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1. Introduction 

 

Découvrir les premiers ligands pour une protéine cible, de manière rapide et 

économique, est un enjeu important en “drug design”. En absence d’un ligand d’une 

protéine dont la structure tridimensionnelle est déjà connue, le docking (amarrage 

moléculaire) est en général utilisé comme outil de criblage virtuel, ceci malgré un 

problème toujours non-résolu de prédiction quantitative des affinités de liaison des 

touches potentielles. Il nécessite donc de concevoir une nouvelle approche 

computationnelle qui peut être appliquée aux apo-protéines. En 2012, les chercheurs 

du Laboratoire d’Innovation Thérapeutique (Université de Strasbourg) sont arrivés à 

mettre en oeuvre une nouvelle méthode in silico qui a déjà été intégrée au logiciel 

IChem [1,2]. Il s’agit de la génération des pharmacophores déduits des poches de 

liaison potentielles à la surface d’une protéine cible. La méthode nous permet de 

détecter automatiquement toutes les cavités à la surface d’une protéine donnée, puis 

prédire la droguabilité de chaque cavité, et créer un pharmacophore pour chaque site 

considéré comme potentiellement droguable. Une vingtaine d’éléments 

pharmacophoriques “structure-based” qui réprésentent chaque cavité qu’on étudie sont 

retenus. A ce stade, il nous reste à élaborer une stratégie d’utilisation de ces 

pharmacophores pour faire du criblage virtuel de chimiothèques, afin de sélectionner de 

manière rationnelle les touches potentielles pour une protéine d’intérêt pharmaceutique, 

même à défaut de ligand co-cristallisé. 

 

Lorsqu’une nouvelle méthode de criblage in silico est développée, il faut évaluer la 

performance de cette méthode pour voir si elle arrive à choisir les vraies touches d’une 



Thesis Summary in French 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  8 

cible biologique, de manière rétrospective, à partir d’une banque de molécules. Ceci est 

fait en utilisant les données déjà existantes, soit dans la littérature, soit dans les bases 

de données ouvertes au public. Cependant, de nombreux problèmes avec les jeux de 

données actuellement utilisés dans la communauté de chémoinformatique, tels que 

DUD, DUD-E, ChEMBL, ou MUV, ont été observés et avertis [3-6]. Plus précisément, il 

y a des biais dans la composition des actifs et des “decoys”, par exemple: la puissance 

des “decoys” n’est pas encore connue et vérifiée par les tests biologiques, le nombre 

des actifs est trop élevé, et les actifs ressemblent trop à des molécules de référence. 

Ces jeux de données ne décrivent pas la vraie vie, car ils n’imitent pas les données 

utilisées au criblage à haut débit en réalité, et ils surestiment la précision des méthodes 

de criblage in silico. Il nécessite donc de concevoir un nouveau jeu de données non-

biaisé qui est dédié à des méthodes de criblage virtuel “structure-based” ainsi que 

“ligand-based”, qui a un niveau de difficulté similaire à celui des chimiothèques utilisées 

au criblage à haut débit, et qui est capable de capturer les différences entre les 

performances de différentes méthodes. 

 

Devant les problèmes expliqués ci-dessus, mon travail de thèse se compose en deux 

parties principales. La première partie concerne le développement d’une procédure 

d’alignement de petits ligands sur les pharmacophores “structure-based” déjà générés, 

avant de choisir une meilleure pose pour chaque ligand, et de classer les ligands selon 

un certain paramètre. Une fois élaboré, ce protocole pourrait être utilisé pour prédire la 

pose d’un composé actif pour une protéine cible, et distinguer entre les vrais actifs et 

les “decoys” (qui sont chimiquement similaires à des vrais actifs), ou entre les vrais 

actifs et les vrais inactifs d’une cible d’intérêt pharmaceutique. La deuxième partie se 
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focalise sur la conception des jeux de données “PubChem BioAssay” représentant une 

diversité de protéines cibles dont les biais dans la composition des composés actifs et 

inactifs sont réduits, et l’évaluation de ces jeux de données après préparation pour voir 

s’il y a encore des biais ou pas. 

 

2. Résultats et discussions 

 

2.1. Développement de méthodes de criblage virtuel basées sur les pharmacophores 

déduits des poches de liaison potentielles à la surface d’une protéine cible 

 

L’élaboration et l’évaluation de protocoles de criblage virtuel se font en utilisant les jeux 

de données “Astex”, “DUD-E” et “PubChem BioAssay” au long des trois challenges : un 

challenge de positionnement de ligand et deux challenges de criblage virtuel 

rétrospectif. 

 

Le jeu de données “Astex” est utilisé pour le challenge de positionnement de ligand. Il 

se compose de 85 complexes, chacun est une structure d’une protéine avec un ligand 

co-cristallisé en 3D [7]. Une totalité de 17.555 conformères ont été créés pour toutes 

les entrées. Les conformères ont été ensuite alignés sur les éléments 

pharmacophoriques générés par le programme VolSite, puis scorés par le programme 

Shaper2 développé au laboratoire ; les poses ayant été préalablement optimisées en 

présence de la protéine avec SZYBKI 1.8.0.1 [8]. Une seule pose a été retenue pour 

chaque ligand, selon quelques critères. Il est observé que si l’on sélectionne la pose 

avec la meilleure énergie d’interaction ligand-protéine MMFF94 ou celle avec la 
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meilleure énergie totale MMFF94 pour chaque ligand, les valeurs moyennes d'écart 

quadratique moyen RMSD (“root-mean-square deviation”) à la pose cristallographique 

sont les meilleures: 2,221 Å et 2,232 Å, respectivement, indiquant une très bonne 

performance qui est même meilleure que celle qu’on a eue auparavant avec le docking 

moléculaire en utilisant Surflex-Dock (RMSD = 2,575 Å) [9]. Le nombre des entrées qui 

ont donné une RMSD < 1 Å avec notre méthode est plus élevé que celui obtenu avec le 

docking [9] (Figure 1). Il est clair donc que les deux critères ci-dessus sont les 

meilleurs pour la sélection de pose. On a également comparé la performance de notre 

méthode avec celles de LigandScout et de Discovery Studio, en utilisant toujours les 

mêmes éléments pharmacophoriques issus d’IChem comme input. Les deux 

programmes ne sont pas arrivés à positionner correctement les ligands dans quasiment 

90% des cas étudiés (RMSD > 4 Å). En tenant compte du fait que notre méthode 

d’alignement marche très bien avec les mêmes pharmacophores, il est certain que ce 

sont les méthodes d’alignement de LigandScout et de Discovery Studio qui échouent, et 

que la qualité de nos pharmacophores “structure-based” n’est pas coupable de cet 

échec. 
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Figure 1. Performance de différentes méthodes de criblage virtuel dans la prédiction de 

poses des 85 ligands du jeu de données “Astex”, illustrée par le pourcentage cumulé 

des entrées en fonction de la valeur RMSD (en Å) de la meilleure pose de chaque 

ligand par rapport à la pose cristallographique correspondante. 

 

Le jeu de données “DUD-E” est ensuite utilisé pour le premier challenge de criblage 

virtuel rétrospectif. Pour cette étude, on a choisi 10 entrées de protéines cibles d’intérêt 

pharmaceutique, y compris deux RCPGs, deux récepteurs d’hormones nucléaires, deux 

protéases, deux kinases, et deux autres enzymes [10]. Pour chaque entrée, il y a une 

protéine de structure cristallographique connue, un ligand co-cristallisé, les vrais actifs 

et les “decoys” qui sont chimiquement similaires à des vrais actifs. Après avoir 

sélectionné une meilleure pose pour chaque composé, soit avec l’énergie d’interaction 

ligand-protéine MMFF94, soit avec l’énergie totale MMFF94, et avoir classé les 

composés selon le même critère, on a observé que les valeurs moyennes de ROC AUC 
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qu’on a eues ont été toutes inférieures à 0,65, ce qui n’est pas suffisamment bon 

comme résultat. La meilleure performance a été obtenue lorsqu’on a classé les 

composés selon l’énergie PLP après une sélection de meilleure pose selon l’énergie 

totale MMFF94 : ROC AUC moyenne = 0,68, deux entrées ont donné une excellente 

performance (ADRB2, RENI : ROC AUC > 0,8), deux entrées ont donné une bonne 

performance (AKT1, FGFR1 : 0,7 < ROC AUC < 0,8). Cette performance est assez 

intéressante et comparable à celle qu’on a obtenue auparavant avec le docking 

moléculaire en utilisant Surflex-Dock [9]. 

 

Pour le deuxième challenge de criblage virtuel rétrospectif, on a choisi les jeux de 

données “PubChem BioAssay”, qui nous fournit les vrais actifs et les vrais inactifs de 

chaque protéine cible qui ont déjà été vérifiés par les essais biologiques confirmatoires. 

Plus précisément, les trois jeux de données suivants : ROCK2 (inhibiteurs de Rho 

kinase 2), ESR1 (antagonistes du récepteur alpha des œstrogènes), et OPRK1 

(agonistes des récepteurs opioïdes kappa) ont été choisis. Les résultats qu’on a 

obtenus montrent que les nombres des vrais actifs récupérés parmi les 5% des 

composés les mieux classés par notre méthode (alignement de molécules sur les 

pharmacophores par Shaper2, sélection de pose par l’énergie totale MMFF94, 

classement de composés par l’énergie PLP), dans la plupart des cas, sont égaux ou 

supérieurs à ceux obtenus par le docking moléculaire avec Surflex-Dock, et par la 

recherche par similarité géométrique en 3D avec ROCS. Notre méthode est également 

arrivée à récupérer le plus de “chémotypes/scaffolds” des vrais actifs par rapport aux 

deux autres méthodes pour les deux entrées ESR1 et OPRK1 (Figure 2). Il est clair 

donc que notre approche est aussi efficiente que d’autres méthodes computationnelles 
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dans des challenges de criblage virtuel et tend à récupérer plus de chémotypes 

originaux des composés actifs. 

 

 

Figure 2. Performance des trois méthodes de criblage virtuel (ROCS, Surflex-Dock, 

Shaper2) dans le deuxième challenge de criblage virtuel avec trois jeux de données 

“PubChem BioAssay” (ROCK2 – AID644, ESR1 – AID743080, OPRK1 – AID1777). Les 

nombres de vrais actifs récupérés parmi les 5% des composés les mieux classés par 

les méthodes sont indiqués dans les diagrammes de Venn. Chaque étoile signifie un 

chémotype des actifs récupérés par une seule méthode. 

 

2.2. Développement de jeux de données “PubChem BioAssay” non-biaisés pour les 

études de criblage virtuel rétrospectif 

Les données de bioactivité expérimentales sont récupérées à partir du site web de 

“PubChem BioAssay”, où se trouvent toutes les informations relatives aux essais 

biologiques déjà réalisés sur une cible thérapeutique, y compris les vrais actifs et les 

vrais inactifs ainsi que les valeurs d'affinité (EC50, IC50, Kd, ou Ki) en µM ou nM. Une 
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première étape de pré-sélection a eu lieu pour garder seulement les jeux de données 

avec au moins 10.000 substances testées, dont au moins 50 ont été confirmées comme 

actives par une étude dose-réponse, sur une protéine cible ayant été co-cristallisée au 

moins une fois avec un ligand du même phénotype (inhibiteur, agoniste, antagoniste, 

etc.) que celui des vrais actifs validés par l’essai biologique qui correspond. Une totalité 

de 21 jeux de données correspondant à 21 protéines cibles d’intérêt pharmaceutique, 

couvrant 11 familles de protéines, ont été retenus. Plusieurs familles fortement étudiées 

depuis des années, telles que les RCPGs (n = 3), les kinases (n = 3), ou les récepteurs 

nucléaires (n = 5), sont choisies. 162 structures cristallographiques en 3D (protéine en 

complexe avec un ligand pour chacune) pour l’ensemble des 21 jeux de données sont 

trouvées sur la “Protein Data Bank”. Tous ces résultats ont été mis à jour au 31 

décembre 2018. 

 

Chaque complexe protéine-ligand a été ensuite téléchargé directement depuis le site 

web de la “Protein Data Bank” en format pdb. Les hydrogènes ont été ajoutés avec 

Protoss. Toutes les molécules d’eau qui se trouvent dans le site de liaison qui 

participent à au moins trois liaisons d’hydrogène avec la protéine et/ou le ligand, dont 

au moins deux sont avec la protéine, ont été conservées. Les structures des protéines, 

des ligands et des sites de liaison ont été enregistrées séparément en format mol2. 

 

Toutes les substances de chaque jeu de données ont été téléchargées en format sdf 

depuis le site web de “PubChem BioAssay”. Les informations relatives à chaque 

substance ont été ensuite récupérées, y compris l’activité (actif/inactif), le phénotype 

(inhibiteur, agoniste, antagoniste), la puissance (en μM), la valeur de HillSlope, la 
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“fréquence de touche”, la masse moléculaire, le coefficient de partage octanol/eau 

(ALogP), la charge formelle, le nombre de liaisons à rotation libre, et le nombre 

d’accepteurs ou de donneurs de liaisons d’hydrogène. Les règles de filtrage ont été 

déterminées de sorte que les faux positifs ainsi que l’enrichissement artificiel soient 

évités. Le processus de filtrage à quatre étapes est effectué comme suit : 

 

 Etape 1 : Filtre de substances inorganiques : les molécules qui possèdent au 

moins un atome autre que H, C, N, O, P, S, F, Cl, Br, et I ont été enlevées. 

Toutes les substances (actives et inactives) ont passé cette étape. 

 

 Etape 2 : Filtre de faux positifs : un actif est retenu seulement si sa valeur de 

HillSlope est entre 0,5 et 2 (étape 2a), si la “fréquence de touche” est inférieure à 

0,26 (étape 2b), s’il n’est pas considéré comme agrégateur ou inhibiteur de la 

luciférase et s’il n’a pas la propriété autofluorescente (étape 2c). Les substances 

inactives, par contre, n’ont pas passé cette étape. 

 

 Etape 3 : Filtre de propriétés moléculaires : une substance est retenue 

seulement si sa masse moléculaire est entre 150 et 800 Da, si son ALogP est 

entre -3 et +5, s’il possède moins de 15 liaisons à rotation libre, 10 

accepteurs/donneurs de liaisons d’hydrogène, et si sa charge formelle est entre -

2 et +2. Toutes les substances ont passé cette étape. 

 

 Etape 4 : Conversion en 3D et ionisation : les structures en 2D des substances 

restant ont été converties en 3D avec Corina, et ensuite ionisées à pH 
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physiologique avec Filter (OpenEye). Toutes les substances ont passé cette 

étape. 

 

Presque 60% des vrais actifs ont été éliminés après toutes les étapes de filtrage. Il est 

observé que la sous-étape 2a a filtré le plus d’actifs (les actifs non-spécifiques ayant 

plusieurs sites de liaison). Par contre, seulement 10% des vrais inactifs ont été retirés, 

car ils n’ont pas passé l’étape 2 comme les substances actives (Figure 3). Ces étapes 

de filtrage soulignent l’importance de l’élimination des artefacts de test dans la 

composition des vrais actifs, car elles retirent non seulement les faux positifs qui 

pourraient ultérieurement impacter la performance du criblage virtuel, mais aussi font 

baisser le taux des actifs par rapport aux inactifs, rendant les taux de touche de nos 

jeux de données plus proches de ceux qui sont typiquement observés lors de criblages 

expérimentaux à haut débit. D’ailleurs, la puissance des composés actifs de DUD-E ou 

de ChEMBL est en général plus élevée que celle de nos jeux de données, c’est-à-dire 

que nos actifs sont plus difficiles à détecter, et permettent une meilleure discrimination 

entre les méthodes de criblage in silico, puisque la surestimation de la performance de 

ces méthodes est minorée. 
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Figure 3. Les nombres de vrais actifs et de vrais inactifs de PubChem, sélectionnés 

après chaque étape de filtrage. Les substances inactives n’ont pas passé les sous-

étapes 2a, 2b et 2c. 

 

Les jeux de données déjà préparés ont été ensuite évalués par des méthodes de 

criblage virtuel “ligand-based” (recherche par similarité en 2D avec ECFP4 ou en 3D 

avec ROCS) ou “structure-based” (docking moléculaire avec Surflex-Dock). Le meilleur 

coefficient de Tanimoto (donné par les méthodes “ligand-based”) et le meilleur score de 

docking (issu par Surflex-Dock) ont été enregistrés pour chaque substance. Chacun 

des 162 complexes cristallographiques trouvés dans la “Protein Data Bank” a été utilisé 

comme support (“template”), générant autant de listes de touches que de supports 

disponibles. En plus, l’approche “max-pooling” a été également utilisée, dans laquelle 

seulement le meilleur score donné par tous les supports a été retenu pour chaque 
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substance. Les valeurs d’EF1% (enrichissement en vrais actifs correspondant à un taux 

de faux positifs de 1%) ont été calculées pour évaluer la performance du criblage. 

 

Il est observé que les valeurs d’EF1% de chaque entrée sont très variables dans la 

plupart des cas, confirmant l’influence du choix du support de référence et de méthode 

sur la performance du criblage. L’enrichissement comparable à ou moins bon que celui 

obtenu par la sélection aléatoire (EF1% = 1,0) est observé chez plusieurs entrées. 

Notamment, sur six jeux de données (ARO1, GLP1R, GLS, L3MBTL1, RORC, THRB), 

aucune méthode n’est arrivée à donner un enrichissement supérieur à 2,0 avec 

l’approche “max-pooling” (Figure 4). Pour cinq d'entre eux, aucun support n’a donné un 

EF1% > 2,0. Ceci signifie la difficulté remarquable de nos jeux de données, grâce à 

l’absence des biais structurels dans la composition des substances (les actifs, les 

inactifs et les ligands de référence) et la distribution de la puissance des vrais actifs qui 

n’est pas orientée vers les valeurs sub-micromolaires. Parmi les 21 jeux de données 

évalués, 15 (sauf les six mentionnés ci-dessus) ont été sélectionnés et constituent donc 

la nouvelle base de données intitulée LIT-PCBA. Chacun entre eux a été ensuite divisé 

en quatre sous-ensembles (“training actives”, “validation actives”, “training inactives”, 

“validation inactives”) par la méthode “asymmetric validation embedding” (AVE) qui 

mesure la distance dans l’espace chimique de chaque paire de molécules pour les 

distribuer dans les sous-ensembles de sorte que le biais total soit minimisé [6]. Pour 12 

jeux de données (à part ALDH1, VDR, FEN1), une valeur de biais inférieure à 0,01 a 

été atteinte après seulement quelques itérations de l’algorithme génétique (pour les 

trois qui restent, les valeurs de biais total sont toutes inférieures à 0,10). Ceci confirme 

encore une fois qu’il y a très peu de biais dans la composition de nos jeux de données, 
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et fait preuve de la qualité de LIT-PCBA en tant qu’une base de données prête à 

l'emploi pour évaluer la performance de méthodes de criblage virtuel à l’avenir. 

 

 

Figure 4. “Heat map” illustrant la performance des trois méthodes de criblage in silico : 

2D – recherche par similarité en 2 dimensions avec les fingerprints ECFP4, 3D – 

recherche par similarité en 3 dimensions avec ROCS, et SD – docking moléculaire avec 

Surflex-Dock, en matière d’EF1% obtenus par l’approche “max-pooling” sur les 21 jeux 

de données après les quatre étapes de filtrage. 

 

En plus, les poses de docking issues de Surflex-Dock ont été réévaluées par deux 

méthodes : IFP (“protein-ligand interaction fingerprints”) et GRIM (“graph-matching”) 

[9,11], qui ont déjà été intégrées au logiciel IChem, en utilisant les structures 

cristallographiques des ligands de référence et des sites de liaison. Il est observé que le 

classement des molécules selon la similarité des interactions protéine-ligand (IFP) ou la 

similarité des graphes d'interaction (GRIM) a donné les valeurs d’EF1% plus élevées 

que celles obtenues à partir des scores de docking de Surflex-Dock, confirmant 

l’importance de l’étape traitement des poses de docking d’une molécule, notamment par 

les approches basées sur la comparaison des modes d’interactions ligand-protéine de 

ces poses avec celles d’un référent dans les challenges de criblage virtuel. 
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3. Conclusion générale 

 

Les éléments pharmacophoriques “structure-based” issus d’IChem qui représentent le 

site actif d’une protéine (même sans ligand co-cristallisé) sont simples et assez précis 

pour faire du criblage virtuel. La nouvelle procédure proposée dans ce travail 

(alignement de molécules sur les pharmacophores par Shaper2, sélection de pose par 

l’énergie totale MMFF94, et classement de composés par l’énergie PLP) s’avère aussi 

efficiente que des méthodes computationnelles existantes dans l’identification des 

composés actifs et leurs chémotypes originaux, et peut donc être utilisée en parallèle 

avec d’autres méthodes de criblage in silico afin d’améliorer la performance globale du 

criblage. On présente également la nouvelle base de données LIT-PCBA, se 

composant de 15 protéines cibles, chacune avec les vrais actifs et les vrais inactifs déjà 

confirmés par les essais biologiques issus de “PubChem BioAssay”. Ces jeux de 

données, préparés par une procédure rigoureuse de plusieurs étapes, sont moins 

biaisés, en matière de structure des ligands et de composition des sets de molécules, 

que ceux qui existent déjà (DUD, DUD-E, etc.), et sont donc plus difficiles. LIT-PCBA 

est prête à l'emploi pour des études comparatives de nouvelles méthodes de criblage 

virtuel, notamment celles basées sur l'intelligence artificielle. 
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Discovering the very first ligand that exerts a desired bioactivity towards a protein target in a fast 

and cost-effective manner has long been a main challenge in drug design. For a particular protein 

whose ligands’ three-dimensional structures are not yet available, the molecular docking 

technique is usually employed as a virtual screening tool to detect potential “hits”, despite the 

unresolved issues in quantitatively predicting these molecules’ binding affinity. It is therefore 

necessary to conceive a novel computational approach that can be applied to apoproteins. In 

2012, the researchers at the “Laboratoire d’Innovation Thérapeutique” (University of Strasbourg) 

managed to design a new pharmacophore perception method that was already integrated in the 

IChem software package.
1,2

 This method automatically detects all possible ligand-binding sites 

on the surface of any given protein target, then predicts the “druggability” of each cavity, and 

finally creates a set of structure-based pharmacophoric points that represent each pocket that was 

previously deemed potentially “druggable”. At this point, a question arises as to how we make 

use of these pharmacophore models to screen a chemolibrary comprising thousands, or even 

millions of molecules, with the aim of rationally selecting potential “hits” for a protein of 

pharmaceutical interest, regardless of the availability of a co-crystallized ligand. 

Once a novel in silico screening procedure is developed, it must be evaluated in terms of 

discriminatory power to make sure that it manages to retrieve active molecules for a biological 

target among a pool of structurally diverse compounds. This has to be done with the use of 

existing data sets, either found in the literature, or extracted from open-access databases. 

However, numerous problems with the sets of ligands currently employed by the 

cheminformatics community have been observed and reported.
3-6

 Among them are: 

(i) The absence of experimental evidence confirming the impotence of presumably inactive 

molecules (known as “decoys”);  

(ii) The presence of too many true actives with high potency towards the target;  

(iii) The hit rates of some data sets which are too high to be deemed realistic; 

(iv) The chemical bias in the composition of ligand sets, as the actives are issued from only 

a few chemical series, the decoys are too different from the true hits in terms of 

physicochemical features, the active compounds are too structurally similar to the co-

crystallized ligands used as references.  
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Therefore, such benchmarking data sets do not describe real life, as they fail to mimic 

chemolibraries used in actual high-throughput screening campaigns, and overestimate the real 

accuracy of virtual screening methods. As a result, there arises the need for developing a novel 

unbiased data collection built upon experimentally confirmed data which can be applied to 

validating both ligand-based and structure-based screening procedures, which has a difficulty 

level (in terms of distinguishing true actives from true inactives) as close as possible to that of 

real high-throughput screening decks, and which is able to capture the differences in the 

performances of different in silico methods. 

In light of the problems explained above, the work portrayed in this Ph.D. thesis is composed of 

two main sections as follows:  

 The first main part concerns the development of a new procedure to align small ligands 

on the previously generated structure-based pharmacophore models, prior to the selection 

of one best pose for each ligand and the creation of a hit list where all molecules are 

sorted according to certain scoring parameters. Once elaborated, this protocol can be 

employed to predict the pose of an active compound inside a “druggable” binding pocket 

of a protein, and to differentiate between the true actives and the “decoys” or the true 

inactives of a biological target of pharmaceutical interest. This part of the work is 

portrayed in the Chapter 2 of the dissertation. 

 The second main part is focused on the construction of a new data set from experimental 

input deposited on PubChem BioAssay
7
 that features a wide range of protein targets, with 

obvious and hidden design bias already reduced. A post-preparation evaluation of this 

data collection using various virtual screening methods and scoring functions is also 

carried out to make sure that the aforementioned bias has been mitigated, confirming the 

advantage of employing such data to validate new in silico screening approaches. This 

part of the work is portrayed in the Chapter 3 of the dissertation. 

Besides, with the aim of facilitating future high-quality benchmarking data set developments, in 

the Chapter 1 of this dissertation, a comprehensive review of data collections built upon 

PubChem BioAssay input is also provided, along with an analysis of notable issues that must not 

be neglected when it comes to constructing a novel database, leading to the suggestion of some 

good practices that should be followed to ensure the quality of data set design. Finally, the 
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Chapter 4 of this thesis concerns the rescoring of docking poses issued by a popular docking 

program (Surflex-Dock) on the ensemble of ligand sets previously presented in Chapter 3, 

aiming to highlight the advantage of scoring functions relying on protein-ligand interaction 

comparisons over energy-based empirical ones in recognizing the true hits of a biological target 

from a pool of chemically diverse and unbiased molecules. 
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Developing realistic data sets for evaluating virtual screening methods is a task that has been 

tackled by the cheminformatics community for many years. Numerous artificially constructed 

data collections were developed, but they all suffer from multiple drawbacks, one of which is the 

unknown potency of presumably inactive molecules, leading to possible false negatives in the 

ligand sets. In light of this problem, the PubChem BioAssay database, an open-access repository 

providing bioactivity information of compounds that were already tested on a biological target, is 

now a recommended source for data set construction. Nevertheless, there exist several issues 

with the use of such data that need to be properly addressed. In this chapter, an overview of 

benchmarking data collections built upon experimental PubChem BioAssay input is provided, 

along with a thorough discussion of note-worthy issues that one must consider during the design 

of new ligand sets from this database. This chapter has been published as a review article in the 

special issue “QSAR and Chemoinformatics in Molecular Modeling and Drug Design” of the 

International Journal of Molecular Sciences. 

Tran-Nguyen, V. K.; Rognan, D. Benchmarking Data Sets from PubChem BioAssay Data: Current Scenario and 

Room for Improvement. Int. J. Mol. Sci. 2020, 21, 4380. doi: 10.3390/ijms21124380. 

https://doi.org/10.3390/ijms21124380
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1. Introduction 

The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov/bioassay) was first 

introduced in 2004 as a part of the PubChem project initiated by the National Center for 

Biotechnology Information (NCBI), aiming to provide the scientific community with an open-

access resource where experimental bioactivity high-throughput screening (HTS) data of 

chemical substances can be found.
1-5

 Starting out with small-molecule HTS input from the 

National Institute of Health (NIH), the database now gathers data from over 700 different 

sources, including governmental organizations, world-renowned research centers, chemical 

vendors as well as other biochemical databases, featuring over 260 million bioactivity data points 

reported in both small-molecule assays and RNA interference reagents-screening projects.
5-11

 

Journal publishers are also acknowledged for a significant contribution to the growth of 

PubChem BioAssay, as the database has received experimental input from more than 30 million 

scientific publications in response to requests from over 400 peer-reviewed journals (as of April 

30, 2020),
10-12

 denoting a constant and tremendous effort from many sectors of the scientific 

community to support free sharing of HTS data. 

Soon after its introduction, PubChem BioAssay has established itself as a reliable and highly-

queried public repository where information on each biological assay, from overall descriptions 

to detailed screening protocols, from input data to assay results, as well as chemical features and 

bioactivities of all tested molecules, can be easily accessed and downloaded directly from the 

webpage. The two search options (limits search and advanced search) allow a systematic and 

thorough investigation of the assays deposited on the database, according to various parameters, 

e.g. assay type, target type, or quantity of featured substances, offering a practical data collection 

and analysis tool.
13

 Information on related targets and same-project assays enables a more 

complete look into the body of screening campaigns on the same or closely-related biological 

targets. Crosslinks to the NCBI Entrez information retrieval system,
14

 PubMed Central
15

 and the 

Protein Data Bank
16

 also facilitate research relying on the use of data extracted from the 

resource. Various updates have been brought to PubChem BioAssay over the years, enlarging the 

size of available archival data, introducing new features to the web interface and improving data 

sharing capability.
17-20

 Several million users have been procuring data from the website and its 

different programmatic services each month,
21

 highlighting the importance of this public 

http://pubchem.ncbi.nlm.nih.gov/bioassay
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database as a key source of chemical information for researchers, students and the general public 

from around the world. 

In this review article, a quick summary of assays and compounds deposited on PubChem 

BioAssay, along with an overview of data sets built by the cheminformatics community upon the 

data retrieved from this repository will be provided. We also give a thorough discussion of note-

worthy issues that have to be addressed prior to utilizing such data in cheminformatics-related 

projects, with illustrations observed in our recently introduced LIT-PCBA data collection,
22

 

which was constructed from PubChem BioAssay data. 

2. PubChem BioAssay Statistics: Assays and Compounds 

As of April 30, 2020, there were 1,067,896 assays deposited on the database. The vast majority 

of them (99.98%) involved small-molecule screening, only 177 assays were conducted with 

RNA interference reagents. These assays are classified according to the number of tested 

substances (chemical samples provided by data contributors
8
), the number of active substances, 

the screening stage, and the target type, as listed in Table S1. It can be deduced that most 

PubChem assays are small-scale screening projects, with over 99% of them conducted on fewer 

than 100 substances, and nearly 94% giving no more than nine actives (Figure 1). The screening 

stage was, in most cases (about three quarters), not specifically annotated. Assays giving 

confirmatory results regarding the bioactivities of tested molecules account for a larger 

proportion than primary screens, though dose-response curves are not always provided. 

Interestingly, nearly 75% of available assays do not have a specific biological target (i.e. a 

protein, a gene or a nucleotide), but are rather cell-based assays identifying molecules that 

interfere with a certain cell function or an intracellular activity (e.g. tumor cell growth inhibitors, 

lipid storage modulators, HIV-1 replication inhibitors), or are pharmacokinetics studies. On the 

other hand, some assays take multiple macromolecules as targets (e.g. AID 1319). The utility of 

data extracted from these assays in cheminformatics-related research will be later discussed in 

the manuscript. 
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Figure 1. Partition of small-molecule PubChem bioactivity assays according to the number of 

tested substances (A), the number of active substances (B), and the screening stage (C). It is 

observed that most assays are small-scale screening projects in which fewer than 100 substances 

were tested, and no more than nine actives were identified. All statistics were updated as of April 

30, 2020. 

A total of 102,694,672 compounds were tested in at least one PubChem bioactivity assay (as of 

April 30, 2020), over 95% of which are organic molecules (i.e. molecules bearing no atom other 

than H, C, N, O, P, S, F, Cl, Br, and I). The term “compounds”, according to PubChem, refers to 

unique chemical structures that were extracted and standardized from the community-provided 

substances.
8
 A question always raised when it comes to drug design is whether a chemical 

compound is drug-like or not, or if a molecule has physicochemical properties that are deemed 
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favorable for oral administration in humans. Several rules of thumb have addressed this issue, 

giving criteria largely employed to predict a compound’s drug-likeness, including the Lipinski’s 

rule of five,
23,24

 the Ghose filter,
25

 and the Veber’s rule.
26

 PubChem compounds are analyzed 

according to each criterion,
23-27

 and statistics are given in Table S2. Statistical results show that 

most compounds tested in PubChem bioactivity assays satisfy the aforementioned rules, 

indicating their potential to become orally active drugs (Figure 2). However, only 1% of them 

(over 1 million compounds) were deemed active in at least one screening experiment, 

highlighting the miniature portion of active molecules available in the database, and implying an 

average “hit rate” lower than those observed in artificially constructed data sets such as DUD,
28

 

DUD-E,
29

 or DEKOIS 2.0.
30

 The other compounds were either biologically inactive in all assays 

where they were tested, or were left “inconclusive” in terms of bioactivity. These “inconclusive” 

compounds, present in various AIDs such as 1345009, 1345010, or 743075, have to be discarded 

when data extracted from PubChem BioAssay are used in cheminformatics-related research. On 

the other hand, compounds being repeatedly inactive in HTS assays, dubbed “dark chemical 

matter”,
31

 are in fact important to keep, notably for identifying ligands of novel targets (e.g. 

protein-protein interfaces). 

 

Figure 2. Partition of compounds tested in PubChem bioactivity assays according to four criteria 

of the Lipinski’s rule of five. It is observed that most compounds (over 70%) satisfy all criteria. 

Nearly 85% of deposited compounds violate no more than one criterion. On the other hand, only 

0.1% of all compounds (over 130,000) do not satisfy any criterion. Statistics were updated as of 

April 30, 2020. 
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3. What We Can Do with PubChem BioAssay Data: from the Data Set Construction Point 

of View 

Being a wealth of experimental bioactivity data constantly gathered from many parts of the 

world, PubChem BioAssay offers ample opportunities for scientists from various disciplines, e.g. 

biochemistry, pharmacy, or cheminformatics, to exploit this abundant resource for both teaching 

and researching purposes. Access to the database is facilitated by numerous online services, in 

both manual (via PubChem limited and advanced search engines
32,33

) and programmatic ways 

(via access routes such as the Power User Gateway PUG,
34

 PUG-SOAP,
35

 PUG-REST,
36

 PUG-

View,
37

 the PubChemRDF REST interface
38

 or the Entrez Utilities
14

). Recently, a novel web 

service called ScrubChem was introduced,
39

 gathering PubChem BioAssay data that were 

already reparsed, digitally curated and improved, allowing a systematic analysis of all targets, 

chemicals and assays featured on the database at low computational costs, after which the 

cleaned data can be downloaded for use in modeling applications. Upon acquiring experimental 

input from the resource, scientists may use it in various ways to achieve their research objectives. 

Several review articles have been published in this regard,
7,40,41

 summarizing a wide range of 

studies that were conducted on the basis of PubChem BioAssay data.
42-60

 In this section, we only 

place our focus on the research featuring benchmarking data collections that were constructed by 

the cheminformatics community from PubChem’s experimental results as a means of validating 

in silico screening protocols. 

Throughout the years, various artificially constructed data sets have been developed,
28-30,61-71

 

including DUD, DUD-E, or DEKOIS 2.0. However, the design of these collections suffers from 

many drawbacks, as demonstrated in several studies.
72-76

 One of them is the unknown potency of 

presumably inactive molecules, also known as “decoys”, which were usually extracted from the 

BIOVIA Available Chemicals Directory (ACD)
77

 or the ZINC database.
78

 This means there is no 

guarantee that the “decoys” do not exert the desired bioactivity against the protein target, due to 

the lack of relevant experimental evidence, and it is therefore very likely that false negatives 

exist among the inactive molecules. Using data from PubChem BioAssay as input for database 

construction, on the other hand, helps alleviate this problem. A number of data collections of 

different sizes have been designed from PubChem data and introduced to the scientific 

community, offering better references for evaluating novel virtual screening methods. Not 
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counting non-publicly available data sets (e.g. the three small- and medium-sized ligand sets that 

we designed in 2019 to validate our new pharmacophore-based ligand-aligning procedure
79

), in 

this section, we only mention open-access ones, including the MUV data sets,
80

 the UCI 

Machine Learning Repository,
81

 the BCL::ChemInfo framework by Butkiewicz et al.,
82

 the 

Lindh et al. data collection,
83

 and our recently introduced LIT-PCBA (Table 1).
22

  



 Chapter 1. Benchmarking Data Sets from PubChem BioAssay Data 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  37 

Table 1. Overview of the main open-access benchmarking data sets developed from experimental PubChem BioAssay data. 

Data sets Year 

Number 

of ligand 

sets 

Number 

of 

molecules 

per ligand 

set 

Active-to-

inactive 

ratio 

Assay data 
Assay 

artifacts 

avoided 

Chemical 

bias 

avoided 

Virtual screening 

suitability 

Primary Confirmatory 
Ligand

-based 

Structure-

based 

MUV
80

 2009 17 15,030 2 x 10
-3

     
a
  

           

UCI
81

  

 

2009 

 

21 

 

69 to 

59,795 

 

2 x 10
-4

 to 

0.33 

      

           

Butkiewicz 

et al.
82

 

2013 9 61,849 to 

344,769 

5 x 10
-4

 to 

7 x 10
-3

 

      

           

Lindh et 

al.
83 

2015 7 59,462 to 

338,003 

7 x 10
-5

 to 

1 x 10
-3

 

      

           

LIT-

PCBA
22

 

2020 15 4247 to 

362,088 

5 x 10
-5

 to 

0.05 

   
b
   

a
 Ligand-based approaches are preferred. 

b
 Unbiased training and validation sets are provided for machine learning. 
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3.1. The MUV Data Sets 

The Maximum Unbiased Validation (MUV) data sets, built by Rohrer and Baumann in 2008 and 

published in early 2009,
80

 are among the first benchmarking sets of compounds whose 

bioactivity was experimentally determined and retrieved from PubChem BioAssay, which, as a 

result, avoids the issue regarding unknown potency values of presumably inactive molecules 

(“decoys”) inherent in other data sets.
80

 Based upon 18 pairs of primary HTS and corresponding 

confirmatory dose-response experiments, whose biological targets range from kinases, GPCRs, 

nuclear receptors to protein-protein interactions, 17 medium-sized ligand sets (15,030 

compounds), each with an active-to-inactive ratio at 2 x 10
-3

, were generated, implying smaller 

hit rates in comparison to those of other databases.
76,80

 Specifically designed to be maximally 

unbiased, the MUV data sets were prepared according to a workflow that removed assay 

artifacts, prevented artificial enrichment, and reduced “analogue bias” in the composition of their 

ligands. A series of consecutive filters was first applied to eliminate “false positives” among 

active molecules, including promiscuous aggregators, frequent hitters exerting off-target or 

cytotoxic effects, as well as chemicals which are likely to spoil the assay’s optical detection 

method. A subsequent “chemical space embedding filter”, encoded by vectorized descriptors 

related to physicochemical properties of each molecule (e.g. molecular weight, number of 

hydrogen bond donors/acceptors), was next employed to rule out actives that were not 

adequately embedded in inactive compounds, ensuring that the inactive sets did not significantly 

differ from the sets of actives, thus avoiding possible artificial enrichment. Finally, a refined 

nearest neighbor analysis was applied, based on a “nearest neighbor function” and an “empty 

space function”, to reduce both the level of self-similarity among the actives and the separation 

degree between active and inactive molecules, selecting only 30 true actives and 15,000 true 

inactives that were optimal as regards the criterion of spatial randomness for each ligand set. 

Post-design analyses on the resulting data sets showed that (i) there exist a large number of 

distinct molecular scaffolds presented by the ligands (1.2 compounds/scaffold class), denoting 

the absence of “analogue bias” and a good representation of drug-like chemical space; (ii) the 

correlation between the degree of data set clumping and retrospective virtual screening 

performance was no longer observed after MUV design, suggesting that the final ligand sets 

were indeed not affected by benchmarking data set bias; and (iii) the MUV data were 

significantly less biased than the then-standard DUD data set, as evidenced by a lower molecular 
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self-similarity level and a higher difficulty in distinguishing true actives from true inactives by 

ligand-based virtual screening simulations. The introduction of the MUV data collection 

therefore marks a milestone in the quest to construct realistic data sets entirely from experimental 

results with little design bias and applicability to evaluating both ligand-based and structure-

based in silico methods, serving as an inspiration for future database development.  

3.2. The UCI Repository 

The UCI Machine Learning Repository was introduced in 2009.
81

 On the basis of data retrieved 

from 12 PubChem bioactivity assays, both primary (n = 7) and confirmatory (n = 5), a total of 21 

medium- and small-sized data sets (69-59,795 compounds) were generated, either by using 

separately primary or confirmatory screening data, or by combining results from a primary assay 

and its corresponding confirmatory screen. In the latter case, compounds which were deemed as 

active in the primary experiments but later denounced as inactive by the confirmatory readouts 

were all considered inactive in the combined data sets (instead of being discarded as in the MUV 

collection). The active-to-inactive ratio ranges from 2 x 10
-4

 to 0.33. Each ligand set was then 

randomly split into a training-and-validation set (80% of the population) and an independent test 

set (the other 20%) for machine learning algorithm assessments.
81

 Despite being one of the 

earliest remarkable attempts at using experimental data from PubChem BioAssay for data set 

construction, the UCI database itself has several limitations. Firstly, though the author offered 21 

data sets in total, only four of them, which were built by combining primary and confirmatory 

results, were recommended. Reasons for this lie in (i) the high portion of false positives recorded 

in primary experiment-based ligand sets that casts doubt on the solitary use of such data for 

evaluating in silico screening; (ii) the hit rates observed in the sets built upon confirmatory 

assays alone are too high (7-33%) to be deemed realistic, notably in comparison to those of real 

screening decks; and (iii) the size of some data sets is too tiny (tens of active molecules among 

fewer than 100 compounds) for virtual screening methods (especially ligand-based ones) to give 

any meaningful result. Secondly, due to the lack of high-quality biological target 3D structures 

for several bioassays (e.g. AIDs 456, 1608) and insufficient information on possible binding 

site(s) of the molecules, the design focus of this data collection is implied to be limitedly placed 

on ligand-based (machine learning) approach evaluations. Thirdly, the issue of physicochemical 

bias in the composition of active and inactive molecules that may lead to artificial enrichment 
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and an overestimation of virtual screening performance, which had been raised in the MUV 

paper,
80

 was not addressed throughout the development of these data sets, raising questions on 

the real benefit of using such data for validating novel in silico screening procedures. 

3.3. The Butkiewicz et al. Data Collection 

Another PubChem BioAssay-based data collection was introduced in 2013 by Butkiewicz et al. 

as a part of the cheminformatics framework BCL::ChemInfo.
82

 Nine medium- and large-sized 

data sets (> 60,000 compounds) were constructed upon collating results from relevant 

confirmatory screens, thus avoiding the issue of false positives commonly observed when only 

primary readouts are accounted. Diverse classes of protein targets are covered in the database, 

including three GPCRs, three ion channels, the choline transporter, the serine/threonine kinase 

33 and the tyrosyl-DNA phosphodiesterase. Active-to-inactive ratios range from 5 x 10
-4

 to 7 x 

10
-3

, implying small hit rates which are all lower than 0.8% (< 0.1% in most cases). Though the 

number of true actives is deemed sufficiently large (> 170 actives for each ligand set) and the hit 

rates are generally low, one drawback of this database is that the problems regarding assay 

artifacts, analogue bias, and artificial enrichment due to physicochemical differences between 

active and inactive molecules (which need to be properly addressed during the construction 

phase) were completely overlooked. These issues are even more critical when data sets intended 

for evaluating ligand-based virtual screening methods (which is, in fact, the design focus of this 

data collection) are developed. There is hence no guarantee that only a little chemical bias exists 

in the composition of these ligand sets, and it is likely that in silico screening performance could 

be overestimated due to such unconsidered issues.  

3.4. The Lindh et al. Data Collection 

In 2015, Lindh et al. introduced a novel data collection designed for evaluating both ligand-

based and structure-based virtual screening methods.
83

 A rigorous procedure of analyzing the 

whole PubChem BioAssay database was first carried out, after which only assays (excluding 

cell-based and multiplex ones) that were performed with more than 1000 compounds (at least 20 

of which were identified as active) against a single protein target that had been co-crystallized 

with a drug-like molecule were kept. The sole protein structure chosen to represent each target 

had to be of the same species as that used in the corresponding high-throughput screen, must not 
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be bound to any DNA fragment or cofactor other than ATP (to avoid the possibility of multiple 

binding sites), and had the highest resolution (< 3 Å) as well as the fewest missing atoms among 

the available structures on the Protein Data Bank.
16

 Only 19 bioassays, both primary (n = 7) and 

confirmatory (n = 12), related to seven protein targets were retained. Molecules having been 

identified as active in primary assays but not validated by confirmatory screens were all 

discarded from the active ligand sets. The remaining active compounds were then subject to the 

Hill Slope filter (which takes inspiration from the MUV database) and the pan-assay interference 

compounds (PAINS) filter
84-89

 to eliminate potential false positives. In the end, seven medium- 

and large-sized data sets (> 59,000 compounds) were constructed, with active-to-inactive ratios 

ranging from 7 x 10
-5

 to 1 x 10
-3

, indicating hit rates significantly lower than those commonly 

seen in other databases. It is observed that a large number of unique Bemis-Murcko scaffolds are 

present among the active molecules (1.4 compounds/scaffold), implying that there is little 

analogue bias and substantial structural diversity in the active set composition. Though no direct 

measure was taken to reduce artificial enrichment due to differences between the true actives and 

true inactives, retrospective virtual screening on the seven final data sets using physicochemical 

property similarity searches (1D approach) and molecular docking was carried out, suggesting 

that the docking performance was not based on artificial enrichment, as the 1D method gave 

much lower enrichment in true actives than the structure-based approach in most cases. The 

Lindh et al. data collection is therefore considered the next remarkable step towards employing 

experimental input from PubChem BioAssay to build realistic data sets suitable for both ligand-

based and structure-based in silico screening evaluations while addressing (and avoiding, to a 

considerable extent) most issues inherent in many other databases, including false positives, 

analogue bias and artificial enrichment. However, due to the unreasonably rigorous data quality 

filters that were applied during the construction of this data collection, the quantity of target sets 

offered by the authors is relatively small (only seven), and several important protein families that 

have been largely investigated by biochemists, e.g. GPCRs, nuclear receptors, are neglected 

(only two kinases were included in the database).  

