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Accurate prediction of ligand- binding affinities  
in solution by Molecular Dynamics simulations 

 

 

Abstract 

 

Computational methodologies are able to accelerate drug discovery campaigns and 
decrease the associated costs.  From the methods available to compute binding affinities, 
the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approach is a 
compromise between accuracy and efficiency. However, here entropic contributions are 
often neglected. In this thesis, we developed an automatic method named, Quasi-
Harmonic Multi-Basin, to compute the ligand configurational entropy loss upon binding. 
Apart from achieving quantitative agreement with experimental gas-phase entropies of 
small molecules, adding this correction to MM/GBSA estimates increased correlation to 
experiments by 10%. The correction was included into a Virtual Screening (VS) campaign 
in Smooth Muscle Myosin II (SMM2). From the VS, 26 compounds were experimentally 
tested and eight showed activity at 190 μM. We thus have established a VS protocol to 
identify inhibitors of complex allosteric proteins like myosin molecular motors. 

 
 
 
Les méthodologies computationnelles sont capables d'accélérer les campagnes de 

découverte de médicaments et de réduire les coûts associés.  Parmi les méthodes 
disponibles pour calculer les affinités de liaison, l'approche Mécanique 
Moléculaire/Surface de Born Généralisée (MM/GBSA) est un compromis entre précision 
et efficacité. Or, les contributions entropiques sont ici souvent négligées. Dans cette 
thèse, nous avons développé une méthode automatique appelée, Quasi-Harmonic Multi-
Basin, pour calculer la perte d'entropie configurationnelle du ligand lors de la liaison. En 
plus d'obtenir un accord quantitatif avec les entropies expérimentales en phase gazeuse 
des petites molécules, l'ajout de cette correction aux estimations MM/GBSA a augmenté 
la corrélation avec les expériences de 10%. La correction a été incluse dans une campagne 
de criblage virtuel (VS) de la myosine musculaire lisse II (SMM2). À partir du VS, 26 
composés ont été testés expérimentalement et huit ont montré une activité à 190 μM. 
Nous avons donc établi un protocole VS pour identifier des inhibiteurs de protéines 
allostériques complexes comme les moteurs moléculaires de la myosine. 
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Résumé de Thèse 

 

Introduction 

 

Dans le passé, la découverte de nouveaux médicaments était principalement due à la 

sérendipité.9 Pour maximiser la récupération des résultats et le succès des composés, les 

approches modernes tendent à s'appuyer de plus en plus sur des stratégies de 

conception rationnelle de médicaments.6 Le temps moyen d'une campagne de 

découverte de médicaments pour produire un nouveau médicament est compris entre 

12 et 15 ans, avec un coût moyen d'environ 2 milliards de dollars.59 Les méthodologies 

computationelles sont devenues la norme dans les pipelines modernes de découverte de 

médicaments, fournissant des prédictions de l'affinité de liaison protéine-ligand et 

accélérant les étapes initiales des campagnes de découverte de médicaments.14,28,83,194 

Un autre point attrayant des méthodologies computationnelles est leur potentiel de 

réduction des coûts associés, à la fois en termes financiers et de temps humain.14 Ainsi, 

des efforts ont été consacrés au développement de méthodes capables de calculer de 

manière fiable les affinités de liaison protéine-ligand.6,26,194 Ces méthodes couvrent un 

spectre, équilibrant l'efficacité et la précision des calculs.4 Les méthodes de point final se 

concentrent sur l'échantillonnage conformationnel des états finaux de la réaction de 

liaison, représentant un compromis entre la précision et l'efficacité des calculs. Parmi les 

méthodes populaires de point final, citons la méthode de mécanique moléculaire et de 

surface de Poisson Boltzmann (MM/PBSA) et ses variantes120,193,196,206,265, où l'énergie 

potentielle du système est calculée dans le vide par un champ de force de mécanique 

moléculaire, les effets de solvatation sont traités à l'aide de modèles de solvant implicites 

et les contributions entropiques sont estimées par l'approximation de l'oscillateur 

harmonique à rotor rigide (RRHO)120,265.  

Les approches par points finaux sont populaires dans la communauté scientifique en 

raison de leur capacité à produire des classements significatifs tout en restant 

efficaces.120 L'entropie est une propriété thermodynamique essentielle qui régit la 

plupart des processus biomoléculaires, y compris la liaison des ligands.292 Néanmoins, 

l'évaluation précise des entropies absolues en solution reste un grand défi.280 Dans le 

MM/PBSA et sa variante Generalized-Born (MM/GBSA), les termes entropiques sont 

généralement négligés en raison du coût de calcul et de l'incertitude de la valeur 

calculée.265 Cependant, négliger les contributions entropiques pourrait biaiser le calcul 

de l'énergie libre, conduisant à la prédiction de ligands plus grands comme meilleurs 

liants puisque le coût associé à la retenue du ligand dans le site de liaison est négligé. Les 
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méthodologies RRHO les plus populaires pour le calcul de l'entropie, l'analyse des modes 

normaux (NMA)245 et l'analyse quasi-harmonique (QHA)244, souffrent de certaines 

limitations. Dans la NMA, un potentiel harmonique pur est appliqué et l'anharmonicité 

au sein de la surface d'énergie potentielle (PES) est négligée, ce qui sous-estime l'entropie 

absolue du ligand.280 Dans la QHA, les constantes de force sont calculées à partir des 

fluctuations atomiques au cours d'une simulation MD et la PES est approximée comme 

un puits d'énergie potentielle harmonique unique et multidimensionnel, ce qui entraîne 

une surestimation importante de l'entropie absolue.280 Les méthodes de point final sont 

couramment utilisées dans les pipelines de découverte de médicaments pour aider à 

identifier les succès biologiques vers une cible pharmacologique donnée.  

L'objectif de ce projet était de réaliser des campagnes VS et d'identifier des composés 

innovants hit vers la myosine II du muscle lisse (SMM2) à partir de bibliothèques 

chimiques virtuelles. Nous avons d'abord étudié la méthodologie MM/GBSA193,262,265 et 

développé une approche efficace et précise pour calculer la perte d'entropie du ligand 

lors de la liaison, basée sur la décomposition du PES du ligand en micro-états individuels, 

suivie de calculs QHA.213,244,279,280,292 Après validation de notre méthodologie, nous avons 

réalisé des campagnes VS sur la structure cristalline SMM2 (PBD 5M05) en utilisant une 

approche de docking et de rescoring de l'énergie libre, mise en œuvre par notre logiciel 

ChemFlow, développé en interne, et augmentée d'une pénalité entropique originale 

calculée en utilisant une méthode développée en interne.37 

De nombreuses fonctions cellulaires dépendent de la polymérisation de l'actine et de 

son interaction avec les molécules de myosine.335 Les myosines sont une famille de 

moteurs moléculaires capables d'hydrolyser l'ATP, exploitant l'énergie provenant de sa 

l'hydrolyse pour effectuer un travail mécanique.336 Par exemple, si le filament d'actine 

est une route, la myosine serait la voiture et l'ATP le carburant. Ces protéines 

fonctionnent de manière cyclique et sont essentielles à un grand nombre de processus 

cellulaires, allant de la contraction musculaire à la division cellulaire.347,368 Le long du cycle 

moteur, de nombreux états intermédiaires instables ou transitoirement stables peuvent 

être peuplés lorsque la myosine subit des transitions de conformation entre des états 

stables (rigor, post-stroke, pré-powerstroke, power-stroke et état de maintien de la 

force). Certains de ces intermédiaires ont un potentiel de ciblage pharmacologique en 

vue du développement de nouvelles approches thérapeutiques. En effet, plusieurs 

études ont rapporté la modulation de l'activité de la myosine par des ligands de petites 

molécules.338,339,343,346,348,349 Le moteur moléculaire de la SMM2 a été choisi comme cible 

protéique d'intérêt parce que la contractilité des muscles lisses est un élément central de 

la physiopathologie de plusieurs maladies, comme l'asthme et la bronchopneumopathie 

chronique obstructive (BPCO).343 Les relaxants des muscles lisses actuellement 

disponibles ne sont pas spécifiquement conçus pour se lier à SMM2. Dans une publication 
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récente, le premier inhibiteur spécifique de SMM2 (CK571)343, faiblement nanomolaire, 

a été co-cristallisé en complexe avec SMM2 dans un état intermédiaire de la course de 

récupération. Cette structure cristalline à haute résolution offre une opportunité sans 

précédent pour la conception de nouveaux inhibiteurs puissants de SMM2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1 - Structure cristallographique du domaine moteur SMM2 avec l'ADP (orange), le CK571 (cyan) et 
un ion magnésium (vert) liés (code PDB 5M05). Les parties du domaine moteur SMM2 bordant le site de 
liaison sont mises en évidence : hélice SH1 (bleu), hélice Relay (rouge foncé), domaine N-terminal (vert) et 
une partie du domaine convertisseur (violet clair). 

 

Résultats et discussion 

 

Une approche Quasi-harmonique multi-bassin pour le calcul de l'entropie 

configurationnelle de petites molécules en solution 

 

Nous avons développé une procédure automatique pour calculer avec précision et 

efficacité les entropies absolues des ligands en solution, basée sur l'approche QHA. Sous 

l'approximation RRHO et le cadre du "mélange de conformères"244,292, le paysage de 

l'énergie libre d'un ligand est d'abord décomposé en micro-états individuels par 

regroupement de simulations MD tout-atome, générant un cluster par micro-état 

moléculaire. L'entropie des micro-états individuels est évaluée par QHA et l'entropie du 

paysage est calculée sur la base de l'équation de Shannon-Gibbs, ce qui conduit à une 

méthode appelée Quasi-Harmonic Multi-Basin (QHMB).213 Pour évaluer les performances 

de QHMB, des simulations MD dans le vide ont été exécutées pour un ensemble de 22 

petites molécules avec des entropies en phase gazeuse disponibles expérimentalement 
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à partir de la Computational Chemistry Comparison Benchmark DataBase du National 

Institute of Standards and Technology (NIST).291,322 La précision de QHMB a été comparée 

aux méthodes d'entropie RRHO standard en évaluant l'erreur quadratique moyenne 

(RMSE) de chaque méthode par rapport aux données expérimentales. Les régressions 

linéaires pour les résultats de la NMA, de la QHA et de la QHMA sont présentées dans la 

Figure 2A. Les données montrent que les méthodes RRHO standard fournissent des 

entropies qui sont fortement corrélées avec les données expérimentales. Cependant, 

l'analyse de la pente pour la NMA et la QHA illustre les lacunes de chaque méthode. La 

pente de la ligne de régression de la NMA est inférieure à un, indiquant une sous-

estimation systématique de l'entropie qui s'aggrave avec la flexibilité intrinsèque des 

ligands. En revanche, dans le cas du QHA, la pente est plus du double. Pris ensemble, les 

résultats suggèrent que ni la NMA ni la QHA ne sont suffisamment précises pour 

reproduire les entropies expérimentales en phase gazeuse et qu'elles représentent plutôt 

des limites inférieures et supérieures à la véritable entropie, respectivement. En 

revanche, les résultats des calculs QHMB ont atteint un accord quantitatif avec les 

données expérimentales (RMSE = 0.36 kcal/mol; coefficient de corrélation de Pearson au 

carré (R2) = 0.99), avec une pente de la ligne de régression de 1.02. Pour permettre 

l'application de routine de QHMB, une mise en œuvre automatique employant 

l'algorithme de regroupement hiérarchique à liaison moyenne a été construite. L'erreur 

quadratique moyenne des calculs automatiques de QHMB est passée de 0.36 à 0.65 

kcal/mol, ce qui reste bien en dessous de la limite de précision chimique.  

 

 

 

 

 

 

 

4 

 

 

 

 

Figure 2 - Résultats obtenus pour les calculs d'entropie RRHO pour les petites molécules en phase gazeuse. 

Les entropies expérimentales à 298K proviennent du NIST. A) Les données montrent les performances de 

l'approche multi-puits nouvellement introduite (QHMB) par rapport aux approches populaires à puits 

unique basées sur l'approximation RRHO, c'est-à-dire NMA (rouge) et QHA (vert). B) Précision de QHMB en 

fonction de l'algorithme de regroupement et du seuil de RMSD. La précision est évaluée par l'erreur 

quadratique moyenne (RMSE) à partir des entropies expérimentales en phase gazeuse pour l'ensemble de 
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données du NIST ; voir le texte principal. La ligne pointillée à 1 kcal/mol illustre la limite de la précision 

chimique. 

 

Tableau 1 - Précision de diverses méthodes RRHO pour le calcul des entropies moléculaires absolues. 

 

Experiment RMSE[*]

  

RMSE[+] R2 Pente MUEa 

NMAb 1.12 1.67 0.96 0.86 0.93 

NMA-multib 1.17 1.75 0.96 0.86 0.97 

NMA-clustb 1.13 1.64 0.96 0.87 0.96 

QHAb 8.09 13.36 0.86 2.24 5.87 

QHA-clustb 8.42 13.95 0.86 2.30 6.07 

QHMBc 0.36 0.24 0.99 1.02 0.28 

 

Toutes les valeurs RMSE sont données en kcal/mol. [*] - RMSE pour l'ensemble complet de référence. 

[+] - RMSE pour le sous-ensemble de ligands avec 3 torsions non redondantes ou plus. [a] - Erreur moyenne 

non signée (MUE) entre les entropies absolues prédites et expérimentales. [b] - Résultats obtenus en 

appliquant le numéro de symétrie à un. [c] - Résultats obtenus en utilisant des nombres de symétrie 

appropriés. 

 

Un calcul QHMB comprend trois étapes: i. la détermination des conformères stables 

avec leur probabilité d'équilibre à partir d'un MD convergé; ii. le calcul de l'entropie par 

bassin et par conformère par QHA; et iii. le calcul de l'entropie du paysage. Bien qu'une 

mise en œuvre manuelle de QHMB basée sur l'analyse des distributions de dièdres et le 

raffinement visuel puisse être suffisamment précise, cette procédure n'est pas pratique, 

si l'objectif est de l'appliquer à des centaines ou des milliers de composés. C'est dans ce 

but qu'une procédure automatique de QHMB a été développée. Suivant Suarez et 

al.,280,292 l'implémentation vise à: i. identifier les conformères stables par regroupement 

RMSD d'une trajectoire MD étendue; ii. extraire une série de sous-trajectoires 

correspondant à chacun d'eux; et iii. analyser ces sous-trajectoires par QHA 

automatiquement. À cette fin, plusieurs algorithmes hiérarchiques, dont le Average-

Linkage330, le Single-Linkage331 et le Complete-Linkage332, ainsi que le DBSCAN333 basé sur 

la densité, ont été envisagés; notons que toutes les méthodes de clustering font partie 

de la suite logicielle Amber18122. En outre, étant donné qu'une décomposition correcte 

de l'espace configurationnel en puits d'énergie potentielle distincts est essentielle pour 
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une évaluation correcte de l'entropie absolue, l'analyse QHMB a été répétée en faisant 

varier le seuil de RMSD pour le regroupement de 2.0Å à 0.1Å par décréments de 0.1Å. 

Pour valider la procédure, l'ensemble de données du NIST pour lequel des entropies 

expérimentales sont disponibles (voir ci-dessus) a été utilisé comme référence. Les 

résultats sont présentés dans la Figure 2B. À des seuils élevés, c'est-à-dire RMSD ~ 2Å. 

toutes les méthodologies sont équivalentes et donnent des résultats d'entropie avec une 

erreur systématique aussi importante que celle de l'QHA standard. Plus le seuil est bas, 

plus l'erreur de calcul de l'entropie est faible. Il est intéressant de noter qu'en diminuant 

le seuil de RMSD en dessous de 0.5Å, les algorithmes de Average-Linkage (vert) et de 

Complete-Linkage (noir) améliorent tous deux les prédictions de QHMB de manière assez 

significative et atteignent un plateau avec une RMSE inférieure à 1 kcal/mol. D'autre part, 

ni l'algorithme de liaison simple ni l'algorithme DBSCAN n'ont atteint une précision 

satisfaisante dans la gamme de seuils étudiée. Puisque le regroupement basé sur la 

liaison moyenne a produit la RMSE la plus faible à des seuils inférieurs à 0.5Å, ce protocole 

a été choisi pour toutes les études ultérieures. Nous notons au passage qu'à des cutoffs 

trop grands (≥ 2 Å), tous les algorithmes de clustering échouent car ils mélangent des 

conformations appartenant à des bassins différents et QHMB se réduit à un QHA 

standard. 

 

 

Application du QHMB aux calculs de l'énergie libre de liaison au point final MM/GBSA 

 

MM/PBSA et MM/GBSA sont des approches très populaires pour le calcul des affinités 

de liaison relatives des ligands.88,108,120,196,207,208,334 Cependant, il a été remarqué que leurs 

performances dépendent fortement du système.206,209 De plus, de nombreux chercheurs 

préfèrent ne pas inclure les contributions entropiques dans leurs calculs MM-PB(GB)SA 

en raison du coût de calcul supplémentaire et des observations précédentes selon 

lesquelles une inclusion explicite de l'entropie peut détériorer la corrélation des affinités 

de liaison prédites avec les expériences.196,206,209,280 D'autres, pour surmonter les limites 

des calculs d'entropie dans les réactions de liaison, ont proposé des stratégies 

alternatives qui ne reposent pas sur l'approximation harmonique, comme la méthode de 

l'entropie d'interaction.49 Motivés par la précision des résultats du QHMB en phase 

gazeuse (voir ci-dessus), nous avons sélectionné un ensemble de données de 21 

complexes protéine-ligand à partir de l'ensemble de données de Greenidge209 et utilisé 

le QHMB pour quantifier la perte d'entropie lors de la liaison.  Plus précisément, QHMB 

a été utilisé pour évaluer l'entropie configurationnelle du ligand dans ses états lié et non 

lié à partir de simulations MD indépendantes, afin d'estimer l'entropie de liaison à partir 

de la différence entre les deux. Ce terme a ensuite été introduit comme une correction 
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d'entropie dans les calculs MM/GBSA standard. Les résultats de l'énergie libre de liaison 

de MM/GBSA avec et sans la correction d'entropie du QHMB sont présentés dans la 

Figure 3. À titre de comparaison, la perte d'entropie du ligand a également été accessible 

par le QHA279 standard et les performances des deux protocoles ont été comparées; voir 

le Tableau 2. Les données montrent que les calculs MM/GBSA standard tels qu'ils sont 

mis en œuvre dans AmberTools18122 font un travail raisonnable avec cet ensemble de 

données, donnant un R2 = 0,67. L'application d'une correction de l'entropie du ligand 

basée sur QHA introduit une erreur plus importante et la corrélation diminue de 17% (R2 

= 0,5), ce qui est cohérent avec les rapports précédents.206,270 En revanche, l'introduction 

de la correction de l'entropie du ligand par QHMB augmente la corrélation de 11% et 

donne un R2 final = 0,78; voir Tableau 2. Ces résultats conduisent aux observations 

suivantes. Premièrement, la correction de l'entropie par QHMB introduit une pénalité 

dans le ΔG° calculé, qui tient compte de la restriction du volume configurationnel 

accessible au ligand dans son état lié. Deuxièmement, la taille de la correction dépend 

fortement du ligand et introduit une pénalité plus importante pour les ligands grands et 

flexibles; c'est-à-dire que la correction QHMB est > 9 kcal/mol pour quatre ligands de 

l'ensemble de données, alors qu'elle est de 6 kcal/mol en moyenne. De plus, la correction 

repose sur l'échantillonnage configurationnel par MD, ce qui permet de sonder 

directement le changement du volume configurationnel du ligand indépendamment de 

sa flexibilité intrinsèque. Pris ensemble, ces résultats suggèrent que l'introduction d'une 

correction d'entropie dépendante du ligand basée sur le QHMB augmente la précision 

des calculs d'affinité de liaison relative. 

  

Tableau 2 - Inclusion de la perte d'entropie du ligand dans les calculs du MMGBSA. 

 

Experiment R R2 Pente ρ[4] 

MM-

GBSA[1] 

0.82 0.67 2.15 0.79 

MM-GBSA 

+QHA[2] 

0.71 0.50 1.33 0.66 

MM-GBSA 

+QHMB [3] 

0.88 0.78 1.87 0.88 

 

[1] Résultats du MMGBSA à trajectoire unique. [2] Résultats MMGBSA avec correction d'entropie par QHA. 

[3] Résultats MMGBSA avec correction d'entropie par QHMB. [4] Coefficient de corrélation de Spearman. 

Toutes les simulations ont été effectuées à 298,15 K et 1M. 
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Figure 3 - Corrélation entre les affinités de liaison expérimentales et prédites par MMGBSA avec (rouge) et 

sans (points vides) correction d'entropie par QHMB. Les données montrent que l'introduction de la 

correction entropique augmente la corrélation avec les expériences de 11%. Pour certains ligands grands 

et flexibles, la correction est aussi grande que 10 kcal/mol (flèches vertes). 

 

 

Identification de composés "hit" dans la quête de modulateurs allostériques du moteur 

moléculaire de la myosine 

 

Résultats de la précédente campagne VS réalisée sur la Myosine Muscle Lisse II 

 

L'identification d'inhibiteurs de la SMM2 est une tâche difficile.347 Le site de liaison de 

la CK571 est une poche allostérique, s'ouvrant transitoirement pendant la phase de 

récupération du cycle du moteur de la myosine.343 Notre approche VS emploie une 

stratégie originale basée sur la préparation d'une bibliothèque de ligands, le docking 

moléculaire des ligands à la structure cristallographique SMM2-CK571 (PDB 5M05) et le 

rescoring de l'énergie libre des composés les plus prometteurs. Lors d'une précédente 

campagne VS, un sous-ensemble de composés de la Chimiotèque Nationale du CNRS 

(CN)356 (> 60k composés) a été priorisé à l'aide de calculs MM/GBSA et testé 

expérimentalement (Figure 4). L'expérience consistait à évaluer si les ligands pouvaient 

ralentir la vitesse d'hydrolyse de l'ATP de SMM2 en évaluant la diminution de 

l'absorbance à 340 nm (A340) due à la consommation de NADH lorsque l'ATP est 

hydrolysé en ADP. Comme on peut l'observer sur la Figure 5, aucun des composés n'a été 

actif car les valeurs des pentes obtenues par l'ajustement d'une fonction à la décroissance 

de l'A340 sont similaires à celles des expériences sans aucun composé et avec le seul 

DMSO. 
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Figure 4 - Mesures expérimentales de l'activité ATPase. Les essais ont été réalisés sur le CK-571 (contrôle 

positif), le DMSO (contrôle négatif) et les composés prioritaires du CN. Le test surveille les changements 

d'absorbance à 340 nanomètres (A340), qui sont couplés à l'oxydation du NADH par une série de 

réactions enzymatiques couplées. Les lignes en pointillés sont données par les mesures de l'A340 sur 

l'expérience de contrôle négatif, qui est réalisée en utilisant du DMSO et aucun inhibiteur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Energies libres de liaison prédites pour le sous-ensemble de composés prioritaires de la 

précédente campagne VS ciblant SMM2. 

 

Bien que ces résultats soient décevants, car ils montrent que l'approche VS n'a pas été 

capable de trouver des composés actifs, ils ont permis de réfléchir sur la configuration 

MM/GBSA employée. En inspectant les paramètres utilisés dans les calculs, trois termes 

possibles qui pourraient être optimisés dans une future campagne ont été trouvés : la 

constante diélectrique interne du soluté (ε), le modèle GB et l'inclusion de termes 

entropiques dans les calculs MM/GBSA. Le fait de retenir des ligands grands et flexibles 
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dans un site de liaison entraîne un coût entropique qui, lorsqu'il n'est pas payé, conduit 

à des calculs MM/GBSA biaisés où les ligands plus grands sont prédits comme de 

meilleurs liants. 

 

 

Calibration des calculs MM/GBSA pour une deuxième campagne VS sur SMM2 

 

Avant d'entreprendre une nouvelle campagne VS, le flux de travail VS a dû être ajusté 

pour essayer d'éviter une deuxième série d'expériences infructueuses. Les paramètres 

pour les calculs MM/GBSA ont été calibrés sur la base de données de référence, où le jeu 

de données était composé des trois inhibiteurs connus et du sous-ensemble de composés 

prioritaires trouvés inactifs dans la campagne VS précédente. Les énergies libres de 

liaison MM/GBSA obtenues à partir de simulations MD à solvant explicite pour cet 

ensemble de données ont été utilisées comme données de référence et corrélées avec 

les résultats MM/GBSA obtenus à partir d'ensembles configurationnels échantillonnés 

par MD à solvant implicite. L'effet de ε et du modèle GB sur la corrélation entre les 

prédictions des ensembles MD à solvant implicite et explicite a été interrogé 

simultanément. La configuration MM/GBSA sélectionnée pour la nouvelle campagne VS 

était celle qui présentait la plus forte corrélation entre ces calculs (Tableau 3). La 

corrélation a été évaluée en évaluant le coefficient de corrélation de Pearson au carré 

(R2) et la corrélation de Spearman des rangs (⍴). 

 

Tableau 3 - Calculs de référence effectués sur le jeu de données des composés prioritaires du criblage 

précédent. En rouge, la configuration utilisée lors du premier criblage est mise en évidence, tandis qu'en 

vert, la configuration pour les études futures est mise en évidence. 

 

GB 
Model 

R2  
(ε = 1) 

⍴  
(ε = 1) 

R2  
(ε = 2) 

⍴  
(ε = 2) 

R2   
(ε = 4) 

⍴  
(ε = 4) 

R2   
(ε = 10) 

⍴  
(ε = 10) 

GB1 0.54 0.62 0.63 0.75 0.64 0.75 0.64 0.74 

GB2 0.37 0.45 0.59 0.69 0.64 0.74 0.64 0.76 

GB5 0.29 0.43 0.55 0.65 0.62 0.76 0.64 0.75 

GB7 0.35 0.47 0.59 0.68 0.64 0.76 0.64 0.76 

GB8 0.07 0.40 0.48 0.65 0.60 0.76 0.63 0.76 

 

Le benchmark montre que la configuration utilisée dans le criblage précédent (GB = 2, 

ε = 1) présentait une faible corrélation entre les calculs effectués sur les données de 

simulation MD à solvant implicite et explicite (R2 = 0,37, ⍴ = 0,45). Les calculs MM/GBSA 
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à solvant implicite configurent une étape de filtrage dans le workflow VS dans le but de 

sélectionner un sous-ensemble de composés à étudier avec des simulations MD à solvant 

explicite plus longues et donc plus coûteuses. Ainsi, le fait que la corrélation soit faible 

diminue notre confiance dans l'étape de filtrage et soulève la question de savoir si le sous-

ensemble de composés priorisés est significatif. L'objectif final de ce benchmark était de 

trouver une configuration MM/GBSA avec le plus grand accord possible entre les calculs 

effectués sur les deux types de simulations, car cela signifierait que les étapes de 

rescoring de l'énergie libre seraient cohérentes entre elles. Un degré de corrélation plus 

élevé a toujours été obtenu lorsque ε était fixé à 4 ou 10, comme le montre le Tableau 3.  

Dans les calculs où ε est fixé à 4 ou 10, de petites variations dans la prévisibilité des 

calculs MM/GBSA ont été observées lors de l'utilisation de différents modèles de GB. En 

considérant le coefficient de Spearman et le coefficient de Pearson au carré, on a 

constaté que GB = 7 et ε = 4 ou 10 étaient les combinaisons les plus prédictives. En 

ajustant simultanément le modèle GB et ε, nous avons obtenu une corrélation modérée 

entre les calculs, de R2 = 0,37 à 0,64 et de ⍴ = 0,45 à 0,76. Ainsi, ε = 4 a été choisi car il 

s'agit d'une valeur habituellement utilisée selon la littérature pour les systèmes protéine-

ligand.196,251 Les données indiquent que lors du premier criblage, la configuration utilisée 

pour le rescoring de l'énergie libre MM/GBSA était sous-optimale et produisait donc de 

nombreux faux positifs. L'introduction d'une constante diélectrique plus élevée et 

l'optimisation du modèle GB utilisé pour calculer la contribution polaire à l'énergie libre 

de solvatation semblent résoudre ce problème. La configuration optimisée permet de 

différencier les composés actifs connus des inactifs, ce qui n'était pas possible 

auparavant. Pour résoudre le problème du biais dû à la négligence des contributions 

entropiques, un terme de correction tenant compte de la perte d'entropie 

configurationnelle du ligand lors de la liaison en utilisant le QHMB a été ajouté dans 

l'étape finale de recalibrage de la dernière campagne VS. Ainsi, le biais en faveur des 

ligands plus flexibles trouvé dans la campagne VS initiale devrait également être pris en 

compte. 

 

Flux de travail de la nouvelle campagne VS 

 

La Chimiotèque Nationale du CNRS (CN)356 (> 60k composés) a été sélectionnée pour la 

nouvelle campagne VS, normalisée et préparée par PrepFlow165,369, un pipeline 

automatisé développé en interne pour la préparation de librairies de ligands (Figure 6), 

et filtrée par DataWarrior.1 Un schéma décrivant la préparation de la bibliothèque CN est 

présenté à la Figure 6.  Après la préparation de la bibliothèque et le filtrage R-o-5, 39 mille 

composés ont été retenus. Ceux-ci ont ensuite été filtrés en fonction de la présence de 
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sous-structures PAINS spécifiques.160 L'ensemble de données filtré par PAINS contenait 

22 000 composés qui ont ensuite été élagués sur la base de propriétés physicochimiques 

telles que la surface polaire (PSA), la solubilité calculée (clogS), le nombre de liaisons 

rotatives et la présence de certains groupes d'ogives toxiques dans leurs structures 

moléculaires (RTECS).54 Le but de cette étape était de concentrer la bibliothèque sur les 

composés de type médicament ayant des caractéristiques physicochimiques similaires à 

celles du CK-571. La taille de l'ensemble de données a considérablement diminué à ce 

stade, pour un total de 8K composés. Enfin, un descripteur de flexophore a été calculé 

pour chaque ligand.358 La bibliothèque a été regroupée à l'aide d'un descripteur de 

flexophore 3D, ce qui a permis de réduire l'ensemble de données à environ 2300 

structures chimiquement diverses, chaque structure représentant un groupe de 

composés, regroupés sur la base de la similarité 3D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Représentation schématique du déroulement de la campagne VS menée sur le CN en vue de la 

découverte de nouveaux modulateurs SMM2. 

 

Deuxiéme campagne de criblage virtuelle sur SMM2 

 

La méthode MM/GBSA189,196,206 a été utilisée pour calculer les énergies libres de liaison 

des complexes protéine-ligand simulés en solvant implicite en utilisant le même modèle 

GB et la même constante diélectrique interne du soluté que ceux utilisés pour exécuter 

la simulation.  
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Figure 7 - Energies libres de liaison obtenues pour les 20 premiers composés de la CN à différentes étapes 
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de la campagne de criblage sur la Chimiotèque Nationale. Les barres rouges font référence aux énergies 

libres de liaison prédites pour les composés de la Chimiotèque et les barres vertes correspondent aux 

énergies libres de liaison prédites des composés CK de référence. La ligne pointillée met en évidence 

l'énergie libre de liaison prédite du CK-571, que nous utilisons comme référence. A) Les 20 premiers 

composés obtenus suite aux calculs MM/GBSA utilisant des trajectoires de solvant implicites. B) Les 20 

premiers composés obtenus après les calculs MM/GBSA utilisant des trajectoires de solvant explicites. C) 

Les 20 premiers composés obtenus suite aux calculs MM/GBSA utilisant des trajectoires de solvant 

explicites et incluant la correction entropique QHMB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Résultats du criblage virtuel de la campagne contre la myosine II du muscle lisse (SMM2). L'affinité 

prédite des composés prioritaires de la Chimiotèque Nationale est indiquée en rouge. L'affinité prédite de 

trois inhibiteurs connus de Cytokinetics est indiquée en vert. Les composés ayant une activité détectable 

dans les tests in-vitro (voir ci-dessous) ou les hits sont indiqués en bleu. 

 

Un sous-ensemble contenant les 60 composés les mieux classés à partir des calculs 

effectués à l'étape du solvant implicite a été sélectionné pour des études plus poussées 

en utilisant le MD en solvant explicite. À l'étape du solvant implicite, un seul ligand, AB-

00058265, a été prédit avec une meilleure affinité de liaison que le CK-571. Après 100ns 

de simulations MD avec solvant explicite, l'énergie libre de liaison des composés a été 

calculée en utilisant MM/GBSA et les composés ont été classés à nouveau. Un certain 

reclassement a été observé, mais en général, les résultats des solvants implicites et 

explicites étaient bien corrélés (Figure 7A et 7B). Cependant, on a remarqué que les 

composés les mieux classés étaient dans la plupart des cas des ligands grands et flexibles, 

ce qui est un artefact connu des calculs MM/GBSA lorsque les termes entropiques sont 

négligés, comme c'était le cas dans nos calculs. Ainsi, ces calculs ont été complétés en 

utilisant la correction QHMB pour tenir compte du coût entropique de la retenue du 

ligand dans le site de liaison, calculé en prenant la différence entre l'entropie QHMB du 
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ligand dans l'état lié, en extrayant les coordonnées du ligand de la simulation du 

complexe, et dans l'état non lié en solution. Ainsi, le protocole émergent est le suivant : 

(1) utiliser le docking pour produire les coordonnées initiales du complexe ; (2) utiliser le 

MD à solvant implicite pour un classement et un filtrage rapides ; (3) compléter par le MD 

à solvant explicite et le QHMB pour le classement final. Après la correction QHMB, un 

reclassement significatif des composés a été observé. Nous avons trouvé plusieurs 

composés avec des énergies libres de liaison prédites similaires à celles du CK-571 (Figure 

7B et 7C).  
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Figure 9 - Résultats du test d'inhibition de l'ATPase SMM2 réalisé à l'Institut Curie. Sur l'axe des y est 

reportée l'activité ATPase relative de SMM2 en présence de DMSO, de CK-571 ou de chaque ligand du CN 

acquis à 190 µM. La première colonne correspond à l'activité ATPase en absence de myosine. La flèche 

bleue met en évidence le composé AB-00030952, qui est le composé le plus actif. Cependant, ce composé 

a une barre d'erreur très large. Trois composés sont représentés avec un cercle bleu autour, correspondant 

aux composés dont l'activité a été évaluée à très haute concentration (1,9 mM). 

 

En particulier, les ligands très flexibles ont été pénalisés plus fortement que les ligands 

plus rigides par le QHMB. Par exemple, le composé AB-00048113 était classé 7ème avant 

la correction QHMB. Après l'application de la correction, il est devenu le composé le 

mieux classé alors que le composé qui était classé 8ème (AB-00058265) avant la 

correction QHMB est maintenant classé 21ème.  Les résultats de la figure 7 illustrent 

l'effet du passage de simulations MD à solvant implicite à des simulations MD à solvant 

explicite, ainsi que l'effet de l'inclusion de la correction QHMB dans les prédictions 

d'énergie libre de liaison MM/GBSA. En outre, la CK-571 et la CK-903 ont été prédites 

avec des énergies libres de liaison similaires avant la correction, tandis que la CK-144 est 

moins affine. 

Après la correction du QHMB, le CK-903 a été fortement pénalisé et est devenu le pire 

des trois inhibiteurs. Parmi les composés les mieux classés, trois ont une affinité de liaison 

supérieure à celle de CK571, et environ 20 composés présentent des affinités 

comparables à celles des inhibiteurs connus de SMM2 de Cytokinetics. Sur un total de 60 

composés, 26 ont été acquis et envoyés pour des tests expérimentaux. Les résultats 

expérimentaux ont été recueillis par nos collaborateurs de l'Institut Curie à une 

concentration de 190 µM en présence de 2 µM de SMM2 et de 25 µM ou 40 µM d'actine 
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en utilisant un test d'inhibition de l'ATPase (Figure 9). En fixant comme zéro de l'inhibition 

le signal recueilli en présence de DMSO, correspondant à l'expérience de contrôle, les 

données montrent 8 composés avec une inhibition détectable. La plupart de ces 

composés ont une activité légère mais détectable (IC50 >100 µM) et sont des entités 

chimiques uniques. Fait intéressant, et malgré une barre d'erreur importante, AB-

00030952 présente une inhibition de 85 % de SMM2 à 190 µM. En considérant ces 

composés comme des succès, le taux de succès du protocole de criblage est d'environ 30 

%. Ces composés sont des inhibiteurs légers et on pourrait donc dire que l'activité 

capturée est si faible qu'ils ne devraient pas être considérés comme des succès. 

Cependant, comme l'indique la revue de Hevener et al.47, le seuil utilisé pour définir les 

composés actifs ou inactifs dans les campagnes HTS varie dans la littérature. En 

particulier, Hevener et al. détaillaient à l'époque que 56 études utilisaient un seuil 

d'activité compris entre 100 et 500 μM et 25 études utilisaient un critère supérieur à 500 

μM. Ils justifient le fait de définir comme hits des composés aussi peu actifs par la volonté 

d'enrichir la bibliothèque de hits en termes de diversité structurelle.47 Parmi les 

composés présentant une activité détectable in vitro, 5 sur 8 figurent dans les 10 

meilleures prédictions ; voir les barres bleues de la Figure 8. 

 

 

Analyse structurelle des composés prédits 

 

Suite à la campagne de criblage in silico, huit nouveaux inhibiteurs de SMM2 ont été 

trouvés. Bien que ceux-ci présentent une activité légère, ils peuvent être utiles pour 

comprendre comment mieux explorer la poche de liaison et à quel point cette poche est 

plastique et adaptable. 

La mise à disposition d'une structure cristallographique du complexe SMM2/CK-571 

constitue une avancée majeure pour le développement de nouvelles voies 

thérapeutiques ciblant SMM2. En particulier, cette structure montre une poche 

allostérique inconnue jusqu'alors où la liaison du ligand inhibe l'activité de SMM2 en 

stabilisant un état intermédiaire avec une faible affinité pour l'actine et en piégeant le 

domaine moteur de la myosine. On a découvert que l'inhibiteur cocristallin avait un IC50 

de 12 nM, ce qui en fait un inhibiteur SMM2 très puissant. Plus récemment, les structures 

cristallines de deux autres inhibiteurs de la cytokinétique ont été résolues (données non 

publiées) en complexe avec SMM2. De façon intéressante, ces composés ciblent la même 

poche allostérique dans le même état, et ont des modes de liaison très similaires à ceux 

du CK571. Pour ces ligands, connus sous le nom de CK-144 et CK-903, aucune valeur IC50 

n'est disponible mais ils sont des inhibiteurs de SMM2. L'inhibiteur CK-571 se lie à SMM2 

en insérant un fragment hydrophobe de part et d'autre de l'hélice SH1, la partie 
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carbamate d'isoquinoléine (Poche 1; P1) étant maintenue fixe entre l'hélice relais et 

l'hélice SH1, une partie hydrophobe de l'autre côté (Poche 2; P2) et une queue s'étendant 

vers l'extrémité N-terminale (Poche 3; P3).  (Figure 10A et 10B). Comme l'ont noté Sirigu 

et al.343, le CK-571 n'établit aucune liaison hydrogène directe avec les résidus protéiques 

et ses interactions sont principalement hydrophobes, s'appuyant sur un réseau de 

contacts de van der Waals pour interagir avec SMM2 (Figure 10A et 10B). En se liant à la 

poche allostérique de SMM2 de cette manière, la CK-571 empêche la réprimande du bras 

de levier et arrête le cycle dans cet état intermédiaire entre l'état de rigueur et l'état de 

pré-puissance (Figure 10B). 

 

 

  

 

  

  

   

   

   

 

 

 

 

  

 

 

Figure 10 - Vue tridimensionnelle des systèmes SMM2/inhibiteurs. Le domaine N-terminal est représenté 

en vert foncé, l'hélice Relay est représentée en rouge, l'hélice SH1 est surlignée en cyan et les trois feuillets 

β du domaine convertisseur sont représentés en violet. A) Structure du complexe biomoléculaire SMM/CK-

571. La CK-571 est représentée en bleu foncé, l'ADP en orange et l'ion magnésium sous la forme d'une 

sphère verte. B) Zoom sur le site de liaison de la CK-571, montrant les résidus bordant le site de liaison sous 

forme de bâtonnets et colorés selon le type d'atome. La vue de dessus permet de voir le groupement 

carbamate de la CK-571 inséré entre le Relais et l'hélice SH1 et le groupement chloro-fluoro-phényle de la 

CK-571 inséré de l'autre côté de l'hélice SH1. Elle met également en évidence la présence d'une queue 

polaire s'étendant vers le domaine N-terminal. C) Superposition des trois inhibiteurs de la cytokinétique 

SMM2 dans le site de liaison. Une représentation maillée du volume de la CK-571 est représentée en bleu, 

la structure moléculaire de la CK-144 est représentée en jaune et la structure moléculaire de la CK-903 est 

représentée en vert clair. D) Schéma illustratif du mode de liaison des inhibiteurs de la CK dans la poche 

allostérique du SMM2. 

 

Le mode de liaison de CK-571 est partagé par les deux autres inhibiteurs de la 

cytokinétique, où l'hélice SH1 est entourée de chaque côté et une queue polaire s'étend 
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vers l'extérieur dans le domaine N-terminal. Cependant, la CK-903 enveloppe l'hélice SH1 

sans explorer complètement le volume disponible sur le côté gauche de l'hélice SH1 au 

lieu d'insérer ses groupes chimiques profondément dans P2 (Figure 10C). Pour la CK-144, 

le mode de liaison est similaire à celui de la CK-571, en insérant un groupement dans P2 

et un autre gros groupement hydrophobe dans P1, entre l'hélice SH1 et l'hélice Relay. Un 

autre point important à soulever est que les interactions entre la CK-144 et SMM2 sont 

principalement non polaires et, comme pour la CK-571, il semble que la CK-144 

n'établisse aucune liaison hydrogène directe avec SMM2. La Figure 10A montre que le 

site de liaison allostérique de la CK-571 est éloigné du site de liaison des nucléotides et 

du domaine de liaison de l'ATP.  

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Mode de liaison de certains des composés trouvés par criblage virtuel de la Chmiotèque National 

du CNRS. Les liaisons hydrogène établies entre les ligands (vert clair) et SMM2 sont indiquées en jaune à 

côté du nom et du numéro du résidu. A) Mode de liaison de AB-00033398, classé 6ème par notre approche 

VS. B) Mode de liaison de AB-0000226, classé 37ème par notre approche VS. C) Mode de liaison de AB-

38206, classé 40ème par notre approche VS. D) Mode de liaison de AB-00030952, le composé le plus actif, 

dans les essais expérimentaux, classé 5ème par notre approche VS. 
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Cependant, en limitant le mouvement de l'hélice Relais, il empêche l'hydrolyse de l'ATP 

et arrête le cycle au début de la transition conformationnelle vers l'état de pré-course. Il 

est évident que bien que la poche ne semble pas être entièrement remplie par les ligands 

CK, les ligands remplissent la grande majorité de la poche, établissant de nombreux 

contacts de van der Waals, et il n'est donc pas surprenant que les interactions non 

polaires semblent être la principale force motrice stabilisant la liaison des CK. De plus, le 

fait que les trois ligands se lient dans la poche avec des modes de liaison très similaires 

implique qu'une géométrie particulière du ligand est nécessaire pour inhiber l'activité de 

SMM2 en ciblant cette poche allostérique. Les informations provenant de la structure 

cristalline soulignent que les liants potentiels doivent avoir deux parties hydrophobes 

pour envelopper l'hélice SH1 de chaque côté et une queue polaire s'étendant vers 

l'extérieur vers le domaine N-terminal pour une liaison appropriée dans la poche, en 

forme de Y comme le montre la Figure 10D. La comparaison du mode de liaison des 

composés CK aux composés hits montre que P1 n'est que partiellement occupé par les 

CKs et pourrait être mieux rempli (Figures 10 et 11). Le mode de liaison de certains des 

hits, notamment AB-00033398, explore P1 en insérant une terminaison 

pipérazine+aromatique qui s'enfonce dans la poche entre les hélices SH1 et Relay (Figure 

11A). Ce ligand établit également une liaison hydrogène directe avec la protéine au 

niveau de la leucine 87, un résidu qui fait partie d'une boucle flexible. Cependant, comme 

la boucle est flexible, cette liaison hydrogène n'est pas maintenue tout au long de la 

simulation et l'ampleur de sa contribution est donc probablement négligeable. D'autres 

composés, comme AB-00000226 (Figure 11B), explorent P1 et P2 de manière moins 

profonde. Cependant, AB-00000226 explore également longitudinalement la crevasse le 

long des hélices SH1 et Relay, s'insérant entre elles et empêchant éventuellement leurs 

mouvements. De plus, en explorant cette crevasse s'étendant vers le bas à partir de P1, 

occupant effectivement une quatrième poche (P4), il est capable de maintenir deux 

liaisons hydrogène avec l'isoleucine 684 et la glutamine 490. Nous constatons également 

que P2 pourrait être mieux remplie. En particulier, il semble qu'elle puisse accueillir des 

groupes plus grands et plus volumineux, comme dans le mode de liaison de AB-00038206 

(Figure 11C). En outre, AB-00038206 établit deux interactions de liaison hydrogène, avec 

la leucine 87 et la proline 690. De la même manière que pour AB-00033398 (Figure 11D), 

la liaison hydrogène avec la leucine 87 peut ne pas être très pertinente en raison de la 

flexibilité intrinsèque de la partie boucle. Cependant, la présence de la liaison hydrogène 

à la proline 690 est susceptible de contribuer à la stabilisation du mode de liaison.  
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Conclusion 

 

De nombreuses études font état des limites associées aux calculs MM/PBSA, parmi 

lesquelles la négligence des contributions entropiques est un aspect essentiel. Pour 

résoudre ce problème tout en conservant l'efficacité des calculs, nous avons développé 

un schéma original pour calculer la perte d'entropie du ligand lors de la liaison dans le 

cadre du "mélange de conformères".280,297 En appliquant le QHMB, nous avons pu 

reproduire quantitativement les entropies absolues expérimentales de 23 petites 

molécules en phase gazeuse. Puisque dans QHA et QHMB l'effet des molécules de solvant 

est implicitement capturé à partir des fluctuations des degrés de liberté du soluté, cela 

ouvre au calcul des entropies des ligands en solution avec une application directe dans 

les calculs de l'énergie libre de liaison au point final. L'application de QHMB pour calculer 

la perte d'entropie du ligand lors de la liaison pour un ensemble de 21 complexes 

protéine-ligand a augmenté la corrélation avec les énergies libres de liaison 

expérimentales. De plus, les corrections d'entropie dépendent du ligand, pénalisant 

fortement les ligands les plus flexibles, ce qui rend compte du coût de la retenue des 

molécules flexibles et de grande taille à l'intérieur du site de liaison. Après le 

développement de QHMB, une campagne de VS a été menée à la recherche de nouveaux 

et puissants inhibiteurs de SMM2. La bibliothèque chimiques CN á été criblées en utilisant 

le protocole implémenté dans ChemFlow complété par QHMB pour obtenir le classement 

final des composés. L'efficacité de la correction QHMB dans la prise en compte du coût 

de la retenue des ligands dans le site de liaison de la protéine représente une opportunité 

d'améliorer les résultats de la VS en réduisant le taux de faux positifs dans les calculs 

MM/GBSA. L'application de la correction QHMB aux calculs MM/GBSA effectués sur les 

composés du CN a conduit à un reclassement significatif. A partir du CN, 26 composés 

ont été acquis et testés expérimentalement dans un essai ATPase. Parmi ces 26 

composés, huit ont montré une activité significative à une concentration de 190 μM, ce 

qui a conduit à un taux de réussite de 30 %. De plus, la structure moléculaire de ces 

composés est diverse et différente de celle du ligand cocristallin, le CK571. Ainsi, cela 

ouvre la possibilité d'étudier différentes portions de l'espace chimique à la recherche 

d'inhibiteurs SMM2 innovants. 
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1. Drug Discovery 

 

The accurate determination of protein-ligand binding affinities by experimental means 

is possible, although costly and time consuming.81,82,380  It requires a significant amount 

of protein, which can hamper application to proteins which are difficult to purify.81,82,380  

To decrease costs at the hit identification stage, which would be large if an experimental 

determination of the binding affinity per ligand would be carried out for thousands of 

compounds, many research projects employ computational methods.27,84 In particular, 

molecular docking experiments are common approaches to filter out compounds and 

retrieving a promising subset of ligands for experimental testing.26,27,89 Due to the 

limitations of docking scoring functions, it is often the case that many false positives are 

found within prioritized subsets of compounds. To decrease the false positive rate, ligand 

docking poses of interest can be selected and rescored using higher-level of theory 

binding free energy calculation methods.189,201,213 Several methods can be applied at the 

free energy rescoring stage, ranging from accurate and rigorous calculations, which 

simulate the path connecting the bound and unbound states, to approximate end-point 

methods, which focus on estimating the binding free energy by computing the free 

energy contribution of each integrant of the binding reaction.189,201,213  

  

This dissertation focuses on the accurate calculation of ligand-binding affinities from 

numerical simulations. In particular, the main goal was the discovery of new allosteric 

inhibitors of Smooth Muscle Myosin II (SMM2), which is a myosin molecular motor with 

implications in several pathologies, by computational means. The project aimed at 

identifying these inhibitors by refining molecular docking predictions with a free energy 

rescoring step for a prioritized subset of small molecule ligands. To do so, the top ranked 

compounds arising from molecular docking were rescored using an end-point binding 

free energy approach coupled to a new entropy calculation method which accounts for 

the ligand configurational entropy loss upon binding. Following two chapters of 

introduction (Chapter 1 and 2), the theoretical basis of binding free energy calculations 

and of entropy calculations will be explored (Chapter 3 and 4). Then, the Quasi-Harmonic 

Multi-basin entropy calculation method will be presented, highlighting its accuracy in 

reproducing experimental gas-phase entropies and in improving the results of end-point 

binding free energy calculations (Chapter 5). Finally, a VS campaign in search of new and 

potent inhibitors of SMM2 function will be described, employing a multi-layer ligand 

library filtering and prioritization scheme to narrow down the Chimiotèque National du 

CNRS to a subset of 26 compounds selected for experimental testing (Chapter 6).  
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1.1: Introduction 

From ancient times, humanity has tried to treat illnesses and pathological conditions. 

