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1

Introduction détaillée en français

Cette thèse s’articule autour de deux parties différentes qui contribuent à la gestion quantitative des risques
financiers : la modélisation du risque de crédit et la quantification de l’incertitude liée à l’estimation des
risques financiers. La première partie traite de la modélisation des temps de défaut en risque de crédit,
tandis que la seconde porte sur la construction de surfaces de volatilité à l’aide du krigeage.

Partie 1: Modèlisation du temps de défaut

Dans la littérature du risque de crédit, la modélisation du temps de défaut repose essentiellement sur deux
approches fondamentales, à savoir l’approche structurelle et l’approche à forme réduite. La principale dif-
férence entre ces deux approches est le choix de la filtration. Dans l’approche structurelle (voir Merton,
1974), l’information est modélisée par une filtration F pour laquelle le temps de défaut est un temps d’arrêt
qui peut être prévisible ou totalement inaccessible (dans ce cas, il est nécessaire de calculer son compensa-
teur). Tandis que, dans l’approche à forme réduite (voir Duffie, Schroder, and Skiadas, 1996; Lando, 1995),
on commence par une filtration de référence F dans laquelle le temps de défaut τ n’est pas un temps d’arrêt
et on la grossit progressivement avec τ pour obtenir une filtration G. La théorie de grossissement de filtration
remonte aux années 70-80 suite aux travaux d’Itô (1978), Barlow (1978), Jeulin and Yor (1978), Yor (1978),
Jacod (1985) et s’applique dans plusieurs domaines notamment en finance et en assurance.

Très souvent, la construction des modèles de défaut dans l’approche à forme réduite conduit à des temps
de défauts qui évitent les temps d’arrêt de la filtration de référence F. Ce qui fait que ces modèles deviennent
inadaptés quand il s’agit de modéliser certains produits financiers soumis au défaut en présence de chocs
économiques, lorsque le temps de défaut τ peut être égal, avec une probabilité strictement positive, à l’un
des instants d’événement de chocs qui correspondent à des temps d’arrêt de la filtration de référence. Ceci
conduit certains auteurs à s’intéresser récemment au cas où cette hypothèse est omise, en utilisant des mod-
èles dits hybrides. Par exemple, Gehmlich and Schmidt (2018) et Fontana and Schmidt (2018) n’utilisent
pas le grossissement de filtration et considèrent un modèle où le temps de défaut est un temps d’arrêt par
rapport à une filtration G qui n’évite pas les G-temps d’arrêt prévisibles. Dans leur travail, ils supposent
l’existence du compensateur du défaut qui peut être décomposé en une partie absolument continue et un
saut pur (prévisible). Mais ils ne font aucune construction du temps d’arrêt associé.
Dans cet ordre d’idées, Jiao and Li (2018) ont élaboré un modèle selon lequel le temps de défaut peut
coïncider avec des instants de chocs économiques prévisibles. Ils s’intéressent au compensateur du temps de
défaut en utilisant l’approche de densité généralisée et montrent que le processus de taux d’intensité n’existe
pas dans leur cadre. En outre, leur modèle permet de capter les sauts de prix des obligations zéro-coupon
soumises au défaut ainsi que ceux des spreads correspondants.

Un des objectifs de cette thèse est d’étendre le modèle de Jiao and Li (2018) dans le cas où les instants
de chocs ne sont pas prévisibles. Malgré son attractivité dans la modélisation des produits financiers soumis
au défaut en présence de chocs économiques prévisibles, le modèle de Jiao and Li (2018) est difficile à mettre
en œuvre lorsque les chocs ne sont pas prévisibles (i.e., ces chocs apparaissent par surprise) et ne permettent
pas toujours de capter les sauts de prix des obligations zéro-coupon.
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Pour modéliser les produits financiers soumis au défaut en présence de chocs économiques qui ne sont
pas prévisibles, nous proposons un modèle de Cox généralisé qui étend celui de Lando (1998) dans lequel
le temps de défaut τ est le premier instant où un processus K croissant adapté à une filtration donnée (la
filtration de référence) F, absolument continue par rapport à la mesure de Lebesgue passe par une barrière
stochastique Θ indépendante de F. Il s’ensuit que ce temps de défaut évite tous les temps d’arrêt dans la fil-
tration de référence F. Nous assouplissons l’hypothèse selon laquelle le processus croissant K est absolument
continu. Ici, nous travaillons dans un cadre plus général, ce processus K étant adapté, croissant et continu
à droite avec des limites à gauche ou continu à gauche avec des limites à droite. Cela nous conduit à un
temps aléatoire qui n’évite pas les temps d’arrêt de F. Dans les deux cas, nous nous intéressons aux carac-
téristiques du temps de défaut comme la martingale de survie conditionnelle, la supermartingale Azéma, le
compensateur du temps de défaut ainsi que son processus de réduction prévisible (présenté dans la Section
1.2) et la décomposition multiplicative de la supermartingale d’Azéma. Nous étudions également l’existence
de densités conditionnelles dans le sens de Jacod (1985) que nous dénotons (CL), dans le sens de Jiao and
Li (2015), dénoté par (GD) et l’hypothèse étendue de Jacod introduite dans Li and Rutkowski (2014).
On peut trouver une première tentative de généralisation dans Bélanger, Shreve, and Wong (2004), où le
processus croissant est prévisible et continu à droite.
Contrairement au modèle de Jiao and Li (2018), dans le modèle généralisé de Cox, le processus de taux
d’intensité peut exister.

Structure des chapitres de la partie 1

Cette première partie de la thèse est structurée comme suit.

Dans le chapitre 1, nous commençons par rappeler des faits bien connus sur la théorie des processus
stochastiques et modèles de temps de défaut que nous utiliserons tout au long de cette partie, avant de
traiter l’exemple du cas gaussien en densité conditionnelle. Nous définissons toutes les caractéristiques du
temps de défaut, particulièrement la réduction prévisible de son compensateur. Nous mettons l’accent ensuite
sur l’hypothèse d’existence de densité conditionnelle de Jacod que l’on notera (CL) en étudiant l’exemple
explicite de densité gaussienne de El Karoui et al. (2014). Ensuite nous montrons, en utilisant divers tech-
niques de calcul stochastique, que cet exemple de densité conditionnelle gaussienne est unique dans une large
classe.

Dans le chapitre 2, nous généralisons le modèle de Jiao and Li (2018) qui est développé dans un contexte
où le temps de défaut peut coïncider avec certains temps d’arrêt prévisibles (τi)i de F qui sont des temps de
chocs exogènes prévisibles où ces chocs sont modélisés par un processus de Poisson N non homogène. Par
conséquant l’hypothèse de Jacod n’est plus satisfaite. Notre généralisation consiste à relâcher l’hypothèse
que les temps de chocs sont prévisibles et à remplacer le processus de Poisson par un processus plus général
noté X. Nous étudions les caractéristiques du temps de défaut.

Dans ce cadre, nous considérons (Ω,G,F,P) un espace probabilisé filtré. Nous notons par Ψ la fonction
croissante vérifiant P (Xu ≤ 1) = e−Ψ(u) (avec Ψ(0) = 0 et Ψ(∞) = ∞) et par FX la filtration naturelle de
X. Soit (τi)i une suite strictement croissante de temps d’arrêt de F telle que limi→∞ τi = ∞ et τ0 = 0. Le
temps de défaut τ est défini comme suit :

τ = θ ∧ ξ

où θ est donné par
θ = τi on {Xτi−1

≤ 1 < Xτi}, for i ≥ 1

et
ξ := inf{t ≥ 0 : Γt ≥ Θ}
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avec Γ un processus croissant F-adapté (tel que Γ0 = 0, Γt <∞ pour tout t, et Γ∞ =∞) et Θ une variable
aléatoire (supposée être de loi exponentielle de paramètre 1) indépendante de F et de FX .

Dans ce modèle, le temps de défaut τ n’évite pas les temps d’arrêt de la filtration de référence F et pour
tout t ≥ 0, on obtient

P(τ = τi|Ft) = E
[
e−Γτi

(
e−Ψ(τi−1) − e−Ψ(τi)

)
|Ft
]
, ∀i ≥ 1.

En particulier,

1{τi≤t}P(τ = τi|Ft) = e−Γτi

(
e−Ψ(τi−1) − e−Ψ(τi)

)
1{τi≤t}, ∀i ≥ 1.

En notant par G le grossissement progressif de F par τ , on obtient la propriété d’immersion entre F et G.
Ce qui implique que la supermartingale d’Azéma Z est décroissante.
Comme dans Jiao and Li (2018), nous calculons également la loi de survie conditionelle de τ qui est donnée
pour tout t ∈ R+ par

P(τ > u|Ft) = E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
|Ft

]
for u ∈ R+.

En particulier, on a pour t ≥ u,

P(τ > u|Ft) = exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
.

Ainsi la supermatingale d’Azéma Z s’exprime comme

Zt = exp

(
−
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)]− Γt

)
.

Dans le cas où les temps d’arrêt (τi)i de F sont prévisibles, la réduction F-prévisible du compensateur Λ

de τ est

Λt = Γt +

∞∑
i=1

1{τi≤t}(1− exp (−[Ψ(τi)−Ψ(τi−1)]) , for all t ≥ 0

ce qui montre, comme dans Jiao and Li (2018), que le taux d’intensité du temps de défaut n’existe pas.
Cependant, si certains des temps d’arrêt (τi)i de F ne sont pas prévisibles, on suppose connaître pour tout
i, le F-compensateur de τi, noté J i. Ainsi, la réduction F-prévisible du compensateur de τ vérifie

dΛt =
1

Zt−
dApt = dΓt +

dζt
Qt−

avec Q la supermartingale

Qt := exp

(
−
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)]

)

et ζ le processus croissant F-prévisible défini par

ζt :=

∞∑
i=0

∫ t

0

(
e−Ψ(τi) − e−Ψ(s)

)
dJ i+1

s .
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Nous montrons que, dans le cas particulier où les temps de chocs sont les temps de sauts d’un processus
de Poisson homogène N (d’ntensité λ) engendrant la filtration F, la réduction prévisible du compensateur Λ

est continue et que le processus de taux d’intensité existe et est égale, pour tout t ≥ 0 à

γt +
λ
∑∞
i=0 1[τi,τi+1](t)

(
e−Ψ(τi) − e−Ψ(t)

)
Qt−

.

Dans le chapitre 3, nous incorporons le modèle étendu de Jiao et Li étudié dans le chapitre 2 dans un cadre
beaucoup plus général de modèle de Cox généralisé. Nous travaillons toujours dans l’espace (Ω,G,F,P,G)

où G est le grossissement progressif de F par τ . Le modèle de Cox (voir Lando, 1998) est le modèle le plus
largement utilisé au marché financier où le temps de défaut (supposé être fini) est modélisé comme suit :

τ = inf{t ≥ 0 : Kt ≥ Θ}

avec le processus K qui est supposé être continu croissant F-adapté tel que K0 = 0 et Θ une v.a indépendante
de F (de loi exponentielle de paramètre 1).

Dans ce modèle, le temps de défaut τ évite les temps d’arrêt de F et les hypothèses d’intensité et de Jacod
sont satisfaites. Nous proposons d’étendre ce modèle afin que le temps de défaut τ puisse coïncider avec des
temps d’arrêt de F. Notre généralisation consiste à relâcher l’hypothèse de continuité sur le processus K.
Nous supposons que le processus K, croissant F-adapté, est continue à droite avec des limites à gauche (ou
continu à gauche avec des limites à doite).

Dans un tel cadre, les temps de sauts de K (notés (τi)i) sont les F-temps d’arrêt que τ n’évite pas et on
a

P(τ = τi|Ft) = E[e−Kτi−(1− e−∆Kτi )|Ft].

L’étude de la réduction prévisible du compensateur de τ nécessite le résultat suivant (qui calcule la pro-
jection duale F-prévisible de τ).

Lemme : Soit I la F-sous-martingale càdlàg It =
∑
s≤t(1 − e−∆Ks) et AI la partie prévisible de la

décomposition de Doob-Meyer de I. Alors, la projection duale F-pévisible de τ vérifie

dApt = e−Kt−(dKc
t + dAIt ),

où Kc est la partie continue de K.
Par conséquent, la réduction prévisible du compensateur de τ est Λ = Kc +AI .

Nous étudions également toutes les autres caractéristiques du temps de défaut, particulièrement la de-
composition multiplicative de la super-martingale d’Azéma Z qui est donnée par :

E(Y )tE(−Λ)t = E(Y )te
−Λt

∏
s≤t

(1−∆AIs)e
∆AIs

où E(−Λ) est la partie F-prévisible décroissante et E(Y ) la partie F-locale martingale, avec Yt =

∫ t

0

1

Zs−(1−∆AIs)
dMs,

où M étant la partie martingale de la décomposition de Doob-Meyer de Z et Λ la réduction F-prévisible du
compensateur de τ .
Ce résultat est établi en toute généralité dans Jeanblanc and Li (2020), où les auteurs "devinent" cette forme
et la vérifient. Cependant, il semble intéressant de le retrouver sans deviner cette décomposition, et nous
présentons une preuve dans ce manuscrit.
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Pour illustrer notre construction, nous donnons de nombreux exemples. Pour cela, Nous nous in-
téresserons à des processus croissant càdlàg partant de zéro qui nous permettent de construire le temps
de défaut τ et ensuite d’expliciter toutes ses caractéristiques. Un exemple est la construction suivante où K
est un shot noise.

Exemple du shot-noise :
Soit F une filtration, (τi)i une suite croissante de F-temps d’arrêt, et (γi)i une suite de variables aléatoires
avec γi ∈ Fτi . Soit µ la mesure aléatoire du processus marqué (τi, γi)i et ν son compensateur. On pose
µ̃ = µ− ν. On définit le bruit quantique suivant (Shot-noise en anglais) :

Kt =

∞∑
i=0

1{τi≤t}G(t− τi, γi) =

∫ t

0

∫
R
G(t− s, x)µ(ds, dx)

où la fonction G : R+ × R→ R+ vérifie

G(t, x) = G(0, x) +

∫ t

0

g(s, x)ds ∀ t ≥ 0, x ∈ R

avec g une fonction borélienne positive de R+ × R, telle que G est croissante dans la direction du temps.
Dans cet exemple, nous montrons d’abord que K est une F-sous-martingale et sa décomposition de Doob-
Meyer est Kt = AKt +MK

t avec AK sa partie prévisible (et croissante) donnée par

AKt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ(ds, dx)

)
du+

∫ t

s=0

∫
R
G(0, x)ν(ds, dx)

et MK sa partie martingale qui a pour expression

MK
t =

∫ t

0

∫
R
G(0, x)µ̃(ds, dx).

Le processus de réduction prévisible du compensateur de τ est :

Λt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)e−G(u−s,x)µ(ds, dx)

)
du+

∫ t

0

∫
R
(1− e−G(0,x))ν(ds, dx) .

Si ν est déterministe, alors pour tout u ≥ t, la martingale de survie conditionnelle de τ s’exprime

P(τ > u|Ft) = c(u)Lt(u)

où c(u) est une constante explicite et L(u) la martingale

Lt(u) = exp

(
−
∫ t

0

∫
R
G(u− s, x)µ(ds, dx)−

∫ t

0

∫
R

(e−G(u−s, x) − 1)ν(ds, dx)

)
.

Dans le cas où le processus croissant K est continu à gauche (càglàd), nous modifions un peu la définition
de τ dans le but d’obtenir un temps aléatoire avec de jolies propriétés. Ainsi, τ est défini comme suit :

τ := inf{t : Kt > Θ}.

Cette définition nous permet d’être capable de caractériser l’ensemble {Kt > Θ} et d’en déduire par la suite
que {Kt ≤ Θ} = {τ ≥ t}, ce qui implique que Z̃t = e−Kt et donc Z = e−K+ . Par conséquent, ce cadre peut
être réduit au cas précédent sur la continuité à droite en utilisant le processus κ, vérifiant κt = Kt+ pour
tout t ≥ 0, à la place de K.

Dans le chapitre 4, nous étudions certaines applications du modèle généralisé de Cox dans le pricing des
produits soumis au défaut. Nous donnons l’expression des prix des obligations zéro-coupon ainsi que leurs
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dynamiques à travers un cadre général. Nous nous intéresserons également aux impacts des sauts de K sur
les prix avant défaut des obligations zéro-coupon soumis au défaut.

Partie 2: Le krigeage pour la construction de surfaces de volatilité

Les surfaces de volatilité constituent des outils importants en gestion des risques. Elles constituent des
composantes élémentaires pour la tarification et la couverture des produits dérivés financiers. Elles perme-
ttent par exemple d’estimer, à partir du prix d’options liquides, la valeur des produits financiers dont les
caractéristiques sont non standards et dont le prix n’est pas observé sur le marché. La volatilité dépend des
caractéristiques contractuelles de l’option (nature de l’actif sous-jacent, maturité, prix d’exercice) et n’est
observée que pour un nombre limité de caractéristiques standard (couple maturité - prix d’exercice) et peut
nécessiter la surface entière de prix ou le prix de certaines caractéristiques non observées pour certaines appli-
cations. En outre, la construction de ces surfaces est habituellement faite en respectant le principe d’absence
d’opportunité d’arbitrage, i.e., les prix des options obtenus à partir de ces surfaces ne permettent pas de
réaliser d’arbitrage financier. La construction d’une surface de prix sans arbitrage peut être transformée en
un problème d’apprentissage fonctionnel avec des contraintes de forme et éventuellement des observations
brutées.

Une fois la surface de prix interpolée, on peut utiliser la formule d’inversion de Black et Scholes (voir Black
and Scholes, 1973) pour obtenir la surface de volatilité implicite. Pour obtenir la surface de volatilité locale,
nous pouvons utiliser une approximation de différence finie de la formule de Dupire (voir Dupire, 1994). En
outre, il est possible de construire la surface de volatilité locale en utilisant les volatilités implicites Il s’agit
d’extraire la surface de volatilité locale de la volatilité implicite en utilisant la formule (1.10) de Gatheral
(2011). Ces approches qui utilisent les prix observés (ou la volatilité implicite pour construire la volatilité
locale) sont connues sous le nom d’approches indirectes.
Au-delà de ces approches directes, il existe certaines qui paramétrent directement la volatilité non observée à
travers une fonction dans laquelle ses paramètres peuvent être estimés en minimisant une fonction objective
appropriée obtenue pour calibrer cette fonction aux données de marché. Il s’agit notamment de la méthode
SVI qui paramétrent le smile de volatilité implicite et son extension (SSVI) pour la surface de volatilité
implicite (voir Gatheral and Jacquier, 2014; Gatheral, 2004.

Les techniques utilisées habituellement dans les approches indirectes reposent sur des splines contraintes
(voir par exemple Fengler, 2009; Homescu, 2011; Laurini, 2011; Wang, Yin, and Qi, 2004, etc.).
Récemment, des techniques de réseaux de neuronnes ont été adoptées pour améliorer ces modèles habituels
en enregistrant de meilleures performances de surface de prix sans arbitrage. Le travail de Dugas et al.
(2009) est le point de départ de l’intégration de contraintes sans arbitrage dans les réseaux de neurones pour
l’apprentissage des prix des options. Dugas et al. (2009) ont utilisé les contraintes dites hard à travers une
architecture spéciale. Cette approche est différente de celle appelée approche par contraintes soft qui con-
siste à pénaliser certaines variables, dans la fonction objective, qui ne vérifient pas les contraintes (voir, par
exemple, Itkin, 2019). La principale difficulté de l’approche de Dugas et al. (2009) s’appuie sur le fait, qu’en
pratique, l’incorporation de contraintes hard dans les réseaux neuronaux réduit leur flexibilité et présente une
transformation hautement non linéaire pour le calcul de prix des options à chaque itération. Selon Ackerer,
Tagasovska, and Vatter (2019), les contraintes hard de Dugas sur les prix font perdre trop de précisions.
Ainsi, pour la construction de la surface de volatilité locale, ces derniers ont proposé d’utiliser directement la
surface de volatilité implicite au lieu de la surface de prix en appliquant l’approche soft. Chataigner, Crépey,
and Dixon (2020) ont proposé des architectures de réseaux de neurones simples pour les prix des options
sans arbitrage et pour la volatilité implicite. Ils montrent que les contraintes hard réduisent la puissance du
réseau et que les contraintes soft fournissent les meilleurs prix précis et les volatilités implicites.
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L’objectif de cette partie est d’adapter des techniques de krigeage contrainte développées dans Maatouk
and Bay (2017) afin de quantifier l’incertitude associée à la construction de surfaces de volatilité (telles que
la volatilité implicite et la surface de volatilité locale) dans un cadre qui respecte les conditions d’absence
d’opportunités d’arbitrage. Nous utilisons les approches indirectes qui consistent à apprendre les prix par le
krigeage et ensuite utiliser la formule d’inversion pour obtenir la surface de volatilité implicite et en déduire
la surface de volatilité locale. Il n’est pas nécessaire d’étendre l’approche de Maatouk and Bay (2017) pour
des contraintes d’inégalité plus générales, comme cela a été fait dans López-Lopera et al. (2018), puisque
nous nous limitons aux contraintes de convexité et de monotonie.
L’idée est de supposer que la fonction prix est une réalisation d’un champ gaussien tronqué, vérifiant certaines
contraintes. Comme pour les courbes de taux (voir Cousin, Maatouk, and Rullière, 2016), les contraintes de
compatibilité avec les observations de marché (compatibilité aux prix des options européennes) se traduisent
sous forme d’une relation linéaire sur le processus Gaussien. L’hypothèse d’absence d’arbitrages est équiva-
lente à l’existence d’une mesure martingale : les réalisations du processus de krigeage doivent correspondre
à des lois marginales de martingales. D’après le Th. 2.6 de Beiglböck, Juillet, et al. (2016), il s’agit alors
de construire une famille de distributions marginales à partir d’un processus gaussien bivarié, indéxé par la
maturité et le prix d’exercise, qui est :

• croissante par rapport à la direction des maturités,

• convexe par rapport à la direction des strikes,

• solution d’une relation linéaire sur certaines maturités et strikes.

Le krigeage (ou la regression par processus de Gauss) est une technique de géostatistique initialement
introduite pour estimer la densité de minerais dans une zone pré-définie de l’espace, étant donné quelques
observations issues d’expériences de forage à des points particuliers du sol. Le principe du krigeage repose
sur la détermination de la distribution conditionnelle d’un champ aléatoire gaussien connaissant les valeurs
de ce champ à certains points de l’espace, appelés points d’expérience (voir par exemple, Matheron, 1963;
Cressie, 1990; Krige and Magri, 1982). Le principal intérêt de cette approche est qu’elle permet d’estimer les
valeurs de la variable de référence à d’autres points de l’espace en quantifiant l’incertitude associée à cette
estimation. Par ailleurs, dans un contexte où les observations sont coûteuses à obtenir, le plan d’expérience
(points du support où la variable d’intérêt est observée) peut être conçu de manière adaptative (voir Williams
and Rasmussen, 2006). Cette technique a rapidement gagné en popularité suite aux travaux de Williams
and Rasmussen (2006) et a été adaptée dans divers domaines tels que l’hydrologie, la météorologie ou
l’épidémiologie, ect. Quelques travaux ont été récemment développés en sciences actuarielles.

Par exemple, Sousa, Esquível, and Gaspar (2012) ont utilisé le krigeage pour estimer les paramètres du
modèle d’apprentissage lors de l’étalonnage du modèle de taux d’intérêt Vasicek sous la mesure risque neutre.
Ils ont considéré un prior gaussien sur les prix des obligations zéro-coupon et ont estimé les paramètres du
modèle en maximisant la log de vraissemblance des données d’entraînement compte tenu des paramètres.
Ludkovski (2018) pour améliorer la méthode des moindres carrés Monte-Carlo en valorisation d’option de
type américain, a utilisé le krigeage pour améliorer l’étape de la régression qui consiste à faire rapprocher la
valeur espérée de celle de continuation.

De Spiegeleer et al. (2018) ont montré la rapidité du krigeage par rapport à la méthode de monte-
carlo pour l’approximation des prix d’options et de la volatilité implicite. Toutefois, ils n’ont pas tenu en
compte les conditions d’arbitrage dans leur approche. En modélisation du portefeuille de produits, Dixon
and Crépey (2018) ont considéré une technique de krigeage avec multi-réponses pour calculer la Credit
Valuation Adjustment (CVA). Ils ont montré que le krigeage permet une approximation rapide de la valeur
du portefeuille.

Gonzalvez et al. (2019) ont exploré l’utilisation du krigeage en finance en montrant que ce dernier est un
outil puissant pour ajuster la courbe de rendement des prix des actions. Cependant leur interpolation ne
prend pas également en considération les conditions de non arbitrage du marché.
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Une première tentative d’utilisation du krigeage pour la volatilité locale est effectuée par Tegnér and
Roberts (2019) qui placent un prior gaussien directement sur la surface de volatilité locale (pour garantir
la positivité de la volatilité locale, ils attribuent une fonction positive sur le prior). Une telle approche
conduit à une fonction de perte des moindres carrés non linéaires, car elle implique la transformation non
linéaire de la volatilité locale en prix d’option vanille correspondants. Une telle fonction de perte n’est pas
notoirement favorable à la descente de gradient (stochastique ou non), de sorte que les auteurs recourent à
une optimisation MCMC. De plus, la performance de leur GPs est mesuré par RMSE en échantillon et ne
semble pas être évalué pour le surapprentissage. En outre, ils ne comparent pas leur approche à d’autres
approches alternatives.
En fait, ajouter une telle contrainte de positivité ainsi que d’autres contraintes d’inégalité linéaire (telles que
la monotonie, la convexité, les bornes) dans le krigeage n’est pas une tâche facile et constitue un grand défi.
À cette fin, certains auteurs se sont récemment penchés sur cette question, connue sous le nom de krigeage
contraint ou de régression par processus gaussien (GPs) contraints. Les cadres présentés dans Da Veiga
and Marrel (2012), Golchi et al. (2015), Riihimäki and Vehtari (2010), and Wang and Berger (2016), entre
autres, utilisent une subdivision de l’espace d’entrée. Cependant, ils se basent sur le fait que les contraintes
ne sont satisfaites que sur des observations virtuelles et ne garantissent pas les contraintes dans l’ensemble
du domaine. Par exemple, pour intégrer la contrainte de monotonie croissante dans le krigeage, Wang and
Berger (2016) ont proposé de sélectionner les localisations avec de fortes probabilités d’avoir des dérivées
négatives comme les localisations virtuelles dans lesquelles ils forcent les contraintes. L’approche d’Agrell
(2019) est une extension de celle de Wang and Berger (2016) pour des contraintes multiples grâce à une
méthode efficace de simulation du processus à postériori basé sur la dérivation de processus gaussien con-
traint à l’aide d’un opérateur linéaire.

Lorsque des contraintes d’inégalité sont ajoutées sur les quantités d’intérêt, le processus à postériori n’est
plus gaussien et les contraintes sont habituellement infini-dimensionnelles. C’est ce qui a motivé Maatouk
and Bay (2014) à utiliser l’approximation fini-dimensionnelle des processus gaussiens pour lesquels les con-
traintes d’inégalité sont faciles à vérifier. Ils ont développé un schéma appelé rejection autour du mode
(RSM) pour la simulation de la distribution gaussienne multivariée tronquée nécessaire à l’estimation du
processus a postériori. Leur approche garantit les contraintes dans le domaine entier. Cousin, Maatouk, and
Rullière (2016) utilisent les techniques de krigeage contraint mises au point dans Maatouk and Bay (2014)
pour construire des courbes de taux et des courbes CDS en respectant les conditions de non arbitrage et de
contrôler des erreurs. López-Lopera et al. (2018) ont étendu le cadre de Maatouk and Bay (2014) pour des
contraintes d’inégalité plus générales et ont proposé d’utiliser la méthode de Monte Carlo Hamiltonienne
(HMC) de Pakman and Paninski (2014) qui est plus efficace que le rejet autour du mode de Maatouk and
Bay (2014) pour la simulation du processus a posteriori.

Contrairement à l’interpolation par splines, et aux approches SSVI et réseau de neurones, le krigeage est
une technique de regression permettant de quantifier l’incertitude dans l’estimation des variables d’intérêt.
Il est possible par exemple d’obtenir des intervalles de confiance aux points de la surface où les observations
sont indisponibles ou considérées comme peu fiables.

La principale contribution de cette partie de la thèse est de montrer que le krigeage est un outil approprié
pour construire des prix d’option et pour quantifier l’incertitude dans l’estimation de la volatilité locale et
implicite.

Structure des chapitres de la partie 2

Cette deuxième partie de la thèse est structurée en trois chapitres.
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Le chapitre 5 est un chapitre introductif dans lequel on présente des outils du krigeage qui vont être
utilisés dans les chapitres 6 et 7. Une attention particulière sera portée sur la simulation des coefficients
gaussiens lorsque les contraintes de monotonie sont saturées et nous proposons une solution numérique à ce
problème.

Le chapitre 6 porte sur la construction de la surface de volatilité implicite à l’aide du krigeage. Nous
adoptons le krigeage contraint développé dans Maatouk and Bay (2014) pour construire des prix sans ar-
bitrage. Nous comparons les performances du krigeage classique et celles du krigeage contraint dans ce
contexte à l’aide d’une étude empirique utilisant les données Euro Stoxx 50 du 10 janvier 2019. L’approche
par krigeage contraint fournit les meilleures performances que celle par krigeage classique. Par contre, Les
mesures de précision des estimateurs des MAP montrent qu’à un certain pourcentage des données utilisées,
le MAP estimé à partir du krigeage classique fonctionne aussi bien que celui estimé à partir du krigeage
contraint.

Le chapitre 7 est consacré à la construction de la surface de volatilité locale en utilisant le krigeage. Tout
d’abord, nous étendons la construction de surface de prix d’option sans arbitrage dans le cas des dividendes
et des taux d’intérêt. Avec une telle surface de prix, nous modélisons la surface de volatilité locale en util-
isant l’équation aux dérivées partielles de Dupire. La quantification de l’incertitude fournit des intervalles
de confiance dans les modèles de volatilité locale. Nous comparons les performances de notre modèle à celles
des approches SSVI et réseaux de neurones. Nous utilisons un réseaux de neurones avec des contraintes dites
"soft" sur la formule de variance implicite pour dériver la surface de volatilité locale à partir des volatilités
implicites de Black-Scholes (voir la flèche bleue de la Fig. 7.1).
L’ajustement du réseau de neurones est fait sur les donnés mid tandis que celui du krigeage s’est fait sur
une réplication des données bid et ask. Cette propriété du krigeage permet d’obtenir une surface de prix qui
respecte les contraintes des écarts de bid-ask. Autrement dit, la surface de prix obtenu se trouve entièrement
entre les prix de bid et les prix ask.
Le krigeage offre de meilleures performances pour le pricing des oprions et est la seule approche qui permet
de quantifier l’incertitude, ce qui est utile pour l’analyse des risques.

La lecture de ce manuscrit peut se faire par le guide du diagramme suivant :

Organisation des Chapitres

Partie I : Modèles de temps de défaut

Chap 1 : Préliminaires

Chap 2 : Modèle de Jiao & Li
généralisé

Chap 3 : Modèle de Cox
généralisé

Chap 4 : Application du modèle
de Cox généralisé en risque
de crédit

Partie II : Krigeage pour la surface
de volatilité

Chap 5: Introduction au krigeage

Chapit 6: Krigeage pour la
construction de surfaces de prix
et de volatilité implicite

Chap 7 : Krigeage vs Réseau
de Neuronnes pour la construction
de la surface de volatilité locale.
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This thesis treats two different parts which contribute in the modelisation and uncertainty quantification of
financial risk. The first part deals with default time modeling in credit risks while the second one focuses on
volatility surfaces construction using kriging.

Part 1: Models of default times

This part addresses issues related to default time modeling in credit risk. The two fundamental approaches
for default models are the structural approach and the reduced form approach. The main difference between
these two approaches is the choice of the filtration. In the structural approach (see Merton, 1974), the
information is modeled by a filtration F in which the default time τ is a stopping time which can be
predictable or totally inaccessible (in this case, one has to compute its compensator). Whereas, in the
reduced form approach (see Duffie, Schroder, and Skiadas, 1996; Lando, 1995), one starts with a reference
filtration F in which the default time τ is not a stopping time and one enlarges progressively F with τ to
obtain G.
The enlargement of filtration theory has been in operation since the 70’s following the works of Itô (1978),
Barlow (1978), Jacod (1985), Jeulin and Yor (1978) and Yor (1978), it can be applied in several areas,
particularly in finance and insurance.

Usually, the construction of τ is such that τ avoids the F-stopping times. However, recently some authors
were interested in the case where this hypothesis is violated (see, e.g., Jiao and Li, 2015; Jiao and Li, 2018).
This fact can be considered, for instance, from the perspective of the need of modeling some defaultable
claims under presence of economic shocks, in which the default time could coincide with one of the economic
shocks times, which are stopping times.

In Gehmlich and Schmidt (2018), as well as in Fontana and Schmidt (2018), the authors do not make use
of enlargement of filtration and consider a model where the G-stopping time τ does not avoid G-predictable
stopping times. In their work, they assume the existence of the compensator of the default time, which is
decomposed into an sum of absolutely continuous part and a (predictable) pure-jump part, but they did not
construct of the associated stopping time.

Jiao and Li (2018) developed a model under which the default time could coincide with some predictable
shock times. They are interested in the compensator of the default time, by using the generalized density
approach, they show that the intensity rate process does not exist in their setting. Moreover, their model
allows one to capture the jumps in the prices of zero-coupon bonds as well as in the corresponding spreads.