3.5. The LIT-PCBA Data Collection 

Five years later, we (Tran-Nguyen et al.) developed and introduced a novel data collection 

entitled LIT-PCBA.
22

 A rigorous systematic search was first performed on the ensemble of 
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PubChem bioactivity assays, keeping only confirmatory screens conducted with over 10,000 

substances, giving no fewer than 50 active molecules, against a single protein target having at 

least one crystal PDB structure bound to a drug-like ligand of the same phenotype as that of the 

confirmed actives. A total of 21 assays corresponding to 21 targets covering 11 diverse protein 

families, including three GPCRs, three kinases and five nuclear hormone receptors, were 

retained. Contrary to the data sets of Lindh et al., in LIT-PCBA, all relevant protein-ligand 

structures available on the Protein Data Bank were kept, providing 162 “templates” in total. 

Taking inspiration from the MUV paper, we also addressed the issues of false positives, artificial 

enrichment and analogue bias during the construction of the LIT-PCBA data sets. The active and 

inactive substances retrieved from PubChem BioAssay were subjected to a series of consecutive 

filters, which ruled out inorganic chemicals (bearing at least one atom other than H, C, N, O, P, 

S, F, Cl, Br, and I), frequent hitters, non-specific binders, promiscuous aggregators, spoilers of 

optical detection methods, compounds with extreme molecular properties, and ligand preparation 

failures. Physicochemical differences between active and inactive substances were mitigated, as 

all molecular properties of the remaining ligands were kept within the same range, thus avoiding 

the presence of molecules that are too different from others in terms of physicochemical features. 

Retrospective virtual screening by ligand-based methods (2D fingerprint similarity searches and 

3D shape-matching) on the resulting data collection confirmed that there was indeed little 

chemical bias in the composition of the ligand sets, as both approaches generally gave 

comparable performances to random selection. Results from molecular docking were also 

considered along with those of the two ligand-based approaches, leading to the selection of 15 

small- to large-sized target sets (4247-362,088 molecules) that finally constituted the LIT-PCBA 

collection. Active-to-inactive ratios span over a relatively wide range from 5 x 10
-5

 to 0.05, but 

are below 3 x 10
-3

 in most cases, implying smaller hit rates than those of many other databases. 

Moreover, active substances included in LIT-PCBA are generally less potent than those found in 

DUD-E and ChEMBL, which imposes a more difficult challenge for in silico screening. Each 

ligand set was then further unbiased by the asymmetric validation embedding method (AVE),
73

 

yielding validation and training subsets with minimized overall bias that are ready for 

benchmarking novel virtual screening procedures. To the best knowledge of the authors, LIT-

PCBA is now the latest attempt at constructing realistic data sets from confirmatory PubChem 

BioAssay data, possessing numerous advantages. Firstly, a large variety of protein targets 
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(including heavily researched ones) are featured in the collection and all available PDB 

structures are accounted. This practice takes into consideration at the same time the entire 

chemical diversity of known target-bound ligands and the complete conformational space 

accessible to the investigated target. Secondly, assay artifacts, chemical bias as well as potency 

bias in the composition of ligand sets were avoided or reduced, preventing possible 

overestimation of in silico screening performances. Thirdly, the eventual data-unbiasing step 

based on chemical space analyses offers a rational split of every existing set of molecules 

(instead of the random division that was previously observed in the UCI repository design). This 

further ensures the absence of both obvious and hidden bias in the final data sets. And lastly, 

thanks to the presence of at least one high-quality 3D structure with well-defined binding site(s) 

that represents each protein target, and the aforementioned chemically unbiased ligand set 

composition, the application of LIT-PCBA is thus not intended only for evaluating ligand-based 

or structure-based virtual screening alone, but rather for both, and especially for the field of 

machine learning algorithm development. There exist, however, some limitations in the design of 

this data collection, such as the relatively high hit rates of some ligand sets (2-5%), or the 

number of remaining true actives for several targets that is quite small (tens of molecules) for in 

silico methods to give any meaningful result. The current situation, as a consequence, still leaves 

plenty of room for further improvement, and more data sets based on experimental bioactivity 

assays are encouraged to be constructed, with inspirations taken from the existing collections 

mentioned above, to offer more realistic sets of molecules that mimic those employed in actual 

high-throughput screening campaigns, and to provide better evaluation tools for novel virtual 

screening approaches. 

4. Note-Worthy Issues with Using Data from PubChem BioAssay for Constructing 

Benchmarking Data Sets 

As demonstrated in the literature and the previous section, data retrieved from PubChem 

BioAssay may be used for various purposes in cheminformatics-related research, including 

benchmarking data set construction. Due to the availability of a wide range of assays with 

diverse ligand sets that the database offers, it is important to be conscious of all the issues that 

may arise regarding the usage of such large data,
22,80,83

 in terms of assay selection and data 

curation, to properly employ these abundant resources. 
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4.1. Assay Selection for Evaluating Virtual Screening Methods 

4.1.1. Assay Selection as Regards the Data Size and Hit Rates 

One of the first questions that we have to face when using data from the PubChem BioAssay 

repository to build benchmarking data sets concerns which assay(s) that should be chosen. As 

mentioned earlier in the manuscript, as of April 30, 2020, there were over a million assays 

deposited on the database. However, only a few of them can be deemed suitable for method 

evaluation purposes. There are many factors that one should consider before deciding which 

assay(s) to use. We herewith propose, as primary conditions to filter out unsuitable assays, the 

selection of only small-molecule HTS assays yielding biologically active molecules. RNAi 

assays, on the other hand, were conducted on microRNA-like molecules comprising twenties of 

base pairs that violate most drug-likeness rules of thumb, and are therefore, not of great interest 

in small-molecule drug discovery. For the sake of having an acceptable amount of ligands in the 

data that may give meaningful retrospective evaluations of in silico screening methods, we 

recommend that only assays with no fewer than 10 actives selected among at least 300 tested 

substances should be kept. Data sets including only nine or fewer actives are considered too 

small and would be over-challenging for virtual screening, especially for machine learning 

algorithms to learn anything meaningful. On the other hand, assays conducted with fewer than 

300 substances while yielding more than 10 actives give hit rates that are deemed too high in 

comparison to those typically observed in experimental screening decks,
22

 even higher than those 

of existing data sets such as DUD,
28

 DUD-E,
29

 or DEKOIS 2.0.
30

 There may exist, of course, 

assays with high hit rates that remain after this initial check (e.g. AIDs 1, 3, 720690, 720697); 

however, the aforementioned conditions are proposed to demonstrate that there is only a very 

small portion of available PubChem assays (0.20%) whose data may be considered for 

evaluating virtual screening protocols (Figure 3). The ligand sets of the remaining assays need to 

be further examined, and may be filtered, to ensure that their hit rates are as close as possible to 

those of experimental HTS campaigns, and that they are suitable for the nature of the screening 

method (ligand-based or structure-based). 
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Figure 3. Primary selection of PubChem assays whose ligand sets should be further considered 

for evaluating virtual screening methods. We herewith recommend the use of only small-

molecule HTS assays giving at least 10 biologically active molecules among no fewer than 300 

tested substances. Overall, there are only 2117 assays (0.20% of 1,067,896 assays in total as of 

April 30, 2020) that remain, indicating a very small portion of PubChem assays that may be 

considered after this initial check. 

4.1.2. Assay Selection as Regards the Nature of Virtual Screening 

As demonstrated in various papers, a ligand set may be appropriate for evaluating only ligand-

based in silico approaches,
81,82

 or only structure-based methods,
76

 or sometimes both.
22,80,83

 This 

depends on the quantity and the chemical composition of all molecules that constitute the data 

set, the availability and the quality of 3-dimensional structures of relevant protein targets, as well 

as the definition of binding site(s) in which active substances exert their bioactivity. Data sets 

retrieved from the PubChem BioAssay database, being no exception, have to be thoroughly 
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examined according to the criteria mentioned above before being used to assess a certain virtual 

screening method. Ideally speaking, an assay whose ligands are considered for evaluating 

structure-based approaches needs to be conducted on a protein target whose structure has been 

solved at a high resolution, with no ambiguity in terms of electron density, with at least a 

molecule of the same phenotype (agonist, antagonist, inhibitor, etc.) as that of the active 

compounds. However, targets for which no crystallographic or electron-microscopic structure is 

deposited on the Protein Data Bank may also be considered, if high-quality homology models are 

available. An example of this can be seen in the assay AID 588606, featuring inhibitors of the 

yeast efflux pump Cdr1. Though the protein target, the ABC drug resistance protein 1 of 

Candida albicans (CaCdr1p), has not yet been available on the Protein Data Bank with a known 

inhibitor, a homology model of this transporter was generated using the human ABCG5/G8 

crystal structure as template, and possible binding sites located in the transmembrane domain 

were identified and validated by means of atomic modeling and systematic mutagenesis, 

confirming their essential role in Cdr1p-induced multidrug resistance.
90

 However, caution should 

be taken when one uses such artificially constructed models as input for structure-based 

screening approaches. On the other hand, the presence of many non-overlapping binding sites 

(orthosteric versus allosteric) in the 3D structures of protein targets (as observed in those of 

AIDs 1469, 624170, or 624417), either crystallographic or not, may ultimately become a reason 

for failures in screening PubChem molecules on such proteins, especially when there is no 

information on the exact binding site of the tested substances that can be deduced from the assay 

description.
22

 As virtual screening performances may vary quite significantly depending on the 

protein structure employed as input,
22

 one should therefore be cautious when using data of these 

assays for evaluating structure-based screening procedures, lest they give poorer performances 

than expected due to external reasons that are not related to the methods themselves. Another 

point that should not be overlooked concerns assays that were conducted on substances derived 

from only a few chemical series, as they may give rise to bias that overestimates screening 

performance, notably that of ligand-based approaches. If another similar assay on the same target 

but with a more diverse ligand set (in terms of chemical features) is available, one is 

recommended to make use of this assay instead. Otherwise, the “biased” data need further tuning 

to be deemed suitable for evaluation purposes, e.g. by filtering out “redundant” compounds (this 

point will be thoroughly discussed in the next section of this manuscript). However, this ligand-



 Chapter 1. Benchmarking Data Sets from PubChem BioAssay Data 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  47 

filtering process should not lower the number of active substances to a value so small that ligand-

based methods or machine learning algorithms cannot come up with meaningful results.  

4.1.3. Assay Selection as Regards the Screening Stage 

Additionally, the use of data from “primary assays” should be subject to caution, as the activity 

outcome was only determined at a single concentration, and has not yet been validated on the 

basis of a dose-response relationship with multiple tested concentrations,
3,91

 hence the potency 

values of active molecules are not confirmed. As a matter of fact, some substances originally 

deemed as active in a primary assay may be denounced as inactive by a subsequent confirmatory 

screen, as seen in AIDs 449 and 466, or AIDs 524 and 548. We therefore recommend that 

primary screening data should only be used if there exists a confirmatory assay that validates the 

potency of the selected active molecules. This practice was already observed in the construction 

of the MUV data sets by Rohrer and Baumann,
80

 in which pairs of primary and corresponding 

confirmatory screens were employed, whose data were then combined to form the final ligand 

sets. In this manner, the large pool of inactive substances from the primary assay is not 

neglected, and the bioactivities of the confirmed hits are indeed guaranteed, affording a vast data 

set (usually implying a low hit rate) with fully validated active components. Otherwise, output 

data of primary screens alone should be used with great caution, due to the risk of assuming 

“false positives” that may later falsify virtual screening outcomes. An exhaustive search on the 

whole PubChem BioAssay database is therefore of paramount importance to select relevant data 

sets for retrospective assessments of in silico screening protocols in order to ensure the quality of 

such evaluations. 

4.2. Detecting False Positives among Active Substances 

Concerns have long been raised over the presence of chemical-induced artifacts in screening 

experiments, leading to false-positive findings among the molecules deemed as active.
22,80,83-89,92

 

Misinterpretation of assay results and subsequent inaccurate conclusions may stem from various 

reasons largely discussed in the literature. Among them are off-target effects of compounds 

exerting unspecific bioactivities, possible biological target precipitation by organic chemicals 

aggregation, inherent fluorescent properties of substances that interfere with fluorescence 

emission detection methods, or luciferase inhibitory activities of molecules that spoil light 
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emission measurement in reporter gene assays.
80

 Active substances whose modes of action are 

subject to the aforementioned issues must therefore be removed from PubChem BioAssay ligand 

sets before the data can be used for retrospective virtual screening purposes. Rohrer and 

Baumann (2009) addressed this problem during the construction of their MUV data sets from the 

database, designing a so-called “assay artifacts filter” aiming to eliminate all active ligands that 

likely become false positives, thus prevent them from affecting subsequent screening 

performances. The filter is composed of three filtering “layers”, including (i) the “Hill slope 

filter” after which actives whose Hill slopes for the dose-response curves are lower than 0.5 or 

higher than 2 are eliminated, (ii) the “Frequency of hits filter” that keeps only the molecules 

deemed as active in no more than 26% of the bioactivity assays in which they were tested, and 

(iii) the “Auto-fluorescence and luciferase inhibition filter” that rules out compounds exhibiting 

auto-fluorescent properties along with inhibitors of luciferease.
80

 All frequent hitters, unspecific 

binders (molecules with multiple binding sites), experimentally determined aggregators, and 

spoilers of optical detection methods are, as a result, removed from the PubChem data sets after 

these filtering steps. Such filters indeed have a profound impact on the population of active 

substances, as over a half of them were deleted by these “false positives filters” during the 

development of our recently introduced LIT-PCBA data set (Figure 4).
22

 This drastic decrease in 

the number of confirmed actives also helps lower the “hit rates” observed in our ligand sets (as 

only the actives were subjected to these filters), thus bringing them closer to those typically 

reported in high-throughput screening decks in reality, and lower than those of artificially 

constructed data sets such as DUD,
28

 DUD-E,
29

 or DEKOIS 2.0.
30

 This not only denotes the 

particular challenge brought by our data set, but also highlights the importance of detecting, and 

removing false positives in assembling active substances. 
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Figure 4. Total number of active substances that remained after each filtering step was applied to 

PubChem BioAssay ligands during the construction of the LIT-PCBA data set:
22

 Step 1 – 

inorganic molecules; Step 2a – actives with Hill slopes < 0.5 or > 2; Step 2b – actives with 

frequency of hits > 0.26; Step 2c – actives found among 10,892 confirmed aggregators, 

luciferase inhibitors or auto-fluorescent molecules; Step 3 – substances with extreme molecular 

properties; Step 4 – 3D conversion and ionization failures. It can be observed that the sole step 

2a removed the most active molecules (over 50% of them), thus significantly reducing the 

population of true actives in comparison to that of true inactives. 

4.3. Possible Chemical Bias in Assembling Active and Inactive Substances 

As previously mentioned, a note-worthy issue of raw data published on PubChem BioAssay lies 

in the chemically biased composition of active and inactive substances for a particular target. 

More specifically, there may exist “analogue bias”
93

 present among the molecules constituting a 

ligand set, which likely leads to overly good performances of virtual screening methods. This 

bias is generally observed in data collections whose actives (or inactives) share similar chemical 

features, meaning a large number of these molecules are issued from the same (or similar) 

scaffolds.
76

 As ligand-based and structure-based screening methods tend to recognize 

compounds of the same chemical series, such bias may result in an overestimation of in silico 

screening performance.
76

 Besides, significant differences between active and inactive molecules, 

in terms of physicochemical properties, such as molecular mass, octanol-water partition 

coefficient, or atomic formal charge, may as well be the source of artificial enrichment.
80

 Raw 

experimental data from PubChem BioAssay therefore need to be finely tuned before further use, 

by filtering out most compounds representing the same scaffold while ensuring that the 
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physicochemical parameters of all included molecules are kept within the same range, so that 

chemical bias, if there were any, in the ligand set would be reduced.
76

 An example of the 

importance of filtering input data can be seen in the MTORC1 ligand set (Figure 5) included in 

our recently introduced LIT-PCBA data collection,
22

 comprising the molecules tested for an 

inhibitory activity towards the mTORC1 signaling pathway, targeting the human 

serine/threonine-protein kinase mTOR. 

 

Figure 5. Number of substances falling into each scaffold cluster that includes more than 10 true 

active molecules (A) or 600 true inactive molecules (B). Bemis-Murcko frameworks derived 

from the input molecules were first created by trimming each active and each inactive separately 

with Pipeline Pilot 19.1.0.1964.
94,95

 A hierarchical scaffold tree consisting of canonical SMILES 

strings that represent the rings, linkers and double bonds in each molecule was next generated 

according to an iterative ring-trimming procedure described by Schuffenhauer et al. (2007).
96

 All 

ligands were then clustered based on the smallest scaffold at the root of the scaffold tree for each 

ligand. The number that follows each hash symbol indicated in this figure refers to the ordinal 

number of a scaffold cluster as issued by Pipeline Pilot. Details of all clusters can be found in 

Supporting Information. 
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As to be expected, the full PubChem BioAssay data feature a larger number of scaffold clusters, 

with 59 clusters for the active set and 1151 clusters for the inactive set (against 41 and 1106 

clusters in the LIT-PCBA active and inactive ligand sets, respectively). However, only 18 (out of 

342, 5.26%) true actives possess unique scaffolds, meaning nearly 95% of all active substances 

in the full PubChem ligand set share chemical similarities with at least another active. Notably, 

nine clusters are reported to have more than 10 representatives (Figure 5A, Table S3). The 

pruned LIT-PCBA active ligand set, on the other hand, includes no cluster with over 10 members 

and 21 clusters (51.22%) with only one substance for each. This means nearly a quarter of LIT-

PCBA active molecules (over four times the value observed in the full PubChem set) possess 

unique scaffolds. Moreover, the number of ligands falling into each cluster in the filtered LIT-

PCBA active set is greatly reduced in comparison to that of the unfiltered data (Figure 5A, 

Table S3). On the other hand, around 25% of PubChem molecules were deemed to have extreme 

physicochemical properties and were therefore discarded as the MTORC1 ligand set was 

constructed.
22

 These observations suggest that (i) there is indeed significant chemical bias in the 

full PubChem active ligand composition; and (ii) the filtering steps that were applied to build the 

LIT-PCBA data collection helped reduce this bias by lowering the number of active substances 

sharing the same chemical features (thus avoiding the presence of too many molecules issued 

from the same chemotype), and by ruling out compounds that were too different from others 

(hence preventing artificial enrichment). A similar conclusion can be drawn from the full 

PubChem inactive ligand set and the corresponding LIT-PCBA data (Figure 5B, Table S4). The 

benefit of filtering PubChem ligands in reducing chemical bias is again highlighted as the data 

sets undergo a subsequent unbiasing procedure using the previously described asymmetric 

validation embedding (AVE) method,
73

 which measures pairwise distances in chemical space 

between molecules belonging to four sets of compounds (training actives, training inactives, 

validation actives, validation inactives, training-to-validation ratio = 3) based on ECFP4.
97

 A 

nearly zero overall bias value (0.001) was obtained from the LIT-PCBA MTORC1 ligand set 

after only seven iteration steps of the AVE genetic algorithm (GA),
22

 while 16 GA iterations 

were necessary to bring the overall bias of the full PubChem set down to 0.006. This denotes that 

the pruned LIT-PCBA ligands are much less biased in terms of chemical features than the 

complete PubChem molecules, and confirms the necessity of detecting chemical bias in 

PubChem BioAssay data and removing it so that the data set is better adapted for further use. 
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The impact of filtering PubChem BioAssay molecules on subsequent retrospective screening 

performance can also be observed with the use of two in silico methods: 2D similarity searches 

using extended-connectivity ECFP4 fingerprints
97

 with Pipeline Pilot
95

 (ligand-based) and 

molecular docking with Surflex-Dock (structure-based).
98

 Both data sets (the full PubChem data 

and the pruned LIT-PCBA MTORC1 ligands) underwent the same screening protocols using the 

two aforementioned programs as described in our previous paper.
22

 Screening performance is 

evaluated according to the EF1% (enrichment in true actives at a constant 1% false positive rate 

over random picking) values obtained by the “max-pooling” approach, taking into account all 

available PDB templates of the protein target (n = 11), while generating only one hit list that 

facilitates post-screening assessments.
22

 It is observed that both methods performed better on the 

full PubChem data than on the filtered LIT-PCBA ligand set (Table 2). Interestingly, the true 

actives that were retrieved along with the top 1% false positives belong to the same scaffold 

clusters, or to clusters that are similar to each other. Such observations reconfirm that (i) ligand-

based and structure-based screening approaches tend to recognize compounds that share 

chemical features, and (ii) the chemical bias present in the complete PubChem data indeed leads 

to over-optimistic screening performances. This, again, highlights the importance of filtering the 

ensemble of molecules deposited on PubChem BioAssay prior to evaluating virtual screening 

procedures, first to reduce chemical bias in the composition of the data, then to avoid 

overestimating the real discriminatory accuracy of in silico methods. 

Table 2. Retrospective screening performance of 2D ECFP4 fingerprint similarity searches with 

Pipeline Pilot (ligand-based) and molecular docking with Surflex-Dock (structure-based) on the 

full PubChem BioAssay data and the pruned LIT-PCBA MTORC1 ligand set, demonstrated by 

EF1% (enrichment in true actives at a constant 1% false positive rate over random picking) 

values and the numbers of true actives retrieved along with the top 1% false positives by the 

“max-pooling” approach. 

 2D ECFP4 fingerprint 

similarity searches 
Molecular docking 

EF1% 
Number of 

retrieved actives 
EF1% 

Number of 

retrieved actives 

Full PubChem data 0.6 2 3.2 11 

LIT-PCBA MTORC1 data  0.0 0 1.0 1 
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4.4. Potency Bias in the Composition of Active Ligand Sets 

As of April 30, 2020, there were 1,067,719 small-molecule assays deposited on the PubChem 

BioAssay database, but only 240,999 of them (22.6%) yielded active substances with confirmed 

potency values. These values are provided in different terms (EC50, IC50, Kd, Ki), and the 

threshold to distinguish true actives from true inactives varies from assay to assay, depending on 

the researchers who conducted the experiments. Some assays accept active substances with 

potency values above 100 µM (e.g. AIDs 1030, 1490, 504847), even at millimolar level (e.g. 

AIDs 1045, 1047); while in some others, several substances with even sub-micromolar potency 

are not deemed actives (e.g. AIDs 1221, 1224, 1345010). It is therefore comprehensible that the 

potency range of true actives as well as its distribution is quite diverse across all assays of 

PubChem. As active molecules with high potency towards a biological target are easier to be 

picked by both ligand-based and structure-based virtual screening methods,
22

 ligand sets with too 

many actives whose potency values are in the sub-micromolar range are prone to overestimate 

the real accuracy of in silico screening. PubChem BioAssay data sets, especially those composed 

of highly potent true actives (potency below 1 µM), need to be filtered so that the so-called 

“potency bias” in the composition of their active ligand sets is reduced before further use.  

An illustration of this point can be taken from the LIT-PCBA PPARG ligand set (27 true actives 

and 5211 true inactives) and the corresponding full PubChem BioAssay data (AID 743094, 78 

true actives, 8532 true inactives) comprising small molecules that were tested for an agonistic 

activity on the peroxisome proliferator-activated receptor gamma (PPARg) signaling pathway.
22

 

The number of true actives with high potency (EC50 < 1 µM) in the complete PubChem data is 

19, nearly three times higher than that of the pruned LIT-PCBA ligand set (n = 7). Upon carrying 

out 2D similarity searches with Pipeline Pilot using ECFP4 fingerprints and ten structurally 

diverse crystallographic PPARg agonists randomly chosen from 138 available structures on the 

Protein Data Bank as templates, it is observed that, as expected, the screening protocol managed 

to retrieve more highly potent true actives from the full data set than from the filtered ligand set 

in 70% of the cases (Figure 6). Moreover, the “max-pooling” approach, when applied to the 

complete PubChem data, selected seven highly potent actives among the top 1%-ranked 

molecules, seven times higher than the amount obtained from LIT-PCBA. Among them, four 

even have potency values below 0.1 µM. The same screening method, on the other hand, failed 
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to retrieve any true active with EC50 < 0.1 µM from the pruned PPARG data. The screening 

performance observed on the full ligand set is, as a result, better than that obtained after ligand-

filtering, as the EF1% value is nearly twice higher than that received with LIT-PCBA ligands. 

This reconfirms that in silico screening procedures tend to recognize molecules with high 

potency towards a protein target, and the presence of too many highly potent ligands in the data 

likely leads to a better screening performance. It is therefore recommended that one should filter 

the ensemble of PubChem BioAssay ligands to ensure that there are not too many true actives 

with high potency that remain, in order to avoid possible “potency bias” in the data set and the 

subsequent overestimation of in silico methods’ discriminatory power. 

 

Figure 6. The number of highly potent true actives (EC50 < 1 µM) retrieved among the top 1%-

ranked molecules by 2D ECFP4 fingerprint similarity searches from the full PubChem BioAssay 

data and the corresponding LIT-PCBA PPARG ligand set after ligand-filtering. Ten known 

crystallographic PPARg agonists were randomly chosen as templates from 138 available 

structures on the Protein Data Bank. 

4.5. Processing Input Structures Prior to Virtual Screening 

PubChem BioAssay ligands, as deposited on the database, can be downloaded either as SMILES 

strings,
99

 or in 2D SDF format,
100

 and are therefore, in general, not yet ready to be directly 

employed as input for most in silico screening protocols (except for 1D or 2D ligand-based 

approaches). A rigorous ligand-processing procedure is thus necessary to afford ready-to-use 

structures for virtual screening. This process concerns a wide range of aspects inherent in the 3-

dimensional structural formula of a molecule, including atomic coordinates in 3D space, formal 
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charge assigned on each atom, the presence of different protonation states and tautomeric shifts 

that slightly alter the structure, the representation of undefined stereocenters or flexible rings, as 

well as the existence of multiple conformations and/or configurations.
101

 Various studies have 

concluded that database-processing has indeed an impact on screening performance, some 

processing stages are even indispensable to certain programs.
101-104

 Kellenberger et al. (2004),
103

 

Perola and Charifson (2004),
104

 and Cummings et al. (2007)
101 

pointed out that the initial 

conformation and orientation in 3D space of a molecule, which are determined based on details 

featured in the original SMILES string, may significantly affect the final enrichment output by a 

docking program. Performance of structure-based screening methods whose scoring functions 

rely on ligand-receptor interactions
105,106

 may be sensitive to a change in explicit hydrogen 

assignment or protonation states, as the positions of hydrogen-bonding groups and proton-

carrying atoms are crucial to properly detecting intermolecular hydrogen bonds and ionic 

interactions, respectively.
101,107

 While a generation of correct multiple conformers for a molecule 

is not imperative when it comes to carrying out docking with GOLD
108

 or Surflex-Dock,
98

 this 

step has in fact a pivotal role in 3D shape similarity searches using ROCS (OpenEye).
109

 The 

examples mentioned above denote that good in silico screening outcomes do require careful 

treatment of input ligand sets, and a thorough investigation of different data-processing 

procedures with commonly used programs (e.g. Protoss,
110

 Corina,
111

 MOE,
112

 Sybyl,
113

 

Daylight
114

) is thus recommended. If it is possible (if the data size is not too large), one should 

check each output structure by hand to ensure that the assigned atom types, bond types, 

stereochemical properties and protonation states are correct before further use. This also applies 

to protein structure preparation prior to screening, as structural features of the protein target, 

especially those of the binding site, are of indisputable importance to structure-based virtual 

screening performance. 

5. Conclusion 

Retrieving experimental PubChem BioAssay data to construct novel data sets for virtual 

screening evaluations helps avoid assuming false negatives among inactive ligands, which is a 

problem inherent in artificially developed data collections. However, there remain several issues 

regarding assay selection, false active molecules, chemical bias and potency bias, as well as data 

curation that are worth noticing prior to employing PubChem input for database-designing 
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purposes. To the best of our knowledge, there have been several publicly available data sets that 

were constructed from the data deposited on this repository, but the quantity is not yet 

considerable, and there still exist some limitations in the design of these data collections. More 

effort in this regard is recommended, with the points raised in this manuscript taken into account, 

in order to offer more realistic data sets suitable for validating both ligand-based and structure-

based in silico screening procedures in the future. Of course, the herein proposed good practices 

should also be applied to proprietary bioactivity data. 
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Supporting Information 

Table S1. Number of PubChem bioactivity assays according to the number of tested substances, the number of 

active substances, the screening stage, and the target type. Statistics were updated as of April 30, 2020. 

Criteria 

Assay type 

Small-molecule 

assay 

RNA interference 

assay 

1. Number of tested substances (Nt): 

● Nt < 100 

● 100 ≤ Nt < 1000 

● 1000 ≤ Nt < 10,000 

● 10,000 ≤ Nt < 100,000 

● Nt ≥ 100,000 

2. Number of active substances (Na): 

● Na < 10 

● 10 ≤ Na < 50 

● 50 ≤ Na < 100 

● 100 ≤ Na < 1000 

● Na ≥ 1000 

3. Screening stage: 

● Primary screening 

● Confirmatory, dose-response curves 

not provided 

● Confirmatory, dose-response curves 

provided 

● Summary 

● Screening stage not annotated 

4. Target type: 

● Single protein 

● Single gene 

● Single nucleotide 

● Multiple proteins 

● Multiple genes 

● Multiple nucleotides 

● Protein-protein interaction 

● None 

 

1,060,707 

4530 

1359 

422 

701 

 

1,000,714 

60,328 

3562 

2399 

716 

 

1416 

276,216 

 

3904 

 

701 

785,482 

 

238,096 

17 

95,325 

25,649 

3 

8646 

210 

795,301 

 

22 

92 

14 

48 

1 

 

28 

57 

18 

60 

14 

 

113 

0 

 

0 

 

10 

54 

 

0 

0 

0 

0 

0 

0 

0 

177 

All 1,067,719 177 
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Table S2. Number of compounds featured in PubChem bioactivity assays that satisfy each criterion of the Lipinski’s 

rule of five, the Ghose filter, and the Veber’s rule. Statistics were updated as of April 30, 2020. 

Criteria Number of PubChem compounds 

1. Lipinski’s rule of five: 

● Molecular mass ≤ 500 Da 

● ClogP ≤ 5 

● Number of hydrogen bond donors ≤ 5 

● Number of hydrogen bond acceptors ≤ 10 

● Compounds satisfying all criteria 

2. Ghose filter:* 

● Molecular mass from 180 Da to 480 Da 

● AlogP from -0.4 to +5.6 

● Number of atoms from 20 to 70 

3. Veber’s rule: 

● Number of rotatable bonds not exceeding 10 

● Polar surface area not exceeding 140 Å2  

 

88,667,112 

78,183,471 

101,211,514 

99,344,677 

73,062,126 

 

82,926,795 

79,473,661 

71,554,127 

 

93,857,861 

96,031,201 

All 102,694,672 

* The criterion regarding molar refractivity of the Ghose filter is not addressed in this table, as no 

relevant search option is available on PubChem Compound. 
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Table S3. Scaffold clusters of PubChem BioAssay active ligands (AID 493208) and the number of their 

representatives before and after LIT-PCBA filters. 

Scaffold 

cluster 
Scaffold structure 

Number of substances falling into each scaffold 

cluster 

Full data from 

AID 493208 

Data from the LIT-PCBA 

MTORC1 ligand set 

1 (O=C1CNCCO1) 3 1 

2 (c1ccncc1) 38 9 

3 (o1cccc1) 9 5 

4 (O=C1CC=CN1) 15 9 

5 (N=C1NC=CN1) 8 5 

6 (c1nnn[nH]1) 4 1 

7 (c1cncnc1) 40 4 

8 (c1ccsc1) 3 0 

9 (C1COCO1) 1 1 

10 (O=C1NC=CC1=O) 5 5 

11 (c1nc[nH]n1) 4 1 

12 (O=C1NC=CSC=C1) 1 1 

13 (C1CN=CN1) 1 0 

14 (c1ccccc1) 9 2 

15 (C1CC=CCN1) 5 2 

16 (c1cn[nH]c1) 20 1 

17 (c1cc[nH]c1) 13 4 

18 (C1CCNCC1) 6 1 

19 (c1nnc[nH]1) 5 2 

20 (c1cscn1) 16 5 

21 (C1OC=CO1) 5 3 

22 (C1CNC=CC1) 2 0 

23 (C1CCC\C=C/CC1) 2 1 

24 (c1c[nH]cn1) 13 3 

25 (C1CNCCN1) 13 3 

26 (o1cccn1) 3 2 

27 (C1COC=CC1) 1 1 

28 (c1c[nH]nn1) 2 1 

29 (C1C=CNC=N1) 1 0 

30 (O=C1NC=CC=C1) 7 4 

31 (C1COC=CO1) 3 1 

32 (C1CC=CN1) 3 2 

33 (C1CCC=NCC1) 1 1 

34 (O=C1NN=CC=C1) 8 3 

35 (c1ccnnc1) 4 1 

36 (O=C1NC=CN=C1) 2 1 

37 (C1NC=CN=C1) 2 0 

38 (C1COC=CN1) 1 0 

39 (O=C1NN=CN=C1) 3 0 

40 (O=S1(=O)NC=CC=C1) 1 1 

41 (o1ccnc1) 21 1 

42 (c1nncs1) 4 2 

43 (O=C1NC=CC(=O)N1) 5 1 

44 (C1CC=CO1) 5 2 

45 (C1OC=CC=C1) 1 0 

46 (O=C1C=CNC=C1) 1 0 

47 (O=C1NC=CS(=O)(=O)C=C1) 1 0 

48 (C1CN=CO1) 3 0 

49 (O=C1C=COC=C1) 1 1 
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50 (O=C1NC=NC=C1) 2 1 

51 (c1ncncn1) 5 0 

52 (c1cnncn1) 1 1 

53 (C1CCC=CCC1) 2 0 

54 (c1cn[nH]n1) 1 0 

55 (C1CCCCC1) 1 0 

56 (O=C1NCC=C1) 1 0 

57 (C1CN=CC=C1) 2 0 

58 (S1C=CC=NC=C1) 1 0 

59 (o1nccn1) 1 1 

All 342 97 
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Table S4. Scaffold clusters of PubChem BioAssay inactive ligands (AID 493208) and the number of their 

representatives before and after LIT-PCBA filters. 

Scaffold 

cluster 
Scaffold structure 

Number of substances falling into 

each scaffold cluster 

Full data 

from AID 

493208 

Data from the LIT-

PCBA MTORC1 

ligand set 

1 (c1ccc2ncccc2c1) 638 288 

2 (O=S(=O)(NC1=NCNCN1)c2ccccc2) 5 5 

3 (O=C1NC=Cc2ccccc12) 196 195 

4 (C1OC=Cn2ccnc12) 12 12 

5 (O=C1NC=Nc2ccccc12) 256 150 

6 (C1OC=Cc2ncccc12) 28 5 

7 (O=C1NC(=O)c2cccnc2N1) 160 160 

8 (O=C1NNc2ncccc12) 49 48 

9 (O=C1OC=Cc2ccccc12) 34 25 

10 (c1cnc2ccnn2c1) 439 305 

11 (O=C1COc2ccccc2N1) 402 393 

12 (c1ccc2[nH]ccc2c1) 1139 733 

13 (O=C(CN1CCCNCC1)Nc2ccccc2) 8 8 

14 (O=C1C=CNc2ccnn12) 35 31 

15 (C1CCc2sccc2C1) 319 180 

16 (C1COc2ccccc2O1) 281 250 

17 (c1ccc2ncncc2c1) 98 16 

18 (O=C(CC1NCCNC1=O)Nc2ccccc2) 19 19 

19 (C1N=CNc2nccn12) 10 10 

20 (c1nnc2cc[nH]c2n1) 33 27 

21 (O=C(NC1C=CNC1=O)c2ccccc2) 13 13 

22 (O=C1CC2=C(N1)NC(=O)NC2=O) 42 42 

23 (o1cnc2ncccc12) 72 65 

24 (O=C(CSC1=NC(=O)C=CN1)Nc2ccccc2) 15 15 

25 (O=C1CNC(=O)N1c2ccccc2) 7 7 

26 (O=C1NC(NS(=O)(=O)c2ccccc2)C(=O)N1) 15 15 

27 (c1cnc2ncnn2c1) 274 205 

28 (c1cn2nccc2nn1) 6 6 

29 (O=C1NN=C2COC=CN12) 6 6 

30 (O=C1CN=CN1C2CCCCC2) 5 0 

31 (O=C(CC1NCCOC1=O)Nc2ccccc2) 7 7 

32 (N=C1Nc2ccccc2S1) 8 8 

33 (C1C=NNC1c2cn[nH]c2) 5 3 

34 (O=C(CNS(=O)(=O)c1ccccc1)NCc2ccccc2) 14 14 

35 (O=C1C=CN2C=CC=CC2=N1) 12 12 

36 (O=C(CNS(=O)(=O)c1ccccc1)Nc2ccccc2) 46 39 

37 (c1ccc(cc1)c2nn[nH]n2) 50 42 

38 (O=C(CNc1ccccc1)Nc2ccccc2) 31 31 

39 (c1ccc(cc1)n2cnnn2) 23 23 

40 (O=C(CSc1nncs1)Nc2ccccc2) 34 34 

41 (O=C1C2CN3CC1CN(C2)C3c4ccccc4) 26 23 

42 (O=C1NCNc2ncccc12) 5 5 

43 (o1ccc2ccccc12) 604 405 

44 (C(N1CCNCC1)c2ccccc2) 21 21 

45 (O=C1CCC2=C(O1)C=CNC2=O) 14 14 

46 (c1ccc(cc1)c2ccc[nH]2) 139 100 

47 (O=S(=O)(c1ccccc1)n2ccnc2) 14 14 

48 (c1ccc2nsnc2c1) 175 170 
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49 (o1nc2ccccc2n1) 68 68 

50 (O=C1NC(=NC=C1)SCc2oncn2) 3 3 

51 (O=C(CCS(=O)(=O)c1ccccc1)Nc2ccccc2) 12 12 

52 (C(Nc1ncc[nH]1)c2ccccc2) 9 8 

53 (O=C1NC=C(C(=O)N1)S(=O)(=O)Nc2ccccc2) 5 5 

54 (N=C1NC=Nc2[nH]ncc12) 27 27 

55 (O=C(CCn1cnnn1)Nc2ccccc2) 13 13 

56 (C1CN(CCN1)c2ccccc2) 166 151 

57 (O=S(=O)(Nc1ncccn1)c2ccccc2) 27 27 

58 (O=C1Nc2ncnn2C=C1) 12 12 

59 (O=C1NC(=O)c2[nH]cnc2N1) 190 175 

60 (O=C(CNCCc1ccccc1)Nc2ccccc2) 14 14 

61 (O=C(NCCc1ccccc1)C(=O)Nc2ccccc2) 14 14 

62 (C(c1nocn1)n2cccn2) 6 6 

63 (N(c1ccccc1)c2nccs2) 17 14 

64 (O=C(Nc1ccccc1)C2CNC(=O)C2) 11 11 

65 (O=C(CSc1ocnn1)c2ccccc2) 8 8 

66 (O=C1C=CN=C2C=CC=CN12) 438 424 

67 (O=C(CSCc1cocn1)N2CCNCC2) 13 13 

68 (O=C(Oc1ccn[nH]1)c2ccccc2) 42 15 

69 (O=C1NC=CS(=O)c2ccccc12) 123 72 

70 (O=C(CS(=O)Cc1cocn1)NCCc2ccccc2) 13 13 

71 (O=C(CNc1ccccc1)NCCSCc2ccccc2) 14 14 

72 (O=C(CSCc1cocn1)NCc2ccccc2) 13 13 

73 (O=C1Oc2ccccc2C=C1) 438 336 

74 (C(N1CCCCC1)c2cocn2) 50 44 

75 (O=C(Nc1ccccc1)c2occc2) 30 26 

76 (O=C(NC1CCNCC1)Nc2ccccc2) 12 12 

77 (O=C1CSc2ccccc2N1) 138 134 

78 (o1cnc2ccccc12) 528 287 

79 (O=C1CCCC2=C1CC=CN2) 6 6 

80 (c1cnn2cnnc2c1) 82 75 

81 (c1ccc2[nH]cnc2c1) 682 415 

82 (O=C(Nc1ccccc1)C2CCCN2) 5 5 

83 (c1ccc2cnncc2c1) 88 40 

84 (O=C1Cc2ccccc2N1) 126 124 

85 (O=C1Nc2ccccc2O1) 359 354 

86 (O=C1NN=C(C=C1)c2ccccc2) 70 67 

87 (C1NC=Cc2ccnn12) 13 13 

88 (O=S(=O)(NCC1CCCCC1)c2ccccc2) 18 12 

89 (O=C1Nc2ccccc2N1) 128 128 

90 (O=C1CN=Cc2ccccc2N1) 32 21 

91 (O=C1C=CNc2ccccc12) 671 563 

92 (O=C1NCC2=C1OC=CC2=O) 110 97 

93 (C1Oc2ccccc2O1) 666 570 

94 (O=C(NCc1cccs1)Nc2ccccc2) 17 15 

95 (O=C(NCCc1ccccc1)c2occc2) 32 31 

96 (O=S(=O)(c1ccccc1)c2c[nH]nn2) 15 15 

97 (c1ccc2n[nH]nc2c1) 76 30 

98 (O=C(Nc1ccccc1)\C=C\c2ccccc2) 21 19 

99 (O=S(=O)(N1CCCCCC1)c2ccccc2) 11 11 

100 (c1ccc(cc1)c2ccn[nH]2) 11 0 

101 (N=C1NC(=O)CC(S1)C(=O)Nc2ccccc2) 8 8 

102 (O=C1N=CNc2sccc12) 2 2 

103 (O=C1CCC(=NN1)c2ccccc2) 48 48 

104 (C1Cc2scnc2C=C1) 11 11 
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105 (C1C=Cc2ncsc12) 13 13 

