, the coverage of reading-frame retrieval method 2 (see section 5.2.4) is used as
fitness. As above, we use the reduced set of sequences from section 5.2.1. Again,
we start the algorithm with 100 1-circular random codes called R to avoid local
minimums. The best results are:

XresR2 = {CAA, ATA, ACC, ATC, ATT, CAG, CTC, GCT, GAA, GAC, GAG,
GAT, CCG, GGC, GTG, GTA, CGT, TTG, TAC, TCT}

Method 2 coverage: 71.1%
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The code XresR2 is neither self-complementary nor circular. However, the code
XresR2 encodes 13 amino acids: Ala, Arg, Asp, Gln, Glu, Gly, Ile, Leu, Pro, Ser,
Thr, Tyr and Val. The coverage for method 1 is 40.8%.

XresR2 code in α1(XresR2) in α2(XresR2) in
Normal frame +1 frame +2 frame

38.2% 37.3% 36.4%

Next, we start the algorithm with the X-code as a hypothetical simulation of
the evolution. To identify the local maximum that the X-code is heading to in
the hypothetical case where method 2 has a major influence on the evolution, the
result is:

XresX2 = {CAA, ATA, ACC, ATC, ATT, CAG, CCT, GCT, GAA, GAC, GAG,
GAT, CCG, GGC, GTG, GTA, CGT, TTG, TAC, TTC}

Method 2 coverage: 71.0%

The code XresX2 is neither self-complementary nor circular. However, the code
XresX2 encodes 13 amino acids: Ala, Arg, Asp, Gln, Glu, Gly, Ile, Leu, Pro, Ser,
Thr, Tyr and Val. The coverage for method 1 is 43.3%.

XresX2 code in α1(XresX2) in α2(XresX2) in
Normal frame +1 frame +2 frame

38.0% 38.5% 36.8%

5.3.3 Hillclimber with pathless motifs in sequence

The results in this section refer to the pathless motifs introduced in section 5.2.5.
First, we examine the coverage of the sequences by such pathless motifs from the
X-code.

Random sequences: ≈10%

Sequences from section 5.2.1: 20.6%

Recalling that these are not the only frameshift robust motifs, the result is promis-
ing. It can be seen that at least 50% of the X-motifs are completely frameshift
stable. Moreover, there is a considerable gap between the result of the random
sequences and the result of the CDS.

Next, we use the coverage of the CDS by such pathless motifs as the fitness for
the hillclimber algorithm and highlight two results:
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Code XresRPath is the most valuable result achieved with the hillclimber algo-
rithm. The coverage of 22.9% of CDS by pathless motifs was unparalleled. The
data obtained shows that all other coverage values for the other methods are well
above average. The code is:

XresRPath = {CAA, AAT, CCA, CAT, ATT, GCA, CCT, GCT, GAA, GAC,
GGA, GAT, GCC, GGC, GGT, GTA, CGT, GTT, ACT, CTT}

Pathless motifs: 23.4%

This code XresRPath is a circular code, but it is non-self-complementary. The
longest path in the associated graph is of length six. According to Theorem 2.1.4,
the reading-frame number is nX = 13. The code XresRPath encodes 13 amino acids:
Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Pro, Thr and Val.

Method 1: 62.0%

Method 2: 53.3%

XresRPath code in α1(XresRPath) in α2(XresRPath) in
Normal frame +1 frame +2 frame

38.5% 37.2% 36.8%

As for method 1 and 2, we attempt to simulate the evolution by starting the
algorithm with the X-code. The goal is to identify the local maximum of the
X-code if the pathless motifs had a major influence on evolution. The result is:

XresXPath = {CAA, AAT, ACC, CAT, ATT, GCA, TCC, GCT, GAA, GAC,
GGA, GAT, GCC, GGC, GGT, GTA, CGT, GTT, ACT, CTT}

Pathless motifs: 23.4%

This code XresXPath is a circular code, but it is non-self-complementary. The
longest path in the associated graph is of length seven. According to Theo-
rem 2.1.4, the reading-frame number is nX = 14. The code XresRPath encodes
13 amino acids: Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Ser, Thr and
Val.

Method 1 coverage: 59.1%

Method 2 coverage: 55.3%

XresXPath code in α1(XresXPath) in α2(XresXPath) in
Normal frame +1 frame +2 frame

39.2% 37.0% 37.2%
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5.4 Consequences of Chapter 5

First, we recall the coverage results of the X-code:

Method 1 coverage: 51.0%

Method 2 coverage: 64.3%

Pathless motifs: 20.6%

X-code in α1(X-code) in α2(X-code) in
Normal frame +1 frame +2 frame

41.3% 37.1% 37.7%

If we compare the results of the codes found in section 5.3.1 and 5.3.2 with the
results of the X-code, on average, the X-code is the best code. The coverage of the
X-code is not exceeded by any of the other codes. It can be seen that the results
of either method 1 or method 2 are higher for the codes found by the hillclimber
algorithm but never of both methods. However, it should not be neglected that
these codes have been optimized with regard to one of these values. In summary,
it shows that these methods have the potential to be of importance for reading-
frame retrieval - in particular method 1. Astonishingly, the results indicate that
the coverage of method 1 and circularity of the codes are connected. It is even
more surprising that the codes are C3 codes. Note that there is no natural link
between the method and C3 property of codes. Another exceptionalism of method
1 is that the codes do not need to have high codon coverage in the three reading-
frames of a sequence and still perform very well. Method 2 achieves remarkable
values over 70%. It must also be considered that the codes encoded 13 amino acids.
Hypothetically, this method could perform very well as a machinery to synchronize
the reading-frame in genes. Nonetheless, it is unclear how reliable these methods
are. For instance, the numbers of method 1 reveal that the coverage in random
sequences is only slightly below the coverage in gene sequences with respect to the
X-code. Future investigation of these methods is needed to determine whether
they are a potential role model for new types of block codes and/or as reading-
frame retrieval methods in genes.

Finally, we summarize the two results obtained by means of the pathless motifs.
The first results indicate that the coverage of the three reading-frames as well as
the coverage of method 1 and method 2 are somehow linked to the pathless motifs.
These motifs have an obvious link to the circularity. Hence, it is unsurprising
that the codes found by the hillclimber are circular or even C3. Yet, the links to
method 1 and method 2 cannot be reconstructed.
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Conclusion

This concluding chapter is divided into two sections. The first part uses the results
obtained in Chapters 2-5 to describe a hypothetical evolutionary scenario based on
a combinatorial hierarchy. Subsequently, this dissertation closes with a discussion
of the achieved results and an outlook on possible future research.

6.1 Biological consequences

Almost every organism living today stores its genetic material in DNA and uses
the standard genetic code (SGC) to translate the 64 trinucleotides (codons) into
20 amino acids and the stop signal during protein synthesis. In section 1.1.3 of the
introduction, we have presented the three most widely accepted hypotheses about
the origin of the genetic code (see for an overview [46, 47]). Let us recall these
hypotheses briefly: (1) the stereochemical theory based on the stereochemical at-
traction between amino acids and specific anti-codons [64, 79], (2) the adaptive
theory, which suggests that the genetic code is the result of an optimisation pro-
cess to be as robust as possible against mutations [76, 35], and (3) the theory of
coevolution of the genetic code with amino acid biosynthetic pathways [77].