One of the objectives of this work is to extend the model of Jiao and Li in the case where the shock times
are not predictable. Despite its attractiveness in modeling defaultable claims under some predictable shocks,
the model of Jiao and Li is difficult to implement if the shocks are not predictable and does not always allow
to capture the jumps of the zero-coupon bond prices. Our extention allows one to model such claims.
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To model defaultable claims under some economic shocks which are not predictable, we propose a gener-
alized Cox model which extend the one of Lando (1998) in which the default time is the first time when an
increasing process adapted to a given filtration, absolutely continuous with respect to Lebesgue’s measure
hits a certain level, which is a random variable independent of the given filtration. It follows that this ran-
dom time avoids all stopping times in the reference filtration. We relax the assumption that the increasing
process that hits the threshold level is absolutely continuous. Here we are working in a more general case,
this process being adapted, increasing and continuous on right with limits on left or continuous on left with
limits on right. This leads us to a random time which does not avoid F-stopping times. In both cases,
we are interested in the characteristics of the default time such as the conditional survival martingale, the
Azéma supermartingale and the compensator of the default time, as well as its predictable reduction process
(presented in Section 1.2) and the multiplicative decomposition of the Azéma supermartingale. We also
study the existence of conditional densities in the sense of Jacod (1985), in the sense of Jiao and Li (2015)
and the extended Jacod’s hypothesis introduced in Li and Rutkowski (2014).

A first attempt to such a generalisation can be found in Bélanger, Shreve, and Wong (2004) where the
increasing process is predictable and right continuous.

Unlike the model of Jiao and Li, under the generalized Cox model, the intensity rate process may exist.

Organization of chapters

In Chapter 1, we begin by introducing well known facts about stochastic calculus and models of default times
that we will used throughout this part of the thesis. We then illustrate an Gaussian example of conditional
density.
We define all the characteristics of the default time. In particular, we appoint the definition of what we call
predictable reduction of the compensator of the default time, which is sometimes called F-compensator, where
F is the reference filtration. We show that the Gaussian conditional density example is unique in a wide class.

In Chapter 2, we generalize the model of Jiao and Li (2018), which is developed in the context where the
default time can coincide with some predictable stopping times, the latter are some predictable exogenous
shock times where the shocks are modeled by an inhomogeneous Poisson process N . Our generalisation
consists in relaxing the assumption that the shock times are predictable and in replacing the Poisson process
by a more general process X. We investigate the characteristics of the default time. We show that, in
the particular case where the shock times are the jump times of a Poisson process N which generates the
filtration F, the predictable reduction of the compensator is continuous and the intensity rate process exists.

Chapter 3 focuses on the generalized Cox model. We first present the classical Cox model of Lando
(1998) where the default time is the first time when an increasing process K adapted to a given filtration
and absolutely continuous with respect to Lebesgue’s measure hits a level, which is a random variable
independent of the given filtration. We then introduce the general case where the increasing process K
is right continuous with left limits (càdlàg). We investigate the characteristics of the default time and we
give many examples of our construction. A special attention will be paid to the shot-noise processes. We
show that the model of Jiao and Li is a special one of the generalized Cox model. We end this chapter
by introducing the case where the increasing process K is left continuous with right (càglàd) with a slight
modification of the definition of the default time. We conclude that this model can be reduced to the case
where K is right continuous.
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In Chapter 4, we investigate some applications of the generalized Cox model in credit risk. We give closed
form expression for the prices of some claims and their dynamics through a general framework. We will also
be interested in the impacts of the jumps of K on the pre-default prices of defaultable bonds.

Part 2: Kriging for volatility surfaces construction

Volatility surfaces are important building blocks of risk management systems designed for pricing and hedging
of financial derivatives or optional guarantees under market-consistent asset models. For a given underlying
asset, the option value depends on the characteristics of the contract, i.e., the date of maturity and the strike
price for equity options. However, the market value of such options is typically available (or reliable) for a
limited number of standard characteristics (maturity, strike price) whereas one may require the whole price
surface or the price for some unobserved characteristics for some applications. In addition, the construction
of these surfaces is usually made in accordance with the principle of no arbitrage opportunity, i.e, the con-
structed options prices must be exempted financial arbitrage. Constructing no-arbitrage price surface can
be cast into a functional learning problem with shape constraints and possibly noisy observations.
Once the price surface is interpolated, we can use the inversion formula of Black and Scholes for obtaining the
implied volatility surface. For getting the local volatility surface, we can use a finite difference approximation
of Dupire’s formula (see Dupire, 1994). Besides it is possible to construct the local volatility surface using
the implied volatilities rather than prices. This consists in extracting the local volatility surface from the
implied volatility one using the formula (1.10) of Gatheral (2011). These approaches that use the observed
prices (or implied volatility for constructing local volatility) in the volatility surfaces construction are known
as indirect.
Beyond these direct approches, there exist some ones which parametrize directly the unobserved volatility
through a function in which its parameters can be estimated by minimizing a suitable objective function
obtained for calibrating that function to market data. These include among others the stochastic volatil-
ity inspired (SVI) which parametrize the implied volatility smile and its extension (SSVI) for the implied
volatility surface (see Gatheral and Jacquier, 2014; Gatheral, 2004).

The most known techniques in the context of volatility surface construction using indirect approaches
have been based on constrained splines, see for example, Fengler (2009), Homescu (2011), Laurini (2011),
and Wang, Yin, and Qi (2004) and so forth.
Some techniques in deep learning have recently been developed in order to fill the gap in the usual models
by recording better performances of learning arbitrage-free price surface. The work of Dugas et al. (2009)
is the starting point for incorporating no-arbitrage constraints in neural networks (NN) for learning option
prices. Dugas et al. (2009) used the so-called hard constraints approach through a special neural network
architecture. This approach is different to the one called soft constraints approach which consists in penal-
izing some variables, in the objective function, that do not verify the constraints (see, e.g., Itkin, 2019).
The main difficulty of the approach of Dugas et al. (2009) relies on the fact that incorporating inequality
constraints in the neural networks reduces its flexibility in practice and presents highly non linear transfor-
mation for option pricing computation at each iteration as shown in Ackerer, Tagasovska, and Vatter (2019).
For constructing the local volatility surface, Ackerer, Tagasovska, and Vatter (2019) proposed to directly
learn the implied volatility surface instead of prices surfaces by using the soft constraint approach.
Chataigner, Crépey, and Dixon (2020) proposed simple neural network architectures for both arbitrage-free
option prices and implied volatility. They show that hard constraints reduce the power of the network and
that soft constraints provide best accurate prices and implied volatilities.
The main limit of these approaches lies on the fact that they do not allow to quantify uncertainty in the
estimation of the variables of interest.
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The aim of this part is to adopt the constrained kriging techniques developed in Maatouk and Bay (2017)
for imposing hard constraints and quantifying the associated uncertainty in the context of volatility surfaces
construction such as implied volatility and local volatility surfaces. We use the indirect approaches that
consist in learning prices through kriging and then use the inversion formula in term of implied volatility
surface and calibrate Dupire’s formula in term of local volatility. There is no need to extend the approach of
Maatouk and Bay (2017) for more general inequality constraints as it is done in López-Lopera et al. (2018),
since we limit ourselves to the convexity and monotonicity constraints.
The idea is to assume that the distribution of the underlying process is a realization of a truncated Gaussian
process, verifying a number of constraints. As for the rate curves (see Cousin, Maatouk, and Rullière
(2016)), the compatibility constraints with the observations (price compatibility of European options) is
translated into a linear relationship on the kriging process. The arbitrage-free hypothesis on option prices is
equivalent to the existence of a martingale measure: the achievements of the kriging process must correspond
to marginal distributions of martingales. According to Theorem 2.6 of Beiglböck, Juillet, et al. (2016), it
is then necessary to build a family of marginal distributions from a bivariate Gaussian process which is
conditionally:

• increasing with respect to the direction of maturities

• convex with respect to the strike prices

• solution of a linear relationship on certain maturities and the strike prices.

Therefore, the first two constraints correspond to the inequality constraints that must be taken into account
by the kriging model. The third constraint makes the kriging model compatible with the observed European
options with different maturities and exercise prices.

Kriging, known as Gaussian process (GPs) regression, is a spatial interpolation approach and its tech-
niques have been developed in geostatistics for estimating the distribution of mineral resource in the ground
given the relatively small set of boreholes (see, e.g., Matheron, 1963; Cressie, 1990; Krige and Magri, 1982).
It gains popularity with the works of Williams and Rasmussen (2006) and has been adapted into various
areas such as hydrology, meteorology, epidemiology and among others. Recent works in kriging have been
developed in quantitative finance. For instance, Sousa, Esquível, and Gaspar (2012) used kriging for learning
model parameters when calibrating the Vasicek interest rate model under the risk neutral measure. They
made a Gaussian prior on the zero coupon bond log prices and learnt model parameters by maximizing
the log likelihood of the training data given the parameters. Ludkovski (2018) improves the Monte Carlo
Least square method for the valuation of Bermuda option by using kriging for the regression step which
consists in approximating the expected value from continuation. De Spiegeleer et al. (2018) show the speed
up of kriging comparing to monte carlo method for pricing options and approximating implied volatility.
However they do not take into account the arbitrage-free conditions in their approximation. In derivative
portfolio modeling, Dixon and Crépey (2018) used a multi-response kriging in portfolio valuation through
computation of credit valuation adjustment (CVA). They show that kriging provides fast approximation of
portfolio value. Gonzalvez et al. (2019) explore the use of kriging in finance and show that this latter is
a powerful tool for fitting the yield curve. However their interpolation does not take in consideration the
arbitrage-free conditions too.

A first attempt at using kriging for local volatililty is done by Tegnér and Roberts (2019) who place a
Gaussian prior directly on the local volatility surface (to guarantee the positivity of the local volatility, they
assign a positive function on the prior). Such an approach leads to a nonlinear least squares training loss
function, as it involves the nonlinear transformation of the local volatility into the corresponding vanilla
option prices. Such a loss function is not obviously amenable to gradient descent (stochastic or not), so the
authors resort to a MCMC optimization. Moreover, the performance of their GPs is measured by in-sample
RMSE and does not seem to be assessed for overfitting. Furthermore, they do not benchmark their approach
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against alternatives.
Actually, adding that positivity constraint and several others (such as monotonicity, convexity, boundedness)
in kriging is not an easy task and constitutes a big challenge. Several approaches exist. The frameworks
presented in Da Veiga and Marrel (2012), Golchi et al. (2015), Riihimäki and Vehtari (2010), and Wang
and Berger (2016), among many others, are based on the fact that the constraints are only satisfied on a
virtual observation locations and does not guarantee the constraints in the entire domain. For instance, for
incorporating increasing monotonicity constraint in kriging, Wang and Berger (2016) proposed to select the
locations with large probabilities of having negative derivatives as the virtual locations set in which they
enforce the constraints. The approach of Agrell (2019) extended that of Wang and Berger (2016) for multiple
constraints through an efficient method for sampling the posterior process based on the derivation of the
posterior of the constrained Gaussian process using a linear operator.

Adding some inequality constraints in the quantities of interest leads to the fact that the posterior process
is no more Gaussian and these constraints are usually infinite-dimensional. This motivated Maatouk and
Bay (2014) to use the finite dimensional approximation of Gaussian processes for which the the inequal-
ity constraints are easy to check. They developed a sampling scheme called Rejection Sampling from the
Mode (RSM) for sampling from truncated multivariate Gaussian distribution which is needed for estimating
the posterior process. Their approach guarantees the constraints in the whole domain. Cousin, Maatouk,
and Rullière (2016) show the extensions of classical spline interpolation by constrained kriging techniques
developed in Maatouk and Bay (2014) to ensure non-arbitrable and error-controlled yield-curve and CDS
curve interpolation. López-Lopera et al. (2018) extended the framework of Maatouk and Bay (2014) for
more general inequality constraints and proposed to use the Hamiltonian Monte Carlo (HMC) of Pakman
and Paninski (2014) which is more efficient than the RSM of Maatouk and Bay (2014) for sampling from
truncated multivariate Gaussian distribution.

Unlike spline interpolation and NN approaches, kriging makes it possible to quantify the uncertainty in
the estimation of the variables of interest. It is possible for example, to obtain confidence intervals at the
points of the surface where the observations are unavailable or considered unsuitable.

The main contributions of the part is to show that kriging is a suitable tool for constructing option prices
and quantifying uncertainty in the presence of noisy observation, and for computing the associated local and
implied volatility.

Organization of chapters

The outline of the part is organized as follows.
In Chapter 5, we present some techniques in classical and constrained kriging that we use in the following
chapters. A particular attention will be paid in the sampling of Gaussian random coefficients when some
monotonicity constraints are saturated and we will propose a solution of this problem.

Chapter 6 focuses on the construction of implied volatility surface using kriging. We adopt the con-
strained kriging developed in Maatouk and Bay (2014) for constructing no-arbitrage prices. We compare the
performances of the classical and constrained kriging in this context through an empirical study using the
Euro Stoxx 50 data of January 10, 2019. Constrained kriging provides, over the whole interpolation criteria,
better performances than claissical kriging. Moreover, due to the shape constraints, the constrained kriging
approach behave better in extrapolation than an classical kriging approach. However, when the percentage
of the used data is too large the estimated MAP from classical kriging performs as well as the one estimated
from the constrained kriging in interpolation. This is shown by studying the accuracy of the Maximum A
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Posterior (MAP) estimators using the RMSE measure.

Chapter 7 is devoted to the construction of local volatility surface using kriging. It makes several con-
tributions to the literature. First, we extend the free-arbitrage option price surface construction in the case
with dividends and interest rate. With such free-arbitrage extended price surface, we model the local volatil-
ity surface by using Dupire’s partial differential equation. Uncertainty quantification provides confidence
bounds in the local volatility models. We benchmark the performance of our model against the SSVI and
the NN approaches. We use a soft-constrained NN local volatility implied variance formula to derive a local
volatility surface from Black-Scholes implied volatilities (see blue arrow in Fig. 7.1).
The fitting of the NN is done with mid-quotes while the one of the kriging is done with a replication of the
bid and ask quotes. This is a nice property of Kriging which allows to obtain a price surface that respects
the bid-ask spread constraints. In other terms, the obtained surface lies between the bid and the ask prices.
Kriging provides better performances for pricing and is the only approach that gives uncertainty quantifica-
tion, which is useful for risk analysis.
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Chapter 1

Preliminaries

In this chapter, we recall some definitions and standard results which will be useful in the following chapters.

1.1 Stochastic processes

Let (Ω,G,H,P) be a filtered probability space with H a generic filtration which verifies the usual conditions
(i.e., completed and right-continuous). For any process with limits on right and limits on left (làdlàg)
Y , we denote its left jump by ∆Y and its right jump by ∆+Y which are respectively given at time t by
∆Yt = Yt−Yt− and ∆+Yt = Yt+−Yt, where Yt− and Yt+ are its left and right limits at t. If Y is continuous
on right with limit on left (càdlàg), one has ∆+Yt = 0 for any t ≥ 0, if Y is continuous on left with limits on
right (càglàd) ∆Yt = 0 for any t ≥ 0, and if Y is continuous ∆Yt = ∆+Yt = 0, for any t ≥ 0. For any càdlàg
increasing (or decreasing)1 process Y , we denote by Y c 2 its continuous part, i.e., Y ct = Yt −

∑
s≤t ∆Ys.

The Lebesgue-Stieltjes integral of a bounded process V with respect to a càdlàg increasing process X is, for
s < t, denoted

∫ t
s
VudXu :=

∫
]s,t]

VudXu. Note that
∫

]0,t]
dXu = Xt −X0 and, with the convention X0− = 0,

that
∫

[0,t]
dXu = Xt −X0 + ∆X0 = Xt.

In what follows, we recall the notion of semimartingale. More details about this notion can be found, e.g.,
in Aksamit and Jeanblanc, 2017, subsection 1.2; He, Wang, and Yan, 2018, Chapter 8.

Definition 1 An H-semimartingale is an H-adapted càdlàg process X with the following decomposition:

X = X0 +N + V

where N is an H-local martingale with N0 = 0 and V an H-adapted càdlàg process with finite variation and
V0 = 0. If, in addition, V is H-predictable, this decomposition is unique and in that case X is called a special
semimartingale.
If X is a continuous H-semimartingale, then X is a special semimartingale, with N and V being continuous.
A càdlàg H-supermartingale (resp. H-submartingale) is a special semimartingale.

Definition 2 For any bounded H-predictable process H and any càdlàg H-special semimartingale X with
decomposition X = X0 + N + V , we denote by (H � X) the stochastic integral of H w.r.t. X which is the
H-special semimartingale given by (see He, Wang, and Yan, 2018, Definition 9.13)

(H �X)t := H0X0 +

∫ t

0

HsdXs = H0X0 +

∫ t

0

HsdNs +

∫ t

0

HsdVs, ∀t ≥ 0.

Definition 3 Let Xc and Y c be the continuous martingale parts of two H-semimartingales X and Y . The
quadratic covariation process of X and Y is the H-adapted process with finite variation denoted by [X,Y ]

1We say that a process Y is increasing (resp. decreasing) if for 0 ≤ s ≤ t, Yt ≥ Ys ( resp. Yt ≤ Ys) a.s.
2This notation should be not confused with the notationXc, which, for a semimartingaleX denotes the continuous martingale

part of X.
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such that (see He, Wang, and Yan, 2018, Definition 8.2)

[X,Y ]t := X0Y0 + 〈Xc, Y c〉t +
∑

0<s≤t

∆Xs∆Ys, ∀ t ≥ 0

where 〈Xc, Y c〉 is the unique H-predictable process with finite variation such that XcY c − 〈Xc, Y c〉 is an
H-local martingale.

The following result is known as Yoeurp’s lemma. We recall it as given in Aksamit and Jeanblanc, 2017,
Proposition 1.16.

Lemma 4 ( Yoeurp’s lemma). The quadratic covariation [X,V ] of a càdlàg H-semimartingale X and a
finite variation H-adapted càdlàg process V verifies

[X,V ]t = X0V0 + (∆X � V )t = X0V0 +

∫ t

0

∆XsdVs, ∀ t ≥ 0

and the integration by parts formula can be written as

XtVt = X0V0 +

∫ t

0

XsdVs +

∫ t

0

Vs−dXs, ∀ t ≥ 0.

If in addition V is H-predictable, then [X,V ]t = X0V0 + (∆V �X)t and

XtVt = X0V0 +

∫ t

0

Xs−dVs +

∫ t

0

VsdXs, ∀ t ≥ 0.

Definition 5 (see He, Wang, and Yan, 2018, Definition 3.15)
We denote by O(H) (resp. P(H)) the H-optional (resp. H-predictable) σ-algebra on R+ × Ω and by B(R+)

the Borelien sets of R+. Let V be a locally integrable variation process càdlàg with V0 = 0. There exists a
unique H-optional locally integrable variation process V o,H, called the H-dual optional projection of V , such
that V o,H0 = 0 and

E

[∫
[0,∞[

XsdVs

]
= E

[∫
[0,∞[

XsdV
o,H
s

]

for any bounded H-optional process X such that E
[∫

[0,∞[
|Xs|d|V |s

]
<∞.

There exists a unique H-predictable locally integrable variation process V p,H, called the H-dual predictable
projection of V , such that V p,H0 = 0 and

E

[∫
[0,∞[

XsdVs

]
= E

[∫
[0,∞[

XsdV
p,H
s

]

for any bounded H-predictable process X such that E
[∫

[0,∞[
|Xs|d|V |s

]
<∞. If V is H-adapted, then V −V p,H

is an H-martingale and V p,H is called the H-compensator of V .

Let us note that these projections depend on the filtration that one refers to.

We recall that any càdlàg H-supermartingale (resp. submartingale) X admits a unique Doob-Meyer
decomposition, i.e., X = MX − AX (resp. X = MX + AX) where MX is an H-martingale and AX an
increasing H-predictable process with AX0 = 0.
We recall also that any strictly positive bounded càdlàg H-supermartingale Y admits a multiplicative de-
composition of the form Y = Ne−H , where N is an H-local martingale and H an increasing H-predictable
process (see, e.g., Aksamit and Jeanblanc, 2017, Proposition 1.32).
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Definition 6 A filtration F is said to be immersed in a filtration H, with F ⊂ H if any F-martingale is an
H-martingale (see Jeanblanc, Yor, and Chesney, 2009, p.316; Brémaud and Yor (1978)). In the literature
(see Brémaud and Yor, 1978), it is said that the H-hypothesis holds between F and H.

Note that the immersion property depends on the choice of the probability measure.
A trivial (and useful) example of immersion between two filtrations H and F is when H = F∨ F̃ where F̃

is independent of F under P.

Lemma 7 Let H(1),H(2) and H(3) be three filtrations. If H(1) ⊂ H(3) and Y is an H(3)-martingale which is
H(1)-adapted, then Y is an H(1)-martingale. In particular, if H(1) is immersed in H(3) and H(1) ⊂ H(2) ⊂
H(3), then H(1) is immersed in H(2).

Proof: Let Y be an H(1)-adapted H(3)-martingale. For any 0 ≤ s ≤ t, one has by using the tower property

E[Yt|H(1)
s ] = E[E[Yt|H(3)

s ]|H(1)
s ] = E[Ys|H(1)

s ] = Ys

where we have used, in the second equality, the martingale property of Y with respect to H(3) and, in the
last equality, the fact that Y is H(1)-adapted. �

Lemma 8 Let F = (Ft)t≥0, H1 = (H1
t )t≥0 and H2 = (H2

t )t≥0 be three filtrations such that H1 is independent
of H2 and Ft = H1

t ∨ H2
t ,∀t ≥ 0. Then, for T ≥ t, H1

T and H2
T are conditionally independent with respect

to Ft.

Proof: Let X,Y be bounded random variables with X ∈ H1
T and Y ∈ H2

T . Then, from tower property

E[XY |Ft] = E[E[XY |H2
T ∨H1

t ]|Ft]

= E[Y E[X|H2
T ∨H1

t ]|Ft]

where the second equality follows from the fact that Y ∈ H2
T ⊂ H2

T ∨ H1
t . Since H1 is independent of H2,

X ∈ H1
T is independent of H2

T and E[X|H1
t ∨H2

T ] = E[X|H1
t ]. Hence,

E[XY |Ft] = E[Y E[X|H1
t ]|Ft]

= E[X|H1
t ]E[Y |Ft]

= E[X|Ft]E[Y |Ft].

The second equality is due to the fact that E[X|H1
t ] is Ft-measurable and the last one comes from the

independence of H1 and H2 which allows to write, for X ∈ H1
T , E[X|H1

t ] = E[X|H1
t ∨H2

t ] = E[X|Ft]. �

We recall that the graph of a finite random time τ (i.e., a non-negative random variable) is the subset
[[τ ]] of Ω× R+ defined as

[[τ ]] = {(ω, t) : τ(ω) = t} .

Definition 9 A random time τ avoids all H-stopping times if P(τ = ζ <∞) = 0, for any H-stopping time
ξ.

Definition 10 (see He, Wang, and Yan, 2018, Section 3, Chapter 3)
An H-stopping time ϑ is said to be H-predictable if there exists an increasing sequence of H-stopping times
(ϑi)i≥1 converging to ϑ such that ϑi < ϑ on the set {ϑi > 0}, for all i. If ϑ is H-predictable, (1{ϑ≤t}, t ≥ 0)

is a predictable process.
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An H-stopping ϑ is said to be accessible if [[ϑ]] ⊂ ∪i[[ϑi]] where (ϑi)i≥1 are H-predictable stopping times.
An H-stopping time ϑ is said to be totally inaccessible if it avoids all H-predictable stopping times (i.e.,
P(ϑ = ξ <∞) = 0 for any H-predictable stopping time ξ).

1.2 Default time

We consider a probability space (Ω,G,P) and τ a random time that we assume to be finite (except for
some specific examples), defined on (Ω,G). We introduce the right-continuous increasing default process
At = 1{τ≤t} associated with τ and we denote by A = (At)t≥0 the filtration (completed and right-continuous)
generated by this default process. We recall that, for any process X, one has

∫ t
u
XsdAs =

∫
]u,t]

XsdAs =

Xτ1{u<τ≤t}. For a given filtration H on Ω, we introduce the H-dual predictable projection of the default
process A, i.e., Ap,H. By abuse of language, we shall sometimes say that Ap,H is the H-dual predictable
projection of τ .
If τ is an H-stopping time, the compensator of τ is by definition the unique H-predictable increasing process
JH such that JH

0 = 0 and At − JH
t is an H-martingale (see Jeanblanc, Yor, and Chesney, 2009, p.265). Note

that JH
t = JH

t∧τ . This compensator JH of τ is nothing else than Ap,H. This property extends as follows:

Lemma 11 For any H-predictable bounded process H, the process

Hτ1{τ≤t} −
∫ t∧τ

0

HsdA
p,H
s

is an H-martingale.

Proof: This result follows from the fact that

Hτ1{τ≤t} =

∫ t

0

HsdAs = (H �A)t,

and, for H being H-predictable, the H-dual predictable projection of H � A is H � Ap,H (see He, Wang, and
Yan, 2018, p. 148, Theorem 5.23). �

We now work on a filtered probability space (Ω,G,F,P) on which a random time τ is defined. We call
F the reference filtration. We consider the links between the default time and the reference filtration. We
denote by Z the Azéma supermartingale (see Azéma, 1972; Jeanblanc, Yor, and Chesney, 2009, Subsection
5.9.4; Nikeghbali, 2006) associated with τ , which satisfies Zt := P(τ > t|Ft). Note that Zt > 0 on {τ > t}
and Zt− > 0 on {τ ≥ t} (see Aksamit and Jeanblanc, 2017, Lemma 2.14). Then, Ap,F, the F-dual predictable
projection of A, is also the predictable part in the Doob-Meyer decomposition of Zt := mt − Ap,Ft where m
is an F-martingale (see Aksamit and Jeanblanc, 2017, subsection 2.2, page 33).
We introduce the so-called second Azéma’s supermartingale Z̃ associated to τ , which satisfies Z̃t := P(τ ≥
t|Ft) = Zt − ∆Ao,Ft (see Aksamit and Jeanblanc, 2017, Proposition 1.46). Note that the Azéma super-
martingale Z is right-continuous with left limits while the supermartingale Z̃ is a process with right and left
limits.

Definition 12 Let G = (Gt)t≥0 be the progressive enlargement of F with τ , i.e., G = F ∨ A, which means
that Gt = ∩ε>0G0

t+ε, with G0
s = Fs ∨ As for every s ≥ 0 (see, e.g., Jeulin and Yor, 1978; Yor, 1978).

The filtration G is the smallest filtration satisfying the usual hypotheses containing F and turning out τ into
a stopping time.

Definition 13 The F-predictable reduction of the compensator of τ
The process Λ given by

Λt =

∫ t

0

1{Zs−>0}
dAp,Fs
Zs−

(1.2.1)
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is F-predictable and increasing, and, denoting by Λτ the process Λ stopped at time τ ,

At − Λt∧τ = At − Λτt = At −
∫ t∧τ

0

dAp,Fs
Zs−

is a G-martingale (see Aksamit and Jeanblanc, 2017, Proposition 2.15).
The process Λτ is the G-compensator of the default process A (we shall also say compensator of τ) and we
call Λ the F-predictable reduction of the G-compensator of τ .
If Λ is absolutely continuous with respect to the Lebesgue measure, i.e., Λt =

∫ t
0
λsds, then its derivative λ,

which is a non-negative F-predictable process, is called the F-intensity rate.

We recall that the default time τ avoids all F-stopping times (resp. all F-predictable stopping times) if and
only if Ao,F (resp. Ap,F) is continuous (see Aksamit and Jeanblanc, 2017, Proposition 1.43). It can be proved
that the jump times of Ao,F are F-stopping times not avoided by τ .
The assumption that the default time τ avoids all F-stopping times is widely made in the literature of pro-
gressive enlargement of filtration (see, e.g., in Nikeghbali, 2006).

In the case of progressive enlargement of filtration, the immersion property is easily characterized:

Lemma 14 (see Aksamit and Jeanblanc, 2017, Lemma 3.8 )
The filtration F is immersed in G if and only if

P(τ > t|Ft) = P(τ > t|F∞),∀t ≥ 0.

We now give some definitions relative to the conditional law of τ

Definition 15 A family of stochastic processes (Mt(u))u,t∈R+ is called a (P,F)-martingale survival process
if it satisfies (see El Karoui et al., 2014, Section 2):

• for every u ∈ R+, for every t ∈ R+, the random variable Mt(u) is valued in [0, 1],

• for every u ∈ R+, the process (Mt(u))t∈R+ is a (P,F)-martingale,

• for every t ∈ R+, the family Mt(u), u ∈ R+ is decreasing with respect to u.

In a default setting, we will be interested with the conditional survival process of the default time τ , i.e.,
Mt(u) = P(τ > u|Ft), which is a (P,F)-martingale survival process. It is shown in Jeanblanc and Song
(2011a) that to any (P,F)-martingale survival process M , one can associate, on an extended probability
space, a random time τ such that M is the conditional survival process of τ .

Definition 16 A family of non-negative O(F)
⊗
B(R+)-measurable functions (ω, t, u) → pt(ω, u) is called

a (P,F)-conditional density process if (see El Karoui et al., 2014, Condition (A))

• for every u ∈ R+, (pt(u))t∈R+ is a non-negative (P,F)-martingale,

• for every t ∈ R+,
∫∞

0
pt(u)η(du) = 1 a.s, where η is a probability law on R+.

If M is a (P,F)-martingale survival process satisfying Mt(0) = 1 for all t ≥ 0 and Mt(u) =
∫∞
u
pt(θ)η(dθ)

a.s, with η is a probability law on R+, then p is a conditional density process.
The processes Z, Z̃, the F-dual predictable and optional projections Ap,F, Ao,F of τ , the compensator process
Λτ as well as its F-predictable reduction Λ and the conditional survival process (Mt(u))u,t∈R+ are called the
characteristics of the default time τ (see Jeanblanc and Li, 2020 for more details).
In what follows, F being the reference filtration, we shall simply denote by Ap and Ao the F-dual predictable
and optional projections of A.
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Lemma 17 Key Lemma 1 (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Lemma 7.4.1.1)
For any integrable random variable Y , one has

1{τ>t}E[Y |Gt] = 1{τ>t}
E[Y 1{τ>t}|Ft]

Zt
. (1.2.2)

If furthermore Y ∈ FT ,

E[Y 1{τ>T}|Gt] = 1{τ>t}
E[Y ZT |Ft]

Zt
. (1.2.3)

Lemma 18 Key Lemma 2 (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Lemma 7.4.1.2)
For any bounded F-predictable process R,

E[Rτ1{τ≤T}|Gt] = Rτ1{τ≤t} − 1{τ>t}
E[
∫ T
t
RudZu|Ft]
Zt

= Rτ1{τ≤t} + 1{τ>t}
E[
∫ T
t
RudA

p
u|Ft]

Zt
. (1.2.4)

1.3 Conditional density approach

In this Section, we investigate the conditional density approach for credit risk modeling. We first introduce
the density hypothesis within the meaning of Jacod (1985, Condition (A)), before tackling the so-called
extended density hypothesis of Li and Rutkowski (2014, Proposition 2.5) and the so-called generalized density
hypothesis of Jiao and Li (2015). We also investigate some examples of conditional density processes.
In order to highlight the density approach rule in default modeling we first recall the general framework to
valuate a defaultable claim.

1.3.1 General framework of valuation of defaultable claims

This paragraph is based on Bielecki and Rutkowski (2002) and more details related to this topic can be
found in Bielecki, Jeanblanc, and Rutkowski (2009); Jeanblanc, Yor, and Chesney, 2009, Chapter 7; Aksamit
and Jeanblanc, 2017, Chapter 2.
The valuation formula of a defaultable claim with default payment (or recovery) h relies on some character-
istics of the default time. Following Jeanblanc and Li (2020), if the recovery process h is F-predictable, then
the pre-default value is obtained using the F-predictable projection Ap of the default time or equivalently by
the Azéma supermartingale Z, while when h is F-optional, the pre-default value of the claim is determined
the F-dual optional projection Ao. In what follows, we recall the pricing formula by considering predictable
recovery. The case with optional recovery can be obtained in the same manner by letting Ao to play the rule
of Ap in the first case.

Consider a defaultable claim which consists in a single payment of a positive value VT (where VT is
an FT -measurable integrable random variable) at maturity T when default does not occur before T and a
payment of the recovery h (with h a bounded F-predictable process) evaluated at τ when default occurs
before maturity T . When the payment of the recovery is made at hit, the discounted dividend process ζ at
time t has the following expression

ζ := e−
∫ T
t
rsdsVT1{τ>T} + e−

∫ τ
t
rsdshτ1{t<τ≤T},

with r a non-negative F-adapted process which is the interest rate. By assuming that P is the pricing
measure, the price of the defaultable claim is given by a direct application of Lemma 17 and 18 (see, e.g.,
Bielecki and Rutkowski, 2002, proposition 8.2.1; Bielecki, Jeanblanc, and Rutkowski, 2009, Lemma 7.4.1.2)

E[ζ|Gt] =
E
[
e−

∫ T
t
rsdsVTZT +

∫ T
t
e−

∫ u
t
rsdshudA

p,F
u |Ft

]
Zt

1{τ>t}. (1.3.1)
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If the actualized payoff at time t is of the form ζ := e−
∫ T
t
rsdsf(VT , τ)1{τ<T}, where f is a bounded function

from R×R+ into R, then the Azéma supermartingale Z does not allow to compute the quantity E [ζ|Gt] on
the set {τ > t}. In such a case, the F-conditional density process p(u) of the default time τ , if it exists (see
below the definition) provides the needed tool.

