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Introduction en français

Une variété kählérienne est une variété complexe munie d’une métrique hermitienne dont la
partie imaginaire est une 2-forme fermée. Un groupe est dit groupe kählérien s’il peut être
réalisé comme le groupe fondamental d’une variété kählérienne compacte. Une référence
classique sur ce sujet est [2] et une référence plus récente est [18].

Il existe de nombreuses restrictions topologiques sur les variétés kählériennes compactes.
Par exemple, la théorie de Hodge permet de munir le premier groupe de cohomologie
à coe�cients dans R d’une variété kählérienne compacte d’une structure complexe (voir
chapitre 6 de [75]). Ceci implique que le rang de l’abélianisation d’un groupe kählérien
doit être pair. Puisque tout sous-groupe d’indice fini d’un groupe kählérien est à nouveau
un groupe kählérien, cette dernière a�rmation doit également être valable pour tout sous-
groupe d’indice fini d’un groupe kählérien. De cette manière, on peut voir qu’un groupe
libre n’est jamais kählérien car pour un tel groupe, on peut toujours trouver un sous-
groupe d’indice fini dont l’abélianisation a un rang impair. Voici quelques exemples de
groupes kählériens.
• Le groupe fondamental d’une surface de Riemann fermée est un groupe kählérien car
toute 2-forme sur un tel espace est fermée.
• Pour tout entier positif n, le groupe Z

2n est kählérien car il peut-être réalisé comme le
groupe fondamental du tore complexe C

n
/Z

2n. Dans ce cas, toute forme hermitienne définie
positive sur C

n induit une métrique kählérienne sur C
n
/Z

2n.
• L’espace projectif complexe CP

n muni de la métrique de Fubini-Study est un variété käh-
lérienne. Ainsi, toute sous-variété complexe de CP

n est munie d’une structure kählérienne.
Les groupes fondamentaux de telles variétés sont appelés groupes projectifs et en particulier
ils sont des groupes kählériens1.
• Dans [67], Serre a prouvé que tous les groupes finis sont des groupes projectifs et donc
des groupes kählériens.
• Le produit direct de groupes kählériens et les sous-groupes d’indice fini de groupes käh-
lériens, sont à nouveau des groupes kählériens. Ceci découle du fait que la métrique donnée
par le produit des métriques kählériennes et la métrique du tiré en arrière sous un dif-
féomorphisme local holomorphe d’une métrique kählérienne, sont à nouveau des métriques
kählériennes.
• Les espaces symétriques Hermitiens et leurs quotients par des sous-groupes discrets sans
torsion de leur groupe d’isométries holomorphes, sont des variétés kählériennes. Alors, les
réseaux uniformes sans torsion du groupe d’isométries holomorphes d’espaces symétriques
Hermitiens sont des groupes kählériens. Une astuce de Kollár, permet d’étendre ce résultat
aux réseaux uniformes avec de la torsion (voir [3] pour une preuve de cette dernière a�rma-
tion). Un travail de Toledo [72] montre que de nombreux réseaux non-uniformes d’isométries
holomorphes d’espaces symétriques Hermitiens sont également des groupes kählériens.

1Une question importante est de savoir si ces deux classes de groupes coïncident (voir [27]).
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Dans l’étude des groupes kählériens il y a deux types de résultats : il y a des résultats
négatifs qui disent que certaines familles de groupes ne contiennent pas de groupes käh-
lériens. Mentionnons (parmi les nombreux résultats de ce type) les suivants : Carlson et
Toledo ont prouvé dans [22] qu’un réseau dans le groupe d’isométries de l’espace hyper-
bolique réel de dimension au moins 3, n’est jamais kählérien. Delzant (en suivant certains
résultats d’Arapura-Nori [5], de Brudnyi [17] et de Campana [19]) a prouvé dans [29] qu’un
groupe kählérien résoluble doit être virtuellement nilpotent. En étudiant la cohomologie L2
des variétés et des groupes kählériens, Gromov a prouvé dans [38] qu’un groupe kählérien
infini est un groupe à un bout. Une preuve plus détaillée de ce dernier résultat peut être
trouvée dans le travail de Arapura, Bressler et Ramachandran [4]. D’autre part, il existe des
résultats positifs, c’est-à-dire des constructions de groupes kählériens avec des propriétés
intéressantes. Mentionnons l’existence de groupes kählériens non résiduellement finis [73]
ou de groupes kählériens nilpotents qui ne sont pas virtuellement Abéliens [20]. Dans cette
thèse, nous contribuerons à ces deux lignes de recherche.

1 Contexte général de ce travail
Supposons que nous avons une suite exacte courte

1 // G // � // Q // 1, (1)

où � est un groupe kählérien et G est un groupe de type fini. Étant donné une telle suite
exacte courte, nous pouvons demander :

Question 1. Que peut-on dire de l’action par conjugaison de � sur G ?

Nous allons restreindre notre étude aux suites exactes courtes comme (1), où G et Q

sont des groupes infinis. L’action par conjugaison de � sur G induit un homomorphisme de
groupes de � dans le groupe d’automorphismes de G.

� ≠æ Aut(G)
“ ‘æ (x ‘æ “x“

≠1).

Rappelons que le groupe d’automorphismes intérieurs de G, noté par Inn(G), est com-
posé des automorphismes de G induits par la conjugaison d’un élément de G, c’est-à-
dire d’automorphismes de la forme x ‘æ gxg

≠1 pour un certain g dans G. Le groupe
d’automorphismes intérieurs est normal dans Aut(G) et le groupe quotient Aut(G)/Inn(G),
noté Out(G), est appelé le groupe d’automorphismes extérieurs de G. Une suite exacte
courte comme (1), induit un homomorphisme de groupes � æ Out(G) qui se factorise par
Q, c’est-à-dire, le diagramme suivant

� //

��

Out(G)

Q

;;

commute. L’homomorphisme Q æ Out(G) obtenu de cette manière est appelé la mon-
odromie de la suite exacte courte (1).

La géométrie complexe fournit des exemples de suites exactes courtes comme (1). Par
exemple, une fonction holomorphe surjective à fibres connexes f : X æ S entre un variété
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complexe compacte X et une surface de Riemann fermée S de genre positif, induit une suite
exacte courte

1 // G // fi1(X) fú // fiorb
1 (S) // 1,

où G est l’image du groupe fondamental de la fibre générique dans fi1(X) et S est munie
d’une structure d’orbifold qui prend en compte les multiplicités des fibres singulières (voir
Section 1.4.1). Dans [31], Dimca, Papadima et Suciu ont étudié certaines propriétés de
finitude du groupe fondamental d’une fibre générique d’une fonction holomorphe comme
avant, dans le cas particulier où X est un produit direct de surfaces de Riemann de genre
supérieur ou égal à deux, et S est de genre un. Cette étude sur les propriétés de finitude
des groupes fondamentaux des fibres génériques, a été poursuivie par Llosa Isenrich [49, 50]
et par Bridson et Llosa Isenrich [14]. Ils construisent de nouveaux groupes kählériens avec
des propriétés de finitude intéressantes. On se pose alors la question suivante.

Question 2. Pour une fonction holomorphe surjective à fibres connexes f : X æ S entre
une variété complexe compacte X et une surface de Riemann fermée S de genre positif, que
peut-on dire des propriétés de finitude du groupe fondamental de sa fibre générique ?

Nous nous intéresserons au cas où X est une variété kählérienne compacte. Ce travail
donnera des réponses partielles aux Questions 1 et 2.

2 Restrictions sur la monodromie
Un problème classique est l’étude de la monodromie : étant donné une submersion holo-
morphe propre f : X æ Y (qui n’est pas un fibré holomorphe localement trivial) à fibres de
dimension 1, on peut étudier la monodromie fi1(Y ) æ MCG(S), où S est la fibre générique
de f qui est une surface topologique et MCG(S) est le groupe modulaire de S. Dans [68],
Shiga a prouvé le résultat suivant.

Théorème (Shiga). Soit f : X æ B une submersion holomorphe qui n’est pas un fibré
holomorphe localement trivial d’une surface complexe compacte sur une surface hyperbolique
avec fibre générique une surface hyperbolique fermée S. Alors, l’image de la monodromie
fi1(B) æ MCG(S) est infinie et elle ne peut préserver aucune classe d’isotopie d’une courbe
fermée simple dans S.

L’un des résultats qui a motivé le travail présenté dans le Chapitre 1, est le résultat
suivant de Bregman et Zhang (voir [15]).

Théorème (Bregman-Zhang). Soit S une surface fermée de genre g Ø 2, � un groupe
kählérien et k un entier positif tel qu’il existe une suite exacte courte

1 // fi1(S) // � P // Zk // 1.

Alors, il existe un sous-groupe d’indice fini �1 de � contenant fi1(S), tel que la suite exacte
courte restreinte

1 // fi1(S) // �1
P // P (�1) ƒ Z

k // 1

est un produit direct.
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Nous étudierons ici les suites exactes courtes comme (1), où G est le groupe fonda-
mental d’une surface fermée orientée S de genre g Ø 2, sans supposer que S est la fibre
d’une submersion holomorphe. Une des clés de cette étude est le fait que tout élément de
Out(fi1(S)) peut être représenté par un di�éomorphisme de la surface S (voir Dehn [28]
pour la preuve originale et Nielsen [57] pour la première preuve publiée). Nous donnerons
également quelques restrictions sur les suites exactes courtes comme (1), où G se décompose
comme produit amalgamé ou extension HNN.

Présentation des résultats sur les groupes kählériens et les groupes de type
fini agissant sur des arbres

Nous présentons ici les résultats du préprint [56]. Notre hypothèse principale est qu’un
groupe kählérien �, admet comme sous-groupe normal un groupe de type fini G qui agit
sur un arbre T . Dans de nombreux cas, nous verrons que l’action de G sur T s’étend à �,
ce qui nous permettra d’appliquer le résultat suivant de Gromov et Schoen (voir[37]).

Théorème (Gromov-Schoen). Soit X une variété kählérienne compacte dont le groupe fon-
damental � agit sur un arbre qui n’est pas isomorphe à une droite ni à un point. Supposons
que l’action est minimale et sans point fixe au bord. Alors, il existe une fonction surjective
holomorphe à fibres connexes de X sur un orbifold hyperbolique fermé �, induisant la suite
exacte courte

1 // N // � � // fiorb
1 (�) // 1,

de sorte que la restriction de l’action à N est triviale.

Voir la Section 1.4.1 pour la définition du groupe fondamental orbifold fi
orb
1 (�). Le

problème d’étendre l’action de G sur un arbre au groupe Aut(G) a été étudié dans la
littérature. Dans plusieurs cas, on peut prouver des résultats d’extension. Ceci est le cas
si le groupe G est l’un des exemples suivant :

1. Un produit libre AúB avec A et B des groupes indécomposables, non cycliques infinis,
agissant sur son arbre de Bass-Serre.

2. Le groupe de Baumslag-Solitar Èx, t|txp
t
≠1 = x

qÍ, agissant sur son arbre de Bass-
Serre, où p, q sont des entiers avec p, q > 1, et tels qu’aucun n’est un multiple de
l’autre (voir Gilbert, Howie, Metaftsis et Raptis [35] et Pettet [59]).

3. Un groupe hyperbolique à un bout sans torsion, avec un groupe d’automorphismes
extérieurs infini et qui n’est pas virtuellement un groupe de surface, agissant sur son
arbre JSJ (Sela [63], voir aussi Bowditch [11]).

Afin d’appliquer ces résultats à l’étude des groupes kählériens, supposons que le groupe
G n’a pas de centre, que l’arbre T n’est pas une droite ni un point et que l’action de G

sur T est minimale, fidèle et sans points fixes au bord de T . Soit � l’image du morphisme
� æ Aut(G) induit par l’action par conjugaison de � sur G. Sous ces conditions nous
prouvons le résultat suivant dans le Chapitre 1.
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Théorème A. Supposons qu’il existe un sous-groupe d’indice fini �0 de � contenant G ƒ
Inn(G), de sorte que l’action de G sur T puisse être étendue en une action G-compatible de
� sur T . Alors G est virtuellement un groupe de surface. De plus, il existe un sous-groupe
d’indice fini �1 de � contenant G tel que la suite exacte courte restreinte

1 // G // �1
P // P (�1) // 1

est un produit direct.
On renvoie à la Section 1.3.1.b pour la définition d’action G-compatible. La première

application de ce résultat est la suivante.
Théorème B. Soient S une surface fermée de genre g Ø 2 et � un groupe kählérien tel
qu’il existe une suite exacte courte

1 // fi1(S) // � // Q // 1.

Supposons que l’action par conjugaison de � sur fi1(S) préserve la classe de conjugaison
d’une courbe fermée simple dans S. Alors, il existe un sous-groupe d’indice fini �1 de �
contenant fi1(S), tel que la suite exacte courte restreinte

1 // fi1(S) // �1 // Q1 // 1

est un produit direct (où Q1 est l’image de �1 dans Q). En particulier, la monodromie
Q æ Out(fi1(S)) est finie.

Ce résultat peut être vu comme une version topologique du résultat de Shiga. Nous
verrons également que nous pouvons retrouver le résultat de Bregman et Zhang, en util-
isant des résultats classiques sur le groupe de monodromie d’une surface hyperbolique et
l’hyperbolisation des variétés de dimension 3. D’autres applications sont obtenues.
Théorème C. Soit G un groupe qui se décompose comme un produit libre non trivial AúB

avec A et B indécomposables et non cycliques infinis. Alors G ne se plonge pas comme
sous-groupe normal dans un groupe kählérien.
Remarque. Pour l’arbre de Bass-Serre d’un produit libre G = A ú B ú C, il existe des
automorphismes de G qui ne peuvent pas être étendus. Par exemple si — est un élément de
B, l’automorphisme défini par

a ‘æ a, b ‘æ b, and c ‘æ —c—
≠1

pour tout a œ A, b œ B et c œ C (appelé automorphisme de Fouxe-Rabinovitch), ne s’étend
pas à l’arbre de Bass-Serre dont la graphe de groupes correspondant est :

A BC

Cela implique que notre preuve du Théorème C ne s’étend pas à un produit libre d’au moins
trois facteurs.
Théorème D. Soit G le groupe de Baumslag-Solitar Èx, t|txp

t
≠1 = x

qÍ, où p, q sont des
entiers avec p, q > 1, et tels qu’aucun n’est un multiple de l’autre. Alors G ne se plonge pas
comme sous-groupe normal dans un groupe kählérien.
Théorème E. Supposons que G est un groupe hyperbolique sans torsion à un bout, qui se
plonge comme sous-groupe normal dans un groupe kählérien �. Si Out(G) est infini, alors
G est virtuellement un groupe de surface.

Nous observons que dans ce dernier théorème il n’y a pas d’hypothèse sur la fonction
de monodromie. Nous avons seulement besoin de savoir que Out(G) est infini.
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3 Groupes kählériens et propriétés de finitude

Nous présentons ici quelques résultats sur les propriétés de finitude des groupes kählériens.
Une introduction détaillée aux propriétés de finitude sera donnée dans la Section 2.2. En
particulier, les propriétés de finitude FPn et Fn y seront définies.

Soit X un variété complexe compacte connexe de dimension complexe n Ø 2 et soit
S une surface de Riemann fermée de genre positif. Une fonction holomorphe surjective à
fibres connexes f : X æ S est appelée un pinceau irrationnel. Dans [43], Kapovich a prouvé
le résultat suivant

Théorème (Kapovich). Soient X une surface kählérienne compacte asphérique, S une
surface de Riemann fermée de genre positif et f : X æ S un pinceau irrationnel dont
les fibres singulières sont de multiplicité un. Alors f est une submersion ou le noyau de
la fonction induite au niveau des groupes fondamentaux fú : fi1(X) æ fi1(S), n’est pas
finiment présenté.

Ceci était le premier résultat qui faisait un lien entre l’existence de points critiques
d’un pinceau irrationnel et les propriétés de finitude du noyau de la fonction induite au
niveau des groupes fondamentaux. Comme conséquence de ce résultat, Kapovich a prouvé
l’existence de surfaces hyperboliques complexes compactes dont les groupes fondamentaux
admettent un sous-groupe normal de type fini qui n’est pas finiment présentable. Autrement
dit, Kapovich a donné les premiers exemples de réseaux uniformes non cohérents dans
PU(2, 1). Rappelons qu’un groupe est dit cohérent si chaque sous-groupe de type fini est
aussi finiment présentable. D’autres exemples de groupes kählériens non cohérents ont été
donnés par Kapovich [42] et Py [60]. L’un des principaux ingrédients de ces exemples
est le résultat suivant, essentiellement dû à Kapovich (voir [42] et [60]), qui découle de
la combinaison du Théorème 4 dans [60] (dû à Kapovich) avec le résultat de Bregman et
Zhang cité précédemment.

Théorème. Soit � un groupe kählérien qui peut être réalisé comme le groupe fondamental
d’une surface kählérienne compacte asphérique X avec premier nombre de Betti positif.
Supposons que � ne possède aucun sous-groupe abélien de type fini dont le normalisateur a
un indice fini dans �. Alors, au moins un des cas suivants se produit :

1. � est non cohérent.

2. Il existe un revêtement fini de X, qui admet une submersion holomorphe sur une
surface hyperbolique compacte à fibres hyperboliques connexes.

Friedl et Vidussi donnent un ra�nement de ces résultats sur la cohérence des groupes
kählériens dans [33]. Outre l’étude de la cohérence de certains groupes, on peut également
étudier l’existence de sous-groupes normaux qui ne sont pas de type fini. Par exemple, rap-
pelons qu’un sous-groupe normal d’un groupe libre non abélien ou d’un groupe de surface,
est finiment engendré si et seulement s’il est d’indice fini (voir [62] pour la preuve originale
dans le cas des groupes libres et les lemmes 3.3 et 3.4 dans [25]). En général, les sous-groupes
coabéliens normaux des groupes kählériens qui ne sont pas de type fini, sont liés aux fibra-
tions sur des surfaces de Riemann. En étudiant l’invariant de Bieri-Neumann-Strebel des
groupes kählériens, Delzant a prouvé dans [29] le résultat suivant.
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Théorème (Delzant). Considérons la suite exacte courte

1 // G // � // Q // 1,

où � est un groupe kählérien, Q est un groupe abélien et G n’est pas de type fini. Alors, si X

est une variété kählérienne compacte qui réalise � comme son groupe fondamental, il existe
une fonction holomorphe surjective à fibres connexes de X sur un orbifold hyperbolique de
dimension 2.

Nous renvoyons le lecteur à [29] pour les définitions d’un orbifold hyperbolique de di-
mension 2 et d’une fonction holomorphe d’une variété complexe compacte sur un tel espace.
Lorsque Q = Z, le théorème ci-dessus a été établi précédemment par Napier et Ramachan-
dran dans [54] en utilisant des techniques di�érentes.

Nous allons introduire quelques résultats récents sur la construction de groupes käh-
lériens ayant des propriétés de finitude exotiques et le contexte qui a motivé ces construc-
tions. Dans [45, §0.3.1], Kollár a posé la question de savoir si un groupe projectif est toujours
commensurable (à noyaux finis près) à un groupe admettant un espace classifiant qui soit
une variété quasi-projective. Puisque toute variété quasi-projective a le type d’homotopie
d’un complexe fini [30, p. 27], une réponse positive à cette question impliquerait que tout
groupe projectif est commensurable à un groupe ayant un espace classifiant fini (voir Sec-
tion 2.2.1 pour la définition de la commensurabilité). Cependant, une réponse négative à
la question de Kollár a été donnée par Dimca, Papadima et Suciu dans [31]. Dans [31], les
auteurs ont prouvé les deux résultats suivants (voir Théorème C et §2 dans [31]).

Théorème (Dimca, Papadima and Suciu). Si n Ø 3 et si f : X æ S est un pinceau
irrationnel avec des points critiques isolés, alors le groupe fondamental d’une fibre lisse de
f se plonge dans celui de X et coïncide avec le noyau de l’homomorphisme induit au niveau
des groupes fondamentaux fú : fi1(X) æ fi1(S).

Remarquez que sous l’hypothèse de ce dernier résultat, si on suppose que X est une
variété kählérienne, on obtient un sous-groupe normal de type fini du groupe fondamental
de X, qui est aussi un groupe kählérien.

Théorème (Dimca, Papadima and Suciu). Soit X = �1 ◊ · · · ◊ �n un produit direct de
n surfaces de Riemann de genre supérieur à 1 et soit S de genre 1. Si f : X æ S est un
pinceau irrationnel avec des points critiques isolés, alors Hn(ker(fú),Q) est de dimension
infinie.

En combinant ces deux derniers résultats, Dimca, Papadima et Suciu ont donnée une
réponse négative à la question de Kollár. En e�et, dans la situation de ce dernier résultat,
le noyau de l’homomorphisme fú : fi1(X) æ fi1(S), qui est le groupe fondamental d’une
fibre lisse de f si n Ø 3, ne peut pas être de type FPn car le groupe Hn(ker(fú),Z) n’est
pas de type fini (voir Proposition 87). La propriété d’être de type FPn est invariante par
la relation de commensurabilité [7, 31]. Par conséquent, aucun groupe commensurable au
noyau de fú ne peut avoir un espace classifiant fini.

Suite à l’article [31], d’autres exemples de groupes projectifs ayant des propriétés de
finitude exotiques ont été construits et étudiés par Llosa Isenrichh [49, 50] et par Bridson
et Llosa Isenrich [14]. Tous les exemples étudiés dans [14, 49, 50] sont soit des sous-groupes
de produits directs de groupes de surface ou des extensions de tels sous-groupes, comme
dans [14].
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Présentation de résultats sur les groupes kählériens ayant des propriétés
de finitude exotiques
Nous présentons ici nos résultats sur la construction de nouveaux groupes kählériens ayant
des propriétés de finitude exotiques. Voir [55] pour une prépublication issue de ce travail,
à paraître dans les Annales de la Faculté des Sciences de Toulouse. Il s’agit d’un travail en
collaboration avec Pierre Py.

Soit f : X æ S un pinceau irrationnel avec dimCX = n Ø 2. Nous supposons que les
points critiques de f sont isolés et que f n’est pas une submersion; son ensemble de points
critiques est alors non vide. Soit ‚X æ X le revêtement de X tel que fi1( ‚X) ƒ ker(fú). Les
résultats principaux sont les suivants :

Théorème F. Le groupe d’homologie Hn( ‚X,Q) est de dimension infinie.

Théorème G. Si X est asphérique, le groupe Hn(ker(fú),Q) est de dimension infinie. En
particulier ker(fú) n’est pas de type FPn.

Dans le cas particulier où X est un produit direct de surfaces de Riemann et que S

est de genre 1, nous retrouvons à partir du Théorème G le second résultat de Dimca,
Papadima et Suciu cité précédemment. Il est intéressant de chercher d’autres exemples de
variétés projectives (ou kählériennes fermées) munies d’une fonction holomorphe à laquelle
on peut appliquer les Théorèmes F et G. Une façon de construire de nouveaux exemples
de groupes kählériens ayant des propriétés de finitude exotiques est d’utiliser la surface
de Cartwright-Steger (voir [23, 24]) pour une définition et des propriétés de cette surface
kählérienne compacte) que nous désignerons par Y . La fonction d’Albanese de cette surface
complexe h : Y æ E est une fonction holomorphe dont le but est une courbe elliptique. Il
a été prouvé que ses singularités sont isolées (voir [23]) et non dégénérées (voir [46] et [61]).
On peut donc considérer le produit Y

b de Y avec lui-même b fois et la fonction

h + · · · + h : Y
b æ E. (2)

Cela fournit des exemples naturels auxquels on peut appliquer les Théorèmes F et G. En
désignant par

� < PU(2, 1)

le groupe fondamental de la surface de Cartwright-Steger, la dernière construction avec le
Théorème G implique immédiatement :

Théorème H. Le produit direct de b copies de � contient un sous-groupe normal coabélien
N qui est de type FP2b≠1 mais qui satisfait que H2b(N,Q) est de dimension infinie.

Le groupe N apparaissant ci-dessus, est le noyau du morphisme au niveau des groupes
fondamentaux induit par la fonction (2). Le fait que N soit de type FP2b≠1 découle des
résultats de [31]; nous expliquerons à nouveau ce fait dans ce texte. En particulier, le
Théorème H implique que N n’est pas de type FP2b. Dans le Chapitre 2, nous prouvons
qu’aucun sous-groupe d’indice fini de N ne se plonge dans un produit direct de groupes
de surface. Ceci implique que les groupes construits de cette manière sont d’une nature
di�érente de celle des exemples construits dans [31, 49, 50].
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A Kähler manifold is a complex manifold endowed with a Hermitian metric whose imaginary
part is a closed 2-form. A group is called a Kähler group if it can be realized as the
fundamental group of a compact Kähler manifold. We refer the reader to [2] for a classical
reference on this subject and to [18] for a more recent survey.

There are many topological restrictions on compact Kähler manifolds. For instance,
Hodge Theory enables to endow the first cohomology group of a compact Kähler manifold
with coe�cients in R with a complex structure (see Chapter 6 of [75]). This implies that the
rank of the Abelianization of a Kähler group must be even. Since any finite index subgroup
of a Kähler group is again Kähler, the latter assertion must hold as well for any finite index
subgroup of a Kähler group. One can see in this way that a free group is never Kähler since
for such a group one can always find a finite index subgroup whose Abelianization has odd
rank. Let us see some examples of Kähler groups.
• The fundamental group of a closed Riemann surface is a Kähler group since any 2-form
on such a space is closed.
• For any positive integer n, the group Z

2n is Kähler since it is the fundamental group of
the complex torus Cn

/Z
2n. In this case, any positive-definite Hermitian form on C

n induces
a Kähler metric on C

n
/Z

2n.
• The complex projective space CP

n endowed with the Fubini-Study metric is a Kähler
manifold. Therefore, any complex submanifold of CPn is endowed with a Kähler structure.
The fundamental groups of such manifolds are called projective groups; they are in particular
Kähler groups1.
• In [67], Serre proved that all finite groups are projective groups and therefore Kähler
groups.
• The direct product of Kähler groups and finite index subgroups of Kähler groups are
again Kähler groups. This follows from the fact that the product metric of Kähler metrics
and the pullback metric under a holomorphic local di�eomorphism of a Kähler metric are
again Kähler metrics.
• Hermitian symmetric spaces and their quotients by torsion-free discrete subgroups of their
group of holomorphic isometries, are Kähler manifolds. Then, torsion-free uniform lattices
of holomorphic isometries of Hermitian symmetric spaces are Kähler groups. A trick due to
Kollár allows to extend this result to uniform lattices with non-trivial torsion (see [3] for a
proof of the latter assertion). A work of Toledo [72] shows that many non-uniform lattices
of holomorphic isometries of Hermitian symmetric spaces are also Kähler groups.