The most common therapeutic route in antiquity was through usage of plant extracts.2–4 

Some of the earliest records on medicinal applications of plants and their extracts date 

back to 2600 BC, where close to 1000 plants were cataloged according to their 

therapeutic effects.4 Early records in Egypt go back to the year 2900 BC. From these, the 

“Ebers Papyrus” from circa 1600 BC, containing about 700 drugs, are one of the best 

preserved ancient compilation of drugs.5 Another example is Chinese Traditional 

Medicine, whose records date many millennia and are still being used today not only in 

China, but all around the world.4,5 During the period of the Roman empire, Pliny the Elder, 

a Roman author, army officer and naturalist, wrote the “Naturalis Historia” and created 

the first pharmacopoeia, while Pedanius Dioscorides wrote “De Materia Medica”, a highly 

influential manuscript on drugs and their application which remained a reference up until 

the 15th century.4,6 In the first millennium, the center of medical and pharmaceutical 

study moved to the Arab World. Critical contributions were given by Abu Bakr Al-Razi, in 

Bagdad, where he suggested to evaluate the safety of treatments in animals before 

human administration.7  In the 16th century, the Swiss physician Paracelsus defined the 

concept of dose in his Third Defense, stating that it was the dose of the chemical entity 

that determined whether its effect was harmful or not.8 Paracelsus also advocated for 

the usage of pure compounds as medicine instead of administrating herbal mixtures.7 His 

contributions were fundamental towards modern-day medical practice. In the 17th 

century, while on board of the HMS Salisbury, James Lind conducted the first ever 

recorded clinical trial, to determine whether citrus fruits were able to treat scurvy-

afflicted sailors.9  

Even though many modern analytical methods were not available before, it was 

understood that something inside herbal extracts and plants had exploitable therapeutic 

properties. As the field of Chemistry as a whole matured, analytical techniques were 

developed allowing the isolation of bioactive compounds from these extracts.4,10,11 An 

example was the discovery of morphine, a potent analgesic isolated from opium extracts 

in 1805 by a German apothecary assistant called Friedrich Sertürner.10–12 The compound 

was named by taking inspiration from the god of sleep Morpheus.10–12 Sertürners’ finding 

instigated other apothecaries at the time to examine medicinal plants and herbs, which 

led to successes in the isolation of bioactive natural products such as alkaloids.4,11 One 

example is Emanuel Merck in Darmstadt, Germany, who would become the progenitor 

of the pharmaceutical company named after him.  

In the 19th century, the field of drug discovery saw tremendous progress, brought by 

the ability to isolate compounds from natural sources. However, since production yields 
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from natural extracts were suboptimal, the field turned towards finding synthetic routes 

to produce pure compounds.7 By re-using coal tar, waste from the gas industry, William 

Perkin was able to synthetize the first dye, mauveine, in 1856.7 With the growth of the 

chemical industry, in time chemists were able to synthetize an array of compounds which 

deviated significantly from dyes.7 A landmark achievement at the time was the 

development of Aspirin in Germany by Bayer and Company, starting from extracts of 

willow bark in 1897.7,387,388 The salicylates found in willow bark extracts were corrosive 

and caused stomach irritation but the extract itself had antipyretic properties, thus 

motivating the company into producing a compound with antipyretic and analgesic 

properties, named acetylsalicylic acid, later known as Aspirin.7,387,388 

While there are several success cases, discovery of drugs in the past was mostly due to 

serendipity4,10,11, as in the discovery of penicillin by Alexander Fleming in 1928, which 

later on proved to be fundamental in tackling sepsis during World War II.4,13 The discovery 

of penicillin led the field forward, as researchers started looking at microbial organisms 

as potential sources of new drugs.4,11 As the years progressed, derivatives of penicillin 

were produced, such as cephalosporins.4,14 From the 1980s onward, screening 

methodologies and drug design approaches were proposed and validated. The lack of 

powerful analysis and screening tools left much of the success of drug design campaigns 

dependent on chemical intuition and luck, which motivated further research.11,15 It was 

established successful drug design required an open dialogue between chemists and 

biologists, regarding biochemical mechanisms of action of compounds with potential to 

become drugs.11 Further, it was recognized that the connection between structure and 

function was key to create novel chemical modulators.11 With the development of high-

throughput screening (HTS) platforms, the evaluation of the activity of several thousand 

compounds towards a given target in a fast, low-cost and automated manner was made 

possible.16,17 Chemical libraries could now be screened in pursuit of new modulators of 

receptors with pharmacological and medical relevance, at a reduced cost and in a time-

efficient manner, while integrating chemical and biological information from experts.16,17 

Examples of drugs which were discovered following HTS experiments include drugs for 

cancer therapy such as Alectinib, an orally available small molecule which blocks the 

activity of anaplastic lymphoma kinase18,19 or Olaparib, a small-molecule approved for 

ovarian, breast or prostate cancer therapy.20 Other small-molecule drugs approved 

following HTS include Maraviroc, an antiviral cytokine inhibitor for HIV therapy21 or 

Ceralifimod as a therapeutic avenue for Multiple Sclerosis.22 In Figure 1.1, some of the 

compounds representing landmarks in the drug discovery field are shown. Recently, HTS 

has also proven to be useful in the combat of the Covid-19 pandemic. Following HTS of a 

library of FDA-approved drugs, the group of Zhang et al. found several small-molecule 

hits against SARS-Covid-19 and arenaviruses.23 In particular,  mycophenolic acid, 
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Clofazimine, Dabrafenib, and Apatinib were found to significantly inhibit SARS-Covid-19 

infection with an IC50 in the low micromolar range.23 Despite this, the number of new 

Molecular Entities (NME) launched in the drug market has seen sharp decline in the last 

years.24 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

Figure 1.1 – Some landmark compounds in the drug discovery field. A) Molecular structure of Aspirin; B) 

Molecular structure of Morphine; C) Molecular structure of Mauveine; D) Molecular structure of Penicilin 

G; E) Molecular structure of Cephalosporin C. Molecular structures were drawn using MarvinSketch from 

ChemAxon.25 

 

Another significant advance towards lowering resource consumption in drug discovery 

campaigns was the incorporation of molecular modelling and numerical 

simulations.26,27,29 The inclusion of in silico approaches was possible due to the increase 

in computer power and the development and validation of computational models aiming 

to accurately describe the nature of interactions between biological entities.15,26–28 Thus, 

the medicinal chemist’s knowledge could be combined with molecular modelling and HTS 

to accelerate the drug discovery pipeline. This new field was named Computer-Aided 

Drug Discovery (CADD) and hosts a wide array of tools and strategies which can facilitate 

and accelerate the discovery of new therapeutic agents.26,27,29 Methodologies comprised 

in CADD have played a vital role in the discovery of currently approved and used drugs.27 

These methodologies include molecular modelling, quantitative structure-activity 

relationships (QSAR), virtual screening approaches, molecular docking and machine 

learning methods, among others.27,29–31  
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1.2: What makes a molecule a drug? The concept of drug-likeness 

A drug is any substance which can elicit a physiological or psychological response in an 

organism after administration.32 Currently approved drugs spawn a rich and diverse 

chemical space, going from small molecules, like Apatinib or Penicilin, to peptides or even 

larger compounds like Mipomersen.33 Given the large differences in physicochemical 

profiles among drugs, these entities have different administration methods. Drug 

administration methods include but are not limited to inhalation, ingestion, injection and 

dissolution. One of the most well-known online drug repositories is the DrugBank34, 

which includes 2683 small-molecules approved by the Food and Drugs Administration 

(FDA), the European Medicine Agency (EMA) and the Canadian agencies as of March 1st 

2021. Additionally, DrugBank contains 1463 biologics, 131 nutraceuticals and 6654 

experimental compounds. Another useful resource is DrugCentral35, designed at the 

University of New Mexico. DrugCentral regularly updates its library by monitoring the 

FDA, EMA and the Pharmaceuticals and Medical Devices Agency in search of newly 

approved drugs. For each compound, DrugCentral provides information on the active 

ingredients, drug mode of action, pharmacological action, physicochemical properties, 

among other properties, extracted from expert-curated resources such as ChemBL36 or 

KEGG.35,37 Focusing on small molecules, which are key to this dissertation, it is important 

to question what kind of physicochemical properties a molecule should exhibit to be 

considered a drug. In other words, it is important to define the concept of drug-likeness.38 

Defining this concept allows researchers to filter out of their chemical libraries 

compounds which do not satisfy the requirements, thus saving resources and prioritizing 

molecules with a more promising profile.  

A fundamental contribution to the definition of drug-likeness was the seminal paper of 

Christopher Lipinski in 1997.39 In his contribution, Lipinski outlined a set of rules, later 

known as Lipinski’s rule-of-five (R-o-5), which were derived from orally bioavailable and 

human administration-approved drugs at the time.29,38,39 The Lipinski R-o-5 states that a 

compound is likely orally bioavailable if: (1) it has a molecular weight (MW) below 500 

Daltons (Da), (2) it has less than 5 hydrogen-bond donor groups, (3) it has less than 10 

hydrogen bond acceptor groups, (4) its octanol/water partition coefficient (logP) is less 

than 5.38,39 The connection between drug-likeness and oral bioavailability was then 

established. At the time, this rule of thumb analysis was a landmark contribution that 

allowed researchers to efficiently evaluate the potential of chemical libraries and 

prioritize compounds with the potential to become drugs approved by the FDA. However, 

the R-o-5 also has limitations.38 It relies on the assumption of passive transport (not 

considering the existence of transporter proteins), only 50% of currently approved small-

molecule drugs comply to the R-o-5 and there are many drugs which do not require oral 



    

7 
 

bioavailability and thus also do not respect it.38 Other researchers, like Ghose40, Veber41, 

Egan42 and Muegge43, suggested their own drug-likeness evaluation schemes either 

based on the Lipinski R-o-5 or based on a pharmacophore point definition. More recently, 

other researchers suggested a new interpretation of drug-likeness based on desirability 

functions.44 In this definition of drug-likeness, the contribution of key ligand molecular 

properties are combined to compute a desirability score in the scale of 0 to 1, encoding 

the Quantitative Estimation of Desirability (QED) per compound, by means of double 

asymmetric sigmoidal functions which were calibrated on a general ligand benchmark 

dataset.44 In this particular study, the some of the queried properties were the number 

of rotatable bonds, the molecule the number of aromatic rings, the number of hydrogen 

bond donors and acceptors, the molecular weight and the octanol-water partition 

coefficient.44 A more recent development in the computation of compound desirability 

was produced by Akyiama and co-workers, where instead of generating a set of general 

functions whose weights are optimized on ligand datasets targeting several proteins, the 

researchers opted by developing one QED function per target.45 This allows the 

development of protein-specific ligand filters to prune chemical datasets according to the 

physicochemical properties of known binders. Further exploration in the field led the 

group of Lovering46,47 to identify that the fraction of sp3 carbons (Fsp3) present in the 

molecular structure of the ligand could be a useful descriptor to estimate compound 

success in the drug discovery pipeline.48,49 Lovering was able to determine that the 

fraction sp3 carbon in molecules increased between phases in the pipeline from the initial 

hit identification step and throughout clinical trials.47,48 It was hypothesized that it could 

be either related to molecular solubility or the fact that the larger ligands were occupying 

better the binding pocket.47,48 A detailed description of the rule-based systems proposed 

over the years to define drug-likeness is shown in Table 1.1.  

A contrasting view to the usage of the R-o-5 as a filter for hit selection was put forth by 

Congreve et al.50 and further deepened in the work of Tudor Oprea and colleagues38,51, 

where it is discussed that the R-o-5, while useful, was derived from analyzing drugs, not 

hit compounds.51 By employing the R-o-5 in HTS context, it is highly likely that many of 

the active compounds found correspond to drug-like compounds barely within the ranges 

defined by the ruleset. Further, in HTS experiments, the activity cut-off appears to be 

arbitrarily selected, or set from a known active, and the hits retrieved are typically 

micromolar.52 As pointed out in a review, many studies use low to mid-micromolar 

thresholds, ranging from 1 to 500 μM.52 Further optimization of drug-like compounds, 

which is a necessary requirement to achieve nanomolar activity compounds, would 

probably place them outside the of R-o-5 space. As such, stricter rules were designed 

with the aim of prioritizing smaller and more optimizable compounds. The suggested 

rules stated that selected compounds should be active hits exhibiting: (1) a MW equal or 
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below 300 Da, (2) at most 3 rotatable bonds, (3) a logP below 3, (4) at most three 

hydrogen bond donor groups and (5) at most three hydrogen bond acceptor groups. This 

rule was termed the rule-of-three (R-o-3)35,38,50 and these compounds were named lead-

like compounds.38 As such, lead-like hit compounds are significantly smaller, more 

soluble, less hydrophobic, less complex and less flexible when compared to drug-like 

compounds.38,51 

It is then apparent that to increase the success of drug discovery campaigns, special 

attention must be given to the filtering steps such that the processed library contains only 

compounds of high value for the screening campaign and thus minimizes time and 

resource consumption. Although arguments exist towards enforcing of the R-o-3 in drug 

discovery projects, the Lipinski R-o-5 remains popular in the drug discovery community, 

in part for historical reasons.  

 
Table 1.1 – Different rule-based definitions of drug-likeness and lead-likeness according to 

Lipinski, Ghose, Veber, Muegge, Oprea et al., Lovering and the QED paradigm. 

 

Rule Name Publication 

Year 

Type of definition Features 

Lipinski’s Rule-of-Five 1997 Rule-based MW ≤ 500 Da; HBA  

≤ 10; HBD ≤ 5; logP ≤ 

5 

Ghose Filter 1998 Rule-based -0.4 ≤ logP ≤ 5.6; 40 

≤ MR ≤ 130; 180 ≤ 

MW ≤ 480; 20 ≤ NAt ≤ 

70 

Veber Filter 2002 Rule-based NRot ≤ 10; PSA ≤ 

140 Å2 

Muegge Filter 2001 Rule-based 200 ≤ MW ≤ 600; -2 

≤ logP ≤ 5; TPSA ≤ 

150; NRing ≤ 7; NC > 

4; NHA > 1; NRot ≤ 15; 

HBD ≤ 5; HBA ≤ 10 

Egan Filter 2000 Rule-based logP ≤ 5.88; 

TPSA ≤ 131.6 
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Quantitative 

Estimation of Desirability 

(QED) 

2012 Multivariable 

optimization 

MW, logP, HBA, 

HBD, NRing, NRot, 

PSA, ALERTS 

Target-specific QED 2019 Multivariable 

optimization 

MW, logP, HBA, 

HBD, NRing, NRot, 

PSA, ALERTS 

Molecular Complexity 

 

2009, 2012 Rule-based 0.36 ≤ Average Fsp3 

≤ 0.46; NSte ≥ 1  

Lead-likeness Rule-of-

Three 

2003 Rule-based MW ≤ 300 Da; logP 

≤ 3; NRot ≤ 3; HBD ≤ 

3; HBA ≤ 3 

MW: Molecular Weight; logP: octanol-water partition coefficient; HBD: Hydrogen bond donors; HBA: 

Hydrogen bond acceptor; NRot: Number of rotatable bonds; NRing: Number of rings; Average Fsp3: 

Average fraction of sp3 carbons; NAt: Number of atoms; PSA: Polar Surface Area; NSte: Number of 

stereocenters; MR: Molecular Refractivity; NC: Number of carbons; NHA: Number of Heavy Atoms; TPSA: 

Total Polar Surface Area; ALERTS: Number of structural alerts according to Brenk et al.53 

 

Rules describing drug-likeness have been applied in drug discovery campaigns ever 

since the early 2000s, with significant impact in the development of many drugs. To aid 

the filtering and analysis of chemical libraries, tools were developed with the aim of 

computing molecular properties and numerically evaluate the drug-likeness of 

molecules.  

One such tool was developed by the Swiss Institute of Bioinformatics, SwissADME54, 

combining drug-likeness analysis and pharmacological profiling with a user-friendly 

graphical interface.54 In this web-based server, calculation of the physicochemical 

properties of molecular structures is straightforward and a thorough analysis is carried 

out and supplied in the form of a visual report, as shown in Figure 1.2, and in a .csv format 

for further analysis. As is shown in Figure 1.2, Aspirin fulfills all the requirements for 

druglikeness comprised in the R-o-5, Egan, Ghose and Veber filters. It does not, however, 

satisfy the Muegge filtering scheme. In particular, the molecular weight of Aspirin (180.16 

Da) falls outside of the range recommended by Muegge (200 ≤ MW ≤ 600). As such, it is 

important to question whether rigid application of these filters is reasonable or not. Most 

researchers, when faced with this situation, will opt by allowing at most the violation of 

one rule in the filtering scheme, as recommended39 in the work of Lipinski. This was the 

approach followed in the work presented in Chapter 6, where the application of a VS 

workflow, with ligand library filtering steps comprised within, led to the identification of 

innovative Smooth Muscle Myosin II (SMM2) allosteric inhibitors. Other tools with the 
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ability to carry out these analysis include DataWarrior1 and the tools developed by 

molinspiration55. DataWarrior has the added benefit of allowing the calculation of 

pharmacophore descriptors for small-molecule ligands, which can then be used for ligand 

library clustering based on pharmacophore similarity.1 These pharmacophores can then 

be used for further library pruning by selecting representative ligands within each 

molecular cluster.1 Doing so allows to explore the full chemical diversity of the library at 

a reduced cost. The reader is encouraged to explore the Swiss Institute of Bioinformatics 

Click2Drug56 web repository for more computational tools with potential applications in 

drug discovery projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Example of a drug-likeness analysis carried out in the SwissADME server for acetylsalicylic acid 

(Aspirin). The SwissADME server supplies not only the molecular features but also evaluates the solubility, 

the druglikeness, the lipophilicity, the lead-likeness and the pharmacokinetic profile of queries compound. 

 

1.3: The drug discovery pipeline 

Drug discovery is a long and costly process in which new pharmaceutical compounds 

are identified, optimized, tested and brought to the market.5,27,29,57 A drug discovery 

program is usually initiated due to the lack of an appropriate therapeutic agent against a 
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given disease or clinical condition.58 It is estimated that until a molecular entity is 

approved for clinical usage, researchers will have invested around 12 years and on 

average upwards of US$2 billion dollars.59 However, the cost and time required for the 

process to be successfully completed depends on a number of factors, including  

compound safety, synthetic accessibility, potency and intellectual property protection.59 

A schematic representation of the drug discovery pipeline is show in Figure 1.3. The drug 

discovery pipeline is comprised of 3 broad stages: target validation and hit discovery, hit 

development, including pre-clinical and clinical trials, and FDA approval.27 While every 

year new compounds with drug potential are found, the large majority fail to reach the 

market. Common reasons for failure in a drug discovery campaign include compound 

toxicity, undesirable compound side effects, bad ligand pharmacodynamic and 

pharmacokinetic profiles, low bio-availability, chemical instability, low water solubility 

and promiscuous binding to other targets.27,59 

 
 
 

 

 

 

 
Figure 1.3 – Schematic representation of the drug discovery pipeline. The pipeline contains three main 
stages: Identification, Development and Approval. Inside the Identification stage, there are two main 
phases: Target Validation and Hit identification. Inside the Development stage, there are two main phases: 
Lead optimization and the clinical and preclinical trials. The Approval stage corresponds to the submission 
and approval by the FDA of the new therapeutic for commercialization. It may also include post-approval 
phase IV clinical studies. Obtained from “An Overview of AI in Oncology Drug Discovery and Development. 
In Artificial Intelligence in Oncology Drug Discovery and Development”; by Linton-Reid, 2020.  Taylor, J. W. 
C., Taylor, B., Eds.; Copyright @ IntechOpen.60

 

 

1.3.1: Target identification and validation 

All the steps of the drug discovery pipeline present significant challenges for 

researchers. The selection of a target must obey a series of requirements such as: safety, 

clinical relevance, efficacy and druggability of the target.58 Furthermore, it must be 

confirmed that perturbing the normal function of the target yields the desired 

therapeutic. As recently suggested, processing available biomedical data using modern 

data mining tools appears as a robust approach for target identification and validation.58 

The validation of a target can be carried out from in vivo and in vitro studies and while 

each approach is valid, it is recommended that multiple procedures be combined to 

maximize confidence.58 

 



    

12 
 

1.3.2: Hit identification phase 

In the hit identification phase, large-scale HTS or virtual HTS campaigns are carried out 

to screen large chemical libraries in search of small molecules which produce the desired 

therapeutic effect, be it inhibition or activation, on the desired target.29,58,61 The 

confirmation of the modulatory effect implies the a priori existence of a robust and 

trustable biochemical assay.58,389 The development of an assay requires a set of 

conditions: ability to identify compounds with an appropriate mechanism of action 

(pharmacological relevance), reproducibility, consideration of the effect of compounds 

found in the assay (solvents, for example), assay quality and cost.58 Within the context of 

hit identification by HTS, biochemical and cell-based assays have seen routine use.389 

Biochemical assays are ascribed to receptor targets or enzymes, being simple and 

reliable, allowing researchers to evaluate how potent is the compound by evaluating its 

effect on a given experimental end-point.58 Cell-based assays are more complex and can 

be used to report on compound properties like toxicity.58 However, at the hit 

identification stage it is possible to recover false positives and false negatives due to 

aggregation and precipitation of compounds, non-specific binding and interference in the 

assay by interaction between compounds and the constituents of the assay.389 One way 

to probe for false positives is to use counterscreens, testing the hit compounds against a 

protein in the same family of the target.389 

Typically, many of the recovered hits are not potent enough or exhibit poor 

physicochemical profiles and toxicity, preventing their direct application as drugs. As 

such, lead optimization campaigns are carried out to improve both the potency and the 

physicochemical features of the molecules.15,27,29,58,61 Examples of undesirable properties 

found in these compounds are low water solubility, low lipophilicity or the existence of 

chemical warhead groups within the molecular structure.15,27,29,58,61 

 

1.3.3: Lead optimization phase  

At this stage, both advanced computational techniques and chemical intuition are key 

ingredients driving the design of derivatives which are potent and whose physicochemical 

profile is desirable. Often, lead-optimization also focuses on improving the absorption, 

distribution, metabolization, excretion and toxicity profile (ADMET) of compounds usually 

through in vitro and in silico means while not worsening the potency with respect to the 

lead molecule.27,58,59,62 The chemical structure of the identified hits acts as starting points 

for chemical modification, usually according to the expertise and creativity of the 

medicinal chemist  While in the past the potency of the compound was a key driver of 

lead-optimization campaigns, this paradigm shifted and now other properties, like 
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protein selectivity, solubility, lipophilicity or the compound pharmacokinetics properties, 

have been raised to the same level of importance as the potency of the hits.389 

 

1.3.4: Pre-clinical tests 

The optimized compounds, also termed lead compounds, are then tested in vitro or in 

in vivo, using animal models, to determine efficacy, safety and ADMET features. 58 The 

main goals of this stage are the determination of a safe starting dose for human testing 

in clinical trials and assessment of the potential toxicity of the compound.59,63 Typically, 

it is at this phase that most potential drugs fail: either due to not being active in the animal 

models or due to toxicity concerns.59,63 It is particularly important to evaluate the 

toxicological profile of chemicals as early as possible to save both time and resources by 

avoiding problematic optimization routes or to avoid being stuck in a situation where the 

compound is not-optimizable.27,58,59,63 However, toxicological profiling of compounds is a 

challenging subject on its own, depending on many factors such as the route of 

administration, dose and exposure time and the molecular physicochemical properties. 

During drug development, in particular in the pre-clinical phase, several toxicity end-

points are studied, such as hepatotoxicity, cardiotoxicity, genotoxicity, immunotoxicity 

and phospolipidosis.64,65 Other toxicity endpoints evaluated include carcinogenicity or 

teratogenicity.63,66 If a lead compound still exhibits some undesirable properties after an 

optimization round, it must be subjected to additional cycles. Importantly, there exist 

computational methodologies able to predict some of these endpoints based on machine 

learning models trained on large and diverse chemical datasets containing experimental 

measurements.27,66,67 It is important to note the development of VEGA as a significant 

contribution to the field of computational toxicity.66 This piece of software is a user-

friendly tool for in silico toxicity evaluation and targets many endpoint, providing a 

comprehensive analysis of the predicted toxicological profile of candidate compounds in 

a concise and detailed report and, in a first pass, reducing the number of required animal 

testing.66  

Typically, toxicity studies investigate which organs could the compound target as well 

as the risk of toxicity. Both in vitro and in vivo tests are required to complete pre-clinical 

trials and validate in silico predictions, through rodent or canine models, although ex-vivo 

testing is also an option.58 The goal with the evaluation of the pharmacodynamics profile 

of the molecule is to know how potent the compound is, the dose at which toxic side-

effects appear and the dose which elicits a significant therapeutic effect without 

significant toxicity arising in the animal models.58  
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1.3.5: Clinical studies  

Molecules which pass the pre-clinical phase are then tested in humans. Clinical trials 

are divided into phases: Phase I, Phase II, Phase III and Phase IV, should the latter be 

required by the FDA.68,390,391,392 In Phase I trials, the objective is to evaluate short-term 

toxicity and to monitor drug safety in a small, healthy population.68,391,392 Additionally, it 

evaluates the optimal drug administration path, the maximum tolerated dose (MTD) and 

potential side effects.390,392 In Phase II trials, the aim is to evaluate the effectiveness and 

safety of the lead molecule, while evaluating pharmacokinetics and dynamics. The 

prototypical drug is administered in larger concentrations to a group of participants 

exhibiting the disease or condition.68,392 During the Phase II trials, one key aspect is the 

determination of therapeutic dose in humans at which no apparent toxicity is 

elicited.68,390,392 In Phase III trials, the objective is to determine if the new proposed 

molecule outperforms the ones already available in the market and the incidence of 

adverse rections.68,392 The group of participants, which is comprised of thousands of 

individuals, is split into two groups: one is treated with the new compound and one is 

either treated with the current standard treatment or a placebo.68,390 At least two Phase 

III trials are required for FDA approval.7 Finally, Phase IV trials, or post-marketing studies, 

are performed following FDA approval to identify long-term effects, rare adverse 

reactions and evaluate drug effectiveness in populations with different features from the 

original population of the study.68,390,392 If a molecule passes the clinical trials, it is eligible 

feature a New Drug Application (NDA) submission to the FDA. 

 

 

1.4: Affinity and activity concepts in protein-ligand binding  

Since the 1990s, the usage of HTS in drug discovery pipelines became a cornerstone of 

pharmaceutical research.15,29 A molecule will be considered a hit if, after testing and 

confirmation assays, it is able to elicit a significant effect on the target in a reproducible 

manner.58,68 During the remaining of this dissertation, the term target will be used as 

synonymous for protein even if there are drugs targeting DNA, lipid structures and other 

biomolecules. Known limitations of typical HTS screenings are low hit rates52 and the 

struggle with supplying hits that are easily optimizable into novel therapeutic 

compounds.38 Furthermore, HTS experiments are typically “hit-or-miss” as compounds 

are tested at only one concentration69 and do not provide a quantitative measure of the 

activity of the compounds. This is especially important in the context of hit identification, 

where the aim is to select which molecules should progress towards lead-optimization.58 

It is fundamental to correctly select the hits to maximize the chances of success in the 
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subsequent steps of the pipeline.58 Following HTS, it is standard to confirm the activity of 

hits by evaluating the ligand concentration at which 50% of the receptor activity is 

inhibited or enhanced (IC50 or EC50 determinations, respectively).58 These determinations 

allow the separation between high and low activity compounds and the effective 

prioritization of the most active hits.   

 

1.4.1: The difference between ligand activity and ligand binding affinity 

At equilibrium, the binding reaction of a ligand (L) to a receptor (R), with a 1:1 

stoichiometry, is defined by Equation 1.1189 and the equilibrium constant for binding by 

Equation 1.2: 

 

[𝑅] + [𝐿]  ⇌ [RL]                                                 (1.1) 

 

                              𝐾eq = 
[𝑅𝐿]

[𝑅][𝐿]
=

1

𝐾D

= 𝐾𝐴                                     (1.2) 

 

where 𝐾eq is the equilibrium constant, [𝑅] is the receptor concentration free in solution, 

[𝐿] is the ligand concentration free in solution, [RL]  is the concentration of the receptor-

ligand complex, 𝐾𝐴 is the association constant and 𝐾D is the dissociation constant, which 

quantify the ligand binding affinity. Indeed, these constants are effective binding 

constants, as they depend on the conditions of the assay like pH or ionic strength. The 

ligand binding affinity is a measure of binding strength, meaning that the smaller the 𝐾D 

the stronger the affinity with which the ligand binds.380 Looking at Equation 1.1, it means 

that potent binders shift the chemical equilibrium in the direction of complex 

formation.189 Following HTS, hit compound activity is quantified in a precise manner 

through IC50 determinations. The calculation of an IC50 requires construction of a dose-

response, or Hill, curve.70–72 The Hill equation is used to describe many non-linear 

relationships, among which quantitative pharmacology and protein-ligand binding are 

included.70 The Hill equation can be derived from the law of mass action, as in the 

Michaelis-Menten model, under three main assumptions: (1) Receptors are fully 

accessible to ligands, (2) protein is either bound to  a ligand or free in solution, (3) Ligand-

receptor binding is a reversible process.73 During an IC50 determination, the ligand is 

added at different concentrations and the response that is elicited in the receptor (in this 

case, protein) is measured. The points are then fit to a Hill equation71,72 which can be 

written in the general form of Equation 1.3 or in the form typically employed in IC50 

determinations (Equation 1.4) after some algebra:71,72 
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                                                     𝑓b = 
1

1+(
𝐾D

[𝐿]
)
𝑛                                (1.3) 

    
𝐸

𝐸max

= 
1

1+(
IC50

[𝐿]
)
𝑛        (1.4) 

 

where 𝑓b is the percentage of protein molecules with n ligands bound, [L] the ligand 

concentration, 𝐸 is the response and 𝐸max is the maximal response. In the case of 

activators, the measured end-point is the EC50.71,72 An example of a dose-response curve 

is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Example of a dose-response curve fitted to the Hill equation. The IC50 of warfarin towards 

vitamin K 2,3-epoxide reductase complex subunit 1  (VKORC1) was determined at different concentrations 

of vitamin K1 2,3-epoxide in an in vitro dithiothreitol (DTT) driven enzymatic assay employing different DTT 

concentrations. Extracted from “Determination of the warfarin inhibition constant Ki for vitamin K 2,3-

epoxide reductase complex subunit 1  (VKORC1) using an in vitro DTT-driven assay” by Bevans et al., 2013, 

Biochimica et Biphysica Acta – General Subjects, 1830, 8, 4202-4210.379 Copyright @ 2021, Elsevier B. V.  

 

Although activity and affinity are related, these terms describe different phenomena. 

While the activity describes the magnitude of the effect elicited upon ligand binding to 

the target, the ligand-binding affinity (𝐾D) is related to the strength of the binding 

reaction, which does not necessarily correlate 1:1 with the observable effect.74 Ligands 

which are highly affine towards a target are not necessarily potent and indeed ligands 

with the same 𝐾D to a protein can elicit diametrically opposed effects (inhibitors and 

activators of ion channels serve as example here). Additionally, inhibitors can be partial 

agonists, where their potency depends on to the percentage of effect they elicit on the 
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target with respect to the maximal target activity, which does not depend only the affinity 

with which they bind it.381  

 

1.4.2: The Michaelis-Menten model 

To determine the rate of a reaction catalyzed by an enzyme as a function of substrate 

concentration72, one typically uses the Michaelis-Menten model (Equation 1.5). 

 

                                             𝑣 =  
𝑉max ∗ [𝑆]

𝐾𝑀+[𝑆]
                                          (1.5) 

 

Here, 𝑣 is the reaction rate, 𝑉max corresponds to the maximum rate, 𝐾𝑀 is the Michaelis 

constant and [𝑆] is the substrate concentration.72 A low affinity substrate will have a large 

𝐾𝑀, meaning that a large [𝑆] is required to elicit 50% of 𝑉max.72 To grasp the usefulness 

of the Michaelis-Menten model, consider two cases: a competitive inhibitor binding assay 

and a non-competitive inhibitor binding assay. In the former, there is a competition for 

the active site, meaning that competitive inhibitors will cause a decrease in 𝐾𝑀, as the 

affinity of the enzyme towards the substrate is reduced because of inhibitor binding. In 

the first example, the competitive inhibitor prevents the substrate from binding to the 

enzyme (decrease in 𝐾𝑀), occupying the active binding site and reducing the activity of 

the enzyme by decreasing its affinity towards the substrate. In the second case, the 

inhibitor binds to an allosteric site and inhibits protein activity by stabilizing a non-

functional conformation without affecting the affinity of the substrate towards the 

protein (𝑉max will decrease without affecting 𝐾𝑀).  

The Michaelis-Menten model establishes a clear relationship between the activity of an 

enzyme and substrate concentration.72 This model also constituted the basis upon which 

equations were derived to show the relationship between activity and affinity in a 

quantitative fashion. In particular, it allows us evaluate the effect an inhibitor has upon 

enzymatic function.  

 

1.4.3: The Cheng-Prusoff equation 

The relationship between activity and affinity was first demonstrated in a quantitative 

fashion by Cheng and Prusoff in 197375,76, when they derived Equation 1.6 to describe the 

relationship between KD (or the inhibition constant Ki) and 𝐼𝐶50 for competitive reversible 

inhibitors of enzymes as: 
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     𝐼𝐶50 = 𝐾i (1 +
 [𝑆]

𝐾M

)                           (1.6) 

 

In 1975, however, Cha noticed that the original Cheng-Prusoff equation did not take into 

account tight binding scenarios, and obtained Equation 1.777: 

 

                                                𝐼𝐶50 = 𝐾i (1 +
 [𝑆]

𝐾D

) + 
𝐸0

2
                  (1.7) 

 

where 𝐸0 corresponds to the total concentration of enzyme. These equations will hold as 

long as the protein target is or behaves like an enzyme.77 However, there exist drawbacks 

to the usage of 𝐼𝐶50 values as absolute measurements. Comparisons between 𝐼𝐶50 values 

are not straightforward.382 As observable from Equations 1.5 and 1.7, the 𝐼𝐶50 

determinations depend on the enzyme and substrate concentration, which may change 

from assay to assay, as well as on the assay type.382 Furthermore, in case of tight binding, 

the lowest IC50 measurable is half of the active enzyme concentration.77 Assuming that 

the assay uses 150 nM of enzyme, picomolar inhibitors would be categorized as low 

nanomolar inhibitors due to the limitation in the resolution of the measurements. Due to 

these limitations, comparison of 𝐼𝐶50 determinations is not straightforward, especially 

when they arise from different laboratories.382 To circumvent these limitations, one can 

use the Cheng-Prusoff equation to compute the 𝐾i, which configures a binding affinity, 

from the determined 𝐼𝐶50 through Equations 1.6 or 1.7. The current gold-standard for 

binding affinity determinations is Isothermal Titration Calorimetry (ITC) 81,82,380, a 

technique which will be summarized in the following section. 

 

 

1.5: Experimental determination of ligand binding affinities 

 

The binding of a ligand to a receptor is an equilibrium phenomenon, obeying to 

thermodynamic laws. The binding free energy of this associative process at the standard 

state ∆𝐺𝑏𝑖𝑛𝑑
0  is characterized by thermodynamic observables as shown in Equation 1.8.383 

 

                                     ∆𝐺𝑏𝑖𝑛𝑑
0 = −𝑅𝑇 ln Keq = ∆𝐻° − 𝑇∆𝑆°                             (1.8) 

 

where 𝑅 is the perfect gas constant, 𝑇 is the temperature in Kelvin, Keq is the equilibrium 

constant at the standard state (usually 1 Molar concentration, Equation 1.2), ∆𝐻° is the 

standard enthalpy of binding and −𝑇∆𝑆° is the standard entropy of binding. The 
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dissociative process is described at the same time by plugging Equation 1.2 into Equation 

1.8, yielding Equation 1.9. 383 

 

     ∆𝐺𝑏𝑖𝑛𝑑
0 = 𝑅𝑇 ln𝐾D                                               (1.9) 

 

The two terms that compose  ∆𝐺𝑏𝑖𝑛𝑑
0 , enthalpy and entropy, must be analyzed carefully. 

In protein-ligand binding, typically the binding enthalpy contribution is negative. A 

negative enthalpy term means that complex formation implies that the new interactions 

established between the ligand and the receptor are more favorable than the 

interactions these species established previously with the solution. A positive enthalpic 

contribution shows that the interactions established within the protein-ligand complex 

and between the complex and the solution are not as favorable as those established by 

the individual species with the solution. However, as complexation occurs there are 

translational, rotational and vibrational degrees of freedom which become confined in 

the ligand and receptor, leading to a loss in configurational flexibility and limiting the 

translational and rotational motions (i.e. a loss in entropy) of the unbound state of each 

species with respect to the bound state characterized by the protein-ligand complex. In 

other words, as ligand binding occurs, an entropic loss ensues as the conformational 

space accessible to the bound state of the chemical species is usually smaller than that 

of the unbound state (T∆S < 0).78 In addition to this entropic penalty, which is essentially 

a solute entropy contribution, there exist other contributions which can play a major role 

during binding. One clear example is the contribution of the solvent, such as when the 

binding reaction requires the displacement of several entropically unfavorable water 

molecules within the binding site.108 As these water molecules are expelled from the 

binding pocket, their translational, rotational and vibrational degrees of freedom become 

unhindered. Thus, this process results in a favorable entropic contribution arising from 

the freeing of the water molecules present in the binding site.108 This contribution is very 

much system dependent and, in some cases, may even mean that the total entropy 

change (solvent + solute) turns out to be a favorable for ligand-binding.79  

 

1.5.1: Isothermal Titration Calorimetry 

There are several experimental techniques which can be used to estimate the 

thermodynamic parameters of binding reactions, in particular when an accurate 

measurement of the ligand-binding affinity is desired. The current gold-standard 

methodology is the Isothermal Titration Calorimetry (ITC) assay.80,81 In an ITC experiment, 

the apparatus comprises an adiabatic box with two recipients (or cells) inside whose 

temperatures are measured by heaters.81,82,380 One of the recipients contains a reference 
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solution and the other contains a solution with the target receptor (reference and sample 

cell, respectively). During the experiment, the reference cell is heated to a constant 

temperature and the sample cell is injected at regular intervals with a solution containing 

the ligand.81,82,380 As a result of the ligand binding to the receptor, the temperature inside 

the sample cell changes. This change in is then detected and the heater associated with 

the sample cell will either receive more or less voltage from the power source, producing 

more or less heat, to maintain the temperature equal between the two cells.81,82,380 The 

power needed to maintain both cells at the same temperature is recorded over time. The 

data points are fit to a sigmoidal curve and the 𝐾D value can be estimated.81,82,380 A 

graphical description of the assay is given in Figure 1.5.  

 

 

 

 

 

 

 

 

 
 
 

 
 

 

 

Figure 1.5 – Schematic representation of the ITC experimental equipment. On the left, the two cells inside 

the adiabatic box, the equipment for ligand aliquot injection and the voltage-controlling apparatus are 

highlighted. On the right the result of a typical ITC experiment is shown, a curve which is fit with a Hill curve 

to determine the all thermodynamic parameters. Extracted from “Choosing a suitable method for the 

identification of replication origins in microbial genomes” by Huang et al., 2015. Frontiers in Microbiology, 

6, 1049. Copyright @ 2015, Song Zhang and Huang.83 

 

The technique allows direct retrieval of the reaction stoichiometry, Keq and ∆𝐻°.81,82,380 

The remaining parameters can be obtained using Equation 1.8, thus allowing the direct 

evaluation of the ligand-binding affinity.81,82 Furthermore, ITC experiments are 

straightforward to analyze for an experienced manipulator and produce highly accurate 

data, making them useful in both academic and industrial settings. Some of the 

disadvantages of ITC are the requirement for a large amount of receptor and ligand, and 

the time necessary to carry out the experiment (which can go up to several hours).81,82,380 

As such, ITC is not amenable to screening campaigns due to its costly nature and 
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alternatives exist. One viable alternative is offered by computational methodologies for 

binding free energy calculations, which will be discussed in the next chapters. 
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2. Computer Aided-Drug Design 

 

2.1: Computer-Aided Drug Design methodologies 

Computational methodologies have seen growing application in drug discovery 

campaigns over the last decades,27,29,31,84  as highlighted in 1981 by the article “Next 

Industrial Revolution: Designing Drugs by Computer at Merck” which it underpinned the 

importance of including numerical approaches in rational drug design pipelines.29 While 

the computational chemistry field was already established at the time and supplied 

important contributions to drug discovery projects, this article garnered the interest of 

the general public in CADD.85 Drug discovery projects focused on HTS for hit identification 

at the time and CADD methodologies were introduced to complement HTS experiments 

and to aid in lead optimization.29 Employment of CADD by academic institutions and 

pharmaceutical companies thus became essential for the preliminary stages of drug 

discovery.24 In particular, CADD-based approaches are mostly applied in hit identification 

and lead optimization cycles through the application of purpose-built methodologies 

targeting specific endpoints like binding affinity prediction or ADMET properties.  

One of the main goals of molecular modelling as a pharmacological and medicinal 

chemistry tool is to predict novel biologically active compounds ahead of chemical 

synthesis and experimental testing in the wet-lab.86 Early CADD approaches focused on 

using simple molecular descriptors and topological information from small-molecule 

ligands aiming to predict different chemical endpoints, a methodology known as 

quantitative structure-activity relationship (QSAR).86 Later on, three-dimensional 

molecular modelling techniques were introduced, allowing the prediction of realistic 

chemical structures and their associated biological properties. In the 1980s, drug design 

methods started using experimental structural data from macromolecular targets like 

proteins or DNA.86  

Through CADD approaches, specifically through Virtual Screening (VS), compounds in 

large chemical libraries are tested towards a given chemical end-point and the non-

interesting molecules are filtered out, thus reducing resource consumption at the Hit 

Discovery phase.27 The best ranked compounds progress to experimental testing and 

optimization steps.27 In a drug discovery campaign, CADD is usually used for three 

purposes: library filtering, supplying hit compounds and to guide lead-optimization steps 

and design new compounds by either fragment-growing techniques or by medicinal 

chemistry.29 These numerical methodologies can be separated into two categories, with 

preference of approach given according to the availability or not of a three-dimensional 
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(3D) structure of the pharmacologically relevant protein conformation. The two 

categories of methods are Ligand-based and Structure-based Drug Discovery (LBDD and 

SBDD, respectively).27,84 A schematic representation of CADD methodologies employed 

in the context of drug discovery campaigns is shown in Figure 2.1. A successful application 

of CADD methodologies can yield multiple hit compounds, but only some of them are 

amenable to optimization and experimental testing.87  

Throughout the years, CADD methodologies have proven their worth both in 

performance with respect to HTS and in supplying hits which would later on become 

drugs approved by the FDA or the EMA. One particular example comparing the 

performance of HTS vs CADD-based procedures is the work of Doman et al.29,88 In this 

study, the goal was to identify tyrosine phosphatase-1B (PTP1B) inhibitors. The 

researchers employed CADD to screen the ACD database, comprising 235,000 

commercial available compounds, against the X-Ray crystal structure of PTP1B, and used 

HTS to screen a corporate library of 400,000 compounds.29,88 Comparing both 

approaches, it was found that CADD yielded a higher hit rate (127 hits from 365 tested 

compounds, 35%) than the HTS based approach (81 hit compounds, 0.021% hit rate).29,88 

A hit compound was defined as a compound for which the experimental IC50 was below 

100 μM. From the molecular docking experiment, 21 predicted hits had an IC50 below 10 

μM. However, the authors report that correlation between IC50 and the docking scores is 

poor. Other researchers have also documented that docking scores correlate poorly to 

experimental binding affinities.89–91 This is a feature observed in other studies, which 

upholds the argument that docking scoring functions are, first and foremost, a screening 

tool and not accurate enough for quantitative calculations.88 Other examples of success 

stories employing CADD include the work of Chang et al.92 which was able to find a new 

series of non-β-lactam antibiotics, the oxadiazoles, following virtual screening of 1.2 

million compounds from the ZINC database.93 These compounds showed inhibitory 

activity targeting the penicillin-binding protein 2a (PBP2a) of methicillin-resistant 

Staphylococcus aureus (MRSA), the cause of many infections in hospitals.31,92 Some 

examples of drugs which were discovered using CADD include Captopril94 for 

hypertension and Saquinavir, for HIV therapy27.  

Over the years, Ligand-based (LB) and Structure-based (SB) drug discovery methods 

evolved separately. However, combination of both strategies yields higher effectiveness 

since both approaches act in a complementary manner.24 In the following subchapters 

we will discuss molecular recognition and what interactions drive it, structure-based drug 

discovery and finalize by describing the steps a structure-based virtual screening 

workflow must follow. The critical aspects of the workflow will be approached, such are 

protein and ligand library preparation, and the scoring functions underlying binding score 

(or affinity) predictions and compound ranking will be analyzed.  
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Figure 2.1 – Schematic representation of the Computer-Aided Drug Discovery workflow typically employed 
in the early phases of Drug Discovery campaigns. QSAR: Quantitative Structure-Activity Relationship; MD: 
Molecular Dynamics. Extracted from “Computational Methods in Drug Discovery” by Sliwoski et al., 2014. 
Pharmacological Reviews, 66(1), 334-395. Copyright @ 2013 The American Society for Pharmacology and 

Experimental Therapeutics.29 

 

 

2.2: Molecular Recognition 

For the binding of a ligand to a protein, it is fundamental that the two species recognize 

each other. The Nobel Prize in Chemistry awarded to Cram, Pederson and Lehn "for their 

development and use of molecules with structure-specific interactions of high 

selectivity"95 in 1987 shows how much supramolecular chemistry and non-covalent 

interactions are fundamental for biological processes and technological development. It 

also highlights supramolecular chemistry as an exciting field, which focuses on studying 

reversible non-covalent molecular association reactions and whose underlying 

mechanism is molecular recognition.96 Molecular recognition is critical for 

supramolecular binding and is a symptom of the complementarity between two 

molecules whose strength of interaction is dictated by several factors, among which are 

their chemical structures, spatial arrangement, solvent effects and entropy.97 Molecular 

recognition events mediate cellular interactions such as protein-protein interactions or 

binding and unbinding of small molecule ligands to receptors.98  

Complete understanding of molecular recognition processes remains a challenge. 

Nevertheless, there are ways to address this issue through numerical approaches based 

on MD simulations, as will be illustrated in Chapter 3. Knowledge derived from studying 
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this processes is critical in many areas of science, such as biochemistry, medicine and 

pharmacology. For perspective sake, there are close to 160 000 X-ray structures of 

proteins, nucleic acids and associated complexes available in the Protein Data Bank99 and 

more than 800 000 small molecule crystal structures available in the Cambridge 

Structural Database.100 These numbers are expected continue to grow, resulting in a 

wealth of information with the ability to impact pharmaceutical and agrochemical 

research, among others. In particular, the knowledge extracted from these 

supramolecular complexes could open new avenues of research to target diseases which, 

to this day, remain orphan of a safe and effective treatment such as some cancers or 

neurological disorders. Beyond, it would also impact significantly other research areas 

like energy storage or molecular bioremediation. One example of the latter is the usage 

of cyclodextrins101 to bind and chelate pollutants from contaminated water.102 Thus, it is 

critical for CADD campaigns to use approaches able to describe numerically the 

interactions between the binding partners with a high degree of accuracy. 

 

A fundamental ingredient for molecular recognition in the context of protein-ligand 

binding are the interactions established between the binding partners. Indeed, there are 

many types of interactions molecules establish between each other. The interactions 

which do not imply bond formation or breaking are known as non-covalent interactions, 

which can be modelled as in Equation 2.9. Non-bonded interactions include electrostatic 

forces, in origin due to Coulomb interactions between charges (permanent dipoles, 

quadrupoles, etc.), polarization forces, which arise from the dipole moment induced in 

atoms and molecules by the electric fields of nearby charges and/or permanent 

multipoles, dispersion terms, charge-fluctuation forces and induced dipole-induced 

dipole forces. The balance of such forces is at the origin of the non-bonded interactions 

between different molecules and drives molecular recognition processes. 

  

2.2.1: Electrostatic Interactions 

Some non-bonded interactions are quantifiable using a Coulomb law and are pairwise 

additive, with repulsive or attractive character depending on the partial charges of each 

atom pair.103  Examples are hydrogen-bonds (interactions between a partially positive 

charged hydrogen atom and electronegative and partially negatively charged oxygen, 

nitrogen, sulfur or fluorine atom104) and halogen-bonds, which are highly directional. 

Halogen bonds involve a halogen atom like chlorine which acts as an electrophile and 

interacts with a nucleophilic atom which is highly electronegative, similar to hydrogen-

bonds.96  
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 In addition to these, dispersion, induction and steric repulsion, electrostatic (between 

permanent charge distributions over the interacting partners) and the Charge Transfer 

(CT) (dynamic redistribution of the electronic density) contributions can play a non-

negligible role. Dispersion interactions, also known as London forces in honor of Fritz 

London, arise due to the highly fluctuating nature of the electron cloud between 

molecules.105 These attractive interactions occur when a feeble and temporary dipole is 

generated. These are also known as induced dipole-induced dipole interactions and are 

the weakest of the intermolecular forces known.105 Another type of non-covalent 

molecular interaction are π-interactions, which arise from the interplay between a 

molecule and the π-systems of conjugated molecules. One example is the cation-π 

interaction between the positive charge of a sodium atom and the electron cloud atop a 

benzene ring.106 The balance of the attractive terms is taken into account with the 

exchange repulsion term. It manifests at short distance, as consequence of Pauli’s 

exclusion principle between the electron clouds of molecules, as too much overlap of the 

electron clouds of two atoms leads to a sharp increase in energy.107 

 

2.2.2: The hydrophobic effect 

Another type of non-bonded interaction manifests as the hydrophobic effect, where 

non-polar molecules in an aqueous media try to avoid contact with water molecules by 

aggregating together in order to expose as little surface as possible. Consider a system of 

two droplets of oil in an aqueous solution. Before these two droplets merge, the water 

molecules will envelop each oil droplet without being able to establish hydrogen bonds 

with them. This involves an energetic gain due to the establishment of a hydrogen-

bonding network amongst waters and due to the favorable dispersive interactions 

between water and oil while at the same time an entropic penalty because some of the 

water molecules are restrained in position without being able to interact with the oil 

droplet through hydrogen-bonding. When the droplets merge, a re-organization of the 

water network occurs, which implies breaking the previous hydrogen-bonding network 

which enveloped these two isolated droplets. Upon aggregation of the two droplets, 

some of the water molecules which enveloped the individual droplets are released to the 

bulk, leading to an entropic gain as their translational, rotational and vibrational degrees 

of freedom are unhindered. By doing so, the oil phase exposes as little surface as possible 

and. This is known as the hydrophobic effect. The hydrophobic effect is critical in protein-

ligand binding, as expulsion of high-energy water molecules in buried binding sites 

represents an entropic gain to the binding reaction and introduced a favorable 

contribution.108 In the bulk, these water molecules can diffuse and re-orient freely, which 

is not the case within the binding site. There, water molecules may or not establish 
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hydrogen-bonds with aminoacid residues. However, these water molecules will always 

lose translational and rotational freedom which means that releasing these water 

molecules into the bulk leads to an entropic gain. 