Definition 19 The default time τ satisfies the density hypothesis (CL) - which we mean classical density
hypothesis - Jacod, 1985, Condition (A), if there exists a conditional density process (pt(u))t,u∈R+ (we call
it (CL)-conditional density) such that for any bounded Borel function h

E[h(τ)|Ft] =

∫ ∞
0

h(u)pt(u)η(du),∀t ≥ 0, a.s

where η is a probability law on R+.

The existence of a (CL) conditional density is a strong hypothesis, not always satisfied, whereas the
martingale survival process of the default time always exist.
If this hypothesis is satisfied, one can always choose η = β, where β is the law of τ (see Jacod, 1985,
Proposition 1.5). Furthermore, if β is no atomic, τ avoids F-stopping times (see El Karoui, Jeanblanc, and
Jiao, 2010, Corollary 2.2). Nevertheless, if β has an atom at t∗, then P(τ = t∗) > 0 and the constant stopping
time t∗ is not avoided by τ .
Under (CL) Apt =

∫
[0,t]

pu−(u)η(du) and Aot =
∫

[0,t]
pu(u)η(du) (see Aksamit and Jeanblanc, 2017, Corollary

5.27). Furthermore, F is immersed in G if and only if pt(u) = pu(u), for η-a.e. u satisfying u ≤ t. (see
El Karoui, Jeanblanc, and Jiao, 2010, subsection 3.2)
If the conditional density exists, then

Mt(u) := P(τ > u|Ft) =

∫ ∞
u

pt(θ)η(dθ), a.s (1.3.2)

is the family of martingale survival process associated with τ .
The price of the defaultable claim ζ := f(VT , τ)1{τ<T} paid at time T is given by (see El Karoui, Jeanblanc,
and Jiao, 2010, Theorem 3.1)

E[ζ|Gt] = 1{τ>t}

E
[∫ T
t
e−

∫ T
t
rsdsf(VT , u)pT (u)η(du)|Ft

]
Zt

. (1.3.3)

This formula (1.3.3) implies the fact that knowing the conditional law of τ with respect to the reference
filtration provides more support in the pricing derivatives.

Li and Rutkowski, 2014, Definition 2.5 introduced the extended density hypothesis denoted by (ED) in
order to overcome a non-degeneracy condition of the F-conditional law of τ . The following definition focusses
on this extended density approach.

Definition 20 The default time τ satisfies the extended density hypothesis (ED) (see Li and Rutkowski,
2014), if, for any u, there exists a family of non-negative martingales (mt(u)t≥u) and an F-adapted, increas-
ing process D, with D0 = 0 such that for all 0 ≤ u ≤ t,

P(τ ≤ u|Ft) =

∫ u

0

mt(s)dDs,∀t ≥ 0.

Under the classical density approach (CL), if the law of τ has no atoms, τ is a totally inaccessible G-
stopping time which avoids all F-stopping times and this does not allow to model some credit risks where the
default time can coincide with some F-predictable stopping times. That motivated Jiao and Li to introduce
the generalized density hypothesis that we denote (GD) which postulates that the part of the random time
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τ which avoids a sequence of F-stopping times, admits an F-conditional density (see Jiao and Li, 2015,
Assumption 2.4).

Definition 21 The default time τ satisfies the generalized density hypothesis (GD) (see Jiao and Li, 2015)
if there exists a non-atomic non-negative σ-finite Borel measure υ on R+, a strictly increasing sequence of
F-stopping times (τi)i and a family (αt(u))t,u∈R+ of non-negative F-martingales (we call it (GD)-conditional
density) such that for any bounded Borel function h ,

E

h(τ)
∏
i≥1

1{τ 6=τi}|Ft

 =

∫
R+

h(u)αt(u)υ(du), ∀t ≥ 0, a.s.

Proposition 22 For any bounded Borel function h, if the Generalized density hypothesis is satisfied,

E[h(τ)|Ft] =

∫ ∞
0

h(u)αt(u)υ(du) +

∞∑
i=1

E[h(τi)p
i
t∨τi |Ft].

Proof:

E[h(τ)|Ft] = E[h(τ)

∞∏
i=1

1{τ 6=τi}|Ft] +

∞∑
i=1

E[h(τ)1{τ=τi}|Ft].

Using the tower property, we obtain

E[h(τ)1{τ=τi}|Ft] = E [h(τi)P(τ = τi|Fτi∨t)|Ft] = E
[
h(τi)p

i
t∨τi |Ft

]
.

�

Comments :

• If τ avoids all F-stopping times, the existence of a (GD)-conditional density is equivalent to the existence
of a (CL)-conditional density.

• If the (CL)-conditional density exists then the extended density hypothesis (ED) exists. The (ED)
may exist while the (CL) and the (GD)-conditional density do not exist.

1.3.2 Gaussian example

1.3.2.1 El Karoui et al. (2014) example

In this subsection, we recall the example of El Karoui et al. (2014) (see also Zargari, 2011, Chapter 2,
subsection 2.2).
Following El Karoui et al. (2014), starting from a square integrable deterministic function g on R+ and
introducing the martingale µ as µt =

∫ t
0
g(s)dBs, where B is a Brownian motion, one can construct a

random time τ = l−1(µ∞), where l is a strictly increasing function, differentiable, from R+ to R. By
denoting F the Brownian filtration generated by B, it is shown in El Karoui et al. (2014) that, for any
t, θ ≥ 0,

Mt(u) := P(τ > u|Ft) = Φ

(
µt − l(u)

ν(t)

)
, (1.3.4)

where ν(t) :=
∫∞
t
g2(s)ds is assumed to be strictly positive, and Φ is the standard Gaussian cumulative

function. The family (Mt(u))t,u≥0 is a family of martingales, obviously valued in [0, 1] and decreasing w.r.t.
u with dynamics

dMt(u) = ϕ

(
µt − l(u)

ν(t)

)
g(t)

ν(t)
dBt
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where ϕ is the standard Gaussian density function, or setting Ut(u) = µt−l(u)
ν(t)

dMt(u) = Mt(u)
ϕ(Ut(u))

Φ(Ut(u))

g(t)

ν(t)
dBt (1.3.5)

which allows us to write M(u) as the exponential martingale of
∫ ·

0
ϕ(Ut(u))
Φ(Ut(u))

g(t)
ν(t)dBt.

The density of τ is obtained by differentiating M0(u) w.r.t. u, i.e.,

ρ(u) =
1√

2πν(0)
l′(u) exp

{
−1

2

(
µ0 − l(u)

ν(0)

)2
}

where ν(0) :=
∫∞

0
g2(s)ds. The conditional density process obtained by differentiating Mt(u) w.r.t. u, (and

taking η as the law of τ) is

pt(u) =
1

ρ(u)
√

2πν(t)
l′(u) exp

{
−1

2

(
µt − l(u)

ν(t)

)2
}

and its dynamics is given by

dpt(u) = −pt(u)
µt − l(u)

ν2(t)
g(t)dBt.

1.3.2.2 Starting from Φ

In the previous subsubsection, we have recalled a family of conditional laws constructed from the standard
Gaussian cumulative function. One wonders whether it is possible to obtain, from this distribution function,
additional conditional laws. In this subsubsection, we show that the previous example is unique in a wide
class. As such, we look for a diffusion X satisfying the following differential stochastic equation

dXt = a(Xt, t)dt+ σ(Xt, t)dBt, X0 = θ

where B is a standard Brownian motion, and two deterministic functions f and h from R+ to R such that

Zt(u) := Φ(Xt − f(t)h(u))

defines a martingale survival process (see Definition 15).
The decreasing property w.r.t. the parameter u is obtained if h is an increasing strictly positive function
and f is a strictly positive function. The initial (resp. terminal) condition on Zt(·) imposes that Z0(0) = 1

and Z0(∞) = 0, hence we restrict our attention to the case h(0) = −∞ and h(∞) =∞.
We now determine some conditions on the coefficients of the diffusion X such that Z(u) is a martingale

for any u. As such, by denoting Ut := Xt − f(t)h(u), the Itô formula shows that

dZt(u) =

{
Φ′(Ut)(−f ′(t)h(u) + a(Xt, t)) +

1

2
Φ′′(Ut)σ

2(Xt, t)

}
dt+ Φ′(Ut)σ(Xt, t)dBt (1.3.6)

and by using the fact that Φ′′(x) = −xΦ′(x), it follows that for all u ≥ 0, Z(u) is a local martingale if and
only if

Φ′(Ut)

{
−f ′(t)h(u) + a(Xt, t)−

1

2
Utσ

2(Xt, t)

}
= 0. (1.3.7)

Note that Z being bounded will be a true martingale. This implies that for all u, t ≥ 0

h(u)

{
−f ′(t) +

1

2
f(t)σ2(Xt, t)

}
+ a(Xt, t)−

1

2
Xtσ

2(Xt, t) = 0.
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Knowing that this last equality holds for all u ≥ 0, one obtains for any t ≥ 0

a(Xt, t)−
1

2
Xtσ

2(Xt, t) = 0 (1.3.8)

− f ′(t) +
1

2
f(t)σ2(Xt, t) = 0 . (1.3.9)

By assuming that the diffusion X is not degenerated (i.e., X is not constant), the equation (1.3.9) establishes
that σ2(x, t) does not depend on x. Hence one denotes it by σ2(t). The equations (1.3.8) and (1.3.9) imply

a(x, t)− 1

2
xσ2(t) = 0 (1.3.10)

− f ′(t) +
1

2
f(t)σ2(t) = 0 (1.3.11)

for all x which belongs to the support of Xt. Therefore, it follows that

σ2(t) =2
f ′(t)

f(t)

a(x, t) =
1

2
xσ2(t) = x

f ′(t)

f(t)

and

dXt = Xt
f ′(t)

f(t)
dt+

√
2
f ′(t)

f(t)
dBt,

for f such that f ′

f ≥ 0 for all t ≥ 0, hence for f such that f ′ ≥ 0 since f > 0.
This line of thinking proves the following result:

Proposition 23 Let h be an increasing deterministic function from R+ to R and f a strictly positive and
differentiable increasing function. The set of diffusions X, such that

Zt(u) := Φ (Xt − f(t)h(u)) (1.3.12)

defines a martingale survival process, is the one of the form

dXt = Xt
f ′(t)

f(t)
dt+

√
2
f ′(t)

f(t)
dBt, X0 = θ. (1.3.13)

One denotes by D the set of such diffusions X.

1.3.2.3 The Gaussian conditional density construction using the class D

We now investigate this class of diffusions D in the perspective of the result obtained in the previous
subsubsection which stipulated that

Φ

(
µt − l(u)

ν(t)

)
,

where ν(t) :=
∫∞
t
g2(s)ds and µt =

∫ t
0
g(s)dBs, is a martingale survival process. We show that this result

is driven by a class of diffusions denoted C, which is contained in the class D. As such, we take Xt = µt
ν(t) ,

f(t) = 1
ν(t) and h = l, since for any u ≥ 0, Φ(Xt − 1

ν(t)h(u)) is a martingale, the process X belongs to the
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class D with X0 = 0 and satisfies

dXt =−Xt
ν′(t)

ν(t)
dt+

g(t)

ν(t)
dBt

=−Xt
ν′(t)

ν(t)
dt+

√
2(−ν

′(t)

ν(t)
)dBt

=Xt
f ′(t)

f(t)
dt+

√
2
f ′(t)

f(t)
dBt.

By consequence, the class D is a little bit larger than C due to the choice of the initial value of X (it is rather
obvious that, w.l.g., one can choose f(0) = 1).

Consider now an element X of the class D ( i.e., the dynamics of X is of the form (1.3.13)) with initial
value θ. These dynamics are well known as a linear stochastic differential equation and admit the following
solution

Xt(θ) = exp[

∫ s

0

f ′(u)

f(u)
du]

(
θ +

∫ t

0

√
2
f ′(s)

f(s)
exp[−

∫ s

0

f ′(u)

f(u)
du]dBs

)
.

Since f(0) = 1, one has exp[
∫ s

0
f ′(u)
f(u) du] = f(t). Therefore, by denoting µt :=

∫ t
0
g(s)dBs where g(t) :=√

2 f
′(t)
f(t)

1
f(t) and ν(t) := 1

f(t) (which implies, by simple computation, that ν2(t) =
∫∞
t
g(s)ds), one has from

P(τ > u|Ft) = Φ(Xt − f(t)h(u)), that P(τ > u) = Φ(θ − h(u)), which can be greater or smaller that the
value obtained in the case θ = 0.

1.3.2.4 Dynamics of Z(u)

We have shown that for any martingale X of the form (1.3.12) (i.e., X belongs to the class D), the family
Zt(u) := Φ (Xt − f(t)h(u)), with h an increasing deterministic function from R+ to R and f a strictly
positive function, defines a martingale survival process. Using (1.3.6) and (1.3.7), the dynamics of Z(u) is
of the form

dZt(u) = ϕ (Xt − f(t)h(u))

√
2
f ′(t)

f(t)
dBt (1.3.14)

where ϕ is the standard Gaussian density function.

By setting Yt = Xt − f(t)h(t), the dynamics of the supermartingale Z (which is given by Zt =

Φ (Xt − f(t)h(t))) has the following form, which is its Doob-Meyer decomposition,

dZt = −ϕ(Yt)h
′(t)f(t)dt+ ϕ(Yt)

√
2
f ′(t)

f(t)
dBt, (1.3.15)

where we have applied Itô’s formula to Z = Φ(Y ) and used (1.3.7).
We consider the multiplicative decomposition of Z, which is of the form Z = Ne−H , where N is a positive
local martingale and H an increasing predictable process. We have, by integration by parts, dZt = −ZtdHt+

e−HtdNt, hence, by uniqueness of the Doob-Meyer decomposition, we obtain

dHt =
ϕ(Yt)

Φ(Yt)
h′(t)f(t)dt, dNt =

ϕ(Yt)

Φ(Yt)
Nt

√
2
f ′(t)

f(t)
dBt.

Note that the quantity ϕ(Yt)
Φ(Yt)

h′(t)f(t) is the intensity rate of τ .
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1.3.3 Random times with supermartingale valued in [0, 1]

Here we apply the result first introduced by Gapeev et al. (2010) and later by Jeanblanc and Song (2011a)
and Jeanblanc and Song (2011b) to the Gaussian case.
It consists in starting with a given supermartingale Ẑ valued in [0, 1[ with the multiplicative decomposition
Ne−H , where N is a non-negative local martingale and dHt = λtdt, and associate to it a martingale survival
process (M̂t(u))t,u∈R+ , hence a random time which admits that martingale survival probability.
The process (M̂t(u))t,u∈R+ , given by

M̂t(u) =

1− (1− Ẑt) exp
(
−
∫ t
u

Ẑs
1−Ẑs

λsds
)
, for u ≤ t

E[Ẑu|Ft], for u > t,

is a survival martingale process and its dynamics for u fixed is given for, t ≥ u, by

dM̂t(u) =
1− M̂t(u)

1− Ẑt
e−HtdNt. (1.3.16)

Futhermore, if there exists ρ such that M̂0(u) = E[Ẑu] =
∫∞
u
ρ(θ)dθ, then ρ is the density function of τ , and

the family (p̂t(u))t,u∈R+ , given by

p̂t(u) =

(1− M̂t(u)) Ẑu
1−Ẑu

λu
ρ(u) , for u ≤ t

E[p̂u(u)|Ft], for u > t,

is a conditional density process associated with M(u).
This result is first introduced by Gapeev et al. (2010) and later by Jeanblanc and Song (2011a) and Jeanblanc
and Song (2011b).
We can apply this methodology to the Gaussian case with Ẑt = Φ(Yt) and Yt = µt−l(t)

ν(t) .
We then obtain, for u ≤ t,

dM̂t(u) =
1− M̂t(u)

1− Φ(Yt)
e−Ht

ϕ(Yt)

Φ(Yt)
Nt

√
2
f ′(t)

f(t)
dBt

= (1− M̂t(u))
ϕ(Yt)

Φ(−Yt)

√
2
f ′(t)

f(t)
dBt,

where we have used the fact that Φ(−Yt) = 1 − Φ(Yt). Note that M̂(u) is different from M(u) defined in
the Gaussian case in (1.3.5).
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Chapter 2

Generalization of the model of Jiao and
Li

In the sovereign risk modeling, Jiao and Li (2018), by considering a reference filtration F, propose the
following form of the default time:

τ = θ ∧ ξ

where
θ = τi on {Nτi−1

= 0} ∩ {Nτi = 1}, for i ∈ {1, ..., n}

with N an inhomogeneous Poisson process independent of F, with deterministic intensity rate function
t→ λN (t) (i.e., a non-negative function λN such that Nt−

∫ t
0
λN (s)ds is an FN -martingale, where FN is the

filtration generated by N), (τi)i∈{1,...,n} an increasing sequence of F-predictable stopping times and

ξ := inf{t ≥ 0 : Γt ≥ Θ}

with Γ an increasing F-adapted continuous process with Γ0 = 0 and Θ a random variable, independent of F
and FN , with a unit exponential law.
The authors are interested in some characteristics of the default time such as its compensator and its F-
conditional laws. They show that the intensity rate of τ does not exist in their setting.
Our goal is to generalize this model. We modify the role of the Poisson process N by using an increasing
càdlàg processX such thatX0 = 0, X∞ =∞, independent of F and relax the assumption of the predictability
of the stopping times (τi)i≥1. We investigate the characteristics of the default time. In particular, we compute
the compensator of the default time which is more general than the one obtained by Jiao and Li (2018).
As such, we consider (Ω,G,F,P) a filtered probability space. One denotes by Ψ the increasing deterministic
function with Ψ(0) = 0 and Ψ(∞) = ∞ such that P (Xu ≤ 1) = e−Ψ(u). One denotes by FX the natural
filtration of X. Let (τi)i be a strictly increasing sequence of finite F-stopping times such that limi→∞ τi =∞
and set τ0 = 0. We define a random time 1 θ by

θ = τi on {Xτi−1 ≤ 1 < Xτi}, for i ≥ 1.

Note that θ <∞, a.s. since P(X∞ ≤ 1) = 0.
We also define:

ξ := inf{t ≥ 0 : Γt ≥ Θ}

where Γ is an increasing F-adapted continuous process with Γ0 = 0, Γt <∞ for all t, and Γ∞ =∞ and Θ a
random variable, independent of F and FX , with a unit exponential law.

1The constant 1 in the definition can be changed in any constant, or even in any random variable independent of (X,F) and
of the random variable Θ.
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We define
τ = θ ∧ ξ.

By construction, τ does not avoid the F-stopping times (τi)i. By denoting G the smallest filtration containing
F under which τ is a stopping time, one obtains the immersion property between F and G. Indeed, knowing
that G ⊂ F ∨ σ(Θ) ∨ FX and that F is immersed in F ∨ σ(Θ) ∨ FX (by the independence of F from Θ and
X) implies that F is immersed in G (see Lemma 7).
In what follows, we first compute the F-conditional probability that the default time coincides with one of
the F-stopping times τi, before computing the F-conditional survival process of τ . We mimic the proofs of
Jiao and Li.

We shall frequently use the equality

∑
i≥1

1{τi>t≥τi−1}e
−U(τi−1) = exp

−∑
i≥1

1{τi>t≥τi−1}U(τi−1)

 , (2.0.1)

for any function U : R+ → R. This is trivial since, for any i, on the set {τi > t ≥ τi−1} the left and
right-hand sides are both equal to e−U(τi−1).

2.1 The F -conditional distributions of τ

Lemma 24 For all t ≥ 0, one has

P(τ = τi|Ft) = E
[
e−Γτi

(
e−Ψ(τi−1) − e−Ψ(τi)

)
|Ft
]
, ∀i ≥ 1. (2.1.1)

In particular,
1{τi≤t}P(τ = τi|Ft) = e−Γτi

(
e−Ψ(τi−1) − e−Ψ(τi)

)
1{τi≤t}, ∀i ≥ 1. (2.1.2)

Proof: From the definition of τ , one has the following equality

{τ = τi} = {ξ > τi, Xτi−1
≤ 1 < Xτi}.

Hence, by using the definition of ξ as well as the fact that (τi)i are F-stopping times, hence are F∞-measurable
random variables and that the random variable Xτi is, for any i, F∞ ∨ FX∞ measurable, one obtains

P(ξ > τi, Xτi−1
≤ 1 < Xτi |F∞) =E

[
P(ξ > τi|F∞ ∨ FX∞)1{Xτi−1

≤1<Xτi}|F∞
]

=E
[
P(Γτi < Θ|F∞ ∨ FX∞)1{Xτi−1

≤1<Xτi}|F∞
]

where the first equality requires the tower property.
Since Θ and X are mutually independent and are independent of F∞, then using the fact that Γτi ∈ F∞
leads to

P(Γτi < Θ|F∞ ∨ FX∞) = P(Γτi < Θ|F∞) = e−Γτi . (2.1.3)

Therefore, it follows

P(ξ > τi, Xτi−1 ≤ 1 < Xτi |F∞) =e−ΓτiP(Xτi−1 ≤ 1 < Xτi |F∞)

=e−Γτi{P(Xτi−1 ≤ 1|F∞)− P(Xτi ≤ 1|F∞)}

=e−Γτi

{
e−Ψ(τi−1) − e−Ψ(τi)

}
. (2.1.4)
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The last equality is due to the fact that the random variables τi are F∞-measurable and the process X is
independent of F∞.
Therefore

P(τ = τi|Ft) = E[e−Γτi

{
e−Ψ(τi−1) − e−Ψ(τi)

}
|Ft] .

Since the set {τi ≤ t} is Ft-measurable, by multiplying (2.1.4) by 1{τi≤t}, one deduces that

1{τi≤t}P(τ = τi|Ft) = e−Γτi

{
e−Ψ(τi−1) − e−Ψ(τi)

}
1{τi≤t},

where, in the last equality, we have used the fact that, on the set {τi ≤ t}, the random variables Γτi , Ψ(τi)

and Ψ(τi−1) are Ft-measurable.
�

Lemma 25 The conditional survival process of τ is given by, for t ∈ R+

P(τ > u|Ft) = E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
|Ft

]
for u ∈ R+. (2.1.5)

In particular, for t ≥ u,

P(τ > u|Ft) = exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
. (2.1.6)

Then, the Azéma supermartingale Z has the following expression

Zt = exp

(
−
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)]− Γt

)
. (2.1.7)

Proof: For all t, u ∈ R+,

P(τ > u|Ft) =

∞∑
i=1

P(θ > u, ξ > u, θ = τi|Ft)

=

∞∑
i=1

P(τi > u, ξ > u,Xτi−1
≤ 1 < Xτi |Ft).

This implies that

P(τ > u|Ft) =

∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
i=1

P(τi > u, ξ > u,Xτi ≤ 1|Ft).
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By using the fact that τ0 = 0 which implies that the set {τ0 > u} is empty, one has

P(τ > u|Ft) =

∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
i=0

P(τi > u, ξ > u,Xτi ≤ 1|Ft)

=

∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
k=1

P(τk−1 > u, ξ > u,Xτk−1
≤ 1|Ft)

=

∞∑
i=1

P(τi > u, ξ > u,Xτi−1
≤ 1|Ft)−

∞∑
i=1

P(τi−1 > u, ξ > u,Xτi−1
≤ 1|Ft).

Therefore, it follows from the trivial equality 1{τi>u} − 1{τi−1>u} = 1{τi>u≥τi−1} that

P(τ > u|Ft) =

∞∑
i=1

P(τi > u ≥ τi−1, ξ > u,Xτi−1 ≤ 1|Ft)

=

∞∑
i=1

E[1{τi>u≥τi−1}P(ξ > u|F∞ ∨ FX∞)1{Xτi−1
≤1}|Ft]

=

∞∑
i=1

E[1{τi>u≥τi−1}e
−Γu1{Xτi−1

≤1}|Ft],

where we have used, in the last equality, the fact that Θ is independent of F ∨ FX . This implies

P(τ > u|Ft) =

∞∑
i=1

E[1{τi>u≥τi−1}e
−ΓuP(Xτi−1

≤ 1|F∞)|Ft]

=

∞∑
i=1

E[1{τi>u≥τi−1}e
−Γue−Ψ(τi−1)|Ft]

=E

[
exp

(
−
∞∑
i=1

1{τi>u≥τi−1}Ψ(τi−1)

)
e−Γu |Ft

]

=E

[
exp

(
−
∞∑
i=1

(1{τi−1≤u} − 1{τi≤u})Ψ(τi−1)

)
e−Γu |Ft

]

=E

[
exp

(
−
∞∑
i=0

1{τi≤u}Ψ(τi) +

∞∑
i=1

1{τi≤u}Ψ(τi−1)

)
e−Γu |Ft

]
.

Since Ψ(τ0) = 0, one has
∞∑
i=0

1{τi≤u}Ψ(τi) =

∞∑
i=1

1{τi≤u}Ψ(τi).

Hence, it follows

P(τ > u|Ft) =E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]

)
e−Γu |Ft

]

=E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
|Ft

]
.

If t ≥ u, the random variables e−Γu , 1{τi≤u} and 1{τi≤u}[Ψ(τi) − Ψ(τi−1)] are Ft-measurable. Hence,
one has
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P(τ > u|Ft) = exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
.

In particular, one checks that
P(τ > u|Fu) = P(τ > u|F∞) ,

which also follows from the immersion property. Note that Z is decreasing, which stems from the immersion
property (it can also be seen from (2.1.7)). �

2.2 The compensator of the default time τ

Now, we focus on the compensator of the default time τ . We first consider the case where the stopping times
(τi)i are predictable and then consider the general case.

2.2.1 Case where the stopping times (τi)i are predictable

If the stopping times (τi)i are F-predictable, Z is F-predictable and the F-dual predictable projection of
At = 1{τ≤t} is 1−Z. Hence, it is clear that dApt = −dZt and then using (1.2.1), the F-predictable reduction
Λ of the compensator of τ verifies (note that Z− > 0):

dΛt = − dZt
Zt−

. (2.2.1)

Since the Azéma supermartingale Z has the explicit form Zt = e−Yt where Y is the increasing process

Yt =

∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)] + Γt,

by applying Itô’s formula for semimartingale (see Jeanblanc, Yor, and Chesney, 2009, Subsection 9.4.1) to
e−Y , we obtain

dZt = −Zt−dYt + Zt−(e−∆Yt − 1) + Zt−∆Yt,

and by plugging it in (2.2.1), one obtains the following expression of the F-predictable reduction of the
compensator of τ

dΛt = dYt − (e−∆Yt − 1)−∆Yt = dY ct − (e−∆Yt − 1).

Hence, it follows that, since Λ0 = 0

Λt = Γt +

∞∑
i=1

1{τi≤t}(1− exp (−[Ψ(τi)−Ψ(τi−1)]) , for all t ≥ 0. (2.2.2)

2.2.2 Case where some of the stopping times (τi)i are not predictable

If some stopping times (τi)i are not predictable (which can occur only if the filtration F is not continuous
2), one assumes to know, for any i, the F-compensator of τi, denoted by J i which is the F-dual predictable

2A filtration F is continuous if all F-martingales are continuous. In that case, every F-stopping time is predictable ( see, e.g.,
Nikeghbali, 2006, Theorem 4.11).
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projection of the F-adapted process Ai = 1{τi≤·} (note that if τk is predictable, then Jk = Ak). In other
terms, we consider the F-predictable increasing process J i, with J i0 = 0, such that

(1{τi≤t} − J
i
t∧τi , t ≥ 0)

is an F-martingale. In what follows, we give the F-dual predictable projection process Ap as well as the
F-predictable reduction of the compensator of τ . We first introduce the following Lemma.

Lemma 26 Consider, for i ≥ 1, the two F-adapted increasing processes Q1,i
t := 1{τi≤t}e

−Ψ(τi) and Q2,i
t :=

1{τi+1≤t}e
−Ψ(τi). Then the processes defined as

Q1,i
t −

∫ t

0

e−Ψ(s)dJ is (2.2.3)

and

Q2,i
t −

∫ t

0

1{τi<s}e
−Ψ(τi)dJ i+1

s (2.2.4)

are F-martingales.

Proof: By applying Lemma 11 for the process Ai, the predictable process H being the function Ht = e−Ψ(t),
it follows that Q1,i

t −
∫ t

0
e−Ψ(s)dJ is is an F-martingale.

The process Q2,i which is Q2,i
t =

∫ t
0
e−Ψ(τi)dAi+1

s can be written as

Q2,i
t =

∫ t

0

e−Ψ(τi)1{τi<s}dA
i+1
s .

Indeed, due to the strictly increasing property of the τi,∫ t

0

e−Ψ(τi)1{τi<s}dA
i+1
s = e−Ψ(τi)

∫ t

0

1{τi<s}dA
i+1
s

= e−Ψ(τi)1{τi<τi+1}1{τi+1≤t} = e−Ψ(τi)1{τi+1≤t} = Q2,i
t .

By setting Ys = 1{τi<s}e
−Ψ(τi), which is left-continuous and adapted hence predictable, and by applying

Lemma 11, the process

Yτi+1
1{τi+1≤t} −

∫ t∧τi+1

0

YsdJ
i+1
s

is an F-martingale, or equivalently, the process

1{τi<τi+1}e
−Ψ(τi)1{τi+1≤t} −

∫ t∧τi+1

0

YsdJ
i+1
s = Q2,i

t −
∫ t∧τi+1

0

YsdJ
i+1
s

= Q2,i
t −

∫ t

0

1{τi<s}e
−Ψ(τi)dJ i+1

s

is an F-martingale. �

Lemma 27 The F-dual predictable projection Ap of the default time τ verifies:

dApt = ZtdΓt + e−Γtdζt, (2.2.5)

where ζ is the predictable increasing process defined as

ζt :=

∞∑
i=0

∫ t

0

(
e−Ψ(τi) − e−Ψ(s)

)
dJ i+1

s . (2.2.6)
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Proof: The process

Qt := exp

(
−
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)]

)
(2.2.7)

is decreasing, hence is a supermartingale. Using (2.0.1), we get

Qt =

∞∑
i=0

1{τi≤t<τi+1}e
−Ψ(τi) =

∞∑
i=0

(
1{τi≤t}e

−Ψ(τi) − 1{τi+1≤t}e
−Ψ(τi)

)
=

∞∑
i=0

(
Q1,i
t −Q

2,i
t

)
where the processes Q1,i and Q2,i are the ones defined in Lemma 26. Therefore, from Lemma 26, it admits
the decomposition Q = mQ − ζ, where mQ is a martingale and ζ the predictable process given as

ζt =

∞∑
i=0

(∫ t

0

1{τi<s}e
−ψ(τi)dJ i+1

s −
∫ t

0

e−ψ(s)dJ is

)
.

Since M i+1 = Ai+1 − J i+1 is a martingale with M i+1
0 = 0 and Ai+1

τi = 0, we obtain

E[J i+1
τi ] = E[Ai+1

τi −M
i+1
τi ] = −E[M i+1

τi ] = 0

which implies that J i+1
τi = 0 and then due to the increasing property of J i+1, J i+1

t = 0 on {t ≤ τi}. This
shows that the support of J i+1 is [τi, τi+1].
Hence, it follows that

∫ t
0
1{τi<s}e

−Ψ(τi)dJ i+1
s =

∫ t
0
e−Ψ(τi)dJ i+1

s , and then

ζt =

∞∑
i=0

∫ t

0

e−ψ(τi)dJ i+1
s −

∞∑
i=1

∫ t

0

e−ψ(s)dJ is =

∞∑
i=0

∫ t

0

(
e−ψ(τi) − e−ψ(s)

)
dJ i+1

s

where we have used the fact that J0 = 0.
Due to the form of the support of J i+1, we have ζt =

∑∞
i=0

∫ t
0
1{s<τi}

(
e−ψ(τi) − e−ψ(s)

)
dJ i+1

s , hence, since
e−ψ(τi) − e−ψ(s) ≥ 0 for s > τi, the process ζ is increasing.
By integration by parts of the multiplicative decomposition of the supermartingale Z, which is (from (2.1.7))

Zt = e−ΓtQt = e−Γt(mQ
t − ζt),

and by applying Yoeurp’s lemma, we get

dZt =− e−Γt(mQ
t − ζt)dΓt + e−Γt(dmQ

t − dζt)

=e−ΓtdmQ
t − e−Γt(mQ

t − ζt)dΓt − e−Γtdζt

=e−ΓtdmQ
t − (ZtdΓt + e−Γtdζt)

which leads to the Doob-Meyer decomposition of Z. Hence the F-dual predictable projection Ap of τ verifies
dApt = ZtdΓt + e−Γtdζt. �

Finally, using 1.2.1 and the fact that Γ is continuous, the F-predictable reduction Λ of the compensator
of τ is given by

dΛt =
1

Zt−
dApt = dΓt +

dζt
Qt−

. (2.2.8)
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Remark 28 Note that if all the stopping times (τi)i≥1 are predictable, then the supermartingale Q is pre-
dictable and Qt = 1− ζt, hence dQt = −dζt. Therefore, by noting that dQt

Qt−
= e−∆Kt − 1, (2.2.8) becomes

dΛt = dΓt −
dQt
Qt−

= dΓt + 1− e−∆Kt

and which is the dynamic form of (2.2.2).

As an example, assume that the (τi)i≥1 are the jump times of a Poisson process N with constant intensity
λ which generates the filtration F. Then

dJ i+1
t = λ1[τi,τi+1](t)dt.