There are two types of results in the study of Kähler groups: there are some negative
results which say that certain families of groups do not contain Kähler groups. Let us
mention (among many other such results) the following: Carlson and Toledo proved in [22]
that a lattice in the isometry group of the real hyperbolic space of dimension at least 3

1An important question is whether these two classes of groups coincide (see [27]).
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is never Kähler. Delzant (following certain results of Arapura-Nori [5], Brudnyi [17] and
Campana [19]) proved in [29] that a solvable Kähler group must be virtually nilpotent. By
studying the L2 cohomology of Kähler manifolds and Kähler groups, Gromov proved in [38]
that an infinite Kähler group has one end. A more detailed proof of the latter result can
be found in the work of Arapura, Bressler and Ramachandran [4]. On the other hand there
are positive results, i.e. some constructions of Kähler groups with interesting properties.
Let us mention the existence of non-residually finite Kähler groups [73] or of non-virtually
Abelian nilpotent Kähler groups [20]. In this thesis we will contribute to these two lines of
research.

1 General context of this work
We assume that we have a short exact sequence

1 // G // � // Q // 1, (1)

where � is a Kähler group and G is a finitely generated group. Given such a short exact
sequence we can ask:

Question 1. What can be said about the conjugation action of � on G ?

We will restrict our study to short exact sequences as in (1) where G and Q are infinite
groups. The conjugation action of � on G induces a group homomorphism from � to the
group of automorphisms of G

� ≠æ Aut(G)
“ ‘æ (x ‘æ “x“

≠1).

Recall that the group of inner automorphisms of G, denoted by Inn(G), is composed of the
automorphisms of G induced by the conjugation by an element of G, i.e. automorphisms
of the form x ‘æ gxg

≠1 for some g in G. The group of inner automorphisms is normal
in Aut(G) and the quotient group Aut(G)/Inn(G) denoted by Out(G) is called the outer
automorphism group of G. A short exact sequence as in (1) induces a group homomorphism
� æ Out(G) that factors through Q, i.e. the following diagram

� //

��

Out(G)

Q

;;

commutes. The homomorphism Q æ Out(G) obtained in this way is called the monodromy
of the short exact sequence (1).

The main examples of short exact sequences as in (1) come from complex geometry.
For instance, a surjective holomorphic map with connected fibers f : X æ S between a
compact complex manifold X and a closed Riemann surface S of positive genus, induces a
short exact sequence

1 // G // fi1(X) fú // fiorb
1 (S) // 1,

where G is the image of the fundamental group of the generic fiber in fi1(X) and S is
endowed with an orbifold structure that considers the multiplicities of singular fibers (see
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Section 1.4.1). In [31], Dimca, Papadima and Suciu studied some finiteness properties of
the fundamental group of a generic fiber of a holomorphic map as before, in the particular
case when X is a direct product of Riemann surfaces of genus greater or equal than two
and S is of genus 1. This study on finiteness properties of fundamental groups of generic
fibers was continued by Llosa Isenrich [49, 50] and by Bridson and Llosa Isenrich [14].
They construct new Kähler groups with interesting finiteness properties. Then one has the
following question.

Question 2. For a surjective holomorphic map with connected fibers f : X æ S between a
compact complex manifold X and a closed Riemann surface S of positive genus, what can
be said of the finiteness properties of the fundamental group of its generic fiber ?

We will be interested in the case when X is a compact Kähler manifold. This work will
give partial answers to Questions 1 and 2.

2 Restrictions on monodromy
A classical problem is the study of the monodromy: given a proper holomorphic submersion
f : X æ Y (which is not a locally trivial holomorphic fiber bundle) with fibers of dimension
1, one can study the monodromy fi1(Y ) æ MCG(S), where S is the generic fiber of f , which
is a topological surface and MCG(S) is the mapping class group of S. In [68], Shiga proved
the following result.

Theorem (Shiga). Let f : X æ B be a holomorphic submersion which is not a locally
trivial holomorphic fiber bundle from a compact complex surface onto a hyperbolic surface
with generic fiber a closed hyperbolic surface S. Then the monodromy fi1(B) æ MCG(S)
has infinite image and it cannot preserve any isotopy class of a simple closed curve in S.

One of the results that motivated the work presented in Chapter 1, is the following
result of Bregman and Zhang (see [15]).

Theorem (Bregman-Zhang). Let S be a closed surface of genus g Ø 2, � be a Kähler group
and k be a positive integer such that there is a short exact sequence

1 // fi1(S) // � P // Zk // 1.

Then there is a finite index subgroup �1 of � containing fi1(S) such that the restricted short
exact sequence

1 // fi1(S) // �1
P // P (�1) ƒ Z

k // 1

splits as a direct product.

Here we will study short exact sequences as in (1), where G is the fundamental group
of a closed oriented surface S of genus g Ø 2 and without assuming that S is the fiber
of a holomorphic submersion. One of the keys of this study is the fact any element of
Out(fi1(S)) can be represented by a di�eomorphism of the surface S (see Dehn [28] for
the original proof and Nielsen [57] for the first published proof). We will also give some
restrictions on short exact sequences as in (1) where G splits as an amalgamated product
or an HNN extension.
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Presentation of results on Kähler groups and finitely generated groups
acting on trees

Let us present the results of the preprint [56]. Our main assumption is that a Kähler group
� admits as a normal subgroup a finitely generated group G acting on a tree T . In many
cases we will see that the action of G on T extends to �, which will allow us to apply the
following result of Gromov and Schoen (see [37]).

Theorem (Gromov-Schoen). Let X be a compact Kähler manifold whose fundamental
group � acts on a tree which is not isomorphic to a line nor a point. Suppose that the
action is minimal with no fixed points on the boundary. Then there is a surjective holomor-
phic map with connected fibers from X to a closed hyperbolic orbifold � inducing the short
exact sequence

1 // N // � � // fiorb
1 (�) // 1,

such that the restriction of the action to N is trivial.

See Section 1.4.1 for the definition of the orbifold fundamental group fi
orb
1 (�). The

problem of extending the action of G on a tree to the group Aut(G) has been studied in the
literature. In several cases, one can prove extension results. This is the case if the group G

is of one of the following forms:

1. A free products AúB with A and B indecomposable groups, not infinite cyclic, acting
on their Bass-Serre tree.

2. The Baumslag-Solitar group Èx, t|txp
t
≠1 = x

qÍ, acting on its Bass-Serre tree, where
p, q are integers with p, q > 1 and such that neither is a multiple of the other (see
Gilbert, Howie, Metaftsis and Raptis [35] and Pettet [59]).

3. A one-ended hyperbolic groups without torsion, with infinite outer automorphism
group and which is not virtually a surface group, acting on their JSJ tree. (Sela [63],
see also Bowditch [11]).

In order to apply these results to the study of Kähler groups, let us assume that the
group G is centerless, the tree T is not a line nor a point and that the action of G on T

is minimal, faithful and without fixed points on the boundary of T . Let � be the image
of the morphism � æ Aut(G) induced by the conjugation action of � on G. Under these
conditions we prove the following result in Chapter 1.

Theorem A. Suppose that there is a finite index subgroup �0 of � containing G ƒ Inn(G)
such that the action of G on T can be extended to a G-compatible action of �0 on T . Then
G is virtually a surface group. Moreover, there is a finite index subgroup �1 of � containing
G such that the restricted short exact sequence

1 // G // �1
P // P (�1) // 1

splits as a direct product.

See Section 1.3.1.b for the definition of G-compatible action. The first application of
this result is the following.
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Theorem B. Let S be a closed surface of genus g Ø 2 and � be a Kähler group such that
there is a short exact sequence

1 // fi1(S) // � // Q // 1.

Suppose that the conjugation action of � on fi1(S) preserves the conjugacy class of a simple
closed curve in S. Then there is a finite index subgroup �1 of � containing fi1(S) such that
the restricted short exact sequence

1 // fi1(S) // �1 // Q1 // 1

splits as a direct product (where Q1 is the image of �1 in Q). In particular the monodromy
Q æ Out(fi1(S)) is finite.

This result can be seen as a topological version of Shiga’s result. We will also see that
we can recover the result by Bregman and Zhang by using classical results on the mapping
class group and the hyperbolization of three manifolds. More applications are obtained.

Theorem C. Let G be a group that splits as a non-trivial free product A ú B with A and
B indecomposable, not infinite cyclic. Then G does not embed as a normal subgroup in a
Kähler group.

Remark. For the Bass-Serre tree of a free product G = AúB úC, there are automorphisms
of G which cannot be extended. For instance if — is a fixed element of B, the automorphism
such that

a ‘æ a, b ‘æ b, and c ‘æ —c—
≠1

for all a œ A, b œ B and c œ C (called automorphism of Fouxe-Rabinovitch), does not
extend to the Bass-Serre tree whose corresponding graph of groups is:

A BC

This implies that our proof of Theorem C does not extend to a free product of at least three
factors.

Theorem D. Let G be the Baumslag-Solitar group

Èx, t|txp
t
≠1 = x

qÍ,

where p, q are integers with p, q > 1 and such that neither one is a multiple of the other.
Then G does not embed as a normal subgroup in a Kähler group.

Theorem E. Suppose that G is a one-ended torsion-free hyperbolic group that embeds as
a normal subgroup in a Kähler group �. If Out(G) is infinite, then G is virtually a surface
group.

We observe that in this last theorem there is no hypothesis on the monodromy map.
We only need to know that Out(G) is infinite.
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3 Kähler groups and finiteness properties
Let us now present some results on finiteness properties of Kähler groups. A detailed
introduction to finiteness properties will be given in Section 2.2. In particular, the finiteness
properties FPn and Fn will be defined there.

Let X be a connected compact complex manifold of complex dimension n Ø 2 and
let S be a closed Riemann surface of positive genus. A surjective holomorphic map with
connected fibers f : X æ S is called an irrational pencil. In [43], Kapovich proved the
following result.

Theorem (Kapovich). Let X be an aspherical compact Kähler surface, S be a closed Rie-
mann surface of positive genus and f : X æ S an irrational pencil whose singular fibers have
multiplicity one. Then f is a submersion or the kernel of the induced map on fundamental
groups fú : fi1(X) æ fi1(S), is not finitely presented.

This was the first result relating the existence of critical points of an irrational pencil
to the finiteness properties of the kernel of the induced map on fundamental groups. As a
consequence of this result, Kapovich proved the existence of compact complex hyperbolic
surfaces whose fundamental groups admit a finitely generated normal subgroup which is
not finitely presentable. In other words, Kapovich gave the first examples of noncoherent
uniform lattices in PU(2, 1). Recall that a group is called coherent if every finitely generated
subgroup is also finitely presentable. Further examples of noncoherent Kähler groups were
given by Kapovich [42] and Py [60]. One of the main ingredients for these examples is the
following result essentially due to Kapovich (see [42] and [60]), which follows by combining
Theorem 4 in [60] (due to Kapovich) with the result of Bregman and Zhang quoted earlier.

Theorem. Let � be a Kähler group that can be realized as the fundamental group of an
aspherical compact Kähler surface X with positive first Betti number. Assume that � has
no finitely generated Abelian subgroup whose normalizer has finite index in �. Then, at
least one of the following cases occurs:

1. � is noncoherent.

2. There is a finite cover of X that admits a holomorphic submersion onto a compact
hyperbolic surface with connected hyperbolic fibers.

Friedl and Vidussi give a refinement of these results about coherence of Kähler groups
in [33]. Besides studying the coherence of certain groups, one can also study the existence
of non-finitely generated normal subgroups. For instance, recall that a normal subgroup of
a non-Abelian free group or a surface group is finitely generated only if it has finite index
(see [62] for the original proof in the case of free groups and Lemmas 3.3 and 3.4 in [25]).
In general, non-finitely generated normal coabelian subgroups of Kähler groups are related
to fibrations on Riemann surfaces. By studying the Bieri-Neumann-Strebel invariant of
Kähler groups, Delzant proved in [29] the following result.

Theorem (Delzant). Let us consider the short exact sequence

1 // G // � // Q // 1,

where � is a Kähler group, Q an Abelian group and G is not finitely generated. Then,
if X is a compact Kähler manifold that realizes � as its fundamental group, there exists
a surjective holomorphic map with connected fibers from X to a 2-dimensional hyperbolic
orbifold.
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We refer the reader to [29] for the definitions of a 2-dimensional hyperbolic orbifold
and a holomorphic map from a compact complex manifold to such a space. When Q = Z,
the above theorem was previously established by Napier and Ramachandran in [54] using
di�erent techniques.

Let us introduce some recent results on the construction of Kähler groups with exotic
finiteness properties and the context that motivated these constructions. In [45, §0.3.1],
Kollár asked whether a projective group is always commensurable (up to finite kernels) to
a group admitting a classifying space which is a quasi-projective variety. Since any quasi-
projective variety has the homotopy type of a finite complex [30, p. 27], a positive answer to
this question would imply that any projective group is commensurable to a group having a
finite classifying space (see Section 2.2.1 for the definition of commensurability). However,
a negative answer to Kollár’s question was given by Dimca, Papadima and Suciu in [31].
In [31] the authors proved the following two results (see Theorem C and §2 in [31]).

Theorem (Dimca, Papadima and Suciu). If n Ø 3 and if f : X æ S is an irrational pencil
with isolated critical points, then the fundamental group of a smooth fiber of f embeds into
that of X and coincides with the kernel of the induced homomorphism fú : fi1(X) æ fi1(S).

Notice that under the hypothesis of the latter result, if we assume that X is Kähler,
one obtains a finitely generated normal subgroup of the fundamental group of X, which is
again a Kähler group.

Theorem (Dimca, Papadima and Suciu). Let X = �1 ◊ · · · ◊ �n be a direct product of
n Riemann surfaces of genus greater than 1 and let S have genus 1. If f : X æ S is an
irrational pencil with isolated critical points then Hn(ker(fú),Q) has infinite dimension.

Combining the latter two results, Dimca, Papadima and Suciu answered negatively
Kollár’s question. Indeed in the situation of the latter result, the kernel of the induced
homomorphism fú : fi1(X) æ fi1(S), which is the fundamental group of a smooth fiber of
f if n Ø 3, cannot be of type FPn as the group Hn(ker(fú),Z) is not finitely generated (see
Proposition 87). The property of being of type FPn is invariant by the commensurability
relation [7, 31]. Therefore, no group commensurable to the kernel of fú can have a finite
classifying space.

Building on the work [31], further examples of projective groups with exotic finiteness
properties were constructed and studied by Llosa Isenrich [49, 50] and by Bridson and Llosa
Isenrich [14]. All the examples studied in [14, 49, 50] are either subgroups of direct products
of surface groups or extensions of such subgroups as in [14].

Presentation of results on Kähler groups with exotic finiteness properties
Here we present our results on the construction of new Kähler groups with exotic finiteness
properties. See [55] for a preprint of this work which will appear in the Annales de la
Faculté des Sciences de Toulouse. This is a joint work with Pierre Py.

Let f : X æ S be an irrational pencil with dimCX = n Ø 2. We assume that the
critical points of f are isolated and that f is not a submersion; its critical set is then a
nonempty finite set. Let ‚X æ X be the covering space of X such that fi1( ‚X) ƒ ker(fú).
The main results are the following:

Theorem F. The homology group Hn( ‚X,Q) has infinite dimension.

Theorem G. If X is aspherical, the group Hn(ker(fú),Q) has infinite dimension. In
particular ker(fú) is not of type FPn.
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In the special case when X is a product of Riemann surfaces and S has genus 1, we
recover from Theorem G the second result of Dimca, Papadima and Suciu quoted before. It
is of course interesting to look for more examples of projective (or closed Kähler) manifolds
endowed with a holomorphic map to which one can apply Theorems F and G. One way
to build new examples of Kähler groups satisfying an exotic finiteness property is to use
the Cartwright-Steger surface (we refer to [23, 24] for a definition and properties of this
compact Kähler surface) that we will denote by Y . The Albanese map of this complex
surface h : Y æ E is a holomorphic map whose target is an elliptic curve and it has been
proven that its singularities are isolated (see [23]) and nondegenerate (see [46] and [61]).
We can thus consider the product Y

b of Y with itself b times and the map

h + · · · + h : Y
b æ E. (2)

This provides natural examples to which one can apply Theorems F and G. Denoting by

� < PU(2, 1)

the fundamental group of the Cartwright-Steger surface, the latter construction together
with Theorem G immediately implies:

Theorem H. The direct product of b copies of � contains a coabelian normal subgroup N

which is of type FP2b≠1 but satisfies that H2b(N,Q) has infinite dimension.

The group N appearing above, is the kernel of the morphism on fundamental groups
induced by the map (2). The fact that N is of type FP2b≠1 follows from the results in [31];
we will explain it again in this text. In particular, Theorem H implies that N is not of
type FP2b. In Chapter 2, we prove that no finite index subgroup of N , embeds in a direct
product of surface groups. This implies that the groups constructed in this way are of a
di�erent nature compared to the examples from [31, 49, 50].



Chapter 1

Kähler groups acting on trees

In this chapter we prove that if a surface group embeds as a normal subgroup in a Kähler
group and the conjugation action of the Kähler group on the surface group preserves the
conjugacy class of a non-trivial element, then the Kähler group is virtually given by a direct
product, where one factor is a surface group. As explained in the introduction, this can be
seen as a generalization of a result due to Shiga [68]. Moreover we prove that if a one-ended
hyperbolic group with infinite outer automorphism group embeds as a normal subgroup in
a Kähler group then it is virtually a surface group. More generally we give restrictions on
normal subgroups of Kähler groups which are amalgamated products or HNN extensions.

1.1 Introduction
Let G be a finitely generated group. Bass-Serre Theory (see [65] and [66]) establishes a
dictionary between decompositions of G as an amalgamated product or an HNN extension
and actions of G on a simplicial tree without inversions which are transitive on the set of
edges. Of course, the theory also deals with more complicated graphs of groups but we will
mainly deal with amalgamated products and HNN extensions.

Question. Given a short exact sequence of finitely generated groups

1 // G // � // Q // 1, (1.1.1)

where G acts on a tree T , under which conditions can we (virtually) extend this action to
� ?

If the center of G acts trivially on T , we get an induced action of the group of inner
automorphisms of G on T , and then this question can be approached by looking at the
inclusion Inn(G) Òæ Aut(G) and by trying to extend the action on T to a larger subgroup
of Aut(G). Several authors have studied the latter question. Karrass, Pietrowski and
Solitar [44] studied the case of an amalgamated product A úC B, where C is maximal
among all its conjugates in A and B. Pettet [59] studied the general situation of a graph of
groups with a more restrictive condition on the edge stabilizers of its Bass-Serre tree (“edge
group incomparability hypothesis”) which is equivalent to the conjugate maximal condition
of Karrass, Pietrowski and Solitar when there is one orbit of edges. A particular case of
this situation was studied by Gilbert, Howie, Metaftsis and Raptis [35] where they proved
that the action of the Baumslag-Solitar group on its Bass-Serre tree can be extended to the
whole group of automorphisms. In the context of a one-ended torsion-free hyperbolic group
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G, Sela [63] proved the existence of a “canonical” tree T on which G acts named the JSJ
tree. This means that Aut(G) contains a subgroup of finite index such that the action of
G on T extends to such subgroup. By studying the action of Aut(G) on ˆG, Bowditch [11]
constructed a finer tree TB such that the action of G on TB can be extended to Aut(G).

We will apply these results to study finitely generated normal subgroups of Kähler
groups. The main ingredient to apply these results about actions on trees that extend to
a group of automorphisms is a classical result of Gromov and Schoen [37] about Kähler
groups acting on trees (see Theorem 47).

For the reader’s convenience, we will state again four theorems from the introduction
that will be proved in this chapter. We will study short exact sequences as in (1.1.1),
where � is a Kähler group and G is a surface group, i.e., when G can be realized as the
fundamental group of a closed surface S of genus g Ø 2.

Theorem B. Suppose that the conjugation action of � on fi1(S) preserves the conjugacy
class of a simple closed curve in S. Then there is a finite index subgroup �1 of � containing
fi1(S) such that the restricted short exact sequence

1 // fi1(S) // �1 // Q1 // 1

splits as a direct product (where Q1 is the image of �1 in Q). In particular the monodromy
Q æ Out(fi1(S)) is finite.

In Section 1.5 we will see that using Theorem B one can recover Bregman and Zhang’s
result on Kähler extensions of Abelian groups by surface groups and that this result can
be extended to Kähler extensions by surface groups whose monodromy maps have Abelian
image (see Corollaries 54 and 59).

Let us go back to the study of extensions as in (1.1.1) where G need not be a surface
group. The folllowing three results are an application of Gromov and Schoen’s theorem
and the works [11, 35, 44, 59, 63]. Recall that a group H is indecomposable if for any
decomposition H = H1 ú H2 as a free product, H1 or H2 is trivial.

Theorem C. Let G be a group that splits as a non-trivial free product A ú B with A and
B indecomposable, not infinite cyclic. Then G does not embed as a normal subgroup in a
Kähler group.

Theorem D. Let G be the Baumslag-Solitar group

Èx, t|txp
t
≠1 = x

qÍ,

where p, q are integers with p, q > 1 and such that neither one is a multiple of the other.
Then G does not embed as a normal subgroup in a Kähler group.

Finally, our last result of this chapter deals with the case where the normal subgroup
G is a one-ended hyperbolic group.

Theorem E. Suppose that G is a one-ended torsion-free hyperbolic group that embeds as
a normal subgroup in a Kähler group �. If Out(G) is infinite, then G is virtually a surface
group.

We observe that in this last theorem there is no hypothesis on the monodromy map
� æ Out(G). We only need to know that Out(G) is infinite.
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The structure of this chapter is the following. In Section 1.2, we give the definitions of
an amalgamated product and HNN extensions and we recall some basic aspects of Bass-
Serre Theory. We study as well the particular case of decompositions of surface groups over
maximal cyclic subgroups and the Bass-Serre trees associated to these decompositions. In
Section 1.3, we explain how to extend the action of a group on a tree to a subgroup of
its group of automorphisms. This section is mainly expository. It gives a more geometric
approach to the results of Karras, Pietrowski, Solitar and Pettet. It is only Section 1.3.4
that deals with surface groups, that we will use to prove Theorem B (in Section 1.4). Hence
the reader only interested in the proof of Theorems A B, C, D and E can skip Sections
1.3.1, 1.3.2 and 1.3.3. In Section 1.4, we apply these results to the study of Kähler groups
admitting as a normal subgroup a group acting on a tree. Theorem A is proved in Section
1.4.1 and Theorems B, C, D and E are proved in Section 1.4.2. Let us summarize which
results about extensions of group actions are used in each proof.
• To prove Theorem B, we use the results we establish in Section 1.3.4.
• To prove Theorem C we can use either Karras, Pietrowski and Solitar’s work (Theorem
40) or a special case of it that we reprove here (Theorem 28 in Section 1.3.2).
• To prove Theorem D we apply Gilbert, Howie, Metaftsis and Raptis’s work (Theorem
43).
• Finally, to prove Theorem E we apply directly the work of Bowditch and Sela (Theorem
45).
In Section 1.5 we study the monodromy map of a Kähler extension by a surface group and
establish variations on Theorem B.

1.2 Groups acting on trees
In this section we introduce the definitions of an amalgamated product and an HNN ex-
tension and we state the principal results of Bass-Serre Theory for such groups. We refer
the reader to [65] and [66] for an introduction to this subject. We will also describe the
decompositions of a surface group as an amalgamated product or as an HNN extension over
a cyclic group (corresponding to a simple closed curve) and we will give a geometric con-
struction of the Bass-Serre tree for such groups as a dual tree embedded in the hyperbolic
plane.

1.2.1 Amalgamated products and HNN extensions
1.2.1.a Definitions

The free product of two groups A and B, denoted by A ú B can be described as the set of
words

g1g2 · · · gn,

where gi œ A \ {1} or gi œ B \ {1} for all i = 1, . . . , n and such that if gi œ A, then gi+1 œ B

and if gi œ B, then gi+1 œ A. The operation of this group is given by the juxtaposition
of words (up to simplification) and the empty word represents the identity element. Given
presentations of A and B

A = ÈX | RÍ and B = ÈY | SÍ, (1.2.1)

we obtain that the free product A ú B is the group given by the presentation

ÈX Û Y | R Û SÍ.
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Now, suppose that there exists a common subgroup C of A and B and let iA : C Òæ A

iB : C Òæ B be the respective inclusions. Let N denote the normal closure in A ú B of the
set of elements

{iA(c)i≠1
B (c) | c œ C}.

Then, the amalgamated product of A and B along C denoted by A úC B is defined as
the quotient A ú B/N . Given presentations of A and B as in (1.2.1), we get that the
amalgamated product A úC B is given by

ÈX Û Y | R Û S, iA(c)i≠1
B (c) ’c œ CÍ.

Notice that this construction is interesting only if C is properly contained in A and B,
otherwise the amalgamated product is isomorphic to A or B.

Using the general construction of amalgams given by Serre in [66], one can prove the
non-triviality of groups defined by certain presentations. An instance of this is the following
result of Higman, B.H. Neumann and H. Neumann (see [66, p. 8]).

Proposition 3. Let C be a subgroup of a group A and let ◊ : C æ A be an injective
homomorphism. Then, there exists a group G containing A and an element t of G \ A such
that tct

≠1 = ◊(c) for all c in C. Furthermore, if A is countable (or finitely generated, or
torsion-free) one can choose G to be a group with the same property.

In the latter proposition, the subgroup generated by A and t is called HNN extension
of A relative to ◊ and it is denoted by AúC,◊. Given a presentation of A as in (1.2.1) and
an injective homomorphism ◊ : C æ A as in Proposition 3, we get that the HNN extension
AúC,◊ is given by

ÈX, t | R, tct
≠1

◊(c≠1) ’c œ CÍ.

A priori, a group given by the latter presentation could be trivial, but Proposition 3 guar-
antees the non-triviality of such a group.

Definition 4. We say that a group G splits over a group C if it decomposes as an amal-
gamated product A úC B or as an HNN extension AúC,◊.