In the following we will use the theory of k-circular codes and the circular code
classes X1 to X8 introduced in section 2.1.2 to develop a hypothetical model of
the evolution of the genetic code adapted to the limitations of the adaptive theory.
The different classes of circular codes can be perfectly integrated into the chain
of argumentation of Novozhilov, Wolf and Koonin from [61], which suggests that
the SGC is not completely error-tolerant. The three authors claim in [61] that
there must be a compromise between the increasing robustness against translation
errors and the extension of the coding table. Certainly, the efficiency of the code
is another factor that should be added to this line of argument. By extending the
genetic alphabet or the word length, it was possible that the code would contain
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more information in addition to being error robust (see section 2.2.1). However,
such an evolutionary scenario is only conceivable in a hypothetical primitive genetic
code, which in this work is represented in the form of Tessera codes. Nevertheless,
it can be assumed that even in this hypothetical scenario, the effectiveness and
above all efficiency of protein synthesis forced evolution to develop a trinucleotide-
based genetic code or translation mechanism at an early stage.

These considerations inspire the construction of a combinatorial hierarchy of
genetic codes (error-detecting codes as subcodes of the genetic code) presented in
the following, assuming that the development of the genetic code was accompanied
by the development of error detection codes and that the genetic code itself had
to be extended in the course of evolution. The corresponding evolutionary model
starts with circular Tessera codes as a form of a possible primordial code and is
then further developed on the basis of the properties of the circular trinucleotide
code classes X1 to X8 developed in this work and the (k)-circular code classes (see
theorem 4.3.1 with n = 4 and ` = 3, and Observation 4.3.2).

Figure 6.1 visualises such a combinatorial hierarchy: the evolutionary tem-
plate shown has two optional starting points (A) and (B). Starting point (A) in
Figure 6.1 refers to the self-complementary Tessera code XT = {AACC, GGTT,
GGCC, AATT, AGTC, GACT, GATC, AGCT}, which is self-complementary
strong comma-free and can be mapped to a strong comma-free trinucleotide code,
which is a subcode of the RNY code (see section 1.2.8). In contrast, the starting
point (B) focuses on the maximum circular Tessera codes. There is much evi-
dence that the maximal circular Tessera codes can be mapped onto comma-free
codes (see Observation 3.3.1 and Observation 3.4.3), while there is convincing ev-
idence that there is no correlation between maximal circular Tessera codes and
strong comma-free trinucleotide codes. Therefore, the evolutionary hierarchy in
Figure 6.1 is based on two opposing starting points. From these points on, the
combinatorial hierarchy develops with increasing complexity according to the code
classes Xp (see section 2.1.2), where p refers to the maximum path length p (from
1 to 8) of their associated graphs G(Xp). Since the maximum path length p refers
to the reading frame number nX defined in Theorem 2.1.4, the circular codes in
X1 are strong comma-free and the codes in X2 are comma-free and therefore more
restricted than the codes in X3 to X8. Table 2.7 lists the reading frame number
for each class.

Longest path classes: X1 X2 X3 X4 X5 X6 X7 X8

Readingframe number nX : 5 6,7 8 9,10 11 12,13 14 15

Copy of Table 2.7. The readingframe number nX for the eight classes of circular
trinucleotide codes.
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The maximum self-complementary C3 codeX discovered by Arquès and Michel [1]
is the most important representative of the 216 maximum C3 self-complementary
trinucleotide circuit codes introduced in section 1.2.8 and belongs to class X8.
Through the work of Arquès and Michel there is here for the first time a statistical
proof of the existence of such a code in the genetic information and its biological
role.

After the X8 code, a circular (4-circular) code with few restrictions, the devel-
opment could have continued through the even less restrictive classes of k-circular
codes (where k ∈ {1, 2, 3}). It is assumed that during this hypothetical course
of development, the k-circular codes provide a possible transition from circular
codes to the current SGC, in which the property of circularity is completely lost
(Figure 6.1). This development led to a weakening of the genetic code with regard
to its error robustness. One possible theory is that, as compensation, the motifs of
a circular code, especially those of the X-code, which are found representatively
in the genes of most organisms [55, 15], are used to retrieve reading-frames.
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Circular Tessera codes XT E
Cardinality: {1, . . . , 12} Tesserae

Number of XT E codes with 1 Tesserae : 48
Number of XT E codes with 12 Tesserae : 9, 592, 512

Strong comma-free codes X1
Cardinality: {1, . . . , 9} trinucleotides

Number of X1 codes with 1 trinucleotide : 48
Number of X1 codes with 9 trinucleotides : 8

Comma-free codes X2
Cardinality: {1, . . . , 20} trinucleotides

Number of X2 codes with 1 trinucleotide : 12
Number of X2 codes with 20 trinucleotides : 408

Circular codes X3
Cardinality: {2, . . . , 20} trinucleotides

Number of X3 codes with 2 trinucleotide : 48
Number of X3 codes with 20 trinucleotides : 2352

Circular codes X4
Cardinality: {3, . . . , 20} trinucleotides

Number of X4 codes with 3 trinucleotide : 1056
Number of X4 codes with 20 trinucleotides : 294, 312

Circular codes X5
Cardinality: {3, . . . , 20} trinucleotides

Number of X5 codes with 3 trinucleotide : 48
Number of X5 codes with 20 trinucleotides : 252, 960

Circular codes X6
Cardinality: {4, . . . , 20} trinucleotides

Number of X6 codes with 4 trinucleotide : 1344
Number of X6 codes with 20 trinucleotides : 4, 566, 696

Circular codes X7
Cardinality: {4, . . . , 20} trinucleotides

Number of X7 codes with 4 trinucleotide : 48
Number of X7 codes with 20 trinucleotides : 823, 920

Circular codes X8
Cardinality: {5, . . . , 20} trinucleotides

Number of X8 codes with 5 trinucleotide : 1296
Number of X8 codes with 20 trinucleotides : 7, 023, 792

The maximal C3 self-complementary
circular X-code (X8) in genes

Cardinality: 20 trinucleotides
Number of stop & initiation codons: 0

Number of amino acids: 12

3-circular codes
Cardinality: {1, . . . , 20} trinucleotides

2-circular codes
Cardinality: {1, . . . , 20} trinucleotides

1-circular codes
Cardinality: {1, . . . , 20} trinucleotides

STANDARD GENETIC CODE
Cardinality: 64 trinucleotides

Number of stop codons: 3
Number of stop codons: 1
Number of amino acids: 20

(A)

(B)

Figure 6.1: A combinatorial hierarchy of circular codes with two potential starting
points, the maximal circular Tessera codes with (B), and the strong comma-free Tessera
codes with (A). It progresses from circular (4-circular) trinucleotide codes Xp, where p is
the maximum path length associated with the graph G(Xp), to k-circular trinucleotide
codes, where k ∈ {1, 2, 3} (see Theorem 4.3.1 with n = 4 and ` = 3, and Observa-
tion 4.3.2).
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This evolutionary scenario in the form of a combinatorial hierarchy ultimately
provides the SGC of today. As shown in Figure 4.4, the correct reading-frame re-
trieval of the SGC is not guaranteed. To solve this problem, the authors in [1, 53]
suggest that a mechanism synchronises the reading frame that uses motifs of the
X-code. In addition, we propose a new hypothetical procedure based on the re-
sults of Chapter 5 which presents new ideas on different methods for correctly
retrieving the reading frame. Despite their hypothetical nature, the methods in
Chapter 5 propose syntax-based reading-fame retrieval systems that are conceiv-
able in a biological mechanism. The results of the developed methods are already
very promising and it is obvious that by refining the methods again a novel model
of a syntax-based reading-frame retrieval can be developed. However, it must be
noted that the possible implementation of such a system in the ribosome has not
yet been researched or even observed to the best of the author’s knowledge, and
thus offers potential for future experimental research. researched or even observed.