Hence from Lemma 27, one has

ζt =

∫ t

0

(
λ

∞∑
i=0

1[τi,τi+1](s)
(
e−Ψ(τi) − e−Ψ(s)

))
ds

which is continuous. Therefore, if Γt =
∫ t

0
γsds, with γ a non-negative F-adapted process, one has

dΛt =

(
γt +

λ
∑∞
i=0 1[τi,τi+1](t)

(
e−Ψ(τi) − e−Ψ(t)

)
Qt−

)
dt (2.2.9)

where Q is given in (2.2.7). This implies that the intensity rate of the default time exists and is given at
time t by

γt +
λ
∑∞
i=0 1[τi,τi+1](t)

(
e−Ψ(τi) − e−Ψ(t)

)
Qt−

.
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Chapter 3

Generalized Cox model

This chapter is based on the working paper Gueye, Jeanblanc, and Li (2019).

3.1 Introduction and motivations

In the works of default time modeling through Cox framework (see Lando, 1998), one usually starts with a
reference filtration F and an F-adapted process Λ (absolutely continuous with respect to Lebesgue’s measure
and increasing). Then one defines the default time as the first time this process hits a stochastic barrier
which is assumed to be independent of F. Hence one establishes that the process Λ is the F-predictable
reduction of the compensator of τ , and shows that it can be calibrated, for instance from the credit default
swap spread, in order to compute the prices of products subject to default risk. In this setting, the default
time avoids F-stopping times and this does not allow to cover a wide range of modeling of these products,
for example in the case which induces some economic shocks. The model of Bélanger, Shreve, and Wong
(2004) generalizes that of Lando (1998), but covers only the setting where the shock times are predictable.
The model of Gehmlich and Schmidt (2018), which is also the one of Fontana and Schmidt (2018), is not
a model of enlargement of filtration and presents an interesting case where the compensator of τ admits
predictable jumps. In some sense, it is a structural model in which the default time is supposed to have nice
properties, and there is no construction of such a default time. We shall extend the construction given in
Bélanger, Shreve, and Wong (2004) to a more general framework, constructing a default time which does
not avoid a given sequence of F-stopping times.

We start from a right-continuous with left limits (or a left-continuous with right limits) increasing process
K, adapted with respect to a given reference filtration F, not necessarily predictable and which jumps at
some given F-stopping times and we define the default time τ as in Cox’s paradigm, i.e., τ is the first hitting
time of this process K of a stochastic barrier independent of the reference filtration. As before, G is the
filtration F progressively enlarged with τ . In both cases, we compute the characteristics of the default time,
i.e., the F-predictable reduction of the compensator of τ , the Azéma supermartingale and its multiplicative
decomposition and the conditional survival process. We also study existence of conditional densities (i.e.,
the (CL), (ED) and (GD) conditions).
In what follows, we first present our model before illustrating our construction through many examples.

We consider a probability space (Ω,A,P), endowed with a filtration F satisfying usual hypotheses and a
random time τ . We consider an increasing F-adapted process K with K0 = 0 and Θ a unit exponential r.v.
independent of F. Then, if K is right-continuous with left limits (càdlàg), we define the random time τ as

τ = inf{t ≥ 0 : Kt ≥ Θ},
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and, if K is left-continuous with right limits (càglàd), one modifies a little bit the definition by setting (we
shall see why later)

τ = inf{t ≥ 0 : Kt > Θ}.

In both cases, immersion holds between F and G, since F is immersed in F ∨ σ(Θ) and F ⊂ G ⊂ F ∨ σ(Θ).
This property implies that Ao = 1 − Z (see Aksamit and Li, 2016, Th. 6), therefore, since Z̃ = Z −∆Ao,
then Z̃ = Z−, where as in the previous chapters Ao is the F-optional projection of the process A = 1{τ≤·}

and Z, Z̃ the Azéma supermartingales.

3.2 Case where K is continuous

When the process K is continuous, we define τ = inf{t : Kt ≥ Θ} and due to {Kt < Θ} = {τ > t}, we
obtain immediately that Z = e−K = 1 − Ao = 1 − Ap. From the fact that Ao is continuous, we obtain
∆Ao = 0, hence Z̃ = Z. The Doob-Meyer decomposition of Z is Zt = 1 − (1 − e−Kt), for all t ≥ 0. In
that setting, Ao being continuous, τ avoids F-stopping times (see Aksamit and Jeanblanc, 2017, Proposition
1.43). The survival probability of τ is P(τ > u) = E[e−Ku ], so that for any bounded Borel function h,
E[h(τ)] = E

[ ∫
R+ h(u)e−KudKu

]
. The conditional survival process is

P(τ > u|Ft) = Zu, foru < t

= E[Zu|Ft], for t ≤ u ,

where the first equality is due to immersion property. If K is absolutely continuous w.r.t. Lebesgue’s
measure, i.e., Kt =

∫ t
0
kudu, then, τ admits a density f(u) = E[kue

−Ku ] and a (CL)-conditional density
(with η(du) = f(u)du) given by

pt(u) =
kue
−Ku

E[kue−Ku ]
, foru < t,

=
E[kue

−Ku |Ft]
E[kue−Ku ]

, for t ≤ u ,

if E[kue
−Ku ] > 0 and pt(u) = 0 if E[kue

−Ku ] = 0.
In general, the (CL) conditional density may fail to exist. For example, let Kt = − ln(1−Lt∧1)+1{t>1}(t−1)

where L is the local time at level 0 of a standard Brownian motion. Then P(τ > t) = E[e−Kt ] = E[1 −
Lt∧1]e−(t−1)+

. The Tanaka formula (see Øksendal, 2003, Chap 4, p59 ), i.e.,

|Wt| =
∫ t

0

sgn(Ws)dWs + Lt,

where sgn is the sign function, i.e.,

sgn(x) =

+1, if x ≥ 0

−1, if x < 0

implies (the stochastic integral being a martingale) that E[Lt] = E[|Wt|] =
√

2t√
π
. Therefore,

P(τ > t) =

1−
√

2t√
π
, if t ≤ 1

(1−
√

2√
π

)e−t+1, if t > 1 .
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We deduce that τ has a density f w.r.t. Lebesgue’s measure, where

f(t) =

 1√
2tπ

, if t ≤ 1

(1−
√

2√
π

)e−t+1, if t > 1 .

Therefore, if the classical density hypothesis is satisfied, then by choosing η(ds) = f(s)ds, one would have,
for u < t

P(τ > u|Ft) = Zu =

∫ ∞
u

pt(s)f(s)ds

and Z would be absolutely continuous w.r.t. Lebesgue’s measure, which is not the case.

3.3 Case where K is càdlàg

We denote by (τi)i the jump times of K.

Lemma 29 For all t ≥ 0, the following equality

{Kt ≥ Θ} = {τ ≤ t} (3.3.1)

holds, equivalently {Kt < Θ} = {t < τ}.

Proof: In the proof, we proceed for ω fixed. The set {Kt ≥ Θ} is either of the form [a,∞[ or of the form
]a,∞[. If it is of the form [a,∞[ it would mean that Ka ≥ Θ and by definition of τ , τ = a. If it is of the
form ]a,∞[, it means that Ka+ε ≥ Θ, for any ε > 0, hence by right-continuity of K, letting ε go to 0, it
follows that Ka ≥ Θ and a ∈ {t ≥ 0 : Kt ≥ Θ} which is contradictory. �

3.3.1 Computation of the dual predictable projection of τ

Lemma 30 Let I be the càdlàg F-submartingale It =
∑
s≤t(1− e−∆Ks) and AI be its predictable part in its

Doob-Meyer decomposition. Then the F-dual predictable projection of τ satisfies dApt = e−Kt−(dKc
t + dAIt ),

where Kc is the continuous part of K and the F-predictable reduction of the compensator of τ is

Λ = Kc +AI . (3.3.2)

Proof: By using the equality (3.3.1), the fact that K is F-adapted and the independence between Θ and
F, one has from the exponential law of Θ

Zt := P(τ > t|Ft) = P(Kt < Θ|Ft) = e−Kt .

Then, by Itô’s formula, it follows that

dZt =− e−Kt−dKt + e−Kt−(e−∆Kt − 1) + e−Kt−∆Kt (3.3.3)

=− e−Kt−dKc
t + e−Kt−(e−∆Kt − 1)

where Kc is the continuous part of K, i.e., Kc
t = Kt −

∑
s≤t ∆Ks.

The process Kc being increasing and continuous is a submartingale with Doob-Meyer’s decomposition with
no martingale part, i.e., Kc

t = 0 + Kc
t . The process I being increasing (indeed 1 − e−∆Ks ≥ 0) is a
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submartingale and admits a Doob-Meyer decomposition I = M I +AI . Finally

dZt =− e−Kt−dKc
t − e−Kt−dIt

=− e−Kt−(dKc
t + dM I

t + dAIt )

=− e−Kt−dM I
t − e−Kt−(dKc

t + dAIt ) . (3.3.4)

Therefore
dApt = e−Kt−(dKc

t + dAIt ) (3.3.5)

and At − Λt∧τ is a G-martingale where

dΛt =
1

Zt−
dApt = dKc

t + dAIt

or Λt = Kc
t +AIt .

�

3.3.2 The conditional laws of the default time τ

Proposition 31 The conditional probability that the default occurs at time τi is given by

pit := P(τ = τi|Ft) = E[e−Kτi−(1− e−∆Kτi )|Ft], ∀t ≥ 0. (3.3.6)

Proof: From (3.3.1), one has {s < τ ≤ t} = {Ks < Θ ≤ Kt} and for any F-stopping time ϑ, one
obtains, denoting ϑ(ε) = (ϑ− ε) ∨ 0, that {ϑ(ε) < τ ≤ ϑ} = {Kϑ(ε) < Θ ≤ Kϑ} and

P(ϑ(ε) < τ ≤ ϑ|Ft) = E[e−Kϑ(ε) − e−Kϑ |Ft] .

Passing to the limit when ε goes to 0, one obtains

P(τ = ϑ|Ft) = E[e−Kϑ− − e−Kϑ |Ft].

In particular,
pit := P(τ = τi|Ft) = E[e−Kτi−(1− e−∆Kτi )|Ft] .

�

Note that on the set {τi ≤ t}, one has pit = e−Kτi−(1 − e−∆Kτi ) and the random variable pit does not
depend on t, as it must be, from immersion property (see El Karoui, Jeanblanc, and Jiao, 2010, Subsection
3.2. ).

Proposition 32 If the continuous part of K is absolutely continuous, i.e., Kc
t =

∫ t
0
ksds, the generalized

density hypothesis (GD) is satisfied, and αt(u) = E[kue
−Ku |Ft] together with υ the Lebesgue’s measure.

Proof: For any bounded Borel function h, the process

Xt = h(t)
∏
i

1{t 6=τi} = h(t)
∏
i

(1{t<τi} + 1{t>τi})
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is F-optional (Indeed, 1{τi>·} = 1− 1{τi≤·} is right-continuous and F-adapted, hence F-optional and 1{τi<·}
is left-continuous and F-adapted hence F-predictable therefore F-optional). Hence,

E[h(τ)
∏
i

1{τ 6=τi}|Ft] = E[Xτ |Ft] = E[

∫ ∞
0

XsdA
o
s|Ft] = −E[

∫ ∞
0

XsdZ
c
s |Ft]

= E[

∫ ∞
0

h(s)kse
−Ksds|Ft] =

∫ ∞
0

h(s)E[kse
−Ks |Ft]ds .

The second equality is due to Aksamit and Jeanblanc, 2017, Corollary 2.10, the third equality is due to the
fact that X vanishes on the discontinuities of Z, so that

∫∞
0
XsdZs =

∫∞
0
XsdZ

c
s , then we use the fact that,

from (3.3.3) Zct = 1−
∫ t

0
e−Ks−dKc

s = 1−
∫ t

0
e−KsdKc

s = 1−
∫ t

0
e−Ksksds. �

Note that, in the case where the (τi)i are ordered, the same kind of computation leads to

E
[
h(τ)1{τi<τ<τi+1}|Ft

]
= E

[∫ ∞
0

1{τi<s<τi+1}h(s)kse
−Ksds|Ft

]
.

That is to consider Xt = h(t)1{τi<t<τi+1} = h(t)(1{τi<t} − 1{τi+1≤t}) which is F-optional and then since X
vanishes on the discontinuities of Z, it follows that

E[h(τ)1{τi<τ<τi+1}|Ft] = E[Xτ |Ft] = −E[

∫ ∞
0

XsdZ
c
s |Ft] .

The classical density hypothesis (CL) may not be satisfied if the continuous part of K is not absolutely
continuous (see, for example, the given counterexample in the case where K is continuous).
The extended density hypothesis (ED) is satisfied: it suffices to note that for u < t, P(τ ≤ u|Ft) = 1−e−Ku =∫ u

0
dDs with Ds = 1− e−Ks and mt ≡ 1.

3.3.3 The multiplicative decomposition of Z

Lemma 33 The multiplicative decomposition of Z is1

E(Y )tE(−Λ)t = E(Y )te
−Λt

∏
s≤t

(1−∆AIs)e
∆AIs

where E(−Λ) is the decreasing F-predictable part and E(Y ) is the F-local martingale part, with Yt =

∫ t

0

1

Zs−(1−∆AIs)
dMs,

where M being the martingale part of Z in its Doob-Meyer decomposition and Λ being the F-predictable re-
duction of the compensator of τ given in (3.3.2).

Proof: This result is established in full generality in Jeanblanc and Li (2020), where the authors "guess"
this form and check it. However, it seems interesting to recover that result without guessing this decompo-
sition, and we present a proof. By using the multiplicative decomposition of Z as Z = Ne−H , where H is
a predictable càdlàg increasing process and N a local martingale and by applying the integration by parts
formula using Yoeurp’s lemma, we obtain

dZt = e−HtdNt +Nt−de
−Ht .

1We recall that the Doléans-Dade exponential of a càdlàg semimartingale X is

E(X)t = eXt−
1
2
〈Xc,Xc〉t

∏
0<s≤t

(1 + ∆Xs)e
−∆Xs ,

where Xc is the continuous martingale part of X.



3.3. Case where K is càdlàg 43

By identifying this decomposition of Z and the DM decomposition of Z given in (3.3.4), one gets

e−HdN = dM, N−de
−H = −Z−(dKc + dAI) ,

hence dHc + 1− e−∆H = dKc + dAI which leads to

dHc = dKc + dAI,c and 1− e−∆H = ∆AI .

Finally, using the fact that Λ = Kc +AI = Kc +AI,c +
∑
s≤·∆A

I
s, we obtain

e−Ht = e−H
c
t e−

∑
s≤t ∆Hs = e−Λt

∏
s≤t

(1−∆AIs)e
∆AIs . (3.3.7)

The equality dN = eHdM can be written as dN = N−Y dM with Y = eH

N−
= e∆H

Z−
= 1

Z−(1−∆AI)
, hence,

using the fact that Λ = Kc +AI = Kc +AI,c +
∑
s≤·∆A

I
s = Hc +

∑
s≤·∆A

I
s, the proof is done. �

One can check that 1 −∆AI ≥ 0. This follows from (3.3.7). Another proof can be given from ∆AI =
p(∆I) = p(1 − e−∆K) = 1 − p(e−∆K) ≤ 1, where the first equality comes from Aksamit and Jeanblanc,
2017, Proposition 1.36 b. It follows that

∆Λ ≤ 1 . (3.3.8)

One can also check that 1 + ∆N > 0. Indeed,

∆N = −e−(K−+H)∆M I = −e−(K−+H)(1− e−∆K −∆AI) > −1 .

3.3.4 Particular case: K is càdlàg F -predictable

When the process K is càdlàg F-predictable, then Z = 1−Ap = 1−Ao. Furthermore, only the jump times
of K, which are all predictable, are F-stopping times not avoided by τ . The same model was presented in
Bélanger, Shreve, and Wong (2004), in a slightly more general case when Θ is not a unit exponential random
variable 2 (but is still independent of F). We assume that

Kt =

∫ t

0

ksds+
∑
i≥1

1{τi≤t}θi

where (τi)i is a strictly increasing sequence of F-predictable stopping times, k is an F-adapted non-negative
process with

∫ t
0
ksds < ∞, ∀t ≥ 0 and (θi)i a sequence of non-negative random variables with θi ∈ Fτi−

such that
∑∞
i=1 θi <∞. Note that I =

∑
i 1{τi≤·}(1− e−θi) is F-predictable and then AI = I and M I = 0.

3.3.5 Examples

In this subsection, we give some examples when the process K is càdlàg.

3.3.5.1 Brownian filtration

We construct a simple example where K is càdlàg (but not continuous) and predictable. Let F be a Brownian
filtration, (Tn, n ≥ 1) an increasing sequence of F-stopping times (e.g., Tn = inf{t : Wt = n}) and define
Kt =

∫ t
0
ksds +

∑
n 1{Tn≤t}θn where (θn)n≥1 is a sequence of non-negative random variables with θn ∈

2There is no matter if Θ is not an exponential random variable, since one can always reduce attention to the case with
exponential one by modifying K, thanks to the inverse transform sampling theorem, at least if Θ is a random variable with
strictly monotone cumulative distribution function. The case where Θ is not independent of F can be studied using the
F-conditional law of Θ (see El Karoui et al., 2014).
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FTn= FTn−, i.e., θn = c+
∫ Tn

0
ψ

(n)
s dWs for an F-predictable process ψ(n) (such that θn ≥ 0).

In this case, AI = I =
∑
n 1{Tn≤·}(1− e−c−

∫ Tn
0

ψ(n)
s dWs) and M I = 0.

3.3.5.2 Subordinator processes

Before going further, we recall the compensation formula for Lévy processes as described in Jeanblanc, Yor,
and Chesney, 2009, Proposition 11.2.2.3.

Proposition 34 Let X be a Lévy process with Lévy measure denoted by ν and let f be a non-negative
function such that f(0) = 0. Then,

E

 ∑
0<s≤t

f(∆Xs)

 = t

∫
R
f(x)ν(dx).

Furthermore, if
∫
R f(x)ν(dx) <∞, then

∑
0<s≤t f(∆Xs) is a Lévy process and the process

∑
0<s≤t

f(∆Xs)− t
∫
R
f(x)ν(dx)

is a martingale.

3.3.5.2.1 Case where K is a subordinator We consider the case where K is a pure subordinator,
i.e., a càdlàg Lévy process without drift with increasing paths (see, e.g., Jeanblanc, Yor, and Chesney, 2009,
Subsection 11.6; Cont and Tankov, 2004, Subsection 4.2.2). We denote by ν its Lévy measure, which is such
that ∫ ∞

0

(1 ∧ x)ν(dx) <∞ . (3.3.9)

We consider ψ : R+ → R+ to be the Laplace exponent of K, i.e., ψ verifies

E[e−uKt ] = e−tψ(u), t, u ≥ 0

and has the following expression

ψ(u) =

∫ ∞
0

(1− e−ux)ν(dx), u ≥ 0. (3.3.10)

Note that the restriction (3.3.9) implies that ψ is finite for all u ≥ 0.
The natural filtration of K is denoted by F. Our goal is to use the result of Lemma 30 in order to make
explicit the characteristics of the default time τ . For this purpose, since the continuous part of the process
K is null, it suffices to compute the compensator AI of the process It :=

∑
s≤t(1− e−∆Ks).

By considering the non-negative function f(x) = 1 − e−x, ∀x ≥ 0, one can apply Proposition 34 which
implies that

E

 ∑
0<s≤t

f(∆Ks)

 = E

∑
s≤t

(1− e−∆Ks)

 = t

∫ ∞
0

(1− e−x)ν(dx).

Since
∫∞

0
(1− e−x)ν(dx) = ψ(1) <∞, it follows that the process I is a subordinator and

It − t
∫ ∞

0

(1− e−x)ν(dx) = It − tψ(1) (3.3.11)
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is an F-martingale.
By consequence, the F-predictable reduction of the compensator of τ is given by

Λt = tψ(1). (3.3.12)

For any u, the process
nt(u) = e−uKt+tψ(u) (3.3.13)

is an F-martingale with E[nt(u)] = 1 (see, e.g., Cont and Tankov, 2004, Proposition 3.17). In particular, the
process n, defined as

nt := nt(1) = e−Kt+tψ(1) (3.3.14)

is an F-martingale.
Therefore, the survival probability of τ is given by

P (τ > t) = E[Zt] = E[e−Kt ] = E[nte
−tψ(1)] = e−tψ(1)

and its density is f(t) = ψ(1)e−tψ(1), i.e., τ has an exponential law.
For θ ≥ t, one has

P(τ > θ|Ft) = E[Zθ|Ft] = e−KtE[e−Kθ−t ] = e−Kte−ψ(1)(θ−t) = nte
−θψ(1) = nt

∫ ∞
θ

f(s)ds

so that for θ ≥ t, P(τ ∈ dθ|Ft) = ntf(θ)dθ.
Since Zu is not absolutely continuous w.r.t. Lebesgue’s measure, the (CL)-conditional density does not exist
in this model.
One can check the existence of the (GD)-conditional density by using Proposition 32 which implies that
α(u) = 0 because K has no continuous part (k = 0). This can be confirmed by the fact that

∑
i P(τ = τi) = 1

which implies that, for any bounded Borel function h, one has E
[
h(τ)

∏
i 1{τi 6=τ}

]
= 0.

Remark 35 These results about subordinators cover a wide range of examples because of the large families
of these kind of Lévy processes. This means that for any subordinator process that represents the process K
in the generalized Cox model, it suffices to know its Lévy measure in order to obtain all the characteristics
of the default time τ . In what follows, we present some examples of these processes.

Example 36 Compound Poisson process
We consider K a compound Poisson process with non-negative jumps (which is a subordinator), i.e., Kt =∑Nt
n=1 Yn, where N is a Poisson process with jump times (Tn, n ≥ 1) and intensity λ and (Yn, n ≥ 1)

non-negative random variables, i.i.d. and independent of N . Hence, the Lévy measure ν of K is given
by ν(dy) = λF (dy), where F is the cumulative distribution function of Y1, and its Laplace exponent ψ is
ψ(u) =

∫∞
0

(1 − e−uy)ν(dy) = λ
∫∞

0
(1 − e−uy)F (dy) = λ(1 − E[e−uY1 ]). Thus, from (3.3.12), the intensity

rate of τ is
ψ(1) = λ(1− E[e−Y1 ]).

In the particular case where Y1 has exponential distribution with parameter γ, then the F-predictable reduction
of the compensator of τ is tψ(1), where

ψ(1) =
λ

1 + γ
.

Example 37 Gamma process
Let K be the Gamma process denoted by (Gt(α, µ), t ≥ 0) which is a subordinator with Lévy measure

ν(dx) =
α

x
e−µx1{x>0}dx



46 Chapter 3. Generalized Cox model

with α, µ > 0. Hence, ψ(1) =
∫∞

0
(1− e−x)αx e

−µxdx and the F-predictable reduction of the compensator of τ
is

t

∫ ∞
0

(1− e−x)
α

x
e−µxdx.

Example 38 Tempered stable subordinator
In the case where K is a tempered stable subordinator, its Lévy measure ν is given by (see Cont and Tankov,
2004, Subsection 4.2.2)

ν(dx) =
γe−λx

xβ+1
1{x>0}dx,

where γ > 0, λ > 0, 0 ≤ β < 1. Therefore, the F-predictable reduction of the compensator of τ is then given
by t

∫∞
0

(1− e−x)γe
−λx

xβ+1 dx.

3.3.5.2.2 Case where K is a subordinator plus an absolutely continuous part We set

Kt =

∫ t

0

ksds+Xt

where k is a non-negative process adapted to the filtration FW generated by a Brownian motion W and X
a pure subordinator process independent of FW . We denote by FX the natural filtration of X and by ν its
Lévy measure. We define the reference filtration F as F = FW ∨ FX .
The multiplicative decomposition of Z = e−K is given by the following equality

Zt = nte
−

∫ t
0
ksds−tψ(1) (3.3.15)

where n is the FX -martingale (hence an F-martingale) defined in (3.3.14) and ψ is the Laplace transform of
X defined in (3.3.10).
By integration by parts, one obtains the Doob-Meyer decomposition of Z:

dZt = e−
∫ t
0
ksds−tψ(1)dnt − (kt + ψ(1))Ztdt . (3.3.16)

Hence, the F-dual optional projection Ao of τ , which is given by Ao = 1− Z, verifies

dAot = −e−
∫ t
0
ksds−tψ(1)dnt + (kt + ψ(1))Ztdt (3.3.17)

and the F-predictable part of this Doob-Meyer decomposition of Z which is the F-dual predictable projection
of τ , Ap satisfies

dApt = (kt + ψ(1))Ztdt. (3.3.18)

Thus, Λ, the F-predictable reduction of the compensator of τ is

dΛt = (kt + ψ(1))dt. (3.3.19)

This result can also be obtained by using Lemma 30. It suffices to note that It =
∑
i(1− e−∆Xτi )1{τi≤t} is

a submartingale with F-predictable part AIt = ψ(1)t.
The survival probability of τ is

P(τ > t) = E[Zt] = E
[
nte
−

∫ t
0
ksds−tψ(1)

]
= e−tψ(1)E

[
e−

∫ t
0
ksds

]
. (3.3.20)

This is due to the fact that the martingale n is independent of e−
∫ t
0
ksds and E[nt] = 1.

The default time admits a (GD) conditional density where the martingale family α is given by αt(u) =
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E[kue
−Ku |Ft], for all u, t ≥ 0 and the conditional survival process of τ is then given by for u ≥ t,

P(τ ≥ u|Ft) =

∫ ∞
u

αt(s)ds+
∑
i

1{τi≥t}p
i
τi∨t,

where pit = P(τ = τi|Ft) are given from (3.3.6) by

pit = E
[
e−

∫ τi
0 ksdse−Xτi−1 (1− e−∆Xτi )|Ft

]
.

3.3.5.3 Marked point process

If an increasing sequence (τi)i of F-stopping times and a sequence of non-negative random variables variables
(θi ∈ Fτi , i ≥ 1) are given, as well as a non-negative F-adapted process k, one can construct an increasing
càdlàg process K as Kt =

∫ t
0
ksds +

∑
i≥1 1{τi≤t}θi. This framework covers many cases of generalized Cox

model, i.e., all those where the sequence of jump times ofK is increasing and the continuous part is absolutely
continuous w.r.t. the Lebesgue measure.
The associated random time τ does not avoid the stopping random times (τi)i≥1 and we set τ0 = 0. We have
It =

∑
i≥1(1 − e−θi)1{τi≤t} =

∑
i≥1 γi1{τi≤t} = M I

t + AIt . We consider the marked point process (γi, τi)i

with jump measure µ defined as, for any Borel set A

µ(ω, [0, t], A) =
∑
i≥1

1{τi(ω)≤t}(ω)1{γi(ω)∈A}

and its compensator ν given by

ν(dt, dx) =
∑
i≥0

1{τi<t≤τi+1}
P(τi+1 ∈ dt, γi+1 ∈ dx|Fτi)

P(τi+1 > t|Fτi)

(see Last and Brandt, 1995a, Section 1.10). Then

It =

∫ t

0

∫
R+

xµ(ds, dx) = M I
t +AIt

where M is the martingale
∫ t

0

∫
R+ x(µ(ds, dx)− ν(ds, dx)) and AIt =

∫ t
0

∫
R+ xν(ds, dx). Furthermore, dApt =

e−Kt−(dKc
t + dAIt ).

3.3.5.4 A particular case of Marked point process

In the particular case of point process, i.e., Kt =
∑
i≥1 1{τi≤t} for an increasing sequence of (τi)i, denoting

by F the natural filtration of K, one obtains dApt = eKt−dAIt where I = (1 − e−1)K so that AI = (1 −
e−1)

∑
i≥1 J

i, where, for any i, the process J i is the F-compensator of Ai = 1{τi≤·}.
In the case where all the J i are continuous, the processN = Z exp Λ is a martingale, where Λt =

∫ t
0
dAps
Zs−

= AIt .

Hence, e−K+(1−e−1)
∑
i≥1 J

i

is a martingale.
One can recover the result of Giesecke and Zhu, 2013, Proposition 3.1 that, setting ψ(u) = 1 − e−u, the
process e−uK+ψ(u)

∑
i≥1 J

i
t is a martingale by considering the increasing process K̂ = uK.

Note that, if all the τi are predictable, K is predictable hence
∑
i≥1 J

i
t = K. Furthermore, as noticed in

Subsection 3.3.4 dAp = dI = −dZ. One has also AI = I, so that Λ = (1− e−1)K.

3.3.5.5 Shot-noise processes

Shot-noise processes have been introduced by Campbell (1909a), Campbell (1909b) in the context of study-
ing discontinuous phenomena and light emission and became popular in the whole physical domain with
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Schottky (1918), which earned him the nomination Schottky-noise. A wide variety of studies of these pro-
cesses have been developed in the actuarial sciences issues. These include the one of Schmidt (2014) for
modeling the aggregated losses process in catastrophe reinsurance. Dassios and Jang (2003), in pricing of
catastrophe reinsurance and derivatives, used shot noise process for modeling the intensity catastrophe event
times. Mikosch (2009) applied these processes in non life insurance. Recent works have been done in credit
risk; these include Scherer, Schmid, and Schmidt (2012) in portfolio default modeling where the authors used
the first-passage times of the common clock across independent exponentially distributed threshold levels
but they have not been interested in the default times characteristics. There is also the work of Herbertsson,
Jang, and Schmidt (2011) in pricing basket default swaps.

Definition 39 Let F be a given filtration, (τi)i be a strictly increasing sequence of F-stopping times with
τ0 = 0, and (γi) a sequence of random variables with γi ∈ Fτi . We consider µ the random jumps measure of
the marked point process (τi, γi)i defined as µ(ω, [0, t], A) =

∑
i 1{τi(ω)≤t}1{γi(ω)∈A} for A ∈ B(R) and ν its

compensator. We denote by µ̃ the compensated random measure µ̃ = µ− ν. We define the shot-noise process
X = (Xt)t≥0 (see Scherer, Schmid, and Schmidt, 2012) as

Xt =

∞∑
i=1

1{τi≤t}G(t− τi, γi) =

∫ t

0

∫
R
G(t− s, x)µ(ds, dx), ∀t ≥ 0 (3.3.21)

where the function G : R+ × R→ R+, called shots’ decay patterns, satisfies

G(t, x) = G(0, x) +

∫ t

0

g(s, x)ds ∀ t ≥ 0, x ∈ R (3.3.22)

with g a non-negative Borel function on R+×R, so that G is increasing with respect to its first variable. We
assume that ∫ T

0

∫
R

(g(s, x))2ν(ds, dx) <∞, ∀ T, a.s (3.3.23)

and there exists a non negative function ϕ such that

|g(s, x)| ≤ ϕ(x), ∀ (s, x) with
∫ T

0

∫
R
ϕ(x)ν(ds, dx) <∞, ∀ T a.s. (3.3.24)

Note that ∆Xτi = G(0, γi) for any i ≥ 1 and the continuous part ofX is given byXc
t =

∑
i≥1 1{τi≤t}[G(t−

τi, γi)−G(0, γi)].
The configurations of the function G lead to some different specifications of the shot-noise process X. For
instance, when G has the exponential structure, i.e., G(t, x) = xeαt1{x≥0}, for t ≥ 0 with α > 0, the process
X is Markovian (see Scherer, Schmid, and Schmidt, 2012, Example 2.1). Other varieties of the function G
can be found in Scherer, Schmid, and Schmidt (2012) and Schmidt (2014). The simple case G(t, x) = x

leads to a compound Poisson process, if the (τi)i are the jumps of a Poisson process N and (γi)i are i.i.d.
independent of N .

We aim to find the characteristics of the default time τ when K is the shot-noise process defined in
(3.3.21) (i.e., when K = X). In the next lemma, we give the decomposition of the increasing F-adapted
process (hence the F-submartingale) X which will be used later. Our result is similar to the one of Schmidt,
2014, Lemma 2 and we have an explicit form for the martingale part.
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Lemma 40 The shot-noise process X is an F-submartingale and admits the following Doob-Meyer decom-
position Xt = MX

t +AXt where the increasing F-predictable part AX is

AXt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ(ds, dx)

)
du+

∫ t

s=0

∫
R
G(0, x)ν(ds, dx)

and the F-martingale part MX has the following form:

MX
t =

∫ t

0

∫
R
G(0, x)µ̃(ds, dx) .

Proof: We extend the definition of G to R × R by setting G(u, x) = G(0, x), for u < 0. Introducing
Yt(a) =

∫ t
0

∫
RG(a− s, x)µ̃(ds, dx) for any a ∈ R, one has

Xt = Yt(t) +

∫ t

0

∫
R
G(t− s, x)ν(ds, dx).

We apply the Itô-Ventzell formula as developed in Øksendal and Zhang, 2007, Theorem 3.1 to the process
Yt(a) with parameter a, where forward integral in Øksendal and Zhang (2007) is usual integral in our setting,
due to the fact that we integrate only deterministic functions with respect to compensated random measure.
The first derivative of Yt(a) with respect to the parameter a is (see Metivier, 1982) due to (3.3.24),

Y ′t (a) =

∫ t

0

∫
R
g(a− s, x)µ̃(ds, dx).

Using Theorem 3.1 of Øksendal and Zhang (2007), it follows that

Yt(t) =

∫ t

u=0

Y ′u(u)du+

∫ t

s=0

∫
R
G(0, x)µ̃(ds, dx).

Note that
∫ t
u=0

Y ′u(u)du is a continuous bounded variation adapted process, hence is a predictable process.
Therefore,

Xt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ̃(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)µ̃(ds, dx) +

∫ t

0

∫
R
G(t− s, x)ν(ds, dx)

= MX
t +

∫ t

0

∫
R
G(t− s, x)ν(ds, dx) +

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ̃(ds, dx)

)
du

where MX is the local martingale
∫ t

0

∫
RG(0, x)µ̃(ds, dx). Using (3.3.22), one has∫ t

0

∫
R
G(t− s, x)ν(ds, dx) =

∫ t

s=0

∫
R

∫ t−s

u=0

g(u, x)du ν(ds, dx) +

∫ t

0

∫
R
G(0, x)ν(ds, dx).