1.2.1.b Examples

• If A and B are the free groups of rank n and m respectively, then the free product A ú B

is the free group of rank n + m.
• More interesting examples coming from topology are given by Van Kampen’s Theorem.
If X is the union of two open sets U and V whose intersection is path connected, then the
fundamental group of X is given by the amalgamated product of the fundamental groups
of U and V along the fundamental group of U fl V (where all the fundamental groups are
based at a point in U fl V ), if the inclusions U fl V Òæ U and U fl V Òæ V induce injections
on fundamental group.
• Given a group A and an automorphism ◊ : A æ A, the HNN extension AúA,◊ coincides
with the semidirect product AoZ: the morphism AúA,◊ æ Z that sends t to the generator
of Z and all the elements of A to zero, has the group A as its kernel. Therefore we obtain
a short exact sequence

1 æ A æ AúA,◊ æ Z æ 1.

Since the map Z æ AúA,◊ that sends the generator of Z to t is a section of the latter short
exact sequence, we obtain that AúA,◊ splits as the semidirect product A o Z.
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• Let p, q be two non-zero integers. The Baumslag-Solitar group G(p, q) is defined as the
HNN extension given by the presentation

Èx, t | tx
p
t
≠1 = x

qÍ.

Notice that if p = 1 = q we obtain the fundamental group of a torus and if p = 1 = ≠q, we
obtain the fundamental group of the Klein bottle.

Proposition 3 guarantees the non-triviality of such groups: let A = Z and C = pZ. If we
denote by x the generator of Z, then in multiplicative notation, x

p is the generator of pZ.
Now, let ◊ : pZ æ Z be the injective homomorphism that sends x

p to x
q (in multiplicative

notation). Hence, the Baumslag-Solitar group is precisely the HNN extension ZúpZ,◊, which
by Proposition 3 is non-trivial.
• In Section 1.2.3, we will see that any simple closed curve in a closed surface of genus g Ø 2,
induces a decomposition of the fundamental group of such a surface as an amalgamated
product or as an HNN extension over a cyclic group.

1.2.2 Bass-Serre dictionary
Recall that a (simplicial) tree is a connected graph (V,E), where V is the set of vertices
and E is the set of edges with the additional property that for any edge e in E, the graph
(V,E \ {e}) obtained by removing the edge e from the graph (V,E), is not connected.

An isomorphism between two trees T = (V,E) and T
Õ = (V Õ

,EÕ) is a pair of bijections

ÏV : V æ V Õ and ÏE : E æ EÕ

such that if e = {v, w} is an edge of T , then

{ÏV (v), ÏV (w)} = ÏE({v, w}).

The latter condition means that the bijection between the sets of vertices of the trees T

and T
Õ respect the adjacency relation.

An automorphism of a tree T is an isomorphism between T and itself. Given a tree T

and a group G, we abbreviate the expression G acts on T by automorphisms by G acts on
T .

Notations. Suppose that G acts on a tree T and let e and v be an edge and a vertex
of T respectively. We will denote by Ge and Gv the subgroups of G given by the respective
stabilizers of e and v.
The dictionary established by Bass-Serre theory is given by the following results (see [65,
66]).

Theorem 5 (Serre). Let G be a group acting on a tree T without inversions in such a way
that the action is transitive on the set of edges. Let e = (v1, v2) be an edge of T .

1. If v1 and v2 are in di�erent orbits, then G splits as the amalgamated product Gv1 úGe

Gv2.

2. If v1 and v2 are in the same orbit, then G splits as the HNN extension Gv1úGe,◊ where
◊ : Ge æ Gv1 is the monomorphism given by the conjugation by an element t in
G \ Gv1 that sends v1 to v2.
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Theorem 6 (Serre). Let G be a group that splits as an amalgamated product or as an HNN
extension. Then, G acts on a tree T without inversions and this action is transitive on the
set of edges.

1. If G splits as the amalgamated product A úC B, then the set of vertices of T is the
disjoint union of left cosets G/A Û G/B and the set of edges of T is the set of left
cosets G/C. The adjacency is given by the maps G/C æ G/A and G/C æ G/B.

2. If G splits as the HNN extension AúC,◊, where ◊ : C æ A is a monomorphism given
by the conjugation by an element t in G \ A, then the set of vertices of T is the set of
left cosets G/A and the set of edges of T is the set of left cosets G/C. The adjacency
is given by the maps ÿ1 : G/C æ G/A and ÿ2 : G/C æ G/A that send xC to xA and
xC to xt

≠1
A respectively.

The tree T associated to a decomposition of a group G as in Theorem 6 is called the
Bass-Serre tree of G. Notice that the action of G on T is induced by the natural action
of G on the sets of left cosets defining the vertices and edges of T . If G decomposes as
an amalgamated product, then by Theorem 6 we have that for any element x of G one
can associate the edge xC of T to its pair of vertices {xA, xB}. Therefore, the edges of T

sharing the vertex xA is given by
{xaC | a œ A}.

Similarly, we obtain that the edges of T joined to the vertex xB is given by

{xbC | b œ B},

(see Figure 1.2.1). If G decomposes as an HNN extension AúC,◊, then by Theorem 6 we

xA
xB

xaB

x↵B

xbA

x�A

xC

x↵C

xaC

x�C

xbC

Figure 1.2.1: Bass-Serre tree of an amalgamated product A úC B

have that for any element x of G one can associate the edge xC of T to its pair of vertices
{xt

≠1
A, xA}. Therefore, the edges of its Bass-Serre tree T joined to the vertex xA is given

by
{xaC | a œ A} fi {xatC | a œ A},

(see Figure 1.2.2). The action of G on its Bass-Serre tree T has the following properties:
• It is minimal, i.e. there is no G-invariant proper subtree of T . To see this, let T

Õ be a
G-invariant subtree of T . If G decomposes as an amalgamated product A úC B and xA is
a vertex of T

Õ, then by the transitivity of the action of G on G/A, we obtain that G/A is
contained in T

Õ. Then for all b in B, the path between A and bA is contained in T
Õ. In

particular, the vertex B and the edge C are contained in T
Õ. By the transitivity of the
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xA

xtAxt�1A xC xtC

xat�1A

x↵t�1A

x↵tA

xatA

xaC

x↵C

x↵tC

xatC

Figure 1.2.2: Bass-Serre tree of an amalgamated product AúC,◊

action of G on G/B and G/C we conclude that T = T
Õ. The same arguments hold if G

splits as an HNN extension.
• If G splits as an amalgamated product A úC B and [A : C] > 2 or [B : C] > 2, then
the Bass-Serre tree of G is not a line. This follows from Theorem 6, since the number of
vertices joined to A (respectively to B) is equal to [A : C] (respectively to [B : C]).
• If G splits as an HNN extension AúC,◊ and [A : C] > 1 or [A : ◊(C)] > 1, then the Bass-
Serre tree of G is not a line. Once again this follows from Theorem 6, since the number of
vertices joined to A is equal to [A : C] + [A : ◊(C)].

Recall that the boundary of a tree is given by the set of infinite paths without back-
tracking starting at a fixed point of the tree (this is one definition among many others).
• If G splits as an amalgamated product A úC B and C is properly contained in A and
B, then the action of G on the boundary of T has no fixed points. All the infinite paths
without backtracking starting at A, have as their first edge an element aC in the set of left
cosets A/C. Since the action of A on A/C is transitive and C is properly contained in A,
none of these paths is fixed under the action of A and thus neither under the action of G.
• If G splits as an HNN extension AúC,◊, and C and ◊(C) are properly contained in A, then
the action of G on the boundary of T has no fixed points. The argument is very similar to
the case of an amalgamated product. In this case the infinite paths starting at A have as
their first edge an element of the form aC or atC for some a in A, and the action of A is
transitive on each of the following subsets of edges

{aC | a œ A} and {atC | a œ A}.

See Proposition 4.13 of [53] for a characterization of a group that splits as the funda-
mental group of a graph of groups whose action on the corresponding Bass-Serre tree fixes
a point on the boundary

1.2.3 Decomposition of a surface group

Definition 7. A group G is called a surface group if it can be realized as the fundamental
group of a closed oriented surface of genus g Ø 2.

Let “ be a simple closed curve in a closed oriented surface S of genus g Ø 2. The
curve is called separating, if we obtain 2 connected components when we cut S along “,
and nonseparating if we obtain 1 connected component. Van Kampen’s Theorem allows us
to express the fundamental group of S in terms of the fundamental groups of the surfaces
obtained after cutting S along “.
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�

�

Figure 1.2.3: Cutting along a simple closed curve

1.2.3.a Cutting along a separating curve

Let “ be a separating curve in a closed surface S of genus g Ø 2 and let S1 and S2 be
small neighborhoods of the surfaces obtained after cutting S along “, such that S1 fl S2 is
a small neighborhood of “ that deformation retracts onto “. We fix a base point x0 on “.
Then, if we denote by A, B and C the fundamental groups based at x0 of S1, S2 and S1 flS2
respectively, by Van Kampen’s Theorem we obtain that

fi1(S, x0) ƒ A úC B.

Notice that A and B are free groups and since S1 fl S2 deformation retracts onto “, we
get that C is a cyclic group generated by the homotopy class of “. Hence, for each non-
nullhomotopic separating curve of S we obtain a decomposition of the fundamental group
of S as an amalgamated product of two free groups along a cyclic group.

�

S1

S2

x0

Figure 1.2.4: Surfaces S1 and S2

1.2.3.b Cutting along a nonseparating curve

Let “ be a nonseparating curve in a closed surface S of genus g Ø 2. As before, we fix a
base point x0 on “ and let · be a loop as in Figure 1.2.5. Let S1 be the surface obtained
after cutting S along “ and let S2 be a small neighborhood of “ and · . Now, one can apply
Van Kampen’s Theorem to S1 and S2. For this, one must choose a “copy” of “ (containing
a “copy” of x0) in the surface S1. Let A, B and C be the fundamental groups based at x0
of S1, S2 and S1 fl S2 respectively. Then, we obtain that

fi1(S, x0) ƒ A úC B.

We will simplify the latter expression by understanding the maps on fundamental groups

fi1(S1 fl S2) æ fi1(S1) and fi1(S1 fl S2) æ fi1(S2)
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S2
S1

S

⌧

�

�

�

⌧

Figure 1.2.5: Surfaces S, S1 and S2

induced by the inclusions S1 fl S2 Òæ S1 and S1 fl S2 Òæ S2. Let ·1 : [0, 1] æ S1 be the
path in S1 obtained from · after cutting S along “ and let ‡ be the loop based at ·1(1)
defined by the boundary component of S1 which is not homotopic to “. If S is a closed
oriented surface of genus g, we obtain that S1 is a surface of genus g ≠ 1 without two disks
removed. Hence, one can obtain S1 from a 4g ≠ 4 polygon without two disks removed. Up
to changing the orientation of ‡, we may assume that the (oriented) boundary of the 4g ≠4
polygon deformation retracts onto the concatenation “̄·1‡̄·̄1, where “̄, ‡̄ and ·̄1 denote the
inverse curves of “, ‡ and ·1 respectively (see Figure 1.2.6). Hence, if we denote by c1 the
homotopy class of “ and by c2 the homotopy class of ·1‡·̄1, we obtain that fi1(S, x0) has
the following presentation

Èa1, b1, . . . , ag≠1bg≠1, c1, c2 | [a1, b1] · · · [ag≠1, bg≠1]c1c2Í.

x0

�
a1

a2

b1a�1
1

b�1
1

b2 a�1
2

b�1
2

⌧1

�

Figure 1.2.6: 4g ≠ 1-polygon without two disks

If we denote by c and t the homotopy classes of “ and · in S2, we get that fi1(S2, x0) is a
free group of rank 2 generated by c and t, since S2 deformation retracts onto the wedge-sum
of the loops defined by “ and · .

Finally, notice that the intersection between S1 and S2 is given by the union of a
neighborhood of the boundary components of S1 with a neighborhood of the path ·1 (see
Figure 1.2.7). Hence fi1(S1 fl S2, x0) is a free group of rank 2, since S1 fl S2 deformation
retracts onto two loops joined by a path, where one of these loops is precisely “.

From this, we deduce that the inclusions S1 fl S2 Òæ S1 and S1 fl S2 Òæ S2 identify c
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S1 \ S2

Figure 1.2.7: intersection of S1 and S2

with c1 and tc1t
≠1 with c

≠1
2 . Thus, we obtain the following presentation of fi1(S, x0)

Èa1, b1, . . . , ag≠1bg≠1, c1, c2, t | [a1, b1] · · · [ag≠1, bg≠1]c1c2 , tc1t
≠1

c2Í.

If we denote by C the cyclic subgroup of fi1(S1, x0) generated by c1, we obtain that fi1(S, x0)
is given by the HNN extension

fi1(S1, x0)úC,◊,

where

◊ : C æ fi1(S1, x0)
c1 ‘æ tc1t

≠1
.

1.2.4 Dual tree of a simple closed curve in a surface group
As we saw in Section 1.2.3, the fundamental group of a closed surface S of genus g Ø 2
splits over the cyclic subgroup generated by a simple closed curve. By Bass-Serre Theory,
associated to such a splitting there exists a tree endowed with an action of the fundamental
group of such a surface. Here we will give the construction of a dual tree associated to a
simple closed curve in a closed surface of genus g Ø 2 and we will see that this tree coincides
with the Bass-Serre tree associated to the decompositions studied in Section 1.2.3. This
allows us to have a better understanding of the Bass-Serre tree for such decompositions
of a surface group. This material is very classical, here we simply give a self-contained
exposition of it.

Let S be a Riemann surface of genus greater than one. By the Uniformization Theorem
we have that S is biholomorphic to H

2
/�, where � is a discrete subgroup of PSL(2,R). The

application H
2 æ H

2
/� is its universal covering space and it induces a hyperbolic structure

on S. Let us recall the classical identification of the fundamental group of S with the group
� < PSL(2,R) = Isom+(H2). If we denote by p : (H2

, z0) æ (S, x0) the universal covering
based map of S, then we have a map

fi1(S, x0) æ Aut(H2) (1.2.2)
[‡] ‘æ Ï[‡],

where Ï[‡] is the unique automorphism of H
2 such that Ï[‡](z0) = ‚‡(1), with ‚‡ a lift

of ‡ starting at the point z0. By the uniqueness of path liftings we have that for loops
‡, · : [0, 1] æ S

„‡·(1) = Ï[‡](‚·(1)) = Ï[‡] ¶ Ï[· ](z0),

which implies that (1.2.2) is a group homomorphism, its image is the discrete group � and
it is an isomorphism from fi1(S, x0) onto �. From now on we identify these two groups.

As in Section 1.2.3, let “ be a simple closed curve in S based at x0. Recall that every
non-nullhomotopic simple closed curve in S is homotopic to a unique closed geodesic (see
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[32] p. 24). Hence, we may assume that “ is a closed geodesic for the hyperbolic structure
on S.

Let E be the set of bi-infinite geodesics in H
2, whose images under p are equal to “ and

let V be the set of connected components of H2 \ fiE. We say that two elements of V are
related if they are separated by an element of E. In other words, V, W in V are related
if there exists l in E such that V fi l fi W is connected. This defines a symmetric binary
relation on V. Hence, V endowed with this relation defines a graph, where the set of edges
is precisely given by E (see Figure 1.2.8).

V

W

l

Figure 1.2.8: Connected components of H2 \ fiE separated by an element of E

For all x in fi1(S, x0), let lx be the element of E passing through Ïx(z0). Then we get
that lx = Ïx(l1). This follows from the fact that p ¶ Ïx and thereby

p ¶ Ïx(l1) = p(l1) = “,

i.e. Ïx(l1) is a bi-infinite geodesic in H
2 passing through Ïx(z0), whose image under p is

equal to “. Hence, the action of fi1(S, x0) preserves the set E, and by continuity it preserves
the set V with its symmetric binary relation.

A combinatorial path in the graph (V,E) between two vertices V, W of (V,E) is given
by finitely many connected components V1, . . . , Vk+1 of H2 \ fiE, such that
• V1 = V , Vk+1 = W .
• For all i = 1, . . . , k, Vi ”= Vi+1.
• For all i = 1, . . . , k, there is a geodesic li such that Vi fi li fi Vi+1 is connected.

As a consequence, we get that V1 fi l1 fi V2 fi · · · fi Vk fi lk fi Vk+1 is connected. This
observation allows us to prove the following result

Proposition 8. The graph (V,E) is a tree.

Proof. Let l be an element of E defining an edge between the connected components V and
W of H2 \ fiE. Then V and W are in di�erent connected components of H2 \ l and by the
latter observation there is no combinatorial path from V to W in the graph (V,E \ {l}),
which implies the result. 2

The tree (V,E) is called the dual tree of S associated to “. Now, we will see that this
tree coincides with the Bass-Serre tree associated to the splitting of fi1(S, x0) over the cyclic
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subgroup generated by the homotopy class of “, in such a way that the action of fi1(S, x0)
on the dual tree is consistent with the action of fi1(S, x0) on the Bass-Serre tree.

Lemma 9. The stabilizer of the bi-infinite geodesic l1 under the action of fi1(S, x0) on H
2

is equal to the cyclic group C generated by the homotopy class of “.

Proof. The cyclic group C stabilizes l1 since the concatenation of “ (or “̄) with itself n

times, lifts to a geodesic arc contained in l1 for all positive integer n. Now, let x be an
element of fi1(S) such that

lx = Ïx(l1) = l1.

Recall that lx is the bi-infinite geodesic in H
2 passing through Ïx(z0) whose image under

p is equal to “. If ‡ is a closed curve in S based at x0 whose homotopy class is equal to x,
we get that

Ïx(z0) = Ï[‡](z0) = ‚‡(1) œ l1.

Hence, the geodesic arc contained in l1 joining z0 and Ï[‡](z0) is homotopic to ‚‡ relative to
{0, 1}, which implies that [‡] = x is contained in C, and the result follows. 2

As a consequence of the latter result, we obtain a bijection between the set of edges of
the dual tree (V,E) and the set of edges of the Bass-Serre tree T :

Corollary 10. The map

E æ fi1(S, x0)/C

Ïx(l1) = lx ‘æ xC

is well-defined and it is a bijection.

Proof. By Lemma 9, we get that the map E æ fi1(S, x0)/C is well-defined and it is injective.
The surjectivity of such a map follows directly by definition. 2

We recall a topological result that will be useful to define the bijection between the set
of vertices of the dual tree (V,E) and the set of vertices of the Bass-Serre tree T .

Proposition 11. Let Y be a connected smooth manifold and X a connected smooth sub-
manifold of Y . Let us fix a base point x0 in X. If we denote by i : (X, x0) æ (Y, x0)
the inclusion map and by p : ( ‚Y , x̂0) æ (Y, x0) the universal covering space of Y , then
iú : fi1(X, x0) æ fi1(Y, x0) is injective if and only if, the connected component of p

≠1(X)
containing x̂0 is simply connected.

Remark 12. Under the hypothesis of the latter result, if we denote by ‚X the connected
component of p

≠1(X) containing x̂0, we get that the lifts based at x̂0 of iú(fi1(X, x0)) are
contained in ‚X, i.e. iú(fi1(X, x0)) stabilizes ‚X under the action of fi1(Y, x0) on ‚Y . Hence,
if ‚X is simply connected, Proposition 11 allows us to consider fi1(X, x0) as a subgroup of
fi1(Y, x0) that stabilizes ‚X.

Corollary 13. If X is a connected component of S \ “, then fi1(X, x0) æ fi1(S, x0) is
injective.

Proof. Every connected component of H2 \ fiE is convex (for the hyperbolic metric) since
it is the intersection of a countable set of half-planes which are convex. Therefore, every
connected component of H2\fiE is simply connected and the result follows from Proposition
11. 2
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Let us fix X a connected component of S\“. By Corollary 13, we can consider fi1(X, x0)
as a subgroup of fi1(S, x0). Let V1 be the connected component of H2 \ fiE containing all
the lifts based at z0 of the elements of fi1(X, x0). We denote by VX the set of connected
components of H

2 \ fiE whose image under p is equal to X. Observe that the action of
fi1(S, x0) on H

2 preserves VX . For all x in fi1(S, x0), we write

Vx = Ïx(V1).

Lemma 14. The stabilizer of V1 under the action of fi1(S, x0) on H
2 is equal to fi1(X, x0).

Proof. By the proof of Corollary 13, we get that p �V1 : V1 æ X is the universal covering
space of X and by Remark 12 we get that fi1(X, x0) stabilizes V1. Now, let x be an element
of fi1(S, x0) such that

Vx = Ïx(V1) = V1.

Then, we have that lx = Ïx(l1) is a boundary component of V1 containing Ïx(z0). If we
denote by ‚‡ the geodesic arc in H

2 joining z0 with Ïx(z0), we get that ‚‡ is contained
in V1 (by the convexity of V1.) Hence ‡ = p ¶ ‚‡ defines a closed curve in X such that
Ïx(z0) = Ï[‡](z0). Therefore x is an element of fi1(X, x0) and the result follows. 2

As a consequence of this result we obtain the following corollary that will allow us to
give the bijection between the vertices of the dual tree (V,E) and the Bass-Serre tree T .
We omit the proof since it is the same as the proof of Corollary 10.

Corollary 15. The map

VX æ fi1(S, x0)/fi1(X, x0)
Vx ‘æ xfi1(X, x0)

is well-defined and it is a bijection.

We conclude this section by studying separately the cases when “ is a separating curve
and when it is a nonseparating curve.

1.2.4.a Case of a separating curve

As before, we denote by S1 and S2 the surfaces obtained after cutting S along “ and by A

and B their respective fundamental groups based at x0. Let V1 and W1 be the connected
components of H2 \ fiE that contain the lifts based at z0 of A and B respectively. Then V1
and W1 are separated by l1. We write

Vx = Ïx(V1) and Wx = Ïx(W1).

Then we have that

V = {Vx | x œ fi1(S, x0)} Û {Wx | x œ fi1(S, x0)},

and by Corollary 15, we have a bijection

V æ fi1(S, x0)/A Û fi1(S, x0)/B (1.2.3)
Vx ‘æ xA

Wx ‘æ xB.
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Notice that since l1 separates V1 and W1, then by continuity, lx separates Vx and Wx

for all x in fi1(S, x0). Hence Vx and Wx are vertices in the dual tree (V,E) joined by the
edge lx. Finally, by Corollary 10, the map

E æ fi1(S)/C (1.2.4)
lx ‘æ xC

sends the edge lx in the dual tree (V,E) to the edge xC in the Bass-Serre tree T which
by Theorem 6 joins the vertices xA and xB. Therefore, the bijections (1.2.3) and (1.2.4)
define an isomorphism between such trees.

1.2.4.b Case of a nonseparating curve

As before, we denote by S1 the surface obtained after cutting S along “ and by A the
fundamental group of S1 based at x0. Now, let V1 be the connected component of H2 \ fiE
that contains the lifts based at z0 of A. We write

Vx = Ïx(V1).

Then we have that
V = {Vx | x œ fi1(S, x0)},

and by Corollary 15, we have a bijection

V æ fi1(S, x0)/A (1.2.5)
Vx ‘æ xA

Recall that p �V1 : V1 æ S1 is the universal covering space of S1. Since S1 has two
boundary components, we get that V1 has two types of boundary components, corresponding
to the preimages of the boundary components of S1. Recall that t is given by the homotopy
class of a simple closed curve · in S that becomes a path in S1 joining its two boundary
components. Notice that the lift of this path based at z0 is a curve contained in V1 joining
z0 with Ït(z0). Hence l1 (which contains z0) and lt (which contains Ït(z0)) are boundary
components of V1 of di�erent type. Furthermore, the two types of boundary components
of V1 are given by

{la | a œ A} and {lat | a œ A}.

Notice that lt separates the connected components V1 and Vt and l1 separates de con-
nected components Vt≠1 and V1. More generally, by continuity, we get that lx separates the
connected components Vxt≠1 and Vx, i.e. Vxt≠1 and Vx are vertices in the dual tree (V,E)
joined by the edge lx. Finally, by Corollary 10, the map

E æ fi1(S, x0)/C (1.2.6)
lx ‘æ xC

sends the edge lx in the dual tree (V,E) to the edge xC in the Bass-Serre tree T which by
Theorem 6 joins the vertices xt

≠1
A and xA. We conclude that the bijections (1.2.5) and

(1.2.6) define an isomorphism between such trees.
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Figure 1.2.9: Dual tree embedded in H
2

1.3 Extending actions on the Bass-Serre tree
As explained at the beginning of this chapter, this section is mainly expository and serves
as a (geometric) introduction to [35, 44, 59].

1.3.1 Extending an action to a group of automorphisms
Let G be a finitely generated group that splits as an amalgamated product or an HNN
extension and let T be its Bass-Serre tree. If the center Z(G) of G acts trivially on T , the
action of G on T factors through the quotient G/Z(G). Since this quotient is isomorphic
to the group Inn(G) of inner automorphisms of G, we obtain an induced action of Inn(G)
on T . The aim of this section is to extend (under suitable hypothesis) this induced action
of Inn(G) on T to a larger group of automorphisms of G.

1.3.1.a Conditions to obtain a trivial action of the center of the group

The following two results exhibit su�cient conditions to guarantee that the center of G acts
trivially on T .

Lemma 16. If there is a vertex v of T whose stabilizer is its own normalizer in G, then
Z(G) acts trivially on T .

Proof. Since for a subgroup of G the property of being its own normalizer is preserved by
conjugation we get that the stabilizer of any vertex in the orbit of v is its own normalizer.
By definition Z(G) commutes with all the elements of G. Hence, it normalizes the stabilizer
of any vertex of T . In particular Z(G) normalizes the stabilizer of any vertex in the orbit
of v. Therefore, using the hypothesis of the Lemma, we get that Z(G) is contained in the
stabilizer of any vertex in the orbit of v, i.e. the action of G on T restricted to Z(G) fixes
each vertex in the orbit of v. Hence Z(G) fixes every path between any two vertices in the
orbit of v and as a consequence, it fixes the whole tree T . 2

Remark 17. In the latter proof we used the fact that if a group G acts on a tree T , and
there is an element x of G that fixes two vertices v and w of T , then x fixes the path between
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v and w. This follows from the fact that the action of G on T is by automorphisms. Then,
the action of G on T sends paths to paths, and the assertion follows from observing that
the geodesic paths in a tree are unique.

For any two vertices v and v
Õ of T we will denote by [v, v

Õ] the combinatorial geodesic
joining v with v

Õ.

