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Chapter 1

Introduction

This thesis is about the temperature dependence of dynamics in polymer melts, and

how this mobility may change when polymer melts are confined to thin films. Let us start

by discussing what polymer melts are about.

Polymer melts are systems that contain many macromolecules in form of a liquid

[1, 2]. In the simplest case, macromolecules are linear chains comprised of 𝑁 monomeric

repeat units (number 𝑁 is usually called a degree of polymerization or, simply, the chain

length). The chains can be up to 𝑁 ≲ 105 long making them quite big objects with the

gyration radius 𝑅g ≲ 1 𝜇m, even though the size of a monomer is only ∼ 5 Å. Such a

large span of length scales is pronounced in the structural and dynamical properties of

polymer melts. Being liquids, they show an amorphous dense packing of the monomers on

a local scale and low compressibility on a macroscopic scale [3]. On the intermediate scales

(up to ∼ 𝑅g) the structure of the melt is determined by the intra- and intermolecular

contributions. The former manifests in the fact that long polymers are self-similar fractal

objects [2, 4] that have the ability to adopt different conformations. Such a chain structure

allows the other chains to penetrate inside the volume it occupies leading to on average√𝑁 other chains inside the pervaded volume by one chain. These neighboring chains

screen the intrachain excluded volume interactions which in a dilute solution would lead

to swelling of the polymer [1, 2, 4]. Thus, to a good approximation the chains in a melt

have a random-coil-like conformation with the size scaling as 𝑅g ∼ √𝑁 with the chain

length. The dynamics of the melt also varies with the length scale: the (longest) relaxation

time of a polymer 𝜏𝑁 is much larger than the monomer relaxation time 𝜏1. For moderate𝑁 it is commonly described by the Rouse model [1, 2, 4, 5], that predicts 𝜏𝑁 = 𝜏1𝑁2.
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8 CHAPTER 1. INTRODUCTION

Due to the slow relaxations, polymer melts are more viscous than low-molecular-weight

liquids. Moreover, since the chains cannot cross each other, a network of topological

constraints appears and persists during significantly long times when the chain length

exceeds a certain value 𝑁e. These entanglements slow down the dynamics of the melt even

more. The so-called “reptation” model describes this effect and predicts 𝜏𝑁 = 𝜏1𝑁3/𝑁e

[1, 2, 4]. In addition to slowing down the relaxation in the time window 𝜏1 < 𝑡 < 𝜏𝑁, the

increase of the chain length leads to a pronounced viscoelastic behavior of the melt even

at high temperatures.

Upon cooling to low temperatures, polymer liquids undergo a transition to a solid

state, which is either semicrystalline or glassy (amorphous) depending on the structure of

the chain. Only polymers with side groups having regular tacticity [2] (e.g. isotactic/syn-

diotactic polystyrene) or without side groups (ex. polyethylene) can form crystalline

lamellae. Still, the full crystallization is almost never achieved and the lamellar sheets

exist along with amorphous regions [6, 7]. For atactic (homo)polymers (e.g. atactic

polystyrene) or random copolymers (𝑐𝑖𝑠-𝑡𝑟𝑎𝑛𝑠 polybutadiene, etc.) the crystalline phase

does not exist. Upon cooling these polymer melts are in general good glass formers [8, 9].

Similarly to nonpolymeric glass-forming liquids, with decreasing the temperature towards

a characteristic value 𝑇g, all structural relaxation times drastically increase over about

14 orders of magnitude (from ∼ 1 ps at high 𝑇 to ∼ 100 s at 𝑇g) in a super-Arrhenius

fashion. Below 𝑇g the relaxation is so slow, that the system is indistinguishable from

an amorphous solid. On the contrary, static two-point correlation functions, such as the

static structure factor 𝑆(𝑞), change mildly and below 𝑇g the system has the structure of

a “frozen” liquid, that has stopped to flow [10]. In addition to slowing down, another

characteristic feature of the glassy dynamics is a two-step relaxation of the time correlation

functions 𝐶(𝑡) = ⟨𝐴∗(𝑡)𝐴(0)⟩ 1 of the structure-sensitive variables 𝐴, with the first step

attributed to the weekly temperature dependent microscopic relaxation and the second step

corresponding to structural relaxation. The latter one is stretched over large time windows

and has a strong dependence on temperature. Typical experimentally observed quantities

that show this behavior are the coherent/incoherent density fluctuations measured in

dynamic neutron scattering experiments [11]. These effects are also observed as broadening

of the dominant loss peak in the frequency domain when measuring the relaxation of the

1𝐴∗ denotes the complex conjugation and the angular brackets ⟨⟩ denote the thermal average.
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local electric dipoles in dielectric spectroscopy measurements [12].

Even though the behavior of glass forming polymer melts outlined above has been

observed over many decades already [10], the description of the glassy dynamics at

the present time still has rather an empirical character and the mechanisms of the

glass transition phenomenon are not yet fully understood. An overview of theoretical

perspectives on the glass formation can be found in Refs. [13, 14]. The situation is even

more complicated for the polymer glasses in confinement to the nanoscale dimension, that

have extensive industrial application (coatings, semiconductors, polymer nanocomposites)

[15]. With the current trend to the miniaturization, it is important to understand the

effects of confinement on mechanical stability. In particular, many studies on ∼ 10−100 nm

thick polymer films reported significant shifts in the average 𝑇g with respect to the bulk

value (see [10] and references therein and Fig. 1.1). These shifts were found to depend on

the geometry of the film (capped/supported/freestanding), the chemical structure of the

polymer and even the experimental technique employed in the investigation. Interpretation

of a huge amount of data seems to reach a consensus in the fact, that these shifts are the

average effect of local 𝑇g gradients created by the confinement. In particular, the presence

of a free surface for the supported and freestanding films is commonly assumed to speed

up the dynamics of the close-by polymer layer leading to a decrease of the local 𝑇g. The

presence of a substrate for the capped/supported geometries is considered to have either

a slowing down (increase of 𝑇g) or a speeding up (decrease of 𝑇g) effect depending on

the nature of its interaction with the polymer and the roughness of the substrate. Yet,

there is still an ongoing debate whether the results of the non-equilibrium and equilibrium

experimental techniques can in principle be compared, since they might probe different

properties [16].

While it is relatively straightforward to measure the film averaged properties using a

wide amount of experimental techniques (ellipsometry, calorimetry, dielectric spectroscopy

etc.), it is extremely challenging to access experimentally the dynamical gradients created

by the surface effects, especially on a scale of the monomer size relevant to the glass

transition process. Insights on the magnitude of the surface effects and how deep into

the film the dynamics is perturbed (along with the general mechanisms of the structural

relaxation) can be obtained from the molecular dynamics computer simulations [17].

Moreover, they allow to measure many different observables on the same sample providing
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Figure 1.1: Number of publications vs. shift in 𝑇g reported therein for the thinnest studied
layer of polystyrene (the figure is taken from Ref. [16]). The collection is restricted to
molecular weights in the range of 102–104 kg/mol and thicknesses between 5 and 50
nm; the employed experimental method and type of support are indicated. In total 92
publications are included (see [16] and references therein). The number of publications on
each type of support is indicated in brackets after the type of support; 5 papers employing
more than one type of support are recorded in each corresponding category. The increment
in the y-axis representing one publication is always one which means that for a publication
covering several methods the representative area is split into as many parts.

a link between different experimental techniques and allowing to interpret the vast variety

of results.

Concerning the modelling of polymer systems, multiple approaches exist that differ

in the level of chemical details. The most generic approach grasps only the basic features

of polymers: chain connectivity, excluded volume interactions and, possibly, some chain

stiffness [18, 19]. The polymers are modeled as chains of beads (connected by springs),

each of them representing a part of the real chain, coarse-grained to the scale of a Kuhn

segment [2]. The size of the segment is the only intrinsic length scale in the system. Being

thus independent of chemical details, these generic bead-spring models are used to study

universal properties of polymers [20, 21] including the mechanisms of glass formation [22–

24]. The more thorough quantitative comparison to real polymers requires a more detailed

approach in the simulations using atomistic models [25, 26] that treat every atom present
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in the polymer (all-atom models) or combine few of them (typically carbon-hydrogen

groups) together into united atoms (united atom models). In this case the details of

chemical interactions matter, and in addition to the generic features mentioned above, the

models include intramolecular potentials for the torsional angles and even sometimes the

long range electrostatic interactions.

At the present moment most of the state of the art realistic simulations are able to

follow the dynamics only up to few microseconds of real time. The bead-spring models

win additional few orders of magnitude due to their simplicity. Although this time scale

is much smaller than the relaxation time near 𝑇g (which is about 100 s), simulations are

appreciated [27] because they can provide a tomographic picture of the glass former and

allow direct access to its properties on the relevant length scale. This ability is heavily used

in the current research on the glass transition in general [28] and has also been exploited

for systems in confinement [10, 18, 24, 29–31].

In general the simulation results corroborate the experimental findings [24, 31, 32].

Smooth, repulsive or weakly attractive substrates or free surfaces enhance the relaxation

relative to the bulk. Whereas strongly attractive substrates cause the retarding effect.

These interface-induced perturbations smoothly transition from the boundaries to the

interior of the confined liquid. The range of these gradients grows on cooling so that

the perturbations can propagate across the entire film for sufficiently low 𝑇 and strong

confinement. Contributions from all layers in these gradients determine the average

behavior of the films and so the shift of 𝑇g. Qualitatively such a behavior is observed in

the simulations using both realistic and coarse-grained models. However, the quantitative

description obtained from the realistic models has been more and more often reported

to disagree with the results extracted from generic simulations. The reasons of the

disagreements have been attributed to the importance of the intramolecular forces, that

are present in the realistic models in addition to the bead-spring-like interactions [33]. In

particular, extensive molecular dynamics simulations have recently been carried out on

glassy polymer films using an atomistic model for polybutadiene (PBD) embedded between

two graphite walls [31, 34–36]. By calculating the dielectric response the simulations

find, in qualitative agreement with experiments of the group of F. Kremer [37, 38], that

confinement has no effect on the film dynamics, except in a layer of about 1 nm thickness

near the substrate. It is argued that this result is divergent relative to the bead-spring
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models and is caused by the dominance of intramolecular barriers. Since such barriers are

present in all real polymers, references [31, 33, 35, 36] represent an important warning

sign, challenging simulation efforts based on the generic models and the unifying physical

picture emerging from these simulations for the glassy dynamics of polymers.

Clearly, this warning sign calls for a systematic study of how the intramolecular

barriers and substrate interactions influence the glassy dynamics in atomistic simulations.

Our work is focused on one particular type of the intramolecular interactions, the torsion

(dihedral) barriers, that control the conformations of a polymer chain.

We start from simulations using the chemically realistic united atom model of PBD

[26, 39] (described in Chapter 2) and make a crossover to the model where all the dihedral

barriers were switched off, complementing previous studies of how they influence the

structure and the glassy dynamics of the PBD melt [40–42] (Chapter 3). Then we employ

these models in the simulations of supported PBD films (Chapter 4). Comparing between

them will reveal how the interplay of intermolecular packing, intrachain barriers and

surface effects influences the glass-forming properties of the PBD film. Chapter 5 provides

a synthesis of the key results and conclusions of this work. The French summary of the

thesis follows this conclusion chapter. Finally, a few appendices provide further technical

details.



Chapter 2

Simulation model and computational

details

2.1 Introduction

The computational technique used in our work to simulate polybutadiene (PBD) is

classical molecular dynamics (MD) simulations [17]. In its essence, the algorithm integrates

Newton’s equations of motion for all particles in the studied system: the positions and

velocities of the particles at the next timestep are calculated from the positions and

velocities at the precedent timestep using the interaction potentials defined by the user.

This set of interaction potentials along with the values of their parameters is commonly

referred to as the force field. The velocities and/or simulation domain dimensions can be

coupled to additional dynamic variables in order to model the effects of a thermostat and/or

a barostat [43]. This determines the thermodynamic ensemble in which the coordinates

and velocities are generated. The simulations last until a sufficient number of timesteps

has been reached. During a simulation the coordinates and velocities of the particles are

saved at selected timestep intervals into the so-called simulation trajectory, which is used

during the post-analysis to compute the quantities of interest.

Our simulations were conducted using the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) [43, 44], which is a high performance computer code that

handles parallel computing, provides extensive force field customization and a variety of

tools for efficient computation of physical quantities during ongoing simulations. Additional

benefits of using LAMMPS were the broad expertise and plenty of trajectory analysis

13



14 CHAPTER 2. SIMULATION MODEL AND COMPUTATIONAL DETAILS

tools that were developed at the research site.

There are 4 versions of the polymer model used in this work:

• The Chemically Realistic Chain (CRC) model is a modified version of the quantum

chemistry-based united-atom model (from here on it is referred to as the original

model) of 1,4-polybutadiene [26] developed by G. D. Smith and W. Paul in 1998

for MD simulations of polymer melts. The original model was tuned to reproduce

the structure and dynamics of bulk PBD very well by extensive comparison with

experimental data [39, 45, 46]. Later it was also used for simulations of confined

films [30, 31, 35, 36, 47] using the GROMACS computer code [48]. However, due to

the specifities of the simulations explained later in this chapter, this model cannot

be used directly for the supported film geometry having free interfaces. Also, the

direct transfer of some of the model features into LAMMPS is not possible. The

CRC model developed by the author incorporates the modifications to account for

these issues while maintaining the ability to reproduce the equation of state, the

dynamics and the structure of polybutadiene well.

• The CRC2 and CRC4 models are derived from the CRC model by reducing the

dihedral potentials by a factor of 2 and 4 correspondingly.

• The Freely Rotating Chain (FRC) model is also obtained from the CRC model by

completely disabling the dihedral potentials.

Two types of polymer systems were studied in this work: a rather small system

(∼ 5 × 103 united atoms) with periodic boundary conditions that models a bulk PBD and

a quite large supported PBD film (∼ 10 nm thick with ∼ 105 united atoms) on top of a

graphite substrate. All 4 models were used for the simulations of bulk PBD. In the case of

films, only the CRC and the FRC models were employed, since such simulations are much

more time and storage space consuming.

The following Section 2.2 presents the definition of the models, and Section 2.3

describes the simulation methodology. The parameters and comparison to the original

CRC model are discussed in Section 2.4. The last Section 2.5 gives some information

about technical details of processing the simulation trajectories.
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2.2 The united-atom model of polybutadiene

A polybutadiene polymer chain has 2 types of carbon-hydrogen groups (Fig. 2.1a): CH

and CH2, that are represented by united atoms (UAs) with the masses 𝑚CH2 = 14.027 u

and 𝑚CH = 13.019 u. A monomer consists of 4 UAs that form either a 𝑐𝑖𝑠 or a 𝑡𝑟𝑎𝑛𝑠
configuration (Fig. 2.1b). A polymer chain contains 𝑁m = 29 monomers or 𝑁 = 4𝑁m =116 UAs (only one chain length was studied in this work). For simplicity, no distinction

between CH2 groups within the chain and CH3 groups at both ends of the chain is made.

Our PBD chains are random copolymers with 55% 𝑡𝑟𝑎𝑛𝑠 and 45% 𝑐𝑖𝑠 monomers.

The force field of PBD is composed of four potentials associated with bond stretching,

bond angle bending, torsional rotations and pair interactions.

The stretching of the bond length ℓ is modeled by a harmonic potential

𝑈bond(ℓ) = 𝐾bond(ℓ − ℓ0)2 , (2.1)

where 𝐾bond is (half) the force constant and ℓ0 is the equilibrium bond length. There are

3 types of bonds in the system: CH-CH, CH2-CH and CH2-CH2. They are plotted in

(a) (b)

Figure 2.1: (a) Chemical notation of the 1,4-polybutadiene. (b) Schematic illustration of
a 1,4-polybutadiene chain, which contains 116 CH2 and CH united atoms combined into
29 monomers.
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Fig. 2.2 with the parameters given in Table 2.1 1.

In the simulations the bond angle 𝜃 is calculated by the scalar product of the two

consecutive bond vectors. Computationally, it is therefore convenient to express the

bending potential in terms of cos 𝜃. We used the harmonic in cos 𝜃 bending potential

𝑈bend(𝜃) = 𝐾bend(cos 𝜃 − cos 𝜃0)2 , (2.2)

with the 𝐾bend being (half) the bending stiffness constant and 𝜃0 the equilibrium angle.

There are 2 types of bond angles in the system that correspond to different possible

combinations of the consecutive pair of bond vectors along the PBD chain: CH2-CH-CH

and CH-CH2-CH2 (cf. Fig. 2.3 and Table 2.2). The scale of the potentials in Fig. 2.3

is quite big with respect to the value of the thermal energy 𝑘B𝑇 ≈ 0.7 kcal/mol at the

highest studied temperature. Thus the fluctuations of the bond angle only happen in a

small region around the equilibrium values. We will discuss this later in Section 2.4.2.

The torsion (or dihedral) angle 𝜙 is the angle between two intersecting planes defined

by three successive bonds along the chain backbone. The associated potential 𝑈tor(𝜙)
accounts for steric interactions between UAs separated by these three bonds. Since 𝑈tor(𝜙)
is an even and periodic function of 𝜙 (0 °≤ 𝜙 ≤ 360°), it can be expressed as an expansion

in powers of cos 𝜙. We employ the Ryckaert–Bellemans function [49] in our simulations
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Figure 2.2: The bond stretching potential
Eq. (2.1).

Table 2.1: Parameters for the bond poten-
tial of Eq. (2.1).

Bond length
type

𝐾bond
(kcal/molÅ2)

ℓ0
(Å)

CH-CH 2500 1.34
CH2-CH2 2500 1.53
CH-CH2 2500 1.50

1The high value of the force constant is a compromise between the experimentally observed bond
vibrations and the constrained bonds of the original model, see also Section 2.4.
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Figure 2.3: The bond angle bending poten-
tial Eq. (2.2).

Table 2.2: Parameters for the bending po-
tential of Eq. (2.2). They are identical to
the original model [26].

Bond angle
type

𝐾bend
(kcal/mol)

𝜃0
(deg)

CH2-CH-CH 68.1475 125.896
CH-CH2-CH2 66.5925 111.652

using the CRC/CRC2/CRC4 models

𝑈tor(𝜙) = 6∑𝑛=1 𝐴𝑛(cos 𝜙)𝑛−1 . (2.3)

There are 5 types of dihedral potentials in the system, that are depicted in Fig. 2.4

with the parameters {𝐴𝑛}𝑛=1,…,6 given in Table 2.3. We have adopted the same naming

as in Ref. [26].

The double bond 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 potentials (Fig. 2.4b) determine the rotation along

the double (CH-CH) bond axis, and therefore, the configuration of the PBD monomer.

Per definition, there is only one minimum, that occurs at 𝜙min = 0° (or 360°) for the 𝑐𝑖𝑠
and at 𝜙min = 180° for the 𝑡𝑟𝑎𝑛𝑠 potential.

The 𝛽 torsional potential determines the rotation along the axis of the CH2-CH2
bond between two adjacent monomers. It has a shape familiar from hydrocarbon chains,

such as polyethylene [2]. There are three minima, the primary being the 𝑡𝑟𝑎𝑛𝑠 state at𝜙 = 180° and the secondary minima being the 𝑔𝑎𝑢𝑐ℎ𝑒-𝑝𝑙𝑢𝑠 and 𝑔𝑎𝑢𝑐ℎ𝑒-𝑚𝑖𝑛𝑢𝑠 states at𝜙 ≃ 180∘ ± 120∘
The 𝛼 𝑐𝑖𝑠 and 𝛼 𝑡𝑟𝑎𝑛𝑠 potentials correspond to the CH-CH2 bond that is next to the

double bond. Qualitatively, the shape of 𝑈tor(𝜙) for these dihedrals is the mirror image of

the 𝛽 potential, having minima at 𝜙 = 0∘, 360∘ and 𝜙 ≃ 180∘ ± 60∘.
The 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 potentials (both double bond and 𝛼) are randomly assigned to

the monomers in a PBD chain with the proportion of 45% 𝑐𝑖𝑠 and 55% 𝑡𝑟𝑎𝑛𝑠.

The values of the parameters {𝐴𝑛}𝑛=1,…,6 in Table 2.3 correspond to our chemically
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Figure 2.4: (a) Schematic illustration of the torsion (or dihedral) angles in a fragment of a
PBD chain. (b-d) Torsional potential 𝑈tor(𝜙) (in kcal/mol) for the different torsion angles𝜙 illustrated in panel (a).

Table 2.3: Coefficients 𝐴𝑛 (in kcal/mol) of the torsional potential of Eq. (2.3) in the CRC
model for different dihedral angles of PBD indicated in Fig. 2.4.

Torsion angle 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6𝛼 (𝑡𝑟𝑎𝑛𝑠) 0.385179 3.466610 1.050490 -3.86178 -0.320148 -0.720332𝛼 (𝑐𝑖𝑠) 1.160540 0.360163 0.680313 1.48069 -0.640294 -3.041420𝛽 -3.261500 -4.942280 0.340155 5.58258 0.280129 2.000930
db (𝑡𝑟𝑎𝑛𝑠) 24.011000 5.316470 0.100537 27.54850 -0.160949 -8.914360
db (𝑐𝑖𝑠) 24.011000 -5.316470 0.100537 -27.54850 -0.160949 8.914360

realistic chain (CRC) model of PBD. As it was mentioned in Section 2.1, we also study

model variants with reduced torsional potential by replacing 𝑈tor(𝜙) for all dihedral angles
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with 𝜆𝑈tor(𝜙) where 𝜆 = 0, 1/4, 1/2, 1. We refer to these models as:

𝜆 = 0 ∶ freely rotating chain (FRC) model ,𝜆 = 14 ∶ CRC4 model ,𝜆 = 12 ∶ CRC2 model , (2.4)𝜆 = 1 ∶ CRC model .
The rescaled (𝜆 = 12 , 14) or disabled (𝜆 = 0) torsional potentials is the only difference

between the models. The FRC model was already introduced and studied in Refs. [40, 41].

Due to the absence of torsional potential the model enables free rotation around the double

bonds, thereby eliminating the difference between 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 conformers. Within the

FRC model PBD is therefore no longer a random copolymer of 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 monomers,

but a regular copolymer of CH and CH2 units. While it would have been possible to

preserve the random 𝑐𝑖𝑠/𝑡𝑟𝑎𝑛𝑠 copolymer character by maintaining the dihedral potentials

for the double bonds only [50], we have adopted the FRC model here because it resembles

extensively studied glass-forming bead–spring models with intramolecular forces resulting

only from bond-length and bending potentials2 [33, 51–54]. The CRC4 and CRC2 models

are introduced because they interpolate between the FRC and CRC models.

Pair interactions between united atoms of a chain separated by four or more bonds

and between united atoms of different chains are modeled by a 12-6 Lennard–Jones (LJ)

potential with an additional switching function 𝑆(𝑟) commonly used in the GROMACS

code [55], but also implemented in LAMMPS (see pair_style lj/gromacs command [43]).

The potential reads:

𝑈pair(𝑟) = ⎧{⎨{⎩4𝜖 [(𝜎𝑟 )12 − (𝜎𝑟 )6] + 𝑆(𝑟) if 𝑟 < 𝑟c ,0 if 𝑟 ≥ 𝑟c , (2.5)

with

𝑆(𝑟) = ⎧{⎨{⎩𝐶 if 𝑟 < 𝑟1 ,𝐴3 (𝑟 − 𝑟1)3 + 𝐵4 (𝑟 − 𝑟1)4 + 𝐶 if 𝑟1 ≤ 𝑟 < 𝑟c , (2.6)

2Though, the bond length of the FRC model is much shorter than in the bead-spring models.
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and 𝐴 =−3𝑈 ′
term(𝑟c) + (𝑟c − 𝑟1)𝑈 ′′

term(𝑟c)(𝑟c − 𝑟1)2 ,𝐵 =2𝑈 ′
term(𝑟c) + (𝑟c − 𝑟1)𝑈 ′′

term(𝑟c)(𝑟c − 𝑟1)3 ,𝐶 = − 𝑈term(𝑟c) + 12(𝑟c − 𝑟1)𝑈 ′
term(𝑟c)− 112(𝑟c − 𝑟1)2𝑈 ′′

term(𝑟c) .
(2.7)

where 𝑈term(𝑟c) stands either for the repulsive term, 4𝜖(𝜎/𝑟)12, or for the attractive term,−4𝜖(𝜎/𝑟)6, of the LJ potential, 𝜎 is the zero-crossing distance (𝑈pair(𝑟 = 𝜎) = 0), 𝜖 is

the value of the minimum of the potential at 𝑈pair(𝑟 = 216 𝜎) = −𝜖. Prime and double

prime symbols denote respectively the first and second derivatives with respect to 𝑟. The

switching function obeys the following boundary conditions:𝑆′(𝑟1) = 𝑆′′(𝑟1) = 0 ,𝑆(𝑟𝑐) = −𝑈term(𝑟c) ,𝑆′(𝑟𝑐) = −𝑈 ′
term(𝑟c) ,𝑆′′(𝑟𝑐) = −𝑈 ′′
term(𝑟c) . (2.8)

For 𝑟 < 𝑟1 Eqs. (2.5) and (2.6) imply that 𝑈pair(𝑟) is just a shifted LJ potential, while for𝑟1 ≤ 𝑟 < 𝑟c the LJ potential and its 1st and 2nd derivatives are progressively smoothed to

zero due to the form of 𝑆(𝑟) and the boundary conditions.

We choose identical values, 𝑟1 = 9 Å and 𝑟c = 12 Å, for all pairs of UAs. The LJ

parameters used in the present study are summarized in Table 2.4 and the corresponding

potentials are plotted in Fig. 2.5

In the case of supported film, the united atoms of PBD interact with a substrate, that

is modeled using the crystalline lattice of graphite atoms with mass 𝑚CH2 = 12.011 u.

The LJ parameters for the graphite were taken from the work [30], which in turn has taken

the values reported in [56]. They are also given in Table 2.4 and Fig. 2.5.

Only from the pair interactions point of view PBD corresponds to a binary mixture

(see Section 3.3). The values in Table 2.4 show that PBD deviates from the standard

Lorentz–Berthelot mixing rule [3]. By contrast to the Lorentz rule, PBD is a nonadditive

mixture, since 𝜎𝑖𝑗 ≠ (𝜎𝑖𝑖 +𝜎𝑗𝑗)/2, and has enhanced mixing ability relative to the Berthelot

rule because 𝜖𝑖𝑗 > √𝜖𝑖𝑖𝜖𝑗𝑗. In simple liquids and metallic alloys both features are favorable
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for better glass-forming ability [57, 58]. In the case of the interaction of PBD with the

graphite, the Lorentz-Berthelot combining rules were used.

Our force field is different from the one used in the original works [26, 30, 31, 35,

36, 39, 45–47], that used the GROMACS code, in two aspects. In these works the bonds

were constrained and the plain LJ potential truncated at 𝑟c = 9 Å with long-range tail

corrections to energy and pressure was used for pair interactions. The reasons for these

differences are discussed in Section 2.4.

2.3 The simulation methodology

2.3.1 General information

We perform molecular dynamics (MD) simulations of PBD with the Large Scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [17, 43, 44]. The classical

equations of motion are integrated by the rRESPA multi-timescale integrator with two

hierarchical levels. The outer level integrates the pair interactions with a timestep 𝛿𝑡outer =1 fs, while the inner level integrates the bond-length, bending and dihedral potentials

with a four times smaller timestep 𝛿𝑡inner = 0.25 fs. We combine the rRESPA integrator

with the Nosé–Hoover thermostat and barostat to control temperature 𝑇 and pressure 𝑝
in NPT simulations and with the Nosé–Hoover thermostat when carrying out canonical

NVT simulations at constant volume 𝑉 (LAMMPS parameters [43]: Tdamp = 1000 fs,

Tchain = 3; Pdamp = 10000 fs, Pchain = 3). During the simulations of the PBD melt the
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Figure 2.5: The Lennard–Jones potential
Eq. (2.5).

Table 2.4: Parameters of the Lennard–Jones
potential Eq. (2.5) for the different types of
interaction sites: 𝑖, 𝑗 = CH2, CH, GRA.

Pair type 𝜖𝑖𝑗(kcal/mol) 𝜎𝑖𝑗
(Å)

CH ↔ CH 0.114999 3.38542
CH2 ↔ CH2 0.107639 4.00904
CH2 ↔ CH 0.116723 3.79256
GRA ↔ GRA 0.055640 3.40000
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pressure equal to 𝑝 = 0 atm was imposed under the NPT conditions and the corresponding

volume 𝑉 was imposed under the NVT conditions. In this way, the melt can be compared

to the simulations of the supported films in contact with vacuum at the free surface.

The initial configurations at 𝑇 = 353 K for the bulk and the film systems were taken

from the work [36], which employed the implementation of the realistic model (with all

dihedrals) in GROMACS code [55]. These configurations were converted to LAMMPS

input files by means of a custom-made script using a conversion 1 kcal/mol = 4184 J/mol

for the energy units. The bulk system was used to establish the parameters of our models

in LAMMPS and compare to the original GROMACS simulations (see Sections 2.3.2

and 2.4). The film systems were simulated using our models from the beginning. We

provide a detailed map of the conducted simulations in Figs. A.1 and A.2 in Appendix A.

The simulations were conducted on the High Performance Computing (HPC) Center

of the University of Strasbourg [59] and the Jean Zay (HPE SGI 8600) supercomputer at

the Institute for Development and Resources in Intensive Scientific Computing (IDRIS,

Orsay) [60].

2.3.2 Bulk details

The bulk system contains 𝑁c = 40 PBD chains in a cubic box of about 50 Åin

size (Fig. 2.6). Periodic boundary conditions were applied in all directions. The initial

configuration at 𝑇 = 353 K was converted from GROMACS to LAMMPS format by means

of a custom-made script, that properly converts the units and replaces constrained bonds

by the harmonic potential.

In order to verify if the model was transferred from GROMACS to LAMMPS correctly,

our first simulations were conducted using the truncated LJ potential and tail corrections

used in both codes. This allowed us to make a comparison to the original GROMACS

simulations, which used such a potential in the first place. From now on, we refer to this

model as the ‘original model’.

Fig. A.1 presents a detailed map of the simulations using the original model. Aiming

to compare with the works [40, 41], two working temperatures were chosen: 𝑇 = 353 K

and 𝑇 = 273 K and the equilibration time was set to 100 ns. At each working temperature,

the following simulation protocol was adopted (Fig. 2.7).

• Starting from the initial configuration, the equilibration is performed under the NPT
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Figure 2.6: The bulk system in a periodic simulation box.

conditions over 100 ns. This duration suffices to relax the volume, since we find the

volume relaxation to last no longer than 30 ns for the studied temperatures. The

final 70 ns are then used to determine the equilibrium volume 𝑉 (𝑇 ) as the time

average over the time series of the volume.

• In the subsequent deformation stage we start from the instantaneous volume of the

final configuration of the NPT run and isotropically change the size of the simulation

box until the equilibrium volume 𝑉 (𝑇 ) is reached (fix deform command in LAMMPS

[43]). The deformation is carried out over a short time of 10 ps.

• Due to the fast deformation, it is necessary to relax residual stresses possibly created

by the quenching of the box volume, even though the deformation is small (≲ 0.1
Å). This is done over another 100 ns of the NVT run at fixed 𝑉 (𝑇 ), which suffices

to stabilize the average pressure at 𝑝 = 0 atm.

• After equilibration we perform a NVT production run that lasts at least 1 𝜇s (109
timesteps).

At 𝑇 = 353 K the initial (𝑡 = 0) configuration is the one converted from the work [36].

In order to obtain the initial configuration at 𝑇 = 273 K, the system was continuously

cooled down to 𝑇 = 113 K at imposed pressure 𝑝 = 0 atm according to the ramp

𝑇 (𝑡) = 𝑇0 − Γ𝑡 , (2.9)
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with the cooling rate Γ = 20 K / 6 ns = 3.33 K/ns (Fig. 2.7). Then the configuration that

corresponded to the time point with 𝑇 = 273 K was used as the starting one (𝑡 = 0) for

constant temperature NPT equilibration.

In order to check the density of PBD, the NPT equilibration at 𝑇 = 353 K was

continued up to 1 𝜇s and the configurations at 𝑡 = 200 ns, 400 ns, 600 ns, 800 ns, 1 𝜇𝑠
were used to start 9 additional cooling runs: 4 runs with Γ = 3.33 K/ns and 5 runs withΓ = 0.83 K/ns. The 𝑡 = 200 ns point was also used to launch a cooling run of the system

where all dihedral potentials were disabled3. This is motivated by the results of Honnell𝑒𝑡 𝑎𝑙. [61], who derived that the pressure equation for chain molecules does not explicitly

depend on the angular potentials, and the works [40, 41], where the dynamics without the

dihedrals was reported to be orders of magnitude faster than with the dihedrals while the

structure is identical. Thus, we expect the density at 𝑝 = 0 atm to be indistinguishable

between the realistic model and the model without the dihedrals within the fluctuations

at studied temperatures. We also use this argument later for the initial configurations of

our CRC2, CRC4 and FRC models.

From one of the slower cooling runs, we then followed the protocol described above

for an additional set of working temperatures: 𝑇 = 293, 253, 240, 225 K and launched the

constant temperature NPT equilibrations. At the same time we set up the simulations

Figure 2.7: Sketch of the bulk simulation protocol consisting of a cooling run according
to Eq. (2.9) followed by the equilibration and production runs. Starting from the melt
configuration stored during the cooling run at a given 𝑇 (here 𝑇 = 273 K), equilibration
comprises three steps: 1) NPT relaxation over 100 ns with determination of the equilibrium
volume 𝑉 (𝑇 ) as the time average over the final part of the time series of the volume, 2)
the instantaneous volume of the final configuration of the NPT run is rapidly deformed
over 10 ps toward 𝑉 (𝑇 ), 3) NVT relaxation at 𝑉 (𝑇 ) over another 100 ns. Equilibration is
followed by a production run which lasts at least 1 𝜇s depending on temperature.

3This is not yet our FRC model, since the pair interactions are still described by the truncated LJ
potential with the tail corrections.
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of supported films and developed the modified pair potential to yield equivalent result

in inhomogeneous systems (free surface!) without tail correction (see Section 2.4.3 for

detailed explanation). We used the system at 𝑇 = 273 K to launch the runs with modified

pair interactions to develop our CRC model. The aim of the modifications was to match

the densities of the systems at the studied temperatures without having to resort to the tail

corrections. The new pair potential was verified to recover desired density by simulating a

system at 𝑇 = 353 K and performing the same set of cooling runs using our CRC model.

Due to the indistinguishable densities and for time saving purposes, we used the

equilibrium volumes 𝑉 (𝑇 ) obtained using the original model to continue our simulation

protocol and performed the NVT equilibrations and the production runs using already

our CRC/CRC2/CRC4/FRC models. As a last check, we also performed long (1 𝜇s) NPT

runs at each temperature using all four models to make sure that the densities are indeed

the same.

Additionally, the system at 𝑇 = 213 K was simulated using all our models in a similar

manner as the higher temperatures, with an exception that the NPT equilibration has

been performed using our CRC model. In addition, the systems at 𝑇 = 153, 113 K were

simulated using the FRC model following the protocol described above..

2.3.3 Film details

The initial film configuration was taken from the work [36], where the film comprising

720 PBD chains (83520 UAs) was confined between two layers of graphite atoms at the

bottom of the simulation box and one layer at the top with periodic boundary conditions

in all directions. In order to make the film supported on one side with free surface on the

other side, we have added about 10 nm of vacuum above the top graphite layer, then moved

the whole system of PBD and graphite up by 3.4 Å (the distance between the graphite

layers). Finally the top layer of graphite was moved to the bottom of the simulation box,

so all three layers are together and separated by 3.4 Å. A snapshot of the box is presented

in Fig. 2.8.

All film simulations are under NVT conditions. The presence of the free surface of

the film in contact with vacuum effectively corresponds to the simulations at zero pressure.

The periodic boundary conditions were used in all directions. In the lateral dimensions

the simulations box is commensurable with the (0,0,1) graphite crystalline surface. During
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Figure 2.8: The film system in a simulation box.

the simulations all graphite atoms are fixed at their equilibrium positions in the crystal

lattice. In the 𝑧-dimension, the 10 nm of vacuum is sufficient for the united atoms of PBD

not to interact with their periodic images.

The simulations of the films were performed using our CRC and FRC models. During

the conversion of the initial configuration, the pair interactions were replaced by the ones

from our models. The film simulation protocol is similar to the bulk one and is presented

schematically in Fig. 2.9

• The initial configuration at 𝑇 = 353 K is equilibrated over 100 ns.

• Then the cooling run is performed according to the ramp given by Eq. (2.9) with

the cooling rate Γ = 0.83 K/ns.

• The cooling configurations that corresponded to the time points of the working

temperatures 𝑇 = 273, 253, 240, 225, 213 K were used as starting ones for the

constant temperature equilibration and production runs.