6.2 Discussion

The results achieved in this dissertation are discussed from two different perspec-
tives. Both the mathematical and the biological perspective lead to different in-
terpretations of the results. First we will take the biological perspective and it is
inevitable to mention that all the theories developed and presented are of hypo-
thetical nature. This is due to the fact that understanding the data is not sufficient
to definitively prove and demonstrate the role of circular codes in DNA or RNA
sequences, for example. However, this considerably increases the importance of
this work, as it serves as a guide to support data collection and to guide future
scientific work. As often cited, the X-code is still the strongest and most reliable
evidence of error-correcting block codes in protein synthesis. This has been shown
in numerous publications starting with[1]. However, the theories about a potential
role of comma-free codes in genetic data processing should not be neglected. These
theories have led to impressive evidence for the early (in terms of evolution) use
of comma-free codes in gene [47]. A perfect link between these two approaches is
the classification of circular codes by their longest path length in the associated
graphs. This relationship is shown in a hypothetical evolutionary scenario based
on a combinatorial hierarchy as shown in Figure 6.1.

This classification is an essential result of the present dissertation. It is not only
the quality of correct reading-frame recognition, but also the number of all classes
that need to be distinguished. It can be argued that there is currently no evidence
for eight evolutionary steps between a strong comma-free codes and the X-code
in this hypothetical scenario. However, as both theories are hypothetical, the
discovery of such codes in conserved genes would support the model in Figure 4.4
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and could lead to a reorientation of evolutionary research.

In this hypothetical evolutionary scenario, which is based on the combinatorial
hierarchy, the evolution from the X-code to the standard genetic code (SGC)
can ideally be explained by the k-circular codes. This code class adds exactly
three hypothetical evolutionary stages to the combinatorial hierarchy. The exact
number of steps can be predicted by the sharp boundary of k(n, `), from which
the k(n, `)-circularity of an `-letter code X over a given finite alphabet Σ implies
its circularity. Possible reasons against such a development have to face the fact
that 1-circular codes are in the remarkable position of being the only known block
codes with a word length ` = 3 above the genetic alphabet to code all 20 amino
acids.

The theory of circular Tessera codes presented in Chapter 3 led to fundamental
results indicating a relationship between self-complementary, strongly comma-free
Tessera codes and strongly comma-free trinucleotide codes, and maximal circular
Tessera codes and comma-free trinucleotide codes. Although such a connection is
as hypothetical as the existence of a possible Tessera code as a predecessor of the
present SGC, it is too concise to be neglected.

All the theories developed in this work offer versatile starting points for future
biological research. The first proposal refers to Chapter 5 and focuses especially
on the comprehensive search for a new method of reading-frame retrieval, which
uses the basic ideas of the two reading-frame retrieval methods presented in Chap-
ter 5. A promising research topic is the classification of genes by means of the
circular code classes, which are listed in the combinatorial hierarchy in Figure 4.4.
For example, motifs as functionally conserved (”ancestral”) genes may contain
more (k-)circular code motifs compared to functionally specific genes. In addition,
code motifs of different circular code classes can be examined with regard to their
encoded amino acids.

Finally, we take the (bio-)mathematical perspective. The complete classifi-
cation of graphs associated with self-complementary circular Tessera codes and
self-complementary circular trinucleotide codes of a size ≥ 18 can be very useful
for the investigation of such codes. However, this proof still needs to be imple-
mented generally for each word length `. The same applies to the reading-frame
number nX and the classification according to the longest path in the associated
graphs. Here a general definition is mandatory and has yet to be found.

The functions dealing with the maximum size of a circular code seem to be
finished from today’s point of view. In contrast, the mapping function of a circular
code to a binary code opens new doors and allows a variety of new approaches,
such as those mentioned in section 2.2.3.

In Chapter 3, Table 3.11 opens questions about its properties that are still open
to be proven. In addition, we have presented observations on circular trinucleotide
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mappings of circular Tessera codes. This relationship has yet to be defined by
means of the tubular representation of Tessera codes. The construction of Tessera
codes is interesting and complex. However, it still needs to be formalised so that
it can be adapted to circular codes of any word length over any finite alphabet.
Therefore, a feature of a code has to be linked to properties in the corresponding
graph, so that a probability based on acyclic graph components can be found with
which this feature occurs. One approach could be the comma-free separation of
trinucleotide codes, as explained in section 2.2.2.

The influence of the sharp boundary k(n, `) on the study of circular codes is
groundbreaking. Such an integer allows to determine whether a code is circular
or not. Before the introduction of the k(n, `) boundary, the problem could only
be solved by first presenting the code as a directed graph and then examining it
for its cyclic paths. This discovery will bring new impulses to data science as it
significantly simplifies algorithmic complexity. Due to the faster recognition of a
circular code, the analysis of large DNA sequences can lead to new results without
the need for a ”supercomputer”.
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Definitions and notations

Code theory

Σ→ Denotes an arbitrary finite alphabet. Σ is a set of letters.

n→ Denotes the cardinality of a alphabet Σ. n := |Σ|.

`→ Denotes the word length in a block code X .

Σ` → Denotes the set of all words of length ` with letters in Σ.

Σ∗ → Denotes the set of all finite words with letters in Σ.

Σ∗ :=
⋃
`≥0

Σ`

Σ+ → Denotes the set of all not empty finite words with letters in Σ.

Σ+ :=
⋃
`∈N

Σ`

w → Denotes a tuple of letters. Assume w = (b1b2 . . . b`), where bi ∈ Σ, it follows
that w ∈ Σ`.

X → Denotes a code. A code is a set of words so that any concatenation w1 . . . wn
of words in w1, . . . , wn ∈ X has a unique decomposition into words from X

M(n, `)→ Denotes the function that returns the maximum size of a circular code
with respect to n = |Σ| and the word length `

X x → Denotes the x-ary Cartesian power of a code X i.e. X 2 is the cartesian
product of X × X
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←−· → Denotes the reversing permutation, i.e. for a word w := b1 · · · b` we have:

←−−−−
b1 . . . b` := b` . . . b1

Let x be a positive integer and X = {w1, w2, . . . , wx} ⊂ Σ∗ be code over an

arbitrary finite alphabet Σ, then
←−
X := {←−w1,

←−w2, . . . ,
←−wx}

αj(·)→ Denotes the circular permutation by j letters of a word. Let w = b1 . . . b` ∈
Σ` be a word of length ` over an arbitrary alphabet Σ and j ≥ 1 integer.
Then:

αj(w) := bj+1 . . . b`bj . . . bj

Let x be a positive integer and X = {w1, w2, . . . , wx} ⊂ Σ∗ be code over an
arbitrary finite alphabet Σ, then αj(X ) := {αj(w1), αj(w2), . . . , αj(wx)}

Nitrogenous bases

B→ Denotes the genetic alphabet B := {A, T,G,C}.

B2 → Denotes the set of all 16 dinucleotides.

B3 → Denotes the set of all 64 trinucleotides.

B4 → Denotes the set of all 256 tetranucleotides.

c(·)→ Denotes the complementary mapping of nitrogenous bases.

c(T ) := A and c(C) := G and vice versa

Let x be a positive integer and X = {w1, w2, . . . , wx} ⊂ B∗ be a code, then
c(X ) := {c(w1), c(w2), . . . , c(wx)}

Logical operators

∧ → Denotes the logical and ; a∧ b means that both, a and b, have to be satisfied.

∨ → Denotes the logical or ; a∨ b means that both or at least one of both, a or b,
has to be satisfied.