By making the change of variable y = u+ s, one obtains∫ t−s

u=0

g(u, x)du =

∫ t

y=s

g(y − s, x)dy ,

hence by using stochastic Fubini’s theorem (see Protter, 2005, Theorem 65) valid under (3.3.23), one gets∫ t

0

∫
R
G(t− s, x)ν(ds, dx) =

∫ t

s=0

∫
R

∫ t

u=s

g(u− s, x)du ν(ds, dx) +

∫ t

0

∫
R
G(0, x)ν(ds, dx)

=

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x) ν(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)ν(ds, dx).
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Therefore,

Xt = MX
t +

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x) µ(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)ν(ds, dx) = MX

t +AXt

where AXt =
∫ t
u=0

(∫ u
s=0

∫
R g(u− s, x) µ(ds, dx)

)
du+

∫ t
0

∫
RG(0, x)ν(ds, dx). �

Now, we are ready to compute the F-predictable reduction of the compensator of the default time τ .
This is given in the next Lemma.

Lemma 41 If the process K is of the form (3.3.21), then the F-predictable reduction of the compensator of
τ has the following expression:

Λt =

∫ t

u=0

(∫
R

∫ u

s=0

g(u− s, x)µ(ds, dx)

)
du+

∫ t

0

∫
R

(1− e−G(0,x))ν(ds, dx) . (3.3.25)

Proof: The predictable part of the submartingale

It =
∑
i

1{τi≤t}(1− e
−∆Kτi ) =

∫ t

0

∫
R

(1− e−G(0,x))µ(ds, dx)

is AIt =
∫ t

0

∫
R (1− e−G(0,x))ν(ds, dx). In addition, the continuous part Kc of K is given by

Kc
t =

∑
i≥1

1{τi≤t}[G(t− τi, γi)−G(0, γi)] =

∫ t

s=0

∫
R

(∫ t−s

u=0

g(u, x)du

)
µ(ds, dx)

=

∫ t

u=0

(∫
R

∫ u

s=0

g(u− s, x)µ(ds, dx)

)
du.

Therefore, from Lemma 3.3.1, the F-predictable reduction of the compensator of τ is Kc +AI . �

Remark 42 Note that the F-predictable reduction of the compensator of τ can also be recovered by using
(1.2.1). Indeed, by Itô’s formula for semimartingales, one has

dZt = −e−Kt−dKt + e−Kt−(e−∆Kt − 1) + eKt−∆Kt

= e−Kt−
(
− dMK

t − dAKt + e−∆Kt − 1 + ∆Kt

)
.

Hence by denoting by m the martingale part of the Doob Meyer decomposition of Z, it follows that

dZt = Zt−

(
−dMK

t − dAKt +

∫
R

(e−G(0,x) − 1 +G(0, x))µ(dt, dx)

)
= dmt − dApt ,

where dApt = Zt−
(
dAKt +

∫
R(1− e−G(0,x) −G(0, x))ν(dt, dx)

)
. Hence by using (1.2.1), one obtains

dΛt = dAKt +

∫
R

(
1− e−G(0,x) −G(0, x)

)
ν(dt, dx).

The result follows by replacing AK by its expression, which is

AKt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x) µ(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)ν(ds, dx).

The following result gives the F-conditional law of τ in the particular case where ν is deterministic.
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Proposition 43 If ν is deterministic, then for any u ≥ t, one has

P(τ > u|Ft) = c(u)Lt(u) (3.3.26)

with c(u) = exp
(∫ u

0

∫
R(e−G(u−s,x) − 1)ν(ds, dx)

)
and L(u) is the martingale

Lt(u) = exp

(
−
∫ t

0

∫
R
G(u− s, x)µ(ds, dx)−

∫ t

0

∫
R

(e−G(u−s, x) − 1)ν(ds, dx)

)
.

For u < t, one has P(τ > u|Ft) = c(u)Lu(u) thanks to the immersion property.

Proof: Let Vt(u) = −
∫ t

0

∫
RG(u − s, x)µ(ds, dx) −

∫ t
0

∫
R(e−G(u−s, x) − 1)ν(ds, dx) for u ≥ t ≥ 0. By

applying Itô’s formula for semimartingales to the process Lt(u) = eVt(u), one has (where we denote, for u
fixed, Lt and Vt instead of Lt(u) and Vt(u)),

dLt = Lt− (dVt + e∆Vt − 1−∆Vt). (3.3.27)

By writing e∆Vt − 1−∆Vt =
∫
R
(
e−G(u−t,x) − 1 +G(u− t, x)

)
µ(dt, dx), one obtains

dLt = Lt−

∫
R

(e−G(u−t,x) − 1)µ̃(dt, dx) (3.3.28)

which implies that L is a local martingale. By (3.3.28), it is a true martingale.

If ν is deterministic, due to the fact that −Ku = Vu −
∫ u

0

∫
R(1− e−G(u−s,x))ν(ds, dx), one has for u > t

E[e−Ku |Ft] = c(u)Lt

where
c(u) = E[e−Ku ] = exp

(
−
∫ u

0

∫
R

(1− e−G(u−s,x))ν(ds, dx)

)
. (3.3.29)

in particular, we recover the special semimartingale feature of X proved in Altmann, Schmidt, and Stute,
2008, Proposition 2.1.

�

Remark 44 Note from (3.3.27) that ∆Lt(u) = eVt−(u)(e∆Vt(u) − 1) for 0 ≤ t < u.

3.4 Case where K is càglàd

We present the case where the increasing process K is left-continuous with right limits (càglàd) which
implies its predictability. Under this setting, we define the random time

τ = inf{t : Kt > Θ} (3.4.1)

to be able to characterize the set {Kt > Θ}.

Lemma 45 If K is càglàd, then defining τ as above (3.4.1), for all t ≥ 0, the following equality

{Kt ≤ Θ} = {τ ≥ t}

holds.
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Proof: As in Lemma 29, we proceed for ω fixed. The set {Kt > Θ} is either of the form [a,∞[ or of the
form ]a,∞[ and a = τ . If it is of the form [a,∞[ it would mean that a = τ is in the set {Kt > Θ}, hence
Kτ > Θ. By left-continuity of K, one should have Kτ−ε > Θ for ε small enough, hence a contradiction. It
follows that {Kt > Θ} =]τ,∞] = {t > τ}. �

Proposition 46 If K is càglàd, and τ = inf{t : Kt > Θ} , one has Z = e−K+ , dΛ = e−∆+K(dKc + dAC)

where AC is the predictable part of the supermartingale Ct =
∑
s≤t

(
e−∆+Ks − 1

)
.

Proof: Let κt := Kt+ = Kt+∆+Kt where ∆+Kt = Kt+−Kt. Let Jt =
∑
s≤t ∆+Ks, so that κt = Kc

t +Jt,
where Kc is the continuous part of K, defined as Kc

t = Kt −
∑
s≤t ∆+Ks.

From Lemma 45, one has Z̃t = P(τ ≥ t|Ft) = P(Θ ≥ Kt|Ft) = e−Kt and Zt = e−κt ( as Z̃+ = Z+ = Z (see
Aksamit and Jeanblanc, 2017, Subsection 1.3.4)), one has

dZt = −e−κt−dκt + (e−κt − e−κt− + e−κt−∆κt)

= −e−κt−dKc
t + e−κt−(e−∆κt − 1).

The decreasing càdlàg process C defined as Ct :=
∑
s≤t e

−∆κs−1 =
∑
s≤t e

−∆+Ks−1 admits a Doob-Meyer
decomposition C = MC −AC and

dZt = e−κt−dMC
t − e−κt−(dKc

t + dACt )

= e−KtdMC
t − e−Kt(dKc

t + dACt )

and dApt = e−Kt(dKc
t + dACt ), dΛt = e∆+Kt(dKc

t + dACt ). �

For u < t, the equality

P(τ ≤ u|Ft) = 1− e−κu =

∫ u

0

dDs ,

where Ds = 1− e−κs , proves that the extended LR-conditional density exists.
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Chapter 4

Application of the generalized Cox
model in credit risk modeling

In this chapter, as in the previous ones, we are working on a probability space (Ω,A,P), endowed with a
filtration F where a generalized Cox time (see Chapter 3) τ is defined and we consider G the progressive
enlarged filtration of F with τ . As in the previous chapters, we shall simply denote by Ap and Ao the F-dual
predictable and optional projections of the process A = 1{τ≤·}.
The aim of this chapter is to highlight the importance of the generalized Cox framework. As such, we present
some useful case studies in credit risk modeling through this model. We will be interested to the behavior
of the prices at the jump times of the generalized Cox process K used in the definition of τ (4.1.2).

4.1 Framework

We consider a defaultable bond (in what follows, we shall only write a DB) with maturity T and payoff given
by

ζ := 1{τ>T} + hτ1{τ≤T},

where the recovery h is a bounded process which is either F-predictable or F-optional and which we suppose
to be paid at the default time τ if τ ≤ T whereas the unit payoff is done at time T if no default has occured
before. In what follows, we suppose that the probability P is the pricing measure and the interest rate is
zero. By denoting by Pt(T ), t ≤ T the price of the defaultable bond which is given, for any t ≥ 0, as

Pt(T ) = E[1{τ>T} + hτ1{t<τ≤T}|Gt],

we define the pre-default price (see Elliott, Jeanblanc, and Yor, 2000) of the defaultable bond as the F-
adapted process D(T ) such that for any t ≥ 0,

Dt(T )1{τ>t} = Pt(T )1{τ>t}.

We also consider a Credit Default Swap (we only write a CDS) of maturity T , with spread κ and F-predictable
recovery δ which is a contract between two parties, the protection buyer and the protection seller having
their payoffs which depend on the default time τ of a reference entity. Under this contract, the seller is
committed to protect the buyer against the default of the entity by paying her δτ , at the default time τ , if
the default of the entity occurs before the maturity T . In exchange, the protection buyer pays a premium κ,
at some predetermined dates, to the protection seller till τ ∧ T . For simplicity we assume that the premium
is paid continuously, i.e., κdt is paid during [t, t+ dt] if t+ dt ≤ τ ∧ T .
From the buyer point of view, the price at time t < τ ∧T of the CDS, denoted CDSt(κ, δ, T ), is the difference
between the expected present value of the amount received by the protection buyer Dleg

t = E[δτ1{t<τ≤T}|Gt]
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and the one received by the protection seller P legt = E[
∫ T
t
1{u<τ}κdu|Gt], i.e.,

CDSt(κ, δ, T ) = E[δτ1{t<τ≤T} − κ(T ∧ τ − t)+|Gt] . (4.1.1)

By definition of the CDS contract, one has CDS0(κ, δ, T ) = 0 which determines the value of κ.

We consider the default time τ to be a generalized Cox time, i.e.,

τ = inf{t ≥ 0 : Kt ≥ Θ}, (4.1.2)

where K is an increasing càdlàg F-adapted process and Θ a unit exponential r.v. independent of F.
To make explicit the pre-default prices of the DB and the two legs of the CDS defined above, one needs to
specify the situation in which we are, i.e., whether or not the process K is subject to some economic shocks,
and if these shocks are predictable or not.
In what follows, we consider some different cases of the economy for which we compute the characteristics
of τ before plugging them into the pricing formula.

4.2 The model

We consider an increasing sequence of F-stopping times (τi)i, with τ0 = 0 and we define the increasing càdlàg
F-adapted process K as

Kt =

∫ t

0

ksds+
∑
i≥1

1{τi≤t}∆Kτi (4.2.1)

where k is a non-negative F-adapted process and ∆Kt = Kt −Kt− is non-negative.
The financial intuition behind this model can be seen in the particular case where the claim (DB) is issued
by an entity (E ) (which may be, for example, a firm or a sovereign country) with a risky asset S, tradable
in the financial market, assumed to be FW -adapted, where FW is the filtration generated by a Brownian
motion W , and FW ⊂ F. The asset S may be the total asset value of the entity (E ) when (E ) is a firm or
its solvency process when (E ) is a sovereign country. The process k which is supposed to be FW -adapted,
can be considered (as in Jiao and Li, 2018) to be a function of S, i.e., k = ϕ(S), where ϕ is a decreasing
non-negative function and the jump times (τi)i of the process K as the times of some possible economic
shocks which can affect the price of the claims. In this setting, the times of the shocks capture the exogenous
shocks of the economy while the process k captures the possible losses effect in the asset S, a useful type
of this process k being the so-called negative power process given as ϕ(S) = αS−p, with α and p some
non-negative constants, used by Linetsky (2006) in the context of pricing equity derivatives. The case where
the entity (E ) is a sovereign country and FW = F is studied by Jiao and Li (2018).

4.2.1 Case where the economic shocks are predictable

We consider the case where the jumps times (τi)i are F-predictable stopping times.
An example of this modeling consists in considering a decreasing sequence of positive fixed barriers (bi)i

and defining each τi as the first time the (positive) risky asset S (F-adapted and continuous), with S∞ = 0,
being below the barrier bi, i.e., τi = inf{t ≥ 0 : St ≤ bi}, with S0 > b1.
One can define the jumps size of the process K as follows:

Kτi −Kτi− = θi, (4.2.2)
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where (θi)i≥1 is a sequence of non-negative random variables with θi ∈ Fτi−. In this case, the process K
given by

Kt =

∫ t

0

ksds+
∑
i≥1

1{τi≤t}θi (4.2.3)

is increasing right-continuous F-predictable. This model which is the one of Bélanger, Shreve, and Wong
(2004) is a particular case of the one described in 3.3. In the particular case where θi = Ψ(τi) − Ψ(τi−1),
with Ψ an increasing function, we recover the generalized Jiao and Li model in which the associated K is

Kt = Γt +

∞∑
i=1

1{τi≤t} [Ψ(τi)−Ψ(τi−1)] (4.2.4)

with Γt =
∫ t

0
ksds.

Let us now investigate the pre-default price of the defaultable bond defined above under this setting (i.e.,
K predictable defined by (4.2.3)).
Since K is F-predictable the F-dual projections Ao and Ap are the same and are equal to (1 − Z). This
implies that the pricing of defaultable contingent claims can be done by using any of them. By identifying
Kc
t =

∫ t
0
ksds and AIt = It =

∑∞
i=1(1 − e−θi)1{τi≤t} (which is due to the fact that I is F-predictable

and increasing hence M I = 0), one deduces, from Lemma 30, that the F-predictable reduction Λ of the
compensator of τ is given by:

Λt =

∫ t

0

ksds+

∞∑
i=1

1{τi≤t}(1− e
−θi). (4.2.5)

From Proposition 32, the generalized density hypothesis is satisfied with αt(s) = E[e−Ksks|Ft] and from
Proposition 22 it follows

Zt = 1− P(τ ≤ t|Ft) = 1−
∫ ∞

0

1{u≤t}αt(u)du−
∞∑
i=1

1{τi≤t}p
i
τi

= 1−
∫ t

0

αu(u)du−
∞∑
i=1

1{τi≤t}p
i
t (4.2.6)

where we have used the fact that

1{τi≤t}p
i
t = 1{τi≤t}E[e−Kτi−(1− e−θi)|Ft] = 1{τi≤t}e

−Kτi−(1− e−θi)= 1{τi≤t}p
i
τi

and the fact that αt(u) = αu(u) on {t ≥ u}.

Proposition 47 The pre-default price at time t, denoted Dt(T ), of the defaultable bond has the following
expression

Dt(T ) = D̃t(T ) + D̂t(T ) (4.2.7)

where

D̃t(T ) = E

[
exp

(
−
∞∑
i=1

1{t<τi≤T}θi −
∫ T

t

ksds

)
|Ft

]
(4.2.8)

is the predefault price of the terminal payoff 1 and

D̂t(T ) =
E
[∫ T
t
huαT (u)du+

∑∞
i=1 hτip

i
τi1{t<τi≤T}|Ft

]
Zt

(4.2.9)

is the predefault price of the recovery.
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Proof: from the general pricing formula (1.3.1), one has

Dt(T ) = E
[
ZT
Zt
|Ft
]

+
E
[∫ T
t
hudA

p
u|Ft

]
Zt

= D̃t(T ) + D̂t(T ),

with

D̃t(T ) =E
[
ZT
Zt
|Ft
]

= E
[
eKt−KT |Ft

]
=E

[
exp

(
−
∞∑
i=1

1{t<τi≤T}θi −
∫ T

t

ksds

)
|Ft

]

and

D̂t(T ) =
E
[∫ T
t
hudA

p
u|Ft

]
Zt

.

Since on the set {τi ≤ t}, one has pit = piτi , and one obtains d(1{τi≤t}p
i
t) = piτidA

i
t, where Ait = 1{τi≤t}.

From the equality Apt = 1− Zt, by using the fact that αt(u) = αu(u) on the set {t > u}, one has

dApt = −dZt = αt(t)dt+

∞∑
i=1

pitdA
i
t

where we have used the equality (4.2.6). Therefore, it follows∫ T

t

hudA
p
u =

∫ T

t

huαu(u)du+

∞∑
i=1

∫ T

t

hup
i
udA

i
u

=

∫ T

t

huαu(u)du+

∞∑
i=1

hτip
i
τi1{t<τi≤T}.

Since αT (u) = αu(u) on {u ≤ T}, one obtains

E[

∫ T

t

hudA
p
u|Ft] =E

[∫ T

t

huαT (u)du+

∞∑
i=1

hτip
i
τi1{t<τi≤T}|Ft

]
.

By consequence,

D̂t(T ) =
E
[∫ T
t
huαT (u)du+

∑∞
i=1 hτip

i
τi1{t<τi≤T}|Ft

]
Zt

.

�

As we mentioned, we can construct the process K which jumps at the times (τi)i and in which we may
assume to know the laws of its jump sizes, its jump times and its continuous part as well as the joint law of
its jumps sizes. This allows us to get the F-predictable reduction of the compensator of τ given by (4.2.5)
of the default time τ which also jumps at the times (τi)i with known jumps size. This construction leads
to the same model as the model of Jiao and Li (2018) in context of modeling sovereign risks by means of
the setting in (4.2.4), in the sense that the two models have two identical Azéma supermartingales and both
verify the immersion property. Therefore, one can use our model in the modeling sovereign risks.

The inverse problem From (4.2.5), one has 1 −∆Λτi = e−θi > 0 and Kt = Λt −
∑∞
i=1 1{τi≤t}(1 −

e−θi − θi). Hence θi = − ln(1−∆Λτi) and

Kt = Λt −
∞∑
i=1

1{τi≤t} [∆Λτi − ln(1−∆Λτi)] . (4.2.10)
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Hence by giving a process Λ, increasing predictable continuous on right which jumps at some increasing
predictable times (τi)i, with τ0 = 0, and such that its jump size ∆Λτi at τi verifies 0 ≤ ∆Λτi < 1 (see
(3.3.8)), one can construct a default time τ which admits Λ as F-predictable reduction of the compensator
of τ under the Cox framework by defining K as in (4.2.10).

4.2.2 Case where some economic shocks are not predictable

When the economic shocks are no more predictable, one can consider for example their times of occurrence
as the jump times of a compound Poisson process or more generally a shot-noise process. Here, we give these
two examples.

4.2.2.1 Example of the compound Poisson process

We consider the times of occurrence of the shocks (τi)i as the jump times of a Poisson process N with
intensity λ and we introduce a Brownian motion W independent of N with natural filtration denoted by
FW . We set the following form of K:

Kt =

∫ t

0

ksds+Xt (4.2.11)

where k is an FW -adapted non-negative process and Xt =
∑Nt
i=1 Yi is a compound Poisson process with

(Yi, i ≥ 1) non-negative random variables i.i.d, independent of N and independent of FW . We denote by FX

the filtration generated by X and define the reference filtration F as the one generated by X and W .
This is a particular case of 3.3.5.2.2, where Xt :=

∑Nt
i=1 Yi admits the Laplace transform ψ defined, for

all u ∈ R+, by ψ(u) =
∫∞

0
(1 − e−uy)F (dy) with F the cumulative distribution function of Y1 and the

F-martingale n in the multiplicative decomposition of Z (3.3.15) is given by nt = exp (−Xt + tλψ(1)).

The pricing formula We assume that the recovery process h is a bounded F-predictable process,
then by using (3.3.17), one has

E

[∫ T

t

hsdA
o
s|Ft

]
= E

[
−
∫ T

t

hsdZs|Ft

]
= E

[∫ T

t

hsdA
p
s |Ft

]
.

The last equality is due to the fact that the conditional expectation of the integral w.r.t the martingale part
of Z vanishes. Thus one can either use Ao or Ap in the valuation of claims when dealing with predictable
recovery.

Proposition 48 The pre-default price Dt(T ) at time t of the defaultable bond is given by

Dt(T ) = D̃t(T ) + D̂t(T )

where the quantity D̃(T ) is given by

D̃t(T ) = e−(T−t)λψ(1) exp

(∫ t

0

ksds

)
E

[
exp

(
−
∫ T

0

ksds

)
|FWt

]
(4.2.12)

and D̂t(T ) has the following expression

D̂t(T ) =
1

Zt
E

[∫ T

t

(ku + λψ(1))huZudu|Ft

]
. (4.2.13)
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Proof: The quantity D̃t(T ) is given by

D̃t(T ) = E
[
eKt−KT |Ft

]
= E

[
exp

(
−
∫ T

t

ksds− (XT −Xt)

)
|Ft

]

= E

[
exp

(
−
∫ T

t

ksds

)
E[exp (−(XT −Xt)) |FWT ∨ FXt ]|Ft

]

where we have used the tower property in the last equality. The fact that the compound Poisson process X
is independent of FW and FXt ⊂ Ft leads to

D̃t(T ) = E

[
exp

(
−
∫ T

t

ksds

)
E[exp (−(XT −Xt)) |FXt ]|Ft

]

= E[exp (−(XT −Xt)) |FXt ]E

[
exp

(
−
∫ T

t

ksds

)
|Ft

]
.

The compound Poisson process X being with independent and stationary increments, one has

D̃t(T ) = E[exp (−XT−t)]E

[
exp

(
−
∫ T

t

ksds

)
|Ft

]
.

Thus by using the fact that E[exp (−XT−t)] = E[e−(T−t)λψ(1)nT−t] = e−(T−t)λψ(1), with the martingale n
given by nt = e−Kt+tλψ(1), and the independence of k from FX , one has

D̃t(T ) = e−(T−t)λψ(1)E

[
exp

(
−
∫ T

t

ksds

)
|FWt

]
.

The computation of D̂t(T ) follows by replacing dApt = (kt + λψ(1))Zt dt in

D̂t(T ) =
E
[∫ T
t
hudA

p
u|Ft

]
Zt

,

by means

D̂t(T ) =
E
[∫ T
t
hu(ku + λψ(1))Zu du|Ft

]
Zt

�

Term structure of defaultable bond with zero recovery If the recovery is zero, i.e., h = 0, the
pre-default price of the DB is given by

Dt(T ) = e−(T−t)λψ(1)E

[
exp

(
−
∫ T

t

ksds

)
|FWt

]
. (4.2.14)

Whenever k is an affine process, this leads to the following analytical solution

Dt(T ) = e−λψ(1)(T−t)Q̄t(T ),

with Q̄t(T ) := E
[
e−

∫ T
t
ksds|Ft

]
= eAt(T )−Bt(T )kt , where A and B are differentiable functions with AT (T ) = 0

and BT (T ) = 0 and verify generalized Riccati ODEs (see Duffie, Filipović, and Schachermayer, 2003).
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The pre-default yield spread St(T ) of the defaultable bond, which is the difference between the yield to
maturity at time t of the defaultable zero-coupon bond and the one of a risk-free zero-coupon bond, which
have the same maturity T , on {τ > t}, is given by

St(T ) = − 1

T − t
ln Dt(T ) = λψ(1)− 1

T − t
ln Q̄t(T ) . (4.2.15)

Furthermore, when the process k is affine, this leads to

St(T ) =λψ(1)− 1

T − t
[At(T )−Bt(T )kt] . (4.2.16)

For instance, we can consider the case where the process k is a CIR square root diffusion process, i.e., k
verifies

dkt = γ(θ − kt)dt+ σ
√
ktdBt, k0 = x,

where γ, θ, and σ are positive parameters. Then the quantities At(T ) and Bt(T ) are given by (see Maghsoodi,

1996): At(T ) = 2 γθσ2 ln

(
2h e

1
2

(γ+h)(T−t)

h−γ+eh(T−t)(h+γ)

)
and Bt(T ) = −2(eh(T−t)−1)

h−γ+eh(T−t)(h+γ)
, where h =

√
γ2 + 2σ2 .

Comments 49 We note that, under this model (where the jumps of K constitute a compound Poisson
process and the continuous part is adapted with respect to a Brownian motion, independent of the jump
part), the pre-default price of a DB with null recovery is continuous. Note that the pre-default price of the
defaultable bond is decreasing w.r.t. the intensity of the Poisson process N . Furthermore, one observes, for
any 0 ≤ t ≤ T , an additional positive value in the spread of the defaultable bond which equals to λψ(1). This
shows the impacts of the jumps of K (triggered by the economic shocks) on both the pre-default price and
spread of the defaultable bond.

4.2.2.2 Example of shot-noise processes

Let X a shot noise process defined as in 3.3.21 of Chapter 3 with ν deterministic. One considers the
filtration FW generated by a Brownian motion W independent of X and FX the filtration generated by the
shot noise process X. We define the reference filtration F as the one generated by X and W .

We consider

Kt =

∫ t

0

ksds+Xt (4.2.17)

where k is an FW -adapted non-negative process.

Proposition 50 Under the above hypotheses, the pre-default price Dt(T ) of the defaultable bond with zero-
recovery is given by

Dt(T ) = exp

(∫ T

t

∫
R

(e−G(T−s,x) − 1)ν(ds, dx)−
∫ t

0

∫
R

[G(T − s, x)−G(t− s, x)]µ(ds, dx)

)
Q̄t(T ),

(4.2.18)
with Q̄t(T ) := E

[
e−

∫ T
t
ksds|Ft

]
. Note that Q(T ) is continuous.

Proof: As in the proof of Proposition 48, one easily obtains

Dt(T ) = E[e−XT+Xt |Ft]Q̄t(T ) = eXtE[e−XT |Ft]Q̄t(T ).

The result follows by using Proposition 43 where one has

E[e−XT |Ft] = exp

(∫ T

t

∫
R
(e−G(T−s,x) − 1)ν(ds, dx)−

∫ t

0

∫
R
G(T − s, x)µ(ds, dx)

)
.
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�

Markovian shot-noise In the particular case where X has the following form

Xt =

∞∑
i=0

1{τi≤t}γie
α(t−τi) (4.2.19)

with (γi) non-negative random variables and α > 0, one obtains

Dt(T ) = exp

(∫ T

t

∫
R+

(e−xe
α(T−s)

− 1)ν(ds, dx)− (eα(T−t) − 1)Xt

)
Q̄t(T ) . (4.2.20)

This is due to the fact that G(T − s, x) := xeα(T−s) = eα(T−t)G(t− s, x). Furthermore, D(T ) has negative
jump size at (τi)i given by

∆Dτi(T )1{τi≤T} = Dτi−(T )
[
exp

(
−
(
eα(T−τi) − 1

)
γi

)
− 1
]
1{τi≤T}.

The pre-default bond yield, denoted by St(T ) is then given by

St(T ) := − 1

T − t

(∫ T

t

∫
R+

(e−xe
α(T−s)

− 1)ν(ds, dx)− (eα(T−t) − 1)Xt + ln(Q̄t(T ))

)
(4.2.21)

and has a positive jump’s size at time τi given on {τi < T} by

∆Sτi(T )1{τi≤T} =
1

T − τi
(eα(T−τi) − 1)∆Xτi1{τi≤T} =

1

T − τi
(eα(T−τi) − 1)γi1{τi≤T}. (4.2.22)

Hence the jumps of K imply some negative jumps of the pre-default price of the defaultable bond and some
positive jumps of its pre-default yield spread both at the same jump times of K.

Remark 51 Note, from (4.2.20), that if (γi, τi)i is associated to an increasing compound Poisson process
(hence ν(dt, dx) = λF (dx)dt, where F is the law of γ1) and k = 0, between two jumps, i.e., on τi < t < τi+1,
the process D(T ) defined as

Dt(T ) = exp

(∫ T

t

∫
R+

(e−xe
α(T−s)

− 1)λF (dx)ds− (eα(T−t) − 1)(Xτi + γie
α(t−τi)

)

is increasing.
Indeed since e−xe

α(T−t) − 1 is non-positive,
∫ T
t

∫
R+(e−xe

α(T−s) − 1)λF (dx)ds is increasing in t and

(eα(T−t) − 1)(Xτi + γie
α(t−τi)) = (eα(T−t) − 1)Xτi + γie

α(T−τi) − γieα(t−τi)

and (eα(T−t) − 1)Xτi as well as −γieα(t−τi) are decreasing with respect to t.

4.2.3 Valuation of the CDS under economic shocks

The same kind of computations as in the case of the defaultable bond allows to obtain the pre-default price
of two legs of the CDS.
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4.2.3.1 The economic shock times are predictable

When the default time of the reference entity follows a generalized Cox model with K defined as in (4.2.1),
with the assumption that the jump times of K are predictable, the value of the default payment leg at time
t is given by

Dleg
t = 1{τ>t}E[δτ1{τ≤T}|Gt] = 1{τ>t}

E
[∫ T
t
δuαT (u)du+

∑∞
i=0 δτip

i
τi1{t<τi≤T}|Ft

]
Zt

.

This computation is the same as in (4.2.9) of Proposition 47, where δ plays the rule of h. The price of the
premium leg at time t is given, on {τ > t}, by

P legt = 1{τ>t}E[

∫ T

t

1{u<τ}κdu|Gt] = 1{τ>t}

E
[
κ
∫ T
t
Zudu|Ft

]
Zt

.

The spread κ of the CDS is the one which verifies P leg0 = Dleg
0 and its expression is given by

κ =
E
[∫ T

0
δuαT (u)du+

∑∞
i=0 δτip

i
τi1{τi≤T}

]
E
[∫ T

0
Zudu

] .

4.2.3.2 CDS price under surprising economic shocks: example of the compound Poisson
process

Whenever the process K is given by (4.2.11) the price of the default payment leg at time t is given by

Dleg
t = 1{τ>t}

1

Zt
E

[∫ T

t

(ku + λψ(1))δuZudu|Ft

]

whereas the value of the premium leg at time t is given by

P legt = 1{τ>t}

E
[
κ
∫ T
t
Zudu|Ft

]
Zt

= 1{τ>t}

E
[
κ
∫ T
t
e−Xue−

∫ u
0
ksdsdu|Ft

]
Zt

.

By using the Tower property one has

P legt = 1{τ>t}

κ
∫ T
t
E
[
e−

∫ u
0
ksdsE

[
e−Xu |FWu ∨ FXt

]
|Ft
]
du

Zt
.

The fact that X is independent of FW and FXt ⊂ Ft implies

P legt = 1{τ>t}

κ
∫ T
t
E
[
e−

∫ u
0
ksds|Ft

]
E
[
e−Xu |FXt

]
du

Zt

Using the independence property of W and FX , we obtain

P legt = 1{τ>t}

κ
∫ T
t
E
[
e−Xu |FXt

]
E
[
e−

∫ u
0
ksds|FWt

]
du

Zt

= 1{τ>t}

κ
∫ T
t
nte
−uψ(1)E

[
e−

∫ u
0
ksds|FWt

]
du

Zt

= 1{τ>t}
κ
∫ T
t
e−uψ(1)yt(u)du

e−tψ(1)
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where yt(u) = E
[
e−

∫ u
0
ksds|FWt

]
. Therefore, the spread κ can be computed from P leg0 = Dleg

0 which leads
to

κ =
E
[∫ T

0
(ku + λψ(1))δuZudu

]
∫ T

0
e−uψ(1)y0(u)du

. (4.2.23)

4.2.4 General framework of dynamics of defaultable Bond

In this subsection, we will be interested in the dynamics of the pre-default prices of defaultable bond with
zero recovery, in a more general case, when the default time follows a generalized Cox time under which the
process K is càdlàg. One knows that for any maturity T , the pre-default price Dt(T ) at time t < T has the
following form

Dt(T ) =
E[ZT |Ft]

Zt
=: Yt(T )eKt

where Y (T ) is the F-martingale defined by Yt(T ) := E[ZT |Ft].
When there is no ambiguity, we delete T in the notation (i.e., we denote for T fixed Yt instead of Yt(T ),

for t < T ).
By Itô’s integration by parts, one has, for 0 ≤ t < T ,

dDt(T ) = Yt−de
Kt + eKt−dYt + d[Y, eK ]t

= Yt−e
Kt−

(
dKc

t + dJt) + eKt−dYt + d[Y, eK ]t

where J is the increasing process (hence a submartingale with a Doob-Meyer decomposition) Jt =
∑
s≤t(e

∆Ks−
1) = MJ

t + AJt . The covariation process [Y, eK ]t =
∫ t

0
∆Ysde

Ks is a semimartingale, that we assume to be
special with decomposition [Y, eK ] = A∗+M∗ where M∗ is a local martingale and A∗ a predictable process.

Therefore, the local martingale part MD(T ) of D(T ) is given by

MD
t (T ) =

∫ t

0

Ys−e
Ks−dMJ

s +

∫ t

0

eKs−dYs +M∗t (4.2.24)

and its predictable bounded variation part AD(T ) is given by

ADt (T ) =

∫ t

0

Ys−e
Ks−

(
dKc

s + dAJs ) +A∗t . (4.2.25)

4.2.4.1 Examples

In this subsection, we give some particular cases which lead to more explicit formulae. In addition, we
analyse the impacts of the jumps times of the generalized Cox process K to the prices.

