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Introduction

In the past few decades, data acquisition methods have made tremendous progress.
The advancement of novel acquisition techniques has led to an increase in the com-
plexity of data. The information from large amounts of complex data has helped
us understand a myriad of phenomena. For example, such information has enabled
us to analyse data beyond the visible spectral range to discover galaxies or black
holes in astronomy. In the medical �eld, complex data such as functional Magnetic
Resonance Imaging (fMRI) have enabled to understand brain activities; similarly,
data from scintigraphy have helped in understanding the physical responses of the
various body parts. On another front, in a more consumer-oriented market, visual
images and speech signals can be used to identify individuals. In addition to data
acquisition, advancement in the ability of magnetic devices to stock large data and
improvements in calculation performances led us to �nd important information such
data contain. Furthermore, novel experiments involve multi-modal data from di�er-
ent types of acquisition that can be used to provide more insights into the application
in question.

We see that in the examples presented before, there are some sources that interest
us. For instance in astronomy, it could be the galaxies, planets, or other celestial
objects; in fMRI, it could be a region whose activity changes due to ageing or due
to disease; in remote sensing domain, it could be the ores in a particular mine. To
extract these sources from a mixture of signals/images, i.e. to unmix them to get
related or speci�c information about them, source separation methods are necessary.

This work presents a source separation method for application to problems of
source separation in spatially structured data: 2D or 3D images that contain tem-
poral information (fMRI, scintigraphy) or light spectrum information (hyperspectral
imaging) where an a priori information about the approximate spatial localisation of
the sources is available. This information about the regions of interest as belonging
to di�erent modalities is not always precise, which therefore would require some kind
of registration and maybe some slight adjustments to have an exact correspondence
between the sources in the two modalities. In the absence of such exact information,
an approximation or just partial information about the locations can then be used.
Massive datasets with strong mixing (extremely high number of sources) can lead
to indeterminate solutions; it is hence useful to incorporate such information even
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though it is partial.
The unmixing problem involves simultaneous estimation of the precise locations

of the sources, as well as their contributions within each pixel/voxel. The mixing
could strongly depend on the application and the data at disposition. Generally,
during the acquisition of such data, the compromise between spatial resolution and
temporal/spectral resolution is often at the expense of spatial resolution due to
the preference to the spectral or temporal resolution. This results in a potentially
large mixing of sources in the same pixel/voxel with a lower spatial precision of
the structures of the sources. In addition to this, the signals to unmix could present
similarities and may add to the complexity of the unmixing model. This requires the
addition of special constraints to counter the ill-posedness of the unmixing problem
and thus increases the complexity of the algorithm.

Source separation methods must incorporate spatial information to estimate the
contribution and signature of each source in the image. The extra knowledge related
to the potential localisations of the sources is generally in the form of another ob-
servation modality (even manually de�ning the Regions of Interests (ROIs)) which
requires setting up the preprocessing techniques adapted for registering the spatial
information between them. Depending upon the application, this preprocessing step
could be complicated.

In the approach developed during this PhD, the problem to unmix sources incor-
porating the approximate external spatial information is dealt with by introducing a
spatial constraint based on an indicator function that allows unmixing strictly under
the regions of interest. The proposed unmixing is done using a dictionary learning
method for solving the constrained optimisation problem. The easy adaptability
of the proposed algorithm to drop or add constraints on source properties made it
possible to use it on varied applications.

A generic algorithm is proposed, and its application to di�erent kinds of data
and thus, di�erent domains of application is described. As the problem of source
separation is not the only objective of the thesis, approaches for change detection
and detection of new sources are equally detailed for speci�c applications.

The �rst chapter focuses on the various methods of source separation consid-
ered as state-of-the-art. The cornerstones of blind source separation, i.e. Principal
Component Analysis (PCA) and Independent Component Analysis (ICA), and the
analysis of their applicability on 2D or 3D images with a temporal or spectral dimen-
sion, are presented. This follows up with the methods of dictionary learning with
some classic priors that exploit spatial structures in the data. Geometrical-based
approaches, which are known for their application in hyperspectral images, are also
described. The formulation of the problems that interest us is incomplete without
considering the Bayesian inference approach, which is also mentioned. Non-linear
models and tensorial decomposition are introduced.

The second chapter is the core of this research work, where the proposed un-
mixing model has been detailed. The chapter also covers the evaluation and the
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performances of our method on synthetic data. The chapter concludes with a dis-
cussion on the performance and perspectives to further improve the execution times
of the method.

The third chapter contains the studies on fMRI data. One of the medical issues
mainly dealt with during the PhD is the detection of changes in functional con-
nectivity during neurodegenerative diseases (typically in Alzheimer's disease). The
context behind the principal application of this PhD on fMRI data is a PhD super-
vised by two teams: IMAGeS (Images, Modélisation, Apprentissage, Géométrie et
Statistique) team for the signal processing part and IMIS (Imagerie Multimodale In-
tégrative en Santé) for the acquisition of the data and medical application part. The
data was acquired internally on the IRIS (Imagerie, Robotique et Innovation pour
la Santé) platform of the ICube laboratory in the framework to study the neurode-
generative diseases such as Alzheimer's. The proposed hypotheses for the detection
of cerebral networks, or the regions presenting similar activity in the brain, are pre-
sented. These cerebral networks are composed of di�erent anatomical regions in the
brain, and their cerebral activity is measured with fMRI data. Alzheimer's impacts
the cerebral activity and thus the connectivity between the regions. This study
permits to estimate the changes in the structures of cerebral networks and temporal
activity at di�erent stages during the development of Alzheimer; this further enables
to look for changes in the correlation matrices formed by the signals estimated by our
algorithm. The approach required the adaptation of a whole preprocessing pipeline
for fMRI mouse data. The innovative nature of the approach on the biological side
has been explained. An application on quasi-real data where the performance of the
method was evaluated is presented. In addition to the application of the proposed
algorithm on the fMRI unmixing problem, the chapter introduces statistical methods
to evaluate di�erences between di�erent groups of mice and change detection for a
longitudinal study. The chapter concludes with the application of these techniques
on real data after a general evaluation of the unmixing by looking at the connectivity
of a group of control/healthy mouse brains and the analysis of results.

In order to demonstrate the generic nature of the algorithm, the application of
the algorithm on di�erent types of data where the local knowledge about the sources
is di�erent from the one in fMRI has been proposed in the fourth and last chapter.
It was discovered that the unmixing algorithm with some changes allowed to enlarge
the �elds of applications to datasets other than fMRI. While in the fMRI data
the unmixing consists in �nding contributions (in the form of proportions) of the
di�erent anatomical regions in each voxel, the decomposition of the image sequences
in scintigraphy consists in estimating the activity of the di�erent organs that are
superimposed (due to 2D acquisition of 3D structures). It is then necessary to modify
the constraints of the sources in the mixture model. Moreover, the spatial localisation
information is much more approximate since the ROIs are roughly delimited by a
doctor. However, we see that sources estimates are comparable to the state-of-
the-art methods developed for this application. Another targeted application is in
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the �eld of astrophysics, where the estimation of spectra belonging to galaxies in
hyperspectral images was performed. The mixing here is additive, i.e. the observed
mixed signal is the sum of the signals from individual sources (galaxies). In this
case, the localisation information is from Hubble Space Telescope dataset, and the
unmixing is performed on the Multi Unit Spectroscopic Explorer (MUSE) Ultra Deep
�eld 10 (UDF-10) dataset. The localisation information of di�erent objects in the
two datasets uses the same coordinate system; thus, no registration step is required.
The results by the proposed method are compared to the analysis realised by the
team behind the construction of the MUSE instrument and the production of this
hyperspectral data on which several promising results have been published. Methods
to re�ne the structures of galaxies and the estimation of galaxies not visible in the
high resolution spatial images of Hubble are equally presented. For the astronomical
case as well as the scintigraphy case, the constraints to be taken into account and
the implementation details to unmix data are provided.
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Résumé en français

Au cours des dernières décennies, les méthodes d'acquisition de données ont fait
d'énormes progrès. L'avancement de nouvelles techniques d'acquisition a conduit
à une augmentation de la complexité des données. Les informations provenant de
grandes quantités de données complexes nous ont aidés à comprendre une myriade de
phénomènes. Par exemple, ces informations nous ont permis d'analyser des données
au-delà de la gamme spectrale visible pour découvrir des galaxies ou des trous noirs
en astronomie. Dans le domaine médical, des données complexes telles que l'imagerie
par résonance magnétique fonctionnelle (IRMf) ont permis de comprendre les activ-
ités cérébrales ; de même, les données de la scintigraphie ont aidé à comprendre les
réponses physiques des di�érentes parties du corps. Par ailleurs, dans un marché plus
orienté vers le consommateur, les images visuelles et les signaux vocaux peuvent être
utilisés pour identi�er les individus. Outre l'acquisition de données, l'amélioration de
la capacité des dispositifs magnétiques à stocker de grandes données et l'amélioration
des performances de calcul nous ont permis d'extraire des informations de ces don-
nées.. En outre, de nouvelles expériences font intervenir des données multimodales
provenant de di�érents types d'acquisition qui peuvent être utilisées pour fournir
davantage d'informations sur l'application en question en combinant des mesures de
di�érentes natures.

Dans les exemples précédemment présentés, de nombreuses sources d'intérêt né-
cessitent d'être étudiées. Par exemple, en astronomie, il peut s'agir des galaxies,
des planètes ou d'autres objets célestes ; en IRMf, il peut s'agir d'une région dont
l'activité change en raison du vieillissement ou d'une maladie. Les méthodes de
séparation des sources sont nécessaires pour extraire ces sources d'un mélange de
signaux et d'images et obtenir des informations connexes ou spéci�ques à leur sujet.

Dans cette thèse, nous nous intéressons aux problèmes de séparation de sources
dans des signaux spatialement structurés : des images 2D ou 3D qui contiennent des
informations temporelles (IRMf, scintigraphie) ou des informations sur le spectre
lumineux (imagerie hyperspectrale) où une information a priori sur la localisation
spatiale approximative des sources est disponible. Cette information sur les régions
d'intérêt extraite de modalités di�érentes n'est pas toujours précise, ce qui nécessite
un recalage entre les images pour obtenir une correspondance exacte entre les sources
dans les deux modalités. En l'absence de ces informations exactes, on peut alors
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utiliser une approximation ou des informations partielles sur les emplacements. Les
ensembles de données massifs avec un fort mélange (nombre extremement élevé de
sources superposées) peuvent conduire à des solutions indéterminées ; il est donc
utile d'incorporer ces informations, même si elles sont partielles.

Le problème du démélange implique l'estimation simultanée de l'emplacement
précis des sources, ainsi que de leurs contributions dans chaque pixel/voxel. Le
mélange peut dépendre fortement de l'application et des données à disposition. En
général, lors de l'acquisition de ces données, le compromis entre la résolution spatiale
et la résolution temporelle/spectrale se fait souvent au détriment de la résolution
spatiale en raison de la préférence accordée à la résolution spectrale ou temporelle. Il
en résulte un mélange potentiellement important de sources dans le même pixel/voxel
avec une précision spatiale moindre des structures des sources. En outre, les signaux
à démélanger peuvent présenter des similitudes et ajouter à la complexité du modèle
de démélange. Cela nécessite l'ajout de contraintes spéciales pour contrer le caractère
mal posé du problème de démélange et augmente ainsi la complexité de l'algorithme.

Les méthodes de séparation des sources doivent intégrer des informations spa-
tiales pour estimer la contribution et la signature de chaque source dans l'image. La
connaissance supplémentaire liée aux localisations potentielles des sources se présente
généralement sous la forme d'une autre modalité d'observation (voire d'une dé�nition
manuelle des régions d'intérêt (ROI)) qui nécessite la mise en place de techniques
de prétraitement adaptées pour recaler les informations spatiales entre elles. Selon
l'application, cette étape de prétraitement peut être compliquée.

Dans l'approche développée au cours de cette thèse, le problème du démélange
des sources incorporant l'information spatiale externe approximative est traité en
introduisant une contrainte spatiale basée sur une fonction indicatrice qui permet un
démélange strictement sous les régions d'intérêt. Le démélange proposé est e�ectué
en utilisant une méthode d'apprentissage par dictionnaire pour résoudre le problème
d'optimisation sous contrainte. La facilité d'adaptation de l'algorithme proposé pour
supprimer ou ajouter des contraintes sur les propriétés des sources a permis de
l'utiliser pour des applications variées.

Un algorithme générique est proposé, et son application à di�érents types de
données et donc à di�érents domaines d'application est décrite. Le problème de la
séparation des sources n'étant pas le seul objectif de la thèse, les approches de dé-
tection de changement et de détection de nouvelles sources sont également détaillées
pour des applications spéci�ques.

Modéle et méthode

Le modèle linéaire classique utilisé dans la séparation des sources peut être écrit
comme suit :

Y ' UA, (1)
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où Y ∈ RN×P sont des données observées. Dans la séparation spatio-spectrale,
N peut être interprété comme la longueur spectrale et dans la séparation spatio-
temporelle N est la longueur des signaux temporels. P est le nombre de voxels ou de
pixels, selon l'ensemble de données. La matrice U ∈ RN×R contient les signatures
temporelles/spectrales où R est le nombre de sources. La matrice A ∈ RR×P ,
généralement appelée matrice de mélange ou d'abondance, contient la fraction des
contributions des composants R à chaque voxel ou pixel.

Formulation d'optimisation sous contrainte

Étant donné le modèle d'observation ( 1), le problème de minimisation suivant :

min
A,U

1

2
‖Y −UA‖2F (2)

n'a pas de solution unique en raison de l'estimation conjointe de A et U, et du carac-
tère mal posé du problème. A�n de limiter le nombre de solutions, nous introduisons
une contrainte spéci�que sur la forme de la matrice A dé�nie en fonction de certaines
informations supplémentaires provenant de la segmentation haute résolution (HR)
des sources ou de la connaissance de l'emplacement des sources : nous savons quelles
ROIs peuvent contribuer à un voxel donné, c'est-à-dire présenter une proportion non
nulle à ce voxel. Lorsque le nombre total de sources R est élevé, cette connaissance
a priori permet de contraindre les solutions possibles du problème de minimisation.
Certaines contraintes standard sur la matrice A, telles que la positivité des coe�-
cients de mélange, peuvent être ajoutées dans un terme de contrainte supplémentaire
g(A). De la même manière, des contraintes sur la matrice U peuvent être modélisées
par une contrainte générique h(U). Dans le cadre le plus général, le problème de
démélange est reformulé comme suit :

min
A,U

1

2
‖|Y −UA‖2F + IM(Ã)(A) + g(A) + h(U), (3)

où le premier terme est le terme de �délité aux données et le second terme IM(Ã)(A)

est la fonction indicatrice sur l'ensemble M(Ã) de matrices ayant une structure
similaire à une "matrice de structure" binaire donnée Ã, c'est-à-dire A ∈ M(Ã) si
et seulement si A ∈ RR×P et ses coe�cients Ai,j = 0 si Ãi,j = 0. La matrice Ã est
une matrice binaire, où l'élément (Ã)r,i = 1 si, selon les connaissances a priori sur
la localisation spatiale des sources, la rime région d'intérêt pourrait exister dans le
iime voxel, et 0 sinon. Il en résulte que IM(Ã)(A) = ∞ si au moins un élément de

A est non nul alors qu'il est nul dans Ã, et 0 sinon.
L'estimation conjointe de U et A dans l'équation ( 3) est un problème typique

de l'apprentissage par dictionnaire (DL). Mais, contrairement aux algorithmes DL
classiques, le modèle proposé dans cette thèse n'a pas de terme de régularisation de
la parcimonie sous la forme d'une pénalité `1 : ce sont les informations de localisation



xxiv RÉSUMÉ EN FRANÇAIS

des sources codées dans le terme structurel IM(Ã)(A) qui imposent la décomposi-
tion de chaque voxel. Une manière classique de résoudre le problème d'estimation
conjointe consiste à optimiser alternativement la fonction de coût eq. ( 3) selon U
et A comme présenté dans l'algorithme

1 Initialisation de la matrice binaire Ã

2 Initialisation de la matrice U(0), l = 0

3 while CRITÈRE D'ARRÊT 6= VRAI do
4 Minimisation du problème ( 3) par rapport à A
5 Minimisation du problème ( 3) par rapport à U

6 end

7 return U(l+1),A(l+1)

Algorithm 1: Schéma d'optimisation alternatif de l'algorithme
d'apprentissage par dictionnaire pour résoudre le problème générique
( 3).

Initialement, la méthode a été évaluée sur un exemple purement synthétique com-
posé de données de dimension trois (deux dimensions pour l'image et une pour le
temps). Dans ces données on trouve di�érents cas d'interactions entre les sources :
a) sans superposition , b) partiellement superposées c) source superposée sur dif-
férentes sources. La disponibilité de la vérité terrain nous a permis de calculer
des mesures quantitatives comme l'erreur quadratique moyenne normalisée, l'erreur
moyenne absolue normalisée et la distance spectrale pour les décours temporels et
les carte spatiales des sources estimées avec notre algorithme. Nous avons obtenu
une bonne estimation en présence de bruit et lorsque l'hypothèse de pixel pur n'est
pas respectée pour toutes les sources.

Les applications du modéle générique sur les données quasi-réelles et réelles sont
présentés dans les prochaines sections.

IRMf

Étant données les bonnes performances obtenues sur les données purement synthé-
tiques avec le modèle proposé, nous l'avons utilisé sur des images IRMf (dimensions
3D + temps). Un des objectifs de cette thèse était d'analyser les données longi-
tudinales d'un modèle de souris Alzheimer. Les données sont constituées d'une
image IRMf de repos et d'une image anatomique 3D acquise lors du même examen.
L'image anatomique a une dimension 256 × 256 × 34 et une résolution spatiale de
0.08299 × 0.07812 × 0.4 mm. L'IRMf est de taille 147 × 87 × 27 × 500 avec une
résolution spatiale de 0.1445× 0.2299× 0.5 mm et 2s pour la résolution temporelle.
L'atlas Allen Brain Atlas [8] fournit une image 3D du cerveau (template) et une carte
de segmentation qui permet d'identi�er R = 613 structures anatomiques d'intérêt
dans le cerveau de la souris. Ces deux jeux de données ont une résolution spatiale
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de 25× 25× 25 µm.
Nous avons commencé avec les données brutes et avant le démélange, les étapes

classiques de pré-traitement des données IRMf (masquage du cerveau , slice tim-
ing, correction du mouvement au cours de l'examen si besoin) et de recalage sont
e�ectuées. On choisit de recaler l'atlas avec les données IRM anatomiques qui sont
bien mieux résolues spatialement que les données IRMf. On tire parti du fait que
les données IRMf sont quasiment parfaitement recalées entre elles (la souris n'a pas
bougé) et on e�ectue d'abord un recalage non rigide des données anatomiques sur
les données IRMf pour corriger les distorsions géométriques parfois observées entre
les deux modalités. Les données IRMf voient leur résolution spatiale arti�ciellement
augmentée au préalable en subdivisant chaque voxel en 3×6×2 voxels (la valeur du
voxel original est dupliquée dans les J = 36 sous-voxels). Ceci permet d'atteindre
une résolution spatiale comparable à celles de l'atlas et des données anatomiques,
sauf dans la troisième dimension qui correspond à l'épaisseur des tranches lors de
l'acquisition IRM (qui ne peut être réduite qu'au détriment de la résolution tem-
porelle). L'atlas est ensuite recalé sur les données anatomiques par recalage non
rigide. Les deux étapes de recalages successifs fournissent des champs de déforma-
tion que l'on peut appliquer en cascade aux régions de la carte de segmentation de
l'atlas haute résolution a�n d'obtenir les masques binaires des R régions projetées
sur les données IRMf arti�ciellement augmentées. Ces régions de l'atlas projetées
sur les données IRMf permettent de construire la matrice Atilde de notre modéle de
démélange et donc de dé�nir la contrainte. Un pipeline de traitements complet, en-
tièrement automatisé, adapté aux souris pour préparer les cerveaux des souris pour
la méthode de démélange a ainsi été réalisé pendant la thèse.

A�n de tester les performances de la méthode proposée en conditions réalistes, on
utilise tout d'abord un jeu de données IRMf réelles dans lequel des signaux temporels
synthétiques connus sont introduits. Nous avons introduit les signaux dans l'image
IRMf augmentée a�n de simuler le mélange avec les données réelles en dégradant
ensuite l'image jusqu'à atteindre la (basse) résolution de l'IRMf d'origine. La con-
trainte sur les abondances pour le modéle peut écrire comme g(A) = IR+(A)+IS(A)
pour respecter la positivité, la somme égale un des abondances, et la contrainte spa-
tiale (IM(Ã)(A)). Dans le cas des données IRMf la contrainte h(U) = µσ

2 ‖U‖2F ne
contient que le terme de Tikhonov. Empiriquement l'algorithme propose une so-
lution acceptable et stable. Dans la Fig. 1 on peut regarder les signaux temporels
estimés pour les di�érentes régions dans lesquelles ont été introduits des signaux syn-
thétiques. Ceci nous a permis d'utiliser notre algorithme pour l'analyse des souris
dans une étude longitudinale.
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Figure 1: Données IRMf. Des échantillons correspondant aux 500 premières sec-
ondes des signaux synthétiques (en bleu) et leurs durées estimées correspondantes
en utilisant les informations atlas des haute-résolution (en rouge pointillé) et sans
utiliser les informations de l'atlas des haute-résolution (en vert). Les erreurs quadra-
tiques moyennes (MSE pour mean square error en anglais) sont a�chés au dessus
des signaux.
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Scintigraphie

Les algorithmes de démélange basés sur des régions spatiales d'intérêts sont égale-
ment classiquement utilisés dans le domaine de la scintigraphie et nous avons testé
notre algorithme sur ce type de données. Dans l'état de l'art, la méthode de référence
RUDUR[9] calcule les sources avec des contraintes spatiales relaxées, c'est-à-dire que
la contribution spatiale des sources peut dépasser les régions d'intérêt dé�nies par
l'expert. Nos contraintes spatiales, sous forme d'indicatrices sont des contraintes
dures, i.e. les sources sont forcément estimées à l'intérieur des régions. Pour les don-
nées en scintigraphie la somme égale à un n'est pas importante sur les abondances.
Aussi, la contrainte que les signaux temporels sont positifs doit étre réspectée. Donc
pour ce cas nous avons g(A) = IR+(A) et h(U) = µσ

2 ‖U‖2F + IR+(U) dans ( 3).
Les résultats trouvés par notre méthode sont très proches des résultats trouvés par
la méthode de réference [9], sur un cas quasi-réel de données scintigraphiques, mon-
trant le large potentiel de notre modèle générique. Les résultats pour ces données
sont montrés dans la Fig. 2.
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Figure 2: Données de scintigraphie. (a) vérité terrain pour les cartes spatiales, (b)
regions initiales, (c) cartes spatiales estimées (d) cartes spatiales estimées par une
méthode de l'état de l'art (RUDUR), (e) activités temporelles estimées par RUDUR
et la méthode proposée.
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Astronomie

Notre méthode a également été évaluée sur des observations astronomiques d'une
portion du ciel observée par le téléscope spatial Hubble (HST) à haute résolution
spatiale et par l'instrument MUSE au sol qui produit des images hyperspectrales
de moins bonne résolution spatiale mais spectralement très résolues. Les régions
d'intérêts ont été obtenues grâce à l'analyse préalable de l'image Hubble : [10] pro-
pose une carte de segmentation des galaxies observées. Le démélange spectral a
ensuite été réalisé sur les données MUSE (Image 2D + spectres dans la troisième
dimension) en utilisant la carte de segmentation de l'image Hubble pour exprimer la
contrainte de localisation spatiale. Comme la résolution spatiale de l'image MUSE
est faible, les spectres des galaxies dans l'image MUSE sont souvent noyés dans les
spectres d'autres galaxies. En démélangeant une portion de l'image MUSE qui avait
été analysée par le consortium qui a produit l'image, nous retrouvons, avec notre
méthode, les mêmes estimations de spectres que dans leurs travaux, ce qui est une
validation supplémentaire de notre approche. Le mélange des spectres de galaxies
correspond à un mélange additif, donc nous enlevons la contrainte de somme égale à
un. Les contraintes sont donnés par g(A) = IR+(A) et h(U) = µσ

2 ‖U‖2F + IR+(U).
Les résultats sont montrés dans la Fig. 3. Également la méthode proposée a été
lancée sur le champs entier des données MUSE à notre disposition (UDF-10).
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Figure 3: Données astronomiques. En haut, de gauche à droite, une image MUSE,
une carte de segmentation de l'image HST Rafelski et une image à bande étroite
centrée sur λ = 6242.5 Ang (position de la ligne d'émission dans le spectre estimé
de la source ID#4451). La source centrale de Rafelski indiquée par la croix rouge
est ID#4451. En bas, de gauche à droite : le spectre λ estimé pour ID#4451 sur
toutes les de longueurs d'onde et zoom sur la ligne d'émission estimée à λ = 6242, 5.
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Conclusion

Le cadre de ce travail a évolué au �l du temps. Initialement, l'accent était mis
sur le développement d'une méthode d'optimisation en tenant compte des aspects
de l'IRMf. Dans le contexte de l'IRMf, l'application principale était de trouver la
di�érence entre les souris AD et les souris WT. Selon l'hypothèse envisagée, chaque
réseau fonctionnel est composé de régions anatomiques �nes. On a envisagé d'utiliser
un atlas avec une carte de segmentation pour la localisation de ces petites régions
sur les images d'IRMf. Pour e�ectuer le démélange, des contraintes spéciales ont été
ajoutées au problème d'optimisation pour faciliter le démélange. Pour les données
d'IRMf, des études statistiques ont été nécessaires pour déterminer les di�érences
entre les souris malades et les souris témoins.

Pour véri�er les di�érences entre les souris AD et WT, le test gaussien sur les
données longitudinales a fourni des résultats intéressants. Les régions qui présen-
taient des changements de connectivité signi�cativement di�érents pour les souris
AD mais qui n'avaient pas subi de changements pour les souris WT ont été trou-
vées. Il a été observé que certaines de ces régions, comme l'entorhinal et les régions
olfactives, sont également liées à la maladie d'Alzheimer chez l'homme.

Dans la phase ultérieure de ce travail, la généralisation du modèle de démélange
nous a permis de l'appliquer à di�érents jeux de données tels que la scintigraphie
et l'astronomie. L'algorithme d'apprentissage par dictionnaire avec des contraintes
spatiales proposé a été comparé à l'état de l'art pour les di�érentes applications.

Contributions

Les contributions dans les di�érents domaines sont les suivantes :

� Par nature, les images IRMf ne contiennent aucune information sur la locali-
sation des régions disponibles. Il peut donc être di�cile d'analyser quantita-
tivement les changements entre les souris témoins et les souris malades. Pour
résoudre ce problème, un atlas haute résolution avec une carte de segmentation
très détaillée (avec environ 600 régions anatomiques dé�nies) a été recalé sur
l'IRMf. Il convient de noter que les données de l'IRMf ont une résolution très
faible et que la projection de l'atlas sur les données entraîne un chevauchement
des régions. Cela nous a conduit à envisager une technique de démélange plus
sophistiquée que la méthode des moindres carrés.

� Classiquement, une contrainte `1 est utilisée pour restreindre l'ensemble des so-
lutions du fait du caractère mal posé du problème de démélange en induisant
la parcimonie des sources dans le modèle. Pour la méthode de démélange
proposée, la contrainte classique `1 pour les cartes spatiales/abondance a été
remplacée par une contrainte spatiale sous la forme construite grâce à une
connaissance a priori de la localisation potentielle des sources. Ceci permet
un démélange respectant les limites des cartes spatiales initiales, alors que
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la norme classique `1 ne contraint pas spatialement les sources. Les perfor-
mances ont été validées sur un exemple synthétique avec di�érents cas de
recouvrements que l'on peut trouver dans les données réelles. Une fois les
erreurs évaluées pour les données synthétiques, l'algorithme a été appliqué à
des données humaines réelles d'IRMf provenant d'un logiciel d'analyse d'IRMf
populaire, SPM. Les résultats ont validé le modèle proposé pour les données
d'IRMf. En�n, la méthode a été appliquée à des données réelles de souris et
interprétée par un neurobiologiste expert, avec des résultats compatibles avec
ce qui était attendu pour les pathologies considérées dans ce modèle animal.

