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Modélisation de la dynamique de la chromatine à l’aide de
processus gaussiens et de la physique des polymères

Première partie

Introduction

Le corps principal de cette thèse sera divisé en deux parties. La première est
de nature expérimentale, où l’on s’interroge sur les effets de la condensation de
la chromatine sur ses propriétés diffusives. Pour répondre à cette question, notre
laboratoire a utilisé une lignée cellulaire partagée par l’équipe de Giorgetti (FMI
Bâle) dans laquelle un système PiggyBac est utilisé pour marquer au hasard des
loci de chromatine dans des cellules souches embryonnaires (SE) de souris. La dy-
namique de déplacement de ces loci est enregistrée par microscopie fluorescente
pendant une courte période de temps en interphase et en mitose. Cette expérience
a été utilisée pour étudier les différences générales (ou les similitudes) entre les
dynamiques de la chromatine à des stades de condensation très différents.

Pour approfondir l’étude précédente, nous voulions également déterminer si les
coefficients de diffusion et d’anomalie pouvaient différer selon le locus. Le labora-
toire de Sexton (IGBMC) a développé des lignées cellulaires dans lesquelles 3 loci
spécifiques du domaine HoxA dans les cellules SE sont marqués à l’aide de sondes
fluorescentes ANCHOR. De plus, lors de la culture avec de l’acide rétinoïque, ces
cellules sont induites en différenciation vers des cellules précurseurs de neurones
(PN). Ainsi, nous avons déterminé quels sont les effets de la différenciation sur la
dynamique de ces sondes. Ceci est possible parce que les gènes HoxA sont réprimés
à l’état SE, mais actifs une fois que les cellules sont différenciées.

Contrairement à ce que l’on pourrait imaginer, l’analyse de ces données n’est
pas (du tout) simple, c’est pourquoi plusieurs méthodes ont été développées à cette
fin. Dans la deuxième partie de cette thèse, je commence par introduire quelques
concepts de la théorie des probabilités et des statistiques. Nous discutons des princi-
pales différences entre les approches statistiques bayésiennes et fréquentistes. Nous
allons également discuter du théorème de la limite centrale (TCL), un concept très
important en statistique. En utilisant ces concepts de base, nous allons introduire le
mouvement brownien fractionnaire comme modèle pour la matrice de covariance
des distributions gaussiennes multivariées. Grâce à cette méthode, nous avons pu
prendre en compte au maximum les trajectoires des particules, ce qui nous a permis
d’obtenir des mesures plus précises.
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Dans le cadre bayésien, nous avons également développé des modèles pour amé-
liorer la localisation des particules dans les films de microscopie. Dans le même
ordre d’idées, une méthode a été mise au point pour corriger les défauts d’aligne-
ment entre les canaux du microscope, dus à des problèmes de caméra et d’aber-
ration chromatique. Enfin, nous introduisons un nouveau modèle pour corriger les
mesures de diffusion dans les situations où le substrat est en mouvement. À la
différence de nombreuses approches dans la littérature, aucune installation expéri-
mentale supplémentaire ou post-traitement des données n’est nécessaire.

Afin de mieux interpréter les résultats expérimentaux, nous introduirons un mo-
dèle basé sur la physique pour la chromatine dans la partie III de cette thèse. Je vais
tout d’abord décrire la nature de la diffusion et la façon dont nous pouvons la trai-
ter mathématiquement. Je vais également présenter des méthodes avec lesquelles
nous pouvons simuler ce phénomène sur ordinateur. Ensuite, je vais introduire la
chaîne de Rouse comme première approximation pour la chromatine. Sur la base
de ce modèle, j’ai considérer la conformation moyenne de la chromatine dans la
population, telle que visualisée par les cartes Hi-C, pour reconstruire des polymères
synthétiques ayant une conformation similaire au domaine HoxA. Le premier ob-
jectif ici était de déterminer si les distances mesurées entre les sondes du domaine
HoxA sont récapitulées. Ensuite, j’ai inséré la dynamique dans le système et affiné
les propriétés diffusives de chaque section de chromatine en utilisant les données
ChIP-seq pour évaluer le contexte dans lequel chaque section de notre polymère se
trouve.

Dans les sections suivantes, je résume certains des principaux résultats présentés
dans cette thèse. Pour plus de détails et d’informations, veuillez vous référer au
texte principal.
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Deuxième partie

Analyse des données :
Mesure de la dynamique de la chromatine

1 Modélisation de la dynamique avec les processus gaus-
siens

Certains des modèles les plus populaires utilisés pour déduire les propriétés de
diffusion sont basés sur l’analyse du déplacements des particules dans le temps, ce
qui tend à ignorer les corrélations implicites entre les points temporels mesurés.
De ce fait, la précision globale de l’inférence est réduite. Pour surmonter ce pro-
blème, nous avons développé une méthode utilisant le processus gaussien (PG),
qui nous permet de modéliser ces corrélations temporelles et ainsi d’utiliser toutes
les informations disponibles dans les trajectoires mesurées.

Bien que le PG soit un processus stochastique continu dans le temps, un sous-
ensemble {xt; t ∈ T} est décrit par une distribution gaussienne multivariée donnée
par

N (x|µ,Σ) =
1

(2π)N/2 |Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
(1.1)

où x contient N variables et µ est un autre vecteur contenant la moyenne de chaque
variable xt. La variance est maintenant représentée par une matrice symétrique Σ

appelée matrice de covariance, avec des valeurs hors diagonale représentant la cor-
rélation entre 2 variables quelconques. La variance étant définie comme positive,
nous devons nous assurer que toutes les valeurs propres de cette matrice sont supé-
rieures à zéro. En d’autres termes, la matrice de covariance doit être écrite comme
une composition Σ = LLT ou, inversement, construite à partir de la multiplication
d’une matrice L avec sa transposition.

Comme modèle pour les trajectoires stochastiques, nous utilisons le mouvement
brownien fractionnaire (MBF), une moyenne mobile du mouvement brownien tra-
ditionnel, où chaque pas est pondéré en fonction de (t− s)

α−1
2 . Sa matrice de co-

variance est définie comme suit

ΣDα,α(t, s) = Dα (tα + sα − |t− s|α) , (1.2)

pour t > 0, 0 < α < 2 et Dα > 0. Dans ce cas, Dα représente le coefficient de diffu-
sion apparente et il est associé à la mobilité d’une particule donnée. Inversement, α
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est appelé le coefficient d’anomalie. À titre d’exemple, nous avons dans la figure 1.1
l’effet de α sur les trajectoires stochastiques. Sur les images du bas, nous traçons
la distribution de l’angle sur 2 étapes consécutives simulées. Nous remarquons que
pour α < 1 les particules ont tendance à être plus contraint. α = 1 représente le
mouvement brownien traditionnel, où les particules sont libres d’aller n’importe où
de manière aléatoire, sans direction définie. Enfin, pour α > 1 les particules ont
tendance à avoir une direction préférée à suivre.

Enfin, en fixant t = s, on obtient ΣDα,α(t, s) = 2Dαt
α, ce qui est connu sous

le nom de déplacement quadratique moyen (DQM). Cette courbe est généralement
utilisée pour estimer les valeurs de Dα et de α.

Fig. 1.1. : Nous échantillonnons une seule longue trajectoire en utilisant Dα = 1 et
α = 0,5 pour (a), α = 1,0 pour (b) et α = 1,5 pour (c). α < 1 confine
le mouvement des particules si on le compare au mouvement brownien
traditionnel α = 1, tandis que α > 1 le dirige.

2 Inférer les coefficients de diffusion et d’anomalie

Le PG fournit la probabilité d’observer une trajectoire r étant donné Dα et α.
Ensuite, nous avons appliqué le théorème de Bayes [1] pour obtenir la distribution
postérieure sur les paramètres de diffusion étant donné la trajectoire mesurée :

P (Dα, α,µ|r) =
P (r|Dα, α,µ) P (Dα, α,µ)∫

dDα dα dµP (r|Dα, α,µ) P (Dα, α,µ)
, (2.1)

où P (Dα, α,µ) représente la distribution préalable des paramètres du modèle. Dans
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l’hypothèse d’un flat prior sur µ,Dα et α, le log-postérieur peut être exprimé comme

log(P (Dα, α,µ|r) ∝ −1

2
(r−µ)TΣ−1Dα,α(r−µ)− 1

2
log |ΣDα,α| −

N

2
log(2π), (2.2)

où N représente le nombre de points mesurés et | · | est la fonction déterminante.
Pour obtenir des estimations postérieures maximales, nous avons optimisé (2.2) en
utilisant la méthode de Nelder-Mead [2]. En outre, pour calculer des intervalles
crédibles pour nos estimations, nous avons utilisé la méthode de Monte Carlo par
chaînes de Markov appelé Metropolis-Hastings [1] pour échantillonner à partir de
la distribution de probabilité postérieure.

Pour déterminer la performance globale de cette méthode, désormais appelée
GP-FBM, nous avons simulé 10000 trajectoires similaires mais avec des valeurs
aléatoires de Dα et α. Nous avons fixé Dα dans la fourchette 0, 01 < Dα < 1, 5

et α dans la fourchette 0, 01 < α < 2. À titre de comparaison, nous estimons égale-
ment ces paramètres en utilisant des méthode basés sur le déplacement, tels que les
DQM et l’ajustement de la distribution. Les résultats sont présentés dans la figure
(2.1).

3 Méthodes développées

3.1 Améliorer la précision de localisation des particules fluorescentes

La détection et le suivi des spots pour tous les films ont été effectués avec ICY,
un logiciel d’analyse d’images [3]. En supposant que les spots sont approximative-
ment de forme gaussienne à deux dimensions, nous avons optimisé sa localisation
en utilisant la méthode Nelder-Mead [2] et estimé la précision de localisation en
utilisant l’algorithme de Metropolis-Hastings [1]. Pour tester cette méthode, nous
générons un film synthétique avec 500 images pour une seule particule. Le spot a
été généré en utilisant une forme gaussienne symétrique à deux dimensions avec
un écart de 1, le signal de fond a été fixé à 100 et l’intensité du spot est égale à
200. Le bruit du signal a été généré sous la forme d’une distribution de Poisson en
prenant le signal original comme moyenne. Sur la figure (3.1), nous montrons que
cette méthode augmente considérablement la précision de la localisation.

3.2 Algorithme d’alignement

Certaines des expériences de microscopie réalisées ont utilisé deux caméras,
c’est-à-dire une par canal. Ce système nous a permis d’enregistrer simultanément le
spot dans les deux canaux, simplifiant par la suite le traitement des données. Ce-
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Fig. 2.1. : (a-b) Corrélation entre les paramètres fixés et estimés pour un ensemble
de 2000 trajectoires simulées. (c-d) Erreur d’estimation relative pour les
mêmes trajectoires. À titre de comparaison, la méthode GP-FBM est, en
moyenne, plus précise que les méthodes basées sur le déplacement.

Fig. 3.1. : (a) Exemple de spot dont le signal et la taille sont similaires à ceux ob-
servés dans les films réels. (b) Notre algorithme améliore d’environ 7
fois la localisation des spots suivis. (c) Nous pouvons déterminer la taille
moyenne des spots dans une trajectoire et l’utiliser pour identifier les
éventuelles valeurs aberrantes. (d) Distribution des erreurs de localisa-
tion estimées pour chaque point de la trajectoire synthétique.

pendant, l’utilisation de deux caméras a introduit des écarts d’alignement non né-
gligeables entre les canaux. Dans la figure (3.2a-c), nous avons quelques exemples.
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Indépendamment de la question de la double caméra, deux longueurs d’onde diffé-
rentes génèrent également des erreurs associées à l’aberration chromatinienne.

Pour corriger ces problèmes, nous avons utilisé un ensemble générique de trans-
formations affines pour effectuer un post-alignement numérique. Le modèle est
écrit comme suit

Ω =

sx 0 (1− sx)W/2

0 sy (1− sy)H/2

0 0 1


1 0 dx + cx

0 1 dy + cy

0 0 1


 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1


1 0 −cx

0 1 −cy
0 0 1

 ,

(3.1)

où,si représente la mise à l’échelle dans les directions x et y, di représente la trans-
lation dans les deux directions et θ est l’angle de rotation entre les deux canaux par
rapport au point ci.

Pour déduire les paramètres optimaux de la correction, nous avons utilisé 10
images de tous les films enregistrés dans la session et maximisé la probabilité sui-
vante en utilisant la méthode de Nelder-Mead [2]

lnP ∝ −WH

2
ln

∑
k,l

[I2(k, l|Ω)− I1(k, l|I)]2
 , (3.2)

où W et H correspondent à la largeur et à la hauteur des images et Ir(k, l|A) est la
valeur du pixel (k,l) dans le canal r étant donné la transformation A. Des exemples
d’images désalignées et de corrections sont présentés dans la figure (3.2).

3.3 Correction des mouvements de fond

Il est assez remarquable de constater à quel point les cellules se déplacent lors-
qu’on effectue une imagerie en direct. Il a été constaté que les cellules ont tendance
à effectuer une sorte de mouvement brownien si on les laisse libres de se déplacer
[4]. De plus, les cellules ne sont pas des corps rigides. Leur forme peut fluctuer
lorsque la cellule réorganise son contenu interne. De plus, la chaleur supplémen-
taire introduite par le laser en microscopie fluorescente tend à rendre les cellules
plus agitées, augmentant leur motilité et leurs fluctuations volumétriques. Pour ré-
soudre ce problème, nous présentons dans la figure (3.3) un schéma représentant
ce qui est observé. Les vecteurs ri sont les positions des particules telles que me-
surées dans le cadre de référence du microscope, mais ces mesures incluront le
mouvement confondu R. Nous nous intéressons donc à la dynamique intrinsèque
décrite par les vecteurs ai. Pour simplifier, nous allons décrire un système de 2
particules, mais ce modèle peut facilement être étendu à d’autres particules.

En utilisant le modèle du processus gaussien présenté dans une section précé-
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Fig. 3.2. : (a) Image synthétique générée pour illustrer les problèmes courants ren-
contrés dans nos expériences de microscopie. (b) Image réelle générée
avec un mauvais calibrage de la caméra. (c) Image réelle générée avec
un calibrage correct de la caméra. Quoi qu’il en soit, l’aberration de la
chromatine est toujours perceptible.

Fig. 3.3. : Schéma de correction des mouvements confondus. ri sont des positions
mesurées dans le cadre de référence du microscope.R représente le mou-
vement du substrat, tandis que ai sont les positions des particules dans
le cadre de référence mobile.

dente, nous pouvons exprimer ces relations comme suit

ρ(ai,R|αi, Di) ∝ exp
{
−1

2
aT1 Σ−11 a1 −

1

2
aT2 Σ−12 a2 −

1

2
RTΣ−1R R

}
, (3.3)

où nous avons associé le noyau MBF Σi directement à ai. En raison du mouvement
local de la chromatine, nous savons que les vecteurs ai sont corrélés à travers R.
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En réorganisant les termes et en intégrant R, nous avons obtenu le modèle final
pour 2 particules

ρ(ri|αi, Di) ∝ exp

−1

2

(
r1

r2

)T (
Σ1 + ΣR ΣR

ΣR Σ2 + ΣR

)−1(
r1

r2

) . (3.4)

Ce résultat nous montre que les effets du mouvement confondant introduisent
des corrélations entre la trajectoire mesurée. De plus, cette source de mouvement
supplémentaire augmentera la variance mesurée pour chaque point suivi. Pour cette
raison, nous pouvons nous attendre à surestimer les coefficients de diffusion et
d’anomalie si ΣR n’est pas pris en compte.

Dans la figure (3.4a), nous calculons la distribution des déplacements pour 2000
particules simulées avec Dα = 0, 15 et α = 0, 25 qui se déplacent sous l’influence
d’un substrat avec DR = 0, 02 et αR = 1, 35. Notez que DR est environ 10 fois plus
petit que le coefficient de diffusion fixé pour la particule elle-même. En pointillés,
nous montrons le déplacement moyen ainsi que les courbes de distribution en uti-
lisant Dα et α déduites sans tenir compte du mouvement du substrat. Les lignes
continues utilisent des paramètres corrigés. En chiffres (3.4b-e), nous présentons
les 2000 valeurs déduites.

3.4 GP-Tool

Toutes ces méthodes développées, parmi d’autres utilitaires, font partie d’une
application que j’ai développé. Ce logiciel s’appelle GP-Tool et peut être téléchargé
sur ma page Github (https://github.com/guilmont). Dans la figure (3.5), nous pré-
sentons une capture d’écran de ce logiciel.

4 Mesure de la dynamique de la chromatine

4.1 Comparaison de l’interphase et de la mitose

Depuis la première fois que les cellules mitotiques ont été observées au micro-
scope à la fin du XIXe siècle, nous avons appris que le contenu nucléaire change
sauvagement d’état de condensation entre l’interphase et la mitose. Il a été mesuré
par des tests volumétriques et des méthodes basées sur le FRET que la chromatine
se condense 2 à 3 fois de l’interphase à la mitose [5, 6, 7], si la division cellulaire
doit être accomplie dans l’espace alloué typique. En fait, la structure de la chroma-
tine mitotique a fait l’objet d’études intensives [8, 9], mais on ne sait pas exacte-
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Fig. 3.4. : (a) Distribution des déplacements et moyenne dans le temps calculés
pour 2000 trajectoires simulées avec Dα = 0, 15, α = 0, 25, DR = 0, 02
et αR = 1, 35. Les lignes continues utilisent la valeur moyenne obtenue
avec la méthode présentée au-dessus. Les lignes en pointillés négligent le
mouvement du substrat. (b-c) Distribution des paramètres déduits pour
les trajectoires simulées. Comme prévu, ils ont été surestimés lorsque le
substrat n’a pas été pris en compte. (d-e) Distribution des paramètres
pour le substrat.

Fig. 3.5. : Exemple d’un plugin du GP-Tool.

ment comment les réarrangements de la chromatine influencent ses propriétés de
diffusion.

Pour élucider les éventuelles différences et similitudes entre ces stades, nous
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avons utilisé une lignée cellulaire SE de souris dans laquelle des réseaux TetO de
7 kb de long sont greffés sur environ 20 à 25 emplacements aléatoires du génome.
Après la transfection et l’expression de GPF::TetR, ces emplacements deviennent
visibles au microscope. Afin de distinguer les cellules en interphase de celles en
mitose, on a eu recours à la coloration de Hoechst. Dans la figure (4.1a), nous
avons un exemple de ces cellules.

Sans surprise, la probabilité de trouver des cellules mitotiques naturelles était
très faible. Pour cette raison, nous avons effectué une synchronisation basée sur le
nocodazole. Des masques ont été générés en attribuant des étiquettes de couleur
individuelles à chaque cellule, où le canal bleu a été utilisé pour identifier les cel-
lules en interphase, en mitose et en arrêt de nocodazole. Les loci étiquetés ont été
détectés et suivis à l’aide de ICY [3]. Enfin, ces loci ont été regroupés par cellule à
l’aide de nos masques et ont été intégrés dans la méthode GP-FBM.

Dans la figure (4.1b), nous montrons les résultats résumant le mouvement des
loci de chromatine à l’intérieur des cellules en intrephase (bleu), en mitose (rouge)
et traitées au nocodazole (vert). Nous avons analysé les valeurs moyennes de dé-
placement et les distributions de déplacement obtenues à partir des expériences par
rapport aux expressions théoriques avec ou sans prise en compte du mouvement du
substrat. Il est clair que le modèle GP-FBM étendu tenant compte du mouvement
du substrat s’adapte beaucoup mieux aux données, en particulier pour les grands
intervalles de temps. Notez que cette approche GP-FBM ne nécessite pas de dispo-
sitif expérimental supplémentaire ni de post-traitement des données, ce qui diffère
de nombreuses approches dans la littérature.

De manière surprenante, nos résultats indiquent qu’il n’y a pas de différences
significatives dans la moyenne de Dα et de α entre l’interphase et la mitose, ce qui
suggère que la condensation n’affecte pas la dynamique de diffusion globale de la
chromatine, comme nous pouvons le voir sur la figure (4.1c,d). Dans le cas des cel-
lules arrêtées en mitose, nous avons observé une augmentation significative de α
qui pourrait être liée à l’effet que le nocodazole a sur la formation des microtubules
et donc sur la stabilité des chromosomes mitotiques. Il est intéressant de noter que
nous avons obtenu un large éventail de coefficients Dα et α estimés indiquant une
variabilité remarquable d’un point à l’autre, même si l’on corrige le mouvement du
substrat. Cette variabilité pourrait être en partie causée par des différences dans
l’état cellulaire des cellules analysées (variabilité inter-cellulaire) conduisant à une
dynamique globale différente de la chromatine. Alternativement, des différences
dans le contexte chromatinien des loci génomiques pourraient conduire à une dyna-
mique de diffusion spécifique (variabilité intra-cellulaire). En utilisant le théorème
de la variance totale, nous avons quantifié que seul 40% de la variabilité en Dα et
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α pouvaient être expliqué par les différences entre les cellules lorsque le mouve-
ment du substrat est pris en compte. Dans l’ensemble, cela suggère que différents
loci génomiques peuvent avoir des propriétés de diffusion caractéristiques en raison
d’interactions spécifiques de la chromatine avec le contexte nucléaire.

Fig. 4.1. : (a) Images de projection maximale des cellules SE contenant des taches
de TetR::GFP liées à des matrices TetO et de l’ADN coloré par Hoechst
(la barre d’échelle est de 10 µm). L’encadré montre la zone sélection-
née agrandie (barre d’échelle 1 µm). (b) Les lignes noires décrivent les
distributions de déplacement théoriques déduites obtenues en utilisant
l’approche GP-FBM avec (ligne continue) et sans (lignes pointillées) en
tenant compte du mouvement du substrat. En couleurs, les distributions
de déplacement calculées à partir des trajectoires mesurées. Les croix
jaunes indiquent le déplacement moyen. En revanche, les lignes grises re-
présentent les courbes de déplacement moyen théorique en utilisant les
paramètres bruts (pointillés) et corrigés (continus). (c-d) Distributions
de Dα et α estimées dans trois conditions corrigeant le mouvement du
substrat. (e-f) Répartition de la variance totale en composantes inter- et
intra-cellulaire (respectivement en gris et en couleur) pour Dα et α dans
trois conditions différentes.

4.2 Le domaine HoxA

L’étude sur le système TetO nous a montré une variabilité non négligeable de
Dα et de α à l’intérieur des cellules. Cet effet était d’autant plus évident lorsque
l’inférence de ces paramètres était corrigée en fonction du mouvement du substrat,
où, dans certains cas, on a observé que jusqu’à 90% de la variabilité provenait de
cellules individuelles. Ce résultat nous a incité à spéculer sur la raison d’une telle
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variabilité et sur sa possible corrélation avec leur fonction. Nous trouvons dans la
littérature des études de cas montrant que les régions de chromatine à proximité des
centromères et des télomères ont tendance à être moins mobiles (Dα réduit) dans
la levure [10]. Nous trouvons également quelques résultats liant l’activité transcrip-
tionnelle à un confinement local accru (α réduit) [11] et/ou une mobilité accrue
des gènes [12]. Sinon, on sait peu de choses sur les effets du contexte du génome
sur la dynamique de la chromatine.

Afin d’explorer la variabilité des propriétés diffusives à l’intérieur des cellules, 2
lignées SE ont été générées par double marquage avec ANCHOR [13]. Les étiquettes
ANCH1 et ANCH3 ont été introduites à différents endroits dans le même allèle du
chromosome 6 pour les lignées inter-TAD (T1-T2) et intra-TAD (T2-T3) 1, comme le
montre la figure (4.2a). Stratégiquement, T1 et T3 sont équidistants de T2 (∼ 300
kb), ce qui nous a permis d’approfondir nos recherches sur les effets de la structure
TAD dans les distances à trois dimensions. En utilisant les intervalles de temps
enregistrés par microscopie confocale et la méthode GP-FBM, nous évaluons D et α
pour les cellules SE et les cellules induites à différenciation via l’acide rétinoïque.

Comme on peut s’y attendre, nous montrons dans la figure (4.2b) que la distance
moyenne entre les sondes était plus élevée pour la combinaison inter-TAD que pour
la combinaison intra-TAD, mais avec une grande hétérogénéité dans les distribu-
tions de distances [14]. Il est intéressant de noter que l’induction du gène Hox n’a
pas eu d’effet sur les distances inter-TAD, mais a diminué les distances intra-TAD,
ce qui soutient l’idée d’un renforcement général du TAD au fur et à mesure que
la différenciation cellulaire est induite [15]. En utilisant la GP-FBM sur les trois
loci, nous observons dans la figure (4.2c) que toutes les régions présentent une
mobilité similaire dans les cellules SES indifférenciées, mais la région T1 est signi-
ficativement plus confinée que T2 et (faiblement) T3. Un examen plus approfondi
des profils épigénomiques des cellules SES (et des cellules précurseurs neuronales
différenciées) autour de ces régions a montré que T1 est proche (<15 kb) du gène
qui code le long ARN non codant Haunt, dont l’expression dans les cellules SES
est liée à la suppression des gènes HoxA [16]. Une activité transcriptionnelle plus
élevée autour de T1, par rapport aux régions silencieuses T2 et T3, semble donc
liée à un plus grand confinement de la chromatine, conformément à une étude an-
térieure d’un gène induit par les oestrogènes [11]. L’induction du gène Hox par
l’acide rétinoïque n’a pas eu d’effet significatif sur la diffusion de T1, mais a réduit
le confinement du locus (Fig. 4.2c,d). En revanche, la région T2, qui ne présente
aucune caractéristique épigénomique ou régulatrice connue, a connu des augmen-
tations significatives de Dα et de α, ce qui indique peut-être le remodelage général

1. TAD est un acronyme en anglais que signifie Topological Associated Domains. TAD est une région
génomique auto-interagissante.
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de la chromatine dû à la différenciation. Curieusement, la région T3 est devenue
plus confinée lors du traitement à l’acide rétinoïque, avec une augmentation conco-
mitante de la diffusion. Cette région contient des sites liés par la protéine CTCF,
formant un barrage pour les processus d’extrusion en boucle à médiation par la
cohésine [17, 18], et on peut s’attendre à ce que cela se traduise par des altérations
de la dynamique locale de la chromatine. Dans l’ensemble, ces résultats montrent
une corrélation entre l’activité ou la fonction du locus d’un gène et la dynamique
locale de sa chromatine, une caractéristique qui a été largement négligée dans la
plupart des études précédentes.

Fig. 4.2. : (a) Aperçu de la structure du locus HoxA et de la position des sondes AN-
CHOR. (b) Distances entre les sondes mesurées pour les cellules SE et les
cellules traitées à l’acide rétinoïque. (c-d) Comparaison des coefficients
de diffusion apparente et d’anomalie entre les cellules SE et les cellules
traitées à l’acide rétinoïque.
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Troisième partie

Biophysique :
Modélisation de la chromatine

5 Reconstruire la conformation de la chromatine

Mon premier objectif est de tenter de reconstruire la conformation des poly-
mères à l’aide de cartes de distance. À ce stade, je ne m’intéressais pas tant aux
mécanismes responsables de l’existence d’une quelconque conformation préféren-
tielle, mais simplement à la récapitulation de la position de tous les monomères
dans l’espace telle que mesurée par une carte de distance. Pour s’assurer que chaque
monomère va se détendre vers une position relative correcte par rapport aux autres,
j’ai supposé que tous les monomères génèrent un potentiel de Lennard-Jones sur
tous les autres.

Comme je ne m’intéressais pas au régime de non-équilibre, j’ai, par souci de
simplicité, rapproché ce potentiel du quasi-équilibre, où il se comporte comme un
simple potentiel harmonique quadratique. De plus, compte tenu de la viscosité dy-
namique élevée attendue pour le noyau de la cellule, on peux négliger les effets de
l’inertie. L’équation de mouvement résultante est donnée par

d

dt
ri = λ

∑
i 6=j

rij − dij
d2ij

r̂ij . (5.1)

où λ module la force, tandis que dij se rapporte à la carte de distance et rij est
la distance réelle entre les monomères i et j. La valeur exacte de λ n’est pas si
importante, elle doit être suffisamment petite pour que le polymère puisse explorer
autant de conformations que possible pendant la relaxation, mais suffisamment
grande pour que les calculs ne prennent pas trop de temps. Pour nos simulations,
j’ai utilisé λ = 0, 005µm2/s.