In fact, there is one long constant temperature run at each working temperature.

The equilibration and production parts are distinguished simply by the time point, from

which we start measuring the quantities of interest. The same is valid for the systems at𝑇 = 353 K: the configuration after 100 ns of equilibration using the CRC model was copied

to launch the cooling (and also the FRC equilibration) and the run was continued. The

constant temperature runs lasted 1 𝜇s in total in the case of the CRC model. The FRC
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runs at the same working temperatures lasted 700 ns. As in the bulk, the two additional

temperatures 𝑇 = 153 K and 𝑇 = 113 K were performed using the FRC model, that

lasted also 1 𝜇s. The detailed map of our simulations is given in Fig. A.2 in Appendix A.

2.4 Model parameters and previous works

2.4.1 General information

As it was mentioned previously, our CRC model has several differences in the force

field with respect to the model used in recent works [30, 31, 34–36, 47]. These works were

focused on polymer films and, in turn, also employed an adapted version of the original

potential functions [26, 39] for implementation in the GROMACS code. Since our study is

also focused on films, we prioritized the recent version of the model [30, 31, 34–36, 47]

when implementing our simulations in LAMMPS for both bulk and film systems. We

have also inherited the values for the timestep 𝛿𝑡 = 1 fs and the thermostat damping

time Tdamp = 1000 fs. For the damping time of the barostat, we chose a ten times larger

value Pdamp = 10000 fs as it is suggested by the LAMMPS documentation [43]. The

default (in LAMMPS) number of chained thermostats and barostats was used: Tchain = 3,

Pchain = 3.

Figure 2.9: Sketch of the film simulation protocol consisting of a cooling run according to
Eq. (2.9) followed by the equilibration and production runs.
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2.4.2 Intra-chain interactions

In order to verify if the intra-chain interactions were transferred from GROMACS to

LAMMPS correctly, we set up rather short simulations of the bulk PBD using the original

GROMACS scripts obtained from the authors of the work [36] using the same initial

configuration and compare them to our LAMMPS simulations. Following the results of

[62], our objective was not to obtain an exact match of the energies and particle movements

during both simulations (it is impossible due to the difference in the software features

discussed later), but rather to get a qualitative agreement of the mean values of the

energy terms and a quantitative agreement of the representative structural and dynamical

properties of PBD. At the moment of performing the comparison the pair interactions had

not been modified yet. The truncated LJ potential with tail corrections was used with the

same parameters in both MD engines.

The main difference in the intra-chain interactions between our LAMMPS simulations

and the original GROMACS simulations is in the bond potential. All bonds between

united atoms of PBD were constrained to their equilibrium values ℓ0 in GROMACS.

LAMMPS does not allow to constrain the backbone bonds of a chain in order to achieve

good parallel performance. However, we wanted to stay close to the original simulations

with ℓ = ℓ0, therefore we used a harmonic bond potential instead with a large value for

the force constant 𝐾bond = 2500 kcal/(mol Å2 (cf. Eq. (2.1) and Table 2.1). This value

is a compromise between spectroscopic data [63] and not too long computation times.

With this value one finds √⟨(ℓ − ℓ0)2⟩ = √𝑘B𝑇 /(2𝐾bond) ≈ 0.01 Å for 𝑇 = 353 K, the

highest studied temperature. Thus, bond length fluctuations are less then 1% of ℓ0. The

estimation of the smallest bond oscillation time in the system as the period of oscillation

of a bond between two CH united atoms (the atoms with the smallest mass) results in𝜏bond = 2𝜋√𝑚CH/(2𝐾bond) ≈ 16 fs, which is only 16 GROMACS timesteps. Thus we

used a rRESPA integrator with two hierarchical levels as it was explained previously in

Section 2.3.1: the outer level integrates the pair interactions with a timestep 𝛿𝑡outer = 1 fs,

while the inner level integrates the bond-length, bending and dihedral potentials with a

four times smaller timestep 𝛿𝑡inner = 0.25 fs.

Fig. 2.10 presents the bond length distribution of all bond types obtained in our

LAMMPS simulations at 𝑇 = 353 K using two values of the force constant in the harmonic

bond potential: 2500 kcal/(molÅ2) (our final value) and 1000 kcal/(molÅ2) (in between
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Figure 2.10: Bond length distributions measured during the simulations using the force
constants 𝐾 = 1000 kcal/(molÅ2) (red squares) and 𝐾 = 2500 kcal/(molÅ2) (blue
circles). The vertical lines mark the equilibrium values of ℓ0. The black solid lines are the
sums of Eq. (2.10) calculated for each bond type and normalized by the number of the
corresponding bonds in the system.

the values converted from the experimental bond stretching frequencies 𝜈C-C ≈ 1000 cm−1
and 𝜈C=C ≈ 1650 cm−1 [63]). For the latter, the peaks at ℓ0 = 1.5 Å and ℓ0 = 1.53 Å are

merged into one peak in between. Even though this is probably closer to the experiment,

our intention at this point was to introduce as little deviation to the model as possible and

to reduce the influence on the other potentials for better comparison with the constrained

system. We have compared the distribution measured in the simulations to the Boltzmann

distribution 𝑝bond(ℓ) = exp(−𝑈bond(ℓ)/𝑘B𝑇 )∫∞0 dℓ exp(−𝑈bond(ℓ)/𝑘B𝑇 ) (2.10)

and obtained an excellent agreement, which was expected because the bond potential is

the strongest in the system.

As for the bending angle potentials, our LAMMPS simulations and recent GROMACS

works used a harmonic in cos 𝜃 bending potential given by Eq. (2.2) and Table 2.2, whereas

the initial version of the model [26] employed

𝑈bend(𝜃) = 12𝑘𝜃(𝜃 − 𝜃0)2 . (2.11)

Assuming 𝜃 to be close to the equilibrium bond angle 𝜃0 the bending stiffnesses 𝐾bend and
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Figure 2.11: Bending angle distributions measured during the LAMMPS (red open
squares) and GROMACS (blue filled circles) simulations. The vertical lines mark the
average equilibrium values of 𝜃0. The black solid lines are the sum of Eq. (2.13) calculated
for each bending angle type and normalized by the number of corresponding angles in the
system.𝑘𝜃 are related to one another by 4

𝐾bend = 𝑘𝜃2 sin2 𝜃0 . (2.12)

In this way, 𝐾bend was determined from 𝑘𝜃 of Ref. [26]. 𝐾bend is smaller than 𝐾bond by a

factor of about 37, implying larger fluctuations of 𝜃 than for ℓ. Still, the fluctuations remain

very small because √⟨(𝜃 − 𝜃0)2⟩ ≈ [𝑘B𝑇 /(2𝐾bend sin2 𝜃0)]1/2 ≈ 5∘ even for 𝑇 = 353 K.

Fig. 2.11 presents bending angle distributions measured in our LAMMPS and GRO-

MACS simulations along with the Boltzmann prediction

𝑝bend(𝜃) = exp(−𝑈bend(𝜃)/𝑘B𝑇 )∫𝜋0 d𝜃 exp(−𝑈bend(𝜃)/𝑘B𝑇 ) . (2.13)

The data agree very well with the latter verifying the correct transfer of the bending angle

potential from GROMACS to LAMMPS. The bending potential is also a hard variable in

the system.

The torsion potential has been transferred from GROMACS to LAMMPS exactly. In

both cases it is given by Eq. (2.3) and Table 2.3, while the initially developed model [26,
4To get Eq. (2.12) we insert the identity cos 𝜃 − cos 𝜃0 = −2 sin[(𝜃 + 𝜃0)/2] sin[(𝜃 − 𝜃0)/2] into

Eq. (2.2) and assume deviations of 𝜃 from 𝜃0 to be small.
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39] utilized 𝑈tor(𝜙) = 12 6∑𝑛=1 𝑘𝑛 [1 − cos(𝑛𝜙)] . (2.14)

The coefficients {A_n} in Table 2.3 were obtained by fitting Eq. (2.3) to Eq. (2.14) for

each type of dihedral angle (the details are described in Appendix B).

The double-bond dihedral potentials are much stronger than the 𝛼 and 𝛽 dihedral

potentials. This ensures that the double-bond torsion angles stay close to the planar average

equilibrium state during the simulations. It also implies that a monomer initially prepared

in a 𝑐𝑖𝑠 or 𝑡𝑟𝑎𝑛𝑠 state will remain in this state for all times of current simulations with a

length of few microseconds. In the initial configurations, that we received from the work

[36], the potentials were randomly assigned to the monomers in a chain with the ratio of

45% 𝑐𝑖𝑠 and 55% 𝑡𝑟𝑎𝑛𝑠 configurations. The deviations from the planar configurations are

possible, but quickly become penalized energetically due to large values of 𝑈tor(𝜙) relative

to the thermal energy that is 𝑘B𝑇 ≃ 0.7 kcal/mol at 𝑇 = 353 K5. The potential energy

of the inflection points at 𝜙 = 90∘, 270∘ corresponds to about 12 000 K and that of the

maxima at 𝜙 = 180∘ for cis or 𝜙 = 0∘, 360∘ for trans to about 24 000 K. These temperatures

are much larger than the temperatures studied (𝑇 ≤ 353 K) so that the corresponding

angles are never adopted in the simulation6. We can estimate typical fluctuations around

this state by a harmonic expansion of 𝑈tor(𝜙) around 𝜙min. This expansion provides

an excellent approximation up to 𝑈tor(𝜙 ≈ 𝜙min ± 20∘) ≈ 2.7 kcal/mol with a force

constant 𝑘𝜙 = 0.0133 kcal/(mol deg2), implying that √⟨(𝜙 − 𝜙min)2⟩ = √𝑘B𝑇 /𝑘𝜙 ≈ 7∘
for 𝑇 = 353 K. Deviations from the equilibrium state are therefore small, though larger

than for ℓ and 𝜃. The double bonds, together with the bond lengths and bond angles, are

therefore stiff degrees of freedom.

The main source of chain flexibility and conformational rearrangements in PBD stems

from torsional rotations around the 𝛽 bond and the 𝛼 cis and 𝛼 trans bonds. This is the

case because the maximum potential energy of these dihedrals is an order of magnitude

smaller than for the double bonds, as seen from Fig. 2.4. The energy difference between

trans and gauche states of the 𝛽 potential is about 0.41 kcal/mol ≈ 0.58𝑘B𝑇 at 353 K and

the barrier at 𝜙 ≃ 180∘ ± 60∘ is about 3.84 kcal/mol ≈ 5.48𝑘B𝑇 at 353 K. The barriers

5We utilize the value of Boltzmann constant defined in the LAMMPS code, 𝑘B =0.0019872067 kcal/(mol K).
6When testing the reduced torsions, we found some flipping events at 1/10 of the initial height of the

dihedral barriers.
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Figure 2.12: Torsion angle distributions measured during the LAMMPS (red open squares)
and GROMACS (blue filled circles) simulations. The black solid lines are the sum of all
torsion types in Eq. (2.15). The separate distributions will be discussed in Section 3.1.1

between the minima of the 𝛼 potential are smaller than those of the 𝛽 bond, implying

that torsional transitions are more easily possible about these dihedrals.

Fig. 2.12 presents the complete torsion angle distributions measured in our LAMMPS

and constrained GROMACS simulations along with the Boltzmann prediction

𝑝tor(𝜙) = exp(−𝑈tor(𝜙)/𝑘B𝑇 )∫2𝜋0 d𝜙 exp(−𝑈tor(𝜙)/𝑘B𝑇 ) . (2.15)

The LAMMPS and GROMACS distributions agree with each other very well indicating

a correct implementation of the dihedrals in our model. Both of them, however, differ

from the Boltzmann distributions: the dihedral angles are redistributed from 0∘ and 360∘
to 120∘ and 240∘. We examine this in detail in Section 3.1.1. According to the work

[26], these deviations come from the influence of the intra-chain pair interactions between

united atoms separated by four and more bonds on the 𝛼 𝑐𝑖𝑠 dihedral. In fact, in Ref. [26]

the potentials were optimized to account for an effective torsional potential created by the

presence of the pair interactions and to reproduce the correlations between the consecutive

torsions.

As the last check of the model implementation we compared the structure and

the dynamics of the PBD obtained from our LAMMPS simulations to the constrained

GROMACS simulations. As a representative structural quantity we used the melt and
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single chain structure factors 𝑆(𝑞) and 𝐹(𝑞) (Fig. 2.13):

𝑆(𝑞) = 1𝑁c𝑁 𝑁c∑𝑖,𝑗=1 𝑁∑𝑎,𝑏=1⟨exp[−𝑖 ⃗𝑞( ⃗𝑟𝑎,𝑖 − ⃗𝑟𝑏,𝑗)]⟩ , (2.16)

𝐹(𝑞) = 1𝑁c𝑁 𝑁c∑𝑖=1 𝑁∑𝑎,𝑏=1⟨exp[−𝑖 ⃗𝑞( ⃗𝑟𝑎,𝑖 − ⃗𝑟𝑏,𝑖)]⟩ , (2.17)

where 𝑁c is the number of chains, 𝑁 the number of atoms in a chain, ⃗𝑞 the wavevector,⃗𝑟𝑎,𝑖 the position of atom 𝑎 of the chain 𝑖. For the 𝑆(𝑞) the discrete ⃗𝑞 are used, which are

commensurable with the simulation box (the components of ⃗𝑞 are multiples of 2𝜋/𝐿 with𝐿 being the box size). The dynamics was compared using the mean-square displacement

of united atoms 𝑔0(𝑡) (Fig. 2.14)

𝑔0(𝑡) = 1𝑁c𝑁 𝑁c𝑁∑𝑛=1⟨[ ⃗𝑟𝑛(𝑡) − ⃗𝑟𝑛(0)]2⟩, (2.18)

where ⃗𝑟𝑛(𝑡) the position of the 𝑛-th united atom at time 𝑡.
We have also compared our results to the data published in Ref. [41], which is an older

work than Ref. [36], from which we received the initial configurations and GROMACS

scripts. The data are in a very good agreement at the studied temperatures.

2.4.3 Pair interactions

As it was already mentioned in the previous chapters, the originally developed

simulations of bulk PBD [26, 39] and the recent works on the confined films [31, 35, 36]

utilized the plain Lennard-Jones potential truncated at 𝑟c = 9 Å for pair interactions

𝑈pair(𝑟) = ⎧{⎨{⎩4𝜖 [(𝜎𝑟 )12 − (𝜎𝑟 )6] if 𝑟 < 𝑟c ,0 if 𝑟 ≥ 𝑟c , (2.19)

with the parameters for different types of united atoms given in Table 2.5. To account for

missing interactions for distances 𝑟 > 9 Å, the long range tail corrections [17, 64, 65] to

pair energy and pressure were applied. We have also used the truncated LJ potential with

tail corrections when setting up our first simulation of bulk PBD in LAMMPS. In practice,
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Figure 2.13: Comparison of the melt (a) and the single chain (b) structure factors obtained
form our LAMMPS simulations (red open squares) and constrained GROMACS simulation
(blue filled circles) at 𝑇 = 273 K. The black line is the data scanned from Ref. [41].
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Figure 2.14: Comparison of the mean-square displacement of united atoms of PBD obtained
form our LAMMPS simulations (red open squares) and constrained GROMACS simulation
(blue filled circles) at 𝑇 = 273 K and 𝑇 = 353 K. The black line is the data scanned from
Ref. [41].

these corrections are constant values calculated in the beginning of the simulation7, which

are added to the values of pair energy and pressure at each timestep. The corrections to the

energy, in fact, do not affect the dynamics of the system, because the forces between the

particles are proportional to the gradient of the potential, which eliminates the constant.

The pressure correction, however, has a direct influence on the dynamics under the NPT

conditions, because it enters the barostating routine. This modifies the volume of the

simulation box, and therefore, the density according to the desired pressure. For the bulk

7see Eq. (5) of Ref. [64] for the analytical expressions of the corrections
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system under the NVT conditions, the influence of the corrections comes only via the value

of the fixed volume. Enabling/disabling the tail corrections in the bulk NVT simulations at

the same fixed volume does not change the dynamics of the simulated system whatsoever.

The situation is different for the simulations of the films, which are NVT simulations

only. In the confined geometry the density can be adjusted by varying the distance

between the walls. The works [31, 35, 36] used this method to match the density of PBD

in the middle of the film to the bulk value. In the supported films, however, the density

is determined by the interactions, and since the tail corrections have no effect in the

NVT simulations, the value in the middle of the film corresponds to the one of the bulk

simulated under the NPT conditions without the corrections. This issue does not allow us

to continue using the truncated LJ potential with tail corrections, because we would not

be able to directly compare the bulk and the film simulations under the same conditions.

Yet, the original model has been validated against experiments [39, 45, 46, 66, 67], a

salient feature we want to keep. Fig. 2.15a presents the bulk density of PBD obtained

from the cooling runs at zero pressure using our LAMMPS simulations with the truncated

LJ potential and corrections enabled. We compared our results to various experimental

and simulation references, that we were able to find (see Appendix C for an overview).

The data in the literature are for PBD of various compositions and molecular weight under

different pressure conditions. Thus, it only gives a range of densities to compare with.

Due to the presence of the tail corrections, our data lay nicely within the references.

Disabling them leads to a very significant decrease of the density in the NPT simulations

at 𝑇 = 353 K due to quite small 𝑟c = 9 Å, as it is shown in Fig. 2.15b. Increasing 𝑟c up

to 14 Å results in densities closer to the experimental ones, but also leads to more than

twice longer CPU times.

In order to avoid the tail corrections completely, we decided to apply the switching

function 𝑆(𝑟) to the LJ potential, as it is described in Section 2.2 (cf. Eqs. (2.5) to (2.7)).

The inner cutoff in Eq. (2.5) was kept at 𝑟1 = 9 Å, so that the shape of the potential

at 𝑟 < 𝑟1 is kept as in the original model. The outer cutoff was set at 𝑟c = 12 Å. The

switching function 𝑆(𝑟) smoothes the potential and its 1st and 2nd derivatives to zero over

a distance of about one particle diameter 9 Å < 𝑟 < 12 Å.

The modified pair potential Eq. (2.5) is of finite range and is still of shorter range

than the original model with tail corrections. This difference affects the density of the
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melt, which is smaller for the modified model than for the original model and moreover

does not fit into the interval of reference data from the literature (Fig. 2.15). Therefore, it

is necessary to adjust the potential parameters in order to reproduce the desired density.

To this end, we choose to leave the zero-crossing distance 𝜎 unchanged but to enhance 𝜖
by a factor 𝜆 > 1. This choice is motivated by the generally accepted point of view [3]

that the local structure of (simple) liquids at high density is dominated by the packing of

the molecular repulsive cores (i.e. by 𝜎), whereas the attractive interactions (of strength 𝜖)
determine the cohesive energy and along with that, thermodynamic properties, such as

the density or compressibility.

To determine 𝜆 we proceed in the following way. For the original model with truncated

LJ potential and tail corrections we carry out an NPT simulation to get the reference

value of the density at pressure 𝑝 = 0 atm for two temperatures, 𝑇 = 273 K and 353 K.

As described in Section 2.3.2, we impose this density in a subsequent NVT simulation and

calculate the average pair energy, 𝐸ref
pair(𝑇 ), for the original model. For the modified model,

Eqs. (2.5), (2.6) and (2.7), we also perform an NVT simulation, with the same density and
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Figure 2.15: (a) Comparison of the PBD density 𝜌(𝑇 ) obtained from our LAMMPS
simulations upon cooling the system in NPT conditions using a truncated LJ potential
with tail corrections with the data from literature. Five independent cooling runs were
averaged to obtain the density of PBD during our simulations (pink circles). (b) The
dependence of PBD density 𝜌(𝑇 ) at 𝑇 = 353 K on the cutoff distance 𝑟c and tail corrections.
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Table 2.5: Lennard–Jones energy parameters for the different types of united atoms𝑖, 𝑗 = CH2, CH. Second column: 𝜖𝑖𝑗 of the original model [26, 47]. Third column: 𝜖𝑖𝑗 for
the shifted and smooth model obtained from the original model by multiplying 𝜖𝑖𝑗 by𝜆 = 1.149462. Fourth column: 𝜎𝑖𝑗, which is the same for both models.

Pair type original 𝜖𝑖𝑗(kcal/mol) 𝜖∗𝑖𝑗 = 𝜆𝜖(kcal/mol) 𝜎𝑖𝑗
(Å)

CH ↔ CH 0.1000460 0.114999 3.38542
CH2 ↔ CH2 0.0936436 0.107639 4.00904
CH2 ↔ CH 0.1015460 0.116723 3.79256𝜖 as for the original model, and determine again the average pair energy 𝐸pair(𝑇 ). The

NVT simulations were performed in LAMMPS only and consisted of an equilibration run

of 10 ns followed by a production run of another 10 ns to measure the pair energy and

pressure. At both 𝑇 = 273 K and 353 K the run length of 10 ns allows the UAs to displace

on average over a distance of at least 2 particle diameters. As expected due to the shorter

range of the modified model, we find |𝐸pair| < |𝐸ref
pair|. Since 𝑈pair(𝑟) is proportional to 𝜖,

we define 𝜆 by 𝜆 = 𝐸ref
pair𝐸pair

. (2.20)

At 𝑇 = 273 K this gives 𝜆 = 1.149462. We utilize this value for all pairs 𝑖𝑗 of united

atoms (𝑖, 𝑗 = CH2, CH), that is, we replace 𝜖𝑖𝑗 of the original model by 𝜆𝜖𝑖𝑗. The resulting

values of 𝜖𝑖𝑗 are given in the third column of Table 2.5 (they are the same as in Table 2.4).

To verify the estimated 𝜆 we performed NVT simulations at 𝑇 = 273 K and at 𝑇 = 373 K

with the new values of 𝜖𝑖𝑗. For both temperatures the densities and pressures agree with

the target values of the original model.

We have also performed an inverse cross-check by imposing the 𝑝 = 0 atm and

comparing the density of PBD obtained from the cooling runs at two rates Γ = 3.33 K/ns

and Γ = 0.83 K/ns using the original and the modified potential. The results are presented

in Fig. 2.16.

All curves superimpose well at 𝑇 > 225 K, so our new model is able to represent the

density of PBD. Depending on the cooling rate Γ, the curves bend around 𝑇 ≈ 200 K,

which suggests a glass transition. The modified model appears to bend slightly earlier

upon cooling the system, which is expected due to the increased 𝜖.
In addition, we have compared our results to the density obtained from the first

simulations where all the dihedrals had been disabled, which also superimposed well in the
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Figure 2.16: The density of PBD obtained from the cooling runs using the original and
the modified pair interactions. The purple line represents the cooling at the rate Γ = 3.33
K/ns using the original model. This is the same data as in the Fig. 2.15. The green line is
the data obtained from a slower cooling rate of Γ = 0.83 K/ns. The black and the red
lines are from the simulations using the modified model. The data described above were
obtained by averaging over 5 independent cooling runs (the simulation details are given in
Appendix A). The blue line corresponds to a single cooling run using the original model
without the dihedrals.

region of the working temperatures. This model has been already studied in Refs. [40, 41],

in which much faster dynamics of the PBD was reported for the system without dihedrals

while the structure was observed to be unchanged. Thus, even though our cooling run

without dihedrals starts from the configuration obtained from the system with dihedrals,

we expect all perturbations that may occur by doing so (if any) to be relaxed during first

few nanoseconds of the run. This allowed us to omit the NPT equilibration step for the

models with modified dihedrals, and to use the densities obtained using our CRC model

for the NVT simulations of our models with reduced and disabled dihedral barriers. We

will continue this discussion in Section 3.2 where we analyse the cooling runs using all our

models.

2.5 Details of sampling and analysis of the trajectories

In order to compute the quantities of interest there are trajectory files written during

the simulation, in which the coordinates of all particles in the simulated system (usually

called “a frame”) are saved at selected timesteps. Our simulations write two types of such
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(a) (b)

Figure 2.17: The details of the linear (a) and logarithmic (b) spacing of the trajectory
files written during our simulations using LAMMPS.

files. The first type contains frames written at timesteps that are equidistantly spaced

(Fig. 2.17a). These files are used for calculating ensemble averages of the static properties.

The sequence of frames is firstly divided into equal blocks, and the quantities are computed

and averaged within each block separately. The average of the results over all blocks is

then performed along with the standard deviation of mean, that is usually used as the

estimation of error bars. The second type of files, which we call “logarithmic” trajectory,

also has blocks of frames, but the frames are spaced within each block exponentially at

short times, such that there is an equal distribution of points when plotting dynamic

quantities logarithmically in time (Fig. 2.17b). These files are used for calculating the

time averages with the resolution of the time windows varying over several decades: these

“logarithmic blocks” produce the short time average, and the first frame of each block is

used for the long time average as in the files of the first type.

The thermodynamic quantites in the simulations were calculated by LAMMPS itself

and writted into separate log files. The various static and dynamic quantities presented

in this work were calculated using trajectory analysis tools developed in the Theory and

Simulations of Polymers (TSP) team at Institute Charles Sadron and the library written

by the author in C++ programming language (available at [77]). The post-analysis,

figures and this manuscript itself were done using R programming language for statistical

computing and the available packages [78–82].

The bulk simulations were carried out using LAMMPS build of 7 Sep 2016 at the

High Performance Computing (HPC) Center of the University of Strasbourg (∼ 4 million

hours) [59]. The film systems were simulated using LAMMPS build of 29 Oct 2020 on the

Jean Zay (HPE SGI 8600) supercomputer at the Institute for Development and Resources

in Intensive Scientific Computing (IDRIS, Orsay; ∼ 2.9 million hours) [60]. Examples of
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the LAMMPS input scripts are presented in Appendix D.



Chapter 3

Bulk systems analysis

This chapter presents the results obtained from the simulations of the bulk systems.

We begin with the analysis of the conformational properties in Section 3.1. Then the density

and the glass transition are discussed in Section 3.2. Afterwards the static structure of the

PBD is analyzed in Section 3.3. The obtained results allow us to check the thermodynamic

consistency of the simulations and analyze the heat capacity in Section 3.4. In Section 3.5

we apply the Rouse model to describe the static properties of PBD and give the first

insights on the dynamics. A more detailed analysis of the dynamics is made in Section 3.6.

Finally, we discuss our results in Section 3.7.

3.1 Conformational properties

3.1.1 Distributions of the torsion angle

A first insight into the influence of reducing the torsional potential on the properties

of PBD may be provided by the distribution of the dihedral angle, 𝑝𝜆(𝜙), where 𝜆 identifies

the different models as defined in Section 2.2. If the dihedral angle was independent of the

other potentials, 𝑝𝜆(𝜙) would be solely determined by 𝜆𝑈tor,𝑝𝜆(𝜙) = exp(−𝜆𝑈tor(𝜙)/𝑘B𝑇 )∫2𝜋0 d𝜙 exp(−𝜆𝑈tor(𝜙)/𝑘B𝑇 ) . (3.1)

It is therefore instructive to compare Eq. (3.1) with the distribution obtained from the MD

simulations for a given dihedral. Such a comparison is shown in Fig. 3.1. As seen from

Fig. 3.1a, the distribution of the double bond trans dihedral angle from the MD for the

41
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Figure 3.1: Distributions 𝑝𝜆(𝜙) for different types of dihedrals angles at 𝑇 = 353 K. (a)
Log-linear plot of 𝑝𝜆(𝜙) for the double bond of the 𝑡𝑟𝑎𝑛𝑠 conformer. (b) Linear plot of𝑝𝜆(𝜙) for the 𝛽 bond between two monomers. (c) Linear plot of 𝑝𝜆(𝜙) for the 𝛼 bond
adjacent to the double bond of a 𝑡𝑟𝑎𝑛𝑠 monomer. (d) Linear plot of 𝑝𝜆(𝜙) for the 𝛼
bond adjacent to the double bond of a 𝑐𝑖𝑠 monomer. In all panels the symbols represent
the MD resutls and the full lines show the results of Eq. (3.1). The colors mark the
simulation models: CRC (𝜆 = 1) – red, CRC2 (𝜆 = 1/2) – green, CRC4 (𝜆 = 1/4) –
purple, FRC (𝜆 = 0) – blue. The black dashed horizontal line indicates the uniform
distribution 𝑝𝜆(𝜙) = 1/360 expected for the FRC model from Eq. (3.1)

CRC model is in excellent agreement with Eq. (3.1). This is not unexpected because the

dihedral associated with the double bond is a “hard” conformational variable which is kept

close to the equilibrium value by its stiff torsional potential. Reducing this potential could

change the situation. However, the agreement between the simulated distribution and

Eq. (3.1) is still good for both the CRC2 and CRC4 models (Fig. 3.1a). While progressive

softening of the torsional potential enhances deviations from the trans configuration, the

population at 𝜙 = 0∘ or 360∘ vanishes, even for the CRC4 model despite the decrease of the



3.1. CONFORMATIONAL PROPERTIES 43

potential barrier of the cis state by a factor of 4. This implies that cis/trans isomerization

is precluded not only for the CRC model, but also for the CRC2 and CRC4 models. Since

the torsional potential for the double bond of the cis conformer is only shifted by 180∘
relative to that of trans conformer, the results reported here for the trans conformer are

found for the cis conformer, too (not shown).

The difference between the cis and trans conformers disappears when the torsional

potential is switched off. Then, Eq. (3.1) predicts a uniform distribution, 𝑝𝜆=0(𝜙) = 1/(2𝜋).
The simulated distribution for the FRC model deviates from this prediction (Fig. 3.1a).

The probability of finding 𝜙 near 180∘ is increased relative to the uniform distribution,

while it is decreased near 𝜙 = 0∘ or 360∘. These deviations stem from intrachain LJ

interactions between united atoms separated by four and more bonds, which contribute to

the conformational energies and thereby create an effective torsional potential. Such an

influence of the LJ potential is expected from the force field parametrization developed

in Ref. [26], where intramolecular pair interactions were optimized, in conjunction with

the other potentials, so as to reproduce correlations between consecutive torsional states

(second-order effects between consecutive pairs of torsions and third-order effects involving

three consecutive torsions).

For the FRC model this also implies that similar deviations between the simulated

and the uniform distributions must be observed for the other dihedrals of the 𝛽, 𝛼 cis

and 𝛼 trans bonds. This is illustrated in Figs. 3.1b to 3.1d. As in the case of the double

bonds, we see that the probability of adopting torsional angles is enhanced near 180∘ and

supressed near 𝜙 = 0∘ or 360∘ for the FRC model. Deviations between the MD results for

the dihedral distributions and the predictions from Eq. (3.1) are also visible for the CRC,

CRC2 and CRC4 models. While Figs. 3.1b and 3.1c show that the deviations are small

for the 𝛽 and 𝛼 trans bonds, they are large for the 𝛼 cis bond (Fig. 3.1d), in particular for

torsional states near 𝜙 = 0∘ or 360∘ which are suppressed in the MD simulation, contrary

to the prediction of Eq. (3.1). Fig. 3.2 shows a configuration of the 𝑐𝑖𝑠 monomer and the

UAs adjacent to it, where all dihedral angles were fixed to 𝜙 = 0∘. This geometry results in

a distance of only 1.457 Å between the outer UAs. Since these UAs are separated by more

than 4 bonds along the chain, the pair interaction between them takes place. According to

Eq. (2.5) and Table 2.4, the pair energy at this distance is equal to 𝑈pair ≈ 105 kcal/mol

(≈ 107 K), which is so high, that the 𝛼 𝑐𝑖𝑠 dihedrals at 𝜙 = 0∘ are never adopted during
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Figure 3.2: Fragment of PBD chain comprising 6 UAs. 4 inner UAs make a monomer of
PBD. The bond lengths and bending angles are fixed to their equilibrium values according
to Tables 2.1 and 2.2. All dihedral angles were fixed to 𝜙 = 0∘ representing the ideal 𝑐𝑖𝑠
configuration.

the simulations and are redistributed around the other minima of the potential. This

effect is commonly referred to in the literature as the ‘steric hindrance’ [83, 84] or ‘pentane

interference’ [85, 86]. These intrachain correlations beyond those of single torsions are

clearly important for the conformational properties of PBD [26].

3.1.2 Bond correlations and internal distances

Let ⃗𝑟𝑛 denote the position of the 𝑛th united atom and ⃗𝑙𝑛 = ⃗𝑟𝑛+1 − ⃗𝑟𝑛 its bond vector

(𝑛 = 1, … , 𝑁). For the united atom 𝑚 = 𝑛 + 𝑠 that is separated by 𝑠 bonds from 𝑛,

we define the mean-square internal end-to-end distance 𝑅2
e (𝑠) and the bond correlation

function 𝑃1(𝑠), 𝑅2
e (𝑠) = ⟨( ⃗𝑟𝑛+𝑠 − ⃗𝑟𝑛)2⟩ , 𝑃1(𝑠) = ⟨ ⃗ℓ𝑛+𝑠 ⋅ ⃗ℓ𝑛⟩𝑙2 , (3.2)

where 𝑙2 = ⟨ ⃗ℓ 2𝑛⟩ is the mean-square bond length of the PBD chain. Here ⟨…⟩ denotes the

thermal average (over all configurations and chains of the system) and also the average

over all possible pairs 𝑛, 𝑚 = 𝑛 + 𝑠. (Hence, the statistics will deteriorate for 𝑠 → 𝑁 − 1.)

Since ⃗𝑟𝑛+𝑠 − ⃗𝑟𝑛 = ∑𝑛+𝑠−1𝑖=𝑛 ⃗𝑙𝑖, 𝑅2
e (𝑠) and 𝑃1(𝑠) are related to each other by

𝑅2
e (𝑠) = 𝑙2𝑠 + 2𝑙2 𝑠−1∑𝑘=1(𝑠 − 𝑘)𝑃1(𝑘) . (3.3)

Both quantities are of considerable theoretical importance [2, 87, 88] and have often been

studied in polymer melt simulations [21, 88–90]. Therefore, we also determine them here.

As an example for the typical behavior of 𝑃1(𝑠) found for all models in the interval



3.1. CONFORMATIONAL PROPERTIES 45213 K ≤ 𝑇 ≤ 353 K, Fig. 3.3 shows the results of the CRC model at 𝑇 = 353 K. If

bond correlations were only caused by the bond angle, one would expect from the freely

rotating chain model theory an exponential decay 𝑃1(𝑠) = |⟨cos 𝜃⟩|𝑠 [2]. Clearly, this

prediction (dashed line in Fig. 3.3) must underestimate 𝑃1(𝑠) for PBD. It only accounts

for correlations between consecutive pairs of bonds [𝑃1(𝑠 = 1)], but not for correlations

between more distant pairs along the chain backbone [𝑃1(𝑠 > 1)], resulting from dihedral

and interchain pair interactions. To fit these more distant correlations we use an exponential

function 𝑃1(𝑠) = 𝐴 exp(−𝑠/𝑠) with 𝐴 and 𝑠 as adjustable parameters. This gives a good

description of the MD data for 2 ≤ 𝑠 ≲ 25 (full line in Fig. 3.3). Fig. 3.3 shows that𝑃1(𝑠 ≈ 25) ∼ 10−3, which is the noise level of our MD results. Since the statistical

accuracy does not allow one to explore bond correlations for large 𝑠 → 𝑁 − 1, the best

adapted parameterization of the present data is given by

𝑃1(𝑠) = ⎧{⎨{⎩𝛼 for 𝑠 = 1 ,𝐴 exp(−𝑠/𝑠) for 𝑠 > 1 . (3.4)

where we defined 𝛼 = −⟨cos 𝜃⟩ (> 0). We have analyzed all models in the temperature

interval 213 K ≤ 𝑇 ≤ 353 K with Eq. (3.4). The directly measured values for 𝛼 and the

fit results for 𝐴 and 𝑠 are compiled in Appendix E.

Insertion of Eq. (3.4) into Eq. (3.3) gives

𝑅2
e (𝑠) = 𝑙2𝑠 [𝐶∞ − 2𝑠(𝛼 − 𝐴𝛼 + 𝐴𝛼 − 𝛼𝑠+1(1 − 𝛼)2 )] , (3.5)

where 𝛼 = e−1/𝑠 (< 1) and 𝐶∞ is the characteristic ratio of the infinitely long chain,

𝐶∞ = lim𝑁→∞ 𝑅2
e (𝑁 − 1)(𝑁 − 1)𝑙2 = 1 + 2(𝛼 − 𝐴𝛼) + 2𝐴𝛼1 − 𝛼 . (3.6)

The characteristic ratio determines the effective bond length 𝑏e = √𝐶∞𝑙 [1] and the

temperature coefficient 𝜅 of the mean-square end-to-end distance 𝑅2
e (𝑁 − 1) of the chain

[91], 𝜅 = 1000 d ln 𝑅2
e (𝑁 − 1)
d𝑇 = 1000 d ln 𝐶∞

d𝑇 . (3.7)

The factor of 1000 is introduced in this definition because 𝜅 is typically of the order of10−3 K−1 [26, 92].
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Figure 3.3: Log-log plot of 𝑃1(𝑠) versus the number of bonds 𝑠 (1 ≤ 𝑠 ≤ 𝑁 − 1) for the
CRC model (red circles) at 𝑇 = 353 K. The dashed line indicates the exponential decay
based on the freely rotating chain model theory, |⟨cos 𝜃⟩|𝑠 [2]. The solid line represents the
fit result to 𝐴 exp(−𝑠/𝑠) for 2 ≤ 𝑠 ≤ 20, yielding 𝐴 = 0.7507 and 𝑠 = 3.625. 𝑠 is indicated
by a vertical dotted line. For 𝑠 > 25 the statistical accuracy of the data deteriorates:𝑃1(𝑠) can become negative, explaining the gap in the log-log plot for 30 ≲ 𝑠 ≲ 100. The
associated ’noise’ does not allow an analysis of 𝑃1(𝑠) for 𝑠 ≪ 𝑠 ≤ 𝑁 − 1.