� L'hypothèse qui sous-tend l'utilisation d'un atlas de segmentation détaillé est
que les réseaux fonctionnels sont constitués de petites régions anatomiques.
Classiquement, les données d'IRMf sont recalées sur l'atlas et le démélange
est e�ectué. Dans ce travail, l'atlas a été recalé sur les données d'IRMf. Un
pipeline, di�érent de l'état de l'art, a été développé pour recaler la carte de
segmentation hautement détaillée sur les données d'IRMf sans trop altérer les
signaux temporels originaux. L'hypothèse et le pipeline présentés ont conduit
au développement de codes adaptables à di�érents ensembles de données et
utilisés en interne dans l'équipe.

A�n de comparer la connectivité du cerveau, l'analyse des matrices de cor-
rélation est l'approche privilégiée dans cette étude. Pour la validation, des
signaux quasi-réels avec des corrélations connues ont été introduits dans les
régions préfrontales, et le démélange a été e�ectué. Les signaux estimés et les
matrices de corrélation ont con�rmé la bonne performance de l'approche de
démélange. Di�érents types de validations statistiques ont été e�ectués pour
rechercher des changements longitudinaux sur les matrices de corrélation des
données quasi-réelles et synthétiques. La validation des tests statistiques nous
a permis d'e�ectuer les tests statistiques sur des données réelles.

� La généralisation du modèle a été détaillée pour adapter le modèle de démélange
à contrainte spatiale à d'autres applications. Des résultats similaires à l'état
de l'art ont été fournis pour l'application scintigraphique et astronomique.
Le travail sur ces deux applications a nécessité une compréhension des dif-
férentes modalités impliquées. Les résultats prometteurs sur des données quasi-
réelles en scintigraphie prouvent l'applicabilité de l'algorithme sur des don-
nées scintigraphiques réelles. Comme le problème proposé est adaptable, de
l'information à priori sur les signaux temporels pourraient être ajoutés si néces-
saire. Les données hyperspectrales pour l'application astronomique sont pro-
duites par l'instrument MUSE, et les connaissances externes sur l'emplacement
des sources proviennent d'un catalogue développé à partir des observations du
télescope Hubble en [10]. L'algorithme a pu fournir des résultats de démélange
e�caces pour l'ensemble des données UDF-10 de MUSE, prouvant ainsi son
évolutivité. Divers outils d'analyse des données ont été fournis avec un pipeline
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permettant d'estimer les spectres de galaxies présentant des lignes d'émission
faibles ou de retrouver des galaxies qui n'existent pas dans le catalogue initial
mais qui sont con�rmées par d'autres approches. La généralisation du modèle
a donné lieu à une publication dans IEEE Transactions on Image Processing.

Perspectives

Les perspectives sont divisées en perspectives basées sur les modèles et en perspec-
tives basées sur les applications.

Modèle

� Introduction d'un lissage spatial : Le modèle de démélange proposé dans le
manuscrit e�ectue le démélange en considérant les pixels indépendamment et,
de plus, les estimations d'abondance sont mises en parallèle selon les pixels
dans l'implémentation de l'algorithme. A�n d'introduire plus de cohérence
spatiale dans chaque carte d'abondance, une contrainte de lissage spatial dans
les régions pourrait être introduite dans une future variante de l'algorithme.
Cependant, en fonction de la nature de la contrainte ajoutée, cela augmenterait
la complexité de l'algorithme. L'une des façons d'ajouter une telle contrainte
est sous la forme d'une régularisation par variation totale (VT). Le problème
d'optimisation à contrainte spatiale prenant en compte les pixels voisins pour
les cas impliquant des images 2D avec une information temporelle ou spectrale
a été donné.

� En ce qui concerne les aspects calculatoires de l'approche proposée dans le
deuxième chapitre, certaines améliorations pourraient être apportées pour aug-
menter la vitesse de l'estimation. Une implémentation GPU parallélisée pour-
rait être mise en oeuvre pour accélérer les calculs dans l'algorithme d'optimisation.
La projection sur les ensembles convexes est actuellement e�ectuée à l'aide de
l'algorithme de Michelot [11]. L'une des améliorations possibles est l'implémentation
de [12] pour une projection plus rapide sur les ensembles convexes, ce qui pour-
rait éventuellement réduire le temps de calcul.

Applications

� fMRI : A�n d'éviter de modi�er les données IRMf, celles-ci ont été conservées
dans leur résolution d'origine et un atlas a été projeté sur les données IRMf.
Cette étape est di�érente des études de la littérature où les données IRMf sont
enregistrées sur l'atlas, puis un algorithme de démélange est exécuté sur les
données. Notre approche a impliqué un pipeline de prétraitement qui pour-
rait constituer la base d'un futur article avec l'ajout d'une analyse technique
supplémentaire.
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Quelques régions de l'hippocampe ont été divisées en plusieurs sous-régions
sur la base de preuves d'activités fonctionnelles di�érentes à l'intérieur de ces
régions. Cette analyse par noyaux à plus grande échelle pourrait également
être e�ectuée pour d'autres régions pour lesquelles de telles preuves peuvent
être faites. Une façon d'y parvenir est d'e�ectuer une ICA à l'intérieur d'une
région particulière, puis de véri�er les cartes spatiales estimées. Dans un at-
las de segmentation très détaillé, à sa résolution la plus �ne, certaines régions
anatomiques �nes sont divisées en plusieurs couches �nes. Ces couches se
chevauchent à l'échelle de résolution inférieure de l'IRMf et dans ce cas, il
est moins approprié de conserver cette segmentation �ne. L'idée de fusionner
les régions anatomiques pour rester à une échelle anatomique supérieure per-
mettrait d'améliorer la di�culté du problème en réduisant les dimensions du
problème d'estimation (par exemple, en améliorant le conditionnement de la
matrice A).

Au cours de ce travail, les applications IRMf ciblées concernaient les données de
souris en état de repos. Bien qu'une application basée sur une tâche humaine
soit présentée, de futures applications pourraient impliquer le démélange sur
des données IRMf humaines au repos. D'autres ensembles de données impli-
quant un cryosonde ont un faible bruit, et l'approche que nous proposons pour-
rait être intéressante pour ces données. Un bruit plus faible entraînerait une
meilleure estimation des signaux temporels et donc de meilleures matrices de
corrélation, ce qui pourrait améliorer le regroupement des régions anatomiques
en réseaux fonctionnels.

� Astronomie : Divers résultats corroborent que la méthode proposée peut être
appliquée pour le démélange de données hyperspectrales lorsqu'une carte de
segmentation des galaxies est disponible. Théoriquement, la méthode pro-
posée devrait fournir des spectres mieux estimés que les spectres estimés par
sélection manuelle par des experts lorsque les signaux sont contaminés par les
signaux d'autres sources. L'analyse des résidus après démélange des sources
connues grâce au catalogue [10] a permis de trouver une galaxie qui n'était
pas présente dans la carte de segmentation. Cette galaxie a été également dé-
tectée par d'autres méthodes développées dans le cadre de l'analyse des don-
nées du projet MUSE. Il faut maintenant explorer l'ensemble du cube MUSE
pour rechercher d'autres sources dans les résidus et relancer l'algorithme en
ajoutant les nouvelles sources dans les cartes initiales a�n d'a�ner les résul-
tats. Le pipeline permettant de trouver des galaxies avec des lignes d'émission
faibles dans les résidus pourrait être utilisé pour valider d'autres galaxies après
discussion avec les astronomes.
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1.1 Introduction to source separation

The issue of source separation, or unmixing, is well known to the signal and image
processing community. It concerns a very large number of applications and can occur
under di�erent conditions of source mixing. A large part of the literature is devoted
to blind source separation (BSS) [13]�[15]. BSS methods allow solving cocktail party
problems for which P signals (or images) composed of a mixture of R sources are
observed, without any a priori on the properties of the sources. If the number of
sources involved in the mixtures is not known a priori, then it must also be estimated
[16], [17].

The �rst record of a BSS method is in 1901, where an application of Principal
component analysis (PCA) was presented by Pearson [18], later it was developed
independently by Hotelling in [19] and started developing around the 1960s by Ma-
linowski. In signal processing, the PCA or Karhunen-Loéve transform marks the
beginning of source separation starting with [13], where they used a principal com-
ponent model to explain the observed noisy data, Y. It was followed by early BSS
methods that mainly comprised Independent Component Analysis (ICA) [14], [15],
[20] followed by sparse decomposition analysis [21], [22]. The �rst article on ICA

1
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for the international community was published in the early 1990s [14] with an even
earlier article in French from 1988 [23]. ICA and PCA require the speci�cation of the
number of components, whereas in sparse decomposition analysis, a prior is based
on the idea that the number of involved sources in a given observation is low, which
are generic priors under blind source separation [24]. Many variants of the ICA [14],
[15], [25] approach have been proposed in the literature to solve BSS problems. All
of them are based on the general principle of spatial independence of the sources,
which makes it possible to estimate their temporal (or spectral) signatures.

For instance, for brain functional networks detection in functional Magnetic Res-
onance Imaging (fMRI) data, ICA is widely used to separate spatial sources by as-
suming the independence of the temporal signals associated with each spatial source,
i.e. functional network. Spatial ICA has proven e�ective in [26], [27] for fMRI data,
but the main drawback of ICA approach is the unknown number of sources which
is set arbitrarily and may lead to a large number of nuisance sources that must be
screened manually or by a semi-automatic method [28]. In neuroscience, SPM [29]
has various ICA algorithms implemented for fMRI analysis. ICA is used in group
studies, where the redundancy of the information from di�erent subjects is useful. In
the case of single-subject studies or longitudinal studies, change detection methods
that do not solely depend on the independence of the sources are required.

In contrast to the BSS problem, many unmixing problems involve a dictionary of
pre-de�ned bases such as Discrete Cosine Transform (DCT), wavelets, and curvelets
[30], [31]. The dictionary columns or atoms may also be �xed; for example, in hyper-
spectral imaging for remote sensing, libraries of light spectra corresponding to the
di�erent materials that may be observed in the scene are available [32], [33], so that
only the proportion of the di�erent materials in each pixel is estimated. Between
these two extreme cases, there are a large number of unmixing problems where some
information on the form or location of the sources or the type of mixture is known
[30], [31], [34]. As the problems for BSS methods are ill-posed, it is necessary to add
constraints to reduce the size of the solution space, in other words, search space.
Sum-to-one and positivity constraints on the coe�cients of the mixing matrix are
classic in signal and image processing [35]. For mixing matrices in remote sens-
ing, these are known as the abundance sum-to-one-constraint (ASC) and abundance
non-negativity constraint (ANC). In remote sensing applications, hyperspectral data
linear unmixing is carried out by methods based on nonnegative matrix factorization
[36], [37]. In recent years, sparse decomposition methods have been widely used to
solve source separation problems [22], [33], [38], [39]. The sparsity constraint is an-
other way to reduce the set of solutions [40]. It can be combined with the two latter
constraints. The sparsity may concern the mixing itself, i.e. for a given observed
signal, only a few number of sources is involved, or the decomposition of the sources
on a dictionary (wavelet, discrete cosine transform, or custom atoms (containing
sparse signals with most of the intensities with values equal to zero), known orthog-
onal atoms, or non-orthogonal possible in some cases ) [30], [31], [41]. Dictionary
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learning methods take into account the spatial sparsity of the sources in the form
of `1 constraints on the mixing matrix in the minimisation problem. Recently for
fMRI applications, where sources are functional networks, sparse analysis based on
dictionary learning methods has proven to be promising [38], [39], [42], [43]. In the
hyperspectral domain, provided a library of spectra, Constrained-Sparse Unmixing
by variable Splitting and Augmented Lagrangian (C-SUnSAL) [44] is a classical al-
gorithm for solving optimisation problem with the sum-to-one, positivity condition
and an `1 constraint on the spatial maps matrix.

Classical linear model

The classical linear model used in source separation in the presence of an i.i.d. noise
may be written as:

Y ' UA, (1.1)

where Y ∈ RN×P is the observed data. In spatio-spectral separation, N can be
interpreted as the spectral length, and in spatio-temporal separation, N is the length
of the temporal signals. P is the number of voxels or pixels, depending upon the
dataset. Matrix U ∈ RN×R contains the temporal/spectral signatures where R
is the number of sources. Matrix A ∈ RR×P , usually called mixing or abundance
matrix, codes the fraction of the R components contributions at each voxel or pixel.
Notations and the model are graphically represented in Fig. 1.1. If R < P , the
unmixing problem is overdetermined, and if R > P , then it is underdetermined.

In the vector form, for the observed signal for a given pixel p along with noise
ηp, the mixing model can be written as:

yp =
R∑
r=1

urar,p + ‖ηp‖2, (1.2)

where yp is the observed signal for the pth voxel/pixel, r is the indice of the rth

region, ur is the rth column of U and ar,p is the proportion of the rth region in the
pth voxel.

The approach followed for the taxonomy of the state-of-the-art algorithms ex-
plained in this chapter is based on their utilisation in spatio-temporal or spatio-
spectral unmixing. PCA and ICA lay the foundations for blind source separation
and are explained at the beginning, followed by dictionary learning methods which
recently are being widely used for fMRI data (our principal application). The ge-
ometric approaches are presented in the next section, followed by the Bayesian ap-
proach. The last section is dedicated to non-linear methods and tensor-based models.

1.2 PCA

Along with its popularity as a dimension reduction and a visualisation tool, PCA
is an indispensable tool used to separate sources based on maximal variance. To
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Figure 1.1: Matrix representation of the classic linear model. Here the column y1

is the signal of the �rst element of the image. This signal can be considered to be
composed of u1, u4 and u12 with non-null abundances equal to a1,1, a4,1 and a12,1

respectively.

understand PCA for blind source separation, let us consider the N × P matrix Y,
where N is the number of observations of the P variables (i.e. each pixel/voxel is
considered as a variable). The idea of PCA is to �nd a basis with dimensions less
than the dimension of the variables P . Taking our model as the base, PCA anal-
yses the variance-covariance matrix Σ ∈ RP×P , of the P variables observed in the
matrix Y ∈ RN×P . This matrix is used to �nd a basis with the axes corresponding
to di�erent uncorrelated sources, in other words, orthogonal spatial maps. A linear
combination of these maps explains the observations. Depending upon the applica-
tion and requirements, the data may be standardised. In this case, PCA components
are found using the correlation matrix instead of the variance-covariance matrix. The
implementation of PCA remains the same whether we use the correlation matrix or
the covariance matrix. So for convenience, let us consider that Σ is the variance-
covariance matrix and that the columns of Y are demeaned/centered.

The matrix Σ being a real and symmetric square matrix, can be diagonalised to
an orthonormal basis. In PCA, during the diagonalisation of Σ, we make sure to
sort the eigenvalues in descending order so that the �rst principal component/vector
explains the inertia of the data cloud (corresponding to the component with maximal
variance), the second component explains the remaining inertia, and so on. In the
end, among the P principal components, we would keep just the �rst R components,
considering them as the sources and the others as noise.

The covariance matrix Σ, can be written as:

Σ = E(YTY), (1.3)

where E(.) is the expectation and (.)T is the transpose of the matrix.
Eigenvalues and eigenvectors need to be found for ( 1.3), and the �rst component

or the �rst eigenvector explains the maximum variance of the datacloud. This can
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be done by a variety of methods, out of which the most popular is the singular value
decomposition method (SVD). The SVD method is the general form of eigenvalue
decomposition for any 2D matrix. If SVD decomposition of Y = QSVT , then:

YTY = VSQTQSVT = VSSVT = V∆VT . (1.4)

In the above equation V contains the right singular vectors, S is a diagonal
singular matrix, Q contains the left singular vectors and ∆ = S2. Optimisation
problem for PCA can be explained in various forms, which have been detailed in [45].
In PCA terminology, V are the eigenvectors, principal axes or the principal plane
direction coe�cients. The projection of the data onto the principal axes provides the
principal scores i.e., YV. For our particular model, considering A as the sources:
V can be replaced with A i.e., the spatial map matrix. In this case, each row of A
is a PCA component.

1.3 ICA

Consider the same N ×P matrix Y, where N is the number of observations of the P
variables (i.e., each pixel/voxel is considered as a variable). Independent component
analysis (ICA) aims at decomposing Y as a mix of R independent sources Y = UA,
where A ∈ RR×P contains the independent spatial sources and U ∈ RN×R stands
for the mixing matrix. ICA provides an estimation of the sources A : Â = WY,
where W is a linear transform matrix that maximises the statistical independence of
rows of Â. This statistical independence can be measured through mutual informa-
tion (from information theory), the non-Gaussianity, and the maximum likelihood.
The idea is to use one of these measures as an objective function called the contrast
function. The optimisation problem involving the contrast function aims to increase
the di�erence between a Gaussian distribution and the independent sources; these
sources found are called the independent components. Some well known ICA al-
gorithms are FastICA [46], INFOMAX [47], JADE [48] and kernel ICA [49], each
di�ering in the way the separation matrix is updated.

The uncorrelated and independent sources found in ICA are separated non-
linearly using higher-order statistical moments and not just variance as in the case of
PCA. Another notable di�erence between the new R basis formed by PCA from those
in PCA is that in ICA, the basis is orthogonal, whereas in PCA, it is orthonormal.

Let us consider sources/components Â, or the spatial maps matrix to be esti-
mated, given by:

Â = WY. (1.5)

In ICA, the idea is to estimate W i.e., the separation matrix, given just the data
at disposition. Once W is known, the mixing matrix i.e. U in the case of spatial
ICA can be estimated by (WTW)−1WT (comparing to our model Y ' UÂ). The
columns of U correspond to spatially independent signals with the components being
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the spatial maps. In this case, we are interested in spectro/temporal data that is
spatially structured. This kind of ICA to �nd spatially independent signals can be
noted as spatial-ICA (s-ICA). Spatial ICA has recently become popular in fMRI,
where the interest is to �nd the di�erent regions of the brain presenting di�erent
activations [50].

ICA can also be applied on Y T (this is the classical implementation of ICA where
the sources are temporal or spectral) and is called temporal-ICA (t-ICA) or even
spectral ICA. To �nd the temporally independent sources or components for the Y,
ICA must be performed on YT . In that case, the sources to be estimated i.e. UT

can be written as:
UT = WYT . (1.6)

Implementation of ICA involves iterative updates for the separation matrix W
until convergence. The rows of W represent the spatial maps, and the rows of U
are the temporally independent signals.

Both t-ICA and s-ICA with results on data containing various combinations of
temporal and spatial independence that could occur in task-based fMRI data are
given in [50].

1.4 Dictionary learning

For ICA and PCA, the matrices A and U are estimated by imposing the constraints
of statistical independence of sources in the former and the orthogonality and the
maximal variance for the latter. Taking into consideration other types of constraints,
the optimisation problem for A and U can be written in the following manner:

min
U,A
‖Y −UA‖2F + λΦ(U,A), (1.7)

where Φ(U,A) summarises the constraints on matrices U and A. Changing Φ(U,A)
leads to di�erent models. For example Φ(U,A) can be separated as a sum of Φ1(U)
and Φ2(A).

For the optimisation problem in 1.7, both A and U are unknown. A dominant
approach in the literature for such dictionary learning problem is alternate optimi-
sation where the matrices A and U are estimated alternatively. The initialisation is
important in this case, and convergence of the algorithm is not assured in the pres-
ence of noise or unavailability of priors. Pseudocode for such alternating strategy is
provided in Alg. 2.

Regularisations in dictionary learning

Some popular regularisations for dictionary learning have been explained as follows.

� There is a general interest for sparse models in dictionary learning to explain
data as a linear combination of a few elements. For this purpose, some sparsity
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1 Initialise A
2 while STOPPING CRITERIA 6= TRUE do

3 Estimate U by minimising the U sub-problem
4 Estimate A by minimising the A sub-problem.
5 end

6 return A,U

Algorithm 2: Alternate optimisation pseudo-code to estimate A and U.
Role of A and U can be switched if initialising U is easier than initialising
A.

constraints are required in the optimisation problem. For sparse decomposition
methods Φ(.) = ‖.‖x, where x could be {0}, {1}, {2}, {0, 1}, {1, 0}, {1, 1},
{1, inf} etc. and ‖.‖ is the norm of the rows/columns of matrix A. The choice
of 'x' depends on the amount of sparsity required. Mixed norms for sparsity
have been well explained in [51].

� To introduce smoothing in the decomposed data, total variation techniques
could be used. Total variation is high for a particular element if the neigh-
bouring elements have dissimilar intensities and vice-versa. For total variation
regularisation on 2D spatial maps, Φ can be written as

Φiso(A) =
∑
k,l

√
|ak+1,l − ak,l|2 + |ak,l+1 − ak,l|2 (1.8)

or for the anisotropic version, as:

Φaniso(A) =
∑
k,l

|ak+1,l − ak,l|+ |ak,l+1 − ak,l|. (1.9)

In 1.8 and 1.9, k and l refer to the pixel indices in the actual 2D image. Total
variation can similarly be used for signals smoothing and can also be extended
to 3 dimensions for data consising of 3D spatial volumes.

� An important state-of-the-art regularisation on signals is Φ(U) = µσ
2 ‖U‖2F ,

know as Tikhonov regularisation in the literature. Also popularly known as
ridge regression, it is used to prevent multi-collinearity in linear regression.
This regularisation also promotes smoothness in the temporal signals to be
estimated.

Application-speci�c constraints can be also be de�ned in dictionary learning. For
example, in remote sensing hyperspectral imaging, there exists a popular method
called SUnSAL and its constrained version constrained-SUnSAL (C-SUnSAL) with
the classical constraints of sum-to-one and positivity along with the `1 sparsity of
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the spatial maps. For fMRI data, a compressed online dictionary learning algorithm
exists [39]. In scintigraphic imagery, RUDUR is a recent algorithm making use of
the priors on regions of interest. These di�erent constraints and methods interest us
in processing data from di�erent applications that we aim to study in this work.

� In the region-of-interest based algorithm RUDUR [9], Φ(A) contains the spar-
sity as well as a regularisation term that accounts for distances between be-
tween the ROIs. If i and j are two random pixels in the data, the distance of
voxel i to the ROI r is calculated as :

Di,r =

{
minj/Ãj,r=1 disteuc(i, j), for i and j not belonging to the same region,

otherwise 0.
(1.10)

Here Ã is the binary image of the initial ROIs and has the same dimension
as that of A, Ãj,r = 1 if an only if the pixel j belongs to the ROI r, and
disteuc(i, j) is the euclidean distance between the pixels i and j. The distance
Di,r is used to penalise the minimisation problem in RUDUR; the larger is the
distance between the pixel i and some ROI r, the lower is its chance to belong
to that particular ROI. In the absence of such a constraint all the pixels would
be treated equally by the unmixing model.

� A well known algorithm in the hyperspectral imaging community for the esti-
mation of abundance maps in hyperspectral images unmixing called SUnSAL
[44] adds sparsity in the form of `1 norm. If Φ(U,A) is equal to IR+(A) +
IS(A) + ‖A‖1 the problem becomes similar to the one presented in the same
work [44] by the name of C-SUnSAL.

1.5 Geometric approaches

Geometrical approaches are blind source separation methods popular in hyperspec-
tral imaging; many of them have been summarised in [37]. These methods are based
on the premise that data from a linear mixture of vectors lie in a simplex. All such
methods involve some basic preprocessing techniques to project data (in our case Y)
in the form of data clouds in a reduced subspace of dimension R−1 i.e., the number
of material (water, soil, buildings, etc.). Linear mixing subject to certain mathemat-
ical constraints forces the data clouds to be bounded in a simplex, or a cone in a
(R− 1) dimension subspace. In the presence of constraints such as sum-to-one and
positivity on the abundances, each linearly mixed vector yp, or the observed signal
for a voxel/pixel, after dimensionality reduction can be written as:

yp =

R∑
r=1

urar,p + ‖ηp‖2, s.t.
R∑
r=1

ar,p = 1, ar,p >= 0, (1.11)
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where r is the rth region, p is the pth voxel/pixel, ur is the rth column of U and ar,p
is the proportion of the rth region in the pth voxel.

The endmembers i.e., the sources (columns of U), with the abundance matrix
A under the positivity and sum-to-one constraint are considered to form a simplex
which must englobe the data cloud formed by yp's. Simplex formed by a dataset
in the reduced dimension subspace having three di�erent kinds of sources has been
illustrated in Fig. 1.2. Some geometrically driven algorithms based on the assumption
of pure pixels to �nd the endmembers are PPI, NFINDR, and VCA. They have been
described as follows :

u1

u2

u3

yp

Figure 1.2: Data points yp ∈ R3 are contained by the 2D-convex cone formed by the
sources or the endmembers u1, u2 and u3

.

Pixel purity index(PPI)

To implement PPI, minimum noise fraction (MNF)[52] is a necessary preprocessing
step that results in dimension reduction as well as whitening of data. Also, MNF
arranges the components in terms of decreasing SNR of the images so one can select
the components corresponding to the images. MNF gives the same result or order
sequence for components as PCA. Once the data is reduced, the PPI [53], [54] method
is implemented. This can be summarised as: counting the number of times the
projection of a data point on a large number of generated random unit vectors
results in it being found on the extremities of the vectors, and then declaring the
most frequent points on the extremities as pure pixels. Here, the large set of random
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unit vectors are called skewers.

N-FINDR

For N-FINDR [55], the simplex formed by the endmembers is assumed to be formed
by pure pixels. Using this fact, the algorithm starts with an initial guess of the
endmembers, then the volume formed by the endmembers is calculated. If there is a
suitable pixel candidate, not contained in the existing volume, that could replace one
of the present vertex of the simplex to result in a larger �nal volume, then the current
vertex is replaced. It goes on iteratively, "in�ating" the volume of the simplex at
each iteration until no suitable candidates are left to replace the endmembers. In the
absence of pure pixels, the algorithm may result in a mixed spectra for the estimated
end members i.e., ui's will have a higher correlation between them than it should be
the case.

Vertex component analysis (VCA)

Like the other algorithms mentioned before, this one also exploits the fact that the
vertices of the simplex are formed by the endmembers. Another property that VCA
[56] exploits is that the a�ne transformation of a simplex results in a simplex. Mak-
ing use of these properties, the cone formed by the already determined endmembers
is projected to the orthogonal subspace in a repeated manner. As the transforma-
tions would result in a simplex, the convergence is achieved when all the members lie
in the subspace simplex of dimension R, where R is the true number of endmembers.

Minimum volume approach

In minimum volume approaches, pure pixels are not necessary in the dataset but
there should be at least R − 1 members lying on each facet of the simplex for this
algorithm to work. The optimisation problem can be cast as:

min
U,A
‖Y −UA‖2F + λ‖V (U)‖2, s.t.A >= 0, U >= 0,1Ta = 1TR. (1.12)

Here, the volume ‖V (U)‖ is proportional to the determinant of the simplex (formed
by endmembers) in matrix form, i.e. det(U). MVSA [57] and SISAL [16] are two
algorithms that follow the minimum volume approach but allow for violations of the
sum-to-one constraint.

1.6 Bayesian inference

Probabilistic models present a di�erent approach from other statistical source sepa-
ration methods by de�ning explicit parametric forms of prior distributions to de�ne
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constraints. If Y is the observed data with A and U as the parameters to be esti-
mated then the posterior probability in the Bayesian paradigm can be written as:

P (U,A|Y) =
P (Y|U,A)P (U,A)

P (Y)
. (1.13)

In 1.13, P(Y|U,A) is the likelihood of Y given the distribution of A and U, P(U)
is the prior de�ning the probability distribution of the temporal/spectral signals
and similarly P(A) for the abundances. P(Y) is the probability distribution of
the data or the evidence. Estimation of posterior distributions of U and A would
provide knowledge about the con�dence intervals of parameters to be calculated
which then can be used to infer the values of A and U. The procedure for Bayesian
inference requires de�ning some priors and then estimate the posteriors, but choosing
priors can be complicated and may require application-speci�c expert knowledge or
experience. For example, truncated normal priors with just the positive support
could be introduced to force non-negative abundances in the estimation of A. For
the model given in 1.2 if ‖ηp‖2 is an i.i.d. Gaussian white noise, then the likelihood
is given by :

P (yp|U,ap, σ2) =

(
1

2πσ2

)N/2
exp

[
−‖yp −Uap‖2

2σ2

]
. (1.14)

σ2 also to needs be estimated if not known a priori. As the noise is i.i.d, the model
can be written as :

P (Y|U,A, σ2) = ΠP
p=1f(yp|U,ap, σ2). (1.15)

The likelihoods presented in 1.14 and 1.15 for a linear hyperspectral model are
similar to the problem solved in [58]. Interesting priors distributions for the signals
U and the abundances A, as well as the estimation of the posterior distribution
using a hierarchical Bayes model, are detailed in [58].