Lemma 18. Suppose that there is an edge of T whose stabilizer is properly contained in
the stabilizers of its vertices. Then the stabilizer of every vertex of T is its own normalizer.

Proof. Since the action of G on T is transitive on the set of edges, the stabilizer of any
edge is properly contained in the stabilizers of its vertices. Given a vertex v of T and an
element x of G, we know that the stabilizer of x · v is xGvx

≠1. Now, let v be a vertex
of T and x an element of G that normalizes Gv. We need to prove that x · v = v. Let
us assume by contradiction that x · v ”= v and let e be the first edge of the path [v, x · v].
Then, the stabilizer G[v,x·v] of the path [v, x · v] is contained in Ge. Since x normalizes Gv,
the stabilizer of v and x · v are equal. From this, we obtain that Gv fixes v and x · v, and
thereby the path [v, x · v]. Finally, we obtain that

Gv µ G[v,x·v] µ Ge ( Gv,

which is a contradiction. 2

1.3.1.b Induced isometries of the Bass-Serre tree

Definition 19. We define the subgroup AutT (G) of Aut(G) by the following property: an
automorphism Ï : G æ G is an element of AutT (G) if for every edge e = (v1, v2) of T there
is an element x in G such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = xGv2x
≠1

, and Ï(Ge) = xGex
≠1

.

Lemma 20. Suppose that the stabilizer of any vertex of T is its own normalizer and let
Ï : G æ G be an element of AutT (G). Then, Ï induces an isometry Ï : T æ T such that
for all g in G

Ï(g · ) = Ï(g) · Ï( ). (1.3.1)

Moreover, if Ï is the inner automorphism given by the conjugation by x, then Ï is given by
the action of x on T .

Remark 21. By Lemma 16, we get that the hypothesis of Lemma 20 on the vertex stabilizers
implies that the center of G acts trivially on T .

Proof of Lemma 20. Let us fix an edge e = (v1, v2). We warn the reader that the following
construction of Ï depends on the choice of e. We write

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = xGv2x
≠1

, and Ï(Ge) = xGex
≠1

.

We define an isometry Ï : T æ T as follows. If v is a vertex of T we write v = g · vi for
i = 1, 2 and define

Ï(v) = Ï(g)x · vi.

If f is an edge of T we write f = g · e and define

Ï(f) = Ï(g)x · e.
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These definitions are independent of the choice of the element g. In the case of an HNN
extension, we must check that the action on a vertex v is independent of whether we
represent v as the image of v1 or v2 (as v1 and v2 are in the same orbit). But if v2 = t · v1
one checks that t

≠1
x

≠1
Ï(t)x normalizes Gv1 , and thus by the hypothesis of the lemma we

get that t
≠1

x
≠1

Ï(t)x lies in Gv1 . Using this observation one proves that Ï(v) is well defined.
In this way we obtain two bijections, one of the set of vertices of T and one of the set of
edges of T , which define an isometry of T . If there is another element y in G such that

Ï(Gv1) = yGv1y
≠1

, Ï(Gv2) = yGv2y
≠1

, and Ï(Ge) = yGey
≠1

then x
≠1

y is in the normalizer of Gv1 and Gv2 . Since Gv1 and Gv2 are their own normalizers
we get that x

≠1
y is in the intersection of Gv1 and Gv2 , which is Ge. This implies that Ï is

well defined and it has the desired property

Ï(g · ) = Ï(g) · Ï( ).

Finally if Ï is the inner automorphism given by the conjugation by x we get that

Ï(g · e) = Ï(g)x · e = (xgx
≠1)x · e = x · (g · e).

Similarly, for i = 1, 2 we obtain that Ï(g · vi) = x · (g · vi), which implies that Ï is given by
the action of x on T . 2

Definition 22. An isometry Ï : T æ T induced by an automorphism Ï of G that satisfies
(1.3.1) is called G-compatible. An extension of the induced action of Inn(G) on T to a
subgroup � of Aut(G) is called G-compatible if every automorphism of � defines a G-
compatible isometry of T .

Lemma 23. Suppose that the stabilizer of any vertex of T is its own normalizer. Then the
induced action of Inn(G) on T extends to a G-compatible action of AutT (G) on T .

Proof. Let us fix an edge e = (v1, v2). By Lemma 20, it su�ces to show that for all Ï, Â in
AutT (G) the isometries Ï and Â defined as before satisfy:

Ï≠1 = Ï
≠1 and Ï ¶ Â = Ï ¶ Â.

Let Ï be an element in AutT (G) such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = xGv2x
≠1

, and Ï(Ge) = xGex
≠1

.

Then, if y = Ï
≠1(x≠1) we get that

Ï
≠1(Gv1) = yGv1y

≠1
, Ï

≠1(Gv2) = yGv2y
≠1

, and Ï
≠1(Ge) = yGey

≠1
.

Therefore the isometry Ï≠1 is given by

Ï≠1(g · vi) = Ï
≠1(g)y · vi for i = 1, 2;

Ï≠1(g · e) = Ï
≠1(g)y · e.

A direct computation shows that Ï≠1 = Ï
≠1.

Now, let Ï and Â be two elements of Aut(G) such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = xGv2x
≠1

, and Ï(Ge) = xGex
≠1

,
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and
Â(Gv1) = yGv1y

≠1
, Â(Gv2) = yGv2y

≠1
, and Â(Ge) = yGey

≠1
.

Then, if z = Â(x)y we get that

Â ¶ Ï(Gv1) = zGv1z
≠1

, Â ¶ Ï(Gv2) = zGv2z
≠1

, and Â ¶ Ï(Ge) = zGez
≠1

.

Hence the isometry Â ¶ Ï is given by

Â ¶ Ï(g · vi) = Â ¶ Ï(g)z · vi for i = 1, 2;

Â ¶ Ï(g · e) = Â ¶ Ï(g)z · e.

Once again, a direct computation shows that Â ¶ Ï = Â ¶ Ï. 2

Note that the isometry Ï : T æ T defined in Lemma 20 depends on the selected edge
e = (v1, v2) when Ï is not an inner automorphism of G. Therefore, the action of AutT (G)
on T also depends on this edge.

Definition 24. We denote by �T the subgroup of Aut(G) that preserves the conjugacy
class of each vertex stabilizer and each edge stabilizer of the Bass-Serre tree T of G, i.e.
an automorphism Ï of G is an element of �T if for any edge e = (v1, v2) there are elements
x, y, z in G such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = yGv2y
≠1

, and Ï(Ge) = zGez
≠1

.

It is clear that AutT (G) is always contained in �T . In the following, we will see some
situations where both groups almost coincide.

1.3.2 First examples of extended actions

1.3.2.a Malnormal condition

A subgroup H of a group G is called malnormal if xHx
≠1 fl H is trivial for all x in G \ H.

Theorem 25. Let G be a group that splits as an amalgamated product A úC B and let T

be its Bass-Serre tree. If A and B are malnormal subgroups of G and C is a non-trivial
subgroup properly contained in A and in B, then the induced action of Inn(G) extends to a
G-compatible action of �T on T .

Proof. By Lemma 20 and Lemma 23 it su�ces to show that �T is contained in AutT (G):
Let Ï be an automorphism of G contained in �T and let x, y, z be elements in G such that

Ï(A) = xAx
≠1

, Ï(B) = yBy
≠1

, and Ï(C) = zCz
≠1

.

Then C is contained in z
≠1

xAx
≠1

z and z
≠1

yBy
≠1

z. By the malnormality of A and B in
G, we get that z

≠1
x and z

≠1
y are elements of A and B respectively. Hence

Ï(A) = zAz
≠1

, Ï(B) = zBz
≠1

, and Ï(C) = zCz
≠1

.

Therefore �T is contained in AutT (G). 2
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1.3.2.b Free product of two groups

Let G be a group that splits as a free product AúB and let T be its Bass-Serre tree. In this
case the group �T is the subgroup of Aut(G) such that for all Ï in �T there are elements
x, y in G such that

Ï(A) = xAx
≠1 and Ï(B) = yBy

≠1
.

Lemma 26. Let x be an element of G such that A and xBx
≠1 generate G. Then there is

an element a of A such that xBx
≠1 = aBa

≠1.

Proof. The result is clear if x is an element of A or B. We claim that x cannot be of the
form

x = b1a1b2 · · · bnan,

with ai and bi non-trivial elements of A and B respectively for all i. Otherwise, since A

and xBx
≠1 generate G, there would be elements –1, . . . , –k+1 of A and elements —1, . . . , —k

of B such that
b1 = –1(x—1x

≠1)–2 · · · –k(x—kx
≠1)–k+1,

with –i ”= 1 for i = 2, . . . , k and —i ”= 1 for i = 1, . . . , k, which is impossible since the
element on the right side of the latter equation cannot be reduced to a word of length one.

Finally, if x = –y— for some – œ A, — œ B and y œ G, we obtain that A and yBy
≠1

generate G. We deduce from this and the previous argument that x must be of the form

x = ab,

for some a œ A and some b œ B, which implies the result. 2

Proposition 27. The induced action of Inn(G) on T extends to �T .

Proof. By Lemma 20 and Lemma 23 it su�ces to show that �T is contained in AutT (G).
Let Ï be an automorphism of G contained in �T and let x, y be elements in G such that

Ï(A) = xAx
≠1 and Ï(B) = yBy

≠1
.

If we denote by Â the inner automorphism of G given by the conjugation by x
≠1 we get

that
Â ¶ Ï(A) = A and Â ¶ Ï(B) = x

≠1
yBy

≠1
x.

Since Â ¶Ï is an automorphism of G we have that A and x
≠1

yBy
≠1

x generate G. It follows
from Lemma 26 that there is an element a in A such that x

≠1
yBy

≠1
x = aBa

≠1. Hence,

Ï(A) = (xa)A(xa)≠1 and Ï(B) = (xa)B(xa)≠1
,

and therefore �T is contained in AutT (G). 2

Notice that if A and B are indecomposable, not infinite cyclic and non isomorphic
to each other, then �T coincides with Aut(G) (see [65, p. 152]). As a consequence of
Proposition 27, we obtain the following result:

Theorem 28. Let G be a group that splits as a free product A ú B with A and B indecom-
posable, not infinite cyclic and non isomorphic to each other. Then, the induced action of
Inn(G) on T extends to a G-compatible action of Aut(G) on T .

Remark 29. If G = A ú A, the same argument proves that Aut(G) contains a subgroup of
index 2 which extends the action of G on its Bass-Serre tree. The group Aut(G) itself acts
on the first barycentric division of the Bass-Serre tree of G.
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1.3.3 Edge stabilizer conditions
In order to study a more general situation, we will suppose that G splits over a subgroup
C and that the action of G on its Bass-Serre tree T satisfies the following conditions:

B1 The stabilizer of an edge is non-trivial and properly contained in the stabilizers of its
vertices. Moreover, the normalizer of an edge stabilizer is contained in the stabilizer
of one of its vertices.

B2 The stabilizers of two edges e and e
Õ with a common vertex v are either identical or

their intersection is trivial. If they are identical there is an element g in the stabilizer
of v such that e

Õ = g · e. In particular g is in the normalizer of the stabilizer of e.

Let us fix an edge e = (v1, v2) of T . By condition B1 we may assume that the normalizer
of Ge is contained in Gv1 . For any two vertices v and v

Õ of T we will denote by d(v, v
Õ) the

number of edges in the path [v, v
Õ]. Let G0 be the kernel of the map

G ≠æ Z/2Z

g ‘æ

Y
_]

_[

0 if d(v1, g · v1) is even;

1 if d(v1, g · v1) is odd.

Note that for every vertex v of T and for all g in G0, d(v, g · v) is even. If G splits as an
amalgamated product then G = G0. If G splits as an HNN extension then G0 is a subgroup
of G of index 2 which defines a cohomology class in H

1(G,Z/2Z). More precisely, if G splits
as the HNN extension AúC,◊, we have that G0 is the kernel of the map ÷ : G æ Z/2Z such
that ÷(t) = 1 and ÷(a) = 0 for all a in A.

Lemma 30. Let Ï : G æ G be an automorphism of G. Suppose that for i = 1, 2 there is
an element gi in G0 such that Ï(Gvi) = giGvig

≠1
i .

1. If Ge is contained in Ï(Gv1), then g1 is an element of Gv1.

2. If Ge is contained in Ï(Gv2) ,then there is an element h in the normalizer of Ge such
that hg2 is an element of Gv2.

Proof.

1. If, to obtain a contradiction, we suppose that g1 is not an element of Gv1 , then
the path [v1, g1 · v1] is non-trivial. Note that the stabilizer of g1 · v1 is precisely
Ï(Gv1) = g1Gv1g

≠1
1 . Therefore, since Ge is contained in both Gv1 and Ï(Gv1), we get

that Ge stabilizes the path [v1, g1 · v1]. In particular, it stabilizes the first two edges
of this path: e

Õ = (v1, v
Õ) and e

ÕÕ = (vÕ
, v

ÕÕ). By condition B2, the stabilizers of e
Õ

and of e
ÕÕ are equal to Ge and there is a non-trivial element g in the stabilizer of v

Õ

such that g · e
Õ = e

ÕÕ. Using the fact that the stabilizers of e, e
Õ and e

ÕÕ are equal, we
conclude that g is in the normalizer of Ge and therefore in Gv1 . Hence g stabilizes e

Õ

which contradicts the fact that the path [v1, g1 · v1] is without backtracking.

2. Suppose that g2 is not an element of Gv2 . Let e
Õ and e

ÕÕ be the first two edges of
the path [v2, g2 · v2]. As before, the stabilizers of e, e

Õ and e
ÕÕ are equal. The proof of

the first part of this lemma implies that e = e
Õ and that the path [v2, g2 · v2] can not

contain more than two edges. Hence this path has exactly two edges and the vertex
between v2 and g2 · v2 is v1. Finally, condition B2 implies that there is an element h

in the stabilizer of v1 such that h · (g2 · v2) = v2. 2
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Corollary 31. The action of G on T is faithful and the center Z(G) of G is trivial.

Proof. Let x be an element of G that fixes every vertex of T and let g be an element of
Gv2 \ Ge. If we denote by Ï the inner automorphism of G given by the conjugation by g

then we have that

Ï(Gv1) = gGv1g
≠1

, Ï(Gv2) = Gv2 , and Ï(Ge) = gGeg
≠1

.

Since x fixes every vertex of T , it fixes in particular the path [v1, g · v1] which is the path
whose edges are e and g · e. If we suppose that x is not the identity we get that Ge fl Gg·e
is non-trivial and by condition B2 we get that Ge = Gg·e = gGeg

≠1. Therefore Ge is
contained in Ï(Gv1) and by Lemma 30 g is an element of Gv1 . This would imply g is
contained in Gv1 fl Gv2 = Ge which contradicts the choice of g. Hence, we conclude that x

is the identity. This implies that Z(G) is trivial since Lemma 16, Lemma 18 and condition
B1 imply that Z(G) acts trivially on T . 2

In the following, we will denote by �0
T the subgroup of Aut(G) given by the following

property: an automorphism Ï : G æ G is an element of �0
T if for any edge e = (v1, v2) of

T , there are elements x, y, z in the same left coset of G0 in G such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = yGv2y
≠1

, and Ï(Ge) = zGez
≠1

.

Note that if xGv1x
≠1 = aGv1a

≠1 for some a in G, by condition B1 and Lemma 18 we
have that a

≠1
x is in Gv1 . Therefore, since Gv1 is contained in G0 we get that xG0 = aG0

and thereby the left coset xG0 is well defined. Similarly, we get that the left cosets yG0
and zG0 are well defined.

The main result of this section is the following:

Theorem 32. Let G be a group that splits over a subgroup C and let T be its Bass-Serre
tree. If the action of G on T satisfies conditions B1 and B2, then the induced action of
Inn(G) on T extends to a G-compatible action of �0

T on T .

Proof. By Lemma 20 and Lemma 23 it su�ces to show that �0
T is contained in AutT (G):

Let Ï be an automorphism of G contained in �0
T and let x, y, z be elements in the same left

coset of G0 in G such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = yGv2y
≠1

, and Ï(Ge) = zGez
≠1

.

Then Ge is contained in z
≠1

xGv1x
≠1

z and z
≠1

yGv2y
≠1

z. Note that z
≠1

x and z
≠1

y are
elements in G0. By the first part of Lemma 30 z

≠1
x is an element of Gv1 . By the second

part of Lemma 30, there is an element h in the normalizer of Ge (thereby in Gv1) such that
hz

≠1
y is in Gv2 . Hence we get that

Ï(Gv1) = zh
≠1

Gv1hz
≠1

, Ï(Gv2) = zh
≠1

Gv2hz
≠1

, and Ï(Ge) = zh
≠1

Gehz
≠1

.

Therefore �0
T is contained in AutT (G). 2

Lemma 33. The group �0
T is a subgroup of �T of index at most 2.

Since �T = �0
T when G splits as an amalgamated product, it su�ces to show that this

is true when G splits as an HNN extension. With this aim we will suppose for the rest of
this subsection that G splits as the amalgamated product Gv1úGe,◊ where ◊ : Ge æ Gv1 is
the monomorphism given by the conjugation of an element t in G \ Gv1 . To prove Lemma
33 we will need the following result:
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Lemma 34. If Ï is an automorphism of G contained in �T then Ï(G0) = G0.

Proof. Note that G0 can be obtained as the kernel of the map ÷ : G æ Z/2Z such that
÷(t) = 1 and ÷(g) = 0 for all g in Gv1 . This follows from the fact that for all x in G the set
of vertices of T joined to x · v1 is

{xgt
‘|g œ Gv1 and ‘ = ±1}.

Every element in G can be written as

g1t
n1g2t

n2 · · · gkt
nkgk+1,

where gi is in Gv1 for all i = 1, . . . , n + 1 and ni is a non-zero integer for all i = 1, . . . , n.
Hence, if Ï is an automorphism of G contained in �T and x is an element of G such

that Ï(Gv1) = xGv1x
≠1, we get that for all i = 1, . . . , n + 1 there is an element g

Õ
i in Gv1

such that Ï(gi) = xg
Õ
ix

≠1. Therefore,

Ï(g1t
n1g2t

n2 · · · gkt
nkgk+1) = (xg

Õ
1x

≠1
Ï(t)n1 · · · Ï(t)nkxg

Õ
k+1x

≠1).

Hence we get that ÷ ¶ Ï(g1t
n1g2t

n2 · · · gkt
nkgk+1) = ÷(Ï(t)n1+···+nk). This implies that

÷(Ï(t)) = 1, otherwise Ï(G) would be contained in G0 which is not possible since Ï is an
automorphism of G and G0 is a subgroup of index 2. We conclude that ÷ = ÷ ¶ Ï and
thereby Ï(G0) is contained in G0. The same argument shows that Ï

≠1(G0) is contained in
G0 which implies the result. 2

Proof of Lemma 33. Let Ï be an automorphism of G contained in �T and let x, y, z be
elements in G such that

Ï(Gv1) = xGv1x
≠1

, Ï(Gv2) = yGv2y
≠1

, and Ï(Ge) = zGez
≠1

. (1.3.2)

First of all notice that the left cosets xG0 and yG0 are equal: since Gv2 = tGv1t
≠1 then

Ï(Gv2) = Ï(t)Ï(Gv1)Ï(t≠1) = Ï(t)xt
≠1

Gv2tx
≠1

Ï(t≠1).

By Lemma 34 and its proof, t and Ï(t) are not contained in G0. This implies that x is in
G0 if and only if Ï(t)xt

≠1 is in G0, if and only if y is in G0.
Now, let — : �T æ Z/2Z be the function such that for an automorphism Ï as in (1.3.2)

�T ≠æ Z/2Z

Ï ‘æ

Y
_]

_[

0 if z
≠1

x œ G0;

1 if z
≠1

x /œ G0.

Let us see that — is a homomorphism:
• It is well defined: let Ï be a automorphism of G as in (1.3.2). If there are elements a, c

in G such that
Ï(Gv1) = aGv1a

≠1 and Ï(Ge) = cGec
≠1

,

then by Lemma 18, a
≠1

x is in Gv1 µ G0 and by condition B1 c
≠1

z is in the normalizer of
Ge which is contained in Gv1 µ G0. Hence xG0 = aG0 and zG0 = cG0 which implies that
z

≠1
xG0 = c

≠1
aG0. Therefore — is well defined.
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• It is an homomorphism: suppose that Ï and Â are automorphisms of G contained in �T

and let x, z, a, c be elements in G such that

Ï(Gv1) = xGv1x
≠1 and Ï(Ge) = zGez

≠1
,

Â(Gv1) = aGv1a
≠1 and Â(Ge) = cGec

≠1
.

Then we get that

Â ¶ Ï(Gv1) = Â(x)aGv1a
≠1

Â(x≠1) and Â ¶ Ï(Ge) = Â(z)cGec
≠1

Â(z≠1).

Note that c
≠1

Â(z≠1
x)a = c

≠1(Â(z≠1
x))c(c≠1

a) and therefore by Lemma 34, c
≠1

Â(z≠1
x)a

is in G0 if and only if (z≠1
x)(c≠1

a) is in G0 which implies that —(Â ¶ Ï) = —(Â)—(Ï).
Finally we conclude that the kernel of — is a subgroup of �T of index at most 2 which

is contained in �0
T . 2

1.3.4 Surface groups
Let S be a closed surface of genus g Ø 2 and let “ be a simple closed curve in S. We
know from Section 1.2.3 that the fundamental group of S splits over the cyclic subgroup C

generated by the homotopy class of “. In the following, we will omit the base point of the
fundamental group of S to simplify notation.

Remark 35. The group of automorphisms of fi1(S) that preserves the conjugacy class of
“ is a subgroup of index at most 2 of the subgroup of fi1(S) made of the automorphisms
Ï : fi1(S) æ fi1(S) such that

Ï(C) = xCx
≠1 (1.3.3)

for some x in fi1(S). This follows from the fact that if an automorphism Ï satisfies (1.3.3)
then Ï([“]) must be equal to either x[“]x≠1 or to x[“]≠1

x
≠1.

Lemma 36. Let “ be a simple closed curve in S and let T be the Bass-Serre tree of fi1(S)
associated to “. The group of automorphisms of fi1(S) that preserves the conjugacy class of
C contains AutT (fi1(S)) as a subgroup of index at most 2. Hence �T contains AutT (fi1(S))
as a subgroup of index at most 2.

Proof. Let � be the subgroup of Aut(fi1(S)) that preserves the conjugacy class of C. We
have the inclusions:

AutT (fi1(S)) µ �T µ �.

Hence the second point of the lemma follows from the first one. By the Dehn-Nielsen-Baer
Theorem (see [32]) we have an isomorphism between the (extended) mapping class group
of S and the outer automorphism group of fi1(S)

MCG±(S) = Di�±(S)/Di�0(S) æ Out(fi1(S)) = Aut(fi1(S))/Inn(fi1(S)),

which takes the class of a di�eomorphism f : S æ S to the automorphism induced by f on
fi1(S) (well-defined up to conjugacy). Let us fix an automorphism Ï of fi1(S) contained in
� and let f : S æ S be a di�eomorphism inducing Ï.

We fix a base point x0 on “ and a collar neighborhood U“ of “. Since the curve f ¶ “ is
isotopic to either “ or “̄, one can replace f by a di�eomorphism f1 isotopic to f such that
f1 preserves “ globally and fixes x0. Let Di�(S, “) be the group of di�eomorphisms of S

preserving “ globally, preserving each connected component of U“ \ “ and fixing x0. Then,
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a di�eomorphism contained in Di�(S, “) induces an automorphism of fi1(S) that preserves
the subgroup C and the fundamental groups of the connected components of S \ “. In
particular, this induced automorphism lies in AutT (fi1(S)).

The elements of � which are induced by di�eomorphisms of Di�(S, “) form a subgroup
�0 of index at most 2. Hence if Ï œ �0 we obtain that Ï = fú ¶ I for some I œ Inn(fi1(S))
and for some f œ Di�(S, “). Therefore Ï œ AutT (fi1(S)). 2

Since S is a closed surface of genus g Ø 2, given a non-nullhomotopic simple closed curve
“ in S, we get that the connected components obtained after cutting S along “ are surfaces
of positive genus with boundary components. Therefore, the fundamental group of such
surfaces are free groups of rank greater or equal than 2, containing the cyclic subgroup
generated by the homotopy class of “. Hence, by Lemmas 16 and 18 we get that the
stabilizer of any vertex of T is its own normalizer. Hence, we obtain the following result as
a consequence of Lemmas 23 and 36.

Proposition 37. The action of fi1(S) on T extends to a subgroup of index at most 2 of the
group of automorphisms of fi1(S) that preserves the conjugacy class of “. Moreover, this
extension is fi1(S)-compatible.

1.3.5 Maximal families of edge stabilizers

Definition 38. Let F be a family of subgroups of G. We say that F is maximal if for
any 2 subgroups H, K in F , K < H implies K = H.

Let G be a group acting on a tree T and let v be a vertex of T . We say that an edge of
T is v-incident if one of its vertices is v. We will be interested in the following conditions:

C1 The stabilizer of an edge of T is properly contained in the stabilizers of its vertices.

C2 For any vertex v in T the family of stabilizers of v-incident edges is maximal.

Remark 39. Recall that condition C1 implies that the stabilizer of any vertex is its own
normalizer and therefore the center of G acts trivially on T (see Remark 21).

Here we will see that if a group G splits as an amalgamated product or an HNN extension
and the action of G on its Bass-Serre tree satisfies conditions C1 and C2, then the induced
action of Inn(G) on T extends to a larger group of automorphisms of G. The case of an
amalgamated product is due to Karras, Pietrowski and Solitar (see [44]) and the case of an
HNN extension is due to Pettet (see [59]). These results generalize the results of Sections
1.3.2 and 1.3.3.

Theorem 40 (Karrass, Pietrowski, Solitar, [44]). Let G be a group that splits as an amal-
gamated product A úC B and let T be its Bass-Serre tree. If the action of G on T satisfies
conditions C1 and C2, then the induced action of Inn(G) on T extends to a G-compatible
action of �T on T .

Theorem 41 (Pettet, [59]). Let G be a group that splits as an HNN extension AúC,◊ and let
T be its Bass-Serre tree. If the action of G on T satisfies conditions C1 and C2, then the
induced action of Inn(G) on T extends to a subgroup of �T of index at most 2. Moreover,
this extension is G-compatible.
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Remark 42. The original statements of Theorems 40 and 41 only give information about
the decomposition of �T as an amalgamated product in the case of Theorem 40, and as
an HNN extension in the case of Theorem 41, but we can deduce from the proofs of these
results that such decompositions are induced by an action of �T on T that extends the one
of G on T .