Pour vérifier si l’équation (5.1) fonctionne correctement, échantillonnons une
seule chaîne gaussienne et essayons de la reconstruire en nous basant sur sa carte
des distances en figure (5.1a). Pour déterminer plus précisément la robustesse de
cette méthode par rapport au bruit, nous introduisons un bruit lognormal avec di-
vers σ. Un exemple avec σ = 0, 4 est affiché en (b). Pour chaque niveau de bruit,
je reconstruis 32 polymères pour estimer l’erreur moyenne et l’écart-type. En (c), je
présente une carte de distance reconstituée pour σ = 0, 4, tandis qu’en (d), les er-
reurs moyennes avec courbe ajustée. Une erreur moyenne d’environ 5 nanomètres
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par monomère est trouvée pour σ → 0.

Fig. 5.1. : (a) Carte de distance calculée pour la chaîne gaussienne échantillonnée
(b) En utilisant une distribution lognormale avec σ = 0, 4, nous intro-
duisons le bruit dans la distance propre. (c) Exemple de reconstruction à
l’aide de la carte de bruit précédente. (d) Moyennes de l’erreur moyenne
et de l’écart-type calculées en utilisant 32 polymères reconstruits pour
divers σ en orange. La courbe ajustée présente a = 0, 005, b = 2, 083 et
c = 1, 067.

6 Modélisation de la dynamique de la chromatine

Le modèle de la chaîne de Rouse, présenté au chapitre 10, est le modèle de
polymère le plus simple que l’on puisse imaginer. Il prend en compte les interac-
tions simples de premier voisin via un ressort développant une sorte de dynamique
stochastique (mais stationnaire) commandée par la température sous l’influence
d’un substrat homogène. En raison des principes de symétrie, tous les monomères
de ce polymère, à l’exception de ceux dans les bords, présentent un coefficient de
diffusion apparente similaire avec un coefficient d’anormalie se situant à 1/2.

A l’inverse, nos résultats expérimentaux montrent que le coefficient de diffusion
varie, dans un intervalle crédible, en fonction de sa localisation relative dans la
chromatine. Nous avons également déterminé que le coefficient d’anomalie est, en
moyenne, inférieur au seuil théorique de 1/2, ce qui indique que la chromatine est
plus contraignante qu’un polymère libre.

Intuitivement, on se rend compte qu’il existe une relation entre le coefficient
d’anomalie et le nombre d’interactions contraignantes associées à un monomère
quelconque. Une seule particule se diffusant librement présente α = 1, alors que
le fait d’attacher deux ressorts raccourcit cette valeur de moitié. Par conséquent,
on peut s’attendre à ce que plus un monomère a d’interactions contraignantes, plus
le coefficient d’anomalie sera faible. A l’avenir, la question est de savoir quelles
interactions sont importantes pour la dynamique et la conformation globale. La
question la plus pertinente est peut-être celle de savoir comment ces interactions
évoluent dans le temps. Malheureusement, même avec la technologie actuelle, il
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est assez difficile, voire impossible, de répondre expérimentalement à cette ques-
tion. Au cours de la dernière décennie, nous avons observé un grand intérêt pour
les complexes en interaction, par exemple la cohésine-CTCF, qui s’est révélée être
un mécanisme important pour la conformation. Néanmoins, il existe peut-être des
dizaines d’autres types d’interaction qui pourraient contraindre la chromatine. Pour
ne citer que quelques exemples, nous avons l’oligomérisation directe ou par média-
tion, les condensats, les interactions avec les repères nucléaires, entre autres [19].
En fait, la solution la plus probable serait une combinaison de ces éléments.

Quoi qu’il en soit, si différentes sections de chromatine ne sont en contact que
temporellement avec une probabilité proportionnelle au nombre de lectures pré-
sentées dans une carte Hi-C, ces sections devraient également se trouver à des
distances variables dans le temps. Nous ne savons pas exactement comment cette
distance va évoluer dans le temps, mais nous connaissons sa moyenne. Par consé-
quent, en première approximation, nous utiliserons cette distance attendue comme
médiateur de force pour la dynamique de chaque monomère.

Pour déterminer de manière probabiliste quelles interactions se produiront pen-
dant une petite période de temps, j’ai utilisé une carte Hi-C. Malheureusement, elles
contiennent une bonne quantité de bruit et plusieurs valeurs indéterminées en rai-
son de problèmes expérimentaux connus, il faut donc les traiter. Afin de résoudre le
problème des éléments manquants, j’ai utilisé l’interpolation. Pour réduire le bruit,
j’ai convoluté cette carte avec un filtre gaussien à deux dimensions. En utilisant
cette carte de contact de la population traitée, nous pouvons également calculer la
carte des distances attendues en utilisant

P (〈R〉 |b) = erf

{√
4b2

π 〈R〉2

}
− 4b

π 〈R〉
exp

{
− 4b2

π 〈R〉2

}
, (6.1)

qui décrit la relation entre la probabilité de contact et la distance moyenne 〈R〉
donnée à une valeur b, comme décrit au chapitre 10. Heureusement, nous avons
déjà déterminé expérimentalement deux éléments de la carte de distance pour le
domaine HoxA. En utilisant ces résultats, j’ai obtenu b = 56 nm pour les cellules SE
et b = 93 nm pour les cellules PN.

Nous pouvons utiliser ces résultats ainsi que l’équation (5.1) pour générer des
polymères à partir des interactions échantillonnées. Dans la figure (6.1a,b), nous
avons des cartes Hi-C dans lesquelles les éléments manquants ont été interpolés et
le bruit a été réduit avec le filtre gaussien. Au total, 2048 polymères ont été re-
construits à partir de différentes interactions échantillonnées. En (c, d), nous avons
le nombre total de fois où différents monomères ont été trouvés en contact après
la relaxation. En (e,f), la carte finale de la distance moyenne. Enfin, en (g,h), les
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cartes de contact calculées à partir des distances moyennes. Comme nous pouvons
le voir, les polymères reconstruits sont fortement corrélés aux données et peuvent
expliquer aisément leur variance.

Fig. 6.1. : (a,b) Les éléments manquants des cartes Hi-C ont été interpolés et le bruit
a été réduit en utilisant un filtre gaussien à deux dimensions. (c,d) Après
la reconstruction de 2048, le nombre total de monomères se croisant a
été compté. (e,f) Moyenne sur confirmation finale de tous les polymères.
(g,h) Estimation des cartes de contact.

Comme la chromatine est fortement recouverte de protéines pour la régulation
transcriptionnelle, on peut s’attendre à ce que, selon la façon dont un locus donné
est régulé, les propriétés de diffusion de l’environnement différeront de celles des
autres régions. Nous trouvons dans la littérature que les centromères et les télo-
mères sont moins mobiles que la moyenne chez la levure [10], alors que les loci
actifs transcriptionnels se sont avérés en corrélation avec des α plus petits et des
Dα plus grands dans certains cas [11, 12].

Je modifie l’équation (5.1) pour en tenir compte et introduis une dynamique
stochastique

dri =
3kBT

γi
dt
∑
i 6=j

rij − dij
d2ij

r̂ij +

√
2kBT

γi
dW t, (6.2)

où γi est la viscosité dynamique associée à chaque monomère. Le bain thermique a
été introduit via dW t, une force blanche aléatoire.

L’idée est de modéliser un γi local en utilisant les données de ChIP-seq, car il
fournit des informations sur les facteurs de transcription qui se lient habituelle-
ment à la chromatine. Cela peut sembler facile au début, mais, en raison du nombre
énorme de protéines nécessaires pour réguler l’ensemble du génome, ce ne serait
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pas un outil durable à long terme. C’est pourquoi j’ai proposé d’utiliser des modifi-
cations d’histones à cette fin, inspirées du locus Haunt susmentionné, qui est enrichi
en H3K4me1, H3K4me3 et H3K36me dans les cellules ES [20, 21], mais, lors de la
différenciation, H3K4me3 et H3K36me3 diminuent et H3K27me3 augmente [16].
Par conséquent, nous pourrions modéliser une sorte de combinaison de signaux
encapsulant des modifications majeures des histones et vérifier si nous sommes en
mesure d’approximer nos résultats expérimentaux pour les coefficients de diffusion
apparente et d’anomalie.

Dans la figure (6.2a), je présente les résultats pour les cellules ES utilisant
H3K122ac, H3K4me1, H3K27ac et H3K64ac. Comme précédemment, 2048 poly-
mères ont été simulés. Ils ont ensuite été divisés en 64 groupes de 32, à partir
desquels nous utilisons l’DQM pour obtenir des mesures pour Dα et α ainsi qu’un
intervalle de 95% de crédibilité. Ces résultats sont présentés en (b-c). Une procé-
dure similaire a été appliquée aux cellules PN. Malheureusement, la disponibilité
des données ChIP-seq pour les cellules PN est rare, c’est pourquoi seules les données
H3K4me3 et H3K27ac ont été utilisées. Les résultats sont présentés dans la figure
(6.3).

Fig. 6.2. : Comparaison des résultats obtenus à partir d’expériences et du modèle
polymère pour les cellules SE. (a) Nombre de fois où des monomères ont
été trouvés à proximité dans des polymères simulés. (b) Distribution des
distances inter-sondes mesurées à partir de simulations et de données
réelles. (c-d) En bleu, nous présentons la moyenne et un écart-type esti-
més pour les coefficients de diffusion apparente et de confinement à par-
tir de 2048 simulations. En orange, intervalle de certitude de 95% pour
la moyenne mesurée à partir de données réelles.

Ce travail est préliminaire et des recherches supplémentaires doivent être effec-
tuées sur le sujet. L’une des premières choses à faire est peut-être de vérifier les
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données ChIP-seq pour d’autres modifications des histones qui sont fortement as-
sociées à une activité génique spécifique. Cela devrait permettre de déterminer un
meilleur système de pondération pour le signal final.

Fig. 6.3. : Comparaison des résultats obtenus à partir d’expériences et du modèle
polymère pour les cellules PN. (a) Nombre de fois où des monomères ont
été trouvés à proximité dans des polymères simulés. (b) Distribution des
distances inter-sondes mesurées à partir de simulations et de données
réelles. (c-d) En bleu, nous présentons la moyenne et un écart-type esti-
més pour les coefficients de diffusion apparente et de confinement à par-
tir de 2048 simulations. En orange, intervalle de certitude de 95% pour
la moyenne mesurée à partir de données réelles.
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Quatrième partie

Conclusion

Nous avons présenté dans cette thèse un nouveau cadre pour analyser les coef-
ficients de diffusion apparente et d’anomalie des taches marquées dans le noyau.
Même si cette technique a été principalement utilisée pour étudier la dynamique
de la chromatine, cette méthode peut être utilisée pour l’analyse de toute parti-
cule décrivant un mouvement de type brownien en supposant des déplacements
gaussiens. L’utilisation de cette technique pour mesurer les coefficients de diffusion
apparente et d’anomalie nous a permis de corriger nos résultats pour les effets du
mouvement de fond et de clarifier les similitudes présentées dans la dynamique de
la chromatine entre la mitose et l’interphase. De plus, grâce à des mesures précises,
nous avons pu développer un modèle de biopolymère avec lequel nous simulons la
dynamique locale de la chromatine qui récapitule les distances mesurées entre les
sondes, les coefficients de diffusion apparente et d’anomalie pour les lignées cellu-
laires HoxA. Grâce à l’avantage d’un modèle théorique, nous avons pu établir que
les propriétés de diffusion dépendent fortement du contexte chimique dans lequel
les sondes sont insérées. Éventuellement, nous pouvons identifier un lien entre les
propriétés dynamiques et l’activité des gènes. Quoi qu’il en soit, la méthode utilisée
pour tenir compte des effets du contexte local doit être étudiée plus en profondeur.
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Summary

Chromatin organization and its role in genome regulation is a fundamental con-
cept involved in biological, pharmaceutical and health related research. There is
vast literature addressing the subject from a static and chemical perspective, but
the underlying associated dynamics has been largely overseen up to recent years.
For that reason, this thesis encloses some results I obtained during my PhD years
regarding dynamical properties of chromatin in diverse cell cycle stages and a pos-
sible connection relating gene activity to local mobility and anomalous behavior of
chromatin.

To reach this goal, we developed a new computational framework based on
Gaussian processes and fractional Brownian motion called GP-FBM. Using this meth-
od, I was able to infer values for apparent diffusion and anomalous coefficients
more accurately, as Gaussian processes naturally account for high-order temporal
correlations. For similar reason, we were also able to extend this method to correct
for background movement in a natural way for systems with two or more parti-
cles, that is, no computational post-processing or extra experimental setups were
necessary.

In order to extend our understanding of the experimental data provided in this
thesis, I further introduce a new biopolymer model using a mean-field approach
in which I use Hi-C maps to model chromatin long-range interactions and histone
marks via ChIP-seq data to account for local properties of the nuclear environment.
This model was able to recapitulate experimental distances and inferred values for
apparent diffusion and anomalous coefficients measured via confocal microscopy
for specific loci of the HoxA domain in mouse cells.
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1
Chromatin structure

DNA contains the basic code for the proteins necessary to maintain life, these
“recipes” are called genes. It is formed as a combination of four basic units namely
adenine (A), cytosine (C), guanine (G) and thymine (T) connected in pairs and
organized with backbones of phosphate-deoxyribose. At the core of any mammalian
cell, we find over 6 billions of these base pairs of DNA. If we organized all these
units in a straight line, it would be about 2 meters long, as each of its components
is 0.34 nanometers big. Now considering we have trillions of cells, how far away
could we go? Farther than Voyager 1, the first human made object to leave the
solar system, at the present year. We might imagine how nicely organized and
packed DNA must be to fit in a rather small volume named the cellular nucleus in
eukaryotes. Even more interesting is the fact that, in mammals, only about 50% or
less of the genome is actually encoding for genes [22].

At first instance, DNA is wrapped about twice around a combination of 8 pro-
teins called histones H2A, H2B, H3 and H4 (two of each), which receives the name
of nucleosome [23]. Nucleosomes are the basic units of chromatin, which is later
organized into functional domains such as euchromatin and heterochromatin. Eu-
chromatin is loosely compacted and is considered to be transcriptionally active.
Whereas heterochromatin is more condensed, which is believed to prevent access
of transcription machinery inhibiting gene expression. Heterochromatin can be sub-
divided into two other subcategories [24, 25]: “Constitutive” contains genes that
are permanently silenced, as in telemores and centromeres; “Facultative” presents
genes that may (or not) be active in a cell type.

Euchromatin and heterochromatin can also be distinguished due to differences
found in their histones. Since histone modifications were discovered [26], they
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have been correlated to gene activity. For instance, their tails can protrude from one
nucleosome to the next affecting inter-nucleosomal interaction. Besides that, it was
also found that histone modifications might be involved in DNA repair, replication
and recombination [25].

Among several recently found types of histone modifications, I would like to
mention the more traditional ones: acetylation and methylation, as they will be
important towards the last chapter of this thesis. Histone acetylation has been asso-
ciate to nucleosome uncoiling upon action of histone acetyltransferases or HATs. As
a gene must be accessible by transcriptional machinery in order to be transcribed,
this modification is directly associated to gene activity. Histone methylation is not
so obvious, because depending on which residue is modified it could be associated
to euchromatin or heterochromatin. For example, histone H3 lysine 4 trimethyla-
tion (H3K4me3) is found at active regulatory sequences, while histone H3 lysine 27
trimethylation (H3K27me3) is found at facultative heterochromatin domains [27].

1.1 Chromosome conformation capture

As we have discussed above, chromatin is formed as a mechanism to organize
long DNA molecules in the nucleus. With development of chromosome conforma-
tion capture technologies [28] in the past decade or two, we have observed that
chromatin is further organize in such a way that distal regions are brought to-
gether. This clustering is known as TAD, or Topological Associated Domains, and it
has been widely correlated to histone modifications and gene expression [29, 30].
There are cases in which disruption of these domains will generate malformation
during development and other diseases [31]. Nonetheless, several studies have also
disrupted the regular shape of TADs without greatly affecting transcriptional rates
[32]. At the current day, even with the growing number of studies on the subject, it
is still unclear how these structures are formed, maintained and modified through
the cell cycle and differentiation.

There are several proposed mechanisms suggested in the literature for the for-
mation of TADs and larger order chromatin organization. Some of these are as-
sociated to direct oligomerization of transcription factors and co-factors, protein
clustering via condensation, histone modifications, DNA methylation, among other
mechanisms [19]. Perhaps one of the most popular and successful theories pre-
sented in past years is the loop extrusion model [33, 18]. It is proposed that loop-
extruding factors, such as cohesin, form ever larger loops until it encounters TAD
boundary proteins like CTCF. Likewise, loops can be formed within loops as TAD
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boundaries are assumed to present extrusion permissive direction. Several de novo
simulations implementing such mechanism have displayed average TAD-like struc-
tures.

For the work developed in this thesis, we will try to determine if the above men-
tioned structures cause variations in the dynamics of different chromatin regions.
For that purpose, we are not particularly interested to determine specific mecha-
nisms by which all these fundamental structures are formed, but simply what are
their effects on the overall dynamics. As many similar projects found in literature,
we are going to utilize Hi-C data, which uses high throughput sequencing to mea-
sure chromatin conformation and generate contact maps.

First introduced by Lieberman-Aiden et al back in 2009 [34], this method is
relatively straightforward to understand and runs as follows:

— Cross-linking DNA: Using formaldehyde, chromatin is cross-linked so that
“sufficiently” closed regions are fixed together. A great review on the chemi-
cal aspects and how formaldehyde works is presented in [35];

— Cut with restriction enzyme: There are a few possible choices, popularly
HindIII and NcoI are used. Importantly, these restriction enzymes should
target symmetric sequences such as AAGCTT, which is important for next
steps. Usually, the restriction enzyme will dictate how deep or resolved finer
structures will be at the final result;

— Fill ends and mark chromatin: When cross-linked regions had their ends
completed and marked via biotin for later purification;

— Ligation: When symmetric ends are re-connect;
— Purification and shearing: DNA is sheared and connection is purified mak-

ing use of streptavidin beads;
— Sequencing: Purified fragments are sequenced and identified accordingly.

Upon alignment to a prior known and well defined genome, we can count the
number of times long range interactions occur, that is, number of times distal se-
quences are found together. Naturally, this type of experiment is noisy due the
stochastic dynamical nature of chromatin and technical issues. In that sense, more
often than not, random sequences will be found together without any specific or
functional reason. Nonetheless, upon usage of millions (maybe billions) of cells,
we eventually determine some configurations that are more often observed than
others. For that reason, we might expect that these configurations reflect function.
Unfortunately, the interpretation of such maps are not straightforward due to all
the possible experimental biases introduced in each step of its obtainment. A more
detail discussion on the subject is present in [36].
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There are dozens of methods and algorithms present in literature trying to over-
come some of these biases. In general, different methods were developed with
intention to study specific questions, hence a more complete comparison among
several methods can be found [37]. Here I will present some of the most popular
ones, usually correcting for the compared visibility of certain sequences by balanc-
ing the raw read maps generated via sequencing and alignment.

Used in the original work by Lieberman-Aide et al [34], the VC method (Vanilla-
coverage) divides every element of a row by the accumulated signal of that row and,
subsequently, column-wise. The KR method (Knight-Ruiz matrix balancing [38])
uses an algorithm to normalize symmetric matrices in which every row and column
sums up to 1. In figure 1.1, we present an example of Hi-C matrix balanced using
this method. Finally, the ICE (Iterative correction and eigenvector decomposition
[39]) balances the matrix by removing experimental biases and using eigenvectors
decomposition techniques to analyze different chromatin patterns.

Fig. 1.1.: Hi-C map balanced using the KR method. This section of chromatin in
chromosome 6 encodes for the HoxA gene. We are going to analyze this
locus in greater detail later.

There are several models in literature where Hi-C datasets and, sometimes,
FISH 1 [40] are used to reconstruct synthetic polymers. We are going to discuss the
subject in greater detail later on, but, for completeness, there are two broad groups
in which we can insert these models [41]. The first will try to determine chromatin
consensus structure directly from these maps, disregarding the dynamic behavior
of chromatin and how improbable such conformation is to occur in real life. Differ-
ently, some authors try to detect possible key interactions that will recapitulate on
average the expected Hi-C map upon simulations of thousands of polymers. As we
shall discuss later, I propose a method in between both approaches, that is, we are
going to use Hi-C maps to determine how frequently certain interactions occur and

1. Fluorescence in situ hybridization (FISH) uses fluorescent probes that bind with high specificity
to certain DNA sequences. Like that, we can localize these regions using fluorescent microscopy.
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how far apart corresponding chromatin sections are from each others.

1.2 ChIP-seq as a measurement of heterogeneous
environment

Gene expression is mediated through the action of special proteins called tran-
scription factors (TFs) along with other co-factors. When binding to certain regu-
latory sequences encoded on DNA, these TFs will modify the local environment in
such way that will promote or repress genes for RNA Polymerase (Pol II) transcrip-
tion [42]. We find in literature two main accepted types of regulatory elements
encoded by DNA: promoters or enhancers, sometimes referred as proximal and
distal regulatory sequences. Promoters are found upstream, close to transcription
starting site (TSS) of genes. Differently, enhancers are also found downstream or
in introns of respective or unrelated genes [43, 44]. A typical human gene is usu-
ally regulated by multiple enhancers, in fact, proximal regulatory sequences are
incredible outnumber (orders of magnitude) by distal ones. Which increases our
believe that chromatin conformation is also correlated to transcriptional activity, by
bringing enhancers and promoters close or apart in space.

But how do we know where specific TFs bind in chromatin? We can answer
this question via the experimental protocol called ChIP-seq, standing for chromatin
immunoprecipitation followed by sequencing, which is precise enough to determine
binding sites up to about 10bp precision. Furthermore, we can indirectly measure
how strongly proteins interact with those sequences depending on the final signal
obtained. Nonetheless, depending on the strength of any given interaction and
how specific it is, millions of cells are needed for a robust signal due the stochastic
nature of diffusion dynamics described by transcription factors and other proteins.
For that reason, results should be interpreted as a population average.

The protocol implemented for this method is conducted as follows

— Cross-linking: The first step of the protocol for a ChIP-seq experiment is
cross-linking with formaldehyde. This step ensures that any protein of in-
terest will remain attached to chromatin in the next steps of the protocol.
Notice that, although possibly biased by the way proteins interact with chro-
matin, ChIP-seq will not provide us with any information regarding the actual
underlying mechanism;

— Fragmentation: Once cross-linked, the material needs to be fragmented.
There are a few methods for that, such as sonication or digestion using en-
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zymes. Naturally, smaller fragments will increase the final resolution of the
method, but the smallest size should depend on the effective interaction area
of chromatin with the protein;

— Purification: To purify fragments of interest, one needs to use very specific
antibodies for the protein of interest. Non-specificity here will increase ex-
perimental noise;

— Reverse cross-linking: This step can be accomplished using enzymes to di-
gest proteins or over extensive heat incubation;

— Sequencing and alignment: Purified fragments are, then, sequenced and
aligned to a reference genome.

For most of the purposes in this thesis, as a preliminary approach, we are not
interested in the raw signal from these experiments, but to determine where inter-
actions peak. In other words, where proteins are interacting more strongly. There
are several methods for this purpose, but we are going to use MACS2 that empiri-
cally models shifts in the data to improve spatial resolution. More details are found
in [45]. This method will basically give a binary result regarding where proteins of
interest are bound. In figure (1.2) we bin up peaks in regions of 4 kb (same reso-
lution of Hi-C maps used throughout the thesis) and perform Gaussian smoothing
for noise removal.

Fig. 1.2.: ChIP-seq signal for CTCF and diverse histone modifications are displayed.
Raw data is binned in 4kb sections using a binary approach via a set
threshold. Then, a Gaussian filter with σ = 2 was used.

This figure shows us that different sections of chromatin will interact with a
wildly heterogeneous environment, where different regions will contain variable
densities of molecules with diverse chemical potentials. There are several machine
learning methods developed in the past few years [46, 47, 48] where authors at-
tempt to determine probable binding sequences for certain proteins solely based on
the combination of base pairs found via ChIP-seq. Notwithstanding, these meth-
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ods neglect conformation and possible chemical interactions that these proteins
present, thus decreasing the overall precision and predictive power of these ap-
proaches.

These measurements made via ChIP-seq will be important when we developed
our biopolymer model if we want to also have increased precision in simulated dy-
namics. Which proteins should we consider for regions of interest? Possibly many.
As a preliminary result, we shall consider an effective approach by not consider-
ing interacting proteins directly, but histone modifications correlated to chromatin
states. As an example that we shall consider in more detail later, the HoxA domain
is repressed by the Haunt gene. Hence, this genomic locus is enriched in H3K4me1,
H3K4me3 and H3K36me in stem cells [20, 21]. Oppositely, upon differentiation
H3K4me3 and H3K36me3 decrease, whilst H3K27me3 increases [16]. In chapter
12 we shall use these results to recapitulate measured dynamics parameters in the
HoxA domain.
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2
Physical models for diffusion dynamics

Molecules are subject to thermal fluctuations and stochastic interactions inside
the cell. Advanced novel imaging techniques allows us to measure the movement of
single particles which provides us with a better understanding of their interactions
and the complex media they move in. However, to extract all the information
offered by these techniques is not trivial due the degree of complexity implied in
the dynamics of biological particles.

Without considering energy driven mechanisms such as molecular motors, most
particles in the cell will move due diffusion. We are going to described this pro-
cess in greater detail when necessary in part 3, but we shall introduce some basic
ideas behind this mechanism. Generally speaking, the phenomenon of diffusion is
generated when any particle of interest randomly collides with neighboring smaller
particles. In the simplest model, know as Brownian diffusion, all of these collisions
are elastic, hence no energy is consumed nor lost during this process, but simply
distributed and balanced across the whole system of interacting particles. If we
analyze the displacement of this particle over time and do some statistics on it, we
can associate a parameter D to how mobile this particle is given a finite amount
of time. Henceforth, we shall call this parameter as diffusion coefficient. In one
of his miraculous paper, Einstein demonstrated that this coefficient depends on the
particle cross-section and the fluid viscosity. Even though the overall trajectory dis-
played by this particle is stochastic, we can calculate an ensemble average over a
sufficiently large amount of particles and determine that their mean squared dis-
placement (MSD) is given as follows

〈
(r(t)− r(0))2

〉
= 2nDt, (2.1)
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where r(t) is a n-dimensional vector representing the position of particles in time.
For our experiments later on, we will use 2-dimensional microscopy movies, hence
n shall be considered as 2.

Unfortunately, particles in the cell do not interact with its neighborhood in an
elastic fashion. There are many different types of chemical potentials with which
any given particle undergo when diffusing through the cell. For instance, any sec-
tion of chromatin will chemically interact via covalent bonds with its adjacent sec-
tions, hence we should expected a different MSD curve from the above. In those
situations, the diffusion dynamics receives an extra term called the anomalous co-
efficient α, which hints us about the type of diffusion mechanics undertaken by any
particle of interest. Defined in the range 0 < α < 2, the new MSD curve is given by

〈
(r(t)− r(0))2

〉
= 2nDαt

α, (2.2)

and accommodates 3 different types of motion: for α < 1 we are in a sub-diffusive
regime, while α > 1 corresponds to a more directed type of motion. Notice that
the diffusion coefficient now presents a dependency in α. For that reason, we shall
call it apparent diffusion coefficient from now on. Nonetheless, one can restore
traditional results by setting α = 1. In figure 2.1 we can observe the expected MSD
curve for these 3 regimes.

Fig. 2.1.: Comparison between values of α and expected MSD behavior.

Trying to explain such anomalous behavior, many Physics-based models have
been developed since mid 20th century. One of these models, namely Continuous
Time Random Walks (CTRW) [49], was first presented as a generalization for the
traditional diffusion process described by Einstein in 1905. In this model, the pas-
sage of time is stochastic, therefore particles might remain at their position for a
random period time before next spatial step is taken. If time probability distribution
is exponential with well defined mean, CTRW recapitulates the original diffusion
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scheme. By modeling time distributions, one can use this model to study different
instances of anomalous diffusion.