  

 

2.3: Structure-Based Drug Discovery - Virtual Screening  

The availability of high quality 3D structures of the target protein opens to the 

application of SBDD techniques, aiming at the discovery of new and innovative 

modulators of protein function.84,90 The scientific community, over the years, has 

developed many methodologies which profit from the existence of such structures to 

collect information regarding ligand binding sites, protein conformational dynamics and 

interactions between proteins and ligands.109 This knowledge is useful to design new 

modulators and to assist in the interpretation of experimental.90 SBDD is an iterative 

endeavor which relies on cycles of ligand design, numerical evaluation, compound 

prioritization and experimental testing. The main techniques employed in SBDD are de 

novo drug design and Structure-Based VS (SBVS).27,91,109,110  

There are many steps which must be carefully carried out for a successful application 

of an SBVS campaign. These steps include protein preparation, binding site identification, 

ligand library preparation and design, molecular docking and binding pose 

scoring.31,61,109,111,112 In the following we will analyze each of these steps, describing 

common approaches and pitfalls. A general workflow for SBVS is shown in Figure 2.2, 

where critical steps such as protein preparation, ligand library preparation, molecular 

docking and scoring are highlighted.  

 

  

 

    

 

 

  

   

 

Figure 2.2 – General workflow for employed in SBVS campaigns, obtained from ”Structure Based virtual 

screening for drug discovery: principles, applications and recent advances.”Lionta et al, 2014. Current 

Topics in Medicinal Chemistry, 14(16), 1923-1938. Copyright @ Bentham Science Publishers.111 
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In de novo Drug Design, ligands are either built by fragment-linking or fragment-

growing109 approaches. In the former, the binding site is mapped, key interacting regions 

are found and the ligand fragments which better interact with those regions are selected, 

docked and linked together to form a final ligand.24,109 For the success of this technique, 

the selection of the linkers connecting the fragments is critical. In fragment-growing, a 

central fragment is docked inside the binding cavity and search algorithms are used to 

place and score small chemical modifications of the ligand, growing it iteratively.24,109 An 

example of a SBVS tool which employs this rationale is FlexX.113,114  

The second type of approach is the SBVS campaign, where small-molecule libraries are 

screened against the target of interest, similarly to HTS, through numerical 

simulations.31,91,115 In SBVS campaigns, hit identification is carried out by first predicting 

the ligand binding mode within the binding site present in the protein structure and then 

evaluating the corresponding binding affinity either through docking scoring functions or 

more accurate and expensive numerical methods.84 Among the methodologies within 

SBDD, particular attention has been given to Molecular Docking, pharmacophore 

modelling and Molecular Dynamics (MD) coupled to binding free energy calculations as 

tools for drug design.27,29,84  

Within SBVS, in silico methodologies are employed to identify potential hits from large 

chemical libraries. Compounds are prioritized according to their predicted binding affinity 

and then a subset is selected for experimental testing. If active compounds are found, 

researchers try to solve the structure of the protein-ligand complex to gain insights into 

the protein-ligand association mechanism.84,112 Some of the information which can be 

obtained from the structure include the preferred ligand-binding conformations, protein 

residues which are key for ligand binding, characterization of unknown binding sites and 

capturing of ligand-induced allosteric effects.112 The information harnessed from this 

cycle is then used to design new ligands, and the cycle is restarted until ligands with 

sufficient potency and desirable pharmacological profiles are found. 

   

2.3.1: Protein preparation for SBVS 

There is an old adage which states that the quality of the input data conditions the 

quality of the output. Such adage is verifiable in SBVS, with special emphasis of the 

protein and ligand preparation stages. Structure-based Virtual Screening starts from a 

three-dimensional structure of the target protein, either in complex with a known ligand 

or in the apo state.91,115 Structures of protein-ligand complexes are easily found in the 

PDB database.99 The PDB database contains, as of the beginning of 202199, close to 180k 

structures at varying degrees of resolution (from < 1Å to > 4.6Å) which are readily 

accessible. From these structures, 157k correspond to 3D protein structures in complex 
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with a variety of other chemical entities like fragments, drug-like small molecules or 

peptides.99 However, PDB structures typically contain only heavy atoms and do not supply 

information regarding topology, bond order or formal charges. Additionally, many 

structures are obtained with bound co-factors, ligands, water molecules or metal ions.111 

It is also common to find missing portions in the PDB structure, ranging from single amino 

acid side chains to entire loops whose position could not be determined due to the 

resolution of the structure in that specific area of the protein. Steric clashes can also be 

present and again, can be ascribed to structure resolution issues. All of these details play 

a significant role in the success of SBVS and must be handled with care when preparing 

the protein.   

 

2.3.1.1: Protonation state of titratable residues 

 

A key aspect of protein preparation is the determination of the protonation state of the 

side chains of titratable residues. The electrostatic properties of proteins are heavily 

influenced by the ability of amino acid residues to exchange protons with the 

environment in a pH-dependent manner116 and it is known that the protonation state of 

the titratable residues in a binding site play a significant role in stabilizing molecular 

conformations and in binding ligands.117 Such amino acid residues include aspartic and 

glutamic acid, cysteine, tyrosine, histidine and lysine.118 There exist different methods to 

compute the protonation state of titratable residues.119–121 Some are based on force-

fields at an atomistic level and where a full thermodynamic cycle is built to compute the 

free energy required to bring the amino acid from solution to the protein environment, 

mostly through perturbation theory.122–124 Other methods, which are more 

approximated, employ continuum electrostatic models like the Poisson Boltzmann (PB) 

or the Generalized Born (GB) models124, which are faster than perturbation theory-based 

methods but are less accurate. However, even these methods entail a significant 

computational cost which motivates the development of empirical methods like 

PROPKA.121 While empirical methods are by definition non-rigorous, they are 

exceptionally fast and easy-to-use and have been shown to be fairly accurate. The 

PROPKA3121 method, which was trained and optimized using x-ray crystal structures, is 

one of the most popular empirical approaches. The relationship between the 𝑝𝐻 of the 

solution and the ionization state of a group HA in a given residue is given by the 

Henderson-Hasselbalch equation (Equation 2.1)125: 

 

                                                        𝑝𝐻 = 𝑝𝐾𝑎 − 𝑙𝑜𝑔 (
[𝐻𝐴]

[𝐴−]
)                                               (2.1) 
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where 𝑝𝐾𝑎 is negative logarithm of the acidity constant (𝐾𝑎) of the HA group, [𝐻𝐴] is the 

concentration of the HA group in the protonated form and 𝐴− is the concentration of HA 

group in the deprotonated form.121,126  When 𝑝𝐻 is greater than 𝑝𝐾𝑎, the group will be 

predominantly found in the deprotonated form. Inversely, when 𝑝𝐻 is smaller than 𝑝𝐾𝑎, 

it will be predominantly found in the protonated form. When 𝑝𝐻 is equal to 𝑝𝐾𝑎, both 

forms co-exist with the same concentration in solution. The free energy change 

associated with transporting the titratable group from solution to the protein 

environment can be computed from a thermodynamic cycle (Equation 2.2)121,126 

 

               ∆𝐺𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝐴𝐻 →  𝐴− + 𝐻+) = ∆𝐺𝑊𝑎𝑡𝑒𝑟(𝐴𝐻 →  𝐴− + 𝐻+) +   

                          ∆𝐺𝑆𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛
𝑊𝑎𝑡𝑒𝑟→𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝐴−) − ∆𝐺𝑆𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛

𝑊𝑎𝑡𝑒𝑟→𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝐴𝐻)                                 (2.2) 

 

where ∆𝐺𝑊𝑎𝑡𝑒𝑟 and ∆𝐺𝑃𝑟𝑜𝑡𝑒𝑖𝑛 are the pKa value of AH in water and in the protein in free 

energy units and the last two terms correspond to the solvation free energies of 

translocating the deprotonated and protonated forms of the group from water to the 

protein environment.121,126 Taking the relationship ∆𝐺 = 2.30𝑅𝑇 ∗ ∆𝑝𝐾𝑎, the pKa of the 

protein residue in the environment of the protein is given by Equation 2.3121,126 

 

                                    𝑝𝐾𝑎,𝑖
𝑃𝑟𝑜𝑡𝑒𝑖𝑛 =  𝑝𝐾𝑎,𝑖

𝑊𝑎𝑡𝑒𝑟 + ∆𝑝𝐾𝑎,𝑖
𝑊𝑎𝑡𝑒𝑟→𝑃𝑟𝑜𝑡𝑒𝑖𝑛                                 (2.3) 

 

where 𝑝𝐾𝑎,𝑖
𝑊𝑎𝑡𝑒𝑟 corresponds to the model value of the residue 𝑖 in water. In PROPKA3121, 

the pKa value of a group in a residue or of a ligand is computed by summing the  pKa 

value in water with the pKa shift arising from transporting the residue from water to the 

protein environment. Thus, the first term is well-known, whereas ∆𝑝𝐾𝑎
𝑊𝑎𝑡𝑒𝑟→𝑃𝑟𝑜𝑡𝑒𝑖𝑛 is 

what remains to calculate. PROPKA3 aims at computational efficiency and so 

the ∆𝑝𝐾𝑎,𝑖
𝑤𝑎𝑡−𝑝𝑟𝑜𝑡 is approximated as a sum of contributions per aminoacid residue as in 

Equation 2.4121,126 

 

                      ∆𝑝𝐾𝑎,𝑖
𝑤𝑎𝑡−𝑝𝑟𝑜𝑡 = ∆𝑝𝐾𝑎,𝑖

𝑑𝑒𝑠𝑜𝑙𝑣 + ∆𝑝𝐾𝑎,𝑖
𝐻𝐵 + ∆𝑝𝐾𝑎,𝑖

𝑅𝐸 + ∆𝑝𝐾𝑎,𝑖
𝑄𝑄                    (2.4) 

 

where ∆𝑝𝐾𝑎
𝑑𝑒𝑠𝑜𝑙𝑣 is the contribution from desolvation effects, ∆𝑝𝐾𝑎

𝐻𝐵  is the contribution 

arising from hydrogen bond interactions established, ∆𝑝𝐾𝑎
𝑅𝐸 is a contribution from  

unfavorable electrostatic reorganization energies and ∆𝑝𝐾𝑎
𝑄𝑄 is the contribution from 

coulombic interactions.121,126  

The desolvation contribution corresponds to the energetic penalty of making a cavity 

in the solvent which is occupied by the protein surrounding the ionizable residue. The 

coulomb term is computed using a distance-dependent weighting scheme based on the 
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distance r between residue charge centers 𝑖 and 𝑗 (𝑤(𝑟𝑖𝑗)). The intrinsic electrostatic 

contributions are computed using the two middle terms.121,126 The first term corresponds 

to short range polar interactions like hydrogen bonds (∆𝑝𝐾𝑎,𝑖
𝐻𝐵), which are modelled in a 

distance and angle dependent manner, requiring that the angle formed between the 

hydrogen bond donor and acceptor pair is at least 90°.121,126 The second term, ∆𝑝𝐾𝑎,𝑖
𝑅𝐸, 

corresponds to a possible hydrogen bond acceptor for acids or a hydrogen bond donor 

for bases. It is, nonetheless, a rare occurrence and it is unfavorable, characterizing a sort 

of “reverse hydrogen-bond.121 One limitation of PROPKA is that long and short range 

electrostatic interactions are separated at a distance cutoff at 6Å, disregarding 

interactions between residues farther away than this distance.121 Other freely available 

tools to compute the protonation state of titratable residues include H++119, SPORES120 

or Karlsberg127, each with its given limitations. For ligand protonation studies, a common 

reference tool is Epik, developed by Schrödinger.128,129  

 

2.3.1.2: Hydrogen atom assignment and optimization of the hydrogen bond network 

  

Should one open a complex structure obtained from the PDB database, one noticeable 

aspect is the lack of hydrogen atoms.111 Furthermore, often due to the lack of hydrogen 

atoms, some side chain orientations may not be properly defined in the structure. Indeed, 

this appears to be the case for the terminal chi angle of Asn, Gln and His residues, which 

require a careful analysis to determine if a flip is required to produce an optimal hydrogen 

bonding network.130,131 There is a significant body of literature on this topic and several 

free tools are available. Two of the most well-known are PDB2PQR132 and MolProbity130, 

the latter from Duke University. In MolProbity, the biomolecular complex structure is 

analyzed with regards to all of the atomic contacts taking place within the biomolecular 

assembly.130 It detects local issues such as steric clashes and attempts to resolve them 

automatically, inspecting and evaluating the geometry of the residues and the dihedral-

angle orientations in space.130 In addition, MolProbity is also able to add missing 

hydrogen atoms to protein residues using the Reduce routine.130 By taking into account 

the all-atom contact network, it determines the optimal position of the hydrogen atoms 

in the tri-dimensional structure while attempting to avoid steric hindrance and facilitating 

hydrogen bonds.130  

 

2.3.1.3: Energy minimization of the structure 

 

After producing a complete PDB, where the protonation state of the titratable residues 

is assigned and the hydrogen atoms are added, the next step is to minimize the protein 
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structure such that un-resolved steric clashes can be addressed.111,112 One can define 

energy minimization as the process of finding a three-dimensional arrangement of the 

atoms of the system where the position found is at stationary point. As an example, a ball 

which is placed on a hill will roll down, until it meets a crevice or valley at the bottom. In 

this process the balls rolls until it reaches an energy minimum, which is, more often than 

not, local but on which the forces acting on the ball add up to zero.133 The same logic is 

applied in energy minimization, where the final objective is to drive a system of N particles 

towards the lowest possible energy conformation. Since the local evolution of the 

potential energy of the system is downhill, local energy minimization routines such as 

steepest descent (SD) or conjugate gradient (CG) are not able to cross energy barriers 

and thus can only minimize towards the closest local minima.133 Other methods for global 

optimization, such as simulated annealing, do not suffer from this. In this dissertation, 

energy minimization was carried out using a combination of SD and CG algorithms. 

Briefly, the SD algorithm is an optimization routine which attempts to find a local 

minimum of a function.133 In an SD iteration, the gradient of the system energy is first 

determined considering a small step in all possible directions in the potential energy 

surface (PES).133 Then, the direction in which this gradient is the most negative, and thus 

yielding the optimal direction, is selected, the positions of the atoms of the system are 

updated and the cycle repeats itself until the gradient converges or the number of pre-

defined steps is reached, using Equation 2.5133 

 

                                                           𝑟⃗⃗ 𝑖+1 = 𝑟⃗⃗ 𝑖 − 𝜆𝑖∇V(𝑟 𝑖)                                                    (2.5) 

 

where  𝑟⃗⃗ 𝑖 is the 3N vector containing the positions of all atoms of the system at step i,  𝜆𝑖 

is the step size and ∇V(𝑟 𝑖) is the gradient of the energy with respect to position which 

determines the direction along which the energy is minimized more strongly.133 One 

interesting feature of this algorithm is that the step size is adjusted at every iteration and 

is incremented by a small factor when the energy of the new conformation is lower than 

the energy of the previous one.133 Thus, if the system is evolving towards lower and lower 

energies, the SD algorithm can afford to increase the step size to reach the energy 

minimum faster.133 If the energy of the new conformation turns out to be higher, the step 

size is decreased.133 However, due to the imprecision of the SD algorithm, in most cases 

it is not able to drive the system to the bottom of the energy well but instead moves 

around it.133 Nevertheless, this algorithm is useful as a first pass crude energy 

minimization, because it will bring the system to the vicinity of the energy minimum and 

fix initial bad contacts.133 Then, to reach the bottom of the energy well, it is possible to 

apply more refined techniques for energy minimization, such as the CG approach.133 The 

conjugate descent algorithm takes in account both the gradient of the system in the 
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current iteration and information about the previous step, which allows the system to 

converge quicker to the minima the system is close to.133 The master equation (Equation 

2.6) ruling conjugate gradient is shown below, where an additional term which encodes 

the memory of the previous minimization step is present such that 

 

                                                                 𝑟⃗⃗ 𝑖 = 𝑟⃗⃗ 𝑖− 1 + 𝜆𝑖(𝑺⃗⃗ 𝑖)                                                (2.6) 

with 

                                                             𝑆 𝑖  = −∇V(𝑥 𝑖) + 𝑏𝑘𝑆 𝑖−1                                            (2.7) 

 

where the 𝑏𝑘𝑆 𝑖−1 parameter controls how much should the knowledge of the previous 

step influence the next one.133 In particular, the first step has 𝑏𝑘𝑆 𝑖−1= 0 and as such 

depends only on the value of the gradient starting from the initial structure. At steps i > 

1, the direction of the minimization is computed by taking into consideration the direction 

taken in the previous step.133 During the energy minimization steps carried out within this 

dissertation, SD was used as a crude energy minimization to alleviate some steric 

hindrance effects and to lead the system towards a lower energy conformation whereas 

the CG algorithm was used to further refine the structure obtained by SD into a true 

energy minima.  

 

2.3.2: Additional steps in protein preparation 

Finally, other steps of protein preparation must considered, such as the treatment of 

crystallographic water molecules, co-factors and metals, assigning atomic partial charges 

or modelling into the structure absent amino acid side chains or loops.111,112 A strategy 

to add missing loops and amino acid side chain residues is to use MODELLER.134 From the 

PDB one can obtain a FASTA sequence containing the amino acids of the protein. By 

comparing it to other structures through bioinformatics tools like BLAST, one can retrieve 

the sequences with the highest sequence identify. Using that protein structure as a 

reference, it is possible to reconstruct the missing portions and generate potential 

models. These models are given a score by MODELLER which are then used as a filter to 

select the best one.134 

 

 

2.3.2.1: Crystallographic binding site water molecules 

 

A key contribution to the structure and function of proteins is given by the network of 

water molecules surrounding the binding site. These water molecules interact with the 
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solute through hydrogen-bonding, solvation and the hydrophobic effect and are 

important in mediating protein-protein and protein-ligand interactions.136,137 Since the 

resolution of structures determined by x-ray crystallography is too low to map hydrogen 

atoms, crystallographic water molecules in PDB files are identified by determining the 

position of the corresponding oxygen atoms.135 The water molecules which are free to 

diffuse are modelled as bulk solvent. However, for the water molecules with ordered 

behavior, which are close to the binding site, how to model them is an open question. In 

biomolecular simulations, this decision heavily impacts simulation outcomes because the 

binding free energy of a ligand to a protein is sensitive to the position of the water 

molecules surrounding the binding site.136,137 Furthermore, the water molecules in x-ray 

structures only provide static information, obtained within a well-ordered structure. As 

such, not all crystallographic water molecules need to be kept and thus the question 

arises: which ones to keep, and how to select them?135,136 

The Consolv tool137 tries to answer the question above by estimating the degree of 

conservation of water molecules in x-ray crystal structures.136,137 Parameters considered 

are the structure B-factor, the number of closest protein atoms around each water 

molecule, the hydrophobicity of the hydration site and the number of water-protein 

hydrogen bonds.137 It was tested on a set of 7 complexes and achieved a prediction 

accuracy of 75%. Other tools, which aim at quantifying the interactions of the water 

molecules in a binding site to the protein residues, have been developed by taking 

inspiration from docking scoring functions. An example is WaterScore138, which can 

estimate which crystallographic water molecules to keep by evaluating structural 

properties found in crystal structures and converting these observations into a score.138 

WaterScore has been shown to be moderately accurate in identifying conserved water 

molecules, highlighting a prediction efficiency between 67.4 and 71.7% in a benchmark 

study.138   

It can also be the case that no crystal waters are available but there is the hint that 

protein-ligand binding in the studied complex is stabilized by water molecules in the 

binding site. In this case, researchers may want to consider the effect of solvent 

molecules in the binding site explicitly, something which is achievable for instance by the 

WaterMap tool. The WaterMap139 tool relies on short explicit solvent MD simulations 

where the protein conformation is held fixed by restraints. The idea behind is to record 

the position and orientation of each water molecule in the binding site during MD in order 

to produce a water density profile.140 Then, the binding site is represented on a grid mesh 

and water molecules are mapped to grid points where their density is above that of bulk 

solvent.140 Limitations of WaterMap, as discussed by the authors, include the short MD 

simulation time and the use of conformational restraints in the protein.139 In particular, 

the latter prevents the receptor from adapting a fully relaxed conformation and which 
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may bias the analysis.139 Nonetheless, WaterMap has been used to predict accurately the 

position of water molecules in binding sites before.136,139 

In most SBVS campaigns, however, crystallographic water molecules are typically 

removed. One possible reason for it may be the difficulty in determining their position 

and/or orientation in the binding pocket, although some tools have been described which 

facilitate this step. Another possibility may be the case that these crystallographic waters 

which are not expected to affect the binding reaction. Nonetheless, whenever possible, 

the treatment of crystallographic water molecules must be carried out carefully and it is 

advised not to remove them blindly. 

 

2.3.2.2: Co-factors and metals 

 

Another step is the treatment of co-factors and ions. Metal ions and co-factors can be 

important to stabilize the crystal conformation and, upon their removal, the structure 

may no longer be stable and/or functional.141  However, these need to be modeled 

separately from the protein and as such are initially removed from the structure and are 

added back after being carefully treated. Co-factors can typically be modelled by adding 

hydrogens, computing their ionization state and assigning atomic partial charges to their 

atoms. In the case of metals, the common procedure is to produce parameters by 

applying high-level quantum mechanical calculations.141 One example is the 

parametrization of the Fe3+ containing heme group found in the cytochrome c, whose 

geometry and partial charges can derived using density functional theory (DFT) 

calculations at the B3LYP level of theory using the methodology described by Rarey et 

al.141 The critical point is that the 3D geometry of the co-factors and metal containing 

groups be correctly assigned, alongside the corresponding atomic partial charges and 

bond orders141 prior to VS. These tasks are normally carried out with in-house scripts or, 

more commonly, using the Protein Preparation Wizard tools from Schrödinger’s Maestro 

software. The importance of protein preparation before molecular docking experiments 

must not be underestimated. It has been shown that SBVS employing proper protein 

preparation steps yields improved enrichment factors as in the systematic evaluation by 

Sastry and co-workers91 using the GLIDE142 validation set and a series of decoys from the 

Directory of Useful Decoys (DUD)143 database. 

  

2.3.3: Binding site identification  

The next task within the workflow is the characterization and/or identification of the 

ligand binding site, if it is unknown.109 A binding site can be defined as a small cavity to 

which a ligand can bind, eliciting an effect on the protein target upon complexation. The 
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ideal binding site is a small concave cavity comprising different functional groups111 with 

which the ligand can establish favorable interactions as well as having hydrophobic 

characteristics.144 When the ligand-binding site is unknown, or when new allosteric 

modulators are desired, tools which are able to predict potential binding sites on the 

protein structure can be employed. As described by Lionta et al., here are different 

avenues in this direction.111 One way to approach the problem is to use tri-dimensional 

structures of the protein of interest, where one can map binding pockets using small 

organic probes and evaluating the druggability of the cavities found through tools such 

as FPocket145 or others.111,146,147 Another approach is through flooding simulations using 

Molecular Dynamics, where several different small-molecule evolve dynamically over 

time in a simulation box containing the protein structure. The idea is that potential 

binding sites can be found by probing the protein with a diverse set of chemical probes 

while taking into account protein flexiblity.111 Some examples of programs to carry the 

following approach are MDmix148 or SILCS.149,150 In this context, the MD simulations 

carried out are long, introducing a large computational overhead, and can help 

understanding the mechanism behind ligand binding to that protein.111 It is also possible 

to employ water molecules as probes instead of small organic molecules.111,139  

It is important to know where the binding site of interest is located in the protein 

structure before a SBDD campaign, as some of the methods employed in the pipeline 

require extensive calculations and computational power. Furthermore, fundamental 

information can be retrieved from structures of proteins co-crystallized with their 

corresponding ligands, as well as from mutation studies identifying key residues 

responsible for mediating protein-ligand binding.24,109 It is even possible to design ligands 

based on this information, through a four step workflow as described by Rognan et al.151: 

fragmentation of the reference bound ligand, mapping the fragments which interact with 

binding site and the type of interactions established, defining the chemical environment 

of the sub pockets in the binding site based on the reference ligand portions which 

interact therein, converting this information into a fingerprint descriptor.151 Finally, it is 

possible evaluate ligands based on their predicted interactions within the binding site and 

on the ligand-binding site shape complementarity with respect to the reference 

compound by means of a fingerprint similarity evaluation.151  

 

2.3.4: Ligand library preparation 

The chemical space theoretically existent contains 1060 possibilities of druglike small-

molecule ligands, with 1020 to 1024 of these corresponding to molecules with up to 30 

atoms.152,153 However, exploring the full chemical space within a SBDD campaign is an 

impossible task at the moment.152,154,155 Nonetheless, VS campaigns aim at evaluating 
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large chemical libraries in search of new hit compounds. Databases employed in SBVS are 

typically composed of drug-like small molecules which are readily purchasable or 

synthesizable.111 In addition, these compounds should also possess some desirable 

characteristics like solubility in aqueous media and chemical stability, coupled to the 

absence of toxic moieties in the chemical structure. However, large chemical libraries are 

typically of the order of millions of compounds, and screening a very large ligand library 

implies a large computational cost which may be a limit factor in the SBVS campaign. 

Depending on the computational resources available, a compromise must be reached 

regarding the ligand library size to be explored. The appropriate selection and 

preparation of the ligand library thus constitutes a critical step in SBDD and must be 

carefully tackled. As such, it is often the case that researchers working with very large 

chemical libraries cluster and filter them using a set of rules before proceeding to the 

next steps in the SBVS workflow  

Typical filters for ligand library preparation include the removal of non-drug-like 

compounds through the Lipinski R-o-539 or other measures of druglikeness, removal of 

compounds containing atoms which are not common in organic molecules, filtering with 

respect to some structural features, removal of compounds exhibiting substructures 

known to occur in Pan Assay Interference Compounds (PAINS),1,156,157 and removal of 

compounds whose molecular features are significantly different from those of the known 

actives. In particular, PAINS compounds are known to give false positive results in HTS by 

reacting in a non-specific manner with many biological targets.156,157 These highly 

promiscuous compounds can be identified by the presence of some functional groups, 

which are shared among them. Some examples of PAINS are toxoflavins, isothiazoles, 

alkylidene barbiturates and quinones.156 If possible, one should also consider database 

filtering steps to account for the ADMET profiles of the compounds.109,111,159,160 A tool 

which could be used for step is the FAF-Drugs3158, a public webserver which can filter 

compounds according predictions of physicochemical and ADMET properties. These 

ligands must also be filtered according to additional criteria, some of which are known 

ADMET end-points, to evaluate their potential to become new drugs.109,111,159,160 One 

example is the ability to go through the brain-blood barrier (BBB)161,162, which is indirectly 

estimated by evaluating the compound ability to permeate through Caco-2 cells in 

vitro.163 In silico models for Caco-2 cell permeability have been built and are routinely 

used in lead-optimization.164,165 An additional manner to reduce the computational cost 

in a prospective VS campaign can be to cluster the ligands according to structural 

similarity.367 The clustering step allows researchers to identify molecular structures which 

are representative of a given chemical scaffold. The cluster center is then evaluated and 

studied and, in case the compound is active, researchers can come back and screen all 

compounds belonging to that cluster. 



    

38 
 

Automatic workflows for library filtering play a major role in the preliminary stages of 

drug discovery and have attracted significant attention from the scientific community. 

Several examples of tools exist in the literature, such as VSPrep166, LigPrep167 and the 

recently developed PrepFlow.168 In particular, PrepFlow is able to carry out large chemical 

library preparation with impressive speed while at the same time being robust to 

potential errors and readily transferable to high performance computing centers (HPC). 

It takes advantage of the available resources to parallelize the calculations to even higher 

efficiency.  

Ligand preparation also requires that the compounds must have bond order 

parameters attributed and their valences filled, alongside atomic partial charges and the 

appropriate protonation state at the pH of interest.168 Partial atomic charge calculations 

can be carried out using empirical schemes, such as in gasteiger charge calculations169, 

using semi-empirical methods such as the one employed in the AM1-BCC170 scheme or 

using quantum-mechanical methods. In particular, the method employed to compute 

partial atomic charges over the course of this dissertation was the Restrained-

Electrostatic Potential method (RESP)171 as developed by Bayly and co-workers, using the 

Gaussian09172 tool at the HF/6-31G* level of theory. In RESP, the goal is to derive atomic 

charges using ab initio calculations. These quantum mechanically-derived atomic partial 

charges also account from multipole moments.171 The 6-31G* basis set was selected 

because it is known to overestimate the polarity of molecules by as much as the dipole is 

enhanced in TIP3P173 water over its value in vacuum and yields a balanced representation 

of solvent-solvent, solvent-solute and solute-solute interactions, as described by the 

Bayly et al.171  

In some cases, general purpose chemical libraries may not fit the requirements of the 

SBVS campaign. Indeed, it is often the case that SBVS campaigns require the design of 

custom-made libraries to target a specific problem.111 Thus, customization of ligand 

libraries may be required to fit the needs of the project. As exemplified by Lionta et al., 

libraries can be built to conform to some distribution of molecular properties, or be 

tailored to a given target based on reference compounds.111 Additionally, may also be 

desirable to design a ligand library with the aim of maximizing the sampled chemical 

space.111 

 

2.3.5: Molecular Docking  

The most popular technique among SBVS methods is molecular docking. When carrying 

out a molecular docking experiment, two goals exist: the determination of the optimal 

position and orientation of the ligand molecules inside the protein cavity delimiting the 

binding site (pose prediction) and the calculation of a score reflecting how favorable that 
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binding reaction is (scoring).26,27,89 The first step of molecular docking, pose prediction, 

can be carried out using different approaches, among them rigid docking, flexible docking 

or ensemble docking. A host of molecular docking programs have been proposed over 

the years, including DOCK174, AutoDock4175, GLIDE142, GOLD176, PLANTS177, ICM2, FlexX178 

and others26,112,179,180. Docking methods employ different philosophies for pose 

prediction, such as systematic conformational search or stochastic conformational search 

methods. Systematic methods are those which place the ligand in the binding site after 

considering rotations and translations of all degrees of freedom. Stochastic methods are 

those which start from a predicted ligand pose and try to evolve it to a lower energy 

conformer by stochastic torsional searches based either on Monte Carlo simulations or 

on Genetic Algorithms. A third method to produce protein-ligand binding poses goes 

through MD simulations and energy minimization to explore the rough PES of a 

molecule.111,112,181  

 

2.3.5.1: Rigid docking 

 

Within docking approaches, the focus is on predicting the bound protein-ligand 

complex configuration. In rigid docking experiments, the protein structure is replaced by 

a grid representation centered on the binding site.26 Solvent effects are typically 

neglected or approximated using an implicit solvent model and entropic terms are usually 

not present or crudely approximated by considering the number of expected frozen 

torsions.181 Ligand conformations are generated and then optimized to maximize the 

complementarity between binding site and ligand. The proposed ligand binding poses are 

then ranked using a scoring function.181  In most docking studies in the past, calculations 

were carried considering the protein and the ligand as rigid entities.182 The binding pose 

would be based on the binding site-ligand shape complementarity by means of a 

geometrical fit182, using Fischer’s “lock-and-key” theory as the underlying paradigm.183 As 

such, protein and ligand flexibility was overlooked and binding poses were obtained from 

translations and rotations of the ligand relative to the binding site. However, neither 

ligands nor proteins are rigid entities and, indeed, exhibit a degree of flexibility.184 

Unfortunately, considering the full protein as a flexible entity is computationally 

expensive because of the large number of degrees of freedom within the receptor. 

However, Emil Fischer’s theory could not explain the behavior of enzyme noncompetitive 

inhibition nor allosteric modulation.182 As such, a new theory which did consider some 

degree of receptor flexibility was proposed in 1958 by Koshland, the so-called “Induced 

fit” theory, where the ligand induces protein conformational changes such that upon 

binding, the protein is able to perfectly accommodate it in the binding site.184  
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2.3.5.2: Flexible docking 

 

In flexible docking approaches for SBVS, there are two ways to account for protein side-

chain flexibility. On one hand, some methods rely on pre-computed low energy 

conformations of the ligand which are placed on the binding site and allow the binding 

site side-chains to wrap around it.113,185 Other methods rely on user-supplied information 

describing which portions of the receptor should be treated as flexible and the search 

space explored by these methods spans all possible ligand conformations, translations 

and rotations coupled to the conformational exploration of the flexible parts of the 

receptor.183 Flexible docking methods allow consideration of the receptor flexibility, 

which is critical in binding reactions, but also exhibit some limitations.183 In particular, it 

is difficult to find the global energy minimum structure in solution spaces which grow 

exponentially with the number of flexible degrees of freedom and the associated 

computational cost of may hamper the efficiency of the calculations.  

  

2.3.5.3: Ensemble docking 

 

Given the limitations of rigid and flexible docking, efforts were devoted towards a cost-

efficient description of protein flexibility within docking experiments. It was known that 

neglecting protein flexibility meant that the thermal fluctuations ruling molecular motion 

were overlooked.111,185 These motions lead macromolecules to explore a myriad of 

conformational states where the shape of the binding site may change significantly, 

changing the available binding volume. A proposed solution was to carry out docking 

experiments using many different protein conformations in a methodology known as 

ensemble docking.111,185 Ensemble docking is a technique were multiple conformations 

of the target protein are used and ligand libraries are docked and scored against each of 

them. The final score is taken as a consensus between all predictions. The paper originally 

describing ensemble docking of small molecules was published in 1999186, targeting the 

catalytic domain of HIV Integrase. The researchers had carried out extensive MD 

simulations and noted large binding site fluctuations. This observation prompted them to 

test and confirm that usage of multiple protein conformations, arising from MD or from 

x-ray crystallography, yielded better binding affinity predictions than those arising from 

single structure docking upon production of the consensus scores.186 
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2.3.6: Scoring of docking poses 

In the second step of molecular docking experiments, multiple ligand binding poses are 

ranked according to their docking score.  The prediction of the docking score is based on 

an underlying scoring function which belongs to one of four types: knowledge-based187, 

force field142, empirical177 and machine learning scoring functions.188 In the following, we 

will analyze empirical, forcefield and knowledge-based scoring functions. Machine 

learning-based scoring functions, which have been developed in the last years, will not 

be reviewed and the interested reader is encouraged to the work of Ballester et al188 for 

an example of a machine-learning based scoring function. 

 

2.3.6.1: Empirical scoring functions 

 

Empirical scoring functions are used to score a large number of docking based on a 

weighted sum of molecular features.181 The underlying idea is that the binding free 

energy of a protein-ligand complex can be correlated to a set of additive and independent 

variables.181 Each feature is associated with a given weight, which is calibrated by 

regression analysis using binding affinities from experimentally determined structures of 

protein-ligand complexes.181,189 Each molecular feature is selected by the researcher to 

represent one or more key intermolecular interaction.181,189 Examples of features 

considered are explicit hydrogen bonds or entropic terms related to the number of ligand 

rotatable bonds.181,189 The first empirical scoring function developed was LUDI by 

Böhm190. It was able to supply predictions of the absolute binding free energies starting 

from 3D structures of protein-ligand complexes. As the field matured as a whole, many 

empirical scoring functions were proposed. Examples are ChemScore, GlideScore and 

CHEMPLP.142,176,177 The CHEMPLP scoring function is part of the PLANTS software for 

molecular docking and was used in the VS campaigns described in Chapter 6.  

In PLANTS177, the protein-ligand docking problem is treated as a continuous global 

optimization problem. The dimension of the problem is dependent on the number of 

considered degrees of freedom.177 For the ligand, 3 translational, 3 rotational and rl 

torsional degrees of are considered whereas for protein only rp torsional degrees of 

freedom for the flexible side-chains or rotatable hydrogen bond donor groups are taken 

into account.177 The total number of degrees of freedom is then n = 6 + rl + rp. The PLANTS 

algorithm is based on an ant-colony optimization (ACO) algorithm which is inspired by the 

real behavior of ants.177 When ants walk, they deposit pheromones along the paths they 

take. If an ant is following the track of others and is faced with choosing between two 

paths, it will most probably take the path with the highest pheromone concentration. 

Over time, this will lead to increased pheromone concentration on the most travelled 
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tracks, those which correspond to the optimal paths.177 For a given docking problem, 

each virtual ant will assign a value j to a degree of freedom and evaluate how good that 

move is by evaluating the energy of the conformation.177 After all ants have carried out 

the conformational search, by iteratively moving all possible degrees of freedom and 

finding their optimal values, and improved the resulting protein-ligand complex structure 

by a local refinement algorithm, the information is used to modify the pheromone trail.177 

In practice, the values associated the most favorable moves for a given degree of freedom 

have an increased pheromone concentration and the values which led to worse solutions 

will have a decreased pheromone concentration.177 The iterative application of the ACO 

algorithm will produce docking poses which were constructed from the most favorable 

moves found for each degree of freedom at each iteration, until the algorithm converges 

on a set of solutions proposed by the ensemble of ants. The functional form of CHEMPLP 

is shown in Equation 2.8: 

 

                     𝑓𝑃𝐿𝐴𝑁𝑇𝑆𝐶𝐻𝐸𝑀𝑃𝐿𝑃=𝑓𝑝𝑙𝑝+ 𝑓ℎ𝑏+ 𝑓ℎ𝑏−𝑐ℎ+ 𝑓ℎ𝑏−𝐶𝐻𝑂+ 𝑓𝑚𝑒𝑡+ 𝑓𝑚𝑒𝑡−𝑐𝑜𝑜𝑟𝑑
+ 𝑓𝑚𝑒𝑡−𝑐ℎ+ 𝑓𝑚𝑒𝑡−𝑐𝑜𝑜𝑟𝑑−𝑐ℎ+ 𝑓𝑐𝑙𝑎𝑠ℎ+ 𝑓𝑡𝑜𝑟𝑠 + 𝑐𝑠𝑖𝑡𝑒

             (2.8) 

 

where the steric complementarity of the protein and ligand is modelled by the piecewise 

linear potential (PLP), angle-dependent terms for hydrogen-bond interactions and metal 

binding (𝑓ℎ𝑏 and 𝑓𝑚𝑒𝑡  terms) are extracted from GOLD’s ChemScore176 and the torsional 

potential from the TRIPOS forcefield191 (𝑓𝑡𝑜𝑟𝑠) is included in conjunction with a heavy 

atom clash term (𝑓𝑐𝑙𝑎𝑠ℎ).177 The final term, 𝑐𝑠𝑖𝑡𝑒, corresponds to a term that is used to 

guide the search algorithm towards the binding site.177 This potential penalizes placing 

ligand heavy atoms outside of the binding site definition, which in PLANTS is encoded by 

a sphere.177 

These scoring functions are simple and fast to evaluate, which makes them attractive 

for VS purposes. However, the gain in computational efficiency comes with a cost in the 

accuracy of the calculations. Furthermore, since these equations require fitting using a 

training set to determine the weight of each contribution, the models are not 

transferable and may exhibit system-dependent performances.177,180,181  

 

2.3.6.2: Force field-based scoring functions 

 

Force field-based scoring functions consist of a sum of energy terms which are 

extracted from classical force fields.181 An example of a widely used force field-based 

scoring function is DOCK.174,192 In DOCK, the protein-ligand interactions are quantified 

within a Molecular Mechanics formalism as in Equation 2.9174,192: 
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                               ∆𝐺° =  ∑ ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 − 

𝐵𝑖𝑗

𝑟𝑖𝑗
6 + 332.0

𝑞𝑖𝑞𝑗

𝑒(𝑟𝑖𝑗) 𝑟𝑖𝑗
)

𝑙𝑖𝑔𝑎𝑛𝑑

𝑗

𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑖

                     (2.9) 

 

where rij is the distance between atom j in the ligand and atom i in the protein, Aij and Bij 

are the van der Waals radii of atoms i and j and 𝑞𝑖 and 𝑞𝑗 the corresponding atomic partial 

charges. The above shown equation contains two components: the first one is the 12-6 

Lenard-Jones potential, which is used to model van der Waals interactions, and the 

second is the Coulomb law to model electrostatic interactions.174,192 The non-bonded 

interactions are typically computed in vacuum with a distance-dependent dielectric 

constant to account for solvation effects.174,192 However, it is desirable to include a more 

accurate treatment of the solvation free energy, which can be achieved at a reduced cost 

through implicit solvent models.175  

One scoring function which employs an explicit treatment of the solvation effects is the 

AutoDock4175 scoring function. In AutoDock4, the binding free energy is estimated by 

considering five free energy contributions: a van der Waals contribution, an electrostatic 

contribution, a hydrogen-bond contribution, a ligand desolvation contribution in implicit 

solvent and a torsional contribution which is related to a ligand entropic penalty175 as in 

Equation 2.10. 

 

∆𝐺° = 𝑊𝑣𝑑𝑊 (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 − 

𝐵𝑖𝑗

𝑟𝑖𝑗
6 ) + 𝑊ℎ𝑏𝑜𝑛𝑑∑𝐸(𝜃) (

𝐶𝑖𝑗

𝑟𝑖𝑗
12 − 

𝐷𝑖𝑗

𝑟𝑖𝑗
10)

𝑖,𝑗

 

           + 𝑊𝑒𝑙𝑒𝑐∑
𝑞𝑖𝑞𝑗

𝑒(𝑟𝑖𝑗) 𝑟𝑖𝑗
+ 𝑊𝑠𝑜𝑙∑(𝑆𝑖𝑉𝑗 + 𝑆𝑗𝑉𝑖) 𝑒

−𝑟𝑖𝑗
2

2𝜎2

𝑖,𝑗𝑖,𝑗

+ 𝑊𝑐𝑜𝑛𝑓𝑁𝑡𝑜𝑟                (2.10) 

 

where each weight Wi is determined by fitting to experimental binding affinities coming 

from a training set of crystal structures of protein-ligand complexes.175 In the above 

equation, the hydrogen-bond term is a 12-10 Lenard-Jones potential where C and D are 

equation parameters encoding the well depth.175 The 𝐸(𝜃) function accounts for 

hydrogen-bond directionality based on the angle 𝜃. The desolvation potential is based on 

the volume of atoms (V) that surround a given atom and protect it from the solvent 

weighted by a solvation parameter (S) and an exponential term with a distance-weighting 

factor σ.175 The entropy term corresponds to the loss of ligand flexibility upon binding 

and is proportional to the number of ligand rotatable bonds (𝑁𝑡𝑜𝑟). The AutoDock4175 

scoring function introduces a significant advantage: consideration of the desolvation 

effects, even if approximated, is carried out without introducing a significant increase in 

calculation cost because only one conformation of the complex is taken.175   
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2.3.6.3: Knowledge-based Scoring Functions 

 

Knowledge-based scoring functions are constructed from structural information 

contained in experimentally determined protein-ligand complexes, such as those 

available on the PDB database. From these structures, pairwise contacts between ligand 

and protein atoms are identified and used to derive distance-dependent pairwise 

statistical potentials.181,193 As such a “free-energy”-like contribution is computed for each 

pairwise contact, which can then be summed to yield a score.181,193 Examples of currently 

available knowledge-based scoring functions are DrugScore, PMF and IPMF.112,181,187,193 

An example of a knowledge-based scoring function is the DrugScore scoring function.193 

In DrugScore, statistical potentials encoding protein-ligand pairwise atomic interactions 

were derived from a set of 6026 PDB structures containing ligands whose parametrization 

was according to the SYBYL convention.193 The dataset was pruned by removing crystal 

structures with: a resolution above 2.5Å, ligands containing less than 6 or more than 50 

non-hydrogen atoms and non-druglike or covalently bound ligands.193 Solvent 

contributions were introduced using a potential proportional to the solvent-accessible 

surface (SAS) of the protein and ligand atoms which become buried upon 

complexation.193 This term is computed using the van der Waals radii of each atom as 

defined in the TRIPOS forcefield191, with the exception of oxygen and nitrogen, for which 

the radii were reduced by 0.2Å (Equation 2.11). 

 

                    ∆𝑊 =  𝛾∑∑∆𝑊𝑖,𝑗(𝑟) + (1 − 𝛾)                       

𝑗𝑖

∗  [∑∆𝑊𝑖(𝑆𝐴𝑆, 𝑆𝐴𝑆0)

𝑖

+ ∑∆𝑊𝑗(𝑆𝐴𝑆, 𝑆𝐴𝑆0)

𝑗

]                               (2.11) 

 

where the sums run through atoms i in the ligand and j in the protein separated by a 

interatomic distance between r and r + dr, ∆𝑊𝑖,𝑗(𝑟) is difference distance-dependent 

potential between atoms 𝑖 and 𝑗 with respect to the value in the training set, ∆𝑊𝑖 

corresponds to the difference in the one-body potential of the SAS for atom 𝑖 with respect 

its value in the training set and 𝛾 corresponds to an empirical parameter which was set 

to 0.5.193  

 

2.3.6.4: Small comparison of multiple docking softwares 

 

The ability of DrugScore to produce near native binding poses was compared to that of 

FlexX178, a standard docking program at the time. The test cases for DrugScore193 were 
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two: a dataset of 91 protein-ligand complexes extracted from the FleX docking program 

validation set and 68 protein-ligand complexes whose ligand properties match those of 

the ligands from the FleX validation set. Employing FlexX, to the first test set, in 54% of 

the cases the RMSD of the first ranked binding pose was found below 2Å of the native 

pose. When DrugScore was employed, in 73% of the cases the best ranked binding pose 

had an RMSD below 2Å of the native pose. In the second set, the performance is 

comparable (93 and 92%, for FlexX and DrugScore respectively). As such, for this dataset 

the power of DrugScore in identifying native poses is highlighted, when compared to 

FlexX which is a fragment-based docking algorithm. 

A comparison study among several scoring functions including VINA175, LUDI190, 

GLIDE142 and PLP120, as well as knowledge-based scoring functions shows modest 

predictability in the best case scenario and illustrates that molecular docking scoring 

functions correlate poorly with experimental binding affinities. Thus, at the molecular 

docking stage, it appears that production of reliable scores is still a challenge.  
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 3. Binding Free Energy calculations 

 

3.1: Introduction 

Protein-ligand binding is a complex phenomenon governing many biological processes 

fundamental for life. Understanding of protein-ligand binding is critical to many areas of 

science, ranging from structural biology to pharmacology.380 One of the fundamental 

factors driving protein-ligand binding is the association constant or its inverse, the 

dissociation constant, 𝐾𝑎  and 𝐾𝑑  respectively.194 It is intimately connected to the free 

energy change upon complexation, informing on the stability of the binding reaction. 

Accurate calculation of protein-ligand binding affinities, or binding free energies, would 

open to a detailed understanding of molecular association processes and supply powerful 

information to guide drug design programs.195 Many approaches to estimate the binding 

affinity for a molecular association reaction have been proposed over the last 

decades.61,87,98,115,180,195–200 However, the calculation of the protein-ligand binding 

affinities remains a fundamental challenge in computational chemistry, from a theoretical 

and practical point of view.189,195  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Distribution of methods for binding free energy calculations according to calculation efficiency 

and accuracy, taken from “Computational Approaches to the Chemical Equilibrium Constant in Protein-

Ligand binding” by Montalvo & Cecchini, 2016. Molecular Informatics, 11-12, 555-567.189 Copyright @ 2016 

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

The degree of difficulty in achieving accurate calculations is proportional to the 

complexity of the studied system. For example, proper calculation of protein-ligand 

binding affinities when a large conformational rearrangement of the protein structure 

occurs remains problematic with current techniques and hardware. In the case that 

binding of the ligand does not involve large conformational transitions of the protein, 
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these calculations can be carried out with remarkable levels of accuracy in some 

cases.159,189,194,201 The existing methods for binding free energy calculations can be spread 

out in a spectrum which balances calculation accuracy and computational efficiency, as 

shown in Figure 3.1.189,380  

On one side of the spectrum, methods relying on empirical scoring functions allow the 

evaluation of the binding affinity in seconds. These ultra-fast methods are popular 

because they are efficient and user-friendly. However, their computational efficiency is 

achieved at the expense of introducing many approximations to simplify the calculation 

and by only considering the bound complex in the calculation.31,111,175,177,180 

On the other side of this spectrum are rigorous free energy methods, where the binding 

affinity is computed by constructing a path from the bound complex towards the 

unbound species via the simulation several overlapping intermediate states.123,202–205  

Some of the most well-known rigorous methods for binding free energy calculations are 

alchemical transformations by means of Free Energy Perturbation (FEP), as developed by 

Jorgensen et al.,204,206,207 and geometrical transformations along a reaction coordinate, 

also known as Potential of Mean Force (PMF)200, like in the Attach-Pull-Release (APR) 

method by Gilson et al.208,209 In the first case, the ligand is alchemically decoupled from 

the receptor and the solvent by means of perturbation theory whereas in the second 

case, the ligand is physically pushed or pulled away from the binding site along a path 

described by a reaction coordinate.208,209 Rigorous methods are the most accurate 

techniques available, exhibiting root mean squared errors (RMSE) to experimental 

binding affinties around 1 kcal/mol in some cases.202,205,210 However, since rigorous 

methods require extensive sampling they remain computationally costly and unamenable 

to virtual screening campaigns.  

A third type of approach, known as end-point methods, represents a trade-off between 

accuracy and calculation efficiency.211 In end-point methods, conformational sampling is 

carried out only on the end-states of the binding reaction (the complex and the unbound 

species), and the computational cost is further reduced by computing the solvation free 

energy of each species of the binding reaction using a continuum solvation model or using 

the linear response approximation.115,189 End-point methods remain popular in the drug 

discovery community because they often are more accurate than typical docking scoring 

functions while maintaining a low computational cost when compared to full rigorous 

binding free energy calculations.115,196,201,211–214 However, it has been reported that these 

methods exhibit target-dependent performances.201  

Popular end-point methods are those belonging to the Molecular Mechanics (MM) 

Poisson Boltzmann (PB) Surface Area (SA) (MM/PBSA) family of techniques, proposed by 

Peter Kollman and collaborators89,115,196,201,212,213, and the Linear Interaction Energy (LIE) 

method by Åqvist.115,189,215–217  In LIE, the solute/solvent interactions are considered 
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explicitly and the binding free energy is computed by evaluating the changes in 

electrostatic and van der Waals interactions between the ligand within the protein or 

solvent environment. 189,215–217 In MM/PBSA, for each species of the binding reaction 

three terms must be computed from the MD simulations carried out: A potential energy 

term which is accessed in vacuum, a solvation free energy term which is estimated by 

employing an implicit solvent model and an entropic contribution which usually is 

estimated under the Rigid Rotor Harmonic Oscillator (RRHO) 

approximation.115,196,201,214,218  

In any of the above methods, the fundamental pre-requirement is the existence of an 

ensemble of molecular configurations from which thermodynamic observables can be 

quantified. Molecular simulations have a long history of application to biomolecular 

systems, starting from the MD simulations by Alder and Wainwright in 1957219 and 

1959220 until current days, where MD simulations are being used to compute binding 

affinities, to probe transition events and to study the basis of protein function and 

dynamics.31,115,122,124,218,221 Molecular Dynamics simulations and their application in 

binding affinity predictions are at the heart of the work produced in this thesis and, as 

such, will be described in the next subchapters.  