In [59], Pettet gives a more general result than the one stated above. Pettet studied
groups that split as the fundamental group of a graph of groups with a more restrictive
condition on the edge stabilizers of its Bass-Serre tree (edge group incomparability hypoth-
esis), which coincides with the maximality of the families of v-incident edge stabilizers
when G splits as an HNN extension. In [35], Gilbert, Howie, Metaftsis and Raptis studied
the particular situation when the edge stabilizers are cyclic. In particular they proved the
following result on Baumslag-Solitar groups:

Theorem 43 (Gilbert, Howie, Metaftsis, Raptis). Let G be the Baumslag-Solitar group

Èx, t|txp
t
≠1 = x

qÍ,

where p, q are integers with p, q > 1 and such that neither one is a multiple of the other.
Then the induced action of Inn(G) on T extends to a G-compatible action of Aut(G) on T .

Remark 44. If G splits as a free product AúB, then for any vertex v in its Bass-Serre tree
T , the family of stabilizers of v-incident edges is maximal. Hence, one can recover Theorem
28 as a consequence of Theorem 40.

1.3.6 One-ended hyperbolic groups
Interesting examples of groups with a non-trivial splitting are given by one-ended hyperbolic
groups whose group of outer automorphisms is infinite. In Section 1.3.4 we saw that a
surface group splits over a cyclic subgroup. The last assertion holds as well for a group
which is virtually a surface group. When the group is a one-ended hyperbolic group which is
not virtually a surface group, the theory of JSJ decompositions guarantees the existence of
a non-trivial splitting over a virtually cyclic subgroup under the assumption that its group
of outer automorphisms is infinite (see for instance Theorem 1.4 in [48]). The notion of
JSJ decomposition was introduced in [63] by Sela for one-ended hyperbolic groups without
torsion. In [11], Bowditch constructed a slightly di�erent JSJ decomposition for one-ended
hyperbolic groups (not necessarily torsion-free) by studying cut points on the boundary
of the group. Both decompositions are “canonical” and they coincide when the group is
torsion-free. In the rest of this section, G will denote a one-ended torsion-free hyperbolic
group.

Theorem 45 (Sela, Bowditch). Suppose that Out(G) is an infinite group and that G is
not virtually a surface group. Then there is a non-trivial splitting of G, given by a minimal
action of G on a tree T without inversions and finite quotient T /G. Moreover, the edge
stabilizers are all cyclic subgroups and the set of vertex stabilizers is Aut(G)-invariant. In
particular, there is a finite index subgroup of Aut(G) that preserves this splitting i.e. that
preserves the conjugacy class of each vertex stabilizer and each edge stabilizer.

This splitting of G is called the JSJ splitting. The adjacency relation on the set of
vertices induces a well-defined binary relation on the set of vertex stabilizers. The JSJ
splitting is called canonical since Aut(G) preserves the set of vertex stabilizers with the
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induced binary relation. In fact, by considering the action of G on ˆG, Bowditch proved
in [11] that the extended action of Aut(G) on T is G-compatible. We refer to [11] and [48]
for a detailed description of this splitting. As in the case of a group that splits over a
subgroup C, we obtain that the action of G on T is minimal and without fixed points on
the boundary.

1.4 Kähler extensions and actions on trees
In this section we will prove our main results.

1.4.1 Applying Gromov and Schoen’s Theorem
Let � be a Kähler group that fits in a short exact sequence

1 // G // � P // Q // 1, (1.4.1)

where G is a finitely generated group with trivial center acting on a tree T . Suppose that
T is not isomorphic to a line nor a point and that the action of G on T is minimal, faithful
and without fixed points on the boundary. Note that since the center of G is trivial, the
action of G on T coincides with the induced action of Inn(G) on T .

Let � be the image of the morphism � æ Aut(G) induced by the conjugation action of
� on G. The main result of this section is the following:

Theorem A. Suppose that there is a finite index subgroup �0 of � containing Inn(G) such
that the action of G on T can be extended to a G-compatible action of �0 on T . Then G is
virtually a surface group. Moreover, there is a finite index subgroup �1 of � containing G

such that the restricted short exact sequence

1 // G // �1
P // P (�1) // 1

splits as a direct product.

To prove Theorem A we will need a result of Gromov and Schoen [37] on Kähler groups
acting on trees (see also Sun [71]). For the reader’s convenience we recall some properties
of holomorphic maps between compact complex manifolds and closed Riemann surfaces.
A surjective holomorphic map with connected fibers f : X æ S from a compact complex
manifold X to a closed Riemann surface S induces an orbifold structure as follows. For
every point p in S, let m(p) be the greatest common divisor of the multiplicities of the
irreducible components of the fiber f

≠1(p) and let � be the set of points in S such that
m(p) Ø 2. Note that � is finite since it is contained in the set of critical values of f . Hence,
if � = {p1, . . . , pk}, by assigning the multiplicity mi = m(pi) to each pi, the orbifold
induced by f is given by S endowed with the set of marked points {(pi, mi) | i = 1, . . . , k},
which is denoted by

� = {S; (p1, m1), . . . , (pk, mk)}.

For all i = 1, . . . , k let “i be a loop around pi given by the boundary of a small enough
disk such that pi is the only singular value contained in the disk. If we denote by ci the
homotopy class of “i in fi1(S \ �), the fundamental group of the orbifold � is given by

fi
orb
1 (�) = fi1(S \ �)/ π c

m1
1 , . . . , c

mk
k ∫,
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where π c
m1
1 , . . . , c

mk
k ∫ is the normal closure of {c

m1
1 , . . . , c

mk
k } in fi1(S \ �).

The following lemma is a well-known result. A more general statement of this result
can be found in [26].

Lemma 46. Let X be a compact complex manifold, S be a closed Riemann surface and
f : X æ S be a surjective holomorphic map whose generic fiber F is connected. If we
denote by ÿ : F Òæ X the inclusion map and by N the image of the induced homomorphism
on fundamental groups ÿú : fi1(F ) æ fi1(X), we obtain a short exact sequence

1 // N // fi1(X) � // fiorb
1 (�) // 1.

Since F is compact we get that N is finitely generated. The kernel of the map fl :
fi

orb
1 (�) æ fi1(S) is isomorphic to ker(fú)/N and we have the commutative diagram

fi1(X) fú //

� $$

fi1(S)

fi
orb
1 (�)

fl

::

The result of Gromov and Schoen is the following.

Theorem 47 (Gromov-Schoen). Let X be a compact Kähler manifold whose fundamental
group � acts on a tree which is not isomorphic to a line nor a point. Suppose that the action
is minimal with no fixed points on the boundary. Then there is a surjective holomorphic
map with connected fibers from X to a closed hyperbolic orbifold inducing the short exact
sequence

1 // N // � � // fiorb
1 (�) // 1,

such that the restriction of the action to N is trivial.

Proof of Theorem A. Let �0 be the finite index subgroup of � satisfying the hypothesis of
the theorem and let �0 be the preimage of �0 under the morphism � æ Aut(G). Then, �0
is a finite index subgroup of � containing G such that the action of G on T can be extended
to �0. By Theorem 47 there is a short exact sequence

1 // N // �0
� // fiorb

1 (�) // 1,

where the restriction of the action of �0 on T to the subgroup N is trivial and fi
orb
1 (�) is

virtually isomorphic to a surface group. Now, let ⁄ : G æ fi
orb
1 (�) be the morphism given

by the restriction of � to G. This morphism is injective since N fl G is trivial. The latter
assertion follows from the faithfulness of the action of G on T . We claim that the subgroup
�1 = �≠1(⁄(G)) is the subgroup we are looking for. First of all, since for a normal subgroup
of fi

orb
1 (�) being finitely generated is equivalent to having finite index, we get that ⁄(G) has

finite index in fi
orb
1 (�). This implies that �1 is a finite index subgroup of �0 (and thereby

of �) and that G is virtually isomorphic to a surface group. To end the proof, it su�ces to
observe that the morphism

÷ : �1 æ G ◊ P (�1)
x ‘æ (⁄≠1 ¶ �(x), P (x))
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is bijective. The injectivity follows from the fact that the restriction of ⁄
≠1 ¶ � to G is the

identity. For the surjectivity, if (x0, q0) is an element of G ◊ P (�1), by taking y in �1 such
that P (y) = q0 and x in G such that ⁄(x) = �(y), we get that ÷(x0x

≠1
y) = (x0, q0). 2

Remark 48. In the latter proof, we used the fact that if the action of G on T is minimal
without fixed points on the boundary, then any extension of this action has these properties
as well.

1.4.2 Applications
Here we will apply Theorem A and the results of Section 1.3 to prove Theorems B, C, D and
E. For this, we need to check that the action with which we start with is minimal, faithful
and without fixed points on the boundary. One can verify from the discussion in Section
1.2.2, that for a surface group (see also Section 1.2.3), a free product of two groups and a
Baumslag-Solitar group as in Theorem D, the actions on their respective Bass-Serre tree are
minimal and without fixed points on the boundary of the tree. For one-ended hyperbolic
groups which are not virtually a surface group, this is a consequence of the theory of JSJ
decompositions (see [11, 63]). Hence, we only need to show faithfulness in all cases.
Proposition 49. Let S be a closed surface of genus g Ø 2 and let C be the cyclic subgroup
of fi1(S) generated by the homotopy class of a simple closed curve “. Then the action of
fi1(S) on the Bass-Serre tree associated to the splitting of fi1(S) over C is faithful.
Proof. Let T be the Bass-Serre tree associated to the splitting of fi1(S) over C. Recall
that T coincides with the dual tree associated to “ (see Section 1.2.4). This identification
is given by a bijection between the edges of T and a set of disjoint bi-infinite geodesics in
H

2. Hence, an edge stabilizer of T coincides with the stabilizer of a bi-infinite geodesic in
H

2 under the action of fi1(S) on H
2. From this, we conclude that the intersection of the

stabilizers of two di�erent edges of T is trivial, which implies the faithfulness of the action
of G on T . 2

Proof of Theorem B. Let “ be the simple closed curve in S, whose conjugacy class is
preserved by the conjugation action of � on fi1(S). Let C be the cyclic subgroup of fi1(S)
generated by the homotopy class of “ and let T be the Bass-Serre tree associated to the
splitting of fi1(S) over C. Therefore, the image of � æ Aut(fi1(S)) denoted by � is contained
in the subgroup of automorphisms of fi1(S) that preserves the conjugacy class of “. By
Proposition 37, the action of fi1(S) on T can be extended to a fi1(S)-compatible action of
a subgroup of � of index at most 2 on T . By Proposition 49 we have that the action of
fi1(S) on T is faithful and the result follows from Theorem A. 2

Remark 50. Let G be a group that splits over a subgroup C and let T be its Bass-Serre tree.
Suppose that for an edge of T , its stabilizer is properly contained in its vertex stabilizers.
Suppose as well that for any vertex v of T , the family of stabilizers of v-incident edges
is maximal. Let � be a Kähler group containing G as a normal subgroup such that the
conjugation action of � on G preserves the conjugacy classes of edge stabilizers and vertex
stabilizers of T . If the action of G on its Bass-Serre tree is faithful, then as a consequence
of Theorems 40, 41 and A we have that G must be virtually a surface group.

Theorem C follows from Theorems 28 and A, and the following proposition.
Proposition 51. If a surface group is embedded in a free product AúB, then it is embedded
in A or it is embedded in B (up to conjugacy). In particular, a non-trivial free product of
two groups is not virtually a surface group.
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Proof. First, we will prove that a non-trivial free product is not isomorphic to a surface
group. Let us assume by contradiction that the free product C úD is isomorphic to a surface
group. Recall that an infinite index subgroup of a surface group is a free group. Hence,
since C and D are both infinite index subgroups of C úD, we obtain that they are both free
groups. Thus, the free product C ú D is also a free group, which is a contradiction. Note
that the same argument shows that a surface group is not isomorphic to a free product with
more than two free factors. The general case follows from the Kurosh subgroup Theorem
(see [65, p. 151]), which states that a subgroup of the free product A ú B is given by the
free product of a free group with subgroups of conjugates of A and B. Hence, if a surface
group embeds in A ú B, by the Kurosh subgroup Theorem and the previous argument it
embeds as a subgroup of a conjugate of A or as a subgroup of a conjugate of B. 2

Theorem D follows from Theorem 43 and A, and the following two propositions:

Proposition 52. The Baumslag-Solitar group

G(p, q) = Èx, t|txp
t
≠1 = x

qÍ

is not virtually a surface group.

Proof. If |p| ”= |q| and if we suppose that G(p, q) is a surface group, we would have that
G(p, q) acts on H

2. Hence, if we denote by ¸ the translation length of x in H
2, as a

consequence of the relation tx
p
t
≠1 = x

q, we would have that |p|¸ = |q|¸ which is impossible.
If H is a finite index subgroup of G(p, q), there exists an integer k such that x

k and t
k are

contained in H. From the unique relation of the Baumslag-Solitar group, we deduce that
tx

np
t
≠1 = x

nq for every integer n. Then, an argument by induction shows that

t
k
x

k·pk
t
≠k = x

k·qk
.

Hence, if we suppose that H is a surface group and we denote by ¸ the translation length
of x

k in H
2, we would have that |pk|¸ = |qk|¸, which is impossible.

If |p| = |q|, the subgroup generated by x
p is normal in G(p, q). Hence its intersection

with any finite index subgroup H of G(p, q) is normal in H. This cannot happen if H is a
surface group since such a group does not admit a non-trivial Abelian normal subgroup. 2

Proposition 53. The Baumslag-Solitar group

G(p, q) = Èx, t|txp
t
≠1 = x

qÍ,

where p, q are di�erent integers with p, q > 1, acts faithfully on its Bass-Serre tree.

Proof. The kernel N of the action of G(p, q) on its Bass-Serre tree is contained in every
edge stabilizer. In particular, it is contained in ÈxpÍ. Assume by contradiction that N is
non-trivial. Then, N is generated by x

kp for some nonzero integer k. Since N is a normal
subgroup of G(p, q), we get that tx

kp
t
≠1 = x

kq is an element of ÈxkpÍ. Therefore kq = mkp

and p divides q. By symmetry, we obtain that q divides p and thereby p = q, which is a
contradiction. 2

Finally, Theorem E follows from Theorems 45 and A, and the fact that the action of a
one-ended hyperbolic group with infinite group of outer automorphisms acts faithfully on
its JSJ tree. The latter assertion follows from a similar argument to the one of Proposition
49 (in this case the intersection of the stabilizers of two di�erent edges without common
vertices is trivial).
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1.5 Surface groups and Kähler groups

In this section we use Theorem B to study Kähler extensions of solvable groups by surface
groups. First, we focus on the simpler case of Kähler extensions of Abelian groups by
surface groups, which gives an alternative proof of Bregman and Zhang’s result. At the end
of this section we present a slightly more general statement of Theorem B.

1.5.1 Kähler extension of an Abelian group by a surface group

Corollary 54 (Bregman-Zhang). Let S be a closed surface of genus g Ø 2, � be a Kähler
group and k be a positive integer such that there is a short exact sequence

1 // fi1(S) // � P // Zk // 1.

Then there is a finite index subgroup �1 of � containing fi1(S) such that the restricted short
exact sequence

1 // fi1(S) // �1
P // P (�1) ƒ Z

k // 1

splits as a direct product.

Note that k must be even since �1 is a Kähler group. Before proving Corollary 54, we
will recall some definitions and facts about the mapping class group of a closed oriented
surface S (these can be found with more details in [9]). Let S (S) denote the set of isotopy
classes of simple closed curves in S. If · is an element of the mapping class group of S and
A is a subset of S (S), we denote by ·(A ) the set

{·(–)|– œ A },

where ·(–) denotes the isotopy class of t(a) for t œ · and a œ –. A subset A of S (S) is
said admissible if there is a set of disjoint simple closed curves that represent all the isotopy
classes of A . Notice that an admissible subset of S (S) must be finite. An element · of
the mapping class group of S is said to be

1. reducible: if there is a non-empty admissible set A such that ·(A ) = A ,

2. pseudo-Anosov: if for any isotopy class – in S (S) and for every nonzero integer n,
·

n(–) is di�erent from – (this is one definition of a pseudo-Anosov mapping class
among many others).

For a closed oriented surface S, the Nielsen-Thurston classification Theorem states the
following (see [32] Chapter 13).

Theorem 55 (Nielsen-Thurston). Every element of the mapping class group of S is either
of finite order, reducible or pseudo-Anosov. Furthermore, pseudo-Anosov mapping classes
are neither periodic nor reducible.

To prove Corollary 54 we will need the Nielsen-Thurston classification Theorem and
two lemmas. The first lemma is due to Birman, Lubotzky and McCarthy (see Lemma 3.1
in [9]).
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Lemma 56 (Birman-Lubotzky-McCarthy). Let A be an Abelian subgroup of the mapping
class group of a closed oriented surface of genus g Ø 2 generated by reducible elements
{·1, . . . , ·k}. Then, there is a non-empty canonical admissible set A such that ·i(A ) = A
for all i = 1, . . . , k.

The second lemma is the following. It will be a consequence of Thurston’s hyperboliza-
tion Theorem (see [58]), together with a classical result of Carlson and Toledo [22].

Lemma 57. Let S be a closed surface of genus g Ø 2, � be a Kähler group and k be a
positive integer such that there is a short exact sequence

1 // fi1(S) // � P // Zk // 1.

Then the image of the monodromy map Â : Zk æ MCG(S) does not contain pseudo-Anosov
elements.

Proof. Let us assume by contradiction that the image of Â contains a pseudo-Anosov
element · . It is well known that the cyclic subgroup generated by a pseudo-Anosov element
is a finite index subgroup of its centralizer (see [51]). Hence, by passing to a finite index
subgroup of � if necessary (which is also a Kähler group), we may assume that the image
of Â is the cyclic subgroup generated by · . Let {e1, . . . , ek} be a basis of Z

k such that
{e1, . . . , ek≠1} generates the kernel of Â and Â(ek) = · . We denote by �0 the subgroup of
� generated by fi1(S) and P

≠1(ek).

Claim 58. � is isomorphic to �0 ◊ Z
k≠1.

Claim 58 implies the result since by Thurston’s hyperbolization Theorem (see [58]), �0
is a cocompact lattice in the group of orientation preserving isometries of the hyperbolic
3-space and by Carlson and Toledo’s Theorem (see [22]), the projection of � onto the
cocompact lattice �0 factors through a surface group �. Hence, there is a commutative
diagram

� ƒ �0 ◊ Z
k P1 //

◊
%%

�0

�

??

where P1 is the projection onto �0. This leads to the desired contradiction, since ◊(�0) is
a subgroup of � isomorphic to �0 (as a consequence of the fact that P1 ��0 is the identity
map), and every subgroup of � is the fundamental group of a (closed or open) surface, but
�0 is neither free nor isomorphic to the fundamental group of a closed oriented surface since
H3(�0,Z) is non-trivial. 2

Proof of Claim 58. Observe that for each ei in the kernel of Â, there is a unique element gi in
� such that gi centralizes fi1(S) and P (gi) = ei. Since the commutator [gi, gj ] is an element
of fi1(S) which centralizes fi1(S) we get that the group K generated by {g1, . . . , gk≠1} is
isomorphic to Z

k≠1 and by construction [K, fi1(S)] is trivial. Using the fact that fi1(S) is a
normal subgroup of � and that K centralizes fi1(S) we obtain that [K, �] centralizes fi1(S).
Finally, since [K, �] is in the kernel of P (which is fi1(S)) we conclude that [K, �] is in the
center of fi1(S) which is trivial. Therefore the subgroups K and �0 commute and the result
follows from observing that � = K�0 and K fl �0 is trivial. 2
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Now, we give our proof of Corollary 54:
Proof of Corollary 54. By Nielsen-Thurston’s classification Theorem and Lemma 57, up
to passing to a finite index subgroup of Z

k we have that the image of the monodromy
map Â : Zk æ MCG(S) is generated by reducible elements. Hence, by Lemma 56 there is
a non-empty canonical admissible set A of S (S) such that Â(Zk) preserves A . Since a
finite index subgroup of Zk (which is isomorphic to Z

k) acts trivially on A , we can apply
Theorem B which concludes the proof. 2

1.5.2 Kähler extension by a surface group whose monodromy map has
solvable image

Corollary 59. Let S be a closed surface of genus g Ø 2 and � be a Kähler group such that
there is a short exact sequence

1 // fi1(S) // � P // Q // 1.

If the image of the monodromy map Â : Q æ MCG(S) is solvable, then there are finite
index subgroups �1 of � and Q1 of Q such that fi1(S) is contained in �1 and the restricted
short exact sequence

1 // fi1(S) // �1 // Q1 // 1

splits as a direct product.

According to a result of Birman, Lubotzky and McCarthy (see [9, Theorem B]), every
solvable subgroup of the mapping class group of a closed oriented surface of genus g Ø 2
is virtually Abelian. Hence, to prove Corollary 59 it su�ces to prove a result analogous to
Lemma 57 for the case when the monodromy map Â : Q æ MCG(S) has Abelian image.

Lemma 60. Let S be a closed surface of genus g Ø 2 and � be a Kähler group such that
there is a short exact sequence

1 // fi1(S) // � P // Q // 1.

If the image of the monodromy map Â : Q æ MCG(S) is Abelian, then it does not contain
pseudo-Anosov elements.

Proof. The proof is by contradiction. Let us suppose that the image of Â contains a pseudo-
Anosov element · . As in Lemma 57, up to passing to a finite index subgroup of � we may
assume that the image of Â is the cyclic subgroup generated by · . Let t be an element in
� such that Â ¶ P (t) = · and let �0 be the subgroup of � generated by fi1(S) and t. The
result will follow from exhibiting a homomorphism � æ �0 whose restriction to �0 is the
identity, since Thurston’s hyperbolization Theorem and Carlson and Toledo’s Theorem will
lead us to a contradiction as in Lemma 57.

Now, to construct this homomorphism, observe that since each element in the kernel of
Â has a unique lift in � that centralizes fi1(S), there is a subgroup K of � isomorphic to the
kernel of Â that centralizes fi1(S). Indeed, K is the centralizer of fi1(S) in �. Hence, the
subgroup [�, K] centralizes fi1(S) and since its image under P is contained in the kernel of
Â, we get that [�, K] is contained in K and therefore K is a normal subgroup of �. Finally,
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since the kernel of Â ¶ P is isomorphic to K ◊ fi1(S), we obtain that � is isomorphic to the
semi-direct product (K ◊ fi1(S)) o ÈtÍ, and thereby there is a well-defined homomorphism

� æ�0

kxt
m ‘æ xt

m
,

where k is in K, x is in fi1(S) and m is in Z. To verify that it is a well-defined map we just
need to observe that for k1x1t

m1 and k2x2t
m2 in � we have that

k1x1t
m1k2x2t

m2 = (k1t
m1k2t

≠m1)(x1t
m1x2t

≠m1)tm1+m2 ,

where we notice that t
m1k2t

≠m1 is in K and t
m1x2t

≠m1 is in fi1(S). 2

The following result is a consequence of a theorem due to Ivanov which states the
following. Let S be a closed oriented surface and � be an infinite subgroup of MCG(S)
that does not preserve any admissible set A of S (S). Then, � is either virtually a cyclic
group generated by a pseudo-Anosov element, or it contains a free group generated by 2
pseudo-Anosov elements (see [41, Theorem 2]).

Corollary 61. Let S be a closed surface of genus g Ø 2 and � a a Kähler group such that
there is a short exact sequence

1 // fi1(S) // � P // Q // 1.

If the image of the monodromy map Â : Q æ MCG(S) is infinite, then it contains a free
subgroup generated by 2 pseudo-Anosov elements.

Proof. Recall that an extension as above is virtually trivial if and only if the monodromy
subgroup of the short exact sequence is finite. Therefore, by Theorem B, Â(Q) does not
preserve any admissible set A of S (S). Finally, the result follows from Lemma 60 and
Ivanov’s result recalled before the statement. 2

1.5.3 More restrictions on Kähler extensions by a surface group
A classical result due to Scott (see [64]) allows us to extend Theorem B to any closed curve
in S.

Theorem 62 (Scott). Let S be a topological surface and let x be an element of fi1(S).
Then, there is a finite covering map S

Õ æ S such that x is in fi1(SÕ) and can be represented
by a simple closed curve in S

Õ.

Lemma 63. Let G be a group and H be a finitely generated normal subgroup of G. If � is
a finite index subgroup of H, then the normalizer of � in G is a finite index subgroup of G.

Proof. Let n be the index of � in H. Then G acts on the set of subgroups of H of index
n by conjugation. This set is finite and therefore the stabilizer of any of these subgroups
gives a finite index subgroup of G. Finally, notice that the stabilizer of � is precisely the
normalizer of � in G and the result follows. 2

Theorem 64. Let � be a Kähler group such that there is a short exact sequence

1 // fi1(S) // � P // Q // 1,



50 Chapter 1. Kähler groups acting on trees

with S a closed surface of genus g Ø 2. If the conjugation action of � on fi1(S) preserves
the conjugacy class of a non-trivial element of fi1(S), then there is a finite index subgroup
�1 of � containing a finite index subgroup � of fi1(S) which is normal in �1 such that the
extension

1 // � // �1 // �1/� // 1

splits as a direct product.

Proof. Let “ be the closed curve in S whose conjugacy class is preserved by the action of
�. We may assume that “ is not simple. By Theorem 62, there is a finite covering map
S

Õ æ S, such that “ lifts to a simple closed curve in S
Õ. Let � be the fundamental group

of S
Õ and let �Õ be the normalizer of � in �. By Lemma 63, �Õ is a finite index subgroup of

� and therefore �Õ is a Kähler group. Hence, the short exact sequence

1 // � // �Õ // �Õ
/� // 1

satisfies the hypothesis of Theorem B, which implies the existence of a subgroup �1 of �Õ

of finite index (and therefore a finite index subgroup of �) such that the exact sequence

1 // � // �1 // �1/� // 1,

splits as a direct product. 2



Chapter 2

Irrational pencils and Betti
numbers

We study irrational pencils with isolated critical points on compact aspherical complex
manifolds. We prove that if the set of critical points is nonempty, the homology of the kernel
of the morphism induced by the pencil on fundamental groups is not finitely generated.
This generalizes a result by Dimca, Papadima and Suciu. By considering self-products of
the Cartwright-Steger surface, this allows us to build new examples of smooth projective
varieties whose fundamental group has a non-finitely generated homology.