Differently, one can approach this problem by assuming environmental effects on
the diffusion properties of molecules. We find in literature case studies involving
effects of confined spaces on diffusive particles[50], space with randomly inserted
obstacles [51] or with topology described by fractals [52]. As a common point
among all these models, they attempt to recreate some features found by molecules
in the cellular environment. A great review on some of these models, among others,
can be found in [53]. I would also like to highlight that many of these models con-
sider that the spatial displacement of molecules are Gaussian, which is not always
the case in real life. In recent years, we find in literature increasing indications
of non-Gaussian dynamics [54, 55, 56]. Curiously, the mechanisms for such non-
conventional behavior is still not well understood.

As the work developed for this thesis is centered on the dynamics of chromatin,
it would be preferable to develop a Physics based model in which we know how
much specific features collaborate into the final measured dynamics. There are
several polymer models described in literature [57, 18, 58] and a great review on
modeling approaches is found in [59].

For the work presented in this thesis, we are going to consider the Langevin
dynamics approach, that is, an“extension” of the Newtonian mechanics, in which
stochastic forces are included. The equation behind this method is

m
d2ri
dt2

= F i − γ
dri
dt

+
√

2kBTγ ηi(t), (2.3)

where we split chromatin into finite sections “i” and balance all the forces acting
upon them. The first term considers the effects of external forces in relation to
inertial properties of each section, while F i accumulates forces exerted by other
regions of the polymer. Terms involving γ are related to effects of the solvent in
which our polymer dwells including diffusion.

As an entry point to our analysis, we are going to considered the Rouse chain
model, the simplest polymer model, where each section will interact solely with its
first neighbors in a homogeneous solvent. This model will act as a null hypothesis
for interpreting our experimental results and it will be used as base for my own
model. Then, we are going to propose F i based on contact probabilities measured
via chromosome conformation capture maps and, after that, individually model en-
vironmental effects upon each section of chromatin based on ChIP-seq experimental
data.
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In order to calibrate our model, we are going to need experimentally obtained
values for Dα and α. In the next section we will show a few methods commonly
used in literature to measure such coefficients. Furthermore, we will conceptualize,
in similar spirit of the work originally presented in [60, 61], the idea of using
Gaussian processes to accommodate for self-correlation when dealing with single
particle experiments. We are also going to use GP to interpolate particle positions
and correct for background movement if more than one particle is present. All these
methods will have as base assumption that the movement observed is solely due to
anomalous diffusion, that is, any other mechanism of motion, if existent, will be
inferred as a effective diffusive parameter further implied via anomalous behavior.

2.1 Measuring apparent diffusion and anomalous
coefficients

In upcoming part of this thesis, we will want to determine an apparent diffusion
and an anomalous coefficient for several chromatin loci. More than that, we will
also be interested to obtain some statistics on these measurements in order to es-
tablish how much data variability we have if concerning cell-to-cell and spot-to-spot
differences. For that reason, in many cases, we would like to determine measure-
ments as precise as possible for single trajectories rather than over ensembles of
particles. In the following subsections we show 2 of the popularly methods found
in literature and quickly introduce a repurposed method used during my studies.
As we shall see in chapter 8, chromatin tends to display Gaussian displacements for
the experimental time scale we used, hence all the following methods apply.

2.1.1 Mean Squared Displacement (MSD)

As we discussed before, the traditional way to estimate Dα and α is via calcu-
lation of an ensemble average MSD curve (EA-MSD). Oppositely, if we assume the
system to be ergodic, we could also estimate an MSD curve from single trajecto-
ries by oversampling its displacement. This method is know as time average MSD
(TA-MSD). Unfortunately, that is not always the case, as it was found that some
cell processes undergo periods where ergodicity is not held [62]. Notwithstanding,
we might always expect that for short periods of time ergodicity should hold. An
overview on optimal experimental setups for measurement of diffusion dynamics
can be found in [63].
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Fig. 2.2.: (a) Few examples of simulated displacements with Dα = 1 and α = 0.8.
Shaded area correspond to range in which we expect 95% of displace-
ments to be at any given time. (b) The mean squared displacement is
calculated over a certain number of trajectories and compared to theoret-
ical curve. (c) Single particles are over-sampled so average displacement
can be calculated for different time points.

In figure 2.2, we have a comparison between MSD curves calculated via both
methods on 2D trajectories simulated using Dα = 1 and α = 0.8 for a period of 1
minute. In (a) we present the displacement of single particles along with a shaded
area corresponding to a theoretical 95% confidence interval. In (b) the MSD curve
is calculated by averaging over many trajectories. As the theoretical curve accounts
for an “infinity” amount of particles, we observed that simulated results asymp-
totically approach this limit for sets of ever larger number of particles. In (c) we
estimate the average squared displacement in time from single particles. For that
purpose, we divide the total amount of time recorded into ever growing intervals
of time and calculate the average squared displacement for each group. As single
trajectories are high correlated [63, 64], this method only works appropriately for
short periods of time. Generally, only 5 or 10% of the obtained MSD curve is used
to estimate diffusion and anomalous coefficients. There are attempts to solve this
issue by modeling noise and auto-correlations implied in TA-MSD [65], but it is also
poses new complications.

2.1.2 Displacement distribution

We can also calculate dynamic properties using theoretical displacement distri-
butions, which is the approach used in Spot-On [66] and other methods [67, 56].
Let’s considered the standard solution of the convection-diffusion equation with
localization error σ for an ensemble of 2D trajectories

ρ(x, y|Dα, α, t, σ) dx dy =
1

2π(2Dα tα + σ2)
e
− x2+y2

4Dtα+2σ2 dxdy. (2.4)
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For simplicity, to deal with displacements in a more natural frame work, we convert
euclidean into polar coordinates such as

ρ(r, θ|Dα, α, t, σ) drdθ =
r

2π(2Dα tα + σ2)
e
− r2

4Dtα+2σ2 drdθ. (2.5)

In figure (2.3) we compare this result to displacement distributions measured
from a single long trajectory simulated using Dα = 1 and α = 0.8 for 2000 time
steps. As we shall see in a next chapter, this method tends to be more robust even
in the single trajectory regime, but still a small percentage of time steps should be
considered due biases introduced via trajectories self-correlation [66, 63].

Fig. 2.3.: A single long trajectory was simulated using Dα = 1 and α = 0.8. Dis-
placement distributions are calculated for several time steps and com-
pared with theoretical curves 2.5.

Using result (2.5), we can also calculate the mean displacement curve

〈r〉 =

√
π

2
(2Dα tα + σ2). (2.6)

and its second moment 〈
r2
〉

= 4Dα t
α + 2σ2, (2.7)

which recapitulates the traditional MSD curve.

2.1.3 Gaussian process via covariance matrix

Trying to solve the problem of single particle auto-correlation in time, it has been
proposed in recent years [60, 61] a different method evolving Gaussian processes
(GP) [1, 68]. GP is a stochastic process encapsulating the distribution over con-
tinuous functions. For example, a function X(t) can only be described as a GP if
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and only if every finite set {Xt; t ∈ T} is described by a multivariate normal distri-
bution. Assuming the particle describes a fractional Brownian type of motion [50,
53], we model the GP covariance matrix of a single trajectory for time points t1 and
t2 as

ΣD,α(t1, t2) = Dα (|t2|α + |t1|α − |t2 − t1|α) , (2.8)

and infer values for diffusion Dα and anomalous coefficient α via likelihood maxi-
mization of a multivariate Gaussian distribution. Further details will be discussed
in chapter 6. As we shall see, this model tends to be more precise and less biased
for single particles than the methods described above.
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3
Aims

The work developed during the course of my PhD concerns the experimental
characterization and mathematical modeling of chromatin dynamics. Thence, this
thesis will be divided into 2 major parts. This organization will indubitably scatter
the final goal of my PhD research, so I thought of using this chapter as a summary
of what we expected to achieve and how these goals were reached (or partially).

The first part will be experimentally driven. In association with other members
of our lab and the team of Thomas Sexton at IGBMC, we ask about the effects of
topology, structure and locus activity on dynamic properties of chromatin. To an-
swer this question, our lab used a cell line shared by Giorgetti’s team (Basel) in
which a PiggyBac system is used to randomly tag chromatin loci in mouse embry-
onic stem (mES) cells. The displacement dynamics of these loci are recorded via
fluorescent microscopy for a short period of time (2 minutes) in interphase and
mitosis. This experiment will be used to study general differences (or similarities)
between chromatin dynamics under very different stages of condensation.

Towards the same direction, we also want to determine if the diffusion and
anomalous coefficients might differ depending on the locus. Sexton’s lab developed
cell lines in which 3 specific loci of the HoxA domain in mES cells and tagged using
ANCHOR fluorescent probes. Furthermore, upon culture with retinoic acid, these
cells are induced into differentiation towards neuron precursor (NP) cells. Like so,
we can determine what are the effects of differentiation, or diverse gene regulation
states, over the dynamics of these probes. This is possible, because HoxA genes are
repressed in ES state, but active once cells are differentiated.

Differently from what one might imagine, the analysis of these data is not (at
all) straightforward, so several methods were developed for that purpose. Hoping
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to reach a broader audience, I start the part II of this thesis by introducing a few
concepts of probability theory and statistics. We shall discuss the main differences
between Bayesian and frequency based statistical approaches, as well as the central
limit theorem (CLT), a very important concept in statistics. If the reader is already
comfortable with these concepts, feel free to skip these chapters.

Using these basic concepts we are going to introduce fractional Brownian motion
as a model for the covariance matrix of multivariate Gaussian distributions. Using
this method we will be able to consider particle trajectories with Gaussian displace-
ments to the fullest, without discarding temporal auto-correlation, what allows us
to obtained more accurate inferences for Dα and α if compared to other methods.

In the Bayesian framework, we are also going to develop models to enhanced
particle localization in microscopy movies. Along this line, a method was developed
to correct for misalignment between microscope channels, which occurred due to
camera problems and chromatic aberration. Finally, we are going to introduce a
new model to correct inferred values of Dα and α in situations where the substrate
is moving. Different from many approaches in literature, no extra experimental
setup or data post-processing is required.

To achieve a deeper and fundamental understanding of the experimental results
in part II, we are going to develop a Physics based model for chromatin in part
III. For this model, we are going to consider the population average conformation
of chromatin, as visualized via Hi-C maps, to reconstruct synthetic polymers with
similar conformation to the HoxA domain. Our first goal here is to determine if the
distances measured between HoxA domain probes are recapitulated. Later on, we
are going to insert dynamics into the system and fine tune diffusive properties of
each chromatin section using ChIP-seq data as an assessment over the context in
which each section of our polymer dwells.

Before that, though, at the beginning of part III, I am going to described the
nature of diffusion and how we can treat it mathematically. I am also going to
introduce methods with which we can simulate such phenomenon in a computer.
After that, we are going to introduce the Rouse chain as a first approximation for
chromatin. Based on this model, we are going to develop a new method to re-
construct chromatin and simulate dynamics. Finally, we are going to connect loci
dependent context and show that experimental values for Dα and α can be recov-
ered. Nonetheless, these last results are to be considered preliminary.
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Part II

Data Analysis: Measuring chromatin
dynamics
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4
Probabilities

For centuries, it was believe that the universe worked in a deterministic manner.
Assuming classical mechanics to be correct, if we comprehend any phenomenon
well enough, we could formulate a set of equations capable to describe it with
utterly precision. Very much so, Pierre-Simon Laplace created the anecdote in
which an intellect, knowing the position and velocity of every particle in the uni-
verse, would have past and future to be inevitable. Nowadays we know that is not
the case. With development of quantum mechanics and its many interpretations,
presently we know the universe is fundamentally probabilistic. We shall not dive
into more profound philosophical discussions on the subject. It is fairly out of this
thesis’s scope. In fact, we still do not know how all these randomness affects us in
daily basis [69]. Conversely, this information is not required for our purposes.

In a general approach, probabilities should be used whenever uncertainty is
present. The most popular example would be the toss of a coin or dice. Even
assuming classical mechanics as utterly correct, the precision of execution neces-
sary for an accurate/predictable toss is so great, it does not worth the effort. First
we would need an object with mass as homogeneously distributed as possible. We
would need a mechanical device capable to launch the object in a precise way.
We would also need the whole system not to have strong vibrations and the air
flow to be weak enough not to alter object’s movement. On the opposite side, we
can still obtain some information about such system even with so careful arrange-
ments. There is a whole branch of Physics called Statistical Mechanics that works
under this assumption. It would be close to impossible measuring the position and
velocity of every particle in the atmosphere, for example. Some would say such stu-
pendous effort is useless. Nonetheless, we can still estimate temperature, pressure
and other average properties associated to our atmosphere. Essential parameters
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in the development of modern engineering, architecture and biology.

If the universe is uncertain, one might ask, how can we create theories for phe-
nomena around us? It turns out nature is great, because even random behavior
presents certain intrinsic properties that are reproduced on average. Despite this
randomness, we can use this expected behavior to develop models for our system
and make predictions. Depending on how trust worthy our equipment is and how
well we understand the subject matter, our predictions will be more or less accurate.

During the course of this thesis we shall use experimental data and stochastic
simulations in order to determine and possibly explain the average behavior of
dynamic properties of chromatin. The mathematical models used to describe this
average behavior will be described later on. In this chapter I would like to describe
some probability functions I will use to account for randomness. The first section
will focus on discrete probabilities. After that I show probability functions applied
over continues variables. Further along we exemplify the Central Limit Theorem
and demonstrate the “law of total variance”, used to discern sources of variability
in our data.

4.1 Discrete probability

Discrete probability functions are used to study the randomness in systems con-
taining only integer values. Many examples fall under this classification: coin or
dice tosses, cards in a deck, distribution of birthdays in the year,etc. Perhaps more
useful for our purposes is noise in microscopy images. As probability theory is better
understood with aid of an example, let us use microscopy data as reference.

For the movies recorded, we had only 16 bits per pixel to store information.
The amount of photons emitted from the observed object is a stochastic variable in
time. Similarly, the number of photons corresponding to an single bit of information
might also vary depending on the accuracy of our equipment. Gratefully, we can
consider those as source of noise and treat the data via statistical tools. If we record
the same image N times, we can calculated the sample average signal for each pixel
as

〈x〉 =

N∑
k=0

xk
N
. (4.1)

There is no reason to expect the quality of an image to be better than any other
if all the images in this sample are taken under same conditions. For that reason,
all images are weighted similarly, i.e. 1/N . This is a general assumption when
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sampling.

To measure how much noise is included in our measurements, we can calculate
the sample variance for each pixel as follows

var [x] =
〈

(x− 〈x〉)2
〉

=
N∑
k=0

(xk − 〈x〉)2

N
=
〈
x2
〉
− 〈x〉2 . (4.2)

In other words, the variance measures how far away from average the measure-
ments are. Notice that we use a square exponent. This has two functions: first,
to make all differences positive; second, the exponent gives higher weight to out-
liers. Worth noticing that, even though measured values are integers, average and
sample variance are real numbers.

On a deeper level, each one of these samples is an approximation to what we call
population distribution. We could count an incredibly large amount of photons and
obtain a precise depiction of the object, but that could take an incredible long time
and cost very expensive. In the case of live imaging that is simply impracticable,
because cells tend to move or die due the extra thermal energy insert by photons.
For those reasons, we can only record a few samples and treat it statistically.

Average and variance are of prime importance in any statistical analysis. For
many cases, these provide us with enough information for final purposes. Nonethe-
less, if we aim higher and intend to generate predictions, we need to model the
population data-set. There are many models described in literature for discrete
population distributions, here we mention the uniform, binomial and Poisson dis-
tributions.

As a final remark, equations 4.1 and 4.2 are applied for any sample, even if
events are not discrete in nature. For clarity, we should use 〈〉 and var [] as notation
for sample average and variance, while E [] and Var [] for population mean and
variance.

4.1.1 Uniform distribution

This is the simplest probability distribution depicted by a finite set of events
where we have no reasons to believe one is favorite against others.

This distribution is expressed as

f(k) =
1

N
, (4.3)
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where N is the number of possible choices. In a coin, it would be head and tail,
2. In a dice, it would be 6. There are no close equations describing its mean and
variance for generic sets 1, but both can be easily calculated with equations (4.1)
and (4.2).

4.1.2 Binomial distribution

Assuming an event has probability p to occur, we might ask: what is the prob-
ability of measuring this event k times in a sample of size n. As an example, we
might use rolling dice. What is the probability of getting 3 fives if we toss the dice
10 times? In this case p = 1/6 and we consider each toss to be independent of
previous results. The general equation for the binomial distribution is given as

f(k|n, p) =
n!

k! (n− k)!
pk (1− p)n−k. (4.4)

The binomial coefficient accounts for all the combinations of k successes in n trials.
Considering our dice, it counts all possible outcomes with 3 fives disconsidering the
order of appearance.

Notice that different values of k have different probabilities to happen. In this
case, we can calculate the mean by weighting every k differently

E [k|n, p] =
n∑
k=0

k f(k|n, p). (4.5)

It is more or less straightforward to show that for the mean is given by E [k|n, p] =

np. To calculate the variance, we need to determine E
[
k2|n, p

]
as

E
[
k2|n, p

]
=

n∑
k=0

k2 f(k|n, p). (4.6)

The variance is calculated to be Var [k|n, p] = E
[
k2|n, p

]
− E [k|n, p]2 = np(1− p).

4.1.3 Poisson distribution

If the sample size is sufficiently big, we might consider to approximate the bino-
mial distribution in the limit where n goes to infinity. If that is true and we expect
finite mean and variance, p tends to zero. For simplicity, let’s consider λ ≡ np. We

1. That is not the case to predictable sequences such as for dice and coins.
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write

f(k|λ) = lim
n→∞

n!

k! (n− k)!

(
λ

n

)k (
1− λ

n

)n−k
. (4.7)

Moving elements independent of n out of the limit and simplifying the remaining
expression, we obtain

f(k|λ) =
λk

k!
lim
n→∞

(
1− λ

n

)n
. (4.8)

This limit is one of the many forms of the exponential function. Concluding, the
final expression describing the Poisson probability distribution is

f(k|λ) =
λke−λ

k!
. (4.9)

Similarly to the previous subsection, we can estimate the mean and variance for
the population represented. With λ greater than zero, we calculate E [k|λ] = λ and
Var [k|λ] = λ. As expected the variance tends to the mean as n tends to infinity and
p goes to zero.

4.2 Continuous probability

In the previous section, we discussed about events that are discrete by nature.
What if that is not the case? Let’s consider how probable it is to meet someone
that was born in a specific day of the year. Following our calendar organization, we
treat days as discrete events, but time certainly is not 2. If we can perform statistics
in big enough samples, we should be able to question what is the probability of
finding someone that was born within an hour of the year. We could be greedier
and demand within the minute or second and so forth. Notwithstanding, we com-
prehend that the probability of finding a person born on March 13th between 2h30
and 2h31 is much smaller than if we had considered the whole day. Same-wise, we
comprehend that the probability of finding somebody born on March 13th between
2h30 and 2h31 is much greater than between 2h30m56s and 2h30m57s. In theory,
we could demand even smaller periods of times and, technically, the probability
should always be greater than zero.

Does it make sense, though, to ask such a question? Does it make sense to know
the probability for something to happen at a precise way? Of course, precision
depends on the scale in which the study is embedded. Regardless, we could agree
that it is nonsense to demand absolute precision in measurements.

2. For sanity, let’s not consider Planck’s time. In any fashion, 10−44 seconds is small enough to be
considered continuous for our purpose.
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Going towards that direction, continuous probability theory usually accounts for
ranges. What is the probability of measuring an event “x” in the range a < x < b?
What is the probability it rains between lunch and dinner? To answer that question
we use

P (a↔ b) =

∫ b

a
dx ρ(x), (4.10)

where ρ(x) is a probability density function (PDF), describing how probable event
“x” is to happen in an interval dx→ 0. As for discrete probabilities, ρ(x) is a model
for the population data-set. Similarly, we can calculate mean

E [x] =

∫
dx x ρ(x) (4.11)

and population variance

Var [x] =

∫
dx (x2 − E [x]2) ρ(x), (4.12)

with integration limits accounting for all possible events.

In the next few subsections I will present some of the popular probability density
functions. More importantly, I mention the ones used for analysis and modeling
later on in this thesis.

4.2.1 Uniform distribution

The uniform probability density function is described as

U(x|a, b) =
1

b− a
(4.13)

where every real number in a ≤ x ≤ b presents the same probability to occur. Using
equations (4.11) and (4.12) we can calculate E [x] = b+a

2 and Var [x] = (b−a)2
12 .

4.2.2 Beta distribution

The beta distribution can be derived from the binomial distribution. Assuming
a = k + 1, b = n− k + 1 and converting the factorial numbers into the continuous
gamma function, we obtain

B(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, (4.14)
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for x in the range 0 < x < 1. Using equation (4.11) we can calculate the E [x|a, b] =
a
a+b . Furthermore, we can show Var [x|a, b] = ab

(a+b)2 (1+a+b)
using equation (4.12).

4.2.3 Normal distribution

The normal distribution has a special place at the heart of probability theory.
This will become more apparent in the section where we talk about Central Limit
Theorem (CLT). Other than that, we can prove that many PDFs can be nicely ap-
proximate by a normal distribution in specific limits. Perhaps for that reason, we
find this density function so often in nature. Perhaps that is the case because it max-
imizes Shannon entropy, whence entropy maximization is at the core of Statistical
Physics. The normal density function is described by

N (x|µ, σ) =
1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}
, (4.15)

depending on parameters µ and σ. It is easy to prove that those are directly linked
with the E [x|µ, σ] = µ and variance Var [x|µ, σ] = σ2.

4.2.4 Log-normal distribution

The log-normal distribution can be understood as a variation of the normal dis-
tribution. In other words, the log-normal distribution represents random numbers
whose logarithm are normally distributed. Hence, this distribution is defined only
for positively-defined values. To prove this statement we can calculate

N (u|µ, σ) du = N (lnx|µ, σ) d (lnx) , (4.16)

using u = lnx.

The log-normal distribution is defined as

L(x|µ, σ) =
1

xσ
√

2π
exp

{
−1

2

(
lnx− µ

σ

)2
}
, (4.17)

from which we calculate

E [x|µ, σ] = exp
{
µ+

σ2

2

}
(4.18)
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and
Var [x|µ, σ] =

[
exp

{
σ2
}
− 1
]

exp
{

2µ+ σ2
}
. (4.19)

4.3 Central Limit Theorem (CLT)

The central limit theorem is one of the most important results in probability
theory. I do not intend to demonstrate this theorem from first principles, but rather
to approach its main results from a frequentist perspective and exemplify them
accordingly. Aiming for that let’s break down CLT in 3 statements. Assuming a
sample size sufficiently large we can show that:

STATEMENT 1: Sample averages are approximately normally distributed

Independent of population probability distribution, even for discrete ones, we
can ascertain that the distribution of samples averages should be approximately
normally distributed. To test this statement we will consider two systems described
by uniform discrete and Poisson distributions.

For figure (4.1a), we generate 200 samples in which we roll a dice 20 times each.
In blue we have the average distribution of events for all samples. Additionally, the
average was calculated for each sample and its distribution is presented in red.
The black markers correspond to the theoretical population distribution. The black
dashed line is the normal PDF expected from this sort of experiment in theory. A
similar experiment was done using the Poisson distribution with E [k] = var [k] = 6.
The latter is presented in figure (4.1.c).

STATEMENT 2: Sample averages distribution has average similar to population mean

Our dice experiment has E [k] = 3.5. The Poisson one has mean E [k] = 6 as
already stated. In figures (4.1a,c) titles, we verify the average for red distribu-
tions. By inspection, we confirm that sample averages present average similar to
the population mean. Moreover, in (b,d) we can see that this result is independent
of sample size.

STATEMENT 3: Sample averages variance is similar to the population distribution
divided by sample size

In other words, we can determine the variance of sample averages directly from
the distribution measured or, alternatively, calculate it using the population vari-
ance as follows 〈

(〈x〉 − 〈〈x〉〉)2
〉

=
var [x]

N
, (4.20)
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where N correspond to the sample size. Using our example of dice tosses and
Poisson experiments with varying sample sizes, we observe in figures (4.1b,d) that
the variance of averages decreases with bigger sample sizes. In simpler words, we
could affirm that the confidence of our measures increase monotonically with the
number of events captured in each sample.

Fig. 4.1.: (a) 200 samples of 20 dices rolls are measured and average distribution in
shown in blue. We have the distribution of averages calculated for each
sample in red. (b) The confidence level for estimated population mean
monotonically increases with larger sample sizes. (c) Similar experiment
is performed using a Poisson distribution. Once again, the distribution
of averages resembles a normal distribution. (d) The confidence interval
also decreases with sample size for the Poisson distribution. All of these
results are expected due to CLT.

4.4 Confidence intervals

As standard in many scientific areas, confidence levels for the mean are taken
so that 95% of events around it are accounted. If we consider averages of several
samples, CLT statement 1 tells us that their distribution is approximately normal
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distributed. Using this fact associated with equation (4.10), we can estimate that
the 95% confidence range lives around µ− 1.96σ < x < µ+ 1.96σ.

What happens if it is impractical to measure a large number of independent
samples? Or even, what if we could only obtain one single sample? In that case,
we could use CLT statement 3 to help us. We could approximate the population
variance directly from this single sample and estimate the confidence interval for
the mean by dividing this sample variance by the number of events recorded. Re-
gardless, we should guarantee a sample that satisfactorily represents the whole
population. In figure (4.2a) we show the effect of sample size on estimation of
average’s variance distribution via CLT statement 3.

How big should this sample be, then? It will depend on how skewed the popu-
lation distribution is, figure (4.2b). Very skewed distributions contain events with
very low probability to happen, therefore a higher number of events should be
recorded for a more complete representation of the population, hence better statis-
tics.

Fig. 4.2.: Effects of sample size on confidence interval calculated from single sam-
ple. (a) Average relative error in the estimation of population variance
from a single sample with size N. For more skewed distributions, more
data points are needed for a reliable estimation of the population vari-
ance. (b) Example of skewed distributions.

I would like to address one last remark. Given that the confidence increases
with sample size, why shouldn’t we merge all samples together and do our statistics
with a bigger sample? It turns out there is no definitive answer for that. It depends
on the question you ask. For example, in chapter 10 we will determine apparent
diffusion and anomalous coefficients from a sample of 4096 independent polymers.
Evidently, we could calculate mean values for Dα and α directly from this huge
sample, but I decided to split it into 16 samples of equal size. Like so, I was able
identify the mean along with a reasonable confidence interval.
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4.5 Law of total variance

Suppose we want to isolate how much of the variance measured comes from
within or across samples. For that scenario, the law of total variance can be used.
In a more general approach, using the law of total expectation

E [x] =

∫
dy E [x|y] ρ(y) = E [E [x|y]] , (4.21)

we can easily show that

E
[
x2
]

= E
[
Var [x|y] + E [x|y]2

]
, (4.22)

holds. Subtracting E [E [x|y]]2 from both sides we get

E
[
x2
]
− E [x]2 = E [Var [x|y]] + E

[
E [x|y]2

]
− E [E [x|y]]2 . (4.23)

Upon algebraic manipulation, we obtain the final result

Var [x] = E [Var [x|y]] + Var [E [x|y]] . (4.24)

Equation (4.24) states that the total variance in x is a combination of the var [x]

given sample y and 〈x〉 calculate for each y. To test this result, let’s generate 20
samples with 30 points each using a Poisson distribution with E [k] = 5. In figure
(4.3a), we observe box-plots with each sample. In (4.3b), the distribution contain-
ing all the samples together. As we can see, from calculated averages and variances,
the law of total variance holds.

Fig. 4.3.: (a) 20 samples of 30 Poisson distributed events are recorded. We observe
that means (orange line) presents some variance. Each sample also has
variability. (b) Total variance containing all the data points. Using the law
of total variance, we show that the variance in (b) equals the variance of
averages var [〈k|y〉] and average sample variance 〈var [k|y]〉.
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5
Bayesian statistics

While describing the central limit theorem (CLT) and confidence intervals in the
previous section, we were using what is called the frequentist approach to statis-
tics. This name comes from associating probabilities and confidence intervals to the
number of times given events happen. There is, however, a different approach to
this problem: the Bayesian method.