Since molecular docking based approaches are known to correlate poorly to the 

experimental binding affinities84, if the objective is to quantify the binding affinity of a 

ligand to a protein one must select more rigorous methods. The choice of method is 

carried out by considering the available resources and the type of project. For instance, 

if one is interested in small modifications of a scaffold leading to a chemical series or in 

obtaining quantitative agreement with experimental data, then rigorous methods are the 

best choice. If, on the other hand, the goal is compound ranking (or re-ranking) towards 

prioritization in a VS campaign context, then end-point methods represent a reasonable 

trade-off between accuracy and efficiency. Indeed, the approach followed in Chapter 6 

employs a docking plus free energy rescoring by MM/GBSA since the goal of the VS 

campaign was producing an accurate compound ranking, and not absolute predicted 

binding affinities. 

 

 

3.2: Statistical Mechanics definition of the protein-ligand binding affinity 

In the context of SBDD campaigns, molecular docking approaches provide scores which 

can be compared to experimental determinations of protein-ligand binding affinities. 

However, since these correlate poorly, the docking score is best regarded as a filtering 

tool as stated before. To produce reasonable predictions of binding affinities, more 

rigorous methods for their numerical estimation are required.197 As described in Chapter 
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1, ITC experiments are costly and time consuming. Thus, it is desirable to obtain binding 

affinities without having to go through experimental determinations, but through 

numerical approaches. Doing so reduces the financial and human costs compared to 

experiments while profiting from the tremendous increase in computational power 

which, over the years, has improved prediction throughput.31,194,222 Furthermore, 

numerical approaches employing molecular modelling allow to obtain an atomistic view 

of the binding process in addition to an estimation of 𝐾𝑑.223 As such, it is important to 

understand the connection between statistical mechanics and 𝐾𝑑. Statistical mechanics 

is a branch of science which connects events happening in microscopic world to 

macroscopic phenomena.224 It defines a number of rules from which one can derive the 

thermodynamic properties of a system. In the context of a closed system, which only 

exchanges heat with the outside world, the temperature, the number of particles and the 

volume inside it are constant.224 Starting from this isothermal-isochoric ensemble or 

canonical ensemble (NVT), we can define a fundamental quantity for statistical 

mechanics, the partition function 𝑄.224 The partition function encodes all possible 

configurations the system may explore in the conditions set, and is shown in Equation 

3.1.380 

 

                                                     𝑄 =  
1

𝑁! ℎ3𝑁
 ∫ 𝑒−𝛽𝐻(𝑞,𝑝) 𝑑3𝑞 𝑑3𝑝                                 (3.1) 

 

where ℎ is the Plank constant, 𝛽 is the Boltzmann factor given by 
1

𝐾𝐵𝑇
, 𝐻(𝑞, 𝑝) is the 

Hamiltonian operator of the system encoding momenta (𝑝) and position (𝑞) of all 

particles in the system, 𝑑3 indicates that 𝑞 and 𝑝 are vectors in 3N dimensional space and 

𝑁! is introduced to avoid over-counting the number of microstates.224 From this equation 

one can derive the configurational partition function 𝑍𝑁 in Cartesian coordinate space, 

which is of the form: 189,380 

 

                                                       𝑍𝑁 = 
1

𝑁! ℎ3𝑁
 ∫ 𝑒−𝛽𝐸𝑖(𝑞) 𝑑 𝑞                                      (3.2) 

 

where the integration is carried out over the position of all particles in the 𝑞 

configurational space and 𝐸𝑖(𝑞) is the energy of a given configuration as a function of the 

atomic positions. The contribution coming from the momenta, in the case that free 

energy differences are of interest, is expected to cancel out.225 From the above Equation 

3.2, one is able to extract important thermodynamic quantities. For example, it is possible 

to obtain the internal energy of the system (𝑈) by taking the partial derivative of the 
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natural logarithm of the partition function with respect to 𝛽 and connect it to the 

configurational ensemble sampled by MD as in Equation 3.3: 380 

 

𝜕 ln 𝑍𝑁
∂𝛽

=  〈𝐸𝑖(𝑞)〉 = 𝑈 =  ∫𝐸𝑖(𝑞)  𝑃𝑖(𝑞) 𝑑𝑞                            (3.3) 

 

where 〈𝐸𝑖(𝑞)〉 is the ensemble average energy of the system extracted from the 𝑖 

configurations sampled by MD or MC simulations in the limit of the ergodic hypothesis.224 

For a system containing many atoms, computing manually the configurational partition 

function becomes intractable. However, it can be estimated from molecular simulations 

using Equation 3.3 where  𝑃𝑖(𝑞) is the probability of configuration 𝑖, extracted from the 

Boltzmann distribution (also known at the canonical distribution) as in Equation 3.4:189,224 

 

                                                            𝑃𝑖(𝑞) =  
𝑒−𝛽𝐸𝑖(𝑞)

𝑍𝑁
                                                   (3.4) 

 

Additionally, from the configurational partition function one can obtain the free energy 

of the system in the NVT ensemble using the Helmholtz equation (Equation 3.5): 

 

                                                          𝐹 = 𝑈 − 𝑇𝑆 =  −𝐾𝐵𝑇 ln 𝑍𝑁                                         (3.5) 

 

where 𝑈 is the system internal energy, 𝑇𝑆 is the system entropy at temperature 𝑇 in 

Kelvin and 𝐾𝐵 is Boltzmanns’ constant.225 The Helmholtz free energy is quasi-equivalent 

to the Gibbs free energy, which is derived in the isothermal-isobaric (NPT) ensemble. The 

enthalpy term (𝐻) in the Gibbs free energy (𝐺) corresponds to the internal energy (𝑈) 

plus a 𝑝𝑉 term accounting for the volume (𝑉) variation with respect to the fixed pressure 

(𝑝), as in 𝐺 = 𝐻 − 𝑇𝑆 = 𝑈 + 𝑝𝑉 − 𝑇𝑆. The 𝑝𝑉 term, however, can be approximated as 

having zero contribution to the change in free energy in solution when considering 

incompressible liquids like water, as pointed out by Shirts and Mobley.226 

The free energy corresponds to the maximum amount of useful work that can be 

extracted from a closed system.224 It can be evaluated either at constant temperature 

and volume (Helmholtz) or at constant temperature and pressure (Gibbs). To compute 

accurate free energies from molecular simulations, it is first required that all 

configurations accessible to a system be visited and that their probabilities be converged 

(e.g reversibly sampling all conformational transitions). The sampling of the free energy 

landscape can be done either through MD simulations or MC methods. Then, we employ 

Equation 3.6 (NVT) as78: 

                          𝐹 =  −𝐾𝐵𝑇 ln  ∑ 𝑒−𝛽𝐸𝑖(𝑞
𝑁)

𝑖                                            (3.6) 
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Analysis of Equations 3.4 and 3.6 allows us to grasp one very important piece of 

information. The molecular configurations which come from low energy regions of the 

free energy landscape will contribute more to the free energy than configurations coming 

from high energy regions because they correspond to the configurations which are 

sampled more frequently. Indeed, Equation 3.4 connects the macroscopic with the 

microscopic world by connecting 𝑈 to the energy of each individual microstate. However, 

in most cases perfect sampling is unachievable through simulations since sampling 

reversibly all high-energy conformations requires simulation time-scales orders of 

magnitude above what is currently possible. One way to try and circumvent this limitation 

is through the usage of enhanced sampling techniques such as replica exchange 

Molecular Dynamics (REMD).227,228 The underlying reason is that populating high-energy 

states in unbiased MD implies crossing large energy barriers and the corresponding time 

τ for these conformational transitions to happen by thermal fluctuation is large. However, 

it must also be noted that while enhanced sampling techniques tend to sample the 

configurational space better than unbiased MD, they can be difficult to apply and may 

still be plagued with under-sampling issues. Thus, accurate estimation of absolute binding 

free energies remains a challenge. 

Finally, it is often the case that one is not interested in absolute free energies but in the 

free energy difference between two states, whichever they are. Given the above and that 

the free energy of binding is obtained from the ratio of concentration of each chemical 

species, then one can write the 𝐾𝑒𝑞 as a ratio of the partition functions of the complex 

and the unbound protein and ligand.86 Indeed, molecular simulations are a powerful 

technique which underlie most free energy calculation methods.110,200,201,209,221,226,229,230 

However, some ingredients are necessary to compute accurately free energies: a 

potential energy function, a sampling protocol to obtain the configurational ensemble 

and a method for binding free energy calculation. In the next subchapter we will discuss 

the fundamental concepts required for Molecular Dynamics simulations. Then, we will 

discuss rigorous and end-point binding free energy methods.  

  

 

3.3: Molecular Dynamics simulations 

3.3.1: Molecular Mechanics 

Throughout this dissertation, the most used CADD techniques require MD simulations. 

Particularly, most results were obtained based on unbiased MD using classical forcefields, 

which rely on a Molecular Mechanics formalism.118 Within a quantum mechanical 

description of molecules, the behavior of all electrons is explicitly considered, allowing 
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the study of phenomena involving bond breaking and generation. However, the time-

dependent Schrödinger equation231 only has analytical solutions for molecular systems 

of one electron meaning that numerical approaches within QM have to be pursued to 

study more complex systems. 

The Molecular Mechanics (MM) description of large systems is substantially cheaper 

than the QM treatment but requires the introduction of several approximations. One 

approximation is the Born-Oppenheimer232 (BO) approximation. The BO approximation 

relies on the fact that the electrons move much faster than nuclei do, adapting almost 

instantly to any position of the nuclei, thus meaning that MM forcefields focus on the 

motions of atomic nuclei.232 In Molecular Mechanics, the potential energy of the system 

is written as a function of the coordinates of atomic nuclei, and thus most MM 

approaches are unable to reproduce bond breaking/forming events. An example of a MM 

forcefield which is able to efficiently describe bond breaking/formation is the ReaxFF.233 

Other approximations are also introduced, such as the treatment of atoms as hard 

spheres with fixed volume and the almost-complete neglect of electronic polarization 

phenomena.194 To study large molecular systems within Molecular Mechanics, it is 

necessary to use a potential energy function, also known as a forcefield.118 A forcefield is 

an equation comprised of bonded and non-bonded terms which permits the calculation 

of the potential energy of a system in function of its three-dimensional molecular 

configuration.118 Since forcefields are parametric in nature, it is desirable that their 

parameters, derived from fitting to reference data, be transferable to larger and more 

complex systems for which reference data does not exist.118 Because parameters are 

optimized by fitting to reference data, some forcefields are better at reproducing some 

properties than others.118 This is the reason why there are forcefields specifically 

developed for DNA, proteins or lipid simulations. Over the years, many forcefields have 

been developed with the aim of accurately reproducing the dynamical behavior of 

biomolecules. Some of the most well-known are AMBER118, CHARMM234, OPLS206 and 

GROMOS.235 Throughout this dissertation we will use the AMBER forcefield.118 The 

functional form of the forcefield equation for AMBER is described in Equation 3.7. 

 

𝑈(𝑟) =  ∑ 𝐾𝑏(𝑏 − 𝑏0)
2 + ∑ 𝐾𝜃(𝜃 − 𝜃0)

2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝐾𝜒

2
(1 + 𝑐𝑜𝑠(𝑛𝜒 − 𝛿))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑏𝑜𝑛𝑑𝑠

  

+  ∑ {[𝜖𝑖𝑗
𝑚𝑖𝑛 (

𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)

12

− 2(
𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)

6

] + 
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝜖𝑅𝑖𝑗
}           (3.7)

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

 

 

where  𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗, 𝑅𝑖𝑗
𝑚𝑖𝑛 is the reference distance 

computed at the energy minimum structure, 𝑞𝑖 and 𝑞𝑗 are the atomic partial charges of 
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atoms 𝑖 and 𝑗, 𝜖0 is the dielectric constant in vacuum, 𝜖 is the solute internal dielectric 

constant of the system, 𝜖𝑖𝑗
𝑚𝑖𝑛 is the depth of the well in the van der Waals potential and 

each 𝐾𝑥 parameter corresponds to the force constant applied to that specific term of the 

forcefield.118 The bonded terms, encoded by the three first terms, describe the dynamical 

motions of covalently bound atoms. These are ruled by harmonic potentials in the case 

of bonds and angles, whereas the dihedral angles are described by a sinusoidal 

function.118 The bonds and angles’ associated force constants are high, to ensure that 

these fluctuate only slightly around the reference value.118 The dihedral angles, however, 

are allowed to fluctuate and span any value between 0 and 360°, depending on the height 

of the energy barriers separating each conformation from the others. Since dihedral 

degrees of freedom (𝜒) are periodic, a simple harmonic potential is unsuitable to describe 

them. Thus a sinusoidal function is used to describe torsions, which depends on the 

periodicity 𝑛 and the phase 𝛿.118 The phase dictates the location of the maxima in the 

potential energy surface of the dihedral. The periodicity indicates the number of cycles 

along a 360º rotation around the dihedral.118  

The non-bonded interactions are specified by the final two terms. The first one encodes 

the van der Waals interactions and takes the shape of a Lennard-Jones potential.236 This 

potential is a combination of dipole-dipole interactions of attractive nature (the R6 term) 

and repulsive interactions (the R12 term).118 The R12 term has been shown to reproduce 

the expected steep increase in energy when two atoms’ electronic clouds overlap too 

much and repel each other.118 As the distance increases between atom pairs, these 

interactions quickly become negligible and it is customary to truncate them to a given 

cut-off value118 using a switching function to lead the interaction towards zero as the 

interatomic distance between the atom pair approaches a threshold.118  

The final term, encoding electrostatic interactions, is described using a Coulomb law 

between particles with fixed atomic charges.103,118 Due to the long-range nature of 

coulombic interactions, introducing truncation thresholds would lead to a significant 

error which is non-trivial to work around.118 Thus, it would seem that to compute 

electrostatic interactions one would need to compute them at each integration time step 

as the position of the particles of the system are updated iteratively during simulation. 

Since these depend on the distance between each pair of point charges, a list containing 

all pairwise interatomic distances would need to be computed at each time step and the 

computational cost would increase significantly.237 To tackle this problem, typically the 

Particle Mesh Ewald (PME) algorithm is used under periodic boundary condition, splitting 

the electrostatic contributions into short-range and long-range interactions.237 The short-

range portion is computed with a direct pairwise summation and the long-range part is 

computed by the PME algorithm using a distance cut-off.118,237  
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3.3.2: Integrating Newton’s Equations of motion 

The Molecular Mechanics formalism allows both to calculate single-structure 

properties and to simulate the time-evolution of the conformational dynamics of the 

system by integrating Newton’s second law of motion at regular time intervals using 

Equation 3.8133  

 

                                                    𝐹 =  𝑚𝑥̈ =   −
𝜕𝑈

𝜕𝑥𝑖
= 𝑚𝑖

𝑑2𝑥𝑖
𝑑𝑡2

                                          (3.8) 

 

where −
𝜕𝑈

𝜕𝑥𝑖
 corresponds to the partial derivative of the energy with respect the position 

and 𝑚𝑖 is the mass of the particle 𝑖.118 During a simulation, the forces acting the system 

degrees of freedom are updated at each time-step, updating the position of the atoms 

according to particles’ velocities133 and thus producing a trajectory.220 To guarantee that 

Newton’s second law of motion is correctly solved, integrators need to have some 

properties, among which conservation of energy and time reversibility.133 Time 

reversibility means that changing the sign of all velocities and momenta of the particles 

in the system will cause the system to retrace its steps, like it is going back in time.133 It is 

important to note that no integrator is perfect, and they accumulate errors133 meaning 

that time reversibility is only possible over short periods of time. Integration of the 

dynamics is typically carried out using well-established finite-difference algorithms, such 

as the one by Verlet238 in 1967 or the Velocity Verlet239 algorithm, a variation of the 

original algorithm by Wilson and colleagues.239 These algorithms are computationally 

efficient, reversible and respect the law of energy conservation. The Verlet algorithm238 

is one of the most common integrators in MD simulations. It is based on two Taylor 

expansions, one in the forward and one in the reverse direction such that when these 

two are combined, it yields133,238 

 

                                            𝑟𝑛+1 =  2𝑟𝑛 − 𝑟𝑛−1 + 
𝐹𝑛
𝑚
∆𝑡2 + 𝑂(∆𝑡4)                                (3.9) 

 

where 𝑟𝑛 is the position of the atoms at time 𝑡, (
𝐹𝑛

𝑚
)∆𝑡2 is the acceleration at time 𝑡, 

𝑂(∆𝑡4) are the terms of order 𝑂(∆𝑡𝑛) and 𝑟𝑛+1 and 𝑟𝑛−1 are the position of the atoms in 

the next and the previous step at time 𝑡 + ∆𝑡 and 𝑡 − ∆𝑡.133 The algorithm proceeds 

iteratively with the following set of commands:133,238 First, from the position 𝑟𝑛, compute 

the force 𝐹𝑛 acting on all atoms. Then, from the positions in the previous and current 

step, 𝑟𝑛 and 𝑟𝑛−1, and the just computed force 𝐹𝑛, update the atomic positions to the 
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new timestep 𝑟𝑛+1.133 However, the Verlet algorithm is known to accumulate large 

errors.133 Thus, some modifications to the Verlet algorithm have been proposed.  

The velocity Verlet scheme is one of them and was used during the MD simulations 

carried out in this dissertation. It can be written as a set of equations133 (Equations 3.10 

to 3.13). 

                                                 𝑟𝑛+1 = 𝑟𝑛 + 𝑣𝑛∆𝑡 + 
1

2
(
𝐹𝑛
𝑚
)∆𝑡2                                       (3.10) 

 

                                                  𝑣𝑛+1 = 𝑣𝑛 + 
1

2
(
𝐹𝑛
𝑚
+
𝐹𝑛+1
𝑚

)∆𝑡                                        (3.11) 

 

                                                     𝑣𝑛+1/2 = 𝑣𝑛 + 
1

2
(
𝐹𝑛
𝑚
)∆𝑡                                                (3.12) 

 

                                                   𝑣𝑛+1 = 𝑣𝑛/2 + 
1

2
(
𝐹𝑛+1
𝑚

)∆𝑡                                             (3.13) 

 

The algorithm proceeds in an iterative fashion. First it computes the atomic positions 

𝑟𝑛+1 at time 𝑡 + ∆𝑡  from the above Equation 3.10.133 Then, with Equation 3.12, it 

calculates the velocity at the step 𝑣𝑛+1/2 from the force 𝐹𝑛 acting on the system atoms. 

From the positions and velocities calculated, the forces acting on the particles are 

updated to the next step 𝑡 + ∆𝑡 (𝐹𝑛+1).133 Finally, using the recently computed force, it 

is able to estimate the new velocities 𝑣𝑛+1 at time 𝑡 + ∆𝑡 using Equation 3.13.133 The 

velocity-Verlet algorithm is known to provide an accurate estimate of velocities. 

Furthermore, it is stable and respects both the time-reversibility of Newtons’ equations 

of motion and the energy conservation law.133  

Another critical component for the simulations to be both stable and physically 

reasonable is the time-step of integration, which must allow capturing the vibrational 

motions of the fastest degrees of freedom of the system.133 For biomolecular systems 

such as proteins, this corresponds to the heavy atoms-hydrogen vibrational frequency (X-

H stretching), which is approximately 3000 cm-1.133 Thus, an appropriate time step should 

be between 0.5133 and 1 fs.118 In most cases, however, these motions are constrained by 

algorithms like SHAKE240 or LINCS241, leading to a significant gain in simulation efficiency 

by freezing the X-H stretching. The fastest vibrational mode becomes the X-X stretching, 

which is on the order of 1500 cm-1,133 representing a gain in integration time step of 2-

fold, pushing to the range to between 1133 and 2 fs.118  

The SHAKE algorithm compares the length of each X-H bond with the reference value 

at each time-step and adjusts the position of hydrogen atoms should this deviation be 

larger than a threshold.240 Other methods which allow going beyond 2 fs integration time-
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steps exist, such as the Hydrogen Mass Repartitioning scheme242, where the mass of the 

heavy atoms covalently bond to hydrogen atoms is distributed among the hydrogens. By 

doing so, the vibrational frequency of the hydrogen atoms becomes lower since their 

molecular weight increases.242 This methodology allows all-atom simulations to be 

carried out using a 4 fs integration time-step while maintaining a physically sound 

dynamical behavior.242 

 

3.3.3: Thermostat and Barostat for MD simulations 

Application of MD simulations to estimate binding affinities in biological systems 

requires the reproduction of experimental conditions. The simulation setup must then be 

run in the NPT ensemble, meaning that temperature and pressure control must be 

exerted during dynamics. This is especially important because ITC experiments, which is 

the current gold standard method for experimental determination of binding affinities, 

are conducted at a standard of 298.15K and 1 bar pressure. Temperature control during 

MD is achievable through the introduction of a thermostat, like the one proposed by 

Langevin243 or by Nosé-Hoover244, and pressure control through the inclusion of a 

barostat. Langevin dynamics is a thermostatting approach where the equations of motion 

are modified through a friction term, affecting the atomic velocities, plus a random force. 

The new dynamics for a system are given by Equation 3.14243 

 

                                                  𝑚𝑖

𝑑2𝑥𝑖
𝑑𝑡2

= −∇𝑥𝑖𝑈 − 𝑦𝑖
𝑑𝑥

𝑑𝑡
+ 𝐿(𝑡)                                   (3.14) 

 

where 𝑦𝑖 is a friction coefficient applied to atom 𝑖 of the system and 𝐿(𝑡) is the Langevin 

random force. The friction coefficient will decrease particle velocity, leading to improved 

numerical stability while the random force is a type of “noise” which could help the 

sampling of the free energy landscape.245 To maintain constant pressure, one must also 

introduce a barostat. Commonly used barostats include the Berendsen246 or the Monte 

Carlo barostat247, recently implemented in the Amber18 simulation package.  

 

 

3.4: Rigorous free energy methods 

Rigorous binding free energy calculation methods are able, at a significantly high 

computational cost, to produce binding affinity predictions in general agreement with 

experimental data.189,195,197,209 The term rigorous is employed here to define those 

methods which are based on simulating a path to bring the system from the unbound 
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protein and ligand towards the bound complex. Among these, two major types of 

approaches exist: alchemical and geometrical free energy calculations.189 Free energy 

calculations are known as alchemical when the free energy difference between two 

systems is computed by slowly transforming one system into the other by means of not 

necessarily physical intermediates, evaluating the free energy contribution of each non-

physical intermediate along an alchemical path.210 One application relates to the study of 

how the modification of a chemical group in a series of compounds affects the affinity 

towards the receptor. Geometrical binding free energy calculations, on the other hand, 

rely on simulating a physical path which connects the bound and unbound states of the 

protein-ligand complex.208,209 The binding partners are then pulled together or pushed 

away by adding a potential (or force) onto a selected collective variable (CV).208,209 The 

free energy profile, or PMF, of the system with regards to the selected CV is then 

constructed, allowing one to evaluate the binding affinity.208,209 In the following, some of 

the most popular approaches for binding free energies are explored: Double Decoupling 

Method (DDM) based on FEP, LIE and MM/PBSA methods. While the focus on this 

dissertation is not on rigorous binding free energy methods, it was deemed appropriate 

that the current gold-standard method for rigorous binding, FEP, be described.  

 

3.4.1: Free Energy Perturbation – Double Decoupling 

Within alchemical calculations, the protein-ligand binding free energy can be evaluated 

by the double decoupling, or double annihilation, method as introduced by Jorgensen.98 

In DDM, the ligand is slowly annihilated, becoming a non-interacting particle in the 

binding site and in solution and the binding free energy is computed by means of a 

thermodynamic cycle (Figure 3.2).248 To enable these transformations, a parameter, λ, is 

introduced, building a hybrid Hamiltonian scheme linking the end-states of the alchemical 

transformation such that 

 

                                                          𝐻 λ = (1 −   λ)𝐻A +  λ𝐻 B                                          (3.15) 

 

where 𝐻A is the Hamiltonian of the system in the starting state and 𝐻Bis the Hamiltonian 

of the system in the end state. For example, consider the annihilation of the ligand from 

the protein binding site. In this case, 𝐻A corresponds to the ligand-bound conformation 

of the system and 𝐻B to the protein in the unbound state, after the ligand has been 

decoupled. To connect these two end-states, the parameter λ is introduced. It takes 

values ranging between 0 and 1 and, in practice, permits the transformation by gradually 

turning off the van der Waals and electrostatic interactions between the protein and the 

ligand in small, discrete steps known as intermediate states.30 Introducing an additional 
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intermediate state to transfer the ligand to the gas-phase from either solution or the 

binding site, one obtains189  

 

𝐾𝑒𝑞𝐶
0 = 

∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp(−𝛽𝑈𝐴) 

∫ bulk 𝑑𝐿 𝛿(𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp(−𝛽𝑈𝐵) 
𝑥 

                                                       
∫ bulk 𝑑𝐿 𝛿(𝑟𝐿 − 𝑟

∗) ∫ 𝑑𝑅 exp(−𝛽𝑈𝐵) 

∫ bulk 𝑑𝐿 𝛿(𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp(−𝛽𝑈𝐴) 
                      (3.16) 

 

where the first factor in Equation 3.16189  on the right is the reversible work of decoupling 

the ligand from the binding site into the gas-phase and the second factor is the reversible 

work of decoupling the ligand from solution into the gas-phase.189  The terms 𝐿 and 𝑅 

correspond to the coordinates of the ligand atoms and the coordinates of the atoms of 

the remaining elements in the simulation box respectively, 𝛽 is the inverse of the 

Boltzmann constant, 𝑈𝐴 is the potential energy of the system with a fully coupled ligand 

and 𝑈𝐵 the potential energy of the system with a fully uncoupled ligand.189  

From a statistical mechanics point of view, one can thus write the binding free energy 

in the NPT ensemble of going from one state 𝐴 to another 𝐵 as in Zwanzigs’ exponential 

formula226 

 

                                                ∆𝐺𝐴𝐵 = −𝐾𝐵𝑇 𝑙𝑛〈𝑒
−𝛽(𝐻𝐵− 𝐻𝐴)〉𝐴                                      (3.17) 

 

In the above Equation 3.17 we start from microstates from the conformational 

ensemble of state A and use it to compute the partition function of B by changing the 

potential energy function from 𝑈𝐴 to 𝑈𝐵. It allows one to connect the change in free 

energy when the system goes from state A to state B with the small sequential 

perturbations introduced in the Hamiltonian.250 The limitation associated with this 

approach is that it requires that B and A be states which are not too different from one 

another. Otherwise, if the configurations of A are of low probability in B, the difference 

in free energy between the states will be large and thus attaining convergence is 

difficult.230,250 In other words, it means that the configurations sampled in A have a low 

probability of being sampled in B, implying poor simulation overlap. In this case, it is 

possible to exploit the notion that the free energy is a state function and thus build a path 

connecting the two states using a series of intermediates. The binding free energy is then 

computed by summing the free energy contribution of each intermediate stte introduced 

along the path.197 However, if no other terms are considered, then the ligand in bulk 

solvent or when fully decoupled from the protein is allowed to wander along the 

simulation box, a phenomenon which is known to significantly hamper convergence of 

FEP calculations.189  
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To improve convergence, modern approaches attach restraints to the ligand such that 

its accessible configurational space is strongly diminished and statistical convergence is 

improved.248 In particular, the ligands’ position, orientation and configuration must be 

restrained both within the binding site and in bulk solution.189 Introducing harmonic 

restrains on the ligand position (𝜇𝑝), orientation (𝜇𝑜) and conformation (𝜇𝑐) yields a 

modified version of Equation 3.17, where the equilibrium constant, and thus the binding 

free energy, is accessed by computing the contributions arising from each of the eight 

integrals in Equation 3.18 as described by Montalvo-Acosta and Cecchini189 

 

                                   𝐾𝑒𝑞𝐶
0 = 

∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp(−𝛽𝑈1) 

∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐)] 
𝑥  

                           
∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐)] 

∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐 + 𝜇𝑜)] 
𝑥 

                           
∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐 + 𝜇𝑜)] 

∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐 + 𝜇𝑜 + 𝜇𝑝)] 
𝑥 

                           
∫ site 𝑑𝐿 ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐 + 𝜇𝑜 + 𝜇𝑝)] 

∫ bulk 𝑑𝐿𝛿 (𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈0 + 𝜇𝑐 + 𝜇𝑜 + 𝜇𝑝)] 
𝑥     

                           
∫ bulk 𝑑𝐿𝛿 (𝑟𝐿 − 𝑟

∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈0 + 𝜇𝑐 + 𝜇𝑜 + 𝜇𝑝)] 

∫ bulk 𝑑𝐿 𝛿(𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈0 + 𝜇𝑐 + 𝜇𝑜)] 
𝑥              (3.18) 

                           
∫ bulk 𝑑𝐿𝛿 (𝑟𝐿 − 𝑟

∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈0 + 𝜇𝑐 + 𝜇𝑜)] 

∫ bulk 𝑑𝐿 𝛿(𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈0 + 𝜇𝑐)] 
𝑥   

                           
∫ bulk 𝑑𝐿𝛿 (𝑟𝐿 − 𝑟

∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈0 + 𝜇𝑐)] 

∫ bulk 𝑑𝐿𝛿 (𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐)] 
𝑥    

                          
 ∫ bulk 𝑑𝐿𝛿 (𝑟𝐿 − 𝑟

∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈1 + 𝜇𝑐)] 

∫ bulk 𝑑𝐿 𝛿(𝑟𝐿 − 𝑟∗) ∫ 𝑑𝑅 exp[(−𝛽(𝑈1)] 
     

 

Schematically, one can describe the thermodynamic cycle encoded as follows: gradual 

confinement of the position (𝜇𝑝), orientation (𝜇𝑜) and configuration (𝜇𝑐) of the ligand 

in the binding pocket, annihilation of the restrained ligand in the binding site, re-coupling 

of the restrained non-interacting particle from gas-phase into bulk solvent as fully 

interacting ligand with conformational restraints, gradual release of the ligand restrains 

in the solvent (Figure 3.2).189,248 The binding free energy is thus obtained by summing the 

free energy contribution arising from each intermediate state simulated along the 

transition from state A to state B. (Equation 3.19). 

 

                           ∆𝐺𝐴𝐵 = −𝑘B𝑇∑ ln 〈𝑒𝑥𝑝 (−
𝑈(𝜆𝑖+1) −  𝑈(𝜆𝑖)

𝑘B 𝑇
)〉

𝑁−1

𝑖=1

                            (3.19) 
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Figure 3.2 – Thermodynamic cycle for a DDM calculation. A) Protein and ligand unbound in solution; B) 

Protein in solution, ligand transformed into a non-interacting particle; C) Protein in solution, the non-

interacting particle is restrained; D) Protein-ligand complex with the ligand as a restrained non-interacting 

particle; E) Protein-ligand complex with the ligand restrained in the binding site; F) Bound Protein-Ligand 

complex. Extracted from “Accurate calculation of the absolute free energy of binding for drug molecules” 

Aldeghi et al., 2016.248 Chemical Science, 7, 207.Copyright @ The Royal Society of Chemistry. 

 

A significant drawback of the FEP method is that most of the simulation time is spent 

on unphysical intermediates, which are non-meaningful but critical to the calculation 

since they establish the connection between the end-states of the binding reaction.189,248 

The above mentioned scheme is the one used of absolute binding free energy 

calculations.123,210 However, it is also extensible to relative binding free energy 

calculations. To do so, instead of decoupling ligand A in the binding site and solution, the 

ligand A is alchemically transformed into another ligand, B. This means that as 𝜆0→1, 𝐻A 

approximates 0 and 𝐻B approximates 1 and one ligand is converted in another by 

annihilating one portion and coupling another to it.251 The intermediate states of the 

transformation contain a hybrid Hamiltonian where part of the interactions between 

ligand A and the protein are turned on and part of the interactions between ligand B and 

the protein are also turned on at any given point.251 Ideally the ligands share the same 

chemical scaffold and the perturbation involves a small number of atoms such that the 
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calculation is computationally affordable.251 It is typically useful in lead-optimization 

problems, where chemical modifications of a scaffold yield a chemical series worth 

investigating.197 There are two schemes to carry out FEP calculations: the dual topology 

scheme or the single topology scheme. In the former, a topology containing atoms of the 

two ligands is supplied.226 At λ = 0, the atoms of ligand A are turned on and the atoms 

which are unique to ligand B behave as dummy atoms. As the calculation progresses and 

λ goes from 0 to 1, the interactions with particles which are unique to ligand A are 

gradually turned off and, at λ = 1 these atoms behave as dummy atoms. In the latter, the 

atoms corresponding to ligand A are transformed into the atoms of ligand B by changing 

the atom type as λ goes from 0 to 1.226 

 

 

3.5: End-point methods for binding free energy calculations 

In the context of SBDD and VS approaches, rigorous methods remain too costly for 

routine use in screening of large ligand libraries. Thus, end-point methods are used to 

provide an evaluation of the protein-ligand binding affinity at a fraction of the 

computational cost expected for rigorous methods.189 These methods are simplified 

approaches with explicit consideration of the conformational dynamics of the protein-

ligand complex and the unbound ligand and protein in solution.201 Some end-point 

methods require a training test to build a linear regression model for binding affinity 

prediction216, similarly to machine learning-based approaches, while others are training-

set independent and rely on a physics-based functional form.211,229 Two of the most 

prominent end-points methods will be described in this section: the LIE method216,252,253 

and MM/PBSA, alongside some variants.196,211,212,252,254 These are methods which have a 

long history of application to drug discovery in protein-ligand binding and in host-guest 

systems, collecting both successes and failures. In particular, the MM/PBSA family of 

methods can be used as a free energy rescoring scheme following molecular docking 

experiments as a way to evaluate the binding free energy of a protein-ligand complex in 

a more accurate manner and including solvation effects in the calculation via the use of 

an implicit solvent model. 

 

3.5.1: The Linear Interaction Energy method 

The original implementation of the LIE method is due to Johan Åqvist and co-workers, 

who in 1994 aimed at designing an approach to predict fast and accurately protein-ligand 

binding free energies.216 At the time, the rigorous method which was applicable to this 

sort of problem was FEP but it was limited to very small perturbations because of the 
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computational overheads.216 The idea behind LIE is to compute the absolute binding free 

energy of a ligand to a protein based on the electrostatic and van der Waals interactions 

established by the ligand in solution and in the protein environment as in Equation 

3.20.216  

 

                       ∆𝐺𝑏𝑖𝑛𝑑 =  
1

2
 〈∆𝑈𝑠𝑜𝑙𝑣𝑒𝑛𝑡−𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑒𝑙𝑒𝑐 〉 +  𝛼〈∆𝑈𝑠𝑜𝑙𝑣𝑒𝑛𝑡−𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑣𝑑𝑊 〉                    (3.20) 

 

where 〈∆𝑈𝑙𝑖𝑔−𝑝𝑟𝑜𝑡
𝑒𝑙𝑒𝑐  〉 is the difference in the electrostatic energy taken from the ligand 

simulation in solution or in the protein media and 〈∆𝑈𝑙𝑖𝑔−𝑝𝑟𝑜𝑡
𝑣𝑑𝑊  〉 corresponds to the 

difference in the van der Waals energy taken from the ligand simulation in solution or in 

the protein media, 𝛼 is an empirically determined parameter and 〈… 〉 denotes an 

ensemble average.216 Thus, a LIE calculation requires two simulations to be carried out, 

one of the solvated complex and one of the ligand unbound in solution.255 

The ½ weight for the electrostatic term was obtained by comparing the difference in 

the electrostatic contribution between vacuum and explicit solvent simulations of Na+ 

and Ca2+ ions (〈∆𝑈𝑣𝑎𝑐𝑢𝑢𝑚−𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑒𝑙𝑒𝑐 〉) to FEP calculations which computed the free energy 

of charging these ions in a water simulation box.216 A factor of 0.49 and 0.52, respectively, 

was found between the two calculations, which justifies using a 0.5 weight for the 

electrostatic part.216 For the nonpolar part, Åqvist and co-workers assumed that it could 

be approximated based on the vdW interaction energies and the empirical parameter 

𝛼.216 To support this approximation, the authors recall that the solvation free energy of 

hydrocarbons like n-alkanes depends linearly on the chain length both in the liquid form 

and in water.216  

In general, the parameter 𝛼 is empirically determined so as to reproduce the 

experimental binding free energies of training set compounds.216,253 In the original article, 

benchmark calculations were carried out on a set of endothiapepsin (EP)-inhibitor 

complexes. The calibration set consisted of 4 complexes, for which the RMS error was 

determined at 0.39 kcal/mol with a 𝛼 value of 0.169.216 Impressively, the method was 

able to identify the low affinity and high affinity binders successfully.216 To further test 

the method, Åqvist and co-workers selected a fifth inhibitor with significantly different 

chemistry from the calibration set compounds. The predicted absolute binding affinity 

for this compound exhibited quantitative agreement with the experimental data, as the 

authors report.216 However, this study also had limitations which are, nonetheless, 

addressed by the authors. These mention as potential shortcomings the size of the 

dataset explored, the bigger weight given to the electrostatic contribution than to the 

vdW, the short simulation time pursued and the fact that 𝛼 may not be transferable to 

other systems.216 Furthermore, the ½ factor in the electrostatic contribution term has a 
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physical meaning but some researchers have decided to treat it also as a free parameter 

(𝛽), carrying out a two-parameter fit using a calibration set.253,256 The original LIE model 

then assumes that other effects like entropy and intramolecular energies cancel out  by 

fitting,256 allowing to recover absolute binding free energies efficiently.  

 

3.5.2: The Linear Interaction Energy with Continuum Electrostatics method 

Almost a decade later, Caflisch and Huang published a variant of the LIE method called 

the Linear Interaction Energy with Continuum Electrostatics (LIECE) approach.253 In LIECE, 

the MD simulations used for sampling are substituted by an energy minimization step and 

the electrostatic contribution is accessed by numerically solving the Poisson equation.253 

The accuracy of the LIECE method and the transferability of the parameters were 

evaluated by studying 13 β-Secretase (BACE) and 24 HIV-1 protease inhibitors.253 The 

electrostatic contribution was computed by summing a term in vacuum, obtained 

through Coulombs’ law, and the electrostatic part of the solvation free energy, computed 

by taking the difference between two Poisson calculations for each species of the binding 

reaction.253 One calculation is carried out with the external dielectric constant set to 1 

and another with it set to 78.5, to evaluate the free energy difference for the polar part. 

The binding free energy is then computed using either a 2 or 3 parameter model 

(Equations 3.21 and 3.22)253 

 

                                                 ∆𝐺𝑏𝑖𝑛𝑑 =  𝛼∆𝑈𝑣𝑑𝑊 +  𝛽∆𝐺𝑒𝑙𝑒𝑐                                        (3.21) 

 

                                            ∆𝐺𝑏𝑖𝑛𝑑 =  𝛼∆𝑈𝑣𝑑𝑊 +  𝛽∆𝐺𝑒𝑙𝑒𝑐  + ∆𝐺𝑡𝑟,𝑟𝑜𝑡                          (3.22) 

 

where ∆𝐺𝑒𝑙𝑒𝑐 is the sum of the protein-ligand coulomb interactions in vacuum and the 

change in the electrostatic contribution to solvation free energy of the protein-ligand 

system upon complexation.253 The third term of Equation 3.22 ∆𝐺𝑡𝑟,𝑟𝑜𝑡 corresponds to 

the loss of translational and rotational degrees of freedom upon binding.253  

Remarkable accuracy was achieved for both the 2 and 3 parameter models in the BACE 

dataset, with a cross-validated RMSE of 1.16 and 1.28 kcal/mol for the 2 and 3 parameter 

model, respectively.253 As for the HIV-1 protease systems, it is reported that the 3-

parameter model outperforms the 2-parameter one (RMSE of 0.77 kcal/mol and a cross-

validated q2 of 0.77 versus 0.97 kcal/mol and 0.64, respectively).253 These results are even 

more impactful when considering that the calibration and test datasets contain 

chemically diverse compounds which span a wide range of torsional flexibility.253 

However, the value of the 𝛼 and 𝛽 parameters were found to not be transferable 

between the two datasets, which limits the applicability of each model. In the last decade, 
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LIE has seen applications to drug discovery, some of which required modifications to the 

LIE scheme. In particular, Oostenbrink and Sterjnschantz in 2010257 developed a scheme 

to combine the contribution of multiple ligand binding poses arising from molecular 

docking into a single binding free energy.257  This development appears to be critical for 

the prediction of the protein-ligand binding affinity when the complex involves highly 

flexible proteins, such as in cytochrome P450s, where ligands can adapt several different 

binding poses.257 

  

 

3.5.3: The Molecular Mechanics Poisson Bolzmann Surface Area method 

Within a VS campaign for a complex target, it is often the case that rigorous methods 

are not applicable at the hit identification stage and molecular docking approaches are 

commonly employed. During the docking experiment, a crude scoring function is used to 

evaluate the affinity of small ligands to a protein with a special emphasis on the 

throughput of the calculation. However, since the scores produced usually correlate 

poorly to with experimental binding affinities, many researchers opt by using other 

methods to re-score the docking poses to achieve higher ranking and calculation 

accuracy.213 A popular method for docking pose rescoring is the MM/PBSA approach, 

introduced in the 1990s by Peter Kollman189,196,258,259, which combines molecular 

mechanics energy terms, an implicit solvent Poisson-Boltzmann model to compute the 

polar contribution to the solvation free energy, a solvent accessible surface area (SASA)-

based term accounting for the nonpolar contribution to the solvation free energy and an 

entropic term typically assessed in the rigid rotor harmonic oscillator approximation by 

either quasi-harmonic analysis (QHA)260,261 or normal mode analysis (NMA)262,263. In the 

original implementation, MM/PBSA calculations implied carrying out individual MD 

simulations for the complex, receptor and ligand and extracting average quantities from 

these trajectories (3-average formalism). However, it is also possible to use MM/PBSA 

without carrying out MD simulations and instead applying it to an energy minimized 

structure as a post-docking filter. The MM/PBSA method aims at evaluating the absolute 

chemical potential of each species of the binding reaction. At chemical equilibrium, one 

can write that the equilibrium constant is related to the chemical potential by189  

 

                                                                       𝐾𝑒𝑞 = 𝑒−𝛽∆𝜇𝑏
0
                                                   (3.23) 

 

where ∆𝜇𝑏
0 is the difference between the chemical potential of complex and that of the 

unbound protein and ligand at the standard state.189 In the limit of infinite dilution and 

assuming that the solution volume remains unchanged upon ligand binding (𝑉𝑃𝐿 = 𝑉𝑃)226, 
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Equation 3.24189,264 shows that the value of the protein-ligand binding affinity is deeply 

connected to the reversible work of transferring the solute to solution189  

 

                                                       𝜇𝑖 = 𝜇𝑖,𝑣𝑎𝑐 +𝑊𝑏𝑢𝑙𝑘(𝑋0)                                               (3.24) 

 

where 𝜇𝑖,𝑣𝑎𝑐 is the chemical potential of species 𝑖 in vacuum, 𝑊𝑏𝑢𝑙𝑘 is the reversible work 

of transferring the chemical species from vacuum to solution and 𝑋0 is the minimum 

energy configuration of species 𝑖. Decomposing the above equation into entropic and 

enthalpic terms189 one arrives at the original formulation of Peter Kollman and Irina 

Massova for MM/PBSA196,201,211  in Equations 3.25 and 3.26 

 

                         𝜇𝑖 = 𝐺𝑖 = 𝐸̅𝐵𝐴𝑇 + 𝐸̅𝑣𝑑𝑊 + 𝐸̅𝑒𝑙𝑒𝑐 + 𝐺̅𝑝𝑜𝑙 + 𝐺̅𝑛𝑝𝑜𝑙  − 𝑇𝑆𝑖(𝑉)           (3.25) 

 

                                                 ∆𝐺𝑏𝑖𝑛𝑑 = 〈𝐺𝑃𝐿〉 − 〈𝐺𝑃〉 − 〈𝐺𝐿〉                                        (3.26) 

 

where 𝐺𝑖 is the free energy contribution of species 𝑖, 𝐸̅𝐵𝐴𝑇 the potential energy 

contribution from the bonded terms in, 𝐸̅𝑣𝑑𝑊 the force field vdW energy, 𝐸̅𝑒𝑙𝑒𝑐 the 

electrostatic energy from the force field, 𝐺̅𝑝𝑜𝑙 the polar contribution to the solvation free 

energy and 𝐺̅𝑛𝑝𝑜𝑙 the nonpolar contribution to the solvation free energy.115,196,201,211 A 

schematic representation of the thermodynamic cycle applied in MM/PBSA calculations 

is shown in Figure 3.3. For the standard MM/PBSA approach, it is required to run 

individual MD simulations for complex, protein and ligand either in implicit or explicit 

solvent.201 This formalism is typically known as the 3-average formalism, as it requires 

three independent simulations. Other researchers, however, opt by carrying out only one 

simulation of the protein-ligand complex and extracting the protein and ligand 

simulations from this one, in a variant called 1-average.196 The reason for this is two-fold: 

to save computer time, since only one simulation per complex needs to be carried out, 

and due to the empirical observation that the simplified version of MM/PBSA yields more 

accurate results than the 3-average implementation, possibility due to the cancellation 

of errors from the contribution of the bonded terms.201 However, the 1-average approach 

does not hold when protein-ligand binding events are associated with large 

conformational changes as the overlap between the configurational space sampled by 

the complex and the individual binding partners is significantly narrowed.201 A third 

variant was put forth by Swanson et al.,265 where both the complex and ligand in solution 

would be simulated explicitly, so as to account for the ligand reorganization energy.265 

Importantly, MM/PBSA can also be used as a scoring function.201 In this case, the 

calculation is carried out on a single conformation of the protein-ligand complex and no 
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MD simulation is required. However, as in molecular docking, this approach neglects 

conformational flexibility.201  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Thermodynamic cycle for a binding free energy calculation of a protein-ligand complex. The 

solvated systems are illustrated in blue background and the gas-phase is illustrated in blank boxes. In red 

is highlighted the free energy of interest, computed by computing the free energy contributions in black. 

Adapted from “MMPBSA.py: An Efficient Progrma for End-State Free Energy calculations.”Miller III et al.267, 

2012. Journal of Chemical Theory and Computation, 8, 9, 3314-3321. Copyright @ 2012 American Chemical 

Society. 

 

A technical limitation to MM/PBSA calculations is that the appropriate length of MD 

simulation for MM/PBSA calculations appears to be system-dependent. 266,386 This 

limitation is also present in other binding free energy calculation approaches, including 

FEP calculations. Nonetheless, Genheden and Ryde advise that better results are 

obtained when the MM/PBSA or MM/GBSA results are drawn from averaging over many 

small independent MD trajectories as opposed to one single long MD trajectory.201,266 

One explanation is that with a single long simulation the system initially samples 

configurations around the local energy minimum. As it progresses, though, it may visit 

other minima in a non-reversible manner due to difficulties in crossing back the energy 

barriers when relying solely on thermal fluctuations. This limitation leads to incomplete 

sampling and may be more serious in unbiased MD, hampering calculation 

convergence.266 Starting from many independent short simulations would allow better 

convergence by starting each simulation from different points in phase space while at the 

same time tackling the errors introduced by the forcefield which arise when carrying out 

one long MD simulation.266,384 
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3.5.3.1: The Polar solvation term: Poisson Boltzmann calcultion 

 

The solvation free energy, as shown in Equation 3.25, is decomposable into two 

contributions: one polar and one nonpolar. The polar contribution is accessed by 

numerically solving the PB equation or by using a Generalized Born (GB) model.201 In any 

case, the polar term to the solvation free energy corresponds to the electrostatic 

contributions arising from solvating a low dielectric material (the molecule) composed of 

charged particles within a homogenous high dielectric environment (the implicit solvent 

model).201,229,268 In MM/PBSA, this is carried out starting from the Poisson equation, 

which is a second-order partial differential equation, where the electrostatic potential 

 𝛷(𝑟 ) is computed from is the position-dependent dielectric distribution function (𝜀(𝑟 )) 

and the atomic charge density of the system (𝜌(𝑟 )). Due to the lack of analytic solutions 

to the Poisson equation, it is often the case that numerical solutions are pursued, for 

example using Finite Difference (FD) methods.201,269 However, the original Poisson 

Equation does not consider the contribution of ions.229 Extending this equation to include 

the ionic salt concentration, where the distribution of these extra charges is obtained 

from the Boltzmann distribution, yields the Poisson-Boltzmann Equation (PBE) (Equation 

3.27)229 

 

                                         ∇[𝜀(𝑟 )∇𝛷(𝑟 )] +  𝜆(𝑟 )𝑓(𝛷(𝑟 )) =  −4𝜋𝜌(𝑟 )                          (3.27) 

 

Here, the 𝜆(𝑟 ) function is an ion-exclusion function which takes the value 1 outside the 

Stern layer. The  𝑓(𝛷(𝑟 )) term, which is the term encoding the effect of the salts, is a 

function of the 𝛷(𝑟 ) potential, the valence on the ion (𝑧𝑖) and the bulk concentration (𝑐𝑖) 

at a given temperature. At low ionic strength, one can apply a linearized form of the PBE, 

which is easier to solve numerically201,229 

 

                                             ∇[𝜀(𝑟 )∇𝛷(𝑟 )] = −4𝜋𝜌(𝑟 )  + 𝜀𝑣𝑘
2 𝛷(𝑟 )                           (3.28) 

 

where 𝑘2 = 
8𝜋𝑒2𝐼

𝜀𝑣𝐾𝐵𝑇
, 𝐼 is the ionic concentration of the solution and 𝜀𝑠𝑜𝑙 is the solvent 

dielectric constant (78.5 or 80 for bulk water, typically). Once the electrostatic potential 

is determined in both vacuum and implicit solvent, the polar contribution to the solvation 

free energy can be computed through Equation 3.29268  

 

                                         ∆𝐺𝑝𝑜𝑙 = 
1

2
 ∑𝑞𝑖(𝛷(𝑟 )

𝑠𝑜𝑙𝑣𝑒𝑛𝑡 − 𝛷(𝑟 )𝑣𝑎𝑐𝑢𝑢𝑚)

𝑖

                    (3.29) 
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for a given set of discrete charges 𝑞𝑖 (the solute), where the electrostatic potential in 

vacuum is computed using an external dielectric constant of 1 and 78.5 in solution.268 A 

PB calculation demands some steps to be carried out. First, it is necessary to superimpose 

the system on a cubic grid of a given edge size.201 Then, the atomic charges should be 

mapped in the grid, assigning electrostatic potential, ionic strength and charge density 

values at each grid sub-cube.201,229,268 This implies defining the high and low dielectric 

regions and defining the values of the dielectric constant at each sub-cube, accounting 

for the boundaries of high and low dielectric portions.201 Finally, one is ready to compute 

the electrostatic potential, numerically evaluated at each grid point. 