106 (O=C1CNc2ccccc2N1) 44 43 

107 (O=C1CNCc2ccccc2N1) 70 63 

108 (O=C1CCC2=C(COC2=O)N1) 12 12 

109 (O=C1CCC2=C(O1)C=COC2=O) 7 7 

110 (O=C(CCOc1ccccc1)Nc2ccccc2) 8 8 

111 (c1ccn2ccnc2c1) 143 64 

112 (O=C1CN(C2CCCCC2)C(=O)CN1) 50 41 

113 (c1ccc(cc1)c2ccncn2) 11 11 

114 (O=C(CSCc1ccccc1)NCc2ccccc2) 7 6 

115 (C1CCc2[nH]ncc2C1) 13 13 

116 (O=C1NC2=CC=CCC2=C1) 16 16 

117 (O=C(NCc1ccccc1)c2occc2) 37 37 

118 (o1ccnc1c2ccccc2) 32 32 

119 (O=S(=O)(NCc1ccccc1)c2ccccc2) 12 5 

120 (O=C(COc1ccccc1)Nc2cn[nH]c2) 6 6 

121 (O=C(COc1ccccc1)Nc2cccs2) 14 14 

122 (o1cnnc1c2ccccc2) 36 22 

123 (O=C(Nc1ccccc1)c2c[nH]cn2) 5 5 

124 (O=S(=O)(N1CCCCC1)c2ccccc2) 27 27 

125 (O=S(=O)(N1CCOCC1)c2ccccc2) 27 27 

126 (O=C(Nc1ccccc1)\C=C\c2occc2) 26 21 

127 (O=C1NC(=O)c2c[nH]cc2N1) 59 42 

128 (C1Cc2ccccc2CN1) 142 120 

129 (C(Oc1ccccc1)c2occc2) 10 10 

130 (C1CC2(CCN1)OCCO2) 34 31 

131 (O=C(Nc1ccccc1)c2ccccc2) 133 76 

132 (O=C(COc1ccccc1)NC2CCS(=O)(=O)C2) 12 12 

133 (O=C1NC=CS(=O)(=O)c2ccccc12) 170 104 

134 (O=C(NC1CCS(=O)(=O)C1)c2ccccc2) 32 32 

135 (c1ccc(cc1)n2ccnn2) 20 20 

136 (O=C1NN=Nc2sccc12) 80 34 

137 (c1ccc2scnc2c1) 819 610 

138 (O=C1NCc2cn[nH]c12) 118 91 

139 (o1cnc(n1)c2ccccc2) 75 72 

140 (O=C(NCC12CC3CC(CC(C3)C1)C2)c4cc[nH]n4) 6 0 

141 (o1cnc(n1)c2ccncc2) 20 20 

142 (c1ncc2cn[nH]c2n1) 225 175 

143 (O=C(CSc1ocnn1)Nc2ccccc2) 36 36 

144 (C1C=CNc2ncnn12) 273 164 

145 (C(Oc1ccccc1)c2oncn2) 13 13 

146 (c1ncc2cc[nH]c2n1) 76 3 

147 (O=C1NN=Cc2ccccc12) 75 70 

148 (O=C(CN1CCNCC1)Nc2ccccc2) 26 26 

149 (c1cnc2sccc2c1) 168 111 

150 (o1cnc(n1)c2occc2) 21 21 

151 (O=C1NC(=O)c2ccsc2N1) 305 200 

152 (c1ccn2cnnc2c1) 33 24 

153 (O=C1NC=Nc2ccsc12) 114 46 

154 (O=C(Nc1ccccc1)C2CCNCC2) 40 40 

155 (c1cc2ncnn2cn1) 167 83 

156 (O=C1Nc2ccccc2S(=O)(=O)N1) 58 37 

157 (O=C1NC=Nc2sccc12) 203 151 

158 (C1CN2CCC1c3ncccc23) 17 16 

159 (O=C1NCC2=C(CNC2=O)N1) 13 13 

160 (O=C1NC(=O)c2ccccc2N1) 571 501 
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161 (O=C1C=CC2=C1CC=CN2) 11 11 

162 (O=C(CSc1ncc[nH]1)Nc2ccccc2) 89 72 

163 (C1CNc2ccccc2C1) 299 264 

164 (O=C(CSC1=NC(=O)NC=C1)Nc2ccccc2) 13 13 

165 (O=S(=O)(Cc1occc1)c2cccs2) 39 39 

166 (C1C=CNc2nnnn12) 24 24 

167 (O=C(NCCc1occc1)C(=O)NCCc2ccccc2) 12 12 

168 (O=C(NCCc1occc1)C(=O)NCc2ccccc2) 11 11 

169 (C(N1CCNCC1)c2occc2) 18 18 

170 (C1CC(CCO1)c2cccs2) 24 24 

171 (O=C1Nc2nccn2C=C1) 12 12 

172 (O=C1NNC=C1NS(=O)(=O)c2ccccc2) 6 6 

173 (O=C1NC=COc2ccccc12) 4 4 

174 (O=C1CC(=O)Nc2ccccc2N1) 25 25 

175 (O=C(NCCc1ccccc1)C(=O)NCCc2cccs2) 12 12 

176 (O=C(NCCc1cccs1)C(=O)NCc2ccccc2) 13 13 

177 (c1cnc2[nH]ccc2n1) 17 17 

178 (C(N1CCNCC1)c2cccnc2) 63 63 

179 (O=C(CSc1ccccn1)Nc2ccccc2) 56 19 

180 (O=C(CNS(=O)(=O)c1conc1)Nc2ccccc2) 13 13 

181 (C(c1occc1)n2ccnc2) 13 13 

182 (C1NC=Cc2nncnc2O1) 33 18 

183 (O=C1NC=Nc2cc[nH]c12) 175 74 

184 (O=C1CCCC2=C1C=CC(=O)N2) 62 42 

185 (O=C1NC=CC(N1)c2cn[nH]c2) 13 13 

186 (c1cnc2nccn2c1) 89 65 

187 (O=C(CSC1=NC=CC(=O)N1)Nc2ccccc2) 49 45 

188 (O=C1C2CN3CC1CN(C2)C3c4cc[nH]c4) 14 14 

189 (O=C(CNc1ccccc1)NCc2ccccc2) 14 14 

190 (C1CC2CNC=CN2C1) 26 26 

191 (O=C1CCn2nccc2N1) 86 86 

192 (O=C1NN=Cc2c[nH]nc12) 105 105 

193 (O=C1CCc2ccccc2N1) 107 107 

194 (c1cnc2n[nH]cc2c1) 25 6 

195 (O=S1(=O)NC=Cc2ncncc12) 106 75 

196 (O=C(CNS(=O)(=O)c1cc[nH]c1)N2CCNCC2) 13 13 

197 (c1ccc(cc1)n2cnnc2) 9 9 

198 (O=C1CNC(=O)C2CCCCN12) 19 19 

199 (C1Cn2cnnc2S1) 37 37 

200 (C1Cc2ccsc2CN1) 86 53 

201 (C(C1CCNCC1)N2CCCCCC2) 13 13 

202 (O=C(NCCc1occc1)c2ccccc2) 13 13 

203 (C(C1CCNCC1)N2CCCC2) 13 13 

204 (c1cnn2ccnc2c1) 13 13 

205 (C(C1CCNCC1)N2CCOCC2) 13 13 

206 (O=S(=O)(Cc1cccs1)c2cccs2) 26 26 

207 (C(C1CCNCC1)N2CCCCC2) 18 18 

208 (C1COc2ccccc2N1) 214 212 

209 (O=C(CNS(=O)(=O)c1cc[nH]c1)NCc2ccccc2) 13 13 

210 (O=C(CNS(=O)(=O)c1cc[nH]c1)Nc2ccccc2) 31 31 

211 (O=S(=O)(N1CCCCC1)c2cc[nH]c2) 99 99 

212 (O=C(NCc1ccccc1)c2ccn[nH]2) 13 13 

213 (O=C1C=CN=C2SC=NN12) 649 595 

214 (O=C1CCCc2ccccc2N1) 93 93 

215 (C1CSc2ccccc2N1) 137 99 

216 (c1cn2ncsc2n1) 69 69 
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217 (C1CCc2nncn2CC1) 24 24 

218 (c1cn2ccsc2n1) 99 87 

219 (O=C1OC2(CCNCC2)C=C1) 25 25 

220 (o1cccc1c2oncc2) 12 12 

221 (O=C1NC=CC=C1CN2CCCCC2) 25 25 

222 (o1nccc1c2cccs2) 36 36 

223 (o1nccc1c2ccccc2) 112 110 

224 (O=C1NCc2ccccc12) 206 205 

225 (O=S(=O)(N1CCNCC1)c2ccccc2) 80 54 

226 (C(C1CCCCC1)n2cccc2) 12 12 

227 (O=S1(=O)C=CC(=N1)NCc2ccccc2) 12 12 

228 (O=C1C=CNc2ncccc12) 75 66 

229 (O=C1OC=Cc2[nH]cnc12) 22 22 

230 (O=C1NC=CC=C1CN2CCNCC2) 43 43 

231 (O=C(COCc1ccon1)Nc2ccccc2) 12 12 

232 (O=C(NCc1nnn[nH]1)c2ccccc2) 13 13 

233 (O=S(=O)(N1CCCCCC1)c2cn[nH]c2) 20 20 

234 (O=S(=O)(N1CCCCC1)c2cn[nH]c2) 35 35 

235 (O=C(NCCS(=O)(=O)N1CCNCC1)C2CNC(=O)C2) 11 11 

236 (O=C1NCC=C(CN2CCNCC2)N1) 17 17 

237 (O=C(NC1=NCCC(=O)N1)c2ccccc2) 13 13 

238 (o1ncc2cncnc12) 164 127 

239 (C(Oc1ccccc1)c2cocn2) 23 18 

240 (C1CNc2ccnn2C1) 13 13 

241 (C1Nc2cccnc2OC=C1) 47 38 

242 (c1cnc2[nH]ncc2c1) 164 99 

243 (c1cnc2[nH]cnc2c1) 388 296 

244 (C1NCc2ccccc2O1) 43 23 

245 (O=C(N1CCCCC1)c2cn[nH]c2) 45 42 

246 (O=C1CCSc2ccccc2N1) 67 62 

247 (c1ccn(c1)c2ccn[nH]2) 79 59 

248 (C1CCc2cc[nH]c2CC1) 23 18 

249 (C(Sc1ncc[nH]1)c2ccccc2) 13 13 

250 (C1CCN(C1)c2cccnn2) 23 22 

251 (C1CN(CCO1)c2cccnn2) 13 13 

252 (C1CCN(CC1)c2cccnn2) 42 20 

253 (O=C1Nc2nncn2C=C1) 241 230 

254 (c1ccc(cc1)c2cccnn2) 30 30 

255 (O=C1CN(Cc2occc2)C(=O)N1) 13 13 

256 (O=S(=O)(N1CCCC1)c2cc[nH]c2) 25 25 

257 (O=C1CN(Cc2cccs2)C(=O)N1) 13 13 

258 (O=C(CC1NC(=O)NC1=O)Nc2ccccc2) 69 68 

259 (C1CCN(CC1)c2nncs2) 111 87 

260 (C1C=CNc2ccnn12) 39 33 

261 (c1ccc(cc1)n2cccn2) 26 21 

262 (C1CC(CCN1)c2ccn[nH]2) 129 79 

263 (o1ncnc1c2c[nH]nn2) 65 65 

264 (O=C1C=CSc2ccccc12) 39 39 

265 (O=C1NC=CSc2ccccc12) 202 108 

266 (c1cn2ncnc2s1) 220 198 

267 (O=S(=O)(NCCc1cscn1)c2ccccc2) 13 13 

268 (O=C1Nc2ccccc2C=C1) 244 237 

269 (O=C(NCCc1cscn1)C(=O)Nc2ccccc2) 31 31 

270 (C1Cc2ccccc2N1) 884 872 

271 (O=C1NC(=O)c2[nH]ccc2N1) 158 73 

272 (O=C1NC=Nc2occc12) 69 69 
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273 (o1ccc2cncnc12) 151 151 

274 (c1cn2nnnc2cn1) 52 52 

275 (O=S(=O)(N1CCOCC1)c2cc[nH]c2) 13 13 

276 (O=C(Cc1ccccc1)NCCc2cscn2) 12 12 

277 (O=C(NCCc1cscn1)c2ccccc2) 31 27 

278 (O=S(=O)(NCCc1cncs1)c2ccccc2) 17 17 

279 (O=C(NCCc1cncs1)C(=O)Nc2ccccc2) 29 29 

280 (O=C(NCCc1cncs1)c2ccccc2) 31 28 

281 (O=C(NCCc1cccs1)c2ccccc2) 13 10 

282 (O=S1(=O)CCCCN1c2ccccc2) 42 42 

283 (O=C1Nc2ccccc2NC1=O) 130 130 

284 (O=C1CC(=O)c2ccccc12) 21 13 

285 (O=C(NCc1ccccc1)c2cncnc2) 20 20 

286 (O=C(Nc1ccccc1)c2cncnc2) 18 17 

287 (O=C1NN=Cc2cc[nH]c12) 353 246 

288 (C1CCc2cnoc2C1) 18 18 

289 (O=C(NCCc1ccccc1)c2c[nH]nn2) 13 13 

290 (O=C(NCc1cccs1)c2c[nH]nn2) 13 13 

291 (O=C(NCc1ccccc1)c2c[nH]nn2) 19 19 

292 (C(N1CCOCC1)c2ccccc2) 39 39 

293 (C(N1CCCC1)c2ccccc2) 16 16 

294 (O=C(CN1C=CC=CC1=O)Nc2ccccc2) 13 13 

295 (O=C(Nc1ccccc1)c2ccon2) 29 25 

296 (o1cncc1c2ccccc2) 45 45 

297 (O=C(NCc1ccc[nH]1)Nc2ccccc2) 12 12 

298 (O=C(Nc1cnon1)c2occc2) 6 6 

299 (O=C(COc1ccccc1)Nc2cnon2) 12 12 

300 (O=C(Nc1ccccc1)c2c[nH]nn2) 69 69 

301 (c1ncc2nc[nH]c2n1) 32 32 

302 (O=S(=O)(N1CCNCC1)c2cc[nH]c2) 17 17 

303 (C1CCc2nccn2CC1) 87 87 

304 (O=C1NC=Nc2oncc12) 65 65 

305 (c1ccc2nccnc2c1) 242 88 

306 (O=C1NC=CSc2ncccc12) 24 24 

307 (O=C1NC=Cc2ncccc12) 99 99 

308 (O=S1(=O)N=Cc2ccccc12) 9 9 

309 (O=S(=O)(NCc1oncn1)c2ccccc2) 10 10 

310 (O=C(CCn1cccn1)NCc2ccccc2) 11 11 

311 (O=C(CCn1cccn1)Nc2ccccc2) 29 29 

312 (C(Sc1nnc[nH]1)c2oncn2) 63 27 

313 (O=C(CCCc1oncn1)Nc2ccccc2) 13 13 

314 (O=S1(=O)C=CNc2ccccc12) 22 19 

315 (c1ccc2sccc2c1) 50 46 

316 (O=C1CSC2(N1)C=CNC2=O) 102 84 

317 (O=C1OC2(CCCCCC2)C=C1) 18 18 

318 (O=C1OC2(CCCCC2)C=C1) 35 35 

319 (O=C(Cn1cccc1)Nc2ccccc2) 13 13 

320 (O=C(CSc1ncccn1)Nc2ccccc2) 10 10 

321 (c1cc2nncn2cn1) 37 33 

322 (O=C(CNS(=O)(=O)c1ccsc1)Nc2ccccc2) 12 12 

323 (O=S(=O)(Nc1ccccc1)c2ccsc2) 28 20 

324 (O=S(=O)(N1CCNCC1)c2ccsc2) 24 22 

325 (O=C(CNS(=O)(=O)c1cccs1)Nc2ccccc2) 39 37 

326 (O=C1Nc2[nH]ncc2C=C1) 176 166 

327 (O=C(Nc1nncs1)c2ccccc2) 54 54 

328 (O=S1(=O)NCCCN1Cc2ccccc2) 9 9 
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329 (O=C(CN1CCNS1(=O)=O)Nc2ccccc2) 10 10 

330 (c1cn2cnnc2cn1) 64 55 

331 (C1Cn2cnnc2C=N1) 23 7 

332 (C1CSc2ncccc2N1) 63 60 

333 (C1CCc2[nH]ccc2C1) 43 16 

334 (C1CCc2ccccc2NC1) 51 35 

335 (O=C1NC=Nc2[nH]ncc12) 68 44 

336 (O=C(NC1CCCCCC1)C2CNCC(=O)N2) 12 12 

337 (O=C1NC=COc2ncccc12) 58 58 

338 (c1nncc2n[nH]cc12) 122 86 

339 (C(NC1CCNCC1)c2ccccc2) 6 6 

340 (C1CCN2CCNCC2C1) 13 13 

341 (C(NC1CCNCC1)c2occc2) 13 13 

342 (O=S1(=O)C=CC(=N1)N2CCCCC2) 49 49 

343 (O=C1NN2C=NC=NC2=C1) 72 50 

344 (o1ncc2ccccc12) 61 60 

345 (O=C1C=CN=C2CCCCCN12) 77 76 

346 (O=C1NC=CN=C1NCCc2ccccc2) 13 13 

347 (O=C1NC=CN=C1NCc2ccccc2) 13 13 

348 (c1nc(ns1)c2c[nH]nn2) 34 23 

349 (O=C(NCc1oncn1)c2ccccc2) 30 27 

350 (C1Nc2sccc2C=N1) 13 11 

351 (c1csc(c1)c2ccncn2) 13 4 

352 (O=C1NC=Cc2sccc12) 90 83 

353 (O=C(NCc1ccccc1)C2CCCCC2) 7 7 

354 (O=C(NCCc1ccccc1)C2CCCCC2) 11 9 

355 (O=C1OC=Cc2sccc12) 65 39 

356 (O=S1(=O)NC=Cc2ccccc12) 56 53 

357 (N1C=CS/C/1=N\c2ccccc2) 5 5 

358 (O=C1CCCc2ncncc12) 6 6 

359 (c1ccc(cc1)c2cc[nH]n2) 14 10 

360 (O=S1(=O)CCC(C1)NCc2cccs2) 23 23 

361 (o1cccc1c2ccccc2) 11 4 

362 (O=C1C=CNc2ncnn12) 19 18 

363 (C(CSc1nnn[nH]1)NCc2ccccc2) 36 36 

364 (O=C1CCC2=C(N1)NC(=O)NC2=O) 6 6 

365 (C1CCNCC1) 13 13 

366 (c1c[nH]c(c1)c2cccs2) 13 7 

367 (O=C(CSc1nnc[nH]1)Nc2ccccc2) 42 42 

368 (C1Cc2ncccc2CN1) 26 26 

369 (O=S(=O)(Nc1ccccc1)c2cccs2) 13 13 

370 (O=C1NN=Nc2ccsc12) 13 5 

371 (O=C(NCc1ccccc1)C2CCNCC2) 16 16 

372 (c1cnc2nncn2c1) 48 47 

373 (O=S(=O)(N1CCCCC1)c2conc2) 120 108 

374 (O=C(Nc1cccs1)\C=C\c2ccccc2) 11 8 

375 (O=C1C=COc2ccccc12) 204 170 

376 (C(=C\c1nccs1)/c2ccccc2) 10 1 

377 (O=C(COc1ccccc1)Nc2nnc[nH]2) 6 6 

378 (N=C1Nc2ccccc2N1) 5 5 

379 (O=C1NC(=O)C2=CC=CNC2=N1) 23 23 

380 (O=C1OCCc2ccccc12) 27 19 

381 (c1nncc2c[nH]cc12) 1 1 

382 (O=S(=O)(N1CCCC1)c2ccccc2) 12 12 

383 (C(Sc1ocnn1)c2ccccc2) 18 18 

384 (O=C(NCC1CCCO1)\C=C\c2ccccc2) 6 6 
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385 (O=C(CSc1nnc[nH]1)N2CCCCC2) 12 12 

386 (O=C1NCC=C(CN2CCCCC2)N1) 6 6 

387 (C(Oc1ccccc1)c2ocnn2) 17 17 

388 (C(Cc1ccccc1)Cc2ocnn2) 11 11 

389 (N(c1ccccc1)c2ncccn2) 2 2 

390 (O=C(CSc1nccnn1)Nc2ccccc2) 22 12 

391 (c1ncc2ccsc2n1) 63 22 

392 (O=C(Nc1ccccc1)c2conc2) 11 11 

393 (O=C(CCn1cccc1)NC2CCCCC2) 8 8 

394 (O=C(NS(=O)(=O)c1ccccc1)c2ccccc2) 13 5 

395 (O=C(COc1ccccc1)NCc2oncn2) 13 13 

396 (O=C(Nc1ncns1)c2ccccc2) 13 13 

397 (c1ccc(cc1)n2cccc2) 9 0 

398 (c1cc(ccn1)c2nnc[nH]2) 7 7 

399 (O=C(CCC(=O)c1ccccc1)Nc2ccccc2) 11 11 

400 (O=S(=O)(N1CCNCC1)c2cccs2) 17 15 

401 (O=C1NC=C(C(=O)N1)S(=O)(=O)N2CCNCC2) 5 5 

402 (O=C(Cn1cccc1)NC2CCCCC2) 5 5 

403 (O=C(Cn1cccc1)NC2CCCCCC2) 5 3 

404 (O=S(=O)(NCC1CCCCC1)c2cccs2) 12 12 

405 (O=C(C1CCCCC1)N2CCNCC2) 8 8 

406 (O=S(=O)(N1CCCCC1)c2cccs2) 20 20 

407 (C1C=CNc2nccn12) 31 13 

408 (C1CCc2ccsc2CC1) 92 35 

409 (O=C(CS(=O)Cc1cocn1)N2CCNCC2) 9 9 

410 (O=C(NC1CCCCC1)c2occc2) 6 5 

411 (O=C(CN1CCNC1=O)NCc2ccccc2) 12 12 

412 (O=C(NCc1ccccc1)c2ccccc2) 22 21 

413 (O=C(NCCc1ccccc1)c2ccccc2) 5 5 

414 (C(SCc1ccccc1)c2occc2) 23 0 

415 (C1Cc2ccsc2C1) 62 56 

416 (O=C1Nc2ccccc2SC=C1) 5 0 

417 (O=C1Nc2ccccc2S(=O)C=C1) 5 5 

418 (S1C=CC=Nc2ccccc12) 28 8 

419 (O=C(C1CCNCC1)N2CCNCC2) 62 57 

420 (C1CC(CN1)c2ccccc2) 8 8 

421 (O=C(CS(=O)Cc1cocn1)NCc2ccccc2) 12 12 

422 (O=C(CCSCCc1ccccn1)Nc2ccccc2) 7 7 

423 (O=C(CSCc1cocn1)NCCc2ccccc2) 12 12 

424 (O=C(CCSCc1ccccc1)NCc2ccccc2) 11 11 

425 (O=C(CCSCc1ccccc1)NCCc2ccccc2) 10 10 

426 (O=S(=O)(N1CCCCC1)N2CCCCC2) 8 8 

427 (O=C(NCCCNc1ccccc1)c2ccccc2) 5 1 

428 (O=C(NCCc1ccccc1)C2CNC(=O)C2) 6 6 

429 (O=S(=O)(N1CCCCC1)N2CCNCC2) 5 5 

430 (O=C1CN(C2CCCCCC2)C(=O)CN1) 37 27 

431 (C(NCc1ccccc1)C2CCCCC2) 11 1 

432 (O=C(CSc1nccnn1)NCc2ccccc2) 8 0 

433 (O=C(CSc1nccnn1)NC2CCCCC2) 7 0 

434 (O=C(CSc1nccnn1)NCCc2ccccc2) 7 0 

435 (c1ccc(cc1)c2cncnn2) 20 3 

436 (O=C(CNC(=O)\C=C/C(=O)Nc1ccccc1)NCc2occc2) 6 0 

437 (c1ncc2sccc2n1) 14 1 

438 (N=C1NC=Nc2n[nH]cc12) 1 1 

439 (C(Sc1ccccn1)c2ccccc2) 5 3 

440 (O=S(=O)(NCCC1=CCCCC1)c2ccccc2) 5 3 
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441 (O=S(=O)(NC1CCCCCC1)c2ccccc2) 8 8 

442 (O=C(Oc1ccccc1)c2conc2) 8 4 

443 (o1ccc2[nH]ccc12) 73 46 

444 (c1cc2sccc2[nH]1) 111 70 

445 (O=S(=O)(NC1CCCCC1)c2ccccc2) 14 14 

446 (c1ccc2ccccc2c1) 42 25 

447 (C1Cc2cc[nH]c2CN1) 49 3 

448 (O=S1(=O)Cc2c[nH]nc2C1) 14 14 

449 (O=C1C=CN=C2SCC=NN12) 9 0 

450 (O=C1CN=C2C=CN=CN12) 191 129 

451 (O=S1(=O)N=CNc2ccccc12) 17 17 

452 (O=S1(=O)NC=Nc2ccccc12) 11 11 

453 (O=C(c1ccccc1)c2cccs2) 29 0 

454 (N(c1ccccc1)c2cccs2) 33 12 

455 (O=C1Nc2cnnn2C=C1) 12 12 

456 (O=C(Nc1ccccn1)C2CCCNC2) 8 8 

457 (O=C(C1CCCNC1)N2CCNCC2) 22 18 

458 (c1cn2nc[nH]c2n1) 11 11 

459 (o1ccc2ncncc12) 11 11 

460 (O=C1CNC(=O)c2ccccc2N1) 7 7 

461 (O=C(Cc1ccc[nH]1)Nc2ccccc2) 12 12 

462 (O=C(Nc1ccccn1)C2CCNCC2) 6 6 

463 (O=C(Cc1ccc[nH]1)NCc2ccccc2) 9 9 

464 (O=C(Cc1ccc[nH]1)N2CCNCC2) 11 11 

465 (O=C1Nc2ccccc2N=C1) 66 64 

466 (C1CC(CCN1)c2ccncc2) 17 17 

467 (O=C1NCCN(C2CCNCC2)C1=O) 47 47 

468 (O=C1NN=C(N=C1)c2ccccc2) 5 5 

469 (C1CN(CCN1)c2ccccn2) 3 3 

470 (C1CN(CC=C1)c2ccccn2) 1 0 

471 (C1CCN(CC1)C2CCNCC2) 14 14 

472 (O=C(CN1CCNCC1)c2ccccc2) 3 3 

473 (C1CC(=CCN1)c2ccccc2) 1 0 

474 (C(CN1CCOCC1)C2CCNCC2) 1 1 

475 (O=C1C=CNC(=C1)CN2CCCCC2) 9 9 

476 (C1CN(CCO1)c2ccccc2) 2 2 

477 (O=C(Nc1ccccc1)C2=NNC(=O)C=C2) 7 7 

478 (C(Nc1ccccc1)c2ccccc2) 20 17 

479 (C1CCN(CC1)c2ccccc2) 1 1 

480 (O=C(CNc1ccccc1)NCCc2ccccc2) 8 8 

481 (O=C(CSc1nnc[nH]1)c2ccccc2) 20 11 

482 (O=C1NC=Cc2ncnn12) 44 36 

483 (O=C(Nc1ccccc1)C2=CC=CNC2=O) 28 28 

484 (O=C(Nc1nncs1)C2=CC=CNC2=O) 10 10 

485 (O=C(Nc1ccon1)C2=CC=CNC2=O) 8 8 

486 (O=S(=O)(Cc1cccs1)c2ccccc2) 7 7 

487 (C1Cn2cccc2CN1) 18 12 

488 (O=S(=O)(Cc1occc1)c2ccccc2) 9 9 

489 (O=C1NC2=C(CCC2)C=N1) 82 82 

490 (N1C=CSc2nncn12) 30 30 

491 (C1SCc2n[nH]cc12) 23 23 

492 (O=C(Nc1ccccc1)C2=CNC(=O)C=C2) 9 9 

493 (C1CCc2ccccc2C1) 11 5 

494 (O=C1NC(=NC=C1)n2cccn2) 9 9 

495 (O=C1NC2=C(CCCC2)C=N1) 19 19 

496 (O=C(CSC1=NC(=O)NC=C1)NCc2ccccc2) 8 8 
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497 (C1CN(CCN1)c2cccnn2) 7 7 

498 (O=C1NC(=O)c2nc[nH]c2N1) 6 6 

499 (O=C(NC1CNC(=O)C1)c2cccs2) 10 10 

500 (O=C(NC1CNC(=O)C1)c2occc2) 12 12 

501 (O=C(NC1CNC(=O)C1)c2ccccc2) 21 21 

502 (O=C(CCc1ccccc1)NC2CNC(=O)C2) 12 12 

503 (O=C(Cc1cccs1)NC2CNC(=O)C2) 10 10 

504 (O=C(Cc1ccccc1)NC2CNC(=O)C2) 18 18 

505 (O=C(COc1ccccc1)NC2CNC(=O)C2) 8 8 

506 (O=C(Nc1ccccc1)Nc2nncs2) 10 8 

507 (O=C(NC1CNC(=O)C1)\C=C/c2ccccc2) 8 8 

508 (O=C(NC1CNC(=O)C1)C2CCCCC2) 10 10 

509 (O=C(CSc1nncs1)N2CCCCC2) 4 4 

510 (O=C1CCCN1c2ccccc2) 17 17 

511 (O=C(NC1CCCCC1)Nc2nncs2) 6 6 

512 (O=C(CCCc1ccccc1)NC2CNC(=O)C2) 6 6 

513 (c1ncc2nn[nH]c2n1) 73 66 

514 (C(N1CCOCC1)c2occc2) 9 9 

515 (O=C(COc1ccccc1)NCCc2occc2) 5 5 

516 (O=C(CSC1=NC=CC(=O)N1)Nc2ccon2) 5 5 

517 (O=C(CSC1=NC=CC(=O)N1)N2CCOCC2) 6 6 

518 (O=C(Cc1ccccc1)NCCc2cccs2) 9 8 

519 (O=C(COc1ccccc1)NCCc2cccs2) 5 5 

520 (O=C(CCc1ccccc1)NCCc2cscn2) 6 6 

521 (c1cncc(c1)c2nccs2) 10 10 

522 (c1cnnc(c1)c2cncs2) 31 19 

523 (C(c1ccccc1)n2ccnc2) 5 5 

524 (O=C(CSc1ncc[nH]1)Nc2nncs2) 13 13 

525 (O=C1NC(=O)C=C(N1)N2CCNCC2) 5 5 

526 (O=C(CSc1ncc[nH]1)NCc2occc2) 5 5 

527 (O=C(CSc1ncc[nH]1)NCc2ccccc2) 11 11 

528 (O=C(COc1ccccc1)NCCc2cscn2) 7 7 

529 (O=C(NCCc1cncs1)c2occc2) 5 5 

530 (O=C(Cc1ccccc1)NCCc2cncs2) 7 7 

531 (O=C(NCCc1cncs1)c2cccs2) 5 5 

532 (O=C(NCCc1cscn1)c2occc2) 8 8 

533 (C1CCC(NC1)c2cccnc2) 5 5 

534 (c1cn2cnnc2s1) 16 14 

535 (O=S(=O)(c1ccccc1)c2cocn2) 2 2 

536 (C1CN(CCO1)c2ocnc2) 5 5 

537 (C1CCN(CC1)c2ocnc2) 39 30 

538 (O=C(Nc1ccccc1)N2CCCC2) 7 7 

539 (O=S(=O)(NCc1ccccc1)c2cccs2) 7 7 

540 (O=C(CNS(=O)(=O)c1cccs1)N2CCNCC2) 8 8 

541 (O=C(CNS(=O)(=O)c1cccs1)NCc2ccccc2) 7 7 

542 (o1cnc(c1)c2ccccc2) 21 21 

543 (O=C1NN=C(C=C1)c2ccncc2) 5 5 

544 (C1CCCc2[nH]ccc2CC1) 8 4 

545 (O=C1NN=C2CCCCC2=C1) 16 16 

546 (c1ccc2cnccc2c1) 75 59 

547 (O=S(=O)(NCc1ccccc1)c2cncnc2) 12 12 

548 (O=S(=O)(Nc1ccccc1)c2cncnc2) 8 8 

549 (O=S(=O)(N1CCNCC1)c2cncnc2) 2 2 

550 (o1ccc2cccnc12) 27 24 

551 (C(Sc1ncccn1)c2oncn2) 20 11 

552 (c1ccc2sncc2c1) 92 88 



 Supporting Information for Chapter 1 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  77 

553 (O=C(CCc1cc[nH]c1)NCc2ccccc2) 12 12 

554 (O=C(CCc1cc[nH]c1)Nc2ccccc2) 11 11 

555 (O=C(CCc1cc[nH]c1)N2CCNCC2) 7 7 

556 (C1CN(CCN1)c2oncc2) 8 6 

557 (O=C(NCc1occc1)c2conc2) 5 5 

558 (O=C1C=CN=C2SC=CN12) 311 311 

559 (C1CC(=CCN1)c2nocn2) 5 5 

560 (O=C(COc1ccccc1)Nc2ccn[nH]2) 12 1 

561 (O=C(Nc1ccn[nH]1)c2ccccc2) 11 2 

562 (O=C1NC(=O)c2cncnc2N1) 45 45 

563 (c1cnc(nc1)n2cccn2) 16 9 

564 (C1CCN(CC1)c2ccn[nH]2) 14 14 

565 (C1CCN(CC1)c2oncn2) 13 11 

566 (C1COc2ccccc2C1) 60 60 

567 (C1CC2(CCN1)NC=CN=C2) 7 6 

568 (O=C(CSc1nnc[nH]1)N2CCNCC2) 9 9 

569 (O=C(CSc1nnc[nH]1)NCc2ccccc2) 9 9 

570 (O=C1N=CNc2ncccc12) 13 9 

571 (C1CCN2CCN=C2CC1) 26 26 

572 (C1CCC2=NCCN2C1) 17 17 

573 (O=C(CSc1nnc[nH]1)NCCCc2ccccc2) 7 7 

574 (O=C(NCc1nnn[nH]1)C2CNC(=O)C2) 5 5 

575 (O=C(CSc1nnc[nH]1)NCCc2ccccc2) 7 7 

576 (O=C1NN=Cc2n[nH]cc12) 24 23 

577 (O=C(CCc1ccc[nH]1)NCc2ccccc2) 10 10 

578 (O=C(CCc1ccc[nH]1)NCCCN2CCNCC2) 3 3 

579 (O=C(CCc1ccc[nH]1)Nc2ccccc2) 9 9 

580 (C1CN2CCN=C2CO1) 21 21 

581 (O=S(=O)(N1CCNCC1)c2cc[nH]n2) 12 12 

582 (O=S(=O)(Nc1ccccc1)c2cc[nH]n2) 11 11 

583 (O=C(Cc1ccccc1)NCCS(=O)(=O)N2CCNCC2) 5 5 

584 (o1cnnc1c2c[nH]nn2) 5 5 

585 (C1C=Nc2ccccc2N=C1) 24 9 

586 (O=S(=O)(N1CCOCC1)c2cn[nH]c2) 12 12 

587 (O=S(=O)(NCc1ccccc1)c2cc[nH]n2) 4 4 

588 (O=C(Nc1ccccc1)C2=NNC(=O)NC2=O) 12 12 

589 (O=C(N1CCNCC1)C2=NNC(=O)NC2=O) 7 7 

590 (O=C(N1CCCCC1)C2=NNC(=O)NC2=O) 5 5 

591 (O=C1NC(=O)N(N=C1)c2ccccc2) 8 8 

592 (O=C1Nc2ccccc2S1) 27 24 

593 (O=C1NC=CN2CCCCC12) 28 28 

594 (C1Oc2ccccc2C=C1) 10 10 

595 (O=C1NC=Nc2ncccc12) 28 28 

596 (O=C1Nc2cncnc2N1) 44 44 

597 (O=C(N1CCNCC1)c2ccc[nH]2) 18 18 

598 (O=S(=O)(Nc1ccccc1)c2c[nH]cn2) 6 6 

599 (O=S(=O)(N1CCNCC1)c2c[nH]cn2) 7 7 

600 (C1CCCN(CC1)c2cccnn2) 21 13 

601 (O=S(=O)(N1CCCCCC1)c2cc[nH]c2) 27 27 

602 (C1CCCc2scnc2CC1) 5 4 

603 (C1CN=C2SC=CC2=C1) 5 4 

604 (O=C(NCCc1cscn1)c2cccs2) 3 3 

605 (O=C(CSC1=NC=CC(=O)N1)NCc2ccccc2) 9 9 

606 (O=C1NCCCn2nccc12) 29 29 

607 (C1SC=Cc2[nH]ncc12) 42 39 

608 (o1cccc1c2ocnc2) 12 12 
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609 (O=C1Nc2ccccc2C=N1) 61 42 

610 (C1CCN(C1)c2ccccc2) 33 25 

611 (O=C(NCCc1cn[nH]c1)Nc2ccccc2) 29 29 

612 (O=S(=O)(NCc1ccc[nH]1)c2ccccc2) 12 12 

613 (O=C1Nc2[nH]ncc2N=C1) 4 4 

614 (C1Cc2ncncc2CN1) 78 75 

615 (O=C1NC=Cn2nccc12) 22 22 

616 (C1CCN(C1)c2ncccn2) 19 19 

617 (O=C(N1CCNCC1)c2cncnc2) 14 14 

618 (O=C1Oc2cnccc2C=C1) 11 11 

619 (O=S(=O)(N1CCCCC1)c2c[nH]cn2) 43 43 

620 (O=C(CCn1cccn1)N2CCNCC2) 5 5 

621 (O=C1NCCN(C2CCCCC2)C1=O) 7 7 

622 (O=C(N1CCOCC1)c2cccs2) 6 6 

623 (O=C1NCCN(Cc2ccccc2)C1=O) 4 4 

624 (c1ccc2[nH]nnc2c1) 46 44 

625 (O=C(NCc1cocn1)NC2CCCCC2) 7 7 

626 (O=C(NCc1cocn1)Nc2ccccc2) 7 7 

627 (O=C(N1CCCCC1)c2cc[nH]c2) 21 21 

628 (O=S(=O)(NCc1cocn1)c2ccccc2) 4 4 

629 (O=C(CN1CCCNS1(=O)=O)Nc2ccccc2) 27 27 

630 (O=C(CN1CCCNS1(=O)=O)NCc2ccccc2) 4 4 

631 (c1cc2[nH]ncc2cn1) 79 19 

632 (O=C1CC=Nc2ccccc2N1) 17 15 

633 (O=C1NC(=O)c2sccc2N1) 255 192 

634 (C1CN2C=NC=CC2=N1) 12 12 

635 (C(N1CCCC1)c2oncc2) 12 12 

636 (O=C1CSc2[nH]ncc2N1) 27 27 

637 (C(N1CCOCC1)c2oncc2) 12 12 

638 (O=S(=O)(N1CCCC1)c2c[nH]cn2) 8 8 

639 (c1cnnc(c1)n2cccn2) 70 68 

640 (O=C(CCc1cn[nH]c1)N2CCNCC2) 6 5 

641 (O=C1CC(CN1)c2oncn2) 10 10 

642 (O=C(N1CCCCCC1)c2cc[nH]c2) 17 17 

643 (O=C(CNS(=O)(=O)c1ccsc1)NCc2ccccc2) 10 10 

644 (C(Nc1ccccc1)c2ocnn2) 29 3 

645 (C(N1CCNCC1)c2ocnn2) 29 17 

646 (O=C1C=CS(=O)(=O)N1Cc2ccccc2) 23 21 

647 (O=C1NCc2cccnc12) 45 40 

648 (o1ncnc1c2ccn[nH]2) 22 22 

649 (O=S(=O)(c1ccccc1)c2cn[nH]c2) 23 23 

650 (c1ccn2cccc2c1) 33 25 

651 (O=C1NC=CN=C1NCc2cccs2) 5 5 

652 (O=C1NC=CN2CCCC12) 8 8 

653 (O=S(=O)(NCC1CCNCC1)c2cc[nH]c2) 8 8 

654 (O=S1(=O)CCCN1c2ccccc2) 19 19 

655 (o1ccc(n1)c2cccs2) 9 9 

656 (O=C1NC=Nc2c[nH]nc12) 30 8 

657 (c1ccn(c1)c2nncs2) 15 9 

658 (C1CN(CCN1)c2nncs2) 4 4 

659 (C1CCN(C1)c2nncs2) 18 18 

660 (O=S(=O)(NCC1CCCCC1)c2ccsc2) 6 6 

661 (O=S(=O)(NCc1ccccc1)c2ccsc2) 11 11 

662 (C1CCC2=C(CC1)NCC2) 22 15 

663 (O=C(N1CCNCC1)c2cn[nH]c2) 86 53 

664 (O=C(NC1CCNCC1)c2cn[nH]c2) 6 6 
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665 (O=S(=O)(N1CCCCC1)c2ccsc2) 6 6 

666 (O=C1CNc2ccccc12) 12 12 

667 (c1ccc2nnccc2c1) 10 6 

668 (c1ccn2nccc2c1) 29 29 

669 (O=C1NN=C(C=C1)N2CCNCC2) 42 42 

670 (O=C(CSc1oncn1)N2CCNCC2) 8 8 

671 (O=C(CSc1oncn1)Nc2ccccc2) 9 8 

672 (O=C(CSc1oncn1)N2CCCCC2) 6 6 

673 (O=C(NC1=CNC(=O)NC1=O)Nc2ccccc2) 12 12 

674 (O=C(CNS(=O)(=O)c1cn[nH]c1)Nc2ccccc2) 10 10 

675 (O=C(NCc1ccccc1)C2CCCCN2) 12 12 

676 (C1CC2(CCN1)N=CC=N2) 11 2 

677 (C1Nc2ccccc2C=N1) 5 5 

678 (O=C(NCCCN1CCNCC1)c2cn[nH]c2) 23 19 

679 (O=C1CS(=O)(=O)C2(N1)C=CNC2=O) 40 40 

680 (C1CN(CCN1)c2ncccn2) 8 8 

681 (O=C(NCCN1CCNCC1)c2cn[nH]c2) 8 8 

682 (O=C(N1CCOCC1)c2cn[nH]c2) 5 5 

683 (O=C(NCCN1CCOCC1)c2cn[nH]c2) 8 8 

684 (O=C1CCSC2(N1)C=CNC2=O) 9 8 

685 (C1CCCN(CC1)c2nncs2) 14 12 

686 (C1CN(CCO1)c2nncs2) 5 5 

687 (C1CCc2oncc2CC1) 9 9 

688 (O=C(NCc1occc1)c2c[nH]nn2) 7 7 

689 (O=C(Cn1cccc1)N2CCNCC2) 8 8 

690 (O=S(=O)(NCc1ccccc1)c2nncs2) 8 8 

691 (O=C1NCc2cc[nH]c12) 16 10 

692 (C(N1CCNCC1)c2nocn2) 7 7 

693 (O=C(NCCc1ccccc1)c2ccn[nH]2) 8 8 

694 (O=C(Nc1ccccc1)c2ccn[nH]2) 10 10 

695 (O=C1NN=C2C=CNC=C12) 11 11 

696 (O=S(=O)(Cc1cocn1)c2ccccc2) 10 10 

697 (C(Sc1ccccc1)c2cocn2) 29 10 

698 (O=C(N1CCNCC1)c2ccccc2) 7 1 

699 (O=C1CN(CCc2ccncc2)C(=O)N1) 7 7 

700 (O=C1CN(Cc2cccnc2)C(=O)N1) 9 9 

701 (O=C(CSCc1oncn1)Nc2ccccc2) 5 5 

702 (C1CN(CCN1)c2oncn2) 10 10 

703 (C1CCc2cncn2CC1) 30 11 

704 (c1cnc2cnnn2c1) 225 128 

705 (O=C(NC1CCCCC1)C2CNCC(=O)N2) 11 11 

706 (O=C1CNCCN1c2ccccc2) 4 4 

707 (O=C(NCc1ccccc1)c2ccccn2) 1 1 

708 (O=C(N1CCNCC1)c2ccccn2) 1 1 

709 (O=C(N1CCNCC1)c2ccn[nH]2) 13 13 

710 (c1cc2ccsc2[nH]1) 11 1 

711 (O=C(COCc1ccon1)N2CCNCC2) 3 3 

712 (O=C1NC=CC(N1)c2ccccc2) 19 19 

713 (c1cc2cn[nH]c2s1) 62 38 

714 (C1SC=CN=C2C=CC=C12) 8 2 

715 (O=C1CCC=C2SCNCN12) 8 7 

716 (C1CCc2ncccc2C1) 39 6 

717 (O=C1NC=Cc2[nH]ccc12) 24 24 

718 (O=S(=O)(Nc1ccccc1)c2conc2) 5 5 

719 (O=C1OC=Cc2[nH]ncc12) 39 39 

720 (O=C(CNS(=O)(=O)c1cn[nH]c1)NCc2ccccc2) 12 12 
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721 (O=C(CNS(=O)(=O)c1conc1)N2CCNCC2) 12 12 