∨̇ → Denotes the logical exclusive or ; a∨̇b means that either a or b has to be
satisfied but not both.
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II.1 Proof of Theorem 2.1.4

Proof. Let X ⊆ B3 be a maximal self-complementary circular code and G(X )
its associated graph. Since X is circular then G(X ) is acyclic, so it has a path
p = pmax(X ) of maximal length l(p).

Claim (1): Assume that p = d1 → b1 → · · · → bk, then any concatenation
dibi ∈ X . Choose any trinucleotide c = s1s2s3 ∈ X . Then

(d1b1) . . . (dkbk)(s1s2s3) ∈ X k+1

and hence (d1b1) . . . (dkbk)s1 is a possible X -frame (for itself) with tb = ε and
te = s1. Moreover, each concatenation bidi+1 is also a trinucleotide in X , so
d1(b1d2) . . . (bk−1dk)bks1 is a second possible X -frame with tb = d1 and te = bks1.
Thus nX ≥ lw(p) + 2 since the sequence d1b1 . . . dkbks1 has length lw(p) + 1.

Now assume that b1 . . . bk is a sequence of nucleotides and assume that k ≥
lw(p)+2 but b1 . . . bk has 2 different possible X -frames. We have to show a contra-
diction to conclude that nX = lw(p)+2. Assume that tbu1 . . . ulte and t′bu

′
1 . . . u

′
mt
′
e

with ui, u
′
i ∈ X and tb, te, t

′
b, t
′
e ∈ ({ε} ∪B ∪B2) are the 2 different possible X -

frames. Obviously, | tbte |≤ 4. If | tbte |= 4 then by the difference of the 2 possible
X -frames, we conclude that at least one of t′b or t′e has to have length ≥ 3, a con-
tradiction to the definition of possible X -frame, or | t′bt′e |≤ 3. Hence w.l.o.g. we
assume that | tbte |≤ 3. Consequently, | u1 . . . ul |≥ k−3 ≥ lw(p)+2−3 = lw(p)−1
and hence | u1 . . . ul |≥ lw(p) + 1. We now have to distinguish cases:

(a) If | tbte |≤ 1 then we even get | u1 . . . ul |≥ k − 1 ≥ lw(p) + 2− 1 = lw(p) + 1
and hence | u1 . . . ul |≥ lw(p). Thus the path associated to the 2 possible X -
frames has word-length at least lw(p)+1, a contradiction to the maximality of
lw(p). In this case, the sequence u1 . . . ul could contain the sequence u′1 . . . u

′
m

as a subsequence.

(b) If | tbte |≥ 2 then the second possible X -frame is at least shifted by one
with respect to the first possible X -frame, i.e. it must extend the sequence
u1 . . . ul to the left or to the right. In this case, the sequence u1 . . . ul cannot
contain the sequence u′1 . . . u

′
m as a subsequence. The path associated to the

2 possible X -frames has word-length at least | u1 . . . ul | +1 ≥ lw(p) + 1,
again a contradiction to the maximality of lw(p).

Thus, nX = l(p) + 2.
The case p = b1 → d1 → · · · → dk is symmetric and can be similarly dealt

with.
Claim (2): Assume that p = d1 → b1 → · · · → dk, then any concatenation

dibi ∈ X . As in Claim (1), (d1b1) . . . (dk−1bk−1)dk is a possible X -frame (for itself)
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with tb = ε and te = dk. Moreover, each concatenation bidi+1 is a trinucleotide in
X , so d1(b1d2) . . . (bk−2dk−1)(bk−1dk) is a second possible X -frame with tb = d1 and
te = ε. Thus nX ≥ lw(p) since the sequence d1b1 . . . dk−1bk−1dk has length lw(p).

Now assume that b1 . . . bk is a sequence of nucleotides and assume that k ≥
lw(p)+1 but b1 . . . bk has 2 different possible X -frames: tbu1 . . . ulte and t′bu

′
1 . . . u

′
mt
′
e

with ui, u
′
i ∈ X and tb, te, t

′
b, t
′
e ∈ ({ε} ∪B ∪B2). As in Claim (1), we assume

w.l.o.g. that | tbte |≤ 3. We distinguish cases:

(a) If | tbte |= 0 then | u1 . . . ul |≥ lw(p) + 1 and u′1 . . . u
′
m is a subsequence of

u1 . . . ul. Thus the path associated to the 2 possible X -frames has word-
length lw(p) + 1 with the associated word u1 . . . ul, a contradiction to the
maximality of lw(p).

(b) If | tbte |= 1 then | u1 . . . ul |≥ lw(p). If the second possible X -frame is
shifted by one with respect to the first one, then the path associated to the
2 possible X -frames has word-length lw(p) + 1, again a contradiction to the
maximality of lw(p). If the second possible X -frame is shifted by two, then
the path associated to the 2 possible X -frames has u1 . . . ul has word-length
lw(p). However, in this case, the path starts with a dinucleotide and ends
with a nucleotide, a contradiction to the structure of maximal paths which
have to start and end with a dinucleotide.

(c) If | tbte |= 2 then | u1 . . . ul |≥ lw(p)−1. Again, we have to distinguish cases:

(i) | tb |= 2 and | te |= 0. Then the associated path to the 2 possible
X -frames has word-length lw(p) and starts with a nucleotide but ends
with a dinucleotide, a contradiction to the structure of maximal paths,
or has word-length lw(p)+1, a contradiction to the maximality of lw(p).

(ii) | tb |= 0 and | te |= 2, as (i).

(iii) | tb |= 1 and | te |= 1. As above, if the second possible X -frame is
shifted by one, then the path associated to the 2 possible X -frames
has word-length lw(p) again starting with a nucleotide (u1) and ending
with a dinucleotide, a contradiction to the structure of maximal paths.
If the second possible X -frame is shifted by two, then again the path
associated to the 2 possible X -frames has word-length lw(p) starting
with a nucleotide (u′1) and ends with a dinucleotide.

(d) If | tbte |= 3 then | u1 . . . ul |≥ lw(p) − 2. We distinguish two symmetric
cases:

(i) | tb |= 2 and | te |= 1. If the second possible X -frame is shifted by one,
then the path associated to the 2 possible X -frames has word-length
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lw(p)+1, a contradiction to the maximality of lw(p), or has word-length
lw(p) but starting with a nucleotide and ending with a dinucleotide, a
contradiction to the structure of maximal paths. If the second possi-
ble X -frame is shifted by two, then either the path associated to the
2 possible X -frames has word-length lw(p) + 1, a contradiction to the
maximality of lw(p), or has word-length lw(p) − 1 starting with a nu-
cleotide and ending with a nucleotide. But this case cannot exist unless
the arrow-length of this path is at least the arrow-length of p, a contra-
diction to the maximality of p.

(ii) | tb |= 1 and | te |= 2, as (i).

Claim (3): Assume that p = b1 → d1 → · · · → bk, then any concatenation
bidi ∈ X . Choose any 2 trinucleotides c = s1s2s3, c

′ = s′1s
′
2s
′
3 ∈ X . Then

(s′1s
′
2s
′
3)(b1d1) . . . (dkbk)(s1s2s3) ∈ X k+2

and hence s′3(b1d1) . . . (bk−1dk−1)bks1 is a possible X -frame (for itself) with tb = s′3
and te = bks1. Moreover, each concatenation dibi+1 is a trinucleotide in X , so
s′3b1(d1b2) . . . (dk−1bk)s1 is a second possible X -frame with tb = s′3b1 and te = s1.
Thus nX ≥ lw(p)+3 since the sequence s′3b1d1 . . . bk−1dk−1bks1 has length lw(p)+2.