Generally, with the addition of priors, the expressions for posterior distribu-
tions become complicated and require sampling strategies. Markov Chain Monte
Carlo (MCMC) is the standard approach in the estimation of the posterior dis-
tribution parameters. Some popular automatic sampling methods in MCMC are
RJMCMC (Reversible-Jump MCMC) [59], Gibbs sampler[60], Metropolis-Hastings
[61], [62], hybrid Monte Carlo (or Hamiltonian Monte Carlo) [63], etc. If the poste-
rior marginals are impossible to calculate, then variational Bayes approach may be
used. A standard variation Bayes involves approximating the posterior distribution
with another distribution easier to sample.
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1.7 Other models and methods

Non-linear models

For most of the problems in blind source separation, linear assumptions hold true,
and the optimisation of such provides good unmixing results. However, there could
be cases where such an assumption is invalid, and a unique nonlinear mixing model
may be required for each assumption. In hyperspectral imaging, for example, one
of the primary reasons why non-linearity could be introduced is multiple re�ections
of the photons from di�erent surfaces before reaching the camera sensor. There are
various models in the literature that intend to solve nonlinear unmixing problems
which have been well presented in [64]. A general optimisation problem for nonlinear
mixture can be written as :

min
Θ
‖Y −Θ(U,A)‖2F , (1.16)

with Θ(.), a non-linear function de�ning the relationships between the signals U and
the abundances in A. Many nonlinear approaches and methods for hyperspectral
data are explained in [37]. A neural based approach to learn nonlinear mixtures has
been detailed in [65].

Tensorial approach

Multi-dimensional data can be treated with multi-way analysis or in other words
tensor decomposition. For example in hyperspectral, the third dimension could be
angular data or time-series measurements of a particular area, for fMRI data with
voxels in one dimension and the time-signals in the other: the third dimension could
be the di�erent subjects, etc. Various decompositions of a tensors are possible out
of which Tucker [66] and Canonical Polyadic Decomposition (CPD) [67] are given
below:

� Canonical Polyadic Tensor decomposition/Candecomp or Parafac [67]: An el-
ement yi,j,k of matrix Y can be denoted as:

yi,j,k =
R∑
r=1

uriarjbrk, (1.17)

where vectors u, a and b are vectors of length R (R is the number of sources)
and i,j and k are the indices of the elements in those vectors.

� Tucker decomposition : A three dimensional data Y measuring di�erent prop-
erties along di�erent dimensions can be viewed as a third order tensor TN,P,R =
G⊗U⊗A⊗B, where ⊗ is the tensor product. U, A and B are the feature
factors or feature matrices for the signals matrix, abundances matrix and some
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other measured property respectively. An element yi,j,k of matrix Y can be
expressed as:

yi,j,k =
n∑
d=1

p∑
e=1

r∑
f=1

GdefUdiAejBfk. (1.18)

Gd,e,f is a diagonal tensor with dimensions n× p× r.

A graphical representation of Tucker decomposition to �nd features is given in
Fig. 1.3. Tucker decomposition based non negative matrix factorisation involving
positivity and sparsity constraints presented in [68] can be written as:

min
G,U,A,B≥0

1

2
‖Y −G⊗U⊗A⊗B‖2F . (1.19)

For fMRI data, U and A can be seen as the signals and spatial maps matrices,
respectively, and B contains the spatio-temporal information for each subject or
may represent the spatio-temporal evolution with respect to new time series data.

Y

R

P

N

∈ RN×P×R
∈ Rn×p×r

'

G

U∈ Rn×N

B ∈ Rr×R

A∈ Rp×P

Figure 1.3: Tucker decomposition according to 1.19. The cube Y after reduction of
dimension can be represented as G; the dimension of N is reduced to n factors, the
dimension R to r and the dimension P has been reduced to p. U, A and B are the
factor matrices.
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Summary

Various methods that could be considered for source separation purposes have been
explained in this chapter. Each would have certain advantages, as well as some
general or data-speci�c disadvantages.

The classical data-driven methods of PCA, t-ICA, and s-ICA require the number
of components to be estimated to be �xed. If a large number of components are
speci�ed, then many components would correspond to noise. On the contrary, a
smaller number of speci�ed components would lead to inability of these two methods
to �nd all the components. For the main application of this work on fMRI, and also
for the other applications on scintigraphy and astronomy, prior information about
the localisation is available. The previous data-driven methods do not use these
prior information. Similar is the case of geometric approaches, with the exception
of the minimum volume approach, which by default do not exploit any a priori
information. Another disadvantage of geometric methods is that they can be slower
when the dimensions of the matrices are large. The utility of geometric methods is
that they are blind methods and work well in the presence of similar spectra. Another
interesting approach we came across is based on the Bayesian paradigm. For our
problems, Bayesian approaches would require priors on the abundances as well as the
nature of the timecourses or spectra. Priors of sum-to-one and positivity could still
be de�ned on the abundances and timecourses, but the unavailability of a particular
structure or form of the signals for our applications makes this approach impractical.
The sampling methods required to estimate the posterior distributions are slow when
dealing with large dimensions. Non-linear models could be interesting, but each
application may require an individual model. It also requires an understanding of
the physics behind the non-linearity assumption, which is beyond the scope of this
thesis. The aim of this work is also to provide a generic adaptable algorithm for
di�erent kinds of spatio-temporal or spatio-spectral data, so non-linear models were
not considered. Tensor decomposition models are novel and work in a similar way to
NMFs but for the case of tensors. A necessary requirement for tensor decomposition
is that it requires various instances of the data to be of the same dimension. It
cannot be used for cases where data is multiway but have di�erent dimensions, for
example, data belonging to di�erent modalities. This complex decomposition is not
considered as a possible approach in this thesis.

From all the approaches we presented in this chapter, it can be noticed that the
model-based approach of dictionary learning allows more straightforward additions
of priors than the other methods in the literature. This becomes crucial when the
compromise between spatial resolution and temporal/spectral resolution is present.
This compromise is at the expense of spatial resolution, resulting in a potentially
large mixing of sources in the same pixel/voxel. Source separation methods must
incorporate spatial information to estimate the contribution and signature of each
source in the image. We consider the particular case where the position of the sources
is approximately known thanks to external information that may come from another
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imaging modality or from a priori knowledge. This inspires us to use the dictionary
learning approach for the optimisation problem treated in this thesis. It has been
explained in the next chapter.
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In this chapter, a source separation method that enables unmixing using spa-
tial constraints is presented. The method proposed has the ability to use a high-
resolution segmentation map associated with the data.

The chapter focuses on the problem of source separation in spatially structured
data: 2D or 3D images that contain temporal information (fMRI, scintigraphy) or
light spectrum information (hyperspectral imaging). We consider two categories of
this kind of unmixing problem. In the �rst one, for a given pixel/voxel, di�erent
sources contribute to the mix in the sense that the spatial resolution is not �ne
enough to allow spatial separation of the sources. This is the case, for example, with
unmixing problems in remote sensing [37] or fMRI applications [2], [39]. In this case,

17
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the mixing matrix is a matrix of proportions where for a given pixel, the sum of the
contributions of each source is equal to 1.

In the second category of unmixing problems, the mixing is additive, the signals
of the di�erent sources are superimposed and their sum forms the observed mixing
signal. Decomposition of scintigraphic image sequences into tissue images and their
time-activity curves or unmixing of light sources in hyperspectral data in astronomy
are examples of this second category of problems. In this case, the sum-to-one
constraint is not relevant; the coe�cients of the mixing matrix are the intensity of the
contribution of each source in the mixture. Since the observed signals are observed in
the form of images, the constraints that can be de�ned in the optimisation problem
should be related to the location of the sources and not to their shape. We consider
the case where no information on the temporal or spectral signature of the di�erent
sources or their dependence is available.

We propose a dictionary learning method that introduces sparsity constraints on
the spatial localisation of sources from external knowledge. Additional constraints on
the mixing matrix (positivity and sum-to-one constraints) can be added or removed
depending on the application. To illustrate the potential of the approach, di�erent
applications have been considered, from fMRI data (in chapter 3) to scintigraphic
data to astronomy (in chapter 4). All these data are of very di�erent natures, as well
as the a priori information available on the location of the sources. We thus show
that our algorithm is adaptable to di�erent types of data and di�erent types of a
priori knowledge on the location of sources. In the case of multimodal observations,
information regarding the possible spatial location of sources is usually derived from
a high spatial resolution image that does not provide the second dimension, namely
temporal or spectral information. Unlike multimodal image fusion problems, such as
pansharpening [69], our goal is not to produce a spatially and spectrally or temporally
well-resolved image. We rather aim at exploiting segmentation information from a
high spatial resolution image in order to improve the unmixing of spectral or temporal
sources at a lower resolution image level. In some applications, such a segmentation
map is not available, but approximate spatial location information can be provided
by an expert who can de�ne regions of interest (ROIs) (see for example, the unmixing
method for the highly realistic simulated renography dataset in [9], [70]).

This PhD dealing with the primary application on rs-fMRI stimulated the re-
search towards a model with the aforementioned qualities.

2.1 Proposed unmixing model and method

The classical linear model mentioned in the previous chapter as Y ' UA in 1.1,
needs to be suited/tailored for di�erent applications with the addition of certain
constraints and the following next subsections explaing the proposed approach.
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2.1.1 Constrained optimisation formulation

Given the observation model ( 1.1), the following minimisation problem:

min
A,U

1

2
‖Y −UA‖2F (2.1)

does not have a unique solution because of the joint estimation of A and U, and
the ill-posedness of the problem. In order to restrain the number of solutions, we
introduce some standard constraints on matrix A such as the positivity constraint
A ∈ R+ and the sum-to-one constraint

∑
A[., i] = 1, with i = 1 : P , as these are

the proportions voxel by voxel. The form of matrix A may also be constrained
by some extra information from high-resolution (HR) segmentations of sources or
source locations knowledge: we know which ROIs may contribute to a given voxel,
i.e., present a non-zero proportion at this voxel. When the total number of sources
R is high, this a priori knowledge allows to constrain the possible solutions of the
minimisation problem. In the most general setting, the unmixing problem is recast
as:

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F + IR+(A)+ IS(A) + IM(Ã)(A), (2.2)

where the �rst term is the data �delity term, the second term is a Tikhonov regu-
larisation controlled by parameter µσ set to 10−4 to prevent bad conditioning (see
section 2.1.2). The third term is a positivity constraint where IR+(A) = ∞ if at
least one of the elements of A is negative, and 0 otherwise. The fourth term in
eq. ( 2.2) codes an optional sum-to-one constraint on each column of matrix A,
IS(A) =∞ if at least one column of A does not sum to one, and 0 otherwise. The
last term IM(Ã)(A) is the indicator function on the set M(Ã) of matrices having

a structure similar to a given binary �structure matrix� Ã, i.e. A ∈ M(Ã) if and
only if A ∈ RR×P and coe�cient Ai,j = 0 if Ãi,j = 0. Ã is a binary matrix, where
element (Ã)r,i = 1 if, according to a priori knowledge about spatial localisation of
the sources, the rth region of interest could exist in the ith voxel, and 0 otherwise.
This results in IM(Ã)(A) = ∞ if at least one element of A is non-zero while it is

zero in Ã, and 0 otherwise.
Combining sets R+ ∩ S = S+, the optimisation problem can be rewritten as

follows:
min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F +IS+(A) +IM(Ã)(A). (2.3)

Estimating jointly U and A in eq. ( 2.3) is a typical problem of dictionary learning
(DL). But, unlike conventional DL algorithms, there is no sparsity regularisation
term in the form of an `1 penalty: it is the sources localisation information coded in
the structural term IM(Ã)(A) which enforces the sparse decomposition of each voxel.
A classical way to solve the joint estimation problem is to optimise alternatively the
cost function eq. ( 2.2) along U and A.
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2.1.2 Estimation of the temporal / spectral signatures matrix U

Considering that A is �xed, problem ( 2.2) becomes:

min
U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F . (2.4)

The Tikhonov regularisation term µσ
2 ‖U‖2F is introduced to improve the condi-

tioning of problem ( 2.4), µσ is set to 10−4 to prevent collinearity between columns
of U.

The solution of (??) is the ridge estimator de�ned by:

Û = YAT (AAT + µσIR)−1, (2.5)

where IR is the R×R identity matrix.

2.1.3 Estimation of the abundance / mixing matrix A

Consider that U is �xed, then problem eq. ( 2.2) becomes minA f(A), where:

f(A)=
1

2
‖Y −UA‖2F +IS+(A) +IM(Ã)(A). (2.6)

Note that this function is separable according to the pixels/voxels i ∈ {1,. . . , P},
which leads to: minai f(ai), with:

f(ai)=
1

2
‖yi −Uai‖2F +IS+(ai) +IM(ãi)(ai)., (2.7)

where ai is a column vector from the matrix A (and with an abuse of notation for
f(.)). The set of all the vectors with a structure similar to ai is given by ãi, where
ãi is a column of Ã. The regularisation terms in eq. ( 2.7) can be summarised as:

g(ai) = IM(ã)∩S+(ai). (2.8)

Note that the objective function eq. ( 2.7) is convex since the �rst term is convex
and di�erentiable and g(ai) is convex but non di�erentiable. The proof of convexity
for g(ai) can be easily demonstrated.

2.1.4 Proof of Convexity of IM(ãi)∩S+(ai)

The convexity of IM(ãi)∩S+(ai) can be proven if we can prove that the set M(ãi) ∩
S ∩R+ is convex. This can be easily veri�ed by following the assumption that each
voxel contains the contribution of at least one region of interest. By de�nition:

IR+∩M(ãi)∩S(ai)

=+∞ if ai has a non-zero value where ãi is 0

=+∞ if the sum of ai is not equal to 1

=+∞ if at least one element in ai is negative

= 0 otherwise
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where (ãi) is a binary vector where element (ãi)r = 1 if the rth region of the segmen-
tation map intersects the ith voxel, and 0 otherwise. A set formed by the intersection
M(ãi) ∩ S ∩ R+ is convex if for all t ∈ [0, 1] and for all v,w ∈ M(ãi) ∩ S ∩ R+, a
line segment de�ned :

z = tv + (1− t)w (2.9)

lies in M(ãi) ∩ S ∩ R+. Proof that z ∈ R+ and z ∈ S is straightforward.
Proof that the line segment z belongs to subspace M(ãi) is detailed in the fol-

lowing.
Let u ∈ R+. By introducing the complementary vector (1 − (ãi)) of ãi, where

the notation 1 is a vector of ones of the same size as ãi, we have the equivalence:

u ∈M(ãi) ⇐⇒ uT (1− (ãi)) = 0 (2.10)

Implication u ∈ M(ãi) =⇒ uT (1 − (ãi)) = 0 is straightforward (vector u lying in
M(ãi) has its coe�cients (u)r = 0 when 1− (ãi)r = 1). It is easy to prove that the
reverse is true provided that u ∈ R+. As a consequence, vectors v and w lying in
M(ãi) verify:

vT (1− (ãi)) = 0 and wT (1− (ãi)) = 0 (2.11)

which yields:

tvT (1− (ãi)) + (1− t)wT (1− (ãi)) = 0,

⇐⇒ zT (1− (ãi)) = 0,

which, since z ∈ R+ and according to ( 2.10), implies that z ∈M(ãi).
Minimisation of the objective function given by eq. ( 2.7) belongs to the class

of problems on which the proximal gradient methods can be applied. Di�erent
algorithms are available, for example, alternating direction method of multipliers
(ADMM) [71], projected gradient, also known as iterative shrinkage-thresholding
algorithm (ISTA) or FISTA (Fast ISTA) [72]. Algorithm FISTA was preferred for
its rapid convergence: its implementation is given in algorithm 3.
In algorithm 3, ∇f(ai) is the gradient of f(ai), given by UT (Uai − yi). The step
size λ is set equal to the inverse of the Lipschitz constant of ∇f(ai) i.e. 1/L, where
L = ‖UTU‖F . t(k+1) is an auxiliary variable that helps in the fast convergence
of FISTA, ω calculates intermediate values based on a special linear combination of
the last two points, and prox refers to the proximal operator [72]. In our case, the
proximal operator is just the projection of ai in the positive orthant, with the vector
normalised to-sum-to-one. This projection also forces the elements of abundance
matrix (A)r,i to be non-zero only at positions where the region of interest r projects
on pixel/voxel i (IM(ã) constraint). The proximal operator of the function g is:

proxg(y) = argmin
x∈M(ã)∩S+

‖x− y‖2 = PM(ã)∩S+(y), (2.12)
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1 Initialisation of A(0), l = 0
2 while STOPPING CRITERIA 6= TRUE do

3 Minimisation problem w.r.t U :

4 U(l+1) = YA(l)T (A(l)A(l)T + µσIR)−1

5 Parallel minimisation w.r.t. the columns ai of A :
6 for ai of A do

7 ω
(1)
i = a

(l)
i ,b

(0)
i = a

(l)
i

8 for k ← 1 to proxsteps do

9 b
(k)
i = proxg(ω

(k)
i − λ∇f(ω

(k)
i )) [POCS]

10 t(k+1) =
1+

√
1+4(t(k))

2

2

11 ω
(k+1)
i = b

(k)
i +

(
t(k)−1
t(k+1)

)
(b

(k)
i − b

(k−1)
i )

12 end

13 a
(l+1)
i = b

(proxsteps)
i

14 end

15 l = l + 1;
16 end

17 return A, U

Algorithm 3: Alternate optimisation algorithm to estimate A and U that
combines three nested iterative algorithms. At each iteration l, the A and
U matrices are updated. The estimation of A is pixel-parallelised i.e., for
a given pixel i, the index k refers to the iterations of the FISTA algorithm.
In each iteration k, the calculation of the proxg requires an iterative POCS
algorithm detailed in 2.1.3.

where P is the projection operator on set M(ã) ∩ S+. The orthogonal projection
of a vector y ∈ RR on M(ã) ∩ S+ is obtained using the projection onto convex
sets (POCS) method [73]. POCS algorithm alternates projection onto the simplex
S+ = R+∩S and projection onto the set M(ã) of vectors having the same structure
as ãi. Only a few iterations are required for convergence of the POCS algorithm.
Various POCS algorithms exist in the literature, we are interested in the projection
of the abundance vector on the positive orthant of the unit simplex. The simplest
way is the use of euclidean projections but there are other algorithms optimised
to perform it [11], [74]�[76]. Some classical algorithms have been detailed in [12]
where the author proposes a projection method faster than the standard methods
for projection on the `1 ball or the simplex.

For the POCS implementation, which is projection on the set IM(ãi)∩S+(ai), the
implementation of the Michelot algorithm [11] code in C++ was used. Even though
[12] performs better in theory, this was a technical choice because of the availability
of an existing implementation that performed the projections utilising all the cores
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of the CPU using the multiprocessing OpenMPI library in C++.
Convergence towards a global minimum of DL algorithms cannot be proven. In

practice, a good initialisation of A and the presence of pure pixels (as in remote
sensing applications) in each region guarantee a good joint estimation of U and A.
Previous work [2] we have demonstrated the importance of well-de�ning the spatial
constraint on abundance IM(Ã)(A) to ensure an acceptable estimate of abundances
and spectral or temporal signatures.

2.2 Evaluation on synthetic dataset

In this section, we evaluate the unmixing performance of our algorithm on a synthetic
dataset. Dataset I was created to show unmixing of signals/spectrum taking into
account di�erent situations that could occur in real applications such as fMRI or
astronomical data unmixing.

2.2.1 Data description

Unmixing algorithms are often sensitive to the assumption of pure pixels (i.e., each
source or region has an abundance of 1 for at least one pixel of the image). To
challenge this hypothesis, synthetic temporal data were simulated. Seven signals
are mixed in a 120 × 120 pixels image. Ground truth signals and locations for the
di�erent regions are presented in Fig. 2.1.

In Fig. 2.1a, we see a region 6 superimposed on two regions (2 and 5). Two other
regions (3 and 4), partially covering each other, are included. Region 7 and region 1
are comprised of pixels not belonging to any other region. Data were generated for
di�erent SNRs ranging from -20dB to 20dB with a zero-mean Gaussian white noise.

2.2.2 Algorithm details

The ground truth is given by the localisation map in Fig. 2.1a. To initialise A(0),
each region was dilated with a 7 pixels square structuring element (shown in Fig. 2.2)
and then the proportion for each region over each pixel was calculated, respecting
the sum-to-one condition. The dilatation was done to introduce the uncertainty in
the localisation of regions, as the localisation is seldom precise when dealing with
real data. The algorithm used for unmixing is given in 3. 400 steps were adopted
for FISTA, in combination with 50 steps of alternate optimisation. The weighting
parameter in the Tikhonov regularisation was set to 10−4 as no more smoothing
was required. A standard normalisation was applied to the data before processing:
yi = yi−µi

σyi
, where µi is the mean of the temporal signal yi of the ith pixel and σyi

is the standard deviation of the timecourse of the ith pixel.
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Figure 2.1: Localisation map and temporal signatures used to build Dataset I.
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Figure 2.2: Initialisation maps of the abundances of the 6 regions.

2.2.3 Related works

To our knowledge, the optimisation problem eq. ( 2.3) is not solved in the state-of-the-
art. The closest form to it consists in replacing the indicator on the support of matrix
A by a sparsity constraint of type `1. Without the sum-to-one and positivity con-
straints, we would then have a classical problem of online dictionary learning where
coe�cients of the mixing matrix A and dictionary update are optimised alternatively
until convergence to an acceptable solution. In presence of sum-to-one and positivity
constraints, estimation of matrix A must be adapted. The constrained sparse un-
mixing by variable splitting and augmented Lagrangian method (C-SUnSAL) [44] is
a possible candidate algorithm, widely used in the community of hyperspectral imag-
ing, that contains the constraints of sum-to-one and positivity and an `1 constraint
on the abundance map matrix. The optimisation problem then takes the following
form, which is close to ours :

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F +IS+(A) +‖A‖1. (2.13)

In the alternate optimisation scheme, the FISTA estimation of mixing matrix A is re-
placed by C-SUnSAL, while the estimation of U remains the same. For convenience
purpose, let us call this algorithm DL-C-SUnSAL (Dictionary Learning-C-SUnSAL).
As mentioned in the original paper [44], sum-to-one or positivity constraints can be
dropped if necessary. In the following, we provide comparisons with this modi�ed
version of the optimisation problem solved by DL-C-SUnSAL (the code distributed
by the authors of C-SUnSAL, with default parameters was used).
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2.2.4 Results and discussion

We observe that the timecourses and the abundances for the seven regions are well
estimated for di�erent SNRs, even if the abundances are not perfectly initialised.
The mean squared errors (MSE) for the estimation of the timecourses are displayed
in table 2.1, The MSE in estimating the abundances are given in table 2.3. From
table 2.1 and table 2.3 we see that for most of the regions the errors decrease as SNR
increases. Another criteria to evaluate the timecourses is measuring the spectral
angle distances (SAD). This criterion is useful when comparing the signals not having
the same scale.

SAD(UGTr , Ur) = cos−1

∑N
n=1 U

GT
r,n Ur,n√∑N

n=1 U
GT
r,n

2
√∑N

n=1 U
2
r,n

, (2.14)

where UGTr is the ground truth temporal signal for rth region, Ur is the estimated
signal for the rth region, N is the length of the temporal signal. The SADs for
the estimated timecourses given in table 2.2 follow a similar trend to MSE for an
increase in SNR, proving the e�ectiveness of the unmixing method. The estimated
timecourses for each region were normalised by standard deviation before calculating
the SAD and MSE.

We also generated synthetic data where region 6 was completely included in
region 5. In this case, due to noise, it was impossible to correctly estimate the
timecourse of the region included in the other (and therefore its abundance). In
practice, this case should not occur in our targeted applications. If such a case does
occur, it could lead to poor estimation of the timecourses and thus the abundance
maps.

Fig. 2.3 illustrates the convergence of the algorithm for di�erent SNRs. Fig. 2.3
plots ‖Y−UA‖F

‖η‖F , as a function of the number of steps in the alternate minimisation
and η denotes the white Gaussian noise present in the dataset at di�erent SNRs.
In the very �rst steps of the alternate optimisation we see that the curves decrease
sharply and ultimately settle around a particular value when convergence is achieved.
In Fig. 2.3 the -20dB and -10dB curves converge to values less than 1 since some noise
remains in the estimated timecourses. The 0th iteration shows the ratio ‖Y−UA‖F

‖η‖F
calculated with the initial enlarged A and U, estimated with least squares.

The estimated abundance maps for each region have been shown in Fig. 2.4 to
Fig. 2.8 for synthetics datasets with SNR -20dB to 20dB. For cases 10dB and 20dB,
in Fig. 2.7 and Fig. 2.8 we can observe the high �delity of the estimated maps to
the ground truth. For the 0dB SNR case in Fig. 2.6 some noise remains after the
estimation which aggravates in the estimated abundance maps for the -10dB SNR
case Fig. 2.5 and completely dominates the region 6 in Fig. 2.4 for the -20dB SNR
data.

The �rst 500 samples for the estimated timecourses for -20dB and -10dB SNR
data can be seen in Fig. 2.9 and in Fig. 2.10 for 0dB and 10dB SNR data. The
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Method -20dB -10dB 0dB 10dB 20dB
Proposed 9.5e-02 1.0e-02 1.1e-03 1.1e-04 1.1e-05

reg1
DL-C-SUnSAL 3.87e-01 6.91e-02 9.54e-03 1.23e-03 1.83e-04

Proposed 1.3e-01 1.3e-02 1.2e-03 1.2e-04 1.3e-05
reg2

DL-C-SUnSAL 6.65e-01 1.40e-01 1.29e-02 1.85e-03 1.66e-03
Proposed 2.2e-01 2.1e-02 2.4e-03 3.2e-03 4.0e-03

reg3
DL-C-SUnSAL 7.90e-01 1.04e-01 1.25e-02 5.58e-03 4.56e-03

Proposed 2.3e-01 2.2e-02 2.5e-03 3.2e-03 4.0e-03
reg4

DL-C-SUnSAL 7.98e-01 1.06e-01 1.25e-02 4.66e-03 3.81e-03

Proposed 1.3e-01 1.3e-02 1.3e-03 1.3e-04 1.3e-05
reg5

DL-C-SUnSAL 6.50e-01 1.29e-01 1.24e-02 1.81e-03 1.63e-03
Proposed 1.4e+00 3.4e-01 4.2e-02 4.3e-03 6.3e-04

reg6
DL-C-SUnSAL 1.88e+00 1.30e+00 7.98e-02 5.75e-03 3.97e-03

Proposed 9.6e-03 9.6e-04 9.6e-05 9.6e-06 1.0e-06
reg7

DL-C-SUnSAL 1.69e-01 5.03e-02 7.23e-03 9.40 e-04 1.04e-04

Table 2.1: Region wise mean squared errors for U for di�erent SNRs. Best estima-
tions for di�erent cases have been highlighted in bold.