722 (O=C(CNS(=O)(=O)c1conc1)NCc2ccccc2) 12 12 

723 (O=C(CNS(=O)(=O)c1conc1)NCCc2ccccc2) 7 7 

724 (O=C(Cc1oncn1)Nc2ccccc2) 10 10 

725 (c1ccc(nc1)c2cccnn2) 3 3 

726 (c1cnnc(c1)c2cccs2) 17 13 

727 (O=C1NC(=O)c2occc2N1) 83 65 

728 (C1C=COc2ncncc12) 98 25 

729 (O=C(NCCCN1CCNCC1)c2occc2) 1 1 

730 (O=C(N1CCNCC1)c2occc2) 13 10 

731 (O=C(NC1CCCCCC1)c2occc2) 5 5 

732 (C(N1CCNCC1)c2ccsc2) 15 8 

733 (O=C1Nc2ncccc2N=C1) 110 110 

734 (O=C1Nc2cccnc2SC=C1) 30 30 

735 (c1cc2cnncn2c1) 86 63 

736 (O=C(NCCc1ccccc1)C2CCCNC2) 5 5 

737 (O=C1COc2cccnc2N1) 11 11 

738 (O=C(NCc1ccccc1)C2CCCNC2) 12 12 

739 (O=C(Nc1ccccc1)C2CCCNC2) 11 11 

740 (O=C1CCOc2ccccc12) 18 17 

741 (C1Cc2c[nH]nc2C=C1) 63 37 

742 (O=C(NCC12CC3CC(CC(C3)C1)C2)c4ccccc4) 4 0 

743 (C1Cn2ccnc2S1) 101 55 

744 (O=C1NC=Nc2ccoc12) 77 47 

745 (O=C(Nc1ccccc1)c2oncc2) 8 8 

746 (C1OC=Cc2oncc12) 13 12 

747 (O=C1NC=Cn2cccc12) 103 103 

748 (c1cc2cnccn2c1) 6 5 

749 (O=C1C=CN=C2CCCN12) 29 29 

750 (O=C1NC=CN(Cc2ccccc2)C1=O) 9 9 

751 (O=C(CN1C=CNC(=O)C1=O)Nc2ccccc2) 39 39 

752 (C(c1ccccc1)c2ocnn2) 15 15 

753 (O=C1NC=CN(C1=O)c2ccccc2) 12 12 

754 (O=C(NCCCN1CCNCC1)c2ocnn2) 6 6 

755 (O=C(CN1C=CNC(=O)C1=O)NCc2ccccc2) 8 8 

756 (O=C(CN1C=CNC(=O)C1=O)c2ccccc2) 5 5 

757 (O=C(CN1C=CNC(=O)C1=O)NCCc2ccccc2) 6 6 

758 (O=S1(=O)Cc2cn[nH]c2C=C1) 40 40 

759 (O=C1C=CN=C2CCCCN12) 27 27 

760 (O=C(NCc1ccccc1)c2cc[nH]c2) 7 7 

761 (O=C(NCCc1ccccc1)c2cc[nH]c2) 5 5 

762 (O=C1NC=Nc2nccnc12) 17 14 

763 (O=C(Nc1nncs1)C2CCCCC2) 12 12 

764 (O=S(=O)(Nc1ccccc1)c2nncs2) 11 11 

765 (O=S(=O)(N1CCCCCC1)c2nncs2) 24 24 

766 (O=C(COc1ccccc1)Nc2nncs2) 19 19 

767 (O=S(=O)(N1CCOCC1)c2nncs2) 8 8 

768 (O=C(Nc1nncs1)c2occc2) 12 12 

769 (O=S(=O)(NCc1occc1)c2nncs2) 6 6 

770 (O=S(=O)(N1CCCCC1)c2nncs2) 9 9 

771 (C(N1CCOCC1)c2cccnc2) 9 9 

772 (O=C(Nc1nncs1)c2cccs2) 8 8 

773 (O=S(=O)(N1CCNCC1)c2nncs2) 12 12 

774 (O=S(=O)(N1CCCC1)c2nncs2) 10 10 

775 (c1cnc2scnc2c1) 31 29 

776 (O=C(Nc1ccccc1)C(=O)c2cc[nH]c2) 12 12 
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777 (O=C(Nc1nncs1)C(=O)c2cc[nH]c2) 11 11 

778 (O=C(Nc1ccccc1)c2cn[nH]c2) 12 4 

779 (O=C1NN=Cn2cccc12) 270 261 

780 (O=S1(=O)NC=CC(=N1)c2cccs2) 10 10 

781 (O=S1(=O)NC=CC(=N1)c2occc2) 7 7 

782 (O=C1NN=Cc2sccc12) 69 66 

783 (O=C1NC=NC2=C1CNCC2) 25 25 

784 (O=C(Nc1ccccc1)C2=CC=NS(=O)(=O)N2) 12 12 

785 (O=C(NCc1ccccc1)C2=CC=NS(=O)(=O)N2) 5 5 

786 (C1OC=Cc2ncncc12) 9 0 

787 (C1OC=Cc2[nH]ncc12) 34 34 

788 (C1SC=Cc2oncc12) 8 8 

789 (c1ccc2[nH]ncc2c1) 17 17 

790 (O=S1(=O)C=CC(=N1)N2CCNCC2) 12 12 

791 (O=S1(=O)C=CC(=N1)NCCCN2CCNCC2) 7 7 

792 (N(c1ccccc1)c2nncs2) 9 9 

793 (O=C1CNCc2ccsc2N1) 5 3 

794 (C1Cc2cn[nH]c2C=C1) 12 12 

795 (C1CCC(CC1)Nc2nncs2) 12 12 

796 (O=C1NC2(CCNCC2)OC=C1) 12 5 

797 (O=C1NN=Cn2nccc12) 10 10 

798 (c1cc2[nH]ccn2n1) 20 20 

799 (O=C(NCc1cn[nH]c1)Nc2ccccc2) 6 0 

800 (C(Nc1nncs1)c2ccccc2) 11 11 

801 (o1ncnc1c2ccccc2) 142 138 

802 (O=C1CCc2cn[nH]c2N1) 28 24 

803 (C1NC=Cn2cccc12) 16 10 

804 (O=C(Nc1ccccc1)Nc2cccs2) 8 8 

805 (O=C(CSc1ocnn1)Oc2ccccc2) 15 15 

806 (O=C1C=CNC2=C1CCCC2) 7 7 

807 (O=C(Nc1cnon1)c2ccccc2) 12 12 

808 (O=C1NC=NC2=C1CCC2) 17 17 

809 (O=C(NCCSCc1ccccc1)C2CCNCC2) 6 6 

810 (o1cnnc1c2cccs2) 24 24 

811 (O=C1NC=NC2=C1CCCC2) 17 16 

812 (O=C(NCc1occc1)c2ccon2) 6 1 

813 (C1CNc2nccn2C1) 7 5 

814 (C1CC=Nc2ccccc2S1) 5 0 

815 (O=C(Nc1cccs1)c2ccon2) 26 18 

816 (O=C1CCNC(C1)c2cccs2) 5 5 

817 (O=C(N1CCNCC1)c2ccon2) 12 12 

818 (O=C1CSCc2cn[nH]c2N1) 11 11 

819 (O=C(CSc1ocnn1)NCc2ccccc2) 6 6 

820 (C(CSc1ocnn1)Oc2ccccc2) 10 10 

821 (O=C(CSc1ocnn1)NC2CCCCC2) 8 8 

822 (O=C(Nc1ccccc1)c2nc[nH]n2) 24 24 

823 (o1cnc(n1)c2cccnc2) 18 8 

824 (O=C(CCc1oncn1)Nc2ccccc2) 29 29 

825 (o1ncnc1c2cccnc2) 17 11 

826 (o1cnc(n1)c2ccccn2) 14 14 

827 (C1CCc2scnc2C1) 35 35 

828 (O=C1NC(=O)c2cc[nH]c2N1) 29 29 

829 (C(Cc1ccncc1)N2CCNCC2) 23 23 

830 (O=C(COc1ccccc1)Nc2ccccc2) 15 2 

831 (C(Nc1ccccn1)c2ccccc2) 31 30 

832 (O=C(NCc1cccs1)c2ccccc2) 11 4 
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833 (O=C(NCc1cccs1)c2occc2) 5 5 

834 (O=C(COc1ccccc1)NCc2cccs2) 12 6 

835 (C(Nc1ccccn1)c2occc2) 23 23 

836 (C(Cc1ccccn1)N2CCNCC2) 20 20 

837 (O=C(Oc1ccccc1)c2ccon2) 12 5 

838 (C1CCC(CC1)N2CCOCC2) 21 21 

839 (O=C(NCc1ccccc1)c2ccon2) 17 17 

840 (O=C(COc1ccccc1)NCC2CCCCC2) 10 10 

841 (C1CCCCC1) 9 7 

842 (O=C(NCC1CCCCC1)c2ccccc2) 10 10 

843 (C1CC(CCN1)c2ocnn2) 24 24 

844 (C(Oc1ccccc1)c2nccs2) 12 12 

845 (o1cccc1c2nc[nH]n2) 43 38 

846 (C1CCC(CC1)N2CCNCC2) 3 3 

847 (C1CCC2(CC1)CCNC=N2) 37 25 

848 (c1cnn(c1)c2nccs2) 30 5 

849 (O=C1C=CC=Cc2cocc12) 24 21 

850 (O=S1(=O)CCC(C1)NCc2occc2) 22 22 

851 (o1cnc(n1)c2cccs2) 5 5 

852 (O=C(Oc1ccccc1)c2cnns2) 9 9 

853 (c1csc(c1)c2ccsc2) 15 13 

854 (C(NCc1ccccc1)C2CCCO2) 22 22 

855 (O=C(Nc1ccccc1)c2csnn2) 11 11 

856 (O=S(=O)(c1ccccc1)c2c[nH]cn2) 7 6 

857 (c1csc(c1)c2ncsn2) 6 6 

858 (O=C(COc1ccccc1)Nc2ncns2) 11 11 

859 (C(N1CCCCC1)c2ccccc2) 17 16 

860 (O=C(CSc1ccncn1)Nc2ccccc2) 12 12 

861 (o1cccc1c2occn2) 56 33 

862 (C(Nc1ocnc1)c2cccnc2) 5 5 

863 (C1CN(CCN1)c2ocnc2) 42 25 

864 (C1Cc2cncnc2C1) 1 1 

865 (O=C(COc1ccccc1)Nc2oncc2) 12 12 

866 (O=C1CC(CN1)c2nncs2) 7 7 

867 (N(c1ccccc1)c2ccncn2) 37 28 

868 (O=C1NC=NC(=C1)c2ccccc2) 1 1 

869 (C(CNCc1occc1)CSc2nnn[nH]2) 5 5 

870 (C(CNCc1ccccc1)CSc2nnn[nH]2) 23 23 

871 (C(Nc1cncnc1)c2occc2) 41 24 

872 (o1ncc(n1)c2nnc[nH]2) 36 36 

873 (O=C(CSc1ccccn1)c2ccccc2) 5 1 

874 (C(CSc1nnn[nH]1)NCc2occc2) 6 5 

875 (O=C1CCC2=C(NC=NC2=O)N1) 11 11 

876 (C1CCN(CC1)c2cnccn2) 21 21 

877 (O=C1CCC2=C(N1)N=CNC2=O) 7 7 

878 (O=C(Nc1oncc1)c2ccccc2) 11 11 

879 (O=C1NN=Nc2ccccc12) 12 12 

880 (O=C(NCC1CCNC1)Nc2ccccc2) 2 2 

881 (O=C(NCCN1CCNCC1)Nc2ccccc2) 6 6 

882 (O=C(NCc1oncn1)c2occc2) 9 9 

883 (o1nc2nccnc2n1) 2 1 

884 (O=C(NCC1CCNCC1)Nc2ccccc2) 6 5 

885 (C1CCN(CC1)c2ncccn2) 8 8 

886 (O=C(Nc1ccccc1)C2=CC=NNC2=O) 12 12 

887 (O=C(Nc1nccs1)C2=CC=NNC2=O) 5 5 

888 (O=C1NN=CC2=C1CCCC2) 12 5 
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889 (O=C(Cc1cscn1)Nc2ccccc2) 12 12 

890 (O=C(Nc1ccccc1)c2ccncn2) 33 33 

891 (O=C(Nc1nncs1)c2ccncn2) 14 14 

892 (C(Sc1ncccn1)c2ccccc2) 38 15 

893 (C(NCc1ccccc1)c2occc2) 41 22 

894 (C(NCc1occc1)c2occc2) 24 24 

895 (O=C(NC1CCS(=O)(=O)C1)c2ccncn2) 12 12 

896 (O=C(Nc1cccs1)c2ccncn2) 10 7 

897 (C(NCc1cccs1)c2occc2) 4 4 

898 (O=C(NCc1ccccc1)c2cn[nH]n2) 12 12 

899 (O=C(NCc1cccs1)c2cn[nH]n2) 7 7 

900 (c1ccc(cc1)n2nccn2) 12 12 

901 (O=C(NCCCCc1ccccc1)c2cn[nH]n2) 8 8 

902 (O=C(NCCCc1ccccc1)c2cn[nH]n2) 6 6 

903 (O=C(NCc1ccccn1)c2cn[nH]n2) 6 6 

904 (O=C(NCc1cccnc1)c2cn[nH]n2) 7 7 

905 (O=C(NCCc1ccccc1)c2cn[nH]n2) 13 13 

906 (O=C(NCc1ccccc1)c2ccncn2) 9 6 

907 (C1CCC(C1)c2ccccc2) 12 12 

908 (C1CC(CCN1)c2nocn2) 5 5 

909 (C1CC(CCN1)c2oncn2) 9 9 

910 (O=C1NC=C(C2N3CC4CN2CC(C3)C4=O)C(=O)N1) 5 5 

911 (C(CN1CCOCC1)C2CCCCN2) 9 9 

912 (c1nncc2[nH]nnc12) 13 8 

913 (c1ccc(cc1)c2nnn[nH]2) 8 8 

914 (C(CN1CCCCC1)C2CCCCN2) 11 11 

915 (O=S(=O)(c1ccccc1)c2cscn2) 15 13 

916 (O(c1cccnn1)c2ncncn2) 18 12 

917 (O=C1C2CN3CC1CN(C2)C3c4ccccn4) 5 5 

918 (c1csc(c1)c2c[nH]cn2) 3 0 

919 (c1ccc(cc1)c2c[nH]cn2) 6 0 

920 (O=C1NN=C(Oc2ncncn2)C=C1) 11 11 

921 (C1CC(CCN1)c2nnn[nH]2) 10 10 

922 (N1C=NC=Nc2ccccc12) 43 23 

923 (C1CC(CCN1)Oc2ccccc2) 4 4 

924 (C1CCC(CC1)Nc2ocnc2) 4 4 

925 (C(Nc1ocnc1)c2ccccc2) 24 13 

926 (C1CCCN(CC1)c2ocnc2) 14 4 

927 (N(c1ocnc1)c2ccccc2) 10 10 

928 (O=C1NCNc2ccsc12) 7 5 

929 (o1ccnc1\C=C\c2ccccc2) 9 9 

930 (C(Cc1ccccc1)Nc2ocnc2) 13 13 

931 (N(c1ccccc1)c2cn[nH]n2) 10 0 

932 (O(c1ccccc1)c2cccnn2) 6 0 

933 (O=C1Cc2ccccc2CN1) 10 8 

934 (c1cncc(c1)c2nc[nH]n2) 17 17 

935 (O=C(CCCc1oncn1)NCc2occc2) 3 3 

936 (C1CCc2nocc2C1) 11 11 

937 (O=C(Cc1ccccc1)NCc2oncn2) 5 5 

938 (C(NC1CCCCC1)c2oncn2) 9 7 

939 (o1ccnc1c2cccs2) 29 5 

940 (O=C(CSC1=NC=CC(=O)N1)N2CCNCC2) 6 6 

941 (O=C1NC(=NC=C1)SCCOc2ccccc2) 6 3 

942 (O=C1NC(=NC=C1)Nc2ccccc2) 11 11 

943 (O=C(NCc1occc1)c2ccncn2) 4 3 

944 (O=C1NC2(C=CNC2=O)C=C1) 11 11 
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945 (O=C(N1CCNCC1)c2ccncn2) 4 4 

946 (O=C(COc1ccccc1)NCc2occc2) 3 1 

947 (O=C(NCc1occc1)c2ccccc2) 2 0 

948 (O=C1Nc2ccccc2C1=O) 4 4 

949 (C1CC2OCOC2CO1) 11 11 

950 (c1ccc2snnc2c1) 22 22 

951 (O=C(Nc1ccsc1)c2ccccc2) 6 5 

952 (O=C1NN=Cc2c[nH]cc12) 85 85 

953 (O=C(Nc1ccccc1)Nc2ccsc2) 7 4 

954 (O=S(=O)(NCc1cscn1)c2ccccc2) 9 9 

955 (C1SC=Cc2sccc12) 20 3 

956 (O=C1NC2(CCCCC2)N=C1) 12 12 

957 (O=C1NCN=C1c2ccccc2) 12 12 

958 (O=C1NC2(CCCCCC2)N=C1) 12 12 

959 (O=C(Nc1ccccc1)c2cccs2) 17 13 

960 (C1CCc2c[nH]nc2CC1) 3 3 

961 (C(NCc1cc[nH]c1)c2ccccc2) 30 30 

962 (C(CNCc1cc[nH]c1)Cc2ccccc2) 7 7 

963 (C(Cc1ccccc1)NCc2cc[nH]c2) 12 12 

964 (C(NC1CCCCC1)c2cc[nH]c2) 10 10 

965 (C(NC1CCCCCC1)c2cc[nH]c2) 5 5 

966 (C1CCc2n[nH]cc2C1) 12 12 

967 (c1cc2nc[nH]c2cn1) 111 38 

968 (C(Nc1cncs1)c2ccccc2) 11 4 

969 (O=C(CNS(=O)(=O)c1c[nH]cn1)Nc2ccccc2) 6 6 

970 (O=C(c1ccccc1)c2ccc[nH]2) 9 9 

971 (C(NCc1cccs1)c2ccccc2) 13 13 

972 (O=C1CSc2ncccc2N1) 5 5 

973 (O=C(CS(=O)(=O)Cc1cocn1)NCc2ccccc2) 12 12 

974 (O=C1NCCc2ccccc12) 12 10 

975 (O=C(N1CCCCC1)c2cccs2) 8 8 

976 (c1ccn(c1)c2cccs2) 12 10 

977 (O=C(NCc1ccccc1)c2cn[nH]c2) 6 6 

978 (O=C1CCCN1c2nncs2) 7 3 

979 (C(Cn1cccc1)c2ccccc2) 12 12 

980 (C1OC=Cc2sccc12) 68 36 

981 (O=C1NN=Cc2ccsc12) 6 6 

982 (C1CNc2ncccc2N1) 6 6 

983 (O=C(CS(=O)(=O)Cc1cocn1)N2CCNCC2) 9 9 

984 (O=C(CS(=O)(=O)Cc1cocn1)NCCc2ccccc2) 12 12 

985 (O=C(CS(=O)(=O)Cc1cocn1)NCCCc2ccccc2) 4 4 

986 (O=C(Nc1cocc1)C23CC4CC(CC(C4)C2)C3) 7 3 

987 (C(N1CCNCC1)c2oncn2) 5 5 

988 (N(c1oncn1)c2oncn2) 4 1 

989 (C1SC=Cc2n[nH]cc12) 1 1 

990 (O=C(CNS(=O)(=O)c1cn[nH]c1)NCCc2ccccc2) 8 8 

991 (O=C(CNS(=O)(=O)c1cn[nH]c1)N2CCNCC2) 8 8 

992 (O=C1CN(CCC2=CCCCC2)C(=O)N1) 12 12 

993 (O=C1CN(C2CCCCC2)C(=O)N1) 12 12 

994 (o1cc2ccccc2n1) 11 4 

995 (O=C1CN(Cc2ccccc2)C(=O)N1) 5 5 

996 (O=C1CN(CCc2cccs2)C(=O)N1) 12 12 

997 (c1cc2sccc2cn1) 38 10 

998 (O=C(CCCc1ccon1)NCCc2ccccc2) 5 2 

999 (O=C1NC(=O)N2CSCC12) 7 7 

1000 (O=C(NCc1nnc[nH]1)C23CC4CC(CC(C4)C2)C3) 8 8 
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1001 (O=C1CCCc2[nH]ccc12) 60 7 

1002 (O=C(CNS(=O)(=O)C1=CNC(=O)NC1=O)Nc2ccccc2) 12 12 

1003 (O=C(CNS(=O)(=O)C1=CNC(=O)NC1=O)NCc2ccccc2) 9 9 

1004 (O=C(CS(=O)(=O)Cc1cocn1)NCCCN2CCNCC2) 4 4 

1005 (O=C(CS(=O)(=O)Cc1cocn1)Nc2ccccc2) 12 12 

1006 (O=C(NCCCN1CCNCC1)C2CCNCC2) 3 3 

1007 (O=C(Cn1ccnn1)Nc2ccccc2) 12 12 

1008 (C(=C\c1nc[nH]n1)/c2ccccc2) 7 2 

1009 (O=C(CSc1nnn[nH]1)NCCc2ccccc2) 6 6 

1010 (O=C(OCc1ccccc1)c2cn[nH]n2) 7 7 

1011 (O=C1NC(C=C1)c2ccccc2) 9 3 

1012 (O=C(Nc1ccccc1)C2=CC(=O)NC(=O)N2) 1 1 

1013 (C1NC=Nc2nccn12) 3 3 

1014 (O=C(Nc1ncncn1)NS(=O)(=O)Oc2ccccc2) 5 5 

1015 (O=C(NC1NC(=O)NC1=O)c2ccccc2) 7 7 

1016 (O=C(Nc1ccccc1)\C=C\c2cc[nH]c2) 5 2 

1017 (N=C1NC(=CS1)c2ccccc2) 3 3 

1018 (O=S(=O)(Nc1ccccc1)c2ccccc2) 12 7 

1019 (O=C(CNS(=O)(=O)c1ccccc1)NCCc2ccccc2) 10 8 

1020 (O=S(=O)(NCCSc1nnn[nH]1)c2ccccc2) 5 5 

1021 (O=C1C=CN=C2NC=NN12) 1 1 

1022 (O=C(CNS(=O)(=O)c1ccccc1)NCCSc2ccccc2) 10 7 

1023 (c1ccc(nc1)c2cccs2) 13 0 

1024 (c1ccc(cc1)c2ccccn2) 23 5 

1025 (O=C(Nc1ccccc1)\C=C/c2ccccc2) 1 0 

1026 (O=C(NCc1ccccc1)C(=O)Nc2ccccc2) 10 10 

1027 (O=C(CCN1CCNCC1)Nc2ccccc2) 8 8 

1028 (C(=C/c1nccs1)/c2ccccc2) 7 0 

1029 (o1cnc(\C=C\c2ccccc2)n1) 5 5 

1030 (C1CCc2ccoc2C1) 12 6 

1031 (O=C(CNc1ccccc1)NCCSc2ccccc2) 8 8 

1032 (O=C(NCCNCc1ccccc1)c2cnon2) 6 6 

1033 (O=C1C=CC=C2OC=CN12) 6 6 

1034 (O=C(CSc1ncccn1)NCCc2ccccc2) 5 0 

1035 (O=C(CSc1ncccn1)N2CCCCC2) 8 4 

1036 (o1cccc1c2ccncn2) 22 17 

1037 (O=C1CNC=C2CC=CC=C2N1) 4 4 

1038 (O=C1CNC2=CC=CCC2=CN1) 2 2 

1039 (O=C(CSc1ncccn1)Nc2cccs2) 5 0 

1040 (O=C1NC(=CC(=O)N1)Nc2ccccc2) 2 2 

1041 (C1Cc2ccncc2CO1) 5 5 

1042 (C(Nc1ncn[nH]1)c2occc2) 4 4 

1043 (C(Nc1ncn[nH]1)c2ccccc2) 12 2 

1044 (O=C(c1occc1)n2cncn2) 5 4 

1045 (O=S(=O)(Nc1ccon1)c2ccccc2) 6 6 

1046 (O=C1OC=Nc2ccccc12) 6 5 

1047 (O=C(CSc1ncccn1)NCc2ccccc2) 12 0 

1048 (O=C(CSc1nc[nH]n1)Nc2ccccc2) 3 3 

1049 (C1Cc2cn[nH]c2C1) 8 8 

1050 (O=S(=O)(Nc1ccncn1)c2ccccc2) 15 15 

1051 (O=C(CCSc1ncccn1)Nc2ccccc2) 10 1 

1052 (O=C1CCSc2ncnn12) 10 10 

1053 (C1CCc2ncncc2C1) 8 0 

1054 (C1C=COc2ccccc12) 8 5 

1055 (O=C1OC=Nc2sccc12) 6 5 

1056 (O=C(Nc1cccs1)c2ccccc2) 9 3 
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1057 (C1Cc2ccccc2CO1) 4 4 

1058 (O=C1CCSC2=NC=CCN12) 6 4 

1059 (O=S(=O)(Nc1oncc1)c2ccccc2) 10 10 

1060 (O=C(OCc1ccccc1)C2=CNC(=O)CC2) 8 8 

1061 (O=C1NC(=O)C(Nc2ccccc2)S1) 9 9 

1062 (C(c1ccccc1)c2ccccc2) 6 3 

1063 (S(c1ccccc1)c2cn[nH]c2) 24 3 

1064 (O=C1NNC=C1CC2=CNNC2=O) 3 3 

1065 (O=C1NC(=O)N2C=CSC2=N1) 5 0 

1066 (O=C(CCCC(=O)OCC(=O)c1ccccc1)Nc2ccccc2) 5 3 

1067 (O=C(COc1ccccc1)N2CCNCC2) 10 10 

1068 (O=C1OC=CC2=C1NCCC2) 4 4 

1069 (O=C1CCCc2occc12) 6 5 

1070 (O=C(CNC(=O)C1CCCCC1)OCC(=O)c2ccccc2) 5 4 

1071 (C(c1cn[nH]c1)c2cn[nH]c2) 9 6 

1072 (O=C1NCC=C1Nc2ccccc2) 8 8 

1073 (C1CCCc2ncccc2CC1) 3 3 

1074 (O=C(Nc1ccccc1)C2=CNC(=O)NC2) 7 7 

1075 (O=C1NC(=O)C2=C(NC(=O)N2)N1) 1 1 

1076 (O=C(NCCCN1CCOCC1)C(=O)Nc2ccccc2) 6 6 

1077 (O=C(CCNCc1cccnc1)Nc2ccccc2) 2 2 

1078 (O=C(Nc1ccccc1)C2CC(=O)N=CS2) 3 3 

1079 (N(c1ccccc1)c2cccnn2) 10 0 

1080 (N1C=CSc2ccccc12) 7 5 

1081 (O=C(CNS(=O)(=O)c1ccccc1)N2CCNCC2) 5 5 

1082 (C(COc1ccccc1)CN2CCNCC2) 11 11 

1083 (O=C(CNS(=O)(=O)c1ccccc1)N2CCCCC2) 5 5 

1084 (O=C(CNS(=O)(=O)c1ccccc1)NCCSCc2ccccc2) 6 4 

1085 (O(c1ccccc1)c2ccccc2) 6 3 

1086 (O=C(COC(=O)c1ccccc1)c2ccccc2) 2 2 

1087 (O=C(CNS(=O)(=O)c1ccccc1)Nc2cccnc2) 5 5 

1088 (O=C(CCN1CCCCC1)Nc2ccccc2) 10 10 

1089 (O=C(CNCCc1ccccc1)NCc2ccccc2) 5 5 

1090 (O=C(COc1ccccc1)NS(=O)(=O)c2ccccc2) 5 1 

1091 (O=C1C=CC2=C1CSC=CN2) 1 0 

1092 (O=S(=O)(CCCSc1ccccn1)Cc2ccccc2) 5 0 

1093 (O=C(NCc1occc1)C(=O)Nc2ccccc2) 6 6 

1094 (O=C1NCNc2sccc12) 5 3 

1095 (C=C(NC(=O)c1ccccc1)C(=O)NC2CCCCC2) 3 1 

1096 (O=C(OC1CCCCC1)c2ccccc2) 6 1 

1097 (O=C(Nc1ccccc1)Nc2ccccn2) 6 6 

1098 (O=C(Nc1ccccc1)\C=C/c2occc2) 1 0 

1099 (O=C(CSc1ncn[nH]1)Nc2ccccc2) 1 1 

1100 (O=C(COc1ccccc1)Nc2nc[nH]n2) 1 1 

1101 (C1CN=C(O1)c2ccc[nH]2) 2 1 

1102 (C1Cc2[nH]ncc2C=N1) 1 0 

1103 (c1ccc(cc1)c2cnc[nH]2) 22 16 

1104 (O=C(CSc1c[nH]cn1)NCC2CCCO2) 11 9 

1105 (O=C(CCc1oncn1)NCc2ccccc2) 5 5 

1106 (O=C1NC=Cc2cc[nH]c12) 34 24 

1107 (O=C1OC=Cc2ncccc12) 6 6 

1108 (O=C(CSc1c[nH]cn1)Nc2ccccc2) 12 0 

1109 (O=C(CN1CCNC1=O)NCCc2ccccc2) 6 6 

1110 (O=C1C=Cc2ccccc12) 15 0 

1111 (C(Cc1ccccc1)NCc2ocnn2) 10 0 

1112 (O=C1CC(CN1)c2ocnn2) 10 10 
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1113 (O=C(CSc1ocnn1)N2CCCCC2) 12 12 

1114 (O=C(OC1CCCCCC1)C2=CNC(=O)CC2) 9 9 

1115 (O=C1CC(C=CN1)c2ccccc2) 7 7 

1116 (O=C(OCC1CCCCC1)C2=CNC(=O)CC2) 6 6 

1117 (O=C1NC=C(C(=O)N1)S(=O)(=O)N2CCCCC2) 8 8 

1118 (O=C(NC1=CNNC1=O)Nc2ccccc2) 12 12 

1119 (O=C(Nc1ccccc1)C2CC2) 9 9 

1120 (O=C1NC(=O)C2=NCCN=C2N1) 6 6 

1121 (O=C1NC(=O)c2nccnc2N1) 3 3 

1122 (C1Cc2cnoc2C=C1) 22 13 

1123 (O=C(Nc1cccnc1)c2ccon2) 7 7 

1124 (O=C(NC1=CNNC1=O)c2ccon2) 10 10 

1125 (O=C(N1CCCCC1)c2ccon2) 8 8 

1126 (O=C(NCCc1ccccc1)c2ccon2) 7 7 

1127 (O=C(Nc1cc[nH]n1)c2ccon2) 6 1 

1128 (O=C(Nc1ccn[nH]1)c2ccon2) 5 4 

1129 (O=C(Nc1cn[nH]c1)c2ccon2) 19 19 

1130 (O=C(CCS(=O)(=O)c1cccs1)Nc2ccccc2) 19 19 

1131 (O=C(CCNS(=O)(=O)c1cccs1)Nc2ccccc2) 4 4 

1132 (C(c1cocn1)n2ccnn2) 8 8 

1133 (c1cc2cnccn2n1) 4 0 

1134 (c1csc(n1)c2nccs2) 7 0 

1135 (O=C1NC=Cn2cnnc12) 5 5 

1136 (O=S(=O)(Nc1ccccc1)c2ccn[nH]2) 1 1 

1137 (C(c1ccccc1)c2cncnc2) 1 1 

1138 (O=C1NC(=O)c2[nH]ncc2N1) 15 15 

1139 (O=C(Cn1ccnn1)NC(=O)Nc2ccccc2) 7 7 

1140 (O=C(CS(=O)(=O)c1ncc[nH]1)Nc2ccccc2) 10 3 

1141 (O=C(CNC(=O)C1CCCCC1)Nc2ccccc2) 12 12 

1142 (c1cn2ccnc2cn1) 10 8 

1143 (O=C(CSc1ocnc1)Nc2ccccc2) 9 1 

1144 (O=C(CSc1ocnc1)NC2CCCCC2) 7 0 

1145 (O=C(CSc1ocnc1)c2ccccc2) 7 0 

1146 (C(Cc1ccccc1)Nc2ncccn2) 8 0 

1147 (C(Nc1ncccn1)c2ccccc2) 11 0 

1148 (O=C(Cc1cccs1)NCC(=O)Nc2ccccc2) 4 3 

1149 (O=C(CCCS(=O)(=O)c1ncccn1)Nc2ccccc2) 4 2 

1150 (O=C(CNCc1ccccc1)NC2CCCCC2) 4 1 

1151 (O=C(NC1N=CNC1=O)c2ccccc2) 8 1 

All 41,294 32,972 
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Take-home Messages 

This first chapter provides a comprehensive overview of data collections developed from the 

experimental PubChem BioAssay database and a thorough discussion on the issues that one 

should take notice of when using PubChem input for data set construction purposes. We did not 

only review the history, or point out the challenges, but also proposed possible solutions to 

address the issues and provided our vision for future directions. This is potentially informative 

for both the cheminformatics community (including ligand-/structure-based method-developing 

groups) and the medicinal chemists who are working on rational drug design/drug discovery. At 

the time when scientists are struggling to find a good standardized data set to test their novel in 

silico screening approaches, we believe that the information provided in this chapter can answer 

most of the concerns we might have. This review has received rave comments from all three 

reviewers of the International Journal of Molecular Sciences, and was accepted over two weeks 

after the first submission, only with several minor modifications. 
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As explained earlier in the manuscript, well-known issues in predicting the strength of binding 

interactions between a small ligand and a macromolecule cast doubt on the use of scoring 

functions employed by docking programs, thus hampering the identification of potential “hits” 

for a protein target, especially in the case where structural information on neither endogenous 

nor synthetic ligands is available. A novel computational method tailored to ligand-free protein 

structures was proposed in 2012, which automatically detects ligand-binding cavities, then 

predicts their structural “druggability” before creating a structure-based pharmacophore model 

for the “druggable” binding sites. In this chapter, the design of a new accompanying tool namely 

Shaper2 is described, aligning small ligands to the aforementioned cavity-derived 

pharmacophoric features with the use of a smooth Gaussian function. The selection and 

validation process of scoring parameters to screen the previously aligned ligands is next reported, 

with the aim of selecting as many active molecules as possible among the top-ranked 

compounds. The work portrayed in this chapter has been published as an original research paper 

in the Journal of Chemical Information and Modeling, and was presented at various conferences, 

both as a poster presentation and as an oral presentation. 

Tran-Nguyen, V. K.; Da Silva, F.; Bret, G.; Rognan, D. All in One: Cavity Detection, Druggability Estimate, 

Cavity-Based Pharmacophore Perception, and Virtual Screening. J. Chem. Inf. Model. 2019, 59, 573-585. doi: 

10.1021/acs.jcim.8b00684. 

https://doi.org/10.1021/acs.jcim.8b00684
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1. Introduction 

Computer-aided drug design
1
 has become a standard tool to assist medicinal chemists in 

identifying and/or optimizing hits for targets of pharmaceutical interest. Corresponding 

computational methods are classically divided into ligand-based
2
 or structure-based approaches

3
 

as to whether preexisting knowledge of ligands or target structures is taken into account. Among 

the ligand-centric methods, pharmacophore searches
4
 are extremely popular for many reasons: (i) 

the concept of pharmacophore is very intuitive and easily understood for both computational and 

medicinal chemists, (ii) it does not require the a priori knowledge of the target's three-

dimensional (3D) structure, (iii) it does not suffer from the main drawbacks
5
 of structure-based 

approaches (e.g. inaccurate binding free energy estimates) since topological scoring functions
6
 

are used to rank ligand adequacy (fitness) to a pharmacophore query, and (iv) aligning a ligand 

onto a pharmacophore model intuitively guides its further optimization in order to gain or lose 

additional features. 

Typical ligand-based pharmacophore searches first require that the template ligands share the 

same functional effect, then extract common features from these aligned ligands to derive a 

pharmacophore hypothesis, and search for potential hits that satisfy this hypothesis in a 

chemolibrary. If the X-ray structures of protein-ligand complexes are available, protein-ligand-

based pharmacophores
7-10

 may be derived as well by mapping features onto protein-interacting 

ligand atoms, and therefore, complement purely ligand-based pharmacophore models. However, 

there are still many protein structures and/or novel cavities for which not a single ligand has ever 

been identified. In order to avoid problems associated with structure-based approaches (e.g. 

target flexibility, absolute or relative ranking of compounds of interest) for such orphan targets, 

several methods have been proposed over the last decade to fill the gap between structure-based 

methods and pharmacophore searches. 

Structure-based pharmacophore perception methods classically use a set of molecular probes 

(atoms, fragments) to locate energetically preferred probe locations. Grid-based methods (e.g. 

GRID,
11

 SuperStar,
12

 FTMap,
13

 VolSite,
14

 T2F,
15

 GRAIL
16

) locate these preferred positions on a 

three-dimensional lattice encompassing either the full protein or at least a user-defined binding 

cavity. Energy minima on the contour maps
17-19

 are then saved for every probe and used as 

guides to define structure-based pharmacophoric features. Fragment-based methods rely on the 
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prediction of hotspots from molecular dynamic simulations of the target (e.g. MCSS,
20

 SILCS,
21

 

HSRP
22

) with multiple copies of fragments bearing well-defined pharmacophoric properties. 

Again, the most energetically favorable positions of every fragment are later converted into 

pharmacophores. The positions of these features can be topologically predicted by scanning the 

cavity-lining and accessible amino acids, in order to generate topologically ideal interaction 

vectors pointing at 3D space (spheres, cones) where potential ligand atoms should be located to 

optimally interact with the protein surface. The pioneering method LUDI
23

 has inspired many 

structure-based pharmacophore perception methods (e.g. Virtual ligand,
24

 SBP,
25

 HS-Pharm,
26

 

Snooker,
27

 Examplar
28

) to position ideal pharmacophoric moieties from the 3D structure of a 

binding cavity. 

Whatever the method, the number of generated features (a few hundreds) exceeds by far the 

upper complexity tolerated by pharmacophore searching algorithms. The number of features 

must therefore be considerably lowered to an acceptable value, usually below 10. A pre-selection 

phase aimed at pruning pharmacophoric features can be carried out based on energetic 

criteria,
15,16,20-22

 buriedness criteria,
15,19

 hydration sites overlaps,
22

 or locations with respect to 

knowledge-based predicted anchoring hotspots.
26

 Most methods finish the filtering step by 

hierarchical clustering based on feature properties and inter-feature distances.  

Receptor-based pharmacophore searches have proven to perform at least as effectively as 

molecular docking, with respect to enrichment in true actives in retrospective virtual screening 

experiments.
21,22,26,28

 However, they suffer from, with a few exceptions,
21,28

 a lack of automation 

since many of the above-cited post-processing steps are tedious, thus leaving the user with 

subjective decisions to make as regards, for example, the nature of probes to use, the acceptable 

energy minima, or the number of clusters. Moreover, the true value of receptor-based 

pharmacophore searches in posing a ligand has rarely been examined
29

 and compared to that of 

molecular docking. 

To address the above limitations, we herewith modified a previously-described cavity detection 

method (VolSite
14

) in order to automatize many steps between cavity detection and workable 

pharmacophore query definition. VolSite has notably been embedded in the IChem
30

 toolkit to 

perform the following operations: (i) on-the-fly detection of all cavities at the surface of a target 

of interest, (ii) prediction of their structural druggability, and (iii) perception of potential 
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pharmacophores from the 3D structures of cavities predicted as “druggable”. We next modified 

the previously reported Shaper method
14

 to align ligand atoms onto cavity features by shape-

matching and tested several topological as well as energy-based scoring functions in posing and 

virtual screening challenges. 

2. Computational Methods 

2.1. Data Sets 

Sc-PDB Diverse Set: 213 diverse protein-ligand complexes (Table S1) were retrieved from the 

sc-PDB database
31

 according to the diversity of their protein-ligand interaction patterns, 

measured by a previously-reported graph-matching procedure (GRIM).
32

 Starting from a full 

GRIM similarity matrix calculated on 9283 entries of the sc-PDB archive, clusters were defined 

using simple agglomerative clustering, a minimal pairwise similarity (GRIM score) of 0.70 

between its representatives, a minimal size of 6 entries, and a single linkage criterion. For every 

cluster, representative X-ray structures of the bound ligand and its cognate target (cluster center) 

were downloaded from the sc-PDB website.
33

  

Astex Diverse Set: 85 entries of the Astex Diverse Set
34

 (Table S2) were downloaded from the 

CCDC website
35

 and processed as follows. For each entry, the protein-ligand complex was 

reconstructed in Sybyl-X.2.1.1
36

 by merging the ligand (mol2 file format) into the protein (mol2 

file format). Bound water molecules were imported from the corresponding RCSB Protein Data 

Bank (PDB)
37

 file, all hydrogen atoms were deleted, and the fully hydrated complex (heavy 

atoms only) was protonated using Protoss.
38

 Ions and cofactors having no heavy atoms located in 

a 4.5-Å-radius sphere centered on the ligand’s center of mass were deleted. Water molecules 

were kept if two conditions were satisfied: (i) the oxygen atom was located in the above-

described sphere; (ii) the bound water engaged in at least two hydrogen bonds with the protein 

(donor-acceptor distance not exceeding 3.5 Å, donor-hydrogen-acceptor angle not narrower than 

120 deg.). The ligand, as defined in the original Astex data, and the hydrated protein (including 

the ions and cofactors that remained) were separately saved in mol2 file format. 

DUD-E subset: 10 entries (Table S3), selected from a previous benchmarking study
32

 and 

representing 5 important target families (G protein-coupled receptors, nuclear receptors, protein 
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kinases, proteases, other enzymes) were retrieved from the DUD-E database
39

 and further 

processed similarly to the Astex Diverse Set.  

ROCK2 screening set: 59,805 compounds tested for Rho kinase 2 (ROCK2) inhibitory activities 

were downloaded from the PubChem BioAssay repository in 2D sd file format. Primary 

screening data (% of inhibition at a single concentration of 6 µM, AID 604)
40

 for all compounds 

and confirmatory potency values for primary hits (IC50s from the dose-response assay ID 644)
41

 

were collected directly from PubChem. Compounds with IC50 values equal to or lower than 10 

µM (n = 67) were considered active, all other compounds were considered inactive. The X-ray 

structure of human ROCK2 kinase in complex with an inhibitor (1426382-07-1) was retrieved 

from the PDB (PDB ID 4WOT) and further processed similarly to the Astex Diverse Set. The 

starting 3D coordinates of PubChem ligands (mol2 file format) were generated with Corina 

v.3.4
42

 and all compounds were ionized at physiological pH with Filter v.2.5.1.4.
43

 The fully 

processed data set comprises 59,781 compounds (67 actives and 59,714 inactives). 

ESR1 screening set: 10,486 compounds tested for estrogen receptor α (ESR1) antagonism were 

downloaded from PubChem BioAssay in 2D sd file format. Dose-response inhibitory 

concentrations for the confirmed hits (IC50 values, AID 743080)
44

 were also collected from 

PubChem. Compounds with IC50 values equal to or lower than 25 µM, exhibiting full inhibition 

curves and devoid of Sn and P atoms (n = 59) were kept as actives. To avoid bias in the inactive 

set, inactive compounds were selected among the molecules free of Sn and P atoms, with 

molecular weights falling in the same range (310-750 Da) as that observed for true actives. 1530 

inactive compounds were finally selected. The X-ray structure of human estrogen receptor α in 

complex with the selective antagonist 4-hydroxytamoxifen was retrieved from the PDB (PDB ID 

3ERT) and further processed similarly to the Astex Diverse Set. The starting 3D coordinates of 

PubChem ligands (mol2 file format) were generated with Corina v.3.4
42

 and all compounds were 

ionized at physiological pH with Filter v.2.5.1.4.
43

 The fully processed data set comprises 1589 

compounds (59 actives and 1530 inactives). 

OPRK1 screening set: 284,220 compounds tested for kappa opioid receptor (OPRK1) agonism 

were downloaded from PubChem BioAssay in 2D sd file format. Dose-response activity data 

(EC50 values, AID 1777)
45

 were also collected from PubChem. Compounds with EC50 values 

equal to or lower than 20 µM (n = 35) were considered active. All other compounds were 
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considered inactive, from which a randomly selected set of 34,048 compounds was retrieved. 

The X-ray structure of the active state-stabilized human kappa opioid receptor in complex with 

the full agonist MP1104 was downloaded from the PDB (PDB ID 6B73) and further processed 

similarly to the Astex Diverse Set. The starting 3D coordinates of PubChem ligands (mol2 file 

format) were generated with Corina v.3.4
42

 and all compounds were ionized at physiological pH 

with Filter v.2.5.1.4.
43

 The fully processed data set comprises 34,083 compounds (35 actives and 

34,048 inactives). 

2.2. Cavity-Based Pharmacophore Perception (IChem) 

The previously described VolSite algorithm
14

 was embedded in the IChem toolkit v.5.2.9
32

 with 

small modifications compared to the original description. First, hydrogen atoms were added to 

the input target PDB structure using Protoss,
38

 therefore optimizing the intra- and inter-molecular 

hydrogen bond network for all molecules in the input PDB file. The pharmacophoric properties 

of protein atoms (hydrophobic features, aromatic features, hydrogen-bond donors, hydrogen-

bond acceptors, positively ionizable features, negatively ionizable features, metals) were 

detected on the fly from their atom types (mol2 input), thereby enabling us to consider additional 

molecules (ions, cofactors, water molecules, prosthetic groups, nucleic acids) as parts of the 

protein. Second, hydrophobic protein atoms were redefined using tighter rules in comparison to 

those indicated in our seminal report.
14

 Hydrophobic atoms were restricted to carbon or sulfur 

atoms not bonded to heteroatoms or halogen atoms. Cavity-based pharmacophores were defined 

using a four-step protocol as described in Figure 1. 
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Figure 1. Overall flowchart of the method. (1) Starting from a hydrogens-containing protein 

input structure, cavities were automatically detected using standard VolSite parameters and 

described as a collection of pharmacophoric features (blue, cyan, red and green dots). (2) The 

cavities predicted as “druggable” (enclosed by a red circle) were submitted to a second structure-

based pharmacophoric description step using a tighter grid resolution (1.0 Å). Pharmacophoric 

features (hydrophobic features: cyan; aromatic features: orange; hydrogen bond acceptors and 

negatively ionizable features: green; hydrogen bond donors and positively ionizable features: 

magenta) were assigned according to the pharmacophoric properties of the nearest acceptable 

protein atom (see “Computational methods”). (3) Pharmacophoric features were pruned 

according to knowledge-based rules (buriedness, distance to cavity center, PLP interaction 

energy). (4) Hierarchical clustering of pharmacophoric features was carried out. (5) Shape-based 

alignment of ligand atoms onto the cavity-based features (same color coding as in step 2) was 

done by optimizing the overlap of the corresponding molecular shapes. 