Now assume that b1 . . . bk is a sequence of nucleotides with k ≥ lw(p) + 3
but b1 . . . bk has 2 different possible X -frames: tbu1 . . . ulte and t′bu

′
1 . . . u

′
mt
′
e with

ui, u
′
i ∈ X and tb, te, t

′
b, t
′
e ∈ ({ε} ∪B ∪B2). As in Claim (1), we conclude that

w.l.o.g. | tbte |≤ 3 and hence | u1 . . . ul |≥ k − 3 ≥ lw(p) + 3 − 3 = lw(p). Similar
arguments as above show that the path associated to the 2 possible X -frames
has word-length greater than lw(p), in contradiction to the maximality of p and
lw(p).

II.2 List of all representing tables for all maxi-

mal circular Tessera codes

List II.2.1.
For fragment distribution: |X1| = 0, |X2| = 2 |X3| = 4 and |X4| = 6 (1)

0 0 0 0
2 2 0 0
2 2 4 0
2 2 2 6

Number 1) Po = 1
4!

; 32256 Codes

For fragment distribution: |X1| = 1, |X2| = 1 |X3| = 4 and |X4| = 6 (1)
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1 1 0 0
1 1 0 0
2 2 4 0
2 2 2 6

Number 2) Po = 2
4!

; 32256 Codes

For fragment distribution: |X1| = 0, |X2| = 3 |X3| = 3 and |X4| = 6 (1)
0 0 0 0
2 3 1 0
2 1 3 0
2 2 2 6

Number 3) Po = 2
4!

; 36864 Codes

For fragment distribution: |X1| = 1, |X2| = 2 |X3| = 3 and |X4| = 6 (2)
1 1 0 0
1 3 2 0
2 0 2 0
2 2 2 6

Number 4) Po = 1
4!

; 73728 Codes

1 1 0 0
1 2 1 0
2 1 3 0
2 2 2 6

Number 5) Po = 1
4!

; 147456 Codes

For fragment distribution: |X1| = 2, |X2| = 2 |X3| = 2 and |X4| = 6 (2)
2 2 0 0
0 2 2 0
2 0 2 0
2 2 2 6

Number 6) Po = 3
4!

; 12288 Codes

2 1 1 0
1 2 1 0
1 1 2 0
2 2 2 6

Number 7) Po = 6
4!

; 49152 Codes

For fragment distribution: |X1| = 0, |X2| = 2 |X3| = 5 and |X4| = 5 (1)
0 0 0 0
2 2 0 0
2 2 5 1
2 2 1 5

Number 8) Po = 2
4!

; 31104 Codes

For fragment distribution: |X1| = 1, |X2| = 1 |X3| = 5 and |X4| = 5 (1)
1 1 0 0
1 1 0 0
2 2 5 1
2 2 1 5

Number 9) Po = 4
4!

; 31104 Codes
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For fragment distribution: |X1| = 0, |X2| = 3 |X3| = 4 and |X4| = 5 (2)
0 0 0 0
2 3 1 0
2 1 5 2
2 2 0 4

Number 10) Po = 1
4!

; 96768 Codes

0 0 0 0
2 3 1 0
2 1 4 1
2 2 1 5

Number 11) Po = 1
4!

; 165888 Codes

For fragment distribution: |X1| = 1, |X2| = 2 |X3| = 4 and |X4| = 5 (4)
1 1 0 0
1 5 2 2
2 0 2 0
2 0 2 4

Number 12) Po = 1
4!

; 96768 Codes

1 1 0 0
1 4 2 1
2 0 2 0
2 1 2 5

Number 13) Po = 1
4!

; 165888 Codes

1 1 0 0
1 2 1 0
2 1 5 2
2 2 0 4

Number 14) Po = 1
4!

; 193536 Codes

1 1 0 0
1 2 1 0
2 1 4 1
2 2 1 5

Number 15) Po = 1
4!

; 331776 Codes

For fragment distribution: |X1| = 1, |X2| = 3 |X3| = 3 and |X4| = 5 (3)
1 1 0 0
1 5 2 2
2 0 3 1
2 0 1 3

Number 16) Po = 2
4!

; 110592 Codes

1 1 0 0
1 3 2 0
2 0 3 1
2 2 1 5

Number 17) Po = 1
4!

; 221184 Codes
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1 1 0 0
1 3 1 1
2 1 3 0
2 1 2 5

Number 18) Po = 1
4!

; 387072 Codes

For fragment distribution: |X1| = 2, |X2| = 2 |X3| = 3 and |X4| = 5 (4)
2 1 1 0
1 3 2 0
1 0 2 1
2 2 1 5

Number 19) Po = 1
4!

; 442368 Codes

2 2 0 0
0 2 2 0
2 0 3 1
2 2 1 5

Number 20) Po = 1
4!

; 110592 Codes

2 2 0 0
0 2 1 1
2 1 3 0
2 1 2 5

Number 21) Po = 1
4!

; 221184 Codes

2 1 1 0
1 2 1 0
1 1 3 1
2 2 1 5

Number 22) Po = 2
4!

; 387072 Codes

For fragment distribution: |X1| = 0, |X2| = 4 |X3| = 4 and |X4| = 4 (2)
0 0 0 0
2 4 2 0
2 0 4 2
2 2 0 4

Number 23) Po = 3
4!

; 21952 Codes

0 0 0 0
2 4 1 1
2 1 4 1
2 1 1 4

Number 24) Po = 6
4!

; 55296 Codes

For fragment distribution: |X1| = 1, |X2| = 3 |X3| = 4 and |X4| = 4 (4)
1 1 0 0
1 4 2 1
2 0 4 2
2 1 0 3

Number 25) Po = 1
4!

; 258048 Codes
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1 1 0 0
1 4 2 1
2 0 3 1
2 1 1 4

Number 26) Po = 1
4!

; 442368 Codes

1 1 0 0
1 3 2 0
2 0 4 2
2 2 0 4

Number 27) Po = 1
4!

; 150528 Codes

1 1 0 0
1 3 1 1
2 1 4 1
2 1 1 4

Number 28) Po = 2
4!

; 387072 Codes

For fragment distribution: |X1| = 2, |X2| = 2 |X3| = 4 and |X4| = 4 (4)
2 2 0 0
0 2 2 0
2 0 4 2
2 2 0 4

Number 29) Po = 1
4!

; 75264 Codes

2 2 0 0
0 2 1 1
2 1 4 1
2 1 1 4

Number 30) Po = 2
4!

; 221184 Codes

2 1 1 0
1 2 1 0
1 1 4 2
2 2 0 4

Number 31) Po = 2
4!

; 258048 Codes

2 1 1 0
1 2 0 1
1 2 4 1
2 1 1 4

Number 32) Po = 2
4!

; 442368 Codes

For fragment distribution: |X1| = 2, |X2| = 3 |X3| = 3 and |X4| = 4 (7)
2 2 0 0
0 4 2 2
2 0 3 1
2 0 1 3

Number 33) Po = 2
4!

; 86016 Codes

2 1 1 0
1 4 2 1
1 0 3 2
2 1 0 3

Number 34) Po = 1
4!

; 589824 Codes
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2 2 0 0
0 3 2 1
2 0 4 2
2 1 0 3

Number 35) Po = 1
4!

; 172032 Codes

2 1 1 0
1 3 1 1
1 1 4 2
2 1 0 3

Number 36) Po = 1
4!

; 1032192 Codes

2 2 0 0
0 3 2 1
2 0 3 1
2 1 1 4

Number 37) Po = 1
4!

; 294912 Codes

2 1 1 0
1 3 2 0
1 0 3 2
2 2 0 4

Number 38) Po = 1
4!