Examples of established algorithms for PB calculations include the pbsa solver in the 

Amber software suite118, the ZAP algorithm270 in CHARMM and others.201,271,272 

Nonetheless, solving this equation still implies a significant computational overhead since 

it needs to be solved every time the molecular configuration changes.201 Additionally, the 

computational cost of these calculations is also expected to vary depending on the 

coarseness of the mesh used.273 One strategy is to apply grid-focusing such that the mesh 

in the high-dielectric region is coarse and then becomes finer as it approaches the solute, 

such that the computational cost is only paid on the finer mesh regions mapping the 

solute.201,273  

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Illustration of the two surface definitions: the SA surface (black) and the solvent excluded 

surface (blue) and the vdW surface (grey). The overlapping grey circles represent a three atoms of a 

molecule represented by a circle with a radii equal to their vdW radii. Adapted from “McVol -  A program 

for Calculating Protein Volumes and Identifying Cavities by a Monte Carlo Algorithm.” Till and Ullmann, 

2010.274 Journal of Molecular Modeling, 16, 3, 419-429. Copyright @ 2009, Springer-Verlag. 

 

An important consideration for these calculations lies which the choice of the dielectric 

boundary between the solvent and the solute.275 There are two surface definitions which 

are typically used: the vdW surface, and the Solvent Excluded (SE) surface. The vdW 

surface is computed based on the surface union of the vdW sphere of the solute atoms. 

The SE surface corresponds to the surface obtained by rolling a solvent probe over the 
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vdW surface and taking the boundary defined by the probe. The solvent accessible (SA) 

surface is defined similarly, but by considering the center of the sphere as in Figure 3.4.275 

 

 

3.5.3.2: The Polar solvation term: A Generalized Born description 

 

In the context of VS and SBDD, the associated costs of introducing a PBE based method 

to compute the polar contribution to the solvation free energy can quickly become 

overwhelming. To address the issue of the computational cost, researchers have 

developed alternative methods.201,386 In particular, the Generalized Born (GB) model was 

developed aiming at a fast and efficient estimation of the polar contribution to solvation 

free energies by evaluating the electrostatic potential of one atom according to its local 

environment within a given distance.201,268,385 Within a GB model, the atoms are 

represented as spheres of a given radius filled with an internal dielectric constant and 

exhibiting each a given atomic partial charge 268,385 whose level of exposure to the 

(implicit) solvent leads to a position-dependent dampening effect on their electrostatics. 

In practice, the more the atom is surrounded by atoms of the solute, the less its 

electrostatics will be dampened and the stronger it interacts with other solute 

atoms.201,268,385 This effect is critical for the GB calculation, because at the heart of the GB 

model is the effective Born radius 𝛼, which is dependent on the level of screening 

experienced by a given atom due to the implicit solvent.268,385 A large water screening 

leads to a small Born radius, because this atom has its interactions with the remaining 

solute atoms heavily impaired as it is solvent exposed.268,385 The GB equation (Equation 

3.30) is described as follows, for a polyatomic system, and using a function based on a 

pairwise sum over the interacting charges201,277 

 

                                              ∆𝐺𝑠𝑜𝑙𝑣
𝑝𝑜𝑙 = −(

1

𝜀𝑖𝑛
−
𝑒−𝑘𝑓𝐺𝐵

𝜀𝑠𝑜𝑙
)∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
𝑖,𝑗

                                (3.30) 

with  

                                                       𝑓𝐺𝐵 = 
√
𝑟𝑖𝑗
2 + 𝛼𝑖𝑗

2 + 𝑒
(
𝑟𝑖𝑗
2

4𝛼𝑖𝑗
2 )

                                         (3.31) 

 

where 𝑞𝑖 is the atomic partial charge of atom 𝑖, 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 

𝑗, 𝛼𝑖𝑗 is the geometrical average between the effective Born radii of atoms 𝑖 and 𝑗, 𝜀𝑖𝑛 is 

the internal dielectric constant and 𝜀𝑠𝑜𝑙 is the solvent dielectric constant. The above 

Equation 3.31 allows the inclusion of ions in the calculation through the Debye-Huckle 

(𝑘) term.201,277                                                 
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 The original GB model was the Hawkins, Cranmer, Truhlar one (HCT). 201,281  This model 

allowed to represent a solute as a set of spheres and was much faster than standard PB 

calculations.280,385 However, it was noticed that this model did not account properly for 

the spaces left between atom spheres particularly those deep inside the solute.281,385 This 

is because, to prevent overlap between spheres with large Born radii, these radii were 

scaled down. In doing so, small crevices appeared within the innermost parts of the 

molecule.201,281268,385 The problem is that these cavities would be treated as if they were 

filled with solvent and thus the effective Born radii of deeply buried atoms would be 

significantly reduced.281 As such, Onufriev, Bashford and Case developed a new model 

(OBC), to account for these interstitial cavities by scaling up the Born radii of the buried 

atoms without affecting the Born radii of the solvent-exposed solute atoms.281 More 

recently, the GBn models were developed aiming to account for a limitation in the OBC 

models: The small patches between spheres in the boundary with the solvent which 

inherently appear because of representing atoms as spheres.118,201 By accounting for the 

area between the spheres using a “neck integral”, the solute representation is closer to 

that of  a molecular surface and in the studied systems the accuracy of the GB calculation 

increases with respect to a PB reference.118 Another model was later introduced by 

Onufriev et al., which uses a grid-based surface implementation of a R6 potential282 which 

represents a successful compromise between speed and calculation accuracy.201 

 

3.5.3.3: The Variable Dieletric MM/GBSA model 

 

The use of a continuum model to compute the polar contribution to the solvation free 

energy is common to both PB and GB calculations. These calculations depend heavily on 

the solute internal dielectric constant.201,386 While some researchers have reported good 

agreement with experimental data when setting 𝜀𝑖𝑛 = 1, other researchers have shown 

that settting 𝜀𝑖𝑛 to 2,4 or even higher values, could improve predictions for highly charged 

protein-ligand complexes.115,201, 386  It thus opens the discussion: what dielectric constant 

to select for each system to be studied, since it affects the accuracy of the binding free 

energy calculation significantly.386 Using a single dielectric constant to describe the 

electrostatic properties of a solute, especially when talking about protein-ligand systems, 

is a strong approximation, usually taken for simplicity.201 In reality, biomolecular 

complexes are not uniform and thus it would be beneficial to have a way to assign a value 

of the dielectric constant as a function of the local electrostatic environment.201,283 Thus,  

studies aiming at a better understanding of how to assign this parameter were carried 

out either by benchmarking different values of  𝜀𝑖𝑛 and see which value produced the 

most accurate predictions of solvation free energies or binding free energies or by using 

variable dielectric models.201,283,284,386 In particular, it is important to note that although 
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the default value of the internal dielectric constant is set to 1, for highly charged binding 

sites it needs to be set to a larger value.201,384,386 An example of the other avenue pursued, 

the variable dielectric model, is the distance-dependent dielectric model, as proposed by 

Wang et al.283 In this model, the electrostatic energy and the polar contribution to the 

solvation free energy are computed while employing a distance threshold 𝑑0 such that  

 

                                     𝐸𝑒𝑙𝑒𝑐 =

{
 
 

 
 ∑

1

𝜀𝑖𝑛(𝑘)
 ∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑖 ∈𝑘,𝑗

 ,    𝑑𝑟𝑙 < 𝑑0
𝑘

∑
𝑞𝑖𝑞𝑗

𝜀𝑖𝑛𝑟𝑖𝑗
𝑖,𝑗

 ,    𝑑𝑟𝑙 ≥ 𝑑0

                              (3.32) 

                                    𝐺𝑝𝑜𝑙 =

{
 
 

 
 −∑(

1

𝜀𝑖𝑛(𝑘)
−

1

𝜀𝑠𝑜𝑙
) ∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
𝑖∈𝑘,𝑗𝑘

𝑑𝑟𝑙 < 𝑑0

−(
1

𝜀𝑖𝑛
−

1

𝜀𝑠𝑜𝑙
)∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
𝑖,𝑗

 ,    𝑑𝑟𝑙 ≥ 𝑑0

                     (3.33) 

 

where 𝑑𝑟𝑙 is the distance between the center-of-mass of residue of type 𝑘 to the center 

of geometry of the ligand.283 In the case that the ligand atom 𝑗  and the protein residue 

𝑘  are in close proximity, 𝑑𝑟𝑙 < 𝑑0 and the value of the internal dielectric constant for 

the protein residue is assigned according to its type (charged, polar and non-polar 

aminoacid, 4, 2, 1 respectively). For residues far away from the ligand, they are assigned 

a default dielectric constant.283 Furthermore, the dielectric constant of the ligand is also 

computed, since the free energy contribution of the ligand to the overall binding free 

energy is also affected by the choice of the solute dielectric constant.283  

The researchers found that using the VD model led to increased predictivity when 

compared to calculations carried out using an solute dielectric constant of 1283 for 130 

protein-ligand complexes from the 2013 PDBbind core set.214 In practice, however, the 

improvement was limited to a few percent points283 and the authors ascribe the modest 

improvement to the fact that they explored a rather narrow range of dielectric constants 

for the solute.283 This could be a problem particularly in highly charged systems, as 

evoked by the authors as a justification.283,386  

 

3.5.3.4: The Nonpolar solvation term 

 

The nonpolar contribution to the solvation free energy is related to the process of 

creating a cavity on the solvent with the shape of the solute and filling that cavity with 

electronic density, which has both repulsive and attractive contributions.201,283,285,384  The 

cavity creating step represents a free energy cost which is then balanced by the gain in 
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interactions established by the solute with the solvent.118,283,285 In most cases, it is 

estimated as a linear relationship to the SASA as in Equation 3.34118,283,285 

 

                                                       ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙 =  𝛾 ∗ 𝑆𝐴𝑆𝐴 + 𝑏                                            (3.34) 

 

where 𝛾 = 0.00542 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙/Å2 is the surface tension and 𝑏 = 0.92 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 is a 

correction term set to be constant in the Amber18 software suite.118 More recently, other 

models for computing the ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙 were put forth. On one hand, a modified version of 

Equation 3.35 was proposed, where ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙 is estimated as the sum of two main terms: 

cavity formation and the dispersion term arising from the vdW interactions between 

solute and solvent.201,229 On the other hand, a polarizable forcefield approach, the 

Polarizable Continuum Model (PCM) 201,286 opens, in principle, to the calculation of non-

polar solvation free energies with higher accuracy than those obtained by SASA-based 

methods.287 The matter of fact is that although the non-polar contribution is important 

for a proper binding affinity prediction, little attention has been given to it in the last 

years.201 

 

3.5.3.5: Entropy in MM/PBSA calculations  

 

Entropy is one of the key thermodynamic properties ruling protein-ligand binding. 

However, accurate evaluation of entropic contributions is typically difficult and time 

consuming. One of the most well-known methods used to include entropic contributions 

in MM/PBSA or MM/GBSA calculations is NMA.262,263 However, NMA requires the 

creation of a Hessian matrix of all 3N-6 internal degrees of freedom of the system, 

considers only the local displacements around the equilibrium conformation examined 

and neglects the flexibility the protein-ligand complex beyond harmonic motions, leading 

it to underestimate the entropy of flexible systems.201,218,262 This matrix must then be 

diagonalized, an endeavor which is computationally costly and must be repeated for a 

given number of snapshots.201 Other methods have also been developed but most of 

them require very large simulation times to provide converged measurements or are 

known to produce only upper-bound estimates to the true entropy of a chemical species 

like in QHA.225,260,261 Due to the difficulties in correctly computing these contributions 

some researchers opt by ignoring entropic terms entirely.115,201 An additional reason for 

ignoring entropic contributions in these calculations stems from the empirical 

observation that when these terms are considered using NMA or QHA, the correlation 

between predicted and experimental binding affinities tends to decrease.201 However, by 

ignoring these terms, the comparison between ligands of different sizes with respect to 

their predicted MM/GBSA binding affinities becomes unreliable384 as the calculation is 
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biased towards predicting bigger ligands as better binders. In the context of VS, it would 

lead to the prioritization of many false positives. In recent years, some researchers 

developed simplified methods for entropy calculations, such as the Truncated NMA 

entropy method254, the interaction entropy method212 or the Binding Entropy Estimation 

of Rotation and Translation (BEERT) approach.288 In the truncated NMA entropy method, 

only protein residues under a radius threshold between 8-16Å of the ligand center-of-

mass are kept while the remaining protein residues are removed. This truncation greatly 

reduces the size of the system, accelerating NMA calculations.273 It was shown by the 

group of Hou that introducing the truncated NMA entropy estimation increases the 

accuracy of the absolute binding free energies and the correlation to the experimental 

data.273 The interaction entropy calculation introduced by Duan et al., on the other hand, 

post-processes the MD simulation to evaluate the protein-ligand interactions and 

calculates the entropy change upon binding.212 In particular, it estimates the entropy 

change upon binding from the fluctuations of the electrostatic and vdW energies 

between protein and ligand, extracted directly from an MD simulation of the complex by 

post-processing.201,212 Finally, the BEERT method aims at computing the translational and 

rotational entropy loss of the ligand upon binding starting from the flexible molecule 

framework.288 All of these methods are significantly more efficient than standard NMA or 

QHA. Still, many people opt by not including these contributions in their end-point 

binding free energy calculations, which clearly provides incorrect predicted binding free 

energies. As pointed out recently by Tuccinardi384, the development of a method allowing 

accurate and efficient calculation of entropic contributions in MM/PBSA and related 

methods is envisaged in the future.384 To this  end, an interesting avenue would be 

exploiting the computational power offered by GPUs.384 

In Chapter 4 we will review the statistical mechanics basis for RRHO and beyond-RRHO 

entropy calculations and highlight the theoretical framework which constitutes the basis 

for the Quasi-Harmonic Multi-Basin method developed and presented in Chapter 5. 

 

 

3.6 – Recent applications of MM/PB(GB)SA calculations  

Over the years, due to the increasing popularity of computational methodologies within 

academic and pharmaceutical drug discovery projects, MM/PBSA and its variants have 

enjoyed a spot in the limelight. Since docking scoring functions are highly approximated 

and most often do not include neither solvation nor entropic terms in an appropriate 

manner189, it is often the case that a single scoring function may have limitations when 

predicting the binding affinity for protein-ligand complexes. Thus, some researchers 

argue that the combination of docking and MM/PBSA or MM/GBSA rescoring would lead 
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to better ranking of compounds.213 For docking pose rescoring, these methods are some 

of the fastest available and are suitable for VS of large chemical libraries. The choice of 

whether to use MM/PBSA or MM/GBSA is not crystal clear as some benchmark studies 

report better performances for the former while others for the latter.201,229 Considering 

only computation efficiency, however, leads one to prefer the MM/GBSA method within 

VS approaches. One study illustrating the usefulness of these methods is the work by 

Lightstone et al.213 where a docking plus free energy rescoring by MM/GBSA scheme was 

applied to study ligand recognition upon binding to antithrombin, achieving good 

agreement with experimental data (R2 = 0.69).213 However, a closer look at the predicted 

binding affinities highlights limitations of the approach: the predicted binding affinities 

were systematically overestimated by as much as one order of magnitude.213  The authors 

state that a reason may be the lack of entropic contributions while another potential 

source of error may be due to the usage of an implicit solvent model.213 Nonetheless, the 

ranking of compounds agreed with the experimental ranking, which means that the 

method was able to identify the least and most potent binders.213  

The power of end-point methods in discriminating true actives from decoys has also 

been a large object of study, with benchmark studies highlighting the screening power of 

these methods.289,384 An enlightening example is given by Sgobba et al.229,289 which 

assessed the power of these end-point methods in docking pose rescoring for six different 

drug targets. They reported that MM/GBSA binding affinity calculations yielded 

predictions which lead to both a better Area Under the Curve (AUC) and enrichment 

factor (EF) when compared to molecular docking scoring functions.229,289 A large scale 

study by Zhang et al.,229 targeting 38 drug targets with a large ligand library containing 

more than half a million compounds, including active molecules and decoys, also 

demonstrated the same trend as in Sgobba et al. 229,289  

More recently, a molecular docking and MM/PB(GB)SA free energy rescoring approach 

was carried out to identify hit compounds from already approved drugs in a docking plus 

free energy rescoring approach targeting the SARS-Covid19-Mprotease.290 The author 

started from a dataset of 2201 approved drugs present in the DrugBank database and 

carried out molecular docking to the SARS-Covid19-Mprotease using Glide.290 The best 

ranked compounds from the docking campaign were rescored using MM/GBSA, utilizing 

MD simulations to generate the conformational ensembles for the rescoring step.290  The 

author found that several drugs were predicted as potential hits. Furthermore, a 

MM/GBSA free energy decomposition allowed to identify key residues to SARS-Covid19-

Mprotease-ligand binding, an information which facilitates the rational design of novel 

inhibitors.290  Another recent application of MM/GBSA was reported by Lagarias et al.,291 

where it was applied both to a small scale VS campaign comprised of compounds similar 

to a potent Adenosine A3 receptor antagonist and to evaluate the effect of mutating 
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binding site residues on the activity of the antagonist. 291 A final example highlighting an 

advanced implementation of MM/PBSA calculations is described by the group of 

Gohlke.292 The method was used to obtain a per-residue energy contribution to the 

dimerization process of G-coupled Protein Receptor (GPCR) TGR5 embedded in a lipid 

membrane using an implicit membrane model.229,292 The implicit membrane was divided 

into five slabs, each with a given internal dielectric constant which increased from the 

center of the membrane outward.292 The MM/PBSA analysis allowed the discovery of 

residue hotspots in the interface between TGR5 dimers which could be targeted by small 

molecules.292  
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4. Theory of single molecule entropy methods with applications 

in MM/PB(GB)SA calculations 

 

4.1: Introduction 

 

During a binding reaction between a protein and a small-molecule ligand, interactions 

are established between the binding partners while their structures tend to rigidify, 

meaning some motions become constrained. In other words, the gain in enthalpy which 

arises from the protein-ligand interactions established is balanced out by an entropic 

penalty due to the constraining of the external and internal motions of each species of 

the binding reaction. Thus, entropy can be seen as a fundamental thermodynamic 

observable which exerts control over binding phenomena between two chemical 

entities.199,218,293 It is also critical in other biomolecular processes, such as surface self-

adsorption294 or protein folding295. Nonetheless its pivotal role in these processes, 

accurate calculations of entropic contributions for flexible molecules, which can span 

many conformations, remains a challenge. Over the years, many different methods have 

been proposed to evaluate absolute entropies and entropy differences. Some of them 

are based on the Rigid Rotor Harmonic Oscillator (RRHO)  approximation225,261–263,296, 

using either the classical or the quantum mechanical (QM) harmonic oscillator, while 

others are based on information expansion techniques293,297–299, nearest neighbors 

estimators300,301 or even hybrid calculations combining RRHO-based calculation and 

information expansions approaches.302–305   

 The scientific community is still in pursuit of a method which allows the proper 

calculation of absolute molecular entropies in solution accurately and efficiently.218  One 

reason is that unraveling the influence of entropic terms in protein-ligand binding would 

allow a more complete picture of how the binding reaction happens. Another reason is 

the fact that due to current limitations in software and hardware, rigorous absolute 

binding free energy calculations are still inaccessible within VS approaches and thus, it is 

usually the case that end-point methods are employed for refinement of rankings 

produced from molecular docking simulations. As stated in Chapter 3, some researchers 

opt by not including entropic contributions in calculations carried out using MM/PBSA 

and similar methods, as empirically it has been observed that they introduce more noise 

that signal and they are costly to compute.115,229,273 However, the resulting predicted 

binding free energies are often overestimated and biased to predict bigger ligands as 

better binders. In this chapter, we will start by describing the statistical mechanics 
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fundamentals for absolute entropy calculations. Then, we will describe entropy 

calculation approaches both in and outside the RRHO formalism which can be used in 

conjunction with MM/PB(GB)SA binding free energy calculations. Finally, we will discuss 

how to evaluate the accuracy of absolute entropy calculations through benchmark data. 

 

 

4.2: A statistical mechanics view of entropy 

 

As illustrated in Chapter 3, the partition function connects the micro and the 

macroscopic worlds. It does so by relating a macroscopically measurable quantity, like 

the free energy of a system or the difference in free energy between two states of a 

system, to the assessable microstates at a given set of conditions. In the limit of classical 

mechanics, the partition function 𝑄 of a system can be written as in Equation 3.1. Within 

this framework, the entropy of that system can be computed from the probability 

distribution 𝑝(𝑞, 𝑝) as225 

   𝑆 =  −𝐾𝐵𝑇 ∫∫𝑝(𝑞, 𝑝) ∗ ln( 𝑝(𝑞, 𝑝))   𝑑𝑝 𝑑𝑞                       (4.1) 

 

which is known as the Shannon-Gibbs entropy.225 In particular the entropy above 

described contains two contributions: one arising from the momenta 𝑝, and one arising 

from the position 𝑞, of the systems’ degrees of freedom.225,29 After factorizing the above 

integral, two contributions are obtained: one from the momenta and one from the 

coordinates.225,29 Since the momenta contribution cancels out in entropy differences, 

often the real challenge is estimating the configurational integral (Equations 4.2) as stated 

by Diáz and Suárez225 Hence, the entropic contributions of interest are usually 

coordinate-dependent and assigned the name of configurational entropies.225,293,298 The 

equation to compute the configurational entropy of a system is then written down 

as225,293,306 

 

𝑆𝑐𝑜𝑛𝑓𝑖𝑔 = −𝐾𝐵𝑇 ∫𝑝(𝑞) ∗ ln( 𝑝(𝑞))   𝑑𝑞                               (4.2) 

 

The above equation provides access to the absolute entropy of a molecular system 

through the probability distribution function of its configurational space 𝑝(𝑞), which can 

be sampled by molecular simulations.304 Another way of obtaining the absolute entropy 

of a system arises by taking the derivative of the free energy with respect to the 

temperature, which arrives at the following Equation 4.3 
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𝑆 =  − (
𝜕𝐹

𝜕𝑇
) =  − (

𝜕𝐾𝐵𝑇 ln𝑍

𝜕𝑇
)
𝑁,𝑉
                                     (4.3) 

 

providing access to the absolute entropy through the canonical partition function by 

evaluating its temperature dependence. The above Equation 4.3 can also be written at 

constant temperature and pressure by taking the derivative of the Gibbs free energy (
𝜕𝐺

𝜕𝑇
) 

with respect to temperature as opposed to the derivative of the Helmholtz free energy 

(
𝜕𝐹

𝜕𝑇
). By taking Equation 4.3 and realizing the third law of thermodynamics, which states 

that the entropy of a perfect crystal at zero K is zero, i.e S(0K) = 0, one arrives at the 

calorimetry definition of entropy, Equation 4.4 

 

𝑆(𝑇) = 𝑆(0𝐾) + ∫
𝛿𝑞𝑟𝑒𝑣
𝑇

             
𝑇

0𝐾

                               (4.4) 

 

where 𝛿𝑞𝑟𝑒𝑣 is the heat exchanged during a reversible transformation from 0𝐾 to the 

target temperature at constant volume. At a constant 1 bar pressure, which it typically 

how experimental gas-phase entropies are measured307, Equation 4.4 becomes 4.5 

 

𝑆(𝑇) =  ∫
𝑑𝐻

𝑇
                                                         (4.5)

𝑇

0𝐾

 

 

Through the ideal gas approximation, which assumes that the particles are sufficiently 

far away such that they do not interact with each other and are indistinguishable, the 

partition function 𝑍 of a system composed by 𝑁 molecules is readily computed from the 

product of the individual molecular partition functions (𝑧), in the limit of high 

temperature225 

𝑍 =  
𝑧

𝑁!

𝑁

                                                                (4.6) 

 

where 𝑁! is included to avoid overcounting due to the indistinguishable nature of the 

molecules in the system.225 This equation can then be plugged into Equation 4.3 to yield 

the single molecule contribution to the absolute entropy of a system with 𝑁 molecules 

as225 

 

𝑆

𝑁
= [

𝜕𝐾𝐵𝑇 ln (
𝑧
𝑁𝑒)

𝜕𝑇
]

𝑉

                                                  (4.7) 
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The entropy per molecule of the system is then accessed from the molecular partition 

function. Employing the Born-Oppenheimer approximation, we can separate 

translational from internal motions.225 The rigid rotor (RR) approximation then allows one 

to further decouple two types of internal motions: rotations and vibrations224,225, 

although there may still exist some rotation-vibrational coupling. The vibrational partition 

function then is accessed in the limit of the Harmonic Oscillator approximation (HO).78,225 

As such, under the RRHO approximation, the single molecule partition function can then 

be written as a product of the partition functions encoding each type of motion 

(translations, rotations and internal vibrations) and the electronic partition function.78,225 

However, this last term is generally irrelevant for classical MD simulations in the ground 

state, and thus218,308 

𝑧 =  𝑧𝑡𝑟𝑎𝑛𝑠𝑧𝑟𝑜𝑡𝑧𝑣𝑖𝑏                                                   (4.8) 

 

where 𝑧𝑡𝑟𝑎𝑛𝑠 is the translational partition function, 𝑧𝑟𝑜𝑡 is the rotational partition function 

and 𝑧𝑣𝑖𝑏 is the vibrational partition function of the 3N-6 internal degrees of freedom of a 

molecule. Following Equation 4.8 and Equation 4.7, they yield 

 

𝑆 =  𝑆𝑅𝑅𝐻𝑂 = 𝑆𝑡𝑟𝑎𝑛𝑠 + 𝑆𝑟𝑜𝑡 + 𝑆𝑣𝑖𝑏                                   (4.9) 

 

where for each entropic contribution there is an analytical expression arising from 

statistical mechanics such that224 

 

𝑆𝑡𝑟𝑎𝑛𝑠 = 𝑁𝐾𝐵 ln (
𝑉𝑒5/2

𝑁
(
2𝜋𝑚𝐾𝐵𝑇

ħ2
)
3/2

)                                    (4.10) 

 

𝑆𝑟𝑜𝑡 = 𝑁𝐾𝐵 [ln (
√𝜋𝐼𝐴𝐼𝐵𝐼𝐶

𝜎
(
8𝜋2𝐾𝐵𝑇𝑒

ħ2
)

3/2

)]                                (4.11) 

 

𝑆𝑣𝑖𝑏 =  𝑁𝐾𝐵  ∑

[
 
 
 
 ħ𝑣𝑖

𝐾𝐵𝑇

(𝑒
ħ𝑣𝑖
𝐾𝐵𝑇

 − 1
)

− ln(1 − 𝑒
− 
ħ𝑣𝑖
𝐾𝐵𝑇)

]
 
 
 
 

                          (4.12)

3𝑁𝑎𝑡−6

𝑖=1

 

 

where 𝑉 is the volume, 𝐼𝐴, 𝐼𝐵, 𝐼𝐶   are the three principal moments of inertia of the 

molecule, 𝜎  is the rotational symmetry number and 𝑣𝑖  the harmonic vibrational 

frequencies of the 3𝑁𝑎𝑡 − 6 internal degrees of freedom.224 From Equations 4.10, 4.11 

and 4.12224,225,261,296, one can see that these entropic contributions depend only on a 

couple of terms. The translational contribution depends on the standard state of the 
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system 
𝑉

𝑁
, the volume occupied per N molecules, and on the mass of the system. The 

standard volume for a molecule can be 22.4 mol/L in the case of the vacuum (1 bar 

pressure, 273.15K), 24.78 mol/L in the case of an ideal-gas at 1 bar pressure and 298.15K, 

and 1 mol/L in solution. The rotational contribution depends on the symmetry number 𝜎  

and the moments of inertia, which encode the geometry of the molecule. The vibrational 

contributions depends solely on the harmonic vibrational frequencies of the internal 

degrees of freedom, which describe the width and depth of the potential energy wells 

explored by these degrees of freedom of the system.225 Thus, the RRHO approximation 

allows the calculation of absolute entropies and entropy differences in gas-phase or in 

solution, this last one commonly done using implicit solvent models, in combination with 

MM forcefields typically used in biomolecular simulations. It comes as no surprise that 

RRHO-based methods for entropy calculations are commonly applied within MM/PBSA 

and MM/GBSA approaches201,229,273, although with system-dependent success rates. 

Indeed, the RRHO approximation as it is normally applied tends to produce either upper 

or lower bound estimates to the true entropy, depending if QHA or NMA is used. The 

harmonic oscillator model is, however, central to these calculations and is briefly 

described below.   

 

 

4.3: The Harmonic oscillator 

 

The harmonic oscillator is a physical model used to study the motions of pendulums, 

masses connected to springs and acoustical systems.309 It also has applications in other 

fields, such as molecular simulations229. It is fundamental within RRHO entropy 

calculations, as the solution to the HO equation yields the vibrational frequencies which 

are to be plugged into Equation 4.12.224,310 

 

4.3.1: The classical harmonic oscillator 

 

The harmonic oscillator model is used to describe the movement of a one-dimensional 

particle attached to a spring which behaves according to Hooke’s law.224,309 In the model, 

a force acts to displace the particle from the equilibrium position by stretching the 

spring.309 This force is typically proportional to the displacement and depends on the 

stiffness of the spring.309 A stiffer spring will be more difficult to stretch. The sign of the 

force is typically negative because the restoring force produced by the spring is of the 

inverse sign of the force used to stretch it. In the uni-dimensional case, this force is 

described by309 
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𝐹 = −𝑘𝑥                                                                 (4.13) 

 

where 𝐹 is the force, 𝑘 is the force constant and 𝑥 is the displacement of the particle 

from the equilibrium, or reference, position. A strong force constant implies that the 

displacements away from equilibrium are more strongly acted upon and more difficult, 

meaning the stiffness of the spring is stronger than for a smaller value of 𝑘. The equation 

of motion of the particle is given by 

 

𝑥̈(𝑡) + 𝜔2𝑥(𝑡) = 0                                                   (4.14) 

 

where 𝜔2 = 𝑘/𝑚 and 𝑚 is the mass of the particle attached to the spring. The oscillatory 

motion is thus described by a sinusoidal function309 

 

𝑥(𝑡) = 𝐴 sin𝜔𝑡 + 𝐵 cos𝜔𝑡                                             (4.15) 

 

The function shown in Equation 4.15 describes the motion of a particle with harmonic 

behavior when a given force 𝐹 acts upon it. This particle is called a harmonic oscillator 

and the associated angular frequency of oscillation is given by 

 

𝜔 = √
𝑘

𝑚
                                                              (4.16) 

 

with 𝜔  measured in radians per second. The vibrational frequency of the oscillator 𝑣 is 

then computed as 

𝑣 =
𝜔

2𝜋
= 

1

2𝜋
√
𝑘

𝑚
                                                        (4.17) 

 

and has units of Hertz (Hz). There is also a relationship between the force acting on the 

harmonic oscillator and the potential energy 𝑈(𝑞) of the system of the particle attached 

to the spring.310 It can be realized by first writing the equation of the potential energy of 

the oscillator (Equation 4.18) and then taking the derivative of the energy with respect to 

the coordinates 𝑞 of the system (Equation 4.19), such that 

 

𝑈(𝑞) =  
1

2
 𝑘(𝑞 − 𝑞̅)2                                                   (4.18) 

 

𝐹 = 
−𝑑𝑈(𝑞)

𝑑𝑞
                                                           (4.19) 
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The potential energy is thus described by a quadratic function with the oscillator moving 

around the equilibrium position. As an example, Figure 4.1 illustrates two oscillators: one 

with a lower and one with a larger value of 𝑘. From the HO, one can estimate the entropy 

of that system by Equation 4.20 where 𝜔 is the angular frequency296  

 

𝑆𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝐾𝐵 + 
𝐾𝐵
2
ln(

1

(
ħ𝜔
𝐾𝐵𝑇

)
2)                                    (4.20) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Comparison between two harmonic oscillators. In red, harmonic oscillator number 1 is 

represented, with its force constant 𝑘1. In blue is shown the same oscillator but with a lower force constant, 

𝑘2.  

 

 

 

4.3.2: The quantum-mechanical harmonic oscillator 

 

The quantum-mechanical HO is the quantum version of the classical HO and represents 

a key model system for which an analytical solution to the Schrödinger equation is 

attainable.224,310 The Hamiltonian of the QM oscillator is given by 

 

𝐻̂ =  
𝑝̂

2𝑚
+ 
1

2
 𝑘𝑞̂2 = 

𝑝̂

2𝑚
+ 
1

2
 𝑚𝜔2𝑞̂2                                   (4.21) 

 

where 𝑝̂ is the momenta operator, 𝑚 is the particle mass, ħ corresponds to the reduced 

plank’s constant, 𝜔2 = 𝑘/𝑚 and 𝑞̂ is the position operator of the coordinates 𝑞 
 . One of 

the key results that appear from solving Equation 4.21 are the allowed energy levels with 

energy E, through Equation 4.22224,310 
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𝐸𝑛 = (2𝑛 + 1) 
ħ

2
𝜔                                                       (4.22) 

 

A consequence of Equation 4.22 is that it shows the energy levels of the HO to be 

quantized: they exist as discrete energy values which are equally spaced, given by 
ħ

2
𝜔 

times an integer number. It also implies that the lowest energy state, with 𝑛 = 0, is given 

by 
ħ

2
𝜔 which means it is a non-zero energy level. The entropy of a QM oscillator is then 

obtained by combining Equation 4.12 and 4.17.225,261,296 A clear distinction between the 

two models is that in the classical treatment, high vibrational frequencies do not 

correspond to an entropic contribution of zero, whereas in the quantum limit they do.296 

In the classical limit, these fast vibrational motions tend to produce negative vibrational 

entropy contributions. On the other hand, as demonstrated by Karplus and Andricioaei296 

using the QM oscillator these frequencies have close to zero or even zero contribution to 

the vibrational entropy.296 For this reason, the QM HO model was used when computing 

vibrational frequencies in the entropy calculations carried out for this dissertation.  

 

 

4.4: Rigid-rotor Harmonic Oscillator-based entropies in flexible molecules 

 

The expression in Equation 4.9 can be used to compute accurately absolute entropies 

for rigid molecules in the ground state, where all of their internal degrees of freedom 

behave harmonically and only one potential energy well exists in the landscape. An 

example one could think is benzene or propriolactone. However, these represent a small 

fraction of the small-molecule chemical space. In practice many molecules are 

anharmonic in nature and can explore many different configurations in gas-phase or in 

solution. Indeed, the accuracy of RRHO-based entropies breaks down when flexible 

molecules are considered. Or does it? The RRHO approximation provides the absolute 

entropy of a molecule for a given configuration or ensemble of configurations. Thus, 

should many configurations be visited, one RRHO calculation should be carried out per 

configuration. For a given flexible molecule, its RRHO entropy is not given only by 

computing the absolute entropy for one configuration but instead by considering all 

sampled configurations which may be obtained by MD simulations. In this case, we write 

that the RRHO entropy of one configuration is225,296 

 

𝑆𝑟𝑟ℎ𝑜
𝑖 = 𝑆𝑡𝑟𝑎𝑛𝑠,𝑖 + 𝑆𝑟𝑜𝑡,𝑖 + 𝑆𝑣𝑖𝑏,𝑖                                    (4.23) 
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where 𝑆𝑟𝑟ℎ𝑜
𝑖  is the entropic contribution of configuration 𝑖 in the RRHO approximation. It 

may be tempting to compute 𝑆𝑟𝑟ℎ𝑜
𝑖  for all configurations sampled by MD simulations for 

instance, and just average their contribution to obtain the absolute entropy. However a 

second contribution related to the fact that the system can visit any of this configurations 

at a given time must also be considered.101,296,303 This is known as the mixing entropy, 

entropy of the landscape, or the conformational entropy, and is closely related to the 

Boltzmann formula for entropy101,296,303   

𝑆 =  𝐾𝐵 ln 𝛺                                                         (4.24) 

 

where 𝛺 corresponds to the number of microstates accessible to the system. The above 

Equation 4.24, however, carries an implicit assumption: that of equal probability of 

sampling each system configuration or microstate. A more general equation, which is 

fundamental for absolute entropies, is given when this assumption is not present and 

carries the name of the entropy of mixing (Equation 4.25).78,311,312 

 

𝑆𝑚𝑖𝑥 = −𝐾𝐵∑𝑝𝑖 ln (

𝑖

𝑝𝑖)                                           (4.25) 

 

in which 𝑝𝑖 is the probability of conformer 𝑖. Considering Equation 4.25, two issues arise. 

First, how to get those probabilities. Second, how does that affect 𝑆𝑟𝑟ℎ𝑜
𝑖 ? The answer for 

the first question comes by considering that the probability of sampling conformer 𝑖 is 

given by Equation 3.5. Another approach to it is to carry out a clustering procedure on 

the molecular snapshots. The molecular snapshots obtained by MD are grouped together 

based on a similarly threshold and each cluster corresponds to an individual basin in the 

PES describing one of the sampled microstates. As such, the cluster occupancy turns out 

to be the probability of that microstate assuming that we have converged on sampling 

the PES of that molecule. As for the second question, it is apparent that if conformers are 

sampled with different probabilities, then the simple averaging scheme should be turned 

into a probability-weighted average78,225  

 

 𝑆𝑟𝑟ℎ𝑜 = 𝑆𝑟̅𝑟ℎ𝑜,𝑖
 = ∑ 𝑝𝑖 (𝑆𝑡𝑟𝑎𝑛𝑠,𝑖 + 𝑆𝑟𝑜𝑡,𝑖 + 𝑆𝑣𝑖𝑏,𝑖)                        (4.26)𝑖  

 

which in turns means that under the RRHO approximation, the entropy of a molecule can 

be computed by: (1) enumerating all relevant microstates at a given temperature, (2) 

computing the corresponding probabilities, (3) computing a probability-weighted RRHO 

entropy and (4) adding the entropy of mixing to the RRHO entropy. The underlying 

assumption here is that the potential energy surface of the molecule is decomposable 

into a sum of individual harmonic wells where the entropy of mixing is indeed the 
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entropic contribution arising from populating multiple energy wells. This approach is 

named the “mixture of conformers” method and its master equation (Equation 4.27) 

is78,225,296,313 

𝑆 =  ∑𝑝𝑖 𝑆𝑟𝑟ℎ𝑜,𝑖
  −𝐾𝐵∑𝑝𝑖ln (

𝑖

𝑝𝑖)                               (4.27)

𝑖

 

 

Through the “mixture of conformers” approach it is possible to compute absolute 

entropies. However, an underlying requirement is the proper enumeration of all relevant 

conformers which can be populated at a given set of conditions of temperature and 

pressure. The exhaustive search is non-feasible for large macromolecules, since these 

populate an incredibly high number of microstates at the conditions in which we wish to 

study protein-ligand binding. Thus, while formally correct, this approach is limited to 

small molecules unless significant improvements in either direct counting approaches or 

sampling methods are introduced. 225 For a flexible small molecule in either gas-phase or 

solution which undergoes conformational transitions and explores different microstates, 

the configurational entropy is given by Equation 4.28.225,296,313 

 

𝑆𝑐𝑜𝑛𝑓𝑖𝑔 = ∑𝑝𝑖 𝑆𝑣𝑖𝑏,𝑖
  −𝐾𝐵∑𝑝𝑖ln (

𝑖

𝑝𝑖)  = 𝑆𝑣̅𝑖𝑏
 + 𝑆𝑚𝑖𝑥               (4.28)

𝑖

 

 

Within the RRHO approximation, the vibrational frequencies are typically accessed 

using normal mode analysis or quasi-harmonic analysis. This approach is at the heart of 

the newly developed Quasi-Harmonic Multi-basin method (QHMB), where the vibrational 

frequencies are accessed through QHA for each microstate.218 The QHMB method relies 

on the “mixture of conformers” framework to compute the absolute entropy of small 

molecules in solution or in gas-phase. 

 

 

4.5: Configurational entropy within the Rigid-Rotor Harmonic Oscillator 

approximation  

 

4.5.1: Normal Mode Analysis 

 

The normal mode analysis is a technique that can be used to probe the flexibility of a 

molecule around an equilibrium conformation. An equilibrium system is defined as a 

system at the bottom of a potential energy well where the forces acting on it sum up to 

zero.263 Mathematically, we start by writing the potential energy function of the system 
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in terms of a Taylor expansion around the configuration at the bottom of the potential 

energy well like263,314 

 

                 𝑈(𝑞) =  𝑈(𝑞𝑒𝑞) + (
𝜕𝑉

𝜕𝑞𝑖
)
𝑒𝑞

 (𝑞𝑖 − 𝑞𝑖
𝑒𝑞)                                                          

+  
1

2
 ∑(

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

𝑒𝑞

(𝑞𝑖 − 𝑞𝑖
𝑒𝑞) ∗ (𝑞𝑗 − 𝑞𝑗

𝑒𝑞) + ⋯                           (4.29)

𝑖,𝑗

 

where the eq superscript indicates the equilibrium conformation and ∑ (
𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)
𝑒𝑞

𝑖,𝑗  are 

the second derivatives of the potential energy with respect to each pair of components 𝑖 

and 𝑗.263,314 The first term of Equation 4.29 is assumed to be zero as it corresponds to the 

minimum value of the potential. The second term is also zero. The third term is where 

the expansion is truncated, such that Equation 4.30 becomes315 

 

𝑈(𝑥) =   
1

2
 ∑(

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)
𝑒𝑞

(𝑞𝑖 − 𝑞𝑖
𝑒𝑞) ∗ (𝑞𝑗 − 𝑞𝑗

𝑒𝑞) =  
1

2
 ∑∆𝒒𝑻 𝑯 ∆𝒒      

𝑖,𝑗

(4.30)

𝑖,𝑗

 

 

where 𝑯 is the Hessian matrix. The Hessian matrix is a matrix built of the second 

derivatives of the potential energy with respect to the position of the degrees of freedom. 

It encodes the degree of correlation between every two degrees of freedom in the off-

diagonal terms and the force constant applied to each internal degree of freedom is 

stored in the diagonal.263,315 Once the Hessian matrix is diagonalized, the eigenvalues and 

eigenvectors of the matrix are obtained and thus the angular frequency of each of the 

harmonic oscillators, which are now independent from each other, is retrieved. The 

eigenvalues are closely related to the vibrational frequencies with which the particles of 

a normal mode oscillate whereas eigenvectors describe the direction and the magnitude 

of the displacement each particle experiences with respect to the remaining particles.315 

In Hessians there are 6 zero eigenvalues, corresponding to rigid-body translations and 

rotations of the molecule.263,315,316 For a proper NMA calculation, it is important that the 

system be at an energy minimum. To check for it, following one NMA calculation the 

minimum energy conformation will either have zero or positive curvature in all directions 

of motion (i.e all the harmonic oscillators excluding the first six will have positive 

eigenvalues). If this is not the case, the conformation obtained is not at the energy 

minimum and must be further subjected to energy minimization steps.263,314  As shown 

by Bahar et al.,263,314 the connection between the Hessian and the angular frequency is 

observable through Equation 4.31 

 

𝑯𝒖𝒊 = 𝜔𝑖
2𝑴𝒖𝒊                                                           (4.31) 
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where 𝒖𝒊 is a 3N-dimensional vector accounting for the phase and the amplitude of each 

oscillator. Each eigenvector is connected with a normal mode coordinate and 𝜔𝑖
2 is the 

eigenvalue (the square of the angular frequency).133  Along the vibrational modes found 

for a given system, some will have lower and other higher frequencies. High frequency 

modes then to be rapid-oscillating modes with small displacements around the 

equilibrium position and involving few atoms.310 These oscillatory modes contribute very 

little to the vibrational entropy, an example being carbon-hydrogen stretching. Low 

frequency modes are those which oscillate slowly and can deviate significantly from the 

equilibrium position, contributing the most towards the vibrational entropy.317 The 

lowest frequency modes describe motions of larger groups of atoms and thus allow us to 

probe large-scale conformational transitions.315 Applications of NMA are found 

throughout the literature. Within the context of binding free energy calculations, this 

method is routinely used in MM/PBSA calculations and other variants.115,201,273  

To carry out a NMA calculation, (1) molecular configurations are subjected to an energy 

minimization procedure. This is a crucial step, as for NMA to yield proper vibrational 

frequencies the conformation used must be at an energy minimum. Following energy 

minimization, (2) the Hessian matrix is built and diagonalized, producing the angular 

frequencies. From these, (3) the vibrational frequencies of each mode are obtained and 

plugged into Equation 4.12. To compute accurately absolute entropies or even entropy 

differences using NMA for large macromolecules, it is required that exhaustive sampling 

be achieved such that all relevant molecular configurations are enumerated. Converging 

on sampling the conformational landscape of these complexes imposes a significant cost. 

This cost is further increased because each snapshot must be energy minimized and the 

Hessian obtained per snapshot must be constructed and diagonalized. Furthermore, even 

if the computational cost is affordable, the NMA calculations of biomolecular complexes 

in solution are carried out following energy minimization in implicit solvent while most 

likely MD simulations will be carried out in explicit solvent. As such, the energy 

minimization step will most likely change the conformational ensemble sampled by 

explicit solvent MD and it is difficult to quantify how much does this affect the accuracy 

of the calculated entropy. Thus, for NMA calculations applied to an ensemble of 

molecular snapshots obtained, for example, by MD simulations in explicit solvent, the 

computational cost can become intractable depending on system size and the number of 

MD snapshots, while the accuracy of the calculation can also be questioned. As a result, 

standard MM/PBSA and related approaches in VS tend to run short MD simulations and 

when NMA-based entropy calculations are carried out, use only some of the sampled 

snapshots to maintain computational efficiency. 
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4.5.2: Quasi-Harmonic Analysis 

 

The other well-known method for computing absolute and relative entropies in the 

RRHO approximation was the one developed by Karplus and Kushick in 1981, called quasi-

harmonic analysis.261 The QHA method, as opposed to NMA, does not impose the 

harmonic approximation to the internal degrees of freedom of the system. Instead, by 

evaluating the atomic fluctuations of the system along the course of a molecular 

simulation, it is possible to build a matrix containing the variance of each internal degree 

of freedom on the diagonal and the covariance between each two degrees of freedom in 

the off-diagonal terms.260,304,317  

 

4.5.2.1: The classical Quasi-Harmonic Analysis approach 

 

The original method starts by connecting the configurational entropy difference 

between conformations of a molecule with the evaluation of the configurational integral 

for each of those conformations. This integral is evaluated in internal coordinates, also 

known as bond-angle-torsion (BAT), plus six external coordinates, which means that a 

transformation from Cartesian coordinates is required, carried out by introducing a 

Jacobian matrix.261 The configurational integral then reads261 

𝑄𝐶 =  8𝜋
2𝑉∫𝑒−𝛽𝑈(𝑞′)  𝐽(𝑞′)𝑑𝑞′

 

𝐶

                                   (4.32) 

 

where 8𝜋2𝑉 corresponds to the contributions from the external degrees of freedom, 

three translational and three rotational and 𝐽(𝑞′) is the Jacobian term which is a function 

of the internal coordinates 𝑞′.78,298 From the internal coordinates, the most important 

ones correspond to soft degrees of freedom, like dihedral angles. The motions of dihedral 

angles explore many configurations, opposed to those of angles and bonds which 

fluctuate very little around the equilibrium value.261 Thus, the configurational integral is 

only evaluated on the soft degrees of freedom while treating the contribution from the 

hard degrees of freedom as a constant value.261 Thus, the configurational entropy 

associated with a given conformation is given by261  

 

𝑆𝐶
𝑞 = 

〈𝑉〉

𝑇
+ 𝐾𝐵 ln 𝑄𝐶

𝑞                                              (4.33) 

 

where 𝑄𝐶
𝑞 = 𝑄𝐶/𝑐𝑜𝑛𝑠𝑡, const is a constant value which comes from the hard degrees of 

freedom and 〈𝑉〉 is the average potential energy considering only the soft degrees of 

freedom. The entropy ∆𝑆𝐶
𝑞 is a physical quantity which takes into consideration 
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rotational, vibrational and vibration-rotation contributions and measures the entropy 

difference between two molecular conformations, like the open and closed states of a 

protein.261 Considering that the PDF of the soft degrees of freedom is of the same form 

as Equation 4.2 and that the entropy 𝑆𝐶
𝑞 can also be estimated from this PDF, the QHA for 

this subset of degrees of freedom boils down to the assumption that PES of the soft 

degrees of freedom of the system can be approximated as a single Gaussian function.261 

Thus the full PES can be approximated as a single, multi-dimensional, Gaussian function 

which has the shape of a harmonic potential.225,261 In the above case, the full PES is 

constructed based on the soft degrees of freedom in BAT coordinates. A implementation 

in Cartesian coordinates was also developed, in which it is possible to carry out QHA 

calculations296 without the Jacobian transformation. In any of the cases above, since this 

Gaussian function is dependent on the atomic fluctuations of the systems’ degrees of 

freedom, it means that the PDF of the coordinates 𝑝(𝑞) can be written as a function of 

the covariance matrix225,261 

 

𝑝(𝑞) =  
1

2𝜋
𝑛
2  𝝈

1
2

 𝑒[−
1
2
 (𝑞′−𝑞′̅̅̅) 𝑇 𝝈−𝟏 (𝑞′−𝑞′̅̅̅) ]                        (4.34) 

 

where 𝑛 is the number of degrees of freedom and 𝝈 is the covariance matrix where the 

atomic fluctuations, sampled by MD or MC simulations around the average structure  of 

the system, are stored.261 The terms in the covariance matrix are computed 

by225,260,261,296,304,317  

 

𝝈𝒊,𝒋 = ((𝑞
′
𝑖
− 𝑞′̅

𝑖
) (𝑞′

𝑗
− 𝑞′̅

𝐽
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                  (4.35) 

 

The QH approximation can be used to extract absolute entropies from ensembles of 

molecular configurations generated by numerical simulations. To do so, the RRHO-based 

translational and rotational entropy contributions are added to the vibrational 

contribution computed using vibrational frequencies extracted by diagonalizing the 

covariance matrix of atomic fluctuations in QHA.225,296  This is possible due to the 

connection between the Hessian matrix of force constants and the covariance matrix, 

where 𝑯𝒊𝒋 = 𝐾𝐵𝑇(𝝈
−𝟏)𝑖𝑗 and 𝜎−1 is the inverse of the covariance matrix.225,296 The 

eigenvectors of this pseudo-Hessian matrix describe the QH modes. The approximated 

QH probability density function in Cartesian coordinates is then written following Karplus 

and Andricioaei296  
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𝑝(𝑞) =
𝑒
(−
(𝑞−𝑞̅)𝑇𝑯 (𝑞−𝑞̅)

2𝐾𝐵𝑇
)

𝑍
                                           (4.36) 

 

To carry out a QHA calculation, (1) the MD snapshots must be centered and 

superimposed on top of a reference (or average) molecular structure before building the 

covariance matrix, to decouple translational and rotational contributions from the 3N-6 

vibrational degrees of freedom.296 Then, (2) the covariance matrix is built from the atomic 

fluctuations of these degrees of freedom sampled through numerical simulations with 

respect to an average structure.225 Upon diagonalizing the covariance matrix (3), the 

independent eigenvectors describing the displacements of each degree of freedom 

around the average configuration are obtained, along with the eigenvalues 𝜆𝑖 which can 

be plugged into Equation 4.12 to obtain the vibrational entropy contribution of each QH 

oscillator within the QM treatment (𝑣𝑖 = √𝐾𝐵𝑇/𝜆𝑖).
225,261,296 As for the rotational and 

translational degrees of freedom, their contribution to the absolute entropy is computed 

using Equations 4.10 and 4.11.224 From here, absolute molecular entropies may be 

accessed. However, approximating the rugged PES using a multi-dimensional Gaussian 

function means that the obtained entropies are in fact strictly upper bounds to the true 

entropy.261,296 Furthermore, these calculations converge slowly and require extensive 

sampling, which increases with the complexity of the system studied.225,260 Finally, while 

no energy minimization is required prior to the building of the covariance matrix, 

diagonalizing it for a large macromolecular system is still a computationally intensive 

operation. As such, one can enumerate three main limitations of QHA: The need for 

extensive sampling (high number of molecular snapshots) which may become prohibitive 

for very large systems, the lack of high-order correlation terms and the overall accuracy 

of the method due to the approximation of the PES a single Gaussian well. 