Example 52 If F is a continuous filtration, Y is continuous, hence [Y, eK ] = 0. Furthermore, since optional
processes are predictable1 , J is predictable and MJ = 0, AJ = J . Hence,

dDt(T ) = Ytde
Kt + eKt−dYt = Yte

Kt−
(
dKc

t + dJt) + eKt−dYt = Yte
KtdΛt + eKt−dYt (4.2.26)

and the special semimartingale D(T ) has a (continuous) local martingale part

MD
t (T ) =

∫ t

0

eKs−dYs, ∀ 0 ≤ t < T

1In a continuous filtration, the two σ-algebra O(H) and P(H) are equal (see (Jeanblanc, Yor, and Chesney, 2009, Page 512)).
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and a predictable part

ADt (T ) =

∫ t

0

Yse
Ks−dKc

s +

∫ t

0

Yse
Ks−dAJs , ∀ 0 ≤ t < T.

It is clear, from (4.2.26), that the predefault-price D(T ) has predictable positive jumps at the jumps times
(τi)i of K which are given by

∆Dτi(T )1{τi<T} = Dτi−(T )∆AJτi1{τi<T} = Dτi−(T )(e∆Kτi − 1)1{τi<T}.

Example 53 If K is predictable, MJ ≡ 0 and AJ = J , and by Yoeurp’s lemma [Y, eK ]t =
∫ t

0
∆eKsdYs which

is the local martingale that we have denoted M∗. Then eKs−dYs + dM∗s = (eKs− + ∆eKs)dYs = eKsdYs and
the local martingale part of Dt(T ) is

MD
t (T ) =

∫ t

0

eKsdYs, ∀ 0 ≤ t < T. (4.2.27)

The predictable bounded variation part is

ADt (T ) =

∫ t

0

Ys−e
Ks−

(
dKc

s + dJs), ∀ 0 ≤ t < T. (4.2.28)

Note that, for any 0 ≤ t < T ,

eKt−
(
dKc

t + dJt) = eKtdKc
t + eKtdIt = eKtdΛt

so that the predictable part is

ADt (T ) =

∫ t

0

Ys−e
KsdΛs, ∀ 0 ≤ t < T.

In this case, the predefault price D(T ) has jumps at the jump times of K with sizes given, for all 0 ≤ t < T ,
by

∆Dτi(T )1{τi<T} = Dτi−(T )
(
e∆Kτi

Yτi
Yτi−

− 1
)
1{τi<T}.

Example 54 If F is generated by a Brownian motion W (hence a continuous filtration) and K predictable,
using the fact that Y (T ) is a strictly positive F-local martingale which can be written, thanks to the martingale
representation theorem, as dYt(T ) = φt(T )Yt(T )dWt, for an F-predictable process φ(T ), one obtains

dDt(T ) = Dt(T ) (dΛt + φt(T )dWt) . (4.2.29)

We recover the result of Bélanger, Shreve, and Wong, 2004, formula 5.3, Theorem 5.1 in the case of zero
recovery.

Example 55 We assume to be in the case of shot-noise model presented in Subsection 4.2.2.2, and ν is
deterministic. From the results of Subsection 4.2.2.2, it follows that if k = 0 then

Dt(T ) = exp
(∫ T

t

∫
R

(e−G(T−s,x) − 1)ν(ds, dx)−
∫ t

0

∫
R

[G(T − s, x)−G(t− s, x)]µ(ds, dx)
)
.

The dynamics of D(T ) can be deduced by Itô-Ventcell’s formula. We prefer to make use of the general results
presented in the first part of this section, with Yt = c(T )Lt(T ), where c(T ) = exp

(∫ T
0

∫
R(e−G(T−s,x) − 1)ν(ds, dx)

)
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and

Lt(T ) = exp

(
−
∫ t

0

∫
R
G(T − s, x)µ(ds, dx)−

∫ t

0

∫
R

(e−G(T−s, x) − 1)ν(ds, dx)

)
.

The jumps of Y and eK occur at times τi. One has, from (3.3.28)

∆Yτi = Yτi−(e−G(T−τi,γi) − 1)

∆(eK)τi = eKτi−(eG(τi−τi,γi) − 1) = eKτi−(eG(0,γi) − 1) .

Hence

[Y, eK ]t =
∑
s≤t

∆Ys∆(eK)s =

∫ t

0

Ys−e
Ks−

∫
R

(e−G(T−s,x) − 1)(eG(0,x) − 1)µ(ds, dx)

= M∗t +

∫ t

0

Ys−e
Ks−

∫
R

(e−G(T−s,x) − 1)(eG(0,x) − 1)ν(ds, dx) . (4.2.30)

As in section 3.3.5.5 for the computation of AI , we obtain

AJt =

∫ t

s=0

∫
R

(eG(0,x) − 1)ν(ds, dx),∀t ≥ 0 ,

Therefore, the local martingale part of D(T ) is

MD
t (T ) =

∫ t

0

Ys−e
Ks−dMJ

s +

∫ t

0

eKs−dYs +M∗t

where

M∗t =

∫ t

0

∫
R
Ys−e

Ks−(e−G(T−s,x) − 1)(eG(0,x) − 1)µ̃(ds, dx),∀t ≥ 0

MJ
t =

∫ t

0

∫
R

(eG(0,x) − 1)µ̃(ds, dx),∀t ≥ 0

so that the local martingale part reduces, after simple computation, to

MD
t (T ) =

∫ t

0

∫
R
Ys−e

Ks−
(
e−(G(T−s,x)−G(0,x)) − 1

)
µ̃(ds, dx) (4.2.31)

and the predictable bounded variation part is

ADt (T ) =

∫ t

0

∫
R
Ys−e

Ks−e−G(T−s,x)(eG(0,x) − 1)ν(ds, dx) .

In this case the predefault price D(T ) admits negative jumps at the jump times (τi)i of K which are given
by

∆Dτi(T )1{τi<T} = Dτi−(T )
(
eG(0,γi)−G(T−τi,γi) − 1

)
1{τi<T} (4.2.32)

which can be directly obtained from (4.2.31).

Example 56 In the case of the Compound Poisson process and a Brownian filtration as given subsection
4.2.2.1, one has Dt(T ) which is given by (4.2.14) that shows that D(T ) is a continuous process. Setting
yt(T ) = E[exp

(
−
∫ T

0
ksds

)
|FWt ] and ηt(T ) = e−(T−t)λψ(−1) exp

( ∫ t
0
ksds

)
, the dynamics of Dt(T ) is

dDt(T ) = ηt(T )dyt(T ) + yt(T )ηt(T )(λψ(−1) + kt)dt
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where y(T ) is a continuous F-martingale.

As a remark, we can note that it is not difficult to obtain (up to Kc) the same form for the dynamics of
D(T ) (with longer computation) using the previous equalities. Indeed, as noticed previously, the CCP corre-
spond to the case when the shot noise is obtained from G(t, x) = x. Then, Yt = e−Xt−(T−t)λψ(−1)E[exp

(
−∫ T

0
ksds

)
|FWt ] and we obtain

[Y, eK ]t =
∑
s≤t

∆Ys∆(eK)s = M∗t +

∫ t

0

Ys−e
Ks−

∫
R

(2− ex − e−x)λF (dx)ds .

4.2.4.2 Illustrative example of the shot-noise case

Here, we present the simulation results of the generalized Cox model in the case of Markovian shot-noise
introduced in 4.2.2.2. This choice is due to the fact that the Markovian shot-noise processes are preferable
for the computational perspective thanks to their analytical tractability.
The simulation of the particular case (where (γi)i are i.i.d) of the process given in (4.2.19) is done by using the
standard Algorithm 2.1 of Scherer, Schmid, and Schmidt (2012). In Figure 4.1, we illustrate one trajectory
of K where, as in (4.2.19), Kt =

∑∞
i=0 1{τi≤t}γie

α(t−τi), in between 0 and T = 6 years, with i.i.d exponential
jumps (γi)i of parameter γ = 5, with parameter α = 0.5 and where the jumps times τi are jumps of a Poisson
process N independent of the (γi)i with intensity λ = 0.4. One can observe three jumps of the shot-noise at
times τ1 = 2.028, τ2 = 2.994 and τ3 = 4.254 with respectively sizes γ1 = 0.045, γ2 = 0.014, and γ3 = 0.094.
Figure 4.2 shows the corresponding time-varying Bond prices computed using (4.2.20) where k = 0 (with
ν(ds, dx) = λF (dx)ds, where F is the law of γ1). Unsurprisingly, one observes three negative jumps of the
prices at the same jump times of the shot-noise. In addition, the bond price is increasing between the jumps
times as we have shown in Subsection 4.2.2.2.
We end this example by investigating the survival probability of the default time τ which can be computed
by using (3.3.29). Figure 4.3 shows this survival probability for different values of the the decay rate α,
and different values of the intensity λ of the Poisson process N . It is clear that the survival probability is
decreasing with respect to the intensity λ of N . However the speed of the degrowth increases with respect
to the decay rate α.

Figure 4.1: One path of K which is given as in the form (4.2.19)
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Figure 4.2: Predefault bond price for the corresponding path of the Fig 4.1

Figure 4.3: Survival probability of τ for different values of α with different values of λ.
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Part II

Kriging for volatility surfaces
construction
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Chapter 5

An introduction to kriging

In this chapter, we first, briefly recall some known facts about classical kriging before introducing the
constrained kriging approach which extends the classical one in presence of some linear inequality constraints
(such as monotonicity, bounded, convexity,...). More details about classical kriging can be found in Williams
and Rasmussen (2006). Among the existing approaches for constrained kriging, we adopt the technique from
Maatouk and Bay (2014) which is based on a finite dimensional approximation of the Gaussian processes
prior. Note that this approach has been extended by López-Lopera et al. (2018) to more general linear
constraints. However, in this thesis, we limit ourselves to convexity and monotonicity constraints that can
be treated using the model of Maatouk and Bay (2014). A particular interest is focused on the simulation of
the Gaussian random coefficients when some monotonicity constraints are saturated (see Subsection 5.2.4.2),
a problem that is frequent in practice. Indeed this saturation leads to problems of efficient samples when
using the improved rejection sampling (the RMS algorithm) developed by Maatouk and Bay (2016). As such,
we consider an adapted basis function grid for allowing the efficiency of this sample method. We illustrate
this problem through an example.

5.1 Classical kriging

Assume a function f of d-dimensional variables x ∈ Rd to be known only at some input locations x1, ...,xn,
with xi ∈ Rd, for i = 1, ..., n. In order to estimate the function f in the entire input domain, one can
use kriging (also known as Gaussian process regression) which consists in considering the unknown function
f as a realization of a Gaussian process (GPs) (Y (x),x ∈ Rd) and estimating the conditional process
Y |Y (x1) = f(x1), ...., Y (xn) = f(xn). The GPs

(
Y (x),x ∈ Rd

)
is a collection of random variables, any

finite number of which have (consistent) joint Gaussian distributions (see Williams and Rasmussen, 2006)
and is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R

and its covariance function (also called kernel)

K : (x,x′) ∈ Rd × Rd −→ Cov(Y (x), Y (x′)) ∈ R.

We consider the covariance function K to be defined such that Y has almost surely continuous and differen-
tiable paths. For instance, in the empirical investigation, we consider the d-dimensional isotropic covariance
kernel given, for any x = (x1, ..., xd) and x′ = (x′1, ..., x′d) as

K(x,x′) = σ2
d∏
i=1

Ri(x
i − x′i, θxi)
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where θ = (θx1 , ..., θxd) ∈ Rd and σ are respectively the length scale and the variance hyper-parameters of
the kernel function K and the functions (Ri)i are kernel correlation functions. These hyper-parameters can
be either specified (based on expert knowledge) or estimated by using some existing methods in the literature
(see Subsection 5.1.2). Some usual kernel correlation functions are presented in Table 5.1, they are ranked
by degree of regularity.
Note that changing the kernel K means changing the initial belief on f (i.e., the prior). Figure 5.1 shows
how the choice of the kernel affects the paths of the GPs.

1D kriging kernel K(x, x′) Class
Gaussian σ2 exp

(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(

1 +
√

5|x−x′|
θ + 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(

1 +
√

3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x

′|
θ

)
C0

Table 5.1: Some usual kernel correlation functions in kriging techniques.

Figure 5.1: Sample paths of the Gaussian prior Y for different choices of kernel function
with parameters σ2 = 1 and θ = 0.2.

By denoting X = [x1, . . . ,xn]
> ∈ Rn×d a d-dimensional design points, y = [y1, . . . , yn]> ∈ Rn, the

observed values of f at these points (i.e, yi = f(xi), for i = 1, ..., n) and Y (X) = (Y (x1), . . . , Y (xn))
> the

vector composed of Y at X, the conditional process (called the posterior process) Y |Y (X) = y is a GPs
with mean function (see Williams and Rasmussen, 2006)

η(x) = µ(x) + c(x)>C−1(y − µ), x ∈ Rd (5.1.1)
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and covariance function K? given by

K?(x,x′) = K(x,x′)− c(x)>C−1c(x′), x,x′ ∈ Rd (5.1.2)

where µ = µ(X) = [µ(x1), . . . , µ(xn)]
>
,C is the covariance matrix of Y (X) and c(x) = [K (x,x1) , . . . ,K (x,xn)]

>.

Without consideration of any inequality constraint on the function f , kriging prediction and uncertainty
quantification are made using the posterior process Y |Y (X) = y. This is known as classical kriging (or
unconstrained kriging). In this case, the Best Linear Unbiased Estimator of Y (x) is the posterior mean
function (5.1.1) which is also called (unconstrained) kriging mean (see Jones, Schonlau, and Welch, 1998).
We can then use the conditional covariance function (5.1.2) to obtain confidence bands arround the predicted
function. The hyperparmeters of the kernel function K can be either specified or estimated using, for instance,
the maximum likelihood estimator (MLE) (see Subsection 5.1.2).

5.1.1 Presence of noise :

The previous framework can be extended to the case when yi = f(xi)+εi for i = 1, ...n, where εi is assumed
to be a zero-mean Gaussian random variable with homoscedastic variance ς2 and εi independent from Y . In
this setting, the conditional process Y |Y (X) + ε = y, where ε = (ε1, ..., εn)> ∈ Rn is a zero-mean Gaussian
vector with covariance matrix ς2In (In being the identity matrix of dimension n), is still a GPs with mean
function (see Williams and Rasmussen, 2006)

η(x) = µ(x) + c(x)>
(
C + ς2In

)−1
(y − µ), x ∈ Rd

and covariance function K? given by

K?(x,x′) = K(x,x′)− c(x)>
(
C + ς2In

)−1
c(x′), x,x′ ∈ Rd.

5.1.2 Hyper-parameters learning :

Hyper-parameters consist in the length scale θ and the variance parameter σ of the kernel function K as well
as the noise parameter ς. The most commonly used methods for estimating them are cross validation (CV)
(see, e.g., Bachoc, 2013; Zhang and Wang, 2010) and Maximum Likelihood Estimators (MLE) (see Jones,
Schonlau, and Welch, 1998). We only present the MLE which will be used later (we shall say why in the
section dealing with the constrained kriging).
By considering a Zero-mean Gaussian Y (i.e., µ = 0) the MLE consists in maximizing the marginal log
likelihood for Y with respect to the parameter λ = [θ, σ, ς]>. This log marginal likelihood has the following
form (see Williams and Rasmussen, 2006, section 2.2):

L(λ) = −1

2
y>(C + ς2In)−1y − 1

2
log(det(C + ς2In))− n

2
log(2π) (5.1.3)

where y = [Y (x1), . . . , Y (xn)]
> and X = (x1, . . . ,xn)

>. Hence the vector of estimated parameters λ̂ verifies
:

λ̂ = arg maxλL(λ) .

This can be solved by using, for example, the gradient ascent method.
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5.2 Constrained kriging

In Machine Learning techniques, learning a function f of the data mapping when f is subjected to some
inequality constraints is not an easy task most especially in Gaussian process regression. Suppose the
unknown real function f is observed with some noises and such that f belongs to a set of inequality constraints
M, i.e.,

f : D → R

such that {
f(X) + ε = y

f ∈M
(5.2.1)

whereM is a convex set of functions satisfying some shape properties.
For instance,M can be one of the following convex sets:

• Md
0 := {f ∈ C(Rd,R) | ymin ≤ f(x) ≤ ymax, ∀x ∈ D}

• M1
1 := {f ∈ C(R,R) | f is non-decreasing}

• M1
2 = {f ∈ C(R,R) | f is convex}

• M2
12 = {f ∈ C(R2,R) | f is non-decreasing in x and convex in y}.

Because making a Gaussian prior in f leads to the fact that the posterior is no Gaussian anymore and the
shape conditions are usually infinite-dimensional, we propose to use the finite dimensional approximation
of the Gaussian prior on f (see Maatouk and Bay, 2014) for which the constraints can be imposed in the
entire domain D with finite number of checks. In the next subsection, we present this approximation in
one dimensional case. The two dimensional one can be directly obtained with little modifications of the one
dimensional case and will be presented in Chapter 6.

5.2.1 Finite dimensional approximation of GPs in 1d

We consider the input domain D to be an interval in R of the form D = [x, x] of R and we make a
Gaussian prior Y on f with covariance function K and (for simplicity) zero-mean. We discretize D on
a regular subdivision u0 < . . . < uN with a constant mesh δ. For each ui, we consider hat functions
φi(x) := max

(
1− |x−ui|δ , 0

)
. The Gaussian process Y is approximated on D by the process Y N given by

(see Maatouk and Bay, 2014; Cousin, Maatouk, and Rullière, 2016)

Y N (x) =

N∑
i=0

Y (ui)φi(x). (5.2.2)

The interest of using piecewise linear basis function is the fact that Y N is a piecewise and the inequality
constraints are satisfied everywhere in the input domain whenever they are satisfied at the knots.

Let Φ(x) denote the vector of size N + 1 given by Φ(x) = (φ0(x), ...., φN (x))> and let Φ(X) denote the
n× (N + 1) matrix of basis functions in which each row l corresponds to the vector Φ(xl).

Proposition 57 (see Maatouk and Bay, 2014)
The following results hold.

• The finite-dimensional process Y N (·) =
∑N
i=0 Y (ui)φi(·) uniformly converges to Y on D as N → ∞,

almost surely.

• Y N (x) = Φ(X)ξ where ξ := (Y (u0), . . . , Y (uN ))> is a zero-mean Gaussian vector with covariance
matrix ΓN such that ΓNi,j = K(ui, uj), for i, j = 1, ..., N .
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Some shape-preserving conditions :

1) Y N takes values on [ymin, ymax] if and only if ymin ≤ ξi ≤ ymax, i = 0, . . . , N

2) Y N is non-decreasing on D if and only if ξi+1 ≥ ξi, i = 0, . . . , N − 1

3) Y N is convex on D if and only if ξi+2 − ξi+1 ≥ ξi+1 − ξi, i = 0, . . . , N − 2.

In accordance with Proposition 57, kriging the unknown function f boils down to finding the conditional
distribution of Y N given {

Y N (X) + ε = y

Y N ∈M
. (5.2.3)

This is equivalent to finding the distribution of the truncated Gaussian vector ξ ∼ N (0,ΓN ) given that{
Φ(X) · ξ + ε = y

ξ ∈ Cineq
(5.2.4)

where Cineq is a set of linear inequality constraints on ξ as given in 2) and 3) of Proposition 57.

5.2.2 The most probable response curve and measurement noises

The maximum a Posteriori (MAP) of the Gaussian process Y N conditionally to (5.2.3) satisfies the inequality
constraints on the entire domain of interest and corresponds to the most likely curve (see Cousin, Maatouk,
and Rullière, 2016). Its expression is given by

νY N (x) :=

N∑
i=0

νiξφi(x) (5.2.5)

where νξ =
(
ν0
ξ, . . .ν

N
ξ

)>
is the MAP of the truncated Gaussian vector ξ which is the solution of the

following convex optimization problem (see, e.g., Cousin, Maatouk, and Rullière, 2016):

min
Φ·ϑ+ε=y, ϑ∈Cineq

(
1

2
ϑ>(ΓN )−1ϑ), (5.2.6)

where ΓN is the covariance matrix of ξ, where we have used the the shorthand Φ(X) = Φ.
The solution of the optimization problem (5.2.6) can also be obtained by maximizing the he density function
of the conditional Gaussian vector ξ|ξ ∈ Cineq restricted to Cineq which leads to

νξ ∝ arg max
ϑ∈Cineq

exp{−1

2
(ϑ− µcond)>Σ−1

cond(ϑ− µcond)}

where µcond and Σcond are respectively defined by (5.2.9) and (5.2.10).
Therefore the MAP of the truncated Gaussian vector ξ is also given by

νξ = arg min
ϑ∈Cineq

(
1

2
ϑ>Σ−1

condϑ− ϑ
>Σ−1

condµcond). (5.2.7)

Remark 58 Note that in the case of noiseless (i.e., if ε = 0), the mode does not depend on the parameter
σ of the covariance function K. Indeed, in this case, σ does not affect the the solution of (5.2.6) since σ2 is
a multiplicative constant in ΓN . However, in the case with noisy data, this is no more true.
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5.2.3 Hyper-parameters learning in constrained kriging

There are two recent methods for estimating the hyper-parameters. The first one is the Adapted Cross-
Validation (ACV) of Maatouk, Roustant, and Richet (2015) which readjust the classical Leave-One-Out
mean square error criterion by using the MAP instead of the (unconstrained) kriging mean for estimating
the length scale hyper-parameter θ of the covariance function K. However, this method works only in the
case of noiseless, because of the fact that the parameter σ does not depend on the MAP in the case without
noise, as we mentioned in Remark 58.
The second one is the so-called constrained Maximum Likelihood Estimator (cMLE) of Bachoc, Lagnoux,
López-Lopera, et al. (2019) which is developed for taking into account the inequality constraints in the
estimation of the hyper-parameters. However, in their study for asymptotic properties of cMLE, Bachoc,
Lagnoux, López-Lopera, et al. (2019) show that any consistency with unconstrained Gaussian process, is
preserved when adding inequality constraints. This is because for large sample sizes the constraints slightly
impact the log marginal likelihood. Hence the cMLE has the same asymptotic distribution as the MLE. In
other terms, conditioning by the constraints (significantly increases the computational burden and) has a
negligible impact on the MLE, unless perhaps the sample size is very small.
In this line of thinking, we limit ourselves to the MLE in this work. By using the finite dimensional
approximation (5.2.2) of the Gaussian process Y ,the log marginal likelihood defined in (5.1.3) is then given
by

log(p(Y N |γ,X)) = −1

2
y>(ΦΓNΦ> + ς2I2

n)−1y − 1

2
log(det(ΦΓNΦ> + ς2I2

n))− n

2
log(2π) (5.2.8)

and the vector of estimated parameters γ̂ verifies :

γ̂ = arg maxγ log(p(Y N |γ,X)) .

5.2.4 Sampling finite-dimensional GP with shape constraints

In this section, we present the technique of simulating the coefficients ξ. We present the problem of con-
straints saturation when using the improved rejection sampling technique of Maatouk and Bay (2016) and
propose a numerical solution to that.

5.2.4.1 Sampling finite dimensional Gaussian processes under shape constraints

In view of (5.2.4), kriging the constrained function f consists in sampling Φ(X) · ξ + ε = y truncated on
Cineq. The conditional distribution of ξ given Φ(X) · ξ+ ε = y is multivariate Normal with N (µcond,Σcond)

(see Williams and Rasmussen, 2006) where

µcond = ΓNΦ>(ΦΓNΦ> + ς2In)−1y (5.2.9)

and
Σcond = ΓN − ΓNΦ>(ΦΓNΦ> + ς2In)−1ΦΓN . (5.2.10)

Hence we face the problem of sampling from a truncated multivariate Gaussian distribution, which can be
done by using different methods among them the Rejection Sampling from the Mode (RSM) developped
by Maatouk and Bay (2014). López-Lopera et al. (2018) have investigated the following methods : RSM
(Maatouk and Bay, 2014), Gibbs Sampling (Gibbs) (Taylor and Benjamini, 2016), Exponential Tilting (ET)
(Botev, 2017), Metropolis-Hasting (MH) (Robert, 2014) and Hamiltonian Monte Carlo (HMC) (Pakman
and Paninski, 2014) and it turns out that the Exact Hamiltonian Monte Carlo is the more efficient in term
of Effective sample size (ESS) (Thiébaux and Zwiers, 1984) and less expensive in term of CPU time.
An appropriate choice of the initial vector (which must verify the constraints) in the algorithm of Exact



74 Chapter 5. An introduction to kriging

Hamiltonian Monte Carlo for sampling ξ, is the MAP of ξ (see López-Lopera et al., 2018). We will consider
this sampling technique in Chapters 6 and 7.

5.2.4.2 The saturated monotonicity constraints problem when using the RMS algorithm

By saturated monotonicity constraints, we mean the region where outputs are close. This is characterized by
the fact that the mode of the GPs lies in boundary of the constraints. That problem is frequent in practice
and requires special attention when simulating the posterior process using the RMS algorithm.
The algorithm of improved rejection sampling from the MAP (RMS) of Maatouk and Bay (2016) is a general-
ization of the rejection technique of Von Neumann (1951) for simulating truncated multivariate Gaussian ran-
dom variables. This method consists in simulating at first the conditional Gaussian vector ξ|Φ(X) ·ξ+ε = y

and then using an improved rejection sampling around the MAP of ξ (indeed this verifies the constraints in
the whole domain) that selects only the random coefficients that belong to the convex set Cineq.
Although this algorithm outperforms Von Neumann’s method for the simulation of such random variables,
saturation of monotonicity constraints raises problems for efficient samples, in particular for large dimension
vector. While using this algorithm, a very poor acceptance rate in the regions of the input state space is
reached, where constraints are saturated. Indeed, as long as the updated value is different to the MAP in
the saturation region, the algorithm will not work. A possible solution consists inusing a non-homogeneous
adapted grid in order to get an efficient sample. For this purpose, we use a class of the so-called h-adaptivity
scheme in which the mesh connectivity changes accordingly to the level of constraint saturation (see Löhner
and Baum, 1992; Mitchell, 1991). In particular, it boils down to reduce the number of basis functions in the
regions of the input state space where constraints are saturated. This consists in

• fixing a level of saturation constraints,

• detecting the saturation regions,

• reducing the number of basis functions in these regions for getting an adapted grid

• and using the sample technique in this adapted grid.

Illustrative example For illustrating the adaptive mesh refinement approach, we consider the curve
construction of a non-negative and increasing function f which is only known at some inputs locations as
given by Table 5.2. Without loss of generality, we assume that f is observed at x without noise.

x f (x)
0.22 103.050
0.32 128.925
0.57 129.025
0.82 141.825
1.32 175.700
1.82 175.800
2.81 204.700

Table 5.2: Market data

We consider f as a sample of zero-mean Gaussian process Y with finite dimensional approximation given as
in (5.2.2).
We consider the Matérn 5/2 kernel function with length scale parameter θ = 1 and variance parameter
σ = 100, we then choose N = 100 basis functions. The red curve in Figure 5.2 shows the Maximum
a Posteriori of the constrained Gaussian Process which is the most likely curve. With a saturation level
of order 1, we can observe two regions of constraints saturation which coincide with the respective input
intervals [0.32, 0.57] (with outputs 129.025 and 129.025), [1.32, 1.82] (with outputs 175.800 and 175.700). In
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order to get an efficient sample of the truncated Gaussian vector ξ we reduce the number of basis functions
in these two saturation regions. By this mean, we construct 95% confidence interval of the 100 simulated
paths from the constrained Gaussian using the RMS algorithm ( dashed lines).

Figure 5.2: Illustration of learning f with two saturation regions.

The main advantage of this technique is the fact that it allows to get efficient sample and to reduce
computational costs. But a caveat to take into account is the choice of the level of saturation constraints.
It requires a careful reflection for solving this disadvantage and can be an open problem for improving the
method. Fortunately, even if the Hamiltonian Monte Carlo method (HMC) could be time consuming when
constraints are saturated, we demonstrate in the next chapter that this method is suitable for sampling the
GP paths in the volatility surface construction. This is way we propose to use it in what follows.
In the next chapters, we will extend the kriging technique in two dimensions and we will show how to adapt
this technique for the construction of option price and volatility surfaces which respect the no-arbitrage
conditions.
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Chapter 6

Kriging for implied volatility surface

This chapter is based on A. Cousin, D. Gueye, Kriging for implied volatility surface, working paper.

6.1 Introduction

Implied volatility surface is of crucial interest for risk management and exotic option pricing models. Its
construction is usually carried out in accordance with the arbitrage-free principle. This condition leads to
shape restrictions on the option prices such as monotonicity with respect to maturities and convexity with
respect to strike prices. In this chapter, we propose a new arbitrage-free construction method that extends
classical spline techniques by additionally allowing for quantification of uncertainty. The proposed method
extends the constrained kriging techniques developed in Maatouk and Bay (2014) and Cousin, Maatouk,
and Rullière (2016) to the context of volatility surface construction. Assuming a Gaussian process prior, the
posterior price surface becomes a truncated Gaussian field given shape constraints and market observations.
Prices of illiquid instruments can also be incorporated when considered as noisy observations. Starting from
a suitable finite-dimensional approximation of the Gaussian process prior, the no-arbitrage condition on the
entire input domain is characterized by a finite number of linear inequality constraints. We define the most
likely response surface and the most-likely noise values as the solution of a quadratic optimization problem.
We use Hamiltonian Monte Carlo (HMC) techniques to simulate the posterior truncated Gaussian surface
and build pointwise confidence bands. The Gaussian process hyper-parameters are estimated using the max-
imum likelihood estimator (MLE). The method is illustrated on Euro Stoxx 50 option prices by building
no-arbitrage implied volatility surfaces and their corresponding confidence bands.

This chapter is organized as follows. In section 6.2, we recall some well known facts concerning im-
plied volatility. Section 6.3 emphasizes on constrained kriging and Section 6.4 is devoted to the numerical
illustrations.

6.2 Option pricing in no-arbitrage models

The goal of this section is to recall the notion of implied volatility surface and explain the construction
problem of such surface under the no-arbitrage assumptions. For this purpose, we discuss it through the
standard model of Black-Scholes. More details can be founded in Jeanblanc, Yor, and Chesney (2009,
subsection 2.3), Shreve (2004, subsection 4.5), Karatzas (1997, section 1.2).

6.2.1 Black-Scholes model

We consider an European option on a given asset S, with maturity T and strike price X. By denoting
Φ its payoff function, the value of the option at time T is given, in term of Call option, by Φ(ST ) =

(ST − X)+, where (ST − X)+ = max(ST − X; 0). While, in term of put option, its value at time T is
Φ(ST ) = max(X − ST ; 0).
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In Black and Scholes (1973) model, the risky asset price S = (S)t≥0 defined on the filtered probability space
(Ω,G,P,F) is assumed to follow a Geometric Brownian Motion, i.e., its dynamics are of the form :

dSt = µStdt+ σStdBt, ∀t ≥ 0 (6.2.1)

where B = (Bt)t≥0 is a Brownian Motion defined on (Ω,G,P), µ represents the drift of the returns of S, σ
its instantaneous volatility and S0 > 0 the initial stock price. The interest rate r is assumed to be constant
and positive so that the discounted stock price Ŝ has the following dynamics under the probability P :

dŜt = (µ− r)Ŝtdt+ σŜtdBt, ∀t ≥ 0 .

One can show from the Girsanov theorem that there exists a (unique) measure Q, equivalent to P, given
by Q|Ft = e−θBt−

1
2 θ

2tP|Ft , with θ = µ−r
σ Jeanblanc, Yor, and Chesney (2009, Proposition 2.3.1.1) and

under which Ŝ is an F-martingale. The fundamental theorem of asset pricing provides that this existence of
such a Q is equivalent to the absence of arbitrage opportunity of this market model. Therefore, under the
arbitrage-free conditions, the value at time t, of the European option is the expected present value under
the risk neutral measure Q of future payoffs, which has the following expression:

Vt(St, t) = EQ
[
e−r(T−t)Φ(ST )|Ft

]
. (6.2.2)

The computation of the expression (6.2.2) leads to the famous Black-Scholes formula.
For instance, the value of a put option on S, denoted by PBSt is given by

PBSt (St, T,X, σ, r) = Xe−r(T−t)N(−d2)− StN(−d1), (6.2.3)

where

d1 =
log(St/X) + (r + 1

2σ
2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

and N is the cumulative normal density function.

6.2.2 Implied volatility surface

The equality (6.2.3) links the European put option price to the underlying price S, the interest rate r, the
volatility of the stock σ, the strike price X and the maturity T . All these parameters except the volatility
σ may be directly observed in the market. Actually, the option price is a function of the volatility of the
underlying asset and then, inverting it leads to the so called implied volatility, which is of crucial interest
for risk management and exotic option pricing models. This means that for a given observed market option
price PMarket

t , quoted at the date t, with corresponding maturity T and Strike X, the implied volatility is
the solution value σIVt (T,X) of

PBSt (St, T,X, σ
IV
t (T,X), r) = PMarket

t . (6.2.4)

Accordingly, our interpolation problem consists in computing at any time t, the whole surface (T,X) →
PBSt (T,X) of option prices which allows us to derive the implied volatility surface (T,X) → σIVt (T,X) by
using the inversion problem. However, this construction must take into account some characteristics such as
:

• Incomplete information : the option price surface is only known or can only be estimated for few
input locations (the observed couples Strike-maturity).
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• Noisy measurement : observed prices may not be fully reliable (ex : price of illiquid instruments).