2.1 Exotic finiteness properties and irrational pencils
2.1.1 Some history
In Section 2.2 we will define the topological finiteness property Fn and the homological
finiteness property FPn. As we saw in the introduction, Dimca, Papadima and Suciu
constructed the first examples of Kähler groups satisfying an exotic finiteness property, i.e.
Kähler groups that are of type Fn≠1 but not of type FPn. Let us introduce some notations
before recalling their results.

Notations. Let X be a (connected) compact complex manifold of complex dimension
n Ø 2 and S a closed Riemann surface of positive genus. Recall that a surjective holomorphic
map with connected fibers f : X æ S is called an irrational pencil. For such a map, we
will always denote by � the kernel of the induced homomorphism fú : fi1(X) æ fi1(S).

The results of Dimca, Papadima and Suciu [31] are the following:
Theorem 65 (Dimca, Papadima and Suciu). If n Ø 3 and if f : X æ S is an irrational
pencil with isolated critical points, then the fundamental group of a smooth fiber of f embeds
into that of X and coincides with the kernel � of the induced homomorphism fú : fi1(X) æ
fi1(S).
Theorem 66 (Dimca, Papadima and Suciu). Let X = �1 ◊ · · · ◊ �n be a direct product
of n Riemann surfaces of genus greater than 1 and let S have genus 1. If f : X æ S is an
irrational pencil with isolated critical points then the group Hn(�,Q) has infinite dimension.
Lemma 67. Let X and Y be compact complex manifolds and let S be a closed Riemann
surface of genus 1. If f : X ◊ Y æ S is a holomorphic map, then there exist holomorphic
maps f1 : X æ S and f2 : Y æ S such that

f(x, y) = f1(x) + f2(y).
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Proof. We view S as the quotient of C by a lattice �, so that tangent vectors to S can be
identified with complex numbers. Given a point y in Y and a tangent vector v in TyY , we
have that the holomorphic map

X ≠æ C

x ‘æ df(x,y)(v, 0)

is constant. This follows from the compactness of X. If now we fix a point x0 in X, the
group structure on S allows us to define the holomorphic map

X ◊ Y ≠æ S

(x, y) ‘æ f(x, y) ≠ f(x0, y).

We deduce from the above argument that this map only depends on x and therefore

f(x, y) = f1(x) + f(x0, y),

which implies the result. 2

Remark 68. Lemma 67 implies that any irrational pencil f : X æ S as in Theorem 66 is
the sum of holomorphic maps fi : �i æ S, i.e.

f(p1, . . . , pn) = f1(p1) + · · · + fn(pn).

If all the fi’s are nonconstant and n Ø 2, f has connected fibers if and only if it is fi1-
surjective, see Lemma 2.1 in [49]. The set of critical points of f is the product of the
critical sets of the fi’s. Hence f has isolated critical points if and only if all the fi’s are
nonconstant.

Let ‚X æ X the covering space of X such that fi1( ‚X) ƒ �. Under the hypothesis of
Theorem 65, the authors proved that the inclusion of a smooth fiber of f in ‚X induces
isomorphisms on the homotopy groups of dimension 0, . . . , n ≠ 2 (see Lemma 3.3 in [31]).
Hence, if f : X æ S is an irrational pencil as in Theorem 66, we get that the group � is of
type Fn≠1 and by Theorem 66 it cannot be of type FPn as the group Hn(�,Q) has infinite
dimension (see Proposition 87).

2.1.2 Finiteness properties for arbitrary pencils
Let f : X æ S be an irrational pencil with dimCX = n Ø 2. As before, let � denote the
kernel of the morphism fú : fi1(X) æ fi1(S) and let ‚X æ X be the covering space such
that fi1( ‚X) ƒ �. We assume that the critical points of f are isolated and that f is not a
submersion; its critical set is then a nonempty finite set. Our main results are the following:
Theorem F. The homology group Hn( ‚X,Q) has infinite dimension.
Theorem G. If X is aspherical, the group Hn(�,Q) has infinite dimension. In particular
� is not of type FPn.

If X is aspherical, the space ‚X is a classifying space of the group � (see Remark 110).
Hence Theorem G follows from Theorem F. The main ingredient of the proof of Theorem F
is the study of the topology of the covering space ‚X (see Section 2.4.3). This method, which
can be seen as a complex analog of Bestvina and Brady’s work (see [6]) appears already in
the articles [31, 43].

When n Ø 3, the group � is isomorphic to the fundamental group of a generic fiber
of f , thanks to Theorem 65. Hence, when n Ø 3 and X is aspherical and Kähler (resp.
projective), � is a Kähler (resp. projective) group of type Fn≠1 but not of type FPn.
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2.1.3 Related results

2.1.3.a Direct products of Riemann surfaces

In the special case when X is a product of Riemann surfaces and S has genus 1, Theorem G
reduces to Theorem 66 above. Dimca, Papadima and Suciu’s proof was based on the notion
of characteristic varieties. However, the proof we will present in Section 2.4.4 is more direct
and applies in full generality: X can be any aspherical complex manifold and the genus
of S need not be equal to 1. On the other hand the article [31] also studies the finiteness
properties of arbitrary normal coabelian subgroups of direct products of fundamental groups
of closed surfaces, not necessarily coming from irrational pencils.

If X is a product of Riemann surfaces, the fact that � is not of type FPn can be deduced
from the work of Bridson, Howie, Miller and Short [13]. See [49, 50] for further results which
rely on properties of subgroups of direct products of surface groups.

2.1.3.b Irrational pencils with nondegenerate critical points

Under similar assumptions as in Theorem G, Biswas, Mj and Pancholi proved the following
result (see Theorem 7.3 in [10]), whose conclusion is weaker than the one of Theorem G.

Theorem 69 (Biswas, Mj and Pancholi). Let f : X æ S be an irrational pencil which
is not a submersion and whose critical points are isolated. If X is an aspherical complex
manifold of dimension greater or equal than 3, then the fundamental group of the generic
fiber of f is not of type FP.

See Section 2.2.3 for the definition of the homological finiteness property FP.

2.1.3.c Aspherical compact Kähler surfaces

We recall the result of Kapovich on irrational pencils of aspherical compact Kähler surfaces
stated in the introduction (see [43]).

Theorem 70. Let X be an aspherical compact Kähler surface, S a compact Riemann
surface of positive genus and f : X æ S an irrational pencil whose singular fibers have
multiplicity one. Then f is a submersion or the kernel of the induced map on fundamental
groups is not finitely presented.

In the case of maps with isolated critical points, Theorem G gives a slight strengthening
of Kapovich’s result since a finitely presented group must have finitely generated second
homology group. A detailed proof of Theorem 70 will be given in Section 2.6. We will
see as well in this section that the hypothesis on singular fibers implies that the kernel of
fú : fi1(X) æ fi1(S) is finitely generated, thus showing that fi1(X) is not coherent if f is
not a submersion.

2.2 Homology of a group, classifying spaces and finiteness
properties

2.2.1 Homology of a group

Here we summarize some definitions and results about the homology of a group. See [16]
for an introduction to this subject.



54 Chapter 2. Irrational pencils and Betti numbers

Definition 71. Let G be a group. The integral group ring ZG is defined as the free
Z-module generated by the elements of G.

An element of ZG is uniquely expressed as
ÿ

gœG

n(g)g,

where n(g) is an integer and n(g) = 0 for all but finitely many g in G.

Definition 72. A ZG-module is an Abelian group A together with an action of G on A.

Given two ZG-modules A and B, a homomorphism of ZG-modules is a homomorphism
of Abelian groups Ï : A æ B such that for all g in G and for all a in A, Ï(g · a) = g · Ï(a).

Example 73. Let G be a group. The trivial action of G on Z induces a structure on Z of
ZG-module.

A free ZG-module is a ZG-module of the form üiœIZG. We will also use the notion of
projective ZG-module, we refer the reader to [16, p. 21] for the definition.

Definition 74. Let G be a group. A projective (resp. free) resolution of Z over ZG is an
exact sequence of ZG-modules

· · · æ Pi æ · · · æ P1 æ P0 æ Z æ 0,

such that Pi is a projective (resp. free) ZG-module for every i Ø 0.

Let G be a group, A be a ZG-module and let us consider the subgroup of A generated
by the elements of the form g · a ≠ a, where g is an element of G and a is an element of
A. The quotient of A by this subgroup is called the group of co-invariants of A and it is
denoted by AG. Since the group of co-invariants of A is obtained from A by identifying
each element of A with all the elements of its G-orbit, we obtain that AG is a ZG-module
endowed with a trivial G-action.

Remark 75. If A is a free ZG-module with basis {ai}iœI , and if we denote by āi the image
of ai in AG, then AG is a free Abelian group with basis {āi}iœI .

Definition 76. Let G be a group and let

· · · æ Pi æ · · · æ P1 æ P0 æ Z æ 0

be a projective resolution of Z over ZG. The n-th homology group of G is defined as

Hn(G) = ker ((Pn)G æ (Pn≠1)G)
Im((Pn+1)G æ (Pn)G)

Every ZG-module has a projective resolution. Then, one can always define the homology
groups of G. Moreover, these groups do not depend on the choice of the projective resolution
(see for instance Chapter 1 of [16]). If M is a ZG-module, one can define the homology
groups of G with coe�cients in M in a similar way as before, by considering a projective
resolution of M over ZG. Then, Hn(G) is the n-th homology group of G with coe�cients
in Z. In this chapter we will work with the homology groups of a group G with coe�cients
in Q, where the trivial action of G on Q induces a structure of ZG-module on Q.
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2.2.2 Classifying space
Definition 77. A classifying space of a discrete group G (or a K(G, 1) space) is a topo-
logical space X such that

1. X is path connected.

2. The fundamental group of X is isomorphic to G.

3. The universal covering space of X is contractible.

The last condition implies that X is aspherical, i.e. that fik(X) is trivial for k Ø 2. In
the context of CW-complexes (see [40] for an introduction to this subject), being aspherical
and having a contractible universal covering space are equivalent conditions. This is a
consequence of a theorem of Whitehead. Combined with a theorem of Hurewicz it implies
that for a CW-complex, being aspherical is equivalent to having a universal covering space
with trivial integral homology. See [40] for all the details of these statements. Throughout
this text we will work with smooth manifolds and CW-complexes, and we will use these
equivalences without recalling them.

Example 78. Since the universal covering space of S
1 is R which is contractible, we get

that S1 is a classifying space of Z.

Example 79. If X is a classifying space of G and Y is a classifying space of H, then
X ◊ Y is a classifying space of G ◊ H.

The following example shows that given a group G, one can always choose a classifying
space of G which is a CW-complex. In this case the homotopy type of such a space is
uniquely defined.

Example 80. Given a presentation of a group G = Èg1, g2, . . . |r1, r2, . . .Í one can construct
a classifying space of G which is a CW-complex as follows. The 1-skeleton X

1 is given by
a wedge-sum of circles, one for each generator gi. Hence, each generator gi of G defines a
loop “i in X

1. Now, each relation ri = gi1gi2 · · · gik defines a cellular map S
1 æ X

1 whose
image is the concatenation of the loops “i1 , “i2 , . . . , “ik . By attaching a 2-cell to X1 for each
of this cellular maps, one obtains a CW-complex X

2 of dimension 2 whose fundamental
group is isomorphic to G. Now, one can attach a 3-cell to X

2 for each generator of fi2(X2)
to obtain a CW-complex X

3 of dimension 3, whose fundamental group is isomorphic to G

and such that fi2(X3) is trivial. One can iterate this process as follows. Once the CW-
complex X

k of dimension k is constructed, one can attach a (k + 1)-cell to X
k for each

generator of fik(Xk) to obtain a CW-complex X
k+1 of dimension k + 1 whose fundamental

group is isomorphic to G and whose homotopy groups of dimension 2, . . . , k are trivial. The
limit space obtained in this way is the desired space.

Let G be a group and let X be a classifying space for G which is a CW-complex. The
universal covering space ‚X æ X of X inherits a CW-structure and the action of G on ‚X
freely permutes the cells of ‚X. In particular, G acts on the set of n-cells of ‚X. Therefore,
the free Abelian group generated by the set of n-cells of ‚X denoted by Cn( ‚X) is a free
ZG-module with one basis element for each G-orbit of n-cells.

Therefore, one can define the ZG-module Cn( ‚X) as the free Abelian group generated
by the set of n-cells of ‚X. The action of G on this set extends to a Z-linear action of G on
Cn( ‚X). By construction, one obtains that the set of n-cells of X is a basis of Cn( ‚X) as a
ZG-module.
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Definition 81. The canonical augmentation map ‘ : C0( ‚X) æ Z is the map of ZG-modules
that sends every 0-cell of ‚X to 1.

For each positive integer n, there exists a boundary map Cn( ‚X) æ Cn≠1( ‚X) which is a
map of ZG-modules. With the canonical augmentation map, this defines a chain complex
of ZG-modules

· · · æ Cn( ‚X) æ Cn≠1( ‚X) æ · · · æ C0( ‚X) æ Z æ 0.

This sequence is called the augmented cellular chain complex of the universal cover of X. We
refer to [40, p. 137-139] for a precise definition of the boundary maps Cn( ‚X) æ Cn≠1( ‚X).

Proposition 82. Let G be a group and let X be a classifying space of G. Then the
augmented cellular chain complex of the universal covering space of X is a free resolution
of Z over ZG.

By the latter result, one can compute the homology groups of G by using the augmented
cellular chain complex of the universal covering space of X. Moreover, we have the following
result (see Chapter 2 of [16]).

Proposition 83. Let G be group. If X is a classifying space of G which is a CW-complex,
then

Hú(G) ƒ Hú(X).

We have an equivalent result of the latter proposition for homology groups with coe�-
cients in Q.

2.2.3 Finiteness properties

A group G is finitely generated if there exists a free group F of finite rank and a surjective
homomorphism F æ G. Equivalently, G is finitely generated if there exists a finite subset
S of G such that the smallest subgroup of G containing S is equal to G. If in addition
there exists a finite subset R of F whose normal closure (i.e. the smallest normal subgroup
of F containing R) is the kernel of the map F æ G, we say that G is finitely presented.
These are the classical finiteness properties in group theory. Here we present more finiteness
properties of groups.

2.2.3.a Homological

Definition 84. A group G is of type

1. FP, if there exists a projective resolution of Z over ZG such that Pi is finitely generated
for all i Ø 0 and trivial for all but finitely many i Ø 0.

2. FPn, if there exists a projective resolution of Z over ZG such that Pi is finitely
generated for all i Æ n.

3. FPŒ, if there exists a projective resolution of Z over ZG such that Pi is finitely
generated for all i Ø 0.

As a consequence of a generalization of Schanuel’s Lemma (see Chapter V III Section
4 of [16]), we have the following result.



2.2. Homology of a group, classifying spaces and finiteness properties 57

Proposition 85. A group G is of type FPn if and only if there exists a free resolution of
Z over ZG

· · · æ Fi æ · · · æ F1 æ F0 æ Z æ 0,

such that Fi is of finite rank for all i Æ n.

2.2.3.b Topological

Definition 86. A group G is of type

1. F , if there exists a classifying space for G which is a finite CW-complex.

2. Fn, if there exists a classifying space for G which is a CW-complex with finite n-
skeleton.

3. FŒ, if there exists a classifying space or G which is a CW-complex of finite type,
(i.e., having a finite number of cells of each dimension).

The topological finiteness condition Fn and FŒ were introduced by Wall [76]. An
important consequence of Proposition 82, is that the topological finiteness condition Fn

(resp. FŒ) implies the homological finiteness condition FPn (resp. FPŒ). One can verify
this as follows: let G be a group of type Fn and let X be a classifying space of G with finite
n-skeleton. Then, by considering the augmented cellular chain complex of the universal
covering space of X, we obtain a free resolution of Z over ZG. Since Ci( ‚X) is a free ZG-
module of finite rank for all i Æ n (it is generated by the i-cells of X), we conclude that G

is of type FPn.
Finally, observe that if G is of type FPn, by Proposition 85, there is a free resolution of

Z over ZG

· · · æ Fi æ · · · æ F1 æ F0 æ Z æ 0,

such that Fi is of finite rank for all i Æ n. For such a resolution we obtain that (Fi)G is a
finitely generated free Abelian group for all i Æ n (see Remark 75). Therefore, the kernel
of (Fi)G æ (Fi≠1)G is finitely generated. This implies that Hi(G) is finitely generated for
all i Æ n.

We can sum up the above discussion in the following result.

Proposition 87. Let G be a group.
• If G is of type Fn, then G is of type FPn

• If G is of type FPn, then Hi(G) is finitely generated for all i Æ n.

Remark 88. Proposition 87 implies that if G is of type FPn, then Hi(G,Q) has finite
dimension for all i Æ n.

Proposition 89. If G is a finitely presented group, the finiteness conditions Fn (resp.
FŒ) and FPn (resp. FPŒ) are equivalent.

See Chapter 8 Section 7 of [16] for a proof of Proposition 89.
Given a group G one can ask whether it satisfies a topological or a homological finiteness

property. We refer to [6, 7, 13, 69] for important works on these notions. For a group G,
properties F1 and F2 are respectively equivalent to being finitely generated and finitely
presented. Since the class of finitely generated groups is uncountable (see for instance
[39, p. 60-61]) and the class of finitely presented groups is countable, there are many
examples of groups which are finitely generated but not finitely presented. It is natural
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to ask whether one can construct groups of type Fn≠1 which are not of type Fn. In this
context, Stallings [69] constructed the first example of a group of type F2 which is not of
type F3. This construction was generalized by Bieri [8] to construct groups which are of
type Fn≠1 but not of type Fn. These groups can be described as follows.

Example 90 (Stallings-Bieri). Let F2 be the free group with two generators and let us
consider the n-fold direct product F

n
2 of F2 with itself. Then the kernel of the map F

n
2 æ Z

that sends all generators to 1 is a group of type Fn≠1 but not of type Fn.

There are not so many constructions of groups which are of type Fn≠1 but not of type
FPn (or Fn). In this chapter we provide a method to construct examples of groups with
these properties using complex geometry.

Remark 91. If X is a CW-complex with finite n-skeleton such that fik(X) is trivial for
all k = 2, . . . , n ≠ 1, then fi1(X) is a group of finiteness type Fn. This follows from
the fact that we can attach cells of dimension greater than n to obtain a space X

Õ whose
fundamental group is isomorphic to that of X and such that fik(X Õ) is trivial for all k Ø 2
(see Example 80). Hence X

Õ is an aspherical CW-complex with finite n-skeleton such that
fi1(X) ƒ fi1(X Õ).

We conclude this section with the following discussion on commensurability that clarifies
the fact that the results of Dimca, Papadima and Suciu [31] gave a negative answer to
Kollár’s question (discussed in the introduction of this text).

Definition 92. Two groups G and H are commensurable if there exist subgroups G1 < G

and H1 < H of finite index such that G1 and H1 are isomorphic.
Two groups G and H are commensurable up to finite kernels if there exists a finite

sequence
G = G1 æ G2 Ω G3 æ · · · Ω Gn = H,

where each arrow indicates a homomorphism of groups with finite kernel and with image
of finite index.

Proposition 93. The property of being of type Fn or FPn is invariant by the commensu-
rability relation up to finite kernels.

For a proof of this statement see Corollary 7.2.4 and Theorem 7.2.21 in [34, Chapter 7]
for condition Fn, and Proposition 2.7 in [31] for condition FPn.

2.3 Isolated critical points of holomorphic maps
In this section we recall some definitions and results about holomorphic maps with isolated
critical points. Section 2.3.1 can be found with more details in Chapter 14 of [75] and
Section 2.3.2 in Appendix B of [52].

Let X be a complex manifold and let f : X æ C be a holomorphic map.

Definition 94. A point x in X is called a critical point of f if the di�erential map dfx :
TxX æ C is identically zero, otherwise it is called a regular point. A critical point x of f

is called isolated if there exists a neighborhood U of x such that x is the only critical point
of f contained in U . The preimage Ft = f

≠1(t) of a point t in C, is called a singular fiber
if it contains a critical point of f , otherwise it is called a regular fiber.
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2.3.1 Vanishing sphere of a nondegenerate critical point

Let x in X be a critical point of a holomorphic map f : X æ C and let (z1, . . . , zn) be a
holomorphic coordinate system in a neighborhood of x. The Hessian of f at x is defined
as the C-bilinear form on TxX such that

Hessxf

A
ˆ

ˆzi
|x,

ˆ

ˆzj
|x

B

= ˆ
2
f

ˆziˆzj
(x),

which is well defined since dfx is zero.

Definition 95. Let f : X æ C be a holomorphic map. A critical point x of f is called
nondegenerate if the Hessian of f at x is a nondegenerate quadratic form, i.e. if the Hessian
matrix

1
ˆ2f

ˆziˆzj

2

i,j
has nonzero determinant at x, otherwise it is called degenerate.

The following result known as the holomorphic Morse Lemma characterizes the nonde-
generate critical points of a holomorphic map.

Lemma 96. (holomorphic Morse lemma) Let f : X æ C be a holomorphic map and let
x in X be a nondegenerate critical point of f . Then, there exist holomorphic coordinates
(z1, . . . , zn) centered at x such that f can be written in these coordinates as

f(z) = f(x) +
nÿ

i=1
z

2
i .

For a proof of the latter result see [75, p. 46]. Now, consider the homogeneous polyno-
mial of degree 2

f : C
n ≠æ C (2.3.1)

(z1, . . . , zn) ‘æ
nÿ

i=1
z

2
i .

For such a function, 0̄ œ C
n is the only critical point of f . Hence, the central fiber

F0 = f
≠1(0) is the only singular fiber of f and for any t in C

ú, the regular fiber Ft = f
≠1(t)

is a complex (n ≠ 1)-manifold. Let ‘ be a positive real number and for any z in C
n let us

write z = x + iy with x, y in R
n. Then the fiber F‘ has the form

F‘ = {z = x + iy œ C
n | |x|2 = ‘ + |y|2, x‹y},

where x‹y means that x and y are orthogonal for the usual inner product of Rn. This fiber
contains the real (n ≠ 1)-sphere of radius

Ô
‘

S‘ = {z = x + iy œ C
n | |x|2 = ‘, y = 0̄},

which contracts to the origin in C
n as ‘ tends to 0.

A similar situation occurs for any fiber Ft. We use the following notation for the action
of Cú on C

n:
t · (z1, . . . , zn) = (tz1, . . . , tzn).

Since
f (t · (z1, . . . , zn)) = t

2
f(z1, . . . , zn),
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we get that this action preserves the set of fibers {Ft}tœC. In particular the singular fiber
F0 is invariant under this action. From here, we deduce that for all t in C

ú, the fibers Ft

and F|t| are di�eomorphic and Ft contains the real (n ≠ 1)-sphere

St =
Ô

t

|
Ô

t|
· S|t|,

which contracts to the origin as |t| tends to 0. Let TS
n≠1 be the tangent space of the

unitary (n ≠ 1)-sphere. Then, for any positive real number ‘, the map

F‘ ≠æ TS
n≠1

z = x + iy ‘æ
3

x

|x| , y

4

is a di�eomorphism that sends S‘ to S
n≠1, seen as the zero section of TS

n≠1. Hence, the
homology class of S‘ is a generator of Hn≠1(F‘,Z) and in general the homology class of St

is a generator of Hn≠1(Ft,Z) .

Definition 97. The homology class of St in Hn≠1(Ft,Z) is called the vanishing sphere of
the homogeneous polynomial (2.3.1).

Let B be the ball in C
n of radius r centered at 0̄. Then the image of B under the

homogeneous polynomial (2.3.1) is exactly the disk of radius r
2 centered at 0 in C that we

will denote by D. The following results allow us to understand the topology close to the
origin of the singular fiber of such a function.

Lemma 98. Let � be a disk in C of small radius with respect to the radius of B. Then the
restriction of f to the boundary of B f �ˆB: ˆB æ D is a submersion along f

≠1(�) fl ˆB.

This lemma implies that f
≠1(�)flB is a manifold with corners whose boundary consists

of the union of f
≠1(�)flˆB and f

≠1(ˆ�)flB, which are manifolds with boundary meeting
transversally along their boundaries.

The compactness of ˆB implies that f �ˆB: ˆB æ D is a proper map. Therefore by
Ehresmann’s fibration Theorem we get that f

≠1(�) fl ˆB deformation retracts onto the
intersection of a regular fiber of f with the boundary of B More precisely, if t is a complex
number contained in � \ {0}, then f

≠1(�) fl ˆB deformation retracts onto f
≠1(t) fl ˆB.

The cone over S‘ with vertex at 0̄, is the real n-ball of radius
Ô

‘

B‘ = {z = x + iy œ C
n | |x|2 Æ ‘, y = 0̄}.

Using the action of Cú on the set of fibers of f , one can define the cone over St with vertex
at 0̄ as the real n-ball of radius

Ô
‘ Ô

t

|
Ô

t|
B|t|.

Proposition 99. Let � be a disk in C of small radius with respect to the radius of B and
let t be a complex number contained in �\{0}. Then f

≠1(�)flB deformation retracts onto
(f≠1(t) fl B) fi Bt. Moreover this retraction by deformation can be chosen to be induced by
a retraction by deformation of f

≠1(�) fl ˆB onto f
≠1(t) fl ˆB.

A global version of the last proposition is the following result.
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Theorem 100. Let X be a complex n-manifold, and f : X æ C a proper holomorphic
map. Suppose that there exists a point x in X such that f : X \ {x} æ C is a submersion
and x is a nondegenerate critical point of f . If t œ C is a regular value of f su�ciently
close to f(x), then X deformation retracts onto the union of the fiber Ft = f

≠1(t) with a
real n-ball glued to Ft along a vanishing sphere of f contained in Ft.

The proof of Theorem 100 can be found in [75] and it essentially an application of the
holomorphic Morse Lemma and Proposition 99. Indeed, by Proposition 99, the n-ball glued
to Ft is given by the cone over the vanishing sphere of f contained in Ft with vertex at x.
We can deduce from this the following result.

Corollary 101. Under the hypothesis of Theorem 100, given a neighborhood U of the
nondegenerate critical point x, we can choose a regular value t su�ciently close to f(x),
so that X deformation retracts onto the union of the fiber Ft = f

≠1(t) with a real n-ball
contained in U , glued to Ft along a vanishing sphere of f contained in Ft.