Method -20dB -10dB 0dB 10dB 20dB

reg1
Proposed 1.8e+01 5.8e+00 1.9e+00 5.9e-01 1.9e-01

DL-C-SUnSAL 3.62e+01 1.51e+01 5.60e+00 2.01e+00 7.76e-01

reg2
Proposed 2.0e+01 6.5e+00 2.0e+00 6.4e-01 2.0e-01

DL-C-SUnSAL 4.81e+01 2.16e+01 6.50e+00 2.46e+00 2.34e+00

reg3
Proposed 2.7e+01 8.3e+00 2.8e+00 3.2e+00 3.6e+00

DL-C-SUnSAL 5.28e+01 1.85e+01 6.41e+00 4.28e+00 3.87e+00

reg4
Proposed 2.7e+01 8.6e+00 2.9e+00 3.2e+00 3.6e+00

DL-C-SUnSAL 5.31e+01 1.87e+01 6.40e+00 3.91e+00 3.54e+00

reg5
Proposed 2.0e+01 6.5e+00 2.1e+00 6.5e-01 2.1e-01

DL-C-SUnSAL 4.76e+01 2.07e+01 6.38e+00 2.44e+00 2.32e+00

reg6
Proposed 7.1e+01 3.4e+01 1.2e+01 3.7e+00 1.4e+00

DL-C-SUnSAL 8.66e+01 6.94e+01 1.62e+01 4.35e+00 3.61e+00

reg7
Proposed 5.6e+00 1.8e+00 5.6e-01 1.8e-01 5.7e-02

DL-C-SUnSAL 2.37e+01 1.29e+01 4.87e+00 1.76e+00 5.85e-01

Table 2.2: Region wise spectral angle distances (in degrees) for U for di�erent SNRs.
Best estimations for di�erent cases have been highlighted in bold.

estimations for timecourses for 20dB SNR data perfectly overlapped with the ground
truth timecourses and have not been shown here. We can see that the quality of
timecourse estimation deteriorates as the SNR decreases; much more than other
regions because of the unavailability of pure pixels. The region 7 however has many
pure pixels and the estimation is well even in the -20dB case.
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Figure 2.4: Estimated abundances at the end of 50 alternate optimisation steps for
the -20dB SNR case
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Figure 2.5: Estimated abundances at the end of 50 alternate optimisation steps for
-10dB SNR case
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Figure 2.6: Estimated abundances at the end of 50 alternate optimisation steps for
0dB SNR case
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Figure 2.7: Estimated abundances at the end of 50 alternate optimisation steps have
for 10dB SNR case
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Figure 2.8: Estimated abundances at the end of 50 alternate optimisation steps for
20dB SNR case
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Figure 2.9: First 500 samples of ground truths(in blue) and signals estimated(in red)
for 10dB SNR on the left and 0dB SNR on the right
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Figure 2.10: First 500 samples of ground truths (in blue) and signals estimated (in
red) for -10dB SNR on the left and -20dB SNR on the right
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Method -20dB -10dB 0dB 10dB 20dB

reg1
Proposed 5.8e-04 6.1e-05 4.7e-06 3.2e-07 2.8e-08

DL-C-SUnSAL 4.74e-02 2.05e-02 3.70e-03 5.99e-04 2.62e-04

reg2
Proposed 2.2e-03 2.1e-04 3.8e-05 1.0e-04 1.3e-04

DL-C-SUnSAL 4.84e-02 2.40e-02 4.52e-03 7.79e-04 4.83e-04

reg3
Proposed 3.2e-03 3.4e-04 4.9e-05 5.6e-05 7.0e-05

DL-C-SUnSAL 3.34e-02 1.57e-02 3.38e-03 1.72e-03 1.51e-03

reg4
Proposed 3.4e-03 3.8e-04 5.4e-05 5.9e-05 7.1e-05

DL-C-SUnSAL 3.29e-02 1.54e-02 3.29e-03 1.61e-03 1.40e-03

reg5
Proposed 2.1e-03 2.0e-04 4.6e-05 1.1e-04 1.3e-04

DL-C-SUnSAL 4.83e-02 2.39e-02 4.48e-03 7.67e-04 4.64e-04

reg6
Proposed 9.2e-04 8.9e-05 7.0e-05 2.1e-04 2.6e-04

DL-C-SUnSAL 8.21e-03 2.91e-03 1.06e-03 2.72e-04 1.70e-04

reg7
Proposed 5.4e-03 5.4e-04 6.3e-05 9.4e-05 1.2e-04

DL-C-SUnSAL 2.75e-01 1.06e-01 2.27e-02 2.93e-03 4.68e-04

Table 2.3: Region wise mean squared errors for A for di�erent SNRs. Best estima-
tions for di�erent cases have been highlighted in bold.
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Figure 2.11: One of the 1000 frames for the 10dB case for the cropped regions

2.2.5 Geometric visualisation of convergence

Visually the convergence was evaluated on the cropped image of Fig. 2.2. The regions
2, 6 and 5 were cropped from the original synthetic data cube and one of the 1000
frames (length of the signal) has been represented in Fig. 2.11.

The algorithm proposed was run on the extracted cube with the same parameters
as for the whole cube, i.e., 50 alternate optimisation steps with 400 steps of FISTA.
The initialisation is the same as the abundance maps ground truth. PCA was used for
the reduction of dimension of timecourses from 1000 to 2 to visualise the convergence
in a 2D plane. In Fig. 2.13 we can see the representation of the initial timecourses
(red), ground truth timecourses (green), and the estimations after each alternated
step (in yellow) on a 2D plane. The data points, totalling 180 in number, are given
in black and can be analysed as 4 cluster clouds A, B, C, and D.
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Figure 2.12: The amount of superposition for the three di�erent regions can be
understood with the help of the colour bar
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Figure 2.13: The initialisations can been seen in red, yellow data points represent
the estimation after each alternated step. Green dot represents the ground truth.
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In Fig. 2.13 the cloud C corresponds to the data points having timecourses similar
to region 2, the region D corresponds to the data points having timecourses similar
to those of region 5. The regions A and B with 100 points together correspond to
the small region; we can observe that there are 50 points in the A cloud and an equal
amount in B representing the data points from the two halves of the small region
overlapping the larger regions. In Fig. 2.13 we can see the estimated members in
yellow. The yellow dots represent the trajectories followed by the estimated members
after each step of alternated optimisation. We see that they approach the ground
truths represented by green dots. If the initialisation is perfect, then the least squares
solution for the time courses is su�cient. This can be seen in Fig. 2.13 where the
abundances of each of the region was already known.

A case for initialisation with dilated regions was done so that the check the
convergence in real case scenarios where the abundance maps are not known initially.
For this case the initialisation of A has been shown in Fig. 2.12. In Fig. 2.14 it can
be observed that the initialisation for timecourses (in red) is further away from the
ground truth (in green) than in the previous case Fig. 2.13; but after the alternate
steps of our algorithm, it approaches the ground truth in the last iterations. The
trajectories of the estimated timecourses (formed by yellow points) are comparatively
longer than in the case when the abundances were precise.
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Figure 2.14: In this example the initialisations are further away from the ground
truths because of less precise initialisation for the abundance map
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2.3 Evaluation on a real dataset

The principal application in this Ph.D. is the unmixing of resting-state fMRI datasets
in order to detect changes in cerebral activity induced by neurodegenerative diseases
(explained in the next chapter). In order to evaluate the performance of the proposed
algorithm on a real dataset related to the principal application of this Ph.D., the
method was implemented on human block-based fMRI data (where the stimulus
exists as blocks). The data treated is an example from SPM [29], where a person
is made to listen bi-syllabic words binaurally. Due to the stimulus, the involved
brain regions should have a temporal activity similar to the experimental paradigm.
This data allowed us to compare regions showing correlated timecourses with the
paradigm to ones obtained previously in the literature.

Various preprocessing steps given in chapter 30 of [29] are performed on fMRI
data, with the only major di�erence being in the registration step. In the SPM exam-
ple, this step involves registration of the fMRI data to MNI (Montreal Neurological
Institute) space (a standard human brain volume in the literature). In our case the
MNI volume [77] along with a MMP (multi-modal parcellation) segmentation map
by [78] is registered to the fMRI data. The registration of the segmentation map to
the fMRI data provides the locations of the regions on the fMRI data; this can be
observed in Fig. 2.15. The anatomical regions registered to the fMRI data are used to
initialise the abundance matrix. Direct application of least squares to estimate tem-
poral signals will be less accurate because the registration of the anatomical regions
to the fMRI involves overlaps of regions; thus, an unmixing algorithm is required.
The proposed alternate optimisation algorithm that re�nes the spatial maps, and in
turn, the temporal signals iteratively, is run on the data and provides the estimated
temporal signals Fig. 2.17 for each of the anatomic regions and the estimated spatial
maps.

Figure 2.15: The MNI volume in grayscale with the MMP (multi-modal parcellation)
segmentation map for humans superposed on the former.

We wish to verify that the signals estimated by our proposed method are linked
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to the audio tasks as well as the regions highlighted in the SPM results, so we
conduct further analysis. The block signal related to the experiment was convolved
with the haemodynamic response function (h.r.f.) of the brain and can be observed
as the paradigm signal in Fig. 2.17. The correlation coe�cients of this paradigm
signal to the estimated signals from di�erent parts of the brain are calculated to
�nd the regions showing similar activities. It should be noted that the labels for
the left and the right hemispheres are di�erent for the atlas we used. We observed
that the estimated signals for three regions in the left brain and �ve regions in the
right brain had higher correlation coe�cients with the paradigm. These regions can
be observed in Fig. 2.16 and the corresponding signals estimated by our algorithm
are given in Fig. 2.17. The estimated signals for these eight regions correlated to
the paradigm have a structure similar to the blocks in the paradigm signal. These
regions correspond to the auditory cortex and can be considered to react to sounds
as found in chapter 30 of SPM book [29]. In SPM analysis, each voxel of fMRI data
is decomposed following the general linear model (GLM) de�ned as:

y = βX + ε, (2.15)

where β are the regression coe�cients, the design matrix X is known and contains
the regressors (stimulus convolved with h.r.f. as the �rst column and the o�set in
the second column, for example, as the regression signals) and ε is the model noise.
In SPM [29], the values for β=[β1, β2] are calculated in the least squares sense. The
coe�cient β1 corresponds to the paradigm, and β2 corresponds to the regression
coe�cient for the o�set.

In [29] the listening > rest statistical t-test is performed considering all the voxels
of the brain. The parameter for the statistics is the contrast coe�cient; following the
case of SPM, these can be written as cTβ. These contrast coe�cients are supposed
to have positive values for voxels a�ected by stimulus and this has been explained in
[29]; a t-test is performed on the values of these coe�cients cTB for all voxels. The
estimated spatial maps after thresholding the t-test are shown in Fig. 2.18. It can be
observed that the spatial maps estimated by the thresholding of the t-test superpose
with the regions for which the signals are estimated by the proposed method.
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Figure 2.16: Three regions in the left brain and �ve in the right brain for the subject
were identi�ed to be linked with the audio stimulus. The spatial maps for the
di�erent regions have been shown in the �gure. The colorbar varies from 0 to 1 for
the abundance values in the spatial map.
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Figure 2.17: The paradigm and the estimated signals for di�erent anatomical regions
showing correlation with the paradigm.

Figure 2.18: Reproduction of �gure 30.19 from SPM book [29]. The �gure shows
the estimated maps by SPM with the statistical test listening > rest. Colorbar
represents the t-test value of voxels above the threshold.
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2.4 Discussion and conclusion

In this chapter, a method to unmix data consisting of an image and a temporal or
spectral dimension is explained with the performances evaluated on synthetic data.
From an algorithmic point of view, the strong points of the proposed approach are
the small number of parameters to be set and its genericity. The algorithm has a
single intrinsic parameter µσ used in the Tikhonov regularisation, it is to be set to
a very low arbitrary value, as explained in section 2.1.2.

The convergence of the algorithm is empiric in nature and depends on a good
initialisation. The algorithm is a�ected by the absence of pure pixels, which can be
seen in the synthetic example given in section 2.2.

The algorithm is also tested on real block-based human fMRI data and shows
promising results for this application. This usage has been exploited in the next
chapter for resting-state mice fMRI data by following a similar but more elaborate
pipeline.

Concerning the execution time of the algorithm, the main factors are the stopping
criteria of the di�erent nested iterative algorithms and the size of the images to be
unmixed. Furthermore, the calculation time depends much more on the spatial
dimension of the image than on the temporal/spectral dimension as the complexity
lies in the estimation of A, and to a lesser extent, on the number of regions.

It should be noted that the method does not take into consideration the mor-
phology, the local structure or the texture of the sources, but only their approximate
locations. The spatial constraints are classically expressed as an `1-penalty to pro-
mote sparsity of the mixture in each voxel. Problems with such constraints are
generally solved by dictionary learning algorithms. The originality of the proposed
approach lies in the replacement of this penalty by a constraint on localisation of
the di�erent regions of interests.
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Application to rs-fMRI
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The study of cerebral anatomical and functional connectivity is one of the sig-
ni�cant issues in neuroscience, intending to gain a better understanding of the func-
tioning of the brain. The spread of neurodegenerative diseases like Alzheimer's
disease and depression is di�cult to follow over time. One way is to evaluate the

41
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disease-induced changes in cerebral connectivity by comparing the functional activ-
ity of healthy individuals with the functional activity of a patient. The detection
of connectivity changes in the individual human brain is made di�cult by the lack
of homogeneity of the population, with high inter-subject variability. A standard
way to cope with this issue is to consider controlled animal models with induced
disorders, for instance, here, mice belonging to the same genetic strain. Neurogener-
ative disorders are supposed to change the connectivity between the brain regions at
rest in humans. These changes are observed in mice also. Although, the structural
form of the mouse brain is signi�cantly di�erent from the human brain, the mech-
anism by which Alzheimer's disease a�ects a mouse brain is similar to that in the
human brain. Homogeneity of data (same mouse model) and the short life cycle of
mice is thus advantageous to learn about the spread of disease and changes in func-
tional connectivity in mice brains. In our work, we have more speci�cally considered
the single-subject analysis of resting-state fMRI (rs-fMRI) data in mouse models of
Alzheimer's disease and depression. The advantage of single-subject evaluation is
that it provides insights on the individual changes as the subject serves as its control.

3.1 Introduction to fMRI

To understand brain activity, non-invasive in vivo techniques are necessary. One such
technique is functional Magnetic Resonance Imaging (fMRI). FMRI allows the obser-
vation of changes in cerebral activity by analysing the blood-oxygen-level-dependent
(BOLD) signal [79]. BOLD signal measures the local changes in the quantity of
oxygen carried by the haemoglobin. These changes are due to neural activity. As
the neuronal activity requires consummation of a much larger oxygen share from the
blood, to provide enough oxygen for the neuronal �ring, the oxygenated blood �ow
locally increases at the particular area, which leads to local changes in the magnetic
�eld. The magnetic �eld changes because of the di�erence in magnetic susceptibility
between the oxygenated and the deoxygenated blood. Thus looking at BOLD signals
is an indirect measure of the brain activity as neural processes lead to changes in
the local magnetic susceptibility of the blood, which consequently is re�ected in the
images of the brain.

FMRI data are 4 dimensional images comprising the brain volume, with each
voxel having a BOLD signal (timecourse) related to it. Two types of fMRI acquisi-
tions exist: task-based fMRI and rs-fMRI. In task-based fMRI, the subject is asked
to perform an activity, e.g., looking at di�erent pictures, �nger tapping, etc., whereas
in a resting-state fMRI, the subject has to stay still. Task-based fMRI is di�cult on
animals and is not possible on mice, as they are di�cult to train; and in rs-fMRI, the
mice are lightly sedated. In recent years, rs-fMRI has become the prevailing method
to study functional brain connectivity at rest [80]. At rest, only spontaneous activity
of the brain is measured, and a set of anatomical regions with the same �uctuations
are considered part of a common resting-state network.
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A certain number of resting-state networks have been examined in the mouse
brain [81] and the human brain [80], [82]. Co-activation patterns are studied to
determine the di�erences between healthy and pathological subjects using metrics
such as correlation maps. Detecting precisely the di�erent networks (localisation in
the brain and temporal activity) is crucial for understanding a neurological disorder.
The spatial resolution of the rs-fMRI is not high; thus, there is a strong probability
that the functional activity of each brain region is not independently observed. The
low-resolution will lead to a strong mix of functional activity on the neighbouring
voxels between di�erent functional regions. As there will be a mixture of functional
activities from di�erent regions on the same voxel, we need an unmixing model.
There exist unmixing models for group studies in humans and mice, but they are
not well adapted for a single-subject studies. The unmixing method proposed in
chapter 2 can be used for single-subject as will be seen in the following.

3.2 Data description and material

For data acquisition of rs-fMRI and structural MRI of mice brains, a 7 Tesla scanner
dedicated for small animals was installed at the IRIS (Imagerie, Robotique et Inno-
vation en Santé) [83] platform of ICube. On this platform, a large number of data
have been acquired during the past years. The data consist of 3D+t rs-fMRI and 3D
anatomical imaged registered (acquired just after the fMRI scans) to the rs-fMRI
imaged. The mice were scanned at �ve months, nine months, and thirteen months.
The anatomical or the structural images have a dimension of 256 × 256 × 34 and
0.08299 × 0.07812 × 0.4 mm resolution. Functional images have a spatio-temporal
dimension of 147× 87× 27× 500 with 0.1445× 0.2299× 0.5 mm spatial resolution
and 2s for the temporal resolution. A slice from each is shown in Fig. 3.1. The struc-
tural MRI, having a better spatial resolution than fMRI, was used for the purpose
of registration, explained in 3.4.1. The data were recorded and provided by Laetitia
Diegorgis from IMIS (Imagerie Multimodale Intégrative en Santé) team, ICube for
the study of neurodegenerative disorders (Alzheimer's) on a Thy-Tau22 transgenic
mouse model of tauopathy. A setup with a head mount for the mice was installed
to prevent head motion. Not avoiding head movements can lead to misinterpreted
results or false activations at di�erent sites in the brain [84].

3.3 Assumptions and proposed strategy for detection of
cerebral networks

Independent component analysis (ICA) and dictionary learning (DL) methods are
widely used to analyse resting-state functional Magnetic Resonance Imaging (rs-
fMRI) in multi-subject studies. These methods aim at decomposing the multi-
subject data into common spatial abundance maps and their related temporal sig-
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(a) Structural (b) rs-fMRI

Figure 3.1: One of the axial plane images of the mice brain from structural and
rs-fMRI image.

natures. In group studies, the interest is to �nd common resting-state functional
networks; our goal here is di�erent: detect changes in the same individual at di�er-
ent time points.

Detecting common networks through group analysis is clearly easier than single-
subject analysis because of the redundancy of information present in group data.
The redundant information present in the group studies enables to avoid the problem
of low SNR. In our case, where few acquisitions or time data points are available,
additionally, we have the problem of low Signal to Noise ratio (SNR). The poor
resolution of rs-fMRI data is an additional source of di�culty, yielding noisy and
blurry spatial maps. In the single-subject case, the rs-fMRI data of a unique subject
must be decomposed according to model ( 1.1). The methods adopted for group
studies often fail in this case because the problem is too ill-posed, requiring the use
of additional prior information and the design of novel regularising constraints. The
additional prior information is obtained by using the approximate locations of the
regions using a highly resolved atlas with a detailed anatomical map in our case for
fMRI data. The model using this information is presented in eq. ( 2.3). The Allen
brain atlas volume is given in Fig. 3.2 and the regions of interests or the labels are
given in Fig. 3.3.

The approach to detect the cerebral networks was thus di�erent from the ap-
proach in the literature, which is mainly dedicated to detecting networks in groups
rather than individuals. The classical estimation methods for cerebral networks
based on ICA do not perform well for the single-subject cases because of the low
SNR; therefore, we approach the problem di�erently. The proposed strategy is to
unmix data not at the cerebral network scale but the �nest resolution anatomical
scale at our disposition. For mice, with the help of the exceptionally detailed seg-
mentation of the brain, the hypothesis can be made that the functional networks
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Figure 3.2: Atlas volume with very well de�ned anatomical regions

Figure 3.3: 3D representation of the segmentation map associated with the Allen
Mouse Brain Atlas [8]. Each colour represents a label associated with an anatomical
region.

at rest are in fact, a set of small anatomical regions. The functional networks will
be formed a posteriori by studying the correlation coe�cients between the di�erent
timecourses estimated for these anatomical regions and then grouping the anatomical
regions presenting similarity in correlation coe�cients.

3.4 Preprocessing pipeline for the mice fMRI data: tools
and contributions

In this section, preprocessing carried out on the mice data is detailed. It is explained
in two parts: spatial preprocessing and temporal preprocessing. Spatial preprocess-
ing deals with the physical structures of the brain; this part contains details on
masking, registration, and realigning of the mice brains. Temporal preprocessing in-
volves cleaning of the timecourses belonging to the brain before the unmixing method
proposed in the previous chapter 2 can be applied to the data. The structure of the
preprocessing pipelines is globally the same and governed by the state-of-the-art; the
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improvements made in the pipeline to adapt it to the data at disposition are detailed
in this section.

3.4.1 Spatial preprocessing

Realign

This is the only part in spatial preprocessing which could modify the fMRI signals.
Physiological noise due to subtle movements exists in our data. This can be caused
by inadequate sedation, respiration, etc. Major movements are absent as the mice
heads were �xed in a headgear during the acquisition. The images from the same
examination were realigned using the classical SPM (Statistical Parameter Mapping)
software [29]. The shifts induced by the realignment step are signi�cantly less than
the resolution of one voxel as the mice are anaesthetised.

Masking

In Fig. 3.1 the data is presented in its raw form, i.e., it contains other unnecessary
parts acquired at the time of acquisition such as the skull, ears, eyes, etc., which
should be stripped. Thus the anatomic or the structural images and the fMRI
images acquired need to be masked. The masking of these two images is done by
following two independent and di�erent procedures. Unlike for human fMRI brains,
there is no tool like the Brain Extraction Tool (BET) [85], [86] that exists for mice
fMRI brains; thus, we decided to use the information from the Allen brain atlas
to mask the structural image by registering the atlas to the structural image. The
advantage of using the atlas image is that it contains just the brain without the parts
surrounding it. It should be noted that the classical registration operations such as
FLIRT and ANTs fail when the target image has a signi�cantly lower resolution than
the image to be registered. Even though the registration of the atlas to the fMRI
data does not work well because of the signi�cant di�erence in the resolution of the
two images, it works well while registering the atlas to anatomic images. This is
because of a smaller di�erence in the spatial resolution between the atlas and the
anatomic image. The masking procedure can be followed visually in Fig. 3.4. In
Fig. 3.4, in row (a), we can see the anatomical images for three di�erent subjects.
We can clearly see that in addition to the brain, there are some structures, the
skull, and other unwanted regions present in the images. The masking of anatomical
images (and fMRI) is impossible directly because of the absence of BET. To this
end, to mask the anatomical images, we propose to register the Allen brain atlas
to the structural brain image using the FLIRT toolbox [87]. This is advantageous
because the Allen brain volume is already masked; thus, it allows information about
the form of the brain and aids in re�ning the contours of the mask to be calculated.
The registration works well in this case. One more advantage of using FLIRT is that
it automatically realigns the brain images before performing the a�ne registration.
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Row (b) of Fig. 3.4 shows the FLIRT registration from the atlas to the structural
images. An a�ne registration is not enough for registration as can be seen in the
lower regions for the three subjects. To re�ne this, we use a di�eomorphic registration
using the ANTs toolbox [88] and the results are shown in Fig. 3.4 (c). We can observe
that even the regions in the lower part are well registered to the anatomical image,
which is not possible using just an a�ne registration. We use this registered image
to mask the anatomical image. As the image contains just the atlas on the uniform
black background, masking using the nilearn.masking python package is easy. The
result is shown in row Fig. 3.4 (d). The masks are eventually re�ned by the binary
closing morphological operation with a structural element of 3× 3× 3 voxels.

Let us notice that the automatic registration of the atlas to structural images
failed in cases where there was some high-intensity signal in close proximity to the
skull due to gel. The gel used is a solution of 2 percent agar gel in NaCl solution. It
is used to �ll the gap between the top of the mouse head and the probe. This avoids
the artefacts linked to the magnetic susceptibility di�erence between the air-tissue
interface; this can introduce distortions of the signals due to the non-homogeneity
of the local �elds in the rs-fMRI.

In the case of calculating masks for fMRI images, the atlas was not used for
masking because of a signi�cant di�erence in spatial resolution of the fMRI and the
atlas image; and as explained earlier, FLIRT followed ANTs registration is imprecise
when registering the atlas to the fMRI. Usually, in the literature, it is the mean rs-
fMRI image that is used to mask the images from the same subject. The problem of
masking is similar to the case of masking the anatomical image; here, calculating the
mean of the realigned fMRI volumes helps in increasing the SNR for the masking.
The rs-fMRI image, in our case, was masked with the help of the masking function
of nilearn.masking package in python [89] on the energy image of the fMRI instead
of the mean image. The thresholding of the energy images heuristically provided
better control over the calculation of the masks, and the same parameters were �xed
for the whole data without any manual intervention. After calculating the masks
using the energy images, holes were �lled using morphological operators. The energy
of the fMRI signal for each voxel can be written as :

e
(i)
fMRI =

500∑
n=1

|x(i)
fMRI(n)|2, (3.1)

where xfMRI is the raw fMRI image, n is the nth timecourse sample and i is the ith

voxel of the brain.
In Fig. 3.5 we can visualise step by step how the brain was extracted, and a mask

was made. In the �rst row of Fig. 3.5 the original fMRI data can be seen. In row
(b) of Fig. 3.5 the realigned fMRI is observable. To �nd the mask, the energy of the
fMRI signals was used, resulting in images given in Fig. 3.5 (c). The energy image
is shown in row (d). The mask calculated on the Energy fMRI has been shown in
Fig. 3.5 (e), and Fig. 3.5 row(f) shows the masked energy fMRI.
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Figure 3.4: Preprocessing: masking of the anatomical image. (a) raw structural
images for three di�erent mice (b) atlas image registered to the structural image
using FLIRT (c) results after ANTs di�eomorphic registration (d) masked structural
image using the images provided in (c)

The masking method for fMRI was done on some human brains also and showed
similar results to BET. Other notable methods for mouse brain masking are 3-D
pulse-coupled neural networks (PCNN) [90] and Rapid Automatic Tissue Segmen-
tation (RATS) [91], [92].



3.4. PREPROCESSING PIPELINE: TOOLS AND CONTRIBUTIONS 49

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.5: Masking of the fMRI data. In each row, we can see a coronal slice
for three di�erent mice for (a) raw rs-fMRI, (b) realigned rs-fMRI (c) mean rs-
fMRI (d) energy image (e) fMRI mask (f) masked energy-fMRI that will be used for
registration of the atlas to the rs-fMRI

Registration

The classical registration operations such as FLIRT and ANTs fail when the target
image has a signi�cantly lower resolution than the image to be registered. The most
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straightforward strategy is to increase the spatial resolution of the target image (in
this case, rs-fMRI) arti�cially. The spatial resolution of rs-fMRI data is augmented
by subdividing each original voxel into 3 × 6 × 2 high-resolution voxels to reach
the same order of resolution as the Allen brain atlas. In the same way, the spatial
resolution of the energy rs-fMRI was increased. The registration of the anatomical
image to the augmented energy rs-fMRI leads to an increase in its own resolution. In
Fig. 3.7 the steps for registering the structural image to the augmented fMRI image
are shown.

In Fig. 3.7 (a), we can see the masked structural images from three di�erent mice.
In Fig. 3.7 (b) the result of a�ne registration using FLIRT is shown. In Fig. 3.7 (c),
the ANTs registration of the FLIRT image to the augmented fMRI can be visualised.
In Fig. 3.7 (d) the augmented fMRI energy image (obtained by dividing the voxels
into multiple parts without interpolation) is shown.

In Fig. 3.8, row (c) shows the structural image already registered to the fMRI
image. The Allen brain atlas is registered to this image. In Fig. 3.8 (a), we can
see the atlas after an a�ne registration to the structural image, which was already
registered to the fMRI image. Fig. 3.8 (b) is the di�eomorphic registration of the
a�ne-transformed atlas to the augmented structural image in the Fig. 3.8(c). In
Fig. 3.8(d) the augmented fMRI energy image can be observed.

A slice from one of the axial planes of the atlas volume, the structural image,
and the augmented-fMRI is shown in Fig. 3.6. The advantage of using an augmented
fMRI image for registration is shown in section 3.5.