Fig. 3.4a depicts the ratio 𝑅2
e (𝑠)/𝑠 as a function of 𝑠 for all models at 𝑇 = 353 K.

This ratio starts from the mean-square bond length 𝑙2 (= 2.158 Å2) 1, then increases first

steeply for small 𝑠 and eventually levels off when 𝑠 approaches 𝑁 − 1. We find that the

dependence 𝑅2
e (𝑠)/𝑠 on 𝑠 can be well fitted by Eq. (3.5) for all models and temperatures

(see Appendix E for a compilation of the fit results). The full line in Fig. 3.4a gives an

example for the FRC model. By repeating this analysis at all studied temperatures we

obtain the 𝑇 dependence of 𝐶∞ (Table 3.1). The results are plotted as ln 𝐶∞ versus 𝑇 in

Fig. 3.4b. This plot format approximately rectifies the data, yielding negative values for 𝜅
in the range −0.64 K−1 ≲ 𝜅 ≲ −0.52 K−1 for all models studied. A negative value for 𝜅
implies that the chains tend to expand on cooling.

The results for 𝜅 may be compared with experimental values [93] and Rotational

Isomeric State (RIS) calculations [26, 94]. These studies show that the thermal coefficient

is sensitive to the stereochemical composition of PBD. While pure cis-PBD has positive𝜅, negative values are obtained for the pure trans-form. For mixed stereoirregular mi-
1The stiff bond length potential of the PBD model implies that the bond length is Gaussian distributed

around the equilibrium bond length ℓ0, leading to a 𝑇 independent ⟨ ⃗ℓ2⟩ = ℓ20. Out of 𝑁 −1 bonds, a PBD
chain has 𝑁/4 CH=CH bonds of length ℓ0 = 1.34 Å, 𝑁/4 − 1 CH2–CH2 bonds of length ℓ0 = 1.53 Å,
and 𝑁/2 CH–CH2 bonds of length ℓ0 = 1.50 Å. The weighted average of ℓ20 gives 𝑙2 = 2.158 Å2.
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Eq. (3.5)
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Figure 3.4: (a) Plot of the mean-square internal distance 𝑅2
e (𝑠) divided by the number of

bonds 𝑠 versus 𝑠 (1 ≤ 𝑠 ≤ 𝑁 − 1) for the CRC (red circles), CRC2 (green triangles), CRC4
(purple pluses) and FRC models (blue crosses). All data refer to 𝑇 = 353 K. The (black)
dashed line shows a fit to Eq. (3.5) for the FRC model (not shown for other models). The
horizontal dotted lines show respectively the mean-square bond length 𝑙2 = 2.158 Å2 and
for the FRC model the square effective bond length 𝑏2

e = 11.58 Å2. (b) Temperature
dependence of the characteristic ratio 𝐶∞ from Eq. (3.6) for the CRC (red circles), CRC2
(green triangles), CRC4 (purple pluses) and FRC models (blue crosses). The plot format,
ln 𝐶∞ versus 𝑇, is motivated by Eq. (3.7) when assuming 𝜅 to be constant. The full line
presents a linear fit to the FRC data, yielding 𝜅 = −0.52 K−1. The dashed line shows
the fit result to the CRC model, leading to 𝜅 = −0.64 K−1. The dotted line indicates the
experimental result, 𝜅 = −0.10 K−1 (obtained for 298 K ≤ 𝑇 ≲ 373 K), from Table VIII
of Ref. [93].

crostructures similar to our simulation model, RIS calculations [94] mostly lead to small

negative values of 𝜅 (∼ −0.1 K−1), in resonance with experimental results (where PBD

also contains about 9% of vinyl groups in addition to cis and trans units) [93]. From

this comparison we can conclude that our simulation results are in qualitative accord

Table 3.1: Characteristic ratio 𝐶∞ from Eq. (3.6) for the various models studied [Sec-
tion 2.2] at temperature 𝑇.𝑇 (K) CRC CRC2 CRC4 FRC

213 6.2 6.0 5.9 5.8
225 5.8 5.9 5.9 5.7
240 5.8 5.8 5.9 5.7
253 6.1 5.9 5.7 5.6
273 5.7 5.7 5.7 5.5
293 5.7 5.7 5.6 5.5
353 5.5 5.5 5.5 5.4
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with available literature data (𝜅 < 0), but the extent of the chain extension on cooling is

stronger in the simulation.

Finally, a remarkable observation from the previous analysis is the weak influence of

the torsions. Even when switching off all dihedral potentials the conformational properties

of the resulting FRC model are very close to those of the CRC model. This observation

agrees with the original works [40, 41]. Qualitatively, we can rationalize this feature by

invoking the hindered rotation model that expresses 𝐶∞ as [2]:

𝐶∞ = 1 + 𝛼1 − 𝛼 1 − ⟨cos 𝜙⟩1 + ⟨cos 𝜙⟩ . (3.8)

If the torsions were uniformly distributed for the FRC model, we would have ⟨cos 𝜙⟩ = 0
and switching off of the torsional potential would give a big effect on 𝐶∞. However,

Fig. 3.1 shows that the distribution of the dihedral angles is not uniform for the FRC

model due to the intrachain pair interactions, leading to a finite value of ⟨cos 𝜙⟩. Therefore,

we determined ⟨cos 𝜙⟩ for all models. The results are summarized in Table 3.2, together

with 𝐶∞ from Eq. (3.8) (using the values of 𝛼 from Appendix E). We see that the values

of 𝐶∞ from Eq. (3.8) for the different models are close to one another at a given 𝑇. This is

consistent with the trend shown in Table 3.1. Even at a quantitative level the characteristic

ratio from the hindered rotation model is close to the results from Table 3.1. This implies

that the dominant contribution to chain stiffness stems on average from local correlations

involving three bonds along the chain backbone in PBD.

Table 3.2: 𝐶∞ at temperature 𝑇 from the hindered rotation model [Eq. (3.8)]. The values
for ⟨cos 𝜙⟩ were determined from the simulation.

CRC CRC2 CRC4 FRC𝑇 (K) ⟨cos 𝜙⟩ 𝐶∞ ⟨cos 𝜙⟩ 𝐶∞ ⟨cos 𝜙⟩ 𝐶∞ ⟨cos 𝜙⟩ 𝐶∞
213 -0.323 5.6 -0.275 5.0 -0.253 4.8 -0.246 4.7
225 -0.312 5.4 -0.270 4.9 -0.249 4.7 -0.244 4.7
240 -0.305 5.3 -0.264 4.9 -0.246 4.7 -0.242 4.7
253 -0.302 5.3 -0.261 4.9 -0.243 4.7 -0.240 4.6
273 -0.292 5.2 -0.255 4.8 -0.242 4.6 -0.237 4.6
293 -0.285 5.1 -0.250 4.8 -0.235 4.6 -0.234 4.6
353 -0.267 4.9 -0.238 4.6 -0.226 4.5 -0.227 4.5
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3.2 Density

The comparison of the bulk density of simulated PBD to experimental data has been

already presented in Section 2.4.3 in case of the original PBD model. Our CRC model

essentially reproduces the same density, which fits within the experimental and simulation

data from the literature (see Figs. 2.15 and 2.16 and Appendix C for an overview). In this

section we complement the discussion by comparing the density obtained from cooling

the PBD down to 3 K using all our models, comment on the equilibrium values at the

working temperatures and analyze the glass transition.

Fig. 3.5 presents the mass densities 𝜌m(𝑇 ) = 𝑚/𝑉 (𝑇 ) (𝑚 is the mass of PBD in

the simulation box of volume 𝑉) of PBD obtained in our work. Different symbol shapes

denote the runs, from which the data were extracted, and the colors mark the models.

The empty circles represent the data obtained from 5 independent cooling runs at the
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Figure 3.5: Main panel: Density of the bulk PBD. The empty colored circles represent the
data from the cooling runs. The black triangles correspond to the equilibrium volumes,
obtained from 100 ns NPT equilibration and imposed during the NVT runs for all models.
The colored crosses are the data from 1 𝜇s long NPT runs. The solid black lines represent
the fits using Eq. (3.10) with the parameters form Table 3.3. Inset: The fraction of the
densities from the cooling (circles) and NVT runs (triangles) divided by the corresponding
density from the long NPT runs for each model.
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rate Γ = 0.83 K/ns, that were, at first, averaged together at each timestep, and then

smoothed so that each point is an average of the raw data over a neighboring region

of Δ𝑇 = 1 K. The curves overlap at high temperatures before the bending occurs at

different temperatures depending on the model. Clearly, such a bending suggests the glass

transition that depends on the strength of the dihedrals. We will discuss this later in this

section. The overlapping data reveals the mild influence of the dihedrals on the density of

PBD in the liquid state.

Honnell et al have studied the equation of state for chain molecules in 1987 [61] and

derived that the pressure does not depend on the angular potentials explicitly2. It is

determined by the inter- and intrachain contributions of the site-site correlations, that

include only the pair and the bond terms:

(𝑝𝛽𝜌c
) = 𝑁 − 2𝜋𝛽𝜌c3 ∑𝛼,𝛾 ∫∞0 𝑔𝛼,𝛾

inter(𝑟)𝑑𝑈pair𝑑𝑟 𝑟3𝑑𝑟− 4𝜋𝛽3𝑉 𝑁−1∑𝑖=1 ∫∞0 𝑔𝑖,𝑖+1
intra (𝑟)𝑑𝑈bond𝑑𝑟 𝑟3𝑑𝑟 (3.9)− 4𝜋𝛽3𝑉 𝑁−4∑𝛼=1 𝑁∑𝛾=𝛼+4 ∫∞0 𝑔𝛼,𝛾

intra(𝑟)𝑑𝑈pair𝑑𝑟 𝑟3𝑑𝑟 ,
where 𝜌c is the number density of chains, 𝑁 is the number of sites in a chain, 𝑔𝛼,𝛾

inter(𝑟) is

the probability to find the sites 𝛼 and 𝛾, that belong to different chains, at a distance 𝑟;𝑔𝛼,𝛾
intra(𝑟) is the probability to find the sites 𝛼 and 𝛾, that belong to the same chain, at a

distance 𝑟.

Indeed, the pressure components reported by LAMMPS (Fig. 3.6a), that correspond to

the contributions arising directly from the bending and torsional potentials are equal to zero

for all models. However, the angular potentials may still influence the site-site correlations𝑔𝛼,𝛾
inter(𝑟) and 𝑔𝛼,𝛾

intra(𝑟). In order to estimate these correlations we have calculated the

total radial distribution function 𝑔(𝑟) and its inter/intrachain contributions for all models

assuming all sites to be equivalent. They are presented in Figs. 3.6b to 3.6d. The curves,

that correspond to the intermolecular part, overlap (Fig. 3.6c), so the 1st integral term in

Eq. (3.9) is also same for all models. The bonds are very stiff and do not feel the presence

of the dihedrals. They result in very high peaks around the equilibrium bond lengths

2The main argument of the derivation is the fact, that the angles do not change when rescaling the
volume of the system. Therefore, the derivatives of the angular potentials with respect to the volume
vanish. Our simulations employed an isotropic barostat, so this statement holds.
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(they are truncated in Fig. 3.6d), which bring the same contribution to the 2nd integral

term in Eq. (3.9) for all models. The intramolecular part has visible differences between

the models at 3 Å ≲ 𝑟 ≲ 5 Å (Fig. 3.6d). However, the distances 𝑟 ≲ 4 Å correspond

to the correlations only up to the 3rd neighbor along the chain (√𝑅2
e (𝑠 = 3) ≈ 3.5 Å in

Fig. 3.4a). These interactions are excluded in the simulations. The intramolecular part of

the pair potential is taken into account starting form the 4th neighbor, which corresponds

to the distances 𝑟 ≳ 4 Å (√𝑅2
e (𝑠 = 4) ≈ 4.5 Å). In this region the data for the 𝑔intra(𝑟)

differs noticeably only close to the peak. We expect these differences to be negligible with
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Figure 3.6: (a) Contributions to the pressure arising from the different potential terms
calculated in LAMMPS during the simulations at 𝑇 = 353 K. The data were averaged over
10 ns of a NVT run. (b-d) The total (a), intermolecular (c) and intramolecular (d) radial
distribution functions obtained from the NVT simulations of 1 𝜇s in length at 𝑇 = 353 K.
The colours denote different models: CRC - red, CRC2 - green, CRC4 - purple, FRC -
blue.
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respect to the other terms of Eq. (3.9). Thus, with sufficient amount of confidence, we can

assume the pressure, and therefore, the resulting density of PBD to be the same for all

studied models in the melt state.

Consequently, the values of the equilibrium volume obtained from the NPT runs

using the CRC model were employed for the NVT simulations of all models at all working

temperatures. These data are shown in Fig. 3.5 as black triangles. As a post factum check,

we have compared our data to the densities extracted from the 1 𝜇s long NPT runs for

each model (colored crosses), that were launched after the NVT runs. These values of

the density are obtained with much better averaging statistics and still agree nicely with

the rest of the data within the size of the symbol. The inset of Fig. 3.5 shows that the

differences between the cooling densities, the densities imposed in the NVT runs and the

ones after long NPT runs are less than 1%.

As it was mentioned above, the cooling curves change their slope at different temper-

atures depending on the model, which suggests an influence of the dihedrals on the glass

transition temperature 𝑇g. There are several ways to extract the 𝑇g from the evolution of

the density upon cooling. A straightforward approach often used in the experiments and

simulations is to estimate the 𝑇g from the intersection point of the linear glassy and liquid

regions [54, 95, 96]. Even though the choice of the linear regions is ambiguous, this method

works reasonably well for the experimental data, because the experimental cooling rates of

the order of Γ ∼ 0.001-1 K/s [97–99] result in sharply pronounced changes of the slope over

only few Kelvins. Still, the ambiguity in the method leads to the problem of reproducibility

of the results. In order to solve this problem Dalnoki-Veress et al proposed an alternative

method to determine the 𝑇g [100]. Assuming the thermal expansion coefficients to be

constant in the liquid and in the glass (which correspond to the slopes 𝑀 and 𝐺 in the

density curves), interpolating across the transition region by a hyperbolic tangent function

and integrating the resulting equation, they obtained

𝜌(𝑇 ) = 𝑤 (𝑀 − 𝐺2 ) ln [cosh (𝑇 − 𝑇g𝑤 )] + (𝑇 − 𝑇g) (𝑀 + 𝐺2 ) + 𝜌g , (3.10)

with 𝜌(𝑇 ) being the density at the temperature 𝑇, 𝑤 the width of the glass transition

region, 𝑀 and 𝐺 the slopes d𝜌(𝑇 )/d𝑇 in the melt and glass regions respectively, 𝑇g the

glass transition temperature, 𝜌g the density at 𝑇 = 𝑇g. We employed this method in our

simulations, which, due to significantly faster cooling rate Γ = 0.83 K/ns are expected
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to result in much broader transition region. Even by a visual estimation, our data in

Fig. 3.5 bends over about 𝑤 ≈ 30-50 K, while the typical experimental values are 𝑤 ≈ 2 K

[100]. The situation is difficult for the FRC model, where it is not clear if the glassy

linear regime is pronounced. While accounting for the width of the transition explicitly,

there is still an ambiguity in choosing the temperature interval (𝑇 ∗
g − Δ𝑇 , 𝑇 ∗

g + Δ𝑇 ) over

which the fit is applied3. In order to investigate the influence of the choice of Δ𝑇, we have

attempted to fit our smoothed data using Eq. (3.10) over a set of Δ𝑇 ranging from tens

of Kelvins to the highest possible value. The results are presented in Fig. 3.7, where the

values of the fitted parameters are plotted against Δ𝑇. The lower bound of Δ𝑇 is limited

by the amount of smoothing, since it is meaningless to apply the fit over a region of the

fluctuation of the data. The upper bound of Δ𝑇 is given by the distance to the closest end

of the available data. According to Fig. 3.7, the 𝑇g, 𝜌g and the slopes 𝑀 and 𝐺 converge

to the corresponding plateaus, but the transition width parameter 𝑤 appears to be the

most sensitive to Δ𝑇.

In order to obtain the final values of the parameters, we fixed the 𝑇g, 𝜌g, 𝑀 and 𝐺
to their plateau values and refitted the data for the highest Δ𝑇 in order to obtain an

‘averaged’ 𝑤. These data are presented in Table 3.3 and as dashed lines in Fig. 3.7. In

case of the FRC model this resulted in slightly higher value of 𝑤 with respect to the Δ𝑇-

dependent fit. The fitted curves are presented in Fig. 3.5 as solid black lines.

The most important fitting parameter is, of course, the glass transition temperature𝑇g. The value for the CRC model is reasonably higher than the experimental 𝑇g ≈ 175 K

(for high molecular weights) [98, 101] again due to much faster cooling rate. Weakening

the dihedrals significantly shifts the 𝑇g to lower values. The value for the FRC model

qualitatively agrees with the results of the coarse-grained simulations, where typical values

of 𝑇g are of the order of a fraction of 𝜖/𝑘B (≈ 55 K). [19, 54].

3The choice of the initial value of 𝑇 ∗
g for the fit interval is arbitrary. We observed no significant

influence on the results of the fits after choosing the value of 𝑇 ∗
g visually or iterating after the first fitting

attempts.



54 CHAPTER 3. BULK SYSTEMS ANALYSIS

192 K

143 K

108 K

43 K50

100

150

200

40 80 120 160
∆T (K)

T
g

(K
)

(a)

0.967

1.004

1.032

1.089

1.00

1.05

40 80 120 160
∆T (K)

ρ
g

(g
/c

m
3
)

(b)

50

45

34
31

20

40

60

40 80 120 160
∆T (K)

w
(K

)

(c)

-6.6

-6.9-7-8.5

-2-2.2-2.5

-4

-10

-8

-6

-4

-2

40 80 120 160
∆T (K)

M
,G

(×
1
0
−
4
g/

cm
3
K

)

M
G

(d)

Figure 3.7: The values of the fitting parameters of Eq. (3.10) depending on the fititting
interval Δ𝑇. The colours denote different models: CRC - red, CRC2 - green, CRC4 -
purple, FRC - blue. The dashed lines represent the final values of the parameters.

Table 3.3: The final values of the fit parameters of Eq. (3.10)

model 𝑇g (K) 𝜌g (g/cm3) 𝑀 × 10−4 (g/cm3𝐾) 𝐺 × 10−4 (g/cm3𝐾) 𝑤 (K)
CRC 192 0.967 -6.6 -2.0 50
CRC2 143 1.004 -6.9 -2.2 45
CRC4 108 1.032 -7.0 -2.5 34
FRC 43 1.089 -8.5 -4.0 31
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3.3 Structure factors, compressibility

3.3.1 Lennard–Jones interactions: Comparison of polybutadiene

with the Kob–Andersen binary mixture

From the viewpoint of the Lennard–Jones (LJ) interactions 1,4-cis-trans polybutadiene

(PBD) is a binary mixture. Thus, it is interesting to compare PBD to models of glass-

forming binary mixtures, an extensively studied example being the Kob–Andersen (KA)

mixture [58, 102–104].

For PBD the CH2 united atom (UA) is the big particle and CH united atom the

small particle. Following commonly employed notations we refer to the big particle as the

A particle (= CH2) and to the small particle as the B particle (= CH).

For PBD the LJ interaction parameters are𝜖AA = 0.107639 kcal
mol , 𝜎AA = 4.009 Å ,𝜖BB = 0.114999 kcal
mol , 𝜎BB = 3.385 Å ,𝜖AB = 0.116723 kcal
mol , 𝜎AB = 3.793 Å , (3.11)

while for the KA mixture they are [102]𝜖AA = 1.0 , 𝜎AA = 1 ,𝜖BB = 0.5 , 𝜎BB = 0.88 ,𝜖AB = 1.5 , 𝜎AB = 0.8 . (3.12)

These parameters imply that the particle size ratios 𝛿𝜎 = 𝜎BB/𝜎AA,

𝛿PBD𝜎 = 0.844 and 𝛿KA𝜎 = 0.88 , (3.13)

are nearly the same for PBD and the KA mixture. Moreover, both systems deviate from

the Lorentz rule [3], 𝜎𝑖𝑗 ≠ (𝜎𝑖𝑖 + 𝜎𝑗𝑗)/2, and are thus “nonadditive”. Following Eq. (8) of

Ref. [57] we can quantify deviations from additivity by

𝜎𝑖𝑗 = 12 (𝜎𝑖𝑖 + 𝜎𝑗𝑗)[1 − 𝑓𝜎|𝜎𝑖𝑖 − 𝜎𝑗𝑗|] . (3.14)
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This modified mixing rule implies that identical particles (𝑖 = 𝑗) have unaltered diameters,

whereas the cross term of unlike particles deviates from additivity for 𝑓𝜎 ≠ 0. If 𝑓𝜎 > 0,

the small and large particles overlap more than they could for additive systems, while they

overlap less for 𝑓𝜎 < 0. For PBD and the KA mixture we find𝑓PBD𝜎 = −0.0416 Å−1 ⇒ 𝑓PBD𝜎 𝜎AA ≃ −0.1668 ,𝑓KA𝜎 = 1.24 . (3.15)

Compared to the KA mixture, the overlap between unlike particles is decreased for PBD,

but the deviation from nonadditivity is fairly weak—weaker by a factor of about 7 relative

to the KA mixture.

We can compare the LJ energy parameters of both models in a similar way. First,

the LJ energy ratio 𝛿𝜖 = 𝜖BB/𝜖AA have the following values

𝛿PBD𝜖 ≃ 1.036 and 𝛿KA𝜖 = 0.5 . (3.16)

For PBD the LJ energy between like particles is almost the same. This is not unexpected

given that A (= CH2) and B particles (= CH) are chemically very close.

For simple mixtures the interaction energy is often modeled by the Berthelot rule [3],𝜖𝑖𝑗 = √𝜖𝑖𝑖𝜖𝑗𝑗. It is convenient to describe deviations from this rule by an equation similar

to Eq. (3.14), i.e. 𝜖𝑖𝑗 = √𝜖𝑖𝑖𝜖𝑗𝑗[1 + 𝑓𝜖|𝜖𝑖𝑖 − 𝜖𝑗𝑗|] . (3.17)

As before, the modified mixing rule does not change the energy parameter of identical

particles, but implies stronger attractions between unlike particles relative to the Berthelot

rule, if 𝑓𝜖 > 0. Stronger attractions implies enhanced mixing ability [58, 105]. Applying

Eq. (3.17) to PBD and the KA mixture we get𝑓PBD𝜖 ≃ 6.674 mol
kcal ⇒ 𝑓PBD𝜖 𝜖AA ≃ 0.718 ,𝑓KA𝜖 ≃ 2.243 . (3.18)

Thus, mixing is enhanced for both models. However, as for the LJ diameters, the deviations

from the standard mixing rule (Berthelot rule) is stronger for the KA system than for

PBD—by a factor of about 3. Again, this difference just reflects the similarity of the A
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and B particles in the case of PBD.

The KA mixture is produced by blending A and B particles which by themselves

crystallize at low temperature. The nonadditive cross interactions in the KA system are

specifically designed to suppress demixing and ensuing crystallization. Good glass-forming

properties are thus expected. Nonetheless, composition fluctuations at various length

scales are unavoidable in any mixed system. In the cold liquid these fluctuations can

lead to regions containing just a single component. If such a region is large enough and

long-lived enough, it will nucleate a crystal of this component. Exactly this ordering

mechanism has recently been described for the KA mixture [58]. Due to this instability in

favor of crystal nucleation by composition fluctuations Ref. [58] concludes that the KA

mixture “has a fatal flaw as a glass former”.

These findings for simple liquids invite to explore composition fluctuations also

for PBD. This chapter is a first step in this direction by focusing on the partial static

structure factors and the related Bhatia–Thornton structure factors. We introduce these

structure factors below and apply them to PBD. A spin-off of this analysis is a temperature

dependence of the isothermal compressilibity, which we also determine by a volume-

fluctuation method.

3.3.2 Partial static structure factors: Background for Binary

Mixtures of Simple Liquids

We consider a binary mixture consisting of 𝑁 particles with 𝑁A particles of type A

and 𝑁B (= 𝑁 − 𝑁A) particles of type B. The composition of the mixture is characterized

by 𝑥A = 𝑁A/𝑁, the number fraction of A particles, and 𝑥B = 𝑁B/𝑁 = 1 − 𝑥A, the

number fraction of B particles.

Let us introduce the collective static structure factor,

𝑆(𝑞) = 1𝑁 ⟨𝜌( ⃗𝑞)𝜌(− ⃗𝑞)⟩ , (3.19)

which is defined in terms of the coherent density fluctuations for wave vector ⃗𝑞,

𝜌( ⃗𝑞) = 𝑁∑𝑗=1 exp (i ⃗𝑞 ⋅ ⃗𝑟𝑗) (for 𝑞 ≠ 0), (3.20)
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where ⟨…⟩ denotes the canonical average and ⃗𝑟𝑗 is the position of particle 𝑗 (= 1, … , 𝑁).

For spatially homogeneous and isotropic systems, the structure factor depends only on

the modulus of the wave vector, 𝑞 = | ⃗𝑞|. In the limit 𝑞 → 0, 𝑆(𝑞) is small because the

fluctuations of the particle number relative to the average ⟨𝑁⟩ (= 𝑁) are weak in a dense

system (at constant chemical potential),

𝑆(𝑞 → 0) = ⟨𝑁2⟩ − ⟨𝑁⟩2⟨𝑁⟩ ≪ 1. (3.21)

For a system consisting only of one particle type we also have [3] 𝑆(𝑞 → 0) = 𝑘B𝑇 𝜌𝜅𝑇
where 𝑇 is the temperature, 𝜌 is the particle number density (𝜌 = 𝑁/𝑉 with 𝑉 the volume

of the system) and 𝜅𝑇 is the isothermal compressibility.

Further insight into structural properties of a binary mixture can be obtained from

the partial static structure factors

𝑆𝛼𝛽(𝑞) = 1𝑁 ⟨𝜌𝛼( ⃗𝑞)𝜌𝛽(− ⃗𝑞)⟩ (𝛼, 𝛽 = A, B) (3.22)

defined by the partial density fluctuations

𝜌𝛼( ⃗𝑞) = 𝑁𝛼∑𝑗𝛼=1 exp (i ⃗𝑞 ⋅ ⃗𝑟𝑗𝛼) , (3.23)

where ⃗𝑟𝑗𝛼 is the position of particle 𝑗𝛼 of species 𝛼. As 𝜌A( ⃗𝑞) + 𝜌B( ⃗𝑞) = 𝜌( ⃗𝑞) ≡ 𝜌n( ⃗𝑞), the

collective structure factor can be expressed as

𝑆(𝑞) = 𝑆nn(𝑞) = 𝑆AA(𝑞) + 𝑆BB(𝑞) + 2𝑆AB(𝑞). (3.24)

While 𝑆𝛼𝛽(𝑞) characterize spatial correlations between like or unlike particles, 𝑆(𝑞) de-

scribes number-number (nn) correlations (hence the notation 𝑆 = 𝑆nn). Eq. (3.24) is not

the only physically significant linear combination of the partial structure factors. Since

composition (or concentration) fluctuations 𝜌c( ⃗𝑞) are defined by 𝜌c( ⃗𝑞) = 𝜌A( ⃗𝑞) − 𝑥A𝜌( ⃗𝑞) =𝑥B𝜌A( ⃗𝑞) − 𝑥A𝜌B( ⃗𝑞), the structure factor

𝑆cc(𝑞) = 1𝑁 ⟨𝜌c( ⃗𝑞)𝜌c(− ⃗𝑞)⟩= 𝑥2
B𝑆AA(𝑞) + 𝑥2

A𝑆BB(𝑞) − 2𝑥A𝑥B𝑆AB(𝑞) (3.25)
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represents composition-composition (cc) correlations, and the structure factor between 𝜌n

and 𝜌c, 𝑆nc(𝑞) = 1𝑁 ⟨𝜌n( ⃗𝑞)𝜌c(− ⃗𝑞)⟩= 𝑥B𝑆AA(𝑞) − 𝑥A𝑆BB(𝑞) + (𝑥B − 𝑥A)𝑆AB(𝑞), (3.26)

describes number-composition (nc) correlations. The structure factors 𝑆nn(𝑞), 𝑆cc(𝑞) and𝑆nc(𝑞) are often referred to as Bhatia–Thornton structure factors [106]. They have been

studied extensively for metallic alloys [107, 108] or colloidal suspensions [109].

For binary mixtures a deviation between 𝑆(𝑞 → 0) and 𝑘B𝑇 𝜌𝜅𝑇 is expected from

the work of Bhatia and Thornton [106] and also from the Kirkwood–Buff theory for

multicomponent solutions [110]. For 𝑞 → 0 the Bhatia–Thornton structure factors are

related to the thermodynamic properties of the binary mixture:

𝑆(𝑞 → 0) = 𝑘B𝑇 𝜌𝜅𝑇 + 𝛿2𝑆cc(𝑞 → 0), (3.27)𝑆cc(𝑞 → 0) = 𝑁𝑘B𝑇(𝜕2𝐺/𝜕𝑥2
A)𝑝,𝑇 ,𝑁 , (3.28)𝑆nc(𝑞 → 0) = −𝛿 𝑆cc(𝑞 → 0), (3.29)

where 𝐺 is the Gibbs free energy, 𝑝 the pressure and

𝛿 = 𝜌(𝑣A − 𝑣B) (3.30)

is a volumetric factor given by the partial molar volumes

𝑣A = 𝜕𝑉𝜕𝑁A
∣𝑝,𝑇 ,𝑁B

and 𝑣B = 𝜕𝑉𝜕𝑁B
∣𝑝,𝑇 ,𝑁A

. (3.31)

Eq. (3.27) shows that in a mixture fluctuations of the total particle number, 𝑆(𝑞 → 0),
do not only stem from compressibility effects—that is, from the volume response of the

system to a pressure variation—but also from composition fluctuations and their coupling

to the number density. Since thermodynamic stability requires (𝜕2𝐺/𝜕𝑥2
A)𝑝,𝑇 ,𝑁 > 0, we

have in general 𝑆cc(𝑞 → 0) > 0. This implies that the second term in the right-hand-side

of Eq. (3.27) is positive, if 𝛿 ≠ 0 or 𝑣A ≠ 𝑣B. The molar volumes of the two species can
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be calculated via the Kirkwood–Buff theory from the partial structure factors in the limit𝑞 → 0 [110],

𝜌𝑣A = 𝑥A𝑆BB(0) − 𝑥B𝑆AB(0)𝑥2
A𝑆BB(0) + 𝑥2

B𝑆AA(0) − 2𝑥A𝑥B𝑆AB(0) , (3.32)𝜌𝑣B = 𝑥B𝑆AA(0) − 𝑥A𝑆AB(0)𝑥2
A𝑆BB(0) + 𝑥2

B𝑆AA(0) − 2𝑥A𝑥B𝑆AB(0) , (3.33)

and similarly the theory also allows to express the compressibility as

𝑘B𝑇 𝜌𝜅𝑇 = 𝑆AA(0)𝑆BB(0) − [𝑆AB(0)]2𝑥2
A𝑆BB(0) + 𝑥2

B𝑆AA(0) − 2𝑥A𝑥B𝑆AB(0) , (3.34)

where 𝑆𝛼𝛽(0) is an abbreviation for 𝑆𝛼𝛽(𝑞 → 0).
3.3.3 Polybutadiene: Partial static structure factors, compress-

ibility

Fig. 3.8 depicts 𝑆(𝑞) and its decomposition 𝑆AA(𝑞) + 𝑆BB(𝑞) and 2𝑆AB(𝑞) according

to Eq. (3.24). Panel (a) shows the results for the CRC model at 𝑇 = 353 K, while panel

(b) compares the CRC and FRC models. Additionally, panel (b) plots the data versus𝑞𝜎AA, i.e. in LJ units for comparison with simple liquids. From panel (b) we see that the
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Figure 3.8: Panel (a): Collective static structure factor at 𝑇 = 353 K for the CRC model
and its decomposition into partial structure factors according to Eq. (3.24): 𝑆AA(𝑞)+𝑆BB(𝑞)
and 2𝑆AB(𝑞). Panel (b): Same as above but for both the CRC model (lines) and the FRC
model (circles). In addition, the 𝑞 axis is shown as 𝑞𝜎AA to facilitate comparison with
models where results are given in LJ units.
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results of the CRC and FRC models agree with each other (on the scale of the figure). In

very good approximation, spatial correlations encoded in the partial structure factors are

unaffected when switching off the torsional potential. However, by zooming into the data

some differences become visible, in particular at small 𝑞, as we will see when discussing

the Bhatia–Thornton structure factors (cf. Fig. 3.10 and Fig. 3.11). Here we focus on the

qualitative behavior of the partial structure factors and compare this behavior with that

of simple binary mixtures.

Fig. 3.8 shows that the PBD melt tends toward the behavior of an ideal mixture for𝑞 → ∞. For an ideal mixture spatial correlations vanish, implying 𝑆AB(𝑞 → ∞) = 0 and𝑆AA(𝑞 → ∞)+𝑆BB(𝑞 → ∞) = 𝑥A +𝑥B = 1. For large 𝑞, say 𝑞 ≳ 8 Å−1 or 𝑞𝜎AA ≳ 32, the

structure factor 𝑆(𝑞) is thus dominated by correlations between identical particles. The

sum 𝑆AA(𝑞) + 𝑆BB(𝑞) is positive for all 𝑞, whereas 𝑆AB(𝑞) oscillates around 0 and remains

positive for 𝑞 < 𝑞∗ with 𝑞∗ being the position of the first peak of 𝑆(𝑞). This behavior for

small 𝑞 is different from the one typically found for simple binary mixtures [108, 111–113]:

For simple liquids 𝑆AB(𝑞) is negative for 𝑞 ≈ 𝑞∗ and goes through a minimum when 𝑞
decreases. This minimum outweighs the positive contribution of 𝑆AA(𝑞) + 𝑆BB(𝑞), leading

to a dip in 𝑆(𝑞) before 𝑆(𝑞) increases toward a plateau as 𝑞 → 0. Such a dip is not

observed for the PBD melt. Here 𝑆(𝑞) continuously decreases—toward the compressibility

plateau 𝑆(𝑞 → 0) = 𝑘B𝑇 𝜌𝜅𝑇, as Fig. 3.9 indicates and will be discussed further.

Using the partial static structure factors and 𝑥A = 𝑥B = 1/2 (PBD has two CH2 UAs

and two CH UAs per monomer) we calculate 𝑆cc(𝑞) and 𝑆nc(𝑞) from Eqs. (3.25) and (3.26).

Fig. 3.9 shows these structure factors together with 𝑆(𝑞) at 𝑇 = 353 K for the CRC and

FRC models. Due to the small values of 𝑆cc(𝑞) and 𝑆nc(𝑞) the figure zooms on ordinate

values below 1, thereby truncating the maxima of 𝑆(𝑞). We find that 𝑆cc(𝑞) is positive

for all 𝑞. For 𝑞 > 𝑞∗, 𝑆cc(𝑞) oscillates around 𝑥A𝑥B (= 0.25)—the value expected for an

ideal (equimolar) mixture—while 𝑆nc(𝑞) oscillates around 0 and is roughly in antiphase to𝑆cc(𝑞) for large 𝑞. Both 𝑆cc(𝑞) and 𝑆nc(𝑞) exhibit a maximum for 𝑞 near 𝑞∗. Qualitatively

similar oscillations are also found for simple binary mixtures [107, 109, 114], reflecting

the (nonuniversal) local composition-composition and number-composition correlations in

these systems.

However, qualitative differences between simple binary mixtures and PBD occur in

the limit 𝑞 → 0. While 𝑆cc(𝑞) and 𝑆nc(𝑞) tend to finite values for simple liquids [107,
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109, 114], the structure factors (appear to) vanish for PBD. Vanishing of 𝑆cc(𝑞 → 0)
implies that there are no (thermodynamic) composition fluctuations at large scales. Such

fluctuations are prevented by chain connectivity: At large scales, the character of the

binary mixture disappears for PBD; PBD is a homopolymer.