Let’s perform a small experiment so we can build some intuition about how
the Bayesian approach works. Suppose we have a 25 cents coin and we want to
determine if this coin is fair. We learn in school that this probability should be 1/2,
but is that true? What if this coin is defective? At first, we have no idea if this coin
favors one face over the other.

Let’s first determine how likely it is to toss this coin n times and obtain k heads.
As we saw in the previous chapter, this probability is given by the binomial dis-
tribution with success rate p. Let’s proceed by tossing the coin 10 times and, for
instance, let’s assume we found 5 heads. In figure (5.1a), we show in orange our
prior knowledge on the fairness of this coin, that is, none. As we have no idea
which value of p is correct, all values are similarly expected. In blue (identical to
green, but hidden behind), is the binomial distribution for our results, 5 heads out
of 10 tosses. In green, we show the combination of our prior knowledge with the
likelihood of this sample, called the posterior distribution.

The posterior distribution can be understood as an “updated knowledge”, be-
cause we know more about this coin now than we did before. At this point, we
have reasons to believe that the probability of obtaining heads over tails is some-
where in between 0.234 and 0.766. In Bayesian statistics, this range is called a
credible interval (CI) and it might be defined in different ways. Here, I will con-
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Fig. 5.1.: Evolution of posterior function with increasing number of coin tosses.
Starting from no knowledge in (a), we add a sample with 10 trials
each every image until (e). (f) Once 50 samples are collected (500
tosses/trials), we conclude that the coin is indeed biased.

sider as 95% of probability around the mean. Finally, we determine the average
value for p is approximately 1/2.

It seems like this coin could be fair, but the CI is rather large yet. Let’s toss our
coin 10 times more and combine it with our current knowledge as new prior. In
figure (5.1b) we observe the results. Given our new “updated knowledge”, the CI
is smaller now. We keep adding another sample of 10 tosses every image up to
figure (5.1e). At this point we could stop and accepted that this coin could be fair.
Unfortunately, probabilities can be deceiving... If we continue tossing this coin, our
believe changes after a few more samples. Towards iteration 50, we determine that
this coin is indeed crooked with a CI of 95% . This result is by design, of course.
If we continue generating more samples, the CI would become smaller and smaller
towards 〈p〉 = 0.45.

The main equation behind this learning type of process is

P (H|E)P (E) = P (E and H) = P (E|H)P (H), (5.1)

for E representing measured data (or events) and H the hypothesis. Given a set
with all possible events and conclusions, we can show that the probability of events
given a hypothesis should be equivalent to the probability of a hypothesis given the
data.
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Going back to our coin example, the Bayes theorem (5.1) allowed us to write

P (p|sample) ∝ Bin(sample|p) B(p|a, b). (5.2)

Due the simplicity of this model, we can normalize this result analytically and show
that P (p|sample) is also a beta distribution. What if the system cannot be easily
calculated analytically? In those situations, we will use numerical approximations.
The topic of our next section.

5.1 Numerical approaches

For our coin example, the system and model associate were quite simple. So
much so, we were able to solve it analytical. This is frequently not the case. When
dealing with larger and more complex problems, the analytical solution might be-
come a luxury difficult to obtain and, for those situations, we need to seek a numer-
ical solution. There are two main approaches we can use: optimization and Monte
Carlo sampling.

Put simply, optimization methods are used to search for local minima or maxima
in the probability space. Most of these methods depend on numerical or analytical
calculations of the first and/or second order derivatives. Some examples are “Broy-
den, Fletcher, Goldfarb and Shanno” (BFGS) [70], the Newton GLTR trust-region
algorithm [71], among others. Diversely, if the derivatives are not an option, we
can use models that do optimization by evaluating the function in multiple points
and following some sort of heuristic algorithm towards a solution. Due its versa-
tility, in this thesis we are going to use the Nelder-Mead Simplex optimizer [2].
The NMS method is very robust, but slower if compared to derivative dependent
methods, as it tests several points on the way to a minimum. To compare analytical
and numerical solutions, we use the 500 coin tosses from the previous experiment
(fig. (5.1f)). In figure (5.2a), we show test values calculated by the NMS method
towards the value of “p” that maximizes the likelihood 1. This final result is iden-
tical to the analytical approach, but will only give us a single value, the optimal
one. We might also be interested to perform some statistics on these variables and
determine credible intervals.

To determine credible intervals, we can use Markov Chain Monte Carlo (MCMC)
methods. I would like to focus on an algorithm called Metropolis-Hastings, used to
sample a set of random numbers from a distribution that is, in principle, difficult to

1. As the NM simplex algorithm finds a minimum, we simply multiply the likelihood by minus
one.
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be analytically calculated.

Suppose there is a probability distribution π(x) we want to sample. Starting
from a plausible value x0, repeat the algorithm as follows for i = 1, ..., N for a large
N:

— Draw a candidate x∗ ∼ q(x∗|xi−1)
— Calculate the ratio

α =
q(xi−1|x∗) π(x∗)

q(x∗|xi−1) π(xi−1)
(5.3)

— If α ≥ 1, we accept proposed value and make xi = x∗; else, we reject pro-
posed value with probability 1− α and make xi = xi−1.

— Repeat while i ≤ N

It is important to choose wisely the proposal distribution q(x∗|xi−1). Perhaps
the most popular choice is the normal distribution with µ = xi−1 and standard
deviation σ. This choice implies that the next location depends only upon the
current one, hence this kind of system is denoted a Markov Process. This one in
special can also be referred as a random walk with step size associated with σ.
Another good reason for choosing a q(x∗|xi−1) normally distributed is related to
its symmetry, which simplifies the detailed balance equation (5.3). Determining
an appropriate sigma is, in general, a non-trivial task. Using too large values will
increase the rejection rate, therefore your sample will not be representative of the
whole distribution. Conversely, too small σ will portrait large acceptation rate,
demanding too many steps to reach a representative sample. For random walks, it
is well accepted that acceptance ratios of about 20 ∼ 30% are desirable.

Using normal distribution as proposal has a quirk. It does not work on bounded
variables. Most optimizers, such as NMS and BFGS, are defined for variables with
no boundaries indeed. Could we blindly apply these methods for bounded variables
such as in our coin example where 0 < p < 1? The answer is “it depends”. Assuming
that our proposal distribution presents very low probability for out of the boundary
values, this algorithm should worked without problems. However, to be on the
safe side, we could generate mapping functions from the bounded space into an
unbounded space. Then, we convert probability calculations accordingly and run
the sampler. For final results, we convert values back into the bounded space. This
is going to be a trick particularly useful in the upcoming chapters of this thesis.

To complete this chapter, we have in figure (5.2b) the results of sampling the
posterior distribution using the described MCMC method. As p is away from bound-
ary conditions, we do not need to perform any mapping. Notice that the sampled
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Fig. 5.2.: (a) Determining optimal value for “p” for our coin example using the
Nelder-Mead Simplex numerical method. (b) We use Metropolis-Hastings
algorithm to sample the probability distribution of “p”. After burn-in in-
terval, the sampled probability distribution resembles the analytical one.

distribution is similar to the one obtained in figure (5.1f), also presenting similar
credible interval.
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6
Modeling diffusion dynamics with
Gaussian processes

In the previous chapter we quickly verified how we can use the Bayesian theo-
rem to infer optimal values and credible intervals for parameters of interest. We
determined that given a prior knowledge on those parameters and a model that
will express how likely it is to measure data given our parameters, it is possible to
calculate a posterior function. This posterior function will update our knowledge
given the data measured.

Now suppose we are interested to study the dynamics of Brownian-like particles
diffusing in the cell. Which kind of model/likelihood should we use to estimate
diffusion and anomalous coefficients, that is, Dα and α? As we saw in the introduc-
tion, some of the most popular models for that purpose are based on the analysis of
particle displacements over time, but as we concluded, these models tend to ignore
the implicit correlation between time points measured. Because of that, overall
inference precision is reduced.

In this chapter we aim to approach this problem from a different perspective. In
place of analyzing displacements over time, we are going to use Gaussian process
(GP) associated with fractional Brownian motion (FBM) to model temporal correla-
tions and, like so, determine optimal values for Dα and α as first suggested in [60,
61]. This approach, henceforth called GP-FBM, will allow us to use all the informa-
tion available in measured trajectories, therefore outputting values that are more
precise. To do so, we first need to get acquainted with the multivariate Gaussian
distribution and its covariance matrix. Then, we present the concept of fractional
Brownian motion.
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6.1 Multivariate normal distribution

In the chapter 4 we discussed about the single variable normal distribution. This
concept can be extended to accommodate for as many dimensions as necessary.
The multivariate Gaussian distribution is defined as

N (x|µ,Σ) =
1

(2π)N/2 |Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
(6.1)

where x contains N variables and µ is another vector with the mean for each vari-
able xi. The variance is now represented as a symmetric matrix Σ called the co-
variance matrix, with off-diagonal values representing the correlation between any
two variables. As before, the variance is positive defined, which means we should
ascertain that all eigenvalues of this matrix are greater than zero. In other words,
the covariance matrix should be written as a composition Σ = LLT or, conversely,
constructed from the multiplication of a matrix L with its transpose.

How do we sample from a multivariate normal distribution? Most modern pro-
gramming languages allow sampling given a covariance matrix, but it is usually a
good idea to know how the algorithm works. If the covariance matrix is diagonal,
we have that xi ∼ N (µi,

√
Σii), so we could sample each variable in x indepen-

dently. Conversely, if Σ is not diagonal, we could diagonalize the covariance matrix,
sample each element of x using its eigenvalues as variance and convert it back to
original space with eigenvectors. It works, but it is numerically slow.

Another faster option, supposing we have a fast algorithm to decompose Σ =

LLT , is to map the cumulative distribution of our non-diagonal multivariate Gaus-
sian into another diagonal covariance matrix, popularly the identity matrix I 1 using∫ r1

−∞
· · ·
∫ rN

−∞
dx N (x|µ,Σ) =

∫ n1

−∞
· · ·
∫ nN

−∞
dx N (x|0, I). (6.2)

These integrals are not simple to solve [1], but we can show that

r = µ+ L n, (6.3)

where ni ∼ N (0, 1). L can be calculated via Cholesky decomposition, an algorithm
optimized for decades now, hence very fast. This method can be used even for a
system with a single dimension,when L becomes the standard deviation. Clearly, the
proof for this case is much simpler. In appendix B I demonstrate another conversion
of vital importance in computer science: how to obtain normally distributed values

1. The identity matrix is defined to have all diagonal elements equal 1 and remaining elements 0.
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from a uniform distribution. As pseudo-random generators are, in general, capable
to produce only uniform distributed samples, we can use this method to amplify
our spectrum of numerical samplers.

To increase our intuition over the covariance matrix and what off-diagonal terms
do, let’s study a simple 2D system with

Σ =

(
σ21 λ

λ σ22

)
, (6.4)

where each variable has its own variance, with σi > 0. Without loss of generality,
let’s consider λ = ρσ1σ2 and µ = 0. Upon decomposition of Σ, we apply equation
(6.3) to get

r =

(
σ1 0

ρσ2 σ2
√

1− ρ2

)(
n1
n2

)
=

(
σ1 n1

ρσ2 n1 + n2 σ2
√

1− ρ2

)
, (6.5)

where we notice that ρ is limited in the interval −1 ≤ ρ ≤ 1.

In figure 6.1 we show the effect of ρ on the relationship between r1 and r2. As
ρ drops below zero, r2 tens to oppose the behavior of r1, while r2 tends to behave
accordingly to r1 when ρ > 0. As usual, when ρ = 0, both variables are independent
of each other. Finally, we notice that in the limit where |ρ| = 1, r2 is completely
determined by r1.

Fig. 6.1.: Effects of correlation ρ in a system r = {r1, r2}. (a) In a 2D system with
ρ < 0 we can expect that r2 will behave oppositely to r1. (b) For ρ = 0,
both variables are independent of each other. (c) While for ρ > 0, r2
follows the tendency observed by r1. We chose σ1 = σ2 = 1 for these
plots.

In the next subsection, we will present a covariance matrix for a N dimensional
system as a model for stochastic trajectories. Notice that the degree of complexity
increases exponential with the number of variables used. This happens because, a
priori, all variables present some specific correlation to all the others.
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6.2 Fractional Brownian motion (FBM)

The fraction Brownian motion is a moving average of dB(t), the traditional
Brownian motion, in which every past step is weighted according to (t− s)

α−1
2 .

It is so defined by Mandelbrot and Ness in [72] as

Γ

(
α+ 1

2

)
{Bα(t)−Bα(0)} =∫ 0

−∞

[
(t− s)

α−1
2 − (−s)

α−1
2

]
dB(s) +

∫ t

0
(t− s)

α−1
2 dB(s)

(6.6)

for t > 0, 0 < α < 2 and Bα(0) = bo. Furthermore, this definition presents
self-similarity B(t) − B(s) ∝ B(t − s) and variance

〈
(B(t+ τ)−B(t))2

〉
= V τα.

Without loss of generality, we can take constant V and calculate the covariance
matrix as follows

〈Bα(t)Bα(s)〉 =
1

2
〈[Bα(s)−Bα(s) +Bα(t)]Bα(s) +Bα(t)[Bα(t)−Bα(t) +Bα(s)]〉

=
1

2

〈
Bα(s)2 +Bα(t− s)Bα(s)−Bα(t)Bα(t− s) +Bα(t)2

〉
=

1

2

〈
Bα(t)2 +Bα(s)2 +Bα(t− s)(Bα(s)−Bα(t))

〉
=

1

2

〈
Bα(t)2 +Bα(s)2 −Bα(t− s)2

〉
=
V

2
(|t|α + |s|α − |t− s|α) .

(6.7)

In conclusion, we match the mean squared displacement of stochastic trajectories
re-scaling V such that

ΣD,α(t, s) = 〈Bα(t)Bα(s)〉 = Dα (tα + sα − |t− s|α) , (6.8)

accomplishing ΣDα,α(t, t) = 2Dα t
α.

Notice that this kernel will introduce correlations between every pair of time
points t and s. As an example, we sample 3 trajectories using equation 6.3 with the
FBM kernel and present in figure 6.2 the effect of α over stochastic trajectories. At
bottom images, we plot the distribution angles over 2 consecutive simulated steps.
We notice that for α < 1 particles tends to be more constrained to move. α = 1

represents the traditional Brownian motion, where particles are free to randomly
go anywhere, without defined direction. Finally, for α > 1 particles tend to have a
preferred direction to follow.
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Fig. 6.2.: We sample a single long trajectory using equation 6.3 and the FBM kernel
with Dα = 1 and α = 0.5 for (a), α = 1.0 for (b) and α = 1.5 for (c).
α < 1 constrains the movement of particles if compared to traditional
Brownian motion α = 1, while α > 1 directs it. (d-f) Distribution of
angles in degree calculate between two consecutive steps.

6.2.1 Gaussianity

Fractional Brownian motion is a time continuous self-similar Gaussian process,
but what does that mean? Put simply, it means that the distribution of displace-
ments are described by a Gaussian distribution. Furthermore, we can re-scale dis-
tributions for different time steps ∆t and anomalous coefficients α by their standard
deviation, that is,

√
2Dα ∆tα. To demonstrate what this means in a graphic fash-

ion, in figure (6.3a,b) we calculate the re-scaled displacement distribution for 1024
simulated trajectories with 512 points, Dα = 0.1, α = 0.44 and δt = 1.0. Notice that
all the distributions are Gaussian and self-similar, independently of correspondent
time step.

6.2.2 Velocity autocorrelation function

Along with the just presented Gaussianity and self-similarity tests, one of eas-
iest quantities to be accessed in experimental data is the velocity autocorrelation
function

Cεv(t) =
1

ε2
〈[x(t+ ε)− x(t)] [x(ε)− x(0)]〉 , (6.9)

as proposed in [73], where v = ε−1 [x(ε)− x(0)]). Having the covariance matrix
for the FBM model presented in equation (6.8), we can easily show that the FBM
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Fig. 6.3.: To demonstrate that FBM is a time continuous and self-similar Gaussian
process, we simulate 1024 trajectories 512 points long using Dα = 0.1,
α = 0.44 and δt = 1.0. As FBM is self-similar, we calculate displacement
distribution for several time steps and normalize with

√
2Dα ∆tα, where

∆t = n δt. As we can see, all distributions are consistent with a standard
Gaussian/normal distribution.

model presents the following velocity autocorrelation curve

Cεv(t)

Cεv(0)
=

(t+ ε)α − 2tα + |t− ε|α

2εα
. (6.10)

To show the theoretical shape of this curve and to demonstrate it using synthetic
data for the range in which α < 1, we simulate 4096 trajectories with 512 points
each. For these simulations, we used Dα = 0.1, α = 0.5 and δt = 0.01. These
results are present in figure (6.4). Due to the α regime under analysis, we can
observe that Cεv(t) will initially “overshoot” below zero, displaying anti-correlation
for a finite amount of time.

Similar can be done in the case where α = 1 and α > 1. The behavior for these
regimes are shown in figure (6.5). In the case α = 1, the autocorrelation plunges
linearly to zero and there remains for any time points t > ε. Differently, positive
autocorrelation are always present in the situation where α > 1.

6.3 Inferring diffusion and anomalous coefficients

In the previous section we described a model for Brownian-like trajectories of
particles. This model allows us to determine how likely it is to measure a certain
stochastic trajectory given apparent diffusion and anomalous coefficients, that is,
Dα and α. Notwithstanding, we would like to determine the posterior probability of
Dα and α given our measured data. For that purpose, we can use the Bayes theorem
5.1 as referred in the previous chapter. The next question would be: which priors
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Fig. 6.4.: Comparison between theoretical and simulated velocity autocorrelation
functions for the FBM model. A total of 4096 synthetics trajectories were
create using Dα = 0.1, α = 0.5 and δt = 0.01.

Fig. 6.5.: Comparison between theoretical and simulated velocity autocorrelation
functions for the FBM model when α equals or is greater than one. A total
of 4096 synthetics trajectories were create using Dα = 0.1 and δt = 0.01.
Top images were simulated using α = 1 and bottom ones with α = 1.5.

should we use? Values of Dα and α will vary depending on the type of particles we
analyze. Different systems will present implicit physical laws that will dictated the
dynamical behavior of such system. Hence, it is hard to tell what we should expect.
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Mathematically, that uncertainty can be translated as a uniform prior, where every
option presents similar probability. Thus, the posterior is simply given by

P (Dα, α|r) ∝ |ΣDα,α|
−1/2 exp

{
−1

2
(r − µ)T Σ−1Dα,α (r − µ)

}
, (6.11)

with ΣDα,α as presented in equation 6.8. µ will be treated as a constant, vis-à-vis,
particle position at t = 0. If necessary due occlusions, it can also be inferred as a
parameter using another flat prior.

Fig. 6.6.: (a-b) Simulated 2D Brownian-like trajectory with Dα = 0.15 and α =
0.62. Average localization noise of 0.1 and occlusion of 10% were used.
(c-d) Sampled probability distributions for Dα and α given trajectories
presented. Optimal values are Dα = 0.131 and α = 0.638.

In figure (6.6a-b), we sample a 250 points long 2D trajectory using Dα = 0.15

and α = 0.62. We further use the methods presented in chapter 5 to estimate
these values back. For these simulations, we are including localization noise with
different variance for each point. The average variance added to the diagonal of Σ

is about 0.1. On top of that, we also remove about 20% of the spots sampled as a
representation of occlusions, so commonly found in microscopy.

The optimal results obtained were Dα = 0.131 and α = 0.638. We also sample
the probability density function to estimate a credible interval. For simplicity, we
are going to consider an approximate 95% probability around the mean by accu-
mulating the area of each histogram bin. We have CI∼0.95(Dα) = (0.11, 0.16) and
CI∼0.95(α) = (0.49, 0.76).

To determine the overall performance of this method, we simulate 10000 tra-
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jectories with uniform random values of Dα and α. We set 0.01 < Dα < 1.5,
0.01 < α < 2, occlusion of 20% , localization error σ = 0.1 and δt = 0.5. For
comparison, we also estimate these parameters using displacement based method
via MSD curve and distribution fitting.

Fig. 6.7.: (a-b) Correlation between set and estimated parameters for a set of 10000
simulated trajectories. (c-d) Relative estimation error for same trajecto-
ries. As a comparison, GP-FBM is, on average, more precise than displace-
ment based methods.

In figure (6.7a-b), we show the correlation between estimated and simulation set
values. As we demonstrate previously, the closer to one, the more related estimated
values are to set ones. As a second perspective, we show in (6.7c-d) the relative
estimation errors for Dα and α. With this analysis, we conclude that GP-FBM is
more precise as an estimation method for diffusion related parameters if compared
to displacement based methods in the context of single particle trajectories.
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6.4 Interpolation

I would like to present one last important feature of using Gaussian processes to
analyze dynamics of stochastic particles. In the first section we show how to sample
trajectories given the FBM covariance matrix. In this section we shall see how to use
measured positions and inferred values of Dα and α to generate sets of probable
trajectories described by the particle. With same method, we can determine which
path is the most probable and how credible it is.

Fig. 6.8.: First time steps of simulation presented in figure (6.6). (a-b) Black line
is the original trajectory without localization error. This error is included
for points in red. We also remove some points to simulate occlusion. Blue
line is the most probable path µ1|2 predicted by GP-FBM, while shaded
area represents a 95% credible interval. (c-d) Sampled trajectories given
measured red points. Shaded area is the same of (a-b).

Let’s start by defining the multivariate Gaussian

N (x1,x2|µ,Σ) ∝ exp

{
−1

2

(
x1 − µ1
x2 − µ2

)T (Σ11 Σ12

Σ21 Σ22

) (
x1 − µ1
x2 − µ2

)}
, (6.12)

where x2 is the vector of measured positions and x1 the vector of positions we want
to sample. In this circumstance, Σij are block matrices given by the FBM kernel 6.8.
Additionally, we also add the variance associated with localization error to diagonal
terms of Σ22. To marginalize the distribution over x1 given measured positions, we
have

P (x1|x2) = N (x1|µ1|2,Σ1|2), (6.13)
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with
µ1|2 = µ1 + Σ12 Σ−122 (x2 − µ2) and Σ1|2 = Σ11 − Σ12 Σ−122 Σ21. (6.14)

In figure (6.6a-b) we present a dashed black line for simulated trajectory without
noise, while red dots include localization error. We further remove about 10% of
points to simulate data occlusion. µ1|2 is presented as a continuous line with shaded
area representing 95% credible interval calculated using diagonal terms from Σ1|2.
Finally, in figure (6.8c-d) we show a few sampled trajectories considering measured
red points using equation 6.3 with µ1|2 and Σ1|2.
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7
Methods developed

Using experimental data is never straightforward. Working in live cell imaging
can be tough if we seek for accurate measurements. In general, standard deviations
are fairly big if compared to average value and, in most cases, it is hard to tell if
this variance is due to meaningful biology or simply experimental error. In the next
few sections, I am going to present a few methods I developed with which I try to
reduce data variance due to measurement inaccuracy. These methods will enhance
localization precision of fluorescent spots, calibrate multi-channel imaging for im-
proved distance measurements and improve dynamics inference by accounting for
confound substrate movement.

7.1 Enhancing localization accuracy of fluorescent
particles

The first step in the analysis of any movie recorded is to track fluorescent tagged
chromatin spots. Fiji-ImageJ [74] and ICY [3] provide a few plugins for that end.
In my experience, ICY tends to work a little better, therefore that was the software
used for tracking in all the movies in this thesis. Unfortunately, ICY detector is not
perfect. By inspection alone, we can determine that its localization is off-centered
by approximately one pixel. Its linker algorithm 1 is very good, but some false
positives tend to be included in the final result. Trying to fix, or at least improve
on those issues, we apply a filter in 2 stages. In the first stage we try to enhanced
the localization precision and generate confidence intervals for this position. In the

1. This plugin connects spots in different frames to form a trajectory
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second stage we use those results to filter out possible outliers.

To enhance localization precision and estimate its credibility, we model each spot
using a 2D Gaussian function like so

Sx,y = Io exp

−1

2

(
x− µx
y − µy

)T [ L2
x θLxLy

θLxLy L2
y

]−1(
x− µx
y − µy

)+BG. (7.1)

The reference signal level is given by BG. On top of that, the spot itself has maxi-
mum signal Io and center of mass represented as µx and µy for each axis. We use
parameters Lx and Ly to fit the spot size in each direction, but allowing for rotation
with parameter θ (not an angle).

Using ICY detected position as initial guess, we generate a region of interest
(ROI) of appropriate size and use equation (7.1) as average signal Sx,y for each
pixel (x, y) of that ROI. Assuming the image presents Poisson-like noise, we can
write the likelihood

ρ(g|Io, BG,µ, ...) =
∏
x,y

(Sx,y)
gx,y

gx,y!
exp {−Sx,y} . (7.2)

where gx,y represents pixel values in the image.

Calculating ρ(g|Io, BG,µ, ...) numerically is complicated. The factorial function
k! tends to produce huge numbers, making numerical simulations unstable. Fortu-
nately, maximizing this likelihood or its natural logarithm provides identical results.
So we calculate

ln ρ(g|Io, BG,µ, ...) =
∑
x,y

{gx,y lnSx,y − Sx,y − ln (gx,y!)} . (7.3)

We can perform one last optimization. Notice that ln (gx,y!) is a constant, that is, it
won’t influence in the optimization of our desired parameters. For that reason, we
can neglect it for optimization purposes.

Now we should consider the boundary implied in each parameter we optimize.
The position vector µ should remain inside the ROI. Li, Io and BG are positively
defined. θ is limited in the range −1 < θ < 1. As the NMS algorithm proposed
in the previous chapter only accepts boundless variables, we need to perform a
mapping

µi = R
exp {mi}

1 + exp {mi}
(7.4)

with R representing the ROI side. Next, all the positively defined variables should
be transform according to a exponential function. Finally, θ follows a similar trans-
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formation to µi, but limited in between -1 and 1

θ = 1− 2
exp {t}

1 + exp {t}
. (7.5)

Once all these parameters are optimized, we estimate the error on µ by keeping
all the other parameters fixed at optimal values and sampling µ’s distribution with
Metropolis-Hasting algorithm, as presented in the previous chapter. We consider
the standard deviation of sampled distribution as a measure of localization error.

To test this algorithm, we generate a synthetic movie in which a spot is randomly
positioned in 500 frames. Similar signal and size to the ones observed in real
movies are used. In figure (7.1a) we have an example. A comparison between
the results obtained using the ICY software and the output of our optimization
problem is presented in (7.1b). Notice that this method is about 7 times more
precise than positions measured with ICY. A secondary result is presented in (7.1c),
a distribution of sizes calculated for tracked trajectory. Finally, in (7.1d) we display
a distribution of estimated error for all spots.

Fig. 7.1.: Testing enhancement algorithm. (a) Example of spot with similar signal
and size to the ones observed in real movies. (b) Our algorithm improves
about 7 times the localization of tracked spots. (c) We can determine
the average size of spots in a trajectory and use it to identify possible
outliers. (d) Distribution of localization errors estimated with all spots in
the synthetic trajectory.

Using signal intensity, sizes and localization error measured for all points in a
trajectory, we can determine possible outliers. To do that, we calculate the inter-
quartile range (IQR) for these 3 parameters and neglect every spot in which any of
these is higher than one IQR above and below the median.
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7.2 Alignment algorithm

Some of the microscopy experiments performed used two cameras, that is, one
per channel. This system allowed us to record simultaneously the spot in both chan-
nels, later on simplifying the correction for substrate movement. On the underside,
using two cameras inserted non-negligible alignment discrepancies between chan-
nels. In figure (7.2a-c) we have a few examples. Akin to the dual camera issue, two
different wavelengths introduce errors associated with chromatic aberration. This
secondary problem would be observed even in a single camera setup.