Step 1 – Coarse-grained cavity detection: the general procedure for detecting cavities has already 

been described in a previous report
14

 and will just be briefly summarized here. Starting from 

atomic coordinates of the target protein, a three-dimensional (3D) cube was centered on the 

center of mass of the target and filled with a 1.5-Å-resolution grid defining voxels with a volume 

of 3.375 Å
3
 each. To every voxel was associated a site point along with a property at its center. If 

the corresponding voxel encompassed a protein atom or if its center was less than 2.0 Å away 

from any protein heavy atom, the site point would be considered inaccessible (“IN” property). 
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Any other point was then checked for buriedness by generating, from its coordinates, a set of 120 

regularly spaced 8-Å-long rays. If the number of rays intersecting an “IN” cell (Nri) was smaller 

than 55, the corresponding point would be deemed outside the enclosing cavity and was assigned 

the “OUT” property. The remaining points were claimed to encompass the cavity and checked 

for direct neighborhood with other cavity points. If isolated (fewer than 3 neighbors in adjacent 

voxels), the points were deleted. Site points closer than 4.0 Å to a protein atom were assigned 

one of the eight possible pharmacophoric properties (hydrophobic feature, aromatic feature, H-

bond acceptor, H-bond donor, H-bond acceptor and donor, negatively ionizable feature, 

positively ionizable feature, metal-binding feature) complementary to that of the closest protein 

atom using the previously-reported interaction rules.
32

 Points with no neighboring protein atoms 

within a 4-Å distance were assigned the null property (“dummy”). For each detected cavity, a set 

of site points (mol2 file format) and a “druggability” score (derived from a previously-described 

support vector machine model)
14

 were given. Only cavities with positive druggability scores 

were further considered for the generation of cavity-based pharmacophores. 

Step 2 – High-resolution cavity description: for each cavity, the previously-reported procedure 

(step 1) was repeated with two modifications: (i) the center of the 3D lattice was defined as the 

center of mass of the corresponding coarse-grained cavity, and (ii) the grid resolution was then 

set to 1.0 Å for a better description of cavity points. Each cavity point was assigned a 

pharmacophoric feature as previously reported. 

Step 3 – Pruning pharmacophoric features: to describe the properties of true pharmacophoric 

features, “ideal pharmacophores” were deduced from 213 protein-ligand complexes of the sc-

PDB Diverse Set. In an ideal pharmacophore model, a feature is assigned to any ligand atom in 

interaction with the target protein with a property equal to that of the corresponding interaction, 

but using exactly the same IChem rules (atom types, distances, angles, planes) as those used to 

define pharmacophoric properties of cavity points. An analysis of these ideal pharmacophoric 

features enables us to set threshold values for simple descriptors (buriedness, distance to the 

cavity center, interaction energy) in order to reduce the number of features without losing crucial 

information. Three pruning rules were applied in the following order: (i) buriedness Nri lower 

than 80, (ii) distance between the feature and the cavity center shorter than 8 Å, (iii) piecewise 

linear potential (PLP)
46

 interaction energy lower than the corresponding feature-dependent 
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threshold (for hydrophobic features, H-bond donors/acceptors, positively ionizable and 

negatively ionizable features: 0 kcal/mol; for aromatic features: -2.4 kcal/mol; for metal-binding 

features: -3.5 kcal/mol). 

Step 4 – Refining and clustering pharmacophoric features: the remaining H-bond acceptors, 

aromatic features and hydrophobic features were next subjected to a refining step. As hydrogen 

atoms were explicitly described in the target protein, a cavity point would still be a hydrogen-

bond acceptor feature only on the condition that the nearest protein atom was a hydrogen-bond 

donor (previous definition in steps 1 and 2) and that the donor-hydrogen-feature angle was 

between 120 and 180 degrees. Previously-defined acceptor features not fulfilling the new angular 

threshold were therefore re-assigned a novel property according to the second nearest protein 

atom and so on until a new property could be unambiguously assigned. If it was not possible (no 

clear assignment possible from any of the protein atoms closer than 4 Å from the feature), the 

feature was simply eliminated. The remaining aromatic features were next reconsidered from 

their spatial location with respect to the aromatic plane to which the closest aromatic protein 

atom belonged. Apart from the previously applied distance criterion (distance between the 

feature and the protein atom shorter than 4 Å), we herein applied a second distance threshold of 

1.5 Å, corresponding to the largest possible distance between the aromatic feature and two 

virtual points situated 4 Å away from the closest protein aromatic ring, along a normal to the 

aromatic plane in both directions. Again, aromatic features not satisfying this additional filter 

were either reassigned a new property (starting from the second closest protein atom) or 

eliminated if no assignment was possible. Last, the remaining hydrophobic features were also 

reconsidered and kept as hydrophobic only if: (i) more than 50% of the protein atoms located 

within 4.5 Å from the feature were hydrophobic, and (ii) at least 50% of the neighboring protein 

residues (less than 4.5 Å away) were considered hydrophobic (alanine, valine, leucine, 

isoleucine, proline, methionine, phenylalanine, tyrosine, and tryptophan). It is note-worthy that 

these refinements were applied at the step 4 and not to the full set of pharmacophoric features 

(step 2) to speed up the overall protocol. 

The remaining features were then clustered using a simple hierarchical clustering method by 

pharmacophoric property and inter-feature distance (< 3.1 Å). The final pharmacophoric features 

were saved in three possible file formats (TRIPOS mol2 format, CATALYST chm file format,
47
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and LigandScout pml format
8
). The pharmacophore models describe for each feature the 

following items: 

 Property: hydrophobic feature, aromatic feature, H-bond acceptor, H-bond donor, 

negatively ionizable feature, positively ionizable feature, metal-binding feature; 

 Atomic coordinates of the feature (head);  

 A 3-Å-long projection vector to a tail (H-bond acceptors, H-bond donors, aromatic 

features) directed to the complementary protein atom; 

 Special attributes for aromatic features (centroid, normal, vector, plane); 

 Location spheres for directional features (H-bond acceptors, H-bond donors, aromatic 

features) of 1.6 and 2.2 Å radius for head and tail spheres, respectively; 

 Exclusion volumes placed, for each cavity-lining residue (one exclusion volume per 

residue), on the geometric center of the residue’s heavy atoms located at a distance 

range of 4.1-5.0 Å from any pharmacophoric feature. The radii of exclusion spheres are 

dependent on the number of close heavy atoms of the protein (1 close atom: 1.15 Å; 2 

atoms: 1.25 Å; 3 atoms: 1.35 Å; 4 atoms: 1.45 Å; 5 atoms: 1.55 Å; 6 atoms: 1.60; 7 

atoms: 1.65; 8 atoms and above: 1.70 Å). 

It is worth noting that features having the double property H-bond donor and H-bond acceptor 

were described by two separate properties (donor, acceptor) matched on the same point. 

2.3. Ligand Alignment to IChem Pharmacophoric Features (Shaper2) 

The previously-described Shaper algorithm,
14

 designed to align cavities, was slightly modified to 

align ligand atoms (mol2 file format) onto the aforementioned set of cavity points. Shaper2 relies 

on OpenEye python libraries
43

 to describe molecular shapes by a smooth Gaussian function and 

to align two molecular objects (ligand features, cavity features) by optimizing the intersection of 

their corresponding volumes.
48

 During the alignment, cavity features are kept rigid while a 

maximum of 200 pre-defined conformers of the ligand to fit (fit object, constructed in Omega2 

v.2.5.1.4)
43,49

 undergo rigid body rotations and translations. Contrary to the original Shaper 

method, the updated version allows users to choose among different overlap methods (by default: 

Exact), different overlap minimization techniques (by default: Subrocs) and diverse similarity 

metrics (by default: TanimotoCombo). A detailed description of all options is available online.
50
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A specific force field (Table S4) has been set up to align ligand atoms to cavity features. It 

consists of SMARTS (simplified molecular-input line-entry system arbitrary target specification) 

patterns for nine pharmacophoric feature properties (hydrophobic features, rings, H-bond donors, 

H-bond acceptors, H-bond donors and acceptors, cations, anions, Ca_Mg, Zn) and 56 pattern-

matching rules to score the shape-based alignment by pharmacophoric similarity (Table S4). All 

aligned poses were then subjected to a two-step structure optimization process using the 

MMFF94 force field
51

 implemented in SZYBKI v.1.8.0.1.
43

 First, each pose was minimized with 

the steepest descent algorithm with respect to the MMFF94 potential in full Cartesian 

coordinates using default settings. Then, a single point calculation was done with the Poisson-

Boltzmann (PB) protein-ligand electrostatics,
52

 calculating protein-ligand interaction energy 

including solvent effects. All possible ligand-cavity matches were scored according to the four 

following metrics: 

 The TanimotoCombo similarity score: 

TanimotoCombo = ShapeTanimoto + ColorTanimoto = 
OSC,L

ISC+ISL+OSC,L
+

OCC,L

ICC+ICL+OCC,L
  

- OSC,L is the overlap between the shapes of cavity and ligand features 

- ISC and ISL are the non-overlapping shapes of each entity 

- OCC,L is the overlap between the colors of cavity and ligand features 

- ICC and ICL are the non-overlapping colors of each entity 

- The score is asymmetric and varies between 0 and 2. 

 The PLP interaction of each feature with the protein, as implemented in the original 

publication.
46

 

 The MMFF94 protein-ligand interaction energy IntE: 

IntE = EVdW-PL + ECoulomb-PL + EProtein_desolv_PB-PL + ELigand_desolv_PB-PL + ESolvent_screening_PB-PL. 

 The MMFF94 total energy TotE = TotIE + IntE: 

TotIE (ligand MMFF94 intramolecular energy) = EVdW + ECoulomb + EBond + EBend + 

EStretchBend + ETorsion + EImproper_Torsion. 

IntE = EVdW-PL + ECoulomb-PL + EProtein_desolv_PB-PL + ELigand_desolv_PB-PL + ESolvent_screening_PB-PL. 

For more details, the reader is directed to the SZYBKI document on the OpenEye website, 

describing the MMFF94 force field implementation.
53
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2.4. Ligand Alignment to IChem Pharmacophores (Discovery Studio) 

The input ligand 3D structure was converted from mol2 to sd file format using Corina v.3.4
42

 and 

employed as input to generate 3D conformers using the “Generate Conformations” protocol of 

Discovery Studio v.2017.
54

 The conformer generation method was set as “FAST”, a maximum of 

200 conformers were generated within an energy threshold of 20 kcal/mol (as regards the global 

minimum). Ligand conformers were next aligned to IChem pharmacophoric features (chm 

format) using the “citest” command of Discovery Studio. A maximum of 2000 pharmacophore 

models including from 2 to 6 features were generated to map ligand conformers in the rigid 

mode. The best mapping conformer (highest fit value) was finally saved in sd file format. 

2.5. Ligand Alignment to IChem Pharmacophoric Features (LigandScout) 

Ligands (sd file format) were converted to the LigandScout
55

 v.4.1.10 ldb database format with 

the “idbgen” script that saved up to 200 conformations for each ligand using high-quality settings 

of the “iCon” conformer generator (“icon-best” option).
56

 The conformations were next aligned, 

with standard settings of the “iscreen” routine, to the IChem-generated pharmacophores (pml 

format). The best mapping conformer (highest fit value) was saved in sd file format. 

2.6. Docking (Surflex-Dock) 

Surflex-Dock v.4.227 was used as prototypical docking engine.
57

 A protomol was first generated 

from the list of residues, ions, cofactors and water molecules lining the ligand-binding site (any 

molecule with a heavy atom in a 4.5-Å-radius sphere centered on the ligand’s center of mass) 

using default settings.
57

 The protomol was further used to dock a randomly generated 

conformation of the ligand using the “–pgeom” option. Only the best-ranked pose (scored by pKd 

values) was saved. 

2.7. ROCS Shape Overlap 

A maximal number of 200 conformers (sd file format) were generated for every PubChem ligand 

using standard settings of Omega2 v.2.5.1.4.
43,49

 All conformers were then compared to the 

query (protein-bound ligand X-ray pose, mol2 file format) with ROCS v.3.2.0.4
43,58

 and scored 

by TanimotoCombo values, after which the best matching one (highest Tc) was determined. 
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3. Results and Discussion 

The pharmacophore concept is more than one century old
59

 and has been widely used in ligand-

based
4
 and, more recently, protein-ligand-based

7,8
 virtual screening. When only structures of 

ligand-free proteins are available, defining simple and workable pharmacophore queries is more 

difficult for the simple reason that cavity structure-based pharmacophore perception is a complex 

and multi-step procedure. Cavities first need to be detected at the protein surface, and then 

evaluated for their potential “druggability”. The positions of pharmacophoric features mimicking 

a perfect ligand must then be inferred from the coordinates of cavity-lining protein residues. 

Very often, the number of ideal features exceeds by far the upper complexity tolerated by 

standard 3D pharmacophore searches. Therefore, they need to be rationally pruned, usually from 

interaction energy maps, to downsize the population and to enable the definition of a workable 

pharmacophore model (usually comprising fewer than 10 features). Moreover, there exist many 

methods
20-22

 that rely on lengthy molecular dynamic simulations to locate the energetically 

preferred positions of probes, which prohibits their usage even at a low throughput. Although 

recent efforts have been reported to simplify the steps described above,
21,28

 it is still necessary to 

design a tool that is able to quickly and reliably automatize the entire process from early cavity 

detection to late final pharmacophore definition. 

3.1. Cavity-Based Pharmacophore Perception 

The herein proposed cavity-based pharmacophore perception workflow is made of four 

consecutive steps (Figure 1). First, potentially druggable cavities were detected on the fly from 

the input protein structure using standard parameters of our in-house developed VolSite 

algorithm.
14

 The method centers the protein in a 1.5-Å-resolution lattice and assigns a 

pharmacophoric feature (hydrophobic/aromatic/positively-charged/negatively-charged/metal-

binding feature, H-bond donor and/or acceptor) to every accessible voxel, depending on the 

pharmacophoric property of the nearest accessible protein atom. The structural “druggability” of 

every detected cavity was predicted with the use of a support vector machine model
14

 that 

showed a very good accuracy level in comparison to state-of-the-art methods. For each cavity, 

the detection procedure was repeated using a higher-resolution grid (1.0 Å) that was centered on 

the cavity’s center of mass, after which the obtained features were pruned in order to decrease 

their population. 
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The previously published VolSite algorithm
14

 was modified to take into account the positions of 

explicit hydrogen atoms, added by the Protoss knowledge-based method.
38

 The main advantage 

of using hydrogen coordinates of the target protein is that hydrogen acceptor features can be 

better assigned from the corresponding vectors (donor-hydrogen-voxel center) than using the 

previous protocol that just relied on distances. Along the same spirit, we have also refined the 

definition of cavity aromatic features by taking into account additional topological measurements 

for detecting face-to-face aromatic interactions (see “Computational methods”). Last, the 

assignment of hydrophobic features is stricter and now requires that the closest protein atom be 

also annotated as hydrophobic and located in a global hydrophobic environment. The 

consequence of these changes is that the pharmacophoric assignment of cavity features may 

require several steps. For example, a hydrophobic protein atom (e.g. CB atom of an alanine) 

cannot be used to assign a hydrophobic property to a cavity voxel if the latter does not satisfy the 

above-described proximity conditions, even if it is the closest protein atom of that particular 

voxel. In that case, a second assignment step is done by considering the second closest protein 

atom to the voxel, and so on until one protein atom perfectly suits all the required conditions. 

Therefore, contrary to the original VolSite implementation,
14

 in this updated version, some 

cavity voxels may not be assigned a pharmacophoric property. 

A key issue in the current work is the implementation of knowledge-based rules to limit the 

number of pharmacophoric features to the lowest possible number. To reach this objective, we 

carefully analyzed the position of “ideal” pharmacophoric features derived from a training set of 

213 diverse protein-ligand structures. By “ideal”, we mean that pharmacophoric features are 

directly mapped onto protein-bound ligand atoms if the corresponding atom is in direct 

interaction, according to IChem rules, with the protein. To define a set of ideal features, 213 

high-resolution protein-ligand X-ray structures were extracted from the sc-PDB archive of 

druggable protein-ligand complexes.
31

 These structures present a maximal diversity of protein-

ligand interaction patterns, as assessed by our previously described GRIM methodology
32

 that 

directly computes the pairwise similarity of protein-ligand interaction patterns. Out of the 213 

most diverse complexes, we could identify 4871 ideal features for which three properties were 

inspected: buriedness, distance to the cavity center, and PLP interaction energy (Figure 2).  
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Figure 2. Properties of 4871 ideal pharmacophoric features generated from the sc-PDB Diverse 

Set (213 complexes). (A) Box-and-whisker plot of the distribution of pharmacophoric features’ 

buriedness (Hyd: hydrophobic features; Aro: aromatic features; Don: H-bond donors; Pos: 

positively ionizable features; Acc: H-bond acceptors; Neg: negatively ionizable features; Met: 

metal-binding features) expressed by the number of 8-Å-long rays (out of 120 in total) 

originating from the feature center and the intersecting protein atoms. The boxes delimit the 25th 

and the 75th percentiles, the whiskers delimit the 5th and the 95th percentiles. The median and 

mean values are indicated by a horizontal line and an empty square in the box, respectively. The 

crosses delimit the 1st and the 99th percentiles. The minimum and maximum values are 

indicated by the dashes. (B) Distance of the feature (in Å) to the cavity center, expressed by the 

cumulative number of features. The cumulative distribution follows a Boltzmann sigmoidal 

function (R
2
 = 0.999). (C) Box-and-whisker plot of the distribution of inter-feature PLP

46
 

interaction energy (Hyd: hydrophobic features; Aro: aromatic features; Don: H-bond donors; 

Pos: positively ionizable features; Acc: H-bond acceptors; Neg: negatively ionizable features; 

Met: metal-binding features) and their protein environment. The boxes delimit the 25th and the 

75th percentiles, the whiskers delimit the 5th and the 95th percentiles. The median and mean 

values are indicated by a horizontal line and an empty square in the box, respectively. The 

crosses delimit the 1st and the 99th percentiles. The minimum and maximum values are 

indicated by the dashes. 
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Whatever the feature type, more than 75% of the ideal features had buriedness values higher than 

80 (Figure 2A). Likewise, over 90% of them were closer than 8 Å from the corresponding cavity 

center (Figure 2B). As expected, the recorded PLP interaction energy values of these features 

with their protein environment clearly show that they are negative and feature type-dependent 

(Figure 2C). Applying feature-dependent cut-off thresholds (for hydrophobic/positively 

ionizable/negatively ionizable features, H-bond donors and/or acceptors: 0 kcal/mol; for 

aromatic features: -2.4 kcal/mol; for metal-binding features: -3.5 kcal/mol) ensured that at least 

95% of these ideal features would be selected. 

The application of the above-described pruning rules all along the flowchart (Figure 3A) indeed 

limited the number of output features from 326 ± 90 at the beginning of the process (fine-grained 

cavity description) to 259 ± 95 after buriedness evaluations, 253 ± 88 after cavity center-feature 

distance calculations, 37 ± 7 after clustering, and finally 27 ± 7 after PLP interaction energy 

calculations (Figure 3B). The chronological order in applying these three filters does not affect 

the obtained results. To avoid repeating the PLP interaction energy evaluation before and after 

clustering, we decided to place this step at the end of the protocol. Here again, we verified that 

this choice did not bias the obtained results. 

 

Figure 3. The five-step protocol to prune cavity-based pharmacophoric features in IChem. 

Features were defined from the IChem-detected ligand-binding sites of 213 entries of the sc-PDB 

Diverse Set. (A) The flowchart. (B) The decreasing number of pharmacophoric features that 

remained all along the protocol. (C) The percentage of ideal features recovery all along the 

protocol. An ideal feature is deemed “recovered” if it is located closer than 2.0 Å from a 

predicted feature of the same type, generated for the same test set according to identical 

topological rules by matching pharmacophoric properties to protein-interacting ligand atoms. 
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We also verified that the observed drastic reduction in the number of features did not lead to a 

global loss of information. For that purpose, we estimated the percentage of ideal features 

recovery, by computing the closest distance between every IChem-predicted element and an 

ideal feature of a compatible pharmacophoric type. If the distance is smaller than 2.0 Å, the 

predicted feature is deemed close enough to the ideal one and the latter is recovered. Estimating 

the percentage of ideal features recovery at every step of the pruning stage (Figure 3C), we 

conclude that the filtering process did not discard a significant proportion of key elements. After 

the last step, about 80% of all features belonging to every feature type (except aromatic ones, for 

which the recovery rate was about 70%) were within a radius of 2 Å from a predicted element of 

the same type. We thus assume that our feature selection process is accurate enough to simplify 

the final cavity-based pharmacophore model without any major loss of information. 

3.2. Ligand Posing Accuracy  

Ligands were aligned onto the above-described cavity-based pharmacophoric features using a 

modified version (Shaper2) of our Shaper algorithm,
14

 employing a smooth Gaussian function to 

maximize the shape overlap of ligand atoms and cavity features, and score the alignment by both 

shape and color (feature type) similarity. In comparison to the previous Shaper version that had 

been designed for pairwise cavity comparisons, the force field was modified in this updated one 

(Table S4) to enable ligand alignment to cavity features. A test set of 85 high-quality protein-

ligand complexes (Astex Diverse Set),
34

 specifically designed to assess docking performance, 

was used for that purpose. To estimate the posing quality, we compared the results obtained with 

Shaper2 alignment on IChem features (this work) to those of a state-of-the-art docking tool 

(Surflex-Dock).
57

 Moreover, we also compared the alignment accuracy of Shaper2 to that of two 

standard pharmacophore search methods (Discovery Studio, LigandScout), using the same set of 

IChem-derived features. Four scoring functions were evaluated to analyze Shaper2 matching 

poses to IChem pharmacophores. The first one (Tc) just computes the TanimotoCombo 

similarity (shape + color) between the aligned poses and the protein-bound ligand X-ray 

coordinates. The second one (PLP) computes the PLP interaction energy of the feature with its 

protein environment. The third and fourth ones (TotE, IntE) register the MMFF94 total 

interaction energy and MMFF94 protein-ligand interaction energy using a Poisson-Boltzmann 

treatment of desolvation effects. 
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Plotting, for each Astex Diverse Set entry, the root-mean square deviation (RMSD) of the best 

Surflex-Dock pose (heavy atoms only) to the true X-ray pose, defines the base line for applying a 

structure-based docking tool to this data set (Figure 4).  

 

Figure 4. Performance of different methods in predicting the poses of 85 ligands from the Astex 

Diverse Set. Posing was done using docking (Surflex-Dock), ligand-based pharmacophore 

searches (Discovery Studio, LigandScout), and cavity-based pharmacophore searches (IChem). 

IChem alignment was scored by four different functions: TanimotoCombo similarity (Tc), PLP 

interaction energy (PLP), total MMFF94 energy (TotE), MMFF94 protein-ligand interaction 

energy (IntE). (A) Cumulative percentage of entries from the Astex set for which the top-ranked 

pose of the cognate ligand is within a certain RMSD to the X-ray pose. (B) Distribution of 

RMSD values to the X-ray pose. The boxes delimit the 25th and the 75th percentiles, the 

whiskers delimit the 5th and the 95th percentiles. The median and mean values are indicated by a 

horizontal line and an empty square in the box, respectively. The crosses delimit the 1st and the 

99th percentiles. The minimum and maximum values are indicated by the dashes. 
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Surflex-Dock indeed posed quite accurately the Astex ligands with a median RMSD of 1.62 Å. 

65% of all ligands were docked with RMSD values to the X-ray pose below 2 Å (Table 1). This 

docking performance is quite similar to previous results obtained on this peculiar data set
60

 and 

on other sets by us
61

 and other groups.
5,62

 We can therefore assess that no particular bias is 

present in both the data set and the manner we set the input files. In our hands, the two ligand-

based pharmacophore tools (Discovery Studio, LigandScout) failed to predict the correct pose 

(RMSD < 2.0 Å) in approximately 90% of the cases (Figure 4, Table 1). In other words, the 

complexity of IChem cavity-based features (27 features on average for the Astex Diverse Set) is 

still too important for hard sphere-based alignment tools. The quality of IChem cavity-based 

pharmacophores is not responsible for this observation since Shaper2 alignment to the same 

pharmacophores produced much better results, albeit with significant differences as regards the 

chosen scoring function (Figure 4, Table 1). Just relying on the similarity of shapes and colors 

(Tc metric) was not sufficient to yield high-quality poses (average RMSD = 4.10 Å) although the 

obtained results were already better than those received from Discovery Studio and LigandScout. 

Rescoring Shaper2 poses according to the PLP energy significantly improved the alignment 

(median RMSD = 2.95 Å, Table 1). However, this scoring method remains inferior to Surflex-

Dock in producing high-quality poses (Figure 4). 

We therefore minimized the pose (ligand in its protein environment) with the MMFF94 force 

field that includes an explicit Poisson-Boltzmann treatment of desolvation effects.
52

 Using either 

the total MMFF94 energy (TotE: ligand strain energy + protein-ligand interaction energy) or just 

the protein-ligand interaction energy term (IntE) yielded very accurate poses (identical median 

RMSD to the X-ray pose of 1.06 Å). Interestingly, although the fraction of high-quality poses 

(RMSD < 2.0 Å) was almost identical to that obtained with Surflex-Dock (approximately 65%), 

these two scoring functions were much more effective in producing very high-quality poses 

(RMSD to the X-ray pose < 1.0 Å; Table 1). 

Altogether, Shaper2 alignment on IChem cavity-based pharmacophore models is therefore 

competitive with a standard docking tool as regards posing accuracy. The competitive advantage 

of a Gaussian function (Shaper2) in comparison to either the Kabsch algorithm
63

 (Discovery 

Studio) or the Hungarian matcher
64

 (LigandScout) appears quite significant, when it comes to 

considering the complexity of pharmacophore queries (27 features on average) produced by our 
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method. It is also note-worthy that the scoring function employed to rank Shaper2 poses is very 

important. Energy-based scoring functions are preferred to accelerate shape/color overlap 

estimations. Moreover, an explicit treatment of desolvation effects yields a very accurate pose 

ranking, albeit at the cost of an extra computational demand (approximately 5 seconds per pose). 

Table 1. Posing accuracy of molecular docking (Surflex-Dock), ligand-based pharmacophore 

searches (Discovery Studio, LigandScout), and receptor-based pharmacophore searches (IChem), 

applied to 85 protein-ligand complexes from the Astex Diverse Set. 

Program 
Average 

RMSD, Å
a
 

Median 

RMSD, Å
b
 

% of entries with 

RMSD < 1 Å 

% of entries with 

RMSD < 2 Å 

Surflex-Dock
c
 2.57 1.62 24 65 

Discovery Studio
d
 4.80 4.77 3 12 

LigandScout
e
 5.53 5.70 0 6 

Shaper2-Tc
f
 4.10 3.70 4 28 

Shaper2-PLP
g
 2.95 2.14 6 45 

Shaper2-TotE
h
 2.23 1.06 49 64 

Shaper2-IntE
i
 2.22 1.06 48 67 

a
 Average root-mean-square deviation (heavy atoms) to the ligand X-ray pose 

b
 Median root-mean-square deviation (heavy atoms) to the ligand X-ray pose 

c
 Surflex-Dock pose with the lowest internal score (pKd) 

d
 Discovery Studio pose with the highest fit score 

e 
LigandScout pose with the highest fit score 

f
 Shaper2 pose with the highest TanimotoCombo score 

g
 Shaper2 pose with the lowest PLP interaction energy 

h
 Shaper2 pose with the lowest MMFF94 total energy 

i
 Shaper2 pose with the lowest MMFF94 ligand-protein interaction energy 

3.3. Virtual Screening Accuracy (DUD-E Set) 

In the next challenge, we probed the accuracy of Shaper2 alignment to IChem cavity-based 

pharmacophores to discriminate between true actives and chemically similar decoys for a set of 

ten DUD-E targets (Table S3).
32,39

 Although results obtained on such benchmarks are not fully 

predictive of real-life prospective virtual screening studies,
65

 we still wanted to compare our 

approach to Surflex-Dock in this exercise. Ten targets were selected to span major target families 

(G protein-coupled receptors, kinases, nuclear hormone receptors, proteases, other enzymes) and 

caution was given to discard easy test cases (targets leading to areas under the ROC curves above 

0.85) as suggested by the seminal paper.
39

 The chosen subset is believed to be rather difficult for 
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docking (DUD-E authors used the Dock3.6 docking program as screening engine) with an 

average AUC value of 0.66, well below the mean AUC value (0.76) observed for the entire 

DUD-E database.
39

 Results obtained with Surflex-Dock generally confirmed the previous report 

with a mean AUC value of 0.73 (Table 2). For two targets (GCR, FGFR1), the observed ROC 

AUCs were statistically better than random selection but still below 0.70, therefore indicating 

just a fair performance. Shaper2 alignment to IChem pharmacophores scored by the PLP 

potential led to a poor performance in this challenge (mean AUC value of 0.57; Table 2). 

Conversely to the above-described challenge, scoring matching poses by either MMFF94 

protein-ligand interaction energy or MMFF94 total energy marginally enhanced the virtual 

screening accuracy of the method (mean AUC values of 0.62 and 0.65, respectively; Table 2) 

despite significant ameliorations (AUC ≥ 0.70) for five out of the ten targets (ADRB2, GCR, 

ACE, FGFR1, AKT1), using the MMFF94 total energy as a scoring function. Given that the 

MMFF94 total energy led to the best performance, we tried to decouple the scoring function used 

to select the best poses from that utilized to sort compounds. The best combination was obtained 

by selecting the poses by MMFF94 total energy and sorting the compounds (actives and decoys) 

by PLP energy (Table 2). Using this approach, a mean AUC value of 0.68, comparable to that 

observed with the docking program Dock3.6, was obtained. The performance was excellent for 

two targets (ADRB2, RENI: ROC AUC > 0.80), good for two other entries (FGFR1, AKT1: 

0.70 < ROC AUC < 0.80), fair for four targets (AA2AR, GCR, ADA, ACE: ROC AUC ≥ 0.57) 

and remained poor but still better than random picking for two entries (ANDR, PGH2). Despite 

the small sample size, the distribution of ROC values observed from the three Shaper2 protocols 

with MMFF94 refinement (IntE, TotE, TotE + PLP) is statistically different from that seen when 

only PLP energy was taken into account in a two-sample t-test assuming either equal or unequal 

variance at a confidence interval of 95% (p < 0.05). The differences observed with respect to 

each pair of the refinement protocols are however statistically not significant in the same test. 

Compared to Surflex-Dock, the mixed approach gave a better performance for three targets 

(ADRB2, ANDR, FGFR1), a rather similar accuracy level for three entries (GCR, RENI, 

AKT1), but gave a poorer performance for the other four entries (AA2AR, ADA, PGH2, ACE; 

Table 2, Figure 5). 
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Figure 5. Virtual screening performance of Surflex-Dock (white bars) and Shaper2 (gray bars) 

on 10 entries of the DUD-E set.
32

 Shaper2 alignment to IChem cavity-based pharmacophores 

was scored by MMFF94 total energy, whereas DUD-E compounds were ranked by increasing 

PLP interaction energy. (A) Area under the BEDROC curve (α = 20). (B) Enrichment in true 

actives at a constant 1% false positive rate.  

We must acknowledge that we have no clear explanation on the positive role of PLP rescoring on 

the poses selected by MMFF94 total energy. We could not either explain the successes and 

failures of the approach with respect to target and/or ligand properties. To account for early 

enrichment in true actives, the areas under the Boltzmann-enhanced discrimination of the ROC 

(BEDROC) curves, as well as the enrichment in true actives at 1% decoys retrieval, were also 

computed for each of the entries (Figure 5). Disappointingly, BEDROC curves clearly show that 

our method was inferior to Surflex-Dock in early enrichment in true actives for seven out of the 

ten cases. 
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Table 2. Area under the ROC plot of a binary classification (actives, decoys) of DUD-E ligand poses to the X-ray structures of 10 

representative targets.
32

 

Posing Dock3.6
a
 SF-Dock Shaper2 Shaper2 Shaper2 Shaper2 

Conformer selection Dock3.6 SF-Dock PLP IntE TotE TotE 

Scoring Dock3.6 SF-Dock PLP IntE TotE PLP 

G protein-coupled receptors       

Adenosine A2A receptor (AA2AR) 0.83 0.74 0.57 0.61 0.56 0.58 

Beta2 adrenergic receptor (ADRB2) 0.76 0.85 0.51 0.61 0.71 0.96 

 

Nuclear hormone receptors 

      

Androgen receptor (ANDR) 0.51 0.47 0.56 0.52 0.59 0.54 

Glucocorticoid receptor (GCR) 0.44 0.56 0.56 0.64 0.73 0.57 

 

Other enzymes 

      

Adenosine deaminase (ADA) 0.76 0.83 0.60 0.56 0.53 0.63 

Prostaglandin G/H synthase 2 (PGH2) 0.62 0.76 0.57 0.62 0.54 0.55 

 

Proteases 

      

Angiotensin-converting enzyme (ACE) 0.72 0.84 0.58 0.60 0.75 0.64 

Renin (RENI) 0.66 0.88 0.56 0.68 0.66 0.82 

 

Protein kinases 

      

Fibroblast growth factor receptor 1 (FGFR1) 0.73 0.67 0.60 0.78 0.70 0.76 

RAC-alpha protein kinase (AKT1) 0.72 0.76 0.57 0.61 0.72 0.74 

Mean ROC area under the curve 0.67 0.73 0.57 0.62 0.65 0.68 

a 
Report from the original paper describing the DUD-E database

39
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3.4. Virtual Screening Accuracy (PubChem BioAssay) 

The real value of DUD-E ligands in evaluating virtual screening performance is currently under 

debate because of severe ligand- and target-based drawbacks in selecting decoys.
65

 The 

discriminatory power of most docking tools was reported to be overestimated, with the use of 

this data collection, for the simple reason that DUD-E actives tend to be chemically similar to the 

co-crystallized ligand in the 3D target structure that is selected for docking.
65

 We therefore 

challenged our method with true experimental screening data from the PubChem BioAssay 

repository,
66

 in which both true active and true inactive compounds have been explicitly defined 

according to in vitro assays. Three targets of pharmaceutical importance (one kinase, one nuclear 

hormone receptor, one G protein-coupled receptor) for which both high-quality screening data 

(primary assay, confirmatory dose-response assay) and 3D structural information (ligand-bound 

high-resolution X-ray structure) are available were selected as test cases (Table 3).  

Virtual screening was carried out using one ligand-based method (3D shape-matching with 

ROCS),
58

 and two structure-based approaches (molecular docking with Surflex-Dock, 

pharmacophore-based ligand-aligning with Shaper2). The virtual screening accuracy was simply 

estimated from the number of true actives ranked among the top 1% and the top 5% scorers. The 

experimentally determined hit rate is low (approximately 0.1%) for two screens (ROCK2, 

OPRK1) and much higher (3.71%) for the ESR1 challenge. Activity data range from low 

nanomolar to two-digit micromolar values. The ESR1 ligand set is the most enriched in 

molecules of very high potency (Table 3), and should, therefore, be easier to predict. This 

assumption was confirmed by an analysis of screening results given by 3D shape-matching using 

ROCS, as spectacular enrichment over random picking was observed when the top 1%-ranked 

ESR1 ligands were considered (Table 3). This means that the true actives in this set are similar 

in both shape and pharmacophoric properties to the reference ligand (4-hydroxytamoxifen) that 

was co-crystallized in the protein structure used for the stucture-based approaches. 
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Table 3. Virtual screening of PubChem BioAssay data. 

Target Rho kinase 2 Estrogen receptor α Kappa opioid receptor 

Encoding gene ROCK2 ESR1 OPRK1 

PubChem BioAssay AID 604, 644 743080 1777 

Number of actives 67 59 35 

Number of inactives 59,714 1530 34,048 

Activity range, μM 0.03-9.78 0.03-9.69 0.06-18.10 

Hit rate, % 0.11 3.71 0.10 

Virtual screening
a
 Top 1% Top 5% Top 1% Top 5% Top 1% Top 5% 

 ROCS
b
 2 (3.0) 3 (0.9) 11 (18.5) 11 (3.7) 1 (2.9) 1 (0.6) 

 Surflex-Dock
c
 1 (1.5) 2 (0.6) 1 (1.7) 6 (2.0) 3 (8.8) 4 (2.3) 

 Shaper2
d
 1 (1.5) 2 (0.6) 2 (3.4) 18 (6.1) 1 (2.9) 6 (3.5) 

a 
Number of true actives among the top 1% and the top 5% scoring molecules. Numbers in brackets indicate the observed enrichment over 

random picking. 
b
 Ligands ranked by TanimotoCombo similarity scores to the template ROCK2-bound inhibitor (ligand ID 3SG, PDB ID 4WOT), ESR1-

bound antagonist (ligand ID OHT, PDB ID 3ERT), and OPRK1-bound agonist (ligand ID CVV, PDB ID 6B73). 
c
 Ligands ranked by pKd (Surflex-Dock score). 

d 
Ligands ranked by PLP energy after MMFF94 energy minimization. 
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For the two targets ROCK2 and OPRK1, ROCS screening performed three times better than 

random selection when the top 1% scorers were considered, the enrichment logically decreased 

when selecting more compounds from the screen with a performance equal or even inferior to 

random picking when the top 5% scoring compounds were accounted (Table 3). In other words, 

two screening sets (ROCK2, OPRK1) were deemed difficult for structure-based approaches, 

whereas the third one (ESR1) was much easier. 

Surflex-Dock and Shaper2 gave identical results when the top 1% scorers of the ROCK2 screen 

were considered, although their performances were inferior to that of ROCS (Table 3). 

Accounting a higher percentage of top scoring compounds (5%) allowed us to retrieve one 

additional active, but at the cost of a lower hit rate. For the easier ESR1 test case, Shaper2 gave 

much better results than Surflex-Dock, whatever the fraction that was considered to qualify 

virtual hits. Enrichment factors over random picking of 3.4 and 6.1 were observed for the top 1% 

and the top 5% scoring molecules, respectively (Table 3). It is note-worthy that Shaper2 

continued to retrieve novel actives as the number of selected virtual hits was increased, and even 

outperformed ROCS when the top 5% scoring hits were accounted. For the last data set 

(OPRK1), both Surflex-Dock and Shaper2 gave statistically good enrichment over random 

picking (8.8 and 2.9 at the top 1% scorers, 2.3 and 3.5 at the top 5% scorers). Docking performed 

better than cavity-based pharmacophore searches in the initial enrichment, but Shaper2 retrieved 

more actives than Surflex-Dock among the top 5% scorers (Table 3). 

In agreement with many previous studies,
67-69

 we observed that the three virtual screening 

methods used in this study tend to retrieve different true actives, and most importantly, different 

chemotypes (Figure 6). In all screens, Shaper2 was able to identify true actives (one ROCK2 

inhibitor, seven ESR1 antagonists, four OPRK1 agonists, Figure 6) not found by any other 

method. If one restricts the analysis to the retrieval of unique scaffolds, Shaper2 was the method 

producing the highest number of uniquely retrieved chemotypes (Figure 6), thereby 

demonstrating its utility and orthogonality to other virtual screening methods.  
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Figure 6. Orthogonality of three virtual screening methods (ROCS, Surflex-Dock, Shaper2) in 

retrieving true actives among the top 5% ranking hits, from three PubChem BioAssay high-

throughput screens (ROCK2 inhibitors, PubChem BioAssay AID 644; ESR1 antagonists, 

PubChem BioAssay AID 743080; OPRK1 agonists, PubChem BioAssay AID 1777). The 

numbers of true actives recovered by each method are displayed by Venn diagrams,
70

 

highlighting molecules uniquely found by a single method or common to two or three hit lists. 

Each chemotype retrieved by a single method is highlighted by a star. 

The motivations for retrieving the top 5% scorers were two-fold. Firstly, since we were really 

mining HTS data with very few high affinity ligands, the number of hits retrieved among the top 

1% scorers was low (even for the ligand-based ROCS shape-matching method). We therefore 

increased the threshold to select the top 5% scoring molecules in order to begin to see 

statistically meaningful differences between the screening methods. Secondly, retrieving a higher 

proportion of virtual hits enabled us to cluster them by scaffolds (maximum common 

substructures) and pick a more representative set of hits for experimental validation (in terms of 

scaffold coverage) than a strategy based on a harder cut-off (say, pick the top 100 scoring 

compounds). Of course, no definitive conclusion can be drawn from the present benchmarking 

exercise focusing on three independent HTS data. However, it appears that Shaper2 alignment on 

IChem cavity-based pharmacophores is at least as effective as other virtual screening methods 

(shape alignment, docking) when applied to three test cases for which the entire screening results 

were known. The good performance of Shaper2 in true virtual screening benchmarks is in 

contradiction to the previously reported poorer performance observed in artificially constructed 

DUD-E training sets, for which severe target and ligand bias has been noticed.
65

 We therefore 

recommend benchmarking virtual screening methods with true experimentally determined high-

throughput screening data. Fortunately, the PubChem BioAssay repository
66

 proposes an 
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increasing number of high-quality screening sets with both primary and confirmatory dose-

response data to guide computational method development and validation. 

3.5. Comparison to Other Cavity-Based Pharmacophore Perception Methods 

In comparison to current structure-based pharmacophore perception methods,
11-29

 the herein 

described approach presents five noticeable assets. First, the pharmacophore perception method 

is fully automated, does not rely on any third party tool, and is freely available for non-profit 

research. The last criterion is particularly important to enable fair benchmarking. Second, in 

contrast to many alternative approaches,
11,15,16 

IChem does not require user intervention in 

defining grid lattice coordinates. It scans the entire surface and can therefore generate as many 

pharmacophores as the non-overlapping binding sites. Third, IChem offers a unique opportunity 

to restrict pharmacophore perception to binding cavities predicted as structurally druggable. 

Druggability (or ligandability) is predicted on the fly thanks to a robust support vector machine 

model, immediately after cavity detection. Fourth, IChem rules to select the most valuable 

pharmacophoric features have been derived from an exhaustive training set of 213 high-

resolution protein-ligand X-ray structures featuring non-redundant interaction patterns and 4871 

pharmacophoric features. Fifth, the method has been extensively validated on different test sets 

(Astex Diverse Set, DUD-E, PubChem BioAssay) for its accuracy in ligand posing and virtual 

screening. We also provide herein several HTS data mimicking real life scenarios with fully 

validated true positives and true negatives. Such benchmarking data are, to our opinion, much 

more valuable than commonly used data sets in which actives (usually high affinity ligands) are 

mixed with chemically similar decoys of unknown affinity for the intended target. 

4. Conclusion 

We herewith propose an alternative computational method (IChem-Shaper2) to molecular 

docking to identify ligands from the single knowledge of a protein 3D structure. The concept of 

structure-based pharmacophores has already been exploited, but rarely led to pharmacophore 

queries truly adapted to virtual screening purposes. The proposed approach is fully automatized 

and consists of three consecutive steps, each of which can be customized if necessary: (i) 

detection of druggable cavities at the surface of the target of interest, (ii) generation of cavity-

based pharmacophore queries, and (iii) alignment of library compounds to the structure-based 
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pharmacophores. The method appears to be quite robust in producing high-quality poses, 

distinguishing true actives from decoys, and retrieving confirmed hits from high-throughput 

experimental screens. It should be considered as a novel weapon to the arsenal of current virtual 

screening methods such as protein-ligand docking or ligand-centric similarity searches. Since 

virtual screening benchmarks suggest its strong orthogonality to existing methods, we 

recommend its usage in parallel with docking and/or ligand-based approaches to retrieve 

different chemotypes and optimize virtual screening hits for medicinal chemistry research. 
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Supporting Information 

Table S1. Sc‐ PDB Diverse Set of 213 protein‐ ligand complexes.    