What is the consequence of 𝑆cc(𝑞 → 0) = 0 in view of the general relations of

Eqs. (3.27) to (3.29)? From Eq. (3.27) we conclude that 𝑆(𝑞 → 0) = 𝑘B𝑇 𝜌𝜅𝑇 and from

Eq. (3.29) that 𝑆nc(𝑞 → 0) = 0, provided the volumetric factor 𝛿 [cf. Eq. (3.31)] does not

diverge. Although it is physically clear that 𝛿 cannot diverge, Fig. 3.10 tests this point by

parametrizing the 𝑞 dependence of 𝜌𝑣A(𝑞) and 𝜌𝑣B(𝑞) by a polynomial fit function:

𝜌𝑣(𝑞) = 𝜌𝑣0 + 𝐴𝑣𝑞2 + 𝐵𝑣𝑞4 , (3.35)

where 𝜌𝑣0, 𝐴𝑣 and 𝐵𝑣 are fit parameters. The values of 𝛿 are obtained using Eq. (3.30).

They are given in Table 3.4.

Similarly, we parameterize the 𝑞 dependence of 𝑆cc(𝑞) and the 𝑞 dependent compress-

ibility for small 𝑞: 𝑆fit
cc (𝑞) = 𝐴cc𝑞2 + 𝐵cc𝑞4 , (3.36)
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Figure 3.9: Bhatia–Thornton structure factors at 𝑇 = 353 K for the CRC model (symbols
with dotted lines) and the FRC model (filled circles): 𝑆nn(𝑞) = 𝑆(𝑞), 𝑆cc(𝑞) and 𝑆nc(𝑞).
The horizontal dashed lines represent the large-𝑞 limits: 𝑆nn(𝑞 → ∞) = 1, 𝑆cc(𝑞 → ∞) =𝑥A𝑥B and 𝑆nc(𝑞 → ∞) = 0. The horizontal full line indicates 𝑘B𝑇 𝜌𝜅𝑇 obtained from
Fig. 3.11 by an extrapolation to 𝑞 → 0.



3.3. STRUCTURE FACTORS, COMPRESSIBILITY 63[𝑘B𝑇 𝜌𝜅𝑇(𝑞)]fit = 𝑘B𝑇 𝜌𝜅𝑇 + 𝐴𝜅𝑞2 + 𝐵𝜅𝑞4 , (3.37)

where 𝐴cc, 𝐵cc, 𝑘B𝑇 𝜌𝜅𝑇, 𝐴𝜅 and 𝐵𝜅 are adjustable parameters. The simulation results

for 𝑘B𝑇 𝜌𝜅𝑇(𝑞) are determined by inserting the 𝑞 dependent partial structure factors into

Eq. (3.34).

Fig. 3.11 shows the results of this analysis. From panel (b) we see that 𝑆cc(𝑞) for

the CRC and FRC models agree with each other and can be well described by Eq. (3.36).

Using then 𝑆fit
cc (𝑞) and the results for 𝛿 from Fig. 3.10, the difference for 𝑆cc(𝑞) between

the CRC and FRC models can be understood [cf. dashed lines in Fig. 3.11b]. Similarly,
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Figure 3.10: Partial molar volumes (times density) at 𝑇 = 353 K for the CRC model
(open symbols) and the FRC model (filled circles). The wave vector dependence of 𝜌𝑣A(𝑞)
and 𝜌𝑣B(𝑞) is defined by inserting the 𝑞 dependent partial structure factors into Eq. (3.32)
and Eq. (3.33). The dashed lines indicate the fits using Eq. (3.35) with estimated 𝑞 → 0
values, leading to the volumetric factor 𝛿, defined in Eq. (3.30), for the CRC and FRC
models.

Table 3.4: The values of the volumetric factor 𝛿 obtained from the partial molar volumes.𝑇 (K) 𝛿CRC 𝛿CRC2 𝛿CRC4 𝛿FRC
213 0.829 1.001 1.025 1.178
225 0.905 1.012 1.045 1.176
240 0.960 1.021 1.058 1.224
253 0.865 1.017 1.099 1.217
273 0.999 1.061 1.106 1.228
293 1.029 1.078 1.102 1.260
353 1.250 1.187 1.228 1.377
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Fig. 3.11a shows that the 𝑞 dependent generalization of the compressibility is well described

by Eq. (3.37). Within the error bars the simulation results for 𝑘B𝑇 𝜌𝜅𝑇(𝑞) for both models

are the same so that no separate fit was attempted.

Using [𝑘B𝑇 𝜌𝜅𝑇(𝑞)]fit, 𝛿CRC and 𝑆fit
cc (𝑞) in Eq. (3.27), the solid line in Fig. 3.11a reveals

that a good description of the simulation data for 𝑆(𝑞) is obtained for the CRC model. Due

to the extra term 𝛿2
CRC𝑆fit

cc (𝑞) in Eq. (3.27), the compressibility plateau is less visible in 𝑆(𝑞)
than in 𝑘B𝑇 𝜌𝜅𝑇(𝑞), for the simulated range of 𝑞 values. Apparently, 𝑘B𝑇 𝜌𝜅𝑇(𝑞) together

with Eq. (3.37) is a more convenient method (with respect to straightforward extrapolation𝑆(𝑞 → 0)) to determine the (reduced) compressibility 𝑘B𝑇 𝜌𝜅𝑇 from canonical simulations

of binary-mixture-like polymer systems. Here this analysis gives 𝑘B𝑇 𝜌𝜅𝑇 = 0.188 at𝑇 = 353 K for the CRC model (and other models considering a single fit in Fig. 3.11a).

An alternative—and often employed—method to determine the compressibility is

to monitor the volume fluctuations in NPT simulations (as a special case of the general

theory of the ensemble dependence of fluctuations [115, 116])

𝜅𝑇 = − 1𝑉 𝜕𝑉𝜕𝑝 ∣𝑇 = ⟨𝑉 2⟩ − ⟨𝑉 ⟩2𝑘B𝑇 ⟨𝑉 ⟩ . (3.38)

We employed this method to determine 𝑘B𝑇 𝜌𝜅𝑇 from 1 𝜇s long NPT runs using all

our models of PBD.
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Figure 3.11: Panel (a): Zoom of the small 𝑞 region for 𝑆(𝑞) (circles) and 𝑘B𝑇 𝜌𝜅𝑇(𝑞)
(triangles) at 𝑇 = 353 K for the CRC model (red) and FRC model (blue). The wave
vector dependence of 𝜅𝑇(𝑞) is defined by using the 𝑞 dependent partial structure factors
in Eq. (3.34). The dashed line shows a polynomial fit, denoted by [𝑘B𝑇 𝜌𝜅𝑇(𝑞)]fit, in
order to estimate the compressibility 𝜅𝑇 by extrapolation to 𝑞 → 0. The resulting
value 𝑘B𝑇 𝜌𝜅𝑇 = 0.188 is indicated as a horizontal dotted line. Inserting [𝑘B𝑇 𝜌𝜅𝑇(𝑞)]fit,𝛿CRC = 1.25 from Fig. 3.10 and the fit result 𝑆fit

cc (𝑞) from panel (b) into Eq. (3.27) gives
the solid (black) line. Panel (b): Zoom of the small 𝑞 region for 𝑆cc (circles) and 𝑆nc
(triangles) at 𝑇 = 353 K for the CRC model (red) and FRC model (blue). The solid
(black) line shows a polynomial fit to 𝑆cc. The dashed lines show Eq. (3.29) when using𝑆fit

cc and the volumetric factors 𝛿CRC and 𝛿FRC obtained from Fig. 3.10.

Fig. 3.12 shows the results for all the models (circles). The triangles presents the

compressibility from Fig. 3.11. For comparison two additional results from the literature
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are included in Fig. 3.12. The crosses depict MD data for cis-1,4 PBD from Ref. [117]

and the squares experimental data taken from Ref. [118]. We find reasonable agreement

between these literature and the present results with the volume fluctuations data being

the most accurate. The data obtained from the partial structure factors appears to deviate

significantly, even though we expect them to be more precise than a straightforward

extrapolation of 𝑆(𝑞 → 0). Of course, our data for the structure factors at low 𝑞 are still

quite noisy even with the averaging statistics corresponding to several 𝜇s of the simulations.

However, we believe there can still be a room for improvement in the choice of the fitting

function (cf. Eqs. (3.35) to (3.37)). This function was inspired by the Taylor expansions

of the structure factors up to 4th order in 𝑞 in Eqs. (3.28) and (3.32) to (3.34). While

visually the fits look good, the post-factum look on the fitting parameters revealed that

the coefficients at the 𝑞4 term are either of the same order or even larger than the ones at

the 𝑞2 term (the values are given in Appendix F). Clearly, this suggests that the Taylor

expansion does not work in this region of 𝑞. There was no clear temperature dependence

of the corresponding length scales observed as well.

Fig. 3.12 plots the compressibility as 1/√𝑘B𝑇 𝜌𝜅𝑇 versus 1/𝑇. This plot format for

the data was suggested by Schweizer and Saltzmann based on the Polymer-Reference-

Interaction-Site theory, yielding [118]1√𝑘B𝑇 𝜌𝜅𝑇 = −𝐴 + 𝐵𝑇 . (3.39)

Eq. (3.39) was not claimed to be “quantitatively reliable nor rigorous, but merely sugges-

tive of how experimental data for the dimensionless compressibility might be organized”

(cf. Appendix A in [118]). However, Eq. (3.39) was found to be practically relevant, since

it linearizes the experimental data for numerous polymers, including PBD (cf. Figs. 4 and

5 in [118]). We reproduce the (scanned) PBD data and the fit to Eq. (3.39) from [118] in

Fig. 3.12.

More recently, Mirigian and Schweizer derived Eq. (3.39) from a low-temperature

expansion of a van-der-Waals (vdW) model for the equation of state [119]. Eq. (3.39)

enters the mapping of a hard-sphere fluid to molecular liquids [119] and polymer melts

[120]. This mapping underlies the elastically cooperative nonlinear Langevin equation

(ECNLE) theory for the 𝑇 dependence of the 𝛼 relaxation time [119, 120] and extensions

of the ECNLE theory to polymer films [32, 121, 122].
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Figure 3.12: Temperature dependence of the compressibility. The data are plotted as
suggested by Eq. (3.39). The orange squares are experimental results for PBD scanned
from Fig. 4 of Ref. [118]. The dashed line shows Eq. (3.39) with parameters 𝐴 = −0.435
and 𝐵 = 987 K taken from Table I of Ref. [118]. The circles show the results for the CRC
model obtained from volume fluctuations [Eq. (3.38)]. As the experimental results, they
are linearized and can be fit to Eq. (3.39) (not shown). The solid line indicates the fit
result to the Long–Lequeux theory obtained from a joint adjustment of the CRC data
for the monomer density (inset) to Eq. (3.40) and for the compressibility to Eq. (3.41).
The results for 𝑘B𝑇 𝜌𝜅𝑇, found for all models are indicated by triangles. The orange
crosses present the MD results from Ref. [117] for cis-1,4-PBD at 1 atm (systems with 128
C-atoms per chain and 32 chains), which were calculated by scanning the data from Fig. 4
and Fig. 7 of [117].

Interestingly, essentially the same vdW approach as employed by Schweizer and

coworkers was proposed before by Long and Lequeux [123] to model the pressure-volume-

temperature (PVT) behavior of polymer melts. Starting from a vdW-like ansatz for the

free energy and imposing equilibrium conditions Long and Lequeux get the following

expressions for the density

𝜌 = 𝜌02 1 + √1 − 𝑇 /𝑇c1 + 𝛽(1 − √1 − 𝑇 /𝑇c)/2 (3.40)

and the (inverse) compressibility1𝜅𝑇 = 𝑘B𝑇 𝜌02𝛾2 [1 + √1 − 𝑇𝑇c
]3 × [ 1(1 − √1 − 𝑇 /𝑇c)2 − 𝑇c𝑇 ] . (3.41)

Here 𝜌0 is the maximum close-packing density and 𝑇c the temperature at which air would
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become a good solvent for the polymer. Clearly, this (hypothetical) temperature should

be very high so that 𝑇g ≤ 𝑇 ≪ 𝑇c is the temperature regime where the theory is expected

to hold. The other two parameters, 𝛽 and 𝛾, are numbers introduced to account for the

incompressibility of the monomers.

A low-𝑇 expansion of Eqs. (3.40) and (3.41) gives back Eq. (3.39) with 𝐵 = 4𝑇c/𝛾
and 𝐴 = (5 − 𝛽)/2𝛾. Moreover, Ref. [123] showed that Eqs. (3.40) and (3.41) provide a

consistent description of 𝑇 dependence of 𝜌 and 𝜅𝑇 for supercooled polymer melts down to

the glass transition. Therefore, we fit Eqs. (3.40) and (3.41) to 𝜌 and 𝜅𝑇 of all our models.

As shown in Fig. 3.12, the fits give good agreement, yielding values for the parameters

(𝜌0, 𝑇c, 𝛽, 𝛾) that are in reasonable accord with literature results for other hydrocarbon

polymers, such as polystyrene or poly(isobutylene) [123].

Table 3.5: The values of the fit parameters of the Long-Lequeux theory for the density
and compressibility.

model 𝑇c (K) 𝜌0 (g/cm3) 𝛽 𝜌0/𝛾2
CRC 920.751 1.104 1.251 3.902896e+27

CRC2 1054.873 1.109 1.692 2.773495e+27

CRC4 997.521 1.108 1.493 3.190466e+27

FRC 1087.512 1.108 1.851 2.516277e+27

3.4 Energies and heat capacity

Let 𝑥 denote the microstate of the PBD melt containing 𝑁c polymers with 𝑁 united

atoms each. The hamiltonian is written as

ℋ(𝑥) = 𝐾(𝑥) + 𝑈tot(𝑥) , (3.42)

where 𝐾 is the total kinetic energy and 𝑈tot is the total potential energy consisting of

valence terms (bond, bond angle, dihedral) and pair (Lennard–Jones) interactions.

As explained in Section 2.3.2, the simulations are carried out in two steps: First, NPT

relaxation to get the average volume 𝑉 = 𝑉 (𝑇 , 𝑝, 𝑁c𝑁) corresponding to temperature 𝑇
and pressure 𝑝 (= 0). Second, NVT production runs by imposing the volume 𝑉 (𝑇 , 𝑝, 𝑁c𝑁).

During these canonical production runs the internal energy 𝑈 is determined by



3.4. ENERGIES AND HEAT CAPACITY 69𝑈 = ⟨ℋ(𝑥)⟩. However, since 𝑉 = 𝑉 (𝑇 , 𝑝, 𝑁c𝑁), we have (for simplicity the dependence

on 𝑁c𝑁 is suppressed in the equations below)

internal energy 𝑈 = 𝑈(𝑇 , 𝑉 (𝑇 , 𝑝)) = 𝑈(𝑇 , 𝑝) , (3.43)

enthalpy 𝐻 = 𝑈(𝑇 , 𝑝) + 𝑝𝑉 (𝑇 , 𝑝) . (3.44)

For 𝑝 = 0 the enthalpy is given by 𝑈(𝑇 , 𝑝).
In the following sections we discuss the contributions to 𝑈(𝑇 , 𝑝) from the potential

energy of PBD before we turn to heat capacity.

3.4.1 Hard variables: Bond length

The bond length ℓ is subjected to the harmonic bond potential defined by

𝑈bond(ℓ) = 𝐾bond(ℓ − ℓ0)2 , (3.45)

where 𝐾bond is (half) the force constant and ℓ0 the equilibrium bond length. The parameters

for these constants are given in Table 2.1.

In Section 2.4.2 we observed an agreement of the bond length distribution obtained

from the simulations with the one for independent bonds (i.e. with the distribution

determined only by Eq. (3.45)). This allows us to assume that the bonds are independent

of each other and also independent of the potential energies for bond angles, torsion angles

and pair interactions. Then, the partition function for a bond reads𝑍bond(𝛽) = 4𝜋 ∫∞0 dℓ ℓ2 exp [−𝛽𝐾bond(ℓ − ℓ0)2]≃ 4𝜋ℓ20√ 𝜋𝛽𝐾bond
, (3.46)

where 𝛽 = 1/(𝑘B𝑇 ). The last approximate equality was obtained by utiliz-

ing Eq. (3.462/7) from Ref. [124] and the fact that the dimensionless quantity

(𝑘B = 1.9872067 × 10−3 kcal/(mol,K))

𝛽𝐾bondℓ20 = 25001.9872067 × 10−3 ℓ20𝑇 (3.47)

is large because 𝛽𝐾bondℓ20 ≃ 6500 even for the smallest bond length, ℓ0 = 1.34 Å, and the
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highest temperature studied, 𝑇 = 353 K. From Eq. (3.46) we get the average energy per

bond ⟨𝑈bond⟩ = −𝜕 ln 𝑍bond(𝛽)𝜕𝛽 ≃ 12 𝑘B𝑇 , (3.48)

as expected for a one-dimensional harmonic oscillator according to the equipartition

theorem.

PBD has three types of bonds:

• 1st bond (b1) = CH–CH double bond: There is one such bond per monomer. So

the total number of b1 bonds is given by

𝑁b1 = # of monomers = 𝑛 = 𝑁4 ,
where 𝑛 (= 29) is the number of monomers per chain and 𝑁 (= 116) is the number

of united atoms per chain.

• 2nd bond (b2) = CH–CH2 bond: There are two such bonds per monomer. So the

total number of b2 bonds is given by

𝑁b2 = 2𝑛 = 𝑁2 .
• 3rd bond (b3) = CH2–CH2 bond: This bond links consecutive monomers. So the

total number of b3 bonds is given by

𝑁b3 = 𝑛 − 1 = 𝑁4 − 1 .
When adding up the energies for all bonds in the melt and using Eq. (3.48), we find

for the average extensive bond energy (𝐸bond) of the system

𝐸bond(𝑇 , 𝑝, 𝑁c𝑁) ≃ 𝑁c𝑁 (1 − 1𝑁) 12 𝑘B𝑇 , (3.49)

where 𝑁c (= 40) is the number of chains in the system.

Fig. 3.13 shows the 𝑇 dependence of the intensive bond energy 𝑒bond = 𝐸bond/(𝑁c𝑁).
Two data sets are compared: results from cooling runs with rate = 0.83 K/ns and results

for 𝑇 ≥ 213 K after NPT and NVT equilibration. We see that both data sets agree well

for 𝑇 ≥ 213 K. Moreover, the main panel of Fig. 3.13 suggests that Eq. (3.49) gives an
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Figure 3.13: Intensive bond energy 𝑒bond (= 𝐸bond/(𝑁c𝑁)) versus temperature 𝑇 for the
CRC and FRC models. Results from continuous cooling runs with rate Γ = 0.83 K/ns
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Plot of the ratio 𝑒bond/[(1 − 1/𝑁)𝑘B𝑇 /2] versus 𝑇 using the same data as in the main
panel.

excellent description of the 𝑇 dependence not only for the equilibrated polymer liquid, but

also for the glass down to lowest 𝑇 studied. The inset provides a more critical test of this

point. If Eq. (3.49) was valid for all 𝑇, the ratio 𝑒bond/[(1 − 1/𝑁)𝑘B𝑇 /2] should fluctuate

around 1. While this is the case for 𝑇 ≳ 200 K, the ratio slightly, but systematically,

increases as 𝑇 → 0, leading to a larger bond energy than expected from Eq. (3.49).

However, this deviation from equilibrium is much weaker than for the other potential

energies, as we will see below.

3.4.2 Hard variables: Bond angle

An approach analogous to that of the bond length can be used to estimate the average

energy of the bond angle. The bond angle 𝜃 is subjected to the potential

𝑈bend(𝜃) = 𝐾bend(cos 𝜃 − cos 𝜃0)2 , (3.50)
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where the values for 𝐾bend and 𝜃0 are given in Table 2.2. As for the bond length, the agree-

ment of the bond angle distribution obtained from the simulations (see Section 2.4.2) with

the ones for intependent angles (i.e. with the distribution determined only by Eq. (3.50))

justifies the assumption of the angles being independent of each other and of the other

variables. The partition function of an angle is then given by𝑍bend(𝛽) = ∫𝜋0 d𝜃 sin 𝜃 exp [−𝛽𝐾bend(cos 𝜃 − cos 𝜃0)2]= 12√𝜋𝑞 [ erf ([1 − 𝑥0]𝑞) + erf ([1 + 𝑥0]𝑞)] , (3.51)

where erf(𝑥) is the error function, 𝑞 = √𝛽𝐾bend and 𝑥0 = cos 𝜃0. With the values from

Table 2.2 one finds erf([1 ± 𝑥0]𝑞) ≃ 1 and so

𝑍bend(𝛽) ≃ √ 𝜋𝛽𝐾bend
. (3.52)

For the average energy of a bond angle this implies

⟨𝑈bend⟩ = −𝜕 ln 𝑍bend(𝛽)𝜕𝛽 ≃ 12 𝑘B𝑇 . (3.53)

The PBD model has two types of bond angles:

• 1st angle (a1) = CH2–CH–CH angle: There are two angles per monomer, leading to

𝑁a1 = 2𝑛 = 𝑁2
for the total number of a1 angles.

• 2nd angle (a2) = CH–CH2–CH2 angle: A single monomer has no a2 angle, two

monomers have 2 a2 angles, three monomers have 4 a2 angles, etc. So the total

number of a2 angles is given by

𝑁a2 = 2(𝑛 − 1) = 𝑁2 (1 − 4𝑁) .
Adding up the energies for all angles in the system and using Eq. (3.53), we get for
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Figure 3.14: Intensive bond angle energy 𝑒bend (= 𝐸bend/(𝑁c𝑁)) versus temperature 𝑇
for the CRC and FRC models. Results from continuous cooling runs with rate Γ = 0.83
K/ns (colored circles) are compared to equilibrium data obtained by NPT and NVT
equilibration for 213 K ≤ 𝑇 ≤ 353 K (colored crosses). The colors mark CRC (red) and
FRC (blue) models. The black dashed line depicts Eq. (3.54). The vertical dotted line
indicates 𝑇g = 192 K of the CRC model as determined by fitting Eq. (3.10) to the density.
Inset: Plot of the ratio 𝑒bend/[(1 − 2/𝑁)𝑘B𝑇 /2] versus 𝑇 using the same data as in the
main panel. For 𝑇 → 0 the ratio increases to about 1.6 for the FRC model and to about
5.7 for the CRC model.

the average extensive bond-angle energy

𝐸bend(𝑇 , 𝑝, 𝑁c𝑁) ≃ 𝑁c𝑁 (1 − 2𝑁) 12 𝑘B𝑇 . (3.54)

This is the same result as for the bond length, bearing the (small 1/𝑁) finite-chain length

correction.

Fig. 3.14 shows the results for the bond angle; they are similar to those for bond length.

The intensive energies 𝑒bend (= 𝐸bend/(𝑁c𝑁)) from the cooling runs and equilibrium

simulations agree with each other for 𝑇 ≥ 213 K and also with Eq. (3.54). However, for𝑇 → 0 systematic deviations from Eq. (3.54) are clearly visible and much larger than for

the bond length. The onset of these deviations occur in the glass transition zone around𝑇g, as illustrated for the CRC model.
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3.4.3 Soft variables: Dihedral angles

As a start to the analysis of the dihedral angles, we can make the same assumption

as for the bond lengths and bond angles: we take the dihedral angles to be independently

distributed according to the Boltzmann weight of their potential energies. Section 3.1.1

compares the predicted distributions to those from the MD simulations and concludes the

following :

• Double bond cis and trans dihedrals

The simulated distributions agree with the predictions from the Boltzmann weights

for the CRC model and the reduced barrier models (Fig. 3.1a). This is expected,

since the torsions of the double bonds are in fact hard variables. Their potentials

are very stiff, allowing only for weak vibrations around the planar configuration at

all temperatures studied. The vibrations contribute 𝑘B𝑇 /2 per double bond to the

average dihedral energy.

• 𝛼 trans and 𝛽 dihedrals

The potential energies of these dihedrals have pronounced minima but the barriers

between them are more than an order magnitude smaller than well depth of the

double bond dihedrals. Due to this softening of the potentials some deviations

from the predicted distributions must be expected. Indeed, Fig. 3.1b show that the

predictions from the Boltzmann weights are not as good as for the double bonds.

Still, the agreement is semiquantitative.

• 𝛼 cis dihedrals

Fig. 3.1d show strong deviations between predicted and simulated distributions. In

particular, the simulated distributions tend to 0 for 𝜙 → 0∘ and 𝜙 → 360∘, whereas

the predicted distributions have a maximum for these limiting angles. Clearly, the

assumption of independent dihedrals fails here. Rotation around the 𝛼 cis bond

leads to strong steric hindrance due to nonbonded pair interactions for 𝜙 → 0∘ and𝜙 → 360∘, which suppresses the occurrence of these limiting angles. This influence

of the nonbonded interactions is similar to the ”pentane effect” for polyethylene [91].

A harmonic expansion around the minima of the dihedral potentials cannot be

sufficient to describe the 𝑇 dependence of the average torsion energy 𝐸tor(𝑇 , 𝑝, 𝑁c𝑁) in

the polymer liquid. Anharmonic effects need to be taken into account. A possible scheme
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Figure 3.15: Intensive energy of the dihedral angles 𝑒tor (= 𝐸tor/(𝑁c𝑁)) versus 𝑇 for
the CRC model. Results from continuous cooling runs with rate Γ = 0.83 K/ns (red
circles) are compared to equilibrium data obtained by NPT and NVT equilibration for213 K ≤ 𝑇 ≤ 353 K (red crosses). The black dashed line depicts a fit to the equilibrium
data with Eq. (3.55) (fit interval: 213 K ≤ 𝑇 ≤ 353 K), yielding 𝐴𝜙 = −1.231379 kcal/mol,𝐵𝜙 = 1.393 × 10−3 kcal/(mol K) and 𝐶𝜙 = −4.644 × 10−7 kcal/(mol K)2. In the glassy
phase the black solid line indicates the fit result to 𝑒tor(𝑇 ) = 𝐴g𝜙 + 𝐵g𝜙𝑇 with 𝐴g𝜙 =−1.104315 kcal/mol, 𝐵g𝜙 = 6.408 × 10−4 kcal/(mol K) (fit interval: 3.5 K ≤ 𝑇 ≤ 120 K).
The vertical dotted line indicates 𝑇g = 192 K as determined by fitting Eq. (3.10) to the
density. Inset: Plot of (𝑒tor − 𝐴𝜙)/(𝐵𝜙𝑇 + 𝐶𝜙𝑇 2) versus 𝑇 to examine the quality of the
fit with Eq. (3.55).

to include anharmonicity is to expand 𝐸tor(𝑇 , 𝑝, 𝑁c𝑁) in powers of 𝑇:

𝐸tor(𝑇 , 𝑝, 𝑁c𝑁) = 𝑁c𝑁[𝐴𝜙(𝑝) + 𝐵𝜙(𝑝)𝑇 + 𝐶𝜙(𝑝)𝑇 2 + 𝒪(𝑇 3)] . (3.55)

This equation looks like a Taylor expansion around 𝑇 = 0, where the coefficients 𝐴𝜙(𝑝),𝐵𝜙(𝑝), 𝐶𝜙(𝑝), …then depend only on the remaining variable 𝑝; it is inspired by similar

approaches used in the potential energy description of supercooled liquids and glasses

(cf. Sect. 6.2 of [125]).

Fig. 3.15 shows that including only the first anharmonic correction (𝐶𝜙) in Eq. (3.55)

suffices to give an excellent fit to the simulation data in the polymer liquid (cf. inset

of Fig. 3.15). Numerically, |𝐶𝜙𝑇 | is by about a factor of 10 smaller than 𝐵𝜙, implying

that the anharmonic correction is relatively weak. The fit result for 𝐵𝜙 (= 1.393 ×10−3 kcal/(mol K)) has a reasonable value. To see this, let us calculate the energy in
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harmonic approximation by considering only those dihedrals with pronounced minima

(double bonds, 𝛼 trans and 𝛽). Each such dihedral contributes 𝑘B𝑇 /2 to the energy.

Since there are 𝑛 = 𝑁/4 monomers per chain and the fraction of 𝛼 trans dihedrals is𝑓trans = 0.55, we have for one chain

• 𝑛 double bonds having 1 minimum,

• 𝑛 − 1 beta dihedrals with 3 minima,

• 2𝑛𝑓trans alpha-trans dihedrals with 3 minima.

Then, the harmonic contribution to 𝐸tor(𝑇 , 𝑝, 𝑁c𝑁) reads

𝑁c
𝑁4 [1 + 3(1 − 4/𝑁) + 6𝑓trans]12𝑘B𝑇 = 𝑁c𝑁𝐵approx𝜙 𝑇⇒ 𝐵approx𝜙 = 1.788 × 10−3 kcal/mol K ,

which is close to the fit value for 𝐵𝜙 from Fig. 3.15.

The impact of the glass transition is clearly visible from the main panel of Fig. 3.15.

Below 213 K the cooling process is too fast for the melt to stay at equilibrium. Accordingly,

the dihedral energy at low 𝑇 is larger than the extrapolated liquid curve. For 𝑇 → 0
a harmonic approximation provides an excellent description of 𝐸tor(𝑇 ) (cf. solid line in

Fig. 3.15). However, the fitted ground state energy, 𝐴g𝜙 = −1.104315 kcal/mol, is much

larger than the one expected from torsional potential, which is given by the energy minimum

at 180∘ of the 𝛽 dihedral (= −5.28281 kcal/mol). This exemplifies the nonequilibrium

character of the glass created by the cooling process.

3.4.4 Soft variables: Pair interactions

From the viewpoint of the pair interactions the PBD model corresponds to a binary

Lennard–Jones (LJ) mixture (Section 3.3.1). It is therefore interesting to survey in the

literature how the excess energy of LJ and other simple liquids has been described.

In this respect, an influential theory was developed by Rosenfeld and Tarazona (RT)

[126]. The RT theory starts from an accurate approximation for the excess free energy

functional of densely packed hard spheres (so-called fundamental measure functionals)

and uses thermodynamic perturbation theory to extend the theory to continuous (“soft”)

potentials. First-order perturbation theory around 𝜂 = 1 packing fraction gives for the

excess internal energy (𝐸ex) of a three-dimensional classical bulk fluid with 𝑁 particles
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the following constant volume (particle density 𝜌) and constant temperature expression

(cf. Eq. (34) in Ref. [126]):𝐸ex(𝜌, 𝑇 )𝑁 = 𝐴RT(𝜌) + 𝐵RT(𝜌)𝑇 3/5 + ⋯ .
The leading 𝑇 3/5 term is expected to be accurate for large densities (near freezing) and

predominanly repulsive interactions (see the detailed discussion in [126]). It implies

that the excess isochoric heat capacity (𝐶ex𝑉 = 𝜕𝐸ex/𝜕𝑇 |𝑉 ,𝑁) increases with decreasing

temperature as 𝐶ex𝑉 ∝ 𝑇 −2/5.

A detailed simulation study of the 𝑇 dependence of 𝐶ex𝑉 was carried out in Ref. [127]

for 18 model liquids with different stoichiometric compositions, molecular topologies

and interactions. It was found that the RT expression 𝐶ex𝑉 ∝ 𝑇 −2/5 provides a better

approximation for liquids with strong correlations between equilibrium fluctuations of virial

and potential energy, i.e., for so-called “Roskilde-simple” liquids [128]. The Kob–Andersen

binary LJ mixture [58, 102–104] is a Roskilde-simple liquid (for 𝜌 = 1.2 in LJ units) [127].

It is therefore tempting to test whether the following ansatz,

𝐸pair(𝑇 , 𝑝, 𝑁c𝑁) ≃ 𝑁c𝑁[𝐴RT(𝑝) + 𝐵RT(𝑝)𝑇 3/5] , (3.56)

can provide a good description for the pair interactions of the PBD model.

Fig. 3.16 shows that the description is indeed excellent. The fit to Eq. (3.56) was

carried out for the equilibrated polymer liquid in the interval 213 K ≤ 𝑇 ≤ 353 K (dashed

line), where the pair energies of the CRC and FRC models nearly coincide. Interestingly,

the extrapolation of the fit to low 𝑇 (solid line) agrees with the FRC results from the

cooling run down to the temperature regime where the glass transition of the FRC model

occurs (see also the inset in Fig. 3.16 supporting the quality of the fit).

The impact of the glass transition is clearly visible in the main panel of Fig. 3.16. For

the CRC model we find, as for the dihedral angles, that the cooling process is too fast for

melt to stay at equilibrium below 213 K. Accordingly, the pair energy at low 𝑇 is larger

than the extrapolated liquid curve. For 𝑇 → 0 a harmonic approximation provides again

an excellent description of the energy (cf. dash-dotted line in Fig. 3.16), as expected for a

solid.
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Figure 3.16: Intensive LJ energy 𝑒pair (= 𝐸pair/(𝑁c𝑁)) versus 𝑇 for the CRC and FRC
models. Results from continuous cooling runs with rate Γ = 0.83 K/ns (colored cir-
cles) are compared to equilibrium data obtained by NPT and NVT equilibration for213 K ≤ 𝑇 ≤ 353 K (colored crosses). The green dashed line depicts the result of a fit
of Eq. (3.56) to the equilibrium data in the interval 213 K ≤ 𝑇 ≤ 353 K. The fit yields𝐴RT = −1.8340 kcal/mol and 𝐵RT = 0.0223 (kcal/mol K)3/5. The thin full line shows the
extrapolation of this fit to lower 𝑇. In the glassy phase of the CRC model the dash-dotted
line indicates the fit result to 𝑒pair(𝑇 ) = 𝐴g

pair + 𝐵g
pair𝑇 with 𝐴g

pair = −1.409614 kcal/mol,𝐵g
pair = 5.286 × 10−4 (kcal/mol K) (fit interval: 3.5 K ≤ 𝑇 ≤ 120 K). The vertical dotted

line indicates 𝑇g = 192 K for the CRC model as determined by fitting Eq. (3.10) to the
density. Inset: Plot of the ratio 𝐸pair divided by Eq. (3.56) versus 𝑇 to examine the quality
of the fit of the equilibrium data by Eq. (3.56).

3.4.5 Heat capacity of the polymer liquid: results for the CRC

model

The thermodynamic relation between the (extensive) heat capacities at constant

pressure 𝐶𝑝 and at constant volume 𝐶𝑉 is given by

𝐶𝑝 = 𝐶𝑉 + 𝑇 𝑉𝛼2𝜅𝑇 = 𝐶𝑉 + 𝑁c𝑁𝑇 𝛼2𝜌𝜅𝑇 , (3.57)

where 𝛼 is the thermal expansion coefficient,

𝛼 = 1𝑉 𝜕𝑉𝜕𝑇∣𝑝,𝑁c𝑁 ,
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𝜅𝑇 = − 1𝑉 𝜕𝑉𝜕𝑝 ∣𝑇 ,𝑁c𝑁 ,
and 𝜌 = 𝑁c𝑁/𝑉 is the number density of united atoms in the system (we recall that𝑁 = 4𝑛 where 𝑛 is the number of monomers per chain).

If we consider the heat capacity as the ability of a material to take up energy and

to statistically distribute this energy over all degrees of freedom, it is natural to report

the specific heat (𝑐 = 𝐶/(𝑁c𝑁)) divided by 𝑘B because this quantity can be interpreted

as the number of degrees of freedom per particle (united atom) contributing to the heat

capacity at temperature 𝑇.