(a) atlas Volume (b) Structural (c) Augmented rs-fMRI

Figure 3.6: Axial images of mice brains from three di�erent modalities that were used
in the registration process. Atlas volume is having the highest resolution, followed
by the structural and then the augmented fMRI image. The augmented fMRI image
was formed by dividing the fMRI image voxels into multiple high-resolution voxels
without using any interpolation

Due to the unavailability of ground truth for real data, it is hard to measure
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Figure 3.7: (a) masked structural images for three mice (b) results of FLIRT regis-
tration from structural to energy fMRI images (c) ANTs results (d) masked energy
fMRI images

the e�ects of each pre-preprocessing step. To illustrate the in�uence of the di�er-
ent spatial preprocessing steps on the correlation matrices, we propose to compare
the correlation matrices formed by the approximate estimation of the signals from
the di�erent regions before and after each step. Since the regions are projected
on the rs-fMRI data, the mean timecourse for each region is calculated by calcu-
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Figure 3.8: (a) Flirt registration of 112.the Allen brain atlas to the masked structural
images (b) results of ANTs registration to the structural images (c) structural images
to which the atlas is registered (d) energy fMRI images

lating the weighted means (proportions of the regions present on a voxel in the
augmented fMRI) of the timecourses belonging to the voxels of a particular region.
These timecourses can be used to evaluate the connectivity between the brain re-
gions by calculating the Pearson correlation coe�cients between di�erent regions.
The correlation matrix obtained by calculating the Pearson correlation for the mean
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timecourses for the regions projected on realigned data can be seen in Fig. 3.9. With
the atlas registered to the original data without realigning the brains, the correlation
matrix is given in Fig. 3.10. Realignment was done to compensate for minor physi-
ological movements which occur during the acquisition. It can be observed that the
correlation matrix without the realignment step (Fig. 3.10) was not signi�cantly dif-
ferent from the correlation matrix formed after realigning (Fig. 3.9) due the absence
of signi�cant movements.
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Figure 3.9: Correlation matrix (with 613 regions from the atlas projected on the
fMRI images) after the realign step
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Figure 3.10: Correlation matrix (with 613 regions from the atlas projected on the
fMRI images) for raw data
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3.4.2 Temporal preprocessing

Slice timing

The use of slice timing in rs-fMRI is an open issue as neurobiologists di�er in their
opinion. The data were acquired with a repetition time (TR) of 2 seconds with
an interleaved acquisition in the axial directions, i.e., in the z-direction, the two
neighbouring voxels belonging to di�erent layers were not acquired exactly at the
same time. In addition to the temporal lag between the acquisition, if the mouse
moves in the acquisition direction, the same layer will be acquired twice in the two
successive layers. In this case, a slice timing would not be favourable. We performed
slice timing by considering the fact that the mice didn't move much because of
the �xed head mount during the acquisition and would not lead to signals being
interpolated in an uncertain manner.

Slice timing is suggested to be performed before the realigning of the volumes in
the case of limited head motion [93]. The correlation matrix after the slice-timing
step has been shown in Fig. 3.11. We can observe that this step doesn't have a major
in�uence on the correlation matrices.
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Figure 3.11: Correlation matrix for data after slice timing

Confounding signals

Ventricles were regressed by taking the mean of the ventricle signals in the brain and
then regressing this signal. Physiological signals (cardiac and respiratory) are not
available for the processed data set, so no regression of such signals was performed.
The fMRI acquisition is perturbed by the unstable gradients in the few starting
samples. So, we remove the �rst ten samples of the timecourse. The signals were
�ltered with a bandpass �lter to contain frequencies solely between 0.01 to 0.1 Hz.
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In Fig. 3.12 we can see the correlation matrix after the regression of the confounding
signals. This time the resultant correlation matrix is signi�cantly di�erent from
those in the previous steps. Predominantly, the changes are due to the regression of
ventricles signals. The di�erent regions of the brain contain �uid having a similar
magnetic response to rs-fMRI as the �uid present in the ventricles.
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Figure 3.12: Correlation matrix for data after mean ventricles signal regression

Some of the tools were provided to the platform IRIS [83] and hospital and were
used for an internal project at the laboratory with the purpose of creating quasi-real
synthetic data to validate unmixing methods such as the one developed during this
study.

3.5 Unmixing of the semi-real dataset

3.5.1 Validation dataset

For validating the contribution of the high-resolution (HR) segmentation map in
unmixing the single-subject fMRI data, a set of synthetic temporal signatures are
introduced in seven small regions arbitrarily chosen in the prefrontal cortex. A
�rst synthetic signal is obtained by averaging the signals of the regions ACAd1 and
ACAd5, which were already highly correlated in the real data. This signal is then
modi�ed to create signals with arbitrary high correlation or anti-correlation for the
regions ACAd1, ACAd5, ACAd6a, ACAv1, ACAv5, ORBl1, and PL1 (see blue lines
in plots of �gure Fig. 3.18). These correlations don't have a physical signi�cance; they
are used as ground truth for the evaluation of the proposed algorithm performances.
Their correlations are presented in table 3.1.



56 CHAPTER 3. APPLICATION TO RS-FMRI

Figure 3.13: Localisation of the prefrontal cortex (in cyan) in the mouse brain where
the quasi-real signals were added. The image is a screenshot from the Brain Explorer
tool [94] of Allen Institute for Brain Science.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1
ACAd1 1.00 0.84 0.92 0.67 0.69 -0.45 -0.59
ACAd5 0.84 1.00 0.92 0.67 0.69 -0.47 -0.60
ACAd6a 0.92 0.92 1.00 0.66 0.67 -0.46 -0.58
ACAv1 0.67 0.67 0.66 1.00 0.88 -0.59 -0.82
ACAv5 0.69 0.69 0.67 0.88 1.00 -0.60 -0.82

PL1 -0.45 -0.47 -0.46 -0.59 -0.60 1.00 0.74
ORBl1 -0.59 -0.60 -0.58 -0.82 -0.82 0.74 1.00

Table 3.1: Correlation values between the seven synthetic temporal signatures intro-
duced in the real data set.

Synthetic signals are introduced in the standardised arti�cially augmented fMRI
data, which are then reduced to the initial low-resolution. These synthetic signals
are thus mixed with the real signals in the voxels containing a portion of the seven
selected regions. This has been visually explained in Fig. 3.14 for a case with two
regions r1 and r2 in high-resolution fMRI data where the signals are added. The
thick black lines correspond to the grid of low-resolution pixels, and the grey lines
correspond to high-resolution voxels.

The classical fMRI preprocessing pipeline of slice timing and co-registration is
applied on the rs-fMRI dataset. Also, the confounding signals are regressed before
analysing the data. The next step consists of registering the spatially well-resolved
Allen brain atlas template to the arti�cially augmented anatomical image (which is
already perfectly aligned with the rs-fMRI data). The registration of the Allen brain
atlas mouse template to the anatomical images provides the deformation �eld that
is applied to the HR segmentation map to transport the di�erent labelled regions on
the augmented rs-fMRI data. The spatial resolution of rs-fMRI data is augmented by
subdividing each original voxel into 3×6×2 high-resolution voxels. The registration
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r1

r2

Real data

Artifically augmented data with added signals

Synthetic data having same resolution as Real data

Figure 3.14: The semi-real data was created by augmenting the resolution and then
adding signals at certain sub-voxels. Once in the original resolution, the synthetic
signals get mixed with the original signals. r1 and r2 are the regions where the
signals were added. The red timecourse is the synthetic signal added to the r1 and
the blue timecourse is added to the region r2.

of the anatomical image to the augmented rs-fMRI leads to an increase in its own
resolution.

Synthetic signals are introduced in the standardised arti�cially augmented fMRI
data, which are then reduced to the initial low-resolution. These synthetic signals
are thus mixed with the real signals in the voxels containing a portion of the seven
selected regions. Since the atlas has a much higher spatial resolution than the fMRI
or structural MRI data (up to a factor of 20 in one of the dimensions), the temporal
signatures of the di�erent anatomical regions are highly mixed within each low-
resolution fMRI voxel. Let us note that the pure pixel assumption is not veri�ed in
the regions where the signals were added. The minimum and the maximum number
of overlapping regions on the voxels of each region is given in table 3.2.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1
Min 4 2 4 4 6 4 2
Max 9 12 18 12 17 10 10

Table 3.2: Minimum and maximum number of regions overlapping on the voxels
where signals were added.
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3.5.2 Algorithm details

Finally, dictionary learning is performed at the (low) resolution of the initial fMRI
data Y ∈ RN×P , where N = 490 temporal samples and P = 21024 voxels, after
extracting the brain. The initial abundance matrix A(0) ∈ RR×P is constructed as
follows. Let's say that each voxel i ∈ {1,. . . , P} was subdivided into J high-resolution
voxels during the arti�cial augmentation step.

For each voxel i of Y and all regions r ∈ {1, . . . , R}, the element (A(0))r,i will
contain the proportion of high-resolution voxels in voxel i, occupied by region r. This
can be understood in �gure Fig. 3.15. The black margins in the �gure belong to the
mesh for low-resolution voxels, and the green mesh shows the demarcation between
the high-resolution voxels. The hypothesis made for the initialisation is that the
functional contribution of a region in a timecourse belonging to a low-resolution voxel
is equal to the proportion of the low-resolution voxel spatially occupied by the region
after the registration of the atlas. This hypothesis has no biological foundation, but
allows to obtain a better initialisation of the abundance matrix based on the only
criteria at our disposal (spatial information). This has been shown to be a far better
initialisation than a random initialisation for the abundance matrix.

If region r is not transported to the low-resolution voxel i then (A(0))r,i = 0.
Matrix Ã which supports the spatial constraint IM(Ã)(A) in eq. ( 2.3) is de�ned as:

(Ã)r,i = 1 when (A(0))r,i > 0 and 0 elsewhere. This has been explained visually in
Fig. 3.16.
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Figure 3.15: Initialisation of A(0) has been shown graphically. In the left-most image,
two di�erent regions (red and blue) are projected on the low-resolution fMRI. The
black mesh in the �rst image is for the low-resolution voxels and the green mesh
is for the high-resolution voxels. As two-thirds of the top-left low-resolution pixel
is occupied by the blue region, A(0)

1 is equal to 2
3 . One-third of the same voxel is

occupied by the red region so A(0)
2 is equal to 1

3 . In the right-most image the matrix
form for the image is shown.
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Figure 3.16: We observe that (Ã)1,i = 1 where (A(0))1,i > 0 and (Ã)2,i = 1 where
(A(0))2,i > 0.

3.5.3 Results and discussion

The proposed DL method is applied to the semi-synthetic validation data set. Em-
pirically, the algorithm converges to an acceptable solution for A and U after 500
iterations, see Fig. 3.17, corresponding to a gain on the optimization κl < 10−3 (eq.
( 4.10)). For the estimation of A, the FISTA algorithm requires a stopping criterion
or a maximum number of iterations. In our implementation, FISTA is stopped when
‖a(l−1)

i − a
(l)
i ‖2 < 10−8 or l > 100.

Fig. 3.18 shows the estimated timecourses in dashed red against the ground truth
signals in blue. The mean squared error (MSE) of the estimated timecourses are
given on the plots. Despite the strong mixing in the voxels of the seven regions, our
algorithm provides a very good estimate of the synthetic timecourses introduced in
the data. In neurosciences applications, these timecourses are then used to build
functional brain networks.

To highlight the crucial contribution of a well-registered high-resolution segmen-
tation map, we have applied the standard ANTS registration algorithm to the val-
idation dataset without handling the augmentation of resolution. The Allen brain
atlas template is thus directly registered on the low-resolution anatomical image us-
ing ANTS (initialisation of A(0) is straightforward in this case). Figure 3.19b shows
the correlation matrix obtained in this case, after 500 iterations. The inaccurate
initial projection of the di�erent anatomical structures on the low-resolution fMRI
data yields a poor initialisation A(0) for the abundance matrix. This results in a
correlation matrix in �gure 3.19b where the estimated correlations are far away from
the ground truth.



60 CHAPTER 3. APPLICATION TO RS-FMRI

0 100 200 300 400 500

1,540

1,545

1,550

1,555

1,560

Alternate Steps

‖Y
−

U
A
‖ F

Figure 3.17: Rs-fMRI data. The �gure shows that ‖Y−UA‖F converges; as is seen
by the �attening of the curve in the last iterations.

3.5.4 Precision in the estimation of A

Validation of the estimation of A on such an example is di�cult, considering that
no ground truth is available. Recently functional connectivity has been proven to
be non-stationary [95], consequently inside the same voxel, the contribution of the
di�erent regions can change with time (i.e. the abundances). These changes would
contribute to non-stationary changes in the brain signals. These other signals mix
with the stationary signals added, so stationarity does not exist in the quasi-real
dataset. Even if we know that the connectivity is non-stationary, we can assume
that these non-stationarities are present in a uniform manner at the start and at
the end of the acquisition. So, to validate the convergence, we divided the time-
course matrix into two parts with an overlap of 5 samples (having almost half of the
timecourse) and ran our method of alternate optimisation on each part individually
and then with the whole timecourse matrix. It is possible that by performing the
unmixing over two time intervals of the same dataset, the estimated abundances are
not identical for the same given region in the same voxel. We can only assess the
consistency of the estimate on the regions where a synthetic signal has been intro-
duced because these signals and the proportions are stationary. Then, the mean
square di�erences/deviations (MSD) between the abundance vectors for each case
for the regions ACAd1, ACAd5, ACAd6a, ACAv1, ACAv5, ORBl1, and PL1 were
calculated. Abundances were also calculated for two randomly chosen regions RR1
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Figure 3.18: The plot shows samples corresponding to the �rst 500 seconds of the
synthetic signals (in blue) and their corresponding estimated timecourses using HR
altas information (in dashed red) and without using HR atlas information (in green).
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(a) Correlation matrix from signal estimated
guided by HR segmentation map
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(b) Correlation matrix obtained without HR
registration

Figure 3.19: Correlations in the prefrontal cortex. The lower triangular matrix
contains estimated correlation and the upper triangular matrix contains the true
ones for the seven synthetic signatures. Diagonal elements are set to zero.

and RR2. In table 3.3,MSD1,full refers to the MSD between abundances of the �rst
half and the whole signal, MSD2,full refers to the MSD between abundances of the
second half and the whole signal and MSD1,2 refers to the MSD of the abundances
between the �rst half and the second half. We observe that the di�erences between
MSD1,full, MSD2,full and MSD1,2 are really low, suggesting a good precision in
the estimation of A for the three di�erent cases. The signals estimated were also
stable; the di�erences occurring most probably due to the dynamics present in the
brain.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1 RR1 RR2
MSD1,2 0.030974 0.034711 0.033012 0.018284 0.042602 0.056220 0.011396 0.002691 0.128761

MSD1,full 0.020485 0.013207 0.013604 0.007573 0.018063 0.006392 0.015329 0.000945 0.071989
MSD2,full 0.005803 0.013927 0.007179 0.005692 0.013945 0.024941 0.012262 0.002643 0.045751

Table 3.3: Mean square deviations between the abundance vectors for each of the
seven regions where the synthetic signals were added. RR1 and RR2 are two ran-
domly selected regions.
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3.6 Change detection

For medical studies and comparisons between the functional connectivity of healthy
and pathological individuals, correlation matrices are used to infer the di�erences.
Once the correlation matrices are obtained for the individuals, such as the one shown
in 3.19a for the synthetic case, various statistical tests can be performed depending
upon the study in question. If the study is a longitudinal analysis of an individual,
the simplest of the tests could be a Gaussian test on the di�erence of pairs of regions
using coe�cient matrices calculated at two di�erent time-points for a mouse. If
it is a group study then to �nd the di�erence between two di�erent groups, i.e.,
wild-type and Alzheimer's or depression, a Student's t-test or a permutations test
could be performed (Appendix A). One of the interests in this thesis is to �nd the
correlations coe�cients that di�er in Alzheimer's disease mice from those in normal
or wild-type (WT) mice.

3.6.1 Longitudinal change detection

In WT mice, the longitudinal changes are principally due to ageing, whereas for
pathological mice, there are changes due to ageing as well as the progression of
the disease. To detect longitudinal changes due to diseases, our idea is to detect
the pairs of regions which would su�er connectivity changes due to ageing in WT
mice and then to compare these changes to the changes observed in pathological
mice. To demonstrate the use of Gaussian statistical test to look for changes, the
data given in section 3.5 was used to generate two timepoints. Two datasets were
generated from the example given in section 3.5. For the �rst dataset, we ran the
alternated optimisation method considering the �rst 230 time samples of the real
fMRI dataset; this can be considered as timepoint A or the case without any changes.
To construct the second dataset, we ran the proposed method considering the last
230 time samples of the quasi-real fMRI dataset; this can be considered as timepoint
B. As the mouse used at timepoint A and B is the same, so there won't be many
changes in most of the regions, except for the seven regions where the signals were
added. There is no overlap between the time samples of the two datasets. The two
datasets are considered to be i.i.d. considering the dynamic connectivity [95] present
in the rs-fMRI datasets. Visually we can observe that there is a di�erence between
the correlation matrices at timepoint A (see Fig. 3.20) and B (see Fig. 3.21) because
of the dynamic connectivity present. The regions shown in the �gures here are the
sub-regions belonging to the prefrontal cortex. The name of the regions, in their
order of occurrence in the correlation matrices Fig. 3.20 and Fig. 3.21 are given in
B.1.1.

For Gaussian statistical tests, the correlation coe�cients ρ are z-transformed to
Gaussian values with the Fisher transformed values given here:

z =
1

2
ln

(
1 + ρ

1− ρ

)
(3.2)
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This is done to transform the distributions of correlations coe�cients (generally
skewed) into normal distributions.

If the true correlation coe�cients at time-point A and B are given by ρA and
ρB respectively, then the Fisher transformed correlation coe�cients at time-point A
and B can be considered to follow a normal distribution given by

zA ∼ N
(

1

2
ln

(
1 + ρA
1− ρA

)
, σ2

A =
1

NA − 3

)
(3.3)

and

zB ∼ N
(

1

2
ln

(
1 + ρB
1− ρB

)
, σ2

B =
1

NB − 3

)
. (3.4)

Here NA = NB = 230 are the length of the timecourses. We perform a Gaussian
statistical test, and we de�ne, in the absence of any changes in the two time-points,
the following null hypothesis:

H0 : ρA = ρB (3.5)

Following, the distribution of the di�erence D = ZA−ZB follows under the null
hypothesis:

D | H0 ∼ N
(
0, σ2

A + σ2
B

)
(3.6)

and under the alternative:

D | H1 ∼ N
(
θ, σ2

A + σ2
B

)
, θ 6= 0. (3.7)

The changes between the two time-points were obtained using the Gaussian sta-
tistical test explained before. A two-tailed test is performed on the data. The
p-values [refer to sectionA.1] for our problem are calculated using the formula:

pxi = 2× (1− Φ(D | H0)), (3.8)

where Φ is the cumulative distribution function of the standard Gaussian distribu-
tion.

The expected p-values are supposed to follow a uniform distribution under H0

and this is re�ected in the histogram given in Fig. 3.22. The peak on the left-most
likely corresponds to p-values close to zero i.e. test under H1. The plot for p-values
arranged in an increasing order has been given in Fig. 3.23, we see that the curve for
p-values is �atter in the beginning because of the low p-values. The zoomed-in section
with the smallest 100 p-values for the plot of p-values is given in Fig. 3.24; we see that
there are many p-values close to zero qualifying them as discoveries. To threshold
p-values or in turn reject the H0's associated, Benjamini Hochberg [96] procedure
was followed. This enables control of FDR (false discovery rate) and is explained in
A.2.3. The q-value was set to 0.01 to control the FDR. The FDR line ( qiN ), where i
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Figure 3.20: The correlation matrix considering all the regions under the prefrontal
cortex at the considered timepoint A.

is the index corresponding to the sorted p values, in the �gure can be seen in red.
The values lying below the threshold are the changes observed for the pair of regions
in the two timepoints. In Fig. 3.25 we can see the pairs that can be considered to
have changed from timepoint A to timepoint B. We can observe that the majority
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Figure 3.21: The correlation matrix considering all the regions under the prefrontal
cortex at the considered timepoint B.

of the changes are in the regions where the synthetic signals were added. A few
detections were made in the regions where the signals were not added, for example,
the pairs ACAd6a-ACAd6b, ILA1-ILA2/3, ORBl5-ORBl6a are detected. This could
be explained by looking at Fig. 3.26 where the dice coe�cients between the masks of
the di�erent regions have been shown. By comparing Fig. 3.25 and Fig. 3.26 we can
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Figure 3.22: For the longitudinal test the p-values under H0 follow a uniform dis-
tribution and can be observed here. The small p-values towards the left most likely
correspond to H1

evaluate that the regions where the signals were not added have fAllen under change
detection because of some overlap between the regions. We observe that ACAd6a-
ACAd6b overlap and the signal was modi�ed just for ACAd6a; ILA1 and ILA2/3
overlap with PL1, ACAv1 and ACAv5 where signals were modi�ed; ORBvl2/3 and
ORBvl5 overlap with ORBl1 whose signals were changed. When we add signals in
ORBl1, we can visualise that the signals would a�ect unmixing in the neighbouring
regions such as Orbl 2/3, Orbl6a and Orbl6b. Other reasons for detections where
signals were not added could also be due to not perfect unmixing as the problem is
ill-posed, the non-stationarity due to dynamic connectivity could also be one of the
causes. The unmixing was performed in the whole brain, so it possible that there
is some overlapping of the regions in the prefrontal cortex to the bordering sub-
regions of the neighbouring regions of the prefrontal cortex. If the q-value is further
decreased, then some of the pairs with low correlation coe�cients in table 3.1 fall
under H0.
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Figure 3.23: Longitudinal test. The plot for p-values arranged in an increasing order
and the line qi
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Figure 3.24: The zoomed-in portion showing the FDR line cutting the p-values, the
values under the line qi/N are considered under H1 with the Benjamini-Hochberg
procedure for controlling FDR.
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Figure 3.25: The correlation coe�cients which signi�cantly varied in the correlation
matrix at timepoint A and timepoint B are marked here with a value equal to 1.
The detections were obtained by thresholding with the FDR control of Benjamini-
Hochberg at q = 0.01.
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Figure 3.26: Dice coe�cients between regions have been shown. Analysis of the dice
coe�cients enables better understanding of the false discoveries (shown in green).
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3.6.2 Change detection in groups

Once the rs-fMRI data of single-subjects is unmixed and the correlation matrices
calculated, change detection in groups can also be considered. Let us consider a
group of synthetically generated correlation matrices of size 49×49, let us call these
collections group 1 and group 2. One of the ideas in our approach on real data is to
�nd the connectivity changes between the pairs of regions of a control group from
a diseased group. If the connectivity of a pair of region is signi�cantly di�erent in
the diseased mice from a pair in the control mice, we can say that it is a detection.
To generate synthetic data, we generated 10 correlation matrices for the control for
which the correlation coe�cients follow a normal distribution N (0.3, 0.02) (group 1),
and other 10 correlation matrices of the same size for the group 2 with the same mean
and variances. Some correlation coe�cients in the matrices for the second group were
altered to follow N (0.35, 0.02). The changes were made only in the means of the
distributions and not in the variances as the groups in real data passed the test for
homoscedasticity. One such correlation matrix with the correlation coe�cients in
the last two rows following a di�erent normal distribution is shown in Fig. 3.27. In a
�rst approach, we will try to �nd these pairs which are di�erent in the two groups.
To that end, we use the Student's t-test and the permutations test. This was done to
evaluate the performances of the two tests on the synthetic groups where the ground
truth is known.

Student's t-test:

Once we have the correlation coe�cients between di�erent regions obtained from
the timecourses estimated from the rs-fMRI data for a mouse of di�erent groups, we
can �nd connectivity changes by performing the Student's t-test (check A.1.2). The
correlation coe�cients were Fisher transformed (formula in ( 3.2) before performing
the Student's test. In Fig. 3.28 we can observe the distribution of the test statistic.
The bell curve on the right corresponds to the values that would most likely fall under
H0, and the scattered values on the left would be the values which would fall under
H1. The problem to detect changes is approached with the FDR test for multiple
comparisons; in Fig. 3.29 we can see the expected p-values plot with the smaller p-
values probably belonging to H1. In Fig. 3.30 the correlation coe�cients that were
modi�ed in the group 2 mice can be seen. The Student's test was performed for the
second time with q = 0.05 to look for quantitative analysis and to check the rate of
di�erent statistical errors explained in the appendix sectionA.1. The rate of errors
calculated for 100 tests is given in table 3.4. It can be seen that when the q-value is
decreased (0.05 rather than 0.1), the rate of false positives is lower. Depending on
what we are interested in, the q-values can be adjusted. In this work, the interest
is to �nd regions that actually undergo changes, so the q-values should be as low
as possible. This would lead to fewer false positives or fewer discoveries which can
mistakenly be considered as changes.
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Figure 3.27: Correlation matrix for the second group. The correlation coe�cients
highlighted in green are the coe�cients that were modi�ed for the second group and
should be detected as changes.

Proportions of: False positives True positives False negatives True negatives
q = 0.05 0.037 0.963 0.002 0.998
q = 0.1 0.083 0.917 0.001 0.999

Table 3.4: Student's test evaluation at two di�erent FDR levels, q = 0.05 and q = 0.1



3.6. CHANGE DETECTION 73

10 8 6 4 2 0 2 4
t-values

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
un

t

Figure 3.28: Histogram showing the distribution of the test statistic, the plot under
H0 is supposed to follow a Student's t-distribution with the degrees of freedom(d.o.f.)
equal to the 18 (Here N1 = 10, N2 = 10, d.o.f. = N1 +N2 − 2)
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Figure 3.29: FDR line with q = 0.1 cutting the p values, the values under the line
qi/N are considered under H1
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Figure 3.30: The pairs of correlation coe�cients which were detected to have changed
using the Student's t-test. The true positives have been highlighted in green.
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Permutations testing

For real data, a distribution for the data under H0 may not always have a known
form. In addition to that, for small sample sizes, the central limit theorem does
not hold well. So, one strategy to perform statistics on real data in such a case is
to use a non-parametric test in place of the Student's test explained earlier. One
such non-parametric test which could be useful is the permutations test. It consists
of estimating the null distribution empirically by randomly shu�ing the individuals
from the di�erent groups. In the case of group studies, to detect changes in con-
nectivity, we perform the random permutations tests to �nd the signi�cance of the
di�erences in the correlation coe�cients for the two groups. The di�erences in the
correlation coe�cients are stored in the form of a vector. This is repeated to obtain
a large number of samples, which is then used to generate a histogram representing
the empirical H0. In our case, the groups were permuted 10000 times. In Fig. 3.31
shows the empirical distribution of the test statistic. The p-values were calculated
by considering the proportions of the distribution higher than the test value. In
Fig. 3.32 we can see that p-values under H0 follow a uniform distribution. The q-
value was set to 0.1 for this case; in Fig. 3.33 we can see the FDR line (in red) and
the p-values lying below it. In Fig. 3.34 the correlation coe�cients changes detected
in the two groups by using FDR have been shown. Rate of false discoveries, true
discoveries, false missed �ndings and true missed �ndings for q = 0.05 and q = 0.1
are given in table 3.5.
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Figure 3.31: Histogram showing the distribution of permuted di�erences for the
permutations test for the synthetic data and the kernel density estimation (KDE) in
orange.
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Figure 3.32: Distribution of p-values for the permutations tests, we can see that the
p-values under H0 follow a uniform distribution.
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Figure 3.33: FDR thresholding of the p-values for the permutations test
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Figure 3.34: The pairs of correlation coe�cients which were detected to have changed
using the permutations test. The true positives have been highlighted in green.
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Proportions of: False positives True positives False negatives True negatives
q = 0.05 0.0272 0.9728 0.0027 0.9973
q = 0.1 0.095 0.905 0.0 1.0

Table 3.5: Permutations test evaluation for di�erent values of q.

The two tests explained here, i.e., the permutations test and the Student's test
are used in the case of real data in the next section to check for detections for the
group studies. It can be observed that the false detections for the cases shown for
the permutations testing (Fig. 3.34) and the Student's t-test (Fig. 3.30) occur at the
same place. However, from table 3.4 and table 3.4 it can be observed that it is not
always the case as the values of the rates of false detections is not the same. Using
the synthetic example, one test was not preferred over the other. Both tests were
implemented for the study on real data.
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3.7 Study on real data

Similar to the application on the quasi-real datasets, the dictionary learning method
with spatial constraints proposed in the manuscript was used to unmix real fMRI
data. It was done for two cases: in the �rst case, the small anatomical regions
of the Allen brain atlas were grouped together to allow a regional-scale analysis of
connectivity based on the correlation matrices obtained from the timecourses of the
unmixed regions. The other case involved the unmixing at a �ner scale, taking into
account all the anatomical regions of the Allen brain atlas.

3.7.1 Group tests

Before applying the statistical tests directly on the real data for the �rst case, the
correlation matrices are analysed. For this purpose, hierarchical clustering was em-
ployed on the means of the z-scores matrices to check clusters of regions showing
similar brain activity for WT mice at 9 months. The metric for hierarchical clus-
tering is the Euclidean distance between the di�erent vectors formed by the z-scores
pairs. The cerebral activity of the mice at 9 months is considered to be completely
normal and would not show any signs of ageing. In Fig. 3.35, we can observe the
results of the hierarchical clustering on the means of the z-scores of the correlation
matrices at 9 months. The su�xes BR (Bottom Right) refers to the right dorsal, BL
(Bottom Left) to the left dorsal, TR (Top Right) to the right superior, and TL (Top
Left) to the left superior parts of the sub-regions of the hippocampus, i.e., CA1,
CA2, CA3. The sub-regions of the hippocampus were divided so as to check the
activity in the interior of these regions; the motivation behind this was the evidence
provided in the neuroscience of the di�erent activity between these partitions. The
partitioned sub-regions of the hippocampus (a high functioning area of the brain),
can be seen classi�ed together; the left and right parts (TL-TR, BL-BR) can be
observed clustered together for CA1, CA2 and CA3.