; 344064 Codes

2 1 1 0
1 3 1 1
1 1 3 1
2 1 1 4

Number 39) Po = 2
4!

; 903168 Codes

For fragment distribution: |X1| = 3, |X2| = 3 |X3| = 3 and |X4| = 3 (3)
3 2 1 0
0 3 2 1
1 0 3 2
2 1 0 3

Number 40) Po = 4
4!

; 98304 Codes

3 2 1 0
0 3 1 2
1 1 3 1
2 0 1 3

Number 41) Po = 3
4!

; 229376 Codes

3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

Number 42) Po = 1; 153600 Codes

In total 9592512 Codes
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II.3 List of 52 maximal 1-circular codes encoding

all 20 amino acids.

The list below gives all 52 perfect matchings of the graph G from Lemma 4.4.1.
The amino acids are listed in the order of their assignments to the 13 complete
equivalence classes D1, . . . , D20.

Code: 01 D1 . . . D20: Asp Ile His Thr Glu Val Ser Tyr Ala Pro Arg Cys Leu
Code: 02 D1 . . . D20: Asp Ile His Thr Glu Val Ser Tyr Ala Pro Arg Leu Cys
Code: 03 D1 . . . D20: Asp Ile His Thr Glu Val Ser Tyr Pro Leu Arg Ala Cys
Code: 04 D1 . . . D20: Asp Ile Pro Thr Glu Ser His Tyr Ala Leu Arg Cys Val
Code: 05 D1 . . . D20: Asp Ile Pro Thr Glu Ser His Tyr Arg Leu Val Ala Cys
Code: 06 D1 . . . D20: Asp Ile Pro Thr Glu Val His Tyr Ala Ser Arg Cys Leu
Code: 07 D1 . . . D20: Asp Ile Pro Thr Glu Val His Tyr Ala Ser Arg Leu Cys
Code: 08 D1 . . . D20: Asp Ile Pro Thr Glu Val His Tyr Arg Leu Ser Ala Cys
Code: 09 D1 . . . D20: Asp Ile Thr Leu Glu Ser His Tyr Ala Pro Arg Cys Val
Code: 10 D1 . . . D20: Asp Ile Thr Leu Glu Ser His Tyr Arg Pro Val Ala Cys
Code: 11 D1 . . . D20: Asp Ile Thr Leu Glu Val His Tyr Arg Pro Ser Ala Cys
Code: 12 D1 . . . D20: Asp Ile Thr Leu Glu Val His Tyr Pro Ser Arg Ala Cys
Code: 13 D1 . . . D20: Asp Ile Thr Tyr Glu Ser His Leu Ala Pro Arg Cys Val
Code: 14 D1 . . . D20: Asp Ile Thr Tyr Glu Ser His Leu Arg Pro Val Ala Cys
Code: 15 D1 . . . D20: Asp Ile Thr Tyr Glu Val His Leu Arg Pro Ser Ala Cys
Code: 16 D1 . . . D20: Asp Ile Thr Tyr Glu Val His Leu Pro Ser Arg Ala Cys
Code: 17 D1 . . . D20: Glu Asp His Thr Ala Ser Ile Tyr Arg Pro Val Cys Leu
Code: 18 D1 . . . D20: Glu Asp His Thr Ala Ser Ile Tyr Arg Pro Val Leu Cys
Code: 19 D1 . . . D20: Glu Asp His Thr Ala Ser Ile Tyr Pro Leu Arg Cys Val
Code: 20 D1 . . . D20: Glu Asp His Thr Ala Val Ile Tyr Arg Pro Ser Cys Leu
Code: 21 D1 . . . D20: Glu Asp His Thr Ala Val Ile Tyr Arg Pro Ser Leu Cys
Code: 22 D1 . . . D20: Glu Asp His Thr Ala Val Ile Tyr Pro Ser Arg Cys Leu
Code: 23 D1 . . . D20: Glu Asp His Thr Ala Val Ile Tyr Pro Ser Arg Leu Cys
Code: 24 D1 . . . D20: Glu Asp His Thr Ser Val Ile Tyr Ala Pro Arg Cys Leu
Code: 25 D1 . . . D20: Glu Asp His Thr Ser Val Ile Tyr Ala Pro Arg Leu Cys
Code: 26 D1 . . . D20: Glu Asp His Thr Ser Val Ile Tyr Pro Leu Arg Ala Cys
Code: 27 D1 . . . D20: Glu Asp Thr Tyr Ala Ser His Ile Arg Pro Val Cys Leu
Code: 28 D1 . . . D20: Glu Asp Thr Tyr Ala Ser His Ile Arg Pro Val Leu Cys
Code: 29 D1 . . . D20: Glu Asp Thr Tyr Ala Ser His Ile Pro Leu Arg Cys Val
Code: 30 D1 . . . D20: Glu Asp Thr Tyr Ala Val His Ile Arg Pro Ser Cys Leu
Code: 31 D1 . . . D20: Glu Asp Thr Tyr Ala Val His Ile Arg Pro Ser Leu Cys
Code: 32 D1 . . . D20: Glu Asp Thr Tyr Ala Val His Ile Pro Ser Arg Cys Leu
Code: 33 D1 . . . D20: Glu Asp Thr Tyr Ala Val His Ile Pro Ser Arg Leu Cys
Code: 34 D1 . . . D20: Glu Asp Thr Tyr Ser Val His Ile Ala Pro Arg Cys Leu
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Code: 35 D1 . . . D20: Glu Asp Thr Tyr Ser Val His Ile Ala Pro Arg Leu Cys
Code: 36 D1 . . . D20: Glu Asp Thr Tyr Ser Val His Ile Pro Leu Arg Ala Cys
Code: 37 D1 . . . D20: Thr Asp His Leu Glu Ser Ile Tyr Ala Pro Arg Cys Val
Code: 38 D1 . . . D20: Thr Asp His Leu Glu Ser Ile Tyr Arg Pro Val Ala Cys
Code: 39 D1 . . . D20: Thr Asp His Leu Glu Val Ile Tyr Arg Pro Ser Ala Cys
Code: 40 D1 . . . D20: Thr Asp His Leu Glu Val Ile Tyr Pro Ser Arg Ala Cys
Code: 41 D1 . . . D20: Thr Asp His Tyr Glu Ser Ile Leu Ala Pro Arg Cys Val
Code: 42 D1 . . . D20: Thr Asp His Tyr Glu Ser Ile Leu Arg Pro Val Ala Cys
Code: 43 D1 . . . D20: Thr Asp His Tyr Glu Val Ile Leu Arg Pro Ser Ala Cys
Code: 44 D1 . . . D20: Thr Asp His Tyr Glu Val Ile Leu Pro Ser Arg Ala Cys
Code: 45 D1 . . . D20: Thr Asp His Tyr Glu Val Ser Ile Ala Pro Arg Cys Leu
Code: 46 D1 . . . D20: Thr Asp His Tyr Glu Val Ser Ile Ala Pro Arg Leu Cys
Code: 47 D1 . . . D20: Thr Asp His Tyr Glu Val Ser Ile Pro Leu Arg Ala Cys
Code: 48 D1 . . . D20: Thr Asp Pro Tyr Glu Ser His Ile Ala Leu Arg Cys Val
Code: 49 D1 . . . D20: Thr Asp Pro Tyr Glu Ser His Ile Arg Leu Val Ala Cys
Code: 50 D1 . . . D20: Thr Asp Pro Tyr Glu Val His Ile Ala Ser Arg Cys Leu
Code: 51 D1 . . . D20: Thr Asp Pro Tyr Glu Val His Ile Ala Ser Arg Leu Cys
Code: 52 D1 . . . D20: Thr Asp Pro Tyr Glu Val His Ile Arg Leu Ser Ala Cys