Fig. 3.17 shows such a plot for the CRC model. The specific heat at constant pressure𝑐𝑝 was obtained from the fluctuations of the enthalpy 𝐻 = 𝑈 + 𝑝𝑉 in the NPT runs

(circles)4. Alternatively, 𝑐𝑝 can also be calculated by

𝑐𝑝 = 1𝑁c𝑁 𝜕𝐻𝜕𝑇 ∣𝑝,𝑁c𝑁 = 1𝑁c𝑁 𝜕𝑈𝜕𝑇 ∣𝑝,𝑁c𝑁 , (3.58)

where 𝑈(𝑇 , 𝑝, 𝑁c𝑁) is the internal energy. The 𝑝𝑉 term of 𝐻 does not contribute because

the NPT simulations are performed at 𝑝 = 0. The internal energy is given by

𝑈 = 𝐸kin + 𝐸bond + 𝐸bend + 𝐸tor + 𝐸pair (3.59)

with 𝐸kin being the (average extensive) kinetic energy,

𝐸kin = ⟨𝐾⟩ = 32 𝑁c𝑁𝑘B𝑇 .
Adding 𝐸kin and the energies for the bond length [Eq. (3.49)] and bond angle [Eq. (3.54)]

gives the following contribution to the specific heat1𝑁c𝑁 𝜕𝜕𝑇(𝐸kin + 𝐸bond + 𝐸ang)∣𝑝,𝑁c𝑁 = [52 (1 − 35𝑁)] 𝑘B = 0.00494232 [kcal/mol/K] .
(3.60)

4The enthalpy 𝐻(𝑥) = ℋ(𝑥) + 𝑝𝑉 (𝑥) depends on the microstate 𝑥 of the system. The specific heat
is given by 𝑐𝑝 = (⟨𝐻2⟩ − ⟨𝐻⟩2)/(𝑁c𝑁𝑘B𝑇 2). However, the NPT simulations were carried out at 𝑝 = 0
pressure so that 𝐻(𝑥) = ℋ(𝑥) and 𝑐𝑝 can be calculated from the fluctuations of the hamiltonian ℋ only.
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Figure 3.17: Specific heat at constant pressure 𝑐𝑝 and constant volume 𝑐𝑉 versus 𝑇 from
equilibrium simulations of the CRC model. The symbols present the results from enthalpy
fluctuations for 𝑐𝑝 (circles) and energy fluctuations for 𝑐𝑉 (squares). The solid line indicates𝑐𝑝 obtained when inserting Eqs. (3.60) to (3.62) into Eq. (3.58). The dashed line shows 𝑐𝑉
calculated from Eq. (3.64) as discussed in the text. The horizontal dotted line indicates the
sum of Eq. (3.60) and 𝐵𝜙 from Eq. (3.61), yielding the constant 3.188 𝑘B. When adding
Eq. (3.62) to this constant one obtains the dash-dotted line. The difference between the
circles and the dash-dotted line shows the contribution of the 𝑇 dependent part of the
dihedrals. Inset: Comparison to experiment. The circles and solid line are the results for𝑐𝑝 from the main panel. The red dashed line shows Eq. (3.65) (divided by 4𝑅 with 𝑅
being the gas constant) representing the experimental data from Ref. [129]. The green
squares depict the results from Eq. (3.67) using the experimental data (divided by 4𝑅) for
the solid state from Fig. 9 of [129] as a proxy to account for contributions from quantum
mechanical vibrations in the experimental system.

For the “soft” dihedral and pair interactions we find from Eq. (3.55) and Eq. (3.56)1𝑁c𝑁 𝜕𝐸dih𝜕𝑇 ∣𝑝,𝑁c𝑁 = 𝐵𝜙 − 2|𝐶𝜙|𝑇 , (3.61)1𝑁c𝑁 𝜕𝐸pair𝜕𝑇 ∣𝑝,𝑁c𝑁 = 35 𝐵RT 𝑇 −2/5 . (3.62)

By adding Eq. (3.60), Eq. (3.61) and Eq. (3.62) the solid line in Fig. 3.17 is obtained,

which agrees with the result from the enthalpy fluctuations. Of course, this agreement is

expected for systems at thermal equilibrium. Here it illustrates the internal consistency

of the simulation, i.e., of the thermostating/barostating methods and the length of the

equilibration and production runs.
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The splitting of the internal energy into its contributions according to Eq. (3.59)

allows to obtain further insight into the 𝑇 dependence of 𝑐𝑝. With the numerical value

for 𝐵𝜙 from Fig. 3.15 the first term of Eq. (3.61) adds a constant contribution to the

specific heat of about 0.7𝑘B. Together with Eq. (3.60) this implies an overall constant

contribution of about 3.188𝑘B to the specific heat, resulting from the kinetic energy and

hard variables (bond length, bond angle, and 𝐵𝜙). This baseline accounts for the lion’s

share of the specific heat (dotted line in Fig. 3.17), while the 𝑇 dependent parts from

Eq. (3.61) and Eq. (3.62) represent less than one 𝑘B of 𝑐𝑝. These parts are dominated by

the pair interactions, as seen from dash-dotted line in Fig. 3.17.

The specific heat at constant volume can be calculated from the fluctuations of the

hamiltonian ℋ in the NVT simulations

𝑐𝑉 = 1𝑁c𝑁 1𝑘B𝑇 2 [⟨ℋ2⟩ − ⟨ℋ⟩2] . (3.63)

The squares in Fig. 3.17 show the result of this calculation. As expected, 𝑐𝑉 < 𝑐𝑝.

Alternatively, 𝑐𝑉 can be obtained from 𝑐𝑝 via Eq. (3.57)

𝑐𝑉 = 1𝑁c𝑁 𝜕𝐻𝜕𝑇 ∣𝑝,𝑁c𝑁 − 𝑇 𝛼2𝜌𝜅𝑇 . (3.64)

We know the first term. The second term can be calculated independently from the

simulations or from the model proposed by Long and Lequeux [123]. In a previous chapter

we showed that the Long–Lequeux model provides a very good description of the 𝑇
dependence of 𝜌 and 𝜅𝑇. Therefore, we employ this model here. With this choice the

right-hand side of Eq. (3.64) can be calculated analytically. The dashed line in Fig. 3.17

shows that the result of this calculation agrees with Eq. (3.63), as it should be for thermally

equilibrated systems. Here this agreement illustrates again the internal consistency of the

MD simulations.

3.4.6 Heat capacity of the polymer liquid: comparison with

experiment

The inset of Fig. 3.17 compares the simulation results for 𝑐𝑝 (circles with solid

line) with the experimental heat capacity of liquid 1,4 PBD (dashed line) [129]. The
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experimental data refer to cis-PBD and trans-PBD. Both polymers crystallize, but have

identical 𝑐𝑝 in the liquid phase. To parametrize the 𝑇 dependence of liquid PBD Ref. [129]

recommends the following equation for the specific heat per monomer:

𝑐𝑝 = 52.63 + 0.178 𝑇 [J/(mol K)] . (3.65)

Since the experimental 𝑐𝑝 is reported per monomer, the dashed line in the inset shows

Eq. (3.65) divided by 4 𝑅 with 𝑅 being the gas constant. We see that the order of

magnitude is the same for both simulation and experiment, but the 𝑇 dependence is

different: The simulated 𝑐𝑝 increases upon cooling, whereas the experimental 𝑐𝑝 decreases.

How can this difference be explained? A comprehensive discussion of the thermal

analysis of polymers is provided in the book by Wunderlich [130]. Section 2.3.9 of [130]

reports that the heat capacity of many liquid polymers increases linearly with temperature.

Eq. (3.65) thus represents a typical behavior found in experiment. The linear 𝑇 dependence

is interpreted as resulting from the superposition of three contributions [131]:

𝐶𝑝 = 𝐶vib + 𝐶conf + 𝑇 𝑉 𝛼2𝜅𝑇 , (3.66)

where 𝐶vib denotes the vibrational heat capacity at constant volume and 𝐶conf the contribu-

tion to 𝐶𝑝 due to conformational rotations of the chain backbone. The analysis for several

hydrocarbon polymers in [131] shows that, even in the liquid, the major contribution to 𝐶𝑝
comes from 𝐶vib. As explained in [129–131], 𝐶vib can be calculated from the vibrational

spectrum of a polymer by considering two modes of vibration: “skeletal modes”, involving

torsion vibrations, bond-angle vibrations as well as collective vibrations along the chain

backbone, and “group modes”, involving vibrations of small groups of atoms, e.g. stretching

vibrations of the CC and CH bonds, bending vibrations of the angle in CH2, etc. (see

Fig. 2.48 on p. 123 in [130] and Table 4 in [129]). To calculate 𝐶vib both modes are treated

quantum mechanically, based on the Debye and Einstein theories for the heat capacity.

The Debye and Einstein theories predict the heat capacity to increase toward the classical

limit with increasing 𝑇. Applications reveal that this classical limit is not yet reached

in the experimentally studied 𝑇 regime of the polymer liquid (cf. [131] and p. 138 in

[130]). Therefore, 𝐶vib still increases with 𝑇. Although 𝐶conf and 𝑇 𝑉 𝛼2/(𝜌𝜅𝑇) are found

to decrease upon heating, this decrease is weaker than the increase of 𝐶vib. Therefore, the
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sum of the three contributions still leads to an increase of 𝐶𝑝 with 𝑇, which can be fit by

linear 𝑇 dependence.

Clearly, our classical united-atom model must fail to reproduce this behavior: Hy-

drogen atoms are not explicitly taken into account and quantum mechanical effects are

absent. In our case, 𝑐vib is a constant given by the classical result as a multiple of 𝑘B.

If quantum mechanical skeletal and group vibrations are really the cause of the

discrepancy between the simulated and experimental 𝑐𝑝, can we approximately correct for

these missing effects? As an attempt to do so, we scanned the heat capacity data for the

solid state from Fig. 9 of [129] and used them as a proxy for the vibrational contribution

(𝑐vib(𝑇 )) to replace the terms 𝑐vib + 𝑇 𝛼2𝜌𝜅𝑇 . The resulting prediction for the experimental

specific heat then reads

𝑐𝑝 ≈ 𝑐vib(𝑇 ) + [35 𝐵RT𝑇 2/5 − 2|𝐶𝜙|𝑇] , (3.67)

where the term […] stems from Eqs. (3.61) and (3.62). This term replaces 𝐶conf in Eq. (3.66)

because it accounts for contributions to 𝑐𝑝 from dihedral rotations and pair interactions in

the polymer liquid.

The squares in the inset of Fig. 3.17 show that Eq. (3.67) is indeed reasonable. Using𝑐vib(𝑇 ) from experiments inverts the 𝑇 dependence originally found from the simulation,

now yielding semiquantitative agreement with experiment (squares in the inset). Our

findings are similar to those published recently by Honguy et al [132], where an agreement

of the heat capacity extracted from MD simulations with the experimental data was

achieved after taking into account the corrections for quantum effects.

3.5 Rouse theory analysis

3.5.1 Introduction

Being one of the simplest theoretical polymer models, the Rouse model [5] is still

extensively used for studying polymer systems in experiments (typically neutron scattering

[133–135]) and simulations [23, 40, 41, 136–139]. The model considers a polymer chain as

a sequence of beads connected by harmonic springs, that is surrounded by a (structureless)

Langevin thermostat imposing in addition to temperature 𝑇 also a friction coefficient (both
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parameters are coupled to a random force via the fluctuation-dissipation theorem) [1]. It

is expected to provide a suitable description of the properties of unentangled polymer

melts on length scales larger than the monomer size and on the time scales larger than the

associated monomer relaxation time. Yet, since the excluded volume and chain stiffness

are not taken into account, deviations from real polymers are also expected at small scales

[136].

Analytically the Rouse model provides a framework of describing the motion of a

chain using the discrete Rouse modes �⃗�𝑝(𝑡), defined as [5]

�⃗�𝑝(𝑡) = 1𝑁 𝑁∑𝑛=1 ⃗𝑟𝑛(𝑡) cos [(𝑛 − 12)𝑝𝜋𝑁 ] (𝑝 = 0, … , 𝑁 − 1) (3.68)

with ⃗𝑟𝑛(𝑡) being the position of 𝑛-th bead at time 𝑡, 𝑁 the number of beads in a chain, 𝑝
the mode index. Eq. (3.68) is a decomposition of the equations of motion of the polymer

into the normal coordinates (modes), where the 𝑝-th mode describes the part of the chain

that includes (𝑁 − 1)/𝑝 segments. The inverse transformation reads

⃗𝑟𝑛(𝑡) = �⃗�0(𝑡) + 2 𝑁−1∑𝑝=1 �⃗�𝑝(𝑡) cos [(𝑛 − 12)𝑝𝜋𝑁 ] (𝑛 = 1, … , 𝑁) . (3.69)

The modes are theoretically considered to be orthogonal with each other [140], so

that the properties of the polymer are given only by their autocorrelations5

𝐶𝑝𝑝(𝑡) = ⟨�⃗�𝑝(𝑡)�⃗�𝑝(0)⟩⟨�⃗�2𝑝(0)⟩ . (3.70)

The functions 𝐶𝑝𝑝(𝑡) allow direct observation of the chain relaxations on the corresponding

length scales. Also, many static and dynamic observables, which are relevant in the

experiments and simulations, can be expressed in terms of 𝐶𝑝𝑝, so by knowing them one

can fully characterize the polymer within the framework of the Rouse model.

As for the PBD, the original CRC and FRC models have been already studied within

the framework of the Rouse model in Refs. [40, 41] with ⃗𝑟𝑛(𝑡) in Eq. (3.68) being the

position of united atom 𝑛 at time 𝑡 of the PBD chain. In the following sections we compare

5In practice the cross-correlations ⟨�⃗�𝑝�⃗�𝑞≠𝑝⟩ are of the order of 1% of the autocorrelations ⟨�⃗�2𝑝⟩, so
they are usually neglected. Our calculations and the results reported in Ref. [40] show that this is indeed
the case for PBD.
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Figure 3.18: Main panel: Log-log plot of the static Rouse modes autocorrelations 𝐶𝑝𝑝.
The colored empty symbols denote the results obtained from our simulations at different
temperatures. The filled black circles represent the data scanned from Fig. 3a in Ref. [40].
The vertical dashed lines correspond to 𝑝 that are multiples of the number of chemical
monomers in our PBD chains 𝑁m = 29. Inset: Zoom-in of the data in the main panel at𝑝 > 27.

and extend this analysis using our models across wider range of temperatures. We also

relate our results to the literature data for common polymers.

3.5.2 Static Rouse modes

The static Rouse modes autocorrelations are defined as

𝐶𝑝𝑝 = ⟨�⃗�𝑝(0)�⃗�𝑝(0)⟩ = ⟨�⃗�2𝑝(0)⟩ . (3.71)

Ref. [40] reported no noticeable differences in 𝐶𝑝𝑝 between the models and temperatures

up to 𝑝 = 40. Indeed, the results of our calculations appear to overlap with the data

scanned from Fig. 3a in Ref. [40], as presented in Fig. 3.18. The visible deviations appear

for larger 𝑝.

Interestingly, for large 𝑝 one observes three spikes in the data, which are present for

all models and temperatures. A closer look on the data (inset in Fig. 3.18) revealed, that
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they correspond exactly to the values of 𝑝 = 29, 58, 87. Those values are in fact multiples

of the number of chemical monomers in our PBD chains 𝑁m = 29 (each of them consists

of 4 UAs resulting in 𝑁 = 4𝑁m = 116 UAs per chain). Thus, the deviations of the values

of 𝐶𝑝𝑝 at 𝑝 = 29, 58, 87 from the overall trend can be explained by the fact that the cosine

transform in Eq. (3.68) catches the periodicity in the PBD chain comprised of repeating

sets of 4 UAs.

The theoretical prediction for the 𝐶𝑝𝑝 in the ideal Rouse chain reads [5]

𝐶𝑝𝑝 = 𝑏2
e8𝑁 1

sin2( 𝜋𝑝2𝑁) = 𝐶∞𝑙28𝑁 1
sin2( 𝜋𝑝2𝑁) . (3.72)

However, due to the chain stiffness and excluded volume effects, only the first few modes

follow such a scaling even in the bead-spring simulations [23, 140]. Although the corrections

that account for these effects were proposed [141] and applied to the original CRC and FRC

models of PBD in Ref. [40], we are able to use our parametrization of the conformational

properties in Section 3.1.2 (cf. Eqs. (3.4) and (3.5)), that include the correction due to the

stiff bending angle potential and an effective angle created by the dihedrals. By expressing

the positions of UAs in Eq. (3.68) as the sums of bondvectors and plugging the result

into Eq. (3.71) one obtains (after a long calculation that, due to its length, we do not

reproduce in this thesis):

𝐶𝑝𝑝 = 𝑙28𝑁[ 𝐶∞
sin2( 𝜋𝑝2𝑁) − 4𝐴𝛼1+𝛼1−𝛼1 − 2𝛼 cos(𝜋𝑝𝑁 ) + 𝛼2 − 4(𝛼 − 𝐴𝛼) + 𝑂(𝑁−1)] . (3.73)

Fig. 3.19 tests our parametrization. The scaling of the axes is inspired by Eq. (3.72), so

that for 𝑝𝑁 → 0, the value of 2(𝜋𝑝)2𝑁 𝐶𝑝𝑝 → 𝑙2𝐶∞ = 𝑏2
e as it is shown in the inset. We

present the data at 𝑇 = 353 K, but the result is valid for all studied temperatures. Using

the values of the parameters reported in Appendix E, our predictions for the 𝐶𝑝𝑝 are in a

good agreement with the simulation data. The differences between the models are very

small, since the parameters also do not differ significantly. This shows once more that the

static properties of PBD on the scales from the size of the statistical segment to the size

of the chain are mildly sensitive to the presence of the dihedrals.
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Figure 3.19: Main panel: Log-linear plot of the rescaled static Rouse modes autocorrelations𝐶𝑝𝑝. The colored symbols denote the results obtained from our simulations at 𝑇 = 353 K.
The colored lines with black dots are the results of Eq. (3.73). Inset: Zoom-in of the data
from the main panel at 𝑝𝑁 → 0. The colored horizontal dashed lines correspond to the
values of 𝑏2

e for each model.

3.5.3 Dynamic Rouse modes

The dynamic Rouse modes autocorrelations are defined in Eq. (3.70). The Rouse

model predicts them to decay exponentially [5]

𝐶𝑝𝑝(𝑡) = exp [ − 𝑡𝜏𝑝 ] (3.74)

with 𝜏𝑝 = 𝜏R/𝑝2 and 𝜏R = 𝜏𝑝=1 being the Rouse time, which is the longest relaxation

time of the polymer chain corresponding to the mode of the largest length scale (𝑝 = 1).

However, it is known from extensive simulation studies, that due to the excluded volume,

chain stiffness and “viscoelastic hydrodynamic interactions” [142, 143], the 𝐶𝑝𝑝(𝑡) deviates

from simple exponential decay in Eq. (3.74) (especially for large 𝑝) and, instead, can be

well described by the stretched exponential (Kohlrausch–Williams–Watts function) [23,

137–139] 𝐶𝑝𝑝(𝑡) = 𝐴𝑝 exp [ − ( 𝑡𝜏𝑝 )𝛽𝑝] . (3.75)

In addition, for a polymer melt close to the glass transition a two-step relaxation was

reported [23]. Depending on the mode number, the emergence of a plateau between
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the initial short-time decay and the final long-time decay can be observed. Ref. [41]

documented that this is the case for the original CRC model of PBD. By contrast, the

original FRC model showed faster, single stretched exponential relaxation.

Fig. 3.20 presents the functions 𝐶𝑝𝑝(𝑡) for 𝑝 = 1, 10, 20, 50, 80, 100 for our models

of PBD at 𝑇 = 213 K. The first modes look like single decays with the relaxation times

significantly faster when reducing the strength of the dihedrals (Figs. 3.20a and 3.20b).

In case of the CRC2 and CRC models, with increasing the mode number 𝑝 the two step

decays gradually develop with the intermediate plateaus becoming more pronounced when

decreasing the temperature (Figs. 3.20c to 3.20f). The curves also become more stretched.

In case of the CRC4 and FRC modes the relaxations are quite fast, so the exponential

relaxations are merged with the initial relaxation.

In order to characterize the relaxations quantitatively, at first, we extracted the

relaxation times 𝜏𝑝 of all modes as points, where 𝐶𝑝𝑝(𝑡 = 𝜏𝑝) = 1/𝑒. The result is plotted

in Fig. 3.21. The axes are rescaled to test if the behavior of 𝜏𝑝 follows the 𝑝−2 prediction

of Eq. (3.74). As it can be seen from the figure, only the first few modes, that correspond

to large length scale relaxations have 𝑝−2 scaling. For the smaller length scale modes

deviations are observed, which can be explained by the fact that in our simulations the

chains are more complicated (stiffness, dihedrals, excluded volume etc.) than the Rouse

model considers. Another observation is, that depending on the model, the times are

shifted up systematically for all modes with respect to the data for the FRC model.

With lowering the temperature the shifts become dramatic and span over many orders

of magnitude. For the lowest studied temperatures 𝑇 = 225, 213 K, the first modes of

the CRC model have not even reached 1/𝑒 over the simulation time of several 𝜇s. Such

an increase of the relaxation times is typically observed for glass forming systems upon

decreasing the temperature. It is usually explained in the bead-spring model simulations

[23] as a collective effect, where a particle becomes trapped within a cage created by

its nearest neighbors. While such picture pertains for the FRC model, in case of the

CRC(2,4) models, the trapping has been demonstrated to originate from the dihedral

barriers (“intramolecular caging”) [41]: when a particle cannot overcome the barrier it

participates in caging another particle.

In order to characterize the emergence of the plateaus and the stretching, we attempted

to fit the 𝐶𝑝𝑝(𝑡) using Eq. (3.75). However, having 4 models, 7 working temperatures and
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Figure 3.20: Dynamic Rouse modes autocorrelations 𝐶𝑝𝑝(𝑡) for 𝑝 = 1, 10, 20, 50, 80, 100.
The colored symbols represent the data obtained from the simulations at 𝑇 = 213 K. The
colored lines with black dots are the fits using Eq. (3.76). The horizontal dashed lines
correspond to the value 1/𝑒.

115 modes means 3220 fits to perform! Another problem is that a unique subset of the

data should be used for each fit due to the differently emerging plateaus for each model.

In order to overcome these issues we use an automated fitting with the following approach:

• A typical fitting situation is presented in Fig. 3.22a. At first, the values of the

relaxation times have been extracted previously in Fig. 3.21 as points where 𝐶𝑝𝑝(𝑡 =
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Figure 3.21: Relaxation times 𝜏𝑝 of the dynamic Rouse modes correlations extracted as
points, where 𝐶𝑝𝑝(𝑡 = 𝜏𝑝) = 1/𝑒. The colors mark the simulation models and the symbols
denote different temperatures.𝜏𝑝) = 1/𝑒 (horizontal dashed line in Fig. 3.22a). They were fixed in all the fits. The

small 𝑝 modes that had not relaxed over a time of the simulation at low temperatures

were omitted from the fit.

• Since there is a prefactor 𝐴𝑝, Eq. (3.75) has to be corrected, so that the definition

of the relaxation times 𝐶𝑝𝑝(𝑡 = 𝜏𝑝) = 1/𝑒 holds

𝐶𝑝𝑝(𝑡) = 𝐴𝑝 exp [ − (ln 𝐴𝑝 + 1)( 𝑡𝜏𝑝 )𝛽𝑝] . (3.76)

• The values of 𝐶𝑝𝑝(𝑡) were limited in time from above at 𝑡 < 10𝜏𝑝 in order to omit

the noisy tails of the autocorrelation.

• For long times 𝑡 > 2 × 106 fs, where the data is spaced linearly, only the time points

selected in logarithmic fashion were used in order to make the fit less biased by the

tails, that are densely populated with data (black symbols in Fig. 3.22a).

• We are interested only in the second step of the relaxation. Since the initial relaxation

appear to overlap for all our models, we can filter it out by considering only the

points where the differences between the models start to occur. In practice this

is done by determining the time point, where the difference in the data between

the models6 Δ𝐶𝑝𝑝(𝑡) = 𝐶𝑝𝑝(𝑡) − 𝐶ref𝑝𝑝 (dotted colored lines in Fig. 3.22a) exceed a
6For the CRC(2,4) models Δ𝐶𝑝𝑝(𝑡) = 𝐶𝑝𝑝(𝑡) − 𝐶ref𝑝𝑝 models the data of the FRC model were taken

as a reference. For the FRC model, the difference between the CRC4 and FRC was used.
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chosen threshold of, for example, Δ𝐶𝑝𝑝(𝑡) > 0.05 (horizontal black dotted line in

Fig. 3.22a).
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Figure 3.22: Panel (a): A typical stretched exponential fit of the dynamic Rouse modes.
The colored symbols represent the data of the 13th mode obtained in our simulations at𝑇 = 213 K. The same black symbols are the subset of the data fed into the fitting routine.
The solid colored lines with black dots are the results of the fit. The horizontal black
dashed line corresponds to the value of 1/𝑒. The colored dotted lines are the differences
between the models Δ𝐶𝑝𝑝(𝑡). The horizontal black dotted line represents the threshold
of 0.05 used to determine the time, where Δ𝐶𝑝𝑝(𝑡) > 0.05. Panels (b-c): The values of
the fitting coefficients 𝐴𝑝 and 𝛽𝑝 obtained from fitting the Rouse modes correlations with
Eq. (3.76) . The symbols correspond to different temperatures and the colors represent
different models.

• Since the values of parameter 𝐴𝑝 > 1 in Eq. (3.75) have no physical meaning, they
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were constrained to unity from above.

With this fitting procedure we can fit the data for all 𝑝. However, since the fitting is

automatic, the results should not be taken for granted. The resulting values of the fitting

coefficients are presented in Figs. 3.22b and 3.22c. The inspection of the fits revealed that

our approach worked well for all models at 𝑝 ≲ 10 (𝑁/𝑝 ≳ 10) and at all 𝑝 for the the

CRC and CRC2 models, where the intermediate plateaus are reasonably developed. This is

demonstrated by the values of the amplitude 𝐴𝑝 different from unity in Fig. 3.22b. There

are pronounced minima in the values 𝐴𝑝, that increase in depth depending on temperature.

At the same time, the stretching exponent 𝛽𝑝 is weakly dependent on the temperature

and decreases with the mode number 𝑝 starting from 𝛽 ≈ 0.8 down to 𝛽 ≈ 0.5, which

means that the relaxation is slower than the exponential (the curves are stretched). While

the decrease from 𝛽 ≈ 0.8 at small 𝑝 agrees with the results reported in the literature

[137, 138], our data is qualitatively different at large 𝑝, where the bead-spring simulations

report a minimum of 𝛽 ≈ 0.5 at 𝑁/𝑝 ≈ 3.

In principle, for 𝑁/𝑝 ≳ 10 it would possible to fix 𝛽𝑝 ≈ 0.8 for all 𝑇 and obtain a

fit of similar quality. This fixings implies time-temperature superposition, an important

principle in glass physics and polymer physics. However, for 𝑁/𝑝 ≲ 10, the principle

appears to become progressively violated with decreasing 𝑁/𝑝. With 𝑠 = 𝑁/𝑝, 𝑁/𝑝 ≲ 10
corresponds to 𝑠 ≲ 16. According to Fig. 3.4, the regime 𝑠 ≲ 16 corresponds to chain

segments where deviations from the Gaussian chain model, 𝑅2
e (𝑠) = 𝑏2

e 𝑠, become very

prominent.

For the CRC4 and the FRC models, the stretched exponential, does not actually

represent well the shape of the relaxation at 𝑝 ≳ 10 (as it can be seen in Figs. 3.20c

to 3.20f). In fact, the values of 𝑝, from which the fits fail, can be observed in Fig. 3.22b

where the amplitudes 𝐴𝑝 come back to unity after the initial decrease. This means that

the fitting routine reached the upper bound in 𝐴𝑝, so the stretching parameter 𝛽𝑝 was

the only adjustable variable for the fit7. While for the CRC4 model 𝛽𝑝 has a similar

decreasing trend as of the CRC2 and CRC models, it is qualitatively different for the

FRC model. In the case of the FRC model, the stretching exponent shows a minimum of𝛽𝑝 ≈ 0.5 at 𝑁/𝑝 ≈ 3. Interestingly, similar minima are reported in the bead-spring model

simulations [137, 138]. In general, the failure of the stretched exponential for the CRC4

7This discussion is also motivated by the fact, that when we tried to discard the upper bound of 𝐴𝑝
during the fits, we obtained the curves with 𝐴𝑝 > 1, which has no physical meaning.
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and FRC models can be explained by the fact that the studied region of temperatures213 ≤ 𝑇 ≤ 353 K is quite far from the corresponding glass transition temperatures 𝑇g. We

can observe such a temperature dependence in Fig. 3.22b by the fact that the amplitudes𝐴𝑝 for these models reach the cap of unity earlier for higher temperatures.

3.6 Mean-square displacements

Having seen in the previous section, that the dihedral barriers in PBD lead to an

enormous change in the relaxation times of the Rouse modes, it is important to investigate

how they influence the motion of the united atoms. In the simulations this motion can be

observed directly by looking at their mean-square displacements (MSD). In particular, it

is interesting to look at

𝑔0(𝑡) = 1𝑁 𝑁∑𝑛=1 ⟨ [ ⃗𝑟𝑛(𝑡) − ⃗𝑟𝑛(0)]2 ⟩ , (3.77)

which describes the MSD averaged over all united atoms of a chain;

𝑔1(𝑡) = ⟨ [ ⃗𝑟𝑁/2(𝑡) − ⃗𝑟𝑁/2(0)]2 ⟩ , (3.78)

which is the MSD of the innermost united atom of a chain;

𝑔2(𝑡) = 1𝑁 𝑁∑𝑛=1 ⟨ [ ⃗𝑟𝑛(𝑡) − �⃗�cm(𝑡) − ⃗𝑟𝑛(0) + �⃗�cm(0)]2 ⟩ , (3.79)

which describes an averaged MSD of the united atoms with respect to the chain’s center

of mass �⃗�cm(𝑡); 𝑔3(𝑡) = ⟨ [�⃗�cm(𝑡) − �⃗�cm(0)]2 ⟩ , (3.80)

which is the MSD of the chain’s center of mass itself;

𝑔4(𝑡) = ⟨ [ ⃗𝑟end(𝑡) − ⃗𝑟end(0)]2 ⟩ , (3.81)

which describes the MSD of the united atoms at the ends of the chain.

Fig. 3.23 presents the 𝑔0−4(𝑡) obtained from the simulations using the CRC model at𝑇 = 353 K. The united atoms at the ends of a PBD chain (orange diamonds in the figure)
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show slightly faster dynamics than the innermost united atoms (blue squares). Yet, their

influence is mild, since the contribution of many inner UAs dominates in the averaged

dynamics (red filled circles). While at short time scales the local motion of the UAs is

of importance (green filled triangles), at long times, being connected in chains the UAs

cannot explore the distances beyond the chain’s size. This is demonstrated by the plateau

in the 𝑔2(𝑡) (horizontal dotted line). At long times the diffusion of the chain as a whole

prevails, so all the data in Fig. 3.23 coincide with the 𝑔3(𝑡) (violet crosses).

Having already analyzed the Rouse modes for all our models, we, at first, examined

how well they can actually describe our simulation data. By inserting Eq. (3.69) into

Eq. (3.79) and assuming only the orthogonality of the Rouse modes, one obtains

𝑔R2 (𝑡) = 4 𝑁−1∑𝑝=1 𝐶𝑝𝑝 [1 − 𝐶𝑝𝑝(𝑡)] . (3.82)

This result is represented by a solid line in Fig. 3.23. It is nearly identical to the 𝑔2(𝑡)
obtained directly from the simulations, verifying that the properties of PBD can be indeed

described by the orthogonal Rouse modes.

Typically, for unentangled polymers at the temperatures far above the glass transition
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Figure 3.23: The mean-square displacements 𝑔0(𝑡) (red filled circles), 𝑔1(𝑡) (blue empty
squares), 𝑔2(𝑡) (green filled triangles), 𝑔3(𝑡) (violet crosses) and 𝑔4(𝑡) (orange empty
diamonds) obtained from the simulations using CRC model at 𝑇 = 353 K. The dark gray
line is the 𝑔2(𝑡) obtained from the Rouse modes correlations Eq. (3.82). The horizontal
black dotted line correcponds to twice the gyration radius 𝑅g of the PBD chain.
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temperature 𝑇g, the MSD shows three distinctive regimes [2]. At short times, the initial

motion of particles just after the beginning of the measurement is referred to as ballistic,

since it is determined by Newtonian dynamics with 𝑔0(𝑡) ∼ 𝑡2. In the long times regime

the particles diffuse with 𝑔0(𝑡) ∼ 𝑡. The intermediate regime is characteristic of polymer

systems. It shows a behavior of 𝑔0(𝑡) ∼ 𝑡𝑥 with the exponent 𝑥 < 1 and, therefore, is

called subdiffusive. The value of 𝑥 is typically between 0.5 < 𝑥 < 0.758. With lowering

the temperature, the situation becomes slightly different. In particular, the ballistic regime

is followed by an emerging plateau, that shifts the subdiffusive regime to longer times.

Such a plateau is common for the glass forming systems: it indicates the trapping of the

particles in a cage, that leads to the dynamical arrest.

Fig. 3.24 presents the MSD averaged over all united atoms of a chain 𝑔0(𝑡) for PBD

simulated using all our models at different temperatures as empty colored symbols. The

corresponding Rouse predictions are given by the colored lines with black dots

𝑔R0 (𝑡) = 𝑔R2 (𝑡) + 𝑔3(𝑡). (3.83)

The general behavior of the curves follows the description above with the regimes

denoted in the figure. However, the data for different models shows significantly different

temperature dependences. At our working temperatures 213 < 𝑇 < 353 K the FRC

model demonstrates the fastest motion. The curves are very close to each other and have

clearly distinct regimes. With introducing the dihedrals and making the barriers higher

the dynamics becomes slower, so that the diffusive regime cannot be reached over few𝜇s of the simulations. In the case of the CRC model we observe the caging plateaus

that make a dramatic effect on the dynamics with lowering the temperatures. As it was

mentioned in the previous section, the presence of the dihedrals imposes constraints on

the movement of the particles when the thermal fluctuations are comparable to the barrier

height. For PBD those are the 𝛼 and 𝛽 dihedrals. When a particle becomes trapped within

the barriers, it also cannot anymore make room for the rearrangements of its neighbors.

Considering many such particles, this leads to the structural caging. Since the height of

the dihedral barriers is larger than pair energy barriers, one observes the emergence of

the cage at higher temperatures when comparing to the FRC model. We have performed

8The lower limit of 𝑥 = 0.5 is in fact a result of the ideal Rouse chains. However by introducing chain
stiffness, the value of 𝑥 increases with the 𝑥 = 0.75 being the limit of the stiff chains [2].
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Figure 3.24: Log-log plots of the mean-square displacement 𝑔0(𝑡) of united atoms for the
CRC [panel (a), red], CRC2 [panel (b), green], CRC4 [panel (c), purple] and FRC [panel
(d), blue] models . The colored symbols represent the data obtained from the simulations
at different temperatures. The legend in the plot for the FRC model is also valid for other
models. The colored solid lines with black dots are the predictions using the Rouse modes
Eqs. (3.80), (3.82) and (3.83). The horizontal dashed line corresponds to the value 𝜎2.

additional simulations of PBD using the FRC model at the temperatures 𝑇 < 213 K and

observed the cage effect appearing at the temperature 100 K below our working range

(filled symbols in Fig. 3.24d).

The structural relaxation is typically described quantitatively by extracting the

relaxation times from the MSD as points where 𝑔0(𝑡 = 𝜏) = �̄�2 (horizontal dashed lines

in Fig. 3.24) with �̄� being the average size of a particle (united atom in our case). With

the values from Table 2.4, �̄� ≈ 3.7 Å. Fig. 3.25 plots these relaxation times in the form

of the relaxation map, where the decimal logarithm log 𝜏 is plotted against the inverse

temperature 1000/𝑇. When comparing the data at our working range of temperatures213 < 𝑇 < 353 K (colored symbols in the figure), one observes a super-Arrhenius increase

of the relaxation times in case of the CRC(2,4) models. The data for FRC model appears
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rather Arrhenius at these temperatures. Performing the simulations at lower temperatures

allowed to see the increase in the relaxation times faster than Arrhenius. We have fitted

our data using the Vogel-Fulcher-Tammann (VFT) equation in the logarithmic form

log 𝜏(𝑇 ) = log 𝜏∞ + 𝐵𝑇 − 𝑇0 (3.84)

with log 𝜏∞, 𝐵 and 𝑇0 as adjustable parameters. The results are plotted in Fig. 3.25 as solid

colored lines. These fits were used to extrapolate to lower temperatures and determine the

glass transition temperature as points, where log 𝜏(𝑇 = 𝑇 VFT
g ) = 100 sec. The resulting

values are presented in Table 3.6 along with the fitting parameters. Comparing to the

cooling data (also given in Table 3.6 as 𝑇 cool
g ), the 𝑇 VFT

g obtained from the equilibrium

simulations are expected to be lower considering the fast cooling rate employed in the
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Figure 3.25: The relaxation maps of PBD simulated using all our models (colored symbols).
The solid colored lines are the extrapolations to lower temperatures using Eq. (3.84).

Table 3.6: The values of the fitting parameters of Eq. (3.84) and the glass transition
temperatures 𝑇 VFT

g obtained by extrapolating the fits to 100 sec. The values obtained
from the cooling runs are also given for reference.

model log 𝜏∞ (ps) 𝐵 (K) 𝑇0 (K) 𝑇 VFT
g (K) 𝑇 cool

g (K)
CRC -1.2 641.14 119.2 161.3 192
CRC2 -0.3 316.11 116.8 139.0 143
CRC4 -0.3 351.70 72.6 97.1 108
FRC -0.1 293.62 41.0 61.8 43
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simulations. While this is the case for the CRC(2,4) models, the 𝑇 VFT
g for the FRC

model is about 1.5 times larger than the corresponding 𝑇 cool
g . Yet, this inconsistency

rather reflects the poor quality of the extrapolation (cf. Fig. 3.27), than having a physical

meaning. The VFT equation works well at the temperatures close to 𝑇g, but reaching the

relaxation times at these temperatures requires much longer simulations than few 𝜇s.