Cluster 
PDB 

ID 
Ligand ID Protein name 

sc-PDB 

entries in 

cluster 

DPI 

value, Å 

0 10GS VWW Glutathione S-transferase P 18 0.350 

1 1KJX IMP Adenylosuccinate synthetase 9 0.386 

2 2R3A SAM Histone-lysine N-methyltransferase SUV39H2 25 0.160 

3 2R3F SC8 Cyclin-dependent kinase 2 6 0.094 

4 3E5H GNP Ras-related protein Rab-28 171 0.062 

5 13PK ADP Phosphoglycerate kinase, glycosomal 6 0.451 

6 2FDE 385 Protease 81 0.442 

7 1V3S ATP Signaling protein 31 0.142 

8 2FDP FRP Beta-secretase 1 66 0.398 

10 1V45 3DG Purine nucleoside phosphorylase 11 0.408 

12 3ORF NAD Dihydropteridine reductase 58 0.208 

14 3ORN 3OR Dual specificity mitogen-activated protein 

kinase kinase 1 

11 0.473 

15 3ORO AGS Serine/threonine protein kinase 65 0.353 

16 2R4B GW7 Receptor tyrosine-protein kinase erbB-4 9 0.558 

18 3E65 XXZ Nitric oxide synthase, inducible 8 0.171 

20 3ORZ BI4 3-phosphoinositide-dependent protein kinase 1 10 0.255 

21 1KLK PMD Dihydrofolate reductase 9 N/A 

22 1A28 STR Progesterone receptor 19 0.155 

24 2R4F RIE 3-hydroxy-3-methylglutaryl-coenzyme A 

reductase 

17 0.118 

28 1A2N TET UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 

9 0.266 

32 1V79 FR7 Adenosine deaminase 6 0.756 

34 2R4T ADP Glycogen synthase 13 0.117 

36 2FEQ 34P Prothrombin 76 0.519 

37 2R59 PH0 Leukotriene A-4 hydrolase 7 0.136 

38 1A42 BZU Carbonic anhydrase 2 9 N/A 

39 2R5C C6P Kynurenine aminotransferase 23 0.224 

42 3OTF CMP Potassium/sodium hyperpolarization-activated 

cyclic nucleotide-gated channel 4 

18 0.509 

45 1KNR FAD L-aspartate oxidase 125 0.392 

46 1KNU YPA Peroxisome proliferator-activated receptor 

gamma 

7 0.470 

52 3OU2 SAH SAM-dependent methyltransferase 174 0.077 

53 1KOL NAD Glutathione-independent formaldehyde 

dehydrogenase 

75 0.096 

54 2R6H FAD NADH:ubiquinone oxidoreductase, Na 

translocating, F subunit 

32 0.435 

55 2R6J NDP Eugenol synthase 1 6 0.098 

58 1KOR ANP Argininosuccinate synthase 21 0.125 

59 2R6W LLB Estrogen receptor 17 0.219 

68 2R7M AMP 5-formaminoimidazole-4-carboxamide-1-(beta)-

D-ribofuranosyl 5'-monophosphate synthetase 

28 0.213 

70 1A4Z NAD Aldehyde dehydrogenase, mitochondrial 31 0.529 

73 1V9N NDP Malate dehydrogenase 10 0.206 

79 3OW3 SMY cAMP-dependent protein kinase catalytic 

subunit alpha 

8 0.135 
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80 3E7X AMP D-alanine–poly(phosphoribitol) ligase subunit 1 14 0.315 

83 3E87 G95 RAC-beta serine/threonine-protein kinase 8 0.427 

85 1VBM YSA Tyrosine–tRNA ligase 9 0.418 

87 1VC2 NAD Glyceraldehyde 3-phosphate dehydrogenase 52 0.877 

88 3OWA FAD Acyl-CoA dehydrogenase 22 0.132 

89 3OWB BSM Heat shock protein HSP 90-alpha 21 0.140 

90 1VCF FMN Isopentenyl-diphosphate delta-isomerase 8 0.507 

92 2R8O T5X Transketolase 1 32 0.059 

96 1KP8 ATP 60 kDa chaperonin 21 0.225 

100 3E8X NAP BH1520 protein 17 0.115 

102 1KPG SAH Cyclopropane mycolic acid synthase 1 33 0.239 

104 1A80 NDP 2,5-diketo-D-gluconic acid reductase A 30 0.328 

105 3E92 G6A Mitogen-activated protein kinase 14 21 0.152 

107 1VDC FAD Thioredoxin reductase 1 28 0.213 

111 3E9H KAA Lysine–tRNA ligase 10 0.278 

116 4C4F 7CE Dual specificity protein kinase TTK 8 0.179 

118 3OX4 NAD Alcohol dehydrogenase 2 7 0.252 

119 1KQB FMN Oxygen-insensitive NAD(P)H nitroreductase 18 N/A 

120 2R97 FMN NAD(P)H dehydrogenase (quinone) 12 0.243 

122 4C58 824 Cyclin-G-associated kinase 7 0.201 

125 4C5O FAD Putative monooxygenase 30 0.818 

126 4C61 LMM Tyrosine-protein kinase JAK2 7 0.228 

128 3OY1 589 Mitogen-activated protein kinase 10 7 0.198 

130 3OY3 XY3 Tyrosine-protein kinase ABL1 28 0.196 

133 1KQM ANP Myosin heavy chain, striated muscle 10 0.581 

135 2R9R NAP Voltage-gated potassium channel subunit beta-2 10 0.239 

136 1KQN NAD Nicotinamide mononucleotide 

adenylyltransferase 1 

6 0.199 

151 4C8G C5P 2-C-methyl-D-erythritol 2,4-cyclodiphosphate 

synthase 

9 0.190 

156 2FKY N2T Kinesin-like protein KIF11 17 0.319 

162 4CA6 3EF Angiotensin-converting enzyme 21 0.529 

173 3P0N BPU Tankyrase-2 12 0.121 

180 1VHN FMN tRNA-dihydrouridine synthase 28 0.081 

181 2RD2 QSI Glutamine–tRNA ligase 6 0.376 

183 3EBH BES M1 family aminopeptidase 12 0.238 

184 1VHW ADN Purine nucleoside phosphorylase DeoD-type 1 18 0.077 

185 3P19 NAP Putative blue fluorescent protein 91 0.177 

189 4CCB OFG ALK tyrosine kinase receptor 8 0.203 

192 3P23 ADP Serine/threonine-protein kinase 39 0.400 

195 2FOI JPA Enoyl-acyl carrier reductase 22 0.475 

199 1ADC PAD Alcohol dehydrogenase E chain 17 N/A 

200 4CDG ADP Bloom syndrome protein 16 0.359 

202 4CDQ 7VR Polyprotein 6 0.063 

203 3P3C 3P3 UDP-3-O-[3-hydroxymyristoyl] N-

acetylglucosamine deacetylase 

8 0.035 

212 2FPT ILB Dihydroorotate dehydrogenase (quinone), 

mitochondrial 

14 0.226 

223 3EEI MTM 5'-methylthioadenosine/S-

adenosylhomocysteine nucleosidase 

8 0.125 

225 3EEJ 53R Strain CBS138 chromosome J complete 

sequence 

13 0.254 

228 3P5S AVU CD38 molecule 7 0.186 

232 3EFQ 714 Farnesyl pyrophosphate synthase 6 0.215 

234 2RH1 CAU Beta-2 adrenergic receptor 6 0.273 

238 3P7N FMN Sensor histidine kinase 8 0.316 
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241 1AJ2 2PH Dihydropteroate synthase 6 N/A 

242 2FSN ADP Archaeal actin homolog 15 0.550 

246 2FSV NAP NAD(P) transhydrogenase subunit beta 9 0.221 

247 1KYI ATP ATP-dependent protease ATPase subunit HslU 6 0.472 

249 3P88 P88 Bile acid receptor 8 0.447 

252 2FTO TMP Thymidylate synthase 10 0.170 

255 3P8X ZYD Vitamin D3 receptor 66 0.099 

256 1AKW FMN Flavodoxin 9 0.043 

258 3EHG ATP Sensor histidine kinase DesK 26 0.120 

259 3P8Z 36A RNA-directed RNA polymerase NS5 12 0.114 

261 1KYX CRM 6,7-dimethyl-8-ribityllumazine synthase 20 0.358 

263 1AM1 ADP ATP-dependent molecular chaperone HSP82 14 0.148 

264 3EHX BDL Macrophage metalloelastase 13 0.165 

267 2FV9 002 Disintegrin and metalloproteinase domain-

containing protein 17 

6 0.248 

269 2FVC 888 Genome polyprotein 12 0.207 

274 4D86 ADP Poly [ADP-ribose] polymerase 14 6 0.159 

276 2RKG AB1 Pol protein 11 0.144 

278 3P9J P9J Aurora kinase A 11 0.961 

279 2RKU R78 Serine/threonine-protein kinase PLK1 13 0.142 

281 2RL5 2RL Vascular endothelial growth factor receptor 2 13 0.342 

295 4D9T 0JG Ribosomal protein S6 kinase alpha-3 7 0.273 

296 4D9W X32 Thermolysin 13 0.043 

303 1L2T ATP Uncharacterized ABC transporter ATP-binding 

protein MJ0796 

12 0.156 

307 1L4E RBZ Nicotinate-nucleotide–dimethylbenzimidazole 

phosphoribosyltransferase 

8 0.187 

314 2G1N 1IG Renin 8 N/A 

319 2UDP UPP UDP-glucose 4-epimerase 11 0.129 

322 1AQB RTL Retinol-binding protein 4 6 0.106 

323 3ELJ GS7 Mitogen-activated protein kinase 8 10 0.121 

325 3ELM 24F Collagenase 3 6 0.145 

333 4DC3 2FA Putative adenosine kinase 14 0.242 

336 3EN4 KS1 Proto-oncogene tyrosine-protein kinase Src 22 0.407 

351 2UUO LK3 UDP-N-acetylmuramoylalanine–D-glutamate 

ligase 

8 0.428 

354 1AUX AGS Synapsin-1 7 0.374 

355 3EOS PK2 Queuine tRNA-ribosyltransferase 12 0.109 

356 3EPP SFG mRNA cap guanine-N7 methyltransferase 14 0.445 

360 3EPT FDA Putative FAD-monooxygenase 10 0.519 

364 4DFP 0L7 DNA polymerase I, thermostable 9 0.158 

369 4DGM AGI Casein kinase II subunit alpha 8 0.143 

378 1B0H LYS_LYS_

ALN 

Periplasmic oligopeptide-binding protein 10 0.140 

379 3PD3 A3T Threonine–tRNA ligase 6 0.183 

383 3EQP T95 Activated CDC42 kinase 1 7 0.482 

388 1B0P TPP Pyruvate-flavodoxin oxidoreductase 7 0.372 

389 3ERK SB4 Mitogen-activated protein kinase 1 7 0.239 

400 1VRW NAD Enoyl-ACP reductase 15 0.297 

401 4DK5 0KO Phosphatidylinositol 4,5-bisphosphate 3-kinase 

catalytic subunit gamma isoform 

7 0.476 

407 1VSO AT1 Glutamate receptor ionotropic, kainate 1 9 0.125 

411 4DKO 0LM Envelope glycoprotein gp160 6 0.163 

412 1B3D S27 Stromelysin-1 16 0.643 

419 3PEH IBD Endoplasmin homolog, putative 7 0.738 

427 2GA2 A19 Methionine aminopeptidase 2 6 0.209 
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431 2UYY NA7 Putative oxidoreductase GLYR1 13 0.277 

432 4DLK ATP Phosphoribosylaminoimidazole carboxylase, 

ATPase subunit 

15 0.199 

434 1VTK TMP Thymidine kinase 9 0.553 

444 1LHN AON Sex hormone-binding globulin 8 N/A 

453 1LIK ADN Adenosine kinase 6 0.241 

454 2V0I UD1 Bifunctional protein GlmU 10 0.105 

459 1B9I PXG Putative UDP-kanosamine synthase 

aminotransferase subunit 

7 0.155 

475 3PJG UGA UDP-glucose 6-dehydrogenase 6 0.265 

478 2V1U ADP ORC1-type DNA replication protein 1 11 0.521 

488 3EWR APR Non-structural protein 3 6 0.219 

501 4DQW ATP Inosine-5'-monophosphate dehydrogenase 13 0.318 

502 3PLQ RP2 cAMP-dependent protein kinase type I-alpha 

regulatory subunit 

6 0.390 

503 4DR9 BB2 Peptide deformylase 16 0.148 

511 1W05 W05 Isopenicillin N synthase 20 0.199 

512 4DRX GTP Tubulin alpha chain 10 0.170 

521 3EXH TPP Pyruvate dehydrogenase E1 component subunit 

alpha, somatic form, mitochondrial 

19 0.319 

532 1BIF AGS 6-phosphofructo-2-kinase 13 0.201 

535 1BJY CTC Tetracycline repressor protein class D 7 0.368 

538 1LVG 5GP Guanylate kinase 7 0.184 

540 2GLX NDP 1,5-anhydro-D-fructose reductase 7 0.223 

551 3EYG MI1 Tyrosine-protein kinase JAK1 16 0.142 

567 1BOO SAH Modification methylase PvuII 17 0.334 

586 2GQT FAD UDP-N-acetylenolpyruvoylglucosamine 

reductase 

14 0.078 

598 2V6G NAP 3-oxo-Delta(4,5)-steroid 5-beta-reductase 6 0.179 

609 3PTQ NFG OSIGBa0135C13.7 protein 8 0.438 

616 3F3Y 4OA Bile salt sulfotransferase 6 0.355 

621 2GTB AZP Orf1ab polyprotein 6 0.229 

627 2V95 HCY Corticosteroid-binding globulin 6 0.166 

632 4DYA 0MF Nucleocapsid protein 6 1.304 

640 1W7K ADP Dihydrofolate synthase 10 0.185 

649 4E0I FAD Mitochondrial FAD-linked sulfhydryl oxidase 

ERV1 

10 0.503 

650 3F82 353 Hepatocyte growth factor receptor 8 0.475 

665 1C1C 612 Reverse transcriptase/ribonuclease H 6 0.910 

677 3PZB NAP Aspartate-semialdehyde dehydrogenase 9 0.157 

685 1C30 ADP Carbamoyl-phosphate synthase large chain 6 0.141 

689 3FBU COA Acetyltransferase, GNAT family 7 0.144 

704 3Q0U LL3 HTH-type transcriptional regulator EthR 6 0.100 

759 1CBF SAH Cobalt-precorrin-4 C(11)-methyltransferase 6 0.224 

765 2HA8 SAH Probable methyltransferase TARBP1 11 0.088 

768 2VFZ UPF N-acetyllactosaminide alpha-1,3-

galactosyltransferase 

9 0.583 

773 4E7Z ADP Unconventional myosin-VI 10 0.258 

785 1WKG POI Acetylornithine/acetyl-lysine aminotransferase 11 0.312 

801 4EAW 0NQ RNA-directed RNA polymerase 9 0.277 

802 4EB3 0O3 4-hydroxy-3-methylbut-2-enyl diphosphate 

reductase 

7 0.141 

826 3FLK NAD D-malate dehydrogenase [decarboxylating] 8 0.168 

885 2VNA NAP Prostaglandin reductase 2 6 0.179 

889 3QCF NXY Receptor-type tyrosine-protein phosphatase γ  7 0.461 

903 1MP3 TTP Glucose-1-phosphate thymidylyltransferase 6 N/A 
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969 3FY4 FAD (6-4)DNA photolyase 11 0.858 

978 2HSD NAD 3-alpha-(or 20-beta)-hydroxysteroid 

dehydrogenase 

6 N/A 

984 3QGZ ADN Histidine triad nucleotide-binding protein 1 7 0.025 

1031 2VWW 7X2 Ephrin type-B receptor 4 7 0.178 

1061 3G5E Q74 Aldose reductase 7 0.103 

1073 3QOV ADP Phenylacetate-coenzyme A ligase 8 0.180 

1099 2W0J ZAT Serine/threonine-protein kinase Chk2 7 0.165 

1163 1XOI 288 Glycogen phosphorylase, liver form 6 0.214 

1202 3R04 UNQ Serine/threonine-protein kinase pim-1 7 0.099 

1260 3GJQ TRP_GLU_

HIS_ASP_ 

ACE 

Caspase-3 7 N/A 

1265 2WE3 DUT Deoxyuridine 5'-triphosphate 

nucleotidohydrolase 

6 0.211 

1271 1XWK GDN Glutathione S-transferase Mu 1 7 0.682 

1310 4FHH 0U3 Vitamin D3 receptor A 9 0.282 

1418 2WQO VGK Serine/threonine-protein kinase Nek2 6 0.204 

1440 3RLL RLL Androgen receptor 10 0.133 

1453 4FSM HK1 Serine/threonine-protein kinase Chk1 12 0.178 

1505 1O6H W37 Squalene–hopene cyclase 7 0.374 

1717 4GFD 0YB Thymidylate kinase 6 0.120 

1719 4GFN SUY DNA gyrase subunit B 10 0.136 

1801 4GPJ 0Q1 Bromodomain-containing protein 4 6 0.116 

1845 4GV2 5ME Poly [ADP-ribose] polymerase 3 19 1.312 

2170 3IUB FG2 Pantothenate synthetase 6 0.071 

2615 4JD4 JDM Dihydroorotate dehydrogenase (fumarate) 10 0.059 

2716 1SQB AZO Cytochrome b 6 0.549 

2898 4KFN 1QR Nicotinamide phosphoribosyltransferase 8 0.109 

3197 3ZCM PX3 Integrase 13 0.088 

The Diffraction Precision Index (DPI) is calculated according to Kumar, K. S. et al. Online_DPI: a web server to 

calculate the diffraction precision index for a protein structure. J. Appl. Crystallogr. 2015, 48, 939-942.  

N/A: not available. The Diffraction precision index (DPI) cannot be calculated due to insufficient parameters. 
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Table S2. Astex Diverse Set of 85 protein-ligand complexes. 

PDB ID Ligand ID Protein Name DPI, Å 

1G9V RQ3 Hemoglobin alpha chain 0.146 

1GKC NFH 92 kDa type IV collagenase 0.316 

1GM8 SOX Penicillin G acylase beta subunit 0.181 

1GPK HUP Acetylcholinesterase 0.140 

1HNN SKF Phenylethanolamine N-methyltransferase 0.292 

1HP0 AD3 Inosine-adenosine-guanosine-preferring nucleoside hydrolase 0.273 

1HQ2 PH2 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 0.047 

1HVY D16 Thymidylate synthase 0.212 

1HWI 115 HMG-CoA reductase 0.291 

1HWW SWA Alpha-mannosidase II 0.150 

1IA1 TQ3 Dihydrofolate reductase 0.117 

1IG3 VIB Thiamin pyrophosphokinase 0.144 

1J3J CP6 Bifunctional dihydrofolate reductase-thymidylate synthase 0.318 

1JD0 AZM Carbonic anhydrase XII 0.077 

1JJE BYS IMP-1 metallo beta-lactamase 0.158 

1JLA TNK HIV-1 RT A-chain 0.502 

1K3U IAD Tryptophan synthase alpha chain 0.088 

1KE5 LS1 Cell division protein kinase 2 0.338 

1KZK JE2 Protease 0.029 

1L2S STC Beta-lactamase 0.153 

1L7F BCZ Neuraminidase 0.099 

1LPZ CMB Blood coagulation factor Xa 0.497 

1LRH NLA Auxin-binding protein 1 0.173 

1M2Z DEX Glucocorticoid receptor 0.936 

1MEH MOA Inosine-5'-monophosphate dehydrogenase 0.142 

1MMV 3AR Nitric-oxide synthase, brain 0.212 

1MZC BNE Protein farnesyltransferase beta subunit 0.133 

1N1M A3M Dipeptidyl peptidase IV soluble form 0.812 

1N2J PAF Pantothenate synthetase 0.137 

1N2V BDI Queuine tRNA-ribosyltransferase 0.215 

1N46 PFA Thyroid hormone receptor beta-1 0.329 

1NAV IH5 Hormone receptor alpha 1, THRA1 0.297 

1OF1 SCT Thymidine kinase 0.144 

1OF6 DTY Phospho-2-dehydro-3-deoxyheptonate aldolase, tyrosine-inhibited 0.238 

1OPK P16 Proto-oncogene tyrosine-protein kinase ABL1 0.122 

1OQ5 CEL Carbonic anhydrase II 0.085 

1OWE 675 Urokinase-type plasminogen activator 0.133 

1OYT FSN Thrombin heavy chain 0.094 

1P2Y NCT Cytochrome p450cam 0.369 

1P62 GEO Deoxycytidine kinase 0.129 

1PMN 984 Mitogen-activated protein kinase 10 0.291 

1Q1G MTI Uridine phosphorylase putative 0.191 

1Q41 IXM Glycogen synthase kinase-3 beta 0.156 

1Q4G BFL Prostaglandin G/H synthase 1 0.139 

1R1H BIR Neprilysin 0.195 

1R55 097 Adam 33 0.112 

1R58 AO5 Methionine aminopeptidase 2 0.198 

1R9O FLP Cytochrome p450 2C9 0.172 

1S19 MC9 Vitamin D3 receptor 0.181 

1S3V TQD Dihydrofolate reductase 0.156 

1SG0 STL NRH dehydrogenase [quinone] 2 0.086 

1SJ0 E4D Estrogen receptor 0.206 

1SQ5 PAU Pantothenate kinase 0.283 

http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=SOX
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=HUP
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=SKF
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=AD3
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PH2
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=D16
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=115
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=SWA
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=TQ3
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=VIB
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=CP6
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=AZM
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BYS
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=TNK
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=IAD
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=LS1
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=JE2
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=STC
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BCZ
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=CMB
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=NLA
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=DEX
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=MOA
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=3AR
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BNE
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=A3M
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PAF
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BDI
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PFA
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=IH5
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=SCT
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=DTY
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=P16
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=CEL
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=675
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=FSN
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=NCT
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=GEO
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=984
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=MTI
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=IXM
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BFL
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BIR
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=097
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=AO5
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=FLP
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=MC9
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=TQD
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=STL
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=E4D
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PAU
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1SQN NDR Progesterone receptor 0.082 

1T40 ID5 Aldose reductase 0.118 

1T46 STI Homo sapiens V-kit Hardy-Zuckerman 4 feline sarcoma viral 

oncogene homolog 

0.083 

1T9B 1CS Acetolactate synthase, mitochondrial 0.157 

1TOW CRZ Fatty acid-binding protein, adipocyte 0.249 

1TT1 KAI Glutamate receptor, ionotropic kainate 2 0.161 

1TZ8 DES Transthyretin 0.125 

1U1C BAU Uridine phosphorylase 0.334 

1U4D DBQ Activated Cdc42 kinase 1 0.239 

1UML FR4 Adenosine deaminase 0.896 

1UNL RRC Cyclin-dependent kinase 5 0.250 

1UOU CMU Thymidine phosphorylase 0.604 

1V0P PVB Cell division control protein 2 homolog 0.193 

1V48 HA1 Purine nucleoside phosphorylase 0.282 

1V4S MRK Glucokinase isoform 2 0.298 

1VCJ IBA Neuraminidase 0.406 

1W1P GIO Chitinase B 0.275 

1W2G THM Thymidylate kinase TMK 0.199 

1X8X SO4 Tyrosyl-tRNA synthetase 0.170 

1XM6 5RM cAMP-specific 3',5'-cyclic phosphodiesterase 4B 0.139 

1XOQ ROF cAMP-specific 3',5'-cyclic phosphodiesterase 4D 0.122 

1XOZ CIA cGMP-specific 3',5'-cyclic phosphodiesterase 0.063 

1Y6B AAX Vascular endothelial growth factor receptor 2 0.188 

1YGC 905 Coagulation factor VII 0.126 

1YQY 915 Lethal factor 0.323 

1YV3 BIT Myosin II heavy chain 0.138 

1YVF PH7 HCV NS5B polymerase 0.390 

1YWR LI9 Mitogen-activated protein kinase 14 0.185 

1Z95 198 Androgen receptor 0.147 

2BM2 PM2 Human beta2 tryptase 0.297 

2BR1 PFP Serine/threonine-protein kinase CHK1 0.143 

2BSM BSM Heat shock protein HSP90-alpha 0.173 

The Diffraction Precision Index (DPI) is calculated according to Kumar, K. S. et al. Online_DPI: A Web Server to 

Calculate the Diffraction Precision Index for a Protein Structure. J. Appl. Crystallogr. 2015, 48, 939-942.  

  

http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=NDR
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=ID5
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=1CS
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=CRZ
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=KAI
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=DES
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BAU
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=DBQ
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=FR4
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=RRC
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=CMU
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PVB
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=HA1
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=MRK
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=IBA
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=GIO
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=THM
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=SO4
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=5RM
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=ROF
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=CIA
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=AAX
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=905
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=915
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BIT
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PH7
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=LI9
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=198
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PM2
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=PFP
http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=BSM
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Table S3. 10 DUD-E entries. 

Protein Name PDB ID 
Ligand 

ID 

Number of 

pharmacophoric  

features 

Number 

of 

actives 

Number 

of 

decoys 

G protein-coupled receptors 
     

Adenosine A2A receptor (AA2AR) 3PWH ZMA 35 482 31,500 

Beta2 adrenergic receptor (ADRB2) 3NY8 JRZ 42 231 15,000 

 
 

    
Nuclear hormone receptors 

    
Androgen receptor (ANDR) 2AM9 TES 33 269 14,350 

Glucocortocoid receptor (GCR) 1P93 DEX 36 258 15,000 

 
 

    
Other enzymes 

    
Adenosine deaminase (ADA) 1A41 DCF 19 282 16,900 

Prostaglandin G/H synthase 2 (PGH2) 3LN1 CEL 44 104 6958 

 
 

    
Proteases 

    
Angiotensin-converting enzyme (ACE) 3ZQZ SLC 28 139 8700 

Renin (RENI) 3SFC S53 43 293 16,450 

 
 

    
Protein kinases 

    
Fibroblast growth factor receptor 1 

(FGFR1) 
3TT0 07J 23 93 5450 

RAC-alpha protein kinase (AKT1) 4EKL 0RF 41 435 123,150 

 

 

  



Supporting Information for Chapter 2 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  130 

Table S4. Shaper2 force-field for aligning ligand atoms to cavity features. 

######################################### 

#                DEFINE                                                # 

######################################### 

###### define degree (independent of explicit/implicit) 

DEFINE hd1 [X1H0,X2H1,X3H2,X4H3,X5H4,X6H5] 

DEFINE hd2 [X2H0,X3H1,X4H2,X5H3,X6H4] 

DEFINE hd3 [X3H0,X4H1,X5H2,X6H3] 

DEFINE hd4 [X4H0,X5H1,X6H2] 

###### hydrophobic 

DEFINE php [#6,#16&$hd2&!$(S=*),#35,#53;R0;!$(*~[!#1;!#6;!$([#16;$hd2])])] 

DEFINE thp [$php;$hd1]  

DEFINE hp [$php;!$hd1] 

DEFINE ehp [$hp;!$(*([$hp])[$hp])] 

###### acceptors 

DEFINE ACamine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N#*);!$(N=*)] 

DEFINE ACphosphate [O;$hd1;$(O~P(~O)~O)] 

DEFINE ACcarboxylate [O;$hd1;$(O[C;!$(*N)]=O),$(O=[C;!$(*N)][O;$hd1])] 

DEFINE ACwater [OH2] 

DEFINE AChet6N [nH0;X2;$(n1aaaaa1)] 

DEFINE ACphosphinyl [O;$(O=P);!$(O=P~O)] 

DEFINE ACsulphoxide [O;$(O=[S;!$(S(~O)~O);$(S([#6])[#6])])] 

#DEFINE ACprimaryAmine [$ACamine;$hd1;!X4] #leave off for implict charge 

DEFINE AChet5N [nH0;X2;$(n1aaaa1)] 

DEFINE ACthiocarbonyl [S;X1;$(S=[#6])] 

DEFINE AChydroxyl [O;$hd1;$(O-[C;!$(C=*)])] 

DEFINE ACsulphate [O;$hd1;$(O~S(~O)~O)] 

#DEFINE ACtertiaryAmine [$ACamine;$hd3] #leave off for implict charge 

DEFINE ACamide [O;$(O=[#6][#7]);!$(O=[#6]([#7])[#7,#8,#16])] 

DEFINE ACcarbamate [O;$(O=[#6]([#7])[#8])] 

DEFINE ACurea [O;$(O=[#6]([#7])[#7])] 

DEFINE ACester [O;$(O=[#6][#8]*);!$(O=[#6]([#7,#8,#16])[#8]*)] 

DEFINE ACnitrile [N;$hd1;$(N#C)] 

DEFINE ACimine [N;!$hd3;$(N(=C)C),$(N=[#6]);!$(N=[#6][#7,#8;!$(*S=O)])] 

DEFINE ACketone [O;$hd1;$(O=[#6;$([H2]),$([H1]-[#6]),$(*([#6])[#6])])] 

#DEFINE ACsecondaryAmine [$ACamine;$hd2;!X4] #leave off for implict charge 

DEFINE ACphenol [O;$hd1;$(Oa)] 

DEFINE ACether [O;$(*([#6;!$(*=[O,S,N])])[#6;!$(*=[O,S,N])])] 

DEFINE ACprimaryAniline [N;$(Na);$hd1] 

DEFINE ACnitro [O;$hd1;$(O~N~[O;$hd1])] 

DEFINE AChet5O [o;X2;$(o1cccc1),$(o1ccccc1);!$(*[#6]=O)] 

DEFINE ACsulphone [O;$(O=[S;$(S(~O)(~O)([#6,#7])[#6])])] 

### strong acceptors 

DEFINE strongAcceptor [$ACphosphate,$ACcarboxylate,$ACwater,$AChet6N,$ACphosphinyl] 

### moderate acceptors 

#DEFINE moderateAcceptor 

[$ACsulphoxide,$ACprimaryAmine,$AChet5N,$ACthiocarbonyl,$AChydroxyl,$ACsulphate,$ACtertiaryAmine,$

ACamide,$ACcarbamate,$ACurea] 

DEFINE moderateAcceptor 

[$ACsulphoxide,$AChet5N,$ACthiocarbonyl,$AChydroxyl,$ACsulphate,$ACamide,$ACcarbamate,$ACurea] 

### weak acceptors 

#DEFINE weakAcceptor 

[$ACnitrile,$ACimine,$ACketone,$ACsecondaryAmine,$ACester,$ACphenol,$ACether,$ACprimaryAniline,$ACn

itro,$AChet5O,$ACsulphone] 
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DEFINE weakAcceptor 

[$ACnitrile,$ACimine,$ACketone,$ACester,$ACphenol,$ACether,$ACprimaryAniline,$ACnitro,$AChet5O,$ACs

ulphone] 

###### donors 

DEFINE Damine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N#*);!$(N=*)] 

DEFINE Dhet5NH [nH;$(n1aaaa1),$(n1aaaaa1)] 

DEFINE DNpH [NH,H2,H3;+] 

#DEFINE DacidOH [OH1;$(O-[C,S,P]=[O,S])] #leave off for implict protonation 

DEFINE Dhydroxyl [OH1;$hd1;$(O-C);!$(OC=[O,N,S])] 

DEFINE Dwater [OH2] 

DEFINE DprimaryAmide [N;$hd1;$(NC=O),$(NS=O)] 

DEFINE DanilineNH [NH1,NH2;$hd2;$(Nc);!$(NS(=O)=O)] 

DEFINE DamidineNH [NH1,NH2;$(N~C~N),$(N~C(~N)~N)] 

DEFINE DsecondaryAmide [#7;$hd2;$(*[#6,#16]=O);!$(N(a)S=O)] 

DEFINE DanilineNH2 [N;$hd1;$(Nc)] 

DEFINE DhydraN [NH1,NH2,NH3;$hd1&$(NN[#6]),$hd2&$(N(N)[#6])] 

DEFINE DimineNH [NH1;$(N=C)] 

DEFINE DphenylOH [OH1;$(Oc)] 

DEFINE DprimaryAmine [$Damine;$hd1] 

DEFINE DsecondaryAmine [$Damine;$hd2] 

### strong donors 

#DEFINE strongDonor [$Dhet5NH,$DNpH,$DacidOH,$Dhydroxyl] 

DEFINE strongDonor [$Dhet5NH,$DNpH,$Dhydroxyl] 

### moderate donors 

DEFINE moderateDonor 

[$Dwater,$DprimaryAmide,$DanilineNH,$DamidineNH,$DsecondaryAmide,$DanilineNH2] 

### weak donors 

DEFINE weakDonor [$DhydraN,$DimineNH,$DphenylOH,$DprimaryAmine,$DsecondaryAmine] 

###### anion intermediate 

DEFINE negHet [#8,#16;$hd1] 

DEFINE terminalHet [#7,#8,#16;$hd1] 

DEFINE ANarylsulfonamide [N;$(N(a)S(=O)(=O)*)] 

DEFINE ANmalonic [C;!$hd4;$(C(C=[O,S])C=[O,S])] 

DEFINE ANarylthiol [S;$hd1;$(Sa)] 

DEFINE ANhalideion [I,Br,Cl,F;!H0,-] 

DEFINE ANhydroxylamine [O;$hd1;$(ON~C),$(O[n+]),$(O=n);!$(ONC=[S,O,N])] 

###### cation intermediate 

DEFINE CATnonewN [#7;!$(NC=O);!$(NS(=O)=O)] 

DEFINE CATguanidine [$CATnonewN]!:[#6](!:[$CATnonewN])!:[$CATnonewN] 

DEFINE CATguanidineC [#6]~[$CATguanidine] 

DEFINE CATamine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N=*);!$(N#*);!$([#7;X0])] 

###### Zn intermediates 

DEFINE hydroxamate O=[CX3]N[O-] 

DEFINE reverseHydrox O=[CH][NX3][O-] 

# 

# 

######################################### 

#                  TYPES                                                # 

######################################### 

TYPE donor 

TYPE acceptor 

TYPE cation 

TYPE anion 

TYPE rings 

TYPE hydrophobe 

TYPE metal 
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TYPE donac 

# 

# 

######################################### 

#             PATTERNS                                             # 

######################################### 

###### rings 

PATTERN rings [R]~1~[R]~[R]~[R]1 

PATTERN rings [R]~1~[R]~[R]~[R]~[R]1 

PATTERN rings [R]~1~[R]~[R]~[R]~[R]~[R]1 

PATTERN rings [R]~1~[R]~[R]~[R]~[R]~[R]~[R]1 

### hydrophobic 

# terminal hp 

PATTERN hydrophobe [$thp]~*(~[$thp])~[$thp]                     #triple 

PATTERN hydrophobe [$thp][!$(*(~[$thp])(~[$thp])~[$thp]);!$(*=[N,S,O])][$thp] #double 

PATTERN hydrophobe [$thp;!$(*~*~[$thp]);$(*~[$php])]            #single 

PATTERN hydrophobe [$thp;#35,#53]                               #large 

# non-terminal hp 

PATTERN hydrophobe [$ehp][$hp][$hp][$ehp] 

PATTERN hydrophobe [$ehp]([$ehp])[$hp][$ehp] 

PATTERN hydrophobe [$hp]([$ehp])([$ehp])[$ehp] 

PATTERN hydrophobe [$ehp][$hp][$hp][$hp][$ehp] 

PATTERN hydrophobe [$ehp][$hp][$hp;$(*[$hp][$hp][$ehp])] 

### donor/acceptor patterns 

PATTERN acceptor [$strongAcceptor,$moderateAcceptor,$weakAcceptor] 

PATTERN donor [$strongDonor,$moderateDonor,$weakDonor] 

### anion/cation patterns 

# cations 

PATTERN cation [$CATnonewN]!:[#6;!$(C(N)(N)N)](!:[$CATnonewN])!:[$CATnonewN] #guanidine 

PATTERN cation [$CATnonewN]!:[#6;!$([$CATguanidineC]);!$(C(N)N)]!:[$CATnonewN] #amidine 

PATTERN cation n:1cncc1                                #azole 

PATTERN cation [$CATamine] 

# anions 

PATTERN anion [$negHet][#6X3]~[$terminalHet]                   #carboxylate 

PATTERN anion [$negHet][#16X4](~[$terminalHet])~[$terminalHet] #sulfonate 

PATTERN anion [$negHet][#15X4](=O)[$negHet,$terminalHet]       #phosphonate 

PATTERN anion [n;$hd2]1[n;$hd2][n;$hd2][n;$hd2]c1              #tetrazole 

PATTERN anion [$ANarylsulfonamide,$ANmalonic,$ANarylthiol,$ANhalideion,$ANhydroxylamine] 

######################################### 

#           Type Patterns                                             # 

######################################### 

############ metal binders ############## 

#### Pattern Ca_Mg & ZN 

PATTERN metal [#8;-] 

PATTERN metal [#16;-] 

#### Pattern Ca_Mg 

# PATTERN metal [nh0]1aaaa1 

##### Pattern Zn 

PATTERN metal [nh0;-] 

PATTERN metal [#7;-] 

PATTERN metal [#8;-;!$([$hydroxamate,$reverseHydrox])] 

PATTERN metal O=[CX3]N[O-] 

PATTERN metal O=[CH][NX3][O-] 

PATTERN metal [S]([N,-1])(=[O])(=[O]) 

PATTERN metal O=C[ND2][O-] 
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######################################### 

#       CAVITY Type Patterns                                 # 

######################################### 

PATTERN donor [14#7] 

PATTERN acceptor [14#8] 

PATTERN cation [15#7] 

PATTERN anion [17#8] 

PATTERN rings [15#6] 

PATTERN hydrophobe [13#6] 

#PATTERN donac [15#8] 

PATTERN metal [54#30] 

# 

# 

######################################### 

#               INTERACTIONS                                  # 

######################################### 

INTERACTION rings rings attractive gaussian weight=1.0 radius=1.0 

INTERACTION hydrophobe hydrophobe attractive gaussian weight=1.0 radius=1.0 

INTERACTION donor donor attractive gaussian weight=1.0 radius=1.0 

INTERACTION donac donac attractive gaussian weight=1.0 radius=1.0 

INTERACTION acceptor acceptor attractive gaussian weight=1.0 radius=1.0 

INTERACTION cation cation attractive gaussian weight=1.0 radius=1.0 

INTERACTION anion anion attractive gaussian weight=1.0 radius=1.0 

INTERACTION metal metal attractive gaussian weight=10.0 radius=1.0 

# 

INTERACTION rings hydrophobe attractive gaussian weight=1.0 radius=1.0 

INTERACTION donor cation attractive gaussian weight=1.0 radius=1.0 

INTERACTION acceptor anion attractive gaussian weight=1.0 radius=1.0 

INTERACTION donac donor attractive gaussian weight=1.0 radius=1.0 

INTERACTION donac acceptor attractive gaussian weight=1.0 radius=1.0 

INTERACTION metal anion attractive gaussian weight=10.0 radius=1.0 

INTERACTION metal acceptor attractive gaussian weight=10.0 radius=1.0 

INTERACTION metal donac attractive gaussian weight=10.0 radius=1.0 

# 

INTERACTION anion cation repulsive gaussian weight=1.0 radius=1.0 

INTERACTION metal hydrophobe repulsive gaussian weight=10.0 radius=1.0 

INTERACTION metal rings repulsive gaussian weight=10.0 radius=1.0 

INTERACTION metal cation repulsive gaussian weight=10.0 radius=1.0 

INTERACTION metal donor repulsive gaussian weight=10.0 radius=1.0 

# 

INTERACTION hydrophobe donor repulsive gaussian weight=1.0 radius=1.0 

INTERACTION hydrophobe acceptor repulsive gaussian weight=1.0 radius=1.0 

INTERACTION hydrophobe donac repulsive gaussian weight=1.0 radius=1.0 

INTERACTION hydrophobe cation repulsive gaussian weight=1.0 radius=1.0 

INTERACTION hydrophobe anion repulsive gaussian weight=1.0 radius=1.0 
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Take-home Messages 

The work portrayed in this chapter presents a novel structure-based virtual screening tool whose 

performance is comparable to that of other in silico approaches. However, the total amount of 

time required to fully process the ligands (notably during the treatment of desolvation effects: 5 

seconds per pose x hundreds of poses per ligand) is larger than that consumed by most molecular 

docking tools or ligand-based screening programs, which, as a result, impedes the application of 

this novel approach to virtual screening campaigns using ultra-large chemolibraries that 

comprise millions (or even billions) of ligands. A possible resolution is to start such screens with 

faster approaches, and subject only the top scorers issued from these methods (0.01-0.1% of the 

total population) to our protocol in order to rescore the ligands. Other approaches may be used 

simultaneously, yielding as many hit lists as the employed methods, after which all hit lists 

(including that given by our procedure) are fused to select, for example, the top-ranked 

compounds that the lists have in common. The ligand-aligning script can also be modified to 

allow a faster calculation on multiple cores, in hopes of reducing the computation time. 

Another remarkable point of this work is that we used experimentally confirmed data from a 

highly-queried public repository (PubChem BioAssay) to validate our method. This rules out the 

issue regarding unknown potency values of presumably inactive molecules (“decoys”) inherent 

in artificially constructed data sets (DUD, DUD-E). Though a few data-processing steps were 

carried out before the employment of these data in retrospective virtual screening, the question as 

to whether the resulting ligand sets are still biased was not fully addressed. Starting from our first 

attempts described in this study, and taking inspiration from other publications reporting data set 

construction based on PubChem BioAssay data (reviewed in the Chapter 1 of this manuscript), 

we developed a novel unbiased data collection entitled LIT-PCBA from fully validated 

components in terms of bioactivity towards a macromolecular target, which can be applied to 

validating both ligand-based and structure-based in silico screening approaches. More details 

concerning the preparation and the evaluation of this new data set will be given in the next 

chapter of this thesis. 
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As previously mentioned in the manuscript, artificially constructed ligand sets classically used 

by the cheminformatics community (DUD, DUD-E, DEKOIS 2.0) suffer from multiple 

drawbacks ranging from the presence of possible false negatives/positives to obvious and hidden 

design bias, therefore overestimating the true accuracy of virtual screening methods. In this 

chapter, we present a novel data set entitled LIT-PCBA that was specifically designed for virtual 

screening and machine learning, relying on data from dose-response PubChem bioactivity assays 

that were additionally processed to avoid the issues inherent in other databases. The resulting 

ligand sets were finally unbiased by the recently described asymmetric validation embedding 

procedure to afford the final data collection that mimics experimental screening decks in terms of 

hit rate (ratio of active to inactive compounds) and potency distribution, and is ready for 

benchmarking novel virtual screening methods (both ligand-based and structure-based), notably 

those relying on machine learning. The work portrayed in this chapter has been published as an 

original research paper in the Journal of Chemical Information and Modeling, and was presented 

at the 9th Meeting of the French Cheminformatics Society in November 2019 in Paris. 

Tran-Nguyen, V. K.; Jacquemard, C.; Rognan, D. LIT-PCBA: An Unbiased Data Set for Machine Learning and 

Virtual Screening. J. Chem. Inf. Model. 2020 (in press). doi: 10.1021/acs.jcim.0c00155. 

 

 

https://doi.org/10.1021/acs.jcim.0c00155
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1. Introduction 

Virtual screening (VS) of compound libraries has established itself, notably in academic settings, 

as a fast and cost-efficient alternative to high-throughput screening (HTS) for identifying 

preliminary hits of pharmaceutically interesting targets.
1-3

 Because of the availability of hundreds 

of virtual screening tools,
4
 choosing the right method for a specific project often relies on 

benchmarking studies designed to delineate the context-specific advantages and drawbacks of 

each method. Many target-specific ligand sets
5-10

 and statistical evaluation protocols
11-13

 have 

been reported during the last decade to pinpoint the ability of a VS method to prioritize, for 

purchase and validation, the shortest possible hit list with an optimal enrichment factor in true 

actives. In the early 2000s, such data sets were limited in size due to the paucity of available 

experimental data. Inactive compounds were randomly chosen from databases of drug-like 

chemicals.
5,14,15

 Very soon, it appeared that the random selection of presumably inactive 

molecules (“decoys”) led to artificially high enrichment values, because of the bias in molecular 

property ranges (e.g. molecular weight) that often differed between active and inactive sets.
16

 

One of the first attempts at designing a docking-dedicated benchmarking database led to the 

introduction of the DUD data collection,
6
 gathering 2950 ligands of 40 different targets from the 

literature, seeded among property-matched decoys (36 decoys for each active) from the ZINC 

archive of commercially available ligands.
17

 In DUD, decoys were specifically designed to share 

physicochemical properties with actives but with a different chemical topology. Despite the 

caution given to the selection of decoys, independent groups rapidly noticed three major issues 

for both DUD active and decoy sets: (i) actives tend to spread over a few dominant scaffolds (so-

called “analog bias”),
18

 (ii) decoys exhibited molecular net charges different from those of 

actives,
19

 and (iii) decoys were too similar to true actives and were likely false negatives.
8
 The 

DUD set was upgraded to a revised version (DUD-E)
10

 describing an enhanced and more diverse 

target space (102 targets), containing 22,886 clustered true actives with known experimental data 

from the ChEMBL database,
20

 enhancing the proportion of decoys in the ligand sets (50 decoys 

for each active). The debate on the best protocol to select decoys has led to many 

contributions
8,9,21

 to design novel decoy sets. As an alternative to DUD-E, other sources of active 

compounds (e.g. PubChem BioAssay
22

) have also been utilized. Note-worthy is the MUV 

database
7
 that provides many advantages: (i) the data sets (targets, ligands, assay conditions) are 

publicly available, (ii) the included compounds are drug-like, (iii) many experimental data were 
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utilized to remove false positives and assay artifacts, and (iv) ligands were selected by a nearest 

neighbor analysis to permit a spatially unbiased distribution of actives and decoys. Consequently, 

the MUV data collection is considered more challenging than DUD-E.
23 

For many years, the DUD-E has been considered the gold standard for benchmarking VS and 

machine learning methods, until recent reports
24-27

 warned the community about both obvious 

and hidden bias in its design. First, Chaput et al.
24

 noticed that differences in key molecular 

properties (polar surface area, H-bond donor count, embranchment count) remain between DUD-

E actives and decoys. Moreover, chemical bias is still present in actives that tend to resemble 

target-bound PDB ligands, thereby overestimating the real discriminatory power of standard 

docking methods.
24

 In 2018, Wallach and Heifets described the asymmetric validation 

embedding (AVE) method
25

 to quantify data set bias and optimally design training/validation 

ligand sets. When applied to ligand-based VS methods, all standard benchmarking data 

collections (DUD, DUD-E, MUV) were shown to be massively biased, rewarding memorization 

rather than learning.
25

 The latter danger is even higher for currently popular artificial intelligence 

methods (e.g. machine learning, deep neural networks)
28

 that are hardly interpretable and tightly 

dependent on the quality of the input data and the way they are split to train and test a model. 