The list below gives all 52 maximal 1-circular codes encoding all 20 amino acids
in lexicographical order.
{AAC,AAG,ACC,AGT,ATA,ATG,CAG,CAT,CCT,CGC,CTA,GAC,GAG,GCT,GGC,GTC, TAT, TGG, TGT, TTC}

{AAC,AAG,ACC,AGT,ATA,ATG,CAG,CAT,CCT,CGC,GAC,GAG,GCT,GGC,GTC, TAC, TGG, TGT, TTA, TTC}

{AAC,AAG,ACC,AGT,ATA,ATG,CAG,CAT,CCT,CGT,CTA,GAC,GAG,GCC,GGC,GTT, TAT, TGC, TGG, TTC}

{AAC,AAG,ACC,AGT,ATA,ATG,CAG,CAT,CCT,CGT,GAC,GAG,GCC,GGC,GTT, TAC, TGC, TGG, TTA, TTC}

{AAC,AAG,ACC,ATA,ATG,CAG,CAT,CCG,CGT,CTA,GAC,GAG,GCT,GGC,GTA, TAT, TCC, TGG, TGT, TTC}

{AAC,AAG,ACC,ATA,ATG,CAG,CAT,CCG,CGT,GAC,GAG,GCT,GGC,GTA, TAC, TCC, TGG, TGT, TTA, TTC}

{AAC,AAG,ACC,ATA,ATG,CAG,CAT,CCT,CGC,CTA,GAC,GAG,GCT,GGC,GTA, TAT, TCG, TGG, TGT, TTC}

{AAC,AAG,ACC,ATA,ATG,CAG,CAT,CCT,CGC,GAC,GAG,GCT,GGC,GTA, TAC, TCG, TGG, TGT, TTA, TTC}

{AAC,AAG,ACT,AGT,ATA,ATG,CAG,CAT,CCA,CGC,CTC,GAC,GAG,GCT,GGC,GTC, TAT, TGG, TGT, TTC}

{AAC,AAG,ACT,AGT,ATA,ATG,CAG,CAT,CCA,CGT,CTC,GAC,GAG,GCC,GGC,GTT, TAT, TGC, TGG, TTC}

{AAC,AAG,ACT,ATA,ATG,CAC,CAG,CCG,CGT,CTC,GAC,GAG,GCT,GGC,GTA, TAT, TCA, TGG, TGT, TTC}

{AAC,AAG,ACT,ATA,ATG,CAC,CAG,CCT,CGT,CTG,GAC,GAG,GCC,GGC,GTA, TAT, TCA, TGG, TGT, TTC}

{AAC,AAG,ACT,ATA,ATG,CAC,CAG,CCT,CGT,GAC,GAG,GCC,GGC,GTA, TAT, TCA, TGC, TGG, TTC, TTG}

{AAC,AAG,ACT,ATA,ATG,CAG,CAT,CCA,CGC,CTC,GAC,GAG,GCT,GGC,GTA, TAT, TCG, TGG, TGT, TTC}

{AAC,AAG,ACT,ATA,ATG,CAG,CAT,CCA,CGT,CTG,GAC,GAG,GCC,GGC,GTA, TAT, TCC, TGG, TGT, TTC}

{AAC,AAG,ACT,ATA,ATG,CAG,CAT,CCA,CGT,GAC,GAG,GCC,GGC,GTA, TAT, TCC, TGC, TGG, TTC, TTG}

{AAG,AAT,ACA,AGT,ATC,ATG,CAC,CAG,CCT,CGC,CTA,GAC,GAG,GCT,GGC,GTC, TAT, TGG, TGT, TTC}

{AAG,AAT,ACA,AGT,ATC,ATG,CAC,CAG,CCT,CGC,GAC,GAG,GCT,GGC,GTC, TAC, TGG, TGT, TTA, TTC}

{AAG,AAT,ACA,AGT,ATC,ATG,CAC,CAG,CCT,CGT,CTA,GAC,GAG,GCC,GGC,GTT, TAT, TGC, TGG, TTC}

{AAG,AAT,ACA,AGT,ATC,ATG,CAC,CAG,CCT,CGT,GAC,GAG,GCC,GGC,GTT, TAC, TGC, TGG, TTA, TTC}
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{AAG,AAT,ACA,AGT,ATG,ATT,CAG,CAT,CCA,CGC,CTC,GAC,GAG,GCT,GGC,GTC, TAC, TGG, TGT, TTC}