As an aside, we compared our results for the CRC model to various experimental

references and original model simulations (Fig. 3.26). Our data fits within the experiments,

confirming that our simulations represent the dynamics of PBD well in the studied

temperature interval.

3.7 Discussion

By now we have adapted the united atom chemically realistic (CRC) model of 1,4-

polybutadiene to be able to perform the simulations of the bulk systems and systems with

a free surface in LAMMPS code. We have performed extensive bulk simulation and studied
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Figure 3.26: Comparison of the relaxation map of PBD simulated using the CRC and FRC
models (filled symbols) with experimental and simulation references from the literature.
The empty symbols represent the scanned data points, the solid lines are recreated VFT fits.
Ref. [50] are the data from old simulations using the original CRC model. Refs. [144, 145]
are the dielectric spectroscopy data. Ref. [146] are the data based on the measurements of
the monomeric friction coefficient. Ref. [36] are dielecric relaxation data obtained from
the recent simulations using the original CRC model. Ref. [147] are the combined data
from dielectric spectroscopy (low 𝑇) and NMR (high 𝑇) for PBD of 𝑀 = 1450 g/mol and𝑀 = 2020 g/mol (in our simulations 𝑀 = 1569 g/mol).
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the structure and dynamics of PBD over a wide range of temperatures 213 K < 𝑇 < 353 K.

Our results fit within the experimental references for PBD of similar composition and

molecular weight.

We have also studied the influence of the dihedral barriers on the properties of PBD

by performing the simulations with the reduced (CRC2 and CRC4 models) and completely

disabled barriers (FRC model). We observed minor changes in the structure of the PBD

melt with modified/disabled dihedrals, which could not be seen in the similar studies

carried out earlier [40, 41]. By contrast, the dynamics of PBD is orders of magnitude faster

for these models, which also leads to significant shifts of the glass transition temperature𝑇g to lower values. By the analysis of the local relaxation of the united atoms, we attribute

these differences in the dynamics to the fact, that the trapping of the UAs between the

dihedral barriers shifts the onset of the structural caging to higher temperatures.

Our results challenge the theories that try to predict the dynamics of the glass forming

systems from their structure. In particular, the mode coupling theory (MCT) has been

extensively discussed in the previous works [40, 41, 148]. Below we discuss the more

recent elastically collective nonlinear Langevin equation (ECNLE) theory [119, 120, 149].

The theory considers a polymer melt as a system of hard spheres at volume fractions

determined from the temperature dependence of the dimensionless compressibility. An

energetic dynamic barrier can be calculated from the structure of the system, so that

the time of crossing describes the local dynamics. In order to account for the collective

rearrangements, the additional elastic barrier is introduced (which is also calculated using

the dynamic free energy). Since the theory is non-linear, we expect the small differences

in structure to cause significant differences in the dynamics. The theory was successfully

applied to predict the segmental relaxation, glass transition temperature and fragility of

many polymers, including PBD.

We have put a lot of effort into describing the structure of PBD simulated with

our models and indeed observed small differences in the structural properties between

the models. The two important quantities here are the characteristic ratio 𝐶∞ and the

dimensionless compressibility 𝑘B𝑇 𝜌𝜅𝑇. The ECNLE theory assumes 𝐶∞ to be temperature

independent and uses it to map the compressibility of the melt to the one of the hard

spheres [120]. We have implemented the numerical solution of the ECNLE theory following

Refs. [119, 120, 149] and performed the calculations of the relaxation times plugging
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into the theory the 𝐶∞ at 𝑇 = 353 K from Section 3.1.2 and the linearized in 1/𝑇
dimensionless compressibility using the Long-Lequeux fits from Section 3.3.3 for our CRC

and FRC models. Fig. 3.27 present the results of the calculations of the relaxation times,

that correspond to the hopping across the dynamic barrier only (without the additional

contribution from the elastic barrier). Even though the differences in the structure between

the models were taken into account in the calculations, the data overlaps. Interestingly,

for both models, the dynamics at high temperature (where the barrier is very small) we

observe an agreement with the MD data of the FRC model. However, with decreasing the

temperature, even without the elastic contribution the ECNLE theory already overestimates

the relaxation times of the FRC model. This means that in the studied range, the mapping

of temperature to the volume fraction via the renormalized dimensionless compressibility

is not valid for the FRC model. At the moment the reasons for this disagreement are

not clear and further research is required.This is the main reason why we decided not to

expose the ECNLE theory, its implementation, and the details of its application to our

simulation data in this thesis (despite the large amount of work spent on this project).
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Figure 3.27: The relaxation times obtained in our work (filled symbols with solid lines)
compared to the predictions of the ECNLE theory (empty symbols) and the experimental
reference (crosses).



Chapter 4

Film systems analysis

This chapter presents the results obtained from the simulations of the film systems. We

begin our analysis with determining the thickness and studying its temperature dependence

upon cooling in Section 4.1. Then in Section 4.2 we relate the obtained results to the

layer-resolved investigation of the dynamical properties. Finally, we discuss our findings in

Section 4.3.

4.1 Density profiles and thickness

Let the 𝑧-axis be perpendicular to the film plane (Fig. 2.8). Then the density profile

along the 𝑧 direction can be defined as

𝜌(𝑧) = 1𝐴⟨ 𝑁𝑁c∑𝑖=1 𝛿(𝑧 − 𝑧𝑖)⟩ , (4.1)

where 𝐴 is the area of the cross-section of the simulation box in the 𝑥𝑦 plane.1 In practice,

such a calculation is performed by introducing finite (yet, small enough in thickness) slabs

along the 𝑧-direction and counting how many particles are in each slab volume. Fig. 4.1

presents the density profiles of our films simulated using the CRC and FRC models at

different temperatures. By looking at the shape of the curves, we can get an idea on

the influence of some surface effects. In particular, the peaks on the left-hand side of

the figures suggest that the presence of the wall leads to layering of united atoms next

to it, which is typically found in liquids in contact with an impenetrable substrate [18].

1The periodic boundary conditions are employed in the simulations in 𝑥, 𝑦 directions.
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We compared this part of our density profiles to the results of Ref. [36], where the PBD

was simulated in confinement between two graphite walls using the original CRC model

(dashed black line in Fig. 4.1a). An excellent agreement was obtained, which is expected

considering that our modified CRC model was tuned to reproduce the same density as the

original one.

At the free surface, one observes a gradual decrease of the density down to zero,

which is commonly attributed to the presence of capillary waves [150]. The width of the

decrease region is determined by the wave amplitudes, which are temperature dependent

and limited by the system size. The plateau in the middle of the films corresponds to the

value of the bulk density, as marked by the horizontal dotted lines in Fig. 4.1. From the

analysis of the bulk systems, we know that they have almost identical densities, so the

plateaus for the CRC and the FRC models overlap. Interestingly, they also overlap at

the wall and at the free surface, meaning that surface effects on the density appear to be

mildly influenced by the dihedrals.

Measuring the density profile of the film allows us to determine the thickness of the

films using the Gibbs dividing surface (GDS) method [3]. In order to do this, at first,

the mean density ̄𝜌 at the center of the film 𝑧c is calculated by averaging 𝜌(𝑧) over a

wide enough region 𝑧c − Δ𝑧/2 ≤ 𝑧 ≤ 𝑧c + Δ𝑧/2. The choice of the center point 𝑧c and

the averaging region is arbitrary as long as the mean density can be well defined. In our

case, the procedure was automatic with 𝑧c being the middle of the non-zero data of the

density profile and Δ𝑧 = 30 Å. The positions of the upper 𝑧G+ and lower 𝑧G− Gibbs dividing

surfaces are calculated as 𝑧G± = 𝑧c + 1 ̄𝜌 ∫±∞𝑧c

𝜌(𝑧)d𝑧 . (4.2)

Qualitatively, the integration in Eq. (4.2) means that starting from a middle point 𝑧c

the position of the GDS is propagated to the left (or to the right) proportionally to the

fraction of the density profile at position 𝑧 to the mean value. The positions 𝑧G+ and 𝑧G− are

marked in the Fig. 4.1 as vertical dotted lines. The thickness of the film is then obtained

as ℎ = 𝑧G+ − 𝑧G− . (4.3)

Since the density of PBD increases upon cooling, the thickness decreases, as it is

observed from lower positions of 𝑧G+ with decreasing the temperature in the Fig. 4.1. In
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Figure 4.1: The density profiles of the films obtained from the simulations using the CRC
(red) and FRC (blue) models at different temperatures. The dashed black line is the data
scanned from Ref. [36], where the PBD film confined between graphite was simulated using
the original CRC model at 𝑇 = 353 K. The vertical dot-dashed lines are the positions
of the graphite layers. The vertical dotted lines are the positions of the Gibbs dividing
surfaces for the CRC model. The horizontal dotted lines correspond to the density of the
bulk systems at the same temperatures.

principle, the 𝑧G− also shifts with decreasing the temperature, since the first peak (that

contributes the most to the integration in Eq. (4.2)) increases in height. However, such an

influence is actually quite small (∼ 0.1 Å), so it is ignored.

Using the GDS method, the thickness can be monitored not only in the equilibrium

simulations, but also upon cooling the films. Fig. 4.2 presents the dependence of thickness

on temperature ℎ(𝑇 ) obtained from the cooling simulations at the rate Γ = 0.83 K/ns

(colored circles)2 and from the equilibrium simulations (colored crosses). Since the film

system is much bigger than the bulk, the averaging statistics is better and small differences

2On the contrary to the bulk systems, it was not possible to perform multiple cooling runs for the
same film systems and average over them. Only the smoothing was applied in order to obtain a data point
per Kelvin.
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in density are now more visible: the thickness of the CRC model is systematically slightly

lower than for the FRC model at high temperature.

As it is usually observed in ellipsometry experiments [151], ℎ(𝑇 ) changes slope when

the system is undergoing the glass transition. Yet, our cooling rate Γ = 0.83 K/ns is much

faster than typically employed in the experiments, which leads to a broad transition region.

We have extracted the 𝑇g from the cooling data using a similar approach as during the

analysis of the bulk densities. The thickness ℎ(𝑇 ) was fitted with:

ℎ(𝑇 ) = 𝑤 (𝑀 − 𝐺2 ) ln [cosh (𝑇 − 𝑇g𝑤 )] + (𝑇 − 𝑇g) (𝑀 + 𝐺2 ) + ℎg , (4.4)

with 𝑤 being the width of the glass transition region, 𝑀 and 𝐺 the slopes dℎ(𝑇 )/d𝑇 in

the melt and glass regions respectively, 𝑇g the glass transition temperature and ℎg the

thickness of the film at 𝑇 = 𝑇g. In order to account for the dependence on the size of the

fitting region (𝑇 ∗
g − Δ𝑇 , 𝑇 ∗

g + Δ𝑇 ), we have done the fits over a set of Δ𝑇 ranging from

tens of Kelvins to the highest possible value. Comparing to the bulk density data, the

data for the film thickness have lower quality. Thus, the influence of the fitting region is

more pronounced in the values of 𝑀 and 𝐺, while the 𝑇g and ℎg are much less sensitive to

the choice of Δ𝑇 (Fig. 4.3). The final iteration of the fits with 𝑇g, ℎg, 𝑀 and 𝐺 fixed to
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Figure 4.2: The temperature dependence of the film thickness obtained by the GDS
method from the simulations using the CRC (red) and the FRC (blue) models. The circles
represent the data obtained from the cooling runs, and the crosses are the averaged values
from the constant temperature simulations. The solid black lines are the fits using Eq. (4.4)
with the parameters from Table 4.1.
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their values at the highest possible Δ𝑇 leads to the values presented in Table 4.1 and the

fitting curves represented by black solid lines in Fig. 4.2. We obtained an exact match of

the glass transition temperature 𝑇g = 43 K for the FRC model with the bulk simulations.

In case of the CRC model, the resulting value 𝑇 film
g = 206 K is slightly higher than the

bulk value 𝑇 bulk
g = 192 K. Still, the film thickness data in the transition region is quite

noisy even after smoothing, so it is hard to argue about reasons of possible differences.

Moreover, refitting the CRC data with the 𝑇g fixed to the bulk value resulted in the fitting

curve of the same quality (not shown) with comparable values of the parameters. We

consider them in agreement with each other.

Our 𝑇g values are, of course, the film averaged values, that result from the contribution
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Figure 4.3: The values of the fitting parameters of Eq. (4.4) depending on the fititting
interval Δ𝑇. The colours denote different models: CRC - red, FRC - blue. The dashed
lines represent the final values of the parameters.
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Table 4.1: The final values of the fit parameters of Eq. (4.4)

model 𝑇g (K) ℎg (Å) 𝑀 (Å/K) 𝐺 (Å/K) 𝑤 (K)
CRC 206.9 94.0 0.0766 0.0132 71.1
FRC 43.0 82.8 0.0704 0.0295 7.7

of the bulk-like region in the middle of the film and the surface effects. The fact that they

are basically the same as in the bulk for both models may suggest that either the surface

effects are very weak, or the influence of the graphite wall and the free surface average out.

We have learned from the analysis of the bulk systems, that disabling the dihedrals leads to

significant speed up of the dynamics of PBD while preserving its structure, which explains

the presence of the shift of the 𝑇g to lower values. It is interesting now to investigate the

local dynamics of PBD across the film in order to understand the influence of the dihedral

barriers on the surface effects, and consequently, on the 𝑇g.

4.2 Mean-square displacements and dielectric relax-

ation

Our study of the dynamics in the films utilizes two methods. The first one is essentially

the same as employed for the bulk systems: the simulations allow direct observation of

the mean-square displacements of united atoms 𝑔0(𝑡) on different time scales. The second

mimics the dielectric spectroscopy technique commonly employed in experiments (see

[152] and references therein), where the dynamics is analyzed by measuring the dielectric

response of the system to the applied electric field alternating with different frequencies. It

is inspired by the previous works [31, 35, 46], where dielectric relaxation of PBD was studied

in the simulations using the original CRC model. The fluctuation-dissipation theorem

relates the experimentally relevant complex dielectric permittivity 𝜖∗ to the correlation

of the total dipole moment of the system �⃗�, which was shown to be equal to the sum of

independent chain contributions, which, in turn, are the sums of the independent dipoles of

the 𝑐𝑖𝑠 groups of PBD3 (Fig. 4.4) [46, 153]. Thus, the dielectric spectroscopy experiments

on PBD probe the relaxation on the segmental scale. The studied sample is placed between

the electrodes, that act like walls confining the film, so the relevant quantity extracted
3We refer the reader to the works [35, 46] for the theoretical and implementation details, since (as we

will show later) our calculations are identical.
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Figure 4.4: Schematic representation of the dipole moment of the 𝑐𝑖𝑠 group of PBD. The
CH2 united atoms are treated together. The hydrogen atoms from the CH groups are
separated and placed in their equilibrium positions. The charges are given in the figure
in the units of electronic charge 1 e = 1.60217733 × 1019 C along with the equilibrium
bond lengths. Such a configuration results in a small non-zero dipole moment depicted as
an orange arrow. Since the dihedral angle for the 𝑐𝑖𝑠 monomer is strongly localized, the
dipole is considered in plane of the monomer. Due to the stiff bonds and bending angles it
can also be considered perpendicular to the double bond.

from the simulation trajectories is the autocorrelation of the perpendicular to the film

component of the dipole moment (DACF) of the 𝑐𝑖𝑠 groups of the PBD:

𝐶𝑧(𝑡) = ⟨𝑀𝑧(𝑡)𝑀𝑧(0)⟩⟨𝑀𝑧(0)𝑀𝑧(0)⟩. (4.5)

This is an important limitation, since the relaxations in different directions may be different

and it is the averaged dynamics that matters for the glass transition in the films. Thus, in

our simulations we also study the autocorrelation of in-plane components 𝐶𝑥,𝑦,𝑥𝑦(𝑡) as

well as the total autocorrelation of a dipole moment vector

𝐶(𝑡) = ⟨�⃗�(𝑡)�⃗�(0)⟩⟨�⃗�2(0)⟩ . (4.6)

At first, Fig. 4.5 presents the comparison of the total mean-square displacements of

united atoms 𝑔0(𝑡) and the total DACF 𝐶(𝑡) obtained from the bulk simulations (black

solid lines) and from the film simulations (colored solid lines) at selected temperatures

averaged over the whole simulation box. The in-plane and perpendicular components will

be discussed below. In case of the CRC model, the averaging over the correlations of

the 𝑐𝑖𝑠 dipole moments was performed for 𝐶(𝑡). In case of the FRC model, there is no

distinction between the 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 monomers, because all the dihedral potentials are
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disabled. Therefore, one expects the dipole moment of each monomer to be equal to zero.

However, due to the excluded volume, there is still a preferred range of the dihedral angles

(see Section 3.1.1) which leads to a non-zero value of �⃗�. Thus, the DACF for the FRC

model was obtained by averaging the correlations of the dipole moments of all monomers.

We use the time domain representation in order to be able to relate the relaxation regimes

with the regimes of the MSD, and because performing the Fourier-transform of the data

would require either a different approach to the spacing of the simulation trajectories, or

enormous interpolation efforts.

The film averaged data of the MSD are slightly faster than the bulk curves at

the corresponding temperatures. The DACF curves appear to decay slightly slower at

long times in the films. Refs. [31, 47] attributed such additional slowing down to the

adsorption-desorption kinetics of the chains at the graphite wall.

We are interested in the time scales of the structural relaxation. For the bulk systems,

they were extracted as points, where a united atom has displaced over a distance of its own

size 𝑔(𝑡 = 𝜏) = �̄�2. While for the MSD this definition is consistent between the CRC and

FRC models, the same relaxation times correspond to different regimes in the dielectric

relaxation between the models. Omitting the short time region of the DACF 𝑡 < 100 fs,

the data for the CRC model are single decays, which allows to make a rough approximation

of the structural relaxation times to the decay of 𝐶(𝑡 = 𝜏) ≈ 0.2. Meanwhile, the FRC

model exhibits two-step relaxations and the structural relaxation times correspond to

the second step with 𝐶(𝑡 = 𝜏) ≈ 0.01. Of course, the two discussed quantities cannot

be directly related: the MSD represents the motion of individual united atoms, whereas

the DACF describes the reorientation of a group comprised of several united atoms. In

addition, in the simulations using the realistic model each individual dipole persists at all

times, so only their orientations contribute the most to the correlation. In case of the FRC

model, the non-zero dipole moment is the result of the average excluded volume effect, so

the reorientation of the united atoms within the monomer are of importance, instead of

the reorientation of the monomer as a whole.

Having compared the overall film dynamics to the bulk, it is interesting now to look

at the relaxations in the different regions of the films. To do so, we have divided the films

into slabs and calculated the MSD and the DACF in each of them. The layout of the slabs

is presented in the Fig. 4.6. The bottom of the first slab coincides with the topmost layer
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of the graphite. The slabs have width equal to 2�̄� and overlap with the neighboring slabs

over a distance �̄� for better statistics in the data. A united atom or a dipole belongs to

a slab if its position (center of mass of a corresponding monomer in case of a dipole) is
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Figure 4.5: Panels (a-b): The mean-square displacements 𝑔0(𝑡) obtained from the bulk
simulations (black solid lines) and film simulations (colored solid lines) using the CRC
(red) and FRC (blue) models at different temperatures averaged over all united atoms in
the simulation box. Panels (c-d): The dielectric relaxation 𝐶(𝑡) obtained from the bulk
simulations (black solid lines) and film simulations (colored solid lines) using the CRC
(red) and FRC (blue) models at different temperatures averaged over all dipoles in the
simulation box. The vertical dotted lines correspond to the structural relaxation times
extracted from MSD curves. The horizontal dotted lines correspond to the values 𝐶 = 0.2
(CRC) and 𝐶 = 0.01 (FRC), obtained as averaged values of the DACF at the times where𝑔0 = �̄�2.
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Figure 4.6: Schematic illustration of the geometry of the slabs in the PBD film.

inside that slab in the beginning of the correlation time window4.

Fig. 4.7 presents the 𝑥𝑦 (in film plane) components and Fig. 4.8 presents the 𝑧
(perpendicular to the film) components of the MSD and DACF for slabs 1−5, 12, 14, 16, 23−27 at 𝑇 = 240 K. The slabs are marked by the color spectrum with the blue and red

sides corresponding to the slabs next to the wall and the free surface respectively. The

in-plane data for both MSD and DACF show the slowing down of the dynamics at the

wall and speeding up at the free surface with respect to the middle of the film. The slabs

in the middle show bulk-like behavior. For the perpendicular to the film components, a

similar behavior is observed for the MSD and the first step of the DACF. At long times,

however, the MSD curves should be limited by the distance from the slab to the farthest

edge of the film. The second steps of the dielectric relaxation are qualitatively different. It

appears, that the DACF relaxes more slowly at the free surface as well. This suggests,

that there are additional constraints on the orientation of the PBD monomers at the free

surface, that result in preferred direction of the dipoles. Since both surfaces contribute

in the same way to the averaged supported film dynamics, the long-time differences of

the box-averaged DACF (short dashed black lines) with respect to the bulk curves (long

dashed black lines) are understood (see also Figs. 4.5c and 4.5d). We have compared

our results for 𝐶𝑧(𝑡) with the previous work on simulations using the original model of

PBD confined between graphite walls. Wider film slabs of about 1.2 nm were analysed

4Considering the width of the slabs 2�̄�, this method yields nearly identical results for the structural
relaxation to checking the positions in the beginning and the end of the correlation time window, or even
at each time step within the time window. For large time windows the additional checks deteriorate the
averaging statistics.
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there. An excellent agreement is obtained between the 𝐶𝑧(𝑡) in the middle of the film and

between our 2nd thin slab from the wall and the 1st thick slab from the work [35].

As it has been already mentioned, in the dielectric spectroscopy experiments, the

electrodes act as walls for the film, so it is usually the perpendicular component of the

dielectric relaxation that is measured. It is interesting to study if there are preferred

orientations of the dipoles in the film slabs at the wall and at the free surface, since the

experiments would not see the contributions from the dipoles that are oriented in-plane.

Fig. 4.9 presents a layer-resolved comparison of the projections of the dipole moment vector

onto different directions. The limits of the 𝑦 axis are fixed for each model to highlight the

temperature dependence of the surface effects. One immediately notices the difference

in the magnitude of the dipole moment between the models. Our calculations show on

average |�⃗� | ≈ 0.33 D (1 Debye = 0.2081943 eÅ) for the CRC model and |�⃗� | ≈ 0.23 D

for the FRC model. The values for the CRC model also show a slight increase with

decreasing the temperature, while the data for the FRC model appears to be independent

of temperature. At high temperatures, all projections for each model are identical within

the error bar of the measurement. There are small hints of a polarization in 𝑧 direction

with preservation of the total magnitude at the wall, and an increase of the magnitude

without pronounced polarization at the free surface. Unfortunately, with lowering the

temperature our data suffers from insufficient statistics (or equilibration). While in the

middle of the film all three projections appear to be identical (again within the error bar of

the calculation), it is not possible to interpret physically the influence of the confinement.

Similarly to the bulk analysis, we have extracted the structural relaxation times from

the MSD data in each slab in the parallel and perpendicular to the film directions as

points where 𝑔𝑥𝑦0 (𝑡 = 𝜏) = 23 �̄�2 and 𝑔𝑧0(𝑡 = 𝜏) = 13 �̄�2 respectively (the factors 2/3 and

1/3 are introduced to account for different number of degrees of freedom with respect to

the bulk data). They are plotted in Fig. 4.10 as a function of the position of the slab.

Comparing the data at the same temperatures between the CRC and FRC models we

observe a similar behavior to what we have seen in the bulk: the dihedrals set the total

order of magnitude of the relaxation time, which is then getting modified by the surface

effects. The modifications become dramatic with decreasing the temperature. Yet, visually

they penetrate no more than ∼ 20 Å inside the film. The slowing down at the wall and
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Figure 4.7: The parallel to the film components of the MSD (a-b) and DACF (c-d) obtained
from the simulations using the CRC and FRC model at 𝑇 = 240 K. The colored lines
correspond to the fim slabs with blue side of the spectrum marking the slabs at the wall
and the red side - at the free surface. The black long dashed line represents the bulk data
and the black short dashed line is the in-plane component of the film-averaged data. In
case of the MSD, the bulk curve is multiplied by 2/3 to account for different number of
degrees of freedom. The horizontal dotted line represents the value 23 �̄�2.
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Figure 4.8: The perpendicular to the film components of the MSD (a-b) and DACF (c-d)
obtained from the simulations using the CRC and FRC model at 𝑇 = 240 K. The colored
lines correspond to the fim slabs with blue side of the spectrum marking the slabs at the
wall and the red side - at the free surface. The black long dashed line represents the bulk
data and the black short dashed line is the perpendicular component of the film-averaged
data. In case of the MSD, the bulk curve is multiplied by 1/3 to account for different
number of degrees of freedom. The horizontal dotted line represents the value 13 �̄�2. The
purple lines show the results of the original work [35], where wider slabs were studied.
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Figure 4.9: Projections 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 of the dipole moment obtained in each slab in the
film plotted agains the slab coordinate. The colours denote different models used in the
simulations: CRC - red, FRC - blue. The shapes mark different directions: 𝑥 - squares, 𝑦 -
circles, 𝑧 - triangles. The colored solid lines are the rescaled total magnitudes |�⃗�|√3 . The
limits of the 𝑦 axis are fixed for each model to highlight the temperature dependence of
the surface effects.
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the speed up at the free surface must be averaging out, so the overall film dynamics (as we

reported above) is quite similar to the bulk. Which also explains similar glass transition

temperatures to the ones obtained for the bulk systems.

Let us focus on the relaxation time gradients at the wall and at the free surface of

the films. Figs. 4.11 and 4.12 show these data separating between relaxations in 𝑥𝑦 and 𝑧
directions and Fig. 4.13 presents a superposition of the relaxation time profiles and the

density profiles. Additionally, we have fitted the data with a commonly used empirical

“double-exponential” relation (see [154, 155] and references therein)

𝜏(𝑧, 𝑇 ) = 𝜏b(𝑇 ) exp [−𝐴(𝑇 ) exp (−𝑧𝜉)] , (4.7)

with 𝜏b(𝑇 ) being the relaxation time in the middle of the film at temperature 𝑇,5 and 𝐴,𝜉 are adjustable parameters. The results of the fits at selected temperatures are presented

in Fig. 4.13 as colored lines and the values of the fitting parameters are plotted in the

Fig. 4.14. Comparing this ample amount of data one can extract the following features:

• First of all, aligning the data so that the positions of the upper GDS coincide

(Fig. 4.11) leads to an impression that the relaxation time gradients at the free

surface are determined only by the time in the middle of the films and are the same

for both studied models. This is seen the best comparing the CRC model at 353 K

(red squares) and the FRC model at 225 K (blue triangles) in Fig. 4.11. Such an

observation suggests that the scaling of the fitting parameters in Eq. (4.7) with 𝜏b(𝑇 )
should be the same between the two models. Such scaling has already been observed

before in [155]. Figs. 4.14a and 4.14b show that this is the case for the relaxation

in the 𝑥𝑦 direction. In the 𝑧 direction the dependencies of the fit parameters are

slightly different between the models, however these fits are definitely influenced by

the closest points to the upper GDS which deviate from the overall behavior of the

data (especially for the FRC model; see e.g. Figs. 4.10 and 4.11b)6. Furthermore, it

is important to note that the gradients at the free surface increase with lowering

5We used the value averaged over 5 slabs in the center of each film as 𝜏b(𝑇 ). The bulk relaxation times
sometimes slightly disagree with the values in the middle of the films, which, when used in the fits, lower
their quality. We believe the disagreement comes from the statistical errors and insufficient equilibration
rather than having a physical origin, since the films should be thick enough to have a bulk-like region in
the middle.

6The origin of these artifacts is not clear. Excluding these points from the fits for all data resulted in
overestimating the gradients for all models and temperatures.
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the temperature as it is demonstrated in Figs. 4.14e and 4.14f, which is exactly the

opposite than the behavior of the density profiles. As it has been already mentioned

in Section 4.1 a gradual decrease of the density down to zero at the free surface

is commonly attributed to the presence of capillary waves [150], that emerge from

a competition between the thermal energy and the surface tension. Their height,

and therefore the width of the region of the decrease of the density is proportional

to temperature. Moreover, Fig. 4.13 shows that this width is significantly smaller

than the length over which the relaxation times are modified. Similar results are

reported from simulations of supported films using a bead-spring polymer model

[24] (Fig. 4.15). All these observations suggest that at the free surface the profile of

the dynamics and the density profile cannot be related. Especially considering the

fact that the decrease of the density profile next to the upper GDS results from the

presence of vacuum in between the waves. The local density nearby an arbitrary

particle can be in fact not very different from the bulk. Assuming that this is the

case, then there is no change in properties of the melt with respect to the bulk-like

middle of the film that could be responsible for the change in the dynamics. The

existence of the gradient of the relaxation times can be attributed to the presence

of the free surface itself and the fact that the cage that surrounds a given particle

is open, which significantly speeds up the relaxation. This effect gradually damps

towards the interior of the film.

• The situation at the wall side of the film is ambiguous. At a first glance, it seems from

Fig. 4.13 that the relaxation times data follows the envelope of the density profiles.

Since the density profiles are identical between the models at the same temperature,

one would expect the same scaling of the fit parameters with temperature. However,

Figs. 4.14g and 4.14h show that this is not the case. While the amplitudes of the

relaxation time gradients can be discussed, the values of the decay length are very

scattered. Moreover, only the amplitudes of the gradients of the dynamics in 𝑧
direction can probably be averaged to the same constant value for both models at

all temperatures. The data in the 𝑥𝑦 direction actually show the same scaling with

log10(𝜏b) as for the free surface (empty symbols in Fig. 4.14c). Another observation

that is important to note comes from the comparison of the gradients in the 𝑥𝑦
direction with previously mentioned results from the simulations using a coarse-
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Figure 4.11: Subset of the data from Fig. 4.10 for 𝑧 > 70 Å (next to the free surface of
the film). Panel (a) presents the relaxation times in 𝑥𝑦 direction; panel (b) presents the
relaxation times in 𝑧 direction. The legend is the same as in Fig. 4.10. The data were
shifted so that the positions of the Gibbs dividing surfaces at the free surface of the film
coincide at 𝑧 = 110 Å for all models and temperatures (vertical dotted line).
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Figure 4.12: Subset of the data from Fig. 4.10 for 𝑧 < 50 Å (next to the wall). Panel (a)
presents the relaxation times in 𝑥𝑦 direction; panel (b) presents the relaxation times in 𝑧
direction. The legend is the same as in Fig. 4.10.
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Figure 4.13: Structural relaxation times extracted from MSD data in film slabs. Filled
symbols correspond to the perpendicular to the film direction, empty symbols correspond
to the parallel to the film component. Colors mark different models. Colored lines are the
results of the fits using Eq. (4.7). The density profiles are given for comparison as black
solid lines. Vertical black dotted lines are the positions of the Gibbs dividing surfaces.
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Figure 4.14: The values of the fitting coefficients in Eq. (4.7) for the relxation time
gradients at the free surface (a-b,e-f) and the wall (c-d,g-h) of the PBD supported films
simulated using the CRC (red) and FRC (blue) models. The empty symbols represent the
in-plane relaxations, the same filled symbols are the relaxation in the perpendicular to the
film direction.
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Figure 4.15: The profile of the relaxation times obtained from Ref. [24] where the polymer
film supported on a structureless wall was simulated using a bead-spring polymer model.

grained model (Fig. 4.15). In particular, both films exhibit the layering of the

particles next to the attractive wall that is visible on the density profiles. However,

the data from Ref. [24] show a speed up of the relaxation at the wall, not the slowing

down as in our case for both models. This disagreement can be explained by the

differences in the properties of the substrate. In our case, the substrate is modeled

by particles in a crystal lattice that make the wall very attractive and rough. In

the work [24] the substrate is structureless (smooth) and is modeled using a weakly

attractive potential that acts only in 𝑧 direction. Work [29] studied the influence of

the wall roughness on the dynamics at the substrate also by means of simulations

using a bead-spring polymer model for the film and reported that it is sped up at

the smooth walls and slowed down at the rough walls. As for our results, it remains

unclear how this effect is influenced by the presence of the dihedrals.

4.3 Discussion

We have performed molecular dynamics simulations of the polybutadiene films sup-

ported by a graphite wall using the chemically realistic (CRC) united-atom model and the

freely rotating (FRC) model, where all the dihedral potentials were disabled. We observed

no significant differences in the density profiles of the film simulated using both models.

The glass transition temperatures extracted from the dependence of the film thickness on

temperature upon cooling agree with the values obtained from the bulk systems.

The overall film dynamics observed in the mean-square displacements of united atoms

and the dielectric relaxation is mildly different from the bulk dynamics. The structural
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relaxation times extracted from the MSD data correspond to different regimes in the

dielectric relaxation between the CRC and the FRC models. Qualitatively different

behavior of the dielectric relaxation between the parallel and perpendicular to the film

components was observed: the in-plane relaxation is slower at the wall and faster at

the free surface, while the perpendicular to the film relaxation is slowed down at both

interfaces.

The layer resolved analysis of the structural relaxation times extracted from the MSD

data showed significant influence of the interfaces with respect to the middle of the film.

However, the effect of the wall and the free surface qualitatively appear to average out

when contributing to the total 𝑇g of the film. Analysis of the relaxation times gradients

at the interfaces showed that at the free surface they nearly identical in the 𝑥𝑦 direction

between the CRC and FRC models at the temperatures with the same relaxation times in

the bulk-like middle of the film. The numerical results for the 𝑧 direction at the free surface

and both directions at the wall are not conclusive due to difficulties of interpreting the

behavior of the gradient decay length 𝜉. A visual inspection suggests that these gradients

are different from each other.

Our data for the CRC model agree with the results reported in the previous studies

of confined PBD [31, 35, 36] in the fact, that the dynamics is modified in a region of

about 1 nm next to the graphite wall. We report slightly deeper perturbations at the free

surface. Refs. [31, 35, 36] argued that the perturbation of around 1 nm into the film are

the result of the interplay between the dihedral barriers present in the realistic model and

the density changes created by the interfaces. They should lead to much smaller shifts in

the glass transition temperature in the confined geometry with respect to what is typically

observed in the widely used coarse-grained bead-spring polymer models (which do not

have the dihedrals). Our FRC model mimics the bead-spring models, but it has a realistic

length scale and shorted bond length. The comparison between the CRC and FRC models

agrees with this hypothesis for the relaxation in the perpendicular to the film direction

(which was the only one discussed in Refs. [31, 35, 36] and only for the films confined

between walls), since there were no similarities found in the gradients between the models.

However, we report a different behavior of the relaxation time gradients in the parallel to

the film direction, where the identical gradients were obtained between the CRC and FRC

films, that have the same order of magnitude of the relaxation time in the middle.
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Additionally, we were able to compare the in-plane relaxation gradient obtained from

our CRC model simulations at 𝑇 = 240 K (𝑇g = 206 K) to the same data obtained from

the bead-spring model simulations of the supported film at 𝑇 = 0.48 (𝑇g = 0.392) in [24,

150]. Both of them have 𝑇 /𝑇g ≈ 1.2. Fig. 4.16 presents this comparison. For all data,𝑧 = 0 is the position of the Gibbs dividing surface. The 𝑥 axis is rescaled by the size of

the particle �̄�. Unfortunately, we do not have the data for the FRC model at the same𝑇 /𝑇g, so the lowest available temperature 𝑇 = 113 K and also 𝑇 = 240 K are presented

for comparison. A remarkably good agreement is observed between the data for the CRC

and the bead spring model. As expected, the gradient data for the FRC model is below

due to the higher ratio of 𝑇 /𝑇g.

0

1

2

3

4

0 5 10 15𝑧/�̄�

lo
g(𝜏 b/𝜏(𝑧

)

CRC 240 K
FRC 240 K
FRC 113 K
BS 0.48

Figure 4.16: The natural logarithm of the structural relaxation times extracted from the
MSD data at different slabs in the film. The symbols denote different temperatures and
the colors mark different models.



Chapter 5

Conclusions and Outlook

We now give a summary of the key results of our work and provide an answer to the

title of the thesis “Is the interfacial mobility in glass-froming polymer films determined by

collective motion or intramolecular energetics?”

In order to study the influence of realistic torsional constraints on the properties of

glass forming polymers we have adapted the united atom model of 1,4-polybutadiene (PBD)𝑐𝑖𝑠-𝑡𝑟𝑎𝑛𝑠 random copolymer (developed previously from quantum chemistry calculations

and validated against experiments [39, 45, 46]) for classical molecular dynamics simulations

in the LAMMPS code [17, 43, 44]. Four versions of the model were introduced varying the

scale of all torsional (dihedral) potentials in the system:

• Chemically realistic chain (CRC) model with the unmodified dihedrals potentials

(which provide the distinction between the 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 monomers).