In Fig. 3.35, it can be seen that regions SSs (supplemental somatosensory area),
SSp (primary somatosensory area), RSP (retrosplenial area) and, MOs (secondary
motor area) belonging to the cortical network are belonging to the same high-level
cluster. MBmot (midbrain, motor related) and MBsen (midbrain, sensory related)
can be seen in the same cluster with AUD (audio) and VIS (visual) grouped not far
away. For a comparison with the previous results on the same data in [97], there
were some structures in the hierarchical clustering which were similar and show high
correlation; these are ORB (Orbital area), MOp (primary motor area), MOs and
SSp. MBSen and visual sub-regions form a network in [97] and can be observed to
be clustered together in Fig. 3.35. The sub-regions ACB (Nucleus accumbens) and
the LSX_MSC_TRS (lateral septal complex, medial septum, and triangular nucleus
of the septum) belong to the basal ganglia; they are strongly connected and belong
to the same cluster in the hierarchical clustering. These show a strong correlation to
ORB which belongs to the prefrontal cortex. Even AI (agranular insula) and MoP
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can be seen in the same cluster although there is no speci�c connections related
to this in the literature. They have connections in general terms but functionally
do not belong to the same cluster in the literature. In the broad sense, it can be
analysed that the sub-cortical regions ACB and the LSX_MSC_TRS communicate
with the cortical regions ORB, MOp, AI. The regions implied by the olfactory,
somato-sensorial and motor regions exist in the block SSp, SSs, RSP, PIR (piriform),
MOs and CP. This is coherent with other studies although the motor regions are less
evident in the literature. RSP is the principal seed in the DMN (default mode
network), which is a cluster of regions having highly correlated activity. It appears
that RSP is in the same cluster as other regions from the DMN such as ACA (Anterior
cingulate area), FRP (frontal pole), PL (prelimbic area) and TH (thalamus). In the
regions of the hippocampus, DG (dentate gyrus) was found to have a similar activity
to the sub-regions of CA2.

Analysis of clustered regions in such a way could be di�cult to interpret the
changes when it comes to comparing groups as the ordering of clustered regions
for each group will be di�erent. But for the group study we are interested to �nd
the pairs of regions that vary in activity for di�erent groups. For this purpose, we
implement the approach and the statistical tests we presented in the previous section
3.6.2 on the correlation matrices of real data. This is shown in the next section.

3.7.2 Statistical tests for groups

Timecourses were estimated for the AD as well WT mice and the correlation ma-
trices for each were calculated. Then, the permutations test and Student's t-test
were performed using the method explained in section 3.6.2. The mean correlation
matrices for AD as well as WT mice are shown in Fig. 3.36 and Fig. 3.37. It can be
observed visually that the di�erences are not signi�cant. In Fig. 3.39 and Fig. 3.38,
we can see the variances of the correlation matrices with the values thresholded be-
tween −0.5 and +0.5, the variances did not di�er signi�cantly in the two groups. For
the Student's t-test as well as permutations test, the q-values were set to 0.05 and
0.1. It was observed that the permutations tests and Student's t-test for groups did
not result in signi�cant detections when comparing the correlation pairs between
the wild-type mice and the diseased mice as a group study. One main reason is
the small di�erence between the means of the distributions for the di�erent groups.
The di�erence in the means of the z-values for the selected mice was of the order of
10−2. Another likely reason the group tests didn't work is the number of subjects.
The number of subjects in the case of real data was equal to 6. The correlation
matrices with the correlation coe�cients following N (0.3, 0.02) for the two groups
were generated. Few of the correlation coe�cients in one of the groups were changed
according to the law N (meanDi�erence, 0.02), where meanDi�erence was changed.
In the other study, group tests were performed by varying the number of subjects.
Fig. 3.40 shows the power of the statistical tests for permutations as well as t-test
for 6 mice with the di�erences in means varying from 0.01 to 0.19 with an interval
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Figure 3.35: Hierarchical clustering for the means of z scores of the correlation
matrices at 9 months of a WT mouse.

of 0.02. We can observe that the power of the test is not su�cient for our real data
for group testing, and better tests and more data are required. The q-value for both
t-tests and permutations tests was set as 0.1. It can be observed that when the mean
di�erences are low, then the permutations tests o�er better performance.

To test the in�uence of the number of subjects, we �x the mean di�erence to
0.01 as in the case for real data and consider the number of subjects as variables.
The number of subjects was varied in the interval 6 to 206 with an interval of 50,
and the q-value for FDR was set to 0.1. The plot for the power of the test for t-test
and the permutations test is given in Fig. 3.41. The minimum number of subjects
required for the power of the test to be more than 0.8 was found to be more than
106 subjects in each group for the permutations test and at least 106 to 125 subjects
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Figure 3.36: The mean correlation matrix for WT mice at 9 months.

in each group for the t-test.
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Figure 3.37: The mean correlation matrix for AD mice at 9 months.
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Figure 3.38: The variance of the correlation matrices for WT mice at 9 months.
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Figure 3.39: The variances of the correlation matrices for AD mice at 9 months.
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Figure 3.40: The power of the t-test and permutations test with multiple comparisons
with di�erence in means of distributions varying from 0.01 to 0.19. The blue curve
corresponds to the t-test and the orange curve to the permutations tests.
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Figure 3.41: The power of the t-test and permutations test with multiple comparisons
with di�erence in means of distributions varying from 0.01 to 0.19. The blue curve
corresponds to the t-test and the orange curve to the permutations tests.
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3.7.3 Longitudinal study

As explained earlier, for the longitudinal study, the Allen Brain atlas with 600
anatomical regions is used to de�ne the regions, and the proposed unmixing algo-
rithm is run on each mice individually. The estimated signals are used to construct
correlation matrices for each mice. The correlation matrices are not shown here as
the matrices are of size 600 × 600, and it is di�cult to represent them here. After
constructing the correlation matrices, the Gaussian test (as explained in 3.6.1), with
the multiple comparisons is performed to look for the regions detected for each mice
longitudinally. The regions detected for each mice in a longitudinal study for AD
as well as WT mice are found, and then the regions that changed in longitudinal
connectivity for at least 5 out of the 6 mice were kept. Then, the regions are com-
pared between the two groups to check the regions which underwent connectivity
changes in the longitudinal study AD mice but were not detected for a longitudinal
study of WT mice. One of the signi�cant results was the detection of the olfactory
and entorhinal cortex, which can be validated in the literature for humans [98]. The
olfactory bulb, olfactory areas, taenia tecta, dorsal peduncular area, entorhinal area
all belong to the olfactory regions and can be seen together. It should be noted that
the olfactory bulb is linked to Alzheimer's, but, is also subjected to artefacts in the
literature. Also, the study was on Alzheimer's model mice and such results were not
found in the previous study according to the team which created the same model
[99]. The entorhinal area is a signi�cant result here which is linked to the memory
processes which are altered for the mice at 9 months in these mice (this has been
con�rmed in the behavioral tests in [97]). It is one of the �rst regions which are
supposed to be a�ected by Alzheimer's. Other regions linked with the progression
of AD were agranular insular areas, primary motor areas, visual areas, primary so-
matosensory areas, and orbital areas. Even agranular areas are connected to sensory
areas as well as limbic systems related to memory and emotion. Other regions that
were detected are given here in table 3.6.

Main olfactory bulb
Olfactory areas
Entorhinal area, medial part, dorsal zone, layer 1
Entorhinal area, medial part, dorsal zone, layer 2
Primary motor area, Layer 1
Primary motor area, Layer 2/3
Primary motor area, Layer 6a
Secondary motor area, layer 1
Primary somatosensory area, mouth, layer 4
Primary somatosensory area, mouth, layer 5
Primary somatosensory area, trunk, layer 2/3
agranular insular area, dorsal part, layer 5
Agranular insular area, ventral part, layer 6a
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Primary visual area, layer 1
Posterolateral visual area, layer 5
Posterolateral visual area, layer 1
Anterolateral visual area, layer 1
Anterodorsal nucleus
CA2 Coronal Top Left
Crus 1
Dorsal peduncular area
Fields of Forel
Frontal pole, layer 1
Laterodorsal tegmental nucleus
Lobule III
Locus ceruleus
Medial mammillary nucleus, median part
Medulla
Nodulus (X)
Orbital area, lateral part, layer 1
Orbital area, medial part, layer 1
Pons
Substantia innominata
Taenia tecta, dorsal part

Table 3.6: Names of the regions detected to be linked with Alzheimer's.

Some of the results have been explained below:

� Motor: The Thy-Tau22 transgenic mice are found to be hyperactive, which
can be due to the motor treatment being a�ected. Some layers of the primary
motor regions have been detected as changes in table 3.6, which could be related
to this behaviour. This result is still non-published but was observed in an
experimental study at the IRIS (Imagerie, Robotique et Innovation en Santé)
[83] platform of ICube.

� Somatosensory, visual and insula are the cortical regions that can be a�ected
by Alzheimer's in particular somatosensory and insula.

� Locus coeruleus is known to be linked to Alzheimer's as it is involved in atten-
tion, emotions and sleep.

� Frontal pole and the orbital areas are the prefrontal region implied in decision-
making and are altered in Alzheimer's.

� CA2, laterodorsal tegmental nucleus, medial mammillary nucleus, substantia
innominata are not the regions known to be linked with Alzheimer's but still
are linked to the memory (not strongly) and form the cholinergic system which
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is linked to Alzheimer's. Fields of forel is also a region in the cholinergic system
but is is a part of white matter and is maybe an artefact.

� Crus 1, Nodulus and Lobule III are the regions of the cerebellum which are
usually not focussed upon for this kind of data as their connectivity is impacted
by anaesthesia (given to mice during the acquisition) but are observed here.

� Pons and Medulla are the regions of the brainstem, and are relatively bigger
in size than the other regions mentioned, and contain various kernels inside
them. There may be certain regions inside these regions, which are a�ected
by Alzheimer's, but this cannot be con�rmed for now. Maybe a future study
taking into account the sub-regions of these areas using a di�erent atlas could
be undertaken.

3.8 Discussion and conclusion

Application of the algorithm proposed in chapter 2 on fMRI data, i.e., the principal
application in this thesis, has been presented in this chapter. Various spatial and
temporal preprocessing techniques for fMRI have been detailed. The pipeline was
adapted to the data and required the development of code for the various steps. The
proposed algorithm was implemented on quasi-real data, where synthetic temporal
signals were introduced in various sub-regions of the brain for validation. It was
observed that the mean squared errors between the estimated temporal signals and
the signals added were low. Then, the algorithm was implemented on real data
at di�erent scales of division of anatomical regions. For the real data in the �rst
case, the �ne anatomical regions were grouped together into major sub-regions of the
brain, and in the second case, all the �ne anatomical regions were considered. The
usage of hierarchical clustering on estimated timecourse allowed to �nd functional
networks coherent with literature.

Various statistical tests were performed on the correlation matrices constructed
from the correlations between the estimated temporal signals. This was supported
with a validation on the quasi-real dataset before being applied on the real dataset.
To �nd the di�erences between the AD group and the WT group considering the
regions grouped together, it was concluded that better tests are required. The pos-
sibility to increase the number of subjects and especially by the acquisition of mice
brains with cryoscopes, will eventually improve the detections as the signals will con-
tain less noise and, thus, stronger correlations. This was proven with some synthetic
examples showing the lack of subjects and the minute di�erence between the means
of the two groups. Both permutations test and Student's t-test with the multiple
comparisons did not have enough power to perform the detections or the regions that
were di�erent in pair-connectivity (based on correlation coe�cients). The approach
based on the Gaussian test for longitudinal studies is interesting for single-subject
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studies from an application point of view as it enabled to highlight the results vali-
dated by the neurobiologists. Certain regions were analysed to be linked to AD and
have been equally provided in this chapter.



92 CHAPTER 3. APPLICATION TO RS-FMRI



Chapter 4

Generalisation of the spatially

constraint unmixing model

Contents

4.1 Generalised model . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Estimation of the temporal / spectral signatures matrix U 94

4.1.2 Estimation of the abundance / mixing matrix A . . . . . 95

4.2 Scintigraphic imaging dataset . . . . . . . . . . . . . . . . 96

4.2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . 99

4.3 Hyperspectral astronomic data . . . . . . . . . . . . . . . 103

4.3.1 Validation on hyperspectral subcube . . . . . . . . . . . . 104

4.3.2 Astronomical whole cube . . . . . . . . . . . . . . . . . . 111

4.3.3 Analysis of the estimation residues . . . . . . . . . . . . . 114

4.3.4 An interesting �nding . . . . . . . . . . . . . . . . . . . . 119

4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

In this chapter, a generalisation of the unmixing model from 2 is presented.
Equally, we present an extension to two new applications: scintigraphic imaging
and hyperspectral astronomical data unmixing, with constraints that di�er from
those used in fMRI. The adaptability of the algorithm by the addition and dropping
of certain constraints allowed us to deal with these applications from very di�erent
�elds. The new applications involved quasi-real scintigraphic data with ground truth
and the real astronomical hyperspectral data for which the approximate localisations
of the sources are known. The latter type of data is extremely di�cult to obtain
as it requires the construction of ground truth maps. This is di�cult and requires
mobilisation of experts of the data, who can validate the spatial maps. Besides,
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in both cases, comparisons to state-of-the-art domain-speci�c methods (RUDUR[19]
and to expert manual evaluation [21]) have also been provided. It is observed that the
spatial priors added to the unmixing model for these applications provide interesting
results.

4.1 Generalised model

In the most general setting, the unmixing problem presented in chapter 2 is recast
as:

min
A,U

1

2
‖Y −UA‖2F + IM(Ã)(A) + g(A) + h(U), (4.1)

where g(A) summarises the constraints on the abundance matrix, except the locali-
sation constraint that remains unchanged from the original model of chapter 2, and
h(U) are the temporal/spectral signature constraints.

A classical way to solve the joint estimation problem is to optimise the cost
function ( 4.1) alternatively along U and A as presented in the algorithm:

1 Initialisation of binary matrix Ã

2 Initialisation of U(0), l = 0
3 while STOPPING CRITERIA 6= TRUE do

4 Minimisation of problem ( 4.1) with respect to A
5 Minimisation of problem ( 4.1) with respect to U

6 end

7 return U(l+1),A(l+1)

Algorithm 4: Alternated optimisation scheme of the dictionary learning
algorithm to solve generic problem ( 4.1).

The minimisation with respect to U and A can be divided into two separate
optimisation sub-problems with the speci�c constraints on A and U.

4.1.1 Estimation of the temporal / spectral signatures matrix U

Considering that A is �xed, problem ( 4.1) becomes:

min
U

1

2
‖Y −UA ‖2F + h(U). (4.2)

In a generic case, h(U) may be the sum of convex constraints but not necessarily
di�erentiable. Let h(U) be decomposed into the addition of a convex and di�eren-
tiable term hd(U) and a convex but non di�erentiable term hnd(U). Problem ( 4.2)
can be rewritten as:

min
U

fU (U) + hnd(U), (4.3)
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where fU (U) = 1
2‖Y−UA ‖2F+hd(U) is convex. The resulting optimisation problem

requires proximal gradient methods to estimate U such as the alternating-direction
method of multipliers (ADMM)[71], projections onto convex sets (POCS) or prox-
imal gradient descent algorithms, e.g. Fast Iterative Soft Thresholding Algorithm
(FISTA)[72], depending on the form of the constraints in hd(U) and hnd(U). If
hnd(U) 6= 0 then solution of problem ( 4.3) with proximal gradient descent is:

1 Initialisation of U(0), k = 0
2 while STOPPING CRITERIA 6= TRUE do

3 for k ← 1 to proxsteps do

4 U(k+1) = proxhnd(U
(k) − λ∇fU (U(k)))

5 k = k + 1;
6 end

7 end

8 return U(k+1)

Algorithm 5: Proximal gradient algorithm for estimation of U, where
proxhnd is the proximal operator of hnd, ∇fU corresponds to the gradient
of function fU and λ is equal to the inverse of the Lipschitz constant of ∇fU .

In the case of the FISTA algorithm, proximal operator and gradient are not eval-
uated at point U (k), but at an intermediate point w(k) = U(k) +

(
t(k−1)−1
t(k)

)
(U(k) −

U(k−1)) where expression of t(k) is given in [72] for increasing theoretically the con-
vergence. It should be noted that the calculation of proxhnd can be complicated if
there are multiple constraints on hnd.

4.1.2 Estimation of the abundance / mixing matrix A

Consider now that U is �xed, then problem ( 4.1) becomes:

min
A

1

2
‖Y −UA‖2F +IM(Ã)(A) +g(A). (4.4)

Note that if this function is separable according to the pixels/voxels i ∈ {1,. . . , P},
it leads to:

min
ai

1

2
‖yi −Uai‖2F +IM(ãi)(ai) +g(ai), (4.5)

where ai is a column vector from the matrix A. This allows to parallelise the min-
imisation step with respect to the matrix A (this step can be long if the matrix
dimension is large). In that case, the minimisation according A can be parallelised
w.r.t. the pixels to decrease the computation time. The set of all the vectors with a
structure similar to ai is given by ãi, where ãi is a column of Ã. In a generic case,
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g(A) may be the sum of convex constraints but not necessarily di�erentiable. Let
the constraints g(A) + IM(Ã)(A) be decomposed into the addition of a convex and
di�erentiable term gd(A) and a convex but non di�erentiable term gnd(A) that gath-
ers non di�erentiable terms in g(A) and IM(Ã)(A) which is also non di�erentiable.
Problem ( 4.4) can be rewritten as:

min
A

fA(A) + gnd(A), (4.6)

where fA(A) = 1
2‖Y −UA ‖2F + gd(A).

The di�erent di�erentiable and non-di�erentiable constraints for A and U in the
model aid the estimation of the temporal/spectral signatures and the abundances.
The addition of these constraints would require modi�cation in the algorithms based
on the di�erent constraints. The generic model hereby developed is applied to dif-
ferent datasets in the next two sections.

4.2 Scintigraphic imaging dataset

The scintigraphic dataset is an example of realistic synthetic data in scintigraphy
used in [9], for which the authors have proposed an unmixing method based on prior
knowledge of the location of the regions of interest. In the speci�c application of
scintigraphic imagery, robust unmixing of dynamic sequences using regions of interest
(RUDUR) [19] is an unmixing method based on an objective function minimisation
that promotes non-null abundances inside regions of interest (ROIs) while relaxing
the model outside ROIs. The considered optimisation problem includes a weighted
data �delity term, the Tikhonov regularisation on the temporal signature, but no
sum-to-one constraint. The integration of ROIs knowledge is formulated as a soft
constraint based on the distance to the ROIs. This method has been compared
in [19] to di�erent ROI-based algorithms commonly used in scintigraphy such as
FAMIS [20], FAROI [5], FPLS [25], and another method based on a variational
Bayesian approach [26]. Earlier existing ROI based unmixing methods mentioned in
[9], but not compared to RUDUR, are [17], [70], [100]. Various results in [19] show
that RUDUR performs better at estimating spatial maps and temporal signals than
the other ROI-based algorithms. In scintigraphic imagery, our method will therefore
only be compared to RUDUR. The unmixing methods in the article [19] are source
separation methods. They estimate the time-activity curves (TACs) and emissions
of a tracer (a radioactive element) in the di�erent body organs.

4.2.1 Data description

In an e�ort to objectively evaluate the performances of our approach, we propose to
test and compare our method on a physical model-based simulation of scintigraphic
images (with ground truth) of scintigraphy images created for the evaluation of the
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performances of the state-of-the-art RUDUR method [9]. Consequently, the ground
truth for the timecourses and the abundances are at disposition. We have reused
the dataset and the RUDUR code with the default parameters, as distributed by the
authors of [9].

For this dataset, our method is confronted with a physical model-based simulation
of scintigraphic images with ground truth. The dataset used in [9] is a dataset of
scintigraphic data (with TACs and emissions of a tracer (a radioactive element) in the
di�erent body organs) that has been made available at [101]. This dataset is based
on a Monte Carlo simulation of scintillation camera imaging [102]. The datacube
comprises images of size 21× 26, with N = 60. The dataset contains R = 3 regions,
whose true abundance maps are shown in Fig. 4.1(a) and the associated time-activity
curves in Fig. 4.1(f) shows the ground truths for the spatial maps. In the second row
(b) the ROI initialisation is presented. This initialisation is not the same as in [9]
as our method needs strictly greater initial ROIs than the regions which need to be
unmixed.

4.2.2 Algorithm details

RUDUR algorithm has a soft constraint on the source locations, which allows the
regions to unmix data even if the selected ROIs lie in the interior of the actual
locations of the regions. This constraint is mentioned in ( 1.10). In our model, a
hard constraint on the locations of the regions is used, through the regularisation
term IM(Ã) (see ( 4.1)), so initial ROIs should be strictly enclosing the regions for
which we want to estimate the timecourses. To achieve this, the binary mask of
ROIs used in [9] have been dilated with a 5 pixels square structuring element.

We should note that this application corresponds to an additive case of unmix-
ing, so the sum-to-one constraint was dropped o� in our algorithm. Further, as
scintigraphy timecourses should be strictly positive (representing the emission of the
tracer), ( 4.1) was changed to:

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F + IR+(A)+ IM(Ã)(A)+ IR+(U). (4.7)

In this problem we note:

fU(U) =
1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F ,

hnd(U) = IR+(U),

fA(A) =
1

2
‖Y −UA‖2F ,

gnd(A) = IR+(A)+ IM(Ã)(A).

Due to the addition of IR+(U), the constraint of positivity on the TACs, the
ridge regression given in step 4 of algorithm 3 (in chapter 2) to solve for U had to
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be replaced by FISTA steps to estimate U in each alternate step. The initialisation
of the algorithm was done with the help of ridge regression using the initial dilated
ROIs as initialisation for matrix A.

1 Initialisation of A(0), l = 0
2 while STOPPING CRITERIA 6= TRUE do

3 Parallel minimisation w.r.t. the columns uj of U :
4 for uj of U do

5 ω
(1)
j = u

(l)
j , c

(0)
j = u

(l)
j

6 for k ← 1 to proxstepsuj do

7 c
(k)
j = proxh(ω

(k)
j − λ1∇fU(ω

(k)
j ))

8 t(k+1) =
1+

√
1+4(t(k))

2

2

9 ω(k+1) = c
(k)
j +

(
t(k)−1
t(k+1)

)
(c

(k)
j − c

(k−1)
j )

10 end

11 u
(l+1)
j = c

(proxstepsuj )

j

12 end

13 Parallel minimisation w.r.t. the columns ai of A :
14 for ai of A do

15 ω
(1)
i = a

(l)
i ,b

(0)
i = a

(l)
i

16 for k ← 1 to proxstepsai do

17 b
(k)
i = proxg(ω

(k)
i − λ∇fA(ω

(k)
i ))

18 t(k+1) =
1+

√
1+4(t(k))

2

2

19 ω
(k+1)
i = b

(k)
i +

(
t(k)−1
t(k+1)

)
(b

(k)
i − b

(k−1)
i )

20 end

21 a
(l+1)
i = b

(proxstepsai )
i

22 end

23 l = l + 1;
24 end

25 return A, U

Algorithm 6: Alternate optimisation algorithm to estimate A and U that
combines three nested iterative algorithms. At each iteration l, the A and
U matrices are updated. The estimation of U is parallelised, i.e., for a given
TAC j, the index k refers to the iterations of the FISTA algorithm. In each
iteration k, the calculation of the proxg is detailed in section 4.2.2. The
estimation of A is pixel parallelised similarly.

The equation ( 4.7) can be divided into two sub problems described in the fol-
lowing paragraphs:
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Minimisation of A:

As the sum-to-one condition is dropped, the proximal operator of the function g in
algorithm 3 changes to:

proxg(y) = argmin
x∈M(ã)∩R+

‖x− y‖2 = PR+∩M(ã)(y), (4.8)

where P is now the orthogonal projection operator on the set R+ ∩M(ã).

Minimisation of U:

The minimisation of U is also done with the proximal methods. For each timecourse
uj (jth column of U), related to the regions of interests, the steps 4 to 12 correspond
to the FISTA steps. In algorithm 6, the gradient of f(ui), i.e., ∇f(ui), is given by
UT (Uai − yi). The step size λ1 is set equal to the inverse of the Lipschitz constant
of ∇f(ai), i.e., 1/L, where L = ‖AAT ‖F .

proxh(y) = argmin
x∈R+

‖x− y‖2 = PR+(y), (4.9)

4.2.3 Results and discussion

We ran our algorithm with 500 steps of alternate optimisation. At each iteration l,
convergence is monitored by the optimisation gain κl de�ned as:

κl =
‖Y −U(l)A(l)‖F − ‖Y −U(l−1)A(l−1)‖F

‖Y −U(l−1)A(l−1)‖F
, (4.10)

which decreases to 10−15 at the 500th alternate step. The results of the proposed
approach were compared to the DL-C-SUnSAL model de�ned in Chapter 2:

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F +IS+(A) +‖A‖1. (4.11)

Estimated temporal signals and spatial maps were normalised by the criteria given
in [9] for comparison with the provided ground truth. The normalised mean squared
error (NMSE) and normalised mean absolute error (NMAE) for the estimated spatial
maps and time-activity curves were calculated. In addition, we also provide spectral
angle distances (SAD) ( 2.14) for the estimated time-activity curves. The formulae
for NMAE and NMAE are given below:

NMSE(UGTr , Ur) =

∑N
n=1(UGTr,n − Ur,n)2∑N

n=1(UGTr,n )2
(4.12)
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NMAE(UGTr , Ur) =

∑N
n=1 |UGTr,n − Ur,n|
|∑N

n=1(UGTr,n )|
. (4.13)

Here UGTr is the ground truth temporal signal for rth region, Ur is the estimated
signal for the rth region, N is the length of the temporal signal. NMAE and NMSE
can be written in a similar manner to evaluate spatial maps.

The quantitative results on the synthetic scintigraphy data are given in table 4.1.
We observe that the signals estimated by our method are close to those obtained
by RUDUR, and DL-C-SUnSAL is slightly better for the �rst two ROIs but fails
to estimate the TAC for ROI3. The NMSE and NMAE for spatial maps calculated
using the two methods are given in table 4.2. The errors on the spatial maps were
calculated by restricting the pixels of the estimated maps to the initial ROIs. Errors
are generally lower in the case of DL-C-SUnSAL for the estimated spatial maps and
globally well controlled for RUDUR. The methods were implemented on an Intel(R)
Xeon(R) CPU E5-1620 v4 @ 3.50GHz. The calculation time for the proposed method
is around 8 seconds, while for DL-SUnSAL it is around 1.5 seconds. RUDUR is the
fastest of all taking around 0.7 seconds.

ROI1 ROI2 ROI3
NMSE Proposed 0.049 0.046 0.011
NMSE RUDUR 0.031 0.047 0.009

NMSE DL-C-SUnSAL 0.006 0.025 0.089
NMAE Proposed 0.173 0.142 0.091
NMAE RUDUR 0.129 0.142 0.085

NMAE DL-C-SUnSAL 0.070 0.129 0.198
SAD Proposed 12.181 12.049 6.128
SAD RUDUR 9.561 12.362 5.373
SAD DL-C-SUnSAL 4.180 7.150 17.276

Table 4.1: Errors (NMAE and NMSE) and spectral angle distances (in degrees)
between the estimated timecourses and the ground truth for the scintigraphy dataset.
Best estimations for di�erent cases have been highlighted in bold.