Two different groups
26,27

 just reported hidden bias in the DUD-E data set when applying deep 

neural networks (DNNs) to either predict binding affinities or classify complexes as 

active/inactive from X-ray structures or docking poses. Intriguingly, DNNs trained with rigorous 

cross-validation procedures on simple ligand descriptors were almost as accurate as those trained 

on protein-ligand attributes, suggesting that deep learning did not learn anything about the 

physics of protein-ligand interactions. Strikingly, the literature is full of overoptimistic reports 

describing machine learning models
29-31

 with near perfect performances on the above-described 

data sets, although true VS practitioners have known for long that such an accuracy level does 

not mirror the proportion of experimentally confirmed hits in real prospective VS experiments. 

There is more than ever an urgent need to design an unbiased and realistic data set specifically 

dedicated to virtual screening and machine learning.
27

 We herewith present our contribution 

based on the following eight principles: 

(i) The data set should mimic “real-life” screening decks and guide VS methods to 

discriminate moderately potent actives (primary hits) from inactive compounds; 



Chapter 3. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  139 

(ii) The potency of all compounds (actives, inactives) for a particular target should have 

been determined experimentally in homogeneous conditions;  

(iii) The ratio of actives to inactives should reflect hit rates typically observed in HTS 

campaigns against targets of pharmaceutical interest;
32

  

(iv) Actives should be filtered to remove false positives, frequent hitters, assay artifacts 

and truly “undruggable” compounds; besides, dose-response curves should be 

available for all actives; 

(v) Active and inactive compounds should span common molecular property ranges; 

(vi) Potency distribution of confirmed actives should not be biased towards too high 

affinities and should ideally mimic that observed in HTS decks; 

(vii) The data set should be applicable to both ligand-based and structure-based virtual 

screening; 

(viii) Unbiased training and validation sets should be available for machine learning. 

We therefore decided to choose the PubChem BioAssay database (PCBA)
22

 as the source of 

experimental bioactivity data. PCBA is an open-access archive hosted by the National Center for 

Biotechnology Information (NCBI), the National Library of Medicine (NLM) and the National 

Institute of Health (NIH). At the time this manuscript was written, the database stores over 1 

million assay records, 134,000 of which are annotated by an activity type (IC50, EC50, Kd, Ki). It 

covers about 7200 HTS projects from 80 sources (pharmaceutical companies, academic sources, 

governmental sources) on a chemical repository of 2.2 million compounds. The database can be 

easily queried according to numerous filters and is a first-class source of bioactivity data for 

computer-aided drug discovery.
33

  

We hereby describe a workflow for retrieving assays of interest and filtering compounds and 

targets for bioactivity data acquisition. The retrieved target sets were then subjected to state-of-

the-art virtual screening experiments in order to ascertain their suitability. The final data 

collection entitled LIT-PCBA contains 15 targets, 7844 true active and 407,381 true inactive 

compounds in total; with ready-to-use input files (ligands, targets) that have been unbiased for 

machine learning applications. It is available for download at http://drugdesign.unistra.fr/LIT-

PCBA. 

http://drugdesign.unistra.fr/LIT-PCBA
http://drugdesign.unistra.fr/LIT-PCBA
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2. Computational Methods 

2.1. Data Selection 

Bioactivity data were retrieved from the PubChem BioAssay database,
22

 where all information 

on true active and true inactive substances for a protein target is provided based on experimental 

results from confirmatory dose-response bioactivity assays, whose related details including assay 

principles, general protocols and other remarks are also given. All data were updated as of 

December 31, 2018. The “limits” search engine (https://www.ncbi.nlm.nih.gov/pcassay/limits) 

was used to filter the PubChem BioAssay resource by various options, with “Activity Outcome” 

set as “Active”, “Substance Type” set as “Chemical”, and “Screening Stage” defined as 

“Confirmatory, Dose-Response”. 149 assays, each targeting a single protein target, operated on 

at least 10,000 substances, and giving no fewer than 50 confirmed actives were first retained. 

The experimental screening data were kept if the target was characterized by at least one Protein 

Data Bank (PDB)
34

 entry, in complex with a ligand of the same phenotype (i.e. inhibitor, agonist, 

or antagonist) as that of the tested active substances of the corresponding bioactivity assay. 

Altogether, 21 raw HTS data tables were directly retrieved as csv files from the PubChem 

BioAssay website along with actives and inactives in separate sd files. The PDB resource was 

then browsed by Uniprot identifiers (Uniprot IDs)
35

 to retrieve the corresponding PDB entries in 

the suitable ligand-bound form. 

2.2. Template Structure Preparations for Each Target Set  

Protein-ligand complexes (in pdb file format) corresponding to the chosen target sets were 

processed as follows. For each PDB entry, explicit hydrogen atoms were added with Protoss
36

 to 

any molecule (protein, cofactor, prosthetic group, ion, ligand, water). The output pdb file was 

then visualized in Sybyl-X 2.1.1.
37

 A water molecule was kept under two conditions: (i) it was 

found at the binding site of the ligand, i.e., the distance between the oxygen atom of the water 

molecule and at least one heavy atom of the co-crystallized ligand was not greater than 5 Å; and 

(ii) it engaged in no fewer than three hydrogen bonds with the protein and/or the ligand, at least 

two of which were with the protein. Hydrogen bonds must satisfy the following criteria: the 

donor-acceptor distance must not exceed 3.5 Å; the angle formed by the donor, the hydrogen 

atom and the acceptor (with the vertex of the angle positioned at the hydrogen atom) must be 

https://www.ncbi.nlm.nih.gov/pcassay/limits
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larger than 120 degrees. The protonated ligand and protein (including all remaining bound water 

molecules, cofactors, prosthetic groups and ions) were saved separately in mol2 file format with 

Sybyl-X 2.1.1.
37

 

In case more than 20 ligand-bound protein entries were available for each target, all protein-

ligand structures were clustered according to the diversity of protein-ligand interaction patterns. 

These patterns were computed as graphs with IChem
38

 as previously described,
39

 and target-

specific interaction pattern similarity matrices were computed using the GRIM score metric.
39

 

Each matrix was then used as input for agglomerative nesting clustering using the “agnes” 

function in R v.3.5.2, the Ward clustering method, a Euclidean distance matrix and a total 

number of clusters fixed to 15. For each cluster, the PDB entry with the highest resolution was 

chosen as the protein-ligand PDB template for the corresponding target set. 

2.3. Determination of Filtering Rules for True Active and True Inactive Substances of Each 

Target Set  

Metadata on every substance (true active and true inactive) constituting each selected target set 

were collected directly from the website of PubChem BioAssay, including: the substance 

identifier (SID), the activity label (active or inactive), the phenotype (inhibitor, agonist, or 

antagonist), the potency (EC50 or IC50, in µM), and the Hill slope for the dose-response curve of 

each true active. The frequency of hits (FoH) for a confirmed active molecule was computed as 

the ratio of the number of PubChem bioactivity assays in which the substance was identified as 

true active to the number of assays in which it was tested. Additional molecular properties 

(molecular weight, AlogP, total formal charge, number of rotatable bonds, number of hydrogen 

bond donors and acceptors) were computed in Pipeline Pilot v.19.1.0.1964.
40

 

For each target set, all true actives and true inactives were then filtered according to four steps: 

 Step 1: Inorganic compounds filter. Molecules bearing at least one atom other than H, C, N, 

O, P, S, F, Cl, Br, and I were removed. 

 Step 2: False positives filter (this particular step was applied only to true active substances). 

o Step 2a: Actives with Hill slope h < 0.5 or > 2.0 were discarded;
7
 

o Step 2b: Actives with frequency of hits FoH > 0.26 were removed;
7
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o Step 2c: Aggregation – auto-fluorescence – luciferase inhibition filter:
7
 actives 

identified as promiscuous aggregators (actives in AID 585 or AID 485341 but not 

in AID 584 and AID 485294), luciferase inhibitors (actives in AID 411), or 

compounds having auto-fluorescent properties (actives in AID 587, AID 588, AID 

590, AID 591, AID 592, AID 593, AID 594) were eliminated. 

 Step 3: Molecular property range filter. The remaining actives and inactives were kept if:  

o 150 < molecular weight < 800 Da; 

o -3.0 < AlogP < 5.0; 

o Number of rotatable bonds < 15; 

o H-bond acceptor count < 10; 

o H-bond donor count < 10; 

o -2.0 < total formal charge < +2.0. 

 Step 4: 3D conversion and normalization filter. The two-dimensional (2D) sd files of the 

remaining compounds (actives, inactives) were converted into 3D sd file format using the 

default settings of Corina v.3.4.
41

 Last, compounds were standardized and ionized at 

physiological pH with Filter v.2.5.1.4.
42

 All preparation failures were discarded. 

2.4. 2D Similarity Searches 

Extended-connectivity circular ECFP4 fingerprints
43

 were computed for PubChem compounds 

and PDB ligands in Pipeline Pilot v.19.1.0.1964.
40

 Pairwise similarity of PubChem compounds 

to PDB ligands was estimated by the Tanimoto coefficient (Tc), thereby leading to a PDB 

ligand-specific hit list sorted by decreasing Tc values. The areas under the ROC (receiver 

operating characteristic)
11

 and BEDROC (Boltzmann-enhanced discrimination of ROC)
12

 curves 

(α = 20) along with the enrichment in true actives at a constant 1% false positive rate over 

random picking (EF1%) were calculated for each separate hit list. The same procedure was 

applied by fusing all lists and keeping the maximal Tc value for each compound (the “max-

pooling” approach). 

2.5. 3D Similarity Searches 

For each target set, a maximal number of 200 conformers were generated for every PubChem 

compound with the standard settings of Omega2 v.2.5.1.4.
44

 All conformers were then compared 
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to the query (PDB ligand) with ROCS v.3.2.0.4.
45

 The best matching conformer was selected for 

every ligand according to the TanimotoCombo similarity score,
13

 and all molecules of each 

target set were sorted based on this same value in descending order. Retrospective virtual 

screening performance was evaluated by ROC AUC, BEDROC AUC and EF1% values 

calculated as described above. 

2.6. Molecular Docking 

Starting from the mol2 structure of a fully processed template protein (including remaining 

bound water molecules after preparation) and that of its co-crystallized ligand, a protomol 

representing the ligand-binding site was generated from protein-bound ligand atomic coordinates 

using the default settings of Surflex-Dock v.3066.
46

 All molecules in the relevant target set were 

docked into the protomol with the “–pgeom” option of the docking engine. The best-ranked pose 

according to docking scores (pKd values) was retained for each molecule, and all ligands of the 

set were then sorted based on this value in descending order. Retrospective virtual screening 

performance was evaluated by ROC AUC, BEDROC AUC and EF1% values calculated as 

described above. 

2.7. Target Set Unbiasing 

For each target set, the unbiasing of the training and validation sets was done using the 

previously described asymmetric validation embedding (AVE) method,
25

 which systematically 

measures pairwise distance in chemical space between molecules belonging to four sets of 

compounds (training actives, training inactives, validation actives, validation inactives). Using 

circular ECFP4 fingerprints
43

 as chemical descriptors and a training-to-validation ratio of 3, a 

maximal number of 300 iteration steps of the AVE genetic algorithm (GA) were run to select 

training and validation molecules while minimizing the overall bias B (B ∈ [0;1]) of the target 

set. Convergence was reached when the bias value B was lower than 0.01, i.e., the GA was 

programmed to stop as soon as the total bias was below 0.01. To enable the script to process 

large sets of compounds (more than 100,000 molecules), the bias-removing script 

(remove_AVE_bias.py) originally proposed by Wallach and Heifets
25

 was modified to allow a 

faster calculation on multiple cores. 
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3. Results and Discussion 

The aim of the present study is to design an unbiased data set dedicated to virtual screening as 

well as machine learning, along four main ideas: 

(1) Experimental data should be available for all compounds, including the inactives. 

Each true active should have been confirmed by a full dose-response curve. 

(2) The target should be a single protein, for which a high-resolution X-ray structure is 

available on the PDB. Moreover, the target should have been crystallized at least 

once, with a ligand exhibiting a phenotype (e.g. inhibitor, full agonist, neutral 

antagonist) identical to that of active compounds in the corresponding bioassay.  

(3) PubChem target sets should be suitable for both ligand-based and structure-based 

virtual screening. The performance of three orthogonal methods (2D fingerprint 

similarity searches, 3D shape similarity searches, molecular docking) was evaluated 

to select only the target sets for which at least one of these three methods achieves an 

EF1% value ≥ 2.0, or in other words, performs at least twice better than random 

picking (EF1% = 1.0). 

(4) The finally selected target sets should be as unbiased as possible, when it comes to 

comparing true actives to true inactives in chemical space, and when the data are split 

into training and validation sets. 

To this end, we designed a computational workflow (Figure 1) that will be presented and 

discussed, step-by-step in the following sections. 
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Figure 1. Workflow for LIT-PCBA data set construction. (1) Data retrieval from PubChem 

BioAssay according to user-defined filters (activity outcome: active; ≥ 10,000 tested substances; 

≥ 50 active substances; substance type: chemical; screening stage: confirmatory, dose-response; 

target: single; target type: protein target). (2) Data cleaning: removal of inorganic compounds, 

false positives, frequent hitters, assay artifacts and compounds with extreme molecular 

properties. Selection of target sets having at least a representative target structure on the Protein 

Data Bank co-crystallized with a ligand of the same phenotype as that of the actives in the 

corresponding bioassay. (3) Virtual screening of the cleaned HTS target sets with three methods 

(2D similarity, 3D similarity, docking). (4) Performance assessments of the methods on all 

cleaned target sets (ROC, BEDROC, EF1%). (5) Selection of target sets for which at least one 

method achieves an EF1% value ≥ 2.0. AVE unbiasing
25

 of the corresponding ligand sets and 

definition of training and validation sets for machine learning. 
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3.1. HTS Data Extraction 

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for information on 91 

million chemical substances and 268 million biological activities, launched in 2004 as a 

component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of 

Health (NIH). The PubChem BioAssay resource
22

 was queried to retrieve 149 assays according 

to multiple queries (see “Computational methods”). To ascertain that the data set will be further 

suitable for both ligand-based and structure-based virtual screening, we checked that each single 

protein target not only had a representative structure on the PDB, but was also co-crystallized 

with a ligand sharing the same phenotype or function with the true actives. This sanity check 

enables the selection of the right activation state (e.g. for G-protein coupled receptors) and the 

right binding site for docking. Of course, we cannot ensure at this step that all true actives share 

the same binding site with all PDB ligand templates. However, it serves as the first filter to avoid 

comparing ligands with known opposite or different functions. To control the bioactivity of each 

compound, only confirmatory dose-response screening assays were kept. A total of 21 assays 

(Table 1) performed on isolated enzymes (n = 6), soluble protein-protein interactions (n = 4) and 

target-expressing cells (n = 11); using four different readouts (fluorescence intensity, 

fluorescence polarization, luminescence, alpha screen) were finally saved. Except for five 

screens in which only 10,000 compounds were tested, most assays were run on a large number of 

compounds (from 200,000 to 400,000). Importantly, each assay was analyzed in detail, notably 

regarding the activity threshold qualifying a compound as active, which is target-dependent and 

was not further modified in this study. Compounds whose activity outcome was deemed as 

“inconclusive” were removed from the final ligand sets, only ligands confirmed as either actives 

or inactives were retained. 

Corresponding targets are single proteins representing 11 families of pharmaceutical interest, 

including nuclear hormone receptors (n = 5), protein kinases (n = 3), and G protein-coupled 

receptors (n = 3). Most target sets describe compounds tested for an inhibitory activity against a 

protein target (13 target sets). Overall, 162 structures of protein-ligand complexes in PDB format 

were chosen as templates for the 21 target sets (Table 1). More information on each selected 

PubChem bioactivity assay (brief assay description, readout, format, PDB templates) can be 

found in Table S1.  

https://pubchem.ncbi.nlm.nih.gov/
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Table 1. List of 21 selected PubChem bioactivity assays 

Target Assay 

AID
a
 

Substances
b
 PDB 

entries ID Name Tested Actives Phenotype 

ADRB2 Beta2 adrenergic receptor 492947 331,108 80 Agonist 8 

ALDH1 Aldehyde dehydrogenase 

1 

1030 220,402 16,117 Inhibitor 8 

ARO1 Aromatase 743083 10,486 905 Inhibitor 3 

ESR1-ago Estrogen receptor alpha 743075 10,486 589 Agonist 15 

ESR1-ant Estrogen receptor alpha 743080 10,486 477 Antagonist 15 

FEN1 Flap endonuclease 1 588795 391,275 1368 Inhibitor 1 

GBA Glucocerebrosidase 2101 326,770 299 Inhibitor 6 

GLP1R Glucagon-like peptide-1 

receptor 

624417 408,352 6432 Inverse 

agonist 

2 

GLS Glutaminase 624170 409,400 846 Inhibitor 11 

IDH1 Isocitrate dehydrogenase 602179 390,606 365 Inhibitor 14 

KAT2A Histone acetyltransferase 

KAT2A 

504327 387,485 817 Inhibitor 3 

L3MBTL1 Lethal(3)malignant brain 

tumor-like protein 

isoform I 

485360 225,505 1495 Inhibitor 1 

MAPK1 Mitogen-activated 

protein kinase 1 

995 72,004 711 Inhibitor 15 

MTORC1 Mechanistic target of 

rapamycin 

493208 43,989 342 Inhibitor 11 

OPRK1 Kappa opioid receptor 1777 284,220 51 Agonist 1 

PKM2 Pyruvate kinase muscle 

isoform 2 

1631 264,516 892 Agonist 9 

PPARG Peroxisome proliferator-

activated receptor gamma 

743094 10,486 78 Agonist 15 

RORC Retinoic acid-related 

orphan receptor gamma 

2551 309,031 16,824 Inhibitor 15 

THRB Thyroid hormone 

receptor 

1469 282,587 183 Inhibitor 1 

TP53 Cellular tumor antigen 

p53 

651631 10,488 602 Agonist 6 

VDR Vitamin D receptor 504847 401,452 3735 Antagonist 2 

a
 Full details for each assay are available at https://pubchem.ncbi.nlm.nih.gov/bioassay/AID.  

b 
Structures deposited by individual data contributors. Unique chemical structures are called 

“compounds”. 

https://pubchem.ncbi.nlm.nih.gov/bioassay/AID
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3.2. HTS Data Cleaning 

All active and inactive compounds were next submitted to a series of filters (see “Computational 

methods”) aimed at removing inorganic compounds (step 1), frequent hitters and assay artifacts 

(step 2),
7
 compounds exhibiting molecular properties outside pre-defined ranges (step 3), and 

molecules for which either 2D-to-3D conversion or ionization at pH 7.4 failed (step 4). It can be 

observed that nearly 60% of true active substances were removed during the filtering steps (see 

Table S2, S3 for exhaustive statistics), with step 2a eliminating the most true actives (Figure 2). 

This step is aimed at ruling out actives that exhibit very strong binding cooperativity and have 

multiple binding sites.
47

 True inactive substances, on the other hand, were not subjected to the 

three filtering steps 2a, 2b and 2c, thus lost much fewer members than the true actives, with over 

90% of substances still remaining in the end. 
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Figure 2. Total number of actives and inactives remaining after each filtering step was applied to 

the 21 selected target sets from PubChem BioAssay. Step 1: inorganic molecules; Step 2a: 

compounds with Hill slope h < 0.5 or > 2; Step 2b: compounds with frequency of hits FoH > 

0.26; Step 2c: assay artifacts interfering with the readouts (10,892 substances classified as 

aggregators or auto-fluorescent molecules or luciferase inhibitors); Step 3: compounds with 

extreme molecular properties; Step 4: 3D conversion and ionization failures. Steps 2a, 2b and 2c 

were not applied to true inactives. 

The filtering steps highlight the importance of removing assay artifacts in the composition of 

active substances. These steps not only prevented false positives that could affect subsequent 

screening performance, but also significantly reduced the number of true actives in comparison 

to that of true inactives, thus bringing hit rates closer to those typically observed in experimental 
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screening decks,
32

 but lower (in 15 out of 21 cases) than those of artificially constructed data sets 

commonly used by the cheminformatics community (Figure 3A). 

 

Figure 3. Properties of LIT-PCBA and standard data sets. (A) Confirmed hit rates for the LIT-

PCBA data set (red bars), standard cheminformatics data sets (DUD,
6
 DUD-E,

10
 MUV;

7
 blue 

bars), and a representative sample of 10 high-throughput screens from a major pharmaceutical 

company (green).
32

 (B) Potency distribution of actives in the LIT-PCBA (red) and DUD-E 

(green) data sets. Potency is expressed as pIC50, pEC50, pKi or pKd. 

We next looked at the potency distribution of true actives (Figure 3B) in our data set in 

comparison to that of DUD-E and ChEMBL.
20

 We can observe different potency distribution for 

DUD-E actives (n = 67,659; median potency = 7.46 ± 0.96) and for LIT-PCBA actives (n = 

19,985; median potency = 5.22 ± 0.54). The micromolar potency values observed for most LIT-

PCBA actives reflect affinities typically observed in HTS campaigns. Conversely, DUD-E 
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actives tend to be much more potent (potency at the sub-micromolar level in most cases) and 

consequently easier to be picked, thereby overestimating the real benefit of virtual screening 

methods. At the individual target set level, the same trend applies when comparing the potency 

of LIT-PCBA and ChEMBL ligands for 19 common target sets (Figure S1). Importantly, we 

believe that the enhanced difficulty proposed by our data collection may enable a better 

discrimination of in silico screening methods.  

3.3. Virtual Screening and Performance Assessments 

The suitability of the 21 fully processed target sets for virtual screening was next assessed by 

three standard methods: 2D fingerprint similarity searches, 3D shape similarity searches, and 

molecular docking. The aim of the computational experiments was not to compare the virtual 

screening accuracy degrees of all methods but to check which of the 21 target sets may be 

unsuitable for in silico screening purposes. Hence, there is no guaranty that PubChem and PDB 

template ligands are strictly comparable (e.g. sharing the same binding site and molecular 

mechanism of action). Ligand-based screening will rapidly assess whether obvious bias is 

present in the ligand sets in terms of either 2D or 3D topologies. In addition, docking will 

ascertain if PubChem ligands share binding sites and interaction patterns with PDB templates. In 

each screen, all available PDB ligand/target templates were iteratively used as references, 

thereby generating as many hit lists as the available 162 templates. This exhaustive approach, 

albeit cumbersome, enables the selection of all references and takes into account the known 

chemical diversity of target-bound ligands (ligand-based virtual screening) or the known 

conformational space accessible to the target of interest (docking). In addition, a target-based 

“max-pooling” approach was followed by merging all screening data related to any LIT-PCBA 

ligand, whatever the corresponding template, and retaining the highest value (2D similarity, 3D 

similarity, docking score) per ligand. Statistical analyses of the data were primarily focused on 

enrichment factors in true actives at a constant 1% false positive rate (EF1%, Figure 4) as such 

values mirror the expectation of prospective virtual screening practices. Besides, areas under the 

ROC and BEDROC curves have also been calculated and are given in Tables S4-S6. 
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Figure 4. Performance of three different virtual screening methods (2D: ECFP4 similarity, 3D: 

3D shape similarity, SD: molecular docking with Surflex-Dock) on 21 fully processed target 

sets. The graphs represent the distribution of EF1% values (enrichment in true actives at a 

constant 1% false positive rate over random picking) obtained after screening. The boxes delimit 

the 1
st
 and 3

rd
 quartiles, and the whiskers delimit the minimum and the maximum values. The 

median and the mean values are indicated by a green vertical line and a red dot located in each 

box, respectively. In cases where there is only one PDB template for a target set, or all templates 

gave the same EF1% value, the boxes are shrunk down into a single line. The purple crosses 

represent the EF1% values obtained by the “max-pooling” approach. 
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As expected, inspection of the observed enrichment in true actives for all 21 target sets clearly 

shows that the EF1% values may vary quite significantly according to the chosen template. In 

many instances, enrichment close to or even poorer than that obtained by random picking (EF1% 

= 1.0) is observed (Figure 4). We considered as acceptable any virtual screening protocol 

yielding an EF1% value ≥ 2, or in other words, at least twice better than random picking. At this 

threshold, ligand-based methods clearly outperformed docking (Figure 4). Interestingly, only 

10% of all in silico screening assays led to enrichment higher than 10. This result highlights the 

particular challenge of screening the current data set that we attribute to two main reasons: (i) the 

apparent absence of obvious bias in the distribution of PubChem actives in chemical space, and 

(ii) the potency distribution of PubChem actives not centered on sub-micromolar values. 

3.4. Final Target Set Selection and Unbiasing 

In order to facilitate the analysis, we will from now on discuss the results obtained by fusing, for 

each virtual screening method, all data across all available target-specific templates (“max-

pooling” approach). This strategy was supported by two main reasons: (i) the fused approach 

provides enrichment values usually close to that obtained with the best possible template (Figure 

4), and (ii) it enables the definition of a single hit list for each screening run while considering all 

templates. 15 out of the initial 21 target sets can be considered suitable (EF1% ≥ 2.0) for at least 

one of the three methods (Figure 5). 
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Figure 5. Comparative performance of three virtual screening protocols (2D: ECFP4 similarity 

searches, 3D: shape similarity searches, SD: molecular docking with Surflex-Dock) for the 21 

target sets, processed by the “max-pooling” approach. (A) Venn diagram of target sets for which 

an EF1% ≥ 2.0 is observed. (B) Heatmap representing the fused values of EF1% obtained for 

each of the 21 fully processed target sets by the three in silico screening methods. Abbreviations 

of target sets are indicated above the heat map. 

The current virtual screening exercise suggests that six target sets (GLS, GLP1R, ARO1, THRB, 

RORC, L3MBTL1) are not adequate for in silico screening purposes since none of the three 

methods was able to clearly distinguish the confirmed actives from inactive compounds when the 

“max-pooling” approach was applied (EF1% < 2.0) (Figures 4-5). Moreover, for five target sets 

among them (GLS as the only exception), the template-based scoring approach did not give any 

EF1% value above 2.0 either. Reasons for failures in screening these targets were: (i) the 

promiscuity of the binding site towards many low-affinity chemotypes (e.g. ARO1), (ii) the 

presence of non-overlapping binding sites (orthosteric versus allosteric) for PDB templates and 

PubChem actives (e.g. GLP1R, GLS, RORC), and (iii) the availability of a single PDB template 

(e.g. L3MBTL1, THRB). 

Two target sets (ADRB2, PPARG) seem easier to handle since all three virtual screening 

methods could successfully retrieve true actives with enrichment factors higher than 5.0. In four 
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cases (GBA, OPRK1, PKM2, ESR1-ago), two methods succeeded. Last, only one method was 

able to perform correctly for 9 sets (ALDH, IDH1, VDR, MTORC1, MAPK1, ESR1-ant, TP53, 

FEN1, KAT2A; Figure 5). This result is in agreement with many previous studies
48-50

 

suggesting that in silico screening methodologies are orthogonal, and is reassuring as it 

highlights the absence of obvious bias in both 2D molecular graphs and 3D shapes of LIT-PCBA 

compounds. It can therefore be implied that the remaining true actives (besides the ADRB2 and 

PPARG sets) do not resemble their corresponding PDB template ligands in both 2D and 3D 

shapes; meaning similarities between them, if there were any, did not significantly contribute to 

improving virtual screening performance, notably in early enrichment of true actives.  

For each of the remaining 15 target sets, we ensured that the chemical diversity of PDB template 

ligands was not biasing our analysis. A first comparison of the number of Bemis-Murcko 

frameworks
51

 to the total number of templates indicates that a wide variety of chemotypes are 

indeed available among the chosen PDB template ligands (Table S7). A self-similarity plot of 

templates (Tanimoto coefficient on MDL public keys) confirms this observation and shows, for 

most of the target sets (MTORC1 being an exception), a large chemical diversity (Figure S2). 

The 15 target sets were last unbiased by the AVE method
25

 to propose optimal training and 

validation sets for machine learning applications. In brief, a genetic algorithm (GA) is used to 

select four subsets of active and inactive compounds for training and validation sets, based on 

pairwise distances in chemical space (ECFP4 circular fingerprints) between the above-described 

four ligand subsets. The objective function of the GA (bias value) gears the splitting procedure to 

select training and validation sets for which distances in chemical space are homogenously 

distributed when training actives, validation actives, training inactives and validation inactives 

are compared. For 14 out of 15 target sets, just a few iterations (< 100) of the GA were necessary 

to unbias the corresponding target sets with low bias values (Table 2). Interestingly, optimal 

splitting was achieved without removing a single compound from 13 out of the 15 initial 

PubChem compound collections, thereby suggesting that the latter input did not exhibit major 

bias. The final AVE-unbiased LIT-PCBA data set covers 15 target sets, 7844 unique actives and 

407,381 unique inactives (Table 2). 

For two target sets (ALDH1, VDR), the high number of true actives forced us to reduce by 25% 

the size of the data set in order to reach GA search completion. In both cases, care was taken to 
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keep the hit rates unchanged after data reduction. A one-nearest neighbor (knn1) binary 

classification of the 15 validation sets, still using ECFP4 fingerprints as descriptors, led to areas 

under the ROC curves close to random (0.50) and thereby supports the bona fide unbiasing of all 

corresponding target sets. Analyses of the three baseline virtual screening experiments for the 

AVE validation sets only (Table S8) confirm the very challenging nature of the data set as the 

performance dropped drastically for many target sets, notably those with low numbers of actives 

(e.g. ADRB2, IDH1) or few PDB template ligands (e.g. OPRK1). As previously indicated, the 

baseline in silico screening protocol was just intended to remove PubChem HTS data unsuitable 

for virtual screening applications, and is not indicative of the performance of modern machine 

learning approaches. We however recommend the application of such methods to target sets 

exhibiting enough true actives to train on (ALDH1, FEN1, GBA, KAT2A, MAPK1, PKM2, 

VDR; Table 2). 
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Table 2. Final list of 15 target sets of the LIT-PCBA data collection 

Target Target name 

AVE Actives Inactives Knn1
a
 

Bias Iterations Validation Training Validation Training 
ROC 

AUC 

ADRB2 Beta2 adrenergic receptor 0.003 2 4 13 78,120 234,363 0.500 

ALDH1
b
 Aldehyde dehydrogenase 1 0.092 195 1344 4032 25,868 77,606 0.556 

ESR1-ago Estrogen receptor alpha 0.001 1 3 10 1395 4188 0.499 

ESR1-ant Estrogen receptor alpha 0.006 9 25 77 1237 3711 0.517 

FEN1 Flap endonuclease 1 0.076 39 92 277 88,850 266,552 0.499 

GBA Glucocerebrosidase 0.005 9 41 125 74,013 222,039 0.524 

IDH1 Isocitrate dehydrogenase 0.001 4 9 30 90,512 271,537 0.500 

KAT2A Histone acetyltransferase KAT2A 0.001 5 48 146 87,137 261,411 0.500 

MAPK1 Mitogen-activated protein kinase 1 0.000 8 77 231 15,657 46,972 0.505 

MTORC1 Mechanistic target of rapamycin 0.001 7 24 73 8243 24,729 0.499 

OPRK1 Kappa opioid receptor 0.000 3 6 18 67,454 202,362 0.500 

PKM2 Pyruvate kinase muscle isoform 2 0.009 28 136 410 61,380 184,143 0.507 

PPARG Peroxisome proliferator-activated 

receptor γ 

0.000 4 6 21 1302 3909 0.500 

TP53 Cellular tumor antigen p53 0.008 29 19 60 1042 3126 0.491 

VDR
b
 Vitamin D receptor 0.044 62 165 498 66,635 199,906 0.499 

a 
Area under the ROC curve for a

 
binary classification of validation compounds (active, inactive) based on a one-nearest neighbor 

similarity search (ECFP4 fingerprints) model trained on target-specific training sets.
 

b
 The size of the target set was reduced by 25% at the unbiasing stage due to the large number of remaining true actives. 
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4. Conclusion 

A rigorous ligand set preparation process is necessary to benchmark virtual screening and/or 

machine learning methods. Since the body of known experimental data is continuously 

increasing, such benchmarking data sets need periodical revisions to remove both obvious and 

hidden bias inherent in human decision-making. Otherwise, errors are propagated across the 

literature and prevent a true comparison of novel methodological developments. Several recent 

reports
24-27

 unambiguously demonstrated that the cheminformatics community is currently facing 

this situation, leading notably to overoptimistic reports on the real benefit of artificial 

intelligence methods (e.g. deep neural networks) when applied to structure-based ligand design. 

We herewith present LIT-PCBA as a novel generation of virtual screening benchmarking data 

sets, specifically designed to reveal the true potential of computational methods in in silico 

screening exercises. The data collection has been designed from dose-response PubChem 

bioactivity assays for which active and inactive compounds are unambiguously defined. 

Importantly, a careful examination of metadata allowed the removal of assay artifacts, frequent 

hitters and false positives. LIT-PCBA comprises 15 target sets covering a wide diversity of 

ligands and target proteins. Preliminary virtual screening attempts with state-of-the-art methods 

(2D similarity searches, 3D shape-matching, and molecular docking) suggest that the data set is 

very challenging, notably because potency distribution bias among the labeled active compounds 

is no longer present. A recently described unbiasing procedure
25

 was finally applied to LIT-

PCBA to enable a rational and optimal distribution of training and validation sets for machine 

learning. We do believe that the particular challenge brought by this data collection will allow a 

clearer appreciation of modern artificial intelligence methods in structure-based virtual screening 

scenarios. The full LIT-PCBA data set is now freely accessible for download at 

http://drugdesign.unistra.fr/LIT-PCBA. 
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Supporting Information 

Table S1. Description of 21 selected PubChem bioactivity assays. 

Target set AID Assay description Readout Format PDB templates 

ADRB2 492947 qHTS assay of beta-arrestin-biased ligands of beta2-

adrenergic receptor 

Lumi CBA 3P0G, 3PDS, 3SN6, 4LDE, 4LDL, 4LDO, 4QKX, 

6MXT 

ALDH1 1030 qHTS assay for inhibitors of aldehyde dehydrogenase 1 Fluo EAE 4WP7, 4WPN, 4X4L, 5AC2, 5L2M, 5L2N, 5L2O, 

5TEI 

ARO1 743083 qHTS assay to identify aromatase inhibitors Fluo CBA 3S7S, 4GL5, 4GL7 

ESR1-ago 743075 qHTS assay to identify small molecule agonists of the 

estrogen receptor alpha (ER-alpha) signaling pathway 

Fluo CBA 1L2I,2B1V, 2B1Z, 2P15, 2Q70, 2QR9, 2QSE, 

2QZO, 4IVW, 4PPS, 5DRJ, 5DU5, 5DUE, 5DZI, 

5E1C 

ESR1-ant 743080 qHTS assay to identify small molecule antagonists of the 

estrogen receptor alpha (ER-alpha) signaling pathway using 

the BG1 cell line 

Lumi CBA 1XP1, 1XQC, 2YAR, 2IOG, 2IOK, 2OUZ, 2POG, 

2R6W, 3DT3, 5AAU, 5FQV, 5T92, 5UFX, 6B0F, 

6CHW 

FEN1 588795 qHTS assay for the inhibitors of human flap endonuclease 1 Fluo EAE 5FV7 

GBA 2101 qHTS assay for inhibitors and activators of N370S 

glucocerebro-sidase as a potential chaperone treatment of 

Gaucher disease 

Fluo EAE 2V3D, 2V3E, 2XWD, 2XWE, 3RIK, 3RIL  

GLP1R 624417 qHTS of GLP-1 receptor inverse agonists Lumi CBA 5VEW, 5VEX 

GLS 624170 qHTS for inhibitors of glutaminase Fluoa EAEb 3UO9, 3VOZ, 3VP1, 5FI2, 5FI6, 5FI7, 5HL1, 

5I94, 5JYO, 5WJ6, 5JYP 

IDH1 602179 qHTS for inhibitors of mutant isocitrate dehydrogenase 1 Fluo EAE 4I3K, 4I3L, 4UMX, 4XRX, 4XS3, 5DE1, 5L57, 

5L58, 5LGE, 5SUN, 5SVF, 5TQH, 6ADG, 6B0Z  

KAT2A 504327 qHTS assay for inhibitors of GCN5L2 Fluo PPI 5H84, 5H86, 5MLJ 

L3MBTL1 485360 qHTS assay for the inhibitors of L3MBTL1 Alpha PPI 3P8H 

MAPK1 995 qHTS assay for inhibitors of the ERK signaling pathway 

using a homogeneous screening assay 

Alphae CBA 1PME, 2OJG, 3SA0, 3W55, 4QP3, 4QP4, 4QP9, 

4QTA, 4QTE, 4WJ0, 4ZZN, 5AX3, 5BUJ, 5V62, 

6G9H 

MTROC1 493208 Acumen qHTS assay for inhibitors of the mTORC1 signaling 

pathway in MEF (Tsc2-/-, p53-/-) cells: Sytravon 

Fluo CBA 1FAP, 1NSG, 2FAP, 3FAP, 4DRH, 4DRI, 4DRJ, 

4FAP, 4JSX, 4JT5, 5GPG  

OPRK1 1777 uHTS identification of small molecule agonists of the kappa 

opioid receptor via a luminescent beta-arrestin assay 

Lumic CBAd 6B73 

PKM2 1631 qHTS assay for activators of human muscle isoform 2 

pyruvate kinase 

Lumi EAE 3GQY, 3GR4, 3H6O, 3ME3, 3U2Z, 4G1N, 4JPG, 

5X1V, 5X1W 

PPARG 743094 qHTS assay to identify small molecule agonists of the 

peroxisome proliferator-activated receptor gamma (PPARg) 

signaling pathway 

Fluo CBA 1ZGY, 2I4J, 2P4Y, 2Q5S, 2YFE, 3B1M, 3HOD, 

3R8A, 4CI5, 4FGY, 4PRG, 5TTO, 5TWO, 5Y2T, 

5Z5S 
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RORC 2551 qHTS for inhibitors of ROR gamma transcriptional activity Lumi CBA 4WPQ, 4YMQ, 5APH, 5C4T, 5NTK, 5NTN, 

5NTP, 5NTQ, 5NTW, 5UFR, 5VB6, 5X8Q, 6A22, 

6B33, 6CVH 

THRB 1469 qHTS for inhibitors of the interaction of thyroid hormone 

receptor and steroid receptor coregulator 2 

FPf PPIg 2PIN 

TP53 651631 qHTS assay for small molecule agonists of the p53 signaling 

pathway 

Fluo CBA 2VUK, 3ZME, 4AGO, 4AGQ, 5G4O, 5O1I 

VDR 504847 Inhibitors of the vitamin D receptor (VDR): qHTS FP PPI 3A2J, 3A2I 

 a fluorescence intensity 
 b enzyme activity assay 
 c luminescence 
 d cell-based assay 
 e alpha screen 
 f fluorescence polarization 
 g soluble protein-protein interaction assay 
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Table S2. Number of remaining active compounds after each filtering step. 

Target set 
PubChem 

AID 
Start 

Filtering steps 

Step 1 Step 2a Step 2b Step 2c Step 3 Step4 

ADRB2 492947 80 80 19 19 19 17 17 

ALDH1 1030 16,117 16,070 8052 8023 7716 7170 7168 

ARO1 743083 905 852 298 150 150 121 121 

ESR1-ago 743075 105 89 20 18 18 15 13 

ESR1-ant 743080 473 453 217 145 145 103 102 

FEN1 588795 1368 1353 502 448 425 370 369 

GBA 2101 299 298 240 236 233 166 166 

GLP1R 624417 6432 6431 3000 2997 2942 2180 2180 

GLS 624170 846 842 255 251 236 224 224 

IDH1 602179 365 364 57 56 54 39 39 

KAT2A 504327 817 794 297 268 234 194 194 

L3MBTL1 485360 1495 1492 587 583 541 501 501 

MAPK1 995 711 707 414 402 322 308 308 

MTORC1 493208 342 342 137 136 136 97 97 

OPRK1 1777 35 35 30 30 29 24 24 

PKM2 1631 892 892 578 578 557 546 546 

PPARG 743094 78 75 46 41 41 27 27 

RORC 2551 16,824 16,805 8397 8355 8053 6874 6874 

THRB 1469 183 179 92 78 64 53 53 

TP53 651631 602 571 181 111 111 81 79 

VDR 504847 3735 3685 1099 1067 1041 886 884 

Unique compounds 45,771 45,294 23,058 22,653 21,819 18,939 18,930 

% remaining  100.00 98.96 50.38 49.49 47.67 41.38 41.36 
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Table S3. Number of remaining inactive compounds after each filtering step. 

Target set 
PubChem 

AID 
Start 

Filtering steps Final 

Actives/Inactives ratio Step 1 Step 3 Step 4 

ADRB2 492947 329,716 329,642 312,493 312,483 1/18,381 

ALDH1 1030 148,322 148,166 137,980 137,965 1/19 

ARO1 743083 8846 8661 5440 5381 1/44 

ESR1-ago 743075 9089 8897 5640 5583 1/429 

ESR1-ant 743080 8297 8121 5003 4948 1/49 

FEN1 588795 382,244 382,117 355,420 355,402 1/963 

GBA 2101 314,877 314,654 296,080 296,052 1/1783 

GLP1R 624417 321,735 321,657 304,879 304,866 1/140 

GLS 624170 401,810 401,672 371,883 371,860 1/1660 

IDH1 602179 388,463 388,376 362,063 362,049 1/9283 

KAT2A 504327 376,634 376,467 348,571 348,548 1/1797 

L3MBTL1 485360 217,165 217,107 204,490 204,480 1/408 

MAPK1 995 66,078 65,908 62,652 62,629 1/203 

MTORC1 493208 41,294 41,294 32,972 32,972 1/340 

OPRK1 1777 284,169 284,120 269,818 269,816 1/11,242 

PKM2 1631 259,866 259,782 245,525 245,523 1/450 

PPARG 743094 8532 8357 5267 5211 1/193 

RORC 2551 256,777 256,580 243,311 243,284 1/35 

THRB 1469 281,374 281,090 254,491 254,442 1/4801 

TP53 651631 6973 6836 4215 4168 1/53 

VDR 504847 384,189 383,989 355,415 355,388 1/402 

Unique compounds 464,805 464,047 422,400 422,256  

% remaining  100.00 99.84 90.88 90.85  
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Table S4. Virtual screening results obtained by 2D ECFP4 similarity searches on 21 fully processed selected target sets.  