• CRC2 and CRC4 models with the dihedral potentials reduced by a factor of 2 and 4

correspondingly.

• Freely rotating chain (FRC) model with all dihedral potentials switched off. Here

the distinction between the 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 groups is lost.

Such an interpolation provides a crossover to the widely used generic bead-spring

polymer models, in which the realistic chemical details (including the dihedrals) are

coarse-grained. Our FRC model resembles the bead-spring models with an important

exception, that it has much shorter bond length with respect to the size of the particles.

The most used bead-spring model of Kremer-Grest [20, 23, 24] type has a single length

scale that determines both the size of the beads and the length of the bonds between them.

Our simulations were performed in the bulk using all 4 models and in the confined

125
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geometry (supported film on graphite) using the CRC and the FRC models in the

temperature range 213 ≤ 𝑇 ≤ 353 K.

Note that in order to simulate supported films (including a free surface), it is not

possible to use tail corrections for the pair-potential. The parameters of the original model

had to be adapted to yield the same equation of state with a finite range pair-potential.

The extensive chapter on bulk results is on the one hand a validation of these modified

model parameters, and on the other hand a new look at the PBD results. Indeed, today’s

increased computer power enables us to obtain much longer trajectories.

5.1 Bulk systems

The simulations of the bulk system revealed that reducing/disabling the dihedral

potentials leads to little change in the conformational properties of PBD (discussed in

Section 3.1.2). The analysis of the characteristic ratio 𝐶∞ (Fig. 5.1) agrees with the results

of previous works [40, 41] and its temperature dependence shows a similar (though slightly

larger) chain extension upon cooling with respect to the experimental results on PBD of

comparable composition [93]. The fact that the characteristic ratio of the FRC is almost

identical to the CRC is certainly specific to PBD and makes this polymer an ideal model

system to study the influence of the dihedral barriers on the dynamics, 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑙𝑡.
The study of the temperature dependence of the bulk density (Section 3.2) of PBD

showed that the dihedrals have a negligible influence in the high temperature region

(Fig. 5.2). For a small bulk system the densities at 𝑇 ≳ 213 K are basically indistinguishable

between the models. However, they have a significant influence on the glass transition

temperature 𝑇g. The Dalnoki-Veress fits to the data obtained from the cooling runs using

all models indicate significant shifts of the 𝑇g with weakening and disabling the dihedrals:𝑇g ≈ 192 K for the CRC model → 143 K for the CRC2 model → 108 K for the CRC4

model → 43 K for the FRC model.

A lot of efforts were put into investigating the influence of the dihedrals on the

structure and dynamics of bulk PBD in order to understand such significant shifts of

the 𝑇g. In particular, the analysis of the static liquid structure factors 𝑆(𝑞) revealed no

noticeable changes in the structural correlations in PBD when modifying the strength of the
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Figure 5.1: Temperature dependence of the characteristic ratio 𝐶∞ from Eq. (3.6) for the
CRC (red circles), CRC2 (green triangles), CRC4 (purple pluses) and FRC models (blue
crosses). The plot format, ln 𝐶∞ versus 𝑇, is motivated by Eq. (3.7) when assuming 𝜅 to be
constant. The full line presents a linear fit to the FRC data, yielding 𝜅 = −0.52 K−1. The
dashed line shows the fit result to the CRC model, leading to 𝜅 = −0.64 K−1. The dotted
line indicates the experimental result, 𝜅 = −0.10 K−1 (obtained for 298 K ≤ 𝑇 ≲ 373 K),
from Table VIII of Ref. [93].
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Figure 5.2: Density of the bulk PBD. The empty colored circles represent the data from
the cooling runs. The black triangles correspond to the equilibrium volumes, obtained
from 100 ns NPT equilibration and imposed during the NVT runs for all models. The
colored crosses are the data from 1 𝜇s long NPT runs. The solid black lines represent the
Dalnoki-Veress fits using Eq. (3.10) with the parameters form Table 3.3.

dihedrals (see inset in Fig. 5.3). Backed up by more detailed analysis in analogy to works

on the Kob-Andersen binary mixture glass former1 [58, 102–104], partial static structure

factors and the related Bhatia–Thornton structure factors [106] (Section 3.3), this result
1Our model of PBD has two types of united atoms, which allows application of the same approach.
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Figure 5.3: Temperature dependence of the compressibility. The data are rectified as
suggested by Eq. (3.39). The orange squares are experimental results for PBD scanned
from Fig. 4 of Ref. [118]. The dashed line shows Eq. (3.39) with parameters 𝐴 = −0.435
and 𝐵 = 987 K taken from Table I of Ref. [118]. The circles show the results for the
CRC model obtained from volume fluctuations [Eq. (3.38)]. As the experimental results,
they are linearized and can be fit to Eq. (3.39) (not shown). The solid line indicates
the fit result to the Long–Lequeux theory obtained from a joint adjustment of the CRC
data for the monomer density (top left inset) to Eq. (3.40) and for the compressibility to
Eq. (3.41). The results for 𝑘B𝑇 𝜌𝜅𝑇, found for all models are indicated by triangles. The
orange crosses present the MD results from Ref. [117] for cis-1,4-PBD at 1 atm (systems
with 128 C-atoms per chain and 32 chains), which were calculated by scanning the data
from Fig. 4 and Fig. 7 of [117]. The bottom right inset shows the static structure factors𝑆(𝑞), that overlap for CRC and FRC models.

leads to indistinguishable compressibilities between the simulated models. An alternative

approach using the Long-Lequeux theory [123] combines the more precise data of the

density and compressibility obtained from the volume fluctuations extracted from long

NPT simulations. This demonstrates some influence of the dihedrals, but the differences

are still extremely small (Fig. 5.3). Our results are comparable to the experimental [118]

and simulation [117] data on PBD from the literature.

As an aside, the gathered data on the density and compressibility allowed to verify

the internal consistency of our simulations by comparing the heat capacity at constant

volume 𝐶𝑉 and constant pressure 𝐶𝑝 (Section 3.4). Focusing on the results obtained from
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the simulations using the CRC model, it was shown that the thermodynamic relation

between them holds: 𝐶𝑝 = 𝐶𝑉 + 𝑇 𝑉𝛼2𝜅𝑇 = 𝐶𝑉 + 𝑁c𝑁𝑇 𝛼2𝜌𝜅𝑇 , (5.1)

where 𝜌 = 𝑁c𝑁/𝑉 is the numeric density of the system (𝑁c and 𝑁 are the number of chains

and the number if united atoms per chain correspondingly, 𝑉 is the volume), 𝛼 = 1𝑉 𝜕𝑉𝜕𝑇 |𝑝,𝑁c𝑁
is the thermal expansion coefficient. However, the data showed a qualitative difference

with respect to typical experimental results: while the simulated 𝐶𝑝 increases upon cooling,

the experimental 𝐶𝑝 decreases [129]. We showed that this disagreement can be solved

by considering the quantum mechanical corrections of the vibrational contribution to the𝐶𝑝, which are absent in our classical modelling approach. Our findings are similar to

those published recently by Honguy et al. [132], where an agreement of the heat capacity

extracted from MD simulations with experimental data was achieved after taking into

account the corrections for quantum effects.

A consolidated framework for describing the structure and dynamics of polymers is

provided by the Rouse model [1, 5]. In particular the static and dynamic correlations of

the Rouse modes ⃗𝑋𝑝(𝑡) are of interest. They were investigated for our models of PBD in

Section 3.5. As it is expected from our results above and from previous works [40, 41],

the influence of the dihedrals on the static Rouse mode correlations 𝐶𝑝𝑝 = ⟨ ⃗𝑋𝑝(0)2⟩ is

mild. In fact, the 𝐶𝑝𝑝 are completely determined by the conformational properties of

PBD (the parametrization has been proposed in the main text) in the studied range of

temperatures carrying weak temperature dependence as well (Fig. 5.4a). Contrary to the

statics, the dynamic Rouse mode correlations 𝐶𝑝𝑝(𝑡) = ⟨ ⃗𝑋𝑝(𝑡) ⃗𝑋𝑝(0)⟩ were found to be

dramatically dependent on the dihedrals. When the dihedral barriers become comparable

to the thermal energy, they impose constraints on the particle movements shifting the

caging effect, and thus the glass transition, at much higher temperatures than expected

from the collective packing constraints without the dihedrals. The slowing down of the

dynamics when approaching the 𝑇g from above exposes itself via the characteristic feature

of the glassy dynamics: the two step decay of the correlation functions with the second

step being stretched with respect to the ordinary exponential decay (Fig. 5.4b).

The onset of caging appearing at higher temperatures was confirmed by the analysis

of the mean-square displacements (MSD) of united atoms obtained from the simulations

using all our models (Section 3.6). Our studied region of temperature 213 ≤ 𝑇 ≤ 353 K
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Figure 5.4: Panel (a): Log-log plot of the static Rouse modes autocorrelations 𝐶𝑝𝑝. The
colored empty symbols denote the results obtained from our simulations at different
temperatures. The filled black circles represent the data scanned from Fig. 3a in Ref. [40].
Panel (b): Dynamic Rouse modes autocorrelations 𝐶𝑝𝑝(𝑡) for 𝑝 = 20 at 𝑇 = 213 K. The
colored symbols represent the data obtained from the simulations. The colored lines with
black dots are th stretched exponential fits using Eq. (3.76).

is close to the 𝑇g of the CRC model, so the caging plateaus are clearly pronounced in

between the ballistic and subdiffusive regimes of the MSD with decreasing the temperature.

With weakening the dihedrals, the same region of temperatures is becoming farther from

the corresponding values of 𝑇g for the CRC2, CRC4 and FRC models, where the cage

effect does not occur yet. Going to lower temperature revealed the caging behavior for the

FRC model (Fig. 5.5a). The relaxation map of the structural relaxation times extracted

from the MSD data shows a super-Arrhenius increase with decreasing temperature for all

models, which is common to all glass-forming systems (Fig. 5.5b). It also illustrates the

significant slowing down of the structural relaxation in PBD, that depends on the height

of the dihedral barriers.

Having summarized our findings above, we now revisit some critical points of our

study of the bulk PBD.

• First of all most of our analysis of the structural properties is biased by the fact

that we considered the density to be indistinguishable between the models. We have

neglected the minor differences in the pair correlations that arise from the dihedrals

(which is reasonable for our small bulk system). It would be interesting to study a

bigger system to improve the statistics on subtle packing effects and the resolution
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Figure 5.5: Panel (a): Log-log plot of the mean-square displacement 𝑔0(𝑡) of united
atoms. The colored symbols represent the data obtained from the simulations for different
models. The colored solid lines with black dots are the predictions using the Rouse modes
Eqs. (3.80), (3.82) and (3.83). Panel (b): The relaxation map of PBD simulated using
all our models (colored symbols). The solid colored lines are the extrapolations to lower
temperatures using a Vogel-Fulcher-Tammann fit, Eq. (3.84).

of static structure factors at small scattering vectors.

• Another interesting point is that in our crossover from the realistic model to the

generic models by disabling all the dihedrals, the distinction between the 𝑐𝑖𝑠 and𝑡𝑟𝑎𝑛𝑠 monomers of PBD is lost. In Section 3.4 it was shown that dihedrals that

keep such a distinction (associated with the rotation along the double-bond axis of

the PBD monomer) are the ”hard” variables and the dynamics is determined by the

other ”soft” dihedrals. A deeper insight on the dynamical properties of PBD can be

obtained keeping the ”hard” dihedrals unmodified and disabling only the ”soft” ones
2.

• In a different direction, the speed up of the dynamics using weaker dihedrals while

preserving the structure of the polymer melt can be turned into an advantage as

a new equilibration method. In principle, it should be possible to use the weaker

dihedral configuration to equilibrate the large-scale structure of the system faster.

Then, as a second step one can reintroduce the realistic potential to equilibrate

the local structure. Using this trick, it should be possible to obtain equilibrated

configurations of the CRC model in the supercooled regime around 𝑇𝑔 which would

be impossible to obtain by brute force dynamics.

2It is probably redundant to reduce only the ”soft” dihedrals. Our results show that when reducing
all of them by factor a of 4, the double bond dihedrals preserve their property of being ”hard” variables
effectively making the change from 𝑐𝑖𝑠 to 𝑡𝑟𝑎𝑛𝑠 impossible.
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• The last, but not least remark can be made when relating our results to the common

theories that describe the glassy dynamics, such as the mode-coupling theory [40, 41,

148] and the more recent elastically collective nonlinear Langevin equation (ECNLE)

theory [119, 120, 149]. Being inspired from and tested on the simple glass forming

liquids, they attempt to relate the dynamics with the structure of the system. The

structure of the liquids is described by the spatial correlations, which are typically

treated using central symmetry and averaged isotropically. While this is completely

reasonable for the liquids, where the pair correlations are the most important, it is

not clear whether this averaging can be applied for the systems with three- and/or

four-point potentials, such as the dihedral potentials. The qualitative description,

of course, should hold, since the purely structural constraints in liquids and the

energetic constraints in polymers effectively lead to the same caging behavior. Yet,

the different energy scales between the dihedral barriers and pair interaction barriers

result in the cage effect appearing at higher temperatures for polymers. Therefore,

it appears that an important challenge is to incorporate intrachain barriers into a

liquid-state-theory based approach.

5.2 Film systems

The simulations of the PBD films supported on a graphite wall showed that disabling

the dihedral potential does not lead to visible changes in the density profile of the films.

The profiles overlap not only in the bulk-like middle of the film, but also in the region

next to the wall and at the free surface (Fig. 5.6a). Extracting the thickness of the films

using the Gibbs dividing surface (GDS) method revealed a tiny difference: the thickness

of the films simulated using the CRC model are a fraction of an Ångström lower than the

ones for the FRC model (Fig. 5.6b). We attribute this to the better averaging statistics

in the films (they are ∼ 18 times bigger than the bulk systems), so the influence of the

dihedrals on the density should become more visible (though it was not detected by a

visual inspection of the density profiles).

Upon cooling the films, the temperature dependence of the thickness show a change

of slope (Fig. 5.6b) which suggests the glass transition at different temperatures depending

on the presence of the dihedral potentials. Extracting the values of 𝑇g for both models
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using the Dalnoki-Veress approach revealed that they agree with the bulk values within

the precision of our small systems and fast cooling rates.

In order to study the reasons for such an agreement of the 𝑇g the dynamical properties

across the film were studied in a layer-resolved fashion. Two characteristic quantities were

chosen: the mean-square displacements (MSD), that describe the dynamics of the united

atoms, and the autocorrelation of the dipole moment vector (DACF) associated to each

monomer (with the perpendicular to the film component being experimentally relevant).

A consistent picture in the time window of the structural relaxation was observed between

both quantities in case of the CRC model: the dynamics is slowed down at the graphite

wall (which agrees with the previously reported results of Refs. [31, 35]) and sped up at

the free surface in both parallel (𝑥𝑦) and perpendicular (𝑧) to the film directions. While

the same behavior is observed in case if the FRC model for the 𝑥𝑦 direction, the structural

relaxation times in 𝑧 direction extracted from the MSD correspond to a different regime in

the DACF, which is slower at both interfaces (the hints of a similar slowing down was also

observed for the layers at the free surface for the CRC model, but at longer times). The

early appearance of such a relaxation step was attributed to the fact, that in the FRC

model there are no dihedral potentials to preserve the configuration of the monomer. So

the dipole moment vector autocorrelation (calculated in the same way as for the CRC
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Figure 5.6: Panel (a): The density profiles of the films obtained from the simulations using
the CRC (red) and FRC (blue) models at different temperatures. The vertical dot-dashed
lines are the positions of the graphite layers. The vertical dotted lines are the positions of
the Gibbs dividing surfaces for the CRC model. The horizontal dotted lines correspond to
the density of the bulk systems at the same temperatures. Panel (b): The temperature
dependence of the film thickness obtained by the GDS method from the simulations using
the CRC (red) and the FRC (blue) models. The solid black lines are the fits using Eq. (4.4)
with the parameters from Table 4.1.
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model) is sensitive not only to the reorientation of the monomer (as it is for the CRC

model), but also to the rearrangements of the united atoms within the monomer.

Further analysis of the structural relaxation times extracted from the MSD for both

models is summarized in Fig. 5.7. It appears, that the slowing down effect of the wall

and the speeding up at the free surface average out, which explains the agreement of the

values of the total 𝑇g with the the bulk. Moreover, the surface effects are mildly affected

by the presence of the dihedrals themselves. They act with respect to the total order of

magnitude of the dynamics, which is set by the dihedrals across the whole system. The

quantitative analysis of the relaxation time gradients by fitting the data using the widely

assumed empirical double-exponential form [154, 155]

𝜏(𝑧, 𝑇 ) = 𝜏b(𝑇 ) exp [−𝐴(𝑇 ) exp (−𝑧𝜉)] , (5.2)

showed a similarity for the relaxation in the parallel to the film direction between the

CRC and FRC models at the temperatures that have the same order of magnitude of the

relaxation in the bulk-like region in the middle of the film. Being at different temperatures

(densities), these results suggest that at the free surface the gradients of the dynamics in

the 𝑥𝑦 direction can be related to the fact that at the free surface the cage surrounding each

particle is open, which facilitates the relaxation. For the relaxation in the perpendicular

to the film direction, the gradients are different between the models and temperatures

suggesting a complex interplay between the confinement effects, the density and the

dihedrals.

After having summarized our results for the films, let us also review the critical points

in them.

• In general, a significant amount of our data suffers from insufficient statistics and

lack of time for more detailed analysis. Moreover, the slowing down of the dynamics

with decreasing the temperature barely allows to reach the structural relaxation

time within the time of the simulations. This is the most crucial at the wall, where

the dynamics is even slower. Therefore, more simulation time would be required to

improve our analysis.

• As a second point, we would like to come back to the discussion of the overlapping

density profiles. In principle, it is possible to express the density profile using pair
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distribution functions similarly to Eq. (3.9) 3, by introducing the external potentials,

that act on the system mimicking the surface effects. Such a description would,

however, require knowledge of the radial distribution function in confinement. It

3In fact, Eq. (8.1.34) of Ref. [156] proposes such an expression.
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would be interesting to study its behavior at the interfaces and how it is influenced

by the dihedrals.

• Another remark concerns the dielectric relaxation for the FRC model. We have

already noted, that disabling the dihedrals leads to loosing the distinction between

the 𝑐𝑖𝑠 and 𝑡𝑟𝑎𝑛𝑠 monomers of PBD. It would be interesting to study the dipole

autocorrelation in the model where these ”hard” dihedrals are preserved and only

the ”soft” ones are disabled. Alternatively, it is common in the simulations using the

generic models to consider the dipole moment to be perpendicular to the bonds in

the chain backbone. Applying this approach for the double bonds of PBD may help

to understand better the segmental dynamics and the influence of the dihedrals.

• It is interesting to speculate what happens if the simulations could be pushed to

temperatures near the experimental 𝑇g. While the range of the surface-induced

changes of the dynamics is weak in the temperature interval of the current simulations,

covering only a few nanometers, it might be expected to increase upon cooling. This

low-𝑇, strongly supercooled regime is the focus of the ECNLE theory which then

predicts much more long-ranged gradients. If this was true, then in thin supported

films the gradients from the substrate and the free interface should interfere, erasing

the bulk-like behavior in the center of the film and leading, perhaps, to a continuous

decrease of the local relaxation time from high values at the substrate to low

values at the free interface. It would be interesting to check whether such a highly

inhomogeneous situation could be observed in simulations, e.g. by studying thinner

films or by harnessing a more efficient equilibration method based on reduced dihedral

barriers.

• A complex interplay between the temperature dependence of the film thickness, the

depth of the perturbation of the dynamics by the surface effects, as well as their

direction and amplitude determines the film-averaged glass transition temperature.

Thus, a comparison between the realistic and the coarse-grained approaches to the

dynamics of polymers in confinement should be reviewed with a well defined mapping

between the length and time scales, and the temperature.

Finally, we would like to address the question raised in the title of the thesis: Is

the interfacial mobility in glass forming polymer film determined by collective motion

or intramolecular energetics? Such a general question is very difficult to answer: a vast
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amount of experimental and simulation data (including ours) suggest that both factors are

intimately intertwined. Moreover, the terms “intramolecular energetics” and “collective

motion” themselves cover a wide range of different effects, that vary even depending on

the studied polymer. Thus, the better question to ask would be how their interplay affects

the dynamics? In our work we have focused on one of the intramolecular contributions –

the energetic constraints on the torsional (dihedral) angle – for a polybutadiene polymer.

We showed that their presence affects the collective caging effect shifting it to higher

temperature, which leads to strongly non-Arrhenius glassy dynamics. While this coupling

determines the structural relaxation in the system, it has an extremely small effect on

the density (for PBD!). At the interfaces of the films, there is an additional factor, that

comes into play – the surface effects that are determined by the type and the properties

of the confinement. They are intertwined with the energetics and the collective motion

influencing each other and, thus, the interfacial mobility in the films.
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Résumé en français

Mobilité interfaciale dans les films polymères vitrifiables : est-elle déter-

minée par le mouvement collectif ou l’énergie intramoleculaire ?

Nous proposons une étude systématique de l’influence des barrières intramoléculaires

et de l’interaction avec un substrat sur la dynamique vitreuse, et ceci par des simulations

numériques chimiquement réalistes. Notre travail se concentre sur un type particulier

d’interactions intramoléculaires: les barrières de torsion (dièdres), qui contrôlent majori-

tairement les conformations d’une chaîne polymère, contrairement les énergies de liasons

et de valence.

Afin d’étudier l’influence de contraintes de torsion réalistes sur les propriétés des

polymères vitreux, nous avons adapté un modèle atomes unifiés du copolymère aléatoire𝑐𝑖𝑠-𝑡𝑟𝑎𝑛𝑠 du 1,4-polybutadiène (PBD) pour des simulations de dynamique moléculaire

classique avec le code LAMMPS [17, 43, 44]. Ce modèle a été développé précédemment à

partir de calculs numériques de chimie quantique et validé par rapport à des expériences

[39, 45, 46]. Ce travail de doctorat fait suite aux travaux récents étudiants le PBD confiné

entre deux parois de graphite. Le but est d’étudier le comportement avec une surface

libre, ainsi que l’influence des potentiels dièdres. Notre modèle se décline dans en quatre

versions , où nous faisons varier l’échelle de tous les potentiels de torsion (dièdres) dans le

système :

• Modèle de chaîne chimiquement réaliste (CRC) avec les potentiels dièdres non

modifiés (qui fournissent la distinction entre les monomères 𝑐𝑖𝑠 et 𝑡𝑟𝑎𝑛𝑠).

• Modèles CRC2 et CRC4 avec les potentiels dièdres réduits d’un facteur 2 et 4

respectivement.

• Modèle FRC (Freely rotating chain) avec tous les potentiels dièdres désactivés. Ici,

la distinction entre les groupes 𝑐𝑖𝑠 et 𝑡𝑟𝑎𝑛𝑠 n’a pas lieu.

Une telle interpolation permet de faire le lien avec les modèles génériques de type

139
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billes-ressorts, largement utilisés, dans lesquels les détails chimiques réalistes (y compris

les dièdres) sont confondus dans une seule interaction à “gros grains”. Notre modèle FRC

ressemble à un modèle billes-ressorts, à une exception près : la longueur des liaisons est

beaucoup plus courte par rapport à la taille des particules. Le modèle billes-ressort le plus

utilisé de type Kremer-Grest [20, 23, 24] a une seule échelle de longueur qui détermine à

la fois la taille des billes et la longueur des liaisons entre elles.

Nos simulations ont été effectuées en volume en utilisant les 4 modèles et dans une

géométrie confinée (film supporté sur graphite) en utilisant les modèles CRC et FRC dans

la gamme de températures 213 ≤ 𝑇 ≤ 353 K.

Il est à noter que pour simuler des films supportés (incluant donc une surface libre),

il n’est pas possible d’utiliser des corrections de queue (“tail corrections”) pour prendre

en compte la portée infinie du potentiel de paire. Les paramètres du modèle original ont

dû être adaptés pour donner la même équation d’état avec un potentiel de paire à portée

finie. Le chapitre sur les résultats en phase volumique est d’une part une validation de

ces paramètres de modèle modifiés, et d’autre part un nouveau regard sur les résultats

PBD. En effet, la puissance informatique accrue d’aujourd’hui nous permet d’obtenir des

trajectoires beaucoup plus longues.

Systèmes en phase volumique

Les simulations du système volumique ont révélé que la réduction ou désactivation des

potentiels dièdres entraîne peu de changements dans les propriétés conformationnelles du

PBD (discuté en Section 3.1.2). L’analyse du rapport caractéristique 𝐶∞ (Fig. 5.8) est en

accord avec les résultats de travaux antérieurs [40, 41] et sa dépendance de la température

montre une extension de chaîne similaire (bien que légèrement plus importante) lors

du refroidissement par rapport aux résultats expérimentaux sur le PBD de composition

comparable [93]. Le fait que le rapport caractéristique du FRC soit presque identique

à celui du CRC est certainement spécifique au PBD et fait de ce polymère un système

modèle idéal pour étudier l’influence des barrières dièdres sur la dynamique, sans changer

la structure du système.

L’étude de la dépendance en température de la densité apparente (Section 3.2) du

PBD a montré que les dièdres ont une influence négligeable dans la région des hautes



RÉSUMÉ EN FRANÇAIS 141

κ = −0.64 K−1

κ = −0.52 K−1

experiment

1.70

1.75

1.80

240 280 320 360
T (K)

ln
C

∞

CRC
CRC2
CRC4
FRC

Figure 5.8: Dépendance en température du rapport caractéristique 𝐶∞, Eq. (3.6), pour
les modèles CRC (cercles rouges), CRC2 (triangles verts), CRC4 (plus violet) et FRC
(croix bleues). Le format du graphique, ln 𝐶∞ en fonction de 𝑇, est motivé par l’Éq. (3.7)
en supposant que 𝜅 est constant. La ligne pleine présente un ajustement linéaire aux
données de la FRC, donnant 𝜅 = −0, 52 K−1. La ligne en pointillé présente le résultat de
l’ajustement au modèle CRC, conduisant à 𝜅 = −0, 64 K−1. La ligne en pointillés indique
le résultat expérimental, 𝜅 = −0, 10 K−1 (obtenu pour 298 K ≤ 𝑇 ≲ 373 K), d’après le
Tableau 8 de la Réf. [93].

températures (Fig. 5.9). Pour un petit système massif, les densités à 𝑇 ≳ 213 K sont

indiscernables entre les modèles. Cependant, elles ont une influence significative sur la

température de transition vitreuse 𝑇g. L’ajustement, selon la formule de Dalnoki-Veress,

aux données obtenues à partir des cycles de refroidissement, en utilisant tous les modèles,

indiquent des décalages significatifs de la température de transition vitreuse (𝑇𝑔) avec

l’affaiblissement ou la désactivation des dièdres : 𝑇𝑔 d’environ 192 K pour le modèle

CRC → 143 K pour le modèle CRC2 → 108 K pour le modèle CRC4 → 43 K pour le

modèle FRC.

Nous avons consacrée de nombreux efforts à l’étude de l’influence des dièdres sur la

structure et la dynamique du PBD massif afin de comprendre ces changements significatifs

du 𝑇g. En particulier, l’analyse des facteurs de structure statique 𝑆(𝑞) n’a révélé aucun

changement notable des corrélations structurelles dans le PBD lors de la modification

de l’amplitude des dièdres (voir l’encart dans la Fig. 5.10). Etayé par une analyse plus

détaillée en analogie avec les travaux sur le mélange binaire vitrifiable de Kob-Andersen4

[58, 102–104], des facteurs de structure statique partiels et des facteurs de structure

connexes de Bhatia–Thornton [106] (Section 3.3), ce résultat conduit à des compressibilités

4Notre modèle de PBD possède deux types d’atomes unifiés, ce qui permet d’appliquer la même
approche.
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Figure 5.9: Densité du PBD en phase volumique. Les cercles colorés vides représentent
les données des cycles de refroidissement. Les triangles noirs correspondent aux volumes
d’équilibre, obtenus à partir de l’équilibration NPT de 100 ns et imposés pendant les
simulations NVT pour tous les modèles. Les croix colorées représentent les données des
cycles NPT longs de 1 𝜇s. Les lignes noires pleines représentent les ajustements de type
Dalnoki-Veress utilisant l’Éq. (3.10) avec les paramètres du Tableau 3.3.

indiscernables entre les modèles simulés. Une approche alternative utilisant la théorie de

Long-Lequeux [123] combine les données plus précises de la densité et de la compressibilité

obtenues à partir des fluctuations de volume extraites de simulations longues en NPT.

Cela démontre une certaine influence des dièdres, mais les différences restent extrêmement

faibles (Fig. 5.10). Nos résultats sont comparables aux données expérimentales [118] et de

simulation [117] sur le PBD issues de la littérature.

Par ailleurs, les données recueillies sur la densité et la compressibilité ont permis

de vérifier la cohérence interne de nos simulations en comparant la chaleur spécifique à

volume constant 𝐶𝑉 et à pression constante 𝐶𝑝 (Section 3.4). En se concentrant sur les

résultats obtenus à partir des simulations utilisant le modèle CRC, il a été démontré que

la relation thermodynamique entre 𝐶𝑝 et 𝐶𝑉 prend la forme habituelle :

𝐶𝑝 = 𝐶𝑉 + 𝑇 𝑉𝛼2𝜅𝑇 = 𝐶𝑉 + 𝑁c𝑁𝑇 𝛼2𝜌𝜅𝑇 ,
où 𝜌 = 𝑁c𝑁/𝑉 est la densité particulaire du système (𝑁c et 𝑁 sont le nombre de chaînes et

le nombre d’atomes unifiés par chaîne respectivement, 𝑉 est le volume), 𝛼 = 1𝑉 𝜕𝑉𝜕𝑇 |𝑝,𝑁c𝑁 est

le coefficient de dilatation thermique. Cependant, les données ont montré une différence
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Figure 5.10: Dépendance en température de la compressibilité. Les données sont rectifiées
comme suggéré par l’Éq. (3.39). Les carrés oranges représentent les résultats expérimentaux
pour le PBD numérisé à partir de la Fig. 4 de la Réf. [118]. La ligne en pointillés indique
l’Éq. (3.39) avec les paramètres 𝐴 = −0, 435 et 𝐵 = 987 K tirés du Tableau I de Réf. [118].
Les cercles montrent les résultats pour le modèle CRC obtenu à partir des fluctuations de
volume [Éq. (3.38)]. Comme les résultats expérimentaux, ils sont linéairement dépenant
en 1000/𝑇 et peuvent être ajustés à l’Éq. (3.39) (non montré). La ligne continue indique
le résultat de l’ajustement à la théorie de Long–Lequeux obtenu à partir d’un ajustement
conjoint des données CRC pour la densité des monomères (encart supérieur gauche) à
l’Éq. (3.40) et pour la compressibilité à l’Éq. (3.41). Les résultats pour 𝑘B𝑇 𝜌𝜅𝑇, trouvés
pour tous les modèles sont indiqués par des triangles. Les croix oranges présentent les
résultats MD de la Réf. [117] pour le cis-1,4-PBD à 1 atm (systèmes avec 128 atomes de
carbone par chaîne et 32 chaînes), qui ont été calculés en scannant les données des Fig. 4
et Fig. 7 de la Réf. [117]. L’encart en bas à droite montre les facteurs de structure statique𝑆(𝑞), qui se chevauchent pour les modèles CRC et FRC.

qualitative par rapport aux résultats expérimentaux typiques : alors que le 𝐶𝑝 simulé

augmente lors du refroidissement, le 𝐶𝑝 expérimental diminue [129]. Nous avons montré

que ce désaccord peut être résolu en considérant des corrections issues de prédictions de

mécaniques quantiques à la contribution vibrationnelle au 𝐶𝑝, qui sont absentes dans notre

approche de modélisation classique. Nos résultats sont similaires à ceux publiés récemment

par Honguy et al [132], où un accord entre chaleur spécifique extraite des simulations MD

et les données expérimentales a été obtenu après avoir pris en compte les corrections pour

les effets quantiques précédement évoqués.
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Un cadre consolidé pour décrire la structure et la dynamique des polymères est fourni

par le modèle de Rouse [1, 5]. En particulier, les corrélations statiques et dynamiques des

modes de Rouse ⃗𝑋𝑝(𝑡) sont intéressantes. Elles ont été étudiées pour nos modèles de PBD

dans la Section 3.5. Comme on peut s’y attendre à partir de nos résultats ci-dessus et des

travaux précédents [40, 41], l’influence des dièdres sur les corrélations des modes de Rouse

statiques 𝐶𝑝𝑝 = ⟨ ⃗𝑋𝑝(0)2⟩ est faible. En fait, les 𝐶𝑝𝑝 sont complètement déterminés par

les propriétés conformationnelles du PBD (la paramétrisation a été proposée dans le texte

principal) dans la gamme étudiée de températures : une faible dépendance en température

est observée (Fig. 5.11a). Contrairement à la statique, les corrélations dynamiques des

modes de Rouse 𝐶𝑝𝑝(𝑡) = ⟨ ⃗𝑋𝑝(𝑡) ⃗𝑋𝑝(0)⟩ se sont avérées dépendre fortement des dièdres.

Lorsque les barrières dièdres deviennent comparables à l’énergie thermique, elles imposent

des contraintes sur le mouvement des particules, déplaçant l’effet de cage, et donc la

transition vitreuse, à des températures beaucoup plus élevées que celles attendues à

partir des contraintes collectives d’encombrement sans les dièdres. Le ralentissement de

la dynamique lors de l’approche à la 𝑇g par le haut se montre via une caractéristique

de la dynamique vitreuse : la décroissance en deux étapes des fonctions de corrélation,

la deuxième étape étant étirée par rapport à la décroissance exponentielle ordinaire

(Fig. 5.11b).

L’apparition du phénomène de cage à des températures plus élevées a été confirmée

par l’analyse des déplacements carrés moyens (MSD) des atomes unifiés obtenus à partir

des simulations utilisant tous nos modèles (Section 3.6). La région de température étudiée,213 ≤ 𝑇 ≤ 353 K, est proche de la température 𝑇g du modèle CRC, de sorte que les

plateaux de cage sont clairement prononcés entre les régimes balistique et subdiffusif du

MSD avec la diminution de la température. En affaiblissant les dièdres, la même région de

températures s’éloigne des valeurs de 𝑇g correspondantes pour les modèles CRC2, CRC4

et FRC, où l’effet de cage ne se produit pas encore. Le passage à une température plus

basse a révélé le comportement de cage pour le modèle FRC (Fig. 5.12a). Le diagramme

de relaxation obtenu à partir des temps de relaxation structurelle extraite des données

MSD montre une augmentation super-Arrhenius avec la diminution de la température

pour tous les modèles, ce qui est commun à tous les verres “fragiles” (Fig. 5.12b). Il

illustre également le ralentissement significatif de la relaxation structurelle dans le PBD,

qui dépend de la hauteur des barrières dièdres.
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Figure 5.11: Panneau (a) : Tracé log-log des autocorrélations des modes de Rouse statiques𝐶𝑝𝑝. Les symboles vides colorés indiquent les résultats obtenus à partir de nos simulations
à différentes températures. Les cercles noirs remplis représentent les données scannées de la
Fig. 3a dans la Réf. [40]. Panneau (b) : Autocorrélations des modes de Rouse dynamiques𝐶𝑝𝑝(𝑡) pour 𝑝 = 20 à 𝑇 = 213 K. Les symboles colorés représentent les données obtenues
à partir des simulations. Les lignes colorées avec des points noirs sont les ajustements
exponentiels étirés en utilisant Éq. (3.76).
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Figure 5.12: Panneau (a) : Tracé log-log du déplacement quadratique moyen 𝑔0(𝑡) des
atomes unifies. Les symboles colorés représentent les données obtenues à partir des
simulations pour différents modèles. Les lignes solides colorées avec des points noirs sont
les prédictions utilisant les modes de Rouse, Éqs. (3.80), (3.82) et (3.83). Panneau (b) :
La diagramme de relaxation du PBD simulée pour tous nos modèles (symboles colorés).
Les lignes colorées pleines sont les extrapolations à des températures plus basses à l’aide
d’un ajustement Vogel-Fulcher-Tammann, Éq. (3.84).

Après avoir résumé nos résultats ci-dessus, nous allons maintenant revenir sur certains

points de notre étude du PBD en phase volumique.

• Tout d’abord, la plupart de notre analyse des propriétés structurelles est biaisée
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par le fait que nous avons considéré que la densité était indiscernable entre les

modèles. Nous avons négligé les différences mineures entre les corrélations de paires

qui découlent des dièdres (ce qui est raisonnable pour notre petit système massif). Il

serait intéressant d’étudier un système plus grand pour améliorer les statistiques sur

les effets subtils de l’empaquetage, et la résolution des facteurs de structure statique

aux petits vecteurs de diffusion.