The differences are not of vital importance when inferring dynamics of tagged
spots. Stochastic trajectories are invariant upon global translations and rotations.
The scaling factor associated with chromatic aberrations could be neglected, as it
becomes only relevant for long trajectories further away from image center. Even
like so, the effect is minor. Nonetheless, dealing with such discrepancies are of vital
importance when we are also interested in the average distance between spots in
different channels.

To correct such problem, we use a generic set of affine transformations to per-
form a digital post-alignment in 2 steps. The first step handles more grotesque
errors associated with the dual camera setup. The model is written as

ΩRT =

1 0 dx + cx

0 1 dy + cy

0 0 1


 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1


1 0 −cx

0 1 −cy
0 0 1

 . (7.6)

From left to right, dx and dy consider translations in x and y; cx and cy are reference
points for rotation and θ is the angle to be rotated. It worth mentioning that these
transformations, as it is, will generate artifacts on the resulting image. To guarantee
that every pixel of the new image is properly mapped to a pixel of the original,
we loop over the final image and use Ω−1RT to determine its original position. It
would still be possible that some pixels are mapped to regions not shown by original
image. In those cases, the signal is left zero.

To model the likelihood both channels observe the same object, we use the nor-
mal distribution

ρ(χ|ΩRT , σ) =
∏
k,l

1

σ
√

2π
exp

{
− 1

2σ2
[I2(k, l|ΩRT )− I1(k, l|I)]2

}
, (7.7)

where we calculate the probability for every pixel I2(k, l|ΩRT ) of channel 2, upon
correction ΩRT , represents the same object as in pixel I1(k, l|I) from channel 1. I
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Fig. 7.2.: (a) Synthetic image generated to exemplify common problems found in
our microscopy experiments. (b) Real image generated with poor cam-
era calibration. (c) Real image generate with proper camera calibration.
Regardless, chromatin aberration is still noticeable. (d-f) Corrections pro-
vided by the algorithm demonstrated in this section.

denotes a simple identity transformation.

The standard deviation σ is not known. It could be fit alongside ΩRT , but we are
not interested in its value. For that reason, we are going to use a non-informative
Jeffrey’s prior [1] for normal distribution ρ(σ) ∝ 1/σ. Accordingly

ρ(χ|ΩRT ) ∝
∫ ∞
0

dσ
1

σWH+1
exp

− 1

2σ2

∑
k,l

[I2(k, l|ΩRT )− I1(k, l|I)]2
 , (7.8)

where W and H correspond, respectively, to width and height of the image. After
solving this integral, we reach the final result used for optimization

ln ρ(χ|ΩRT ) ∝ −WH

2
ln

∑
k,l

[I2(k, l|ΩRT )− I1(k, l|I)]2
 . (7.9)

The absolute likelihood value is not important. For that reason, as in the previous
section, we converted the final result into log space and neglected a few constants.
These approximations will not alter our results, but will speed-up the numerical
calculations.
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For simplicity, we consider that all the movies from a given day are subjected to
similar alignment discrepancies. In other words, either camera will be touched dur-
ing that day. This simplification allows us to rescue movies containing weird asym-
metrical agglomerations of super luminous material. Thus, we used 5 frames per
channel from each movie and maximize the following likelihood using the Nelder-
Mead simplex model [2].

Once all images are corrected for camera shifts and rotations, we consider chro-
matic aberration. The second set of affine transformations is merged in a single
matrix given by

ΩS =

sx 0 (1− sx)W/2

0 sy (1− sy)H/2
0 0 1

 , (7.10)

where, si accounts for scaling in directions x and y. Finally, we optimize equation
(7.9) using ΩS .

In figure (7.2a) we present a synthetic image for easier visualization of tradi-
tional calibration problems observed in microscopy sessions. Conversely, figure
(7.2b) presents a real image in which cameras were badly or not calibrated. In
figure (7.2c), we can observed that, even with proper camera alignment, we can
still observed a few problems. In this situation, we can associate most of these dis-
crepancies to chromatic aberration. Figures (7.2d-f) were digitally corrected using
the proposed algorithm.

One final subject remains to be addressed. More frequent than not, movies
present cells in very uneven signal regimes, that is, a few cells are very bright
while others are comparatively dark. To mitigate this problem, we perform an
adaptive equalization of all the images via an algorithm called CLAHE (contrast
limited histogram equalization) [75]. Of less importance, a median filter of size
3x3 is also applied to reduce the noise present in each image.

7.3 Correcting for background movement

It is quite noticeable how much cells move when performing live imaging. It
was found that cells tend to perform some sort of Brownian motion if left free to
move [4]. Not only that, cells are not rigid bodies. Their shape can fluctuate as
the cell re-arranges its internal content. On top of that, the extra heat introduce by
the laser in fluorescent microscopy tends to make cells more agitated, increasing
their motility and volumetric fluctuations. This extra source of heat also introduces
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thermal drift in the microscopy setup. For instance, we were able to observe that
even calibration beads, chemically attached to the slab, present global movement
for longer periods of time. Now suppose you are interested to study the intrinsic
dynamics of specific chromatin regions. Which kind of movement are we observing?
Do our measurements represent the values we want to study or an accumulation of
all those effects? Certainly, the second.

There are a few ways that are popularly used to correct for these issues. Perhaps
one of the most popular is a set of algorithms know as optical flow [76, 77, 78].
Simply put, optical flow attempts to reconstruct the next image in time by determin-
ing a velocity vector field for each pixel in the current image. This type of method
has become very popular in the previous years with the increase of computation
power and better graphical cards. It is widely applied in game engines, special ef-
fects, self-driving cars and more. Unfortunately, most of the algorithms developed
focus on daily problems, that is, rather rigid bodies with simplified shapes. Cells,
on the other hand, can be classified as soft active matter [79, 80] with dynamic
shape. That is perhaps the reason why most of the tests I perform with optical flow
returned fairly imprecise results. So much so, we could verify by visual inspection.

Another popular option used to calibrate experiments of this type relies on track-
ing a supposed immobile structure proximal to region of interest [63]. This method
tends to present better results, but it is experimentally more demanding with a set
of extra parameters to be optimally calibrated. We tried tracking the nuclear mem-
brane for a couple of movies. Unfortunately, the algorithm for this detection was
flawed, demanding manual correction in many cases.

Probably the easier of all “solutions” is to recorded trajectories for a short period
of time, where we can neglect most of external motion. Conversely, it should be
long enough to allow a good statistics for inference of dynamics parameters. Unfor-
tunately, the equipment available for our experiments could not generate detectable
spots for shorter periods than 0.5 seconds without overheating the sample.

After those 3 failed approaches, we needed to invent a different method to han-
dle our problem. In figure (7.3) we have a scheme representing what is observed.
Vectors ri are particle positions as measure in the microscope reference frame, but
these measurements will include confound movement R. Hence, we are interested
in the intrinsic dynamics described by vectors ai. For simplicity, we are going to
describe a system of 2 particles, but this model can be easily extend for more parti-
cles.

Using the Gaussian process model presented in the previous chapter, we can
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Fig. 7.3.: Scheme for confound movement correction. ri are measured positions in
the microscope reference frame. R represents the substrate movement,
while ai are the particles position in the moving reference frame.

express these relations as follows

ρ(ai,R|αi, Di) ∝ exp
{
−1

2
aT1 Σ−11 a1 −

1

2
aT2 Σ−12 a2 −

1

2
RTΣ−1R R

}
, (7.11)

where we associated the FBM kernel Σi directly to ai. Due to local chromatin
movement we know ai are correlated through R. We can write this expression in
terms of measured positions ri as follows

ρ(ri,R|αi, Di) ∝

exp

−
1

2

r1r2
R


T  Σ−11 0 −Σ−11

0 Σ−12 −Σ−12

−Σ−11 −Σ−12 Σ−11 + Σ−12 + Σ−1R


r1r2
R


 . (7.12)

Presently, we are not interest in R, therefore we can simply integrate this variable
out and keep only ri. For that reason, we need to calculate the inverse of this
central matrix in equation 7.12. To do so, we apply the results present in [81] on
inverting 2x2 block matrix such as

Λ =

(
A B

C D

)
. (7.13)

In this publication, they show that

Λ−1 =

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
. (7.14)
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Considering A =
[(

Σ−11 , 0
)

;
(
0, Σ−12

)]
, B = −

[
Σ−11 ; Σ−12

]
, C = BT and D =

Σ−11 + Σ−12 + Σ−1R , we can show that

(
Λ−1

)
0,0

=

[
Σ1 + ΣR ΣR

ΣR Σ2 + ΣR

]
, (7.15)

allowing us to write the final equation of out model as

ρ(ri|αi, Di) ∝ exp

−1

2

(
r1

r2

)T (
Σ1 + ΣR ΣR

ΣR Σ2 + ΣR

)−1(
r1

r2

) . (7.16)

This result shows us that the effects of confound movement will introduce corre-
lations between the trajectory measured. Furthermore, this extra source of move-
ment will increase the variance measured for each tracked spot. For that reason,
we can expect to over-estimate the diffusion and anomalous coefficients if ΣR is
not considered.

Let’s analyze an example to better understand the effects of this external source
of movement over tracked spots. We can generate synthetic trajectories with uni-
form random values ofDα and α to infer these parameters back for comparison. Ex-
pecting more realistic simulations, we introduce localization noise of similar mag-
nitude to those observed in real movies. We show in figure (7.4) the distribution
of results over a total of 2000 simulated trajectories. As expected, Dα and α are
largely over-estimated when we disregard external movement.

Fig. 7.4.: Comparison of apparent diffusion and anomalous coefficients inference
quality on 2000 trajectories subjected to substrate movement. Extraneous
movement introduces extra variance on trajectories, what cases parame-
ters to be over-estimated if not properly considered.

Alongside optimization of apparent diffusion and anomalous coefficient for tagged
particles, we infer these parameters for the background movement. In figure (7.5)
we show the relative error in the inference of background movement if compared
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to simulation set values.

Fig. 7.5.: Relative error in the inference of susbtrate movement properties.

7.3.1 Effects on displacement distribution

Let’s considered the displacement distribution of particles subjected to substrate
movement 2. In other words, how far away particles are from their original po-
sition on average when its measured trajectory includes some source of external
movement. In figure (7.6a) we calculate the distribution of displacements for 2000
simulated particles with Dα = 0.15 and α = 0.25 that move under influence of a
substrate with DR = 0.02 and αR = 1.35. Notice that DR is about 10 times smaller
than the diffusion set for the particle itself. In dashed lines we show the displace-
ment mean and distribution curves using values for Dα and α inferred without
consideration of substrate. Continuous lines use corrected parameters. In figures
(7.6b-e) we present distributions of all 2000 values inferred. These results demon-
strate that substrate movement, if left unattended, will introduce significant errors
on the estimation of diffusion parameters. On the same line, we show that the
method present in this section is capable to resolve this issue to great accuracy.

7.3.2 Model performance over trajectories with static
substrate

It is difficult to remove all possible sources of confound movement from exper-
imental setup. As we saw, even tiny substrate movement generates non-negligible

2. The concept of displacement distribution was covered in the introduction.
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Fig. 7.6.: (a) Displacement distribution and mean over time calculated over 2000
simulated trajectories with Dα = 0.15, α = 0.25, DR = 0.02 and
αR = 1.35. Continuous lines use the average value obtained with method
presented in this chapter. Dashed lines neglect substrate movement. (b-e)
Distribution of parameters inferred for simulated trajectories.

effects for longer tracks. However, let’s suppose we are 100% sure there is no sub-
strate movement. In that case, how well does this model performs with a limited
amount of data? Could we use this model as a general purpose model when 2 or
more particles are present?

Fig. 7.7.: A sample of 2000 sets of two independent anomalous trajectories are sim-
ulate assuming a static substrate. The model presented can recapitulate
results from a system where the substrate is static, however with lower
precision.

To test that, we simulated another set of 2000 trajectories, but this time we do
not introduce any source of external movement. In figure (7.7) we show that the
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static model in the previous chapter performs better, with average relative error
close to 0. Conversely, the model presented in this chapter presents an average rel-
ative error of about 10% . This result shows that when we are certain no extraneous
source of movement is present, we are better off without assuming its existence. On
the other side, when can we assume that? Hard to tell. For the experimental results
presented in next chapter we shall always consider present background movement.

7.3.3 Estimating background trajectory

In most part of the time, we are only interested in inferring the diffusion and
anomalous coefficients. What if we would also like to analyze the displacement of
these particles disregarding background movement? For that purpose, let’s go back
to equation (7.12) and, this time, calculate the most probable path for R given
trajectories ri. We have

E [R] = −
(
Σ−11 + Σ−12 + Σ−1R

)−1 (
Σ−11 Σ−12

)(r1 − µ1

r2 − µ2

)
. (7.17)

The variance can be estimated using

ΣR =
(
Σ−11 + Σ−12 + Σ−1R

)−1
. (7.18)

Fig. 7.8.: (a) Comparison between estimated (purple) and simulated (black) tra-
jectories described by substrate in a system with two particles. In (b)
distribution of errors when comparing inferred and simulated trajectories
for systems with 2, 4, 6 and 10 particles. In (c), the distribution of stan-
dard deviation estimated for background trajectories. Overall, the greater
the number of particles, the more precise is the estimation.

There is no easy analytical solution for these equations. Regardless, we can
solve them numerically. In figure (7.8a) we estimate background movement with
one standard deviation for an example set of 2 trajectories. In black we show
the simulated substrate movement. In (7.8b-c) we display overall accuracy when
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working with 2 or more particles. These results are not incredibly accurate, but
good enough for many applications.

7.4 GP-Tool

All these methods developed in this chapter, among other utilities, are part of
a small application I developed. This software is called GP-Tool and can be down-
loaded, along with extensive documentation, from my Github page
(https://github.com/guilmont/GP-Tool). At the current stage, the program pro-
vides 4 plugins: movie, alignment, trajectories and g-process. The movie plugin
will allow the user to open TIFF files, display basic ImageJ and OME metadata,
define color-maps for each channel and manually correct for contrast. The align-
ment plugin will perform the algorithm described in this chapter for digitally correct
possible camera calibration and chromatic aberration. Alternatively, the user can
manually modify each of the parameter at will. In figure (7.9) we present examples
for these plugins.

Fig. 7.9.: On left, we display a few basic metadata for the movie loaded and gen-
eral utilities for visualization. On the right, a view of the alignment plu-
gin. The user can manually setup alignment parameters or perform auto-
alignment as described in this chapter.

There are many third party applications that do a great job detecting and linking
spots into coherent trajectories. For this thesis we used ICY [3], for example. Due
that reason, this software can import XML files exported by ICY or standard CSV
files. For practical reasons, GP-TOOL will demand a different file per channel. Once
loaded into the program, user will have access to all parameters used in equation
(7.1). A example is presented in figure (7.10).
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Fig. 7.10.: This plugin will display trajectories with higher localization accuracy
among other parameters of interest. The user can also visualize these
parameters in a graphical manner.

The program can perform the analysis of several cells in the same movie. Using
the ROI utility under the trajectories plugin, the user can select spots of interest
from which diffusion and anomalous coefficients are inferred and corrected for
substrate movement. It is also possible to use MCMC sampler to verify the proba-
bility distribution associated with each of these parameters. Finally, we can infer
substrate information for all cells with more than one particle.

Fig. 7.11.: G-Process plugin will infer diffusion and anomalous coefficients for each
spot selected. We can also infer trajectories for cell if it contains more
than one particle.
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Once the analysis is completed, I provide utilities so save results into 2 file for-
mats: JSON and HDF5. I also provide export functions to save tables in CSV for-
mat. All these formats are easily parsed in all major computing languages, such as
C/C++, Python and R.
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8
Measuring chromatin dynamics

8.1 Comparing interphase and mitosis

Since the first time mitotic cells were observed under a microscope in the late
1800s, we learned that the nuclear content wildly changes its condensation state
between interphase and mitosis. It was measured by volumetric assays and FRET-
based methods that chromatin condensates 2 to 3 times from interphase to mitosis
[5, 6, 7], if cellular division is to be accomplished in typical allocated space. As a
matter of fact, the structure of mitotic chromatin has intensively studied [8, 9], but
it is not clear how diffusion properties of chromatin are influenced by condensation.

In this chapter we want to investigate the effects of chromatin arrangement and
condensation on diffusive properties. To do so, we used a mouse Embryonic Stem
(mES) cell line in which TetO arrays 7kb long are piggybacked into about 20 to 25
random locations of the genome. Upon transfection and expression of GPF::TetR,
these locations become visible at the microscope. In order to tell between cells
in interphase and mitosis, Hoechst staining was used. In appendix A the whole
protocol is described more precisely. In figure (8.1) we have an example of these
cells, recorded at 4 frames/sec in a spinning disc microscope for 75 seconds.

Unsurprisingly, the probability of finding naturally occurring mitotic cells was
very low. Due this reason, we perform nocodazole based synchronization. Masks
were generated by assigning individual color tags for every cell, where the blue
channel was used to identify cells in interphase, mitosis and nocodazole arrest.
Labeled loci were detected and tracked with usage of plugins from ICY [3]. Lastly,
these loci were grouped per cell using manually painted masks and batched into
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the GP-FBM pipeline provided with GP-Tool.

Fig. 8.1.: Approximately 20 TetO with 7kb of size are inserted in mES cells at ran-
dom locations. These arrays can be visualized upon GFP::TetR expression.
Hoechst staining is perform to differ interphase and mitotic cells. Scale
bars on left are 1 µm.

As a first result, we calculate the displacement distribution using all the tra-
jectories on similar cell cycle stage or treatment for several time steps and merge
all of them in a single histogram. For that purpose, we normalize each displace-
ment calculated for a given trajectory at time ∆t by

√
2Dα ∆tα, where Dα and α

were optimally inferred for said trajectory. In figure (8.2) we can verify that the
displacement of our random insertions in chromatin are very nicely approximated
by a Gaussian distribution for times similar or greater than one second. Further-
more, we also observe that their dynamics are self-similar in interphse, mitosis and
nocodazole arrest.

As we have enough trajectories for a good estimation of the velocity autocorre-
lation for insertions in interphase, mitosis and nocodaloze arrest, we show in figure
(’8.3) a comparison between the theoretical curve for the FBM model presented in
equation (6.9) and results calculated from data. As we can see, the FBM model
seems to be appropriate fir the analysis of chromatin.

Next, we compare the displacement curves described by each one of these cell
cycle stages with their theoretical distribution curves (2.5) along with their mean
displacement curve in time (2.6). For that, we shall use D and α inferred directly
and with background correction. In figure (8.4a-c) we present in colors the dis-
placement calculated from each stage in time. Dashed lines are theoretical curves
without correction while continuous lines are corrected for background movement.
As mentioned before, depending on how agitated cells are, we might be able to
define a certain period of time in which background effects are negligible. For this
case in particular, cells were moving very slowly, about 10 time slower than spots
themselves, hence for intervals shorter then 10 seconds the effects of background
were negligible.

Substrate movement is also noticeable when investigating the total variance of
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Fig. 8.2.: Normalized accumulated displacement distribution over all the trajecto-
ries under similar state, that is, interphase, mitosis and nocodazole ar-
rest. The displacement calculated for each trajectory was normalize by√

2Dα ∆tα, where Dα and α were optimally inferred for each trajectory
and ∆t = n δt, with δt = 0.25 seconds. For comparison, the continu-
ous black line represents a standard normal distribution and the black
dashed line corresponds to a Laplacian distribution. As we can see, inser-
tions have Gaussian dynamics and are self-similar for periods similar and
greater than one second.

Fig. 8.3.: Average velocity autocorrelation curve calculated from all trajectories in
interphase, mitosis and nodocaloze arrested cells. Theoretical curves were
calculated using sample’s average anomalous coefficient.

our samples. In figure (8.5a-b), we show how much of samples variance comes from
spots within and among cells. In the image, gray represent among cells. Interphase
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Fig. 8.4.: Evolution of mean displacement over time. In blue, red and green we
have displacement distribution plots calculated from samples of inter-
phase, mitotic and nocodazole arrested cells. Yellow points correspond
to experimental distribution’s mean. Dashed black lines are theoretical
Gaussian distributions calculated with Dα and α inferred without sub-
strate movement correction, while continuous black lines were calculated
with corrected parameters. Gray lines correspond to the theoretical mean
displacement calculated using corrected (continuous) and raw (dashed)
diffusion parameters.

cells (in blue) were quite slow, so we don’t observe a big difference when taking
fractions before or after correction. Mitotic cells (in red) are different. As they
loose adherence to the plate prior division, they become more mobile. The direct
effect can be seen via the fractions presented for diffusion and, even stronger, for
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the anomalous coefficients. Nocodazole cells (in green) are less mobile than mitotic
cells as they have time to sediment on the plate before the movies are recorded, but
cellular movement effects are still evident. In any case, we notice that most of the
sample variance (more than half) come from within cells.

Fig. 8.5.: Determining how much of samples variance come from within cells and
how much comes from different cells. As we can see, upon correction for
background movement, most of the variance come from within cells. In-
terphase cells are in blue, mitotic cells are in red and nocodazole arrested
cells in green.

The next logical question regards how great this variability is. In figure (8.6) we
present the distribution of corrected apparent diffusion and anomalous coefficients.
In short, Dα is approximately 1 µm2/sα ± 50% for all cycle stages. The anomalous
coefficient is more variable: for interphase 〈α〉 = 0.38 ± 39%, for mitosis 〈α〉 =

0.45 ± 56% and 〈α〉 = 0.48 ± 27% for nocodazole arrested cells. Interestingly,
the apparent diffusion coefficient have statistically similar means and distributions
across samples. The same can be said about the anomalous coefficient between
interphase and mitosis. Even though the nocodazole sample has similar mean and
distribution to mitotic cells, they have significant distinct mean and distribution if
compared to cells in interphase 1.

These results show that the average diffusion coefficient of chromatin loci are
probably similar across cell cycle stages.The same applies for the anomalous coeffi-
cient with exception of arrested cells. The hypothesis to explain why the anomalous
coefficient is different between interphase and arrested cells relies on how nocoda-
zole affects micro-tubules, necessary components for chromosome alignment prior
to division. It is possible that missing micro-tubules will allow chromosomes to
move with increased freedom and less constraint if compared to interphase. How-
ever, such hypothesis remains to be tested.

1. Means were tested via ANOVA test, while distributions via Wilcoxon rank-sum tests. All tests
were corrected for multiple sample comparison via Benjamini/Hochberg false discovery rate [82].
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Fig. 8.6.: Distribution of apparent diffusion and anomalous coefficients measured
using GP-FBM correcting for substrate movement.Diffusion coefficients
are statistically similar means and distributions. The same applies for
anomalous coefficient, with exception of interphase with arrested cells.
Interphase in blue, mitosis in red and nocodazole arrested cells in green.

8.2 The HoxA domain

The study on TetO system showed us a non-negligible variability of Dα and α

within cells. This effect was ever so more evident when inference of these param-
eters were corrected for substrate/background movement, where, in some cases,
up to 80% of variability was observed to come from within single cells. This result
hinted us to speculate over the reason for such variability and its possible correla-
tion to function. We find in literature case studies showing that chromatin regions
in proximity to centromeres and telomeres tend to be less mobile (reduced Dα) in
yeast [10]. We also find some results linking transcriptional activity to increased lo-
cal confinement (decrease α) [11] and/or increase gene mobility [12]. Otherwise,
little is known about the effects of genome context over chromatin dynamics.

Unfortunately, the TetO system does not allow us to demand such questions,
because arrays are introduced in a random fashion. Therefore, a different system
in which specific loci are tagged is required. As a second point, it would also be
interesting to tag a gene locus with activity profiles depending on differentiation
stages. Thence, a good candidate for that purpose is the HoxA locus. Hox genes are
repressed in embryonic stem (ES) cells, but active upon differentiation to neuron
precursor (NP) cells, for instance. This system is also interesting from a topological
perspective. In figure (8.7a) we present the Hi-C map of the HoxA domain along
with insertion positions. Once cells differentiate into NP, this domain will change
its topology as presented in figure (8.7b). As a general concept, it is believed that
ES cells have a more open and accessible chromatin than differentiated cells. These
Hi-C maps are a great example of that. The NP map presents overall greater contact
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probability than if compared to ES map. This observation indicates, as we shall see,
that distal loci tend to be spatially closer, thus more compacted compared to ES.

Fig. 8.7.: Hi-C map displaying the HoxA domain for a mES cell in (a) and mouse
neuron precursor cells in (b). Points represent the location in which AN-
CHOR arrays were inserted.

In total 2 ES lines were generated by double-labeling with ANCHOR [13]. ANCH1
and ANCH3 labels were introduced into different locations within same allele of
chromosome 6 for inter-TAD (T1-T2) and intra-TAD (T2-T3) lines, as specified in
figure (8.7). Strategically, T1 and T3 are equidistant to T2 (∼ 300 kb), which al-
lowed us to further inquire on effects of TAD structure in 3D distances. Employing
time-lapses recorded using a spinning disc microscope with one camera per chan-
nel at 2 frames/sec and the GP-FBM workflow, we assess Dα and α for ES cells and
differentiation induced cells via retinoic acid. These cells are not to be considered
as NP, but just enough for a differential analysis. The protocol used in the creat-
ing and treatment of these cell was provided by Tom Sexton and is presented in
appendix A.

As one might expect, we found significant differences in inter-probe distances for
control and differentiation induced cells, figure (8.8a-b). Interestingly, the average
distance between probes remained similar post-induction 2. Moreover, the differ-
ence in overall variance could be explained (in part) by the increase in mobility for
induced cells, figure (8.9a,c). Nonetheless, Wilcoxon rank-sum test was performed
to verify if distributions are different, but no statistical significance was found.

Before using GP-FBM on those three loci, we must show that these insertions
present Gaussian displacement and are self-similar for both differentiation states,
that is, stem and induced. Fortunately that seems to be the case. In figure (8.10),

2. Arguably, 〈∆12〉 can be considered different with p-value = 0.051.

77



Fig. 8.8.: Distribution of inter-probe distances calculated between T1-T2 (∆12) and
T2-T3 (∆23) for ES cells in (a) and induced cells in (b). ∆12 and ∆23 are
statistically different against each other, but remain similar upon differ-
entiation.

Fig. 8.9.: Distribution of apparent diffusion and anomalous coefficients measured
for insertions in T1, T2 and T3 for ES and NP cells. Other than obvious
significantly similar and different distributions, ES cells have 〈D2〉 6= 〈D3〉
and 〈α1〉 6= 〈α2〉 = 〈α3〉. Apart from that, 〈D1〉 is statistically similar in ES
and NP cells.

we show results that support the usage of GP-FBM for the subsequent analysis.
Technically speaking, we should also show that the velocity autocorrelation of these

78



loci is also that of a FBM, however we don’t have enough data to determine semi-
smooth curves, hence we omit those plots in here.

Fig. 8.10.: We group displacement distributions for all spots of the same insertion
and differentiation state. For each trajectory, displacements were nor-
malize by

√
2 Dα ∆tα, where ∆t = n/2 secs. All insertions present Gaus-

sian self-similar displacement distributions.

We found that 〈D2〉 is different from 〈D3〉 with p-value = 0.03 in ES cells, while
T1 is significantly more confined than T2 and T3 with p-values 0.001 and 0.1041.
On the differential analysis, we find that 〈α1〉 is significantly higher for induced
cells than in ES cell, while we observe a significant drop in 〈α3〉 with accompanying
increase in mobility 〈D3〉 upon induction with retinoic acid.

Let’s determine if these differences can be associate to functional reasons. We
find that T1 is near a putative active enhancer of Halr1, encoding for the non-coding
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Fig. 8.11.: We identify activity chromatin marks for the HoxA repressor Haunt gene
in ES cell. These marks vanished upon differentiation.

RNA Haunt, which represses Hox genes [16]. In figure 8.11 we show active histone
mark H3K27ac at Haunt for ES cells, while the peak vanishes for NP cells. This
result is aligned with [11]. In contrast, no significant differences was observed for
the 〈D1〉 in relation to 〈D2〉 and 〈D3〉.
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Part III

Biophysics: Modeling chromatin
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9
Stochastic systems

The final aim for this part III is to build a model for chromatin that recapitulates
all the measurements done for the HoxA domain in part II, including distances, ap-
parent diffusion and anomalous coefficients. Jumping straight into the final model
would occlude most of the subtleties associated with the model and all the con-
cepts needed for a proper understanding and correct interpretation. For this part,
then, we shall begin our journey by introducing stochastic processes and how to
treat them numerically. In particular, we dedicate this chapter to the exploration of
Langevin equations and how we can use it to study diffusion of particles. In a first
instance, we are going to study the traditional Brownian motion and, later on, a
small mass attached to a spring susceptible to thermal noise.