2.3.2 Milnor number and degenerate critical points

Let g1, . . . , gn : (Cn
, 0̄) æ (C, 0) be holomorphic map-germs and let us write g = (g1, . . . , gn).

Let S be a small enough sphere centered at 0̄ and suppose that 0̄ is the only solution of

g1(z) = g2(z) = · · · = gn(z) = 0 (2.3.2)

in the ball bounded by S. The multiplicity of g at 0̄ is defined as the degree of the mapping

S ≠æ S
2n≠1

z ‘æ g(z)
|g(z)| .

We recall some important results on this notion. We refer to [52] for a detailed intro-
duction to this subject and for the proofs of these results.

Lemma 102. Suppose that 0̄ is an isolated solution of (2.3.2). If the Jacobian matrix1
ˆgi
ˆzj

2

i,j
has nonzero determinant at 0̄, then the multiplicity of 0̄ is equal to 1, otherwise it

is strictly greater than 1.

Lemma 103. Let 0̄ be a an isolated solution of (2.3.2) of multiplicity µ and let B be a
ball in C

n centered at 0̄ which does not contain any other solution of (2.3.2). Then, for
almost all points ¸ in C

n su�ciently close to the origin, the equation g(z) = ¸ has precisely
µ di�erent isolated solutions of multiplicity 1 within B.

Remark 104. More precisely, the latter lemma holds if ¸ is a regular value of g, close
enough to the origin. Sard’s Theorem ensures that there are plenty of regular values.

Suppose that 0̄ is an isolated critical point of a holomorphic map-germ f : (Cn
, 0̄) æ

(C, 0). The Milnor number µ of 0̄ is defined as the multiplicity at 0̄ of

g =
3

ˆf

ˆz1
, . . . ,

ˆf

ˆzn

4
,

which measures the degeneracy of 0̄ as a critical point of f .
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If f is defined in a complex manifold and x is an isolated critical point of f , by choosing
a holomorphic coordinate system in a neighborhood U of x, we can identify U with an
open ball B centered at the origin of Cn. Under this identification 0̄ is an isolated critical
point of f �B: B æ C with Milnor number equal to µ Ø 1. The following remarks are an
interpretation of Lemmas 102 and 103.

Remark 105. The critical point x is nondegenerate if and only if µ is equal to 1.

Remark 106. If we perturb f �B: B æ C by subtracting a linear map ¸1z1 + · · · + ¸nzn

from f �B, which is a regular value of df : B æ (Cn)ú su�ciently close to the origin, then
0 splits up into µ nondegenerate critical points contained in B.

2.4 Irrational pencils and fiber products

2.4.1 Fiber product

Let X and Y be topological spaces, f : X æ Y a continuous map and q : ‚Y æ Y a covering
map of Y . Then the fiber product of f : X æ Y and q : ‚Y æ Y is defined as

‚X = {(x, ŷ) œ X ◊ ‚Y | f(x) = q(ŷ)}.

If we denote by ‚f : ‚X æ ‚Y and ‚q : ‚X æ X the natural projections, we get that the diagram

‚X
‚f //

‚q
✏✏

‚Y

q

✏✏
X

f
// Y

(2.4.1)

commutes. Moreover, ‚f : ‚X æ ‚Y is a continuous map whose fibers are isomorphic to those
of f : let ŷ be an element of ‚Y , then

‚f≠1(ŷ) = {(x, ŷ) œ X ◊ ‚Y | f(x) = q(ŷ)}
= f

≠1(q(ŷ)) ◊ {ŷ}.

Notice that if the continuois map f is given by an inclusion X Òæ Y , then the fiber
product ‚X is isomorphic to q

≠1(X).
Let x0, y0 and ŷ0 be base points of X, Y and ‚Y respectively such that f(x0) = y0 and

q(ŷ0) = y0. We will denote by fú : fi1(X, x0) æ fi1(Y, y0) and qú : fi1( ‚Y , ŷ0) æ fi1(Y, y0)
the induced maps on fundamental groups of f and q respectively. In general, the fiber
product ‚X is not connected. The following result gives a condition that guarantees the
connectedness of the fiber product.

Proposition 107. If q : ‚Y æ Y is the universal covering map of Y , then the induced
map on fundamental groups fú : fi1(X, x0) æ fi1(Y, y0) is surjective if and only if the fiber
product ‚X is connected.

Lemma 108. The natural projection ‚q : ‚X æ X is a covering map and the fundamental
group of ‚X based at (x0, ŷ0) is isomorphic to f

≠1
ú (qú(fi1( ‚Y , ŷ0))).
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Proof. Let x be an element of X and let U be an open neighborhood of f(x) evenly covered
by q : ‚Y æ Y . We write q

≠1(U) = fiiœIUi, where Ui is homeomorphic to U for all i in I.
Let V = f

≠1(U) and let Vi = ‚X fl (V ◊ Ui) for all i in I. Then, ‚q≠1(V ) = fiiœIVi, where Vi

is homeomorphic to V for all i in I. Hence V is an open neighborhood of x evenly covered
by ‚q : ‚X æ X and we obtain that ‚q : ‚X æ X is a covering map. Since q ¶ ‚f = f ¶ ‚q, we get
that

qú( ‚fú(fi1( ‚X, (x0, ŷ0)))) = fú(‚qú(fi1( ‚X, (x0, ŷ0)))),

which implies that the image of ‚qú is contained in f
≠1
ú (qú(fi1( ‚Y , ŷ0))). To prove the other

inclusion, let – : [0, 1] æ X be closed curve based at x0 such that fú([–]) is contained in
qú(fi1( ‚Y , ŷ0)). Now, let “ : [0, 1] æ ÂY be a lifting of f ¶ – based at ŷ0. Hence, for all t in
[0, 1] we get that q ¶ “(t) = f ¶ –(t). Therefore, (–, “) defines a closed curve in ÂX such that
Âqú([(–, “)]) = [–], which concludes the proof. 2

Corollary 109. If X and Y are compact complex manifolds and f : X æ Y is a holomor-
phic map, then ‚f : ‚X æ ‚Y is a proper holomorphic map.

Proof. To see that ‚f is proper, let K be a compact subset of ‚Y . Then ‚f≠1(K) is a closed
subset of ‚X contained in X ◊ K. Since the latter space is compact we obtain that ‚f≠1(K)
is compact as well. 2

Remark 110. If X is an aspherical CW-complex or an aspherical smooth manifold, then
the fiber product ‚X constructed in (2.4.1) is a classifying space of f

≠1
ú (qú(fi1(Y ))). In

particular, if q : ‚Y æ Y is the universal covering space of Y , we obtain that ‚X is a
classifying space of ker(fú).

2.4.2 Irrational pencils

Let f : X æ S be an irrational pencil, let ‚S æ S be the universal covering space of S and
let ‚X be the fiber product of f : X æ S and ‚S æ S. As we saw previously we obtain a
commutative diagram

‚X
‚f //

✏✏

‚S

✏✏
X

f
// S,

(2.4.2)

where ‚X æ X is a covering map such that fi1( ‚X) is isomorphic to the kernel of fú : fi1(X) æ
fi1(S) and ‚f : ‚X æ ‚S is a holomorphic proper map. In the following, ‚X will be called the
universal fiber product of the irrational pencil f : X æ S and ‚f : ‚X æ ‚S a lift of the
irrational pencil.

We identify ‚S with C or the unit disk of C. If we suppose that f is not a submersion
and has isolated critical points, then its critical set Crit(f) is a nonempty discrete subset
of X. Moreover, we can deduce the following.
• The set of critical values of the lift ‚f : ‚X æ ‚S is an infinite discrete subset of ‚S: since
the diagram (2.4.2) commutes, we get that the set of critical values of ‚f is infinite; it is
precisely the preimage of the set of critical values of f under the covering map ‚S æ S.
Finally, we observe that this set is discrete, since it is given by the orbit of a finite number
of points (one for each critical value of f) under the action of the fundamental group of S.
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• The set of critical points of ‚f is an infinite discrete subset of ‚X. The argument is the
same as above since the critical set of ‚f , denoted by Crit( ‚f), is the preimage of Crit(f)
under the covering map ‚X æ X.

2.4.3 Topology of the universal fiber product of an irrational pencil
The following result shows that we can perturb a lift of an irrational pencil with isolated
critical points to obtain a C

Œ map with nondegenerate critical points. It is an application
of the results of Section 2.3.

Proposition 111. Let ‚f : ‚X æ ‚S be a lift of an irrational pencil with isolated critical
points. Then, there exists a C

Œ map ‚f0 : ‚X æ ‚S, C
Œ-close to ‚f , which is holomorphic in

a neighborhood of its critical set and such that each critical point of ‚f0 is nondegenerate.

Proof. To construct the map ‚f0 we will perturb ‚f in a neighborhood of each degenerate
critical point of ‚f as follows. Recall that we identified ‚S with C or the unit disk of C. For
each point q in the critical set Crit( ‚f) of ‚f , we pick a neighborhood Uq such that the open
sets

(Uq)
qœCrit(‚f)

are disjoint. By choosing a holomorphic coordinate system in Uq, we can identify Uq with
an open ball B(0, Áq) centered at the origin of Cn of radius Áq. For each point q in Crit( ‚f),
we consider the restriction f : B(0, Áq) æ ‚S. If q is a degenerate critical point of ‚f ,
by Remark 106, we can choose a small enough linear form ¸q on C

n such that the map
‚f ≠ ¸q : B(0, Áq) æ ‚S µ C still takes values in ‚S and has finitely many critical points
contained in B(0,

Áq

2 ) which are all nondegenerate. The number of its critical points is
exactly the Milnor number of the critical point q for the map ‚f . If q is a nondegenerate
critical point we take ¸q = 0. Under the identification of Uq with the open ball Bq = B(0, Áq),
we denote by Vq the open subset of Uq corresponding to B(0,

Áq

2 ). Finally, one builds the
map ‚f0 by declaring that ‚f0 is equal to ‚f ≠ ¸q on Vq, to ‚f outside the union of the open
sets (Uq)

qœCrit(‚f) and to a deformation between ‚f and ‚f ≠ ¸q on Uq ≠ Vq. 2

We would like to point out the following facts about the morsification ‚f0 : ‚X æ ‚S:
• All the critical points of ‚f0 are contained in one of the Vq’s.
• The construction of ‚f0 : ‚X æ ‚S can be done in an equivariant way for the action of
fi1(X), so that the map ‚f0 descends to a map f0 : X æ S homotopic to f .

We will now work with the map ‚f0 instead of ‚f . We study the topology of ‚X by viewing
it as the increasing union of a well-chosen sequence of compact subsets (see [31] for a very
similar construction). With that purpose, we are looking for a sequence of closed disks
(Dk)kØ1 of ‚S such that
• ‚S = fikØ1Dk.
• The disk Dk is contained in the interior of the disk Dk+1.
• No critical value of ‚f0 is contained in the boundary of Dk.
• Dk+1 \ Dk contains exactly one critical value of ‚f0 for all k Ø 1.
• D1 contains no critical value.
For such a sequence (Dk)kØ1, we set

Xk := ‚f≠1
0 (Dk).

Hence X1 retracts onto a smooth fiber of ‚f0. For k Ø 2, the topology of the space Xk is
described thanks to the following proposition.
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Proposition 112. The space Xk+1 has the homotopy type of a space obtained from Xk by
gluing to it a finite number mk > 0 of n-dimensional cells.

This proposition is well-known (see e.g. Lemma 3.3 in [31] for a related statement, al-
though in that lemma the authors work with the original map ‚f instead of our perturbation
‚f0). Before giving the proof of this result we give a construction of the sequence (Dk)kØ1.

We endow ‚S with its classical Riemannian metric of constant sectional curvature and
we denote by � the set of critical values of ‚f0. Each pair of points (z, w) in � defines the
following subsets of ‚S.
• ¸1(z, w) := the bi-infinite geodesic whose points are equidistant from z and w.
• ¸2(z, w) := the bi-infinite geodesic passing through z and w.

We write
L =

€

z,wœ�
z ”=w

¸1(z, w) fi ¸2(z, w)

and we pick a point z0 in ‚S which is not contained in L.
• The point z0 is a regular value of ‚f0 such that all the points in � are at di�erent distances
from z0.
• Any geodesic passing through z0 contains at most 1 point of �.

Hence, if we denote by d(·, ·) the distance induced by the Riemannian metric of ‚S, we
can enumerate the critical values of ‚f0 in such a way that d(z0, zi) < d(z0, zj) if i < j.
Finally, let

r1 = d(z0, z1)
2 and rk = d(z0, zk) + d(z0, zk+1)

2 .

Then the set of disks (Dk = D(z0, rk))kØ1 centered at z0 of radius rk has the desired prop-
erties. Notice that if we allow the disks (Dk)kØ1 to have di�erent centers, the construction
of such a sequence of disks is simpler.

Proof of Proposition 112. Let c : [0, 1] æ Int(Dk+1) be an embedded arc going from a
boundary point c(0) of Dk to the unique critical value contained in Dk+1 ≠ Dk. We assume
that c(t) /œ Dk for t > 0. If we define the sets (Xk)kØ1 by using the latter construction of
disks (Dk)kØ1, this can easily be done by using the unique geodesic passing through z0 and
zk. Let D

ú be a small disk centered at c(1) and contained in Int(Dk+1 \ Dk) (see Figure
2.4.1).

Dk

D⇤c

Figure 2.4.1: The disks Dk and D
ú

Since the restriction of ‚f0 to the preimage of the set of regular values is a locally trivial
fibration, Xk+1 deformation retracts onto Xk fi ‚f≠1

0 (c([0, 1]) fi D
ú). Let mk > 0 be the

number of critical points in the level ‚f≠1
0 (c(1)) and let x1, . . . , xmk be the corresponding

critical points. For each i = 1, . . . , mk, let Ui be a small neighborhood of xi such that the
sets (Ui)mk

i=1 are disjoint. According to Corollary 101, we can fix a regular value t = c(1 ≠ ”)
(for a small ” > 0) of ‚f0 such that ‚f≠1

0 (Dú) deformation retracts onto the union of the
generic fiber ‚f≠1

0 (t) with mk n-balls B1, . . . , Bk, where the ball Bi is contained in Ui and it
is glued to ‚f≠1

0 (t) along a vanishing sphere Si of ‚f0 contained in ‚f≠1
0 (t).
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By fixing a trivialization of the fibration

‚f0 : ‚f≠1
0 (c([0, 1[)) æ c([0, 1[),

each sphere Si can be identified to a sphere S
ú
i µ ‚f≠1

0 (c(0)) in such a way that the
(Sú

i )1ÆiÆmk are disjoint. Hence Xk+1 retracts onto the space obtained from Xk by glu-
ing a ball to each of the spheres S

ú
i . This proves the result. 2

2.4.4 Growth of the n-th Betti number
Here we give a proof of Theorem F
Observation. Proposition 112 implies that the sequence bn≠1(Xk) = dimQHn≠1(Xk,Q) is
decreasing with k.

Let k0 be a large enough integer such that the sequence

(bn≠1(Xk))kØk0

is constant. We will now prove that the sequence (bn(Xk))kØk0 is strictly increasing with k

and that each map
Hn(Xk,Q) æ Hn(Xk+1,Q) (2.4.3)

induced by the inclusion Xk Òæ Xk+1 is injective for k Ø k0. This immediately implies
Theorem F since the vector space Hn( ‚X,Q) is the direct limit of the Hn(Xk,Q)’s.

We use the notation from the proof of Proposition 112. Let k Ø k0. We know that Xk+1
has the homotopy type of a space Wk+1 obtained by gluing a ball to each of the spheres

S
ú
1 Û . . . Û S

ú
mk

µ Xk.

We write:
Wk+1 = Xk fi B1 fi . . . fi Bmk (2.4.4)

where each Bj is homeomorphic to an n-dimensional ball with Bj fl Bl = ÿ for l ”= j and
Xk fl Bj is equal to the boundary of Bj (or to the sphere S

ú
j depending on whether one

views it inside Xk or Bj). Since the inclusion of Xk into Xk+1 induces an isomorphism on
(n ≠ 1)-dimensional homology groups, the same occurs for each inclusion Xk Òæ Wk+1. We
now apply the Mayer-Vietoris exact sequence to the decomposition of Wk+1 given in (2.4.4).

We obtain (all homology groups being with Q coe�cients):

Hn(Ûmk
j=1ˆBj) // Hn(Xk) ü Hn(Ûmk

j=1Bj) // Hn(Wk+1) //

// Hn≠1(Ûmk
j=1ˆBj) // Hn≠1(Xk) ü Hn≠1(Ûmk

j=1Bj) // Hn≠1(Wk+1).

(2.4.5)

Since the groups Hn(Ûmk
j=1ˆBj), Hn(Ûmk

j=1Bj) and Hn≠1(Ûmk
j=1Bj) are zero we obtain:

{0} // Hn(Xk) // Hn(Wk+1) // Hn≠1(Ûmk
j=1ˆBj) // Hn≠1(Xk) // Hn≠1(Wk+1).

(2.4.6)
The last arrow on the right hand side being an isomorphism, this implies that the following
sequence is exact:

{0} // Hn(Xk) // Hn(Wk+1) // Hn≠1(Ûmk
j=1ˆBj) // {0}. (2.4.7)
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This implies that each inclusion Xk Òæ Wk+1 (and hence the inclusion Xk Òæ Xk+1) induces
an injective map on Hn(·,Q) and that bn(Xk) = bn(Xk+1) + mk. Note that mk > 0. This
is the desired result and concludes the proof of Theorem F.

Remark 113. Assume that X is aspherical. Then the space ‚X is a classifying space of the
kernel of fú : fi1(X) æ fi1(S). As we said in the introduction, Dimca, Papadima and Suciu
proved in [31] that the inclusion of the smooth generic fiber of f in ‚X induces isomorphisms
on the homotopy groups of dimension 0, . . . , n ≠ 2 (see Lemma 3.3 and Corollary 5.8 in
[31]). This essentially follows from Proposition 112. This implies that the kernel of fú :
fi1(X) æ fi1(S) is of type Fn≠1 (hence FPn≠1), although it is not of type FPn.

2.5 New Kähler groups with exotic finiteness properties
In this section we will construct new examples of Kähler groups with exotic finiteness
properties using the Cartwright-Steger surface. We recall the definition of the complex
hyperbolic space to introduce this complex surface.

2.5.1 Complex hyperbolic space
Let us denote by È· , ·Í : Cn+1 ◊ C

n+1 æ C the product given by

È(z1, . . . , zn+1) , (w1, . . . , wn+1)Í = z1w̄1 + · · · + znw̄n ≠ zn+1w̄n+1.

Observe that the action of Cú on C
n+1 given by the scalar multiplication, preserves the set

{z œ C
n+1 | Èz , zÍ < 0}.

Definition 114. The complex hyperbolic space of dimension n, denoted by H
n
C

, is defined
as the subset of CPn given by

{[z] = [z1 : · · · : zn+1] | Èz , zÍ < 0}.

If [z] = [z1 : · · · : zn+1] is a point in H
n
C

, then zn+1 ”= 0, otherwise Èz , zÍ would
be non-negative. Moreover, the usual coordinate chart (Un+1, Ïn+1) of CPn given by the
homogeneous coordinate Un+1 = {[z1 : · · · : zn+1] | zn+1 ”= 0} and the map

Ïn+1 : Un+1 ≠æ C
n

[z1 : · · · : zn+1] ‘æ
3

z1
zn+1

, . . . ,
zn

zn+1

4
,

identifies H
n
C

with the unit ball of Cn.
Under this identification we can endow H

n
C

with a Kähler metric as follows. Let z be a
point in the unit ball B of Cn and let v, w œ TzB. We write

gz(u, v) = 1
1 ≠ |z|2

3
(u, v)Cn + (u, z)Cn(z, w)Cn

1 ≠ |z|2
4

, (2.5.1)

where (u, v)Cn = u1v̄1 +· · ·+unv̄n is the usual Hermitian product in C
n. The metric defined

in (2.5.1) is called the hyperbolic metric.

Definition 115. The unitary group U(n, 1) of signature (n, 1) is defined as the subgroup
of Gl(n + 1,C) that preserves È· , ·Í.
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The projective unitary group PU(n, 1) which is defined as the quotient of U(n, 1) by its
center, acts on H

n
C

by holomorphic isometries. Furthermore, we have the following result.

Proposition 116. The group of holomorphic isometries of Hn
C

is PU(n, 1).

Hence for any torsion-free discrete subgroup � of PU(n, 1), the quotient H
n
C

/� is a
Kähler manifold.

2.5.2 Examples built from self-products of the Cartwright-Steger surface
The Cartwright-Steger surface is a smooth compact complex surface which is a quotient of
H

2
C

by a discrete subgroup of PU(2, 1). It is characterized (up to changing the sign of the
complex structure) by the fact that its Euler characteristic is equal to 3 and its first Betti
number is equal to 2. It was discovered in [24] in the context of the classification of fake
projective planes. It was further studied by several authors, see for instance [23, 70, 74].

We now denote by Y the Cartwright-Steger surface and by h : Y æ E its Albanese
map, whose target is an elliptic curve since b1(Y ) = 2. Cartwright, Koziarz and Yeung [23]
have proved that the map h has isolated critical points and Koziarz and Yeung later proved
that these critical points are nondegenerate [46] (see also Rito [61]). We can thus consider
the product Y

b of Y with itself b times and the map

h + · · · + h : Y
b æ E. (2.5.2)

As we said in the introduction, this provides natural examples to which one can apply
Theorems F and G. If we denote by � < PU(2, 1) the fundamental group of the Cartwright-
Steger surface (we refer the reader to [23] for a detailed description of this lattice), we obtain
from Theorem G together with the latter construction the following result:

Theorem H. The direct product of b copies of � contains a coabelian normal subgroup N

which is of type FP2b≠1 but satisfies that H2b(N,Q) has infinite dimension.

The group N appearing above is the kernel of the morphism on fundamental groups
induced by the map (2.5.2). Recall that by Remark 113, we have that N is of type FP2b≠1.

Besides considering the products Y ◊ · · · ◊ Y , one can also build more examples by
combining the construction by Dimca, Papadima and Suciu and our construction. We fix
a family of ramified covers pi : �i æ E of the elliptic curve E (1 Æ i Æ a), where each �i

has negative Euler characteristic. We then consider the map

f : �1 ◊ · · · ◊ �a ◊ Y ◊ · · · ◊ Y æ E

(where there are b Ø 1 copies of Y ) which is the sum of the pi’s and of the map h on each
copy of Y . All the results until the end of this section also apply when a = 0, i.e. when
one studies the map f = h + · · · + h as in (2.5.2).

The map f has a finite non-empty set of critical points and connected fibers. This last
point follows from the fact that h : Y æ E has connected fibers. We denote by � the kernel
of the map induced by f on fundamental groups. Theorem 65 and Theorem G imply that
the Q-vector space Ha+2b(�,Q) has infinite dimension and that � is projective if and only
if 2b + a Ø 3. The following proposition shows that the group � is of a di�erent nature
compared to the examples from [31, 49].

Proposition 117. No finite index subgroup of � embeds in a direct product of surface
groups.
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By a surface group we mean here the fundamental group of an oriented surface of finite
type (open or closed). Hence a surface group is either free or the fundamental group of a
closed oriented surface. To prove Proposition 117, we will make use of the following theorem
due to Bridson, Howie, Miller and Short [13].

Theorem 118. Let F1, . . . , Fm be surface groups. Let G be a subgroup of the direct product
F1 ◊ · · · ◊ Fm. If G is of type FPm, then G is virtually isomorphic to a direct product of
the form H1 ◊ · · · ◊ Hk where k Æ m and each Hi is a surface group. In particular G is of
type FPŒ.

Besides this theorem, we will also use the fact that the property of being FPm (for
m œ N fi {Œ}) is invariant under commensurability (see Proposition 93).

Proof of Proposition 117. The group � sits inside the direct product

fi1(�1) ◊ · · · ◊ fi1(�a) ◊ fi1(Y ) ◊ · · · ◊ fi1(Y ). (2.5.3)

The factors of this direct product are the subgroups of the form

{1} ◊ · · · ◊ fi1(�j) ◊ · · · ◊ {1}

or
{1} ◊ · · · ◊ fi1(Y ) ◊ · · · ◊ {1}.

Each factor intersects � non-trivially. This implies that � contains copies of the group
Z

a+b. The Gromov hyperbolicity of each factor implies that Z
a+b+1 does not embed in �.

Now suppose that a finite index subgroup �1 of � embeds in a direct product of surface
groups F1 ◊ · · · ◊ Fm. By taking m to be minimal, we may assume that Li = �1 fl Fi is
non-trivial for i = 1, . . . , m. Otherwise �1 embeds in a direct product of m ≠ 1 surface
groups. Since �1 does not contain any non-trivial Abelian normal subgroup, this implies
that each Fi is non-Abelian, hence hyperbolic. A similar argument as before then shows
that �1 contains copies of Zm but no copy of Zm+1. Hence m = a + b. By Remark 113,
the group � is of type FP2b+a≠1, hence �1 is. Since 2b + a ≠ 1 Ø m = a + b, �1 is of type
FPm and Theorem 118 implies that �1 is of type FPŒ. This contradicts the fact that �1
is not of type FPa+2b. 2

Finally, we compute, in some cases, the first Betti number of the group � = ker(fú).
A similar computation appears in [50, §7], which applies to some of the examples built
in [31, 49, 50].

Proposition 119. Assume that a + 2b Ø 3. Assume furthermore that b Ø 2 or that b = 1
and that the map fi1(�j) æ fi1(E) is surjective for some j œ {1, . . . , a}. Then the first Betti
number of � is equal to:

b1(�1 ◊ · · · ◊ �a ◊ Y
b) ≠ 2.

Proof. We consider the surjective homomorphism

� æ fi1(�1) ◊ · · · ◊ fi1(�a) ◊ fi1(Y )b≠1

obtained by considering the inclusion of � in the direct product (2.5.3) and by projecting
onto the first a + b ≠ 1 factors. Its kernel N consists of elements of the form

(1, . . . , 1, g) œ fi1(�1) ◊ · · · ◊ fi1(�a) ◊ fi1(Y ) ◊ · · · ◊ fi1(Y )
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where g œ ker(hú); it is isomorphic to ker(hú). Hence we have the following exact sequence:

0 æ N æ � æ fi1(�1) ◊ · · · ◊ fi1(�a) ◊ fi1(Y )b≠1 æ 0.