 

One advantage of QHA over NMA is that since there is no need to perform energy 

minimization, when the water molecules are removed from the simulation box their 

effect on the solute is still implicitly captured in the fluctuations of the solute degrees of 

freedom.218 As such, QHA opens to the calculation of entropies in solution without any 

additional computational overhead. However, while in NMA one single energy-minimized 

snapshot is needed for the calculation in QHA the minimum number of snapshots 

required varies with system size but is always more than one. Recently, QHA has been 

used to compute the entropy difference between two conformations of the Heat Shock 

Protein 90 (HSP90), the loop-in conformation and the helical conformation.318 The 

entropy of binding for a series of 20 compounds was estimated for each conformation by 

considering the solvent entropy contribution and the solute entropy differences between 
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compounds binding to either conformation by QHA or a version of the MLA method.318 

Another example of application of QHA is in the study of the entropy of stapled peptide 

inhibitors. In this work, researchers studied the binding between potsynaptic densitiy 

protein 95 (PSD-95) and the SAPAP/Shank complex with the aim of inhibiting the 

phosphorylation ability of the guanylate kinase (GK) domain of PSD-95. Several peptides 

were developed and simulated using MD. Their binding affinities towards the GK domain 

of PSD-95 were estimated using the MM/PBSA method and the entropy was estimated 

via QHA.319 

 

4.5.2.2: Schlitter’s method 

 

Another approach within the RRHO approximation which allows the calculation of the 

vibrational contribution to the absolute entropy using the QH approximation and the QM 

oscillator is known as Schlitter’s formula320. Within the RRHO formalism described in 

Equation 4.12, the entropy of a QM harmonic oscillator is given by Equation 

4.37225,296,304,321 The Schlitter formula assumes that the vibrational entropy of a molecular 

system in Cartesian coordinates can be approximated as a sum of individual contributions 

from QM oscillators while introducing an approximation to Equation 4.12. The 

contribution of one QM oscillator according to this formalism is given by Equation 

4.38296,320 

 

𝑆ℎ𝑜 = 
𝐾𝐵𝛼

𝑒𝛼 − 1
− ln(1 − 𝑒−𝛼)                                         (4.37) 

 

𝑆ℎ𝑜,𝑠𝑐ℎ𝑙𝑖𝑡𝑡𝑒𝑟 = 
𝐾𝐵
2
ln (1 +

𝑒2

𝛼2
)                                         (4.38) 

with 𝛼 =  
ħ𝑣𝑖

𝐾𝐵𝑇
. According to Schlitter, the variance of one degree of freedom 〈∆𝑞2〉 = 

𝐾𝐵𝑇

𝑚𝑣2
, 

is related its vibrational frequency as per the equipartition theorem.225,296,320 Thus, 

Schlitter320 and later Karplus and Andricioaei296 realize that 𝛼 can be written as a function 

of the variance. Thus, we arrive at the master equation for Schlitter’s method for one QM 

harmonic oscillator320 

 

𝑆ℎ𝑜,𝑠𝑐ℎ𝑙𝑖𝑡𝑡𝑒𝑟 = 
𝐾𝐵
2
ln (

𝐾𝐵𝑇

ħ2
𝑚𝑒2〈∆𝑞2〉 +  1)                             (4.39) 

 

The above Equation 4.39 is then extended to all degrees of freedom of the system, by 

introducing a mass-weighted covariance matrix 𝝈𝑚 and the expression then becomes  
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   𝑆𝑠𝑐ℎ = 
𝐾𝐵
2
ln (|

𝐾𝐵𝑇

ħ2
𝑒2𝝈𝑚 +  1|)                                  (4.40) 

 

as described by Suárez and Diáz.225 The above Equation 4.40 is analogous to the one 

described by Karplus and Andricioaei, which is written as296  

 

𝑆𝑠𝑐ℎ = 
𝐾𝐵
2
ln  𝑑𝑒𝑡 (

𝐾𝐵𝑇

ħ2
𝑒2𝑴𝝈+  𝟏)                                 (4.41) 

 

where 1 is the unity matrix and M is the mass matrix. In any case, because a covariance 

matrix must be built and diagonalized to obtain vibrational frequencies, the QH 

approximation is present in the Schlitter method. As in the QHA method when the QM 

oscillator is used, Equations 4.39 and 4.40 obtain the correct QM limit for entropic 

contributions arising from high-frequency motions, meaning that the vibrational 

contributions of these degrees of freedom are negligible. However, it also keeps the 

limitations of the original QHA method such as the slow convergence, the large 

overestimation of the absolute entropy and the need for extensive sampling. 

Furthermore, as noted by Karplus and Andricioaei, the Schlitter formula is an upper 

bound to the true entropy as in QHA but QHA is a stricter upper bound estimate.296 

 

4.5.2.3: Boltzmann Quasi-Harmonic method 

 

A third method based on QHA is the method developed by DiNola305 and further 

expanded by Sharp and Harpole304, named Boltzmann Quasi-Harmonic (BQH).  The BQH 

calculation is carried out in BAT coordinates following configurational sampling by MD 

simulations. From the QH expression for the configurational entropy difference304  

 

∆𝑆𝑐𝑜𝑛𝑓𝑖𝑔 = 
𝐾𝐵
2
ln((2𝜋𝑒)𝑛 |𝝈|2)                                      (4.42) 

 

then Sharp and Harpole factor the determinant of the covariance matrix |𝜎|2 into a 

product of two terms: The matrix containing the diagonal elements 𝑫 and a determinant 

of the matrix 𝑪𝒊𝒋, such that304 

 

|𝝈|2 = ∏𝜎𝑖𝑗
2  |𝑪𝒊𝒋|

𝑛

𝑖

= 𝑫|𝑪𝒊𝒋|                                           (4.43) 
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where the elements of 𝑪𝒊𝒋 are the covariances in the covariance matrix 𝝈. Substituting 

Equation 4.43 in 4.42, one arrives at 

 

∆𝑆𝑐𝑜𝑛𝑓𝑖𝑔 = 
𝐾𝐵
2
ln((2𝜋𝑒)𝑛 𝑫|𝑪𝒊𝒋|)                                       (4.44) 

 

where the 
𝐾𝐵

2
ln((2𝜋𝑒)𝑛 𝑫) terms corresponds to the correlation-free entropy 

contribution from the elements in the diagonal matrix and the term containing 𝑪𝒊𝒋 is a 

term accounting for the pairwise correlations, obtained by QHA. In the QH approach, 

both terms are computed by approximating the PES of a molecular system as a 

multidimensional Gaussian. In the BQH model, the diagonal matrix is replaced by the first-

order marginal entropies computed through the configurational integral in Equation 4.2 
225,246,304 for all internal degrees of freedom. The evaluation of the integral to compute 

the marginal entropy of each internal degree of freedom implies that their continuous 

probability distribution of must be discretized by, for example, histogramming methods. 

In principle, the BQH method is expected to be more accurate than standard QHA as the 

diagonal terms are evaluated properly based on the probability distributions obtained by 

MD and pairwise corrections due to correlations are still considered.304 However, it still 

lacks high-order correlation terms which can play a significant role in large biomolecular 

systems. Recently, a benchmark study on the accuracy of different methods based on 

QHA was carried out by the group of Ikeguchi.302 One of the aims of the study was 

evaluating the accuracy of different methods to compute the configurational entropy for 

systems of increasing complexity, from butane to protein A, following Replica-Exchange 

MD simulations carried out from 260 to 600K in implicit solvent.302 The calculated 

entropies were estimated at 300K. The reference entropies were obtained using an 

equation derived from Clausius method as Harpole and Sharp.304 It was found that BQH 

configurational entropies deviated the least from the reference data in implicit solvent, 

partly due to a correction added by authors such that contributions from improper 

dihedrals were also considered.302 It was also found that in the other methods tested, 

which employ the QM oscillator, the results show poor quantitative agreement with the 

reference entropies.302 The authors explain that the application of the QM oscillators to 

study protein A and the Trp cage, is not proper because the treatment of protein degrees 

of freedom as harmonic oscillators is a severe oversimplification of the dynamical motion 

of the system in which the Gaussian approximation breaks down.302 
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4.6: Going beyond the Rigid-Rotor Harmonic-Oscillator approximation: 

The Mutual Information Expansion method 

 

The RRHO approximation works properly for rigid and flexible small molecules, using 

the formalism of the “mixture of conformers” approach, in the cases where higher-order 

correlations do not come into play. However, to access absolute or relative entropies for 

larger molecules, other methodologies are more suitable due to the sampling limitations 

discussed before. These methods, known as non-parametric methods225, are able to 

estimate configurational entropies of more complex systems and do not assume anything 

about the shape of the PDF of the atomic coordinates of the molecules.225 Instead, these 

approaches focus approximating the configurational integral (Equation 4.1) by computing 

lower-dimensional integrals which encode the entropies of subsets of internal degrees of 

freedom, truncated up to a given order. One such example is the Mutual Information 

Expansion (MIE) method, developed in 2007 by Killian et al., within the group led by 

Michael Gilson.293 It approximates the full configurational integral over the 3N-6 internal 

coordinates by writing the PDF in terms of one-dimensional, two-dimensional or up to n-

dimensional probability distributions.293,298,322 In particular, the full entropy is 

approximated as a sum of first-order entropies and mutual information terms which 

correct for correlation between groups of internal degrees of freedom.303 Starting from 

the expression in Equation 4.4, and transforming the systems coordinates from Cartesian 

to BAT coordinates, Killian et al. 293 write the configurational integral as 

 

𝑆 =  −𝑅∫𝑝(𝑞1  
′ , 𝑞2 

′ , 𝑞3  
′ … 𝑞𝑖  

′ ) ln(𝑝(𝑞1  
′ , 𝑞2 

′ , 𝑞3  
′ … 𝑞𝑖  

′ )) 
 

 

                          

𝐽(𝑞1  
′ , 𝑞2 

′ , 𝑞3  
′ … 𝑞𝑖 

′ ) 𝑑𝑞1  
′ … 𝑑𝑞𝑖  

′                                 (4.45) 

 

where are the internal coordinates defined by bond length (b), bond-angle (𝜃) and 

dihedral angle (𝜑) as in Killian et al.293 are replaced by 𝑞′. However, evaluating this integral 

requires a significant amount of sampling which is prohibitively expensive for large 

macromolecular systems.293 Thus, it must be approximated by relying on converged 

lower-dimensionality PDFs and using Kirkwoods’ generalized algorithm (GSKA)323 to 

include mutual information terms between internal degrees of freedom. A first-order 

approximation is given by Equation 4.46225,293 

 

𝑆1(𝑞𝑖  
′ ) =  −𝑅∫𝑝(𝑞𝑖  

′ ) ln(𝑝(𝑞𝑖  
′ ))   𝐽(𝑞𝑖  

′ ) 𝑑𝑞𝑖  
′                              (4.46)
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where correlations between degrees of freedom are not considered and the entropy is  

is computed by summing the marginal entropies of all internal degrees of freedom, 

 

𝑆1 = ∑ 𝑆1(𝑞𝑖  
′ )

𝑚

𝑖=1
                                                   (4.47) 

 

meaning that the simplest manner to approximate the expensive full PDF is by a sum of 

individual one-dimensional PDFs.225,293 However, since correlations between motions do 

play a role in large biomolecular systems, the above expression is incorrect for all but the 

simplest systems.225,297,322 To include second-order correlation terms within the 

configurational entropy estimation, first the marginal PDF of each degree of freedom in 

the pair is computed and then the joint PDF of the pair is estimated.293,297,298,322 From 

these PDFs the marginal and the pair-wise entropies are calculated. As such, Killian et al. 

arrive at Equation 4.48293,297,298,322  

 

𝑆2(𝑞1  
′ , 𝑞2  

′ , 𝑞3 
′ ) =  𝑆2(𝑞1 

′ , 𝑞2  
′ ) + 𝑆2(𝑞1 

′ , 𝑞3 
′ ) + 𝑆2(𝑞2 

′ , 𝑞3 
′ )                             

− 𝑆1(𝑞1
′ )  −  𝑆1(𝑞2

′ )  −  𝑆1(𝑞3
′ )                                          (4.48) 

 

where 𝑆2(𝑞1 
′ , 𝑞2  

′ ) is the joint entropy of the pair of internal degrees of freedom 𝑞1 
′ , 𝑞2  

′ . 

Introducing the mutual information expression among pairs of degrees of freedom 

(Equation 4.49)276, 281,310 

 

𝐼2(𝑞𝑖 
′ , 𝑞𝑗 

′ ) = 𝑆1(𝑞𝑖 
′ ) + 𝑆1(𝑞𝑗 

′ ) − 𝑆2(𝑞𝑖 
′ , 𝑞𝑗 

′ )                            (4.49) 

 

allows re-writing Equation 4.48 into Equation 4.50, where 𝐼2(𝑞𝑖 
′ , 𝑞𝑗 

′ ) describes the degree 

of correlation between any two degrees of freedom.293 The degree of correlation 

between internal degrees of freedom is a measure of how much knowledge can be gained 

about 𝑗 when the distribution of the 𝑖𝑡ℎ degree of freedom is completely known.  

 

𝑆2(𝑞1  
′ , 𝑞2  

′ , 𝑞3 
′ ) =  𝑆1(𝑞1

′ ) + 𝑆1(𝑞2
′ ) + 𝑆1(𝑞3

′ )                                         

− 𝐼2(𝑞1 
′ , 𝑞2  

′ ) − 𝐼2(𝑞1 
′ , 𝑞3 

′ ) − 𝐼2(𝑞2 
′ , 𝑞3 

′ )                                 (4.50) 

 

For expansions of higher order, Killian et al.293,281 provide a general expression 

 

𝑆𝑚−1 =∑ 𝑆1(𝑞𝑖
′)

𝑚

𝑖=1
− ∑𝐼2(𝑞𝑖

′, 𝑞𝑗
′)                                                 

𝐶2
𝑚

 

+∑𝐼3(𝑞𝑖
′, 𝑞𝑗

′ , 𝑞𝑘
′ ) − ∑𝐼4(𝑞𝑖

′, 𝑞𝑗
′ , 𝑞𝑘

′ , 𝑞𝑙
′)….                         

𝐶4
𝑚

(4.51)

𝐶3
𝑚
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where the expansion is truncated at a given order m-1. The general expression in 

Equation 4.51 can be applied to estimate the configurational entropy of a molecule at any 

truncation order, including correlations between motions up until that point 293 In 

practice, going to higher order correlations is complicated because the higher the order 

of the truncation, the more sampling is required to build the multi-dimensional PDFs, 

whose cost increases with the combinatorial explosion in explorable molecular 

configurations.225,293 When the internal degrees of freedom are assumed as independent, 

the computational cost of populating the one-dimensional PDFs is small and highly 

tractable.297 When this is not the case, and thus correlation between motions must be 

accounted for, it is necessary to truncate the expansion above to avoid the skewed 

histogram problem which arises when populating histograms built from high-dimensional 

PDFs. Thus, the truncation order must be selected to balance out the accuracy of the 

calculation and the available computational resources.293 Nonetheless, it is a useful 

approach to estimate configurational entropies without any assumption on the shape of 

the configurational PDF.  

One interesting observation is that while second-order correlations are always 

correcting the S1 estimates to lower values, the higher-order terms either increase of 

decrease the entropy depending on the sign225, and thus the calculation may not 

converge. Additionally, application of the MIE in a truncated form is bound to introduce 

an error which must also be evaluated.303 The MIE approach was demonstrated in the 

ACCENT-MM tool by the Gilson group322. For a set of small-molecules in gas-phase, the 

entropy was estimated by the MIE in internal coordinates until third-order and compared 

to reference data from the Mining Minima method (M2).322 The first step in the MIE 

calculation is the discretization of the PDFs by histogramming. Then, one to three-

dimensional PDFs were built from the histograms and the mutual information terms for 

pairs and triads of internal degrees of freedom were computed.225,322 It was 

demonstrated that the second-order entropies converge quickly for a series of alkanes, 

in 50ns MD simulations, whereas the third-order entropies converged slowly and 

required much more sampling.293 The first-order results for the alkanes were significantly 

different from the M2 predicted entropies. However, the second-order entropies agreed 

fairly well with M2 results (T∆∆S between 1.0 and 2.0 kcal/mol) which highlights the 

important contributions given by the correlation corrections at second order.293 The 

third-order entropies, on the other hand, deviate significantly from the M2 data. For the 

protein-urea system, it was found that while the second order MIE expansion agreed with 

the M2 results, with a T∆∆S of 1.0 kcal/mol, the third-order estimates differed 

significantly from M2 data.293 In both cases, the third-order entropy estimations are 

plagued with sampling problems, which is what prevents the convergence of the entropy 
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estimations at that level and is the a major concern in MIE calculations when the 

expansion is led towards higher-order terms.293 Application of ACCENT-MM to evaluate 

the configurational entropy difference at the second order for a protein-peptide system 

required 2 million snapshots collected, from 200 10ns MD simulations, which meant that 

2μs of MD were necessary for this entropy calculation.322 Thus, a limitation of MIE is 

highlighted: The need for extensive sampling, which increases significantly with 

truncation order. 

 

 

4.7: Merging Rigid Rotor Entropies and non-parametric estimates of 

conformational entropy: the CENCALC approach to Mutual Information 

Expansion 

 

Within the “mixture of conformers” approach, the absolute entropy of a molecule can 

be obtained by a sum of the probability-weighted RRHO entropy and the entropy of 

mixing. While the first term is readily obtainable, the entropy of mixing is either obtained 

by clustering the MD trajectory and extracting cluster occupancies or by expansion 

approaches. One strategy to compute 𝑆𝑚𝑖𝑥 without relying on clustering methodologies 

is to try and approximate the full conformational integral by a series of lower 

dimensionality integrals of dihedral degrees of freedom through discretization and 

histogramming like in MIE.303 As explained by Suarez et al.,303 the conformations a 

molecule can explore within its PES can be enumerated by discretizing the time series of 

the dihedral degrees of freedom.303 In CENCALC, the PDF for each torsion is estimated 

from the MD simulation using a von Mises kernel in which 𝜃 𝜖 [0, 2𝜋].303 From the PDF, 

one has to find the basins in the range of 0 to 2𝜋 which correspond to energy minima in 

the PES.303 These correspond to the conformational states populated by each torsion 

which must then transformed into a set of integer numbers which label the 

conformational states a given torsion explores, thus discretizing the PDF. 303 However, 

due to the computational cost associated with extensively sampling the free energy 

landscape to be able to populate adequately the higher-order histograms303, employing 

a pure MIE to calculate  𝑆𝑚𝑖𝑥 is not recommended.303 Truncating the expansion alleviates 

this overhead but at the same time introduces a truncation error. Furthermore, it is also 

reported that even in the case of perfect sampling, the truncation errors are difficult to 

handle and do not decrease as the calculation goes to higher and higher expansion 

orders.303 One alternative approach is to introduce a distance threshold such that only 

the dihedral angles which are within a certain distance are included in the mutual 

information expansion around a given torsion at a specific truncation order.303 Thus, a 
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more efficient version of the MIE method can be written as in Equation 4.52 for any order 

of truncation and employing a distance cut-off scheme as 

 

𝑆𝑛(𝑞 
′) =  ∑(−1)𝑘−1

𝑛

𝑘=1

 ∑ 𝐼𝑘
 (ℐ)                                          (4.52)

ℐ⊂𝐶(𝑅)

|ℐ|=𝑘

 

 

where the ensemble of dihedral angles considered for the expansion calculations is 

restricted to the closest ones by the 𝐶(𝑅) function, which is based on the Euclidean 

distance between two dihedral angles and a distance threshold R. However, employing 

the cut-off based MIE approach implies determining the cut-off, which is an arbitrary 

parameter, and still calculations may remain expensive.303 

Thus, other approaches were explored, including a variant of MIE which is much more 

efficient called Approximated-MIE (AMIE). In the AMIE method, Equation 4.52 is modified 

such that the mutual information expansion is computed for a non-redundant list 𝐿.303 

This list is constructed by a series of lists (𝐿𝑖), one per each dihedral degree of freedom 

where the first element is the dihedral 𝑖 itself and the other elements of the list are 

selected to be the dihedrals in which the distance between 𝑖 and any 𝑗 is smaller than 𝑅 

and which are after the dihedral 𝑖.303 For example, if dihedral 𝑖 is numbered 2, the 

correlation will be computed at the second order between dihedral 2 and all dihedrals 

from 3 to 𝑁 whose Euclidean distance to dihedral 2 falls within 𝑅. 

The AMIE formulation allows significant speed-up in the calculations because the 

expansion is only computed once between sets of dihedrals and only for those dihedrals 

whose Euclidean distance falls within a given threshold from a list is ordered in such a 

way that each calculation is carried out only once and stored. The AMIE method is one of 

the methods implemented in CENCALC to estimate conformational entropies in an 

accurate and efficient manner.225,308,325  Other methodologies which are used to compute 

the entropy of mixing, or conformational entropy, are those based on the Multibody Local 

Approximation (MLA).325 While the “mixture of conformers” approach looks appealing 

for small-molecule systems, it may quickly become intractable to compute 𝑆𝑚𝑖𝑥 for large 

and even moderate-size molecular systems due to the combinatorial explosion of 

explorable molecular configurations.303 The CENCALC approach, on the other hand, 

provided that sufficient sampling is available, is able to reach systems of that size and 

open to more accurate calculations of larger systems by using a combination of NMA-

based RRHO entropies and efficient mutual information-based expansion approaches for 

the 𝑆𝑚𝑖𝑥. 
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4.8: Benchmarking entropy calculations 

 

Usually, RRHO-based molecular entropy calculations are validated by benchmarking 

against experimental entropies in gas-phase.225,313 These experimental data, however, 

are only available for small molecules which are mostly rigid and do not exhibit any 

significant higher-order correlations among their internal degrees of freedom.225 Thus, 

for more flexible small molecules in solution, which are typically the object of study in VS 

campaigns, appropriate absolute entropy data is lacking.225 Nonetheless, the gas-phase 

benchmark data can still be useful and, in the past, has been used to probe the accuracy 

of different methods, ranging from those based on MD simulation data to QM 

calculations. The experimental entropies in gas-phase are obtained from calorimetric 

experiments.291 To compare between computed absolute entropies and experimental 

data, it is important to account in the theoretical calculations for the entropy arising from 

the rotation of dihedral angles containing terminal symmetric groups such as 

methyls.225,326 One way to do so is by clustering MD simulation using a small cut-off such 

that the microstates that are generated by this torsional motion are separated. For 

example, the rotation of a dihedral ending in a terminal methyl group produces three 

microstates if we consider each hydrogen as distinguishable from the others. Thus, 

hydrogen-1 can be in three different positions.218 Accounting for this behavior is critical 

for the accurate calculation of absolute entropies, even more so in QHA calculations 

where the PES of this torsion would be approximated by a single state and introduce a 

significant error in the calculation. Another important point to raise is the proper 

determination of the moments of inertia of the molecule and the symmetry number, as 

these impact directly the rotational contribution to the absolute entropy and thus the 

predicted absolute entropy.292 A very useful resource where experimental gas-phase 

entropies are available is the Computational Chemistry Comparison and Benchmark 

DataBase (CCCBDB) from the National Institute of Standards and Technology (NIST)307, a 

repository for experimental and ab initio thermochemical properties for small 

molecules.307 The experimental absolute entropies there available correspond to 

calorimetric entropies estimated using Clausius’ formula for small molecules which 

contain the following chemical groups: alkanes, alcohols, ethers, acids, esters, ketones, 

aldehydes, epoxides, chalcogens, nitrites, nitrates, amides, amines, aromatic rings, 

phenyl rings, among others.307 The newest version also includes bromine-containing 

molecules.307 The experimental data available in NIST is drawn from multiple sources such 

as JANAF327, Gurvich328 and the TRC data series.329  

Recently, Stefan Grimme and Philip Pracht313 have developed a methodology to obtain 

absolute molecular entropies and heat capacities, using QM calculations at various levels 

of theory to generate the conformational ensemble for each molecule and employing 
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RRHO-based entropy calculations for the vibrational contribution as part of the CRESSET 

software.313 They selected a set of 39 organic compounds compiled by Head-Gordon et 

al.330 and, since the aim was to have a representative dataset with flexible molecules, the 

dataset was further extended by merging with a dataset named A23, containing 23 

molecules which are larger than those in the Head-Gordon dataset.313 The range of 

compounds queried was from ethane to n-dodecane, and experimental absolute gas-

phase entropies were retrieved for these compounds.313 Additionally, another set of 

linear alkanes up to 18 carbon atoms (C18H38) was also selected to evaluate method 

limitations.313 The method proved to be highly accurate, with an RMSD of 0.84 cal mol-

1K-1, with the conformational entropy computed using the GFN-FF model, a semi-

empirical forcefield which is accurate but amenable to study large macromolecular 

systems.313 Similar accuracy values were reported by Guthrie for a set of 128 organic 

compounds at the B3LYP/6-31** level of theory (RMSD = 1.24 cal mol-1K-1), although 

many of these compounds were rigid molecules where we have already described that 

simple RRHO calculations achieve sufficient accuracy.311,313 Analogously, DeTar studied 

the heat capacity and entropy of a set of representative hydrocarbons, including 

compounds containing only methyl group rotations, compounds spanning multiple 

conformers arising from internal dihedral rotations and compounds without methyl 

groups.312 The approach used by DeTar, which combines RRHO calculations and QM 

geometry optimizations, generating vibrational frequencies for each conformer of each 

compound at different theory levels, yielded quantitative agreement with the reported 

experimental data (RMSD = 0.36 cal mol-1K-1).  

On the other hand, absolute entropies of molecules in solution are scarce. However, 

what is possible to measure is the entropy difference upon binding of a ligand to a protein 

in solution. These entropies of binding can be accessed through ITC.78 The entropy 

change upon binding which is evaluated by these means is not a pure solute entropy 

change and instead contains both solute entropy and a contribution from the solvent 

degrees of freedom.225 This is because as a molecule is solvated, the solvent degrees of 

freedom in the first solvation shells around the molecule will orient themselves to 

interact with the solute. Establishing these interactions implies a loss of configurational 

freedom and thus is an entropic cost. It also possible to obtain entropy changes upon 

binding using NMR relaxation data through the order parameter.78,225 When appropriate 

data is not available, it is also possible to compare predicted entropies with theoretical 

benchmarks coming from rigorous free energy calculations.225 However, these methods 

are typically very expensive and can include numerical errors and errors due to finite 

sampling331,332. Nonetheless, these free energy methods present an attractive alternative 

to obtain benchmark data in solution by alchemically decoupling the ligand in vacuum 
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and in solution, and then computing the free energy of solvating the ligand, and from the 

free energy estimating the entropic term.225 
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5. A multi-basin quasi-harmonic approach for the calculation of 

the configurational entropy of small molecules in solution 

 

Disclaimer: Most of this chapter was taken from Pereira & Cecchini. 2021. Journal of 

Chemical Theory and Computation, 17,2, 1133-1142. It corresponds to an original work 

developed by Gilberto Pereira under the supervision of professor Marco Cecchini at the 

University of Strasbourg. 

 

5.1: Introduction  

The free energy is widely acknowledged as the driving force in fundamental biological 

processes115, such as protein folding and protein-ligand binding. In drug discovery, it is 

often unfeasible to determine (experimentally) the binding affinity of all entries of a 

chemical library for a given target. As such, there has been a tremendous effort to 

develop computational methods able to estimate ligand-binding free energies accurately 

and efficiently from first principles.189 Currently available methodologies encompass a 

broad spectrum where both the computational cost and the quality of the predictions 

vary considerably.189 In between rigorous binding free-energy calculations and semi-

empirical approaches like docking, an intermediate class of methods, referred to as end-

point, has attracted significant interest. Among them, the popular Molecular 

Mechanics/Poisson-Boltzmann Surface Area or the Molecular Mechanics Generalized-

Born Surface Area methods aim at the ligand-binding affinity via quantification of the 

absolute chemical potentials of the protein, the ligand, and the protein-ligand 

complex,196 which requires the numerical evaluation of absolute molecular entropies in 

solution. Because of the computational burden and the empirical observation that 

introducing entropy contributions often worsens the correlation with experiments,211,273  

many researchers do not include entropy in their MM-PB(GB)SA calculations. 

To evaluate the configurational entropy of single molecules, several methodologies 

exists; they have been thoroughly reviewed elsewhere.225 In the limit of the ideal gas and 

the RRHO approximation, absolute molecular entropies can be quantified by statistical 

mechanics formulas224. Although approximated, this approach is efficient and relies on a 

small number of molecular parameters that can be easily accessed by modeling, typically 

geometry optimization and NMA. The validity of these results, however, is limited to rigid 

molecules populating a single conformational state and to the gas phase. To go beyond 

these approximations, a significant effort has been made. A popular approach that 
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extends the scope of ab initio entropy calculations to solution conditions is the QHA of 

the internal molecular motions, introduced by Karplus and Kushick forty years ago261. In 

this approach, the vibrational frequencies are obtained from the analysis of the room 

temperature atomic fluctuations sampled by MD. Since the simulations can be carried 

out with an explicit treatment of the solvent, these calculations incorporate not only part 

of the anharmonicity but also solvent contributions. Nonetheless, standard QHA is prone 

to fail in the context of flexible molecules that exist in equilibrium between multiple 

conformers and was shown to provide at best an upper bound estimate to the absolute 

molecular entropy.260  

Molecular flexibility has been tackled by the mixture of conformers approach, also 

introduced by Karplus and coworkers to quantify the entropy of denaturation in 

proteins.321 Assuming that a flexible molecule has N distinct conformations and that each 

of them can be treated as a disjoint multi-dimensional harmonic well, this model includes 

two contributions to the total configurational entropy: one that is due to the local 

fluctuations in the neighborhood of a well-defined molecular structure, and another one 

corresponding to the existence of more than one structure or energy well on the 

landscape.225 In this approach, the former, which is often referred to as the per-basin 

entropy, is determined in the RRHO approximation as an ensemble average over multiple 

conformers, whereas the latter, which is referred to as the entropy of the landscape or 

the entropy of mixing, is evaluated using Gibbs’s formula of entropy from the equilibrium 

probabilities of the accessible states.225 Using this approach in conjunction with DFT 

calculations at the B3LYP/6-31G* level of theory, Guthrie predicted the gas-phase 

entropy of 128 organic compounds with up to 10 carbon atoms for which calorimetric 

entropies were available.311 Despite the use of an approximated formula for the entropy 

of the landscape, i.e. all conformers were assumed as equally probable, and the 

significant amount of manual work for both conformer enumeration and symmetry 

determination, the numerical results were extremely accurate with a standard deviation 

from the experiments of 0.38 kcal/mol at 298.15K. Using the same approach, DeTar 

analyzed a dataset of eighteen hydrocarbons in the gas phase featuring freely rotating 

groups, internal rotation and/or multiple conformational states.312 By computing the 

vibrational frequencies at the Hartree-Fock level of theory with various basis sets (3-21G, 

6-31G*) or MP2/6-31G(d,p) and evaluating the entropy of the landscape via Boltzmann 

probabilities from quantum mechanical energies, an impressive RMSE of 0.1 kcal/mol was 

obtained.312 More recently, absolute entropy calculations for a dataset of eight alkanes, 

five dipeptides and the PFG hexapeptide were reported by Suarez et al.308 In this work, 

an original strategy that combines NMA of a large number of molecular snapshots from 

MD with a mutual information treatment of the n-order correlations between the 

torsional degrees of freedom was developed to estimate the entropy of the landscape. 
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308 Suarez et al. report that such methodology is efficient, in particular when the 

vibrational analysis is done by molecular mechanics.308 This method is also automatic, 

since conformer enumeration and weighting are obtained by clustering of the MD 

trajectory, and accurate, exhibiting a mean unsigned error (MUE) of 0.31 kcal/mol. 

Importantly, the method was shown to cover a large chemical space, i.e. from small 

hydrocarbons to large and flexible peptides, and to provide numerical estimates of the 

absolute entropy in solution in combination with an implicit solvent model.308 

Alternative approaches that go beyond the single-well harmonic model have been 

explored.326 One of them is the second generation M2 method by Gilson and coworkers 

that provides absolute molecular entropies from the calculation of configurational 

integrals for a large set of conformers sampled by an automated configurational 

search.326 These configurational integrals provide a numerical estimate of the molecular 

partition function, which is used to quantify the absolute molecular entropy indirectly as 

a difference between the system free energy and its internal energy.199 In this method, 

solvent effects are included via an implicit solvent model and the anharmonicity within 

the well is accounted for by numerical integration of the lowest-frequency modes.199 

Another example is the mutual information expansion also by Gilson in which absolute 

molecular entropies are accessed by an expansion of mutual information terms to the nth 

order that account for the correlation between the internal degrees of freedom (bonds, 

angles and torsions) of the molecule.293 Interestingly, MIE never imposes the harmonic 

approximation but uses a truncated form of the expansion to ensure convergence of the 

calculation. In addition, it provides absolute molecular entropy estimates directly from 

the analysis of a single MD trajectory, possibly including solvent effects. To the best of 

our knowledge, none of these methods was benchmarked against calorimetric entropies. 

Here, we present a novel approach for the numerical evaluation of absolute entropies 

of small molecules in vacuum or in solution. Our method, named quasi-harmonic multi-

basin (QHMB), improves the accuracy of standard QHA calculations by using a multi-basin 

decomposition scheme based on clustering of MD simulations. The absolute entropy of 

the molecule is then evaluated through the “mixture of conformers” approach. This way, 

the potential energy surface is no longer approximated by a single multivariate Gaussian 

distribution and the contributions from all conformers visited during MD are correctly 

taken into account. By comparing with calorimetric data, we show that QHMB is able to 

predict absolute molecular entropy in the gas phase with an almost perfect correlation 

with experiments. Furthermore, the introduction of a QHMB correction in MM/PBSA to 

account for the configurational entropy loss of the ligand upon binding is shown to 

improve the correlation between calculated and experimental binding affinities.  

In the following, we review the theory beyond the QHMB method, we present the 

datasets used for tests calculations, we compare the performances of QHMB relative to 
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standard RRHO-based entropy calculation approaches, and discuss the significance of 

these results in the context of protein-ligand binding affinity calculations. 

 

5.2:  Material and Methods 

5.2.1: Benchmark datasets  

5.2.1.1: Dataset for gas-phase entropy calculations.  

 

To evaluate the performance of the QHMB approach, a dataset of 22 small molecules 

with experimentally determined gas-phase entropies were selected from the 

Computational Chemistry Comparison Benchmark DataBase307 from NIST; see Table S5.1. 

In addition to those, heptane was included in the dataset, whose gas-phase entropy was 

extracted from the TRC data series.329 Overall, our dataset includes several linear alkanes, 

and both aromatic and halogenated compounds with up to 10 heavy atoms. In addition, 

they feature a different number of rotatable bonds and span a wide range of experimental 

gas-phase entropies. For comparison, a subset containing only the most flexible 

compounds, i.e. those with more than three rotatable bonds, was also considered.  

 

5.2.1.2: Dataset for ligand-binding free energy calculations. 

 

To quantify the impact of the QHMB entropy correction on the performance of end-

point binding free energy calculations, a dataset of 21 protein-ligand complexes was 

selected from the Greenidge dataset.214 This dataset spans a wide range of ligand binding 

affinities (pKi from 2.48 to 10.49), molecular weights (MW from 101.1 to 376.43 g/mol), 

and number of rotatable bonds (from 1 to 8); see Table S5.2. Although not thorough, this 

collection is diverse and features rather flexible ligand flexibilities, which makes it 

challenging for any computational method. In addition, all protein-ligand complexes but 

one were stable in explicit-solvent MD, i.e. the protein backbone RMSD was lower than 

2.5 Å over 100 ns for 20 out of 21 complexes (Figure S5.1), which ensures convergence of 

the MM/GBSA calculations. Marginal stability was only observed for 1P1N, whose RMSD 

from the crystallographic binding mode rises to 3Å.  
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5.2.2: MD simulations  

5.2.2.1: Gas-phase Molecular Dynamics simulations  

 

MD simulations in the gas phase were carried out using Amber18 and the GAFF251 force 

field in a vacuum. All compounds were first drawn and 3D coordinates generated using 

MarvinSketch from ChemAxon.25 The resulting sdf file was then submitted to 

antechamber333 for the calculation of partial atomic charges using the RESP method171 at 

the HF/6-31G* level of theory334 in Gaussian09.172 Finally, force-field parameters were 

obtained using tleap in Amber18.118 MD simulations were carried out using sander for 

300 ns, at 298.15K in the NVT ensemble using a Langevin thermostat. Molecular 

snapshots were saved each 5ps for a total 60000 molecular configurations for further 

analysis. The sander code was employed for these simulations. 

 

5.2.2.2: Solution Molecular Dynamics simulations 

 

Starting from optimized geometries in vacuum, all compounds from NIST were 

embedded in a periodic octahedral TIP3P water box that extended 18Å from the solute. 

Before running MD, the solvent molecules were relaxed by three cycles of energy 

minimization (1000 steps each). Then, the full system was energy minimized (5000 steps) 

using a combination of the steepest descent and conjugate gradient algorithms. The 

molecular systems were gradually heated up to 298.15K over 2ns in the NVT ensemble 

using Langevin dynamics and an integration time step of 2 fs. SHAKE was used to constrain 

all covalent bonds involving hydrogens and particle-mesh-Ewald for the treatment of the 

long-range electrostatic interactions. Then, the system was equilibrated over the course 

of 2ns employing Langevin dynamics in the NPT ensemble, using a Monte Carlo barostat, 

with 1 atm pressure at the temperature of 298.15K. Production runs were carried out for 

300ns in the NPT ensemble, and molecular snapshots were saved every 5ps for a total of 

60000 molecular snapshots for further analysis. The pmemd.cuda code was employed for 

these simulations. For the simulations of the protein-ligand complexes from the 

Greenidge dataset214, the same protocol was applied, adding counter ions to the 

simulation box to ensure charge neutrality and Na+ and Cl- ions at 0.15M to mimic the 

physiological conditions. 
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5.2.3: Entropy calculations 

For the absolute molecular entropy calculations, several approaches were explored. 

They are all based on the RRHO approximation and use NMA and QHA to evaluate the 

intramolecular entropy along with a number of variants to account for the anharmonicity 

of the underlying potential energy surface including the existence of multiple energy 

wells. For each compound, the molecular weight and the symmetry number were 

obtained from VMD335, whereas the moments of inertia and the vibrational frequencies 

for the calculation of the per-basin entropy were determined using AmberTools18.118 All 

entropy calculations (Equation 5.4 and Equation 5.10) were carried out using Thermo.294 

For the calculations in vacuum the standard volume was set to 24.78L. For those in 

solution, a standard 1M concentration was considered. 

 

5.2.3.1: Normal-Mode Analysis.  

 

NMA calculations were performed using a deeply optimized molecular geometry. For 

this purpose, molecular coordinates were energy minimized until the root mean square 

gradient of the energy was < 10-5 kcal/mol/Å. The vibrational frequencies were then 

determined from the eigenvalues of the mass-weighted Hessian in Cartesian coordinates 

(NMA). Alternatively, NMA was carried out starting with the structure of the most 

populated cluster based on the statistical distribution of the non-redundant dihedral 

angles (NMA-clust). The coordinates of the cluster center were energy minimized and 

vibrational frequencies collected as described above. Last, another variant that evaluates 

the intramolecular entropy by averaging the RRHO entropy over a series of molecular 

configurations was also considered (NMA-multi). For this purpose, ten molecular 

snapshots were extracted from an MD trajectory, energy minimized and analyzed. 

 

5.2.3.2: Quasi-harmonic analysis.  

 

QHA was carried out using the molecular snapshot closest to the average structure in 

MD as reference. For this purpose, the mass-weighted covariance matrix was determined 

in Cartesian coordinates after optimal superimposition of the MD trajectory on the 

reference and diagonalized to obtain the vibrational frequencies (QHA). One advantage 

of this approach is that some anharmonicity and solvent effects are effectively captured 

in the entropy calculation. Alternatively, a QHA variant that uses the structure of the most 

populated cluster in dihedral space as reference (QHA-clust) was also explored.  
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5.2.3.3: Quasi-Harmonic Multi-basin approach (QHMB).  

 

In QHMB, the anharmonic nature of the underlying potential energy surface is captured 

by a divide-and-conquer approach, which aims at describing such anharmonicity via a 

series of non-overlapping harmonic wells whose configurational entropy is captured in 

the RRHO approximation. For this purpose, the number of conformers per compound and 

their equilibrium probability (pi) were determined by clustering a converged MD 

simulation via the average linkage algorithm,336 as implemented in AmberTools18. Each 

cluster center was then used as a reference to extract molecular snapshots within the 

basin and evaluate the per-basin entropy by standard QHA. Finally, by introducing quasi-

harmonic entropies and equilibrium probabilities into Eq.10 a multi-basin estimate of the 

entropy of the landscape was obtained. Note that the use of QHA for the per-basin 

entropy not only accounts for part of the anharmonicity but opens to the numerical 

evaluation of absolute molecular entropies in solution.  

 

5.2.4: MM/GBSA binding free energy calculations 

Protein structures were prepared using the Schrodinger suite91 adding missing atoms 

and assigning standard protonation states for all titratable residues at pH 7.0. For the 

ligand, initial coordinates were extracted from the PDB of the complex and converted into 

an sdf file. Atomic partial charges were assigned using the RESP methodology171 upon 

geometry optimization at the HF/6-31G* level of theory. The tleap utility was used to build 

the protein-ligand complexes and FF14SB50 and GAFF2 force fields to assign the protein 

and ligand atom types, respectively. The system was then solvated in a octahedral TIP3P173 

water box with a 14 Å water layer around the protein. Counter ions were added to ensure 

charge neutrality. Simulations of the protein-ligand complexes were carried out as 

described above with production runs of 100ns. By saving molecular snapshots every 2 

ps, a total of 50000 molecular configurations were collected for further analysis. 

Production runs of the free ligand in solution were 300ns long, saving snapshots every 2 

ps for a total of 150000 molecular configurations. 

Protein-ligand binding free energies in solution were evaluated using the MM/GBSA 

methodology as implemented by the MMPBSA.py script in AmberTools18118. The polar 

contribution to the solvation free energy was computed using the OBC gb model281 with 

mbondi2 radii, a protein internal dielectric constant of 4, and an external dieletric 

constant of 80. The non-polar contribution was evaluated from the Solvent Accessible 

Surface (SAS) computed using the LCPO algorithm.285,337 A frame-skip of 5 was employed 

to reduce the number of snapshots to be processed to 10000. For the binding affinity 
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calculations, the standard single-trajectory setup was used; i.e. the trajectories of the 

receptor and the ligand in solution were extracted from the MD simulation of the 

complex. 

 

5.2.5: Clustering algorithms explored 

5.2.5.1: Hierarchical clustering 

 

Hierarchical clustering algorithms focus on finding relationships within data by 

partitioning hierarchically the data points in a tree-like representation. These can be 

either bottom-up (agglomerative) algorithms, where all clusters are initiated with only 

one data point and then the closest points are iteratively merged together until all points 

are grouped into a single cluster, or top-down (divisive) algorithms, where the algorithm 

starts from one single cluster and iteratively separates the most dissimilar points from 

each other. Within any of the schemes, there must be a threshold measuring cluster 

similarity, like the root mean squared distance (RMSD), to allow cluster identification. The 

difference between different flavors of hierarchical algorithms is then just the way in 

which this criterion is used.336 

In single-linkage, the distance between clusters is that given by the smallest intercluster 

distance between a point in cluster 1 and a point in cluster 2.338 Based on this distance 

matrix, the two closest clusters are merged together. In the complete-linkage method, 

the distance matrix is built taking into account the maximal intercluster distance between 

clusters and then taking the pair which exhibits the minimal distance in the matrix.339 

Finally, in average-linkage the cluster-to-cluster distance matrix is built by taking the 

average of all pairwise intercluster distances between all pairs of clusters. The clusters 

with the smallest average distance are then merged together.336 In any of the cases, this 

procedure is done iteratively until either no new clusters are found with distances below 

the threshold or until the maximal number of iterations is achieved. 

 

5.2.5.2: Density-based Spatial Clustering of Applications with Noise 

 

Another approach for clustering molecular snapshots relies on the density (e.g amount 

of points) around a given point in space, such as the Density-based Spatial Clustering of 

Applications with Noise (DBSCAN) method. In DBSCAN, two parameters should be set: 

the number of points required to define a region as dense (minPoints) and a measure of 

point closeness based on a distance criterion (eps). For the distance criterion, typically 

the Euclidean distance is used and if the distance between points is smaller or equal to 

the eps threshold, they are considered as part of a cluster. It is important to remember 
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that the successful application of DBSCAN is dependent on setting appropriate values for 

the eps and the minPoints parameters.340 In particular, should the eps be too small, no 

clustering would happen because the distances between points would be too large and 

many points discarded as noise. On the other hand, if eps is too large, then all points 

would be clustered together. This parameter must be calibrated, usually with a k-distance 

graph (eps vs number of clusters). As for the minPoints, it is important to use larger 

numbers as a small minPoints value would produce many small, isolated clusters. In 

DBSCAN, the points are mapped into a hypersphere and eps becomes the radius of the 

hypersphere. It then follows that a core point is a point which has at least minPoints 

within the hypersphere created with itself at the center and a given eps radius. A border 

point is one which has less than minPoints around itself but is close to a core points. A 

noise point is a point with no core points close-by and less than minPoints around 

itself.336,340 

The algorithm progresses by picking a random point in space and evaluating the 

number of minPoints close-by within a given eps radius, clustering all these points 

together around a core. Then, the calculation is iteratively performed, expanding the 

cluster or initiating new clusters altogether until all points are visited.336,340 In this work, 

we set minPoints to 5 and varied the eps threshold as described previously. 

 

 

5.3: Results and Discussion 

5.3.1: Absolute entropy calculations in vacuum for cyclohexanone 

To provide a proof-of-concept calculation before pursuing a full benchmark for the 

accuracy of QHMB for small-molecules in gas-phase, cyclohexanone was selected. It was 

selected because this compound is relatively rigid save for a dihedral angle (C6-C5-C1-

O1) ending in a carbonyl group. The movement of this dihedral angle yields two equally 

probable states (oxygen up or down), which is expected to cause QHA to fail in 

reproducing the absolute entropy of this compound in gas-phase (Figure 5.1A). However, 

should the multi-basin decomposition scheme be valid, it would be possible to reproduce 

the experimental gas-phase entropy of cyclohexanone (23.9 kcal/mol) following the 

decomposition of the MD trajectory into the two individual states. A MD trajectory of 

300ns in gas-phase was post-processed by QHA and QHMB, and the results are shown in 

Figure 5.1B. 
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Figure 5.1 – Proof-of-concept approach for QHMB using cyclohexanone as a test case. A) The two states 

sampled by cyclohexanone due to the rotation of the C6-C5-C1-O1 dihedral angle. B) Distribution of the 

C6-C5-C1-O1 captured from the 300ns MD simulation of cyclohexanone in gas-phase. 

 

As is shown in Figure 5.1B, the dihedral angle populates two different states and thus 

the approximation of the PES using a single, multidimensional, Gaussian distribution by 

QHA is likely to introduce an underestimation on the vibrational frequencies of the 

molecule which in turn cause the predicted absolute entropy of cyclohexanone to be 

overestimated. In QHMB the PES is decomposed into two different states which are 

analyzed separately. Thus, we expect the clustering step to produce two pure clusters of 

molecular configurations which would allow us to compute the absolute entropy of 

cyclohexanone based on the “mixture of conformers” theory. We find that QHA indeed 

fails to reproduce the experimental entropy and instead overestimates it by ~2 kcal/mol 

(TS = 26.0 kcal/mol). Using QHMB we find that the multi-basin decomposition scheme 

corrects this overestimation error and manages to reproduce the experimental entropy 

0.2 kcal/mol of error (23.7 kcal/mol). Thus, it appears that indeed a possible approach to 

correct the large overestimation error which is commonly found in QHA calculations is to 
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decompose the PES into individual microstates within which the RRHO approximation is 

valid. 