• Un autre point intéressant est que dans notre passage du modèle réaliste aux modèles

génériques en désactivant tous les dièdres, la distinction entre les monomères 𝑐𝑖𝑠
et 𝑡𝑟𝑎𝑛𝑠 de PBD est perdue. Dans la Section 3.4, il a été montré que les dièdres

qui conservent une telle distinction (associée à la rotation le long de l’axe de la

double liaison du monomère PBD) sont des variables ”dures” et que la dynamique

est déterminée par les autres dièdres ”souples”. Un aperçu plus approfondi des

propriétés dynamiques du PBD peut être obtenu en gardant les dièdres ”durs” non

modifiés et en ne désactivant que les dièdres ”mous”.5

• Dans une autre direction, l’accélération de la dynamique en utilisant des dièdres plus

faibles tout en préservant la structure du polymère fondu peut être transformée en

avantage, dans le sens d’une nouvelle méthode d’équilibration. En principe, il devrait

être possible d’utiliser des dièdres plus faibles pour équilibrer plus rapidement la

structure à grande échelle du système. Ensuite, dans un deuxième temps, on peut

réintroduire le potentiel réaliste pour équilibrer la structure locale. En utilisant cette

astuce, il devrait être possible d’obtenir des configurations équilibrées du modèle

CRC dans le régime surfondu autour de 𝑇𝑔, ce qui serai impossible à obtenir par

une dynamique par force brute.

• La dernière remarque, mais non la moindre, peut être faite en mettant en relation

nos résultats avec quelques théories réppondus qui décrivent la dynamique vitreuse,

telles que la théorie de couplage de modes [40, 41, 148] et la plus récente version

basée sur l’équation de Langevin non linéaire incluant des effets élastique et collectif

(ECNLE) [119, 120, 149]. Inspirés et testés sur des liquides simples formant un verre,

elles tentent de relier la dynamique à la structure du système. La structure des

liquides est décrite par les corrélations spatiales, qui sont typiquement traitées en

5Il est probablement redondant de réduire uniquement les dièdres ”mous”. Nos résultats montrent
qu’en les réduisant tous par un facteur 4, les dièdres de double liaison conservent leur propriété de variables
”dures” rendant effectivement impossible le passage d’un état 𝑐𝑖𝑠 à un état 𝑡𝑟𝑎𝑛𝑠.
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utilisant la symétrie centrale et une moyenne isotrope. Bien que cela soit tout à fait

raisonnable pour les liquides, où les corrélations de paires sont les plus importantes, il

n’est pas clair si cette moyenne peut être appliquée aux systèmes avec des potentiels

à trois et/ou quatre points, tels que les potentiels dièdres. La description qualitative,

bien sûr, devrait être valable, puisque les contraintes purement structurelles dans les

liquides et les contraintes énergétiques dans les polymères conduisent effectivement

au même comportement de cage. Pourtant, les différentes échelles d’énergie entre

les barrières dièdres et les barrières d’interaction de paires font que l’effet de cage

apparaît à des températures plus élevées pour les polymères. Par conséquent, il

semble qu’un défi important consiste à intégrer les barrières intra-chaîne dans une

approche basée sur la théorie de l’état liquide.

Film polymère supporté

Nos simulations des films PBD supportés par une paroi en graphite ont montré que

la désactivation du potentiel dièdre n’entraîne pas de changements visibles dans le profil

de densité des films. Les profils se superposent non seulement au milieu du film, mais

aussi dans la région proche de la paroi et à la surface libre (Fig. 5.13a). L’extraction de

l’épaisseur des films à l’aide de la méthode GDS (Gibbs dividing surface) a révélé une

différence minime : l’épaisseur des films simulés à l’aide du modèle CRC est inférieure

d’une fraction d’Ångström à celle du modèle FRC (Fig. 5.13b). Nous attribuons cela aux

meilleures statistiques de moyennage dans les films (ils sont ∼ 18 fois plus grands que les

systèmes en phase volumique), de sorte que l’influence des dièdres sur la densité devrait

devenir plus visible (bien qu’elle n’ait pas été détectée par une inspection visuelle des

profils de densité).

Lors du refroidissement des films, la dépendance de la température de l’épaisseur

montre un changement de pente (Fig. 5.13b), ce qui suggère la transition vitreuse à une

température différente selon la présence des potentiels diédraux. L’extraction des valeurs

de 𝑇g pour les deux modèles en utilisant l’approche Dalnoki-Veress a révélé qu’elles sont

en accord avec les valeurs en phase volumique dans la limite de précision de nos petits

systèmes et des vitesses de refroidissement rapides.

Afin d’étudier les raisons d’un tel accord des 𝑇g entre volume et film, les propriétés
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dynamiques à travers le film ont été étudiées d’une manière résolue en couche. Deux

quantités typiques ont été choisies : les déplacements carrés moyens (MSD), qui décrivent la

dynamique des atomes unifiés, et l’autocorrélation du vecteur du moment dipolaire (DACF)

associé à chaque monomère (la composante perpendiculaire au film étant expérimentalement

pertinente). Une image cohérente dans la fenêtre temporelle de la relaxation structurelle a

été observée entre les deux quantités dans le cas du modèle CRC : la dynamique est ralentie

au niveau de la paroi du graphite (ce qui est en accord avec les résultats précédemment

rapportés dans les références [31, 35]) et accélérée au niveau de la surface libre à la

fois parallèlement (𝑥𝑦) et perpendiculairement (𝑧) à l’orientation du film. Alors que le

même comportement est observé dans le cas du modèle FRC pour la direction 𝑥𝑦, les

temps de relaxation structurelle dans la direction 𝑧 extraits du MSD correspondent à un

régime différent dans le DACF, qui est plus lent aux deux interfaces (l’indication d’un

ralentissement similaire a également été observée pour les couches à la surface libre pour

le modèle CRC, mais à des temps plus longs). L’apparition précoce d’une telle étape

de relaxation a été attribuée au fait que, dans le modèle FRC, il n’y a pas de potentiels

dièdres pour préserver la configuration du monomère. Ainsi, l’autocorrélation du vecteur

du moment dipolaire (calculée de la même manière que pour le modèle CRC) est sensible
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Figure 5.13: Panneau (a) : Les profils de densité des films obtenus a partir des simulations
utilisant les modeles CRC (rouge) et FRC (bleu) à différentes températures. Les lignes
verticales en pointillés sont les positions des couches de graphite. Les lignes pointillées
verticales sont les positions des surfaces de division de Gibbs pour le modèle CRC. Les
lignes pointillées horizontales correspondent à la densité des systèmes en phase volumique
aux mêmes températures. Panneau (b) : La dépendance en température de l’épaisseur
du film obtenue par la méthode GDS à partir des simulations utilisant les modèles CRC
(rouge) et FRC (bleu). Les lignes noires pleines sont les ajustements utilisant Éq. (4.4)
avec les paramètres du Tableau 4.1.
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non seulement à la réorientation du monomère (comme pour le modèle CRC), mais aussi

aux réarrangements des atomes unifiés au sein du monomère.

Une analyse plus approfondie des temps de relaxation structurelle extraits du MSD

pour les deux modèles est résumée dans la Fig. 5.14. Il apparaît que l’effet de ralentissement

à la paroi et l’accélération à la surface libre se compensent, ce qui explique la concordance

des valeurs de 𝑇g total avec le volume. De plus, les effets de surface sont légèrement affectés

par la présence des dièdres eux-mêmes. Ils agissent par rapport à l’ordre de grandeur

total de la dynamique, qui est fixé par les dièdres dans l’ensemble du système. L’analyse

quantitative des gradients de temps de relaxation en ajustant les données à l’aide de la

forme empirique double-exponentielle largement admise [154, 155] :

𝜏(𝑧, 𝑇 ) = 𝜏b(𝑇 ) exp [−𝐴(𝑇 ) exp (−𝑧𝜉)] ,
a montré une similarité pour la relaxation dans la direction parallèle au film entre les

modèles CRC et FRC aux températures qui ont le même ordre de grandeur de la relaxation

dans la région au milieu du film. Ces résultats, obtenus à différentes températures

(densités), suggèrent qu’à la surface libre, les gradients de la dynamique dans la direction𝑥𝑦 peuvent être liés au fait qu’à la surface libre, la cage entourant chaque particule est

ouverte, ce qui facilite la relaxation. Pour la relaxation dans la direction perpendiculaire

au film, les gradients sont différents entre les modèles et les températures suggérant une

interaction complexe entre les effets de confinement, la densité et les dièdres.

Après avoir résumé nos résultats pour les films, passons également en revue quelques

points critiques de ceux-ci.

• En général, une grande partie de nos données souffre de statistiques insuffisantes

et du manque de temps pour une analyse plus détaillée. De plus, le ralentissement

de la dynamique en diminuant la température permet à peine d’atteindre le temps

de relaxation structurelle dans le temps des simulations. Ceci est le plus crucial au

niveau de la paroi, où la dynamique est encore plus lente. Par conséquent, un temps

de simulation plus long serait nécessaire pour améliorer notre analyse.

• En second lieu, nous aimerions revenir sur la discussion concernant la superposition

des profils de densité. En principe, il est possible d’exprimer le profil de densité
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Figure 5.14: Le logarithme naturel des temps de relaxation structurelle extraits des
données MSD à différentes profondeures du film. Les symboles indiquent les différentes
températures et les couleurs les différents modèles.

à l’aide de fonctions de distribution par paire de manière similaire à l’Éq. (3.9),6

en introduisant des potentiels externes, qui agissent sur le système en imitant les

effets de surface. Une telle description nécessiterait cependant la connaissance de la

6En fait, l’Eq. (8.1.34) de la Réf. [156] propose une telle expression.
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fonction de distribution radiale sous confinement. Il serait intéressant d’étudier son

comportement aux interfaces, et comment il est influencé par les dièdres.

• Une autre remarque concerne la relaxation diélectrique pour le modèle FRC. Nous

avons déjà noté que la désactivation des dièdres conduit à la perte de la distinction

entre les monomères 𝑐𝑖𝑠 et 𝑡𝑟𝑎𝑛𝑠 du PBD. Il serait intéressant d’étudier l’autocor-

rélation des dipôles dans le modèle où ces dièdres ”durs” sont préservés et où seuls les

dièdres ”mous” sont désactivés. Alternativement, il est courant dans les simulations

utilisant les modèles génériques de considérer que le moment dipolaire est perpendic-

ulaire aux liaisons du squelette de la chaîne. L’application de cette approche pour les

doubles liaisons du PBD peut aider à mieux comprendre la dynamique segmentale

et l’influence des dièdres.

• Il est intéressant de spéculer sur ce qui se passerait si les simulations pouvaient

être poussées à des températures plus proches des 𝑇g expérimentale. Bien que la

portée des changements de la dynamique induits par la surface soit faible dans

l’intervalle de température des simulations actuelles, couvrant seulement quelques

nanomètres, on pourrait s’attendre à ce qu’elle augmente lors du refroidissement. Ce

régime à faible 𝑇, fortement surfondu, est au centre de la théorie ECNLE qui prédit

alors des gradients beaucoup plus étendus. Si cela était vrai, alors dans les films

minces supportés, les gradients du substrat et de l’interface libre devraient interférer,

effaçant le comportement de masse au centre du film et conduisant, peut-être, à une

diminution continue du temps de relaxation local des valeurs élevées au substrat aux

valeurs basses à l’interface libre. Il serait intéressant de vérifier si une telle situation

très inhomogène peut être observée dans les simulations, par exemple en étudiant

des films plus fins ou en exploitant une méthode d’équilibration plus efficace basée

sur des barrières dièdres réduites.

• Une interaction complexe entre la dépendance de la température de l’épaisseur du

film, la profondeur de la perturbation de la dynamique par les effets de surface,

ainsi que leur direction et leur amplitude, détermine la température de transition

vitreuse moyenne du film. Ainsi, une comparaison entre les approches réalistes et à

gros grains de la dynamique des polymères en confinement devrait être entreprise à

nouveau avec une correspondance bien définie entre les échelles de longueur et de

temps, et de la température.
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Enfin, nous aimerions aborder la question soulevée dans le titre de la thèse : La

mobilité interfaciale dans un film polymère vitrifiable est-elle déterminée par le mouvement

collectif ou par l’énergie intramoléculaire ? Il est très difficile de répondre de manière

franche à une question aussi générale : un grand nombre de données expérimentales et

de simulation (y compris les nôtres) suggèrent que les deux facteurs sont intimement

liés. De plus, les termes “énergie intramoléculaire” et “mouvement collectif” couvrent

eux-mêmes un large éventail d’effets différents, qui varient même en fonction du polymère

étudié. Par conséquent, la meilleure question à poser serait de savoir comment leur

interaction affecte la dynamique. Dans notre travail, nous nous sommes concentrés sur

l’une des contributions intramoléculaires - les contraintes énergétiques sur l’angle de torsion

(dièdre) - pour un polymère de polybutadiène. Nous avons montré que leur présence affecte

l’effet de cage collectif en le déplaçant vers une température plus élevée, ce qui conduit

à une dynamique vitreuse fortement non-Arrhenius. Alors que ce couplage détermine la

relaxation structurelle du système, il a un effet extrêmement faible sur la densité (pour

le PBD !). Aux interfaces des films, un facteur supplémentaire entre en jeu : les effets

de surface qui sont déterminés par le type et les propriétés du confinement. Ils sont

intimement liés à l’énergétique et au mouvement collectif qui s’influencent mutuellement

et, par conséquent, à la mobilité interfaciale dans les films.
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Appendix A

Simulation map

See next page.

This appendix gives a “genealogical tree” to trace the history of the simulated systems,

i.e. from which parent system start configurations were taken. Each box in the figures

below represents a simulation. A short description of the type of the simulation and its

length are given inside each box. The boxes with white background denote the simulations

using the original truncated LJ potential with tail corrections for pair interactions. The

boxes with colored background are the simulations using the shifted and smoothed LJ

potential. The colors mark different models: CRC - red, CRC2 - green, CRC4 - purple,

FRC- blue. The arrows show the sequences of the simulations. If an arrow starts from the

side of the box, then the last configuration of that run was used to start the next one. If

an arrow starts from the bottom of the box, the configuration at the time point specified

next to the arrow was used to start the next run.
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Figure A.1: The schematic map of the simulations of the bulk PBD.
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Figure A.2: The schematic map of the simulations of the PBD supported films.



Appendix B

Torsional potential

The original model of Ref. [26] represents the torsional potential 𝑈tor(𝜙) by the

function 𝑈tor(𝜙) = 12 6∑𝑛=1 𝑘𝑛 [1 − cos(𝑛𝜙)] , (B.1)

where the torsion angle lies in 0∘ ≤ 𝜙 ≤ 360∘ and the energy coefficients 𝑘𝑛 are given in

Refs. [26, 39, 157]. When determining the torsion angles from the Cartesian coordinates

of the united atoms one gets the cosine of 𝜙. It is therefore computationally expedient to

expand Eq. (B.1) in powers of cos 𝜙. This gives [158]𝑈tor(𝜙) = 12𝑘1 + 𝑘2 + 12𝑘3 + 12𝑘5 + 𝑘6+ (−12𝑘1 + 32𝑘3 − 52𝑘5) cos 𝜙+ ( − 𝑘2 + 4𝑘4 − 9𝑘6) cos2 𝜙+ ( − 2𝑘3 + 10𝑘5) cos3 𝜙+ ( − 4𝑘4 + 24𝑘6) cos4 𝜙− 8𝑘5 cos5 𝜙 − 16𝑘6 cos6 𝜙 .
(B.2)

The GROMACS code provides such a representation via the Ryckaert–Bellemans function

[49] (which we write here in the form employed by LAMMPS 1)

𝑈tor(𝜙) = 6∑𝑛=1 𝐴𝑛(cos 𝜙)𝑛−1 . (B.3)

1https://docs.lammps.org/dihedral_nharmonic.html.
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Table B.1: Coefficients 𝐴𝑛 from Eq. (B.4) as obtained from the 𝑘𝑛 of Ref. [157] and utilized
in prior work with GROMACS [31, 35, 36, 47, 159]. 𝐴𝑛 are given in units of kJ/mol as
employed in GROMACS, while LAMMPS uses kcal/mol (1 kJ/mol = 4.184 kcal/mol).

Torsion angle 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6𝛼 (𝑡𝑟𝑎𝑛𝑠) 1.61159 -14.50430 4.39523 16.15770 -1.33950 3.01387𝛼 (𝑐𝑖𝑠) 4.85568 -1.50692 2.84643 -6.19521 -2.67899 12.72530𝛽 -13.64610 20.67850 1.42321 -23.35750 1.17206 -8.37189
db (𝑡𝑟𝑎𝑛𝑠) 100.46200 0.00000 -100.46200 0.00000 0.00000 0.00000
db (𝑐𝑖𝑠) 100.46200 0.00000 -100.46200 0.00000 0.00000 0.00000

Comparison of Eq. (B.3) with Eq. (B.2) allows to determine 𝐴𝑛 in terms of 𝑘𝑛. However,

since Eq. (B.3) stops at cos5 𝜙, the implementation in GROMACS sets 𝑘6 = 0 [31, 35, 36,

47, 159]. This choice gives 𝐴1 = 12𝑘1 + 𝑘2 + 12𝑘3 + 12𝑘5𝐴2 = −12𝑘1 + 32𝑘3 − 52𝑘5𝐴3 = −𝑘2 + 4𝑘4𝐴4 = −2𝑘3 + 10𝑘5𝐴5 = −4𝑘4𝐴6 = −8𝑘5 .
(B.4)

The values for 𝐴𝑛 resulting from 𝑘𝑛 of Ref. [157] are given in Table B.1.

Since 𝑘6 vanishes for the double bonds in the original model [26, 39, 157], the choice𝑘6 = 0 is insubstantial. Differences from the original model may occur for the other

dihedrals where 𝑘6 ≠ 0. However, graphical comparison of Eq. (B.1) with Eqs. (B.3)

and (B.4) reveals that these differences are negligible for the 𝛼 trans and 𝛽 bonds (not

shown), while they are a bit larger for the 𝛼 cis bond. Even in this worst case, differences

remain small, as illustrated by Fig. B.1a. Therefore, Eqs. (B.3) and (B.4) represent an

excellent approximation to the original model and we utilize the potential parameters of

Table B.1 for 𝛽, 𝛼 cis and 𝛼 trans bonds.

When comparing the double bond potentials, we noticed, that in the recent works

using GROMACS [31, 35, 36, 47, 159] there are different sets of parameters {𝐴𝑛} for the

cis and the trans double bonds, which does not agree with the Table B.1. As seen from

Table B.1, Eqs. (B.3) and (B.4) propose the same 𝑈tor(𝜙) = 𝐴1(1 − cos 𝜙) for the double
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Figure B.1: (a) Torsional potential for the 𝛼 cis bond. The solid line shows Eqs. (B.3)
and (B.4) with the parameters from Table B.1. The dashed line represents the original
model, Eq. (B.1), with the parameters from Smith et al. [26, 39, 157]. (b) Torsional
potential for the double bonds. The dashed line depicts Eqs. (B.3) and (B.4) with the
parameters from Table B.1. The solid lines present the results from Eq. (B.3) with the
coefficients 𝐴𝑛 from Table 2.3 of the main text for the cis (db cis, red line) and trans (db
trans, blue line) configuration of the monomers.

bond of the cis and trans monomer. This function is shown as a dashed (green) line in

Fig. B.1b. The same 𝑈tor(𝜙) is used for the cis and trans monomer because the barrier at𝜙 = 90∘, 270∘ corresponds to about 12 000 K and is much higher than the temperatures of

a few hundred Kelvin typically studied. In practice, this implies that a monomer initially

prepared in a cis or trans state will remain in this state for all times of current simulations

with length of a few microseconds. We believe that the authors of the works [31, 35, 36,

47, 159] have preferred to distinguish between the cis and trans states by turning the

potentials to having single minima at 𝜙 = 0∘ (or 360∘) and 𝜙 = 180∘, rather then two. In

this way, even if a possibility of a rare escape from the barrier occurs, the cis monomer will

still remain cis, and the trans monomer will still remain trans. In practice, this was achieve

by turning the barrier at 𝜙 = 90∘, 270∘ into an inflection point. For the cis monomer the

composite function is: 𝑈tor(𝜙) = 𝐴1(1 − cos 𝜙) for 𝜙 ≤ 90∘, 𝑈tor(𝜙) = 𝐴1(1 + cos 𝜙) for90∘ < 𝜙 < 270∘ and 𝑈tor(𝜙) = 𝐴1(1 − cos 𝜙) for 𝜙 ≥ 270∘. For the trans monomer the

composite function is: 𝑈tor(𝜙) = 𝐴1(1 + cos 𝜙) for 𝜙 ≤ 90∘, 𝑈tor(𝜙) = 𝐴1(1 − cos 𝜙) for90∘ < 𝜙 < 270∘ and 𝑈tor(𝜙) = 𝐴1(1 + cos 𝜙) for 𝜙 ≥ 270∘. In the program, it is simpler to

fit these composite functions to Eq. (B.3). The resulting values for the coefficients 𝐴𝑛 are

given in Table 2.3 of the main text. The fit functions are shown as solid lines in Fig. B.1b;
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they are the same as in Fig. 2.4 of the main text.



Appendix C

PBD density references

See next page.
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Table C.1: Description of the reference data of density for 1,4-polybutadiene.

ID Ref Experimantal/

Simulation

Polybutadiene type Molecular weight Pressure (atm) Notes

1 [36] Simulation 1,4, 45% cis / 55% trans 1.6 × 103 1 atm The same as in our work

2 [68] Simulation 1,4, 100% cis 2.6 × 103 1 atm

3 [69] Experimental 1,4, 40% cis / 50% trans / 10% vinyl ? ?

4 [70] Experimental pure cis 13.5 × 103 ? ?

5 [71] Experimental 1,4, 100% cis ? 1 atm

6 [45] Simulation 1,4, 40% cis / 50% trans / 10% vinyl 1.6 × 103 1 atm

7 [72] Experimental 1.4, 9% cis / 20% trans / 71% vinyl 13 × 203 ?

8 [73] Simulation 1.4, 40% cis / 53% trans / 7% vinyl 7 × 103 ? Single chain simulation

9 [74] Experimental 1.4, 34% cis / 58% trans / 8% vinyl 1.42 × 103 ?

10 [75] Experimental 1.4, 36% cis / 55% trans / 9% vinyl ∼ 2 × 105 0 atm

11 [76] Experimental 100% cis ∼ 2 − 3 × 105 0 atm



Appendix D

LAMMPS input scripts

Bulk system. To run: $LAMMPS -in inputScript.lmp -var sID packageId
units real

atom_style full

pair_style lj/gromacs 9.0 12.0

bond_style harmonic

angle_style cosine/squared

dihedral_style nharmonic

read_data init_conf.dat

# write_restart NVTequil.restart.*

special_bonds lj/coul 0.0 0.0 0.0

pair_modify tail no mix arithmetic

neighbor 2.0 bin

neigh_modify delay 0 every 1 check yes

timestep 1

fix f2 all nvt temp 353.0 353.0 1000.0

thermo 100

thermo_style custom step temp pe epair ebond eangle edihed ke vol press

run_style respa 2 4 bond 1 angle 1 dihedral 1 pair 2

dump logdump all custom 10000000 conf_dump_NVT_log-${sID}.dat id mol xu yu zu

compute clog all logscale 200000 2

# weed = 36

variable varlog equal c_clog

run 0

dump_modify logdump every v_varlog

dump dCONF all custom 20000 conf_dump_NVT-${sID}.dat id mol xu yu zu

run 10000000

write_restart NVTequil.restart.*
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Film system. To run: $LAMMPS -in inputScript.lmp -var sID packageId
processors * * 1

units real

atom_style full

pair_style lj/gromacs 9.0 12.0

bond_style harmonic

angle_style cosine/squared

dihedral_style nharmonic

read_data supported_conf.dat

#read_restart PBDW.restart.*

special_bonds lj/coul 0.0 0.0 0.0

pair_modify tail no mix arithmetic

neighbor 2.0 bin

neigh_modify delay 0 every 1 check yes

timestep 1

group walls type 3

group polymers type 1 2

fix f1 polymers nvt temp 225.0 225.0 1000.0

thermo 100

thermo_style custom step c_f1_temp pe epair ebond eangle edihed ke vol press

run_style respa 2 4 bond 1 angle 1 dihedral 1 pair 2

dump logdump all custom 1000000 conf_dump_log-${sID}.dat.gz id mol xu yu zu

compute clog all logscale 100000 2

# weed = 34

variable varlog equal c_clog

run 0

dump_modify logdump every v_varlog

compute c_bins polymers chunk/atom bin/1d z lower 0.1 units box

variable v2x atom vx*vx

variable v2y atom vy*vy

variable v2z atom vz*vz

fix f_chunk polymers ave/chunk 1 1000000 1000000 c_bins

v_v2x v_v2y v_v2z density/number density/mass temp

file chunk_analysis-${sID}.dat

dump dCONF all custom 10000 conf_dump-${sID}.dat.gz id mol xu yu zu

run 1000000

write_restart PBDW.restart.*



Appendix E

Bond correlations and internal

distances

The mean-square internal end-to-end distance and the bond correlation function are

defined by 𝑅2
e (𝑠) = ⟨( ⃗𝑟𝑛+𝑠 − ⃗𝑟𝑛)2⟩ , 𝑃1(𝑠) = ⟨ ⃗ℓ𝑛+𝑠 ⋅ ⃗ℓ𝑛⟩𝑙2 , (E.1)

where ⃗𝑟𝑛 is the position vector of the 𝑛th united atom (𝑛 = 1, … , 𝑁), ⃗𝑙𝑛 = ⃗𝑟𝑛+1 − ⃗𝑟𝑛 the

bond vector and ⟨…⟩ the average over all configurations and chains of the system and over

all possible pairs 𝑛, 𝑚 = 𝑛 + 𝑠 of a chain. A viable parameterization of MD results for𝑃1(𝑠) is 𝑃1(𝑠) = ⎧{⎨{⎩𝛼 for 𝑠 = 1 ,𝐴 exp(−𝑠/𝑠) for 𝑠 > 1 , (E.2)

where 𝛼 = −⟨cos 𝜃⟩ (> 0). Using

𝑅2
e (𝑠) = 𝑙2𝑠 + 2𝑙2 𝑠−1∑𝑘=1(𝑠 − 𝑘)𝑃1(𝑘) , (E.3)

one gets 𝑅2
e (𝑠) = 𝑙2𝑠 [𝐶∞ − 2𝑠(𝛼 − 𝐴𝛼 + 𝐴𝛼 − 𝛼𝑠+1(1 − 𝛼)2 )] , (E.4)

where 𝛼 = e−1/𝑠 (< 1) and 𝐶∞ is the characteristic ratio of the infinitely long chain,

𝐶∞ = lim𝑁→∞ 𝑅2
e (𝑁 − 1)(𝑁 − 1)𝑙2 = 1 + 2(𝛼 − 𝐴𝛼) + 2𝐴𝛼1 − 𝛼 . (E.5)
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The characteristic ratio determines three often discussed length scales of a polymer: the

effective bond length 𝑏e [1], 𝑏e = √𝐶∞𝑙 , (E.6)

the Kuhn length [92] 𝑙K = 𝐶∞𝑙 , (E.7)

and the persistence length 𝑙p 1,

𝑙p = 12 (𝐶∞ + 1)𝑙 . (E.8)

For the CRC, CRC2, CRC4 and FRC models the following tables compile the values of 𝛼
obtained from the simulations, the fit results for 𝐴, 𝑠, 𝛼, and the resulting predictions for𝐶∞, 𝑏e, 𝑙K and 𝑙p.

Table E.1: Results for the CRC model at different 𝑇 for 𝛼 = −⟨cos 𝜃⟩, the fit parameters𝐴, 𝑠, 𝛼 = e−1/𝑠, and the predictions for 𝐶∞, 𝑏e, 𝑙K and 𝑙p using 𝑙2 = 2.158 Å2.𝑇 (K) 𝛼 𝐴 𝑠 𝛼 𝐶∞ 𝑏e (Å) 𝑙K (Å) 𝑙p (Å)

213 0.480 0.769 4.025 0.780 6.213 3.661 9.126 5.297

225 0.480 0.833 3.542 0.754 5.807 3.540 8.530 4.999

240 0.480 0.816 3.581 0.756 5.790 3.534 8.505 4.987

253 0.480 0.751 3.985 0.778 6.058 3.615 8.898 5.183

273 0.480 0.776 3.680 0.762 5.749 3.522 8.444 4.956

293 0.480 0.777 3.620 0.759 5.668 3.497 8.325 4.897

353 0.481 0.751 3.625 0.759 5.549 3.460 8.150 4.810

1The expression for 𝑙p given in Eq. (E.8) follows from the definition 𝑙p = 𝑙 ∑∞𝑠=0 𝑃1(𝑠) [91] and the
relation between 𝑅2

e (𝑁 − 1) and 𝑃1(𝑠) according to Eq. (E.3).
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Table E.2: Results for the CRC2 model at different 𝑇 for 𝛼 = −⟨cos 𝜃⟩, the fit parameters𝐴, 𝑠, 𝛼 = e−1/𝑠, and the predictions for 𝐶∞, 𝑏e, 𝑙K and 𝑙p using 𝑙2 = 2.158 Å2.𝑇 (K) 𝛼 𝐴 𝑠 𝛼 𝐶∞ 𝑏e (Å) 𝑙K (Å) 𝑙p (Å)

213 0.480 0.722 4.060 0.782 5.999 3.598 8.811 5.140

225 0.480 0.730 3.930 0.775 5.866 3.558 8.617 5.043

240 0.480 0.730 3.850 0.771 5.758 3.525 8.458 4.963

253 0.480 0.719 3.971 0.777 5.866 3.557 8.616 5.042

273 0.480 0.720 3.850 0.771 5.706 3.509 8.382 4.925

293 0.480 0.723 3.800 0.769 5.651 3.492 8.300 4.884

353 0.481 0.716 3.700 0.763 5.486 3.440 8.058 4.763

Table E.3: Results for the CRC4 model at different 𝑇 for 𝛼 = −⟨cos 𝜃⟩, the fit parameters𝐴, 𝑠, 𝛼 = e−1/𝑠, and the predictions for 𝐶∞, 𝑏e, 𝑙K and 𝑙p using 𝑙2 = 2.158 Å2.𝑇 (K) 𝛼 𝐴 𝑠 𝛼 𝐶∞ 𝑏e (Å) 𝑙K (Å) 𝑙p (Å)

213 0.479 0.697 4.125 0.785 5.945 3.581 8.732 5.100

225 0.479 0.699 4.095 0.783 5.918 3.573 8.693 5.081

240 0.480 0.695 4.075 0.782 5.868 3.558 8.619 5.044

253 0.480 0.701 3.955 0.777 5.745 3.521 8.438 4.954

273 0.475 0.697 3.945 0.776 5.699 3.506 8.371 4.920

293 0.480 0.704 3.840 0.771 5.610 3.479 8.240 4.854

353 0.481 0.695 3.815 0.769 5.530 3.454 8.122 4.795

Table E.4: Results for the FRC model at different 𝑇 for 𝛼 = −⟨cos 𝜃⟩, the fit parameters𝐴, 𝑠, 𝛼 = e−1/𝑠, and the predictions for 𝐶∞, 𝑏e, 𝑙K and 𝑙p using 𝑙2 = 2.158 Å2.𝑇 (K) 𝛼 𝐴 𝑠 𝛼 𝐶∞ 𝑏e (Å) 𝑙K (Å) 𝑙p (Å)

213 0.480 0.692 4.035 0.780 5.800 3.537 8.519 4.994

225 0.480 0.693 3.975 0.778 5.726 3.515 8.410 4.939

240 0.480 0.695 3.925 0.775 5.674 3.499 8.334 4.902

253 0.480 0.699 3.848 0.771 5.592 3.474 8.214 4.842

273 0.480 0.696 3.825 0.770 5.548 3.460 8.150 4.809

293 0.481 0.699 3.800 0.769 5.532 3.455 8.125 4.797

353 0.482 0.699 3.675 0.762 5.370 3.404 7.887 4.678
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Appendix F

Partial structure factor fits

Table F.1: The values of the fit parameters for the partial structure factors in case of the
CRC model (Eqs. (3.35) to (3.37)). The values 𝐴𝑣,B = −𝐴𝑣,A and 𝐵𝑣,B = −𝐵𝑣,A𝑇 (K) 𝜌𝑣A,0 𝐴𝑣,A 𝐵𝑣,A 𝜌𝑣B,0 𝐴cc 𝐵cc 𝑘B𝑇 𝜌𝜅𝑇 𝐴𝜅 𝐵𝜅

213 1.415 0.154 -0.132 0.585 0.034 0.077 0.084 -0.079 0.356

225 1.452 0.122 -0.133 0.548 0.050 0.004 0.078 0.038 0.093

240 1.480 0.100 -0.134 0.520 0.037 0.055 0.086 0.080 0.049

253 1.433 0.201 -0.183 0.567 0.040 0.050 0.101 -0.008 0.275

273 1.500 0.116 -0.160 0.500 0.041 0.045 0.114 0.017 0.211

293 1.515 0.120 -0.172 0.485 0.045 0.037 0.130 0.023 0.213

353 1.625 0.125 -0.229 0.375 0.043 0.051 0.188 0.002 0.325
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Mobilité interfaciale dans les films polymères vitrifiables : est-elle 
déterminée par le mouvement collectif ou l’énergie intramoleculaire ? 

Résumé 

L'influence des barrières énergétiques de torsion intramoléculaires sur la structure et la 
dynamique du copolymère aléatoire cis-trans du 1,4-polybutadiène (PBD) a été étudiée au 
moyen de simulations classiques de dynamique moléculaire. Le PBD en phase volumique 
et un film de ~10 nm d'épaisseur supporté par une paroi de graphite ont été simulés à 
l'aide d'un modèle chimiquement réaliste d'atomes unifiés, qui comporte des potentiels de 
torsion (dièdre). Les simulations ont également été effectuées avec des potentiels dièdres 
réduits, ainsi que sans potentiel dièdre. Il est démontré que la présence des dièdres 
renforce l'effet de cage dans la masse, ce qui ralentit la dynamique de plusieurs ordres de 
grandeur, déplaçant ainsi la température de transition vitreuse vers des valeurs plus 
élevées par rapport au modèle sans dièdres. En revanche, la densité et la structure du 
PBD en phase volumique ne sont pratiquement pas affectées par les dièdres. De la même 
manière, les dièdres déterminent l'ordre de grandeur de la dynamique dans les films. Leur 
désactivation n'entraîne pas de changements notables du profil de densité des films, non 
seulement dans la région centrale, semblable au volume, mais aussi aux interfaces. La 
dynamique a été étudiée par une analyse à résolution de couche des déplacements carrés 
moyens (MSD) et de l'autocorrélation du moment dipolaire des monomères (relaxation 
diélectrique). L'extraction des temps de relaxation structurelle a montré que le confinement 
imposé par la paroi de graphite et la surface libre est le facteur dominant dans la 
modification des gradients de mobilité interfaciale par rapport à l'ordre de grandeur global 
de la dynamique fixé par les barrières de torsion à travers tout le film PBD. 
Mots clés : films polymères supportés, polybutadiène, simulations de dynamique 
moléculaire, transition vitreuse, relaxation diélectrique, gradients de relaxation, barrières 
intramoléculaires. 

Résumé en anglais 

The influence of the intramolecular torsional energetic barriers on the structure and 
dynamics of 1,4-polybutadiene (PBD) cis-trans random copolymer was studied by means of 
classical molecular dynamics simulations. Bulk PBD and a ~10 nm thick film supported on a 
graphite wall were simulated using a chemically realistic united-atom model, which has 
torsional (dihedral) potentials associated to each bond in the polymer chain. The simulations 
were also performed with reduced, as well as without dihedral potentials. It is demonstrated 
that the presence of the dihedrals enhances the cage effect in the bulk, which slows down 
the dynamics by several orders of magnitude, thus shifting the glass transition temperature 
to higher values with respect to the model without the dihedrals. Meanwhile the density and 
the structure of bulk PBD are essentially unaffected by dihedrals. In the same way, the 
dihedrals determine the order of magnitude of the dynamics in the films. Disabling them 
does not lead to noticeable changes of the density profile of the films not only in the middle, 
bulk-like region, but also at the interfaces. The dynamics was studied by layer-resolved 
analysis of the mean-square displacements (MSD) of united atoms and the monomer dipole 
moment autocorrelation (dielectric relaxation). Extracting the structural relaxation times 
showed that the confinement imposed by the graphite wall and the free surface are the 
dominating factor in modifying the interfacial mobility gradients with respect to the overall 
order of magnitude of the dynamics set by the torsional barriers across the whole PBD film. 
Keywords: supported polymer films, polybutadiene, molecular dynamics simulations, glass 
transition, dielectric relaxation, relaxation gradients, intramolecular barriers. 
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