9.1 Diffusion dynamics

In principle, there is nothing stochastic about a system with many particles.
Knowing their position and velocity at any given time would be sufficient to de-
scribe their motion indefinitely. Nonetheless, to analytically solve a system of equa-
tions like this is very counter productive. The solution of this problem would be-
come impracticable even for a system of few particles due to the correlation intro-
duced due to their interaction. Fortunately, the exact solution is not necessary, dare
say undesired. Using tools of Statistical Physics, we can easily estimate the proba-
bility of any given state for the system which is more palatable for common usage.
Let us consider, for simplicity, a colloid with inertial mass m bathing in a fluid of
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much smaller particles. The equation of motion for this colloid is

m
d

dt
v(t) = −γv(t) + η(t). (9.1)

This equation contains 3 components. On the left most, we have the inertial term,
which determines how the colloid will react to forces applied over it given its iner-
tial mass. The middle term is called drag force and can be understood as a response
of the fluid to any given movement depicted by this colloid. Finally, the equation
above presents a force η(t) accounting for the interaction of this colloid with the
fluid which is, in principle, stochastic. Notice that, intuitively, this same cause of
movement is also indirectly responsible by its damping 1. In the simplest of models,
we will consider the interaction between colloid and fluid to be elastic, that is, no
energy is consumed, but balanced according to the inertial mass of each particle
involved. Hence, we comprehend that if the colloid mass is large compared to fluid
particles, the effects of each individual interaction with the fluid will be minimal
on the colloid. In fact, it has been measured that the decorrelation time for each
interaction is in the order of picoseconds for micron sized particles. For this reason,
we can assume that the correlation between interactions will be

E [ηi(t) · ηj(s)] = g2 δij δ(t− s), (9.2)

where δ(t − s) is known as Dirac delta and tells us that interactions are to be
considered instantaneous, while δij determine that each direction is independent of
the other. Concurrently, the interaction variance at any given time is g2. We should
also consider the average effect of this stochastic force. If the fluid is at equilibrium
and not flowing, we should expect that E [ηi(t)] = 0.

Notice we had used the mean symbol E[] twice, but how exactly is it calculated?
As the decorrelation time for interactions between colloid and fluid are approxi-
mately instantaneous, we can naturally perform our calculations over a long period
of time. Notwithstanding, ensemble averages should wield similar results of those
calculated over time. In a simple view, this possibility to exchange between en-
semble and time averages defines ergodicity. In other words, given enough time
the system will “visit” all allowed states, which is equivalent to measuring several
systems at random time points.

However, what is the distribution of this stochastic force ηi(t)? To answer this
question, we can recall the central limit theorem stating that the added effect of
measured forces in a picosecond, or the average affect of those forces, should be

1. For a macro life example, take for instance biking on a calm sunny day with no wind. The
faster you go, the stronger will be the “wind” against you. This “wind” is called a drag force, generate
by your pedaling.
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normally distributed. Hence, the stochastic force in our equation of motion is to be
considered as white noise. Later on, we shall connect this effect to thermal energy.

As we are not particularly interested in the non-equilibrium regime of this sys-
tem, we should consider only the dynamics for large periods of time, that is, when
the system undergoes stationary dynamics. Assuming this condition, it is easier to
solve this equation (9.1) in the Fourier space. We have

υi(ω) =
ηi(ω)

γ + iωm
(9.3)

for a certain frequency ω, where i as the complex factor.

In order to calculate the auto-correlation function for the velocity, we use the
Wiener–Khinchin theorem [83] and derive the power spectrum to be

|υi(ω)|2 =
|ηi(ω)|2

γ2 + ω2m2
, (9.4)

The power spectrum of our stochastic force is constant for all frequencies, a prop-
erty of white noise. This constant is simply given by the variance g2. Thence, we
calculate auto-correlation as the inverse transform

E [vi(t+ τ) vi(t)] =
g2

2πm2

∫ ∞
−∞

dω
exp {−iωτ}
(γ/m)2 + ω2

=
g2

2γm
exp

{
− γ
m
τ
}
, (9.5)

for τ ≥ 0. Notice that for any arbitrary time t, the correlation involved depends
solely on the interval τ , which indicates one aspect of stationary dynamics. Also,
notice that interactions with the fluid are considered to be instantaneous, but its
overall effect on the colloid is propagated into much larger periods of time, expo-
nentially distributed.

Equation (9.5) can be used to determine the value of g if we ponder over the
energy implied for this system. Using results from Maxwell and others, we know
that the energy disposed by the fluid in which our colloid dwells is thermal. Con-
comitantly, the kinetic energy of this colloid should emerge from fluid temperature.
This results in the following relation

g =
√

2γkBT , (9.6)

where kB is the Boltzmann constant and T is temperature. This verification is
commonly called fluctuation-dissipation theorem, because we associate the cause of
movement to be directly associated with is resistance γ. Hence, we write velocity’s
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auto-correlation function in its final format

E [vi(t+ τ) vi(t)] =
kBT

m
exp

{
− γ
m
τ
}
. (9.7)

We can use this result to determine the mean squared displacement(MSD) as
follows

E
[
∆r2i (t)

]
=

∫ t

0
dτ

∫ t

0
ds E [v(τ) v(s)]

= 2

∫ t

0
dτ (t− τ) E [v(0) v(τ)]

= 2
kBT

γ
t− 2

mkBT

γ2

[
1− exp

{
− γ
m
t
}]

.

(9.8)

In the limit of t much larger than m/γ, we can simplify the MSD equation to

E
[
∆r2i (t)

]
= 2

kBT

γ
t = 2D t, (9.9)

where we defined D = kBT/γ. Notice that the diffusion coefficient depends not
only on the temperature, but on how the object/colloid interacts with this fluid.
The feature will be largely used later on, when we model chromatin. There, the
loci will interact differently with the substrate depending on its context.

For completeness, we present the probability density function (PDF) for veloc-
ities and displacements for our colloid. Using the auto-correlation function for
velocity and CLT, we have

ρ(vi|T,m) =

√
m

2π kBT
exp

{
− mv2i

2kBT

}
, (9.10)

the Maxwell-Boltzmann PDF for velocities. This equation represents how kinetic
energy is distributed or partitioned in the system. For that reason, this result is also
called the partition function of the system. The displacement distribution is given
by

ρ(ri|D, t) =
1√

4πDt
exp

{
− r2i

4Dt

}
, (9.11)

where we assume the colloid started in r(0) = 0. For t in limit of zero, this equation
becomes a delta Dirac for position zero, but the variance increases with t. In the
limit for t going to infinity, we could expect a homogeneous probability of find the
particle in any point in space.
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9.2 Wiener process

The previous section gave us a reasonable intuition over traditional Brownian
motion. However, we cannot directly use those equations to generate stochastic
trajectories. Needless to say, we could use the GP-FBM approach presented in the
chapter 6 to generate these trajectories, but due the simplicity presented by α = 1,
we do not need to go through the trouble. Let us suppose we are in diffusion time
scale 2, that is, effects of the random force are approximately instantaneous, so we
can neglect inertial term in equation (9.1) and write

dx =
η(t)

γ
dt −→ dx =

√
2DdWt, (9.12)

where dWt is defined in the Itô sense [84] and is called the Wiener process. It
has a few interesting properties such as E [Wt] = 0 and Var [Wt] = t. On can also
show it is a stationary process Wt−Ws ∼ N (0,

√
|t− s|) with temporal correlation

E [WtWs] = min(t, s), which is a special case of the fractional Brownian motion
kernel (6.8) for α = 1.

Fig. 9.1.: (a) Few examples of 1D Wiener process using D = 0.001µm2/s and
dt = 0.5 seconds. (b) Displacement distribution in time. (c) Mean squared
displacement curve calculated over 4096 synthetic trajectories and ana-
lytically.

In figure (9.1), we generate 4096 one dimensional trajectories using the Wiener
process with D = 0.001µm2/s and dt = 0.5 seconds. In (a) we have a few examples
of simulated trajectories. We calculated the displacement distribution for different
times and compare with the theoretical result of equation (9.11) in (b). Finally, we
calculate the average squared displacement among all particles and compare with
the theoretical result (9.9). It worth mentioning that a large number of particles
are necessary for smooth plots that mimic the analytical results. In the next section
we will further discuss how to solve stochastic differential equations numerically.

2. Conversely, we could assume that the fluid is very viscous.
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9.3 Numerical integration of stochastic equations

We will solve many stochastic/Langevin equations in the next chapters. For that,
we are going use a Verlet-like integration method modified to take into consid-
eration the non-continuum behavior of stochastic Langevin forces. The complete
derivation and analytical examples can be found in [85]. For simplicity, I transcribe
equations (21) and (22) of that paper here

rn+1 = rn + b dt vn +
bdt2

2m
fn +

b dt

2m
ηn+1, (9.13)

vn+1 = avn +
dt

2m
(afn + fn+1) +

b

m
ηn+1, (9.14)

with
a =

2m− γdt
2m+ γdt

(9.15)

b =
2m

2m+ γdt
. (9.16)

For more integration methods and comparisons [86, 87, 88].

To exemplify this method, let’s study the traditional 1D harmonic oscillator in a
thermal fluid. This system is a good choice due its simplicity and facility to obtain
an analytical solution. The Langevin equation describing its behavior is

m
d

dt
v(t) = −γv(t)− kx(t) + η(t), (9.17)

d

dt
x(t) = v(t),

where m corresponds to the mass of our object, γ the dynamic friction constant, k
the elastic coefficient and η(t) the thermal forces due the fluid. As usual, 〈η(t)〉 = 0

and 〈η(t)η(s)〉 = 2kBTγ δ(t − s). For simplicity, let us suppose that all parameters
are given in terms of kBT .

Before jumping straight into solving these equations numerically, we shall de-
termine which kind of behavior we can expect. As Langevin equations are used to
study systems embedded in a thermal bath, we can expect that total equilibrium
energy should not depend on initial conditions, but solely on the thermal energy
associated to the environment. Furthermore, there are 2 types of energy associated
to this system, elastic potential given by U(x) = kx2/2 and kinetic K(v) = mv2/2.
In such notice, we use the Boltzmann distribution

ρ(x, v|k,m, kBT ) ∝ exp
{
−kx

2 +mv2

2kBT

}
dx dv (9.18)
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to infer some basic statistics such as its most probable position and velocity. We can
easily demonstrate that 〈x〉 = 0,

〈
x2
〉

= kBT/k, 〈v〉 = 0 and
〈
v2
〉

= kBT/m, which
shows that the total mean energy in equilibrium is 〈E〉 = kBT .

Fig. 9.2.: Numerical solution of a harmonic oscillator in a thermal bath. (a) The
oscillator will absorb or release energy into the thermal bath, reaching
equilibrium. (b-c) Upon relaxation, displacement and velocity are Boltz-
mann distributed. (d-e)) Example of position and velocity in time for a
single oscillator starting without potential energy. Parameters used are
kBT = 1, k = 10, γ = 0.25 and m = 1.

To have quick simulations with large amount of repetitions to perform ensemble
averages, I wrote a CUDA algorithm that runs 5120 of this oscillator in parallel for
a period of 100 time units. The parameter values used were kBT = 1, k = 10,
γ = 0.25 and m = 1. Two sets of oscillators were simulated in total, both depart
from equilibrium position, but the first starts off with no kinetic energy while the
second begins with 2 KBT . In figure (9.2a) we observe the evolution of system’s to-
tal energy (potential + kinetic). As expected from Canonical ensemble, both initial
conditions relaxed to total equilibrium energy proportional to bath temperature. In
(9.2b-c) we plot the distribution of positions and velocities, respectively, for both
sets of oscillator once in equilibrium, displaying that both situations are describe by
the Boltzmann distribution in black. In (d-e) we display the evolution of position
and velocity of a single realization departing with non-zero kinetic energy. Differ-
ently from the perfect sinusoidal curves expected from a traditional spring system,
the amplitude of motion is modulated by the stochastic effects of the bath.

Before concluding this section, I would like to adventure into the non-equilibrium
regime, that is the period of time in which the system relaxes to steady dynamics.
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I’m mostly interested in the role of mass (m) and dynamic friction (γ) in the ex-
tension of such period. In the limit where m � γ, the fluid in which the body
is emerged might present negligible effect if compared to other forces acting on
this object, hence the relaxation time would be large. Oppositely, we have the sit-
uation where m � γ which is usually the case for cytoplasm and nucleoplasm.
Let’s consider eGFP for a moment. It consists of a cylindrical-like molecule with
cross-section 2.4 × 4.2 nm and molecular mass of 27 kDa ( about 10−23 kg). It is
used to tag proteins in the cellular content where the viscosity is about 2 cPa or
10−9 kg

µm s2
[89]. In this situation, the relaxation time in the order of picoseconds

or faster. Given the magnitude of this number and the usual time scale we work in
microscopy, for instance, we can approximate equation (9.13) as

rn+1 = rn +
dt

γ
fn +

1

γ
ηn+1, (9.19)

which relates to the more traditional Euler-Maruyama method [87]. This equa-
tion is at the heart of subsequent models we present in this thesis. For that end,
we model all forces f acting on a section of polymer and add thermal noise η to
simulate diffusion.
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10
Rouse chain

The Rouse chain is the base for our chromatin model and should give us some
basic understanding on what to expect from a polymer submerged in a homoge-
neous substrate without long range interactions. In the next few chapter we shall
study more in depth the effects of long range interactions and a heterogeneous
substrate. Without further ado, let us consider a segment of chromatin which is
partitioned in N sections with a given number of base pairs in each. For simplicity,
let us call these sections monomers ri with size given by a probability density func-
tion (PDF) Ψ(ri) with mean zero and variance b2, that is, individual segments have
no preferred direction, but an average size proportional to b. With this assumption
we have the partition function

Ω(R, N) = E

[
δ

(
R−

∑
i

ri

)]
, (10.1)

where R is the end-to-end vector. It is clear that the movement of proximal chro-
matin will be correlated, but we might imagine that for larger number of base pairs
per monomer, the correlation between each end will decrease. Making use of the
central limit theorem, we can show that adding up independent monomers will
produce

Ω(R, N) =

(
3

2πNB2

) 3
2

exp
{
− 3R2

2Nb2

}
, (10.2)

where each degree of freedom collaborates with a variance Nb2/3. This is called
the ideal chain model or Gaussian chain model.

Now, let us estimate a PDF for each monomer. To do so, we shall convert equa-
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tion (10.1) space into the Fourier space such that

Ω(R, N) =
1

(2π)3

∫ ∞
−∞

dk E

[
exp

{
ik ·

(
R−

N∑
i=0

ri

)}]

=
1

(2π)3

∫ ∞
−∞

dk eik·R E

[
exp

{
−i

N∑
i=0

k · ri

}]
,

(10.3)

as each segment is independent of others, we can write

Ω(R, N) =
1

(2π)3

∫ ∞
−∞

dk eik·R
[∫ ∞

0
dr eik·rΨ(r)

]N
. (10.4)

The PDF Ψ(r) has average 0 and a well defined second moment, consequently
its maximum is at k = 0 and tends to zero for large k. Associating this fact with a
large number N of monomers, we have

Ω(R, N) =
1

(2π)3

∫ ∞
−∞

dk eik·R
[∫ ∞

0
dr

(
1− ik · r − 1

2
|k · r|2 + · · ·

)
Ψ(r)

]N
≈ 1

(2π)3

∫ ∞
−∞

dk eik·R
[
1− N

2

〈
|k · r|2

〉
+ · · ·

]
≈ 1

(2π)3

∫ ∞
−∞

dk eik·R e−
N
6
k2b2 .

(10.5)

Converting this result back into normal space we obtain equation (10.2). Hence,
in order to satisfy this relation given that our monomer are independent from each
other

Ω(R, N) =
∏
i

Ψ(ri), (10.6)

we must have

Ψ(ri) =

(
3

2πb2

) 3
2

exp
{
− 3

2b2
r2i

}
, (10.7)

that is, each monomer is also described by a Gaussian distribution.

We are interested to determine the dynamics of this chain, hence we can use this
probability density function to calculate the total entropy

S(R,N) = kB ln Ω(R, N) = S0 −
3kBR

2

2Nb2
(10.8)
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and, consequently, the free energy

dF = −S dT + p dV = S0 dT −
3kBR

2

2Nb2
dT (10.9)

resulting in

F = F0 +
3kBT

2Nb2
R2. (10.10)

Based on this result, we observe that this polymer can be approximated by an
entropic spring with elastic constant

Kc =
3kBT

Nb2
. (10.11)

Interestingly, this equation represents a set of N harmonic oscillators in series with
elastic constant as follows

Kc =

(
N∑
i=0

1

ki

)−1
=

(
N∑
i=0

b2

3kBT

)−1
=

(
Nb2

3kBT

)−1
=

3kBT

Nb2
. (10.12)

which is the initial hint for the Rouse chain model.

The Rouse chain uses these results described so far and adds dynamics into
the theory. This extra component is described by hydrodynamic properties of the
solvent in which the polymer is immersed (nuclear content, for chromatin). We
shall consider a Brownian dynamic approach following equations

m ∂tv0 = −γv0 −
3kBT

b2
(r0 − r1) + η0 (10.13)

m ∂tvi = −γvi −
3kBT

b2
(2ri − ri+1 − ri−1) + ηi (10.14)

m ∂tvN = −γvN −
3kBT

b2
(rN − rN−1) + ηN , (10.15)

where ηi is a stochastic thermal force with E [ηi] = 0 and E [ηi · ηk] = 6kBTγ δik δ(t1−
t2).

As the equations display, each particle reacts to forces due their interaction with
first neighbors and the substrate. As first approximation, we consider that the con-
text does not reverberate far from the location where interactions occur, which is a
good approximation for the regime of polymer melt, i.e., in the case of crowded en-
vironments. The Zimm chain model [90], developed by Bruno Zimm in 1956, takes
hydrodynamic effects into account. Nonetheless, this model is an over-complication
for our current purposes.

Another approximation made by Rouse regards the limit of low inertia. As ex-
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plained before, we assume that the effect of inertial mass is negligible in comparison
to thermal noise and friction. Using this approximation we obtain the following set
of equations

∂tr0 = −3kBT

γb2
(r0 − r1) +

η0
γ

(10.16)

∂tri = −3kBT

γb2
(2ri − ri+1 − ri−1) +

ηi
γ

(10.17)

∂trN = −3kBT

γb2
(rN − rN−1) +

ηN
γ
. (10.18)

To solve this model analytically, we can assume periodic boundary conditions.
As we are not interested in the end monomers and if the chain is long enough to a
point where the bulk is not affected, this assumption will help in the math without
loss of information. Let us proceed with the Fourier relation

ri(t) =
1

N + 1

N∑
k=0

e−iqkn ρk(t), (10.19)

with relations

qk =
2πk

N + 1
(10.20)

qn+N+1 =
2π(n+N + 1)

N + 1
=

2πn

N + 1
+ 2π = qn. (10.21)

Incidentally, transforming into the Fourier space can be written as

ρk(t) =

N∑
n=0

eiqkn rn(t). (10.22)

Using the boundary conditions and the Fourier transform of equations (10.16),
we have

d

dt
ρk(t) = −6kBT

γb2
{1− cos(qk)} ρk(t) +

ξk(t)

γ
. (10.23)

Notice that we were able to decouple the dynamics of all monomers, making the
solution of this model much simpler. Assuming first a homogeneous solution for the
differential equation, further correcting for the extra term and transforming back
into normal space, we determine that

rn(t) =
1

N + 1

N∑
k=0

e−iqkn
∫ t

0
ds
ξk(s)

γ
exp

{
−6kBT

γb2
[1− cos(qk)] (t− s)

}
.

(10.24)
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.

As a possible first step to estimate the shape of this equation, we might determine
the solution for k = 0, that is, for long wavelengths,

rn
0(t) =

1

N + 1

∫ t

0
ds
ξk(s)

γ
(10.25)

and calculate the mean squared displacement as follows

〈
|rn0(t)|2

〉
=

1

(N + 1)2γ2

∫ t

0
ds

∫ t

0
da 〈ξk(a) · ξk(s)〉 . (10.26)

Assuming the transform

〈ξ0(t) · ξ0(s)〉 = 6kBTγ(N + 1) δ(t− s), (10.27)

we determine that 〈
|rn0(t)|2

〉
=

6kBT

(N + 1)γ
t = 6DGt, (10.28)

which is a interesting result. Being the longest wavelength in the system, we ex-
pected that it acts upon all the monomers with same strength, therefore we can
interpret this result as the mean squared displacement of the polymer as a whole.
Expectantly, this result should be different from dilute solutions. Zimm demon-
strated [90]

〈
|rn0(t)|2

〉
is actually proportional to 1

(N+1)ν , which tends to fit better
experimental results in dilute solutions.

Now, let us determine the mean squared displacement for each monomer. We
shall multiply the result in equation (10.24) by itself and solve to

〈
|rn(t)|2

〉
=

6kBT

(N + 1)γ

N∑
k=0

∫ t

0
ds exp

{
−12kbT

γb2
[1− cos(qk)(t− s)]

}

=
b2

2(N + 1)

N∑
k=0

1− exp
{
−12kbT

γb2
[1− cos(qk)]

}
1− cos(qk)

.

(10.29)

Solving this summation can be difficult, demanding us for some sort of trick. In this
situation, we can suppose our polymer chain is very long and transform this sum
into the integral

〈
|rn(t)|2

〉
=
b2

2π

∫ ∞
0

dq
1− exp

{
−12kbT

γb2
[1− cos(q)] t

}
1− cos(q)

. (10.30)

We can further approximate this solution in order to simplify the math using a low
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pass filter, that is, approximate for shorter frequencies, yielding

〈
|rn(t)|2

〉
=
b2

π

∫ ∞
0

dq

q2

(
1− exp

{
−6kbT

γb2
q t

})
. (10.31)

This integral can be easily solved by deriving and integrating the time variable as a
trick to remove q2 from denominator. The final solution for our problem is

〈
|rn(t)|2

〉
=

√
12kBTb2

γπ
t (10.32)

= 6

√
kBTb2

3γπ
t1/2 (10.33)

= Dloc t
1/2 (10.34)

Differently from traditional diffusion, we observe that the anomalous coefficient is
smaller than one, that is α = 1/2. In fact, this result is expected due the spring-
like interaction with first neighbors. In the next section we shall solve this system
numerically to verify all results are correct.

10.1 Numerical solution

Many approximations were made to obtain solution (10.32). In order to val-
idate our results, let us solve this model numerically and compare the analytical
results obtained. For that end, I wrote a CUDA algorithm for a Rouse chain with
512 monomers using b = 50 nm. In total we run 4096 chains starting off random
conformations as given by a Gaussian chain. The Langevin method was used to
simulate these chains for 60 seconds and positions were measured every half a sec-
ond (polymer time). We further use kBT

γ = 0.00377µm2/s, expecting to measure an
apparent diffusion coefficient Dα = 0.001µm2/sα, approximate value we measured
with the TetO system. In order to estimate Dα and α with ranges of credibility, we
split out 4096 chains into 16 groups and we use ensemble average mean squared
displacement (EA-MSD) in each group.

Our main objective thus far is to verify that the MSD curve is well described
by the analytical results, hence all monomers (excluding some towards both ends)
should present identical diffusion and anomalous coefficients. Moreover, we also
want to verify that the center of mass is properly described by a slow Brownian
motion. Finally, we want to verify that the movement of nearby neighbors is corre-
lated due the presence of springs. I am also interested to know how far away this
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correlation is relevant.

Fig. 10.1.: Results of 4096 simulated polymers with b=50 nm and kBT
γ =

0.00377µm2/s. Even with all the approximations done, the analytical
results match quite nicely the numerical ones with exception of bound-
ary monomers. In (a) we compared the MSD curves of central monomers
and the center of mass. In (b) we present movement correlation along
nearby monomers. In (c-d), we compare analytical apparent diffusion
and anomalous coefficients with the ones obtained numerical via en-
semble average MSD fitting. Shades are one standard deviation.

In figure (10.1), we verify that our analytical results are correct. In (a), we have
the MSD curve for single monomers being well described by the analytical result.
The red diamonds were calculated over the center of mass for all simulated poly-
mers. In (b), we observe how far away the dynamics of a monomer is propagated
into its neighbors via movement correlation. This result is important so we know
how big any simulated polymer should be so we can neglect boundary effects. Fi-
nally, we have the average Dα and α calculated over the MSD curve described by
individual monomers at the bottom with 95% credible interval. Theoretical val-
ues are recapitulated with good accuracy. As expected, the boundary values are
different due to lack of symmetry.

10.1.1 EA-MSD and GP-FBM

For figure 10.1, we calculate apparent diffusion and anomalous coefficients us-
ing samples of EA-MSD. I would like to compare those results with measurements
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performed using the GP-FBM method presented in chapter 6. As the amount of
time needed for optimization is comparable to a second per bead, we will analyze
only 128 polymers. In figure 10.2 we present results. As we can see, the values for
Dα and α are, undeniably constant at the bulk, but optimal values obtained using
GP-FBM are biased by 2 to 3 percent.

Fig. 10.2.: Results obtained using only 128 polymers via GP-FBM method. Even
though MSD curves are very noisy in (a), the distribution of apparent
diffusion and anomalous coefficients are fairly constant in (b-c).

10.2 Contact maps and distance measurements

Using techniques such as DNA Fish, we can determine positions and distances
of well determined sequences of chromatin in fixed cells. More recently, a new
super resolution, single cell tracing method based on DNA Fish [91] was developed
to generate distance maps with resolution reaching the low mega bases, precise
enough to observe TAD like structures in single cells. Nonetheless, as we shall see
in figure (10.5), even a Gaussian chain presents such structures when analyzed in a
single polymer fashion. Perhaps a more interesting approach would be to consider
the average behavior over an ensemble of cells. Gladly, this technology exists and
is called Chromosome Conformation Capture. These methods use a large number
of cells to determine an average chromatin conformation on the form of a contact
map, that is, each term in this map will tell us about the probability of finding
any two regions in proximity. Of course, due to experimental unknowns, we cannot
determine quite precisely what "proximity" means other than speculate on the reach
of cross-linking upon cell fixation. By no means, a perfect and complete technique,
but very informative. For more practical purposes, we are going to assume that
contact is defined as monomers sharing a sufficiently small region in space so that,
upon stochastic dynamics, different monomers present higher chance to be cross-
liked. In this section we aim to determine, or estimate, the relationship between
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average 3D distances and contact probability.

At the beginning of this chapter, we determined that the end-to-end distance
probability distribution is given by

Ω(R, N) =

(
3

2πNb2

) 3
2

exp
{
− 3R2

2Nb2

}
. (10.35)

To calculate the average distance between any two monomers separated by N

monomers, we can simply do

〈R(N)〉 =

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞
0

dR R3 sin(θ)Ω(R, N)

=

√
8b2

3π
N. (10.36)

Calculating the contact probability between these monomers is a little more subtle,
but just as easy

P (R ≤ b|N) =

∫ 2π

0
dφ

∫ π

0
dθ

∫ b

0
dR R2 sin(θ)Ω(R, N)

= erf

(√
3

2N

)
−
√

6

Nπ
exp

{
− 3

2N

}
, (10.37)

where we consider that two monomer are in contact if their center of mass are in
distance inferior to their average diameter, that is, b. Using literature nomencla-
ture, N would be called the linear distance between chromatin regions, while b is
commonly called Kuhn length. The next logical step would be to write P (R ≤ b|N)

as a function of the average 3D distance, hence

P (R ≤ b|N) = erf

(√
4b2

π 〈R〉2

)
− 4b

π 〈R〉
exp

{
− 4b2

π 〈R〉2

}
. (10.38)

Admittedly, this equation is more complicated than the ones we observe in liter-
ature [41]. We can approximate to a simpler shape in the limit where N � 1. We
have

P (R ≤ b) ≈ 16b3

π2
〈R〉−3 (10.39)

which is frequently found in literature as proposed for mammalian cells. Further
more, we usually find in Bayesian approaches to chromatin reconstruction the ex-
ponent of 〈R〉 to be -2.5. We have a comparison between both coefficients in figure
(10.3).