 

5.3.2: Calculation of absolute entropies in vacuum 

For all compounds in the NIST dataset, absolute entropies in the gas phase were 

evaluated using three NMA variants, two QHA variants, and QHMB; see Methods. Linear 

regressions for the NMA, QHA and QHMB results are shown in Figure 5.2. The data show 

that standard harmonic analyses provide results that are strongly correlated with the 

experiments, i.e. R2 for NMA and QHA are 0.96 and 0.86, respectively. However, the slope 

for NMA is less than one, whereas that for QHA is more than double; see Table 5.1. These 

data indicate that neglecting the contribution arising from the existence of multiple 

basins, as done by NMA, produces a systematic underestimation of the entropy. 

However, approximating the complex potential energy surface by a single, multi-

dimensional harmonic well, as done by QHA, results into a much larger overestimation 

and yields at best an upper bound to the absolute entropy. Both conclusions are 

consistent with previous reports in the literature.263,225 

Analysis of the deviation from experiments provides further insights. The results in 

Table 5.1 show that the RMSE for the full data set is 1.1 kcal/mol for NMA, whereas that 

for QHA is 8.1 kcal/mol. Although this suggests that NMA provides, on average, accurate 

entropy predictions, this is not always the case. In fact, by looking at the subset containing 

the most flexible molecules (i.e. compounds with > 3 rotatable bonds), the RMSE 

increases from 1.1 to 1.7 kcal/mol. Together with the large deviation of the QHA 

predictions, these data consistently point to the fact that standard approaches based on 

the RRHO approximation do not provide accurate entropy estimates even for small 

molecules in the gas phase. In sharp contrast, the results of QHMB are in quantitative 

agreement with the experiments and show a MUE of 0.28 kcal/mol and a slope of 1.02 

for this dataset; see Table 5.1. 
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Figure 5.2 - Correlation of computed versus experimental absolute standard entropies for 23 small 
molecules in the gas phase. Experimental entropies at 298K were taken from NIST. The data show the 
performances of the newly introduced multi-basin approach (QHMB) relative to popular single-well 
approaches based on the RRHO approximation, i.e. NMA (red) and QHA (green). 

 

Table 5.1 - Accuracy of various RRHO methods for the calculation of absolute molecular 

entropies. 

 

Experiment RMSE[*]

  

RMSE[+] R2 Slope MUEa 

NMAb 1.12 1.67 0.96 0.86 0.93 

NMA-multib 1.17 1.75 0.96 0.86 0.97 

NMA-clustb 1.13 1.64 0.96 0.87 0.96 

QHAb 8.09 13.36 0.86 2.24 5.87 

QHA-clustb 8.42 13.95 0.86 2.30 6.07 

QHMBc 0.36 0.24 0.99 1.02 0.28 

 

All RMSE values are given in kcal/mol. [*] – RMSE for the full benchmark set. [+] – RMSE for the subset of 

ligands with 3 or more non-redundant torsions. [a] – Mean Unsigned Error (MUE) between predicted and 

experimental absolute entropies. [b] – Results obtained by enforcing the symmetry number to one. [c] – 

Results using appropriate symmetry numbers.  
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We conclude that the large overestimation by standard QHA can be corrected to a 

remarkable accuracy by an efficient multi-basin decomposition of a converged MD 

simulation. Perhaps surprisingly, these results highlight that the strong correlation 

observed with QHA (R2 = 0.86) does not correspond to accurate absolute entropy 

predictions and cannot be used standalone for validation purposes. Indeed, both the 

MUE (5.9 kcal/mol) and RMSE (8.1 kcal/mol) for QHA indicate that these predictions are 

completely off. 

 

5.3.3: An automatic procedure for QHMB absolute entropy calculations 

A QHMB calculation encompasses three steps: i. the determination of the stable 

conformers along with their equilibrium probability from a converged MD; ii. the 

calculation of the per-basin entropy per conformer by QHA (Equation 5.4); and iii. the 

calculation of the entropy of the landscape (Equation 5.9). Although a manual 

implementation of QHMB based on the analysis of dihedral distributions and visual 

refinement may be accurate enough, this procedure is impractical, if the aim is to apply 

it to hundreds or thousands of compounds. For this purpose, an automatic QHMB 

procedure was developed. Following Suarez et al,225,308 the implementation aims at: i. 

identify stable conformers by RMSD clustering of an extended MD trajectory; ii. extract a 

series of sub-trajectories corresponding to each of them; and iii. analyze those sub-

trajectories by QHA automatically. For this purpose, several hierarchical algorithms 

including the Average-Linkage336, the Single-Linkage338 and the Complete-Linkage,339 and 

the density-based DBSCAN340 were considered; note that all clustering methods are part 

of the Amber18 software suite118. In addition, since a proper decomposition of the 

configurational space into distinct potential energy wells is critical for a proper evaluation 

of the absolute entropy, the QHMB analysis was repeated by varying the RMSD cutoff for 

clustering from 2.0Å to 0.1Å in decrements of 0.1Å. To validate the procedure, the 

dataset from NIST for which experimental entropies are available (see above) was used 

as benchmark. The results are shown in Figure 5.3. At large cutoffs, i.e. RMSD ~ 2Å, all 

methodologies are equivalent and yield entropy results with a systematic error as large 

as that of standard QHA. The lower the cutoff, the smaller the error of the entropy 

calculation. Interestingly, by decreasing the RMSD cutoff below 0.5Å both the Average 

linkage (green) and the complete-linkage (black) algorithms improve the QHMB 

predictions quite significantly and plateau to an RMSE below 1 kcal/mol. On the other 

hand, neither the Single linkage nor the DBSCAN algorithms achieved satisfactory 

accuracies in the investigated range of cutoffs. Based on these results, we conclude that 

the Average linkage or the complete-linkage algorithms are essentially equivalent and 

produce accurate and stable QHMB results at reasonably low clustering cutoffs. Since 
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clustering based on Average linkage produced the lowest RMSE at cutoffs below 0.5Å, 

this protocol was selected for all subsequent studies. We note in passing that at too large 

cutoffs (≥ 2 Å) all clustering algorithms fail because they mix conformations belonging to 

different basins and QHMB reduces to standard QHA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.3 – Accuracy of QHMB as a function of the clustering algorithm and the RMSD cutoff. The accuracy 

is evaluated by the root-mean-squared error (RMSE) from experimental entropies in the gas phase for the 

NIST dataset; see Main Text. The dashed line at 1 kcal/mol illustrates the boundary of chemical accuracy. 

 

5.3.4: Calculation of absolute entropies in solution 

 The remarkable accuracy of QHMB along with its straightforward application to 

explicit-solvent MD trajectories opens to the evaluation of absolute molecular entropies 

in solution. This latter is particularly interesting because absolute entropies in solution 

remain experimentally inaccessible. Here, we use QHMB to evaluate standard molecular 

entropies in solution for 23 compounds from the NIST dataset (Annex S5.1) and compare 

them with results obtained in the gas phase. The results in Figure 5.4 (and Annex S5.3) 

show a systematic difference between gas-phase and solution of about 2 kcal/mol; i.e. 

the standard entropies in vacuum are systematically higher than those in solution. This 

large difference is primarily due to the translational entropy contribution and a different 

definition of the standard state; the standard volume per mole amounts to 24.78L in the 

gas-phase and 1L in solution, which corresponds roughly to a 1.9 kcal/mol translational 

entropy change at 298.15 K. Accounting for the change in the standard state definition, 

the difference in intramolecular entropy between the gas phase and the solution is much 

smaller and in most cases within 0.1 kcal/mol; see Figure 5.4. The largest changes are 
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found for butane, butanoic acid, di-n-propylether and pentane, whose conformational 

entropy appears to be slightly more favorable in water.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 – Absolute configurational entropies in solution. On the top, absolute QHMB entropies for 23 

small molecules from the NIST dataset in aqueous solution (blue) are shown and compared with the 

corresponding entropies in the gas phase (red). In solution, a standard concentration of 1M was used. On 

the bottom, the difference in configurational entropy in the gas phase versus solution is shown upon 

correction for the standard state definition. Error bars were estimated from standard error of the mean 

(S.E.M) by block analysis. 

 

Based on these results, we conclude that for small and apolar molecules the water 

environment does not affect the accessible configurational space dramatically, so that 

gas-phase entropies provide reasonable estimates for the solution environment. 

Nonetheless, for larger and more polar solutes, water is expected to produce stronger 

effects e.g. by stabilizing configurations inaccessible in gas-phase, which could be 

quantified by QHMB. 

 

5.3.5: Application to binding free energy calculations 

MM/PBSA and MM/GBSA are very popular approaches for the calculation of relative 

ligand binding affinities.89,110,115,201,212,213,341 However, it has been noticed that their 

performance are highly system dependent.211,214 In addition, many researchers prefer not 

to include entropy contributions in their MM-PB(GB)SA calculations due to the additional 
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computational cost and previous observations that an explicit inclusion of entropy may 

worsen the correlation of the predicted binding affinities with experiments.201,211,214,225 

Others, to overcome the limitations of entropy calculations in binding reactions have 

proposed alternatives strategies that do not rely on the harmonic approximation like the 

interaction entropy method.49 Motivated by the accuracy of the QHMB results in the gas 

phase (see above), we selected a dataset of 21 protein-ligand complexes from the 

Greenidge dataset214 and used QHMB to quantify the entropy loss on binding.  

Specifically, QHMB was used to evaluate the configurational entropy of the ligand in its 

bound and unbound states from independent MD simulations, so as to estimate the 

entropy of binding from the difference between the two. This term was then introduced 

as an entropy correction to standard MM/GBSA calculations. Binding free energy results 

from MM/GBSA with and without the QHMB entropy correction are shown in Figure 5.5. 

For comparison, the ligand entropy loss was also accessed by standard QHA296 and the 

performances of the two protocols compared; see Table 5.2. The data show that standard 

MM/GBSA calculations as implemented in AmberTools18118 do a reasonable job with this 

dataset yielding a R2 = 0.67. Application of a ligand entropy correction based on QHA 

introduces a larger error and the correlation decreases by 17% (R2 = 0.5), consistent with 

previous reports.211,254 In sharp contrast, the introduction of the ligand entropy 

correction by QHMB increases the correlation by 11% and yield a final R2 = 0.78; see Table 

5.2. These results lead to the following observations. First, the QHMB entropy correction 

introduces a penalty in the calculated ΔG°, which accounts for the restriction of the 

configurational volume accessible to the ligand in its bound state. Second, the size of the 

correction is strongly ligand-dependent and introduces a larger penalty for big and 

flexible ligands; i.e. the QHMB correction is > 9 kcal/mol for four ligands in the dataset, 

while being 6 kcal/mol on average (Annex S5.4). In addition, the correction relies on 

configurational sampling by MD, which allows for direct probing of the change in the 

configurational volume of the ligand independently of its intrinsic flexibility. Taken 

together, these results suggest that the introduction of a ligand-dependent entropy 

correction based on QHMB increases the accuracy of relative binding-affinity 

calculations. 
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Figure 5.5 – Correlation of experimental versus predicted binding affinities by MMGBSA with (red) and 

without (empty points) entropy correction by QHMB. The data show that the introduction of the entropy 

correction increases the correlation with experiments by 11%. For some large and flexible ligands, the 

correction is as large as 10 kcal/mol (green arrows). 

 

Table 5.2 – Inclusion of the ligand entropy loss in MMGBSA calculations. 

 

Experiment R R2 slope ρ[4] 

MM-

GBSA[1] 

0.82 0.67 2.15 0.79 

MM-GBSA 

+QHA[2] 

0.71 0.50 1.33 0.66 

MM-GBSA 

+QHMB [3] 

0.88 0.78 1.87 0.88 

 

[1] Single-trajectory MMGBSA results. [2] MMGBSA results with entropy correction by QHA. [3] MMGBSA 

results with entropy correction by QHMB. [4]-Spearman’s correlation coefficient. All simulations were 

performed at 298.15 K and 1M. 
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5.4: Conclusions 

By using a basin decomposition scheme via RMSD clustering of converged MD 

trajectories, we have demonstrated how to improve the accuracy of absolute molecular 

entropy calculations relative to standard approaches based on the RRHO approximation; 

i.e. normal-mode and quasi-harmonic analyses. The proposed numerical strategy, here 

referred to as quasi-harmonic multi-basin, includes two stages. The first one involves the 

calculation of a probability-weighted RRHO entropy per basin. The second one evaluates 

the entropy of the landscape via the Gibbs formula. In the current formulation, the per-

basin entropy is accessed by QHA of molecular snapshots sampled by MD, which not only 

accounts for the anharmonicity of the basin but also opens to the evaluation of molecular 

entropies in solution. By using QHMB in test calculations, we were able to reproduce 

experimental gas-phase entropies for 23 small molecules from NIST with an RMSE below 

chemical accuracy (i.e. 0.36 kcal/mol) and without too much computation. In addition, 

QHMB was used to estimate the entropy loss upon ligand binding for a set of 21 protein-

ligand complexes from the Greenidge dataset, which was shown to improve the accuracy 

of standard MM/GBSA calculations. Since this entropy correction penalizes more strongly 

large and flexible ligands, its use is likely to alleviate the typical bias towards larger and 

larger compounds, thus reducing the false-positive rate in simplified binding affinity 

calculations. In addition, the availability of an automatic procedure to compute the 

QHMB entropy correction opens to applications in virtual screening campaigns. 

When compared to existing absolute entropy approaches that go beyond the RRHO 

approximation, such as the work of DeTar312, Guthrie311 and Suarez et al,308 the QHMB 

method has also some advantages. The method of DeTar312 evaluates the per-basin 

contribution by NMA using vibrational frequencies from ab initio calculations. When 

applied to a series of 18 alkanes, the difference between predicted and experimental 𝑇∆𝑆 

was around 0.1 kcal/mol. While accurate, these calculations are computationally very 

intensive, they require an a priori knowledge of all relevant conformational states, and 

they are limited to the gas phase. In the work of Guthrie311, a simplified mixture of 

conformers approach was developed that relies on vibrational frequencies from DFT and 

assumes equal probabilities for all conformers. When applied to an extended dataset of 

128 organic compounds, the reported MUE on predicted absolute entropies in the gas 

phase was 0.26 kcal/mol. Although more efficient, these calculations are still 

computationally demanding, they rely on an approximated formula for the entropy of the 

landscape, and require manual intervention to determine the number of conformers and 

the correct symmetry number. In the work of Suárez et al308, the per-basin contribution 

was evaluated from the RRHO entropy of a number of molecular snapshots sampled by 

MD, while the entropy of the landscape was obtained via the mutual information 
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expansion293 upon discretization of the torsional degrees of freedom. Using this strategy, 

calculated absolute entropies on test systems including hydrocarbons in vacuum showed 

a MUE of 0.31 kcal/mol. In the gas phase, the RRHO entropies are computed by NMA 

using DFT, which is computationally intensive and solvent effects on the entropy of the 

PFG hexapeptide in solution could be captured only indirectly, e.g. using an implicit 

solvent model. Last, convergence of the conformational entropy via MIE introduces an 

additional cost, which requires long simulation trajectories if high-order corrections are 

needed. The QHMB methodology suffers from none of the above limitations. In fact, 

energy minimization is not required, conformational sampling is provided by Molecular 

Dynamics, the vibrational frequencies per conformer are accessed from the analysis of 

the atomic fluctuations, which effectively accounts for solvent effects, and all calculations 

are carried out by molecular mechanics. Most importantly, the MUE of the QHMB 

entropies in the gas phase was 0.28 kcal/mol, which outperforms the calculations by 

Suarez308, and is comparable to the DFT calculations by Guthrie311 and the ab initio 

calculations from DeTar312. Thus, QHMB is able to provide absolute molecular entropies 

accurately and efficiently both in vacuum and in solution. 

However, QHMB has its own limitations. Currently, we have tested the protocol only 

with molecules with up to 8 rotatable bonds, for which conformational sampling 

converges in < 300ns of MD. For more flexible molecules with hindered conformational 

transitions, this simulation time might be too short.308 Thus, the strongest limitation of 

QHMB is the need for sufficient sampling, which becomes increasingly costly as molecular 

size and flexibility increase. This is even more so for the evaluation of a QHMB entropy 

correction for MM/PBSA, where sampling of the configurational space in the bound state 

may include slow rotameric transitions of the amino-acid side chains in the protein 

binding site. The combination of QHMB with enhanced sampling techniques such as 

REMD228 is proposed as a possible strategy to alleviate this problem. 

The original combination of basin decomposition via clustering of Molecular Dynamics 

trajectories with quasi-harmonic analyses, here termed QHMB, opens to accurate 

absolute entropies calculations of small molecules in solution with possible implications 

on binding free energy calculations. The availability of an automatic procedure to 

compute QHMB entropies makes it a new available tool in the field of drug discovery. 
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6. Identification of hits on the quest for allosteric modulators of 

the myosin molecular motor 

 

6.1: Introduction 

Many cellular functions are dependent on the polymerization of actin and its 

interaction with myosin molecules.342 Myosins are a family of molecular motors with the 

ability to hydrolyze ATP, harnessing the energy arising from its hydrolysis to perform 

mechanical work.343 As an example, if the actin filament is a road then myosin would be 

the car and ATP the fuel. There are many classes in the myosin superfamily, of which 

myosins V344 and II345 are examples of processive and non-processive myosins 

respectively. Processive myosins are those able to transport cargo within the cell and 

non-processive myosins are those involved in muscle contraction.344,345 In a coarse-

grained view, myosin motors are composed of light and heavy chains. Within the heavy 

chains, three domains are found: the head (or motor) domain, containing the ATP and 

actin binding sites, the neck region, and the tail domain, the latter determining the 

functional properties of these molecular motors.343 A fundamental feature of the myosin 

motor domain is that there is a wide cleft delimited by the U50 and the L50 domains 

which harbors the actin binding site.346 Myosins have the ability to move along the actin 

filament, a motion which was studied extensively by means of in vitro motility assays.347 

Interestingly, most processive myosins move towards the plus end of the filament, while 

myosin VI walks towards the minus end.348 Defective myosins are known to be implicated 

in the physiopathology of many conditions, including heart conditions349, chronic 

obstructive pulmonary disorder350 and cancer.351 

 

6.1.1: The myosin molecular motor cycle 

The myosin motor cycle is composed by two main phases: the powerstroke, which is 

the force-generation step while actin-bound, and the recovery stroke, which happens 

after force generation and culminates with a myosin motor ready to bind actin.350,352 The 

recovery stroke encompasses several conformational transitions which re-prime the 

lever arm in an actin-unbound state.352,353 At the start of the recovery stroke, ATP binds 

to the actin-bound myosin motor, found in the rigor state, and promotes actin 

unbinding.353 Then, ATP hydrolysis fuels the resetting of the position of the lever 

arm.352,353 At the end of the recovery stroke, the myosin motor is bound to ADP and 
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inorganic phosphate (Pi), and the lever arm is in the correct position for the force 

generation phase. In this state, myosin binds to actin, initiating the powerstroke.353 Along 

this phase, which is composed of major conformational transitions, Pi, ADP and Mg2+ are 

released in discrete steps as the myosin motor produces mechanical work due to a swing 

of the lever arm.350,354 This swinging motion happens because conformational changes 

occurring the ATP and actin binding sites are then transmitted to the lever arm, leading 

to a 60° rotation of the converter subdomain.346,352 As myosins’ affinity towards actin 

increases, the interactions between SMM2 and actin become stronger and mechanical 

tension is accumulated.346 The release of this tension occurs by the swinging of the lever 

arm, and is known as the powerstroke.346 At the end of the powerstroke, the myosin 

enters into the rigor state by releasing ADP, achieving maximum affinity towards actin.346 

Upon ATP binding to SMM2, the myosin motor loses affinity towards actin and unbinds 

from it, restarting the cycle.349,352 A schematic representation of the myosin motor cycle 

is illustrated in Figure 6.1.349 Along the cycle, many unstable or transiently stable 

intermediate states may be populated as the myosin undergoes conformational 

transitions between stable states (rigor, post-stroke, pre-powerstroke, power-stroke and 

force holding state). Some of these intermediates have potential for pharmacological 

targeting en route to the development of new therapeutic approaches. Indeed, several 

studies have reported the modulation of myosin activity by small-molecule 

ligands.345,346,350,353,355,356 

  

  

 

   

   

 

 

 

 

 

 

 

 

Figure 6.1 – Illustration of the myosin molecular motor cycle. In green are highlighted the steps carried out 

in the powerstroke phase and in red the steps of the recovery stroke. The post-stroke step is when ATP 

binds to the unbound myosin motor which populates rigor states. Adapted from “Three perspectives on 

the molecular basis of hypercontractility caused by hyperthropic cardiomyopathy mutations.” Spudich, 

2019.345 Pflügers Archiv – European Journal of Physiology, 471, 701-717. Copyright @ 2019, James Spudich. 
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6.1.2: Myosin as pharmacological target 

Recently, myosins have drawn attention for their potential as targets with therapeutic 

applications such as cancer351, heart failure349 or neurodegeneration.346 However, 

targeting the actin binding site using small-molecule inhibitors is not a reliable solution 

because the active site is highly conserved across different myosins, G-proteins or 

microtubule-based motor proteins.346 Since allosteric pockets are not as well conserved, 

they represent a better strategy to target myosin motor activity modulation.346 Studies 

into the existence of allosteric pockets in myosin molecular motors highlight 4 non-

overlapping accessible sites for small drug-like ligands.346 One of the first well-

characterized small molecule myosin modulators was blebbistatin.345 Blebbistatin is a 

small-molecule inhibitor of myosin II which binds an allosteric pocket close to the 

interface between the U50 and L50 domains.345,346 It traps the motor cycle in a pre-

powerstroke state with low actin affinity, where ADP and Pi are bound, by preventing Pi 

release.345,346 While potent, with an IC50 of 0.5–2 μM for skeletal and nonmuscle myosin-

2 respectively346, blebbistatin is photolabile and becomes cytotoxic when irradiated with 

blue light.345,355 Another example of an important small molecule modulator of myosin is 

mavacamten, a cardiac myosin small-molecule inhibitor.353 This compound binds to an 

allosteric pocket within cardiac myosin and inhibits the force production phase with an 

IC50 of 0.71 μM in human tissue.353 It provides an exciting avenue towards improving the 

contractile properties of a heart which has developed hyperthrophic cardiomyopathy 

(HCM), as shown in rat model systems.353 More recently, another allosteric cardiac 

myosin inhibitor was announced by Cytokinetics, CK-274.356 A final example are 

pseudilins, in particular pentachloropseudilin (PCIP), a low micromolar myosin V inhibitor 

binding at the edge of the 50 kDa cleft on the motor domain.357 Thus, it emerges that 

targeting allosteric pockets which open and close during the myosin motor cycle is a 

reasonable approach en route to the discovery and development of innovative myosin 

modulators.346 However, these proteins remain difficult targets for drug design, as some 

of the allosteric pockets found in myosin motor domains, like the one of PCIP, are only 

transiently open in low-populated intermediate states. Furthermore, some of these 

states can only be crystallized when the inhibitor is bound because the conformational 

equilibria is shifted upon ligand binding, stabilizing the intermediate state.350 Thus, 

innovative and efficient approaches for allosteric drug discovery and design are required 

to study and propose new allosteric modulators of myosin function. 
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6.1.3: Smooth muscle myosin II – Pharmacological relevance 

Smooth muscle cells are a fundamental part of hollow organs such as the bladder, the 

gastrointestinal tract, the uterus, the airways or vasculature.358 To induce SM relaxation 

there are two main paths: inhibiting the contractile mechanism or removing the 

contractile stimulus.358,359 Smooth muscle contractility is fundamental in pathologies such 

as asthma360, prostatic hyperplasia361 and chronic obstructive pulmonary disease.350 

While there exist smooth muscle airway relaxants, notably β-adrenergic agonists and 

muscarinic antagonists, these compounds inhibit the activity of SMM2 in a non-specific 

manner.350 It would be desirable to have a SMM2-specific inhibitor, allowing the 

modulation of the smooth muscle contractility of these tissues for a fast and efficient 

relaxation of the contracted muscle.350,362 Recently, the discovery of a potent and highly 

selective inhibitor (CK-571) of SMM2 has been reported by the group of Dr. Anne 

Houdusse in partnership with Cytokinetics.350 The inhibition of SMM2 by CK-571 was 

found to be elicited by binding to an allosteric pocket whose location could not have been 

guessed from X-ray crystallographic structures solved in the absence of the bound 

inhibitor. The pocket targeted by CK-571 is an allosteric pocket which opens in a short-

lived intermediate state during the recovery stroke.350 Inhibition by CK571 results from 

the stabilization of an intermediate myosin conformation preceding the pre-powerstroke 

state (PPS), thus blocking the motor in a state of low actin affinity and preventing the 

cycle from continuing by hampering the re-binding of SMM2 to actin. High-resolution 

structural information of the co-crystal is therefore fundamental for the discovery of new 

potent and selective modulators of allosteric proteins like myosin. They provide a starting 

point for allosteric drug design which is amenable to be explored by means of 

computational structure-based drug discovery approaches. 

 

6.1.4: Project goal 

The aim of this project was to undertake a VS campaign and identify innovative SMM2 

hit compounds from virtual chemical libraries. We first studied the MM/GBSA196,201 

methodology and devised a calculation setup for the VS campaign based on results from 

a previous in-house campaign on the SMM2/CK-571 pocket. It was understood from that 

screening that parameters like the solute internal dielectric constant and the GB model 

required optimization. These were optimized through benchmarking MM/GBSA 

calculations arising from implicit solvent MD data to reference data from the previous 

screening. It was also realized that entropy contributions had been neglected in that 

campaign. To address this issue, a term accounting for the ligand configurational entropy 

loss upon binding218 was added using QHMB. The VS campaign was carried out targeting 
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the SMM2/CK-571 X-ray crystal structure using a docking and free energy rescoring 

approach, implementing the optimized rescoring setup, through our in-house developed 

software ChemFlow. The selected library was the Chimiotèque National du CNRS (CN).363 

The 3D structure of the protein-ligand complexes were obtained following docking of 

ligands to the CK-571 binding pocket, selecting the best scored binding mode per ligand. 

Two free energy rescoring steps were carried out by MM/GBSA calculations, the first one 

in implicit solvent for a fast evaluation of the binding affinity, aiming at compound 

prioritization. Prioritized compounds were then simulated in explicit solvent and results 

from MM/GBSA calculations arising from the explicit solvent MD simulations were 

coupled to the QHMB penalty to produce the final compound ranking. The subset of best 

ranked compounds was selected from the prioritized set and these ligands were 

experimentally tested for their ability to decrease SMM2 ATPase activity.  

 

 

6.2: Methodology: Virtual Screening protocol 

6.2.1: Protein preparation 

The crystallographic structure of SMM2 was retrieved from the Protein Data Bank (PDB), 

deposited under the PDB-id 5M05. It represents an intermediate state within the 

recovery stroke phase of the myosin motor cycle which is stabilized by CK-571 binding 

(Figure 6.2).350 Within this structure, the inhibitor CK-571, ADP and a magnesium ion 

(Mg2+) are found bound to SMM2. A similar structure of SMM2, though bound with ADP, 

Mg2+ and beryllium trifluoride (BeF3
-), was also crystallized (PDB 5T45) previously. The 

ADP and the Mg2+ are found in the ATP binding site of the motor domain and CK-571 is 

found in the allosteric binding pocket to be targeted. Crystallographic water molecules 

were removed from the structure prior to protein preparation. Then, missing loop 

portions were constructed using MODELLER.134 MolProbity was used to add missing 

atoms, including hydrogens, and to optimize the geometry of amino acid side chains by 

comparison to an internal rotamer library whenever necessary.130 The protonation state 

of the titratable residues was computed using SPORES364 at pH 7.4. After protein 

preparation, a short energy minimization was carried out using a combination of steepest 

descent and conjugate gradient descent.  
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Figure 6.2 – Crystallographic structure of the SMM2 motor domain. The structure ADP (orange), CK571 

(cyan) and a magnesium ion (green) bound (PDB code 5M05), displayed in cartoon. Highlighted are the 

portions of the SMM2 motor domain lining the binding site: SH1 helix (blue), relay helix (dark red), N-

terminal domain (green) and part of the converter domain (light purple). 

 

6.2.2: Ligand library preparation 

To carry out the screening campaign, the CN virtual library363 was selected. This library 

contained at the time approximately 60 thousand compounds, which are accessible 

through a network of collaborations within the French scientific community at a reduced 

cost. Furthermore, although it is a medium-sized library, it contains many different 

chemical scaffolds and thus a large degree of chemical diversity. The CN library was 

initially prepared using PrepFlow.168 A schematic representation of the library screening 

workflow is shown in Figure 6.3. Ligands were extracted in SMILES format365 and 

converted to 2D SDF format. Chemical entities containing unknown or uncommon atoms, 

too many double bonds and too large cyclic structures were filtered out.168 Then, a 

filtering step was applied to remove salts, solvent molecules and other chemical 

structures which do not correspond to ligands using the standardizer tool from 

ChemAxon.363 The remaining ligands were converted into 3D format using the ChemAxon 

molconvert tool25 and a subsequent tautomer enumeration was carried out at pH 7.4, 

keeping only the most probable tautomer, using the cxcalc tool.25 Conformer and 

stereoisomer enumeration was then performed, keeping the all forms of each ligand with 

a probability above 10%. The ligand library was then loaded into DataWarrior1 for 

additional filtering steps which consisted of evaluating different ligand physicochemical 
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properties. In ligands were filtered according to the well-known Lipinski Rule-of-Five39 

and all compounds which broke more than one of the rules were excluded (See Table 1 

in Chapter 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.3 - Schematic representation of the VS campaign workflow carried out on CN towards the discovery 

of new SMM2 modulators.  

 

After the library preparation and R-o-5 filtering, 39 thousand compounds were 

retained. These were then filtered out according to the presence of specific PAINS 

substructures using a KNIME366 node.156  The PAINS-filtered dataset contained 22 

thousand compounds which were further pruned based on physicochemical properties 

such as the Polar Surface Area (PSA), the computed solubility (clogS), the number of 

rotatable bonds and the presence of some toxic warhead groups in their molecular 

structures (RTECS) using DataWarrior.1 The aim of this step was to focus the library on 

drug-like compounds with physicochemical features similar to CK-571 (see Annex S6.3)  

The size of the dataset decreased significantly at this stage, for a total of 8K compounds. 

Finally, a flexophore descriptor for each ligand was computed.367 The library was 

clustered using a 3D flexophore descriptor, further narrowing down the dataset to about 

2300 chemically diverse structures where each structure represents a cluster of 

compounds, grouped based on 3D similarity. 
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6.2.3: Molecular docking 

A molecular docking campaign was performed to produce 3D structural models of the 

protein-ligand complexes. The prepared ligand library (see Chapter 6.2.2) containing 2300 

drug-like compounds was docked to the allosteric pocket of CK-571 in the SMM2 

structure using the PLANTS software.177 The ligands were considered as flexible and the 

protein was treated as rigid. The protein structure contained the ADP and Mg2+ co-factors 

in the ATP-binding site of the myosin motor domain. The search space for PLANTS docking 

was set as a sphere with a radius of 12Å, centered on the center of mass of CK-571 in the 

crystal structure. For the PLANTS docking protocol, the initial number of ants was set as 

20, and the pheromone evaporation rate was set at 0.15 (see Chapter 2). All other 

parameters were set as default, producing a maximum of 10 binding poses per 

compound. The scoring function employed for the docking experiment was the ChemPLP 

scoring function described in Chapter 2. For each compound, the binding modes were 

ranked according to their score and the best-scored binding mode per compound was 

kept for further study.  

 

6.2.4: Molecular Dynamics simulations 

Following molecular docking, the 2300 protein-ligand complexes were scored using the 

MM/GBSA method.196,211,214 To carry out the free energy rescoring campaign, it was 

necessary to run molecular dynamics simulations. We initially performed short implicit 

solvent MD simulations and coupled them to MM/GBSA binding free energy calculations 

to perform a fast free-energy rescoring of the complexes obtained by molecular docking. 

A subset of complexes from the 2300 investigated by molecular docking was prioritized 

based on the ranking from the implicit solvent MM/GBSA calculations. The 60 top-ranked 

complexes were then simulated in explicit solvent for a longer period of time and an 

additional simulation of each of the ligands in solution was also carried out. The 

simulations of the bound ligand, extracted from the complex simulation, and the 

unbound ligand in solution were used to compute the ligand configurational entropy loss 

upon binding.218 The simulation of the ligand unbound in explicit solvent was carried out 

because it is to estimate the ligand absolute entropy in solution.  

 

6.2.4.1: Molecular Dynamics simulations: Implicit solvent 

 

Implicit solvent MD simulations were carried using the FF14SB368 and the GAFF2 

forcefields in the Amber18 simulation suite118, the implicit solvent Generalized Born 

model 7369 and a solute internal dielectric constant of 4. The radii set used for these 
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simulations was the bondi radii set as suggested in the Amber18 package. For 

electrostatics, an infinite cutoff was employed. For the polar contribution to the solvation 

free energy, the pairwise summation of the effective Born radii calculations were 

truncated to atom pairs at a maximum distance of 15Å for calculation efficiency. Partial 

atomic charges were computed using the RESP method171, through Gaussian09172 at the 

HF/6-31G* level of theory. Parameters for ADP were extracted from Meagher et al.370, 

OPLS206, Veenstra371, Weiner et al.372 and Cornell et al.373 whereas parameter for Mg2+ 

were obtained from Allner et al.374 Before carrying out MD simulations, each system was 

energy minimized in implicit solvent for 1000 cycles with an energy convergence criterion 

of 1.0x10-4 kcal/mol-Å. Then, implicit solvent MD simulations were carried out for 1ns 

using the Langevin thermostat243, to set the temperature at 298.15K, with a collision 

frequency of 1 ps-1 and an integration timestep of 2fs. The SHAKE algorithm was used to 

constrain covalent bonds between heavy atoms and hydrogen atoms. Harmonic 

restraints with a force constant of 10 kcal/mol-Å2 were enforced on the backbone atoms 

of the protein. The long-rage electrostatic interactions were treated using the PME 

method. Molecular snapshots were collected every 2ps, for a total of 500 molecular 

snapshots.  

 

6.2.4.2: Molecular Dynamics simulations: Explicit solvent 

 

Starting from the structures produced by molecular docking experiments, the 

prioritized subset of protein-ligand complexes were embedded in octahedral TIP3P173 

water box extending 14Å from the edge of the solute molecule for a total of about 190K 

atoms. Sodium and chloride ions were added to the simulation box to ensure net charge 

neutrality and to set the salt concentration to 0.15M so that physiological conditions 

were reproduced Protein, ligand and co-factor parameters were obtained as described in 

Section 6.2.4.1. Before running the simulation the systems were subjected to three cycles 

of energy minimization, each comprising 1000 steps of steepest descent.133 Then, the full 

system was energy minimized for 5000 steps using a combination of steepest descent 

and conjugate descent algorithms.133 The biomolecular systems were then heated gently 

to 298.15K over 5ns in the NVT ensemble using Langevin Dynamics243 and an integration 

time step of 2 fs. The SHAKE algorithm240 was used to constrain all heavy atom-hydrogen 

covalent bonds and the PME scheme was used to treat long-range electrostatics.237 The 

system was then equilibrated in the NPT ensemble, using the Monte Carlo barostat223 as 

implemented in the Amber18 software suite for pressure control and the Langevin 

thermostat243 for temperature control. Equilibration and production runs were carried 

out at 1 atm pressure and 298.15K, the former running for 5ns and the latter for 100ns 

with an integration timestep of 2 fs and employing the pmemd.cuda code. Molecular 
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snapshots were collected every 2ps, in a total of 50000 snapshots. For the MM/GBSA 

calculations, a frameskip of 5 was used, processing 10000 equally spaced snapshots. 

Simulations of the unbound ligands in explicit solvent were carried out using the same 

setup as the protein-ligand complex simulations, running for 400ns and yielding a total of 

200000 molecular snapshots.  

 

6.2.5: Binding Free Energy calculations 

To prioritize compounds for experimental testing, the trajectories arising from implicit 

and explicit solvent MD simulations were post-processed and used in end-point binding 

free energy calculations through the MM/GBSA method.196,201 The MM/GBSA 

calculations were carried out as implemented in the MMPBSA.py267 tool from 

AmberTools18118 using the 1-average approach.201,229 In this study, the potential energy 

of each species was evaluated using the Amber forcefield. The polar contribution is 

related to the interactions established by the particles due to their charges and was 

evaluated using the GB model of Simmerling et al.369 with bondi radii. The solute internal 

dielectric constant was set as 4 and the external dielectric constant was set at 80. The 

non-polar contribution, which should account for both the free energy cost of making a 

cavity in the solvent and the free energy gain in filling the cavity with electron density due 

to the dispersive interactions between solute and solvent, was evaluated from the 

Solvent Accessible Surface (SAS) computed using the LCPO algorithm.285 The entropic 

terms, which are usually accessed in the limit of the RRHO approximation115,225,229 by 

Normal Mode Analysis262,263 or Quasi-Harmonic Analysis261,296,317, were initially neglected. 

However, the ligands’ configurational entropy loss upon binding was included in the 

MM/GBSA calculations for the prioritized subset of complexes simulated in explicit 

solvent. This entropic term was computed by QHMB (see Chapter 5).218 

 

6.2.6: Experimental ATPase activity inhibition assay 

The experimental assays were carried out using the method described by De La Cruz 

and Ostap for measuring the actin-activated Mg2+-ATPase activity of myosin.375 In short, 

the enzyme Pyruvate Kinase (PK) synthesizes ATP from the ADP and Pi released during 

the ATPase cycle of actomyosin while phosphoenol pyruvate (PEP) is transformed into 

pyruvate. Pyruvate is then used as a substrate for lactate dehydrogenase (LDH) while 

NADH is oxidized to NAD+ by LDH. From the reaction chain, one NADH molecule is 

consumed per ATP regenerated.375 Since NADH absorbs light at 340 nm and NAD+ does 

not, changes in NADH concentration are measurable through absorbance-based 

experiments.375 By carrying this assay over time, the change in absorbance, and thus 
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NADH consumption, in the presence of SMM2 and actin is obtained and then fit to a linear 

function.375 The slope of the fit provides the steady-state ATPase activity of myosin.375 If 

SMM2 is inhibited, NADH oxidation is slowed down due to the lack of ADP as ATP 

hydrolysis is prevented. Thus, the slope of the reaction (A340/s) is less inclined than in 

the case of uninhibited myosin, where NADH consumption is faster.375  

For the assays, 5 mg of each compound was diluted in 100,3 μL of DMSO. Following, 6 

serial dilutions of 10 μL were carried out. An activity mix was prepared containing 918,4 

μL of KMg50 buffer, 8 μL of 100 mM NADH, 7,50 μL of 4,000 U/ml LDH, 12,50 μL of 10,000 

U/ml PK, 6,25 μL of 100 mM PEP and 173,41 μL actin (25 μM) for a total volume of 1161 

μL. The assay is conducted as follows: (1) in a 384-well plate, add 38.7 μL of activity mix 

to three wells (controls). (2) Then, 31.4 μL of myosin (3.5 μM) is added to the activity 

cocktail and mixed. (3) Add 38.7 μL of the SMM2-containing cocktail mix to the other 

wells (7x3 wells). (4) Using a robot, add 0.5 μL of compound to the activity cocktail and 

mix. After a 10 minute wait, add 0.8 μL of 100 mM buffered ATP and mix again. The A340 

decays are measured at 25°C. Actin was purified from rabbit skeletal muscle as described 

in Sirigu et al.350 The extinction coefficient of NADH (ε340 = 6220 M−1 cm−1) is used to 

convert the absorbance at 340 nm to an ADP concentration.375 

  

 

6.3: Results and Discussion 

6.3.1: Structural analysis of the CK-571 binding pocket 

The availability of a crystallographic structure of the SMM2/CK-571 complex is a 

landmark achievement for the development of novel therapeutic avenues targeting 

SMM2. In particular, this structure shows a previously unknown allosteric pocket where 

ligand binding inhibits SMM2 activity by stabilizing an intermediate state with low actin 

affinity and trapping the myosin motor domain. The co-crystal inhibitor was found to have 

an IC50 of 12 nM, making it a highly potent SMM2 inhibitor. More recently, the crystal 

structures of two other inhibitors from cytokinetics were solved (unpublished data) in 

complex with SMM2. Interestingly, these compounds target the same allosteric pocket in 

the same state, and have very similar binding modes to CK571. For these ligands, known 

as CK-144 and CK-903, no IC50 value is available but they are inhibitors of SMM2. The 

inhibitor CK-571 binds to SMM2 by inserting a hydrophobic moiety in either side of the 

SH1 helix, with the isoquinoline carbamate portion (Pocket 1; P1) held fixed between the 

relay helix and the SH1 helix, a hydrophobic moiety on the other side (Pocket 2; P2) and 

an N-terminal extending tail (Pocket 3; P3) (Figure 6.4A and 4B). As noted by Sirigu et 

al.350, CK-571 does not establish any direct hydrogen bonds with protein residues and its 
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interactions are mostly hydrophobic, relying on a network of van der Waals contacts to 

interact with SMM2 (Figure 6.4A and 4B). By binding to the SMM2 allosteric pocket in this 

pincer-like manner, CK-571 prevents the repriming of the lever arm and arrests the cycle 

in this intermediate state between the rigor and the pre-powerstroke states (Figure 6.4B). 

  

 

  

  

  

  

   

   

   

 

 

 

 

  

 

 

 

Figure 6.4 - Three-dimensional view of the SMM2/inhibitor systems. The N-terminal domain is shown in 

dark green, the Relay helix is shown in red, the SH1 helix is highlighted in cyan and the three β-sheets of 

the converter domain are shown in purple. A) Structure of the SMM/CK-571 biomolecular complex. In dark 

blue is CK-571, ADP is shown in orange and the magnesium ion is shown as a green sphere. B) Zoom into 

the binding site of CK-571, showing the residues lining the binding site as sticks and colored according to 

atom type. The top-view allows one to see the carbamate moiety of CK-571 inserted between the Relay 

and the SH1 helix and the chloro-fluoro-phenyl moiety of CK-571 inserted on the other side of the SH1 

helix. It also highlights the presence of a polar tail extending towards the N-terminal domain. C) 

Superimposition of the three SMM2 cytokinetics inhibitors in the binding site. A mesh representation of 

the CK-571 volume is shown in blue, the molecular structure of CK-144 is shown in yellow and the molecular 

structure of CK-903 is shown in light green. D) Illustrative scheme of the binding mode of the CK inhibitors 

in the SMM2 allosteric pocket. 

 

The binding mode of CK-571 is shared by the other two cytokinetics inhibitors, where 

the SH1 helix is surrounded from either side and a polar tail extends outward into the N-

terminal domain. However, CK-903 envelops the SH1 helix without completely exploring 

the available volume on the left side of the SH1 helix instead of inserting its chemical 

groups deeply in P2 (Figure 6.4C). For CK-144, the binding mode is similar to that of CK-

571, inserting a moiety in P2 and another large, hydrophobic moiety in P1, between the 

SH1 and the Relay helix. Another important point to be raised is that the interactions 
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between CK-144 and SMM2 are mostly nonpolar and, similarly to CK-571, it appears that 

CK-144 does not establish any direct hydrogen bonds with SMM2. From Figure 6.4A we 

can see that the allosteric binding site of CK-571 is far away from the nucleotide binding 

site and from the ATP binding domain. However, by limiting the movement of the Relay 

helix, it prevents ATP hydrolysis and arrests the cycle at the beginning of the 

conformational transition towards the pre-powerstroke state. It is apparent that while 

the pocket does not appear to be fully filled by the CK ligands, the CKs fill the large 

majority of the pocket, establishing many van der Waals contacts, and thus it comes as 

no surprise that the nonpolar interactions seem to be the main driving force stabilizing 

CKs binding. Further, the fact that all three ligands bind in the pocket with very similar 

binding modes implies that a particular ligand geometry is necessary to inhibit SMM2 

activity by targeting this allosteric pocket. The information from the crystal structure 

highlights that potential binders must have two hydrophobic moieties to envelop the SH1 

helix by either side and an outward extending polar tail towards the N-terminal domain 

for appropriate binding in the pocket, in a Y shape as shown in Figure 6.4D. 

 

6.3.2: Results from a previous VS campaign on SMM2 

A prospective VS campaign on SMM2 was carried out in the past, using ChemFlow to 

target the SMM2-CK571 allosteric pocket. This campaign was performed on the CN 

database by our group in 2018. Two free energy rescoring steps were performed to refine 

the compound ranking obtained by molecular docking. Because implicit solvent MD 

simulations are significantly cheaper than explicit solvent ones, binding free energy 

calculations using MM/GBSA were first performed on configurational ensembles 

obtained from implicit solvent MD simulations. A subset of compounds was then 

prioritized and later simulated in explicit solvent. Again, binding free energy calculations 

were carried out using MM/GBSA for this subset and some compounds were acquired for 

experimental testing by collaborators in the Houdusse group at Institut Curie, Paris. The 

predicted binding free energies for this subset, along with the predictions of the known 

inhibitors of SMM2, are shown in Figure 6.5. In both instances where MM/GBSA was 

employed, the GB model used to compute the polar contribution to the solvation free 

energy was the one of Onufriev, Bashford and Case (OBC, GB2), which corrects the 

Hawkins, Cranmer and Thrular (HCT, GB1) GB model by rescaling the effective Born radii 

and accounting for the interstitial spaces between atom spheres.201 The solute internal 

dielectric constant was set to 1 (permittivity of vacuum), the external dielectric constant 

set to 78.5, the non-polar contribution to the solvation free energy was evaluated from 

the Solvent Accessible Surface (SAS) computed using the LCPO algorithm and no entropy 

terms were considered in the final ranking of CN compounds. 
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Figure 6.5 – Predicted binding free energies for the subset of prioritized compounds from the previous VS 

campaign targeting SMM2.  

 
From this screening campaign it emerges that CK-571 was not predicted as the most 

affine of the CK compounds. Furthermore, several compounds were predicted as better 

than CK-571. It was ranked 11th in the final ranking of this screening behind CK-903, which 

is another SMM2 inhibitor, and nine CN compounds. From these nine compounds, seven 

had MM/GBSA scores which were significantly better than that of CK-571 (∆∆G° > -2.5 

kcal/mol), which is surprising because CK-571 is a 12 nM inhibitor of SMM2. Furthermore, 

the prediction for the other inhibitor, CK-144, is rather poor when compared to all the 

other compounds shown. This was unexpected, because CK-144 is known to inhibit 

SMM2 activity and is the one whose predicted binding affinity is the highest (more 

positive). The above results may indicate the presence of some errors in the calculations. 

Nonetheless, these compounds were acquired and experimentally tested by 

collaborators at Institut Curie to assess their ability to decrease SMM2 ATPase activity. 

Many of these compounds were promising when evaluating their binding modes on the 

computer screen. However, the experiments showed that none of the prioritized 

compounds was active (Figure 6.6).  
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Figure 6.6 – Experimental measurements of ATPase activity. Assays were carried out on CK-571 (positive 

control), DMSO (negative control) and the prioritized compounds from CN. The assay monitors absorbance 

changes at 340 nanometers (A340), which are coupled to NADH oxidation through a series of coupled 

enzymatic reactions. The dashed lines are given by the A340 measurements on the negative control 

experiment, which is carried out using DMSO and no inhibitor. 

 

From the figure above (Figure 6.6) none of the tested compounds from the CN library 

shows a significant decrease in SMM2 ATPase activity, which means that ATP hydrolysis 

is occurring normally in the presence of these compounds (see Chapter 6.2.6). 

Considering the error bars of the slopes of the fit applied to the A340 decays (A340/s), 

no CN compound inhibits SMM2 activity as the values of slopes for those experiments fall 

within the range obtained for the negative control experiment using DMSO. In the case 

of CK-571, which binds to SMM2 and arrests the myosin motor cycle, there is a significant 

decrease in the slope of the fit, meaning that ATP hydrolysis is being hampered. The 

decrease in the slope indicates a slower ATP hydrolysis rate because SMM2 is unable to 

continue with the force generating cycle. Obtaining a ligand exhibiting the effect 

observed with CK-571 was the objective of the VS campaign but such was not possible. 

While these results were disappointing, because they show that the VS approach was not 

able to find any active compounds, they allowed to reflect on the MM/GBSA setup 

employed. Upon inspecting the parameters used in the calculations, three possible terms 

that could be optimized in a future campaign were found: the solute internal dielectric 

constant (ε), the GB model and inclusion of entropic terms within the MM/GBSA 

calculations. The final aspect comes from the realization that most of the best ranked 

ligands were large and/or flexible molecules (Figure 6.7). Restraining large and flexible 

ligands in a binding site entails an entropic cost which, when not paid, leads to biased 

MM/GBSA calculations where bigger ligands are predicted as better binders. Thus, the 

likelihood of finding false positives within the subset of prioritized compounds increases 

when entropic terms are disregarded. 
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Figure 6.7 – Molecular structures of ligands with the best predicted binding affinities from the VS campaign 

of 2018, obtained using MarvinSketch from ChemAxon. A) AB-000014827; B) AB-00046961; C) AB-

00046158; D) AB-00046973.  

 

6.3.3: Calibration of MM/GBSA setup for the VS campaign on SMM2 

Before undertaking a new VS campaign, the VS workflow required tuning to try and 

prevent a second unsuccessful round of experiments. The parameters for the MM/GBSA 

calculations were calibrated based on reference data, where the dataset was composed 

of the three known inhibitors and the subset of prioritized compounds found to be 

inactive in the previous VS campaign. The MM/GBSA binding free energies obtained from 

explicit solvent MD simulations for this dataset were used as reference data and 

correlated with MM/GBSA results obtained from configurational ensembles sampled by 

implicit solvent MD. The effect of ε and the GB model on the correlation between 

predictions from implicit and explicit solvent MD ensembles was queried simultaneously. 

The MM/GBSA setup selected for the new VS campaign was the one which exhibited the 

highest correlation between these calculations (Table 6.1). Correlation was assessed by 

evaluating the squared Pearson’s correlation coefficient (R2) and the Spearman 

correlation of ranks (⍴). 
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Table 6.1 - Benchmark calculations carried out on the dataset of prioritized compounds from the previous 

screening. In red is highlighted the setup used in the first screening whereas in green is highlighted the 

setup for future studies. 