{AAG,AAT,ACA,AGT,ATG,ATT,CAG,CAT,CCA,CGT,CTC,GAC,GAG,GCC,GGC,GTT, TAC, TGC, TGG, TTC}

{AAG,AAT,ACA,ATC,ATG,CAC,CAG,CCG,CGT,CTA,GAC,GAG,GCT,GGC,GTA, TAT, TCC, TGG, TGT, TTC}

{AAG,AAT,ACA,ATC,ATG,CAC,CAG,CCG,CGT,GAC,GAG,GCT,GGC,GTA, TAC, TCC, TGG, TGT, TTA, TTC}

{AAG,AAT,ACA,ATC,ATG,CAC,CAG,CCT,CGC,CTA,GAC,GAG,GCT,GGC,GTA, TAT, TCG, TGG, TGT, TTC}

{AAG,AAT,ACA,ATC,ATG,CAC,CAG,CCT,CGC,GAC,GAG,GCT,GGC,GTA, TAC, TCG, TGG, TGT, TTA, TTC}

{AAG,AAT,ACA,ATG,ATT,CAC,CAG,CCG,CGT,CTC,GAC,GAG,GCT,GGC,GTA, TAC, TCA, TGG, TGT, TTC}

{AAG,AAT,ACA,ATG,ATT,CAC,CAG,CCT,CGT,CTG,GAC,GAG,GCC,GGC,GTA, TAC, TCA, TGG, TGT, TTC}

{AAG,AAT,ACA,ATG,ATT,CAC,CAG,CCT,CGT,GAC,GAG,GCC,GGC,GTA, TAC, TCA, TGC, TGG, TTC, TTG}

{AAG,AAT,ACA,ATG,ATT,CAG,CAT,CCA,CGC,CTC,GAC,GAG,GCT,GGC,GTA, TAC, TCG, TGG, TGT, TTC}

{AAG,AAT,ACA,ATG,ATT,CAG,CAT,CCA,CGT,CTG,GAC,GAG,GCC,GGC,GTA, TAC, TCC, TGG, TGT, TTC}

{AAG,AAT,ACA,ATG,ATT,CAG,CAT,CCA,CGT,GAC,GAG,GCC,GGC,GTA, TAC, TCC, TGC, TGG, TTC, TTG}

{AAG,AAT,ACC,AGC,ATG,ATT,CAA,CAT,CCG,CGT,CTC,GAC,GAG,GCT,GGC,GTA, TAC, TGG, TGT, TTC}

{AAG,AAT,ACC,AGC,ATG,ATT,CAA,CAT,CCT,CGT,CTG,GAC,GAG,GCC,GGC,GTA, TAC, TGG, TGT, TTC}

{AAG,AAT,ACC,AGC,ATG,ATT,CAA,CAT,CCT,CGT,GAC,GAG,GCC,GGC,GTA, TAC, TGC, TGG, TTC, TTG}

{AAG,AAT,ACC,AGT,ATG,ATT,CAA,CAT,CCG,CGT,CTC,GAC,GAG,GCA,GGC,GTT, TAC, TGC, TGG, TTC}

{AAG,AAT,ACC,AGT,ATG,ATT,CAA,CAT,CCT,CGC,CTG,GAC,GAG,GCA,GGC,GTC, TAC, TGG, TGT, TTC}

{AAG,AAT,ACC,AGT,ATG,ATT,CAA,CAT,CCT,CGC,GAC,GAG,GCA,GGC,GTC, TAC, TGC, TGG, TTC, TTG}

{AAG,AAT,ACC,ATG,ATT,CAA,CAT,CCG,CGT,CTG,GAC,GAG,GCA,GGC,GTA, TAC, TCC, TGG, TGT, TTC}

{AAG,AAT,ACC,ATG,ATT,CAA,CAT,CCG,CGT,GAC,GAG,GCA,GGC,GTA, TAC, TCC, TGC, TGG, TTC, TTG}

{AAG,AAT,ACC,ATG,ATT,CAA,CAT,CCT,CGC,CTG,GAC,GAG,GCA,GGC,GTA, TAC, TCG, TGG, TGT, TTC}

{AAG,AAT,ACC,ATG,ATT,CAA,CAT,CCT,CGC,GAC,GAG,GCA,GGC,GTA, TAC, TCG, TGC, TGG, TTC, TTG}

{AAG,AAT,ACT,AGC,ATC,ATG,CAA,CAC,CCG,CGT,CTC,GAC,GAG,GCT,GGC,GTA, TAT, TGG, TGT, TTC}

{AAG,AAT,ACT,AGC,ATC,ATG,CAA,CAC,CCT,CGT,CTG,GAC,GAG,GCC,GGC,GTA, TAT, TGG, TGT, TTC}

{AAG,AAT,ACT,AGC,ATC,ATG,CAA,CAC,CCT,CGT,GAC,GAG,GCC,GGC,GTA, TAT, TGC, TGG, TTC, TTG}

{AAG,AAT,ACT,AGT,ATC,ATG,CAA,CAC,CCG,CGT,CTC,GAC,GAG,GCA,GGC,GTT, TAT, TGC, TGG, TTC}

{AAG,AAT,ACT,AGT,ATC,ATG,CAA,CAC,CCT,CGC,CTG,GAC,GAG,GCA,GGC,GTC, TAT, TGG, TGT, TTC}

{AAG,AAT,ACT,AGT,ATC,ATG,CAA,CAC,CCT,CGC,GAC,GAG,GCA,GGC,GTC, TAT, TGC, TGG, TTC, TTG}

{AAG,AAT,ACT,ATC,ATG,CAA,CAC,CCG,CGT,CTG,GAC,GAG,GCA,GGC,GTA, TAT, TCC, TGG, TGT, TTC}

{AAG,AAT,ACT,ATC,ATG,CAA,CAC,CCG,CGT,GAC,GAG,GCA,GGC,GTA, TAT, TCC, TGC, TGG, TTC, TTG}

{AAG,AAT,ACT,ATC,ATG,CAA,CAC,CCT,CGC,CTG,GAC,GAG,GCA,GGC,GTA, TAT, TCG, TGG, TGT, TTC}

{AAG,AAT,ACT,ATC,ATG,CAA,CAC,CCT,CGC,GAC,GAG,GCA,GGC,GTA, TAT, TCG, TGC, TGG, TTC, TTG}

Scaled down sequence set

The following list is a list of the used coding sequences in the experiments presented
in chapter 5. The list contains only the FAST file commend of the sequences.

• >CCE57618 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:166:1143:1 gene:
HUS2011 pII0001 gene biotype:protein coding transcript biotype:protein cod-
ing gene symbol:repA description:replication initiation protein RepFIB
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• >CCE57621 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:2531:2692:-1 gene:
HUS2011 pII0004 gene biotype:protein coding transcript biotype:protein cod-
ing description:plasmid stabilisation system family protein

• >CCE57622 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:2894:3076:-1 gene:
HUS2011 pII0005 gene biotype:protein coding transcript biotype:protein cod-
ing description:putative transcriptional regulator

• >CCE57623 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:3145:3420:-1 gene:
HUS2011 pII0006 gene biotype:protein coding transcript biotype:protein cod-
ing description:plasmid stabilisation system family protein

• >CCE57626 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:5252:5452:-1 gene:
HUS2011 pII0009 gene biotype:protein coding transcript biotype:protein cod-
ing description:IncFII RepA protein, truncated

• >CCE57627 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:5745:5999:-1 gene:
HUS2011 pII0010 gene biotype:protein coding transcript biotype:protein cod-
ing gene symbol:repB description:replication regulatory protein

• >ENA—AFU90012—AFU90012.1 Abalone herpesvirus Victoria/AUS/2009
hypothetical protein

• >ENA—AFU90013—AFU90013.1 Abalone herpesvirus Victoria/AUS/2009
putative eukaryotic translation initiation factor

• >ENA—AFU90014—AFU90014.1 Abalone herpesvirus Victoria/AUS/2009
hypothetical protein

• >CCDS3.1—Hs109—chr1

• >CCDS8138.1—Hs109—chr11

• >CCDS3822.1—Hs109—chr4

• >ENA—ASP44138—ASP44138.1 Bat SARS coronavirus HKU3 partial RNA-
dependent RNA polymerase

• >ENA—ASP44139—ASP44139.1 Bat SARS coronavirus HKU3 partial RNA-
dependent RNA polymerase

• >ENA—ASP44140—ASP44140.1 Bat SARS coronavirus HKU3 partial RNA-
dependent RNA polymerase
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• >YAL001C TFC3 SGDID:S000000001, Chr I from 151006-147594,151166-
151097, Genome Release 64-2-1, reverse complement, intron sequence re-
moved, Verified ORF, ”Subunit of RNA polymerase III transcription initi-
ation factor complex; part of the TauB domain of TFIIIC that binds DNA
at the BoxB promoter sites of tRNA and similar genes; cooperates with
Tfc6p in DNA binding; largest of six subunits of the RNA polymerase III
transcription initiation factor complex (TFIIIC)”

• >YAL002W VPS8 SGDID:S000000002, Chr I from 143707-147531, Genome
Release 64-2-1, Verified ORF, ”Membrane-binding component of the CORVET
complex; involved in endosomal vesicle tethering and fusion in the endosome
to vacuole protein targeting pathway; interacts with Vps21p; contains RING
finger motif”

• >ENA—AAA03517—AAA03517.1 Caenorhabditis elegans kinesin-related pro-
tein

• >ENA—AAA03544—AAA03544.1 Caenorhabditis elegans BMP receptor

• >CCE57640 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:13466:17179:-1
gene:HUS2011 pII0023 gene biotype:protein coding transcript biotype:protein
coding description: conjugative transfer DNA-nicking and unwinding protein
TraI, truncated

• >CCE57648 cds plasmid:HUSEC2011CHR1:pHUSEC2011-2:20958:21758:-1
gene: HUS2011 pII0031 gene biotype:protein coding transcript biotype:protein
coding description:hypothetical protein

• >YGR119C NUP57 SGDID:S000003351, Chr VII from 729671-728046, Genome
Release 64-2-1, reverse complement, Verified ORF, ”FG-nucleoporin compo-
nent of central core of the nuclear pore complex; contributes directly to
nucleocytoplasmic transport and maintenance of the nuclear pore complex
(NPC) permeability barrier; found in stable complex with Nic96p and two
other FG-nucleoproteins (Nsp1p and Nup49p)”
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codes over finite alphabets. working paper or preprint, November 2019.

Page 202



BIBLIOGRAPHY

[24] E. Fimmel, C. Michel, M. Starman, and L. Strüngmann. Self-complementary
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