Target set PubChem AID 
ROC BEDROC 

Min Max Mean ± SD Fused Min Max Mean ± SD Fused 

ADRB2 492947 0.53 0.70 0.63 ± 0.06 0.68 0.14 0.28 0.24 ± 0.05 0.24 

ALDH1 1030 0.49 0.52 0.51 ± 0.01 0.52 0.07 0.11 0.09 ± 0.01 0.11 

ARO1 743083 0.50 0.52 0.51 ± 0.01 0.52 0.06 0.06 0.06 0.06 

ESR1-ago 743075 0.56 0.72 0.65 ± 0.05 0.72 0.06 0.28 0.16 ± 0.06 0.22 

ESR1-ant 743080 0.42 0.54 0.50 ± 0.03 0.50 0.02 0.09 0.06 ± 0.02 0.04 

FEN1 588795 0.44 0.44 0.44 0.44 0.04 0.04 0.04 0.04 

GBA 2101 0.45 0.53 0.50 ± 0.03 0.48 0.03 0.10 0.06 ± 0.03 0.07 

GLP1R 624417 0.48 0.50 0.49 ± 0.01 0.50 0.06 0.07 0.07 ± 0.01 0.07 

GLS 624170 0.32 0.37 0.34 ± 0.02 0.33 0.01 0.02 0.01 0.01 

IDH1 602179 0.28 0.52 0.42 ± 0.07 0.38 0.01 0.15 0.04 ± 0.04 0.06 

KAT2A 504327 0.36 0.37 0.40 ± 0.06 0.44 0.03 0.06 0.04 ± 0.02 0.04 

L3MBTL1 485360 0.41 0.41 0.41 0.41 0.02 0.02 0.02 0.02 

MAPK1 995 0.45 0.58 0.52 ± 0.04 0.53 0.03 0.12 0.06 ± 0.02 0.06 

MTORC1 493208 0.47 0.52 0.48 ± 0.02 0.45 0.03 0.05 0.04 ± 0.01 0.04 

OPRK1 1777 0.69 0.69 0.69 0.69 0.26 0.26 0.26 0.26 

PKM2 1631 0.41 0.64 0.55 ± 0.08 0.64 0.03 0.16 0.09 ± 0.05 0.16 

PPARG 743094 0.58 0.80 0.68 ± 0.07 0.78 0.01 0.27 0.14 ± 0.09 0.21 

RORC 2551 0.36 0.56 0.43 ± 0.05 0.44 0.02 0.10 0.04 ± 0.02 0.04 

THRB 1469 0.37 0.37 0.37 0.37 0.03 0.03 0.03 0.03 

TP53 651631 0.38 0.56 0.47 ± 0.06 0.42 0.03 0.06 0.05 ± 0.01 0.03 

VDR 504847 0.44 0.44 0.44 0.44 0.06 0.06 0.06 0.06 

Overall  0.45 0.54 0.50 ± 0.05 0.51 0.05 0.11 0.08 ± 0.02 0.09 
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Table S5. Virtual screening results obtained by 3D shape similarity searches on 21 fully processed selected target sets.  

Target set PubChem AID 
ROC BEDROC 

Min Max Mean ± SD Fused Min Max Mean ± SD Fused 

ADRB2 492947 0.47 0.66 0.53 ± 0.06 0.67 0.08 0.24 0.14 ± 0.05 0.20 

ALDH1 1030 0.46 0.53 0.50 ± 0.03 0.49 0.07 0.11 0.08 ± 0.01 0.09 

ARO1 743083 0.60 0.69 0.65 ± 0.05 0.62 0.07 0.10 0.09 ± 0.02 0.07 

ESR1-ago 743075 0.46 0.65 0.56 ± 005 0.65 0.03 0.22 0.12 ± 0.05 0.15 

ESR1-ant 743080 0.58 0.64 0.60 ± 0.02 0.61 0.06 0.14 0.10 ± 0.02 0.13 

FEN1 588795 0.45 0.45 0.45 0.45 0.03 0.03 0.03 0.03 

GBA 2101 0.33 0.40 0.38 ± 0.03 0.34 0.02 0.05 0.03 ± 0.01 0.03 

GLP1R 624417 0.51 0.52 0.52 ± 0.01 0.52 0.04 0.06 0.05 ± 0.01 0.05 

GLS 624170 0.37 0.45 0.40 ± 0.03 0.44 0.01 0.04 0.02 ± 0.01 0.04 

IDH1 602179 0.35 0.50 0.41 ± 0.05 0.39 0.00 0.09 0.03 ± 0.02 0.02 

KAT2A 504327 0.38 0.44 0.39 ± 0.03 0.43 0.05 0.06 0.06 ± 0.01 0.06 

L3MBTL1 485360 0.50 0.50 0.50 0.50 0.04 0.04 0.04 0.04 

MAPK1 995 0.45 0.62 0.53 ± 0.05 0.55 0.03 0.13 0.08 ± 0.03 0.11 

MTORC1 493208 0.44 0.52 0.47 ± 0.03 0.52 0.03 0.07 0.04 ± 0.01 0.06 

OPRK1 1777 0.55 0.55 0.55 0.55 0.03 0.03 0.03 0.03 

PKM2 1631 0.48 0.67 0.60 ± 0.07 0.59 0.02 0.20 0.12 ± 0.07 0.15 

PPARG 743094 0.59 0.76 0.72 ± 0.05 0.73 0.04 0.30 0.20 ± 0.06 0.30 

RORC 2551 0.38 0.51 0.45 ± 0.03 0.44 0.02 0.07 0.04 ± 0.01 0.04 

THRB 1469 0.57 0.57 0.57 0.57 0.07 0.07 0.07 0.07 

TP53 651631 0.54 0.62 0.58 ± 0.04 0.56 0.04 0.13 0.08 ± 0.04 0.11 

VDR 504847 0.37 0.37 0.37 0.37 0.02 0.02 0.02 0.02 

Overall  0.47 0.55 0.51 ± 0.03 0.52 0.04 0.10 0.07 ± 0.03 0.09 
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Table S6. Virtual screening results obtained by molecular docking on 21 fully processed selected target sets.  

Target set PubChem AID 
ROC BEDROC 

Min Max Mean ± SD Fused Min Max Mean ± SD Fused 

ADRB2 492947 0.41 0.52 0.46 ± 0.04 0.44 0.03 0.08 0.06 ± 0.02 0.09 

ALDH1 1030 0.51 0.53 0.52 ± 0.01 0.53 0.09 0.10 0.09 0.09 

ARO1 743083 0.47 0.53 0.51 ± 0.03 0.5 0.03 0.07 0.05 ± 0.02 0.04 

ESR1-ago 743075 0.26 0.51 0.36 ± 0.07 0.48 0.00 0.05 0.01 ± 0.02 0.03 

ESR1-ant 743080 0.43 0.54 0.50 ± 0.03 0.53 0.04 0.08 0.06 ± 0.01 0.06 

FEN1 588795 0.47 0.47 0.47 0.47 0.08 0.08 0.08 0.08 

GBA 2101 0.48 0.72 0.64 ± 0.08 0.69 0.09 0.21 0.16 ± 0.04 0.18 

GLP1R 624417 0.50 0.51 0.51 ± 0.01 0.51 0.05 0.06 0.06 ± 0.01 0.06 

GLS 624170 0.34 0.43 0.38 ± 0.03 0.35 0.02 0.06 0.04 ± 0.01 0.02 

IDH1 602179 0.30 0.48 0.37 ± 0.05 0.38 0.00 0.09 0.04 ± 0.03 0.04 

KAT2A 504327 0.35 0.40 0.38 ± 0.03 0.39 0.04 0.06 0.05 ± 0.01 0.06 

L3MBTL1 485360 0.45 0.45 0.45 0.45 0.04 0.04 0.04 0.04 

MAPK1 995 0.48 0.55 0.52 ± 0.02 0.54 0.04 0.07 0.06 ± 0.01 0.07 

MTORC1 493208 0.49 0.54 0.52 ± 0.02 0.51 0.04 0.07 0.06 ± 0.01 0.05 

OPRK1 1777 0.58 0.58 0.58 0.58 0.09 0.09 0.09 0.09 

PKM2 1631 0.49 0.56 0.54 ± 0.02 0.62 0.04 0.05 0.05 ± 0.01 0.05 

PPARG 743094 0.65 0.74 0.69 ± 0.02 0.71 0.08 0.24 0.16 ± 0.04 0.18 

RORC 2551 0.36 0.42 0.37 ± 0.01 0.36 0.02 0.04 0.03 ± 0.01 0.02 

THRB 1469 0.36 0.36 0.36 0.36 0.04 0.04 0.04 0.04 

TP53 651631 0.47 0.57 0.51 ± 0.04 0.51 0.02 0.06 0.04 ± 0.02 0.02 

VDR 504847 0.34 0.36 0.35 ± 0.01 0.34 0.01 0.01 0.01 0.01 

Overall  0.44 0.51 0.48 ± 0.02 0.49 0.04 0.08 0.06 ± 0.02 0.06 
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Table S7. Chemical diversity of PDB template ligands assessed by the number of unique Bemis-Murcko 

frameworks.51 

Target set Number of PDB templates Number of Bemis-Murcko scaffolds 

ADRB2 8 5 

ALDH1 8 8 

ESR1-ago 15 14 

ESR1-ant 15 15 

FEN1 1 1 

GBA 6 4 

IDH1 14 14 

KAT2A 3 2 

MAPK1 15 15 

MTORC1 11 5 

OPRK1 1 1 

PKM2 9 8 

PPARG 15 15 

TP53 6 5 

VDR 2 1 

Bemis-Murcko frameworks were computed from mol2 files, with the “Generate Fragments” component of Pipeline 

Pilot 2019. 
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Table S8. Virtual screening results (EF1%) obtained by 2D ECFP4 similarity searches, 3D shape similarity searches and molecular docking on 15 validation sets after 

debiasing with AVE. 

Target set 
PubChem 

AID 

2D ECFP4 similarity searches 3D shape similarity searches Molecular docking 

Min Max Mean ± SD Fused Min Max Mean ± SD Fused Min Max Mean ± SD Fused 

ADRB2 492947 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ALDH1 1030 0.82 2.75 1.58 ± 0.62 2.68 0.67 1.64 1.08 ± 0.35 1.64 0.89 1.56 1.25 ± 0.23 0.82 

ESR1-ago 743075 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ESR1-ant 743080 0.00 12.00 2.67 ± 3.60 0.00 0.00 4.00 1.07 ± 1.83 4.00 0.00 4.00 1.60 ± 2.03 4.00 

FEN1 588795 1.09 1.09 1.09 1.09 0.00 0.00 0.00 0.00 3.26 3.26 3.26 3.26 

GBA 2101 0.00 2.44 1.63 ± 1.26 2.44 0.00 4.88 0.81 ± 1.99 0.00 0.00 9.76 4.47 ± 3.59 4.88 

IDH1 602179 0.00 11.11 1.59 ± 4.03 0.00 0.00 11.11 0.79 ± 2.97 0.00 0.00 11.11 0.79 ± 2.97 0.00 

KAT2A 504327 0.00 2.08 0.69 ± 1.20 0.00 0.00 2.08 0.69 ± 1.20 0.00 2.08 6.25 4.17 ± 2.09 2.08 

MAPK1 995 0.00 5.19 0.95 ± 1.43 1.30 0.00 5.19 1.39 ± 1.59 2.60 0.00 5.19 1.99 ± 1.38 1.30 

MTORC1 493208 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17 1.52 ± 2.10 4.17 

OPRK1 1777 16.67 16.67 16.67 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PKM2 1631 0.00 4.41 1.31 ± 1.79 0.74 0.00 5.15 2.13 ± 1.93 2.21 0.00 1.47 0.90 ± 0.61 0.74 

PPARG 743094 0.00 16.67 5.56 ± 8.13 16.67 0.00 16.67 5.56 ± 8.13 16.67 0.00 16.67 5.56 ± 8.13 0.00 

TP53 651631 0.00 0.00 0.00 0.00 0.00 5.26 0.88 ± 2.15 0.00 0.00 0.00 0.00 0.00 

VDR 504847 3.64 3.64 3.64 3.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Overall  1.48 5.20 2.49 ± 1.47 3.02 0.04 3.73 0.96 ± 1.48 1.81 0.42 4.23 1.70 ± 1.54 1.42 
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Figure S1. Comparison of potency values (in pIC50, pEC50, pKi, pKd) for confirmed actives of the LIT-PCBA, 

DUD-E and ChEMBL ligands. 
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Figure S2. Self-similarity matrix of PDB template ligands. Pairwise similarity between template ligands is 

expressed by a Tanimoto coefficient calculated from MDL public keys implemented in Pipeline Pilot 2019.40 No 

analysis is provided for three target sets (FEN1, OPRK1, VDR) for which a single PDB template ligand is available. 
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Take-home Messages 

As explained in Chapter 1, LIT-PCBA marks the latest milestone in the quest to construct 

realistic benchmarking data sets for validating virtual screening methods entirely from 

experimental data. This data collection offers a pool of chemically unbiased ligands whose 

activity has been tested on a wide range of protein targets of pharmaceutical interest, presenting 

hit rates lower than those observed in most artificially constructed data sets and generally close 

to those of real-life high-throughput screening decks. Four subsets of ligands for each target were 

rationally designed, using a recently published method, to offer unbiased materials ready for 

evaluating both ligand-based and structure-based screening approaches, especially those relying 

on machine learning. Despite the existence of some limitations, e.g. the moderately high hit rates 

for several target sets or the relatively low number of remaining true actives in a few cases, the 

LIT-PCBA data collection does not suffer from serious drawbacks inherent in other 

benchmarking databases. More efforts in building novel data sets are recommended, with 

inspiration taken from the design of LIT-PCBA portrayed in this chapter and the good practices 

proposed in Chapter 1, in hopes of offering better evaluation tools for in silico screening 

methodologies. 
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From the results portrayed in Chapter 3, it can clearly be inferred that Surflex-Dock generally 

gave comparable performances to random selection on the LIT-PCBA data collection, suggesting 

that the energy-based empirical scoring function of this docking program was not highly 

effective in selecting true active molecules from a pool of chemically diverse and unbiased 

ligands. Several alternatives have been introduced in the literature, including two methods 

relying on the comparison of protein-ligand interaction fingerprints (IFP) and of interaction 

pattern graphs (GRIM) that were in-house developed by the researchers of our laboratory. They 

have both been proven more effective than popular docking programs in several virtual screening 

experiments, with encouraging results in terms of areas under the ROC curves and early 

enrichment of true actives. The questions are: will these approaches still give good performances 

when applied to the challenging LIT-PCBA data set, and will they once again outperform the 

Surflex-Dock scoring function on such a difficult data collection? This final chapter serves to 

answer the questions above. 

 

 

 

 



Chapter 4. Rescoring LIT-PCBA Docking Poses with Interaction-Based Scoring Functions 

 

TRAN NGUYEN Viet Khoa – Ph.D. thesis  175 

1. Introduction 

The scoring problem in molecular docking has been the subject of various studies aiming to 

select the correct pose (that matches experimentally determined output) for a ligand, and to 

ameliorate the screening utility as well as the scoring accuracy of a docker, i.e., to improve its 

ability to rank bioactive ligands above inactive ones in the hit list according to the calculated 

binding affinity.
1-5

 Many approaches were designed to address this problem, defining a function 

composed of physical/chemical terms inherent in the process of protein-ligand binding, on the 

basis of existing complexes with known affinities and 3D structures.
3,5-16

 The energy-based 

scoring functions employed in several popular docking programs such as Surflex-Dock
6
 or 

FlexX
11,17

 rely on the empirical Bohm approach
2
 that takes into account hydrophobic contacts 

and polar interactions that are formed between the involved molecules, along with the costs of 

entropic fixation due to torsional, translational and rotational freedom losses as the ligand and 

the protein are bound to each other.
6
 However, concerns have long been raised over the accuracy 

of such empirical methods to estimate the binding affinity of a small molecule with its 

macromolecular target, and the reliability of using data obtained from them for in silico 

screening purposes.
3,18-20

 Several alternatives to these scoring functions were developed, with the 

aim of rescoring the ensemble of poses generated by docking programs so that active molecules 

can be better ranked than inactive ligands, leading to an improvement in early enrichment of true 

actives. Among them are the two rescoring methods based on comparing ligand-protein 

interactions observed in a reference (e.g., a crystallographic structure found on the Protein Data 

Bank
21

) and those of a molecule’s docking pose as issued by a docker.
22,23

  

The first method (IFP) relies on the similarity of protein-ligand interactions between a docking 

pose and any given template (e.g., the X-ray structure of the cognate protein with a known active 

molecule).
22

 In the first step, an interaction fingerprint for each docked ligand is generated as a 

fixed-length bitstring that registers the presence or the absence of non-covalent interactions 

between a set of user-defined protein residues (along with cofactors, ions and water molecules) 

and the ligand. Interaction fingerprints of the screened molecules are then compared to that of the 

template and are sorted by decreasing similarity as expressed by the Tanimoto coefficient. 

The second method (GRIM) computes a graph whose nodes are interaction pseudoatoms which 

are placed on the ligand interacting atom, the protein interacting atom, and the barycenter of any 
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given protein-ligand interaction.
23

 A clique detection algorithm is used to find the maximal 

common subgraph between the graph generated from the docking pose and that from the 

template.
23

 In comparison to interaction fingerprints, interaction pattern graphs are not restricted 

to a fixed list of binding site atoms such that pairwise comparisons are also possible for binding 

cavities of different sizes. 

The two aforementioned methods have been proven effective in predicting the binding modes of 

various ligands before the release of experimental crystallographic structures in international 

docking competitions, and in screening large pools of chemically diverse molecules, giving even 

better performances than popular docking algorithms.
22-25

 In this final chapter, these two 

methods are applied to the 15 target sets of the LIT-PCBA data collection, on which the energy-

based scoring function of Surflex-Dock only managed to give comparable performances to 

random selection,
26

 in order to assess the discriminatory power of such methods when a 

challenging set of different ligands from various biological targets is employed, allowing a 

comparison between their accuracy levels and that of Surflex-Dock. 

2. Computational Methods 

2.1. Rescoring LIT-PCBA Docking Poses by Protein-Ligand Interaction Fingerprint (IFP) 

Similarity 

The IFP module
22

 of the IChem package
27

 was employed to compute the similarity between the 

IFP recorded for each docked ligand from LIT-PCBA and that of the corresponding reference 

ligand, expressed by a Tanimoto coefficient (Tc) as the final output. The mol2 structures of the 

binding site and the reference (already prepared during the LIT-PCBA data set construction), 

along with the multi-mol2 files containing the docking poses issued by Surflex-Dock were used 

as input. The binding site refers to amino acid residues (plus water molecules, ions and 

cofactors) of the protein having at least one heavy atom within 5.0 Å from any heavy atom of the 

co-crystallized ligand (preparation was done with Sybyl-X 2.1.1
28

). All docking poses were 

rescored and the pose with the highest Tc value was retained for each LIT-PCBA ligand, giving 

template-specific hit lists in which all ligands were sorted by decreasing Tc scores. The areas 

under the ROC (receiver operating characteristic)
29

 and BEDROC (Boltzmann-enhanced 

discrimination of ROC)
30

 curves (ROC AUC, BEDROC AUC, α = 20) along with the 
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enrichment in true active molecules at a constant 1% false positive rate over random picking 

(EF1%) were calculated for each separate hit list. The same procedure was carried out by fusing 

all lists and keeping the maximal Tc value for each compound (“max-pooling” approach). 

2.2. Rescoring LIT-PCBA Docking Poses by Interaction Graph-Matching (GRIM) 

The GRIM module
23

 of the IChem package
27

 was employed to post-process the docking results 

obtained from Surflex-Dock. All docking poses in multi-mol2 file format were matched to the 

crystallographic reference ligand pose (in mol2) for rescoring based upon the similarity scores 

(GrScore) of interaction pattern graphs with the corresponding binding site (in mol2). The best 

matching pose was selected for every ligand according to the GRIM score,
23

 and all molecules of 

each target set were sorted based on this same value in descending order. ROC AUC, BEDROC 

AUC and EF1% values were calculated as described above. 

3. Results and Discussion 

Virtual screening results on 15 ligand sets of the LIT-PCBA data collection,
26

 demonstrated by 

EF1% values, using IFP and GRIM rescoring on the docking poses issued by Surflex-Dock are 

portrayed in Figure 1. It can be observed that IFP and GRIM rescoring generally gave good 

performances that surpassed those of native Surflex-Dock scoring, as the average values of 

EF1% given by both methods are higher than those received from Surflex-Dock for all 15 target 

sets: overall enrichment factors were recorded at 4.77 ± 2.85, 4.78 ± 3.11, and 2.07 ± 1.00 by IFP 

(Table S1), GRIM (Table S2), and Surflex-Dock,
26

 respectively. When the “max-pooling” 

approach was applied, at least one of these interaction rescoring methods performed better than 

energy-based scoring across the whole data collection. Notably, both GRIM and IFP 

outperformed Surflex-Dock in nearly three quarters of the cases (including the “easy” sets 

ADRB2 and GBA, on which Surflex-Dock gave significantly better performances than random 

selection;
26

 and several “challenging” sets where the Surflex-Dock scoring function failed, e.g. 

ALDH1, ESR1-ago, or PKM2). This reconfirms the conclusions drawn in earlier publications, 

which highlight the necessity of post-processing docking poses issued by docking programs and 

the benefit of using scoring functions based on ligand-protein interaction comparisons (rather 

than energy-based empirical docking scores, e.g. pKd values given by Surflex-Dock) for virtual 

screening.
22-25
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Figure 1. Retrospective virtual screening results on 15 target sets of the LIT-PCBA data collection using the native Surflex-Dock scoring 

function (SD), protein-ligand interaction fingerprint rescoring (IFP), and interaction graph-matching rescoring (GRIM). Scores were 

obtained from the same set of docking poses generated by the Surflex-Dock docking engine. 
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The differences in screening performances given by Surflex-Dock, IFP and GRIM can be further 

analyzed by examining each target set. An example can be taken from the ESR1-ago set, 

gathering 5596 substances tested for an agonistic activity on the estrogen receptor alpha (ER-

alpha) signaling pathway. Among them, 13 have been confirmed as active, the other 5583 

molecules were deemed inactive. A total of 15 protein-ligand complex structures were selected 

from the Protein Data Bank
21

 and used as templates. The scoring function of Surflex-Dock failed 

to retrieve any active compound along with the top 1% false positives (EF1% = 0.00 across all 

15 templates), while IFP managed to select one true active for six templates, and GRIM 

successfully retrieved one active for five templates and two actives for one template (Table S3). 

Interestingly, the active substance ID 144206564 (Figure 2) was repeatedly selected by the two 

interaction-comparing scoring functions (in 75% of the cases, Table S3). This denotes the 

agreement of these methods in choosing active molecules among a pool of chemically diverse 

ligands in the data set. Moreover, this true active shares several key chemical features with the 

co-crystallized template ligands (Figure 2), including the presence of two hydroxyl groups 

linked to a series of aromatic rings, facilitating three hydrogen bonds with the residues Glu353, 

Arg394 and His524 of the binding pocket that can also be seen in the PDB template structures 

(Figure 3). While the pKd scores issued by Surflex-Dock constantly failed to select this 

molecule, IFP and GRIM rescoring managed to recognize this compound among the top rankers 

multiple times, thanks to the advantage of comparing ligand-protein interactions in in silico 

screening. This, again, supports the use of this strategy rather than the energy-based empirical 

scoring functions of popular docking programs in identifying potential hits on the basis of known 

ligand structures. However, the above observations on the chemical similarities between this 

IFP-/GRIM-retrieved active molecule and the PDB template ligands do not imply that the 

screening performance of these two interaction-comparing scoring functions depends on how 

similar the true actives are to the references; as the Tanimoto values obtained from 2D ECFP4 

fingerprint similarity searches are not correlated to those received from IFP comparisons, and 

also to the computed GRIM scores (R
2
 < 0.1000 across all 15 templates of the ESR1-ago target 

set, Figure S1). This suggests that the similarity level of protein-ligand interaction fingerprints 

and of interaction pattern graphs is independent of the chemical similarity of the compared 

molecules. 
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Figure 2. 2D structure of SID 144206564 from the LIT-PCBA ESR1-ago ligand set (the 

PubChem active substance repeatedly selected by IFP and GRIM along with the top 1% false 

positives), and those of several PDB template ligands. It can be observed that SID 144206564 

shares several key chemical features with the known templates, including two –OH groups 

linked to a series of aromatic rings, forming three hydrogen bonds also observed in the template 

structures, which partly explains why the two ligand-protein interaction-comparing methods 

managed to retrieve this molecule. 

 

Figure 3. The best pose inside the binding pocket (PDB ID 2Q70) of the active substance ID 

144206564 selected by IFP rescoring (A) and the crystallographic pose of a known ligand (HET 

code: DC8) retrieved from the Protein Data Bank (B) explaining why this active molecule was 

successfully selected by comparing protein-ligand interaction fingerprints. Identical hydrogen 
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bonds with the site residues are observed from both poses, including one bond with His524, one 

bond with Glu353, and another bond with Arg394, all involving the hydroxyl groups in the 

structures of both ligands (the bond acceptors and bond donors are also identical). Moreover, all 

hydrophobic interactions recorded in the PDB template are preserved in the IFP-selected pose, 

e.g. the interaction between Met421 and an aromatic ring of the ligands. This figure was 

prepared with MOE 2018.01.
31

 The ligands (SID 144206564 and DC8) are portrayed as sticks, 

while the involved protein residues are portrayed as lines and labeled. 

It is observed that the pKd docking scores issued by Surflex-Dock did not manage to select the 

pose with the closest interaction patterns with the binding site to those of the references in most 

cases (nearly 90%). In rare instances where docking selected the same pose as the ligand-protein 

interaction-comparing algorithms, the empirical pKd values still failed to rank active molecules 

above inactive ones in the hit list. An example of this can be taken from the three inactive 

substances IDs 144203677, 144203979 and 144204501 (Figure 4) included in the ESR1-ago set 

of LIT-PCBA. Both IFP and Surflex-Dock chose the same best pose for each of these three 

molecules when the PDB template ID 2Q70 was employed. However, while the native energy-

based scoring function ranked all these inactives above the confirmed hit SID 144206564, IFP 

rescoring successfully assigned a higher rank to this true active. An analysis of ligand-protein 

interactions observed from the aforementioned molecules is provided in Table 1. 

HO

OH

H
N

OH

H2N

O

O

N

O

H
N

OH

OH

NHO

SID 144203677 SID 144203979

SID 144204501  

Figure 4. 2D structures of three inactive substances IDs 144203677, 144203979 and 144204501 

from the LIT-PCBA ESR1-ago ligand set. IFP and Surflex-Dock agreed on the best pose for 

each substance, but Surflex-Dock failed to rank the confirmed hit SID 144206564 above these 

three inactives in the hit list (with the PDB ID 2Q70 used as template), while IFP rescoring 

managed to do so. 
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Table 1. Analysis of protein-ligand interactions observed from the best poses (selected by both 

IFP and Surflex-Dock) of SIDs 144203677, 144203979 and 144204501 (LIT-PCBA ESR1-ago 

ligand set) inside the binding pocket of the PDB ID 2Q70. A similar analysis of the true active 

SID 144206564 (best pose selected by IFP) is also provided for comparison. 

 SID 144206564 

(active) 

SID 144203677 

(inactive) 

SID 144203979 

(inactive) 

SID 144204501 

(inactive) 

Hydrogen 

bonds 

All hydrogen 

bonds observed in 

the PDB template 

were retained. 

No additional 

hydrogen bond 

was formed. 

All hydrogen 

bonds observed in 

the PDB template 

were retained. 

However, the 

ligand engaged in 

another hydrogen 

bond with 

Met421. 

The hydrogen 

bond with the 

residue Arg394 

observed in the 

PDB template was 

not formed by the 

ligand. 

Besides, the 

ligand engaged in 

another hydrogen 

bond with 

Leu346. 

The hydrogen 

bond with the 

residue His524 

observed in the 

PDB template was 

not formed by the 

ligand. 

No additional 

hydrogen bond 

was formed. 

Hydrophobic 

interactions 

All 36 

hydrophobic 

interactions with 

14 residues in the 

binding site 

observed in the 

PDB template 

were retained.  

The ligand also 

engaged in 

hydrophobic 

interactions with 

one more site 

residue (Met388). 

33 hydrophobic 

interactions with 

15 residues in the 

binding site were 

formed. In 

comparison to the 

PDB template, 

this ligand did not 

engage in 

hydrophobic 

interactions with 

Trp383, but with 

two other residues 

(Met388 and 

His524). 

33 hydrophobic 

interactions with 

15 residues in the 

binding site were 

formed. In 

comparison to the 

PDB template, 

this ligand formed 

hydrophobic 

interactions with 

another residue 

(Met388). 

30 hydrophobic 

interactions with 

13 residues in the 

binding site were 

formed. In 

comparison to the 

PDB template, 

this ligand did not 

engage in 

hydrophobic 

interactions with 

Leu349 and 

Leu384, but with 

another residue 

(Met388). 

pKd by 

Surflex-

Dock 

8.0184 8.1467 10.5816 8.1929 

Tc values by 

IFP 

rescoring 

0.9000 0.7368 0.7500 0.7895 
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Based on the above analyses, it is clear that the true active SID 144206564 gave the most similar 

interaction patterns with the binding site to those observed in the PDB template 2Q70. The IFP 

rescoring, upon comparing interaction fingerprints of the PubChem molecules with those of the 

reference (Table S4), managed not only to select the right pose for the true active, but also to 

rank this confirmed hit above the three inactives (SIDs 144203677, 144203979 and 144204501) 

in the hit list, thus recognizing it among the top rankers, while Surflex-Dock gave this true active 

the lowest (and poorest) pKd docking score. The observations detailed herein reconfirm that the 

energy-based empirical scoring functions employed by docking programs (e.g. Surflex-Dock) are 

not as effective as those relying on comparisons of ligand-protein interactions in selecting 

potential hits for a protein target among chemically diverse ligands. 

On a side note, while IFP and GRIM outperformed Surflex-Dock on the 15 target sets of LIT-

PCBA, their performances on this data collection are still poorer than those obtained from other 

databases, including DUD-E.
22,23

 This once again highlights the particular challenge brought by 

our newly introduced data set, thanks to the absence of both obvious and hidden bias in its 

design, which indeed prevents an overestimation of virtual screening performances. 

4. Conclusion 

Finding a scoring function to select one best pose for a ligand among those issued by a docking 

program and to rank these molecules in a hit list with the aim of retrieving as many potential hits 

as possible is a task that has long been tackled by the cheminformatics community. Various 

publications in the literature have raised the issue with energy-based empirical scoring functions 

employed by popular docking programs, as regards their inaccuracy in estimating the binding 

affinity of a molecule, and in screening a data set in several virtual screening challenges. The 

findings portrayed in this chapter reconfirm the conclusions indicated in earlier papers, pointing 

out that the pKd docking scores issued by Surflex-Dock gave generally poorer performances on 

the LIT-PCBA data collection (in terms of early enrichment of true actives) than the two scoring 

functions based on measuring the similarity level of protein-ligand interaction fingerprints (IFP) 

and of interaction pattern graphs (GRIM). This highlights the importance of post-processing the 

docking poses output by docking programs, notably by the approaches relying on comparing the 

interaction modes inside the binding pocket of these poses with those of a high-quality reference 

in in silico screening. 
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Supporting Information 

Table S1. Virtual screening results, in terms of EF1%, obtained by IFP rescoring on the docking poses issued by 

Surflex-Dock across all 15 target sets of the LIT-PCBA data collection. 

Target set PubChem AID 
EF1% 

Min Max Mean ± SD Fused 

ADRB2 492947 0.00 23.53 14.71 ± 8.32 23.53 

ALDH1 1030 1.21 14.61 3.79 ± 4.51 15.35 

ESR1-ago 743075 0.00 7.69 3.08 ± 3.90 0.00 

ESR1-ant 743080 0.00 5.88 1.63 ± 1.76 5.88 

FEN1 588795 6.78 6.78 6.78 6.78 

GBA 2101 3.01 11.45 7.93 ± 3.52 9.64 

IDH1 602179 0.00 5.13 1.78 ± 1.68 1.61 

KAT2A 504327 1.55 5.67 3.61 ± 2.06 3.61 

MAPK1 995 0.32 4.55 2.10 ± 1.33 1.62 

MTORC1 493208 0.00 3.61 1.30 ± 1.06 3.61 

OPRK1 1777 12.50 12.50 12.50 12.50 

PKM2 1631 0.73 7.14 3.85 ± 2.56 7.14 

PPARG 743094 0.00 18.52 6.42 ± 5.32 11.11 

TP53 651631 0.00 1.51 0.73 ± 0.80 0.66 

VDR 504847 1.24 1.58 1.41 ± 0.24 1.24 

Overall  1.82 8.68 4.77 ± 2.85 6.95 
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Table S2. Virtual screening results, in terms of EF1%, obtained by GRIM rescoring on the docking poses issued by 

Surflex-Dock across all 15 target sets of the LIT-PCBA data collection. 

Target set PubChem AID 
EF1% 

Min Max Mean ± SD Fused 

ADRB2 492947 0.00 23.53 13.24 ± 7.54 17.65 

ALDH1 1030 0.92 14.23 4.42 ± 6.06 15.76 

ESR1-ago 743075 0.00 15.38 3.59 ± 4.92 7.69 

ESR1-ant 743080 0.00 4.90 1.63 ± 1.51 0.98 

FEN1 588795 7.32 7.32 7.32 7.32 

GBA 2101 3.01 12.65 8.53 ± 4.13 10.84 

IDH1 602179 0.00 7.69 2.20 ± 2.22 2.56 

KAT2A 504327 2.58 4.64 3.78 ± 1.07 3.61 

MAPK1 995 0.32 2.60 1.51 ± 0.69 3.90 

MTORC1 493208 0.00 4.12 1.22 ± 1.20 2.06 

OPRK1 1777 12.50 12.50 12.50 12.50 

PKM2 1631 1.10 9.16 3.23 ± 2.84 5.86 

PPARG 743094 0.00 25.93 6.17 ± 7.09 11.11 

TP53 651631 0.00 2.53 1.06 ± 0.95 0.00 

VDR 504847 1.13 1.36 1.25 ± 0.16 1.24 

Overall  1.93 9.90 4.78 ± 3.11 6.87 
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Table S3. List of true active SIDs included in the ESR1-ago target set of LIT-PCBA that were retrieved along with 

the top 1% false positives by rescoring the docking poses issued by Surflex-Dock with the two ligand-protein 

interaction-comparing methods IFP and GRIM. The numbers in brackets represent the EF1% values obtained after 

virtual screening. Results from Surflex-Dock26 are also indicated for comparison. 

PDB 

entry 

True active SIDs retrieved 

by Surflex-Dock scoring 

True active SIDs retrieved 

by IFP rescoring 

True active SIDs retrieved 

by GRIM rescoring 

1L2I None (0.00) 144206564 (7.69) None (0.00) 

2B1V None (0.00) 144209467 (7.69) 144207138 (7.69) 

2B1Z None (0.00) None (0.00) None (0.00) 

2P15 None (0.00) 144206564 (7.69) 144206564 (7.69) 

2Q70 None (0.00) 144206564 (7.69) None (0.00) 

2QR9 None (0.00) None (0.00) None (0.00) 

2QSE None (0.00) None (0.00) None (0.00) 

2QZO None (0.00) None (0.00) None (0.00) 

4IVW None (0.00) None (0.00) 144206564 (7.69) 

4PPS None (0.00) None (0.00) None (0.00) 

5DRJ None (0.00) None (0.00) None (0.00) 

5DU5 None (0.00) None (0.00) 144207138 (7.69) 

5DUE None (0.00) None (0.00) 
144206564 

144203706 
(15.38) 

5DZI None (0.00) 144206564 (7.69) None (0.00) 

5E1C None (0.00) 144206564 (7.69) 144206564 (7.69) 

Max-

pooling 
None (0.00) None (0.00) 144206564 (7.69) 

EF1% 0.00 3.08 ± 3.90 3.59 ± 4.92 
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Table S4. The interaction fingerprints issued by IFP (IChem) of the true active SID 144206564 and the three true 

inactive SIDs 144203677, 144203979 and 144204501 included in the ESR1-ago target set of LIT-PCBA, using the 

PDB entry 2Q70 as template (co-crystallized ligand HET code: DC8). The bold red digits in the bit strings mark the 

differences between the IFP of the LIT-PCBA ligands and those of the reference. It can clearly be seen that the 

active SID 144206564 gave the most similar IFP to those of DC8, with only one difference; while the IFP observed 

in all three inactive molecules differed significantly from those of the PDB entry. Thanks to these comparisons, IFP 

managed to rank the true active higher than the true inactives in the hit list, thus recognizing it among the top 

rankers, while the energy-based empirical scoring function of Surflex-Dock failed to do so. The readers are 

addressed to the Table 1 of this chapter for detailed analyses. 

Molecule IFP 

DC8  

(PDB ID: 

2Q70, 

reference) 

|A HOH3|A M343|A L346|A T347|A L349|A A350|A E353|A W383|A L384|A L387| 

A M388|A L391|A R394|A L402|A F404|A V418|A G420|A M421|A I424|A F425|A L428| 

A G521|A M522|A H524|A L525 

000100010000001000000100000010000001000000000010010000001000000100000000000

001000000000100000000001000000000000000000001000000100000000000001000000000

0000000000000001001000000 

SID 

144206564 

(active) 

|A HOH3|A M343|A L346|A T347|A L349|A A350|A E353|A W383|A L384|A L387| 

A M388|A L391|A R394|A L402|A F404|A V418|A G420|A M421|A I424|A F425|A L428| 

A G521|A M522|A H524|A L525 

000100010000001000000100000010000001000000000010010000001000000100000010000

001000000000100000000001000000000000000000001000000100000000000001000000000

0000000000000001001000000 

SID 

144203677 

(inactive) 

|A HOH3|A M343|A L346|A T347|A L349|A A350|A E353|A W383|A L384|A L387| 

A M388|A L391|A R394|A L402|A F404|A V418|A G420|A M421|A I424|A F425|A L428| 

A G521|A M522|A H524|A L525 

000100010000001000000100000010000001000000000010000000001000000100000010000

001000000000100000000001000000000000000000001000100100000000000001000000000

0000000000010001001000000 

SID 

144203979 

(inactive) 

|A HOH3|A M343|A L346|A T347|A L349|A A350|A E353|A W383|A L384|A L387| 

A M388|A L391|A R394|A L402|A F404|A V418|A G420|A M421|A I424|A F425|A L428| 

A G521|A M522|A H524|A L525 

000000010000001000100100000010000001000000000010010000001000000100000010000

001000000000000000000001000000000000000000001000000100000000000001000000000

0000000000000001001000000 

SID 

144204501 

(inactive) 

|A HOH3|A M343|A L346|A T347|A L349|A A350|A E353|A W383|A L384|A L387| 

A M388|A L391|A R394|A L402|A F404|A V418|A G420|A M421|A I424|A F425|A L428| 

A G521|A M522|A H524|A L525 

000100010000001000000100000000000001000000000010010000000000000100000010000

001000000000100000000001000000000000000000001000000100000000000001000000000

0000000000000000001000000 
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Figure S1. Scatter graphs portraying the Tanimoto (Tc) similarity values obtained from 2D ECFP4 fingerprint 

comparisons and those issued by IFP rescoring across all 15 templates of the ESR1-ago target set included in the 

LIT-PCBA data collection. From left to right and top to bottom: 1L2I, 2B1V, 2B1Z, 2P15, 2Q70, 2QR9, 2QSE, 

2QZO, 4IVW, 4PPS, 5DRJ, 5DU5, 5DUE, 5DZI, 5E1C. It is observed that the R2 values are below 0.1000 for all 

templates, denoting that there is almost no correlation between the Tc values received from computing 2D structural 

similarity and those from IFP comparisons. This suggests that the similarity level of protein-ligand interaction 

fingerprints is independent of the chemical similarity of the compared molecules. 
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Overall, the original work portrayed in this doctoral thesis addressed the issues explained in the 

Introduction section, offering novel solutions that may come in useful for future in silico 

screening-related research. More specifically: 

 A novel small molecule-aligning procedure based on pharmacophoric points derived 

from the residues constituting a potentially “druggable” cavity of any given protein target 

was developed. This method was proven more effective than Surflex-Dock, LigandScout 

and Discovery Studio in predicting the exact binding poses of various ligands inside their 

binding pockets, and was deemed comparable in discriminatory power to several state-of-

the-art virtual screening programs in retrieving true active molecules, and recognizing 

their scaffolds, among different pools of chemically diverse ligands. Moreover, this 

method is applicable to apoprotein structures, denoting its high utility even in the absence 

of a co-crystallized ligand. The method is expected to contribute to virtual screening 

campaigns in the future, with a view to improving the overall hit rates obtained by using 

it in parallel with other in silico screening methods.  

 A new unbiased benchmarking data set named LIT-PCBA based on experimentally 

confirmed data deposited on PubChem BioAssay was developed. Many disadvantages 

inherent in other data collections, especially the artificially constructed DUD, DUD-E, or 

DEKOIS, have been avoided or alleviated, to a certain extent, during the design of this 

data set, as evidenced by post-design evaluation results using various virtual screening 

procedures. LIT-PCBA is expected to become a new generation of realistic data sets that 

mimic those employed in real-life high-throughput screening campaigns, offering better 

validation tools for novel in silico screening approaches, both ligand-based and structure-

based, especially those relying on machine learning. 

Apart from the two main points indicated above, this Ph.D. thesis also provides a comprehensive 

review of data sets built upon PubChem BioAssay data, analyzes the note-worthy issues that 

must be addressed when it comes to constructing novel data collections, and proposes a set of 

good practices that should be followed in order to avoid the aforementioned problems and ensure 

the quality of data set design. Besides, a part of this dissertation serves to reconfirm the 

advantages of using ligand-protein interaction-comparing methods, e.g. those relying on 

interaction fingerprints and interaction pattern graphs, rather than the energy-based empirical
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scoring functions of popular docking programs, in virtual screening exercises; as such methods 

were deemed more effective in retrieving true hits for a protein target, even when applied to a 

challenging data collection like LIT-PCBA. 

Further improvements may be brought to the output of the work portrayed in this thesis; for 

example, by modifying the ligand-aligning script to allow a faster calculation on multiple cores, 

thus enabling the screening of a larger set of molecules while reducing the amount of time 

required to finish the jobs; or by applying more filtering rules on the LIT-PCBA ligands (e.g., to 

limit the quantity of highly potent molecules so that their population does not exceed 10% of the 

active data size), in order to further reduce the hit rates of several target sets, especially those at 

2-5%. Morever, other virtual screening methods, notably deep neural networks, are expected to 

be applied to LIT-PCBA, in hopes of delineating the true benefit of machine learning approaches 

in “real-life” structure-based design scenarios. Inspiration can also be taken from the points 

raised in the review article featured in Chapter 1, even other good practices are encouraged to be 

added, to give a more complete and effective guideline for developing novel realistic data sets 

adapted to in silico screening evaluation purposes in the future. 

 

 

 

 

 

 

 

 



 

 

 

Viet Khoa TRAN NGUYEN 
 

DEVELOPPEMENT DE JEUX DE DONNEES NON BIAISES 

ET DE NOUVELLES METHODES DE CRIBLAGE VIRTUEL 

Résumé en français 

Les éléments pharmacophoriques issus d’IChem qui représentent le site actif d’une 
protéine (même sans ligand co-cristallisé) sont simples et assez précis pour faire du 
criblage virtuel. La nouvelle procédure proposée dans ce travail s’avère aussi efficiente 
que des méthodes computationnelles existantes dans l’identification des composés 
actifs et leurs chémotypes originaux, et peut donc être utilisée en parallèle avec 
d’autres méthodes de criblage in silico afin d’améliorer la performance globale du 
criblage. On présente également la nouvelle base de données LIT-PCBA, se 
composant de 15 protéines cibles, chacune avec les vrais actifs et les vrais inactifs déjà 
confirmés par les essais biologiques issus de “PubChem BioAssay”. Ces jeux de 
données, préparés par une procédure rigoureuse de plusieurs étapes, sont moins 
biaisés, en matière de structure des ligands et de composition des sets de molécules, 
que ceux qui existent déjà (DUD, DUD-E, etc.), et sont donc plus difficiles. LIT-PCBA 
est prête à l'emploi pour des études comparatives de nouvelles méthodes de criblage 
virtuel, notamment celles basées sur l'intelligence artificielle. 

Mots-clés : pharmacophore, site actif, in silico, criblage virtuel, alignement, jeux de 
données, PubChem BioAssay, biais. 

 

Résumé en anglais 

The pharmacophoric points issued by IChem that represent the active site of any given 
protein target (even without co-crystallized ligands) are simple and accurate enough to 
be employed for virtual screening. The novel ligand-aligning procedure proposed herein 
has been proven as effective as existing computational methods in identifying active 
compounds among a pool of chemically diverse molecules, and can be used in parallel 
with other in silico methods in hopes of improving the overall screening performance. 
Also presented in this work is the novel data collection entitled LIT-PCBA, comprising 
15 target sets built upon experimentally confirmed data deposited on PubChem 
BioAssay. Undergoing a rigorous procedure involving multiple preparation steps, this 
data set is much less biased, in terms of chemical composition, than the artificially 
constructed DUD, DUD-E, or DEKOIS, and does not suffer from many drawbacks 
inherent in other databases. LIT-PCBA therefore imposes a more difficult challenge on 
virtual screening methods, and is now ready for benchmarking studies of novel in silico 
screening procedures, notably those relying on machine learning.  

Keywords: pharmacophore, active site, in silico, virtual screening, alignment, data set, 
PubChem BioAssay, bias. 