The spatial maps unmixed by our method are presented in Fig. 4.1 (c) and those
estimated by RUDUR are displayed in Fig. 4.1 (d) and DL-C-SUnSAL in Fig. 4.1 (e).
Visually, the maps are very similar although the errors are lower in the case of
RUDUR. The last row (f) shows the TACs estimated by the proposed method (in
blue), RUDUR (in magenta) and DL-C-SUnSAL. We observe in Fig. 4.1 that our
solution is near the target solution (in dashed black) for all the sources and is close
to the solution provided by RUDUR.
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ROI1 ROI2 ROI3
NMSE Proposed 0.189 0.084 0.139
NMSE RUDUR 0.156 0.069 0.069

NMSE DL-C-SUnSAL 0.036 0.037 0.341
NMAE Proposed 0.433 0.304 0.419
NMAE RUDUR 0.351 0.267 0.343

NMAE DL-C-SUnSAL 0.158 0.196 0.654

Table 4.2: Errors between the estimated spatial maps for the di�erent regions and
the ground truth. The errors given here were calculated by restricting the pixels of
the estimated spatial maps to the initial ROIs. Best estimations for di�erent cases
have been highlighted in bold.
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Figure 4.1: Scintigraphic data. (a) Ground truth for spatial maps, (b) initial ROIs,
(c) spatial maps estimated by the proposed algorithm, (d) spatial maps estimated
by RUDUR, (e) spatial maps estimated by DL-C-SUnSAL (f) TACs estimated by
RUDUR and our method.
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As far as the scintigraphic application is concerned, satisfactory results were
obtained by the method proposed with respect to RUDUR. In the next section, we
provide the application of our approach on another real dataset (the �rst application
with real data being fMRI), i.e., hyperspectral astronomical imaging. The results
were validated from the literature, and a pipeline to �nd new galaxies or celestial
objects is suggested.

4.3 Hyperspectral astronomic data

The emergence of hyperspectral imaging has greatly bene�ted astronomy. Much of
the details about the space not available a few decades back, due to celestial sources
search in just a few bands, are available for certain portions of the sky and can be
analysed now. We studied datacubes from the MUSE instrument, the Multi Unit
Spectroscopic Explorer [103], installed at the Very Large Telescope, which produces
hyperspectral observations of the deep sky. In these hyperspectral images, we can
observe hundreds or even thousands of galaxies. Depending on their age, chemical
composition, type, distance, and other physical factors, these galaxies have di�erent
spectra. These spectra may contain emission lines, continuous components, and
nuisance components. One of the main objectives of MUSE data analysis is the
detection of very distant galaxies, which therefore emit very low light �ux. The
spectrum of distant galaxies consists of a single emission line, the Lyman-α emission
line, which is a marker of the strong presence of hydrogen in the galaxy. They are
di�cult to detect due to their distance and their very faint intensity compared to
closer galaxies. In addition to that, signi�cant noise a�ects the data. Moreover, two
galaxies aligned in the direction of observation result in the blending of spectra inside
pixels of MUSE images. The dataset recorded by the MUSE instrument explored in
this work is Ultra Deep Field (UDF-10), which contains a 3D cube (2D images +
spectral dimension) of data with spectra comprising of 3681 bands from 4750 to 9350
Angström (1Ang = 0.1nm). Much of these bands are in the visible wavelength range
(3800 to 7500 Angström) and some in the near-infrared range. In order to confront
our algorithm with an unmixing problem in astronomy, we consider the problem of
unmixing sources in hyperspectral astronomic data with the ROI information from
the Hubble space telescope. The UDF-10 �eld of view can be found in the Hubble
Deep Field South (HDFS) data recorded with the Hubble telescope, using some of its
bands. The HST observation is a spatially well-resolved image of spatial resolution
0.1 × 0.1 arcsec, for which there exists a segmentation map presented in [10]. Due
to the di�erence in resolution of the MUSE data, which is only 0.7 × 0.7 arcsec,
two distinct sources in the HST image, may overlap in the MUSE data creating a
mix in the spectra. The advantage of using Hubble dataset is that the data is not
containing atmospheric noise, and the images have a very high spatial resolution.
On the other hand, the inconvenience is that all the galaxies are not visible because
of the wide spectral bands spanning multiple wavelengths; this would lead to the
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missing of galaxies with thin emission lines in the dataset. Some datasets in the
astronomy domain comprise hyperspectral datacubes and external information on
the spatial location of the sources. The data from Hubble was studied in a previous
work [34] and a segmentation map is available.

One signi�cant work which has focused on fusing the multimodal information
from the Hubble and MUSE data to �nd the spectra of the galaxies is the thesis,
[34]. The work is motivated by the lack of MUSE-data speci�c spectral unmixing
method. The author of the thesis presents an algorithm that uses the �eld spread
function (FSF) of the Hubble telescope images and carries it to the MUSE images
to �nd the spatial localisation of the galaxies, and then using this spatial map in the
MUSE data to �nd the spectra of galaxies. The �eld spread function for each of the
HST bands is transferred to the MUSE data, and each is considered to be di�erent.

Recently, two articles [104], [105] were published around the MUSE dataset called
UDF-10, which corresponds to an area of the sky previously observed by the Hubble
Space Telescope (HST). The proposed algorithm takes into account the a priori
information present in the dataset; thus, the proposed unmixing algorithm is �rst run
on a subcube of UDF-10 for validation in the literature and then on the whole UDF-
10 cube. Equally, a pipeline is presented to �nd other sources in MUSE dataset with
no correspondence in existing catalogues of the sky from lower spectral resolution
but high spatial resolution HST images.

4.3.1 Validation on hyperspectral subcube

Data description

In [104], [105], the information provided in the Rafelski catalogue [10] is exploited to
perform the deblending and prove that MUSE, despite its lower spatial resolution,
allows, thanks to the spectral information, to unmix two spatially close or even
superimposed sources. We have selected the same portion of the image that is
presented in �gure 21 of [104] where the objects identi�ed by ID#4451, ID#4460
and ID#4465 in [10] are spatially superimposed in the MUSE observation. This gives
a 25 × 25 pixels image with spectra composed of 3681 samples from 4750 to 9350
Angström (1 Ang = 0.1 nm). A total of 9 galaxies are present in this �eld of view,
with three of them that are spatially close in the HST segmentation map represented
at the middle of the �rst row in Fig. 4.2. The source ID#4465 is brighter than
galaxies ID#4451 and ID#4460. Its contribution is visible on the white light image,
obtained by averaging the datacube with respect to the wavelength axis. A visible
source on the white light image indicates that its spectrum contains a continuous
component plus, possibly, some emission lines. Contribution of source ID#4451 is
embedded in the source ID#4465's. The objective of this section is to show that
knowing the spatial location of such a blended source provides enough information
to unmix spectra of the di�erent superimposed sources with our algorithm.
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Figure 4.2: UDF Hyperspectral astronomic data. On top, from left to right, MUSE
reconstructed white light image, HST Rafelski segmentation map and narrowband
image centered on λ = 6242.5 Ang (position of the emission line in estimated spec-
trum of source ID#4451). The central Rafelski source denoted by red crosshair is
ID#4451. Bottom, from left to right: estimated spectrum by the proposed method
and its comparison to DL-C-SUnSAL for source ID#4451 over the whole wavelength
range and zoom on the Lyα emission line estimated at λ = 6242.5.
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Algorithm details

For de�ning the spatial constraint IM(Ã) required by our model, the HST segmen-
tation map provided by [10] is used. This map is perfectly registered on the MUSE
data (4.3.1). In particular, there is no registration involved to superpose the images
of HST to MUSE dataset. It is su�cient to know the equatorial coordinates in terms
of right ascension (RA), and declination (DECA) angles to search for the correspond-
ing �eld of view. The alignment for the data presented was done with the help of
MUSE Python Data Analysis Framework (MPDAF) [106]. Then, by degrading the
spatial resolution from 0.1 arcsec to 0.7 arcsec, we obtain binary masks for all the
objects present in the �eld. The knowledge about the locations of ROIs (galaxies
locations from Hubble) is more precise in this case than in the case of scintigraphic
(manual region selection by an expert) or fMRI (registration of atlas) imaging. For
the three central sources, the obtained binary masks are shown on the �rst line of
Fig. 4.3.

Mixing of the galaxy spectra corresponds to an additive mixing, hence the sum-
to-one constraint is dropped, and we note:

fU(U) =
1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F ,

hnd(U) = 0,

fA(A) =
1

2
‖Y −UA‖2F ,

gnd(A) = IR+(A)+ IM(Ã)(A).

The algorithm used for unmixing galaxy spectra is described in (7). One hundred
alternated optimisation steps allow to reach a gain ( 4.10) equal to 10−10. It should
be noted that the background is considered here as a source, its mask is available
in the segmentation map, and it is processed in the same way as for the galaxies to
degrade its resolution to the resolution of the MUSE data.

Results and discussion

It is impossible to quantitatively compare the results obtained with ground truth
for spectral signature and abundance matrix since no such information exists for the
MUSE data. However, the same conclusions as in [104] can be drawn about the
spectrum estimated by our algorithm for source #4451: at wavelength λ = 6242.5
Ang, there is an emission line corresponding to object #4451 of Rafelski's catalogue.
This emission line has the characteristics of the Lyman-α line (Lyα), namely an
asymmetric pro�le as illustrated in Fig. 4.2. These results are very similar to the
ones presented in Figure 21 in [104] that is reproduced in Fig. 4.4 by courtesy of the
authors. Similarity between results presented in Fig. 4.2 and Fig. 4.4 con�rms the
interest of our generic approach to solve this particular type of unmixing problem.
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Figure 4.3: Hyperspectral astronomic data. Top row, from left to right, binary
mask of sources ID#4451, ID#4460 and ID#4465. Middle row, from left to right,
estimated abundance map of sources ID#4451, ID#4460 and ID#4465 by the pro-
posed method. Bottom row, from left to right, estimated abundance maps of sources
ID#4451, ID#4460 and ID#4465 by DL-C-SUnSAL method.
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1 Initialisation of A(0), l = 0
2 while STOPPING CRITERIA 6= TRUE do

3 Minimisation problem w.r.t U :

4 U(l+1) = YA(l)T (A(l)A(l)T + µσIR)−1

5 Parallel minimisation w.r.t. the columns ai of A :
6 for ai of A do

7 ω
(1)
i = a

(l)
i ,b

(0)
i = a

(l)
i

8 for k ← 1 to proxsteps do

9 b
(k)
i = proxg(ω

(k)
i − λ∇f(ω

(k)
i ))

10 t(k+1) =
1+

√
1+4(t(k))

2

2

11 ω
(k+1)
i = b

(k)
i +

(
t(k)−1
t(k+1)

)
(b

(k)
i − b

(k−1)
i )

12 end

13 a
(l+1)
i = b

(proxsteps)
i

14 end

15 l = l + 1;
16 end

17 return A, U

Algorithm 7: Alternate optimisation algorithm to estimate A and U that
combines three nested iterative algorithms. At each iteration l, the A and
U matrices are updated. The estimation of A is pixel-parallelised, i.e., for a
given pixel i, the index k refers to the iterations of the FISTA algorithm.

The results were equally compared to DL-C-SUnSAL. The model for DL-SUnSAL
can be written as:

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F +IS+(A) +‖A‖1. (4.14)

The default parameters for [44] were used for the SUnSAL method in DL-C-SUnSAL.
The DL-C-SUnSAL algorithm was tested on the dataset with the same initialisation
and provided a much noisier spectrum. Even though similar conclusions can be
drawn for the Lyα emission line in the estimated spectrum, its presence is not dis-
tinguishable from the other emission lines, especially at the end of the spectrum. The
absence of a hard spatial constraint in DL-C-SUnSAL resulted in larger estimated
spatial maps, and this can be observed in Fig. 4.3. The failure of DL-C-SUnSAL is
due to the presence of a stronger noise at the end of the spectrum. The calculation
time for the proposed method is around 5 seconds using the code in C++, while for
using the code for DL-SUnSAL in MATLAB, it is around 50 seconds.

It should be added that by comparing the results with the scintigraphy dataset,
we can see that the proposed method has a tendency to strongly remain localised
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Figure 4.4: Hyperspectral astronomic data. Reproduction of �gure 21 from paper
[104] with the authors' permission and pending approval from A&A.



110 CHAPTER 4. GENERALISATION OF THE UNMIXING MODEL

when the signal is stronger. This was observed for the scintigraphy case for the
estimation of spatial maps for di�erent ROIs. Here in the astronomy case, we can
see that the non-overlapping pixels for ID #4465 have stronger intensities in the
estimated spatial maps.
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4.3.2 Astronomical whole cube

Decent unmixing results on the sub-cube, validation of the galaxy #4451 in the
literature, and the possible scalability of the algorithm for large datasets led us
to evaluate unmixing results on the whole MUSE cube at our disposition. The
proposed method was implemented on the entire UDF-10 MUSE cube instead of the
application on a small portion in the previous section. In a similar manner to the
approach presented in the previous section on the small sub cube, the spatial maps
were obtained from the Rafelski catalogue [10] having galaxies outlined from HST
images. The implementation of algorithm 6 was run to estimate the spectra. It is
di�cult to analyse the results for the 1145 regions (1144 sources/galaxies and one
additional source, i.e., the sky) for which the spectra are found, so in this section,
we present the spectra of only some of the galaxies that overlap. The galaxies with
signi�cant overlaps were found by calculating the dice coe�cients between the masks
of the galaxies. A crop of the dice coe�cients matrix has been shown in Fig. 4.5 where
we can see that the galaxy #8222 overlaps with #8251 and #24692.

The proposed method was run on the entire astronomical cube after the prepro-
cessing step of standardising the data with the estimated variance of noise provided
with the cube UDF-10 in Flexible Image Transport System (FITS) format. The
denoising results in a lower number of peaks due to the noise at the end of the spec-
trum, which are mainly due to the sky and can cause misinterpretations of peaks.
These peaks could be confused as emission lines. The initialisations of the masks for
these galaxies are shown in the �rst row of Fig. 4.6, and the estimated spatial maps
are shown in the second row of Fig. 4.6. We see that the algorithm re�ned the spatial
maps in the interior of the provided ROIs (from HST). The spectra estimated for the
maps have been shown in the �gure Fig. 4.7. We see that there are some emission
lines that could be studied in the future with distinct emission lines appearing in the
spectra estimated for galaxy #9706, whereas there is a distinct adsorption line for
source #9708 near 6000 Angstrom. The spectrum of #9706 is most likely due to the
presence of a large number of pure pixels for #9706. This characteristic continuous
spectrum of #9706 is not observable in #9708 although the galaxies superpose.
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Figure 4.5: In this dice score matrix, the labels correspond to the IDs of the galaxies
in the MUSE dataset. The darker is the element of the matrix, more is the overlap.
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Figure 4.6: Entire UDF-10 data. On top, from left to right, binary mask of sources
ID#8222, ID#8243, ID#8251, ID#8304, ID#9679, ID#9706 and ID#9708. Bottom
line shows the estimated spatial maps for the same sources.
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Figure 4.7: Entire UDF-10 data. The spectra estimated for #8222, ID#8243,
ID#8251, ID#8304, ID#9679, ID#9706 and ID#9708 have been shown here.
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Figure 4.8: Entire UDF-10 data. Variance of the spectral residues after the unmixing.

4.3.3 Analysis of the estimation residues

The hyperspectral data may contain certain sources with faint emission spectra which
were not observed in the data from the Hubble telescope and thus their contributions.
Their spectra were not estimated as only the sources in the Rafelski catalogue were
taken into account for unmixing. Such sources need to be found by looking at the
narrow band spectra, which is time consuming and could be impossible to detect.
It is thus suggested to analyse the residual variances after unmixing the cube once.
This could provide information about the presence of such sources. In Fig. 4.8, the
residual variance can be seen; it can be observed that the variance is lower at locations
where the spatial maps were initialised. An image of the overlapping of the binary
masks of the galaxies observed by Rafelski is presented in Fig. 4.9. By comparing
Fig. 4.8 to Fig. 4.9 we can see that generally, residues are lower for ROIs for which
the pure pixel assumption is valid. To look for the faint sources not observed by the
Hubble telescope in the residue, a Gaussian PSF with a size of 3×3×3 was convolved
with the whole residual image (Y−UA). This operation helps in the localisation of
galaxies by spreading the emission lines and the spatial map to a certain number of
voxels. This also reduces the noise due to the small peaks in the spatial as well as the
spectral dimension. The resultant image helped to distinguish the probable galaxies
in the following step. In the next step, the maxima in the spectral dimension are
displayed in the form of a 2D image (see �gure Fig. 4.10); this is done to spatially
locate the galaxies with faint emission lines. Instead of maxima in the whole spectral
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Figure 4.9: Overlapping sources of binary masks of Rafelski have been shown here.
The indices on the colorbar refer to the amount of overlapping regions in the initial
A matrix.

dimensions, if some a priori knowledge is available (presence of emission lines in a
particular band), the maxima could be obtained for that speci�c spectral interval.
The possible galaxies not existing in the initial catalogue could be located in this
manner.

Once the galaxies are located, they need to be assigned labels and added to the
initial spatial maps matrix. The spatial maps for the probable galaxies can be re-
trieved from the maxima found by a thresholding operation in Fig. 4.10. Using some
geometric knowledge about the galaxies, new labels can be assigned to such struc-
tures. Then, by performing the alternate optimisation using the dictionary learning
method on the data again, the re�ned spatial maps and spectra for the galaxies
can be obtained. This procedure of hierarchical unmixing to add the located galax-
ies, adding them to the initial maps, and running the algorithm will improve the
unmixing. In Fig. 4.11 the thresholded regions are shown. Automatic labelling of
these thresholded regions can be done by object detection algorithms. The method
skimage.measure.label is used for automatic labelling of the connected regions with
skimage.measure.regionprops method to measure properties of the labelled regions,
which is used to reject objects below a certain size and those that are not enough cir-
cular or elliptic. In Fig. 4.12 di�erent colours represent di�erent labels automatically
assigned.
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Figure 4.10: Maxima in the spectral dimension of the residue convolved with a 3
voxel cube in UDF-10 after unmixing. The colorbar represents the amplitudes of the
emission lines. The galaxies in the green box were further analyed.
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Figure 4.11: Thresholding the residual variance in a cropped section of Fig. 4.10 to
�nd probable galaxies.
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Figure 4.12: Labelling the galaxies according to some geometric criteria based on the
shape or area of the galaxy (in terms of pixels square). Di�erent colours represent
di�erent labels

The spectra for two sources on the left in Fig. 4.12 were further evaluated. A
subcube considering the probable galaxies was cropped and the two galaxies were
added to the other sources present in this subcube. Alternate optimisation method
was run on this subcube and the results were evaluated.

It can be seen that there are some unique spectra attributed to these probable
sources. By investigating the spectra, it can be observed that the emission lines
present in the left source (in orange) actually corresponded to the spectra of source
#24874 (in blue). This can be veri�ed in Fig. 4.13, where we see that the spectra
corresponding to the two sources have an overlap of certain emission lines. The
estimated spatial maps are shown in Fig. 4.14. It was observed that the new source
added may, in fact, be the source #24874 with a problem of precise correspondence
in the initial catalogue because of the absence of the knowledge of the MUSE spectral
bands in the HST images.

For the other source it was seen that it certainly corresponds to the core of the
galaxy #24348 and it is the continuous component of the spectrum which lead to
its presence in the residue.
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Figure 4.13: Spectra of source #24348 in blue and the spectra of the source added
from the residue in orange.
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Figure 4.14: Estimated spatial maps for source #24874 and the �rst source that was
added as a ROI from the residue.
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Figure 4.15: Spectra of source #24874 in orange and the spectra of the source which
was investigate in blue.
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Figure 4.16: Maxima found in the convolved residue by inspecting the wavelengths
by brackets of 40 samples. A probable galaxy can be seen in the black box in the
�gure.

4.3.4 An interesting �nding

Using the pipeline provided to examine the residues in the previous section, it was
tested whether it was possible to look for new sources that do not exist in the
Rafelski catalogue [10]. The source that was inspected in the residue is the source
329 in the article [107] which is the same source as 6317 in the article [108]. The
initialisation for the galaxy #329 and the estimated spatial map is given in Fig. 4.17.
This source has an emission line at λ = 7782 that was found using the maxima in
the estimated spectra. The estimated spectra and a zoom of the Lyman α line are
provided in Fig. 4.18. The spectra of the same galaxy given in [107] can be observed
in Fig. 4.19. It can be observed that the peak for the Lyman α line is situated at
the same wavelength in both cases.
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Figure 4.17: Mask extracted by thresholding the maxima of the convolved residue
(on the left) and the estimated spatial map for one of the sources that does not exist
in the Rafelski map and was found in [107] (on the right).
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Figure 4.18: ROIs and the estimated spectrum for the source after smoothing with
a boxcar of 3 pixels and zoom on frequencies showing the presence of Lyα spectral
line.
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Figure 4.19: Reproduction of crop of �gure 7 from paper [107]. The �gure shows the
spectrum of source 329 in the �gure.
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4.3.5 Discussion

The unmixing model has been generalised so as to make it applicable to other ap-
plications in this chapter. A region-of-interest based dataset on which the algorithm
is tested is the scintigraphic dataset. Another application to which the proposed
region-of-interest based approach has proven e�ective is an astronomical applica-
tion. A dictionary learning method based on the general `1 sparsity state-of-the-art
method mostly used for hyperspectral unmixing, i.e., DL-C-SUnSAL, has thus been
compared to our method by respecting the constraints for the two applications.

For the quasi-real scintigraphic dataset, quantitative analysis revealed that the
performance of the proposed algorithm was similar to the state-of-the-art algorithms.
Better de�ned ROIs by experts may lead to better results using the proposed spatial
constraint for real case scenarios. The results have been compared to the results from
RUDUR algorithm [9] and DL-C-SUnSAL. The reason why the comparisons were
not made to other ROI based algorithms is that RUDUR was the closest algorithm
to the kind of problems we deal with in the article, and it performed the best out of
the other state-of-the-art algorithms that have been compared to in [9].

To compare the estimation of the spectrum for the astronomical data, we did not
�nd any method which takes into account the priors from a high-resolution segmen-
tation map to �nd the spectra of di�erent galaxies so the algorithm was compared
to a semi-automatic method in the literature. The proposed approach e�ectively
unmixed the galaxies and DL-C-SUnSAL failed in this case. It was observed that
the spectrum estimated by DL-C-SUnSAL contains a lot of noise due to the contri-
butions of non-zero abundances outside the de�ned boundaries of the galaxy. Even
though the spectral lines are partly recovered by the DL-SUnSAL method, they are
lost in the spectrum due to a lot of noise.

To locate galaxies with faint emission, the details are provided in this chapter.
One of the galaxies, labelled as source 329 in the article [107] and 6317 in the article
[108], was also found using this pipeline detailed in this chapter. This con�rmed that
the algorithm unmixes the data e�ciently. It was also observed that in the residue,
it is not only the noise that exists, but it is also possible to �nd other galaxies present
in the MUSE or other future hyperspectral datasets not present in the spatial maps
a priori.



Conclusion, discussion and

perspectives

General conclusion

The framework of this work evolved over the course of time. Initially, the focus was on
the development of an optimisation method with fMRI aspects in mind. Considering
the context of fMRI, the main application was to �nd the di�erence between the AD
mice and the WT mice. Under the hypothesis considered, each functional network
is comprised of �ne anatomical regions. An atlas with a segmentation map was
considered to be used for the localisation of these small regions on the fMRI images.
To perform unmixing, special constraints were added for the optimisation problem
to aid unmixing. For the fMRI data, statistical studies were required to �nd the
di�erences between the diseased and the control mice. In the later stage of this
work, the generalisation of the unmixing model allowed us to apply it to di�erent
datasets such as scintigraphy and astronomy. The proposed spatially constraint
dictionary learning algorithm was compared to the state-of-the-art for the di�erent
applications.

To check for di�erences in the AD and WT mice the Gaussian test on the longi-
tudinal data provided interesting results. Regions which had signi�cantly di�erent
changes in connectivity for AD mice but had not undergone changes for the WT mice
have been unveiled. It was observed that some of these regions like the entorhinal
and the olfactory regions are linked to AD in humans as well.

Contributions

The contributions in di�erent areas are given as follows:

� The fMRI images inherently do not have any localisation information of the
regions available thus, it can be di�cult to quantitatively analyse the changes
between the control mice and the diseased mice. To solve this purpose, a high
resolution atlas with a highly detailed segmentation map (with around 600
de�ned anatomical regions) was registered to the fMRI. It should be noted
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that the fMRI data have a really low resolution, and the projection of the
atlas on the data causes the regions to overlap. This led us to consider a more
sophisticated unmixing technique than the least squares method.

� Classically, an `1 constraint is used to induce sparsity in the unmixing model.
For the proposed unmixing method, the classical `1 constraint for the spa-
tial/abundance maps was replaced with a spatial constraint in the form of an
indicator function. This allows unmixing respecting the boundaries of the ini-
tial spatial maps, whereas the classical `1 norm does not spatially constrain the
sources. The performance was validated on a synthetic example with di�erent
cases of overlaps that can be found in real data. Once errors were evaluated for
the synthetic data, the algorithm was applied to real human fMRI data from
a popular fMRI analysis software, SPM. The results validated the proposed
model for fMRI data. Finally, the method was applied to real mice data and
interpreted by an expert neurobiologist, with outcomes compatible with what
was expected for the pathologies considered in this animal model.

� The hypothesis behind using a detailed segmentation atlas was that the func-
tional networks comprise of small anatomical regions. Classically, the fMRI
data is registered to the atlas and the unmixing is performed. In this work,
the atlas was registered to the fMRI data. A pipeline, di�erent from the state-
of-the-art, was developed to register the highly detailed segmentation map to
the fMRI data without much altering the original temporal signals. The hy-
pothesis and the pipeline introduced led to the development of codes that are
adaptable for di�erent datasets and were internally used in the team.

In order to compare the brain connectivity, analysis of correlation matrices is
the preferred approach in this study. For validation, quasi-real signals with
known correlations were introduced in the pre-frontal regions, and the un-
mixing was performed. The estimated signals and the correlation matrices
con�rmed the good performance of the unmixing approach. Di�erent kinds of
statistical validations were performed to look for longitudinal changes on the
correlation matrices of quasi-real and synthetic data. The validation of the
statistical tests allowed us to perform the statistical tests on real data.

� In the last chapter, the generalisation of the model has been detailed to adapt
the spatially constraint unmixing model to other applications. Results similar
to state-of-the art have been provided for the scintigraphic and astronomical
application. The work on these two applications required an understanding of
the various modalities involved. Promising results on quasi-real data in scintig-
raphy provides evidence of the applicability of the algorithm on real scinti-
graphic data. The results could be discussed with specialists from the domain
in the future. Since the proposed problem is adaptable, scintigraphy-based
priors on the temporal signals could be added if required. The hyperspectral
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data for the astronomical application is produced by the MUSE instrument,
and the external knowledge on sources locations comes from a catalogue de-
veloped from Hubble telescope observations in [10]. The algorithm was able to
provide e�cient unmixing results for the whole MUSE UDF-10 dataset, thus
proving its scalability. Various tools to analyse the data have been provided
with a pipeline to estimate the spectra of galaxies with faint emission lines or
retrieve galaxies that do not exist in the initial catalogue but are con�rmed
by other approaches. The generalisation of the model led to a publication in
IEEE Transactions on Image Processing.

Perspectives

The perspectives are divided into model-based perspectives and application-based
ones.

Model based perspectives

� Introducing spatial smoothing: The model proposed unmixing model in the
manuscript performs unmixing considering the pixels independently and be-
sides, abundance estimations are parallelised according to the pixels in the
implementation of the algorithm. In order to introduce more spatial coher-
ence within each abundance map, a constraint for spatial smoothing within
the regions could be introduced in a future variant of the algorithm. However,
depending upon the nature of the added constraint, it would increase the com-
plexity of the algorithm. One way such a constraint could be added is in the
form of total variation (T.V. regularisation). The spatially constraint optimi-
sation problem taking into account the neighbouring pixels for cases involving
2D images with a temporal or spectral information can be written (in the 3D
case, there would be a supplementary term ‖ADz‖). Recalling the general
model:

min
A,U

1

2
‖Y −UA‖2F +IS+∩M(Ã)(A)+ g(A) + h(U), (4.15)

for which the convex optimisation problem in the framework of Total Variation
(TV) problem can be formulated as:

fU(U) =
1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F ,

hnd(U) = IR+(U),

fA(A) =
1

2
‖Y −UA‖2F ,

gnd(A) = IR+(A)+IS+∩M(Ã)(A) + ‖ADx‖1 + ‖ADy‖1,
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where the last two terms represent the directional total variation terms in the
x, i.e. the horizontal direction and y, i.e. the vertical direction.