To test if our results represent correctly our simulations, in figure 10.4 we have in
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Fig. 10.3.: Comparison between our results and common approximations found in
literature. The blue dots were obtained from those 8192 Rouse chains
simulated in the previous section.

blue the average values calculated from the simulation of 4096 polymers presented
in the previous sections. As we can see our analytical results fit the Rouse chain
simulations perfectly.

Fig. 10.4.: We have a comparison between contact probabilities and average dis-
tances as obtained by simulations and the curves we just calculated.

Finally, I would like to address the differences between an average contact and
distance maps, that is, calculated over an ensemble of many polymers (or many
cells in an experimental situation), to a single polymer map. In figure (10.5), we
have such comparison.

Notice that even though the average results in (a-b) present a monotonic expo-
nential decay with increasing linear distances, the single polymer distance maps in
(c) present certain structures that could be interpreted as TAD-like formations in a
misleading fashion. These structures are dynamic and expected from the stochastic
type of motion performed by monomers.
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Fig. 10.5.: (a-b) Average contact and distance maps calculated over an ensemble of
8192 polymers. No interesting structures are found. (c) Distance maps
calculated at the single polymer level. TAD-like structure are dynamics
and not to be taken as causal or functional importance.

10.3 Comparing to real data

As expected, real life chromatin behaves differently from a Gaussian chain. In
fact, this result is already known for decades. In [92, 93] is said that linear chro-
matin scales with 3D space following 〈R〉 ∝ N1/3 due to its fractal properties.
Moreover, a single Hi-C map element represents thousands of base pairs, which
could correspond to several of the monomers we developed for the Rouse chain
model. Hence, I would like to use experimental data to confirm the value of this
fractal exponent to be 1/3 and determine how many monomers are enclosed per
HI-C map element. Evidently, these results shall be interpreted with care, as we will
appreciate averages for a whole chromosome.

Before we start, it might be worth remembering that we currently have 1/2

as the exponent for a polymer in random conformation (equation 10.36), hence
we should adapt the Gaussian chain distribution accordingly and recalculate the
relationships between linear distance (N), average 3D distances (〈R〉) and contact
probability.

Let us assume the relationship N = Lβ with L = εn, where n corresponds to
single monomers. We expect that ε will count the number of monomers in a Hi-C
map element, while β corrects the fractional exponent. Consequently, we re-write
equation 10.2 as

Ω(R|β, L) =

(
3

2πLβb2

)3/2

exp
{
− 3R2

2Lβb2

}
, (10.40)

notice that ε = β = 1 for our original Rouse chain results. The average distance
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between n monomers can be estimated as usual

〈R〉 =

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞
0

dR R3 sin(θ) Ω(R|β, L)

=

√
8b2

3π
Lβ/2, (10.41)

so we might expect that β = 2/3. To calculate the function connecting contact
probability and the re-scaled linear distance L we do

P (R ≤ b|β, L) =

∫ 2π

0
dφ

∫ π

0
dθ

∫ b

0
dR R2 sin(θ) Ω(R|β, L)

= erf

{√
3

2Lβ

}
−
√

6

πLβ
e
− 3

2Lβ . (10.42)

This result seems to be a bit more complex than the traditional power law results
found in literature. In [34] is suggested that P (L) ∝ L−1 and present some experi-
mental data supporting this result. Nonetheless, this coefficient should be expected
for great linear distances. Let us Taylor expand our result to L� 1

P (R ≤ b|β, L� 1) ≈ 2√
π

√
3

2Lβ
−
√

6

πLβ

(
1− 3

2Lβ

)
=

√
27

2π
L−3β/2. (10.43)

As we determined before, β = 2/3 should recover results presented in [34]. Finally,
we can recalculate the function mapping contact probability to average 3D distance,
which is identical to equation (10.38).

Inferring genome-to-model scale ε and fractional exponent β

For the purpose of this inference, we use 5kb resolution Hi-C map obtained for
the chromosome 20 of IMR90 human fibroblast cells downloaded from the paper
[94]. Associated with this Hi-C map, we also had access to data corresponding to
genome wide expected number of reads per linear genomic distance.

Let us assume the normalized maps present Gaussian distributed errors and as-
sign the probability for our measured values χ given relation (10.42) is

P (χ|ε, β, σ) =

N∏
n=1

(
1

2πσ2

)1/2

exp

{
− [χn − P (R ≤ b|β, Lε,n)]2

2σ2

}
. (10.44)
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Using the Bayesian approach discussed in chapter 5, we can rewrite this equation
as the probability of having ε, β and σ given our data assigned

P (ε, β, σ|χ)P (χ) = P (χ|ε, β, σ)P (ε, β, σ). (10.45)

Our task is simple, to find the values of these parameters that maximize this func-
tion. In practice, however, the effects of σ is not the most relevant for our goal, so
we will simply integrate this parameter out assuming P (σ) = 1/σ. We have

P (ε, β|χ) ∝

{
N∑
n=1

[χn − P (n, ε, β)]2
}−N/2

P (ε, β). (10.46)

To maximize this probability we shall use the Nelder-Mead optimization algo-
rithm [2]. To map these parameters into boundless space, we used the function
y = ex. The final equation used will be converted into log-space for numerical
stability, yielding

lnP (ε, β|χ) = −N
2

ln

{
N∑
n=1

[χn − P (n, ε, β)]2
}

+ ln ε+ lnβ, (10.47)

where the extra terms were added to account for a flat prior given mappings done.

Fig. 10.6.: Inferring chromatin-to-model genomic scale ε and fractional exponent
β using expected reads for 1-dimensional genomic distance present in
[94]. (a) Fortunately, our model offers a good first approximation for
expected contact probability. (b-c) Posterior distributions for parameters.

In figure (10.6) we have the results inferred for parameters ε and β. As al-
ready expected, we find that β is approximately 2/3, corroborating the hypothesis
chromatin presents fractional properties due long range interactions. On second
instance, we also conclude that our model presents a good first approximation for
the expected contact probability. Interestingly, most of the differences are found
for linear distances in which average chromatin structure differs from the model,
that is, where we normally observe the presence of topological associated domains
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(TADs). Finally, we conclude that each element of this 5kb resolution map should
contain about 3.5 of our monomers or, in other words, each monomer contains
about 1.5 kb.

Inferring Kuhn length

The final parameter we are interested to determine is an average Kuhn length.
Once again, we are going to use Hi-C maps for the chromosome 20 of IMR90 human
fibroblast cells downloaded from the paper [94]. Differently, we also need experi-
mental data containing relative distances for this chromosome. We shall borrow the
results presented in [95], where a smart 3D DNA Fish protocol was used to map the
position of specific chromatin regions and measure relative distances among them
using 3D microscopy. The data we are interested the most is presented in figure
(10.7).

Fig. 10.7.: Summary of results in [95]. Blue rectangles in (a) mark different probed
locations, while green rectangles represent contact probabilities between
regions. Using the average contact probability among probed locations
and actual 3D distance measured via 3D microscopy in (b), we can infer
Kuhn length values for chromatin using different Hi-C map resolutions.

With this data and equation (10.38) as a model, we can fit the Kuhn length
for normalized Hi-C maps with different resolution and, with that, clarify how this
value changes with chromatin scale. Hence, we can use the average probability
calculate for green rectangles in figure (10.7a) and find a b such that the respective
distances in figure (10.7b) are optimized. We shall use a similar method to previous
subsection, that is, maximizing a likelihood given by equation 10.44. Fortunately,
we have measured standard error this time and they are shown in blue for relative
positions in figure (10.7a).

The final results are disclosed in figure 10.8. As we can observe, depending on
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Fig. 10.8.: Different chromatin scales present difference values for Kuhn length. By
extrapolation, we find a 95% expected Kuhn length range for one of our
monomer (1.5 kb) to be 71.189± 38.564 nm.

the scale analyzed, different values for Kuhn length were inferred. Intuitively, we
expect this happens due the long range interactions. In the next chapters we will
discuss further about this subject. Nonetheless, we can approximate these results
with a curve f(x) = axb to determine an approximate diameter for our monomers.
Upon extrapolation towards 1.5 kb, we find b = 71.189 ± 38.564 nanometers as a
95% credible range. We shall consider these results during our simulations later
on.
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11
Reconstructing chromatin conformation

The biggest purpose for all the results deduced in the last chapter is to attempt
reconstructing polymer conformation using contact maps or, as more traditionally
known in biology, Hi-C maps. At his point, I am not so interested about the dynamic
mechanisms responsible for the existence of any predetermined conformation, but
simply recapitulating the position of all monomers in space as measured by the
contact map or, concurrently, a distance map. Thus, by knowing how far away all
the monomers are from each other, we can determine by cross-validation when we
have the correct shape. For that purpose, we are going to take as ground truth the
conformation obtained for a sampled Gaussian chain to test our efforts.

Given the known physics involved in our toy model, one possible approach
would be to simply simulate a dynamic polymer for a great period of time until
its distance map matches the input one. Statistically speaking via ergodicity argu-
ments, it is guaranteed that, if we wait long enough, our toy model will eventually
reach a conformation that resembles the population average for a short period of
time. This is most definitely a very inefficient approach. To redeem our expected
map, we may take a different approach.

There are some established methods in literature to reconstruct 3D conformation
based on contact maps. A great review on models can be found in [41], but I would
like to recall some in here. One of the most traditional models is associated with the
minimization of a error function

∑
ij(dij − δij)2, where dij corresponds to a set of

attempt positions and δij are estimated somehow from Hi-C maps and/or measured
with use of DNA FISH experiments. Some examples can be found in [96, 97]. In a
similar fashion, some studies conclude that this weight function is biased towards
mostly longer range distances, therefore they should be corrected by re-scaling it
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as
∑

ij(1− dij/δij)2.

A more statistical approach is presented in [98], where they assume a conversion
between contact map and distances of the form cij = βdαij

1. In the previous chapter,
we determined that this is a valid approximation for polymers well described by a
Gaussian chain model [99]. Furthermore, they suggest that the Hi-C map presents
Poisson noise 2. Hence, their approach consists of optimizing positions, α and β

that maximize the likelihood

L(dij , α, β) =
∏
ij

(β dαij)
cij

cij !
exp

{
−β dαij

}
. (11.1)

This approach is particularly interesting due the attempt to remedy the huge amount
of noise associated with this type of experiment. Another Bayesian approach to
chromatin reconstruction from experimental data can be found in [100], but now
offering more physical argumentation on the nature of polymers.

Finally, I would like to mention the work developed in [101]. To reconstruct
chromatin conformation, they apply a set of spring-like forces to model short range
interactions between neighboring monomers of a chain as well as long range inter-
actions based on Hi-C map and volume exclusion assuming soft monomers. Another
valid point of their paper is related to reconstruction based on single cell data. In
general, hundreds of thousands of cells are used to generate a single Hi-C map,
therefore its experimental results should be interpreted as a population average.
We shall discuss further into the matter when we reach models to understand the
dynamic behavior of chromatin. For now, let’s focus on reconstructing conformation
from the contact/distance map of a single toy polymer generated using Gaussian
chain model, hence there is no need to address noise just yet.

At first instance, let’s assume that all monomers should generate some force
over all the others and that this force should be modulated by the distance map.
As traditional for such simulations, our forces are described by the Lennard-Jones
potential

Uij = ε

(
dij

rij

)n [(dij
rij

)n
− 2

]
, (11.2)

where r2ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the distance between monomers
i and j, dij is determined by the distance map generated for our toy polymer, ε
controls the strength of all those forces while n its reach.

Knowing the energy potential a monomer applies on another, we can calculate

1. This α is not to be confused with anomalous coefficient
2. In that sense, a Hi-C map measures the number of times chromatin sections where found in

contact given a large number of cells
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the force associated using Fij = −∇Uij . Converting to a spherical coordinates
system, we have that

F ij =
2nε

rij2

(
dij

rij

)n [(dij
rij

)n
− 1

]
rij , (11.3)

and summing up the total force a monomer feels given the interaction with all the
others is represented as

F ij = 2nε
∑
i 6=j

rij
rij2

(
dij

rij

)n [(dij
rij

)n
− 1

]
, (11.4)

where we discard self-interaction.

Now we know all the forces associated to our expected conformation, we could
initialize all monomers to a Gaussian chain and let these forces handle the dynamics
from there. However, one key element is missing: the annealing factor. This term
should remove energy from monomers allowing them to relax towards correspon-
dent equilibrium positions. Let us then work with the following set of equations

m
d

dt
vi = −ξvi + 2nε

∑
i 6=j

rij
rij2

(
dij

rij

)n [(dij
rij

)n
− 1

]
, (11.5)

d

dt
ri = vi, (11.6)

where m is the mass of each monomer and ξ is a dynamics friction coefficient.

Let’s pause our deductions for awhile and, before we continue, ponder about all
those parameters:

Mass: We do not have an experimental value for this parameter, but we can
make a rough estimation based on the resolution of H-C maps we will usually use
(4 kb). Part of this mass comes from the approximate 8000 nucleotides (forward
and reverse strands) with 325 Dalton each. We also have all histones necessary
for their organization into nucleosomes. With average of 200 base pairs (core and
linker), we get 20 nucleosomes per 4 kb, each with 2 H2A (2 × 12843 Dalton), 2
H2B (2 × 13936 Dalton), 2 H3 (2 × 15388 Dalton) and 2 H4 (2 × 11367 Dalton)
histones. All these values were taken from bio-protocols and uniprot.org for mouse
cells. Adding all those numbers together we have 4,741,360 Dalton. For better
handling later, we shall convert this value to kilograms, thence m = 7.87 × 10−21

kg, without considering interaction energies 3.

Lennard-Jones strength (ε): This parameter should be fit somehow. One way

3. As effective interaction energy is negative, this mass should be actually a little smaller.
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of dealing with it is to associate its value to the spring constant from the Rouse
model. We can do that due to the fact that our potential energy behaves like a
harmonic oscillator for small displacements

U(rij) = U(dij) +
d

dt
U(dij) (rij − dij) +

1

2

d2

dt2
U(dij) (rij − dij)2 + · · · ,

d

dt
U(dij) = 0,

d2

dt2
U(dij) =

2εn2

d2ij
.

(11.7)

Therefore, when dij is the distance between adjacent monomers, we could have

2εn2

d2i i±1
=

3kBT

b2
, (11.8)

resulting in

ε =
3kBT

2n2
. (11.9)

Before calling it done, we might do another approximation. At the current state
we are mostly interested to determine a equilibrium conformation for our polymer,
thus we are not aiming to identity precise values for interaction forces when dis-
tances are much akin to equilibrium. In fact, even when dealing with dynamics and
stochastic displacements, our simulations will occur around the equilibrium con-
formation, forthwith we shall approximate our Lennard-Jones forces 11.4 to near
equilibrium forces, resulting in

F (rij) =
3kBT

d2ij
(rij − dij) r̂ij , (11.10)

with r̂ij representing an unitary directional vector from i to j. As expected, the
near equilibrium force is calculated to be a harmonic oscillator force with elastic
constant depending on the equilibrium distance between monomers.

Friction: The friction parameter is somehow arbitrary as we do not know for
sure the hydrodynamic effects of solvent (nucleoplasm) over our monomer abstrac-
tion. In fact, if we are simply interested on the equilibrium conformation, but not
the effective dynamic behavior of the polymer, we can choose it to be weak enough
so the polymer can explore many conformations before relaxing to equilibrium, but
high enough so the relaxation algorithm runs quickly.

In reason of the large difference between the order of magnitude found for fric-
tion and other forces associated with this system, we find that the effects of inertia
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(related to mass) can be neglected due to that monomers would react to interaction
forces almost instantaneously. For that reason we set

m
d

dt
vi ≈ 0 (11.11)

and re-write the differential equations (11.6) as

d

dt
ri =

3kBT

ξ

∑
i 6=j

rij − dij
d2ij

r̂ij . (11.12)

To verify if equation (11.12) works appropriately, let’s sample a single Gaussian
chain and try to reconstruct it based on its map of distances. In figure (11.1a),
we have a distance map calculated for this sampled polymer. To further determine
how robust this method is regarding noise, we introduce lognormal noise with
parameter 4 σ for each term of the distance map. An example with σ = 0.4 is
displayed in (b). For different noise levels, we reconstruct 32 polymers to estimate
average error and standard deviation. In (c), we present a reconstructed distance
map for σ = 0.4. Finally, we show in (d) the average of averages with fitted curve.
An expected error of about 5 nanometers per monomer is found for σ → 0.

Fig. 11.1.: Testing polymer reconstruction using equation 11.12. (a) Distance map
calculated for sampled Gaussian chain (b) Using a lognormal distribution
with σ = 0.4, we introduce noise into clean distance. (c) Example of
reconstruction using previous noisy map. (d) Averages of average error
and standard deviation calculated using 32 reconstructed polymer for
diverse σ in orange. Fitted curve presents a = 0.005, b = 2.083 and
c = 1.067.

4. View equation (4.17) for reference.
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11.1 Reconstructing conformation from population
maps

So far we have studied a method to reconstruct conformations based on a dis-
tance map of a single polymer. What if we do not have such map, but only a con-
tact map? As a first step, let us first determine how a single polymer contact map
looks like. For that purpose, we shall sample another Gaussian chain of length 512
monomers with b = 50 nm. Then, we can calculate the contact map by determining
which monomers touch or intersect others.

In figure (11.2a-b), we have contact maps for 2 sampled chains. Due to the
method with which we generate contact maps, we know that all the blue elements
of those maps are within 50 nm from each other. Oppositely, these maps provide no
further information concerning non-touching monomers other than there are not
intersecting. What we expect, however, is that if we sample many polymers and add
up the overall contacts, we shall re-obtain the average behavior predicted by theory
in chapter 10. To verify this situation, we sample 256 polymers and present the
results in (c). For a closer inspection, in (d) we compare the actual theoretical curve
(10.37) to a middle row of the matrix presented in (c). By symmetry arguments,
we can conclude that all monomers toward the center of this chain should present
similar theoretical curves.

Fig. 11.2.: (a-b) Examples of contact maps measured for 2 Gaussian chains with
512 monomers and Kuhn length of 50 nm. (c) Summing enough maps
such as in (a-b), we recapitulate theoretical ensemble averaged results.
(d) Direct comparison between theory and a row of the matrix in (b).

Let’s explore a little further the concept of using a single Gaussian chain con-
tact map to reconstruct chromatin. In figure (11.3a), we show the distance map
calculated for a chain, while in (b) we present all touching monomers. To recon-
struct this monomer assuming only these contacts is simple, we just need to run the
equation 11.12 over touching monomers and set dij equal to the Kuhn length. Due
to lack of information, there is an infinite amount of possible conformations this
polymer could take and still satisfy these measured contacts. For that reason, we
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reconstruct and calculate the average distance map for 256 polymers as presented
in (c). From this average map we can estimate an contact map in (d), where just
124 out of 130816 terms where wrong. By inspection, most of the major structures
are still represented, but we see in (e) that the reconstructed contacts are not ex-
actly similar to the original map in the single reconstruction bases. Nonetheless,
this structure is not representative of the average or population behavior. For that,
we should do similar procedure over a large number of other possible conforma-
tions and, like so, recover the expected population average.

Fig. 11.3.: Recosntructing polymer from a single chain contact map. (a) Starting
of from a distance map calculated for a sampled Gaussian chain with
b=50 nm, we determine all monomers that are intersecting and build
a contact map in (b). (c) Average distance map calculated over 256
polymers reconstructed using measured contacts in (b). (d) Contact map
generate from average distance map. Most of the main structures are
nicely recovered. (e) Contact map generate from a single reconstructed
polymer. As we can see, it doesn’t quite resemble the original contact
map.

Notice that, up to now, we are studying average properties of these polymers
by generating independent samples. Otherwise, we could summon ergodicity and
show that similar results would be obtained by simulating a single Rouse chain for
a large period of time and capturing its conformation every so often. For obvious
reasons, ergodicity is not always maintained in cellular context [62], but we assume
as an approximation for shorter periods of time. This result hints us towards a
rather obvious idea, but important one, that the population behavior is determined
upon specific features associated with polymer dynamics. The Rouse chain presents
unseasoned properties, hence its population behavior is just as bland. Consequently,
we could implement specific mechanisms and/or interesting interactions that will
bring to light different types of average behaviors on the long run. We are going
to take a different approach and find a way to sample polymers that, on average,
recover the overall population behavior without considering specific biophysical
mechanisms.

Sampling polymers is no easy task due to the implicit correlation existent among
nearby monomers. In the sense that it might be more or less probable for any given
monomer i to contact j if a neighbor of i is already interacting with monomer j.
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Even for a Gaussian chain, upon quick inspection of figure (11.2a-b), we recognize
that off-diagonal marks present correlation. Evidently, there are many methods to
sample structured noise, such as modeling the covariance function of a Multivari-
ate Gaussian distribution. In other words, we could create a model to sample these
polymers using a Gaussian process, for example. However, we are going to take
a much simpler approach and sample contacts based on their probability to occur
given an expected distance. This method will generate polymers that always re-
semble the population average, but, at the same time, allows monomers to explore
the space with increased liberty. We are going to discuss this choice in more detail
when we start to talk about dynamics.

Fig. 11.4.: Testing reconstruction method from average conformation of the Gaus-
sian chain with b = 50 nm. (a-b) Results for 2 sampled interaction matri-
ces. (c) Average distance map calculated for 1024 sampled interactions.
(d) We add up all the contacts measured from reconstructed distance
maps. (e) We use the average distance map to estimate expected contact
map.

To better appreciate this method, let’s employ one last time the Gaussian chain
model with Kuhn length b = 50 nm. Using a random uniform distribution, we
sample interactions i − j from equation 10.37. These terms will be accounted for
during the reconstruction procedure via equation 11.12. As usual, self-interactions
are neglected and, due to polymer constrains, we always consider first neighbors.
Distances dij are taken as the expected distance in equation 10.36. Figure (11.4a-b)
show the reconstruction results for 2 out of 1024 sampled interaction matrices. In
(c), we show the average distance map calculated over all reconstructions. Further
along, we determine intersecting monomers for each reconstructed polymer and
add them up as a analog to total number of reads in a Hi-C maps, for example.
The results are displayed in (d). Finally, we can use equation 10.38 to calculate the
final contact map in (e) from the average distance map. Needless to say, the final
contact map is nicely described by theoretical values.
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11.2 HoxA domain

In the previous section we determined a method to sample polymers from the
theoretical contact map expected for the Gaussian chain model. In this section,
however, we apply this methodology for the HoxA domain in ESC via already bal-
anced and properly normalized Hi-C maps, so that each row resembles equation
10.40. For completeness, we are also going to present results for NPC, even though
our RA induced cells cannot really be consider as such.

Unfortunately, as we can see in figure (8.7), these maps contain a fair amount of
noise and undetermined values due known experimental issues. For those reason,
prior to applying our sampling method further treatment needs to be done. In
order to solve the problem of missing interaction probabilities, we are going to use
the results displayed in figure (10.6), that is, the fact that our re-scaled Gaussian
model is a fairly good approximation for real contact probabilities. In that sense,
we are going to use the re-scaled model to interpolate missing contact probabilities.
Finally, to help blend in this approximation and results overall noise, we convolve
this map with a Gaussian filter with standard deviation one. The final result can
be seen in figure (11.5a). From treated map, we can also calculate interaction
matrices. In (b) we show how this matrix looks like for a single polymer. Upon
accumulation and normalization of interaction matrices for many polymers, these
results will resemble more and more to the original contact map.

Fig. 11.5.: (a) Treated contact map for HoxA domain in ES cells. For reference,
original map is presented in figure (8.7.a). (b) Interaction matrix sam-
pled for (a). (c-d) The more samples we use, the more the cumulative
interaction matrix resembles original contact map.

Using this treated population contact map and assuming once more the re-scaled
Gaussian chain model as a good approximation for chromatin, we can also calculate
the expected distance map using equation (10.38) given a value for Kuhn length.
Fortunately, we have already experimentally determined the values of two elements
in this population distance map in chapter 8, more specifically in figure (8.8), hence
we can fit the Kuhn length. We obtain b = 56 nm for ESC and b = 93 nm for NPC.
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Fig. 11.6.: Reconstruction results for 2048 polymers with independently sampled
interaction matrices for ESC. (a-b) Example of reconstructed distance
maps for 2 polymers. (c) With average of maps calculated for all poly-
mers, we estimate the population distance map. (d) Using these dis-
tances, we estimate population contact probabilities.

In figure (11.6) we have the results obtained upon reconstruction of 2048 poly-
mers for the ESC. In (a-b), the distance map calculated for 2 sampled interaction
matrices are display. The average distance map over these 2048 polymers is pre-
sented in (c), from which we calculate the expected contact map in (d). As mea-
sured of goodness, we show that this reconstructed expected contact map is corre-
lated with ρ = 0.99 with original map. We also calculated the explained variance,
where we have that our reconstructed map accounts for 98% of the variability in
treated map. Out of curiosity, we display in figure (11.7) the evolution of ρ and R2

with the number or polymers used.

Fig. 11.7.: Relationship between number of reconstructed polymers to goodness of
fit parameters, that is, Pearson correlation and explained variance.

Similar procedure is applied for the Hi-C maps of neuron precursor cells. In
figure (11.8a), we show the treated population Hi-C map, from which we sample
interaction matrices in (b-d). Once more, we reconstruct 512 polymers to deter-
mine an average distance map in (g) followed by the calculated average contact
map that correlated 98% with experimental map and explains 96% of its variabil-
ity.
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Fig. 11.8.: Reconstruction results for 2048 polymers with independently sampled
interaction matrices for NPC. (a) Treated Hi-C map with estimated miss-
ing components and reduced noise. (b-d) Accumulation of sampled in-
teraction matrices. (e-f) Example of 2 distance maps calculated from
reconstructed polymers. (g) Estimated the population distance map. (h)
Estimate contact probabilities. ρ and R2 are calculated in comparison to
(a).

Before closing this chapter, let’s determine the distribution of distances measured
in between our probes. Results can be appreciated in figure (11.9). The values
approximated quite nicely our past measurements. Nonetheless, we must consider
that all these polymers are static, that is, no dynamics apply. Hence, we might
expect that these values will be slightly different, possibly a little more apart. On
that note, we are going to introduce dynamics into our model in the next chapter.

Fig. 11.9.: Reconstructed distances between probes for ES and NP cells. These re-
sults are very good approximations for values measured experimentally
in figure 8.8, even though our RA induced cells are far from NP state.
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12
Modeling chromatin dynamics

When we studied the Rouse chain model in chapter 10, we determined what one
can expect from the most simple polymer model one can image. For that model, we
account for simple first neighbor interactions via a spring developing some sort of
temperature driven stochastic (but stationary) dynamics under influence of homo-
geneous substrate. Due to symmetry principles, all monomers of that polymer, with
exception of boundary ones, present similar diffusion coefficient with anomalous
behavior dwelling in 1/2. We also show that this model, with a few tweaks, can be
taken as a first approximation to chromatin, consequently, we could propose more
promising interpretation of our experimental results in chapter 8.

In that chapter, we determined that the apparent diffusion coefficient varies,
within a credible interval, depending on its relative chromatin location. We also de-
termined that the anomalous coefficient is, on average, bellow the theoretical 1/2
threshold, indicating that chromatin is more constraint than a free polymer. Among
these divergences between data and Rouse model, perhaps the easiest one to ex-
plain is related to the anomalous coefficient. We can actually find a few interesting
publications in which polymers can be simulated to present anomalous coefficients
to ones will. In Weber et al [102], they achieve this by supposing that the polymer
interacts differently to its surrounding substrate if compared to the Rouse chain. In
Amitai and Holcman [103], they present a polymer model with long-range inter-
actions that tend to decrease the Rouse anomalous coefficient. Notwithstanding,
these models present homogeneous values for α, which is not what we have seem
experimentally. For that reason, we might expect that the observed dynamics is, but
a combination of both mechanisms, that is, substrate and long-range interactions.