• Smoothness constraints : the price surface should be differentiable (important for deriving the local
volatility surface, see Chapter 7).

• Shape constraints : the price surface should not allow to generate arbitrage.

In this regard, we propose to use the kriging techniques for such construction. We discuss our methodology
that requires the transition from classical kriging, which does not allow to obtain arbitrage-free option price
surfaces, to the constrained kriging which does allow to get free-arbitrage option price surfaces. We present
these techniques in the next section.

In what follows, we only consider Put option, Call option price can be recovered using the call-put parity.
Before going further, we recall how no-arbitrage conditions translate into shape constraints on the put option
price.

Proposition 59 We place ourselves at a fixed date of evolution t0 and we consider S0 the value of the
underlying at t0.
The put price surface (T,X)→ P (T,X) is free of static arbitrage if and only if

(i) X → P (T,X) is a convex function such that P (T, 0) = 0 and ∂P
∂X (T, 0) = 0, for any T ≥ 0.

(ii) T → P (T,X) is a non-decreasing function, for any X ≥ 0.

(iii) lim
X→∞

P (T,X) = X − S0.

(iv) P (0, X) = (X − S0)+.

Proof: This follows by using the call-put parity formula in Roper (2010, Theorem 2.1).

6.3 Kriging for learning arbitrage-free put option price surfaces

In this suebsection, we present the classical kriging techniques which allow to construct option price surface
by only incorporating the three first characteristics mentioned above (i.e, incomplete information, noisy
measurement and smoothness constraints).

Given the input domain D in time and space, we aim at constructing, at a given quotation date, put
price surface

P : D → R+

(T,X) 7→ P (T,X)

satisfying arbitrage-free conditions given in Proposition 59 and given n noisy observations y = [y1, ..., yn]>

of function P at input points X = [X1, ...,Xn] where Xi = (Ti, Xi), i = 1, . . . , n. Then, this construction
should be compatible with market fit condition

y = P (X) + ε (6.3.1)

where P (X) := [P (X1), ..., P (Xn)]>. The additive noise term ε = [ε1, ..., εn]T is assumed to be a zero-mean
Gaussian vector, independent from P , and with an homoscedastic covariance matrix given as ς2In, where In
is the identity matrix of size n.
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Comments 60 As mentioned in Cousin, Maatouk, and Rullière (2016), this framework which takes account
of the presence of error noise being quite considerable inasmuch as it allows to construct implied volatility
surface in presence of illiquid options. Accordingly a best way to incorporate some noises in the response
variable is to investigate the main sources of these noises. In Hentschel, 2003 three kinds of sources of
measurement errors have been referred in the option prices such as the finite quote precision which is based
on the tick price that represents the minimum increment between bid and ask prices of an asset in the trading
system which orients the prices movement in a discrete setting. However the real market prices move in a
continuous way and this discrete increment should be a source of noisy observations. In addition to the finite
quote precision, Hentschel invoques the non-synchronous prices and the bid-ask spread which is the difference
between the ask (which represents the supply for a particular asset) and the bid (the demand for asset). The
higher the bid-ask spread of an option, the more liquid this option becomes. In Chapter 7, we have considered
bid and ask prices of the same option as two replicate noisy observations at the same input location.

Two approaches for choosing our observations and incorporating noises might be taken into account,
the first one consists in considering the realizations of the Gaussian process to be the mid-point prices and
assuming the noise variance term ς to be proportional to the magnitudes of the bid-ask spreads. The second
one consists in considering both the bid and ask prices as two independent realizations of the Gaussian process
and estimate ς by using an appropriate method of parameter estimation. This last approach allows to obtain
a option price surface which lies between the free-arbitrage bid and ask surfaces and it will be further detailed
in Chapter 7.

6.3.1 Classical GPs regression or kriging

We consider a zero-mean Gaussian process prior on the mapping P = P (T,X)(T,X)∈D with covariance
function (kernel function) K. Then, the output vector P (X) has a normal distribution with zero mean
and covariance matrix C with components cov(P (Ti, Xi), P (Tj , Xj)) = K((Ti, Xi), (Tj , Xj)). We consider a
2-dimensional isotropic covariance kernel given as a tensor product, i.e., for x = (T,X) and x′ = (T ′, X ′)

two elements of D,
K(x,x′) = σ2RT (T − T ′, θT )RX(X −X ′, θX)

where θ = (θT , θX) and σ2 correspond to the length scale and the variance hyper-parameters of the kernel
function K and the functions RT and RX are kernel correlation functions.
It is well known that the conditional process P | y = P (X) + ε is Gaussian with mean function η and
covariance function K? given respectively by (see Williams and Rasmussen, 2006):

η(x) = c(x)>(C + ς2In)−1y, x = (T,X) ∈ D (6.3.2)

K?(x,x′) = K(x,x′)− c(x)>(C + ς2In)−1c(x′), x,x′ ∈ D (6.3.3)

where c(x) = [K(x, (T1, X1)), ...,K(x, (Tn, Xn))]>.

Without considering arbitrage-free conditions as described in Proposition 59, estimation of the price
function P under this framework is known as classical GPs regression or classical kriging. In this setting,
prediction and uncertainty quantification is made using the conditional distribution P | y = P (X) + ε. The
Best Linear Unbiased Estimator (BLUE) of P is given as the kriging mean function (6.3.2). The conditional
covariance function K∗ can be used to obtain confidence bands around the predicted price surface. The
hyper-parameters of the kernel function K as well as the variance of the noise can be estimated using the
maximum likelihood estimator (MLE) (see, e.g., Bachoc, Lagnoux, and López-Lopera, 2018).
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6.3.2 Imposing the no-arbitrage conditions

Conditionally to the market fit condition (6.3.1) and conditions (iii) and (iv) of Proposition 59, P is still
Gaussian. However, conditionally to the inequality constraints (i.e, the monotonicity of the put price with
respect to the maturities direction and its convexity with respect to the strike prices) by means (i) and (ii)
of Proposition 59, the process P is no longer Gaussian and this issue obviously run across the difficulties
of simulating the posterior process in the sense that the range of constraint check points is usually infinite-
dimensional in the simulation. We adopt the solution of Cousin, Maatouk, and Rullière (2016) that consists
in constructing a finite-dimensional approximation PN of the Gaussian prior P for which the constraints
can be checked in the entire domain D with a finite number of checks.
We first consider a discretized version of the input space D as a N = (NT + 1)× (NX + 1) regular grid with
knots (ui, vj), i = 1, ..., NT , j = 1, ..., NX with ui = iδT and vj = jδX , where δT = 1

NT
and δX = 1

NX
. For

each knot (ui, vj), we introduce the hat basis function defined as the following tensor product

φi,j(T,X) := max(1− |T − ui|
δT

, 0) max(1− |X − vj |
δX

, 0) .

Then, the process P is approximated on D by the process PN given by

PN (T,X) =

NT∑
i=0

NX∑
j=0

P (ui, vj)φi,j(T,X), for all (T,X) ∈ D (6.3.4)

which is a piecewise linear interpolation of P at knots (ui, vj)i,j . If we denote ξi,j = P (ui, vj), for i = 1, ..., NT ,
j = 1, ..., NX , then ξ = [ξ0,0, ..., ξi,j ..., ξNT ,NX ]> is a zero-mean Gaussian vector withN×N covariance matrix
ΓN such that Γhı1,ı2 = K((ui1 , vj1), (ui2 , vj2)), for any two grid index pairs (i1, j1) and (i2, j2) corresponding
to global indices ı1 and ı2 respectively and φ(T,X) a vector of size N given by

φ(T,X) = [φ0,0(T,X), ..., φi,j(T,X), ..., φNT ,NX (T,X)].

The equality (6.3.4) can be written in the following matrix form

PN (T,X) = φ(T,X) · ξ

so that when denoting Φ(X) the n × N matrix of basis function in which, each row l corresponds to the
vector φ(Tl, Xl), one has PN (X) = Φ(X) · ξ, with PN (X) := [PN (X1), ..., PN (Xn)]>.

In what follows we use the shorthand Φ(X) = Φ.

Proposition 61 (see Maatouk, 2017)
The following statements hold.

• The finite-dimensional process PN uniformly converges to P on D as NX →∞ and NT →∞, almost
surely,

• PN (T,X) is non-decreasing function of T if and only if ξi+1,j ≥ ξi,j,

• PN (T,X) is a convex function of X if and only if ξi,j+2 − ξi,j+1 ≥ ξi,j+1 − ξi,j.

Given the first statement of Proposition 61, by denotingM the convex set of inequality constraints, i.e.,
M is the set of 2-d continuous functions which are no-decreasing w.r.t. T and convex w.r.t. the X, our
construction problem (we denote it (P)) consists in finding the conditional distribution of PN given{

y = PN (X) + ε

PN ∈M.
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The last two statements of Proposition 61 justify the choice of the hat basis functions which is due to the
fact that PN satisfies the inequality constraints in the entire domain D when it satisfies these constraints at
the knots (see Maatouk and Bay, 2014), i.e., PN ∈ M if and only if ξ ∈ Cineq where Cineq is a set of linear
inequality constraints on ξ as given by the two last points of Proposition 61. In this line of thinking, our
construction problem (P) is equivalent to estimate ξ restricted to{

y = Φ · ξ + ε

ξ ∈ Cineq.

6.3.3 Hyper-parameter learning

Hyper-parameters, namely the length scale θ and the variance parameter σ, of the kernel function K as well
as the noise parameter ς can be either specified or estimated. By denoting λ the set of these parameters
(i.e., λ = [θ, σ, ς]>), we propose to maximize the marginal log likelihood L(λ) for the process PN w.r.t. λ
for parameters learning.
Under the finite dimensional approximation, the marginal log likelihood can be expressed as (see, e.g.,
Williams and Rasmussen, 2006):

L(λ) = −1

2
y>(ΦΓNΦ> + ς2In)−1y − 1

2
log(det(ΦΓNΦ> + ς2In))− n

2
log(2π). (6.3.5)

6.3.4 The most probable response surface and measurement noises

The MAP of PN is given by

mPN (T,X) :=

NX∑
i=0

NT∑
j=0

νi,jξ φi,j(T,X) (6.3.6)

where νξ =
(
ν

(0,0)
ξ , . . .ν

(i,j)
ξ , · · · ,ν(Nx,Nt)

ξ

)>
is the MAP of the Gaussian coefficients ξ. As we mentioned

in Chapter 5, the MAP νξ of ξ is paramount in the sampling of ξ since it satisfies the inequality constraints
hence it can be considered as the initial vector when using the sampling algorithm of HMC (see López-Lopera
et al., 2018). As explained in Section 5.2.2 of Chapter 5, this can be obtained directly by maximizing the
density function of the conditional Gaussian vector ξ|ξ ∈ Cineq restricted to Cineq which implies that

νξ = arg min
ϑ∈Cineq

(ϑ>Σ−1
condϑ− ϑ

>Σ−1
condµcond) (6.3.7)

where µcond and Σcond are respectively defined by (6.3.10) and (6.3.11). This is a quadratic optimization
problem and it is equivalent to

νξ := arg min
Φ·ϑ+e=Y ,ϑ∈Cineq

(ϑ>(ΓN )−1ϑ), (6.3.8)

with ΓN the covariance matrix of ξ.
In order to identify the locations x of the largest noises and their values, we compute the joint MAP (νξ,νε)

of the truncated gaussian vector ξ and the MAP of the Gaussian noise vector ε. This can be defined as
solution of

max
ϑ,e

P (ξ ∈ [ϑ,ϑ+ dϑ], ε ∈ [e, e+ de] | Φ · ξ + ε = ṽ, ξ ∈ Cineq) .

As (ξ,νε) is Gaussian centered with block-diagonal covariance matrix with blocks ΓN and ς2In, this implies
that the mode (νξ,νε) is a solution to the following quadratic problem

min
Φ·ϑ+e=ṽ,ϑ∈Cineq

(
ϑ>(ΓN )−1ϑ+ e>(ς2In)−1e

)
. (6.3.9)
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As a consequence, we define the most probable measurement noises to be νε and the most probable response
surface mPN given by mPN := Φ · νξ. Distance to the data can be an effect of arbitrage opportunities
within the data and/or the misspecification / lack of expressiveness of the kernel.

6.3.5 Sampling finite-dimensional GPs with shape constraints

As we mentioned in Subsection 6.3.2, the construction of the put price surface consists in sampling ξ truncated
on Cineq. Known that the distribution of ξ given y = Φ · ξ+ ε is multivariate Normal N (µcond,Σcond) (see
Williams and Rasmussen, 2006) where

µcond = ΓNΦ>(ΦΓNΦ> + ς2In)−1y (6.3.10)

and

Σcond = ΓNΦ>(ΦΓNΦ> + ς2In)−1ΦΓN . (6.3.11)

Hence we are face to a problem of sampling from truncated multivariate Gaussian distribution, which we do
by Hamiltonian Monte Carlo (see López-Lopera et al., 2018), using the maximum a posteriori probability
estimate (MAP) of ξ as initial vector (which must verify the constraints) in the algorithm, computed as
explained in Chapter 5.

6.4 Numerical illustrations

The aim of this empirical investigation is to illustrate the construction methods introduced in the previous
sections using real financial data. In particular, we construct the put prices surface from both classical
and constrained kriging in such a way to use it for deriving the implied volatility surface from the inversion
techniques. Our study turns out to be very interesting since the results would certainly be useful for no iliquid
options pricing. It would also be possible through this study to understand the option prices consistency
under bid ask spreads. In addition, a useful case study could be to investigate for instance, the liquidity
measure which is one of the most important tools of a financial markets and characterizes the ability of
market makers to execute trades at the determined market prices and for a large volume without affecting
the stock price.
The illustrations are carried out on the Euro Stoxx 50. We present an approach which consists in constructing
the put prices surface through the mid price by estimating the standard deviation of the noise by MLE.

Remark 62 One can also construct the whole put prices surface through the mid price by defining the
standard deviation of the noise as the difference between the ask and mid prices. Another approach consists
in considering both the bid and ask put prices as independent responses of a zero-mean Gaussian process Y
and constructing a put prices surface by estimating the attributed noise variance. As such, we can study the
behavior of this surface relatively to the surfaces constructed from the bid put prices and the ask put prices.
This last approach is used in Chapter 7.

We observe at a particular market quotes t0 as of January 10, 2019, a series of put option prices f(Ti, Xi) =

P (Ti, Xi) for different characteristics (Ti, Xi), i = 1, . . . , n = 1232 with Ti the maturities in which, its range
goes from January 18, 2019 to December 17, 2021 and Xi the strike prices which range from 250 to 4000.
The spot price is equal to St0 = 3070.24. These observations are represented in Figure 6.1. Our goal is to
construct the whole surface of the put option prices (using both classical and constrained kriging) that we
use for computing the implied volatility surface by the inversion techniques.

To this end, we consider our input data which contains nT = 15 maturities and nX = 88 strike prices
and which does not necessarily contain gridded data (as we may observe in Figure 6.1).
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Figure 6.1: Import input observed data

We randomly choose 5% of these data as training set. Thus the unknown function is evaluated at only
5% of the input data observed. After scaling the input space D into [0, 1]× [0, 1], we choose N = 600 basis
functions given by N = NT × NX where NT = 30 represents the number of nodes related to the time-to-
maturities in [0, 1] and NX = 20 the number of nodes linked to the strike prices in [0, 1]. We consider a two
dimensional Gaussian covariance function defined as

K(x,x′) = σ2 exp

(
− (X −X ′)2

θ2
X

− (T − T ′)2

θ2
T

)
where the components of the two vectors x = (T,X) and x′ = (T ′, X ′) represent respectively the vectors

of strike prices and time to maturities.
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Figure 6.2: Convergence of optimal parameter as a function of N (number of basis func-
tions).
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The GP hyperparameters θX , θT , σ and the standard deviation of the noise ς are estimated using the
MLE. Figure 6.2 represents their stability relatively to the chosen number of basis functions. Here, we
study the convergence of the parameters by increasing the number of basis function. It is clear that this
convergence is achieved among from 250 basis functions. In short, parameters convergence is reached when
the number of basis functions tends to infinity.

Then, as explained in Subsection 6.3.4, quadratic programming is used to find the most probable response
surface and measurement noises, while enforcing the constraints, using the interior-point-convex iterative
algorithm with a tolerance of 1× 10−12.
In Figure 6.3, we represent the most probable response surface (left) and measurement noises (right). It is
clear that the surface of put prices respects the arbitrage-free conditions. The scattered noisy points show
that low maturity options are associated with a significant error and therefore a high distance from the most
probable non-arbitrable surface.

Figure 6.3: Most probable surface (left) vs most probable noise values (right).
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Figure 6.4: Mode estimator - prediction accuracy

Figure 6.4, illustrates the prediction accuracy of the mode estimator (MAP) which has been carried out
by the following way:
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• We first construct a series of randomly chosen data subsets with increasing number of points,

• We apply classical kriging and shape-preserving kriging on these subsets by computing the two mode
estimators,

• For each data size, we compute the Root Mean Square Error (RMSE) with respect to the original data
set.

The results show that for a small percent of data size (less than 30 %), the MAP estimated from the con-
strained kriging outperforms the one estimated from the unconstrained kriging. However, when more than
30% of data points are used for training, the two estimated MAP present a similar accuracy with their
RMSE which tend to zero.

We now generate 5000 paths from both the classical and the constrained kriging using the Exact Hamilto-
nian Monte Carlo algorithm (see Pakman and Paninski, 2014). Then we compute the whole implied volatility
surface from the inversion of the Black and Scholes formula as described in Subsection 6.2.1 with the spot
price St0 and interest rate r = 1%. Figure 6.5 presents comparison results on the MAP estimator between
classical and constrained kriging. One can see that the put prices surface constructed from constrained
kriging (in left) clearly verifies the no-arbitrage constraints while the one constructed using classical kriging
does not fulfill these constraints. Also Figure 6.6 represents the obtained implied volatility surface which
shows that the constrained kriging allows to obtain some surfaces which are more smooth than the ones
obtained in classical kriging. In Figure 6.7 which shows 5% and 95% estimated quantiles of the fitted GPs,
one can see a large confidence interval in the case of classical kriging where there is no observation while
this confidence interval becomes more restricted in the constrained kriging, due to the knowledge of the
no-arbitrage conditions.

Figure 6.5: Put prices surface constructed from classical kriging (left) vs put prices surface
constructed from constrained kriging (right). The red points represent the 5% of the data

used for training.
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Figure 6.6: Implied volatility surface obtained from classical kriging (left) vs Implied
volatility surface obtained from constrained kriging (right). Implied volatility surface ob-

tained from constrained kriging is more smoother.

Figure 6.7: 5% and 95% estimated pointwise quantiles of the fitted GPs with classical
kriging (left) vs constrained kriging (right).

In Figure 6.8, we present a 5% and 95% estimated pointwise quantiles of the constrained fitted Gaussian
process with extrapolation in the time-to-maturities direction by adding two years. Unsurprisingly, this leads
to an increase of the confidence interval due to the fact that no price is observed for maturities greater than
two years.
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Figure 6.8: 5% and 95% estimated pointwise quantiles of the constrained fitted GPs with
extrapolation in the time-to-maturities direction (adding 2 years).

6.5 Conclusion

In this chapter we have adopted the constrained kriging techniques in the aim of constructing implied
volatility surface. We have shown that constrained kriging techniques allow to estimate the option prices
in a market where only noisy prices are available. Our approach incorporates all the characteristics of
surface construction problem, such as incomplete information, indirect observation, noisy measurement and
shape constraints. The most likely measurement noises have been computed. We have shown, through a
comparison study, that constrained kriging is more adapted for implied volatility surface construction than
the classical one. In this study, we did not incorporate dividends and interest rates in the kriging methods.
This setting requires a small extension of the method. We do not also compare our method to the alternative
approaches such as the SSVI and the constrained neural network. In our next chapter, we explore those
issues in the SPX European puts data on 18th May 2019.
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Chapter 7

Kriging vs Neural Network for local
volatility construction

This chapter is a slightly modified version of the paper A. Cousin, S. Crepey, M.F. Dixon, and D. Gueye,
Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints, under review, 2020.

7.1 Introduction

Local volatility surface is an important tool used by practitioners for pricing and hedging exotic options. Its
construction can be done in two ways. As explained in Figure 7.1, one can derive it either from the Black-
Scholes implied volatility surface by using Gatheral formula, or from the no-arbitrage continuous surface of
option prices through Dupire formula.
Deep learning and kriging for option pricing have emerged as novel methodologies for fast computations
with applications in calibration and computation of sensitivities. However, most of these approaches do not
enforce any no-arbitrage conditions, and the subsequent local volatility surface is never considered. As shown
by results of Chapter 6, constrained kriging is a suitable tool for constructing option prices and quatifying
incertainty in the presence of noisy data. In this chapter, we propose a fully viable benchmarking approach
for kriging, by building on Ackerer, Tagasovska, and Vatter (2019) using a neural network approximation of
the local volatility implied variance formula (i.e. the Dupire formula restated in terms of implied variance)
to stabilize the local volatility surface. This approach is in contrast to Chataigner, Crépey, and Dixon (2020)
who consider the analogous approach of using the Dupire formula with price interpolation which is included
in the numerical results section.

Regularization tends to reduce static arbitrage violation on the training set but does not exclude violation
on the testing set. This is a by product of using stochastic gradient descent. Unlike interior point methods,
which use barrier functions to avoid leaving the feasible set (but are not applicable to neural networks),
stochastic gradient descent does not ensure saturation of the penalization. A manifestation of the limitations
of the soft constraints approach is the instability of the local volatility surface which has a tendency to be
quite irregular, especially away from training points.

As a focal point of the chapter, we emphasize that a single optimization of a GPs or neural network jointly
yields a shape-constrained price or implied volatility estimation together with the local volatility surface.
The extraction of a nonparametric representation of the local volatility surface, is not only intrinsically useful
for exotic option pricing, but also serves as a stabilization approach for price or implied volatility estimation
in a neural network (such stabilization approach is not needed for the GPs approach).

In summary, we shall (i) use a hard-constrained kriging Dupire formula to derive a local volatility sur-
face from prices; and (ii) a soft-constrained NN local volatility implied variance formula to derive a local
volatility surface from Black-Scholes implied volatilities (see blue arrow in Fig. 7.1). As we illustrate later
in this chapter, such a local volatility surface shall in fact be jointly derived and, at the same time, further
regularized.
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The remainder of the chapter is outlined as follows. Section 7.2 describes the kriging approach to
probabilistic modeling of local volatility with no-arbitrage constraints. Then in Section 7.3 we introduce
the neural network approach to local volatility modeling from implied volatility. Details of our numerical
experiment setup and results comparing the performance of kriging are given in Section 7.4. Finally, Section
7.5 concludes with further directions for research.

Figure 7.1: Mathematical connections between option prices, implied, and local volatility,
and the goal of this chapter, namely to either use the Dupire formula with Gaussian processes
to jointly approximate the vanilla price and local volatility surfaces, or use the Gatheral
formula with neural networks to jointly approximate the implied volatility and local volatility

surfaces.

7.2 Kriging the Local Volatility from Prices

This section is devoted to the construction of local volatility surface using kriging. Since, we use dividends
and interest rates, it will be interesting to understand how to extend the kriging techniques presented in
the previous chapters for no-arbitrage option price surface construction in presence of dividends and interest
rates. As such, we first introduce this extension in the next subsection before tackling the calibration of
Dupire formula in the following one.

7.2.1 No-arbitrage conditions reformulation in Kriging framework

Given a stock S we consider an European vanilla put option on S, with maturity T and strike price X. We
consider the following risk neutral dynamics of S

dSt = St[(r(t)− q(t))dt+ σ(t, St)dBt], ∀t ≥ 0 (7.2.1)

where B = (Bt)t≥0 is a Brownian Motion, r(t) represents a deterministic short interest rate term structure
of the corresponding economy and q(t) a deterministic continuous-dividend-yields on S and σ(t, St) the
instantaneous volatility function of S and t. We denote respectively by Dt = exp

(
−
∫ t

0
r(s)ds

)
and Ht =

exp
(
−
∫ t

0
q(s)ds

)
the discount and dividend factors.

Without any restriction, we only pay particular attention to the put prices constraints since the the call
prices constraints can be derived from the Call-Put parity. As such, let us denote by P (T,X) and C(T,X),
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the prices at time t = 0 of, respectively, the European put and the European Call options on the underlying
asset S with maturity T and strike price X. We recall the Call-Put parity which can be expressed as

C(T,X)− P (T,X) = S0H(T )−XD(T ) (7.2.2)

Once, we know C(T,X)− P (T,X) for T = T1, ..., Tj , with j ∈ N, we can regress C(T,X)− P (T,X) on the
direction of X, for X = X1, ..., Xnj , with nj ∈ N in order to obtain an approximation of H(Tj) and D(Tj).
One further constructs H(T ) and D(T ), for any T by interpolation.

Definition 63 Under the arbitrage-free conditions, the transformed process M = (Mt)t≥0, given by

Mt = exp

(
−
∫ t

0

(r(s)− q(s))ds
)
St,

is a martingale (see, e.g., Shreve, 2004, Subsection 5.5.1) and the price at time t = 0 of the put option is
given by

P (T,X) = E

[
exp

(
−
∫ T

0

r(s)ds

)
(X − ST )+

]
. (7.2.3)

The equality (7.2.3) can be expressed as

P (T,X) = HTE

[(
DT

HT
X −MT

)+
]

(7.2.4)

with
MT =

DT

HT
ST .

By setting

k =
DT

HT
X, (7.2.5)

one has, from (7.2.4),
P (T,X) = HT P̂ (T, k) (7.2.6)

where
P̂ (T, k) = E

[
(k −MT )

+
]
. (7.2.7)

Proposition 64 In presence of dividend and interest rate, a collection of Put prices P (T,X)T≥0,X≥0 is
arbitrage-free if and only if the process P̂ (T, k)T,k given by (7.2.7) verifies the following conditions

1. P̂ (T, .) is a convexe function, for any T ≥ 0,

2. P̂ (., k) is an non-decreasing function, for any k ≥ 0,

3. P̂ (T, 0) = 0,∀ T ≥ 0,

4. ∂
∂k P̂ (T, 0) = 0,∀ T ≥ 0,

5. lim
k−→∞

∂
∂k P̂ (T, k) = k −M0,

6. P̂ (0, k) = (k −M0)+, ∀k ≥ 0.

Accordingly, learning the put price function P (·, ·) is equivalent to learning the reduced price P̂ given
the observations and the constraints.
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7.2.2 GPs for calibration of Dupire formula

By considering the dynamics of S given in (7.2.1) with constant interest rate r and constant dividend-yieldsq,
we obtain the Dupire (1994) formula

σ2(T,X)

2
=
∂TP (T,X) + (r − q)X ∂XP (T,X) + qP (T,X)

X2∂2
X2P (T,X)

(7.2.8)

which establishes a relation between the put price and the volatility. The function σ : R+ × R+ → R+ is
known as local volatility and is consistent with no-arbitrage market prices for any options on S. Thus, the
construction of σ(·, ·) given the market put prices P (T1, X1), ..., P (Tn, Xn), observed for the finite number of
pairs (Ti, Xi)i=1,...,n can be done by first constructing a no-arbitrage put price surface P : R+ × R+ → R+

which is compatible with these observed prices and then use the Dupire (1994) formula to get the local
volatility surface.
As we show above, learning the put price surface P corresponds to leaning the reduced priceP̂ and using
(7.2.7). Fortunately, the Dupire formula can be rewritten in term of P̂ . Indeed, one has from the (7.2.6) the
following derivatives

∂TP (T,X) = ∂T [HT P̂ (T, k)] = ∂THT P̂ (T, k) +HT ∂T P̂ (T, k),

∂XP (T,X) = ∂X [HT P̂ (T, k)] = HT ∂kP̂ (T, k) ∂Xk = DT ∂kP̂ (T, k),

∂2
X2P (T,X) = ∂K [DT ∂kP̂ (T, k)] = DT∂

2
k2 P̂ (T, k)∂Kk =

D2
T

HT
∂kP̂ (T, k).

Replacing these derivatives into (7.2.8) leads to

σ2(T,X)

2
=

∂T P̂ (T, k)

k2∂2
k2 P̂ (T, k)

:= dup(T, k). (7.2.9)

which implies that constructing the local volatility surface can be done by constructing the reduced pricesur-
face and using Dupire’s formula to get the whole local volatility surface.
Our construction consists in using the constrained kriging presented in Chapter 6 to learn the reduced price
P̂ , given in Proposition 64, which must be compatible to the market fit. In other terms, for a given quotation
date, we construct reduced put price surfaces (T, k) → P̂ (T, k) satisfying the arbitrage-free conditions in
Proposition 64 from n noisy observations y = [y1, . . . , yn]> of function P̂ at input points X = [X1, . . . ,Xn].
The input points Xi = (Ti, ki), i = 1, . . . , n correspond to observed term-to-maturities and reduced option
strikes. Then, the construction of the reduced price function should be compatible with the following market
fit condition

y = P̂ (X) + ε, (7.2.10)

where P̂ (X) := [P̂ (X1), . . . , P̂ (Xn)]> is the vector composed of reduced put prices at observation points
X1, . . . ,Xn. The additive noise term ε = [ε1, . . . , εn]T is assumed to be a zero-mean Gaussian vector,
independent from P̂ , and with an homoscedastic covariance matrix given as σ2

noiseIn, where In is the identity
matrix of dimension n.

7.2.3 The methodology of the construction

The construction of the local volatility consists first of all in kriging the reduced price P̂ which is compatible
with (7.2.10) and which respects the conditions of Proposition 64 and then using the Dupire’s formula.
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7.2.3.1 kriging the reduced price

Kriging the reduced price P̂ can be done as explained in Section 6.3.2 of Chapter 6. By means, we consider
a discretized version of the input space D as a N = (NT + 1)× (Nk + 1) regular grid DN := {(ui, vj) | ui =

ihT , vj = jhk, i = 0, . . . , NT , j = 0, . . . , Nk}, where hT = 1
NT

and hk = 1
Nk

. For each knot (ui, vj), we
introduce the hat basis function φ(T, k) over D, as the following tensor product

φi,j(T, k) := max(1− |T − ui|
hT

, 0) max(1− |k − vj |
hk

, 0) .

so that supp(φij) = [ki−1, ki+1]× [Tj−1, Tj+1].
Let V = H1(D) denote the space of P̂ and V N ⊂ V denote the finite dimensional linear subspace spanned

by the N linearly independent basis functions so that V N = span{φ0,0, . . . , φNT ,Nk} with dim(V N ) = N .
The surface P̂ ∈ V is projected onto V N :

P̂N (T, k) =

NT∑
i=0

Nk∑
j=0

P̂ (ui, vj)φi,j(T, k), for any (T, k) ∈ D. (7.2.11)

P̂N ∈ V N is a bilinear quadrilateral finite element approximation of the values of P̂ at knots (ui, vj)i,j . If we
denote ξi,j := P̂ (ui, vj), for i = 0, . . . , NT , j = 0, . . . , Nk, then ξ = [ξ0,0, . . . , ξi,j , . . . , ξNT ,Nk ]> is a zero-mean
Gaussian vector with N × N covariance matrix ΓN such that Γhı1,ı2 = κ((ui1 , vj1), (ui2 , vj2)), for any two
grid index pairs (i1, j1) and (i2, j2) corresponding to global indices ı1 and ı2 respectively. Let φ(T, k) denote
the vector of size N given by

φ(T, k) = [φ0,0(T, k), . . . , φi,j(T, k), . . . , φNT ,Nk(T, k)].

The equality (7.2.11) can be written in the following matrix form

P̂N (T, k) = φ(T, k) · ξ

so that when denoting Φ(X) the n × N matrix of basis function in which, each row ` corresponds to the
vector φ(T`, k`), one has P̂N (X) = Φ(X) · ξ, with P̂N (X) := [P̂N (X1), . . . , P̂N (Xn)]>.

The main steps of constructing the reduced price surface are

1. Find GPs hyperparameters by maximizing the marginal log-likelihood of the (made finite dimensional)
put price surface P̂N with respect to a training dataset.

2. Find the MAP (mode of the posterior distribution) ξ̃ of the (finite reduction of the) GPs put price
surface ξ by quadratic minimization, using the hyperparameters found in step 1.

3. Use ξ̃ to initialize a Hamilton MC sampler and sample realizations of ξ or, equivalently, P̂N , from the
posterior distribution of the GPs put price surface.

7.2.3.2 Turning into local volatility surface

Once the kriging of P̂N has been done as presented above, the realizations of the local volatility surface can
be obtained by deriving their corresponding finite element approximations for each realization of P̂N .
For this purpose, the finite dimensional approximation P̂N should be convex with respect to the strike
direction. However, note that P̂N is not differentiable, because our basis functions are only of class C0. To
address this issue, we may use quite a large number of nodes in strike direction in order to get the local
volatility surface.
An other solution is to use a regularization technique which consists in formulating a weak form of the Dupire
equation and construct the local volatility surface using this finite element method. This regularization can
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be done as follows.
Recall from Eq. 7.2.9 that the Dupire formula in reduced variables (T, k) specifies the local half-variance
surface dup ∈ W = H0(D). We construct a piecewise constant approximation of the local volatility. Note
that the approach described in this section can be readily extended to smoother approximations, but requires
more elaborate calculations. The finite dimensional linear solution subspace WN ⊂ W is spanned by N
linearly independent basis functions so that WN = span{ψ0,0, . . . , ψNT−1,Nk−1} with dim(WN ) = N =

NT × Nk. The piecewise constant basis functions are given as ψi,j := 1[ui,ui+1)×[vj ,vj+1) with supp(ψi,j) =

[ui, ui+1)× [vj , vj+1) so that

duph(T, k) =
∑
i,j

ψi,j(T, k)dupi,j = ψ · dup.