It induces the following short exact sequence (see [16, VII.6], all homology groups are taken
with Z coe�cients):

H1(N)� æ H1(�) æ H1(fi1(�1) ◊ · · · ◊ fi1(�a) ◊ fi1(Y )b≠1) æ 0. (2.5.4)

Here H1(N)� is the group of coinvariants of H1(N) for the �-action. It is isomorphic to
the quotient of N by the group [N, �] generated by commutators of elements of � and of
N . Note that if x = (1, . . . , 1, g) œ N and y = (y1, . . . , ya, h1, . . . , hb) œ � then

xyx
≠1

y
≠1 = (1, . . . , 1, ghbg

≠1
h

≠1
b ).

Hence when we identify N with ker(hú), [N, �] is identified with the group [ker(hú), fi1(Y )]
(we are using here that b Ø 2 or that one of the fi1(�j) surjects onto fi1(E)). In particular
the groups H1(N)� and H1(ker(hú))fi1(Y ) are isomorphic. Now the short exact sequence

0 æ ker(hú) æ fi1(Y ) æ Z
2 æ 0

induces the short exact sequence (see [16, VII.6] again):

H2(Z2) æ H1(ker(hú))fi1(Y ) æ H1(Y ) æ H1(Z2) æ 0.

Since the map
H1(Y ) ¢ Q æ H1(Z2) ¢ Q

is an isomorphism, we obtain that H1(ker(hú))fi1(Y ) ¢ Q has dimension at most 1. Hence
H1(N)� ¢ Q has dimension at most 1. Since � is Kähler and hence has even first Betti
number, this implies that the first arrow in (2.5.4) has finite image. Hence H1(�) ¢ Q and
H1(fi1(�1) ◊ · · · ◊ fi1(�a) ◊ fi1(Y )b≠1) ¢ Q are isomorphic. This gives the desired result.2

Remark 120. By considering the case where a œ {0, 1}, our construction provides for
each n Ø 2 an example of a CAT(0) group G containing a subgroup of type FPn≠1 but not
FPn and such that G does not contain free Abelian subgroups of rank greater than

Í
n+1

2

Î
.

See [12, 47] for related results and motivation. The article [47] produces other examples
with a smaller bound on the rank of Abelian subgroups. More precisely, for each positive
integer n, Kropholler gives in [47] an example of a group of type Fn≠1 but not of type Fn,
which does not contain free Abelian groups of rank greater than

'n
3

(
and which is a subgroup

of a CAT(0) group.

2.6 Irrational pencils on aspherical compact complex sur-
faces

In this section we give a detailed proof of Theorem 70 due to Kapovich. There are no
original results here, this is an expository section.
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2.6.1 Milnor’s Fibration Theorem

Let f : Cn æ C be a nonconstant holomorphic map that vanishes at the origin and let SÁ

be the real (2n ≠ 1)-sphere of radius Á centered at the origin. We write

V = f
≠1(0) and K = V fl SÁ.

Assume that 0̄ is a critical point of f (not necessarily isolated). Then, Milnor’s Fibration
Theorem states the following.

Theorem 121. There exists Á0 such that for all Á Æ Á0, the space SÁ \ K is a smooth fiber
bundle over S

1 with projection mapping

SÁ \ K ≠æ S
1

z ‘æ f(z)
|f(z)| .

The following results give a description of the topology of the fibers of Milnor’s Fibration
Theorem. The first one is a result of Milnor (see [52]) and the second one of A’Campo
(see [1])

Theorem 122. The fiber of Milnor’s Fibration Theorem is parallelizable and has the ho-
motopy type of a CW-complex of dimension n ≠ 1.

Theorem 123. If the fiber of Milnor’s Fibration Theorem has the homotopy type of a point,
then 0 is regular point of f .

2.6.2 Reeb Stability Theorem

We recall some facts on the holonomy of foliations that we will need later.
Let X be a smooth manifold endowed with a foliation F and let L be a leaf of F. Given

a simple closed curve “ in L, the holonomy of the foliation describes the behavior of the
foliation in a neighborhood of “. Given a base point x in L and a transverse space D to
the foliation containing x, the holonomy of the foliation is given by a surjective map

fi1(L, x) æ G,

where G is a subgroup of the germ of di�eomorphisms of D (see [21] for the details on this
subject). The following result is a version of Reeb Stability Theorem (see §2.4 of [21])

Theorem 124. Let (X,F) be a foliated manifold. If there is a compact leaf L in F with
trivial germinal holonomy group, then there exists a neighborhood of L in X that is a union
of leaves that are homeomorphic to L.

Remark 125. If we suppose L to be contained in a compact subset of X instead of being
compact, the conclusion of Theorem 124 holds. In the proof of Theorem 124 the compactness
of L guarantees that there is a finite number of plaques covering L which can be done as
well if L is contained in a compact subset of X. The rest of the proof is not a�ected by this
change of hypothesis.
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2.6.3 Irrational pencils with non-isolated critical points

Let f : X æ S be a holomorphic map with connected fibers from a complex manifold
of dimension n to a Riemann surface. If s is a singular value of f such that the critical
points of the singular fiber Fs = f

≠1(s) are non-isolated, then Fs decomposes as the union
of a finite number of irreducible components Z1, . . . , Zk. Given a smooth point p in an
irreducible component Zj , there exist local coordinates (z1, . . . , zn) centered at p such that
f is locally given by the map

(z1, . . . , zn) ‘æ z
mj
1 .

The integer mj does not depend on the choice of the smooth point p in Zj and it is called
the multiplicity of the irreducible component Zj . The multiplicity m(s) of the singular fiber
f

≠1(s) is defined as the greatest common divisor of m1, . . . , mk.

2.6.3.a Irrational pencils with singular fibers of multiplicity one

Let ‚X be the universal fiber product of an irrational pencil f : X æ S with singular fibers
of multiplicity one and let ‚f : ‚X æ ‚S be a lift of f (see Section 2.4.2). As we saw in
Section 108, ‚f and f have the same fibers and ‚f is locally defined as f (see Corollary 109).
Therefore, ‚f : ‚X æ ‚S has connected fibers and all the singular fibers have multiplicity 1.

As in Section 2.4.3, let (Dk)kØ1 be a sequence of closed disks of ‚S such that
• ‚S = fikØ1Dk.
• The disk Dk is contained in the interior of the disk Dk+1.
• No critical value of ‚f0 is contained in the boundary of Dk.
• Dk+1 \ Dk contains exactly one critical value for all k Ø 1.
• D1 contains no critical value.

For such a sequence (Dk)kØ1, we set

Xk := ‚f≠1(Dk).

Let F be a regular fiber whose image is contained in D1. In Chapter 1 Section 1.4.1,
we saw that a surjective holomorphic map with connected fibers from a compact complex
manifold to a closed Riemann surface induces an orbifold structure on the Riemann surface.
The latter assertion holds as well for a proper holomorphic map with connected fibers from
a non-compact complex manifold to a Riemann surface. In this case, the orbifold structure
is given by a discrete set of marked points on the Riemann surface that might be infinite.
Hence, the lift ‚f : ‚X æ ‚S induces an orbifold structure � on ‚S and we obtain an exact
sequence

fi1(F ) // fi1( ‚X) // fiorb
1 (�) // 1.

Since the singular fibers of ‚f have multiplicity one, we get that fi
orb
1 (�) = fi1( ‚S), which

is trivial since ‚S is simply connected. Therefore the map fi1(F ) æ fi1( ‚X) induced by the
inclusion i : F Òæ ‚X, is surjective. The compactness of F implies that fi1(F ) is finitely
generated. We fix some loops “1, . . . , “m : [0, 1] æ F with the same base point such that the
set of homotopy classes {[“1], . . . , [“m]} generates fi1(F ). Hence, the set {iú[“1], . . . , iú[“m]}
generates fi1( ‚X). Notice that F is contained in Xk for all positive integer k and the same
argument as before shows that fi1(F ) generates fi1(Xk).
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Remark 126. Let Èx1, . . . , xm|r1, r2, . . .Í be a presentation of fi1( ‚X) (not necessarily finite),
such that xj corresponds to iú[“j ] and let r = xj1 · · · xjd be a relation of such presentation.
Then, there exists a positive integer N such that the loop given by the concatenation of
“j1 · · · “jd (which corresponds to r) is nullhomotopic in Xk for all k Ø N .

Lemma 127. If the kernel of the map fú : fi1(X) æ fi1(S) is finitely presented, there
exists a positive integer N such that for any k Ø N the inclusion map Xk Òæ ‚X induces an
isomorphism on fundamental groups.

Proof. Let Èx1, . . . , xm|r1, . . . , rlÍ be a presentation of fi1( ‚X), where xj corresponds to iú[“j ].
Since there are finitely many relations, by Remark 126, for all relation r œ {r1, . . . , rl}
written as r = xj1 · · · xjd , the loop given by “j1 · · · “jd is nullhomotopic in Xk for all k Ø N .

Now, we fix a positive integer k such that k Ø N and let i : F Òæ ‚X, i1 : F Òæ Xk and
i2 : Xk Òæ ‚X be the inclusion maps. Then, we have that the diagram

F� _

i1
✏✏

Id // F� _

i
✏✏

Xk
� �

i2
// ‚X

commutes. Hence fi1(Xk) is generated by the set {i1ú[“1], . . . , i1ú[“m]} and i2ú : fi1(Xk) æ
fi1( ‚X) sends i1ú[“j ] to iú[“j ].

We claim that i2ú is an isomorphism. By construction we have that i2ú is surjective
since F is contained in Xk. To prove the injectivity of i2ú, let Fm be the free group with
m generators {x1, . . . , xm}, and let ◊ : Fm æ fi1(Xk) be the morphism that sends xj to
i1ú[“j ]. Now, consider the commutative diagram

Fm
Id //

◊
✏✏

Fm

i2ú¶◊
✏✏

fi1(Xk)
i2ú
// fi1( ‚X).

(2.6.1)

Let “ : [0, 1] æ F be such that i1ú([“]) is in the kernel of i2ú and let x be an element in
Fm such that ◊(x) = i1ú([“]). By construction, we get that i2ú ¶ ◊ : Fm æ fi1( ‚X) sends xj

to iú([“j ]). The kernel of i2ú ¶ ◊ is the subgroup of Fm whose elements are of the form

dŸ

t=1
(gt r

±1
jt

g
≠1
t ) with gt œ Fm and rjt œ {r1, . . . , rl}. (2.6.2)

Hence by the commutativity of diagram (2.6.1) we get that x is of the form (2.6.2). Finally,
observe that for any relation r œ {r1, . . . , rl} we have that ◊(r) = 1. This follows from the
fact that the simple closed curve given by concatenating some of the “

Õ
js whose homotopy

class represents the relation r is nullhomotopic in Xk. Therefore x is in the kernel of ◊,
which implies the injectivity of i2ú. 2

2.6.3.b Foliations induced by the fibers of an irrational pencil

Let {p1, . . . , pl} be the set of singular points of Fs. Via the choice of some holomorphic
coordinates, for each singular point pi, we pick a closed neighborhood Bi(Á) of pi that we
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identify with a closed ball Bi(0, Á) centered at the origin of Cn, and a closed neighborhood
of s that we identify with a closed disk centered at the origin such that f is given in these
coordinates by a holomorphic map that vanishes at the origin. Since the singular points of
Fs are finitely many, there exists a small enough Á0 such that for all i = 1, . . . , l and for all
Á Æ Á0, the boundary of Bi(0, Á) satisfies the conclusion of Milnor’s Fibration Theorem.

From now on, we will assume that there is at least one singular point in Fs. We fix
a Riemannian metric on X. Let Y0 be a connected component of Fs \ fil

i=1Bi(Á0) and let
NY0 æ Y0 be the associated normal bundle, i.e. NY0 is orthogonal complement of TY0 in
TX for the fixed metric on X.

Lemma 128. There exists an open neighborhood U of the 0-section of the normal bundle
NY0 æ Y0 and an open neighborhood V of Y0 such that the exponential map exp : U æ V

is a di�eomorphism and the intersection of the fibers of f with V are connected.

Proof. Let Á < Á0 and let Y be the connected component of Fs\fil
i=1Bi(Á) containing Y0. We

denote by U(r) the open r-neighborhood of the 0-section NY æ Y . Since exp : NY æ X

is a local di�eomorphism in every point of the 0-section of NY æ Y , we get that up to
increasing Á (preserving the inequality Á < Á0), there exists a positive number r > 0 such
that exp : U(r) æ X is a submersion. Otherwise, there would exist a decreasing sequence
of positive numbers (rn)nØ1 converging to zero and a sequence (xn)nØ1 in NY of singular
points of exp : NY æ X such that xn is contained in U(rn). If we consider a compact set
K such that

Y µ K µ Fs \ {p1, . . . , pl},

we obtain that there exists a point y in the 0-section of NY æ Y such that (xn) converges
to y, a contradiction to the existence of a neighborhood of y where exp is a di�eomorphism.
By a similar result, we can also assume that exp : U(r) æ X is injective. Hence, if we denote
by V (r) the image of U(r) under exp we obtain that exp : U(r) æ V (r) is a di�eomorphism.
Finally, since the restriction of f to the open set V (r) is continuous, we can find an open
subset V of V (r) such that the fibers of F intersecting V are connected. 2

Lemma 129. There is a neighborhood U of Y0 such that if a generic fiber F of f intersects
U , then F fl U is a connected finite covering space of Y0.

Proof. Let U and V be open neighborhoods of the 0-section of NY0 æ Y0 and of Y0
respectively, such that the conclusion of Lemma 128 holds. Let y be a base point in Y0 and
let D be a holomorphic disk centered in y, contained in V and transverse to the fibers of
f . We can identify D to the unit disk of C in such a way that the restriction of f to D

corresponds to the function z ‘æ z
k, where k is the multiplicity of the irreducible component

of Fs containing Y0. Let us consider the foliation of V given by the fibers of f . Hence, the
holonomy associated to this foliation is given by a morphism fl : fi1(Y0, y) æ G, where G is
a subgroup of the germ of di�eomorphisms of D, whose elements are of the form z ‘æ ›z,
where › is a k-th root of unity.

Let q : ( ‚Y , ŷ) æ (Y0, y) be the finite covering map such that fi1( ‚Y , ŷ) is isomorphic to
the kernel of fl, and let N ‚Y æ ‚Y be the pullback bundle induced by q, i.e., we have the
commutative diagram

N ‚Y

‚q
✏✏

// ‚Y

q

✏✏
NY0 // Y0.
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The foliation in V given by the fibers of f induces a foliation F in U , which induces a
foliation ‚F in ‚U := ‚q≠1(U) (via the covering ‚q). Let L and ‚L be the leafs in F and ‚F given
by the 0-sections of NY0 æ Y0 and N ‚Y æ ‚Y respectively.

Since ‚q is a covering map, we get that for every point ŷ in ‚L there is a holomorphic disk
transverse to the foliation. We deduce that the holonomy of L is precisely given by fl and
the germinal holonomy group of ‚L is trivial. By Reeb Stability Theorem (see Remark 125)
we obtain that there is a neighborhood of ‚L that is a union of leaves that are homeomorphic
to ‚L. Then, the result follows from the fact that ‚U æ U is a finite covering map and that
exp : U æ V is a di�eomorphism. 2

2.6.3.c Irrational pencils on aspherical compact Kähler surfaces

Suppose now that X is an aspherical compact Kähler surface and let f : X æ S be an
irrational pencil with a singular value s. We resume with the notation of Section 2.6.3.b.

Lemma 130. If Y0 is a connected component of Fs \ fil
i=1Bi(Á0). Then the map fi1(Y0) æ

fi1(X) induced by the inclusion Y0 Òæ X has infinite image.

Proof. For every irreducible component Z of Fs, let Z
ú æ Z be its desingularization

map (see [36] p. 498). Then, the map fi1(Zú) æ fi1(X) induced by the composition
Z

ú æ Z Òæ X, has infinite image. Otherwise, if we denote by ÂX æ X the universal
covering space of X and by ÊZú the fiber product of Z

ú æ X and ÂX æ X, we would obtain
a finite covering map ÊZú

0 æ Z
ú, where ÊZú

0 is a connected component of ÊZú (by Lemma 108
fi1( ÊZú

0 ) ƒ ker(fi1(Zú) æ fi1(X))). Since the map Z
ú æ X is a nonconstant holomorphic

function, we would obtain that there is a nonconstant holomorphic map from the closed
Riemann surface ÊZú

0 to ÂX, which contradicts the asphericity of X.
Finally, suppose that Y0 is contained in the irreducible component Z of Fs and let

� denote the singular points of Z. Hence, there exists a retraction of Z \ � onto Y0.
Therefore, the composition of the inclusions Y0 Òæ Z \ � Òæ Z

ú induces a surjective map
on fundamental groups and the result follows directly. 2

Remark 131. In the proof of the latter lemma, we used the fact that the universal covering
space of an aspherical compact Kähler surface cannot contain the image of a closed Riemann
surface under a nonconstant holomorphic map. This follows from the fact that for a Kähler
surface X, the integral of the Kähler form over any analytic compact curve is always positive,
which cannot occur if H2(X) is trivial.

A direct consequence of Lemmas 129 and 130 is the following result.

Corollary 132. There exists a neighborhood of Fs such that for any regular fiber F of f :
X æ S contained in such a neighborhood and any connected component Y of F \fil

i=1Bi(Á0),
the map on fundamental groups induced by the inclusion Y Òæ X has infinite image.

2.6.4 Proof of Kapovich’s Theorem

In this section we give the proof of Theorem 70 for the general case.
Let X be an aspherical compact Kähler surface and let f : X æ S be an irrational

pencil whose singular fibers are of multiplicity one. We resume with the construction of
Section 2.4.3. Let us assume by contradiction that f is not a submersion and that the
kernel of fú : fi1(X) æ fi1(S) is finitely presented. By Lemma 127, we know that there
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exists a positive integer k0 such that for all k Ø k0, the inclusion map Xk Òæ ‚X induces an
isomorphism on fundamental groups. We fix k Ø k0.

As in the proof of Proposition 112, let c : [0, 1] æ Int(Dk+1) be an embedded arc going
from a boundary point c(0) of Dk to the unique critical value contained in Dk+1 ≠ Dk. We
assume that c(t) /œ Dk for t > 0 and let D

ú be a small disk centered at c(1) and contained
in Int(Dk+1 \ Dk). We may assume as well that f

≠1(Dú) is contained in a neighborhood of
Fs satisfying the conclusion of Corollary 132.

We denote by p : ÂX æ X the universal covering space of X and we write,

U = p
≠1(f≠1(Dk fi c[0, 1[)) and V = p

≠1(f≠1(Dú)).

The desired contradiction to prove Theorem 70 will follow from studying the following
fragment of the Mayer-Vietoris sequence associated to U and V .

H2(U fl V ) // H2(U) ü H2(V ) // H2(U fi V ) //

// H1(U fl V ) // H1(U) ü H1(V ) // H1(U fi V ).

(2.6.3)

Let ‚X be the universal fiber product of f . Since p : ÂX æ X is the universal covering
space of X and ‚q : ‚X æ X is a covering space of X, there exists a covering map p1 : ÂX æ ‚X
such that the diagram

ÂX

p1
✏✏
‚X

‚q
✏✏

‚f // ‚S

q

✏✏
X

f
// S

commutes and p = ‚q ¶ p1. We obtain from this that
• U fl V deformation retracts onto ÂF := p

≠1(F ), where F is a regular fiber of f , whose
image is contained in D

ú.
• U deformation retracts onto ÂXk := p

≠1
1 (Xk).

• ÂXk+1 := p
≠1
1 (Xk+1) deformation retracts onto U fi V .

By Proposition 107, we get that ÂF is a connected surface contained in ÂX, since the
inclusion F Òæ X induces a surjective map on fundamental groups. The asphericity of
X implies that ÂF is non-compact (see Remark 131). Therefore, H2( ÂF ) is trivial. We next
observe that ÂXk and ÂXk+1 are simply connected, since the inclusions Xk, Xk+1 Òæ ‚X induce
isomorphisms on fundamental groups. Hence (2.6.3) can be simplified to the exact sequence

0 // H2( ÂXk) ü H2(V ) // H2( ÂXk+1) // H1( ÂF ) // H1(V ) // 0. (2.6.4)

Lemma 133. The map H2( ÂXk) æ H2( ÂXk+1) induced by the inclusion ÂXk Òæ ÂXk+1 is
injective and H2( ÂXk+1) is non-trivial.

The injectivity of H2( ÂXk) æ H2( ÂXk+1) follows directly from the exactness of (2.6.4).
Then Lemma 133 follows from the following result (by the exactness of (2.6.4)).



2.6. Irrational pencils on aspherical compact complex surfaces 77

Lemma 134. The map H1( ÂF ) æ H1(V ) induced by the inclusion ÂF Òæ V has non-trivial
kernel.
Proof. Let C be a connected component of p

≠1(F fl Bi(Á0)) for some i = 1, . . . , l (which is
homeomorphic to F fl Bi(Á0)). By Theorem 122, we know that C has the homotopy type
of a CW-complex of dimension 1, and by Theorem 123, C is not simply connected. Hence,
C is a compact surface with non-empty boundary and it is not a disk.

Now, let H1(C) æ H1( ÂF ) be the map on homology groups induced by the inclusion
C Òæ ÂF . Lemma 134 follows from the following two facts

(a) The image of H1(C) in H1( ÂF ) is contained in the kernel of the map H1( ÂF ) æ H1(V ).

(b) The map H1(C) æ H1( ÂF ) is non-trivial.

Notice that (a) follows directly from the fact that C is contained in the ball Bi(Á0). From
now on, to prove (b) we will be working with the surface ÂF as our total space. If the surface
C has a handle, (b) follows immediately since there exists an element in H1(C) which has
non-trivial image in H1(F ) in this case (which is stronger than having non-trivial image in
H1( ÂF )). If C is a planar surface the last argument does not work. Using the Mayer-Vietoris
sequence for the sets (or rather small enough neighborhoods of these sets) C and ( ÂF \ C),
we get the exact sequence

H1(ˆC)
(iú,≠jú)

// H1(C) ü H1( ÂF \ C) kú+lú // H1( ÂF ), (2.6.5)

where, i, j, k, l are the respective inclusions.
Claim 135. All the connected components of ÂF \ C are non-compact.

We now conclude the proof by using Claim 135. If ˆC has n connected components
{a1, . . . , an}, then H1(ˆC) is a free Abelian group generated by the ai’s with the unique
relation

nÿ

i=1
iúai = 0.

Let W be a connected component of ÂF \ C. Up to reordering the set {a1, . . . , an}, we can
suppose that {a1, . . . , al} are the common boundary components of C and W for some l Æ n.
Let us assume by contradiction that the map kú : H1(C) æ H1( ÂF ) is trivial. Then (iúa1, 0)
lies in ker(kú +jú) = Im(iú, ≠jú), and by the exactness of 2.6.5 there is a non-zero element a

in H1(ˆC) such that (iúa, ≠júa) = (iúa1, 0). Thus a ≠ a1 lies in ker(iú), which is generated
by a1 + · · ·+an, i.e. a = a1 +⁄(a1 + · · ·+an). Since H1( ÂF \C) = H1(W )üH1( ÂF \ (C fiW ))
and júa = 0, we deduce that jú(a1 + ⁄(a1 + · · · + al)) = 0. Finally, since W is non-
compact, {júa1, . . . , júal} form a linearly independent set and thereby ⁄ = ≠1 and l = 1.
A contradiction to the fact that a is non-zero. 2

Proof of Claim 135. Let W be a connected component of ÂF \C. Recall that C is a connected
component of p

≠1(F flBi(Á0)) which indeed is homeomorphic to F flBi(Á0). Now, let Y be
a connected component of F \ fil

i=1Bi(Á0) and let ÂY be a connected component of p
≠1(Y )

contained in W . Hence, we get the commutative diagram
ÂY //

✏✏

ÂX

p

✏✏
Y // X.
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By Corollary 132, the map fi1(Y ) æ fi1(X) has infinite image, and therefore pú(fi1( ÂY ))
is an infinite index subgroup of fi1(Y ). This implies that ÂY æ Y is an infinite covering
map. We deduce from this that ÂY is non-compact and thus, so is W . 2

Now, we can give the proof of Theorem 70

Proof of Theorem 70. On the one hand, by Lemma 133, for large enough k, the map
H2( ÂXk) æ H2( ÂXk+1) induced by the inclusion ÂXk Òæ ÂXk+1 is injective. Since H2( ÂX) is the
direct limit of H2( ÂXk)kØ1, we get that for large enough k, the map H2( ÂXk) æ H2( ÂX) is
injective. From this and the asphericity of X, we deduce that for large enough k, H2( ÂXk)
is trivial.

On the other hand, by Lemma 133, one can find large enough k such that H2( ÂXk) is
non-trivial, which is the desired contradiction. 2
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Résumé 
Dans cette thèse nous nous sommes intéressés à l'étude des sous-groupes normaux de type fini 
des groupes kählériens. Nous étudions les groupes de type fini munis d’une action sur un arbre qui 
admettent un plongement dans un groupe kählérien comme sous-groupes normaux et dont l'action 
sur l'arbre peut être virtuellement étendue au groupe kählérien. L'un des ingrédients principaux de 
cette étude est un résultat de Gromov et Schoen sur les groupes kählériens agissant sur un arbre. 
Nous donnons également de nouveaux exemples de groupes kählériens qui apparaissent comme 
des sous-groupes normaux de groupes kählériens précédemment connus. Les nouveaux exemples 
qui apparaissent de cette manière sont liés aux propriétés de finitude dans la théorie des groupes. 
Notre principal outil pour construire ces exemples est l'étude des pinceaux irrationnels avec des 
points critiques isolés sur des variétés complexes compactes asphériques. 

Résumé en anglais 
In this thesis, we focus on the study of finitely generated normal subgroups of Kähler groups. We 
present some restrictions on finitely generated groups that can occur as normal subgroups of Kähler 
groups. We study finitely generated groups acting on a tree that admit an embedding into a Kähler 
group as a normal subgroup, and whose action on the tree can be virtually extended to the Kähler 
group. One of the main ingredients of this study is a result of Gromov and Schoen about Kähler 
groups acting on trees. We also give new examples of Kähler groups which occur as normal 
subgroups of previously known Kähler groups. The new examples that occur in this way are related 
to finiteness properties in group theory. Our main tool to construct these examples is the study of 
irrational pencils with isolated critical points on compact aspherical complex manifolds. 

Prénom NOM 
TITRE de la thèse!
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