The problem can be divided into two di�erent sub-problems to solve for U and
A. The sub-problem for U can be solved by following the proximal method
explained in chapter 4. It can be observed that the estimation of A is more
complex than the original problem as the estimation for each pixel cannot
be done independently. One of the techniques that permit to resolve such
a problem, by dividing the problem into multiple sub-problems de�ned for
each of the constraints on A, is the ADMM (alternating direction method of
multipliers) approach [71]. The corresponding ADMM problem to calculate A
where the original optimisation is divided into a set of sub-problems can be
written as:

min
A

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F +IS+∩M(Ã)(A) + ‖ADx‖1 + ‖ADy‖1, (4.16)

subject to:

B = A, (4.17)

Vx = ADx, (4.18)

Vy = ADy. (4.19)

Some details to solve the problem 4.16 are given in C.

� Concerning the calculatory aspects of the proposed approach in the second
chapter, certain improvements could be made to improve the speed of the
estimation. A parallelised GPU implementation can vastly improve the speed
and could be implemented. Projection onto the convex sets was currently done
using the Michelot algorithm [11]. One of the improvements that could be done
is the implementation of [12] for faster projection onto the convex sets, which
could eventually reduce the calculation time.

Application based perspectives

� fMRI: In order to avoid modifying the fMRI data, the data was kept in its
original resolution and an atlas was projected onto the fMRI data. This step
is di�erent from the studies in literature where the fMRI data is registered to
the atlas, and then an unmixing algorithm is run over the data. Our approach
involved a preprocessing pipeline which could form the basis of a future article
with the addition of further technical analysis.

A few regions in the hippocampus were divided into multiple sub-regions based
on evidence of di�erent functional activities at the interior of such regions.
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This deeper scale seed analysis could equally be done for other regions for
which such pieces of evidence can be made. One way this could be done is
by performing ICA in the interior of a particular region and then checking the
estimated spatial maps. In highly detailed segmentation atlas, at its �nest
resolution, certain �ne anatomical regions are further divided into multiple
thin layers. These layers overlap each other at the lower fMRI resolution scale
and in this case, it is less appropriate to conserve such �ne segmentation. The
idea to fusion the anatomical regions to stay on a superior anatomical scale
would improve the di�culty of the problem by reducing the dimensions of
the problem of estimation (for example, by improving the conditioning of the
matrix A).

During the course of this work, the targeted fMRI applications were for resting-
state mice data. Although a human task-based application is presented, future
applications could involve unmixing on resting-state human fMRI data. Other
datasets involving a cryoscope have low noise, and our proposed approach could
be interesting for such data. Lower noise would lead to better estimated time
signals and thus better correlation matrices, which may improve the clustering
of functional regions into functional networks. Either more powerful statistical
tests could be studied and eventually performed to �nd the di�erence between
the groups, or group studies on data with more subjects could be performed.

� Astronomy: Various results corroborate that the proposed method can be ap-
plied for unmixing hyperspectral data where a segmentation map of the galax-
ies is available. Theoretically, the proposed method should provide better-
estimated spectra than the spectra estimated by manual selection by experts
where the signals are contaminated with the signals from other sources. The
analysis of residues after unmixing of the known sources thanks to the [10] cat-
alogue enabled to �nd a new galaxy, also detected by other methods developed
in the framework of the analysis of the data for project MUSE. The entire
MUSE cube must now be explored to search for other sources in the residues
and running the algorithm again by adding the new sources in the initial maps
in order to re�ne the results. The pipeline to �nd galaxies with faint emission
lines from the residues could be used to validate other galaxies after discussion
with astronomers.
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Appendix A

Hypothesis testing theory

Hypothesis testing is useful to test whether a statistical hypothesis is valid for a
given observation x (in scalar or vector form). This is done by de�ning a test,
which is a function T of the observation, which would enable us to accept or reject
the considered hypothesis by comparing it with a threshold of decision. The �rst
part sectionA.1 is about statistical tests to check whether the results of the test
are signi�cant or not. Both parametric tests and non-parametric test are considered
here. The second part sectionA.2 is about multiple tests where the tests are no
longer binary, and the acceptation and rejection of an observation are de�ned taking
into account all observations.

A.1 Binary tests

A hypothesis is an ideal representation of what is expected in the form of a statement
for a given data. In statistical terms, the hypothesis would either fall under a null
distribution (H0) or the alternative distribution (H1). If a binary decision needs to
be taken to check whether the observations fall under H0 or H1, a binary statistical
test is su�cient. In this manuscript, we consider the case of correlation coe�cients
x from a correlation matrix. Suppose that we have two groups of mice, healthy
and diseased. Let us assume that the correlation coe�cients for di�erent regions lie
under H0 for the normal case, and the correlation coe�cients the diseased case fall
under H1.

{
H0 : x ∼ p(x|H0) (correlation coe�cients for a normal case)

H1 : x ∼ p(x|H1) (correlation coe�cients for an alternative case),

where p(x|Hi) is the distribution for xi under the hypothesis Hi. To decide
whether the observations fall under the null or the alternative hypothesis, a test
statistic T (.) and a threshold for such a test is required. The decision rule can be
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Decision

Null
hypothesis H0 is true H1 is true

H0 is accepted Correct decision (1 - pFA) Type II error (pM )
H0 is rejected Type I error (pFA) Correct decision (1-pM )

Table A.1: Probabilities associated with di�erent possible decisions

explained as:

T (x)
H0

≷
H1

ε, (A.1)

where ε is the threshold that enables to control the decision. Fig. A.1 shows T (x)
under the di�erent hypothesis and the representation of the probability of false alarm
PFA and of missing detections PM corresponding to a threshold ε. The test statistic
chosen could be parametric or non-parametric. These have been explained in A.1.1

T(x)
ε0 θ

p(T (x)|H0) p(T (x)|H1)

pM pFA

Figure A.1: Hypothesis testing, for example T(x) =D = ZA−ZB di�erences between
z-values of a certain parameter of two groups under the hypothesisH0 andH1 (Figure
inspired from [109] �gure A.1)

The probability of false alarm (pFA) characterises the probability P (.) of rejecting
H0 given that it is true. For our problem, it can be expressed as:

pFA = P (T (x) > ε|H0) =

∫ +∞

ε
p(T (x)|H0)dx. (A.2)

If the distribution of the test is known under H1 then it is also possible to calculate
pM :

pM = P (T (x) < ε|H1) =

∫ ε

−∞
p(T (x)|H1)dx. (A.3)



A.1. BINARY TESTS 131

P-values

P-values are an inseparable tool in statistical analysis. The p-value associated to a
test value T (xi) on the observation xi refers to the probability of T(x) to achieve at
least that extreme value for the observation xi knowing that the hypothesis H0 is
true. For a single-tailed test, i.e., where H1 is assumed to be further on the positive
side, the p-value for observation xi can be written as :

pxi = P (T (x) > T (xi)|H0) =

∫ +∞

T (xi)
p((T (x)|H0))dx. (A.4)

P-values can also be expressed as:

pxi = 1− P (T (x) < T (xi)|H0) (A.5)

Given that ΦH0 is the CDF of the test statistic under H0 then the last equation can
be written as:

pxi = 1− ΦH0(T (xi)). (A.6)

Being a probability, p-value is a variable belonging to the interval [0,1]. The p-values
obtained are considered as a transformation of the test-statistic. The characteristics
of this random variable can be summarised as:
- pxi is distributed according to the uniform law U([0, 1]) under H0

- pxi is stochastically smaller than U([0, 1]) if xi ∼ H1, i.e. Pr(pxi < t) > t for all
t ∈ [0, 1], and independently of the initial distribution of T (xi) (which means that if
xi ∼ H1, the distribution of pxi has a positive skew).

Example

For the binary hypothesis test if T (xi) under H0 follows a zeo-mean normal distribu-
tion, Fig. A.2 illustrates the calculation of p-value associated with the observations
xi. The p-value is denoted by:

pxi = 1− Φ
(xi
σ

)
, (A.7)

where Φ is the CDF of a standard normal distribution.

A.1.1 Parametric tests

Such tests are used when the distributions of the test statistic are known. There
are di�erent kinds of parametric tests in the literature, such as the Student's t-test,
chi-squared test [110], [111], Pearson correlation, Gaussian test. Here, Student's test
for groups was used and is explained here.
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T(x)
T (xi)0

p(T (x)|H0)

pxi

Figure A.2: Calculation of p-values (Figure inspired from [109] �gure A.2)

A.1.2 Student's t-test

This test looks for di�erences in the means of two populations with unknown stan-
dard deviations. The family of Student's distribution depends on the degrees of
freedom, which are equal to the sum of the total number of samples in each group
minus two. Variants of the Student's test exist: e.g., for samples greater than 30,
the di�erence of means follows a normal distribution. When there are not many
samples (as in this study), the Student's test adapted for small-sample size could be
performed. The test statistic t for a small sample size with two populations of size
N1 and N2 having equal variances is given by:

t =
X̄1 − X̄2√

S2
(

1
N1

+ 1
N2

) , (A.8)

with

S2 =
(N1 − 1)S2

1 + (N2 − 1)S2
2

N1 +N2 − 2
. (A.9)

In (A.8) X̄1 and X̄2 are the arithmetic means of the two groups.
The variances can be veri�ed by Fisher's test for homoscedasticity [112]. A

general rule of thumb is to perform a test for a small sample size when N1 and N2

are less than or equal to 30. The statistical distribution, in this case, is the Student's
distribution with a degree of freedom equal to N1 +N2 − 2.
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A.1.3 Non-parametric tests

Non-parametric tests are useful when the null distribution cannot be parametrically
expressed. Bootstrapping, permutations testing, Wilcoxon signed-rank test [113] are
some non-parametric tests. Permutations testing for groups has been explained as
follows.

Permutations testing for groups

Suppose we have two groups with N1 elements in the �rst group and N2 elements in
the second group. To perform the permutations test, �rst of all, a mix is generated
with elements from the two groups pooled together, i.e., two groups are generated by
randomly selectingN1 elements without replacement from the mix and then selecting
N2 elements and putting them in group 2. The null distribution is estimated by
calculating the metric chosen for the two generated groups many times. Permutations
testing is used in order to test the signi�cance of a test statistic. This is di�erent from
the using p-values (refer to sectionA.1), which are interesting but do not provide
any insight into the signi�cance. The advantage of permutations testing is that
the test statistic could be any metric. Another advantage is to generate the null
distribution empirically if no knowledge about the statistics is available. Compute
the test statistic by �nding the value of the metric used for the comparison of two
populations to be tested. The procedure considering the metric as di�erences can
be explained as follows: Repeat step 1 and step 2 'B' number of times.

1. Group the populations together and, without replacement, randomly choose
individuals to form synthetic populations of the original group sizes.

2. Compute the histogram of the 'B' values obtained.

3. Estimate the p-value of the original test value obtained on the population.

Ideally, while performing the �rst step, each new group generated should be
unique. This would guarantee the performance of the test.

A.2 Introduction to multiple comparisons/multiple test-
ing problem

Given N observations x = [x1, ..., xN ], each associated with a system of binary hy-
potheses:

Hi0 : xi ∼ p(xi|Hi0) (A.10)

Hi1 : xi ∼ p(xi|Hi1) (A.11)

We consider the case where the hypothesis Hi0 (respectively Hi1) are identical for the
N observations, so Hi0 = H0 (respectively Hi1 = H1). In multiple comparisons, N
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Decision

Null
hypothesis H0 is true H1 is true Total

H0 is accepted N0 − a N1 − b N0 +N1 −R
H0 is rejected a b R

Total N0 N1 N

Table A.2: Decision table associated with N tests

tests corresponding to N observations are required; tableA.2 represents the possible
outcomes. The number N0 (respectively N1) represents the number of cases that
fall under hypothesis H0 (respectively H1). The proportion of false alarms over
the whole set of N decisions is represented by the fraction a/N and the number of
R = a+b represents the total number of discoveries or cases for which H0 is rejected.

The problem in the case of N tests is formulated in a di�erent fashion than the
case of a unique test. It is possible to control each test individually by checking
the probability of false alarms or missed detection; however, it may be much more
interesting to have a global error control criterion for all N tests. To understand the
problem, let us consider the case where the probability of false alarms is controlled
individually for the N tests at a level α. The average number of false alarms over
the whole set of tests will then be Nα. We can observe that if the number of tests
is very large, then the number of false alarms will be large but will be independent
of the number of correctly identi�ed detection, b, falling under the hypothesis H1.
Two main criteria for global error control in the case of multiple tests have been
introduced here: control of the FWER for family-wise error rate and FDR control
for false discovery rate. This section has been inspired by [109] appendix A.2.

A.2.1 Control of FWER

Di�erent procedures exist in the literature to control FWER. It is the criteria used
to control the probability of having at least one false discovery out of the N tests at
a threshold α:

FWER = P (a ≥ 1) ≤ α. (A.12)

Di�erent methods to control FWER exist, two of the classical methods have been
detailed here: Bonferroni correction and Holm-Bonferroni method.

A.2.2 Bonferroni correction

[114] The Bonferroni method consists of rejecting all the cases where the p-value
pxi <

α
N makes it possible to maintain the FWER ≤ α. This probability can be
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interpreted with the help of the Boole's inequality:

FWER = P

⋃
i∈I0

(pxi ≤
α

N
)

 ≤∑
i∈I0

P
(
pxi ≤

α

N

)
(A.13)

where the set I0 represents the set of cases where H0 is true. H0 is true when the
associated p-value follows a uniform distribution in the interval [0,1] and therefore
P (pxi ≤ α

N ) = α
N . Finally:

FWER ≤
∑
i∈I0

α

N
= N0

α

N
(A.14)

This procedure is conservative as the threshold depends on N, the number of tests
taken into account.

In [114], the control of FWER was improved. The procedure permitted to control
FWER by keeping it less than or equal to α (FWER ≤ α).

A.2.3 Controlling FDR

If a large number of observations needs to be tested, where the discoveries are very
few in nature, FWER could lead to missing detection. The control of FDR was
introduced by Benjamini and Hochberg [96] and avoids missing important detection.
The false discoveries proportions (FDP) corresponding to N tests for which the
decision table is written in tableA.2, is given by :

FDP =
a

R
. (A.15)

By convention, FDP = 0 when R = 0 or in other words when none of the null
hypothesis is rejected. The false discovery rate, FDR, is given by:

FDR = E[FDP ] = E
[ a
R

]
. (A.16)

Controlling the FDR under a certain level q consists of keeping, on average, the
FDP lower than the threshold q. This guarantees that the proportion of hypothesis
rejected by hazard is on average less than q. The procedure is given in [96] permits
the control of FDR in the case of N independent tests at a level π0q where π0 = N0

N
is the proportion of tests absolutely under the null hypothesis and 0 ≤ q ≤ 1 is the
control parameter. Even if the proportion π0 is not known, the control is always
guaranteed at a level q. The procedure of Benjamini-Hoschberg is described as:

FDR = E[FDP ] = E
[ a
R

]
. (A.17)

Since FDR is a criterion less conservative than FWER, the detection procedure
performed with the control of FDR will have more power. It should be noted that
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all procedures that control FWER control equally the FDR but in a sub-optimal
manner.

The performance can be measured on synthetic data by measuring False Dis-
covery Proportion(FDP). Lesser is the power of the test, more is the FDP. For a
simulated dataset, it can be seen that the rate of FDP approaches FDR. The algo-
rithm of Benjamini Hochberg can be written as:

1. Arrange the p values in the ascending order.

2. Fix an FDR level q.

3. pthresh = argmaxi{pi < q i
N } where i is the rank of the sorted p-values pi.

4. All p-values lying less than pthresh are considered under H1 or as discoveries
or detections.

Example

Given N = 9000 samples generated with 8900 samples lying under H0 according to
a Gaussian distribution N (0, 1) and 100 samples generated with N (3, 1) under H1.
For each observation, the following binary hypothesis model is associated:

Hi0 : xi ∼ N (0, σ2)(normal case) (A.18)

Hi1 : xi ∼ N (θ, σ2), θ > 0(alternative case) (A.19)

The detections or discovereies in Fig.A.3 are the samples under the values 0.05
for FWER and under qi/N for FDR.

The detections or discovereies in Fig.A.3 and the zoomed in �gure Fig.A.4 are
the samples under the values 0.05 for FWER and under qi/N for FDR.
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Figure A.3: Graphical representation of the thresholding of p-values with the Bon-
nferroni procedure with 9000 Gaussian samples. 33 detections were made for q =
0.05 whereas 8 for the case of FWER = 0.05.
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Figure A.4: Graphical representation of the thresholding of p-values with the Bon-
nferroni procedure showing the �rst 50 samples.
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Appendix B

Allen atlas brain annotation

details

B.1 Names of Brain regions

B.1.1 Prefrontal cortex regions

ACAd1 Anterior cingulate area, dorsal part, layer 1
ACAd2/3 Anterior cingulate area, dorsal part, layer 2/3
ACAd5 Anterior cingulate area, dorsal part, layer 5
ACAd6a Anterior cingulate area, dorsal part, layer 6a
ACAd6b Anterior cingulate area, dorsal part, layer 6b
ACAv1 Anterior cingulate area, ventral part, layer 1
ACAv2/3 Anterior cingulate area, ventral part, layer 2/3
ACAv5 Anterior cingulate area, ventral part, layer 5
ACAv6a Anterior cingulate area, ventral part, 6a
ACAv6b Anterior cingulate area, ventral part, 6b
PL1 Prelimbic area, layer 1
PL2/3 Prelimbic area, layer 2/3
PL5 Prelimbic area, layer 5
PL6a Prelimbic area, layer 6a
PL6b Prelimbic area, layer 6b
ILA1 Infralimbic area, layer 1
ILA2/3 Infralimbic area, layer 2/3
ILA5 Infralimbic area, layer 5
ILA6a Infralimbic area, layer 6a
ILA6b Infralimbic area, layer 6b
ORBl1 Orbital area, lateral part, layer 1
ORBl2/3 Orbital area, lateral part, layer 2/3
ORBl5 Orbital area, lateral part, layer 5
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ORBl6a Orbital area, lateral part, layer 6a
ORBl6b Orbital area, lateral part, layer 6b
ORBm1 Orbital area, medial part, layer 1
ORBm2/3 Orbital area, medial part, layer 2/3
ORBm5 Orbital area, medial part, layer 5
ORBm6a Orbital area, medial part, layer 6a
ORBvl1 Orbital area, ventrolateral part, layer 1
ORBvl2/3 Orbital area, ventrolateral part, layer 2/3
ORBvl5 Orbital area, ventrolateral part, layer 5
ORBvl6a Orbital area, ventrolateral part, layer 6a
ORBvl6b Orbital area, ventrolateral part, layer 6b
CA1 Field CA1
CA2 Field CA2
CA3 Field CA3
DG-mo Dentate gyrus, molecular layer
DG-po Dentate gyrus, polymorph layer
DG-sg Dentate gyrus, granule cell layer
CLA Claustrum
EPd Endopiriform nucleus, dorsal part
EPv Endopiriform nucleus, ventral part
LA Lateral amygdalar nucleus
BLAa Basolateral amygdalar nucleus, anterior part
BLAp Basolateral amygdalar nucleus, posterior part
BLAv Basolateral amygdalar nucleus, ventral part
BMAa Basomedial amygdalar nucleus, anterior part
BMAp Basomedial amygdalar nucleus, posterior part
PA Posterior amygdalar nucleus
CP Caudoputamen
ACB Nucleus accumbens
FS Fundus of striatum
OT Olfactory tubercle
LSc Lateral septal nucleus, caudal (caudodorsal) part
LSr Lateral septal nucleus, rostral (rostroventral) part
LSv Lateral septal nucleus, ventral part
SF Septo�mbrial nucleus
SH Septohippocampal nucleus
AAA Anterior amygdalar area
BA Bed nucleus of the accessory olfactory tract
CEAc Central amygdalar nucleus, capsular part
CEAl Central amygdalar nucleus, lateral part
CEAm Central amygdalar nucleus, medial part
IA Intercalated amygdalar nucleus
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MEA Medial amygdalar nucleus
VAL Ventral anterior-lateral complex of the thalamus
VM Ventral medial nucleus of the thalamus
VPL Ventral posterolateral nucleus of the thalamus
VPLpc Ventral posterolateral nucleus of the thalamus, parvicellular part
VPM Ventral posteromedial nucleus of the thalamus
VPMpc Ventral posteromedial nucleus of the thalamus, parvicellular part
SPFm Subparafascicular nucleus, magnocellular part
SPFp Subparafascicular nucleus, parvicellular part
SPA Subparafascicular area
PP Peripeduncular nucleus
MGd Medial geniculate complex, dorsal part
MGv Medial geniculate complex, ventral part
MGm Medial geniculate complex, medial part
LP Lateral posterior nucleus of the thalamus
PO Posterior complex of the thalamus
POL Posterior limiting nucleus of the thalamus
SGN Suprageniculate nucleus
AV Anteroventral nucleus of thalamus
AMd Anteromedial nucleus, dorsal part
AMv Anteromedial nucleus, ventral part
AD Anterodorsal nucleus
IAM Interanteromedial nucleus of the thalamus
IAD Interanterodorsal nucleus of the thalamus
LD Lateral dorsal nucleus of thalamus
IMD Intermediodorsal nucleus of the thalamus
MD Mediodorsal nucleus of thalamus
SMT Submedial nucleus of the thalamus
PR Perireunensis nucleus
PVT Paraventricular nucleus of the thalamus
PT Parataenial nucleus
RE Nucleus of reuniens
RH Rhomboid nucleus
CM Central medial nucleus of the thalamus
PCN Paracentral nucleus
CL Central lateral nucleus of the thalamus
PF Parafascicular nucleus
RT Reticular nucleus of the thalamus
IGL Intergeniculate lea�et of the lateral geniculate complex
LGv Ventral part of the lateral geniculate complex
SubG Subgeniculate nucleus
MH Medial habenula
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LH Lateral habenula

Table B.1: Table for acronyms and their full forms for sub-regions of the prefrontal
cortex



Appendix C

Details of ADMM to introduce

spatial smoothing

Rewriting the minimisation problem for A given in 4.16:

min
A

1

2
‖Y −UA‖2F +IS+∩M(Ã)(A)+ ‖ADx‖1 + ‖ADy‖1, (C.1)

subject to:

B = A, (C.2)

Vx = ADx, (C.3)

Vy = ADy. (C.4)

Posing the problem as a variant of ADMM, let us consider:

AΣ + ZΛ = 0, (C.5)

where Σ = [Ip|AVx|AVy], Z = [B; Vx; Vy] and Λ = I3P .
The augmented Lagrangian for ADMM, if Θ, Φx and Φy denote the Lagrange

multipliers and ρ is the penalty parameter, can be written as:

Lρ(A,B,Vx,Vy,Θ,Φx,Φy) =
1

2
‖Y −UA‖2F +IS+∩M(Ã)(B)+ ‖Vx‖1 + ‖Vy‖1+

〈Θ; (A−B)〉+ 〈ΦT
x ; (ADx −Vx)〉+ 〈ΦT

y ; (ADy −Vy)〉+
ρ

2
(‖A−B‖2F + ‖ADx −Vx‖2F + ‖ADy −Vy‖2F ),

(C.6)

if
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Lρ(A,B,Vx,Vy,Θ,Φx,Φy) =
1

2
‖Y −UA‖2F +IS+∩M(Ã)(B)+ ‖Vx‖1 + ‖Vy‖1+

〈[Θ; Φx; Φy]; AΣ + ZΛ〉+
ρ

2
(‖AΣ + ZΛ‖2F ).

(C.7)

Lρ(A,B,Vx,Vy,Θ,Φx,Φy) =
1

2
‖Y −UA‖2F +IS+∩M(Ã)(B)+ ‖Vx‖1 + ‖Vy‖1+

Tr(ΘT (A−B)) + Tr(ΦT
x (ADx −Vx)) + Tr(ΦT

y (ADy −Vy))+
ρ

2
(‖A−B‖2F + ‖ADx −Vx‖2F + ‖ADy −Vy‖2F ).

(C.8)

C.0.1 A sub-problem

The A sub-problem can be written as:

min
A

1

2
‖Y −UA‖2F + Tr(ΘT (A)) + Tr(ΦT

x (ADx)) + Tr(ΦT
y (ADy)) +

ρ

2
(‖A−B‖2F + ‖ADx −Vx‖2F+

‖ADy −Vy‖2F ).

(C.9)

In order to �nd the value of A that minimises C.9, the �rst derivative should be
equal to 0 and can be written as:

UTUA−UTY + ΘT + ΦT
xDx + ΦT

y Dy + ρ(A−B + ADxD
T
x −VxD

T
x + ADyD

T
y −VyD

T
y ) = 0

(C.10)

Rearranging the terms:

UTUA + ρA + ρADxD
T
x + ρADyD

T
y = UTY −ΘT − ΦT

xDx − ΦT
y Dy + ρB + ρVxD

T
x + ρVyD

T
y

(C.11)

Regrouping similar terms to represent it in the form of Sylvester equation (M1X+
XM2 = C):

(UTU + ρI)A + A(ρDx DT
x + ρDyD

T
y ) = UTY −ΘT − ΦT

xDx − ΦT
y Dy + ρB + ρVxD

T
x + ρVyD

T
y

(C.12)

Using the solution of the Sylvester equation:

vecA = (I⊗ (UTU + ρI) + (ρDx DT
x + ρDyD

T
y )⊗ I)−1vec(UTY −ΘT − ΦT

xDx − ΦT
y Dy + ρB

+ ρVxD
T
x + ρVyD

T
y ),

(C.13)

where vecA is a stack of columns of A and ⊗ is the Kroenecker product.
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C.0.2 B sub-problem

The B subproblem can be written as:

min
B
IS+∩M(Ã)(B) + 〈(ΘT ; (B−A)〉+

ρ

2
‖B−A‖2F (C.14)

As minB IS+∩M(Ã)(B) would be a simple projection, expanding the second and
third term to make it suitable for the minimisation problem:

min
B

ρ

2
Tr(

2

ρ
ΘT (B−A) + (B−A)T (B−A)) (C.15)

Simplifying the equation:

min
B

ρ

2
‖B−A + ρ−1Θ‖2F −

ρ

2
‖ρ−1Θ‖2F (C.16)

As minimisation is with respect to B, only the �rst term is to be considered:

min
B

ρ

2
‖B−A + ρ−1Θ‖2F (C.17)

Introducing C.17 back into the original B subproblem.

min
B
IS+∩M(Ã)(B) +

ρ

2
‖B−A + ρ−1Θ‖2F (C.18)

The minimisation is in fact an orthogonal projection given by:

Bk+1 = PÃ∩S+(Bk + ρ−1Θk) (C.19)

C.0.3 Vx sub-problem

min
Vx

‖Vx‖1 + 〈Φx; (ADx −Vx)〉+
ρ

2
‖ADx −Vx‖2F . (C.20)

min
Vx

‖Vx‖1 +
ρ

2
‖ADx −Vx + ρ−1Φx‖2F −

ρ

2
‖ρ−1Φx‖2F (C.21)

As minimisation is with respect to Vx, taking into account just the �rst two
terms:

min
Vx

‖Vx‖1 +
ρ

2
‖ADx −Vx + ρ−1Φx‖2F (C.22)

min
Vx

‖Vx‖1 +
ρ

2
‖Vx − (ADx + ρ−1Φx)‖2F (C.23)

From the shrinkage formula for a similar term given in [115]:

Vk+1
x = max{‖Vk

x‖ − ρ−1Φx, 0}.sign(Vk
x), (C.24)

where sign is the signum function.
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C.0.4 Vy sub-problem

min
Vy

‖Vy‖+ ΦT
y (ADy −Vy) +

ρ

2
‖ADy −Vy‖2F (C.25)

Similarly to the case of Vx:

Vk+1
y = max{‖Vk

y‖ − ρ−1Φy, 0}.sign(Vk
y), (C.26)

C.0.5 Θ sub-problem

Θk+1 = Θk +
ρ

2
(‖Ak −Bk‖2F ) (C.27)

C.0.6 Φx sub-problem

Φk+1
x = Φk

x +
ρ

2
(‖AkDx −Vk

x‖2F ) (C.28)

C.0.7 Φy sub-problem

Φk+1
x = Φk

y +
ρ

2
(‖AkDy −Vk

y‖2F ). (C.29)

C.0.8 Structure of Dx and Dy

Suppose a 2D image R ∈ l×m contains p total pixels with m = 3. The example for
matrices Dx and Dy for an image (with 3 pixels in each row) can be written as:

Dx: 
1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

...
0 0 0 . . . 1


︸ ︷︷ ︸

P

Dy: 

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
−1 0 0 1 . . . 0
0 −1 0 0 . . .
...

...
...

...
...

...
0 0 0 0 . . . 1


︸ ︷︷ ︸

P
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