 

GB 
Model 

R22  
(ε = 1) 

⍴  
(ε = 1) 

R2  
(ε = 2) 

⍴  
(ε = 2) 

R2   
(ε = 4) 

⍴  
(ε = 4) 

R2   
(ε = 10) 

⍴  
(ε = 10) 

GB1 0.54 0.62 0.63 0.75 0.64 0.75 0.64 0.74 

GB2 0.37 0.45 0.59 0.69 0.64 0.74 0.64 0.76 

GB5 0.29 0.43 0.55 0.65 0.62 0.76 0.64 0.75 

GB7 0.35 0.47 0.59 0.68 0.64 0.76 0.64 0.76 

GB8 0.07 0.40 0.48 0.65 0.60 0.76 0.63 0.76 

 

The benchmark shows that the setup used in the previous screening (GB = 2, ε = 1) 

exhibited poor correlation between calculations carried on implicit and explicit solvent 

MD simulation data (R2 = 0.37, ⍴ = 0.45). The implicit solvent MM/GBSA calculations 

configure a filtering step in the VS workflow with the aim of selecting a subset of 

compounds to be investigated with longer and thus more expensive explicit solvent MD 

simulations. Thus, the fact that the correlation is low decreases our confidence in the 

filtering step and raises the question of whether the prioritized compound subset is 

meaningful. The final aim of this benchmark was to find a MM/GBSA setup with the 

highest possible agreement between the calculations ran on the two types of simulations, 

as it would mean that the free energy rescoring steps would be consistent with each 

other. Higher degree of correlation was always obtained when ε was set to either 4 or 

10, as shown in Table 6.1.  

The solute internal dielectric constant is fundamental to compute the electrostatic 

terms and the polar contribution to the solvation free energy, meaning that fine tuning 

of this parameter is critical. In the calculations which set ε to 4 or 10, some small 

variations in the predictability of the MM/GBSA calculations were observed when 

employing different GB models. Considering the Spearman coefficient and the squared 

Pearson’s coefficient, it was found that GB = 7 and ε = 4 or 10 were the most predictive 

combinations. By tuning both the GB model and ε simultaneously, we improved the 

correlation between MM/GBSA calculations carried out in implicit and explicit solvent, 

increasing from R2 = 0.37 to 0.64 and from ⍴ = 0.45 to 0.76. To select whether to set ε to 

4 or to 10, we evaluated the degree of separation between CK-571 and similar 

compounds which are known actives (CK-144 and CK-903) and inactives from the 

previous VS campaign. In particular, the setup which was kept was the one which better 

separated actives from inactives (Figure 6.8). 
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Figure 6.8 - Results arising from the SMM2-ligand complex MM/GBSA calculations using different dielectric 

constants and the GB model 7369 on the benchmark dataset. Compound AB-00014827 is still predicted as 

better than all CKs but CK903, as previously observed, however a more accurate ranking of the ligands, in 

line with what was observed experimentally, is obtained when the polarizability effects are implicitly 

accounted for through an increase in the dielectric constant. These results are obtained from the explicit 

solvent MD simulations. 
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It emerges from the data that using ε = 4 or 10 improves separation between the actives 

and the inactives with respect to ε = 1 or 2, with only one compound better predicted 

than two of the actives and no compound predicted better than all three CKs. However, 

no significant differences are observed between the two calculation setups. Thus, ε = 4 

was selected since it is a value usually used according to the literature for protein-ligand 

systems.201,229 Taken together, the data indicates that in the first screening the setup used 

for MM/GBSA free energy rescoring was suboptimal and thus produced many false 

positives. Introducing a higher dielectric constant and optimizing the GB model used to 

compute the polar contribution to the solvation free energy appears to address this issue. 

The optimized setup allows differentiation between the known active compounds and 

the inactives, which previously was not possible. To address the issue of the bias due to 

the neglect of entropic contributions, a correction term accounting for the ligand 

configurational entropy loss upon binding using QHMB218 (see Chapter 5) was added in 

the final rescoring step of the newest VS campaign (Chapter 6.2.2). By introducing this 

ligand-dependent correction, the bigger and more flexible ligands are expected to be 

more penalized than small and rigid compounds.218 Thus, the bias towards more flexible 

ligands found in the initial VS campaign is also expected to be accounted for. 

 

6.3.4: Virtual Screening campaign 

The most recent virtual screening campaign carried out implements an original docking 

plus free-energy rescoring approach. The methodology proposed to rescore molecular 

docking binding poses using end-point binding free energy calculations, which rely on 

configurational sampling of the chemical species by all-atom Molecular Dynamics. An 

original entropy correction based on a multi-basin decomposition of the ligand 

configurational space in the bound and unbound states was also added to correct the 

final MM/GBSA binding free energy estimates. We expect to increase the accuracy of the 

ranking obtained from binding-affinity predictions and reduce the false-positive rate by 

including our entropy correction. This strategy is fully automated and implemented by 

the ChemFlow software (Gomes et al., in progress).  

The prepared library was docked to the allosteric pocket of CK-571 in the SMM2 

structure through PLANTS177, and the best scored binding mode per compound was 

retained. The 2300 complexes were then simulated in implicit solvent for 1 ns, using the 

Generalized Born model 7369 and an solute internal dielectric constant of 4 (see Chapter 

6.3.2 and 6.3.3).   



    

142 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 – Binding free energies obtained for the top 20 compounds of the CN at various steps of the 

screening campaign on the Chimiotèque National. The red bars refer to the predicted binding free energies 
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for compounds of the Chimiotèque and green bars correspond to the predicted binding free energies of 

the reference CK compounds. The dashed line highlights the predicted binding free energy of CK-571, which 

we use as a reference. A) Top 20 compounds obtained following the MM/GBSA calculations using implicit 

solvent trajectories. B) Top 20 compounds obtained following the MM/GBSA calculations using explicit 

solvent trajectories. C) Top 20 compounds obtained following the MM/GBSA calculations using explicit 

solvent trajectories and including the QHMB entropy correction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 - Virtual screening results of the campaign against Smooth Muscle Myosin II (SMM2). The 

predicted affinity of experimentally inactive compounds prioritized from the Chimiotèque Nationale is 

shown in red. The predicted affinity of three known inhibitors from Cytokinetics is shown in green. 

Compounds with detectable activity in in-vitro tests (see below) or hits are shown in blue. 

 

Throughout the simulations in implicit solvent, the backbone of the protein was 

restrained with a moderately high force constant (See Chapter 6.2) to maintain the bound 

conformation of the complex. The MM/GBSA method196,201,211 was used to compute the 

binding free energies of the protein-ligand complexes simulated in implicit solvent 

employing the same GB model and solute internal dielectric constant that were used to 

run the simulation. A subset containing the top ranked 60 compounds from the 

calculations carried out at the implicit solvent step was selected for further studies using 

explicit solvent MD. At the implicit solvent stage, only one ligand, AB-00058265, was 

predicted with a better binding affinity than CK-571. Following 100ns explicit solvent MD 

simulations, the binding free energy of the compounds was computed using MM/GBSA 

and the compounds were ranked again. Some re-ranking was observed, but in general 

the implicit and the explicit solvent results were well correlated (Figure 6.9A and 9B). 

However, it was noticed that the best ranked compounds were in most cases big and 

flexible ligands, which is a known artifact of MM/GBSA calculations when entropic terms 

are neglected, as was the case of our calculations to this point. Thus, these calculations 
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were complemented using the QHMB correction218 to account for the entropic cost of 

restraining the ligand within the binding site, computed by taking the difference between 

the QHMB entropy of the ligand in the bound state, extracting the ligand coordinates 

from the complex simulation, and in the unbound state in solution.218 The emerging 

protocol is as follow: (1) use docking to produce initial coordinates of the complex; (2) 

use implicit-solvent MD for a fast ranking and filtering; (3) complete by explicit-solvent 

MD and QHMB for the final ranking.  
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Figure 6.11 – Results for the SMM2 ATPase inhibition assay carried out at Institut Curie. In the y axis is 

reported the relative SMM2 ATPase activity in the presence of DMSO, CK-571 or each ligand from the CN 

that was acquired at 190 µM. The first column corresponds to the ATPase activity in absence of myosin. 

The blue arrow highlights compound AB-00030952, which is the most active compound. However, this 

compound has a very large error bar. Three compounds are shown with a blue circle around, corresponding 

to compounds whose activity was assessed at very high concentration (1.9 mM). 

 

Following QHMB correction218, a significant re-ranking of the compounds was 

observed. We found several compounds with predicted binding free energies similar to 

that of CK-571 (Figure 6.9B and 9C). These compounds were neither the largest nor the 

most flexible compounds in the CN library and exhibit different chemotypes from CK 

compounds (Table 6.2), which is attributable to the ligand-dependent character of the 

QHMB correction. In particular, highly flexible ligands were penalized more strongly than 

more rigid ligands by QHMB. As an example, compound AB-00048113 was ranked 7th 

before QHMB correction. After the correction was applied, it became the top ranked 

compound whereas the compound which was ranked 8th (AB-00058265) before QHMB 

correction is now ranked 21st.  The results in Figure 6.9 illustrate the effect of moving 

from implicit solvent to explicit solvent MD simulations, as well as the effect of including 

the QHMB correction in MM/GBSA binding free energy predictions. Further, CK-571 and 

CK-903 were predicted with similar binding free energies before the correction, while CK-

144 is less affine. Following QHMB correction, CK-903 was heavily penalized and became 

the worst among the three inhibitors. Among the top-ranked compounds, three are 

predicted to have a binding affinity stronger than CK571, and about 20 compounds 

present predicted affinities comparable to the known SMM2 inhibitors from Cytokinetics. 
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From the total of ~60 compounds, 26 have been acquired and sent for experimental 

testing. The experimental results were collected by our collaborators in Institut Curie at 

190 µM concentration in the presence of 2 µM SMM2 and 25 µM or 40 µM actin using 

an ATPase inhibition assay (Figure 6.11).  

By setting as zero of inhibition the signal collected in the presence of DMSO, 

corresponding to the control experiment, the data show 8 compounds with detectable 

inhibition. The chemical structures of these compounds along with the % inhibition at 

190 µM are given in Table 6.2. Most of these compounds have mild but detectable activity 

(IC50 >100 µM) and are unique chemical entities. Interestingly and despite a large error 

bar, AB-00030952 shows 85% of SMM2 inhibition at 190 µM. Considering these 

compounds as hits, the hit rate of the screening protocol is approximately 30% (8 

actives/26 tested). These compounds are mild inhibitors and thus it could be argued that 

the activity captured is so mild that they should not be considered as hit at all. However, 

as reported in the review by Hevener et al.,52 the threshold used to define active or 

inactive compounds in HTS campaigns varies within the literature, with several 

researchers considering even compounds with a very high IC50 (i.e IC50 > 400 μM) as hits.52 

In particular, Hevener et al. detailed at the time that 56 studies used an activity cut-off 

between 100-500 μM and 25 studies used a criterion above 500 μM. Their justification 

for defining as hits such low activity compounds is to enrich the hit library in terms of 

structural diversity.52 Among the compounds with detectable activity in vitro, 5 out 8 are 

in the top-10 predictions; see blue bars in Figure 6.10. Tables summarizing the results 

obtained for the subset of the top-60 compounds and their physicochemical properties 

are given in Annexes S6.2 and S6.3. 

 

Table 6.2. 2D chemical structures and % of inhibition of the identified hits by the Houdusse group. 

The ranking of compounds is given with respect to the prioritized subset of virtually screened 

compounds, not only to those tested experimentally. 

 

CN 

Number 
Structure 

Ranking SMM2 

Inhibition 

@190µM 

AB-

00030952 

 

5 
85% 
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AB-

00038206 

 

36 35% 

AB-

00000226 

 

38 20% 

AB-

00034277 

 

6 15% 

AB-

00033398 

 

7 10% 

AB-

00048113 

 

 

1 10% 
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AB-

00014457 

 

12 10% 

AB-

00046578 

 

 

9 

65% 

(@1.9 

mM) 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 6.12 – Binding mode of some of the hit compounds found by virtual screening of the Chmiotèque 
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National du CNRS. The hydrogen bonds established between the ligands (bright green) and SMM2 are 

shown in yellow alongside the residue name and number. A) Binding mode of AB-00033398, ranked 6th by 

our VS approach. B) Binding mode of AB-0000226, ranked 37th by our VS approach. C) Binding mode of AB-

38206, ranked 40th by our VS approach. D) Binding mode of AB-00030952, the most active compound, in 

experimental assays ranked 5th by out VS approach. 

 

6.3.5: Structural analysis of the predicted hit compounds 

Following the in silico screening campaign, eight new SMM2 inhibitors were found. 

While these show mild activity, they can be useful to understand how to better explore 

the binding pocket and how plastic and adaptable this pocket is. Comparison of the 

binding mode of the CK compounds to the hit compounds shows that P1 is only partially 

occupied by the CKs and could be better filled (Figures 6.4 and 6.12). The binding mode 

of some of the hits, notably AB-00033398, explores P1 by a inserting a 

piperazine+aromatic terminus deep in the pocket between the SH1 and the Relay helices 

(Figure 6.12A). This ligand also establishes a direct hydrogen bond with the protein in 

leucine 87, a residue which is part of a flexible loop. However, since the loop is flexible 

this hydrogen bond is not maintained throughout the simulation and thus the magnitude 

of its contribution is likely negligible. Other compounds, like AB-00000226 (Figure 6.12B), 

explore both P1 and P2 in a shallower manner. However, AB-00000226 also explores 

longitudinally the crevice along the SH1 and Relay helices, inserting itself between them 

and possibly preventing their movements this way. Additionally, by exploring this crevice 

extending downward from P1, effectively occupying a fourth pocket (P4), it is able to 

maintain two hydrogen bonds with isoleucine 684 and glutamine 490. We also find that 

P2 could also be filled better. In particular, it looks like it can accommodate larger and 

bulkier groups, such as in the binding mode of AB-00038206 (Figure 6.12C). In addition, 

AB-00038206 further establishes two hydrogen bond interactions, with leucine 87 and 

proline 690. In similar fashion with AB-00033398 (Figure 6.12D), the hydrogen bond with 

leucine 87 may not be so relevant due to the intrinsic flexibility of the loop portion. 

However, the presence of the hydrogen bond at proline 690 is likely to contribute to the 

stabilization of the binding mode.       

In general, the binding modes of the hit compounds seem to suggest that it is possible 

to explore deeper both P1 and P2. However, as shown by the CK compounds, occupying 

simultaneously both pockets seems to be critical for potent inhibition of SMM2 and it is 

not clear how deep these pockets should be filled in order to improve the potency of 

compounds. For most of the hits, only P1 or P2 are filled completely while the other 

pocket is left mostly unoccupied. By analyzing the binding mode of the mild hit 

compounds, we have also found that along the z-axis in P1 another pocket can be found, 

named P4. This pocket is explored by some of the hit compounds discovered. Finally, 
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comparing the binding mode of AB-00030952, the most active compound, and CK-571 

highlights how crucial it is that P1 and P2 be both explored deeply and simultaneously. 

Both of these compounds explore the two pockets around the SH1 helix, which is central 

to arrest the conformational transition to the pre-powerstroke state. We find that the 

predicted binding mode of AB-00030952 explores deeply both P1 and P2, which could be 

the reason why it is much more active than the other hits where only one of these two 

pockets is completely filled. However, AB-00030952 does not have an N-terminal 

extending polar tail, which is characteristic of the CK compounds. There needs to be 

caution when inferring on how to improve binding potency from mildly active 

compounds. Nonetheless, comparison between the predicted binding mode of the hit 

compounds and the known inhibitors illustrates that the allosteric pocket exhibits a 

degree of plasticity and can accommodate chemical scaffolds which are structurally 

different from the CKs. Thus, it seems that the pocket can be further explored en route 

to new SMM2 modulators with therapeutic goals.  

 

 

6.4: Conclusions 

In this study, the SMM2/CK-571 allosteric pocket was described and shown to be 

targeted by two other inhibitors sharing the CK-571 binding mode (Figure 6.4). The 

structures of these ligands within the allosteric pocket were obtained from a 

collaboration with the Houdusse group in Institut Curie. Together with the high-quality 

SMM2/CK-571 crystal structure (PDB 5M05), the ligands provide the precise location of 

the allosteric pocket of interest and highlight the existence of three main sub-pockets. 

Two of the sub-pockets are fundamental for SMM2 inhibition and are located on either 

side of the SH1 helix. The third sub-pocket is in fact occupied by a polar tail which extends 

towards the SMM2 N-terminal domain. A previous VS campaign carried out in our group 

towards the SMM2/CK-571 allosteric pocket highlighted issues in the free energy 

rescoring step. In particular, it was hypothesized that the MM/GBSA calculation setup 

applied was suboptimal as none of the prioritized compounds which were experimentally 

tested was able to affect significantly SMM2 ATPase activity. As such, all prioritized 

compounds turned out to be false positives. After verifying the MM/GBSA calculation 

setup, it was found that some parameters could be optimized. Notably, the solute 

internal dielectric constant and the GB model could be tuned and the lack of entropic 

terms had to be addressed. Using the three SMM2 inhibitors and the inactive compounds 

from the 2018 VS campaign as a reference dataset, benchmark calculations were carried 

out to optimize the solute internal dielectric constant and the GB model for future usage 

in SMM2 VS campaigns. To account for the ligands configurational entropy loss upon 
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binding, an entropic correction was introduced by QHMB calculations. Thus, in the 2021 

VS campaign this allosteric site was targeted by means of a virtual screening campaign 

which combined molecular docking with an SMM2-tuned free energy rescoring step 

implemented by ChemFlow, along with an original entropy contribution to the binding 

free energy. This screening setup allowed the identification of several hits with mild but 

detectable inhibition in biochemical assays measuring the degree of inhibition of the 

ATPase function of SMM2. Although only mildly active, these hits provide chemically 

diverse molecular scaffolds that are privileged starting points for chemical optimization 

by both in silico methodologies and/or medicinal chemistry. Following experimental 

testing, a hit rate of 30% was obtained on a very difficult target partly due to the fact that 

inclusion of a ligand entropy correction removes the typical bias towards larger 

compounds and decreases the false positive rate. Although the large majority of the hits 

found are mildly active, there have been reports in the literature of hit compounds whose 

activity was around 500 μM or beyond.52 Analysis of the binding mode of the hits found 

by our in silico approach highlights that the binding site volume appears to be extensively 

explored by CKs but not completely filled. It also highlights the existence of a fourth 

binding pocket, here P4, which is not exploited by any the known inhibitors from 

Cytokinetics. The modeling results thus suggest that myosin’s flexibility in this region of 

the motor domain could be better exploited for the design of inhibitors by attempting to 

fill this volume with bulkier groups in P2, a deeper exploration of P1 and occupying the 

crevice between the SH1 and Relay helices which configures P4. The original combination 

of X-ray crystallography, accurate in silico screening, and rapid in vitro testing which was 

carried out in this study emerges as an effective strategy for the identification of hits for 

the allosteric regulation of highly flexible and functional proteins such as myosin motors. 
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7. Concluding Remarks 

 

Humanity has long tried to exploit the therapeutic properties of plants and other 

organisms to treat illnesses.2,10 With advances in Chemistry and Medicine, the 

development of compounds which are both potent and specific towards a given target 

became possible. The workflow through which these discoveries are produced is called 

the drug discovery pipeline. It is composed of many phases, such as hit identification, 

lead-optimization, pre-clinical and clinical trials and finally approval for 

commercialization.7,111,150,159,376 The traditional drug discovery pipeline relies on HTS for 

hit identification.15 Hit optimization is then carried out by introducing chemical 

modifications based on chemical intuition, compound synthesis and experimental testing 

in an iterative cycle until potency, ADMET properties and intellectual property issues have 

been resolved. However, the average cost of discovering and leading a compound until 

the market is around 2 billion dollars and requires on average 15 years.59  

The introduction of computational tools in drug discovery pipelines has grown over the 

years84,87,90,112,115,197 and has the potential to shorten the time required to put a drug in 

the market and reduce the economic costs of drug discovery. Computational 

methodologies have provided important contributions in the discovery of several 

approved drugs, like in the case of HIV-1 protease inhibitors30,207,377,378 or Captopril94 to 

treat hypertension. Nonetheless, the accurate calculation of protein-ligand binding 

affinities in an efficient manner remains a grand challenge in computational chemistry 

and drug discovery. 

In Chapter 1 we presented the history of drug compounds and drug discovery as a 

whole, with special emphasis on the concept of drug-likeness, its origins and what it 

entails when applied in screening campaigns. The difference between affinity and activity 

was discussed and the gold-standard method for protein-ligand binding affinity 

determinations, ITC, was illustrated.  

In Chapter 2 we discussed some of the contributions introduced by computational 

methodologies when applied to drug discovery campaigns. A description of the steps to 

be carried out in a VS campaign was given, alongside some guidelines on how to carry 

each of them out. We then discussed the theory behind molecular docking and different 

types of scoring functions, which try to estimate the protein-ligand binding affinity in an 

efficient manner by introducing several approximations such as only considering the 

bound complex and near the neglect of entropic terms. Since molecular docking scores 

correlate poorly with experimental binding affinities, compound ranking is sometimes 

refined by a free energy rescoring approach on a subset of the best scored compounds 
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from docking. These calculations often require sampling of the dynamical behavior of the 

protein-ligand complexes either by Monte Carlo or Molecular Dynamics simulations. 

In Chapter 3 we first discussed the theory behind MD simulations and the ingredients 

necessary to carry them out. We then briefly described the rigorous FEP method, which 

is the gold-standard method for binding free energy calculations, and its limitations when 

applied to large systems such as allosteric proteins in VS campaigns. A common 

alternative to the application of FEP is to use end-point methods for free energy 

rescoring. Thus, most of Chapter 3 is devoted to describe different end-point binding free 

energy calculation methods such as the Linear Interaction Energy, the Linear Interaction 

Energy with Continuum Electrostatics and the Molecular Mechanics – Poisson Boltzmann 

Surface Area family of methods. In MM/PBSA the binding free energy is computed from 

configurational sampling of the end-states of the binding reaction and is a sum of three 

terms: a potential energy term in gas-phase, a solvation free energy term and entropy. In 

particular, entropic terms in MM/PBSA are typically assessed through the RRHO 

approximation by NMA or QHA, which are both techniques whose accuracy breaks down 

when considering large and flexible molecules.  

In Chapter 4 we review some of the most well-known methodologies for computing 

single molecule entropies both within and outside of the RRHO approximation. We start 

by laying the ground using statistical mechanics, describing the HO model and its 

quantum-mechanical version. Then, the RRHO approximation is introduced and we 

describe the “mixture of conformers” approach. We then arrive at RRHO-based methods 

for single molecule configurational entropy calculations, where we describe NMA, QHA 

and QHA variants. Both advantages and disadvantages of each method are presented. 

We then continue by describing methods which go beyond the RRHO approximation. This 

Chapter concludes by discussing briefly how to use gas-phase entropy data for method 

benchmarking and how to produce benchmark entropy data in solution through 

computational methods. 

In Chapter 5, we report the development of a novel single-molecule entropy calculation 

method. We first show that this method, named QHMB, achieves quantitative agreement 

with experimental gas-phase entropies from small-molecules in gas-phase (RMSE = 0.36, 

slope = 1.02). We then report the development of an automatic protocol to compute 

absolute ligand entropies by QHMB which is still able to achieve quantitative agreement 

with experimental data (RMSE = 0.6 kcal/mol, slope = 1.01). At the heart of the method, 

the vibrational frequencies are computed based on QHA. Thus, no energy minimization 

is necessary prior to the QHMB calculation. The method is readily extensible to 

calculations in solution because the effect of the solvent molecules is implicitly captured 

on the fluctuations of the solute degrees of freedom during Molecular Dynamics. We 

coupled QHMB to MM/GBSA calculations to account for the ligand configurational 
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entropy loss upon binding and saw the correlation to experimental binding affinities of 

21 protein-ligand complexes improve significantly, by about 10%. On the other hand, 

computing entropic terms based on QHA led to a correlation decrease. Furthermore, we 

observed that the correction was ligand-dependent and stronger for larger and more 

flexible ligands. Considering these results, we thought of devising a VS workflow where 

the final ranking of compounds would be carried out by combining MM/GBSA 

calculations with the QHMB correction.  

In Chapter 6 we described a VS campaign where QHMB is combined with MM/GBSA 

calculations. Within the context of a collaboration with the Houdusse group at Institut 

Curie in Paris, we decided to apply our new VS protocol to the discovery of new inhibitors 

of SMM2. Smooth muscle contractility is implied in pathologies such as asthma360, 

prostatic hyperplasia361 and chronic obstructive pulmonary disease.350 However, there 

exist no approved drug which specifically targets SMM2. Currently, there are three known 

specific inhibitors of SMM2 function but crystallographic structures are not published for 

two of them. For the other, CK-571, the crystal structure (PDB 5M05) shows that CK-571 

binds to an allosteric pocket which opens in a short-lived intermediate state during the 

recovery stroke.350 A VS campaign was carried out on the CN library where the SMM2-

ligand complex 3D structures were obtained by molecular docking on the allosteric 

pocket. Following application of a docking plus free energy rescoring workflow, a subset 

of 26 compounds was selected, acquired and experimentally tested. From the 

experimental assays we found 8 compounds which could inhibit SMM2 activity although 

mildly. Furthermore, 5 out of the 8 compounds were found in the first 10 ranked 

compounds by ChemFlow (Gomes et al., in progress). Considering only the compounds 

tested experimentally, we find 6 active compounds within the top 10 (Figure 6.10). We 

discussed the binding mode of the new hits and also showed that they possess a different 

chemical scaffold from the known inhibitor, which could provide hints into the critical 

interactions ruling the binding towards this pocket. 

To conclude, the work presented in this thesis highlights: (1) The development of a new 

entropy calculation method which is able to reproduce experimental gas-phase entropies 

and can be directly coupled to end-point binding free energy calculations; (2) The usage 

of QHMB to compute the ligands entropy loss upon binding and how it improves the 

agreement between MM/GBSA data and experimental binding affinities; (3) The 

development of an optimized docking plus free energy rescoring workflow where the 

final ranking step is carried out by MM/GBSA coupled to QHMB calculations. Application 

of this workflow selected several mild inhibitors targeting an allosteric pocket in SMM2; 

(4) The establishment of a VS setup for future VS campaigns aiming at the discovery of 

myosin inhibitors.  
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Additional VS campaigns have been carried out using other chemical libraries but are 

not reported here. Nonetheless, we have found additional SMM2 inhibitors from these 

screenings which are now being characterized. Moving forward, we aim at using the 

chemical information contained in the discovered compounds to pursue a lead-

optimization campaign in close collaboration with our collaborators at Institut Curie and 

the group of Dr. Catherine Guillou at the Institut de Chimie des Substance Naturelles. The 

final objective is to propose new, highly potent SMM2 inhibitors with different chemistry 

than CK-571. Other future work to be published includes the study of the binding reaction 

between cytochrome c and calixarene molecules by the Attach-Pull-Release method and 

MM/PBSA coupled to QHMB and benchmark calculations to evaluate the effect QHMB 

has on the false positive rate when comparing molecular docking to MM/PBSA, 

MM/GBSA, MM/PBSA + QHMB and MM/GBSA + QHMB calculations. 
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Supplementary Information: Chapter 5 

 

Annex S5.1: Dataset for the gas-phase entropy calculations.  

Absolute entropies were extracted from the Computational Chemistry Comparison 

Benchmark DataBase from the National Institute of Standards and Technology (NIST).307 

Experimental entropies in kcal/mol were provided at 298K and 1bar pressure. The 

number of non-redundant torsions and molecular conformers were evaluated from the 

analysis of corresponding Molecular Dynamics simulations in vacuum. Molecular 

structures were drawn using MarvinSketch from ChemAxon.25 

 

Molecule TS 

[kcal/mol] 

#Torsions #Microstates  Molecular 

Structure 

Acetophenone 26.57 2 6 

 

Butane 22.09 3 27 

 

Butanoic Acid 25.17 3 27 

 

Cyclohexanone 23.91 1 2 
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Dimethyl 

disulfide 

24.00 3 18 

 

Dinitrogen 

pentoxide 

24.70 1 4 

 

Dinitrogen 

trioxide 

22.43 0 1 

 

Di-n-

propylether 

30.11 6 729 

 

Disulfur 

dichloride 

23.30 1 6 

 

Ethane 16.33 1 9 

 

Fluorine nitrate 20.89 0 0 

 

Heptane 30.50 6 729 

 

Hexane 27.71 5 243 
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Methanol 17.09 1 3 

 

Methoxyethane 22.04 3 27 

 

Methylacetate 22.89 2 9 

 

Napthtalene 23.86 0 1 

 

Nitrosyl chloride 18.64 0 1 

 

Propylbenzene 28.35 3 27 

 

Pentane 24.91 4 81 

 

Propane 19.26 2 9 
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Propiolactone 20.40 0 1 

 

Propylene-oxide 20.03 

 

1 

 

3 

 

 

The number of the torsions also includes torsions encompassing terminal methyl, 

hydroxyl and/or amine groups. 
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Annex S5.2: Dataset for the protein-ligand binding free energy 

calculations. 

 

The experimental binding affinity expressed as 𝑝𝐾𝑖 = − log10𝐾𝑖, the number of residues 

per protein, the ligand molecular weight, the total number of torsions per ligand, and the 

average RMSD with respect to the X-ray structure or the first snapshot of the production 

run over 100ns of MD are given. The number of torsions and the ligand MW were 

computed using DataWarrior.1 RMSD values are given in Å 

 

Complex pKi #Residues Ligand 

MWa 

#Torsionsb RMSDc RMSD d 

1CEB 6.00 80 157 3 1.21 1.22 

1DF8 9.70 476 243 5 1.45 1.56 

1GYX 2.48 152 121 1 1.21 1.23 

1LAF 7.85 238 175 8 1.13 1.13 

1O2Q 7.68 223 369 6 1.14 1.19 

1O33 5.74 233 253 4 0.97 1.07 

1O3I 7.30 223 343 5 1.46 1.56 

1OWE 6.20 245 290 6 1.13 1.13 

1P1N 6.80 516 212 6 2.87 3.00 

1PB8 5.15 282 105 4 1.62 1.63 

1UA4 4.22 454 345 6 1.01 1.02 

1V2J 3.25 223 121 3 0.98 1.07 

1V2U 3.37 223 121 3 1.05 1.17 

1WDN 6.30 516 146 6 1.31 1.35 

1Y20 5.15 223 101 3 2.05 2.04 

2EXM 5.32 298 203 6 1.46 1.44 
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2FQW 6.68 316 269 7 1.08 1.08 

2PQL 7.28 144 161 3 1.17 1.28 

3BRN 8.70 153 177 4 0.97 0.95 

3BU1 8.15 144 112 3 1.10 1.12 

5STD 10.49 492 376 5 1.48 1.71 

 

[a] – The molecular weight of the ligand in Daltons. 

[b] – Torsions include rotatable bonds comprising terminal groups like methyl, hydroxyl 

and amine. 

[c] – Average RMSD of the ligand from the X-ray binding mode.  

[d] – Average RMSD of the ligand from the first snapshot of the MD production run. 
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Annex S5.3: Absolute entropy calculations by QHMB in the gas phase and 

aqueous solution.  

 

The calculations were carried out using the Average Linkage algorithm for clustering and 

an RMSD-cutoff of 0.2Å. Upon clustering, the symmetry number and the molecular 

weight were obtained using VMD, the moments of inertia and the quasi-harmonic 

vibrational frequencies were accessed using CPPTRAJ.118 All entropy values are given in 

kcal/mol. Error bars for the QHMB calculations were estimated from the standard error 

of the mean (S.E.M.) in a standard block analysis. Absolute molecular entropies were 

computed using Thermo (available on the GitHub link: 

https://github.com/SimoneCnt/thermo).294 The systematic difference between the gas-

phase and solution results is related to the definition of the standard state, which 

corresponds to a volume of 24.78L at 298.15K in vacuum and 1L in solution; see Main 

Text. 

 

Molecule TS° QHA-

clust 

NMA-

clust 

Gas phase Water 

Acetophenone 26.57 33.05 25.91 27.34 ± 

0.001 

25.49 ± 

0.006 

Butane 22.09 30.17 20.69 23.09 ± 

0.013 

20.99 ± 

0.010 

Butanoic-acid 25.17 34.38 24.46 26.42 ± 

0.008 

24.85 ± 

0.043 

Cyclohexanone 23.91 26.03 23.21 23.88 ± 

0.019 

21.99 ± 

0.004 

Di-n-

propylether 

30.11 51.06 27.98 30.68 ± 

0.050 

28.83 ± 

0.238 

Dimethyl-

disulfide 

24.00 31.46 22.54 25.08 ± 

0.002 

22.67 ± 

0.031 

Dinitro-

pentoxide 

24.70 31.62 23.16 24.79 ± 

0.012 

22.56 ± 

0.001 
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Dinitro-trioxide 22.43 22.80 21.19 21.45 ± 

0.002 

19.60 ± 

0.005 

Disulfur-

dichloride 

23.30 26.29 23.56 24.19 ± 

0.001 

21.91 ± 

0.001 

Ethane 16.33 17.38 15.72 17.52 ± 

0.012 

14.55 ± 

0.016 

Fluorine-nitrate 20.89 20.84 20.92 20.82 ± 

0.005 

18.97 ± 

0.020 

Heptane 30.50 47.69 27.76 30.44 ± 

0.013 

28.47 ± 

0.076 

Hexane 27.71 41.79 25.50 28.23 ± 

0.011 

26.04 ± 

0.013 

Methanol 17.09 17.72 16.56 17.71 ± 

0.007 

15.82 ± 

0.004 

Methoxyethane 22.04 29.11 21.16 23.15 ± 

0.003 

21.19 ± 

0.001 

Methyl-acetate 22.89 26.06 22.44 23.91 ± 

0.007 

22.06 ± 

0.007 

N-propyl-

benzene 

28.35 38.49 27.54 28.94 ± 

0.003 

26.99 ± 

0.014 

Naphthalene 23.86 23.73 23.61 23.76 ± 

0.006 

21.00 ± 

0.003 

Nitrosyl-chloride 18.64 17.98 17.98 17.98 ± 

0.002 

16.08 ± 

0.001 

Pentane 24.91 36.57 23.27 25.54 ± 

0.007 

23.68 ± 

0.012 

Propane 19.26 23.31 19.12 20.55 ± 

0.010 

18.22 ± 

0.016 

Propiolactone 20.40 20.33 20.32 20.31 ± 

0.022 

18.45 ± 

0.015 
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Propylene-oxide 20.03 21.34 19.56 20.44 ± 

0.012 

18.52 ± 

0.003 
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Annex S5.4: Binding free-energy results from MM/GBSA calculations. 

 

 The standard single trajectory approach was used. Entropy corrections by QHMB were 

computed by taking the difference between the absolute entropy of the ligand in the 

bound states minus that in the unbound state. The gb5 model was used for the polar 

contribution to the solvation free energy and the LCPO model was used for the nonpolar 

contribution to the solvation free energy.196,281,285 Experimental binding affinities at 298K 

were extracted from Ki values reported in Greendige et al.214 All free energy values are 

given in kcal/mol. Error bars were estimated from the standard error of the mean (S.E.M) 

in standard block analysis. 

 

Complex Exp 

∆G°  

Ligand 

MWa 

Torsionsb −QHMBc +QHMBd Correction  

1CEB -8.18 157 3 -29.82 ± 

0.03 

-27.19 ± 

0.10 

2.63 ± 0.09 

1DF8 -13.23 243 5 -41.10 ± 

0.03 

-35.78 ± 

0.26 

5.32 ± 0.25 

1GYX -3.39 121 1 -19.60 ± 

0.02 

-18.45 ± 

0.15 

1.15 ± 0.15 

1LAF -10.71 175 8 -47.85 ± 

0.03 

-36.28 ± 

0.24 

11.56 ± 0.24 

1O2Q -10.47 369 6 -46.22 ± 

0.04 

-34.44 ± 

0.26 

11.78 ± 0.26 

1O33 -7.84 253 4 -32.92 ± 

0.03 

-25.40 ± 

0.16 

7.52 ± 0.15 

1O3I -9.96 343 5 -38.16 ± 

0.03 

-29.10 ± 

0.14 

9.06 ± 0.14 

1OWE -8.46 290 6 -38.29 ± 

0.03 

-28.36 ± 

0.19 

9.93 ± 0.19 

1P1N -9.27 212 6 -35.36 ± 

0.05 

-29.84 ± 

0.10 

5.53 ± 0.09 
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1PB8 -7.03 105 4 -29.56 ± 

0.03 

-24.77 ± 

0.09 

4.80 ± 0.08 

1UA4 -5.76 345 6 -38.86 ± 

0.03 

-31.79 ± 

0.28 

7.08 ± 0.28 

1V2J -4.43 121 3 -24.27 ± 

0.02 

-18.91 ± 

0.16 

5.36 ± 0.16 

1V2U -4.60 121 3 -25.59 ± 

0.03 

-20.35 ± 

0.12 

5.24 ± 0.11 

1WDN -8.60 146 6 -34.91 ± 

0.03 

-29.76 ± 

0.15 

5.15 ± 0.15 

1Y20 -7.26 101 3 -30.97 ± 

0.02 

-27.75 ± 

0.06 

3.22 ± 0.06 

2EXM -5.60 203 6 -32.72 ± 

0.02 

-26.76 ± 

0.06 

5.96 ± 0.06 

2FQW -9.11 269 7 -35.78 ± 

0.03 

-28.33 ± 

0.18 

7.45 ± 0.17 

2PQL -9.92 161 3 -39.08 ± 

0.02 

-34.98 ± 

0.21 

4.09 ± 0.20 

3BRN -11.87 177 4 -44.47 ± 

0.02 

-40.00 ± 

0.13 

4.47 ± 0.12 

3BU1 -11.12 112 3 -32.41 ± 

0.02 

-30.03 ± 

0.26 

2.38 ± 0.26 

5STD -14.32 376 5 -47.52 ± 

0.03 

-40.38 ± 

0.16 

7.13 ± 0.16 

 

a – Ligand molecular weight in Daltons. 

b – The number of torsions include torsions connected to terminal groups like methyl, 

hydroxyl and amine. 

c – MMGBSA calculation carried out in the single trajectory formalism, using 10000 

molecular snapshots. 

d – MMGBSA calculation carried out in the single trajectory formalism, using 10000 

molecular snapshots, augmented with the QHMB entropy correction for the ligand loss 

of conformational entropy upon binding. 
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Annex S5.5: Time series of the heavy-atom RMSD of the ligand from its 

crystallographic binding mode in 21 protein-ligand complexes extracted 

from the Greenidge dataset. 

 The molecular dynamics simulations were carried out at 298.15K in the NPT ensemble 

and superimposed to the protein backbone of the reference structure. Most simulations 

remain close to the initial X-ray structure. In one case, i.e. 1P1N, the ligand changes its 

binding mode. 
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Annex S5.6: Molecular structures of the compounds from the Greenidge 

dataset.  

 

Structures were extracted from the Protein Data Bank and drawn with MarvinSketch from 

ChemAxon. 
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Supplementary Information: Chapter 6 

 

Annex S6.1: MM/GBSA Binding Free Energy results for the 60 compounds 

that were prioritized from CN. 

Complex MMGBSA -T∆S ∆G Bound 
S.E.M 

Unbound 
S.E.M 

MMGBSA 
S.E.M 

∆G 
S.E.M 

AB-00000226 -62.78 16.46 -46.32 0.31 0.16 0.03 0.35 

AB-00002083 -61.27 16.72 -44.55 0.09 0.10 0.03 0.14 

AB-0000267 -64.03 9.05 -54.98 0.11 0.06 0.03 0.13 

AB-00004558 -61.95 5.75 -56.20 0.03 0.17 0.03 0.18 

AB-00007072 -64.44 12.25 -52.19 0.26 0.07 0.03 0.27 

AB-00010786 -55.16 10.38 -44.79 0.10 0.12 0.03 0.16 

AB-00011412 -59.57 11.96 -47.60 0.64 0.03 0.04 0.65 

AB-00011422 -61.76 13.21 -48.55 0.23 0.05 0.03 0.24 

AB-00012062 -61.11 8.98 -52.14 0.09 0.03 0.03 0.10 

AB-00012187 -70.32 11.27 -59.05 0.15 0.03 0.03 0.16 

AB-00014457 -61.81 9.28 -52.52 0.14 0.25 0.03 0.29 

AB-00015405 -62.34 10.47 -51.87 0.20 0.09 0.03 0.23 

AB-00019891 -62.59 14.61 -47.98 0.57 0.04 0.03 0.57 

AB-00022058 -60.03 12.96 -47.07 0.04 0.19 0.03 0.19 

AB-00022275 -70.76 10.58 -60.17 0.15 0.17 0.03 0.22 
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AB-00025673 -56.77 15.24 -41.52 0.42 0.26 0.03 0.49 

AB-00026302 -61.63 12.95 -48.68 0.10 0.07 0.03 0.13 

AB-00026964 -59.85 12.40 -47.45 0.25 0.70 0.06 0.74 

AB-
00027532_2_2 -56.72 14.24 -42.48 0.36 0.06 0.04 0.37 

AB-00027924 -64.49 11.43 -53.06 0.12 0.01 0.03 0.12 

AB-00027945 -56.66 9.01 -47.65 0.07 0.02 0.03 0.08 

AB-00029037 -61.88 9.58 -52.29 0.17 0.25 0.02 0.30 

AB-00029834 -54.85 6.48 -48.38 0.08 0.01 0.02 0.09 

AB-00030020 -61.51 13.77 -47.74 0.30 0.32 0.03 0.44 

AB-00030952 -68.62 12.75 -55.87 0.07 0.22 0.03 0.23 

AB-00032675 -52.56 14.42 -38.14 0.16 0.05 0.03 0.17 

AB-00032757 -62.79 10.57 -52.22 0.08 0.06 0.03 0.11 

AB-00033398 -62.98 7.88 -55.10 0.18 0.10 0.03 0.21 

AB-00033745 -51.28 12.63 -38.65 0.28 0.11 0.04 0.31 

AB-00033828 -55.82 12.87 -42.95 0.29 0.06 0.03 0.29 

AB-00034277 -68.62 13.38 -55.24 0.22 0.05 0.03 0.23 

AB-00036645 -61.71 12.31 -49.40 0.09 0.04 0.03 0.11 

AB-00037163 -61.68 10.18 -51.51 0.08 0.05 0.03 0.10 

AB-00038206 -59.46 12.93 -46.53 0.35 0.02 0.03 0.35 

AB-00040041 -61.76 18.58 -43.18 0.59 0.90 0.04 1.08 
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AB-00044057 -58.77 9.29 -49.47 0.29 0.19 0.03 0.35 

AB-00044787 -59.53 18.07 -41.46 0.22 0.16 0.04 0.27 

AB-00045588 -60.38 16.23 -44.15 0.27 0.02 0.03 0.28 

AB-00046158 -57.71 15.24 -42.47 0.23 1.03 0.04 1.05 

AB-00046578 -67.16 12.88 -54.28 0.06 0.24 0.03 0.25 

AB-00046961 -61.83 19.33 -42.51 0.55 0.18 0.03 0.58 

AB-00047567 -64.48 20.92 -43.56 0.17 0.95 0.03 0.96 

AB-00048033 -53.05 12.75 -40.30 0.14 0.22 0.04 0.26 

AB-00048113 -67.93 5.02 -62.91 0.07 0.17 0.03 0.19 

AB-00051118 -61.05 21.68 -39.38 0.29 0.09 0.03 0.30 

AB-00054907 -58.94 15.34 -43.60 0.19 0.30 0.04 0.36 

AB-00055646 -57.61 12.18 -45.43 0.15 0.33 0.03 0.36 

AB-00056410 -53.87 5.74 -48.13 0.06 0.11 0.03 0.13 

AB-00057060 -61.61 11.24 -50.37 0.12 0.29 0.03 0.31 

AB-00057869 -55.07 12.46 -42.61 0.58 0.19 0.04 0.61 

AB-00058265 -67.82 18.02 -49.80 0.20 0.24 0.03 0.32 

AB-00058994 -54.03 9.01 -45.03 0.21 0.03 0.04 0.22 

AB-00060989 -59.81 13.07 -46.74 0.27 0.27 0.03 0.39 

AB-00062036 -64.78 16.09 -48.69 0.85 0.05 0.03 0.85 

CK144 -65.41 14.88 -50.53 0.13 0.61 0.02 0.62 
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CK571 -68.27 15.20 -53.07 0.10 0.28 0.03 0.29 

CK903 -68.33 21.87 -46.46 0.19 1.27 0.03 1.28 

 

*All values are shown in kcal/mol 
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Annex S6.2: Physicochemical properties of the 60 compounds that were 

prioritized from CN. 

 

Complex MW cLogP cLogS H-Acceptor H-Donor PSA Rotatable 

Bonds 

AB-00000226 388.49 1.84 -2.60 6 1 84.1 8 

AB-00002083 428.39 3.08 -4.80 9 0 106.6 8 

AB-00002670 459.50 2.37 -4.75 8 0 79.4 7 

AB-00004558 430.48 3.13 -7.08 6 0 84.8 5 

AB-00004786 464.53 3.77 -4.14 6 2 109.1 7 

AB-00007072 428.47 1.50 -3.99 9 2 127.8 7 

AB-00010786 386.52 1.29 -3.01 6 1 87.0 6 

AB-00011412 410.43 2.52 -3.85 8 1 102.0 10 

AB-00011422 423.49 2.95 -5.03 7 1 90.8 5 

AB-00012062 409.44 1.76 -3.80 8 3 109.5 10 

AB-00012187 472.52 1.98 -6.19 7 0 94.1 5 

AB-00014457 446.59 3.25 -3.16 6 0 91.5 3 
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AB-00014827 475.50 2.73 -4.62 9 1 99.2 5 

AB-00015405 396.50 3.68 -5.77 6 2 75.6 7 

AB-00019891 413.47 3.76 -3.68 7 0 74.3 9 

AB-00020709 415.48 2.97 -3.04 7 0 82.1 10 

AB-00022058 444.58 3.43 -4.06 6 2 109.1 6 

AB-00022275 495.37 3.47 -4.66 6 1 77.5 7 

AB-00025673 440.54 3.88 -4.35 6 2 134.8 9 

AB-00026302 445.50 2.97 -7.39 8 2 135.3 7 

AB-00026964 443.59 2.31 -4.23 7 4 99.7 0 

AB-00027532 476.53 3.48 -4.88 8 2 113.0 6 

AB-00027924 422.48 3.49 -4.36 7 0 68.3 4 

AB-00027945 418.46 1.83 -5.16 9 2 108.7 4 

AB-00029037 385.47 3.57 -4.67 5 1 78.1 7 

AB-00029834 392.48 3.14 -6.08 6 0 70.5 3 
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AB-00030020 458.61 3.35 -7.39 7 2 121.3 9 

AB-00030952 411.53 2.83 -6.18 7 2 90.0 5 

AB-00032675 420.50 1.85 -3.07 8 2 97.3 7 

AB-00032757 406.51 2.32 -6.49 6 3 107.2 7 

AB-00033398 434.57 3.19 -4.26 7 0 84.1 7 

AB-00033745 404.49 3.94 -5.17 7 2 116.3 5 

AB-00033828 416.50 3.91 -5.27 7 2 124.2 6 

AB-00034277 425.55 3.09 -5.37 6 0 75.2 7 

AB-00036645 452.00 3.41 -5.27 6 2 107.3 4 

AB-00037163 415.53 2.74 -3.48 5 1 80.9 5 

AB-00038206 409.48 1.94 -2.92 7 1 71.1 6 

AB-00040041 448.52 3.34 -6.02 8 4 116.3 10 

AB-00044057 418.45 2.98 -4.47 7 1 84.9 7 

AB-00044787 418.50 3.51 -4.77 7 1 70.4 8 
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AB-00045588 432.55 1.12 -4.12 7 2 63.8 4 

AB-00046158 393.53 3.90 -4.09 6 2 75.9 7 

AB-00046578 439.58 3.89 -6.25 7 1 101.6 6 

AB-00046961 396.49 2.61 -3.20 8 2 94.0 8 

AB-00047567 453.58 3.17 -3.85 7 2 87.7 9 

AB-00048033 399.51 1.94 -5.71 6 1 79.8 7 

AB-00048113 409.49 2.57 -3.69 6 2 73.4 5 

AB-00051118 460.48 2.86 -4.79 9 0 98.8 10 

AB-00054907 434.50 3.19 -7.07 9 3 110.3 7 

AB-00055646 452.53 3.66 -3.76 7 1 102.4 5 

AB-00056410 412.28 3.12 -3.57 6 1 79.7 5 

AB-00057060 408.49 2.52 -6.92 8 3 121.0 6 

AB-00057869 430.51 3.73 -3.82 8 0 79.9 6 

AB-00058265 435.48 1.65 -3.45 9 2 107.6 7 



    

211 
 

AB-00058994 496.34 2.32 -5.55 8 0 125.9 5 

AB-00060989 428.50 2.47 -7.60 10 2 139.2 7 

AB-00062036 469.59 3.77 -5.58 7 2 140.2 8 

CK571 504.94 3.04 -5.88 9 4 124.0 10 

CK144 499.46 0.06 -5.88 7 2 95.2 10 

CK903 482.49 0.80 -3.74 9 3 112.2 11 

 

PSA: Polar Surface Area, defined as the sum over all polar atoms and their attached hydrogens. Molecules 

with a PSA above 140Å are typically not good at permeating the cell wall. 

cLogP: Calculated octanol/water partition coefficient. High logP means low adsorption and thus low 

permeation into membranes. A maximum value of 5 is commonly accepted, and molecules with cLogP < 5 

are typically membrane permeable. 

cLogS: Calculated aqueous solubility. Low solubility is typically correlated with bad adsorption, so the aim 

is avoiding insoluble compounds. According to DataWarrior, 80% of marketed drugs have a logS > -4. 

MW: Molecular weight of the compound. 
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Annex S6.3: Distribution plots of the physicochemical properties of the 

2300 compounds from CN selected for VS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.3 – Distribution plot of the molecular weight of the 2300 compounds from CN screened by 

ChemFlow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.4 – Distribution plot of the calculated logP of the 2300 compounds from CN screened by 

ChemFlow 
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Figure S6.5 – Distribution plot of the calculated logS of the 2300 compounds from CN screened by 

ChemFlow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.6 – Distribution plot of the calculated Polar Surface Area of the 2300 compounds from CN 

screened by ChemFlow. 
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Figure S6.7 – Distribution plot of the number of rotatable bonds of the 2300 compounds from CN screened 

by ChemFlow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 