If P̂ ∈ V ⊂ H2(D), then under a change of variables κ = ln k we could write the Dupire equation as:

∂2
κ2 P̂ (T, κ)dup(T, κ) = ∂T P̂ (T, κ). (7.2.12)

Instead, we must take the weak form of the Dupire equation to solve for the local half variance by integrating
against a test function vN ∈ V N . Substituting P̂N for P̂ and duph for dup we write:∫

D
∂2
κ2 P̂N (T, κ)duph(T, κ)vNdκdT =

∫
D
∂T P̂

N (T, κ)vNdκdT, ∀vN ∈ V N ,

and after integration by parts to eliminate the second derivative on P̂ ,

−
∫
D
∂κP̂

N (T, κ)∂κ(duph(T, κ)vN )dκdT +

∫
T∈(0,Tmax]

∂κP̂
N (T, κ)duph(T, κ)vN |κmaxκmin dT

=

∫
D
∂T P̂

N (T, κ)vNdκdT, ∀vN ∈ V N ,

where the second integral on the left hand side is a maturity boundary integral. Adopting global indices
ı,  ∈ {0, . . . , N − 1}, substituting the form of P̂N and choosing vN = φ:

−
∑
ı

ξı

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂κφı(T, κ)∂κ

(
duph(T, κ)φ(T, κ)

)
dκdT +

∑
ı

ξı

∫ Ti+1

Ti−1

∂κφı(T, κ)duph(T, κ)φ(T, κ) |κmaxκmin dT

=
∑
ı

ξı

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂Tφı(T, κ)φ(T, κ)dκdT, ∀ı,  ∈ {0, . . . , N − 1}.

Each double integral is defined over a quadrant consisting of four elements. Since duph is only constant over
each element in the quadrant, we can separate the double integral into integrals over each element to give
the linear system

H(dup)ξ = Fξ, (7.2.13)

where the stiffness matrix H and RHS matrix F has a nine-stencil and 6-stencil respectively and are given in
the appendix 8. This form is inconvenient for finding dup and we can rearrange the computations to solve
for dup to give

A(ξ)dup = Fξ, (7.2.14)

where A ∈ RN×N is a quad-diagonal rectangular matrix (see appendix for further details) and dup is found
by the pseudo-inverse of A. The matrix A can be viewed as a combination of time weighted local differencing
over ξ w.r.t. κ and subsequent averaging of duph over the four elements in each quadrant. We further note
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that the linear system in Eq. 7.2.14 provides the opportunity for further regularization techniques such as,
for examples, preconditioners.
In order to constrain the derivatives to be greater than zero during fitting, it is necessary to evaluate the
weak form of the second derivative of P̂N w.r.t. k. The weak form of the first derivative of P̂N w.r.t. T is
equivalent to the pointwise derivative because P̂N ∈ V N ⊂ H1(D). Returning to grid indices (i, j) we see
that

∂T P̂
N (T, k) =

∑
ij

φ′i(T )φj(k)ξij =
1

hk
(ξi+1,j − ξi,j), (T, k) ∈ [Ti, Ti+1]× [kj , kj+1]

is just the 2-stencil corresponding to a forward difference over any element. Hence we may freely choose
where to evaluate finite differences in each element. The weak second derivative

−
∫ kmax

k=kmin

P̂N (T, k)vN (T, k)dk = −
∑
ı

ξı

∫ kj+1

kj−1

∂kφı(T, k)∂kφ(T, k)dk =
∑
ı

H,ıξı,

can be written as Hξ, where the stiffness matrix is a 3-stencil corresponding to a second order finite difference
operator.

7.3 Neural networks implied volatility metamodeling

Our second goal is to use neural nets (NN) to construct a continuous Σ put surface Σ : R+ × R → R+,
interpolating Σ market quotes Σ∗ up to some error term, both being stated in terms of a put option maturity
T and log-(forward) moneyness κ = log( kS0

) = log
(
X
S0

)
−(r−q)T . The advantage of using implied volatilities

rather than prices (as previously done in Chataigner, Crépey, and Dixon (2020)), both being in bijection via
the Black-Scholes put pricing formula as well known, is their lower variability, hence better performance as
we will see.

The corresponding local volatility surface σ is given by the following local volatility implied variance
formula, i.e. the Dupire formula stated in terms of the implied total variance Θ(T, κ) = Σ2(T, κ)T (assuming
Θ of class C1,2 on {T > 0}):1

σ2(T,X) =
∂TΘ

1 − κ
Θ
∂κΘ + 1

4

(
− 1

4
− 1

Θ
+ κ2

Θ2

)
(∂κΘ)2 + 1

2
∂κ2Θ

(T, κ) =:
calT (Θ)

buttk(Θ)
(T, κ) (7.3.1)

We use a feedforward NN with weights W, biases b and smooth activation functions for parameterizing
the Σ (hence the total variance), which we denote by

Σ = ΣΘ
W,b = ΘW,b.

The terms calT (ΘW,b) and buttk(ΘW,b) are available analytically, by automatic differentiation, which we
exploit below to penalize calendar spread arbitrages, i.e. negativity of calT (Θ), and butterfly arbitrage,
i.e. negativity of buttk(Θ).

The training of NNs is a non-convex optimization problem and hence does not guarantee convergence
to a global optimum. We must therefore guide the NN optimizer towards a local optima that has desirable
properties in terms of interpolation error and arbitrage constraints. This motivates the introduction of an
arbitrage penalty function into the loss function to select the most appropriate local minima. An additional
challenge is that maturity-log moneyness pairs with quoted option prices are unevenly distributed and the
NN may favor fitting to a cluster of quotes to the detriment of fitting isolated points. Consequently large
pointwise errors may arise where the NN has favored a local minima with low interpolation accuracy and
no arbitrage violation. To remedy this non-uniform data fitting problem, we propose a novel solution which
involves re-weighting the observations by the Euclidean distance between neighboring points.

1This follows from the Dupire formula by simple transforms detailed in Gatheral (2011, p.13).



7.4. Numerical results 95

More precisely, given n observations χi = (Ti, κi) of maturity-log moneyness pairs and of the correspond-
ing market implied volatilities Σ∗(χi), we construct the n×n distance matrix where each coefficient d(χi, χj)

is the euclidean distance between points :

d(χi, χj) =

√
(Tj − Ti)2

+ (κj − κi)2
.

We then define the loss weighting wi for each point χi as the distance with the closest point:

wi = min
j,j 6=i

d(χi, χj).

This weighting aims at reducing error for any isolated points. In order to adjust the weight of penalization,
we multiply our penalties by the weighting mean µw := 1

h

∑
i

wi. Learning the weights W and biases b to

the data subject to no arbitrage soft constraints (i.e. with penalization of arbitrages), takes the form of the
following (nonconvex) loss minimization problem:

arg min
W,b

√√√√ 1

n

∑
i

(
wi

ΣW,b(χi)− Σ∗(χi)

Σ∗(χi)

)2

+
µw
h

∑
ξ∈Dh

λTR(ΘW,b)(ξ), (7.3.2)

where λ = [λ1, λ2, λ3]> ∈ R3
+ and

R(Θ) = [cal−T (Θ), butt−k (Θ),
( calT
buttk

(Θ)− a
)+

+
( calT
buttk

(Θ)− a
)−

]>

is a regularization penalty vector evaluated over a penalty grid Dh with h = 50× 100 nodes, which extends
well beyond the unit square domain of the IV interpolation. In the unscaled moneyness and maturity
coordinates, the domain of the penalty grid is [0.5, 2] × [0.005, 10Y ]. This is intended so that the penalty
term penalizes arbitrages outside of the domain used for IV Interpolation. Even on such an extended penalty
grid, we found no arbitrage violation in our experiments (after training calT (ΘW,b) and buttk(ΘW,b) are
even > 0 at all nodes of Dh).

Note that the the error criterion is calculated as a root mean square error on relative difference, chosen
here, so that it does not discriminate high or low implied volatilities.

The first two elements in the penalty vector favor the no-arbitrage conditions and the third element
favors desired lower and upper bounds 0 < a < a (constants or functions of T ) on the estimated local
variance σ2(T,X). Suitable values of the “Lagrange multipliers" λ, ensuring the right balance between fit to
the market implied volatilities and the constraints, is obtained by grid search. Of course a soft constraint
(penalization) approach does not fully prevent arbitrages. However, for large λ, arbitrages are extremely
unlikely to occur (except perhaps very far from D).

7.4 Numerical results

7.4.1 Experimental design

Our training set is prepared using SPX European puts with different available strikes and maturities ranging
from 0.005 to 2.5 years, listed on 18th May 2019, with S0 = $2859.53. Each contract is listed with a bid/ask
price and an implied volatility corresponding to the mid-price. The associated interest rate is constructed
from US treasury yield curve and dividend yield curve rates are then obtained from call/put parity applied
to the option market prices and forward prices. We preprocess the data by removing the shortest maturity
options, with T < 0.055, and the numerically inconsistent observations for which the gap between the listed
implied volatility and the implied volatility calibrated from mid-price with our interest/dividend curves
exceeds 5% of the listed implied volatility. But we do not remove arbitrable observations. The preprocessed
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training set is composed of 1720 market put prices. The testing set consists of a disjoint set of 1725 put
prices.

All results for the GP method are based on using Matern ν = 5/2 kernels over a [0, 1]2 domain with
fitted kernel standard-deviation hyper-parameter σ̂ = 185.7611, length-scale hyper-parameters θ̂k = 0.3282

and θ̂T = 0.2211, and homoscedastic noise standard deviation, ς̂ = 0.6876.2 The grid of basis functions for
constructing the finite-dimensional process ph has 100 nodes in the modified strike direction and 25 nodes
in the maturity direction.

Regarding the NN approach, we use a three layer architecture similar to the one based on prices (instead
of implied volatilities in Section 7.3) in Chataigner, Crépey, and Dixon (2020), to which we refer the reader
for implementation details.

7.4.2 Arbitrage-free SVI

We benchmark the machine learning results with the industry standard provided by the arbitrage free stochas-
tic volatility inspired (SVI) model of Gatheral and Jacquier (2014). Under the “natural parameterization"
SVI = (∆, µ, ρ, ω, ζ), the implied total variance is given, for any fixed T , by

ΘSVI(κ) = ∆ +
ω

2

(
1 + ρ(κ− µ)ζ +

√
(ζ(κ− µ) + ρ)2 + (1− ρ2)

)
. (7.4.1)

SSVI is the parameterization of a full surface given as SVIT = (0, 0, ρ,ΘT , φ(ΘT )) for each T , where ΘT is the
at-the-money total implied variance and we use for φ a power law function φ(ϑ) = η

ϑγ(1+ϑ)1−γ . Gatheral and
Jacquier (2014, Remark 4.4) provides sufficient conditions on SSVI parameters (η(1 + |ρ|) ≤ 2 with γ = 0.5)
that rule out butterfly arbitrage, whereas SSVI is free of calendar arbitrage when ΘT is nondecreasing.

We calibrate the model as in Gatheral and Jacquier (2014):3 First, a guess on SVI is obtained by fitting
the SSVI model; Second, for each maturity in the training grid, the five SVI parameters are calibrated
(starting in each case from the SSVI calibrated values). The IV is obtained for new maturities by a weighted
average of the parameters associated with the two closest maturities in the training grid, T and U , say,
with weights determined by ΘT and ΘU . The corresponding local volatility is extracted by finite difference
approximation of (7.3.1).

Note that as, in practice, no arbitrage constraints are implemented for SSVI by penalization (see Gatheral
and Jacquier, 2014, Section 5.2), the SSVI approach is in fact only practically arbitrage-free, much like our
NN approach, whereas it is only the GP approach that is proven arbitrage-free.

7.4.3 Calibration results

Training times for SSVI, GP, and NNs are reported in the last line of Table 7.1 which, for completeness, also
includes numerical results obtained by NN interpolation of the prices as per Chataigner, Crépey, and Dixon
(2020). Because price based NN results are outperformed by IV based NN results we only focus on the IV
based NN in the figures that follow, referring to Chataigner, Crépey, and Dixon (2020) for every detail on
the price based NN approach. Again, in contrast to the SSVI and NNs which fit to mid-quotes, GPs fit to
the bid-ask prices.

The GP implementation is in Matlab whereas the SSVI and NN approaches are implemented in Python.
On our large dataset, the constrained GP has the longest training time. Training is longer for constrained
SSVI than for unconstrained SSVI because of the ensuing amendments to the optimization routine. There
are no static arbitrage violations observed for any of the constrained methods in neither the training or the
testing grid. Unconstrained methods yield 18 violations with NN and 177 with SSVI on the testing set, out
of a total of 1725 testing points, i.e. violations in 1.04% and 10.26% of the test nodes. The unconstrained GP

2When re-scaled back to the original input domain, the fitted length scale parameters of the 2D Matern ν = 5/2 are
θ̂k = 973.1901 and θ̂T = 0.5594.

3Building on https://www.mathworks.com/matlabcentral/profile/authors/4439546
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IV RMSE
(Price RMSE) SSVI GP IV based

NN
Price

based NN
SSVI

Unconstr.
GP

Unconstr.

IV based
NN

Unconstr.

Price
based NN
Unconstr.

Calibr. fit on
the training set

1.37%
(2.574)

0.58%
(0.338)

1.23%
(2.897)

13.70%
(9.851)

1.04%
(2.691)

0.60%
(0.321)

0.84%
(2.163)

5.65 %
(2.456)

Calibr. fit on
the testing set

1.52%
(2.892)

0.57%
(0.355)

1.29%
(2.966)

14.27%
(10.347)

1.09%
(2.791)

0.57%
(0.477)

0.86%
(2.045)

6.14%
(2.888)

MC backtest 8.69%
(22.826)

19.76%
(74.017)

2.95%
(4.989)

6.37%
(11.764) N/A N/A N/A N/A

FD backtest 6.88%
(33.545)

7.86%
(35.270)

3.43%
(11.976)

5.56%
(26.785) N/A N/A N/A N/A

Comput. time
(seconds) 33 856 191 185 1 16 76 229

Table 7.1: The IV and price RMSEs of the SSVI, GP and NN approaches. Last line:
computation times.

approach yields constraint violations on 12.5% of the basis function nodes. The NN penalizations (calT )−

and (buttk)− vanish identically on Dh in the constrained case, whereas in the unconstrained case their
averages across grid nodes in Dh are (calT )− = 3.91× 10−6 and (buttk)− = 1.60× 10−2 with the IV based
NN.

Fig. 7.2(a-b) respectively compare the fitted IV surfaces and their errors with respect to the market
mid-implied volatilities, among the constrained methods. The surface is sliced at various maturities and the
IVs corresponding to the bid-ask price quotes are also shown – the blue and red points respectively denote
training and test observations.

We generally observe good correspondence between the models and that each curve typically falls within
the bid-ask spread, except for the shortest maturity contracts where there is some departure from the bid-ask
spreads for observations with the lowest log-moneyness values. We see on Fig. 7.2(b) that the GP IV errors
are small and mostly less than 5 volatility points whereas NN and SSVI exhibit IV error that may exceed 15
volatility points. The green line and the red shaded envelopes respectively denote the GP MAP estimates
and the posterior uncertainty bands under 100 samples per observation. The support of the posterior GP
process assessed on the basis of 100 simulated paths of the GP captures the majority of bid-ask quotes.
The GP MAP estimate occasionally corresponds to the boundary of the support of the posterior simulation.
This indicates that the posterior truncated Gaussian distribution is heavily skewed for some points, and
that the MAP estimate consequently saturates the AOA constraints. This indicates a tension between the
AOA constraint and the bid-ask constraint which cannot be fully reconciled, most likely because some of the
(short maturity) data are arbitrable (they are at least illiquid and hence noisy). See notebook for location
of arbitrages in the unconstrained approach.

All constrained methods find a no-arbitrage IV surface. Fig. 7.2(a-b) suggest that the data may exhibit
arbitrage at the lowest maturities where the methods depart from the bid-ask spreads. These observations
are further supported in Fig. 7.3(a-b) which shows the corresponding methods without the no-arbitrage
constraints. In Fig. 7.3(a-b) we observe that the estimated IVs now fall within close proximity of the
bid-ask spreads–all methods exhibit an error typically less than 5 volatility points. Note that the y-axis
has been scaled for each plot in Fig. 7.3(b) to accommodate the wide uncertainty band of the posterior for
the unconstrained GP. Whereas the uncertainty band of the constrained GP spanned at most 10 volatility
points, the uncertainty band of the unconstrained GP is an order of magnitude larger, sometimes spanning
more than 100 volatility points.

Fig. 7.4 shows the local volatility surfaces that stem from the three constrained approaches. Fig. 7.4(a)
shows the spiky local volatility surface generated by SSVI, capped at the 200% level for scaling convenience.
Fig. 7.4(b) shows the capped local volatility surface constructed from the GP MAP price estimate. Fig. 7.4(c)
shows the (complete) NN local volatility surface.
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(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 7.2: Slices of constrained GP (green), NN (purple), and SSVI (black) models of SPX
puts with training bid-asks IVs (+

¯
) and testing bid-asks IVs (+̊) (the bid-ask IVs are recon-

structed numerically from the corresponding bid-ask market prices). The shaded envelopes
show 100 paths of the constrained GP’s posterior.
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(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 7.3: Slices of unconstrained GP (green), NN (purple), and SSVI (black) models of
SPX puts with training bid-ask IVs (+

¯
) and testing bid-ask IVs (+̊) (the bid-ask IVs recon-

structed numerically from the corresponding bid ask market prices). The shaded envelopes
show 100 paths of the unconstrained GP’s posterior.
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(a) The local volatility surface generated by SSVI with finite differences,
capped at the 200% level.

(b) The MAP estimate of the GP local volatility surface, capped at the 200%
level.

(c) The implied volatility based NN local volatility surface (with the local volatility penalization).

Figure 7.4: The GP, SSVI, and NN local volatility estimate.
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7.4.4 In-sample and out-of-sample calibration errors

The error between the prices of the calibrated models and the market data are evaluated on both the training
and the out-of-sample data set. The first two rows of Table 7.1 compare the in-sample and out-of-sample
RMSEs of the prices and implied volatilities across the different approaches. The differences between the
training and testing RMSEs are small, suggesting that all approaches are not over-fitting the training set.
We observe that the GP exhibits the lowest price RMSEs.

7.4.5 Backtesting results

The first repricing backtest estimates the prices of the European options corresponding to the testing set, by
Monte Carlo sampling in each calibrated local volatility model (same methodology as described in Chataigner,
Crépey, and Dixon (2020, Section 7.2)). The second approach uses finite differences (FD) to price the options
with the calibrated local volatility surfaces. The pricing PDEs with local volatility are discretized using a
Crank-Nicolson scheme implemented on a 100×100 backtesting grid. The last two rows in Table 7.1 compare
the resulting price backtest RMSEs across the different approaches. The NN fitted to implied volatilities
exhibit significantly lower errors in the backtests, followed by NN based on prices, SSVI and GP. To quantify
discretization error in these backtesting results (as opposed to the part of the error stemming from a wrong
local volatility), we ran the same backtests in a Black-Scholes model with 20% volatility and the associated
prices. The corresponding Monte Carlo and PDE backtesting IV (price) RMSEs are 2.90% (1.56) and 0.846%

(4.10).

7.5 Conclusion

In this chapter, we develop a finite dimensional kriging approach for no-arbitrage interpolation of European
vanilla option prices which jointly yields the full surface of local volatilities with uncertainty bands, even in
the presence of arbitrage in the data. We demonstrate the performance relative to SSVI and deep learning
of implied volatilities. The latter uses shape constraint regularization through the local volatility implied
variance formula to penalize arbitrages. The GPs is found to produce a better fit to out-of-sample prices than
SSVI, with less evidence of overfitting, although the performance is less competitive than neural networks
trained to implied volatilities. Backtesting results show that kriging is competitive although it suggests that
fitting to implied volatilities would be advantageous. However, in contrast to the SSVI and neural networks,
the GPs provides uncertainty quantification, which promises much potential for model risk aspects of local
volatility construction (cf. Cont, 2006, Example 4.3) and no-arbitrage price interpolation. The best of all
worlds could be GPs trained to implied volatilities.
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Conslusions and perpectives

Conclusions

In this thesis, we have addressed some aspects which contribute in quantitative financial risk management
through two different parts.

In the first part, we have guided our thinking about default times modeling. As such, after having re-
called some well known results about stochastic calculus and models of default times in Chapter 1, we have
investigated the Gaussian example in conditional densities by showing that this example is unique in a large
class of diffusion processes.
Very often, in credit risk modeling, the construction of the default time τ using the enlargement of filtration
is based on the hypothesis that τ avoids the stopping times of the reference filtration. However, this frame-
work does not allow to cover a wide range of situations, particularly in modeling defaultable claims under
some economic shocks under which the default time could coincide with the shock times.
This allows us to expand our thinking, in Chapter 2, toward the model of Jiao and Li (2018) which is de-
signed for modeling default time which could coincide with some predictable stopping times in the reference
filtration. By this way, we proposed an extension of that model when the stopping times in the reference
filtration are no more predictable. We have concluded that despite its attractiveness in modeling defaultable
claims under some predictable shocks, the model of Jiao and Li (2018) is difficult to implement if the shocks
are not predictable and does not always allow to capture the jumps of the zero-coupon bond prices.
We then proposed the generalized Cox model in Chapter 3 which extends the one of Lando (1998) in which
the default time τ is the first time when an increasing process K adapted to a given filtration F, absolutely
continuous with respect to Lebesgue’s measure hits a level, which is a random variable independent of F.
It follows that this random time avoids all F-stopping times. We have relaxed the assumption that K is
absolutely continuous by working in a more general case, where that process K being adapted, increasing
and continuous on right with limits on left or continuous on left with limits on right. This led us to a
random time which does not avoid the stopping times of the reference filtration. We were interested in the
computations of characteristics of the default time such as the conditional survival martingale, the Azéma
supermartingale, the compensator of the default time as well as its predictable reduction process and the
multiplicative decomposition of the Azéma supermartingale.
We have also given many examples which illustrated our construction. The Generalized Cox model extends
the one of Jiao and Li (2018) when K is F-predictable.
In Chapter 4, we have investigated some applications of the generalized Cox model in credit risk. We were
also interested in the effects of the jumps of the process K on the prices of the zero-coupon bonds through
different configurations of K. The Generalized Cox model where K is a shot-noise allows to capture the
jumps of the zero coupon bond when the stopping times of the reference filtration are not predictable.

In the second part of this thesis, we have presented the kriging techniques for solving some problems in
quantitative finance such as option pricing and construction of volatility surfaces. Chapter 5 described some
useful tools which have been used in Chapters 6 and 7. Particularly, we have recalled the constrained kriging
in 1d using the finite dimensional approximation of GPs developed by Maatouk and Bay, 2014. A particular
attention has been paid in the simulation of the Gaussian coefficients when some monotonicity constraints
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are saturated and we have proposed a numerical solution to this problem which consists in reducing the
number of basis function in the regions where constraints are saturated.
Chapter 6 was devoted to the construction of prices and implied volatility surfaces under no-arbitrage con-
straints using kriging. A comparison of the classical and constrained kriging for this task has been done.
It turned out that the surfaces constructed using constrained kriging respect the no arbitrage conditions
while the ones fitted by the classical kriging can lead to some arbitrages. We have also proposed a method
for identifying the locations with the most likely arbitrages (which are the ones with largest noises) in the
data by computing the joint MAP of the truncated Gaussian coefficient and the Gaussian noise vector. We
demonstrated our construction using the Euro Stoxx 50 data of January 10, 2019. Our results show that
kriging is a suitable tool for constructing option prices and quantifying uncertainty in the presence of noisy
data, and for computing the associated local and implied volatility. Hence a promised tool for quantifying
model uncertainty.
In Chapter 7, we have demonstrated the performance of kriging relative to various popular alternative inter-
polation techniques, we have benchmarked it against SSVI and deep learning techniques for local volatility
surface construction. The fitting of kriging in the replication of bid ask data is an important result. Indeed,
it allows to get a price surface which lies between the bid and ask prices.
Backtesting results show that kriging is competitive although it suggests that fitting to implied volatilities
would be advantageous. However, in contrast to the SSVI and neural networks, the Kriging provides uncer-
tainty quantification, which promises much potential for model risk aspects of local volatility construction
and no-arbitrage price interpolation.

Perspectives

Here we present some new avenues for future researches.

Using Generalized Cox model for modeling catastrophe (CAT) bonds

The issuing of catastrophe (CAT) bonds is essential for insurance companies. These products allow them to
hedge against the risks incurred following a natural disasters such as earthquakes, pandemics, etc. Recently,
we are witnessing the occurrence of the Coronavirus disease COVID-19 pandemic that causes significant
losses. A number of good examples have already been developed for catastrophe bonds. These include
the model of Burnecki and Kukla (2003) who used a compound doubly stochastic Poisson loss process for
aggregate losses where the catastrophe event times are jump times of standard Poisson Process (i.e., with
a constant intensity). Their approach has been extended by Ma, Ma, and Xiao (2017) where they use a
stochastic intensity rate of the Poisson process and provide an explicit intensity of the default time as well
as a semi-analytical solution for evaluating zero-coupon CAT bonds. In the double stochastic Poisson loss
model, default occurs when the aggregate claims process exceeds a specified level (called threshold value).
Schmidt (2014) used shot-noise process for modeling the aggregated losses process.
Jarrow (2010) has been based on the reduced form model for pricing credit derivatives. He modeled the time
of the catastrophe event underlying the Cat bond as a standard Cox time (i.e., the case where the increasing
adapted process K is continuous). However, his model can be applied only in the case of one occurrence of a
catastrophe event in the time interval of the Bond contract. This can be understood through the illustrative
example on his introduction where an insurance issues CAT-Bonds with the hurricane in Florida as the
underlying catastrophe event for covering eventual losses that could be included in the amount insured for
home insurance written by that company at the first occurrence of the hurricane in the time interval of the
contract. However after the first event, the CAT-Bonds come to an end.
Nevertheless, when one considers the case with possible successive catastrophe events in life time of a CAT-
Bond contract, the model of Jarrow (2010) is not enable to cover this kind of framework, specially in the
case of long maturity CAT-Bonds contracts. Indeed the default time in Jarrow (2010) represents only the
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first time of the ones of these events, while others severe losses can be noted after the nth occurrence of an
event.
To bridge this gap, we can adopt the generalized Cox framework where the sequence of catastrophe events can
be modeled as an increasing sequence of stopping times in the reference filtration which are not avoided by
the default time. This setting may offer some nice mathematical perspectives to the CAT-Bonds. However,
how it could be implemented from the practical point of view?

Kriging and theory of optimal martingale transport

We have seen that kriging is a suitable tool for constructing option prices and quantifying uncertainty in the
presence of noisy data by constructing some confidence bounds.
In addition, this latest example of kriging could offer new perspectives for studying risk model in quantitative
finance. Recent works on the subject concern in particular the derivation of non-arbitrage bounds (and
the identification of strategies of over- or under- replication to reach those boundaries) for option prices
(path-dependent) knowing the marginal laws of the underlying at some maturities. This problem can for
example be studied under the angle of theory of optimal martingale transport (see, e.g., Henry-Labordere
and Touzi, 2013; Hobson and Klimmek, 2015; Beiglböck, Juillet, et al., 2016; Beiglböck, Henry-Labordère,
and Penkner, 2013). However, in this approach, the non-arbitrage bounds can be obtained efficiently only
from the knowledge of all marginal distributions.
In practice, the marginal law is only partially observed at some time horizons through the observation of
traded European option prices.
As we illustrated in Chap 6, 7, constrained kriging allows to quantify uncertainty on marginals laws of a
martingale measures. A more realistic uncertainty quantification of path-dependent option prices could be
achieved by combining our approach and the optimal martingale transport approach. This is a perspective
for future research.
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Chapter 8

Finite Element Approximation

The elements of the matrix F are given by

Fı1,ı2 =

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂Tφı2(T, κ)φı1(T, κ)dκdT, ∀ı1, ı2 ∈ {0, . . . , N − 1}, (8.0.1)

which simplifies to the following 6-diagonal square matrix, where the central tri-diagonal band is zero:

Fı1,ı2 =


0, i1 = i2, |j1 − j2| ≤ 1,

±hk/3, i1 = i2 ± 1, j1 = j2,

±hk/12, i1 = i2 ± 1, |j1 − j2| = 1.

(8.0.2)

The elements of the stiffness matrix H are given by

Hı1,ı2 = −
∑
ı2

ξı2

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂κφı2(T, κ)∂κ

(
duph(T, κ)φı1(T, κ)

)
dκdT (8.0.3)

which evaluates to the 9-diagonal square matrix:

Hı1,ı2 =



− 1
3

hT
hκ

(dupi1,j1 + dupi1−1,j1
+ dupi1,j1−1 + dupi1−1,j1−1), ı2 = ı1,

1
3

hT
hκ

(dupi1,j1 + dupi1−1,j1
), i2 = i1, j2 = j1 + 1,

1
3

hT
hκ

(dupi1,j1−1 + dupi1−1,j1−1), i2 = i1, j2 = j1 − 1,

− 1
6

hT
hκ

(dupi1,j1 + dupi1,j1−1), i2 = i1 − 1, j2 = j1,

− 1
6

hT
hκ

(dupi1−1,j1
+ dupi1−1,j1−1), i2 = i1 + 1, j2 = j1,

1
6

hT
hκ

dupi1,j1 , i2 = i1 − 1, j1 = j2 + 1

1
6

hT
hκ

dupi1,j1−1, i2 = i1 − 1, j1 = j2 − 1,

1
6

hT
hκ

dupi1−1,j1
, i2 = i1 + 1, j1 = j2 + 1

1
6

hT
hκ

dupi1−1,j1−1, i2 = i1 + 1, j1 = j2 − 1,

If we multiply each side of the equation H(dup)ξ = Fξ by 3
2hThk

then the second line of the right hand
side has terms similar to a first order central finite difference stencil ξi+1,j−ξi−1,j

2hT
. Additionally the stiffness

matrix has terms which correspond to a second order finite difference stencil with local averaging of dup. To
see this, suppose that dup were constant over each quadrant then the first three lines of the specification of
H above correspond to the finite difference stencil ξi,j+1−2ξi,j+ξi,j−1

h2
κ

.
The four-diagonal rectangular matrix A is given by

Aı1,ı2 =


−hThκ ( 1

3ξi1,j1 −
1
3ξi1+1,j1 + 1

6ξi1,j1+1 − 1
6ξi1+1,j1+1), ı1 = ı2,

−hThκ ( 1
3ξi1,j1 −

1
3ξi1,j1−1 + 1

6ξi1+1,j1 − 1
6ξi1+1,j1−1), ı1 = ı2 +NT ,

−hThκ ( 1
3ξi1,j1 −

1
3ξi1,j1+1 + 1

6ξi1−1,j1 − 1
6ξi1−1,j1+1), ı1 = ı2 + 1,

−hThκ ( 1
3ξi1,j1 −

1
3ξi1,j1−1 + 1

6ξi1−1,j1 − 1
6ξi1−1,j1−1), ı1 = ı2 +NT + 1.

(8.0.4)
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Cette thèse traite différentes questions liées à la gestion quantitative des risques financiers. Nous
nous intéressons, dans une première partie, aux modèles de temps de défaut en risque de crédit dans le
cadre de la théorie de grossissement de filtrations. Nous proposons des modèles où le temps de défaut
peut coïncider avec des instants de chocs économiques. Nous mettons l’accent, dans un premier temps,
sur le modèle de Jiao et Li (2018) en risque souverain où le temps de dèfaut coïncide avec des temps de
chocs prévisibles. Nous étendons ce modèle dans le cas où les chocs ne sont pas prévisibles en étudiant
les caractéristiques du temps de défaut. Dans un second temps, nous présentons le modèle de Cox
généralisé qui est une extention de celui de Lando (voir Lando, 1998). Nous proposons une large gamme
d’exemples pour ullistrer notre construction. La seconde partie porte sur la construction de surfaces de
volatilités des actifs financiers sous la condition d’absence d’opportunité d’arbitrage (AOA) en utilisant
les méthodologies de krigeage (où la regression par processus Gaussien). Ces surfaces permettent
par exemple d’estimer à partir du prix d’options liquides, la valeur des produits financiers dont les
caractéristiques sont non-standard et dont le prix n’est pas observé sur le marché. La construction de
telles surfaces est une étape importante dans certains processus de gestion des risques. Elle permet
également de tarifer des actifs non-liquides. Notre approche consiste á mettre en œuvre l’apprentissage
du krigeage sur les prix d’options européennes en respectant les conditions de non-arbitrage. Ces
conditions sont caractérisées par des contraintes de forme sur les prix, à savoir la monotonicité dans la
direction des maturités et la convexité dans la direction des strikes. Etant donné que ces contraintes
correspondent à un nombre fini d’inégalités linéaires, nous adoptons une technique de krigeage sous
contraintes d’inégalités linéaires. Nous utilisons, pour cela, la méthode d’eveloppée par Maatouk et
Bay (2016) qui est basée sur l’approximation fini-dimensionnelle du processus Gaussien. L’algorithme
de Monte Carlo Hamiltonien de Pakman et Paninski (2014) sera utilisé pour simuler les coefficients
Gaussiens. Nous proposons une méthode de calcul du Maximum a Posteriori (MAP) du processus
Gaussien. Nous comparons notre méthode avec celles des réseaux de neuronne contraints et des SSVI.
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