Intuitively, we realize a connection between anomalous coefficient and the num-
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ber of constraining interactions associated to any monomer. A single particle freely
diffusing presents α = 1, while attaching springs on either side shortened this
value by half. Hence, we might expect that the more constraining interactions one
monomer has, the lower shall be the anomalous coefficient. Forthcoming, the ques-
tion relates to which interactions are important for dynamics and overall confor-
mation. Perhaps, the more appropriate question is how these interactions change
in time. Unfortunately, even with current technology, it is pretty hard or impossible
to experimentally answer this question. In the previous decade, we have observed
large interest in interacting complexes cohesin-CTCF, for example, which has been
shown as important regulator of chromatin conformation. Nevertheless, there are
possibly dozens of other interaction types that could constrain chromatin. Just to
cite a few examples we have direct or mediate oligomerization, condensates, in-
teractions with nuclear landmarks, among others [19]. In fact, the most probable
solution would be a combination of several agents.

Following this reasoning, I reached the scheme of interactions proposed in the
reconstruction chapter. If different sections of chromatin are only temporally in
contact with probability proportional to the number of reads presented in a Hi-C
map, these sections should also be at varying distances over time. We don’t know
exactly how this distance will change over time, but we do know its average. Hence,
as a first approximation, I chose to use this expected distance as a force mediator
for the dynamics of each monomer.

Upcoming next, we are going to extend our reconstruction model to account for
stationary Langevin dynamics and determine, numerically, how it is affected by our
sampled constraining interactions. To conclude this chapter, we will address the
effects of a heterogeneous environment over dynamics as well.

12.1 Stationary dynamics with sampled long range
interactions

We shall modify our reconstruction equation (11.12) to add stochastic white
noise onto it as follows

dri =
3kBT

ξ
dt
∑
i 6=j

rij − dij
d2ij

r̂ij +

√
2
kBT

ξ
dW t. (12.1)

As explained, the summation will happen based on sampled interactions. We should
choose the value of ξ more carefully than we did for reconstruction, but let us
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suppose that the solvent or substrate affects all monomers exactly the same way.
For simplicity, we won’t create any fancy procedure to find its optimal value, so
we shall fit it by inspection. In figure (12.1) we use those 2048 reconstructed
polymers for ES cells from last chapter to analyze dynamics. For this case, a value
of kBT

ξ = 2× 10−3µm2/s was chosen. To assess apparent diffusion and anomalous
coefficients, we split the simulated polymers into 64 groups of 32 and use EA-MSD.
The mean with 95% interval are presented in images (e) and (f) alongside a 95% CI
of the experimentally measured mean. Even though our RA induced cells are no
quite NP, similar procedure was performed for NP cells, these presented in figure
(12.2).

Fig. 12.1.: Simulating the HoxA domain of ES cells assuming homogeneous envi-
ronment. (a-b) Average contact and distance maps obtained for our
2048 simulated polymers. (c) We accumulate contact over all poly-
mers at the last time point simulated, that is, 60 seconds. (d) Inter-
probe distances measured for last simulated time point in all polymers.
(e) Shaded blue represents 95% credible interval for simulated appar-
ent diffusion coefficients, while points are experimentally assessed with
95% credible interval to the mean. (f) Likewise, but for the anomalous
coefficient.

As we could have expected, the effect of extra long range interactions is quite
apparent and it had the average anomalous coefficient to drop by around 40% .
Regardless though, to affirm that Dα and α are different for each monomer is still
questionable. The correlation ρ to original Hi-C maps is still significant, but its
explained variance R2 has dropped non-negligibly in both cell types. Regardless,
the distribution of distances are still is great agreement with experimental values.

This model poses a good first step towards explaining experimental results, but
it fails to recapitulate some values measured for Dα and α. Nonetheless, there is
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Fig. 12.2.: Simulating the HoxA domain of NP cells assuming homogeneous envi-
ronment. (a-b) Average contact and distance maps calculated from 2048
reconstructed for NP cells. (c) Accumulated contacts over all polymers
after 60 seconds of temporal evolution. (d) Distribution of inter-probe
distances measured for all polymers. (e-f) Shaded colors accounts for
95% of the measured values for apparent diffusion and anomalous coef-
ficients, respectively. Points represent 95% credible interval for experi-
mentally measured mean for retinoic acid induced cells.

another parameter we have not utilized or, rather, has been kept constant up to
now, the dynamics viscosity ξ. In the next section are going to explore its effects
over dynamics and its practical interpretation.

12.2 Effects of chromatin context on dynamics

Up to now we have ignored one very important component in nuclear diffusion
processes, the substrate in which particles undergo dynamics. For sake of simplicity,
we have consider that our polymers are diffusing in a homogeneous substrate, even
though we discussed during the introduction that it is not true. As chromatin is
heavily coated by proteins for the purpose of transcriptional regulation and DNA
replication, we might expect that, depending on how a given locus is regulated,
its environmental diffusive properties will differ from others regions. As already
discussed, we find in literature content showing that centromeres and telomeres
are less mobile than average in yeast [10], while transcriptional active loci were
found to correlate with smaller α and greater Dα in some instances [11, 12]. For
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those reasons, I propose a slight modification in our polymer dynamics equation

dri = 3λidt
∑
i 6=j

rij − dij
d2ij

r̂ij +
√

2λidWt, (12.2)

where we consider λi ≡ kBT/ξi as given in the monomer basis, with a different
values depending on ChIP-seq signal accumulated over the number of base pairs
enclosed in each monomer.

The idea of modeling a local λi based on ChIP-seq data of transcription factors
might sound easy at first, but, due the huge number of proteins necessary to regu-
late the whole genome, it would not be a sustainable tool for modeling. Hence, I
would like to propose using histone modifications for that purpose. As a example,
we saw that the Haunt locus is enriched in H3K4me1, H3K4me3 and H3K36me
in ES cells [20, 21], but, upon differentiation, H3K4me3 and H3K36me3 decrease
and H3K27me3 increases [16]. Therefore, we could model some sort of signal
combination encapsulating major histone modifications and verify if we are able to
approximate values measured in chapter 8 for diffusion and anomalous coefficients.
As described in the introduction, ChIP-seq signal will be balanced via MACS [45]
and peaks where selected in a binary fashion.

Using the results from previous section, we will say that λi should have an aver-
age similar to 2× 10−3µm2/s. To modulate this value, we simply bin peaks within
the sequence encapsulated by each monomer and combine histograms obtained for
each modification assuming equal weights. Final result goes through a Gaussian
filter for smoothing.

In figure (12.3a) I present the results for ES cells using H3K122ac, H3K4me1,
H3K27ac and H3K64ac. As before, 2048 polymers where simulated as in the pre-
vious sections, but now using λi. These were then divided into 64 groups of 32,
from which we use EA-MSD to obtained measurements for Dα and α along with a
95% range. These results are presented in (b-c). Similar idea and approximations
were applied for NP cells. Unfortunately, availability of ChIP-seq data for NP cells
is scarce, thence only H3K4me3 and H3K27ac were utilized. Results are presented
in figure (12.4).

This work is preliminary and more research needs to be done on the subject.
Perhaps one of the first things to be done is to check ChIP-seq data for other histone
modifications that are strongly associated with specific gene activity. This should
help into determining better weighting system for final signal. Another possible im-
provement would be to use the raw ChIP-seq data, where non-specific interactions
would also be considered.
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Fig. 12.3.: Dynamics of the HoxA domain in ES cells. (a) Empirical values for kBT/ξ
calculated via ChIP-seq data. (b-c) Comparison between experimental
results and values of Dα and α calculated via EA-MSD for simulated
polymers. Points and bars represent 95% of the experimental means.
Shaded areas correspond to 95% of simulated values.

Fig. 12.4.: Dynamics of the HoxA domain in NP cells. (a) Empirical values for
kBT/ξ calculated via Chip-Seq data. (b-c) Comparison between exper-
imental results for RA induced cells and values of Dα and α calculated
via EA-MSD for simulated polymers. Points and bars represent 95% of
the experimental means. Shaded areas correspond to 95% of simulated
values.
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Part IV

Conclusion
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13
Discussion

On the course of my PhD, I was mostly interested on the dynamics of chromatin,
but I was not simply concerned with measuring diffusion coefficient and determin-
ing how confined the movement of chromatin is from an experimental perspective.
My curiosity drove me into exploring possible reasons to explain measured val-
ues, to question the very nature of the experimental data in many instances and,
somehow, tell apart meaningful results from noise. These questions were the sole
inspiration for most of the methods presented in part II.

From the beginning, we knew that measuring loci dependent diffusion proper-
ties of chromatin in such a heterogeneous environment (the nucleus) would de-
mand greater precision and consideration than popular methods, such as MSD,
could offer. Perhaps the most evident experimental bias that needed attending was
background movement. Even without the knowledge proposed by the Rouse chain
model, it was quite discernible that tagged chromatin loci were not supposed to
be near a freely diffusive regime. Sooner than later, we verified that in many of
those instances the whole region (or cell) was moving due to diverse reasons, from
membrane fluctuations to heat induced stress. Several approaches were tested to
resolve this issue, from Optical Flow to machine learning techniques, but all de-
livered unsatisfactory results due to simple imprecision and/or amount of work
demanded. In the end, we approach the problem in a novel manner, we model
background induced correlation among spots under similar conditions using Gaus-
sian processes and fractional Brownian motion (GP-FBM). This approach allowed
us to “save” most of the data recorded over the years without extra experimen-
tal needs and demanding computational pipelines. Nonetheless, we never cross-
validated this methodology using properly calibrated experiments, that is, where
we could estimate cellular movement experimentally. All the tests were conducted
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over synthetic data. Despite that, computationally generated data was sufficient to
inform us about its limitations and scaled of variance to be expected.

Interestingly, our experimental data was still much noisier than what we would
expect based on in silico experiments. Unquestionably, the low signal-to-noise ratio
presented by our tracked chromatin spots was an important component of great
standard deviations due to imprecise localization and false positive detection. Af-
ter several iterations, we reached to our localization enhancing method, the one
presented in chapter 7. Of course, using two (or three) dimensional bell curves to
fit spots in microscopy images is not new (by all means). Regardless, the pipeline
allowed to statistically reduce falsely detected spots, improved localization several
times and allowed us to estimate positional errors, vital for GP-FBM.

All this preparation was key for the analysis in which we compared chromatin
dynamics between interphase and mitosis in chapter 8. We showed that cell aver-
age diffusion and anomalous coefficients are similar in both stages of the cell cycle,
even though chromatin is two to three times denser during mitosis. Similarly, we
were also able to show that great part of the variability found for such diffusion
properties was within cells. Unsurprisingly, the variation could be intuitively de-
duced to rise from the difference between constitutive heterochromatin, known to
be denser and more constraint, and euchromatin. But, is our intuition correct?
Hard to say and more research (experimental or literature) should be performed.
Unfortunately, our results for the HoxA domain (chapter 8), suggested that these
differences are more complicated than a simple matter of difference in chromatin
organization. We verified that local effects due to gene expression are also relevant.

The problem at this point was that we knew very little about which values of Dα

and α we could expect from a theoretical perspective. We knew that free particles
present anomalous coefficient equal to one (that is, not anomalous at all) and we
expected that α should have been smaller than that for polymers. In fact, upon
consideration of the Rouse chain model, α should be about 1/2. Otherwise, we
measured in chapter 8 an average α to be near 1/3. Evidently, that is to be expected
if Hi-C maps are to be considered. Obviously chromatin is biased towards some non-
random conformation, indicating the presence of mechanisms driving long range
interactions. Consequently or collaterally, these constraining forces reduce α bellow
1/2.

Possible molecular components involved in such mechanisms are studied for
over a decade now. Several have been identified and tested via computational
modeling. Nonetheless, I was not really interested in accounting for all those dif-
ferent types of tools used for genome regulation. My approach was constructed
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empirically and does not explicitly consider any particular mechanism underlying
the formation and maintenance of the 3D structure. I use a mean-field approach
where all of these mechanisms are considered on average. This model consists in
sampling long range interactions from Hi-C maps in such a way that the average dy-
namic distances are maintained. Interestingly, this model was able to recapitulate
the average behavior we measured using the TetO system in chapter 8. This simple
model was also able to recover inter-probe distances measured at the HoxA domain
for stem cells and satisfactorily approximate values for neuron precursor cells. De-
spite of these nice results, upon comparison of diffusion and anomalous coefficients
measured for our synthetic polymers and the values obtained via experimental data,
we noticed non-negligible differences. Evidently, a polymer that behaves like av-
erage chromatin would not precisely represent local behavior. Discrepancies are
anticipated to be even higher if we are to consider regulatory sequences, a minority
if compared to entirety of chromatin.

To mitigate such differences, we needed to consider more carefully what makes
regulatory sequences not akin to other regions of chromatin. Depending on the way
such question is formulated, the answer might be fairly complicated to approach.
My first idea, and still to be considered preliminary, was to adapt the equation to
local surrounding environment. Transcription factors (and other molecules) inter-
act non-specifically with the whole chromatin, but it is biased towards regulatory
sequences due to specific DNA-protein interactions. Because of that, we might ex-
pect that the density of molecules and the strength of chemical forces are higher in
surrounding regions. Not even to mention that usually dozens of different proteins
are biased towards these regions. In short, it becomes quite unassailable that our
assumption in which chromatin dwells in a homogeneous environment will fail lo-
cally. To fix these problem, we could use ChIP-seq data for all transcriptional factors
associated to each of these regulatory sequences. Unfortunately, that is no simple
task. Even with modern technology, to identify which proteins are involved in the
regulation of different genes is far from being satisfactorily solved. Despite of that,
there are plenty of material in literature correlating gene expression with histone
modifications. For that reason, I decided to take ChIP-seq data for such marks as
indications of heterogeneity in chromatin surroundings. If this approach is the cor-
rect way of dealing with the problem remains to be confirmed. Independent of
that, we were able to improve our fittings and recover (or almost) experimental
measurements utilizing the simple ideas introduced.
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14
Perspectives

In part II we introduced the usage of Gaussian processes for inference of diffu-
sion and anomalous coefficients using the fractional Brownian motion covariance
matrix. This combination proved to be quite efficient in doing its job, but we have
unleashed very little of its potential. We have indeed used this approach to fil-
ter out substrate movement from diffusing particle, however we always considered
that each trajectory enclosed a single type of motion. Let us consider transcription
factors (TFs), for example. It has been shown with single molecule tracking (SMT)
that TFs alternate between two or more types of diffusion, where they may diffuse
freely or bound to chromatin. Assuming that switching time between modes is slow
compared with the recording time, GP-FBM could be adapted to infer diffusion pa-
rameters from single trajectories. Like that, we could infer binding rates and other
kinetic parameters. In that sense, GP-Tool could eventually be modified to allow
the user to specify a model for analysis.

Regarding the experiments presented in chapter 8. More specifically concerning
the HoxA domain. The original idea for the experiment was to detect if TADs would
play an important role in diffusion properties. As our results suggest, that is not
the case, as differences in Dα and α seem to be more striking near regulatory
sequences. For that reason, it would be nice to analyze data of probes inserted into
proximal and distal regulatory sequences. If differences between these values and
the average chromatin model are more relevant, it would indicate further that gene
regulation is more important for diffusion dynamics than chromatin organization.

It would be nice to further investigate if histone modifications could be used to
model locus based context for chromatin dynamics. As the work develop was based
on simplified/binary ChIP-seq signal of a small set of marks, it would be better to
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develop a model that used raw data for a larger number of histone modifications.
Eventually, we could also use ChIP-seq for TFs.

Finally, it would be interesting to extend the polymer model developed to study
enhancer-promoter dynamics and its relationship to transcriptional activity. Per-
haps a good experimental approach would be to use the MS2 tagging system to
monitor transcriptional output of the Sox2 gene in ES cells and other differenti-
ation states. Like so, we could analyze local structural re-arrangements that are
relevant for transcription initiation.
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A
Cell lines

A.1 ANCHOR system

Cell lines and microscopy were performed in Thomas Sexton’s lab, mostly by
Dominique Kobi. The following protocol was provided by Tom.

A.1.1 ES cell culture and transgenic lines

J1 mouse ES cells were grown on gamma-irradiated mouse embryonic fibroblast
cells under standard conditions (4.5 g/L glucose-DMEN, 15% FCS, 0.1 mM non-
essential amino acids, 0.1 mM beta-mercaptoethanol, 1 mM glutamine, 500 U/mL
LIF, gentamicin), then passaged onto feeder-free 0.2% gelatin-coated plates for at
least two passages to remove feeder cells before subsequent transfections. The two
(“inter-TAD” and “intra-TAD”) ANCHOR transgenic lines were generated by sequential
CRISPR/Cas9-mediated knock-in experiments in the following manner. First, flank-
ing homology arms (mm9 chr6: 52,320,061-52,321,144, and chr6: 52,321,145-
52,322,244) were introduced by PCR amplification and Gibson assembly into a vector
containing ANCH1 sequence [104]. This vector (1 µg) was co-transfected with 3 µg

of a vector containing Cas9-GFP, a puromycin resistance marker and the scaffold to
transcribe the sgRNA specific to the T2 insertion site (CGGCGCGCACTTAACACCAA;
vector generated by the IGBMC Molecular Biology platform) in 1 million cells with
Lipofectamine-2000. Two days after transfection, the cells were cultured for 24 h with
3 µg/ml puromycin, then 48 h with 1 µg/ml puromycin to enrich for transfected
cells, before sorting individual GFP-positive cells on to feeders to amplify individual
clones. Clones with the correct sequence were screened by PCR and sequencing, then
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the CRISPR knock-in process was repeated to insert the ANCH3 sequence [11] into
either the T1 site (“inter-TAD” line; homology arms at chr6: 52,013,471-52,014,370
and chr6: 52,014,371-52,015,270; gRNA sequence AATCGAGCTCACGCCATTAG) or
the T3 site (“intra-TAD” line; homology arms at chr6: 52,622,955-52,623,855 and
chr6: 52,623,856-52,624,755; gRNA sequence TATGCTGAGGCGTGTCGCAA). Final
clones were verified for maintained pluripotency by qRT-PCR to assess Oct4, Nanog and
Sox2 expression. Subsequent microscopy experiments (see below) confirmed heterozy-
gous incorporation of the ANCH sequences (detection of one specific spot per ANCH
sequence per cell) within the same allele (two spots were always in close proximity).

A.1.2 OR transfection

150,000 cells are plated two days prior to imaging off feeder cells onto laminin-
511-coated 35 mm glass bottom petri dishes, and transfected with 3 µg OR1-EGFP
and 3 µg OR3-IRFP plasmids using Lipofectamine-2000. After two days, the medium
is exchanged for imaging medium and ready for microscopy.

A.1.3 ES differentiation/Hox induction

ES cells were passaged without feeders and cultured on laminin-511 for two days
without LIF, then for a subsequent three days without LIF and with the addition of 5
µM retinoic acid. One day after the addition of retinoic acid, the cells are transfected
with the OR proteins as previously.

A.1.4 Image acquisition

Imaging was performed on an inverted Nikon Eclipse Ti microscope equipped with
a PFS (perfect focus system), a Yokogawa CSU-X1 confocal spinning disk unit, two
sCMOS Photometrics Prime 95B cameras for simultaneous dual acquisition to provide
95% quantum efficiency at 11 µm x 11 µm pixels and a Leica 100x oil objective (HC
PL APO 1,4 oil immersion). We excited EGFP and IRFP with a 491 nm (∼ 100mw)
and a 635-nm laser (>28mW),respectively. We detected green and far red fluorescence
with an emission filter using a 525/50 nm and a 708/75 nm detection window, re-
spectively. A thermostated heater (Tokai Hit Stage Top Incubator) allowed for heating
at 37 C, humidity and CO2 control (5% ). Time-lapse analysis of GFP and IRFP foci
was performed in 2D acquiring 241 time points at a 0.5 s time interval. The system
was controlled using Metamorph 7.10 software.
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A.2 TetO system

The experiments were conducted by Attila Oravecz, working in the lab at the
time. The following protocol was provided by him.

A.2.1 Cell culture

The mouse ES cell line was kindly provided by Dr. Luca Giorgetti. It is derived from
a X0 clone of the PGKT2 sub-clone of the feeder-independent PGK12. This mESC line
was engineered by co-transfection with pBROAD3-TetR-ICP22NLS-eGFP and pcDNA3.
Hygromycin selection (250 µg/ml) was used to provide stable expression of TetR-eGFP
recombinant protein after random integration [105, 106]. The piggy-bac transposon
system was then used to generate cells with 20-25 stable random integrations of 150
TetO binding site array as described in [106]. Cells were cultured on 0.1% gelatin-
coated culture plates in DMEM (4,5g/l glucose) supplemented with GLUTAMAX-I,
15% fetal calf serum (ESC culture tested), 0.1 mM beta-mercaptoethanol, 1,500 U/ml
leukemia inhibitory factor (produced in house) and 0.1 mM non-essential amino acids
in 5% CO2 at 37o C. Mitotic arrest was performed by treating the cells for 5 h with
100 ng/ml Nocodazole (Sigma, M1404-2MG).

A.2.2 Live cell imaging

35 mm glass-bottom dishes (Ibidi 81158) were coated with 10 µg/ml fibronectin
human plasma (Sigma, F2006-1MG) in PBS for 45 minutes at room temperature.
3-5x105 cells were seeded one day before imaging, then the medium was replaced by
phenol-red-free medium containing 500 ng/ml Hoechst 33342 (Invitrogen, H3570).
Mitotic arrested cells were collected on the day of imaging by “shake-off”, incubated
with 0.25% Trypsine-1mM EDTA (Invitrogen, 25200-072) for 1 min at 37o C and
washed, and placed on fibronectin-coated glass-bottom dishes in phenol-red-free medium
containing 100 ng/ml Nocodazole and 500 ng/ml Hoechst 33342. Confocal life cell
imaging was performed on a Nikon Eclipse Ti-E inverted wide-field microscope (Perfect
Focus System) equipped with a CSU-X1 confocal scanner unit and an Evolve back-
illuminated EMCCD camera (Photometrics). Images were recorded using 100x HC
Plan APO oil immersion objective (Leica, NA 1.4). Intensities were set to 10% for the
405 nm and 30% or 50% for the 491 nm lasers, with exposure times of 100 ms and
50 ms or 25 ms, respectively. 5 z-stacks with 0.5 µm distances were recorded for each
channel. 301 time-laps images were recorded only in the 491 channel.
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B
Box-Muller algorithm

The generation of normally distributed random numbers is required for many
numerical applications. Oppositely, most of pseudo-random number generators
used for computations produce uniform distributed numbers via bit operations
[107, 108]. Gladly, there are methods to convert these uniformly distributed num-
bers into which-ever distribution we might be interested. Most modern program-
ming languages offer these algorithms implicitly, but I thought it would be useful
to describe one of these Box-Muller algorithm. The Box-Muller algorithm converts
uniform sample into the normal space.

As the math for single dimension normal distribution is complicated, we shall
simplify the problem by using 2 dimensions in polar coordinates. Like so, we can
write the following relationship be cumulative distributions∫ R

0

∫ λ

0
dθ dr

r

2πσ2
exp

{
− r2

2σ2

}
=

∫ U

0

∫ V

0
du ds, (B.1)

where the left term corresponds to the cumulative normal distribution, while on
the right we have the cumulative uniform distribution. Upon integration we have

λ

2π

{
1− exp

{
− R

2

2σ2

}}
= UV. (B.2)

Without loss of generality, we can split this result as

R =
√
−2σ2 lnV ′ (B.3)

λ = 2πU (B.4)
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where V ′ = 1 − V , which is a uniform random number by itself. Converting back
to original variables we have

x1 − µ1 = R cosλ (B.5)

x2 − µ2 = R sinλ. (B.6)

Using this algorithm we produce 2 normal random numbers with variance σ2, but
we can modulate the mean as preferred.
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C
Kernel density estimation

In several density plots throughout this thesis, a smoothed distribution func-
tion for measured or simulated data is presented. Those plots were generate using
something called a kernel density estimation. At the core of this method, we as-
sume that there is a continuous distribution that is generated by the convolution of
probability density functions for each data point. Mathematically, we can write it
like so

f(x) ∝
N∑
n=1

K (x|χn, hn) , (C.1)

where we have N data points χ each with error h. There are several functions we
can use as models for K, a few examples are the uniform, triangular, Epanechnikov,
among other distributions. For this thesis, we chose the normal distribution for
boundless datasets.

Regarding h, we have 2 options. Naturally, estimating the error for each mea-
surement would be the option, but that is not always possible. Hence, we could
assume that all the points have similar associated error and set h by hand, which
is sometimes the best option. Nonetheless, due some properties associated with
normally distributed error, there is a “rule-of-thumb” we can use [109]

h ≈ 1.06
var [χ]

n1/5
. (C.2)

In figure (C.1), we sampled 100 points with probability described by curve in black.
The histogram was calculated using the Doane binning method [110]. The curve in
orange was calculated using equation (C.1) with hn given by rule-of-thumb (C.2)
and further normalized.

151



Fig. C.1.: Example were generated using 100 data points sampled from density
in black. Kernel estimation in orange was calculated using the rule of
thumb.

A few modifications should be done if a similar treatment is to be performed
for semi-defined parameters. In that case, we assumed values to present lognormal
error, hence we convert measurement into normal space as follows

fh(x)dx ∝
N∑
n=1

N (lnx| lnχn, hn) d lnx =
N∑
n=1

L (x| lnχn, hn) dx. (C.3)

Like so, we can still use the rule-of-thumb.

Fig. C.2.: Example were generated using 100 data points sampled from the log-
normal distribution in black. Kernel density estimation in orange was
calculated using the rule of thumb.

In figure (C.2), we sampled 100 lognormally distributed points from black den-
sity function. Continuous approximation was calculated using equation (C.3), where
h was estimate using the rule-of-thumb over converted dataset.
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Guilherme MONTEIRO OLIVEIRA

Modeling chromatin dynamics using
Gaussian processes and polymer physics

Résumé

Comprendre l’organisation de la chromatine et son rôle dans la régulation des gènes sont d’une
importance majeure, mais sa dynamique a été largement négligée jusqu’à ces dernières années. Je
présente des résultats concernant les propriétés dynamiques de la chromatine dans diverses étapes
du cycle cellulaire et une connexion possible entre l’activité des gènes et les propriétés de diffusion
locale. Je développe la GP-FBM, une nouvelle méthode basée sur les processus gaussiens et le
mouvement brownien fractionnel, que infère les coefficients de diffusion apparente et d’anomalie
avec plus de précision que d’autres méthodes populaires et corrige pour les mouvements de fond. Je
présente également un nouveau modèle de biopolymère dans laquelle les cartes Hi-C sont utilisées
pour modéliser les interactions à longue portée de la chromatine. En outre, les données ChIP-seq
sont utilisées pour calibrer les propriétés locales de l’environnement nucléaire. Ce modèle a permis
de récapituler les résultats expérimentaux pour certains loci du domaine HoxA dans des cellules de
souris.

Mots-clés : processus gaussien, mouvement brownien fractionné, GP-FBM, statistiques bayé-
siennes, physique des biopolymères, dynamique de la chromatine, HoxA, interphase, mitose

Summary

Understanding chromatin organization and its role in gene regulation is of major importance, how-
ever its underlying dynamics has been overseen up to recent years. Here I present results regarding
dynamical properties of chromatin in diverse stages of the cell cycle and a possible connection
between gene activity and local diffusion properties. I develop a new computational framework
based on Gaussian processes and fractional Brownian motion called GP-FBM. This method infers
apparent diffusion and anomalous coefficients more accurately than other popular methods and
corrects for confound background movement. I further introduce a new biopolymer model using
a mean-field approach in which Hi-C maps are used to model chromatin long-range interactions.
Further, ChIP-seq data is used to calibrate local properties of the nuclear environment. This model
was able to recapitulate experimental results for specific loci of the HoxA domain in mouse cells.

Keywords: Gaussian process, fractional Brownian motion, GP-FBM, Bayesian statistics, biopolymer
physics, chromatin dynamics, HoxA, interphase, mitosis
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